

MIY انتشارات دأنشگاه فردوسى مشهد، شمماره

تحليل بقاء

ار. جويسنده ميلر

مترجمان
ابوالقاسم بزر گنيا - حجّت رضايى پثند

$$
\begin{aligned}
& \text { Miller, Rupert G. } \\
& \text { ميلر : روبرت }
\end{aligned}
$$

> (ISBN: 964-6335-83-7)
> Survival analysis.
> فهرسـتنو يسسي بر اسـاس أطلغعات فيبا. عنوان به انگّليسـي وازُهن'مهـ. كتابنامــ
$018 / 4$
QArvg/pquv
1世人。
pNo-19140
كتابـخانه ملمى ابران

پيش گفتار نو يسنده:

در بهار سال ه191، آموزش روشهاى مفيد و كاربردى در تحليل بقاء به دانشجويان

 يترسن استفاده شده است.
 ارزشمند جرىهاليرن و ترىترينو و نظريّات ويرايشى الاينيونگ، در اين اين كتاب المـتـفاده شـله ا استـت.
كارولاد كلو، با تايب دقيق و سريع خود و همكارى در سرعت هابِ و ترسـيـيمات بسيار عالى مارياجلد، به هاتٍ كتابِ كاب كمكى نموردهاند.

ريرت - ج - ميلر و جیار

گيل گانگ
آلوارو مونوز
استانفورد، كاليفرنيا
جولایى 1911

پيش گفتار متر جمان:

آهار حياتى از شاخهمهاى اصلى آهار به شمار مىرود. بسيارى از روشـــهـاى آمـارى

 امكان حفظ شده است. كمى حجم و غنى بودن مطالب آن بيانگر توان بان بالاى علمى مؤلّف

 استفاده را از اين كتاب میبرند.

 تذكر صاحبنظران ما را خوشحال و حابهايى بعدى را بهبود خواهد بخشيد. ابولقاسم بزر كـينيا
حجت رضايى يزيند

فهرست مطالب

صفحهd

11

IY
1%
Ir
1%
if

10

18

18

19
19
19
19
Y.

عنوان

فصل اولّ: مقدّمهأى بر مفاهيم بقاء
ا.1 تابع بقاء و نرخ شكست
Y.1 انواع برش
I.Y.I برش نوع اوّل
Y.Y.l
r.Y.I
F.Y.I

مثال: كود كان آفريقايى
نمادهاي مورد استفاده
فصل دوم: الگو هاى پارامترى اتوزيعها

ا. 1 توزيي تمايى
Y.I ا.
Y.
Y.1 توزيع رايلى

Y
Yy
Tr
Y
Y
rf
rs
YV
r.
M
rr
r
ro
ro
rV
rV
$r \wedge$
r^
r^
fy
fy

فصل سوم: روشهای ناپارامترى (يكـ نمونه)
روثههای نيوتن -راففسون و چوب خطَّى
بازههاى اطمينان و آزمونها
مثال 1: نمايى
روش دلتّا
مثال ب: وايبل
بر آورد
Y.Y تر كيب نحطّى آمارههایى مرتّب

توزيعهاى فرين
r.r.r بر آورد گرهای ديگر

بر آوردهأى بيزى
r الگُو هاى رگرسيونى
F الگو هايى با كسرهاى بقاء
f.f

| جدو لهاى طول عمر

4
fr
fis
fis
fo
fV
49
49
Δ.
Δr
ΔF
$\Delta \Delta$
$\Delta \wedge$
s.
s)
sr
s
54
s Δ
\&
sV
99
1.1
r.l روش بيمهگرى

ثا
F.l انواع جدولهاى طول عمر

ץ بر آورد گر حدّى حاصلضرب كاٍِلان -مير
AML مثالن: مطالعةٔ درمان
واريانس (t)
I.r الگوريتم تجديدنظر در توزيع به راست

خ.r خودساز گارى
الگوريتم خودساز گارى
r.r بر آورد گر حداكثر درستنمايى تعميميافته
F.Y سازگارى
r.r
r بر آور
نرمال مجانبى
F
ا.f ميانگِين

$$
\begin{aligned}
& \text { L- بر آورد گرهای Y.f }
\end{aligned}
$$

f.f

ه بر آورد گرهاى بيزى
بر آورد گرهاى تجربى بيزى

V
vi
vi
VF
vo
Vs
VV

Vq
v9
AY
AF
Af

AV
M

NA

91

91
qr

94

90

فصل پجهارم: روشهای ناپارامترى (دو ندونه)
مدال: آزمايش باليني فرضى
1
U ميانگين و واريانس U
$\operatorname{Var}_{0, \mathrm{P}}^{*}(\mathrm{II}$ (Y.1
H.l
H.

Y T آزمون مانتل - هانزل

Y Y Y Y Y Y Y Y
r.Y
F.Y نرمال مجانبى

W ردهُ آزمو نهاى تارون -واير
مثال
F

فصل پنجّم: روشهای ناپارامترى (k نمونه)
1 آزمون گهان تعميم يافته (برسلو)
انواع آزمونها
1.1

Ho Y.

90 Y Y

9	فهرست	
99	انواع آزمونها	
99	فصل ششه: روشهاى نايارامترى: رگرسيون	
99	ا الگوهاى نرخ شكس متناسب كاكس	
$1 .$.	1.1	
1.7	Y.1 بر Y.	
1.4	درستنمايى حاشيهالى براى رتبهها	
1.9	درستنمايى جزئى	
1.9	「. 1	
$1 \cdot 1$		
11.	0.1	
lir	9.1 متغيّرها هاى والبسته بها	
IIr	(V.I	
11	N.1	
11	Y الڭوهاى خطّى	
lir	الخوها	
115	I.Y آزمونها	
115		
119	بر آورد	
119	برآورد گر بر باكلى -جيمن	
\|Y		
Iry	مثال: دادههالى پيوند قلب استانفورد	

$1+9$

149
ir.

141
14
Irr

IHF
IHF
g\%

149

149
if.

141
ifr

180

Is
|V|

فصل هفتم: نيكويى برازش
| روشهاى تر سيمى
1.1

Y Y Yو نمونه
DNCB هشال: دطالُعه
ا. ب, ,
r
Y I.Y
, r.r

فصل هثته: مباحث مختلف
1 بر آورد گر دو منغيّرى كاپپن -ماير
r نرخ شكست رقيب
r برش وابسته
F روش جحكنايف و بوتاسترات

فصل نهم: مسائل

وازَهنامه
مراجع

فصل اوّل

 مقدّمهاى در مفاهيم بقاء

 بيمه در وضعيّت خاصى باشيا باشد.

 توجه و مطالعه قرار گرفته است.

 كاربرد آنها در تحقيقات بزشكى تاكيد شده است.

REFERENCE

Leavitt and Olshen, unpublished report (1974), give the insurance example.

1.1 تابعهاى بقاء و نرخهاى شكست

 تابع بقاء S(t)؛ به صورت زير تعريف مى شود:

$$
S(t)=1-F(t)=P(T>t)
$$

$$
\text { نرخ شكستت يا تابع شكست (t) } \lambda \text { به شكل زير تعريف.. مىشود: }
$$

$$
\lambda(t)=\frac{f(t)}{1-F(t)}
$$

در علم امراض مسرى، تابع (t) (t را نرخ مر گ و مـــير نـامند. نـرخ شكسـت بـه صورت زير قابل تفسير است:
$\lambda(t) d t \cong P(t<T<t+d t \mid T>t)$
 اگر

 حالت گسسته اصلاح مى كنيم.

$$
\begin{aligned}
& \text { از } \\
& \int_{0}^{t} \lambda(u) d u=\int_{0}^{t} \frac{f(u)}{1-F(u)} d u=-\log [1-F(u)]_{0}^{t} \\
& =-\log [1-F(t)]=-\log S(t) \\
& \text { در نتيجه مىتوان رابط؛ٔ مهم زير را نتيجه گرفت: } \\
& -\int_{0}^{t} \lambda(u) d u \\
& S(t)=e
\end{aligned}
$$

(Censoring) انواع برشها
مطالب ارائه شده در اين كتاب در بيشتر منابع آمارى موجوداند. آنحهه تحليل بقــاء
 شده، فقط شامل قسمتى از الطّلاعات مربوط به متغير هاى تصادفى مورد نظر است. در ايـــن كتاب سه نوع برش را مورد بحث و تو جّه قر ار هيدهيمه F فرض كنيد باشند. برشها را به شرح زير بررسى هى كنيم: I.1.1 برش نوع اوتل

Th فرض

$$
Y_{i}= \begin{cases}T_{i} & T_{i} \leq t_{c} \\ t_{c} & T_{i}>t_{c}\end{cases}
$$

 ف.Y.I
فرض كنيد r<n عــلد
 فقط مىتوانيم (1) T(r) T(r)

$$
\begin{array}{cl}
Y_{(1)} & =T_{(1)} \\
Y_{(r)} & =T_{(r)} \\
\vdots & \\
Y_{(r)} & =T_{(r)} \\
Y_{(r+1)} & =T_{(r)} \\
\vdots & \\
Y_{(n)} & =T_{(r)}
\end{array}
$$

هر دو نوع، برش اولّ و دوم را در مهندسى به كار مىبرند. بــراى مـــال، تعـدادى

 دارد، آزمايش را در زمان

 بسوزند. در اينجا، برش نوع دوم رخ داده است.

r.Y.I

 میشود: فرض كنيد،
 كنيم. كه در آن

$$
Y_{i}=\min \left(T_{i}, C_{i}\right)=T_{i} \wedge C_{i}
$$

توجْه شود كه Y Y Y Y
 كه چه مشاهداتى بريده مىشوند. به اين علتّ، تعريف

 نتيجه، ديگر او را نخواهيم ديد.
 اين كه، ممكن است بيمار هنوز در تماس باشد ولى از ادامهٔ معالجه خوددارّرى كند.

س. اتمام بررسى: نمودار زير يكى بررسى ممكن. را تشريح مى كند:

 دربارة برش تصادفى، فرض اسأسى زير را در نظر مى گیريم:

F.Y.I

 تعريف است. براى مثال، در برش تصادفى خیه، تنها مى تـــوـوان (Y را مشاهده نمود، كه Y و و

$$
\begin{aligned}
& Y_{i}=\max \left(T_{i}, C_{i}\right)=T_{i} \vee C_{i} \\
& \varepsilon_{i}=I\left(C_{i} \leq T_{i}\right)
\end{aligned}
$$

 آنها مشاهدات بريده شده راست را نتيجه مىدهند.

REFERENCE

Leiderman et al., Nature (1974).
Turnbul1, JASA (1974).

 جی باشپ، مشاهدات

 اندازهُ تعيين شده باشد، قابل تشخيص نيست.

نمادهاى مورد استفاده:

 متغيّرهاى تصادفى مشاهده شده، عبارت|ند از ديگر مورد أستفاده به شرح زيراند:
: زمان برش است، متغيّرهاى مشاهدهاى بــه صـورت

$$
\delta_{i}=I\left(X_{i} \leq Y_{i}\right), Z_{i} \simeq X_{i} \wedge Y_{i} \sim H
$$

X را براى متغير مستقل به كار مىبريم.

$$
\delta_{i}=I\left(X_{i}^{\circ} \leq Y_{i}\right), Z_{i} \simeq X_{i}^{\circ} \wedge Y_{i}
$$

 غر ه، Δ

فصل دوم
الگو هاى چإرامترى

1 توزيعها
1.1 توزيع نمايى:

الگوى نمايى داراى نرخ شكست ثابت است. يعنى: را را
زير را داريم:

$$
\begin{aligned}
& \int_{0}^{t} \lambda(u) d u=\lambda t \\
& S(t)=e^{-\int_{0}^{t} \lambda(u) d u}=e^{-\lambda t} \\
& f(t)=-\frac{d}{d t} S(t)=\lambda e^{-\lambda t} \\
& E(T)=\frac{1}{\lambda} \quad, \quad \operatorname{Var}(T)=\frac{1}{\lambda^{r}}
\end{aligned}
$$

Y. الگوى گاما تعميمى از الگُوى نمايى است:

$$
f(t)=\frac{\lambda^{\alpha}}{\Gamma(\alpha)} t^{\alpha-1} \cdot e^{-\lambda t} \quad \alpha, \lambda>0
$$

الميد رياخى و واريانس

تحليل بقاء

نمودار 1.

$$
S(t)=1-\int_{0}^{t} f(u) d u=1-\left(\frac{\text { تابع گاما ناقص كاما كامل }}{\text { كامع }}\right)
$$

الڭوى وايبل تعميم ديگرى از توزيع نماييى اسـت.

$$
\mathrm{S}(\mathrm{t})=\mathrm{e}^{-(\lambda \mathrm{t})^{\alpha}} \quad \alpha, \lambda>0
$$

در نتيجه در موارد زير به دسـت مىى آيد:

$$
\begin{aligned}
& \int_{0}^{\mathrm{t}} \lambda(\mathrm{u}) \mathrm{du}=(\lambda \mathrm{t})^{\alpha} \\
& \lambda(\mathrm{t})=\alpha \lambda(\lambda \mathrm{t})^{\alpha-1} \\
& \mathrm{f}(\mathrm{t})=\lambda(\mathrm{t}) \cdot \mathrm{S}(\mathrm{t})=\alpha \lambda(\lambda \mathrm{t})^{\alpha-1} \cdot \mathrm{e}^{-(\lambda \mathrm{t})^{\alpha}}
\end{aligned}
$$

 النوى وايبل را نشان مىدهد.

$$
\begin{aligned}
& \lambda(t)=\lambda_{0}+\lambda_{1} t \\
& \int_{0}^{t} \lambda(u) d u=\lambda_{0} t+\frac{1}{r} \lambda_{1} t^{r} \\
& S(t)=\exp \left(-\lambda_{0} t-\frac{1}{r} \lambda_{1} t^{r}\right) \\
& f(t)=\left(\lambda_{0}+\lambda_{1} t\right) \exp \left(-\lambda_{0} t-\frac{1}{r} \lambda_{1} t^{r}\right)
\end{aligned}
$$

گشتاورهاى رايلى عبارت بستهأى ندارند.

$$
\lambda(\mathrm{t})=\sum_{\mathrm{i}=\circ}^{\mathrm{p}} \lambda_{\mathrm{i}} \mathrm{t}^{\mathrm{i}}
$$

نمودار $\alpha=r, \lambda=0, r(\%)$
0.1 توزيع لگ نرمال (دو هارامترى)

$$
\log \mathrm{T}_{\mathrm{i}} \simeq \mathrm{~N}\left(\mu, \sigma^{\gamma}\right)
$$

(t) $\mathrm{S}(\mathrm{t})$ واراى صورت بستهاى نيستند.

$$
\begin{aligned}
& S(t)=1-P(T<t)=1-P\{\log T<\log t\} \\
& =1-P\left\{\frac{\log T-\mu}{\sigma}<\frac{\log t-\mu}{\sigma}\right\}=1-\Phi\left(\frac{\log t-\mu}{\sigma}\right)
\end{aligned}
$$

توزيع لگ نرمال مىتواند براى دادههاى بريد. نشده مغيد باشد. يـــــ تبدبـل لخــاريتمى

تحليل بقاء
دادهها را به الگوى خحطى استاندارد تبديل مى كند.
. 1
اين توزيع به شرح زير امت:

$$
S(t)=\left(\frac{a}{t}\right)^{\alpha} I_{(a, \infty)}(t) \quad \alpha, a>0
$$

در نتيجه:

$$
\begin{aligned}
& f(t)=\frac{\alpha a^{\alpha}}{t^{\alpha+1}} I_{[a, \infty)}(t) \\
& \left.\lambda(t)=\frac{\alpha}{t}\right]_{[a, \infty)}(t)
\end{aligned}
$$

گشتاورهاى اين توزيع به آسانى محاسبه مىشوند، ولى ممكن است نامتناهى باشند.
IFRA و IFR V.I
اگر f يا f
 باشند، آنها را IFRA نامند. در اين صورت تابع زير صعودى است:

$$
\frac{1}{t} \int_{0}^{t} \lambda(u) d u
$$

تعاريف مشـابهى براى توابع DFR و DFRA وجود دارد.

 دستگاههاى متشگل از هندين مؤلنه. اين دو معمولاً در Tمار حياتى كاربرد زيادى ندارند.

برایى مثال در بررسىهاى علم بيماريهاى مسرى، خطر بماء دراز مدتت، معمولاً به شكل وام حمّام است، كه در آن، زمان به سه دوره همانند شكل زير تقسيبم مىشود:

(1)
(1)
(1): دوره خرددسالى

(r): دوره كهولت

REFERENCE
Barlow and Proschan, Statistical Theory of Reliability and Life Testing (1975).

Y بر آورد كردن
I.Y حداكثر درستنمايى

الڭوى برش تصادفى را در نظر مى گيريم. (توجه شود كى در اين. جا برش نوع اولّ
 المت. با اين تفاوت كم به علت منظور كردن ترتيب يك ضريب ثابت وبرد درارد).

$$
\begin{aligned}
L\left(y_{i}, \delta_{i}\right) & =\left\{\begin{array}{lll}
f\left(y_{i}\right) & \delta_{i}=1 & (ب ر) \\
S\left(y_{i}\right) & \delta_{i}=0 & (ب ر)
\end{array}\right. \\
& =f\left(y_{i}\right)^{\delta_{i}} \cdot S\left(y_{i}\right)^{1-\delta_{i}}
\end{aligned}
$$

تابع درستنـاي نمونة كامل نيز به شرح زير است:

$$
\begin{aligned}
L=L\left(y_{1}, \ldots, y_{n}, \delta_{1}, \ldots, \delta_{n}\right) & =\prod_{i=1}^{n} L\left(y_{i}, \delta_{i}\right) \\
& =\left(\prod_{u} f\left(y_{i}\right)\right)\left(\prod_{c} S\left(y_{i}\right)\right)
\end{aligned}
$$

در واقع تابعهاى درستنمايى براى برش تصادفى، به شرح زير است:

$$
\begin{aligned}
& L\left(y_{i}, \delta_{i}\right)= \begin{cases}f\left(y_{i}\right)\left[1-G\left(y_{i}\right)\right] & \delta_{i}=1 \\
g\left(y_{i}\right) S\left(y_{i}\right) & \delta_{i}=0\end{cases} \\
& L=\left(\prod_{\mathbf{u}} f\left(y_{i}\right)\right)\left(\prod_{c} S\left(y_{i}\right)\right)\left(\prod_{c} g\left(y_{i}\right)\right)\left(\prod_{\mathbf{u}}\left[t-G\left(y_{i}\right)\right]\right)
\end{aligned}
$$

اگر فرض شود كه زمان برش با زمـــان بقـاء ارتبـاط نــدارد، دو حـاصلضرب آخــرى (مى توان در بيشينه كردن L، ثابت فرض كرد.
 جواب

$$
\begin{aligned}
\frac{\partial}{\partial \theta_{\mathrm{j}}} \log \mathrm{~L}(\underline{\theta}) & =\sum_{\mathrm{i}=1}^{\mathrm{n}} \frac{\partial}{\partial \theta_{\mathrm{j}}} \log \underline{L}_{\underline{\theta}}\left(\mathrm{y}_{\mathrm{i}}, \delta_{\mathrm{i}}\right) \\
& =\sum_{\mathbf{u}} \frac{\partial}{\partial \theta_{j}} \log \mathrm{f}_{\underline{\theta}}\left(\mathrm{y}_{\mathrm{i}}\right)+\sum_{\mathrm{c}} \frac{\partial}{\partial \theta_{\mathrm{j}}} \log \mathrm{~S}_{\underline{\theta}}\left(\mathrm{y}_{\mathbf{i}}\right)=0 \quad \mathrm{j}=1, r, \ldots, \mathrm{p}
\end{aligned}
$$

معمولاً، محاسبهٔ جواب به كمك رايانه و روشهاى عددى امكانجذير است.
روشهای نيوتن-رافسون و تحوبخ تيلى نمادهاى زير را تعريف مى كنيم:

$$
\mathrm{L}_{\mathrm{i}}(\underline{\theta})=\mathrm{L}_{\underline{\theta}}\left(\mathrm{y}_{\mathrm{i}}, \delta_{\mathrm{i}}\right) \quad \mathrm{i}=\mathrm{i}, \mathrm{r}, \ldots, \mathrm{n}
$$

$$
\frac{\partial}{\partial \underline{\theta}} \log L(\underline{\theta})=\left(\frac{\partial}{\partial \theta_{1}} \log L(\underline{\theta}), \ldots, \frac{\partial}{\partial \theta_{p}} \log L(\underline{\theta})\right)^{\prime}
$$

$$
\frac{\partial^{r}}{\partial \underline{\theta}^{r}} \log L(\underline{\theta})=\left(\begin{array}{ccc}
\frac{\partial^{r}}{\partial \theta_{1} \partial \theta_{1}} \log L(\underline{\theta}) & \cdots & \frac{\partial^{r}}{\partial \theta_{1} \partial \theta_{\mathbf{p}}} \log L(\underline{\theta}) \\
\vdots & & \vdots \\
\frac{\partial^{r}}{\partial \theta_{\mathbf{p}} \partial \theta_{1}} \log L(\underline{\theta}) & \cdots & \frac{\partial^{r}}{\partial \theta_{\mathrm{p}} \partial \theta_{\mathbf{p}}} \log L(\underline{\theta})
\end{array}\right)
$$

در نتيجه معادلات درستنهايي به صورت زير خواهد بود:

$$
\begin{aligned}
& \sum_{i} \frac{\partial}{\partial \theta_{j}} \log L_{i}(\underline{\theta})=0 \quad j=1, \ldots, p \\
& \frac{\partial}{\partial \underline{\theta}} \log L(\underline{\theta})=0
\end{aligned}
$$

فرض كنيد بردار ') حول

$$
\begin{aligned}
& \sum_{i} \frac{\partial}{\partial \theta_{j}} \log L_{i}(\underline{\hat{\theta}})=\sum_{i} \frac{\partial}{\partial \theta_{j}} \log L_{i}\left(\hat{\theta}^{\circ}\right)+ \\
& \quad+\sum_{k}\left(\hat{\theta}_{k}-\hat{\theta}_{k}^{o}\right) \sum_{i} \frac{\partial^{r}}{\partial \theta_{k} \partial \theta_{j}} \log L_{i}\left(\hat{\theta}^{\circ}\right)+\cdots=0 \quad j=1, \ldots, p
\end{aligned}
$$

$$
\frac{\partial}{\partial \underline{\theta}} \log L(\underline{\hat{\theta}})=\frac{\partial}{\partial \underline{\theta}} \log L\left(\underline{\hat{\theta}}^{\circ}\right)+\frac{\partial^{\gamma}}{\partial \underline{\theta}^{r}} \log L\left(\underline{\hat{\theta}}^{\circ}\right)\left(\underline{\hat{\theta}}-\underline{\hat{\theta}}^{\circ}\right)+\cdots=0
$$

فرض كنيد شده است.

$$
\begin{equation*}
\underline{\hat{\theta}}^{\prime}=\underline{\hat{\theta}}^{\circ}+\left(-\frac{\partial^{r}}{\partial \underline{\theta}^{r}} \log \mathrm{~L}\left(\underline{\hat{\theta}}^{\circ}\right)\right)^{-1} \frac{\partial}{\partial \underline{\theta}} \log \mathrm{~L}\left(\underline{\hat{\theta}}^{\circ}\right) \tag{1}
\end{equation*}
$$

بردار ماتريس الطّلخع نمونه در

$$
\underline{i}\left(\underline{\hat{\theta}}^{\circ}\right)=-\frac{\partial^{r}}{\partial \underline{\theta}^{r}} \log L\left(\underline{\hat{\theta}}^{\circ}\right)
$$

$$
\begin{aligned}
& E\left(\underline{i}\left(\hat{\theta}^{\circ}\right)\right)=\left(-E \frac{\partial^{\gamma}}{\partial \theta_{\mathbf{k}} \partial \theta_{j}} \log L(\underline{\theta})\right)=\underline{I}(\underline{\theta}) \\
& \text { متذ كتر مىشود كه }
\end{aligned}
$$

$$
\underline{I}(\underline{\theta})=\sum_{i=1}^{n} \underline{I}_{i}(\underline{\theta})=n \underline{I}_{1}(\underline{\theta})
$$

در اينجها
 نمونه در (1) را با اطّلع فيشر جابهبجا كنيم، داريم:

$$
\begin{equation*}
\underline{\hat{\theta}}^{\prime}=\hat{\theta}^{\circ}+\underline{I}^{-1}\left(\underline{\hat{\theta}}^{\circ}\right) \frac{\partial}{\partial \underline{\theta}} \log L\left(\underline{\theta}^{\circ}\right) \tag{Y}
\end{equation*}
$$

REFERENCES

Rao, Linear Statistical Inference (1965), Section 5g.
Gross and Clark, Survival Distributions (1975), Chapter 6.
Kalbfleisch and The Statistical Analysis of Failure Time Data (1980), Section 3.7.
بازههاى اطمينان و آزمونها
براى دو برش تصادفى نوع اوكل با شرايط هموارى، رابطءّ زير را داريم:

$$
\underline{\hat{\theta}} \stackrel{\mathrm{a}}{\sim} \mathrm{~N}\left(\underline{\theta}, \underline{I}^{-1}(\underline{\theta})\right)
$$

معمزلاً اين نتيجه براى برش نوع دوم نيز برقرار است. ولى، اثبات آن مشكل است. نــــاد "
برا'ى آزمون فرض: H_{0} يا برایى ساختن باز روش استفاده مىشود: I روش والد: تحت فرض Ho د، داريم:

$$
\left(\underline{\hat{\theta}}-\underline{\theta}^{\circ}\right)^{\prime} \underline{l}\left(\underline{\theta}^{\circ}\right)\left(\underline{\hat{\theta}}-\underline{\theta}^{\circ}\right) \stackrel{\mathrm{a}}{\sim} \chi_{\mathrm{p}}^{\gamma}
$$

كه در اين رابطه از I(

$$
\begin{aligned}
& \text { Y Y Y } \\
& -r \log \frac{L\left(\underline{\theta}^{\circ}\right)}{L(\underline{\hat{\theta}})} \stackrel{a}{\sim} \chi_{p}^{r} \\
& \text { 「 } \\
& \frac{\partial}{\partial \theta} \log \mathrm{L}\left(\underline{\theta}^{\circ}\right)^{\prime} \underline{1}^{-1}\left(\underline{\theta}^{\circ}\right) \frac{\partial}{\partial \theta} \log \mathrm{L}\left(\underline{\theta}^{\circ}\right) \stackrel{\mathbf{a}}{\sim} \chi_{\mathbf{p}}^{\gamma}
\end{aligned}
$$

توجّي كنيد كــه روش رائـو از بـر آورد حداكـثر درســتنمايى (MLE) اسستفاده
 محاسب4 در حالت برش لازم است بـه جـهـا محاسبة ((1) بِ

REFERENCES
Rao, Linear Statistical Inference (1965), Section 6 e.
Efron and Hinkley, Biometrika (1978).

مثال| نمايم: تحت برش تصادفى، فرض كنيد n، تعداد مشـاهدات بريده نشده باشــــ، در اين صورت داريم:

$$
\begin{aligned}
L & =\lambda^{n_{u}} \exp \left(-\lambda \sum_{u} t_{i}-\lambda \sum_{c} c_{i}\right)=\lambda^{n} u \exp \left(-\lambda \sum_{i=1}^{n} y_{i}\right) \\
\log L & =n_{u} \log \lambda-\lambda \sum_{i=1}^{n} y_{i} \\
\frac{\partial}{\partial \lambda} \log L & =\frac{n_{u}}{\lambda}-\sum_{i=1}^{n} y_{i} \\
\hat{\lambda} & =\frac{n_{u}}{\sum_{i=1}^{n} y_{i}}
\end{aligned}
$$

تحليل بقاء

$$
\begin{aligned}
\frac{\partial^{r}}{\partial \lambda^{r}} \log L & =\frac{-n_{u}}{\lambda^{r}} \\
i(\underline{\lambda}) & =\frac{n_{u}}{\lambda^{r}}
\end{aligned}
$$

تو جّه شود، كه MLE 2 بر آورد تحت برش تصادفى- نيز هست.
براى ساختن بازههاى اطمينان و اجراى آزمونها، توزيع (الف) اگر مشاهدات بريده نشوند، داريم:

$$
\hat{\lambda}=\frac{n}{\sum_{i=1}^{n} T_{i}}=\frac{1}{\bar{T}}
$$

در رابطّ بالا: T T T T

$$
\mathbf{f}_{T_{i}}(t)=\lambda e^{-\lambda t}
$$

در نتيجه، $S=\sum_{i=1}^{n} T_{i}$ دارای چگالى گًاما به شرح زير است.

$$
f_{S}(t)=\frac{\lambda^{n}}{\Gamma(n)} t^{n-1} \cdot e^{-\lambda t}
$$

بنابراين:

$$
\frac{r n \lambda}{\hat{\lambda}} \sim \chi_{r n}^{r}
$$

يعنى: استفاده قرار داد (عللمت" ~ " به محنى همتوزيع بودن است). (ب) بر'ى برش نوع دوم مىتوان نوشت:

$$
\sum_{i=1}^{n} Y_{i}=T_{(1)}+T_{(r)}+\cdots+(n-r) T_{(r)}
$$

$$
=n T_{(1)}+(n-1)\left[T_{(r)}-T_{(i)}\right]+\cdots+(n-r+1)\left[T_{(r)}-T_{(r-1)}\right]
$$

با استفاده از نتايج فرايند پواسن و زمانهاى انتظار نمايى، داريم:

$$
n T_{(1)} \sim \lambda e^{-\lambda t}
$$

$$
(\mathrm{n}-1)\left[\mathrm{T}_{(\mathrm{Y})}-\mathrm{T}_{(\mathrm{l})}\right] \sim \lambda \mathrm{e}^{-\lambda \mathrm{t}}
$$

$(n-r+1)\left[T_{(r)}-T_{(r-1)}\right] g$ وا مستقل|"ند، هس داريهم:

$$
r \lambda \sum_{i=1}^{n} Y_{i} \sim \chi_{Y r}^{Y}
$$

 توزيع ${ }^{Y}$ ، استفاده كرد. در اين حالت، درجه آزادى دو برابر آمارههاى مرتّب بريده نشده است.
 نداريم. با توجّه به محاسبات قبل، داريم:

$$
\hat{\lambda}=\frac{n_{u}}{\sum_{i=1}^{n} y_{i}} \quad, \quad \frac{\partial^{\gamma}}{\partial \lambda^{\gamma}} \log L=\frac{-n_{u}}{\lambda^{\gamma}}
$$

در نتيجه: نمود، به شرط آن كه اين ميانگين معلوم باشل.
مى توان تقريب نرمال را با تبديل بر آورد بهبود بخشيد. به كمك روش دلتا (بعـــداً تعريف خوامد شد) و اين كه

تحليل بقاء

$$
\log \hat{\lambda} \stackrel{a}{\sim} \mathrm{~N}\left(\log \lambda, \frac{1}{\mathrm{n}_{\mathbf{u}}}\right)
$$

تو تَه شود كه واريانس حقيقت تجربی است كه، تبديل كردن يكى بر آورد -براي حذف وابستگى واريــانس بــه
 بخشـد.
REFERENCE
Epstein and Sobel, JASA (1953), is a classic paper.
 اختصار به صورت مى

$$
g(Y)=g(\mu)+(Y-\mu) g^{\prime}(\mu)+\cdots
$$

اگر از جملات درجات بالاتر حشُمهوشي كنيم، تقريب: به دست مى آيد. در اين عبارت " علاوه براين، اگر ($g(Y) \underset{\sim}{a}\left(g(\mu), \sigma^{\gamma}\left(g^{\prime}(\mu)\right)^{\gamma}\right)$

روش خندمتغيره نيز به كار مىرود. فرض كنيد رابطة زير را داريم:

$$
\binom{\mathrm{X}}{\mathrm{Y}} \sim\left(\binom{\mu_{\mathrm{x}}}{\mu_{\mathrm{y}}},\left(\begin{array}{cc}
\sigma_{\mathrm{x}}^{r} & \sigma_{\mathrm{xy}} \\
& \sigma_{\mathrm{y}}^{r}
\end{array}\right)\right)
$$

همجنين فرض مى كنيم، مايل به يافتن توزيع g(X,Y) هستيم. بسط آن بـــه شـرح زيـر است:

$$
g(X, Y)=g\left(\mu_{x}, \mu_{y}\right)+\left(X-\mu_{x}\right) \frac{\partial}{\partial x} g\left(\mu_{x}, \mu_{y}\right)+\left(Y-\mu_{y}\right) \frac{\partial}{\partial y} g\left(\mu_{x}, \mu_{y}\right)+\cdots
$$

در نتيجه، داريم:

$$
g(X, Y)=\left(g\left(\mu_{x}, \mu_{y}\right), \sigma_{x}^{r}\left(\frac{\partial}{\partial x} g\right)^{r}+r \sigma_{x y} \frac{\partial}{\partial x} g \frac{\partial}{\partial y} g+\sigma_{y}^{r}\left(\frac{\partial}{\partial y} g\right)^{r}\right)
$$

 توزيع مجانبى نرمال خواهد برد برد

$$
\text { به كار برد. } \operatorname{Var}(\bar{X} \bar{Y})
$$

مثال Y وايبل: اگر توزيع وايبل را با بارامتر $\gamma=\lambda^{\alpha}$ بنويسيم، مى تــوان مشــتقات آن را سادهتر محاسبه كرد.

$$
\begin{aligned}
& S(t)=e^{-(\lambda t)^{\alpha}}=e^{-\gamma t^{\alpha}} \\
& f(t)=\gamma \alpha t^{\alpha-1} \cdot e^{-\gamma t^{\alpha}}
\end{aligned}
$$

در اين صورت، داريم:

$$
\begin{aligned}
& L=(\gamma \alpha)^{n_{u}}\left(\prod_{u} t_{i}^{\alpha-1}\right) \exp \left(-\gamma \sum_{u} t_{i}^{\alpha}\right) \exp \left(-\gamma \sum_{c} c_{i}^{\alpha}\right) \\
& =(\gamma \alpha)^{n_{u}}\left(\prod_{u} t_{i}^{\alpha-1}\right) \exp \left(-\gamma \sum_{i=1}^{n} y_{i}^{\alpha}\right)
\end{aligned}
$$

$$
\log L=n_{u} \log \gamma+n_{u} \log \alpha+(\alpha-1) \sum_{u} \log t_{i}-\gamma \sum_{i=1}^{n} y_{i}^{\alpha}
$$

$$
\frac{\partial}{\partial \gamma} \log L=\frac{\mathbf{n}_{\mathrm{u}}}{\gamma}-\sum_{\mathrm{i}=1}^{\mathrm{n}} y_{\mathrm{i}}^{\alpha}
$$

$$
\frac{\partial}{\partial \alpha} \log \mathrm{L}=\frac{\mathrm{n}_{\mathrm{u}}}{\alpha}+\sum_{\mathrm{u}} \log \mathrm{t}_{\mathrm{i}}-\gamma \sum_{\mathrm{i}=1}^{\mathrm{n}} y_{i}^{\alpha} \log y_{i}
$$

بنابراين، بر آورد حدا كثر درستنمايى ($\hat{\text { (}) ~ ب ه ~ ش ر ح ~ ز ي ر ~ ا س ت: ~}$

$$
\begin{aligned}
& \hat{\gamma}=\frac{n_{u}}{\sum_{i=1}^{n} y_{i}^{\hat{\alpha}}} \\
& \frac{n_{u}}{\hat{\alpha}}+\sum_{u} \log t_{i}-\hat{\gamma} \sum_{i=1}^{n} y_{i}^{\hat{\alpha}} \log y_{i}=0
\end{aligned}
$$

اين معادلات را بايد به روش عددى حل كرد. روش نيوتن-رافسون بـه مــاتريس اطــلاع فيشر نمونة زير -كه در مسأله r بحاسبه شد - نياز دارد.

$$
-\frac{\partial^{\gamma}}{\partial \underline{\theta}^{r}} \log \mathrm{~L}=-\left(\begin{array}{cc}
\frac{\partial^{\gamma}}{\partial \gamma^{\gamma}} \log \mathrm{L} & \frac{\partial^{\gamma}}{\partial \gamma \partial \alpha} \log \mathrm{L} \\
& \frac{\partial^{\gamma}}{\partial \alpha^{\gamma}} \log \mathrm{L}
\end{array}\right)
$$

روش نيوتن-رافسون به مقادير اولّية مقادير اولّية́ معقول، روابط زير قابل استفاده است:

$$
S(t)=e^{-\gamma t^{\alpha}}
$$

$$
\log S(t)=-\gamma t^{\alpha}
$$

$$
\log (-\log S(t))=\log \gamma+\alpha \log t
$$

بنابراين، آگ. بر آورد自 $\log t_{i}$ مقدار انتخابى ممكن (
 كرد.

REFERENCE

Cohen, Technometrics (1965), treats the MLE and gives additional references.

بر آورد S(t). بر آورد تابع بقاء، يكي از اهداف أصلى تحليل بقاء است. $S(t)=\exp \left(-\int_{0}^{t} \lambda(u) d u\right)$

 معمولاً آل را با R(t) نشان مىدهند. براى مثال، دانستن قابلّيت اعتماد يكـ مؤلّفه در يكـ دستگاه بعد از هزار ساعت كار آن دستگاه.

با داشتن MLE، بر آورد تابع بقاء در دو حالت نمايى يا وايبل بسيار ساده است.

$$
\begin{aligned}
& \hat{S}(t)=e^{-\hat{\lambda} t} \\
& \hat{S}(t)=e^{-(\hat{\lambda} t)^{\hat{\alpha}}}=e^{-\hat{\gamma} t \hat{\alpha}}
\end{aligned}
$$

حالت نمايى

حالت وايبل
همجنين، براى هر مقذار ثابت t، ثابع بقاء (t)

 در حالت نمايع، داريم:

$$
\begin{aligned}
S(t) & =e^{-\lambda t} \\
\log [-\log S(t)] & =\log \lambda+\log t \\
\log [-\log \hat{S}(t)] & =\log \hat{\lambda}+\log t \\
\hat{\operatorname{Var}\{\log [-\log \hat{S}(t)]\}} \cong & \cong \frac{1}{n_{u}} \\
\operatorname{Sog}[t) & =e^{-\gamma t^{\alpha}} \\
\log [-\log S(t)] & =\log \gamma+\alpha \log t \\
\hat{\operatorname{Var}}\{\log [-\log \hat{S}(t)]\} & \left.\cong \frac{\log \hat{\gamma}+\hat{\alpha} \log t}{\hat{\gamma}^{\gamma}}+\hat{\gamma}\right)
\end{aligned}
$$

در حالت وايبل، داريم:
F.F تر كيب خطى آمارههاى مرتب

در اين بنحى فقط توزيم وايبل بررسى مىشود. روش كار كار قابل تعميم است.
 بر آورد یارامتر مبدأ و مقياس تبديل كرد. با دوباره نويسى داريم:

$$
P(Y>t)=e^{-(\lambda t)^{\alpha}}=\exp \{-\exp [\alpha(\log \lambda+\log t)]\}=\exp \left\{-\exp \left(\frac{\log t-\mu}{\sigma}\right)\right\}
$$

در روابط بالا، $\sigma=\frac{1}{\alpha}, \mu=-\log$ است. در اين صورت داريم:

$$
P(\log Y>t)=P\left(Y>e^{t}\right)=\exp \left\{-\exp \left(\frac{t-\mu}{\sigma}\right)\right\}
$$

 بر آورد دو پارامتر موقعيّت و مقياس وجود دارد.
فرض كنيد، مى خواهيم احتمال بقاء را براي زمان ثابت t احساب كنيم، داريم:

$$
S\left(t_{0}\right)=P(Y>t)=\exp \left\{-\exp \left(\frac{\log t_{0}-\mu}{\sigma}\right)\right\}
$$

با تعريف:

$$
S\left(t_{0}\right)=P\left(\log Y^{\circ}>0\right)=\exp \left\{-\exp \left(\frac{\mu_{0}}{\sigma}\right)\right\}
$$

در اين رابطه بتوانيم يك بازة اطهينان براى نسبت بازءٔ اطهينان براى S(to) به دست مى آيد. با استفاده از تركيب خحكى آمارههاى عرتب دآلـي داريم:

$$
\hat{\mu}=\sum_{i=1}^{n} a_{i} \log Y_{(i)}^{\circ} \quad, \quad \hat{\sigma}=\sum_{i=1}^{n} b_{i} \log Y_{(i)}^{\circ}
$$

در اين دو رابطه 1 مى شوند كه در يك شرط مجانبى بهينه صدق كنند. اين روش به خصوص براى برش نوع دوم بسيار مناسب است، زيرا داريم:

$$
\begin{aligned}
& a_{r+1}=\cdots=a_{n}=0 \\
& b_{r+1}=\cdots=b_{n}=0
\end{aligned}
$$

بنابراين، بر آوردها بر مبناي مشاهدات بريذه نشده انجام مى يذّيرد.

REFERENCE
Johns and Lieberman, Technometrics (1966).

توزيعهاى فرين
تابع زير يكى از سه توزيع حدّى فرين است.

$$
\mathrm{G}_{1}=\exp \{-\exp (-\mathrm{x})\} \quad-\infty<\mathrm{x}<\infty
$$

يك توزيع حذّى فرين، توزيعى امــت مـانند G، بـه گونـهاى كــه اگـر
 مناسب استاندارد شده باشند - در توزيع به G همڭراست. يكى ديگر از توزيعهاى حـــدّى به شرح زير است:

$$
G_{Y}(x)= \begin{cases}\exp \left\{-(-x)^{\alpha}\right\} & x<0 \\ 1 & x>0\end{cases}
$$

GY اگر دنبالة فوقانى توزيع وايبل به طور مناسب مقياسبندى شود، برابر با دنباله تعتــانى
 است. تابع توزيع GY از استاندارد كردن حدّ متغيّر زير به دست مى آيد

$$
\max \left\{X_{1}, \ldots, X_{n}\right\}-x_{0}
$$

$$
-\max \left\{X_{1}-x_{0}, \ldots, X_{n}-x_{0}\right\}=\min \left\{x_{0}-X_{1}, \ldots, x_{0}-X_{n}\right\}
$$

يك متغيّر تصادفى وايبل را مىتوان به صورت كمينه (يعنى اولّين شكست) تعداد زيادى زمانهای شكست بالقوه، تفسير كرد. دستگاه با شكست اولّين مؤلَفه از كار مىافتدن.
F. در اين بخش فرض مى شود كه بر آورد گرها داراى الگُى نمــايعى و بــدون بـرش برآورد گرهاى اريب اصلاح شده. در اين مبحث، روش كار داراى اهميـــت بيشـترى از

نتايج به دست آمهه است. فرض كنيد احتمال بقاء را به صورت زير بر آورد مى كنيه، كه در آن $\overline{\mathrm{T}}=\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{T}_{\mathrm{E}}$

$$
\hat{\mathbf{S}}(\mathrm{t})=\mathrm{e}^{-\hat{\lambda} t}=\mathrm{e}^{-t / \bar{T}}
$$

$$
E[\hat{S}(t)] \neq e^{-\lambda t}
$$

 فرض:

$$
\begin{aligned}
e^{-t / \bar{T}} & =e^{-t / \theta}+(\bar{T}-\theta) \frac{t}{\theta^{r}} e^{-t / \theta}+\frac{1}{r}(\bar{T}-\theta)^{r}\left[\left(\frac{t}{\theta^{r}}\right)^{r}-\frac{r t}{\theta^{r}}\right] e^{-t / \theta}+\cdots \\
E\left(e^{-t / \bar{T}}\right) & =e^{-t / \theta}+o+\frac{1}{r} \frac{\theta^{r}}{r}\left[\left(\frac{t}{\theta^{r}}\right)^{r}-\frac{r t}{\theta^{r}}\right] e^{-t / \theta}+\cdots \\
& =\left[1+\frac{1}{r_{n}}\left(\frac{t^{r}}{\theta^{r}}-\frac{r t}{\theta}\right)\right] e^{-t / \theta}+\cdots
\end{aligned}
$$

در نتيجهه:

$$
\widetilde{S}(t)=\frac{e^{-\hat{\lambda} t}}{1+\frac{1}{r n}\left(t^{r} \hat{\lambda}^{r}-r t \hat{\lambda}\right)}
$$

 دارد.

$$
\widetilde{S}(t)=E(U \mid S=s)=\left(1-\frac{t}{s}\right)^{n-1} \cdot I(t<s)
$$

بر آوردهاى بيزى. فقط يادآورى مى كنيم كه بر آوردهاى بيز را مىتوان بــا امـتـفاده از توزيع پيشين كاها به دست آورد.

REFERENCES

Basu, Technometrics (1964), derives UMVUEs.
Zacks and Even, JASA (1966), compares mean square errors.
Gaver and Hoel, Technometrics (1970), look at estimators in the framework of sampling from a Poisson process.

> ץ الحُوهاى رگرسيونى

(الف) الگُوى براى توزيع نمايىى بيشنهاد مىشود:

$$
E(T)=\alpha+\beta X
$$

$$
\begin{aligned}
& E(T)=\alpha e^{\beta X} \\
& \log E(T)=\log \alpha+\beta X
\end{aligned}
$$

در اينجا نيز از بر آورد حداكثر درستنمايى أستفاده مىشود.

REFERENCES

Feigl and Zelen, Biometrics (1965), discuss the uncensored case for both the linear and log - linear models.
Zippin and Armitage, Biometrics (1966), discusses the censored case
for the linear model.
Glasser, JASA (1967), discusses the censored case for the log - linear model.
Zippin and Lamborn, Stanford Univ. Tech. Report No. 20 (1969), discuss
the censored case for the log - linear model goodness of fit tests.
Mantel and Myers, JASA (1971), discuss the censored case for the multiple linear model.

$$
p=P(م ر) \quad, \quad 1-p=P(\text { برگاء) }
$$

نسبت P به صورت زير است:

$$
\mathrm{L}(y, \delta)=\left\{\begin{array}{lll}
\mathrm{p} \lambda \mathrm{e}^{-\lambda y} & \delta=1 & (\mathrm{H}) \\
(1-\mathrm{p})+\mathrm{pe}^{-\lambda y} & \delta=0 & (ب \mathrm{H})
\end{array}\right.
$$

در محاسبء بر آوردها از حداكثر درستنمايايى استفاده مى كنيّ.

 دارد S(t) مطابت شكل زير باشد:

$4 q$

$$
p(x)=P\left(\xi^{\xi} \mid x\right)=\frac{e^{\alpha+\beta x}}{1+e^{\alpha+\beta x}}
$$

اين تابع را لوجستيكى گويند و به صورت نمودار زير است:

$$
P(t)
$$

 صورت زير خواهد بود:

$$
L(y, \delta, x)=\left\{\begin{array}{lll}
p(x) \lambda \mathrm{e}^{-\lambda y} & \delta=1 & (\text { (بدون برش) } \\
1-p(x)+p(x) \mathrm{e}^{-\lambda y} & \delta=0 & (ب)
\end{array}\right.
$$

براى به دست آوردن بر آوردها از حداكثر درستنمايى استفاده مىشود.
REFERENCE
Farewell, Biometrika (1977).

فصل سوم
روشهاى ناپارامترى (يك نمونه)

I جدولهای طول عمر

 اين فاصلهها معمولاً يكى سال است.

بنا به تعريف، در يكـ جدول طول عمر موارد زير فرض مىشوند:

. I_{i} تعلاد $=d_{i}$
. $I_{i}{ }^{\text {a }}$ = ℓ_{i}
. $\mathrm{I}_{i} \mathrm{I}_{\mathrm{i}}^{\mathrm{o}} \mathrm{C}$ = w_{i}

$$
1-p_{i}=q_{i}
$$

 شامل wi است. مى نوواهيم S(S ا را بر آورد كنيم.
جدول ا. مهابكبَ نرخ بقاء هنج سالد

$$
\begin{aligned}
& \text { :مرجی: Cutler and Ederer, J. Chronic Dis. (1958). }
\end{aligned}
$$

1.1

در معرض خحطر قرار دارند (يعنى: در بازء مورد تو جّه). موأرد زير را داريم:

$$
n=n_{1}-\sum_{i=1}^{k} \ell_{i}-\sum_{i=1}^{k} w_{i}
$$

$$
d=\sum_{i=1}^{k} d_{i}
$$

$$
\hat{S}\left(\tau_{k}\right)=1-\frac{d}{n}
$$

 عيب دوش كاهش نمونه اين اســت كــه از الطّلاعــات موجـود در ار مى كند. اين يکى بر آورد اريب (نقعـانى) از
Y.I روش بيمه گرى

مىتوان احتمال بقاء داريم:

$$
\begin{aligned}
S\left(\tau_{k}\right) & =P\left(T>\tau_{k}\right) \\
& =P\left(T>\tau_{1}\right) \cdot P\left(T>\tau_{\gamma} \mid T>\tau_{1}\right) \cdots P\left(T>\tau_{k} \mid \tau_{k-1}\right) \\
& =P_{1} \cdot p_{\gamma} \cdots p_{k}
\end{aligned}
$$

در اين رابطه:
 بر آوردها، بر آورد كري
 يا خارج نشده باشلـ. با اين وجود، اگر متوسّط، افرادى كه در بازه I

$$
n_{i}^{\prime}=n_{i}-\frac{1}{r}\left(\ell_{i}+w_{i}\right) \quad, \quad \hat{q}_{i}=\frac{d_{i}}{n_{i}^{\prime}} \quad, \quad \hat{p}_{i}=1-\hat{q}_{i}
$$

در نتيجه، بر آورد روش بيمه گرى معادل: شامل 'n، ســتون (V) شـامل ك ك $\mathrm{S}(\Delta)=0, f 4$ استـ.
براى بهبودبخشى در ثيدا كردن جانشينى براى حجم نمونئ مؤثّر، تلاشتهاى زيــادى
 حاصل ضرب بر آوردگر كآلان -مير، روش مناسبى خواهد بود.
$\hat{S}\left(\tau_{k}\right)$ ار
براى بر آورد واريانس (̂)

$$
\log \hat{S}\left(\tau_{k}\right)=\sum_{i=1}^{k} \log \hat{p}_{i}
$$

با فزض

$$
\begin{aligned}
\operatorname{Var}\left(\log \hat{p}_{i}\right) & \cong \operatorname{Var}\left(\hat{p}_{i}\right)\left[\frac{d}{d p_{i}}\left(\log p_{i}\right)\right]^{\Gamma} \\
& \cong \frac{p_{i} q_{i}}{n_{i}^{\prime}} \cdot \frac{1}{p_{i}^{r}}=\frac{q_{i}}{n_{i}^{\prime} p_{i}}
\end{aligned}
$$

$$
\text { فرض مىشود } \log \hat{p}_{k} و \text { مستقل|ّند. }
$$

$$
\begin{aligned}
& \operatorname{Var}\left[\log \hat{S}\left(\tau_{k}\right)\right] \cong \sum_{i=1}^{k} \frac{q_{i}}{n_{i}^{\prime} p_{i}} \\
& \hat{\operatorname{Var}}\left[\log \hat{S}\left(\tau_{k}\right)\right]=\sum_{i=1}^{k} \frac{\hat{q}_{i}}{n_{i}^{\prime} \hat{p}_{i}}=\sum_{i=1}^{k} \frac{d_{i}}{n_{i}^{\prime}\left(n_{i}^{\prime}-d_{i}\right)}
\end{aligned}
$$

حال با استفادء دوباره از روش دلتا، داريم:

$$
\hat{\operatorname{Var}}\left[\hat{S}\left(\tau_{k}\right)\right] \equiv \hat{S}^{\gamma}\left(\tau_{k}\right) \sum_{i=1}^{k} \frac{d_{i}}{n_{i}^{\prime}\left(n_{i}^{\prime}-d_{i}\right)}
$$

 (نمرده يا گم يا خارج نشدراند).
 $\left.I_{i}=\left(\tau_{i-1}, \tau_{i}\right]^{2}\right]^{2}$
 قبلى ا بردسى ميشوند.

REFERENCES

Berkson and Gage, Proc. Staff Meet. Mayo Clin. (1950).
Cutler and Ederer, J. Chronic Dis. (1958).
Elveback, JASA (1958).
Chiang, Stochastic Processes in Biostatistics (1968), Chapter 9.
Breslow and Crowley, Ann. Stat. (1974).
r بر آور
 تفاوت كه طول بازههاى يا بريده نشده مرتبه أمام انست.

$\begin{array}{llllll}\tau_{1} & \tau_{r} & \tau_{r} & \tau_{f} & \tau_{n-1} & \tau_{n}\end{array}$
نماد " × ": نشانگر بريده نشده و نماد " ه ": نشانگر بريده شده هستند.
 تا
 اگر
 همحْنين زمان بازه I زنده باشند). به عبارت معادل:

$$
p_{i}=P\left(T>\tau_{i} \mid T>\tau_{i-1}\right) \quad, \quad q_{i}=1-p_{i}
$$

بر آوردهاى

$$
\hat{p}_{i}=1-\hat{q}_{i}=\left\{\begin{array}{lll}
1-\frac{1}{n_{i}} & \delta_{(i)}=1 & (ب ر ي د ه ن) \\
1 & \delta_{(i)}=0 & (ب ـ)
\end{array}\right.
$$

حال، برآورد PL، در صورت نبود تكرار، به شرح زير امست:

$$
\hat{S}(t)=\prod_{y_{(i)} \leq t} \hat{p}_{i}=\prod_{u: y_{(i)} \leq t}\left(1-\frac{1}{n_{i}}\right)=\prod_{y_{(i)} \leq t}\left(1-\frac{1}{n_{i}}\right)^{\delta(i)}
$$

$$
=\prod_{y_{(i)} \leq t}\left(1-\frac{1}{n-i+1}\right)^{\delta(i)}=\prod_{y_{(i)} \leq t}\left(\frac{n-i}{n-i+1}\right)^{\delta}(i)
$$

REFERENCE

Kaplan and Meier, JASA (1958).

يادآوريهاى لازم:

 حدّى حاصلضرب به شكل زير در آيد:

$$
\left(1-\frac{1}{m}\right)\left(1-\frac{1}{m-1}\right) \cdots\left(1-\frac{1}{m-d-1}\right)=\frac{m-d}{m}=1-\frac{d}{m}
$$

(ب) اگر مشاهدات بريده شده و بريده نشده تكرارى باشند، مشاهدات بريده نشده را تبل از مشاهدات بريده شده در نظر بگيريد.
 بهطورى كه در باللا تعريف شد، دأريم:

$$
\lim _{t \rightarrow \infty} \hat{\mathbf{S}}(\mathrm{t})>0
$$

با تو جه به يادآوريهاى (الف) و (ب)،
حيات را نشان مىدهند. همحنين:

$n_{j}=\operatorname{LQ} R\left(y_{(j)}^{\prime}\right)$ تعداد
dj $=y_{(j)}^{\prime}$ تعداد فوت شدهها در زمان
با توجّه به موارد بالا، برآورد PL براى حالنت تكرارى، به شرح زير است:

$$
\hat{S}(t)=\prod_{u: y_{(j)}^{\prime} \leq t}\left(1-\frac{d_{j}}{n_{j}}\right)=\prod_{y_{(j)}^{\prime} \leq t}\left(1-\frac{d_{j}}{n_{j}}\right)^{\delta^{\prime}(j)}
$$

مثال. مطالعهُ درماذ AML: يكى آزمايش بالينى به منظور ارزشيابى تـــأثير يــى روش شيميايى روى بيمارى (AML) صورت گرفته است. بعد از رســيدن بـه مر حلــهُ خــاصىّ،

 بهبودى مىشود.
 صفته بعد بوده است. طول بهبودى كامل برحسب هفته است.

$$
\begin{aligned}
& A, I r, i r^{+}, I A, F r, r A^{+}, r\left|, r F, F \Delta^{+}, F A,|\varepsilon|^{+}\right. \\
& \Delta, \Delta, \wedge, A, I F, I s^{+}, F r, F V, r o, r r, F r, F \Delta
\end{aligned}
$$

گروه تيمار

بر آوردگر PL (كایلان -مير) براى گروه تيمار، به صورت زير محاسبه مىشود:

$$
\hat{S}(0)=1
$$

$$
\hat{S}(9)=\hat{S}(0) \times \frac{10}{11}=0,91
$$

$$
\hat{S}(1 r)=\hat{S}(q) \times \frac{q}{10}=0, \lambda r
$$

$$
\hat{S}(I \Lambda)=\hat{S}(I r) \times \frac{V}{\Lambda}=0, V r
$$

$$
\hat{S}(Y r)=\hat{S}(\backslash \Lambda) \times \frac{\varepsilon}{V}=0, \varepsilon 1
$$

$$
\hat{S}(r)=\hat{S}(r r) \times \frac{F}{\Delta}=0, q q
$$

$$
\begin{aligned}
& \hat{S}(r f)=\hat{S}(r I) \times \frac{r}{f}=0, r V \\
& \hat{S}(F \mathcal{A})=\hat{S}(r f) \times \frac{1}{r}=0,1 \wedge
\end{aligned}
$$

در نمودار (艹)، بر آورد گرهاى PL برا'ى گروه تيمار و گروه شاهد نشان داده شده است.

AML نمودار r بر آورد تابع بقاء براى مطالعهُ درمان
REFERENCE
Embury et al., West. J. Med. (1977).

واريـانس S(t): با استفاده از روش هحاسبئ واريانس بيمه گرى و در حالت بدون تكرار،
داريّم:

$$
\begin{aligned}
& \hat{\operatorname{Var}[\hat{S}(t)]}=\hat{S}^{\gamma}(t) \sum_{y_{(i)} \leq t} \frac{\hat{q}_{i}}{n_{i} \hat{p}_{i}} \\
&=\hat{S}^{\gamma}(t) \sum_{y_{(i)} \leq t} \frac{\delta_{(i)}}{(n-i)(n-i+1)} \\
& \hat{\operatorname{Var}[\hat{S}(t)]}=\hat{S}^{\gamma}(t) \sum_{y_{(i)}^{\prime} \leq t} \frac{\delta_{(j)}^{\prime} d_{j}}{n_{j}\left(n_{j}-d_{j}\right)}
\end{aligned}
$$

در حالت وجود تكرار، داريم:

ایِن تساويها به روابط گرينوود معروف است.
بررسى اين روابط به روشنى جذول طول عمر نيست، زيرا تعــداد جمــلات حــاصلضرب تصادفى است. همحنين، بيشتر جملات آن وابستهاند. با آين وجود، بعداً به صورت نـر تقريب هجانبى واريانس (t) كي تحقيق خواهد شد. توماس و مير، سه روش مختلف ساختن بازة اططمينان را مطالعه كردهاند. در يكىى از
 فصل ششهم؛ بخش (\$.1)، مراجعه فرمايِد.
REFERENCE
Thomas and Grunkemeier, JASA (1975).
l.Y الگگوريتم تجديل نظر در توزيع به راست افرون، روش ديگرى را براى محاسبهٔ بر آورد گر PL معرفّى كرد. آن را بـــا ميــال (AML)

بر آورد معمولى S(t)، با فرض بريذه نشدن به هر يكى از زمانهاى مشاهله شده، جـــرم

 بنابراين، جرم (r) شدةٔ (
 مى كنيم. تتايج مربوط به PL در جدول صفته بعد آمده است:

REFERENCE

Efron, Proc. Fifth Berkeley Symp. IV (1967), pp. 831-853.

> خ.Y خودساز گارى
 مى منامند، اگر به شرح زير باشد:

$$
\begin{align*}
\hat{\operatorname{SC}(t)=\frac{1}{n}\left[\sum_{i=1}^{n}(1) \cdot I\left(y_{(i)}>t\right)\right.}+ & \sum_{i=1}^{n}(o) \cdot l\left(y_{(i)} \leq t, \delta_{(i)}=1\right) \\
& +\sum_{i=1}^{n} \frac{\hat{\operatorname{SC}(t)}}{\hat{\operatorname{SC}\left(y_{(i)}\right)}} \mathrm{l}\left(y_{(i)} \leq t, \delta_{(i)}=0\right) \tag{f}
\end{align*}
$$

كه در آن

$$
\begin{equation*}
\hat{S C}(t)=\frac{1}{n}\left[N_{y}(t)+\sum_{y_{(i)} \leq t}(1-\delta(i)) \frac{\hat{S C}(t)}{\hat{\operatorname{SC}\left(y_{(i)}\right)}}\right] \tag{}
\end{equation*}
$$

$$
\text { كه در آن } \mathrm{N}_{\mathrm{y}}(\mathrm{t})=\#\left(\mathrm{y}_{\mathrm{i}}>\mathrm{t}\right.
$$

 برآورد گر PL تنها برآورد

01
روشهاى نايارامترى (يك نمونه)

تحليل بقاء
با توجه به رابطة (ه)، بر آوردگر خودساز گار در شرايط زير صدق مى كند:

$$
\begin{align*}
& \hat{S C}(t)=\frac{N_{y}(t)}{n-\sum_{y_{(i)} \leq t}\left(\hat{S^{1-\delta}(i)}\right)} \\
& =\left\{\right.
\end{align*}
$$

$$
\hat{S}(t)=1-\hat{S C}(t)
$$

همهنين، (بنابراين، تنها كافى است نشان دهيم كه جهشُ تابع Y(t) تابع S(t) (الف) اگر (k)

$$
\begin{aligned}
N_{y}\left(\overline{y_{(k)}}\right)-1 & =N_{y}\left(y_{(k)}\right)=\hat{\operatorname{SC}}\left(y_{(k)}\right)\left[n-\sum_{i=1}^{k}\left(\frac{1-\delta_{(i)}}{\hat{S C}\left(y_{(i)}\right)}\right)\right] \\
& =\hat{S C}\left(y_{(k)}\right)\left[n-\sum_{i=1}^{k-1}\left(\frac{1-\delta_{(i)}}{\hat{S C}\left(y_{(i)}\right)}\right)\right]-1 \\
& =\hat{S C}\left(y_{(k)}\right)\left[\frac{N_{y}\left(y_{(k)}-1\right)}{\hat{S C}\left(y_{(k)}-1\right)}\right]-1
\end{aligned}
$$

Δr

در نتيجه:

$$
\hat{S C}\left(y_{(k)}\right)=\hat{S C}\left(y_{(k)}^{-}\right)
$$

t = y $y_{(k)}{ }_{\text {ی }}$ با
(ب) اگر (k)

$$
\begin{aligned}
\hat{S C}\left(y_{(k)}\right) & =\frac{N_{y}\left(y_{(k)}\right)}{n-\sum_{i=1}^{k}\left(\frac{1-\delta_{(i)}}{\hat{S C}\left(y_{(i)}\right)}\right)}=\frac{N_{y}\left(y_{(k)}\right)}{N_{y}\left(y_{(k)}^{-}\right)} \times \frac{N_{y}\left(y_{(k)}^{-}\right)}{n-\sum_{i=1}^{k-1}\left(\frac{1-\delta_{(i)}}{\hat{S C}\left(y_{(i)}\right)}\right)} \\
& =\frac{n-k}{n-k+1} \hat{S C}\left(y_{(k)}^{-}\right)
\end{aligned}
$$

$$
\frac{\hat{\operatorname{SC}\left(y_{(k)}\right)}}{\hat{\operatorname{SC}\left(y_{(k)}\right)}}=\frac{n-k}{n-k+1}
$$

كه در نقطة الگوريتم خودساز گارى برآوردگر ساده زير را در نظر مى گیريـم:

$$
\hat{S}^{\mathrm{o}}(\mathrm{t})=\frac{\mathrm{N}_{\mathrm{y}}(\mathrm{t})}{\mathrm{n}}
$$

اين بر آورد گر را با استفاده از رابطة باز گشتى زير مىتوان بهبود بخشيد:

$$
\hat{S}^{(j+1)}(t)=\frac{1}{n}\left[N_{y}(t)+\sum_{y_{(i) \leq t}}\left(1-\delta_{(i)}\right) \frac{\hat{S}^{(j)}(t)}{\hat{S}^{(j)}\left(y_{(i)}\right)}\right]
$$

مىشود. اين الگوريتم محاسباتى مى تواند در مسائل كلّى برش مفيد باشد. REFERENCES

Efron, Proc. Fifth Berkeley Symp. IV (1967).
Turnbull, JASA (1974).
\qquad JRSS B (1976).
Y.Y بر آورد گر حداً كثر درستنمايىى تعميميافته در شرايط معمولى، فرض مى كنيم كه مشاهدء Xِ X دارای در رابطة: در دست آوردن بر آورد گر حدآ كثر درستنمايى معادل حدّا كثر كردن

 نيكودين PY نسبت به

$$
f\left(\underline{x} ; P_{Y}, P_{\gamma}\right)=\frac{d P_{1}(\underline{x})}{d\left(P_{1}+P_{\gamma}\right)}
$$

اندازة احتمال رابطه زير براى هر P

$$
\begin{equation*}
f(\underline{x} ; \hat{P}, P) \geq f(\underline{x} ; P, \hat{P}) \tag{Y}
\end{equation*}
$$

اين تعميم، شامل تعريف معمولى MLE نيز هست. بر آورد گر كآلان -مير PL، مقدار GMLE تابع F را ارائه مى كند. اثبات به شــرح
زير است:

 كافى است، آن را براى P هايى امتحان كنيم كه
زير در مى آيد:

$$
\hat{P}(\underline{x}) \geq P(\underline{x})
$$

چحون

 هى كند. براى حنين Pى، رابطش زير را داريم:

$$
\begin{align*}
L & =P\left\{\left(y_{1}, \delta_{1}\right), \ldots,\left(y_{n}, \delta_{n}\right)\right\} \\
& =\prod_{i=1}^{n} P\left\{T=y_{(i)}\right\}^{\delta(i)} P\left\{T>y_{(i)}\right\}^{1-} \tag{i}
\end{align*}
$$

فرض كنيد P احتمال میدهد. برای مقادير ثابت شُـرط $1=1$ (i)
 حداكثر L به صورت زير الست:

$$
\prod_{i=1}^{n} p_{i}^{\delta}(i)\left(\sum_{j=1}^{n} p_{j}\right)^{1-\delta_{(i)}}
$$

با توجّه به مسألّه ((1)، ديده مىشود كه رابطءّ (ه) به ازاء مقدار زير حدّآكثر مىشود:

$$
\hat{p}_{i}=\prod_{j=1}^{i-1}\left(1-\frac{\delta_{(i)}}{n-j+1}\right) \frac{\delta_{(i)}}{n-i+1}
$$

كه اين متناظر با S است. اثبات در حالت تكرارى بهطور مشابه انجام مى شود.
REFERENCES
Kiefer and Wolfowitz, Ann. Math. Stat. (1956).
Kaplan and Meier, JASA (1958).
Johansen, Scand. J. Stat. (1978).
F.Y مى

$$
S(t)=S_{T}(t)=P(T>t)=1-F(t)
$$

تابع S* را به صورت زير تعريف مى كنيم:

$$
\begin{aligned}
S^{*}(t) & =S_{Y}(t)=P(Y>t)=1-H(t) \\
& =[1-F(t)][1-G(t)]
\end{aligned}
$$

توأبع بقاء جزئى را به صورت زير تعريف مى كنيم:

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{u}}^{*}(\mathrm{t})=\mathrm{P}\{\mathrm{Y}>\mathrm{t}, \delta=\mathrm{l}\}=\int_{\mathrm{t}}^{\infty}[1-\mathrm{G}(\mathrm{u})] \mathrm{dF}(\mathrm{u}) \\
& \mathrm{S}_{\mathrm{c}}^{*}(\mathrm{t})=\mathrm{P}\{\mathrm{Y}>\mathrm{t}, \delta=0\}=\int_{\mathrm{t}}^{\infty}[1-\mathrm{F}(\mathrm{u})] \mathrm{dG}(\mathrm{u})
\end{aligned}
$$

در اين صورت داريم:

$$
\mathrm{s}^{*}(\mathrm{t})=\mathrm{S}_{\mathrm{u}}^{*}(\mathrm{t})+\mathrm{S}_{\mathrm{c}}^{*}(\mathrm{t})
$$

 (الف) فرض كنيد (S (

$$
\begin{aligned}
\int_{0}^{t} \frac{d S_{u}^{*}(u)}{S_{u}^{*}(u)+S_{c}^{*}(u)} & =\int_{0}^{t} \frac{-[1-G(u)] d F(u)}{[1-F(u)][1-G(u)]} \\
& =\int_{0}^{t} \frac{-d F(u)}{1-F(u)}=\left.\log [1-F(u)]\right|_{0} ^{t}=\log S(t)
\end{aligned}
$$

بنابراين داريم:

$$
S(t)=\exp \left[\int_{0}^{t} \frac{d S_{u}^{*}(u)}{S_{u}^{*}(u)+S_{c}^{*}(u)}\right]
$$

(ب) فرض كنيد:

$$
\begin{aligned}
\log \frac{S_{u}^{*}\left(t^{+}\right)+S_{c}^{*}\left(\mathrm{t}^{+}\right)}{S_{u}^{*}\left(\mathrm{t}^{-}\right)+\mathrm{S}_{\mathrm{c}}^{*}\left(\mathrm{t}^{-}\right)} & =\log \frac{\left[1-F\left(\mathrm{t}^{+}\right)\right]\left[1-G\left(\mathrm{t}^{+}\right)\right]}{\left[1-F\left(t^{-}\right)\right]\left[1-G\left(t^{-}\right)\right]} \\
& =\log \frac{\left[1-F\left(\mathrm{t}^{+}\right)\right]}{\left[1-F\left(t^{-}\right)\right]}=\log \frac{\mathrm{S}\left(\mathrm{t}^{+}\right)}{\mathrm{S}\left(\mathrm{t}^{-}\right)}
\end{aligned}
$$

ΔV
روشهاى نایإرامترى (يك نمرنه)

بنابراين:

$$
\mathrm{S}\left(\mathrm{t}^{+}\right)=\mathrm{S}\left(\mathrm{t}^{-}\right)=\exp \left\{\log \left[\frac{\mathrm{S}_{\mathrm{u}}^{*}\left(\mathrm{t}^{+}\right)+\mathrm{S}_{\mathrm{c}}^{*}\left(\mathrm{t}^{+}\right)}{\mathrm{S}_{\mathrm{u}}^{*}\left(\mathrm{t}^{-}\right)+\mathrm{S}_{\mathrm{c}}^{*}\left(\mathrm{t}^{-}\right)}\right]\right\}
$$

اگر توزيعهاى G F جهش مشتر ك نداشته باشند، آنگاه از (الفـ) و (ب) رابطـــة زيــر نتيجه مى شود:

$$
\begin{equation*}
S(t)=\exp \left\{c \int_{0}^{t} \frac{\mathrm{dS}_{\mathrm{u}}^{*}(\mathrm{u})}{\mathrm{S}_{\mathrm{u}}^{*}(\mathrm{u})+\mathrm{S}_{\mathrm{c}}^{*}(\mathrm{u})}+\mathrm{d} \sum_{\mathrm{u} \leq t} \log \left[\frac{\mathrm{~S}_{\mathrm{u}}^{*}\left(\mathrm{u}^{+}\right)+\mathrm{S}_{\mathrm{c}}^{*}\left(\mathrm{u}^{+}\right)}{\mathrm{S}_{\mathrm{u}}^{*}\left(\mathrm{u}^{-}\right)+\mathrm{S}_{\mathrm{c}}^{*}\left(\mathrm{u}^{-}\right)}\right]\right\} \tag{10}
\end{equation*}
$$

 نقاط جهش S مى توان به صورت تابعى از

$$
\mathrm{S}(\mathrm{t})=\psi\left(\mathrm{S}_{\mathrm{u}}^{*}, \mathrm{~S}_{\mathrm{c}}^{*} ; \mathrm{t}\right)
$$

رابطءّ يترسن ثابت مى كند، كه بر آورد گا PL مربوط به شرح زير است. دو تابع توزيع تجربى را به صورت زير تعريفس مى كنيم:

$$
\begin{aligned}
& \hat{S}_{\mathrm{u}}^{*}(\mathrm{t})=\frac{1}{n} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{I}\left(\mathrm{Y}_{\mathrm{i}}>\mathrm{t}, \delta_{\mathrm{i}}=\mathrm{l}\right) \\
& \hat{\mathrm{S}}_{\mathrm{c}}^{*}(\mathrm{t})=\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{I}\left(\mathrm{Y}_{\mathrm{i}}>\mathrm{t}, \delta_{\mathrm{i}}=0\right)
\end{aligned}
$$

مىتوان ديد كه بر آورد گر PL برابر زير است:

$$
\hat{\mathrm{S}}(\mathrm{t})=\psi\left(\hat{\mathrm{S}}_{\mathrm{u}}^{*}, \hat{\mathrm{~S}}_{\mathrm{c}}^{*} ; \mathrm{t}\right)
$$

به شرط آن كه هر تكرار بين مشاهدات بريده شده و نشده به عنوان يكـ مشـــاهلـهُ بريــده نشده بعد از بـرش در نظـر گرفتـه شــود. تو جــه شــود كــه ($\psi\left(\hat{\mathrm{S}}_{\mathrm{u}}^{*}, \hat{\mathrm{~S}}_{\mathrm{c}}^{*} ; \mathrm{t}\right)$ بنابر قضية گليونكو - كانتلى، داريم:
 از

$$
\left\|S_{u}^{*}-S_{u}^{* *}\right\|=\sup _{t}\left|S_{u}^{*}(t)-S_{u}^{* *}(t)\right| \rightarrow 0
$$

$$
\left\|\mathrm{S}_{\mathrm{c}}^{*}-\mathrm{S}_{\mathrm{c}}^{* *}\right\| \rightarrow 0
$$

$$
\psi\left(\mathrm{S}_{\mathrm{u}}^{*}, \mathrm{~S}_{\mathrm{c}}^{*} ; \mathrm{t}\right) \rightarrow \psi\left(\mathrm{S}_{\mathrm{u}}^{* *}, \mathrm{~S}_{\mathrm{c}}^{* *} ; \mathrm{t}\right)
$$

$$
\hat{\mathbf{S}}(\mathrm{t})=\psi\left(\hat{\mathrm{S}}_{\mathrm{u}}^{*}, \hat{\mathrm{~S}}_{\mathrm{c}}^{*} ; \mathrm{t}\right) \xrightarrow{\mathrm{a} . \mathrm{s}} \psi\left(\mathrm{~S}_{\mathrm{u}}^{*}, \mathrm{~S}_{\mathrm{c}}^{*} ; \mathrm{t}\right)=\mathrm{S}(\mathrm{t})
$$

REFERENCE

Peterson, JASA (1977).
「 \dagger نرمال مجانبي

$$
Z_{n}(t)=\sqrt{n}[\hat{S}(t)-S(t)] \xrightarrow{w} Z(t)
$$

كه در آن Z(t Z يكى فرايند گاوسى با گثتاورهاي زير است:

$$
E[Z(t)]=0
$$

$$
\begin{aligned}
\operatorname{Cov}\left[Z\left(t_{1}\right), Z\left(t_{\varphi}\right)\right] & =S\left(t_{1}\right) \cdot S\left(t_{\varphi}\right) \times \int_{0}^{t_{1} \wedge t_{\varphi}} \frac{d F_{u}(u)}{[1-H(u)]^{\gamma}} \\
& =S\left(t_{1}\right) \cdot S\left(t_{\varphi}\right) \times \int_{0}^{t_{1} \wedge t_{\varphi}} \frac{d F_{u}(u)}{[1-F(u)][1-H(u)]}
\end{aligned}
$$

$$
\begin{aligned}
& \hat{S}_{u}^{*}(t) \xrightarrow{\text { a.s }} S_{u}^{*}(t) \\
& \hat{S}_{c}^{*}(t) \xrightarrow{\text { a.s }} S_{c}^{*}(t) \quad t \text { بهور يكنواخت در }
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{F}_{\mathrm{u}}(\mathrm{t}) & =\mathrm{P}(\mathrm{Y} \leq \mathrm{t}, \delta=\mathrm{l})=\int_{0}^{\mathrm{t}}[1-\mathrm{G}(\mathrm{u})] \mathrm{dF}(\mathrm{u}) \\
\mathrm{I}-\mathrm{H}(\mathrm{u}) & =[1-\mathrm{F}(\mathrm{u})][\mathrm{l}-\mathrm{G}(\mathrm{u})]
\end{aligned}
$$

اثبات شامل تابع نرخ شكــت است، كه در بخش بعدى به آلن مى هردازيم.

يعنى: به ازاء هر هستند و دنبالة اندازههاى احتمال
 يك حالت خاص نتيجهٔ بالا، به شرح زير است:

$$
\hat{S}(t) \stackrel{a}{\sim} N\left(S(t), \frac{S^{\gamma}\left(t_{\gamma}\right)}{n} \int_{0}^{t} \frac{d F_{u}(u)}{[1-H(u)]^{\gamma}}\right)
$$

 H(t) = P(Y Ct$), F_{u}(t)=P(Y \leq t, \delta=1)$

$$
\begin{aligned}
& d \hat{F}_{u}\left(y_{(i)}\right)=\frac{\delta_{(i)}}{n} \\
& 1-\hat{H}\left(y_{(i)}\right)=1-\frac{i}{n}=\frac{n-i}{n} \\
& 1-\hat{H}\left(y_{(i)}^{-}\right)=1-\frac{i-1}{n}=\frac{n-i+1}{n}
\end{aligned}
$$

اگر در واريانس مجانبى بهجاى بر آوردهاى بالا را در آن قرار دهيم؛ داريم:

$$
\begin{aligned}
\operatorname{AVar}[\hat{S}(t)] & =\frac{\hat{S}^{\gamma}(t)}{n} \sum_{y_{(i)} \leq t} \frac{\delta_{(i)} / n}{[(n-i) / n][(n-i+1) / n]} \\
& =\hat{S}^{\gamma}(t) \sum_{y_{(i)} \leq t} \frac{\delta_{(i)}}{(n-i)(n-i+1)}
\end{aligned}
$$

كه دقيقاً رابطةُ گرينوود است. (AVar به معنى واريانس مجانبى است).
REFERENCES
Billingsley, Convergence of Probability Measures (1968), for weak convergence. Breslow and Crowley, Ann. Stat. (1974).
r بر آورد گرهای تابع نرخ شكست "مىدانيم تابع نرخ شكست به صورت: مشكلات بر آورد (t) λ معادل بر آورد تابع چگالى است. حالت سادهتر، بر آورد تابع نــرخ

 مى كنيم تكرار وجود ندارد. نلسون، (t) را را به صورت زير بر آورد مى كند:

$$
\hat{\Lambda}(t)=\hat{\Lambda}_{Y}(t)=\sum_{y_{(i)} \leq t} \frac{\delta_{(i)}}{n-i+1}
$$

بر آورد یترسن Λ به شرح زير است:

$$
\hat{\Lambda}_{1}(t)=\sum_{y_{(i)} \leq t}-\log \left(1-\frac{\delta_{(i)}}{n-i+1}\right)
$$

 است. بر آورد گر پترسن متناظر بر آوردگر PL تابع بقاء است. داريم:

$$
\hat{S}_{1}(t)=e^{-\hat{\Lambda}_{1}(t)}=\prod_{y_{(i)} \leq t}\left(1-\frac{\delta_{(i)}}{n-i+1}\right)=\hat{S}(t)
$$

در حالى كه، بر آورد نلسون متناظر يک بر آوردگر متفاوت ديگر تابع بقاست.

$$
\hat{S}_{Y}(t)=e^{-\hat{\Lambda}_{Y}(t)}
$$

 و نشان مىدهند كه در بعضى از مواقع داراى ميانگين مربع خطاى كو

REFERENCES

Nelson, J. Qual. Tech. (1969).
\qquad , Technometrics (1972).
Peterson, JASA (1977).
Fleming and Harrington, unpublished manuscript (1979),

نرمال مجانبى

از نتايج استاندارد توابع توزيع، داريم:

$$
\begin{aligned}
& \sqrt{n}\left[\hat{F}_{\mathrm{u}}(\mathrm{t})-\mathrm{F}_{\mathrm{u}}(\mathrm{t})\right] \xrightarrow{\mathrm{W}} \mathrm{Z}_{\mathrm{F}_{\mathrm{u}}}(\mathrm{t}) \\
& \sqrt{\mathrm{n}}[\hat{\mathrm{H}}(\mathrm{t})-\mathrm{H}(\mathrm{t})] \xrightarrow{\mathrm{W}} \mathrm{Z}_{\mathrm{H}}(\mathrm{t})
\end{aligned}
$$

كه:

$$
\begin{aligned}
& \hat{\Lambda}(t)=\int_{0}^{t} \frac{d \hat{d}_{u}(u)}{1-\hat{H}\left(u^{-}\right)} \\
& =\int_{0}^{t}\left[\frac{1}{1-H}+\frac{\hat{H}-H}{(1-H)^{r}}+\cdots\right]\left[d F_{u}+d\left(\hat{F}_{u}-F_{u}\right)\right]
\end{aligned}
$$

$$
=\int_{0}^{t} \frac{d F_{u}}{1-H}+\int_{0}^{t} \frac{\hat{H}-H}{(1-H)^{r}} d F_{u}+\int_{0}^{t} \frac{d\left(\hat{F}_{u}-F_{u}\right)}{1-H}+\cdots
$$

$$
=\Lambda(t)+\int_{0}^{t} \frac{\hat{H}-H}{(1-H)^{r}} d F_{u}+\frac{\left(\hat{F}_{u}-F_{u}\right)(t)}{1-H(t)}-\int_{0}^{t} \frac{\hat{F}_{u}-F_{u}}{(1-H)^{r}} d H+\cdots
$$

تساوى آخر از انتگرال جزء به جزء به دست مى آيل. با تبديل و ضرب در

$$
\begin{aligned}
\sqrt{n}[\hat{\Lambda}(t)-\Lambda(t)]= & \int_{0}^{t} \frac{\sqrt{n}(\hat{H}-H)}{(1-H)^{r}} d F_{u} \\
& +\frac{\sqrt{n}\left(\hat{F}_{u}-F_{u}\right)(t)}{1-H(t)}-\int_{0}^{t} \frac{\sqrt{n}\left(\hat{F}_{u}-F_{u}\right)}{(1-H)^{r}} d H+\cdots
\end{aligned}
$$

$$
\xrightarrow[\rightarrow]{\mathbf{w}} \int_{:}^{t} \frac{\mathrm{Z}_{\mathrm{H}}}{(1-\mathrm{H})^{r}} d \mathrm{~F}_{\mathrm{u}}+\frac{\mathrm{Z}_{\mathrm{F}_{\mathrm{u}}}(\mathrm{t})}{1-\mathrm{H}(\mathrm{t})}-\int_{0}^{\mathrm{t}} \frac{\mathrm{Z}_{\mathrm{F}_{\mathrm{u}}}}{(1-\mathrm{H})^{r}} \mathrm{dH}=\mathrm{Z}_{\Lambda}(\mathrm{t})
$$

حذ Z است. داريم:

$$
E\left[Z_{\Lambda}(t)\right]=0
$$

$$
\operatorname{Cov}\left[Z_{\Lambda}\left(t_{\varphi}\right), Z_{\Lambda}\left(t_{\varphi}\right)\right]=\int_{0}^{t_{1} \wedge t_{\varphi}} \frac{d F_{u}}{(1-H)^{\varphi}}
$$

با استفاده از رابطه و تقريب $\hat{\text { ب }}$

$$
\begin{aligned}
\mathrm{e}^{-\hat{\Lambda}(\mathrm{t})} & =\mathrm{e}^{-\Lambda(\mathrm{t})}-[\hat{\Lambda}(\mathrm{t})-\Lambda(\mathrm{t})] \mathrm{e}^{-\Lambda(\mathrm{t})}+\cdots \\
\hat{\mathrm{S}}(\mathrm{t}) & \cong \mathrm{S}(\mathrm{t})-[\hat{\Lambda}(\mathrm{t})-\Lambda(\mathrm{t})] \mathrm{S}(\mathrm{t})+\cdots \\
\sqrt{\mathrm{n}}[\hat{\mathrm{~S}}(\mathrm{t})-\mathrm{S}(\mathrm{t})] & \cong-\sqrt{\mathrm{n}}[\hat{\Lambda}(\mathrm{t})-\Lambda(\mathrm{t})] \mathrm{S}(\mathrm{t})+\cdots
\end{aligned}
$$

$$
\xrightarrow{\mathbf{w}} \mathrm{Z}(\mathrm{t})
$$

$$
\operatorname{Cov}\left[Z\left(t_{1}\right), Z\left(t_{\varphi}\right)\right]=S\left(t_{1}\right) \cdot S\left(t_{\varphi}\right) \times \int_{0}^{t_{1} \wedge t_{\varphi}} \frac{d F_{u}}{(1-H)^{r}}
$$

REFERENCES
Breslow and Crowley, Ann. Stat. (1974).
Aalen, Scand. J. Stat. (1976).
\qquad , Ann. Stat. (1978).
\&

نشان $\theta=T(F)$
إگر برش نباشد بر آورد گر معمول به صورت آث آ

$$
\theta=T(F)=\int_{0}^{\infty} x d F(x)=\int_{0}^{\infty}[1-F(x)] d x=\int_{0}^{\infty} S(t) d t
$$

در صورت نبود برش، داريم:

$$
\hat{\theta}=T\left(F_{n}\right)=\int_{0}^{\infty} x d F_{n}(x)=\bar{x}=\int_{0}^{\infty}\left[1-F_{n}(x)\right] d x
$$

در صورت وجود برش، داريم:

$$
\hat{\theta}=T(\hat{F})=\int_{0}^{\infty} x d \hat{F}(x)=\int_{0}^{\infty} \hat{S}(t) d t
$$

$$
\operatorname{AVar}(\hat{\theta})=\frac{1}{n} \int_{0}^{\infty} \frac{1}{[1-H(s)]^{\gamma}}\left(\int_{S}^{\infty} S(u) d u\right)^{r} d F_{u}(s)
$$

در حالت بدون تكرار، داريم:

$$
\hat{\operatorname{Var}}(\hat{\theta})=\sum_{i=1}^{n}\left(\int_{y_{(i)}}^{\infty} \hat{S}(u) d u\right)^{r} \frac{\delta_{(i)}}{(n-i)(n-i+1)}
$$

اگر Y در نتيجه حاصل انتگرال بیىنهايت خواهد شد. سه راهحل را با بررسى مى كنيم: AML براى تشريح استفاده مى كنيه:

$$
\begin{aligned}
& \hat{\theta}=9 \times 0,091+|r \times 0,091+|\lambda \times 0,10 r+r r \times 0,1, r+r| \\
& \times 0,1 Y Y+r f \times 0,1 Y Y+F A \times 0, M A F+(1 s \mid \times 0, M A F) \\
& =r r, O 11+(r q, S Y F)=\Delta Y, S H \Delta
\end{aligned}
$$

 وزنهاى صعودى را به آخرين مشاهدات و به جولگى توزيع مىدهد.
 بازة [

$$
\hat{\theta}=\int_{0}^{S_{0}} \hat{S}(t) d t
$$

 مى كنيم. در اين بر آورد، هیى كند.
متأسفانه، انتخاب مناسب S و جود ندارد.

REFERENCES

Kaplan and Meier, JASA (1958).
Meier, Perspwctives in Prob. and Stat. (1975).
Sander, Stanford Univ. Tech. Report No. 8. (1975).
Susarla and Van Ryzin, Ann. Stat. (1980).
L- بر آورد گرهایى F.F

 لگاريتم گيرى. يكى بر آورد گر - L به صورت زير اس است.

$$
\hat{\theta}=\int_{-\infty}^{+\infty} x J(\hat{F}(x)) d \hat{F}(x)
$$

در اين رابطه J بر [H ,

$$
\int_{0}^{1} \mathrm{~J}(\mathrm{u}) \mathrm{du}
$$

يكى بر آوردگر مهم L، با بيرايش كردن ميانغين به شرح زير به دست مى آيد:

$$
J(u)=\frac{1}{1-r \alpha} I[\alpha, 1-\alpha]^{(u)}
$$

با دادههاى بريده شده، واريانس مجانبى يكى بر آوردگر -L به صورت زير است:

$$
\begin{aligned}
& \operatorname{AVar}(\hat{\theta})=\frac{1}{n} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} S(t) J(S(t)) S(u) \\
& . J(S(u))\left\{\int_{-\infty}^{t \wedge u} \frac{d F_{u}(s)}{[1-H(s)]^{\gamma}}\right\} d t d u
\end{aligned}
$$

REFERENCES
Sander, Stanford Univ. Tech. Report No. 8. (1975).
Reid Ann. Stat. (1981).
M- بر بر آوردگر

در اينجا نيز يكى فرض اساسى متقارن بودن F است. در نتيجه ابتدا بايد دادههــا را تبديل كرد. بر آورد گر - مربوط به فر جواب معدله زير است:

$$
\int_{-\infty}^{+\infty} \psi(x-\hat{\theta}) d \hat{F}(x)=0
$$

تابع (xبر آورد گرهأى حدآكثر درستنمايماند. بر آوردگر دو وزنى توكى متناظر با تابع زير است:

$$
\psi(x)= \begin{cases}x\left(1-x^{\gamma}\right)^{\gamma} & |x| \leq 1 \\ 0 & |x|>1\end{cases}
$$

در كاربردهانى واقعى بايلد دادهها با يك مقياس بر آورد شده، مقياسبندى شوند. واريانس محانبى يِك بر آورد گر - در حالـت برش، به شرح زير است:

$$
\begin{array}{r}
A \operatorname{Var}(\hat{\theta})=\frac{1}{n} \int_{-\infty}^{+\infty} \frac{1}{[1-H(s)]^{\gamma}} \cdot\left(\int_{S}^{+\infty} \frac{1}{E \psi^{\prime}} S(t) \psi^{\prime}(t-\theta) d t\right)^{r} d F_{u}(s) \\
. E \psi^{\prime}=\int_{-\infty}^{+\infty} \psi^{\prime}(t-\theta) d F(t): \text { ر اينجا }
\end{array}
$$

REFERENCE
Reid Ann. Stat. (1981).

تا زمان حال برآوردگرشاى L L L با دادههاى بريده شده بهطور آزمايشگاهى بررســى

شدهاند. عيوب و محاسن آنها بررسى نشده است. در حالى كه بر آوردگــر ميانـه كــاربرد
عملى زيادى دارد.

ميانه F.F
با توجه بــه
 شامل جوابها در نظر مى گيريم:

شواهد تجربى نشان دهندة́ اين است، كه اين بر آورد گر سرراست، خيلى بزرگ بر به

 تعريف

براى مثال، در دادهها AML، داريم:

$$
\begin{aligned}
& \hat{S}(Y r)=0, g \mid f \\
& \hat{S}(r \mid)=0, f q 1 \\
& \hat{\hat{\theta}}=r \left\lvert\,-\frac{\lambda(0,00 q)}{(0, \mid Y r)}=r 0\right., f 1 \Delta
\end{aligned}
$$

 است. AVar(جگالى مجهول بوده و بر آورد آن مشكل است.

REFERENCES

Sander, Stanford Univ. Tech. Report No. 5 (1975), discusses the asymptotic variance.
Földes, Rejto, and Winter, unpublished manuscript (1978), discuss density estimation using censored data.
Reid, Ann. Stat. (1981), discusses the asymptotic variance..
\qquad and lyengar, unpublished notes (1978), consider estimates of the variance.
Efron, Stanford Univ. Tech. Report No. 53 (1980), uses the bootstrap to measure the var iability of $\hat{\theta}$.

ه بر آورد گرهای بيزى

 $\hat{S}(t)=\prod_{y_{(i)}^{\leq t}}\left[\frac{n-i}{n-i+1}\right]^{\delta(i)}$
$=\prod_{y_{(i)} \leq t}\left[\frac{n-i+1}{n-i}\right]^{-\delta}(i) \cdot \frac{1}{n}\left\{\frac{n}{n-1} \cdot \frac{n-1}{n-r} \cdots \frac{N_{y}(t)+1}{N_{y}(t)}\right\} \frac{N_{y}(t)}{1}$
$=\frac{N_{y}(t)}{n} \prod_{y_{(i)} \leq t}\left[\frac{n-i+1}{n-i}\right]^{1-\delta_{(i)}}$
سوسالار و وانرايزين، نشان دادهاند كه بر آوردگر بيز S(t) داراي صورت زير نيز هست:

$$
\hat{S}_{\alpha}(t)=\frac{\alpha(t, \infty)+N_{y}(t)}{\alpha(\circ, \infty)+n} \times \prod_{y_{(i)} \leq t}\left[\frac{\alpha\left[y_{(i)}, \infty\right)+(n-i+1)}{\alpha\left[y_{(i)}, \infty\right)+(n-i)}\right]^{1-\delta_{(i)}}
$$

بر آوردگر (t)

$$
L(\hat{\delta}, S)=\int_{0}^{\infty}[\hat{\delta}(t)-S(t)]^{r} d w(t)
$$

كه در اين رابطه، w هر تابي نامنفى صعودى و يا فرايند پيشُين دير كله
 بر (0 (0) است.

براى هر افراز اندازه هذير

$$
\left(P\left(\beta_{1}\right), \ldots, P\left(\beta_{k}\right)\right) \sim \operatorname{Dirichlet}\left(\alpha\left(\beta_{1}\right), \ldots, \alpha\left(\beta_{k}\right)\right)
$$

توجّه شود كه توزيع دير كله

$$
f\left(x_{1}, \ldots, x_{k}\right) \propto x_{1}^{\alpha_{1}-1} x_{r}^{\alpha_{r}-1} \cdots x_{k}^{\alpha_{k}-1} \cdot I\left(x_{i} \geq 0, x_{1}+\cdots+x_{k}=1\right)
$$

توجّه نمايِيد كه در ازاء k = ، توزيع دريكله دقيقاً همان توزيع بتاست. فرض مى كنيم مشاهدة X داراءى توزيع
 انتخاب میشود - مشاهده میشود. به عبارت ديگر، زمان بقاء T توسّط و سیس، P را توليد نموده و P نيز متغيّر T را توليد مي كند. مىتوان تساوى زير را اثبات كرد:

$$
\begin{equation*}
\mathrm{P}\{\mathrm{~T} \in \mathrm{~A}\}=\frac{\alpha(\mathrm{A})}{\alpha(\circ, \infty)} \tag{11-1}
\end{equation*}
$$

معادله (11-1)، تفسيرى از پارامتر α را ارائه مى كند. نسبت $\frac{\alpha(A)}{\alpha(\circ, \infty) ، ~ ح د س ~ ا و ك ّ ي ـ ـ ـ ه ~ ب ـ ر ~}$ احتمال مجموعة A است. براى مثال اگر فرض كنيم T داراى توزيع نمايعى با ميانگگين باشد، آن گاه:

$$
\frac{\alpha(t, \infty)}{\alpha(o, \infty)}=e^{-\lambda_{0} t}
$$

با توجّه به رابطهة مقاّيسهاند:

سوسارلا و وانرايزين نشان دادند كه در بسـيارى از حــالات،
 در حالت تكراز مطابت زير است:

$$
\hat{\mathrm{s}}_{\alpha}(\mathrm{t})=\frac{\alpha(\mathrm{t}, \infty)+\mathrm{N}_{\mathrm{y}}(\mathrm{t})}{\alpha(0, \infty)+\mathrm{n}} \times \prod_{y_{(\mathrm{j})}^{\prime} \leq \mathrm{t}}\left[\frac{\alpha\left[y_{(\mathrm{j})}^{\prime}, \infty\right)+\mathrm{N}_{\mathrm{y}}\left(\mathrm{y}_{(\mathrm{j})}^{\prime}\right)}{\alpha\left[\mathrm{y}_{(\mathrm{j})}^{\prime}, \infty\right)+\mathrm{N}_{\mathrm{y}}\left(\mathrm{y}_{(\mathrm{j})}^{\prime}\right)}\right]^{\prime-\delta_{(\mathrm{j})}^{\prime}}
$$

REFERENCES

Ferguson , Ann. Stat. (1973), discusses the Dirichlet process prior.
Susarla and Van Ryzin, JASA (1976), derive the Bayes estimate in the censored case.
\qquad and \qquad , Ann. Stat. (1978b), study the asymptotic
behavior of Bayes estimates.
Ferguson and Phadia, Ann. Stat. (1979), examine more general
prior distributions.
Rai, Susarla, and Van Ryzin, Comm. Stat. B (1980), look at mean
square errors.
بر آورد گرهاى نجربى بيزى. بهجاى كاربرد يیى حدس هيشين براى α ، مىتوان نمونه را براى بر آورد α به كاربرد.

REFERENCES

Susarla and Van Ryzin, Ann. Stat. (1978a).
Phadia, Ann. Stat. (1980).

فصل تهارم
روشهای ناپِامترى (دو نمونه)

 دادههاى (X,

$$
x_{i}=T_{i} \wedge C_{i} \quad, \quad \delta_{i}=I\left(T_{i} \leq C_{i}\right)
$$

 مشاهدات

$$
\mathrm{Y}_{\mathrm{j}}=\mathrm{U}_{\mathrm{j}} \wedge \mathrm{D}_{\mathrm{j}} \quad, \quad \varepsilon_{\mathrm{j}}=\mathrm{I}\left(\mathrm{U}_{\mathrm{j}} \leq \mathrm{D}_{\mathrm{j}}\right)
$$

معمولاً، در مسأله دو نمونهاى آزمون فرض H
 نمودارهاى (f. الف) و (ب)، بنا شده است. فرض نماييد مشاهدات X مربوط به تيمار و مشاهدات Y مربوط به تيمار B باشند.

$$
\begin{aligned}
& \text { Rx A: } r, \Delta, v, q^{+}, 1 A \\
& \text { Rx B: } 1 r, 1 q, r_{0}, r_{0}^{+}, r r^{+}
\end{aligned}
$$

1 آزمون گهان
اين آزمون تعميمى از آزمون ويلكاكسن است. فرض كنيد مشاهدات دو نمونه بــ

$$
X_{1}, \ldots, X_{m} ; Y_{1}, \ldots, Y_{n}
$$

اين تر كيب را مرتّب مى كنيم، داريم:

$$
Z_{(1)}, Z_{(r)}, \ldots, Z_{(m+n)}
$$

نمودار F. (الف) بررسى زمان بقاء ده بيمار سرطاني كه به تصادف تحت تيمانر (A) و (B) قرار گرُتهاند.

$$
\begin{aligned}
& \text { Rx جنس }
\end{aligned}
$$

$$
\begin{aligned}
& \text { زمرده: }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{lllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline
\end{array} \\
& \text { (ب) زمان بقاءاز لحظة تصادفى كردن }
\end{aligned}
$$

 زير

$$
\frac{R_{1}-E_{0}\left(R_{1}\right)}{\sqrt{\operatorname{Var}_{0}\left(R_{1}\right)}}=\frac{R_{1}-\frac{m(m+n+1)}{r}}{\sqrt{m n(m+n+1)}} \stackrel{a}{\sim} N(0,1)
$$

صورت هن -ويتني آزهون ويلكاكسن مفيد خواهد بود. با توجّه بـه تعريـفـ زيـر مىتوانٌ R را مطابق بسط زير نوشت:

$$
U\left(X_{i}, Y_{j}\right)=U_{i j}= \begin{cases}+1 & X_{i}>Y_{j} \\ 0 & X_{i}=Y_{j} \\ -1 & X_{i}<Y_{j}\end{cases}
$$

مى توان نشان داد:

$$
\mathrm{U}=\sum_{\mathrm{i}=1}^{m} \sum_{\mathrm{j}=1}^{n} \mathrm{U}_{\mathrm{ij}}
$$

در نتـيـجه:

$$
R_{1}=\frac{m(m+n+1)}{r}+\frac{1}{r} U
$$

براى اثبات توجّه شود، كه اگر مشاهدات به صورت:

$$
X_{(1)}<\cdots<X_{(m)}<Y_{(1)}<\cdots<Y_{(n)}
$$

در آ يند، آن گاه واحد صعود مى كند و تعداد اين تعو يض ها برابر $)$

$$
\begin{aligned}
R_{1} & =\frac{m(m+1)}{r}+\sum_{i} \sum_{j} \frac{1}{r}\left(U_{i j}+1\right)=\frac{m(m+1)}{r}+\frac{m n}{r}+\frac{1}{r} U \\
& =\frac{m(m+n+1)}{r}+\frac{1}{r} U
\end{aligned}
$$

$$
\begin{aligned}
& \text { مى كنيّ. } \\
& \frac{U-E_{0}(U)}{\sqrt{\operatorname{Var}_{0}(U)}}=\frac{U}{\sqrt{\frac{\operatorname{mn(m+n+1)}}{r}}} \stackrel{a}{\sim} N(0,1)
\end{aligned}
$$

$$
\begin{aligned}
& U=\sum_{i=1}^{m} \sum_{j=1}^{n} U_{i j}
\end{aligned}
$$

 مى كند.

U 1.1

 نمونه گيرى شده به عنوان مقادير X X تا الكوى جايگشت باشند. در نتيجه:

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{o}, \mathrm{P}}(\mathrm{U})={ }_{\mathrm{o}}=\mathrm{E}_{\mathrm{o}}(\mathrm{U}) \\
& \mathrm{Var}_{o}, \mathrm{P}(\mathrm{U})=\frac{\mathrm{mn}(\mathrm{~m}+\mathrm{n}+\mathrm{l})}{\mathrm{r}}=\mathrm{Var}_{\mathrm{o}}(\mathrm{U}) \\
& \text { در حالت برش، گهان قضئ جايگشت را تحت فرض قويتر زير به كار مىبرد: }
\end{aligned}
$$

$$
H_{0}^{*}: F_{1}=F_{Y}, G_{1}=G_{Y}
$$

فرض كنيد نمونةٔ مر كب به صورت:
 تا
 مى گيريم. در اين صورت:

$$
\mathrm{E}_{\mathrm{o}, \mathrm{P}}^{*}(\mathrm{U})=0
$$

 عوض از روش مانتل مقدار Varo,P(U) به صورت ساهترى به دست مى آ يد.
 بنابه تعريف:

$$
\mathrm{U}_{\mathrm{k} \ell}=\mathrm{U}\left(\left(\mathrm{Z}_{\mathrm{k}}, \xi_{\mathrm{k}}\right),\left(\mathrm{Z}_{\ell}, \xi_{\ell}\right)\right)
$$

$$
\mathrm{U}_{\mathrm{ij}}=\left\{\begin{array}{cc}
+1 & \left(\mathrm{Z}_{\mathrm{k}}>\mathrm{Z}_{\ell}, \xi_{\ell}=1\right) \cup\left(\mathrm{Z}_{\mathrm{k}}=\mathrm{Z}_{\ell}, \xi_{\mathrm{k}}=0, \xi_{\ell}=1\right) \\
0 & \left(\mathrm{Z}_{\mathrm{k}}<\mathrm{Z}_{\ell}, \xi_{\mathrm{k}}=1\right) \mathrm{L}\left(\mathrm{Z}_{\mathrm{k}}=\mathrm{Z}_{\ell}, \xi_{\mathrm{k}}=1, \xi_{\ell}=0\right) \\
-1 & \text { ساه }
\end{array}\right.
$$

$$
U_{k}^{*}=\sum_{\substack{\ell=1 \\ \neq k}}^{m+n} U_{k \ell} \quad, \quad U=\sum_{k=1}^{m+n} U_{k}^{*} I\left(k \in I_{1}\right)
$$

كه در آن گهان است، زيرا حذف مى كنند.

$$
\begin{aligned}
\operatorname{Var}_{o, P}^{*}(U) & =m\left(\frac{1}{m+n-1} \sum_{i=1}^{m+n}\left(U_{i}^{*}\right)^{r}\right)\left(1-\frac{m}{m+n}\right) \\
& =\frac{m n}{(m+n)(m+n-1)} \sum_{i=1}^{m+n}\left(U_{i}^{*}\right)^{r}
\end{aligned}
$$

٪.1 مثال. به كمكـ دادههاى مثال قبل (F. الف و ب)، داريم:

$$
\begin{aligned}
& U=-q-v-\Delta+r+o=-1 \wedge \\
& E_{o, P}^{*}(U)=0 \quad, \quad \operatorname{Var}_{o, P}^{*}(U)=\frac{(\Delta)(\Delta)(r \wedge \varepsilon)}{\left(l_{0}\right)(q)}=v q, q 千
\end{aligned}
$$

$$
\frac{U}{\sqrt{\operatorname{Var}_{0, P}^{*}(U)}}=\frac{-1 \Lambda}{1, q 1}=-r, \circ r \underset{\sim}{\sim} N(0,1)
$$

بنأبراين P=o,
REFERENCES
Gehan, Biometrika (1965).
Mantal, Biometrics (1967).

Ha واريانس تحت F.
نتأيج مباحث قبل دربارة وار يانس بـا نـرض:
 فرض كنيد
 میدهيم:

$$
\left(-, C_{1}\right), \cdots,\left(-, C_{m}\right) ;\left(-, D_{1}\right), \cdots,\left(-, D_{n}\right)
$$

به كمك اين مشاهدات، صورت زير هورد توجّه است:

$$
\begin{aligned}
& \left(X_{1}, \delta_{1}\right), \cdots,\left(X_{m}, \delta_{m}\right) ;\left(Y_{1}, \varepsilon_{1}\right), \cdots,\left(Y_{n}, \varepsilon_{n}\right) \\
& \left(X_{1}, \delta_{1}\right), \ldots,\left(X_{m}, \delta_{m}\right) ;\left(Y_{1}, \varepsilon_{1}\right), \ldots,\left(Y_{n}, \varepsilon_{n}\right)
\end{aligned}
$$

 تمام

$$
\begin{aligned}
\operatorname{Var}_{o}(U)= & E_{0}\left(U^{\gamma}\right)=E\left\{\left(\sum_{i=1}^{m} \sum_{j=1}^{n} U_{i j}\right)^{\gamma}\right\} \\
= & m n E_{0}\left(U_{i j}^{r}\right)+m n(n-1) E_{o}\left(U_{i j} U_{i j^{\prime}}\right)+m(m-1) n E_{o}\left(U_{i j} U_{i^{\prime} j}\right) \\
& +m(m-1) n(n-1) E_{o}\left(U_{i j} U_{i^{\prime} j^{\prime}}\right)
\end{aligned}
$$

E. ${ }^{0}\left(\operatorname{Var}_{o, P}^{*}(U)\right)=$ =

اگر با شرط

تحليل بقاء

$$
\begin{align*}
R^{r}= & \underset{m, n \rightarrow \infty}{p-\lim } \frac{\operatorname{Var}_{o, P}^{*}(U)}{\operatorname{Var}_{o}(U)}=\lim _{m, n \rightarrow \infty} \frac{E_{0}\left(\operatorname{Var}_{o,}^{*}(U)\right)}{\operatorname{Var}_{o}(U)} \\
= & r \lambda(1-\lambda)+\left\{\lambda^{\mu} P\left\{C_{1} \wedge C_{Y} \wedge C_{r}>T_{1} \wedge T_{Y} \wedge T_{r}\right\}+\right. \\
& \left.+(1-\lambda)^{r} P\left\{D_{1} \wedge D_{r} \wedge D_{r}>T_{1} \wedge T_{Y} \wedge T_{r}\right\}\right\} \\
& \times\left\{\lambda P\left\{C_{1} \wedge C_{Y} \wedge D_{1}>T_{1} \wedge T_{Y} \wedge T_{r}\right\}+\right. \\
& \left.+(1-\lambda) P\left\{C_{1} \wedge D_{1} \wedge D_{Y}>T_{1} \wedge T_{Y} \wedge T_{r}\right\}\right\}^{-1} \tag{11}
\end{align*}
$$

. $R>0, \lambda Y L R^{r}>\frac{r}{Y}$
 باشد. در اينجا نوع برش مهم نيست.
فرض كنيد توزيعهاى بريده شده به صورتهاى مختلف لهمن باشند. يعنى:

$$
\left(1-G_{1}\right)^{r_{1}}=1-F \quad, \quad\left(1-G_{\gamma}\right)^{r_{r}}=1-F
$$

كه در آن
$p_{1}=P\left(C_{1}<T_{1}\right)=P($ مشاهده در جمعيت 1 بريده شده است $)$
$P_{\gamma}=P\left(D_{1}<U_{1}\right)=P($ مشاهله در جمعيت Y بريده شده است)
هايد در جدول †، مقادير R را براى R بريده́

REFERENCES

Gilbert, Univ. Chicago thesis (1962), was the first to calculate Varo (U).
Hyde Stanford Univ. Tech. Report No. 30 (1977).
Y T آزمون مانتل -هانزل

 است، بيماران هر يكـ از دو جمعيت در عرض
 زير تعريف مى كنيم:

$$
\hat{p}_{Y}=\frac{c}{n_{Y}} ، \hat{p}_{1}=\frac{a}{n_{1}} \text { براى آزمون }
$$

$$
\text { : است: } \hat{p}=\frac{m_{1}}{n},
$$

$$
\chi^{\gamma}=\left[\frac{\hat{p}_{1}-\hat{p}_{\gamma}}{\sqrt{\hat{p}(1-\hat{p})\left(V n_{1}+!n_{\gamma}\right)}}\right]^{\gamma}=\frac{n(a d-b c)^{\gamma}}{n_{1} n_{\gamma} m_{1} m_{\gamma}}
$$

يا با توجّه به تصحيح پيوستىى داريم:

$$
\chi_{c}^{r}=\frac{n(|a d-b c|-n / r)^{r}}{n_{1} n_{r} m_{1} m_{r}}
$$

$$
\begin{aligned}
& \text { p1 }=P(\text { در جمعيت } 1 \text { | مردن) } \\
& P_{\gamma}=P(\text { در جمعيت })
\end{aligned}
$$

تحليل بقاء

$$
\begin{aligned}
& \begin{array}{l}
4 \\
\stackrel{2}{2} \\
\stackrel{1}{2} \\
\hline
\end{array}
\end{aligned}
$$

متغيّر شرطى گسستئ دقيق است. با معلوم بودن

$$
P(A=a)=\frac{\binom{n_{1}}{a}\binom{n_{Y}}{m_{1}-a}}{\binom{n}{m_{1}}}
$$

دو گشتاور اولّئَ توزيم فوق هندسى، به شرح زير است:

$$
E_{0}(A)=\frac{n_{1} m_{1}}{n} \quad, \quad \operatorname{Var}_{0}(A)=\frac{n_{1} n_{Y} m_{1} m_{Y}}{n^{r}(n-1)}
$$

در نتيجه داريم:

$$
\begin{aligned}
a d-b c & =n\left(a-E_{0}(A)\right) \\
n_{1} n_{Y} m_{1} m_{Y} & =n^{Y}(n-1) \operatorname{Var}_{0}(A) \\
\chi^{r} & =\frac{n(a d-b c)^{r}}{n_{1} n_{Y} m_{1} m_{Y}}=\frac{n}{n-1}\left[\frac{a-E_{0}(A)}{\sqrt{\operatorname{Var}_{0}(A)}}\right]^{Y}
\end{aligned}
$$

Y×Y دنبالهاى ازجدولهای Y.Y

 جدول r X Y خلاصه كنيم. در نتيجه فرض زير را آزمون مى كنيم:

$$
H_{0}: p_{11}=p_{1 r}, \ldots, p_{k 1}=p_{k r}
$$

كه

$$
\begin{aligned}
& p_{i l}=P(\text { تيمار } 1 \text { (بيمارستان } i \text { i }
\end{aligned}
$$

جداول به شرح زيراند:

بيمارستان يِكم

$$
M H=\frac{\sum_{i=1}^{k}\left(a_{i}-E_{o}\left(A_{i}\right)\right)}{\sqrt{\sum_{i=1}^{k}\left(\operatorname{Var}_{0}\left(A_{i}\right)\right)}}
$$

 بيمارستان

با استفاده از آهاره مانتل-هانزله، داريم:

در صورت استفاده از تصحيح ييوستگ، داريم:

$$
\mathrm{MH}_{\mathrm{c}}=\frac{\left|\sum_{i=1}^{k}\left(\mathrm{a}_{i}-E_{o}\left(A_{i}\right)\right)\right|-\frac{1}{r}}{\sqrt{\sum_{i=1}^{k}\left(\operatorname{Var}_{0}\left(A_{i}\right)\right)}}
$$

 كه در تحليل بقـــاء آهــاره MH بــه صــورت زيــر بـه كــار بــرده ميشــود. فـرض كنيل: زمان بريده شده يکى جلول Y Y Y بسازيد. آمارء MH را برا آزمون
 ولى هنوز نرهال بودن مجانبي برقرار است. تغيير طرحهاى برشى بر آهـارة MH بیتـا

تحليل بقاء

محاسبةٔ آماره MH (مربوظ به شكلهاى F. الف و F. ب)
 و

 است.

براى T T
جدولهاى 「 \times + مانتل-هانزل به شرع زير است:

D A

نرمال مجانبى F.Y
برای اثبات نرمال مجانبى، فرض مى كنيم تكرار وجود ندارد و موارد زير رادر نظر

روشهای ناپارامترى (دو نمونه)

$$
N=n+m
$$

$$
\hat{H}(t)=\frac{1}{N} \sum_{i=1}^{N} I\left(Z_{i} \leq t\right)
$$

$$
\hat{H}_{1}(t)=\frac{1}{m} \sum_{i=1}^{m} \mathrm{I}\left(\mathrm{X}_{\mathrm{i}} \leq \mathrm{t}\right)
$$

$$
\hat{H}_{u}(t)=\frac{1}{N} \sum_{i=1}^{N}\left[\left(Z_{i} \leq t, \xi_{i}=1\right)\right.
$$

$$
\hat{H}_{1 u}(t)=\frac{1}{m} \sum_{i=1}^{m} \mathrm{I}\left(\mathrm{X}_{\mathrm{i}} \leq \mathrm{t}, \delta_{\mathrm{i}}=1\right)
$$

حال ميتوان صورت MH را به شرح زير نوشت:

$$
\sum_{i=1}^{k}\left(a_{i}-E_{0}\left(A_{i}\right)\right)=m\left\{\int_{0}^{\infty} d \hat{H}_{1 u}(s)-\int_{0}^{\infty} \frac{1-\hat{H}_{1}\left(s^{-}\right)}{1-\hat{H}\left(s^{-}\right)} d \hat{H}_{u}(s)\right\}
$$

 مشاهدهٔ i ام بريده نشده به دست مي آيد:

 بريده نشذه باشذ، داريم:

حال میتوان صورت MH را بر حسبب توابع توزيــع تجربــى نوشــت و مىتــوان از روش

$$
\begin{aligned}
& n_{i 1}=\#\left(s_{i}-\text { هl }_{\text {- }}^{\text {باقى مانده در زمان }} \text { X }\right)=m\left(1-\hat{H}_{1}\left(s_{i}^{-}\right)\right) \\
& n_{i}=\#\left(s_{i}-\text { هاى باقى مانده در زمان Z }\right)=N\left(1-\hat{H}_{1}\left(s_{\mathbf{i}}\right)\right)
\end{aligned}
$$

REFERENCES

Mantel and Haenszel, J. Natl. Cancer Inst. (1962).
Crowley, JASA (1977).
Lininger et al., Biometrika (1979).
؟ رده آزمونهاى تارون - واير

$$
\begin{gather*}
\text { براى هر جدول ييشنهاد مى كنند، به گونهانى كهه } \sum_{i=1}^{k} w_{i}\left[a_{i}-E_{0}\left(A_{i}\right)\right]=\sum_{i=1}^{k} w_{i}\left[a_{i}-\frac{m_{i 1} n_{i t}}{n_{i}}\right]
\end{gather*}
$$

$$
\begin{equation*}
\sum_{i=1}^{k} w_{i}^{Y} \operatorname{Var}_{0}\left(A_{i}\right)=\sum_{i=1}^{k} w_{i}^{Y}\left[\frac{m_{i 1}\left(n_{i}-m_{i j}\right)}{n_{i}-1}\right] \times\left[\left(\frac{n_{i 1}}{n_{i}}\right)\left(1-\frac{n_{i 1}}{n_{i}}\right)\right] \tag{ir}
\end{equation*}
$$

سـه حالت ويزه مهم وجود دارد:
(الف) wi=1، در اين صورت آمارء MH به دست مى آيد.

$$
\text { (پ (پ }=\sqrt{n_{i}} \text { در اين صورت آمارة تارون-واير به دست مى آيد. }
$$

يادآوريها:

 تارون-واير بين دو روش قبلى قرار دارد. بنابه اظظهـار آنـان وزنهـاى فراوانى در دامنئ تغييرات دارد.

واريانس U، تحت فرض Ho است، در حالى كه Har

مثال. با مراجعه به جدول F، كه در آن آمارء MH را محاسبه كردهايم، داريم:

$$
\begin{aligned}
\sum_{i=1}^{k} n_{i}\left(a_{i}-E_{0}\left(A_{i}\right)\right)= & (10)(0, \Delta 0)+(q)(0, \Delta s)+(\Lambda)(0, s \gamma) \\
& +(\varepsilon)(-0, i v)+(\Delta)\left(0, \Lambda_{0}\right)=1 v, q \Lambda
\end{aligned}
$$

كه برابر آمارءٔ U در آمارة گهان است، البتّه بدون علامت و مقدار گرد شده، همتچنين داريم:

$$
\begin{aligned}
\hat{\operatorname{Var}}_{\mathrm{TW}}(U)= & \sum n_{i}^{r}\left[\frac{m_{i 1}\left(n_{i}-m_{i)}\right)}{n_{i}-1}\right]\left[\left(\frac{n_{i 1}}{n_{i}}\right)\left(1-\frac{n_{i 1}}{n_{i}}\right)\right] \\
= & \left(10^{r}\right)(0, r \Delta)+\left(Q^{r}\right)(0, r \& s q)+\left(\Lambda^{r}\right)(0, r r f 4) \\
& +\left(s^{r}\right)(-0,1 r \lambda q)+\left(\Delta^{r}\right)(0,1 s)=s q
\end{aligned}
$$

$$
\operatorname{Var}_{o, P}^{*}(U)=V q, f \leftarrow
$$

در نتيجه داريم:

$$
\sqrt{\hat{\operatorname{Var}}_{\mathrm{TW}}(\mathrm{U})}=\lambda, \Gamma 1 \quad, \quad \sqrt{\operatorname{Var}_{\mathrm{o}, \mathrm{P}}^{*}(\mathrm{U})}=\lambda, 91
$$

REFERENCE
Tarone and Ware, Biometrika (1977).

آز F F
به ناطر بياوريد كه در ساختن آمارة گُهان، تابع امتياز را به صورت زير تعريــف
كرديم:

فرض كنيد، حالت زير را داريم:

$$
\begin{array}{cc}
\mathrm{y}_{\mathrm{j}} & \mathrm{x}_{\mathrm{i}} \\
\varepsilon_{\mathrm{j}}=0 & \delta_{\mathrm{i}}=1
\end{array}
$$

آزمون گڭهان، امتياز هى دهل. افرون يپشنهاد مى كند كه امتياز زير را به آنها نسبـت دهيم:

$$
U_{i j}=\hat{P}\left\{T_{i}>U_{j} \mid\left(x_{i}, \delta_{i}\right),\left(y_{j}, \varepsilon_{j}\right)\right.
$$

براى حالت مورد نظر داريم:
$U_{i j}=\hat{P}\left\{U_{j}<x_{i} \mid U_{j}>y_{j}\right\}=\frac{\hat{F}_{Y}\left(x_{i}\right)-\hat{F}_{Y}\left(y_{j}\right)}{1-\hat{F}_{Y}\left(y_{j}\right)}$

الستفاده از اين أمتِازها و كاربرد ا و و ه به جاى ا و ا-ـ، آماره زير را نتيجه مى دهد:

$$
\begin{equation*}
\int_{0}^{\infty}\left[1-\hat{F}_{i}(u)\right] d \hat{F}_{r}(u)=\hat{P}\left\{T_{i}>U_{j}\right\} \tag{1f}
\end{equation*}
$$

بر آورد گر ويلكاكسن در حالت بريده نشده است، يعنى:

$$
\frac{1}{\mathrm{mn}} \mathrm{U} \xrightarrow{\text { a.s. }} P(X>Y)
$$

در حالت بريذه نشله: ا ياه =

$$
\text { بر آورد گر (} 1 \text {)، در دنباله هايدأر نيسـت و مانع كاربرد وسيع آن مىشود. }
$$

REFERENCE
Efron, Proc. Fifth Berkeley Symp. IV (1967).

فصل پنجمّم
روشهای نایارامتری K نمونه

برايى نمونة i توزيع هر يك زهان برش مربوط به Tij در آن:

$$
\mathrm{X}_{\mathrm{ij}}=\mathrm{T}_{\mathrm{ij}} \wedge \mathrm{C}_{\mathrm{ij}} \quad, \quad \delta_{\mathrm{ij}}=\mathrm{I}\left(\mathrm{~T}_{\mathrm{ij}} \leq \mathrm{C}_{\mathrm{ij}}\right)
$$

فرض زير مورد نظر ماسـت:

$$
H_{0}: F_{1}=\cdots=F_{K}
$$

1 آزمون گهان تعميميافته (برسلو)
با استفاده از تابع امتياز مسـأله دو نمونهانى، فرضهاى زير را در نظر مى گيريم:

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{i}}=\sum_{\substack{\mathrm{j}=1 \\
n_{\mathrm{i}}}}^{\sum_{\mathrm{i}^{\prime}=1}^{\mathrm{K}} \sum_{\substack{j^{\prime}=1 \\
\neq 1}}^{n_{\mathrm{i}^{\prime}}} \mathrm{U}\left(\left(\mathrm{X}_{\mathrm{ij}}, \delta_{\mathrm{ij}}\right),\left(\mathrm{X}_{\mathrm{i}^{\prime} \mathrm{j}^{\prime}}, \delta_{\mathrm{i}^{\prime} \mathrm{j}^{\prime}}\right)\right)} \\
& \underline{\mathrm{W}}=\left(\mathrm{W}_{1}, \ldots, \mathrm{~W}_{\mathrm{K}}\right)^{\prime}
\end{aligned}
$$

برسلو ماتريس كوواريانس مجانبى WW، تحت فرض محـود كنندهٔ زير را به دست آورد:

$$
\begin{aligned}
& H_{0}^{*}: F_{1}=\cdots=F_{K} \quad ; \quad G_{1}=\cdots=G_{K}
\end{aligned}
$$

$$
\begin{aligned}
& \underline{W} \stackrel{a}{\sim} N\left(\underline{\mu}_{0}^{*}, N^{r} \underline{\Sigma}_{o}^{*}\right) \\
& \underline{\Sigma}_{0}^{*}=\left(\int_{0}^{\infty}[1-H(u)]^{r} d H_{u}(u)\right) \times\left(\begin{array}{ccc}
\lambda_{1}\left(1-\lambda_{1}\right) & & \\
& \ddots & -\lambda_{i} \lambda_{\mathrm{j}} \\
-\lambda_{\mathrm{i}} \lambda_{\mathrm{j}} & & \\
& & \lambda_{\mathrm{K}}\left(1-\lambda_{\mathrm{K}}\right)
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{H}_{\mathrm{i}}(\mathrm{t}) & =\mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \leq \mathrm{t}\right) \\
\mathrm{H}_{\mathrm{iu}}(\mathrm{t}) & =\mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \leq \mathrm{t}, \delta_{\mathrm{i} \mid}=1\right) \\
\mathrm{H}(\mathrm{t}) & =\lambda_{1} \mathrm{H}_{1}(\mathrm{t})+\cdots+\lambda_{\mathrm{K}} \mathrm{H}_{\mathrm{K}}(\mathrm{t}) \\
\mathrm{H}_{\mathrm{u}}(\mathrm{t}) & =\lambda_{1} \mathrm{H}_{\mathrm{iu}}(\mathrm{t})+\cdots+\lambda_{\mathrm{K}} \mathrm{H}_{\mathrm{Ku}}(\mathrm{t})
\end{aligned}
$$

چون ماتريس كوواريانس مجانبى به ثإرامترهاى مجهول بستخى دارد، جانشين مى كنيم.

$$
\begin{aligned}
\hat{\lambda}_{i} & =\frac{n_{i}}{N} \\
\hat{H}(t) & =\frac{1}{N} \sum_{i=1}^{K} \sum_{j=1}^{n_{i}} I\left(X_{i j} \leq t\right) \\
\hat{H}_{u}(t) & =\frac{1}{N} \sum_{i=1}^{K} \sum_{j=1}^{n_{i}} I\left(X_{i j} \leq t, \delta_{i j}=1\right)
\end{aligned}
$$

REFERENCE

Breslow, Biometrika (1970).

$$
\begin{aligned}
& \text { انواع آزمونها } \\
& \text { ا آزمون } 1 \\
& \frac{1}{N^{r} \int_{0}^{\infty}(1-\hat{H})^{r} d \hat{H}_{u}} \sum_{i=1}^{K} \frac{W_{i}^{r}}{\hat{\lambda}_{i}} \stackrel{a}{\sim} \chi_{K-1}^{r}
\end{aligned}
$$

اين آماره دعادل W W W

$$
\mathrm{R}_{\mathrm{i}}=\sum_{j=1}^{\mathrm{n}_{\mathrm{i}}} \mathrm{R}_{\mathrm{ij}} \quad, \quad \overline{\mathrm{R}}_{\mathrm{i}}=\frac{1}{n_{i}} \mathrm{R}_{\mathrm{i}} \quad, \quad \overline{\mathrm{R}} .=\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{\mathrm{K}} \mathrm{R}_{\mathrm{i}}
$$

حال، آماره كروسكال -واليس، به شرح زير است:

$$
\frac{1 r}{N(N+1)} \sum_{i=1}^{K} n_{i}\left(\bar{R}_{i}-\bar{R}_{0}\right)^{r}=\left(\frac{1 r}{N(N+1)} \sum_{i=1}^{K} \frac{n_{i}^{r}}{n_{i}}\right)-r N(N+1)
$$

اين Tا Tمازه داراى توزيع χ_{K-1}^{Y} تحت فرض Ho است.
(T Y

 باشند، بايد به طور يكنواخت تغيير كنند و اين تغيير همبستگي عددى نيست.

$$
\underline{\ell}=\left(\mathrm{d}_{1}, \ldots, \mathrm{~d}_{\mathrm{K}}\right)^{\prime}
$$

در هنگامى كه متغيّرهاى كمّى در دسترس نباشد، از تعريف زير استفاده مى كنيم:

$$
\begin{aligned}
& \ell=(-(K-1), \ldots,-r,-1,+1,+r, \ldots,+(K-1))^{\prime} \quad \text { ز K } \\
& \ell=\left(-\frac{(K-1)}{r}, \ldots,-1, \circ,+1, \ldots,+\frac{(K-1)}{r}\right)^{\prime} \quad 2, ~ ف ر K
\end{aligned}
$$

آبسلون و تو كى پيشنهاد مى كنند كه مقابلههاى خصطى مرتبئ مقادير زوج K به شرح زير تشريح مىشود، مورد استفاده قرار گيرد.

$$
\begin{aligned}
& \underline{\ell}=(-r(K-1),-(K-r),-(K-\Delta), \ldots,+(K-\Delta),+(K-r),+r(K-1))^{\prime} \\
& \ell=(-F(K-1),-r(K-r),-(K-\Delta), \ldots,+(K-\Delta),+r(K-r),+f(K-1))^{\prime} \\
& \text {. } \underline{\bar{W}}=\left(\bar{W}_{1}, \ldots, \bar{W}_{K}\right)^{\prime}, \bar{W}_{i}=\frac{W_{i}}{n_{i}\left(N-n_{i}\right)} \text {) }
\end{aligned}
$$

حال

$$
\frac{\underline{\underline{c}}^{\prime} \underline{W}}{\sqrt{N^{r} \underline{c}^{\prime} \underline{\underline{\Sigma}}_{o}^{*} \underline{\mathrm{c}}}} \stackrel{\mathrm{a}}{\sim} \mathrm{~N}(0,1)
$$

آمارهٔ بالا را مىتوان براى آزمون فرض كار برد.
اگر كميّهانى اندازهْذير در دست باشند، روشهاى رگرسيونى قابل استفادهاند. آنها
را در فصل ششم بررسى مى كنيم.
1.1 متغير *W را به صورت زير تعريف مى كنيم:

$$
\mathrm{w}_{\mathrm{ij}}^{*}=\sum_{\mathrm{i}^{\prime}=1}^{\mathrm{K}} \sum_{\mathrm{j}^{\prime}=1}^{\mathrm{n}_{\mathrm{i}^{\prime}}} \mathrm{U}\left(\left(\mathrm{X}_{\mathrm{ij}}, \delta_{\mathrm{ij}}\right),\left(\mathrm{X}_{\mathrm{i}^{\prime} \mathrm{j}^{\prime}}, \delta_{\mathrm{i}^{\prime} \mathrm{j}^{\prime}}\right)\right)
$$

$$
\left(i^{\prime}, j^{\prime}\right) \neq(i, j)
$$

متتغير هاى $W_{1}^{*}, \ldots, W_{N}^{*}$

 اولّين
ماتريس كوواريانسى '
زير است:
$\underline{\Sigma}_{o, P}^{*}=\frac{1}{N}\left(\frac{\sum_{i=1}^{K} \sum_{j=1}^{n_{i}}\left(W_{i j}^{*}\right)^{r}}{N-1}\right) \times\left(\begin{array}{ccc}n_{1}\left(N-n_{1}\right) & & -n_{i} n_{j} \\ -n_{i} n_{j} & \ddots & \\ & & n_{K}\left(N-n_{K}\right)\end{array}\right)$
ماتريس

REFERENCE

Marcuson and Nordbrock, Biom. Zeit. / Biom. J. (1981).

تحت فرض:

$$
\underline{\mathbf{W}} \underset{\sim}{\mathrm{a}} \mathrm{~N}\left(\underline{\mu}_{0}, \mathrm{~N}^{\top} \underline{\Sigma}_{0}\right)
$$

كه درايههأى

$$
\begin{aligned}
& \sigma_{i j}^{0}=-\lambda_{i} \lambda_{j} \int_{0}^{\infty}\left(1-H_{i}\right)\left(1-H_{j}\right) d H_{u} \quad i \neq j \\
& \sigma_{i i}^{\circ}=\lambda_{i} \int_{0}^{\infty}\left[(1-H)\left(1-H_{i}\right)-\lambda_{i}\left(1-H_{i}\right)^{r}\right] d H_{u}
\end{aligned}
$$

براى بر آورد آمارهٔ ML، ا'ستفاده كنيم.
REFERENCE
Breslow, Biometrika (1970).
(تآر Y Y فرض كنيده نمونهُ تر كيبى مرتّب شده به صورت:
 برأى هر نقطهُ زمانى بريده نشده، جدول ازاى K=

تحت فرض Ho

$$
E_{0}\left(\underline{A}_{i}\right)=\left(E_{0}\left(A_{i 1}\right), \ldots, E_{0}\left(A_{i K}\right)\right)^{\prime}=\left(\frac{m_{i 1} n_{i 1}}{N_{i}}, \ldots, \frac{m_{i j} n_{i K}}{N_{i}}\right)^{\prime}
$$

$$
\underline{\underline{L}}_{0}\left(\underline{A}_{i}\right)=\left(\frac{m_{j i} n_{i r}}{N_{i}-1}\right) \times\left(\begin{array}{ccc}
\frac{n_{i 1}}{N_{i}}\left(1-\frac{n_{i 1}}{N_{i}}\right) & \\
-\frac{n_{i k}}{N_{i}} \frac{n_{i \ell}}{N_{i}} & \ddots & \\
& & \frac{n_{i k}}{N_{i}} \frac{n_{i \ell}}{N_{i}} \\
& & \\
& & \\
& \left.1-\frac{n_{i K}}{N_{i}}\right)
\end{array}\right)
$$

بنا به تعريف داريم:

$$
\begin{aligned}
\underline{a}-E_{0}(\underline{A}) & =\sum_{i} w_{i}\left(\underline{a}_{i}-E_{0}\left(\underline{A}_{i}\right)\right) \\
\underline{\Sigma}_{0} & =\sum_{i} w_{i}^{r} \underline{\Sigma}_{0}\left(\underline{A}_{i}\right)
\end{aligned}
$$

در اين روابط، wi وزنهاى نسبت داده شدهاند. سه حالت خاص به شرح زير وجود دارد: (الف) (wi=1، در اين صورت آزمون تعميم يافته MH
(ب) (ب) (ب)
در بخش اولّ، يکى ماتريس كوواريانس مجانبى از آماره تعميم يافته گهان را تححت فرض
 هحاسباتى از قبلى سادهتر است.
REFERENCE
Tarone and Ware, Biometrika (1977).

انواع آزمونها
ا آزمـون تعريف
آنها جمعيت اوّل حذف شده است. حال تحت فرض Ho م، داريم:

$$
W=\left(\underline{a}-1-E_{0}\left(\underline{A}_{-1}\right)\right)^{\prime} \underline{\Sigma}_{0,-1}^{-1}\left(\underline{a}_{-1}-E_{0}\left(\underline{A}_{-1}\right)\right) \stackrel{a}{\sim} \chi_{K-1}^{r}
$$

اگز هر كدام از جمعيتها را حذف كنيم، W تنيير نمى كند.

براى آزمون تعميم يافتهٔ مانتل-هانزل (wi=1) آلزي
$\sum \frac{(O-E)^{r}}{E}=\sum_{k=1}^{K} \frac{\left(a_{k}-E_{0}\left(A_{k}\right)\right)^{r}}{E_{0}\left(A_{k}\right)} \approx \chi_{K-1}^{r}$

$$
. E_{0}\left(A_{k}\right)=\sum_{i} E_{0}\left(A_{i k}\right)=\sum_{i} \frac{m_{i j} n_{i k}}{N_{i}}, a_{k}=\sum_{i} a_{i k} \text { Tر }
$$

هرچند اين آزمون به علّت نامساوى \sum ولى، در كاربرد سادهتر است. زيرا در آن به محاسبه مبكوس ماتريس نيازى نيسـت.

REFERENCES

Peto and Pike, Biometrics (1973).
Peto et al., British J. Cancer (1976, 1977).
r آزمون روند. فرض انتخاب استفاده مى كنيم.
REFERENCE
Tarone, Biometrika (1975).

فصل ششهم
روشهاى ناپارامترى: رگرسيون

ا الگوهاى نرغ شكست متناسب كاكس
فرض كنيد اT T T T

$$
\text { و } \delta_{i}=I\left(T_{i} \leq C_{i}\right)
$$

$$
\left(Y_{1}, \delta_{1}\right), \ldots,\left(Y_{n}, \delta_{n}\right)
$$

 صورت زير تعريف كرديم، كه در آن وابستگى T از طريت x x، منظور شده استـ.

$$
\lambda(t ; \underline{x})=\frac{f(t ; \underline{x})}{1-F(t ; \underline{x})}
$$

در اين الگو فرض مى

 در اين حاللت نيز برقرار باشد كه، به جاى آن h مثبت باشد، بانشين كنيم. ضرايب رگرسيون كدام معلوم نيستند.
نانوادهاى از توزيعها را "خخانواده توزيعهاى لهمن" گُوييـم، هرگــاه تــابع توزيمـى

رابطة را بر خسب تأبع بقاء و به صورت
 توز يعهاى لهمن مىدهند. اثبات آن به شرح زير است:

$$
\begin{aligned}
S(t ; \underline{x}) & =\exp \left\{-\int_{0}^{t} \lambda(u ; \underline{x}) d u\right\}=\exp \left\{-e^{\underline{\beta}^{\prime} \underline{x}} \int_{0}^{t} \lambda_{0}(u) d u\right\} \\
& =\exp \left\{-\int_{0}^{t} \lambda_{0}(u) d u\right\}^{e^{-\underline{x}}}=S_{0}(t)^{e^{\beta^{\prime}} \underline{x}}
\end{aligned}
$$

كه در رإبِّةٔ بالا هى گیر يم:

$$
\text { اگا اگر مشّاهده iام از جمععيت } 1 \text { اباشد }
$$

در نتيجه توابع بقاء براى جمعيت I و 「، به صوربت زير ارتباط دارند:

$$
S_{1}(t)=S_{Y}^{\gamma}(t)
$$

1.1

 امكان دارد، (t)
 تكرارى شرطى مى كنيم. به هر حال، نياز به روشى داريم كه تمام

در نظر گرفتن اين توزيع شرطى اجبارى به نظر مىرسد.

 فرض كنيد، (i) . $\left.\mathfrak{R}_{(i)}=\mathfrak{R}\left(y_{(i)}\right)^{-}\right)$

$$
P\left\{\left[y_{(i)}, y_{(i)}+\Delta y\right] \text { 范 } \mid \mathfrak{R}_{(i)}\right\} \cong \sum_{j \in \mathscr{R}_{(i)}} e^{\underline{\beta}^{\prime} \underline{x}} \lambda_{0}\left(y_{(i)}\right) \Delta y
$$

اگر حاصلضرب سه احتمال شرطى را حساب كنيه، درستنمايى شرطى به دست مى آيد.

$$
L_{c}(\underline{\beta})=\prod_{u} \frac{e^{\underline{\beta}^{\prime} \underline{x}^{\prime}(i)}}{\sum_{j \in \mathfrak{R}} \mathrm{e}^{\underline{\beta}^{\prime} \underline{x}_{j}}}
$$

 نمونه، به شرح زير استفاده شود:

$$
\begin{aligned}
& \frac{\partial}{\partial \underline{\beta}} \log L_{c}(\underline{\beta})=\left(\frac{\partial}{\partial \beta_{1}} \log L_{c}(\underline{\beta}), \ldots, \frac{\partial}{\partial \beta_{p}} \log L_{c}(\underline{\beta})\right)^{\prime} \\
& \underline{i}(\underline{\beta})=-\frac{\partial^{r}}{\partial \underline{\beta}^{r}} \log L_{c}(\underline{\beta})=-\left(\begin{array}{ccc}
\frac{\partial^{r}}{\partial \beta_{1} \partial \beta_{1}} \log L_{c}(\underline{\beta}) & \cdots & \frac{\partial^{r}}{\partial \beta_{1} \partial \beta_{p}} \log L_{c}(\underline{\beta}) \\
\vdots & \vdots \\
\frac{\partial^{r}}{\partial \beta_{p} \partial \beta_{1}} \log L_{c}(\underline{\beta}) & \cdots & \frac{\partial^{r}}{\partial \beta_{p} \partial \beta_{p}} \log L_{c}(\underline{\beta})
\end{array}\right)
\end{aligned}
$$

تحليل بقاء
مى خواهيم معادلات زير را، كه معولاًّ به روش تكر ار منجر مىشود، حل كنيم:

$$
\frac{\partial}{\partial \underline{\beta}} \log L_{c}(\underline{\beta})=0
$$

فرض كنيد، ${ }^{\circ}$ يِك حدس اوتّيَ باشد، داريم:

$$
\underline{\hat{\beta}}^{\prime}=\underline{\hat{\beta}}^{0}+\underline{i}^{-1}\left(\underline{\hat{\beta}}^{0}\right) \frac{\partial}{\partial \underline{\beta}} \log L_{c}\left(\hat{\hat{\beta}}^{0}\right)
$$

اُكِرِ
$\hat{\beta} \underset{\sim}{\sim} \underset{\sim}{N}\left(\underline{\beta}, \underline{i}^{-1}(\underline{\beta})\right)$
با مشتق گيرى از عبارت زير، رابطهُ بردار امتياز و مــتريس اطّلاعــات نمونـه بـه ددــت میى آيد، داريم:

$$
\begin{aligned}
& \log L_{c}(\underline{\beta})=\sum_{u}\left[\underline{\beta}^{\prime} \underline{x}_{(i)}-\log \left(\sum_{j \in \mathfrak{R}_{(i)}} e^{\underline{\beta}^{\prime} \underline{x}_{j}}\right)\right] \\
& \frac{\partial}{\partial \beta_{k}} \log L_{c}(\underline{\beta})=\sum_{u}\left(x_{(i) k}-\frac{\sum_{j \in \mathcal{R}_{(i)}} x_{j k} e^{\underline{\beta}^{\prime} \underline{x}}{ }_{j}}{\left.\sum_{j \in \mathcal{M}_{(i)}}^{e^{\beta^{\prime} \underline{x}}{ }_{j}}\right)}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{i}_{\mathrm{k} \ell}(\underline{\beta})=-\frac{\partial^{\boldsymbol{\gamma}}}{\partial \beta_{\mathrm{k}} \partial \beta_{\ell}} \log \mathrm{L}_{\mathrm{c}}(\underline{\beta})
\end{aligned}
$$

براى آزمون توزيع

$$
\left(\frac{\partial}{\partial \underline{\beta}} \log L_{c}(o)\right)^{\prime} \underline{i}^{-1}(o)\left(\frac{\partial}{\partial \underline{\beta}} \log L_{c}(0)\right)
$$

بردار امتياز و ماتريس اطلّاغعات نمونه در هِ β ، دأراى صورت سادهُ زير است:

$$
\begin{aligned}
\frac{\partial}{\partial \beta_{k}} \log L_{c}(\varrho) & =\sum_{u}\left(x_{(i) k}-\bar{x}_{(i) k}\right) \\
i_{k \ell(\varrho)} & =L_{c}(\beta)=\sum_{u}\left(\frac{1}{n_{i}} \sum_{j \in \mathcal{R}_{(i)}} x_{j k} x_{j \ell}-\bar{x}_{j k} \bar{x}_{j \ell}\right) \\
& =\sum_{u}\left(\frac{1}{n_{i}} \sum_{j \in \mathfrak{M}_{(i)}}\left(x_{j k}-\bar{x}_{(i) k}\right) \times\left(x_{j \ell \ell}-\bar{x}_{(i) \ell}\right)\right)
\end{aligned}
$$

كه در اين روأبط،

ماتريس اطّلاع نمونه عبارت أست از: مجموع ماتريسهاى كوواريانس برا؟ى مجموعــهه هاى نرخ شكسـت مشاهـدات بريده نشلده.
حالكت خاص p=1 و pi را به شرح زير در نظر مى گيريم:
اگا اگر i

در اين صورت با توجّه به نمادهاى آزمون MH، داريم:

$$
\begin{aligned}
\frac{\partial}{\partial \beta} \log L_{c}(o) & =\sum_{u}\left(x_{(i)}-\bar{x}_{(i)}\right)=\sum_{u}\left(a_{i}-\frac{n_{i!}}{n_{i}}\right) \\
i(o) & =\sum_{u}\left(\frac{1}{n_{i}} \sum_{j \in \mathfrak{M}_{(i)}} x_{j}^{\gamma}-\bar{x}_{(i)}^{\gamma}\right) \\
& =\sum_{u} \frac{n_{i 1}}{n_{i}}\left(1-\frac{n_{i q}}{n_{i}}\right)
\end{aligned}
$$

در نتيجه اگر تكرار نباشد، آزمون كاكس و MH يكسان هستند.

REFERENCES

Cox, JRSS B (1972).
Prentice and Kalbfleisch, Biometrics (1979), has a nice survey of the Cox procedure.
Kalbfleisch and Prentice, The Statistical Analysis of Failure Time Data (1980), is an excellent new text on the Cox approach.
Y. 1 بررسى درستنمايى شرطى
 وجود تكرار استدلال زير صحيح نيست.

هگگالى مشـاهده است:

$$
p(\underline{r})=\int_{u_{1}<\cdots<u_{n}} \cdots \prod_{i=1}^{n} f_{(i)}\left(u_{i}\right) d u_{1} \cdots d u_{n}
$$

$p(\underline{r})=P\left\{R_{1}=r, R_{r}=1, R_{r}=r\right\}=\iiint_{u_{1}<u_{r}<u_{r}} f_{r}\left(u_{Y}\right) f_{r}\left(u_{r}\right) f_{1}\left(u_{r}\right) d u_{1} d u_{r} d u_{r}$ كلبفليجِ و برنتيس رابطةُ زير را اثبات نمودهاند:

$$
F_{i}(t)=1-\exp \left(-e^{\frac{\beta}{}_{\prime}^{x}} \underline{x}_{i} \int_{0}^{t} \lambda_{0}(u) d u\right)
$$

در نتيجه داريم:

$$
p(\underline{r})\}=\prod_{\mathbf{i}=1}^{\mathrm{n}} \frac{\mathrm{e}^{\underline{\beta}^{\prime} \underline{x}_{(\mathrm{i})}}}{\sum_{\mathrm{j} \in \mathfrak{R}_{(\mathrm{i})}} \mathrm{e}^{\beta^{\prime} \underline{x}_{\mathrm{j}}}}
$$

در حالت برش با اســـتفاده از نمـاد

$$
\underline{\mathrm{R}}^{\mathrm{u} / \mathrm{c}}=\left(\mathrm{R}_{1}^{\mathrm{u} / \mathrm{c}}, \ldots, \mathrm{R}_{\mathrm{n}}^{\mathrm{u} / \mathrm{c}}\right)
$$

و بردار نشانگر حال احتمال (

$$
p\left(\underline{r}^{u / c}, \underline{\delta}\right)=\int_{u_{1}<\cdots<u_{n_{u}}} \prod_{i=1}^{n_{u}}\left\{f_{u(i)}\left(u_{i}\right) \times \prod_{j \in C_{i, i+1}}\left[1-F_{j}\left(u_{i}\right)\right]\right\} d u_{1} \cdots d u_{n_{u}}
$$

در اين رابطه، (i)
 و و تعداد كلِ مشَاهدات بريده نشده است. براى مثالن، (

احتمال رتبه به شرح زير است:

$$
p((r, 1,1),(1,1, o))=\iint_{u_{1}<u_{r}} f_{\gamma}\left(u_{1}\right)\left[1-F_{r}\left(u_{1}\right)\right] \times f_{1}\left(u_{\gamma}\right) d u_{1} d u_{\gamma}
$$

كلبفليش و ثرنتيس نشان دادند كه اگر Fi (t به صورت زير باشد، امتحان قابل محاسبه است.

$$
F_{i}(t)=1-\exp \left(-e^{\beta^{\prime}-\underline{x}_{i}} \int_{0}^{t} \lambda_{0}(u) d u\right)
$$

$$
p\left(\underline{r}^{\mathbf{u} / \mathrm{c}}, \underline{\delta}\right)=\prod_{\mathbf{u}} \frac{\mathrm{e}^{-\underline{\beta}^{\prime}}(\mathrm{i})}{\sum_{j \in \mathcal{R}_{(i)}} \mathrm{e}^{\underline{\beta}^{\prime} \underline{x}_{j}}}=\mathrm{L}_{\mathrm{c}}
$$

REFERENCE
Kalbfleisch and Prentice, Biometrika (1973).

درستنمايى جزنُى. دنبالهُ كميّهاى تصادفى زير را در نظر بگيريد:

$$
\left(X_{1}, S_{1} ; X_{Y}, S_{r} ; \ldots ; X_{m}, S_{m}\right)
$$

 كه شامل مشاهدهُ خاصى باشد، كه با همبستخى درستنمايى حاشيهاى S S S

$$
p\left(S_{i}, \ldots, S_{m} \mid \underline{\beta}\right)=\prod_{i=1}^{m} p\left(S_{i} \mid S_{1}, \ldots, S_{i-1} ; \underline{\beta}\right)
$$

$$
p\left(S_{1}, \ldots, S_{m} \mid X_{1}, \ldots, X_{m} ; \underline{\beta}\right)=\prod_{i=1}^{m} p\left(S_{i} \mid S_{1}, \ldots, S_{i-1} ; X_{1}, \ldots, X_{m} ; \beta\right)
$$

و بالاخره درستنمايى كامل به شرح زير است:

$$
\begin{aligned}
& p\left(X_{1}, \ldots, X_{m} ; S_{1}, \ldots, S_{m} \mid \underline{\beta}\right) \\
&=\prod_{i=1}^{m} p\left(X_{i}, S_{i} \mid X_{1}, \ldots, X_{i-1} ; S_{1}, \ldots, S_{i-1} ; \underline{\beta}\right) \\
&= \prod_{i=1}^{m} p\left(X_{i} \mid X_{1}, \ldots, X_{i-1} ; S_{1}, \ldots, S_{i-1} ; \underline{\beta}\right) \times \\
& \times \prod_{i=1}^{m} p\left(S_{i} \mid X_{1}, \ldots, X_{i-1} ; S_{1}, \ldots, S_{i-1} ; \underline{\beta}\right)
\end{aligned}
$$

كاكس، عبارت دوم حاصلضرب (عبارت زير) را درستنمايى جزئى ناميده است.

$$
\prod_{i=1}^{m} p\left(s_{i} \mid x_{1}, \ldots, x_{i-1}, x_{i} ; s_{1}, \ldots, s_{i-1} ; \underline{\beta}\right)
$$

 عبارت زير حشم بوشى كرد.

$$
\prod_{i=1}^{m} p\left(X_{i} \mid X_{1}, \ldots, x_{i-1} ; S_{1}, \ldots, s_{i-1} ; \underline{\beta}\right)
$$

 درستنمايى كامل شامل اطَّاعات است.

REFERENCES

Cox, Biometrika (1975).
Efron, JASA (1977).
Oakes, Biometrika (1977).
r.1 بر بی نرمال مجانبى

در مقاللٔ 19VY، كاكس بيان شده، كه
مجانبى داراى توزيع نرمال است. باكس در مقالة 19Vه خود يكى شناسئ كاشف كه مشابه شناسهُ درستنمايى حدّاكثر استاندارد است را الرائه مىدهـد. تسـياتيس، اثباتى از نرمال مجانبى داده است. اين ائبات مشابه اثباتى است كه توسّط برسلو و كرولى
 بيلى با كاربرد تصويرهاى هأجكى يكـ شناسه ارائه داده است است

REFERENCES
Cox, Biometrika (1975).
Bailey, Univ. of Chicago thesis (1979).
Tsiatis, Ann. Stat. (1981).

$$
S(t ; \underline{x}) \text { بر آورد F.l }
$$

تحت الگوى نرخ شكست كاكس، داريم:

$$
\begin{aligned}
& S(t ; \underline{x})=\exp \left(-e^{\beta^{\prime} \underline{x}} \int_{0}^{t} \lambda_{0}(u) d u\right)=\exp \left(-e^{\beta^{\prime} \underline{x}} \Lambda_{0}(t)\right)=S_{o}(t)^{e^{\beta^{\prime} \underline{x}}} \\
& \text { كه در آن }
\end{aligned}
$$

برای بر آورد برآورد كنيم.
برسلو فرض مى كند كه

$$
\hat{\lambda}_{o, B}(t)=\frac{1}{\left(y_{u(i)}-y_{u(i-1)}\right) \sum_{j \in \mathfrak{R}_{\mathbf{u}(i)}} e^{\beta^{\prime} \underline{x}} \mathbf{j}} \quad, y_{u(i-1)}<t<y_{u(i)}
$$

و (t) را به صورت زير بر آورد مى كنيم:

$$
\hat{S}_{o, B}(t)=\prod_{y_{(i) \leq t}}\left(1-\frac{\delta_{(i)}}{\sum_{j \in \mathfrak{R}_{(i)}} e^{\underline{\beta}^{\prime} \underline{x}}}\right)
$$

توجّه شود كه they

$$
\hat{S}_{\mathrm{o}, \mathrm{~B}}(\mathrm{t}) \neq \mathrm{e}^{-\hat{\Lambda}_{\mathrm{o}}(\mathrm{t})}
$$

نِستند، يعنى:

همحنين (t) $\hat{S}_{o, B}$ مىتواند مقادير منفى اختيار كنــــد. تســياتيس از مقــدار زيـر امستفاده

$$
\begin{aligned}
& \hat{S}_{o, T}(t)=e^{-\hat{\Lambda}_{o, T}(t)} \\
& \hat{S}_{o, T} \text { ك كه در اسْ } \hat{\Lambda}_{o, B}
\end{aligned}
$$

به بر آورد گر PL، ساده نمىشود. توجّه نماييد كه (i)

كار مىبرد، كه معادل انتگرال برسلوى (t) λ_{0} است.

$$
\hat{S}_{o, L}(t)=e^{-\hat{\Lambda}_{o, L}(t)}
$$

 اطممينان مربوط به و اثبات مى كند كه احتمال پوشاندن (از ($\log \hat{S}_{o, L}$ تقريباً درست است. اين نتايج مربوط به ثوشش فاصله هاى اطمينان، بــراى بر آورد گر PL نيز برقرار است.
 ريشينهاد شده است.

REFERENCES

Breslow, JRSS B (1972), in Discussion on Cox's paper.
\qquad Biometrics (1974).

Tsiatis, Univ. Wisconsin Tech. Report No. 524 (1978).
\qquad , Ann. Stat. (1981).

Link, Stanford Univ, Tech. Report No. 45 (1979).

$$
\begin{aligned}
& 0.1 \\
& \text { زمانهاى متمايز و مرتّب شده بقاء را به صـــورت: } \\
& \text { فرض زير رادر نظر مى گيريّم: } \\
& \Re_{(i)}=y_{(i)}^{\prime}-\text { نرخ شكست در زمان }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{i}}=\#\left(\wp_{(\mathrm{i})}\right) \\
& \text { كاكس پيشنهاد مى كند كه از كميّت زير استفاده شود: } \\
& L_{c}=\prod_{i=1}^{r} P\left\{\wp_{(i)} \mid \mathscr{R}_{(i)}, d_{i}\right\} \\
& P\left\{\wp_{(i)} \mid \Re_{(i)}, d_{i}\right\}=\frac{\exp \left(\sum_{j \in \wp_{(i)}} \underline{\beta}^{\prime} \underline{\underline{x}} \mathrm{j}\right)}{\sum_{\wp_{(i)}} \exp \left(\sum_{j \in \wp_{(i)}^{*}} \underline{\beta}^{\prime} \underline{\underline{x}} \mathbf{j}\right)}
\end{aligned}
$$

در رابطةّ قبل)، مجموع منرج روى تهام زير مجموعههایى مى شود، به گونهای كه

 است. اگر تعداد تكرارها زياد نباشد، در عمل معقول به نظر مىرسد:

$$
L_{c}=\prod_{i=1}^{r} \frac{\exp \left(\sum_{j \in \wp_{(i)}} \underline{\beta}^{\prime} \underline{j}\right)}{\left(\sum_{j \in \mathfrak{R}_{(i)}} e^{\underline{\beta}^{\prime} \frac{x}{j}}\right)^{d_{i}}}
$$

 با توجَه به عبارت: $\alpha_{j}=\exp \left(-\int_{a_{j-1}}^{a_{j}} \lambda_{0}(t) d t\right)$ متغير وابسته و = x مى توان احتمال مشاهدهٔ أام را كه در ابتداى A A زنده است، به صورت زير مهحاسبه كرد:

$$
\begin{aligned}
& \prod_{k=1}^{j-1} \alpha_{k}^{e^{\beta^{\prime}} \underline{x}_{i}} \\
& P\left\{Y_{i}=j, \delta_{i}\right\}=\left(\prod_{k=1}^{j-1} \alpha_{k}^{e^{\beta^{-}} \underline{x}_{i}}\right)\left(1-\alpha_{j}^{e^{-\underline{\beta}^{\prime}}}\right)^{\delta_{i}}
\end{aligned}
$$

درستنماعيى كامل به صــورت: L= $=\prod_{i=1}^{n} P\left\{Y_{i}=j, \delta_{i}\right\}$ بـوده كـه تـابعى از يإرامترهـاى مجهول

$$
0<\alpha_{j}<1 \quad, \quad j=1, \ldots, r \quad, \quad \sum_{j=1}^{r} \alpha_{j}=1
$$

اگگ

$$
-\infty<\gamma_{j}<+\infty \quad, \quad j=1, \ldots, r-1
$$

آن گاه حدا كثر كردن، نسبت به
 نيوتن-راففسون سريعتر همخرا خواد براد بود.

REFERENCES

Cox, JRSS B (1972).
Kalbfleisch and Prentice, JRSS B (1972), and
Peto, JRSS B (1972), in Discussion on Cox's paper.
Breslow, Biometrics (1974).
Prentice and Gloeckler, Biometrics (1978).

ع 1

$$
\lambda_{i}(t)=e^{\beta^{\prime}} \underline{x}_{i}(t) \lambda_{0}(t)
$$

در نتيجه داريم:

درستنمامى شرطى به صورت زير در مى آيد:

$$
L_{c}=\prod_{u} \frac{e^{\frac{\beta}{}_{\prime}^{x}} \underline{x}_{(i)}^{\left(y_{(i)}\right)}}{\sum_{j \in \Re_{(i)}} e^{\beta^{\prime}} \underline{x}_{j}\left(y_{(i)}\right)}
$$

در اين حالت كه به زمان بستگي دارد، هيجّ گونه اثباتى براى نرمال مجانبى وجـيـود

 انتظار براى انتقال، زمان شروع معالجه و ... اسست.

REFERENCES

Turnbull, Brown, and Hu, JASA (1974).
Crowley and Hu, JASA (1977).
A. 1

 مىدهد كه زوج كوشش خود را در آبستن شدن مترقَف كنند.
REFERENCES
Lamb and Leurgans, Amer. J. Obstet. Gyn. (1979).
Leurgans, Stanford Univ. Tech. Report No. 57 (1980).
r الگوى خطَّى r
الخُوى خطَى استاندارد به صورت $T_{i}=\alpha+\underline{\beta}_{\underline{x}} \underline{x}+e_{i} \quad, i=1, \ldots, n$

$$
\mathrm{Y}_{\mathrm{i}}=\mathrm{T}_{\mathrm{i}} \wedge \mathrm{C}_{\mathrm{i}} \quad, \quad \delta_{\mathrm{i}}=\mathrm{I}\left(\mathrm{~T}_{\mathrm{i}} \leq \mathrm{C}_{\mathrm{i}}\right)
$$

 شكست زير باشد:

تحليل بقاء

$$
\lambda_{0}=\frac{f_{0}(z)}{1-F_{0}(z)}
$$

همحخنين، فرض مى كنيم كه زمان بقاء يك فرد با متغيّر وابستهٔ x با متغير زيـر همتوزيـع

$$
\begin{equation*}
Z_{\underline{x}}=e^{\beta^{\prime} \underline{x}} Z_{0} \tag{باشد.}
\end{equation*}
$$

توجْه شود كه اگر <

$$
\lambda_{\underline{x}}(z)=\frac{f_{\underline{x}}(z)}{1-\underline{F}_{\underline{x}}(z)}=\frac{f_{0}\left(e^{\beta^{\prime}} \underline{x} z\right) e^{\beta^{-} \underline{x}}}{1-F_{0}\left(e^{\beta^{\prime}} \underline{\beta}^{\prime} z\right)}=\lambda_{0}\left(e^{\beta^{\prime} \underline{x}} z\right) e^{-\frac{\beta^{\prime}}{x}}
$$

$$
\text { با تعريف T } T_{\underline{x}} \text { داريم: }=\log Z_{\underline{x}}
$$

$$
E\left(T_{\underline{x}}\right)=\underline{\beta}^{\prime} \underline{x}+E\left(\log Z{ }_{0}\right)=\underline{\beta}^{\prime} \underline{x}+\alpha
$$

در نتيجه الگوى زمانى شتاب داده شده با يکى الگُوى لگاريتمى خطَى، به شرح زير برابــر

$$
\mathrm{T}_{\underline{x}}=\alpha+\underline{\beta}^{\prime} \underline{x}+e
$$

به گونهاى كه
 شوند. در نتيجه از اين ديدگاه، الگوى زمان شتاب داده شده مناسب است.
REFERENCES
Prentice and Kalbfleisch, Biometrics (1979), and
Kalbfleisch and Prentice, The Statistical Analysis of Failure Time Data (1980), both discuss the accelerated time model.

آ.Y آزمونهاى رتبهُ خطّى

در حالت

همخحنين، در صورت وجود برش مىتوان از آماره زير استفاده كرد:

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} \beta} \log p\left(\underline{\mathrm{r}}^{\mathrm{u} / \mathrm{c}}, \underline{\delta}\right)\right|_{\beta=\circ}
$$

كه با توجّه به بخش اولّ، داريم:

$$
\begin{aligned}
p\left(\underline{r}^{u / c}, \underline{\delta}\right) & =\int_{u_{1}<\cdots<u_{n_{u}}} \cdots \prod_{i=1}^{n_{u}}\left\{f_{u(i)}\left(u_{i}\right) \times \prod_{j \in C_{i, i+1}}\left[1-F_{j}\left(u_{i}\right)\right]\right\} d u_{1} \cdots d u_{n_{u}} \\
f_{i}(u) & =f\left(u-\beta x_{i}\right)
\end{aligned}
$$

مى توان نشان داد كه:

$$
\left.\frac{d}{d \beta} \log p\left(\underline{r}^{u / c}, \underline{\delta}\right)\right|_{\beta=0}=\sum_{i=1}^{n_{u}}\left\{x_{u(i)} c_{i}+\left(\sum_{j \in C_{i, i+1}} x_{j}\right) C_{i}\right\}
$$

كه در اين رابطه، داريم:

$$
\begin{aligned}
c_{i}= & \left(\prod_{j=1}^{n_{u}} n_{u(j)}\right) \int_{u_{1}<\cdots<u_{n_{u}}}\left\{-\frac{d}{d u_{i}} \log f\left(u_{i}\right)\right\} \\
& \times \prod_{j=1}^{n_{u}}\left\{f\left(u_{j}\right)\left[1-F\left(u_{j}\right)\right]^{m_{u}(j)}\right\} d u_{i} \cdots d u_{n_{u}} \\
C_{i}= & \left.\prod_{j=1}^{n_{u}} n_{u(j)} \int_{u_{1}<\cdots<u_{n_{u}}}^{\int \cdots \int_{j}\left\{-\frac{d}{d u_{i}}\right.} \log \left[1-F\left(u_{i}\right)\right]\right\} \\
& \times \prod_{j=1}^{n_{u}}\left\{f\left(u_{j}\right)\left[1-F\left(u_{j}\right)\right]^{m_{u}(j)}\right\} d u_{i} \cdots d u_{n_{u}} \\
m_{u(j)} & =\# \text { in } C_{j, j+1}
\end{aligned}
$$

فرض كنيد توزيع خطا، توزيع مقادير فرين باشد. كه تابع چگالى و بقاء آن به شرح زيـر

$$
f(t)=e^{t-e^{t}} \quad, \quad 1-F(t)=e^{-e^{t}}
$$

حال مقدار Ci به صورت زير خواهد بود:

$$
\begin{aligned}
& c_{i}=\sum_{j=1}^{i} \frac{1}{n_{u(j)}}-1 \\
& C_{i}=\sum_{j=1}^{i} \frac{1}{n_{u(j)}}
\end{aligned}
$$

در نتيجه تواناترين آمارة رتبه در اين حالت به صورت: (
 رتبه لكاريتمى مينانمن.

REFERENCES

Pets and Peto, JRSS A (1972), introduce linear rank tests and coin the term "log rank test".
Latte, Biometrika (1977), establishes a connection between linear rank tests and Efron's test.

Morton, Biometrika (1978), discusses permutation theory for linear rank tests.
Prentice, Biometrika (1978), give the preceding derivation of the linear rank test statistic and calculates its variance.
Kalbfleisch and Prentice, The Statistical Analysis of Failure Time Data (1980), Chapter 6.

 مى توان به بيش از يكـ متغيّر وابسته تعميـم داد.
 كمينه میىسازند:

$$
\begin{aligned}
& \sum_{i=1}^{n}\left(y_{i}-\alpha-\beta x_{i}\right)^{\varphi}=n \int_{-\infty}^{+\infty} z^{\gamma} d F_{n}(z)
\end{aligned}
$$

در صورت وجود برش، ميلر پيشنهاد مى كند كه عبارت زير را كمينه سازيم:

$$
n \int_{-\infty}^{+\infty} z^{r} d \hat{F}(z)=\sum_{i=1}^{n} \hat{w}_{i}(\beta)\left(y_{i}-\alpha-\beta x_{i}\right)^{r}
$$

كـه در آن وزنها گرفت كه مجموع موزون مربعها به مشاهدات بريده شده بستگى ندرد
 وابستهاند.
اگر آخرين مشاهده بريده شده باشل و
در اين صورت
 هر Ti، نتيجهاش فقط يِى انتقال بر آورد گر PL و جهشههاى آن است و در نتيجـسه وزنهـا به α بستّگى ندارند.
برای محاسبهٔ

$$
\hat{\alpha}=\sum_{i=1}^{n} \hat{w}_{i}(\beta) y_{i}-\beta \sum_{i=1}^{n} \hat{w}_{i}(\beta) x_{i}
$$

اگر اين مقدأر را در مجموع موزون مربعات قرار دهيم، فقط تابعى از β به دست مى آيد.

$$
f(\beta)=\sum \hat{w}_{i}(\beta)\left(y_{i}-\hat{\alpha}-\beta x_{i}\right)^{\gamma}
$$

كه با تجسس مىتوان آن را كمينه كرد.
جون تابع f(F (F (

 كمترين مربعات مشاهدات بريده نشده است.

$$
\hat{\beta}^{o}=\frac{\sum_{\mathrm{u}} \mathrm{y}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}_{\mathrm{u}}\right)}{\sum_{\mathrm{u}}\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}_{\mathrm{u}}\right)^{r}}
$$

با اين حدس اولّيّه

بر مبناى به صورت زير تعريف مىشود:

$$
\begin{aligned}
& \hat{\beta}^{\prime}=\frac{\sum_{\mathrm{u}} \hat{\mathrm{w}}_{\mathrm{i}}^{*}\left(\hat{\beta}^{\circ}\right) \mathrm{y}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}_{\mathrm{u}}^{*}\right)}{\sum_{\mathrm{u}} \hat{\mathrm{w}}_{\mathrm{i}}^{*}\left(\hat{\beta}^{\circ}\right)\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}_{\mathrm{u}}^{*}\right)^{\boldsymbol{\gamma}}} \\
& \qquad \quad \overline{\mathrm{x}}_{\mathrm{u}}^{*}=\sum_{\mathrm{u}} \hat{w}_{\mathrm{i}}^{*}\left(\hat{\beta}^{\circ}\right) \mathrm{x}_{\mathrm{i}}, \hat{\mathrm{w}}_{\mathrm{i}}^{*}\left(\hat{\beta}^{\circ}\right)=\frac{\hat{\mathrm{w}}_{\mathrm{i}}\left(\hat{\beta}^{\circ}\right)}{\sum_{\mathrm{u}} \hat{\mathrm{w}}_{\mathrm{i}}\left(\hat{\beta}^{\circ}\right)}
\end{aligned}
$$

با دوباره نرمال كردن وزنهاى
 بريد نشده در مجموع ظاهر هىشوند. روش معمول تعريف دوبارة آخريـن جملـــهـ هر تُـب

 دنبالة بر آورد گرهاى ß در يکـ دور كه بين دو مقدار نوسان مى كند، قرار بگيرد. در ايـن

$$
\hat{\operatorname{Var}}(\hat{\beta})=\frac{\sum_{\mathbf{u}} \hat{\mathbf{w}}_{\mathrm{i}}^{*}\left(\hat{\beta}^{o}\right)\left(\mathrm{y}_{\mathrm{i}}-\hat{\alpha}-\hat{\beta} \mathbf{x}_{\mathrm{i}}\right)}{\sum_{\mathbf{u}} \hat{\mathrm{w}}_{\mathrm{i}}^{*}\left(\hat{\beta}^{o}\right)\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}_{\mathrm{u}}^{*}\right)^{\gamma}}
$$

REFERENCE
Miller, Biometrika (1976).

بر آورد گر باكلى -جيمز. در ايـن الگــو فـرض مىشــود: E(Ti) $)=\alpha+\beta x_{i}$.
 در نتيجه باكلى و جيمز متغيّرهاى كاذب زير را تعريف مى كنند:

$$
Y_{i}^{*}=Y_{i} \delta_{i}+E\left(T_{i} \mid T_{i}>Y_{i}\right)\left(i-\delta_{i}\right)
$$

هحاسبةٔ E(Y

$$
\begin{aligned}
E\left(Y_{i}^{*}\right) & =\int_{0}^{\infty} u\left(1-G_{i}(u)\right) d F_{i}(u)+\int_{0}^{\infty}\left[\int_{u}^{\infty} \frac{s d F_{i}(s)}{1-F_{i}(u)}\right]\left(1-F_{i}(u)\right) d G_{i}(u) \\
& =\int_{0}^{\infty} u\left(1-G_{i}(u)\right) d F_{i}(u)+\int_{0}^{\infty}\left[\int_{0}^{s} d G_{i}(u)\right] s d F_{i}(s) \\
& =\int_{0}^{\infty} u\left(1-G_{i}(u)\right) d F_{i}(u)+\int_{0}^{\infty} G_{i}(s) s d F_{i}(s) \\
& =\int_{0}^{\infty} u d F_{i}(u) \\
& =\alpha+\beta x_{i}
\end{aligned}
$$

 بر آورد گرهاى زير استفاده كنيم:

$$
\begin{equation*}
\hat{\alpha}=\bar{y}^{*}-\hat{\beta} \bar{x} \quad, \quad \hat{\beta}=\frac{\sum_{i=1}^{n} y_{i}^{*}\left(x_{i}-\bar{x}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{r}} \tag{10}
\end{equation*}
$$

هون نمىتوانِيم تمام y y y y
 اسـت.

$$
\begin{equation*}
\hat{y}_{i}^{*}=y_{i} \delta_{i}+\left[\hat{\beta}_{x_{i}}+\frac{\sum_{k}>\hat{z}_{i} \hat{w}_{k}(\hat{\beta}) \hat{z}_{k}}{1-\hat{F}\left(\hat{z}_{i}\right)}-\right]\left(1-\delta_{i}\right) \tag{iv}
\end{equation*}
$$

 باكلى و جيمز مدّعى هستند كه اگر بر آورد گرهاى β نوسان كنند، آن گاه تفـاضل بين اين دو مقدار، كوبّكتر از بر آورد ميلر استـ. علاوه بــر ايسن اعتبـار روش آنهــا بــه فرضهای توزيع بريده شده Gi بستگي ندارد. باكلى و جيمز، برآورد واريانس را به صورت زير ارائه مى كنتد:

$$
\hat{\operatorname{Var}}(\hat{\beta})=\frac{\hat{\sigma}_{\mathbf{u}}^{\gamma}}{\sum_{\mathbf{u}}\left(\mathrm{x}_{\mathrm{i}}-\bar{x}_{\mathrm{u}}\right)^{\gamma}}
$$

كه در آن

$$
\hat{\sigma}_{u}^{Y}=\frac{1}{n_{u}-Y} \sum_{u}\left(y_{i}-\bar{y}_{u}-\hat{\beta}\left(x_{i}-\bar{x}_{u}\right)\right)^{Y}
$$

در اين جا اثبات آن ارائه نمىشود.

REFERENCE

Buckley and James, Biometrika (1979).

$$
\begin{align*}
& \text { استفاده مى كنيم. اگر } \\
& \sum \hat{w}_{k}\left(\hat{\beta} \hat{z}_{k}\right. \\
& \hat{E}\left(T_{i} \mid T_{i}>y_{i}\right)=\hat{\beta} x_{i}+\frac{\hat{z}_{k}>\hat{z}_{i}}{1-\hat{F}\left(\hat{z}_{i}\right)} \tag{18}
\end{align*}
$$

(الف) روش باكلى و جيمنز يِى روش نا إرامترى و مشابة روش نرمـال اشــمى و

$$
\begin{aligned}
& E\left(T_{i} \mid T_{i}>y_{i}\right)=E\left(\sigma W_{i}+\alpha+\beta x_{i} \left\lvert\, W_{i}>\frac{y_{i}-\alpha-\beta x_{i}}{\sigma}\right.\right) \\
& \left.\left.=\alpha+\beta x_{i}+\frac{\sigma \int_{\left(y_{i}-\alpha-\beta x_{i}\right) / \sigma}^{\infty} w \phi(w) d w}{1-\Phi\left(y_{i}-\alpha-\beta x_{i}\right)} \frac{\sigma}{\sigma}\right)=\alpha+\beta x_{i}+\frac{\sigma \phi\binom{y_{i}-\alpha-\beta x_{i}}{\sigma}}{1-\Phi\left(y_{i}-\alpha-\beta x_{i}\right.} \frac{\sigma}{\sigma}\right)
\end{aligned}
$$

در اين رابطه ه و Φ به ترتيب تابعهاى جگگالى و توزيع نرمال اسـتاننلارد اســـت. اشــمى و هان به جاي.(و): بر آبر آورد زير را به كار بردهاند.

$$
\hat{E}\left(T_{i} \mid T_{i}>y_{i}\right)=\hat{\alpha}+\hat{\beta} x_{i}+\frac{\hat{\sigma} \phi\left(\frac{y_{i}-\hat{\alpha}-\hat{\beta} x_{i}}{\sigma}\right)}{1-\Phi\left(\frac{y_{i}-\hat{\alpha}-\hat{\beta} x_{i}}{\hat{\sigma}}\right)}
$$

REFERENCE
Schmee and Hahn, Technometrics (1979).
(ب) هر دو روش هارامترى و ناپاراهترى، شبيه الگُوريتم EM در نظريّه حداكــــم درستنمايىاند.
REFERENCE
Dempster, Laird, and Rubin, JRSS B (1977).
بر آوردگر كول-سوزارلا-وان رايزين

تعريف

$$
E\left(Y_{i}^{*}\right)=\int_{0}^{\infty} \frac{u}{1-G(u)}(1-G(u)) d F_{i}(u)=\int_{0}^{\infty} u d F_{i}(u)=\alpha+\beta x_{i}
$$

 بیيشنهاد مى كنند كه از بر آورد گر آبر بيز G استفاده شود.

 با اين وجود، مىدهند. رفتار اين بر آورد گرها در اين جا ارزشيابى نمىشود.

REFERENCE

Koul, Susarla, and Van Ryzin, unpublished manuscript (1979).

مثال. دادههاى پیوند قلب استانفورد: روشهاى كاكس -ميلر و باكلى -جيمــز را بـهـ

 سن است. اگر زمان بقاء صفر باشد آن را به ا تغيير مىدهيم تا لگاريتم آن قابل محاســبـ

 كاكس، نشانگر اين است كه اثر سن بسيار معنى رار است. روش ميلر مدتّعى است كه سن

 متناسب) براى اين دإدهها مناسبتزاند، انجام دادر.

REFERENCES

Millre, Biometrika (1976).
Buckley and James, Biometrika (1979).

تحليل بفاء					ادامهٔ جدول هـ.
روزهاى	زمان	0 - 0	1	مقادير	سن در
تحمل	بقاء	\% $=0$	يذ	Tه نابرابر	زx
F1	1rsf	-	-	0,91	40,0
Fs	ff	1	-	$0{ }^{\circ}$	$r s, r$
fs	99%	1	1	0,11	fi, s
fV	01	1	1	1,ra	$\mathrm{FV}_{j} \mathrm{r}$
F9	11.8	-	-	1,ro	rs, A
Δ 。	Nav	1			[s, 1
$\Delta 1$	ror	1	1	1,01	¢ 1,1
Δr	lfy	1			fr $/ \Delta$
$\Delta \Delta$	01	1	1	1,01	or, 0
Δs	AVO	-	-	0,91	ra, 9
$\Delta \wedge$	ryy	1	1	1, Ar	FA, 1
$\Delta 9$	ArA	-	-	0,19	fi,s
so	so	1	1	0,88	49,1
sr	110	-	-	1/ar	rr, r
sf	001	1	-	$0,1 r$	FA, 9
so	¢	1	1	1,1r	$\Delta 1, r$
sV	rrA	1	-	Yor	$19, r$
sA	so	1	1	1,sA	F $0, r$
sq	s\%	-	-	1, P 。	+A, ${ }^{\circ}$
Vo	ro	1	1	1,9s	or, ${ }^{\circ}$
VI	$\Delta \wedge 9$	-	-	0,97	fry ${ }^{\text {cos }}$
vr	$\Delta 9 Y$	-	-	1,48	rs, v
Vr	sr	1	1	ris	$\Delta s, r$
vf	ir	1	-	0,51	$r a, r$
vs	899	-	-	$1, \mathrm{v}$	or, r

روزهاى تحمل	زعقان	0 0 。		مقادير نابر ابر T0	سن در زمان Tx
VA	$r \circ \Delta$	－	－	0,11	49，${ }^{4}$
$v 9$	r9	1	1	1,01	$\Delta F,{ }^{\circ}$
N。	fas	－	－	1，FI	fs， 0
N	fra	－	－	1，9F	$\Delta r, q$
Ar	fA	1	－	$r, 00$	$\Delta r, f$
Af	rav	1	1	0,50	Fr，A
As	r ${ }^{\text {a }}$	。	－	$1, \mathrm{fF}$	FA， 9
AV	Δ 。	1	1	Y，P0	48，f
$\wedge 1$	rrq	－	－	0,51	$\Delta F, F$
$\wedge 8$	s＾	1	1	1，μ	$\Delta 1, f$
4.	F	1	－	o，Ar	$\Delta r, \Delta$
Qr	ro	－	－	0,18	F Δ, λ
Qr	rry	0	－	0，r	fy， 1
Qf	$\|s\|$	1	1	$1, \%$	Fr，A
Q 4	If	1			Fo，r
98	ISY	－	－	0,45	rs，γ
97	11.	－	－	$1, \mathrm{VA}$	rr，r
81	ir	－	－	\％，VV	ri， 9
100	1	－	－	$0, \mathrm{gr}$	$r \Delta_{j} r^{\prime}$

$$
\begin{aligned}
& \text { نمودار ه. بقاء در مقابل أمتيازهانى ناهمختوان } \\
& \text { " " " = زنده يا مرگ رد شده } \\
& \text { " } \\
& \text { "-" =" =خط كمترين مربعات كاهِلان -ماير }
\end{aligned}
$$

> نوددار ء. بقاء در مقابل سن.
> "
> 02ر $\mu="$ "
> " " " = =خط كمترين بربعات كآيلان-ماير

$\hat{\mathrm{SD}}(\hat{\beta})$	$\hat{\beta}$	$\hat{\alpha}$	روش
$0, r 8 \wedge$	Y, V¢	-	كاكس
-	-0, M9F	r, ¢	ميلر
\% ¢rrer	-o, for	ripo	تعهيم
$0, T M F$	-0, fVI	r,190	
			-

	جدول V. رگّسيون لكاريتم زهان بیاء بر سن		
$\hat{\mathrm{SD}(\hat{\beta})}$	$\hat{\beta}$	$\hat{\alpha}$	روش
O, orrr	$0.0 V \mathrm{~V}$	--	كاكس
-	-0,000	$r, \Delta r v$	هيلر
0.0198	\% \% \%	r/111	+
0.0194	O,OOFF	r,ivi	
0,0149	-o,oIVA	$r, \Delta A Y$	- -

فصل هفتم

نيكويى برازش

1 روشهاى ترسيمى
به راحتى مى توان با نگاه كردن، خطط را از منحنى تميز داد. بنـــابراين بـراى روش رسم نمودار از اصل زير استفاده مى كنيم:
 برقرار باشد، نمودار به شكل خطط مستقيم و در غير اين صورت به شكل منحنى آنى در آيد.
 مورد بسيار نزديكـ هماند. و در هر حالت مناسبترين انتخاب مى مشود.
(الف) نمودارهاى بقاء
در اين نمودارها يا

REFERENCE
Wilk and Gnanadesikan, Biometrika (1968).

> (ب) نمو دارهاى نرخ شكست

در اين نمودارهـا يـا مى شود. براى اين كار از رابطئ نلسون (فصل سوم، بخـش ســوم را ببينيــد) بـه حــورت:

$$
\text { , } \hat{\Lambda}_{r}(t)=\sum_{y_{(i)} \leq t} \frac{\delta_{(i)}}{n-i+1}
$$

REFERENCES

Nelson, J. Qual. Tech. (1969).
\qquad Technometrics (1972).
1.1

نمودارهاي هند توزيع در زير رسم شدهاند:
(الف) نمايى

> گاما و ساير توزيعها
(د)
بدون استفاده از كاغذهای نمودارى، كمّيتها بر مبناي فرضهای پارامترى در مقابل كميتّهاي مبتنى بر بر آورد گL PL، رسم مى شود.
REFERENCES
Wilk, Gnanadesikan, and Huyett, Technometrics (1962), for the gamma distribution without censoring.
Y.l

 الحوى $\log \mathrm{S}_{\mathrm{i}}(\mathrm{t})=\gamma_{\mathrm{ij}} \log \mathrm{S}_{\mathrm{j}}(\mathrm{t})$

$$
\frac{\log S_{i}(t)}{\log S_{j}(t)}=\gamma_{i j}
$$

بر آوردهاى جداى PL هر يك از (t) مى سازيم:

 محاسبه و آن را رسم مى كنيم. تغيير مكانها را توسّط انتقال وارسى مى كنيمر

مثال: مطالعه DNCB. بيماران مرض هادكين، مورد حساسيتّ قرار گرفته و ستس بــهـ طور مستمر در معــرض شـيمى درمـانى دينىترو كلروبــنزن (DNCB) قــرار گـرار گرفـــهاند.
 شامل آن بيمارانى است كه واكنش نشان ندادهاند. بيماران مىتوانند در ميان جمعيتها نقل

مكان كنند، زمان بقاء را تا زمان جايگذارى در نظر مى گیريمـ
 شكست متناسب كاكس به كار میرود. رسم $\log \hat{S}^{(+)} / \log \hat{S}^{(-)}$در نمــو
 است، كه نشان دهندة برقرارى الگوست.

REFERENCE

Gong, Stanford Univ. Tech. Report No. 57 (1980).

†. † رگرسيون

هى توان فضاى x xا به K ناحيه افراز كرد. با اين وجود، لازممٔ طبقــهبندى دادههـا، زيـاد
 يكى راه ديگُر براى طبقهبندى به شرح زير است. ابتدا تعريف زير ارائه مىشود:

$$
\Lambda_{\underline{x}_{i}}\left(T_{i}\right)=e^{\beta^{\prime}} \underline{x}_{i} \int_{0}^{T_{i}} \lambda_{0}(u) d u
$$

$\Lambda_{\underline{X}_{i}}\left(T_{i}\right)$ در اين صورت، تحت الگوى نرخ شكست متناسب، رابطه زير نشان مىدهل كهـ يكى متغير نمايى واحد است.

$$
P\left\{\Lambda_{\underline{x}_{i}}\left(T_{i}\right)>t\right\}=P\left\{T_{i}>\Lambda_{\underline{x}_{i}}^{-1}(t)\right\}=\exp \left\{-\Lambda_{\underline{x}_{i}}\left(\Lambda_{\underline{x}_{i}}^{-1}(t)\right)\right\}=e^{-t}
$$

بنابر اينّ، (برش است. تحون
 بر آورد گر PL بر مبناى (بايد $\log \hat{S}(t)$ تقريباً تابع خططى از t شود.

اگگر نمودار مناسب ديگرى مشكل باشد. تحـت الگُى نرخ شكست متناسب، (

> سازد. بر آوردهاى

در وأرسى الگوى خطّى، در صورت زياد بودن تعداد مشاهدات، افراز ناحيهٔ ِي بــه K زيـر ناحيـه و اسـتفاده از روش K نمونـه بيشـنهاد مى مـــود. از طــــرف ديگـــر، مىتـــــوان ماندههای:

براى هر دو مورد نرخ شُكست متناسب و الخوى خططّى حساسيّت نمودار ماندهها را رســـمـ
 حذف اين متغيّر وابسته در الگو انجام شود.

REFERENCES

Cox and Snell, JRSS B (1968), discuss generalized residuals.
Crowley and Hu, JASA (1977), plot generalized residuals for the Stanford heart transplant data.
Kay, Appl. Stat. (JRSS C) (1977), discusses plotting generalized residuals.

$$
\begin{aligned}
& \text { (الف) تعميم آزمون كلمو گروف -اسميرنف: فرض Ho را مى پـيريم، اگر } \\
& \sqrt{n}\left|\hat{F}(t)-F_{0}(t)\right| \leq \hat{C}_{n}(t) \quad t \geq 0 \\
& \text { كه در آن، }
\end{aligned}
$$

$$
\begin{aligned}
& P\left\{\hat{F}(t)-\frac{\hat{C}_{n}(t)}{\sqrt{n}} \leq F_{0}(t) \leq \hat{F}(t)+\frac{\hat{C}_{n}(t)}{\sqrt{n}}, \forall t \geq 0\right\}=1-\alpha
\end{aligned}
$$

REFERENCES
Barr and Davidson, Technometrics (1973), and
Koziol and Byar, Technometrics (1975), and
Dufour and Maag, Technometrics (1978), consider Type I and
Type II censoring.
Gillespie and Fisher, Ann. Stat. (1979), and
Hall and Wellner, Biometrika (1980), consider the PL estimator and random censoring.
(ب) تعميم آزمون كرامر -وون مايسز: بعد از انجـــام يــــ تبديـل احتمـاللى انتخــرال
 آهارة زير استفاده مى كند.
$n \int_{0}^{1}(\hat{F}(t)-t)^{r} d t$
كه در آن F بر آورد گر PL اسـت.

REFERENCES

Koziol and Green, Biometrika (1976), consider the PL estimator and random censoring.
Pettit and Stephens, Biometrika (1976), consider Type I and Type II censoring. Pettit specializes to the normal and exponential distributions in
Pettit, Biometrika (1976), and
\qquad , Biometrika (1977), respectively.
(ج) آزمون نوع مانتل - هانزل

REFERENCE

Hyde, Biometrika (1977).
(د) حدّ Tزمون افرون

REFERENCE
Hollander and Proschan, Biometrics (1979).
(0) خانوادههاى پإلمترى

فرض كنيد مىخواهيم فرض:

كافى به Fo نزديك است يا خير.

REFERENCE

Mihalko and Moore, Ann. Stat. (1980), consider χ^{2} - tests for Type II censoring with estimates that are asymptotically equivalent to linear combinations of order statistics.

اگـر
درستنمايى را به كار بريم.

REFERENCE
Turnbull and Weiss, Biometrics (1978), consider likelihood ratio tests for discrete or grouped data.
r.r ر گرسيون
(الف) خانوادههاى بِارامترى

 فرض زير را آزمون مى كنيم
$\mathrm{H}_{0}: \underline{\theta} \in \underline{\Theta}_{\circ} \subset \underline{\Theta}$

(ب)

REFERENCES

Schoenfeld, Biometrika (1980), considers proportional hazards models with regions in the time \times covariate space.
Lamborn, Stanford Univ. Tech. Report No. 21 (1969), looks at χ^{2}-tests for exponential regression.

فصل هثتم

مباحث مختلفـ

| بر آورد گر دو متغيّرى كاپلان -ماير

فرض كنيد،

 تصادفى بريده شدهُ بعدى Ci، قابل مشاهده و بردار نشانگر به شر هـ زير است:

$$
\begin{aligned}
& \underline{Y}_{i}=\left(Y_{i t}, Y_{i r}\right)=\left(T_{i} \wedge C_{i}, T_{i r} \wedge C_{i}\right) \\
& \underline{\delta}=\left(\delta_{i \uparrow}, \delta_{i r}\right)=\left(I\left(T_{i 1} \leq C_{i}\right), I\left(T_{i r} \leq C_{i}\right)\right)
\end{aligned}
$$

 برش راست و خهث را بررسى كرده است.

REFERENCES

Campbell, Purdue univ. Mimeoseries \#79-25 (1979),

Korwar, unpublished manuscript (1980), treat bivariate grouped
data with censoring.
Muñoz, Stanford Univ. Tech. Report No. 60 (1980), defines the two - dimensinoal KM estimator through algorithms and proves it is the GMLE.
\qquad , Stanford Univ. Tech. Report No. 61 (1980), proves consistency
of the two - dimensional estimator.

r نرخ شكست رقيب

فرض كنيد

 شكست، بريده مىشوند. كمتيتهاى قابل مشاهـده به صورت زير است:

$$
T_{i}=\min \left\{T_{i j}, \ldots, T_{i p}\right\}
$$

$$
\begin{aligned}
& \underline{\delta}_{i}=\left(\delta_{i 1}, \ldots, \delta_{i p}\right)=\left(I\left(T_{i} \leq T_{i}\right), \ldots, I\left(T_{i p} \leq T_{i}\right)\right) \\
& \text { بردار نشانغر סِ، علَت خاص شكست را }
\end{aligned}
$$

احتمال احتمال، مستقيماً توسط نسبت مشاهدهاى، بر آورد مى'شود.

$$
\frac{1}{n} \sum_{i=1}^{n} I\left(T_{i} \leq t, \delta_{i j}=1\right)
$$

 ساز گار به وسيلّ روش PL بر آورد كرد، كه در آن تمام زمانهاى شكست را به علتــت ز ز ، به علّت يكى انز زير مجموعههاى ممكن علَّتها در نظر مر مى

و
$P\left\{\mathrm{~T}_{\mathrm{i} \mid} \leq \mathrm{t}_{1}, \ldots, \mathrm{~T}_{\mathrm{ip}} \leq \mathrm{t}_{\mathrm{p}}\right\}=\prod_{\mathrm{j}=1}^{\mathrm{p}} \mathrm{P}\left\{\mathrm{T}_{\mathrm{ij}} \leq \mathrm{t}_{\mathrm{j}}\right\}$

برقرار است يا زمانهاى شكـــت
 يترسن، لانگبر گ- يروحانـ -كوينزى نگاه كنيد.

REFERENCES

Chiang, Introduction to Stochastic Processes in Biostatistics (1968), discusses the relationships between crude, net, and partial crude probabilities in Chapter 11.
Moeschberger and David, Biometrics (1971), consider parametric likelihood methods.
Gail, Biometrics (1975), is a review article.
Prentice et al., Biometrics (1978), review competing risks from the hazard rate point of view.
Berman, Ann. Math. Stat. (1963),
Altshuler, Mathematical Biosciences (1970),
Tsiatis, Proc. Nat1. Acad. Sci. (1975),
Peterson, Stanford Univ. Tech. Report No. 13 (1975),
\qquad , Proc. Natl. Acad. Sci. (1976), and
Langberg Proschan, and Quinzi, Ann. Stat. (1981), examine the identifiability question.

「 برش وابسته

 شده است.

REFERENCES

Williams and Lagakos, Biometrika (1977).
Lagakos and Williams, Biometrika (1978).
Lagakos, Biometrics (1979).

F روش جكـنايف و بوتاسترات
 موارد

تعريف مىشود:

$$
\begin{aligned}
& \tilde{\theta}_{i}=n \hat{\theta}-(n-1) \hat{\theta}_{-i} \quad, i=1, \ldots, n \\
& \widetilde{\theta}=\frac{1}{n} \sum_{i=1}^{n} \widetilde{\theta}_{i}=n \hat{\theta}-\frac{(n-1)}{n} \sum_{i=1}^{n} \tilde{\theta}_{-i}
\end{aligned}
$$

كه در آن حذف شده، مىباشد.
در صورت نبودن برش، رابطه زير براى T به اندازة كافى هموار قابل اثبات است.

$$
\begin{equation*}
\frac{\tilde{\theta}-\theta}{\sqrt{n(n-1) \sum_{1}^{n}\left(\tilde{\theta}_{i}-\tilde{\theta}\right)^{r}}} \stackrel{a}{\sim} N(0,1) \tag{1A}
\end{equation*}
$$

هموار بودن T كه در (IN) استفاده مىشود، با هموأر بودن تابع تأثير زير در ارتباط است.

$$
\mathrm{IC}(y ; F)=\lim _{\varepsilon \rightarrow \circ} \frac{\mathrm{T}\left((1-\varepsilon) F+\varepsilon \delta_{y}\right)-\mathrm{T}(\mathrm{~F})}{\varepsilon}
$$

 دادههاى بر يله نشده، تابع جكتايف و تابِ تأثير به شكل زير با هم در ارتباطاند.

$$
(n-1)\left(\hat{\theta}-\hat{\theta}_{-i}\right)=\left.\frac{T\left((1-\varepsilon) F+\varepsilon \delta_{y}\right)-T(F)}{\varepsilon}\right|_{\varepsilon=-1(n-1), F=\dot{F}_{n}, y=y_{i}}
$$

بوتاسترابِ افرون، به صورت زير انجام ميشود. فرض كنيــــد Y تـا Y
نمونه باجايگذارى از y ت كنيد (Y صورت
 اين روش نمونه گـرى N بار تكرار میشود تا تا تجربى

REFERENCES

Miller, Biometrika (1974), reviews the jackknife for uncensored data problems.
\qquad , Stan ford Univ. Tech. Report No. If (19v Δ), establishes the validity of jackknifing the PL estimator.
Reid, Ann. Stat. (19A1), derives the inf luence functions for the PL estimator.
Efron, Ann. Stat. (1qvq), int roduces bootstrapping for uncensored data problems.
\qquad ,Stan ford Univ. Tech. Report No. $\Delta r(19 \lambda \cdot)$, studies bootstrapping

مسأللئ 1.
ثابت كنيــد توزيـع گامهـا در ازاى α د داراى IFR و در ازاى ا> α داراى DFR
است.
حل

$$
\begin{aligned}
\frac{1}{\lambda(t)} & =\frac{\int_{t}^{\infty} x^{\alpha-1} e^{-\lambda x} d x}{t^{\alpha-1} e^{-\lambda t}}=\int_{t}^{\infty}\left(\frac{x}{t}\right)^{\alpha-1} e^{-\lambda(x-t)} d x \\
& =\int_{0}^{\infty}\left(1+\frac{u}{t}\right)^{\alpha-1} e^{-\lambda u} d u \quad u=x-t \quad u \quad \text { با } \quad \text { بنيير متغير }
\end{aligned}
$$

 اگر α باشد، عبارت با 1 بالا برحسب t صعودى و t (t λ نزولى خواهد بود.

مسألئ Y.
تابع اطَللع فيشر را براى يكي مشاهده در توزيع نمايى با برش نوع اولّ بــه دسـت
آوريد.

فرض كنيد ty زمان برش، ثابـت باشد. لگًاريتم درستنمايى به شرح زير است:

$$
\delta \log \lambda-\delta \lambda y-(1-\delta) \lambda t_{c}
$$

اگر نسبت به λ دوبار مشتق بگيريم،
زير خو/هد بود:

$$
I(\lambda)=\frac{1}{\lambda^{\mu}} E(\delta)=\frac{1}{\lambda^{\mu}} P\left\{T \leq t_{c}\right\}=\frac{1}{\lambda^{\mu}}\left(1-e^{-\lambda t_{c}}\right)
$$

مسألل ب.
ماتريس اظَلع نسونه را براى توزيع وايبل تحت برش تصادفى به دست آوريد.
حل:
از معادله شماره r فصل دوم، داريم:

$$
\begin{aligned}
& \frac{\partial}{\partial \gamma} \log L=\frac{n_{u}}{\gamma}-\sum_{i=1}^{n} y_{i}^{\alpha} \\
& \frac{\partial}{\partial \alpha} \log L=\frac{n_{u}}{\alpha}+\sum_{u} \log t_{i}-\gamma \sum_{i=1}^{n} y_{i}^{\alpha} \log y_{i}
\end{aligned}
$$

ماتريس اطّلاع نمونه در ($\gamma, \alpha) ،$ به صورت زير است:

$$
-\left(\begin{array}{cc}
\frac{\partial^{\gamma}}{\partial \gamma^{\gamma}} \log \mathrm{L} & \frac{\partial^{\gamma}}{\partial \gamma \partial \alpha} \log \mathrm{L} \\
& \frac{\partial^{\gamma}}{\partial \alpha^{\gamma}} \log \mathrm{L}
\end{array}\right)
$$

مسألهُ F.

 هفته) جهارده بيمار در گروه تيمار، به شرح زير استا
+

(الف) مقدار λ را به روش حداً كثر درستنمائى بر آورد كنيد و يكـ فاصلة اطمينان 9ه٪
را براى آن بيدا كنيد.
(ب) مقدار S(18) را بر آورد كنيد و فاصلة اطمينان 9ه٪ را براى آن بيدا كنيد.
(پ) ميانهُ زمان بقاء را بر آورد كنيد. فاصلهُ اطمينان هد ٪ را براى آن پيدا كنيد. حل:
(الف) از مثال شماره ا فصل دوم بخش (I.Y)، داريم:

$$
\hat{\lambda}=\frac{n_{u}}{\sum_{i=1}^{n} y_{i}}=\frac{v}{\operatorname{lo\lambda }}=0,0 \varsigma \Delta \quad, \quad \log \hat{\lambda} \underset{\sim}{a} N\left(\log \lambda, \frac{1}{n_{u}}\right)
$$

در نتيحه فاصلة اطمينان 9 ٪ براى λ ، به شرح زير است:

$$
\left(\hat{\lambda} \exp \left(\frac{-Z_{0,0 s \theta}}{\sqrt{n_{u}}}\right), \hat{\lambda} \exp \left(\frac{Z_{0,0 \rho \Delta}}{\sqrt{n_{u}}}\right)\right)=(0,0 \Gamma 1,0, \mid r \varepsilon)
$$

(ب) داريم: شرح زير است:

$$
\left(e^{-0,1 r 8 \times 18}, e^{-0,0 r 1 \times 18}\right)=(0,11 r, 0,509)
$$

(ه) داريم:

$$
\left(\frac{\log \gamma}{0,1 r s}, \frac{\log r}{0,0 r I}\right)=(0,09 V, Y r, r \varepsilon)
$$

مسأله ه.

 شانزده هفته صادق است. حل:
داريم: (شكل زير را نيز ببينيد)

$$
\hat{S}(t)=\left\{\begin{array}{rl}
1 & 0 \leq t<1 \\
11 / 1 F=0, \text { VAs } & 1 \leq t<\Delta \\
11 \times N / 1 F \times 9=0, s q A & \Delta \leq t<V
\end{array}\right.
$$

$$
\hat{S}(t)= \begin{cases}11 \times V / 1 f \times q=0, s 11 & 10 \leq t<18 \\ 11 \times s / 1 f \times q=0, \Delta r f & 1 \leq t<10 \\ 11 \times \Delta / / f \times q=0, f 4 V & V \leq t<\lambda\end{cases}
$$

 توزيع نمايى را تأييد مى كنند و ینج نمونه تأييد نمى كنند و يك مورد جوان

مسألد ع.
از جدول طول عمر (جدول شماره 1) خطاى استاندارد (ه(S Sا حساب كنيد.

با استفاده از رابطة گرينوود، داريم:

$$
\begin{aligned}
\hat{\operatorname{Var}}(\hat{S}(\Delta)) \cong(0, F f)^{r}[& \frac{F V}{11 \varepsilon_{,} \Delta(118, \Delta-F V)}+\frac{\Delta}{\Delta 1, \Delta(\Delta 1, \Delta-\Delta)}+\frac{r}{r_{0}, \Delta\left(r_{0}, \Delta-\Delta\right)}+ \\
& \left.+\frac{r}{18, \Delta(18, \Delta-r)}+\frac{0}{V(V-0)}\right]=0,0 \circ \gamma_{0} \lambda
\end{aligned}
$$

مسألدُ V.
به كمك دادههاى AML (بخش دوم از فصل سـوم) خطاى امــتاندارد (YF(YF را در
گروه تيمار حساب كنيد.
حل:
با استفاده از رابطه گرينوود، داريم:

$$
\begin{array}{r}
\hat{\operatorname{Var}}(\hat{\mathbf{S}}(Y F))=\left(\frac{s \times 9}{11 \times \lambda}\right)^{Y}\left(\frac{1}{10 \times 11}+\frac{1}{4 \times 10}+\frac{1}{V \times \lambda}+\frac{1}{s \times V}\right)=0, \circ Y Y Y q \\
\hat{.} \hat{S E}(\hat{\mathbf{S}}(Y F))=0,1 \Delta Y s: \text { در نتيجه: }
\end{array}
$$

مسألهة A.
در انبات GMLE بر آورد گر PL، نشان دهيد حداكثر عبارت:

$$
\begin{aligned}
& \prod_{i=1}^{n} p_{i}^{\delta_{(i)}}\left(\sum_{j=i}^{n} p_{j}\right)^{1-\delta_{(i)}} \\
& \text { به ازاى مقدار زير به دست مى آيد: } \\
& p_{i}=\frac{\delta_{(i)}}{n-i+1} \prod_{j=1}^{i-1}\left(1-\frac{\delta_{(j)}}{n-j+1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { نتيجه داريم: } \\
& \prod_{i=1}^{n} p_{i}^{\delta}(i)\left(\sum_{j=i}^{n} p_{j}\right)^{1-\delta(i)}=\prod_{i=1}^{n} \lambda_{i}^{\delta}(i) \prod_{j=1}^{i-1}\left(1-\lambda_{j}\right)=\prod_{i=1}^{n-1} \lambda_{i}^{\delta}(i)\left(i-\lambda_{i}\right)^{n-i}
\end{aligned}
$$

تحليل بقاء

$$
\begin{aligned}
& \text { ازای: } \\
& \hat{p}_{i}=\hat{\lambda}_{i}\left(\sum_{j=i}^{n} \hat{p}_{j}\right)=\hat{\lambda}_{i} \prod_{j=1}^{i-1}\left(1-\hat{\lambda}_{j}\right)=\frac{\delta_{(i)}}{n-i+1} \prod_{j=1}^{i-1}\left(1-\frac{\delta_{(j)}}{n-j+1}\right)
\end{aligned}
$$

مسألة 9.
ثابثت كنيد كــه الخُوريتــم تجديــد نظــر در توزيـع بــه رامسـت بر آوردگــر حــد حاصل ضرب كايلان - ماير را بدون ثكرار میدهلد. حل:
دو راه اصلى براى اثبات اين نتيجه و جود دارد:
 نشده، در ابتدا داراى جوم $\frac{1}{7}$ هستند. اين الگوريتم از جحب به راست در ميـــــان آمارههــاى

 جرم كلْ باققىمانده
 شذه باشد، اين جرم در سمـت راست توزيى، توزيى مىشود.

 است، لذا، دو بر آورد گر برابرند. (ب) براى برآوردگر كایلان - ماير، داريم:

$$
\begin{aligned}
& \hat{\Delta}_{(i)}= \hat{S}\left(y_{(i)}\right)-\hat{S}\left(y_{(i)}\right)=\prod_{j=1}^{i-1}\left(\frac{n-j}{n-j+1}\right)^{\delta(j)}-\prod_{j=1}^{i}\left(\frac{n-j}{n-j+1}\right)^{\delta}(j) \\
&= \prod_{j=1}^{i-1}\left(\frac{n-j}{n-j+1}\right)^{\delta(j)} \frac{\delta_{(i)}}{n-i+1}=\prod_{j=1}^{i-1}\left(\frac{n-j+1}{n-j}\right)^{-\delta}(j) \\
& \times \frac{1}{n} \times \frac{n}{n-1} \times \cdots \times \\
& \times \frac{n-i+\gamma}{1} \times \frac{\delta_{(i)}}{n-i+1}=\frac{\delta_{(i)}}{n} \prod_{j=1}^{i-1}\left(\frac{n-j+1}{n-j}\right)^{1-\delta_{(j)}}
\end{aligned}
$$

فرض كنيد، $\delta_{(i)}=1$ الگوريتم تجديد نظر در توزيع به راست، جرم نسبت داده شبه به برابر زير است:

$$
\tilde{\Delta}_{(i)}=\frac{1}{n}\left(1+\frac{1}{n-j_{j}}\right)\left(1+\frac{1}{n-j_{Y}}\right) \cdots\left(1+\frac{1}{n-j_{i}}\right)=\frac{1}{n} \prod_{j=1}^{i-1}\left(\frac{n-j+1}{n-j}\right)^{i-\delta}(j)
$$

و اگر \% نظر در توزيع به راست، بر آورد گر PL را هىدهـد.

مسألة . 1 .
اگر برایى بر آوردگر

$$
\operatorname{ACov}\left(\hat{S}\left(t_{1}\right), \hat{S}\left(t_{\gamma}\right)\right)=\frac{S\left(t_{1}\right) S\left(t_{\gamma}\right)}{n} \times \int_{0}^{t_{1} \wedge t_{\varphi}} \frac{d F_{u}(s)}{(1-H(s))^{r}}
$$

را داشته باشيم، نشان دهيد كه براىى

$$
\operatorname{AVar}(\hat{\mu})=\frac{1}{n} \int_{0}^{\infty} \frac{1}{(1-H(s))^{r}}\left(\int_{s}^{\infty} S(t) d t\right)^{r} d F_{u}(s)
$$

كه در آن AVar و ACov، به معنى واريانس و كوواريانس مجانبى است. حل:

$$
\begin{aligned}
\operatorname{Var}(\hat{\mu}) & =E\left(\hat{\mu}^{\gamma}\right)-(E(\hat{\mu}))^{\gamma} \\
& =E\left(\int_{0}^{\infty} \int_{0}^{\infty} \hat{\mathbf{S}}\left(t_{1}\right) \cdot \hat{\mathbf{S}}\left(t_{\varphi}\right) d t_{1} d t_{\gamma}\right)-\left(E\left(\int_{0}^{\infty} \hat{S}(t) d t\right)\right)^{r} \\
& =\int_{0}^{\infty} \int_{0}^{\infty} \operatorname{Cov}\left(\hat{\mathbf{S}}\left(t_{1}\right) \cdot \hat{\mathbf{S}}\left(t_{\varphi}\right)\right) d t_{1} d t_{\gamma}
\end{aligned}
$$

بنابراين، داريثم:

$$
\operatorname{AVar}(\hat{\mu})=\frac{1}{n} \int_{0}^{\infty} \int_{0}^{\infty} S\left(t_{1}\right) \cdot S\left(t_{r}\right) \times \int_{0}^{t_{1} \wedge t_{r}} \frac{d F_{u}(s)}{(1-H(s))^{r}} d t_{1} d t_{r}
$$

با تعويض انتگرال (تضيه نوبينى)، داريم:

$$
\begin{aligned}
\operatorname{AVar}(\hat{\mu}) & =\frac{1}{n} \int_{0}^{\infty} \frac{1}{(1-H(s))^{r}} \int_{S}^{\infty} S\left(t_{1}\right) d t_{1} \times \int_{S}^{\infty} S\left(t_{\varphi}\right) d t_{\varphi} d F_{u}(s) \\
& \left.=\frac{1}{n} \int_{0}^{\infty} \frac{1}{(1-H(s))^{r}} \iint_{S}^{\infty} S(t) d t\right)^{r} d F_{u}(s)
\end{aligned}
$$

مسأله 11.
برای دادههاى AML در گروه شاهل، كه به شكل زير هســتند، (الـف) . $\hat{\text { | محاسبه كتيد. } \hat{\operatorname{Var}}(\hat{\mu}) ~}$
 بر حسب هفته
(الف) بر آوردگر كایِلن -ماير (t(t) در جدول زير داده شده است:

در اين صورت، داريم:

$$
\begin{align*}
& \hat{\mu}=\int_{0}^{\infty} \hat{S}(t) d t=1 \times \Delta+\frac{10}{1 r} \times r+\frac{\lambda}{1 r} \times F+\frac{V}{1 r} \times 11+\frac{V}{1 r} \times \frac{\Delta}{s} \times F+\frac{V}{1 r} \times \frac{F}{s} \times r+ \\
& +\frac{V}{1 r} \times \frac{r}{s} \times r+\frac{V}{1 r} \times \frac{r}{s} \times 10+\frac{V}{1 r} \times \frac{1}{s} \times r=r r, V I \tag{ب}
\end{align*}
$$

$$
\begin{aligned}
\hat{\operatorname{Var}(\hat{\mu})} & =\sum_{u}\left(\int_{y_{(i)}}^{\infty} \hat{S}(t) d t\right)^{r} \frac{d_{i}}{n_{i}\left(n_{i}-d_{i}\right)} \\
& =(1 \gamma, V 1)^{r} \frac{r}{1 r \times 10}+(1 \Delta, r 1)^{r} \frac{r}{10 \times \lambda}+(1 r, \Delta F)^{r} \frac{1}{\lambda \times \gamma}+(\varepsilon, \mid r \Delta)^{r} \frac{1}{\varepsilon \times \Delta}+ \\
& +\left(F,\langle\Lambda)^{r} \frac{1}{\Delta \times F}+(r, 01)^{r} \frac{1}{F \times r}+(r, 1 F)^{r} \frac{1}{r \times r}+(0, \mid q)^{r} \frac{1}{\gamma \times 1}=\mid \gamma, F V\right.
\end{aligned}
$$

 برحسب هفته به شرح زيراند. با با گَهان، (ب) جايگشت آن و (ب) آمارة استاندارد و مبّدار P.

امتيازهاى U* در جدول زير محاسبه سُدهاند:

$$
\frac{1 F \times 10}{r 9 \times r \wedge} \sum_{I, I I}\left(U^{*}\right)^{r}=10 \wedge s_{i} v r
$$

(پ) 0:0rVA، است.

REFERENCE

Gregory et al. , New England Journal of Medicine (1976).

محاسبات مانند جدول شماره f از فصل جهارم، بخش دوم، انجام شده است.

$$
z n m_{1} n_{1} \text { a } E_{0}(A) n\left(a-E_{0}(A)\right) \frac{m_{1}\left(n-m_{1}\right)}{n-1} \frac{n_{1}}{n}\left(1-\frac{n_{1}}{n}\right) n_{1}\left(n-n_{1}\right)
$$

$$
\begin{aligned}
& \text { مسألؤ } 1 \text {. }
\end{aligned}
$$

(الف) آمارة MH و مقدار P متناظ, Tذ.
(ب) صورت تارون -واير آماره: گهان و مقدار متناظر PH

$$
\begin{aligned}
& \text { (ب) واريانس جايگشت به شرح زير است: }
\end{aligned}
$$

(الف)

بنابرابن، مقدار P يك طرفة متناظر برابر است.

لز نتينجه مقدار P
مسألدٔ 1 . 1

(هدال فصرل ششه، بخش
 آهارهٔ كاكسى را، كه به صورت زیر است، آزمون كنيـ.

$$
\left(\frac{\partial}{\partial \beta} \log L_{c}(1)\right)^{r} /-\frac{\partial^{r}}{\partial \beta^{r}} \log L_{c}(1)
$$

$$
\text { از } \beta \text { ، به دست آوريل. }
$$

$$
\begin{aligned}
& \text { بنابراين، داريم: } \\
& \frac{\left(\frac{\partial}{\partial \beta} \log \mathrm{L}_{\mathrm{c}}(1)\right)^{r}}{-\frac{\partial^{r}}{\partial \beta^{r}} \log \mathrm{~L}_{\mathrm{c}}(1)}=0,01 \wedge \\
& \text { و مقدار P، كه از } \\
& \text { (ب) بر آورد تسياتيس (بخش اولّ از فصل ششم) عبارت است از: }
\end{aligned}
$$

بنابر اين؛ داريم:

$$
\hat{S}_{\mathrm{T}}(\mathrm{t} ; 1, \Delta)=\mathrm{e}^{-\hat{\Lambda}_{o, T}(\mathrm{t}) \mathrm{e}^{1 / \Delta}}=\left\{\begin{array}{cr}
1 & 0 \leq \mathrm{t}<\Delta f \\
0, V A & \Delta f \leq \mathrm{t}<\mathrm{YqV} \\
0, f s & t=Y q V
\end{array}\right.
$$

بر آورد گر مطلوب (بنشش اوّل از فصل ششم) به شرح زير است:

$$
\hat{\Lambda}_{o, T}(t)= \begin{cases}\frac{0, \circ \Delta \Delta F}{\Delta F} \mathrm{t} & 0 \leq \mathrm{t}<\Delta F \\ \frac{0, V Y Y-0, \circ \Delta \Delta F}{Y Q V-\Delta F}(\mathrm{t}-\Delta F)+0, \circ \Delta \Delta F & \Delta F \leq t \leq Y q V\end{cases}
$$

بنابراين، داريم:

$$
\hat{S}_{L}(t ; 1, \Delta)=e^{-\hat{\Lambda}_{o, L}(t) e^{1 / \Delta}}= \begin{cases}e^{-0,0 \circ f s t} & \circ \leq t<\Delta f \\ 0, A V Y e^{-\%, 0 \% Y t} & \Delta f \leq t \leq Y Q V\end{cases}
$$

مسألةٔ 10
براى دادههأى AML (مثال بخش دوم از فصل سوم) دو گروه تيمــار و شــاهد بــه

$$
\begin{aligned}
& Q, I T, I r^{+}, I A, r F, Y A^{+}, r I, r F, F Q^{+}, F A, 181^{+} \\
& \Delta, \Delta, A, A, I Y, 1 \mathcal{A}^{+}, Y T, Y V, Y \circ, H T, F Y, F \Delta
\end{aligned}
$$

تهليل بقاء
دو گروه را به شكل زیر شقايسه كنيد:
(الف) با آمارء گهان و واريانس جايگشت آن
(ب) با با آماره المارة (ب)
(ب) صورت تارون-واير آمارة گهان
در هر حالت آهارة استاندارد و مقدار P متناظر را به دست آوريد.
(الف) در محاسبئ نمرات مورد نياز براى انجام آمارة گهان، از جدول صفحه بعد اسـتفاده

آمارة گهان برابر ${ }^{\text {آ }}$

$$
\frac{11 \times 1 r}{r \times r \times r} \sum_{N, N M}\left(U^{*}\right)^{r}=91 r
$$

بنـابراين آمــارة اسستاندارد برابــر بـا: دوطرفةٔ 9 00، است.

Z	كرو0	$\#<2$	\# > Z	U*
Ari	NM	-	Y	$-r \mid(Y)$
八ir	NM	r	19	- IV(Y)
9	M	f	14	-1F
19	NM	0	IV	-19
,	M	¢	18	-1.
$\because r$	M	V	-	V
18^{+}	NM	V	-	V
id	\Downarrow	γ	Ir	-s
$: T$	M	\wedge	11	-r
\cdots	N 1	\wedge	11	$-r$
\because	* 1	10	$!$	-
r	$\therefore 1$	11		11
r	N13	11	λ	r
π	M	19	V	0
rr	λN	ir	;	\checkmark
r	N1	17	0	9
rr	NM1	$i=$	¢	11
10	TiN1	19	F	Ir
10^{-}	M	\because	.	IV
$4{ }^{-7}$	Ni	\because	1	18
151^{\prime}	8	:	*	1λ

(ب) و (ج) محاسبات در جدول زير مشــابه مسـألئ با، انجــام קذيرفتـه اســت. آمـاره

 برابر 990.0 به دست مى آيد.

(يعنى:)
بجز احتمالاً براى عامل 1-1 ، كه به خاطر تكرارهاست.
حل:
از بخش او"ل فصل حهارم نتيجه مىشود كه:

$$
\begin{aligned}
& U=\sum_{k=1}^{m+n} U_{k}^{*} I\left(k \in I_{1}\right) \\
& U_{k}^{*}=\sum_{\substack{\ell=1 \\
\ell \neq k}}^{m+n} U_{k \ell}
\end{aligned}
$$

به گونهاى كه:

است. يعنى اگر مشــاهدهاى بـا در نمونـه ا داراى زيرنويـس k باشـــ، بريــده مىشــود، آن گاه Uرابر تعداد مشاهدات بريده نشده قبل از آن منهاى تعداد مشاهدات بعــد از آن

$$
U_{k}^{*}=\sum_{j=1}^{k-1} m_{j}-\left(n_{k}-m_{k 1}\right)=\sum_{j=1}^{k} m_{j}-n_{k}(\text { بخش دوم از فصل جهارم را بينيد })
$$

از طرف ديگر، اگر مشاهده kام بريده شده باشد، آن گاه U

$$
U=\sum_{\substack{k=1 \\ c}}^{m+n} \sum_{j=1}^{k} m_{j l} I\left(k \in I_{1}\right)+\sum_{\substack{k=1 \\ u}}^{m+n}\left(\sum_{j=1}^{k} m_{j 1}-n_{k}\right) I\left(k \in l_{1}\right)
$$

كه در اين رابطه، c و ب به ترتيب به معنى اين است كه، مجموعها روى مشاهدات بريــده شده و نشده انجام میشود. چس، داريه:

$$
\begin{aligned}
U & =\sum_{k=1}^{m+n} \sum_{j=1}^{k} m_{j l} I\left(k \in I_{1}\right)-\sum_{k=1}^{m+n} n_{k} l\left(k \in I_{1}, \delta_{k}=1\right) \\
& =\sum_{j=1}^{m+n} m_{j \backslash} \sum_{k=j}^{m+n} I\left(k \in I_{i}\right)-\sum_{k=1}^{m+n} n_{k} a_{k} \\
& =\sum_{j=1}^{m+n}\left(m_{j} n_{j l}-n_{j} a_{j}\right)=\sum_{u}\left(m_{j} n_{j l}-n_{j} a_{j}\right) \\
& =\sum_{u} n_{j}\left(a_{j}-E_{o}\left(A_{j}\right)\right)
\end{aligned}
$$

بريده نشده در Z
قرارداد را به ناطر بياوريد كه تكرار بين مشاهدات بريذه شده و بريده نشده توسّــط ايـن
ملاحظه كه مشاهدات بريده شده بزر گتراند، شكسته شده است).
. 1V 1 .

تقسيم میشود. يعنى:

$$
\frac{1}{N^{r}} \times \frac{m n}{(m+n)(m+n-1)} \sum_{i=1}^{m+n}\left(U_{i}^{*}\right)^{r}
$$

به عبارت ديگر $\lambda(1-\lambda) \int_{0}^{\infty}(1-H(t))^{\gamma} d H_{u}(t)$
ت فرض باشيم:

$$
\begin{aligned}
& H(t)=P\{Z \leq t\}=\int_{0}^{t}(1-G(u)) d F_{u}(u)+\int_{0}^{t}(1-F(u)) d G_{u}(u) \\
& H_{u}(t)=P\{Z \leq t, \xi=1\}=\int_{0}^{t}(1-G(u)) d F_{u}(u)
\end{aligned}
$$

$$
\begin{aligned}
& \hat{H}(t)=\frac{1}{N} \sum_{i=1}^{N} I\left(Z_{i} \leq t\right) \\
& \hat{H}_{u}(t)=\frac{1}{N} \sum_{i=1}^{N} I\left(Z_{i} \leq t, \xi_{i}=1\right)
\end{aligned}
$$

باشد. آنگاه،

$$
U_{i}^{*}= \begin{cases}\left(\text { (تعداد مشاهده > }>Z_{i}\right) & \left.Z_{i}\right) \\ \left(Z_{i}\right)- & \xi_{i}=1 \\ (\text { تعداد بريده شريه شدها }=0\end{cases}
$$

$$
= \begin{cases}N \hat{H}_{u}\left(Z_{i^{-}}\right)-N\left(1-\hat{H}\left(Z_{i}\right)\right) & \xi_{i}=1 \\ N \hat{H}_{u}\left(Z_{i^{-}}\right) & \xi_{i}=0\end{cases}
$$

$$
=N\left[\hat{H}_{u}\left(Z_{i}-\right)-\xi_{i}\left(1-\hat{H}\left(Z_{i}\right)\right)\right]
$$

در نتيجه، داريم:

$$
\begin{aligned}
\frac{1}{N^{r}} \sum_{i=1}^{N}\left(U_{i}^{*}\right)^{\gamma}= & \frac{1}{N^{\mu}} \sum_{i=1}^{N} N^{\psi}\left[\hat{H}_{u}\left(Z_{i}-\right)-\xi_{i}\left(1-\hat{H}\left(Z_{i}\right)\right)\right]^{\mu} \\
= & \frac{1}{N} \sum_{i=1}^{N}\left[\hat{H}_{u}^{r}\left(Z_{i}-\right)-\frac{r}{N} \sum_{i=1}^{N} \xi_{i} \hat{H}_{u}\left(Z_{i}-\right)\left(\left(1-\hat{H}\left(Z_{i}\right)\right)+\right.\right. \\
& +\frac{1}{N} \sum_{i=1}^{N} \xi_{i}\left(1-\hat{H}\left(Z_{i}\right)\right)^{r} \\
= & \int_{0}^{\infty} \hat{H}_{u}^{r}(t-) d \hat{H}(t)-r \int_{0}^{\infty} \hat{H}_{u}(t-)(1-\hat{H}(t)) d \hat{H}_{u}(t)+ \\
& +\int_{0}^{\infty}(1-\hat{H}(t))^{\varphi} d \hat{H}_{u}(t)
\end{aligned}
$$

t خو

وقتى كه

$$
\begin{aligned}
& \frac{1}{N^{r}} \sum_{i=1}^{N}\left(U_{i}^{*}\right)^{\gamma} \xrightarrow{a . s} \int_{0}^{\infty} H_{u}^{\gamma}(t) d H(t)- \\
& -r \int_{0}^{\infty} H_{u}(t)(1-H(t)) d H_{u}(t)+\int_{0}^{\infty}(1-H(t))^{\gamma} d H_{u}(t)
\end{aligned}
$$

با انتگرالگيرى جزء به جزء، داريم:

$$
\begin{aligned}
& r \int_{0}^{\infty} H_{u}(t)(t-H(t)) d H_{u}(t) \\
& \quad=\left.H_{u}^{\gamma}(t)(1-H(t))\right|_{0} ^{\infty}+\int_{0}^{\infty} H_{u}^{r}(t) d H(t)=\int_{0}^{\infty} H_{u}^{\gamma}(t) d H(t)
\end{aligned}
$$

در نتيجه، دو جملةٔ اولّ حد بالا حذف شده و همراه با:

$$
\frac{m n}{(m+n)(m+n-1)} \rightarrow \lambda(1-\lambda)
$$

تيجِه كامل مىشود.

هايان

وازْهنامه

A

Accelerated time model
Acturial method
Asymptotic normality

$$
\begin{aligned}
& \text { الكوى زمانى شتأب داده شده } \\
& \text { روش بيمه گرى } \\
& \text { نرمال مجانبى }
\end{aligned}
$$

B

Bias-corrected estimator
Bootstrap
Bayesian estimate

برآوردگر تصحيح اريبى
بوتاسترات
بر آوردگر بيزى

C

Censoring
Chi-square test
Competing risk
Conditional likelihood

Confidence interval
Consistency
Continuity correction
Cox model
Cumulative hazard function
Cohort life table

فاصلةُ اطمينان
ساز گارى

 درستنمايى شرطى

الح تابع نرخ شـكست تجمعیى جدول طول عمر گروهى

Current life table	جذول طول عمر جارى
Crude probability	احتمال خام
D	
Delta method	روش دلك
Density function	
Dirichlet process	فرايند دريكا
Discret data	دادههاى جنا -
Distribution function	تابع توزيو
Drop out	تطع ادامه كار
Draw back	بإجايكذارى - عيب
Diagnosis	تشخيص بيمارى

E

Exponential function
Exponential distribution

$$
\begin{aligned}
& \text { تابع نمايعى } \\
& \text { هِانی نمانیى } \\
& \text { تابع مقادير فرين } \\
& \text { توزيع هقادير فرين } \\
& \text { چِگانى هقادير فرين } \\
& \text { آزمون افرون } \\
& \text { طول مؤنّر نمونه }
\end{aligned}
$$

Exponential density
Extreme value function
Extreme value distribution
Extreme value density
Efron's test
Effective sample size

F

Force of mortality
Full likelihood

نرخ مر گومير
درستنمامى كامل

Gamma density

Gehan test
آزمون گهان

H

Hypergeometric
Hazard function
Hazard rate

IFR
IFRA
Insurance
Indentically distribution
iid
Interval censoring
Influence function همتوزيع

$$
\begin{aligned}
& \text { تابع نرخ شكست صعودى }
\end{aligned}
$$

بيمه گرى
مستقل و همتوزيع
برش فاصلهاى (نوع
تابع تأثير
روش تكرارى
مستقل و همتوزيع
تابع تأثير
روش تكرارى

J

Jaek nifed method
روش جكناين

K
Kaplan-Meier estimator
بر آوردگر كآلان -ماير

L

Least squares

Linear Rank test
Log Rank test
Lose to follow - up
Left censoring

كمترين مربعات
آزمون رتبهٔ خطى
آزمون رتبهُ لخاريتمى
عهم بازكت
بَب برش (رشر از جب)

$$
\begin{aligned}
& \text { تحليل بقاء } \\
& \text { Logistic function } \\
& \text { Log-linear model }
\end{aligned}
$$

M
Maximum likelihood (ML)
Maximum likelihood estimator (MLE)
Mean
Median
Miller modified
Mortality table
Mariginal
Method of scoring

$$
\begin{aligned}
& \text { حدا كثر درستنمايى } \\
& \text { بر آورد گر درستنمايى } \\
& \text { ميانگين (حسابى)، معدّل } \\
& \text { ميانه } \\
& \text { تعميم ميلر } \\
& \text { جدول طول عمر } \\
& \text { حاشيهاى } \\
& \text { روش امتيازی (تَوب خطّى) }
\end{aligned}
$$

N

Newton-Raphson method
Neyman - Pearson
Naive estimator
روش نيوتن روفسون نيـن -يريرسن
بر آورد گر ساده

0
Order statistices
Order populations
آمار ههاى مرتب
جامعههانى مرتّب

P

Partial likelihood
Permutation
Permutation theory
Peterson's representation
Plots
Probability plots
Probability paper

درستنمايى نسبى جايگشت نظريهُ جايگشت

Ploting position

$$
\begin{aligned}
& \text { احتمال تجربیى } \\
& \text { فرايند يواسن } \\
& \text { حدّ حاصلضرب بر آوردگر } \\
& \text { الكوهاى نرخ شكست متناسب } \\
& \text { آناره́ محورى } \\
& \text { توزيع هيشين } \\
& \text { توزيع بسـين } \\
& \text { احتمال جزئى }
\end{aligned}
$$

Poisson process
Product-limitestimator
Proportional hazards model
Pivotal statistic
Prior distribution
Postorior
partial probability

Q
Q-Q plots
Quadratic

Q-Q رسم
درجه دوم

R
Rank
رتبه
Redistribute - to - the - right
Reduced sample method
Regression linear model
Rao-Blackwell theom
Restricted mean
Randome censoring

Right censoring
Risk
Reliability function
Robust estimator
راست برش (برش از راست)

S
Sample information matrix
Score vector
Score method
روش امتيازى (حوب خططى)

Self-consistency
Subdistribution function
Survival
Survival function
Survival time
Surviving fraction
Single sample
Subsurviaval function

T
Test
Ties
Time dependent covarites
Trend
متغير هالى وأبسته به نرمال

Trunction
Two by two tables
Trimed mean
Tukey biweight estimator
Tarone-Ware class
Tarone-Ware generalized
آزمون

تكرار

روند
قطع rer rer rex بيرايش كردن مِيانگين بر آوردگر دو وزن ونى تو كـى رده تارون -واير تعميم تارون -واير

W

Weak convergence

With draw
Wilks likelihood ratio
Weibul distribution

U
Unbias
ناريب

منابع

The numbers in brackets after the references are the numbers of the pages on which the references are cited.

Aalen, 0. (1976). Nonparametric inference in connection with multiple decrement models. Scandina-
vian Journal of Statistics $3,15-27$. $[69]$
(1978). Nonparametric inference for a family of counting processes. Annals of Statistics 6, 701-726. [69]

Abelson, R. P. and Tukey, J. W. (1963). Efficient utilization of non-numerical information in quantitative analysis: General theory and the case of simple order. Annals of Mathematical Statistics 34, 1347-1369. [112]

Altshuler, B. (1970). Theory for the measurement of competing risks in animal experiments. Mathematical Biosciences $\underset{\sim}{6}, 1-11 . \quad[179]$

Bailey, K. R. (1979). The general maximum likelihood approach to the Cox regression model. Ph.D. dissertation, University of Chicago, Chicago, Illinois. [133]

Barlow, R. E. and Proschan, F. (1975). Statistical Theory of Reliability and Life Testing. Holt, Rinehart, and Winston, New York. [15]

Barr, D. R. and Davidson, T. (1973). A KolmogorovSmirnov test for censored samples. Technometrics $\underset{\sim}{15}, 739-757$. [173]

Basu, A. P. (1964). Estimates of reliability for some distributions useful in life testing. Technometrics 6, 215-219. [35]

Berkson, J. and Gage, R. P. (1950). Calculation of survival rates for cancer. Proceedings of the $\frac{\text { Staff Meetings of the Mayo Clinic }}{[46]} \underset{\sim}{25}$, 270-286.

Berman, S. M. (1963). Note on extreme values, competing risks and semi-Markov processes. Annals of Mathematical Statistics 34, 1104-1106. [179]

Billingsley, P. (1968). Convergence of Probability Measures. Wiley, New York. [65]

Breslow, N. (1970). A generalized Kruskal-Wallis test for comparing K samples subject to unequal patterns of censorship. Biometrika 57, 579-594. [109, 114]
(1972). Discussion on Professor Cox's paper. Journal of the Royal Statistical Society, Series
(1974). Covariance analysis of censored survival data. Biometrics $\underset{\sim}{30}$, 89-99. [136, 139]
and Crowley, J. (1974). A large sample study of the life table and product limit estimates under random censorship. Annals of Statistics $2,437-453$. $[46,65,69]$

Buckley, J. and James, I. (1979). Linear regression with censored data. Biometrika 66, 429-436. [153, 163]

Campbell, G. (1979). Nonparametric bivariate estimation with randomly censored data. Mimeoseries \#79-25, Department of Statistics, Purdue University, West Lafayette, Indiana. [177]

Chiang, C. L. (1968). Introduction to Stochastic Processes in Biostatistics. Wiley, New York. [46, 179]

Cohen, A. C. (1965). Maximum likelihood estimation in the Weibull distribution based on complete and on censored samples. Technometrics $\underset{\sim}{7}$, 579588. [29]

Cox, D. R. (1972). Regression models and life-tables. Journal of the Royal Statistical Society, Series B $34,187-202$. [127, 139]
(1975). Partial likelihood. Biometrika 62, 269-276. [132] and Sne11, E. J. (1968). A general definition of residuals. Journal of the Royal Statistical Society, Series B 30, 248-275. [172]

Crowley, J. (1974). Asymptotic normality of a new nonparametric statistic for use in organ transplant studies. Journal of the American Statistical Association 69, 1006-1011. [103]
and Hu, M. (1977). Covariance analysis of heart transplant survival data. Journal of the American Statistical Association 72, 27-36. [141, 172]

Cutler, S. J. and Ederer, F. (1958) . Maximum utilization of the life table method in analyzing survival. Journal of Chronic Diseases 8, 699712. [42, 46]

Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B 39, 1-22. [154]

Dufour, R. and Maag, U. R. (1978). Distribution results for modified Kolmogorov-Smirnov statistics for truncated or censored samples. Technometrics 20, 29-32. [173]

Efron, B. (1967). The two sample problem with censored data. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Vol. IV. University of California Press, Berkeley, California. 831-853. [52, 57, 106]
(1977). The efficiency of Cox's 1ikelihood function for censored data. Journal of the American Statistical Association $72,557-565$. [132]
(1979). Bootstrap methods: Another look at the jackknife. Annals of Statistics 7, 1~26. [182]
(1980). Censored data and the bootstrap. Technical Report No. 53 (R01 GM21215), Division of Biostatistics, Stanford University, Stanford, California. [76, 182]
and Hinkley, D. V. (1978). Assessing the accuracy of the maximum likelihood estimator: $\mathrm{Ob}-$ served versus expected Fisher information. Biometrika 65, 457-487. [21]

Elveback, L. (1958). Estimation of survivorship in chronic disease: The "actuarial" method. Journal of the American Statistical Association ${\underset{\sim}{~}}_{53}$, 420-440. [46]

Embury, S. H., Elias, L., Heller, P. H., Hood, C. E., Greenberg, P. L. and Schrier, S. L. (1977). Remission maintenance therapy in acute myelogenous leukemia. Western Journal of Medicine $\underset{\sim}{126}$, 267-272. [50]

Epstein, B. and Sobel, M. (1953). Life testing. $\frac{\text { Journal of the American Statistical Association }}{48,486-502 \text {. }[25]}$

Farewe11, V. T. (1977). A model for a binary variable with time-censored observations. Biometrika 64, 43-46. [38]

Feig1, P. and Zelen, M. (1965). Estimation of exponential survival probabilities with concomitant information. Biometrics 21, 826-838. [36]

Ferguson, T. S. (1973). A Bayesian analysis of some. nonparametric problems. Annals of Statistics ${ }_{\sim}^{1}$, 209-230. [79]
and Phadia, E. G. (1979). Bayesian nonparametric estimation based on censored data. Annals of Statistics 7, 163-186. [79]

Fleming, T. R. and Harrington, D. P. (1979). Nonparametric estimation of the survival distribution in censored data. Unpublished manuscript. [67]

Földes, A., Rejtö, L. and Winter, B. B. (1978). Strong consistency properties of nonparametric estimators for randomly censored data. Part II: Estimation of density and failure rate. Unpublished manuscript. [76]

Gail, M. (1975). A review and critique of some models used in competing risk analysis. Biometrics 31, 209-222. [179]

Gaver, D. P., Jr. and Hoel, D. G. (1970). Comparison of certain small-sample Poisson probability estimates. Technometrics 12, 835-850. [35]

Gehan, E. A. (1965). A generalized Wilcoxon test for comparing arbitrarily singly-censored samples. Biometrika $\underset{\sim}{52}, 203-223 . \quad[89]$

Gilbert, J. P. (1962). Kandom censorship. Pl.D. dissertation, University of Chicago, Chicago, Illinois. [94]

Gillespie, M. J. and Fisher, L. (1979). Confidence bands for the Kaplan-Meier survival curve estimate. Annals of Statistics 7, 920-924. [173]

Glasser, M. (1967). Exponential survival with covariance. Journal of the American Statistical Association 62, 561-568. [36]

Gong, G. (1980). Do Hodgkin's disease patients with DNCB sensitivity survive longer? Biostatistics Casebook, Vol. III, Technical Report No. 57 (R01 GM21215), Division of Biostatistics, Stanford University, Stanford, California. [168]

Gregory, P. B., Knauer, C. M., Kempson, R. L. and Miller, R. (1976). Steroid.therapy in severe viral hepatitis. New England Journal of Medicine 294, 681-686. [186, 196]

Gross, A. J. and Clark, V. A. (1975) . Survival Distributions: Reliability Applications in the Blomedical Sciences. Wiley, New York. [20]

Hall, W. J. and Wellner, J. A. (1980). Confidence bands for a survival curve from censored data. Biometrika 67, 133-143. [173]

Hollander, M. and Proschan, F. (1979). Testing to determine the underlying distribution using randomly censored data. Biometrics 35, 393-401. [174]

Hyde, J. (1977). Testing survival under right censoring and left truncation. Biometrika 64, 225230. [174]
(1977). Life testing with incomplete observations. Technical Report No. 30 (R01 GM21215), Division of Biostatistics, Stanford University, Stanford, California. [94]

Johansen, S. (1978). The product limit estimator as maximum likelihood estimator. Scandinavian Journal of Statistics 5, 195-199. [59]

Johns, M. V., Jr. and Lieberman, G. J. (1966). An exact asymptotically efficient confidence bound for reliability in the case of the Weibull distribution. Technometrics 8, 135-175. [32]

Kalbfleisch, J. and Prentice, R. L. (1972). Discussion on Professor Cox's paper. Journal of the Royal Statistical Society, Series B 34, 215216. [139]
and (1973). Marginal likelihoods based on Cox's regression and life model. Biometrika $\underset{\sim}{60}, 267-278$. [130]
and \qquad (1980). The Statistical Analysis of Failure Time Data. Wiley, New York. $[20,127$, 143, 146]

Kaplan, E. L. and Meier, P. (1958). Nonparametric estimation from incomplete observations. Jour$\frac{\text { nal of the American Statistical Association }}{457-481 .} \underset{\sim}{5}$,

Kay, R. (1977). Proportional hazard regression models and the analysis of censored survival data. Applied Statistics (Journal of the Royal Statistical Society, Series C) 26, 227-237. [172]

Kiefer, J. and Wolfowitz, J. (1956). Consistency of the maximum likelihood estimator in the presence of infinitely many incidental parameters. Annals of Mathematical Statistics 27, 887-906. [59]

Korwar, R. M. (1980). Nonparametric estimation of a bivariate survivorship function with doubly censored data. Unpublished manuscript. [177]

Koul, H., Susarla, V. and Van Ryzin, J. (1979). Regression analysis with randomly right censored data. Unpublished manuscript. [155]

Koziol, J. A. and Byar, D. P. (1975). Percentage points of the asymptotic distributions of one and two sample $K-S$ statistics for truncated or censored data. Technometrics 17, 507-510. [173]
and Green, S. B. (1976). A Cramer-von Mises statistic for randomly censored data. Biometrika 63, 465-474. [173]

Lagakos, S. W. (1979). General right censoring and its impact on the analysis of survival data. Blometrics 35, 139-156. [179]
and Williams, J. S. (1978). Models for censored survival analysis: A cone class of variable-sum models. Biometrika $\underset{\sim}{5}$, 181-189. [179]

Lamb, E. J. and Leurgans, S. (1979). Does adoption affect subsequent fertility? American Journal of Obstetrics and Gynecology 134, 138-144. [141]

Lamborn, K. (1969). On chi-squared goodness of fit tests; for sampling from more than one population with possibly censored data. Technical Report No. 21 (T01 GM00025), Department of Statistics, Stanford University, Stanford, California. [175]

Langberg, N. A., Proschan, F. and Quinzi, A. J. (1981). Estimating dependent life lengths, with applications to the theory of competing risks. Annals of Statistics 9, 157-167. [179]

Latta, R. B. (1977). Generalized Wilcoxon statistics for the two-sample problem with censored data. Biometrika 64, 633-635. [146]

Leavitt, S. S. and 01shen, R. A. (1974). The insurance claims adjuster as patients' advocate: Quantitative impact. Report for Insurance Technology Company, Berkeley, California. [2]

Leiderman, P. H., Babu, D., Kagia, J., Kraemer, H. C. and Leiderman, G. F. (1973). African infant precocity and some social influences during the first year. Nature 242, 247-249. [7]

Leurgans, S. (1980). Does adoption affect fertility? A proportional hazards model. Biostatistics Casebook, Vol. III, Technical Report No. 57 (RO1 GM21215), Division of Biostatistics, Stanford University, Stanford, California.

Lininger, L., Gail, M. H., Green, S. B. and Byar, D. P. (1979). Comparison of four tests for equality of survival curves in the presence of stratification and censoring. Biometrika 66, 419428. [103]

Link, C. L. (i $\ddagger 79$). Confidence intervals for the survival function using Cox's proportional hazard model with covariates. Technical Report No. 45 (R01 GM21215), Division of Biostatistics, Stanford University, Stanford, California. [136]

Mantel, N. (1967). Ranking procedures for arbitrari1y restricted observation. Biometrics 23, 6578. [89]
and Haenszel, W. (1959). Statistical aspects of the analysis of data from retrospective studies of disease. Journal of the National Cancer Institute 22, 719-748. [103] and Myers, M. (1971). Problems of convergence of maximum likelihood iterative procedures in multiparameter situations. Journal of the $\frac{\text { American Statistical Association }}{[36]} \underset{\sim}{\sim}$, 484-491.

Marcuson, R. and Nordbrock, E. (1981). A K-sample generalization of the Gehan-Gilbert procedure for the analysis of arbitrarily censored survival data. Biometrische Zeitschrift/Biometrical Journal. [113]

Meier, P. (1975). Estimation of a distribution function from incomplete observations. Perspectives in Probability and Statistics. Papers in Honour of M. S. Bartlett (Ed. J. Gani). Academic Press, New York. 67-82. [72]

Mihalko, D. P. and Moore, D. S. (1980). Chi-square tests of fit for Type II censored data. Annals of Statistics ${\underset{\sim}{~ 8, ~ 625-644 . ~[174] ~}}^{8}$

Miller, R. G. (1974). The jackknife - a review. Biometrika $\underset{\sim}{61}, 1 \sim 15$. [182]
(1975). Jackknifing censored data. Technical Report No. 14 (RO1 GM21215), Division of Biostatistics, Stanford University, Stanford, California. [182]
(1976). Least squares regression with censored data. Biometrika $\underset{\sim}{63}, 449-464 .[150,163]$

Moeschberger, M. L. and David, H. A. (1971). Life tests under competing causes of failure and the theory of competing risks. Biometrics 27, 909923. [179]

Morton, R. (1978). Regression analysis of life tables and related nonparametric tests. Biometrika 65, 329-333. [146]

Muñoz, A. (1980). Nonparametric estimation from censored bivarlate observations. Technical Report No. 60 (ROl GM21215), Division of Biostatistics, Stanford University, Stanford, California. [177]
(1980). Consistency of the self-consistent estimator of the distribution function from censored observations. Technical Report No. 61 (R01 GM21215), Division of Biostatistics, Stanford University, Stanford, California. [177]

Nelson, W. (1969). Hazard plotting for incomplete failure data. Journal of Quality Technology ${ }_{\sim}^{1}$, 27-52. [67, 165]
(1972). Theory and applications of hazard plotting for censored failure data. Technometrics 14, 945-966. [67, 165]

Oakes, D. (1977). The asymptotic information in censored survival data. Biometrika $\underset{\sim}{64}$, 441-448. [132]

Peterson, A. V., Jr. (1975). Nonparametric estimation in the competing risks problem. Technical Report No. 13 (RO1 GM21215), Division of Bfostatistics, Stanford Unfversity, Stanford, Ca1ifornia. [179]
(1976). Bounds for a joint distribution function with fixed sub-distribution functions: Application to competing risks. Proceedings of the National Academy of Sciences 73, 11-13. [179]
(1977). Expressing the Kaplan-Meier estimator as a function of empirical subsurvival functions. Journal of the American Statistical Association 72, 854-858. [63, 67]

Peto, R. (1972). Discussion on Professor Cox's paper. Journal of the Royal Statistical Socfety, Series B 34, 205-207. [139]
and Peto, J. (1972). Asymptotically efficient rank invariant test procedures. Journal of the Royal Statistical Society, Series A $\underset{\sim}{135}$, 185198. [146]
and Pike, M. C. (1973). Conservatism of the approximation $\Sigma(O-E)^{2} / E$ in the logrank test for survival data or tumor incidence data. Biometrics 29, 579-584. [117]
, Pike, M. C., Armitage, P., Breslow, N. E., Cox, D. R., Howard, S. V., Mantel, N., McPherson, K., Peto, J. and Smith, P. G. (1976). Design and analysis of randomized clinical trials requiring prolonged observation of each patient. I. Introduction and design. British Journal of Cancer 34, 585-612. [117]
, Pike, M. C., Armitage, P., Breslow, N. E., Cox, D. R., Howard, S. V., Mantel, N., McPherson, K., Peto, J. and Smith, P. G. (1977). Design and analysis of randomized clinical trials requiring prolonged observation of each patient. II. Analysis and examples. British Journal of Cancer 35, 1-39. [117]

Pettit, A. N. (1976). Cramer-von Mises statistics for testing normality with censored samples. Bionetrika 63, 475-481. [173]
(1977). Tests for the exponential distribution with censored data using Cramér-von Mises statistics. Biometrika $\underset{\sim}{64}$, 629-632. [173] and Stephens, M. A. (1976). Modified Cramervon Mises statistics for censored data. Biometrika $\underset{\sim}{63}$, 291-298. [173]

Phadia, E. G. (1980). A note on empirical Bayes estimation of a distribution function based on censored data. Annals of Statistics 8, 226-229. [80]

Prentice, R. L. (1978). Linear rank tests with right censored data. Biometrika $\underset{\sim}{65}$, 167-179. [146] and Gloeckler, L. A. (1978). Regression analysis of grouped survival data with application to breast cancer data. Biometrics $34,57-67$. [139]
\qquad and Kalbfleisch, J. D. (1979). Hazard rate models with covariates. Biometrics 35, 25-39. [127, 143]
, Kalbfleisch, J. D., Peterson, A. V., Jr., Flournoy, $\therefore .$, Farewell, V. T. and Breslow, N. E. (1978). The analysis of failure times in the presence of competing risks. Bionctrics 34 , 541-554. [179]

Rai, K., Susarla, V. and Van Ryzin, J. (1980). Shrinkage estination in nonparanetric Bayesian survival analysis: A simulation study. Conmunications in Statistics, Simulation and Computation B9, 271-298. [79]

Rao, C. R. (1965). Linear Statistical Inference. Wiley, New York. $[20,2 \bar{l}]$

Reid, N. M. (1981). In luence functions for censored data. Annals of Statistics 9, 78-92. [73, 74, 76, 182]
___ and Iyengar, S. (1979). Estimating the variance of the median. Unpublished notes. [76]

Sander, J. M. (1975). The wak convergence of quantiles of the product-limit estimator. Technical Report No. 5 (ROl GM2l215), Division of Biostatistics, Stanford University, Stanford, California. [76]
(1975). Asymptotic normality of linear combinations of functions of order statistics with censored data. Technical Report No. 8 (R01 GM21215), Division of Biostatistics, Stanford University, Stanford, California. [72, 73]

Schmee, J. and Hahn, G. J. (1979). A simple method for regression analysis with censored data. Technometrics 21 , 417-432. [154]

Schoenfeld, D. (1980). Chi-squared goodness-of-fit tests for the proportional hazards regression model. Biometrika 67, 145-153. [175]

Susarla, V. and Van Ryzin, J. (1976). Nonparametric Bayesian estimation of survival curves from incomplete observations. Journal of the American Statistical Association 71, 897-902. [79]
\qquad and \qquad (1978a). Empirical Bayes estimation of a distribution (survival) function from right censored observations. Annals of Statistics 6, 740-754. [80]
and \qquad (1978b). Large sample theory for a Bayesian nonparametric survival curve estimator based on censored samples. Annals of Statistics 6, 755-768. [79]
and \qquad (1980). Large sample theory for an estimator of the mean survival time from censored samples. Annals of Statistics ${ }_{\sim}^{8}, 1001-$ 1016. [72]

Tarone, R. E. (1975). Tests for trend in life table analysis. Biometrika 62, 679-682. [118] and Ware, J. (1977). On distribution-free 'tests for equality of survival distributions. Biometrika $\underset{\sim}{64}$, 156-160. [105, 116]

Thomas, D. R. and Grunkemeier, G. L. (1975). Confidence interval estimation of survival probabilities for censored data. Journal of the American Statistical Association $\underset{\sim}{70}$, 865-871. [52]

Tsiatis, A. (1975). A nonidentiflability aspect of the problem of competing risks. Proceedings of the National Academy of Sciences $\underset{\sim}{72}, 20-22$. [179]
___ (1978). A heuristic estimate of the asymptotic variance of the survival probability in Cox's regression mode1. Technical Report No. 524, Department of Statistics, University of Wisconsin, Madison, Wisconsin. [136]
(1981). A large sample study of Cox's regression model. Annals of Statistics ${ }_{\sim}^{9}$, 93-108. [133, 136]

Turnbull, B. W. (1974). Nonparametric estimation of a survivorship function with doubly censored data. Journal of the American Statistical Assoclation $\underset{\sim}{69}$, 169-173. [7, 57]
(1976). The empirical distribution function with arbitrarily grouped, censored and truncated data. Journal of the Royal Statistical Society, Series B $\underset{\sim}{38}$, 290-295. [57]
\qquad , Brown, B. W., Jr. and Hu, M. (1974). Survivorship analysis of heart transplant data. Journal of the American Statistical Association 69, 74-80. [141]
and Weiss, L. (1978). A likelihood ratio statistic for testing goodness of fit with randomly censored data. Biometrics $\underset{\sim}{34}, 367-375$. [174]

Wilk, M. B. and Gnanadesikan, R. (1968). Probability plotting methods for the analysis of data. Biometrika 55, 1-17. [165] , Gnanadesikan, R. and Huyett, M. J. (1962). Probability plots for the gamma distribution. Technometrics 4, 1-20. [166]

Williams, J. S. and Lagakos, S. W. (1977). Models for censored survival analysis: Constant-sum and variable-sum models. Biometrika 64, 215224. [179]

Zacks, S. and Even, M. (1966). The efficiencies in small samples of the maximum likelihood and best unbiased estimators of reliability functions. Journal of the American Statistical Association 61, 1033-1051. [35]

Zippin, C. and Armitage, P. (1966). Use of concomitant variables and incomplete survival information in the estimation of an exponential survival parameter. Biometrics 22, 665-672. [36] and Lamborn, K. (1969). Concomitant variables and censored survival data in estimation of an exponential survival parameter, Part IJ. Technical Report No. 20 (T01 GM00025), Department of Statistics, Stanford University, Stanford, California. [36]

FERDOWSI UNIVERSITY OF MASHHAD
Publication No. 3/2

Survival Analysis

by
RUPERT G. MILLER, JR.

Translated by
ABOLGHASEM BOZORGNIA - HOJJAT REZAEE PAZHAND

FERDOWSI UNIVERSITY PRESS

