تحقيق در عمليات (1)

دكتر عادل اذُر

ترجمه وتأليف : دكتر عادل آذر

تحقيق در عمليات (1)
ترجمه و تأليف: دكتر عادل آذر
ويراستار علمى: دكتر منصور مومنى
حروفجينى، صفعه آرايى و طراحى جلد: مديريت توليد مواد و تجهيزات أموزشى
ليتوكرافى، جابِ و صحافى: انتشارات دانشكاه پيامنور
شماركان:1 نسخه

9YA - 9FF - F $\Delta \Delta-$ - FY - - A
ISBN: 978-964-455-670-8
(كليه حقوق برايى دانشتاه بيام نور محفوظ است)
قِيمت: ..

بسماله الرحمن الرحيم

يبشگفتار ناشر
كابهاى دانشگاه بِامنور حسب مورد و با توجه به شرايط مختلف به صـورت درسـنامه،
 درسنامه (د) نخستين ثمرة كوششهاى علمى صاحب التـر اســت كـه برامـاس نيازهـاى درسى دانششجويان و سرفـصلهاى مـصوب تهيـه مـى شــود و ــسس از داورى علمـى در گروههاى آموزشى چابپ مىشود. با تجديدنظر صـاحب اتـر و دريافـت بازخوردهـا و اصلاح كتاب، درسنامه به صورت آزمايشى (آ) حَابِ مـيشـود. بـا دريافــت نظرهـایى اصلاحى و متناسب با بِشرفت علوم و فناررى، صاحب اتّر در كأب تجديدنظر مىكنـــ
 قطعى نيز هى تواند تجديدنظر هاى اساسى به عمل آيد. متون آزمايشگاهى (م) متونى است كه دأنشجويان با استفاده از آن و راهنمـايى ائى مربيان كارهاى عملى آزمايشگاهى را انجـام مـىدهنـــــ كتابهـاى فرادرسـى (ف) و
 كتابهاى فرادرسى با تأييد معاونت بِزوهشّى و كابهاى كهكدرسى با تأييد شــوراى انتشارات تهيه ميشوند.

مديريت توليد مواد و تجهيزات آموزشى

فهرست

مقدمه

1
نصرل اوّل:كليات تحقيق در عمليات (ويرگيهِا و نرآيند)
r
نصل دوم: برنامهريزى خططى (مدلسازى)
gr
فصل سوم: برنامهريزى خخطى روش هندسى

90 فُصل جهارم: برنامهريزى خطى (روش سيميلكس)
|V| نصل ینجم: برنامهريزى خطى(تحليل عناصر تابلوى سيمیلكس و مسـأله ثانويه)

YYQ
سخخن آخر: مقدمهاى بر تحليل حساسيـت
rrr منابع و مأخخذ

 در عمليات (1) و (r) بگذراندي
 اساس سرفصل مصوب درس تحقيق در عمليات (1) براى رشَتههاى مديريت (دولتمى، بازركانى و صنعتى) و حسابدارى تنظيم شده است.

نصل اول: كليات تحقيق در عممليات (ويزٔكيها و وريآيند)
نصل دوم: برِنامهريزى خطى (مدلسازي

 مى تواند بـ سادگى و خودآموز شدن كتاب بيافزايد.
هو منت الله التوفين"
Fابابستان
عادل آذر

فصدل اوّل
 كليات تحقيقدرعملياتِ
 (ويزگيهاونرِ آيند)

اهداف نصل

 شد. همجنين رويكرد تحقيق در عمليات براى حل مسألد تشريح خواهد شد.

1.1 مقدمه

تحقين در عمليات' كاربرد يك رويكرد علمى است كه درصدد حل مسانل مديريتى است و

 تحقيق در عمليات معمولأ در قالب عناوينى جون؛ علم مديريت الْ روشهاى مقدارى ‘「،

تحليل مقدارى' و علم تصميمكيرى ' نيز بيان مىكردد. در بسيارى از متون (از جمله اين كتاب)

بازركانى، صنعتى، آموزشُى و بهداشتى مى توانٍ بكار برد.

 رياضى است. اين علم نيز همانند ساير علوم با مسايل و مشُكلات به طريت منطقى برخـورد مى كند. نگاه OR به مسائل مديريتى يكـ نگاه سيستماتيكى و منطقى است.

> Y.1 بيبدايش تحقيق در عمليات

2. Decision science

 ام ووزه بطور وميععى در تمام دنيا براى شُيوه جديل مطالعه علمى و سيستمـاتيكى عمليانت مورد استفاده قرار مىكيرد.

 بيحچيدهالى شده است كه نهايناً سازمانها را مجبور نموده تا درصدد استفار انـاده از مؤثر ترين روشهاى برآيند. OR
 سازمانها پد يدار گرديل. تعداد زيادى لز كارشناسان، منجمله مشاورين صنا صنعتى و اقتصادى كه در
 مسائل صنعتى و اقتصادى با مسائل نظامى فرقى ندارد و تنها شـكـل آنها با يكديگر مستفاوت

 تكنو لوزيكى در بخش صنعت كرايش بيدا نمود.

 تحقيت در عمليات صورت گرفت. بعد از جنگ، دانشدندانى كه در كروههاى OR كار كرده و يا در مورد آن مطالعاتى داشتند، انگيزه كافى براى پيگيرى تحقيقات مربوط را پِيدا كردند و در اين

1. Simplex Method
2. Linear Programming
3. George Dantzig
 محاسباتى در مقياس وسيع، موتعيت نويدبخش نعلى را در انواع زمـينهنهاى عـملياتى كسب نمىكرد.

 تصميمكيرى درصدد بهبود تصميمات مديرانيان در شرايط مبهم و نادقيت هستند. روشهاى

 هرجه بهتر و واقعىتر حمايت كتند.
r.1. تعريف تخقيت در عمليات

 OR
ا. تحقيق در عمليات به مجموعهاي از روشهاى علمى و فنونى كفته میشود كه جهي
 r. تحقيتَ در عمليات عبارتست از كاربرد روشهاى علمى برایى مطالعه و بررسى فعاليتها

> و عمليأت بيجيده در سازمانهاى بزرك.

شايد بتوان مهمترين تعريف از

بعدى به شرح آنها يرداخته مىشود.

$$
\begin{aligned}
& \text { ا. تمركز اصلى و اوليه OR بر تصميمكيرى مديران المتي } \\
& \text { 「. رويكرد OR يك رويكرد علمى استـ. }
\end{aligned}
$$

1. Fuzzy Logic
2. Management lnformation systems
3. Expert systems
4. optimum
r.
 دانش بين رشتهالى ' استـ
ه. در OR از مدلهأى رياضى استفاده مى مشود.
 حالن به تشُريح هر يك از اين ويئكيا يرداخته مىشود.

 انجام كيرد؟ (what)، حه وقت؟ (when)، جحگونه؟ (How)، كجا؟ (where)، توسط چِه كسى؟
(by whom)
ير واضح است كه برنامبريزى به تصميمكيرى اشاره دارد: ديگر وظايفـ مديريت همانند
 در تحقيت در عمليات امر تصميمكيري و و بررسى مسائل در در قالب يكى فرآيند سيستماتيكى

$$
\begin{aligned}
& \text { مورد توجه قرار مىيكيرد. اين فرآيند داراى مرأحل زير امـت: } \\
& \text { ا. تعريف مسألد } \\
& \text { r. شـناخت راهحلهاي ممكن }
\end{aligned}
$$

 مسأله را شناسايىى نمود. با محكى زدن راهحلهاى شنا توسط مدير انتخاب مىشود.
3. Alternatives
; I.F.F
 وكارت غيلسو ف معروف نرانسوىى در قرن هفدهم تعريف شل. أين رويكرد شامل مراححل زيـر

اسـت:
مرحله (1) تعريف مسأله: مسأله بايلد بر'ى تحليل، تعريف شلده و شرايط مشتاهده تعيين
كردد.
 دربركير نذهٌ مسأله را تعيين مىىتند.
مر سله ('ّ) ترضيه: برأساس مشاهده (تجربه) اسـت كه فرضيات موبوط به بهترين جواب :بأى مسألّه شكل هـى
 اندازه كِيرى بايلد طراححى شود.
 بَزهـا يِش ثبـت و ضبط شود.

 با رد.
شش مرححله روش علمى قابل بكارگيرى در تصميمڭگيرى نيز هستند. براى مثال اززيابِى
 تصمديـمكيرى به خوبى در شكل 1.1 نشان داده شـلـه السمت. تتحقيت در عمليات از اين وويكرد علمى براى حل مسأُلمه استفاده مىكند. برإى هر يكـ از
 روش علمى در OR بر اين ايلده أسـت كه بايلد مسأله را به عنوإن يكى سيستس (كل) بررسىى كرد.
(.f.t

نرآيند تصميمڭگـرى
روش علمى

شكل 1. 1 روإبط بين رويكرد علمى و فرآبند تصميبگیرى

قابل بححث در OR ORاه به يك مسأله (زيـر سميستم) در ارتـبـاط ارگانيكـ بـا سـاير أجـزاء يـا زيرسيستمـيا میباشـد.
هر سيستـم قابل تقسميم بله سه بخخش عمـلـه به شرح زير مـيبارئـ:
. دادهـا

- بردازشگرها

「 ${ }^{r}$.
اجزاء هتفاوت سيستم توسط محيط شخود مـحاصره شدهاند و اغـلب بـوسيلة مكـانيسم
 سيستم میى.باشلـ.

1. Inputs
2. processes
3. outputs
4. Feedback

I.F.F تحقيت در عمليات يك رويكرد بين رشتهاى

 باشد نيز استفاده كرد.

 با مشكل مواجه مى مازد. به عبارت ديكر يكى مدل ساده شده نمى تواند وضعيت وانعى مسألد را بيان كند.
 متفاوتى از سادهسازى ممراه باشد. مدلها با نوجه به درجئ انتزاعى بودن به سه دسـته تـقسيم مىشوند.

ا. مدل شمايلى ': بِى مدل شمايلى، جايگگزين فيزيكى از سيستم است كه معمولاً پر

[^0]

 مسيرهاى نظارت مى باشد.

تعيين كرد.

1. Analog Model

طبقبندى مدلهاى رياضى در تحقيت در عمليات مدلهاى رياضى OR معمرلأ به سه مقرله؛ ا- قطعى

 مدلهاى رياضى در OR است

 در شرايط تطعى مورد استفاده قرار مىكيرند و هم با باندك تغييراتى در مفروضات كاربردي آنها در شرايط احتمالى نيز قابل استفاده هستند.

 قدرت محاسباتى ميليونها بار سريعتر لز روش دستى، انفجار عجيبى در شكـوفايى ايـن عـلم بديد آمد.

شكل r.i طبقعبندى مدلهاي رياضـى در OR

 ما مورد استفاده قرار مىگيرندن.

ه. 1 رويكرد تحقيق در عمليات براى حل مسأله

$$
\begin{aligned}
& \text { حالل به شُرح و تحلبل هريك از مراحل بنجكانه فوق مىيردازيم. }
\end{aligned}
$$

اولين تدم در فرآيند تحقيق در عمليات تعريفـ مسألهاى است كه در سيبستم يا سازم انمان وجود

 مشاهدات به عمل آمده از فرآيند عمليات در سازمان و محيط مى باشد.

 واقعأ مسأله است معطر فـ كردد.

ب. 1.0 ساختن مدل

 مجموعهاى از روابط رياضى خو اهد بود. روابط رياضى مدل در OR OR از اعداد و نمادها هوا تشكيل

فروش كالا باشـد، عبارت است از:

$$
Z=Y_{0} X-\Delta X
$$

در اين معادله X نشاندهنده: تعداد محصولاتى الست كه فروش خواهــد رفت. و Z كـل سـود

 والحدهاى فروش رفته الست. متغير X يكى متغير (مستقل) اسمت. زيرا تعداد واحلدهاى فـروش

 مى آيند.

 تابعى از تعلداد واحدهاى فروخته شده؛ X، الست و اين معادله، سود را به واححدهاى فروختـششده ربط مىدهه.
عليرغم آنكه در اين مثالل، فقط يكـ رابطؤ كاركردى تعريف شده أست ولى آن رو را مدل نيز

 بيان مصرف محصول از آهن به صورت زير تعريفـ كنيم: Y
معادله بيانگر اين واقعيت است كه هر واحد محصرل تولِيلى \& كيلوكرم از 100 كيلوكُرم آهن موجود را مصرف خواهد كرد. بنابراين هدل شامل دو رابطه به صبرت زير است: $Z=r \cdot X-\Delta X$
$\uparrow X=100$

 نمادكناري كنيم:
$\operatorname{maximize} Z=r_{0} X-\Delta X$
subject To:
${ }_{\dagger} \mathrm{X}=10$ 。

> ترجمه مدل فوق به صورت زير است:

ح حاكثرُ سازى Z = Yo X - ΔX
:به شُرط اينكه
f $X=10$ 。
الز اين پس براى نوشتن مدل بجاى كلمات „فارسى، و يا وازءههاى كامل وانگليسى، از خلاصه زير استفاده مىشود:
$\operatorname{Max} Z=r \cdot X-\Delta X$
s.t:

F $\mathrm{X}=100$

 ,اقعى سيستم است.
1.0.F حل مدل

1. objective function
2. Potential Decision
3. Gonstraint
4. Decision Variable
ـ به معنى حل مسأله مورد تو جه مديريت خواهد بود.

براى مثال مدل تعريف شده در بخش قبل
$\operatorname{Max} Z=Y \cdot X-\Delta X$
s.t :

F $X=100$
با استفاده از عمليات جبرى زير قبل حل است.
$f X=100 \Rightarrow X=\frac{100}{Y}=r 0$, 1 ,
جايِزين كردن مقدار
$Z=r \cdot X-\Delta X=Y \cdot(Y \Delta)-\Delta(r \Delta) \Rightarrow Z=r v \Delta$ ريال
بنابراين، اكر مدير تصميم به تولبد

 اطلاعات بيانگر دادههاى ثردازش شـه توسط مدل حل شده مىباشند.

ه. ه. ال اجراى نتايج
فنون حل مسأله در OR فراهمكنتده اطلاعاتى هستند كه مدير را در تـصميـمكيرى بـهتر يـرى

 بلااستفاده بگذارد، عملاُ بايد تمامى مراحل طـى شده در فرآيند علمى OR را به فراموشى سمیرد.
 واقعى فرآيند مطالعةُ علمى به تأثير آن بر عملكرد سيستم مورد مطالعه خواهد بود.

 الز ساخت مدل، حل و اجراء ضرورت بازنگرى بديد آيد. به عنوان مثال در بسيارى از موا مرارد در حين ساخت مدل ممكن است بعدى جديد از مسأله روشن شود و يا اينكه در مرحله حل مل مدل و يا اجراى آن نياز به تغيير ساختار مدل و يا تعريفت مسأله بوجود آيلـ بنابراين در هر مر مرحله نياز

[^1]

 میشود.

OR أ 1 قلمرو استفاده از

 آنها بهبود قابل توجهي :

 OR

 الجمالى
 خلاصـه آن در جدول ب. 1 آمده انست.

بردسى				
			1401 AMA $\mathrm{n}=4 \pi$ （درصهن）	زمبنه كاربر دى
19	9人	rr	Hf	توليد
－أحدو＞ج－	00	rq	Y	برنامهريزى بلندهـدت
19	Yo	is	ro	＊و＊
Γ	$9 \wedge$	r	Y	كنترل هو جوز
$\stackrel{1}{ }$	H1	1A	10	حملـونقنا
			10	علـ＊
．$\because 1313$	安	2اده	14	\％
－	｜ras	｜	Ir	－1
	ir	11	11	－
2اده：	．	－	＾	خربـ
－$\because 12 \times 2$	2， 2	准这	\wedge	ب\％
To	r	Y	20， 3	كيترل كينيـت
17	YY	11	｜داده جِج，	：
11	Y	10	21020	هاكانيا
IT	Fo	10	｜داده وجود	جا
边	0	Q	｜	：بستدبنـ
Yo	Y9	V	｜داده دجرد ندأز）	
r A^{\prime}／	$51 / 0$	fr／c		شـركتهائي كه لا：فنـون

جدول $1 . Y$ فراوانی استناده إز مدلهاى OR

به دليل اهميت تحقيق در عمليات و به منظر ر فعاليت در اين زمينه، انجمنهاي حر فـهاى

 تحقيت در عمليات دارند.
I.V خلاصه فصل اوّل

 در انتهاى نصل نيز قلمرو الستفاده از OR و وسعت كاربرد آن آوروده شده انست.
F. حل مدل به منزلة حل است.

 الف) مسأله را تعريفكرد. ج) مدل را ساخت
 ج) فرآيندهاى مادكونى ^^ كداميكا از مدلهاى زيري، انتزاعىترين نوع مدلها است؟؟ الف) شمايلى
ج) رباضى 9. فراوانى استفاذه از برنامهريزى آرمانى در كدام است؟
الف) بسيار زياد
د) بسيار كم
ج
-1.كداميك الز اصطلاحات زير مترادف علم تحفيت در عمليات است؟

 الـ شاركليرى تحقيق در عمليات از جه سازمانهايى شروع شد؟ ب) نظامى الف) بازركانى 3) خدماتى

ج) بيمارستانها
r| با كانون توجه OR

 ب) هتغير وا'بسته الخْ) متغير ج) متغير مستشِّ

 الف) خريد د) بستهنـندي ج) توليد
I.A.Y

 ها ثرُآَيند تصميمگيرى رأتوضيح ذهيد؟

V. V

pgo

برنامهريزى خطى'
 (مدلسازی)

اهداف فصل

Y. 1

 و جود دارند كه درصدد حداقل ون ودن

 همجنانكه در فصل قبل كفته شد، برْنامهريزى خطى شـامل مدلى است كه داراى يكـ تابع هدف و حند محلدوديت است كه روابط خطى بين متغيرهاى آن در تابع هدف و محلدوديتها وجود دارد.
سه كام اساسى در بكاركيرى برنامهريزى خطلى در عمل بايد در نظر كـرفته شــودد. أولاً؛
 مسأله بايلد در قالبِ يك هدل رياضى نرموله شود. ثالثأ؛ مسأله بايِ با استفاده از يكى تكنيكى مشخص رياضى قابل حل باشدل نام برنامهريزى خطى برگرفته انست از اين واقعيت است كه؛

1. Linear Programming
2. Maximize
3. Model Formulation
4. Minimize

اروابط كاركردى 'در مدل رياضى خطى هستند و تكنيكى حل مدل شامل مراحـل ريـاضىى از rيـئ تعيين شده به عنوان يكـ برنامه
Y.Y مدئسازیى

 سـازنده: وسايل الكتريكى را در نظر بگيريد كه نهايل دارد X

 براى كارخانه بيان مىكتد (براى مثال كه 100 دستگاه راديو توليد كند).

 هدف كارخانه باشـد). محدوديتهاى مدل نيز بيانگر روابط خطـى محدوديتها بوسيلن محيط عملياتى
 ساعت كارى برای توليد راديو در كارخانه موجود باشد، كارخانه ناجار اسمت اين مسدوديت رادر
 محلدوديتها بيان میشود (همانند م م سـاعت كـار در دسـترس)، بـارامـترهاي مـلـل خـوانــده
مى شـوندند.a

 مرححله اول: متغيرهاى تصميم را تعريف كنيد. مرحله دوّم: تابع هدف را فرموله كنيد. مرحله سوّم: محدوديتهاي مدل را فرموله كنيل.

1. Functional Relationships
2. Decision Variables
3. Operating Environment
4. Programe
5. objective function
6. Systematic Format

 آغاز نمود.

Y.Y.Y مثالهايى كاربردى از مدلسازى Y

 هر يك از سه محصول در جدول زير آمده است:

 بيان شده در بخشش r. r ف فرموله ميكنيم.

[^2]متغير هاى تصميم مسأله : سه متغير تصميم أين مسأله، مقدار توليد محصول ماني

$$
\begin{aligned}
& \text { مex }
\end{aligned}
$$

 ينابراين سود كل، Z، عبارت است از:

Maximize $Z=r x_{1}+\Delta x_{Y}+Y X_{r}$

متحدوديتهاى مدل :

كار عبارت الستا ازي:
$\Delta x_{1}+r x_{r}+\psi x_{r} \leq r Y_{0}$
نيروى كار - ساعت

$\psi x_{1}+\varphi x_{r}+\mu x_{r} \leq \psi_{0}$
مواد - كيلوكرم

 نامفهوم است. اين محدوديتها از نظر رياضى جنين بيان ميشوندا

$$
x_{1} \geq 0, x_{r} \geq 0, x_{r} \geq 0
$$

 يازده شركت و يا كاهش, نز رشد به معناى ورجود يكـ متغير تصميم الست.

مدل خلاصه شدة مسأله تركيب توليد : مسأله برنامهر يزى خطى رابه طور كامل و استاندارد به صور بـا بيشينه كردن $Z=r x_{1}+\Delta x_{T}+r x_{r}$: به شرط آنكه
$\Delta X_{1}+r X_{Y}+F X_{r} \leq Y F_{0}$
$f x_{1}+\varphi x_{Y}+\mu x_{Y} \leq Y 00$

$$
x_{1}, x_{r}, x_{r} \geq 0
$$

م.Y.Y P.Y مسأله رذيـم غذايـ

 ستون آخر جدول نشاندهندهُ هز ينهٔ هر غذا مى بابشد.

 بيشتر از
 هزينهٔ آن حداقل كردد.

متغير هاى تصميم مسألد :

 Minimize $Z=1 \wedge 0 x_{Y}+Y Y_{0} X_{Y}+100 X_{Y}+1 Y 0 X_{Y}+100 x_{0}+90 x_{f}$ $+40 x_{V}+190 x_{1}+0.00 x_{q}+V 0 x_{1}$

محدلوديتهاي مدل :
 بايلد در برنابمه صبيحانه ديله شبود. به شرح زير :
$90 x_{1}+110 x_{Y}+100 x_{Y}+90 x_{Y}+V \Delta x_{0}+r \Delta x_{\varphi}+90 x_{V}+100 x_{A}+1 Y 0 x_{q}+90 x_{1}$ \geq KTO كالز
$r x_{1}+r x_{r}+r x_{\varphi}+\Delta x_{0}+r x_{\varphi}+r x_{\Lambda}+x_{\nu_{0}}$ ST0 Kرم
$r v \circ x_{0}+\Lambda x_{\varphi}+1 r x_{A}$ ميلى
$\varphi x_{1}+\varphi x_{r}+Y x_{r}+r x_{\varphi}+x_{D}+x_{y^{\prime}}+x_{1}$ ميلىقرم آهن 0 ج $r \circ x_{1}+r \wedge x_{Y}+r x_{r}+\lambda x_{Y}+r \circ x_{0}+r \Delta x_{V}+r 00 \dot{x}_{\lambda}+r x_{q}+r \varphi x_{10}$

ميلىترم كلسيم
$r x_{1}+\varphi x_{r}+\Delta x_{r}+\varphi x_{Y}+V x_{0}+r x_{\varphi}+x_{V}+\varphi x_{\lambda}+x_{q}+r x_{1} \quad \geqq r_{0}$ $\Delta x_{1}+r x_{Y}+r x_{r}+\varphi x_{Y}+x_{V}+\mu x_{\nu}$

گرم فيبر

خلاصهه مدل :
با اضافه كردن محخدوديتهاى غير منفى، مدل كامل برنامهريزى خطلى براى رزيم غذايمى صبحانه

$\operatorname{Min} Z=110 x_{Y}+Y Y 0 x_{r}+100 x_{r}+1 Y 0 x_{\varphi}+100 x_{0}+90 x_{\varphi}+40 x_{V}$

$$
+190 x_{A}+000 x_{9}+V 0 x_{10}
$$

S.t:
$90 x_{1}+110 x_{Y}+100 x_{r}+90 x_{Y}+v 0 x_{\Delta}+r 0 x_{\varphi}+90 x_{V}+100 x_{\lambda}+1 Y 0 x_{q}+90 x_{10}$ $\geq 4 Y$ 。
$r X_{Y}+r X_{Y}+Y X_{\varphi}+\Delta X_{0}+r x_{\varphi}+Y X_{A}+x_{10} \quad \therefore \quad \leq Y_{0}$
$r V_{0} x_{\nu}+\Lambda x_{\varphi}+I r x_{\Lambda}$. $\leq r_{0}$
$\varepsilon x_{1}+Y x_{r}+Y x_{r}+Y x_{\varphi}+x_{0}+x_{V}+x_{1} \quad \geq 0$

r.r.r.r مسأله سرمايه گذارى

 نباشد.

 سرمايه گذأرى نمايد.
 زمينئ خاص, نشان مى دهد.

هدف سرمايه گذار حداكثر كردن كل بازده سالانه ناشى از سرمانِه كذارى .در جهار زمينةُ مختلف
 تابع هدف به صوردت زير تعريف میشود: Maximize $Z=0 / \circ \wedge \Delta x_{1}+\rho / \circ \Delta x_{Y}+0 / 09 \Delta x_{r}+\circ / 1 r_{0} x_{\psi}$

كه در آنّ؛

كل كل بازده ناشى لز

- / 1 rxx : كل بازده ناشى از سرمايه كذارى براى خريد سهام

مى باشد.

محدوديتهاى مدل :
در اين مسألهى محدوديتها بيانگر سياستهاى تعيين شده براي تقسيم كل سرمايه در زمـينـهاهاى

 شد. بنابراين؛ محدوديت متناظر عبارتست ازي:
x

 سرمايه كذارى در ديگر زمينهها؛ $x_{r} \leq x_{1}+x_{r}+x_{\psi}$
از آنجاكه براى بكاركيرى تكنيك حل در برنامهريزى خطى لازم است استه مدل به صورت

راست به صورت مفلار عددى تعريف مىشود. ينابراين مىتوان هحدوديت دوّم را بــصورتُ زير نوشت:
$x_{r}-x_{1}-x_{r}-x_{f} \leq 0$
در سياست سوّم مشخص شد كه مجموع مبلغ سرمايبكذاري در سبرده بانكى :و ابسناد:
 ريال خواهبد شدل، بِس مىتوبان نوشت:
$X_{Y}+X_{r} \geq r 1000000$,

سرمايه گذارى در اوراق قرضه و سهام ايُست. اين نسبت بايد حداقل 1/T به ا باشبد. يعنى

$$
\frac{x_{y}+x_{r}}{x_{1}+x_{y}} \geq 1 / r_{0}
$$

$$
x_{Y}+x_{\varphi} \geq 1 / \gamma_{0}\left(x_{1}+x_{\varphi}\right)
$$

$$
x_{r}+x_{r}-1 / r \circ x_{1}-1 / r \circ x_{r} t^{\prime} \circ
$$

نبايتاً، سرهايه گذار تمايلِ داشت كا
 $x_{1}+x_{Y}+x_{r}+x_{Y} \geqslant V 000000$ ريال

خلاصه هدل :
با اضافه كردن محدوديتهاى غيرمنفى؛ مدل كامل. مسأله سرمايه گذارى به صورتت زير خالاصه مى شو د: $\operatorname{Max} Z=0 / 0 \lambda 0 x_{1}+0 / 000 x_{Y}+0 / 0 q \Delta x_{Y}+0 / 1 \mu \circ x_{\varphi}$ S.t:

$$
\begin{aligned}
& x_{\eta} \leq 14000000 \\
& x_{1}+x_{Y}-x_{Y}=x_{-r} \leq 0 . \\
& x_{Y}+x_{r} \geq Y 1000000 \\
& -1 / r \circ x_{1}+x_{Y}+x_{r}-1 / r_{0} x_{\varphi} \geq 0 \\
& x_{1}+x_{Y}+x_{r}+x_{Y}=V 000000 \\
& x_{1}, x_{\gamma}, x_{r}, x_{\varphi} \geq 0 .
\end{aligned}
$$

ج.Y.Y مسأله بازاريابیى

هر بار تبليغات قرار ميگيرند، برحسبن نوع وسيلهُ تبليغات ذر جدول زير داده شده است:

شركت بايد محدوديتهاى زير رادر تبليعات خود مدنظر داشتهه باشد: ا. كل بو2جئ تبليغات كا r. مجهوز تعداد تبليغات تلويزيون حداكثر حهار نَوبت أست. r.

 حال مسأله را به صورت يكى مـل برتامهريزى خططى فرمونله مىكنيم.

متغيرهای تصميم • در أين مسأله ب بنوع متغير تصميمب وجود داردكه هر يكَ از آنها بيانگر تعداد تَّليغات در هر وسيله اسـتِ. بـ شرح زيبر:

$$
\begin{aligned}
& \text { تعدأد آگهى تجارى تلويزيون : }
\end{aligned}
$$

تابع هدف: :

تأبع هدف أين مسأله با مسائل قبلى مثفاوْت أست. بَرخلاف مسائل قَبلى كه هدفَ حخداكتر كردن

 در اين مسأله اگُ كل افراد شنوندهاى كه در معرض تبليغات شركت قرال مىىتيرنل حداكتر شود، شركت به هدف خودد نايل شـلـه است. يعنى: Maximize $Z=Y_{0000} x_{1}+1 Y_{000} x_{Y}+9000 x_{\gamma}$

 قرار مى تعداد أقرادى اسـت كه در معرض آكَهيهاى تجارى راديو شبركت قرار مى
Q تم تع مطالعه مىكنند.

محدلوديتهاى مدل :
اولين محدوديت مدل، محدوديت بودجئ تبليغاتى شركت اسـت كه بِى ميليون تو مان است.

 كا كل هزينهٔ تبليغات در تلويزيون و ك ,

 ها 1 ونوبت مییاشد. بنابراين:

$$
\begin{gathered}
x_{1} \leq Y \\
x_{T} \leq 10 \\
x_{r} \leq V
\end{gathered}
$$

نوبت آَكثهى تلويزيون
نوبت آگثى راديو

نوبت آكهى روزنامي

 $x_{1}+x_{r}+\dot{x}_{r} \leq 10$ نوبت تبليغاتي
 $\operatorname{Max} Z=r_{\mathrm{H}} \ldots \ldots X_{1}+1 r_{\ldots} \ldots x_{r}+9 \ldots 0 x_{r}$

$$
\begin{aligned}
100000 x_{1}+90000 x_{r}+40000 x_{r} & \leq 1000000 \\
x_{1} & \leq r \\
x_{r} & \leq 10 \\
x_{r} & \leq V \\
\because x_{1}+x_{r}+x_{r} & \leq 10 \\
x_{1}, x_{Y}, x_{r} & \geq 0
\end{aligned}
$$

يكى شركت حملونقل درصدد حمل تَلويزيونهاى توليدى از سه كارخانه به سه شهر مـختلف

هزينهُ حمـل هر "دستگاه تلويزيوناز هر كارخانه بة هر شُهر به نسبت مسافت و كيفيت راه

مسـأله را بـه كونهاى فرموله كنيد كه ضمـن تأمبن تقاضاى هر شهر، كل هزينهُ حمل نيز حداقـل كردد:

متغيرهاى تصميم:

اين مسأله دارأى 9 متغير تصميم است كه بيانگر تعداد تلويزبون (دستگاه) حمل شـده از هـر كارخانه به هر شهر خواهد بود بود. يعنى:
xij : تعداد تلويزيون قابل حمل از كارخانه i أم بـ شَهر زام
كه در آن؛

j= شـيراز (A) بوشهر و (B) اهواز و (C)
خواهد بود.

 بيانگر تعداذ تلويزيونى است كا كاز كارخانه شماره ب (اصفهان) به شهر A (شيراز) حمل میشود.

> تابع هدف :

 Minimize $Z=19 x_{1 A}+1 \Lambda x_{1 B}+11 x_{1 C}+1 r x_{Y A}+1 r x_{Y B}+1 r x_{Y C}+1 r x_{r A}$ $+10 \mathrm{x}_{\mathrm{rB}}+1 v \mathrm{x}_{\mathrm{rC}}$

محدوديتهاى مدل :

 $x_{1 A}+x_{1 B}+x_{1 C} \leq \mu_{0} 0$ عرضه كارخانُن تهران - تلويزيون

$x_{r A}+x_{r B}+x_{r C} \leq Y_{0} 0 \quad$ عرضه كارخانئ اصفهان - تلويزيون
سه محلوديت ديگر كه بيانگر تعداد تقاضاى هر شهر مى.باشد، قابل تعريفـ مى باشنـند. به

 مى. بنابْراين داريمز:
$x_{1 A}+x_{r A}+x_{r A}=100 \quad$ تقاضاى شهر شيراز - تلويزيون
ت

خلاصه مدل :

با اضافه كردن محدوديتهاى غيرمنفى، مدل كامل برنامهريزى خططى براى مسأله حمل, ونتل به صورت زير خلاصه مىشود: $\operatorname{Min} Z=19 x_{1 A}+1 \Lambda x_{1 B}+11 x_{1 C}+1 F x_{Y A}+1 r x_{Y B}+1 r x_{Y C}+1 \mu x_{r A}$

$$
+10 x_{r B}+1 v x_{r C}
$$

s.1:
$x_{1 A}+x_{1 B}+x_{1 C} \leq r_{0}$
$x_{Y A}+x_{Y B}+x_{Y C} \leq Y_{0} 。$
$x_{T A}+x_{r B}+x_{r C} \leq r_{0}$:
$x_{1 A}+x_{Y A}+x_{r A}=100$
$x_{1 B}+x_{r 1 B}+x_{r B}=Y 00$
$x_{1 C}+x_{r C}+x_{r C}=Y_{0}$
$x_{i j} \geq \circ(i=1, r, r, j=A, B, C)$

Y.Y.Y مسأله امتزاج

به متنظور اطمينان از امتزالج منانمبـ، هر درجهالي لز سو شخت دارأى مشتخصات مغينى است. هر
 زير داشته باشدل:

ro

معهولى

11
نرقالعاده
 حال مسأله راٍبه كونهاي فرموله ثحىكيـم كه ضمن بيان ميزان توليد هر نوع سو خخت، سود حاصل از فروش تولِيدات نيز سداكثر شـود.

متغيرهاى تصميم در إين مسأله بايد معدار هر يك از مواد اولية مورد المتفاده در هر نوع مو خـت را مشخخص نمايند. بنابراين نه بتغير تصميـم به شسرح زير بايل تعريف شـود: $X_{i j}$:
 نوع i كه در سوخت درجين j امتفاده مـيشود.
 سوير استفاده میشود. كل توليدات برحسب درجئ سوخت عبارت خواهد شدل از:

$$
\begin{aligned}
& x_{1 s}+x_{r s}+x_{r s} \\
& x_{1 p}+x_{r p}+x_{r_{p}} \\
& x_{1 e}+x_{r e}+x_{r e} \text { فوقالعاده } \\
& \text { سوبرِ } \\
& \text { معمولى }
\end{aligned}
$$

معمولير :

تابع هدف:

Maximize $Z=Y_{r}\left(x_{1 s}+x_{Y s}+x_{r s}\right)+Y_{0}\left(x_{1 p}+x_{Y p}+x_{r p}\right)+1 \Lambda\left(x_{1 e}+x_{Y e}+x_{r e}\right)$

$$
-1 r\left(x_{1 s}+x_{1 p}+x_{1 e}\right)-10\left(x_{r s}+x_{r p}+x_{r e}\right)-1 \varphi\left(x_{r s}+x_{r p}+x_{r e}\right)
$$

با سادهكردن تابع فوق، تابع هدف اصلى مسأله به صورت زير بدست مى آيّي: $\operatorname{Max} Z=11 x_{1 s}+1 r x_{Y s}+9 x_{r s}+\wedge x_{1 p}+10 x_{Y p}+9 x_{r p}+9 x_{1 e}+\Lambda x_{r e}+4 x_{r e}$

هـحدوديتهاى مدل :

اوليه در دسترس مى باشدل كه به طور روزانه فرمونوله مى اريوند:

$$
\begin{aligned}
& x_{1 s}+x_{1 p}+x_{1 e} \leq r 000 \quad \text { بشُكه } \\
& x_{r s}+x_{\gamma_{p}}+x_{Y e} \leq \gamma_{0} 0 \quad \text { بشكه } \\
& x_{r s}+x_{r p}+x_{r e} \leq r \Delta 00 \quad \text { بشكه }
\end{aligned}
$$

گروه بعدى محدوديتها براى رعايت مشخخصات تركيب در هر نوع سوخت
 كه به صورتَ زَّيز فرمبوله مى شورد:

$$
\frac{x_{1 s}}{x_{1 s}+x_{r s}+x_{r s}} \geq 010 .
$$

مجموع توليد سـو خخت درجئ سوبيز
 $X_{i s} \geq \circ / 0 \circ\left(X_{1 s}+X_{r s}+X_{r s}\right)$
$0 / 0 . X_{i s}-0 / 0 . X_{r s}-0 / 0.0 X_{r s} \geq 0$
 ساخت آن استفاده شود. كه به صورت زير بيان خو إهل شلد:

$$
\frac{X_{r s}}{X_{i s}+X_{r s}+X_{r s}} \leq 0 / r_{0}
$$

$$
\circ / V \circ X_{T s}-\circ / Y \circ X_{i s}-\circ / r \circ X_{r s} \leq 0
$$

$$
\begin{aligned}
& \circ / \varepsilon \circ X_{i p}-0 / 40 X_{r p}-0 / 40 X_{r p} \geq 0 \\
& 0 / v \Delta X_{r p}-0 / r \Delta X_{i p}-0 / r \Delta X_{r p} \leq .0
\end{aligned}
$$

 شود:

$$
\begin{aligned}
& \circ / 4 \circ X_{r e}-\circ / \& \circ X_{r e}-\circ / \& \circ X_{r e} \geq 0 \\
& \circ / 9 \cdot X_{r e}-0 / 10 X_{r e}-\circ / 10 \cdot X_{r e} \leq .
\end{aligned}
$$

 (سو بر، معمولى و فوقالعاده) ميبأشد، كه عبار تند از:

$$
\begin{aligned}
x_{i s}+x_{r s}+x_{r s} & \geq r 000 \\
x_{i p}+x_{r p}+x_{r p} & \geq r 000 \\
x_{1 e}+x_{r e}+x_{r e} & \geq r 000
\end{aligned}
$$ بشُكه بشكه بشكه

خلاصه هدل :
 زير اسـت:
$: \quad \operatorname{Max} Z=\| x_{i s}+1 \mu x_{r s}+9 x_{r s}+\lambda x_{i p}+10 x_{r p}+\dot{q} x_{r p}+\varphi x_{i e}+\lambda x_{r e}+\varphi x_{r e}$ s.t:

$$
\begin{aligned}
& x_{1 s}+x_{1 p}+x_{1 e} \leq r 000 \\
& x_{r s}+x_{r p}+x_{Y e} \leq r v o 0 \\
& x_{r s}+x_{r p}+x_{r e} \leq r 000
\end{aligned}
$$

$$
\begin{aligned}
& . / 00 x_{1 s}-0 / 00 x_{r s}-0 / 0 . x_{r s} \geq 0 \\
& \circ / \nu \circ x_{r s}-0 / \mu_{0} x_{1 s}-0 / \mu_{0} \circ x_{r s} \leq 0 \\
& \circ / \rho_{\circ} x_{1 p}-0 / \gamma_{0} x_{r p}-0 / \mu_{0} x_{r p} \geq 0 \\
& \circ / V \Delta x_{r p}-0 / r \Delta x_{1 p}-0 / r \Delta x_{r p} \leq 0 \\
& \circ / \mathrm{F} \circ \mathrm{x}_{1 \mathrm{e}}-0 / 8 \circ \mathrm{x}_{\mathrm{re}}-0 / 8 \circ \mathrm{X}_{\mathrm{re}} \geq 0 . \\
& \circ / 9 \circ x_{r_{e}}-\circ / 1 \circ x_{1 e}-\circ / 1 \circ x_{r e} \leq 0 \\
& x_{1 s}+x_{r s}+x_{r s} \geq r 0.0 .0 \\
& x_{1 p}+x_{r_{p}}+x_{r_{p}} \geq r_{0} 0 . \\
& x_{1 e}+x_{r e}+x_{r e} \geq r_{000} \\
& X_{i j} \geq \circ(i=, 1, r, r ; j=s, p, e)
\end{aligned}
$$

P.Y.V

شركت توليدكندة
 هاهامثيوتر را در-نوبت اضافه كارى دأرد. هزينهُ مونتازّ، بازرسى و بستهبندى هر رإيانه در وقت

 زير تعداد سفارشات رانِانه را برأى 9 هفته نشان میدهد.

	هنته
1.0	1
ivo	r
rro	r
$1 A_{0}$	*
10.	0
10.	¢

 توليد و انباردارى، برنامه زمانى لازم براى توليد را را در ظرفيت عادى و اضا عبارت ديگر مشخص كنبد كه تعداد توليد در هر هفته در وقتت عادى و اضافه كارى جقدلر بايلـ

مراحل فزمولد كرذن :

 عادى (R)، اخانه كارى (O)و مو جودى انبار (I)؛ جهت معزفى آنها استفاده مىكينيم. بهصورت

 صفر باشُد.

تابع هدف :
هدف مسأله، حداقل نمودن هزينغ توليد و انباردارى در طول بیى دورة: 4 هغته است. به صورت زير:
Minimize $Z=190 \ldots\left(R_{1}+R_{r}+R_{r}+R_{\varphi}+R_{\phi}+R_{\varphi}\right)$
$+r 9000\left(\mathrm{O}_{1}+\mathrm{O}_{\gamma}+\mathrm{O}_{\gamma}+\mathrm{O}_{\mu}+\mathrm{O}_{0}+\mathrm{O}_{\varphi}\right)$
$+1000\left(I_{1}+I_{r}+I_{r}+I_{r}+I_{\varphi}\right)$

محدوديتهاى مدل :

 صورت زير تعريف نموذ:
$R_{j} \leq 1 \varphi \circ(j=1, r, r, \Psi, \Delta, \varphi) \quad j$ رايانه در هفته
 محدوديت ديگر به صورت زير تعريفكرد:

شـش مدحدوديت بعدى، تعداد توليد هفتگى در زمان عادى، اضافه كارى و موجودى انبار مورد نياز را براى برآورده ساختتن سفارشات نشان مىدهد. به شوح زير:

$$
\begin{aligned}
& \mathrm{R}_{1}+\mathrm{O}_{1}-\mathrm{I}_{1} \geq 100 \quad: 1 \text { هفته } \\
& \mathrm{R}_{Y}+\mathrm{O}_{Y}+\mathrm{I}_{1}-\mathrm{I}_{Y} \geq 1 \mathrm{~V} \text { 。 } \\
& R_{r}+O_{r}+I_{Y}-I_{r} \geq Y \text {. } \quad \text { : }
\end{aligned}
$$

$$
\begin{aligned}
& R_{\Delta}+O_{\Delta}+I_{\gamma}-I_{\Delta} \geq 100 \quad: \Delta \text { ه } \\
& \mathrm{R}_{\xi}+\mathrm{O}_{\xi}+\mathrm{I}_{\Delta} \geq \text { YOD }
\end{aligned}
$$

محدوديتهاى فوق نشان ميدهند كه تعداد توليد در هفته

 دوم، مى. باشد.

خلاصه هدل :
مدل كاهل برنامهريزى خطلى با اضافه نمودن محدوديتهاى غـيرمنفى بـه شـرح زيـر خـلاصه مىشود:
$\operatorname{Min} Z=19000\left(R_{1}+R_{\gamma}+R_{r}+R_{\psi}+R_{\Delta}+R_{\varphi}\right)$
$+r \varphi 000\left(O_{\gamma}+O_{r}+O_{r}+O_{\gamma}+O_{\Delta}+O_{\varphi}\right)$
$+1000\left(I_{1}+I_{Y}+I_{r}+I_{\varphi}+I_{\Delta}\right)$
s.t:

$$
\begin{aligned}
& R_{j} \leq 1 \varphi \circ(j=1, r, r, r, \Delta, \varphi) \\
& O_{j} \leq \Delta \circ(j=1, r, r, r, \Delta, \varphi) \\
& \quad R_{1}+O_{1}-I_{1} \geq 100 \\
& R_{r}+O_{r}+I_{1}-I_{Y} \geq 1 V
\end{aligned}
$$

$$
\begin{aligned}
& R_{r}+O_{r}+I_{r}-I_{r} \geq r o \\
& R_{F}+O_{F}+I_{r}-l_{f} \geq \lambda_{0} \\
& R_{\Delta}+O_{0}+I_{Y}-I_{0} \geq 10 . \\
& \cdot \mathrm{R}_{\varphi}+\mathrm{O}_{\varphi}+\mathrm{I}_{0} \geq \text { YO. } \\
& R_{j} \geq \circ(j=1, r, \ldots, q) ; O_{j} \geq \circ(j=1, r, \ldots, q) ; I_{j} \geq \circ\left(j_{-}=1, r, \ldots, 0\right)
\end{aligned}
$$

A.Y.N مسـأله تركيـب معصسولات كشاورزى

 در جلولل زنر دادء شده است:

 رعايت شود:

مساوى باشل.
 شده در هر ثطعه، سود كل كشاورز حـداكثرَشود.

هتغيرهاى تصميـم :
 ديِعر:

 -

بنابراين مسأله داراى نه متغير تصميمب خواهد بود.

تابع هدف :
هذف اين مسأله حداكثر كردن سود ناشى از كشاورزى است. تابع هدف از حأصلضرب سـطح زير
 مىشـو: Maximize $Z=90000\left(X_{11}+X_{Y Y}+X_{1 Y}\right)+400000\left(X_{Y}+X_{Y Y}+X_{Y Y}\right)$ $+r_{000}\left(x_{r,}+x_{r r}+x_{r r}\right)$

محدوديتهاى مسأله :
محدوديتهاى اين مسأله بيانگر محدوديت مساحت هر تطعه زمين و شرايط ذكر شده از سوى

 مساحت هر قطعه زمين محدود خوراهد شلـ. در نتيجه محدوديتهايى زير را خواهيم دأشت:

$F_{Y_{0}} \leq x_{1 r}+x_{Y r}+X_{Y r} \leq V_{0}$
براى تطعه زمين شماره

 سمت راست شامل مقادير ثابت خوأهد بود. پس هر يكـ از محلدوديتهاى فوت به دو محدوديت خاص تبديل مىشوند. به صورت زير:

الز دأدههاى جذلول مسأله مشخص شـد كه مساحت زير كشت هـز مـخصول مـتحود و

مصصبرل تعريفكرد. اين دسته از محدوديتها عبار تند از:

$$
\begin{aligned}
& x_{11}+x_{1 r}+x_{1 r} \leq 900 \quad \text { مساحت زير كکشت ذرت - هكتار }
\end{aligned}
$$

$$
\begin{aligned}
& X_{Y 1}+x_{Y Y}+X_{Y r} \leq 1000 \quad \text { مساحت زير كشت لوبيا - هكتار }
\end{aligned}
$$

$$
\frac{x_{11}+x_{Y 1}+x_{r 1}}{000}=\frac{x_{Y 1}+x_{Y r}+x_{Y Y}}{100}=\frac{x_{r 1}+x_{Y Y}+x_{r r}}{V_{00}}
$$

والضح است كه مدل الستاندارد برنامهريزى خطى (LP)، نمى نواند مبحدوديت فــوق را

$$
\begin{aligned}
& \frac{x_{11}+x_{r 1}+x_{r 1}}{000}=\frac{x_{r 1}+x_{r r}+x_{r r}}{\Lambda_{00}} \\
& \frac{x_{11}+x_{Y 1}+x_{r 1}}{000}=\frac{x_{1 r}+x_{Y r}+x_{r r}}{v_{00}} \\
& \frac{x_{1 r}+x_{r r}+x_{r r}}{100}=\frac{x_{1 r}+x_{r r}+x_{r r}}{V_{00}}
\end{aligned}
$$

شكل استاندارد LP تبديل نمود. به صور تـ زير:

$$
\begin{aligned}
& 100\left(x_{11}+x_{Y 1}+x_{r}\right)-000\left(x_{1 r}+x_{Y Y}+x_{r Y}\right)=0 \\
& V 00\left(x_{11}+x_{r 1}+x_{r}\right)-000\left(x_{1 r}+x_{r r}+x_{r r}\right)=0 \\
& V 00\left(x_{1 r}+x_{Y Y}+x_{Y Y}\right)-\lambda 00\left(x_{1 r}+x_{Y r}+x_{Y Y}\right)=0 .
\end{aligned}
$$

خلاصه مدل :
 صورت خوأهد بود:
$\operatorname{Min} Z=90000\left(X_{11}+x_{Y Y}+X_{Y Y}\right)+400000\left(x_{Y 1}+X_{Y Y}+X_{Y Y}\right)$

$$
+r \ldots 0\left(x_{r r}+x_{r r}+x_{r r}\right)
$$

s.t:

$$
\begin{aligned}
& x_{11}+x_{Y}+x_{Y I} \geq r 00 \\
& x_{11}+x_{T 1}+x_{Y I} \leq 000 \\
& x_{1 T}+x_{Y Y}+x_{Y Y} \geq r 10 \\
& x_{T Y}+x_{Y Y}+x_{Y Y} \leq 100
\end{aligned}
$$

$$
\begin{aligned}
& x_{1 r}+x_{r r}+x_{r r} \geq q_{Y} \\
& x_{1 r}+x_{Y r}+x_{r r} \leq V_{00} \\
& x_{11}+x_{1 r}+x_{1 r} \leq 900 \\
& x_{r 1}+x_{r r}+x_{r r} \leq V_{00} \\
& x_{r 1}+x_{r r}+x_{r r} \leq 1000
\end{aligned}
$$

$100\left(x_{1}+X_{Y}+X_{Y Y}\right)-000\left(x_{Y Y}+x_{Y Y}+x_{Y Y}\right)=0$
$V 00\left(x_{11}+x_{Y i}+x_{r_{1}}\right)-000\left(x_{1 r}+x_{Y r}+x_{Y Y}\right)=0$
$V 00\left(x_{1 Y}+x_{Y Y}+x_{Y Y}\right)-100\left(x_{V_{r}}+x_{Y r}+x_{Y r}\right)=0$
$X_{i j} \geq \circ(i=1, r, r ; j=1, r, r)$

هعدار سفارش	ابعاد جوبهایى سغارشى
1700	$1^{\prime} \times r^{\prime} \times 11^{1}$
1000	$\hat{1}^{*} \times 4^{*} \times 11^{\text {c }}$
Voo	$r^{*} \times r^{*} \times 1{ }^{-1}$

اين سفارشات بايد از تختهماى اسبتاندارد به أبعاد

 الستاندارد استفاده شبرد.

متغيرهاى تصمِيم : درْ تختئ استاندارد $1{ }^{\prime \prime}$ زير امكانتِير است:
از اين دو متغيرهاى تصميم عبارتند ازير:

XX
XX

 سفارشات متقاضيان مىباشند. بنانرائن تأِ هدف از مجموع تختههايى كه دأرالى هر بنت طر يته برش هستند بلدست مى آيل. يعنتى:

Minimize $Z=x_{1}+x_{Y}+x_{r}+x_{Y}+x_{0}$

 تتخته به ابعاد "
 $r x_{1}+r X_{r}+r X_{r} \geq 1 r \circ 0$
به طريت مشابه مححلوديتهاي متناظر با سفارشات نيوشته هـى شود:

$$
\begin{aligned}
& r X_{i}+X_{r}
\end{aligned}
$$

$$
\begin{aligned}
& X_{Y}+Y x_{0} \\
& \geq \text { Vo。 } r^{\prime \prime} \times Y^{\prime \prime} \times 1 \|^{\prime \prime}
\end{aligned}
$$

F9

$$
\operatorname{Min} Z=x_{1}+x_{r}+x_{r}+x_{\psi}+x_{0}
$$

s.t:

$$
\begin{aligned}
f x_{1}+r x_{r}+r x_{\psi} & \geq 1 r 00 \\
r x_{r}+x_{r} & \geq 1000 \\
x_{\psi}+r x_{0} & \geq 100 \\
x_{1}, x_{r}, x_{r}, x_{\psi}, x_{0} & \geq 0
\end{aligned}
$$

F.Y

 باثد به راحتى از آنهيا استْفاده نمايلد.
 تولِيد اسـت، معرفى شد. دُر اينْ هدل كلى nمتغيرِ تصميم به صورت زير تعريف مى مشوند.

$$
\begin{equation*}
X_{j}:(j=1, r, \ldots, n) \tag{يا}
\end{equation*}
$$

n مقدار نعاليت

مقدار فعاليت زام

تابع هدن : تابع هدف نشاندهندهُ جمع كل سههم هر متغير تصميـم در هدف مدل استت و بـه صورت زير بيان مى.شود:

$$
\operatorname{Max}(\operatorname{Min}) Z=C_{1} X_{1}+C_{r} X_{r}+\ldots+C_{j} X_{j}+\ldots+C_{n} X_{n}
$$

مخدوديتهاى ملـ : هسدوديتهاى يكى ملدل برنامهريزى خطى بـيانگر مسحدوديت مـوجودى

 تعريف میشود. بنابراين نأمعادلات هحدوديتها را مىتوان بـه شـرح زيـر تعريف كرد:

$$
\begin{aligned}
& a_{11} x_{1}+a_{1 r} x_{r}+\ldots+a_{1 j} x_{j}+\ldots+a_{1} x_{n n} \leq b_{1} \\
& a_{r,} x_{1}+a_{r Y} x_{Y}+\ldots+a_{r j} x_{j}+\ldots+a_{r} x_{n n} \leq b_{Y}
\end{aligned}
$$

$$
\begin{aligned}
& a_{i 1} x_{1}+a_{i Y} x_{Y}+\ldots+a_{i j} x_{j}+\ldots+x_{n} a_{i n} \leq b_{i} \\
& \vdots \\
& a_{m} x_{1}+a_{m r} x_{Y}+\ldots+a_{m j} x_{j}+\ldots+x_{n} a_{m n} \leq b_{m} \\
& x_{1}, x_{Y}, \ldots, x_{j}, \ldots, x_{n} \geq 。
\end{aligned}
$$

در اين مدل محدوديتها از نوع ؛ نشان داده شده است. محدوديتها مىتوانتد به شـكل بزركتر يا مساوى (

$$
a_{i} x_{1}+a_{i y} x_{Y}+\ldots+a_{i j} x_{j}+\ldots+a_{i n} x_{n} \geq b_{i}
$$

$$
a_{i}, x_{1}+a_{i y} x_{Y}+\ldots+a_{i j} x_{j}+\ldots+a_{i n} x_{n}=b_{i}
$$

مدل عمومى مسأله برنامهريزى خطى را به شُح زير مى توان خلاصه كرد:

$$
\operatorname{Max}(\min) Z=C_{1} X_{1}+C_{r} X_{r}+\ldots+C_{j} X_{j}+\ldots+C_{n} X_{n}
$$

s.t:

$$
\begin{gathered}
a_{11} x_{1}+a_{1 r} x_{r}+\ldots+a_{1 j} x_{j}+\ldots+a_{1 n} x_{n}(\leq=\geq) b_{Y} \\
a_{Y} x_{1}+a_{r r} x_{r}+\ldots+a_{r j} x_{j}+\ldots+a_{Y n} x_{n}(\leq=\geq) b_{Y} \\
\vdots \\
a_{i 1} x_{1}+a_{i r} x_{Y}+\ldots+a_{i j} x_{j}+\ldots+a_{i n} x_{n}(\leq=\geq) b_{i}
\end{gathered}
$$

$$
\begin{aligned}
& a_{m} x_{1}+a_{m r} x_{Y}+\ldots+a_{m j} x_{j}+\ldots+a_{m n} x_{n}(\leq=\geq) b_{m} \\
& x_{V}, x_{Y}, \ldots, x_{j}, \ldots, x_{n} \geq
\end{aligned}
$$

 مىكنيم. مدل اين منال عبارت است از:

$$
\begin{aligned}
& \text { Max } Z=r x_{1}+\Delta x_{Y}+r x_{r} \\
& \text { s.t: } \\
& \Delta x_{1}+r x_{Y}+r x_{r} \leq r r_{0} \\
& \psi x_{1}+\varphi x_{Y}+r x_{r} \geq f_{0} \\
& \quad x_{1}, x_{Y}, x_{r} \geq 0
\end{aligned}
$$

با استفاده از نمادهاى مدل عمومى 'ين مثال به شكل زير نوشته مى

$$
\operatorname{Max} Z=C_{1} X_{1}+C_{Y} X_{Y}+C_{r} X_{r}
$$

s.t:

$$
\begin{aligned}
a_{1} x_{Y}+a_{Y Y} x_{Y}+a_{1 r} x_{Y} & \leq b_{Y} \\
a_{Y} x_{1}+a_{Y Y} x_{Y}+a_{Y r} x_{Y} & \leq b_{Y} \\
x_{Y}, x_{Y}, x_{Y} & \geq 0
\end{aligned}
$$

و بارامترهاى مدل عبارتند از:

$$
\begin{aligned}
& C_{1}=r, C_{Y}=0, C_{Y}=r \\
& a_{1}=0, a_{1 r}=r, a_{1 r}=r, b_{Y}=Y Y_{0} \\
& a_{Y}=Y, a_{Y Y}=\varphi, a_{Y r}=r, b_{Y}=Y_{00}
\end{aligned}
$$

بالاخره با استفاده از علامت جمع (ע) مدل عمومى مسأله LP , امى توان به ششكل زير نوشت: $\operatorname{Max}(\operatorname{Min}) Z=\sum_{j=1} c_{j} x_{j}$
s.t:

$$
\begin{aligned}
& \sum_{j=1}^{n} a_{i j} x_{j}(\leq=\geq) b_{i}(i=1, r, \ldots, m) \\
& x_{j} \geq \circ \quad(j=1, r, \ldots, n)
\end{aligned}
$$

ينابراين مسأله Y.Y.Y را مىتوان با استفاده از علامبت Σ به صورت بيان كرد:

$$
\begin{aligned}
& \operatorname{Max} Z=\sum_{j=1}^{r} C_{j} X_{j} \\
& \text { s.t: } \\
& \sum_{j=1}^{r} a_{i j} x_{j} \leq b_{i} \quad(i=1, r) \\
& x_{j} \geq o \quad(j=1, r, r)
\end{aligned}
$$

مقادير

 فصل نبيان عموْنَّ شد.

Y.Y مسائل

نيروىكارموردنيازهرواحد(ساعت)	هزينه هر واحد تولِيد (ريال)	نوع اسباببازى
「	Voo	A
r	1000	B
r	Dood	C

كل بزدجئ كازخانه

 كا تو تُليدات حداكثر شو د.

r	r	1	انبار:
19.	Y'	$1{ }^{1}$	A
90	Vo	10.0	B
rro	^。	14.	C

 برنامهريزى خطى (LP) فرمولد كنيد.
 شكل تعاونى انجام دهند، تاالز قابليتهاى يكديگر ز ا امكانات دولتى استفاده كرده و و توليد جمعى
 اين مزليع را محدود مينمايند. اطلاعات مريوط به آب موجود و زممين قابل كششت سه مزرعه در جدول زير آمدهاست.

آب	زمين تابل كــت (مكتار)	مزرهم
9.0	too	1
100	900	r
ryo	roo	r

 بيشتر باشد، اين إطلاعات در جدول زير آمدهاند.

سود خالص (تومان در هكتار)	(مزار متر نـكعب) آَبَ		دحصول
Fooe.	r	soo	جنبدرند
roo.e	r	0.0	بنبه
1000	1	rro	ذرت

 †.

 مورد نياز است، و هزينه مر يكـ الز موالد در جدولم زير آمدهاست:

حداتل احتيابحاتِ روزانه.	يو نجه	مواد آلّى	ذرت	عنإصر هغنى
Yoo	$\%$ \%	Yo	9.	قندها
$1{ }^{1}$	9.	A。	ro.	
10.	fo	Yo	10	وريتالمينها
	10	11	Y	فنّمت .

 از اين استانذاردهاستا:

$$
\begin{aligned}
& \text { r. r. سداقل ه ميلى گرم آهن. } \\
& \text { Y. بـا بين } \\
& \text { شا حداقل }
\end{aligned}
$$

 كنيد.

\&. يكـ شركت تولبدكنتده مصالح ســاختمانى اخـيراً مسـارشى بــراى الوار در س انــداز: مختلف دريافت كرده امت.

 است. بلين ترتيب، ظرفيت توليدى قابل ملاحظهاى آزاد كرديله إست. مليريت درصدد اسـت تا
 الستفاده كند. ظرفيت آَزاد ماشين آلات مورد نياز توليد اين سه محصول در زير آمده است:

 كردن سود فرموله نمايير.

حداكتر بيز جئ تبليغاتى شركت كه:

r. حداكثر بودجئ تبليغ در تلويزيون
 عمل آيد.
F. تعداد تبليغات در مجلة و راديو بين ها 0 تا 10 بار باشد

 برنامهريزى خطى فرمولو كنيد.

 (برحسب دقيفه) برايى توليد هر بيك از محصولات برحسب نوع ماشيّين توليدى در جدول زير آمده است:

 آمده است:

 مى سازد. جدول زير حداكتر مقدار موجود از هر ماده اوليه و هزينغّ هر بشـكه الز آنها را نشا "مىدهد:

هزينّه هو بشكه (ركّال)	حداكثر بشكه در دسترس به طور روزانه	عاده اولِّهِ
80000	0000	1
Voood	Yrood	r
1r0000	Y000	r
90000	1000	F

در ضمن هر نوع گازوييل داراى مشخصات استانداردى از تركيبات مواد اوّليه جِهاركانها

قيمت فروش هر بشكه (ريال)	مشخصـ تركيبات	كازرجيل
1700000		1
1100000	حداقل \%\%\% ا\% ماده اولبهr	
1000000		r

 تركيبات، سـود كل, توليدأت را حداكثر نمـايد.
 Y Y

 نويت اضافه كارى است. تعداد سثارشات طى ف ماه آينده به شرح جلونل زير اندت:

 انبارها جدول زير داده شده است:

مسأله را به گونهأى فرموله كتيد كه ضمن تعيين تعلاد توليد از هر نوح لباس (جين)، سد2 كل شركت، حدأكثر شود.

 ار C

 اين مسأله را بنريسيد.

 يكى مدل برنامهريزى خطهى براي اين مسأله بنويسيد.
¢1. يكى سرمايه گذأر جوان مْبلغ

برآورد بازده (\%)

 براى أين مسآّله فرموله كنيد.

 كنيد.

زمان (ساعت) براى هر واحد

 ملل برنامهريزى خحطى فرهوله نماييد.

 اi أ از حداقل مورد نياز، ،
 بتواند هزينهُ اضافىى كل زا حداقل سازد.

فصل سوم
 برنامهريزى خطى
 (روشهندسى)

اهدافـس فصل

رأدر: حالت ترسيميز تشخـيـي ديند.
r.l مقلدمه

 ها يَرابنْ

1. Graphical Method
2. Minimize
3. W. W. Leontief
4. Muximiz
5. I incar progamming
6. IItchoock
7. Koopmans

 شرايط تصميمكيرى قطعى (غير احتمالى) الست.

 آنهاست باشل، مسأله تخصيص منابع و در نتيجه نعيين حجم نعاليتها مطرح خواهد شـد.

8. Diet problem
9. George D. Dantizig
10. Simplex Method
11. Stigler
12. Marshall Wood
13. programme

$$
\begin{aligned}
& \text { 1. فرض تناسبـ' }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 「. }
\end{aligned}
$$

(بخــ Y.Y) مى يردازيم.
H.Y.1

 موردى رادر نظر بكيريدكه اري
 خصوحيت همواره براي محدوديتهاى مدل و تابع هدف برقرار است.

نرض P.Y.Y

$$
\begin{array}{r}
r x_{1}+\Delta x_{r}-x_{1} \cdot x_{r} \leq \Delta_{0}: \text { رابطه }^{\text {رابطه }}
\end{array}
$$

رابطة | يك رابطه غيرخطى است، خون از از حاصلضرب
 جبرى بيان شـده اسـتـ.

اين خصوصيت برنامهريزى خطى به واتعيت اغير عدد صحيحي"

1. Proportionallty
2. Additivity
3. Divisibility
4. Deterministic
5. Non-Integer

: Y.Y.Y معين (قطعى) بودن :

 تأثير تغييرات بر جوابب بهينه مدل استفاده كرد.

r.r.

[^3]

 محعسو لات نيزن حاده شـده أسـت.

\[

$$
\begin{aligned}
& \text { متغيرشاى تقسنيم مدل عبارتتد از: }
\end{aligned}
$$
\]

$$
\begin{aligned}
& \text { rex }=X_{Y}
\end{aligned}
$$

$\operatorname{Max} Z=Y_{0} X_{1}+00 X_{Y}$
محدوديتهاى مدل به ترتيب شامِل هـحدودبِت نيروى كار و محدوديت مواد اوليه خحواهد

 $\operatorname{Max} Z=F_{0} X_{1}+00 X_{Y}$ s.t:

$$
\begin{aligned}
x_{1}+r x_{Y} & \leq \psi_{0} \\
\psi_{1}+r x_{Y} & \leq 1 r_{0} \\
x_{V}, x_{Y} & \geq 0
\end{aligned}
$$

 كنيد:
ابتداء آن را به صورت خط

 معادله بزحسب XY معلوم میشود. يعنى:

$$
\begin{aligned}
(0)+Y X_{Y} & =\psi_{0} \\
X_{Y} & =Y_{0}
\end{aligned}
$$

نقطهُ دوَم نيز با

$$
x_{1}+r(0)=\psi_{0}
$$

$$
x_{1}=f_{0}
$$

حال آزمون صحت ترسيم ناحيه مربوط به محدويت اورّل مدل با استفاده از بر بر برسى دو
 (XYY = 10 $x_{1}+r x_{Y} \leq Y_{0} \rightarrow 10+Y(10) \leq r_{0}$
ساعت

 داراى مختصات (x

$$
\begin{aligned}
Y_{0}+Y\left(Y_{0}\right) & \leq Y_{0} \\
100 & \leq Y_{0}
\end{aligned}
$$

 مقدار . 00 أكر جكتر يا يامساوى به طريق مشابه محدوديت مواد اوليه مسأله ترسيم

شكل r.r نابحيه مربوط به محدودبت مواد اوليـه

در منطقد كو جكتر يا مساوى (؛) خطط ترار كرفته است.

شكل Y.F نمايش همزمان دو محلدددبت
 مصدوديت دوّم (Y X
 محدوديتهاى مدل صدق نمىكند.

 آن در ناحيةُ موجه حداكثر ميشود.

[^4]2. Infeasible Solution
3. Feasible Area
†.r.r. نقطه (جواب) 'بهينه'

 عبارت خواهد بود از: $f_{0} x_{1}+D_{0} x_{r}=N_{0} 0$
ترسيم اين خط كاملاً شبيه رويئ ترسيم خطرط مربوط به محدوديتها مى باشبد. نمايش

 شكل v.r ت توجه كنيد.

[^5]

 براى پِيدا! كردن نقطئ B، خط مربوط به است، خطوط موازى بيشمارى با خط خطط

 |
vr

Y.Y.Y تع.Y

 ; در B

 خاصيت نقطهُ جواب راب بيان كنيم.

 خطوط مرزى مثالل ما شامل خطوط مربوط به محدنوديتهاي نيروى كار ($X_{Y} \geq 0$ م $x_{1} \geq 0$ مواد اوليه (

 مرزى دو معادله، متادير وx

مع معادله

1. Extreme points

$$
\left\{\begin{array}{l}
-\mu x_{1}-\wedge x_{Y}=-190 \\
4 x_{1}+r x_{Y}=1 r_{0}
\end{array}\right.
$$

حال با حذف اx_از دستگاه معادلات داريم:
$-\Delta x_{Y}=-F 0$

$$
x_{Y}=\Lambda
$$

نيزِ تعيين كرد. بِس يِه كمك معادله (1) داريتم:
$X_{1}+Y(\Lambda)=Y_{0}$
$x_{1}=Y 4$

$Z=H_{0} X_{1}+00 X_{T}$
$Z=\varphi_{0}(Y Y)+\nu_{0}(\lambda)$
$Z=1$, $Z=1$

نام كوته	(${ }_{\text {(}}$	مقدار تابع هدف (z)
A	$\left(x_{1}=0, x_{Y}=Y_{0}\right)$	$Z=1000$
B		$Z^{*}=1 r^{\prime}$
C	$\left(x_{1}=Y_{0} M_{Y}=0\right)$	$Z=1900$

 خواهد بيرد.

 كرشه مى. باشد. خاضيت Y) تعذاد جوأبهاى گرشَه مو جه (امتنامى|) أست. در مشال براى إينكه متو جه شويد كه چرا يادلَّورى ميكنيم كه هر جواب گو شه مو جه جوابِ همزمان يك دستگاه n' معادلهالى الست كه از بين (m+n) معادله محدوديت انتخابب شده أست. تعلداد تركيبات محتلفن أنتخابب n معالذه أز ميان (m+n) معادله مو جرد برابر با
$\frac{(m+n)!}{m!n!}$

 كاركردى مساوى (m = Y) میباشد، تعداد
$\frac{r!}{r!r!}=G$
گوشه براى مدل زجود ذارد كه نتط ץ مورد آنها مو جه است. شكـل گرشههاى مدل را به طريت تر سيمى نشان مى ديهد.

 عبارت ديگر، با بدست آوردن و مقايسه كردن تمام جوابهاى كوشه موجه كه تعدادى متناهى
 بخوبى نشان مىدهد. :
 (از نقطه نظر تابع هدف) بهتر باشد، در اين صورت از تمام جو ابهاي گوشه موجه بهتر خرواهد بود (يعني جواب بهينه است). '
در شكل

 نسبت به دو كوشهُ مو جه مياور خرد

كرد.111
 رويكرد ترسيمى حل مدل LP به صورت زير خالاصه مىشوده:

 تابع هدف بر آن مهاس مى شود.
 بهينه معين گردد. (1ياه
Y. دستگاه معادلات مربوططبه هر يكـ از گرشـهشاي ناحيه موجه را حل كنيد تـا لرزش

متغيرهاي تصميم در هر كوشه تعيين شود.
 مشتخص شود. ضمن مقايسهُ مقدار Z، كوشئ بهينه زًا معين كنيد.

 ريرداخخت.

$\operatorname{Min} Z=9 x_{1}+r x_{r}$
s.t:

$$
\begin{aligned}
r x_{1}+r x_{Y} & \geq 1 q . \\
y x_{1}+r x_{Y} & \geq r f . \\
x_{1}, x_{Y} & \geq 0
\end{aligned}
$$

تشان داده شدء انست.

شكل r. 11 معادلات هربوط به محدوديتهاي مثال Y.Y

 خوبى اين مهّم رانشانٍ مىدهد. بعد از بِيدا كردن ناخيه موجهه، تدم دوّم؛ تعيين دوّم كورشهُ بهينه است.

 هیدهد.

 .

گو شء A ا; تقاطع معادلات مرزی $x_{1}=0$
$F(0)+Y X_{Y}=Y Y$
$x_{Y}=1$
 توليد به ازاء گوشهُ بهينه؛ Z، برابر است با:
$Z=\varphi x_{1}+r x_{r}$
$Z=\varphi(\circ)+\mu(\wedge)$
$Z=r \varphi$
 عزيز به عنوان اتمرينه إين كار را انجام دهند!

ه. بـ موارد خاص در بر نابمهريزى خخطى

خاصن در برنامهريزى خطى شـامل حالتهاى زير ابست:

r. r. فاقد ناحيه موجه (جواب)

「.
٪. جواب تبهگز
حال به تشُريح هر يكا از موارد فوق مىيردازيم.

ه. ه. r. جواب بهينه جندكانه

 بكينه دارند. در اين نوع مدلها تعداد نقاط بهينه بيىنهايت أست. بـ عنوان نمونه به مئال ب.r توجه

مثال r.r مسأله برنامهزيزى خطى زير رادر نظر بگيزيد:
Max $Z=f_{0} X_{1}+Y_{0} X_{Y}$
s.t:

$$
\begin{aligned}
x_{1}+r x_{y} & \leq y_{0} \\
r x_{1}+r x_{y} & \leq r_{0} \\
x_{1}, x_{y} & \geq 0
\end{aligned}
$$

1. Multiple Optimal Solution
2. Unbounded Solution
3. Infeasible Solution
4. Degenerate Solution

 مى شـوند.

 كالا طِلب مىكند، از نقطةُ C استفاده خوراهد كزد.

(ج.O.Y

$\operatorname{Max} Z=\Delta x_{1}+r x_{r}$
s.t:

$$
\begin{aligned}
F x_{1}+Y X_{Y} & \leq \wedge \\
x_{1} & \geq Y \\
x_{Y} & \geq q \\
x_{1}, x_{Y} & \geq 0
\end{aligned}
$$

 تناقض با هملديگر هنستند. بنابراين نمىتوان برانى همهُ أنها ناحيـهُ مشترك بِيدأكرد.

نقطلة A در شكل فُزقِ فقط مصحلوديت

 مدلهاى فافد ناحيه نِو جه در عالم واقِع وْجود نادرست مسأله و مشاهِات غيرواقعى ازْ محيط سـازمانى است. گاهى اوقات نيز علير غم تعريفـ

مدلى ايجاد مىشود. با مشاهدهُ جنين وضعيتى براى مدل مسأله بايد درصـدد رفـع عـيب آن برآمد.

「. ه. هـ ناحيه جواب بيكران

 مدل ارائه شده در مثال ه.ب نمونئ خوبيى از جنين مدلهائيى است.

مثـال ه.r مدل زير را در نظر بغيريد:
$\operatorname{Max} Z=F X_{1}+Y X_{Y}$
s.t:

$$
\begin{aligned}
x_{1} & \geq \varphi \\
x_{y} & \leq \wedge \\
x_{1}, x_{y} & \geq \circ
\end{aligned}
$$

در شكل 19.بنشان داده شده است كه جیگونه تابع هدفـ اين مدل بدون هيجّ گُونه حدومرزى در حال افزايش است. به طورى كه هيجچان جواب بهينه حاصل نمىشود.

 مسأله و يا اشتباه در فرمولهي كردن آن خوراهد بـيودي

مثال و.ب مدل زير رادر نظر بغيريد:
$\operatorname{Max} Z=9 x_{1}-r x_{r}$
s.t:

$$
\begin{aligned}
r x_{1}-x_{Y} & \leq r \\
x_{1} & \leq r \\
x_{0}, x_{Y} & \geq 0
\end{aligned}
$$

شكل r.Iv ناخيه جواب بيكران با جواب كُؤهـ بهينه

همجخانكه از روش ترسيمى حل مثال و.

 بهينه در مدل فوق عبارتست از: ($Z^{*}=\varphi(Y)-r(\varphi)=I r$

 مغهوم تبهگنى مى

مثال r.V مسـأله برنامهريزى خطى زير رادر نظر بغيريد: $\operatorname{Max} Z=f X_{1}+9 X_{Y}$
s.t:

$$
\begin{aligned}
9 x_{1}+f x_{Y} & \leq Y \psi \\
x_{Y} & \leq Y \\
0 x_{1}+10 x_{Y} & \leq y_{0} \\
x_{V}, x_{Y} & \geq 0
\end{aligned}
$$

 $\varphi x_{1}+f X_{Y}=Y$

$$
x_{Y}=r
$$

$$
\Delta x_{1}+10 x_{r}=f_{0}
$$

شكل r.1^ نمابش مندسى جواب تبهگن

 خطى تعريف مىشود.

צ.ヶ. وازگان كليدى فصل :

ناميده مى شـود.
جواب موجه: جووابى اسـت كه در تمام محدو ديتها صدت مى مكند.

جواب بهينه: جوابیى است موجهه، كه مقدار تابع هدف مدل به ازاى آّن بثّترين حانت
خود (حداكثر يا حداقل) را حصون مىكند.

جواب گوشه: نقاط بِديد آمله در اثر تقاطع حداقَل دو معادله مرزى راله جوالب گوشه كويند.

 تابع Max: تابع هدف حداكثر سازى را تابع Max (يا گاهى مدل Max (M

خ.V
در اين فصل مشخص شد كه هر مدل برنامهريزى خطلى (LP) داراى جههار تخـاصيتـ (فـرض) انساسى است كه عبارتند از:

هر مدلى كه حداقل يكى از مفروضات•فوق را دارا نباشد، از نوع خطى نيست.

 ريرداخته شـد
در نهايت مهمترين موارد خاص برنامهريزى خطى خرن: ا. جابواب بهينه جندگانها
r. r. فاقد ناحيه موجه (جوابه) r. r. ناحيه جراب بيكران

٪
تشريح شد.

.^.

1.ı.। سؤالات تكميلى و حهاركزينهاى

 إز مرز قرار دارد.

و. اكگر يك گوشه موجه نسبت به تمام گرشههاى مجاور خود بهتر (از نظر تابع هدف) باشلد، آن گرشه:
الف) بهينه أست.
ب) غيربينهن است.

د) الطلاعات براي الظهارنظر كافى نيست.

ب) دورترين نتطئ حدى به مبدأ مخختصات است. ج) غيرموجه است
د) در حداقل يكن محلوديت مدل صدق مىكند.
^. شكل زير بيإنگر ناحيه موجه يك مدل برنامهريزى خطلى است. نقطهُ A در ايز مدل؛
جِه نقطهأى الست؟
ب) مو جه
الف) بهينه
د) غيرهو جه
.

هـ كداميك از مفروضات زير از ورود حالات امتمالى در مسـائل بـرنامهريزى خخـطى, جلوگيرى مىكند؟
ب) جمع يذ يرى
الف) تناسب
د) معين بودن
ج (بخشيّذيرى
ها ا. نمايش ترسيمي يكى مسأله LP به صورت زير داده شده است. تعداد كوشههأى اين
مدل برابر اسـت با:
c
F الف
IY(2
10 (\%
x_{r}

lالـ در برنامهريزى خخلى كدام گزينا، در خصرص .جواب.مو جه درسبت است؟ الفـ) همواره يكى كوشه أست. ج) در تمام محدوديتها صـ.ق میكند. . د) جداقل در يكى از محلدوديتها صدقَ مىكند.

$$
\begin{aligned}
& \text { بزرگتر يا مسأوى (Z) است؟ } \\
& \text { الفـ:) } \\
& \text { r }
\end{aligned}
$$

re
F 1

r|

$$
\text { جتواب }\left(x_{Y}=\frac{1}{r} g x_{1}=r\right)
$$

$\operatorname{Max} Z=1 \circ x_{1} \div Y_{0} X_{r}$
s.t:

$$
\begin{aligned}
\frac{1}{r} x_{1}+r x_{r} & \leq q \\
x_{1}+r x_{Y} & \leq 10 \\
x_{1}, x_{r} & \geq 0
\end{aligned}
$$

الف) يكى گوشهٌ مو جه است. ج) يك گُ شهٔ غيرموجه إست.
 الف) استقلال متغير ها از همديعر
 ج) معين بودن فضناى تصميمگيرى د) اتخاذ هر مقبدار صحيح و غيرصحيح بوسيله هر يك از متغيرهايى تصيـيم
 خطى در اين رابطه رعايت نشده است؟
ب) ب) جمـع بذيرى

الف) تناسب
ج) معين بودن

 ب) عدد صحيح

الفس) خخطى
د) انتمالم
ج) غيرخطىى
.IV
الفش) دلراى بى نهايت گوشه باشد.

اين مدل مى تواند:
الف) بلـون ناحيه موجه باشلـ.

 حل ترسيـيى اين مسأله جِه حاللت خاصى دلرد؟

$$
\operatorname{Max} Z=x_{Y}+Y X_{Y}
$$

s. t .

$$
\begin{aligned}
Y x_{1}+Y x_{Y} & \geq \lambda \\
x_{1}-x_{Y} & \leq \psi \\
x_{Y}, x_{Y} & \geq 0
\end{aligned}
$$

الف) بهينهُ حِندگانه
د) ناحيه بحواب بيكران ج) تـهگن در گوشّه بهينه
 الفـ) جهار محدوديتت به صورت كو جبكت مساوى (ذ) الست. ب) جهار محدوديت به صورت بزرگتر مساوى (ج) استـ. を) سه محلووديت به مررت \geq و ويك محدوديت د) سه محـلوديـت به صورت \geq و يك محذوديـت = المـت.

تم.^.Y

ا. جوالب بهينهٔ مدل زير را به روش ترسيمى بدمت آوريل؟
$\operatorname{Min} Z=r x_{1}+\Delta x_{r}$
s.t:

$$
\begin{aligned}
x_{1}+x_{r} & =100 \\
x_{1} \quad & \geq 00 \\
x_{r} & \geq r_{0} \\
x_{1}, x_{r} & \geq 0
\end{aligned}
$$

Y. جواب بهينهُ مسأله زير را به روش ترسيمى بدست آوريد؟
$\operatorname{Max} Z=r x_{1}+\varphi x_{r}$
s.t:

$$
\begin{aligned}
& r x_{1}+Y x_{Y} \leq 1 \wedge \\
& x_{1}+x_{r} \geq 0 \\
& x_{1} \quad \leq \varphi \\
& x_{1}, x_{Y} \geq 0 \\
& \text { r. مسأله زير را با استفاده از روش ترسيمى حل كرده و جواب بهينه آن را تعيين كنيد؟ } \\
& \operatorname{Max} Z=1 / 0 x_{1}+x_{Y}
\end{aligned}
$$

s.t:

$$
\begin{aligned}
x_{1} & \leq \psi \\
x_{Y} & \leq \varphi \\
x_{1}+x_{Y} & \leq 0 \\
x_{1}, x_{Y} & \geq 0
\end{aligned}
$$

F. مسأله زير را بـه روش ترسيمى حل كنيد؟
$\operatorname{Max} Z=0^{2} x_{1}+x_{Y}$
s.t:

$$
\begin{aligned}
x_{1} & \leq \varphi \\
x_{1}+r x_{Y} & \leq 1 r \\
r x_{1}+\psi x_{Y} & =r \psi \\
x_{1}, x_{Y} & \geq 0
\end{aligned}
$$

هـ مسأله زير را با استفاده از روش ثرسيمْى حل كرده و جواب بهينهُ آن رابدسنت آوريد؟ $\operatorname{Min} Z=A x_{1}+9 X_{Y}$
s.t:

$$
\begin{aligned}
\psi x_{1}+r x_{Y} & \geq r_{0} \\
-9 x_{1}+\psi x_{Y} & \leq i r \\
x_{1}+x_{Y} & \geq 9 \\
x_{1}, x_{Y} & \geq 0
\end{aligned}
$$

9. مسائل زير را به روش ترسيمى حل كنيد و معين كنيد هر يكى از أنها از چهه حـالت خاصى برخور دارند؟

Max $Z=r X_{1}+X_{r}$ (ب) Max $Z=r x_{1}+x_{r}$

الف)
s.t:
s.t:

$$
\begin{aligned}
x_{1}-x_{y} & \leq 10 \\
r x_{1}-x_{y} & \leq y_{0} \\
x_{1}, x_{y} & \geq 0
\end{aligned}
$$

$$
\begin{aligned}
\psi x_{1}+\psi x_{y} & \leq i r \\
\psi x_{1}+x_{y} & \leq \Lambda \\
\psi x_{1}-x_{y} & \leq \Lambda \\
x_{1}, x_{y} & \geq 0
\end{aligned}
$$

V. مسائل زير را به روش ترسيمى حـل كـنـد و تـعيين كـنيد كـدام صـروت خـاص از برنامهريزى خطى هستند؟
Max $Z=r x_{1}+\mu_{r}$

$$
\left(ب \quad \operatorname{Max} Z=f x_{1}+i f x_{T}\right.
$$

s.t:
s.t:

$$
\begin{aligned}
r x_{1}+x_{r} & \leq r \\
r x_{1}+r x_{Y} & \geq r r \\
x_{r}, x_{r} & \geq 0
\end{aligned}
$$

$$
\begin{aligned}
r x_{1}+v x_{r} & \leq r i \\
v x_{1}+r x_{r} & \leq r i \\
x_{1}, x_{r} & \geq 0
\end{aligned}
$$

$\operatorname{Max} Z=0 x_{1}+r x_{r}$
s.t:

$$
\begin{aligned}
x_{1}+x_{Y} & \leq 10 \\
x_{1} & =0 \\
x_{1}, x_{Y} & \geq 0
\end{aligned}
$$

فصل تهارم

برنامهريزىخطى

(روش سيمْنِكس ')

اهداف نصل

 از موارد ابستاندارد تشّخيص دهند.

F. 1

در اين فصل، يك رويكرد رياضى برایى حل مسائل برنامهريزى خطى معرفى خر إهد شد. اين

 اينكه بهترين كوشه بيدا شود و تو قف نماييم.

1. Simplex Method
F.Y تبد F. F

 Max
 () وجود دارد. با اضافه كردن يك متغيز جديدلد بـه هر محدوديت

مثال $\operatorname{Max} Z=Y_{0} x_{1}+00 x_{y}$ s.t:

$$
\begin{aligned}
& x_{1}+Y x_{Y} \leq Y_{0} \text { محلـوديت نيروى كار (نفر - ساعت) } \\
& \psi x_{1}+\psi x_{Y} \leq i Y_{0} \text { (kg) محدوديت مواد أوليه } \\
& x_{1}, x_{r} \geq 0
\end{aligned}
$$

مدل فوق شمان مدل مربوط به مسأله تركيبب توليد در نصل سوم (مثال البّ) است.
 را به تساوى تبديل كنيم. در نتيجه معادلات زير بدست مى آيد:
$x_{1}+r x_{r} S_{1}=\varphi_{0}$.
$r x_{1}+r x_{Y}+S_{Y}=1 r_{0}$

 جاكىذذارى اين مقدار در معانلات فوق خورامهيم داشتّ:

$$
\begin{aligned}
x_{1}+r x_{r}+S_{1} & =r_{0} \\
0+r(10)+S_{1} & =F_{0} \\
S_{1} & =10
\end{aligned}
$$

$H x_{1}+r x_{Y}+S_{Y}=1 r_{0}$
$F(0)+r(10)+S_{r}=1 Y 0$

$$
S_{Y}=V_{0}
$$

 و 1 و واحد از محصورل T؟

 متغير هاى كمبود بيانخر ا"موجودى منابع" خياهند برد.
ضريب 0 0 برأى XI و ضريب

 سود ندارند. جِون بِيانگر منابع مصنرف نشده هستند. سود تنها در صورنَى ايِجاد مى شود كّه منأيع در توليلد X X X X ضريب متغيرهاى كمبود در تابع هدف مساوى (پصفر| خواهل بود و تابع عدف را براساس, آنتا بايد به صورت زير نوشت:
$\operatorname{Max} Z=\varphi_{0} x_{1}+\Delta \circ x_{r}+\circ S_{1}+\circ S_{r}$
 منبع "امنفى" جحيزى غير ممكن مى باشد. بتابراين براي اين مدل بايد نوشت:
$x_{1}, x_{r}, S_{i}, S_{\gamma} \geq 。$

1. Unused Resources

براساس مغاهيم فوق، خلاصه مل استاندارد مثال 4.1 به صورت زير درمى آيد: $\operatorname{Max} Z=f_{0} x_{1}+00 x_{r}+o S_{1}+o S_{r}$
s.1:

$$
\begin{gathered}
x_{1}+r x_{Y}+S_{1}=r_{0} \\
r x_{1}+r x_{Y}+S_{r}=1 r_{0} \\
x_{1}, x_{r}, S_{1}, S_{r} \geq 0
\end{gathered}
$$

استانداردسازى اين دسته از مدلها به مثال زير تو جه نماييد.

مثال F.Y مدن زير را ذر نظر بگيريد:
$\operatorname{Min} Z=\varphi X_{1}+\mu X_{r}$
s.t:

$$
\begin{aligned}
r x_{1}+\psi x_{Y} & \geq 1 \varphi \\
\psi x_{1}+r x_{Y} & \geq r \psi \\
x_{1}, x_{Y} & \geq 0
\end{aligned}
$$

اولاً، گفته شد كه يكى مدل استاندارد، مدلمى انست كه داراىى تأبع هدف Max باشد. براى تبديل هر تابع هدف Min به تابع هدف Max مىتوان از تعريفـ رياضى زير أستفاده كرد:

$$
\operatorname{Min} Z=\operatorname{Max}(-Z)
$$

 حداقل نمودهايمَم بس براى مثال فوق داريم: $\operatorname{Max}(-Z)=-9 X_{1}-r \cdot X_{Y}$ s.t:

$$
\begin{aligned}
r \dot{x}_{1}+r x_{Y} & \geq 1 q \\
F x_{1}+r x_{Y} & \geq r \psi \\
x_{1}, x_{Y} & \geq 0
\end{aligned}
$$

براى تبديل محدوديتهاى ¥ به تسارى، به جاى اضافـكردن يكى متغير كمبود، ناجِار بايد

[^6]مى شوده، بيانگر منابع مصرف نسُده است، يك متغير مازاد كه از محدوديت \geq كسر مـيشود، بيانگگ منبعى است كه بيش از حداقل لازم مصرف شده است. همانند متغير كمبود، يكى متغير مازاد با نماد "S" نشان داده مى شود. و بايد به صورت غيرمنفى (Z0) تعريف شود. در ادبيات OR
 ضرورتى به ذكر دقيت عنوان متغير S باشد. حال با الستفاده از متغيرهاى كمكى

تساوى تبديل مىكنيم. بِس:
$r X_{1}+Y X_{Y}-S_{1}=19$
$Y x_{1}+Y_{Y} X_{Y}-S_{Y}=Y F$
جهت درك بهتر متغيرهاى مازاد SY SY به جواب آزمايش زير توجه كنيد:
$\mathrm{x}_{1}=0$
$x_{Y}=10$
با جايگزين كردن مقدار جواب آزمايشى، در معادلات خواهيم داشت:
$r(0)+Y(10)-S_{1}=19$
$-S_{1}=19-F_{0}$
$S_{1}=Y \mu$
 حداقل منبع موجود 19 واحد است. بنابراين
 $\psi(0)+Y(10)-S_{Y}=Y Y$
$-S_{Y}=Y_{Y}-Y_{0}$

$$
S_{\gamma}=19
$$

همجرن متغيرهاى كمبود، نقش متغيرهاى مازاد در ايجاد سود (هـزينه) مسـاوى صـر

[^7]1.1

$\operatorname{Max}(-Z)=-8 X_{1}-r X_{Y}+o S_{1}+o S_{r}$
s.t:
$Y X_{1}+4 X_{Y}-S_{1}=19$
$\psi x_{1}+r x_{r}-S_{r}=r r^{2}$
$$
x_{1}, x_{r}, s_{r}, s_{r} \geq 0
$$

به طور خلاصه رويه تبديل ملـل برنامهريزى خطى به شكل الستانـلأرد به شرح زير تكرار

الف) اگر مدل به صوزرت حلاكثرسازى (Max) باشد:
. . مححدوديت كو جكتر مساوى (ذ) را با اضافه كردن متغير كمكى به تساوى تبديل كنيد. Y. محدوديتت بزرگتر مساوى (Z) را باكسر كردن متغير كمكى به تساوى تبديل كنيد.「. محدوديت مساوى را عيناً بنويسيد.

ب) أگر مدل بـه صورت حدأقل سازى (Min) باشد: ا. طرفين تابع هدف رادر. 1 - ضرب كنيد و اَن را با Max بنو يسيل.
 r. محدوديت بزرگتر مساوى (ج) را باكسر كردن متغير كمكى به تساوى تبديل كنيد. f. f. محدوديتت تساوى (=) رإعيناً بنو يسيد.

F.F

 تو جه نمانييل.

مثال F. F مدل زير رادر نظر بگيريد:
$\operatorname{Max} Z=f_{0} x_{1}+\Delta 0 x_{r}$
s.t:

$$
\begin{aligned}
x_{1}+r x_{Y} & \leq Y_{0} \\
H x_{1}+r x_{Y} & \leq H r_{0} \\
x_{Y}, x_{Y} & \geq 0
\end{aligned}
$$

$1 \cdot r$
$\operatorname{Max} Z=f_{0} X_{1}+\Delta \circ X_{Y}+\cdots S_{1}+\circ S_{Y}$
s.t:

$$
\begin{gathered}
x_{1}+Y x_{Y}+S_{1}=Y_{0} \\
Y x_{1}+r x_{Y}+S_{Y}=1, Y 0 \\
x_{Y}, x_{Y}, S_{Y}, S_{Y} \geq 0
\end{gathered}
$$

توجه داريد كه مدل فوق داراى ذو معادله و \& مجهول (شامل دو متغير تـصميم و دو مـتغير كمكى) است. وضعيتى كه حل همزمان معادلات را به طور مستقيم غيرممكن هى سازد. " اروش
 كه مقدار آنها مساوى صفر خخواهد بودُمسـاوى با n (تعداد متغيرهاى تصمـيم) الست. براى ملـ

 در نتيجه خواهيمب داشت:
$0+r X_{c}+0=Y_{0}$
$0+r x_{Y}+0=1 r_{0}$
اوّل،
$r X_{Y}=Y_{0}$
$X_{Y}=Y_{0}$
سِسن معادله دوّم را برحسب SY حل مىكيمب:

$$
\begin{aligned}
r x_{Y}+S_{Y} & =1 r_{0} \\
r\left(Y_{0}\right)+S_{Y} & =1 Y_{0} \\
S_{Y} & =90
\end{aligned}
$$

1. basic Feasible Solution
 جوابى است كه ضمن ارضاء محدوديتهاى مدل، m متغير آن بـز ركتر الز صـفر و n n مـتغير آن (m + n - m)

 متغير هاى ديخر براساس دستگاه معادلات زير بدست مى آَيد:
$x_{1}+r x_{r}+S_{1}=\psi_{0}$
$r x_{1}+r x_{\gamma}+S_{\gamma}=1 r_{0}$
يعنى:
$x_{1}+0+S_{1}=F_{0}$
$\psi x_{1}+\mu(0)+0=1 r_{0}$
2. Feasible Solution

$1 \cdot 0$

> -x
$F x_{1}=1 r_{0}$
$x_{1}=r$ o
:
$\mu_{0}+S_{1}=F_{0}$
$S_{1}=10$
 الس ($\mathrm{S}_{\mathrm{Y}}=0, \mathrm{x}_{\mathrm{Y}}=0$
نهابتأ به جواب (S
دهيم، خواميم داشت:
$X_{1}+Y X_{Y}+0=F_{0}$
$\forall x_{1}+r x_{r}+0=1 r_{0}$
دستگاه معادلات نوق داراي دو معادله و دو مـجهول استا تس مـينوان آن آن را بـا ابستفاده از

 $\psi X_{1}+\lambda X_{Y}=18 \circ$

و ستس معادله دوّم را الز آن كسر كرد:
$\left\{\begin{aligned} Y x_{1}+\Delta x_{Y} & =1 y_{0} \\ -\psi x_{1}-\mu x_{Y} & =1 Y_{0}\end{aligned}\right.$

$$
x_{r}=\wedge
$$

بعل با جايكزارى كردن XY در يكى از معادلات مقدار

$$
\begin{aligned}
x_{1}+Y(\Lambda) & =Y_{0} \\
X_{1} & =Y Y
\end{aligned}
$$

1. Row operations
 ($S_{Y}=0$

 رسيد.

رو.f.f
روش سيميلكس به مجْموعهاي از مراحل رياضى براى حل يكـ مسأله برنامهريزى خطـى گفته

 مثال F.F ملـل زير را در نظـر بگيريد: $\operatorname{Max} Z=f_{0} x_{1}+0 \circ x_{Y}+\circ S_{1}+\circ S_{Y}$
s.1:

$$
\begin{aligned}
x_{1}+r x_{r}+S_{1} & =r_{0} \\
r x_{1}+r x_{r}+S_{r} & =1 r_{0} \\
x_{v}, x_{r}, S_{Y}, S_{r} & \geq 0
\end{aligned}
$$

نشان داده شبلده است.

1. Simplex Tableau

متغبرهاى اساسى	z	x_{1}	X_{Y}	s,	$\mathrm{s}_{\boldsymbol{r}}$	مفادير ســت راست

در تابلوى سيميلكس، هموأره ستون اوّل باعنوان (متغير هاى اسـاسى"، نـامگذارى مـى شمود و ستون آخر آن بيانگر (ممقادير سمت راست) معادلات مدل است. ستونهاى مابين ستون اوّل و آخر بيانگ, نام متغير هاى مورد الستفاده در مدل الست.

اين سطر را اسطر صفر|" 'كويند. برانى نوشتن سطر صفر به صورت زير عمل مى شو د: ألفـ) تابّع هدفـ را به فرم Max تبديل كنيد.
ب) مقادير سمتت راست تابع هدف را به سـمت حِب معادله انتقال دهيد تا مقلدلر سـمت راست تابع مساوى صفر قرار گيرد. حس در مثال F.F داريم:
$\operatorname{Max} Z=f_{0} x_{1}+0 \cdot x_{Y}+\circ S_{1}+\circ S_{Y}$

$$
Z-Y X_{1}-0 \cdot X_{Y}=0
$$

بلدين طريت تابع هدف به فرم يكى از معادلانت استاندارد مدل درآمده إست.
 به عبارت ديعُ، تعيين إينكه كداميكى أز متغيرها بـايد داراى مسقدار صـفر بـاشنـد و كـدأمـيكـ
 به عنوان جواب مو جه أساسى اوليه انتخاب مىكند. زيـرا مـقدار مستغيرهاى تـصميمي در ايـن گُشه براحتى قابل تعريف خو|هل بود. در اين گوشه تمام متغيرهاى تصميم مدل مساوى صفر هستند و مقدأر متغيرهاى كمكى مساوى با مـقادير سـمـت رأست مـحدوديتهاى مـلـل است.
 (XY = o، $\left.x_{Y}=0\right)$ برد. بنابراين:

1. Zero - Row

$$
\begin{aligned}
x_{1}+r X_{Y}+S_{1} & =Y_{0} \\
0+r(0)+S_{1} & =Y_{0} \\
S_{1} & =Y_{0}
\end{aligned}
$$

$$
\begin{aligned}
\mu_{X_{1}}+r x_{Y}+S_{Y} & =1 Y_{0} \\
\mu(0)+r(0)+S_{Y} & =1 r_{0} \\
S_{Y} & =1 r_{0}
\end{aligned}
$$

به عبارت ديعُ، در ميدأ هختصات كه هيج توليدى صورت نمىگيرد، تمامى منابع بلااستفاده

 مشخصش شده و به صورت جدول \uparrow بر درمى آيلد.

جلول F.Y جواب بو جه أساسىى

متغنير هاى الساسى	Z	x_{1}	x_{Y}	S,	S_{r}	معادبر مـــت راست
Z。						-
S,						$f \circ$
S_{Y}						1%

جذول F.r نشان میدهد كه در اين گوشه (بنابراين هنوز توليدى صورت نگرفته الست. يعنى كلئ منابع دست نخور مقدار سود حاصل از توليد مساوى صفر (سمت رأست مقابل ها (Z) أست. يعنى:

$$
Z-Y_{0} x_{1}-0 \cdot x_{Y}=0
$$

$$
Z-f_{0}(0)-0 \cdot(0)=0
$$

$$
\mathrm{Z}=0
$$

1.9
: $Z=F_{0} x_{1}-0 \cdot x_{\gamma}-\circ S_{1}-\cdot S_{Y}=0$
s.t:

1 : سطط: $x_{1}+Y X_{Y}+S_{1}=Y_{0}$

$X_{Y}, X_{Y}, S_{Y}, S_{Y} \geq$ 。

با تو جه به اينغه عناوين متغيرهاى مدل در سطر اوّل بين ستون همتغيرهاى الماسىى" و

 -) نوشته ميشود. به همين طريق ضرايب متغيرها در سطر I و Y بـه تـرتيب از مـحدوديتها

متغيرهاى اساسى	Z	x_{1}	x_{r}	S_{1}	S_{Y}	مفادبر سمت راست
Z。	1	- ${ }^{-}$	- Do	-	-	-
S_{1}	-	1	r	1	-	f.
S_{r}	-	*	r	-	1	19.

 مساوى (ذ) باشلـ، همواره متغيرهاى الساسى (غيرصفر) مـتغيرهاى كـمكى خــواهـنـد بـرد و متغيرهاى غيراساسي (مساوى صفر) متغيرهاي تصميم هستند.

ك. F.I انتخاب متغير ورودى

 ريال افزايش خواهد يافت. با توليد هر واحد با بخشـى از منابع نيز مورد استفاده قرار هيكيرد.

1. Right - Hand - Side
2. Non - basic variables
3. Basic variables

$$
\begin{aligned}
x_{1}+r x_{Y}+S_{Y} & =Y_{0} \\
1+Y(0)+S_{1} & =Y_{0} \\
S_{1} & =Y q
\end{aligned}
$$

$$
f x_{1}+r x_{Y}+S_{Y}=1 r_{0}
$$

$$
\varphi(1)+r(0)+S_{Y}=1 Y_{0}
$$

$$
S_{Y}=119
$$

 ميشود.
$Z=f_{0}(1)+0 .(0)$
$Z=\psi_{0}$
برعكس، اگگز

هفاهيم فوق قابل تعميـم به تابلوى سيميلكس برانى انتخابِ مْتغير مينأبسب برایى توليد نيز

 XX ستون لو لا را نشان ميدهـ.

[^8]جلورل F．F انتتخائب متغير ورودى

متغير هاى اساسىى	Z	x_{1}	X_{Y}	S_{1}	S_{Y}		
Z。	1	－ 40	－ 0 \％	。	。		－．
S_{1}	－	1	$Y \because$	1	－		－ψ_{0}
S_{Y}		F	γ	a	1	\therefore	170

 محور X
 خواهل بود．

[^9]
و Y. F.Y

$x_{1}+Y x_{Y}+S_{1}=Y_{0}$ ساعت نيروى
$1(0)+Y X_{Y}+0=Y_{0}$

$$
x_{y}=r_{0}
$$

 مشابهى در خحصو مصرفـ مواد اوليه داريم:

$$
r x_{1}+r x_{Y}+S_{Y}=1 r_{0}
$$

$$
Y(0)+r x_{Y}+0=I Y_{0}
$$

$$
x_{Y}=f_{0}
$$

بنابراين مواد اوليه كارخانه كفاف توليد فقط مىتوان
 بنابراين به حداقل توليد X بايد راضى شـي شده اسـت.
مشخص شد كه بايد در طول محور

 ندارد.
 سمت راستت بر هقادير مثبت مستون لولا انجام مىكيرد. براى اين تابلو دالريبم:

مقادير سمت راست متغير هاي أساسى

$$
\begin{array}{lll}
S_{1} & Y_{0} \div r=r_{0} \\
S_{Y} & 1 . Y_{0} \div r=Y_{0}
\end{array}
$$

 است.

F.F.F

 لو لاى قديم (تابلوى اوّل) بر عنصر لولا بلدست مى آيند. ثرمول أين محاسبات به شرح زير است:
مقادير ردبف لولاى تديمب = (مقادير ردينـ لولاى جديد)

متغبر هاى الساسى	Z	x_{1}	x_{Y}	S,	S_{r}	مفادبر ســت راست
Z。	。	$\frac{1}{r}$	1	$\frac{1}{Y}$	-	Yo
X_{Y}						
Sr						

براساس فرمولن فوق براى محاسبهُ ضرايب رديفهاي باقيمانده هم به ضرايب سطر مـربو طه در
 كه جهت محاسبهّ ضرايب

1. Pivot Number

 جدول ^^^ا است.

جدول F.^ محالسبئ ضرايب جديد رديف .Z تابلوى دوّم

 شامل (موجه أساسىى، مقدار متغيرهاى تصميم و كمكى به صورت زير انير است: $\left(S_{Y}=90, S_{1}=0, X_{Y}=Y_{0}, X_{1}=0\right)$

 مراحل محاسباتى كه براى بدست آوردن تابلوى دوّم سيمهلكس بيان بيان شده در واق

 تنها متغير منغفي نيز مىباشُد.
ثانيا؛؛ متغير خروجى يا سطر لولا را براساس حداقن حاصل
بر عناصر مثبت تعيين ميكنيم. براساس اين تاعده متغير خروجى
مقادير سمت راست متغيرهاى اساسى

$$
\begin{array}{lll}
x_{r} & r_{0} \div \frac{1}{r}=F_{0} & \\
s_{r} & q_{0} \div \frac{\theta}{r}=r_{4} & .
\end{array}
$$

 تابع هدف مسأله داراى
 XX

منغيرهاى الساسِ．	Z	X_{1}	X_{5}	S_{1}	S_{Y}	
Z。	1	。	－	19	¢	1990
X_{r}	－	。	1	$\frac{t}{0}$	$-\frac{1}{6}$	\wedge
S_{r}	－	1	－	$-\frac{\dot{r}}{\theta}$	$\frac{Y}{0}$	YY

 برخوردار اسست. بس مسأله به گوشهُ بهينهُ رسيده است و جواب مسأله در اين گوشه عبار تست $X_{1}=r \mu, X_{Y}=\lambda, S_{1}=0, S_{Y}=0, Z^{*}=1 r Y_{0}$

جواب بدست آملده همأن گوشئ B در شكلي Y.Y مى. باشثد.
 روش سيمٍلكس كه در بخخش قبل توضيح داده شد، مهـمترين روش حل ملـلهاى بـرنامهريزى خحطى است كه براى أستفاده از آن بايل مراحل زير رادر نظر گرفت:

ا. مدل مسأله را به فرم استأندارد تبديل كنيد. يعغنى تابع هدفـ از نوع Max و نامعادلات را به معادله تبديل كنيد.

تنظيم كنيد.
r. ستون لولا (متغير ورودى) را براساس منفى ترين ضريب سطر صفر (Z) تعيبن كنيد.

عناصر مثبت ستون لولا تعيين كنيد.

ه. ضرايب سطر لولاى جديد را با استفاده لز فرمول زير محاسبه كنيد:
ضرايب سطر لو لاى قديمىى
千. ضرايب ذيغر رديفها رادر تابلوى جليد براساس فرمول زير مححاسمبه كنيد:

و لـ

د F.O مثالى ديخر و مرورى به مفاهيم برنامهريزى خطى

 در أين بخشهاى مفاهيم بيان شده در فصل سوم (روش هندسىى) مرور شـده و تلاش مـى شـود رازگان روش هندسى حل برنامهريزى خططى با روش سيمیلكس تطبيت داده شود. به دانشجويان كليدى نصل) را مطالعه نمايند.

مثال ه. \& مدل برنامهـريزى خطى زير ,ادر نظر يگيريد:
$\operatorname{Max} Z=r x_{i}+\Delta x_{r}$
s.t:

$$
\begin{aligned}
x_{1} & \leq r \\
r x_{r} & \leq i r \\
r x_{1}+r x_{Y} & \leq i \wedge \\
x_{1}, x_{Y} & \geq 0
\end{aligned}
$$

 ضروزى فصل میيردازيم.

الف) معادلات مرزى : حنانچֶه كلِئُ هحدوديتهایى \geq يا
 معادلات هرزى:

$$
\begin{aligned}
x_{1} & =r \\
r x_{Y} & =1 r \\
r x_{1}+r x_{Y} & =11 \\
x_{1} & =0 \\
x_{Y} & =0
\end{aligned}
$$

 كر كتـاند.

 مـدال 7.0 به صورت زير استاندارد مىشود: Max $Z=r x_{1}+\Delta x_{r}+o S_{1}+o S_{r}$
s.t:

بس همواره مدل استاندارد داراى m محدوديت و m + n متغير خواهد
 مىيكيند.

 در شكل 4.9 ا دا درنظر بگيريد. در اين جواب اساسىى خاص مقلار متغيرهاى تصميم و كمكى
$\left(x_{1}={ }_{\varphi}, x_{Y}=4, S_{1}=0, S_{Y}=0, S_{Y}=-\varphi\right.$.
 جواب گوشهاى (X

 تشطه؛ ($\left(x_{1}=0, x_{r}=G, S_{1}=r, S_{Y}=0, S_{r}=0\right)$

كاني		مسادلات مـر	$\left(\begin{array}{c} \text { جواب الهاسى موبی } \\ \left(x_{Y}, x_{Y}, S_{Y}, S_{Y}, S_{Y}\right) \end{array}\right.$	متغيرهاى اساسى	نغترهماى غبراماسىى	م Z
O	(0,0)	$\begin{aligned} & x_{1}=0 \\ & x_{y}=0 \end{aligned}$	$(0,0, f, 1 T, 1 / 1)$	$\left(S_{V}, x_{Y}, S_{r}\right)$	$\left(x_{1}, x_{Y}\right)$	-
A	(0.9)	$\begin{gathered} x_{1}=0 \\ r x_{y}=1 Y \end{gathered}$	$(0,5,4,0,9)$	($\mathrm{S}_{\mathrm{Y}}, \mathrm{x}_{\mathrm{Y}}, \mathrm{S}_{\mathrm{r}}$)	$\left(x_{V}, S_{Y}\right)$	ro
B	($\mathrm{T}, 9$)	$\begin{gathered} r x_{Y}=r y \\ r x_{1}+r x_{Y}=r A \end{gathered}$	$(f, 9, Y, 0,0)$	$\left(S_{1}, x_{Y}, x_{\nu}\right)$	$\left(S_{Y}, S_{Y}\right)$	「\%*
C	(, , r $)$	$\begin{gathered} r x_{1}+r x_{Y}=1 \Lambda \\ x_{1}=Y \end{gathered}$	($¢, r, o, q, 0)$	($S_{Y},{ }_{X_{Y}, x_{1}}$)	$\left(S_{V}, S_{r}\right)$	rV
D	(f.0)	$\begin{aligned} & x_{1}=y \\ & x_{y}=0 \end{aligned}$	(f, o, o, Mr, ¢)	(S_{Y}, S_{r}, x_{γ})	(S_{1}, x_{Y})	ir

[^10]با مقايسهُ ستونهاى متغير هاى اساسى و متغير هاى غيراسابسى مى توتوان به اين نكته بیى برد

 منفى هستند. جس اين جواب اساسى غيرموجه مى باشـد.

معادلات معرف آن معادلّ ا و معادلة r خواهد بود.

 معروف اسـت. براي مثال محدوديتهاى فعال كوشئ بهينه (كوشه: B) در مثال فوق عبارتند ازي

$$
r X_{Y} \leq i r
$$

$r x_{1}+r x_{r} \leq i \wedge$

$$
\text { غيرالزام|آور|" }{ }^{\text {r }}
$$

$$
\text { هثال } 4.0 \text { به روش سيميلكس مى ير دازيم. }
$$

 انتخاب شُده است. جون دارایى منفى ترين مقدار (ه -) در رديف. .Z است. برائى انتخاب متغير

1. Active Constraints
2. Binding Constraints
3. Non Binding C.

متغيرهاى الساسى	Z	x_{1}	x_{Y}	S	S_{T}	S_{r}	－
Z。	1	－r	－0	－	。	－	－
S	－	1	－	1	－	－	Y
S_{r}	－	。	（1）	－	1	－	ir
s_{r}	－	r	r	－	－	1	is
Z 。	1	－r	－	－	$\frac{0}{r}$	－	To
S	－	1	－	1	－	－	F
${ }^{\text {r }}$	－	－	1	－	$\frac{1}{T}$	－	ξ
S_{r}	－	（	－	－	－1	1	9
Z。	1	－	－	－	$\frac{r}{r}$	1	r9
S，	－	－	－	1	$\frac{1}{T}$	$-\frac{1}{r}$	Y
${ }^{\text {r }}$	－	－	1	－	$\frac{1}{r}$	－	9
x，	－	1	－	－	$-\frac{1}{r}$	$\frac{1}{r}$	r

خروجى، از حداقل حاصل تقسيم هقادير سمت رأست تابلو بر عناصر مثبت ستون XY（لو لا） استفاده شده اسمت．پس جِون：

$$
\text { حداقل حاصل تقسيم }=\left\{-\frac{1 Y}{r}, \frac{1 \Lambda}{r}\right\}=9
$$

حداقل حاصل تقسـيم مربوط به

 مقادير سطر لولای تابلوى اوُّل را بر عنصر لو لا（يُعنى علدد

به عنوان مثال براى ．Z ذاريم：

سيمپلكس جواب بينينه عبارتست از:

$$
x_{1}=r \quad x_{Y}=\varepsilon \quad S_{1}=r \quad S_{Y}=S_{r}=0 \quad Z^{*}=r q
$$

 شُوع كرنه و در جهت محور

$$
\begin{aligned}
& S_{1}=4 \quad X_{Y}=9 \quad S_{Y}=9 \\
& \text { و متغيرهاى غيراساسنى تابلوى دوّم: }
\end{aligned}
$$

F. 9

 سيمبلكس را براى حل اين نوع مدلها تشر يح خراهيمب كرد. مثال ₹. 7 مدل زير را درنظر بگير يد:
$\operatorname{Min} Z=\varphi X_{1}+r X_{r}$
s.t:

$$
\begin{aligned}
r x_{1}+r x_{Y} & \geq 1 \varphi \\
\psi x_{1}+r x_{Y} & \geq r \varphi \\
\cdot x_{1}, x_{Y} & \geq 0
\end{aligned}
$$

به ياد داريم كه فرم استاندارد مدل Min به صورت زير انجام مى گرفت: $\operatorname{Max}(-Z)=-\varphi X_{Y}-\mu x_{Y}+\circ S_{Y}+\circ S_{Y}$
s.t:

$$
\begin{gathered}
r x_{1}+\psi x_{Y}-S_{1}=1 \varphi \\
\psi x_{1}+r x_{Y}-S_{Y}=r \psi \\
x_{1}, x_{Y}, S_{Y}, S_{Y} \geq 0
\end{gathered}
$$

 ميكند. جايى كه ك" $r x_{1}+r x_{y}-S_{1}=19$
$r(0)+f(0)-S_{i}=19$

$$
S_{1}=-19
$$

، Min منفى شدن متغير كمكى يكى پديدهٌ غيرمنطقى و بىمعنى است. ظـاهراً در حـل مـدل

 نشان مىدهيم. بس براى محدوديت اووّل داريم:
$r x_{1}+r x_{r}-S_{1}+R_{1}=19$

1. Artificial variable

$$
\begin{aligned}
r x_{1}+f x_{Y}-S_{1}+R_{1} & =19 \\
r(0)+f(0)-0+R_{1} & =19 \\
R_{1} & =19
\end{aligned}
$$

برخلاف متغير هاى كمكي، متغير هاى مصنوعى، هيَّ كونه معناى فيزيكي و واقعى ندارند.
 انتقالى خود را آَغاز كند. با تو جه به غيرولاقعى بودن اين دسته از متغير ها، بايل تلاش شود كه در ارلين فرصت آنها را از جواب مسأله حذف كرد، جون بزرى شـلـن منطقة مرجه، اين احتمال را
 اضافنشدن R قرار دارد، واقع كردد. بليهى است اين جوراب جرد جون در ناحيةٌ مو جه مسأله اصلى

 مو جب كاهش (افزايشُ) Z به ميزانى معادل M برابر مقدار متغير اساسى مصنوعى مى مريردي، لذا

 جواب بهينه بدست آمله بر روى يكى از نقاط كوشهأى ناحيه موجه اصلى مسـأله قرار خواهـد كرفت.
براساس مفاهيم فوق فرم استاندارد (كسترده شــده) و قــابل انـتقال يكى مسأله Min بـا
محدوديتهاى \geq (مشال \uparrow) به صورت زير خور اهد بود:
$\operatorname{Max}(-Z)=-9 X_{1}-r X_{Y}-M R_{1}-M R_{Y}$
s.t:

$$
\begin{aligned}
& r x_{1}+\varphi x_{r}-S_{1}+R_{1}=1 \varphi \\
& \psi x_{1}+r x_{r}-S_{r}+R_{r}=r \varphi \\
& x_{1}, x_{r}, S_{Y}, S_{r}, R_{r}, R_{r} \geq 0
\end{aligned}
$$

تابلوى اوليه سيممِلكس براى مسأله فرق به كمكى ا

داراى :

بلـهد.

 "عمليانت رديفى") ضرائيـ , هربيرط به

ردبـ
رديْ

باضان

الست جلول در جـدول F.IVY تشتـكيل شده اسـت.

جدول F．1＾تابلوى ازل سبمبلكس مسأله

متغير هاى الساسى	Z	x_{1}	x_{T}	s	s_{r}	R，			مـمادير ســـرتـراست
Z 。	－1	$9-9 \mathrm{M}$	r－vM	M	M	－			－$\% \cdot \mathrm{M}$
R，	－	「	${ }^{+}$	－1	－	1	。		19
R_{i}	－	＋	r	－	－1	－			if

 جدول 19.19 جزئيات آن ديده مىشود．

$$
\left(x_{1}=0, x_{Y}=\wedge, S_{1}=1 g, S_{Y}=0, R_{1}=0, R_{Y}=0\right)
$$

－	Z	x_{1}	x_{Y}	S_{1}	$\mathrm{S}_{\boldsymbol{r}}$	R，	R_{Y}	
Z。	－1	s－s． M	r－vM	M	M	－	－	＊t．M
R，	－	r	（4）	－ 1	－	1	－	15
R_{r}	－	＊	r	－	－1	－	；	${ }^{*}$
Z 。	－	$\frac{4}{r}-\frac{\Delta}{T} M$	－	$\frac{\mathrm{r}}{7}-\frac{\mathrm{r}}{7} \mathrm{M}$	M	$\stackrel{r}{T}+\frac{V}{F} M$	－	－ir－ir M
x_{Y}	－	$\frac{1}{r}$	1	$-\frac{1}{7}$	－	$\frac{1}{7}$	\bullet	＊
R_{r}	－	$\text { (} \frac{D}{V}$	－	$\frac{\%}{7}$	－1		． 1	ir
Z 。	－ 1	－	－	－$\frac{\mathrm{r}}{6}$	$\frac{9}{8}$	$\frac{\mathrm{r}}{6}+\mathrm{M}$	$-\frac{9}{8}+\mathrm{M}$	$-\frac{198}{\delta}$
${ }^{\text {r }}$	－	－	1	$\div \frac{1}{8}$	$\frac{i}{6}$	$\frac{\stackrel{r}{r}}{\square}$	$=-\frac{1}{6}$	$\hat{0}$
x_{1}	－	1	－	（r）	－$-\frac{r}{0}$	$-\frac{r}{10}$	$\frac{1}{8}$	$\frac{\mathrm{rf}}{0}$
Z	－1	r	－	－	1	M	－1＋M	－ 4
x_{r}	－	$\stackrel{\square}{T}$	1	－	$-\frac{1}{T}$	－	$\frac{1}{r}$	\wedge
s_{1}	－	$\frac{10}{T}$	－	1	$-\frac{1}{r}$	－1	$\stackrel{F}{\text { F }}$	19

تابع هدف مذل در مثالل 4.9 در اصل از نوع Min استض. براي بدست آوردن مقدار وأقعى Z بايد جوابب بدست آمده را در 1 - ضربب كنيم. يعنى:
$\operatorname{Min} Z=\operatorname{Max}(-Z)=-(-Y \psi)=Y \varphi$
جواب بدست آمده از روش سيمعلكس را با روش ترسيمى (شكل F.V) مقايسه كنيد. با تطبيت
 تابلوى سيمثلكس معادل يكى جرابِ گر شهأى در روش ترسيمى است. با تو جه به أسـتفاده أز

 مشخص كردها

 (E , O

كرشئ موجه B رسيدهايم جون هر دو متغير مصنوعى

' مسأله با تركيبى از محدوديتها

 توجه كنيد.

مثال f.V مدل زير رادر نظر بگيِيد:
$\operatorname{Max} Z=\mu_{0} x_{1}+Y_{\infty} x_{r}$
s.t:

$$
\begin{aligned}
x_{1}+x_{Y} & =r_{0} \\
r_{1}+\wedge x_{Y} & \geq \wedge_{0} \\
x_{1} & \leq r_{0} \\
x_{1}, x_{Y} & \geq 0
\end{aligned}
$$

 سيمِلكس) بيردازيب:

$$
\begin{aligned}
x_{1}+x_{Y} & =r 。 \\
0+\circ & =r 0 \\
0 & \neq r 。
\end{aligned}
$$

الز آنجاكه صفر مساوى •بنيست، بِس محدوديت در اين شكل (يعنى مساوى) يكى محدوديت

1. Mixed Constraints problem

امكانذذير برإي اجراى روش سيمبلكس نخواهد بود. بنابراين ناجاريم، يكى /متغير مصنوعى" به آن اضافهـكنيم. يعنى:
$x_{1}+x_{Y}+R_{1}=\mu_{0}$.

$$
\cdots+\cdots+R_{1}=r \cdot
$$

 M. را به تابع هدف اضافه میكنيم و اكر از نوع Min باشد، هزينه سنكين MR هدن اضافه خواهيم كرد.

 به آن اضافه خواهيم كرد. يس:
$r_{x_{1}}+\lambda x_{Y}-S_{Y}+R_{Y}=\lambda 0$
محدوديت سوّم مسأله نيز از نوع كا است كه بـا استـفاده از متتغير كـمكى استاندارد تبديل میشورد. يعنى:
$x_{1}+S_{r}=Y_{0}$
حال مدل قابل استفاده براى اجراى روش مبيملكس به صورت زير بازنويسى مى شورد: $\operatorname{Max} Z=Y_{0} \circ \mathrm{X}_{1}+Y_{\circ} \circ \mathrm{X}_{\mathrm{r}}-M R_{1}-M R_{\mathrm{Y}}$.
s.t:

$$
\begin{aligned}
x_{1}+x_{Y}+R_{1} & =r_{0} \\
r x_{1}+\Lambda x_{Y}-S_{Y}+R_{r} & =10 \\
x_{1}+S_{r} & =r_{0} \\
x_{1}, x_{Y}, S_{r}, S_{r}, R_{r}, R_{r} & \geq 0
\end{aligned}
$$

با تبديل تابع هدف بـ فر فرم معادلهاى با مقدار سمت راست صفر مى توان تابلوى معدماتى سيمِلكس رادر جدول •Y.Y آورد.

$$
\begin{aligned}
& \text { حال در مبدأ مختصات، جايى كه o } \\
& R_{1}=r_{0}
\end{aligned}
$$

 .عدد صفر تبديل كنيم. به صوزت زير:

بـ اضانه

 براسأس تابلوى چهارمه جواب بنهينهُ ملل عبارتست از:
$\left(X_{1}=Y_{0}, X_{Y}=10, S_{Y}=F_{0}, S_{r}=0, R_{1}=0, R_{Y}=0\right)$
$Z^{*}=1000$
حال چحگونگی تبديل نهر سه نوع مدل برنامهريزى خطى را بنه صـورت زيـر خـلاصه

آن دسته از مدلهايى كه در حل آنها به روش سيميلكس، از متغير مصنوعى استفاده شده،

 روش سيمپلكس مىباشد.
^.^ روش سيمیِلكس دو مرحلهاى`

1. Big - M. Method
2. Two - Phase Simplex Method
 (俍 M

 در تابع هدف دارای ضرايب مساوى هستند.

 مرحله به شرح زير خلاصه مىشوند.

 هدف مسأله مرحله 1 (كه به مسأله فرعى نيز معروف است) عبار تست ازي:
$\operatorname{Min} \mathrm{R}_{\mathrm{o}}=\Sigma \mathrm{R}_{\mathrm{i}}$

مثال ^.^ مدل زير را در نظر بغيريد:
$\operatorname{Min} Z=\mu x_{1}+x_{r}$.
s.t:

$$
\begin{aligned}
r x_{1}+x_{r} & =r \\
r x_{1}+r x_{r} & \geq q \\
x_{1}+r x_{Y} & \leq r \\
x_{1}, x_{r} & \geq 0
\end{aligned}
$$

ابتداء مسأله مرحله I ضنمن استاندارد كردن محدوديتها (مدل كسترده) نوشته مى شُود: $\operatorname{Min} \mathrm{R}_{\mathrm{o}}=\mathbf{R}_{\mathbf{1}}+\mathrm{R}_{\mathrm{r}}$
s.t:

$$
\begin{aligned}
& r x_{1}+x_{Y}+\quad R_{1}=r \\
& r x_{1}+r x_{Y}-S_{Y}+\quad R_{Y}=\varphi \\
& x_{1}+r x_{r}+\quad S_{r}=r \\
& x_{V}, \quad x_{Y}, S_{Y}, S_{r}, R_{Y}, R_{r} \geq
\end{aligned}
$$

بايد توجه داشت كه صرفـنظر از نوع تابع هدف مسأله اصلى، تابع هدف مسألله فرعى
 مسأله فرعى 1 با تبديل تابع هـدف Min بــ تـابع هـدف Max در جـدول Y.Y Y وارد مى شود.

 صفر به صفر تبديل مىشود. بدين منظلور عناصر سطر

 جدول بر. \uparrow آهده است.

 كه تابع مورد استفاده، همان تابع هدف اصلى مسأْله در فرم Max است. سِس:

* در در اباند

$$
\operatorname{Min} Z=f x_{1}+x_{Y} \Rightarrow \operatorname{Max}(-Z)=\therefore f x_{1}-x_{Y}
$$

$$
-Z+\varphi X_{1}+X_{Y}=0
$$

 مرحله I، متغير هاى مصنوعى، غيراسـاسبى شدهاند. يعنى مسأله به نأحيه مـو جه اصـلى مـلى مـلـل

جدول F.Y جد A. جدول معدمانى مرحله II منال

تفضيل در جدول \% ه. آمده اسست.
بدين طريت جوأب بهينه مـالل \uparrow ب بلـست مى آيذ. به طورى كه: $x_{1}=\frac{r}{\Delta} X_{Y}=\frac{q}{\Delta} S_{Y}=S_{r}=R_{1}=R_{Y}=0$
وZ شده است.

 شده در خصوص روش M بزرگا و مراحـل انتتفال در سـيمتلكس بـراى روش دو مـرحـلهاى

 مصنوعى از پايه خارج شونل. با خروج متغيرهاى مصنوعى و غيراساسى شدن آنها كـمكم بــه

ناحيه مو جه اصلى مسأله نزديكى مىشويم. به طـوريكه در تـابلوى آخــر مـرحــله ا كـه كـلية!
 مو جه مسأله استت. لذا در مرحله دوم (II) به جستجرى كوشهُ بهينه در ناحيه مو جه اصلى مسأله ميبردازيم.
مراحل بيان شده در روش دو مرحلهاي، دتيقاً همانند روش M بزرك است. با الين تفاوت

 سيمیلكس در هر دو روش كاملأ با همديگر مساوي است.

مثال 9 \& مدل زير رادر نظر بگيريد و آن را با المتفاده از روش دو مرحلهأى حل كنيد؟ $\operatorname{Max} Z=r X_{1}-X_{r}$
s.t:

$$
\begin{aligned}
r x_{1}+x_{Y} & \geq r \\
x_{1}+r x_{r} & \leq r \\
x_{r} & \leq r \\
x_{1}, x_{r} & \geq 0
\end{aligned}
$$

مرححله I) ابتّدا مسـأله فرعى مرحله I را مىنويسيم.
$\operatorname{Min} R_{0}=R_{1} \Rightarrow \operatorname{Max}\left(-R_{0}\right)=-R_{1}$
s.t:

$$
\begin{aligned}
r x_{1}+x_{r}-S_{1}+R_{Y} & =r \\
x_{1}+r x_{r}+S_{r} & =r \\
x_{r}+S_{r} & =r \\
x_{1}, x_{r}, S_{Y}, S_{Y}, S_{r}, R_{1} & \geq 0
\end{aligned}
$$

حال با تهيهٌ معادلهٌ قَابِل انتقال به تابلوى سيميمِلكس، تابلوى مقدماتى مرحله I را تهيه -مىكنبم. پس:

$$
-R_{0}+R_{1}=0
$$

جدول \&.F. F. تابلوى مقدماتى مرحله I و مراحل ميمهلكس را تا رسيدن به تابلوى آخر

مرحله I نشـان مـيـدهل.

 بنابراين در تابلوى دوّمه ملـل بـه يكى گوشـه مو جـه رسيلده اسـت.

 $\left(x_{1}=\mu, x_{Y}=0, S_{Y}=\psi, S_{Y}=0, S_{Y}=\psi, R_{Y}=0\right)$

$$
Z^{*}=9,
$$

حالن به بزرسنى مسير حزكت براسباس روْش تُرسيمى طى مرحخله I و هرحله II روش دو

 حركت و تعداد تنكرأرهاى سيمنّلكس ندارد.

 روش M بزرى است! (جهت بررسى صحت، مسأله را با روش M بزركى حل كنيد).

\$. \uparrow موارد خاص در برنامهريزیى خطى

 كردد.
F.9.1 جواب بهينه جندگانه

 عنوان نمونه به مثال زير توجه كنيد.

مثال F.lo مدل زير رادر نظر بيكيريد:
$\operatorname{Max} Z=r_{0} X_{1}+r_{0} X_{r}$
s.t:

$$
\begin{aligned}
x_{1}+r x_{Y} & \leq y_{0} \\
r x_{1}+r x_{Y} & \leq i r_{0} \\
x_{1}, x_{Y} & \geq 0
\end{aligned}
$$

 يكى مسأله با جواب بهينه حندلدكانه براساس تابلوى سيمیلكس قابل تشخيص مى باشد. بعد از

شكل F.10 F.1. روش هندسي حل هثال

نوشتن مدل استاندارد مسأله، آن را وأرد تابلوى بمبمچلكس كرده و مراحل معمول سيمپـلكس

 عنوان تابلوى سوّم سيمچِلكس در جلـول Y Y Y ديلهه مىشو.د.

جدول F.Y9 تابلوى سوم سبمبلكس، جـواب جايِگزين

 حالات مشابه در متغير وزودى، يكي از علايم جندگانه بودن جوابِ بهينه است.

F.Y:Y فاقد ناحيه مو جه (جواب)

 همـديخر هستند. بنابراين تعريف ناحيه مو جه ملـل امكان ندارد.

مثال Y. 1 مدل زير رادر نظر بگيريد:
$\operatorname{Max} Z=\Delta X_{1}+r X_{Y}$
s.t:

$$
\begin{aligned}
F x_{1}+r x_{Y} & \leq \wedge \\
x_{1} & \geq \varphi \\
x_{Y} & \geq \varepsilon \\
x_{Y}, x_{Y} & \geq 0
\end{aligned}
$$

تشخيص اين حالت خاص برنامهريزى خطلى براسـاس متغيرماى اسـاسىى آخرين تابلوى

 منطقه مو جه اصلى مسأله برساند.

استاندارد تبديل مىكنيم. سپس آن را به روش M بزرگ حل مىكنيم.
$\operatorname{Max} Z=\Delta x_{1}+\mu x_{Y}-M R_{Y}-M R_{r}$ s.t:

$$
\begin{array}{r}
r x_{1}+r x_{r}+S_{Y}=\Lambda \\
x_{1}-S_{Y}+R_{Y}=\psi \\
x_{Y}-S_{r}+R_{r}=\xi \\
x_{1}, x_{r}, S_{Y}, S_{Y}, S_{r}, R_{Y}, R_{r} \geq 0
\end{array}
$$

 (E و D ، ©)

ץ.ヶ.4 ناحيه جواب بيكران

مثال Y.IY مدل زير رادر نظر بغيريد:
Max $Z=x_{1}+r x_{r}$ s.t:

$$
\begin{array}{r}
x_{1}-Y x_{Y} \leq y \\
-x_{1}+x_{Y} \leq y \\
x_{1}, x_{Y} \geq 0
\end{array}
$$

شكل F.Ir روش شل ترسيمى مدل.

جدول F.YI حل مدل به دوش سيمبِلكس

مثال
$\operatorname{Max} Z=\varphi X_{1}-r \dot{X}_{r}$
s.t:

$$
\begin{aligned}
r x_{1}-x_{Y} & \leq r \\
x_{1} & \leq y \\
x_{1}, x_{Y} & \geq 0
\end{aligned}
$$

 جواب بهينة مسأله اسست.

 $\left(X_{1}=f, X_{Y}=9, S_{1}=0, S_{Y}=0, Z^{*}=1 r\right)$

 |وّل | - و در محدوتيت دؤم مساوى صغب است.
F.9.ヶ

 اسـت

 علخد.
$\operatorname{Max} Z=Y x_{1}+g X_{r}$
s.1:

$$
\begin{aligned}
9 x_{1}+4 x_{Y} & \leq Y \psi \\
x_{Y} & \leq r \\
\Delta x_{1}+10 x_{Y} & \leq \psi_{0} \\
x_{V}, x_{Y} & \geq 0
\end{aligned}
$$

 معادله معرف به شرح زير أست:
$\varphi x_{1}+f x_{r}+S_{1}=Y \varphi$
$x_{r}+S_{r}=r$
$\Delta x_{1}+10 x_{r}+S_{r}=\mu_{0}$

منغيرها	Z	x_{1}	x_{T}	s_{1}	S_{Y}	s_{r}		تابلمُ
$\%$	1	－${ }^{*}$	－9	－	－	－	－	
S，	－	9	$\stackrel{1}{ }$	1	－	－	He	
S_{r}	－	－	（1）	。	1	－	r	
S_{r}	－	0	10	－	－	1	\％	
Z。	1	－${ }^{+}$	－	－	9	－	$1 \wedge$	تابلو
S，	－	s	－	1	－${ }^{+}$	－	ir	
X_{T}	－	－	1	－	1	－	r	
S_{r}	。	（1）	－	－	－ 10	1	10	
$\%$ 。	1	－	－	－	－${ }^{-1}$	$\frac{4}{6}$	19	．تابلوى سزّ
s	－	－	－	1	（1）	$-\frac{9}{6}$	－	
X_{T}	－	－	1	－	1	。	r	
x_{1}	－	1	－	－	－T	$\frac{1}{0}$	r	
Z。	1	－	－	$\frac{1}{4}$	－	$\frac{1}{T}$	19	تابلوى
s_{r}	。		－	$\frac{1}{1}$	1	$-\frac{r}{r_{0}}$	－	
X_{T}	－	。		$-\frac{1}{\lambda}$	－	$\frac{r}{T_{0}}$	r	
X_{1}	－	1	－	$\frac{1}{4}$	。	$-\frac{1}{10}$	Y	

 عمل شـله اسست و，X به جاى X

مثال f.10 مدل زير زادز نظر بغيريد:
$\operatorname{Max} Z=r X_{1}+X_{Y}$
s.t:

$$
\begin{aligned}
\psi x_{1}+r x_{Y} & \leq 1 r \\
\psi x_{1}+x_{Y} & \leq \wedge \\
\psi x_{1}-x_{r} & \leq \wedge \\
x_{1}, x_{r} & \geq 0
\end{aligned}
$$

تبهگنى در اين حالت برطرف شلده است، جِون در تابلوى سوّم ديُگر در مقادير سـمـت راست

 مربوط به مسبدأ مـختصات (XYY ($X_{Y}=Y, X_{Y}=\frac{Y}{Y}$) تمريف شلـه است. بنابراين جوالب بهينة ملد $\left(x_{1}=\frac{r}{r}, \quad x_{Y}=r, \quad S_{1}=0, \quad S_{Y}=0, \quad S_{r}=r, \quad Z^{*}=0\right)$

 اينكه از نوع بهينهُ تبهُگن اسـت كه تأبلوى يعدى همـحْنان داراى مقادير صـفر در سـمت راست
خواهد بود.!
F.lo متغير های منفى

Y. 1 . 1

$X_{i}=X_{i}^{\prime}-X_{i}^{\prime \prime}$

 X, آزاد در علامـت است.

مثال f.19 مدل زير رادر نظر بغيريد:
$\operatorname{Max} Z=9 x_{1}+1 \Lambda x_{r}$
s.1:

$$
\begin{aligned}
q x_{1}+r x_{Y} & \geq 1 \wedge \\
r x_{1}+r x_{Y} & \leq 19 \\
x_{r} & \geq 0, x_{1} \text { آزاد در علمت }
\end{aligned}
$$

با جايگزين كردن
$\operatorname{Max} Z=q\left(x_{1}^{\prime}-x_{1}^{\prime \prime}\right)+1 \lambda x_{y}$
s.t:

$$
\begin{aligned}
r\left(x_{1}^{\prime}-x_{1}^{\prime \prime}\right)+r x_{Y} & \geq 1 \wedge \\
r\left(x_{1}^{\prime}-x_{1}^{\prime \prime}\right)+r x_{Y} & \leq 19 \\
x_{1}^{\prime}, x_{1}^{\prime \prime}, x_{r} & \geq 0
\end{aligned}
$$

با تبديل محدوديتهاى نامعادله به محدوديتهاى تساوى (=) مسـأله استاندلارد زير بدست
$\operatorname{Max} Z=9 x_{1}^{\prime}-9 x_{1}^{\prime \prime}+1 \lambda x_{Y}+o S_{1}+o S_{Y}-M R_{1}$
s.t:

$$
\begin{aligned}
& q x_{1}^{\prime}-q x_{1}^{\prime \prime}+r x_{Y}-S_{1}+R_{1}=1 \Lambda \\
& r x_{1}^{\prime}-r x_{1}^{\prime \prime}+r x_{Y}+S_{Y}=19 \\
& x_{1}^{\prime}, x_{1}^{\prime \prime}, x_{r}, S_{1}, S_{Y}, R_{1} \geq 0
\end{aligned}
$$

 به عدد صفر تبديل شده الست. تابلوى جهارم جدول
عبار تست از:

$x_{1}=x_{1}^{\prime}-x_{1}^{\prime \prime}$
$x_{1}=0-r=-r$
بنابراين گوشه بهينه (X

 آزاد در علامت بودن ,xاست.

 متغير هاى امساسىى خارج شده است.

F.IO.Y P متغيرهاى با حد بايين منفى

 $x_{1}=x_{1}^{\prime}-x_{1}^{\prime \prime}$

> بس مى توان نوشـت:
$x_{1}=x_{1}^{\prime}-y_{0}$
$x_{1}^{\prime} \geq$ 。
و با جايگز ين كردن تعريف جديد جد

 محدوديت در نظر كرفت كه مجدداً ما را بـ تغيير متغير , X1 مجبور مى سازد.
F. 11 خلاصه فصل جهار

 كرد.

 علامت و منفى با حد پايين اشاره كرد.

Y.IY مسائل فصل Y. IY.I

مى شوند.
 r. r. هر تابلوى سيمیلكس از نظ, هندسى، همواره متناظر با يكـ ا است.
 گوشه، جوابِ الست.
ه. در صروتى كه يكى محدونيت نيازى به متغير كمكى (S) نداشتّه باشد، اَّن محدوديت يك مـحدوديت است.

 ^. براى تبديل يكـ محلوديـت كو جكتر مساوى (צ) به تساوى (=) بِايِل أز متغير استفاده كري.
9. هر يكى از متغير هاى كهـودو و مازاد را متغير

> ضرب كرد.

 با يِك گوشه هو شده است

 جوأب: (تو جه: تعداد كل متغيرهانى مدل m + (است)

ج) غيرمو جه أست.

الف) يكـ گو شئ غير مو جه است.
ج) يكى جواب مو جه غيرگوشهاي است.د) يكى جوأب غير مو جه غير گوشهأى است.

الف) حداقل حاصل تقسيم مقادير سمتت راسـت بر عناصر منفى ستون لو لا باشـد.
 ج) حداكثر حاصل تقسيم مشادير سمـت راستِّ"بر"عناصر منفى ستون لو لا باشد. د) حداقل حأصل تقسيم مقادير سمت راسـت بر عناصر مثبت ستون لولا با باشـلـ.
 بزركتر از صفر باشد، كوشئ متناظر با آن تابلو حتمأ بيك كوشئ:
ج) غيرموجه است
11. اكر تابلوى بهينه سيمبيلكس مدل داراراى معدار صفر براى يكت متغير غيراساسى در

ب) فاقد ناحيه جواب است.
د) ناحيه جواب بيكران الست.
 x'آزاد در علامت x = x' - 10 (ب)
$x=x^{\prime}$ - 10 (
$x \geq$ 。

الف) بهينه جندكانه. است.
ج) تبهگن الست.
$x=-10$ (الف

- x's 10 (
-Y. مدل زير داده شدهاست:
$\operatorname{Max} Z=r X_{1}+X_{r}$
s.t:

$$
x_{1}+x_{y} \leq 100
$$

آزاد در علامت $\mathrm{x}_{\mathrm{Y}}, \mathrm{x}_{1} \geq$ 。
مدل جايگزين كدام است؟؟
$\operatorname{Max} Z=r x_{1}^{\prime}-r x_{1}^{\prime \prime}+x_{r}(ب$
s.t:

$$
\begin{aligned}
x_{1}^{\prime}-x_{1}^{\prime \prime}+x_{y} & \leq 100 \\
x_{1}^{\prime}, x_{1}^{\prime \prime}, x_{y} & \geq 0
\end{aligned}
$$

Max $Z=r x_{1}+x_{r}$
s.t:

$$
\begin{aligned}
x_{1}+x_{y}^{\prime}-x_{y}^{\prime \prime} & \leq 100 \\
x_{1}, x_{y} & \geq 0
\end{aligned}
$$

Max $Z=r x_{1}+x_{Y}^{\prime}-x_{Y}^{\prime \prime} \quad$ الف) s.t:

$$
\begin{gathered}
x_{1}+x_{r} \leq 100 \\
x_{1}, x_{y} \geq 0
\end{gathered}
$$

Max $Z=r x_{1}+X_{Y}^{\prime}-x_{Y}^{\prime \prime} \quad(\tau$ s.t:

$$
\begin{gathered}
x_{1}+x_{r}^{\prime}-x_{r}^{\prime \prime} \leq 100 \\
x_{1}, x_{r}^{\prime}, x_{r}^{\prime \prime} \geq 0
\end{gathered}
$$

اY. مسأله برنامهريزى خطى زيز

$$
\operatorname{Max} Z=1 \varphi x_{1}+r x_{y}
$$

s.l:

$$
\begin{aligned}
r x_{1}-x_{Y} & \leq Y \\
x_{1} & \leq Y \\
x_{1}, x_{Y} & \geq 0
\end{aligned}
$$

كـذام گزَينه صصحيح .اسبت؟
الفس) منطقه مو جه يكى نتطه الست. ج) منطقه مو جه نامحدود انست.

$$
\operatorname{Min} Z=r x_{1}+\Delta x_{r}+r x_{r}
$$

s.t:

$$
\begin{aligned}
& r X_{1}+X_{r} \leq Y \\
& x_{Y}+x_{r} \geq 0 \\
& x_{1}+x_{r}+x_{r}=10 \\
& x_{V}, x_{Y}, x_{r} \geq 0 \\
& \text { الفـ) } \\
& Y(\\
& 1 \text { (? } \\
& \text { \& (2 }
\end{aligned}
$$

 جققلـر است؟

$$
\begin{aligned}
& \text { الف) (0) } \\
& (1,0)(ب \\
& (0,1)(\underset{c}{ } \\
& \text { (1, 1) (2 }
\end{aligned}
$$

بـ. برای حل مسأله زير به روش simplex بـه
جند متغير مصنوعى نباز است؟

 مصنوعى و 9 مهحدوديت است. تعداد متغيرهاى اساسى اين مسأله در تابلوى سيمیلكس جند تا است؟
(ب)

1. (s
rer

$$
\text { ج } 9
$$

צY. تعداد تكرارهاى سيمیلكس در روش M بزرك در مفايسه با روش سـيمیلكس دو
مرحلهأى همواره:
ب) بيشتر است.
الفـ) كمتر است.
د) مساوى اسست.
ج) متفاوت است.

الف) غير گوشه به جواب كوشه است.

٪^. جر يكى تابلوى سيمبِلكس متغير ورودى وجود دارد ولى تمامى عناصر ستون لولا

. الف) دارای جواب بهينه حندكانه است
ج) فاقد ناحيه موجه است
ج9. در روش سيمپّلكس دو مرحلهاى همواره عنصر لولا:
ب) مثبت است.
د) كر جیكتر مساوى صفر است.
الف) منفى است.
ج) صفر است.

$$
\begin{aligned}
& \operatorname{Max} Z=10 x_{1}-x_{Y}+\Delta x_{r}-r x_{r}+x_{0} \\
& \text { s.t: } \\
& \qquad r x_{1}+r x_{T}+x_{r}+x_{r}+\frac{1}{r} x_{0} \leq q_{0} \\
& \qquad x_{1}, x_{r}, x_{r}, x_{r}, x_{0} \geq 0
\end{aligned}
$$

400 (لف
بY KV.
بح
FDO (د

ناحيه مو جه) بيانگر يكى گوشهُ:
ب) غير مو جه
الفـ) لِّوماً بُهينه
د) مبدأ هـختصات
ج) مورجه

الف:) مدل داراى جواب بثينـه جايِزين اسمت.
بب) مدل فاقد ناحيه جرابِ اسـت.
ج) مدل دلراى نأحيه جوا'ب بيكران اسـت.
د) ملدل داراى جـوانب تبهگگ أسمت.
 الف) مدل دأراى جوأب ئهينه جِندگانه أست.

ج) مدل فاقد نأحيـه مو بحه انستي.
د) مدأل داراى ناحيه جورانـ بيكران است.

$$
\operatorname{Max} Z=\Delta x_{1}-\varphi x_{Y}
$$

s.t:

$$
\begin{align*}
x_{1}+0 x_{r} & \geq 10 \\
x_{1}+x_{Y} & =0 \\
0 x_{1}+r x_{Y} & \leq 10 \\
x_{1}, x_{r} & \geq 0
\end{align*}
$$

هr. تابلوى سيمِلكس زيُر رادر نظر بگيريد. تعداد محدوديتهاى مساوى (=) دز مدل آن
جند تا است؟ (هيِج متغيرى از بَابلوى زير حذفـ نشده اسـت).

$$
\begin{aligned}
& r(2) \\
& \text { + + }
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Min} R_{o}=R_{1} \\
& \operatorname{Min} R_{0}=R_{1}+R_{r} \\
& \operatorname{Min} R_{0}=R_{1}+R_{r}+R_{r} \\
& \operatorname{Max} R_{0}=R_{1}+R_{r}+R_{r}
\end{aligned}
$$

$$
\begin{aligned}
& \text { ب) متغير هاى غيراساسى, (1 مشخص كنيد؟ } \\
& \text { ج) جوابِ مربوط بِه أين تابلم را بنويسيد؟ }
\end{aligned}
$$

د) مدل أين تابلوى سيمِّلكس داراى جِند محدوديت اسـت؟
 بنويسيد؟
و) أگر هيِّ متغيرى از مدل حذف نشده باشلـ، تعلأد محذوديتهاى كو جشتر مساوى مدل را بنو يسيد؟
 داده شلده بيانگر تمام متغير هاني موزرد استفاده در حلز مدل LP است):

$$
\begin{aligned}
& \text { الفـ) تعداد هحدوديتهاي مدل را بنو يسيد؟ }
\end{aligned}
$$

د) با تو جه به جواب بند ج، جواب جايغزين را با بدست آوريد؟ $\operatorname{Max} Z=\psi X_{1}+\Delta X_{Y}$
s.t:

$$
\begin{aligned}
x_{1}+r x_{Y} & \leq 10 \\
\varepsilon x_{1}+\varepsilon x_{Y} & \leq r \varphi \\
x_{1} & \leq \varphi \\
x_{1}, x_{Y} & \geq 0
\end{aligned}
$$

F. F مدل برنامهريزى خطى زير را در نظر بغيريد:
$\operatorname{Max} Z=r X_{1}+r x_{Y}$
s.t:

$$
\begin{aligned}
x_{1}+x_{Y} & \geq r \\
x_{1}-Y x_{Y} & \leq y \\
x_{1}, x_{Y} & \geq 0
\end{aligned}
$$

الف) جواب بهينه مدل را به روش ترسيمى بلدست آوريد؟ ب) جواب بهينهُ مدل را به روش M بزرگ بـست آوريد؟
 د) جوراب بهينه ملـل را بـ روش سيمِلنكس دو مرحلهأى بدست آوريد؟ ه. مـلد برنامهريزى خطـي زير رادر نظر بگيريد: $\operatorname{Max} Z=r x_{1}+x_{r}$ الف) مسأله را بم روش ترسيمى حل s.t:

$$
\begin{aligned}
r x_{1}+x_{Y} & \geq r \\
x_{r} & \geq r \\
x_{1} & \geq
\end{aligned}
$$

ب) مدل را بـ روش سيمپلكس حل كنيد؟

و. مسأله زير رادر نظر بیِي. يد. مسألهه را به روش M بزرگى حل كرده و مشتخص كنيد كه جه حالت خاصى از برنامهريزى خطى الست؟ پجرا؟
$\operatorname{Max} Z=r x_{1}+r x_{r}$
s.t:

$$
\begin{gathered}
x_{1}+x_{Y} \leq 10 \\
x_{1}+x_{Y} \geq Y_{0} \\
x_{1}, x_{Y} \geq 0
\end{gathered}
$$

V. مسأله زير را در نظر بگيريد. مسأله را به روش سيمیلكس دو مرحلهأى حل كنيد و

گرشههأى مريوط به هر تابُلوى سيمـِلكس را به طريڤ هندسى نمايش دهيد؟ $\operatorname{Min} Z=x_{1}-r x_{Y}$
s.t:

$$
\begin{aligned}
x_{1}+x_{Y} & \geq r \\
-x_{1}+x_{Y} & \geq 1 \\
x_{Y} & \leq r \\
x_{1}, x_{Y} & \geq 0
\end{aligned}
$$

^. مدلهاى زير را با استفاده از روش M M بز
$\operatorname{Min} Z=-r x_{1}+x_{Y}+x_{r}(ب$
s.t:

$$
\begin{aligned}
x_{1}-r x_{r}+x_{r} & \leq 11 \\
-r x_{1}+x_{Y}+r x_{r} & \geq r \\
-r x_{1}+x_{r} & =1 \\
x_{1}, x_{r}, x_{r} & \geq 0
\end{aligned}
$$

$$
\text { Max } Z=x_{1}+Y x_{Y}+r x_{r} \text { (ل) }
$$ s.t:

$$
\begin{aligned}
x_{1}+Y x_{Y}+r x_{r} & =10 \\
r x_{1}+x_{Y}+\Delta x_{Y} & =Y 0 \\
x_{1}+r x_{r}+x_{r} & \leq 10 \\
x_{1}, x_{Y}, x_{r} & \geq 0
\end{aligned}
$$

$\operatorname{Max} Z=x_{1}+x_{r}$
s.t:

$$
\begin{aligned}
r x_{1}+r x_{Y} & \leq r_{0} \\
r x_{1}+r x_{Y} & \leq r_{0} \\
x_{1}+r x_{Y} & \geq r \\
x_{1}, x_{Y} & \geq 0
\end{aligned}
$$

9. مدلهاى زير را با استفاده از روش سيمِيلكس دو مرحلهاى حل كنيد؟
$\operatorname{Min} Z=-x_{1}+Y x_{r}-x_{r} \quad$ ب
s.t:

$$
\begin{aligned}
x_{Y}+x_{Y}+x_{r} & =\varphi \\
-r x_{1}+r x_{Y}+Y x_{Y} & =\wedge \\
r x_{Y}+r x_{Y} & =10 \\
x_{V}, x_{Y}, x_{r} & \geq 0
\end{aligned}
$$ $\operatorname{Min} Z=-x_{1}-r x_{Y}-r x_{r}(1)$

s.t:

$$
\begin{aligned}
x_{1}+x_{r}+x_{r} & =9 \\
-x_{1}+x_{r}+r x_{r} & =r \\
r x_{r}+r x_{r} & =10 \\
x_{r} & \leq r \\
x_{r}, x_{r}, x_{r} & \geq 0
\end{aligned}
$$

ه ا. مدلهاى برنامهريزى خطى زير را حل كنيد (روش هـندسى و سـيمِلكسى) و نـوع خاص أنها را مشخص كنيـب؟
$\operatorname{Max} Z=r X_{1}+X_{Y} \quad(ب$
s.t:

$$
\begin{aligned}
x_{1}-x_{Y} & \leq 10 \\
r x_{1}-x_{r} & \leq Y_{0} \\
x_{1}, x_{Y} & \geq 0
\end{aligned}
$$

$\operatorname{Max} Z=r x_{1}+r x_{r}$
s.t:

$$
\begin{aligned}
r x_{1}+x_{Y} & \leq r \\
r x_{1}+r x_{Y} & \geq 1 r \\
x_{1}, x_{Y} & \geq 0
\end{aligned}
$$

$\operatorname{Max} Z=r x_{1}+9 x_{r}$
الفـ)
s.t:

$$
\begin{gathered}
x_{1}+\varphi x_{Y} \leq \Lambda \\
x_{1}+Y x_{Y} \leq f \\
x_{Y}, x_{Y} \geq 0
\end{gathered}
$$

$\operatorname{Max} Z=f X_{1}+1 \Psi X_{r}$
(
s.t:

$$
\begin{aligned}
r x_{1}+v x_{Y} & \leq Y 1 \\
v x_{1}+r x_{Y} & \leq Y 1 \\
x_{1}, x_{Y} & \geq 0
\end{aligned}
$$

r. Y.

"

برنامهريزیخطى
 (تحليل عناصر تابلوىسيمثلكسومسألهثانويه)'

اهداف نصل
دانشجو يان در اين فصل نحوه تفسير عناصر تابلوى سيميلكس را فرا خواهند كرفت. همجنين با
 تحت عنران اسيمیلكس ثانويهها فرا مىكيرند.
0.1 مقدمه

تابلوى بلسـت آملده از روش سيمچلكس، داراى اطلاعات مفيدى است كه تا حدودى با برخی از
 سيمبلكس در قالب يكـ مسأله توليدى خواهيم پردأخت. سپس باأستفاده از مفاهيم بيان شبده به
 اصطلِح ثانويه، به أين واقعيت اششاره دارد كه هر مسأله برنامهريزي خطي داراى دو فرم

1. Dual Problem

2. Primal Problem
3. Dual
 اوليه هسأله داراى اطلاعانت كاملى دربارد جوابِ شكل ثأنو يه مسأنه أست. جواب مسأله ثانويه، لرائه كنتده الطلاعات بالهميتى است. با استفاده از ايـن اطـلاعاتت

 رانحع به الستفاده از منابع اضافى كمكـ مىكند.
O.Y تححليل عـناصر تابِلوى سيـميلكس

 منظور به طرح مسأنل تركيب توليد كه در نصورل قبل نيز مورد استفاده يود مى بيردازيـم.

 ميزأن مصرفن هر واححل محصول از منابع و سود حاصل از توليل هر واحلد از محصو لات را نشان مىدهد.

جلدول 0.1 اطلاعات مربوط به مسـأله نوليد

حال مسأله فوث را مىتوان به صورت زير فرموله كرد:

است. اين مثادير را مى توان با نمادهأى زير معرفى كرد.
$\operatorname{Max} Z=r x_{1}+r x_{r}+\Delta x_{r}$

محدوديتهاى مـــأله: براساس, اطلاعات مسأله، مىتوان يكى مـحدوديت بـراى نـيروى كـار , محدوديتى براى مواد اوليه تعريف كريد. به صورت اريت زير:
 اضافه كرد. جون توليد منفى، معنا و مغهومى ندلارد. حال تماميت مسأله 0.1 به صور برت زيـر بازنويسى میشود:
$\operatorname{Max} Z=r x_{1}+r x_{r}+\Delta x_{r}$
s. 1 :

$$
\begin{gathered}
r x_{1}+r x_{Y}+x_{r} \leq Y Y_{0} \\
r x_{1}+x_{Y}+Y x_{r} \leq q_{0} \\
x_{Y}, x_{Y}, x_{r} \geq 0
\end{gathered}
$$

 متغير هاى كمكى S S S S استفاده خرامهيم كرد. سِس:
$\operatorname{Max} Z=r x_{1}+r x_{r}+\Delta x_{r}+o S_{1}+o S_{r}$
s.t:

$$
\begin{aligned}
& r x_{1}+r x_{r}+x_{r}+S_{1}=r r_{0} \\
& r x_{1}+x_{Y}+r x_{r}+S_{Y}=r \varphi_{0} \\
& x_{1}, x_{r}, x_{r}, S_{V}, S_{Y} \geq 0
\end{aligned}
$$

متغير هاى السأسى	Z	x_{1}	x_{Y}	x_{r}	S，	S_{Y}	مقاديرســــت راست
Z。	1	－r	－r	－0	－	－	－
S，	－	r	r	1	1	－	fro
S_{r}	－	r	1	$($	－	1	490
	，	$\frac{9}{r}$	$-\frac{1}{r}$	－	－	$\frac{\Delta}{T}$	1100
s	－	$\frac{1}{r}$	$\frac{r}{r}$	－	1	$-\frac{1}{r}$	Yoo
X_{r}	－	$\frac{r}{r}$	$\frac{1}{r}$	1	－	$\frac{1}{T}$	r．
Z。	1	$\frac{14}{r}$	。	－	$\frac{1}{r}$	$\frac{\mathrm{v}}{\mathrm{r}}$	$\frac{\mathrm{rcso}}{r}$
X_{T}	－	$\frac{1}{r}$	1	－	$\frac{T}{r}$	$-\frac{1}{r}$	$\frac{Y_{0}}{}$
X_{r}	－	$\frac{f}{r}$	－	1	$-\frac{1}{r}$	$\frac{Y}{r}$	$\frac{990}{7}$

براى تحليل عناصر سيمّلكس بايد به ستون موردنظر و متغير معرف سطر مربيوط（متغير

 و يا افزايش توليد（در مورد متغير تصميم）الست．

O．Y．1 تفسير عناصر تابلوى اول ：

$Z_{-r} x_{1}-r x_{r}-\Delta x_{r}=0$

اندازءّ معدار بيان شده و علامت مثبت به معناى كامثش در تابع هدف الست．مقادير صغر نيز به

 هستند كه با مِفاهيم آن به تفصيل در بخشهاى مربوط بـ نصيل خهارم آشنا شُديم.
O.Y.Y تفسير عناصر تابلوى دوّم
 مى S
 توليد XX مقدار سود كل مساوى است با:

اعداد ستون X

 حنانجه بخواهيم
 كاهش توليد هر واحد

 خواهيم داشت:

حال اين سؤال مطرح مى شود كه آيا توليد
 برداخت. به صورت زير:

 نمىتواند، متغير ورودى در أين تابنلو باشد. اعداد ستون XY

 صورت زير تأمين كرد:

ضريب XY در سطر صفر تابلوى دوّم مسـاوى

اعداد ستون گرفته است، براى داشتن يكى وأحد از آن بايد توليد

از آنجا كه افزايش در منبع با علامت منفى در تابلوى سيمیلكس بيان مىگردد، مقدار افزايش در S
مى دانيم كه ضريب
 أندلزه اندازه

O.Y.Y تقليل عناصر تابلوى سوم

 جواب بهينه عبارتست از: $x_{1}=0$
$x_{r}=\frac{100}{r}$
$x_{r}=\frac{490}{r}$
بنابراين مقدأر سود كل حاصل لز اين تركيب، عبارتست از:
$Z=r x_{1}+r x_{r}+\Delta x_{r}$
$Z^{*}=\mu(0)+r\left(\frac{\varphi_{0} 0}{\mu}\right)+\theta\left(\frac{\mu q_{0}}{\mu}\right)=\frac{r \varphi 0_{0}}{\mu}$
x
 تولِيذ هي, واحذ

ساير تولِّدات فراهم خو اهل شلد. به شرح زير:
, كی,
 صرفه نيسـت. نتايّج به شـرح زير اسِمت:

 نيست. هقادير كاهش $\frac{Y}{r} X_{r} X_{r}$

 مى شـود. به صورت زير:

"

روش سيمچلكس، علاوه بر مفاهيم بيان شده در بخش قبل و ارائـه جـوالب بـهينه، الطلاعات

 قيمت سايهاى براساس ثابت فزض كردن سـاير شـرايط و فـقط تـغيير در مـنـنع (مـنابع) مـعنى مىدهد.

 ولى مىتوان قيمت سايهاى را به گُنهاى ديگر نيز تعبير كرد. بلدين صورنت كه به الزاء تداشتن هر

1. Shadow Price
2. Margina! Value
3. Oppertunity Cost
 ترتيب

$$
\begin{aligned}
& =\frac{r 90^{\circ}}{r}
\end{aligned}
$$

 برثرار نبأشد، افزايشى داد.
O.F

 كه داراى معدوديتت بز, گتر مساوى (Z) يا مسـاوى باشد، به عنو.ان يكى مدل غـيرأسـتاندأرد
 اندكى .با ملا استاندأرد متفارت است.

 د R
 أز خريب R در سطلر صفر تابلوى بهينه و ضرنب در ا - بلدست مى آيل.

مثال $0 .{ }^{\text {مدلi }}$

$\operatorname{Min} Z=10 x_{1}+10 x_{Y}$
s.t:

$$
\begin{aligned}
x_{1}+\Delta x_{Y} & \geq \wedge \\
x_{1}+x_{r} & \geq 4 \\
x_{r}, x_{Y} & \geq 0
\end{aligned}
$$

حل: ابتدأ مسأله را با استفاده از متغير هاى كمكى و مصنوعى بـه فـرم گّسـترده نتبد يان مىكيم:
$\operatorname{Max}(-Z)=-10 x_{1}-10 x_{r}-M R_{1}-M R_{r}$
s.l:

$$
\begin{array}{r}
x_{1}+\Delta x_{r}-S_{1}+R_{1}=\wedge \\
x_{1}+x_{r}-S_{r}+R_{r}=4 \\
x_{V}, x_{r}, S_{Y}, S_{r}, R_{Y}, R_{T} \geq 0
\end{array}
$$

 بدين منظرر رديفـ

$$
\begin{aligned}
& \text { حذ } \\
& \text { 號 }
\end{aligned}
$$

هر واحد از منـع اومّل دارايى قيمت سايهاى (ارزش واقتى) هو
ارزش, واقعى

$$
Z^{*}=\frac{0}{4} \times \lambda(\text { هقُدار منـع أوّل })=\frac{r 0}{4} \times 4(0
$$

 ا. محدوديتت ازنو سطر Z Z ملاك عمل اسـت.

ه. 0 مسألنه ثأنويه

 بغيريد:
$\operatorname{Max} Z=r x_{1}+r x_{Y}+\Delta x_{r}$
s.t:

$$
\begin{aligned}
& r X_{1}+Y X_{Y}+r X_{r} \leq Y Y_{0} \quad \text { نيروى كار (نفر - ساعت) } \\
& r x_{1}+x_{r}+r x_{r} \leq r q_{0} \\
& x_{\gamma}, x_{Y}, x_{r} \geq 0
\end{aligned}
$$

تابلوى بهينه:

(Z $\left.{ }^{*}=\frac{r 90_{0}}{r}\right)$

 ارزش واقعى منابع بكار رفته برايى تركيب توليد عبارت است ازي:
$\operatorname{Min} y_{0}+\mu_{0} y_{1}+k g_{0} y_{r}$
 واحد برابر است با: $r y_{1}+r y_{Y}$
به همين ترتيب مجموع ارزشْ واقعى منابع به كار رفته در هر واحد

$$
\begin{aligned}
& \text { ry }
\end{aligned}
$$

برحسب قيمـت سا يهاى منابع نه كار رقته نر آن به صورت زير تعرينـ كرد:
$r y_{1}+r y_{r} \geq r$

 $r y_{1}+y_{r} \geq r$ XY به ازازی
$r y_{1}+r y_{Y} \geq 0$
به

 عبارت ییِگ, غير أين صورت بهتر است كه از جِنين منبعى أصلاً استفاده نشو د.
 مىىگريِيم. خالصه مسأله ثانويه عبارتست از:
$\operatorname{Min} y_{0}=f r \circ y_{1}+4 \xi \circ y_{r}$
s.t:

$$
r y_{1}+r y_{r} \geq r
$$

$$
r y_{1}+y_{T} \geq r
$$

$$
r y_{1}+r y_{T} \geq 0
$$

$$
y_{V}, y_{T} \geq 0
$$

 توليِدات به نحو مطلو ب الستقاده كرد.
 مسأله به كار برد:

 عبارت مىشود از:
$Z=\mu \mu \circ y_{1}+\mu \varepsilon_{0} y_{Y}$

مسأله اوليه				مسأله
a_{11}	=	Y	=	a_{11}
$a_{1 r}$	=	r	=	a_{11}
$a_{Y Y}$	=	r	=	$a_{1 Y}$
$a_{r r}$	$=$	1	=	$\mathrm{a}_{Y Y}$
$a_{r r}$	=	r	=	$a_{1 r}$
$\mathrm{a}_{\text {r }}$	=	r	=	$\mathrm{a}_{\text {Y }}$

ه. ارزشتهاى Cj در مسأله اوليه مقادير سمت راست مسأله ثانويه را تشكيلـل مىدهند. 9. كليهٔ محدوديتها در مسأله Max اوليه به صورت در مسأله Min تانويهـ از نوع \geq استا
.V شكل 0.1 بهخوبىروابطابينمسألهاوليه و مسأله ثاتويه را برايى صور رتبندى نشان ميدهد.

شكل 0.1 ارنباط بين مسأله اوليد و مسـأله نانوبد در عور تبندى

و. 0 روابط مسأله اوليه و مسأله ثانويه در شكل عمومى

 خوأهد بود: فرم عمومى مسأله اوليه:
$\operatorname{Max} Z=C_{1} X_{1}+C_{r} X_{Y}+\ldots+C_{n} X_{n}$
s.t:

$$
\begin{aligned}
& a_{11} x_{1}+a_{1 r} x_{Y}+\ldots+a_{1 n} x_{n} \leq b_{1} \\
& a_{Y} x_{1}+a_{Y r} x_{Y}+\ldots+a_{Y n} x_{n} \leq b_{Y}
\end{aligned}
$$

$$
\begin{aligned}
a_{m 1} x_{1}+a_{m T r} x_{r}+\ldots+a_{m n} x_{n} & \leq b_{n i} \\
x_{1}, x_{r}, \ldots, x_{n} & \geq 0
\end{aligned}
$$

معمو لأ مدل فوق به صورت زير خلاصهتر. مىشود. عامل خلاصه ك, نـ نماد جمع جـبرى Σ $\operatorname{Max} Z=\sum_{j=1}^{n} C_{j} X_{j}$
s.t:

$$
\begin{aligned}
\sum_{j=1}^{n} a_{i j} x_{j} & \leq b_{j}(i=1, r, \ldots, m) \\
x_{j} & \geq o(j=1, r, \ldots, n)
\end{aligned}
$$

 $\operatorname{Min} y_{0}=b_{1} y_{1}+b_{\Gamma} y_{T}+\ldots+b_{m} y_{m}$
s.t:

$$
\begin{aligned}
a_{11} y_{1}+a_{Y} y_{Y}+\ldots+a_{m 1} y_{m} & \geq C_{1} \\
a_{1 T} y_{1}+a_{Y Y} y_{Y}+\ldots+a_{m T} y_{m} & \geq C_{Y} \\
a_{m n} y_{1}+a_{Y n} y_{Y}+\ldots+a_{m n} y_{m} & \geq C_{m} \\
y_{1}, y_{Y}, \ldots, y_{m} & \geq 0
\end{aligned}
$$

$\operatorname{Min} y_{0}=\sum_{i=1}^{\mathrm{m}} \mathrm{b}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}$
s.t:

$$
\begin{aligned}
\sum_{i=1}^{m} a_{j i} y_{i} & \geq C_{j} \quad(j=1, r, \ldots, n) \\
y_{i} & \geq 0 \quad(i=1, r, \ldots, m)
\end{aligned}
$$

مشال 0.0 مدل اولئّ زير رادر نظر بگيريد:
$\operatorname{Max} Z=\Delta X_{1}+10 X_{Y}+A X_{r}$
s.t:

$$
\begin{aligned}
\Delta x_{1}+r x_{r}-x_{r} & \leq 100 \\
\frac{1}{r} x_{1}+\frac{r}{r} x_{r}+r x_{r} & \leq 1 r 0 \\
r x_{1}+\varphi x_{r} & \leq 90 \\
x_{r}, x_{r}, x_{r} & \geq 0
\end{aligned}
$$

مسأله ثانويه مبل نوق را با تو جه به شكل عمومى مسأله اوليه بنو يسـيد؟

 :سس داريم:
$\operatorname{Min} y=100 y_{1}+150 y_{Y}+80 y_{r}$
s.t:

$$
\begin{aligned}
0 y_{1}+\frac{1}{Y} y_{Y}+r y_{r} & \geq 0 \\
r y_{1}+\frac{r}{r} y_{Y} & \geq 10 \\
-y_{1}+r y_{Y}+4 y_{r} & \geq 1 \\
y_{1}, y_{Y}, y_{r} & \geq 0
\end{aligned}
$$

 رعايت شده است.
Q.V موارد خاص در فرم عممومى مسأله اوليه و مسأله ثانويه

متغير هاى غير منفى و آزاد در علامت هستند. در اين بخشن بـه جِگونگى نوشتن مدل ثانو يه ائن نوع از مسائل اوليه خواهيم برداختيت.

0.V.1

$\operatorname{Max} Z=C_{1} X_{1}+C_{T} X_{T}$
s.t:

$$
\begin{aligned}
a_{11} x_{1}+a_{Y Y} x_{Y} & =b_{Y} \\
a_{Y} x_{Y}+a_{Y Y} x_{Y} & \leq b_{Y} \\
x_{Y}, x_{Y} & \geq 0
\end{aligned}
$$

هحدوديت مساوى رامىتوان به صورت دو نامعادله زير نوشت:
$a_{11} x_{1}+a_{1 r} x_{r} \leq b_{1}$
$a_{11} x_{1}+a_{1 Y} x_{Y} \geq b_{Y}$
محدوديت دوّم (¥) رأمىتوان باضربك كردن دو طرف نامعادله در 1 - بـه $-a_{11} x_{1}-a_{1 r} x_{r} \leq-b_{1}$

خالل مسأله اصلى را مى توان به شكل زير با محدوديتهاى كا بازنو يسى كرد: $\operatorname{Max} Z=C_{1} X_{1}+C_{Y} X_{Y}$
s.t:

$$
\begin{array}{r}
a_{Y} x_{Y}+a_{Y Y} x_{Y} \leq b_{Y} \\
-a_{Y} x_{Y}-a_{Y Y} x_{Y} \leq-b_{Y} \\
a_{Y} x_{Y}+a_{Y Y} x_{Y} \leq b_{Y} \\
x_{Y}, x_{Y} \geq 0
\end{array}
$$

 داريّم:
$\operatorname{Min} y_{0}=b_{1} y_{1}^{\prime}-b_{1} y_{1}^{\prime \prime}+b_{Y} y_{Y}$
s.t:

$$
\begin{aligned}
a_{Y} y_{1}^{\prime}-a_{Y} y_{Y}^{\prime \prime}+a_{Y} y_{Y} & \geq C_{Y} \\
a_{Y Y} y_{1}^{\prime}-a_{Y Y} y_{Y}^{\prime \prime}+a_{Y Y} y_{Y} & \geq C_{Y} \\
y_{Y}^{\prime}, y_{Y}^{\prime \prime} y_{Y} & \geq 0
\end{aligned}
$$

در تمام روابط مدل ضرايب' مسأله ثانويه بها :صورت زير تبديل مىشود: $\operatorname{Min} y_{0}=b_{Y}\left(y_{1}^{\prime}-y_{Y}^{\prime \prime}\right)+b_{Y} y_{Y}$
s.t:

$$
\begin{array}{r}
a_{Y}\left(y_{Y}^{\prime}-\dot{y}_{V}^{\prime \prime}\right)+a_{Y Y} y_{Y} \geq c_{Y} \\
a_{Y Y}\left(y_{1}^{\prime}-y_{Y}{ }^{\prime \prime}\right)+a_{Y Y} y_{Y} \geq C_{Y} \\
y_{Y}, y_{Y}^{\prime \prime}, y_{Y} \geq 0
\end{array}
$$

 بازنويسى كرد:
$\operatorname{Min} y_{0}=b_{1} y_{1}+b_{Y} y_{Y}$
s.t:

$$
\begin{aligned}
& a_{11} y_{1}+a_{Y} y_{Y} \geq C_{1} \\
& a_{Y,} y_{1}+a_{Y Y} y_{Y} \geq C_{Y} \\
& \text { آزاد در علامت } y_{Y}, y_{Y} \geq \text { 。 }
\end{aligned}
$$

قاعله كلى (1) به ازاء هر محلدوديت نساوى در مسأَله الوليمه يكـى متغير آزاد در
علامتت در مسأله ثانويه وجود دارده

مثال $0 . f$ مسأله اوليه زير رادر نظر بغيريد و مسأله ثانويه را بنويسيد؟

مسأله اوليه
$\operatorname{Max} Z=\Delta X_{1}+1 \cdot X_{Y}$
s.t:

$$
\begin{aligned}
\wedge x_{1}+r x_{y} & \leq r_{0} \\
x_{1}+\wedge x_{Y} & =Y \psi \\
r x_{1}+r x_{Y} & \leq 10 \\
x_{1}, x_{Y} & \geq 0
\end{aligned}
$$

$\operatorname{Min} y_{0}=Y \circ y_{1}+Y Y y_{Y}+10 y_{r}$
s.t:

$$
\begin{aligned}
\wedge y_{1}+y_{Y}+Y y_{r} & \geq 0 \\
+y_{1}+\wedge y_{Y}+r y_{Y} & \geq 10 \\
y_{Y}, y_{Y} & \geq 0 \\
& y_{Y} \quad \text { آزاد در علامت }
\end{aligned}
$$

همحچنان كه واضح أست، y كه متناظر با محدوديت مساوى است، بِه صورت آزاد در
 مىشـود. فرض كنيد در مدل كلى زير XY آزاد در علامت باشدي: $\operatorname{Max} Z=C_{1} X_{1}+C_{r} X_{r}$ s.t:

$$
\begin{aligned}
& a_{11} x_{1}+a_{1 r} x_{1} \leq b_{1} \\
& a_{Y} x_{Y}+a_{Y Y} x_{Y} \leq b_{Y} \\
& \text { آزاد در علامت } X_{Y}, x_{Y} \geq 0
\end{aligned}
$$

قبلاً گفته شد كه با استناده أز تغيير متغير متغيرهأى غيرمنفى تبلديل كرد: يعىى:
$\operatorname{Max} Z=C_{1} X_{1}+C_{Y}\left(x_{Y}^{\prime}-x_{Y}^{\prime \prime}\right)$
s.t:

$$
\begin{array}{r}
a_{W} x_{1}+a_{Y Y}\left(x_{Y}^{\prime}-x_{Y}^{\prime \prime}\right) \leq b_{Y} \\
a_{Y} x_{1}+a_{Y Y}\left(x_{Y}^{\prime}-x_{Y}^{\prime \prime}\right) \leq b_{Y} \\
x_{1}, x_{Y}^{\prime}, x_{Y}^{\prime \prime} \geq 0
\end{array}
$$

بدين ترتيب مسأله ثانويه را مدتوان با الستفاده از قواعد هفتگانه به صورت زير نوشت: $\operatorname{Min} y_{0}=b_{1} y_{1}+b_{Y} y_{T}$
s.t:

$$
\begin{aligned}
a_{Y} y_{Y}+a_{Y} y_{Y} & \geq C_{Y} \\
a_{Y Y} y_{1}+a_{Y Y} y_{Y} & \geq C_{Y} \\
-a_{Y Y} y_{Y}-a_{Y Y} y_{Y} & \geq-C_{Y} \\
y_{Y}, y_{Y} & \geq 0
\end{aligned}
$$

بأ صرب كردن طرفين هحدوديت سوم در 1 - مىتوان نوشت:
Min $y_{0}=b_{V} y_{Y}+b_{Y} y_{Y}$
s.t:

$$
\begin{gathered}
a_{1} y_{Y}+a_{Y} y_{Y} \geq C_{Y} \\
a_{Y} y_{Y}+a_{Y} y_{Y} \geq C_{Y} \\
a_{Y} y_{Y}+a_{Y Y} y_{Y} \leq C_{Y} \\
y_{Y} y_{Y} \geq 0
\end{gathered}
$$

دو محدوديت اَّخر مدل فوق را مىتوأن به صورت زير نوشت: $a_{11} y_{Y}+a_{Y Y} y_{Y}=C_{Y}$

اين محدوديت متناظر است است كه آزاد دز علامت بود.

$\operatorname{Min} y_{0}=b_{V} y_{1}+b_{r} y_{Y}$
s.t:

$$
\begin{aligned}
a_{1} y_{1}+a_{Y} y_{Y} & \geq C_{Y} \\
a_{Y Y} y_{1}+a_{Y Y} y_{Y} & =C_{Y} \\
y_{Y}, y_{Y} & \geq 0
\end{aligned}
$$

قاعده كلى (†) متناظر هر (امتغير آزاد ذر علامت)" مسأله ثانويه بـايلـ يكى مـحدوديت (امساوى

مثال ه. 0 مسأله اوليه زير را در نظر بگيريد و مسأله ثانويه آنن را بنريسيد؟

مسأله اولبيه
$\operatorname{Max} Z=f X_{1}+1 \cdot X_{Y}+\varphi X_{r}$ s.t:

$$
\begin{aligned}
x_{1}+r x_{Y}+r x_{r} & \leq r_{0} \\
r x_{Y}+x_{r} & \leq r_{0}
\end{aligned}
$$

$10 x_{1}+\varphi x_{r}+Y \circ x_{r}=100$
$x_{1}+Y X_{Y}=\varphi_{0}$
$x_{\gamma}, x_{\gamma}, x_{\gamma} \geq 0$

مسأله ثانويه
$\operatorname{Min} y_{0}=Y_{0} y_{1}+Y_{0} y_{Y}+100 y_{r}+g_{0} y_{Y}$ s.t:

$$
\begin{aligned}
& y_{1}+10 y_{r}+y_{Y} \geq r \\
& r y_{1}+r y_{\gamma}+\varphi y_{\gamma}+r y_{\varphi} \geq 10 \\
& r y_{1}+y_{r}+r_{0} y_{r} \geq q \\
& y_{V}, y_{Y} \geq 0 \\
& y_{r}, y_{F}
\end{aligned}
$$

 جهارم هستند، آزاد در علامت تعريف شدهاند.

Min O.V.Y تابع هدف O.V

بسيارى از مدلهاى اوليه حاراى تابع هدف Min (حدأقل سازى) هستتد. براى نوشتن مسأله ثانويه اين نوع از مسائل بأيد طبتُ مفاهيم و قواعد زير عمل كرد:

 Y. r. عناصر سمت راست محدوديتها، ضرايبب متغير هاى ثانانو يه در تابع هدف هستند.

بود.
 محدوديتهاى

 لست. با اين تفاوت كه شرط Max به Min تبديل شدهاست و قيد ج به به مثال 0.9 ترجه نماييل.

مثال 0.9 مسأله اوليه زير رادر نظر بيغيريد و مسألنه ثانو يه آن را بنويسيد؟

مسأله اوليه
$\operatorname{Min} Z=x_{1}+Y X_{Y}+x_{r}$
s.t:

$$
\begin{aligned}
& r x_{1}-r x_{Y}+x_{r} \leq q \\
& r x_{1}+r x_{r}+x_{r} \geq 1 \\
& \mathrm{x}_{1}, \mathrm{x}_{\mathrm{r}}, \mathrm{x}_{\mathrm{r}} \geq 0 \xrightarrow{\text { تبديل سحدرديت }}
\end{aligned}
$$

مسأله ثانويه

$\operatorname{Min} Z=x_{1}+Y X_{Y}+X_{r}$
s.t:

$$
\begin{aligned}
-r x_{1}+r x_{r}-x_{r} & \geq-9 \\
r x_{1}+r x_{r}+x_{r} & \geq 1 \\
x_{1}, x_{r}, x_{r} & \geq 0
\end{aligned}
$$

 مى شود: Max $y_{0}=-9 y_{1}+y_{\gamma}$
s.t:

$$
\begin{aligned}
-r y_{1}+r y_{Y} & \leq 1 \\
r y_{1}+r y_{Y} & \leq r \\
-y_{1}+y_{r} & \leq 1 \\
y_{Y}, y_{r} & \geq 0
\end{aligned}
$$

مسأله اوليه با تابع هدف Min نيز ممكن است دارارى موارد خاص:
r. متغير آزاد در علامت

1. محدوديت مساوى المي

نيز باشد. در أين صورت، طبت قاعدهُ كلى او r ب، متناظر با محدودديت مساوى (=) متغير آزاد در علامت ثانويه و متناظر با متغير آزاد در علامت يكى محدوديت مساوى ديا در مسأله ثانويه بايد تعريف كرد.

مثال O.V مسألهاوليه زير را در نظر بغيريد و مسأله ثانويه آن را بنر يسيد؟ .

مسأله اوليه

$\operatorname{Min} Z=x_{1}+Y X_{Y}+x_{Y}$
s.t:

مسأله ثانويه
$\operatorname{Max} y_{0}=\varepsilon y_{1}+y_{r}$
s.t:

$$
\begin{aligned}
& r y_{1}+r y_{r} \leq 1 \\
& -r y_{1}+r y_{Y} \leq r \\
& y_{1}-y_{Y}=1 \\
& \text { y, آزاد در علامت } \\
& \text {, } \\
& y_{r} \geq \text { 。 }
\end{aligned}
$$

 اوليه با بكديگر مخلوط نكنيد. (مثلاً حداكثر كردن Z با محدوديتهاى Z همراه نباشد). تركيب

^.^. قضاياى ثانِويه
براساس روابط مسائل اوليه و ثانويه مىتوان بين اين مسائلّ و جوابهاى آنها خواصى را دريافت كرد. نتيجهُ خواص موردنظر در قالب تضاياى ثانويه بيان مى گردد. مهمترين خـوأص

جدول Q.F مسائل متناظر اوليه ؛ ثانريه و زوابط فیمابين.

(قضاياى) ثانويه عبارتند از:

تضيه ا. ثانوِيه مسأله ثانو يِه، مسأنه اوليه أست.
 براى دركا اين ثضيه به مثالل Q. ه تر جه كنيد.

مدال $0 . \Lambda$ مسأله اوليه زير را در نظر بگيريد:
$\operatorname{Max} Z=\Lambda X_{1}+\psi X_{T}$ s.1:

$$
\begin{aligned}
x_{1}+x_{Y} & \leq 10 \\
0 x_{1}+x_{Y} & \leq 10 \\
x_{1}, x_{r} & \geq 0
\end{aligned}
$$

مسأنه ثانو يه مثال فوق عبار تسـت از:
Min $y_{0} 10 y_{1}+10 y_{r}$
s.t:

$$
\begin{aligned}
y_{1}+\Delta y_{Y} & \geq \lambda \\
y_{1}+y_{Y} & \geq \varphi \\
y_{Y}, y_{Y} & \geq 0
\end{aligned}
$$

$$
\operatorname{Max} Z=\wedge x_{1}+\varphi x_{Y}
$$

s.t:

$$
\begin{gathered}
x_{1}+x_{Y} \leq i 0 \\
0 x_{1}+x_{Y} \leq 10 \\
x_{1}, x_{Y} \geq 0
\end{gathered}
$$

براي نوشتن مسـائل ثانويه از جدول Q.Y و قواعلد كلى بيان شده در بخششهاى قَبلى استناده شد=

قضْيه Y. حِنانجِه جواب مو جه مسأله ثانو يه باشـد، در اين صرر'ت، رابطلة؛

$$
z \leq y_{0} \quad \sum_{j=1}^{\prime \prime} c_{j} x_{j} \leq \sum_{i=1}^{111} b_{i} y_{i}
$$

برقرار استـ.
 مثال 0.9 مسأله اوليه زير و مسأله بانيويه آن را در نظر بِيريلد:

مسأله اوليه
$\operatorname{Max} Z=A x_{1}+f X_{r}$
s.t:

$$
\begin{aligned}
x_{1}+x_{Y} & \leq 10 \\
0 x_{1}+x_{Y} & \leq 10 \\
x_{1}, x_{Y} & \geq 0
\end{aligned}
$$

مسأله ثانويد

$$
\operatorname{Min} y_{0}=10 y_{1}+10 y_{Y}
$$

$$
\begin{aligned}
y_{1}+\sigma y_{Y} & \geq \wedge_{1} \\
y_{1}+y_{Y} & \geq \psi \\
y_{V}, y_{Y} & \geq 0
\end{aligned}
$$

يكـ جواب مو جه دلخراه از هر مسأله انتخابِ میشود. مـثلاً (

$$
\left.\begin{array}{l}
Z=\wedge(0)+f(0)=\psi_{0} \\
y_{0}=10(Y)+10(\psi)=100
\end{array}\right\} \Rightarrow z<y_{0}
$$

به بيك جورابِ مو جه آزما يششى ديگر تو جه كنيل:

$$
\begin{gathered}
\left(x_{1}=r, x_{Y}=Y\right) \Rightarrow Z=\wedge(Y)+Y(Y)=Y \varepsilon \\
\left(y_{1}=Y, y_{r}=Y\right) \Rightarrow y_{0}=10(Y)+10(Y)=00
\end{gathered}
$$

$$
\mathrm{Z}<\mathrm{Z}^{*}=\mathrm{y}_{0}^{*} \leq \mathrm{y}_{0}
$$

تضيه †. تِنانِّه مسأّله اوليه و ثأنو يه باشند، در اين صرربت رابطهه هاى زير بر قرار اسـت:

$$
\sum_{j}^{n} c_{i} x_{j}^{*}=\sum_{i=1}^{m} b_{i} y_{i}^{*} \Rightarrow Z^{*}=y^{*}
$$

رابطه فوق به نام ثضميه تْويت ' خوانده مىشود. زيرا تضيه بنيادى در ثانو يه السـت. . .

1. Duality Theorem
$19 v$

مبال ه 0.1 مسبأله اوليه و هبسأله ثانر يه متناظر آن را.در نظر بِيريد:

مسأله اوليه.

$$
\operatorname{Max} Z=\wedge x_{1}+\Psi x_{Y}
$$

s.t:

$$
\begin{aligned}
x_{1}+x_{Y} & \leq 10 \\
0 x_{1}+x_{Y} & \leq 10 \\
x_{1}, x_{Y} & \geq 0
\end{aligned}
$$

مسأله ثانويه

$$
\operatorname{Min} y_{0}=10 y_{1}+10 y_{r}
$$

s.t:

$$
\begin{aligned}
y_{1}+\Delta y_{Y} & \geq \lambda \\
-y_{1}+y_{Y} & \geq \cdot Y \\
y_{Y}, y_{Y} & \geq 0
\end{aligned}
$$

شكلهاى زير نشـاندهندهُ جوابِ مو جه هر يكى از مسائل فوق هستندِ. دِر شكلهِاى ترسيم

نمابش هندسى مسأله اولبه دثاله 0.1

نمايست هندسى مسألد ثانويـ مثال. 0.10

 مسأله اوليه استـ.
نمايش هندسى گرشه

 (C

میرسند.
به ياد داريم كه تعداد گوشهـاى مر مسأله برنامهريزى خطى طبق رابطه؛ !

 برابر باشد. جدوله ه. هبانگگر مفاهيم فوق مى باشد. اين جدول بخريى صحت رابطة: $\mathrm{Z}<\mathrm{Z}^{*}=\mathrm{y}^{*}$ 。 $<\mathrm{y}$ 。

را نشان میدهد.

1. Complementary basic Solution
2. Complementary Slackness Relation

متناظر مى باشلـ. بس همواره مى توان حنين نوشت:
$\begin{aligned} & \text { X.t }=0 \\ & \text { S. } y=0\end{aligned}$

 رابطه

 برابر استـت

 ثانو يه خواهيم داشت:

مدل گـترده أوليه

$\operatorname{Max} Z=\lambda X_{1}+\mu X_{Y}$ s.t:

$$
\begin{gathered}
x_{1}+x_{Y}+S_{1}=10 \\
\Delta x_{1}+x_{Y}+S_{Y}=10 \\
x_{1}, x_{Y}, S_{Y}, S_{Y} \geq 0
\end{gathered}
$$

$\operatorname{Min} y_{0}=10 y_{1}+10 y_{r}$
s.t:

$$
\begin{aligned}
y_{1}+\Delta y_{Y}-t_{1} & =\Lambda \\
y_{1}+y_{Y}-t_{Y} & =\psi \\
y_{1}, y_{Y} \geq 0, t_{1}, t_{r} & \geq 0
\end{aligned}
$$

جواب اساسى مسأله اوليه بايد براساس (X,

 نمايش هندسى مسائل اوليه و ثانويه است.

جدول D.V رابطنْ جواب اساسُى مسأله اوليه و جبواب اساسى مكمل ثانويه

 (مدل دارایى، موجه نيستند.

 كنيد. نتيجه به شرح زير است:

كوشه B:

مسأله اوليه

$$
\begin{array}{lll}
x_{1}=0 & \longleftrightarrow & t_{1}=1 Y \Rightarrow \\
x_{Y}=10 & \longleftrightarrow & t_{Y}=0 \Rightarrow \\
s_{Y}=-0 & \longleftrightarrow & y_{1}=0 \Rightarrow \\
s_{Y}=0 & \longleftrightarrow & y_{Y}=Y \Rightarrow
\end{array}
$$

مسألّل ثانويه

$$
x . t=0, s . y=0
$$

$$
x_{1 .} \cdot t_{1}=0
$$

$$
x_{Y} \cdot t_{Y}=0
$$

$$
s_{1} \cdot y_{1}=0
$$

$$
s_{Y} \cdot y_{Y}=0
$$

براساس خـو اص فوت هحى توان جوانب هر منسأله را براساس مسألّه ديغگر اسستتخرانج كـرد. براى تمونه فرض كنيد جوابِ السـاسى مسأله اوليه در گوشه C در دسترس اسـتـ. يعنى:

$$
\left(x_{1}=0, x_{Y}=10, s_{1}=0, s_{Y}=0\right)
$$

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ y _ { 1 } + \Delta y _ { Y } - t _ { 1 } = \lambda } \\
{ y _ { 1 } + y _ { Y } - t _ { Y } = F }
\end{array} \Rightarrow \left\{\begin{array}{l}
y_{1}+\Delta(0)-t_{1}=\lambda \\
y_{1}+(0)-0=f \Rightarrow y_{1}=Y
\end{array}\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& f-t_{1}=\wedge \Rightarrow t_{1}=-\mathcal{F}
\end{aligned}
$$

پِ جواب هسأله ثانو يِه (جّزاب الساسى هكملى) عبارت است از:

$$
\left(y_{1}=\varphi, y_{Y}=0, t_{1}=-F, t_{Y}=0\right)
$$

 قرار مىگز فتند و مقادير سـمت راست مـحدوديتهاى مسـأله أوليه به عنوأن ضـرايــ مـتغيرهاى
 تبديل مى شلدنل.
 به روش سيمـِلكس نيز برقرار است. خاصيت و ارتباط بين تابلو هاى بيـيمـلكس مسأله اوليـه و

r.r
 نشان داده شـده است. مثال 0.11 مسأله اوليه و مسأله ثانويه متناظر آن را در نظر بغيريد:

مسـأله اوليه
$\operatorname{Max} Z=A X_{1}+Y X_{r}$
s.t:

$$
\begin{aligned}
& x_{1}+x_{r} \leq 10 \\
& 0 x_{1}+x_{Y} \leq 10 \\
& x_{1}, x_{r} \geq 0
\end{aligned}
$$

$\operatorname{Min} y_{0}=10 y_{1}+10 y_{T}$
s.t:

$$
\begin{aligned}
y_{1}+\Delta y_{Y} & \geq \wedge \\
y_{1}+y_{Y} & \geq Y \\
y_{Y}, y_{Y} & \geq 0
\end{aligned}
$$

با اضافه كردن متغيرهاى كمكي به مسأله أوليه خواهيم داشت:
$\operatorname{Max} Z=\lambda x_{1}+\psi x_{Y}$
s.t:

$$
\begin{aligned}
x_{1}+x_{Y}+S_{1} & =10 \\
0 x_{1}+x_{Y}+S_{Y} & =10 \\
x_{1}, x_{Y}, S_{1}, S_{Y} & \geq 0
\end{aligned}
$$

حل مسأله اوليه با استفاده از روش سيمثلكس به شرح جدول ه.ه السـت.

حال با استفاده از تابلوى بهينه مسأله اوليه (تابلوى سوّم) به الستخرابج جواب بهينهُ مسأله
 ثانو يه برانساس ضريب متغيرهاى تصميب و كمكى در سطر صفر (Z) تابلوى بهينه مسأله اوليه تعيين مى شود. يعنى:
$\left(y_{1}=r, y_{r}=1, t_{1}=0, t_{r}=0\right)$

y همان تيمت سأيهأى منـبع دوّم (يعنى 1) مى بابشد.

 $\operatorname{Max}\left(-y_{0}\right)=-10 y_{1}-10 y_{r}-M A_{1}-\mathrm{MA}_{\mathrm{r}}$ s.t:

$$
\begin{array}{r}
y_{1}+\Delta y_{r}-t_{1}+A_{1}=\Lambda \\
y_{1}+y_{r}-t_{r}+A_{r}=\gamma \\
y_{1}, y_{r}, t_{V}, t_{r}, A_{1}, A_{r} \geq 0
\end{array}
$$

 ثانويه عبار تست از:
$\left(y_{1}^{*}=1, y_{r}^{*}=r, t_{1}^{*}=0, t_{r}^{*}=0, Z^{*}=y_{o}^{*}=\gamma \Delta\right)$

بلديهى است برأى استخراهج مقدأر متغيرهاهى تصميم مسألن ثأنويه (t) در سطر صفر تأبلوى بهينه از ضرايب متغير هاي ماي مصنرعى (A) نيز الستفاده كرد. با اين توجه كه بايلد ثابت M بزرگ را حذذ كـرده و از قذر مطللت معأدير عددى استفادهكرد.

$x_{1}^{*}=-\left(Y^{\prime}-\frac{\theta}{4}\right)=\frac{\theta}{4}$
$x_{r}^{*}=-\left(\left\lvert\, M 1-\frac{r Q}{H}\right.\right)=\frac{r \theta}{Y}$

بنابراين محدوديتهاى مسأله ثانويه نيز صرفاً از نوع
 آزاد در علامت خورأهد بود.

$$
\text { مثال } 0.1 \text { مسأله اوليهه و ثانويه متناظر آن رادر نظر بگيريد: }
$$

مسأله ثانويه
$\operatorname{Min} y_{0}=\Delta y_{1}+Y y_{r}$
s.t:

$$
\begin{aligned}
y_{1}+r y_{Y} & \geq 0 \\
r y_{1}-y_{Y} & \geq r \\
y_{1}+r y_{T} & \geq r \\
y_{1} & \geq 0
\end{aligned}
$$

آزاد در علامتـ Y
$\operatorname{Max} Z=\Delta X_{1}+I Y X_{r}+Y X_{r}$
s.1:

$$
\begin{aligned}
x_{1}+r x_{Y}+x_{r} & \leq 0 \\
r x_{1}-x_{Y}+r x_{r} & =r \\
x_{r}, x_{Y}, x_{r} & \geq 0
\end{aligned}
$$

 دوّم استفاده شده است. در ضمن روش حل M بزرگ بو بوده است.

جدول 0.10 تابلوى بهينه مسـأله اولنه دثأل $0.1 Y$

الست د يعنى مىتوان مسأله ثانويه وا با تغيير متغير
 بر اين أسأس مسأله ثانويه يه صورت زير تغيير داده شده و شكل قابل حل حل به رو بـدست مى آيد:
$\operatorname{Min} y_{0}=\Delta y_{1}+r y_{Y}{ }^{\prime}-r y_{Y}{ }^{\prime \prime}$
s.t:

$$
\begin{aligned}
& y_{1}+r y_{Y}^{\prime}-r y_{Y}^{\prime \prime}-t_{1}+A_{1}=0 \\
& r y_{1}-y_{Y}^{\prime}+y_{Y}^{\prime \prime}-t_{Y}+A_{Y}=1 r \\
& y_{1}+r y_{Y}^{\prime}-r y_{Y}^{\prime \prime}-t_{r}+A_{r}=f \\
& y_{r}, y_{Y}^{\prime}, y_{r}^{\prime \prime}, t_{V}, t_{Y}, t_{r}, A_{Y}, A_{Y}, A_{r} \geq 0
\end{aligned}
$$

حالل مىتوأن رابطءّ لنگى مكمل رابرإى مسأله غير أستاندارد فيق به صوزت زير تعريفـ كر:

$$
\begin{gathered}
\mathrm{S} \cdot \mathrm{y}=0 \\
\mathrm{x} \times \mathrm{t}=0 \\
\mathrm{~L} \\
\mathrm{X} \times \mathrm{A}=0
\end{gathered}
$$

در نتيجه بأ حل مسأله ثأنريه مى توان به تابلوى يهينه در جلـول ه. 11 رسيد.

برإساس جلم بثابراين جو ابيهاي اوليمه و ثانويه نشان هيندثلـ كه

$$
\operatorname{Max} Z=\frac{|\psi|}{0}=\operatorname{Min} y_{0}
$$

 آزهـايشى مسأله ثانتويه ($\mathrm{I}_{1}=V, y_{Y}=Y$)

 ($Z=y_{0}=\frac{|f|}{0}$
 ثانوية تشكيل داد:

 ($\mathrm{y}_{1}^{*}=\frac{r q}{\Delta} \quad y_{T}^{*}=-\frac{r}{\Delta}$)
 ثانويد را به متغبرهاى تمميم و كمكى مسألل اوليه تعميم داد. به صورت زير زير:

مثال 0.1 مسأله اوليه زير رادر نظر بگيريد:
$\operatorname{Min} Z=r x_{1}+r x_{r}+\Delta x_{r}+r x_{f}+r x_{\Delta}$
s. t.

$$
\begin{aligned}
x_{1}+x_{r}+r x_{r}+x_{\gamma}+r x_{0} & \geq \psi \\
r x_{1}-r x_{r}+r x_{r}+x_{\psi}+x_{0} & \geq r \\
x_{1}, x_{r}, x_{r}, x_{\gamma}, x_{b} & \geq 0
\end{aligned}
$$

جواب بهينه مسـأله نوق را با استفاده از روش هندسى بيداكنيد؟

 مىنويسيم:
در نمايش هندسى مسأله واضح المت كه نتطهُ بهينه از تـلاقى دو مـحدوديت ا او

يعنى:

حل به طريق هندسى:
$\operatorname{Max} y_{0}=r y_{1}+r y_{r}$ s. 1.

$$
\begin{aligned}
y_{1}+r y_{Y} & \leq r \\
y_{1}-r y_{Y} & \leq r \\
r y_{1}+r y_{Y} & \leq 0 \\
y_{1}+y_{Y} & \leq r \\
r y_{1}+y_{Y} & \leq r \\
y_{1}, y_{Y} & \geq 0
\end{aligned}
$$

$\left\{\begin{array}{l}y_{1}+r y_{r}=r \\ r y_{1}+y_{\gamma}=r\end{array} \Rightarrow\left\{\begin{array}{l}-r y_{1}-\varphi y_{r}=-\varphi \\ r y_{1}+y_{\gamma}=r\end{array}\right.\right.$

$$
\Rightarrow y_{1}+r\left(\frac{r}{0}\right)=r \Rightarrow
$$

$$
\begin{aligned}
-\Delta y_{Y}=-r \Rightarrow y_{Y}{ }^{*} & =\frac{\mu}{\Delta} \\
y_{1}{ }^{*} & =\frac{\mu}{\Delta}
\end{aligned}
$$

 ثانويه میتوان ذريانت كه

$$
\begin{aligned}
& \left\{\begin{array}{l}
x_{1}^{*}+r x_{0}^{*}=4 \\
r x_{1}^{*}+x_{0}^{*}=r
\end{array}\right. \\
& \left\{\begin{array}{l}
x_{1}^{*}=1 \\
x_{0}^{*}=1
\end{array} \Rightarrow Z^{*}=y_{0}^{*}=0\right.
\end{aligned}
$$

معادلات مسـأنه اوليه رأ در حالت يثينه به صورنت زير تعريف كرد:

با حل اين دستگاْ دو مجهولى مىتوان دريافت كه؛

خواهل شـل

اسـت:

مسـأله ثانويه:

$$
\begin{aligned}
& \left(y_{1}^{*}=\frac{\psi}{\Delta}, y_{Y}^{*}=\frac{r}{\Delta}, t_{1}^{*}=0, t_{Y}^{*}=\frac{1 V}{\Delta}, t_{r}^{*}=\frac{\Lambda}{\Delta}, t_{Y}^{*}=\frac{r}{\Delta}, t_{\Delta}^{*}=0\right) \\
& \left(x_{1}^{*}=1, x_{r}^{*}=0, x_{r}^{*}=0, x_{\psi}^{*}=0, x_{\Delta}^{*}=1, s_{1}^{*}=0, s_{Y}^{*}=0\right)
\end{aligned}
$$

مسـأله اوليه:

جواب بهينهُ مسأنه اوليه \quad جواب بهينةُ مسأله ثانويه \quad x.t $=0, s . y=0$

$$
\begin{aligned}
& x_{1}=1 \longleftrightarrow t_{1}=0 \Rightarrow \quad x_{1} \cdot t_{1}=0 \\
& x_{Y}=0 \quad \longleftrightarrow \quad t_{Y}=\frac{1 V}{\Delta} \Rightarrow \quad x_{Y} \cdot t_{Y}=0 \\
& x_{r}=0 \quad \longleftrightarrow \quad t_{r}=\frac{\Lambda}{\Delta} \Rightarrow \quad x_{r} \cdot t_{r}=0 \\
& x_{F}=0 \quad \longleftrightarrow \quad t_{Y}=\frac{r}{D} \Rightarrow \quad x_{F} \cdot t_{F}=0 \\
& \mathrm{x}_{0}=0 \quad \longleftrightarrow \mathrm{t}_{0}=0 \Rightarrow \\
& S_{1}=0 \quad \longleftrightarrow y_{1}=\frac{Y}{0} \Rightarrow \\
& S_{Y}=0 \quad \longleftrightarrow \quad y_{Y}=\frac{\mu}{\omega} \Rightarrow \\
& x_{0} \cdot t_{0}=0 \\
& S_{1} \cdot y_{1}=0 \\
& S_{Y} \cdot y_{Y}=0
\end{aligned}
$$

- 0.1 روابط بين ناحيه جواب مسأله اوليه و مسأله ثانويه
 جواب مسـأله اوليه و ثانتويه بيان نَردن

مر جه بيكران با كُوشهُ بينهن الست.

مثال ه. 14 مدل برنامهريزى خطى زيْ رادر نظِ بغيريد:

Max $Z=r X_{1}+r X_{r}$
s. t.:

$$
\begin{aligned}
r x_{1}+x_{r} & \leq r \\
x_{1}+r x_{r} & \leq \varphi \\
x_{1}, x_{r} & \geq 0
\end{aligned}
$$

روش ترسيمى حل مثالو 0.1 نشان مىدهد كه ناحيه مرجه اين مسأله محدود است.

حال مسأله ثانويه مثال 1 . ا نو شتهـ مىشود.
Max $y_{0}=f y_{1}+q y_{T}$
s. 1.:

$$
\begin{aligned}
r y_{1}+y_{T} & \geq r \\
y_{1}+r y_{T} & \geq r \\
y_{1}, y_{T} & \geq 0
\end{aligned}
$$

شكل 0.0 نماينّ هندسى ناحيه مو جه مسـأله ثانويه

 فاقد ناحيه مو جه خوراهد بود. يعنى مسأله ثانويه جوابِ بهينه نخواهد اهد داشت. مثال 0.10 و اشكالٍ 0.9 و 0.V به خوبى صحت اين رابططه را نشان ميدهند.

مثال 0.10 مدل برتامهريزى خططى زير رادرنظر بگيريد: $\operatorname{Max} Z=F X_{1}+Y X_{Y}$ s.t :

$$
\begin{aligned}
x_{Y} & \geq Y \\
x_{Y} & \leq Y \\
x_{Y}, x_{Y} & \geq 0
\end{aligned}
$$

شكل 0.9 نمابنّ هندسى ناحيد مو جه مسـأله اوليد

حال ضمن نوشتن مسأله ثانويه مثال 10.10، آن را به روش هندسى نمايش مىدهيم. Min $y_{0}=r y_{1}+r y_{r}$ s.t :

$$
\begin{aligned}
-y_{1} & \geq r \\
y_{Y} & \geq Y \\
y_{Y}, y_{Y} & \geq 0
\end{aligned}
$$

شكل Q.V نمايش, هندسى مسـأله ثأنويه

در مثال فيقِ برأساس نمايش هندسى، مشتص شده است كه مسأل2 اوليه داراى ناحيه

 همديگر قرار دارند.
 بدون گوشئ نهينه أست يا فاقد ناحيه مو جه (جواب) خوراهد بود.

$\operatorname{Max} Z=r x_{1}+r x_{r}$
s.t :

$$
Y x_{1}+x_{Y} \leq Y
$$

$$
r x_{1}+r x_{y} \geq 1 r
$$

$$
x_{\gamma}, x_{Y} \geq
$$

$$
r x_{1}+x_{r}=r
$$

شكل ^ه.
$\operatorname{Min} y_{0}=Y y_{1}-1 Y y_{Y}$ s.t :

$$
\begin{aligned}
r y_{1}-r y_{Y} & \geq r \\
y_{1}-r y_{Y} & \geq r \\
y_{V}, y_{Y} & \geq 0
\end{aligned}
$$

 مى:اشد.

مثال 0.1V مدل بينامهريزي خطى زير را درنظر بعييريد:
$\operatorname{Max} Z=r X_{1}+r X_{r}$
s.t:

$$
\begin{aligned}
x_{1}-x_{Y} & \geq 1 \\
-x_{1}+x_{Y} & \geq 1 \\
x_{1}, x_{y} & \geq 0
\end{aligned}
$$

بررسى مسأله ثانويه مدل نوق نشان ميدهد كه مسأله ثانويه نيز ناقد ناحيه مرجه اسست. $\operatorname{Min} y_{0}=-y_{1}-y_{Y}$
s.t :

$$
\begin{aligned}
-y_{Y}+y_{Y} & \geq r \\
y_{1}-y_{Y} & \geq r \\
y_{Y}, y_{Y} & \geq 0
\end{aligned}
$$

شكل 0.11 نمايشن هندسى مسأله ثانويه

 بنابراين طى مثالهاى 0.19 و 0.1V صحتت رابطهُ سوم تأكيد مىشود.

†.11 روش سيمپلكس ثانويه'

برایى سيمٍلكسبِ محسوب شود.

1. Dual Simplex Method

 شـرَ زير استـ:

 ($\mathrm{c}_{\mathrm{j}} \leq 0$)

 جديد برسيد و سِس به مرحلئ بَ برويد.

مثال 0.1^ مدل LP زير را درنظر بعيريد:
$\operatorname{Min} Z=10 x_{1}+\Delta x_{Y}+\psi x_{r}$ s.í:

$$
\begin{aligned}
r x_{1}+r x_{r}-r x_{r} & \geq r \\
r x_{1}+r x_{r} & \geq 10 \\
x_{r}, x_{r}, x_{r} & \geq 0
\end{aligned}
$$

1. Lemke

مدل را با استفاده از روش سيمچلكس ثانويه حل مى اكنـيم.
 نامعادلات مسأله در 1 ـ ضرب مـيشود. بِسن: $\operatorname{Max}(-Z)=-10 x_{1}-\Delta x_{Y}-Y x_{r}$ s. 1 :

$$
\begin{aligned}
-r x_{1}-r x_{r}+r x_{r} & \leq-r \\
-r x_{1}-r x_{r} & \leq-10 \\
x_{1}, x_{r}, x_{r} & \geq 0
\end{aligned}
$$

 جواب فرق بهينه الست ولى غيرموجه مىياشلـ. $\operatorname{Max}(-Z)=-10 x_{1}-\Delta x_{\gamma}-\mu X_{r}$ s.t :

$$
\begin{gathered}
-r x_{1}-r x_{r}+r x_{r}+S_{1}=-r \\
-r x_{1}-r x_{r}+S_{r}=-10 \\
x_{1}, x_{r}, x_{r}, S_{r}, S_{r} \geq 0
\end{gathered}
$$

جدول 0.1 تابلمى اوّل سيمبلكس ثانويه
ستون لولا

متغير هایىاسأسى	Z	x_{1}	$\mathrm{x}_{\boldsymbol{r}}$	$\mathrm{x}_{\boldsymbol{r}}$	S	S_{r}	-
Z。	-1	10	0	\uparrow	-	-	-
s	-	-r	-r	r	1	-	-r
S_{Y}	-	- ${ }^{*}$	-	(-)	-	1	

 مرحله r. منفى ترين مقدار سمت راست به عنوان (سسطر لولاي) انتخاب مى سـود و متغير

 $\operatorname{Min}\left\{\frac{1 \cdot}{|-| |}, \frac{F}{|-T|}\right\}=r$
 منفى است!). مرحله ه. جواب اساسى جلديد را محاسبه كنيد. حاصل تابلوى دوّم سيمپلكسس است كه در جدول باه آمده انست.

با توجه به غيرمنفى بودن كليهٌ عناصر مسمت راست، جوابب بهينه در تابلوى سوم، حاصل شلده است. بس با حفظ بهينگى، اولين گوشه موجه عبار تست از: $\left(X_{1}=Y, X_{Y}=0, X_{Y}=1, S_{1}=0, S_{Y}=0\right)$

و معدار*Z مساوى أست با:
$\operatorname{Min} Z=\operatorname{Max}(-Z)=-(-Y F)=Y \neq$
شرط لازم براى اجرابى سيمیلكسن ثانويه، بهينه بودن مسأله ثـانويه است و شـورط لازم براى سيمچلكس اوليه'. مو جِ بودن مسأله اوليه اسـت. بر همين سيمِّلكس اوليه با حفظ مو جـد

$\operatorname{Min} Z=r X_{1}+X_{r}$
s.t :

$$
\begin{aligned}
r x_{1}+x_{Y} & \geq r \\
r x_{1}+r x_{Y} & \geq q \\
x_{1}+r x_{Y} & \leq r \\
x_{1}, x_{Y} & \geq 0
\end{aligned}
$$

s.t :

$$
\begin{aligned}
-r x_{1}-x_{r}+S_{Y} & =-r \\
-r x_{r}-r x_{r}+S_{Y} & =-\varphi \\
x_{1}+r x_{r}+S_{r} & =r \\
x_{r}, x_{r}, S_{Y}, S_{r}, S_{r} & \geq 0
\end{aligned}
$$

مسأله را با أستفاده از روش سيمثلكس ثانويه حل كنيد و مسير حركت رأ به طريتِ هندسى نتـان $\operatorname{Min} Z=Y_{1}+X_{r}$ s.t:

$$
\begin{aligned}
r x_{1}+x_{Y} & \geq r \\
\psi x_{1}+r x_{Y} & \geq q \\
x_{1}+r x_{r} & \leq r \\
x_{1}, x_{Y} & \geq 0
\end{aligned}
$$

1. Primal Simplex
2. Optimality
3. Feasibility

حل مسأله براساس Dual simplex به شرح زير است:

(\%
(
(گوشه C)

 س S_{T}

0.1Y

بيان شده است. درنهايت ضمن تشريح روابط مسائل اوليه و ثانويه، (روشش سيمِلكس ثانويهه| توضيح داده شده است.

 واحد متغيرأست. هـ محدوديتى كه نأثيرى در ايجاد منطقه موجه نداشته باشد و و وجود با عدم وجود آن

 مسأله ثانويه در تابلمىى بينئة آنا است.
 11. المسأنه اوليه زير را در درنظر بكيريد:

Max $Z=r x_{1}+r x_{r}-x_{r}$ مسأله ثانويه آن داراى جند محدوديت است؟؟ s.t :

$x_{1}, x_{r}, x_{r} \geq 0$

$\operatorname{Min} Z=\Delta x_{1}-x_{r}+\frac{1}{r} x_{r}$
 s.t:
$X_{1}+X_{r}=Y_{0}$
$r(-$
$x_{r}-\frac{1}{r} x_{r} \geq 10$
F（：
1（2
$x_{1}-x_{r}=1 r$
$x_{1}, x_{r} \geq$ 。

$\operatorname{Max} Z=\Delta x_{1}+i r X_{r}+f X_{r}$
r｜بـ مسأله اولمه زير را در نظر بغيريد： s．1：
$x_{1}+r x_{r}+X_{r} \leq 0$
جو
$r x_{1}-x_{r}+r x_{r}=r$
$x_{1}, x_{r}, x_{r} \geq$ 。

است （y $y_{1}=\frac{r 9}{0}$

ب）ب）مجهاور گوشنّ بهينه

ها ضريب

الفن）يكـ هتغير غيراساسى است
د）آن⿻ا⿰亻丨丶⿻工二

 ج）منتفى تربن مقدالر سمـت راست

$$
\operatorname{Max} Z=r x_{1}+Y X_{Y}-\Psi x_{r}
$$

s.t :

$$
\begin{aligned}
& x_{Y}+x_{Y}+x_{r}=10 \\
& x_{1}-Y x_{Y}+x_{r} \geq 1 Y \\
& x_{Y}, x_{Y}, x_{Y} \geq 0
\end{aligned}
$$ از راسـت به حچپ كدام است؟

$$
\begin{aligned}
& (r, r)(r, r)(r) \\
& (r, r)(r) \\
& (r, r)
\end{aligned}
$$

$$
\begin{aligned}
& Z \leq y_{0}(ب \\
& Z>y_{0}
\end{aligned}
$$

 متغيرهاى الساسى متذأر منفى و جود دارد. جورإب اسانسى بلدسـت آمـلـه؛

(ج)

$$
\operatorname{Max} Z=r x_{1}+r x_{r}
$$

أست يـا:
s.1:

$$
\begin{aligned}
& r x_{1}+r x_{r} \geq 0 \\
& x_{1}-\frac{1}{r} x_{r} \leq 0 \\
& r x_{1}+x_{r} \leq 0 \\
& x_{1}, x_{r} \geq 0
\end{aligned}
$$

كدام گزينه است؟

$$
\begin{array}{ll}
Z^{*}=100(- & Z^{*}=r 00(\mathrm{l} \\
Z^{*}=r 40(2 & Z^{*}=r \circ \circ(2
\end{array}
$$

 ترتيبـ از راست به جِبِ كدام است؟

$$
\begin{aligned}
& (1, Y)(3,0)(3 \\
& (0,0)
\end{aligned}
$$

 منابع را توصيه مىكنيد؟
ب) فتنط منـبع اوّل

(
Y Y اگر يكى مسأله اوليه دارأى دو متغير تصـيـيم و سهه محلوديت كاركردى باشد. تعدلاد گوشههاي مسأله ثانو يِه آن چتقـر استع؟
بי
Yo الفـ)

$$
10(2
$$

$\wedge(\tau$
minz $=Y x_{1}+r x_{Y}$ \&
به شرح زير است: برأى حل آن به كمكـ روش سيميلكس از كدام روش مى توان أستغاده كـد
الفس) روش دوهرحلهاى
 ج) روش, سيمـِلكس ثأنويه
YV الفع) فاقّد ناحيـه مر جه انست.
ب) دأراى ناحيه مو جه بيكران بدون گُ شه بهيته اسـت.
ج) داراى نأحيه مو جحه محدود است.
(الفـ يا ب) (

$$
\begin{aligned}
& \text { الغـ) (1) } \\
& (4, \lambda)(\tau
\end{aligned}
$$

A.Y. ناحيه مو جه مسأله أرليه به صورت

زير است.
 كدام گزينه صصحيح است؟

 ألف) مسأله ثانو يه داراى نـانـي بيكران بدون گوشهُ بهينه است ب) مسأله ثـانويه داراى نـاحيه مـوجه بيكرأن با گوشه بهينه است. ج) مسأله ثانو يه فاقد ناحيه مو جه أست. محدود أست.
 ب) بهينه
() غير از مبداً متختصات الفـس) موجه ج) مبدأ متختصات . $\operatorname{Max} Z=Y \circ X_{1}+1 \circ X_{Y}$

مقدار بهينه تابع هدف مسأله ثانويه برابر اسـت با: s.t :

$x_{1}+x_{Y}=100$	$1900(ب)$	$900(-2)$
$x_{1} \leq Y_{0}$	$10(0)$	
$x_{Y} \geq Y_{0}$		
$x_{Y}, x_{Y} \geq 0$		

Min $Z=f x_{1}-V x_{Y}+9 x_{r} \uparrow$ اr. جوابب مسأله ثانويه مربوط به مدل زير كدام الست s.t :
$X_{1}+Y X_{r}+Y X_{r} \geq Y$

$$
x_{r}, x_{r} \geq
$$

, آزاد در علامت
O.1 Y.Y
 است.

S. 1 :

ثانويه آن را بنو يسيل؟

$$
\begin{aligned}
& x_{1}+x_{Y}-x_{F} \leq 100 \\
& x_{Y}-x_{T} \geq \lambda 。 \\
& x_{1}+x_{r}-r x_{Y}=q_{0} \\
& \text { آزا } x_{Y}, x_{Y}, x_{r}, x_{Y} \geq 0 \\
& \operatorname{Min} Z=100 X_{r}+10 X_{r}-X_{0}
\end{aligned}
$$

T. مسسألئ !وليه زنر رادر نظر :خيريد:
s.t:

$$
\begin{aligned}
& r x_{1}+r x_{r}-x_{Y} \geq r o \\
& x_{r}+x_{r}-x_{0} \geq r 0 \\
& x_{1}+\frac{1}{r} x_{r}-x_{r}+x_{0}=r 0 \\
& x_{0} \geq r \\
& x_{1} \leq 10 \\
& x_{1}, x_{r}, x_{0} \geq 0 \\
& x_{r}, x_{4}-x_{r}, 2 ; j
\end{aligned}
$$

¢

$$
\begin{aligned}
& \operatorname{Min} Z=r x_{1}+r x_{Y}+x_{r} \\
& \text { s.t: } \\
& r x_{1}+r x_{Y}+\frac{l}{r} x_{r} \geq 1 r \\
& x_{Y}+x_{r}+r x_{r} \leq r o \\
& x_{Y}, x_{Y}, x_{r} \geq 0
\end{aligned}
$$

$$
\begin{aligned}
r x_{1}+x_{Y} & \geq q \\
x_{Y}+r x_{Y} & \geq 9 \\
x_{Y}, x_{Y} & \geq 0
\end{aligned}
$$

$\operatorname{Min} Z=10 x_{1}+\Delta x_{Y}+Y x_{r} \quad(z$ s.1:

$$
\begin{aligned}
r x_{1}+r x_{r}-r x_{r} & \geq r \\
r x_{1}+r x_{r} & \geq 10 \\
x_{1}, x_{Y} x_{, r} & \geq 0
\end{aligned}
$$

$\operatorname{Min} Z=r X_{1}+Y X_{r}$ s. 1 :
$x_{1}+x_{Y} \leq 10$
$x_{1}+r x_{p} \geq 1 Y$
$x_{y}, x_{r} \geq$ 。
$\operatorname{Max} Z=r X_{1}+r X_{r}$
s. 1 :
$-r x_{1}+x_{r}+r x_{r} \leq 0$
$-r x_{1}-x_{y} \leq 1$
$x_{1}, x_{r}, x_{r} \geq 0$

نتايج و مغاهيم بدست آمده را بيان كـبـبـ؛ V. مسائل زير را درنظر بگيريد:

با الستفاده از روش هندسى جوأب بثينه مسألهُ أرليه
ه. مسألهُ اوليئُ زير را درنظر بِيريل:
و ثانو يهُ آنَ را بِيدا كنيد؟
车
$\operatorname{Max} Z=r x_{1}+\Delta x_{r}$ s. 1 :

$$
\begin{aligned}
x_{1}-x_{Y} & \leq-r \\
-x_{1}+x_{Y} & \leq-Y \\
x_{Y}, x_{Y} & \geq 0
\end{aligned}
$$

". . .
$\operatorname{Max} Z=f X_{1}+r X_{Y}$
الف) s.t:

$$
\begin{aligned}
-r x-x_{r} & \leq-r \\
r x_{1}-r x_{Y} & \leq 0 \\
x_{1}, x_{r} & \geq 0
\end{aligned}
$$

الف) مسألّة ثانو يه هر يكـ را بنو يسيد.
 ثانويه زا بيان كنيد.
$\operatorname{Max} Z=r X_{1}+r X_{r}$
s. 1 :

$$
\begin{aligned}
& x_{1}+x_{Y} \geq r \\
& x_{1}-r x_{Y} \leq \psi \\
& x_{Y}, x_{Y} \geq
\end{aligned}
$$

 ج) جواب بهينهُ مسأله ثانويه را با با ابستفاده از تابلوى بثينه بدست آمـده استخخاج كنيـ؟

Max Z = $4 x_{1}+x_{Y} \quad$ هسأله أوليه زير و تابلوى آخر آن دأده شدها اسمت: s.t :

$Y X_{1}+X_{Y} \geq r$
تابلوى داده شـلد بلدست آوريد؟
x $x_{1} \geq$ 。

 Min $Z=10 X_{1}+\Delta X_{Y}+\xi X_{r} \quad$ مدل زير رادرنظر بغيريد: s.t: الف) مسألهٔ زير را با استفاده الز روش سيمٍلِكس ثانويه

$$
\begin{aligned}
r x_{1}+r x_{Y}-r x_{r} & \geq r \\
r x_{1}+r x_{r} & \geq 10 \\
x_{1}, x_{r}, x_{r} & \geq 0
\end{aligned}
$$

حل كنيد؟

سخن آخر

مقدمهاى بر تحليل حساسيت'

يكى أز مغروضات برنامهريزى خطى اين است كه بإرامترهاى مدل (

[^11]تغييرات در دادهماى مختلف بكى مسـأله را تحليل حساسيت يا تحليل بس，بهينغى＇مى منامند．، در تحليل حساسيت، مهمترين تغييراتى كه تأثيرشان بر جواب بُينهن مورد بررسىى قرالر مى يكيرند، عبارتند از： I．تغيير در ضرايب تانع هدف مدل（c）
r．
 †．ا．اضافه شدن يكى（جند）متغير تصميم جديد

 خطى زير رادرنظر بغيريد： $\operatorname{Max} Z=f_{0} x_{1}+00 x_{Y}$ s． 1 ：

$$
\begin{aligned}
& X_{1}+Y X_{Y} \leq Y_{0} \quad \text { محدوديت نيروي كار (نفر - ساعت) }
\end{aligned}
$$

$$
\begin{aligned}
& x_{r}, x_{Y} \geq 。
\end{aligned}
$$

 مواد اوليه（جونب）موجود

$$
\left\{\begin{array}{l}
x_{1}=r \psi \\
x_{Y}=\lambda \\
Z^{*}=1+\varphi 。
\end{array}\right.
$$

حال فرض كنيد به دليل نوسانات بازار و شرإيط اتتصادى تغييرات زير ير اجزانى مدل ايجاد شده انست：

1．Postoptimality Analysis

تغيير چه تأثيرى بر جواب بنيينهُ فرق. دارد؟
 تأثيرى بر جواب بيهينة فوق خرايمد داشت

 توليد كند كه هر عدد آن سردى معانل
 $\operatorname{Max} Z=f_{0} x_{1}+00 x_{r}+\psi \Delta x_{r}$ s.t:

$$
\begin{aligned}
& Y_{Y}+Y X_{Y}+X_{Y} \leq F_{0}
\end{aligned}
$$

$$
\begin{aligned}
& x_{Y}, x_{T}, x_{T} \geq \text { 。 }
\end{aligned}
$$

 كند:
$\frac{1}{r} x_{1}+\frac{r}{r} x_{r} \leq r_{0}$ محدوديت آلو مينبيو (كيلوگرم)
بنابراين مدل اوليه يه صورت زير تنغير خراهد كري:
$\operatorname{Max} Z=f_{0} X_{1}+D_{0} X_{r}$
s. 1 :

$$
\begin{aligned}
x_{1}+r x_{Y} & \leq r_{0} \\
\psi x_{1}+r x_{Y} & \leq r r_{0} \\
\frac{1 x_{1}+r x_{Y}}{r} & \leq r_{0} \\
x_{Y}, x_{Y} & \geq 0
\end{aligned}
$$

 محدوديت بر جواب بينينٔ مدل اوليه جيست؟؟
 هل

منابع و ماَخذ

1. Taylor HI, W. Bernard, "Introduciion to Management Science", Fifth Edition, Prentice-Hall lnternational Editions, 1996.
2. Eppen G.D.: F.G. Gould and C.P. Schmidt, "Introductory Monagement Science". "Fourth Edition, Prentice-Hall International, Lnc.: 1993.
3. Render B. and R.M. Stair: "Quantitative Analysis for Management", Third Edition, Nlyn and Bacon Inc. Lendon, 1990 .
4. Ackoff, R.L. and M.W. Sasieni, "Fundamentals of Operations Research", John Wiley and Sons, 1968.
5. Lee, Sany M., Moore and Taylor, "Management Science", Third Edition, Allyn and Bacon Inc., 1987.
(1. Hillier, F.S. and G.I. Lieberman, "Operations Rexeatrch", Fifth Edition, 1990.
6. Taha, Hamdy A., "Operations Research. An Introduction", Fifth Edition, New York: Mac Millan, 1992.
․ Wagner, Harvey M., "Principles of Operations Rexearch". Third Edition, Englewood Cliffs, N.I.: Prentice-Hall, 1988.
7. Teichroew, P., "An Introduction to Management Science", New York, John Wiley and Sons, 1980.
8. Churchman. C.W., R.L. Ackoff and E.L. Arnoff: "Introduction to operations Research". New York, John Wiley and Sons, 1957.
9. Ullmann, E. John, "Quantitative Methods in Manasement", Mc Graw-Hill Inc., 1994.
10. Bronson, Richard, "Operation Research". Mc Graw-Hill, 1992.
11. Budnik, Frank S., Dennis Me Leavey and Richard Mojena, "Principles of operations Research for Management". 2nd ed., lrwin lnc., 1982.
12. Turban E. Fraim and R. Meredith: "Fundamentals of Management Science", Fourth Edition, Business publication Inc., 1994.

 تهران، IMgG.

 دانشُگاه تهران، حابِ اوٌل، ITVY

[^0]: I. Iconic Mordel

[^1]: 1. Information
[^2]: 1. Ackoff
[^3]: 1. Sensitivity Analysis
[^4]: 1. Feasible Solution
[^5]: 1. Optimal Solution
[^6]: 1. Surplus variable
[^7]: 1. Slack variables
[^8]: 1. Pivot columin
[^9]: 1．Adjacent－Corner

[^10]: 1. Augmented Solution
[^11]: 1. Sensitivity Analysis
