

$$
4+3
$$

ITYF

انتشارات دانشكاه فردوسى مشهد ، شمماره؛ 190

تــرمـووينــاميــك

تألفف
جى .بِى •هولمن

ويرايش چهارم

ترجمهُ
دكر سيّد معمّد رضا مدرّس رضوى

فهرستنويسى بيش از انتشار توسط كتابخانه مركزى و مركز اسناد دانشُاه نردوسى مشُهد .

Holman, Jack Phillip هولمن ، بیى فيليب

Thermodynamics
عأزونامهن املى :

كتابنامه در بابان هر نصـل .
(. ترمودبنامبكى . الف . مدرّس رضوى ، محمد رضا ؛ مترجم . ب. عنوان .

QCril/ org/y

مشخصات :
نامكتاب : ترموديناميك
تاليف : جى • بي . هولمن
ترجمه : سيّد محتّد رضا مدرّس رضوى
ويراستاران علمى : ابراهيم دامنگير و مجيد صفّار اوّل
ويراستار اديم : محتّد دهقانى
ناشر : انتشارات دانشگاه فردوسى مشهد
 تيراز : • . . .

 كيمت: •

فهرست مطالب

صفحه	عنوان
Iv	دربارهٔ مؤلف
19	ديباجه
rr	ريشكِّار مترجم
	كلصل 1 ـ مقدّمه
Ts	- -
Y	-1-1-1
r.	-1-Y
r	- ا-¢
ros	
rr	كا. 1.1
rv	I-V
rq	-1-1
f.	
F1	1-1.
ff	\|.11

ΔY
$\Delta 9$
71
$Y Y$
$V A$
$V Y$
$V V$

فصل † ـ قانون اوّل ترموديناميك

v9	سقدهـه	P-1
A.	كار	r-Y
11	كار انبـــاط يا تراكم در يكت سيلندر	r.r
AF	كار در ميدان جانج	r-q
As	كار الكتريكى و مناطنى	r-A
91	انر	Y-7
98	كانون اوّل تر مودينا	r-V
91	حرارت وترما	Y-^
1.r		r-q
119	رآيندها يأى كاز إيدهآل	r-I.
Irr		Y-11
Iri	Wl	Y-IY

irt
181
خودآزمایى (سوالالات مرورى)
مسانل

مرابع

لكصل 「 ـ خواضّ ماكروسكهِ موادّ خالص

1F9
10Y
$1 \Delta F$
I7Y
IVI
IVr
ivf
IVA
iva
|AV

119
19.

147
r-I مقدمه
خواص مواد خالص
نواسی اشباع
مـ.f
Tـه Tـ T ضـويب انبساط Y

خودآزما بى (سوالا ت مردرى)
مساثل
مراجع

F-1
P_Y
M.r P-r

س-F
P-D
P-7
P_Y
خودآزما بي (سوالات مريرى)
مساتل
مراجع

فصل هـ ــ قانون دوّم ترموديناميك

rov
ras
roq
r.
rir,
P7p
Yッ1
rv.
rvi
rvo

- ا-هد عوامل عملى برگشتنايذيرى ها
rva
الــترويى ماده خالص
rva
ral
rir mيكل كارنو

Y^9
raf
ها اـه تحليل تانون دوم براى حجم كنترل
rat
r.
rir
مقدار كاردمهى در سيستههاى بسته

$$
\Delta-1 \wedge
$$

ris
ris
ris
ris

14-0 تعيير ميكروسكبى Tنتروبى

شيطانكت ماكسول و تنورى اطلاعات
نوداززمايى (سوالات مرورى)

مساثل
rfy
مرابمع

$$
\begin{aligned}
& \text { 0-1 } \\
& \text { D-Y }
\end{aligned}
$$

$$
\begin{aligned}
& \text { of } \\
& \text { هـه هـرارداد علامت براي حرارت و كار } \\
& \text { Tـ } \\
& \text { D-V }
\end{aligned}
$$

فصل 7 - معادلات حالت و روابط عمومى ترمودينامبك

$$
\begin{aligned}
& \text { بـقدّمه }
\end{aligned}
$$

> -
> م_اء
> هـ هـ روابط ماكــول

$$
\begin{aligned}
& \text { : V_V }
\end{aligned}
$$

> -
> T.1.

> R_IY
> -

$$
\begin{aligned}
& \text { 9_19 الث ماگتو كالريك؛ } \\
& \text { خودآزمامي (سوالا ت مرورى) } \\
& \text { مسائل } \\
& \text { مراجع } \\
& \text { فصل Y ـ مخلوطهاى كازى } \\
& \text { مراجع }
\end{aligned}
$$

$$
\begin{aligned}
& \text { مقدّه~ V-1 } \\
& \text { تانون گیبسِ ـد التُون V-Y }
\end{aligned}
$$

fiv
fiv

ترموديناميك

fry	خواص انزرّى مخلوطها	v_r
fry	مخلوطهاى	V-F
Fry	اشباع آدياباتيك	V_D
ff.	نمو دار رطوبت سنجى	v-q
ffr	فرآيندهاى تهويه مطبع	v_v
fif	برج هاي خنكك	V_A
fiv	مخلوطهاى	v-q
FA1	خودآزما يى (سوالا ت مرورى)	
far	H-1	
0.9	مرابع	
	ترموديناميك	- A
$\Delta \cdot v$	مقدمه	N. 1
$\Delta . v$	واكنشهاي احترات	$\mathrm{A}_{-} \mathrm{r}$
Q1r	انتالجى تئكِيل	A_r
010	ترازهأى مبنا براى جلول	$\mathrm{N}_{-} \mathrm{f}$
$\Delta 10$	تابِ گيبس و آ'تروبى مطلِّ	N- ${ }^{\text {d }}$
019	حرارت واكنش و ارزش حرارتى	A_{-}
arv	دماى شعله آديابانيك	A_V
-rr	انتاليهاى محصولات عمومى	A_A
$\Delta F F$	تعادل	A-9
$\Delta F A$	تعادل شيـيانيّى	A-1.
8ワ1	اثرات كاز ها	A. 11

sir
$\Delta 7 v$
ΔV.
$\Delta V F$ $\Delta v V$ $\Delta V \wedge$
$\Delta \wedge$.
$\Delta \wedge 1$
$\Delta 9 \Delta$

فصل 9 ـ سيكلهاى قدرت و تبريد
$\Delta q V$
9-1 مقدّهـ
$\Delta 9 \wedge$
$\Delta 99$
$31 F$
7Y.
7Y0
7r9
7F1
iff
7 18
389
301
77
Q \quad Q Y Q_r Q_F a_ه
Q_ף
سيكلهای موتور احتراق داحخلى Q_V a_1

-Q- 11 Q_IY بـ

$$
\begin{aligned}
& \text { N_IY } \\
& \text { A_IT } \\
& \text { N_ } 1 \text { F } \\
& \text { N- } 10 \\
& \text { A_ } 17 \\
& \text { مفهوم بيشترين مقدار كار N-IV } \\
& \text { خودآزها مى (موألات مرورى) } \\
& \text { مسـانل } \\
& \text { مراجع }
\end{aligned}
$$

ترموديناميك

فصل • 1 ـ ترموديناميك سيّال تراكم بذير

Vra
vYq
vri
vrs
VFF
VFA
var
Vif
viA
var
vVF
var

(1 سرعت صوت و عدد ماخ
1•-F

l •. . V

خودآزما يس (سموالات مرورى)
مسائل
مراجع

$$
\text { فصل } \mid 1 \text { ـ اصول انتقال حرارت }
$$

$\wedge \Delta \Delta$
$\wedge \Delta \Delta$
ADV
$\wedge \Delta \wedge$
Аィ
ヘット

Avr
Nvf
へvo
$\wedge \vee \wedge$

فصل 「｜ـ اصول ترموديناميك آمارى
11－1 هقدمه
｜ا 1 ـ
ب－
ا انتقالل حرارت جابجائى

｜I－V
خودآزمايم（سؤلات ت مرورى）
مسان
مراجع
｜Y－1
اY اY Y Y

IY＿f

｜Y＿7
مدلهاى فيز يكى IY＿V
اY＿A
IY＿Q
مدل TY－1．
｜Y． 11

Aソa
A人。
AAr
AAF
Aへ
AА？
＾人 9
人 9 ．
人9．
AqY

A90
199
AQA
Q．．
$9 \cdot 0$
910
917
QYY
$9+1$
9×7
$9 F 1$
QFF
AFS
9FA

فصل T｜ـ ـ كاربردهاى توموديناميك آمارى
مدل كلاهسيكت ماكــول ـبولتزمن IY－IY TY－IY ｜Y＿1F TY－10 GY－17 TY－IV
 خودآزما مي（سوالا ت مرورىى）

مساثل
راجع

$$
\begin{aligned}
& \text { |r-| } \\
& k \text { g } \beta \text { א } \\
& \text { توابی }
\end{aligned}
$$

$$
\begin{aligned}
& \text { |T.V } \\
& \text { اr_A }
\end{aligned}
$$

$$
\begin{aligned}
& \text { KاT_1. } \\
& \text { | | } 1 \text { ـ } 1 \\
& \text { خودآزما مى (سؤالا ت مردرى) } \\
& \text { مسانل } \\
& \text { رابع }
\end{aligned}
$$

ضميمه A ضرايب تبديل و خواص ترموديناميغى

$9 \Delta 1$
$q \Delta Y$
$q \Delta r$
$q \Delta F$
$9 \Delta q$
$9 \Delta \wedge$
909 971
97%
974
970
9×1
qvo
9V7 91 .

جدول A - 1 ثابتهأى مهم نيزِ يكى جدول A-Y جرايبت تبديل
 SI A -f مشُتقات آحاد

 $1 \operatorname{alm} g\left(\vee \vee^{\circ} F\right)$
 جدول A .VM خواص آب - جدول دماى اشباع (آحاد SI) جدول A A هواص آب - جدول نشار اشباع (آحاد انگليسى) جدول A AM خواص آب - جدول نشار اشباع (آحاد (SI)

 جدول A A اF خواص آمونياكن داغ (آحاد انگليسى)
 اشُباع ((آحادانگليسى)
 جدول A IV خواصـ ترموديناميكى هوا در نشار هائين (آحاد انگليسى)

aqr
990
$1 \cdots$
$1 \cdots 1$
$1 \cdots r$
$1 \cdots r$
$1 \cdots p$ $1 \cdots 0$
$1 \ldots v$ $1 \cdots 0$
$1 \ldots v$

جدول A - 1 A خواص ترموديناميكى گازها درفشار پائين (T آحاد انگّليسى)

 $\gamma=1 / \mp$ ويزه و وزن ملكولى ثابت
ثشكل A (با اجازه شركت $p=1$ atm شكل A - F نمودار رطوبت سنجى، دماهایى بايْن، آحاد انگليسس،

 (با اجازه شركت 1 (ا $p=1$ atm شنودار مولير برای بيخار آب، آحاد انگليسس

ضميمه B خواص بواى محاسبات انتقال حرارت

دربارهٔ مؤلّف

 هروفسور بكانبكت در Tنجا مشنول بهكار است.

 روشهاى Tموزش هرا را بهعهده داشته است ر ري

 شيـمى صنعتى و مهندسى، مجلّة بين المللى انتقال جرم و حرارت، مجلّة علوم هوا و نضا و بـبيارى ديگـر

انتشار داده است .
دكتر هولمن همهنين مؤلّف سه كاب درسى است كه بهمقياس وسيع مورد استفاده ترار

 وسيع در جهان توزيع شده است. دكتر هولمن مشاور مؤنسّه مكت گراهيل در (بختش كتابهاى) بهندسى
 برایى منعـت انجام مىدمد . ir بهعنوان عضوانجمن ترويج مهندسى Tمريكا، او رئيس سابق بنث مهند سى مكانبكت ملم
 است. نام دكتر هولمن بهعنوان يكت مهندس حرنهاى در ابالت تگزاس بهثبت رسيله و جايزهُ مهندس

 مكانيكت بهاو اعطا نـو د.

1 - Air Force Aerospace Research Laboratory
2 - Southern Methodist University
3 - Director of Thermal and Fluid Sciences Center
4 - Head of the Civil and Mechanical Engineering Department
5 - Assistant Provost for Instructional Media
6 - Atomic Energy Commission
7 - National Science Foundation
8 - NASA
9 - Environmental Protection Agency
10 - Strategic Defense Initiative
11 - International edition
12 - Chairman of the National Mechanical Engineering Division
13 - Past Chairman of the A.S.M.E. Region X Mechanical Engineering Department Heads
14 - George Westinghouse Award
15 . James Henry Potter Gold Medal

اين كتاب برأى استفاده در اولين درس ترموديناميك دانتـجويان رشتههاى مهندسي درنظر
گرفته شده است. طبيعثأ ارائ تمام مطالب آن در يل ترم امكان ندأرد و در هر دوره مـكن است بر
مطالب مشختلفى تأكيد شود. در صوردت لزوم موادّ اين كتاب برابى ارائه در دو توم متوالمى كافى است .
در جاب جهارم نصل جلديدى دربارةٌ المول انتقال حرارت اضانه نُده ابـت كه مى تواند در
دورههائى كه براى دهندسين برق و كاميو تر برگزار مىشود بهكار Tيد و نيز در مسـائـل سرمايش كه اكنون با ابعاد فزايندهاى در كاربردهایى الكترونيكى مطرح مىشوند، مىتواند مورد توجّه مهندسبن برق
قرار گیير د.

در اينجا بحث مبختصرى درباره: تر تيب فصول مى آيد :

باز از ديدگاه انرزّى را الرائه مىدهد .

نصل ينجـم : تانون دوم ترموديناميك و مفهوم انرزّى دسترس پذير (انرزى مفيد) را از نقطه نظر ماكروسكيى ارائه مىكند.
نصل ششم : بيان سنتّى شعادلات حالت و روابط تراكم ثذئيرى عهو مى را شـامل مىگردد .
نصل هفتم : مشلوطهایى گًأزى را از نقطه نظر ماكروسكيى مورد برزسى قرار داده است و
تأكيد قَابل تو جهى بر كاربردهاى تهويةُ مطبوع دارد. مساسبه: خواصّ متخلو طگاز عانى واقعى هم مورد بحث قرار گرفته است، اما در مصورت كمبود وتت مى توان آن را سذفـ كرد .

فصل هشتم : بهبر سيستـهائى هرداختـه شده است .
فصل نهـم: : انواع جامعى از سيكلهاى قدرت را با تأكيد زياد بر محدوديتهاى اعمال شـده بر باز ده بهوسيلة تانون دوم مورد بحتث ترار مىدهد .
فصل دهم : بررسى كو تاهى است دربارة: ترموديناميك سيّال تراكم جذير • فصل يازدهم : موخوع انتقال سرارت معرّ فى شده اسست. در مورد اين مطالب جند جدول جديد بهضميهه اضافه گَرديده تا خوامّى نظير قابليّت هدايت حرارتى و لزجى راكه برایى محاسبات انتقال حرارت از طريق جابجائى لازم است، نشان دهد .
فصل دوازدهم و سيزدهم : مقدمة ترموديناميك آمارى و كاربرد آن رادر مداسبات خو اصّ گاز ها و موادّ جامد ارائه مىدهد .

 مطالعات بيشتر بايد بر مطالب نصـول ا تا ها تأكيد بيشترى تئود . اين مطالب يايهاى مى تواند درس رادر جهت كاربردهأى مناسب يس بر برد .

سريعترين حركت در اين مسير در حـنايعى نظير حـنايع فضايى، تبديل مستقيم انرزّى و نظاير آنها باشُد' كه بيشتر كاربردهأى ترموديناميكى بيگانهاى را ثشامل ميشوند. مـنايع جا انتادهاى خحون توليّد تدرت وت و گر مايش و تهوئ مطبوع حركت بسيار آهــته ترى دارند. در واقع بـيار مشكل است كهبتوان يت مهندس
 دانتـجويان را براى انـجام وظايف آينده مهيا كند. موازنة انرزى و تهليل سيكلهاى تدرت در هردو
 SI شوه انتقال حرارت، تأكيد بيشترى بر SI استـ كافى نيسـت كه دانشـجويان فقط در سينستم آحاد تحصيل نمايند، زيرا صنعت بهجنين روشى عمل نمىكند. از طرفى انصاف نيسـت كه امتيازات معاسباتى

آشَكار سيستم آحاد SI را ناديلهُ SI
سيستّم صرنـنظر كود. نكات يسشترى در اين مورد در انصل الارائه شده است .
ميل ششخصى اينجانب اين امت كه تغير بهسيستم SI در تمام كاربردها بايد سريعاً صورت

نمايند، مثاليها و مسائل كانى فزاهم شده است .

كردهاند بويزه بسغاطر Tان دسته از سؤالالت مؤثر دانشـجويان كه كُنه بطلبي را دريانته بودند و استياج بهتوضيع و رنع الهام داشتند، سهاسگّزارى مىنمايل. همانطور كه مطالب جليدى اضافه گُرديله و
تذكّاتى جهت روشن شدن آنها داده شلده، اميل است كه مطالب جليد پاسـغتُوى بيستر سؤالات دانشـجويان بوده باشثل و بويزه انگیِزهاتى براى تحقيقات بعلى گردد .

جى • يى . هولمن

ييشَفْتار مترجم

 دربارة داننش تروودينايكث نقل تولى شو د :

كار ترجمة كتاب حاضر به دورانِ تعطيل دانشگاهها بر مىگردد. در آن اليّام ترجمةٌ كتاب

 زحمت وبرايشّ علمي كتاب را مهكاران محترم مترجم در دانشگاه صنعتى اميركبير، جناب

 هير تلابِ مؤتّسة جاب و انتشارات دانشگاه بخصوص از كوششهأى آقاى سالار بور كه در تمام مراحل حرو نحينى، حففها Tرايى و جاب ككاب با نظارت و راهنمايىهاى ارزشهند خود نهايت همكارى را داشتهاند تشكّر و تدردانى مىنمايد.

 مشتاقان قرار دهد . تبلاًاز اين مساعدت سياد او را أس فراوان دارد .

سيّد محمّدرضا مدرّس رضوى

فٌon

مقــدّمــه

| ـ ـ ا ماهيت ترموديناميك
انرزّى جامعه را بهحركت وا مىدارد. يـشر فتهاي بىنظير صنعتى و اقتصادى دنياي متمدّن را

 بهانرزّى مصر فى سرانه بستغى دارد.

 در حوزء: تجزيه و تحليل ترمودينامبك ترار دارند كه ها كاربردهماى مختلف Tنها را با بتدريج بردسى
 انجام كار هاي مفيد معلوم مى كند .
 عوامل مهيطى در نظر گر فته شود. بدين جهت بهبازده استفاده از انزرُى بايد توجّه بـيشترى كـرد.
 مطالعة زاههاى مهتلفت مصرن انرزى و اثرات اجتماعى و اقتصادى آن در آينده اععميت دازد .

 اصول رادز بر مىگيرد. ميلل ساير علوم، اوليِن مرحله كار عبارت از تشكيل فهرستى از تعاريف و

 بهنام ترمو ينـاميل جهـت آشنائى برايى مطالهات مفصل در نصول آينده ارائه شود. لازم بهتوضيح است

 ترمو ديناميك است .

Y Y ا
بحت مكانيك كل>سيلت شامل مفاهـمـ نيرو، جرم، فامله و زمان استـ. نيرو يك معنى فيزيكى
 نـود. مكانيك. از طريق كازنرد توانين حركت نيو تن و بويزه قانون دوم آن توسعه يانته است. بر طبق قانون دو مه جمع نير وهاى عهل كنندء روى يك ذره متناسب با ميران تغييرات مـنتم (مقدار حركت) آن

$$
\sum F=\frac{d}{d \tau}(m v)
$$

 زيمئئ كانيك كلاسيك دارند با آن آشنابند.

سيسته . محيط و مرز آن دو

حالت ، خواصَ و درآيندهاى ترموديناميكمى

I- Surrounding
2-Boundary

 بابداخل و يا بارج از سيستم خواهد بود .

شكل 1 - ا هواى متراسم در يك مخزن بعنوان يك سيستم ترموديناميكم

تغيير ينت سيستم تر مودينايكي از حالتى بهحالت ديتُر را نرآ يند ‘ مىگويند .
 است كه براى تشريع فرآيند هاى طى شده توسط سيستم بايد حالكت سيستم و يا متختصات تر موديناميكى آن را نعريف كنيم، زيرا لازمهُ تشريع يت زرآبند يِان كليهُ وتايعى است كه در هر گام از مـير اتفات مىانتد. حالت سيستم در هر نقطه فر آيند بايل تشريع شود و براى انجام حنين كارى احتياج بهمعرفى مفهومى اساسى بنام تعادل 「 مى.

1- Properties

2- Process
3- Equilibrium

تعادل و و هر آ يند شبه ساكن

 سيستمى در حال تعادل است مختصات تر موديناميكى آن تحت روابط معينى بيكديگگر مربوط مىيباشد لازم است كك بهاهميت مفهوم تعادل توجّه بيشترى بشود. دتت كنيد كـه بـراى تـعريف ميختصـات تر وديناميكى يك سيستم و روابط بين آنها بايد سيـتم در حال تعادل بانشد.

 انجام مى
 حالى كه در تحليل يك سيستم تر موديناميكى تأثير متقابل نيروه ها بر روى سيـي نظر بوده و تأكيد روى كميتهاى انرزّى مى دباشد. در اين مبادله دو نو
 ديگگرى از انرزیى در سيستم وجود دارد كك بايد در نظر گر نته شود .

 مفهوم از دما بر اساس يك فرّ آيند انتقال انزئى استوار است و و مى توان آن را بها

 مىتوان بهصورت زير بيان نمود :

يكديگر هيجزگونه تغير ثيميائى در آنها صورت نگيرد .

 ماده فلزى يا مايع بيان شده استـ.

از اين بحث كو تاه مى توان نتيجه گُرفت كه حرارت شـكلى از انز زُى است كه در اثر اختلات

 موضـوع رابعدأ روسن خواهيم كرد .

 بقياس فارنهايت بـ . 1 | تسـمت تقسيم شده الست. انتخاب نقطة صفر در دو مقياس اختيارى است . بعدأ نشان داده خواهد شد كه بهكدل قانون دوم ترمودينابيل ممتوان يلك مقياس مطلق

عبارت ديگر :

$$
\begin{equation*}
\left(\frac{T_{2}}{T_{1}}\right)_{\text {Kankine }}=\left(\frac{T_{2}}{T_{1}}\right)_{\mathrm{Kclvin}} \tag{1-1}
\end{equation*}
$$

 بكار برد :

1. Fahrenheit

2- Celsius $=$ Centigrade
3- Kelvila
4. Rankinc

$$
\begin{align*}
{ }^{\circ} \mathrm{F} & =32.0+\frac{9}{5}{ }^{\circ} \mathrm{C} \tag{1-Y}\\
{ }^{\circ} \mathrm{R} & =\frac{9}{5} \mathrm{~K} \\
{ }^{\circ} \mathrm{R} & ={ }^{\circ} \mathrm{F}+459.67 \\
\mathrm{~K} & ={ }^{\circ} \mathrm{C}+273.15 \tag{1,r}
\end{align*}
$$

شكل 「-1 إبطه بين مقياسهاى دماى فارنهايت و سلسيوس

برای اندازهگيرى دما احتياج بهتنظيم استانداردهايی است كه ممكن است در مدرّج كردن دماسنجهاي مختلف بكار رود. از جملة اين "استانداردها" نقاط انجهاد و جوش آب است، اما مطمئنًأ ايندو تمام بحدودهٔ دماهاى مورد نظر در اندازهگيريهاى آزمايشى را شامل نمىشو دو تفاهم بين المللى

1971 مقياس دما' [5]' بهتشكيل نقاط استاندارد در محدودهُ وسيعى از دماها كمك كرد. اولين و
 علاوه بر اين نقاط ثابت، روشهاى دقيقى نيز براي درون يابي بين اين مقادير ارايائه ميدهد .

دمــــــــ		نقطه
${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$	
-frp/al	-roq/rq	
-FYA / 99	-rov/1.^	نقطهُ جؤ ميدروزل تعادلى در
-pre/iv	-ror / $\lambda \mathrm{L}$	
-Fi. / 109	-rfq /.fA	نقطه جؤ معـونى نـلى
-rn/ar	-rin/vas	نقطه سه كانهُ إكـيرّ
-rav / rr	-lar/apr	نتطه جؤ معبولى أكـيرّن
ry/.1s	. $/ .1$	نقطه سه كانهُ آب
yir	$1 .$.	نفطه جوش معـولى آب
vav/if	F19/0s	نفطه انجهاد معبولى روى
IVar/fy	971/ar	نقطه انجهاد
lapv/9v	1.9f/fr	نقطه انجهاد

منبع : باربر [5].

1- The International Practical Temperature Scale of 1968

${ }^{\circ} \mathrm{C}$:	نقط4
-ra9 / 19f	نقطّ سـ
-rar / var	نقطّ جوش ، ${ }^{\text {، }}$ ، معولى
-rpa / aio	Ne نفطه
-ri. /.rr	ن ${ }^{\text {2 }}$
-190/A.r	N2 ${ }^{\text {نط }}$
-va/pra	
-ra/air	Hg نقطه انجـاد،
ra/av	
lry/ry	
109/7TF	In ${ }^{\text {I }}$ /
pri/pfy	نفطة انجهاد،
rri/1.A	Cd نقطة انجـاد،
rry / orr	نقط؛ انجهاد،
roq/99	Hg نقطه جوس
fff / TVf	S S
$\Delta P A / Y$ Tr	
9r./Vf	Sb
99./vp	Al ${ }^{\text {A }}$ ،
1.AF/O	Cu نقطء انجهاد،
190Δ	Ni
Ifaf	Co نقطه انجـاد،
lobs	Pd نقطهُ انجهاد،
IVYY	Pt نقط؛ انجهاد،
1497	Rh
Yppy	Ir
rrav	W نقطة انجهاد،

با توجّه بهبحث كوتاه گَذثته بسادگى ديده مى شود كه بعضى از خواصّ معين ماءه از طريق توابعى به يكديگر مربوط است: انبـاط حرارتى بهدما بستگى دارد، فنـار يلث گاز بهد ما و حجم مربوط

 نطرح مى گردد اين است كه براى اين تعريف جند خاصيّت (يا سختصات نرمو ديناميكى) لازم خواهـد بود. مجدرأ بهتر است كه ماهيت اين. مسأله رابا استفاده از تجر بيات مكايك نشان دان داد. برای حركت در سطح، تنها دو سختصات و در حركت نضائى سه مشتصات براى مشـتُص نمودن موتعيت يت ذره هلازم

 توسط توابعى با اسختصّات كار تزين مربوط است. البته بإيد توجّه داشت كه براي تعيسن كالـ حالت ديناميكى ذزه علاوه بر سختضات مكانى، سختصات سرعت نيز مورد نياز است

ترموديناميل

گاز ايدهال فقط دو خاميّت براى مشـخْص كردن حالت سيستم لازم است. دو خاميّت مذكور ممكن است هر جفتى از خواص فثـار، ححجم و يا دها باثـد .
اصل سالت در واقع شامل اين قضيهُ تجربى است كه خواصّ باده از طريق توابعى به يكديگر مربوط میشوند، و مفاهيم خواصّ اوليه و خواصّ وابـته ماده را نتيجه مىدهل. دتت كنيد كه „اصل" موضوعى است كه آن را بدون ابُبات مىذيريم؛ بهعبارت ديگر اصلز بر اماس تـعداد زيـادى از مشاهدات تجربى استوأر بوده و هيجِ استدلال ديگرى براى آن و جو د ندار د. در آينده ها مطالب بيسترى برای تشخيص حالت يل سيستم خواهيم گفت، آگر جه واضح استـكه متغير هائى نظير تركيب شيميائى و تعداد اجزاء مو جود در سيستم مى تواند تأثير بسيار زيادى در اين خصـوص دائته باشـد. دز سال هاضر
 در نظر بیگيرد. در فصل سوم تعريف دقيقترى درباره اين اصل ارائه خواهيـم كرد د .

1-7

شده و از نظر رياضى بيان آن جنين است :
'

كه انتگرال خطى همانطور كه در شـكل Y ـ ا نشـان داده شـده بيان كننده اين مطلب اسـت كه فقط حاصل ضرب نيرو و تغير مكان در ججهت نيرو رادر نظر گر فتدايم. براي سحاسبهٔكار فقط نياز به
 حرارتى سيستم نـنواهد بود. ممكن است سؤال شود يس جراكار در مطالغة تر موديناديك بايل مورد نظر قرار گيرد. جواب اين است كه كار يك كميت انرزى بودد كه خود در حوزهء تحليل ترمو ديناميك است. بعداُ خو اهيم ديد كه جگَونه كار و انرزى بهيكديگر مربوط مىشود .

شكل پ ـ ـ ا كار بهصورت يك انتكرال خطى يا تابع مسيرى بيان شده است.

> I Y Y ترموديناميك ميكروسكيى و ماكروسكيى

سيستمهاى ترموديناميكى مورد بـحث تا اينجا از كميتهاى ماده با اندازهایى مشتخص، نظير هوایى متراكم در مخزن نولادى، يا يك تطعه گرم فلزى تشكيل شده است كه هردوى اين سيستمها تهت عنوان
 ماهيت توده جسم مورد نظر بوده و از ساختمان دقيت اتمى و ملكولى ماده صرنـنظر مى شـود. اين نوع تهليل راگاهى اوتات تر موديناميل كلاسيك مىنامند .
وتتى كه رنتاردتِيت اتـى و ملكولى ماده موردنظر باشد، تحليل را ترموديناميل ميكروسكتى
"ىنامند. ترموديناميل ميكر وسكيى بطور قابل ملاحظهاى يسچيدهتر از ترموديناميل كلالسيك است . بررسى ترموديناميل ميكروسكيى مىتواند ابتدا بهوسيله برزسى رنتار مولكولهایى گازى بر. اساس مكانيك كلاسيك صورت گیرد. اين روش بررسى رأتورى بجنبشى " مىناسند. در اين روش
 ترموديناميك ماكروسكيى رابا روش تحليل دقيت مبكر وسكيى نيز مى توان دنبال كرد . كاملاُ مشتخص شده است كه هنگام كاربرد توانين مكانيك كلاسيل در مقياسهاى اتـي ماده بايد

1- Macroscopic thermodynamics
2- Microscopic thermodynamics
3- Kinetic theory
 خيلى زياد است (از مرته " " (ا ذره بر سانتيمتر مكعب). بنابر اين انتظار مىرود كه كاربرد شيودهانى

 شود، روش عمومى تهليل را مكانيلك آمارى يا ترموديناميك آمارى مىنامند . ترموديناميك ميكروسكيى داراى دو هدف زير است :

1 ـ نشان دادن جگونگى توزيم انرزى در سطوح اتمى و ملكولى و سحاسبة خواحّ انرزى
ماكروسكيى ان روى اين توزيع .
 ميكروسكيى براى محاسبهٔ شدت انتقال كميتهائى نظير انزڭّى، ممنتم؛ و يا جرم كه در كاربر دهاى گو نآگون مهندسى داراي اهميت زيادى است .

براى بهتر نشان دادن ماهيت الختلاف بين تحليلهاى توموديناميك ماكروسكيى كلاسيك و ماهيت ميكروسكيى ماده، بهعنواز نمونه حجمى از يث گاز ـ مثلاُ يك ليتر ـرادر دما و فشار اطاق در نظر
 حركت بوده و با يكديگ, و جداره ظرف برخورد مىكنن. فرض كنيد كه اين ملكولها در فرآيندهاى
 فضا ديناميك نيو تنى را بها كار ببريمه، لازم بود كه قانون دوم حركت نيوتن را براى هر ذره بنويسيـم.

$$
\sum F=\frac{d}{d \tau}(m v)
$$

براى تعيين سرعت ذرات مختلف بايد كه تهام معادلات بد ست آمله بهطور هـز مان حلى شُودكه خود، كار بسيار بزرگى است. حل چخنين سيستم معاولاتى حتّى بوسيلهُ بز رگّتر ين كاميو تر ها ممكن نيست. اگر ما

بر بـى ميكروسكيى (يعنى در نظر گر نتن رنتار دتيت ملكولى) انجام مىشود
 روشها در ماهيت آمارى هـتند .

ــ ــ ا
خواصّ متمركز وكستردةً ترموديناميكى
خاصيّت ترموديناميكى ممكن است بهمورت هر مــخصه قابل رؤيت يك سيستم تعريف

هازها و اجزا

 شده باشد، سيستم راهدكـنـ

1-1ntensive properties
2- Extensive properties
3- Homogeneous
4-. Heterogeneous

تر مود يناميل F

مخلوط آب و بخار آب در صور تى كه Tب در Tن بهثكل تطرات بسيار ريز مايع بوده و بهطور يكـان در تمام حجم سيستم توزيع شده باشد، همگُن است. اما اگگر هايع در بايِن ظرن جمع شده و بـخار در بالى آن باشل، مخخلوط ناهمگُن مىباشد. مخلو ط نيتروزن و دى اكسيدكربن بشال ديگرى از يك سيستم هـعگن است ان واضح است كه خواصٌ تر سوديناميكى يك سيستم به تعداد فاز ها و اجزایى آن و هـعگن بودن يا نبودن سيـتم بستگیى دارد.

9 ـ 9
در اينجا ممكن است كه حداقل برايى بهدت آوردن يك تصوير كلى از سرضوع ، اصول امهاسى تر بود يناميل را بدون توضيع مفصل بيان كنيم. اين اصول بهعنوان تضاياى بديهى بذير نته شده است زيرا نظير توانين اساسى فيزيك بيان كننده تعداد زيادى از مشُاهدات تجربى ماست. تانون اول تر سوديناميك مى تويد انز زُى يك سيستم منزوى ' ثابت مىماند

تانون اول همان اصل بقاب انرزى است كه حتى براى يت مهندس مبتدى نيز آشناست . سيستم منزوى سيستمي است كه با محيط اطرافث انرزّى مبادله نمىكند. توجّه كنيد كه اين تانون بهعنوان اصلى بديهى بذيرنته شده است، زيرا بيان كنندهُ انواع زيادى از مشاهدات تجربى در علوم نيز يكى است.
 مى بذيرد كه تعدادى از آنها در زير Tملـه است :

1 - حرارت در غياب ساير اثرات، ازُ دماى بالا بهدماى بايِن جريان بيدا مىكند . يعنى اين كه درجهُ حرارت جسمى داغ دراثر تماس باجسمى با دماى كمتر كاهش مى يابد ولى عكس آن

على يــــت

Y Y Y ا Y

 گرم كردن، باطرى خود بهن بود شارز شو يود .

- F كند و بههمان مقـلار كار توليد نمايد امكان بذير نيـيـتـ .

 صددرصد باشثد ' .
"انون سوم ترموديناسيك درباره خواصّ موادّ در دماى صفر مطلّق است و بايد بعد از تجزيه و تحليل توانين اول و دوم بسط داده شود.

- ا ـ ا كازبردهاى ترموديناميك

جون ترموديناميك مطالهء انزرّى و تبديل Tن است لذا بيشترين كاربر دهاى آن در برگير نده
 داده شـده است. Tب بر نشار وارد ديگت بخار شده و با افزودن حرارت بها بارن، بخار با نشار و دماى بالا

 سِس بخار بهتوريينى هدايت مى شمود كه مولد الكتريكى را با بهركت در مى آورد. در طمى اين فرآيند

[^0]

در نيروگاه بشار اجزاه مشـخصهن يك سيكل قدرت يا موتور حرارتى ديده مىشود :

$$
\begin{aligned}
& \text { - } 1 \text { ـ الثزودن حرارت در دهاى بالا (ديگگ بشار) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { r ـ كار مفيد خروجى (كار توليدى توربين منهاى كار داده شـده بهيمــ) } \\
& \text { بازده حرارتى يك موتور حرارتى بهصورت زير تعريف مىشود : }
\end{aligned}
$$

اين بازده از نظر اقتصادى اهميت خاصى دارد زيرا حرارت افزوده شده در دماى بالا نمايانگر انزرّى

درصد هم برسد .

در شكل هـا طرحواره يت سيستم تهويه مطبوع نمونه جهت استفاده در منازل نمايش داده
شده است. در اين سيستم يك سيال (معمولأ فريون) در فــار و دماى پائين وارد لوله هاي هرّهادار تبخير كننده (اوايراتور) میشو د. هواى اطاق بر روى لولههاى تبشير كننده وزيده شـده و در نتيجه انتقال انرزى

شكل هـ أ طرحواره سبسته تهوئ مطبوع يا تبريد

 عبور مىكند و جريان هواى خارج از روى لو لهها حرارت كافى از فريون جذب نموده و باعث تقطير آن

 انت ك؟؛ باعث كاهش نشار شده و در نتيجه دداى ورود بي تبخير كننده هم بائين مى آيد .

 هدف خود را در اين سيكل با ضريب عملكرد ا اندازه همى گيريم :
كارمصرفئى تبدي

ضريب عملكرد دستگاههاى تبريد مدكن است در حدود r باشد. بعضى او اوتات سبكل تبريد

محيط خارج بمب مى كند. .

 كاربردها و ايجاد انگیيز ه جهت مطالئ دقيق روشهاى تجزيه و تحليّلى است كه در ذصون بعدى بهكار گر فته مىنود.

| 1-1 سيستمهاى آحـاد

عليرغم تلاثهاى نزاوان در جواهع علمى و مهندسى جهت استاندارد نمودن آحاد در يك ئك

 خوانندهٔ اين كتاب با ساير سيستههاى آحاد هم روبرو خواهد شد. بنابراين شايسته نيست كه از توضيع

ساير سيستمها كه استفادة وسيعى هم دارند و همجنين ضرايب تبديل هناسب جهت بهدست آوردن
 مى مود زيرا' آحاد الككريكى مدتهاست كه استاندارد شده است. بالاخره سيستم آحاد SI (سيستم
 بيشترى خواهيمكرد.
منظور از سيستم Tا Tاد عبارت اسـت از دادن مقادير عددى مشـخّص بهبديدهماى فيزيكى قابل

 مناسبى مطابقت داشته باشد. بعدهاى فيزيكى اصلى كه براي توضيح تمام بد يدههاى فيز يكى بهكار برده مى مشود عبار تند از :

$$
\begin{aligned}
& \tau=\text { زمان } \\
& L=\text { bول } \\
& T=\text { L } \quad M=\text { ج } \\
& q=\text { بار الككريكى } \\
& \text { F }=
\end{aligned}
$$

 بر دو اصل فيزيكى استوار است : قانون دوم حركت نيوتن يعنى : بيزان تغيرات ممنتم نسبت به زمان ~ نيرو

و اصل جاذبء ثقلى نيوتن يعنى :

$$
\text { و } \sim \frac{m_{1} m_{2}}{r^{2}}
$$

شكل معادلهاى اين اصول خنين است :

ترمود يناميك

$$
\begin{align*}
& F=k_{N} \frac{d(m v)}{d \tau} \tag{I.V}\\
& F=k_{G} \frac{m_{1} m_{2}}{r^{2}} \tag{1-A}
\end{align*}
$$

كه

$$
\begin{equation*}
F=k_{N} m a \tag{1.9}
\end{equation*}
$$

كـه a شتاب يا dv/dx است. مىتوانيـم برایى اين معادله هر سيستم آحاد راكه بخواهيم انتخاب كنيم ولى بايد مقدار

$$
\text { P يك نيوتن نيرو(N) يك كيلوگرم جرم را بمقدار m/s² } 1 \text { شتاب مىدهل. }
$$

شكل 7-1 أنون دوم حركت نيوتي

بهكمك اين عبارات كميتهاى FLMT توسط معادلهٔ ريناميكى (9-1) بهيكديگر مـربوط
 است كه به يكى كيلوگرم بهاندازءٌ m/s² 1 شتاب دهد. سؤالات ديگرى نظير بزرگى يك كيلو گرم، يك

1-Slug
2- Dyne

$$
\begin{aligned}
& \text { Y - يك يوند نيرو يك اسلاگّ' جرم را بمقدار } \\
& \text { 「 - يك دين " نيرو يك }
\end{aligned}
$$

متر و يك ثانيه ممكن است مطرح شود. جواب اين است كه اين كميتها در لابراتوارهاى مختلف ملى جهان بهعنوان استاندارد ثابت است (از جمله در سازمان ملى استاندارد در ايالات متحدهاه). واحـد استاندارد زمان، ثانيه، عبارت است از زمان لازم برای .
 متّكى بر اين استانداردها و نظاير آن باشـد اما موضوع استانداردها از حو حوزه بحث ما ما خارج است .

> شكل I-Y قانون جاذبه ثقل نيوتن

براى سادگى گاهى او قات ثابت kN بهمورت زير نوشته مىشود :

$$
k_{N}=\frac{1}{g_{c}}
$$

g g ${ }_{c}$
وزن يك جــم به مورت نير وى وارده برآن دراثر ششتاب ثقل تعريفـ شده است. بدين تر تيب:

$$
\begin{equation*}
W=\frac{g}{g_{c}} m \tag{1.11}
\end{equation*}
$$

كه و وشتاب ثقل است . دتـ كنيد كه وزن جــم دارای بُعد نير و است .

$$
\text { اشاره شد }{ }_{\text {I داراى بقادير زير است : }}^{\text {است }}
$$

1- $g_{c}=32.174 \quad \mathrm{lbm} . \mathrm{ft} / \mathrm{bfs} \mathrm{s}^{2}$
 ثقل نيست. آحاد بخصوص به كار گر فته مىشود.

$$
\begin{array}{ll}
2-g_{c}=1 & \\
\text { slug.f } / / \mathrm{lbf} . \mathrm{s}^{2} \\
3-g_{c}=1 & \\
\text { kg-mass.m} / \mathrm{N} . \mathrm{s}^{2} \\
4-g_{c}=1 & \text { g-mass.cm/dyn.s } \mathrm{s}^{2} \\
5-g_{c}=9.8066 & \text { kg-mass.m/kg-force. } s^{2}
\end{array}
$$

كيلو يوند نيرو' (kp) علامت ديگرى براي كيلوگرم نيرو است كه در اروبا به كار میزود.
 كسى گوئت مى بخرد و يا در مغازه عطارى كار مىكند اندازه گيرى وزن يا تيرو مىبايد صورت گيرد.
 ترازوى عطارى و يا جراثقال بر اساس نيرو 「 تنظـيم (كاليبر ه) مىشود بهطورى كه :
 يك كيلوگرم جرمه وزن kgf ا رادر سطع درباد دارد.
بايد دتت كرد كه در مهادلات گوناگون مورد استفاده در اين كتاب واحدهاى عبارات مختلف بهطور
 صورت بايد ثابت بكار رفته در مكانيك،

$$
F=m a
$$

1- Kilopond-force

$$
K E=\frac{1}{2} m V^{2}
$$

$$
K E=\frac{1}{2 g_{c}} m V^{2}
$$

دتت كنيد كه مقدار عددى حقيقت دليلى برايى استفاده زياد آنها در مسائل مكانيث الست. سيستم بوند - جرم (lbm) بهطور و سيعى در بيشتر مسائل تر موديناميل مورد استفاده ترار مىگيرد و بهمهين جهت در موتع كار كردن با زيادى بايدكرد .

آحاد انز

كار و انر夫ّى دارایى بُعد نيرو در ذاصله بوده و با توجّه بهتعاريف زير بهصورت بيند ـ نيرو -
فوت، دين ـ سانتيمتر، يا نيوتن - متر بيان مىگرّردد :

$$
\begin{aligned}
& \text { (dyn.cm) = } 1 \text { erg } \\
& 1 \text { دين ـ سانتيمتر } 1 \text { (N.m) = } 1 \text { joule (J) }
\end{aligned}
$$

توان (تدرت) عبارت از ميزان انجام كار نـبت بهزمان بوده و بعضى از آحاد مناسب آن عبار تند از :

1 (W) 1 (W/s
1 (hp) 1 اسب بـخار
 جمله بى - تى - يو ' (Btu) و كالرى (cal):
ºF انز $=1$ Btu

$$
1 \mathrm{~W}=3.413 \mathrm{Btu} / \mathrm{h}
$$

$$
1 \mathrm{hp}=2545 \mathrm{Btu} / \mathrm{h}
$$

$$
1 \mathrm{Btu}=252.16 \mathrm{cal}=1055.04 \mathrm{~J}
$$

يك واحـد ديگر انززى الكترون ولت (eV) اسـت كه عبارت از كار لازم برای گذذراندن يك
 مى توان بهزول تبديل كرد .

$$
q_{e}=1.602189 \times 10^{-19} \text { Coulomb (C) }
$$

اما ولت بهصورت كار لازم برا'ى جابه جا نمو دن يك واحد باز الكتريكى تعر يف شده است، لذا داريم :

$$
1 \mathrm{eV}=1.602189 \times 10^{-19} \mathrm{~J}
$$

سيستم SI

مثاهده ميشود كه سيـتـم آحاد ب و F F ه ه به كار رفته در مورد قانون دوّم حركت نيوتن "متريك" است امّا هركدام Tاحاد متفاوتى برای نيرو، جرم و ناصله دارند. سيـتم SI اساسأ سيـتـم آَحاد شماره F بو ده و استفاده از آحاد حرارتى انز زیى را مجاز نمىدارد. بهعبارت ديگر زول تنها واحد انززى
 در سيـتم SI استفادداى ندارد و نيوتن بهصورت زير نعريف مىشود :

$$
\begin{equation*}
1 \text { (kg.m/s²) } 1 \text { = } 1 \text { (N) = } 1 \text { نيوتن } 1 \text { / مجنورثانيه } \tag{1-1r}
\end{equation*}
$$

$$
\begin{aligned}
& 1{ }^{\circ} \mathrm{C} \text { انز } \mathrm{C}=1 \text { kcal } \\
& \text { بعضى از ضرايب تبديل مفيد عبار تند از : }
\end{aligned}
$$

 شـال ضرايب تبديل برایى آحاد گوناگون در جدول A - Y ضميده آورده شـده اسـت.

جدول Tـ

مثال 1-1

نيروى • ا كيلو يوند (kp) بر جرم lbm اعمال مىشود. شتاب حامل را محاسبه كنيل .
 هم آهنگت بأشند. با استفاده از سيستم N-m-kg-s داريم :

$$
\begin{aligned}
& 10 \mathrm{kp}=98.066 \mathrm{~N} \\
& 3 \mathrm{lbm}=(3)(0.454) \mathrm{kg}=1.362 \mathrm{~kg} \\
& \begin{array}{l}
a=\frac{\mathrm{Fg}}{c} \\
\mathrm{~m}
\end{array}=\frac{(98.066 \mathrm{~N})\left(1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{N} \cdot \mathrm{~s}^{2}\right)}{1.362 \mathrm{~kg}} \\
& =72 \mathrm{~m} / \mathrm{s}^{2}=236.3 \mathrm{ft} / \mathrm{s}^{2}
\end{aligned}
$$

سبس از معادلة ((1-1)
اگگر سيستم يوند جرم - بوند نيرو را انتخاب كنيم :
$10 \mathrm{kp}=(10)(2.2046)=22.046 \mathrm{lbf}$

$$
\begin{aligned}
a & =\frac{F g_{c}}{m}=\frac{(22.046 \mathrm{lbf})\left(32.174 \mathrm{lbm} \cdot \mathrm{ft} / \mathrm{lbf}-\mathrm{s}^{2}\right)}{3 \mathrm{lbm}} \\
& =236.3 \mathrm{ft} / \mathrm{s}^{2}=72 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

 حــلّ : توازن انرزیى براى نيروگاه بهصورت زير اسـت :

حرارت اتلافى در كندانسور + كار خالص خروجى = =حرارت اضـافه شـده بهديگك بخار
لز تعريف بازده حرارتى [معادلة ((ا)] داريم •
= $=\frac{1000 \mathrm{MW}}{0.4}=2500 \mathrm{MW}$
(a) سيس از معادئه
= $2500 \mathrm{MW}-1000 \mathrm{MW}=1500 \mathrm{MW}$

$$
\begin{aligned}
& =5.12 \times 10^{9} \mathrm{Btu} / \mathrm{h} \\
& =1.427 \times 10^{6} \mathrm{Btu} / \mathrm{s}
\end{aligned}
$$

از تعريف Btu ، Btu . الازم است كه lbm \آب راº . ا انزايش داد .
㞔 $=\frac{1.422 \times 10^{6} \mathrm{Btu} / \mathrm{s}}{10 \mathrm{Btu} / \mathrm{lbm}}$

$$
=1.411 \times 10^{5} \mathrm{lbm} / \mathrm{s}
$$

 بين Tنها rو ثابت عمومى جاذبه' $k_{G}=6.672 \times 10^{-11} \mathrm{~N} . \mathrm{m}^{2} / \mathrm{kg}^{2}$

اين عدد از طريق آزمايش بهدست Tا الصلاح يذير است. واسدهاى الكترو استاتيك’ براماس قانون كولمب‘ است كه، مىگويد :

$$
F=k_{c} \frac{q q^{\prime}}{r^{2}}
$$

 گرنته مىشود :

$$
k_{c}=\frac{1}{4 \pi \varepsilon_{o}}
$$

حـال

1- Universal gravitational constant
2- Electrostatic
3. Coulomb's law

تانون آمبر " بيان كنتدءٔ اين مطلب است كه نيروى بين دو هادى موازی، همانطور كه در شبكل 1-9 اـ

$$
\begin{equation*}
F=k_{A} I^{\prime} \frac{L L}{r^{2}} \tag{1.17}
\end{equation*}
$$

شكل
 در يك جهت باششند، نيروى مذكور، نيروى جاذبه خواهد بود. موقعى كه شدت جريان برحسب آمهر و نيرو بهنيو تن باشد، ثابت تناسب ${ }^{\text {k }}$ داراثى مقدار زير است :

$$
k_{A}=10^{-7} \mathrm{~N} / \mathrm{A}^{2}
$$

آTري بهوسيلةّ رابطةُ زير تعريف مىشود:

1 (1 (A) $=1 \mathrm{C} / \mathrm{s}$
بعضى اوتات بهخاطر سادگى جايگزينى زير صورت مىگيرد :
$k_{A}=\frac{\mu_{\mathrm{o}}}{4 \pi}$

1- Permittivity of free space
2- Ampere's law

Ho تانون Tمهر نيرو را بهحركت بار الكتريكى (جريان) موبوط مىكند. اگر بار الكـريكى سر عت v در حركت بامثد و در غياب هرگونه ميدان الاكترواستأتيكى تحت تأثير نير وئى قرار گيرد، گفته مىشو كه اين نيرو ناشى از يت ميدان مغناطيسى B الست. اين نيرو بهوسيلة رابطهّ زير با ساير كميتها مربوط مىشود :

$$
\mathbf{F}=q^{\prime} \mathbf{v} \times \mathbf{B}
$$

 جديدى متداول است كه توسط رابطهُ زير تعريف مىشود :

$$
\begin{equation*}
\text { وبر } 1 \text { (Wb) = } 1 \text { N.s.m/C } \tag{1-Y1}
\end{equation*}
$$

بنابر اين واحد B را مىتوان بر حسب واحد وِبر بر متر مربع بيان نمود . شـدت الكتريكي「 E بهصورت نيروى وارده بر واحد بار الكتريكى در اثر يك ميدان الكحر يكى تعر يف شده است. بدين ترتيب :

1- Magnetic induction
2- Electric intensity

$$
\begin{equation*}
\mathrm{E}=\frac{\mathbf{F}}{q^{\prime}} \tag{1-YY}
\end{equation*}
$$

تانـسيل الكتريكى 'V بهصورت كار لازم براى جابهجاكردن يك بار الكتر يكى بر واحد بار
تعريف شده است. از واحددهاى متداول برای بتأنسيل الكتر يكى زول بر لور كولمب است (نيوتن ـ ستر بر
كولمب) كه بهصورت زير بيان مىـشود :

$$
\begin{equation*}
1 \text { ولت } 1 \mathrm{~V})=1 \mathrm{~J} / \mathrm{C} \tag{I-YT}
\end{equation*}
$$

تحرّلُ زيادى برای تبول سيستم آحاد SI بهعنوان سيستم استاندارد در ايالات متحده وجود

 صورت لزوم بهجندين روش بيان خواهيم كرد.
واضع است كه استفاده از سيستههاى آحاد متفاوت اشتباهات قابل ملاحظهاءى را بـهـهمراه

تبلأ بيان كرديم كه ترموديناميك عبارت است از مطالهُ انرزّى و تبديل آن. حان كه آحاد مختلف انرزى را تعريف نمو دهايم، جالب است كه مقادير نمونهاى از آن را برا'ى خواننده بيان كنيم.
 سيستم متداول ايالإت متحده' يا USCS نيز ناميده مىشود.)

جدول

Sl	اتلبس (USCS)	
$1 \Delta \vee \mathrm{MJ}$	1F9... Btu	'ززش حراز
$r . \mathrm{MJ} / \mathrm{kg}$		ارزن حرازتى ذغالِ سنى
1.f.W/m ${ }^{2}$	rr. Btu/h.ft ${ }^{2}$	
$1 / \cdot \Delta \mathrm{GJ}$	1. ${ }^{\text { }}$ Buu	
$v F \times 1 .{ }^{2} \mathrm{MJ} / \mathrm{kg}$		'نرزّى هستهأى ، اورانيوم
	بار سرمائن تهويه مطبع براى مناطّت مـكـرنى،	
1F/7kW	$\Delta \cdots \mathrm{Btu} / \mathrm{h}$	روزگّرم تابستان
$\ldots \mathrm{MW}$	r/fi $\times 1 .{ }^{\prime} \mathrm{Btu} / \mathrm{h}$	تدرت مفيد ، نيروگاه بزرگّ بنار
Iry W	fo. Btu/h	اتلان حرازتى بلدن انــان
rrya kJ/kg	$1 . . . \mathrm{Btu} / \mathrm{lbm}$	انرزى لازم براى تبخبر آب

مثال بـ I

دو هادى بزرگٌ بهطول ץ فوت كه هركدام دارایى شدت جريان . . ها آمبر بوده و بهفاصله ب اينج از يكديگر ترار دارند، جريان برت رابهيك وسيلة الكتريكى منتقل مىكنئلن نير وى عمل كننده بر روى اين هاديها را محاسبه كنيل .

1. United States Customary System (USCS)

2- Bituminous

حـلّ : . برای اين سحاسبه قانون آمبر را بهكار مى بريم:

$$
\begin{aligned}
F & =k_{A} I^{\prime} \frac{L L^{\prime}}{r^{2}} \\
L & =L^{\prime}=3 \mathrm{ft}=0.9144 \mathrm{~m} \\
I & =I^{\prime}=1500 \mathrm{~A} \\
r & =3 \mathrm{in}=0.0762 \mathrm{~m} \\
\mathrm{~F} & =\frac{\left(10^{-7} \mathrm{~N} / \mathrm{A}^{2}\right)(1500 \mathrm{~A})^{2}(0.9144)^{2}}{(0.0762 \mathrm{~m})^{2}} \\
& =32.4 \mathrm{~N}=7.28 \mathrm{lbf}
\end{aligned}
$$

مثال † ــ ا

وزن انسانـى كه در بت سفينٔ فضائى بهدور زمين در حـال حركت است در يك يك مكــان

 مساسبه كنيد .

$$
\begin{aligned}
& W=m \frac{g}{g_{\mathrm{c}}} \\
& 275 \mathrm{~N}=\mathrm{m} \frac{\left(3.3528 \mathrm{~m} / \mathrm{s}^{2}\right)}{1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{N} \cdot \mathrm{~s}^{2}} \\
& m=82.021 \mathrm{~kg}=180.83 \mathrm{lbm}
\end{aligned}
$$

درسطع درياداريم

$$
\begin{aligned}
W=\frac{m g}{g_{c}}= & \frac{(82.021 \mathrm{~kg})\left(9.8066 \mathrm{~m} / \mathrm{s}^{2}\right)}{1.0 \mathrm{~N} \cdot \mathrm{~m} / \mathrm{kg} \cdot \mathrm{~s}^{2}} \\
& =804.34 \mathrm{~N}=180.83 \mathrm{lbf}
\end{aligned}
$$

البته توجه داريم كه يك lbm در سطع دريا يك Ibf وزن دارد .

بيشتر خوانندگًان با ماهيت اتمى و ملكولى ماده آشنايى داشته و مىدانندكه يلك حجم مسدود و قابل رؤيت از يك گاز و يا يلك مايع شامل تعداد بسيار زيادى از ذرات است. جرم شخصوص جخين سحجم محدودى، ، م؛ عبارت است از جرم بر واحلد حجم يا:

$$
\begin{equation*}
\rho=\frac{m}{V} \tag{1-YF}
\end{equation*}
$$

در اين تعريف فرض مىشود كه سجم بهتدر كافى بزرگّ است بهطورىیه تعداد كل. ذرات
 است بهصورت بیوسته يا يكِارجه در نظر گرفت .
فشـار بهصورت مؤلّفهّ قائم نيووتى وارده بر واحد سطع بهـ بوسيلة يك سيال بر روى يلك مرز
تعريف مىشو د. تعريف نــار نقط برای جزه (المان) سطحى صورت ميگير د كه بهقدر كافى بزرگّ باشد بهطورى كه بتوان سيال را بهصورت يبوسته در نظر گرفت . بنابر اين :

$$
p=\lim _{\Delta A \rightarrow \Delta A^{\prime}} \frac{\Delta F_{\mathrm{n}}}{\Delta A}
$$

ΔA^{\prime} رفتار يـوسته يا يكايارجه موتعى بروز مىكند كه ميانگین مسانتى راكه يك ملكول سيّال بين دو برخورد

شكل • 1-1 ـ رابطه بين يعانهاى لششار
 فشار كل وارده بر يك ديوار مرزى فــار مطلت ' ناميده مىشود. فنار وارده بر يك ديواره
بهو سيلهُ اتمسفر نــار اتمــفـرى ناميده شده و مقدار آن در مناطق و ارتفاعات مختلف روى سطح زمين متفاوت است. فشار اتمسفرى نتيجه وزن هوا در يك نقطه بخصوص مىباشد. نـــار نسـبى ' نشان دهندهُ الختلان بين فشار مطلق و فشار اتمسفرى در يك سيستم ويزه است و معمولأ بهو سيلةٔ دستگاهى كه فشار اتمسفر را بهعنوان يك مرجع دارد اندازهگيرى مىشود. خــلخ نشان دهندهُ مازاد فشار اتمسفرى نسبت به فشار مطلت در يك سيستم است . لغت خخـلا مترادن با فــار نسبـى منفى است. با تو جه بهاين تعاريف مشخّصس است كه فشار مطلق مدكن نيست منفى باشد و همبخنين خلاْ نمىتواند بيشتر از نشار اتمسفرى

 خو اهد شد. در نشــار استانـدارد اتـسفـر كه

1- Absolute pressure
2. Gage pressure
(Pa) مىباشد. ضرايب تبديل براى نشار در ضميهه داده شدهاند. ساير واحدهانى كه معمولأ استفاده
مىشوند، عبارتند از :

$$
\begin{aligned}
& 1 \text { microbar }(\mu \mathrm{bar})=1 \mathrm{dyn} / \mathrm{cm}^{2}=10^{-6} \mathrm{bar}=0.1 \mathrm{~Pa} \\
& 1 \text { millimeter }=1 \quad \mathrm{mmHg}=1333.22 \text { microbars } \\
& 1 \text { micrometer }=1 \mu \mathrm{~m}=10^{-6} \mathrm{mHg}=10^{-3} \mathrm{mmHg} \\
& 1 \text { torr }=1 \quad \mathrm{mmHg} \\
& \text { بعضى از واحدهاى معمول برايى فشار استاندارد اتـسفر عبارتند از : } \\
& 14.696 \mathrm{lbf} / \mathrm{in}^{2} \mathrm{abs}(\mathrm{psia}) \\
& 1 \text { standard atmosphere }=\left\{\begin{array}{l}
29.92 \text { inHg at } 32^{\circ} \mathrm{F} \\
1.01325 \times 10^{5} \mathrm{~Pa}
\end{array}\right. \\
& 1.0332 \mathrm{kgf} / \mathrm{cm}^{2}\left(\mathrm{kp} / \mathrm{cm}^{2}\right)
\end{aligned}
$$

شهانطور كه در بالا اشاره شد مقدار آن حدود يك درصد كمتر از اتمسفر استاندارد است .

يك مول كميتى از يك ماده است كه جرم آن از نظر عددى برابر با وزن ملكولُى ماده باشد.

$$
\begin{equation*}
m=\eta M \tag{1.Y7}
\end{equation*}
$$

جرم هر ملكول با *M نـان داده ميشود. بهطورى كه نسبت برم بر مول برابر است با:

1- Barometric pressure

$$
\begin{equation*}
\frac{m}{\eta}=M^{*} N_{0}=M \tag{1-YV}
\end{equation*}
$$

> N تعداد ملكو لها در يك بول است ـ بدين ترتيب :

$$
N_{0}=\frac{M}{M^{*}}
$$

اين نسبت مقدار ثابتى بهنام عدد آووكادرو' بوده و دارايى مقدار زير است.

$$
\begin{equation*}
N_{0}=6.022045 \times 10^{23} \text { molecules } / \mathrm{g} \mathrm{~mol} \tag{।-YQ}
\end{equation*}
$$

حجم كل با علامت V، حجم مخخصوص (حجم بر واحد جرم) با vو حجم مخصوص سونى (حجم بر مون) بهوسيلّ
 يك سول از هر كدام از اين گًازها در فشارها و دماهاى مـختلف اندازهگيرى شده باشد. نتايج آزمايشها را

شكل | | اـ 1 تعيين ثابت عمومى كاز

1- Avogadro's number

نوع گَاز، تمام خطوط دماى ثابت در اين نمودار در فثارهاى نزديك صفر بهيلك نقطه نزديلك مىشوند. اين مقدار بهعنوان ثابت عمومى (ممكانى)كاز تعريف شـهـه :

$$
\mathfrak{R}=\lim _{p \rightarrow 0} \frac{p \bar{v}}{T}
$$

ودارای مقدارعددى بيشتر گازها در محدودهُ نسبتأ وسبعى از نثارها و دماهما با تقريب نسبتأ خوبى از معادلئ سـادهٔ زيـر . بيروى مىكنند

$$
\begin{equation*}
p \bar{v}=\Re T \tag{1-r1}
\end{equation*}
$$

 كه روابطى بين آن دسته از خواص ترمودينامبك بهوجود مى آورد كه براى تعريف حالت يك سيستم لازم است. لازم بهتذكر است كه در معادلئ (I_T (I) دما بايد بر حسب واحــهاى مطلق يعنى واحدهاى رانكين و ياكلوين بيان شود .
براي تثريح كار آيى معادلهُ كاز ايدهآل از عبارت نامشخّص "محدود

 داشته، باشد . معادله ((ا

$$
\begin{equation*}
p V=\eta \Re T \tag{1-YY}
\end{equation*}
$$

, $V=m v=$ لذا :

ترمود يناميل

$$
\begin{equation*}
p v=\frac{\eta}{m} \Re T \tag{1_r}
\end{equation*}
$$

$$
\text { المّ m/ } m=M \text { بنابر اين : }
$$

$$
p v=\frac{\mathfrak{R}}{M} T=R T
$$

$$
\begin{equation*}
p V=m R T \tag{1,rF}
\end{equation*}
$$

در معادله (1-YF) جرم حجمى' (مرم مخصوص) يل حجم معيّن را بهصورت برم در
واحد حجم تعريف كرديم با:

$$
\rho=\frac{m}{V}=\frac{1}{v}
$$

بنابر اين مسادلهُگاز ايدهآل را مىتوان بهصورت زير هـم نوشت :

$$
\begin{equation*}
p=\rho R T \tag{1.r»}
\end{equation*}
$$

انتخاب هركدام از رابطههاى بالا براى مساسبات موزد نظر، كاملأ بـنگّى بهاين دارد كه كار باكداميت آسانتر انجام مىشود.
مثال 0 -

لاستيك اتومبيلى بهتطر •Y سانتيهتر و شعاع داشخلى ب Y سانتيهتر را در نظر بگیيريد. جرم
 . الست. Y / 9 V

$$
V=\frac{\pi(20)^{2}}{4}(2 \pi)(20+10)=59218 \mathrm{~cm}^{3}=0.0592 \mathrm{~m}^{3}
$$

ثابّت گاز برای شوا عبارت است از :

$$
R=\frac{\Re}{M}=\frac{8314 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~mol} \cdot \mathrm{~K}}{28.97 \mathrm{~kg} / \mathrm{kgmol}}=287 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K}
$$

عبارت فثـار نسـيى اشاره به فشار بالاتر از فشار اتمسفر دارد. بلـين ترتيب فشار مطلق برابر است با :

$$
p=2 \mathrm{~atm}+\mathrm{atm}=3 \mathrm{~atm}=3.04 \times 10^{5} \mathrm{~Pa}
$$

جرم از معادلّ (1 (1) برابر است با :

$$
m=\frac{p V}{R T}=\frac{\left(3.04 \times 10^{5}\right)(0.0592)}{(287)(20+273)}=0.214 \mathrm{~kg}
$$

تعداد ملكولهاى اكسيزن (O2) موجود در ظرفى بهحجم . IV سانتيمتر مكعب را در r اتمسفر و ro • ${ }^{\circ}$. حـلّ : برایى اين مسأله ابتدا تعدادكيلوگرم مولهاى اكسيزن را محاسبه كرده و سسس از عدد آروگادرو

$$
\begin{aligned}
V & =170 \mathrm{~cm}^{3}=1.7 \times 10^{-4} \mathrm{~m}^{3} \\
p & =2 \mathrm{~atm}=2.0264 \times 10^{5} \mathrm{~Pa}\left(\mathrm{~N} / \mathrm{m}^{2}\right) \\
T & =250^{\circ} \mathrm{C}=523 \mathrm{~K}
\end{aligned}
$$

 مصحاسبه نـود. $\mathfrak{R}=8314$ J/kg.mol.K

$$
\eta=\frac{p V}{\Re T}=\frac{\left(2.0264 \times 10^{5}\right)\left(1.7 \times 10^{-4}\right)}{(8314)(523)}=7.92 \times 10^{-6} \mathrm{~kg} \cdot \mathrm{~mol}
$$

بدين ترتيب تعلاد ملكولها برابر است با :

$$
\begin{aligned}
N=\eta N_{0} & =\left(7.92 \times 10^{-6}\right)\left(6.022 \times 10^{26} \text { molecules } / \mathrm{kg} . \mathrm{mol}\right) \\
& =4.77 \times 10^{21} \text { molecules }
\end{aligned}
$$

دقت كنيد كه نوع گاتر (در اينجا اكسيرين) تأثيرى در جواب ندارد. اگر مىتخواستيم كه جرم اكسيرن را مداسبه كنيم، مىتوانستيم از رابطهة زير استفاده نمائيم :

$$
\begin{aligned}
m=\eta M & =\left(7.92 \times 10^{-6} \mathrm{~kg} \cdot \mathrm{~mol}\right)(32 \mathrm{~kg} / \mathrm{kg} \cdot \mathrm{~mol}) \\
& =2.53 \times 10^{-4} \mathrm{~kg}
\end{aligned}
$$

10 ـ أ دماسنجى باكاز ايدهال
بحث بالا الحولى بنيادىى براى يك وسيله اندازهگيرىى دما در اختيار مىگذارد كه شايد بهعنوان دومين استاندارد آزمايشى مورد استفاده ترار گير د. همانطوركه در شكل Y ا ـ ـ ا نمايش داده شله حجم

شكل Y| اــ أ طرحواره́ دماسنعمكاز ايدهآل

 مرجع(همانطور كه در تـمت

$$
\begin{equation*}
T=T_{\text {rel }}\left(\frac{p}{p_{\text {ref }}}\right) \tag{1-rv}
\end{equation*}
$$

 طريق برون يابى اندازه گرفت .

17 ـ ـ أتُورى جنبشى سادهُ يك كاز ايدهآل
برایى نشان دادن رابطءّ تحليلى و مقدماتى بين ترموديناميك ماكروسكِى و مـيكروسكیى
 و در فر آ يند برخورداشان كاملأار تجاعى باشند.

مشخّص مى شود. خر.ة وارده بر ديواره بهوسيلة هر ذره با رابطه زير معلوم مىشود :

$$
i \delta F d \tau=M^{*} v_{2}-M^{*}\left(-v_{z}\right)=2 M^{*} v_{2}
$$

 الاستيك، تبل و بعد از برخورد، يكى خواهلد بود. حال سطع كو جلك برخورد ملكو لها بامين سطع عبارت است از نرخ جريان ملكولها در جهت مسور zيا :
$\dot{n}=n d A v_{2}$ ملكول بر ثانيه

$\frac{1}{x}$

$$
\dot{n}_{-z}=\frac{1}{2} n d A v_{z}
$$

بنابر اين كل ضربه رسيده بهسطع در زمان dx بهصورت حاملضرب معادلات (॥ץـا) و

$$
\delta F d \tau=\left(2 M^{*} v_{z}\right)\left(\frac{1}{2} n v_{z} d A d \tau\right)
$$

لذا نيرو بر واسد سطع با فــار عبارت استاز :

$$
\frac{F}{d A}=p=M^{*} n v_{z}^{2}
$$

در حقيقت كلئ ملكولها با سرعت يكــان حركت نمىكند و ضريب سرعت در مــادلئ
 نامظم فرض كنيم بهطورى كه هر مؤلفه كاملاُ نظير ديگِرى با باشد. داريـم :

$$
v^{2}=v_{x}^{2}+v_{y}^{2}+v_{z}^{2}
$$

فرض " بى نظمى' " بهاين معنى است كه:

$$
\begin{equation*}
\overline{v_{x}^{2}}=\overline{v_{y}^{2}}=\overline{v_{z}^{2}}=\frac{1}{3} \overline{v^{2}} \tag{1-FY}
\end{equation*}
$$

علامت خط تيره نشان دهندة مقدار متوسط است. نوشتن مجدد معادله (1.FI) با توجه به معـادلّ (1-FY) نتيجه مكدهد كه :

$$
\begin{equation*}
p=\frac{1}{3} n M^{*} \overline{v^{2}} \tag{1.FF}
\end{equation*}
$$

[^1]$$
p v=\frac{1}{3} \overline{v^{2}}
$$
\[

$$
\begin{equation*}
p V=m \frac{1}{3} \overline{v^{2}} \tag{1.fF}
\end{equation*}
$$

\]

معادله́ (I_FF) نظير هـان معادلئ (I-YF) است در صورتى كه رابطهّ زير برترار باشد :

$$
\frac{1}{3} \overline{v^{2}}=R T
$$

بدين ترتيب دما در اين تفسير جنبشى گاز ايدهآلل، نشان دهندهُ ميزأن انرزّى جنبسى متو سط ملكولهاى كَاز است .

سرعت متو سعل مجذورى' (ريشنّ دوم ميانگیين مجذورهاى جند عدد) ملكولهاى اكسيرُن را در V. محاسبه كنيد. بهصورت زير تعر يف شده است :

$$
v_{n n s}=\left(\overline{v^{2}}\right)^{1 / 2}
$$

حـــلّ : ازمعادلهُ (1.FD) برإىمحاسبهة ميانگیين مجذورسرعت ودرنتيجهمتداز

$$
\overrightarrow{v^{2}}=3 R T
$$

(a)

ثابت گاز برانى اكــيرّن بهصورت زير محاسبه مىشود :

$$
\begin{equation*}
R_{O_{2}}=\frac{\mathfrak{R}}{M_{O_{2}}}=\frac{1545}{32}=48.3 \mathrm{ft} .1 \mathrm{bf} / \mathrm{lbm} \cdot{ }^{\circ} \mathrm{R}=259.9 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K} \tag{b}
\end{equation*}
$$

ياد آور مىشويم كه در موقع كار با كميتهاى ديناميكى بايستى از go بهطور مناسبى استفـاده شــود .

1- Root-mean-square
 مشُخّص است كه انرزى جنبثى بهصورت زير نوشته مى شون د :

$$
K E=\frac{1}{2 g_{c}} m v^{2}
$$

اين بدان معني است كه رابطة (a) شامل

$$
\overline{v^{2}}=3 R T=(3)(48.3)(460+70)=7.67 \times 10^{4} \mathrm{ft} . \mathrm{lbf} / \mathrm{bm}
$$

 $\overline{v^{2}}=\left(7.67 \times 10^{4} \mathrm{ft} . \mathrm{lb} / / \mathrm{bm}\right)\left(32.174 \mathrm{lbm} . \mathrm{ft} / \mathrm{lbl} . \mathrm{s}^{2}\right)$ $\overline{v^{2}}=2.47 \times 10^{6} \mathrm{ft}^{2} / \mathrm{s}^{2}$

بدين ترتيب سرعت متوسط مجذورى برابر است با :

$$
v_{\mathrm{rms}}=\left(\overline{v^{2}}\right)^{1 / 2}=\left(2.47 \times 10^{6}\right)^{1 / 2}=1570 \mathrm{ft} / \mathrm{s}=478.5 \mathrm{~m} / \mathrm{s}
$$

در تجزيه و تحليل فوت النذكر جند ين شرط محدود كننده بايد اعمال گردد كه در فصلهايى بعد
درباره آن بحث خواهيم كرد. اكنون خواننده بايد بهاين حقيقت واتف باشـد كه تـجزيه و تـحليل

 اشاره كرديم (a) دما را بهوسيلهُ انرزى جنبشى ملكولّى تشـشيص داده است، (b) "كاز ايدهآل " را
 كاملأنمنظم در نظر گرفته است. نتايج (b) و (c) مفروضات اوليه برايى فرموله كردن اين مدل بودند. اين

> خود آزمايـى (سؤالات مرورى)

1
(b)

مصيط
(ه) (الف) سيستم

$$
\begin{aligned}
& \text {. مقياسهاى دما برایى كار آزمايثى را تعريف كنيد ال - Y } \\
& \text { ك ك } \\
& \text { قانون اوّل ترمو يناميك جيسـت ؟ - F }
\end{aligned}
$$

$$
\begin{aligned}
& \text { - آحاد اصلـ در سيـتم SI چه هستسد ؟ } \\
& \text { جر } \\
& \text { كيلو يوند بنرتِتر است يا نيوتن " } \\
& \text { - آ } \\
& \text { ه ا - } \\
& \text { - } 11 \\
& \text { گاز ايدهآل جيست ؟ - Ir }
\end{aligned}
$$

$$
\begin{aligned}
& \text { مول جيست ؟ - If }
\end{aligned}
$$

$$
\begin{aligned}
& \text { دربازه تشابه بين يك جـسم آزاد و مفهوم يث سيـتـتم ترمو ديناميكى توضيح دهيد . IV } \\
& \text {; } \\
& \text { - } 19 \\
& \text { خرا خخاصّ ترمو ديناميكى لازمند ؟ Y. } \\
& \text { - Y } \\
& \text { - - Y Y } \\
& \text { با بازده حرارتى يك موتور حرارتى، را تعريف كنيد . }
\end{aligned}
$$

عملكرد يك دستگاه تبريد را جگگونه ميتوان مشخّص نمود - - Y P - YV

 مسائــــل (آحاد مختلط)

محأسبه و مقدار g_{c} منسب را برايى اين سيستم بهخصوص آحاد تعين نمائيد.

「 ـ ـ
 (وز و f f
 يكديگر فاصله دارند، نيروى جاذبه بين هاديها را بر حسب واحد lbf شحأسبه كنيد .
 دارد، شتاب را محأسبه كنيد

ملكو لهاي مو جود در آن، و همحنين سرعت rms را برایى ملكو لها محأسبه كنيد .
 (lt³ ${ }^{3}$ است. حیخم را تحت شرايط نشار زياد محاسبه كنيد .
 برحــب كيلوگرم محأسبه كنيد .

 درصد تغير حجم حاصله از اين تراككم را محاسبه نمانيد . (- If

$$
\begin{aligned}
& \text { ir..K (} \Delta \text {) row }{ }^{\circ} \mathrm{R}(\mathrm{D})
\end{aligned}
$$

 . بيان كنيد $\mathrm{kg} / \mathrm{m}^{3} \mathrm{~g}$ Ibm/ft ${ }^{3}$

r.. ${ }^{\circ} \mathrm{F}$ و D .. psia (ب)

$Y \cdot{ }^{\circ} \mathrm{C}, 1 \cdots \mathrm{kPa}$ هليرير (ه)

(ا- lV
ملكولهاى هوا در واحد حجم را در اين فشار بائين و V. ما محاسبه نـائيد .

 نتطهاى با فشار بارومتريك Y خواهد كرد
 را بر حسب واحدهاى (الف) Btu , ft.lbf , (ب) زول (ج) مهاسبه كنيد .

 (ا YA
 . J . N .. in^{2}
 است كه براى مقايسة انتخابهاى مختلف بها كار مىرود. براى هركدام از از منابع زير ارزش انرزى را بر حسب اين واحد بيان كنيد :

منبع	وآحد هز	ظرفيت حرادنى
گاز طبيعى	\% y ¢/ $/ \ldots . . \mathrm{ft}^{3}$	1... Btu/ft ${ }^{3}$
بنزين	/ 1/8/gal	If.... Btu/gal
الكتريسته	/ $\mathrm{A} / \mathrm{kWh}$	

 محاسبه كنيد.
 ظرفى بهحتم

 تبريد "تن "است كه عبارت است از انر رُى لازم برایى انجماد ا تن آب در مدت زمان ساعت. مقدار تن تبريد را بر سسب kW , Btu/h بيان كنيد . I - rF (1 MW = 10^{6} Watts) Y $A \cdot$ MW
 جرم هر گالن آب بهمقدار Btu الازم باشدل، تعداد گالنهاى آب سرد لازم در هر دتيقه را محاسبه كنيد .
 بزرگّ برای دفع حرارت بهوسيلة تبخير آب استفاده مىشود.اگَر براى تبخير هر بوند جرم
 تبخير شود?
 كه انترزى خورشيد بعد از جذب در اتمسفر به ميزان Y Y . . Btu/h.ft² بهسطع زمين برسد (المته اين ع-دى است كه در يك مدت زمان ^ ساعته معدل گيرى شـده است)، برابى جذب

 سيكل Btu/kWh . . هr آ توان توليدى آن است. دو سوخت رادر نظر بگيريد:

(ب) گـاز طبيعـى با ظرفيت انـرزیى Btu/ft³ . . . 1 و ارزش $.1 . . \mathrm{ft}^{3}$
هزينه كاركردى سيكل را در هر ساعت برايى هركدام از سو ختها مداسبه نماييد .

1 Stimson, II. F.: The International Temperature Scale of 1948, J. Res. Natl. Bur. Std. (paper, 1962), vol. 42, p. 211, March 1949.
2 Holman, J. P.: "Experimental Methods for Engineers," 4th ed., McGraw - Hill Book Company, New York, 1984.
3 Hatsopoulos, G. N., and Keenan, J. H.:"Principles of General Thermodynamics," John Wiley \& Sons, Inc., New York, 1965.
4 Sears, F. W.: "Thermodynamics," 2d ed., Addison-Wesley Publishing Company, Inc., Reading, Mass., 1953.
5 Barber, C. R.: The International Practice Temperature Scale of 1968, Metrologia, Vol. 5, no. 2, p. 35, 1969.
6 Cohen, E. R., and Taylor B. N.: The 1973 Least-Squares Adjustment of the Fundamental Constants, J. Phys. Chem. Ref. Data., vol. 2, no. 4, 1973.
7 The Metric System of Measurement: Interpretation and Modification of the International System of Units for the United States, Federal Register, vol. 41 , no. 239, pp. 54018-54019, Dec. 10, 1976.
8 Mcchily, E. A.: "The International System of Units, Physical Constants, and Conversion Factors, Revised", NASA SP-7012, 1973.

STM

قانون اوّل ترموديناميك

R T- 1
قانون اول ترموديناميكت بهزبان ساده بهصورت اصل بقاى انرزى بيان شده است اس ، ولى كاربرد
 دارند بايد بهدتُت شناسايى شوند. تنّى با شناختن انواع انز زُيها هم تجزيه و تحليل مسأله الزامأمأ ساده نخواهد بود.

 شد كه با اصول نيزيكى مطابقت دارد.

بهكار رفته در كاربرد هاى مهندسى لازم است .
ror

كار بهصورت انرزى صرن شده توسط يكت نيروى عمل كننده در طول يكت تغير مكان تعريف شده و از نظر رياضى بهصورت زير بيان ميگردد.

$$
\begin{equation*}
W=\int_{c} \mathbf{F} \cdot d \mathbf{s}=\int F \cos a d s \tag{-1}
\end{equation*}
$$

حاصل خربـ داخلى' بردارهاى نيرو و تغيري مكان نتُان ميدهدكه در مداسبه كار فقط مؤلّفه نيرو در جهت تغير مكان در نظر گرفته شده است. اين محاسبه در شـكل Y Y نشان داده شده كه در آن نيرو در امتداد مسير مثيخصى حركت مىكند .كُل كار انجام شده بهوسيلة انتگرال خخطى در طول مسير
 محاسبه كار بايد ارزشيابى شود .

شـكل Y 1 تعريفكار

1- Dot product
2- Path integral

نكهه قابل توجه علامت تراردادى برای كار است كه در معادله ((Y Y)بها آن اششاره شده است. اگر بردارهاى نيرو و تغيير مكان در يكت جهت باشند كار انجام شده مثبت و اگگر در خلان جهت

 دهد كار منفى است.

 مورد هجند فرآيند ساده در نظر مىگيريم

كار انبساط يا تراكم در يك سيلندر

ابتدا انبساط يكث گاز را در داخل سيلندر در يشت يكت يستون نظير شككل r Y در نظر بگيريد. فنار داخل سيلندر pوحجمكاز باV ننـان دادهشدهاست. نيروى وارده بر بيستون عبارت است از از :

$$
F=p . A
$$

A است و تغير , مكان جزئى sdo مىتواند بر حسب تغير در حجم گاز

$$
d s=\frac{d V}{A}
$$

با تركيب توابع نيرو و تغيير مكان، مقدار كار انجام شده بهوسيله نيروى وارده بر يـيستون برابر است با :

$$
d W=p A \frac{d V}{A}
$$

$$
\begin{equation*}
W=\int_{V_{1}}^{V_{2}} p d V \quad \text { كار انجام شده بر روى بستون } \tag{Y-Y}
\end{equation*}
$$

دتت كنيل كه كار انجام شده بر روى حسفحه پـيستون مـوقعى است كـه بـيستون در جـهـت نـيرو حركت مىكند، يعنى وتتى كه dVمثبت باشد .اين كار، كار انجام شده بهوسيلهُ نيروى نشار گاز بر روى يسستون است مىتوان آن را بهصورت سطع زير منحنى در شكل Y Y نشان داد. حال اجازه دهيد كه اندكى در مورد سيستمهاى ترموديناميكى نكر كنيم . اگكر يستون را به عنوان يكت سيستم ترموديناميكى انتخاب كنيم (يا جسـم Tزاد) كار انتقال يافته بهمرز سيستم بهوسيله نيروهاى فثار گاز، از طريق معادله (Y-Y) نشان داده مىشود. از طرفى اگر گاز دانحل سيلتدر را بهعنوان سيستم ترموديناميكى در نظر

 مى توانيم بهصورت زير بنويسيم :

$$
\begin{equation*}
W=-\int_{V_{1}}^{V_{2}} p d V \text { كار انجام شده بر روى گَاز بهوسيله يستون • } \tag{Y-Ya}
\end{equation*}
$$

از مثال ساده بالا معلوم مىشود كه علامت كار بستگى بهسيستم انتخاب شده دارد. نظير قرار دادهاى علامت سوجود در مكانيكن، نتيجه مىگيريم كه اتر نيروى وارد بر سيستم و تغير مكان در يكن جهت باشد كار انجام شده بر روى سيستم مثبت است در صور تى كه كار انجام شده بهو سيله سيستم منفى خواهل بود. همانطور كه تبلا" متذكر شديـم در ترموديناميكك بيشتر بحث دربارةءكار انتقال يانته بهمرز يكـ
 كار تصوّر يكت نيروى عمل كننده در طول يكت جابهجايِى مىباشد.

شكل F F F F

سيستمهاى بلز و بسته
در مجموعه يستون - سيلندر اگر سيال را بهعنوان سيستم تزموديناميكى در نظر بگيريم،
 روشهاى تحليلى برایى سيستمهاى باز كه انتقال جرم در مرز آنها امكان بذير است، در نصل \& ارائه خواهدگرديد.

الرات حالت غير تعادلم
در نصل اوّل فزا

كه در مرز يكت سيستم واقع مىشود و وّياً بهطريقه انجأم يكت فرآيند تر موديناميكى بستگى دارد. سال اثر اصنطكاكـ رادر مـاسبهكار انبساطى در سيلندر در نظر بگيريد. اصطكاكك در سطع تهاس بين يستون و سيلندر وجود دارد و در جهت خـلاف حركت يسـونون عمل مىكند. بنـابرايـن اصطكاكك در جهت ماهش كار انتقال يافته بهمحيط خارج از مجهوعه سيلندر - يِستون عمل مىكيند، حتّى اگر فر آيند مربو ط به كاز كاملاُبهصورت شبه ساكن (نيهه ساكن) باشد. بعضهي از اوتات ممكن است از سيستم ترموديناميكى متشكل از گاز و بيستون صصجت شود زيرا غالبأ كار حاصله از تركيب اين دو مورد تو جهه مىباششد. در هنين سيستم مركبّى فقط در صورتى كه يستون آهسته حركت كند و بدون احطكاكك باشد، فرآيند شبه ساكن خواهد بود. برایى ارزيابى و محاسبه كار انجام شده بوسيله نيروهاى مختلف عمل كنتده بـ روى جسم نقط تشكيل جــم آزاد لازم است. محاسبه بهوسيله معادله (Y (Y) صورت مىگيرد.
در بحث در مورد كار انبساطى در سيستم يستون - سيلندر، گازیى را بهعنوان مادّه واسطه

 انحتياج است .

كار در ميانان جاذبه ثقل

حال سيستدى متشكل از يكت وزنه رادرنظر بگيريد.مى خواهيمكارى را محاسبه كنيمكه صرف بالا بردن وزنه تا ار تفاع hدر ميدان جاذبه ثقل مىشود. مجلدداً جهت محطسبه كار، نيرو و تغير مكان را

$$
F=w=m \frac{g}{g_{c}}
$$

كار انجام شهه بهوسيله اين نيرو از معادله (Y- (Y)برابر است با

$$
\begin{equation*}
W=\int \mathbf{F} \cdot d \mathrm{~s}=\int_{0}^{h} w \cdot d s=w h \tag{r-r}
\end{equation*}
$$

مهانطور كه در شكل Y_F نشان داده شده بهعلامت قراردادى برای نيرو و تغير مكان، و بهاين حقيقت

كه كار انجام شده بر روى سيستم مبت است، توجه داشته باشيد .

Y- Δ

 الككريكى نــبت بهزمان است يا

$$
q=\int i d \tau=i \Delta \tau
$$

هt $\Delta \tau$

$$
\begin{equation*}
W=V i \Delta \tau \tag{-}
\end{equation*}
$$

ترموديناميك

در معادله (Y-F)؛ W عبارت است از كار انجام شده بهو سيلئ سيستم ترموديناميكى (باطرى)

 نيروهاى الككريكى بر روى ، مقاومت مذكور كار انجام مىدهدار

شكل
 عبارتاست از :

$$
\mathbf{F}=q \mathbf{v} \times \mathbf{B}
$$

البته اين نيرو سعى در جابهجا نمودن بارهاى الكتريكى در هادى را داشته، در نتيجه جريانى در جهت

 هادى داريم:

$$
\begin{equation*}
q \mathbf{v}=\int i d \tau \frac{d \mathbf{s}}{d \tau}=\int i d \mathbf{s} \tag{Y-7}
\end{equation*}
$$

با قار دادز معادله (Y_Y) در معادله ()

$$
\begin{equation*}
\mathbf{F}=\int_{i}^{L} d \mathbf{s} \times \mathbf{B}=-i B L \mathbf{j} \tag{Y-V}
\end{equation*}
$$

شكل Y Y Y Y Y انجام شده بهوسيلئ هادى عبوركنتده از ميدان منناطيسى

شدت انججام كار عبارت است از :

$$
W=\mathbf{F} \cdot \mathbf{v}=\left(\int_{0}^{L} i d \mathbf{s} \times \mathbf{B}\right) \cdot \mathbf{v}
$$

برای مختصات نشان داده شده در شكل Yـ Y رابطه بالا بهصورت زير در مى آيل :

$$
\begin{equation*}
W=-(i B L \mathrm{j}) \cdot(v \mathrm{j})=-i L B v \tag{-}
\end{equation*}
$$

دراين مثال هادى (مجموعه بار هاى الكتريكى) رابهعنوان سيستم تر مو ديناميكى در نظر گَر فته،

$$
\begin{equation*}
W=+i L B v \tag{-}
\end{equation*}
$$

اين مثالُ شبيه بهمسأله محاسبه كار لازم برای بالا بردن يكت وزنه در ميدان جاذبه ثقل مى باششد. در اين مثال كار نيروى خارجى در ميدان مغناطيسى و در مسألهُ جاذبه ثقل، كار نيروى خارجى در ميدان جاذبه ثقل

سيستم ديگَرى كه شامل كار مغناطبسى است در ششكل Y-Y نمايش داده شده است. مساحت
 اطران حلقه N و شدت جريان i است. محاسبه كار انجام شده در موقع تغير شدت جريان در سيم بيّع اطراف حلقه مورد نظر است. بر اساس تانون القاى الكحرو مغناطيسى فاراده ' نيروى محركّه الكحر يكى القا شده E (emf) برابراست با :

شكل Y Y Y Y Y مار مناطيسى ير روى هسته حلقوى

$$
\begin{equation*}
E=N \frac{d(B A)}{d \tau} \tag{Y-4}
\end{equation*}
$$

و كار انجام شده د, طول زمان dx عبارت است از :
${ }^{\top} d W=E i d \tau=N A i d B$

شدت مغناطيسى H از رابطه زير مدحاسبه مىشود :

$$
H=\frac{N i}{L}
$$

1- Faraday's law

$$
\begin{equation*}
d W=A L H d B \tag{-}
\end{equation*}
$$

توجه داريمكه AL حجم كل سيم ميج بوده بهطورى كه كار رامىتوان بهصورت زير نوشت :

$$
\begin{equation*}
d W=V H d B \tag{Y-11}
\end{equation*}
$$

 طويل با سطع مقطع يكنواخت نيز معتبر مىباشد.

مثال Y-I انبساط تاز در يك سيلندر

 روى صفته يستون را مساسبه كـيـد

حـــلّ : معادله (Y-Y) در اين مسأله بهكار مى رود بهطورى كه :

$$
W=\int_{v_{1}}^{v_{2}} p d V
$$

با استفاده از رابطه داده شده

$$
\begin{equation*}
W=\int_{v_{1}}^{\nu_{2}} C V^{-1.3} d V=-\frac{C}{0.3}\left(V^{-0.3}\right)_{\nu_{1}}^{\nu_{2}} \tag{a}
\end{equation*}
$$

:

$$
\begin{equation*}
W=\frac{p_{2} V_{2}-p_{1} V_{1}}{-0.3} \tag{b}
\end{equation*}
$$

حجم نهايى برابر است با :

$$
V_{2}=V_{1}\left(\frac{p_{1}}{p_{2}}\right)^{1 / 1.3}
$$

$$
\begin{aligned}
V_{2} & =1\left(\frac{200}{15}\right)^{1 / 1.3}=7.32 \mathrm{ft}^{3} \quad\left(0.2073 \mathrm{~m}^{3}\right) \\
W_{1} & =-\frac{(144)[(15)(7.32)-(200)(1)]}{0.3} \\
& =4.33 \times 10^{4} \mathrm{ft} . \mathrm{lbf} \quad(5) \quad\left(5.87 \times 10^{4} \mathrm{~J}\right)
\end{aligned}
$$

مثال T-r كار مغناطيسى

 محساسبه كنيد.
 آحاد است. سيستم متريكت راكه ساده ترين است انتخاب ميكنيم .

$$
\begin{aligned}
& L=1 \mathrm{ft}=0.305 \mathrm{~m} \\
& v=15 \mathrm{ft} / \mathrm{s}=4.58 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

از معادله (T-V) نيرو برابر است با

$$
\begin{aligned}
\mathbf{F} & =i B L \mathbf{j} \\
& =(10)(1)(0.305)=3.05 \mathrm{~N} \\
& =3.05 \mathrm{~N}
\end{aligned}
$$

ستس مقدار كار بر وا-ـد زمان از سادله (r_^a)بهصورت زير محاسبه مىشود.

$$
\begin{aligned}
W & =i B L v=(10)(1)(0.305)(4.58) \\
& =13.98 \mathrm{~N} . \mathrm{m} / \mathrm{s}=13.98 \mathrm{~J} / \mathrm{s}=13.98 \mathrm{~W}
\end{aligned}
$$

T-Y انرڭی داخلى

 محاسبه انرزى صرف شده بهوسيله يكب نيروى عمل كننده در طون يكت مسافت ارزيابى نمود.يّس كار
 برا'ى انجام كار بايد يكك عكس العمل داخلى نيرو بين سيستم و محيط اطرافـ آن وجود داشته باشدل بسى
 مىشودكه سيستم از حالتى بهحالت ديگُر تغير بيداكند.
 مرورى بر اين مفهوم بى مناسبت نيسـت، زيرابهيك؛ نوع عمومىتر انززى كه در ترموديناميك بررسى
 بردن يكت وزنه تا ارتفاعى بالانتر از يكك سطح مرجع تعريف شده است .انرزى جنبشى از طريق تعين كار لازم براى شتتاب دادن جسـى از حالت سكون تا سرعت مشُخصى الزيابى مىگردد. بنابراين :

$$
F=\frac{m a}{g_{\mathrm{c}}}=\frac{m}{g_{\mathrm{c}}} \frac{d v}{d \tau}=\frac{m}{g_{\mathrm{c}}} \frac{d v}{d s} \frac{d s}{d \tau}=\frac{m v}{g_{\mathrm{c}}} \frac{d v}{d s}
$$

$$
\begin{equation*}
W=\int \mathbf{F} \cdot d \mathbf{s}=\int \frac{m v}{g_{\mathrm{c}}} d v=\frac{1}{2 g_{\mathrm{c}}} m v^{2}=K E \tag{Y-IY}
\end{equation*}
$$

وتتى كه سرعت يكت سيستم از سرعت اوّلمه 1 تا سرعت نهائى ${ }^{2}$ تنغير مىكند، تغيير در
انرزّى جخبـثى مربوطةُ آن عبارت است از :

$$
K E_{2}-K E_{1}=\int_{v_{1}}^{v_{2}} \frac{m}{g_{c}} v d v=\frac{1}{2 g_{c}} m\left(v_{2}^{2}-v_{1}^{2}\right)
$$

بدين ترتيب كار مربوط بهشتاب رامى توان بهصورت انرزى جنبئـى ذخيره شده تصّور نمود. اتر حركت جسم توسط بعضي, نيروهاى باز دارندهكُند گردد، اين انرزّى بهصورت كار انتقال يانته به مكانيزم بازدارنده، بازيابى مىشود (با فزض اين كه از اتلافت در اثر اصطكاكت صرف نظر شود). بههمين طريق چتانسيل الككتريكى بهصورت كار لازم براى جابهجا نمودن بار الكتريكى در

 تعريف شده است . بهعلاوه دقت كنيد كه كار انجام شده بهوسيلة نير وهاى عمل كنتده بر روى يكت سيستم را مىتوان بهصورت زير بيان كرد :

$$
\begin{equation*}
P E_{\text {ابندابى }}=\triangle P E=W \tag{Y-Ir}
\end{equation*}
$$

البته اين رابطه برای آن دسته بخصوص از سيستهاى مذكور كه تنها ار تباطثان با محيط اطراف، بان، بهـشكل

 هميشه مستقل از قر آيند است. توجه كنيد كه شيو هماى تعريف عبارات انر زُى يتانسيل به طور اتو اتوماتيك

كار انجام شده توسط نيروهاى غير كنـرواتيو = كار انجام شله نوسط نيروهاى كنسرواتيو

تابع انرثي داخلى كلمى براى يك هرآيند آدياباتيكّ † (هى دررو)
معادله (Y-I

1- Conservative
2- Adiabatic process

كنسر واتيو بيان شله است. قانون اوّل ترموديناميكت تعميم مفهو انرزى بیانسيل را مجاز مىدارد.براكى روشن كردن اين اصل، سيستمى راكه از حالت I بهحالت II تغيير مىكند، طبق شكل Y Y درنظر بعيريد. اجازه دهيد كه سيستم رابهصورت كاملأ عايق فرض كنيم، بهطورى كه هيعِ گونه حرارتى بهداخال و يا خارج از آن انتقال نيابل. تصريح مىكنيم كه تنها رابطه با مسيط بهشكل كار بوده و همه انواع كارهايي راكه بهصورت تغييراتى در توابِ ثتانـيل ممكن است بيان شُود از اين كار مستثنى مىكينم. بهاين تر تيب ما از كارى حسبت مىكنيم كه در حقيقت بهوسيله محيط خارجى يا يكت مكانيزم متشتـل به سيستم، انتقال يافته است. در نتيجه فر آيند، اصل بقاي انرزّى تعريف يكى تابع عهومى انرزّى داخحلى E

 (الف) در لرآيند آدياباتيك و (ب) در ثرآيند عمومى شامل انتقال حرارت

$$
\begin{equation*}
E_{\text {ابَدابى }}=\Delta E=W_{\mathrm{ad}} \tag{r-1F}
\end{equation*}
$$

كه 5 است، يعنى جايىى كه هيجِ گونه مبادله حرارت بين سيستم و محيط اتفاق نمى افتند.

$$
\begin{aligned}
& \text { كار آدياباتيكك انتقال يانته سيستم توسط } \\
& \text { كلئُ نيروهأى عمل كنده برزوى سيستم }
\end{aligned}
$$

ازطريق آزما يش مشُخْص شده كه صرف نظر از فر آيند؛ كار آدياباتيكك بين دو هالت أبتدايى و نهايى
 مىباشد.كميت E انرزيى داخلى سيستم ناميده مىشود.
 يكك تابع نقطهاى، يا بهتز بگوئيم كميّتى كه تغيراتش بين دو حالت ابتدايى و و نهايى بهمسير فر آيند بهكار
 كيدكه تعريف Eبر حسبكار آدياباتيك،، كمكى بهايجاد يك مقياس مطلق برايى انر زي داخلى يا يكى

 مفصّل ميكروسكيى امكان بذير است . نككه ههم اين است كه خاصيتى بنام E وجود دارد و وجود آن يكت واقعيت تجربى است.

اثر حرارت

 قبل فر آيندى را بين هالات ابتدايى و نهايى، يكسان طى كند ولى در اينجا سيستم عايق نشـده، يمكن

 كرده است. لذا:

$$
\begin{equation*}
W+Q=W_{\mathrm{ad}} \tag{r-10}
\end{equation*}
$$

$$
\begin{equation*}
Q+W=\Delta E \tag{-}
\end{equation*}
$$

 شده است (حرارت) بايد برابر با افزايش انرزَى) داخلى سيستم باشد يا :
ذخيره انز زى در سيستم = انرزىى الزوده شده بهسيستم

يا بـعبارت ديگر

$$
\begin{align*}
& \text { يعنى : انرزى داخلى نهايى = انرزیى اضانهشدهدرمرزبهصورت حرارت وكار +انر زیى داخلى ابتدايى } \\
& E_{1}+W+Q=E_{2}
\end{align*}
$$

 وجود دارد. در نصل \uparrow اين انتقال انززى را تجزيه و تحليل خواهيم كرد.

قانون اوّل ترموديناميك Y Y

معادله (Y-1 7 غالبأبهعنوان بيان تحليلى قانون اوّل ترموديناميك ارائه مىگردد ولى بايد

ترمود يناميك

بخاطر داشت كه اين معادله همان بيان اصل بقاى انرزيى بوده كه در آن حرارت، كار، و انرزیى داخلى را
 تعريف حرارت بر حسبـكار و انرزّى داخلى در نظر بگيريـم . از نتطه نظر فيز يكى حرارت عبارت از مبادله انرثى با محيط اطراف است كه بهصورت يكـ نيروى وارده در طول يكـ مسافت (كار) نهـ،باشـلـ

دقت كنيد كه اصل بقا در مورد يكت سيستم منزوى (سيستـى كه هيج گونه انرزیى از مرز آن عبور نمىىكند) كاملاُ روشن اسيت.بنابراين

$$
\Delta E_{\text {s }}=0
$$

بهعبارت ديگُر كُل انرزى داخلى يكت سيستم متزوى تغيير نابذير است؛ تنها مى تواند از يكى نوع به نوع ديگر تغيِر يابد. استدلال اين مطلب در شكل Y Y نمايش داده شده است. حال ماهيت تابِّ انرزیى داخلمى را مورد بررسى قرار ميدهيم. واضـع است كه انرزى داخلى ؛ توابع انرزی یتانسيل نظير انرزّى جاذبه ثقل و جنبشى را در بر ميگيرد و شامل ساير انواع انرزَى دأخلى نيز میگردد . برایى نشان دادن اين شطلب فرآيند نمايش داده شده در شكل Yـ Y را در نظر بگيريد. با هـزدن آب در ظرفى كه نسبت بهمحيط عايق شده كار انحـام مىدهيم. يس از هم زدن، آب مـبددأ به حالنت سكون برميگردد. مشخُصس است كه در اين فرآ يند انرزيهاي جاذبه ثقل و جنبشى تغير نمىكند،

شكل

$$
E=m c^{2}
$$

در مورد واكنش هاى هستهاى بيثتر از اينها گسترش دهيم . رابطء زير بحث دربارهٔ تابع انز زیى داخلى را اخلاصه مىیكند.

$$
\begin{equation*}
E=U+K E+P E+C h E+\cdots \tag{-}
\end{equation*}
$$

 (u و e)

$$
d Q+d W=d E
$$

جون اترزّى داخلى E فقط تابع حالت سيستم است، تغيراتش حول هر خرخه (سبكل) كامل بايد برابر

$$
\begin{equation*}
\oint d Q+\oint d W=0 \tag{Y-19}
\end{equation*}
$$

كه علامت انتگرال فر. آيند سيكلى رانشان مىدهد.
بهطور كلى بايل تأكيد شود كه حرارت و كار تابع مسير هستثد و براى ارزيابى مقادير Tنها بايل
 بهصورت زير مشـخّصـ مىشود :

$$
\oint d E=0
$$

بنابر اين بهزبان رياضهى $d E$ بيان ديفرانسيل كامل 'امت در صورتىكه dQ $d W$ د يفر/نسيلهاى
 ديفرانسيلهاى كار و سترارت بهطور كلى توابع بسير هستند، به كار خواهيم برد. در بعضى از نوشتهها ديفرانتيلهاى مشُّصر شده بـا بهفر آيند دارند.

حـرارت وتّرماى ويزُه

مشاهده كرا:0ايم كه حرارت يكت عكس الممل داخلى انرزى بين سيستم ترموديناميكى و
 نيرو در طول يكت مــانت محاسبه نمود. بنابراين كار و حرارت بهطور اساسى انواع مختلفي از انرزى مىباشند. واضع است كه ما حرارت رابا دماى سيستم مربوط مىكيم زيرا معمولاُ در موتع حرارت دادن سيستم درجه حرارت Tان بالا مىرود. مطالعه تكامل تاريخیى ترموديناميكك نشـان مىدهد كه زمـانى

1- Exact differential
2- Inexact differential

بنابراين استدلال مىكردند كه حرارت در داخل جسم محبوس است. اكنون مىدانيم كه اين عقيده درست نيست و حرارت نـىتواند در داخل يك سيستم باشـد بـر بلكه نتط عكس العمل دالخلى سيستم نسبت بهمحيط اطراف است ودر صورتى نمودار مىگگردد كه سيستم از حالتى به حالت ديگُر تغير نمايد.

آب داغ و آب سرد " شامل " مقدار حرارت يكسانى مىباشند : ابداً اينطور نيست.

مفهومى كه از تؤوى قديمى كالريكت بجا مانده ظرفيت حرارتى و يا بامتول امروزيهاكرماى
 كَردد، گرماى ويرّه C با رابطه زير تعريف مىشود :

$$
d^{\prime} Q=C d T
$$

 باشد كه طبق شكل
 را رامتوانيّم جنين بنويسيم :

$$
\begin{align*}
& d^{\prime} Q+d^{\prime} W=d U \tag{r-r}\\
& d^{\prime} Q-p d V=d U
\end{align*}
$$

 داشته باشيد. سسس برایى حرارت انزوده شده مىتوان نوشت :

$$
d^{\prime} Q=d U+p d V
$$

 ثابت و بر واحد جرم مىتوان جنين نوشت :

$$
d Q_{v}=c_{v} d T_{v}
$$

$$
d u_{v}=c_{v} d T_{v}
$$

كه در اينجا اند يـها نمايانگر تغير در خواصّ سيستم تحت شُرايط ححمـ ثابت است. (بهخاطر داشته باشيد كه حرون بزرگُ نشان دهنده خواصّ كُل سيستم و حروفكو هِكت نشان دهنده خواصّ سيستم بر واحد جرم مىىاشد) .بنابراين گرماى ويزه بر واحد جرم جنين نوشته مى شود :

$$
\begin{equation*}
c_{v}=\left(\frac{\partial u}{\partial T}\right) \tag{Y-YY}
\end{equation*}
$$

اگرجه رابطه بالا براى سيستم بخصوصى بهدست آمده ولى آن را بهعنوان تعريف گرماى ويزه در حهم ثابت در نظر خواهيـمگرفت. در اين جا تفاوت مفهوم جديد را با تئورى قديم كالريكت متذكرمىشويبم. در مفهوم جديد گُمآى ويرُه بهعنوان يك خاصيّت سيستم درنظر گرفته شده كه مسىتوان آنْ را
 حال تصّوبر كنيد كه سيستم ساده تبلى فرآ يندى نحت فشار ـ ثابت را طمى كند. انتقال حرارت بر واحد جرم هنين بيان مىشو2 :

$$
d^{\prime} \Omega_{p}=d u_{p}+p d v_{p}
$$

ا'نتالبn
خاصيّت جديدى بهنام انتالهى ' را با رابطه زير تعريف مىكيم :

$$
\begin{equation*}
h=u+p v \tag{Y-YF}
\end{equation*}
$$

ديفرانسيل انتاليى عب'رت امست از :

$$
d h=d u+p d v+v d p
$$

1- Enthalpy

$$
d h_{p}=d u_{p}+p d v_{p}
$$

$$
d Q_{p}=d h_{p}=c_{p} d T_{p}
$$

3

$$
\begin{equation*}
c_{p}=\left(\frac{\partial h}{\partial T}\right)_{p} \tag{-}
\end{equation*}
$$

علامتهاى

مساوى است با تغير انتاليى زيرا:

$$
\begin{equation*}
Q_{p}=\int d h_{p}=h_{2}-h_{1} \tag{-}
\end{equation*}
$$

 cv Y-1 بعضى مقادير نمونه را نشان ميدهد.

مثال Y_ كار حرخ يره دار
يك موتور مخلوط كن بهقدرت hp 1 براي همزدن آب دريك مخزن طبق شكل Y Y بهكار

میرود. مخزن حاوى اين كه مخزن كاملأعايق باشد، تغير در انز زیى داخلى آب را محاسبه كنيد. همخنين انزايش دماى آب را را

حـلّ : ضرايب تبـيل مناسب براى اين مــأله عبارت است از :

$$
1 \mathrm{hp}=550 \mathrm{ft} . \mathrm{lbf} / \mathrm{s}=2545 \mathrm{Btu} / \mathrm{h}
$$

$$
778.16 \mathrm{ft} \cdot \mathrm{lbf}=1 \mathrm{Btu}=1055 \mathrm{~J}
$$

c_{v}		c_{p}		ماده
kJ/kg. ${ }^{\circ} \mathrm{C}$	Btu/lbm. ${ }^{\circ} \mathrm{F}$	kJ/kg. ${ }^{\circ} \mathrm{C}$	Btu/bm. ${ }^{\circ} \mathrm{F}$	
				جامدات (
		- 1 人а9	- Mrif	آلومينمب)
		- /ratr	. 1.91	
		- /ajr	- $/ 1.1$	آهن
		- /rrf	. 1.09	نقره
		- Mrf	- l.ry	
		- / 1 F	- /r.l	آجر
		- /V	- /198	
		r/s	. $/ 198$	حوبّ (كاج)
				مايعات (
		F / N	1/..	آبر
		- /av7	- /rw	\|r
		F/A	1/10	آمونباك
		1/4	- /fo	روغن موترر
		- /if	- l.rr	جيونيرن
		r/ris	- lov	اتيلن كَليكول
				كازه إها
- /VIA	- /ivio	1/1.s	- /rF	هو!
1./iv	r/ar	if/ry	r / Fr	
- Mar	./av	- /大FY	-/r.r	دى أكسيدكربن

آب را بهعنوان سيستمترموديناميكى درنظر گر نهه و قانون اول زا بهصورت زير مىنويسيم :

$$
W+Q=\Delta U
$$

استت از كار افزوده شلده بهآن در مدت \mid ساعت ، هوون براى میخزن عايت شلده $0=0$:

$$
\begin{aligned}
\Delta U=W=(550)(3600) & =1.98 \times 10^{6} \mathrm{ft} . \mathrm{lbf} \\
& =2545 \mathrm{Btu}\left(2.68 \times 10^{6} \mathrm{~J}\right)
\end{aligned}
$$

$$
c_{v}=\left(\frac{\partial u}{\partial T}\right)
$$

برایى

$$
\begin{aligned}
& c_{v} \approx\left(\frac{\Delta u}{\Delta T}\right) v \\
& \Delta u=c_{v} \Delta T
\end{aligned}
$$

از ضربِ نمودن در جرم نتيبجه مىتيريـم :

$$
m \Delta u=\Delta U=m c_{v} \Delta T
$$

حال انزايش دز دما كنين متحاسبه مىتگدد :

$$
\Delta T=\frac{\Delta U}{m c_{\nu}}=\frac{2545}{(50)(1)}=50.9^{\circ} \mathrm{F}
$$

F_q
 گازها را مورد بررسي ترار دهيم.

ترموديناميك

$$
p^{V}=m R T
$$

$$
\begin{align*}
& \Delta u=u_{2}-u_{1}=\int_{T_{1}}^{T_{2}} c_{v} d T \\
& \Delta h=h_{2}-h_{1}=\int_{T_{1}}^{T_{2}} c_{p} d T \tag{r-rq}
\end{align*}
$$

بهعلاوه اگگر گرماهاى ويزه ثابت باشد، نتايج ساده زير بهدست مى آيد :

$$
\begin{align*}
& u_{2}-u_{1}=c_{v}\left(T_{2}-T_{1}\right) \tag{r_r.}\\
& h_{2}-h_{1}=c_{p}\left(T_{2}-T_{1}\right) \tag{-}
\end{align*}
$$

يكى كاز ايدهآل از نتطه نظر ميكروسكيى كازى است كه ملكولهاى آن بهتدر كانى از يكديگر فاصله

داخلى تابعى از فشار و دما خواهد بود. براى تأكيدبراهميت انززى داخلى يكى گازايدهآل، مجددأ آن راباحرون بزرگّ مىنويسـيم : انرزي داخلى وانتالهى يكىكاز /يدهآل فقط تابعى از دما است.
 احططلاحات متفاوتى براى كازهما در سنابع مختلف وجرا

آن رااز نظر كالريكى كامل 'گويند. عباراتكاز ايدهآل وكاز كامل بهوسيله مؤلفين مختلف در مورد

 جلول Y-Y خواهد بود.

رابطه مفيد بين c c_{ν}

$$
\begin{aligned}
d h & =c_{p} d T \\
d u & =c_{v} d T
\end{aligned}
$$

$$
d h-d u=\left(c_{p}-c_{\nu}\right) d T
$$

$d h=d u+d(p v)=d u+R d T$

$$
R d T=\left(c_{p}-c_{v}\right) d T
$$

$$
\begin{equation*}
R=c_{p}-c_{v} \tag{Y-ry}
\end{equation*}
$$

 بيان شود:

$$
\begin{equation*}
\mathfrak{R}=\bar{c}_{p}-\bar{c}_{v} \tag{Y_rr}
\end{equation*}
$$

يا الختلاف بين گر ماهاى ويره مولى برایى تمام گًازهاى ايده آل يكت ضريب ثابتى انست.

جه زمانى كاز را مم توان هاز ايدهآل در نظر كرلت
 ميكروسكيى، كاز موقعى ايدهآل است كه فاصله بين ملكولها زياد باشد بهطورى كه ميدان نيروهاى

 كاربرد قانون گاز ايده آل عنوان نكردهايم م بخش

 آن در فشار اتمسفر نمىتوان استفاده نوود.

مثال Y Y خرارت دهى در حجم ثابت

 فرض نمائيد.

حـــل : هوا را بهعنوان سيستم ترموديناميكى و مخزن را بععنوان مرز سيـتم انتخاب مىكنـم و قانون

$$
Q+W=\Delta U
$$

 رلتار كاز ايدهآل دارند مكر اين كه خلاف اين نظر يانكرددد.

جدول بر طبق مأخد [1] آحاد اتليسى

كاز يا بار	$\begin{aligned} & \bar{c}_{\infty}, \mathbf{B t u} / \mathrm{lb} \cdot \mathrm{~mol} \cdot{ }^{\circ} \mathbf{R} \\ & \boldsymbol{T},{ }^{\circ} \mathbf{R} \end{aligned}$	متحدوده ${ }^{\circ} \mathrm{R}$	حداكثر خطا \%
O_{2}	$\bar{c}_{P O}=11.515-\frac{172}{\sqrt{T}}+\frac{1530}{T}$	540-5000	1.1
	$\begin{aligned} = & 11.515-\frac{172}{\sqrt{T}}+\frac{1530}{T} \\ & +\frac{0.05}{1000}(T-4000) \end{aligned}$	5000-9000	0.3
N_{3}	$\bar{c}_{p o}=9.47-\frac{3.47 \times 10^{\prime}}{T}+\frac{1.16 \times 10^{6}}{T^{3}}$	540-9000	1.7
CO	$\bar{c}_{p o}=9.46-\frac{3.29 \times 10^{7}}{T}+\frac{1.07 \times 10^{6}}{T^{2}}$	540-9000	1.1
H_{2}	$\bar{c}_{p o}=5.76+\frac{0.578}{1000} T+\frac{20}{\vee \widetilde{T}}$	540-4000	0.8
	$=5.76+\frac{0.578}{1000} T+\frac{20}{\sqrt{T}}$	4000-9000	1.4
	$-\frac{0.33}{1000}(T-4000)$		
$\mathrm{H}_{2} \mathrm{O}$	$\bar{c}_{p o}=19.86-\frac{597}{\sqrt{T}}+\frac{7500}{T}$	540-5400	1.8
CO_{2}	$\bar{c}_{p o}=16.2-\frac{6.53 \times 10^{3}}{T}+\frac{1.41 \times 10^{6}}{T^{2}}$	540-6300	0.8
CH_{4}	$\bar{c}_{p u}=4.52+0.00737 T$	540-1500	1.2
$\mathrm{C}_{2} \mathrm{H}$ 4	$\bar{c}_{p o}=4.23+0.01177 T$	350-1100	1.5
$\mathrm{C}_{2} \mathrm{H}_{6}$	$\bar{c}_{p o}=4.01+0.01636 T$	400-1100	1.5
$\mathrm{C}_{8} \mathrm{H}_{18}$	$\bar{c}_{p 0}=7.92+0.0601 T$	400-1100	4 (est.)
$\mathrm{C}_{12} \mathrm{H}_{26}$	$\bar{c}_{p o}=8.68+0.08897$	400-1100	4 (est.)

 با كارهاى باليسن، آحاد SI

'	$\begin{aligned} & \bar{c}_{p, k J}, \mathbf{k J} / \mathbf{k g} \cdot \mathrm{mol} \cdot \mathrm{~K} \\ & T, \mathrm{~K} \end{aligned}$	osgater K
O_{2}	$\begin{aligned} \bar{c}_{p o} & =48.212-\frac{536.8}{\sqrt{T}}+\frac{3559}{T} \\ & =48.212-\frac{536.8}{\sqrt{T}}+\frac{3559}{T} \end{aligned}$	300-2800
	$+3.768 \times 10^{-4}(T-2222)$	2800-5000
\mathbf{N}_{2}	$\bar{c}_{\rho o}=39.65-\frac{8071}{T}+\frac{1.5 \times 10^{6}}{T^{2}}$	300-5000
CO	$\bar{c}_{p o}=39.61-\frac{7652}{T}+\frac{1.38 \times 10^{6}}{T^{2}}$	300-5000
H_{2}	$\bar{c}_{p o}=24.12+4.356 \times 10^{-9} T+\frac{62.41}{\sqrt{T}}$	300-2200
	$=24.12+4.356 \times 10^{-3} T+\frac{62.41}{\sqrt{T}}$	
-	$-5.94 \times 10^{-4}(T-2222)$	2200-5000
$\mathrm{H}_{2} \mathrm{O}$	$\bar{c}_{p o}=83.15-\frac{1863}{\sqrt{T}}+\frac{17445}{T}$	300-3000
CO_{2}	$\bar{c}_{\rho \mathrm{p}}=67.83-\frac{15189}{T}+\frac{1.82 \times 10^{6}}{T^{i}}$	300-3500
CH_{4}	$\bar{c}_{\rho 0}=18.92+0.055 T$	300-830
$\mathrm{C}_{2} \mathrm{H}_{4}$	$\bar{c}_{p, 1}=17.71+0.0887 T$	200-650
$\mathrm{C}_{2} \mathrm{H}_{6}$	$\bar{c}_{p u}=16.79+0.123 T$	220-600
$\mathrm{C}_{8} \mathrm{H}_{18}$	$\dot{c}_{p u}=33.16+0.453 T$	220-600
$\mathrm{C}_{12} \mathrm{H}_{26}$	$\bar{c}_{p o}=36.34+0.670 T$	220-600

كه

$$
Q=\Delta U=m\left(u_{2}-u_{1}\right)
$$

برای كاز ايدهآل اين رابطه بهصورت زير درمى Tيد:

$$
\begin{equation*}
Q=m c_{v}\left(T_{2}-T_{1}\right) \tag{a}
\end{equation*}
$$

$$
\begin{aligned}
& m=\frac{p V}{R T}=\frac{(20)(144)(1)}{(53.35)(560)}=0.0963 \mathrm{lbm} \quad(0.04368 \mathrm{~kg}) \\
& \text { برای هوا } c_{v}=\cdot / \mid V \backslash \Delta \mathrm{Btu} / \mathrm{lbm} .{ }^{\circ} \mathrm{F} \text { ، لذا معادله (a) بهصورت زير در مى آيل : } \\
& 10=(0.0963)(0.1715)\left(T_{2}-100\right) \\
& T_{2}=706^{\circ} \mathrm{F}=1166^{\circ} \mathrm{R} \quad\left(374^{\circ} \mathrm{C}, 647 \mathrm{~K}\right)
\end{aligned}
$$

حال نشار نهايي رامىتوان محاسبه نمود

$$
\begin{aligned}
p=\frac{m R T}{V} & =\frac{(0.0963)(53.35)(1166)}{1} \\
& =5980 \mathrm{lbf} / \mathrm{ft}^{2}=41 \mathrm{psia} \quad\left(2.827 \times 10^{5} \mathrm{~Pa}\right)
\end{aligned}
$$

مثال ه -

حـــل : انتقال سـرارت " واتعى " بهازاى هرمول عبارت است از :

$$
\begin{equation*}
Q_{p}=\int_{T_{1}}^{T_{2}} \bar{c}_{p} d T \tag{a}
\end{equation*}
$$

رابطه براى

$$
\begin{equation*}
Q_{p}=\vec{c}_{P}\left(T_{2}-T_{1}\right) \tag{b}
\end{equation*}
$$

در اينجا
جدول ب-r داريم:

$$
\bar{c}_{p}=9.47-\frac{3.47 \times 10^{3}}{T}+\frac{1.16 \times 10^{6}}{T^{2}} \text { Btu/bm.mol. }{ }^{\circ} \mathrm{R}
$$

$$
\begin{align*}
& \text { Tبر حسب درجه رانكين است. بنابراين مقدار انتقال حرارت " وانتى " عبارت است از : } \\
& Q_{p}=\int_{T_{1}}^{T_{2}}\left(9.47-\frac{3.47 \times 10^{3}}{T}+\frac{1.16 \times 10^{6}}{T^{2}}\right) d T \\
& =\left(9.47 T-3.47 \times 10^{3} \ln T-\frac{1.16 \times 10^{6}}{T}\right)^{T 2} \tag{c}\\
& \text { ك } \\
& Q_{p}=22920 \mathrm{Btu} / \mathrm{lbm} . \mathrm{mol}
\end{align*}
$$

Y-Y با استفاده از دادههاى جدول

$$
Q_{p}=(28.02)(0.248)(3460-560)=20100 \mathrm{Btu} / \mathrm{bm} \cdot \mathrm{~mol}
$$

بنابراين خطاى حاصله از فرض تَمرماى ويزه ثابت برابر است با :

$$
\text { درصد } 12.3=\frac{22920-20100}{22920}=0.123=\text { خطا }
$$

اين مثل لزوم درنظرگَرنتن تغيرات گَرماى ويزْ هرادر مواتعى كه با محدوده وسيعى از دما روبرو هستيم، نشان ميدهد.
r-7 مثال

 جقدر حرارت بايد بهموا داده شود؟ دستگاه با هوای اتمــفر احاطه شده است .

حـــلـ : سيــممذكور درشكل نشان دادهـدهاست. نيروى لازم برالى متراكم كردن ننر عبارت است از

$$
\begin{equation*}
F_{s}=k_{s} x \tag{a}
\end{equation*}
$$

كه xجابه جايى از حالت تعادل مىباشد. بنابراين كار لازم براي مترإكم كردن فنر برابر است با '

$$
\begin{equation*}
W_{s}=\int F_{s} d x=\int_{0}^{x} k_{s} x d x=\frac{1}{2} k_{s} x^{2}=\Delta P E_{s} \tag{b}
\end{equation*}
$$

حال هوا را بهعنوان سيستم ترموديناميكى در نظر بگيريد.كار ازدوتسمت تشكيل شده است :

$$
1 \text { ـ كار لازم براى متراكم نمودن نرن Ws. }
$$

كه فـار محيط ثابت باثد.

$$
\begin{equation*}
Q+W_{s}+W_{s u r}=\Delta U_{a i r} \tag{c}
\end{equation*}
$$

برای هوا، ثابت

$$
\begin{equation*}
\Delta U_{a i r}=m_{a} c_{v} \Delta T_{a} \tag{d}
\end{equation*}
$$

$$
\begin{aligned}
c_{v} & =0.1715 \mathrm{Btu} / \mathrm{bm}^{\circ} \mathrm{F}=718 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C} \\
m_{a} & =\frac{p_{l} V_{l} M_{a}}{\Re T_{1}}=\frac{\left(1.0132 \times 10^{5}\right)\left(20 \times 10^{-6}\right)(28.97)}{(8314)(293)} \\
& =2.41 \times 10^{-5} \mathrm{~kg}
\end{aligned}
$$

شكل مثال Y-Y

 توليد مى شود • بنابراين :

$$
F_{s 2}=(2)\left(1.0132 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}\right)\left(4 \times 10^{-4} \mathrm{~m}^{2}\right)=81 \mathrm{~N}
$$

جابه جايى نهايى فنر از معادله (a) بهدست تى آيد.

$$
x=F_{s} / k_{s}=(81 \mathrm{~N}) /(100 \mathrm{~N} / \mathrm{cm})=0.81 \mathrm{~cm}
$$

حصم اضافى بهخارج رانده شـده بهوسيلةُ بِستون برابر است با :

 $A \Delta x=\left(4 \mathrm{~cm}^{2}\right)(0.81 \mathrm{~cm})=3.24 \mathrm{~cm}^{3}$لذا حجم نهايى هوا عبارت السـت از :

$$
V_{2}=V_{1}+3.24=20+3.24=23.24 \mathrm{~cm}^{3}
$$

كار لازم برای جابهجا نمودن محيط برابر است با :
$W_{\text {sur }}=-p_{\text {atm }} \Delta V=-\left(1.0132 \times 10^{5}\right)\left(3.24 \times 10^{-6}\right)=-0.3283 \mathrm{~J}$

دماى نهايىى از قأنون كاز اينـهآلْ بهدست مى آيدكه بهصورت زير بيان مىشود :

$$
m=\frac{p_{2} V_{2}}{R T_{2}}=\frac{p_{1} V_{1}}{R T_{1}}
$$

بهطورى
$T_{2}=\frac{(293)(3)(23.24)}{(20)(1)}=1021 \mathrm{~K}=748^{\circ} \mathrm{C}$
(b) از معادله

$$
\begin{aligned}
W_{s}= & -\frac{1}{2} k_{s} x^{2}=\frac{1}{2}(100 \mathrm{~N} / \mathrm{cm})(0.81 \mathrm{~cm})^{2} \\
& =-32.81 \mathrm{~N} . \mathrm{cm}=-0.3281 \mathrm{~J}
\end{aligned}
$$

علامت منفى به كار مىرود زيراكار بر روى هو | (سيستم ترموديناميكى) بهوسيله ننر صورت

$$
\Delta U_{a}=\left(2.41 \times 10^{-5} \mathrm{~kg}\right)\left(718 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}\right)(748-20)=12.60 \mathrm{~J}
$$

حال كُل سرارثت افزوده شده از رابطه انرزٔى معادله (c) بدست مىى آيد .

$$
Q=0.3283+0.3281+12.6=13.26 \mathrm{~J} \quad(0.0126 \mathrm{Btu})
$$

در اين مثال . مى ينيم كه تسمت اعظم حرارت افزوده صرف بالّا بردن دمالى هوا شده تا آن جاكه باعث انزاينس فشار نيز مىگردد .

مثال Y_Y حرارتدهى در فشار ثابت

هوا در فثار atm ا و دماى Y F اشغال مىكند. هوا بهوسيلة بيستونى با نيروى بازدارنده ثابتى در سيلندر متهبوس شده است بهطورى كه

حـــل : اتتقال حرارت از رإبطه زير محاسبه مىشود

$$
\begin{equation*}
Q_{p}=m c_{p} \Delta T_{p} \tag{a}
\end{equation*}
$$

$$
Q_{p}=\left(1.205 \times 10^{-3} \mathrm{~kg}\right)\left(1.005 \times 10^{3} \mathrm{~J} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}\right)(260-20)
$$

$$
=290.6 \mathrm{~J} \quad(0.275 \mathrm{Btu})
$$

$W=\int p d V$
اين رابطه برایى فر آيندى در نثـار ثابـت بهصورت زير در مى آيد :

$$
\begin{equation*}
W=p\left(V_{2}-V_{1}\right) \tag{b}
\end{equation*}
$$

حبـم نهايى از طريت رابطه بايِين سحاسبه مى

$$
\frac{p_{1} V_{1}}{T_{1}}=m R=\frac{p_{2} V_{2}}{T_{2}}
$$

$$
V_{2}=V_{1} \frac{p_{1}}{\dot{p_{2}}} \frac{T_{2}}{T_{1}}=(1000)(1)\left(\frac{533}{293}\right)=1819 \mathrm{~cm}^{3}
$$

حكال كار از معادله (b) مـحاسبه مىشود

$$
\begin{aligned}
W & =\left(1.0132 \times 10^{5} \mathrm{~Pa}\right)(1819-1000)\left(10^{-6}\right) \\
& =82.98 \mathrm{~J} \quad(0.079 \mathrm{Btu})
\end{aligned}
$$

$$
\begin{aligned}
& R=\frac{3 i}{M}=\frac{8314 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~mol} \cdot \mathrm{~K}}{28.97 \mathrm{~kg} / \mathrm{kg} \mathrm{~mol}}=287 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K}
\end{aligned}
$$

$$
\begin{aligned}
& m=\frac{p V}{R T}=\frac{\left(1.01 .32 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}\right)\left(1000 \times 10^{-6} \mathrm{~m}^{3}\right)}{(287 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K})(293 \mathrm{~K})} \\
& =1.205 \times 10^{-3} \mathrm{~kg}
\end{aligned}
$$

كاز انجام شده بر روى گكاز برابر همين مقدار ولى باعلامت منفى است يا

$$
W(\text { بر روى گاز })=-82.98 \mathrm{~J}
$$

$$
\begin{aligned}
& Q+W=\Delta U \\
& 290.6-82.48=\Delta U=207.6 \mathrm{~J} \quad(0.197 \mathrm{Btu})
\end{aligned}
$$

 مستقيماُ از زابطه زير محاسبه كنيم

$$
\begin{equation*}
\Delta U=m c_{v}\left(T_{2}-T_{1}\right) \tag{c}
\end{equation*}
$$

از جدول

$$
\Delta U=\left(1.205 \times 10^{-3} \mathrm{~kg}\right)\left(718 \mathrm{~J} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}\right)(260-20)=207.6 \mathrm{~J}
$$

كه منطبق با محاسبات قبل ما مى باشد. توجه كيد كه كا

 يك U

مثال -

كاز ايدهآلى كه از معادلل سالت مافي

 محاسبه كنيد.
حـــل : معادله (ץ

$$
\begin{equation*}
p=\frac{m R T}{V} \tag{a}
\end{equation*}
$$

$$
\begin{equation*}
W=-\int_{V_{1}}^{V_{2}} \frac{m R T}{V} d V \tag{b}
\end{equation*}
$$

هون T T ثابت است از معادله بالا نتيجه مىيتيريم

$$
\begin{equation*}
W=-m R T \ln \frac{V_{2}}{V_{1}} \tag{c}
\end{equation*}
$$

مجلدواُ جون دما ثابت است،

$$
\frac{V_{2}}{V_{1}}=\frac{p_{1}}{p_{2}}
$$

و لذا رابطه (c) را بهصورت زير داريم

$$
\begin{equation*}
W=-m R T \ln \frac{p_{1}}{p_{2}} \tag{d}
\end{equation*}
$$

حالن مى توانيم مقدار كار را برای هليوم مساسبه كنيـ. ثابت گًاز برابر است با

$$
R=\frac{\Re}{M}=\frac{8314 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~mol} \cdot \mathrm{~K}}{4 \mathrm{~kg} / \mathrm{kg} \cdot \mathrm{~mol}}=2078.5 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K}
$$

و يا مستقيماً از جدول Y Y به بدست مىى آيل

$$
W=-(2 \mathrm{~kg})(2078.5 \mathrm{~J} / \mathrm{kg} . \mathrm{K})(293 \mathrm{~K}) \ln \frac{1.0132 \times 10^{5}}{1 \times 10^{6}}=2.789 \mathrm{MJ}
$$

آگر ما، هليوم را بهعنوان سيستم توموديناميكى ذر نظر بگیريم: فانون اول ترموديناميكت حنين نوشته
مىشود

$$
Q+W=\Delta U
$$

تابعى تنها از دما =

اما بها كفته شده است كه :

بنابراين إگر تغير دمايیى نباشُد (نرآيند ايزوتر مال)، تغير انرزّى داخلى وجود ندارد بس • $\Delta U=$

$$
Q=-W=-2.789 \mathrm{MJ}
$$

مثال Y-9 حرارت دهى بهاطاق

افراد در يكت نر آ يند حجم ثابت حرارت بههواي اطاق مى انزايند. حجم اطاق برابر است با

$$
V_{i b i}=(30)(25)\left(63 W 5000 \mathrm{ft}^{3} \quad\left(169.9 \mathrm{~m}^{3}\right)\right.
$$

باكسر حجم الشغال شده توسط افراد از اين مقدار، حجم هوا بدست مى آيد.

$$
V_{i, ~}=6000-(20)(2.5)=5950 \mathrm{ft}^{3} \quad\left(168.5 \mathrm{~m}^{3}\right)
$$

 شروع شود؛ جرم هوا برابر است با

$$
m=\frac{p V}{R T}=\frac{(14.7)(144)(5950)}{(53.35)(530)}=445.4 \mathrm{lbm} \quad(202 \mathrm{~kg})
$$

$$
c_{\nu} \approx\left(\frac{\Delta u}{\Delta T}\right)
$$

$$
\begin{equation*}
\Delta U_{v}=m c_{v} \Delta T_{v} \tag{a}
\end{equation*}
$$

تغير در انوزى داخخلى هوا براببر با حوارت افزوده شده توسط افزاد مى.

$$
\begin{equation*}
Q+W=\Delta U \tag{b}
\end{equation*}
$$

اعمال نعىشود. بنابراين :

$$
\Delta U=(20)(450)=9000 \mathrm{Btu} / \mathrm{h} \quad(2637 \mathrm{~W})
$$

يا برإى مدت زمان ها دقبقه

$$
\Delta U=\frac{15}{60}(9000)=2250 \mathrm{Btu} \quad(2133 \mathrm{~kJ})
$$

$$
\Delta T=\frac{\Delta U}{m c_{\nu}}=\frac{2250}{(445.4)(0.1715)}=29.46^{\circ} \mathrm{F} \quad\left(16.37^{\circ} \mathrm{C}\right)
$$

اين مسأله لزو تهويه مناسب را موتعى كه افراد زيادى در يكت نفهاى كو جكب ترار دارنل، نشان مىدهل.

 غير 6 موازنه انرزى بهعمل Tملـ در اين با ياداورى ميكنيمكه نقط سيستمهاي بـسته (كه درآنها برم از
 طور عمومىترى مدنظر ترار دهيه. روابط تـعليلى كه در اينبا بهدست مى آيل براى هـر دو مـورد

سيستمهاي بستك (كه در اين نصل بررسى شد) و سيستمهاى باز (كه در فصل جهارم دربارة آن بحث خواهد شد، كار بُرد دارد. ابتدا اصططلاحاتى راكه در مورد فر آيندهاى خاصّى بهكار مىرود بهطور خلاصه بيان مىىنيم.

$$
\begin{aligned}
& \text { ا- دماي ثابت يا/يزوترمال } \\
& \text { - r }
\end{aligned}
$$

' ح ت r
 فر آيند يلىترويِيك فر آيندى است كه رابطه زير درمورد آن صادق باشد.

$$
\begin{equation*}
p v^{n}=\text { ثابت = C } \tag{-}
\end{equation*}
$$

1. Isochoric

$$
\begin{equation*}
\ln p=-n \ln v+\ln C \tag{-}
\end{equation*}
$$

$$
\begin{equation*}
p v^{\prime}=R T \tag{Y_r१}
\end{equation*}
$$

 در بالا را با استفاده از مقادير زير برایى nمى توان با رابطه پُلى تروييكت نشـان داد.

$$
\begin{array}{ll}
T=\text { const. } & n=1.0 \\
p=\text { const. } & n=0 \\
v=\text { const. } & n= \pm \infty \\
Q=0 & n=\gamma=\frac{c_{p}}{c_{v}}
\end{array}
$$

 $n=\gamma$ حالت آدياباتيكت را بررسى نكر دوا مى باشُد. معادله (Y- MF) را مىتوان بين دو حالت ابتدايى و انتهايى بهصورت زير نوشت :

$$
\begin{equation*}
p_{1} v_{1}^{\prime \prime}=p_{2} v_{2}^{\prime \prime}=C \tag{Y-rV}
\end{equation*}
$$

 ثبارت برایى حالت انتهايـى در يكـ فرآيند يلى تروييك مى توان بهدست آورد :

$$
\begin{align*}
& \frac{v_{2}}{v_{1}}=\left(\frac{p_{1}}{p_{2}}\right)^{1 / n} \tag{Y_r^}\\
& \frac{T_{2}}{T_{1}}=\left(\frac{p_{2}}{p_{1}}\right)^{(n-1) / n} \tag{-}\\
& \frac{T_{2}}{T_{1}}=\left(\frac{v_{1}}{v_{2}}\right)^{n-1} \tag{-}
\end{align*}
$$

ترمود يناميك

حال ممكن است كه حالت عمومي كار تراكمى گاز ايدهآل را در يكك مجنوعه سيلندر -
بيستون مورد بررسى تراز دهيم .كار عبارث است از :

$$
\begin{equation*}
W=-\int \rho d v \tag{-}
\end{equation*}
$$

با جايگز ينى زابطه جُلـ تر وبِكت براى

$$
\begin{align*}
& W=-\int_{\nu_{1}}^{\nu_{2}} C v^{-n} d v=C\left(\frac{v^{1-n}}{n-1}\right)_{v_{1}}^{\nu_{2}} \tag{Y,FY}\\
& \text { ایّا }
\end{align*}
$$

$$
\begin{equation*}
W=\frac{p_{2} v_{2}-p_{1} v_{1}}{n-1} \tag{-}
\end{equation*}
$$

اين رابطه را با توجه بهمعادله (Y.Y Y) ميتوان جنين نوشت :

$$
\begin{equation*}
W=R \frac{\left(T_{2}-T_{1}\right)}{n-1} \tag{Y-FF}
\end{equation*}
$$

براي مورد خاصّ يكت فر آيند دماى ثابت، $n=1$ ومعادلات (Y_FF) (Y-FY) غير تابل محاسبه

$$
\begin{aligned}
& W=-\int_{v_{1}}^{v_{2}} C v^{-1} d v=C \ln \frac{v_{1}}{v_{2}} \\
& p v=C=R T
\end{aligned}
$$

برايى دماى ثابت

$$
W=p_{I} V_{i} \ln \frac{v_{1}}{v_{2}}=R T \ln \frac{v_{1}}{v_{2}}
$$

مـجددأ، جون دما ثابت است

$$
\begin{equation*}
W=R T \ln \frac{p_{2}}{p_{I}} \tag{Y-FY}
\end{equation*}
$$

1

همانطور كه قبلا'اشار هكرديم، اينكت فرآيند شبه ـاكن (نيمه ساكن) - آدياباتيكت براى يكي

 اشاره مىشود. بعدأ عمبعنين از عبارت بركشـت بذير براى تشريح حنين فرآ يندى استفاده خواهيم كرد. برايى فر آيند آدياباتبكث باكار تراكمى d^{\prime} برایى واحد جرم داريم: $W=-p d v=$

$$
\begin{equation*}
d^{\prime} Q=0=d u+p d v \tag{Y-FV}
\end{equation*}
$$

و برایى گاز ايدهاTل

$$
d u=c_{v} d T
$$

$$
\begin{equation*}
0=c_{\nu} d T+p d v \tag{لنا}
\end{equation*}
$$

$$
\begin{equation*}
c_{v} d T=-p d v \tag{Y-FA}
\end{equation*}
$$

همجنين از•تعريف انتالِى و استفاده از معادله (Y - PV)

$$
d h=c_{p} d T=d u+p d v+v d p
$$

$: 13: d u+p d v=\cdot 6 \mid$

$$
\begin{equation*}
c_{p} d T=v d p \tag{Y_fq}
\end{equation*}
$$

$$
\frac{c_{p}}{c_{\nu}}=-\frac{v}{p} \frac{d p}{d v}
$$

$$
\frac{d p}{p}+\frac{c_{p}}{c_{v}} \frac{d v}{v}=0
$$

حلّ معادله (• ه -

$$
p v^{\gamma}=\text { const }
$$

كه $\gamma=c_{p} / c_{v}$ در قصلهاى آينده روشن خواهد شد. در سال حاضر آن را بهصورت ساده، مقدار نماى بلىتروييكت
 نمايش داده شـده است.
ثابست گاز را ممكن است برحسب نماى آدياباتيكت بهصور تهاى زير بيان نـود :

$$
\begin{align*}
& R=c_{p}-c_{v}=(\gamma-1) c_{\nu} \\
& R=\frac{\gamma-1}{\gamma} c_{p}
\end{align*}
$$

كار لازم برای تراكم يكت گًاز ايدههآل در يكت سيلندر را بهطور شبه ساكن و آدياباتيكت را مىتوان

كار تراكمى در يكت سيلندر كه در هاراگرانهاى قبل توضيح داده شدر، كار در يكت سيستم بسته

 است جهت حركت توربين و توليد كار مفيد استفاده گردد. بالعكس از يكت مجموعه كمبرسور رفت و

 توضيح فر آيند شبه ساكن آدياباتيك در هر دو نوع سيستم بهكار برد.

تراكم و انبساط

اگرجه عبارات مورد استفاده ممكن اسست واضح باشد ولى معنى كلمات تراكم و انبساط را

 غير جريانى و همين طور براى حالات مختلف عكسالعمل داخلى بين كاز و حرارت بهكار خواهيمب برد.

مثال • - Y كار در يك سيكل

مقدار 1 نيتروزن يكت سرى فرآيندهاى شبه ساكن زا در يكت مجهوعه سيلندر - يستون
متحمل مىشود كه عبارتند از :

(r (r
r) تراكمى حجم - ثابت كه بهحالت اوليه برمىتردد.
 فرآيندها را محاسبه نهايدي.

حـــل : نيتروزن را بهعنوان سيستم ترموديناميكى انتخاب مىكينم. فرآيندهاى مورد نظر در شكل همراه نمايش داده شده است . داريم

$$
\begin{aligned}
& p_{l}=5 \mathrm{~atm}=5.066 \times 10^{5} \mathrm{~Pa} \\
& T_{I}=150^{\circ} \mathrm{C}=423 \mathrm{~K} \\
& m=1 \mathrm{~g}=10^{-3} \mathrm{~kg}
\end{aligned}
$$

ثابت گاز براى نيتروزن عبارت است از

$$
R=\frac{\Re}{M}=\frac{8314}{28}=297 \mathrm{~J} / \mathrm{kg} . \mathrm{K}
$$

با مستقيمأ از جدول Y Y Y بهدست مى آيد و حجم اوليه بهصورت زير محاسبه مىشود :

$$
V_{I}=\frac{m R T_{I}}{p_{1}}=\frac{(0.001)(297)(423)}{5.066 \times 10^{5}}=2.48 \times 10^{-4} \mathrm{~m}^{3}
$$

همجنين

$$
p_{2}=p_{1}\left(\frac{V_{1}}{V_{2}}\right)^{\gamma}=\left(5.066 \times 10^{5}\right)\left(\frac{1}{2}\right)^{1.4}=1.92 \times 10^{5} \mathrm{~Pa}
$$

$$
\text { T - } 1 \text { • مكل مثال }
$$

$$
\begin{aligned}
W_{l-2} & =\frac{p_{2} V_{2}-p_{1} V_{1}}{\gamma-1}=\frac{[(1.92)(4.96)-(5.066)(2.48)](10)}{1.4-1} \\
& =-76.05 \mathrm{~J}
\end{aligned}
$$

$$
\begin{aligned}
& \text { فثار در فر آيند Y Y Y ثابات بو ده و كار از رابطه زير بهدست مى آيد : } \\
& W_{2-3}=-\int_{V_{2}}^{V_{3}} p d V=-p_{2}\left(V_{3}-V_{2}\right) \\
& =-\left(1.92 \times 10^{5}\right)(2.48-4.96)\left(10^{-4}\right)=47.62 \mathrm{~J}
\end{aligned}
$$

 است از :

$$
\begin{aligned}
W & =W_{1-2}+W_{2-3}+W_{3-1} \\
& =-76.05+47.62+0=-28.43 \mathrm{~J}
\end{aligned}
$$

علامت منفى نشان مىدهـ كه سيكل مورد نظر توليدكار مىكند. مداسبأت ديعگرى را مىتوان انحجام داد كه نشان دهنده نكـه مهمى مى باثـد. با تو جه بهـعادله
 حال اين حرار تها را محاسبه مىكيم. دماهاى مورد نظر عبارت است از :

$$
\begin{aligned}
& T_{2}=T_{1}\left(\frac{V_{1}}{V_{2}}\right)^{\gamma-1}=(423)\left(\frac{1}{2}\right)^{0.4}=320.6 \mathrm{~K} \\
& T_{3}=T_{2} \frac{V_{3}}{V_{2}}=(320.6)\left(\frac{1}{2}\right)=160.3 \mathrm{~K}
\end{aligned}
$$

گر ماهاى ويثُه برای نيترورُن از جدول Y Y Y Yبارت است از

$$
\begin{aligned}
& c_{v}=0.177 \mathrm{Btu} / \mathrm{bm} .{ }^{\circ} \mathrm{F}=741.1 \mathrm{~J} . \mathrm{kg} .{ }^{\circ} \mathrm{C} \\
& c_{p}=0.248 \mathrm{Btu} / \mathrm{lbm} .{ }^{\circ} \mathrm{F}=1038.3 \mathrm{~J} . \mathrm{kg} .{ }^{\circ} \mathrm{C}
\end{aligned}
$$

$$
\begin{aligned}
Q_{2.3} & =m c_{p}\left(T_{3}-T_{2}\right) \\
& =(0.001 \mathrm{~kg})\left(1038.3 \mathrm{~J} / \mathrm{kg} .{ }^{\circ} \mathrm{C}\right)(160.3-320.6)=-166.4 \mathrm{~J}
\end{aligned}
$$

فر آيند 1-r حجم ثابت است و حرارت اضافه شده برابر است با

$$
\begin{aligned}
Q_{3-1} & =m c_{\nu}\left(T_{1}-T_{3}\right) \\
& =(0.001)(741.1)(423-160.3)=194.8 \mathrm{~J}
\end{aligned}
$$

بنابراين حرارت افزو وده شده بهسبكل براير است با

$$
\begin{aligned}
Q & =Q_{1-2}+Q_{2 \cdot 3}+Q_{3-1} \\
& =0-166.4+194.8=28.4 \mathrm{~J}
\end{aligned}
$$

و البته اين مقدار برابر باكار افزوده شده بهسيستم باعلامت منفى است.

مثال | | Y تخليه از يك مخزن

بخز بی بهحجم
 يابد . جرم هوالى خارج شده مخزن را بحاسبه كنيد. سيستم در شكل مشتخّص شده است.

$$
\begin{equation*}
\Delta m=m_{1}-m_{2}=\frac{p_{1} V_{1}}{R T_{1}}-\frac{p_{2} V_{2}}{R T_{2}} \tag{a}
\end{equation*}
$$

 اگر كسى مرز سيستم را سطع داخلى يخزن در نظر گير ده سيستم بسته نيست يعنى جرم از

 ، $T_{I}=$ Y $\Delta \cdot+$ YVY $=\Delta$ YrK

$$
\begin{equation*}
m_{l}=\frac{p_{l} V}{R T_{l}}=\frac{\left(7 \times 10^{6}\right)(0.5)}{(287.1)(523)}=23.31 \mathrm{~kg} \tag{b}
\end{equation*}
$$

براى محاسبهٔ جرم نهايمى بايد دماى نهايى دالخل مخزن را تعيين كنيم • جـرم مـذكور يكك نر آيـند آدياباتيكت را طى مىكند (زيرا مخزن عايق شده است) و هوون ائرى از اصطكاكك هم وجود ندارد، فرآيند را شبه ساكن هم مىتوان تصّور نمود. بنابراين برايى محاسبه دماى نهايى مى توانيم معادله (Y (Y -

$$
\frac{T_{2}}{T_{1}}=\left(\frac{p_{2}}{p_{1}}\right)^{(\gamma-1) / \gamma}
$$

, $\gamma=1 / F /$ براي هو

$$
\begin{equation*}
T_{2}=(523)\left(\frac{0.4}{7.0}\right)^{(1.4-1) / .4}=230.7 \mathrm{~K} \tag{c}
\end{equation*}
$$

حال جرم نهايى بهصورت زير محاسبه مىترحدد.

, Q=0

سيستم بدون اصطكانك بست ثـامل شواى بالميانده در مشخزن

$$
\begin{equation*}
m_{2}=\frac{p_{2} V}{R T_{2}}=\frac{\left(4 \times 10^{5}\right)(0.5)}{(287.1)(230.7)}=3.02 \tag{d}
\end{equation*}
$$

و جرم هو'ى خارج شده برابر است با

$$
\Delta m=m_{1} \dot{-} m_{2}=23.31-3.02=20.29 \mathrm{~kg}
$$

 مى مباشد. سيلندر در يكت شخزن بزرگّك بهحجم
 مجموعه بهتعادل مىرسل، محاسبه كنيد.

حـــل : سيستم در شكل همراه نشان داده شده استت. با مرز سيستم را سطع داخلى يخزن بزرگّك انتخاب مى كنيم و بنابراين به بخاطراين كه مخزن عايق است $Q=0$
W=0 زير| مرز حركت نمىكند

تانون اوّل ترموديناميكت بهصورت زير در مى آيد:

$$
\begin{equation*}
Q+W=0=\Delta U=m\left(u_{2}-u_{2}\right) \tag{a}
\end{equation*}
$$

امّا هليوم يكث كاز ايدهآل است، بنابراين انرزىى داخلى تنها تابع دما است و در نتيجه

$$
T_{2}=T_{1}
$$

و نيز
$m R=\frac{p_{1} V_{1}}{T_{1}}=\frac{p_{2} V_{2}}{T_{2}}$

$$
\begin{aligned}
& p_{2}=p_{1} \frac{V_{1}}{V_{2}}={ }^{(20)}\left(\frac{15}{1500}\right)=0.2 \mathrm{~atm} \\
& \text { تذكر : در صورتى كه هاده محتوى سيلندر، گاز ايدهآل نباشد (نظير آب يُر نشار)، } \\
& \text { زيرالانزرُى داخلى بستىى بهحجم نيز دارد، يعنى }
\end{aligned}
$$

خـلاصه

اين نصل كمكت بهتعميم قانون اوّل ترموديناميك بهع بونوان اصل بقاى انزرّى است .كار بـ به

كرديم كه:

دماها محاسبه شود، با

$$
\begin{aligned}
& \Delta u=c_{\nu} \Delta T \\
& \Delta h=c_{p} \Delta T
\end{aligned}
$$

خود آزمايی (سؤالات مرورى)

كار	-1
كار انباطى جيست	-r
/نرڭى	- r
	- ${ }^{-1}$
	- 0
خرا حرارت باكار تفاوت دارد؟	- 7
	-V
	- ${ }^{\wedge}$
فرآيند سيكلى (جرخهاى)	-9
انتالِى جيـت؟	-1.

قانون اوّل ترموديناميكد را جگگونه برای يكت شخص عامى تشريح مىكنيد؟ - 11 ت - IT
انر - IT - If خراكار خاصيّت يكت سيستم نيست؟ - 17 (17 گا - IV
 19 19 - رابطه بين خواص ترموديناميكى در يكت فرآيند آدياباتيكت شبه ساكن برایى يكث گًاز ايدهآل جیگونه است؟

$$
\begin{aligned}
& \text { - - . } \\
& \text { فرآيند پُلمى ترويكت جيست }
\end{aligned}
$$

Y Y دهيد كه خرا بقادير داده شده بهطور مــاوى برايى واحد kJ/kg.K منانسب مىباشد.

Y - IF

 ايدهه آل در يكت فر آيند فشار ثابت استغاده كرد؟

مسائل (آحاد انتليسى)

 واحدهاى Btu محاسبه كنيد.

 r .

 براى اين فرايند را محاسبه كنيد.

 داده شده را محاسبه كنيد.

 ثابت داشته باشد، حرارت افز وده شده را محاسبه نماييد.

 نيتروزن در عايق است. شيرى در كنار مـخزن باز مىشود و نيتروزٔن تا زمانى كه فئـار مـخزن بـه
 مىگگردد محاسبه كنيد.

 خواهد رسيد مساسبه نمايِد.
r_ll - / |VIA ترض . است ، مقدار كار و انتقال حرارت را مـحاسبه كنيد Btu/4bm. ${ }^{\circ}$ م Yـ Y Y بههوا داده مىشود بهطورى كه در زشار ثابت منــطط شده تا زمانى كه حجهـش دو برابر گردد. تغيِر در انرزى داخلى هوا و مقدار حوارت افز وده شده را شحاسبه كنيد .
 مى،اشثد. سيلندر در داخل يكث اطاق خلأُ عايق شده بهحجم مناسبى سيلندر كوجكت تادر به تخليه ستويّات خود در اططاق است . فثـار نهايى نيترورُن را در اطاق مو تعى كه شرايط تعادل برترار مىشود مساسبه كنيد.

حسب واححدهاى cal, J, Btu جيست ؟ Y- 10 مى مارد. تغير در انتاليى سيستّمرا موتعىك، Atu . . Btu حرارت افزوده شـده و سيستم كارى معادل Y Y . . Btu توليــد مىكند، يـهاسبه كنيد.
 مى ماشد. تغير در انرزى داشلى فنر را موتعى كه Y in متراكم شده شحاسبه كنيل. از انتقال حرارت صرف نظر كنيد.
 مىشود . با فرض رفتار گًاز ايدهآل (pV=mRT) ، كار انجام شده بر روى سطع يِستون را بهازاي هر پوند نيتروزُن مساسبه كنيد. فرض كنيد كه فشار و حجم توسط رابطه p $p^{n}=$ const.
 جهت اين عمل سر مايش ؛ Y hp / ا كار الككريكى بايد بهواحد مذكور منتقل شود. جقدر حرارت به مسحط بس داده مىشود ؟ نرخ سو خت مصرفى اتو مبيلى كه با سرعت برابر است با موتور و مكانيزم حركت بهصورت كار بهجاده منتقل مىشود و بقيه بهصورت حرارت تلف مىتَردد. از نفطه نظر انرزى، نيروى كل مقاوم حركت اتومبيل را مهاسبه كنيل. فرض كنيد كه همان اتومبيل با وزن و با همان سرعت از يكت مر بالايى كه نسبت بهسطع افقى ها درجه شيب دارد بالا مىزود. مصرن سوخت اتومبيل تعت اين شرايط جقلدر خواهلد بود؟

 F. . . kcal/day نو تى (جندين مرتبه در روز) انجام دمد. غذاي مصرفى نعلى او مفدار

بيّنـهادى داريد؟
 . $\cdot Q_{3}=-\Delta \mathrm{Btu}, Q_{2}=+r \cdot \mathrm{Btu} ، Q_{1}=+1 \cdot \mathrm{Btu}$
 كار خالص سخروجى سيكل جقدر است؟
 تغير در انتاليى و مقدار انتقال سحرارت را محاسبه كنيد.
 نـبار تا 2 atm جقدر حرارت بايد بهظرن داده شود؟
號 ${ }^{\circ} \mathrm{F}$

$$
\begin{aligned}
& \text { (الفـ) هيدروزن اكسيزّن }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (ج) (و) نيتروزن ار (ج }
\end{aligned}
$$

 ترار گرفنت در معرض تابش خورشيلى، حجم بالون تا مىماند. حرارت انزوده شده را بساسبه كنيد. Y_Y Y ك
 مساسبه انتقال حرازت با در نظر گرفن. گرماى ويزه ثابت، استفاده شود. اگر از اين روش استفاده شود ميزان خطا چقلدر خخاهد بود؟
بـخار آب در فشار ثابت Y-YV در اين محدودهاز معادله حالت گاز ايدهآل بيروى كند، مقلار انتقال حرارت را با باستفادهاز داده هأى جدول Y_ Y بحاسبه نماسِد.

در يكك روش كاربرد انرزیى خارجى از يكت كُلكتور (جمع كتنده) خورشيدى بهابعاد ه د $\times \Delta \mathrm{mi}$

 خورشيدى در حدود Y Y درصد است. يعنى فقط Y Y درصد از انرزّى خورشيدى وارده
 Y Y Y ا توان الكتريكى خروجى دستگاه مذكور را حدس بز نيد. يكك ظرف صُلمى را بهحجم
 مسلود و از منيع حرارت جدا مىكنيم و صبر مىكنيم تا دماى اطات، V. ${ }^{\text {م }}$ مرد شود. جقلدر هحرارت در طى فو آبند سرمايش از دست رفته است؟ يكت گروه طرفلار حفظ منابع انرزى ادّعا مىكند كه مىتوان با استفاده از سيستدهـاى
 تبديل انر زُى الكتريكى به نور مرئى نقط ها درصد مفيد استى و و ه 9 در
 ساختمانهاى ملرن اين حرارت يخش شـله بايد بهوسيله سيستم تهويه مطبوع خارج گردد
 سرمايش مورد احتياج است. اگر Y Y . . وات نور نئون در يكت ساختمان بهفلورسنت تبديل شود، در ميزان انرزّى مصرفى جقلدر كاهش مى يابد؟

$$
c_{p}=\frac{\int_{T_{1} c_{p}}^{T_{2}} d T}{T_{2}-T_{1}}
$$

عدد داده شده در جدول Y- Y مقايسه بىشود ؟
Y_ YY
 درصد هوا نيترورُن است)، صحت اين فرض را ارزيابى نماسِد.

مسائل (آحاد متريك)
 مسافت 1 cm حركت كند، كار انجام شده را محاسبه كنيد.
 از آن عبور مىكند. انرزى تلف شده در r دقيقه را محاسبه نمايسد .

 Y MPa Y- FM (Y . . ${ }^{\circ} \mathrm{C}$ C مـتويات مخزن خارج گردد. سِس شير بسته مى شُود. نشار نهايى مخزن را مساسبه كنيد.
 متراكم مىشود. با فرض اين كه فر آيند بُلمى ترويكك باشد، مقدار حرارت اضـافه شده بهازاى هر كيلوگرم هوا را محاسبه كنيد.
 متراككم شده، محاسبه V/ F / Cm Cm N كنيد. از انتقال حرارت حرف نظر كنيد.
 Y_VM بافرض رفتار گاز ايلههآل (pV=m RT)، كار انجامشده بر روى سطع يستون رابهازاى pl $V^{n}=$ هر يوند نيتروزن محاسبه كنيد. نـرض كنيد كه فشار و سجم توسط رابطه، ثابت

م Y - AM
 بهصورت كاز ايدهآل با افز وده شده را محاسبه كنيد.

مخزن r- YM بهمخزن دو مى با همان اندازه كه بهطور كامل تخليه شده است، متصل مىباشد. شير متصل بهم مخازن باز شده و زمانى كه نشار در مخزن اول به atm • ا مىرسلـ، بسته مىشود. هر دو مخزن كاملا' عايت مىباشد. دماى نهايى را در مشزنىى كه در ابتـدا تخليـه شـــده الست، مـحاسبـه كيـد.

 انرزّى داخلى سيستم را در مدت زمان Y دقيقه مـحاسبه كنيد.
 است. در حين فرآيند شارزُ كردن، باطرى kJ

r_ Y YM

 . Y . kJ/kg

 حرارت در نشار ثابت اضانه مىگردد تا حجم دو برابر گردد. حرارت اضانه شده بهازاى واحد وزن را محاسبه كيـد.

 خارج شده از مخزز زا محاسبه كنيد.

 مى گيرد. سيلندر با وسايل مناسبى قادر بهتخليه محتويات خـود در اطـاق است. بس از برقرارى تعادل، فشار نهايى نيتروزن را در اطاق محاسبه نمايِد.
يكث دستگاه تهويه مطبوع برأى خارج كردن Y Y Y IVM عمل سرمايش W W . . W كار الكتريكى بايد بهواسلد مذكوز منتقل شود. جقدر حرارت بهمحيط بس داده مىشود ؟
M- |AM (Δ km/liter مكانيزم حركت بهجاده داده شده و بقيه بهصورت حرارت در خود اتومبيل تلف مییَردد. از نقطه نظر انرزّى، نيروى كل مقاوم حركت اتومبيل , ال محاسبه كنيل. فرض كنيد كه عمان أتومبيل با وزن Y Y ... kg با عمان سرعت از يكت سربالايىى با شيب ه درجه بالا رود، مصرف
سو خت اتومبيل تحت اين شرايط حقدر خواهد بود؟
 مصرفى خود بهوسيله ورزش كم كند. او قصل دارد اين كار را با بالا رفتن از يكت بله كان

بيشنهادى دار يد؟

ظ_Y.M M

 سرد شود. جقدر حرارت در طى فرآيند سرمايش از دست رفته است؟
(Y_Y M M

 ساختمانهاي مدرن بايل اين حرارت بخش شـده بهو بيله سيستم هاى تهويه مطبوع خارج گردد، كه خود انرزیى بيشترى لازم دارد. در حدود kW | انرزَى الكـريكى برایى ايجاد ا ا سرمايش مورد احتياج است. اگر MJ/h بهفلوزسنت تبديل شود، انرزى مصرفى هقلدر كاهش خو امد يانت ?
 برای اولين فرآيند $\cdot Q_{3}=-\Delta \mathrm{kJ} \cdot Q_{2}=+r \cdot \mathrm{~kJ}$ سومين فرآيند . $\Delta E=-$ Yار در فر آيند دوم و كار خالص خروجـى سيكل جقدر است؟
M. Y MM

 بعداُ مدكن است با يكت سيستم يسحيله ميكروويو بهزمين انتقال داده شود. بازده بيلولهاتى

 مسأله Y Y ا توان الكتريكى خروج - ن / / kg Y_ Y\&M n=1/Y7 متراكم مىشود. مُرايط ابتدايى kPa فشار نهايى kPa ه ه ه است. مقدار سرارت منتقل شده در حين اين فر آيند را مـحاسبه كنيد.
 متراكم مىشود. با فرض اين كه فرآيند بلى ترويبكت باشلد، حرأرت اضانه شــده بـههر كيلوگرم هوا را محاسبه كنيد.

F F-Y M M عقربههاى ساعت يا خلال T T نشان مطابت نمودار م اده شده طـى نمـايد. در
 (W_{1-2} ($\mathrm{CW}=-\mathrm{F}$ (kJ , حـرارت در جهـت عقـربـههـاى سـاعت و خـلالـ آن يكسـان بـوده و بـرابـر است بــا حر كت در جهت خالان عقر به هاى CCW$) \cdot\left(Q_{2-1}\right)_{\mathrm{CW}}=\left(Q_{2-1}\right)_{\mathrm{CCW}}=-\Delta \Delta \mathrm{kJ}$ ساعت را نشان مىدهد). با در نظر گرغتن مسير ! به Y در جههت خلانت عقربههاى ساعت، مشتخّص شده كه

شكل مسأله M M

Y YVM اعمال شود و اتلان حرار تى مخزن hp Y Y Y YM بهمعیط بس بدهد، كه ΔT اختلاف دما بين مـخزن و q نرخ انتقال حرارت است. با فرض
 آب را سحاسبه كينـ. ستس دماى آب را بعد از 1Δ د ديقه مساسبه كنيد. هـوادر يكت سيلنــدر از Y Y Y Y M با فرض اين كه فزآيند بر طبـق رابطـه، ثابت = / / V / A kJ/kg. ${ }^{\circ} \mathrm{C}$
 مى شود. حرارت بههوا داده شده بهطورى كه در فنـار ثابت، حجمش تا با برابر انزايش

 (f/ m³ 3
 انز

 قدرت هند اسب بخار لازم است r-rهM میشود.كار لازم براى تراكم از هصحنين دماى نهايى را محاسبه نعايِيد.
 طبق رابطه P= $p=a+b V$ تغير مىكند. عبار تى برایى كار انجام شده بين نشار هاى
Po بهدست آوريد.

 تطر است. حرارت اضافه شده را هداسبه كنيد.

 محاسبه كنيد. جواب رابر حسب زون، ft-lbf و Btu بيان كنيد.
 قرار گرفته، مقدار V, kJ/kg انرزءى جهت بالا بردن دمايش بهمقدار

 توسط توربينهاى بزرگت استوار است. فرض كتيد كه سذّى در دسترس است و آب لز ارتفاع . . ا مترى سقوط مىكند. برايى kW kW انزڭى هه شدت جريانى از آب
لازم است؟

「.. W W Y_\& W M
 انززی، ثابت فنر جه مقدار بايد باشد؟
 ه هارج مى گردد. مقدار جرم هليوم خارج شده از مخزن را محاسبه كنيد. r.frM
 نسبت گُرماهاى ويزٔه Q / / باشد. همبحنين مقادير گرماهاى مخصوص را بر اساس جرم كل هـاسبه كنيد.

مرجعى راكه احساس مىكنيد مناسب است بردسى كنيد و در مورد هنين يشيُنهادى اظهار نظر نمايد.
r_f ΔM

 مىرسذ. نشار نهايى را محاسبه كنيد. r- F~M
 هر مخزن مساسبه كنيد.

 سيكل مساسبه كنيد.
r-fAM

 Fرّرمن جقدر بايد باشد
r_f9M

 حرارت را اسحاسبه كنيد.

 محاسبه كنيد. تراكم را در يكت سيستم بـتكّ در نظر بغيريد.

 معرض تابش خورشيدى حجم بالن تا • •هی ليتر افزايش يانته و فنـار ثابت مى ماند. حرارت انزوده شده را محاسبه كيند.
 .

 روش استفاده شود ميزان خطا جقدر خواهد بود؟

 كيلوگرمى را محاسبه كنيد.
 تغيير در انتاليى را محاسبه كنيد.
 حدو kPa

تا
(د) هليوم
(ه) اكــيرّن
(الف) هيدروزن
(و) (و)
(ب) نيتروزن
(ج) آرگون
Y Y_ • M گرماهاى ويزه ثابت فرض مىشود.فرض مىكنيم رفتار هوا نظير نيتروزن باشد (VA

هوا نيتروزن است) صست اين فرض را ارزيابى كنيد.

تغير در انرزى داخلى را محاسبه كنيل.

 میرود.كار منتقل شده به سطع يستون در همان زمان برابر kJ/kg . . ا مى باشد. مقدار

 داخلى رامحاسبه نمايـيل.

T Y_ Y F M

 در طى Tان YA KJ حرارت و مقدارى كار به سيستم انز وده شده است. مقدار كار در فرآيند

دوم را مداسبه كنيل.
Y- D M

/ $10 \mathrm{~m}^{3}$
سيستم مذكور هوا بود، هه جرمى از آن لازم مىباشد؟
kPa. ال / / kg Y_7 M M (1 . شده را محاسبه كنيد.

مـرا

1 Callen, H. B.: "Thermodynamies," John Wiley \& Sons, Inc., New York, 1960.
2 Hatsopoulos, G. N., and J. H. Keenan: "Principles of General Thermodynamics," John Wiley \& Sons, Inc., New York, 1965.
3 Reynolds, W. C.: "Thermodynamics," 2d ed., McGraw-Hill Book Company, New York, 1968.
4 Sears, F.W.:"Thermodynamics,"2d ed., Addison-Wesley Publishing Company, Inc., Reading,Mass., 1953.
5 Van Wylen, G. J., and R. E. Sonntag: "Fundamentals of Classical Thermodynamics," John Wiley \& Sons, Inc., New York, 1965.
6 Sweigert, R. L., and M. W. Beardsley: Bull. No 2, Georgia School of Technology, 1938.

TS

خواصّ ماكروسكىى موادّ خالص

F_1

خواحّ يكت ماده بستگى بهساختمان ملكولى آن دارد. تعداد فازه ها، ماهيت همگن و يا ناهمگن. ماده و انواع انرزّى مربوطه بهآن هـگیى در تعداد و انواع خواصمى كه براى تجزيه و تحليل لازم است

 بر زوى آنكار الكتر يكى ويا مغناطيسى صورت مىگیري، احتياج بهاطلاعاتى راجع بهخو اصّ الكتريكى و يا مغناطيسى T'
تعداد خواصّ لازم براى مشُخّص كردن حالت ماده بهروشنى بستگى به ماهيت عكس العملهاى داخلى انرزى" دارد. البته در يكت ماده تنها عكس العملهاى داخخلى حرارت وكار مى تو اند موجود باثـلـ.
 نظر بگيريد. يكت طريت انجام كار بر روى گاز متراكم كردن آن است. طريق ديگر اين است اسكه آن رادر

1- Binding energy
2- Energy interactions

معرض يكت پتأنسيل الكتر يكى قرار دهيم بهطورى كه كار الكتريكى انجام شمده باعـث حركت ذرات بازدار بشود. زوش ديگى انجام كار عبور دادنگاز زاز ميان يكت حوزه مغناطيسى و يا تغيّر دادن جهت

 بهدست آورد.

خواصّ متمركز وكستر ده

امساماً تعيين انرزّى حرازتى دأخلى يكت ماده (u) موزد نظر است. برایى هر نوع كار ممكنى
 ָتأنسيل معناطيسى) مربوط بها آن وجود دارد كه تابليت واحد جرم و يا واحد حجمى از سـستم را براى
 ـ تابليت هدايت وگشتاور مغناطيسى دو تطبى) موجود است كه مقدأر كل كار انجام شـده دز آن نوع ر ا تشريح مىكند. خاحيّت متمركز معرف نيرو و خاصيّت گسترده معرف تغيير مكان در هر نوع كارى است. انرزی داخلى تابعى از عكىى العملهاثى داخلى كار ممكن و عكى العمل داخلى

 يكت خاصيّت متمركز براى هر نوع كار و يكت خاصيّت متشركز جهت تشريح مقدار عكس العملهاكي

1- Magnetic dipole moment
2- Intensive property
3- Extensive proprety
F

داخلى حرارت لازم است. البته اين اصل بهسيـتههاى در حال تعادل كه منظور اصلى ماست، محدود مىشود. در ضمن لازم است كه اين خواصّ مستقل از يكديگر باشد.

اصل حالت

اين بحث مـتتمر، اصل سالت در نصل اول را بهطور ضمنى بيان مىكند، كه مىتوان آن رابه
صورت زير بيان كرد:

تهداد خواصّ مستقل لازم براى مشخّص كـردن حــالت ترعودينـاميكمى يك سـيستم بـرابـر بـا تـعداد انواع كار بعلاوه يك ممسباشد .

دربارةٔ ملاحظات ديگر هم كه بهاصل جالت مربوط مسشود كـلاين و كـوينگپ ' [1] و هاتسويلوس وكينان " [2] بحث كردهاند.
براى يكت ماده ساده نقط يكت نوع كار ممكن است. يكت گاز يونيزه نشده، بدون گششتاور مغناطيسى دوتطبى، يكت جنين مادهاى است، در اين حالت تنها يكى نوع كار بهصورت تغيير حجم وجود دارد6 بنابراين برايى مشخْصى كردن حالت گاز دو خاصيّت مستقل لازم است. هر دو خاصيّت از فشار، دما يا حجتم مخصوص اين كار را النجام مىدهل.
مادهاى كه همگن بوده و داراى تركيب شيميايى يكسانى در تمام فازها باشد، ماده خخالص ناميده مىشو د. آب يكت ماده خالص است زيرا تركيب شيميا يیى آن در تمام فاز هاى متفاوت (متّى براى
 مخلو ط را بهاندازهاى سر دكنيم كه چهند جز ثّى از آن بهصورت فاز مايع در آ يد، مخلوط را بهعلت يكسان نبودن تركيب شيميايى آن در تمام نازها، ديگر نمى توان بهصورت يكث ماده خالص در نظر گرفت. ماده خالص بهاخاطر اهميت زيادش در خيلى از كاربردهاى عـلى مورد توجه زياد است. منظور از اين نصل تثـريع خواص ترموديناميكى جند ماده ساده مشـخّص مىباشد. اطلاعات

1- Kline and Koenig
2- Hatsopoulos and Keenan

عددى مخصوص ارانه شلده در ضميمه براىى حلّ مسائل فصول بعدى مىتواند بهكار رود. خناصّ بهصورت كاملاُ تجربى در اين مرحله ارائه شده است، يعنى براساس اندازهگيريهاى حاصل از آزمايش. درباره مساسبه خو اصّ تر موديناميكى براساس ملاحظات ميكروسـكيى در فصل و 1 ب بحث خواهد شد.

مطالب مرورى

منظور از اصطلاحات زير هيست؟ انواع كار، خواصٍ متهركز وكــترده، اصل سالت،
ماده سـاده، ماده خْالصر .

خواصـ

 مىگيريم. اين ماده مدكن است در فازمهاى متفاوت ت موجود باشد.

- - يك فاز جامد خالص موسوم به يخ يك -
r-
يك - F
ه - - بكت مخلوط در حال تعادل فازهاي مايع و و جام 7 - يكت مخلوط در حال تعادل فازهاى جامد و و بخار

نواحى فازهاى مختلف برايى Tب در نمو دار فشار -دماي شككل 1- ب نشان داده مىشود.

ذوب ـ تبطير و تصعيد

هنگامىكه يكك جامد بهمايع تبديل مىشود، مىگوِيم كه نرآيند ذوب' انجام بـذيرنهه؛

 بهخط ذوب و شروع بهآب شدن ازدياد ميايبد. فرآيند آب شدن در دماى تابـ تابت تا زمانى كه تمام يخ
 مىگردد. حرارت اضافى بيشتر باعث تغيرمستمر مايع بهبخار شده و در فرآيند تبخير دما ثابت باقى

1- Vaporization
2-Sublimation

مى ماند. زمانى كه تمام مايع بهبشار تبديل شده حرارت اضافى بار ديگَر باعث ازد دياد دما مىشود. در نـــار
 شكل T- T در مىيابيم كه تغير فشار باعث تغير نقطه انحمهاد و نقطه تبخير مابع مىگردد. براى آب، ازد ياد فشار باعث بالا رفتن دماى تبخير و پايِن آمدن دماى انجمهاد مىشود. بايل تو جه داشت كه شكل
 زيادى لازم است تا دماى ذوب را بهمقدار تابل ملاحظهایى پايِن بياورد.
خطوط ذوب، تبخير و تصعيل بتر تيب معرف مخلوط جامد ـ مايع، مخلوط مايعـ بشار و مخلوط جامد ـبـخار است.
نقطه سـهاكنه ' حالتي است كه مخلو ط در حال تعادل سه فاز بتو اند برقرار باشد. نقطه بحرانـى ${ }^{\text { }}$ +لتى است كه فاز بخار خالص دارایى خوامّ مشابهى با فاز مايع خالص در همان فشار و دما باشد. نمىتوان تمايزى بين حالتهایى مايع و بخار در فشارها و دماهاى فوت بحرانى

بين مىرود.

 بنابراين مى توانگَت كه خط تبخير ناحيه اشباع بين مايع و بشار را معرفى مىكند. بخار حاضر در يكت هنين مخلوطى بهنام بخار اشباع و مايع حاضر در اين مخلو ط بهنام مايع اشـباع موسوم است.

 خيلى واضحتر مىبينـي. هر ناحيه وضعيتى را معرنى مىكند كه فشار و دما، در حالى كه تغير כابلل

1- Triple point
2- Critical point
3- Meniscus

 حاصل مىیشود.

كيفيت و رطوبت
 نسبتى از جرم است كه بهصورت فاز مايع وجود دارد. بهطور واضضح،

$$
\begin{equation*}
\text { = }=1-x \tag{r-1}
\end{equation*}
$$

وازه مخلوط تر بهطور وسيع براى مخلوطهاى مايع ـبخارى كه داراى كيفيت كمتر از . .

1- Quality
2- Moisture
 فازهاى جامل، مايع و بخار استفاده مىشود. بنابراين حجم مخصوص مايع اشُباع v و حجم مخصوص بخار اشباع داده مىشود.

$$
\begin{aligned}
v=\frac{V}{m} & =\frac{1}{m}\left(m_{f} v_{f}+m_{g} v_{g}\right) \\
& =\frac{m_{f}}{m} v_{f}+x v_{g} \\
& =(1-x) v_{f}+x v_{g}
\end{aligned}
$$

با ارائه تعريف:

شكل س-

مى توان رابطه زير را بهدست آورد
$v=v_{f}+x v_{f g}$
جندين: وازه مهم ديگر بهشرح زير تعريف مىشود :
 بهآن فشار موجود باشل. هايع مادون سرد درجه حرارت اشباع مربوط بهآن نشار باشد و يا فشارى بزرگتر از فشار اشباع مربوط بهآن دما داشته باشد. اين دو وازء با غم مترادف است.
يك سطع p-v-T سه بعدى برای ماده ایى مانند آب (كه با انجماد منبـط مى شود) در شكل
 داده مىشود. قبلاُكَته شد كه فتط دو خاصيّت مستقل براىى معرفى حالت يكت ماده خالص ساده مورد نياز است. كدام دو خاصيتت را بايد به كار برد؟ دما يكى از انتخابهاى منطقى است. واضع است كه نشـار نمى تواند اتتخاب ديگر باشد زير| نشار و دما هنگامى كه ماده در نوأحى اشباع باشلـ، مستقل از يكديگر

 در ناحيةّ تكت فاز دما و نشار مىتوانند بهعنوان خواصّ مستقل انتخابِ گردند.

خواصّ انزرى :

خواصّ انرزى مواد مورد نظر است. انرزى داخلى مخصوص u و انتاليى مـخصوص
 اين خواصّ را مىتوان بهصورت توابعى از دما و حجم مخصوص بيان كرد.

1- Superbeated
2- Subcooled liquid
3- Compressed liquid

ترمودينايك

شكل

$$
\begin{aligned}
& u=u(T, v) \\
& h=h(T, v)
\end{aligned}
$$

در ناحيه مخلوط تر، اين خواصّ مى تواند از طريت مشابه با آنحهه براى حجـم مخصـوص بهكار رفت محاسبه شود، يعنى :

$$
\begin{aligned}
& u=u_{f}+x u_{f g} \\
& h=h_{f}+x h_{f g}
\end{aligned}
$$

$$
\text { كه } h_{f g}=h_{g}-h_{f} g u_{f g}=u_{g}-u_{f} \text { بتيب انرزى داخلى و انتالیى تبخيرند. }
$$

خاصيّت ديگرى كه آنتروبي s ناميده مى شود در حلّ خيلى از مسائل علدى كاربرد دارده همانطورى كه در نصل ه خخواهيم ديد و دعمولأ همراه با انرزى داخلى و انتاليى در جداول اراثه
مى شود. در ناحيهُ تبخير دو فازى ـانتروبى نيز شكل مشخّصـة زير زا دارد

$$
s=s_{f}+x s_{f g}
$$

$$
\text { كه } s_{f g}=s_{g}-s_{f}^{\text {آنتريى تبشير مى باشد. }}
$$

خواصَ جندين ماده دز ضميمه جدولبندى شده است، كه جامع ترين آن مربوط بها آب و

 . . ${ }^{\circ} \mathrm{F}$

$$
\begin{aligned}
& v_{f}=0.016132 \mathrm{ft}^{3} / \mathrm{bm} \\
& h_{f}=67.97 \mathrm{Btu} / \mathrm{lbm} \\
& p_{\mathrm{sal}}=0.9492 \mathrm{psia}
\end{aligned}
$$

با مراجعه بهجدول A-1 1 تصسيسات براي اين مقادير راميتوان بهصورت زير بهدست آورد :

$$
\begin{aligned}
& \left(v-v_{f}\right) \times 10^{5}=-5.2 \\
& h-h_{f}=+2.64
\end{aligned}
$$

بهطورى كه خواصّ برای مايع متراكممشده دز psia 1 برابر است با

$$
\begin{aligned}
& v=0.016132-5.2 \times 10^{-5}=0.01608 \mathrm{ft}^{3} / \mathrm{lbm} \\
& h=67.97+2.64=70.61 \mathrm{Btu} / \mathrm{bm}
\end{aligned}
$$

در اكثر حالاتاستفاده از جدول A- | 1 براى مايع متراكم شده منامبـ نخو اهد بود و جدول (A- 1 ،

در اينجا متوجه میشويمكه خواص مايعات در درجه اول تابعى از دما است و كشار تأثيير كمىى بر آن دارد. هممان طور كه در محاسبات بعدى نشان داده شده است.

$$
\begin{aligned}
& \text { 1.. }{ }^{\circ} \mathrm{C}, \mathrm{~V} / \Delta \mathrm{MPa} \text { (الف) } \\
& \text { 个 } 7 .{ }^{\circ} \mathrm{C}, f \mathrm{MPa} \text { (ب) } \\
& \text { (ج) } \\
& \text { (د) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 1.. kPa (و) بخار اشباع دز }
\end{aligned}
$$

$$
\begin{aligned}
& v=1.0397 \times 10^{-3} \mathrm{~m} 3 / \mathrm{kg} \\
& h=424.62 \mathrm{~kJ} / \mathrm{kg} \\
& s=1.3011 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}
\end{aligned}
$$

(Y $\left.\Delta \cdot / F^{\circ} \mathrm{C}\right) \& \mathrm{MPa}$ بزرگتر است. بنابراين اين ناحيه داغ است و با مراجعه بهجدون A- 4M جنين بهدست مى آيد :

$$
v=0.06788 \mathrm{~m}^{3} / \mathrm{kg}
$$

$$
\begin{aligned}
& h=3117.2 \mathrm{~kJ} / \mathrm{kg} \\
& s=6.6215 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}
\end{aligned}
$$

(ج) كيفيت • 1 درجد بها مي گويد كه شرايط ناهيه اشباع در kPa • 1 ا است بنابراين با مراجعه به جدول A-^M (جدول نشار اشباع) بهدست مى آيد

$$
\begin{array}{ll}
v_{f}=1.0528 \times 10^{-3} & v_{g}=1.159 \mathrm{~m}^{3} / \mathrm{kg} \\
h_{f}=467.11 & h_{f g}=2226.5 \mathrm{~kJ} / \mathrm{kg} \\
\mathrm{~s}_{f}=1.4336 & \mathrm{~s}_{g}=7.2233 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}
\end{array}
$$

$$
\text { كيفيت } \text { / / = x= بهما داده شـده، بنابراين : }
$$

$$
v=v_{f}+x v_{f g}=1.0528 \times 10^{-3}+(0.1)\left(1.159-1.0528 \times 10^{-3}\right)
$$

$$
=0.11685 \mathrm{~m}^{3} / \mathrm{kg}
$$

$$
h=h_{f}+x h_{f g}=467.11+(0.1)(2226.5)=689.76 \mathrm{~kJ} / \mathrm{kg}
$$

$$
s=s_{f}+x s_{f g}=1.4336+(0.1)(7.2233-1.4336)=2.0126 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}
$$

(د) اين مـأله مشابه تسمت (ج) است. نقط توجه داريمكه
x

$$
x=1-0.1=0.9
$$

سِس با مراجعه بهجدول A-AM در kPa . . . مقادير زير تعين میگردد
$\nu=0.54533 \mathrm{~m}^{3} / \mathrm{kg}$
$h=2508.9 \mathrm{~kJ} / \mathrm{kg}$
$s=6.4599 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$
(ه، و) اين خواصّ مستقيمأ از جدول A-AM در kPa . . ا خوانده مىشود

مايع اشبار	بخار اشُباع
$v_{f}=1.0432 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{kg}$	$v_{g}=1.694 \mathrm{~m}^{3} / \mathrm{kg}$
$h_{f}=417.46 \mathrm{~kJ} / \mathrm{kg}$	$h_{g}=2675.5 \mathrm{~kJ} / \mathrm{kg}$
$s_{f}=1.3026 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$	$s_{g}=7.3594 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$

معادله حالت عبارتى تحليلى مىياشد كه خواصّ مواد را بهمم مربوط مىكيكد. رابطه اخذ شده در بخث

$$
\begin{equation*}
p v=R T \tag{-}
\end{equation*}
$$

 عمل براساس تراردادن يك منحنى بر روى نتايج حامل از آزمايش بهدست مى آيد. معمولأ رابطه
 خواصّ ترموديناميكى كه بهصورت جدول و يا يا منحنى اراثه شده، نظير آنجه در ضميميه

 بيشترى علاوه بر معادلات حالت مناسب برايى استفاده كاميونر بهو بيله رينولدز [5] داده شده است.

مثال rer

 (ا . . . psia

حــل : اين مسأله احتياج بهكازبرد قانون اول ترموديناميك بعلاوه اطلاعات مربوط بهخواصّ مواد هخالص دارد. هون ظرف صُلب اسـد، تغيبر حجمى در سيستم وجود ندارد و از اينرو كارى انجام نهىشود. بنابرانن تانون اول بهصورت زير در مى آيد :

$$
\begin{equation*}
Q=\Delta U=m \Delta u \tag{a}
\end{equation*}
$$

برأى محاسبه انرزى داخلى احتياج بهتعين حالت ترموديناميكى داريم. جون ما مخلوط مايع و بشار داريم، لنا نشار و دما بارامترهاى مستقلي تيستند. حجم مخصوص مخلوط برابر اسـت با :

$$
v \cdot=\frac{V}{m}=\frac{1}{30}=v .0333 \mathrm{ft}^{3} / \mathrm{lbm}
$$

اين ححجم بر طبت معادله (ץ-Y) بهصورت زير بيان مىشود :

$$
\begin{equation*}
v=v_{f}+x v_{f g} \tag{b}
\end{equation*}
$$

برإى سالت اببّدايى مشخّص شده با زيرنويس 1،

$$
v_{f 1}=0.01665 \quad v_{f g 1}=32.38 \mathrm{ft}^{3} / \mathrm{lbm} \quad(12 \mathrm{psia})
$$

كه خواصّ از جلدول نثـار ـاشباع براى بتخار آب داده شلده در جلول A-A بهدست مى آيل. با جايگزينى اين مقادير در معادله (b) مقدار كيفيت ابتلدايى بهدست مى آيل.

$$
x_{1}=0.000515
$$

$$
\begin{aligned}
u_{1} & =u_{f 1}+x_{1} u_{f_{81}} \\
& =169.92+(0.000515)(904.8) \\
& =170.38 \mathrm{Btu} / \mathrm{lbm}
\end{aligned}
$$

جون ظرن صلب است مقدار حجم مخصوص در حالت ابتدايى و نهايى ثابت باتى مى ماند. با الختصاص 2ادن زيرنويس 「 برایى حالت نهايی،

$$
v_{f 2}=0.0216 \quad v_{f 82}=0.4240 \mathrm{ft}^{3} / \mathrm{bm} \quad(1000 \mathrm{psia})
$$

دوبارهكيفيت از معادله (b) محاسبه مىشوده

$$
v_{2}=v_{1}=0.0333 \mathrm{ft}^{3} / \mathrm{bm}
$$

نتيجه برابر است با

$$
x_{2}=0.0292
$$

انرزّى داخل نهايى سسس بهصورت زير محأسبه مىشود.

$$
u_{2}=u_{f 2}+x_{2} u_{f g 2}
$$

$$
=538.4+(0.0292)(571)
$$

$$
=555.0 \mathrm{Btu} / \mathrm{bm} \quad\left(1.29 \times 10^{6} \mathrm{~J} / \mathrm{kg}\right)
$$

انتقال حرارت از معادله (a) بهصورت زير شحاسبه مى شود.

$$
Q=m\left(u_{2}-u_{1}\right)
$$

$$
=(30)(555.0-170.38)=11500 \mathrm{Btu} \quad\left(1.213 \times 10^{7} \mathrm{~J}\right)
$$

دازد．سيلندر با يكت يستون بهطريقى دزگير است كه نـأر را ثابت نگه مىدارد．محأسبه كنيد مقدار حراز تى كه بايد بهبشار اضافه گردد، تا ححجم بهمقدار حـــل ：ابتدا تانون اول تربودينابيك را براثى اين سيستم مىنويسيم：

$$
\begin{equation*}
Q+W=\Delta U \tag{a}
\end{equation*}
$$

كار انجام شده بر روى گاز جهت فر آيند فشار ثابت برابر است با

$$
\begin{align*}
W & =-\int_{V_{1}}^{V_{2}} p d V=-p\left(V_{2}-V_{1}\right) \tag{b}\\
& =-(100)(144)(2.0-0.5)=-21600 \mathrm{ft.lbf} \quad(-29285 \mathrm{~J})
\end{align*}
$$

 زاز رابطه زير بیىاثشد．

$$
\begin{aligned}
m & =\frac{V_{1}}{v_{1}} \\
v_{l} & =v_{f_{1}}+x_{l} v_{f g 1} \\
& =0.01774+(0.5)(4.434-0.01774)=2.226 \mathrm{ft}^{3} / \mathrm{lbm} \\
m & =\frac{0.5}{2.226}=0.225 \mathrm{lbm} \quad(0.1021 \mathrm{~kg})
\end{aligned}
$$

 نهايى برابر است با：

$$
v_{2}=\frac{V_{2}}{m}=\frac{2.0}{0.225}=8.889 \mathrm{ft}^{3} / \mathrm{lbm}
$$

فــار نهايى برابر با نــأر ابتـدايى يعنى psia ．．

 v＝人／人人9

$$
T_{2}=1038^{\circ} \mathrm{F}
$$

و انزرّى داخلى نهايى براير است با

$$
u_{2}=1387.7 \mathrm{Btu} / \mathrm{lbm}
$$

مقادير انرزى داخلى بهطريت زير بهدست مى آيد.

$$
\begin{aligned}
u_{1} & =u_{f 1}+x_{1} u_{f g 1}=298.3+(0.5)(1105.8-298.3) \\
& =702.05 \mathrm{Btu} / \mathrm{lbm}
\end{aligned}
$$

حالا با جايگزينى مقادير انرزيهاى داخلى و كار در معادله (a) مقدارحوارت اضانهشـده نعين مىگردد.

$$
\begin{aligned}
& Q-\frac{21600}{778}=m\left(u_{2}-u_{1}\right)=(0.225)(1387.7-702.05) \\
& Q=182 \mathrm{Btu} \quad(192 \mathrm{~kJ})
\end{aligned}
$$

「- F

مخزنى صُلب كه هر يالث
 مقدار حوارت اضـانه شـده را تعيين كنيد.

حـــل : برأى مخزن صلب تغير سجمى نيست و بنابراين كارى انجام نــمىگيرد. بيـان تـانون اول بهصورت زير در مى آيد :

$$
\begin{equation*}
Q=\Delta U=m \Delta u=m\left(u_{2}-u_{1}\right) \tag{a}
\end{equation*}
$$

$$
\begin{align*}
& \text { از آنجايى كه سیمم كلى V و جرم ثابت باقى مىماند، حیم مخصوص هم بايل ثابت باقى بماند. } \\
& v=\frac{V}{m}=v_{1}=v_{2} \tag{b}
\end{align*}
$$

$$
\begin{equation*}
v=v_{\rho}+x v_{\rho g} \tag{c}
\end{equation*}
$$

$$
\text { با مراجعه بهجل|ول اشباع در } 9 \text { داريم }
$$

$$
\begin{array}{ll}
v_{f 1}=1.036 \times 10^{-3} \quad \mathrm{~m}^{3} / \mathrm{kg} & v_{g 1}=2.361 \mathrm{~m}^{3} / \mathrm{kg} \\
u_{f 1}=376.85 \mathrm{~kJ} / \mathrm{kg} & u_{g 1}=2464.5 \mathrm{~kJ} / \mathrm{kg}
\end{array}
$$

(c) (c)

$$
\begin{equation*}
v_{1}=0.001036+(0.2)(2.361-0.001036)=0.473 \mathrm{~m}^{3} / \mathrm{kg} \tag{d}
\end{equation*}
$$

حال مى توانيم جرم را از معادله (b) و حعجم كلى داده شده محاسبه كنيم.

$$
\begin{equation*}
m=\frac{V}{v}=\frac{(0.5)^{3}}{0.473}=0.2643 \mathrm{~kg} \tag{e}
\end{equation*}
$$

$p=\Delta \cdots \mathrm{kPa}=\Delta$ bar $v_{2}=$ FVr m³/kg تعيين مى گردد. در بزرگُرىى از اين مقدار مى باشيم؛ بنابراين. حالت نهايى بايلد داغ باشد . با مراجعه بهجلول بـهار داغ در

$$
T_{2}=244.3^{\circ} \mathrm{C} \quad u_{2}=2721.4 \mathrm{~kJ} / \mathrm{kg}
$$

$$
\begin{aligned}
u_{1} & =u_{f 1}+x_{1} u_{f g 1} \\
& =376.85+(0.2)(2494.5-376.85) \\
& =800.38 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

سالا ما مقادير عددى را در معادله (a) جهت محاسبه انتقال حرارت جايگزين مىكنيم

ترموديناميك

$$
\begin{aligned}
Q & =(0.264 .3)(2721.4-800.38) \\
& =507.7 \mathrm{~kJ} \quad(481.3 \mathrm{Btu})
\end{aligned}
$$

 تقطير گ,

حــل : هون مخزن صُلب است، حجم يخصوص در هين زر آيند سرمايش ثابت باقى مىماند. هالت اوليه بخار دأُ است، بنابراين از جدول A-9M

$$
\begin{equation*}
y_{1}=0.2999 \mathrm{~m}^{3} / \mathrm{kg} \quad\left(4.804 \mathrm{ft}^{3} / \mathrm{lbm}\right) \tag{a}
\end{equation*}
$$

هنگًامى كه بخاز آب شروع بـتقطير مىكند، اين حجم مخصوص بخار اشباع خوامد بود

$$
\begin{equation*}
v_{1}=v_{2}=v_{82}=0.2999 \tag{b}
\end{equation*}
$$

با ميان يُبى كردن دز جدول A-VM. داريم

$$
\begin{align*}
& T_{2}=161.1^{\circ} \mathrm{C} \\
& p_{2}=636.9 \mathrm{kPa} \tag{92.4psia}
\end{align*}
$$

$$
\begin{equation*}
v_{3}=v_{1}=0.2999=v_{f 3}+(0.5) v_{f 83} \tag{c}
\end{equation*}
$$

اكثر حجم مربوط بـقـست بخار آب مى باشد بنابراين با تقريب خيلى نزديكت

$$
v_{3} \sim 0.5 v_{g 3}
$$

نصـل r ـ خواصّ ماكر وسكيى مواذ خالص

$$
v_{g 3}-0.5998
$$

$$
\begin{align*}
T_{3} & =134.3^{\circ} \mathrm{C} \\
p_{3} & =309.3 \mathrm{kPa} \tag{44.2psia}
\end{align*}
$$

M-7 عشال
يك كيـول كو جك بـدحجم

 نهايى يخلوط آب و بخار را محاسبه كنيد. همحنين حرارت مبادله شده با محيط را تعيين كنيد.

$$
\begin{equation*}
Q+W=\Delta U \tag{a}
\end{equation*}
$$

حون • W= استّ، بس

$$
\begin{equation*}
Q=\Delta U=m\left(u_{2}-u_{1}\right) \tag{b}
\end{equation*}
$$

 كي

$$
v_{1}=0.016082 \mathrm{ft}^{3} / \mathrm{bm}
$$

$$
\begin{aligned}
& u_{1}=67.70 \mathrm{Btu} / \mathrm{lbm} \\
& m=\frac{V_{1}}{v_{1}}=\frac{1.735 \times 10^{-4}}{1.608 \times 10^{-2}}=0.0108 \mathrm{lbm} \quad \text { جرم } \quad \text { بابـ برابر استـ با }
\end{aligned}
$$ بنابراين حجم سخصوص نهايى برابر است با

$$
v_{2}=\frac{V_{2}}{m}=\frac{1}{0.0108}=92.5 \mathrm{ft}^{3} / \mathrm{lbm}
$$

هالت نهايى با مراجعه بهجداول بخار آب با مقادير معلوم
 بدين ترتيب

$$
v_{2}=v_{f 2}+x_{2} v_{f 62}
$$

با به كاربردن مقادير خواص از جدول اشباع (جدول A-V) ،

$$
92.5=0.01613+x_{2}(350.0-0.01613)
$$

$$
x_{2}=0.264
$$

هالا انرزّى دأخلى نهايى از ممين جدول بهدسـت مى آيل. جون انرزیى داخلى مستقيمأ جدول بندى نشده اسـت، از رابطةٔ زير استفاده خواهيم كرد.

$$
u_{2}=u_{f 2}+x_{2} u_{f 82}=68.04+(0.264)(1043.5-68.04)=326 \mathrm{Btu} / \mathrm{bm}
$$

حالا انتقال حرارت از معادله (b) مسانسبه مىشود.

$$
\begin{align*}
Q & =(0.0108)(326-67.6) \\
& =2.79 \mathrm{Btu} \tag{2943J}
\end{align*}
$$

علامت مشبت انتقال حرازت نشان مىدهد كه حرارتى معادل Y / V A Btu بايد بهظر ن بزرگَ داده شود تا دماى بـخار در حين فرآيند انبساط ـ تبخير در

 حجم مخصوص حالت جامد خيلى در مقابل نشار حساس نيست، معادله (9 -
بالاتر نيز به كار رود.
مثال r-Y
 براى ذوب يكث كيلو يخ Co ${ }^{\circ}$. رادر يكث فر آيند نشار ثابت تخمين بزنيد.

حـــل : در TY

$$
h_{f}=0.00 \mathrm{Btu} / \mathrm{lbm}
$$

و از معاد\$4

$$
\begin{equation*}
h_{i}=-158.9+(0.467)(32)=-143.96 \mathrm{Btu} / \mathrm{lbm} \tag{a}
\end{equation*}
$$

	Yo $_{0} \cdot \mathrm{wq} / \mathrm{mig} L 8201000+\mathrm{szz} 0-=' s$			qu－d aU－d
		$L^{\text {r }}$－ y_{0}	－d－7 30d	9．1－1
		L^{r-m}	－${ }^{-1} 9 \mathrm{O}_{0}$－	p．1－d
		$x^{\text {r }}$－${ }^{\text {d }}$	－ －$^{-7304}$	$q \mathrm{~b}-\mathrm{j}$
		$L^{\text {r }}$－ $\mathrm{S}_{\text {。 }}$	－ $\boldsymbol{1}^{-9} 90$.	－1
	wqunge L Stto $0+0$［901 $={ }^{8} \psi$	$L^{\text {\％}}$ 的 H_{0}		${ }_{q} \gamma^{-1}$
		$L^{\text {ramas }}$ 。	－${ }^{-9} 90$.	p－1
				9ヘ－」
			－ －$^{-9} 90$.	pa－d
		$L^{*}-\mathrm{d}_{0}$		qu－d
minctrencian inlim		$L^{r}-\operatorname{lin}^{\text {a }}$	－$A^{-1} 2_{0}$ ．	－ 1
		$L^{\text {r }}$－ y_{0}		$98-1$
95		$L^{\text {r }}$－ $\mathrm{m}^{\text {x }}$	－${ }^{-9} 90$.	$p 0-1$
¢	oncm		menfocoor	Forsomar

－rof 1 －

$$
\begin{align*}
d Q_{p} & =d h_{p} \\
Q_{p} & =\Delta h_{p}=h_{f}-h_{i}=0-(-143.96) \tag{b}\\
& =143.96 \mathrm{Btu} / \mathrm{lbm} \\
& =317.09 \mathrm{Btu} / \mathrm{kg} \\
& =334.5 \mathrm{~kJ} / \mathrm{kg}
\end{align*}
$$

F-7

$$
\begin{align*}
& c_{v}=\left(\frac{\partial u}{\partial T}\right)_{v} \tag{-}\\
& c_{p}=\left(\frac{\partial h}{\partial T}\right)_{p}
\end{align*}
$$

مثال H-A

با استفاده از اطلاعات جداول بهار ناحيه داغغ گرماى ويزه در نثار ثابت را براثي بشار آبس در
. 7 . . ${ }^{\circ} \mathrm{F}$ و . . psia
psia

$$
\begin{array}{lll}
h=1245.2 \mathrm{Btu} / \mathrm{lbm} & 500^{\circ} \mathrm{F} \text { ر } \\
h=1362.5 \mathrm{Btu} / \mathrm{lbm} & 700^{\circ} \mathrm{F} \rho 2
\end{array}
$$

$$
\begin{aligned}
c_{P} & =\left(\frac{\partial h}{\partial T}\right)_{P} \approx\left(\frac{\Delta h}{\Delta T}\right)_{P}=\frac{h_{700}-h_{500}}{700-500} \\
& =\frac{1362.5-1245.2}{700-500}=0.587 \mathrm{Btu} / \mathrm{lbm}^{\circ} \mathrm{F}
\end{aligned}
$$

 T آن در ض_Y

دو خاصيّت ديگُر مواد تراكمهيُير ساده مهم استـ. ضريب لنبساط حتجمى ' "ß" بر طبت
تعريف برابر با تغيير حجم نسبـت بهدما در نثار ثابت و بهازاى واحد حجم مىباشد.

$$
\begin{equation*}
\beta=\frac{1}{v}\left(\frac{\partial v}{\partial T}\right)_{P} \tag{-}
\end{equation*}
$$

قابليت تراكم چذـيرى دا ثابت واحد حجم مىباشد.

$$
k=-\frac{1}{v}\left(\frac{\partial v}{\partial p}\right)_{T}
$$

اين دو خاصيّت خيلى مهم است زيرا مىتوان آنها را بهاسانى از راه آزمايش تعيِن كرد. برایى يكى گاز ايدهآل؛ روابط خيلى سادهاى بهطريت زير مىتوان بهدسـت Tورد. جون

$$
v=\frac{R T}{p}
$$

$$
\begin{align*}
\beta & =\frac{1}{v}\left(\frac{\partial v}{\partial T}\right)_{P}=\frac{1}{v} \frac{R}{p}=\frac{1}{T} \tag{Y-17}\\
k & =-\frac{1}{v}\left(\frac{\partial v}{\partial p}\right)_{T}=-\frac{1}{v}\left(-\frac{R T}{p^{2}}\right)=\frac{1}{p}
\end{align*}
$$

1- Volume coefficient of expansion
2- Isothermal compressibility

قابليت تراكم بذيرى دما ثابت كاملاُ مفيد است، اگگر در محاسبات كار لازم در تراكمم مايعات و جامدات
به كاز زود. كار دز واحد جرم بهصورت زير بيان مىمّود :

$$
w=-\int p d v
$$

بر'یى يكت فر آيند دما ثابت (ايزوترمال) تغير ححم برحسب kبوسيله رابطه زير بيان مى شود

$$
d v_{T}=-k v d p_{T}
$$

با حايگزين كردن اين رابطه در معادله ((

$$
\begin{equation*}
w_{T}=\int_{p_{1}}^{p_{2}} p k v d p_{T} \tag{r-19}
\end{equation*}
$$

براى خيلى از مايعات و جامدات، k تقريباً برای حدود تغيرات وسيع فشار، ثابت است. اگر ححم

$$
\begin{equation*}
w_{T}=\frac{k v}{2}\left(p_{2}^{2}-p_{1}^{2}\right) \tag{-}
\end{equation*}
$$

 هنگگامى كه دما ثابت باقي مىماند؛ به كار رود.

مقادير واقعى بعضى از ضرايب انبــاط در جلول Y-Y خلاصه شده است.
Fـو

كه دما در \& \& ثابت باقى مىماند. كار دما ثابت را در اين فر آيند معاسبه كنيد.
 تقر يبسازیى استفاده مىكينم.

$$
\begin{equation*}
k=-\frac{1}{v}\left(\frac{\partial v}{\partial p}\right)_{T} \approx-\frac{1}{v}\left(\frac{\Delta v}{\Delta p}\right)_{T} \tag{a}
\end{equation*}
$$

از جدول دمای اشباع (جدول f. ${ }^{\circ} \mathrm{C}$ ، $\mathrm{A}-v \mathrm{M}$)

$$
v_{f}=1.0078 \mathrm{~cm}^{3} / \mathrm{g}=1.0078 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{kg}
$$

$$
v=1.0045 \mathrm{~cm}^{3} / \mathrm{g}
$$

(a) (a) بس با استفاده لز تقريبسازى معادن

$$
\begin{aligned}
k & \approx-\frac{1}{1.0078}\left(\frac{1.0045-1.0078}{7500 \mathrm{kPa}-140 \mathrm{kPa}}\right) 40^{\circ} \mathrm{C}\left(\frac{1}{1000}\right) \\
& =4.45 \times 10^{-10} \mathrm{~m}^{2} / \mathrm{N} \quad\left(\mathrm{~Pa}^{-1}\right)
\end{aligned}
$$

حالا كار دما ثابت را بهازاي هر كيلوگرم از معادله (.

$$
w_{T}=\frac{k v}{2}\left(p_{2}^{2}-p_{1}^{2}\right)
$$

$$
=\frac{\left(4.45 \times 10^{-10} \mathrm{~m}^{2} / \mathrm{N}\right)\left(1.0078 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{kg}\right)}{2}
$$

$$
\times\left[\left(7.5 \times 10^{6}\right)^{2}-\left(140 \times 10^{3}\right)^{2}\right] \mathrm{N}^{2} / \mathrm{m}^{4}=12.61 \mathrm{~J} / \mathrm{kg}
$$

$$
W_{T}=m w_{T}=(75)(12.61)
$$

$$
=945.7 \mathrm{~J}
$$

 (ا محامبهي كنيل، در حالى كه دما در K atm

نصل r ـ خواض ماكروسكـى مواذٌ خالص

β	\cdot	جاده
${ }^{\circ} \mathrm{C}^{-1} \times 1 .{ }^{7}$	${ }^{\circ} \mathrm{F}^{-1} \times 1 .{ }^{7}$	

vi: 1	r9/9
falv	rv/r
friv	rr/v
roll	19/0
voll	Fr/.
re/a	rr/r
$\Delta 9 / 9$	rr / l
$\Delta r / \Delta$	+9/v
ir/o	$v / 0$
Q/v	Δ / F
IST/A	AF/9
if/4	人/l
Fr/r	YF/.

1.10.	9.	اسبل استيكت
1.41	11.	الكل اتيل
1 1rı7	vV.	بنز
D.F	TA.	گليسيرين
FAT	rv.	اسيل هيلدروكلريكن
Al.	FD.	نفت خام (تقريبى)
pov	110	آب

حـــل : دوباره سادله (-
$W_{T}=\frac{k v}{2}\left(p_{2}{ }^{2}-p_{1}{ }^{2}\right)$

$$
\begin{aligned}
& \bar{r}=7.062 \mathrm{~cm}^{3} / \mathrm{g} \cdot \mathrm{~mol}=7.062 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{~mol} \\
& k=0.776 \times 10^{-12} \mathrm{~cm}^{2} / \mathrm{dyn}=0.776 \times 10^{-11} \mathrm{~m}^{2} / \mathrm{N} \\
& W_{T}= \frac{\left(0.776 \times 10^{-11} \mathrm{~m}^{2} / \mathrm{N}\right)\left(7.062 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{~mol}\right)}{2} \\
& \quad \times\left(1000^{2}-1^{2}\right)\left(1.0132 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}\right)^{2} \\
&= 281.3 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~mol}
\end{aligned}
$$

تعداد مولها برابر است با

$$
\eta=\frac{V}{v}=\frac{2.0^{3} \times 10^{-6}}{7.062 \times 10^{-3}}=1.133 \times 10^{-3} \mathrm{~kg} \cdot \mathrm{~mol}
$$

بنبراين كاز كل برابر أست با

$$
\begin{aligned}
W_{T} & =\left(1.133 \times 10^{-3} \mathrm{~kg} \cdot \mathrm{~mol}\right)(281.3 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~mol}) \\
& =0.319 \mathrm{~J}
\end{aligned}
$$

خود آزمايى (سؤالات مرورى)

ماده خالص جيسـت؟
-1
تفاوت خواص متمركز باكسترده حیست؟
Y - تاوت ماده خحالص با مادء ساده چيست؟ پـ يدهٔ فيز يكي تبخير در نشار ثابت را تشريح كنيلد. -F

 گُذاشته شود، ${ }^{\text {CO }}$ مايع ديده نمى شود.

$$
\begin{align*}
& \text { مىرود) زودتر يخته مىشود! } \\
& \text { تعنى ناحيه /شُباع جيسـت! }
\end{align*}
$$ 9 ار تباطى دارند؟

كيفيت بخار داغ جحقدر است؟ (11 گاز ايدهآل דيست؟

- 10
- 19 اصل - IV
ماده ساده تراكمبيذ ير جيست
جـند خاصيّت لازم است كه حالت يكت سيستم را مشـخْص نمايد؟ گر ماثى ويزه هشلوطتر بخار آب جچدر است؟ جرا؟
خواصّ مايعات دز دزجه اول تابع چه متغيرى است

مسائل (آحاد انتليسى)

 بها آرامى از مخزنى تهليه مىشود تا شرابط داخل مخزن به مقدار وزن آتونياكت خارج شده از مخزن را مساسبه كينــ

ترمود يناميك

in.
 r-F تشكيل ميدهد. مساسبه كنيد جه مقدار حرارت بايل اضافه تردد تا فقط يكت بخار اشباع تهيه شود. فشار در انتهاى فرT بيند حرارت دادن جه مقدار خواهد بود؟ مساسبه كيلد درصدل خطايى راكه از فرض اين كه جرم مغضصوص آب در

حجم مخصوص فريون - Y ا را در فشار psia • ا و كيفيت • ه درصد محاسبه كنيد. فرض كنيد كه حرارت به 1 / 1 / فريون مسأله
 لازم و كار توليد شده را با فرض اينكه فريون مستوى مجموعه مناسب سبلندر - يستون را تشكيل دهد.

در جدول Y-Y مقدار β برایى Tب
 7 • psia بخار Tب در طيّ يكت فرآيند فشار ثابت در مجموعهُ سيلندر - بسستونى از شرايط و F. . ${ }^{\circ}$ F F حرارت بازانى هر lbm

 اضانه شود تا Tب صورت گيرد.
 به

$1 .{ }^{\circ} \mathrm{F} \cdot 1 \cdot$ psia -
$\Delta .{ }^{\circ} \mathrm{F}: \mid \mathrm{psia}-\underset{ }{z}$
2
1... ${ }^{\circ} \mathrm{F} .1 \ldots$....psia - *

و -دز ـحانت بـحر انى

تـحت همان شر ايط مقا سـه كينيل.
 5.17

 بشاز آب اشباع دز I I rolv

 r_1A

زير مساسبهي كنيد:
الف: . . ${ }^{\circ} \mathrm{F}$, psia

$$
\Delta \cdots{ }^{\circ} F, \Delta \cdots \text { psia }-\quad ب
$$

إِن مقادير را با مقادير بلهدست آمده با نرض اين كه بـخار آب از معادله حالـت گاز ايدهآل
تتعيت كند مقايسه كنيـلـ دز رابطه با اين مقايسه اظهار نظر نما يـد.
مسأله A ا ـ 5.19

دما ثابت بحأسبه كنيل.
يكـ مصر ن به kcal/h . ه ا مىرمد. در محيطگرم بدن عرق مىكند و سطع يوست بهوسيله تبخير خنكك مىشود. با فرض إين كه عرق در فشار ثابت تبخير شود و دماى يوست در (A . ${ }^{\circ} \mathrm{F}$

مخزنى بهحجم Y/ $\Delta \mathrm{ft}^{3}$ شامل مايع آب و بخار در حالت تعادل در مخزن بسته (آببندى) مى شود. جهه مقدار حرارت بايد اخانه شود تا تنها بخار اثـباع در (ايجاد نمايد؟ فرض كنيدكه نسبت اولئ بشخار و مايع طورى است كه بخار اشباع در atm latm
 هه مقدار حرارت بايل از ظرن گرفته شود ثا • ا درصد بـخار در ظرْ تقطير گردد؟

 تبد يل بهاميع شود. در اين فر آيند تراكمى جه مقدار كار بهازاى هر lbm البـر بايد بر روى بـخار Tب انجام بنيرد9
 آب شروع بهتقطير مىكند، اگر ظرف بهآرامى خنكك شود؟ هیه مقدار حرارت بهازای
واحد جرمى بايد در اين فر آيند سر مايش خارج شود؟

「. . Btu/h.ft² ${ }^{2}$ r.YV مى ماشد و حلود تمام انرزى جذب شده صرن تبخير آب در فشار ثابت و در دماى متوسط مقدأر آب لازم رابراى تأمين آب از دست رفته بهوسيله تبخير در هر هفته براى يكت تطعه (1 . . × $\times 1$, ft طول 9 ساعت انجام گيرد. جواب را بهگالن در هفته ارائه كنيل.

$$
f \cdot{ }^{\circ} \mathrm{C} \cdot \vee \cdot \mathrm{kPa} \quad 1 \text { ب }
$$

$$
Y F \cdot{ }^{\circ} \mathrm{C}, 7 \mathrm{kPa} \quad(\underset{ }{ }
$$

د

$$
\Delta r \cdot{ }^{\circ} \mathrm{C}, \wedge \ldots \mathrm{kPa} \quad(
$$

و (در حالت بسحرانى

(Y/ T m³ rosM بخار آب g . . ها است. حرارت بهسبلندر اضافه مىگ. دد در حالى كه دماى بخار آب ثابت

 محعاسبه كنيد مقدار حرازتى راكه بايد از ظرن گرفت تا فئار به kPa . ($\mathrm{\Delta}$ kg Y_VM

انتهاى فر آيند حرارت دادن هقدر خواهد بود؟
 (ا برابر با MPa
「 TـqM

$$
\begin{aligned}
& \text { كار توليد شده را با فرض اينكه فريون در سيلندر - يِيستونى قرار دارد. }
\end{aligned}
$$

r-1 M M
 حرازت بهازاي واحف جرم را محاسبه كنيد.

است. جهمقدار حرازت بايد از جعبه گر نته شود تا نصف بخار آب تقطير گردد؟
 بازدارنده بر زوى يسستون عمل كرده و سيلندر خنكك مىشود تا نصف بخار آب تقطير گردد. جه مقدار سرمايش بهازاء واحد جرم آبب بايد تهيه گردد؟

آب تبخير گر دد؟
 بخار آب در اين ناحيه از رابطه حالـت گاز ايدهآل تبعيت كند. مقدار حرارت منتقل شـده را
 شُده در جداون بخار آب مقاسِه كنيد. در مورد مطابقت و يا عدم مطابقت اين دو محاسبه اظهار نظر نمايِل.
 محاسبه كنيد.
T M M

> زير تعيين كنيد :
17. ${ }^{\circ} \mathrm{C}, \mathrm{gkPa}$ (الف

YF. ${ }^{\circ} \mathrm{C}$, HPa (ب
K_اVM

- • ه رسم كنيد.

(${ }^{\circ} \mathrm{C}$)	PA.		FA.		
(Pa)		V..k		\wedge M	ro.k
جرم	1	r	1/4	r / s	r
(m³/kg) حمبمخصو	. /rnor				
(m)					
كيفيت (\%)					7.
رطوبت (\%)				r.	
انتالِى (kJ/kg)	PVYa/4				
انرثى داخلى (kJ/kg)			r..os/f		

 محاسبه كنيد.
 مصرف بهمقدار kJ/h . ب 7 میرسد. در محيط گرم بدن مرق خو املدكرد و سطع بوست بهوسيله تبخير خنكت مىشود. با فرض اينكه عرق در فنار ثابـت تبخير شود و دمایى پوست در Y نرخهاى مصرن انرزى مشـخّص شده در بالا مساسبه كنيد (جواب (I I Yg).

 فرآ يند دما ثابت لازم است؟

انرزّى لازم است؟ اين مقدار زا با مقدار حرارت موردنياز جهت تبتير آب يا آمونياكك
تحت همان شر ابط مقايسه كنبد.
 فنر طوزى نگهداشته مىشود كه فشار در سيلندر متناسب با ححم سيلندر باشد. حقدر حرارت بايل بهبخار آب داده شود تا فشار به kPa م
 محتوى

بهمقدار $/ \Delta \mathrm{cm}$ / حركت كند!
r.r M M
 به مايع گردد. در طى اين فر آيند تراكمى جهه مقدار كار بهازامى هر كيلوگَمَ بايد بر روىى بشار

آب انمجام بذيرد؟
 در جهه دمايى بشار آبب شروع بهتقطير میكّند؟ حقدر حرارت بهازاى واححد جرم بايد در

اين فرآيند سرمايش شخارج شود؟
 مقدأر انتاليى و ححم مخصوص در اين شر ايط را تعيين كنيد. M.r.M مجزاكننده Tدياباتيكى بهدو محفظه مساوى تقسيم شده است. يكت مـحفظه شـامل بشار آب
 استت. صفسهه مجزاكننده برداشته مىشود و سيـتم اجازه مىيابد تا بهتعادل برسد. نشار و دماى هالت جديد را تعيين كنيد. r_r MM 1- اثتباهأُ مسألهاى با آهـاد انگّلبـى در اين قسـت آمده است . (مترجم)

 انجام گيرة. جواب را باليتر در هفةه اراثه كنيد.

يك فـر آيند دما ثابت لازم است؟

K_rfM

مـراجـــع

1 Kline, S. J., and F. O. Koenig: The State Principle, JApple.Mech., vol. 24, p. 29, 1957.

2 Hatsopoulos, G. N., and J. H. Keenan: "Principles of General Thermodynamics," John Wiley \& Sons, Inc., New York, 1965.
3 Keenan, J. H., and F. G. Keyes: "Thermodynamic Properties of Steam," John Wiley \& Sons, Inc., New York, 1936.
4 Van Wylen, G. J.: "Thermodynamics," John Wiley \& Sons, Inc., New York, 1959.

5 Reynolds, W. C.: "Thermodynamics Properties in SI," Meeh. Engr. Dept., Stanford University, Stanford, Calif. 1978.

فٌon \&

تحليل انرزى در سيستمهاى باز

+ 1

در دو نصل بيشين صورت تحليلى قانون اول ترموديناميكت و روشهاى محاسبه خاصيتهاى ترموديناميكى ماده ساده بيان گَرديل. در اين فصل اين اطلاعات را براى گَروه گستردهترى از مسائل

هدف اصلى در اين طرح جواب دادن بهسؤالهاى زير است.
1 - سيستم ترموديناميكى كه بايد بررسى شود هيست و جگُونه مشَضص میشود؟

دسترس است؟

- 「

همينكه جوابى روشن براى هريكت از سؤالات نوق تهيّه شد، حـلّ مسآله معمولأ از طريت

تحليل رياضي بهدست مى آيد، اگر جه در اجراى مؤثر اين تجزيه و تحليل تجربه هم مدكن است لازم شود. سؤالات الزامأ بهترتيب بالا مطرح نمىيشود و جواب يكك سؤال ممكن است بهج جواب سؤال ديگر

مربوط باشد. همان طورىكه تجربهٌ ما در فصول قبل بوده است، در مىيابيم كه سؤالات بالا مىتواند

بهوسيلهٔ الگُوريتم مشخّص زير ارائه گَردد.
I - سيستم را رسم كنيد و مقادير جرم و انرزى ورودى و خروجى را مشـخّص نمايـد. مرز
سيستم را مشـخّص كنيد.
Y - Y اطلّلاعاتى راكه براى تحليل سيستم در اختيار مىىباشلـ، بنويسيد.

F - روابط تشريح فر آيند قابلاجرا را بنويسيد.

هـ ـ خوامّى راكه براي استفادة در موازنة انرزى لازم است، بهدست آوريد.
7 ـ اطلاعات را جهت تعيين نتيجهُ مطلوب تركيب كنيد.

موازنهُ انرؤى و قواردادهاى علامت Y

در نصل دوّم روابط عمومى انر زیى را براى سيستمهاى بسته بسط داديمَ يعنى سيستههايى كه

 توجه اصلى هميشه بهاين حقيقت است كه انرزى /ز بين نمىرود يا

$$
\text { انرزى كه در سيستم + انرزی كه از سيستم }=\text { انرزى كه بهداخل }
$$

انباشته مىشود
بس بررسى انز زی اساساً يك روش حسابدارى است و معادلات نصل دوم روابط تحليلى سنجش است

Y_Y

بـحث كلى قانون اول ترموديناميك كـه در فـصل دوم ارائه شــــ، مـربوط بهسيستمهـأى ترموديناميكى بسته است. در مرز اين سيستـها انتقال جوم وجود ندارد. تنها نكته ضروزى اين است كه همهُ انواع كار و انوزى داخلىى بايلد در موازنه انرزى در نظر گر فته شود.

$$
\begin{equation*}
d^{\prime} Q+d^{\prime} W=d E \tag{-}
\end{equation*}
$$

كه كميتهاى انرزى بهصورت ديفرانسيلى نوشته شله تا بتوان برايى هر نوع فرآيندى به كار برد. موازنه
 شده است.

 آن مفهومى كه از سيستم ترموديناميكى داشتهايم سازگار نباشدي، جه تاكتون

(الف)

(ب)

شكل Y Y Y (الف) مخزن بسته سيستم بستهاى است بدون انتقال جرم در مرز آن. (ب) جريان آب از ميانكرمكن بهصورت سيسته باز در نظر كرلته مىشود .
 سيّال با سرعت $A \frac{d s}{d \tau}$
 و بنابراين ميزان جرمى جريان در كانال mبرابر است با

شكل P- جريان جرمى وكار جريانى در يك كانال

$$
\dot{m}=\frac{\dot{V}}{v}=\frac{1}{v} \frac{A d s}{d \tau}
$$

$=\frac{d s}{d \tau}=\bar{V}|0|$

$$
\begin{equation*}
\dot{m}=\frac{A \bar{V}}{v} \tag{-}
\end{equation*}
$$

$$
\begin{equation*}
\dot{n} t=\rho A \bar{V} \tag{-}
\end{equation*}
$$

در اينعها علمت V \bar{V} به كار گر فه شـده تا بين علامت سرعت و حیجم كل تمايز گذاشته شود.
ث-

بواى مطالعه سيستمهاى باز منهوم تحتحم كنترل را همان طورى كه در شكل F F نشان دادد

در نظر گرفته مىشود. ابتدا اصل بقاى انرزى را در نظر بگگيريد كه بهصورت زير نوشته مىشود :

$$
\begin{aligned}
& \text { (F_F) } \\
& \text { دانحل تحجم كتترل انحتم كنترل }
\end{aligned}
$$

بقاى جرم را مىتوان بهصورت زير نوشت :

$$
\dot{m}_{\mathrm{i}}=\left(\frac{d m}{d \tau}\right)_{\sigma}+\dot{m}_{e}
$$

كه i
 مشتخص مىكند.

$$
\begin{aligned}
& \text { برترار نهود : }
\end{aligned}
$$

$$
\begin{equation*}
\sum_{i} \dot{m}_{i}=\left(\frac{d m}{d \tau}\right)_{\sigma}+\sum \dot{m}_{e} \tag{-}
\end{equation*}
$$

شكل † ب

برایى يكت جرم معلومكه از ميان حجم كنتر ل عبور مىكند ميافتد، يعنى رفتار يكت سيستم ترموديناميكى بسته را در نرآينذى كه باعث عبور آن از حجم كنترل ميشود بررسى كنيم. سيستم ترموديناميكى بسته ممكن است از نشار میيط، انتقال حرارت در مرزعايش و عمل نيروهاي متفاوت مولد كار تأثير يذيرد. انرزّى داخلى سيستم بسته مي تواند در اثر جابهجايى فيز يكى از يكت سالت به حالت ديگّر و شايد با تغيير

سرعت آن تغيير كند. صرن نظر از تاثيرهاى گفته شده، مطمئناً مىتوانيم آنها را با اصل بقاى انرزى برزسى كنيم. بهاعلاوه جوم كل داخل و يا خارج شده از ححجم كترل مىتواند بهصورت گروهى از المانهاى جر مى dm، يعنى يكت گروه از سيستمهاى ترموديناميكى بـسته كو جكى در نظر گرفته شود.
 كنترل عبور مىدهل. يس اصل بقاى انرّى براى اين نوع سيستم برابر است با :

كنترل + حرارت داده شده بهحمجم

$$
\begin{align*}
& \text { ك كترل + انتقال انرزیى داحلى } \\
& \text { = } \tag{-}
\end{align*}
$$

مطابق شكل F-Fb بهصورت تحليلى مىتوان نوشت

$$
\begin{equation*}
\dot{E}_{i}+\frac{d^{\prime} Q}{d \tau}+\frac{d^{\prime} W}{d \tau}=\left(\frac{d E}{d \tau}\right)_{o}+\dot{E}_{e} \tag{-}
\end{equation*}
$$

 مُـخّص كننده تغيير در مرزهـاى حجــم كتنرل مىباشد. انتقـال انـرزى داخلــى را مىتـوان بهحـورت ;ير نوشت :

$$
\begin{align*}
& \dot{E}_{i}=\dot{m}_{i} e_{i} \tag{F-4}\\
& \dot{E}_{e}=\dot{m}_{e} e_{e} \tag{-1}
\end{align*}
$$

كار جريان
معادله (F-A) را مىتوانِ براى تجزيه و تتحليل سيستمهاى باز به كار برد، اما جعله كار معمو لُّ بهصورت سادهترى براى تجزيه و تحليل ارائه مىشود. بهعنوان يكت گام ميانى برایى رسيدن بهـجنين

جرم بهداخل حجم كنترلى بايد نيرويى آن را بهداخل براند. اين نيرو بوسيله زشار سيستم تأمين مىترّردد. جرمى بهسطع مقطع A و بهطول s را تصور كنيد. برای راندن اين مقدار جوم به داخل و يا خارج از
 زير داده مىشود :

$$
\Delta s=\frac{V}{A}
$$

بنابراين مقدار كار جهت راندن جحرم بهداخل و يا خارج برابر است با

$$
\begin{equation*}
W=\int F d s=F \Delta s=p A \frac{V}{A}=p V \tag{-}
\end{equation*}
$$

كار خالص انجامشده برزوى سيستم هنگًامى كه از حالت ا بهحالت Y در شكل F-Y حركت مىكند، باستينالى كار خارجى، برابر است با :

$$
W_{n e t}=p_{1} V_{1}-p_{2} V_{2}
$$

كه جمله جهت خارج كردن سيال از حجم كنترل مىباشد. تفاوت اين دو جمله برابر باكار خالص اضافه شـده است.

 رامى توان بهصورت زير نوشت :

$$
\begin{equation*}
\dot{m}_{i}\left(e_{i}+p_{i} v_{i}\right)+\frac{d^{\prime} Q}{d \tau}+\frac{d^{\prime} W_{e x}}{d \tau}=\left(\frac{d E}{d \tau}\right)_{\sigma}+\dot{m}_{e}\left(e_{e}+p_{e} v_{e}\right) \tag{-}
\end{equation*}
$$

Wea وتتهاكار محورى

1. Flow work

2- External forces
3- Shaft work

حالت دائم عمل كند، تغييرات نسبت بهزمان در داخل ححبم كنترل وجو د ندارد، لذا
 تغيرى نكند. براى حالت خاص جريان داثم و حالت داثم هيَّ گونه انُناشتگى جوم يا انرزیى در داخل حجم كتترل وجود ندارد و $\dot{m}_{i}=\dot{m}_{e}$ و معادله بهصورت زير خلاصه مىشود.

$$
\begin{equation*}
\frac{d^{\prime} Q}{d \tau}+\frac{d^{\prime} W_{e t t}}{d \tau}=\dot{m}\left[\left(e_{e}+p_{e} v_{e}\right)-\left(e_{i}+p_{i} v_{i}\right)\right] \tag{-}
\end{equation*}
$$

 شد، معرفى مىشود.

$$
h=u+p^{v}
$$

انتاليى يكك خاصيّت مىباشد زيرا از خواص ترموديناميكى ديگر تشكيل مىشود. بايد توجه داشت كه در موتع كاربرد سيستم باز، انتاليى داراى معنى فيزيكى و اهميت خاص است، الما اين معنى در موتع كاربرد سيستم بسته ديگًر معتبر نيست زيرا جمله pvمعرف كار جريان در يكك سـيستم بـســه نعىباشد.

با معرّفى انتالِى، معأدلثُ انرزى عمومى مىتواند براى يكى سيستم باز جنين نو شته شود :

$$
\begin{align*}
& \dot{m}_{i}\left(h_{i}+\mathrm{KE}_{i}+\mathrm{ChE}_{i}+\cdots\right)+\frac{d^{\prime} Q}{d \tau}+\frac{d^{\prime} W_{e t}}{d \tau} \\
&=\left(\frac{d E}{d \tau}\right)_{g}+\dot{m}_{e}\left(h_{e}+\mathrm{KE}_{e}+\mathrm{ChE}_{e}+\cdots\right) \tag{-}
\end{align*}
$$

آگر بيش از يكت جريان ورودى و خروجى موجود باشل، بايل يكث مجموعه ساده از تهام جريانهايى كه انرزّى بهحجم كتترل تحويل داده و يا خارج مىكنند تر تيب داد. و خخواهيم داشت:

$$
\begin{align*}
\sum_{i} \dot{m}_{i}\left(h_{i}\right. & \left.+\mathrm{KE}_{i}+\mathrm{ChE}_{i}+\cdots\right)+\frac{d^{\prime} Q}{d \tau}+\frac{d^{\prime} W_{e d}}{d \tau} \\
& =\left(\frac{d E}{d \tau}\right)_{\sigma}+\sum_{e} \dot{m}_{e}\left(h_{e}+\mathrm{KE}_{e}+\mathrm{ChE}_{e}+\cdots\right) \tag{-}
\end{align*}
$$

 و بنابراين مىتوان اين جمله را در بيشنر حالات ككنار گذائت.

اهميّت انرزّى جنبشى

در اولين نگاه، بنظر مىرسدكه انرزى جنبشى كميت خيلمى مهتّى در سيستهاى جريانى (باز)

 دهبد سرعت لازم جهت توليد تتها Btu/bm | يا kJ/kg | انزرزى جنبشى را محاسبه كنيم :
$1 \mathrm{Btu} / \mathrm{lbm}=778 \mathrm{ft} . \mathrm{lbf} / \mathrm{lbm}=\frac{1}{2 g_{c}} \bar{V}^{2}$
با
$\bar{V}=224 \mathrm{ft} / \mathrm{s}$
KE =1 kJ/kg بر سيستم آحاد SI ، برايى

$$
1000 \mathrm{~J} / \mathrm{kg}=\frac{1}{2} \bar{V}^{2}
$$

$$
\bar{V}=44.7 \mathrm{~m} / \mathrm{s}
$$

اين سرعتها خيلى بالاتر از آنجه در بيشتر مسائل عملى با آن سر وكار داريم مىباشد. يكت استناه تابل

خ_Y خلاصه حالات خاص سيسته باز

 خوانده نيست، بلكه نـان دادن سادهشدن روابط براى تعدادى از مــاثل عملى است . جدول Y- Y حالات خاص براى سيستهاى باز

$\sum \dot{m}_{i} h_{i}=\sum \dot{m}_{e} h_{e}$
آر

$$
\frac{d^{\prime} Q}{d \tau}=\sum \dot{m}_{e} h_{e}-\sum \dot{m} h_{i} \quad . \quad-\quad . \quad . \quad \leqslant \quad{ }^{\top}, T \quad \kappa T
$$

$$
\dot{m}_{p} h_{i}=m_{e} h_{e}+\left(\frac{d U}{d \tau}\right)_{\sigma}
$$

خير

$$
\begin{aligned}
& \frac{d^{\prime} W_{\text {ext }}}{d \tau}=\dot{m}\left(h_{e}-h_{i}\right) \quad-\quad . \quad . \quad \text { خ } \\
& \frac{d^{\prime} Q}{d \tau}=\dot{m}\left(h_{e}-h_{i}\right) \quad \text { - } \quad \text {. } \\
& \dot{m}_{i} h_{i}+\frac{d^{\prime} Q}{d \tau}+\frac{d^{\prime} W_{\text {ext }}}{d \tau} \quad-\quad-\quad . \quad \text { خير } \\
& =\dot{m} h_{e}+\left(\frac{d U}{d \tau}\right)_{\sigma}
\end{aligned}
$$

بهاختصار، مى توان گفت كه تجزيه و تحليل سيستههاى باز با موازنه انرزي سر سروكار دارد و از خيلى نظر ها شبيه بهبر برسى سيستههاى بسته مى باشد. تفاوت در تجزيهي و تحليل سيستههاى بــتـه و باز

 نشان مىدهد. مثال Y-

 خروجى توربين را محاسبه كنيد.

$$
\begin{aligned}
& \text { حـل : اين مسأله جريان دائم -حالت دائم است بنابراين } \\
& \text { انز } \\
& \frac{d^{\prime} W_{e t}}{d \tau}=\dot{m}\left(h_{e}-h_{i}\right)+\frac{\dot{m}}{2 g_{c}}\left(V_{e}^{2}-V_{i}^{2}\right) \\
& \text { از جداول بخار داغ داريم } \\
& h_{i}=1357.0 \mathrm{Btu} / \mathrm{lbm} \\
& h_{i}=1148.8 \mathrm{Btu} / \mathrm{lbm} \\
& \Delta \ldots \text { psia } \mathrm{V}_{\mathrm{V}} .{ }^{\circ} \mathrm{F} \mathrm{~F} \\
& \Delta \text { psia } \quad \text { Y } \quad .^{\circ} \mathrm{F}
\end{aligned}
$$

$$
\frac{d^{\prime} W_{e a}}{d \tau}=(1)(1148.8-1357.0)+\frac{1}{(2)(32.2)(778)}\left(100^{2}-800^{2}\right)
$$

$$
\begin{aligned}
& \frac{d W_{t u t}^{\prime}}{d \tau}=-221 \mathrm{Blu} / \mathrm{s} \\
& =-7.96 \times 10^{5} \mathrm{Btu} / \mathrm{h} \\
& \text { چون } \\
& \mathrm{hp}=\frac{7.96 \times 10^{5}}{2545}=313(233.4 \mathrm{~kW}) \\
& \text { علامت منفى مشتخّص مىكند كهكار بهاجــام ختارجـى توسـط حسجم كنترل داده مىشود. }
\end{aligned}
$$

H-1 شكل مثال

> مثال Y-Y كاريمب Tدياباتيكك

 محاسبه كنيد.

شكل مثال r-r

حـل : طرحواره اين فـ آيند مطابق شكل ضهيمه نشان داده مىشود. از آنجايىى كه احتماللُ سرعتهاى جريان كو چكك هستند از انر زیى جنبشى جوريان آب صرن دائم و حالت دائم بهصورت زير مىنويسيم :

$$
\dot{m} h_{1}+W=\dot{m} h_{2}
$$

$$
\begin{equation*}
W=\dot{m}\left(h_{2}-h_{1}\right) \tag{a}
\end{equation*}
$$

$$
\begin{equation*}
d^{\prime} Q=d u+p d v \tag{b}
\end{equation*}
$$

$$
\begin{equation*}
d h=d u+p d v+v d p \tag{c}
\end{equation*}
$$

برايى يكى فر آيند آدياباتيكت • d'Q ، بنابراين معادله (c) بهصورت زير درمى آيد:

$$
\begin{equation*}
d h_{a d}=v d p \tag{d}
\end{equation*}
$$

با انتگَرال گرفتن از معادله (d) داريم :
$\left(h_{2}-h_{1}\right)_{a d}=\int_{p_{1}}^{p_{2}} v d p$

$$
\text { اگر سسيال تراكمبنابِير باشد، . } v=\text { و const }
$$

$$
\begin{equation*}
\left(h_{2}-h_{1}\right)_{a d}=v\left(p_{2}-p_{1}\right) \tag{e}
\end{equation*}
$$

جس كار از معادله (a) مهاسبه ميشود.

$$
\begin{equation*}
W=\dot{m} v\left(p_{2}-p_{1}\right) \tag{f}
\end{equation*}
$$

$$
v=0.01613 \mathrm{ft}^{3} / \mathrm{lbm}
$$

و كار برابر مىشود با

$$
\begin{aligned}
W & =(80)(0.01613)(1000-100)(144) \\
& =167000 \mathrm{ft} . \mathrm{lbf} / \mathrm{min} \\
& =5.06 \mathrm{hp}(3775 \mathrm{~W})
\end{aligned}
$$

فرض ترأكم نايذ يربودن مى تواند بهوسيله هراجهع بهجداول هايع متراكمشده كنترل ششود، در آنجامعلوم مىشود كه تغير در حجم مخصوص در اثر ازدياد نشار فقط حدود ب/ • دزصلد مىباشد. توجه داشته باشيد كه در نوشتن معادله (a) علامت قرازدادىى بهكار رفته است. جون ها بهدنبال مقدار كار داده شده

 اضافه شده باشد.
 هـان طورى كه در شكل خميمه نشان داده شده است، متصل است. شير باز مىشود و بشار آب بهداخل مخزن جريان مىيابد تانشاز به psia • " ا برسد. مساسـه كنيـد دماى بهـار آب در مخـزن را در لحظهاى كه نشار به psia . . ا مىرسل. فرض كنيد مخزن عابت شده وهيعگونه كار محوزى به مخزن داده نـى شو د.

حـل : اين فرآيند جريان غير دأمم و سالت غير دائم مىباشد، از آنجايى كه شدت جريان بهداخل مخزن و مقدار جرم بشخار در مخزن هر دو با زمان تغير مىكند. ها حجم كنترل را مطابق با آنجه در شكل

تر مود يناميكى

بوسيلهُ خط خين نــان داده شده المت انتخاب مىكيمّ. با صرفنظر كردن از انرزىهاي جنبشى معادله fl اه 10

$$
\begin{equation*}
\int \dot{m}_{i} h_{i} d \tau=\int\left(\frac{d E}{d \tau}\right)_{\sigma} d \tau=m_{2} u_{2}-m_{1} u_{i} \tag{a}
\end{equation*}
$$

m $m_{2} m_{1}$ مخزذ برابر است با

$$
\begin{align*}
& m_{2}=\int \dot{m}_{i} d \tau \\
& h_{i}=u_{2} \tag{b}\\
& \\
& h_{i}=1279.1 \mathrm{Btu} / \mathrm{lbm} \quad(2975 \mathrm{~kJ} / \mathrm{kg})
\end{align*}
$$

دماى نهايى مربوط به A- 9 يدأ مىشود. نتيجه برابر است با :

$$
T_{2}=767^{\circ} \mathrm{F} \quad\left(408.6^{\circ} \mathrm{C}\right)
$$

H_ F F

مخزن شثل (Y . psia كويل برودتى كو خكث در داخل سيلندر طورى ترار مىگيرد كه دماى هوا رادر

 نهايى بخار آب را در اين شرايط محاسبه كنيد.

حــل : حجم كتترل براى اين مسأله مطابق شكل ضميمه با خطط جين مشخّص مى شود. توجه كنيد كه هوا، بخار آب و بيستون داخل سيلندر بهعنوان سيستم ترموديناميكى انتخاب مىشود. اگر جه مخزن عايق استت، حرارت بهوسيله عمل كويل برودتى بهخارج هدايت مى شود. مقدار حرارت خارج شده

H-Y شكل مثال

شود، محاسبه ميگردد. جرم هو برابر است با:

$$
\begin{equation*}
m_{a}=\frac{p V}{R T}=\frac{(20)(144)(3)}{(53.35)(560)}=0.289 \mathrm{lbm} \tag{131~g}
\end{equation*}
$$

و كار انجام شده بردوى آن برابر است با :
$W_{a}=\int-p d V=\int_{V_{1}}^{V_{2}} m R T \frac{d V}{V}=-m R T \ln \frac{V_{2}}{V_{1}}$
جون دما ثابت ميماند،
$W_{a}=-m R T \ln \frac{p_{1}}{p_{2}}$
$=-(0.289)(53.35)(560) \ln \frac{20}{100}$
$=-13850 \mathrm{ft} . \mathrm{lbf}=17.8 \mathrm{Btu} \quad(18.89 \mathrm{~kJ})$

براي هوا بهعنوان سيـتم بسته ميتوانيم قانون اول رابهصورت زير بنويـيم

$$
Q_{a}+W_{a}=\Delta U_{a}
$$

$$
\text { امط جون . } \Delta U_{a}=\cdot, T_{a}=\text { const }
$$

$$
Q_{a}=-W_{a}=-17.8 \mathrm{Btu} \quad(-18.89 \mathrm{~kJ})
$$

اصطلاح "يستون غير هادى حرارت" بهمعنى اين است كه يستون بهعنوان يكك مانع عايت بين بخار آب

 ميتوانيم بهصورت انتگرالل بنويـيم

$$
\begin{equation*}
\int \dot{m}_{i} h_{i} d \tau+Q=\int\left(\frac{d E}{d \tau}\right)_{\sigma} d \tau=m_{2 s} u_{2 s}-m_{1 s} u_{1 s} \tag{a}
\end{equation*}
$$

$Y \cdot V$

$$
\int m_{i} d \tau=m_{2 s}
$$

$$
\begin{equation*}
m_{2 s}\left(h_{i}-u_{2, s}\right)=-Q \tag{b}
\end{equation*}
$$

$m_{1 s}=$ • نس نهايتأ جهون

حیبم نهايى بـخاز برابر است با
(67.96 liters)

و جرم بـخاز آب برابر است با

$$
m_{2 s}=\frac{V_{2 s}}{v_{2 s}}
$$

$$
\begin{equation*}
\frac{2.4}{v_{2 \mathrm{r}}}\left(1279.1-u_{2 \mathrm{~s}}\right)=17.8 \tag{c}
\end{equation*}
$$

معادله (c) بايد بهوسيله تكرار سـعى و خطا وبا استفاده از جداول بـخار داغ حلّ شود. نتيبه برابر است با:

$$
T_{2 s}=536^{\circ} \mathrm{F} \quad\left(280^{\circ} \mathrm{C}\right)
$$

دهاى بـخار Tاب كحتر از مقلار آن برای مشال

مثال P-

 صرننظر كنيد

حـل : اين نمونهاى ازيكت مــأله جريان دائم ولى حالت غيردائماست. مطابق طرحواره و بيان مــأله

$$
\begin{aligned}
& T_{1}=\text { const. }=80^{\circ} \mathrm{F} \quad\left(26.67^{\circ} \mathrm{C}\right) \\
& T_{2}=80^{\circ} \mathrm{F} \quad \tau=0, \\
& T_{\alpha}=80^{\circ} \mathrm{F} \quad t=0 \text { ر } \quad \text { ر } \sigma \text { (} \sigma \text { (} \\
& \dot{m}_{1}=\dot{m}_{2}=10 \mathrm{lbm} / \mathrm{min}=600 \mathrm{ibm} / \mathrm{h}=\text { const } . \\
& m_{\sigma}=300 \mathrm{lbm}=\text { const. } \\
& Q=0 \quad \text { (مخزن عايق مىباشد) } \\
& \frac{d^{\prime} W_{e t}}{d \tau}=20000 \mathrm{Btu} / \mathrm{h} \quad(\tau=\cdot \text {. شروع }) \\
& \text { (كار المكريكى عبورى از مرز حجم كنترل) }
\end{aligned}
$$

انرزُى داخل مخزن برابر است با

$$
\begin{equation*}
E_{\sigma}=m_{\sigma} e_{\sigma}=m_{\sigma} u_{\sigma} \mathrm{Btu} / \mathrm{bm} \text { (انززى جنبثى ناجيز اسـت) } \tag{a}
\end{equation*}
$$

$$
\begin{aligned}
& \text { جون در هر لَحظه آب در مخزن بخوييى مخلوط مىشُود، هميشه }
\end{aligned}
$$

$$
\begin{equation*}
\Delta h \approx(1.0) \Delta T \mathrm{Btu} / \mathrm{bm} \tag{b}
\end{equation*}
$$

$$
\begin{equation*}
\Delta u \approx(1.0) \Delta T \text { Btu/bm } \tag{c}
\end{equation*}
$$

$\left(80^{\circ} \mathrm{F}, د\right) h_{f}=48.09$
$\left(100^{\circ} \mathrm{F}\right.$ رد) $h_{f}=68.05$

$$
\begin{equation*}
\Delta h=68.05-48.09=19.96 \approx(1.0)(100-80) \tag{d}
\end{equation*}
$$

$\left(\frac{d u}{d \tau}\right)_{\sigma}$ مسعاسبه مشابهى برایى داريم و مى توانيم بنويسيم

$$
\begin{equation*}
\left(\frac{d E}{d \tau}\right)_{\sigma}=\frac{d\left(m_{\sigma} u_{\sigma}\right)}{d \tau}=m_{\sigma}(1.0) \frac{d T_{\sigma}}{d \tau} \tag{e}
\end{equation*}
$$

موازنه كلى انرزّى بهوسبله رابطه زير داده مىشود

$$
\begin{equation*}
\dot{m}_{1}(1.0) T_{1}+20000=\dot{m}_{2}(1.0) T_{2}+m_{\sigma}(1.0) \frac{d T_{\sigma}}{d \tau} \quad \mathrm{Btu} / \mathrm{h} \tag{f}
\end{equation*}
$$

 با جايگزين كردن مقادير عددى مختلف، معادله ديفرانسيل دربه يكك خواهيم داشــتـ. $300 \frac{d T_{2}}{d \tau}+600 T_{2}=68000$

حلّ اين ممادله جنين اسـت :

$$
\begin{equation*}
T_{2}-113.33=C_{1} e^{-2 x} \tag{h}
\end{equation*}
$$

و مقدار ثابت ${ }^{\text {ا از شرط اوليه تعيين مىگردد. }}$

$$
\begin{align*}
& T_{2}=80^{\circ} \mathrm{F} \quad(\tau=0 \mathrm{~J}) \tag{i}\\
& C_{1}=-33.33
\end{align*}
$$

$$
\begin{equation*}
T_{2}-113.33=-33.33 e^{-2 x} \tag{j}
\end{equation*}
$$

ترمود يناميك
 بهدست Tورد.

$$
\tau=0.458 \mathrm{~h} \quad T_{2}=100^{\circ} \mathrm{F} \text { ننگاممى }
$$

هنگامي كه بهشرايط حاللت داثم ممرسلـ،
(g) ميدهد

$$
\begin{aligned}
& 600 T_{2}=68000 \quad\left(\text { (حاللت دائم) } T_{2}=113.33{ }^{\circ} \mathrm{F}\right. \\
& \text { دالثت دائىى }
\end{aligned}
$$

نتيجه مشابهى را مى توان با بهكار بردن معادله (j) در زمانهاى خيلى زياد $\tau \rightarrow \infty$ بهدست آورد.

مثال
يكت گر مكن آب تغذيه بسته برای نيروگاه بـغارى مطابق شكل همراه، كار مىكند. Tب مايع
 و ه 4 درمد كيفيت برروى لولهها باشيله مى شود و تقطير مىيابلد. در نتيجه مايع اشباع از مقطع دستگاه خارج شود. زرض مىكنيم كه Tاب هرمشار تا دماى اشباع بهـار تـقطيرشده گـرم مـىشود. مى مخواهيم جرم بشار مورد لزوم را بهازاى واسحد جرم مايع ورودى معاسبه كنيم. فرض ميشود كه گرمكن كاملأ عايق (Tد آبابتيكن) است.

حــل : از بيان مسأله داريم

$$
\begin{align*}
& m_{1}=m_{2}=1.0 \\
& m_{3}=m_{4}=m_{3} \\
& p_{1}=p_{2}=10 \mathrm{MPa} \tag{a}\\
& p_{3}=p_{4}=1.5 \mathrm{MPa} \quad x_{3}=0.95 \\
& T_{3}=T_{4}=T_{2}=T_{\text {sar }} \quad 1.5 \mathrm{MPa}, 2=198.3^{\circ} \mathrm{C}
\end{align*}
$$

H- شـكل مثل

اين فرآيند، جريان دائم ـ حالّت دائم است و كار روى حجم كنتر ل انجام نمىشود. با بارض اينكه انززيهاى جنبشى ناجيز باشد، موازنه انززى براى گرمكن تغذيه بهصورت زير درمى آيد؛

$$
\begin{equation*}
m_{1} h_{1}+m_{3} h_{3}=m_{4} h_{4} \tag{b}
\end{equation*}
$$

$$
\begin{equation*}
h_{2}-h_{1}=m_{s}\left(h_{3}-h_{4}\right) \tag{يا}
\end{equation*}
$$

اين معادله ييان مىكند كه انز زى داده شده بهوسيله بخار آب تقطير شده بهوسيله آب تحتنشار جذب مى گردد. حالا ما مقادير انتالكى را از جدول بخار آب تعين مىكينيم.
$h_{1}=134.86 \mathrm{~kJ} / \mathrm{kg}$
$h_{2}=848.54 \mathrm{~kJ} / \mathrm{kg}$
$h_{3}=h_{\beta}+x_{3} h_{f_{8}{ }^{3}}=844.89+(0.95)(1947.3)$
$=2694.8 \mathrm{~kJ} / \mathrm{kg}$
$h_{4}=h_{f}(1.5 \mathrm{MPa} \mu)=844.89 \mathrm{~kJ} / \mathrm{kg}$
با جايگزينى اين مقادير در معادله (c) بهدست مى آيد.

$$
m_{s}=0.3858 \mathrm{~kg} \text { آب } / \mathrm{kg}
$$

مثال Y-Y كميرسور هواى Tدياباتيك

 تخليه مى گردد. سرعت متوسط هوا در لوله نزديك بهنقطه تخليه برابر با V m/s است و نشار تخليـه (r / Δ atm داده شده به كمبرسور را سحاسبه كنيل. فزض كنيد كه مرعت ورودى هوا ناهيز باشد.

M.Y شكل مثال

حـل : طرحواره فرآبند در شكل ضميمه نشان داده مىشود. آحاد SI را براي حلّ اين مسأله بهكار مى بريم. خواص داده شده بهترار زير است.

$$
\begin{aligned}
p_{1} & =1 \mathrm{~atm}=1.0132 \times 10^{5} \mathrm{~Pa} \\
p_{2} & =3.5 \mathrm{~atm}=3.546 \times 10^{5} \mathrm{~Pa} \\
T_{1} & =20^{\circ} \mathrm{C}=293 \mathrm{~K} \\
V_{2} & =7 \mathrm{~m} / \mathrm{s} \\
V_{1} & \approx 0 \\
\gamma & =1.4 \mathrm{l} \text { و } ب \text {. } 10 \\
d_{2} & =1.0 \mathrm{~cm}=10^{-2} \mathrm{~m}
\end{aligned}
$$

بهـخاطر فرض فر آيند نيهه ساكن آدياباتيك

$$
T_{2}=T_{1}\left(\frac{p_{2}}{p_{1}}\right)^{(\gamma-1) / \nu}=(293)(3.5)^{0.286}=419 \mathrm{~K}
$$

 نقطه احتياج داريم

$$
\rho_{2}=\frac{1}{v_{2}}=\frac{\rho_{2}}{R T_{2}}
$$

ثابت گَازها براى هوا برابر است با

$$
R=\frac{\Re}{M}=\frac{8315}{28.97}=287 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K}
$$

$$
\rho_{2}=\frac{3.546 \times 10^{5}}{(287)(419)}=2.949 \mathrm{~kg} / \mathrm{m}^{3}
$$

$$
\begin{equation*}
\dot{m}=\rho_{2} A_{2} V_{2} \tag{a}
\end{equation*}
$$

$$
=\frac{(2.949) \pi(0.01)^{2}(7)}{4}=1.621 \times 10^{-3} \mathrm{~kg} / \mathrm{s}
$$

براى جريان دائم و جريان حرارت صفر، معادله انرزّى برابر است با

$$
\begin{equation*}
\dot{m}\left(h_{I}+\frac{V_{I}^{2}}{2 g_{c}}\right)+\frac{d^{\prime} W_{e \mathrm{ex}}}{d \tau}=\dot{m}\left(h_{2}+\frac{V_{2}^{2}}{2 g_{c}}\right) \tag{b}
\end{equation*}
$$

براى هوا مقدار C برابر است با

$$
c_{p}=0.024 \mathrm{Btu} / \mathrm{bm} .{ }^{\circ} \mathrm{F}=1005 \mathrm{~J} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}
$$

انرزى جنبشى در محل الطبق بيان مسأله برابر صفر است در حالى كه در محل ب برابر است با

$$
\mathrm{KE}_{2}=\frac{V_{2}^{2}}{2 g_{c}}=\frac{(7 \mathrm{~m} / \mathrm{s})^{2}}{(2)\left(1.0 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{N} \cdot \mathrm{~s}^{2}\right)}=24.5 \mathrm{~J} / \mathrm{kg}
$$

بك در نظرگر فتن هوا بهعنوان گَاز ايدهآل، اختلاف انتالىى برابر است ب!

ترموديناميك

$$
\begin{aligned}
h_{2}-h_{1} & =c_{p}\left(T_{2}-T_{1}\right)=\left(1005 \mathrm{~J} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}\right)(419-293) \\
& =1.266 \times 10^{5} \mathrm{~J} / \mathrm{kg}
\end{aligned}
$$

از اين مساسبات مى بينيم كه مىتوان از انرزی جنبشى در محل Y نسبت به اختلاف انتاليى صرفنظر كرد. حالا با جايگگزين مقادير عددى در معادلة (b) بهدست مى آوريم:

$$
\begin{aligned}
\frac{d^{\prime} W_{e x t}}{d \tau} & =\left(1.621 \times 10^{-3} \mathrm{~kg} / \mathrm{s}\right)\left(1.266 \times 10^{5}+24.5\right) \mathrm{J} / \mathrm{kg} \\
& =205.1 \mathrm{~J} / \mathrm{s}=205.1 \mathrm{~W}
\end{aligned}
$$

مثال Y-

هليوم بهصورت شبه ساكن و آدياباتيك در يكث توربين از Y Y .
Y . . m/s منبـط مىشود. توربين عايق است و سرعت وزودى ناجيز و سرعت خزوجى I • kPa است. مقدار كار خروجى توربين را بهازاى واحد جرم جريان هليوم محاسبه كنيد.

حـل : طرحوإره فهرست علايم مسأله را مئشّص كرده است. براى فرآيند جريان دائم آدياباتيكك با فرض جريان داشتن جرم واحد، سعادلهُ انرزى بهصورت زير در مى آيل.

$$
\begin{equation*}
h_{1}+\frac{1}{2 g_{c}} V_{1}^{2}+W=h_{2}+\frac{1}{2 g_{c}} V_{2}^{2} \tag{a}
\end{equation*}
$$

هليوم را مىتوان بهصورت يكث گاز ايدهآل در نظرگَفت، بهطورى كه

$$
\begin{equation*}
h_{2}-h_{1}=c_{p}\left(T_{2}-T_{1}\right) \tag{b}
\end{equation*}
$$

$$
\begin{equation*}
\frac{T_{2}}{T_{1}}=\left(\frac{p_{2}}{p_{1}}\right)^{\gamma-1 / \gamma} \tag{c}
\end{equation*}
$$

$$
T_{1}=260+273=533 \mathrm{~K}
$$

از جدول 〒-Y برايى هليوم،

$$
\begin{aligned}
& c_{p}=5.234 \mathrm{~kJ} / \mathrm{kg} .{ }^{\circ} \mathrm{C} \quad \gamma=1.66 \\
& T_{2}=(260+273)\left(\frac{100}{400}\right)^{(1.66-1) / 1.66}=307 \mathrm{~K} \\
& \text { با جايگزينى مقادير در معادله (a)، با • } \\
& W=(5234)(307-533)+\frac{1}{(2)(1)}(200)^{2}=-1.163 \mathrm{MJ} / \mathrm{kg}
\end{aligned}
$$

شكل مثال

 در جواب مشخّص كننده اين است كه كارى خالص از توربين خارج شـده است.

مثال 9-

منبط مى گر دد. سرعت ورودى بهشيوره ناهيز است و فز آبند در جريان دائم صورت مى خروجى از شيوره را محاسبه كنيد.

حــل : دوباره از معادله انرزى جريان دائم استفاده مىكنيم. براى واحد جريان جرم موتى كه انتقال حرارت و كار بوجود نيست، داريم:

$$
\begin{equation*}
h_{I}+\frac{1}{2 g_{c}} V_{I}^{2}=h_{2}+\frac{1}{2 g_{c}} V_{2}^{2} \tag{a}
\end{equation*}
$$

H-q شكل مثال

زيرنويسهای I
 مىاتوان برايى سرعت خروجى حلّ كرد.

$$
\begin{equation*}
V_{2}=\left[2 g_{c}\left(h_{1}-h_{2}\right)\right]^{1 / 2}=\left[2 g_{c} c_{p}\left(T_{1}-T_{2}\right)\right]^{1 / 2} \tag{b}
\end{equation*}
$$

ب $n=\gamma$ برايى فر'يند آديبابتيك شبهساكن بدست مىـ آيد

$$
\begin{equation*}
\frac{T_{2}}{T_{1}}=\left(\frac{p_{2}}{p_{1}}\right)^{(y-1) / y} \tag{c}
\end{equation*}
$$

بنابراين، دماى نهايى برابر است با

$$
\begin{aligned}
T_{2} & =(300+460)\left(\frac{100}{200}\right)^{(1.4-1) / 1.4} \\
& =625^{\circ} \mathrm{R}=165^{\circ} \mathrm{F} \quad\left(73.9^{\circ} \mathrm{C}\right)
\end{aligned}
$$

$$
\begin{aligned}
V_{2} & =[(2)(32.2)(778)(0.24)(300-165)]^{1 / 2} \\
& =1272 \mathrm{ft} / \mathrm{s} \quad(387.7 \mathrm{~m} / \mathrm{s})
\end{aligned}
$$

مثال • + Y ت تبخيركننده فريون
"كويل سرمايش "براى يكت سيستم تهويه مطبرع، در حقيقت يكت تبخيركننده فريون است

 راكه بايد ختكن شود، محاسبه كيد. خارج كويل سرمايش، كاملاُ عايق است.
 داريم

$$
\begin{aligned}
& T_{a_{1}}=80^{\circ} \mathrm{F} \\
& T_{a_{1}}=60^{\circ} \mathrm{F} \\
& \left.T_{F_{1}}=80^{\circ} \mathrm{F} \text { (بابع اشبار) }\right) \\
& T_{F_{1}}=50^{\circ} \mathrm{F} \text { (بار اشباع) }
\end{aligned}
$$

$$
\begin{equation*}
\dot{m}_{F} h_{F_{1}}+\dot{m}_{a} h_{a 1}=\dot{m}_{F} h_{F_{2}}+\dot{m}_{a} h_{a_{2}} \tag{a}
\end{equation*}
$$

$$
\begin{equation*}
\dot{m}_{F}\left(h_{F_{2}}-h_{F_{1}}\right)=\dot{m}_{a}\left(h_{a_{1}}-h_{a_{2}}\right) \tag{b}
\end{equation*}
$$

اين معادله را مىتوان بهصورت زير نيز بيان كرد :
= $=60000 \mathrm{Btu} / \mathrm{h}$

$\dot{m}_{F}\left(h_{F_{2}}-h_{F_{1}}\right)=60000 \mathrm{Btu} / \mathrm{h}$

$$
\begin{aligned}
& h_{F 2}=h_{g}\left(50^{\circ} \mathrm{F}, د\right)=82.433 \mathrm{Btu} / \mathrm{bm} \\
& h_{F_{1}}=h_{f}\left(80^{\circ} \mathrm{F} j\right)=26.365 \mathrm{Btu} / \mathrm{lbm}
\end{aligned}
$$

بنابراين :

$$
\begin{equation*}
\dot{m}_{F}=\frac{60000 \mathrm{Btu} / \mathrm{h}}{82.433-26.365}=1070 \mathrm{lbm} / \mathrm{h} \tag{0.135~kg/s}
\end{equation*}
$$

بهاين ترتيب
$60000 \mathrm{Btu} / \mathrm{h}=\dot{m}_{a} c_{p a}\left(T_{a_{1}}-T_{a 2}\right)$

$$
\dot{m}_{a}=\frac{60000}{(0.24)(80-60)}=12500 \mathrm{lbm} / \mathrm{h} \quad(1.58 \mathrm{~kg} / \mathrm{s})
$$

مثال | Y- F تخليهٔ بخار آب از يك مخزن

 بهوسيله مايع اشغال شده است. مخزن كاملاُعايق است. يكت شير در بالآى مخزن باز شده تا بابخار خارج شود. زمانى كه فنــار بهيك اتمسفر و دما به مخز ن را محاسبه كند.

حـــل : حجم كنترل بهصورت خط جين در شكل همراه نثان داده شده است. داريم :

$$
\begin{array}{ll}
T_{L}=120^{\circ} \mathrm{C} & V=0.2 \mathrm{~m}^{3} \\
T_{2}=100{ }^{\circ} \mathrm{C} & V_{f 1}=(0.2)(0.2)=0.04 \mathrm{~m}^{3} \\
& V_{g 1}=(0.8)(0.2)=0.16 \mathrm{~m}^{3} \\
Q=0 & \text { (زيرا مخزن عايق است) } \\
\hline \text { (زيرا محور خارجى موجود }) \\
W_{e x t}=0 &
\end{array}
$$

تنها بخار مىتواند خارج شود بنابراين زضض اين استكه بخار /شباع خارج شود اما دما تغير

ترموديناميك

مىىند. ثانون اون بهصورت زير بدون جريان ورودى نوشته مىشود.

$$
\begin{array}{ll}
0=\dot{m}_{e} h_{e}+\left(\frac{d U}{d \tau}\right)_{\sigma} & (a) \tag{a}\\
h_{e}=h_{g}=2706.3 \mathrm{~kJ} / \mathrm{kg} & \\
& T=1 Y \cdot{ }^{\circ} \mathrm{C}, \\
h_{e}=h_{g}=2676.1 \mathrm{~kJ} / \mathrm{kg} &
\end{array}
$$

در اين محدوده باريكك مىتوانيم با تقريب خوبى فرض كنيم كه بخاز با انتاليى متو سط اين دو مخزن را تركت مىكند.

$$
\bar{h}_{e}=\frac{2706.3+2676.1}{2}=2691.2 \mathrm{~kJ} / \mathrm{kg}
$$

جرم خارج شده از مخزن برابر است با

$$
\begin{equation*}
m=m_{1}-m_{2} \tag{b}
\end{equation*}
$$

$$
\int \dot{m}_{e} \bar{h}_{e} d \tau+\int d U=0
$$

$$
\begin{equation*}
\bar{h}_{e}\left(m_{1}-m_{2}\right)+m_{2} u_{2}-m_{1} u_{1}=0 \tag{c}
\end{equation*}
$$

 شود. جرم ابتدايى برابر است با

$$
\begin{equation*}
m_{1}=m_{f 1}=m_{81}=\frac{V_{f 1}}{v_{f 1}}=\frac{V_{81}}{v_{81}} \tag{d}
\end{equation*}
$$

كيفيت ابتدايى برابر است با

$$
\begin{equation*}
x_{1}=\frac{m_{g 1}}{m_{1}} \tag{e}
\end{equation*}
$$

و انرزّى داخلى ابتدايی برابر است

$$
\begin{equation*}
u_{I}=u_{f_{1}}+x_{1} u_{f_{\mathrm{g} 1}} \tag{f}
\end{equation*}
$$

در حالتت نهايى

$$
\begin{equation*}
m_{2}=\frac{V}{v_{2}}=\frac{V}{v_{f 2}+x_{2} v_{f_{g} 2}} \tag{g}
\end{equation*}
$$

$$
\begin{equation*}
u_{2}=u_{f 2}+x_{2} u_{f_{g} 2} \tag{h}
\end{equation*}
$$

ایگر تهام روابط و خواصّ بخارTب را وارد معادله (c) نمايمّ، خواهيم ديد كه تنها يكى مجهول، كيفيت نهايع وجود دارد. ابتدا حواص بـخار آب را بهدست مى آوريم :

YY. ${ }^{\circ} \mathrm{C}$

$$
\begin{aligned}
& v_{f 1}=0.0010603 \mathrm{~m}^{3} / \mathrm{kg} \\
& v_{g 1}=0.8919 \mathrm{~m}^{3} / \mathrm{kg} \\
& u_{f 1}=503.5 \mathrm{~kJ} / \mathrm{kg} \\
& u_{g 1}=2529.3 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

$$
\text { در } 1 \text {. }{ }^{\circ} \mathrm{C}
$$

$$
\begin{aligned}
& v_{f 2}=0.0010435 \mathrm{~m}^{3} / \mathrm{kg} \\
& v_{g 2}=1.673 \mathrm{~m}^{3} / \mathrm{kg} \\
& u_{f 2}=418.94 \mathrm{~kJ} / \mathrm{kg} \\
& u_{g 2}=2506.5 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

(d) با جايگز ينى در معادله

ترموديناميك

$$
x_{2}=0.00266
$$

و جرم نهايى برابر است با :

$$
m_{2}=\frac{0.2}{0.0010435+(0.00266)(1.672)}=36.425 \mathrm{~kg}
$$

و بنابراين جرم خأرج شـده برابر است با:

$$
m=m_{1}-m_{2}=37.905-36.425=1.48 \mathrm{~kg}
$$

مثال Y Y

$$
\begin{aligned}
& 37.905(2691.2-503.02)+\left[\frac{0.2}{0.0010435+x_{2}(1.673-0.0010435)}\right] \\
& \times\left[418.94+x_{2}(2506.5-418)-2691.2\right]=0 \\
& \text { كه مىتواند براي يافتن x } x_{2} \text { حلّ شود }
\end{aligned}
$$

$$
\begin{aligned}
& m_{1}=\frac{0.04}{0.0010603}+\frac{0.16}{0.8919}=37.725+0.179=37.905 \mathrm{~kg} \\
& x_{1}=\frac{0.179}{37.905}=0.00472 \\
& \text { سبس از معادله (f) داريم: } \\
& u_{1}=503.5+(0.00472)(2529.3-503.5)=513.07 \mathrm{~kJ} / \mathrm{kg} \\
& \text { با جايگزّ ينى تمام كميات معلو د در معادله (c) داريم: } \\
& m_{3}\left(\bar{h}_{e}-u_{1}\right)+m_{2}\left(u_{2}-\bar{h}_{e}\right)=0
\end{aligned}
$$

 در نظر گرفت. جريان جرمى گًازهاى احتراق مورد لزوم و تطر لوله خروج بـى برایى بشار آهونياكك را

مساسبه كنيد.

حـل : طرحواره اين دستگاه مبدل حرارت در شكل ضميمه نشان داده مىشود. اگر فرض كنيم كه $W_{\text {ext }}=$ • كل دستگاه انتقال حرارت عايق بامثلـ يس $Q=$ است. هيع سـخنى از كار نيست بنابراين است. با صرن نظركردن از انرزيهى جنبشُى برایى سرعتهاى لايِن، موازنه انرزى را بهصورت زير مىنويسيم•
انر زُى خارج شده از مبدل حرارتى = اترزى داخلل شده به مبدل حرارتى

$$
\begin{equation*}
\dot{m}_{g} h_{1}+\dot{m}_{A} h_{3}=\dot{m}_{g} h_{2}+\dot{m}_{A} h_{4} \tag{a}
\end{equation*}
$$

خواصّ آمونياكك مطابق زير بهدست مى آيد:

ترموديناميل

$$
\begin{aligned}
& \text { اگگر رفتار گاز ايدهآل را برامى گازهاى حامـل احتراق فرض كنيم } \\
& h_{1}-h_{2}=c_{p}\left(T_{1}-T_{2}\right) \\
& =\left(0.26 \mathrm{Btu} / \mathrm{lbm} .{ }^{\circ} \mathrm{F}\right)(400-120) \\
& =72.8 \mathrm{Btu} / \mathrm{bm} \quad(169.3 \mathrm{~kJ} / \mathrm{kg})
\end{aligned}
$$

مقدار مى Tوريم:

$$
\begin{equation*}
\dot{m}_{g}\left(h_{1}-h_{2}\right)=\dot{m}_{A}\left(h_{4}-h_{3}\right) \tag{b}
\end{equation*}
$$

$\dot{m}_{g}=\frac{(50)(655.6-132.0)}{72.8}=359.6 \mathrm{lbm} / \mathrm{min} \quad(163.1 \mathrm{~kg} / \mathrm{min})$
حججم مخصوص Tمونياكك داغ در خروج ازمبدل برابر است با :

$$
v_{4}=1.257 \mathrm{ft}^{3} / \mathrm{lbm} \quad\left(1 \uparrow \cdot{ }^{\circ} \mathrm{F} \text { ، } \mathrm{Y} \text {. psia ، } \mathrm{A}-1 \uparrow\right. \text { جدول) }
$$

حالا مى توان ازمعادله (Y_Y) استفادهكرد تا سطع مقطع لازم را برامى جريان اين بـخار محأسبه كنيم. داريم بنابراين $V_{4}=Y$. ft/s

$$
\begin{equation*}
\dot{m}_{A}=\frac{A_{4} V_{4}}{v_{4}} \tag{c}
\end{equation*}
$$

$$
\begin{aligned}
A_{4} & =\frac{(50 \mathrm{lbm} / \mathrm{min})\left(1.257 \mathrm{ft}^{3} / \mathrm{lbm}\right)}{(20 \mathrm{ft} / \mathrm{s})(60 \mathrm{~s} / \mathrm{min})} \\
& =0.05238 \mathrm{ft}^{2} \quad\left(48.66 \mathrm{~cm}^{2}\right)
\end{aligned}
$$

با فرض يكت لوله مدور در خروج

$$
A_{4}=\frac{\pi d_{4}^{2}}{4}
$$

$$
d_{4}=0.258 \mathrm{ft}=3.10 \mathrm{in} \quad(7.87 \mathrm{~cm})
$$

مثال T| + + آبترمكن خورشيلى

يك با شيئه يوشانده شُه است، جهت گرمايش آب از

 آب را حساب نموده آن را برحسب سيان كنيد. يند فوت مربع لازم است تا جريان آب داغى برابر با gal/min • ا توليد شود؟

حـل : حجم كنترل: برای اين مــأله در شكل بهوسيله خط جين نشان داده شـده و موازنه انرزّى بـ صورت زير در مى آيد :

$$
\begin{equation*}
\dot{m}_{2} h_{I}+Q_{s u n}=\dot{m}_{w} h_{2}+Q_{e n v} \tag{a}
\end{equation*}
$$

. $Q_{e n v}=r \ldots \mathrm{~W} / \mathrm{m}^{2}, Q_{s u n}=1 \ldots \mathrm{~W} / \mathrm{m}^{2} 45$

انر
 مفدار ثابت kcal/kg ${ }^{\circ} \mathrm{C}$ (مىباشدل، بنابراين با تقريب خوب داريم

$$
\begin{align*}
h_{2}-h_{1} & =c_{p}\left(T_{2}-T_{l}\right)=\left(1.0 \mathrm{kcal} .{ }^{\circ} \mathrm{C}\right)(90-30) \tag{b}\\
& =60 \mathrm{kcal} / \mathrm{kg}=2.51 \times 10^{5} \mathrm{~J} / \mathrm{kg}
\end{align*}
$$

در دماى متوسط (/ • 1 1 V r cm³/g

$$
\begin{equation*}
v=1.0172 \text { liters } / \mathrm{kg} \tag{c}
\end{equation*}
$$

با تبديل بهليتر از رابطه (c) اين، بهصورت زير درمى آيد:

$$
\dot{m}_{w}=3.235 \times 10^{-3} \mathrm{liter} / \mathrm{s} . \mathrm{m}^{2}
$$

با به كاربردن رابطه (e)، مقدار مساحت برابر است با :

$$
\begin{align*}
& \text { 309.1 m².s/liter } \tag{e}\\
& \text { برای تهيه جريان Tب داغ بمقدار (} \\
& \dot{m}_{w}=2310 \mathrm{in}^{3} / \mathrm{min}=37.85 \mathrm{liters} / \mathrm{min}=0.6309 \mathrm{liter} / \mathrm{s}
\end{align*}
$$

$$
\begin{aligned}
& \text { حالا مىتوانيم شدت جريان آب رالز معادله (a) محاسبه كنيم : } \\
& \dot{m}_{w}\left(h_{2}-h_{1}\right)=Q_{s u n}-Q_{e r v} \\
& \dot{m}_{w}=\frac{(1000-200) \mathrm{W} / \mathrm{m}^{2}}{2.51 \times 10^{5} \mathrm{~J} / \mathrm{kg}}=3.187 \times 10^{-3} \mathrm{~kg} / \mathrm{s} . \mathrm{m}^{2}
\end{aligned}
$$

$$
\begin{aligned}
A & =\left(309.1 \mathrm{~m}^{2} . \mathrm{s} / \text { liter }\right)(0.6309 \text { liter } / \mathrm{s})=195 \mathrm{~m}^{2} \\
& =2099 \mathrm{ft}^{2}
\end{aligned}
$$

> مثال Y-1 Y انبساط Tزاد

هوا در KPa . سيلندر كاملاُ عايت امت. موانعى برزوى سيلندر، بيستون را در موقعيت خود نگاه مىدارد. سـيستم بهوسيله هوای شحيط در Y Y احاطه شده و بيستون هادى حرارت نيست. موانع برداشته مىشود يستون بهطور ناگهانى تا موتعيت جديد كه بدون اصطكاكك امـت. دما و فــار نهايى هوا را محاسبه كنيد.

$$
\begin{aligned}
& \text { حــل : هوا رابهعنوان سيستم در نظرگرفته و قانون اول را بهصورت زير مىنويسيم: } \\
& Q+W=\Delta U \\
& \text { هون سيلندر عايت است • Q ، داريم } \\
& W=\Delta U \\
& \text { يا براى واحد جرم } \\
& W=\Delta U=c_{v}\left(T_{2}-T_{I}\right)
\end{aligned}
$$

اتگر بتو انيبم كار زا محاسبه كنيم، آنكَاد بى توانيم مقدار مشخّص نموده دريابيم كه : فو آيند حجم ثابت نيست . فر آيند فشار ثابـت نيست .

 كه براى يكك انبساط ناكهانى دز حالمت تعادل باقى بماند.
 واححد جرم كار انجام شُده برروثى هوا در سيلندز برابر است با :

$$
\begin{equation*}
W=-\int p(1 \mathrm{~atm}) d v=p(1 \mathrm{~atm})\left(v_{1}-v_{2}\right) \tag{b}
\end{equation*}
$$

$$
v_{i}=\frac{R T_{i}}{p_{i}}=\frac{(287 \mathrm{~J} / \mathrm{kg} . \mathrm{K})(200+273)}{1.013 \times 10^{5}}=1.34 \mathrm{~m}^{3} / \mathrm{kg}
$$

$$
v_{2}=1.5 v_{1}=(1.5)(1.34)=2.01 \mathrm{~m}^{3} / \mathrm{kg}
$$

از دعادله (b) كار بهازاتى واحا. جرم برابر است با :
$W=\left(1.0132 \times 10^{5}\right)(1.34-2.01)=-67880 \mathrm{~J} / \mathrm{kg}$

با جايگزينى اين مقدلر در معادله (a) و با
$-67880=(718)\left(T_{2}-200\right)$
$T_{2}=105.4^{\circ} \mathrm{C}=378 \mathrm{~K}$

جاليب است كه اين مقدار را با مقدار مربوط بهوْ آيند آدباباتيكت و شبه ساكز. مقايسه نمايبم . اگگر معادله

$$
\begin{aligned}
& \frac{T_{2}}{T_{1}}=\left(\frac{v_{2}}{v_{2}}\right)^{\gamma-1}=\left(\frac{1}{1.5}\right)^{0.4}=0.874 \\
& T_{2}=(0.874)(473)=413 \mathrm{~K}
\end{aligned}
$$

كه اساساً مقلار متفاوتى از VVA K بهدست آمده در بالاست. فشار نها:يى از رابطه زير محاسبه مى شئود :

$$
\begin{align*}
& R=\frac{p_{1} v_{1}}{T_{1}}=\frac{p_{2} v_{2}}{T_{2}} \tag{c}\\
& p_{2}=(750)\left(\frac{1}{1.5}\right)\left(\frac{378}{473}\right)=400 \mathrm{kPa}
\end{align*}
$$

اگر فر آ يند شبه ساكـن مىبود مى توانستيم از رابطه زير استفاده كنـبم.

$$
p_{1} v_{l}^{\gamma}=p_{2} v_{2}^{\gamma}
$$

$$
p_{2}=(750)\left(\frac{1}{1.5}\right)^{1.4}=425 \mathrm{kPa}
$$

توضيع - در اين بمأله از تعريف اصلى كار بهصورت تغيير مكان نير وى اعمال شـده در مرز ميــتم استفاده كردمايمr.
' ' Y-Y

1- Throtiling process
2- Joule - Thomson coefficient

مقطع ثابت جريان بيدا مىكند. بين مقاطع 1 و Y يكت مانع متخلخل تعبيه شـده تا افت فـــار مطلوب در جريان را باعث گردد. فرآيند يكت فرآيند خفگىى يا اختناتى ناميله مىشود بـ اگر از تغيرات
 بهصورت زير خلاصه مىشود.

$$
h_{1}=h_{2}
$$

اگگرحه انتاليِها در مقاطع 1 و Y برای شرايط داده شـده برابر است؛ انتالیى جريان مدكن است دز حين عبور سيال از ميان تويّى متخلدخل ' تغير كلى كند. اين تغير بستگى بهاندازه و تخلـخل تويى و مقاومت

 اگگر اطلاعات تجربى برای گاز هاى حقيقى برروى نمو ارار T-p رسم گرددد، منحنيهائى شبيه به
 ثابت منحتنى معكوس " ناميلده مى شود و نقطه ماكزيمـ در هر منحنى نقطه معكوس شيب يكت منحنى انتاليىى ثابت ${ }^{\text {(ايز نتاليكك) }}$

$$
\begin{equation*}
\mu_{J}=\left(\frac{\partial T}{\partial p}\right)_{h} \tag{-}
\end{equation*}
$$

همجنان كه در فصل 7 نشان مىدهيـم و در نصل Y فرض شده است، انتالِي براى يكَ گاز ايدهآل نقط تابعى از دما است. بنابراين براي يكت گاز ايلدهآن، يكت خط انتاليى ثابت، خط دما ثابت نيز خواهد بود. يس:

$$
\mu_{J}=0 \quad \text { برای يكى گاز ايده آل }
$$

1- Porous plag
2- Inversion curve
3- Inversion point
4- Isenthalpic curve

تو توى متخلهغل -

اهميت خريب زول ـ تامسون اين است كه مىتوان آن رابا Tز مايش اندازهگيرى نمود و در نتيجه، برايى مساسبه خواصّ تر مود يناميكى موردتو جه ديگر، به كار برد. موضوع مساسبه خواصّ بهطور مفصلتر در فصل 9 يِگيرى خواهد شد، اما در اين مرسله فايده آزمايش ز زول ـ تامسون نشـان داده ميشود. آكر فرض كنيم كه انتاليى مىتواند بهصورت تابعى از دو متغير غيروابسته p و T بيان شود، از روابط ديفرانسيل نسبى داريم :

$$
\begin{equation*}
d h=\left(\frac{\partial h}{\partial p}\right)_{T} d p+\left(\frac{\partial h}{\partial T}\right)_{P} d T \tag{f-14}
\end{equation*}
$$

با ارائه تعريف c ${ }^{\text {داريم : }}$

$$
\begin{equation*}
d h=\left(\frac{\partial h}{\partial p}\right)_{T} d p+c_{p} d T \tag{-}
\end{equation*}
$$

برايى فرآيند خفگگى آدياباتيكي , $d h=$ و معادله (F-Y) مىتواند بهصورت زير نوشته شود :

$$
0=\left(\frac{\partial h}{\partial p}\right)_{T}\left(\frac{\partial p}{\partial T}\right)_{h}+c_{p}
$$

$$
c_{p}=-\frac{1}{\mu_{J}}\left(\frac{\partial h}{\partial p}\right)_{T}
$$

خريب دماى ثابت بر طبق رابطه زير تعريف مىشود :

$$
\begin{equation*}
\mu_{T}=\left(\frac{\partial h}{\partial p}\right)_{T} \tag{F-YY}
\end{equation*}
$$

مقداز اين ضريب بها آسانى با اجراى آزمايش تو
 الكتر يكى) مترو تغير انتالْى گاز مىباشُلد، جون برايى اين فرآيند :

$$
d^{\prime} Q=d h
$$

(تغيبر ی در انرزّى جنبشى وجود ندارد، ثأبت را مى توان از رأبطهُ زير شصاسبه كرد.

$$
\begin{equation*}
c_{p}=-\frac{\mu_{I}}{\mu_{I}} \tag{-}
\end{equation*}
$$

T

 ترموديناميكى است.

حـل : طرحوارهاين فرآيند دزشكل ممراه نــان دادهمى شود. براى فر آيند نفظگى آدياباتيكت داريم:

$$
h_{l}=h_{2}
$$

از جدول فريون (جدول A-10) داريم :

$$
h_{l}=43.850 \mathrm{Btu} / \mathrm{lbm} \quad 10 \cdot{ }^{\circ} \mathrm{Fm} \text { مايع اشباع }
$$

$$
h_{2}=h_{1}=h_{f 2}+x_{2} h_{f 82}
$$

$$
43.85=17.273+x_{2}(64.163)
$$

$$
x_{2}=0.414
$$

همجحنان كه در نصل 9 خواهيم ديد، اين فرآيند بهطور گسترده در ـيستمهاثي تبر يد و تهويه مطبـوع بهكار میرود.

خود آزمايى (سؤالات مرورى)

$$
\begin{aligned}
& \text { - } \\
& \text { ج - r } \\
& \text { منظور از كار جريان هيست؟ - - }
\end{aligned}
$$

$$
\begin{aligned}
& \text { هـ ــ }
\end{aligned}
$$

 - 9 - در مال
 جگَونه از نظر فيزيكى توضيح مىدهيد؟ مسائل (آحاد انتليسى)

 محاسبه كنيد. فرض كنيد كه تراكم در يكت سيستم بسته انجام ميكا ميرد. مسأله (F F-Y بيفتد.

 دبى جريان

 مخخن درهين اين فرآيند آهتشه ثابت باقى بماند، انتقال حرارت بين مخزن و محيط را

محاسبه كيد. ححجم مخزن
 V. توار دارد. شيرى در يهلوى مخزن باز مىشود تا هوای محيط V. ${ }^{\circ} \mathrm{F}$ به Tهستگى وارد مخزن شو د. فرآيند بهقدر كافي آهسته أست تا دماى مشخزن در ثابت بماند. انتقال حرارت بين مشخن و محيط را آكر فشار مشخزن به IF /V psia برســ مساسبه كيدل.

يكت گرمكن الكتريكى بهظرفيت kW ا در يكت ظرف بهحجم V. ${ }^{\circ}{ }^{\circ}$ F و If/V psia هـخز ن عايق است. دما و فشار هوا را در بايان اين زمان محاسبه كيد.

 طى يكت فرآيند آدياباتيكت مساسبه كنيد. llbm fa داده مى شود. حرازت اضانه شده رادر حالات زير مـحاسبه كيـد. الف) يكت فرآيندغيرجريانى كهبخار آب در ششت يكت يستون در داخل سيلندر ترار دازد. ب) يكى فرآيند جريان دائم بدون كار خخارجى. مسأله F-I P F مساسبه كيد.
Y. .. . kW در نيروگاه كو جكى در جنوب تگزاس، يكك توربين بخار آدياباتيك،
 كيفيت $9 V$ درصد تخليه مىشود. نرخ جريان بخار لازم را مساسبه كيد.

 خرو?
 به كمير سور اتگ, سرعت و,
 $F-10$
 2اند بحاطاسب4 كنيد.

 مسحاسبه كنيد.
بخار 'آب يرفشار در آدياباتيكت تحويل دإه میشود. تخليه از توزبين در psia . F , F

I Y . . A//s F-1^
 فر آيند را سحاسبه كنين.

 برفشار در psia . . . شو تا دما در V. ${ }^{\circ}$ ثابدت باقىى بماند.

 فرض اين كه گرمكن جعبهاى است كه كاملاًّ نسبت به محيط عايق است و نر آيند جر يان دائم مى باشلد، نرخ جريان بخار لازم بهازايى هر بوند مايع مادون سرد ورودثى را محاسبه كنيـ.
 (ا P psia دما باكيفيت مشخلو طـ خروجى را محاسبه كنيد.
 در لوله، فشار بخار آبب در طول نسبتأكافى لوله تا را جi

 يكت تـوربين بـخار آدياباتيك بوده و بخـار آب رادر D. . ft/s 1 . . . ft/s

هورت مىیگيرد. دبى جريان لازم راجهت توليد تدرت خروجى 10 MW محاسبه كنيد.
 fors

 كنيد.
ـ دماى هواثى ورودى
V. . ft/s =سرعت هواي ورودى
Yماى هو'ى خروجى

عمحنـن سطح مقطع لازم براى جر يان ورودى در فشار
 . V. ${ }^{\circ}$ F psia كار میكند. دما و نشار نهايى هوا را محاسبه كنيد. F_YA شود محاسبه كنيد. ll lbm مىشود. انز زُى شيميايى سو خت برابر Y\& . . . Btu/lbm است و سو ختى و هوا توأماً در V، ${ }^{\circ} \mathrm{F}$

 صفر در نظر بگيريد.

 هوایى گرم از . . .

 F-rI
 كند. اندازه خط بخار آب ورودى لازم راتاگر سرعت بخار آب ورودى ft/s 17 باشد محاسبه كنيد.

 حرازتى نظير آنجه در مـأله
 دبى جريان جرمى فريون لازم و دماى هوان خر خروجى را را محاسبه كنيد.
 آدياباتيكت شبه ساكن میىگذرد تا سرعت به

مـحاسبه كنيل.
اكسيرن در يكت سيلندر - يستون از F-rf
 محاسبه كنيد . آب اشباع در

كر2.

F_rA داده مىشو2.

$$
\begin{aligned}
& \dot{m}^{2}=2 g_{\mathrm{c}} A_{2}^{2} \frac{\gamma}{\gamma-1} \frac{p_{1}^{2}}{R T_{1}}\left[\left(\frac{p_{2}}{p_{1}}\right)^{2 \gamma}-\left(\frac{p_{2}}{p_{1}}\right)^{(\gamma+1) h_{1}}\right]
\end{aligned}
$$

 حرارت (سرمايش) به آمونياكُ اضافن مى شوود. دبى آمونياكك را محاسبه كنيل. كليه فر ضيات لازم را مشخّص نمايِد.
 توليد مینمايد. شـرايط وزودى YY. إست و فئـاز خروجى برابـر
 ft/s بيان كنيد. ثممان طورثّ كه نشان داده شُده دو محفظه بهحجم F-FI 10. ${ }^{\circ} \mathrm{F}, 1$. psia حرازتى از هم جدا مىشوده محفظه سمت هِب بر از هوا در

 ;ا متُخْص نمايِد.
مسأله F-FI را براى سالتُنى كه ديوار داخلملي هادى حرارت است تكرإر كنيد، يعنى دما fory

 مقدار اكسيزن برحـب
 مى شود. درحين يكت فرآيند انبساط، بخار آب Btu/bm ها 1 ا حرارت از دست مىدهد و
 بی Y lbm/s

 توطى به

 F-Fi

 و دماى تهام ديوارههاى محفظه به بز سطهي كه بههو ا حرارت داده مىشود عايق است. دماى نهايى هوا را مساسبه كيلد.

شك
 شيوره psia • ، ا و نشار تتخليه برابر فشار اتمسفر است. با فوض يكت فزآيند آدياباتيكت سرعت خزوجى را مساسبه كنيد. براى سطع مقطع خروجى معادل هـ جريان را برحسب گالن در دقيقه بهدست آوريد. يميى با حه قدرت لازم است تا اختلان فشار و دبى جريان در مــأله اتو اتوليد نهايد؟ F-PA
 f_fq 1 atm و V. ${ }^{\circ} \mathrm{F}$ را مصرن بى

 مساسبه كنيد.
 كَ Wtu/lbm

 ، $T_{3}=1 \Delta \cdots{ }^{\circ} \mathrm{F}$ ، $T_{1}=1$. . ${ }^{\circ} \mathrm{F}$ ، . $T_{6}=r \ldots{ }^{\circ} \mathrm{F}, T_{5}=9 \Delta{ }^{\circ} \mathrm{F} ، T_{4}=\mathrm{F} \ldots{ }^{\circ} \mathrm{F}$

 در نقطه 1 بهو سيله يكث رگولاتور (تنظيم) فـار كه ماند بكت المان خفگى عمل بمىكند،

1- Municipal incinerator

فشار رادر psia • . و فرآيند توربين آدياباتيكك فرض مىشود. جهت تويليد قدرت خروج

مسائل ((آحاد متريك)
هوادريكت توربين آدياباتيك ودر طى فرآيند شبه ساكن از شُرايط kPa F. $1 M$

 f_r M طى يكت فرآيند آدياباتيكت محاسبه كنيد.
 داده مى شوود. حرارت اضافه شده رادر حالات زير محاسبه كنيد.

 فر آيند را محاسبه كنيد.

طريق شير خفگگى بهيكك مخزن بهحجم m m متصل مىباشد. شير باز مىشود و بخار آب بهمخزن وارد مىشود ثا فئار در مخخن به
 كنيد. فرض كنيد كه خطط بخار يكى منب نامحدود از بخارآب باشد . rv ${ }^{\circ} \mathrm{C}$, 1 . . kPa F.7 M تا نثار جريان ورودى 1 باشـد تطر خـط جريان ورودى را محاسبه كنيد. آب با نرخ كيفيت • 1 درحـد طى يكت فرآيند جريان دائم فــار ثابت مخلوط مىشود. مشخنى كا مخلوط شدن دز آن صورت مىگيرد عايت است. حالت جريان خروجى را تعيين كنيد.
 f_ $\wedge M$
 سرعت جريان ورودى 1Δ m/ باشد تطر كانال جريان ورودى را مساسبه كنيد. (فرض كنيد كانال مدور باشدل).

كويل برودتى در يكك سيستم تهويه مطبوع طورى طرح مسشود كـه

 مى شود. دبى جريان جرمى فريون لازم و دماى هواى خروجى را محاسبه كنيد. هوا در $F_{-1} \cdot M$ فرآيند آدياباتيكت شبه ساكنى مىگذرد تا سرعت به m/s . نهايى را محاسبه كنيد.

بخار Tب بصوزت بـار اشباع در \&Pa . . .

F-1/M

ترموديناهيل

 F-1 ب M بخار آب از MPa
 بخار فريون F-IfM

 ا; 17 . ${ }^{\circ} \mathrm{C}$, 10 . kPa جهت گرمايش هوواز
 سحاسبه كنيد.

H-1 $10 M$ شكل مسأله
 F-17M حر كار مىكند. دما و فثـار نهايى هوا را را سحاسبه كنيد.

خارج شود، مسحاسبه كيد.

F-1 AM نمايد؟ فرض كنيد جريان دما ثابت است و مىتوان از تغير انز رُى جنبشى صرفن نظر كرد. قدرت يكت موتور جت مىتواند بهطور تقريبى برحسب انر زیى هوايى كه از آن عبوز
 نظر گرفته شود، دبى هو ا'ى لازم را جهت توليد MW ا M ت تحت شرايط زير مداسبه كنيد.

$$
\text { -Fs }{ }^{\circ} \mathrm{C}=\text { دماى هوای ورودى }
$$

r. . m/s = سرعت هوایى ورودى

$$
\text { دماى هوای خروجى = } 11 \text { º } \mathrm{C} \text {. }
$$

r. . m/s = سرعت هوایى خروجى

همحنين سطح مقطع لازم براى جريان ورودى در فشار KPa را مـحاسبه كنيد.
 و سرعت ا 10 وارد كانال مىشود. درحين عبور از كانال، فشار به 10 atm
 جرمى جرياو ورودى و خروجى جقلر است؟ هوا P-Y M بهيك مته با دور بالا استفاده مى شود. مته احتياج بهقلرت ورودى (

 | تطر داشته باشد، سرعت هوالى ورودى را مساسبه كنيد.
 لوله بُرفشارى بهمخزن متصل مى باشد تا فشار به MPa Y برسد. با فرض اينكه مشخذ و شير اتصال آدياباتيكك باشد، دماى نهايى رادر مخزن محاسبه كنيد اگر شرايطط در خط لوله ير فشار در \& \& ثابت باقي بماند. جهه مقدار سرمایش بايل بهمخزن داده شود تا

دما در Y
F. FrM
 ثا مiخلوط بخار Tب از گرمكن بهصورت مابي اشباع در V.. kPa خارج شود. با فرض
 نرخ جريان بخار لازم بهازای هر كيلوگَرم مايع مادون سرد ورودى را مساسبه كنيد.
 وكيفيت ، ه درصد در يكت دستگًاه جريان دائم Tد اياباتيكت مخلوط ميشو د. دما ياكيفيت مخلو ط خروجى را مداسبه كنيد.

 صورت مىگيرد كاملاُعايق است. حاللت جريان خروجى را
 يكت فرآيند جريان دايٌم آدياباتيكت فشار ثابت مشخلوط مىشود و توليد جريان خروجى بشار در F F YVM و بايد تا سرعت m/s . . 9 منبسط شود. سطع مقطـع جريـان خروجـى برايى دبـى جريـان . $\mathrm{Y} / \mathrm{Kg} / \mathrm{s}$

 باشلد، كار لازم را محاسبه كنيد.

 / 7 / kg/s

خفيَى منبسط مىشود. حالت نهايى بخار آب را تعيِن كنيل.
|l| kg P-YاM
 و با سرعت ناهيزى وارد مشعل مىشود، مىتوان فزض كرد محصولات استراق داراى خواحّ مشابهى با هوا باشل. با فرض رفتار گاز ايدهآل و مشعل عايق، دمایى گازها را مساسبه كنيل.براى اين مـاسبه انتالِى هوا و سوخت ورودى را در Y Y Y برابر صفـر درنظر بگيريد.

 را برسسب liters/min بهدست Tوريد.
F.rrM و V.. kPa (7 $\Delta^{\circ} \mathrm{C}$ بهراسيت جريان مىيابد. هنگًامى كه نشارها در دو محفظه برابر مىشود شير بسته مى شود. فشار و دماى نهايع را براى شوا در هر محفظه حساب كنيد. فرضهاى لازم جهت حلّ مــآله را مشـخّص نمايدد. عاين

شكل مسأند MrM

ترموديناميك

اكسيزٔن در F-r\&M
 كاهش يابلد. چه مقدار اكسيزن برسسب kg تخلنيه مى
 مىشود. در حين يك فرآيند انبساط، بشار Tب انتاليى به مقدار Y / / / MJ/kg برایى يكت نرخ جريان 1 kg/s 4 جه سطح مقطع جريانى در ورود مورد احتياج امست F_ Y M M يكسان Y liters و بهتر تيب جُر از هوا و هيدرورُن است. دو محفظه بهوسيله يكت بِستون و IF. kPa بدون اصطكاكك كه عايق مىباشد از هـم جدا مىشود. ابتد|هر دوگًاز در فشار
 ديوازههأى محفظه بهجز سطحى كه از آن بههو! حرارت داده مىشود، عايق استى. دماى نهايى هوا را بحاسبه كنيد.

شك

 مشزن باز مى شود و هوا|جازه مى يابدكه بهآهستگگى خارج شود بهطورى كه دماى مشزن در

حر ارت جذب شده بهو سيله هخزن را محاسبه كنيد.

F.rAM
 داخل يكت جعبه عايت صوزت مسىگـرد. اگردبى جريـان آب ورودى در Y . Y/Y kg/s F_r AM و $1 \Delta \mathrm{kPa}$ و وسرعت Y . ${ }^{\circ} \mathrm{C} \mathrm{C}$
 دبى جريان جرمى g/s . 1 جقدر بايل حرازرت داده شود؟؟ برای شرايط داده شـده، سطع مقطعهائ جريّن ورودى و خروجى جقدر است؟

هوا F-F.M

 آدياباتيك شبه ساكن باشد، نرخ جريان جرمى هواى لازم را محاسبه كنيد. اگر لوله هواى وزودى \mid قطر داشته باشد، سرعت هو اثى ورودىى را محاسبه كنيد. F_F|M تخليه در نشار اتمسفر صورت مىیگيرد و فرآيند توربين آدياباتيكت و شبه ساكن فرض مى شود. همحخنين مىتوان فر آيند در توربين را جريأن دائم حالت دائم فرض كرد. سرعت جريان وزودى ال ا است. قطر لوله ورودى را محاسبه كنيد اگر تدرت خروجى توربين kW

 محاسبه كنيد.
F. FrM

 میاسبه كنيد.

يكت زياله سوز شهرى برای سوزاندن زباله كه دارای انرزى شيميايى داخلمى مـتوسط
 هوا قبل از ورود بهزبالهسوز استفاده مىشود. ساختـان داخلى زبالهسوز اجازه مىدهد كه بهعنوان آبگر مكن فشار بالَا برایى يكك نيروگاه مطابق با شكل نشان داده شـده، به كار رود.
 . فرض كنيد كه گازهایى داغ مانند يكى گاز ايلدهآل $T_{6}=1 \Delta .{ }^{\circ} \mathrm{C}, T_{5}=r \Delta{ }^{\circ} \mathrm{C}$ رنتار كند و IF kg جهت سو ختن يكت كيلوگرم زباله يا هر كيلوگرم از سوخت كمكى

[^2]جريان ورودى و خروجى را براى دبى جريان $1 / \mathrm{Kg}$ (P محاسبه كنيد.
 و

 آدياباتيكت فرض مىشود. جهت توليد قدرت خروجى در يكت ساعت، مخزن با با جـه
 هنگامى كه فثار مخزن به V . . RPa میرسل، توليد توان متوتف گَردر.

H_ HMM A M
 هo ه هr

 درحين اين تر'آيند حرارت اضانه مىشنود تا دما ثابت باتى بماند. مقدار حرارت لازم را

F FQ

> ترمود يناميلك

شامل
 سيلندر مى شود تا فشار به 1 / 1 برسلد در اين لـحظه شير بـته مى شود. مقدار جرم بخار 'آب اضطافه شدهه حالت نهايى بخار آب در سيلندر و دماى نهايى هو'را محاسبه كنيد.

شك بـل مسأله

F- •M سيّال atm
 Y $\mathrm{C} \Delta \mathrm{m}$
 و / / MPa F- MاM
 | محاسبه كنيد. هیه نرخ جريانى جهت توليد كار خروجى Fg/s

هىرسد. دماى نهايیى در اين فر آيند و تغير حجم را بيداكنيد.

F- FrM

 م F- AFM

بطوركامل از محيط عايق شده است. شيرى برروى مخزن باز مىشود و نيتروزُن خذارج

 ورودى لازم زا محاسبه كنيد. فرخيات را مشخّضص نمايـد.
F_د M مى شود كه نمونه بخار آب از طريت محفظهاى كه كميت اندازهگيرى شــدهُ حـرارت الككريكى (معلوم) بهكار مىرود، جريان مىيابد. نرخ جريان بخار آب خروجمى از كالر يمتر
 / / g / s شُرايط خروجى $T=1 \wedge \cdot{ }^{\circ} \mathrm{C} \mathrm{g} p=10 \cdot \mathrm{kPa}$ اندازهگيرى مىشود. كيفيت بخار آب رادر شرايط MPa r محاسبه كنيد.

F_DVM
 محاسبه كنيل. سيس فرض كنيل كه سيستم هيُابهى فر آيند جر يان دائمى بين همان حالات انتهايى را طلى كند و همهخنين دجار افزإيش انرزى جنبشى kJ ه بشود در حالى كه همان مقدار حرارت را از دست بدهد. كار خروجى برایى اين فر آيند را تعيين كنيد. F.
 دارد. شيرى باز مىشود و اكسيزل وارد مخزن مىشود تا جرم مخزن ه برابر جرم اوليه آن شود، دراين لحظه شير بسته مىشود. مخزن آدياباتيكك است. فنار و دماى نهايى در مخزن را محاسبه كنيد.

مـراجــع

1 Hatsopoulos, G. N., and J. H. Keenan: "Priniples of General Thermodynamics," John Wiley \& Sons, Inc., New York, 1965.
2 Reynolds, W. C.: "Thermodynamics," 2d ed., McGraw-Hill Book Company, New York, 1968.
3 Sears, F. W.: "An Introduction to Thermodynamics, The Kinetic Theory of Gases, and Statistical Mechanics," Addison-Wesley Publishing Company, Inc., Reading, Mass., 1950.
4 Van Wylen, G. J., and R. E. Sonntag: "Fundamentals of Classical Thermodynamics," John Wiley \& Sons, Inc., New York, 1965.
(a)

قانون دوّم ترموديناميك

م 1

در فصل اول دريافتيم كه قانون دوم تر موديناميكت به " جهـت " فر آيندهاث مبادله انرزّى

 متمايز است.كاز، نيروى عامل در طول يكت مسافت است و تأثير متقابل بين سيستمها را معرفى مىكيند.

 نوعهاى معادز يكديگر نيستند. در حقيقت از معادله سيكلى زير استنباط مىيشود كـه آنهـا معـادل يكديگرند.

$$
\begin{equation*}
\oint d^{\prime} Q+\oint d^{\prime} W=0 \tag{0-1}
\end{equation*}
$$

تانون دوم ترموديناميكث اين حقيفت راكه حرارت وكار معادل هم نيستند تايِد و مآلا يكت سـلسله روابط

صصزى زاكه جهت تكميل قانون اول ترموديناميكت در بررسى سيستمهاى ترموديناميكى بكار برده مى شُود. برقرالـ مىكند.

O-Y تشريح فيزيكى قانون دوم

است. بهمنظور سهولتا اين پديدهها دوباره بيان مىشُوند.
1 - حر'رت از دماى بالا بهدماى پاسِن بدون تأثيرات ديگر جريان مى يابلـ اين بلدين معنـى
 و نه بر عكس.
 سخلو ط خو اهند شد، اما موقعى كه مخلوط شوند: خود به خود جـدا نخو اهند شد.
 غيرمدكن است كه عكس اين عمل اتفاق بيفتد، يعنى با انزايش إنرزّى بهمقاومت از طريق
گرمايشن ، باطرى خودشى را شارز نمى كند.

F \& ـ امكان ندارد ماشين يا دستگاهى ساخت كه بهطوز مدام كار كند؛ در سالى كه تنها از يكت
منعع حرارت دريافت كند و بههمان اندازه كار تولِيد نمايد.
 با تجربه زوزمرّه است. در ابتلا اين طور بهنظر مىرسد كه نتيجه مستقيم اصلِ بقاى انرزّى است. اين

در عبارت جهارم، ملاحظات قدرى مجردند، اما هنوز در حيطه تجربه معمولى تيراز دارند.
انتظار نداريم كه بتوان مو تورى ساخت كه در فو آيندهاى سيكلى بهطور مداوم كار كند و بتواند به آسانى از منبع در دسترسى مانند اقيانوس يا زمين انززى اخخذكردهو مقدار معادلى كار مكانيكى توليد كند. در حقيقت اگر امكان ساخت هنين موتورى وجود داشت، خيلى خوب بود زيرا تنها مىبـايـد آن را بهاقيانوس متصل و كل قلرت مورد لزوم را براىى آينده تأمين كر د. جنين مو تورى بهماشُين حركت دائـم از نــوع دوم موسـوم است زيرا موفق مىشودكه بهطور دائم حرارت يكت منبع را به كار تبديل
 توليد كند.
براساس اين بـحث مختصر، مىتوانـيم بـهطور آزمـايشى نـتيجه بگـيريـم كـه تـانون دوم ترمو ديناميك دارإى تأكيد اساسي بر شناسايى ماهيت يكت طرنه انتقال حرارت و انواع خاص تبديل انزرّى مىباشد.
هدن كلى ما در اين نصل گُترش تحليلى و پذيرفتنى تانون دوم ترموديناميك است كه براساس بحث ماكروسكبى عبارت F fا بهعنوان اصل تجربى بذيرنته است. اين. تحليل ماكروسكيى ساختمان ميكروسكيى ماده را ناديده مى يندارد. خوانندگانى كه تر موديناميكت ميكروسكيى ارائه شده در
 مربو ط كر د، اما حهنين مطلبى براى فهم اين تسمت لازم نيست.

' بيانهاى كلاسيوس وكِلوين - بیلانكـ

دو بيان يذير فته شده متداول فانون دوم ترمودينأميك مربوط بهعبارات اول و چهارم مىشود.
بيان كلاسيوس : محال است دستگاهى ساخته شو كهه در يكت سيكل (پَرخه) عمل كند و تنها نقش آن انتقان حرارت از يكت منبع سرد بهيكت منبع گرمتر باشد. بيان كلوين ـ پلاتك : محان است دستگاهى ساخته شود كه در يكت سيكل كار كند و جز توليد كار و انتقال حرارت تنها با يكك منبع حرارتى، نقش ديگرى دانشته باشلد.

اين بيانها در شكلهاى ا_ـه و r_ه_ نشان داده مىشود.

شكل O-1 محال است دستغاهم ساخته شود كه در بك سيكل كار كند و تنها نقش آن انتقال حرارتاز بك منبع سرد بهيك منبع مرمتر باشده.

فرآيندها و سبكلهاى بركشت بذير
اكنون، مسير ايدهآلى از حالتها را بهنام فرآيند بركشت بدير در نظر مىگيريمـ نـر آيـندى

 همان طور كه در نصل ا بحتث شد شبه ساكن با توالم حالات تعادلى بناميم. براى بيـداكردن اين كه آيا

شُكل انتقال حرارت تنها با يك منبع حرارتى، نقش ديعرى داشته باشد.

اين فر آيند برگشت یذير است، سؤال زير را مطرح مىكنيم. آيا مـكن است كه فرآيند در جهت عكـس بدون تأثيرات تابل مشاهده اضافى در سيستم يا محيط صورت تيرد؟ بهعبارت ديگر آيا مىتوانيم گاز را بهحالت اوليهاش متراكم كنيم و دتيقاً هـان اندازه كار و حرارتى را كه بههنگام انبساط خارج شده برگردانيـم؟ ثابت مىشود كه فر آيند شبه ساكن يكك فر آيند برگشت يذير است. يكك معيار عمو مى براى برگشت بذيرى مىتو اند بهصورت زير بيان شود.

الكر بركشت ڤرضى يك ڤر آ يند ترموديناميكى را بتوان طورى انجام دادكه قانون دوم ترمودِيناميك را نقض كند،كفته مـشود كه فرآيند بركشت لذير بوده است .

 انتقال حرارت با اختلان دماى معين و تبديل كار بهحرارت درحين يكت فـرآيـند سـيكلى هـر دو فرآيندهاى برگشت نايذيرند. برای رسيدن بهاين نتيحه، فرآيندبركشـت نا بلذير را بهصورت فرآ يندى

با حركت دائم از نوع دوم موسوم است. اصطلاح نوع دوم بهخاطر اين است كـه كـه تـانون دوم ترموديناميك را نقض مىكند.

موتورهاى حرارتى سيكلى

در اين جا ممكن است اندكى از بحث دور شويم تاموتور حـرارتى سيكلى را تشريح كنـيم.
 كرد. كار الكتريكى مىتواند بهدستگاههاى بيثمارى تدرت بدهد و كار مكانيكى مى تواند اتومبيل، ماشينها و غيره را بهحركت درآورد. حرارت خيلى مفيد نيست و هدن موتور حرارتى تبديل حرارت بهكار است. كلمه سيكل و فر آيند سيكلى براى فرآيندهاى تبديل انرزیى مورد نظر كه مى توانند بهطور ملاوم عمل كننده به كار گرفته مىشود. بوتور احتراق داخلى يكت موتور سيكلى است كه بهطور مرتب سو خت و هوا را مىمكد و بـس از تراكم؟ منخلوط را مسترق كرده و در حالى كه محصوو لات احترات را بهمحيط تخليه مىكند، كار خروجى توليد مىنمايد. سيكل تلرت سيكلى است كه كار خالص خرو جرا توليد مىكند (با مقدار حرارت خالص ورودى) و سيكل تبريد شاسل كار خالص وزودى و حرارت خالص خروجى مى.اشد. با معكوس كردن تمام مقادير جريان حرارت و كار يكت سـيكل قـدرت برگُشت يذير را مى توان بهيكت سيكل تبريد برگثشت بذير تبديل كرد. براى تعين جهات و علامات مناسب براى مقادير كار و حرارت بهجاى يكت قرارداد علامت خـثكت بهطرحوارو هنـاسب استـــاد خواهيم كرد.

معادل بيانهاى قانون دوم

معادل بيانهاى كلاسيوس و كلوين - يلانكت را مى توان بسرعت همانند شكل هـ ه نمايش, داد.

 ثانون دوم ترموديناميك اين نوع موتور را منع نمىكند. اگگچجه نتيجه حامله از اضافه كردن موتوز حرارتى در شكل بب هـه برابر است با اينكه هيع حرارت خالصى با منبع T_{2} مبادله نمىشود و اين آرايش معادل با شكلى ج هـها مىباشد. موتور در شكل ج جـه درست همان دستگاهى است كه بيان كلوين - „لانكت را نقض مىكند. بنابراين نشان دادهايم كه نقض بيان كلاسيوس بهنقض بيان كلوين -

. شكل "

قـهرارداد علامت براى حرارت وكار
در بحث راجع بهةانون اول ترموديناميكت و موازنه انرزّى، ما علامنى قـراردادى راد را بـراى

 انزثى خارج شُهه از سيستم + انورى ذخيره شده در سيستم = انوزى اضاذه شـده بهدبستم

با زسم نلشها در جهات خاصى تو جهتان را به كميتهایى انرزّى مورد علاته الز نظر عمل جلب مىكيم. در سيكل تدرت، منظور توليد كار خروجى در اثر دريافت حرأرت در دماى بالا میى اشاشد.

 حرارت بهكار قرار مىدهد اما اين محدوديتها، نظريه تبديل انرزّى را بههيج طريقى لغو نمى يكند. همان

طورىكه جندينبار تأكيد كردهايم، تحليل تبديل انزرىى اساساً يكت روش حسابدارى است و هرگًاه
 ترموديناميك گَسترش ميايبد، خواننده بايد بر فهم بديده فيزيكى درگير تعمق نمايد، با اين تعمق قرارداد علامت خود بهخود نتيجه صسيع مىدهد.

D-7 دماى توموديناميكى
فرض كنيد كه دو موتور حراردتى برگثشتبذير در اختيار داريم كه هر آيندهاى سيكلى بين منابع حرار تى مطابق باشكل الف ها هـه عمل ميكنتد. بازده حرارتى يكت مو تور حرار تى بهصورت زير تعريف مىشود :

برطبت اين تعريف، "انرزى هزينه شده "برابر با انرزى اضافه شده در دماى بالا مى بانشد زيرا اين حرارت

مى بايد بهوسيله مقدارى سوخت تأمين شود. بدين ترتيب،

$$
\begin{equation*}
\eta_{t}=\frac{W}{Q_{2}} \tag{-}
\end{equation*}
$$

(الف)

هـتيم اثبات كيم كه آنهابازده يكسانى دارند. برايى نشان دادن اين مطلب بهطور آزمايشى فزض مىكيم كه موتور Aداراى بازده بيشترى از موتور B باشد و ترار مى دهيم :

$$
Q_{24}=Q_{2 B}
$$

$$
W_{A}>W_{B}, Q_{1 A}<Q_{1 B}
$$

$$
W_{A}-W_{B}=Q_{1 B}-Q_{1 A}
$$

 مىتواند بهحورت زير نوشته شود :

$$
\begin{equation*}
\eta_{t}=\frac{W}{Q_{2}}=\frac{Q_{2}-Q_{1}}{Q_{2}}=1-\frac{Q_{1}}{Q_{2}} \tag{-}
\end{equation*}
$$

 (هاهياشد، نتيجه میگيريمكه نسبت حرادتى

$$
\begin{equation*}
\frac{Q_{1}}{Q_{2}}=f\left(T_{1}, T_{2}\right) \tag{-}
\end{equation*}
$$

 مىدانيم كه نسبتهاى حرارتى توابعى از حدود دمايى سيكلهاست.

$$
\frac{Q_{1}}{Q_{2}}=f\left(T_{1}, T_{2}\right)
$$

$$
\begin{aligned}
& \frac{Q_{3}}{Q_{2}}=f\left(T_{3}, T_{2}\right) \\
& \frac{Q_{1}}{Q_{3}}=f\left(T_{1}, T_{3}\right)
\end{aligned}
$$

با تركيبكردن اين روابط :

$$
\frac{Q_{1}}{Q_{2}}=f\left(T_{1}, T_{2}\right)=\frac{Q_{1}}{Q_{3}} \frac{Q_{3}}{Q_{2}}=f\left(T_{1}, T_{3}\right) \times f\left(T_{3}, T_{2}\right)
$$

$$
\begin{equation*}
f\left(T_{1}, T_{2}\right)=f\left(T_{3}, T_{3}\right) \times f\left(T_{3}, T_{2}\right) \tag{-}
\end{equation*}
$$

شكل S-Y دماى ترموديناميكى

$$
\begin{aligned}
& \\
f\left(T_{1}, T_{3}\right) & =\frac{\phi\left(T_{1}\right)}{\phi\left(T_{3}\right)}
\end{aligned}
$$

$$
f\left(T_{3}, T_{2}\right)=\frac{\phi\left(T_{3}\right)}{\phi\left(T_{2}\right)}
$$

$$
\begin{equation*}
\frac{Q_{1}}{Q_{2}}=\frac{\phi\left(T_{1}\right)}{\phi\left(T_{2}\right)} \tag{-}
\end{equation*}
$$

البّه تعدادى از توابع دما مىتوانند در اين معادله صدق كنتد. تابع دما بهصورتِّ زير بهوسيله كلوين يـثـنهاد شد.

$$
\frac{\left|Q_{1}\right|}{\left|Q_{2}\right|}=\frac{T_{1}}{T_{2}}
$$

و معادله (4ـه) بهعنوان تعريف مقياس دماى ترموديناميكى مطلت بهكار مىرود. بازده مـوتور

$$
\begin{equation*}
\eta_{t}=1-\frac{T_{L}}{T_{H}} \tag{-}
\end{equation*}
$$

T دماى منبع سرد را مشخّص مىيكند و T_{H} اندازهگيرى شده بوسيله ترمومتر گاز ايدهآل هم كه در نصل ا تشريع شده مربوط مىشود.

آرايش شكل ^ــه رادر نظر بگيريد. مقدار حرارت حرارتى برگثتتبذير منتقل میى شود و كار
 يك سيستم، كل كار خروجى ديرى

$$
d^{\prime} W=d^{\prime} W_{R}+d^{\prime} W_{E}
$$

براى يكك فر آيند با موتورى كه داريم :

1- The Inequality of Clausius

$$
d^{\prime} Q=d U+d^{\prime} W_{E}
$$

بنابراين كار كلى خروجمى برابر است با :

$$
d^{\prime} W=d^{\prime} W_{R}+d^{\prime} Q-d U
$$

$$
\oint d^{\prime} W=\oint d^{\prime} W_{R}+\oint d^{\prime} Q-0
$$

شكل D-A نمودار ير'ى البات نايرابرى كلاسيوس

$$
d^{\prime} W_{R}=d^{\prime} Q_{R}\left(1-\frac{T}{T_{R}}\right)=d^{\prime} Q\left(\frac{T_{R}}{T}-1\right)
$$

بنابراين معادله (1 (1-1) براي سيكل كامل بهصورت زير درمى آيد:

$$
\begin{equation*}
\oint d^{\prime} W=\oint d^{\prime} Q\left(\frac{T_{R}}{T}-1+1\right)=T_{R} \oint \frac{d^{\prime} Q}{T} \tag{-}
\end{equation*}
$$

ترموديناميك

آرايشن شُكل ^هـ نمى تواند كار خروجى خالص توليلد كند، زيرا بيان كِلوين - يلانكك از قانون دوم ترموديناميكت نقض میشود. بنابراين تنها راهى كه أين آرايش مىتواند عمل كند، يكى كار سيكلى ورودى : يكت جر يان حرارت سيكلى بهمنع مىياشد. بهصورت رياضى اين بدان معنى است كه : $\oint d^{\prime} W \leq 0$
d'W

$$
\begin{equation*}
\oint \frac{d^{\prime} Q}{T} \leq 0 \tag{-}
\end{equation*}
$$

زابطه دأده شده در معادن () F ا نا نابرابرى كلاسيوس ناميده ميشود.

بائد و فرض كنيد كه :
$\oint d^{\prime} W<0$

$$
\oint d^{\prime} W>0
$$

اما اين بر طبت قانون دوم غيرممكن است زيرا يكك موتوز حركت دائم از نوع دوم بوجو? مى آيد. نتيجه

$$
\begin{equation*}
\oint\left(\frac{d^{\prime} Q}{T}\right)_{r e \nu}=0 \tag{0-17}
\end{equation*}
$$

تعريف ماكروسكيى آنتروهى

از نظر رياضى، هر كميتى كه بتواند بهصورت يكت ديفرانسيل كاملا بيان شود يكت خاصبيت يا

تابع نقطهاى' يا تابعى از حالت سيستم است. شرط رياضى برایى يك ديفرانسيل كامل اين است كه انتگرال سيكلى ديفرانسيل برابر صفر باشد يعنى اگر

$$
\oint d x=0
$$

بنابراين x يكى خاصيت براي ناحيهاى كه انتگرال سيكلى گَرفه شده مى باشد. برطبق اين تعريف معادله (

$$
\begin{equation*}
d S=\left(\frac{d^{\prime} Q}{T}\right)_{r e v} \tag{-}
\end{equation*}
$$

S مىباشد. توجه كنيد كه آنتروبى تنها براى فرآيندهاى برگثتتيذير تعريف شد و تغيرير در آنتروبى مىتواند بهصورت زير محاسبه شود :

$$
\begin{equation*}
\Delta S_{=}=S_{2}-S_{1}=\int_{1}^{2}\left(\frac{d^{\prime} Q}{T}\right)_{r e v} \tag{-}
\end{equation*}
$$

تنها تغيرات آنترويى بهوسيله اين روابط تعريف مىشود. ما هنوز يك مقياس مطلق براى آنترويى برترار نكردهايم.

 نايذير مىباشد طورى كه كل فر آيند برگثت نابذير است. از نامعادله كلاسيوس داريم.

$$
\begin{equation*}
\oint \frac{d^{\prime} Q}{T}=\int_{1}^{2} \frac{d^{\prime} Q_{1}}{T}+\int_{2}^{1} \frac{d^{\prime} Q_{R}}{T}<0 \tag{-}
\end{equation*}
$$

از آنجايى كه سيكل برگثت نايذير است از علامت نامساوى استفاده كردهايم. با ملاحظه اين كه

$$
\int_{2}^{1} \frac{d^{\prime} Q_{R}}{T}=S_{1}-S_{2}
$$

معادله (9 ا ـه) میتواند بهصورت زير نوشته شود.

$$
\int_{1}^{2} \frac{d^{\prime} Q_{I}}{T}+S_{1}-S_{2}<0
$$

$$
S_{2}-S_{1}>\int_{1}^{2} \frac{d^{\prime} Q_{I}}{T}
$$

شكل هـ

بس بطور كلى مىتوان نوشت :

$$
\begin{equation*}
S_{2}-S_{1} \geq \int_{1}^{2} \frac{d^{\prime} Q}{T} \tag{-}
\end{equation*}
$$

كه تساوى براى فرآيند برگشتيذير است و ناساوى برای فرآيند برگثت نايذير مىاشاشد. معـادله

اگر فزTيند يكت فرTيند آدباباتيك برگشت بذير باشد، تغير آنتروبى صفر خواهد بود و ما

$$
\begin{align*}
& \text { فرT } \tag{-}
\end{align*}
$$

 آنترويى مىيايد ازدياد يِداكند. بهعلاوه فرض كنيد كه با يكت سيستم منزوىی (ايزوله) روبهرو هـتيمَ.

$$
\begin{equation*}
\Delta S_{ى, ~} \geq 0 \tag{-}
\end{equation*}
$$

يا آنتر وبى سيستم منزوى بايد در صور تى كه تغييرات برگثـت نابذير در داخل آن صورت گيرد افزايش يابد. در صورتى كه تنها تغيرات برگثتـيذير در سيستم منزوى صورت گيرد آنترويى ثابت بـاتى مىیماند.
هيح فرآيند واقعى برگثيت بذير نيست. تمام انتقال هرارتها با اختلاف دماى معين صورت ميگيرد. تأثيرات اصطكاكى هميشه در المواى فز آيندهايى كه شامل كار برگشت نايذير است وجود دارد. بخاطر اين واقعيات مجبوريم نتيجه بگيريمكه آنترويى جهان (با فرض يكك سيستم منزوى) هميشه در حال افزايش مىباشد. اين فرض كه جهان هميشه با " آنترويى بر مىشود " يكت موضوع متافيز يكى است كه مورد تو جه زياد فلاسفه و ـحكـاى الهى بوده است. اين مطلب زياد جاى نگـرانى ندارده، زيرااستمالاً تا مدتها بر مسائل مهندسى تأثيرى نخواهلد گذاشتت. آنتر ويى خخاميتىاست كهيامعادله (A_ V) تعريف مىشود. تغيرات آن مى توانداز راه معادله

آنترويك، يك خخاصيت ترموديناميكم
بحث بيشين نشان داده است كه آنتروبى يكت خاحيت سيستم است. بدين تر تيب آنترويى مىتواند بر حسب خواصّ ترهوديناميكى ديگر بيان شده، درست بهمانند انتـالِى و انـرزى داخـلـى جدولبندى شـود در حقيقت آنترويى بهصورت تابعى از فشار و دما برايى مواد مختلف جدولبندى مى شود. خواصّ داده ثـده در ضميمه مثالهايى از خنين جداولى استى است

فر آ يندهاى بركشت پذير آدياباتيك و دما ثابت

$$
\begin{equation*}
Q \text { Q } Q=T \Delta S \tag{-}
\end{equation*}
$$

نمودار T-S و فرآ يندهاى بركشتنايذير

از معادله ()

 هر حهه افزايش آنترو يهى بيشتر باشد درجه بركشتنايذيرى بز زلتر است.

است يعنى از يكت سلسله حالتهاى تعادلى تشكيل شده و مى توانيم حالت سيستم را در هر مرحله از طول

 صر فنظر از تحليل ترمود يناميكي متعارف تعين شود و معهو لاً بهصورت مبحثي در پديده انتقالـ دز

 خطط سايهدار تر سيم مىشود، جون از يكت سلسله حالات غير تعادلى تشكيل شده و بدين ترتيب برزوى نمودار خو اصّ ترموديناميكي حالات تعادلى دقيقأ قابل ‘رائه نِــــتـ.

- ا

 دزنظر گرفته شود، افزايش آنتروتى براي جمع آنها مشاهلده خواهد شد. اگگر افزايش كار بهصورت

 نيروى F نهايتاُ بهحوزت حرارت Qدرسطع يا اتمسفر هحيط تلف مىشود. دوباره نمى توانيم وضعيت

 عليه مقاومت اصطكاكى ديوازه عبور دهد و ما نمى توإنيم به تأثير يكسانى با افزايش حرارت بهلواله دست يانيم.
 حدودى برگشت نايذير خو اهذبود. تمام فرآ يندهاى واقعى برگشتنايذيرند. بعضى از آنها بيـتر از

ديگران برگشت نايذيرند. بعداً درخواهيم يافت كه فرآيندهاى برگشت يذير خاصى معرن بـهتوين حالات ممكن براى دستگاههاى تبديل انرزى و توليد قدرت مىباشنلد و بنابراين مورد مطالعه و توجه ما ترار مىگیرند. درجهاى كه ما را تأدر مىكند تا بهوسيله جنين فرآيندهاى ايدهآلى بهموخـوع نزديكك
 بستگى دارد.

شكل \mid | اه
|

نشان دادهايمكه Tنترويى يكي از خواصّ سيستم است. Tنترويى يكت خاصيت گسترده شبيه
 واحلد مُول سيستم محاسبه شود، بهطورىكه :

$$
S=m s=n \bar{s}
$$

براى مواد خالص مقادير آنترويى مخصوص ممتواند با انتاليى و حجممخصصوص و خخواصّ ترموديناميكى ديگُر مورد علاته، مطابق با جداول گُوناگونِ ضميمه، جدولبندى شود. در ناهيه اشباع مايع - بنخار آنترويى مخصهوص از خواصّ اشباع و كيفيت بههمان ترتيب خـواصّ ديگـر بـهدست مى Tيد، يعنى :

$$
s=s_{f}+x s_{f g} \quad s_{f g}=s_{g}-s_{f}
$$

$$
s=(1-x) s_{f}+x s_{g}
$$

ديدهايم كه نهو دار دما - آنتو ويى وسيلهایى مفيد براى مطالعه فر آيندهاى ترموديناميكى است و نمودار S-T برايى يكت ماده خالص، مخصوصاً موتعىكه سيكلهاى قلدرت واقعى را مطالعهمىكنيم؛ مفيد خواهد بود. شكل

$$
\begin{aligned}
& \text { شكل ז| }
\end{aligned}
$$

نهودارهايم برایى مواد ديگً مىباشد. اين شكل خط اشباع را بهصورت منیني گُنبىى شكل بانقطه بحرانى در رأس آن، خطط مايع اشباع در طرف هب و خط بـخار اشباع در طرف راست نشان مىدهد. تمام سطع زير گَنبد ناحيه مشانلوطتر با خطـوط مشُخْص شـده مربـوط بهكيفيت ثابت مىباشد. ناحيـه
 مىباشد. در دماهاى بالاتر از نقطه بحرانى تمايزى بين مايع و بشخار نمى توان تائل شمد، همختين بعضى از
 نشان دهل. بايد تو جه داشت كه خط فشار ثابت در ناحيه الشباع يكت خط دماى ثابت نيز هسـ.

نـودار مولير يكك نقشه انتاليى برحسب آنترويى مىباشد و اين نقئه برایى بـارآب در شكل A أ f

شكل

 ثابت در ناحيه داغ مشخّص شده است. شكل كلى خطوط نشارثابت نيز نشان داده مىشود، نمودار در ضميهه احهولأ شامل نواحى اشباع و داغ است، هون اين نواحى براى محاسبات واتـعى خـيلى موردتوجه است.
فرمولهاى محاسبه Tنترويى برایى جامل و بخارTب زير ()

「|

 بهشرطآنكه فر آيند مناسب برگشتـيذيرى بتوان بين اين حالات تصور كرد. يكت كاز ايدهآل مثال خوبى برای محاسباتى كه بتوإن انجام داد، الرائه مىكند. خواننده بهخـاطر مـى آورد كـه بـرايى يكـ
 ممكن است بهصورت زير نوشته شود :

$$
\begin{align*}
& d u=c_{v} d T \tag{-}\\
& d h=c_{p} d T \tag{-}
\end{align*}
$$

$$
\begin{equation*}
d^{\prime} Q=T d s \tag{-}
\end{equation*}
$$

گَاز ايدهآل از نوع ماده تراكمبذير ساده استت و بنابراين مىتوانيـم بنويسيم

$$
d^{\prime} Q=d u+p d v=T d s
$$

[^3]$$
d=\frac{d u}{1}+\frac{B}{T} d u
$$

ا:
$\frac{H}{J}=\frac{\pi}{r}$

$$
\begin{equation*}
d s=\cdot \frac{d T}{T}+R \frac{d v}{r} \tag{-}
\end{equation*}
$$

قّ نتيحه زير رِّ بدهد :
$s_{2}-s_{1}=i_{i} \ln \frac{T_{2}}{T_{1}}+R \ln \frac{v_{2}}{v_{i}}$

$d^{\prime} Q=d h-v d p=T d s$

دوبازه با استف'ده از معادله حالـت Fاز ايدهآل ممراه با معادله ((

$$
\begin{equation*}
d s=c_{r} \frac{d T}{T}-R \frac{d p}{p} \tag{-}
\end{equation*}
$$

$$
\begin{equation*}
s_{2}-s_{1}=c_{p} \ln \frac{T_{2}}{T_{1}}-R \ln \frac{p_{2}}{p_{1}} \tag{-}
\end{equation*}
$$

بدئه اسـت كه تغيرات آنترويى داده شــده بـهوسيله روابـط (. برگثــت يپ يُر مابيِن حالات انتهايى داده شده (آنترویى يكى خاصيت الست• تغيير بيـن دو حالت انتها'يى بايد مستقل از فر آيند بائد. بد بنت تر تيب اين
روابط براتى عر فر آيند گاز ايدهآلى كه بين 'ين سالات انتهايى باشد به كار مىرود.

ايدهآل با گَرماهاى ويزه ثابت بهوسيله رابطه زير نشان داده مىشود.

$$
p v^{y}=\text { const. }
$$

كه
||

- انزايش حرارت بهصورت دما ثابت برگثشتيذير، ab
bc r - 「 r rd $d a ،$ © \ddagger

 شل، جريانهاى حرارت را مىتوان بهصورت زير نوشت :

$$
\begin{aligned}
& Q_{H}=T_{H} \Delta S \\
& Q_{L}=T_{L} \Delta S
\end{aligned}
$$

كار خالص خروجى سيكل برابر با الختلان حرارت اضانه شده Q و حرارت دنعشده Q $Q_{\text {است. }}^{\text {است }}$

$$
W_{\text {net }}=Q_{H}-Q_{L}=\left(T_{H}-T_{L}\right) \Delta S
$$

و بازده حرارْتى سيكل مىتواند بهحورت زير نوشتشه شود :

$$
\eta_{\mathrm{t}}=\frac{W_{\text {net }}}{Q_{H}}=\frac{\left(T_{H}-T_{L}\right) \Delta S}{T_{H} \Delta S}=1-\frac{T_{L}}{T_{H}}
$$

البته اين نتيجه با معادله (• (ـه) سازگار است زيرا تعريف ما از آنترويى از تعريف دماى مطلق مورد استفاده جهت رسيدن بهمعادله (• ا

شكل \quad نمايش ترسيمى سيكل كارنو
(الف) نمودار T-S (ب) نمودار
 داخل مربع مستطيل روى نمودار T-S مىباشل. با تعميم اين بيان بسادگى مى تواذ گففت كه كارخالص خروجیى هر سيكل بركشت یذيرى برابر با سطع محصور شده در نمودار T-S مىباشد. اگر سيكل كارنو با هوا ياگاز ايدها

 سيلندر - يستون، در هردوى اين فر آيندها برروى سطح يستون كار انجام مى شود و بنابراين يكن كار خروجحى موجود است زيرا نيروى وارده بريستون درهمان جهت تغيير مكان عمل مىكند. در امتداد سيكل، c-d فر آيند دفع حرارت بهصورت دماثابـت است و d-a تراكم آنترويى ثابت استـ در در اين دو فرآ يند آخر بر روى گاز كار انجام شده است. براثى يكت مكانيزم سيلندر - يستون، كـار خالص خـرورج
 T-S

مثال ا 1 تغيير آنترويى در يك لر آ يندترمايش

 گَرمايش در فنار ثابـت صورت مىگيرد، تغير دز آنترويى را محاسبه كنيد.

حـــل : حلّ اين مسأله شامل روش ساده انتخاب مقادير آنتروبي از ججاول بـخار آب است. كل تغير در آنترويى برابر استـ با

$$
\Delta S=m\left(s_{2}-s_{1}\right)
$$

در psia • هايع اشباع شده Btu/bm. ${ }^{\circ} \mathrm{R}$.號

$$
\Delta S=(5)(1.7909-0.4113)=6.898 \mathrm{Btu} /{ }^{\circ} \mathrm{R} \quad(13.10 \mathrm{~kJ} / \mathrm{K})
$$

مثال

 بهازایى هريوند جرم در اين فر آيند محاسبه كنيد. حـــل : برا'ى نر آيند دماثابت برگشت هـذير داريبم:

$$
Q=T \Delta S
$$

و براى تبخير، اين زابطه بهصوزت زير در مى آيد.

$$
Q=T\left(s_{g}-s_{f}\right)=T s_{f g}
$$

براى حالات اشباع د; KPa . . KP ، از جداول بخارآب بهدست مى آوريم:

$$
T=120.2^{\circ} \mathrm{C}=393.35 \mathrm{~K}
$$

$$
s_{f g}=s_{g}-s_{f}=7.1271-1.5301=5.597 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}
$$

بد ين ترتيب، انتقال حرارت برابر است با

$$
Q=(393.35)(5.597)=2201.6 \mathrm{~kJ} / \mathrm{kg}
$$

 در نتيجه سرراست كردن اعداد جلول مى باشدل.

 برای فرآيند بلى ترويكك از فصل ههازم داريم:

$$
p^{v^{n}}=\text { const. }
$$

با به كار بردن رابطه كاز ايدهآل $v=\frac{R T}{p}$ ، اين معادله مى تواند بهصوزت زير نوشته شود. $\frac{T_{2}}{T_{1}}=\left(\frac{p_{2}}{p_{1}}\right)^{(n-1) / n}$

براثى شرايط اين مــأله

$$
T_{2}=(100+460)\left(\frac{50}{15}\right)^{(1.3-1) / 1.3}
$$

$$
=739^{\circ} \mathrm{R}=279^{\circ} \mathrm{F} \quad\left(137.2^{\circ} \mathrm{C}\right)
$$

با جايگگزين كردن اين دما در معادله (Y (Yـه) بهدست مى آيد :
$s_{2}-s_{1}=(0.24) \ln \frac{739}{560}-\frac{53.35}{778} \ln \frac{50}{15}$
$=-0.0159 \mathrm{Btu} / \mathrm{bm} .{ }^{\circ} \mathrm{R} \quad(-0.0666 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K})$

مثال †

 ورودى psia • זو جنبشى مىتوان صرنـظر كرد. تغيرِ آنترويى بهازازى هريوند هوا را محاسِبه كنبد.

. بهطورى كه رابطه به كار بريم

$$
\begin{aligned}
s_{2}-s_{1} & =c_{p} \ln 1.0-R \ln \frac{p_{2}}{p_{1}}=-R \ln \frac{p_{2}}{p_{1}} \\
& \\
s_{2}-s_{1} & =-\frac{53.35}{778} \ln \frac{15}{30} \\
& =+0.0475 \mathrm{Btu} / \mathrm{lbm} .{ }^{\circ} \mathrm{R} \quad(0.1989 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K})
\end{aligned}
$$

 مشال

 حرارت محاسبه كنيد.

حـــل : مى توانيـم هريكت از منابع را بهعنوان سيستم فرعى در نظر بگيريم و بهطور جداگَانه تغيرات آنتروبى آنها را محاسبه كنيم، ستس تغيير آنتروبى جهان از جمع جبرى اين كميتها بهدست مى آيلـ يكـ فر آيند دماثابت براى هر دو منبع فرض ميكيّه. بلدين ترتيب

$$
\begin{aligned}
& \Delta S_{H}=\frac{Q_{H}}{T_{H}} \quad T_{H}=1000 \mathrm{~K} \text { برای } \\
& \Delta S_{L}=\frac{Q_{L}}{T_{L}} \quad T_{H}=500 \mathrm{~K} \text { ى } \\
& \Delta S_{H}=-\frac{1000}{1000}=-1.0 \mathrm{~kJ} / \mathrm{K} \\
& \Delta S_{L}=+\frac{1000}{500}=+2.0 \mathrm{~kJ} / \mathrm{K}
\end{aligned}
$$

> تغيير آنتر ويیى جهان برابر اسـت با

$$
\Delta S_{3 \ll}=\Delta S_{H}+\Delta S_{L}=-1.0+2.0=1.0 \mathrm{~kJ} / \mathrm{K}
$$

طرحوازه برايى اين فُرآيند نُّان مىدهد كه دومنبع در نظرگر فته شُده با هم يكك سـيستم
آدياباتيك را تشكيل مىدهند. فرآيند انتقال حرأرت كه در داخـل ايـن سـيستم مـورت مـى میيرد برگثشت ناينـيـر است جـون شامل انتقـال خـرازت بـا اختـلافل دمـاى معيـن أست. بنابر ايـن مـا يـكـ

تجربه مـىگردد.

مثال

بخار آب بطوربرگثشتِذير و آدياباتيك در يكت توربين از A ه D م منبسط ميشو د. كار انجام شـده بهازاي هر يوند بخار را در يكـ فرآ يند جريان دائم مساسبه كنيد. از تغيرات انرزّى جنبشى صر فنظر كنيد.

حـــل : برايى يك فرآيند آدياباتيكت بركَشتـيذير داريم

$$
s_{1}=s_{2}
$$

معادله انرزى ججيان دائم براى اين فرآ يند بهصورت زير درمى آيد :

$$
\begin{equation*}
W=h_{2}-h_{1} \tag{a}
\end{equation*}
$$

مقادير و و ${ }_{1}$ مـتقيماً مىتواند از جداون بخار آب داغ بهدست آيد.
$h_{l}=1416.6 \mathrm{Btu} / \mathrm{lbm} \quad(3925.0 \mathrm{~kJ} / \mathrm{kg})$
$s_{1}=1.6844 \mathrm{Btu} / \mathrm{lbm} .{ }^{\circ} \mathrm{R} \quad(7.0514 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K})$
اكنون حالت نهايى فرآيند جريانى توسط دو خاحيت زير بدست مى آيد.

$$
\begin{aligned}
& s_{2}=s_{1}=1.6844 \\
& p_{2}=50 \mathrm{psia}
\end{aligned}
$$

بدين تر تيب، ما دوباره با مراجععه بهجداول بخار آب (ججداول داغ) در مىيابيم كه

$$
\begin{aligned}
& T_{2}=315.2^{\circ} \mathrm{F} \quad\left(157.3^{\circ} \mathrm{C}\right) \\
& h_{2}=1192.1 \mathrm{Btu} / \mathrm{lbm} \quad(2773 \mathrm{~kJ} / \mathrm{kg})
\end{aligned}
$$

حالا كار از معادله (a) محاسبه مىشود.

$$
\begin{aligned}
W & =h_{2}-h_{1} \\
& =1192.1-1416.6 \\
& =-224.5 \mathrm{Btu} / \mathrm{bm} \quad(-522 \mathrm{~kJ} / \mathrm{kg})
\end{aligned}
$$

علامت منفى نشان مىدهد كه كار بها هيزهاى نخارجى نسبت به توربين داده مىشود.

و انرزى دسترسنايلير (غيرمفيد)

 بهعنوان خروجى دسنگاه بهدست آوريم. البته مىتوانيم كار خروجى را يا يا با ازدياد هد دياى باري بالايى

 ورودى تهيه كرد كه عملكرد كلى سيستم را تضیيف ميكند. بهاين دليل معمول است كا براي براى عملكرد
 دماى هاه حرارتى " بزرگّى مانند درياجه و يا رود

با دانستن هايينترين دماى دردسترس T_{0} كه با آن مــيتوان حـرارت
 خواهدكرد:

$$
\begin{equation*}
d^{\prime} W=\left(1-\frac{T_{0}}{T}\right) d^{\prime} Q \tag{-}
\end{equation*}
$$

d'Q
 بإينترين دماى در دسترس T_{0} عمل بيكند بهكار تبديل شود. اين كميت بهوسيله انتگرلل معادله

1- Available energy

يُده اسـت. (شـرجم)

3- Heat sink

انرزیى دسترسنايذير تفاوت بين كل حرارت اضأفشده و انرزى دسترس بنير مى.اشد. حالا فرض كنيد كه مى خواهيم تغيير انزرى دسترسيذير سيستمى راكه از حالت ا بهحالت تغير ميكند بهدست Tوريم. بنابراين ازرابطه (هـ

$$
W_{\text {, ركمن ينهx }}
$$

سيس مىتوانيم دوباره Tنترويى را بهخاطر Tورده و بنويسيم

$$
\begin{equation*}
W_{N}=Q-T_{0}\left(S_{2}-S_{1}\right) \tag{-}
\end{equation*}
$$

部

 دسترس نا يذير بهوسيله جمله ($T_{0}\left(S_{2}-S_{1}\right.$ معرفى مىشو 2.

مثال D_Y "اكلال" انرثى دسترس_يذير

دمت داده مىشود؟

$$
W=\left(1-\frac{T_{0}}{T_{H}}\right) Q_{H}=\left(1-\frac{293}{1000}\right)^{(1000)}=707 \mathrm{~kJ}
$$

| . . kJ kJ تسمت " دسترس عذير " v. V kJ

$$
\begin{gathered}
\Delta-Y \text { شكل مثال }=\left(1-\frac{T_{0}}{T_{L}}\right) Q_{L}=\left(1-\frac{293}{500}\right)(1000)=414 \mathrm{~kJ}
\end{gathered}
$$

 دما در شكل ضميهه بهصورت ترسيمى نشان داده مىشود. البته اگر مىشد، تمام انرزى دسترسیذير تلف مىشد.

مثال A-

$$
d^{\prime} Q=c_{p} d T
$$

بنابراين

$$
\begin{aligned}
W_{ر|c| ~}^{*} & =\int_{T_{1}}^{T_{2}}\left(1-\frac{T_{0}}{T}\right) c_{p} d T \\
& =c_{p}\left(T_{2}-T_{1}\right)-c_{p} T_{0} \ln \frac{T_{2}}{T_{1}}
\end{aligned}
$$

 c $c_{p}=\cdot / Y \& \mathrm{Btu} / \mathrm{lbm} .{ }^{\circ} \mathrm{F}=1 \cdots \Delta \mathrm{~J} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}, T_{2}=Y \Delta \cdot{ }^{\circ} \mathrm{C}=\Delta r r$

$$
W_{\text {S. }}=(1005)\left[(523-313)-(293) \ln \frac{523}{313}\right]=5.988 \times 10^{4} \mathrm{~J} / \mathrm{kg}
$$

كل حرارت افزوده شده برابر است با انرزى دسترس يذ ير برابر استبا داشتّه باشيد كه فرآيند افزايش حرارت باعث ازدياد هر دو انـرزى دسـترسيذير و دسترسنـايذير هوا مىگگدد.

 را برایى

حـــل : اين مثال نككه مهـى را نشان مىدهد كه انرزى دسترسيذير سيستم ممكن است با افزايش حرارت يا افزايش كار تغير كند. بهعبارت ديگر، هر تغيرى در حالت سيستم توليد تغيرى در بيشترـين
 هايِن ترين دماى در دسترس بهدست آيل. ابتداكميات عددى موردنياز را شداسبه ميكنيه. جرم هوا برابر است با

$$
m=\frac{p_{1} V_{1}}{R T_{1}}=\frac{(14.7)(144)(10)}{(53.35)(560)}=0.709 \mathrm{lbm} \quad(0.322 \mathrm{~kg})
$$

از قانون اول

$$
Q+W=\Delta U=m c_{\nu}\left(T_{2}-T_{3}\right)
$$

كه W كار انزوده شُده ميباشد. جعبه عايق است بنابراين • Q Q ميباشد و

$$
W=(0.709)(0.1715)(400-100)=36.48 \mathrm{Btu} \quad(38.49 \mathrm{~kJ})
$$

از رنتار تَاز ايدهآل در حجم ثاببت دأريم :

$$
\frac{p_{2}}{p_{1}}=\frac{T_{2}}{T_{1}}
$$

$$
p_{2}=14.7\left(\frac{860}{560}\right)=22.58 \mathrm{psia}
$$

$$
\begin{aligned}
s_{2}-s_{1} & =c_{\nu} \ln \frac{T_{2}}{T_{1}}+R \ln \frac{v_{2}}{v_{1}} \\
& =(0.1715) \ln \left(\frac{860}{560}\right)=0.0736 \mathrm{Btu} / \mathrm{bm} \cdot{ }^{\circ} \mathrm{R}
\end{aligned}
$$

$$
S_{2}-S_{1}=m\left(s_{2}-s_{1}\right)=(0.709)(0.0736)=0.0522 \mathrm{Btu} / \rho \mathrm{R}
$$

حالا براي مساسبه انر ڤُى دسترس يذير، فرآيند برگشت بذـيرى بين حالات اوليه و انتهايى تصور ميكنيم
 گرمايش در سحم ثابت است كه

$$
Q=m c_{\nu}\left(T_{2}-T_{I}\right)=36.48 \mathrm{Btu} \quad(38.49 \mathrm{~kJ})
$$

سِس با محاسبه معادله (A.Y (

$$
\begin{aligned}
& =36.48-(530)(0.0522) \\
& =8.814 \mathrm{Btu} \quad(9.299 \mathrm{~kJ})
\end{aligned}
$$

v. ºº سرد مى شد.

هـ ا 1 تحليل قانون دوم براى حجمكنترل

تبلاً دربارة تحليل كانون اول انز زى براى يكت حجم كتترل (سيستم باز) در فصل جهارم بحث
 كترل را از نتطهنظر قانون دوم هسجنان كه در شـكل

 e جريان آنتروبى خارج شده از حجممكتر ل برابر

بكسان باشند. آنتروبى شمهنين مىتواند بهخاطر انتقال حرارت در مرز حبم كنترل بهحبهـم كنترل اضافه شود. باتشخيص اينكه حرارت ممكن استت در هند مسل اضضافه شود و دما ممكن امست تغير كند، مىنويسيم'

كه انتگرال در تمام سطع حجم كنترل گر نه مىشود در بجايى كه انتقال حرارت حورت مىگير د و
 جرم يا برگشت نايذيريهاى داخلى، اصطكاكِ سيال و غيره مىتواند موجود باشلد. ما اين بجمله انبار يا انباشتـ را باه داخلى نسبت بهحبهم كنترل استفاده مىشود. در نهايت، مىتوانـيم تشخيص دهيم كه ممكن است هـندين جريان بهداخل و يا خارج از حهم كنترل موجود باشد و مجمو عه زير را براى تمام جنين جريانها يم جهت بدست Tوردن كل توليد آنتروبِ براى حجم كتترل انجام مى امیيم :

ترمود يناميكـ

 نوشتن برایى سيستم بـته شامل تمام المانهاى جرم است.

$$
\begin{equation*}
(d S)_{0}^{0}=\Delta S-\int_{\text {توليدئد }} \frac{d^{\prime} Q}{T} \tag{0.r4}
\end{equation*}
$$

هطابق تانون دوم ترموديناميكت اين كميت بايد بزرگتر يا مساوى صفر باشلد. بنابراين بـراى معـادلـه (0_{-}مى نويسيم

$$
\begin{equation*}
\text { (} \left.\frac{d S}{d \tau}\right)_{\text {نولبدئدد }} \geq 0 \tag{-}
\end{equation*}
$$

$$
\text { وجود } \dot{m}_{i}=\dot{m}_{e} 6\left(\frac{d S}{d \tau}\right)=\text { • ندارد بنابراين }
$$

$$
\begin{equation*}
\sum_{e, j} \dot{m}_{e} s_{e}-\sum_{j=12} \dot{m}_{i} s_{i} \geq \int_{c^{k}} \frac{1}{T_{i}} \frac{d^{\prime} Q_{i}}{d \tau} \tag{-}
\end{equation*}
$$

 در میى آيد .

$$
s_{e} \geq s_{i}
$$

17

بختههاى تَلِ نشان مىدهد كه از الصل ازدياد آنترويى مىتوان مصلدوديتهاى مسيرهاى انتقال حرارت

را در فرTيندهاى جريانى و غيرجريانى معلوم نمود. حالا با استفاده از اين اصول مقدار كار خروجى
 نمودار را با فرض مشبت بودن كارى كه حجم كنترل را توكت مىكند رسـم كردهايم زيـا علاته منديم كه

توان خروجمى را بهحداكثر برسانيه. بنابراين معادله انرزى جريان دانم برابر است با

$$
\begin{align*}
& \dot{m}\left(h_{1}+\mathrm{KE}_{1}+\mathrm{PE}_{1}+\cdots\right)+\dot{Q}_{0} \\
& =\dot{m}\left(h_{2}+\mathrm{KE}_{2}+\mathrm{PE}_{2}+\cdots\right)+\dot{W} \tag{-}\\
& \text { و نرخ توليد آنترويى از معادله (ه_ (A) بهدست مى ايلـ. }
\end{align*}
$$

$$
\left(\frac{d S}{d \tau}\right)=\dot{m} s_{2}-\left(\dot{m} s_{1}+\frac{Q_{a}}{T_{0}}\right) \geq 0
$$

(D_PP)

$$
\dot{m}\left(s_{2}-s_{1}\right) T_{0}-\dot{m}\left[\left(h_{2}-h_{1}\right)+\mathrm{KE}_{2}-\mathrm{KE}_{1}+\mathrm{PE}_{2}-\mathrm{PE}_{1}+\dot{W}\right] \geq 0
$$

$$
\begin{equation*}
\dot{W} \leq \dot{m}\left[\left(h+\mathrm{KE}+\mathrm{PE}-T_{0} s\right)_{1}-\left(h+\mathrm{KE}+\mathrm{PE}-T_{0} s\right)_{2}\right] \tag{-}
\end{equation*}
$$

در بـسيارى از مــاثل وانعى از تغيرات انززى جنبنى و بتانسيل مىتوان صرنـظر كرد و بـدست مى آوريم:

$$
\begin{equation*}
\dot{W} \leq \dot{m}\left[\left(h-T_{0} s\right)_{1}-\left(h-T_{0} s\right)_{2}\right] \tag{0.Fq}
\end{equation*}
$$

كميت (h- $T_{0} s$ تابع كاردمى جريان دانمّ، b ، ناميده مىشود

$$
\begin{equation*}
b=h-T_{0} s \tag{-}
\end{equation*}
$$

و كار خروجى سداككر بازايى واهد جرم برابر باكاهش اين تابع خو اهد بود
 هداككر كار خروجى مسكن, و كار خروجى واتمى تعر يف مىشيود يا

$$
\begin{equation*}
\left.\dot{I}=\dot{W}_{\max }-\dot{W}_{a c t}=\dot{m}_{\left(b_{1}\right.}-b_{2}\right)-\dot{W}_{a c t} \tag{0.+4}
\end{equation*}
$$

اگَ فر آيند آدياباتيكت باشد. و انززيهاى جنبنى ناهيز باشند، كارخروجى واتعى بايد برابر كاهش در انتاليّ باشد يا

$$
\dot{W}_{a c t}=\dot{m}\left(h_{1}-h_{2}\right)
$$

با تركيب روابط بالا براى فر آيند آدياباتيكى مىدهد،

$$
\begin{align*}
\dot{I} & =\dot{m}\left[\left(h-T_{0^{s}}\right)_{1}-\left(h-T_{\left.0^{s}\right)_{2}}\right]-\dot{m}\left(h_{1}-h_{2}\right)\right. \\
& =\dot{m} T_{0}\left(s_{2}-s_{1}\right)
\end{align*}
$$

هنگامى كه هند جريان ورود و خروج از سجم كترل مطابت شنكل ^اـه باشد بايد يكك مجـوعهاز

توابع كاردهى براى كليه آنها انـجام داد.

$$
\dot{W}_{\max }=\sum \dot{m}_{i} b_{i}-\sum \dot{m}_{e} b_{e}
$$

,

$$
\dot{I}=\dot{W}_{\max }-\dot{W}_{a c t}=\sum \dot{m}_{i} b_{i}-\sum \dot{m}_{e} b_{e}-\dot{W}_{a c t}
$$

برای يكت فر آيند آدياباتيكت بهصورتت زير غخلاصهه مىى شود.

$$
\dot{I}=T_{0}\left(\sum \dot{m}_{e} s_{e}-\sum \dot{m}_{i} s_{i}\right)
$$

 نمـود.

 مو جود نيسـت ($\left.s_{1}=s_{2}\right)$ مقدار بازگَشـتا

شكل

ترمود يناميلك

基 D_ IV

ارائهٔ ملاحظاتى چجند مربوط بهعملى بودن تحليل مقداز برگشيتنابِيرى در اينجا مناسب
مىباشلد. در انتخاب بين أمكانات مختلف براي توليد تدرت يا دستگاههاي تبديل انر زیى پندين عامل بايد درنظر گر نته شود. طبيعتُّ شخص بايد تادر بهطرح و ساخت دستگاهى باشد كه بهطور قابل اعتمادى كار كند. بغير از اين تاعده كلى. ملاحظات مربوط بههز ينه اوليه دستگاه و همحجنين مشارج ساليانه كاز
 جندين عامل دارد از جمله جنس: هز ينه ساخت و تو جهى كه در طراحى مهندسى دستگاه مؤثر است و

 برگشّت نايذيرى كمتر خواهد بود.

شكل 19 ــه مقدار كاردهى كاهش و مقدأر بركشت نايليرى براي لر آ يند جريان دانم
Tدياباتيكت با

بنابراين مى توانيم بيشبينى كنيم كه يكت فر آيند با دستگاهى كه حداتل مقدار برگشتـنابذيرى
را توليد نمايد، احتمالاُ شامل حداتقل هزينه انرزي خو اهد بود. اين بهميع وجه يكـِ اهـل مطلق نيست ولى روشى را جهت ارزيابى راه حلّهاي مختلف فنى زراهم مى مند.
 انرزيهائى جنبشى، مقدار كار خروجى وانعى نوربين برابر است با

$$
\dot{W}_{\omega, t}=\dot{m}\left(h_{1}-h_{2}\right)
$$

وكار وروديى بهكمير سور برابر است با
$\dot{W}_{a c t}=\dot{m}\left(h_{2}-h_{l}\right)$

(الف)

(ب)

نـكل • • (الف) توريين (ب) كميرسور

آگر فر آيندها برگشتیبذير هم بودند يعنى آنترويى ثابت، جمله كار مربوط برابر بود با
$\dot{W}_{\text {iser out }}=\dot{m}\left(h_{I}-h_{2 s}\right)$
$\dot{W}_{\text {isen in }}=\dot{m}\left(h_{2 s}-h_{1}\right)$
كه زيرنويش s معرف زرآيند آنترويى ثابت مىبانشد و میتوانيم بازدهمهاى تانون اول را برايى اين دستگاهها بهصورت زير تعريفكنيم
 2. بسثهاى بـلا ديدهايم كه برای هر دو حالت انتهايى داده شدو بكت مقدار سداكثر ك'ر خخروجى موّحرد دست كهبهوسيله تغيير دز كازدهى مىتوان آنزا سحاسـه كرد. بازده قانون دوم زا مـىتوان بهاينزصوزت تعريف نمود كه اين حداكثر كار زا باكاز, واقعى مقايسه نمايند.

$$
\begin{align*}
& =\frac{h_{1}-h_{2}}{b_{1}-b_{2}} \quad \text { برأى يكى توزبين }
\end{align*}
$$

$$
\begin{align*}
& =\frac{b_{2}-b_{1}}{h_{2}-h_{l}} \quad \text { براى يك كميرس }
\end{align*}
$$

بنابر اين براى توربين عوامل زياد ديگِیى نيز وجود دارز د كه دز طرح دستگاد عملى درنظر

 ناحيهاजى كه گاز طبيعى دز دسترس نيست، منطقى نمىباشد.
 برایى مقامـد تحليلى به كار گّرنهي شود.

يكى كمبر سور

حــــل : كمبرسور در شكل همراه با نمودار T-S براى اين فرآيند نثان داده شـده اسـت. داريم

(الفـ)

شكل مثال • 0.1

$$
\begin{equation*}
\dot{W}_{a c t}=h_{2}-h_{l}=c_{p}\left(T_{2}-T_{1}\right) \tag{a}
\end{equation*}
$$

در صورتم كه فر' يند برگششت يذير باشد يعنى آنترويم ثابت، كار ورودى برابر سواهد بود با

$$
\begin{equation*}
\dot{W}_{\text {isent }}=h_{2 s}-h_{1}=c_{p}\left(T_{2 s}-T_{1}\right) \tag{b}
\end{equation*}
$$

$$
T_{2 s}=T_{1}\left(\frac{p_{2}}{p_{1}}\right)^{(y-1) / y}=298\left(\frac{8}{1}\right)^{(1.4-1) / .4}=540 \mathrm{~K}
$$

$$
\dot{W}_{\text {isen }}=\left(1.005 \mathrm{~kJ} / \mathrm{kg}{ }^{\circ} \mathrm{C}\right)(540-298)=243.3 \mathrm{~kJ} / \mathrm{kg}
$$

از بازده قانون اول داده شده

$$
\dot{W}_{\text {act }}=\frac{243.3}{0.87}=280 \mathrm{~kJ} / \mathrm{kg}
$$

و تغير در آنترويى بهوسيله معادله (Y_Yـ) داده مىشود

$$
s_{1}-s_{2}=c_{p} \ln \frac{T_{I}}{T_{2}}-R \ln \frac{p_{1}}{p_{2}}
$$

$$
=\left(1.005 \mathrm{~J} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}\right) \ln \frac{298}{576}-(287 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K}) \ln \frac{1}{8}=-66.06 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K}
$$

(d) بنابراين از معادله

$$
\dot{W}_{\max }=-280000-(293)(-66.06)=-260644 \mathrm{~J} / \mathrm{kg}
$$

البته اين معادل كار ورودى + kJ/kg براى يكت فر آيند آدياباتِيكت برابر امت با

$$
\begin{aligned}
I & =T_{0}\left(s_{2}-s_{1}\right) \\
& =(293)(66.06)=19356 \mathrm{~J} / \mathrm{kg}
\end{aligned}
$$

با به كاربردن معادله (Aهـهـ) بازده قانون دوم بهصورت زير محاسبه مىشود

$$
\begin{aligned}
\eta_{\text {P }}^{\text {ر. }} \mathrm{j} & =\frac{b_{2}-b_{1}}{h_{2}-h_{1}} \\
& =\frac{260.6 \mathrm{~kJ} / \mathrm{kg}}{280 \mathrm{~kJ} / \mathrm{kg}}=0.931
\end{aligned}
$$

$$
\begin{align*}
& T_{2}=\frac{\dot{W}_{\text {act }}}{c_{p}}+T_{1}=\frac{280}{1.005}+298=576 \mathrm{~K} \\
& \text { كار خروجى حداككر از تغيير در تابع كاردهى محاسبه مىشود } \\
& \dot{W}_{\text {max }}=b_{1}-b_{2}=h_{1}-h_{2}-T_{0}\left(s_{1}-s_{2}\right) \tag{d}
\end{align*}
$$

مثال 1 اــ0

 صفر است و حداكثر كارخروجى مىتواند برحسب تابع كاردهي ارائه شود، بهطورى كه

$$
\begin{equation*}
\dot{W}_{\max }=\dot{m}_{1}\left(b_{1}-b_{2}\right)+\left(b_{3}-b_{4}\right) \tag{a}
\end{equation*}
$$

شكل مثال 1 |-ه

آنترويّها برای اين محاسبات از جلاول بخار آب بدست مى آيد.

$$
\begin{aligned}
& s_{1}=0.4316 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K} \quad\left(3 0 ^ { \circ } \mathrm { C } , 1 0 \mathrm { MPa } \text { (مايع متراكم) } \quad \left(198.3{ }^{\circ} \mathrm{C}, 10 \mathrm{MPa}\right.\right. \text { مايع متراكم) } \\
& s_{2}=2.3016 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K} \quad \\
& s_{3}=s_{\beta 3}+x_{3} s_{f 83} \\
&=2.3150+(0.95)(6.4448-2.3150)=6.2383 \mathrm{~kJ} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C} \\
& s_{4}=s_{f}(1.5 \mathrm{MPa}, د)=2.3150 \mathrm{~kJ} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}
\end{aligned}
$$

$$
T_{0}=Y \cdot{ }^{\circ} \mathrm{C}=\mathrm{Y} \uparrow \mathrm{Y} \mathrm{~K}, m_{s}=\cdot / \uparrow \wedge \Delta \wedge, m_{l}=1 / \cdot \text {. }
$$

$$
\begin{aligned}
\dot{W}_{\max }= & {\left[\left(h_{1}-h_{2}\right)-T_{0}\left(s_{1}-s_{2}\right)\right]+\dot{m}_{s}\left[\left(h_{3}-h_{4}\right)-T_{I}\left(s_{3}-s_{1}\right)\right] } \\
= & {[(134.86-848.54)-(293)(0.4316-2.3016)] } \\
& +(0.3858)[(2694.8-844.89)-(293)(6.2383-2.3150)] \\
= & 104.44 \mathrm{~kJ} / \mathrm{kg} \text { (b) } T
\end{aligned}
$$

جوهن

$$
\dot{I}=\dot{W}_{\max }-\dot{W}_{a c t}=104.44 \mathrm{~kJ} / \mathrm{kg}
$$

مثال

 جهار نوع گرمكيز زير را ارزيابى كنيم :

I- ب بخار T آب تقطير شده در latm ا با تنير از حالت بخار اشيباع بهمايع اشباع 10. ${ }^{\circ} \mathrm{F}$ F
 - F

براى تمام حالات فرض ميشود كه اتلاف حرارتى از مبدل حرارتى وجود نداشته باشد. طرحواره
 ارزيابـى و دربـاره معـون بـودن هريكـ در كاربـرد عملم اظهار نظر كـنـيم. كمترين دماى در دسترس , $T_{0}=v \cdot{ }^{\circ} \mathrm{F}=\Delta r \cdot{ }^{\circ} \mathrm{R}$

$$
\begin{align*}
& \text { حـــل : حـرازتى كه مىبايد بهموا منتقل شود در هر سيـتم برابر است با } \\
& q=\dot{m}_{a}\left(h_{2}-h_{1}\right)_{a}=(1)(0.24)(120-50)=16.8 \mathrm{Btu} / \mathrm{s} \tag{17.7~kW}
\end{align*}
$$

> در اين فر آ يند كاهش مقدأر كاردهى هوا برابر است با

$$
\begin{equation*}
\dot{m}_{a}\left(-\Delta b_{a}\right)=\dot{m}_{a}\left[\left(h_{1}-T_{0} s\right)-\left(h_{2}-T_{0} s\right)\right]_{a} \tag{a}
\end{equation*}
$$

تغير آنتروبى براى هوا در يكك نزآيند فثـار ثابت براير است با

$$
\begin{align*}
s_{2}-s_{1} & =c_{p} \ln \frac{T_{2}}{T_{1}}=0.24 \ln \frac{580}{510}=0.03087 \mathrm{Btu} / \mathrm{bm} \cdot{ }^{\circ} \mathrm{R} \\
& =0.1292 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K} \tag{b}
\end{align*}
$$

ستس كاهش مقدار كاردهى برابر است با

$$
\begin{align*}
-\Delta b_{a} & =(1.0)[(0.24)(50-120)-(530)(-0.03087)] \\
& =-0.4389 \mathrm{Btu} / \mathrm{s} \quad(-0.463 \mathrm{~kW}) \tag{c}
\end{align*}
$$

اين نتيجه بايد با كاهش مقدار كاردهى برایى گرمكن يا سيال گرمايش تركيب شود تا عملكرد كلى ارزيابى گردد.

حالت (1) : بخار آب تقطيرشده خواصّ بخارآب در atm ابرابر است با

$$
\begin{aligned}
& h_{I}-h_{2}^{\prime}=-h_{f g}=970.4 \mathrm{Btu} / \mathrm{bm} \\
& s_{I}-s_{2}=s_{f g}=1.4446 \mathrm{Btu} / \mathrm{lbm} .{ }^{\circ} \mathrm{R}
\end{aligned}
$$

انرزیى كــب شده بهوسيله هوا برابر انرزیى از دست داده شده بهوسيله بخارآب است و بنابراين

$$
\begin{equation*}
q=16.8=\dot{m}_{s} h_{f g} \tag{d}
\end{equation*}
$$

$$
\dot{m}_{s}=0.01731 \mathrm{lbm} / \mathrm{s} \quad(0.00785 \mathrm{~kg} / \mathrm{s})
$$

كاهش مقدار كاردهى بخار Tاب برابر است با

$$
\begin{aligned}
\dot{m}_{s}\left(-\Delta b_{s}\right) & =(0.0173)[970.4-(530)(1.4446)] \\
& =+3.5424 \mathrm{Btu} / \mathrm{s}
\end{aligned}
$$

كاهش كلى در مقدار كاردهى برابر است با

$$
\dot{m}_{a}\left(-\Delta b_{a}\right)+\dot{m}_{s}\left(-\Delta b_{s}\right)=-0.4389+3.5424=+3.1035 \mathrm{Btu} / \mathrm{s}
$$

اين حداكتر كار خروجى است. كار خروجىى واتعى برابر صفر است، بنابراين مقدار برگڭثتنابذيرى برابر است با

$$
\begin{align*}
\dot{I}=\dot{W}_{\max }-\dot{W}_{a c t} & =3.1035-0=+3.1035 \mathrm{Btu} / \mathrm{s} \\
& =3.274 \mathrm{~kW} \tag{e}
\end{align*}
$$

حالت (†): منبع آب داغ جهتكرمايش برایى اين حالت خواصّ آب مربوطه برابر است با

$$
\begin{aligned}
& h_{1}=h_{f}\left(200^{\circ} \mathrm{F}, د\right)=168.07 \mathrm{Btu} / \mathrm{lbm} \\
& h_{2}=h_{f}\left(150^{\circ} \mathrm{F}, د\right)=117.96 \mathrm{Btu} / \mathrm{lbm} \\
& s_{1}=s_{f}\left(200^{\circ} \mathrm{F}, د\right)=0.2940 \mathrm{Btu} / \mathrm{lbm} \cdot{ }^{\circ} \mathrm{R} \\
& s_{2}=s_{f}\left(150^{\circ} \mathrm{F}, د\right)=0.1250 \mathrm{Btu} / \mathrm{lbm} \cdot{ }^{\circ} \mathrm{R}
\end{aligned}
$$

$$
\begin{aligned}
& q=16.8 \mathrm{Btu} / \mathrm{s}=\dot{m}_{w}\left(h_{1}-h_{2}\right)_{w} \\
& \dot{m}_{w}=0.3353 \mathrm{lbm} / \mathrm{s} \quad(0.1521 \mathrm{~kg} / \mathrm{s})
\end{aligned}
$$

$$
\begin{aligned}
& \text { كاهش مربوطه در مقدار كاردهى T'ب برابر است با } \\
& \dot{m}_{w}\left(-\Delta b_{w}\right)=(0.3353)[(168.07-117.96)-(530)(0.2940-0.2150)] \\
& =+2.7629 \mathrm{Btu} / \mathrm{s} \quad(2.91 \mathrm{~kW}) \\
& \text { حاذ كاهش كلى در مقدار كاردهى برابر با مجموع مقادير آن براى آب و هوا مىباشد، يا } \\
& -0.4389+2.7629=2.3240 \mathrm{Btu} / \mathrm{s} \quad(2.451 \mathrm{~kW})
\end{aligned}
$$

$$
\begin{equation*}
\dot{I}=+2.3240 \mathrm{Btu} / \mathrm{s} \quad(2.451 \mathrm{~kW}) \tag{f}
\end{equation*}
$$

 بزرگترى مورد نياز است زيرا اختلان دماى كمترى بين آب داغ و هوا موجود است. خواصّ آب باي بورد علاته برابر است با

$$
\begin{aligned}
& h_{j}=h_{f}\left(150^{\circ} \mathrm{F}, د\right)=117.96 \mathrm{Btu} / \mathrm{bm} \\
& h_{2}=h_{f}\left(100^{\circ} \mathrm{F} \text { د }\right)=68.05 \mathrm{Btu} / \mathrm{bm} \\
& s_{l}=s_{f}\left(150{ }^{\circ} \mathrm{F}, 2\right)=0.2150 \mathrm{Btu} / \mathrm{bm} .{ }^{\circ} \mathrm{R} \\
& s_{2}=s_{f}\left(100^{\circ} \mathrm{F} \text { ر } 2\right)=0.1296 \mathrm{Btu} / \mathrm{bm} .{ }^{\circ} \mathrm{R} \\
& \text { مطابق حالت Y، مىتوانيم با استفاده از موازنه انرزى دبى جرمى جريانْ آب را بهدست آوريم } \\
& \dot{m}_{w}=0.3366 \mathrm{lbm} / \mathrm{s}
\end{aligned}
$$

كاهش در مقدار كاردهى براى آب بهصورت زير است

$$
\begin{aligned}
\dot{m}_{w}\left(-\Delta b_{w}\right) & \left.=\dot{m}_{w} \mid\left(h_{I}-T_{0} s_{l}\right)-\left(h_{2}-T_{0} s_{2}\right)\right]_{w} \\
& =(0.3366)[(117.96-68.05)-(530)(0.2150-0.1296)](g) \\
& =+1.5645 \mathrm{Btu} / \mathrm{s} \quad(1.650 \mathrm{~kW})
\end{aligned}
$$

مهس كاهش كلى مقدار كاردهى از مجموع مقدار آن براى هوا و براي آب بهدست مى آيد و برابر با مقدار برگشتنا يذذيرى مىباشد.

$$
\begin{equation*}
-0.4389+1.5645=+1.1256 \mathrm{Btu} / \mathrm{s}=\dot{I} \tag{h}
\end{equation*}
$$

حالت ب : كرمايش الكتريكى برایى اين حالت سيال گرمايش وجود ندارد و كاهش كلى در مقدأر كاردهى برابر مقدار آن براى هوا است يا

$$
\dot{m}_{a}\left(-\Delta b_{a}\right)=-0.4389 \mathrm{Btu} / \mathrm{s} \quad(-0.463 \mathrm{~kW})
$$

اين معرف حداكت, كار خروجى ماكزيمم براى اين سيستمگرمكن مىباشد. اگرحه برخلان سهحالتت

$$
\begin{align*}
\dot{I} & =\dot{W}_{\max }-\dot{W}_{a c t}=-0.4389-(-16.8) \\
& =16.3611 \mathrm{Btu} / \mathrm{s} \quad(+17.258 \mathrm{~kW}) \tag{i}
\end{align*}
$$

جهار حالت در جدول زير خالاصه شده است. سه حالت اول نشاندهنده كاهش مقدار كاردهى مىباشـد موتعى كه دماى سيال گرمايش كاهش میيابلد. اين نشاندهنده اين است كه مقدار برگشثتنايذيرى كمتر، زمانى يبش مى آيد كه حرارت با اختلان دماى كـترى منتقل شود. آخرين حالتت نشاندهندهُ مقدار برگثشتنايذ يرى زياد مى.اشدكه از تبديل كار.(دراين حالت كار الكتريكى) بهحرارت حاصلشده است. مثال D.IY Y نشان دهنده يكت روش تحليل تانون دوم از طرح انتقال ـ انرزُى است. بايد بهخواننده هشدار دهيم كه اين تحليل كامل نيست. بايد مقدار برگشت اتلاذات و مقدار برگثـتنابذيريهايى كه در نيروگاه برق صورت گيرد را نيز ارزيابى نمود. هدن در اينجا استفاده از تحليل مقدار كاردهى و مقدار برگثـتنايذيرى بهصورت ابزار نشان دادن بازده نسبى

تانون دوم در طرحهاى گرمايش است.

مثال

 آورد و مقدار برگشتنابذيرى را محاسبه كنيد. از انرزيهاى جنبشـى صرنـنظر كنيد. كمترين دماى در دسترس V. ${ }^{\circ}$ مياشياشل. همینين بازده تانون دوم را محاسبه كنيد.

حـــل : خواصّ مورد توجه بدين ترار است :

$$
h_{1}=1416.6 \mathrm{Btu} / \mathrm{lbm} \quad 400 \mathrm{psia}, 800^{\circ} \mathrm{F} \text { در }
$$

$s_{1}=1.6844 \mathrm{Btu} / \mathrm{lbm} .{ }^{\circ} \mathrm{R}$
$h_{2}=1235.0 \mathrm{Btu} / \mathrm{lbm} \quad 50 \mathrm{psia}, 400^{\circ} \mathrm{F} \quad$ در
$s_{2}=1.7370 \mathrm{Btu} / \mathrm{lbm} .{ }^{\circ} \mathrm{R}$
كار خروجى واقعى برابر اسـت با

$$
\dot{W}_{a c t}=h_{1}-h_{2}=181.6 \mathrm{Btu} / \mathrm{lbm} \quad(422.4 \mathrm{~kJ} / \mathrm{kg})
$$

در حالىى حداكثر كار خروجى ممكن بهصورت كاهش در تابع كاردهى بهدست مى آيد :

$$
\begin{aligned}
& =181.6-(530)(1.6844-1.7370) \\
& =209.48 \mathrm{Btu} / \mathrm{lbm}(487.25 \mathrm{~kJ} / \mathrm{kg})
\end{aligned}
$$

بنابراين مقدار برگُـتـتا ايذيرى برابر است با

$$
\begin{aligned}
\dot{I} & =\dot{W}_{\max }-\dot{W}_{a c t} \\
& =209.48-181.6=27.88 \mathrm{Btu} / \mathrm{lbm} \quad(64.85 \mathrm{~kJ} / \mathrm{kg})
\end{aligned}
$$

بازدد قانون دوم برابر است با

$$
\eta_{\rho: ن د و ن}=\frac{\dot{W}_{a c s}}{\dot{W}_{\max }}=\frac{181.6}{209.48}=0.867
$$

|

مسل مـيط تعين كنيم. از آنجايى كه سيستم بهطور كلى در تعادل با محيط ترار ندارد مـا يكـ مـوتور برگّثت يذير E را بين دو تا متصل مىكنيم. حداككر كار خروجى مفيد با لحاظ كردن كار جابهجايى مسيط برابر است با

$$
\begin{align*}
& d^{\prime} W_{\text {بداككرمفيد }}=d^{\prime} W-\left(-p_{0} d V\right)+d^{\prime} W_{E} \\
& d^{\prime} W_{\text {rev }}=d E-d^{\prime} Q_{E, \text { rev }}
\end{align*}
$$

براى موتور برگشت یָذيرى كه بهصورت سيكلى كار مىكند،

$$
d^{\prime} W_{E}=-d^{\prime} Q_{E}-d^{\prime} Q_{0}
$$

از تعر يف مقياس دماى توموديناميكى مطلق

$$
\frac{d^{\prime} Q_{0}}{T_{0}}=-\frac{d^{\prime} Q_{E}}{T}
$$

محيط در

$$
p_{0}, T_{0}
$$

$$
d^{\prime} W_{E}=d^{\prime} Q_{E, r e v}-d^{\prime} Q_{E, \text { rev }}\left(\frac{T_{0}}{T}\right)=d^{\prime} Q_{E, r e v}-T_{0} d s
$$

$$
\begin{align*}
d^{\prime} W_{\text {2 }} & =d E+p_{0} d V+\left(d^{\prime} Q_{E, \text { rev }}-T_{0} d s\right)-d^{\prime} Q_{E, \text { rev }} \\
& =d E+p_{0} d V-T_{0} d s
\end{align*}
$$

اگگر حال اجازه دهيم كه كل مجموعه يكث فرآيند بين دو حالث ! و Y راططكند، بهدست مى Tوريم

$$
W_{\text {مداككرمفيد }}=E_{2}-E_{1}+p_{0}\left(V_{2}-V_{I}\right)-T_{0}\left(s_{2}-s_{1}\right)
$$

اگگ انوزى حرار تي دانخلى U تنها متغير مهم در E باشلد مىتوانيم معادله را براماس واحدجرم بهصورت

زير بنويسيم:

$$
W=\left(u_{2}-u_{1}\right)+\rho_{0}\left(v_{2}-v_{1}\right)-T_{0}\left(s_{2}-s_{1}\right)
$$

سال اجازه دهيد كه سيستـم از يكت سالت ابتدأيى P،
 خروجى مفيد برابـ, است با

عمل متداول اين است كه مقدار كاردهى سيسـتم بسته ϕ را بهصورت زير تعريف كنيم :

$$
\phi=\left(u+p_{0} v-T_{0} s\right)-\left(u_{0}+p_{0} v-T_{0} s\right)
$$

كه البته تو جه داريـم تابعى از هردو سيستّم و مسيط است
بنابر'ين براى يكت تغيير بين حالات داده ثـده ا و Y حـداكتر كار خر وجى برابر است با

 تغيير يابد و (ب) هنگگامى كه هوا تا K ، K در ظرف صُلب خنكـ شود.

حـــل : برایى تسمت (الف) ححاكثر كار مفيد مسادل تابع كاردهى است. ما در ابتدا سواصّ لازم را مساسبه ميكنيم :

$$
v_{1}=\frac{R T_{1}}{p_{1}}=\frac{(287)(700)}{500 \times 10^{3}}=0.4018 \mathrm{~m}^{3} / \mathrm{kg}
$$

$$
\begin{aligned}
& v_{0}=\frac{R T_{0}}{p_{0}}=\frac{(287)(293)}{100 \times 10^{3}}=0.8409 \mathrm{~m}^{3} / \mathrm{kg} \\
& s-s_{0}=c_{p} \ln \frac{T_{1}}{T_{0}}-R \ln \frac{p_{1}}{p_{0}}=1005 \ln \frac{700}{298}-287 \ln \frac{500}{100} \\
& \quad=396.3 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K}
\end{aligned} \quad \begin{aligned}
& u_{1}-u_{0}=c_{v}\left(T_{1}-T_{0}\right)=(718)(700-293)=2.922 \times 10^{5} \mathrm{~J} / \mathrm{kg}
\end{aligned}
$$

و سبس

$$
\begin{aligned}
\phi_{1} & =m\left[\left(u_{1}-u_{0}\right)+p_{0}\left(v_{1}-v_{0}\right)-T_{0}\left(s_{1}-s_{0}\right)\right] \\
& =2\left[2.922 \times 10^{5}+\left(100 \times 10^{3}\right)(0.4018-0.8409)-(293)(396.3)\right] \\
& =264.3 \mathrm{~kJ}
\end{aligned}
$$

$$
W_{-\quad \text { عداكثرمفـد }}=m\left(\phi_{2}-\phi_{l}\right)
$$

جون ظرف صُلب اسست

$$
p_{2}=p_{1} \frac{T_{2}}{T_{1}}=500 \frac{400}{700}=286 \mathrm{kPa}
$$

$$
s_{2}-s_{1}=1005 \ln \frac{400}{700}-287 \ln \frac{286}{500}=-402.1 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K}
$$

$$
\text { و خون } v_{2}=v_{1} \text { است }
$$

$$
\begin{aligned}
& W_{\text {- حدا كترمفـد }}=\left[\left(u_{2}-u_{1}\right)-T_{0}\left(s_{2}-s_{1}\right)\right] \\
& =2[(718)(400-700)-(293)(-402.1)] \\
& =-195.2 \mathrm{~kJ}
\end{aligned}
$$

 مى كيند. اما بيش از اين مجاز نيستيم كه از كلمه " غير مدكن. " استفاده كنيم.

 ملكولها درنظر گرفته شود.

「

اتفاقى مىافتد اگک در كوجكى در تسمت جداكننده محفظهها ايجاد شود و شيطانكى تند و تـيزى مى توانست در را بهسرعت باز و بسته كند تا ملكولهاى سريعتر تسمت A||جازه يابند بهاقسمت B وارد و ملكو لهاى كندتر از قسمت B بهقسمت Aمنتقل شوند. روشن است كه اگر شيطانكت مىتوانست جنين كارى انجام دهل، وجودش مغتنم بود زيرا جدايى ملكولهاى سريع وكند منجر بهيكت اختلاف دما يسن دو محفظه مىگرديل. هنين اتفاقى نقص تانون دوم ترموديناميكك بود. زيرا باعث انتقال حرارتى در جهت ازدياد اختلان دما مىشود.
مفهوم شيطانل ماكسول براى سالها مورد مناظره بوده است. موضوع كلى بحث اين است كه شيطانكث بايد بهصورت قـستى از سيستم كلى ترموديناميكى تحت بررسى درنظر گر فنه شود. شيطانك؛ بهنحوى بايد تشخيص دهد كه يكت ملكول تند حركت مىكند ياكند. اين نياز به اندازهگيرى دارد و اطلغعات راجع بهاندازهگيرى بايل بهشيطانكت ابلاغ شود. ماحصل نظر عده زيادى اين است كه (1)

شكل A-YT شيطاتك ماكسول، ملكولهاى " سريع " در يكطرل، ملكولهاى " آهسته " در طرل ديكر

شيطانكت تادر نيست كه ملكولهاى تند و كند را ازهم تشخيص دهد زيرا در معرض بمباران ملكولى تصادفى است. (Y) آنترويى شيطانكت بايلد تغير كند تا اطلاعات دريافتى در اثر فرآيند اندازه گیيرى را بهحساب Tورد. اين مسأله بـث دومى را بیش مى Tورد كه مربوط است بهاطلاعات. استفاده از احطلِح آنتروهی در علم تتورى اطلاعات موجب مى شود و حتى بعضى از صاحبنظران را وادار كرده است اسكه كل موضوع ترموديناميكـ را بزاساس مفهوم تثورى اطلاعات بسط دهند. در اين بسط آنترويى بهعنوان

دراين بحث بهتر است نكر كنيم كه اصول ترموديناميكت بهعنوان تضاياى بلديهى آزمايشى است كه مبناى آن مشاهدات رفتار فيزيكى طبيعت است. هيَع وسيلهاى نداريمكه تعين كنيم چحرا طبيعت هنين ر فتارى مىكند اما معقول بهنظر نمىرسدكه گحمان كنيم سبب اين رفتار فقدان اطلاعات است. جنين
 بنويسم بنابراين من اطلاعات كافى براى تعين موجودى بانكت خود ندارم". در هرسال ايز. فـعـدان شخصمى اطلاعات جيزى را در روش شداسبه بانكت تغير نمىدهد يا بر آن تأثير نمىگذارد و اگر شخضصى بخواهل با نوشتن تعلاد زيادى چکك آن روش يا اصل را نقض كند، جون از مو جودى خود بى بِر است بهزحمت خواهد انتاد. اگر او بخواهد احـل تضيه را بلاند بايد بهتجربه روش مهاسبه در بانكت را بييند و در دنترهه پیك خود بادقت از آن بيروى كند. اين درست همان هيزى است كه ما سعى

> خود آزمايع (سئوالات مرورى)

$$
1 \text { - قانون اول ترموديناميكت جيست؟ }
$$

هرا حرارت نوع انرزی متفاوتى نسبت به كار است؟
ماشين حركت دائم از نوع دوم هيست؟

- -F

- 4

هرا قانون دوم براى تعريف مقياس دماى مطلق ضرورى است؟ -V - 1 - 9

$$
\text { 11 - } 11 \text { قانون دوم ترموديناميك را برحسب آنترويى تحليل كنيد. }
$$

داشته باشد اكگر در حدود دهاكى يكسانى كار كند؟

$-1 F$
سبيستههای جويان دائم فرت مىكنل?

- ا 10

كار را تعريف كنيد. IV
مقصود از بازده حرارتى يكت موتور سرارتى هـيست؟
19 19
منظلور از يكتسرى سالات تعادلى جيسـت؟
- - Y

- -

. - YF

- Y

ميزان برگّثتا بـذيرى در يكت سيستم جريان داثم جقلر است؟ - YV

(الف) مشبت
(ب) منفي
(ج
نمىتوان گُفت

در سيستمى كه تحت يكت فرّ يند برگشتنائذير قرار مىگيردء كار انجام شده Btu
(الف) مشبت
(ب) منفى
(ج) صفر
(د) نمىتوانگفت
در سيستمى كه تحت يكت فر آيند برگشتنايذير ترار مىگيرد، كار انجام شده Btu
(الف) مرارت داده شـده v Btu مىباشد. تغيير آنترويى برابر است با :
 كيفيت 4 9 درصد منبسط مىشود. قدرت خروجى توربين kW ، . . ، 4 است. دبى جريان و تغير آنترويى را مساسـبه كنيد.

 بخار آب در psia • • ا و رطوبت • ا درصد تا فثار اتمسفر يكت بهطـور آدياباتيكى طى
 محاسبهكنيد.
 درصعد مىباشد. كارخروجى و دمايى راكه در آن حرارت دفع مىشود مساسبه كنيد.

حرارت دفع مىكند. كار خروجى را مساسبه كنيد.

مورد استفاده ترار میگيرد دزنظر است. اسب بنخار ورودى لازم را جهت خارج كـردن اY ... Btu/h پیمپ حرارتى مخصوصى برایى يكت خانه تقريباً ميتواند بهصورت سيكل معكوس كارنو كه
 اسب يخار ورودى لازم بهسيكل را جهت تحويل Btu/h 1 بهمنبع دماى بالا (خانه) مساسبه كنيل.
llbm

 دائم فرض كنيد. (T T Y lbm مى شود. تغير, آنترويى جهان را سحاسبه كنيل. دو شمش فولادى ${ }^{\text {(}}$
 Tآتر ويى جهان چقملر است؟

فريون Y يكت مكانيزم سيلندر - يستون متراكم مىشود. كار بهازای هر يوند جرم سيال را مشاسبه كنيد. محاسبه را براى تراكم دريكت كمهرسور جريان دائم تكرار نمايِد.
 كنيد كه بههوا درنثـار ثابت 1Δ psia -

 فر آيند محاسبه كنيد. فرضيات را مشتخص كنيد.

ترموديناميك

ryp

هليوم در مخزن آنترويى هليوم را محاسبه كنيد.
ه ه
 آنترويى را محاسبه كنيد. بخار آب با شدت (10 . ${ }^{\circ} \mathrm{F}$ و Y Y . . psia آنتروبى رادر اين فر آيند مساسبه كنيد.
 مىكند. فرض كنيد كه يكت مخترع از سما بخو اهد كه دستگاه " جديد " !و زاكه حرارت از
 مىكند، تحليل كنيد. او ادعا مىكند كه دستگاهش مى نواند بهبازده . V. درصد برسد. اين ادعا را حچگونه ارزيابى مىكنيد؟ بهنظرشما حداكثر بازده واتعى چقدر مى تواند باشدل؟ يكت سيكل كارنو باهوا بهعنوان سيان عامل كاز میكند. حدود دماى سيكل بتر بتر تيب برابر
 هواى لУزم براى توليد hp ا كار خروجى را محاسبه كنيد، اكگر سيكل . . . ه مر تبه در
 جقدر مىباشد?
 (Y P psia بشار Tب را میاسبه كنيد.
 يك مكانزم سيلندر - يستون منبسط مىشود. كار و انتقالٌ حرارت برایى اين فرآيند را محاسبه كنيد.

 برايى تخليه در atm ا را بهازاى هر بوند جرم بر بخار آب محاسبه كيديد. جو_ه

 D.rV و مخزن كاملاُ عايق است. شيرى برزوى مخزن باز مىشود و بخارآب (بخـارخـار بالص)
 جرم بخار آب خارج شـده راطى اين فرايند بحاسبه كنيد. فريون 1 با با شدت مىشود. تغير آنترويى را محاسبه كنيد.

 كار خروجى موتوز كارنو را مساسبه كنيد.
D_T.
 ثابت باقى مىماند.

$$
I=\dot{m} T_{0}\left(s_{2}-s_{1}\right)
$$

سيكل كار نويى با بخار آب بعوان سيال عانمل طوز

 دى اكـيدكربن بمقداز
 انتقال حرازت را محاسبه كنيد.

 ropsia

 s.ry D_r^

 محاسبه كنيد.

 محاسبه كنيد.
 D_fy دماى گرمكن در

نصل ه ـ تَانون دوّم ترمود يناميك

جهان را در نتيجه اين فر آيند گرمايش محاسبه كنيد. يك توربين هوايى خاص برايى ايجاد نيروى مصركه متهاي بهخدمت مترنته مىشود. قدرد خروجى بايد hp Y باشلد و توربين داراي بازده 9 9 درصد است. هوا در psia . . 1 و
 باشد تطر لوله ورودى حقلدر بايد باشد؟ فرخيات را مشخّص نمايِد
 D.FF مى مود. اگگر دستگاه يكت توربين جريان دائم باشد، جهه نرغ جريانى لازم است تا كار خروجى معادل kW . . . 10 توليد نمايد ؟
 $\Delta-F \Delta$ درصد با Y Y
 حرارت از منبعى كه در دماى ثابت ro ${ }^{\circ}$ º آنترويى در نتيجه اين فر آيند را محاسبه كنيد. بخار Tب در يكك مخزن كاملاُ عايت بهحجم $\Delta-F Y$ شيي بهلوى مخزن باز مىشود و بشار آب به|تمسفر تخليه مىگردد. بهمحض ابِكه فشار مخزن به IF/V psia برسلـ، شيربسته مىشود.جرم بشارآب خارج شده در اين فرآيند و دماى نهايى مخزن را محاسبه كنيل.
 $\Delta-F V$ درصلد حیجم بهوسبله مايع اشغالشده است. يكت شيبوه كوجكت در بالالى توطى متصل IF/V psia است بهطورى
 حرارت اضا فه شده بهتوطى و تغير T'تترويى داخل قوطى را جهت يكت فر آيند تخليه آرام كه درTان نصف جرم اوليه از دست مىرود محاسبه كنيل. هـهینين تغير آٓنترويى بخار راكه از دست مىرود مكاسبه كنيل. مخزنى بهحتجم $\Delta-F A$

فرض كنيد كه مخزن بهعنوان يكت منبع حرارتـى كـاركرده انـرزى از دست مـىدهد بهطورىكه بشخارTب تقطير شده و بهحاللت مايع درمى آيل. هجه مقلأر انرزى دسترسیذير نسبتث بهدمای مسيط V.

برای اين ميستم جقلدر است؟
Q_ Q. مىتوان نرض كرد بهصورت برگَثت يذير و آدياباتِكت عمل مىكند، بهچرخاند. در ابتدا
 توربين در psia . . . صورت مىگیرد. يكت شير كنترل فثـار در تسمت تـخليه توربين بخارآب را تا نشار اتمسفريكت كاهش مىدهل. توربين تافثار مـخزن به psia . . W بر سـد كار مىكند. در اين لحظه شير تـخليه بسته مىشود. كارخروجى توربين را برابى اين فر آيند

بیاسبه كنيد.
10 psia يكت مبل $\Delta-\Delta 1$ g V. ${ }^{\circ}$ F تقطير كند. هوا بهعنوان واسط سر مايش عمل مىكند و بهمبل حرارتـى در ه 0 م ${ }^{\circ} \mathrm{F}$ از بنخار Tب توسط هواگگرفنه مىشود. عهلكرد مىتواند جريان داُم درنظر گرفنه شود. برابى هر هونل جرم بخار آب تقطير شلده محاسبه كنيل :
(الف) جريان جرمى مواى لازم (ب) اتلان عقدار كاردهى بـخار آب
(ج) انزايش مقدار كاردهى هوا (با نرض
مقدار برگّشتنايذيرى فر آيند جريان دائم

تغير T'نتر ويى جهان در نتيهجه اين فرآيند
 درصلد بهبخار دأغ

(الف) تغير آنترويى بخارآب
(ب) تغيير آنترويى منبع
(ج) تغير آنتزوبی جهان

$$
T_{0}=v \cdot{ }^{\circ} \mathrm{F} \text { تغيير انرزی دسترس.يذير منبع برای (د) }
$$

$$
T_{0}=V \cdot{ }^{\circ} F \text { مقدار برگثـت نإذيرى جريان دائم بخار Tب برابى (ه) (ه) }
$$

 ॥ . . ${ }^{\circ} \mathrm{F}$ F
 بوند بخار آب محاسبه كنيد :
(الف) (دبى جرمى جريان گاز لازم
 $T_{0}=$ V. ${ }^{\circ} \mathrm{F}$ (ج)

ورودى بهيخهال كارنو ئى كار خواهدكرد كه بهآب در IF/V psia

 است. معاسبه كنيد :
(الف) (انوزى كار ورودى جهت شروع توليد يخ جامد در Y (ب) (بالت نهايعى منع دماى بالا برای اين كار ورودى
 در يكـ فو آيند جريان دائم آدياباتيكى متراكم مىشود. كار ورودى بهازايا واحد جرم فريوز، تغير در آتترويى و مقداز برگثشتنايذيرى را برا'ى $T_{0}=$ مساسبه كنيد.

 psia (الف) (جوم اضافه شده بهمخزن
(ب) تغير آنترويى محتويات مخزن
(ج) تغير, آنترويى جرمى كه وارد مخزن مىشود
تغيِر آنتروبى جهان در نتيجه اين فرآيند

يكت مخترع ادعا مىكند كه مىتواند مقدارزيادث انرزّى را جهت تبديل بهكار تنها بـا ذخيرهكردن بخار آبب در فئـاربالً يعنى اس است كه برای مخزن ذخيرهاثي بهحجم
 توليد كار متصل شود، الرزيابي نمايِلـ بخار آمونياكك بهطور آدياباتيكت از بخاراشباع Y Y

 هوند جرم آٓونياكك متراكمشده مشاسبه كنيد : (الف) كار واقعى لازم
(ب) (ب) دماى خروجى وافعى از كمبر سور
(ج) مقدار برگثت نالذيرى براى

$$
\begin{aligned}
& T_{0}=V \cdot{ }^{\circ} \mathrm{F} \text { (ج) تغير انرزّى دستر س بذير براى هردو منبع با با }
\end{aligned}
$$

(الف) تغير آنترويى مايع

مسائل (T آحاد متريك)

 $\Delta-\backslash M$ سرارت دفع شده V kJ است. تغير آنتر ويكى برابر است با
(الف) هثبت
(ب) منفى (
(ج)

در سيستمى كه تحت يكت فرآيند برگّثتناينذير قرار هى
$\Delta . r M$ حرارت دنع شذه V kJ است. تغير آنترويى برابر است با (الف) كئبت
(ب) (ب) منفى
(ج)
(د) (د (د (د)
د_rM حرارت داده شده V kJ است. تغير آنترويى برابر است با
(الف) هُبت
(ب) منفى (
(ج)
(د) (د (د

 Tدياباتيكت است. جريان بخار Tب لازم را محاسبه كيد. هيجنين تغير در آنتروبى را مساسبه كنيلد.
 مى مباشد. كار خروجى و دمايى راكه در آن حرار يكث سيكلكارنو MJ ا حرارت در و ا مى كند. كارخروجى را محاسبي كيند.

 باين محاسبهكيد.
 كه بين دماى هوای خارج
 محاسبه كنيد

 هليوم در نرخ kg/s
 r

محاسبه كنيل.
هوا در يك سيلندر - بيستون از V
D. 1 YM

فر آيند بلىتروييكى متراكم مى گردد. تغير آنترويى را بهازاى واحد جرم محاسبه كنيد.

آنترويى را محاسبه كنيد.
 داخل يكت مشزن عايت. شده بهم وصل مىشود و بهتعادن حرازتى مىرسد. تغير آنترويى

جقلدر است؟

كه در فشار ثابت kPa • l بهموا حرارت داده مىشود.

 فر آيند مساسبه كنيد. فزضيات را مشـخّص نمايد. (ا I VM اثر اصطكاكك فثـار به A MPa كاهش مىيابل. تغير آنترويى برایى بخارآب و مقدار

برگشت نالِيرى را با $T_{0}=Y \cdot{ }^{\circ}$ مساسبه كنيل.
آب در MPa
$\Delta-1 A M$
, 1 MPa MPa

بهگرمكن متاسبه كنيد.
(19 M آدياباتيك منبسط مىشود. سرعت ورودى كم است و فر آيند مى تواند شبهساكن فرض شود. مرعت خخروجى را مساسبه كنيل. همجنين تطر خروجى شييوره را برای شدت جريان
. / Y kg/s

D_Y, M
 لازمرا جهت توليدكارخروجى kW | مصاسبه كنيد، اكَر سيكل . . . ه بار در دقيقه تكرار شود. اگر حجمـ درحين افزايش حرارت † برابر شود كمترين فثار در سيكل جقدر است؟

 خزوجى بخار آب را محاسبه كنيد. . يك مكانيزم يبستون ـ سيلندر منبسط مىشود. كار و انتقال حرارت برایى اين فرآيند را

محاسبه كنيد.
 آنترويى ثابتـ است و سرعت خروجى برابر با m/s . C است. كار خروجى توربين را براى
.
 آدياباتيكت متخلوط مىشود. تغيير آنترويى جهان در اثر اين فرآيند جقدر است؟ مسأكه را براى مايعدر V فزض كنيل.

 سر مايش لازم و تغيبر آنترويى هليو را محاسبه كنيل. دماى اتمسفر مسل يكت گرمكن الكتريكى جهت گرمايش • ا اليتر آب در مخزن عايقى بهكار مىرود. دماى $\Delta-r \leadsto M$
 اثر اين زرآيند گرمايش محاسبه كنيد. يكت سيكل كارنو از يكت منبع دماثابت در V . . K K Kg D.rvM اثباع در kPa . . 1 حرارت يس مىدهل. هنگامى كه موتور كار مىكند، Tب طى يكت

فرآيند فشار ثابت حرارت داده مىشود تا دمايش به كارنو را محاسبه كنيد.
 سل مىتواند درنظر گرفنه شود. الف) گرمايش الكـريكى و ب) گَرمايش با منبع دماثابت $T_{0}=$ Y $\cdot{ }^{\circ} \mathrm{C}$ در محاسبه كنيد.
يكى كالريمتر خفگى به خطط لولهبخار (جهت نمونهبردارى بخار آب) در متصل است. بعدازاينكهبخارTب تا قرار گرفت، دمايش / / $/ \mathrm{MPa}$
در يكت جعبه صُلب عايق بهحجم f/ $/ \Delta \mathrm{m}^{3}$ بخارآب وجود دارد. شرايط kPa . . $\Delta_{-} \boldsymbol{Y} \cdot M$ (. . ${ }^{\circ} \mathrm{C}$ C بخارآب در مشزن بهحالت اشباع برمد. مقدار جرم بخارTب خارج شده از مــخزن را محاسبه كنيد.
بخارآب در MPa تركک مىكند. جريان Tدياباتيكت است. توان توربين MW • ه است. تـغيير آنـترويى بخار آب را حين عبور از توربين محاسبه كنيد.
بخارTب با شدت برگششتيذير از سرعت ورودى كم تا فشارخروجى Y . . kPa منبسط ميشود. سطع مقطع خروجى لازم برای اين دبى جريان را محاسبه كنيد. دى اكسيدكربن باشدت تغيير آنترويى را محاسبه كنيد.
 انسـاط آدياباتيكت برگشت يذير مىباشد. شــدت جريـان لازم را بـراى تـوان خـروجى . . . MW

ترمود يناميل
 استفاده ترار مىگيرد. دو منزن از طريق شير كنترن فشارى كه فنشار تخليه نيتروزن بهاهنخن مايع را دز V . . kPa ثابت نگگه مىدارد بههمديگ, متصل مىباشند. شير تخليه برزوى

 مخزن و شير اتصال عايق است. ححجم مخزن نيتر وزّن و دماى نهايى نيتروزن در دو مخزن را

محاسبه كنيد.
 حجم از ا تا / / / ليتر الزايث مى يابد، در حالى كه طى فرآيند دفع حرارت حجم از

محاسبه كنيد.
 مىشود. مخلوطشدن در يكت محفظه آدياباتيك صورت مىگيرد. تـغير آنترويى را محاسبه كنيد اگر فشارنهايى VP. kPa
 سيال فشار به kPa . . . ا كاهش مىيابد. تغير, آنترويى بهازاى هر كيلوگُم بشخار آب را

محاسبه كنيد.
هـ هوا در توربينى از F.F.M
 مىشد. تغير آنترويى و كار توليد شده به ازاى هر كيلوگرم هوا را محاسبه كنيد. A.FlM
 آنترويى هوا را محاسبه كنيد. O_FYM

كاملاُ عايت است. شيرى در يهلوى منزن باز مىشود و بشار آب خارج مىگگردد تا فشار به كاهش يابل. سيس شير بسته مىشود. مقدار بشار T MPa

هساسبه كنيد.
هـ هيدروزْ در FrM توربين كاملأعايت و انرزيهاى جنبشّى ناهيز است. اگر توان خروجى kW • ا باشد، تغير

آنتروذی كلى هيدروزن را درحين عبور از توربين مساسبه كنيد.

كرد. اگر سرعت خروجى m/s . ب باشد، قطر جريان خروجى را مساسبه كنيد. D_FDM حالىى تنها FY. . . kJ/kg

ادعا را باور مىكنيد؟

 باقى مىماند.
 آنترويى را مشاسبه كنيد. فرضيات را مشغّص كنيد.
D_FQM فشارى كار مى كند تأمين مىگردد. شرايط ورودى بهتوربين برابر با FD
 آدياباتيك فرض . Y/ C باشد. MW

ثابت متراكم میشود. تغير آنترويى را محاسبه كنيد.

D D D/M

 هنگامى كه دما طى فر آيند فنـارثابت (1) atm به يكت سيكل كارنو با بخارآب بهغنوان سيلن عامل طورى طرح مى شود كه با بازده . $\Delta _\Delta Y M$
 بهبخار اشباع انجام مى گيرد.دما، آنترويى وكيفيترادر هرنقطه سيكل محاسبه كنيد و طرح سيكل را برزوى نمودار T-S بكثيد. كارخارجى بهازای هر كيلوگرم بخـارآبـ جـقـدر است؟

 در حاللى كه سيال از حالت بخار اشباع بهمايع اشباع تغير مىكند صورت مى و كيفيت در هر نقطه سيكل، تأثير تبريد و كار ورودى را بهازاى هر كيلوگرم فريــون محاسبه كنيد. D_ DFM
 مخزن به atm ا مىرسد بسته مىشود. جرم بشار آب شخارج شـده و دماى نهايى مخز ن را در اين فرآ يند محاسبه كنيد.

 كارنو را محاسبه كنيد.
 .

 حرارت :خمانه شده بهو طولى و تغير آنى
 كه از دسـت مىزود بـاسبه كـيم.

 دربافت مىكند و FF. كار بس میدمد. تغيي. آنترويى سيستم برابر الست با
(الف) مبت
(ب) منفى
(ج)

$\Delta _\Delta q M$
 محاسبه كنيد.

 r r . . kPa بهصورت مايع اشباع شده دستگاه را تركث مىكند. مقدار بر گثـتنابذيرى اين فرآيند را

$$
\text { محامبه كنيد, تو جه كنيد كه } T_{0}=r \Delta{ }^{\circ} \mathrm{C} .
$$

مقدار برگشت نايذيرى را برای فرآيند مــأله

$$
. T_{0}=Y \Delta{ }^{\circ} \mathrm{C}
$$

 حرارت مىيابد. مقدار برگثـتنايذ يرى رابرایى الف) گرمايش با المان مقاومت الكتريكى

$\Delta .7 F M$ 1 ، ، kPa بخارآب دز يكت فرآبند نشار ثابت در 1/ 1 از 1 از حالت بخاراشباع تا حالت مايع اشباع سرد مىشود. هیه مقدار لز انرزیى دسترس یذير اين سيستم كاهش مى يابل، بافرض. اينكه كـترين دماى در دسترس r با باشد؟ يكى مخزن ليرنشار بخار آب بهحجم . . ها ليتر T Tاده إمست تا توربين كو جكى راكه
 بخار آب در هو هر ار دازد و مخزن كاملاُعايق است. تخليه از توربين در صورت مىگيرد. يكى شير كنترل تشار در قسمت تخليه توزبين بخار آب را تا
 اين لحظه شير تخليه بسته مىشود.كارشخوجىى توربين برای اين فر آيند را محاسبه كنيد.
 دماى بالا MJ F اسبت. تغيير آنترویى درحين فر آيندهاى افزايش و دفع حرارت، حرارت دفع شده و كار خروجى را محاسبه كنبد. يكت گرمكن الكتريكى براى حرارتدادن جريان هوايى از • ا تا l latm برگشتـنا بذيرى فرآيند را با $T_{0}=Y \cdot{ }^{\circ} \mathrm{C}$ محاسبه كنيد.
 $\Delta-79 M$ ديگُ بخار جهت بيش گرمكردن آب ورودى به ديگت بخار استفاده مىكنتد. در يكى

كاربرد Y Y . . ${ }^{\circ} \mathrm{C}$ C IY. اتلافى از گَازها جهت گَرمكردن Tاب مرن شود، تغير مقدار كاردهى گَاز، آب و تمام سيستم را بهطور كلى محاسبه كنيد. برگشتـناينذيرى برایى سيستم كلى با
 O_V.M يك مبدل حرارتى طورى طراحى مىشود كه بخار اشباع را بهمايع اشباع در kPa . . . $\Delta _$V) M تقطير كند. هوا بهعنوان واسط سر مايش عمل مىكند و در Y • K K به مبدل حرارتى واردو در FY. K از آن خارج میشود. دستگاه عايت است بهطورى كه تمام حرارت اتلانى از بخار آب توسط هواگرفته مىشود. عملكرد رامىتوان جريان دايُم درنظر گرفت. براى هر كيلوگرم بخار باب تقطيرشـده مساسبه كنيد:
(الف) جريان دبى جرمى هواى لازم
(ب) اتلان مقدار كاردهى بخار Tب
(ج) افزايش مقدار كاردهى هوا (با فرض
(د مقدار برگّشتنايذيرى فرآيند جريان داثم
(ها (ها (هآتترويى جهان در نتيجه اين فر' ايند.

D_VYM كاردهى را نـبت به فشار D_VrM . هد درصد به بـخارداغ . ${ }^{\circ} \mathrm{C}$

$$
\begin{aligned}
& \text { (الف) تغيير Tانتروبى بخار Tب }
\end{aligned}
$$

$$
\begin{align*}
& \text { (ج) تغير آتنرويى جهان } \\
& T_{0}=\text { Y. }{ }^{\circ} \mathrm{C} \text { تغير انرزى دسترس يذير منبع برای } \tag{2}
\end{align*}
$$

اشباع و VF. ${ }^{\circ} \mathrm{C}$ كار مىكند بس مىدهند. برایى هر كيلو گرم بشار آب سحاسبه كنيد : (المف) دبى جرمى جريان كاز لازم
(ب) تغير آنترويى براى گاز و براى بخار آب
$T_{0}=Y \cdot{ }^{\circ} \mathrm{C}$ (ج) تغير در تابع كاردهى برایى هر سيستم جريانى با الستفاده

بخار آب در خط لولهاى در به حجم • آب بهداخل مشزن جارى مىششود. هنگًامى كه فشار مخزن به V . . kPa برسد شير بسته مىششود. اگر مخزن كاملاُ عايق باشد. هساسبه كنيد : (الف) جرم اضهافه شده به مخزن (ب) تغيير آنترويى محتويات مخزن
 (د) تغيير آنترويى در نتيجه اين فرآيند
يكت مخترع الدعامىكند كه مى تواند مقدار زيادى انرزى را جهت تبد يل به كار تنها بهوسيله

 توليد كار متصل شود ارزيابى نـايسد.
D_VVM
 در kPa . . . ا در دماي بايِن حرارت مىگيرد. وتتى كه دستگاه روشن میشود هردو منبع آب در Y Y و هو دو آنها حاوى

$$
\begin{aligned}
& \text { (ب) (حالت نهايى منع با دماى بالا برایى اين كار ورودى } \\
& T_{0}=Y \cdot{ }^{\circ} \mathrm{C} C \text { (ج) تغير انرزّى دسترس يذير براى هي دو منبع } \\
& \text { فرض كنيد كه فر آيندها برایى هردو منبع در فثارثابت صورت مىتيريرد. }
\end{aligned}
$$

 منبـط مىشود. بازده توربين 9 Y 9 درصد السـت. كارشروجى توربين، بـازده فـانون دوم
 (F kg/s دستگاه جريان دائم آدياباتيك مسخلو طمىشود. اگَ فـارخروجى نيز kPa . . . 1 باشد.

هوا محتويات مكانيزم سيلندر - بيستونى را در $\Delta _\wedge \cdot M$

$$
\text { كنيد كه } p_{0}=1 \cdot \mathrm{kPa}, T_{0}=\mathrm{r} \cdot{ }^{\circ} \mathrm{C}
$$

مخْزن صُلبى به ححجم
 $p_{0}=1 \cdots \mathrm{kPa}$
بخار آب اشباع در Y . . kPa محتويات سيلندر - يستونى را تشكيل مى دهد. حداكتر كار مفيد را مـحاسبه كنيد، اگر بشخار در نشار ثابت تاز زمانى كه نصف آن تقطير شود مرد گردد.

$$
\text { توجه كنيدكه } p_{0}=1 \cdots \mathrm{kPa}, T_{0}=Y \cdot{ }^{\circ} \mathrm{C}
$$

مخنزتى به ححجم

 كاردهى بخار آب رابرابى هـ هوا محتويات مخزنى در $\Delta \Delta M$ $T_{0}=Y \Delta{ }^{\circ} \mathrm{C}, p_{0}=1 \ldots \mathrm{kPa}$ برای توليد حداكر كار مفيد0 براى توليد حـداكر كار مفيد

D_A M.M است. در يكت محفظه آب در میىاشد. صفحه برداشته مىشود و سجموعه به تعادل مىزسل. بيشترين. كار مفيد برای ايز فرآيند را با
بخارآب آشباع در دماى بهك كار بردن نمودار مولير تغير آنترويى را محاسبهكيـلـ. باستفاده از جداول بخار آب مقدار تغير حجم زا نيز تعين كنيـن.
 استفاده از نموداز مولير تغيبر انتاليى كلى سيستم را تععين كنيل. هميحنين حالـت نهايى را

مشخص كنيد.
D_A9M داراى تطر m 1 باشد.
 $\Delta-9 \cdot M$
 كسرى از بـخار آب براى رسيدن به اين حالئت بايد خالزج شود؟
ميلندر كو جككى به حهجم سيلندر در يكك محفظه عايت به حهم
 عمل مى كند. محاسبه كنيد : (الف) تغير آنترويى برای نيتروزن
(ب)
 برگشت يذير در يكت مكانيزم سيلندر - بيستون

 حداككر اختلان آنترويى در سيكل برابر با Y . . . J/K است. حرارت اضانه شده به ميكل، حرارت دنع شده، كار خالص خروجى و بازده حرارتى ميكل را مساسبه كنيد.
 بهصورت آدياباتيكت كار مىيكند. محاسبه كنيد :
(الف) كار لازم بهازاى هر كيلوگرم هوا (ب) تغير آنترويى برای اين فرَ آيند

 معرض خورشيد ترار دارد و فر آيند آنجّنان بهآرامى صورت مى
 تغير آنترويى جهان را در نتيجه اين فرآيند محاسبه كنيد.

مـرا:جــع

1 Callen, H. B.: "Thermodynamics," John Wiley \& Sons, Inc., New York, 1960.
2 Lewis, G.N., and Randall,M. : "Thermodynamics," 2d ed. (revised by K. S.Pitzer and L. Brewer), McGraw-Hill Book Company, New York, 1961.
3 Reynolds, W. C.: "Thermodynamics," 2d ed., McGraw-Hill Book Company, New York, 1968.
4 Sears, F. W.: "An Introduction to Thermodynamics, The Kinetic Theory of Gases, and Statistical Mechanics." Addison-Wesley Publishing Company, Inc., Reading, Mass., 1950.
5 Hatsopoulos, G. N., and Keenan J. H: "Principles of.General Thermodynamics," John Wiley \& Sons, Inc., New York, 1965.
6 Van Wylen, G. J., and Sonntag, R. E.: "Fundamentals of Classical Thermodynamics," John Wiley \& Sons, Inc., New York, 1965.
7 Tribus, M.: "Thermostatics and Thermodynamics," D. Van Nostrand Company, Inc., Princeton, NJ., 1961.

7 chat

معادلات حالت و روابط عمومى ترموديناميك

4.1

اينك مى خواهيم بعضى روابط عمومى ترموديناميك راكي شايد برائى گسترش معادلات
 بدون دادهماى آزمايشى هيجگِونه تجزيه و تحليل ترموديناميكت ماكروسكيى برایى گـترش مسادله

 اندازهگير يهاى آزمايشى ضرورى است.

بعضى مقدّمات رياضى Y_Y
 روابط، مؤثرتر آنها رابه كار گرفت. فضض كنيد كه zبهصورت تأبعى از دو متغير مستقل x و y داده

$$
\begin{equation*}
z=z(x, y) \tag{7-1}
\end{equation*}
$$

$$
\begin{equation*}
d z=\frac{\partial z}{\partial x} d x+\frac{\partial z}{\partial y} d y \tag{7.Y}
\end{equation*}
$$

كه ترموديناميك معمولاً اُشتقهاى جز ئى بهمورت زير نـير نوشته مىشود :

$$
\begin{equation*}
\frac{\partial z}{\partial x}=\left(\frac{\partial z}{\partial x}\right)_{y}=M \quad \frac{\partial z}{\partial y}=\left(\frac{\partial z}{\partial y}\right)_{x}=N \tag{7.r}
\end{equation*}
$$

$$
\frac{\partial^{2} z}{\partial x \partial y}=\frac{\partial^{2} z}{\partial y \partial x}
$$

$$
\begin{equation*}
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x} \tag{7-f}
\end{equation*}
$$

البته ممدانيدكه معادله (Y-Y) بهصورت زير نوشته شده است:

$$
\begin{equation*}
d z=M d x+N d y \tag{7-১}
\end{equation*}
$$

از معادله ((- الين اينور استنباط مىشودكه در اصل x يا ورا میتوان بهطور صريع برحسب
دو متغير ديگر بيان كرد. يعنى روابطى بهشكل زير موجود مىباشد :

$$
\begin{equation*}
x=x(y, z) \quad y=y(x, z) \tag{7-7}
\end{equation*}
$$

از اين دو رابطه بهدست مى Tوربمكه :

$$
\begin{align*}
& d x=\left(\frac{\partial x}{\partial y}\right)_{z}^{d y}+\left(\frac{\partial x}{\partial y}\right)_{y} d z \\
& d y=\left(\frac{\partial y}{\partial x}\right)_{z} d x+\left(\frac{\partial y}{\partial z}\right)_{x} d z \tag{7_A}
\end{align*}
$$

$$
\begin{equation*}
\left(\frac{\partial x}{\partial y}\right)_{z}\left(\frac{\partial y}{\partial z}\right)_{x}\left(\frac{\partial z}{\partial x}\right)_{y}=-1 \tag{7-9}
\end{equation*}
$$

از معادله (१_ף) بهعنوان رابطه سيكلى' ياد خواهيم كرد.
هنگامى كه در روابط ترموديناميكى با حاصل خربهایى ميُتقات جزئى سروكار داريـم بايد دتيقتر باشيم. فرض كنيد كه داريم :

$$
\begin{aligned}
& r=r(x, y) \\
& z=z(x, r)
\end{aligned}
$$

مى توان مشُتقات زير را تشكيل داد :

$$
\begin{aligned}
& \frac{\partial r}{\partial x}=\left(\frac{\partial r}{\partial x}\right)_{y} \\
& \frac{\partial z}{\partial x}=\left(\frac{\partial r}{\partial x}\right)_{r}
\end{aligned}
$$

اما اين نكته قابل توجه است كه

$$
\frac{\partial r / \partial x}{\partial z / \partial x} \neq \frac{\partial r}{\partial z}
$$

البته نوشتن رابطه زيرمجاز است

$$
\left(\frac{\partial z}{\partial x}\right)_{y}=\frac{1}{(\partial x / \partial z)_{y}}
$$

برايى جلوگيرى از اشتباه در بحثهاى مشتقات جزئى در اينجا هميثه برانتز و زيرنويس بهكار گرنه

دو خاصيت جلديل را تعريث مىكنيم : تابع هلمهولتّر a

$$
a=u-T s
$$

$$
\begin{equation*}
g=h-T s \tag{7.11}
\end{equation*}
$$

در اين جاكأرى بهماهيت فيز يكى اين خواص نداريم. فقط مىگَويِم آنها در تجزيه و تحليل تعادل سيستم اهميت دارند.

معادله انزرى
در فصل سوم نشان داده شده كه الصل بقاى انرثّى را میتوان برابى ماده خالصىى كه فقط داراى
كار تراكمى مىياشد در فرم ديفرانسيلى بهصورت زير نوشت :

$$
\begin{equation*}
d^{\prime} Q=d u+p d v \tag{7.1r}
\end{equation*}
$$

$$
\begin{equation*}
d^{\prime} Q_{r e v}=T d s=d u+p d v \tag{n,1r}
\end{equation*}
$$

روابط ماكسول'

تريف انتاليى را مىتوان بهياد آوردكه :

$$
h=u+p v
$$

$$
\begin{aligned}
d a & =d u-T d s-s d T \\
d g & =d h-T d s-s d T \\
d h & =d u+p d v+v d p \\
d u & =T d s-p d v
\end{aligned}
$$

با با استفاده بيشتر از معادله (Tـ)

$$
\begin{align*}
& d a=-s d T-p d v \tag{-}\\
& d g=-s d T+v d p \tag{-}\\
& d h=T d s+v d p \\
& d u=T d s-p d v
\end{align*}
$$

 زير بهدست آمده است :

$$
\begin{array}{rlrl}
-s & =\left(\frac{\partial a}{d T}\right)_{v} & -p & =\left(\frac{\partial a}{\partial v}\right)_{T} \\
-s & =\left(\frac{\partial g}{\partial T}\right)_{p} & v & =\left(\frac{\partial g}{\partial v}\right)_{T} \\
T & =\left(\frac{\partial h}{\partial s}\right)_{p} & \left(\frac{\partial s}{\partial p}\right)_{T} & =-\left(\frac{\partial p}{\partial T}\right)_{v} \\
T & =\left(\frac{\partial v}{\partial T}\right)_{p} \tag{7-17d}\\
T_{\nu} & =\left(\frac{\partial h}{\partial p}\right)_{s} & \left(\frac{\partial T}{\partial p}\right)_{s} & =\left(\frac{\partial v}{\partial s}\right)_{p} \\
-p & =\left(\frac{\partial u}{\partial v}\right)_{s} & \left(\frac{\partial T}{\partial v}\right)_{s} & =-\left(\frac{\partial p}{\partial s}\right)_{v}
\end{array}
$$

جهار دسته رابطه بين مشتقات جزنى كه از مساوى قراردادن مشتقات جزنّى مشتلط مر تبه دوم بدست آمده است روابط ماكسـول ناميده مىشود. در اين جا دو رابطه ديگر بطور خاص موردتوبهـ است :

$$
\begin{align*}
T & =\left(\frac{\partial u}{\partial S}\right)_{v} \\
T & =\left(\frac{\partial h}{\partial S}\right)_{p} \tag{-}
\end{align*}
$$

از اين زوابط مىتوانيم برايى تعريف دما برحسب ساير خو اصـ ترمودينّنبحى لوئزه آنترويى استفـده

 قطعى بين تحليل ترموديناميك ماكر وسكیى و ميكروسكتى عمل نموده و در حقيقت بهد ست آوزدن
 ترار خواهيم داد اما اينكي تو جه خود را بهروى روابط ماكر وسكيى متمركز مى كنيم.

L\ انتالیى، انرزى داخلى، و آنترويى

$$
\text { شود) بيان گردد. در آنصورت (} u=u(T, v)
$$

$$
d u=\left(\frac{\partial u}{\partial T}\right)_{v} d T+\left(\frac{\partial u}{\partial v}\right)_{T} d v
$$

با يادآورى تعريف :

$$
c_{v}=\left(\frac{\partial u}{\partial T}\right)_{v}
$$

داريـم

$$
d u=c_{v} d T+\left(\frac{\partial u}{\partial \nu}\right)_{T} d v
$$

از معادله (Y_ (Y)

$$
\begin{align*}
d s & =\frac{d u}{T}+\frac{p}{T} d v \\
& =c_{\nu} \frac{d T}{T}+\left[\frac{1}{T}\left(\frac{\partial u}{\partial v}\right)_{T}+\frac{p}{T}\right] d v \tag{9-19}
\end{align*}
$$

$$
d s=\left(\frac{\partial s}{\partial T}\right)_{\nu} d T+\left(\frac{\partial s}{\partial \nu}\right)_{T} d \nu
$$

$$
\begin{align*}
& \left(\frac{c_{v}}{T}\right)=\left(\frac{\partial s}{\partial T}\right)_{v} \\
& \left(\frac{\partial s}{\partial \nu}\right)_{T}=\frac{1}{T}\left[\left(\frac{\partial u}{\partial v}\right)_{T}+p\right]
\end{align*}
$$

$$
\left(\frac{\partial s}{\partial v}\right)_{T}=\left(\frac{\partial p}{\partial T}\right)_{\nu}
$$

بدين ترتيب معادله (Y_ Y Y) رامىتوان مـجدداً بهصورت زير نوشت.

$$
\begin{equation*}
\left(\frac{\partial u}{\partial v}\right)_{T}=T\left(\frac{\partial p}{\partial T}\right)_{v}-p \tag{array}
\end{equation*}
$$

$$
\begin{equation*}
d u=c_{v} d T+\left[T\left(\frac{\partial p}{\partial T}\right)_{v}-p\right] d v \tag{7-Yf}
\end{equation*}
$$

به همين ترتيب مىتوان براى آنترویى نوشت

$$
\begin{equation*}
d s=\mathcal{c}_{v} \frac{d T}{T}+\left(\frac{\partial p}{\partial T}\right)_{v} d v \tag{-}
\end{equation*}
$$

بهدست آوردن روابطى مشابه برايى انتاليى نيز امكانیذير است. نتيجه عبارت است از :

$$
d h=c_{p} d T+\left[v-T\left(\frac{\partial v}{\partial T}\right)_{p}\right] d p
$$

كه تعر يف گرماى ويزه دز نشار ثابت يأدآورى مىشود

$$
c_{p}=\left(\frac{\partial h}{\partial T}\right)_{p}
$$

(Z-YV)

ترموديناميكى

با در نظر گُرفتن آنترويى بهصورت تابعى از دومتغير مستقل فـــار و دما بهجاى حجم و دما، رابطه زير
بهدست مى آيد :

$$
\begin{equation*}
d s=c_{p} \frac{d T}{T}-\left(\frac{\partial v}{\partial T}\right)_{p} d p \tag{7.YA}
\end{equation*}
$$

 (

$$
c_{v} \frac{d T}{T}+\left(\frac{\partial p}{\partial T}\right)_{v} d v=c_{p} \frac{d T}{T}-\left(\frac{\partial v}{\partial T}\right)_{P} d p
$$

با تغير آرايث داريم

$$
\begin{equation*}
c_{p}-c_{\nu}=T\left[\left(\frac{\partial p}{\partial T}\right)_{v} \frac{d v}{d T}+\left(\frac{\partial v}{\partial T}\right)_{P} \frac{d p}{d T}\right] \tag{7.rq}
\end{equation*}
$$

$$
\text { براى حجم ثابت و } d v=
$$

$$
\left(c_{p}-c_{\nu}\right)_{\nu}=T\left(\frac{\partial \nu}{\partial T}\right)_{p}\left(\frac{\partial p}{\partial T}\right)_{\nu}
$$

$$
\text { يا برايى فـار ثابت و } d p=\text { و }
$$

$$
\left(c_{p}-c_{v}\right)_{p}=T\left(\frac{\partial p}{\partial T}\right)_{\nu}\left(\frac{\partial v}{\partial T}\right)_{P}
$$

ايز: روابط يكــان است. با استفاده از رابطه سيكلى (هـی) ؛

$$
\left(\frac{\partial p}{\partial T}\right)_{v}=-\left(\frac{\partial v}{\partial T}\right)_{P}\left(\frac{\partial p}{\partial v}\right)_{T}
$$

رابطه نهايى زير را بهدست مى آوريم

$$
\begin{equation*}
c_{p}-c_{v}=-T \frac{(\partial v / \partial T)_{p}^{2}}{(\partial v / \partial p)_{T}} \tag{॥_r•}
\end{equation*}
$$

بدين ترتيب با بهدست آوردن معادله (•

خهارشخاصيت شده است، اطلاعات لازم برايى تعين Tنها را هم مشخص كردها ایم. نتيجهه بالا از /مهيت زيادى برخوردار /ست زيرا بنياد آن دسته از اندازه كيريهاى تجريى استت كهبا يل براى تشريح كامل كليه خواص ترموديناميكى يكـمادهخالص انتجام شود. اكگر نقط يكى فاز از مادهاى موردنظر باشد (يعنى فازمايع ياكَاز)، مى توان فرض نمود معادله حالتّى وجود دارد كه نشار، حجمط، و دما را بهيكديگر مربوط مىكند:

$$
v=v(T, p)
$$

 مى توان از تركيب اين معادله با دادهمایى گرماى ويزه ساير خواص ترموديناميكي را مساسبه نمو د. دراينجا
 آدياباتيكت و دما ثابت ياد آور شويم. اين آزمايشها در بـخش P_Y تشريع شد.

(- Y

عبارتهاى مفيد ديگرى مىتوان نوشت كهگرماهاى ويزه را بهيكديگر ارتباط مىدهد. معادله (7.YA) درجه دوم آن را مساوى ترار داد تا رابطه زير را بهدست آوريـم.

$$
\begin{align*}
& {\left[\frac{\partial\left(c_{p} / T\right)}{\partial p}\right]_{T}=-\left[\frac{\partial}{\partial T}\left(\frac{\partial v}{\partial T}\right)_{p}\right]_{p}} \\
& \left(\frac{\partial c_{p}}{\partial p}\right)_{T}=-T\left(\frac{\partial^{2} v}{\partial T^{2}}\right)_{P} \tag{Z_rY}
\end{align*}
$$

 بهدست مى Tوريم. از مساوى تراردادن مشتقات جزئى مختلط درجه دوم نتيجه مىگيريم

$$
\begin{align*}
& {\left[\frac{\partial\left(c_{v} / T\right)}{\partial v}\right]=\left[\frac{\partial}{\partial T}\left(\frac{\partial p}{\partial T}\right)_{v}\right]_{v}} \tag{b}\\
& \left(\frac{\partial c_{v}}{\partial v}\right)_{T}=T\left(\frac{\partial^{2} p}{\partial T^{2}}\right)_{v}
\end{align*}
$$

معادلات (Y
بسيار مفيدى بهدست خو/هد آمد. داريم :

$$
v=\frac{R T}{p} \quad p=\frac{R T}{v}
$$

 مىیگيريم كه :

$$
\begin{aligned}
& \left(\frac{\partial c_{p}}{\partial p}\right)_{T}=-T(0)=0 \\
& \left(\frac{\partial c_{v}}{\partial_{v}}\right)_{T}=T(0)=0 \\
& \left(\frac{\partial u}{\partial v}\right)_{T}=T\left(\frac{R}{v}\right)-P=0
\end{aligned}
$$

بهعبارتى گرماهانى ويزه و انرزى داخلى يكى گاز ايدهآل زفط تابع دماست. اين نتيهه قبلأ در فصل دوم براى مساسبه فرآيندهاى گازهانى ايلدهآل مورداستفاده ترارگگرنت.

 تنظيم شده است. برای اين جلولها سطع سبناى صفر برايى انتاليى و انرزى داخلى در صفر درجه مطلق انتخاب شثده است.
برایى يكگاز ايدهآل تغيير در آنترويى را دريكى زرآيند بهصورت زير مىنويـيم. [معادله
[را بينيد (

$$
s_{2}-s_{1}=\int_{T_{1}}^{T_{2}} c_{p} \frac{d T}{T}-R \ln \frac{p_{2}}{p_{1}}
$$

سالثت مبنا براى آنتروبى را بهصورتى انتغاب مىكنيم كه

$$
s=0 \quad T=0 \quad, p=1 \mathrm{~atm} \mathrm{~s}
$$

سيس آنترويى در هر دما و فشاري برابر است با:

$$
s=\int_{0}^{T} c_{P} \frac{d T}{T}-R \ln p
$$

كه فشار برحسب واحد اتمسفر بيان شده است. در اين معادله انتگرال فقط تابعى از دما بوده و در ججداول كاز بهصورت ه جدولبندى شده است (جدولهاى A-IV , A- A A را بينيد).

$$
\phi=\int_{0}^{T} c_{p} \frac{d T}{T}
$$

$$
s_{2}-s_{1}=\phi_{2}-\phi_{1}-R \ln \frac{p_{2}}{p_{1}}
$$

درنظر بگيريد. از معادله (

$$
T d s=d h-v d p=0
$$

$$
c_{p} d T=\frac{R T}{p} d p
$$

با جداكردن متغيرها

$$
\begin{equation*}
\frac{d p}{p}=\frac{c_{p} d T}{R T} \tag{ఇ_r^}
\end{equation*}
$$

$$
\begin{equation*}
\ln P_{r}=\frac{\phi}{R} \tag{१_p.}
\end{equation*}
$$

كه نشارنسبي 'بهصورت زير تعريف شده است :

$$
P_{r}=\frac{p}{p_{0}}
$$

واضّع است كه برایى يكت فرآيند Tنترويى ثابت نشارنسبى فقط تابعى از دما است زيرا ϕ تنها بهدما بستگى دارد. بعلاوه براى فرآيند آنثرويى ثابت داريم :

$$
\begin{equation*}
\frac{p_{1}}{P_{2}}=\left(\frac{P_{r l}}{P_{r 2}}\right)_{s=\text { const. }} \tag{4-f1}
\end{equation*}
$$

بهممينتر تيب حجم مخصصوص نسـي " را مىتوان براى فرايند آنترويى ثابت بيان نمود بطورىیى

$$
\begin{equation*}
\left(\frac{v_{1}}{v_{2}}\right)=\left(\frac{v_{r 1}}{v_{r 2}}\right)_{s=\text { corst }} \tag{K_FY}
\end{equation*}
$$

vr
$\ln v_{r}=\ln \frac{v}{v_{0}}=-\frac{1}{R} \int_{T_{0}}^{T} \frac{c_{\nu} d T}{T}$
مقادير فشارنسبى و ححجم مضصوص نسبى برایى هوا در جلول A- IV تنظيم شده اسی. مثال L النبساط آنترويى ثابت

هوا در يك فرآيند آنترويى ثابت از استفاده از جداول گاز دماى نهايى و تغير در انتاليى را مداسبه كنيد.

1- Relative pressure

2- Relative specific volume

$$
\begin{aligned}
& \ln \frac{p}{p_{0}}=\frac{1}{R} \int_{T_{0}}^{T} \frac{c_{p} d T}{T} \\
& \text { با استفاده از همان دماى مبناى به كار برده شده در جدول گًاز نتيجه مىگيريم : }
\end{aligned}
$$

$$
\begin{aligned}
& T_{1}=650 \mathrm{~K} \\
& h_{1}=659.84 \mathrm{~kJ} / \mathrm{kg} \\
& P_{r 1}=21.86
\end{aligned}
$$

با استفاده از معادله (1-FI)

$$
\begin{aligned}
P_{r 2} & =P_{r 1} \frac{p_{2}}{p_{1}} \\
& =21.86\left(\frac{200}{700}\right)=6.246
\end{aligned}
$$

با مراجع سجدّد بهجدولهاى گاز با
$T_{2}=460 \mathrm{~K}$
$h_{2}=462.01 \mathrm{~kJ} / \mathrm{kg}$ ($198.6 \mathrm{Btu} / \mathrm{bm}$)
و تغير در انتاليى برابر است با:
$\Delta h=h_{2}-h_{1}=462.01-659.84=-197.83 \mathrm{~kJ} / \mathrm{kg}(-85 \mathrm{Btu} / \mathrm{lbm})$

مثال YY انبساط بركشتنايلير
فرآيند انبساطى مثال اـ ا بين همان دونثار اتفاق مىاندد، با اين تفاوت كه بهعلّت اثرات

$$
\begin{aligned}
& \phi_{1}=3.3069 \\
& \phi_{2}=2.9909
\end{aligned}
$$

از معادله (T-YV) تغيير در آتنتوبى برابر است با

$$
\begin{aligned}
s_{2}-s_{I} & =\phi_{2}-\phi_{1}-R \ln \frac{p_{2}}{p_{1}} \\
& =2.9909-3.3069-\frac{287.1}{1000} \ln \frac{200}{700} \\
& =0.04367 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K} \quad\left(0.01043 \mathrm{Btu} / \mathrm{lbm} \cdot{ }^{\circ} \mathrm{R}\right)
\end{aligned}
$$

مثال "ــ7

با استفاده از جداول هوا تغير در آنتروبى رابرایى هوا تحت شرايط زير محاسببكيد:
(الف) تراكم از $\Delta \Delta \cdot K$ Gr. .

 بهحجم

حــل : (الف) تغير در آنترويى را مىتوان مستقيمأ از معادله (Y-Y) مهاسبه نمود. $s_{2}-s_{1}=\phi_{2}-\phi_{1}-R \ln \frac{p_{2}}{p_{1}}$

باستفاده از جداول هو! (جدول A- IVM)

$$
\begin{array}{ll}
T_{I}=300 \mathrm{~K} & \phi_{1}=2.5153 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K} \\
T_{2}=550 \mathrm{~K} & \phi_{2}=3.1314 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}
\end{array}
$$

(a) از معادله

$$
\begin{align*}
s_{2}-s_{1} & =3.1314-2.5153-0.287 \ln \frac{10}{1} \\
& =-0.04474 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K} \tag{b}
\end{align*}
$$

(د) جرم هوا از حالت اوليه مساسبه مىتردد :

$$
p_{1}=1 \mathrm{~atm}=101.32 \mathrm{kPa} \quad T_{1}=300 \mathrm{~K} \quad V_{1}=0.058 \mathrm{~m}^{3}
$$

بهطورى كه برطبق قانون گَاز ايدهآل

$$
\begin{equation*}
m=\frac{p V}{R T}=\frac{\left(1.0132 \times 10^{5}\right)(0.058)}{(287)(300)}=0.06825 \mathrm{~kg} \tag{e}
\end{equation*}
$$

 در مى آيد :

$$
\begin{equation*}
Q=U_{2}-U_{1}=m\left(u_{2}-u_{1}\right) \tag{f}
\end{equation*}
$$

با استفاده از جداول هوا (جدول A- IVM) در K . . .

$$
u_{1}=214.09 \mathrm{~kJ} / \mathrm{kg} \quad \phi_{1}=2.5153
$$

(f) با جايگز ينى عددى در رابطه
$10 \mathrm{~kJ}=0.06825\left(u_{2}-214.09\right)$

$$
\begin{equation*}
u_{2}=3.0358 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K} \tag{g}
\end{equation*}
$$

$$
\begin{align*}
& s_{2}-s_{1}=3.1314-2.5153=0.6161 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K} \tag{c}
\end{align*}
$$

$$
\begin{aligned}
& \text { اين بدان معنى است كه } \\
& s_{2}-s_{1}=0-287 \ln \frac{0.7}{1.4} \\
& =198.9 \mathrm{~J} / \mathrm{kg} . \mathrm{K}=0.1989 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}
\end{aligned}
$$

$$
\begin{equation*}
T_{2}=511.5 \mathrm{~K} \quad \phi_{2}=3.0358 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K} \tag{h}
\end{equation*}
$$

جون حجـم ثابت باقى مى ماند، فنار نهايى از رابطه زير دحاسبه مى گردد

$$
\begin{align*}
& \frac{p_{2}}{p_{1}}=\frac{T_{2}}{T_{1}} \tag{i}\\
& p_{2}=(1)\left(\frac{511.5}{300}\right)=1.705 \mathrm{~atm}
\end{align*}
$$

تغيبر T'نترويىى كُل برابر است با

$$
\begin{align*}
s_{2}-s_{1}=m\left(s_{2}-s_{1}\right) & =(0.06825)(0.3674) \\
& =0.02508 \mathrm{~kJ} / \mathrm{K} \tag{k}
\end{align*}
$$

برایى محاسبه تغيبر آنترويى در واحد جرم مجدداً از معادله (a) استفاده مىشود

$$
\begin{equation*}
s_{2}-s_{1}=3.0358-2.5153-\left(0.287 \ln \frac{1.705}{1}\right)=0.3674 \tag{j}
\end{equation*}
$$

مثال
 .

حـــل : داريم:

$$
T_{1}=300 \mathrm{~K} \quad T_{2}=530 \mathrm{~K}
$$

برایى يكت فرآيند جريان دائم با انرزى جنبشى ناهيز، كار آدياباتيكت انجام شده' بر روت هـوا عبارت است از

$$
W=h_{2}-h_{1}
$$

$$
\begin{aligned}
& h_{2}=533.98 \mathrm{~kJ} / \mathrm{kg} \\
& h_{1}=300.19 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

$$
W=533.98-300.19=233.8 \mathrm{~kJ} / \mathrm{kg} \quad(100.5 \mathrm{Btu} / \mathrm{lbm})
$$

$$
\text { برای گرمایى ويزّه ثابت c } c_{p}=1 / \cdots \Delta \mathrm{kJ} / \mathrm{kg}{ }^{\circ} \mathrm{C} \text { تغير در انتاليى برابر خواهد بود با }
$$

$$
h_{2}-h_{1}=c_{p}\left(T_{2}-T_{1}\right)
$$

$$
=(1.005)(530-300)
$$

$$
=231.2 \mathrm{~kJ} / \mathrm{kg} \quad(99.4 \mathrm{Btu} / \mathrm{lbm})
$$

بنابراين در اين مثال خطاى فزض گگرماى ويزه ثابت درحّد ا درصـد خواهد بود.

"مرماهماى ويرّه در فشار هاى بالا

 معادله مىتوان نسبت بهفشار انتگرال گرفت.

$$
\begin{equation*}
\left(c_{p}\right)_{T, p}-\left(c_{p}\right)_{T, p=0}=\int_{p=0}^{p} T\left(\frac{\partial^{2} v}{\partial T^{2}}\right)_{p} d p_{T} \tag{7.FF}
\end{equation*}
$$

بدين ترتيب وتتى كه گرماى ويزه در فشارصفر (خيلى بايِن) و معادله حالـت (

 اطل>عات تجربى عبارت است از :

1 ـ رنظار گرماى ويزه در نشار صفر

-
روابطى كه تبلاُ داده شده است مسلماً بهوجودآورنده مبنايى بـــراى مسـاسبه خـواص در
هنطقهایى دونازى نيست. يكت رابطه مفيد برایى هنين محاسبه|ى معادله كلاسيوس ـ كلايرون است كه
 دوباره مىنويسيم :

$$
\begin{equation*}
\left(\frac{\partial p}{\partial T}\right)_{v}=\left(\frac{\partial s}{\partial \nu}\right)_{T} \tag{7.17a}
\end{equation*}
$$

يكث مادهٌ خالص ضسن تغير از حالت مايع اثباع بهحالت بشار اشباع فرايندى را تحتت دماى ثابت طمى
 مىتوان بههورت زير نوشت :

$$
\begin{aligned}
& \left(\frac{\partial p}{\partial T}\right)_{v}=\frac{d p}{d T} \\
& \left(\frac{\partial s}{\partial v}\right)_{T}=\frac{s_{g}-s_{f}}{v_{g}-v_{f}}=\frac{s_{f}}{v_{f g}} \\
& \\
& : \begin{aligned}
Q & =\Delta u-W \\
& =u_{g}-u_{f}+p\left(v_{g}-v_{f}\right) \\
& =h_{g}-h_{f}=h_{f g}
\end{aligned}
\end{aligned}
$$

اما در فر آيند دماى ثابت $Q=T s_{f g}$ اسـت بهطورى كه

$$
s_{f g}=\frac{h_{f f}}{T}
$$

$$
\begin{equation*}
\frac{d p}{d T}=\frac{h_{f q}}{T v_{f g}} \tag{7.+7}
\end{equation*}
$$

معادله (7-F) معادله كلاسيوس ـكلآيرون ناميده مىشود. مشتق dp/dT نشاندهنده شيب منحنى فشار بخار بوده و كاربر درابطه مذكور مشهود است. احتمالأخواص مايع اشباع را مى توان از يكت معادله حالت مناسـب و يكت حالت مبناى دلخواه مشخصصشمله تعين نمود. انتاليى و آنترويتى آب اششباع در برابر صفر درنظرگرفهه شلده اسـت. دادههاى آزمايشى ممكناستت جهت تشكيل يكت معادله تهربى برایى
 بهد بست آورد. سيس

مثال هــ تعادل جامد ـ بِخار
فـار اشباع برایى يكت مشخلوط در سال تعادل Tب شامل فازهاى جامد و بـخار در A
 ثابت مى، اشـل

حـــل : برایى حل اين مسأله معادلهُ كلاسيوس ــلايِرون را بهكار خخاعيم گرفت، در فشارهاى خيلى پايِن بشار آب تقريباً رفتار گاز ايدهآل رادارد و

$$
\begin{equation*}
v_{g}=\frac{R T}{p} \tag{a}
\end{equation*}
$$

همحنين

$$
\frac{p_{2}}{p_{1}}=0.062
$$

$$
p_{2}=(0.062)(0.0019)=1.178 \times 10^{-4} \text { psia } \quad(0.812 \mathrm{~Pa})
$$

|

اينكت ممكن استـ كه نكات عمده روش كلي براى ساخت جلولهاى خواص ترموديناميكى را خخلاصه نمود. شطالب ذكرشده بهنقاط و ناحيههاى نشان داده شده در شكل ا ــ مربوط ميشود.

$$
\begin{aligned}
& \text { اطلاعات آزهايشى لازم }
\end{aligned}
$$

$$
\begin{aligned}
& \text { در مى آيد : } \\
& \frac{d p}{d T}=\frac{p h_{i g}}{R T^{2}} \\
& \text { كه vo برای معادله (a) جايگزين شلده است. ميتوان از معادله (b) بين دو دما انتگرال گرفت } \\
& \int_{P_{1}}^{p_{2}} \frac{d p}{p}=\int_{T_{1}}^{T_{2}} \frac{h_{i g} d T}{R T^{2}} \\
& \ln \frac{p_{2}}{p_{1}}=\frac{h_{i g}}{R}\left(\frac{1}{T_{l}}-\frac{1}{T_{2}}\right) \\
& \text { با الستفاده از اطلاعات داده شده } \\
& \ln \frac{p_{2}}{p_{1}}=\frac{(1221.2)(778)}{85.6}\left(\frac{1}{420}-\frac{1}{380}\right) \\
& =-2.78
\end{aligned}
$$

$$
\begin{aligned}
& \text { T - اطلاعات آزمايشى براي تغيبرات p-T منحنى تبخير } \\
& \text { روابط تجريى كه مستقيمأ از نتايج آزمايش بدست مى آيد } \\
& 1
\end{aligned}
$$

$$
\begin{aligned}
& \text { p-T رابطه تجربى براي منحنى تـتخير - } \\
& \text { F - F تعين حالئت مبناي دلخواه براي انتاليى و آنترويى } \\
& \text { روشهاى تیيين خواص }
\end{aligned}
$$

- 1 گرماهاي ويثْ آن، وحالت مبناي انتخاب شده تعين میگردد. نقاط 0 ، 3 ، 4 را در
شُكل 1-7 بينيد.

شكل 1-7 نمودار ناحيههاى مختلف براى تعيين خاصيت ترموديناميكم

- -

مى آيد. نقاط 1: 2، 5 كرادر شُكل 1 ـ7 بينيد.

- F
 ه - برایى ناحيه فوق بحرانى شايد يكت هعادله حالتت جداكَانه موردنياز باشد.

در اينجا لازم به تذكر است كه ساخت جداول خ خواص ترموديناميكى كار: طافت فر سايى است
و خيلى بيش از آنحهه از بحثهاى قبل استنباط مى گَردد، بهد يد فيز يكى نياز دارد. اندازه گير يهاثى آز مايشى خواص مواد ممكن است با عدم قطعيت قابل ملاحظهاى همراه باشد و در معادله حالتى كه از ايـن اندازه گير يها حاصل مىترددد اين عدم تطعيت بايد بهصوزت شايستهایى درنظر گر فته شود. منظور از اين نكهه نگران كردن خواننده نيست، بلّكه برعكس تأكيد براين حقيقت است كه در عمل بايد روش نسبتاُ ساده گَفه شده با اطلاعات خيلى زياد آزمايشى، ديد فيز بكى، شُكيبايى، وكازبر دكاميوتر تر توأم باشـد تا تا بتوان يكي جدول دتيق خواص ترموديناميكى برا'ى هرماده تهيه نمود.

نمودار مولير'

نــان داده شده است. يكك نشانه جالب ايـن نمـودار آن است كه ايزو تــومهاى (شخطو ط دمـاى ثابت) در
 واضح است كه جمله

 داده شده كه در تحليل سيكل قدرت بخار در فصل Q خيلى مفيد خواهد بود.

K! K

باتو جه بهز مينه تثؤرى اشاره شده در قبل بهتر استى كه بعضى از شكلهاتى ويزه معادلات حالت
راكه دز عمل بهكار مكارود موردبررسى تراز دهيم.

معادله وان دروالز '

1 - فاصله نضايى ملكولهاى خيلى زياد است و ملكولها بـهصورت جـرمهـاى مستمركز رنتار مىىكند.

شكل †

Y - م ميدانهاى نيـروى ملكولى بهعلت فاصله زياد مــكونى تأتير بـيــار كــى بـر روى فرآيندهاى برخورد دارند.
r - بـهعلت فاصله زياد ملكولى حجم اشيغال شده بهو بيله ملكونها در مقايسه با حجم كل اششغال شُده توسط گاز خيلى كم است.

 دربر داشته باششد. اين معادله هينين است :

$$
\left(P+\frac{a}{\bar{v}^{2}}\right)(\bar{v}-b)=\Re T
$$

گَرنه مىشود.

برایى استفاده از معادله وان دروالز بايد مقادير ثابتهاى a و b از طريت آزمايش تعيين شو د كه

 در نقظه بحراتى استوار مىباشد. در نمودار عطف در (

جدول ا-7 خابتهاى وان دروالز

كاز	a		b		
	$\begin{gathered} \overline{\mathrm{kN} \cdot \mathrm{~m}^{4} /} \\ (\mathrm{kg}, \mathrm{~mol})^{2} \end{gathered}$	$\begin{aligned} & \text { alm.fi }{ }^{6} \\ & (\mathrm{lbm} \text { mol })^{2} \end{aligned}$	$\begin{gathered} \overline{\mathrm{m}^{3} /} \\ (\mathrm{kg} \mathrm{~mol}) \end{gathered}$	$\begin{gathered} \mathrm{ft}^{3} / \\ \mathrm{lbm} \mathrm{~mol} \end{gathered}$	$Z_{c}=p_{c} v_{c} / R T_{c}$
هوا	135.8	343.8	0.0365	0.585	0.284
O_{2}	138.0	349.5	0.0318	0.510	0.29
N_{2}	136.7	346	0.0386	0.618	0.291
$\mathrm{H}_{2} \mathrm{O}$	551.7	1397.1	0.0304	0.487	0.23
CH_{4}	228.6	578.9	0.0427	0.684	0.29
CO	147.9	374.5	0.0393	0.630	0.293
CO_{2}	365.6	926	0.0428	0.686	0.276
NH_{3}	424.9	1076	0.0373	0.598	0.242
H_{2}	24.8	62.9	0.0266	0.426	0.304
He	3.42	8.66	0.0235	0.376	0.30

$$
\begin{array}{ll}
\left(\frac{\partial p}{\partial v}\right)_{T_{c}}=0 & T=T_{c} د \\
\left(\frac{\partial^{2} p}{\partial v^{2}}\right)_{T_{c}}=0 & T=T_{c} \rho
\end{array}
$$

از حل معادله (I (I برای PV بهد سـت مى آوريـمكه

$$
p=\frac{\Re T}{\bar{v}-b}-\frac{a}{\bar{v}^{2}}
$$

$$
\begin{align*}
& \frac{-\Re T_{c}}{\left(\vec{v}_{c}-b\right)^{2}}+\frac{2 a}{\bar{v}_{c}^{3}}=0 \\
& \frac{2 \Re T_{c}}{\left(\bar{v}_{c}-b\right)^{3}}-\frac{6 a}{\bar{v}_{c}^{4}}=0
\end{align*}
$$

$$
\begin{align*}
a & =3 p_{c} \bar{v}_{c}^{2}=\frac{9}{8} \Re T_{c} \bar{v}_{c}=\frac{27}{64} \frac{\Re T_{c}^{2}}{p_{c}} \\
b & =\frac{\bar{v}_{c}}{3}=\frac{\Re T_{c}}{8 p_{c}}
\end{align*}
$$

بعلاوه براى گًاز وان دروالز بهدست مى آوريممكه

$$
\frac{p_{c} \bar{v}_{c}}{\Re T_{c}}=\frac{3}{8}
$$

 شده است. دتت عمل معادله وان دروالز را در نقطه بترانى مىتوان خيلى سريع با الستفاده از ايـن اطلاعات و معادله ((ـ ا) بررسى نـود. براثى آب،

$$
\begin{aligned}
& T_{c}=647.27 \mathrm{~K} \quad \int_{c}^{\prime}=22.105 \mathrm{MPa} \quad \bar{v}_{c}=0.0568 \mathrm{~m}^{3} / \mathrm{kg} \mathrm{~mol} \\
& \frac{P_{c} v_{c}}{\Re T_{c}}=\frac{\left(22.0105 \times 10^{\prime}\right)(0.0568)}{(8314)(647.27)}=0.233
\end{aligned}
$$

جدول r- جـ بعضى ثابتهاى بحرانى انتخايع

كاز	T_{c}		p_{c}		\bar{v}_{c}	
	K	${ }^{\text {'R }}$	MPa	atm	$\left(\mathrm{m}^{3} / \mathrm{kg} \mathrm{mol}\right) \times 10^{2}$	$\mathrm{n}^{\mathbf{3} / \mathrm{lbm} \mathrm{mol}}$
هوا	132.41	238.34	3.774	37.25	8.30	1.33
O_{2}	154.78	278.6	5.080	50.14	7.43	1.19
N_{2}	126.2	227.16	3.398	33.54	8.99	1.44
$\mathrm{H}_{2} \mathrm{O}$	647.27	1165.3	22.105	218.167	5.68	0.91
CH_{4}	190.7	343.26	4.640	45.8	9.93	1.59
CO	132.91	239.24	. 3.496	34.53	9.30	1.49
CO_{2}	304.20	547.56	7.386	72.90	9.55	1.53
NH_{3}	405.4	729.72	11.277	111.3	7.24	1.16
H_{2}	33.24	59.83	1.297	12.8	6.49	1.04
He	5.19	9.34	0.229	2.26	5.81	0.93

 اين رابطه ساده وجود ندارد و انتظار نمىرود كه معادله وان دروالز نتايع رضايتبخشتى در اين منطقه .

يكت معادله حالت سادهتر، معادلة كلاسيوس استكه فز اصلاح شده معادله وان دروالز الست و در آن از نيروهاى عكس العمل داخلى صرفنظر شده و بهصورت زير نوشته مىشود.

$$
\begin{equation*}
p(\bar{v}-b)=\Re T \tag{7.07}
\end{equation*}
$$

معادله حالت بتى - بريِجمن'

يكى از معادلات حالكتى كه كاربرد زياد و دتت خوبى دارد معادله بتى - بريجمن مىباشد

$$
p=\frac{\Re T}{\bar{v}^{2}}(1-e)(\bar{v}+B)-\frac{A}{\bar{v}^{2}}
$$

كه در Ti

$$
\begin{aligned}
& A=A_{0}\left(1-\frac{a}{\bar{v}}\right) \\
& B=B_{0}\left(1-\frac{b}{\bar{v}}\right) \\
& e=-\frac{c}{\bar{v} T^{3}}
\end{aligned}
$$

 هندين ماده در جدول بــ مشتخص شده است.

R60

معادله حالت بتى - بر يجمن خواص را در ناحيههايـى كه هگانى آن كمتر از مفدار ^ / • ضرّب
 دو معادله حاللت موزد استفاده ديگَر عبارت اسست از معادله برتولت ':

$$
p=\frac{\Re T}{\bar{v}-b}-\frac{a}{T \bar{v}^{2}}
$$

و معادله د يتريتيى

$$
p=\frac{\Re T}{\bar{v}-b} e^{-a / \Re T \bar{v}}
$$

 مى كند، در حالنى كه در ساير نواحى خيلى كمتر مونق استى و درموتع كاربر د دز مناطقى دور از نقطه
 بهصورت زير بهدست آمده است :

$$
a=\frac{4 \Re^{2} T_{c}^{2}}{p_{c} e^{2}} \quad b=\frac{\Re T_{c}}{p_{c} e^{2}}
$$

بهعلاوه رابطه زير زا نيز بهدست مى آوريم :

$$
\frac{P_{c} \nu_{c}}{\Re T_{c}}=0.271=\frac{2}{e^{2}}
$$

اين مقدار از عدد برابى مواد خيلى نزديكـر است.
معادله برتولت مشابه معادله وان دروالز است بهجز اينكه مسرج جمله دوم ثامل دما نيز $b=9 \Re T_{c}$ مى R8p c

1- Bertholet
2- Dieterici
 (جدول F)

$$
\begin{align*}
& p=\frac{\mathfrak{R} T}{\bar{v}}+\frac{\mathfrak{\Re} T B_{0}-A_{0}-C_{0} T^{2}}{\bar{v} 2}+\frac{\Re T b-a}{\bar{v}^{3}} \\
& +\frac{a \alpha}{\bar{v}^{6}}+\frac{c}{\bar{v}^{3} T^{2}}\left(1+\frac{y}{\vec{v}^{2}}\right)^{e} \tag{7.7.}\\
& \text { ك ك } \\
& \text { ثعادله حالتت ديگ, معادله رِدنيكت ـوانگگ }
\end{align*}
$$

$$
\begin{equation*}
p=\frac{\Re T}{\bar{v}-b}+\frac{a}{\bar{v}(\bar{v}+b) T^{1 / 2}} \tag{7-71}
\end{equation*}
$$

كه ثابتهای آن برحــب نخو اص حالت بححرانى داده شُده است.

$$
\begin{align*}
& a=0.42748 \frac{\Re^{2} T_{c}^{5 / 2}}{p_{c}} \tag{7.7Y}\\
& b=0.08664 \frac{\mathfrak{R} T_{c}}{p_{c}} \tag{ケ-7r}
\end{align*}
$$

معادله حالت ويريالّ

$$
\begin{equation*}
p^{v}=\Re T\left(1+\frac{B}{\bar{v}}+\frac{C}{\bar{v}^{2}}+\frac{D}{\bar{v}^{3}}+\cdots\right) \tag{5.7F}
\end{equation*}
$$

ثابتهاى B، C ، C D
 (ياشرايصى كه هيجِّونه نيروى عكس العمل، داخلى وجو د ندأرد) ايجاد مىكند. دز بعضى موارد مى توان

1- Benedicl-WeBb-Rubin
2- Redlich-Kwong
3. Virial equation of state
rvo

مقادير ضرايب ويريال را با توجه بهنظرات ترموديناميكث آمارى هعراه با روابط تجربى براى ميلانهاى

$$
\begin{equation*}
p \bar{v}=\Re T\left(1+B^{\prime} p+C^{\prime} p^{2}+D^{\prime} p^{3}+\cdots\right) \tag{7.70}
\end{equation*}
$$

معادلات حالت ديگرى وجود دارد كه بهطريقى استخراج و اصلاح شده است كهه در مورد

 قابليت كاربرد معادلات حالت مختلف مىتوان بهمنابع [2 ,4 ,6] رجوع كرد.

جون معادله حالت كاز ايدهآل خيلى ساده است لذا غيرطبيعى نخواهد اهي بود كه وسيلهاى نيز
 ضريب Zبهنام ضريب تراكميذيرى بهطورى كه

$$
\begin{equation*}
Z=\frac{p v}{R T} \tag{7.77}
\end{equation*}
$$

1- The generalized compressibility factor
2- Reduced pressure

نسبى بعرانى) حجم كا مش لِافته ودماى كا مش يافته را تعريف ميكنيم. $p_{r}=\frac{p}{p_{c}}=$ فشار كاهش يانته $v_{r}=\frac{\nu}{v_{c}}=$ حrم مخصوص كاهثشيانته $T_{r}=\frac{T}{T_{c}}=$ دماى كاهش يانته
 ثابتها داريم :

$$
\begin{aligned}
& Z^{3}-\left(\frac{p_{r}}{8 T_{r}}+1\right) Z^{2}+\left(\frac{27 p_{r}}{64 T_{r}^{2}}\right)^{Z}-\frac{27 p_{r}^{2}}{512 T_{r}^{3}}=0 \\
& \text { كه } Z \text { ضريب تراكميذيرى تعريف شده در معادله (IT ایף) است. }
\end{aligned}
$$

در نتيجه فرض مىكنيمكه رابطهاى بهشكل زير وجود داشته باششد :

$$
Z=f\left(p_{r}, T_{r}\right)
$$

 اندازه

 تجربى گوناگونى بدست آمده است[2]. بهتجربه ثابت شده كه سادهتر است بهجاى

1- Law of corresponding states
2- Nelson-Obert

 مى آوريـم عبارت است از:

رفتار گاز ايدههآل موقعى وجود دارد كه :

- 1

بهعنوان نمونه مىتوانيم رفتار نيتر وزن رادز K K . . جدول

$$
p_{r}=\frac{100}{3398}=0.0294
$$

$$
T_{r}=\frac{300}{126.2}=2.38
$$

نشار كاهث يانته خيلى كم است لذا رفتار گاز ايدهآل را بيشبينى خواهيم كرد (همانطور كه جندين مر تبه در فصلهای قبلى فرض كريدهايم).

1- Pseudo-reduced volume

$$
\begin{align*}
& V_{r}={ }^{\prime}=\frac{v}{R T_{c} / P_{c}} \tag{7.79}\\
& \text { كه مى توانٍ بهشكلهایى ديگرى نيز, 'آروا بيان كرد. } \\
& v_{r}^{\prime}=\frac{v}{v_{c}^{\prime}} \frac{v_{c}}{R T_{c} p_{c}}=v_{r} Z_{c} \\
& =\frac{p}{R T} \frac{T / T_{c}}{p / p_{c}}=Z \frac{T_{r}}{p_{r}}
\end{align*}
$$

شكل هــ اح نمودار ضريب تراكم بذيرى عمومى نلسون -أبرت، بر طبق مأخد [2]

مثال \.7 مقايِسٔ معادلات حالت

مقدارى
 (ج) تعادله بتى -بريجمن حدس بز نيلـ.

$$
\bar{v}=2.8 \mathrm{ft}^{3} / \mathrm{lbm} \cdot \mathrm{~mol} \quad\left(0.1748 \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{~mol}\right)
$$

(الفـ) براى معادله حالد گاز ايدهآل.

$$
P=\frac{\Re T}{\bar{v}}=\frac{(1545)(660)}{(2.8)(144)}=2529 \mathrm{psia}=172.1 \mathrm{~atm}
$$

$$
a=926 \mathrm{~atm} \cdot \mathrm{ft}^{6} /(\mathrm{lbm} \cdot \mathrm{~mol})^{2}
$$

$$
b=0.686 \mathrm{ft}^{3} / \mathrm{bm} \cdot \mathrm{~mol}
$$

با استفاده از معادله (• هـ
) فشار را بهصورت زير محـسبه مىكنيم: :

$$
\begin{aligned}
p & =\frac{\Re T}{\bar{v}-b}-\frac{a}{\bar{v}^{2}} \\
& =\frac{(1545)(660)}{(2.8-0.686)(144)}-\frac{(926)(14.696)}{(2.8)^{2}} \\
& =1614 \mathrm{psia}=109.8 \mathrm{~atm}
\end{aligned}
$$

(ج) بالأخره معادله بتى - بريجمن (Y (

$$
\begin{aligned}
& b=1.159 \mathrm{ft}^{3} / \mathrm{lbm} \mathrm{~mol} \quad B_{0}=1.678 \mathrm{ft}^{3} / \mathrm{lbm} \mathrm{~mol} \\
& c=61.65 \times 10^{6} \mathrm{ft}^{3} \cdot \mathrm{R}^{3} / \mathrm{lbm} \mathrm{~mol}
\end{aligned}
$$

$$
\begin{aligned}
& A=A_{0}\left(1-\frac{a}{v}\right)=(1284.9)\left(1-\frac{1.143}{2.8}\right)=760.4 \\
& B=B_{0}=\left(1-\frac{b}{v}\right)=1.678\left(1-\frac{1.159}{2.8}\right)=0.9384 \\
& e=\frac{c}{\bar{v} T^{3}}=\frac{61.65 \times 10^{6}}{(2.8)(660)^{3}}=0.0766
\end{aligned}
$$

ستس با استفاده از معادله (Y_ (MV)

$$
\begin{aligned}
p & =\frac{\Re T}{\bar{v}^{2}}(1-e)(\bar{v}+B)-\frac{A}{\bar{v}^{2}} \\
& =\frac{(1545)(660)(1-0.0766)(2.8+0.9384)}{(2.8)^{2}(144)}-\frac{(760.4)(14.696)}{(2.8)^{2}} \\
& =1692 \mathrm{psia}=115.2 \mathrm{~atm}
\end{aligned}
$$

از اين طريق محاسبات متو جه مىشويم كه تفاو تهاى فاحشى در بجوابهأى بدست آمده از سه معادله حالت
 حقيقت را بزودى ثابت خواهيم كرد.

مثال ZY حالات متشابه

فثـار واردهبهوسيله CO رادر مثال 7ــ، با استفاده از قاعده حالات متشابه' و نمودارهاىى ضريب تراكم بذيرى عمومى محاسبه كنيد.

$$
\begin{aligned}
& T_{c}=548^{\circ} \mathrm{R} \quad p_{c}=72.9 \mathrm{~atm}=1071 \mathrm{psia} \\
& \bar{v}_{c}=1.53 \mathrm{ft}^{3} / \mathrm{bm} \text { mol }
\end{aligned}
$$

سیس

$$
\begin{aligned}
T_{r} & =\frac{T}{T_{c}}=\frac{600}{548}=1.204 \\
\bar{v}_{r} & =\frac{\bar{v}}{R T_{c} / p_{c}}=\frac{(2.8)(1071)(144)}{(1545)(548)}=0.51
\end{aligned}
$$

$$
p_{r}=1.6 \quad Z=0.67
$$

لذا نشار عبارتاست از

$$
p=p_{r} p_{c}=(1.6)(72.9)=116.6 \mathrm{~atm}
$$

 درحد دتت خو اندن منحنيهاست. بررسى جوابهاى دو روش ديعَر مؤيد خططاى قابل ملاحظة آنهاست :

$$
=\frac{172.1-116.6}{116.6}=+47.6 \%
$$

$$
\text { = }=\frac{109.8-116.6}{116.6}=-5.8 \%
$$

مثال خــ، خواص از حالات متشابه

> حـــل : ثابتهاى بـرانى از جـدول Yــ عبارت است از :

$$
p_{c}=33.5 \mathrm{~atm}=482 \mathrm{psia}
$$

$$
\begin{aligned}
& T_{c}=227^{\circ} \mathrm{R} \\
& \bar{v}_{c}=1.44 \mathrm{ft}^{3} / \mathrm{bm} \mathrm{~mol}
\end{aligned}
$$

فشار و دماى كاهش يافته را بهصورت زير مدحاسبه مىكيم: :

$$
\begin{aligned}
& P_{r}=\frac{600}{482}=1.245 \\
& T_{r}=\frac{310}{227}=1.365
\end{aligned}
$$

$Z=0.83$

$v=\frac{Z R T}{p}=\frac{(0.83)(55.12)(310)}{(600)(144)}=0.164 \mathrm{ft}^{3} / \mathrm{lbm}$ جرم ميخصوص عكس حجم ميخصوص است بنابراين : $\rho=\frac{1}{0.164}=6.1 \mathrm{lbm} / \mathrm{ft}^{3} \quad\left(97.7 \mathrm{~kg} / \mathrm{m}^{3}\right)$

مثال خـ خواص از حالات متشابه

جرم يشصوص نيتروزن راءر f MPa IV. K

> حــــل : ثابتهايى بـرانـى از جدول Y ـף عبارت اسـت از:

$$
\begin{aligned}
p_{c} & =3.398 \mathrm{MPa} \\
T_{c} & =126.2 \mathrm{~K} \\
\bar{v}_{c} & =0.0899 \mathrm{~m}^{3} / \mathrm{kg} \mathrm{~mol}
\end{aligned}
$$

$$
\begin{aligned}
& p_{r}=\frac{4}{3.398}=1.177 \\
& \mathcal{T}_{r}=\frac{170}{126.2}=1.347
\end{aligned}
$$

$$
Z=0.85
$$

حالل حجم ميخصوص از معادله (7 7 7) محاسمبه مى شود.

$$
\begin{aligned}
v & =\frac{Z R T}{p}=\frac{(0.85)(296.6)(170)}{\left(4 \times 10^{6}\right)}=0.0107 \mathrm{~m}^{3} / \mathrm{kg} \\
& =0.0107 \mathrm{~m}^{3} / \mathrm{kg}
\end{aligned}
$$

مثال

حـــل : ثابتهای بحرانى براي نيترورّن در مثال AM ـو داده شـده است. با تو جه بهاطنغعات بالا برايى دما و ححجم كاهش يانته داريم:

$$
\begin{aligned}
& T_{r}=\frac{170}{126.2}=1.347 \\
& v_{r}^{\prime}=\frac{v}{R T_{c} / p_{c}}=\frac{0.004}{(296.6)(126.2) /\left(3.398 \times 10^{6}\right)}=0.363
\end{aligned}
$$

$$
p_{r}=2.6
$$

$$
p=p_{r} p_{c}=(2.6)(3.398)=8.83 \mathrm{MPa}
$$

خ أ |

اهل حالات متشابه علاوهبر فراهمساختن اطلاعـات آشكارَى دربـاره خـو!ص p-v-T،

 دارد. تنيير انتاليى در مقادير پايين

$$
\begin{equation*}
\left(\bar{h}-\bar{h}^{*}\right)_{T}=\int_{p=0}^{p}\left[\bar{v}-T\left(\frac{\partial \bar{v}}{\partial T}\right)_{P}\right] d p_{T} \tag{廿_V1}
\end{equation*}
$$

اما

$$
\begin{equation*}
\bar{v}=\frac{Z \Re T}{p} \tag{array}
\end{equation*}
$$

,

$$
\begin{equation*}
\left(\frac{\partial \bar{v}}{\partial T}\right)_{p}=\frac{Z \Re}{p}+\frac{\Re T}{p}\left(\frac{\partial Z}{\partial T}\right)_{p} \tag{7_Vr}
\end{equation*}
$$

 يانته داريم :

$$
\left(\bar{h}-\bar{h}^{*}\right)_{T}=-\Re T_{c} \int_{0}^{p} T_{r}^{2}\left(\frac{\partial Z}{\partial T_{r}}\right)_{p} \frac{d p_{r}}{p_{r}}
$$

در فرا آيند دماى ثابت، . $T_{r}=$ است و مىتوان نوشت:

ترموديناميك

$$
\left(\frac{\bar{h}^{*}-\bar{h}}{T_{c}}\right)=\Re T_{r}^{2} \int_{0}^{p_{r}}\left(\frac{\partial Z}{\partial T_{r}}\right)_{P_{r}} \frac{d p_{r}}{p_{r}}
$$

شكل Z_Y طرحوارهٔ تنيير انتاليى براى ماده خالص

سـت راست معادله (7.Vه) تـابعى از
 شده است.

جهت بدست آوردن نمودارهاى عهومى براى آنتروبی مىتوان از راه مشـابه با روش قبلى
استفاده نمود. معادلة نتيجه شده عبارت لمـت از :

$$
\begin{equation*}
\bar{s}_{p}^{*}-\bar{s}_{p}=\Re \int_{0}^{p_{r}}\left[Z-1+T_{r}\left(\frac{\partial Z}{\partial T_{r}}\right)_{p_{r}}\right] T_{r} \frac{d p_{r}}{p_{r}} \tag{ఇ_マ৭}
\end{equation*}
$$

(آنتروبی $=\bar{s}_{p}^{*}$
T $=\bar{s}_{p}$
نمودار عمومى براى آنترويى در شكل هـ چ ارائه شده است.
 متراكمشده است. فر آيند درجرياندائم صورت مىيگير.كارلازمرابراى هريوند جرممتان محاسبه كنيد.

بهصورت زير در مى آيد :

$$
\begin{equation*}
Q+W+h_{1}=h_{2} \tag{a}
\end{equation*}
$$

كه Q Q W بترتيب حرارت و كار اخافهشده است. جون اين يكك فرآيند دما ثابت برگثشتيذير است لذا التقال حرارت را وامى توان از رابطه زير محاسبه نمود.

$$
\begin{equation*}
Q=T\left(s_{2}-s_{1}\right) \tag{b}
\end{equation*}
$$

بنابراين كار برابر است با

$$
\begin{equation*}
W=h_{2}-h_{1}-T\left(s_{2}-s_{1}\right) \tag{c}
\end{equation*}
$$

لذا بهتعين مقادير انتالبى و Tنترديى از نمودارهاى عمومى نياز داريم. خواص بحرانى متان عبارتند از :

$$
\begin{aligned}
& T_{c}=334^{\circ} \mathrm{R} \quad(191.1 \mathrm{~K}) \\
& p_{c}=45.8 \mathrm{~atm}=673 \mathrm{psia} \quad(46.42 \mathrm{bar})
\end{aligned}
$$

خواص كاهش يانهـ موردنظر عبارت است از :

$$
\begin{aligned}
& p_{r l}=\frac{20}{673}=0.0297 \\
& P_{r 2}=\frac{500}{676}=0.743 \\
& T_{r}=\frac{560}{344}=1.63
\end{aligned}
$$

شكل (-A نمودار عمومى انتالبي برطبق مأخد [4]

Pr فثار كامئيانت

$$
\text { هون } T_{1}=\bar{h}_{1}^{*}=\bar{h}_{2}^{*} \text { داريم }
$$

$$
\begin{aligned}
\bar{h}_{2}-\bar{h}_{1} & =(0.03-0.68) T_{c} \\
& =-(0.65)(344)=-233 \text { Btu/lbm} \cdot \mathrm{mol} \quad(-519 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~mol})
\end{aligned}
$$

$$
\begin{aligned}
& \bar{s}_{p l}^{*}-\bar{s}_{p l} \approx 0.018 \text { بهوسيله برون يابى } \\
& \bar{s}_{p 2}{ }^{*}-\bar{s}_{p 2}=0.35 \mathrm{Btu} / \mathrm{lbm} \text { mol. }{ }^{\circ} \mathrm{R} \quad(1.456 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~mol} . \mathrm{K})
\end{aligned}
$$

بهطور كلى برایى تغير, آنترويى گاز ايدهآل مىنويـيم:

$$
\begin{equation*}
\bar{s}_{p^{2}}^{*}-\bar{s}_{p_{1}}^{*}=\bar{\phi}_{2}-\bar{\phi}_{1}-\Re \ln \frac{p_{2}}{p_{1}} \tag{d}
\end{equation*}
$$

در اين فوآيند $\bar{\phi}_{2}=\bar{\phi}_{I}$ و فقط نسبت فشار باتى مىماند. داريم

$$
\vec{s}_{p 2}-\bar{s}_{p 1}=\left(\bar{s}_{p_{1}}^{*}-\bar{s}_{p l}\right)-\left(\bar{s}_{p^{2}}^{*}-\bar{s}_{p 2}\right)+\left(\bar{s}_{p^{2}}^{*}-\bar{s}_{p^{1}}^{*}\right)
$$

$$
=0.018-0.35-\Re \ln \frac{p_{2}}{p_{1}}
$$

$$
=-0.332-\frac{1545}{778} \ln \frac{500}{20}
$$

$$
=-6.71 \mathrm{Btu} / \mathrm{lbm} \cdot \mathrm{~mol} .{ }^{\circ} \mathrm{R} \quad(-28.09 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~mol} \cdot \mathrm{~K})
$$

حال مى توان اين خواص را در دعادله (c) وارد كرد تاكار را بهدست آوريم.

$$
W=-223-(560)(-6.71)
$$

$=3537 \mathrm{Btu} / \mathrm{lbm} \cdot \mathrm{mol} \quad(8227 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{mol})$

$$
\text { جهون براىى متان } 17 \text { } 17 \text { ك كار بهازاى هر بوند جرم برابر است با }
$$

$$
W=\frac{3537}{16}=221 \mathrm{Btu} / \mathrm{lbm}
$$

مثال M • اـ

متراكم شدهاست. فرآيند جرياندائم صورتمىگيرد. كارلازمبهازاى هركيلوگَم متان را مساسبه كنيد.

حـــل : آگر بتوان از انرزى آهاى جنـُـى صرنـنظر كرد، معادله انز زٔى جريان دائم برايى أين فرآيند بهصورت زير در مى آيد.

$$
\begin{equation*}
Q+W+h_{1}=h_{2} \tag{a}
\end{equation*}
$$

 لذا انتقال حرارت را مىتوان از رابطه زير محاسبه نمود.

$$
\begin{equation*}
Q=T\left(s_{2}-s_{1}\right) \tag{b}
\end{equation*}
$$

بنابراين كاز برابر است با

$$
\begin{equation*}
W=h_{2}-h_{1}-T\left(s_{2}-s_{1}\right) \tag{c}
\end{equation*}
$$

لذا احتياج بهتعين مقادير انتاليى و آنترويى از نمودارهاى عمومى داريم. خواص بحرانى متان عبارت است از :

$$
\begin{aligned}
& T_{c}=190.7 \mathrm{~K} . \quad\left(343^{\circ} \mathrm{R}\right) \\
& p_{c}=4.640 \mathrm{MPa} \quad(673 \mathrm{psia})
\end{aligned}
$$

خواص كاهش يانته مور د نظر عبارت است از :

$$
\begin{aligned}
& p_{r l}=\frac{140}{4640}=0.0302 \\
& p_{r 2}=\frac{3.5}{4.640}=0.754 \\
& T_{r}=\frac{300}{190.7}=1.57
\end{aligned}
$$

$$
\left(\frac{\bar{h}_{l}^{*}-\bar{h}_{1}}{\mathfrak{R} T_{c}}\right) \approx 0.016 \quad \text { بوسيله برون يابى }
$$

$$
\left(\frac{\bar{h}_{2}^{*}-\bar{h}_{2}}{\Re T_{c}}\right)=0.39
$$

جون

$$
\begin{aligned}
\bar{h}_{2}-\bar{h}_{1}^{*} & =(0.016-0.39) \Re T_{c} \\
& =-(0.374)(8.314)(190.7) \\
& =-593 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~mol} \quad(-255 \text { Btu } / \mathrm{bm} . \mathrm{mol})
\end{aligned}
$$

$\frac{\bar{s}_{p 1}^{*}-\bar{s}_{p 1}}{\Re} \approx 0.011$ بهوسيله برون يابى
$\frac{\bar{s}_{p 2}{ }^{*}-\bar{s}_{p^{2}}}{\Re}=0.13$
در حالت كلى برای تغيير در آتتوبىى گاز ايـهآلن مىنويسيم
$\bar{s}_{p 2^{*}}-\bar{s}_{p 1^{*}}=\bar{\phi}_{2}-\bar{\phi}_{1}-\Re \ln \frac{p_{2}}{p_{1}}$

$\bar{s}_{p 2}-\bar{s}_{p 1}=\left(\bar{s}_{p 1^{*}}-\bar{s}_{p 1}\right)-\left(\bar{s}_{p 2}{ }^{*}-\bar{s}_{p 2}\right)+\left(\bar{s}_{p 2}{ }^{*}-\bar{s}_{p 1^{*}}\right)$

$$
\begin{aligned}
\bar{s}_{p 2}-\bar{s}_{p 1} & =\Re\left(0.011-0.13-\ln \frac{p_{2}}{p_{1}}\right) \\
& =(8.314)\left(-0.119-\ln \frac{3500}{140}\right) \\
& =-27.75 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~mol} . \mathrm{K} \quad\left(-6.63 \mathrm{Btu} / \mathrm{lbm} \cdot \mathrm{~mol} .{ }^{\circ} \mathrm{R}\right)
\end{aligned}
$$

حال هم توان اين خو اص زا خر معادله (c) جايگزين كرد تاك كار را بهدست آوريم

$$
\begin{aligned}
W & =-593-(300)(-27.75) \\
& =7732 \mathrm{~kJ} / \mathrm{kg} \mathrm{~mol} \quad(3324 \mathrm{Btu} / \mathrm{lbm} . \mathrm{mol})
\end{aligned}
$$

$$
W=\frac{7732}{16}=483.3 \mathrm{~kJ} / \mathrm{kg}(208 \mathrm{Btu} / \mathrm{lbm})
$$

مثال 1 | ـ

تا

حـــل : اگكر از انرزيهاى جنسى صرنـنظر بشود، انتقال حرازت براى اين فرآ يند برابر است با

$$
\begin{equation*}
Q=h_{2}-h_{I} \tag{a}
\end{equation*}
$$

و مسأله عبارت است از تعين تغيير در انتالِى از نمودارهاى عمومى. ثابتهاى بحرانى براى CO از جدول Y Y ج عبارت است از :

$$
\begin{aligned}
P_{c} & =72.9 \mathrm{~atm}=1070 \mathrm{psia} \\
T_{c} & =548^{\circ} \mathrm{R}(304 \mathrm{~K})
\end{aligned}
$$

بنابراين خواص كاهش يانته مورد نظر عبارت است از :

$$
\begin{aligned}
& p_{r 1}=p_{r 2}=\frac{1000}{1070}=0.935 \\
& T_{r 1}=\frac{560}{548}=1.02 \\
& T_{r 2}=\frac{1260}{548}=2.3
\end{aligned}
$$

$$
\left(\frac{\bar{h}_{i}^{*}-\bar{h}_{i}}{T_{i}}\right)=3.5 \mathrm{Btu} / \mathrm{lbm} \cdot \mathrm{~mol} .{ }^{\circ} \mathrm{R}
$$

$$
\left(\frac{\bar{h}_{2}^{*}-\bar{h}_{2}}{T_{c}}\right)=0.48 \mathrm{Btu} / \mathrm{lbm} \cdot \mathrm{~mol} .{ }^{.} \mathrm{R}
$$

مقدار " ارزيابى مىكيم. در اينجا روش استفاده ثز جدولهایى گاز را انتخاب كرده و مقادير زير را بهدست مى آوريـم :

$$
\begin{aligned}
& \bar{h}_{1}^{*}=4235.8 \mathrm{Btu} / \mathrm{lbm} \cdot \mathrm{~mol} \\
& \bar{h}_{2}^{*}=11661.0 \mathrm{Btu} / \mathrm{lbm} \cdot \mathrm{~mol}
\end{aligned}
$$

لذا داريم

$$
\begin{aligned}
\bar{h}_{2}-\bar{h}_{1} & =T_{c}(3.5-0.48)+\bar{h}_{2}^{*}-\bar{h}_{1}^{*} \\
& =(548)(3.5-0.48)+11661-4235.8 \\
& =9081 \mathrm{Btu} / \mathrm{lbm} . \mathrm{mol}
\end{aligned}
$$

$$
Q=h_{2}-h_{1}=\frac{9081}{44}=207 \mathrm{Btu} / \mathrm{lbm} \quad(481.5 \mathrm{~kJ} / \mathrm{kg})
$$

جالب است كه اين مقدار را باعددى كه از فوض رنتار گاز ايدهآلن باگَرماهاى ويزه ثابت بهدست خو اهد آمد مقايسه كنيم. از جدول Y Y داريم :
$\left(\mathrm{CO}_{\varphi}\right.$ (رائ) $c_{p}=0.202 \mathrm{Btu} / \mathrm{lbm} .{ }^{\circ} \mathrm{F}\left(0.846 \mathrm{~kJ} / \mathrm{kg} .{ }^{\circ} \mathrm{C}\right)$

اننقال حرارت رابا فرض گرماى ويزه ثابت بهصورت زير سطاسبه خواهيمكرد : $Q=c_{p}\left(T_{2}-T_{1}\right)=(0.0202)(800-100)=141 \mathrm{Btu} / \mathrm{bm}(328 \mathrm{~kJ} / \mathrm{kg})$ خطاى اين جواب تقرياً • ب درصد است. مثال L | | M ترمايش در ششارثابت
 V V . . K

حـــلـ : اگر از انزريهاى جنبشى صرنـنظر بشود، انتقال حرارت برايى اين فر آيند برابر است با $Q=h_{2}-h_{1}$

و مــأله عبارت است از تعين تغير در انتاليى از نوودار هاى عمومى. ثابتهاى بحرانى براى CO از جدول

$$
\begin{aligned}
p_{c} & =7.386 \mathrm{MPa} \\
T_{c} & =304.20 \mathrm{~K} \quad\left(548^{\circ} \mathrm{R}\right)
\end{aligned}
$$

بنابراين خواص كاهش يانته مورد نظر عبارت است از :

$$
\begin{aligned}
& p_{r l}=p_{r 2}=\frac{7}{7.386}=0.948 \\
& T_{r 1}=\frac{300}{304.2}=0.986 \\
& T_{r 2}=\frac{700}{304.2}=2.30
\end{aligned}
$$

$$
\left(\frac{\bar{h}_{1}^{*}-\bar{h}_{l}}{\Re T_{c}}\right)=2.35
$$

$$
\left(\frac{\bar{h}_{2}^{*}-\bar{h}_{2}}{\Re T_{c}}\right)=0.23
$$

مقدار * جدولهای گاز ارزيابي: مىكنيم. در اينجا استفاده از جدولهایى گاز را انتخاب نموده بهدست مى آوريم

$$
\begin{aligned}
\bar{h}_{2}^{*}-\bar{h}_{1}^{*} & =\left(\bar{h}_{700}-\bar{h}_{298}\right)\left(\bar{h}_{300}-\bar{h}_{298}\right) \\
& =17761-67=17694 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~mol}
\end{aligned}
$$

سيـس داريم: :

$$
\begin{aligned}
\left(\bar{h}_{2}-\bar{h}_{1}\right) & =\Re T_{c}(2.35-0.23)+\bar{h}_{2}^{*}-\bar{h}_{7}^{*} \\
& =(8.314)(304.2)(2.12) \\
& =23056 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~mol}
\end{aligned}
$$

جون وزن ملكولى COY برابر FF مى. باشد لذا انتقال حرارت بهازاي هر كيلو گُم برابر است با:

$$
Q=h_{2}-h_{1}=\frac{23056}{44}=524 \mathrm{~kJ} / \mathrm{kg} \quad(225 \mathrm{Btu} / \mathrm{lbm})
$$

جالب است كه اين مقدار را با عددى كه از فرض ر فتأر گاز ايدهآل باگَرماهاي ويزه ثابت بهد ست خواهد Tمد، مقايسه كنيم. از جدول Y Y Yاريم
$\left(\mathrm{CO}_{\mathrm{r}} \mathrm{N}_{\mathrm{H}}\right.$ (4)$c_{p}=0.846 \mathrm{~kJ} / \mathrm{kg} .{ }^{\circ} \mathrm{C} \quad\left(0.202 \mathrm{Btu} / \mathrm{lbm} .{ }^{\circ} \mathrm{F}\right)$
انتقان حرارت را بالفرض گرماى ويزه ثابت بهصورت زير محاسبه مىكنيم :
$Q=c_{p}\left(T_{2}-T_{1}\right)=(0.846)(700-300)=338.4 \mathrm{~kJ} / \mathrm{kg} \quad(145 \mathrm{Btu} / \mathrm{lbm})$
خطاي اين جواب تقر يباً هr درصد است.

مثال LIY خفتى آدياباتيك

نيتروزن در دستگاه تويى هتخلاخل زون ـ تـامسون بـهطور آديـاباتيكث از psia . . ه و
تامسون را در اين ناحيه تخمين بز نيد.
 خارجىى قابل ملاحظهاى در اين فرآ يند وجود نداشته باششد. بنابراين

$$
h_{1}=h_{2}
$$

اگگ نيتروزن رفتار گاز ايدهآل را مىداشت بدان معنى بود كه دماهاى اوليه و نهايى برابر است زيرابراىى

$$
\begin{aligned}
p_{c} & =33.5 \mathrm{~atm}=492.5 \mathrm{psia} \\
T_{c} & =227^{\circ} \mathrm{F}
\end{aligned}
$$

$$
\begin{aligned}
& p_{r 1}=\frac{500}{492.5}=1.015 \\
& T_{r 1}=\frac{360}{227}=1.586 \\
& p_{r 2}=\frac{50}{492.5}=0.1015
\end{aligned}
$$

 ويزه ثابست از جدول Y Y r محاسبه نمود. لذا برایى نيتروزن :

$$
\begin{aligned}
& c_{p}=0.248 \mathrm{Btu} / \mathrm{bm} .{ }^{\circ} \mathrm{F} \quad\left(1.038 \mathrm{~kJ} / \mathrm{kg} .{ }^{\circ} \mathrm{C}\right) \\
& \bar{c}_{p}=6.944 \mathrm{Btu} / \mathrm{bm} . \mathrm{mol} .{ }^{\circ} \mathrm{F}
\end{aligned}
$$

با درنظر گرفتن انتاليى مبنا برابر صفر در صفر درجه رانكين

$$
\bar{h}^{*}=6.944 T
$$

$$
\bar{h}_{l}^{*}=(6.944)(360)=2500 \mathrm{Btu} / \mathrm{lbm} \cdot \mathrm{~mol}
$$

$$
\text { با استفاده از مقادير }{ }_{\text {l }}^{\text {و }} \text { و از شكل ^^ـ، بهدست مى آوريم كه }
$$

$$
\frac{\bar{h}_{1}^{*}-\bar{h}_{1}}{T_{c}}=1.05
$$

بنابراين :

$$
\bar{h}_{I}=2500-(1.05)(227)=2262 \mathrm{Btu} / \mathrm{lbm} \cdot \mathrm{~mol}
$$

 قبول يكت روش تكـرارى هسـتيم بـهطورى كـه

\boldsymbol{T}_{2}	$\tilde{h}_{2}{ }^{*}$	$T_{r 2}$	$\frac{\bar{h}_{2}{ }^{*}-\bar{h}_{2}}{T_{c}}$	\bar{h}_{2}
360	2500	1.586	0.11	2475
340.5	2364	1.5	0.12	2336
317.8	2206	1.4	0.13	2177
329.8	2290	1.453	0.13	2261

البته لازم بهتذكر است كه نيتروزٔ در نشار بايين psia ، ه تقريباً نظير،كاز ايدهآل رفتار خواهدكرد. از
 گَرفته و دماى نهايى برابر است با

$$
T_{2}=329.8^{\circ} \mathrm{R}=-130.2^{\circ} \mathrm{F} \quad\left(-90.1^{\circ} \mathrm{C}\right)
$$

ضريب زُول - تامسون رامى توان از رابطه زير تخمين زد.

$$
\begin{aligned}
\mu_{J} & =\left(\frac{\partial T}{\partial p}\right)_{h} \approx\left(\frac{\Delta T}{\Delta p}\right)_{h}=\frac{329.8-360}{50-500}\left(\frac{14.7 \text { psia }}{\text { atm }}\right) \\
& =0.987^{\circ} \mathrm{F} / \mathrm{atm} \quad\left(0.548^{\circ} \mathrm{C} / \text { atm }\right)
\end{aligned}
$$

 خواهدبود.

در بحث خواص ترموديناميكى در فصل ب و اين فصل بهطور عمده تأكيد بر ماده خالــر

 مى گردد كه برای اين ماده ساده كار از نوع pdv صرفنظر مى برایى تعين حالت ترموديناميكى سيستم لازم است. هگالى فلوى مغناطـيـى B بهو داده شدهاست :

$$
\begin{equation*}
B=\mu_{0}(H+M) \tag{7_YV}
\end{equation*}
$$

H
 كار مغناطيسى بر واهد جرم مىنويسيم :

$$
\begin{align*}
d^{\prime} W & =\nu H d B \\
& =\mu_{0} \nu H d H+\mu_{0} \nu H d M
\end{align*}
$$

مغناطيسى است. معادلئ انززَى را مى توان بهصورت زير نوشت :

$$
\begin{equation*}
d u=d^{\prime} Q+d^{\prime} W=T d s+\mu_{0} \nu H d M \tag{१_V৭}
\end{equation*}
$$

 بيان شده است لذا مى توان نوشت :

$$
d u=\left(\frac{\partial u}{\partial s}\right)_{M} d s+\left(\frac{\partial u}{\partial M}\right)_{s} d M
$$

$$
\begin{align*}
& \left(\frac{\partial u}{\partial s}\right)_{M}=T \tag{901}\\
& \left(\frac{\partial u}{\partial M}\right)_{s}=\mu_{0} \nu H \tag{7ـАץ}
\end{align*}
$$

 در اينجا لازم بهتذكر است كه جمله
 گرماهاى ويزّه براى ماده مغناطيسى ساده را مى توان بهطور تقريبى با نوشتن مجلد معادله
(१_VQ) بصورت زير تعر بف كرد :

$$
\begin{equation*}
d^{\prime} Q=d u-\mu_{0} \nu H d M \tag{Я.Аץ}
\end{equation*}
$$

فو آيندى رابا H M H ثابت درنظر بگيريد.

$$
\begin{equation*}
d^{\prime} Q_{H}=c_{H} d T_{H}=d u_{H}-\mu_{0} \nu H d M_{H} \tag{array}
\end{equation*}
$$

اگر يكث انتالبي مغناطيسى hm بهصورت زير تعريف كنيم :

$$
h_{m}=u-\mu_{0} \nu H M
$$

$$
c_{H} d T_{H}=\left(d h_{m}\right)_{H}
$$

$$
c_{H}=\left(\frac{\partial h_{m}}{\partial T}\right)_{H}
$$

براى فر آيندى با M تابت

$$
c_{M} d T_{M}=d u_{M}
$$

$$
c_{M}=\left(\frac{\partial u}{\partial T}\right)_{M}
$$

بنابراين مواد مغناطسِى ساده نظير مواد تراكمبذير ساده دارايى معادلات حالت بوده و بهش بشكل زير بيان

شده است:
$f(H, M, T)=0$
مادهكورى' مادهای است كه داراى معادله هحانت بــيار سادهاى است.

$$
\begin{equation*}
M=C \frac{H}{T} \tag{々_^^}
\end{equation*}
$$

C C

$$
d s=\frac{1}{T} d u-\frac{\mu_{0} v M_{1}}{C} d M
$$

جون رابطه بالا يكك معادله ديفرانسبل كامل است لذا مىتوان مشتّات جزئى مختلط مر تبه دوم را مساوى

قرارداد تا رابطه زير رابهدست آوريم.

$$
\begin{equation*}
\left[\frac{\partial(1 / T)}{\partial M}\right]_{u}=\frac{-\mu_{0} v}{C}\left(\frac{\partial M}{\partial u}\right)_{M}=0 \tag{4.4.}
\end{equation*}
$$

لذا بهاين نتيجه میرسيم كه دما فقط تابعى از u مى باششد يا $u=f(T)$. اين نتيجه نظير آن حقيقت است كه انرزى داخلى يكت گَاز ايدهآل نقط تابع دما مىباشد. بنابراين رنتار اين نـوع ماده مغناطيسـى
 بالاخخر باتو جه به نتيجهاى كه از معادله (\& Q_) بهد سـت مى آيد براى يكت ماده كورى مى توان معادلات

$$
\begin{align*}
d u & =c_{M} d T \tag{7-41}\\
d s & =c_{M} \frac{d T}{T}-\frac{\mu_{0} v}{C} M d M
\end{align*}
$$

7-17 أر ماصنتوكالريك

بسط تئورى فون نشان مىدهد كه آنترويى يكت ماده مغناطيـى ساده را مى توان برحسب T و
Hبو بيله رابطه زير بيان نمود :

$$
\begin{equation*}
d s=\frac{c_{H}}{T} d T+\mu_{0} v\left(\frac{\partial M}{\partial T}\right)_{H} d H \tag{१_৭५}
\end{equation*}
$$

آزمايش ها نُّان مىدهد كه براى مواد بارامغناطيسى '

1 وتتى كه $d H$ مثبت است Tds منفى مىباشد.
† يعنى وتتى ك4 $d H$ منفى اسست T T مثبت مىباشد.

نمسل \& ـ معادلات سالت و روابط عمومى ترموديناميكى
 مغناطيسى باعیث انت دها مى
 است: يكت نمكت پارامغناطيس بهوسيله هليوم مايم تا جنلد درجه كلوين سردشله، تحت اثريكت ميلـان

خودآزمايى (سؤالات مرورى)

1

- Y

خالص هجيست!
- P

- 7 تشكيل جلدولهاییگاز شامل جهه فرخهای اساسى است؟

معنى
A - - رابطه كلاسيوس -كلاِيرون جهه ارزش عملى دارد؟

- 9
 الدهآل مشاهده مىگردد؟
- 11

I IY
ط1 ـ اثر لاكُنتوكالريكت را تشريح كنيل.

ماكروسكیى استفاده مىشود?

ض - IV

مسائل (Tاحاد انتليسى)
هوا بهطور آنترويى ثابت ازيكت سرعت بايِن و psia . تا فشار اتمسفر منسطط مىشود. $7-1$ سر عت نهايع رابرایى دماهاى اوليه (الف) با برعت نهايى بهدست آ مده در صورتى كه هواگرماهايى ويثره ثابت مىدانشت مقايسه كنيد.
 7-Y - A Btu/bm ${ }^{\circ}$ R

 7.Y دبى جرمى /

محاسبه كنيد.
 جريان صورتيذيرد، كار خروجى توربين را محاسبه كنيد.
 7.7 شسيط اطراف تبادل حرارت داشته باشـد وجود دارد. شير موجود دركنار ظرف بازشده و

نصل 4 ـ معادلات ححالتت و رواابط عمومى تومود يناميكـ

عمومى بهدست آوريل.

شیغزن جقدر بود؟

دماى نهايی و تغير در آنترويّى برواحل جرم را مساسبه كنيد.
 psia فرض نمود. دماى خروجى و سرعت خخروجى رابا الستفاده از (المف) گًاز ايلهآل باگُرماهاىی

ويزه ثُابت و (ب) نهو دارهاى عهومى تراكم يلذ يرى مساسبه كنيل.
 آيزنتروדيكِ تا سرعت مقطعى براى جريان خروججى لازم خواهد بود؟
 8.11 گاز ايدهآلك، (ب) معادله وان در والز (ج) معادله بتى -بريبحمن؛ و (د) جدولهاى بشارآب؟ مساسبه كنيد.
 9.18
 كنيد. هرا نتايج الين متا يسه با بحثهاى موجود در كتاب درباره تابليت كاربرد معادله ديتريجى

مطابقت دارد؟
معادله گــاز ايلههآلك معادلـه وان دروالزَ و معادله بر تولتت را با مقادير جلدولبندى شلـه $9.1 r$

 9.14

$$
\text { v = /Yvryrft³/lbm g Y\& ، }{ }^{\circ} \mathrm{F}
$$

مىتوان بهصورت گاز ايدهآل درنظر گرفت.

 با استفاده از نمو دارهاى ضريب تراكميذيرى، حجم مخصوص مريك ان از مواد زير رادر

شرايط داده شده محاسبه نمايد : (الف) هوادر
9. . ${ }^{\circ} \mathrm{F}$, l . . psia در ($\mathrm{C}_{\mathrm{F}} \mathrm{H}_{1}$.)
 Y.. K K I . . . atm (
آببر A. A. . . K و

با استفاده از مقادير جدول بندى شـده نشار بخار براى آب، انتاليى تبخير براى آب را در信 نشار بخار فريون 4 ا رادر
 بخار آب بهطور آنتوويى ثابت از

 از نوودار مولير حرارت لازم در يكث فر آيند جريان دائم را محاسبه كنيد.

جند در هـد بود؟

 q_r. 4-Y) gery

انر زیى اضافه شلده است؟

 محاسبه كنيد. دماى نهايیى جيست؟ 1 . . psia ، 1Δ. . º F و و Y Y Y تا psia • • منبسط مى شود، كاربهازای هريوند جرم را محاسبه كنيد. بافرض رفنار گرماى ويزه ثاببت خطاى حاصل جند درصد است؟

Y_YA
 فشار psia
 نتيجه بهدست آمده دز مور2 گًاز ايدهآل تفاوت دارد؟ آيا مىتوانيد توضيتى برایى اين اختلاف بر مبناى فيز يكى ارائه كنيد.

ا ا عبارتى برای ضريب ئون ـكلوين در موردگًاز وان دزوالز بهدست آوريد.

 برگششتایذير دما ثابت محاسبه نمايِلـ
 مىيكند. دماى نهايى در فرآيند مذكور را مساسبه كنيد.
 متراكم شده است. دماى اوليه V. مى نهايى وا مساسبه كنيد. نتايج را با جوابهايى كه از فرض زفتار ايدهآل باگگرماهاى ويزه ثابت بهدست مى آيد مقايسه كنيد.

 را امحاسبه كنيد.
 بالا رود؟
T-F.

 و psia تغير در آنترويى بربوند جرم رابا استفاده از (الف) گاز ايدها آل، گگرماهاى ويثره ثابت و (ب) نمو دارهاى عمومى ضريب تراكمبذيرى يساسبه نمايِيد.

 خطا در هركدام از اين روشها جیقدر است
 ه D . . psia 17 . . ${ }^{\circ} \mathrm{F}$, استفاده از (الف) روابط كاز ايدهآلن باگَرماهاى ويزه ثابت (ب) (ب) نمودارهاى عمومى ضريب تراكمبذيرى و (ج) جدولهاى بخارآب محاسبه نهايِد.

مسائل (آحاد متريك)
جرم مخصوص و ضريب تراكم بذيرى را براى سيّالهاى زيـر در

$$
\text { T = } 7 \Delta \text { تعيِن كنيد : }
$$

$$
\begin{aligned}
& \text { (الف) آهونياكك } \\
& \text { (ب) نيتروزٔن } \\
& \text { (ج) اكسيرّن } \\
& \text { ه(2) (2) }
\end{aligned}
$$

 داشته باشد.

 مقدار T- $F M$
 ضرايب تراكمبذيرى سهاسبهكنيد.
 جداول بخار آب مساسبه كيد.
 صفر درنظر بگگيريد.
 آنتروبى محاسبه كنيد.

 بهدست آمده از جداول بخار آب مثايسهكنيد.

تِ مود يـناميكـ.

مقدار ترمايش لازم را محاسبه كنيد.
نشان دهيد كه خطوط فثار ثابت در ناحيه مخلوطتر يكك نهو داز مولير، خطوط مستقيم و 7. 1 YM غيرموازى مىباشد.
 منبسط مىشو د. جريان حجمى در ورود در فشار هاسن از جدول

 محاسبه كنيد. Z_lDM تخمين زده مقدار آن رابا مقادير جداول بخار آب مقايسه كنيل.
 را بهكمكى نمودار هاى عمومى محاسبه كنيد.

 خروجى را محاسبه كنيل. محاسبه را با جداول بخارآب مقايسه كنيل.

 (_l 9 M

$$
\begin{aligned}
\left(\bar{h}_{2}-\bar{h}_{1}\right)_{T} & =p_{2} \bar{v}_{2}-p_{1} \bar{v}_{1}+a\left(\frac{1}{\bar{v}_{1}}-\frac{1}{\bar{v}_{2}}\right) \\
\left(\bar{s}_{2}-\bar{s}_{1}\right)_{T} & =\Re \ln \frac{\bar{v}_{2}-b}{\bar{v}_{1}-b}
\end{aligned}
$$

_ Y. Y . M

$$
\frac{c_{p}}{c_{\nu}}=\frac{(\partial p / \partial \nu)_{s}}{(\partial p / \partial v)_{T}}
$$

 (

$$
\begin{aligned}
& \beta=\frac{\Re \bar{v}^{2}(\bar{v}-b)}{\Re T \bar{v}^{3}-2 a(\bar{v}-b)^{2}} \\
& \kappa=\frac{\bar{v}^{2}(\bar{v}-b)^{2}}{\Re T \bar{v}^{3}-2 a(\bar{v}-b)^{2}}
\end{aligned}
$$

(_Y\&M مىىند روابط زير صادق است :

$$
\begin{aligned}
& T(\bar{v}-b)^{\Re / c_{v}}=\text { const. } \\
& \left(P+\frac{a}{\bar{v}^{2}}\right)^{(v-b)^{I+\left(M / c c_{\nu}\right.}=\text { const. }}
\end{aligned}
$$

نشان دهيد كه برای گاز وان دروالز

$$
\bar{c}_{p}-\bar{c}_{v}=\frac{\Re}{1-2 a(v-b)^{2} / \Re T \bar{v}^{3}}
$$

نشان دهيد كه ضريب زول ـ تامسون برای گاز وان دروالز برابر است با:

$$
\mu_{J}=\frac{\bar{v}}{\bar{c}_{p}} \frac{2 a(\bar{v}-b)^{2}-\Re T b \bar{v}^{2}}{\Re T \bar{v}^{3}-2 a(\bar{v}-b)^{2}}
$$

درنتيجه نشان دهيد كه منخنى مسكوس روى يك نمودار $p-v$ مـكن است بششكل عمو مى
زير بيان شود :

$$
P=\frac{a}{b \bar{v}}\left(2-\frac{3 b}{\bar{v}}\right)
$$

$$
p_{r}=\frac{T_{r}}{\bar{v}_{r}-(1 / 8)}-\frac{27 / 64}{\bar{v}_{r}^{2}}
$$

ترموديناميكى

از روى اين رابطه نشان دهيد كه ضريب ترإكمینيرى ممكن است بهصورت زير بهدنست

$$
Z=\frac{\bar{v}}{\bar{v}_{r}-(1 / 8)}-\frac{27 / 64}{T_{r} \bar{v}_{r}}
$$

درنتيجه نشان دهيد كه ترم بهطورى كه معادله وان دروالز رامى توان بهشكل ويريال بيان كرد.

$$
Z=1+\left(\frac{1}{8}-\frac{27 / 64}{T_{r}}\right) \frac{1}{\bar{v}_{r}}+\frac{1}{64 \bar{v}_{r}^{2}}+\frac{1}{512 \bar{v}_{r}^{3}}+\cdots
$$

7.YAM

$$
c_{p}=T\left(\frac{\partial p}{\partial T}\right)_{s}\left(\frac{\partial v}{\partial T}\right)_{P}
$$

نشان دهيدكه

$$
c_{v}=-T\left(\frac{\partial p}{\partial T}\right)_{v}\left(\frac{\partial v}{\partial T}\right)_{s}
$$

 دست آوريد.
M ا M

$$
\begin{aligned}
& Q_{T}=\frac{\mu_{0} C v}{2 T}\left(H_{2}^{2}-H_{I}^{2}\right) \\
& \text { H2 } H_{1}
\end{aligned}
$$

 بهكار مىرود.

$$
T_{2}^{2}=T_{1}^{2}-\frac{2 Q_{T_{1}} T_{1}}{C_{H_{H}}}
$$

$T_{2} T_{1}$

M M M M

$$
\mu=\left(\frac{\partial T}{\partial p}\right)_{h}=(T \beta-1) \frac{v}{c_{p}}
$$

با استفاده از رابطه داده شده در مسأله Mr M Y Y M گاز ايدهآل و (ب) گاز وان دروالز تعين كنيد.
با استفاده از روابط كلى مناسب نشان دهيد كه روابط زير براى گاز وان دروالز ساصل
ר_r ΔM

$$
\begin{aligned}
& d \bar{s}=\bar{c}_{v} \frac{d T}{T}+\frac{\Re d v}{\bar{v}-b} \\
& d \bar{u}=\bar{c}_{\nu} d T+\frac{a d v}{\bar{v}^{2}}
\end{aligned}
$$

اكــئز از ר_r M مى شود. با استفاده از نمو دارهاى عمومى، سرمايش لازم، تغير آنترويى و حجم مخضوص نهايى اكــيزُن را مساسبه كنيد.
متان در شرابط Y_ YM اينيه فشار آن به MPa • ا كاهـ مى يابل. سرمايش لازم را بهازاى هر واحد جرم متان محاسبه كنيد.

$$
\text { جرم و برایى } T_{0}=Y \cdot{ }^{\circ} \mathrm{C} \text { مساسبه كنيد. }
$$

نشاراشباع را برائ مخلوط يغ - آبـ در حال تعادل در
ר.ra M

$$
\begin{array}{r}
\text { لحظه بهدست آوريد. + atm } \text { + برسد، جرگازداخل آن را مساسبهكيد. حرارت دنع شده از مخزن را تا اين }
\end{array}
$$

M_F\M
لازم را براى جرم F kg مساسبه كنيد. همتحنين تغيير در انرزى داخخلى را تعيين كنيد.

1 Gouq-Jen Su: Modified Law of Corresponding States for Real Gases, Ind. Engr. Chem., vol. 38, p. 803, 1946.
2 Obert, E. F.: "Concepts of Thermodynamics," McGraw-Hill Book Company, New York, 1960.
3 Keenan, J.H.,and J.Kaye: "Gas Tables," John Wiley \& Sons, Inc., New York, 1948.

4 Hougen,O.A.,K.M. Watson, and R.A. Ragatz: "Chemical Process Principles," pt. II, John Wiley \& Sons, Inc.,New York, 1947.
5 Keenan, J.H., and F.G. Keyes: "Thermodynamic Properties of Steam,"John Wiley \& Sons, Inc.,New York, 1936.
6 Lewis, G.N., and M. Randall: "Thermodynamics," 2d ed. (revised by K.S. Pitzer and L. Brewer), McGraw-Hill Book Company, New York, 1961.
7 Van Wylen, G.J., and R.E. Sonntag:"Fundamentals of Classical Thermodynamics,"John Wiley \& Sons, Inc., New York, 1965.
8 Hilsenrath, J., et al.: Tables of Thermal Properties of Gases, NatL Bur. Std. Circ. 564, U.S. Government Printing Office, Washington, D.C., 1955.
9 Beattie, J.A., and O.C. Bridgeman: A New Equation of State for Fluids, Proc. Am. Acad. Atts Sci, vol. 63, P. 229, 1928.
10 Benediet, M., G. Webb, and L. Rubin: An Empirical Equation for the Thermodynamic Properties of Light Hydrocarbons and Their Mixtures, J. Chem. Physics, vol. 8, P. 334; 1940.
11 Nelson, L. C., and E.F. Obert: Generalized pvT Properties of Gases, Trans. ASME, p. 1057, October 1954.

Vin

مخلوطهاى گازى

مقدّهـ Y-1

> قانونكيبس _دالتــون' Y_Y

بحث خود رابا در نظر گَرنتن تعاريفى بنيادى كه برایى مخلوط گازهاى ايدهآل كاربرد دارد، شروع عمىكيـم. واضع است كه جرم كل مخلوط برابر با جمع جرم هر يكث از اجزایى آن مىباشد، به طورى كه :

$$
\begin{equation*}
m=m_{1}+m_{2}+\ldots+m_{i}=\sum_{i=1} m_{i} \tag{V-1}
\end{equation*}
$$

كسر مولى يكت جزء

$$
\begin{equation*}
x_{i}=\frac{n_{i}}{n} \tag{-}
\end{equation*}
$$

ككه ni عبارت از تعداد مولهاى جزء i i n nبارت از تعداد كل مولهاى مخلوط است. جمع كسر ها برابر با كل است يا

$$
\begin{equation*}
\sum x_{i}=1.0 \tag{-}
\end{equation*}
$$

جرم هر يكك از اجزا را میتوان از رابطه زير مساسبه نمود :

$$
\begin{equation*}
m_{i}=n_{i} M_{i} \tag{-}
\end{equation*}
$$

كه مى آوريمكه

$$
m=\sum_{i} n_{i} M_{i}
$$

وزن ملكولى معادل براى مخلوط معينى را مىتوان بهصورت زير تعريف نمود : $M=\frac{m}{n}=\sum \frac{n_{i}}{n} M_{i}$
$M=\sum x_{i} M_{i}$
و ثابت گَاز معادل مخلوط معينى را مىتوان از رابطه زير محاسبه نمود.
$R=\frac{\Re}{M}$

در مطالعه رفتاز گًاز هاى أيدهآل فرض بر اين است كه هركدام از اجزاي گازى مخلوط به

 ايلدهآل، انتظار تداخل قابل ملاحظه بين ملكولهاى اجزاىى مشتلف را نخخواهيم داشت. فشار بززئى ' جزء i i بهصورت زير تعريف مىشود :

$$
\begin{equation*}
p_{i}=\frac{n_{i} \Re T}{V} \tag{-}
\end{equation*}
$$

بهعبارت ديگر اين فثار وازده از سوى جزء مورد نظر است اتگر تمام حجم مخلوط $ل$ را دز دماى مخلوط T اشغال مىنمود. فـداركل هـخلو ط بهصورت زير تعريف مى ايتردد :

$$
\begin{equation*}
p=\frac{n R T}{V} \tag{-}
\end{equation*}
$$

الز تقـــم معادله (V_Q) بر معادله (V)

$$
\begin{equation*}
\frac{p_{i}}{p}=\frac{n_{i}}{n}=x_{i} \tag{-}
\end{equation*}
$$

با بـ كار بر دن معادله (V_Y)

$$
\begin{equation*}
\sum p_{i}=\sum x_{i} p=p \tag{-}
\end{equation*}
$$

يا جمع فنـارهاى جز نٌى برابر فئار كل استى.

حال تصور كنيل كه ميخلوطى از گازهاى ايدها
 شكل V-I نشان داده ثشده است. در اين مورد حجم اشغال شـده بهوسيله هر جزء عبارت است از

$$
\begin{equation*}
V_{i}=\frac{n_{i} \Re T}{p} \tag{-}
\end{equation*}
$$

[^4]حجم كل مخلوط در شُرايط p T T برابر است با
$V=\frac{n \Re T}{p}$
از تقسيم معادله (V-I Y) بر معادله (V-IY)

$$
\begin{equation*}
\frac{V_{i}}{V}=\frac{n_{i}}{n}=x_{i} \tag{-}
\end{equation*}
$$

با بهكار بردن معادله (V-Y)

$$
\sum V_{i}=\sum x_{i} V=V
$$

 غلظت اجزاء يكت مخلوط ممكن است بر مبناى جرمى يا مولى ييان شود. فشار هانى جزئى يا يا

شُكل Y-I نمايش قانون جمع حجمههاى آماكات ــِدوك

1- Amagat-Leduc law of additive volumes

مثال Y-1

 اككيرن انزوده شده را محاسبه كنبد .

حــل : در اين فرآيند تعداد مولهاى نيتروزن ثابت باقى مانده و برابي است با:

$$
n_{\mathrm{N}_{2}}=\frac{m}{M}=\frac{2}{28}=0.0714
$$

فشار جزئى نيتروزن بس از انزودن اكسيزن ترتيب داريم :

$$
\begin{aligned}
p_{\mathrm{O}_{2}} & =p_{5}-p_{\mathrm{N}_{2}} \\
& =400-300 \\
& =100 \mathrm{psia} \quad\left(6.89 \times 10^{5} \mathrm{~Pa}\right)
\end{aligned}
$$

با استفاده از معادلةُ (V_A) و انجام يكـ نـبت مىتولن نوشت:

$$
\frac{n_{\mathrm{O}_{2}}}{n_{\mathrm{N}_{2}}}=\frac{p_{\mathrm{O}_{2}}}{p_{\mathrm{N}_{2}}}
$$

با استفاده از مقادير عددى كه داده شده

$$
n_{\mathrm{O}_{2}}=\frac{(0.0714)(100)}{300}=0.0238
$$

بالاخره جرم اكسيزّن بهصورت زير محاسبه مىنود :

$$
m_{\mathrm{O}_{2}}=M_{\mathrm{O}_{2}} n_{\mathrm{O}_{2}}=(32)(0.0238)=0.761 \mathrm{lbm} \quad(0.345 \mathrm{~kg})
$$

حجمهاى اشغال شده توسط اكسيئن و نيتروزرن را در مثال V- محاسبه كنيد در صور تى كه

حجم كل منخلوط برابير خو اهد بود با

$$
\begin{aligned}
V & =1.071+0.357 \\
& =1.428 \mathrm{ft}^{3} \quad\left(0.0404 \mathrm{~m}^{3}\right)
\end{aligned}
$$

بايد دانست كه حجم هر يكك از اجزاه در تناسب مستقيم با تعداد مولهاى آن جزء است.

اصول و تعاريف بخش فوقالذكر را مىتوان براى ساده كردن مـحاسبه خو اصّ انرزى مخلوطها
بهراحتى به كار بر د. انرزى دايخلى را در نظر بگگيريد. هى توان نوشت :

$$
\begin{equation*}
U=U_{1}+U_{2}+U_{3}+\ldots=\sum U_{i}=\sum m_{i} u_{i} \tag{-}
\end{equation*}
$$

$$
\begin{aligned}
& \text { حـــل : حجم نيترورُن از قانون گاز ايدها آل (معادله V_A) محاسبه مىگردد } \\
& V_{\mathrm{N}_{2}}=\frac{n R T}{p}=\frac{(0.0714)(1545)(560)}{(400)(144)} \\
& =1.071 \mathrm{ft}^{3} \quad\left(0.0303 \mathrm{~m}^{3}\right) \\
& \text { براى اكسيزذن، } \\
& V_{\mathrm{O}_{2}}=\frac{(0.0238)(1545)(560)}{(400)(144)} \\
& =0.357 \mathrm{ft}^{3} \quad\left(0.0101 \mathrm{~m}^{3}\right)
\end{aligned}
$$

يا در مبناى مولى

$$
\begin{equation*}
U=\sum n_{i} \bar{u}_{i} \tag{-}
\end{equation*}
$$

u نشان دهنده انر u_{i}
زير محاسبه میگردد.

$$
\begin{equation*}
u=\frac{1}{m} \sum m_{i} u_{i} \tag{-}
\end{equation*}
$$

و يا انرزى داحلىى ويزه مولى عبارت است از:

$$
\begin{equation*}
\bar{u}=\frac{1}{n} \sum n_{i} \bar{u}_{i}=\sum x_{i} \bar{u}_{i} \tag{-1}
\end{equation*}
$$

روابطى برا'ى انتالئى و آنترويى مخلوط بهطريق مشابهى بدست آمله كه نتايج آنها بهصورت زير است:

$$
\begin{align*}
H & =\sum H_{i}=\sum m_{i} h_{i} \\
H & =\sum n_{i} \bar{h}_{i} \\
\bar{h} & =\sum x_{i} \bar{h}_{i} \tag{V-YI}\\
S & =\sum S_{i}=\sum m_{i} s_{i} \tag{-}\\
S & =\sum n_{i} \bar{s}_{i} \\
\bar{s} & =\sum x_{i} \bar{s}_{i} \tag{-}
\end{align*}
$$

$$
\left(V_{-}+, a\right)
$$

(V_YYb)

گرماى ويزه براى متخلوط با به كار بردن تعاريف زير

$$
c_{\nu}=\left(\frac{\partial u}{\partial T}\right)_{v} \quad, \quad c_{p}=\left(\frac{\partial h}{\partial T}\right)_{p}
$$

روابط بالا براى انرزّى داحلى و انتالئى بهدست مى آيل. براثى گر ماى ويزه در حجـم ثابت داريـم :

$$
c_{\nu}=\left[\frac{\partial}{\partial T}\left(\frac{1}{m} \sum m_{i} u_{i}\right)\right]_{\nu}
$$

$$
\begin{align*}
c_{v} & =\frac{1}{m} \sum m_{i}\left(\frac{\partial u_{i}}{\partial T}\right)_{\nu} \\
& =\frac{1}{m} \sum m_{i} c_{v_{i}} \tag{-}
\end{align*}
$$

در مبناى مولى

$$
\begin{align*}
& \bar{c}_{v}=\left(\frac{\partial \bar{u}}{\partial T}\right)_{v}=\sum x_{i}\left(\frac{\partial \bar{u}_{i}}{\partial T}\right) v_{i} \\
& \bar{c}_{\nu}=\sum x_{i} \bar{c}_{\nu_{i}}
\end{align*}
$$

گرماى ويزه در نشار ثابت بهطريق مشابهى با نتيجه زير بهدست مى آيد

$$
\begin{gather*}
c_{p}=\frac{1}{m} \sum m_{i} c_{p_{i}} \tag{-}\\
\bar{c}_{p}=\sum x_{i} \bar{c}_{p_{i}} \tag{-}
\end{gather*}
$$

در مطالعه فرآيندهاى ترموديناميكى مشلوط گازهاى ابده آل، محاسبه تـغييرات انـرزى
شخلوط مورد توجه است. حنين محاسبهاىى بر مبنأى نظريه بنيادى بيان شلده در قانون گیيبى -دالتون انجام
 تغير در انززى داخلى منخلوط توسط رابطه زير محاسبه مىشود.

$$
\begin{align*}
& \Delta U=\sum \Delta U_{i}=\sum m_{i} \Delta u_{i}=\sum m_{i} c_{v_{i}} \Delta T \tag{V_rA}\\
& \left.\left(V_{-} Y \not\right)^{\prime}\right) \text { (VA) }
\end{align*}
$$

$$
\begin{equation*}
\Delta U=m c_{v} \Delta T \tag{-}
\end{equation*}
$$

$$
\begin{equation*}
\Delta U=n \bar{c}_{\imath} \Delta T \tag{-}
\end{equation*}
$$

بهاين تر تيب تغيير در انتاليى براى مخلوط را مىتوان بهـورت زير نوشت.

$$
\begin{align*}
& \Delta H=\sum \Delta H_{i}=\sum m_{i} \Delta h_{i}=\sum m_{i} c_{p i} \Delta T \tag{V-rl}\\
& \Delta H=m c_{p} \Delta T \tag{-}\\
& \Delta H=n \bar{c}_{p} \Delta T \tag{-}
\end{align*}
$$

محاسبه تغير در آنترويى يكك مخلوط اندكى يسجيده تر است زيرا آنترويى نقط تابع دما نيست. تغير در

$$
\begin{equation*}
s_{2}-s_{1}=c_{p} \ln \frac{T_{2}}{T_{1}}-R \ln \frac{p_{2}}{p_{1}} \tag{-}
\end{equation*}
$$

زيرنويسهاى ا و Y بهتر تيب مربوط بهحالات اوليه و نهايمى است. تغير در آنتروبى براى سخلوط
 مى گردد. بدين ترتيب،

$$
\begin{equation*}
\Delta S=S_{2}-S_{1}=\sum m_{i} c_{p_{i}} \ln \frac{T_{2}}{T_{1}}-\sum m_{i} R_{i} \ln \frac{p_{i_{2}}}{p_{i_{1}}} \tag{-}
\end{equation*}
$$

كك ك

$$
\begin{align*}
& \text { آنتروبى بر مبناى مولى نوشت. بدين تر تيب، } \\
& \Delta S=S_{2}-S_{1}=\sum n_{i} \bar{c}_{p_{i}} \ln \frac{T_{2}}{T_{1}}-\sum n_{i} \Re \ln \frac{p_{i_{2}}}{p_{i_{1}}} \tag{-}\\
& \text { مثالز زير روس استفاده از اين روابط را نشان مىدهد. }
\end{align*}
$$

براى تثـكيل سخلوطى در فنار نهايى psia • ا، مقدار
 آدياباتيك در دستگامى با جريان دائم صورت مى گيرد. دماى نهايى مخلوط و تغنير در آنتروبى را محاسبه كنيد.

$$
\begin{aligned}
& \text { حـــل : فر آيند مور د نظر در شكل همراه نشان داده شده است : } \\
& \text { موازنه انرزثى جريان دائم عبارت است از : } \\
& \left(m h_{1}\right)_{\kappa_{2}}+\left(m h_{1}\right)_{\mathrm{CO}_{2}}=\left(m h_{2}\right)_{\text {مخلو }} \\
& =\left(m h_{2}\right)_{\mathrm{N}_{2}}+\left(m h_{2}\right)_{\mathrm{CO}_{2}}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[m c_{p}\left(T_{1}-T_{2}\right)\right]_{\mathrm{N}_{2}}+\left[m c_{p}\left(T_{1}-T_{2}\right)\right]_{\mathrm{CO}_{2}}=0} \\
& (5)(0.248)\left(300-T_{2}\right)+(2)(0.203)\left(100-T_{2}\right)=0 \\
& \text { هون دماى نهايى برايى هر دو جزء يكسان و برابر دماى مخلوط است . از اين معادله نتيجه مى گيريم كه } \\
& T_{2}=250^{\circ} \mathrm{F}=710^{\circ} \mathrm{R} \quad(394 \mathrm{~K})
\end{aligned}
$$

تغير در آنترويى از معادله (V-YD) يا (V_r (V) محاسبه میشود. برای هر كدام از اين معادلУت
فــار هاثى جزئى نها يى بايد محاسبه گردد. كميتهاى مولى عبارت است از :

$$
n_{\mathrm{CO}_{2}}=\frac{2}{44}=0.0455
$$

شك بل مشال Y Y

$$
\begin{aligned}
& n_{N_{2}}=\frac{5}{28}=0.1785 \\
& n_{J}=0.1785+0.0455=0.224
\end{aligned}
$$

$$
\begin{aligned}
& \left(p_{2}\right)_{\mathrm{CO}_{2}}=\frac{(10)(0.0455)}{0.224}=2.03 \mathrm{psia} \quad(14 \mathrm{kPa}) \\
& \left(p_{2}\right)_{\mathrm{N}_{2}}=\frac{(10)(0.1785)}{0.224}=7.97 \mathrm{psia} \quad(55 \mathrm{kPa})
\end{aligned}
$$

تغيير در آنترويى بوسيله معادله (ه- Y) مساسبه مىشود.

$$
S_{2}-S_{1}=\left(m c_{p} \ln \frac{T_{2}}{T_{1}}-m R \ln \frac{p_{2}}{p_{1}}\right)_{\mathrm{CO}_{2}}+
$$

$$
\left(m c_{p} \ln \frac{T_{2}}{T_{I}}-m R \ln \frac{p_{2}}{p_{I}}\right)_{\mathrm{N}_{2}}
$$

با جايگز ين كردن مقادير عددى مناسب

$$
\begin{aligned}
S_{2}-S_{1} & =(2)\left(0.203 \ln \frac{710}{560}-\frac{35.1}{778} \ln \frac{2.03}{20}\right) \\
& +(5)\left(0.248 \ln \frac{710}{760}-\frac{55.2}{778} \ln \frac{7.97}{15}\right) \\
& =0.443 \mathrm{Btu} /{ }^{\circ} \mathrm{R} \quad(841 \mathrm{~J} / \mathrm{K})
\end{aligned}
$$

منخلوطهای $\quad Y_{-}+$

سال نوعى مخلوط گازى مهم، يعنى مخلوط گازى ايدهآل و بهار ميعان بذير رادر نظر مى گيريـم. اين نوع مخلوط روزانه در هوايىى كه تنفس مىكنيم و در فرآيندهاى گرمايش و تهويه مطبوع ع وابسته بهآن، مشاهده مىتردد. تشكيل شبنم بر روى سبزه در يكت شب آرام، خشكك زنى گَازها براى كاربردهاى مشتلفـ، و تمام مساسبات تهويه مطبوع بهنهم و دركك رفتار مخلوطهاى گاز -بشار بستگیى دارد.

توموديناميك
fris
 مىكيمّ زيرا حنين مخلو طهايى در مسائل عملى فراوان مشياهده مىتردد.

نقطه شبنم ' مخخلو ط ، دمايى است كه در موقع سرد نمودن مخلوط در فنــار ثابث، بخار در شروع به ميعان مىكند. دماي حباب خششكى † مخلوط 6 دمايىاست كه بهو سبينه يكت دماسنج معمولى نــان داده مى شود. دماى حباب تر 「عبارت از دماى نشان داده شـده بهو سيله دماسنجى است كه با فتيلهاى اششباع شده از آب يوشيده تردد و مجموعه مذكور از لحاظ تبخير بهتعادل زسيده بأشد. اين دماها در شكل V_ نمايش داده شـده است.

شكل Y Y Y اندازهميرى دماى حباب خشك و دماى حباب تو

1- Dew point
2. Dry-bulb temperature

3- Wet-bulb temperature

مخلو ط گاز - بخار هنگامى اشباع مىشو دكه كاهشى جز ئى در دماى آن باعث ميعان تستى از
 مخلوطى عبارت است از فنـار اشباع بخار در دماى مخلوط.
 شده در همان دـا. اتكر بخار مانند كاز ايدهآل ر فنتار كند، مىتوان نوشت

$$
\begin{equation*}
\phi=\frac{m_{v}}{m_{s a t}}=\frac{p_{v} V / R_{v} T}{p_{g} V / R_{v} T}=\frac{p_{v}}{p_{g}} \tag{-}
\end{equation*}
$$

رطوبت مخصوص يا رطوبت مطلق

رطوبت مخصوصو
توجه اصلى ما در اين فصل ببمخلوطهايى هوا -بخار آب خوراهد بود بنابراين،

$$
\begin{equation*}
\omega=\frac{m_{v}}{m_{a}} \tag{-}
\end{equation*}
$$

كه مىتوان نوشت.

$$
\begin{align*}
& \omega=\frac{p_{\nu} V M_{v} \Re T}{p_{a} V M_{a} \mathscr{R} T}=\frac{M_{v}}{M_{a}} \frac{p_{v}}{p_{a}} \\
& \text { اين عبارت براي سخلوطهاى هوا -بخار آب بهصورت زير ساده مىگردد: } \\
& \omega=0.622 \frac{p_{v}}{p_{a}}=0.622 \frac{p_{v}}{p-p_{v}} \tag{-}\\
& \text { از معادله (V_rv) نيز مىتوان استفاده نمود تا بهدست آوريم }
\end{align*}
$$

1- Relative humidity
2- Specific humidity

$$
\begin{equation*}
\phi=\frac{\omega p_{a}}{0.622 p_{g}} \tag{V_Fi}
\end{equation*}
$$

 واتعى بهرطوبت مخصوص هواى اشباع در دماى حباب خشُشك تعريف شده است:

$$
\begin{equation*}
\mu=\left.\frac{\omega}{\omega_{s a t}}\right|_{T} \tag{-}
\end{equation*}
$$

اين رابطه را برايى رفتار تَاز ايدهآل مىتوانن بهصورت زير بيانكرد:

$$
\begin{equation*}
\mu=\frac{0.622 p_{v} /\left(p-p_{v}\right)}{0.622 p_{g} /\left(p-p_{g}\right)}=\frac{p_{v}\left(p-p_{g}\right)}{p_{g}\left(p-p_{v}\right)}=\phi \frac{p-p_{g}}{p-p_{v}} \tag{-}
\end{equation*}
$$

 معبولى است، زيرا

$$
p_{v}=p_{g} \quad \text { (ارزيابى شده در دماى نقطه شبنم) }
$$

مونعى كه مخلوط كاملاُ اششباع شوو ($\phi=1$) دماهاى حباب خشكت، حباب تـر و نقطه شبــم يكسان است.
مثال Y_Y مخلوط هوا ـبخار آب

مخلوطى از هوا - بخار آب در F F, º F ، Y ه psia با رطوبت نسبى •ه درصد وجود دازد.

$$
p_{g}=2.892 \mathrm{psia} \quad\left(1.994 \times 10^{4} \mathrm{~Pa}\right)
$$

از معادله (V_rV) نشار بخار واتعى برابر است با

$$
\begin{align*}
P_{v} & =\phi p_{g} \\
& =(0.5)(2.892)=1.446 \mathrm{psia} \tag{9970Pa}
\end{align*}
$$

بنابراين فشار بجزثى هوا عبارت است از

$$
P_{a}=25-1.446=23.554 \mathrm{psia} \quad\left(1.624 \times 10^{5} \mathrm{~Pa}\right)
$$

هال رطوبت مخصوم را مى توان از معادله (V_F) مساسبه كرد:

$$
\begin{aligned}
\omega & =\frac{(0.622)(1.446)}{23.554} \\
& =0.0382 \mathrm{lbm} \text { هوالى خئكت } 4 \mathrm{lbm}
\end{aligned}
$$

كسر جرمى بخار آب برابر است با

$$
\begin{aligned}
\frac{m_{v}}{m_{j 5}} & =\frac{m_{\nu}}{m_{a}+m_{v}}=\frac{\omega}{1+\omega} \\
& =0.0368 \mathrm{lbm} \text { مخلوط } / \mathrm{ll} \text { بخار }
\end{aligned}
$$

هجون تعداد زيادى از فرآيندهاى هوا -بخار آب شامل مفاهيم رطوبت و اشباع است ، لذا

 با محيط اطراف در طى فرآيند صورت نـىیگيرد. حان يكت موازنه انرزّى جريان دائم مىتوانـدرد در در مورد فر آيند مذكور بكار رود. داريم: انتاليى مخلوط خروجى = انتاللى مايع اضافه شده + انتالیى مخلوط ورودى

$$
m_{a} \dot{h}_{a_{1}}+m_{\nu_{1}} h_{\nu_{1}}+\left(m_{v_{2}}-m_{\nu_{1}}\right) h_{f 2}=m_{a} h_{a_{2}}+m_{\nu_{2}} h_{\nu_{2}}
$$

شكل Y-

$$
\begin{align*}
& \text { از تقــيم بر شدت جريان هوا ma نتيجه مى گيريم : } \\
& h_{a_{1}}+\omega_{1} h_{v_{1}}+\left(\omega_{2}-\omega_{1}\right) h_{f_{2}}=h_{a_{2}}+\omega_{2} h_{\nu_{2}} \tag{-}\\
& \text { آگر رفتار گاز ايده Tل فرض شود } \\
& h_{a_{1}}-h_{a_{2}}=c_{p a}\left(T_{1}-T_{2}\right)
\end{align*}
$$

$$
\begin{align*}
& \text { بعلاوه } \\
& h_{\nu 2}-h_{f 2}=h_{f 22} \\
& \text { بهطورى كه، معادله (V-FF) مىتواند براى } \\
& \omega_{1}=\frac{c_{p a}\left(T_{2}-T_{1}\right)+\omega_{2} h_{f g_{2}}}{h_{\nu_{1}}-h_{f_{2}}} \tag{-}
\end{align*}
$$

 اندازهگيرى

 ميخلوط، معرف ميزان رطوبت مخلوط است. اين اططلاعات مسكن است برايى محاسبه خواصّ انرزى يخلوط مورد استفاده ترار گّيرد

$$
\begin{equation*}
h_{g}-h_{i}=h_{i g}=2838 \mathrm{~kJ} / \mathrm{kg}=1220 \mathrm{Btu} / \mathrm{bm} \tag{-}
\end{equation*}
$$

[^5]جدول Y- 1 بعضى ثرمولهاى تقويمى برای خواصّ آب در لشارهاى بايين

خاصيت	واحد	محدودهٔ دما	شماره معادله
$h_{f}=u_{f}=T-32 \mathrm{Btu} / \mathrm{lbm}$	\boldsymbol{T} in ${ }^{\circ} \mathrm{F}$	32 to $100^{\circ} \mathrm{F}$	7-46a
$h_{f}=u_{f}=4.19 T \mathrm{~kJ} / \mathrm{kg}$	T in ${ }^{\circ} \mathrm{C}$	0 to $40^{\circ} \mathrm{C}$	7-46b
$h_{s}=1061+0.445 T \mathrm{Btu} / \mathrm{lbm}$	\boldsymbol{T} in ${ }^{\circ} \mathrm{F}$	-40 to $100^{\circ} \mathrm{F}$	$7.47 a$
$h_{\mathrm{g}}=2501+1.863 T \mathrm{~kJ} / \mathrm{kg}$	\boldsymbol{T} in ${ }^{\circ} \mathrm{C}$	-40 to $40^{\circ} \mathrm{C}$	$7.47 b$
$u_{s}=1010.3+0.335 T \mathrm{Btu} / \mathrm{lbm}$	T in ${ }^{\circ} \mathrm{F}$	-40 to $100^{\circ} \mathrm{F}$	$7.48 a$
$u_{t}=2374.9+1.403 \mathrm{TkJ} / \mathrm{kg}$	T in ${ }^{\circ} \mathrm{C}$	-40 to $40^{\circ} \mathrm{C}$	7-48b
$u_{i}=h_{i}=-158.9+0.467 T$ Btuflbm	T in ${ }^{\circ} \mathrm{F}$	-40 to $32^{\circ} \mathrm{F}$	7.49a
$u_{1}=h_{i}=-334.6+1.96 T \mathrm{~kJ} / \mathrm{kg}$	T in ${ }^{\circ} \mathrm{C}$	-40 to $0^{\circ} \mathrm{C}$	$7.49 b$
$p_{s}=5.103 \exp \left(18.42-\frac{11059}{T}\right)$ psia	T in ${ }^{\circ} \mathrm{R}$	-40 to $32^{\circ} \mathrm{R}$	7.50a
$\ln \frac{p_{f}}{0.3390}=12221\left(\frac{1}{527.67}-\frac{1}{T}\right)$	T in ${ }^{\circ} \mathrm{R}$	32 to $100^{\circ} \mathrm{F}$	7-51a
$-5.031 \ln \frac{T}{527.67}$	p_{s} in psia		
$p_{i}=35.18 \exp \left(18.42-\frac{6144}{T}\right) \mathrm{kPa}$	T in K	-40 to $0^{\circ} \mathrm{C}$	7-50b
$\ln \frac{p_{1}}{2337}=6789\left(\frac{1}{293.15},-\frac{1}{7}\right)$	\boldsymbol{T} in K	0 to $40^{\circ} \mathrm{C}$	7-51b
$-5.031 \ln \frac{T}{293.15}$	ps_{5} in Pa		

با استفاده از رابطهأى نظير معادله (V_FV)، معادله (V_FA) را مى توان اصلاح كرد تأ محاسبه فشار بخار واتعى مستقيمأ از دماهاى حباب خشكى و حباب تر ميسر گگردد. رابطه بدست آمده معادله كارير ' [6] خوانده شده و بهصورت زير داده شده است.

$$
\begin{equation*}
p_{v}=p_{g_{w}}-\frac{\left(p-p_{g_{w}}\right)\left(T_{\mathrm{DB}}-T_{\mathrm{WB}}\right)}{K_{w}-T_{\mathrm{WB}}} \tag{-}
\end{equation*}
$$

1- Carrier's equation
ك

$$
\begin{align*}
& p_{\nu}=p_{g_{W}}-\frac{p\left(T_{\mathrm{DB}}-T_{\mathrm{WB}}\right)}{K_{L}} \tag{-}\\
& K_{L}=3160^{\circ} \mathrm{F} \quad \mathrm{~L} 1756^{\circ} \mathrm{C}
\end{align*}
$$

مثال Y_

 مخلوط هوا -بخار آب جيست؟

$$
\phi_{1}=\frac{p_{\nu_{1}}}{p_{g_{1}}}, \quad p_{\nu_{1}}=(0.9503)(0.8)=0.7602 \text { psia } \quad(5241 \mathrm{~Pa})
$$

2ر

$$
p_{a_{1}}=p_{1}-p_{\nu_{1}}=20-0.7602=19.2398 \mathrm{psia} \quad\left(1.327 \times 10^{5} \mathrm{~Pa}\right)
$$

حجم در طى فرآيند سرمابش ثابت باقىمانده و نشار جز نى نهايى هوا از رابطه زير محاسبه مىگردد :

$$
\begin{aligned}
& \text { = } p_{v} \\
& \text { = }=p_{g_{\omega}} \\
& \text { = }=\text { نشار كل مخلوط } \\
& { }^{\circ} \mathrm{C} \text { ي }{ }^{\circ} \mathrm{F} \text { ، دماى حباب خشك }=T_{\text {DB }}
\end{aligned}
$$

$$
\begin{aligned}
& \text { | } \Delta r v / \wedge^{\circ} \mathrm{C} \mathrm{~L} \text { ي } \mathrm{r} \cdot . .^{\circ} \mathrm{F}=K_{\omega}
\end{aligned}
$$

$$
\begin{aligned}
\frac{p_{a_{2}}}{p_{a_{1}}}=\frac{T_{2}}{T_{1}} \quad p_{a_{2}} & =\frac{(19.2398)(460+40)}{460+100} \\
& =17.178 \mathrm{psia} \quad\left(1.184 \times 10^{5} \mathrm{~Pa}\right)
\end{aligned}
$$

> بنابراين فــار كل نهايى برابر است با

$$
p_{2}=p_{a_{2}}+p_{v_{2}}=17.178+0.1217=17.3 \mathrm{psia} \quad\left(1.193 \times 10^{5} \mathrm{~Pa}\right)
$$

جرم عوا الز رابطه زير محاسبه بیگگدد :

$$
\begin{equation*}
m_{a}=\frac{p_{a_{1}} V}{R T_{l}}=\frac{(19.2398)(144)(4000)}{(53.35)(560)}=371 \mathrm{lbm} \quad(168 \mathrm{~kg}) \tag{a}
\end{equation*}
$$

$$
\begin{align*}
& \omega=0.622 \frac{p_{v}}{p_{n}} \\
& \omega_{l}=\frac{(0.622)(0.7602)}{19.2398}=0.0246 \tag{b}\\
& \omega_{2}=\frac{(0.622)(0.1217)}{17.178}=0.00441
\end{align*}
$$

جون مخزن مذكور سيستمى بسته است لذا سرمايش ازز رابطه زير محاسبه مىگردد

$$
\begin{align*}
\Omega & =U_{1}-U_{2} \\
& =m_{a}\left(u_{a_{1}}+\omega_{1} u_{\nu_{1}}\right)-m_{a}\left(u_{a_{2}}+\omega_{2} u_{v_{2}}\right)-m_{a}\left(\omega_{1}-\omega_{2}\right) u_{f_{2}} \tag{c}
\end{align*}
$$

مقدار

$$
u_{f 2}=8.02 \mathrm{Btu} / \mathrm{bm} \quad \text { (F. }{ }^{\circ} \mathrm{F} \text { مايع اشباع در) }
$$

و انززيهاى داخلمى بخار از معادله (V_PA)

$$
\begin{aligned}
& u_{v_{1}}=1010.3+0.335(100)=1043.8 \mathrm{Btu} / \mathrm{bm} \\
& u_{v_{2}}=1010.3+0.335(40)=1023.7 \mathrm{Btu} / \mathrm{bm}
\end{aligned}
$$

Y-7 مثال

 كميتهاى لازم عبارت است از :

$$
\begin{aligned}
& P_{g_{w}}=0.5073 \mathrm{psia} \quad(3498 \mathrm{~Pa}) \\
& p=14.696 \mathrm{psia} \\
& \left(1.0132 \times 10^{5} \mathrm{~Pa}\right)
\end{aligned}
$$

(V_Dr) (Y

$$
P_{\nu}=0.5073-\frac{(14.696-0.5073)(100-80)}{2800-80}
$$

$$
P_{\nu}=0.403 \mathrm{psia} \quad(2778 \mathrm{~Pa})
$$

$$
\text { فشار اشباع در Fo ، . . } \text { برابر است با }
$$

$$
P_{g}=0.9503 \mathrm{psia} \quad(6552 \mathrm{~Pa})
$$

بهطورى كه از معادله (V_rV) داريم

$$
\begin{aligned}
& \text { حال مقادير عددى رادر معادله (c) جايگزين كرده بهدست مى آوريم } \\
& Q=(371)[(0.1715)(100-40)+(0.0246)(1043.8)-(0.00441)(1023.7) \\
& -(0.0246-0.00441)(8.02)] \\
& =(371)(10.29+25.68-4.51-0.16) \\
& =11612 \mathrm{Btu} \quad(12251 \mathrm{~kJ})
\end{aligned}
$$

$$
\phi=\frac{p_{v}}{p_{g}}=\frac{0.403}{0.9503}=42.4 \text { درصد }
$$

مخلوطى از هليوم و بخخار Tب در فشار كل atm ا و دماى حباب خشكك شبنم Y • ${ }^{\circ} \mathrm{C}$ مى. حـــل : بافرض رنتارگًاز ايدهآلك، نشاربـخارواتعى عبارت ازفنار اشباع تعين شُده درنقطه شبنماست يا

$$
\begin{equation*}
p_{v}=p_{g}\left(20^{\circ} \mathrm{C} ر_{2}\right)=2.339 \mathrm{kPa} \tag{a}
\end{equation*}
$$

نشار اشباع دردماى حباب خشكت عبارت است از

$$
p_{g}=5.628 \mathrm{kPa} \quad 35^{\circ} \mathrm{C} \text { در }
$$

لذا رطوبـت نسبى برابر است با

$$
\begin{equation*}
\phi=\frac{p_{\nu}}{p_{g}}=\frac{2.339}{5.628}=41.6 \text { درصد } \tag{b}
\end{equation*}
$$

 با مقادير مربوطه هليوم مححاسبه كرد.

$$
\begin{equation*}
\omega=\frac{M_{v}}{M_{\mathrm{He}}} \frac{p_{v}}{p_{\mathrm{He}}} \tag{c}
\end{equation*}
$$

فشار جزئى هليوم برابر است با

$$
\begin{aligned}
& p_{\mathrm{He}}=p-p_{v}=101.32-2.339=98.981 \mathrm{kPa} \\
& \qquad \text { با استفاده از } M_{\mathrm{He}}=F \text { جايگز ينى مقادير در (c) نتيجه میگيريم }
\end{aligned}
$$

$$
\omega=\frac{(18)(2.339)}{(4)(98.981)}=0.106 \text { بخار kg / / هليوم خشك kg }
$$

مثال Y-A محاسبه تكرارى
م مخلوطى از هوا -بخار Tب در نشار كُل kPa رطوبت نسبى ، 7 در صد است. دماى حباب تر و نتطه شبنم را محاسبه كنيد.

$$
p_{g}=5.628 \mathrm{kPa}
$$

$$
p_{v}=\phi p_{g}=(0.6)(5.628)=3.3768 \mathrm{kPa}
$$

$$
T_{\mathrm{DP}}=25.96^{\circ} \mathrm{C} \quad \text { نقطه شبنم عبارت از دماى اشباع بطابق با اين نشار است يا }
$$

 نويسى معادله (V-r) بهمورت

$$
p_{v}-p_{g_{w}}+\frac{\left(p-p_{g_{v}}\right)\left(T_{\mathrm{DB}}-T_{\mathrm{WB}}\right)}{1537.8-T_{\mathrm{WB}}}=0=f\left(T_{\mathrm{WB}}\right)
$$

بشاهده مىشود كه با معلوم بودن تابعى از TWB است. اين رابطه تابعى غير خططى بوده لذا بايد از روش تكـرارى استفـاده نـمود تـا f($\left.T_{\text {WB }}\right)=0$

$T_{\text {WB }}\left[{ }^{\circ} \mathrm{C}\right]$	$\boldsymbol{p}_{\mathrm{g}_{\mathrm{w}}}[\mathrm{kPa}]$	$f\left(T_{\mathrm{WB}}\right)$
Y P	r/rua	YFAV/L
YO	r/\99	liva/p
r.	F/YFY	-rıs/a
YA/VV		

اگَرهه معادلات بخشهای نوق مبناى مناسبى براى محاسبات مشخلوطهای هـوا -بخـار آب بهدست مىدهد ولى داشتن نمودارى محاسباتى در موازدى با دتتى نه جندان زياد ولى با سرعت عمل
 نشان داده شده است.
سه منحنى بزرگّ رسم شده بهمقياس در قسمت ضميمه ارائه شده است :

$$
\begin{aligned}
& \text { 11. }{ }^{\circ} \mathrm{F} \text { F Y . } 1
\end{aligned}
$$

هر سه اين منحنيها برأى فــار كل atm ا مى باشد. در منحنيهاى با آحاد انگليسـى رطوبت مخصوص بر
 هوای خشكت داده شده است. خريب تبديل برابر است با
$1 \mathrm{lbm}=7000$ grains
خطوط حجم بر روى اين نمودار، حجم مشخلوط هوا ـ بخار آب را بهازاى هر يوند جرم هواى خشك
خشكت موجود در منخلوط بهدست مىدهد. اين كميت را با علامت va مشخص خواهيم نمود.

حجم مشخصوص واقتى مخلوط از معادله (V- $)$) و رابطه زير قابل محاسبه است.

$$
\begin{equation*}
m=m_{a}+m_{\nu}=m_{a}(1+\omega) \tag{V_০}
\end{equation*}
$$

1- Psychometric chart
2-Grain

Y. . - grains = ط طرحوارة نمودار رطوبت سنجم، Y- Y

$$
\begin{align*}
& \text { هحم مخصوص واتعى عبارت است از v=V/m بهطورى كه } \\
& v=\frac{m_{a} \nu_{a}}{m_{a}(1+\omega)}=\frac{v_{a}}{1+\omega} \tag{-}
\end{align*}
$$

بايد دتت كنيم كه ${ }^{\text {m }}$ ديستر فز بيشترين كاربر د در حل مساثل است. بنابراين تعجبTور نيست كه در ترسيم نمودار رطوبت سنجى از كميت حجمى استفاده شده است.

سطوح مبنا براى نمودارهاى رطوبت سنجى
مقادير انتاليىماى مخلوط بر واحد جرم هواى خشكك موجود در يخلوط نيز مشخصص شده است. سطوح مبناى صفر بهمورت زير فرض شده است:

آحاد انكليـى
انتاليى هواى خشكى = • در
انتالیى Tبَ مايع اشباع = • در rıº

آحاد

$$
\begin{aligned}
& \text { انتاليى هواى خخكك = = در } \\
& \text { انتاليى آب مايع اشباع = • در }
\end{aligned}
$$

انتالىى مخلوط بهازاى واحد جرم هواى خشـك در مخلوط بهصورت زير تعريف مىشود

$$
h_{m}=h_{m i x}=h_{a}+\omega h_{v}
$$

با تقريب بسيار نزديكى خطوط دماى حباب تر ثابت با خطوط انتاليى مخلوط ثابت يكى است و به
 معمولأكمتر از أدرصداست.
جهت اجتتاب از اين تقريب، نمودار هانى ضميمهي داراي مقياسى برايى انتاليى مخلوط در حار الت
 رطوبتهاى كمتر ولى در دماهاى حباب تر يكـيا خشكك

 / / د درصد است.

 رسيدن بهرطوبت نسبى • • (درصد ييدا ميشود. وتتى بهحالت اشباع برسيم درجه حرارت، دماى نتطه
 براى آن مشخضص شده كاربرد دارد. در نمودارهاى ضميمه نشار كل atm 1 است.

شكل Yـه Yوآيند سرمايش و باز كرم ساده براى مخلوط هوا ـ بخار آب

فرآيندهاى تهويه مطبوع Y_Y

حال براى ارائه كاربرد اصول بخخشهاى نوق بعضى فزآيندهاى تهويه مـطبوع متعارف را

I- رشم طرح سيستم و مشُشص نمودن اطلاعات معلوم

Y -
(f
ه - نوشتن موازنه انرڭى براى سبستم

است با بهكر بردن نمودار هاى رطوبت سنجى
V - V حل برای كميتهاى لازم

رطوبت زدايهى بهوسيله سرمايش
ابتدا فر آيند سرمايش ساده در شكل هـV رادر نظر بگيريد. جريان هواي مرطوب از ميان

كويلهاى سرد عبور كردهو و دماى مخلوط را از نقطه شبنم هايِن مى آورد. تسمتى از بخار در اثر اثر فر آيند

 رطوبت مخصوص را تا نقطه Y كاهش مىدهد. از موازنه انز زُى براي سيستم نتيجه مییگيريم

$$
Q_{c}=m_{a}\left(h_{a_{1}}-h_{a_{2}}+\omega_{1} h_{v_{1}}-\omega_{2} h_{v_{2}}\right)-m_{a}\left(\omega_{1}-\omega_{2}\right) h_{f}
$$

يا بر حسبب انتاليهاى مخلوط

$$
\begin{equation*}
Q_{c}=\dot{m}_{a}\left(h_{m_{1}}-h_{m_{2}}\right)-\dot{m}_{a}\left(\omega_{1}-\omega_{2}\right) h_{f} \tag{-}
\end{equation*}
$$

ضريبـh از موازنه جرم برايى مايع و بشار آب حاصل مىشود بهطورىكه :

$$
\begin{aligned}
& \dot{m}_{v_{1}}=\dot{m}_{v_{2}}+\dot{m}_{f} \\
& \dot{m}_{f}=\dot{m}_{\nu_{1}}-\dot{m}_{v_{2}}=\dot{m}_{a}\left(\omega_{1}-\omega_{2}\right)
\end{aligned}
$$

عباز Q_{c}

$$
\begin{aligned}
& Q_{H}=\dot{m}_{a}\left(h_{a_{3}}+\omega_{3} h_{\nu_{7}}\right)-\dot{m}_{a}\left(h_{a_{2}}+\omega_{2} h_{\nu_{2}}\right) \\
& Q_{H}=\dot{m}_{a}\left(h_{m_{3}}-h_{m_{2}}\right)
\end{aligned}
$$

سرمايش تبخيرى

تبخيرى است كه در شـكل V_V نشان داده شـده است. هوای نسبتاً خشكك در نقطه ا به مسفظه وارد و يا

 آدياباتيكت انجأم ميشود بهطرزى كه كاهش در دما در اثر فرآيند تبخير صورت كيرد. مو|زنه جرم بِاى بـخار و مايع عبارت است از

$$
\begin{aligned}
& \dot{m}_{v_{1}}+\dot{m}_{f}=\dot{m}_{\nu_{2}} \\
& \dot{m}_{f}=\dot{m}_{\nu_{2}}-\dot{m}_{\nu_{1}}=\dot{m}_{a}\left(\omega_{2}-\omega_{1}\right)
\end{aligned}
$$

و موازنه انرزّى عبارت است از

$$
m_{a}\left(H_{a_{1}}+\omega_{1} h_{\nu_{1}}\right)+m_{a}\left(\omega_{2}-\omega_{1}\right) h_{f}=m_{a}\left(h_{a_{2}}+\omega_{2} h_{\nu_{2}}\right)
$$ يا بر سسبـ انتاليِهاى مـخلو ط

$$
\dot{m}_{a} h_{m_{1}}+\dot{m}_{a}\left(\omega_{2}-\omega_{1}\right) h_{f}=\dot{m}_{a} h_{m_{2}}
$$

بهاين معنى كه انتالیى مخخلو ط ورودى با تقريب بسيار نزديكى برابر انتالِى مـخلو ط خروجىى امست.

ترمود يناميك

شكل Y_Y , رطوبت زنى آدياباتيك يا لوآيند سرمايش تبحيرى

البته از طريق اين فرTيند مى توان بهدماي حداتل رسيدكه با نقطه Y در شـكل V_A مشتص
شده الست. دركث امن مطلب نسبتاُ ساده امست كه فرآند سرمايش تبخيرى يكت فر آيند اشباع آدياباتيك

Y_Y شمكل Y-

است كه كم و بيش تا به آخر انجام شده و بنابراين خط ثابتى از دماى حباب تر را دنبال مىكند. مقدار آبى كه در اثر تبخير از دست رفته و بايل تأمين گردد، خيلى كم بوده و دماى آن بر روى فر آيند مورد نظر تأثير محسوسى مىگذارد.

رطوبت زنى همراه باكرمايش

موقعى كه هواى سرد در رطوبت مخصوص ثاببت گرم مىشود، رطوبت نسبيكاهش مى يابد و در نتيجه هواى نسبتاً "خششك" توليد مىشود. اگگر فرآيند گرمايش در مسلدوده دماى تابل توجهى صورت گیرد، جهت گرمايش در هواى بسيار سرد از اين فرآيند استفاده مىىشود. هواى خيلى خشكى ممكن است باعث ناراحتى، مثلُ حخشكى و تركت خوردن لبها و غيره گردد، بنابراين بسيارى از سيستمهاى گر مايش وسائلى براى رطوبت زنى نيز دارند. سيستم گرمايش براى اطاق عمل بيمارستان يا سـالن زايشگًاه مورد بخصوحى از اين مبیث است. نمونهاى از فر آيند رطوبت زنى در شكل V_q نشان داده شدهاست. بخار Tاب اخـافى با باشيدن Tب يا بـخار تأمين مىگردد. مزيت بشار در اين است كه علاوه بر بالا بردن درصد بخار موجود در سيستم گرما توليد نـوده، گرمايى راكى بايد از يكك منبع خارجى براى فرَّيند تأمين شود كاهش میدهد. اشكال رطوبتزنى با بـخار در اين است كه بوى زننده دارد مشگر اين كى خلوص بخار بدقت كنترل گردد. زرَ يند رطوبت زنى همراه گرمايش بر روى نمودار رطوبت سنجى

شكل Y-

$$
\dot{m}_{\nu_{1}}+\dot{m}_{f}=\dot{m}_{\nu_{3}}
$$

$$
\dot{m}_{f}=\dot{m}_{v_{3}}-m_{v_{1}}=\dot{m}_{a}\left(\omega_{3}-\omega_{1}\right)
$$

و موازنه انرزثى بر حسب انتاليهاى مخلوط عبارت است از

$$
\dot{m}_{a} h_{m_{1}}+Q+\dot{m}_{f} h_{f}=\dot{m}_{a} h_{m_{2}}
$$

اختلاط آدياباتيكك دو جريان

برای توليد جريان خروجى

$$
\begin{align*}
& m_{a_{1}}+m_{a_{2}}=m_{a_{3}} \tag{V-71}\\
& \dot{m}_{\nu_{1}}+\dot{m}_{\nu_{2}}=\dot{m}_{\nu_{3}} \\
& m_{a_{1}} \omega_{1}+m_{a_{2}} \omega_{2}=m_{a_{3}} \omega_{3} \tag{V_7}
\end{align*}
$$

موازنه انززُى برای اختلاط 'Tدياباتيكى در جريان دائم عبارت است از :

$$
\begin{equation*}
m_{a_{1}}\left(h_{a_{1}}+\omega_{1} h_{v_{1}}\right)+m_{a 2}\left(h_{a_{2}}+\omega_{2} h_{v_{2}}\right)=m_{a_{3}}\left(h_{a_{3}}+\omega_{3} h_{v_{3}}\right) \tag{-}
\end{equation*}
$$

يا بر حـب انتاليمهاى مخلوط

$$
\dot{m}_{a_{1}} h_{m_{1}}+\dot{m}_{a_{2}} h_{m_{2}}=\dot{m}_{a_{3}} h_{m_{3}}
$$

وارد نمودن معادله (V_71) در معادله (V_7Y) نتيجه ميدهد:

$$
\begin{equation*}
\frac{m_{a_{1}}}{m_{a_{2}}}=\frac{\omega_{3}-\omega_{2}}{\omega_{1}-\omega_{3}} \tag{-}
\end{equation*}
$$

شعل Y-1 1 اختلاط آدياباتيك دو جريان هوا ـ بخار آب

اتگ معادله (V_Y|) در معادله (V_YY) به كار رود، نتيتجه عبارت است از

$$
\begin{equation*}
\frac{m_{a_{1}}}{m_{a_{2}}}=\frac{\left(h_{a_{3}}+\omega_{3} h_{\nu_{3}}\right)-\left(h_{a_{2}}+\omega_{2} h_{\nu_{2}}\right)}{\left(h_{a_{1}}+\omega_{1} h_{\nu_{1}}\right)-\left(h_{a_{3}}+\omega_{3} h_{v_{3}}\right)}=\frac{h_{m_{3}}-h_{m_{2}}}{h_{m_{1}}-h_{m_{3}}} \tag{-}
\end{equation*}
$$

$$
\begin{equation*}
\frac{m_{a_{1}}}{m_{a_{2}}}=\frac{h_{m_{3}}-h_{m_{2}}}{h_{m_{1}}-h_{m_{3}}}=\frac{\omega_{3}-\omega_{2}}{\omega_{1}-\omega_{3}} \tag{-}
\end{equation*}
$$

سال شرايط فيز يكى متفاو تى را بررسى مىكنيم كه در هنگام مـخلوط شلدن دو جريان بر قوار

 بهصورت تطرات ريز مه مانندى بهـارج منتقل شود. اگُ فرض كنيم كه انتالِى كل امولأ تابع دماى

(الف:)
(ب) ($\phi_{3}=1$ (بريان هوایى خروجى اشباع شلد اسـت
(ج

تئورى نوت برایى امختاط آد ياباتيكت در طراححى سيستمهای تهويه مطبوعى مفيد است كه موا
را از منابع یخندگًانه دريافت نعوده مشخلوط مـكننل.

رطوبتاسنـجى، كه در تسهتهاى تبل دربارة: آن بیعش شلده اسـت.

مثال

حـــل : برایى حل اين مسأله نمو دار رطوبت سنجـى را بهكار خواهيم گرفت. فرآيندهاى مورد نظر بطور طرسوارهاى در شكل

دماى حباب خئكت
(الف)
(ب)

(e)

(ب)
(飞)

$$
\begin{aligned}
& \omega_{1}=\omega_{2}^{\prime}=123 \text { grains }=0.0176 \mathrm{lbm} \quad(7.98 \mathrm{~g}) \\
& \omega_{2}=\omega_{3}=65 \text { grains }=0.0093 \mathrm{lbm} \quad(4.22 \mathrm{~g}) \\
& T_{2}^{\prime}=73^{\circ} \mathrm{F} \quad\left(22.8^{\circ} \mathrm{C}\right) \\
& T_{2}=55^{\circ} \mathrm{F} \quad\left(12.8^{\circ} \mathrm{C}\right)
\end{aligned}
$$

موازنه أنرزّى برایى قسمت سرمايش در معادله (V_09) داده شده است و انتالِى بخـار را
 داده شذه با تقر يب خوبى بهدست آورد. دز اين جا معادله (V_FV) را به كار خواهيم گرفت :

$$
\begin{aligned}
& h_{v_{1}}=1061+(0.445)(100)=1106 \mathrm{Btu} / \mathrm{lbm} \quad(2572 \mathrm{~J} / \mathrm{g}) \\
& h_{\nu_{2}}=1061+(0.445)(55)=1085 \mathrm{Btu} / \mathrm{lbm} \quad(2523 \mathrm{~J} / \mathrm{g}) \\
& 55^{\circ} \mathrm{F}, 2 h_{f}=23.06 \mathrm{Btu} / \mathrm{lbm} \quad(53.63 \mathrm{~kJ} / \mathrm{kg})
\end{aligned}
$$

$$
\begin{aligned}
& \text { حال با جايِززين كردن اين مقادير در معادله (V.ه) بهدست مى آيل : } \\
& Q_{c}=m_{a}[(0.24)(100-55)+(0.0176)(1106)-(0.0093)(1085)] \\
& -m_{a}(0.0176-0.0093)(23.06)
\end{aligned}
$$

$$
Q_{c}=20 \mathrm{Btu} / \mathrm{bm} \text { هواى خخثك } \quad(46.5 \mathrm{~kJ} / \mathrm{kg})
$$

در قسمت گر مايش هيع گونه آبى از دست نرفنه يا بهدست نيامذه است و لنا موازنه انرزّى

$$
Q_{H}=m_{a}\left[h_{a_{3}}-h_{a_{2}}+\omega_{3}\left(h_{\nu_{3}}-h_{\nu_{2}}\right)\right]
$$

گی Q_{H}

$$
Q_{H}=m_{a}[(0.24)(75-55),+(0.0093)(0.445)(75-55)]
$$

$Q_{H}=4.88 \mathrm{Btu} / \mathrm{lbm}$ هو $\quad(11.35 \mathrm{~kJ} / \mathrm{kg})$

يكت راه نسبتاً سادهتر، خواندن مستقيم مقادير انتاليهاى مـخلوط از نمو دار رطوبت سنجى

$$
\begin{aligned}
& h_{m 1}=43.7 \mathrm{Btu} / \mathrm{lbm} \quad\left(T_{\mathrm{DB}}=100^{\circ} \mathrm{F} ، T_{\mathrm{WB}}=80^{\circ} \mathrm{F}\right) \\
& h_{m_{2}}=23.1 \mathrm{Btu} / \mathrm{lbm} \text { هوای خشك } \quad\left(\phi=100 \% 55^{\circ} \mathrm{F} \text { ر }\right) \\
& h_{m_{3}}=28.4 \mathrm{Btu} / \mathrm{lbm} \text { هواى خشكك (} \mathrm{D}_{\mathrm{DB}}=75^{\circ} \mathrm{F} \iota \phi=50 \% \text {) }
\end{aligned}
$$

هميخنين داريم

$$
m_{f}=\omega_{l}-\omega_{3}=0.0083 \mathrm{lbm} / \mathrm{lbm} \text { هواى ختـكت }
$$

بنابراين موازنه انرزّى برابر است با

$$
\begin{aligned}
Q_{c} & =\dot{m}_{a}\left(h_{m_{1}}-h_{m_{2}}\right)-\dot{m}_{a}\left(\omega_{I}-\omega_{2}\right) h_{f} \\
& =43.7-23.1-(0.0083)(23.06)=20.41 \mathrm{Btu} / \mathrm{lbm} \text { هواى خئكـ}
\end{aligned}
$$

 مقادير خو انده شده از نمودار رطوبتسنجىى است. برایى فر آيند گرماسش بهدست مى آوريـم : $Q_{H}=\dot{m}_{a}\left(h_{m_{3}}-h_{m_{2}}\right)=28.4-23.1=5.3 \mathrm{Btu} / \mathrm{lbm}$ هواى خنكك

باز هم آختلان در اعداد بخاطر عدم دقت در مقادير خوانده شده ازز نمودار رطوبت سنجى است.

مثال • Y

سداقل, دمايى را تعين كنيد كه با استفاده از يكـ فرآيند سرمايش تبخيرى با هواى كويرى در | $\mid \Delta^{\circ} \mathrm{F}$

حـــل : اين دماى حداتل را مى توانيم با استفاده از يكت نمودار رطوبت سنجى، همان طور كه در شكل V_^ نمايش داده شـده، يا با محاسبه دماى اشباع آدياباتيكت بهدست آوريم. از روى نمودار رطوبت سنجى نورأ مى خوانيم كه برای $T_{\text {DB }}=11 \Delta^{\circ} \mathrm{F}$ و درصد $\phi=\Delta$ ،

$$
T_{\mathrm{WB}}=67^{\circ} \mathrm{F}
$$

علت مفيد بودن كولي هاى تبخيرى در آب و هواي كويرى كامملا" مشهود است.

مثال Y-1 اختلاط آدياباتيك

 صورت گير 26 دماى منلوط را محاسبه كنيد. همجنين رطوبت نـبـى منلوط را تعيين نهاييد.

حـــل : از روى نمودار رطوبت سنجـى داريم :

$$
\begin{aligned}
& T_{1}=100^{\circ} \mathrm{F} \quad \omega_{1}=206 \text { grains }=0.029 \mathrm{lbm} / \mathrm{bm} \text { هواى خشكك } \\
& T_{2}=70^{\circ} \mathrm{F} \quad \omega_{2}=55 \text { grains }=0.0079 \mathrm{lbm} / \mathrm{lbm} \text { هوای خشكك } \\
& m_{a_{1}}=2 \\
& m_{a_{2}}=3
\end{aligned}
$$

حال بايد از معادله (V. TF) رطوبت مخصوص خروجى را محاسبه كنيم:

$$
\begin{aligned}
& \frac{m_{a_{1}}}{m_{a_{2}}}=\frac{\omega_{3}-\omega_{2}}{\omega_{1}-\omega_{3}} \\
& \frac{2}{3}=\frac{\omega_{3}-55}{206-\omega_{3}} \\
& \omega_{3}=115 \text { grains }=0.0021 \mathrm{lbm} / \mathrm{lbm} \text { هواى خشكك }
\end{aligned}
$$

اكنون خطى بر روى نمودار رطوبت سنجى، نظير آنهه كه در شكل الف V_ IY نشان داده شده؛ رسم

$$
\begin{aligned}
& \text { مى } \\
& T_{\mathrm{DB}_{3}}=82^{\circ} \mathrm{F} \\
& T_{\mathrm{WB}_{3}}=74.5^{\circ} \mathrm{F} \\
& \phi_{3}=70 \text { درحهد }
\end{aligned}
$$

مثال Y- 1 سرمايش در دماى ثايسين

 نشتى لازم است؟

حـــل : انرزیى كل دنع شده از هوا برابر است با

$$
\begin{equation*}
Q=\dot{m}_{a}\left(h_{1}-h_{2}\right) \tag{a}
\end{equation*}
$$

h انتاليى مخلوط هوا -بخار آب در خارج از اتاق و h_{2} انتاليى مخلوط هوا ـ T بـ -بخار -يخ در داخل اتاق است. نمودار رطوبت سنجىى را براى هواى خارج به كار برده خواهيم داشت :

$$
\begin{aligned}
& \omega_{1}=101 \text { grains }=0.01442 \mathrm{lbm} / \mathrm{lbm} \text { هوای خشكك } \quad\left(0.893 \mathrm{~m}^{3} / \mathrm{kg}\right) \\
& T_{\mathrm{DB}_{1}}=95^{\circ} \mathrm{F} \\
& v_{a_{1}}=14.3 \mathrm{ft}^{3} / \mathrm{lbm} \text { هواى خشكى } \quad
\end{aligned}
$$

بنابراين دبى جوم هواى خشكت عبارت است از

$$
\begin{equation*}
\dot{m}_{a}=\frac{500 \mathrm{ft}^{3} / \mathrm{min}}{14.3 \mathrm{ft}^{3} / \mathrm{bm}}=34.96 \mathrm{Ibm} / \mathrm{min} \quad(15.86 \mathrm{~kg} / \mathrm{min}) \tag{b}
\end{equation*}
$$

$$
\begin{equation*}
P_{g 2}=5.103 \exp \left(18.42-\frac{11059}{440}\right)=0.00619 \mathrm{psia}(42.67 \mathrm{~Pa}) \tag{c}
\end{equation*}
$$

$$
\begin{gather*}
\omega_{2}=0.622 \frac{p_{32}}{p_{a_{2}}}=\frac{(0.622)(0.00619)}{14.696-0.00619}=2.62 \times 10^{-4} \quad \text { لذا رطوبت مخصوص دز اتاق برابر است }
\end{gather*}
$$

جرم بخار ورودى تبديل شده بهيخ در اتاق برابر است با اتاق عبارت است از

$$
\begin{equation*}
h_{2}=h_{a_{2}}+w_{2} h_{v_{2}}+\left(\omega_{1}-\omega_{2}\right) h_{i_{2}} \tag{e}
\end{equation*}
$$

در حالى كه انتاليى ورودى برابر است با

$$
\begin{equation*}
h_{1}=h_{a_{1}}+\omega_{1} h_{\nu_{1}} \tag{f}
\end{equation*}
$$

حال انتاليهاى بخار و يخ بهصورت زير تعين ميشود.

$$
h_{\nu_{1}}=1061+(0.445)(95)=1103.3 \mathrm{Btu} / \mathrm{lbm}
$$

$$
h_{\nu_{2}}=1061+(0.445)(-20)=1052.1 \mathrm{Btu} / \mathrm{bm}
$$

$$
h_{i_{2}}=-158.9+(0.467)(-20)=-168.24 \mathrm{Btu} / \mathrm{bm}
$$

حال مىتوانيم براى تعين حرارت دنع شده مقادير عددى رادر معادله (a) وارد كنيم.

$$
Q=34.96[(0.24)(95+20)+(0.01443)(1103.3)
$$

$$
\left.-\left(2.62 \times 10^{-4}\right)(1052.1)-\left(0.01443-2.62 \times 10^{-4}\right)(-168.24)\right]
$$

$$
=34.96(27.6+15.92-0.276+2.384)
$$

$$
=1595 \mathrm{Btu} / \mathrm{min}=95709 \mathrm{Btu} / \mathrm{h} \quad(28.04 \mathrm{~kW})
$$

 سنجى حل كنيمـ مىتوانيم مقادير زير رابخوانيم.

$$
\begin{array}{ll}
h_{m_{1}}=38.8 \mathrm{Btu} / \mathrm{lbm} \text { هواى خئك } \\
h_{m_{2}}=-4.5 \mathrm{Btu} / \mathrm{bm} \quad\left(T_{\mathrm{DB}}=95^{\circ} \mathrm{F}, \phi=40 \%\right) \\
\text { (} \left.T_{\mathrm{DB}}=-20^{\circ} \mathrm{F}, \phi=100 \%\right)
\end{array}
$$

$$
Q=34.96[38.8-(-4.5)-(0.0142)(-168.24)]=1597 \mathrm{Btu} / \mathrm{lbm}
$$

مثال Y_IT تهويه مطبوع اتاقكار

 دنع نـمايل.

حــل : از صورت مــأله

$$
T_{1}=22^{\circ} \mathrm{C} \quad \phi_{1}=50 \% \quad Q=10 \mathrm{~kW}
$$

$$
\dot{m}_{w^{\prime}}=0.25 \dot{m}_{v_{1}} \quad \phi_{2}=100 \%
$$

لذا از موازنه جرم Tبب لازم است كه

$$
\begin{equation*}
\dot{m}_{\nu_{2}}=\dot{m}_{\nu_{1}}-\dot{m}_{w}=0.75 \dot{m}_{\nu_{1}} \tag{a}
\end{equation*}
$$

از نمو دار رطبت سنجى

$$
\begin{equation*}
\omega_{I}=0.00820 \mathrm{~kg} / \mathrm{kg} \text { هواى خشك } \tag{b}
\end{equation*}
$$

حالت

$$
\begin{equation*}
\omega_{2}=0.75 \omega_{1}=0.00615 \tag{c}
\end{equation*}
$$

سبس دما در نقطه Y از نمو دار رطوبت سنجى بهدست مى آيد

$$
\begin{equation*}
T_{2}=T_{\mathrm{DB}_{2}}=T_{\mathrm{WB}_{2}}=7^{\circ} \mathrm{C} \tag{d}
\end{equation*}
$$

حال موازله انرزّى در اثاتق نوشته هيشود

$$
\begin{equation*}
\dot{m}_{a}\left(h_{2}+\omega_{2} h_{v_{2}}\right)+\dot{m}_{w} h_{w}+Q=\dot{m}_{a}\left(h_{1}+\omega_{1} h_{v_{1}}\right) \tag{e}
\end{equation*}
$$

$$
\begin{aligned}
& h_{v}=2501+1.863 T \\
& h_{v_{1}}=2501+(1.863)(22)=2542 \mathrm{~kJ} / \mathrm{kg} \\
& h_{v_{2}}=2501+(1.863)(7)=2514 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

يكت حدس منطقى برایى h برابر است با

$$
\begin{aligned}
& h_{w}=h_{f}\left(22^{\circ} \mathrm{C} ر\right)=92.33 \mathrm{~kJ} / \mathrm{kg} \\
& \text { با توجه بهاين كه }
\end{aligned}
$$

$$
\begin{array}{r}
\dot{m}_{a} \mid(1.005)(7-22)+(0.00615)(2514)-(0.00820)(2542) \\
+(0.00820-0.00615)(92.33) \mid+10=0 \\
\text { كه از مط آن نتيجه مى گيريم }
\end{array}
$$

$$
\begin{equation*}
\dot{m}_{a}=0.4934 \mathrm{~kg} / \mathrm{s}=29.6 \mathrm{~kg} / \mathrm{min} \tag{h}
\end{equation*}
$$

حجم مخخصوص جريان نروجى انز كو يلهاى سرمايشى در نمودار رطوبت سنجى برابر است با

$$
\begin{equation*}
v_{a_{2}}=0.802 \mathrm{~m}^{3} / \mathrm{kg} \text { هو اي خسكت } \tag{i}
\end{equation*}
$$

لذا دبى ححمى جريان در آن نقطه عبارت خواهد بود از

$$
\begin{aligned}
\dot{V}_{2} & =\dot{m}_{a} v_{2} \\
& =(29.6)(0.802)=23.7 \mathrm{~m}^{3} / \mathrm{min}
\end{aligned}
$$

حجم مخخصوص در شـرايط ورودى بهكويلهاى سرمايثى برابر المت با $v_{a_{1}}=0.847 \mathrm{~m}^{3} / \mathrm{kg}$ هواى خشّك

بنابراين دبى حجمى در آز نقطه عبارت خواهد بود از

$$
\begin{equation*}
\dot{V}_{I}=\dot{m}_{a} v_{I}=(29.6)(0.847)=25.1 \mathrm{~m}^{3} / \mathrm{min} \tag{k}
\end{equation*}
$$

مثال Y_

 كويلهای سرمايشى در
 محاسبه كنيد.
 ;راهنما استفاده مىكنـم)

$$
\begin{aligned}
& T_{1}=10^{\circ} \mathrm{C} \quad \phi_{1}=100 \% \quad \omega_{1}=0.0077 \mathrm{~kg} / \mathrm{kg} \underset{\text { on }}{ } \\
& \left.T_{2}=38^{\circ} \mathrm{C} \quad \phi_{2}=30\right)_{\%} \quad \omega_{2}=0.0123 \mathrm{~kg} / \mathrm{kg} \text { هو أت خـر }
\end{aligned}
$$

(V_7F)dules al

$$
\begin{align*}
& \frac{\dot{m}_{a_{1}}}{\dot{m}_{a_{2}}}=\frac{\omega_{3}-\omega_{2}}{\omega_{1}-\omega_{3}} . \\
& \text { عـن: . } \\
& 5=\frac{\omega_{3}-0.0123}{0.0077-\omega_{3}} \tag{ab}
\end{align*}
$$

$$
\omega_{3}=0.0085
$$

行 = / / As

$$
T_{3}=14.5^{\circ} \mathrm{C} \quad \varphi_{3}=83 \%
$$

مثال Y- ال ترمايش با رطوبت زنىي

. 17 . . $\mathrm{ft}^{3} / \mathrm{min}$

حــل : طرحو اره اين فر آيند در شكل, همراه نشان داده شده اسست. دادههاى مربوط بششكلى عبأرت

$$
\begin{aligned}
& \text { اسـت از } \\
& T_{\mathrm{DB}}=4()^{\circ} \mathrm{F} \quad \phi_{1}=50 \% \quad V_{I}=600 \mathrm{ft}^{3} / \mathrm{min} \\
& T_{1 H_{2}}=70^{\circ} \mathrm{F} \quad \phi_{2}=40 \% \quad V_{2}=1500 \mathrm{ft}^{3} / \mathrm{min}
\end{aligned}
$$

$$
\begin{aligned}
& T_{\mathrm{Di}_{1}}=80^{\circ} \mathrm{F} \quad \phi_{4}=50 \% \\
& \text { حالا معادلات موازنهٔ زير را بهكار مىیگيريم : }
\end{aligned}
$$

Y-10 شكل مثال

موازنه جرم براى هوانى خشك :

$$
\begin{equation*}
\dot{m}_{a_{1}}+\dot{m}_{a_{2}}=\dot{m}_{a_{4}} \tag{a}
\end{equation*}
$$

موازنهٔ جر ب براى آب و بشخر :

$$
\dot{m}_{v_{1}}+\dot{m}_{\nu_{2}}+\dot{m}_{f_{3}}=\dot{m}_{v_{4}}
$$

$$
\begin{equation*}
\dot{m}_{f_{3}}=\dot{m}_{a_{4}} \omega_{4}-\dot{m}_{a_{1}} \omega_{1}-\dot{m}_{a_{2}} \omega_{2} \tag{b}
\end{equation*}
$$

$$
\begin{align*}
& \dot{m}_{a_{1}} h_{m_{1}}+\dot{m}_{a_{2}} h_{m_{2}}+\dot{m}_{f_{3}} h_{f_{3}}+Q=\dot{m}_{a_{4}} h_{m_{4}} \tag{c}\\
& \text { جريان جر مى هواى خـّك از رابطه زير بهدست مى آيد : } \\
& \dot{m}_{a}=\frac{\dot{V}}{v_{a}} \\
& \text { (d) } \\
& \text { هالا با مراجعه بهنمو دار رطوبت سنجى مقادير مختلف بازامتر ها را بهدست مى آوريم } \\
& v_{a_{1}}=12.6 \mathrm{ft}^{3} / \mathrm{bmm} \mathrm{bm}^{\mathrm{s}} \\
& v_{a_{-}}=13.5 \mathrm{ft}^{3} / \mathrm{lbm} \text { هوانى خشك } \\
& h_{m_{1}}=12.3 \mathrm{BLu} / \mathrm{bm} \text { هواى خشَ } \\
& h_{m \underline{1}}=23.7 \mathrm{Btu} / \mathrm{bm} \text { هواى خئك } \\
& h_{m_{1}}=31.5 \mathrm{Btu} / \mathrm{lbm} \text { هواى خئك } \\
& \omega_{l}=0.0028 \\
& \omega_{2}-0.0063 \\
& \omega_{i}=0.0111 \\
& h_{f \mathrm{~s}}=60-32=23 \mathrm{Btu} / \mathrm{lbm}
\end{align*}
$$

جريان جر مى هو ايس از معادله (d) محاسبه مىشود

$$
\begin{aligned}
& \dot{m}_{a_{1}}=\frac{600}{12.6}=47.62 \mathrm{lbm} / \mathrm{min} \\
& \dot{m}_{a_{2}}=\frac{1500}{13.5}=111.1 \mathrm{lbm} / \mathrm{min}
\end{aligned}
$$

(a) (a) لهس از

$$
m_{a_{1}}=47.62+111.1=158.73 \mathrm{lbm} / \mathrm{min}
$$

(b)

$$
\begin{aligned}
\dot{m}_{j, 9} & =+(158.73)(0.0111)-(47.62)(0.0028)-(111.1)(0.0063) \\
& =0.93 \mathrm{Ibm} / \mathrm{min}
\end{aligned}
$$

در نهايت تمام مقاديز دز مع'دنه (c) جايگگزين مىشود تاكَر هايش بهدست آيد

$$
(47.62)(12.3)+(111.1)(23.7)+(0.93)(28)+Q=(158.73)(31.5)
$$

$$
Q=17.55 \mathrm{Btu} / \min \quad(30.9 \mathrm{~kW})
$$

شكل Y-IT طرحوارة برج ختك كن

استفاده مینو د.

 بايد مقدارى آب بكاسيستم اضضافه شود تا جر يُن سرد خروجى و جريان آب لنا فرض بیىيم

$$
\begin{equation*}
\dot{m}_{w_{1}}=\dot{m}_{w_{2}} \tag{-}
\end{equation*}
$$

حال مىتوان موازنه جرم و انرزّى مناسب رادر مورد سيستم اعمال نمود. واضح است كه جرم هواى الى خشكت در ورود و خروج يكــان است. موازنه جرم بخار و و آب مايع عبارت است از

$$
\begin{equation*}
\dot{m}_{w_{1}}+\dot{m}_{v_{1}}+\dot{m}_{w_{3}}=\dot{m}_{w_{2}}+\dot{m}_{v_{2}} \tag{V_7N}
\end{equation*}
$$

با استفاده از معادله (V_IV) رابطه بالا بهرابطه زير ساده مىشود

$$
\begin{equation*}
\dot{m}_{w_{3}}=\dot{m}_{v_{2}}-\dot{m}_{\nu_{1}} \tag{v-79}
\end{equation*}
$$

و با استفاده از رطوبتهاى مخصوص بهدست مى 'آوريم

$$
\begin{equation*}
\dot{m}_{w_{3}}=\dot{m}_{a}\left(\omega_{2}-\omega_{l}\right) \tag{-}
\end{equation*}
$$

موازنها انززى عبارت است از

$$
\begin{align*}
\dot{m}_{a}\left(h_{a_{1}}+\omega_{1} h_{v_{1}}\right)+ & \dot{m}_{w_{1}} h_{w_{1}}+\dot{m}_{w_{3}} h_{w_{3}} \\
& =\dot{m}_{a}\left(h_{a_{2}}+\omega_{2} h_{v_{2}}\right)+\dot{m}_{w_{2}} h_{w_{2}} \tag{-}
\end{align*}
$$

$$
\begin{equation*}
\dot{m}_{a}\left[h_{m_{1}}-h_{m_{2}}+h_{f_{3}}\left(\omega_{2}-\omega_{1}\right)\right]=\dot{m}_{w_{1}}\left(h_{f_{2}}-h_{f_{1}}\right) \tag{V_VY}
\end{equation*}
$$

مثال زير استفاده از اين مفاهيم را نشان مىدهد.

مثال Y- 17 برج خنككن براى يك نيروتاه

 براي برج خنكکكن در

حـــل : ابتدا فنـار بخار را از معادله (V_YV) و نثـارهاى اشباع محاسبه مىكنيم

$$
\begin{align*}
& \left.p_{g_{1}}=3.169 \mathrm{kPa} \quad T_{a_{1}}=25^{\circ} \mathrm{C}\right\lrcorner د \\
& \left.p_{g_{2}}=6.268 \mathrm{kPa} \quad T_{a_{2}}=35^{\circ} \mathrm{C}\right\lrcorner \tag{a}\\
& p_{v_{1}}=\phi_{1} p_{g_{1}}=(3.169)(0.35)=1.109 \mathrm{kPa} \\
& p_{v_{2}}=\phi_{2} p_{g_{2}}=(5.268)(0.90)=4.471 \mathrm{kPa} \tag{b}
\end{align*}
$$

حال رطوبتهاى مخصوص عبارت است از:

$$
\begin{align*}
& \omega_{1}=0.622 \frac{p_{v_{1}}}{p_{a_{1}}}=\frac{(0.622)(1.109)}{101.32-1.109}=6.88 \times 10^{-3} \\
& \omega_{1}=\frac{(0.622)(4.471)}{101.32-4.741}=0.0305 \mathrm{~kg} / \mathrm{kg} \text { هواى خـيكـ} \tag{c}
\end{align*}
$$

انتاليى مايع ها از جداول بخار آب بهدست مى 'آند

$$
\begin{array}{ll}
h_{f_{1}}=167.57 \mathrm{~kJ} / \mathrm{kg} & 40^{\circ} \mathrm{C} ر \\
h_{f 2}=125.79 \mathrm{~kJ} / \mathrm{kg} & 30^{\circ} \mathrm{C} \mu \tag{d}\\
h_{f_{3}}=83.96 \mathrm{~kJ} / \mathrm{kg} & 20^{\circ} \mathrm{C} ر
\end{array}
$$

انتالیى بخارها از معادله (V_FVb) محاسبه مىگ,

$$
\begin{align*}
& h_{v_{1}}=2501+(1.863)(25)=2548 \mathrm{~kJ} / \mathrm{kg} \\
& h_{\nu_{2}}=2501+(1.863)(35)=2566 \mathrm{~kJ} / \mathrm{kg} \tag{e}
\end{align*}
$$

تفاضـل در انتاليهاى هوا بهصورت هال تمام خواصّ رامى توان در معادله (Y_VY) جايگزين نمود

$$
\begin{aligned}
& \dot{m}_{a} \mid(1.005)(25-35)+\left(6.88 \times 10^{-3}\right)(2548)-(0.0305)(2566) \\
& \left.+\left(0.0305-6.88 \times 10^{-3}\right)(83.96)\right]=(1200 \mathrm{~kg} / \mathrm{s})(125.79-167.57) \quad(f)
\end{aligned}
$$

لذا جر يان هو'ى خخكك لازم بهصورت زير بهدست مى آيد

$$
\begin{equation*}
\dot{m}_{a}=7287 \mathrm{~kg} / \mathrm{s} \tag{g}
\end{equation*}
$$

Tب جبرانى لازم برای بوازنه عبارت است از

$$
\dot{m}_{w_{3}}=\dot{m}_{a}\left(\omega_{2}-\omega_{1}\right)=(7287)\left(0.0305-6.88 \times 10^{-3}\right)=172.1 \mathrm{~kg} / \mathrm{s} \quad(h)
$$

بايد دقت شود كه كل جريان هواو بخار آب در نقطه ورود برابر است با

$$
\begin{align*}
\dot{m}_{J} & =\dot{m}_{a}+\dot{m}_{v_{1}}=\dot{m}_{a}\left(1+\omega_{l}\right) \tag{i}\\
& =(7287)\left(1+6.88 \times 10^{-3}\right)=7337 \mathrm{~kg} / \mathrm{s}
\end{align*}
$$

مخلوطكازهاى حقيقى
تمام بحثهأى اين نصل تاكنون، دربارة رفتار يخلوطهايى بود كه هركدام از اجزاى آنها،

محدو دهاى از دما و فثار نشان دهيم كه در آن ديگر نمىتوان قانون كَاز ايدهآل را بهكار برد. متأسفانه

 هساسبه مى گر دد. بدين تر تيب

$$
\begin{equation*}
p_{m}=\sum p_{i} \tag{-}
\end{equation*}
$$

p p_{m} تفاوت دارد بهاين صور
 اجزایى آن مىتوان در نظر گرفت و حجم هركدام از اجزا در دما و فـشار مخلوط تعيين مى گردرد :

$$
\begin{equation*}
V_{m}=\sum V_{i} \tag{V_Vf}
\end{equation*}
$$

 جزئى و حجم جزئى توضيع داده شده در بخش نگرديدهاند. اگر براى اجزا معادله حالت تراكم بذير يى عمو مى را بهكار بيريم

$$
\begin{equation*}
p_{i}=\frac{Z_{i} n_{i} \mathfrak{R} T}{V_{m}} \tag{V_v}
\end{equation*}
$$

$$
\begin{equation*}
V_{i}=\frac{Z_{i} n_{i} \Re T}{p_{m}} \tag{-}
\end{equation*}
$$

براى منفلوط مربوط مىشوند.

$$
\begin{equation*}
p_{m} V_{m}=n_{m} Z_{m} \Re T \tag{V_VV}
\end{equation*}
$$

با وارد كردن رابطههاى تراكم بذيرى در معادل (V_VD) يا (V_VV) بهدست مى آوريم.

$$
n_{m} Z_{m}=\sum n_{i} Z_{i}
$$

$$
Z_{m}=\sum x_{i} Z_{i}
$$

بهشر حال بايد بهعقب برگرديم و دقت كنيم كه شرايط لازم براى تعين مقادير جمع نشارها و يا قانون جمع حجمها بـكار گرفنه شده است، متفاوت مىباشد. برایى تانون جمع فنارها

$$
\begin{equation*}
Z_{m}=\sum\left(x_{i} Z_{i}\right)_{T \nu} \tag{V_VA}
\end{equation*}
$$

در حالى كه براى قانون جمع

$$
\begin{equation*}
Z_{m}=\sum\left(x_{i} Z_{i}\right)_{T, p} \tag{Y_VQ}
\end{equation*}
$$

برایى رفتار دقيق گاز ايدهآل
 عكس العمل داخلمى بين ملكولهاى اجزا مرف نظر مىشود، لذا وجود بعغـى خططاها را در استفاده از

 عكـى اللعمل داخلى نيروى ملكولى رااز طريق انجام مساسبات در نـنار كل منفلوط مبهاز مىدارد. نتيجتاً وتتىكه مخلوط در جرم هاى مخصوص باين وجود دارد، انتظار داريم كه قانون آماگات عكس العملهاى داخلى ملكولى رابيش از مقدار واقمى بهحساب آوردي

حقيقى بهدست آمده استت. يكت روش ساده بوسيله يكى ' [5] ارائه شده كه در مسدوده وسيعى از دما و فثار داراى خطايى كمتر از • ا دزصد است. در روش مذكور مشخلو ط بهعنوان يكت ماده شبه خالص " در
 تلفيقت خطى ساده از خواصّ بحرانى را به كار مىبرد بهطورى بكـي

$$
\begin{align*}
& p_{c m}=\sum x_{i} P_{c i} \\
& T_{c m}=\sum x_{i} T_{c i}
\end{align*}
$$

كه بر اساس نمودارهاي ضريب تراكم بذيرى عمو مى ادامه مى يابل.

-/ $/ \Delta \mathrm{kg}$

حـــل : در اين مسأله مىتوان انتظار داشت كه هوا بهعنوان يكل گاز ايلدهآل رلتاز نمايد، در حالى كه بخار آب در فشار بالآست و از معادله حالت گاز ايدهآل يِروى ندىكند. بههر حال نشار مذكور در مقايسه با فشار بحرانى براى آب آن تدر ياسِن است كه انتظار مى موود تانون جمع فشار هما بهكار آيد. فشار بخار براى مخلوط اشباع بايد برابر باشد با

$$
\begin{aligned}
p_{\nu} & =p_{g} \quad 160^{\circ} \mathrm{C} \text { د } 2 \\
& =617.8 \mathrm{kPa} \quad(\mathrm{~A}-\mathrm{VM}) \\
v_{g} & =0.3071 \mathrm{~m}^{3} / \mathrm{kg}
\end{aligned}
$$

1- Kay
2- Pseudo-pure substance

و فشار هوا برابر استت با

$$
p_{a}=p_{m}-p_{v}=1000-617.8=382.2 \mathrm{kPa}
$$

, حیحم متلوط از رابطه زير میاسبه بیگگدد

$$
V_{m}=\frac{m_{a} R_{a} T}{p_{a}}=\frac{(0.5)(287.1)(433)}{382.2 \times 10^{3}}=0.1626 \mathrm{~m}^{3} \quad\left(5.743 \mathrm{ft}^{3}\right)
$$

با در نظر گرفنّ نبود عكس العمل داخلى بين گازها، بجر بخار دل ححبم كال مسلوط بهصورت زير مسحاسبه مىشو2

$$
\begin{aligned}
& m_{v}=\frac{V_{m}}{v_{g}}=\frac{0.1626}{0.3071}=0.529 \mathrm{~kg} \\
& p_{g}=47.39 \mathrm{kPa} \quad v_{g}=3.407 \mathrm{~m}^{3} / \mathrm{kg}
\end{aligned}
$$

(1.167 lbm)

د $1{ }^{\circ} \mathrm{C}$ در شرايط

برانى ظرفى با حیحم مشابه، بجرم بشار در اين شرايطط عبارت است از

$$
m_{\nu}=\frac{0.1626}{3.407}=0.0477 \mathrm{~kg} \quad(0.105 \mathrm{lbm})
$$

$$
P_{a_{2}}=P_{a_{1}} \frac{T_{2}}{T_{1}}=\frac{(382.2)(353)}{433}=311.6 \mathrm{kPa} \quad(45.19 \mathrm{psia})
$$

, نشار نهايى مشلو ط برابر الست با

$$
p_{m_{2}}=p_{a_{2}}+p_{\nu_{2}}=311.6+47.39=359.0 \mathrm{kPa} \quad(52.07 \mathrm{psia})
$$

$$
\begin{equation*}
Q=U_{2}-U_{2}=\left(U_{2}-U_{1}\right)_{1}+\left(U_{2}-U_{1}\right)^{2} \tag{a}
\end{equation*}
$$

تغير در انرزیى دا-خلى را مىتوان برای هوا و بـخار بههور جلاگانه تعين كرد. براى هوا

$$
\begin{aligned}
U_{2}-U_{1} & =m c_{v}\left(T_{2}-T_{1}\right)=(0.5)(0.718)(80-160) \\
& =-28.72 \mathrm{~kJ} \quad(-27.22 \mathrm{Btu})
\end{aligned}
$$

انرزّى داخلى براي بـخار آب از جداول بشار آب بهدست مى آيد.
$u_{v_{1}}=2568.4 \mathrm{~kJ} / \mathrm{kg} \quad$ (1104.2 Btu/lbm) $\quad 17 .{ }^{\circ} \mathrm{C}$ بخار اشباع در جرم آب تقطير شده برابر است با

$$
\begin{equation*}
m_{w}=m_{\nu_{1}}-m_{\nu_{2}}=0.529-0.0477=0.4813 \mathrm{~kg} \tag{b}
\end{equation*}
$$

انرزّى داخلى نهايیى بخار و مايع عبارت اسـت از

$$
\begin{array}{lrl}
u_{v_{2}}=2482.2 \mathrm{~kJ} / \mathrm{kg} & (1067 \mathrm{Btu} / \mathrm{lbm}) & 80^{\circ} \mathrm{C} \text { بخار اشباع } \mathrm{H} \text { بايع اششباع در } \\
u_{w_{2}}=334.86 \mathrm{~kJ} / \mathrm{kg} & (144 \mathrm{Btu} / \mathrm{lbm}) & 80^{\circ} \mathrm{C}
\end{array}
$$

تغيير كل, در انرزّى داخلى Tب برابر است با

$$
\begin{align*}
U_{2}-U_{1} & =m_{\nu_{2}} u_{\nu_{2}}+m_{w_{2}} u_{w_{2}}-m_{\nu_{1}} u_{\nu_{1}} \tag{c}\\
& =(0.0447)(2482.2)+(0.4813)(334.86)-(0.529)(2568.4) \\
& =-1079.1 \mathrm{~kJ} \quad(-1023 \mathrm{Btu})
\end{align*}
$$

با جهع تغيرات در انززى داخلى براى هو' و بخار آب با يكديگر در معادله (a) انتقال حرارت به صورت زير حاصل مىشود.

$$
Q=-28.72-1079.1=-1107.8 \mathrm{~kJ}(-1050 \mathrm{Btu})
$$

علامت منفى بدين معنى است كه در طى فرآيند سرمايش حرارت از سيستم دفع گر ديده است. اين مطلب جالب تو جه است كه اگر بهجاي قانون جهع فشارها، قانون جهع حصجمها را به كار مى مرديم، جهه تغييراتى در مسامبات رخ مىداد. محاسبئ سجـم هـوا در دمـا و فشـار متخلـوط مسأله سادos است:

$$
V_{a}=\frac{m_{a} R_{a} T}{p}=\frac{(0.5)(287.1)(433)}{1 \times 10^{6}}=0.06216 \mathrm{~m}^{3} \quad\left(2.195 \mathrm{ft}^{3}\right)
$$

 پإين مدكن است بهتططاهاى اساسى منجر گَردد.

مثال Y-l\ مقايسه روشهاىكوناكون محاسبه

مخلوطى كه شاسل ا يوند مول است، از اجزايى بولى مساوى

 نمودارهاى ضريب تراكم جذيرى عوومى و (د) روش شبه بحرانى كِى، محاسبه نمايِد.

حـــلـ : يكت مول از مخلوط كل راداريم لذا:

$$
\begin{aligned}
& x_{\mathrm{N}_{2}}=0.5, x_{\mathrm{CO}_{2}}=0.5 \\
& n_{m}=1 \mathrm{lbm} . \mathrm{mol}, V_{m}=1.5 \mathrm{ft}^{3} ، T_{m}=100^{\circ} \mathrm{F}=560^{\circ} \mathrm{R} \quad \text { هnجنين } \\
& \text { (الف) برایى رفتار كاز ايدهآل فشار كل نورأ از رابطه زير محاسبه مىثود. } \\
& p_{m}=\frac{n_{m} \Re T_{m}}{V_{m}}=\frac{(1)(1545)(560)}{(1.5)(144)}=4005 \text { psia }
\end{aligned}
$$

$$
\begin{aligned}
& T_{c, \mathrm{~N}_{2}}=277^{\circ} \mathrm{R} \quad T_{c, \mathrm{CO}_{2}}=548^{\circ} \mathrm{R} \\
& p_{c, \mathrm{~N}_{2}}=33.5 \mathrm{~atm} \quad p_{c, \mathrm{CO}_{2}}=72.9 \mathrm{~atm}
\end{aligned}
$$

برايى قانون جمع فشارها بايد فشار هر كدام از اجزا رادر دما و حجم كل مهاسبه كنيم. جون از هركدام از

اجزا بهاندازه ه/ / مول داريم لذا حجم مخصوص مولى هركدام برابر است با

$$
\bar{v}=\frac{V_{m}}{n}=\frac{1.5}{0.5}=3 \mathrm{ft}^{3} / \mathrm{lbm} \mathrm{~mol}
$$

بدين ترتيب ححجم شبه كاهش يافته ' برایى هركدام از اجزا عبارت است از
$\bar{v}^{\prime}{ }_{r}=\frac{\bar{v}}{\Re T d p_{c}}$
$\bar{v}_{r, \mathrm{CO}_{2}}=\frac{3}{(1545)(548) /(72.9)(14.7)(144)}=0.547$
$\bar{v}_{r, \mathrm{~N}_{2}}^{\prime}=\frac{3}{(1545)(227) /(33.5)(14.7)(144)}=0.607$
و دماهاى كاهش يافته عبارت است از

$$
\begin{aligned}
& T_{r, \mathrm{CO}_{2}}=\frac{560}{548}=1.022 \\
& T_{r, \mathrm{~N}_{2}}=\frac{560}{227}=2.467
\end{aligned}
$$

برالى بهدست آوردن فئار هاى كاهش يافته مىتوان بهنمودارهاى ضريب تراكم بذيرى عمومى فصل 7 مرأجعه نمود.

$$
p_{r, \mathrm{CO}_{2}}=1 \quad p_{r_{1} \mathrm{~N}_{2}}=4.25
$$

بنابراين فثار هايى كه در قانون جمع نشار ها به كار خواملد رفت عبارت است از:

$$
\begin{aligned}
& P_{\mathrm{CO}_{2}}=(1.0)(72.9)=72.9 \mathrm{~atm}=1071 \mathrm{psia} \\
& p_{\mathrm{N}_{2}}=(4.25)(33.5)=142.4 \mathrm{~atm}=2092 \mathrm{psia}
\end{aligned}
$$

سيس نشار كل مـخلو طبرابر است با

$$
p_{m}=p_{\mathrm{N}_{2}}+p_{\mathrm{CO}_{2}}=2092+1071=3163 \mathrm{psia}
$$

1- Pseudo-reduced volume

اين مقدار اساسأكمتر از مقدار بيشبينى شده در قانون گَاز ايدهآل است.

 Z Z_{i} است. اين روش را آن تدر تكرار ميكنيم تا متادير فرض شده و محاسبه شده با با هم مطبابقت يابد. برایى
 درنظر بگيريم:

$$
\begin{aligned}
& p_{m}=3500 \mathrm{psia}=238.2 \mathrm{~atm} \\
& p_{r, \mathrm{CO}_{2}}=\frac{238.2}{72.9}=3.27
\end{aligned}
$$

$$
p_{r, M_{2}}=\frac{238.2}{33.5}=7.11
$$

با مراجعه بهنمودارهاي عمومى

$$
Z_{\mathrm{CO}_{2}}=0.48 \quad Z_{\mathrm{N}_{2}}=1.09
$$

(V_VA) (سیس از معادل

$$
Z_{m}=\sum x_{i} Z_{i}=(0.5)(0.48)+(0.5)(1.09)=0.785
$$

و ونشار يخلوط از رابطه زير محاسبه مىتردد :

$$
P_{m}=\frac{Z_{m} n_{m} \Re T_{m}}{V_{m}}=\frac{(0.785)(1)(1545)(560)}{(1.5)(144)}=3144 \mathrm{psia}
$$

اين مقدار بهطور اساسى با مقدار فرض شده psia • . هr تفاوت دارد. لذا مقدارزيررا آزمايش مىكيم:

$$
p_{m}=3100 \mathrm{psia}=210.9 \mathrm{~atm}
$$

$$
\begin{aligned}
& P_{r, \mathrm{CO}_{2}}=\frac{210.9}{72.9}=2.89 \\
& p_{r, \mathrm{~N}_{2}}=\frac{210.9}{33.5}=6.3
\end{aligned}
$$

هجدواُ با مراجعه به نمودار رهاى عمومى

$$
Z_{\mathrm{CO}_{2}}=0.43 \quad Z_{\mathrm{N}_{2}}=1.075
$$

$$
\begin{aligned}
& Z_{m}=\sum x_{i} Z_{i}=(0.5)(0.43)+(0.5)(1.075)=0.753 \\
& P_{m}=\frac{Z_{m} n_{m} \Re T_{m}}{V_{m}}=\frac{(0.753)(1)(1545)(560)}{(1.5)(144)}=3014 \mathrm{psia}
\end{aligned}
$$

با تكرارْهاى بيشتر تطابق بين مقادير فرض شده و مساسبه گرديلده دز فـار زير بهدست خواهد آمل

$$
P_{m}=2970 \mathrm{psia}=202.1 \mathrm{~atm}
$$

اين مقدار همحخين با مسحاسبات گاز ايلـه آل مغايرت اساسى دارد.
 احتياج دازد:

$$
\begin{aligned}
& p_{c m}=\sum x_{i} p_{c i}=(0.5)(33.5)+(0.5)(72.9)=53.2 \mathrm{~atm} \\
& T_{c m}=\sum x_{i} T_{c i}=(0.5)(227)+(0.5)(548)=387.5^{\circ} \mathrm{R}
\end{aligned}
$$

سيس خواص كاهث يافته مخلوط براى استفاده از نمودارهاىى ضريب تراكم بذـيرى بهصورت زير مساسبه مىشو2

$$
\begin{aligned}
& T_{m m}=\frac{T_{m}}{T_{c m}}=\frac{560}{387.5}=1.445 \\
& v_{m m}^{\prime}=\frac{\bar{v}}{\Re T_{c m} / p_{c n}}=\frac{1.5}{(1545)(387.5) /(53.2)(14.7)(144)} \\
& \bar{v}_{m m}^{\prime}=0.282
\end{aligned}
$$

$$
Z_{m}=0.775
$$

بنابراين

$$
P_{m}=\frac{Z_{m} n_{m} \Re T_{m}}{V_{m}}=\frac{(0.775)(1)(1545)(560)}{(1.5)(144)}=3104 \mathrm{psia}=211.12 \mathrm{~atm}
$$

مقدار حقيقى فقط نز طريق دادههاى تجربى ممكن است بهد ست Tيد ولى با در نظر گر رفتن نتيجه بهد ست
 كنيم. در آن صورت انحران از اين مقدار عبارت است از :

$$
\begin{aligned}
& \text { قانون گاز ايدهآل : } 9 \text { ب درصد بيشتر } \\
& \text { تانون جمع فثارها : } 9 \text { / / درصصد بيشتر } \\
& \text { قانون جمع حجمها : } \% \text { / / درصد كمتر }
\end{aligned}
$$

در اين مسأله بخصوص توانين جمع حجمها و نشارها و قانون بكى تقريباً با يكديگىر مطابقند.

مثال Y- | مقايسه روشهاى محاسبه

 ضريب تراكم بذيرى عمومى و (د) روش شبه بحرانى كِى محاسبه نمايسل.
حــل : يكت مول از كُل منخلوط را داريم لذا

$$
x_{\mathrm{N}_{2}}=0.5 \quad, \quad x_{\mathrm{CO}_{2}}=0.5
$$

$$
T_{m}=40^{\circ} \mathrm{C}=313 \mathrm{~K} \quad, \quad V_{m}=0.085 \mathrm{~m}^{3} \quad n_{m}=1 \mathrm{~kg} \cdot \mathrm{~mol}
$$

$$
p_{m}=\frac{n_{m} \Re T_{m}}{V_{m}}=\frac{(1)(8314.41)(313)}{0.085}=30.62 \mathrm{MPa}
$$

$$
\begin{array}{ll}
T_{c, \mathrm{~N}_{2}}=126.2 \mathrm{~K} & T_{c, \mathrm{CO}_{2}}=304.2 \mathrm{~K} \\
p_{c, \mathrm{~N}_{2}}=3.398 \mathrm{MPa} & p_{c, \mathrm{CO}_{2}}=7.386 \mathrm{MPa}
\end{array}
$$

برایى قانون جمع فشار ها بايلد فـار هركدام از اجزا را در دما و حجم كل تعين كنيمَ جولن از هركدام از

$$
v=\frac{V_{m}}{n}=\frac{0.085}{0.5}=0.170 \mathrm{~m}^{3} / \mathrm{kg} \mathrm{~mol}
$$

بدين ترتيب حجم مخصوص شبه كاهش يافنه براى هركدام از اجزا عبارت است از

$$
\begin{aligned}
& \bar{v}_{r}^{\prime}=\frac{\bar{v}}{\Re T_{c} / p_{c}} \\
& \bar{v}_{r, \mathrm{CO}_{2}}^{\prime}=\frac{0.170}{(8314.41)(304.20) /\left(7.386 \times 10^{6}\right)}=0.496 \\
& \bar{v}_{r, \mathrm{~N}_{2}}^{\prime}=\frac{0.170}{(8314.41)(126.2) /\left(3.398 \times 10^{6}\right)}=0.551
\end{aligned}
$$

دماهاى كاهش يانته عبارت است از :

$$
\begin{aligned}
& T_{r, \mathrm{CO}_{2}}=\frac{313}{304.2}=1.029 \\
& T_{r, \mathrm{~N}_{2}}=\frac{313}{126.2}=2.48
\end{aligned}
$$

برایى بهدست Tوردن فشارهاى كاهش يافته مىتوان بهنمودار هاى ضريب تراكم بذيرى عمومى نصل 7

$$
\begin{aligned}
& p_{r, \mathrm{CO}_{2}}=1.05 \quad p_{r_{1} \mathrm{~N}_{2}}=4.78 \\
& \text { بنابراين فثار هايى كه در قانون جیع نشارها به كار خواهلد رفت عبارت است از } \\
& P_{\mathrm{CO}_{2}}=(1.05)(7.386)=7.755 \mathrm{MPa} \\
& p_{\mathrm{N}_{2}}=(4.78)(3.398)=16.24 \mathrm{MPa}
\end{aligned}
$$

سـس فثـار كل مخلوط برابر است با

$$
p_{m}=p_{\mathrm{N}_{2}}+p_{\mathrm{CO}_{2}}=7.755+16.24=24.0 \mathrm{MPa}
$$

اين مقدار بهطور اساسى كمتر از مقدار يشرينى شده بهوسيلة قانون كاز ايدهر آل است.

 كل، محاسبه

 در نظر گرفت.

$$
p_{m}=30.0 \mathrm{MPa}
$$

$$
\begin{aligned}
& p_{r, \mathrm{CO}_{2}}=\frac{30}{7.386}=4.06 \\
& p_{r, \mathrm{~N}_{2}}=\frac{30}{3.398}=8.83
\end{aligned}
$$

با مراجععه بهنودارهاى عمومى

$$
Z_{\mathrm{CO}_{2}}=0.57 \quad Z_{\mathrm{N}_{2}}=1.15
$$

(V_VA) سيس از معادله

$$
Z_{m}=\sum x_{i} Z_{i}=(0.5)(0.57)+(0.5)(1.15)=0.860
$$

و نشار مخلوط از رابطه زير مساسبه مىگردد.

$$
p_{m}=\frac{Z_{m} n_{m} \Re T_{m}}{V_{m}}=\frac{(0.860)(1.0)(8314.41)(313)}{0.085}=26.33 \mathrm{MPa}
$$

اين مقدار بهطور اساسسى با مقدار فرض شده MPa • ب تفاوت دازد لذا مقدار زير را آزمايش مىكنمّ.

$$
\begin{aligned}
& p_{m 1}=25.0 \mathrm{MPa} \\
& p_{r, \mathrm{CO}_{2}}=\frac{25}{7.386}=3.38 \\
& p_{r, \mathrm{~N}_{2}}=\frac{25}{3.398}=7.36
\end{aligned}
$$

$$
Z_{\mathrm{CO}_{2}}=0.49 \quad Z_{\mathrm{N}_{2}}=1.10
$$

$$
Z_{m}=\sum x_{i} Z_{i}=(0.5)(0.49)+(0.5)(1.10)=0.795
$$

$$
p_{m}=\frac{Z_{m} n_{m} \Re T_{m}}{V_{m}}=\frac{(0.795)(1.0)(8314.41)(313)}{0.085}=24.34 \mathrm{MPa}
$$

با تكرارهانى بيشتر تطابت بين مقادير فرض شده و محاسبه گرديله در فشار زير بهدست خواهد Tهد

$$
p_{m}=24.22 \mathrm{MPa}
$$

اين مقدار با محاسبات كاز ايدهآل نيز كاملأل مغايرت دارد.

$$
p_{c m}=\sum x_{i} p_{c i}=(0.5)(3.398)+(0.5)(7.386)=5.392 \mathrm{MPa}
$$

$$
T_{c m}=\sum x_{i} T_{c i}=(0.5)(126.2)+(0.5)(304.2)=215.2 \mathrm{~K}
$$

$$
Z_{m}=0.78
$$

بنابراين

$$
p_{m}=\frac{Z_{m} n_{m} \Re T_{m}}{V_{m}}=\frac{(0.78)(1.0)(8314.41)(313)}{0.085}=23.88 \mathrm{MPa}
$$

مقدار حقيقى ممكن است فقط از دادهماى تجربى بهدست Tيلـ، ولى با در نظر گر نتن نتيجه حاصل شده از قانون كِى بهعنوان نقطه مرجع مىتوانيم جوابهاى بهدست آهده از روشهاى مشتلف را مقايسه كنيم.
در آن صورت انحرانف أز اين مثدار عبارت است از :

در اين مسأله خاص توانين جمع ححجها و نشار ها و تانون ككى تا حد زيادي با هم تطابق دارند.

خود آزمايى (سؤالات مروربى)

-

Y ا
گ

$$
\begin{aligned}
& \text { تانون گاز ايدهآل : YA درصد بيشتر } \\
& \text { قانون جمع نـُارها : ه / / درصد بيشتر } \\
& \text { قانون جمع حصحها: : / / / درصد بيشتر }
\end{aligned}
$$

$$
\begin{aligned}
& T_{r m}=\frac{T_{m}}{T_{c m}}=\frac{313}{215.2}=1.454 \\
& \bar{v}_{m m}^{\prime}=\frac{\vec{v}}{\Re T_{c m} / p_{c m}}=\frac{0.085}{(8314.41)(215.2) /\left(5.392 \times 10^{6}\right)}=0.256
\end{aligned}
$$

$$
\begin{aligned}
& \text { است. اين مطلب را تشريح كنيد. }
\end{aligned}
$$

- - - نشان دهيد كه تغير آنترويى يكت سخلوط در فز آ يندى كه نشار كل ثابت است فقط تابع دماهاى اوليّ و نهايى وگرماى ويره مخلوط است.
مخصروص و درجه الثباع را تعر يف كنيد.
 ايلهآل فرض نـود؟
r Δ psia -
به كار برد؟
- 9
- 1.
- 11 Y Y

- IF
 19 - 19
رابطه انتاليى مخلوط و دماى حجاب تر برايى سنلوط هوا- بشخار آب جيسـت ؟ IV
 تقطير خواهد شد!
- 19

- Y - Y ا

$$
\begin{aligned}
& \mathrm{N}_{\mathrm{r}}=\% \Delta . \\
& \mathrm{He}=\% 1 . \\
& \mathrm{CO}=\% 1 r \\
& \mathrm{O}_{\mathrm{r}}=\% 1 \Delta \\
& \mathrm{CO}_{\gamma}=\% 1 r
\end{aligned}
$$

گرماهاى ويزه مخلوط و ثابت گَاز را محاسبه نماييد. همحخنين كسر مولى هركدام از اجزارا بهدست آوريل.

 محاسبه كـدن.

M V-r
 N- V

$$
\begin{aligned}
& \mathrm{CO}_{Y}=\% r \Delta \\
& \mathrm{H}_{Y}=\% 1 \Delta \\
& \mathrm{CH}_{\mathrm{F}}(\mathrm{j})=\% r \Delta \\
& \mathrm{~A}(\overline{\mathrm{H}}(\mathrm{~T})=\% \mathrm{~T})=\% \mathrm{r}
\end{aligned}
$$

 را اسحاسبه كيد.
هـ هـ V

كار انجام شـده و تغير در آنترويى را برایى هركدأم از اجز| محاسبه كنيل. مخلوط خاصى دارای تركيب زير در مبناى حجمى است : V_V

$$
\begin{aligned}
& \mathrm{CO}=\% 1 \\
& \mathrm{CO}_{Y}=\% r \Delta \\
& \mathrm{O}_{Y}=\% 1 \\
& \mathrm{~N}_{Y}=\% \Delta \Delta
\end{aligned}
$$

نسبتهاى جرمى هركدام از اجزا ، ثابـت گاز ، وزن ملكولى ظاهرى و گرماهاى ويزه را محاسبه نمايِد.
 جريان دائم مخلوط شده است. مخلوط در psia Y خارج شده و فـر آيـند بـهصورت آدياباتيكك امت. تغير در آنترويى را محاسبه كنيد. جدول زير را براى مشلوط هوا ـ بخار آب در نــار اتمسفرث كامل نمايِد. از هـر دو محاسبات تحليلى و نمودار زطوبت سنجى استفاده كنيل.

$T_{\mathrm{DB}} \cdot{ }^{\circ} \mathrm{F}$	$T_{\text {WB }} \cdot{ }^{\circ} \mathrm{F}$	درصده	F\%	p_{v}
1.		r.		
人	7.			
		Δ.	$\Delta \Delta$	
	\wedge.		7.	
9.			7.	
	v.	p.		

 V_Il

 V-If بخازن با

 مساسبب كنيد.
(1 . . . ft³/min V-lV

 بهطور واضح آنها را مشتخص نمايدل

 مىشو د. فرض كنيد كه هوا بار حرار تى را هنگگامىكه در شخانه باشد كـبـ كند. دبى حجمى

هوايى راكه بايد بهاتاتق داده شود و ممجنين مقدار آب خاري شار شده را ما ماسبهي كنيد.

 درصلد در دسترس باشد. شدت جريان هوا براى اين اتاتق برابر

 كل سرمايش وگرمايش لازم را مهانسبه كنيد.

V_YT

 V_rه

 را مششخص كنيد).
 برای تهي
 V_rA برای دبى حجمى مدعاسبه كنيل.

 محاسبه نمايد.
 \% ${ }^{\circ} \mathrm{F}$ میرسد. مقدار گر مايش لازم را تحاسبه كنيد.

 بهاتاق داده سود محاسبه كنيد.

رطوبت نسبى هوا جقدر باشيد تا ميعان بر روى لوله صورت نگير د؟

 و رطوبت نهايى را محاسبه كنيد.
 مىگردد. دما و رطوبت حاصله را بهدست آوريد. (ا . . . ft³/min V_rv

 I . . ${ }^{\circ}$ F
 ropsia
يك \quad V_rq
 طراحى شده است :

بهاضافه آب مايع در
 مقدار گرمايش لازم و مقدار آب مايعى راكه بايل براى واحد رطوبت رطّن تأمين كـرد، محاسبه كنيد.
IT... . Btu/h ساختمان كوجكى در Tب و هوای كويرى احتياج بهسر مايشى برابر با V.f.
 \% $\phi=$ در دسترس است. هه شدت جريانى از هوایى ورودى لازم است و جهه مقدار
آب برای كولر بايد تأمين گردد؟

در لانگگ آيلند (Long Island) نيويوركك در تابستان هوا كاملز شرجى است. در يكت

 هوا در شرايط خشكى لازم باشد، سرمايش وتر مايش لازم را محاسبه كنيد.
 گرفته و آب
 V. . ft³/min

 ساعت را محاسبه كنيد.

V_ff YV

 مخلوط اوليه بهمقدار IV..ft³/min هجقدر سرمايش وگگرمايش لازم است؟
 يخها بايد ذوبـ شو د. با فرض اين كه آب شارج شلده از هوا در دماهاى بالایى آل
 برایى حالتى كه هيج آبى خارج نمىشود تكرار كنيد.

 نمايد. اگر • ا درصد رطوبت اضافى در جريان فوت اشباع بهشكل تطرات كو جكت هايع باشد، رطوبت و. دماى جريان مخلوط شده خروجى جقلر است؟ فرض كنيد كه مبناى قسمتهاى گفته شـده، هواى خشكـ امست.

 در شرايط V

 ا 10 • ${ }^{\circ} \mathrm{C}$
 تكرار نماييد.
 بشار آب الفزوده گردد آنجنان كه رطوبت نسبى اوليه برابر .Y Y درصل باشثل.
 است. در واححدى از نيروتَاه، حـرارتـى كـه بـايد در بـرج خـنـكـكن جــنـب گـردد،

 V_Dr برایى سرد نمودن هوای V
 رطوبت خارج میگردد؛؟

 درصد بر سد. مقدار گرَمايش و آبى راكه بايلد اضافه شو شود، مساسبه كينيد.
 خارج در
 صرن نظر نكنيد.

در خروجى لازم است؟

 A. ${ }^{\circ} \mathrm{F}$ حين فرآيند مخلوط شدن آن تدر حرارت اضافه مى شود تا دمانى هواي خروج

است؟ جقلدر آب دز اين فر آيند دنع شده است؟
V.هQ
 آدياباتيكت سرد مىگردد. حداقل دمايى كه بدين طريقه مى توان بدان دست يافت جقلد,
 جرمى شخلوط قبل و بعد از فر آيند اشبُع هقدر است؟
 هوای خــكـ است، توليد مىتردد. عمل اختلاط در يكك فرآيند جريان دائم صورت

 جقلـر است؟ A. ${ }^{\circ} \mathrm{F}$ ،IF/V psia مخزنى بهحجم Y Y

 بود و جه مقدار گر ها از طريق مخزن در اين فر آيند از دست رفته است؟ هخلوطى از هواـ بخاز آب شامل ها
 (ب) قانون جمع فـّارها، (ج) قانون جهع حجمها و (د) قانون شبه بحرانى كِى، مصاسبه

 درصد
 حرازتى راكه بايد از مخلوط گَرفته شود.

 يخلوط موجود در مخزن تقريباً مشابه نسبتهاى هوا يعنى
 حرارت گر نهه شده از مخزن و جرم نيتروزّن افزوده شده زا محاسبه كيند. از قانون بِى استفاده كنيد.

 كار لازم بهازاى هر بوند جرم مخلوط را امحاسبه نمايِد. V.iV

 گرمايش لازمى راكه بايد بهازازى هر بوند جر جرم مخلوط تأمين گَردد. V_iA
 مخلوط لازم است؟
 موجو د در مخلوط شروع بهميعان مىكند.

 درظرف صُلبى در (ب) قانون جمع حجمها و (ج) روش شبه بحرانى كِى، حجم مخلوط رِ را مرا محاسبه كنيد.

 l l lbm/min استفاده از (الف) روابط گاز ايدهآلن و (ب) روش شا شبهبحرانى ، مقدار كار داده شده بـسستم را محاسبه كنيد.

مسائل (آحاد متريك)

(\quad V- $1 M$
 انتقال حرارت را محاسبه كنيد.

 آدياباتيكك أست. تغير آنتروبى رامحاسبه كنيد.

نيتروزْن يُرْشارى متصل است و آن قلر نيتروزن وارد مىشود تا نشار كلى مخزن به Y/ ^MPa اضانه شده و تغير آنتر ويى را محاسبه كنيد.
 مخزن در YA • K تكرار كنيد.
V_\M

 جدول زير را برای مشلوط هوا ـ بشار Tب در نشار اتمسفرى كامل نماسِ. از هـر دو V_VM محاسبات تحليلى و نمودار رطوبت سنجى استفاده كنيد.

$T_{\text {DB }}{ }^{\circ} \mathrm{C}$	$T_{\text {WB }} \cdot{ }^{\circ} \mathrm{C}$	درصد،	* ${ }^{\circ} \mathrm{C}$ C	p_{v}
r^	r.			
YV	10			
		Δ.	IT	
	YV		10	
ry			10	
	Y.	F.		

 مخلوط محاسبه كنيد.
行 $/ \Delta \mathrm{kg} / \mathrm{s} \quad V_{-} \mid \cdot M$ فرآيند جريان آدياباتيكت مخلوط مىشود. نشار خروجى Q, kPa است. تغير آنتزوبی را

محاسبه كنيد.
 آدياباتيكت مخلوط مىشود. نشار خروجى הخلوط kPa . 9 است. تـغير آنـترويى را

محاسبه كنيد.
(V-1 YM نيتـروزن بر مبناى جرمى در شرايط

محاسبه كنيد.

 مى باشد. تغير كلى آنترويىى برایى اين زر آيند را محاسبه كنيد.
V_I FM

 جقدر است؟
V_1VM

 هقدر بايد باشل؟ (توجه: جند جواب صسجيح براى اين شسأله وجود دارد؛ دو جواب مناسبـ

يك
$V_{-} \mid A M$

تا بهشرايط تعادل بر سند. تغير آنترويى در نتيهه فرآيند مشخلوط شدن را شحاسبه كنيد. ($1 \mathrm{~kg} / \mathrm{s}$ V- $19 M$ لرآيند آدياباتيكت مشخلوط مىشوند. فشار كلى مشلوط نيز atm ا است. تغير آنترويى را محاسبه كنيذ.

V_r.M هليوم، • F درصد نيتروزن و

 IF. ${ }^{\circ} \mathrm{C}$ N V_Y MM
 مىشود. مقدار حرارت داده شده را بهازاى واحد جرم شحاسبه كنيد. اگگر اين مخلوط در
 محاسبه كنيد.

 نماييلد فثار جزئى بخار T V_ Y\&M

Δ.

 گرد2، مقدار رطوبت خارج شده رامححاسبه كنيد. V_r M M رطوبت نسبى هوا را محاسبه كنيد بهطورى كه ميعان بر روى لوله صورت نگيرد.
 2ماى خيلى هايِن ترالرگيرند، خشكك مىشوند. بر اساس اطلاعات موجود در اين فصل
 براى $\phi=\% 1 \cdot ، T_{D B}=F r^{\circ} \mathrm{C}$ V_YAM

تركك نمايل؛ محاسبه كنيد مقدار آبى راكه بايد برایى دستگاه تأمين نمود.
 F. است. فرض كنيد كه هوا از طريق سيستم گر مايش منظمى در YVº با رطوبت نسبى ورصد در دسترس است. شدت جريان هو ابراى اين اتاق برابر FF m³/min مىباشد. برای ايجاد رطوبت بؤثر ه ه 1 درصد در Y ج جقدر آب در ساعت بإيد بهصنورت تطرات ريز بههوا انزوده گردد؟ جقدر حرارت اضافى بايل تأمين شود؟
يرای اطمينان از دقت عمل وسايل يكت آزمايشگاه، بايد محيط در شرايط رطوبت كم نگگهداشته شود. از يكت نرآيند تهويه مطبوع سرمايش - بازگرم برایى اين. منظور استفاده

كل سر مايش وتكرمايش لازم را محاسبه كنيد.

رطوبت تهايى را مداسبه كنيد.
 مى تردد. دما و رطوبت حاصله را بهدست آوريد. - $10^{\circ} \mathrm{C}$ مخلوط مى شود. جقلر جريان هواى خنكك كننده و رطوبت لازم است تا مخلوط با زطوبت نسبى . يكت رطوبت زن ارزان براى سيستمهاى گرمايشى منازل از طريق بودر نمودن آب مايع و پاشيلن مستقيم Tن در كانال هوا عمل مىكند. دستگاهى بر'ی به كار بردن جر يان هو اكى داده شذه در زير طرآحى شده است :
 $\phi=\% \wedge \cdot ، 1 \Delta^{\circ} \mathrm{C}, ~ \mathrm{rq} \mathrm{m}^{3} / \mathrm{min}$ باضانه بهاضانه آب مايع در 10° با $\phi=\% r \Delta ، T_{\mathrm{DB}}=r \cdot{ }^{\circ} \mathrm{C}:$ هواى خارج شده از تسمت مقدار گرمايش لازم و مقدار آب مايعى راكه بايد برابى واحد رطوبت زن تأمين گردده، مـحاسبه كنيد.
 $\phi=\% \Delta$ و $\varphi \Delta \Delta^{\circ} \mathrm{C}$ برای انجام| در دسترس است. جهه شدت جريانى از هوا'ى ورودى لازم است و هقدر آب برایى كولر بايد تأمين گردد؟
 Y Y $\varphi^{\circ} \mathrm{C}$

 شده و متراكمזگردد، گرماى الززوده شده، كار محورى ورودى و تغيير در آنتروبى مشخلوط را محاسبه كنيل. مسأله را براى عمل تكرمايش و تراكم در يكى سيـتم بسته تكرار نمايِل.
 (و F. ${ }^{\circ} \mathrm{C}$ مىگردد. دما و رطوبت نهايى مخلو ط را مساسبه كنيلـ، در صورتى كه فشار نهايى (الف) .iF. kPa (ب) $\mathrm{IV} \cdot \mathrm{kPa}$
يكى از روشهاث توليد هوا'ى خيلى ختـكت عبارت است از سرد كردن آن تا دماهاى خيلى V_raM ، 1 atm

 rºC برسد يخها بايلد ذوب شود. با فرض اين كه آب خارج شده از هوا در دماهلى بالا تادر بهخروج آزادانه باشد، زمان لازم رابرای انباشت Y براى حالتى كه هيج آبى خارج نشود تكرالر نمايبد.

 - 1 درصد رطوبت اضافى در جريان نوق اشباع بهشكل تطرات كو جكت مايع بـاشد؛
 گَفته شده هوالى خشكيك باشد. م_frM هوإى خشكك است، توليد مىگردد. عمل الختلاط در يكـ فوآيند جريان دائـم انجام

 ورودى

خروجى جقدر است؟

 برای يُر كردن مخزن با هوای اضافى استفاده شده است. فر آيند بر شدن بآهـستگی صورت مى مخزن تا KPa • جهقدر هوا بايل افزوده گردد، رطوبت نسبى تحت اين شرايط جديل

هقدر خواهد بود و چقدر گرما از طريق مخزن در اين فر آيند از دست رفته است؟ g atm مشلوطى بهنستهای مساوى ازهواو بخـار آب دريك فـر آيندفشـارثابت در V_FFM ا 10 • ${ }^{\circ} \mathrm{C}$

است؟
اگر مخلوط مسأّل V_FFM در فشار ثابت سردگردد، دمايى راكه در آن بشار موجود در V_F ΔM مخلوط شروع بهميعان مىكند، تخمين بزنيد. V_F~M سرد نمودن مخلوط را تا $7 \Delta^{\circ} \mathrm{C}$ طى يكك فرآيند جريان داتم در فشار ثابت محاسسه كنبد. مخلوطى بهنسبتهاى مولى مساوى از متان \quad V_FVM دما ثابتاز لازم را بهازاى هر كيلوگرم مخلوط محاسبه كنيد

 مى مُود. براي انجام سرمايش با شدت لازم حقدر آب و هوایى ورودى مورد نياز است؟

 كه انتالِى مخلوط تنها تابعى از دماى حباب تر است؛ جند درصد خططا حاصل مىشود؟

برای سرد نمودن هو'ى V_D.M

خارج مىگردد؟
 مقدار كافى بخار Tب جهت ايجاد رطوبت نسبى • ه درصد در مى ماشد. براى سرد نمودن kg اkشلوط تا جقدر آب در اين فرآيند دنع شده است؟

 مشلوط قبل و بعد از فرآيند اشباع جقدر است؟

 انزر V-هfM
 مهاسبب كنيد.

 (الف) روابط كاز ايدهال و (ب) روش شبه بحرانى، مقدار كار داده شده بهسيستم را محاسبه كنيد.

حرارتى راكه بايد از مسخلوط گرفته شود.

 موجود در ظرف تقريباً مشابه نسبتهاى هوا يعنى

 |ستفاده كنيد.
D-DAM حرارتى جريان دائم از

 كه بايد بهازاى هر كيلو گرم جرم مشغلوط تأمين گردرد.

آن تأمين گردرد؟
N_ף FM
 گاز ايدهآل، (ب) تانون جمع نشارها (ج) قانون جهع حجمها و (د) قانون شبهبحرانى يكى

مساسبه كنيل.

 مى گر دد. مقدار حرازتى كه بإبد تهيه گر دد و جرم آب پاشثيده شده را را محاسبه كنيد.

 هـواى خشكك
 آدياباتيك باشد محاسبه كيد.
 اجزا و ثابت گاز را برای مخلوط محاسبه كيندي
 m³ هر يكث از اجزا را محاسبه كيند.
r lit/s

 v_7 $1 M$
 كلى براى حالت نهايى و مقدار انتقال حرارت را محاسبه كيـيد.

 دمايى راكه تقطير آغاز مى گردد محاسبه كنبد.
 محفظه آدياباتيكى شده، آب بهمقدار

رطويت نسبى در جريان خروجى رامحاسبه كنيد. جقدر آب كلاًّ بهازای هر ساعت اضانه
مىشو

V هو أي مییط در Y . . lit/s V_VYM

ـخارج شـده را مساسبه كنيـ.
 الست. رطوبتهاى مخخصوص و نسبى، نقطه شبنـم، نسبتهاى مولى بـخار آبـ و هواي خششك و

حصجم مشخلو ط را بهازاي هر كيلوگرم هوا؟ خخكت مساسبه كنيد. V.VFM است و تنها مخصصوص و فشار كلى مشلو ط را مساسبه كنيل. همحخنين نسبتهاى مولى هوا و بخار اTب را مـحاسبه كنيد.
($A \mathrm{~kg} / \mathrm{s} \quad V_{-} V \Delta M$ نسبى • 9 درصل در يكت دستگاه بريان دائم آدياباتيكت در فشار ثابست منلوط مىشود. $T_{0}=Y \cdot{ }^{\circ} \mathrm{C}$ رطوبت مطلت مشلوط نهايى و برگثشت نايذيرى را برای نرآيند جهت

مـحاسبه كنيل.

 كلى و دما ثابت باقي مىمانل. تركيب مولى مشخلو ط جلديل و نشار نهايى را مـحاسبه كنيل. و COF و V_VVM

 ثابت نگاه داشته مىشود بهظرن اضـافه مىشود. تركيب جرمى مـغلوط جـديد و وزن ملكولى آن و فثـار كلى را مداسبه كنيد.
V_VQM

 هوأى ورودى لازم را مساسبه كنيد. |GW تيروگاهى در زمستان باهوای خارج V.A•M

 رطوبت نــبى • ^ در عهد شارج مى شود. دبى جرمىى آب جبرانى و دبى حجمى عوابى لازم را محاسبه كنيد.

CـOM,

1 Doolittle, J. S.: " Thermodynamics for Engineers, " 2d ed. International Textbook Company, Scranton, Fa., 1964.
2 Obert, E. F.: '`Concepts of Thermodynamics," McGraw-Hill Book Company, New York, 1960. 3 Van Wylen, G. J., and R. E. Sonntag: ' \({ }^{\prime}\) Fundamentals of Classical Thermodynamics," John Wiley \& Sons, Inc., New York, 1865. 4 Hall, N. A., and W. E. Ibele: '`Engineering Thermodynamics,' Prentice-Hall, Ine., Englewood Cliffs, N.J., 1960.
5 Kay, W. B.: Density of Hydrocarbon Gases and Vapors, Ind. Eng. Chem, vol. 28, p. 1014, 1936.

6 Carrier, W. H.: Rational Psychrometric Formulae, Trans. ASME, vol. 33, p. 1005, 1911.

An

ترمود يناميكك شيميا يـى و تعادل

مقدّمه A-1

 شبيايى و ترووينايكث آنارى بورد بحث تراء میديريمر.

A-Y

محصولات' مىنامند. برايى نمونه احتراق كربن شامل واكنش ساده زير است.

$$
\begin{equation*}
\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2} \tag{-1}
\end{equation*}
$$

وقتى كه فر آيند احتزاق شامل سوختن يكت سوخت هيلروكربنى است، معمولأ محصولات هات هاوى

$$
\begin{equation*}
\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \tag{-}
\end{equation*}
$$

 آ
 تعلاد

$$
\begin{equation*}
\mathrm{CH}_{4}+2 \mathrm{O}_{2}+(2)(3.76) \mathrm{N}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+(2)(3.76) \mathrm{N}_{2} \tag{-}
\end{equation*}
$$

مقدار هواى لازم جهت ستوازن كردن طرفين واكنش هواى استوكيومترى ناميده مىشود؛ هرجند

1- Products
2- Stoichiometric coefficient

معادله شيميايى بهصورت زير نوشته مىشود.

$$
\begin{align*}
\mathrm{CH}_{4}+(1.1)(2) \mathrm{O}_{2} & +(1.1)(2)(3.76) \mathrm{N}_{2} \rightarrow \\
\mathrm{CO}_{2} & +2 \mathrm{H}_{2} \mathrm{O}+(0.1)(2) \mathrm{O}_{2}+(1.1)(2)(3.76) \mathrm{N}_{2} \tag{-}
\end{align*}
$$

بهجاي هواي استوكيو ترى الططلاح هواى تثورى ' بهكار برده مى شودد.
 مى موزد از طريق رابطه زير بهدست مىى آيد

$$
\begin{equation*}
\mathrm{C}_{n} \mathrm{H}_{y}+x \mathrm{O}_{2}+3.76 x \mathrm{~N}_{2} \rightarrow a \mathrm{CO}_{2}+b \mathrm{H}_{2} \mathrm{O}+3.76 x \mathrm{~N}_{2} \tag{-}
\end{equation*}
$$

$$
n=a
$$

از موازنه كر بن داريم

$$
y=2 b
$$

و موازنه هيدروزذن نتيجه مىدهد
و نهايتاً از موازنه اكسيزّن نتيجه ميگيريم

$$
\begin{aligned}
& 2 x=2 n+\frac{y}{2} \\
& x=n+\frac{y}{4}
\end{aligned}
$$

در نتيجه موازنه كلى بهصورت زير است

$$
\begin{align*}
& \mathrm{C}_{n} \mathrm{H}_{y}+\left(n+\frac{y}{4}\right) \mathrm{O}_{2}+3.76\left(n+\frac{y}{4}\right) \mathrm{N}_{2} \rightarrow \tag{-}\\
& \quad n \mathrm{CO}_{2}+\left(\frac{y}{2}\right) \mathrm{H}_{2} \mathrm{O}+3.76\left(n+\frac{y}{4}\right) \mathrm{N}_{2}
\end{align*}
$$

بهصورت زير ظاهر گردد.

$$
\begin{equation*}
\mathrm{CH}_{4}+x \mathrm{O}_{2}+3.76 x \mathrm{~N}_{2} \rightarrow a \mathrm{CO}_{2}+b \mathrm{CO}+2 \mathrm{H}_{2} \mathrm{O}+3.76 x \mathrm{~N}_{2} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
2 x=2 a+b+2 \tag{-}
\end{equation*}
$$

برای تعين مولهاى
 آن را بهنسبتهاى استوكيومترى برساند، در آن صـورت بر طبق معادله واكنش زير CO با آكسيرن توكيب مىشود تا CO اضافى تشكيل دهد.

$$
\begin{equation*}
\mathrm{CO}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2} \tag{N-9}
\end{equation*}
$$

واكنشهاى وانعى حتى موقعى كه هواي اضافى هم بهكار برده شود بهعلت وجود عو امل مختلف در
 معمولاً استِياج بهاندازه گيرى تركيب سحصوولات از طريت آزمايش است.

دستثاه أُرسات

شـكل 1 يكت دستگاه ساده أرسات را نمايش مىدهد كه براى تجزيه مصصو لات احتراق به كار میرود. اين دستگاه از يكت بورت اندازهگيرى و سه بیت معرف تشكيل شده كه بهطور متوالى برای جذب دىاككسيد كربن، اكسيزن و منواكسيد كربن موجود در منلوط بهكار مىزوند. در ابتله| نمونهای از دود بهداخل بورت اندازه گيرى برده مىشود. سسس لوله نمونه بردأرى از جريان دود قطع گرديده، نهونه مورد تظر بهداخلز اولين بيت معرف راتده شده دىاكـيديكربن در آن جذب مىشود.

 محصولات ماصل احتراق از بخار آب |شباع شدهاند و روش مذكور بهطريقى انجام مى شود كـه نسبتهاى حجمى محصولات بر مبنايى بهنام مبناى نششكى يعنى بدون در نظر گرفتن بشار آب مو جود به دست مى آيد.
روشهایى كروماتوگرافى گاز و جذ.بى مادون قرمز برايى اندازهگيرى مسصولات احتراق در
مرجع [13] تشريع شدهاند.

حتى موقعى كه براىى يكت فرآيند استراق هواى اضافى در نظر گرفته مى شود بهعلت وتوع ع

 محصو لات باشد. اين موضوع در بحث تعادل شيمئيح در بخشهاى بعدى اين فصل روشن میگردد. يك إرامتر مورد توجه در مسائل عملى احتراق، نسبت هوا بهسوخت مىباشدكه عبارت
است از نسبت هوا بهسوخت در واكنش كتندهما بر مبناى جرمى و يا مولى.

مثال A-1 سوختن اكتان

اكتان

شكل A- A دست大اه أرسات

$$
\mathrm{C}_{8} \mathrm{H}_{18}+12.5 \mathrm{O}_{2}+(3.76)(12.5) \mathrm{N}_{2} \rightarrow 8 \mathrm{CO}_{2}+9 \mathrm{H}_{2} \mathrm{O}+(3.76)(12.5) \mathrm{N}_{2}
$$

برإى • ها د درصـد عوايى تئورى واكنش مربوطه بهصورت زير است :

$$
\mathrm{C}_{8} \mathrm{H}_{18}+(1.5)(12.5) \mathrm{O}_{2}+(1.5)(3.76)(12.5) \mathrm{N}_{2} \rightarrow
$$

$$
8 \mathrm{CO}_{2}+9 \mathrm{H}_{2} \mathrm{O}+(0.5)(12.5) \mathrm{O}_{2}+(1.5)(3.76)(12.5) \mathrm{N}_{2}
$$

بنابراين داريـم
$\mathrm{AF}=\frac{m_{a}}{m_{f}}=\frac{2850}{114}=22.6 \mathrm{lbm}$ سو $\mathrm{a} / \mathrm{lbm}$ ستخ

$$
\begin{aligned}
n_{p} & =8+9+(0.5)(12.5)+(1.5)(3.76)(12.5) \\
& =93.75 \mathrm{~mol} / \mathrm{mol} \text { سو خت }
\end{aligned}
$$

نسبتهاى مولى اجزا اعبارت است از

$$
\begin{aligned}
& x_{\mathrm{CO}_{2}}=\frac{8}{93.75}=8.53 \text { درصحد } \\
& x_{\mathrm{H}_{2} \mathrm{O}}=\frac{9}{93.75}=9.6 \text { درصـد } \\
& x_{\mathrm{O}_{2}}=\frac{6.25}{93.75}=6.66 \text { درصد }
\end{aligned}
$$

$$
\begin{aligned}
& m_{f}=(1)(114)=114 \mathrm{lbm} / \mathrm{mol} \text { سوخت } \\
& m_{a}=(1.5)(12.5)(1+3.76)(28.96)=2850 \mathrm{lbm} / \mathrm{mol} \text { سوخت }
\end{aligned}
$$

$$
\begin{aligned}
& x_{\mathrm{N}_{2}}=\frac{70.5}{93.75}=75.21 \text { درصد } \\
& \text { نقطه شبنم محصوولات عبارت است از دماى اشباع مربوط بهفشار جزئى بخار آب. داريم } \\
& p_{\mathrm{H}_{2} \mathrm{O}}=x_{\mathrm{H}_{2} \mathrm{O}} P_{J} \\
& =(0.096)(14.696)=1.41 \mathrm{psia} \quad(9.72 \mathrm{kPa})
\end{aligned}
$$

دماى اشباع مربوط به / / Fi psia برابر است با

$$
T_{\text {نقظه نُبنم }}=113.5^{\circ} \mathrm{F} \quad\left(45.3^{\circ} \mathrm{C}\right)
$$

 مطلب علت جكيدن تطرات آبب را از انتهاى لوله اگزوز يكى اتومبيل در يكت صبح سرد قبل ازگرّ شدن سيستم اگزوز بيان مىكند.

A-「
در بـخشهایى بعلى مى بردازيم بهانجام مواز نههاى انرزیى بر واكنشهاى شيميايى بهمنظور تعيسن مقدار انرزیى كه ممكن است در يكث فر آيند احتراق آزاد گَددو بالآترين دمايى كه در موقع سوزاندن يكت سوخت با هوا مى توان بدان رسيل و غيره. براى جنين موازنههاى انرزى احتياج بلمعلو ماتى درباره انتاليى مواد مو جو د در واكنش داريم. جلدولهايى برايى مواد گوناگو ن در دست است كه خخواص مورد نظر را بهصورت تابسى از دما ارائه مىدهد. ولى برایى بسط حنين جدولهايى لازم است حالت مبنايى برای اين خواصّ تعريف كنيم كه انرزّى شيميايي داخلى ماده را بهطور دتيق در نظر گيرد. تراز انرزُى مبنا (انرزیى حفر) طورى انتخاب شـده كه انرزیى تمام عناطر در

$$
\begin{align*}
\text { محاسبه مىریردد. برایى تشكيل CO در يكث فرآيند جريان دائم خواهيم داشت } \\
\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2} \tag{-}
\end{align*}
$$

و موازنه انززى

$$
\begin{equation*}
H_{R}+Q \rightarrow H_{P} \tag{A-11}
\end{equation*}
$$

HR انتاليى كل واكنش كتندهها و H_{P} انتاليى كل محصولات است. Q عبارت ازانتقال حرارت لازم براى انجام واكنش مىباشد. با استفاده از تعريف حالت مبنا، . عنمر و $H_{P}=Q$ است. مقدار Qرا مىتوان از طريق آزمايش تعين كرد و برایى CO داراى مقــدار

$$
Q=H_{P}=-169297 \mathrm{Btu} / \mathrm{bm} \mathrm{~mol} \quad(-393766 \mathrm{~kJ} / \mathrm{kg} \mathrm{~mol})
$$

 انتالبى تشكيل نابميده مىشود، و داراى علامت

 توصيف واكنشهايى به كار میرود كه حرارت جذب بيك مكند.
 latm و Y YA K

$$
\begin{equation*}
\bar{h}(T)_{V}=\bar{h}_{f}^{\circ}+\bar{h}_{T}-\bar{h}_{298} \tag{-}
\end{equation*}
$$

1- Exothermie
2- Endothermic

ترازهاى مبنا براى جداول A-Y

 (است.اين اختلان ناهيز اساسأ اثرى بر روى انتاللى يا انرزيهاى داخلى ندارد.

تابع ییبس تشكيل و آنترويى مطلق

ماند انتاليى تشكيل امكان ايجاد تابع گيبس تشكيل
latm مقادير آنترويهاى مطلق براساس تانون سوم ترمودينايكت بحث شده در تسمت A_17 الست كـه
مىگويد:

آنترويف هر ماده خالص در تعادل ترموديناميكى در دماى صفر مطلق براير صفر است .
با بهكار بردن اين مبناى صفر ميتوان بين صفر كلوين و حالت استاندارد

 مولى نوشته شده است، محاسبه مى گردد.

$$
\begin{equation*}
\bar{s}_{2}-\bar{s}_{1}=\bar{\phi}_{2}-\bar{\phi}_{1}-\Re \ln \left(\frac{p_{2}}{p_{1}}\right) \tag{-}
\end{equation*}
$$

برای كازهاى ايدهآل، Tنتروبى مطلق در هر فشار و دمايى مى تواند بهصورت زير نوشته شود

$$
\begin{equation*}
\bar{s}^{\circ}(p, T)=\bar{s}^{\circ}+\bar{\phi}_{T}-\bar{\phi}_{298}-R \ln \left(\frac{p}{p_{0}}\right) \tag{-}
\end{equation*}
$$

(\bar{s}
 بعضـي از تحليلهاي قانـون دوم واكتشهاي احتراقى همان طوركه در تسمتهاى بعدى خواهيم ديل مورد نياز است.

نككه مهمى كه بايل بهخاطر سهرد اين است كه زمانىكه با واكنشهاى احتراقى سر و كار داريم حالات مرجع بايل بهطور دتيق مشـخص گکردد. جداول خـيمه، اين حالات را مــخضص نموده و معادلات تبديل لازم را معين مىكند.
برايى نشان دادن اين كه جچگونه انتاليى تشكيل، آنترويى مطلق و تابع گيبس تشكيل بههم مربوط مىشوند، مى توان

$$
\mathrm{C}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}
$$

Y $\Delta^{\circ} \mathrm{C}, 1$ atm $\mathrm{A}-7$ از جلدول

$$
\begin{array}{ll}
\bar{h}_{f}^{\circ}\left(\mathrm{CO}_{2}\right)=-393520 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~mol} & \bar{s}^{\circ}\left(\mathrm{CO}_{2}\right)=213.64 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~mol} \\
\bar{s}^{\circ}\left(\mathrm{O}_{2}\right)=205.03 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~mol} & \bar{h}_{f}^{\circ}=0 \quad \mathrm{O}_{2}, \mathrm{C}_{\mathrm{N}} \mathrm{r} \\
\bar{s}^{\circ}(\mathrm{C})=5.74 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~mol} &
\end{array}
$$

$$
\begin{aligned}
& \text { دما برابر } \mathrm{C} \\
& \bar{g}_{f}^{\circ}=G_{P}-G_{R}=\sum_{P}\left(\bar{h}_{f}^{\circ}-T s^{\circ}\right)-\sum_{R}\left(\bar{h}_{f}^{\circ}-T s^{\circ}\right) \\
&=393520-0-0-(298.15)(213.64-5.74-20.03) \\
&=-394376 \text { Btu/lbm.mol }
\end{aligned}
$$

 خطاي گرد كردن در مقادير جـدول مىبانثـ.

مثال A_Y مداسبه هوالى اضافى

تجزيه و تحليل محصولات حاصله از احتراق متان (CH $)$ با هواي اتمسفرى انجام گرد يده است. كسر هاى مولى محصولّات خشكث (محصولات باستناى آب) بهصورت زير است :

$$
\begin{array}{ll}
\mathrm{CO}_{Y}=\% q & O_{Y}=\% 1 / \Delta \\
\mathrm{CO}=\% 1 / \gamma & N_{Y}=\% \wedge \wedge / \gamma
\end{array}
$$

درصد هو'ى تئورى الستفاده شده در فرآيند الحتراق را محاسبه كنيل.

حــل : مقدار محصولات خشكت را • . ا مول فرض نمودها معادله احتراق را بر اين اساس موازنه خو|هيم كرد. داريم: $a \mathrm{CH}_{4}+x \mathrm{O}_{2}+3.76 x \mathrm{~N}_{2} \rightarrow 9 \mathrm{CO}_{2}+1.2 \mathrm{CO}+1.5 \mathrm{O}_{2}+b \mathrm{H}_{2} \mathrm{O}+88.3 \mathrm{~N}_{2}$

$$
a=9.0+1.2=10.2
$$

موازنه هيدروزن :

$$
4 a=2 b
$$

$$
b=2 a=20.4
$$

موازنه اكسيرّن :
$2 x=(2)(9.00)+1.2+(2)(1.5)+20.4$
$x=21.3$
موازنه نيتروزن :
$3.76 x=88.3$
$x=23.5$

ترموديناميكـ

دقت كنيد كه دو مقدار x بهدست Tهده يكسان نيست. در عمل معمولاُ نيتروزن موجود در محصولات از

 از

$$
\frac{\mathrm{O}_{2} \text { مولهایت سونت }}{\text { مون }}=\frac{21.3}{10.2}=2.09
$$

 لازم است. بنابراين نتيجه مورد نظر عبارت است از :

$$
\text { = }=\frac{2.09}{2}(100)=104.5 \%
$$

A-TN

انتالِي مولى
 به كار مى

$$
\begin{aligned}
& \bar{h}_{\mathrm{CO}_{2}}=-169290 \mathrm{Btu} / \mathrm{lbm} \cdot \mathrm{~mol} \\
& \bar{h}_{440}=7597.6 \mathrm{Btu} / \mathrm{lbm} \cdot \mathrm{~mol} \quad(17671 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~mol}) \\
& \bar{h}_{77}=4030.2 \mathrm{Btu} / \mathrm{lbm} . \mathrm{mol} \quad(9373.8 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~mol})
\end{aligned}
$$

$$
\begin{aligned}
\bar{h}_{\mathrm{J}} & =-169290+7597.6-4030.2 \\
& =-165722 \mathrm{Btu} / \mathrm{bm} \cdot \mathrm{~mol} \\
& =-385451 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~mol}
\end{aligned}
$$

$$
\mathrm{C}_{2} \mathrm{H}_{6}+3.5 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}(l)
$$

انتقال حرارت از معادنه (A-I 1) برابر است با

$$
Q=H_{P}-H_{R}
$$

$$
\begin{aligned}
H_{R} & =\hbar_{\mathrm{C}_{2} \mathrm{H}_{6}}^{\circ}=-36420 \mathrm{Btu} \\
H_{p} & =2 h^{\circ}{ }_{\mathrm{CO}_{2}}+3 h_{\mathrm{H}_{2} \mathrm{O}}^{\circ} \\
& =2(-169290)+3(-122970) \\
& =-707490 \mathrm{Btu} \quad(-7.464 \times 105 \mathrm{~kJ})
\end{aligned}
$$

بنابراين انتقال حرارت برابر است با

$$
\begin{aligned}
Q & =-707490-(-36420) \\
& \left.=-671070 \mathrm{Btu} / \mathrm{mol} \text { (- } 1.56 \times 10^{6} \mathrm{~kJ} / \mathrm{kgmol}\right)
\end{aligned}
$$

$$
\begin{array}{lr}
Q_{V}=(\Delta U)_{v}=\left(U_{P}-U_{R}\right)_{v}=\bar{u}_{R P} & \text { (ヘ-1 } \Delta) \\
Q_{P}=(\Delta H)_{P}=\left(H_{P}-H_{R}\right)_{P}=\bar{h}_{R P} & : \text { ثق در فشار ثابت }
\end{array}
$$

 نمودن انرزيهاى موجود در معادله مربوطه از علائم اري اصطلاح ارزش حرارتى براى فرآيند احتراق كاربرد وسيعى دارد و مترادفى برایى حرارت واكنش است. وتتىكه يكت سوخت هيدروكربن در فرآيند احتراقتى سـوزانـــده مـى آشود، آب در محصولات بديدار میگردد. بيشترين انرزى آزاد شده بوتعى بهدست میى آيد كه تمام آب مار حاصله در

 رادر دماى دلخواه T مى توان بر حسب

1- Higher heatiny value
2- Lower heating value
 آب مايع در محصولات احتراق ممباشد.

سوخت	لرمول	HHV, Btu/lbm mol	$\mathbf{k J} / \mathbf{k g ~ m o l}$	$\bar{h}_{f g}$ انتاليس تبخير براى سوخت	
				Btu/lbm	kJ/kg mol
هيدرورن	$\mathrm{H}_{Y}(\mathrm{~g})$	- irrar.	- Ynanf.		
كربن	$C(s)$	- 17979.	-rarar.		
منواكسيدكربن	$\mathrm{CO}(\mathrm{g})$	-iriva.	-raraq.		
متان	$\mathrm{CH}_{5}(\mathrm{~g})$	-rar.f.	- 19.48.		
استِلن	$\mathrm{C}_{Y} \mathrm{H}_{Y}(\mathrm{~g})$	-0091\%.	-17497..		
اتيلن	$\mathrm{C}_{Y} \mathrm{H}_{Y}(\mathrm{~g})$	-9.8.1.	- If 1.9y.		
اتان	$\mathrm{C}_{4} \mathrm{H}_{7}(\mathrm{~g})$	-9vi.A.	-10899..		
يرويلن	$\mathrm{C}_{r} \mathrm{H}_{7}(\mathrm{~g})$	- $\lambda \lambda \Delta \Delta \lambda$.	-r.a^d..		
برويان	$\mathrm{C}_{r} \mathrm{H}_{\wedge}(\mathrm{g})$	-900. r .	- Yry....	1FA.	10.7 .
n- بوتان	$\mathrm{C}_{4} \mathrm{H}_{1} .(\mathrm{g})$	- Irrya..	-ravri..	9.9.	1.7.
n-	$\mathrm{C}_{8} \mathrm{H}_{17}(\mathrm{~g})$	- larir..	-rarql..	11r9.	rafl.
n-n هغزان	$\mathrm{C}_{7} \mathrm{H}_{15}(\mathrm{~g})$	-1A.fq..	-FIAFA..	rraqu	mar.
n- هتان	$\mathrm{C}_{4} \mathrm{H}_{19}(\mathrm{~g})$	-r.An...	-fiara..	lovir	rqar.
n- اكتان	$\mathrm{C}_{\wedge} \mathrm{H}_{1 \wedge}(\mathrm{~g})$	_rrvif..	-SDITY..	ivaro	Flfq.
بنزن	$\mathrm{C}_{4} \mathrm{H}_{4}(\mathrm{~g})$	-Ify.r..	-rr.10..	lfabr	rrat.
تولونٌ	$\mathrm{C}_{\checkmark} \mathrm{H}_{\wedge}(\mathrm{g})$	-199Af..	-rafla..	Iviva	ra4y
الكل متِليك	$\mathrm{CH}_{\varphi} \mathrm{OH}(\mathrm{g})$	-ryav..	-vifaf.	19,4Y	rva.
الكل اتيليك	$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{OH}(\mathrm{g})$	- 7 .7ヶA.	-lf.ar..	IAYIT	FYMF.

ابتدا واكنش كنندهها تا r

$$
\bar{h}_{R P_{T}}=H_{4}-H_{1}=\left(H_{4}-H_{3}\right)+\left(H_{3}-H_{2}\right)+\left(H_{2}-H_{1}\right)
$$

اين رابطه را مىتوان بمشكل زير هم نوشت.

$$
\begin{equation*}
\bar{h}_{R P_{T}}=\left(H_{T}-H_{25}\right)_{P}+\bar{h}_{R P_{2 S}}+\left(H_{25}-H_{T}\right)_{R} \tag{-}
\end{equation*}
$$

اگَ دادهماى مربوط بهخاميت برايى اجزاي مختلف واكنش كنندهها و محصولات در دسترس باشد، مقدار
 نيست. مىتوان با استفاده از انتاليهاى تشكيل مستقيمأ محاسبات دلخواه را را انجام داد.

مثال مـه

$$
\bar{h}_{R P_{25}}=-383040 \mathrm{Btu} / \mathrm{bm} \mathrm{~mol}
$$

معادله احترات عبارت است از

$$
\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

 گازه ها تعين میشو توجه عبارت است از :

$$
\begin{aligned}
\left(H_{77}-H_{T}\right)_{R} & =n_{\mathrm{CH}_{4}}\left(\bar{h}_{77}-\bar{h}_{T}\right)_{\mathrm{CH}_{4}}+n_{O_{2}}\left(\bar{h}_{77}-\bar{h}_{T}\right)_{\mathrm{O}_{2}} \\
& =(1)(16)(0.532)(77-440)+(2)(3725.1-6337.9) \\
& =-8315 \mathrm{Btu}
\end{aligned}
$$

$$
\left(H_{T}-H_{77}\right)_{P}=n_{\mathrm{CO}_{2}}\left(\bar{h}_{T}-\bar{h}_{77}\right)_{\mathrm{CO}_{2}}+n_{\mathrm{H}_{2} \mathrm{O}}\left[\bar{h}_{T}(g)-\bar{h}_{77}(l)\right]_{\mathrm{H}_{2} \mathrm{O}}
$$

$$
=(1)(7597.6-4030.2)+(2)(18)(1260.3-45.02)
$$

$$
=47317 \mathrm{Btu} \quad(49922 \mathrm{~kJ})
$$

 را برأى مى آوريم

$$
h_{R P_{T}}=47317+(-383040)+(-8315)
$$

ترموديناميكـ
DYF

$$
h_{R P_{T}}=-344038 \mathrm{Btu} / \mathrm{bm} \mathrm{~mol} \text { سو }
$$

مثال

انتالِيى احترات را برایى متان گازى در K ، ، ه مساسبه كنيد.

حـــل : فرض ميكنبم كه Tبـ موجود در مسصولات در فاز بشخار است. ارزش حرارتى بالايى براى

$$
\begin{aligned}
& \bar{h}_{R P_{298}}=-890360 \mathrm{~kJ} / \mathrm{kgmol} \\
& \\
& \mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

 نعين مىشود. سعادله (A_IV) را برای محاسبه انتالِّى احتراق به كار خواهيم گرفت. كميتهاى مورد نظر عبارت است از :

$$
\begin{aligned}
\left(H_{298}-H_{T}\right)_{R} & =n_{\mathrm{CH}_{4}}\left(\bar{h}_{298}-\bar{h}_{T}\right)_{\mathrm{CH}_{4}}+n_{\mathrm{O}_{2}}\left(\bar{h}_{298}-\bar{h}_{T}\right)_{\mathrm{O}_{2}} \\
& =(1)(16)(2.227)(298-500)+(2)(-6088) \\
& =-19374 \mathrm{~kJ} / \mathrm{kg} \mathrm{~mol} \text { min } \\
\left(H_{T}-H_{298}\right)_{P} & \left.=n_{\mathrm{CO}_{2}}\left(h_{T}-\bar{h}_{298}\right)_{\mathrm{CO}_{2}}+n_{\mathrm{H}_{2} \mathrm{O}} h_{T}(g)-\bar{h}_{298}(g)+\bar{h}_{f_{298}}\right]_{\mathrm{H}_{2} \mathrm{O}} \\
& =(1)(8314)+(2)[6920+(18)(2442.3)] \\
& =110077 \mathrm{~kJ} / \mathrm{kg} \text { mol } \quad(47325 \mathrm{Btu} / \mathrm{lbm} \mathrm{~mol})
\end{aligned}
$$

دتت كنيد كه برای انتالیى Tب در Y A K K انتاليى مايع اشباع در نظر گرنته شده زيرا ارزش حرارتى

بالا يى را بـرایى بهدست مى آوريم

$$
\begin{aligned}
\bar{h}_{R P_{T}} & =110077+(-890360)+(-19374) \\
& =-799657 \mathrm{~kJ} / \mathrm{kg} \mathrm{~mol} \text { (}-343791 \mathrm{Btu} / \mathrm{lbm} \mathrm{~mol})
\end{aligned}
$$

A-T مثل

 را برايى مخلو ط مساسبه كنيد. همبحنين ارزش حرار تى برایى اين سوخت را هنگًامى كه با هواى تتورى در Y $\Delta^{\text {r }}$ ºC

حـــل : برأى يكت مول منخلوط، جرم و نـبتت جرمى هريكك از ابجزا برابر است با نـبـت بولمى

$$
m\left(\mathrm{CH}_{4}\right)=(0.35)(16)=5.6
$$

$$
0.123
$$

$$
m\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)=(0.25)(44)=11 \quad 0.242
$$

$$
m\left(\mathrm{C}_{5} \mathrm{H}_{12}\right)=\underset{\text { مجـو }}{(0.4)(72)}=\frac{28.8}{45.4} \quad \frac{0.635}{1.000}
$$

وزن ملكولمى مخلوط برابر است با

$$
\begin{equation*}
M=\frac{45.4}{1.0}=45.4 \tag{a}
\end{equation*}
$$

بنابراين ثابت گاز برابر است با

$$
\begin{equation*}
R=\frac{\Re}{M}=\frac{8314.41}{45.4}=183.14 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K} \tag{b}
\end{equation*}
$$

برايى مساسبه ارزش حرازتى ابتدا معادله احترات زابنا مىكيم. با در نظر گُرفتن يكت مول سو ختـ، معادله

$$
\begin{align*}
& \text { بهصورت زير در خواهد آمل. } \\
& 0.35 \mathrm{CH}_{4}+0.25 \mathrm{C}_{3} \mathrm{H}_{8}+0.4 \mathrm{C}_{5} \mathrm{H}_{12}+x \mathrm{O}_{2}+3.76 x \mathrm{~N}_{2} \rightarrow \\
& a \mathrm{CO}_{2}+b \mathrm{H}_{2} \mathrm{O}+3.76 x \mathrm{~N}_{2} \tag{c}\\
& \text { موازنه كربن نتيجهه مىدهد } \\
& 0.35+(0.25)(3)+(0.4)(5)=a=3.10 \tag{d}\\
& \text { از موازنه هيدروزن بهد ست مى آيل } \\
& (0.35)(4)+(0.25)(8)+(0.4)(12)=2 b \tag{e}\\
& b=4.1 \\
& \text { نهايتأ، از موازنه اكسيزِن مىتوان نوشت } \\
& 2 x=2 a+b=(2)(3.1)+4.1 \tag{f}\\
& x=5.15 \\
& \text { از رابطه زير ارزش سرازتى بهدست مى آيل } \\
& Q_{P}=H_{P}-H_{R} \tag{g}
\end{align*}
$$

دست Tملمه از جدول 7 -
$\mathrm{CH}_{4}: \bar{h}_{f}^{\circ}=-74850 \mathrm{~kJ} / \mathrm{kg} \mathrm{mol}$
$\mathrm{C}_{3} \mathrm{H}_{8}: \bar{h}_{f}^{\circ}=-103850 \mathrm{~kJ} / \mathrm{kg} \mathrm{mol}$
$\mathrm{C}_{2} \mathrm{H}_{12}: \bar{h}^{\circ}=-146440 \mathrm{~kJ} / \mathrm{kg} \mathrm{mol}$
$\mathrm{O}_{2}: \bar{h}_{f}^{\circ}=0$
$\mathrm{N}_{2}: \bar{h}_{f}^{\circ}=0$

$$
\begin{aligned}
& \mathrm{CO}_{2}: \bar{h}_{f}^{\mathrm{o}}=-393520 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~mol} \\
& \mathrm{H}_{2} \mathrm{O}(\mathrm{l}): \bar{h}_{f}^{\mathrm{o}}=-285830 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~mol}
\end{aligned}
$$

سبس مىتوان انتاليِهاى مسصولات و واكنش كنندهها را بهدست آورد

$$
\begin{align*}
H_{R} & =(0.35)(-74850)+(0.25)(-103850)+(0.4)(-146440) \\
& =-110736 \mathrm{~kJ} / \mathrm{mol} \text { سونخت } \tag{h}
\end{align*}
$$

$$
\begin{aligned}
H_{P} & =(3.1)(-393520)+(4.1)(-285830) \\
& =-2391815 \mathrm{~kJ} / \mathrm{mol} \text { سوخت }
\end{aligned}
$$

' A_Y

فرآيند استراق نشان داده شده در شكل A_ را در نظر بگیيريد. اگكر اين فرآيند بـهطور
 موردى تهام حرارت واكنش بهانزرّى دانلى تبديل شده و بهشكل دماى بالايى در مهصولات استراق آشكار مىتردد. معسولأ فرآيند استراق برایى دماهاى مورد بحث در بيشتر واكنشها بهسمت تكامل يسنرنته و بايد براى نعيين دماى نهايى، معادلات تعادل شيميايى به كار گرئته شود. جهت شحاسبه دماى شعله Tدياباتيكت يكث روش تكرارى مسصولات و انتاليههاى اجزاى تشكيل دهندهشان بايد بهخدمت گُّنه شود. مشال زير جنين روشى را نشان مىدهد.

1- Adiabatic flame temperature

2- Iterative procedure

$$
\begin{align*}
& \text { ارزش حرازتى با جايگزينى مقادير در معادله (g) بهدست مى Tيد } \\
& Q=-2391815-(-110736) \tag{j}\\
& \text { = }
\end{align*}
$$

مثال A-Y محاسبه دماى شعله آدياباتيك

 حـــل : معادله احتراق برایى اين واكثش عبارت است از $\mathrm{C}_{8} \mathrm{H}_{18}(l)+(2)(12.5) \mathrm{O}_{2}+(2)(12.5)(37.6) \mathrm{N}_{2} \rightarrow 8 \mathrm{CO}_{2}+9 \mathrm{H}_{2} \mathrm{O}$

$$
+(2)(12.5)(3.76) \mathrm{N}_{2}+(12.5) \mathrm{O}_{2}
$$

شكل A-r هر Tـينداحتراق آدياباتيك

> جون فر آيند بهصورت آدياباتيكك است، بايد داشته باثشـم

$$
\begin{equation*}
H_{R}=H_{P} \tag{a}
\end{equation*}
$$

دماى نهايى محصولات از طريت يكت روش تكرارى عنوان شده در زير بهدست مى آيد. انتالِى كل

 ا اراثه گرديده است. لذا التالجى در هالت مايع عبارت خواهد بود از $H_{R}=\bar{h}_{\mathrm{C}_{8} \mathrm{H}_{19}}=-89680-17835=-107515 \mathrm{Btu} / \mathrm{mol}$ سوخت

$$
\begin{aligned}
H_{P}= & 8\left(\bar{h}^{\circ}+\bar{h}_{T}-\bar{h}_{537}\right)_{\mathrm{CO}_{2}} \\
& +9\left(\bar{h}^{\circ}+\bar{h}_{T}-\bar{h}_{537}\right)_{\mathrm{H}_{2} \mathrm{O}} \\
& +94\left(\bar{h}^{\circ}+\bar{h}_{T}-\bar{h}_{537}\right)_{\mathrm{N}_{2}} \\
& +12.5\left(\bar{h}_{T}-\bar{h}_{537}\right)_{\mathrm{O}_{2}} \\
= & 8\left(-169290+\bar{h}_{\mathrm{TCO}_{2}}-4030\right) \\
& +9\left(-104040+\bar{h}_{T \mathrm{H}_{2} \mathrm{O}}-4268\right) \\
& +94\left(\bar{h}_{T}-3730\right)_{\mathrm{N}_{2}}+12.5\left(\bar{h}_{T}-3745\right)_{\mathrm{O}_{2}}
\end{aligned}
$$

هال طرف معادله يكى شود. تكرارها بهصورت زير است :

$$
\begin{aligned}
T=3000^{\circ} \mathrm{R} \quad H_{P}= & 8(-173320+34806) \\
& +9(-108308+28386) \\
& +94(22761-3730) \\
& +12.5(23817-3725) \\
= & +310000
\end{aligned}
$$

 آزمايش مىكنيم :

$$
\begin{aligned}
T=2000^{\circ} \mathrm{R} \quad H_{P}= & 8(-173320+21018) \\
& +9(-108308+17439) \\
& +94(14534-3730) \\
& +12.5(15164-3725)=-877673
\end{aligned}
$$

اين مقدار خيلىيليمن است لذابايكت ميانيابى مقدارمتوسطى بين دومقداربهدست Tمدمراتهربه ممكنيم.

$$
T=2600^{\circ} \mathrm{R} \quad H_{P}=8(-173320+29187)
$$

$$
\begin{aligned}
& +9(-108308+23869) \\
& +94(19415-3730) \\
& +12.5(20311-3725)=-231000
\end{aligned}
$$

اين مقدار هنوز هم خيلى نايِن است اما از يكث ميان يابى سريع نتيجه مىگيريمكه

$$
T=2700 \mathrm{R} \quad(1500 \mathrm{~K})
$$

(بهخوبى مطابقت مىكند.
لازم به تذكر استكه در عمل، رسيدن بهـهنين دمايى غير ممكن است زيرا مسصولات در اين
 بحتـ ترار مىدهد.

مثال A_YM محاسبه دماى شعله Tدياباتيك

Y A A K د Y Y Y . . د
حـــل : معادله احترات برايى اين واكنش عبارت است از

$$
\begin{aligned}
& \mathrm{C}_{8} \mathrm{H}_{18}(l)+(2)(12.5) \mathrm{O}_{2}+(2)(12.5)(3.76) \mathrm{N}_{2} \rightarrow \\
& 8 \mathrm{CO}_{2}+9 \mathrm{H}_{2} \mathrm{O} \\
&+(2)(12.5)(3.76) \mathrm{N}_{2}+(12.5) \mathrm{O}_{2}
\end{aligned}
$$

جون فر Tيند بهصورت Tدياباتيكت است، بايد داشته باشيم

$$
\begin{equation*}
H_{R}=H_{P} \tag{a}
\end{equation*}
$$

دماى نهايى مسصـولات از طريق يكت روش تكرازى عنوان شده در زير بهدست مى آيد. انتالِى كل

$$
H_{R}=\bar{h}_{\mathrm{C}_{8} \mathrm{H}_{18}}^{0}=-208450-41460=-249910 \mathrm{~kJ} / \mathrm{kg} \mathrm{~mol} \text { سوخت }
$$

و رابطه انتالِى محصـولات بهصورت زير است

$$
\begin{aligned}
H_{P}= & 8\left(\bar{h}^{\circ}+\bar{h}_{T}-\bar{h}_{298}\right)_{\mathrm{CO}_{2}} \\
& +9\left(\bar{h}^{\circ}+\bar{h}_{T}-\bar{h}_{298}\right)_{\mathrm{H}_{2} \mathrm{O}} \\
& +94\left(\bar{h}^{\circ}+\bar{h}_{T}-\bar{h}_{298}\right)_{\mathrm{N}_{2}} \\
& +12.5\left(\bar{h}_{T}-\bar{h}_{298}\right)_{\mathrm{O}_{2}} \\
= & 8\left[-393520+\left(\bar{h}_{T}-\bar{h}_{298}\right)_{\mathrm{CO}_{2}}\right] \\
& +9\left[-241820+\left(\bar{h}_{T}-\bar{h}_{298}\right)_{\mathrm{H}_{2} \mathrm{O}}\right] \\
& +94\left(\bar{h}_{T}-\bar{h}_{298}\right)_{\mathrm{N}_{2}}+12.5\left(\bar{h}_{T}-\bar{h}_{298}\right)_{\mathrm{O}_{2}}
\end{aligned}
$$

حالا H_{R} و را در معادله (a) جايگزين نموده مقادير مختلنى براى T T فرض مى كينيم تا وتتى كه دو طرن معادله يكى شود. تكرارها بهصورت زير است :

$$
T=1700 \mathrm{~K} \quad H_{P}=8(-393520+73492)
$$

اين مقدار خيلى بالاست خجون • . $H_{R}=$ - YPQ . آزمايش مىكنيم :

$$
\begin{aligned}
T=1100 \mathrm{~K} \quad H_{P}= & 8(-393520+38894) \\
& +9(-241820+30167)
\end{aligned}
$$

$$
\begin{aligned}
& +94(24757)+12.5(26217) \\
H_{P}= & -2087015
\end{aligned}
$$

اين مقلار خيلى ثايِين است لذا از طريت ميان يابى مقدار متوسطى را بين اين دو تعيين مىكنـم:

$$
T=1400 \mathrm{~K} \quad H_{P}=8(-393520+55907)
$$

$$
+9(-241820+43447)
$$

$$
+94(34936)+12.5(36966)
$$

$$
=-740202
$$

اين مقدار هنوز هـم خيلى ثايِن است، اما از يكن ميان يابى سريع نتيجه مىگيريمكه

$$
T=1506 \mathrm{~K} \quad\left(2712^{\circ} \mathrm{R}\right)
$$

 (I • Vff Y Btu//bm.mol)
لازم بهتذكر استكه در عمل رسيدن بهاهنين دمايى غير ممكن است زيرا محصولات در اين
 بحتث قرار مىدهد.
مقادير دماهاى شعله آدياباتبكك با در نظر گرفتن تجزيه در جدول A_Y ارائه شده است.
 و مخلوط با نسبت صحيح شيميايى

سوخت	اكسيرّن		هو1	
	K	${ }^{\text {o }}$ R	K	${ }^{\circ} \mathrm{R}$
H_{2}	3079	5542	2384	4291
CH_{2}	3054	5497	2227	4009
$\mathrm{C}_{8} \mathrm{H}_{18}$	3108	5594	2277	4098

جدول بندى انتالمهاى مصصولات برایى احتراق هيدروكربن عمومى F. . استفاده از اين جداول مى تواند سرعت محاسبات را بهمقدار تابل ملاحظهاى انزايش دهد. بايلد در نظر
 و فرض مىشو دكه سوخت در حالتگازى باشلد. آگرجه أين جداول برایى هيدروكربن (CHY) توسعه

مثال A-A

A_V جدول محصولات الحتراق عمومى را برایى محاسبه دماى شعله آدياباتيكت اكثان مثال

$$
\begin{equation*}
H_{R}=-249910 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~mol}=-107442 \mathrm{Btu} / \mathrm{lbm} \cdot \mathrm{~mol} \tag{a}
\end{equation*}
$$

 A-1^

$$
\begin{equation*}
H_{P}=H_{P}^{\circ}+n_{P}\left[\bar{h}_{P}(T)-\bar{h}_{P}(537)\right] \tag{b}
\end{equation*}
$$

$$
\begin{align*}
H_{P} & =\left(n \bar{h}_{f}^{\circ}\right)_{\mathrm{CO}_{2}}+\left(n \bar{h}_{f}^{\circ}\right)_{\mathrm{H}_{2} \mathrm{O}} \tag{c}\\
& =(8)(-169300)+(9)(-104040)=-2290760 \mathrm{Btu}
\end{align*}
$$

$$
\begin{equation*}
n_{P}=8+9+94+12.5=123.5 \mathrm{~mol} / \mathrm{mol} \text { سوخت } \tag{d}
\end{equation*}
$$

و از جدول A-1A برايى . . . درمد هوای اضافى

$$
\bar{h}_{P}(537)=3774.9 \mathrm{Btu} / \mathrm{bm} \mathrm{~mol}
$$

با جايگزينى مقادير عددى در معادله (b) نتيجه ممكيريم

$$
\bar{h}_{P}(T)=21454 \mathrm{Btu} / \mathrm{lbm} \cdot \mathrm{~mol}
$$

و از جدول A-1 A دماكى مربوطه برایى . . . ب درمـد مواى اضافى برابر است ب!

$$
T_{P}=2718^{\circ} \mathrm{R}=1510 \mathrm{~K}
$$

 محمولات احتراق مىتواند در جايىكه سهاسبات سريع مطلوب است بهكار گر نته شود.

مثال

 (r $\left.{ }^{\circ}{ }^{\circ} \mathrm{C}\right)$

حـــل : مسادله عمومى واكنش يكت هيدروكربن بهمورت (CH (CH با . . جنين است

$$
\begin{align*}
\left(\mathrm{CH}_{2}\right)_{n}+3 x \mathrm{O}_{2}+3.76(3 x) \mathrm{N}_{2} \rightarrow a \mathrm{CO}_{2}+ & b \mathrm{H}_{2} \mathrm{O} \\
& +2 x \mathrm{O}_{2}+3.76(3 x) \mathrm{N}_{2} \tag{a}
\end{align*}
$$

$$
\begin{aligned}
& \text { تعداد كل مولهاى میعبو لات برابر است با } \\
& n_{P}=n+n+2\left(\frac{3 n}{2}\right)+(3.76)(3)\left(\frac{3 n}{2}\right)=21.92 n \frac{\mathrm{~mol}}{\mathrm{~mol} \text { مسوغوتات }}
\end{aligned}
$$

 انتالِى تشكيل برويـلن مىباشد يا

$$
H_{R}=\bar{h}^{\circ}\left(\mathrm{C}_{3} \mathrm{H}_{6}\right)=8790 \mathrm{Btu} / \mathrm{lbm} \cdot \mathrm{~mol}
$$

$$
\begin{aligned}
H_{P}^{\circ} & =\left(n \bar{h}_{\rho}^{\circ}\right)_{\mathrm{CO}_{2}}+\left(n \bar{\hbar}_{f}^{\circ}\right)_{\mathrm{H}_{2} \mathrm{O}} \\
& =(3)(-169290)+(3)(-104040)=-819990 \mathrm{Btu} / \mathrm{mol}(c)
\end{aligned}
$$

جزه ديگر انتالِي را لمى توان از جدول A-IA براى . . جرصد هوای اخانى بهدست آورد. بنابراين انتاللي كل مسصو لات برابر است با

$$
\begin{align*}
H_{P} & =H_{p 0}^{\circ}+H_{P}(T)-H_{P}(537) \\
& =H_{P}^{\circ}+n_{P}\left[\bar{h}_{P}(T)-\bar{h}_{P}(537)\right] \tag{d}
\end{align*}
$$

$H_{P}=H_{R}=8790 \mathrm{Btu} / \mathrm{mol}$ سوmت
از جدول A- A A داريم

$$
\vec{h}_{P}(537)=3744.9 \mathrm{Btu} / \mathrm{lbm} \mathrm{~mol}
$$

با بجايگزينى مقادير عددى در معادله (d) داريم

$$
8790=-819990+(65.76)\left[\hbar_{P}(T)-3774.9\right]
$$

$$
\begin{aligned}
& \bar{h}_{P}(T)=16378 \mathrm{Btu} / \mathrm{lbm} . \mathrm{mol} \\
& \text { با مراجعه دوباره بهجدول A-1 A دماى مربوط بهمحصولات را بهدست مى آوريم } \\
& T_{P}=2140^{\circ} \mathrm{R}
\end{aligned}
$$

مثال A-QM برتشت ناهذيرى در مشعل

 شود). جون فرآيند آدياباتيكت است داريم

$$
\begin{equation*}
H_{R}=H_{P} \tag{a}
\end{equation*}
$$

$$
\begin{align*}
& \text { واكنش احتراق برايى يكت بول سوخت بهصورت زير نوشته مىشود : } \\
& \mathrm{C}_{8} \mathrm{H}_{18}+x \mathrm{O}_{2}+3.76 x \mathrm{~N}_{2} \rightarrow a \mathrm{CO}_{2}+b \mathrm{H}_{2} \mathrm{O}+c \mathrm{O}_{2}+3.76 x \mathrm{~N}_{2} \tag{b}
\end{align*}
$$

هالا x محهول است زيرانـىددانيمجممقدارهواي اضافى مصرذ شدهاست. ازموازنهمولى نتيجهى شود
C: $\quad 8=a$
H: $\quad 18=2 b \quad b=9$
O: $\quad 2 x=2 a+b+2 c \quad x=12.5+c$
$c=x-12.5=65.82$

جهت تعيين نسبت هوا بسووخت AF معادله (a) موازنه انرزّى رابا معادله (b) ادغام ميكنيم تا xرا به

$$
\begin{align*}
& \text { حست آوريم و در نتيجه نسبت هوا بهسوخت بدست مي Tيد. برايى واكنش كتندهها : } \\
& H_{R}=(1) \bar{h}_{f \mathrm{C}_{8} \mathrm{H}_{18}}+(4.76 x)(28.97)\left(h_{710}-h_{298}\right)_{1} \\
& \text { از جداول A- A- IVM و A بهدت مي آيد. } \\
& H_{R}=(1)(-208450)+(4.76 x)(28.97)(713.27-298.19) \\
& =-208450+57239 x \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~mol} \text { سو خت } \tag{c}
\end{align*}
$$

YAAK براي محصو لات در

$$
\begin{aligned}
& H_{P}=(8)\left(\bar{h}_{f}^{\circ}+\bar{h}_{1100}-\bar{h}_{298}\right)_{\mathrm{CO}_{2}}+(9)\left(\bar{h}_{f}^{\circ}+\bar{h}_{1100}-\bar{h}_{298}\right)_{\mathrm{H}_{2} \mathrm{O}} \\
& +(x-12.5)\left(\bar{h}_{1100}-\bar{h}_{298}\right)_{\mathrm{O}_{2}}+(3.76 x)\left(\bar{h}_{1100}-\bar{h}_{298}\right)_{\mathrm{N}_{2}}
\end{aligned}
$$

$$
\begin{align*}
& H_{P}=(8)(-393520+38894)+(9)(-241820+30167) \\
&+(x-12.5)(26217)+(3.76 x)(24757) \tag{d}
\end{align*}
$$

$=-5069598+119303 x \mathbf{k J}$

با معادل ترار دادن (c) و (d) نتيجه ميگيريم
$-208450+57239 x=-5069598+119303 x$
$x=78.32$
$c=x-12.5=65.82$

برایى احـتراق بـا نــبت صـحيح شيميايى درصد

$$
\mathrm{AF}=\frac{(4.76 x)(28.97)}{114}=94.74 \frac{\mathrm{~kg} / \mathrm{m}}{\mathrm{~kg} \mathrm{~m} \mathrm{~m}}
$$

تغير در قابليت كار دهى برابر است با

$$
\begin{equation*}
\Delta B=B_{P}-B_{R}=H_{P}-H_{R}-T_{0}\left(S_{P}-S_{R}\right) \tag{e}
\end{equation*}
$$

$$
\text { |مام ام } H_{P}=\text { در نتيجه }
$$

$$
\begin{equation*}
\Delta B=-T_{0}\left(S_{P}-S_{R}\right) \tag{e}
\end{equation*}
$$

 تغير دهيم. رنتار كاز را ايدهآلل فرض مىكنيم. برايى واكنش كنتدهها

$$
\begin{aligned}
\mathrm{C}_{8} \mathrm{H}_{18}: \bar{s} & =\bar{s}^{0}-\Re \ln \left(\frac{4.0}{1.0}\right) \\
& =466.73-(8.314) \ln (4)=455.2 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~mol} \cdot \mathrm{~K} \\
\mathrm{I}: \quad \bar{s} & =(28.97)\left[\phi_{710}-(0.287) \ln (4)+4.1869\right] \\
& =(28.97)[3.4014-(0.287) \ln (4)+4.1869] \\
& =208.31 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~mol} . \mathrm{K}
\end{aligned}
$$

$$
S_{R}=(1)(455.2)+(4.76)(78.32)(208.31)
$$

$$
\begin{equation*}
=78113 \mathrm{~kJ} / \mathrm{K} \tag{f}
\end{equation*}
$$

جهت تعيين آنترويى يحصولات ابتداكسرهاى مولمى و نمـارهاى جز ئم اجزارابابهدست مى آوريم. تعداد كل مولهاى سحصولات برابر است با

$$
\begin{equation*}
n_{P}=a+b+c+3.76 x=377.3 \tag{g}
\end{equation*}
$$

كـرهاى مولمى برابر مقادير زير است

$$
\begin{array}{ll}
x_{\mathrm{CO}_{2}}=\frac{8}{377.3}=0.0212 & x_{\mathrm{O}_{2}}=\frac{65.82}{377.3}=0.17445 \\
x_{\mathrm{H}_{2} \mathrm{O}}=\frac{9}{377.3}=0.02385 & x_{\mathrm{N}_{2}}=\frac{294.48}{377.3}=0.78049
\end{array}
$$

ara
نصل A - ترمود يناميكى شيهياعى و تعادل

 بنابراين از رابطه زير استفاده مىكنيم :

$$
\vec{s}=\bar{s}(ج د)-\Re \ln \frac{p}{p_{\text {ref }}}
$$

|l • . K بنابراين برای محصولات در

$$
\begin{aligned}
\mathrm{CO}_{2}: \bar{s} & =274.55-8.314 \ln \left[\frac{(4)(0.10132)(0.0212)}{0.1}\right] \\
& =294.96 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~mol} \cdot \mathrm{~K}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{H}_{2} \mathrm{O}: \bar{s} & =236.694-8.314 \ln \left[\frac{(4)(0.10132)(0.02385)}{0.1}\right] \\
& =256.12 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~mol} . \mathrm{K}
\end{aligned}
$$

$$
\mathrm{O}_{2}: \bar{s}=246.922-8.314 \ln \left[\frac{(4)(0.10132)(0.17445)}{0.1}\right]
$$

$$
=249.8 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~mol} . \mathrm{K}
$$

$$
\begin{aligned}
\mathrm{N}_{2}: \bar{s} & =231.302-8.314 \ln \left[\frac{(4)(0.10132)(0.78049)}{0.1}\right] \\
& =221.73 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~mol} . \mathrm{K}
\end{aligned}
$$

بس Tآترويى كل محصولات برابر است ب!

$$
\begin{aligned}
S_{P} & =S_{\mathrm{CO}_{2}}+S_{\mathrm{H}_{2} \mathrm{O}}+S_{\mathrm{O}_{2}}+S_{\mathrm{N}_{2}} \\
& =(8)(294.96)+(9)(256.12)+(65.82)(249.8)+(294.48)(221.73) \\
& =86402 \mathrm{~kJ} / \mathrm{K}
\end{aligned}
$$

سيس از معادله (e)

$$
\Delta B=-(298)(86402-78113)=-2470122 \mathrm{~kJ}
$$

كار هداكثر خروجى برابر منفى اين مقدار است يا

$$
\dot{W}_{\max }=2470122 \mathrm{~kJ}
$$

$$
\dot{I}=\frac{2470122}{10914}=226.31 \mathrm{~kJ} / \mathrm{kg} \text { واكنش كندهها }
$$

مثال • 1-1 بركشتنآديرى در واكنش احتراق

حـــل : معادله احتراق تتورى متان عبارت است از

$$
\mathrm{CH}_{4}+2 \mathrm{O}_{2}+(2)(3.76) \mathrm{N}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+(2)(3.76) \mathrm{N}_{2}
$$

انتاليى واكنش كنتدهها براى mol 1 متان برابر است ب!

$$
\begin{equation*}
H_{R}=\bar{h}_{\mathrm{CH}_{4}}^{\circ}=-32210 \mathrm{Btu}(-33981 \mathrm{~kJ}) \tag{a}
\end{equation*}
$$

$$
\begin{aligned}
& \text { برايى يكت مون سوخت جرم واكنش كندهها برابر است با }
\end{aligned}
$$

$$
\begin{aligned}
& \text { بنابراين جواب ديگَر برایى برگثت نابذيرى برابر خواهد بود با }
\end{aligned}
$$

$$
\begin{aligned}
& \text { كار واتعى خروجى برابر صفر است در نتيجه برگثـت نابذيرى برابر است با } \\
& \dot{I}=\dot{W}_{\text {max }}-\dot{W}_{a c t}=2470122 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~mol} \text { سوخت }
\end{aligned}
$$

$$
\begin{aligned}
H_{P}= & H_{\mathrm{CO}_{2}}+H_{\mathrm{H}_{2} \mathrm{O}}+H_{\mathrm{N}_{2}} \\
= & (1)[-169290+6552.9-403.2]_{\mathrm{CO}_{2}} \\
& \quad+(2)[-104040+6396.9-4258.3]_{\mathrm{H}_{2} \mathrm{O}} \\
& \quad+(7.52)[0+5564.4-3729.5]_{\mathrm{N}_{2}} \\
= & -166767-203803+13798 \\
= & -356771 \mathrm{Btu} \quad(-376390 \mathrm{~kJ})
\end{aligned}
$$

بنابراين حرأرت آزاد شده برابر است با

$$
\begin{align*}
Q=H_{R}-H_{P} & =324562 \mathrm{Btu} / \mathrm{lbm} \mathrm{~mol} \text { سوخت }
\end{align*}
$$

جهت مساسبه برگّت ناينيرى بايلد تابع تابليت كاردغى براى جريانات ورودى و خروجى را مساسبه نمايِيم، يعنى بايد تعيين كنيم

$$
\begin{equation*}
b=h-T_{0} s \tag{d}
\end{equation*}
$$

كه انتاليى شامل انرزیى تشكيل است. آنترويـها بايل از رابطه زير مساسبه شود

$$
\begin{equation*}
\bar{s}=\bar{s}^{o}-\Re \ln \frac{p}{p_{r e f}} \tag{e}
\end{equation*}
$$

نيُار مرجع براثى مقادير آنتروبی متان برابر است با

$$
\bar{s}_{\mathrm{CH}_{4}}=\bar{s}\left(77^{\circ} \mathrm{F}, د\right)=44.5 \mathrm{Btu} / \mathrm{lbm} \cdot \mathrm{~mol} .{ }^{\circ} \mathrm{R}
$$

آنترويى هوا را مى توان از كسرهاى مولى اككيزن و نيتروزن و آنتروبيهاى مرجع مربوطه مساسبه كرد. براثى يكك مول هوا داريم

$$
x_{\mathrm{O}_{2}}=\frac{1}{4.76}=0.21 \quad x_{\mathrm{N}_{2}}=\frac{3.76}{4.76}=0.79
$$

, آنترويى در $ا$ با استفاده از معادله (e

$$
\begin{aligned}
\bar{s} & =0.21 \bar{s}_{\mathrm{O}_{2}}+0.79 \bar{s}_{\mathrm{N}_{2}} \\
& =0.21(48.982-1.986 \ln 0.21)+0.79(45.743-1.986 \ln 0.79) \\
& =47.444 \mathrm{Btu} / \mathrm{bm} . \mathrm{mol} .{ }^{\circ} \mathrm{R}
\end{aligned}
$$

 نشار جز ئى بر حسب كسر هاى مولى محاسبه مىشود. تعداد كل مولهاى يسصولات برابر است با

$$
n_{J}=1+2+7.52=10.52
$$

بنابراين كسر هاى بولى برابر است با

$$
\begin{aligned}
& x_{\mathrm{CO}_{2}}=\frac{1}{10.52}=0.0951 \\
& x_{\mathrm{H}_{2} \mathrm{O}}=\frac{2}{10.52}=0.1901 \\
& x_{\mathrm{N}_{2}}=\frac{7.52}{10.52}=0.7148
\end{aligned}
$$

 مهاسبه مىشود.

$$
\begin{array}{rlrl}
\mathrm{CO}_{2}: & \bar{s} & =54.839-1.986 \ln 0.0951 & =59.512 \mathrm{Btu} / \mathrm{lbm} \cdot \mathrm{~mol} .{ }^{\circ} \mathrm{R} \\
\mathrm{H}_{2} \mathrm{O}: & \bar{s} & =48.316-1.986 \ln 0.1901=51.613 \\
\mathrm{~N}_{2}: & \bar{s} & =48.552-1.986 \ln 0.7148=49.219
\end{array}
$$

هال مى توان توابع تابليت كار دمى براى جريانهاى مختلف واكنش كنندهها و سحصولات را تعيِن نمود.
واكنش كنندهها
$\mathrm{CH}_{4}: \quad(1)\left(h-T_{0} \bar{s}\right) \quad=1[-32210-(537)(44.5)]$

$$
\begin{aligned}
\text { هوا: } \quad(2)(4.76)\left(h-T_{0} s\right) & =9.52[0-(537)(47.444)] \\
& =-242545
\end{aligned}
$$

$$
\begin{aligned}
\text { سوخت }{ }^{\text {سوخت } B_{R}} & =-298652 \mathrm{Btu} / \mathrm{bm} \cdot \mathrm{~mol} \text { واكنش كننده }
\end{aligned}
$$

میصـولات

$$
\begin{aligned}
& \mathrm{CO}_{2}: \quad 1\left(h-T_{0} \bar{s}\right) \\
&=1[-166767-(537)(59.512)] \\
&=-198725
\end{aligned}
$$

$$
\mathrm{H}_{2} \mathrm{O}: \quad 2\left(h-T_{0} s\right)=2[-101901-(537)(51.613)]
$$

$$
=-259234
$$

$$
\begin{aligned}
\mathrm{N}_{2}: \quad 7.52\left(h-T_{0} \bar{s}\right) & =7.52[1834.9-(537)(49.219)] \\
& =-184.960
\end{aligned}
$$

$$
\begin{aligned}
\text { سوخت } \text { سوخت } B_{P} & =-642919 \mathrm{Btu} / \mathrm{bm} \cdot \mathrm{~mol} \\
& =-1495542 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~mol}
\end{aligned}
$$

بنابراين كل كاهش در تابليت كاردهى برابر است با

$$
\begin{aligned}
B_{R}-B_{P} & =344267 \mathrm{Btu} / \mathrm{hbm} \cdot \mathrm{~mol} \text { سوغت } \\
& =800765 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~mol}
\end{aligned}
$$

 بـرگّثت نايذيرى است

$$
\begin{aligned}
I & =+344267 \mathrm{Btu} / \mathrm{bm} \cdot \mathrm{~mol} \text { سوخت سوخت سوخت سوخ/bm }
\end{aligned}
$$

قانون دوم ترمودينايكث و اصل انزايش آنترويى اساس تحليل مسائل موجود در تعادل را

$$
\begin{equation*}
d S_{0}+d S_{-}>0 \tag{-}
\end{equation*}
$$

 محيط اطراف در دماى ثابت To مى ${ }_{0}$ داشد. تنيير آنتروبى محيط اطراف سبستم عبارت است از

$$
\begin{equation*}
d S_{0=-} \frac{d^{\prime} Q}{T_{0}} \tag{-}
\end{equation*}
$$

حرارت متتقل شده از محيط بميستم است. كارى كه سيستم بر روى محيط انجام مىدهد برابر d'Q
 سيستم بهصورت زير نوشته مىشود.

$$
\begin{equation*}
d^{\prime} Q=d U+p_{0} d V \tag{-}
\end{equation*}
$$

 مى آوريم.

$$
\begin{equation*}
d U_{\odot}+p_{0} d V^{-}-T_{0} d S_{\odot}<0 \tag{-}
\end{equation*}
$$

شكل A-Y تعادل مادهٔ ترامم بـدير ساده

 اصل ساده انزايش آنترويى تبديل مى شُود.
هال موردى ساده تر رادر نظر مىگيريمكه در آن سيستم از نظر دما و فئـار در تعادل با متيط

$$
\text { اطرابف باقى مىماند، يعنى } T=T_{0} \text { و } 0 \text { p }
$$

$$
\begin{equation*}
d U+p d V-T d S<0 \tag{-}
\end{equation*}
$$

كهاينك تمامخواصّ موبوط بهسيستماست. درواقع با نوشتن نامساوى بدين صورت، برگّشت نايذ يريهاى
 .هتر بيأن مجلد رابطه ساده زير براىى يكث فرآيند برگثشت نايذير است.

$$
d S \geq \frac{d^{\prime} Q}{T}
$$

معادله (A_Y) را مى توان خيلى راحتتر بر حسب توابع هلمهولتر وتيبس نوشّت. با ياد آورى اين كه

$$
\begin{equation*}
A=U-T S \tag{-}
\end{equation*}
$$

$$
\begin{equation*}
G=H-T S=U+p V-T S \tag{-}
\end{equation*}
$$

$$
\begin{align*}
& d A=d U-T d S-S d T \tag{-}\\
& d G=d U+p d V+V d p-T d S-S d T \tag{-}
\end{align*}
$$

سیس

$$
d U-T d S=d A+S d T=d G-p d V-V d p+S d T
$$

و معادل (A_Y Y) را مى توان دوباره بهمورت زير نوشت.

$$
\begin{align*}
& d A+S d T+p d V<0 \tag{-}\\
& d G+S d T-V d p<0 \tag{-}
\end{align*}
$$

 خود ميل كند. بهممين ترتيب برایى يك فر آيند فنـار ثابت و دما ثابت تابع تيبس بايل بهسمت كمترين مقدار .خود ميل كند. بنابراين معيار رسيدن بهتعادل را مىتوان بهمورت زير نوشت:

$$
\begin{equation*}
(d A)_{T, V}<0 \tag{-}
\end{equation*}
$$

$$
\begin{equation*}
(d G)_{T_{r} P}<0 \tag{-}
\end{equation*}
$$

در اين جا خواننده بايد بداندكه تنها آن دسته از كار هايمى مورد نظر استك اسه از نوع يعنم كار انجام سُده بهوسيله يكت ماده ساده تراكم بذير.
 اين مطلب است كه تابع گيبس در فرآيندى تهت نشار و دماى ثابتكاهش مىيابل وكترين مقدار آن را بايد بهدست Tورد. بس از رسيدن بهاين كمترين مقدار، فزايند متو تف مىشود و بلون تغير بيشتر در

تابع گيس، تعادل بهدست خوامد آمد. بدين ترتيب در حال تعادل

$$
\begin{equation*}
(d G)_{T, P}=0 \tag{-}
\end{equation*}
$$

$$
\begin{equation*}
g_{f}=g_{g} \tag{-}
\end{equation*}
$$

با بسط توابع گيس

$$
h_{f}-T s_{f}=h_{g}-T s_{g}
$$

$$
h_{f g}=T s_{f g}
$$

 مجدد رابطه كلاسيوس ـكلايبرون بهكارگيريم. تا وتتى كه سيستمى از بخار و مايع در حال تعادل است، مى توان نوشت :

$$
\begin{equation*}
d g_{f}=d g_{g} \tag{A-rr}
\end{equation*}
$$

هنگامى كه سيستم از يكت حالت اشباع تعادل بهحالت اشباع تعادل ديگرى تنغير مىكند. از معادله ((

$$
d g=v d p-s d T
$$

,

$$
\begin{array}{r}
d g_{f}=v_{f} d p-s_{f} d T=d g_{g}=\nu_{g} d p-s_{g} d T \tag{-}\\
\text { از جمع كردن اين جملات بهدست مى آوريم } \quad \text { (ヘ_Tf) }
\end{array}
$$

ترموديناميكـ

$$
\begin{equation*}
\frac{d p}{d T}=\frac{s_{g}-s_{f}}{v_{g}-v_{f}}=\frac{s_{f g}}{v_{f g}}=\frac{h_{f g}}{T v_{f g}} \tag{-}
\end{equation*}
$$

كاربرد معادله (A-Y شد، نــبتاً ساده است.
 مجددأ بهصورت زير مىنويسيم

$$
d\left(\sum_{i} n_{i} \bar{g}_{i}\right)_{T, p}=0
$$

n تعداد مولهای n_{i} براى تعسِن غلظثهاى تعادل در واكنُشهاى شيميايى مىباشد. براى مساسبه تابع گيبس يكت ماده بايد يكت حالت مبنأى استاندارد براى آنترويّى و همين طور
 يعنى

$$
\begin{equation*}
\bar{g}_{f}^{\circ}=\bar{h}_{f}^{\circ}-T_{0} \bar{s}^{\circ} \tag{.}
\end{equation*}
$$

 شده به كار برد.

A-1 •

> واككنش سادهاى شامل جهار گاز ايدهآل رادر نظر بگيويد :

$$
\begin{equation*}
v_{1} A_{1}+v_{2} A_{2} \leftrightarrows v_{3} A_{3}+v_{4} A_{4} \tag{-}
\end{equation*}
$$

 تعادل در دما و فنشار واكتشن تعين مىگردد. برايى ارزيابى اين كميتهاي مولى شرايط تعادل ارائه شده در
 متحاسبه مىشود. داريمم:

$$
\begin{equation*}
d g=v d p-s d T \tag{A_rq}
\end{equation*}
$$

اگر فرض كنيم كه نثار بر حـبـب واحد اتمسفر بيان شده و مقادير تابع گيبس در حالتت استاندارد معلوم است، در آن صورت مىتوان از معادله (A_N) انتگرإل گرفت تا نتيجه زير بهدست آيد. $\bar{g}-\bar{g}^{\circ}=\int_{p=1}^{p} \bar{v} d p-\int_{T_{r e f}}^{T} \bar{s} d T$

سِس تابع گيبس در دماى مبنا بهصورت زير نوشته مىشود.

$$
\begin{equation*}
g \cdot g^{\circ}=\int_{p=1}^{p} V d p=\int_{p=1}^{p} \Re T \frac{d p}{p}=\Re T \ln p \tag{-}
\end{equation*}
$$

 رأست يشش زفته، اجزاي ا و Y بهطور دائم تقليل مى بابد در حالى كه مـحصولات تابع گيبس مخلوط در طى اين فزآيند بهطور داتم در هال كاهش است. در نهايتت تابع گيبس به كمترين مقدار خود رسيده و تعادل برتزار مىگردد. اگر واكتش مذكور در دما و نشار ثاببت ادامه يابد در آن

$$
d G_{J}=0
$$

درجه واكنش يا تجزيه
 ظاهر شده و 1 و 1 و 1 بهطور كامل مصرن مىشود. اگگر نسبتهاى استوكيومترى موجود نباشد حتى در

صورتى كه واكنش بهسمت تكامل بشش برود ممكنست مقدارى از واكنش كنيدهها باقى بمانند. اصطلاح درجهه واكتش '؛ ع، نشان دعنده آن است كه هیه مقدار واكنش به سمت تكامل يشش رنته است و معمولا بر حسب يكى از ابزاى اوليه تعريف مىشود. بر الساس جزه 1
n تعلداد مولها در خاتمه واكنش استى. در حالتى كه نقط يكت جزه اوليه وجو د دارد، ع درجبه تبجزيه يا
 دركى اين موضوع مهم است كه در خاتمه واكنش الزاماً واكنش كتندهها بهطور كامل مصرن

نشـدهاند. واكنش استوكيو مترى براى احتراق كربن را در نظر بغيريد :

$$
\begin{equation*}
\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2} \tag{-}
\end{equation*}
$$

وأضع است كه اگر برای هر مول كربن بيشتر از يكت مول اكسيرن وجود داشته باشد تمام آن مصرف نـوا اهد شد. براى مشال مى توانــم رابطه زير را داشته باشسيم.

$$
\begin{equation*}
\mathrm{C}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{O}_{2} \tag{-}
\end{equation*}
$$

در اين مورد بيشترين د كـترين تعداد مولهای Y O بترتيب Y و ا بوده و اين مقادير بهمـراه معادله (A_FY)
سال برگرديم بهموضوع تعادل، مىتوان تصور كرد كه واكنش مورد نظر همان طور كه در

$$
\left(\frac{\partial G_{15}}{\partial n_{1}}\right)_{T}=0
$$

1- Degree of reaction
2- Degree of dissociation
3- Degree of ionization

شكل هـA رلتار تابع كيبس در حالت تعادل

 عمليات جبرى نشان ميدهدكه تنير در تعداد مولهالى هركدام از اجزا تابعى خطى از تعداد مولهالى اوليه، Vهاه، و تغير در درجه واككش مىباشد. بدين ترتيب

$$
\begin{aligned}
& d n_{1}=-v_{1} d \varepsilon \\
& d n_{2}=-v_{2} d \varepsilon \\
& d n_{3}=v_{3} d \varepsilon \\
& d n_{4}=v_{4} d \varepsilon
\end{aligned}
$$

بنابراين معادله (A_Y) را مىتوان بهمورت زير نوشت :

$$
d\left(\sum_{i} n_{i} \bar{g}_{i}\right)_{T, p}=\left(\sum_{i} \bar{g}_{i} d n_{i}\right)_{T, p}=0
$$

$$
\begin{equation*}
\left(-\bar{g}_{1} v_{1}-\bar{g}_{2} v_{2}+\bar{g}_{3} v_{3}+\bar{g}_{4} v_{4}\right) d \varepsilon=0 \tag{A.fq}
\end{equation*}
$$

$$
\begin{align*}
& \text { انزثى آزاد } \\
& \text { با استفاده از معادله (N_FI) براى تابع گيبس در دماى مبنا، رابطه بالا بهصورت زير در مى آيد } \\
& -\Re T\left(v_{3} \ln p_{3}+v_{4} \ln p_{4}-v_{1} \ln p_{1}-v_{2} \ln p_{2}\right) \\
& =v_{3} \bar{g}_{3}{ }^{\circ}+v_{4} \bar{g}_{4}^{\circ}-v_{1} \bar{g}_{1}^{\circ}-v_{2} \bar{g}_{2} \tag{-}
\end{align*}
$$

گروه جملات سمت راست اين معادله بهطور وضوح عبارت است از اختلاف بين توابع گيس استاندارد محصو لات و واكنش كنندهها، وگاهى اوتات تغيير انرزیى آزاد ' ناميده و با علامت مى شود. يكبار ديگگر بايد تو جه كنيم سالت مبنا را نثار atm ا و دماى شخلوط انتخاب خخواهيم نمود. يس در حقيفت

$$
\Delta G^{\circ}=f\left(T, p_{0}\right)
$$

حال معادله (N_FV) بهصورت خيلى يختصر زير نوشته مىشود.

$$
\begin{equation*}
-\Re T \ln \frac{P_{3}^{V_{3}} p_{4}^{\nu_{4}}}{P_{1}^{v_{1}} P_{2}^{v_{2}}}=\Delta G^{\circ} \tag{A.FA}
\end{equation*}
$$

ثابت تعادل’

ثابت تعادل K ${ }^{\text {را بهصورت زير تعر بف مىكنيم }}$

$$
\begin{equation*}
K_{p}=\frac{p_{3}{ }^{\nu_{3}} p_{4}^{{ }^{\nu_{4}}}}{p_{1}^{\nu_{1}} p_{2}{ }^{v_{2}}} \tag{-}
\end{equation*}
$$

بكطورى كه

$$
\begin{equation*}
\Delta G^{\circ}=-\Re T \ln K_{p} \tag{A-১•}
\end{equation*}
$$

T, K	$\mathrm{H}_{3}=2 \mathrm{H}$	$\mathrm{O}_{2}=20$	$\mathrm{N}_{\mathbf{2}} \leftrightharpoons 2 \mathrm{~N}$	$\begin{aligned} & \mathrm{H}_{\mathbf{2}} \mathrm{O}(\mathrm{~g}) \leftrightharpoons \\ & \mathrm{H}_{2}+\mathrm{HO}_{2} \end{aligned}$	$\begin{aligned} & \mathrm{H}_{2} \mathrm{O}(\mathrm{~s}) \leftrightharpoons \\ & \mathrm{OH}+i \mathrm{H}_{2} \end{aligned}$	$\begin{aligned} & \mathrm{CO}_{2}= \\ & \mathrm{CO}+\mathrm{O}_{2} \end{aligned}$	$\begin{aligned} & \mathbf{6} \mathbf{O}_{1}+\mathbf{N} \mathbf{N}_{2}= \\ & \mathbf{N O} \end{aligned}$	$\begin{aligned} & \mathrm{CO}_{2}+\mathrm{H}_{1} \leftrightharpoons \\ & \mathrm{CO}+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \end{aligned}$
298	-71.228	-81.208	-159.600	-40.048	-46.054	-45.066	-15.171	-5.018
500	-40.318	-45.880	-92.672	-22.886	-26.130	-25.025	-8.783	-2.139
1000	-17.292	- 19.614	-43.056	-10.062	-11.280	- 10.221	-4062	-0.159
1500	-9.514	- 10.790	-26.434	-5.725	-6.284	-5.316	-2.487	$+0.409$
1800	-6.8\%	-7.836	-20.874	-4.270	-4.613	-3.693	-1.962	$+0.577$
2000	-9.582	-6.356	-18.092	-3.540	-3.776	-2.884	-1.699	$+0.656$
2200	-4.502	-5.142	- 15.810	-2.942	-3.091	-2226	- 1.484	$+0.716$
2400	-3.600	-4.130	-13.908	-2.443	-2.520	-1.679	-1.305	$+0.764$
2500	-3.202	-3.684	-13.070	-2.224	-2.270	-1.440	-1.227	$+0.784$
2600	-2.816	-3.272	-12.298	-2.021	-2.038	-1.219	-1.154	+0.802
2800	-2.178	-2.536	- 10.914	-1.658	-1.624	-0.825	-1.025	$+0.833$
3000	-1.606	-1.898	-9.716	-1.343	-1.265	-0.485	-0.913	$+0.858$
3200	-1.106	-1.340	-8.664	-1.067	-0.951	-0.189	-0.815	+0.878
3500	-0.462	-0.620	-7.312	-0.712	-0.547	+0.190	-0.690	+0.902
4000	+0.400	+0.340	-5.504	-0.238	-0.011	+0.692	-0.524	+0.930
4500	$+1.074$	$+1.086$	-4.094	+0.133	+0.408	+1.079	-0.397	+0.946
5000	+ 1.612	+1.686	-2.962	+0.430	+0.741	+1.386	-0.2\%	$+0.956$

Source: JANAF Thermochemical Tables [1] and Selected Values of Chemical Thermodynamic Properties [2].

\mathbf{T}, \mathbf{K}	$\mathbf{N a}=\mathbf{N a}^{+}+e^{-}$	$\mathbf{C s}=\mathbf{C s}^{+}+e^{-}$
298	-32.3	-25.1
400	-24.3	-17.5
600	-14.6	-10.0
800	-9.58	-6.15
1000	-6.54	-3.79
1200	-4.47	-2.18
1400	-2.97	-1.010
1600	-1.819	-0.108
1800	-0.913	+0.609
2000	-0.175	+1.194
2200	+0.438	+1.682
2400	+0.956	+2.098
2600	+1.404	+2.46
2800	+1.792	+2.77
3000	+2.13	+3.05
3200	+2.44	+3.29
3500	+2.84	+3.62
4000	+3.38	+4.07
4500	+3.82	+4.43
5000	+4.18	+4.73

 ترسيمي ثابت تعادل براى تعدادى از اين واكتشها را نشان مىدهد.

برای حالتى كه فئار ثابت است
در نتيجه ثابت تعادل نيز فقط تابع دما مىاشاشد. مبجددأ تأكيد مىىكنيم كه اين شعادلات براى كازههاى كامل است. خواننده بايد در بررسى اين مطلب توجه كند كه
ا- فثار بر حـبب اتمــفر بيان مىشود.

Y- F مقادير v به كار گرظته شده براى مساسسبه ثابت تعادل، مقادير استوكيومترى براى واكنُ مورد نظر است.
 فشار كل بيان كرد. بدين تر تيب

شعل

$$
p_{i}=x_{i} p_{J}
$$

و رابطه ثاببت تعادل بهصورت زير در مى آيد.

$$
\begin{equation*}
K_{p}=\frac{x_{3}^{\nu_{3}} x_{4}^{\nu_{4}}}{x_{1}^{\nu_{I}} x_{2}^{\nu_{2}}} p_{j}{ }^{\nu_{3}+\nu_{4}-\nu_{1} \cdot \nu_{2}} \tag{-}
\end{equation*}
$$

 انزايش مىيابلد. اين مطلب بر حسب معادله (A.rA) بدان معنى اسـت كه هوجه دما بالاتر میرود اين واكثـها بيشتر بهسمت تكامل بيش مىدوند.
واضح است كه مقدار در دمايىى كه ΔG° در آز دما تعيسن شـهه و بهفشار مـخلوط بستگى دارد.

> مثال |-1
 همجنين درجه واكنش (يا درجه تجزيه) را تعين نمايلد.

حـــل : معادله شيميايى برایى تمزيه عبارت است از

$$
\begin{equation*}
\mathrm{CO}_{2} \nleftarrow \mathrm{CO}+\frac{1}{2} \mathrm{O}_{2} \tag{a}
\end{equation*}
$$

بإي تو جه نمود كه اين معادله نشان دعنده ضرايب المتوكيومترى به كار رفته براى مـحاسبه نابت تعادل مى باشد. بنابراين اگر معادله (a) را محجداً بهصورت زير بنويسيم

$$
\begin{equation*}
v_{1} \mathrm{CO}_{2} \nleftarrow v_{3} \mathrm{CO}+v_{4} \mathrm{O}_{2} \tag{b}
\end{equation*}
$$

ثابت تعادل را مىتوان بهصورت زير بيان نمود.

$$
\begin{align*}
& K_{p}=\frac{x_{\mathrm{CO}}{ }^{\nu 3} \times x_{O_{2}}^{\nu_{4}}}{x_{\mathrm{CO}_{2}}^{\nu_{1}}} p_{\mathrm{j}}{ }^{\nu_{3}+\nu_{4}-v_{1}} \\
& K_{p}=\frac{x_{\mathrm{CO}} x_{\mathrm{O}_{2}}^{1 / 2}}{x_{\mathrm{CO}_{2}}}(1)^{1 / 2}
\end{align*}
$$

نسبهاي استوكيومتري رادر مسخلو نداريم. بهعبارت ديگ,

$$
\mathrm{CO}_{2} \rightarrow(1-\varepsilon) \mathrm{CO}_{2}+\varepsilon \mathrm{CO}+\frac{\varepsilon}{2} \mathrm{O}_{2}
$$

بنابراين تعداد كل مولها در مخلوط تعادل برابر است ب!

$$
\begin{equation*}
n_{j}=(1-\varepsilon)+\varepsilon+\frac{\varepsilon}{2}=1+\frac{\varepsilon}{2} \tag{d}
\end{equation*}
$$

بططورى كه كسر هاى مولى در حالت تعادل عبارت است از

$$
\begin{aligned}
& x_{\mathrm{CO}_{2}}=\frac{1-\varepsilon}{1+\varepsilon / 2} \\
& x_{\mathrm{CO}}=\frac{\varepsilon}{1+\varepsilon / 2} \\
& x_{\mathrm{O}_{2}}=\frac{\varepsilon / 2}{1+\varepsilon / 2}
\end{aligned}
$$

با استفاده از معادل (c) بهدست بى آوريم

$$
K_{p}=\frac{\varepsilon}{1+\varepsilon / 2}\left(\frac{\varepsilon / 2}{1+\varepsilon / 2}\right)^{1 / 2} / \frac{1-\varepsilon}{1+\varepsilon / 2}
$$

$$
\begin{equation*}
K_{p}^{2}=\frac{\varepsilon^{3}}{(1-\varepsilon)^{2}(2+\varepsilon)}=(0.647)^{2} \tag{e}
\end{equation*}
$$

معادله (e) را مى توان از طريق روشهاى تكرارى سل كرد تا عبدست آيد.

$$
\varepsilon=0.578
$$

غلظتهاى تعادل عبارت است از :

$$
\begin{array}{ll}
\frac{1-\varepsilon}{1+\varepsilon / 2}=0.327 & \mathrm{CO}_{\gamma} \text { براى } \\
\frac{\varepsilon}{1+\varepsilon / 2}=0.448 & \mathrm{CO}
\end{array}
$$

ترمود يناميك

$$
\frac{\varepsilon / 2}{1+\varepsilon / 2}=0.225
$$

OY O

مثال ATH

 مول را مساسبه و آن را با النرُّى گِرمايشى لازم در مور تى كه هيج گونه تجزيهاي وجود مقايسه كنيد.
 انرزى كلى عبارت است از

$$
\begin{equation*}
H_{R}+Q=H_{P} \tag{a}
\end{equation*}
$$

 تعداد مولهاى هركدام از اجزاى محصولات برابر است با

$$
\begin{aligned}
& n_{\mathrm{CO}_{2}}=1-\varepsilon=0.422 \\
& n_{\mathrm{CO}}=\varepsilon=0.578 \\
& n_{\mathrm{O}_{2}}=\frac{\varepsilon}{2}=0.289
\end{aligned}
$$

جون واكنش كندهها در VV ${ }^{\circ}$ هستد

$$
H_{R}=\bar{h}_{\mathrm{CO}_{2}}^{\circ}=-169290 \mathrm{Btu} / \mathrm{lbm} . \mathrm{mol}
$$

 برابر ما م

$$
\begin{aligned}
& \bar{h}_{\mathrm{CO}_{2}}=75257 \mathrm{Btu} / \mathrm{lbm} \cdot \mathrm{~mol} \\
& \bar{h}_{\mathrm{CO}}=47147 \mathrm{Btu} / \mathrm{lbm} \cdot \mathrm{~mol} \\
& \bar{h}_{\mathrm{O}_{2}}=49283 \mathrm{Btu} / \mathrm{lbm} \cdot \mathrm{~mol} \\
&(109659 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~mol}) \\
&(114626 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~mol})
\end{aligned}
$$

$$
\begin{aligned}
H_{P}= & (0.422)\left(\bar{h}^{\circ}+\bar{h}_{T}-\bar{h}_{537}\right)_{\mathrm{CO}_{2}} \\
& +(0.578)\left(\bar{h}^{\circ}+\bar{h}_{T}-\bar{h}_{537}\right)_{\mathrm{CO}} \\
& +(0.289)\left(\bar{h}_{T}-\bar{h}_{537}\right)_{\mathrm{O}_{2}} \\
= & (0.422)(-169290+75357-4030) \\
& +(0.578)(-47540+47147-3730) \\
& +(0.289)(49283-3725) \\
= & -30557 \mathrm{Btu} / \mathrm{mol} \text { واكنُ كننده } \quad(-71072 \mathrm{~kJ} / \mathrm{mol})
\end{aligned}
$$

انتقال سرارت از معادله (a) برابر است با

$$
Q=H_{P}-H_{R}=-30557-(-169290)=138733 \mathrm{Btu} / \mathrm{lbm} . \mathrm{mol}
$$

 در جداول گازها بهصورت زير محاسبه كنيم.

$$
\begin{aligned}
Q & =\bar{h}_{T}-\bar{h}_{537}=\bar{h}_{5760}-\bar{h}_{537}=75357-4030 \\
& =71327 \mathrm{Btu} / \mathrm{lbm} \cdot \mathrm{~mol} \quad(165899 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~mol})
\end{aligned}
$$

 لازم است.
 احتراق ثايين ترى نسبت بهدماى شعله Tدياباتيكت محاسبه شلده در غياب ثر گونه تجزيهاى، مىباشل. وتتى كه تجزيه هم وجود دارد تسمتى از سرارت حاصله از احترات در واكنشهایى تجزيه جذب ممشود و

بدين ترتيب انرزى كمترى برايى گرم نمودن مـحصولات تا دماى بالاتر در دسترس است.
مثال T
 حـــل : معادله شيميايمي برايى يونيزاسيون عبارت است از

$$
\begin{equation*}
\mathrm{Cs} \rightleftarrows \mathrm{Cs}^{+}+e^{-} \tag{a}
\end{equation*}
$$

بر حسب ضرايب استو كيومترى

$$
\begin{equation*}
v_{1} \mathrm{Cs} \nleftarrow v_{3} \mathrm{Cs}^{+}+v_{4} e^{-} \tag{b}
\end{equation*}
$$

و ثابت تعادل به حورت زير بيان مىشود.

$$
K_{p}=\frac{x_{\mathrm{C}}{ }^{v_{3}}+x_{\mathrm{e}} v_{4}}{x_{\mathrm{CS}}^{v_{I}}} p_{j 5}^{\nu_{3}+v_{4}-v_{1}}
$$

$$
\begin{equation*}
K_{p}=\frac{x_{\mathrm{Cs}} x_{e}}{x_{\mathrm{Cs}}} \tag{c}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{Cs} \rightarrow(1-\varepsilon) \mathrm{Cs}+\varepsilon \mathrm{Cs}^{+}+\varepsilon e^{-} \tag{d}
\end{equation*}
$$

ع درجه واكنش است.
بدين ترتيب تعداد كل مولها در مخلوط تعادل برابر است با

$$
n_{J}=(1-\varepsilon)+\varepsilon+\varepsilon=1+\varepsilon
$$

و كسرهاى مولى در ـالت تعادل عبارت است از

$$
\begin{aligned}
& x_{\mathrm{Cs}}=\frac{1-\varepsilon}{1+\varepsilon} \\
& x_{\mathrm{Cs}+}=\frac{\varepsilon}{1+\varepsilon} \\
& x_{\mathrm{e}^{-}}=\frac{\varepsilon}{1+\varepsilon}
\end{aligned}
$$

$$
K_{p}=\frac{[\varepsilon /(1+\varepsilon)][\varepsilon /(1+\varepsilon)]}{(1-\varepsilon) /(1+\varepsilon)}=\frac{\varepsilon^{2}}{1-\varepsilon^{2}}
$$

$$
\text { با جايگزينى K } K_{p}=1 \Delta / 7 r \text { نتيجه میيريمكه }
$$

$$
\varepsilon=0.97
$$

غلظتهای حالت تعادل عبارت است از :

$$
\begin{array}{ll}
\frac{1-\varepsilon}{1+\varepsilon}=0.0152 & C s \\
\frac{\varepsilon}{1+\varepsilon}=0.492 & \text { Cs }^{+} \text {برای برا'ی }
\end{array}
$$

با تو جه بهاين نتايج بديهى است كه يونيزاسيون سزيـم در Y . . . K تقريبأكامل است.

'ثراتكمزهاى بیاثر'

در مخلوطم از جند گاز معورلأ فقط يكى از اجزا بهعلت سطع دماى شخلوط وارد يكى فر آيند تجزيه مىشو د. براى هنينز حالاتى ساير اجزایى مخلوط در طى واكتش بدون تغير مىماند. بههر

ترمود يناميك
DGY

در Y K . . K داريـم سزيم در اين دما تقريباً بهطور كامل يونيزه است اما تجزيه نِيتروزن در اين دما امكانيذ ير نيست (log $K_{p}=-1 \wedge / \cdot 9 Y$). بنابراين خواهيم داشـت :

$$
\mathrm{Cs}+\mathrm{N}_{2} \nrightarrow \mathrm{Cs}^{+}+e^{-}+\mathrm{N}_{2}
$$

Cs با استفاده از درجه واكنش عبر اساس شصرن

$$
\mathrm{Cs}+\mathrm{N}_{2} \rightarrow(1-\varepsilon) \mathrm{Cs}+\varepsilon \mathrm{Cs}^{+}+\varepsilon e^{-}+\mathrm{N}_{2}
$$

بنابراين تعدادكل مولها در مخلوط برابر است با

$$
n_{j}=(1-\varepsilon)+\varepsilon+\varepsilon+1=2+\varepsilon
$$

 كـيتهاى بهكار رفته در ثابت تعادل نيز تغير مي يابد بهطورى كه

$$
\begin{array}{ll}
x_{\mathrm{C} s}=\frac{1-\varepsilon}{2+\varepsilon} & x_{\mathrm{Cs}+}=\frac{\varepsilon}{2+\varepsilon} \\
x_{e-}=\frac{\varepsilon}{2+\varepsilon} &
\end{array}
$$

$$
K_{p}=\frac{[\varepsilon /(2+\varepsilon)][\varepsilon /(2+\varepsilon)]}{(1-\varepsilon) /(2+\varepsilon)}=\frac{\varepsilon^{2}}{2-\varepsilon-\varepsilon^{2}}
$$

 مقدار ع در سضور يكت تاز بى اثو بدست مى آيد

$$
\varepsilon=0.98
$$

اختلان زيادى بين اين نتيجه و مقدار ع يونيزاسيون در هر دو مورد تقريبأكامل است. براى معايسه بيشتر خوبب است كه مساسبه رادر دماى

برای سزيـم در K
خالص از مثال

$$
\begin{aligned}
& K_{,}=\frac{\varepsilon^{2}}{1-\varepsilon^{2}} \\
& \varepsilon=0.298
\end{aligned}
$$

K

در صـورت وسود يِك مول نيترورن در مشنوط مقدار ع برابر خخواهل بود با
 وجهود دارد .

تعاد $A-1 Y$

مر.وط بهگازهای ايلهـآل و يونيزاسيون بهكار برد. حال وضعيت را با ترار دادن گازهاي اضافى در مسنلوط مورد نظر بيتيلدهتر بىكنیم بهطوريكه بيشتر از يكت واكنش مـكن است صـورت يذيرد. مثالى

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \\
& \mathrm{H}_{2} \mathrm{O} \not \frac{1}{2} \mathrm{H}_{2}+\mathrm{OH}
\end{aligned}
$$

مثال ديگ, تبزيه توأم

$$
\begin{aligned}
& \mathrm{CO}_{2} \rightarrow \mathrm{CO}+\frac{1}{2} \mathrm{O}_{2} \\
& \frac{1}{2} \mathrm{O}_{2}+\frac{1}{2} \mathrm{~N}_{2} \rightarrow \mathrm{NO}
\end{aligned}
$$

براي هر دو واكنش در سالت كلم بى توان نوشت :

تومود يناميل

$$
\begin{align*}
& v_{r} A_{1}+v_{2} A_{2} \rightleftarrows v_{3} A_{3}+v_{4} A_{4} \\
& v_{5} A_{1}+v_{6} A_{6} \rightleftarrows v_{7} A_{7}+v_{8} A_{8} \tag{-}
\end{align*}
$$

واكنش كننده A_{1} را بهمورت مشتركت در هر دو معادله و احتمالاُبا نسبت استوكيومترى متفاوت در نظر مىگيريم، بلدين معنى كه
 واكنش بر مبناى شمرون واكنش كتنده 1

$$
\begin{array}{ll}
d n_{1}=-v_{1} d \varepsilon_{1} & d n_{3}=+v_{3} d \varepsilon_{1} \\
d n_{2}=-v_{2} d \varepsilon_{1} & d n_{4}=+v_{4} d \varepsilon_{1}
\end{array}
$$

Yر سالىى كه برایى واكنش Y

$$
\begin{array}{ll}
d n_{1}=-v_{5} d \varepsilon_{2} & d n_{7}=+v_{7} d \varepsilon_{7} \\
d n_{6}=-v_{6} d \varepsilon_{2} & d n_{8}=+v_{8} d \varepsilon_{8}
\end{array}
$$

$$
d n_{1}=-v_{1} d \varepsilon_{2}-v_{5} d \varepsilon_{2}
$$

 تعادل در دما و فشار ثابت در نظر گرفت و نوشت:

$$
\left(\sum \bar{g}_{i} d n_{j}\right)_{T, p}=0
$$

$$
\begin{align*}
\left(-\bar{g}_{1} v_{1}-\bar{g}_{2} v_{2}\right. & \left.+\bar{g}_{3} v_{3}+\bar{g}_{4} v_{4}\right) d \varepsilon_{1} \\
& +\left(-\bar{g}_{1} v_{5}-\bar{g}_{6} v_{6}+\bar{g}_{7} v_{7}+\bar{g}_{8} v_{8}\right) d \varepsilon_{2}=0
\end{align*}
$$

گيبس در دمــاى مبنا بهكار بريـم بـطورى كه دو رابطه مــابه با فرمول مربوط بهيكث واكثش منقرد بهدست می آوريم.

$$
\begin{align*}
& -\Re T \ln \left(\frac{p_{3}^{{ }^{\nu} 3} p_{4}^{{ }^{\nu_{4}}}}{p_{1}^{{ }^{\nu}} p_{2}^{{ }^{\nu_{2}}}}\right)=\Delta G_{1}^{\circ} \\
& -\Re T \ln \left(\frac{p_{7}^{\nu_{7}} p_{8}^{{ }^{\nu_{8}}}}{p_{1}^{\nu_{5}} p_{6}^{{ }^{\nu_{6}}}}\right)=\Delta G_{2}^{\circ}
\end{align*}
$$

كه انرزيهاى آزاد عبارت است از

$$
\begin{align*}
& \Delta G_{1}^{\circ}=v_{3} \bar{g}_{3}^{\circ}+v_{4} \bar{g}_{4}^{\circ}-v_{1} \bar{g}_{1}^{\circ}-v_{2} \bar{g}_{2}^{\circ} \\
& \Delta G_{2}^{\circ}=v_{7} \bar{g}_{7}^{\circ}+v_{8} \bar{g}_{8}^{\circ}-v_{5} \bar{g}_{1}^{\circ}-v_{6} \bar{g}_{6}^{\circ}
\end{align*}
$$

معادلات ($\ln K_{p_{1}}=\frac{-\Delta G_{1}^{\circ}}{\Re T}$

$$
\ln K_{P_{2}}=\frac{-\Delta G_{2}^{\circ}}{\Re T}
$$

 محاسبات كاميوترى است.
 كه واكنشها با ا بول

$$
\mathrm{CO}_{2} \rightarrow \mathrm{CO}+\frac{1}{2} \mathrm{O}_{2}
$$

$$
\frac{1}{2} \mathrm{O}_{2}+\frac{1}{2} \mathrm{~N}_{2} \rightleftarrows \mathrm{NO}
$$

حـــلـ: دو واكتش تجزيه عبارت است از :

$$
\begin{aligned}
& \mathrm{CO}_{2} \rightarrow\left(1-\varepsilon_{1}\right) \mathrm{CO}_{2}+\varepsilon_{1} \mathrm{CO}+\frac{\varepsilon_{1}}{2} \mathrm{O}_{2} \\
& \frac{1}{2} \mathrm{O}_{2}+\frac{1}{2} \mathrm{~N}_{2} \rightarrow\left(1-\varepsilon_{2}\right) \frac{1}{2} \mathrm{O}_{2}+\left(1-\varepsilon_{2}\right) \frac{1}{2} \mathrm{~N}_{2}+\varepsilon_{2} \mathrm{NO}
\end{aligned}
$$

كه است با

$$
\left(1-\varepsilon_{1}\right) \mathrm{CO}_{2}+\varepsilon_{1} \mathrm{CO}+\left(\frac{1}{2}-\frac{1}{2} \varepsilon_{2}+\frac{1}{2} \varepsilon_{1}\right) \mathrm{O}_{2}+\left(\frac{1}{2}-\frac{1}{2} \varepsilon_{2}\right) \mathrm{N}_{2}+\varepsilon_{2} \mathrm{NO}
$$

بنابراين تعلادكل مولها در مخلوط تعادل برابر است با

$$
\begin{aligned}
n_{j S} & =1-\varepsilon_{1}+\varepsilon_{1}+\frac{1}{2}-\frac{1}{2} \varepsilon_{2}+\frac{1}{2} \varepsilon_{1}+\frac{1}{2}-\frac{1}{2} \varepsilon_{2}+\varepsilon_{2} \\
& =2+\frac{1}{2} \varepsilon_{1}
\end{aligned}
$$

وكسرهاى مولى در هالت تعادل عبارت است از

$$
\begin{array}{ll}
x_{\mathrm{CO}_{2}}=\frac{1-\varepsilon_{1}}{2+\varepsilon_{1} / 2} & x_{\mathrm{CO}}=\frac{\varepsilon_{1}}{2+\varepsilon_{1} / 2} \\
x_{\mathrm{O}_{2}}=\frac{1-\varepsilon_{2}+\varepsilon_{1}}{4+\varepsilon_{1}} & x_{\mathrm{N}_{2}}=\frac{1-\varepsilon_{2}}{4+\varepsilon_{1}} \\
x_{\mathrm{NO}}=\frac{\varepsilon_{2}}{2+\varepsilon_{1} / 2} &
\end{array}
$$

$$
\begin{array}{lll}
\log K_{p_{1}}=-0.485 & K_{p_{1}}=0.3272 & \left(\mathrm{CO}_{2}\right) \\
\log K_{p_{2}}=-0.913 & K_{p_{2}}=0.1222 & \left(\mathrm{O}_{2}, \mathrm{~N}_{2}\right)
\end{array}
$$

$$
\begin{equation*}
K_{p_{1}}=0.3273=\left(\frac{\varepsilon_{1}}{2+\varepsilon_{1} / 2}\right)^{1}\left(\frac{1-\varepsilon_{2}+\varepsilon_{1}}{4+\varepsilon_{1}}\right)^{1 / 2} /\left(\frac{1-\varepsilon_{1}}{2+\varepsilon_{1} / 2}\right)^{1} \tag{a}
\end{equation*}
$$

,

$$
\begin{equation*}
K_{p_{2}}=0.1222=\left(\frac{\varepsilon_{2}}{2+\varepsilon_{1} / 2}\right)^{1} /\left(\frac{1-\varepsilon_{2}+\varepsilon_{1}}{4+\varepsilon_{1}}\right)^{1 / 2}\left(\frac{1-\varepsilon_{2}}{4+\varepsilon_{1}}\right)^{1 / 2} \tag{b}
\end{equation*}
$$

حال برايى بهدست آوردن مقادير 1 و 2 ع بايد معادلات (a) و (b) بهطور ممزمان حل عبارت است از

$$
\begin{array}{lc}
\varepsilon_{1}=0.3736 & \varepsilon_{2}=0.05644 \\
& \\
x_{\mathrm{CO}_{2}}=0.2864 & x_{\mathrm{CO}}=0.1708 \\
x_{\mathrm{O}_{2}}=0.3012 & x_{\mathrm{N}_{2}}=0.2157 \\
x_{\mathrm{NO}}=0.0258 &
\end{array}
$$

و كسرهاى مولى نتيجه شده در عالت تعادل بهصورت زير بهدست مى آيد.

واكنش مولى نهايى بهصررت زير است :

$$
\begin{aligned}
\mathrm{CO}_{2}+\frac{1}{2} \mathrm{~N}_{2} & +\frac{1}{2} \mathrm{Q}_{2} \rightarrow 0.6264 \mathrm{CO}_{2}+0.3736 \mathrm{CO}+0.6587 \mathrm{O}_{2} \\
& +0.4717 \mathrm{~N}_{2}+0.0564 \mathrm{NO}
\end{aligned}
$$

A- IT

بهث غود را درباره ثابتهای تعادل Fسترش داده و بهرابطه بسيار مفيدى بين انتاليى واكنش و ثابت تعادل برايى واكنش در فشار ثابت دست مى يابيم. هعال علاتم

در نشار كل معادله (

$$
\begin{equation*}
\Delta G^{\circ}\left(T, p_{0}\right)=-\Re T \ln K_{p} \tag{A-71}
\end{equation*}
$$

مشتق گيرى نسبت بهT در p ثابت بهدست مىدهد:

$$
\frac{d\left(\Delta G^{\circ}\right)}{d T}=-\Re T \frac{1}{K_{p}} \frac{d K_{p}}{d T}-\Re \ln K_{p}
$$

$$
\begin{equation*}
\frac{d K_{p}}{d T}=\frac{K_{p}}{\Re T^{2}}\left[\Delta G^{\circ}\left(T, p_{0}\right)-T \frac{d\left(\Delta G^{\circ}\right)}{d T}\right] \tag{A-7Y}
\end{equation*}
$$

انززى آزاد گيبس را مىتوان بهصورت زير بيان نمود:

$$
\Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ}
$$

$$
\text { از معادله (} 1 \Delta b \text { - }
$$

$$
d g=-s d T+v d p
$$

لذا برایى واكنشى در نشار ثابت

$$
\frac{d g}{d T}=-s
$$

$$
\begin{equation*}
\frac{d\left(\Delta G^{\circ}\right)}{d T}=-\Delta S^{\circ} \tag{-}
\end{equation*}
$$

$$
\frac{d K_{p}}{d T}=\frac{K_{p}}{\Re T^{2}} \Delta H^{\circ}
$$

ـِ بهشكل لگاريتمى هِنين نوشته مىشود:

089

$$
\frac{d\left(\ln K_{\mathrm{p}}\right)}{d T}=\frac{\Delta H^{\circ}\left(T, p_{0}\right)}{\Re T^{2}}
$$

كه سال مبجددأ برايى تأكيد بر نشار مبنا
معادله (

دما بهدست دهد. آرايش معادله (

$$
\frac{d\left(\ln K_{p}\right)}{d(1 / T)}=\frac{-\Delta H^{\circ}\left(T, P_{0}\right)}{\Re}
$$

 مى.شُد.
برای بيشتر واكنشها مقدار ΔH° در مسلوده نسبتاً وسيعى از دما تقرياً ثابست اسـت. در هینين

$$
\ln \left(\frac{K_{p_{7}}}{K_{p_{1}}}\right)=\frac{\Delta H^{\circ}}{\Re}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)
$$

و اگگر مقدار

 مىدهد كه ΔH° بايل مبت و واكتش گرماگير باششل. در مورتى كه K با افزايشى در دها كاهش يابلف ΔH°
مثال

انتاليى واكنش را برای تشهيل CO و

$$
\begin{array}{lll}
T_{1}=1800 \mathrm{~K}=3240^{\circ} \mathrm{R} & \log K_{p_{1}}=-3.693 & K_{p_{1}}=2.028 \times 10^{-4} \\
T_{2}=2200 \mathrm{~K}=3960^{\circ} \mathrm{R} & \log K_{p_{2}}=-2.226 & K_{p_{2}}=1.306 \times 10^{-3}
\end{array}
$$

$$
\log \left(\frac{K_{p_{2}}}{K_{p_{1}}}\right)=-2.226-(-3.693)=1.467
$$

$$
\frac{K_{p_{2}}}{K_{p_{1}}}=29.309
$$

(ΔH°
: نتيجه میگبريم (A-IV)

$$
\begin{aligned}
\Delta H & =\frac{\Re \ln \left(K_{p_{1}} / K_{p_{p}}\right)}{\left(1 / T_{1}\right)-\left(1 / T_{2}\right)} \\
& =\frac{(1545) \ln (29.309)}{(1 / 3240-1 / 3960)(778)} \\
& =119500 \text { Btu/bm.mol } \quad(277943 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~mol})
\end{aligned}
$$

A- |

 مكتوان بّصورت زير بيان نمود.

$$
\begin{equation*}
U=U\left(S, V, n_{1}, n_{2}, \ldots, n_{i}\right) \tag{A-9~A}
\end{equation*}
$$

تنير بسيار جز ثـى در انززى داخلمى توسط رابطه زير داده مىشود :

$$
d U=\left(\frac{\partial U}{\partial S}\right) V, n_{i} d S+\left(\frac{\partial U}{\partial V}\right) S_{1} n_{i} d V+\sum_{i}\left(\frac{\partial U}{\partial n_{i}}\right) V_{,} S_{1} n_{j} d n_{i}
$$

روشن است كه برأى مغلوطى شامل يكت جزه يا مغلوطى كه تركيب آن تغيير نمىكند، •

$$
d U=T d S-p d V
$$

كه در نتيجه داريم

$$
T=\left(\frac{\partial U}{\partial S}\right) V_{, n_{i}} \quad-p=\left(\frac{\partial U}{\partial V}\right) s_{n_{i}}
$$

$$
\mu_{i}=\left(\frac{\partial U}{\partial n_{i}}\right) v, s_{,} n_{j} \quad n_{j} \neq n_{i}
$$

$$
d U=T d S-p d V+\sum_{i} \mu_{i} d n_{i}
$$

گيبس را براي منفلوطم در نظر بگيريد كه فرض مىكنيم داراي شكل زير باشد.

$$
G=G\left(p, T, n_{1}, n_{2}, \ldots, n_{i}\right)
$$

سسس

$$
d G=\left(\frac{\partial G}{\partial p}\right)_{T, n_{i}} d p+\left(\frac{\partial G}{\partial T}\right)_{p, n_{i}} d T+\sum_{i}\left(\frac{\partial G}{\partial n_{i}}\right)_{p, T, n_{j}} d n_{i} \quad \text { (^-Уץ) }
$$

براي مخلوطى با تركيب ثابت از نمـل 9 [معادله (1 1 ـ 1)] داريم

$$
V=\left(\frac{\partial G}{\partial p}\right)_{T_{,} n_{i}} \quad-S=\left(\frac{\partial G}{\partial T}\right)_{P, n_{i}}
$$

بهطورى كه معادله (A_VY) بهصورت زـر در مى آيل.

$$
\begin{equation*}
d G=V d p-S d T+\sum_{i}\left(\frac{\partial G}{\partial n_{i}}\right)_{T, p, n_{j}} d n_{i} \tag{-}
\end{equation*}
$$

حال براي يكك جزء

$$
\begin{align*}
d G & =d H-T d S-S d T \\
& =d U+p d V+V d p-T d S-S d T \tag{A-V}
\end{align*}
$$

 مىدهد كه

$$
\begin{equation*}
\mu_{i}=\left(\frac{\partial G}{\partial n_{i}}\right)_{T, p_{1} n_{j}} \quad n_{j} \neq n_{i} \tag{-}
\end{equation*}
$$

كه در نتيجه داريم

$$
d G=V d p-S d T+\sum_{i} \mu_{i} d n_{i}
$$

بهممين ترتيب توابع انتالّلى و ملمهولتز بهصورت زير بيان مىشود.

$$
\begin{align*}
& d H=T d S+V d p+\sum_{i} \mu_{i} d n_{i} \\
& d A=-S d T+p d V+\sum_{i} \mu_{i} d n_{i}
\end{align*}
$$

بنابراين روابط معادل زير را براي بتانسيل شيميايى داريم :

$$
\mu_{i}=\left(\frac{\partial U}{\partial n_{i}}\right) V, s, n_{j}=\left(\frac{\partial G}{\partial n_{i}}\right)_{T, p, n_{j}}=\left(\frac{\partial A}{\partial n_{i}}\right) T, V, n_{j}
$$

حال روابط بين هتانسيلهاي شيمياعى را در سالتّى بررسى مىكنيم كه يكت مخلوط در سال تعادل هند ين جزء ممكن است در بيثتر از يكت فاز وجود داشته باشلـ. بهطور كلى يكت مخلوط مى تواند داراى فازهاى زيادى باشـلـ اما در عمل غالبأ شايد نقط دو يا سه فاز موجود باشـلـ براى تعادل در نشار و دماى

$$
d G_{T, p}=0
$$

تابع گيسس كل از جـع توابع گيس برایى هر ذاز تشكيل مىشود. فرض مىكيم كه فازها هـگین بوده تا بتوانيم دلايل استفاده شده در بهدست آوردن بتانسيل شيميايى را در مورد Tآنها اعمال كنيم. به خاطر
 ناز كه در آن انتقال جرم بين ذازها مورت مىتيرد خواهيمر داشت

$$
\begin{aligned}
& n_{a_{1}}+n_{a 2}=n_{a, ~} 5=\text { ثاببت }
\end{aligned}
$$

يا در فرم ديفرانسيلى

$$
\begin{align*}
& d n_{a_{1}}+d n_{a_{2}}=0 \\
& d n_{b_{1}}+d n_{b_{2}}=0
\end{align*}
$$

$$
\begin{align*}
& d G_{1}=V d p-S d T+\mu_{a_{1}} d n_{a_{1}}+\mu_{b_{1}} d n_{b_{1}} \\
& d G_{2}=V d p-S d T+\mu_{a_{2}} d n_{a_{2}}+\mu_{b_{2}} d n_{b_{2}}
\end{align*}
$$

حالْ برایى تعادل در T و pثابت

$$
\left.d G\right|_{T, p}=\left.d G_{1}\right|_{T, p}+\left.d G_{2}\right|_{T, p}=0
$$

ادغام معادلات (
$\left(\mu_{a_{1}}-\mu_{a_{2}}\right) d n_{a_{1}}+\left(\mu_{b_{1}}-\mu_{b_{2}}\right) d n_{b_{1}}=0$
كه نشان دهنده اين است كه براى تعادل در T و pثابت

$$
\mu_{a_{1}}=\mu_{a_{2}} \quad \mu_{b_{1}}=\mu_{b_{2}}
$$

مىتوانيم تجزيه و تحليل مذكور را برائى حالث كلى i جزه و k فاز تعميـم داده و برايى تعادل بين فازها

$$
\mu_{i 1}=\mu_{i 2}=\ldots=\mu_{i k}
$$

بهعبار ت ساده تر برای تعادل در دما و فثـار ثابت با يل يتانْسيل شيهيا يع دركليه نازها دارابى مقدار يكسـانى باشُلـ.
هال يكت ناز خالص را يعنى فازى كه فقط از يكت جزه تشكيل شده در نظر مى

$$
\begin{equation*}
d G_{T, P}=\mu d n \tag{-}
\end{equation*}
$$

كه نشان مىدعد تغير در تابع گيسس بايد از يكت افزايش در جرم فاز مورد نظر (افزايش در لdn) نانشى شود. هون تابع گيس كل G مستقيمأ متناسب با تعداد كل مولها در فاز است لذا داريم

$$
\begin{equation*}
\mu=\frac{G}{n}=\bar{g} \tag{-}
\end{equation*}
$$

يا بهطور خيلى ساده، پتانسيل شيميايى برايى يكك فاز خالص برابر تابع گيس مولى براى آن فاز است. بهعنوان مثال سادهاى در اين مورد، مى توان ديد كه براى تعادل يكت ماده خالك (نظير آب) در T و

كردهايمr.

" 10

از بحث نوق بسادگى مى توان دريافتكه تعين خواصّ مهخلوطهايى كه مهكن است در جندين
ظاز وجود داشته باشثند كار يِجيدهاى است و حتى تعداد خواصّ لازم برایى تبيت سالت مـخلوط بـسادگى

1- Gibbs phase rule
2. Josiah Willard Gibbs
 تعداد P فاز تشكيل شده است. برای تعادل در دما و نشار ثابت بر طبق معادله (A_VA) براي هر فاز

$$
\left.d G\right|_{T, P}=\sum_{i} \mu_{i} d n_{i}=0
$$

 تحت اين مسدوديت قرار دارد كك تعلاد كل مولها برايى يكت سيستم بسته مثدار ثابتى است. بها بهجز اين برای تبيت حالت سيستم براى يكك فاز انتخاب T و pرا نيز در اختيار داريم يا بهعبار تى تعداد

$$
(C-1)+2=C+1
$$

 بحدوديتهاى اضانى ديگرى بهوجود آمده است. بدين ترتيب براى دو فاز ميهدوديت زير را اضانه مىكتمبم

$$
\mu_{i_{1}}=\mu_{i 2}
$$

براى سه فاز دو مسدوديت زير راداريمكه

$$
\mu_{i 1}=\mu_{i 2}=\mu_{i 3}
$$

F ${ }^{\prime}$ و بهطور كلى براى P يا تعداد متغيرهاى يكت سيستم با در نظر گرنتن تمام عوامل عبارت است از

$$
F=C+1-(P-1)=C-P+2
$$

اين قانون فازگيبس است و يكث كاريرد سريع آن در مورد سيستم ساده Tاب مؤيد اعتبار آن است. در

منطقه اشباع بشخار -آب دو فاز (P=Y) و يكت جزه (C=1) وجود دارد لذذ

$$
F=1-2+2=1
$$

يعنى برای نگهداشتن حالت تعادل فقط يكت خاصيت متمركز را مىتوان بهطور مستقل تغير داد. بعمولاُ دما يا فشار اشباع انتخاب مىگردد. وتتى كه سه فاز در حال تعادلنل،

$$
F=1-3+2=0
$$

كه نشان ميدهد هيجَ تونه انتخابى برای تغير اين حالتٌ تعادل وجود ندارد. البته اين حالت دتيقاُ موردى است كه در نقطه سه گانه وجود دارد. در منطقهاي ساوى يكت فاز مثلاُ يكت گاز يا بِخار، و مادمایى شامل يكت جزه داراى

$$
F=1-1+2=2
$$

است يا بهعبار تى دو خاميت وجود دار ككه مىتوان آنها را بهطور مستقل تغير داد. اين البته موردى است
 متغير هاى مستقل انتخاب مىشوند.

قانون فاز برایى واكنتهاى شيميايـ

اتگر برای اجزاى مختلف امكان شركت در واكنشهایى شيميايى با يكد يگر وجود داشته باشد،
 مصرن يا ايجاد گردند. فرض كنيد N نعداد بواد شيميايمى توجود در كل سيستم باشل. برایى هر معادله تعادل واكنش از تعداد خواص متمركز مستقل يكى كالسته مىشود، آگر تعداد rمعادله واكنش وجود داتشته باشده تعداد اجزاى Cالستفاده شده در قانون فاز بهصورت زير در مى آيد.

$$
C=N_{c}-r
$$

بنابراين در منهوم عمومى، Cعبارتاست ازكهترين تعداد مواد شُيميا يم كه مىتواندكل سيستم

$$
F=\left(N_{c}-r\right)-P+2
$$

مثال 17-1

 است لنا

$$
\begin{align*}
& \mathrm{C}(s)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) \tag{a}\\
& \mathrm{C}(\mathrm{~s})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{~g}) \tag{b}
\end{align*}
$$

 از معادلات واكنش حذن نمود، بهعنوان مثال :

$$
\begin{align*}
& \mathrm{CO}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2} \tag{c}
\end{align*}
$$

$$
\begin{aligned}
& C=N_{c}-r=4-2=2
\end{aligned}
$$

$$
F=C-P+2=2-2+2=2
$$

ה- 17 قانون سوم ترموديناميك

دز تحليل بيُتر واكتُهاى شيمياييى تثييت يكن حالت برجع يا مبنا براي آنتروبى ضرورى است. در بوانتى كه نتط با يك جزء سر وكار داريم هميئه مى توانيم يك تراز مبناى دلخواه را انتخاب

سثـاهدات نرنست

آتترويى كليه جامدات بلورين كامل در دماى صثر مطلق برابر صفر است.

بلور "كامل " بلورى است كه در تعادل ترمو ديناميكى ترار دارد. در نتيجه تانون سوم بعمولا در شكل
عمومىتر آن جحنين بيان مىگردد :

با نزديكت شدن دماى مشلق بهصف، آنترو ليه هرماده خالصى كه در تعادل ترموديناميكى قرار دارد بهسمت
صف ميل مىكند.

اهميت قانون سوم روشن است. اين قانون مبنايى براي مساسبهُ آنترو بيهاي مطلت مواد نرامم
مى كند كه مىتوان بعلدأ آنها را در معادلات مناسبى برابي تعين جهـت بِشرفت واكنـشهـاى شيميايــى
بهكار برد.

بارها در مقالات علمى گزارش دادهاند كه معامبات بر مبناي تانون سوم با تجربهو آزمايش سازگار نيستت. مُ عذا مىتوان در تمامى موارد اين ناسازگارىي رابر اساس "ناخالص "بودن ماده مورد نظر تفـير نمو د، يعنى مـمكن امت Y يا جند ايزوتو بِ مو جود بوده، يا ملكولهاي متتلفى و جود داشته و يااين كه توزيع ملكولها بهصورت غير تعادلى باشثد. در هنين مواردي بيشتر از يكت ـاللت كوانتو مى در صفر مطلت وجود دارد و Tنترويى بهسمت صفر ميل نميكنل.

1. Planck

2- Nernst

سيستم و محيط اطرانثى را نيز در بر مىگيرد. خون براي ما بيشترين مقدار كار خحروجى يكت فرآيند مهم است، كار را موقعى مثبت مى دانيم كه بهوسيله سيستم انجام شده باشل. سيستم بستهاى را در نظر بگيريد
 تستى از آن ممكن است كار $p d V$ باشد. از تانون اول

$$
d^{\prime} W=d^{\prime} Q-d U
$$

از اصل انزايش آنترويـى داريم

$$
d S_{0}+d S_{-} \geq 0
$$

و تغير در آنترويیى برايى محيط اطران توسط رابطه زير داده مىشود.

$$
d S_{0}=-\frac{d^{\prime} Q}{T_{0}}
$$

از جايگزلين كردن معادله (

$$
d^{\prime} W=d^{\prime} Q-d U \leq T_{0} d S-d U
$$

dS
 باشد بايد هيج انتقال حرارتى در محلوده يكت اختلان دماي معين وجود نداشته باشده يعنى دماى سيستم
 در مى آيد.

$$
d^{\prime} W \leq T d S-d U
$$

d'W علامت نامساوى مربوط است بهبرگثت نايذيريهاي داخلى ممكن در سيستم. واضح است كه اسْ موتعى بهمقدار سداكثر خود مىرسدكه علامتت تساوى به كار رود لذااين فزآيند برگشـت يذير است كه
ييشترين مقدار كار را توليد مىكند. يس

$$
d^{\prime} W_{\max }=T d S-d U
$$

بر حسب توابع هلمهولتزوگيس

$$
\begin{align*}
& d^{\prime} W_{\max }=-d A-S d T \\
& d^{\prime} W_{\max }=-d G+V d p+p d V-S d T \tag{-}
\end{align*}
$$

$$
(\lambda-1 \cdot r)
$$

برای فر آيندى دز دماى ثابت
$\left(d^{\prime} W_{\text {max }}\right)_{T}=(-d A)_{T}$

$$
d^{\prime} W_{\max }-p d V=-d G+V d p-S d T
$$

سِس براثى نرآيندى در دما و نشطار ثابت

$$
\left(d^{\prime} W_{\max }-p d V\right)_{T, p}=(-d G)_{T, p}
$$

 1 －بيثترين مقدار كار خروجى در زرآيندى تحت دماى ثابت برابر است با كاهيّش تابع
هلمهولبَ سيستم.

؛ pdV بيشترين مقدار كار خحروجى در نر آيندى تتحت نشار و دماى ثابت، باستثناى كار－Y
برابر است باكاهش تابع گيبس سيستم.

خود آزمايى（سؤالات مرورى）
1 － 1
「 「 「
－－－r

- f - - انتاليى تشكيل را تعريف كنيد.
- 1 ترا حرارت واكنش با انتاليّ تشكيل تفاوت دارد؟ -V
- - -

 اثرى بر روى سقدار آن دارد؟

- - ا برایى تعيسن توابع گيبس امشاندارد جه حالكت مبنايى به كار مىرود؟ 11 - 11 شر ط لازم برايى تعادل واكتنىى كه (الف) در دما و فشار ثابت صورت مى
¢
ه - ـ ثابت تعادل را تعريف كنيد.
 در بكت مشلوط تأنير بحْنارد؟
- IV 1^ 1 - قانون سـوم ترموديناميكت را بيان كنيد. 19 - 19
 - Y - Y

مسائل (T احاد انتليسى)

دماى نتطه شُبنم را براى بخار آب موجود در محصولات حاصله از احتراق واككتشهاى زير

$$
\begin{aligned}
& \text { حجم ثابت صورت مىيگير د، هيست؟ } \\
& \text { IY IY درجه واكثش را تعريف كنيد. } \\
& \text { - Ir }
\end{aligned}
$$

(الف) بنزن با • ه در همد هوایى اضانى
 (ب) (بنتان با نــبتهاى صصهيح شيميايى (نستهاى استوكيومترى)

(1 (ج) درصدل هوای اضافى
(د)
 حجمى سوختت بهصورت زير است :

$$
\begin{aligned}
& \mathrm{CH}_{\mathrm{f}}=\mathrm{r} \Delta \mathrm{~J} \text { دهد } \\
& C_{\gamma} H_{\Lambda}=Y \Delta \text { درصد } \\
& \mathrm{C}_{0} \mathrm{H}_{1 Y}=F \cdot \text { درصد }
\end{aligned}
$$

تجزيه و تحليل حجمى محصولات خشكى مامله از احتراق نتايِ زير را بهدست مىدهد :

$$
\begin{aligned}
& \mathrm{CO}_{Y}=1 Y \text { درصد } \\
& \text { درصهد } \\
& \text { OY } \\
& N_{Y}=\lambda \Gamma \text { درصد }
\end{aligned}
$$

با فرض اين كه احترآ در نشار اتمسفر صورت گيرد، درصلد هواى تثورى و نقطه شبنم محصو لات را محاسبه كنيد.

 در صورتى كه آب محصولات در حالـت مايع باشلد.
سوخت هيدروكرين ويزهاى با هواى اخانى سوزانيده شده و تجزيه و تحليل محصولات A-V

خشثكي ساصله از احتراق نسبتهاى سحجـى زير را بهدست مىدهد :

$$
\begin{aligned}
& \text { درصد } \mathrm{CO}_{\gamma}=1 \cdot / \\
& \text { درصد } \\
& O_{Y}=0 \text { درصد } \\
& \text { در }
\end{aligned}
$$

تركيب نقريبى سوست مورد نظر و درصل هواى تتورى را تـخمين بزنيد.
تجزيه و تحليل محعـولات خشكي حاصله از احتراق CHF نتيجه زير را بهدست مسدهد . نسبت هواـ سوختت را محاسبه كنيل.

$$
\begin{aligned}
& \mathrm{CO}_{Y}=1 \cdot \mathrm{~J} \\
& \text { درصد } \mathrm{CO}=\cdot / \mathrm{Y} \\
& \text { OY } \\
& \text { در }
\end{aligned}
$$

احترات سونتهاى مايع - اكتان، الكل ميتليك، يروبان و الكل اتيليكك را با مقدار مواى
تتورى در VVº در نظر بگيريد. اين واكنشها رااز جنبههاى زير مقايسه كنيد :
(الف) حسبم مسصـولات بر واسد انرزى آزاد شده
(ب) (ب) حبم شوا بر واحد انرزّى آزاد شده
(ج) انرزى آزاد شده بر واحد جرم سوخت
مقايسات خود را شُرح دهيد.
 º R
 A. 11 را معاسبه و غلظتهاى نهايِ را در خاتهـ گر مايش تعين كُنيد. فرض كنيد كه سيستم متابولبكت انسان را مى توان با يكت واكنش احترات ساده معادل گرفت A_IY كه در متان و هوا در Y Y براي بردن در فزآيند احتراق لازم خواهد بود? هجه مقدار دىاكسيد

كربن توليد خواهـد شد؟

A_Ir

معجاسبه كنيد.
اكتان مايع با مقدار معينى هواى اضافى سوزانده شده بهطرزى كه دماى شعله آد ياباتيكت A. 14

اخانى به كار رفته را محاسبه كنيد.
دماى شعله آدياباتيك را برای سو ختن متان گازى با هوایى تئورى محاسبه كنيد. احتراق را
كامل فرض نمايِد.
 N. 17
 حرارتى را بهازاى هر مول سو خت مـجاسبه كنيد. دماى شعله آدياباتيكت را براى سو ختن كربن جامل با • ، Y درصل عوأى تئورى تعينن كنيد. N_IV
 راكامل فرض كنيد.
اتتاليى احتراق را برایى متان كازیى و اككتان مايع در VVº تعيسن كنيد در مور تى كه يراكسيل N. 11

هيدروزن در حاللت مايع بهعنوان اكسيد كننده برایى واكنش احتراق بهكار رود.
 N. 19 احتراق راكامل فرض كنيد. مقدار lbm.mol/min A_Y.

 مساسبه كنيد كه كانال عبور دهنده مصصولات احتراق بايل براى آن دما طراحى شود.
 A. YI اخافى مى
 بيند جرم سو خت از دست مىدهد؟ا اين مقدار جه درصدى ازالرزش حرارتى بالايى است؟

 باستناى كار pdV. جگگونه اين مقادير باكار pdV انتجام شدد در فرآ يند مقايسه مىشو در كور ههاى گرمايشّى منازل، متاز با Y Y درصد هواى اضانى سوزانده مى A_Y
 بازيابى مىیگدد. اگك در تحت اين شرايط هوا و سوختت در VVº خروجى يحصو لات احتراق جيست؟ A-YF در Y Y Y . تر Y I F, ㅇF

 بهسوخت لازم و درصد هواي اضافى را برایى شرايط جريان داثم و عدم اتلاف حرارتى از مشعل محاسبه نـايبد.

بعضى از متخصصين علمى ادعا مىكتند كـه بـا نقصـان هـرجـه بـيشتر منـابع سـوخت هيدروكربنى، هيدروزن تويلد شده از طريق الكتروليز آب روز بهروز موارد استفـاده وسيعترى را بهعنوان سو خخت يِدا خواهد كرد. ارزش حرارتى بالايى و پايينى را بـرایى هيدروزن گازی در VVº و atm و 1 واسبه كنيد. براى ذخيره نمودن هـيدروزن در
 منز
 در تودهگاز خروجى از دودكش نيروگاهها اكسيدهاى ازت (يعنى NO و عيره) وجود دارده، زيرا در موتعي كه گازهاى داغ حاصنله از احتراق در تماس سريع با سطع نـبـتأ سرد لولههاى

 بهطور ناگهانى از دماى بالاتر رأ تخمين بزنيد.
 فشار ثابت latm
 بيشترين مقدار كار خروجى یر اين زو آيند جيست؟ اگگ اين زو آيند تحت شرايط جريان دائم مورت گير د، كار خروجى وانعى جه مقدار خواهد بود؟؟
 كنيد.
 جقدر است؟
بيسترين تعداد فازهاى همگنى كه مهكن است برای سيستمى متشكل از (الف) يكت جزه (ب) دو جزه (ج) سهجزه وجود داشته باشلـ، خيست؟ NA.YF
 بهكار بردن ثانون فاز گيبس در مورد اين سيستمه تعداد درجات آزادى را برائى سه سالت (الف) هوا و بخار، (ب) هوال، بخار و مايع و (ج) هوال، بخار و يخ تعيين كنيد.

مسائل (آحاد متريك)

(\quad N- اM

 در صور تي كه آب محصولات در حالئث مايع باشد.

 مساسبه كنيد.

N_VM

$$
\begin{aligned}
& \mathrm{CH}_{\mathrm{F}}=7 \cdot \mathrm{P} \cdot \mathrm{~J} \\
& C_{Y} H_{Y}=r \cdot د ر ص د ر \\
& N_{T}=F \text { درصد } \\
& C O_{Y}=ף \text { درصد }
\end{aligned}
$$

نسبت هوا بهسوخت را اگگر سو خت با • Y درصد هوای اضا فى سوزانده شود مساسبه كنيد.
همخنين نقطه شُبنم محصو لات را براي فُّار kPa + . ا نعيين كنيد.

اكتان مايع با مقدار معينى هواى اضافى مىسوزد بهطورىكه دمـاى شـعله آديـاباتيكك
 محفظه احتراق شونل محاسبه نمايِلـ.
N_I M كنيد استراق كامل صورت مىگيرد.
 (9 . . K K محفظه را تركك مى FY AK

هو ا بهسوختـ را مـالسبه كنيد.

هيه =مايى برايى تجزيه هيدروزن دو اتتمى لازم است تا جائي كه هيد روزن نكث اتمى توليد

 دماى شعله Tد ياباتيكت را براتى سوختت كربن جأمل با . . Y درصد هواى تئورى نعيين كنيد. هيه درصد هواي اخافى لازم است تا تولِيد دماى شعله آدياباتيكت K K . . . 11 بنمايد؟ فرض كنيد احتراق كامل صورت مى
انتالِي الحتراق متان گازى و اكتان مايع در با به عنوان اككيد كنتده واكنث احتراق به كار رود.
 latm
 محصو لات احتراق حقدر بايد باشد؟ A_19M

A_r.M
 محاسبه كنيد.

 را محاسبه كنيد.
 براى فثارهاى 1، ها و • 1 اتمسفر محاسبه كينيد.

 A_rfM

ای . . . K تجزيه بخار آب رابه H

$$
\mathrm{CO}_{2} \nleftarrow \mathrm{CO}+\frac{1}{2} \mathrm{O}_{2}
$$

$$
\mathrm{C}_{2} \mathrm{O} \underset{\leftarrow}{\rightleftarrows} \mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2}
$$

الز گازهايى مورد توجهه اسسته در دماهاى بايِن يونيزه مىشوند. يكى از روشهاى توليد
 پاسِن يونيزه مىشود. آرگون را بهعنوانگًاز حامل در فنشار كل atm

 براى فنـار كل atm • ا تكرار كنيد. رفتار الُكترونها را نظير يكت كاز ايدهآل تكت اتمى فرض كنيد.
N_Y•M (A_r|M فرآيند جريان دائم مىسوزد. انـرزى آزاد شــده و بـرگشت نـايذيرى را بـراى دماى محصو لات K K

 بصاسبه كنيد. يرويان مايع با هوادر
 درصد HHV (ارزش حرار تى بالايى) سوخت بهآب داده شود، مقدار هوأى اضافى مورد نِياز را محاسبه كنيد. A_r ΔM

هيدروكربنى، هيدروزن توليد شده از طريق الككتَوليز Tبـ روز بهروز موارد استفـاده وسيعترى را بهعنوان سوخت يِدا خواهد نهود. ارزش خرارتى بالايى و بايينى را برای

 مخزن ه 9 ليترى بنزين (اككان) توليد نمايد.
 زيرا موتعى كه كازهاى داغ الحترات در تماس سريع با سطع نسبتأ سرد لولههاى ديگت بـار

 دمايى بالاتر را تخمين بزنيد.
ثابت تعادل را برای واكنش
A_rAM حرارت واكنيّن محاسبه گرديده از جدولل A-A-r معاسبه كنيد.

A_r $9 M$
 . 1 • atm
در بهدست Tوردن معادله (A_IV) حرارت واكنش در معدودهاى از دما ثابس فرض شد. A_F $\mid M$
 انرزى لازم برای گرم كردن مشلوطى بهنسبت مولى مسـاوى از نيتروزن و اكـبيرّن را از K H ت Y A AK
A_FrM

توليد خواهد شد؟

A_FFM
تجزيه گگر دد. دزجه دمايی اين عمل اتفاق مى انتدب؟
A_FDM
 اكَر دماى اوليه

$$
\frac{1}{2} \mathrm{O}_{2}+\frac{1}{2} \mathrm{~N}_{2} \not \rightleftarrows \mathrm{NO}
$$

 معادله واكنش زير بهكار روند :

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \not \mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \\
& \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \nsupseteq \mathrm{OH}+\frac{1}{2} \mathrm{H}_{2}
\end{aligned}
$$

 A. $-1 M$

 : در اين شرايط جقبدر است؟
 ميشوند. • IFD.K

مساسبه كنيد.

 طراحى شـده است. دمأى خـروجى مسحصولات احـتراق If. . K الست. نسـبت هـوا بهسوخت لازم و درصلد هوای اضانى را براى شرايط جريان دائم و عدم اتلاف حرارتى از مشبعل محاسبه نمايِلـ.

جرم سو خت از دست مىدعد؟ اين مقدأر هه درصلـى از ارزش حرارتى بالآيى است؟ بيشتر ين مقدار كار رادز موتع تغيبر آب اشباع بهبشـار اشبـاع در V . . .
(الف) دز فر آيندى تحت دماى ثابت، (ب) در نرآيندى تحت فثار و دماى ثابت باسنشاى

 צّابت alm ا و دماى ثابت
 بيشترين مقدار كار خروجى در اين فرآيند جيست؟ اگگر اين فرآيئد تحت شرايط جريان دائم صورت گيرد، كار خروجى حقيقى جقلدر خواعد بود؟
 محاسبه كنيد.

A_ هqM نسـبت هوا بهسو خت با برایى احتراق استوكيو ستى تعيين كنيد. همحنين ارزشَهاى حرارتى
 مخلوط هوا -سو خت مساسبه كيد. (اتان گازی A_ • •M

A-7)M

 ه دستگاه را تركك كند. همجنين برگثت نايذيرى را براى اين زرآيند محاسبه كنيد.

 ساعت و برگثت نايذذ يرى براى واكنش را ما محاسبه كنيد.
洼 ${ }^{\circ} \mathrm{C}$
A-1A از اجزا و (ب) جدول

A_7 M
 ذغالسنگت بر سباى جرمى برابر است با :

$$
\begin{aligned}
& \text { C } C \text { درصد } \\
& \text { HY درصم V } \\
& \text { O }{ }^{\text {O }} \\
& \text { N }
\end{aligned}
$$

$$
\begin{aligned}
& \text { HYO } \mathrm{H} \\
& \text { ه درصد خاكستر }
\end{aligned}
$$

تجزيه و تهليل أرسات محصولات خشـكث احترات بر مبناى حجمى نتيجه مىدهد:
Yا تهليل جرمى مواد زايد، Y Y درصد VQ , C درصد خاكستر را مشخص مىكند. برانى

 محجاسبه كنيد.

 و Y رابرای T
 , و جرم

مس,

1 JANAF Thermochemical Tables, Document PB 168-370, Clearinghouse for Federal Scientific and Technical Information, August 1965.
2 Selected Values of Chemical Thermodynamic Properties, NBS Technical Notes, 270-1 and 270-2, 1955.
3 Selected Values of Physical and Thermodynamic Properties of Hydrocarbons and Related Compounds, API Res. Project 44, Carnegie Press, Carnegie Institute of Technology, Pittsburgh, Pa.
4 Callen, H. B. : "Thermodynamics," John Wiley \& Sons, Inc., New York, 1960.
5 Kirkwood, J. G., and I. Oppenheim: "Chemical Thermodynamics," McGraw-Hill Book Company, New York, 1961.

6 Lewis, G. N., and M. Randall, "Thermodynamics," $2 d$ ed. (revised by K. S. Pitzer and L. Brewer), McGraw-Hill Book Company, New York, 1961.
7 Reynolds, W. C.: "Thermodynamics" 2d ed., McGraw-Hill Book Company, New York, 1968.
8 Wark, Kenneth: "Thermodynamics,"2ded., McGraw-Hill Book Company, New York, 1971.
9 Van Wylen, G. J., and R. E. Sonntag: "Fundamentals of Classical Thermodynamics," Jobn Wilcy \& Sons, Inc., New York, 1965.
10 Sears, F. W.: "Thermodynamics," 2d ed., Addison-Wesley Publishing Company, Inc., Reading, Mass., 1953.
11 Hatsopoulos, G. N., and J. H. Keenan: "Principles of General Thermodynamics," John Wiley \& Sons, New York, 1965.
12 Keenan, J. H., and J. Kayc: "Gas Tables," John Wiley \& Sons, Inc., New York, 1948.

13 Holman, J. P.: "Experimental Methods for Engineers," 4th ed., chap. 13, McGraw-Hill Book Company, Ncw York, 1984.

Q

سيكلهاى قدرتو تبريد

1 9 ـقدّم4

 فرإبندهاى مختلف رابر وششنى با يكديگر مـايسه كرد.

"ههمى در كاربردهاى اتومبيل، هواييما و نيروى الكتريكى درآمده است. در بعضى موارد ملاخظات
 به ذغالسنگگ در نيروگاهها، ارجحيت گاز طبيعى نسبت بهسوخت مايع در منازل و آبار تمانها. نكته اساسى كه اغلب در ملاسظات زيست مسيطى در مورد آن بى تو جهى مىشود اين است كه مقدار آلودگى در اكثر طرحهاى توليد قدرت مستقيمأ متنامبـ با مقدار سوخت مصرفى است كه
 مقدار كل آلودگیى كمتر است. اين بدين معنى است كه تحليل يا طرح تـ موديناميكى كه بتواند بازده را .بهبود ببخشد بهكاهش تاثيرات منفى بر زيست محيطى كمكت خواهد كرد. در اين نمـل ما اساساً بهتحليل فتى توجه داريمّ، عوامل اتتصأدى و زيست محيطى خارج از سيطه بـحث ماست. با وبود اين لازم است بهساطر داشته باشيم كه اين متغير ها بايد در هر طرح نيروگاه واقعى مد نظر ترار گيرد.

O_Y

الكُو برای بسيارى از سيكلها، سيكل كارنوى بـحث شـده در فــل ه مىباشـد زيرا برانى دماهاى معين شده، بازده حرار تى هنين سيكلى حداكثر مقدار ممكن است، يعنى

$$
\begin{equation*}
\eta_{t}=1-\frac{T_{L}}{T_{H}} \tag{9-1}
\end{equation*}
$$

از معادله (1 ـ9) دو مفهوم اساسى تابل دركك است :
1 - هرجه دمايعى كه در آن حرارت اضانه مىشود زيادتر باشـد بازده بيستر است.

اين دو مفهوم در مورد تدام سيكلهاى قدرت واتعى صادق است. مفهوم اصلى بازده وا بهصورت زير به خاطر خواهيم سيرد.

$$
\begin{equation*}
\eta=\frac{\text { انرزی مصرنى اثر مفيد }}{\text { اثـد }} \tag{9.5}
\end{equation*}
$$

(الف)

(ب)

شكل 1-1 (الف) سيكل كمرت كارنو (ب) يخخحال كارنو

هر دو فرآيند برگثشتبذير و واتعى را در بخشهاى زيرين در نظر خواهيم گرنت و تأثيرات برگثيت نايذيرى را بر زوى بازده نثـان خواهيـم داد.
يكت سيكل تبريد عكس يكت سيكل تدرت است، يكث كار ورودى خالص و يكت حرارت
خروجى خالص وجود دارد. سيكلهاى كارنو را در شكل 1 ـ 9 مقايسهسنيد. بازده سيكل قدرت توسط
 توسط رابطه زير تعريف ممشود.

$$
\begin{equation*}
\text { COP }=\frac{\text { كار ورودی تبريد }}{\text { تر }} \tag{Q,r}
\end{equation*}
$$

براى سيكل تبريد برگشتـبذير كارنو اين رابطه بهصورت زير در ممى آيد.

$$
\begin{equation*}
\mathrm{COP}=\frac{Q_{L}}{W}=\frac{Q_{L}}{Q_{H}-Q_{L}}=\frac{1}{T_{H} T_{L}-1} \tag{9.f}
\end{equation*}
$$

عجيب نيسـت كه مقدار COP بزرگتر از واسد باشد. اين حقيقت دليلى است براي اين كه COP بازده ناميده نمى شود، هرجند مقدار آن برابر امت با "اثر مفيد " بخثـ بر "انرزّى مصرفى ".

سيكلها

برای شُوع بحتث درباره سيكلهاى تدرت، شكل الف Y-ه را در نظر مىگيريه. حرارت به

ديگّ بخار داده مىشود ثا هايع بهبخار تبديل گردد. سيس بخار بهصوزت آدياباتيكت در داخل توربين منسسط شده توليد كار خروجى مىكند. بخار خارج شده از توربين واردكندانسور (جَگالنده) ' مىشود و

 مايع هرفشار بهديگت بخار تحويل و سيكل دوباره تكرار مىشود. در يكت سـيكل بـرگشت بــنير؛
 سيكل تدرت بخار شايد متداولت توين سيكل حرار تى توليد انوزّى برق دو جهان باشد. سيكل الصلى رانكين در شُكل در بعضي از كاربردهاى تخصصى سيال عامل ديگ, مى تواند بهكار گرنته شود. سيكلى الصلى رانكين با

 است زيرا شامل تراكم يكت مشلوط تر يه بايع اشباع مىشود. طرح بميى كه جنين تراكمى را انجام دهد،
 همحخنين ساختن يميى كه اين كار سـخت را انجام دهد خيلى غير عملى بهنظر مى رسل. دمایى متوسطى كه

 كارنويى كه بين 1 و T_{1} كار مى كند كمتر است.

انتخاب سيال عامل

تا اين جا از اين بحث مى توان فهميد كه نمودار T-s قابليت استفاده از سيال خاصى را برايى سيكل رانكين تعين مىكند.كمال مطلوب اين است كه سيالى بادها بی بـرانى بالا و با خطوط مايع و بشار اشباع با شيب زياد داشته باشيهم، بهطورى كه سيكل رانكين هرجه بيشتر بهعملكرد سيكل كارنو نزديكا

شو د. در عين حال، حدود فينار لازم بايلد معقول باشد و در دسترس بودن و قيمت سيال نيز از عوامل
 خواهلد داشت زيرا مقدار انرزٔيى راكه مى تواند در دماى بالا بهسيال تحويل شود تعين مىكند. با در نظر گرفتن: تدام اين. عوامل، آب بهعنوان سيال عامل خوبـى برايى سيكل تدرت رت رانكين است. با هزينه هايِن

شكل Q_ M سيكل اصلم قدرت بخار رانكين (الف) طرحواره (ب) نموذار

ترموديناميك
 (V •هD $\left.\Delta^{\circ} \mathrm{F}\right)$ مهندسى آن راكنترل كرد.

بهبود بازده
يكث طريق بهود بازده سيكل رانكين ادامه دادن فر آيند گرمايش در نثار ثابت از نقطه ابه
ناسيه داغ مطابت شكل rـه همىباشد. بخين فر آيند گرمايشى داراى دو مزيت است :

اـ دماى يتوسطى راكه در آن حرارت اضافه مى شود انزايش مىدهد و بهموجب آن بازده سيكل انزايش مى يابد.

 عمل مىكند.

ثكل ז-q نمودار دما ـ آنترويه برأى سيكل رانتين با بخار داغ

راه ديگر بهبود بختيدن بازده سيكل رانكين، بهخدمت ترنتن يكت عمل بازگرما يثـ ' مطابق

 (ب) نمودار دما ـ آنتروايـ

1- Reheat

ترمود يناميك

حرارت داده مى شود. بشار Tاب ستس در دومين مرحله توربين تا فشار P4 منبسط مى بازگرمايش دارای مهان دو مزيت سبكل اصلى داغ مىباشد و ستى در جلوگّيرى از رطوبت بهداخل توربين مؤثرتر است.
نرخ حرارتى'

امططلح متداول مورد استفاده در ميان ههندسين نيروگاه نرخ حرارتى اسست كه بهصورت زير
تعريف مىشود
 يا بر سسـب بازده حرارتى

$$
\begin{equation*}
\text { = } \frac{3413}{\eta} \mathrm{Btu} / \mathrm{kWh} \tag{9.0}
\end{equation*}
$$

مثال 1-9 سيكل رانكين

 مساسبه كنيد.
 نمودار مولير، برای خواصّ بخار آب داريم

$$
\begin{aligned}
& h_{1}=1357 \quad\left(500 \mathrm{psia} ، 700^{\circ} \mathrm{F}\right) \\
& h_{2}=935 \quad\left(s_{1}=s_{2} ، p_{2}=2 \text { psia }\right) \\
& \left.h_{3}=94.02 \text { (2 psia } د \text { رانع }\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { كار بمب } \\
& h_{4}-h_{3}=v_{f}\left(p_{4}-p_{3}\right)=\frac{(0.01623)(500-2)(144)}{778}=1.496 \mathrm{Btu} / \mathrm{lbm}
\end{aligned}
$$

$$
h_{4}=95.52 \mathrm{Btu} / \mathrm{lbm}
$$

كار خالص خروجى از سيكل برابر باكار خروجى از توربين منهاى كار ورودى بهي باريمب يا ($\left.h_{1}-h_{2}\right)-\left(h_{4}-h_{3}\right)$

محاسبه مىشود :

$$
\eta_{L h}=\frac{W}{Q_{H}}=\frac{\left(h_{1}-h_{2}\right)-\left(h_{4}-h_{3}\right)}{h_{1}-h_{4}}=\frac{(1357-935)-1.496}{1357-95.49}=33.3 \text { درصد }
$$

مثال Y_Q سيكل رانكين با بازكرمايش

 محاسبه كيند.
 انتاليِهاى متفاوت را ممتوان از روى نمودار مولير بهدست آورد.

$$
\begin{aligned}
& h_{1}=1357 \quad\left(500 \mathrm{psia}, 700^{\circ} \mathrm{F}\right) \\
& h_{2}=1194 \quad\left(s_{1}=s_{2}, p_{2}=100 \mathrm{psia}\right) \\
& h_{3}=1379 \quad\left(100 \mathrm{psia}, 700^{\circ} \mathrm{F}\right) \\
& h_{4}=1047 \quad\left(s_{3}=s_{4}, p_{4}=2 \mathrm{psia}\right) \\
& h_{5}=94.02 \quad(2 \text { psia مايع اشباع در) } \\
& h_{6}=95.52 \quad \text { (مثال } 1 \text {, } 1 \text {, الخاحظه كنيد) }
\end{aligned}
$$

حالا بازده حرار تى باطريق زير مهاسبه مىشود :

$$
\begin{aligned}
\eta_{l h} & =\frac{W}{Q}=\frac{\left(h_{1}-h_{2}\right)+\left(h_{3}-h_{4}\right)-\left(h_{6}-h_{5}\right)}{\left(h_{1}-h_{6}\right)+\left(h_{3}-h_{2}\right)} \\
& =\frac{(1357-1194)+(1379-1047)-1.496}{(1357-95)+(1379-1194)}=34.2
\end{aligned}
$$

بازياع

شكل هـه اهيكل بازياب ايدهآل بهار

شكل كه سيكل بازياب ايدهآل ماند سيكل كارنويى است كه بهيكت سمت خم شده باشد. اصطلاع بازيابع به معنى بازيافت حرارت در سيكل بهصورت داشلى توسط فرآيند تبادل حرارتى مىباشد.

شكل 4ـ母 نمودار دما ـ آنتروبع

از نظر عملى مــكلاتى برای سيكل بازياب ايدهآل وجود دارد. امكان نداردكه توربينى طرح
 مبدلهاى حرارتى عملى كه منجر بهكامش بازده سيكل وانتمى بازياب نسبت بهمقدار ايدهآل آن خواهد شد بابد معرفى شود.

سرمكنهاى Tب تغديه (ورودى)

گرمكن آب تغذيه وارد مىگردد. برايى واهد جرم خروج

 مبل حرادتى تهاس مستقيم ' ناميده ميشود.
 $p_{S}=p_{6}=p_{2}$ نشار ثابت صورت گيرد. براساس سيكل نشان داده شده در شكل اي

 ثرنشار طراحى شده براى مايعات غير قابل استفاده مىشيود. در سيكل بخار آب واتعى، انت نشـار

 اششبع در خروجى گرمكنن موجود باشد.

شكل Y-Y سيكل بازياب عملم با يكترمكمن آب تذدئ باز

1- Direct-contact heat exchanger.

 دستگاهى در شكل ^ــه نشان داده شده است. امطللح بسته بهاين معنى است كه آب ورودمى با بشار آب برداشت شده از توربين مخلوط نمىشود. از بمب كو جكتر جذاگانهاي برای بمب كردن سامـل ميعان' بهنشار ديگت بخار استفاده ميشود. در اين سالت تنها يكت يمب اصلى تغذيه آب وجود دارد. طرحواره ديگرى برايى استفاده ازگرمكن آب تغذيه بسته در شكل QـQ نشان داده شده است. در اين
 كه از طريق يكت شير شناور اجازه ميدهد مايع عبور كند اما مانع عبور بشخار مىشود.
 $p_{5}=p_{7}=$ اصلى Tب مايع را بهانشارديگت بخار میرساند بهطورىكه در شكل
 بهشرايط خاص سيكل بشخار آب بي تواند در ناحيه دأ يا مسخلوط تر باشد. درگرمكن بـر بـته برداشت بـخار

1- Condensate
2- Steam trap
3. Condenser hot well

ترموديناميك

به طرف ديگك بـخار

شكل q_q كرمكن آب تغديه بسته با حاصل ميعان به جادكرم جكالنده

آب در معرض لولههايى است كه آب سرد برنشار در ميان آنها جريان دارد. در نتيجه بشار آب بر روى لولها تقطير شده و انرزى Tازاد شده در اثر فرآيند تقطير، دماى Tب تسويل شده بهديگ بشار را انزايش مىدهد. مينوان انتظار داشت كه در اين لزآيند Tب يرفشار تا دماى اسباع مربوط بهنشار برداشت گرم شود كه در اين دما تقطير صورت ميگيرد. بنابراين در نقطه V مايع متراكم شده حاصل خواهد شد.
مى توانيم بـحثّان را در مورد دماى خروجى از گرمكنهاى آب تغذيه بهصورت بـول زير خلاصه كنيم.

دماى آب تغديه خروجى

دماى اشبـاع مر.بوط بهنشـار
نشار برداشت
باز
برداشت (مايع اشباع)
دماى الشبـاع مريوط بـر بهنــار
زشار ديگت بخار
بسته
برداشثت (مايع متراكم شدهم)

بر'ى نزديكتتر شدن بهسيكل بازياب ايدهآل در عمل از هندين مرحله بازياب استفـاده

 براى مرححله سوم توربين باقي خواهد ماند. تعلاد گرمكنهاى Tاب تغذيه استفاده شُده در نير وگاه واقعى بر اساس ملاحظات اتتصهادى تعيِن مىشود. بهطور كلى اگر بـخواهيم مشارج اضافي را تو جيه كنيم بايد الزايش سرمايهگذارى ثابـت براى گر مكنهأى اضانى، مقدار كاهن هز ينههاى جارى در اثر بازدهعاى بالاتر سيكل را جبران كند. جهت محاسبه كار خروجى و بازدههاى سيكلهاى باز ياب بايد موازنه انرزى براى هر بز •

سيكل مانند ساير سيكلها صورت گيرد. جهت انجام هينين موازنه انرزّى براي توربينها و بميها نياز به

 برایى دو گرمكن آب تغذيه شكل • ا-9 بهصورت زير بنويسيم :

$$
\begin{aligned}
& \text { اولين گرمكن }{ }_{\text {' }}^{\text {(1) }} \text { (1) } h_{7}+m_{1} h_{2}=(1) h_{8}+m_{1} h_{9} \\
& \text { دومن }+m_{2} h_{3}=(1) h_{7}+m_{2} h_{11}
\end{aligned}
$$

 يك معادله برای بهدست آوردن جريان برداشت خواهيم داشت. سل اين دستها از معادلات جريانهاى برداشت لازم رابهدست خواهد داد.

مثال "-ه

 مىكند. خروج بخار Tب از توربين در مىرود. بازده حرارتى سيكل رابا فرض انسـاط آنتروبى ثابت در توزبين مساسبه كيند.

حـــل : اين سيكل بهصورت طرحوارهایى در شكل Q_Q نثـان داده شده است. برانى انبساط آنتروبى ثابثت در توربين

$$
s_{1}=s_{2}=s_{3}
$$

از نمودار مولير بهدست مى آوريم

$$
h_{1}=1357 \quad\left(500 \mathrm{psia} ، 700^{\circ} \mathrm{F}\right)
$$

$$
\begin{array}{ll}
h_{2}=1194 & (100 \mathrm{psia}) \\
h_{3}=935 & (2 \mathrm{psia}) \\
h_{4}=94.02 & (2 \mathrm{psia} \text { مايع اشباعد) }
\end{array}
$$

يمب فثار یايِن، فشار ساصـل ميعان را به psia ، . ا مىرساند؛ بهطورىكه

$$
h_{5}-h_{4}=v_{f}\left(p_{5}-p_{4}\right)=\frac{(0.01623)(100-2)(144)}{778}=0.294 \mathrm{Btu} / \mathrm{bm}
$$

$$
h_{5}=0.294+94.02=94.31 \mathrm{Btu} / \mathrm{lbm}
$$

 7 وجود داشته باشد. بدين تر تيب

$$
h_{6}=298.60 \quad \text { (100 psia مايع الشباع در) }
$$

برای بمب؟ برفشار داريم

$$
h_{7}-h_{6}=v_{f}\left(p_{7}-p_{6}\right)=\frac{(0.01774)(500-100)(144)}{778}
$$

$$
=1.313 \mathrm{Btu} / \mathrm{lbm} \quad(3.0589 \mathrm{~kJ} / \mathrm{kg})
$$

$$
h_{7}=1.313+298.6=299.9 \mathrm{Btu} / \mathrm{bm} \quad(697.07 \mathrm{~kJ} / \mathrm{kg})
$$

 انرزیى برای گرمكن Tبـ تغذيه برابر است با

$$
\begin{equation*}
m h_{2}+(1-m)\left(h_{5}\right)=(1)\left(h_{6}\right) \tag{a}
\end{equation*}
$$

با جايگزينى مقادير عددى مناسب

$$
m(1194)+(1-m)(94.3)=298.6
$$

$$
\begin{aligned}
& m=0.186 \frac{\text { اكر اشل جريان شدل } \mathrm{lbm}}{\text { lbm }} \\
& \text { سالا بازده حرارتى سيكل از رابطه زير بهدست مى آيد. } \\
& \eta_{l h}=\frac{W}{Q_{H}} \\
& =\frac{(1)\left(h_{1}-h_{2}\right)+(1-m)\left(h_{2}-h_{3}\right)-(1-m)\left(h_{5}-h_{4}\right)-(1)\left(h_{7}-h_{6}\right)}{h_{1}-h_{7}} \\
& =\frac{1}{1357-299.9}[(1)(1357-1194)+(1-0.186)(1194-935) \\
& -(1-0.186)(0.3)-(1)(1.313)] \\
& \eta_{\phi h}=35.2 \text { درصد }
\end{aligned}
$$

تمام سيكلهاى بـخار كه قبلاُ دربارء́ آنها بحث شد ايدهآل هستند، بد ين صورت كه فرا يندهاى انسـاط و تراكم برگشت یذير فرض مىشو د. بهطور ضمنى فرض شده است كه انتهاى فشار بين اجزاى سيكل در اثر اصطكاكت سيال وجود ندارد. تابل ملاحظهترين انتحران از رفتار ايـدهآل در فرآينـد

 تأثير هاى متفاوت اصططكاك سيال سبب مىشود كه فر آيند مانند Y ـ ا عمل كند. هنوز فر آيند آدياباتيك است، اما در نتيجه برگشتنايذيريها، ازدياد آنترويى مشاهده مىشود. بازده توربين توسط رابطه زير تعريف مىشود :

 دستگاه تدرت مىگيرد. بهطور كلى بازدهعاى توربين و بيب را مىتوان فقط از طريت آزمايش تعين
 داده شده است.

ملاحظات عملى
 دست يافت. هرجزه سيكل، ماشين بيجيدهاي است كه داراى عملكرد متغيرى، بسته به بار، سرعت و شرايط مـختلف نشار و دماء مى.انشد. سيستـهاى كنتر لـ دققى بايلد بهخدمت ترنته شود تا عملكرد قابل

اعتماد و بايدارىى رال علاوه بر مسانظت ماشين از تغيرات ناگهانى بان، دور و ساير متغير ها دارا باشـلـ.

 زيست مسيطى مى تواند مقدار مساز محصوولات فزآيند احتراق راكه سالت كاركردى را مسدود مى كـكند

كتّرل نمايد. اگر سوخت ذغالسنگپ باشد، فرآيند بهخلمت گرفتن رضايتبخش آن در ديگ بخار مىتواند بهصورت يك مسأله كاملاُ مهندسى مطرح باشد. ذغالسنگپ بايد استخراج شود، باكشتى حمل گر دد و سسس در مكانى در واحح انبار گردد. سسس بايد آن را بهصورت بودر بهاندازه مناسبىى در آورد و بهوسيله يكت سيستم نقاله بهديگّ بخار انتقال داد. يكى از مسائل خارج كردن و از بين بردن مقدار تابل

 نير وگامهاى ملرن بـخار در سر تاسر گيتى هميشه جهت توليد قابل اعتماد توان الكتريكى به كار مىروند.

در اينجا خخاننده مـكن اسست بهطور موتتى هلـن از بازگرمايش، گرنكنهاى آب تغذيه و
غيره رااز نظر دور كند. هلدن افزايش بازده از طريق افزايش دمایى متوسطى است كهـ گرمايش بهسيكل

 تحمل كنتد محلود مىكند. همجخان كه مواد بهترى ساخته مى شود، مى توانيم در حقيقت دماهاى ديگگ

بخار و توربين را افزايش دهيم و بهباز ده بالاتر دست يابيم. هنوز بازي يابى و بازگرمايش جهت افزايش بازده به كار گرنهـ مىاشود.

 مثال Y_Y تأثيرات بازدههاى توربين بازده حرارتى برایى سيكل بازگرم مثال Y-ه بازده • • درصد باثند و فرآيندهاى انبساط ديگگ, آنترويى ثابت نباشد.

حـــل : فرآيندهاى انـساط برای توربينها بهصورت طرحوارهاى در شكل يبوست نشان داده شده است. فرآيندهاى آنتروبى ثابت بهصورت خط جين و فر آيندهاى انبساط واتعى بهصورت خري انطوط ممتد
 بازده توربين از معادله () 4 ب) برايى مرحله توربين اول داريم :

$$
\eta=\frac{h_{1}-h_{2}}{h_{1}-h_{2 s}}
$$

همتحنين برايى مرحله توربين دوم'

$$
\eta=\frac{h_{3}-h_{4}}{h_{3}-h_{4 s}}
$$

از مثال ب-9،

$h_{1}=1357$	$h_{4 s}=1047$
$h_{2 s}=1194$	$h_{5}=94.02$
$h_{3}=1379$	$h_{6}=95.52$

ثكلم مثال -q-9
$0.8=\frac{1357-h_{2}}{1357-1194}$
$0.8=\frac{1379-h_{4}}{1379-1047}$
$h_{2}=1227$

$$
h_{4}=1113
$$

سالا بازده سرارتى بهصورت زير مساسبه مىشود.

$$
\begin{aligned}
\eta_{/ h} & =\frac{W}{Q_{H}}=\frac{\left(h_{1}-h_{2}\right)+\left(h_{3}-h_{4}\right)-\left(h_{6}-h_{5}\right)}{\left(h_{1}-h_{6}\right)+\left(h_{3}-h_{2}\right)} \\
& =\frac{(1357-1227)+(1379-1113)-1.496}{(1357-95.5)+(1379-1227)} \\
& =27.9 \text { درصد }
\end{aligned}
$$

بايد تو جه داشت كه كل سرارت اضانه شلده در اثي انبساط غير Tنترويى ثابت در مرسله توربين اول كاهش مى يابد. اگَرچه اين كاهث برایى جبران تقليل كار خر وجى توربينها كانى نيست.

سيكلهاى قدرت اتمى (هسثهاي)

نيروگاههای اتمى كه امروزه كار مىكند و آنهايم كه براى آينده طرح شلدهاند همگیى از سيكل بخار Tب رانكين براى تبديل حرارت بهكار مفيد استفاده مىكنند. به جاى احتراق سو ستتهاى نسيلى' يكت راكتور اتمى بهعنوان منبع حرارتى كار مىكند. بهعلت خطرات راديواكتيو، طرحهاى هاهرانهاى براي جلوگيرى از آلودگى سيكل تدرت بخار آب اصلى به كار مىرود. سليم مايع غالباً به عنوان سيال ميانى برای تبادل سرارت از راكتور و سبس تبخير Tب تحت فشار بهكار مى كوود. لو له كثى و
 جلوگيرى شود.
نيروگاههاي اتمى دو حسن آشكار دارند. اولاُ آلودگى هوا توليد نمىيكند زيرا هيجگّونه محصول اعتراقى كه در هوا بخخش شود وجود ندارد، د ثانياً تقاضا براى سوختهايى نفتى وگاز طبيعى را كه در منازل، واحد هأى كوجكت صنعتى و اتو مبيل كاربرد دارد كاهث مىدهند. اما نيروگاههأى اتمى بدون ايراد هم نيستند. با انزايش مقدار تدرت توليد شده از طريت ومايل هستهای، مشكـل عـمـه زبالهماى اتتمى است. دفن زبالهها در غأ هاى ععيق زيرزمينى يا دريايى ممكن است اما احتياج بهدتت در

بهخاطر نوع سيالى كه بايد در داخل راكتور گردش كا كند و مواد استفاده شده در سـاخت

 تأثير مى گذارد. در نيروگاه سو خت نـيلى

$$
\begin{aligned}
& Q_{H}=\frac{500 \mathrm{MW}}{0.4}=1250 \mathrm{MW} \\
& Q_{L}=Q_{H}-W=1250-500=750 \mathrm{MW} \\
& Q_{H}=\frac{500 \mathrm{MW}}{0.3}=1667 \mathrm{MW} \\
& Q_{L}=Q_{H}-W=1667-500=1167 \mathrm{MW}
\end{aligned}
$$

 تو جه بهنوع كاربر دش مانند تبل خواهد بود.

از بحت قبلى مى توان دريافت كه سيكلهاى قدرت بخار داراي اجزاي زيادى است و برايى
 با روش تحليل سخصوص بهخود در نظر گيرد. روش خيلى بهتر و بذير نته شده در اين نصل براي تحليل

انواع ديگر سيكلهاى ثلدرت اين امت كه تـعليل سيكل بهصورت كلى در نظر گر نته شُود. اين روش هميثّه منجر بهنتايج صصيع خواهد شد.

1 - طرحوارهاى از ميكل رسـم كنيد. تمام نقاط ميكل را با علامت مشخص نمايِد. نوع

Y - باكشيدن فلش سرارت و ياكار داده شده و ياگگر نته شده بهاجزایى سيكل را مششصص كنيد.
Y - جريانهاى جرمى ورودى و خروجى اجزایى مختلف را مشخص نمايسد.

بالا بنوسييل.
ه ـ نتايج مطلوب از تحليل را دوباره بر حسب علاثم بالا بنويسيل.
Y - موازنة انرزی را براى تبادل كار و جريانهاى حرارت و غيره بنويسيل.
(V
گرمكن آب تغذيه، بنويسيد.
^ ـ خواصّ مورد نياز را با استفاده از اطالعات نرآيند (فرآيند آنترويى ثابت، فشار ثابت و
غير ه) تعيين كنيد تا مـحاسبات موازنه انرزى قابل انجام باشد.
9 ـ اطلاعات و مساسبات لازم را براى بهد مـت آوردن نتيجه لازم جمع كنيد.

مثال هـq بازيابى با دوترمكن آب تنذيه
 تقطير شده از طريت يكت تله بخار از اولين گرمكن بهداحل دومين گرمكن جريان مىيابد و آب تقطير

$$
\begin{aligned}
p_{1} & =p_{13}=p_{12}=p_{8}=p_{7}=p_{6}=10 \mathrm{MPa} \\
T_{1} & =540^{\circ} \mathrm{C} \quad p_{2}=p_{11}=2 \mathrm{MPa} \\
p_{3} & =p_{9}=700 \mathrm{kPa} \quad p_{4}=p_{5}=6 \mathrm{kPa}
\end{aligned}
$$

از نمودار مولير

$$
h_{1}=3475 \quad h_{2 s}=3005 \mathrm{~kJ} / \mathrm{kg}
$$

با استفاده از بازده توربين

$$
\begin{equation*}
0.85=\frac{h_{1}-h_{2}}{h_{1}-h_{2 s}} \quad h_{2}=3076 \mathrm{~kJ} / \mathrm{kg} \tag{a}
\end{equation*}
$$

بنابراين

$$
h_{3 s}=2828
$$

شكل مثال ب ه-1

$$
\begin{equation*}
0.85=\frac{h_{2}-h_{3}}{h_{2}-h_{3 s}} \quad h_{3}=2865 \mathrm{~kJ} / \mathrm{kg} \tag{b}
\end{equation*}
$$

$$
h_{4 s}=2136
$$

$$
\begin{equation*}
0.85=\frac{h_{3}-h_{4}}{h_{3}-h_{4 s}} \quad h_{4}=2245 \mathrm{~kJ} / \mathrm{kg} \tag{c}
\end{equation*}
$$

انتاليى مايعها حالا سهاسبه مى شود :

$$
\begin{equation*}
m_{1} h_{2}+\left(1-m_{1}-m_{2}\right) h_{7}=\left(1-m_{1}-m_{2}\right) h_{8}+m_{1} h_{1} \tag{f}
\end{equation*}
$$

$$
\begin{equation*}
m_{2} h_{3}+\left(1-m_{1}-m_{2}\right) h_{6}+m_{1} h_{10}=\left(1-m_{1}-m_{2}\right) h_{7} \tag{g}
\end{equation*}
$$

$$
+\left(m_{1}+m_{2}\right) h_{g}
$$

مقادير انتاليى مربوطه را مىتوان جايگزين كرد و معادلات را بهصورت همزمان هل ميكنيم تَا مقادير زير بهدست آيد:

$$
\begin{equation*}
m_{1}=0.0721 \mathrm{~kg} \quad m_{2}=0.1799 \mathrm{~kg} \tag{h}
\end{equation*}
$$

$$
\begin{align*}
& h_{5}=151.53 \quad\left(6 \mathrm{kPa} \quad د h_{f}\right) \\
& h_{6 s}-h_{5}=v_{5}\left(p_{6}-p_{5}\right)=\left(1.0064 \times 10^{-3}\right)(10000-6) \tag{d}\\
& =10.06 \mathrm{~kJ} / \mathrm{kg} \\
& h_{\text {as }}=161.59 \mathrm{~kJ} / \mathrm{kg} \\
& h_{9}=697.22 \quad\left(T=165.0^{\circ} \mathrm{C}, 700 \mathrm{kPa}, h_{f}\right) \\
& h_{11}=h_{10}=908.79 \quad\left(T=212.4^{\circ} \mathrm{C}, 2 \mathrm{MPa} \mathrm{~J}_{\mathrm{f}} h_{f}\right) \\
& h_{125}-h_{9}=\nu_{9}\left(p_{12}-p_{9}\right)=\left(1.180 \times 10^{-3}\right)(10000-700) \tag{e}\\
& =10.3 \mathrm{~kJ} / \mathrm{kg} \\
& h_{125}=707.5 \mathrm{~kJ} / \mathrm{kg} \\
& h_{7}=703.18 \quad \text { (} 10 \mathrm{MPa} \text { ، } 165^{\circ} \mathrm{C} \text { ،A-10M جدول) } \\
& h_{8}=912.07 \text { (} 10 \mathrm{MPa} \text { ، } 212.4^{\circ} \mathrm{C} \text { ، A-10M جدول) }
\end{align*}
$$

$$
\begin{align*}
& \eta=\left(h_{1}-h_{2}\right)+\left(1-m_{1}\right)\left(h_{2}-h_{3}\right)+\left(1-m_{1}-m_{2}\right)\left(h_{3}-h_{4}\right) \\
& \frac{-\left(1-m_{1}-m_{2}\right)\left(h_{6 s}-h_{5}\right)-\left(m_{1}+m_{2}\right)\left(h_{12 s}-h_{9}\right)}{h_{1}-h_{1.3}} \tag{i}\\
& \text { انتالبي در نقطه با الز موازنه انرزي بهدست مى Tيد } \\
& \left(1-m_{1}-m_{2}\right) h_{8}+\left(m_{1}+m_{2}\right) h_{12}=(1) h_{33} \\
& h_{13}=860.5 \mathrm{~kJ} / \mathrm{kg} \tag{j}
\end{align*}
$$

با جايگزينى مقادير انتاليى در معادله (i) بازده را بهصورت زير بهدست مى آوريم :

$$
\begin{equation*}
\eta=\frac{1048.4}{2614.5}=40.1 \text { درصد } \tag{k}
\end{equation*}
$$

 برابر است با با با kW

$$
\begin{equation*}
\dot{m}=\frac{20000}{1048.4}=19.08 \mathrm{~kg} / \mathrm{s}=6.87 \times 10^{4} \mathrm{~kg} / \mathrm{h} \tag{I}
\end{equation*}
$$

9_7

 حجم منبسط مى شود تا به فشار P1برمد. در اين نقطه سو يابي ورودى I باز مىشود و گاز با ادامه حركت

1- Clearance volume
2- Top dead center

1- Bottom dead center

فرآبندهاى واتعى تراكم و انبساط در سيلندر بهصورت ورآيندهاى تئورى نشان داده شده در

 شكل يكى p-v- مـو دار وانعى راكي مى تواند گر نته شود مشيخص ميكند.

 خميده بهجلو و عقب مطانطوركه در شكل (ب و ع 7 (1 - 9) نشان داده شده ساخت. البته يكث بروانه

1- Rotating- vane impeller
2- Diffuser

گريز از مركز' ' يا دمنده تفس سنجابى 'كمهيرسورى است با ازدياد نشار كم برايى جابهجاكردن هجم جريان زياد.

(الف)

(ب)

(c)

1. Centrifugal fan

2- Squirrel-cage blower

افزايش نشار در نتيجه عمل خيزش ' بر روى برهها حامل مى ميود. بهاين دليل، ازدياد نشار در هر مرهله

 نيروگاه ثابت متمايز است.

ترآم جند مرحلداى و حنكسردن ميانى

ترموديناميك

از سرد شدنى كه ممكن است بر روى ديواره سيلندر انجام پذيرد ماشين Tدياباتيكت است وكار معمولاًاز
 كمبرسورهاى تُريز از مركز ياكمبرسورهاى نوع توربينى به كار ممرود. توربوبت يكى از كاربر هاى كهير سورهاى توربينى است. كميرسورهاى گَريز از مركز بهطور وسيع در سيستههاى تهويه مطبوع بزرگّ بهكار مىدود.
برای كمبر سور Tدياباتيكت جريان دائم كه در شكکل A ـ ـ صورتت زير خواهد بود:

$$
\dot{m} h_{l}+W=\dot{m} h_{2}
$$

يا برایى گاز ايدهآل

$$
\dot{W}=m c_{p}\left(T_{2}-T_{l}\right)
$$

اگگر فر ايند برگثشت بذير باشـد

$$
T_{2 s}=T_{1}\left(\frac{p_{2}}{p_{1}}\right)^{(\gamma-1) \phi \gamma}
$$

(الف)

$$
\begin{align*}
& \text {, } \\
& \dot{W}=\dot{m} c_{p} T_{1}\left[\left(\frac{p_{2}}{p_{1}}\right)^{(y-1) \psi-1}\right] \\
& \text { بازدد كميرسور ماتند يمب بهصورت زير تعريف مىشود : }
\end{align*}
$$

$$
\begin{align*}
& \text { يا برای گاز ايدهآل بر طبق نمودار T-s شكل ب AـA } \\
& \eta_{ر, ~}=\frac{T_{2 s}-T_{1}}{T_{2}-T_{1}} \tag{9-9}
\end{align*}
$$

اگگر ترار است با فرآيند تراكم نشار شاى خيلى زياد ايجاد شود، اين كار تنها با يكت مكانيزم بيستونـ سيلندر خغلى مشكل است. اولأ تراكم تا فشار بالا منبر بهدماى بالاى غير مباز در سيلندر
 میشود. ثانيأ اگر سيلندر بهانداز:كانم بزرگّ باشدكه بتواند جابهجايى حبم مشتضمى از شوارادر نشار
 اطراف رينگهاى يـيتون مواجه خواهيم بود. اين مشكلات را مىتوان با اهرای تراكم در هنـدين مرسله مهان طوركه در شكل 9 1 ـ 9 نشان داده شده كامش داد. مشكل دماى بالا با سرد كردن گّاز بين مراسل سل میشود و مشكل نشت در فمار بالا بهحداتل ممرسد زيرا يستون ـسيلندر مرـكله دوم مىتواند
 باشد، مراسل تراكم زيادى را ممتوان بهكار گرفت.
مرد كتنده ميان مرسلهاى بهطور مقتغى خنْكـكن ميانى 'ناميده مىشود و براى مكانيزم

 در يكا كميرسور جند مرسله|ي (جند طبته) مللوب است كه فنـار ميان مرسلهاى طورى انتخاب

(الفـ)

ثكّل 19-9 آرايش خنك كن ميانى براي كميرسور هوا (الف) بططور طرحوارهاى (ب) نمودار دما ـ آتنرويـ

جهت تراكم آنتروبی ثابت بدين ترار است :

$$
\begin{aligned}
& W_{12}=h_{2}-h_{1}=c_{p}\left(T_{2}-T_{1}\right)=c_{p} T_{1}\left[\left(\frac{p_{2}}{p_{1}}\right)^{(\gamma-1) \psi}-1\right] \\
& W_{34}=h_{4}-h_{3}=c_{p}\left(T_{4}-T_{3}\right)=c_{p} T_{3}\left[\left(\frac{p_{4}}{p_{3}}\right)^{(\gamma-1) / \gamma}-1\right]
\end{aligned}
$$

كار كلى، جمع كارهاى اين مراحل است. اميدواريمكه نشار ميان مرسلهایى P2 را طورى يبداكنيم كه كار

$$
\frac{\partial W_{ى}}{\partial p_{2}}=0=\frac{\partial}{\partial p_{2}}\left\{c_{p} T_{1}\left[\left(\frac{p_{2}}{p_{1}}\right)^{(\gamma-1) \phi \gamma}+\left(\frac{D_{4}}{\rho_{2}}\right)^{(\gamma-1) \gamma}-2\right]\right\}
$$

كه برای خنكث كن ميانى ايدهآل بهدست مى آوريم.

$$
\frac{p_{2}}{p_{1}}=\frac{p_{4}}{p_{3}}
$$

يا نسبت نشار در عرض هر مرحله يكسان است. الم 1 P2

$$
\begin{aligned}
& \left(\frac{p_{2}}{p_{1}}\right)\left(\frac{p_{4}}{p_{3}}\right)=\left(\frac{p_{2}}{p_{1}}\right)^{2} \\
& p_{2}=\left(p_{1} p_{4}\right)^{1 / 2} \\
& \frac{p_{2}}{\rho_{1}}=\left(\frac{p_{4}}{p_{1}}\right)^{1 / 2}
\end{aligned}
$$

ما اين رابطه را براى يكث كميرسور دو مرسلهاى بهدست آوردهابم اما تحليل بيشتر نشان ميدهد كه نتيجه بهطور كلى برايى كميرسور קهند مرحله|ى نيز صادت است، يعنى با شرط وجود تراكم
 باشد حامل مىتردد. برای مثال، براى كمبرسور سع مرسلهانى
(نسبت نشار كلى) = نسبت نشار يكت مرحله
9.7 مثال

 انبساط Tنترويى ثابت فرض ميشود. محاسبه كنبد :

$$
\begin{aligned}
& \text { (الف) حجم جابهجاييى لازم بيستون را بر حسب نوت مكعب بر دتيقه جـهت تـراكـم }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (ب) بازده حجـسى راكه بهمورت زير معرفى شده است: }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (c) قدرت لازم بر حسب اسب بخار }
\end{aligned}
$$

$$
\begin{equation*}
\mathrm{PD}=V_{2}-V_{4} \tag{a}
\end{equation*}
$$

V ${ }_{4}$

$$
\begin{equation*}
V_{4}=0.05\left(V_{2}-V_{4}\right) \tag{b}
\end{equation*}
$$

حجم هواى آزادى.كه بهداخل سيلندر كشيده مىشود V - V است، بهطورى كه

$$
\begin{equation*}
V_{2}-V_{1}=100 \mathrm{ft}^{3} / \mathrm{min} \quad(2832 \text { liters } / \mathrm{min}) \tag{c}
\end{equation*}
$$

از آنجايى كه هر آيندهاى تراكم و انبساط آنترويى ثابتند، داريم

$$
\begin{equation*}
\frac{V_{1}}{V_{4}}=\left(\frac{p_{4}}{p_{1}}\right)^{1 / n}=\left(\frac{50}{14.7}\right)^{1 / .4}=2.395 \tag{d}
\end{equation*}
$$

$$
\begin{equation*}
\frac{V_{2}}{V_{3}}=\left(\frac{p_{3}}{p_{2}}\right)^{1 / 4}=\left(\frac{50}{14.7}\right)^{1 / 1.4}=2.395 \tag{e}
\end{equation*}
$$

با تركيب معادلات (b) و (c) و (d)

$$
\begin{array}{ll}
V_{4}=5.38 \mathrm{ft}^{3} / \mathrm{min} & (152.3 \text { liters } / \mathrm{min}) \\
V_{1}=12.9 \mathrm{ft}^{3} / \mathrm{min} & (365.3 \text { liters } / \mathrm{min})
\end{array}
$$

$$
V_{2}=112.9 \mathrm{ft}^{3} / \mathrm{min} \quad \text { (3196.8 liters } / \mathrm{min} \text {) }
$$

بلدين تر تي؟؛ حجج جابه جايِى يستون برابر است با

$$
\mathrm{FD}=V_{2}-V_{4}=107.5 \mathrm{ft}^{3} / \mathrm{min} \quad(3044 \text { liters } / \mathrm{min})
$$

بازده حجعى مى تواند بهطريت زير سحاسبه شود.

$$
\eta_{v o l}=\frac{p_{1}\left(V_{2}-V_{1}\right) / R T_{1}}{p_{1}\left(V_{2}-V_{4}\right) / R T_{1}}=\frac{V_{2}-V_{1}}{V_{2}-V_{4}}=\frac{100}{107.5}=93 \text { درصد }
$$

 كميسورى با حجـم مر ده صفر امكان ندارد. مهكن است مقدار كار را باگَرگتن انتگگرال سطع نـو دار p-V
$\oint p d V$

يا بهصورت كـى سادهتر در اين حالكت

$$
W=\oint V d p
$$

$$
\begin{align*}
\int_{2}^{3} V d p & =\frac{\gamma}{1-\gamma}\left(p_{3} V_{3}-p_{2} V_{2}\right)=\frac{\gamma p_{2} V_{2}}{1-\gamma}\left[\left(\frac{p_{3}}{p_{2}}\right)^{(\gamma-1) \gamma}-1\right] \\
& =\frac{(1.4)(14.7)(144)(112.9)}{1-1.4}\left[\left(\frac{50}{14.7}\right)^{0.4 / 1.4}-1\right] \tag{f}\\
& =-3.5110^{5} \mathrm{ft} . \mathrm{lbf} / \mathrm{min} \quad(-7.93 \mathrm{~kW}) \\
\int_{4}^{1} V d p & =\frac{\gamma \dot{p}_{4} V_{4}}{1-\gamma}\left[\left(\frac{p_{1}}{p_{4}}\right)^{(\gamma-1) / \gamma}-1\right] \\
& =\frac{(1.4)(50)(144)(5.38)}{1-1.4}\left[\left(\frac{14.7}{50}\right)^{0.4 / 1.4}-1\right] \tag{g}\\
& =4.0 \times 10^{4} \mathrm{ft} . \mathrm{lbf} / \mathrm{min} \quad(0.904 \mathrm{~kW})
\end{align*}
$$

$$
\begin{equation*}
\int_{3}^{4} V d p=\int_{1}^{2} V d p=0 \tag{h}
\end{equation*}
$$

$$
\begin{aligned}
W_{W} & =-3.51 \times 10^{5}+4.0 \times 10^{4}=-3.11 \times 10^{5} \mathrm{ft} . \mathrm{lbf} / \mathrm{min} \\
& =-9.42 \mathrm{hp} \quad(-7.024 \mathrm{~kW})
\end{aligned}
$$

اين مقدار كار راگگاز بر روي بيستون انجام داده است. كار ورودى به كميرسور مىتوانست منفى اين مقدار يا Q / F Y hp با با ضربانى ' است و شدت انجام كار براي يكت فرآيند آدياباتيكت مىتوانست بهطريق زير محاسبه شود:

$$
\begin{equation*}
W=\dot{m}\left(h_{2}-h_{i}\right) \tag{i}
\end{equation*}
$$

كه زيرنويس ا مربوط بهشرايط ورودى و زيرنويس Y مربوط بهشرايط خروجى است. براي رفتار گاز ايدهآل باگر ماهاي ويزُه ثابت

$$
\begin{equation*}
W=\dot{m} c_{p}\left(T_{2}-T_{1}\right) \tag{j}
\end{equation*}
$$

براى تراكم آنترويى ثابت داريم

$$
\begin{aligned}
T_{2}=T_{1}\left(\frac{P_{2}}{p_{1}}\right)^{(r-1) \phi}=(530)\left(\frac{50}{14.7}\right)^{0.286}=752^{\circ} \mathrm{R} \quad(418 \mathrm{~K}) \\
\text { سـدت جريان جرمى از جريان حجمى در ورودي دحاسبه مىشود. }
\end{aligned}
$$

$$
\dot{m}=\frac{p_{1} \dot{V}_{1}}{R T_{1}}=\frac{(14.7)(144)(100)}{(53.35)(530)}=7.486 \mathrm{lbm} / \mathrm{min} \quad(3.396 \mathrm{~kg} / \mathrm{min})
$$

سبس كار ورودي از معادله (j) بهدست مى آيد.

1- Pulsating steady-flow device

$$
\begin{aligned}
W & =(7.486)(0.24)(752-530)=399 \mathrm{Btu} / \mathrm{min} \\
& =9.42 \mathrm{hp} \quad(7.024 \mathrm{~kW})
\end{aligned}
$$

كه مطابق با مساسبات فبلى است.

مثال Q_Y كمير سور دو مرحلهاى

 مى مند. خنكككن ميانى ايدهآلمى هـراه با طبقهبندى بهينه به كار میدود. قدرت لازم بر حسب اسب بخار
 را محاسبه كنيد. گُرماهاى ويزه را ثابت ؤض كنيد. مقدار كار tين كهمبرسور را با كـار لازم جـهت كهمرسور يكك مرسلهاى مقايسه كنيد.

$$
\text { حـــل : برأى اين مسأله نمودارهاى شكل } 1 \text { ا ـ } 9 \text { بهكار میىرود. داريم }
$$

$$
\begin{aligned}
& T_{1}=T_{3}=70^{\circ} \mathrm{F}=530^{\circ} \mathrm{R} \quad \text { (خنكى } \quad \text { (خردن ميانى ايدهآل) } \\
& p_{2}=p_{3} \quad p_{1}=14.7 \mathrm{psia} \quad p_{4}=100 \text { psia }
\end{aligned}
$$

براى طبقهبندى ايدهآل

$$
\begin{aligned}
& \frac{p_{2}}{p_{1}}=\frac{p_{4}}{p_{3}} \\
& p_{2}^{2}=p_{1} p_{4} \quad p_{2}=38.3 \mathrm{psia}
\end{aligned}
$$

برای تراكمهاى آنترويى ثاببت

$$
\frac{T_{2}}{T_{1}}=\left(\frac{p_{2}}{p_{1}}\right)^{(\gamma-1) \gamma} \quad \frac{T_{4}}{T_{3}}=\left(\frac{p_{4}}{p_{3}}\right)^{(\gamma-1) \gamma}
$$

بدين ترتيب،

$$
T_{2}=(530)\left(\frac{38.3}{14.7}\right)^{0.286}=697^{\circ} \mathrm{R}
$$

$$
T_{4}=697^{\circ} \mathrm{R}
$$

كار ورودى ببازاى هر بوند جرم هوا برایى دو مرحله عبارت است از

$$
\begin{aligned}
W & =h_{2}-h_{1}+h_{4}-h_{3}=(0.24)(697-530)+(0.24)(697-530) \\
& =80.2 \mathrm{Btu} / \mathrm{lbm} \quad(186.5 \mathrm{~kJ} / \mathrm{kg})
\end{aligned}
$$

بنابراين، كار كلى برایى جريان lbm/min • ب بابر است با

$$
W_{\mathrm{N}}=802 \mathrm{Btu} / \min \quad(14.1 \mathrm{~kW})
$$

| hp = \quad از آنجايمى ك

$$
\mathrm{hp}=\frac{(802)(60)}{2545}=18.9
$$

حرارت دنع شده در خنكككن ميانى برابر است با

$$
\begin{aligned}
Q & =\dot{m}_{a} c_{p}\left(T_{2}-T_{3}\right)=(10)(0.24)(697-530) \\
& =401 \mathrm{Btu} / \mathrm{min} \quad(7.05 \mathrm{~kW})
\end{aligned}
$$

$$
\begin{aligned}
W & =\dot{m}_{a}\left(h_{44}-h_{1}\right)=(10)(0.24)(917-530) \\
& =928 \mathrm{Btu} / \min \quad(16.31 \mathrm{~kW})
\end{aligned}
$$

$$
\begin{aligned}
& \text { برايى تراكم آنترويى ثابت يك طبقه، دhاى خروجى از كميرسور برابر است با } \\
& T_{4}=T_{1}\left(\frac{p_{4}}{p_{1}}\right)^{(\gamma-1) \gamma}=(530)\left(\frac{100}{14.7}\right)^{0.286}=917^{\circ} \mathrm{R} \quad(509 \mathrm{~K}) \\
& \text { در اين حالت مقدار كار برابر مىشود با }
\end{aligned}
$$

 ميانى - جِند طبقهاى بايدكامش توان مورد نياز جبران شود .

سيكلهاى موتور احتراق داخلى Q_Y

در اين بخش دربارة سيكلهاى تلدرت مـتلفى بحتث خواميم كرد كه اساس تؤوى موتورهاى

 اجازه دهيد ابتدا سيكل سوتور جهار زمانه بررسى شود. هنگامى كه يستون در نقطه مرتّ بالآصت (Idc)؛ سوباب ورودى I باز مىشود و همهچنان كه يستون بشطرن بايين حركت مىكند، مخلو ط سوخت و موا بهداخل سيلندر كثيده مىشود (مرحله مكش).در نقطه مرگك پايِن (bdc) سوپا پها بسته مىشوند و يستون براى تراكم مشلو ط بهطرف بالا حركت مىكند (مرحله تراكم). در tdc شـع جرته مىزند و
 باز مى شود و يستون بهبالا حركت مىكند تا محصولات استرات را خارج كند (مرسله تخليه). در خاتهه هنظامى كه يستون به tdc مىرسد سوياب خروجى بسته و سوياب ورودى باز مىشود، در نتيبه سيكل ديگرى Tغاز مىشود. بايد توجه داشت كه برای اجرأى هر مرسله تدرت و جرته زدن شـع دو دور كامل ميلنگت لازم است.
موتور دو زمانه عمليات بالا را تركيب مىكند بهطورى كه يكت مرحله تمرت با يكت دور
 است آغاز كنيم. در مرحله تلدرت يستون بهطرن هالين حركت میىكد. در موتور دوزمانه مسفظل ميللنگ آب بندى شده بهمورت منع ذخيره مخلوط سوخت و موا بهكار مىرود. بدين ترتيب

1- Spark-ignition engines
2. Compression-ignition engines

هنگًامى كه در مرحله تدرت، يستون بهطرف بايِن هركت مىكند، مشخلوط سوخت و هوا در مسفظه
 خروجى خارج شلده مخلوط سو خت و هواى شتراكم شده بـر عت وارد سيلندر مىشود. بدين تر تيب اين مرحله، بركب امت از تدرت ـ تخليه ـ مكش. با تكميل اين فرآيندها يِستون در يكـ برحله تراكـى مجددأ تا جرته زدن شـمع در tdc بهطرف بالا حركت مىكند و سيكل جديدى آغاز مىشود. در موتور دوزمانه، اختلاط اجتناب نايذير مشخلوط سوختـ و هـواى ورودى بـا گـازهاى خروجى و حتى مقدارى اتلان سوخت از دريجه خروجى باعث مىشود كه اين موتور بهطور كلي از

مو تور جهارزمانه بازده كـترىداشته باشلد. اما اين واقعيت كه بهازاى هر دور ميل لنگك يكك برسله قدرت
 كو جكتر و از نظر وزن سبكترند. بهممين دليل معمولاُ موتورهاى دو زمانه در جايى بهكار مىروند دكه وزن و اندازه اهميّت دارد، مانند موتورهاى خارج كثتىى، اره زنجيرى و موتور ميكلتت. در موتورهاى احتراق داخلى واقعى مشكلاتى ايجاد مىشود : تخليه ناتص، التراق ناتص؛
 و غيره. اگرجه برداختن بهاين مشكلات از حيطه بحث ما خارج است. در ادامه اين فصل، درباره جند سيكل تئورى كه مى تواند براى تشريح رفتار موتور احترات واخلى به كار رود تحقيق خواهيم كرد. برايى تسليل موضوع، فرض مىكنيم كه سيال عامل هوا باششد، كه در اين صورت سيكلها بهسيكلهاى استاندالرد هوالع موسوم است.

Q-ג
 Y Y Y Y معرفى شده و با فر آيند انزودن حرارت در حمجم ثابـت Y_Y دنبال مى سريع در موتور اشتعالل جرتّاي است. سبس مرحله تدرت F F انجام يذ يرفته و با آرآيند دنع حرارت در حجم ثابـت 1 - 1 دنبال مى خروجى مىشود. بازده حرار تى سيكل از رابطه زير محاسبه مىشود :

$$
\begin{equation*}
\eta=\frac{Q_{H}-Q_{L}}{Q_{H}}=1-\frac{Q_{L}}{Q_{H}}=1-\frac{m c_{\nu}\left(T_{4}-T_{1}\right)}{m c_{\nu}\left(T_{3}-T_{2}\right)} \tag{9-11}
\end{equation*}
$$

در فرآيندهای آنترويى ثابت

$$
\frac{T_{2}}{T_{1}}=\left(\frac{v_{1}}{v_{2}}\right)^{\gamma-1}=\left(\frac{v_{4}}{v_{3}}\right)=\frac{T_{3}}{T_{4}}
$$

با جايگزينى مناسب برایى دماها در معادله (1 - 9)، بازده حرار تى بهصورت زير در مى آيد.

$$
\eta=1-\frac{T_{1}}{T_{2}}=1-\left(\frac{v_{1}}{v_{2}}\right)^{1-\gamma}
$$

$\frac{v_{1}}{v_{2}}$

$$
\begin{equation*}
\eta=1-r^{1-\gamma} \tag{9-1Y}
\end{equation*}
$$

واضح استكه بازده حرارتى سيكل اتو با ازدياد نسبت تراكم انزايش مى يابل.

نسبت تراكم بالاتر يعنى دماى بالاترى كه انزودن حرار ت از از آن شروع مىشود و و دوباره

 سوخت برای اين مقصود استفاده مىشود. برايى كاهش آلودگى محيط، المروزه در سيستم اگگز ز بيشتر اتو بيلـهاى مسافرى مبدلهاى كاتاليزورى ₹ لازم است. مواد افز ونه سوخت سربدار مبدلها را غير نعال

(الف) نمودار p-V (ب) نمودار

1- Engine knock
2- Detonation waves
3- Antiknock characteristics
4- Catalytic converters

مى كند، بنابراين كارخانجات از بنزينهاى بلـون سرب استفاده مىكنند و در نتيجه موتورهايمى با نسبتهاى
 در رسيدن به يكت طرح مناسب مهندسى صورت گيرد. موتورهاى احتراق داخلى از منابع اصلىى آلودگى

 در طرحهاى نهايى بايلـ در نظر گرفته شود.

مثال ^_Q بازده يك سيكل اتو

يكت سيكل استاندارد هوايـى اتو بين حدود دماى . و
 سيكل كارنو مناسب مقايسه نمايِد.
 $\eta=1-r^{1-\gamma}$

$$
\text { در } 10 \text { د } 10
$$

$$
\eta=1-(10)^{-0.4}=60.2 \text { درصد }
$$

در

$$
\eta=1-(12)^{-0.4}=63 \text { درصد }
$$

$$
\text { ، } r \text { ر } 15
$$

$$
\eta=1-(15)^{-0.4}=66.2 \text { درصد }
$$

 شُده كار كند داراى بازده زير است :

$$
\eta_{, ن 5}=1-\frac{T_{L}}{T_{H}}=1-\frac{530}{1960}=73 \text { رصد }
$$

Q_q هيكل ديزل

 اتو است بدين ترتيب كه تراكم آنترويى ثابت فرض مىشو د، همهنين دنع حرارت از گَازهاى خروجى

 را تشكيل مىدهد. سيكل ديزل اساس موتورهای الشتعال تراكـىى والتعى است. در اين موتورها هوا تا نشارهاى باللا (نقطه Y) و در نتيجه در دماهاى بالا متراكم مى
 و سوختن از Y Y Y بمـجنان كه مقدار بيشترى سوختت بهداخل سيلندر تزريق مىشود ادامـه دارد.
 واتعى فرآيند تزريق مسألهُ خطيرى است و مهندسان براى طرح مكانيزم سو خت پاث (انزكتور) كوشش زيادى مىكنند.

> شكل
> T-s (ب)

$\gamma=1 / \uparrow$ شكل
باز ده سيكل ديزل از رابطه زير بددست مىى آيد :

$$
\begin{equation*}
\eta=1-\frac{Q_{L}}{Q_{H}}=1-\frac{c_{y}\left(T_{4}-T_{1}\right)}{c_{P}\left(T_{3}-T_{2}\right)} \tag{9-14}
\end{equation*}
$$

با به كار بردن رابطههاى آنترويى ثابت

$$
\frac{T_{2}}{T_{1}}=\left(\frac{v_{2}}{v_{1}}\right)^{\gamma-1} \quad \frac{T_{3}}{T_{4}}=\left(\frac{v_{4}}{v_{3}}\right)^{\gamma-1}
$$

رابطه بازده بهصورت زير در بیى آيد :

$$
\begin{equation*}
\eta=1-\frac{r^{1-\gamma}\left(r_{c}^{\gamma}-1\right)}{\gamma\left(r_{c}-1\right)} \tag{9-1f}
\end{equation*}
$$

$$
\text { re= } v_{2} \text { نسبت تمع - سوخت } r=\frac{v_{3}}{v_{2}}
$$

 تراكم داده شدهاى، ميكل اتو از ميكل ديزل بازده بيشترى دارد. دليل فيز يكى اين رفتار اين است كه خز آيند انز ودن حرارت در حجم ثابت منجر بهانتقال حرارت در دماى بالاترى نسبت بها آيند فشار ثابت برائ نسبت تراكم يكسان مى شود. اگرجه اين بدين معنى نيست كه سيكل اتو يا موتور اشتعال - جر تهانى هميشه نسبت به وتور ديزل مناسبتر است. در حقيقت مو تور ديزل مى تواند در نسبت تراكمهاى خيلى

 هوا تا فئار خيلى بالايى متراكم شود، مسكن است تبل از رسيدن بيستون به tdc مشتعل شود و باعث كاهش قدرت موتور گگردد. موتور ديزل با جنين مشكلاتى رو بهرو نيست زيرا نقط هوا را متراكم مى مند و سو
هيج كس سيكل اتو (الشتعال - جرتهاى) يا سيكل ديزل را تنها بر اساس اطلاعات ترمود يناميكي كه در بالا آمد انتخاب نمىكند. در طرح خاص هر نوع موتورى بايد ملا-حظاتى در نظر گر نته شود. اكثر موتورهاى ديزل سيستم تزريت دقيقى راكه درست مقدار مناسب سوسخت را بهداخل سيلندر مىنائد به كار مىگيرند. البته مدنت تزريق و بنابراين فشار تزريت شديداً بستگى بهدور موتور دارد. نتيجه اين
 كار كند. بر عكس مو تور اشتتعال جر تهاى با يكت طرح مناسب سيستم كاربراتور مى تواند با بازده خوبى بين
 كاربر دهايى كه سرعتهاى ثابت لازم دارند (مانند لكوموتيو، كاميو نهایى بزرگّه مولدهاى الكتريكى

1- Cut-off ratio
2- Detonation
3- Preignition

خودروهأى شتخصى كه تغير سرعت در Tنها زياد است بهكار مىرود. شايد در آينده با ريزيردازنده الكحرونيكى، كنترل فز آيند تزريت در موتور هاى ديزل بهطور وسيعى صورت گيرد و در نتيجه باعث بهبود عملكرد در سرعتهاى مغتلف گردد.

> مثال 9ـ9 سيكل ديزل

$$
\begin{aligned}
& T_{1}=70^{\circ} \mathrm{F}=530^{\circ} \mathrm{R} \\
& p_{1}=14.7 \mathrm{psia}
\end{aligned}
$$

از رابطههاى آتترويى ثابت داريم

$$
\frac{T_{2}}{T_{1}}=\left(\frac{v_{1}}{v_{2}}\right)^{\gamma-1}
$$

$$
\begin{equation*}
T_{2}=(530)(15)^{0.4}=1565^{\circ} \mathrm{R} \tag{869K}
\end{equation*}
$$

براى فرآيند النزودن حرارت در نشار ثابت داريم
$\frac{v_{3}}{v_{2}}=\frac{T_{3}}{T_{2}}$
بدين ترتيب

$$
T_{3}=(1565)(2.0)=3130^{\circ} \mathrm{R} \quad(1739 \mathrm{~K})
$$

دما در انتهاى مرحله تدرت از رابطه زير نعين مىشود.

$$
\frac{T_{4}}{T_{3}}=\left(\frac{V_{3}}{V_{4}}\right)^{\gamma-1}
$$

بازده برابر است با

$$
\eta=\frac{W}{Q_{H}}=\frac{227}{375}=60.5
$$

\author{

- -

}

 متمل بهحرخ دنده اتمارى است سوار مىشوده، بطور رى كها روتور با سرعتى معادل يكت سوم دور مسور

$$
\begin{aligned}
& \text { الـ } \\
& \frac{v_{3}}{v_{4}}=\frac{2 v_{2}}{v_{4}}=\frac{2 v_{2}}{v_{1}}=\frac{2}{15} \\
& T_{4}=(3130)\left(\frac{2}{15}\right)^{0.4}=1395^{\circ} \mathrm{R} \quad(775 \mathrm{~K}) \quad \text { بلين ترتيب } \\
& \text { حاللا حرارت اضانه شده و دنع شـده را مى توان مساسبه كرد. } \\
& Q_{H}=c_{p}\left(T_{3}-T_{2}\right) \\
& =(0.24)(3130-1565)=375 \mathrm{Btu} / \mathrm{bm} \quad(872.2 \mathrm{~kJ} / \mathrm{kg}) \\
& Q_{L}=c_{\nu}\left(T_{4}-T_{1}\right) \\
& =(0.1715)(1395-530)=148 \mathrm{Btu} / \mathrm{bm} \quad(344.2 \mathrm{~kJ} / \mathrm{kg}) \\
& \text { بنابراين كار خروجى بهازاى هر بوند جرم برابر اسـت با، } \\
& W=Q_{H}-Q_{L}=375-148=227 \mathrm{Btu} / \mathrm{bm} \quad(528 \mathrm{~kJ} / \mathrm{kg})
\end{aligned}
$$

مى خرخخ. سطع داخلى محفظه بهشكل تروكويُيدى' خاصى با شعاع R ايُجاد شده است. همانطور كه روتور در جهت عقربههاى ساعت حركت مىكند، فرآيندهاى همزمانى بهتر تيب زير در سه مسفظه اتفاق مىافتد: همجنان كه روتور از قسمت دريحه هوا مىگذرد مشلوط تازه سوخت و هوا بهداخل مكيده مىشود و حركت بيشتر روتور باعث بسته شدن دريجه ورودى شده مشلوط متراكم مىگردد. هنگامى كه رأس روتور تقريباً بهمونعيت شمع برسد، احترات و انبساط (در مرحله قدرت) در محفظه

 سيكل اتو مشابه مىباشد. حسن ديگر آن اين است كه ساستمان خيلى سبكى براى قدرت خروجى داده شده دارد. مهمترين مشكلات عملى طرح با اصطكاكى و آببندى روتور ارتباط دارد.

| 1 ـ

اكنون بهبر رسى سيكلم مىيردازيم كه علاوه بر اراثه بازده بالا كاهش آلودگى از مسصولات احتراق را نيز در بر دارد. اين هرخه سيكل السترلينح ناميده مىشود و نمودارهاى p-V و T-s آن در

سيال عامل يكت گاز است و فرآيندهاى برگتيت بذ ير را براثى سيكل ايدهآل فرض مىكنيم. در فر آيند Y- Y ا حرارت در دماى ثابت و زر آيند F F
 حدود دماى بكـانى صورت مىگیيرد، حرارت دفع شُده در YـY بايد از نظر عددى برابر با حرارت اضانه شُـده در 1F- بابثد. اين واتعيت بلافاصله استفاده از بازياب را شطرح مى
 سيكل برگثت بذ ير با الز ودن و دنع حرارت در دماهاى ثابت هستيم. جنين سيكلى داراى باز داها بازده سيكل كارنو است يا

$$
\eta=1-\frac{T_{L}}{T_{H}}
$$

وسيله احترات خارجى كار كند و نتايج تحقيقات نشان داده است كه بهعنوان وسيلهاى جهت كاهش

شكل

شكل سـ~
 سيال عامل, استفاده ميكند.

Q_ |Y

هرخه ترموديناميكى بدكاز رفنه در توربينهاثى گازى موسوم بهسيكل برايتون' است و در
 احترات سوخت با هوا در فثار بالا صورت ميّذيرد. مسصولات داغ احتراق سسس در توربين منبسط شده توليد كار خروجى مينهايلـ. بخشى از كار توربين جهت هر خاندن كميرسور مصرت ميشود و باقى مانده برای هر شخاندن هكانيزم تخارجى در دسترس است. سبكل بسته توربين گازي سيال عامل را دوباره بههر شخ در مى آورد در سالمى كه حرازت در نشار باللا اضافه و در نشار بأين دفع مى بشود. نمودارهاى دما ـ آنترويى براى سيكلهاي ايدهآل در شكل
در سيكل استاندارد مو'ع برايتون، تحليل با فرض هوا بهعنوان سيال عامل در كميرسور ر
توربين انجام ميگيرد. در سيكل حقيقى جريان جرمى در توربين، بهـخاطر جرم اضافه شده سوخت، مقدارى از جريان جرمي در كميرسور بيشتر است. بعلاوه، خواصّ مسصولات الحتراق ممكن است با

استفاده مىيكند بهطورى كه تحليل سيكل استاندارد هوايى تخمين قابل تبـولى از عملكرد سيكل حقيقى ميدهد.

 طورى كه كار خالص خروجى سيكل برابر كار خروجى توربين منهاى كار ورودى بيّ كميرسور يـا
 دهد. فرض ميشود كه مشعل بهصورت يكت دستگاه حرارتى نـار ثابت كار كر د0، بهطورى كه مقدار

(الف) سيكل باز (ب) سيكل بست

حرارت خالص ورودى براير مى توان از طريق زير يساسبه كرد.

$$
\begin{equation*}
\eta=\frac{W_{\text {ner }}}{Q_{\text {in }}}=\frac{\left(h_{3}-h_{4}\right)-\left(h_{2}-h_{j}\right)}{h_{3}-h_{2}} \tag{9-19}
\end{equation*}
$$

 بهكار بردن رابطهماى آنترويى ثابت،

$$
\begin{equation*}
\left(\frac{p_{2}}{p_{1}}\right)=\left(\frac{T_{2}}{T_{1}}\right)^{\gamma /(\gamma-1)}=\frac{p_{3}}{p_{4}}=\left(\frac{T_{3}}{T_{4}}\right)^{\gamma^{\prime}(\gamma-1)} \tag{9-1v}
\end{equation*}
$$

بازده بهدست مى آيد.

$$
\begin{equation*}
\eta=1-\left(\frac{p_{2}}{p_{1}}\right)^{(1-\gamma) / \gamma} \tag{9-11}
\end{equation*}
$$

(الف) سيكل باز (ب) سيكل بسته

اكثر توربينهایى گازى در سيكل باز كار مىكنّد وگازهانى خروجى از توربين بهمحيط اطرام

 بازياب در شكل 9 Y ـ 9 نثان داده میشود.

شكل $\$$ - -

 شود و محصو لات احتراق بايد نا نقطه '7 (معادل 2 (T2) سرد شوند. بازياب حقيقى هنين تبادل حراردتى

براى گرماهاى ويزه ثابت اين رابطه بهمورت زير در مى آيد.

$$
\eta_{r e g}=\frac{T_{5}-T_{2}}{T_{5^{\prime}}-T_{2}}
$$

سيكلهاى توربين گازى واتعى با سيكلهاى تورى تفاوت دار د، بدين تر تيب كه بايد باز دهماى كمبرسور ر

شكل • •-9 تأثير بازدههاى توريين وكمبرسور بر روى نمودار T-s سيكل توربين كازى با بازياب

 مرحله تراكم و انسـاط در شـكل ا لrـ4 نشان داده شـده امت. يازيده اين سيكل از رابطه زير بيان مىشود :

(الفـ)

شكل أ - ه (الف) طرحوارهاي (ب) نمودار T-5
واخع است كه مىتوان يكثبازياب را با مكانيزم خنكككن ميانى و بازگرم تركيبكرد. در اين جا بهتر است يادآورى شود كه بحث ما بهسيكلهایى استاندارد هوايى محلود بوده اسـت و بعضى از رابطههاى بازده ـايدهT ل لرض ديگر ثابست بودنگرماهاى ويزه را نيز ثامل بوده است. مثالها بر اساس اين غزضيات است. اولين تصحيح در تحليل مـكن است باكاربرد جداول هو' براى محاسبه انتاليهاي متفاوت انجأم شود. هنوز تصسيسات بيشترى را مىتوان با در نظر گرُتن مخلوطهاى واقعى سو خت_هوا و محصو لات احتراق مربوطه انجام داد. در اين حالـت ما رابطههاى نصل ^^ را براى مساسبه دماى شعله و غيره بهكار خواهيم برد. البته هنگامىكه فرآيندهاى واتعى احتراق در نظر گرفته مى ديگر با سيكلهاى استاندارد هوايى سر و كار ندار يم، اما فرآيندهاى وانعى ميكل بحث ماست. علىرغم سادگى، تحليل سيكل استاندارد هوايى تقريب بسيار خوبى از رنتار عملكرد سيكلهاى واتعمى بهدست مىدهد.

مثال • 1-9 بازده سيكل برايتون

سيكل استاندارد هوايى برايتون، هوارا در V, ${ }^{\text {را }}$
 توربين ، Q درصد است. بازده سرارتى سيكل را با فرض گرماهاى ويزه ثابت مساسـبـ كنيد.
 تراكم צ انبساط آنترويى ثابـت نِيستند. از متن مسأله داريـم

$$
\begin{array}{ll}
p_{1}=p_{4}=14.7 \mathrm{psia} & T_{1}=70^{\circ} \mathrm{F}=530^{\circ} \mathrm{R} \\
p_{2}=p_{3}=60 \mathrm{psia} & T_{3}=1500^{\circ} \mathrm{F}=1960^{\circ} \mathrm{R}
\end{array}
$$

$$
\begin{aligned}
& =\frac{\left(h_{5}-h_{6}\right)+\left(h_{7}-h_{8}\right)-\left(h_{4}-h_{3}\right)-\left(h_{2}-h_{1}\right)}{\left(h_{5}-h_{4}\right)+\left(h_{7}-h_{6}\right)}
\end{aligned}
$$

برایا فرآيندهاي آنترويى ثابت داريم :

$$
\begin{aligned}
T_{2} & =T_{1}\left(\frac{p_{2}}{p_{1}}\right)^{(\gamma-1) \gamma} \\
& =(530)\left(\frac{60}{14.7}\right)^{0.286}=792^{\circ} \mathrm{R} \quad(440 \mathrm{~K}) \\
T_{4} & =T_{3}\left(\frac{p_{4}}{p_{3}}\right)^{(\gamma-1) \gamma} \\
& =(1960)\left(\frac{14.7}{60}\right)^{0.286}=1310^{\circ} \mathrm{R} \quad(728 \mathrm{~K})
\end{aligned}
$$

با به كار بردن بازدههاى داده شده باگرماهاكى ويزه ثابت،

$$
\eta_{, ـ, ك \tau}=\frac{W_{i s e \pi}}{W_{a c t}}=\frac{T_{2 s .}-T_{1}}{T_{2}-T_{1}}=0.85
$$

$$
\text { T }{ }_{2} \text { ماى خروجى واتعى از كميرسور اسـت. با جايگزينى مقادير عددى متناسب، }
$$

$$
\frac{792-530}{T_{2}-530}=0.85 \quad T_{2}=838^{\circ} \mathrm{R}
$$

برایى توربين

$$
\begin{aligned}
& \eta_{i ب \mathrm{jum}}=0.90=\frac{W_{a c t}}{W_{\text {isen }}}=\frac{T_{3}-T_{4}}{T_{3}-T_{4 s}} \\
& 0.90=\frac{1960-T_{4}}{1960-1310} \quad T_{4}=1375^{\circ} \mathrm{R} \quad(764 \mathrm{~K})
\end{aligned}
$$

بازده سرار تى سيكل سالا بهصورت زير محاسبه مىشود.

$$
\begin{aligned}
\eta_{\text {Nرادر }} & =\frac{\dot{W}_{\text {act }}}{Q_{H}} \\
& =\frac{\left(h_{3}-h_{4}\right)-\left(h_{2}-h_{1}\right)}{\left(h_{3}-h_{2}\right)} \\
& =\frac{(0.24)(1960-1375)-(0.24)(838-530)}{(0.24)(1960-838)} \\
& =24.7 \text { درحدر }
\end{aligned}
$$

 بِكار بردن جداول هو النجام دهيد.

حــل : نمودار شكل • بـه وا برايى اين مسأله بهكار میبريم. از مثال • ا ـ 9 داريم

$$
\begin{aligned}
& T_{1}=530^{\circ} \mathrm{R} \\
& T_{2}=838^{\circ} \mathrm{R}=T_{6^{\prime}} \\
& T_{3}=1960^{\circ} \mathrm{R} \\
& T_{4}=1375^{\circ} \mathrm{R}=T_{S^{\prime}}
\end{aligned}
$$

حالا از معادله (1 + - 4) برای بازده بازياب

$$
\begin{aligned}
& \eta_{ب ا ب ز}=\frac{T_{5}-T_{2}}{T_{5^{\prime}}-T_{2}} \\
& 0.83=\frac{T_{5}-838}{1375-838}
\end{aligned}
$$

$$
T_{5}=1284^{\circ} \mathrm{R} \quad(713 \mathrm{~K})
$$

بازده ترارد تى سيكل هالا بهصورت زير نوشته مىشود.

$$
\begin{aligned}
\eta_{ज ا ز} & =\frac{\left(h_{3}-h_{4}\right)-\left(h_{2}-h_{1}\right)}{h_{3}-h_{5}} \\
& =\frac{(0.24)(1960-1375)-(0.24)(838-530)}{(0.24)(1960-1284)}=41 \text { درصد }
\end{aligned}
$$

حالا بايد محاسبات رابا بهكار بردن جداول هواكه گرماهاى ويزه متغير رادر نظر مىگيرد تكرار كيبـ. فا هنوز داريم

$$
T_{1}=530^{\circ} \mathrm{R} \quad T_{3}=1960^{\circ} \mathrm{R}
$$

با بهكار بردن جداول عوا برايى فر آيندهاى ايدهآل آنتر ويى ثابت

$$
\begin{aligned}
& \frac{p_{2}}{p_{l}}=\frac{P_{r_{2}}}{P_{r_{1}}} \quad P_{r_{1}}=1.3004 \quad 530^{\circ} \mathrm{R}, \\
& P_{r_{2}}=\left(\frac{60}{14.7}\right)(1.3004)=5.308
\end{aligned}
$$

$$
\frac{p_{4}}{p_{3}}=\frac{P_{r_{4}}}{P_{r_{3}}} \quad P_{r_{3}}=160.37 \quad 1960^{\circ} \mathrm{R}, د
$$

$$
P_{r 4}=\left(\frac{14.7}{60}\right)^{(160.37)}=39.291
$$

, $T_{4}=1$ rAs $/ /^{\circ} \mathrm{R}$, (A-IY جدول)

$$
\begin{array}{ll}
h_{l}=126.67 \mathrm{Btu} / \mathrm{bm} & h_{2}=189.57 \mathrm{Btu} / \mathrm{bm} \\
h_{3}=493.64 \mathrm{Btu} / \mathrm{bm} & h_{4}=339.79 \mathrm{Btu} / \mathrm{bm}
\end{array}
$$

جون گرماهاى ويزه ديگ, ثابت نيستلد، بازدههاى توربين و كمبرسور بايد برحـب انتاليى بيان شوند. بدين ترتيب،

$$
\eta_{ر س ر و ر ~}=0.85=\frac{h_{2 s}-h_{1}}{h_{2}-h_{1}}
$$

با حل معادله براثى h، بهدست بى Tوريم

$$
h_{2}=200.67 \mathrm{Btu} / \mathrm{lbm}
$$

$$
\eta_{ن و ي ن}=0.90=\frac{h_{3}-h_{4}}{h_{3}-h_{4 s}}
$$

$$
h_{4}=355.18 \mathrm{Btu} / \mathrm{lbm}
$$

$$
\begin{aligned}
& \text { ضريب سودمندى بازياب هـهخين بر سسب انتاليها نوشته مىشود } \\
& \eta_{ب ا}=0.83=\frac{h_{5}-h_{2}}{h_{5^{\prime}}-h_{2}} \quad h_{5^{\prime}}=h_{4} \varphi
\end{aligned}
$$

$$
h_{5}=(0.83)(355.18-200.67)+200.67=328.31 \mathrm{Btu} / \mathrm{lbm}
$$

رابطه برایى بازده حرارتى مانتد بيش است.

$$
\begin{aligned}
& =\frac{(493.64-355.18)-(200.67-126.67)}{493.64-328.31}=39 \text { درصد }
\end{aligned}
$$

بنابراين بسته بهاين كه گرماهاى ويزه ثابت فرض شود تغيرات ناهيزى در محاسبه وجود دارد. بايد تو به داشت كه كاربرد بازياب مى تواند بازده حرار تى سيكل توربين گازى را تا حد زيادى افزايش دهد.

مثال T T Y
تقريباً در تمام كاربردهاى رايج سيكلهاى توربين گازیى سيكل باز را با احـتراق سـوخت

 مورد تو جه باشد. گمان مىرودكه راكتُ شستهاى انرزّىزا توليد گاز يلامساى داغى در بيليون درجه دما

 بهكار ردد. هليوم بهخاطر بالا بودنگر ماى ويزه و ماهيت بىائرش و ديگر عوامل طراسى هجنين تأسيساتى

شكل YY-9 (الن) طرحواره (ب) نمودار

حـــل : بابهكار بردن شرح علاثم شكل الف

$$
\begin{array}{ll}
T_{1}=T_{3}=100^{\circ} \mathrm{F}=560^{\circ} \mathrm{R} & T_{6}=1700^{\circ} \mathrm{F}=2160^{\circ} \mathrm{R} \\
p_{1}=200 \mathrm{psia}=p_{8}=p_{7} & p_{4}=p_{5}=p_{6}=500 \mathrm{psia}
\end{array}
$$

$$
p_{2}=p_{3} \text { برای طبقهبندى بهينه }
$$

$$
\begin{aligned}
& \frac{p_{2}}{p_{1}}=\frac{p_{4}}{p_{3}} \\
& \frac{p_{2}}{p_{1}}=\left(\frac{500}{200}\right)^{1.2}=1.581
\end{aligned}
$$

برای هليوم از جدول Y-Y جينين بهدست منى Tوريم :

$$
c_{p}=1.25 \mathrm{Btu} / \mathrm{bm} .{ }^{\circ} \mathrm{F} \quad \gamma=1.66
$$

برایى طبقه گذارى ايدههآل، دماهاى آنترويى ثابت در تخليه يكسانند زيرا نسبتهاى فشار و دماهاى ورودى يكساند، بدين ترتيب

$$
\begin{aligned}
& \frac{T_{2 s}}{T_{1}}=\left(\frac{p_{2}}{p_{1}}\right)^{(r-1) / r}=(1.581)^{0.398}=1.120 \\
& T_{2 s}=(560)(1.12)=672^{\circ} \mathrm{R}=T_{4 s} \quad(373 \mathrm{~K})
\end{aligned}
$$

نمودار -T-ا اين سيكل در شكل بY ץ-ی نشان داده شده است. دطاهاى تخليه واتعى با بهكار بردن

بازدههاى كميرسور تعيين مى شود. برای گرماهاى ويزه ثابنى،

$$
\eta_{\text {comp }}=\frac{T_{2 s}-T_{1}}{T_{2}-T_{1}}=0.88
$$

بنابراين

$$
T_{2}=687^{\circ} \mathrm{R}=T_{4} \quad(382 \mathrm{~K})
$$

$$
\begin{align*}
& \text { براى توربين، دماى خروجى آنتروبى ثابت برابر است با } \\
& T_{7 s}=T_{6}\left(\frac{P_{7}}{P_{6}}\right)^{(\gamma-1) / \gamma}=(2160)\left(\frac{200}{500}\right)^{0.398}=1500^{\circ} \mathrm{R} \tag{833K}\\
& \text { و با بهكار بردن بازده توربين دماى خروجى واتتى از رابطه زير بهدست مى آيد. } \\
& \eta_{\text {murb }}=\frac{T_{6}-T_{7}}{T_{6}-T_{7 s}}=0.93 \\
& T_{7}=1546^{\circ} \mathrm{R} \quad(859 \mathrm{~K})
\end{align*}
$$

براى گر ماهاى ويزه ثابت، ضريب سودمندى بازياب برابر استبا

$$
\eta_{\text {rog }}=0.91=\frac{T_{5}-T_{4}}{T_{5^{\prime}}-T_{4}} \quad T_{5^{\prime}}=T_{7^{\prime}} ب
$$

بنابراين

$$
\begin{equation*}
0.91=\frac{T_{s}-687}{1546-687} \quad T_{s}=1469^{\circ} \mathrm{R} \tag{816~K}
\end{equation*}
$$

بنابراين، بازده حرار تى كلى برابر است با

$$
\begin{aligned}
& =\frac{\left(h_{6}-h_{7}\right)-\left(h_{2}-h_{1}\right)-\left(h_{4}-h_{3}\right)}{h_{6}-h_{5}} \\
& \text { كه برانى گرماهاى ويزه ثابت بهصورت زير در مى آيد، }
\end{aligned}
$$

980
نصل 9 ـ سيكلهاى تدرت و تبريد

$$
\begin{aligned}
& \eta_{t h}=\frac{(1.25)[(2160-1546)-(687-560)-(687-560)]}{(1.25)(2160-1469)} \\
& \eta_{t h}=\frac{450 \mathrm{Btu} / \mathrm{lbm}}{863.8 \mathrm{Btu} / \mathrm{lbm}}=52.1 \mathrm{~J} \text { درمد }
\end{aligned}
$$

كار خالص خروجى بهازای هر بوند جرم برابر \& Btu . B است بنابراين جريان جرمى لازم جهت
برابراست با MW

$$
\begin{aligned}
& \dot{m}_{\mathrm{HE}}(450)=10^{6} \mathrm{~W}=3.413 \times 10^{6} \mathrm{Btu} / \mathrm{h} \\
& \dot{m}_{\mathrm{HE}}=7584 \mathrm{lbm} / \mathrm{h} . \mathrm{MW}
\end{aligned}
$$

اين جريان جرمى از خنكىكن ميانى و خنكككن احلى عبور ميكند. حرارت از دست رفته در خنكككن ميانى برابر است با

$$
\begin{aligned}
Q_{i n t} & =\dot{m}_{\mathrm{HE}} c_{p}\left(T_{2}-T_{3}\right) \\
& =(7584)(1.25)(672-560)=1.062 \times 10^{6} \mathrm{Btu} / \mathrm{h} \quad(311.1 \mathrm{~kW})
\end{aligned}
$$

$$
T_{7}-T_{8}=T_{5}-T_{4}
$$

بنابراين

$$
T_{8}=1546-1469+687=764^{\circ} \mathrm{R} \quad(424 \mathrm{~K})
$$

بس حرارت از دست رفته از طريق هليوم در خنكككن املى برابر است با

$$
\begin{aligned}
Q_{\text {cooler }} & =\dot{m}_{\mathrm{HE}} c_{p}\left(T_{8}-T_{1}\right) \\
& =(7584)(1.25)(764-560)=1.934 \times 10^{6} \mathrm{Btu} / \mathrm{h} \quad(556.6 \mathrm{~kW})
\end{aligned}
$$

بنابراين دفع حرارتى كلى برابر است با

$$
\begin{equation*}
Q_{t o t}=(1.062+1.9341) \times 10^{6}=2.996 \times 10^{6} \mathrm{Btu} / \mathrm{h} \tag{877.8~kW}
\end{equation*}
$$

كه بايد بهوسيله ابـ خنكثكنلده اخذ شود. با به ياد آوردن اين كه مايع، داريم

$$
\begin{align*}
& Q_{t o t}=\dot{m}_{w} c_{w} \Delta T_{w}=m_{w}(1.0)(10)=2.996 \times 10^{6} \mathrm{Btu} / \mathrm{h} \\
& \dot{m}_{w}=2.996 \times 10^{5} \mathrm{lbm} / \mathrm{h} . \mathrm{MW} \quad\left(1.359 \times 10^{5} \mathrm{~kg} / \mathrm{h} . \mathrm{MW}\right) \tag{و}
\end{align*}
$$

 با اندازه ستوسط MW خيلى مطلوب (Y (Y درصد)، اين مثال نشان مىدهد كه نيروگاههاى بزرگك بار خنكث كنتده خيلى زيادى

 احتياج بهتبتيرى در اين حدود دارد :
$\frac{\left(2.996 \times 10^{6} \mathrm{Btu} / \mathrm{h} . \mathrm{MW}\right)(500 \mathrm{MW})}{1000 \mathrm{Btu} / \mathrm{lbm}}=1.498 \times 10^{6} \mathrm{lbm} / \mathrm{h}$ $\left(6.8 \times 10^{5}\right.$ liters $/ \mathrm{h}$)

اين شدت تبخيرى در حدود بينهايت آرام هنين شـدتهاى تبخيرى مي تواند باعث مه زمينى در محيط اطران نيروگاه بشود.
 بازياب بهكار ميرود عرضه ميكنتد. در خيلى از موارد، اين سيكلها از نظر سرمايهـگذارى ثابت اوليه

 بهصورت هيدروكربنهاى نيمسو سته توليد مينمايند و فر آيندهاى جريان با دماى بالا در توزبين به كاهش انتشار تركيبات NO البته بازده بالأى سيكلهایى توربين گّازى از بالا بودن دماى بالا يى كه مى توالن در فرآيندهاى

 رماهاى بالا در اثي تحقيق دربارة طرحهاى يشر بته موتور توربوجت هوايمها بهدست خواهد آمد.

||

در نصل بنجم درباره مفاهيم تابليت كاردهى و برگشتنآيذيرى كه برایى مسائلل جريان داثم
 ارزيابى نموديم. حالا جگكونگى كاربرد آنها را مخخصوصأ در سيكلهاى تدرت در اين نصل در نظر مىیيريم.
همان طوركه هند بار اشاره شده است فرآيندهاى واتعى برگثـت نايذير يند، در نتيجه مـا

 مورد صرنهجويهاى هزينه نمى گويد. مزيت تحليل تانون دوم سيكلهاى تدرت در در اين است اسكه مى تواند
 تحليل قانون دوم يكك سيكل تدرت معمولاُ بإد بهوسيلهُ يكت سلسله عمليات زير صورت

I ت تابليت كاردهعى $b=h-T_{0}$
Y -

هعادله (0.FQ) مشاسبه شيود.

$$
\dot{I}=\dot{W}_{\text {خروبموانتعى }}
$$

F F
ه - مى توان بين سيكلهاي مشتلف، شرايط كاركردى مشتلف در يكـ سيكل و تغير عملكرد
هر جزء در سيكل، مقايسههايمى انجام داد.

مثال

داغ
 كامأُ بالا باشسد.)
 طرمواره اين انرزيى بايد براي الزاليش انتالِى آب به كار رود. بنابراين

$$
\begin{equation*}
q=20285 \mathrm{Btu}=\dot{m}_{w}\left(h_{2}-h_{j}\right) \tag{a}
\end{equation*}
$$

شكل مثال س| - -9

$$
\begin{aligned}
& h_{1}=167.65 \mathrm{Btu} / \mathrm{bm} \text { (مايع متراكم شده) } \\
& s_{1}=0.29341 \mathrm{Btu} / \mathrm{bm} .{ }^{\circ} \mathrm{R} \\
& h_{2}=1521.7 \mathrm{Btu} / \mathrm{bm} \\
& s_{2}=1.7471 \mathrm{Btu} / \mathrm{bm} .{ }^{\circ} \mathrm{R}
\end{aligned}
$$

$$
\dot{m}_{w}=14.99 \mathrm{lbm} / \mathrm{lbm} \text { سوخت }
$$

كاهش تابليت كاردهى آب (بخار Tب) برابر است با

$$
\begin{align*}
B_{1}-B_{2} & =m_{w}\left[\left(h_{1}-T_{0} s_{1}\right)-h_{2}\left(T_{0} s_{2}\right)\right] \\
& =14.99[(167.65-1520.7)-(537)(0.29241-1.7471)] \tag{b}\\
& =-8573 \mathrm{Btu} / \mathrm{bm} \text { سوخت } \quad(-19940 \mathrm{~kJ} / \mathrm{kg})
\end{align*}
$$

 كاهش كلى در ديگّ بخار برابر است با

$$
\dot{I}=12943 \mathrm{Btu} / \mathrm{bm} \text { سوخت }
$$

مثال

سيكل مثال 11 ـ9 را از نظر تابليت كاردهى و برگثتتنايذيرى بردسى مىكيمّ. تنها بـا

$$
\begin{aligned}
& B_{R}-B_{P}+B_{1}-B_{2}=21516-8573 \\
& =12943 \mathrm{Btu} / \mathrm{bm} \text { سوخت } \\
& \text { اين معادل بر گثتتنابذيرى است زيراكار واتعى صورت نگر نهه است. }
\end{aligned}
$$

حـــل : قابليت كاردهى برای جريان دائم طبق تعريف نصل ها عبارت است از :

$$
\begin{equation*}
b=h-T_{0} s \tag{a}
\end{equation*}
$$

و برگشت ناينـيرى برایى فرآيند بهازاى واحد جرم برابر است با

برایى گازهاى ايدهآل تغيير آنترويى را مى توان بهصورت زير محاسبه كرد

$$
\begin{equation*}
\Delta s=c_{p} \ln \left(\frac{T_{2}}{T_{1}}\right)-R \ln \left(\frac{p_{2}}{p_{1}}\right) \tag{d}
\end{equation*}
$$

$$
\begin{aligned}
h_{2}-h_{1} & =c_{p}\left(T_{2}-T_{1}\right)=(0.24)(838-530) \\
& =73.92 \mathrm{Btu} / \mathrm{lbm} \quad(165.3 \mathrm{~kJ} / \mathrm{kg})
\end{aligned}
$$

$$
\begin{aligned}
s_{2}-s_{1} & =0.24 \ln \left(\frac{838}{530}\right)-\frac{53.35}{778} \ln \left(\frac{60}{14.7}\right) \\
& =0.0135 \mathrm{Btu} / \mathrm{bm} .{ }^{\circ} \mathrm{R} \quad(0.0565 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K})
\end{aligned}
$$

$$
b_{2}-b_{1}=73.92-(530)(0.0135)=66.76 \mathrm{Btu} / \mathrm{lbm}(155.3 \mathrm{~kJ} / \mathrm{kg})
$$

$$
\begin{align*}
& \dot{I}=\dot{W}_{\text {نروجم وانمى| }} \tag{b}\\
& =-\Delta b-\dot{W}_{a c t} \\
& =-\Delta h+T_{0} \Delta s-\dot{W}_{a c t} \tag{c}
\end{align*}
$$

$$
\begin{aligned}
& \text { Fرماهعاى مخصوص ثابت و }
\end{aligned}
$$

$$
\begin{aligned}
\dot{I}_{1,2} & =-\Delta b_{1,2}-W_{\text {Giveri,2 }} \\
& =-66.76-(73.92)=7.16 \mathrm{Btu} / \mathrm{bm} \quad(16.65 \mathrm{~kJ} / \mathrm{kg})
\end{aligned}
$$

بازياب : هـان طوركه هوا در بازياب حرارت مى يابد، مقلار كار واتعى براى فرآيند نمار ثابت صفر است. بنابراين محاسبه مىكيم

$$
\begin{aligned}
& h_{5}-h_{2}=(0.24)(1284-838)=107.04 \mathrm{Btu} / \mathrm{bm} \quad(248.98 \mathrm{~kJ} / \mathrm{kg}) \\
& s_{2}-s_{1}=0.24 \ln \left(\frac{1284}{838}\right)-\frac{53.35}{778} \ln \left(\frac{60}{60}\right)=0.1024 \mathrm{Btu} / \mathrm{lbm} .{ }^{\circ} \mathrm{R} \\
& b_{5}-b_{2}=107.04-(530)(0.1024)=52.76 \mathrm{Btu} / \mathrm{lbm} \quad(122.7 \mathrm{~kJ} / \mathrm{kg})
\end{aligned}
$$

 انزرزى در بازياب بهدست ميا آيد.

$$
h_{5}-h_{2}=h_{4}-h_{6}
$$

بهطورى كه

$$
T_{6}=T_{4}-T_{5}+T_{2}=1375-1284+838=929^{\circ} \mathrm{R}
$$

يا الزايش دماى موا از كمبرسور مساوى كاهش دماى گازه هاى خروجى داغ مىباشد. حالا مىتوانيم خواصّ مورد نظر را محاسبدكنيم:

$$
h_{6}-h_{4}=(0.24)(929-1375)=-107.04 \mathrm{Btu} / \mathrm{bm}
$$

$$
\begin{aligned}
& s_{6}-s_{4}=0.24 \ln \left(\frac{929}{1375}\right)-\frac{53.35}{778} \ln \left(\frac{14.7}{14.7}\right)=-0.0941 \mathrm{Btu} / \mathrm{lbm} .{ }^{\circ} \mathrm{R} \\
& b_{6}-b_{4}=-107.04-(530)(-0.0941)=-57.16 \mathrm{Btu} / \mathrm{lbm}
\end{aligned}
$$

سالا برگثـتنایذيرى كلى براى بازياب برابر اسـت با منهاى افزايش در تابليت كاردهى منهاى كار واتعى خزوجى (كه برابر صفر است) يا

$$
\begin{align*}
\dot{I}_{ب ا ن ز ب} & =-\left(b_{5}-b_{2}\right)-\left(b_{6}-b_{4}\right)-\dot{W}_{\text {باندى }} \\
& =-(52.76)-(-57.16)-0=4.40 \mathrm{Btu} / \mathrm{lbm} \tag{10.23~kJ/kg}
\end{align*}
$$

مشعل : در مشعل هوا از نقطه ها تا نقطه ب (برايى يكت سيكل امتاندارد هوايى) حرارت مىيابلد.

 ا-حتراق نداريم بنأبراين تنها تغير در تابليت كاردهى هوا را مشاسبه بمىكنيم :

$$
\begin{aligned}
& h_{3}-h_{5}=(0.24)(1960-1284)=162.24 \mathrm{Btu} / \mathrm{lbm} \\
& s_{3}-s_{5}=0.24 \ln \left(\frac{1960}{1284}\right)-\frac{53.35}{778} \ln \frac{60}{60}=+0.1015 \mathrm{Btu} / \mathrm{bm} .{ }^{\circ} \mathrm{R} \\
& b_{3}-b_{5}=-162.24-(530)(+0.1015)=108.44 \mathrm{Btu} / \mathrm{lbm}(252.23 \mathrm{~kJ} / \mathrm{kg})
\end{aligned}
$$

توربين : محاسبات براى توربين بهصورت زير است :
$h_{4}-h_{3}=(0.24)(1375-1960)=-140.4 \mathrm{Btu} / \mathrm{lbm}$

$$
s_{4}-s_{3}=0.24 \ln \left(\frac{1375}{1960}\right)-\frac{53.35}{778} \ln \left(\frac{14.7}{60}\right)
$$

$$
=+0.01137 \mathrm{Btu} / \mathrm{bm} .^{\circ} \mathrm{R} \quad(0.0476 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K})
$$

$$
\begin{aligned}
b_{4}-b_{3} & =-140.4-(530)(0.01137) \\
& =-146.43 \mathrm{Btu} / \mathrm{lbm} \quad(-340.6 \mathrm{~kJ} / \mathrm{kg})
\end{aligned}
$$

كار واتعى خروجمى برابر استبا است با

$$
\begin{aligned}
\bar{S}_{3,4} & =-\Delta b_{3,4}-W_{\text {act } 3,4} \\
& =-(-146.43)-140.4 \\
& =+6.03 \mathrm{Btu} / \mathrm{bm} \quad(14.03 \mathrm{~kJ} / \mathrm{kg})
\end{aligned}
$$

كمبات سختلفى در جدول زير نثـان داده شده است تا ر رمتار كلى ميكل رابهنمايش بگخارد.

 تابليت كاردهى براى سيكل والقم توريين كازى

$\underset{\text { Btuhbm }}{\dot{I}}$	$\underset{\substack{W_{a r t} \\ \text { Btu/bm }}}{ }$	$\underset{\text { Btu/bmax }}{\dot{W}_{\text {max }}}$	$\begin{array}{r} \Delta b \\ \text { Btufbm } \end{array}$	$\begin{array}{r} \Delta h \\ \text { BtuAbm } \end{array}$	هرآيند)	جز
v/17	-vr/ar	רו/ רי.	17/v9	vr/ar	i-r	كمبرسور
			or/v9	1.v/.p	r-s	بازياب
			-av/r	-1.8/.F	F. 1	
f/p.	-	F/f.	- F / F.	-	كل	
-	.	-	1.1/pF	lir/rp	Qr	مشعل
7/r	If./f	If / /ar	-1pa/pr	-If./f	r-F	توربين
$1 \mathrm{~V} / 09$	11/91	Af $/ \cdot \mathrm{V}$	rf/rv	9s/v9		مركّندل اـكا

 १V/Y 9 Btu/bm واكثش كندهمها =

 بهوسيله سحاسبه بر امساس تنها هوا بعرفى گردرد.

$$
T_{4}=T_{5}=1310^{\circ} \mathrm{R} \quad, \quad T_{6}=T_{2}=792^{\circ} \mathrm{R}
$$

بس محاسبات زير راداريم:

$$
\begin{aligned}
& h_{2}-h_{1}=b_{2}-b_{1}=-\dot{W}_{\max }=\dot{W}_{\text {act }}\left(s_{1}=s_{2} 1\right. \text { زير) } \\
& =(0.24)(792-530)=62.88 \mathrm{Btu} / \mathrm{bm}
\end{aligned}
$$

$$
\begin{aligned}
& =(0.24)(1310-1960)=-156 \mathrm{Btu} / \mathrm{lbm}
\end{aligned}
$$

برايى بازياب

$$
\begin{aligned}
h_{5}-h_{2} & =(0.24)(1310-792)=124.32 \mathrm{Btu} / \mathrm{bm} \\
s_{5}-s_{2} & =0.24 \ln \left(\frac{1310}{792}\right)-\frac{53.35}{778} \ln \left(\frac{60}{60}\right) \\
& =0.1208 \mathrm{Btu} / \mathrm{bm} .{ }^{\mathrm{R}} \quad(0.5058 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}) \\
b_{5}-b_{2} & =60.31 \mathrm{Btu} / \mathrm{bm} \quad(140.3 \mathrm{~kJ} / \mathrm{kg}) \\
h_{6}-h_{4} & =(0.24)(792-1310)=-124.32 \mathrm{Btu} / \mathrm{bm} \\
s_{6}-s_{4} & =0.24 \ln \left(\frac{792}{1310}\right)-\frac{53.35}{778} \ln \left(\frac{14.7}{14.7}\right)=-0.1208 \mathrm{Btu} / \mathrm{bm} .{ }^{\circ} \mathrm{R}
\end{aligned}
$$

$b_{6}-b_{4}=-60.31 \mathrm{Btu} / \mathrm{lbm}$
بهطورى كه

$$
\dot{I}_{r e g}=\dot{W}_{\max }-\dot{W}_{a c t}=0
$$

$h_{3}-h_{5}=(0.24)(1960-1310)=156 \mathrm{Btu} / \mathrm{bm}$
$s_{3}-s_{5}=0.24 \ln \left(\frac{1960}{1310}\right)-\frac{53.35}{778} \ln \left(\frac{60}{60}\right)$
$=0.0967 \mathrm{Btu} / \mathrm{bm} .{ }^{\circ} \mathrm{R} \quad(0.4049 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K})$
$b_{3}-b_{5}=104.75 \mathrm{Btu} / \mathrm{lbm}(243.6 \mathrm{~kJ} / \mathrm{kg})$

سالا مى توانيم خواصّ سيكل ايدهآل را در جدول زير ارائه نهايمم :

كابليت كاردهى در سيكل ايدهآل توربينكازى

I Btu/lbm	$\begin{array}{r} W_{\text {Jilu/ }}{ }^{\text {Btu/lbm }} \end{array}$	$\dot{W}_{\text {مدأكر }}$ Btu/lbm	Δb Btu/lbm	Δh Btu/lbm	لرآيند(ه)	جز
-	-ry/se	- ir / $\wedge \wedge$	Ir/as	ir/an	I-Y	كمبرسور
			-q. $/ \mathrm{m}$	irf/ry	r-d	بازياب
			-8.14	-irf/ry	F-1	
-	-	-	,	-	كل	
-	-	-	1.F/Vo	109	arr	مشعل
-	107	107	-107	-109	r-F	توربين
-	ar/ir	ar/ir	11/x	ir/As		فر

بازده حرارتى اين سيكل ايدهآل برابر است با

$$
\eta=\frac{\dot{W}_{\text {درحد }}}{Q_{\text {عind }}}=\frac{93.12}{156}=59.7
$$

(Hybrid) '
بسته به كاربرد، مدكن است تركيب توربين گازى و سيكل تدرت بشار در يكل آرايش بيوندى
بششكل ت سرارت ديگّ بخار براى راندن سيكل بخار مورد استفاده قرار گيرد. اگگ گًازهاى خروجى تنها منبع

$$
\begin{equation*}
\dot{m}_{a}\left(h_{4}-h_{5}\right)=\dot{m}_{s}\left(h_{6}-h_{9}\right) \tag{4-YY}
\end{equation*}
$$

اگگر Qقدار سرارت اضانه شده بهديگث بشار باشد بايد مقدار آن بهطرف جهب معادله اخباه شود. مزيت سيكل ييوندى يا بركب اين است كه از انزودن سرإرت در دماى بالا براى توربين
 استراق از توربين گازى "تميزترند" نيز استفاده مىكيم، اين بهخاطر استفاده از نرخ زياد هواى الضافى مىباشد. برايى سيكل شكل س

$$
\begin{aligned}
& =\dot{m}_{9}\left[\left(h_{3}-h_{4}\right)-\left(h_{2}-h_{I}\right)\right]+\dot{m}_{s}\left[\left(h_{6}-h_{7}\right)-\left(h_{9}-h_{8}\right)\right]\left(\varsigma_{-Y}\right)
\end{aligned}
$$

رابطه بين اخالمى بهديگّ بشار الزو ودهنمىشود، تنهاسرارت اضانهشده بهسيكل مركب از متابع خارجى، درمتعل

ا- در منــبع منعلن از امــلاسات سبكلمـاى مـركب (Combined cycles) و ــكل ماى در مولــدى بعلور مترادن با بـكلهاى بيوندى اسـفاده شده اسـت. (مرجم) (Cogeneration cycles)

$$
\begin{equation*}
Q_{H}=\dot{m}_{a}\left(h_{3}-h_{2}\right) \tag{9-YF}
\end{equation*}
$$

 ببطورىك - حرارت دفع شدهكلى مىتواند بهصورت زير مهاسبه شود :

$$
Q_{L}=\dot{m}_{s}\left(h_{7}-h_{8}\right)+\dot{m}_{a} h_{5}
$$

از نتطه نظر موازنه انر زُى كلى، كل كار خروجى مىتواند بهصورت زير مهاسبه شود.

$$
\begin{equation*}
W=Q_{H}-Q_{L} \tag{4-yq}
\end{equation*}
$$

البته، بك سيكل بيوندى مىتواند شالم بازياب براي قـيت سيكل بخار و تراكم جند مرسهاى با خنكتكن مانى براي قسـت سيكل كازى باشد.

1 10 - 9 توربين كزى محرك جت'

 گاز هاى خروجى با سرعت بالا هاصل مى شوود. اين نيروى يش برنده از رابطه زير بهدست بمى آيد.

$$
\begin{equation*}
F=\frac{\dot{m}}{g_{c}}\left(V_{1}-V_{s}\right) \tag{9-YY}
\end{equation*}
$$

نر نرخ جريان جرمى در سيكل استاندارد هوايمى و

 ارائه مثالى كه اصول ترموديناميكى درگير در سيكل توربوجت را نشان ميدهد كفابت ميكند.

موتور توربوجتى بين سدود نشار ه و psia • هكار مىكند. دماى هواى ورودى به كميرسور (F. ${ }^{\circ} \mathrm{F}$
 فرض كنيد. مسهنين حرارت ورودى بهازاى يوند جرم هوا را محساسبه كنيد.

$$
\begin{equation*}
T_{l}=-40^{\circ} \mathrm{F}=420^{\circ} \mathrm{R} \tag{233K}
\end{equation*}
$$

1- Jet propulsion
2- Thrust

شكل (الف) طرحوارهاى (ب) نمودار

$$
\begin{align*}
& T_{3}=2000^{\circ} \mathrm{F}=2460^{\circ} \mathrm{R} \quad(1367 \mathrm{~K}) \\
& V_{1}=300 \mathrm{ft} / \mathrm{s} \quad(91.44 \mathrm{~m} / \mathrm{s}) \\
& p_{1}=p_{5}=5 \mathrm{psia} \quad(34.5 \mathrm{kPa}) \\
& p_{2}=p_{3}=50 \mathrm{psia} \quad(345 \mathrm{kPa})
\end{align*}
$$

$$
\begin{aligned}
T_{2} & =T_{1}\left(\frac{p_{2}}{p_{1}}\right)^{(\gamma-1)) \gamma}=(420)\left(\frac{50}{5}\right)^{0.286} \\
& =812^{\circ} \mathrm{R} \quad(451 \mathrm{~K})
\end{aligned}
$$

از آنجا كه كارهاى كميرسور و توربين مساوى هستند،

$$
h_{2}-h_{1}=h_{3}-h_{4}
$$

يا برايى گرماهاى ويزه ثابت داريم

$$
T_{2}-T_{1}=T_{3}-T_{4}
$$

بدين ترتيب

$$
T_{1}=2460-812+420=2068^{\circ} \mathrm{R} \quad(1149 \mathrm{~K})
$$

برایى فرTيند آترويى ثابت در شيوره خروجى تورين داريم

$$
\begin{aligned}
T_{5} & =T_{3}\left(\frac{p_{5}}{p_{3}}\right)^{(\gamma-1) / v}=(2460)\left(\frac{5}{50}\right)^{0.286} \\
& =1272^{\circ} \mathrm{R} \quad(707 \mathrm{~K})
\end{aligned}
$$

براي شيور•

$$
h_{4}+\frac{V_{1}^{2}}{2 g_{c}}=h_{5}+\frac{V_{5}^{2}}{2 g_{c}}
$$

فرض خواهيم كرد كه، V4 خيلى كو جكك باشد، بنابراين

$$
\begin{aligned}
V_{S} & =\left[2 g_{c}\left(h_{4}-h_{5}\right)\right]^{1 / 2}=\left[2 g_{c} c_{p}\left(T_{4}-T_{5}\right)\right]^{1 / 2} \\
& =[(2)(32.2)(0.24)(2068-1272)(778)]^{1 / 2} \\
& =3093 \mathrm{ft} / \mathrm{s} \quad(943 \mathrm{~m} / \mathrm{s})
\end{aligned}
$$

تحالا نيروى پيشبرنده بهصورت زير از معادله YV ـ 4 مساسبه بمشود.

$$
\begin{aligned}
& F=T=m\left(V_{1}-V_{5}\right)=\frac{(1)(300-3093)}{32.2} \\
& T=-96.8 \mathrm{lbf}
\end{aligned}
$$

علامت منفى مشخص مىكند كه نيروى يششبرنده در جهت مخالف سرعت ميباشلد. حرارت اضانه شده بهازاى مر بوند جرم برابر است با

$$
Q_{H}=\dot{m}\left(h_{3}-h_{2}\right)=(1)(0.24)(2460-812)=395 \mathrm{Btu} / \mathrm{s}
$$

اگر فرض كنيم كه توربو جت با سرعتى معادل سرعت ورودى حركت كند، تدرت ايجاد شده بهوسيله نيروى يشبرنده برابر است با

$$
P=T V_{1}=(86.8)(300)=26000 \mathrm{ft} . \mathrm{lbf} / \mathrm{s}
$$

$$
P=33.46 \mathrm{Btu} / \mathrm{s}=47.3 \mathrm{hp} \quad(35.3 \mathrm{~kW})
$$

اين مساسبات براى نرخ جريان lbm/s ا ميىباشد و بهتناسب براى جريانهاى زيادتر بيشتر خواهد شد.
17-9 رام جت

رامجت دستگاه مسركت هوابيما در سرعتهاى خـيلى بـالاست. رامجت بـر همـان اسـاس توربو جت كار مىكند، با اين تفاوت كه از گذرگاه بريانى جهت تبديل انرزى جنبشى جريان ورودى

 در نتيجه دما انزايش مىيابلد. در خاتمه جريان تا سرعت بالاليى در شيور ره خروجى منبسط مىشود. جون بهجريان انز زی اضانه شده است، سرعت در خروج V لا شيلى يشتر از سرعت در وزود است. نيروى

يسنسبرنده خالص بهوسيله تغير شار ممنتم داده ممىشود

$$
\begin{equation*}
T=F=\frac{\dot{m}}{\boldsymbol{G}_{c}}\left(V_{4}-V_{1}\right) \tag{9-YA}
\end{equation*}
$$

ن نر در غير اين صورت امكان ندار دكه نسبت تراكم بالايى در ورود جهـت خنثى كردن تلفات ناشى از امطكاكك و برگثت نابِذير هاى موتور بهدست آيد.

(الف)

شكل هr-9 رام جت (الف) طرحوارهاى (ب) نمودار

راكت دستگاه سادهاى است كه از طريق آن موخت و اكسيذكنندهاى در فشار بالا بهمعفظه احتراق (مشعل) رسأنده مىشود. سيس محصولات احتراق در نشار بالا از طريق شيور دهاى تا سرشتهاى

(الف)

شكل רז -

1- Rocket

نشان داده شُده است. خرجهاى' (سوختهاى) مايع و جامل هر دو مىتواند مورد استفاده ترار گیيرد. نيروى يششبرنده مجددأ بهصورت تغير شار مينتم داده مىشود يا

$$
\begin{equation*}
T=F=\frac{\dot{m}}{g_{c}} V_{3} \tag{4-74}
\end{equation*}
$$

البته، جرم كلى موتور راكت بهطور بيوسته كاهش مىيابِ، زيرا مقدار يِشترى از مدصوولات استراق شَيوره خروجى را تركت مىكتند.
| - ا

ثارامترى كه غالبأ براى مقايسه سيستههاى داراى نـيروى مـعركه بـهكـار مـىرود خــربه منصصوص امست كه بهمورت زير تعريف ميشود.

> جدول ا - ه ضر بات مشصوص تقريبى براى جند دستكاه داراثى نيروى محركه

$I_{s p}[\mathrm{~s}]$ ضر بهمغحوص	دستكاه
Y...-10..	نوربرجت
F. - 17.	راكت شُبمبايّ
خيلى زياد مونعكه در ارتفاع زياد به كار رود	رامجت

1- Propellants
2- Specific impulse

 شرح قرار دارد.

9 - 9 -9 سيكلهاى تبريد بخار
سيكل تبريد بخار دستگامى عملى است اكه سعى مىكند مانند سيكل تبريد كارنو عمل نمايد.

 حالى كهى دنع حرارت

 كوجكت تحول خفگى آدياباتيك فر آيندى است كه انتاليى طى آن ثابت بماند يعنى
 r' ظاهر شود.
رنتار سيال در دماهاى بايين براى انتخاب سيال عامل در سيكلهاى تبريد عامل مهـى استِ. مثلأ

 حر تهويه مطبع بهكار نمىرود. هيدروكربنهاى نلونوردار (فريون)' غالباً در تهويه مطبِع بهخاطر

(الفْ)

هزينه كم؛ رفتار بىاثر و سمى نبودنشان برایى بشر به كار مىروند. يكث مزيت ديگرشان داشتن ميل تركيبى شد يد با روغن است و بدين ترتيب مى تواند بهعنوان يكت عامل خود ـروغنكارى ' در كمبرسور

 نلورومتان' ('زيون Y Y ا) در ضميمه داده شده است. ضريب عملكر د برابر است با

$$
\begin{align*}
& \mathrm{COP}=\frac{h_{1}-h_{1}}{h_{2}-h_{l}} \tag{9-r1}
\end{align*}
$$

 تعريف بهصورت زير خخلاصهي مىنود.

$$
\begin{equation*}
1 \mathrm{ton}=12000 \mathrm{Btu} / \mathrm{h}=3.516 \mathrm{~kW} \tag{9-rY}
\end{equation*}
$$

مثّل زير تحليل كلى يكك سيكل تبريد را نشان مىدهد.

مثال 17 - 9 يخحّال فريون

 توليد تأثير سرمايئى ها تن مهاسبه كنيد.
 خواصّ فويون در ضميمه بهدست آوريم:

$$
h_{I}=80.419 \mathrm{Btu} / \mathrm{bm} \quad\left(\mathrm{r} \cdot{ }^{\circ} \mathrm{F} \mathrm{~J} \mu \mathrm{~J}\right)
$$

1. Dichlorodifluoromethane (Freon 12)

$$
\begin{aligned}
& s_{1}=0.16648 \mathrm{Btu} / \mathrm{lbm} .{ }^{\circ} \mathrm{R}=s_{2 s} \\
& h_{3}=h_{4}=36.013 \mathrm{Btu} / \mathrm{lbm} \quad\left(1 \mathrm{Y} \cdot{ }^{\circ} \mathrm{F}\right. \text { (مايع اشباع در) } \\
& p_{3}=p_{2}=172.35 \text { psia (} 1 \text { Y. }{ }^{\circ} \mathrm{F} \text { نثار اشباع در) } \\
& \text { جون } \\
& h_{2 s}=91.5 \mathrm{Btu} / \mathrm{bm}(212.8 \mathrm{~kJ} / \mathrm{kg}) \quad s=\cdot / \text { Mif^ }, p=1 \mathrm{VY} \mathrm{psia}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{COP}=\frac{h_{1}-h_{4}}{h_{2}-h_{1}} \\
& =\frac{80.4-36.0}{91.5-80.4}=4
\end{aligned}
$$

كار ورودى لازم بهازاى هر يوند جرم سيال برابر است با

 $W=h_{2}-h_{1}=11.1 \mathrm{Btu} / \mathrm{bm} \quad(25.82 \mathrm{~kJ} / \mathrm{kg})$$Q_{L}=\dot{m}\left(h_{1}-h_{4}\right)$
(5)(12000) $=\dot{m}(80.4-36.0)$
$\dot{m}=1350 \mathrm{lbm} / \mathrm{h}(612.4 \mathrm{~kg} / \mathrm{h})$

> بنابراين كار كلى لازم برابر است با

$$
\begin{aligned}
& W_{\mathrm{N}}=\dot{m}\left(h_{2}-h_{1}\right)=(1350)(11.1)=15000 \mathrm{Btu} / \mathrm{h} \\
& W=5.9 \mathrm{hp} \quad(4.39 \mathrm{~kW})
\end{aligned}
$$

بهمنبع گرمتر بر اساس مقياس دما تصوير كنيم و آن را "ميم حراد تى " بناميم. از اصطلاح سيكل تبزيد
 مى تواند برایى وظيفهاى ديگر بهكار گر فته شود، يعنى حرارت
 كو جكت ياتجار تى به كاربرد. درحالتگگرمايش روشمعمول تعريف ضريب عملكرد بهصورت زير است

$$
\begin{equation*}
\operatorname{COP}_{H}(2)=\frac{1}{1-T_{L} / T_{H}} \tag{4-rF}
\end{equation*}
$$

يمب حرادتى نـبت بهگرمايش بوسيله مقاومت الككريكى اين مزيت آشيكار را دارد كه حمول اثر

$$
3.0=\frac{Q_{L}}{W} \quad Q_{L}=3 \mathrm{w}
$$

بهطورى كه

$$
\begin{align*}
& Q_{H}=Q_{L}+W=4.0 \mathrm{~W} \\
& \mathrm{COP}_{H}=4.0 \tag{و}
\end{align*}
$$

بنابراين تنها نياز بهخريد يكث واحد انز زُى براى هرجهار واحد نيست كه باهيج بهدست آيد! سرمايه گذارى اوليه برایى ماثين بايد مورت گيرد تا تا در آينده در هزينه برت
مر نهجويى كنبم.

بمب حرإتى شابد نسبت بهسيستمهاى گر مايش احترات گاز طبيعى مزيت اتتصادى داشته باشـد

$$
\begin{aligned}
& \text { براى يمب حرادتى كارنو }{ }^{\text {مر }} \text { مربوطه برابر است با }
\end{aligned}
$$

ترموديناميك
 2رصلد بيشتر از تهويه مطبوع وكوره گًاز طبيعى قابل مقايسه با آن مىياشد.
 بهعنوان منبع سرارتى در تبخير كننده استفاده كنند. با انزايش قابل ملاحظه دماى تبخير كننده بيشتر از دماى مهيط Tازاد امكان بهبود قابل ملاحظه در ضريب عملكرد كلى وجود دارد.

مثال IY - IY يمب حرارتى كارنو

بمب (1 . / / Fº F) $+\wedge^{\circ} \mathrm{C}$ غورشيدى طورى نصب شود كه حد دماى بايِنى تا حــــل : در اولين حالـت داريم

$$
\begin{aligned}
& T_{L}=-15^{\circ} \mathrm{C}=258 \mathrm{~K} \\
& T_{H}=38^{\circ} \mathrm{C}=311 \mathrm{~K}
\end{aligned}
$$

بهطورىیه ضريب عملكرد برابر است با

$$
\mathrm{COP}_{H}=\frac{1}{1-T_{L} / T_{H}}=\frac{1}{1-258 / 311}=5.868
$$

هنگامىى دماى پايِنى به

$$
\begin{aligned}
T_{L} & =10^{\circ} \mathrm{C}=283 \mathrm{~K} \\
T_{H} & =38^{\circ} \mathrm{C}=311 \mathrm{~K}
\end{aligned}
$$

$$
\mathrm{COP}_{H}=\frac{1}{1-283 / 311}=11.107
$$

 (1. ${ }^{\circ} \mathrm{C}$ C میتوانيم مقدار گرمايش خروجى يكـانى را با كاهش تدرت ورودى بهاندازه FV توليد كنيـم. طبيعتأ بيمهاى حرارتى مقادير بالأى COP نشان داده شده در اين مثال را نخواهنــد داد.

حاصـل شود.

F. ${ }^{\circ}$ F
 گرمايش لازم

 بهداخل نضايى كه بايدگرم شود داده مىشود.

حـــل : يمب حرازتى يكت دستگاه تبريد بخار اسـت و بهصورت طرسوار هاى در شـكل V V ـ ه نشان داده شده است. انتاليـها بهصورت زير تعيين مىشوند.

$$
\begin{aligned}
& s_{1}=0.16586 \mathrm{Blu} / \mathrm{bm} .{ }^{\circ} \mathrm{R}=s_{2} \\
& h_{3}=h_{4}=36.013 \mathrm{Btu} / \mathrm{lbm} \quad\left(1 \mathrm{Y} .{ }^{\circ} \mathrm{F}\right. \text { مايع اشتباع د) } \\
& p_{3}=p_{2}=172.35 \mathrm{psia} \quad\left(1 \text { Y. }{ }^{\circ} \mathrm{F}\right. \text { نشار اشباع در) }
\end{aligned}
$$

با استفادن از

$$
h_{2 s}=90.64 \mathrm{Btu} / \mathrm{lbm}
$$

$$
\begin{equation*}
0.85=\frac{h_{2 s}-h_{1}}{h_{2}-h_{1}}=\frac{90.64-81.436}{h_{2}-81.436} \tag{a}
\end{equation*}
$$

$h_{2}=92.264 \mathrm{Btu} / \mathrm{lbm}$

$$
\text { ظرفيت حرارتى برابر است با Qtu/h } \text { Q }_{H}=1 \text { در نتيجه }
$$

$$
Q_{H}=\dot{m}\left(h_{2}-h_{3}\right)
$$

شـدت و جريان فريون بهصورت زير مساسبه مىشود

$$
\begin{equation*}
\dot{m}=\frac{100000}{92.264-36.013}=1778 \mathrm{lbm} / \mathrm{h} \tag{b}
\end{equation*}
$$

كار ورودى مربوط برابر است با

$$
C_{H P}=(0.053)(5.64)=\$ 0.2989 / \mathrm{h}
$$

هز ينه واحد گرمايش برابر است با
$C_{H P} / 10^{6} \mathrm{Btu}=\frac{\$ 0.2989 / \mathrm{h}}{0.1 \times 10^{6} \mathrm{Btu} / \mathrm{h}}=\$ 2.989 / 10^{6} \mathrm{Btu}$

$E_{\text {Er }}^{\text {m }}=142860 \mathrm{Btu} / \mathrm{h}$
$C_{F}=\left(\$ 3.25 / 10^{6} \mathrm{Btu}\right)\left(0.14286 \times 10^{6} \mathrm{Btu} / \mathrm{h}\right)=\mathrm{S} 0.4643 / \mathrm{h}$

$$
\begin{align*}
& W=\dot{m}\left(h_{2}-h_{1}\right)=(1778)(92.264-81.436) \tag{c}\\
& =19252 \mathrm{Btu} / \mathrm{h}=5.64 \mathrm{~kW}
\end{align*}
$$

هزينه هر Btu " ، ا نحويل داده شده بهمحيط داخل برابر است با

$$
\begin{equation*}
C_{F} 10^{6} \mathrm{Btu}=\frac{0.4643}{0.1}=\$ 4.643 / 10^{6} \mathrm{Btu} \tag{e}
\end{equation*}
$$

بنابراين در مىياييم كه واحد گرمايش برای يمب حرار تى حدود

 اين در نتيجه تأثير ضريب عملكرد مى

محاسبه كر2:

$$
\operatorname{COP}_{H}=\frac{Q_{H}}{W}=\frac{100000}{19252}=5.194
$$

| 9 - Y

 تهويه مطبو در تابستان و جهه بايى سيستم سر دخانه مناسب ميباشد.

 خو اهيمكر دكه برد آبونياكث (NH (N)است، اين يكى از ستداولتر ين مبر دها در سيـيتههاى جذبى است.
 شده بهجاى كميرسور يعنى جذب كننده، يمب و مولد مورد توجه است. المل اساسى درگير عبارت است از اين كه Tب Tمونياكك را جذبعمىكند و در اين فرايند حرارت آزاد ممكند، مشروط بر اين كه دما ثابت نگهدامتت شود. برعكس، منگاممكه حرارت بهمعلول غليظ NH ${ }^{\text {Nا }}$ بهمورت سباب بهيان T $\mathrm{NH}_{\mathbf{r}}$
 در مولد قرار میگيرد و عرارت رتيت بآتى مانده بهجذب كتنده برگثت داده مىشود تا مقدار تازهاهى از NH در سيكل جذبى كلى، كار ورودى بهيبـ خخلمى كم است و منبع املى انرزیى كه بايد از خارج تهي شود، احتياج بهامكانات خيلى بيتنرى براى دفع حرارت دار2، زيرا احتياج بهدنع عرارت جذبى

مقدار ${ }^{\text {Q }}$ مىاشيد. در تحليل اتتصادى كلى سيستم كه در عمل استفاده مىشو بايل بهاين موضوعات تو جه شود.
جفت ديگر از سيالاتى كه ممكن است در سيستههاى جذبى برايى كاربرد تهويه مطبوع بهكار رود در جايى كه دماهاى تبخير ككنده خيلى بايين نيست عبارت است از تركيب آب بهعنوان مبرد و

 طر حوارهاى از يكت سيستم عملى LiBr-HYO در شكل 9 ب ـ 9 نشان داده شده امت. هر دو تبخير كننده و جذب كننده در تسمت نثار هايِن سيستم كار مىكنند و بدين ترتيب در يكك محفظه مشتركك با اتصالاتى برایى تخليه جهت ابقاى شرايط خلأ متجبوس مىباشند. جگالنده و مولد در طرت

1- Lithium bromide
2. Steam ejectors

نشار بالا عمل مىكتد و بهطور مثابه در يكت محفظه مشترك ترار دارند. اين سـبستم مـعمولألأ در
 مقدار تابل ملاحظهاى آب خنكككنده بايد تهيه شود تا حرارت را از جذبك كنده و جگًالنده خارج كند. بنار آب معمولأ براى تهيه انرزى در مولد بهكار مىرود و از تبخير كنتده برايى توليد آب سرد شـده استفاده مىشود.
حالا ابجازه دهيد كه فر آين.هاى دستگاه تبريد را تعقيب كنيـم. در نقطه 7 بـخار آب در مدحفظه ثاينیى، در محلول رقيق LiBr وارده در نقطه ها جذب مىشود. بعد از جذب و همراهمى حرارت آزاد

 سرارت از طريق كويلهاى بخار آب به آن داده مى شود؛ بنابراين باعث مى شود بخار آب در نقطه با از
 بهمحفظه بايِنى در نقطه

 اختّلان نشار دو محفظظه را ابقاكند.

نشار كم در محفظه ثاينى هنگگامى كه لازم باشد بهوسيله جذب بخار آب در محلول LiBr

 ا برایى بالا بردن فرآيند جذبـ در نقطه 7 فراعهم مىشود.
 \& Fاملا"گرم امست. مسلول در نقطه ا خيلى سردتر است و مبدل حرارتى نشان داده شـده عملكرد كلى را
 بازگرم كردن سيال سرد از 1 به Y المتفاده مىشود، بهطورى كه حرارت كمترى بايل در قسمت مولد

بار عمل مىكند تا جريان مايع را يين دو منبع متتاسب با احتياجات آب سرد كننده كم و زياد كند.

خود آزمايى (سؤالات مرورى)
1- عوامل اصلى كه بر بازده حرازتى يكت سيكل قدرت يا ضريب عملكرد يكت سيكل تبريد تاثير دارد، خيست؟
 ب-
 هـ هـ هِگونه يك بازياب عملكرد سيكل تدرت بخار را بهبود مىبخشد؟ 7- تايز بين گرمكنهاى آب تغذيه باز و بسته را مـتـتص كنيد. - -

 به كار برده شود
بازده حتجمى را تعريف كنيد.
 تراكم در يكت محفظه محصور بكانيزم سبلندر - يستون انجانم گيرد
 ا- أ سيكل استاندارد هوايى جيست؟

$$
\begin{aligned}
& \text { I ا- } 14 \\
& \text { IV }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ^1 ا- توربوجت جگگونه كار مىكند؟ } \\
& \text { 19 أ بازده بازياب را تعريف كنيد. } \\
& \text { رام جت جیگونه كار میكند? } \\
& \text { - - Y } \\
& \text { - YY } \\
& \text { - YY } \\
& \text { جه عوالمل اصلى بر ضريب ععلكرد ماثين تبريد تأثير دارد? YF }
\end{aligned}
$$

كارنو ميل كند؟

مسائل ((آحاد انتُليسى)

 سيكل رانكين بخصوص با دو مرحله بازگرم كار میكند. بـخار آب در 10 psia .
 ه م هـى درصـد مى.انــد. بازده حرارتى سيكل را سحاسبه كيد و با بازده سيكل كارنو در همان سدود دما مقايسه كنيد.

توربين بخار كو جیكى طورى طرح شـده است كه با فشار بخار آب psia
 مىشود. تا هه دمايى بايد بـخار Tب برفشار را سرارت داد تا مطمين شد كه رطوبت در توربين از ها درصد تجاوز نكند. بازده حرارتئ سيكل را تحت اين شرايط سحاسبه كيند.

$$
\begin{aligned}
& \text { فرض كنيد كه انبـاط در توربين بهصورت آنترويى ثابت صورت گیيرد. }
\end{aligned}
$$

Q.F

هـه هـ ه آب تغذ يه باز به كارگر گته مىشو د. انبــاط بهصوزت آنترويهى ثابـت در توربين اتفات مىافتد و نشار برداشت از توربين طورى انتتخاب مىشود كه انت انتالبِ در هر يكك از دو مرحله يكسان باشل. بازده حرار تى سيكل را محاسبه كنيد.
 جِگگالنده (از طريق تله بخار) تكرار نـايِد. يكت نيروگاه بخار با سه گرمكن آبَ تغذيه باز و بازگرمايش بعد از هر مرحله توربين كار Q.V مىكند. طرحواره́ اين سيكل را رسممكرده و تمام نقاط مربوطه را بر روى آن مشخص نـايِد و رابطها'ى برایى بيان بازده حرازتى آن بنويسيد. همخنين تمام مواز نههاى انرزى للزم را بنويسيد. يكت سيكل تلرت بخار سه مرحلهّ نو ربين رابادو برداشت به گر مكن هاى آب تغذ يه بسته و بازگرمايش بعد از هر برداشت بهخدمت مىگيرد. حاصل تقطير بهديگت بشار بيمب مى شو د. طرحوارهایى رسـم كنيد و رابطهاى براى بازده حرارتى سيكل بـنويسيل. هـمـتخنين تمـام موازنههاى انرزّى لازم را بنويسيد.
 بازی داده مىشود و باتى مانده بخار آب تبل از وارد شدن بهمرحله دوم توربين بازگرم مى شود. دومين برداشت بهيكى گر مكن آب تغذيه بسته داده مىشود و حاصـل تقطير بهنشار
 سيكل را رسـم كنيد و نقاط را بر روى آن مشخص نمايِد و رابطهاى براي بازده حرارتى سيكل ارائه كنيد. همحنين تمام موازنههاى انرزى لازم را بنويسيد. يكت نيروگاه بخار از دو برداشت و دوگرمكن آب تغذيه باز استفاده مىكنند. بازگرمايش بعد از هر دو برداشت صورت مىگیيرد. طرحوارهاهى براى سيكل رسـم كنيد و نقاط را بر روى آن مشـخص نمايلد و رابطهاى برايى بازده حرارتى سيكل بنويسيد. همـجنين تمـام

موازنهعاى انرزّى لازم را بنو يسيد.
 FBpsia

 (ب) برابى تراكم بلى ترويِكت با $n=1 /$ مسطاسبه كنيد. يكت ماثيّن دو مرحلهانى جهت تراكم هو!
 مرحله ايدهآل به كار مىرود. هر مرحله آدياباتيكك المت اما دارایى بازده . V درصد مىبائمد.

 يكث سيكل بخار بازياب بين psia و 1 Y . . ${ }^{\circ} \mathrm{F}$ F 10 . . psia

 فرضهاى زير (الف) انبساط آنتر ويى ثابت در توربين و (ب) بازده ه^ درصد توربين براى هر يكك أز سسه مرحله محاسببه كنيل. Q_1F بحخار Tب ورودى بهمرحله اول توزبين: . . . ${ }^{\circ} \mathrm{F}$ F ، . . . psia Y psia :نشار هچگالنده
نشار برداشت از توربين : • psia

بعد از اين كه قــتى از بشخار آب برای استفاده در گر مكن آب تغذيه بازى بر داشمت شد، مابقى تا
 حرارتى سيكل را محاسبه كنيد.

يكك نيروگاه بخار با يكت گرمكن آب تغذيه بسته كار مىكند. بخار آب در

 مىشود. بازده حرارتى سيكل را محاسبه كنيد.

 هر مرحله توربين دارالى بازده AV درصد است. بازده حرازتى را سحاسبه كنبد. از كار يمب
 كت سيكل رانكين دارایشورايط ورودى بهتوربين

 psia

 يكك سيكل بخار آب طورى طراحى شُده تا تدرت خروجى MW . . . ا توليد نمابي.

 در ديگث بخار را با فرض انبساط آنتروبى ثابت و مرت نظر كردن از كار يمب سحامبه كنيد. حاصل تقطير از طريق تلهاى بهج جیالنده مىرسـد. V. ${ }^{\circ}$ F IF/V psia

 محاسبه كنيد.

مىباشد. دما و نشار در تدام نقاط سيكل، نسبت הطع سو خت و بازده حرارتى را مساسبه كنيد. بازده رابا بازده سيكل كارنويى كه بين عمان حدود دماكار میىكند مقايسه نـايسد.

 نشار را در عر نقطة سيكل، نسبت تطع سو خت و بازده حرار تى را سحاسبه كنيد. بازده را با بازده سيكل كارنويى كه در همان حدود دماكار مىكند مقايسه نـابيد. بازده حرار تى يكث سيكل استاندارد موايى اتو راكه دارايى همان حد نشار بالايى سيكل

 مى باشد مساسبه كنيد.

كك سيكال استاندارد هوايى برايتون در 9.79
 در دـد مىباشـد. بازده سرارتى سيكل و كار خروجى خالص را بهازاى هر بوند جرم هوا معاسبه كنيد.

1. . . psia تا V. ${ }^{\circ} \mathrm{F}$ ،I F/V psia از الا به كار مىرود. با فرض ايدهآل بودن طبقهبندى و خذكثكن ميانى كار لازم را بهازاى هـر بوند جرم هوای متراكم مساسبه كنيد. فرض كنيد كه فر آيند تراكم بهصورت آ آنترويى ثابت اتفاق مىانتد.
كِ سيكل استاندارد هوايى اتو دارای نسبت تراكم 1: 9 مىباشد. شرايط در ابتداي مر جله
 دما در سيكل و بازده حرار تى را مساسبه كنيد. اين بازده را با بازده يكث سيكل كارنو كه در هعان حدود دماكار مىكند مقايسه نـايِد.
يكت سيكل استاندارد هوايى اتو طورى كار مىكند كه فرآبندهاى تراكم و انبــاط از

نصل 9 ـ يـيكلهاى تلرت ر تبويد

مساسبه كنيل.

 با فـرض (الفْ) گر ماهاى ويـرّه ثابت و (ب) گر ماهأى ويـرُه متغيـر بـر مبنـاى بجلاول هـوا مـاسبه كنيل. بازده را با بازده يكت سيكل كارنو كه دز سلود همان دما كار ميكند

مقا يسه كنيلد.
 Q_r| تكرار نمايِل.
بازياب ايلدهT Q_rr

اين شرايط مساسبه كنيل.
يكت سيكل توربين گازی از دو هرسله تراكم و انبساط با يكت خنكىكن ميانى ايلدهآل برای Q_rr مرإحل تراكم استفاده ميكند. شُرايط ورودى V. ${ }^{\circ} \mathrm{F}$, IF/V psia مىباشثد و سداكثّ
 سيكل را مـحاسبه كنيل. فر آيندهاى تراكمب و مراحل توربين را آنتروهیى ثابت فرض كنيل. بازيابى با بازده . A درصد در سيكل Y مرسلهایى مسأله Q_rp زا تحتت این شرايط مـحاسبه كنيل : با باز ده سيكل كارنويى كه سلود هـمان دماكار ميكند

مقايسـه نمايلد.
 $9 . r \Delta$ هر مرحله تكرار نماسِل. هـ هـ
 و و

ترمود ـيناميك

مورد استفاده قرار مىگيرد و داراى بازده VA درصد مىباشد. بازده حرارتى سـيكل را محاسبـب كنيد.
 بالا يى بازده حرارتى سيكل را محاسبه كنيد.

 متحاسبه كنيد.
بك سيكل توربين گازیى دارای تراكم دو مرحلهاى با طبقهبندى و خنكاكن ميانى ايدهآل و يكت مرحله توربين مىبائـلـ بازيابى با بازده • 9 درصد نيز به كار مىرود. كميرسور و

 به كميرسور
از يكت توربين گازی با شرايط ورودى psia ه و
 با فرض تراكـم و انسساط آنترويى ثابت، شدت جريان لازم را براى توليد نيروى يششبرنده 10 . . . lbf روش استفاده از انرزّى گازهانى گرم اگزز در يكى سيكل توربين گازى اين است كه از گاز زها برای گر مايش بشار آب در سيكل رانكين استفاده شود. سيكل توربين گازى مسأله

(الف) مقدار جرخش بهار آبب بهازاى هر بوند جرم هوا در سيكل توربين گازیى (ب) كار خروجى خالص سيكل مركب بشار- توربين گازى بهازای هر يوند جرم هوا

 يكت موتور توربوجت در حاليكه در موتعيت ثابت بر روى زمين ترار دارد، هوا را در V. ${ }^{\circ} \mathrm{F}$, |f/ f psia
 انبساط در شيبوره اگزز مىتواند آنترويى ثابست در نظر گرفته شود. نيروى ييسّبرنده و گرماى ورودى را بهازاي هر يوند جرم هوا در ثانيه باصر ت نظر كردن از سرعت ورودى مساسبه كنيد.
 مىباشد تكرار كنيد. سيكل تبريد بخار ايده آلى الز فريون Y Y Y بهعنوان سيال عامل أستفاده ممكند. دستگاه جهت تهويه مطبوع استفاده مىشود بهطورىكه دماى تبیخير كتنده FDºF و دماى اشباع پـگگالنده
 يك سيستم تبر يد دماى بايمن از آمونياكك بهعنوان سيال عامل استفاده مىكند. دماى تبخير
 A A A A . مساسبه كنيد. اين مقادير را با مقادير برايى يتخهال كارنويى كه در حدود عمان دما كار مى كند، مقايسه كنيد.

 تدرت لازم بر حسبب كيلووات بهازاى هر تن را تحت شُرايط جديد محاسبه كنيد.

ترموديناميك

 مساسبه كنيل. Q-D.

 Tآتزويى ثابت باشد مساسبه كنيد.
 سرمايش
 ورودي و شـدت جريان آمونياكث لازم را مساسبه كنبد.
 تبخير كنده r

كار لازم جهت توليب

 اثر تبريد • ه 1 ا تن محاسبه كيد. فرض كينيد كه تراكم آنترويى ثابت است.
 ال Btu/h ll lloF كار كند. قدرت ورودى برايى اين واحد رابر حسب Btu/h و hp با فرض تراكم آنترويى ثابت مساسبه كنيد.
 تبخير كنده سرمايش كلى توليدى بهوسيله ماثين

يكت سيكل تبريد از فريون Y Y بهعنوان سيال عامل استفاده مىكند و دارايى دماى تبخير
 ورودیى را برایى توليد اثر سرمايش Y Y تن محاسبه كنيد.
در يكت سيستم تبريد بخصوص برایى كاربردهاى دماى پايِن، يكت عملكرد دو مرحلهانى لازم استكه از سيستم فريون

 تركيب شده، عايت هىشود بهطورى كه هيج حرارتى از مسيط كسب نعىكند و تمـام سرارتى كه آمونياكث از دست داده بهتبخير كننده فزيون مىرود. كل سيستم براى توليد
 جرمى لازم هر سـيال، تدرت ورودى هر كميرسور و خريب عملكرد را برایى سيستم كلى محاسبه كنيل. يكت سيستم تهويه مطبوع جذلى مـخصوص از Tب بهعنوان سيال عامل و از برميد ليتبم بـ
 اشباع جگگالنده تهويه مطبوع اتومبيلى از سيستم تبريد فريون | استفاده مىكند. دماى تبغير كنتلده در

 درصد محاسبه كنيل. خريب عملكرد تحت اين شرايط جقلدر است؟
يكت سيكل بخـار بازياب از يكك گرمكن Tاب تغذيـه بسته و دو مرحله توربين استفاده

 مساسبه كنيد.
 A • P Psia مراحل به كار گرنه مى شوند. هـهحنين دو مرحله توربين با بازگر مايش بين مراحل بـه كار

 -
 كيد سيال عامل هوا باگرماهاى ويزه ثابت بـاشد. اگگر سـوختى بـا ارزش Btu/lbm توليد شده را بر حسبب سنت بهازاى هر كيلووات ساعت شساسبه كنيل.
 حامـل تقطير ازگَرمكن اول از طريق تله بـخارى بهداخل گَرمكن دوم جريان يسدا مىكند و

 تخليه از سومين مرحله توربين در نشار psia ا صورت مىیگيرد. بازده توربينها هی درحد و بازده بمبها . . ا درصد مىباشد. بازده حرارتى و جريان بشخار آب لازم را براي كل خروجى الكتر يكى از توربين برابر Y kW يساسبه كنيد.

 است و دماى مسيط براكى اتلان حرارت 1 ها باشد. يكت سيكل, رانكين طورى طرح

در سين بس دادن سرارت بهفريون در ديگُ بشار، شدت جريان آب لازم دا برایى تلرت خروجمى Y \triangle محاسبه كنيد.
M. اF هیگالنده آب بر داشت از توربين طورى انتخاب مىگر دد كه حداككر افزايش رادر بازده سيكل زاهمم
 كنيد. محاسبات را برا'ى حالات زير انجام دهيد : (الف) انبساط آنترويى ثابت و (ب) باز

$$
\begin{aligned}
& \text { |A. . }{ }^{\circ} \mathrm{F} \text { : } \\
& \text { بازده توربين : • } 9 \text { درصد } \\
& \text { بازده كمبرسور : : } \\
& \text { بازده بازياب : V. }
\end{aligned}
$$

|F/V psia ، IY. ${ }^{\circ}$ F :

$$
\begin{aligned}
& \text { r . .hp : تدرت خروجم } \\
& \text { نسبت قشار : r/a:1 }
\end{aligned}
$$

با فرض يكت سيكل استاندارد هوايى، بازده حرارتى سيكل و جريان جرمى هواى لازم را مداسبه كنيد. اكر از سو ختى با ارزش سرارتى IF Btu/gal المتفاده شود، ميزان مصرن سوخت را در سداكتر مدرت خروجمى محاسبه كنيد. مـحاسبات را با فرض ثابنت

بودن گر ماهاى ويزه و همجنين به كار بردن جداول هوا انجام دهيل.
 تراكم ا^:1 ا كار مىكنا.. نسبت تطع سوخت برابر Y و تراكم و انبساط را مى توان آنترويى
 .个 Btu/lbm شده مساسبه كنيد. مساسبات را بر مبناى سيكل أستاندارد هوايى انجام دهيل.
"يمب حرارتى " يكت ماشين معكوس تبر يد است كه مىتواند بر'ى موارت دادن در هوأى

 زير در نظر بعيريد.

با فرض تراكمم آنترويىى ثابت، كاز ورودى براى توليد حرأرت مشـشص شده و شدت
 بردارد، مخارج كاركردن دستگًاه جقدر است؟؟ اين هزينه را با هزينه اجبرا؟ مهان مقدار حرازت با سو ختت مازوت بهقيمت \& دلار به ازاى هر ميليون Btu مقايسه كنيد.

 بهخارج حرارت يس مىدهد (يكت واحد خنكثكنده هوا) در حالى كه تبغير كنتده در ه در داخل كاز مىكند. نرخ خنكت كنتده بر حــبـ تن براي اين شرايط و اسب بخار ورودى لازم را مساسبه كنيد. همجِنِي هزينه بـرق مسرنـي دستگًاه را در ايسن شرايـط محاسبه كنيد. يكت سيكل بسته توربين گازى كه از هليوم بهعنوان سيال عامل استفــادد مىكند طـورى

 10. psia بـودن ترماهاى ويـرْ حساب كنيد. همحنين حرارتـى راكه بايــ بـهمحيط داده شــود محاسبد كنيد.

$$
\begin{aligned}
& \text { Y }
\end{aligned}
$$

افزونه نترا اتيل سرب بهسوخت دارد كي متخصعبين بهداشت مسيط ادعا ميكنند برايى سلامتى خيلى مضر است. براي كامش اين خطرات بعضى از طرسهاى موتور، نسبت تراكم

 I . . atm

متراكم كردن kg/min • ا بر حسب kW معاسبه كنيد.

يكت كميرسور هوايی رفت و Tامدى داراى بازده عجعى ها 4 درمد است و طورى طرح
 متراكم كند. نشار تخليه Vه psia است و تراكم و انبساط را مى توان آنتزويس ثابت فرض

حسب اسب بخار مهاسبه كنيد.

 دريا پس داده شود بهاضانه مقدار حرارتى كها از خنكك

 هد فشار بالايى : 10 . . psia

گرمكنهاى Tب تغذيه: دو، بسته، حاصل تقطير از اول بهدوم از طريق تله بخار، حامل تقطير از دوم بهديگّ بخار بيب بمىشود.
 بازگرم :بازگرم تا

بازده توربينها : • 9 درصد
قدرت خروجى :
 اضافى راكه بايد در جحگالنده تلف شود مساسبه كنيد.

 Q_YM

 9- $\& M$

فشار برداشت از توربين طورى انتشاب محيشو كه افت انتالكه در هر يكه از دو مرحله
يكــان باشـد. بازده حرارتى سيكل را مصاسبه كنيد.
يكت نيروگاه بـخار با دوگرمكن آب تغذيه باز و بازگرمايش بعد از اولين تور بابين كار مىكند. طرسواره: اين سيكل را رسم كرده تمام نقاط مربوطه را بر روى آن مشغصص نمايِد و

بنويسيد.

يكى نيروگاه بخار از دو برداشت المتفاده مىكند. اولين برداشت بهيكى گر مكن آب تغذيه

 طرسوارهاى از سيكل رسمكنيد و نقاط را بر روى آن مشتخص نمايِد و رابطهاى براى بازده حرار تى سيكل \&اراثه كنيد. عـجهنين تمام موازنهایى اترزّى لازم را بنويسيد.
 مى گيرد. طرسوار
 بنويسيد. انتخاب خود را براى حامل تقطير از هر دو گرمكن مشخغص نهايِد.

 خروجى 1 . . MW Mساسبه كنيد. از كار يمب صرن نظر نمايِد. حامل تقطير بهفشار ديگّ بشار يمب مىشود.

 حرارتى سيكل را محاسبه كنيد.

 / / / / MPa

 سنت بهازاى هر كيلووات ساعت محاسبه كنيد.

 ه $\Delta^{\circ} \mathrm{C}$

مهاسبات را براي هالات زير انجام دهيد :

 تحت اين شرايط محاسبه كيد.
 Q- $1 \Delta M$ مراحل تراكم استفاده مىكند. شرايط ورودى MPa

 $4.17 M$
 كار مىكند مقايـه نمايِيد.
 برایى هر مر هله تكرار نمايِد.
 كاز ها براى حرارت دادي
 بين rv. ${ }^{\circ} \mathrm{C}$ بخار آب رادر

(ب) كار خروجى خالص سيكل مركب بخار- توربين گازي بهازاي هر كيلو گرم هر هو
(ج) باز ده حرادتى سيكل مركب
 $9-1 \wedge M$ بك موتور توربوجت در حالىكه در موتعيت ثابت بر روى زمين ترار دارد، هوا را در Q-r. M r. r مى ${ }^{\circ} \mathrm{C} \mathrm{C}$ 1 . kPa

Q می, ${ }^{\circ} \mathrm{C}$
 ورودى را بهازایى هر كيلوگرم هوا با صرف نظر كردن از سرعت ورودى مـحأسبه كنيد.
 باشد ت با برار كنيد. يكت سيكل توربين گازى دو مرحله كمير سور با خنكکكن ميانى و يكت مر حله توربين رابه خدمت مى گيرد. تتليه از توربين بهيكت ديگّ بخار سيكل رانكين با يكت گرمكن ور آب تغذيه بسته داده مىشود. طرسوار هالى از سيكل رسم كنيد، تمام موازنههاهاى انرزّى لازم را
 مشتص گرديد، ارائه كنيد.
 هواى ورودى در هی درصد مىاباثد. بازده حرارتى سيكل و جريان جرمى عواى لازم را جهت قدرت خروجى كل I YMW مـحاسبه كنيد.

$$
\begin{aligned}
& \text { 1•••} \text { حداكثر دما } \\
& \text { بازده توربين : • } 9 \text { درصـ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { بازده بازياب : •V درصد } \\
& 1 \operatorname{alm} \Delta *^{\circ} \mathrm{C} \text { : دماى شوای ورودى } \\
& \text { FYD kW : تدرت خروج } \\
& \text { r/ } 0: 1 \text { : نــبـت نشار }
\end{aligned}
$$

با فرض يكت سيكل استاندارد هوايىى، بازده حرازتى سيكل و جريان جرمى شواى لازم را
 سو خت در حداكثر قدرت خروجى را مـاسبه كنيد. محأسيات را با فوض ثابت بـودن

 4. M 2

 سجم مرده را بر حسبـ درصد مجـي اسب بخار مساسبه كنيد.

 Tآنترويى ثابت و (ب) برايى تراكم يلى ترويسك رابا $n=1 / r$ مساسبه كيد.
 كميرسور

ترمود يناميك
صورت ميگيرد.
 تراكم برابر دما در سيكل و بازده حرارتى را محاسبه كنيد. اين بازده را با بازده يكت سيكل كارنو كه در همان حدود دماكار ميكند مقايسه نمايِد. يكت سيكل استاندارد عوايم اتو طورى كار ميكندكه فرآيندهاى تراكمب و انبساط از روابط

 از يكت كمير سور سه مرسلهای براي متراكــم كـردن هـليوم از Y ا ا / / هMPa

 Y Y . . m/s ثابت استع. مقدار نيروى يسشبرنده را برایى شدت جريان شوالى

 سيكل را محاسبه كنيد. يكت سبكل توربين گازى دو مرسله كمير سور با خنكثكن ميانى و يكت مرسله توربين رابه

 ارائه كنيد.
يكت سيكل تو ربين گازى از دو مرسله تراكمـ با خنكك كن ميانى و طبقهبندى ايدهآل استفاده

مىباشُد. نسبت فشار كلمى Y /

 يكك سيكل استاندارد هوايمى اتو با نسبت تراكم 1: • ا كار مىكند و شُرايط در ابتداىي 4.rvM
 هوا با فرض اين كه : (الف) گرماهاى ويزَه ثابت باشند (ب) گرماهاى ويزه متغير بر مبناى
 مقايسه كنيد.
نسبت تراكم برایى سيكل استاندارد هوايى ديزل ا 1 ا است و سرارت ورودى بهازاى هر 9_rAM
 هى باشد. دما و نشار در تدام نقاط سيكل، نسبت تطع سوخت و بازده حرارتى زا مساسبه كنيد. بازده را با بازده سيكل كارنويى كه در هـان هدود دماكار مىكند، مقايسه نمايِد.

 هر نقطه سيكل، نسبت تطع سوخت و بازده حرار تى را محاسبه كنيد. بازده را با بازده سيكل كارنويى كه در همان حدود دما كار ممكند، مقايسه نمايِل.
بازده حرارتى يكى سيكل استاندار دهوايى اتو راكه داراى شهان حد نشار بالا يى سبكل
4.F.M ديزل مسأله

يكت كارخانه اتومبيلسـازى دو موتور توليد مىكند كه هركدام داراى حبم جابهـجا شده (V / V lit ه/ ا كار مىكند. موتور ديگر، موتور اشتعال جرقهاى با نسبت تراكم ^ مى شود كه مو تور ديزل • Y درصد سوختت كمتر بهازايى كيلومتر طى شده نسبت بهموتور
 Q_FYM

 خروجى ثابت است.

 هوا هساسب كيني.

 ساعت گرمايش رابا تيمت توان الككريكى برابر

 ورودى را انساسبه كيند.
9ـ FAM

لازم مقدار تدرت ورودى لازم بر حسب كيلووات هقدر استم
هوايماى جتى باسرعت YV. m/s حركت مـيكند و سـرعت گـازهاى خـروجى آن Q $-\Delta \cdot M$
 لازم را مساسبه كنيد.

 كنيد.

 بوده و فرا

 كت توربين گازی استاندارد هوايى براى توليد تدرت خروجى r/V MW با مـواى

 جرنهُ كلى را براى هر دو سبكل مقايسه كنيد. در اين مسأله فرض كنيد كى خروجى تورين در نشار ثابت تا r r با خنكت مي شود.
 در كشتى كه در آن حرارت بايد بهاب دريا يس داده شود طرح مىيشود. از نسبت نشار كلى

 ا^V. . kW

 در

 تدرت خر وجى MW • ا مساسبي كنيد.

 $T_{0}=Y \cdot{ }^{\circ} \mathrm{C}$ كلى MW محاسبه كنيد.
يكت توربين گازیى باسيكل بسته از آرگون بهعنوان سيال عامل با ثمرابط زير استفاده مىكند.

$$
\text { FVه kPa, } 7 \text { •ºC } \quad:
$$

//9MPagrvaº خروج ازكميرسور:

$$
\begin{aligned}
& \text { 11.. }{ }^{\circ} \mathrm{C} \text { : ورود باتوريين } \\
& \text { 7r. }{ }^{\circ} \mathrm{C} \quad \text { : خروج از توربين }
\end{aligned}
$$

كار خروجمى بهازایى واهد جريان جر مى و باز دهمهاى كميرسور و و توربين را مهاسبه كنيد.

 آب تغذيه بستَ با برداشت در

انبساط آنترويه ثابت در توربين و (ب) باز ده توربين هی در در مـد برایى هر سه مرسله.
A_TFM بح
1.kPa فـنار جـگالنده :
نـار برداشت از توربين : V . kPa kPa
 تا
 محاسبه كنيد.
 Fه هم F 。 ${ }^{\circ} \mathrm{C}$
1.MPa : حد فـدار بالايمى :

گرمكنهاى آب تغذيه : دو، بسته، سامل تقطير از اول بهدوم از طريق تله بخار، سامصل تقطير از دوم بهديگت بشار يمب ممشود
| MPa r/ $/ \Delta \mathrm{MPa}$: نشارهاى برداشت از توربين بازگرم : بازگرم
 بازدههاى توربينها : 9 د درمـد © kW
جر يان جرمى بخار آب لازم را بهديگت بخار، بازده حرارتى سيكل و حرارت اضافى راكه بايد در جچگالنده تلف شود مساسـه كنيل. انداز Q_7 MM است. يكث گرمكن Tب تغذيه بسته بهكار گرفه شده و سامل تقطير بهديگّث بشار بهـ مسشود. اطلاعات زير بهدست Tمده است.

- . . . kW kW :

$$
T=\uparrow q \cdot{ }^{\circ} \mathrm{C} و p=9 \mathrm{MPa} \quad \text { ورود بخار Tب بهتوربين }
$$

$$
T=\mathrm{Y} \mid \cdot{ }^{\circ} \mathrm{C}, p=9 \ldots \mathrm{kPa} \quad: \quad \text { خواصّ برداشت }
$$

نسبت برداشتـ شده : Yر درمد

ورود بشار Tب بهدومين مرجله توربين بعد از بازگرم :

$$
T=f Q \cdot{ }^{\circ} \mathrm{C}, p=\wedge \Delta \cdot \mathrm{kPa}
$$

بماى جگّالنده :
|VدºC مماى تخليه از گرمكن اTب تغذيه :
بازده توربين براي مرسله دوم : VAرصل
 در نيرگگاههاى بخار جلديد امتفاده از نثارهاى فوق بسرانى در ديگث بخار متداول است.
 1/ \triangle MPa ، \triangle MPa ، A MPa
(1 . . . kPa kPa كنيد يكت تورين آنترويى ثابت و حاصل تقطير از هر گرمكن بعد از عبور از تله بشار به گرمكن بعدى مىرود و حاصل تقطير از آخرين گرمكن بهديگّ بخار بمب میگردد.
 تابل سصول است؟
9_7AM

 خروجم برایى جريان بغار آب kg/s . 1 را محاسبه كنيد.

 خارج گردد. بازده سرارتى سيكل و ميزان جريان فريون IY IY لازم را برایى تدرت مبهاز مساسبه كنيد.

Q-V M ساسل جهت يكت سيكل بيوندى قدرت بخار - توربينگّازى ارانه شده است. واحد بايلد بر روى سكويى دور از ساعل نصب شود بهطورى كه حرارت بتواند بهانيانوس دفع شود.
فرض مىكنيم شرايط زير در كار باشد :
Y. ${ }^{\circ} \mathrm{C} 61 \mathrm{~atm} \quad: \quad$:
نسبت تراكم: 1:1
IF...K دما در ورود بهتوربين گازی :
$10^{\circ} \mathrm{C}$ دماى تقطير برای بـار Tبن بازده كمبرسور : AV درصد بازده توربين گّازى : 9 • درهد

$$
\begin{aligned}
& \text { بازده توربين بـخار : } 4 \text { برصـد } \\
& \text { دماى خروجى گَاز از ديگّ بشار و بيش } \\
& \text { بازده حرارتى سيكل بيوندى، ميزان جريان هـوا و بهـار لازم بـراى تـدرت خـرو } \\
& \text { ه و حرارت دنع شـده بهاقيانوس را براى اين سطع تلرت مساسبه كنيد. اگر }
\end{aligned}
$$

$$
\begin{aligned}
& \text { برای توليد قدرت خروجى لازم مساسبه كيند. }
\end{aligned}
$$

Q_Y M M تكرار كينيد. فرض كنيد دما در ورود بههر مرسله توربين IF. . K اس است.

 و (ج) V. . ${ }^{\circ}$ ماساسبه كنيد.
يكت نيروگاه بخار، از دو گرمكن آب تغذيه باز با بازگرمايش بعد از هر برداشت استفاده
 حرارتى سيكل بنويسيد. هـجّنين تمام موازنههاى انرزى لازم را بنويسيد.

1 Gaffert, G.A.:"Steam Power Stations," 4th ed., McGraw-Hill Book Company, New York, 1952.
2 Hill, P.G., and C.R. Peterson: "Mechanics and Thermodynamics of Propulsion," Addison-Wesley Publishing Company, Inc., Reading, Mass., 1965.
3 Jones, J.B., and G.A. Hawkins: "Engineering Thermodynamics," 2d ed., John Wiley \& Sons, Inc., New York, 1985.
4 Obert, E.F., and R.A. Gaggioli:"Thermodynamics," McGraw-Hill Book Company, New York, 1963.
5 Doolittle, J.S.: "Thermodynamics for Engineers," 2d ed., International Textbook Company, Scranton, Pa., 1964.
6 Stoecker, W. F.: "Refrigeration and Air Conditioning," McGraw-Hill Book Company, New York, 1958.

7 Barron, Randall: "Cryogenic Systems," McGraw-Hill Book Company, New York, 1966.

8 Culp, A.W.: "Principles of Energy Conversion," McGraw-Hill Book Company, New York, 1979.
9 Fraas, A.P.: Problems in Coupling a Gas Turbine to a Thermonuclear Reactor, ASME. 72-GT-98, May 1972.
10 Cole, D.E.: The Wandel Engine, Scientific Americam, vol. 227, pp. 14-23, August 1972.

11 Wood, B.D.: "Applications of Thermodynamics," Addison-Wesley Publishing Company, Inc., Reading, Mass., 1969.

ترموديناميك جريان تراكميذير
| ـ - ا مقدّمه

تا كنون امـول ترموديناميك را براى تعدادى ازفزآيندهاى جويانى بهكار بردهايم و رنغار
برخى از سيستمهاى باز را با مفهو حیجم كتترل و موازنههاى جرم و انرزّى مربوطه تسليل كردهامـم. در اين نصل اميدواريم كه اين تعليل رابراى سالاتى كه شُامل جريان با سرعت خـيلى زيـاد از سيـال
 المميّت دارد. بـتث ما مسلود بهجريانهاى تراكمبذير يكى بعدى خواهل بود، يعنى جريانهايمى كه تنها يكت مؤلفه سرعت دارند.
(1•F
منگامىكه ميالى از سرعتى بهـاللت توگف درآبد گويند به حالت سكون رسيده استـ. اين

1- Mach number
2- Shock waves
3- Stagnation state

$$
\begin{equation*}
h+\frac{V^{2}}{2 g_{c}}=h_{0} \tag{1,-1}
\end{equation*}
$$

h h h_{0}

 دو فرآيند در شكل ا- - أ بر روى نـودار كه نشار سكون آنترويى ثابت
 سكون آنترويى ثابت سحفوظ خواهيم داشت. فشار جريان اندازهگگرْنه شده بهو سيله ناظرىكه هـراه با سيال حركت مىكند، معمولاُ فشار

'استاتيكـ ناميده مىشود. اين نشارى است كه حالت تر مودبناميكى سبال در حركت را تعين مىكند.

 'استاتيكـ را بهخاصيت تر مودينايكىى نسبت دهيم، منظور مقلار اندازه كه با سرعت محلى سيال حركت مىكند. بحثهاى گستر ده در ايـن زمينـه را مى تــوان در مراجـع آخـر نصل يانت.

سرغتى كه در آن يكت اغتشاش جز نى نشار در سيال منتثبر خواهد شد سرعت مـوت ناميده

 شكل المُ از ديد ناظرى ساكن، جيهه موج بينهايت كو جكى راكه باسرعت ع عركت مىكيند، مثاهده

(الف)

ترموديناميك

مى منيم:همانطوركه نشان داده شدهه در برض جبهـ تغيرات كو جككى در خواص ترمو ديناميكى مو جود مىباشد. شكل ب Y- - ا برداشتـت ديگرى از بديده اسـت كه ناظر همراه با جبهه موج عركت كرده6 جريان را به داخل و سخارج سطع كنترلمى در برگير نده جبهه، مشاهده مىكند. فرض كنيم كه جريان در عرض جبهه آدياباتيكت بأـد، بنابراين بهعلت بقاه انرزى تغير انتالهى dh سبب تغيـر سـرعت خواهد شـد.

برقرار مىكينم. از رابطه يِوستگى جرم در نصل جهارم داريم :

$$
\begin{equation*}
\rho A c=(\rho+d \rho) A(c-d V) \tag{1,-Y}
\end{equation*}
$$

$$
c d \rho-\rho d V=0
$$

A

$$
T d s=d h-v d p=d h-\frac{d p}{\rho}
$$

$$
0=d h-\frac{d p}{\rho}
$$

موازنه انرزیى برايى جبهه موج برابر اسـت با :

$$
h+\frac{c^{2}}{2 g_{c}}=(h+d h)+\frac{(c-d V)^{2}}{2 g_{c}}
$$

يا با ساده كردن جمالت :

$$
d h-\frac{c d V}{g_{c}}=0
$$

تركيب (هـ - 1) و (ا- • 1) مىدهد :
vrr

$$
\begin{align*}
& \frac{d p}{\rho}-\frac{c d V}{g_{c}}=0 \\
& \\
&
\end{align*}
$$

$$
\frac{c^{2}}{g_{c}}=\frac{d p}{d \rho}
$$

$$
\frac{c^{2}}{g_{c}}=\left(\frac{\partial p}{\partial \rho}\right)_{s}
$$

هالV معادله (
 مورتت زير معرنى نمود.

$$
p v^{\gamma}=\text { const. } \quad \text { ᄂ } \quad p\left(\frac{1}{\rho}\right)^{\gamma}=\text { const. }
$$

بنابراين مىتوان از معادله (4- • 1) مشتق گرفت تا بهدست آيل :

$$
\begin{align*}
& \frac{d p}{d \rho}=\left(\frac{\partial p}{\partial \rho}\right)_{s}=\frac{\gamma p}{\rho}
\end{align*}
$$

$$
c^{2}=\frac{\gamma p g_{c}}{\rho}
$$

$$
\begin{align*}
& c^{2}=\gamma g_{c} R T \\
& c=\sqrt{\gamma g_{c} R T}
\end{align*}
$$

است كه سرعت صوت نيز متاسبب با T ${ }^{1 / 2}$ مىباششد. مى توان نشان داد كه فرآيندهاى گوناگون انتقال به سرعت ملكولُى متوسط موجود مربوط مىشود. بنابراين رسيلن بهاين مطلبسه سرعت انتشار اغتثاش
 نقطه نظر ملكولى اين تصـادمات ملكولى است كه بايد اغتشاش نشار را منتشر كند و نرخهاى تصـادم متظاسبب با سرعت ملكولى متوسط مىباشل. علد ماخ M يكت نسبت بلدون واسـد استك براى بر بسيهاى تحليلى بعدى مفيد خواهد بود و بهـورت زير تعريف مىشود.

$$
M=\frac{V}{c}
$$

كه V سرعت جريان استت. جريانهأى مشتلف بر حسب مقادير عدد ماخ مششخص مىشود مانند مانوق

مثال 1ـ* 1 سكون آنتروهى ثابت
$T=-7$. ${ }^{\circ} \mathrm{F}$ ، $M=\mathrm{F}$.

$$
\text { و } p=\cdot / 1 \text { atm بهسالت سكون در آيد؟ }
$$

$$
\begin{aligned}
c & \left.=\left(\gamma g_{c} R T\right)^{1 / 2}=(1.4)(32.2)(53.35)(460-60)\right]^{1 / 2} \\
& =980.0 \mathrm{ft} / \mathrm{s}=299 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

برایى $M=F$ سرعت جريان مربو طه برابر است با

$$
V=(4)(980.0)=3923 \mathrm{ft} / \mathrm{s}=1196 \mathrm{~m} / \mathrm{s}
$$

با بهكار بردن بوازنه انرزّى براي فرآيند سكون
vro
$h+\frac{V^{2}}{2 g_{c}}=h_{0}$

$$
c_{p}\left(T_{0}-T\right)=\frac{V^{2}}{2 g_{c}}
$$

$$
T_{0}=-60+\frac{(3923)^{2}}{(2)(0.24(32.2)(778)}=-60+1279=1219^{\circ} \mathrm{F}=660^{\circ} \mathrm{C}
$$

نثار سكون نهايى از رابطه Tنترويى ثابت بهدست مى Tيد

$$
\begin{aligned}
& \frac{P_{0}}{P}=\left(\frac{T_{0}}{T}\right)^{\gamma /(\gamma-1)} \\
& P_{0}=(0.1)\left(\frac{1679}{400}\right)^{3.5}=15.15 \mathrm{~atm}=2227 \mathrm{psia}
\end{aligned}
$$

مثّال Yـ • - سرعت صوت

حـــل : ما از Tاساد براى اين معاسبات استفاده خواميم كرد. ثابت گاز برابر است با :
از ججدول Y-Y براى نيتروزن Y= / / ب

甲
سالا اجازه دعيد هند رابطه مغيد برای بريان آنترويى ثابت يكت بعدى كلى در سالت دانم

$$
\begin{aligned}
& R=\frac{\Re}{M}=\frac{8315}{28}=297 \mathrm{~J} / \mathrm{kg} . \mathrm{K} \\
& c=\left(\gamma g_{c} R T\right)^{1 / 2} \\
& =\left[(1.4)\left(1.0 \mathrm{kgm} / \mathrm{N} . \mathrm{s}^{2}\right)(297 \mathrm{~J} / \mathrm{kg} . \mathrm{K})(200+273)\right]^{1 / 2} \\
& =443.5 \mathrm{~m} / \mathrm{s}=1455 \mathrm{ft} / \mathrm{s}
\end{aligned}
$$

ايدهآل در كانال با ديوارهاى حـاف، شيور هِ يا بخشك من جريان مىيابلد. سرعت صوت و عدد ماخ، در

$$
h+\frac{V^{2}}{2 g_{c}}=\text { const. }
$$

يا بهصورت ديغرانسيلى :

$$
d h+\frac{V d V}{g_{c}}=0
$$

رابطه يوستگى جرم جنين است:

$$
\rho A V=\dot{m}=\text { const. }
$$

يا باز هم بيّصورت ديفرانسيلى

$$
A V d \rho+\rho A d V+\rho V d A=0
$$

$$
\frac{d \rho}{\rho}+\frac{d V}{V}+\frac{d A}{A}=0
$$

رابطه بين خصوصيات ترموديناميكى براى هالت آنترو بیى ثابت جنين است :

$$
T d s=d h-v d p=d h-\frac{d p}{\rho}=0
$$

$$
d h=\frac{d p}{\rho}=\frac{-V d V}{g_{c}}
$$

vry
نمل • 1 - ترمود يناميك جويان تراكميذير

$$
\frac{V d V}{g_{c}}+\frac{1}{\rho} d p=0
$$

 فـار باعث شتاب دادن جريان مىشود. بون جريان آنتروبى ثابت است مى توانيم از معادلهhان برايى سرعت صوت بهدست آوريم :

$$
\left(\frac{\partial p}{\partial \rho}\right)_{s}=\frac{d p}{d \rho}=\frac{c^{2}}{g_{c}}
$$

$$
d p=\frac{c^{2}}{g_{c}} d \rho
$$

 تركيب كينم'تا بمدست آيد :

$$
\frac{d A}{A}=\frac{d p}{\rho V^{2} / g_{c}}\left(1-\frac{V^{2}}{c^{2}}\right)=\frac{d p}{\rho V^{2} / g_{c}}\left(1-M^{2}\right)
$$

 جهت كامش سرعت (بخشىكن) احتباج بهنغيرات سعكوس در سطع مقطع جريان مطابق آنجه در شكل

الف هنگامى كه $M=1$ باشد، سطع مقطع جريان كمترين مقدار خود را دأراست و مىگّويم كه

 يا كلر گاه مشاهده مىـشود.
حالا مى توانيم تغيير دما زادر حالات جريان آنترويهى ثابت بالا، با استفاده از شعادلهـ انـرزى

مادون صوت1 $M=1$

$$
\begin{array}{rl}
0 & d V>0 \\
\text { (ب) } & d p<0 \\
& d A>0
\end{array}
$$

$$
\begin{array}{rl}
0 & d V>0 \\
(z) & d p<0 \\
& d A<0
\end{array}
$$

$$
\begin{equation*}
h_{0}-h=c_{p}\left(T_{0}-T\right)=\frac{V^{2}}{2 g_{c}} \tag{1,-Y1}
\end{equation*}
$$

با تو جه بهاين كه

$$
c_{p}=\frac{\gamma R}{\gamma-1} \quad, \quad c^{2}=\gamma g_{c} R T
$$

معادله ((Y-- |) مىتواند بهصورت زير نوشته شود

$$
\frac{V^{2}}{c^{2}}=M^{2}=2 g_{c} \frac{\gamma R T}{(\gamma-1)\left(\gamma g_{c} R T\right)}\left(\frac{T_{0}}{T}-1\right)
$$

با ساده كردن جملات

$$
\frac{T_{0}}{T}=1+\frac{\gamma-1}{2} M^{2}
$$

نشار و جگگالى بهطريق زير برانى جريان آنترويى ثابت بهدست مى آيند :

$$
\begin{align*}
& \frac{p_{0}}{p}=\left(\frac{T_{0}}{T}\right)^{\gamma /(\gamma-1)}=\left(1+\frac{\gamma-1}{2} M^{2}\right)^{\gamma /(\gamma-1)} \tag{1,-rr}\\
& \frac{\rho_{0}}{\rho}=\left(\frac{T_{0}}{T}\right)^{1 /(\gamma-1)}=\left(1+\frac{\gamma-1}{2} M^{2}\right)^{1 /(\gamma-1)} \tag{1,-Yf}
\end{align*}
$$

خو اص جريان درگّوگّاه با بالانويس ' سشازه (*) مشخص مىشوند و مربوط به حالت $M=1$ ممىاشند.

ترمود يناميك
VF.

$$
\begin{align*}
& \frac{T^{*}}{T_{0}}=\frac{2}{\gamma+1} \\
& \frac{e^{*}}{p_{0}}=\left(\frac{2}{\gamma+1}\right)^{\gamma(\gamma-1)} \\
& \frac{\rho^{*}}{\rho_{0}}=\left(\frac{2}{\gamma+1}\right)^{1 /(\gamma-1)}
\end{align*}
$$

 نسبتهاى بالا را نسبتهاى بتحرانى مىگويند. مقادير اين نسبتها برايى جندين مقدار γ در جدول 1-1 مشخضص شده است. مقادير ميختلف نسبتهاى دما -فشار و چگًالى در جدول A- 19 ضميمه جدولبندى مىشوند.

براى جريان دائم نرخ جريان جرمى ثابت است و مى تواند بهصورت زير مداسبه شود

$$
\begin{aligned}
& \dot{m}=\rho A V=\frac{p}{R T} V A=\frac{p}{R T} M \sqrt{\gamma g_{c} R T} A \\
& \text { (} 1 \cdot-Y \text {) } \\
& \text { با بهكار بردن معادل (}
\end{aligned}
$$

جدول ا- • |

$\gamma=1 / 7 Y$	$\gamma=1 / 4$	$\gamma=1 / r$	$\gamma=1 / r$	
-/FATV	- / drar	- / $\Delta F \Delta V$	-/Diff	p^{*}
				p_{0}
-/VFqI	-/Arrr	- / 人949	. $/ 9.91$	T^{*}
				$\overline{T_{0}}$
- / AF9V	-/MF.	- / \% \% \%	-/8r.9	${ }^{\text {p }}$
				p_{0}

$$
\begin{equation*}
\frac{\dot{m}}{A}=\frac{p M}{\sqrt{T_{0}}} \sqrt{\frac{\gamma g_{c}}{R}}\left(1+\frac{\gamma-1}{2} M^{2}\right)^{1 / 2} \tag{1.-74}
\end{equation*}
$$

با جايتزينى Pبر حسب

$$
\begin{equation*}
\frac{\dot{m}}{A}=\frac{p_{0} M}{\sqrt{T_{0}}} \sqrt{\frac{\gamma \bar{g}_{c}}{R}} /\left(1+\frac{\gamma-1}{2} M^{2}\right)^{(\gamma+1) R(\gamma-1)} \tag{1.-r.}
\end{equation*}
$$

در گلوگاه

$$
\frac{\dot{m}}{A^{*}}=p_{0} \sqrt{\frac{\gamma g_{c}}{R T_{0}}}\left(\frac{2}{\gamma+1}\right)^{(\gamma+1) / 2(\gamma-1)}
$$

اين نتيجه جالب كه كل جريان جرمى در ثشيوره نها تابعى از خواص سكون و سطع مقطع گلوگاه

$$
\begin{equation*}
\frac{A}{A^{*}}=\frac{1}{M}\left[\left(\frac{2}{\gamma+1}\right)\left(1+\frac{\gamma-1}{2} M^{2}\right)\right]^{(\gamma+1) \mathcal{R}(\gamma-1)} \tag{1.-YY}
\end{equation*}
$$

همجحنين مقادير

1. Choked flows

$$
\begin{aligned}
& A^{*}=\frac{\pi(0.005)^{2}}{4}=1.963 \times 10^{-5} \mathrm{~m}^{2} \\
& P_{0}=700 \mathrm{kPa} \quad T_{0}=500 \mathrm{~K}
\end{aligned}
$$

سنس با جايگزینينى در معادله (1

$$
\begin{array}{r}
\dot{m}=\left(1.963 \times 10^{-5}\right)\left(700 \times 10^{3}\right)\left[\frac{(1.4)(1.0)}{(287)(500)}\right]^{1 / 2} \\
\left.\quad \times \frac{2}{1.4+1}\right)^{(1.4+1) /(2)(1.4-1)}=0.0248 \mathrm{~kg} / \mathrm{s}
\end{array}
$$

مثال F + * | شييوره همكرا-واتوا
 خروجى هوا در فشار اتمسفر و $M=Y / \Delta$ طراحى شود. دماى سالـت سكون در بالادست جريان ($\mathrm{C} 0^{\circ} \mathrm{C}$ جريان جرمى را محاسببه كنيد.

 اطلاغات داده سُلده زير را داريم

$$
A_{e}=4.0 \mathrm{~cm}^{2} \quad M_{e}=2.5 \quad T_{0}=125^{\circ} \mathrm{C}=398 \mathrm{~K} \quad p_{e}=1 \mathrm{~atm}
$$

$$
\text { با مراجعه بهجدول A-19 براى } M=Y / \Delta \text { يدا مىكنيم }
$$

$$
\frac{A_{e}}{A^{*}}=2.6367 \quad \frac{p_{e}}{p^{*}}=0.05853 \quad \frac{T_{e}}{T_{0}}=0.44444
$$

بنابراين فشار حالـت سكون برابر است با:

$$
p_{0}=\frac{1}{0.05853}=17.09 \mathrm{~atm}=1.73 \mathrm{MPa}
$$

(251 psia)

و دماكى خروجى برابر است با

$$
T_{e}=(398)(0.44444)=176 \mathrm{~K}=-96^{\circ} \mathrm{C} \quad\left(-141^{\circ} \mathrm{F}\right)
$$

سطع مقطع گَلوگاه برابر اسـت با

$$
A^{*}=\frac{4.0}{2.637}=1.517 \mathrm{~cm}^{2}
$$

 بردن شرابط خروجى استفاده كنيم. چچون ما با واسدههاى SI كار ميكنيم

$$
g_{c}=1.0 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{N} \cdot \mathrm{~s}^{2}
$$

برايى هوا

$$
R=\frac{\Re}{28.97}=\frac{8315}{28.97}=287 \mathrm{~J} / \mathrm{kg} \mathrm{~K}
$$

با جايِگزينى در معادله (4-Y - ()

$$
\begin{aligned}
m= & \frac{\left(4.0 \times 10^{-4} \mathrm{~m}^{2}\right)\left(1.0132 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}\right)(2.5)}{(398)^{1 / 2}} \\
& \times\left[\frac{(1.4)\left(1.0 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{N} \cdot \mathrm{~s}^{2}\right)}{287 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K}}\right]^{1 / 2}\left[1+\frac{(1.4-1)(2.5)^{2}}{2}\right]^{1 / 2} \\
= & 0.532 \mathrm{~kg} / \mathrm{s}(1.171 \mathrm{lbm} / \mathrm{s})
\end{aligned}
$$

اگگ معادله ((ז- • () را براثى شرايط گلوگاه به كار برده بوديم، جواب يكسانى بدست مي آمد.

$$
\text { مثال هــ } 1
$$

سطع مقطع جريان، دما، فثار و سرعت در مقطعى كه M=1 M بانشد، براكى شيوره مثال F- F

حــل : اين محاسبه خيلى ساده است زيرا سطع مقطع گَلوگاه و خواص حالت سكون را با بهدست

$$
\frac{A}{A^{*}}=1.1762 \quad \frac{p}{p_{0}}=0.2724 \quad \frac{T}{T_{0}}=0.68965
$$

$$
\begin{aligned}
& A=(1.1762)(1.517)=1.784 \mathrm{~cm}^{2} \\
& p=(0.2754)(17.09)=4.724 \mathrm{~atm} \\
& T=(0.68965)(398)=274 \mathrm{~K}=1^{\circ} \mathrm{C}
\end{aligned}
$$

 حساببكنم

$$
V=(1.5)(331.8)=498 \mathrm{~m} / \mathrm{s}=1517 \mathrm{ft} / \mathrm{s}
$$

هـ• | معادله ممنتوم براى يكت حجمكنترل

جون بحث ما بيتتر درباره فرآيندهاى جريانى مربوط بهحجم كترل (سيستههاى باز) خواهد

 x منتوم، ساده كنيم.
تانون دوم حركت نيو تن بيان مىكندكه نيروى عمل كننده بر يكت جــم متناسب با تغير متتوم Tن است. براى جهت x:

$$
\begin{aligned}
& c=\left(\gamma g_{c} R T\right)^{1 / 2}=[(1.4)(1.0)(287)(274)]^{1 / 2}=331.8 \mathrm{~m} / \mathrm{s} \\
& \text { بنابراين براى } M=1 / \Delta \text { سرعت جريان برابر است با: }
\end{aligned}
$$

$$
F_{x} \sim \frac{d\left(m V_{x}\right)}{d \tau}
$$

$$
\begin{equation*}
F_{x}=\frac{1}{g_{c}} \frac{d\left(m V_{x}\right)}{d \tau} \tag{1,-rr}
\end{equation*}
$$

 بگيريد. در شكل (الفـ هـ • 1) حجم در زمان حمشخص مىشود و حركت جريان بهداخل و شخارج از سطع كنترل، ناحيه حجم كنترل را معرفى مىكند. داخل حجم كنترل مقدار معينى سيال با سرعت و

 كتّرل محصور مى شله حالا مقدارى از ححجم كتنرل خارج شده است. هااز اين مقدار جرم بهعنوان جرم كتترل' ياد خواهيم كرد. سالا nعادله (rr-ج () را برای اين جرم كنترل تنها با استفاده از نيروها و مـتـوـها در جهت

شكل ه- $1 \cdot 1$ حجمر

$$
\text { و (ب) در زمان } \tau
$$

$$
\sum F_{x}=\lim _{\Delta \tau \rightarrow 0} \frac{1}{g_{c}} \frac{\left(m V_{x}\right)_{\tau+\Delta \tau}-\left(m V_{x}\right)_{\tau}}{\Delta \tau}
$$

در لحظه $\tau+\Delta \tau$ ممنتوم جرم كنترل مىتواند بر حسب ممنتوم نواحى A، Bو Cبهورت زير بيان شود

$$
\left(m V_{x}\right)_{\tau+\Delta \tau}=\left(m V_{x}\right)_{B}+\left(m V_{x}\right)_{C}
$$

با سشُشص كردن حیم كتر ل با زيرنويس

$$
\left(m V_{x}\right)_{A+B}=\left(m V_{x}\right)_{o}=\left(m V_{x}\right)_{A}+\left(m V_{x}\right)_{B}
$$

باسل كردن معادله (

$$
\left(m V_{x}\right)_{\tau+\Delta \tau}=\left(m V_{x}\right)_{C}-\left(m V_{x}\right)_{A}+\left(m V_{x}\right)_{\sigma, \tau+\Delta \tau}
$$

در لـطظه حجرم كتترل بهطور كامل در حجم كنترل ترار دارد، بنابراين

$$
\left(m V_{x}\right)_{\tau}=\left(m V_{x}\right)_{\sigma, \tau}
$$

$$
\sum F_{x}=\frac{1}{g_{c}} \lim _{\Delta \tau \rightarrow 0}\left[\frac{\left(m V_{x}\right)_{C}}{\Delta \tau}-\frac{\left(m V_{x}\right)_{A}}{\Delta \tau}+\frac{\left(m V_{x}\right)_{\sigma, \tau+\Delta \tau}-\left(m V_{x}\right)_{\sigma, \tau}}{\Delta \tau}\right]
$$

 نرخهایى جريان جرمى ورودى و خروجى از سحجم كنترل در مى آيند. جمله سوم در اين حد به حورت نرخ انباشت ممنتو مر سحم كترّ ل در مى آيد و رابطه كلى بهصورت زير نوشته مىشود.

$$
\sum F_{x}=\frac{1}{g_{c}}\left[\left(\dot{m} V_{x}\right)_{e}-\left(\dot{m} V_{x}\right)_{i}+\frac{d\left(m V_{x}\right)_{\sigma}}{d \tau}\right]
$$

زيرنويسهاى i و e به ترتيب برایى مشخص كردن جريانهای ورودى و خروجى بهكار رفته است. جمله
 معادله ((C - 1) ميتو اند بهصورت عبارت زير بيان شود.

در حالت دائم، انباشتي در حجممكترل مو جو د نتواهد بود و تنها با بكف جريان ورودى و

1- Momentum flux

$$
\begin{align*}
& \quad \text { خروجى از حجم كنترU معادلات زير رابراي سه مؤلفه نيرو بهدست مى آوريم } \\
& \sum F_{x}=\frac{\dot{m}}{g_{c}}\left(V_{e_{x}}-V_{i_{x}}\right) \\
& \sum F_{y}=\frac{\dot{m}}{g_{c}}\left(V_{e_{y}}-V_{i_{y}}\right) \\
& \sum F_{z}=\frac{\dot{m}}{g_{c}}\left(V_{e_{z}}-V_{i_{z}}\right)
\end{align*}
$$

مثال 7- 1 نيرو و شار ممنتوم
مخزن برزگى مطابق شكل نثان داده شـه بر روى جرخهايى ترار دارد و نوارها

شكل مثال 7-1
 مىشود. سطح كترل نثان داده شده با خط جين را طورى انتخاب مىكيميم كه مخزن را هـواره در برگيرد. بسادله ممنتوم در جهت x برابر است با

$$
\begin{equation*}
\sum F_{x}=\frac{1}{g_{c}}\left[\left(\dot{m} V_{x}\right)_{e}-\left(\dot{m} V_{x}\right)_{i}+\frac{d\left(m V_{x}\right)_{g}}{d \tau}\right] \tag{a}
\end{equation*}
$$

توموديناميكى

تنها يكت جريان ورودى داريمَ بنابراين • جهت مشبت مىدهد

$$
\left(\dot{m} V_{x}\right)_{i}=(8 \mathrm{~kg} / \mathrm{s})\left(-30 \cos 30^{\circ} \mathrm{m} / \mathrm{s}\right)=-207.8 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}
$$

برایى قسمت (الفف) مسأله، مخزن ساكن است يعنى • $V_{x, \sigma}$ بنابراين انباشهت مـنتو اكگرجه انبانهت جرم مو جود اسست. در اين ـالُت تعادله (a) بهصورت زير در مى آيل.

$$
F_{x}=\frac{1}{1.0 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{N} \cdot \mathrm{~s}^{2}}\left[0-\left(-207.8 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}\right)+0\right]=+207.8 \mathrm{~N}
$$

علامت مُّبت مشـضص مىكنل كه اين نير و بهطرو راست مىباشلـ، زيرا اين جهـت مشبت براى دستگاه منتصيات يوده در حالت (b) مخزن بهطرف یحب خركت مىكند و نوخ ازدياد مستوم در سحجم كنترل برابر است با :

$$
\begin{equation*}
\frac{d\left(m V_{x}\right)_{\sigma}}{d \tau}=(8 \mathrm{~kg} / \mathrm{s})(-1 \mathrm{~m} / \mathrm{s})=-8 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2} \tag{b}
\end{equation*}
$$

(1 m/s

$$
F_{x}=\frac{1}{1.0}[0-(-207.8)+(-8)]=199.8 \mathrm{~N}
$$

 تو یتر ی روبهرو شو يمّ، بهطورى كه تغيرات سريى و تندى در خواص سيال در ناحيه خيلى كو جكى از

 سر عت جريان عمود مىباشند میلود خواهيمبكرد.

آدياباتيكث است و حتم كنترل سحصور شـده با خطط هين را، كه شامل موج ضربهاى سـاكن در كانال مىباشـد، درنظر مىگيريم. خواص جريان بالا دست ضربهبا زيرنويس X مشـخص مىشود، و زيرنويس y، براي مثـخص كردن خواص لاين دست جريان بهكار مىر ود. حرأرت يا كارى اضافه نمىشود، بنابراين معادله انرزى جريان دأثم برابر است با :

$$
h_{0 x}=h_{x}+\frac{V_{x}^{2}}{2 g_{c}}=h_{y}+\frac{V_{y}^{2}}{2 g_{c}}=h_{0 y}
$$

از رابطه يوستگى جرم مىتوان نوشت :

$$
\frac{\dot{m}}{A}=\rho_{x} V_{x}=\rho_{y} V_{y}
$$

و معادله ممنتو براى ححجم كنترل، با معادل قرار دادن نيروى مؤثر فــار و افزايش شـار ممنتوم

شكل ج--

از سيان حجم كتترل بهدست مى آيد :

$$
A\left(p_{x}-p_{y}\right)=\frac{\dot{m}}{g_{c}}\left(V_{y}-V_{x}\right)
$$

 بنابراين تانون دوم ترموديناميكت مىتَويد 4

$$
s_{y}-s_{x} \geq
$$

 شود، مى توان رابطه منتجه رابر روى نمودار انتاليى ـ آنترويى رسـمكرد. اين منتنى خطط فانو ' ناميده

 تقاطع اين دو خط در نقاط xو y، بيان كننده حل همزمان اين سه معادله مىابشد و بنابراين بايد معرن

حالات x و y قبل و بعد از موج خربهایى باشلد. رابطه قانون دوم ترموديناميكك يعنى معادله (احتيإج دارد كه تهليل دقيقى از روابط خطوط فانو و رايلى تشان خواهد داد كه :

$$
\begin{aligned}
& 1 \text { - بيشترين مقلار آنترویى در هر دو منشنى (نقاط a } a \text { b) مربوط به } M=1 \text { ميباشُد. } \\
& \text { Y ب بالاى نقطه } a \text { يا b }
\end{aligned}
$$

1- Fanno line
2- Rayleigh line

$$
\text { r - پايِن نقطه } a \text { يا } b \text { در هر يك؛، جريان مافوق صوت مىباشد } M>1 .
$$

 وجود داشته باشده جريان بايد از شرايط مافوت صوت بهمادون صوت در عرض ضربهتغير كند. درسلد، اگگ

 باقى مى ماند و برایى گاز ايدهآل باگرماهانى ويزٌ ثابت اين، يعنى

$$
\begin{equation*}
T_{0 x}=T_{0 y} \tag{1,-FF}
\end{equation*}
$$

يا دماى سكون على رغم شدت ضربه ثابت باتى مى ماند.

 گاز موجود باشد. اين ظاصله ثويشُ آزاد ' ملكولها ناميله مىشود. در فثنار معهولى جو، بويش آزاد

 معادله (1-Y - _ داريم :

$$
\begin{aligned}
& \frac{T_{\partial x}}{T_{x}}=1+\frac{\gamma-1}{2} M_{x}^{2} \\
& \frac{T_{\partial y}}{T_{y}}=1+\frac{\gamma-1}{2} M_{y}^{2}
\end{aligned}
$$

با تقسـيم اين معادلات داريم :

$$
\frac{T_{y}}{T_{x}}=\frac{1+[(\gamma-1) 2] M_{x}^{2}}{1+[(\gamma-1) 2] M_{y}^{2}}
$$

با بهكار بردن رابطه ييوستگى معادله ((P - ا) مبراه با

$$
\rho_{x}=\frac{P_{x}}{R T_{x}} \quad, \quad \rho_{y}=\frac{P_{y}}{R T_{y}}
$$

$$
\begin{equation*}
\frac{T_{y}}{T_{x}}=\frac{p_{y} V_{y}}{p_{x} V_{x}} \tag{1.-pq}
\end{equation*}
$$

$$
\frac{T_{y}}{T_{x}}=\frac{p_{y} M_{y} \sqrt{T_{y}}}{p_{x} M_{x} \sqrt{T_{x}}}=\left(\frac{p_{y}}{p_{x}}\right)^{2}\left(\frac{M_{y}}{M_{x}}\right)^{2}
$$

$$
\frac{p_{y}}{p_{x}}=\frac{M_{x} \sqrt{1+[(\gamma-1) / 2] M_{x}^{2}}}{M_{y} \sqrt{1+\left[(\gamma-1) / 2 M_{y}^{2}\right.}}
$$

 سسب لشار و عدد ماخ مىباشد. يكت رابطه مشابه را جهت خـط رايلى با مـين متغير ها مىتوان از تركيب معادلات ممنتوم و ييوستگگى بهدست آورد. داريم :

$$
p_{x}-p_{y}=\frac{\dot{m}}{A g_{c}}\left(V_{y}-V_{x}\right)
$$

: $\dot{m}=\rho_{x} A V_{x}=\rho_{y} A V_{y}$ الـاشد؛ بنابراين

$$
p_{x}-p_{y}=\frac{\rho_{y} V_{y}^{2}-\rho_{x} V_{x}^{2}}{g_{c}}
$$

$$
\text { بامعرفى } c=\sqrt{\gamma g_{c} \overline{R T}}, \rho=\frac{p}{R T}, V=c M \text { بهدست مى } \mathrm{C} \text { بريم : }
$$

$$
p_{x} g_{c}+\frac{p_{x} M_{x}^{2}}{R T_{x}}\left(\gamma g_{c} R T_{x}\right)=p_{y} g_{c}+\frac{p_{y} M_{y}^{2}}{R T_{y}}\left(\gamma g_{c} R T_{y}\right)
$$

var
نصل • 1 - توشوديناميك جريان تواكميذيو

$$
\begin{equation*}
\frac{p_{y}}{p_{x}}=\frac{1+\gamma M_{x}^{2}}{1+\gamma M_{y}^{2}} \tag{1.-pa}
\end{equation*}
$$

$$
M_{y}{ }^{2}=\frac{M_{x}^{2}+[2 /(\gamma-1)]}{[2 \gamma /(\gamma-1)] M_{x}^{2}-1}
$$

با معلوم بودن عدد ماخ بالا دست جريان

 رابطه تغير آنرويى بين حالات سكون آنترويى ثابت، تبل و بعد از خربه، مشاهده كرد.

$$
s_{a y}-s_{a x}=c_{p} \ln \frac{T_{a_{y}}}{T_{a x}}-R \ln \frac{p_{a y}}{p_{a x}} \geq 0
$$

جون نمايد. از جلول • A-Y نيز متو جه بمنويم كه مقادير

I-_Y
يس از اين درباره جريان آنتروبى ثابت در گذرگاه مدگرا- واگرا بحث كردهابمَ، و خاطر

 دارد كه حالا يمى خواهيم درباره اين بديدهما بحت كتيم.

جريان شيوره بر رسى مىكيم.

 جريان خروجى برايى نشار

 مربوط بهمقدار آن براى ضربه تاتمى باعد ما ماخ بالا دست جريان

يس نشار تا جه مقدارى بايد انزايش يابلد تا موج ضربهاي تاندى درست در قــــت خروجمى

$$
\text { شيوره مثال P-- } 1 \text { بهوجود T Tيل؟ }
$$

در / /

بنابراين فثار جريان درست در بايين دست ضربه برابر است با

$$
p_{y}=(7.125)(1.0)=7.125 \mathrm{~atm}
$$

بس فشار در مسنظه تخليه ماند شككل ^ــ ' ا برابر با فثار هالت سكون در هايين دست ضربهمىباشدكه برابر است با

$$
p_{a y}=(8.5262)(1.0)=8.5262
$$

مثال A- • | ا ضربه در تُسمت بخشكن
 يخثشكن در بجايعكه مى.بود و دما و سرعت خروجى سامله جقلد بود!

حــــل : اين مسأله مشكلتر است زيرا سرعت جريان تا سرعت مادون صوت در ياييندست ضربهكاهش خواهد يافت و سيس بهعلت الزابش سطع مقطع، سرعت بيستر كاهش خواهد يافت. طرحوارة زير شرح
 كنيم تا بهدست آيد :

$$
A^{*}=1.517 \mathrm{~cm}^{2} \quad A_{x}=A_{y}=1.784 \mathrm{~cm}^{2} \quad P_{x}=4.724 \mathrm{~atm}
$$

شكل مثال A- 1-

$$
T_{x}=274 \mathrm{~K} \quad M_{x}=1.5 \quad A_{e}=4.0 \mathrm{~cm}^{2} \quad T_{0 x}=T_{0 y}=398 \mathrm{~K}
$$

$$
M_{y}=0.70199 \quad \frac{p_{y}}{p_{x}}=2.4583 \quad \frac{T_{y}}{T_{x}}=1.3202 \quad \frac{p_{a y}}{p_{a x}}=3.4133
$$

يس فثار در مسغظه تخليه برابر Pox است، بنابراين

$$
p_{a y}=(3.4133)(4.724)=16.12 \mathrm{~atm}
$$

برايى محاسبه دما و مرعت جريان خروجى مىدانيم كه جريان هميهنان كه از y به e حركت مىكند

 جريان باييندمت ضربششبيه جريان آنترويى ثابت بالادمت ضربهنيست. البته إين امر از انزايش آنترويى در ڤرض ضربهناشى مىشود. سطع مؤثر در ناسيه بايمن دست ضربهرا با

$$
\text { A-19 در } M=/ V \cdot 199 \text { تعيين مىكنيم، سبس }
$$

$$
\begin{aligned}
& \frac{A_{y}}{A^{\prime}}=1.09325 \\
& A^{* \prime}=\frac{1.784}{1.09325}=1.632 \mathrm{~cm}^{2}
\end{aligned}
$$

$$
5
$$

مسط مقطع خروجى وانعى برابر F cm² مى، ماشد، بنابراين

$$
\frac{A_{e}}{A^{4^{\prime}}}=\frac{4.0}{1.632}=2.451
$$ جهت جـريان مادون صوت تعين كنيم. با استفادد از ميان يابى، نتايج عبارت است از :

$$
\begin{aligned}
& \frac{T_{e}}{T_{0}}=0.98670 \\
& M_{e}=0.255
\end{aligned}
$$

بنابراين دماى خروجى برابر امتى با :

$$
T_{e}=(0.98670)(398)=393 \mathrm{~K}=120^{\circ} \mathrm{C}
$$

$$
c_{e}=[(1.4)(1.0)(287)(393)]^{1 / 2}=397 \mathrm{~m} / \mathrm{s}
$$

بنابراين سرعت جريان واقعى برابر است با :

$$
V_{e}=c_{e} M_{e}=(397)(0.255)=101.2 \mathrm{~m} / \mathrm{s}=308.6 \mathrm{ft} / \mathrm{s}
$$

بايد خاطرنشان كنيم كه نوخ جريان جرمى در شيبوره بهعلـت حضور ضربهنغير نمىكند، زيرا هنوز شرايط صو تى در گلوگًاه وجود دارد و هنوز با داراى شرايط بهامـطلاح تخفه شده جريان مىباشيم.

مثال 9-1•

بكت رامججت هستهایى را مى توان بهصورت طرسواره هيوست تمور كريد. جريان ورودى در

و جريان تا
 (ه atm براى سطع مقطع ورودى $/$ m² مساسبه كنيد.

شكل مثـال 9 - - 1-

خروج، نيروهاى حامله از نشار در آن نقاط را نيز مدامبه كنيم. بهطورى كه خواميم ديد، نيروهاى
 جهت مشتخص كردن شُرايط بالادست و باينذدست ضربه و با استفاده از جلدول • A-Y داريم :

$$
M_{x}=4.0 \quad M_{y}=0.43496 \quad \frac{p_{G_{y}}}{p_{x}}=21.068
$$

$$
\frac{T_{y}}{T_{x}}=4.0469 \quad T_{x}=-50^{\circ} \mathrm{C}=223 \mathrm{~K} \quad p_{x}=0.05 \mathrm{~atm}
$$

$$
\text { با بهكار بردن جدول A- } 19 \text { در } 9 \text { با }
$$

$$
\begin{equation*}
\frac{T_{x}}{T_{0}}=0.23810 \tag{a}
\end{equation*}
$$

$$
T_{0 x}=T_{0 y}=\frac{223}{0.23810}=937 \mathrm{~K}=664^{\circ} \mathrm{C}=T_{02}
$$

$$
p_{0 y}=p_{02}=p_{03}=p_{04}=(21.068)(0.05)=1.0534 \mathrm{~atm}
$$

$$
\frac{A_{2}}{A_{2}}=1.09437 \quad \frac{p_{2}}{p_{02}}=0.72092 \quad \frac{T_{2}}{T_{02}}=0.91075
$$

$$
\begin{equation*}
T_{2}=(0.91075)(937)=853 \mathrm{~K}=580^{\circ} \mathrm{C} \tag{b}
\end{equation*}
$$

اطلغعات زير داده شُـهـ است

$$
p_{3}=p_{2} \quad T_{3}=1200^{\circ} \mathrm{C}=1473 \mathrm{~K} \quad V_{2}=V_{3}
$$

$$
\begin{align*}
& T_{3}-T_{2}=T_{03}-T_{02} \tag{c}\\
& T_{03}=937+(1200-589)=1557 \mathrm{~K}=1284^{\circ} \mathrm{C}=T_{04}
\end{align*}
$$

$$
\begin{equation*}
\frac{T_{3}}{T_{03}}=\frac{1473}{1557}=0.94605 \tag{d}
\end{equation*}
$$

 بهدست مى آوريم

$$
M_{3}=0.5324 \frac{p_{3}}{p_{03}}=0.8239
$$

$$
\begin{equation*}
p_{2}=p_{3}=(1.0534)(0.72092)=0.75942 \mathrm{~atm} \tag{e}
\end{equation*}
$$

$$
p_{03}=\frac{0.75942}{0.92390}=0.92173 \mathrm{~atm}=p_{04}
$$

هالا در مقطع f ، ه atm ه / / = = pاست و

$$
\begin{equation*}
\frac{p_{4}}{p_{04}}=\frac{0.05}{0.92173}=0.05425 \tag{f}
\end{equation*}
$$

حالا میتوان با مراجعع مجدد بهجدول A-19 وبا استفاده از مقدار (f) نتايج زير رابمدست آورد :

$$
M_{4}=2.551 \quad \frac{T_{4}}{T_{04}}=0.43463 \quad \frac{A_{4}}{A_{4}^{*}}=2.780
$$

$$
T_{4}=(0.43463)(1557)=676 \mathrm{~K}=403^{\circ} \mathrm{C}
$$

$$
c_{4}=[(1.4)(1.0)(287)(676)]^{1 / 2}=521 \mathrm{~m} / \mathrm{s}
$$

$$
V_{4}=c_{4} M_{4}=(521)(2.551)=1330 \mathrm{~m} / \mathrm{s}
$$

در ورود

$$
\begin{aligned}
& c_{l, x}=[(1.4)(1.0)(287)(223)]^{1 / 2}=229 \mathrm{~m} / \mathrm{s} \\
& V_{l, x}=c_{l, x} M_{1}=(299)(4.0)=1197 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

جريان جر می را مىتوان برايى شرايط ورودى مهاسبه كرد. ابتدا جگالى بهصورت زير سحاسبه مىشود

$$
\rho_{1}=\frac{p_{1}}{R T_{1}}=\frac{(0.05)\left(1.0132 \times 10^{5}\right)}{(287)(223)}=0.0792 \mathrm{~kg} / \mathrm{m}^{3}
$$

بدين ترتيب،'

$$
\dot{m}=\rho_{1} A_{1} V_{1}=\left(0.0792 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(1 \mathrm{~m}^{2}\right)(1197 \mathrm{~m} / \mathrm{s})=94.8 \mathrm{~kg} / \mathrm{s}
$$

در مقطع خروجى چگّالى برابر است با

$$
\rho_{4}=\frac{p_{4}}{R T_{4}}=\frac{(0.05)\left(1.0132 \times 10^{5}\right)}{(287)(676)}=0.0261 \mathrm{~kg} / \mathrm{m}^{3}
$$

و سطع مقطع خروجى را مىتوان از رابطه بيوستغى جرم مساسبه كرد :

$$
\begin{aligned}
& \dot{m}=\rho_{4} A_{4} V_{4} \\
& A_{4}=\frac{94.8}{(0.0261)(1330)}=2.731 \mathrm{~m}^{2}
\end{aligned}
$$

هالا موازنه نيرو بر روى حجم كنتر لمى كه با خطط هين بشخص شـده است، با اين فرض انجام مىگيردكه نيروى يششبرنده T وارده بر سيال، بهطرف راست باشُد و جهت نيروى مبت بهطرف راست در نظر تُرفه شُود. نيروى بيشبرنده بر روى ساختـان رامجـت بهطرم جهب خواهل بود.

$$
\begin{align*}
& \sum F_{x}=\frac{\dot{m}}{g_{c}}\left(V_{e}-V_{i}\right) \\
& T+p_{1} A_{1}-p_{4} A_{4}=\frac{\dot{m}}{g_{c}}\left(V_{4}-V_{1}\right) \tag{g}
\end{align*}
$$

ـالا تمام مقادير عددى لازم را براى جايگزينى در معادله (g) و محاسبه نيروى يسشبرنده داريـم

$$
\begin{aligned}
T & =-(0.05)\left(1.0132 \times 10^{5}\right)(1-2.731)+\frac{94.8}{(1.0)}(1330-1197) \\
& =8769+12608=21377 \mathrm{~N}=4805 \mathrm{lbf}
\end{aligned}
$$

حرار تى كه بايد بهوسيله رآككور تأمين شود برابر است با:

$$
\begin{equation*}
Q=\dot{m}\left(h_{3}-h_{2}\right)=\dot{m} c_{p}\left(T_{3}-T_{2}\right) \tag{h}
\end{equation*}
$$

$$
c_{p}=0.24 \mathrm{Btu} / \mathrm{bm} \cdot{ }^{\circ} \mathrm{F}=1005.8 \mathrm{~J} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}
$$

$$
\begin{aligned}
Q & =(94.8)(1005.8)(1200-580)=59.06 \mathrm{MW} \\
& =2.016 \times 10^{8} \mathrm{Btu} / \mathrm{h}
\end{aligned}
$$

 سحاسبه كنيم:

$$
W=T V_{1}=(21377 \mathrm{~N})(1197 \mathrm{~m} / \mathrm{s})=2.559 \times 10^{7} \mathrm{~W}
$$

بنابراين بازده تبديل انرزُى برايى رامجت برابر است با

$$
\text { درحد }=\frac{W}{Q}=\frac{2.559 \times 10^{7}}{5.906 \times 10^{7}}=43.3
$$

 سرعت جريان تشكيل شوند و مـكن است در شرايط معينى بهصورت منحنى درآيند. در شكل 9- - 1،
 دماغه يكت هوايماى با سرعت بالا نيز تشكيل مىشود. جرياي
 ضربهاى با زاويه تندترى بهطرف عقب امتداد مىيابلد. زاويه دربرگيرنده جريان " بهوسيله آنجه كه مخروط ماخ ناميده مده است، مطابت شكل • 1-ـ ا ا بيان مىشود.

1- Bow shock
2-Sweep angle

ناحيه سكوت' در جلوى مخروط ماخ مىباشد زيرا اغتشاشات، تنها با سرعت صوت منتشر

مى شوند. برايى حركت چششه صوت بهناصله حركت مىكند. اغتثاشات در بشـت مشروط شنيده ممىنـود. بديهى است كه زاويه بخروط به وسيله
رابطه زير داده مىشود.

$$
\sin \alpha=\frac{c}{V}=\frac{1}{M}
$$

برایى $M<1$ اغتثانشات مى تواند علاوه بر بشت منبع در جلوى آن نيز منتشر شوند. اين بدين معنى امت

ترموديناميك

كه هوايِاى مانوت صوت ممكن است خيلى تبل از اينكه ناظرى در روى ز زين اثي ضربهكـانى آن را
بشنو د از بالاى سر او گخنشته باشد.

M=

$$
\alpha=\sin ^{-1} \frac{1}{M}=\sin ^{-1} \frac{1}{2}=30^{\circ}
$$

هنگگامى كه يال مخروط بهز مين برسد هواييسا سحل ناظر را بهافاصله x يموده است كه

$$
\frac{50000}{x}=\tan \alpha
$$

$x=86602 \mathrm{ft}=16.4 \mathrm{mi} \quad(26.4 \mathrm{~km})$

شكّل • 1-1• 1 مخروط ماخ و ناحئه سكـــــوت

- А • - جريان بخار در شييوره

 نودأر 5-h رادر شكل 1 (- ' أ در نظر بگيريد، كه بخار آب در يكت شيوره بهصورت آنتروبى ثابت

از حالك 1 تا حالكت Y منبسط مىشود. با رسيدن بهخط اشباع يعنى نقطه Y، انتظار میرود كه تقطير شروع شود. اما اين عمل ثميشه صورت نمىگیيرد. اگر سرعت بريان بهانــدازه كـانى زيـاد بـاشد (تظيرجريان در شـيبوره مافوق صوت) مدكن است زمان كافى برایى تشكيل جوانهعانى اوليه تطرات موجو د نباشد تا الر آيند انتقال حرارت مربوط بهتقطير انجام گيرد. مو قعى كه جريان بهاندازه كانى داخل ناحيه اشباع شود تطراتى نسبتأ بزرگى تشكيل شده و فرآيند تقطير ادامه مىيابلد و ضربه تقطير ' مشاهده خواهد شد. تأخير در تقطير سالتى را بهوجود ممى آوردكه بهطور مناسب فوت اشباع 「ناميده مىشود. بديدهتقطير ارائه شده در بالا بعسولأ در اصطلاح ترمود يناميكى بهع عتوان مسأله تعادل موتتى

شكل || | - | نمودار انتاليّ ـ آنتوويع برایى جريان ير سرعت بخار

تشريع مىشود. دتِقاً اين معرف موتعيتى است كه سالت تعادل ترموديناميكى، جهت جابهجايى هاثى
 بدين معنى كه در مثال بالا تطرات نسبتأ بزرگّ بايد تشكيل شود تا اين تغير صورت گَيرد. از نقطه نظر ميكروسكیى، اين هيزها خيلم يسخيده است و شامل بجب ملكولهاى بشار از طريق سطع مايع تطره، نرخ رشد تطرات و انتقال كلى شان در جريان بخار آب مىشود.

1- Condensation shock
2- Supersaturation
3- Metastable equilibrium

در نتيجه پديده نوق اشباع، جريان بـخار در سُسوره مىتواند دقيقتر از آنجه كه از طريق فرض ثابت بودن مقدار עدر محدوده نسبتأ وسيعى از فشار ها و دماها امكان بذير بود، محاسبه گردد. براى بشار

$$
\frac{p^{*}}{p_{0}}=\left(\frac{2}{\gamma+1}\right)^{\gamma(\gamma-1)}=0.545
$$

اتگر بخار آب بهصورت بشار اشباع وارد شيبوره شود، نسبت بحرانى با تقريب خوبى برابر / / مقدار مربوط به

مثال • 1-1 1 جريان بخار آب در يك شيبوره

If /Vpsia استفاده از جداول بخار آب و سطع مقطع گَلوگاه را با استفاده از مفروخات خاصيت ـ ـ ثابت مريوط

حـــل : با مشخص كردن خواص خروجى با زيرنويس e، داريم :

$$
\begin{aligned}
& T_{0}=500^{\circ} \mathrm{F}=960^{\circ} \mathrm{R} \quad P_{e}=14.7 \mathrm{psia} \\
& p_{0}=100 \mathrm{psia} \quad \dot{m}=1 \mathrm{lbm} / \mathrm{s}
\end{aligned}
$$

از جداول بخار Tآب (جدول A-4) داريم :

$$
\begin{align*}
& s_{0}=s_{e}=1.7085 \mathrm{Btu} / \mathrm{bm} .{ }^{\circ} \mathrm{R} \tag{a}\\
& h_{0}=1279.1 \mathrm{Btu} / \mathrm{bm}
\end{align*}
$$

در مىيابيم كه در فشار خروجى I F/V psia، جريان در ناحيه اشباع مىاشد و مقادير زير از ججدول A-^

$$
\begin{array}{ll}
s_{f}=0.3120 & s_{f g}=1.4446 \mathrm{Btu} / \mathrm{lbm} . .^{\circ} \mathrm{R} \\
h_{f}=180.15 & h_{f g}=970.3 \mathrm{Btu} / \mathrm{bm} \\
v_{f}=0.01672 & v_{g}=26.80 \mathrm{ft}^{3} / \mathrm{bm}
\end{array}
$$

با به كار بردن معادله (a) كيفيت خروجى را مساسبه مىكنيم :

$$
s_{e}=1.7085=s_{f}+x s_{f g}=0.312+x(1.4446)
$$

$$
x=0.9667
$$

بنابراين انتاليى و حـجم مخصـوص خروجى حأصله برابر است با:

$$
h_{e}=180.15+(0.9667)(970.3)=1118.1 \mathrm{Btu} / \mathrm{lbm}
$$

$$
v_{e}=0.01672+(0.9667)(26.8-0.01672)=25.91 \mathrm{ft}^{3} / \mathrm{lbm}
$$

سرعت خروجى را برایى اين مسـأله مىتوان از معادله انز زثى جريان - دائم مساسبه كرد.

$$
\begin{equation*}
h_{e}+\frac{V_{e}}{2 g_{c}}=h_{0} \tag{b}
\end{equation*}
$$

با جايگزينى مقادير عددى

$$
V_{e}=[(2)(32.2)(778)(1279.1-1118.1)]^{1 / 2}=2840 \mathrm{ft} / \mathrm{s} \quad(931.8 \mathrm{~m} / \mathrm{s})
$$

نرخ جريان جرمى مىتواند بهطريق زير بيان شود :

$$
\begin{equation*}
\dot{m}=\rho A V .=\frac{A V}{v} \tag{c}
\end{equation*}
$$

$$
\begin{aligned}
& \text { از رابطه بالا سطع مقطع جريان تحت شرابط خروجى بهصورت زير بهدست مى آيد } \\
& A_{e}= \frac{(1 \mathrm{lbm} / \mathrm{s})(25.91 \mathrm{ft} 3 \mathrm{fbm})}{2840 \mathrm{ft} / \mathrm{s}}=9.123 \times 10^{-3} \mathrm{ft}^{2}=1.314 \mathrm{in}^{2}
\end{aligned}
$$

$$
R=\frac{1545}{18}=85.8 \mathrm{ft} . \mathrm{lbf} / \mathrm{lbm} .{ }^{\circ} \mathrm{R}
$$

با بهكار بردن معادله (I (1-

$$
\begin{aligned}
\frac{\dot{m}}{A^{*}} & =(100)(144)\left[\frac{(1.3)(32.2)}{(85.8)(960)}\right]^{1 / 2}\left(\frac{2}{1.3+1}\right)^{(1.3+1) / 2(1.3-1)} \\
& =190 \mathrm{lbm} / \mathrm{s} . \mathrm{ft}^{2}
\end{aligned}
$$

$$
A^{*}=\frac{1}{190}=5.263 \times 10^{-3} \mathrm{ft}^{2}=0.758 \mathrm{in}^{2} \quad\left(4.89 \mathrm{~cm}^{2}\right)
$$

9ـ•| ضرايب شيبوره و بخشكن
تا اين جا، جريان آدياباتيكت يكت بعدى را بهمراه اثرات مهم تراكمبيذيرى در آن بر برسى

سطع مقطع در قسمت بتشكن خيلى تدتر از سالت (الف) مى: مشد. در نتيجه ممكن است جريان
 تعجب نيست كه ماهيت تأثيرات اصطكاكى سيال در (ب) كاملاُ متفاوت از آنهايى است كه در (الف)
 كند و معمو لأنتايج بر حسب ضرايب عملكر دششخصى بيان مىشود كه مى توان آنها رابا نتايج حاصـل از آزمايش مقايسه كرد. علىرغم مونقيت در تحليل، اطلاعات تبربى را مى توان براى تعيين مقدار خرايب در طراسى به كار برد و سالا مى خواهيمّ درباره ضرايب مهم بحث نمايبم.

 (ب) الزايش خيلم شديد سطع مقطع و جريان جدا شده

$$
\begin{aligned}
& \text { بازده شيبوره }
\end{aligned}
$$

1- Detached
2. Separated
 لزج، نسبتأ بخش كمترى از جريان را اشغغال مىكند و سطع مقطع جريان بزرگتر خواهد بود. اگگر اترزّى جنبثي ورودى كم باشد، انتاليّى ورودى تقريبأ برابر

مى توان بهصورت زير بيان كرد :

$$
\eta_{N}=\frac{h_{0}-h_{e}}{h_{0}-h_{e s}}
$$

he خروجى واتعى مىباشدل

ضريب سرعت شِيبوره ' ${ }^{\prime}$ بهمهين ترتيب تعريف ممشاشو :

در بعضى از سالات منظور از طرح كانال جريان، كاهش سرعت جريان و افزايش فشـار
 تعر يف شود :

1- Nozzle velocity cocfficient
2- Coefficient of discharge
3- Diffuser pressure recovery factor

دليل اين تعريف مستقيمأ آشكار نيستت اما با مراجعه بهشكل با ـ ـ ا واخـع ميشود. در اين
نمودار انرزّى جنبشى ورودى برابر است با :

$$
\frac{V_{i}^{2}}{2 g_{c}}=h_{0 i}-h_{i}
$$

در سالنى كه انرزى جنبشى در تسمت خروجى برابر است با:

$$
\frac{V_{e}^{2}}{2 g_{c}}=h_{0 e}-h_{e}
$$

$$
\eta_{D}=\frac{h_{e s}-h_{i}}{h_{0 i}-h_{i}}
$$

مثال | | ـ • ا بازيالفت فشار پپخشكن

 اتا سرعت m/ . . kPa

حـــلـ : از معادله انرزیى برای جريان دائم

$$
\begin{equation*}
h_{\text {ar }}-h_{i}=(0.9)(11.25)=10.125 \mathrm{~kJ} / \mathrm{kg} \tag{b}
\end{equation*}
$$

داريم

$$
\begin{align*}
& T_{0_{i}}=\frac{11.25}{1.005}+300=311.2 \mathrm{~K}=38.2^{\circ} \mathrm{C}=T_{0_{e}} \\
& T_{e s}=\frac{10.125}{1.005}+300=310.1 \mathrm{~K}=37.1^{\circ} \mathrm{C} \tag{c}
\end{align*}
$$

$$
\begin{array}{r}
\text { دماى خروجى واتتى را میتوان از طريق زير بهدست آورد: } T_{e}=T_{0_{e}}-\frac{1}{c_{p}}\left(\frac{V_{e}^{2}}{2 g_{c}}\right)=311.2-\frac{(60)^{2}}{(1.005)(2)(1000)}=309.4 \mathrm{~K}=36.4^{\circ} \mathrm{C}
\end{array}
$$

حالا با مشاهده شكل سكون خروجى دنبال كنيم

$$
\begin{align*}
& \frac{p_{o_{e}}}{p_{i}}=\frac{p_{a r}}{p_{i}}=\left(\frac{T_{a r}}{T_{i}}\right)^{\gamma(y-1)} \\
& p_{o_{e}}=(100)\left(\frac{310.1}{300}\right)^{1.40 .4}=112.3 \mathrm{kPa} \tag{d}
\end{align*}
$$

$$
\begin{align*}
& h_{0 i}-h_{i}=\frac{V_{i}^{2}}{2 g_{c}}=\frac{(150)^{2}}{(2)(1.0)(1000)}=11.25 \mathrm{~kJ} / \mathrm{kg} \tag{a}\\
& \text { با بهكار بردن علائم شكل ז }
\end{align*}
$$

$$
\begin{align*}
& \frac{p_{e}}{p_{O_{e}}}=\left(\frac{T_{e}}{T_{\theta_{e}}}\right)^{\gamma /(\gamma-1)} \\
& p_{e}=(112.3)\left(\frac{309.4}{311.2}\right)^{3.5}=110.04 \mathrm{kPa} \tag{e}
\end{align*}
$$

$$
\begin{equation*}
\dot{m}=\rho_{i} A_{i} V_{i}=\rho_{e} A_{e} V_{e} \tag{f}
\end{equation*}
$$

| اما

$$
\frac{A_{e}}{A_{i}}=\frac{p_{i} V_{i} T_{e}}{p_{e} V_{e} T_{i}}=\frac{(100)(150)(309.4)}{(110.04)(60)(300)}=2.343
$$

جهت يساسبه ضريب بازيافت نـار بايد ابندا افزايش نشار آنترويى ثابت را تعيين كنبم. نشار سكون ورودى از رابطه زير مهاسبه مىشود :

$$
\begin{align*}
& \frac{p_{0 i}}{p_{i}}=\left(\frac{T_{0 i}}{T_{i}}\right)^{\gamma(\gamma-1)} \\
& P_{o_{i}}=(100)\left(\frac{311.2}{300}\right)^{3.5}=113.7 \mathrm{kPa} \tag{g}
\end{align*}
$$

ضريب باز يافت نشار از رابطه (7 هـ • 1) سحاسبه مىشود:
$C_{p}=\frac{p_{\mathrm{e}}-p_{i}}{p_{0 \mathrm{i}}-p_{i}}=\frac{110.04-100}{113.7-100}=0.733$
خود آزمايي (سؤالات مرورى) - 1 - معنى اصطلاح حالت سكون آنتروييى ثابت جيست؟ Y - Y ثابت است ؟
م عدد ماخ را تعريف كنيد. جرا اين عدد مهم است؟ F F ه - ت تعريف لنوى سرعت صوت جيست؟
-
معادله برنولمى هجيست - V
A - اصطلِع جريان خحفه شـده را توضيح دهيد.

- 9

افزايش يابل!

- ا ـ از لهاظ فيز يكى توضيح دهيد كه هرا' براى افزايش سرعت در يكت شيبوره آيزنتر ويـك، فشار

بايد هميشه كاهش يسدا كند، علىرغم اين كه جريان مادون صوت و يا مافوت صوت باشد؟

- 11
- IY
- IY - موج ضربهاثى را طورى تثريع كنيد كه يكت عأمى بفهمد.
- If
- 10 ضـفامت تقريبى بكك موج ضربهاى جقدر است؟
- 17 - خطوط فانو و رايلى خيسـت?
- TV IV

مادون صوت برسد؟
1^1 -
 جرمى در شيو ره ندارد؟

ثمسائل (T احاد انتليسيى)

دما و فشار سكون را برانى جريانهاى زير سساسبه كنيد.

$\cdot / \cdot 1 \mathrm{~atm},-f \cdot{ }^{\circ} \mathrm{F}$ ، $M=\Delta$ (ب)

 بخار آب $\gamma=1 / \Psi$ باش $\gamma=1$ با
$M=1$ • بوشك
 جلوى موشكت را با فرض رنتار گاز ايدهآل تخمين بز نيد. اگگر يكت ضربهكـانى دماغه مخروط را احاطه نـايد، نئـار موجود در نقطه سكون را تشْمين بز نيد.

 معرفى شده 6 محاسبه كنيد.

 خروجى را تا جه مقدار بايد بالا برد تا درست جريان مادون موتــ در تمامــ ثبيـوره داشته باشيم؟؟
, $M=f$ F IY، ºF مىياشد. سطع مقطع گلوگاه و جريان / / / / atm

يس نشار را تا جه سيزان بايد افزايش داد تا درست يكت ضربهقائم در آتـمت خروجى شيبور مسأله ף-• ا ايبجاد شود؟
\& . . . ${ }^{\circ}$. محاسبه كنيد.
 آب مداسبه كنيد.
 حاصـل مىشود?
|-l|
 صرت نظر ازانتهاي أمطكاكى در قرقره

 ك 5

 مقدار مىباشد؟
 سكون بر دماغه كلوله را حساب كنيد.

مقدار حرارت اضانه مىشود؟

 خروجى را براى جريان آنترويى ثابت مساسبه كيند.

گردد. شرايط جريان خروجى در اين وضعيت جه خوامد بود؟

مخزن ير از Tبى بهحجم \quad V - IV

بكت سطع مسطلع حركت مىكند. بيىى كه بر روى منزن نمبـ شُده آب را با نرغ ه Δ lbm/s منزن با سرعت Y Y ft/s در خلالت جهت سرعت تغليه شيبوره حركت مىكند نيروى بيثّبرنده خالكس توليد شده هقلر است؟

 مسدو ديتهاى طراحى براى هوايِماشلى يرسرعت وجود دار د. در هر سر عت، سـداكثر دربه حرارت بدنه هوايِما دماى سكون مىباشد. سداكثر سرعت برايى يرواز در ارتفاعى كی P $p=\cdot / / \mathrm{atm}$ ، $T=-\Delta \cdot{ }^{\circ} \mathrm{F}$ V I.-Y. اندازه گيرى شده
 بوتّار مىشود. خواص سكون لازم در منزن و جريان جرمى هواى لازم هقدر است؟ هميهنين سطع مقطع گلوگاه شيبوره را سـساب كنيد. I I _ Y جرمى در اين وضمیت و خريب تشليه هقلدر خواهد بود؟

 موئكك در مو قعيت سكون استت مساسبه نسايـد.
 مى شود. سرعت ورودى كم است. سرعت خروجى و سطع مقطع خروجى را براى نرخ جريان Ylbm/s مـعاسبه كنيد.
 جه سطع مقطع گلوگاه و سطع مقطع خروجى براى جريان جرمى خواهد بود؟

 تائم در خرو جی شیيوره هیه پس فشارى بابيد اعمال شود ؟

مسائل (آحاد متريك)
دما و نشار سكون را برابى جريانهاى زير محاسبه كنيد. vkPa ، $\Delta^{\circ} \mathrm{C}$ ، (الف) $\cdot / \cdot 1 \mathrm{~atm} 6-F \cdot{ }^{\circ} \mathrm{C} . M=\Delta$ ر (ب) -/ $\Delta \operatorname{atm} 61 \cdots{ }^{\circ} \mathrm{C}$ ، $\cdots \mathrm{m} / \mathrm{s}$ (ج) (ج (ج

 موشك با فرض گاز ايلهآل تخهين بزنيد. اگر يكت ضربهكمانى دماغه مخروط رااحاطه نمايد، فشار مو جود در نقطه سكون را تخمين بزنيد.
 و با تخليه هوا در / كار كند. با فزض ثابـت ماندن شرايط سكون، نشار خروجى را تا جه مقدار بايلد بالا برد، تا جريان مادون صورتى در تمام شيبوره داشتته باشيم؟

 سطع مقطع خردجى

معاسبه كنيد.

میشود. سرعت ورودى ناهيز است. دما و سرعت خروجى را مساسبه كنيد.
 شيور هكاهث شتابب میيابد. نوخ جريان Y kg/s ا است. دما و فشار در خروج و ورود و

سطع مقطع جريان خروجم را مسانسهي كنيد.
 CV. . kPa
 دريافت مىكند. موتورى با جقدر اسب بخار لازم است تا مستقيماُ تسمه را حر ذـ نظر از

انتهاى اصطكاكى در ترَتره و غيره، بیرخاند!
 در بجلو بهكد و با سرعت بيشترى در بشت قايت تغليه نـايد. در طرح خاصىى مهاسهه
 مقطع جريان ورودى / / / است و مىتوان فرض كرد كه آب با سرعت تايت داخل ميشود. با تو جه بهاين كه كل نيروى يسشبرنده در اثر انزايش ممنتو ميال نتيجه شده باشلـ، هیه سطع مقطع جريان خروجى لازم است? اسب بخار بیب بـرای بهحركت در آوردن آيق جحقدر است ؟
(l - I YM

 معاسبه كنيد.
$T_{0}=\wedge \vee \Delta{ }^{\circ} \mathrm{C}, p_{0}=\wedge / \Delta \mathrm{MPa}$ I 1 - 1 FM

برای فشار جريان آزاد kPa ه H اندازهگيرى شده است. سرعت هواييما و عدد ماخ را محاسبه كنيد.

 خواهد گرفت؟

جقدر است؟

بى شد اگر بازده شيبوره QV درملـ مى بود؟
(14M محدوديتهاى طراحى براي هواييماى بيرسرعت وجود دارد. درهر سرعت، حداكرئر درجه

جقدر مىباشد؟

 ر $\mathrm{r} \mathrm{kg} / \mathrm{s}$ مخزن با سرعت m/s 7 در خلان جهت سرعت تخليه شيوره هركت بيكند، نيروى

بششبرنده خالص توليد شده هـه مقدار مىباشد!
 منبـط مى شود. سرعت ورودي كو هكي است. سرعت خروجى و سطع مقطع خروجى را براي نرخ جريان
 هـه سطع مقطع گلوگاه و سطع مقطع خروجى براى جريان جر مى خو اهل بود؟
Y/F l 1 . - YFM

در خروجى شيجوره جه يس نشارى بايد اعمال شود؟
 جريان جرمى در اين وخعيت و ضريب تخليه جقدر خواهد بود؟
 اندازهگيرى شُده بايد واتگرايع برترار مىشود. خواص سكون لازم در مخزن و جريان شواى لازم جقدر است؟ هـبینين سـطع مقطع گلوگاه شیيو ره وا سساب كنيد.
 سكون بر دماغه گلوله را تسابك كنيد.

اخانه مى شود?
(l•_Y9M
 خروجى رابراى جريان آنترويى ثابت مساسبه كنيد.

 بايد در تسـت ورودى موجود باشـد تا شرايط موتى در كمترين مقدار سطع مقطع توليد شو و؟ عدد ماخ خروجى راتعت اين شرايط مداسبه كنيد. آكر دما و نشار ورودى Y هاشده نرخ جريان جرمى براى شُرايط صوتى در هـداتل سطع مقطع جقدر است؟ atm M M M
 همگرايِى با سطع مقطع خروجى 1 cm² 1 تخليه مىشود. تخليه بهداخل يكى اطاق بزرگى در المورت مىگيرد ومـخزن كاملاُ عايق است. فر آيند تخليه تا رسيدن فشار مخزن به ratm

 سرعت جريان بايِن دست را مساسبه كنيد. اين نتايج رابا مقادير بهدست Tامده برای هوايى كه تحت ضربهاى در همان شرايط بالادست جريان قرار گرنهه مقايسه نمايِّ.

 مىشود. تنفليه دز نشار اتمسفر صورت مىگيرد. نيروى يششبرنده خالص را هنگامى كه موشكت ساكن است مساسبه نمايِد.
 . 1 . . ${ }^{\circ} \mathrm{C}$
 معرض جريانى با تسـت ورودى تـكيل شـود. دما، نشار و سرعت خروجى تعت اين شرايط جقدر است؟

$$
\begin{aligned}
& \text { نرخ جريان تعت اين شرايط و نيروى كلى اعمال شده بر سيال در سين حركت درست از } \\
& \text { بالا دست ضربهتا خروج از شيبوه هقدر است؟ }
\end{aligned}
$$

1 Liepmann, H. W., and A. Roshko: "Elements of Dynamics," John Wiley \& Sons, Inc., New York, 1957.

2 Shapiro, A. H.: "The Dynamics and Thermodynamics of Compressible Flow," The Ronald Press Company, New York, 1954.
3 Thompson, P. A.: "Compressible Fluid Dynamics," McGraw-Hill Book Company, New York, 1972.
4 Chapman, A. J., and W. F. Walker: "Introductory Gas Dynamics," Holt, Rinehart and Winston, Inc., Ncw York, 1971.

فُفْـٌ 00

اصول انتقال حرارت
| 1 | مقدّمه
در فصول تبلم ديديم كه تزمودينايكت مىتواند برايى بوازنه انز زثى در حالات نيزيكمى
متفار تى مورد استفاده ترار تيرد. جند مثال عبار تند از :

دهاى بالا تعين مىینود.

مثدار معينى از هوا تَيين مىئود.

لرآيند ساده ديگرى رادر نظر بـيريديد

مى تواند اندازه مبدل سرارتى را برايى كاربر دهايى نظير Tنهجه در بالا گفته شد تعين كند.

 امول برای طرح مبدلهاى سرارتى بحث خواهيم كرد. سه نوع انتقال حرارت وجود دارد: هدايت، جاببجايى و تابش. هلا يتت در نتيجه انتقال انرزىى بهوسيله سركت ملكولى در گازها و مايعات و بهوسيله تركيب ارتعاش شبكانى و انتقال المكرون در

 سيال سريع تر حركت كند انتقال سرارت بيستر است †. انتقال سرارت جأبجايى معمو لأ متناسب با سطع تماس باسيال و اختلالن دماى بين سطع تماس و سيال فرض مىشود. بلدين ترتيب:

كه h ضريبب انتقال حرارت جاببجا نى ناميده مىشود كه تابعى شديل ازخواص سيال و سرعت سيال
 است مقاومت جاببجايى، 1 = $\frac{1}{h A}$

انتقال حرارت تابشم نتيجه تابش الاكترومناطيس منتشره از سطع در نتيجه دماى آن است.
 ايكس، اشعه گاما متفاوت مى. باشد. در فسمت زير روشهاى مساسبه برایى انواع مـتثلف انتقال حرارت را
 است و جزئيات يستر و بررسى دتيق موضوع در مرابع انتهاى نصلل يافت مىشود.

[^6]
Y- Y ا | انتقال حرارت هدايتى در حالت دالم

qهدايت حرارت بهوسيله قانون فوريه بيان مىشود كه مـيگويد نرخ انتقال حـرارت

(بشكل ا 1 ا 1 نگاه كنيد) يا

$$
\begin{equation*}
q_{x}=-k A \frac{\partial T}{\partial x} \tag{11-ra}
\end{equation*}
$$

k ضريب تناسب اسـت كه بهعنوان خريبب مدا يتت حرارتى تعريف مىشود. علامت منفى بـاين علت
 باشد. واحد ضريب هدايت حرارتى Btu/h.ft. ${ }^{\circ} \mathrm{F}$ W W/m. ${ }^{\circ} \mathrm{C}$ يكى جدول ا - ا ا نشان داده شـده است. مقادير ضرايب هدايت حرارتى براى تعدادى از ثلزات و عايقهاى

(1 - - - - a)

$$
\begin{equation*}
q=k A \frac{T_{1}-T_{2}}{\Delta x}=\frac{T_{1}-T_{2}}{\Delta x / k A} \tag{11-rb}
\end{equation*}
$$

و مقأومت الككريكى مشابهرا مى توان شمانند شكل نشان داد

ضإِب هدايت حرارتي		مواد
$\mathbf{W} / \mathrm{m} .{ }^{\circ} \mathrm{C}$	Btu/h.ft. ${ }^{\circ} \mathrm{F}$	
		فلزات
FI.	YrV	نقره (خالص)
rad	PYY	مس (خالص) (الص)
Y. γ	llv	Tلومينم (خالص)
ar	ΔF	نيكل (خالص)
vr	fr	Tاهن (خالص)
fr	Yo	فو لادكربن)
ros	$Y \cdot / r$	سربب (خالص)
17/r	9/F	
		جامدات فير فلزى
F1/7	YF	كوارتزك
$F / 10$	Y / F	كربنات منيزيـيم طبيعى
Y/.A_Y/4F	I/r-1/V	سنگّ مرمر
1/^r	1/1.7	ماسه سنغ
- /va	-/40	شيشه، بنهجره
- /iv	. $/ .97$	هجوب افرا ها با بلوط
- /.09	- /.ry	خاكك اره
- /.ra	-/.YY	هشم شيشه
		مايعات
人 / \%	F/VF	جيو
- / $/ \Delta \Delta 7$	- /ryv	آب
- / Δf.	- /rir	Tآمونياكِ
- /Ifv	- /.As	SAE 0 - روغن روغنّكارى
- /.vr	- /.fr	CCl ${ }_{2} \mathrm{~F}_{2}$ (Y)
		كاز
- /iva	. /1. 1	هيدروزن
- /ifi	- /.A1	هاليوم
- /. Yf	- /.ira	هوا
-/.r.7	. 1.119	بخار آب (اشبلع)
-/.lfq	-/. Afp	دىاكسيد كربن

$$
\begin{equation*}
q=\frac{T_{1}-T_{2}}{R} \tag{11-F}
\end{equation*}
$$

بهصورت زلـ تشريع كـد

$$
q=\frac{T_{1}-T_{2}}{R_{A}}=\frac{T_{2}-T_{3}}{R_{B}}=\frac{T_{3}-T_{4}}{R_{C}}
$$

ثكل

$$
q=\frac{T_{1}-T_{2}}{(\Delta x / k A)_{A}+(\Delta x / k A)_{B}+(\Delta x / k A)_{C}}
$$

 بنابراين قانون نوريه بهصورت زير در مى آيد

$$
\begin{equation*}
q_{r}=-k 2 \pi r L \frac{d T}{d r} \tag{11-9a}
\end{equation*}
$$

با دماهاى مشـغص شده در شعاع داخلى و شارجى و انتگرال گر فنن از معادله (ه - ا I) بهدست مى آيل

$$
\begin{equation*}
q=\frac{T_{i}-T_{o}}{\left[\ln \left(r_{o} / r_{i}\right)\right] / 2 \pi k L} \tag{11-ab}
\end{equation*}
$$

مخـرج را مى تـوان بهصـورت مقاومت حـرارتى مطابـق آنته در شكـل F - ا ا نشان داده ششـــه است
 مطابـق شكـل هـ ا ال مىتـوان در نظـر گرنت. روابط مشابهى را بمىتـوان بـرایى سيستـهاى كـروى

استنتاج نمود.

تهليل. بالا مربوط بهسيستمهاى يكت بعدى مىشود كه دما تابعى از يكث محود يختمات

$$
\begin{equation*}
Q=k S T T^{2} \tag{11-v}
\end{equation*}
$$

S ضريب شـكل مدايتى امت كه مىتوان با مر دو روش تهليلى و آزمايثى آن را تتيين نمود. جدول گرَنهـ شود. مثالها كاربرد رابطههاى هدايت را نشان مىدهد.

شتكل 1- 1 جريان حرادتم يكت بعدى از عيان مقاطع سبلندرى جندكانه و تثابه الكتريكى

- مثال 1-11

جدول r - 11 ضرايب شكل هدايت، خلاصد شده از مراجع [9 و 8]

$$
q=\frac{\Delta T}{\sum R_{t h}}
$$

 خواهد بود.
برایى Tاجر و روكش بهازاى واحد سطع داريم

$$
R=0.145+0.079=0.224 \mathrm{~m}^{2} .^{\circ} \mathrm{C} / \mathrm{W}
$$

$$
R_{\text {ناعابا }}=\frac{0.224}{0.2}=1.122 \mathrm{~m}^{2} .^{\circ} \mathrm{C} / \mathrm{W}
$$

پس

و اين معرن جمع بقادير تبلى ما و مقاومت برایى هشم سنگُ مىباشد

$$
\begin{aligned}
& 1.122=0.224+R_{r w} \\
& R_{r w}=0.898=\frac{\Delta x}{k}=\frac{\Delta x}{0.065}
\end{aligned}
$$

بنابراين

$$
\Delta x_{r w}=0.0584 \mathrm{~m}=2.3 \mathrm{in}
$$

$$
\begin{aligned}
& R_{b}=\frac{\Delta x}{k}=\frac{(4)(0.0254)}{0.7}=0.145 \mathrm{~m}^{2} .{ }^{\circ} \mathrm{C} / \mathrm{W} \\
& R_{p}=\frac{\Delta x}{k}=\frac{(1.5)(0.0254)}{0.48}=0.079 \mathrm{~m}^{2} .{ }^{\circ} \mathrm{C} / \mathrm{W}
\end{aligned}
$$

 نگچهداشته شود، حرارت اتالانى رابهازايى هر متر طول سحاسبه كنيد.

$$
\begin{aligned}
& \mathrm{T}_{1} \longrightarrow \boldsymbol{\sim} \\
& \frac{\ln \left(r_{2} / r_{1}\right)}{2 \pi k_{s} L} \quad \frac{\ln \left(r_{3} / r_{2}\right)}{2 \pi k_{0} L}
\end{aligned}
$$

شكل مثال 11-1

حـــل : شكل هـراه شبكه حرارتى براى اين مسأله را نشان مىدهد. جريـان حرارتـى با رابطـه زبـر داده میشود

$$
\frac{q}{L}=\frac{2 \pi\left(T_{1}-T_{2}\right)}{\ln \left(r_{2} / r_{1}\right) / k_{s}+\ln \left(r_{3} / r_{2}\right) / k_{a}}=\frac{2 \pi(600-100)}{(\ln 2) / 19+(\ln 5 / 2) / 0.2}=680 \mathrm{~W} / \mathrm{m}
$$

بكت سيلندر میدما با دماى سطع

 بنابراين با استفاده از رابطة زير :

$$
q=k S \Delta T
$$

انتقال حرارت سهاسبه مىشود و از بجدول Y-Y

$$
S=\frac{2 \pi L}{\cosh ^{-1}(D / r)}
$$

با تو جه بهاين كه :

$$
\cosh ^{-1} x=\ln \left(x \pm \sqrt{x^{2}-1}\right)
$$

داريم

$$
\cosh ^{-1} \frac{D}{r}=\cosh ^{-1} \frac{30}{15}=1.317
$$

و برايى واسد طول :

$$
\begin{aligned}
& S=\frac{2}{1.317}=4.77 \\
& q=k S \Delta T=(1.7)(4.77)(50-20)=24.3 \mathrm{~W} / \mathrm{m}
\end{aligned}
$$

$$
\text { | | } \mid \text { هدايت }
$$

ترموديناميك

$$
\begin{equation*}
h A\left(T-T_{\infty}\right)=-\rho c V \frac{d T}{d \tau} \tag{11-1}
\end{equation*}
$$

T T

$$
T=T_{0} \quad \tau=0, ~ د
$$

با انتگرال گگرفنن از معادله (1 - ال نتجهه ميگيريم

$$
\begin{equation*}
\frac{T-T_{\infty}}{T_{0}-T_{\infty}}=e^{-(h \alpha / p c h)_{\tau}} \tag{11-9}
\end{equation*}
$$

 ميرودكه :

$$
\frac{h(V / A)}{k}<0.1
$$

 ظرفيت

$$
\frac{h A}{\rho c V}=\frac{1}{R_{d h} c_{t h}}
$$

و سيستم نظير خازنى الككريكى كه از طريق يكت بقاومت تخلبي مى شود رنتار مىنمايد.

 گلوله بـ درجه حرارت 10 ـ 10 محاسبه كنيد.

حــل : فرض میكنيم كه روش ظرفيت تودهاى قابل كاربرد است زيرا مقدلار hكم و مقدار kزياد

$$
\frac{h(V / A)}{k}=\frac{(10)\left[(4.3) \pi(0.025)^{3}\right]}{4 \pi(0.025)^{2}(35)}=0.0023<0.1
$$

بنابراين مى توان از معادله (11 () استفاده كرد. داريم:

$$
\left.\begin{array}{lll}
T=150^{\circ} \mathrm{C} & \rho=7800 \mathrm{~kg} / \mathrm{m}^{3} & \left(486 \mathrm{lbm} / \mathrm{ft}^{3}\right) \\
T_{\infty}=100^{\circ} \mathrm{C} & h=10 \mathrm{~W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C} & \left(1.76 \mathrm{Btu} / \mathrm{h} . \mathrm{ft}^{\circ} .{ }^{\circ} \mathrm{F}\right) \\
T_{0}=450^{\circ} \mathrm{C} & c=460 \mathrm{~J} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C} & \left(0.11 \mathrm{Btu} / \mathrm{bm} .{ }^{\circ} \mathrm{F}\right)
\end{array}\right] \begin{array}{ll}
\frac{h A}{\rho c V}=\frac{(10) 4 \pi(0.025)^{2}}{(7800)(460)(4 \pi / 3)(0.025)^{3}}=3.344 \times 10^{-4} \mathrm{~s}^{-1} \\
\frac{T-T_{\infty}}{T_{0}-T_{\infty}}=e^{-(h A / p c h) \tau} \\
\frac{150-100}{450-100}=e^{-3.344 \times 10^{-4} \tau} \\
\tau=5819 \mathrm{~s}=1.62 \mathrm{~h}
\end{array}
$$

| | - ا انتقال حرارت جابجايى

 بر حسب شكل V - I ا د داريم

$$
\begin{aligned}
q^{*} & =q(\text { (مدايت در لاية سطع) } \\
& =-\left.k A \frac{d T}{d y}\right|_{y=0}
\end{aligned}
$$

كه kضريب مدايت حرارتى سيال مىباشد. ناحيه نزديكت مفيه كه تراديان سرعت تابل ملاحظهاى دارد، لايه مرزى ناميده مىنود. سه نوع اصلمى انتقال حرارت جابججايى وجود دارد:

شكل II-Y انتقال حرارت جابجايع از صفحه مسطع

شكل

سيال بزرگتر باشد، نيروى شناورى نيز بيـتر خواهد بود.
「
مشاهده مىشود. مكانيزم اين فرآيند خيلى يسِيده است و خواننده برايى اطلاعات بيشتر
بايل بهمرابعع رجوع كند.
ثـان طور كه جبلأ اشاره شد، يكت روش متداول در انتقال حزارت جاببجايى تعريف خريبب
انتقال حرارت hمىباشمد:

كه h بر ســبـ W/m² ${ }^{\circ} \mathrm{C}$ است و A مسا-حت سهطع برای انتقال حرارت جابجايى است. معـادله

(الف)

(ب)

(1 1- I I)

 ميانگين انرزّى گرنه مىشود. در موازنههاى ترموديناميكى دستگامهايمى نظير گرمكنهاى آب تغذيه و
 ميانگين مى.اشـد. انتقال حرارت جابجهايِى بستگى بهاخواص سيال دارد و آن نيز خود بستگى بهدما دارد. در خيلى از مساثل عملم بستگى دما خيلى شـديد نيست، اما وجود دارد. براي بيشتر مساثل جاببجايى اججارى و آزاد مساسبات قابل قبولى را مى توان با تعيّن خواص در Tانتهه دماى فيلم مىشود، صورت داد.

در حالمى كه براي بريان در كانالها معساسبه در دماى متوسط معمولأ صسيع مىباشـد

در طول دهها سال مسققين و كارورزان توانستهاند رابطه هاى تـليلى و تجربى زيادى رابراى غريب انتقال حرارت در سالات مـتلف بهدست آورند. تقريبأ در تمام سالات نتايج را مىتوان با متغيرهاى بدون بعد بهثكل زير بيان كرد :

$$
\begin{equation*}
\text { برايى بابجايمى اجهارى Nu }=f(\operatorname{Re}, \operatorname{Pr}) \tag{1|-|f}
\end{equation*}
$$

,

$$
\text { براي جابجايى آزاد Nu }=f(\mathrm{Gr}, \mathrm{Pr})
$$

بهطور كلى انتقال عرارت جاببجايم بستگى بهر نتار جريان سيال دارد كه بهوسيله عدد رينولدز

جدول F- | |

 بمكندكه جريان آرام و يا منـوش است. عدد يرانتل نسبت انتقال منتوم و انتقال انرزى در سيال را

ترموديناميك

جدول ب - |

بيان نمود

تِّ نته است، داريـم

$$
\begin{align*}
q & =\frac{T_{A}-T_{1}}{1 / h_{A} A}=\frac{T_{1}-T_{2}}{\Delta x / k A}=\frac{T_{2}-T_{B}}{1 / h_{B} A} \\
& =\frac{T_{A}-T_{B}}{1 / h_{A} A+\Delta x / k A+1 / h_{B} A}
\end{align*}
$$

مى بينيم كه ما دارایى سه مقاومتت بهحورتت سرى غستيم: Y تا جاببجايـى و يكت هدايتى: روش
 برابر است با

$$
q=\frac{T_{A}-T_{B}}{1 / h_{i} A_{i}+\left[\ln \left(r_{o} / r_{i}\right)\right] / 2 \pi k L+1 / h_{o} A_{o}}
$$

كه

روّ معاسباتى براي انتقال جرارت جابیاجه

اتگرپه جمع آورى فرمولها بهنظر كـى ستئت بى آيل، اما مساسبات زرايب انتقال سرارت
جابِجانی منگامى كه مراحل زير طى شود، تقر يباً ساده است.

1
Y ـ تعيسن كردن ثكل هندسى

	جر يان در عرض كره،
T_{f}	$\overline{\mathrm{Nu}}_{d}=0.37 \mathrm{Re}_{d}{ }^{0.6}$ كازها
T_{f}	$\overline{\mathrm{Nu}}_{d}=\left(1.2+0.53 \mathrm{Re}_{d}{ }^{0.54}\right) \mathrm{Pr}^{0.3}$ آب
	خطوط بالاي

جدول 7 - | |

وابطلاسلى Nu =

منامب مورد استغاده ترار گيرد. معمولاُ دماى فيلم براى جبريان خارجى و دماى متوسط
برای جريان دماى داخلى شىىباشد.
 مقدار h، خويب انتقال سرارت جاببعايى.
 خواص فيزيكى براى موا و Tب
 سرارتت جاببعايع است. اككر رابطههاى انتقال حرارت باببعايم الراثه شده در اين جاو ساير جاها در

مثال ه- | |

هوا در سيلنــر در دمـاى ثابت P . . K نگهداشته مىشود. حـرارت اتلالفى را بهازای واحــد طول سيلندر مساسبه كنيد.

حــــل : با مراجبعه به جدول ه - ا ا و يانتز رابطه زير برالى مساسبه ضوبـ انتقال سرارت : $\overline{N u}_{d}=\frac{\hbar d}{k}=C \operatorname{Re}_{d} \operatorname{Pr}^{1 \beta}$

$$
T_{f}=\frac{T_{w}+T_{\infty}}{2}=\frac{400+300}{2}=350 \mathrm{~K}
$$

از جدول ب- P- خواص هوا در K K ه جنين است :

$$
\nu=20.76 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s} \quad k=0.03003 \mathrm{~W} / \mathrm{m} .{ }^{\circ} \mathrm{C} \quad \mathrm{Pr}=0.697
$$

$$
\mathrm{Re}_{d}=\frac{u_{\infty} d}{v}=\frac{(50)(0.05)}{20.76 \times 10^{-6}}=1.204 \times 10^{5}
$$

$$
C=0.0266 \quad n=0.805
$$

$$
\frac{\hbar d}{k}=(0.0266)\left(1.204 \times 10^{5}\right)^{0.805}(0.697)^{1 / 3}=290.1
$$

$$
\hbar=\frac{(290.1)(0.03003)}{0.05}=174 \mathrm{~W} / \mathrm{m}^{2} .^{\circ} \mathrm{C}
$$

براى واهد طول، مساعت سطع سيلندر برابر است ب

$$
A=\pi d=\pi(0.05)=0.1571 \mathrm{~m}^{2} / \mathrm{m}
$$

بنابراين انتقال حرازت برابر است با

$$
q=h A\left(T_{\omega}-T_{\infty}\right)=(174)(0.1571)(400-300)=2733 \mathrm{~W} / \mathrm{m}
$$

مثال \-| |
 مىبايد. نرخ جريان

حـــل : با مراجعه بهجدول ه - 1 ا ممىينيـم كه خواص براى اين نوع مسأله در دماى ميانگين متوسط مساسبه مىشود. بنابراين

$$
T_{b}=\frac{50+70}{2}=60^{\circ} \mathrm{F}
$$

و از جدول B-F - خواص آب برابر است با

$$
\begin{aligned}
& c_{p}=4186 \mathrm{~kJ} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C} \\
& \rho=999 \mathrm{~kg} / \mathrm{m}^{3} \\
& \mu=1.12 \times 10^{-3} \mathrm{~kg} / \mathrm{m} \cdot \mathrm{~s} \\
& k=0.595 \mathrm{~W} / \mathrm{m}^{\circ} \cdot \mathrm{C} \\
& \operatorname{Pr}=7.88
\end{aligned}
$$

رزّيم جريان بهوسيله مساسبه عدد رينولدز تعين مىشود.

$$
\mathrm{Re}_{d}=\frac{\rho u_{m} d}{\mu}
$$

سرعت متو سط جريان بهصورت زير تعين مىشود

$$
\begin{aligned}
& \dot{m}=\rho \frac{\pi d^{2}}{4} u_{m} \\
& u_{m}=\frac{11 / 60}{(999) \pi(0.02)^{2} / 4}=0.584 \mathrm{~m} / \mathrm{s} \\
& \operatorname{Re}_{d}=\frac{(999)(0.584)(0.02)}{1.12 \times 10^{-3}}=10421>2000
\end{aligned}
$$

بنابراين جريان مغشوش است و از رابطه زير استفاده مىكنيم

$$
\overline{\mathrm{Nu}}_{d}=\frac{\hbar d}{k}=0.023 \operatorname{Re}_{d}^{0.8} \operatorname{Pr}^{0.4}
$$

جهت مساسبه

$$
\mathrm{Nu}_{d}=(0.023)(10421)^{0.8}(7.88)^{0.4}=86.03
$$

$$
\bar{h}=\frac{(86.03)(0.595)}{0.02}=2560 \mathrm{~W} / \mathrm{m}^{2} \cdot{ }^{\circ} \mathrm{C}
$$

انتقل حرارت كلمى برابر است با

$$
q=\dot{m} c_{p} \Delta T_{b}=\left(\frac{11}{60}\right)^{(4186)(70-50)}\left(\frac{5}{9}\right)=8527 \mathrm{~W}
$$

$$
q=\bar{h} A\left(T_{w}-T_{b}\right)
$$

 صفمه را محاسبه كيد.
 میشود. برای هوا در atm الز جدول B-r بهدست مى 'وريم :

$$
T_{f}=\frac{T_{w}+T_{\infty}}{2}=\frac{400+300}{2}=350 \mathrm{~K}
$$

$$
v=20.76 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s} \quad k=0.03003 \mathrm{~W} / \mathrm{m} .{ }^{\circ} \mathrm{C} \quad \mathrm{Pr}=0.697,
$$

حالا بايد عدد رينولدز رابرايى تعين رزيم جريان و در نتيجه رابطه مورد امتفاده برايى مهاسبه ضريب انتقال حرارت جاببجايى بهدست آوريم:

$$
\begin{aligned}
& \text { كه مساهت سطع براى جاببجايى برابر است با A= } A d L \text {. بنابراين } \\
& q=8527 \mathrm{~W}=(2560)(\pi)(0.02) L(120-60)\left(\frac{5}{9}\right) \\
& L=1.59 \mathrm{~m}
\end{aligned}
$$

مثال A- | |

 حــل : اين مسأله جابجايى آزاد است زيرا ميجِ گونه حركت اجبارى هوا در عرض سطع انتــال. حرارت وجود ندارد. با مراجعه بهجدول 7 - اله، خواص سيال در دماى فيلم را بهدست مى آوريم :

$$
T_{f}=\frac{T_{w}+T_{\infty}}{2}=\frac{400+300}{2}=350 \mathrm{~K}
$$

از جدول + - - ، خواص هوا در atm \ برابر است با

$$
\begin{aligned}
\rho & =0.998 \mathrm{~kg} / \mathrm{m}^{3} \\
\mu & =2.075 \times 10^{-5} \mathrm{~kg} / \mathrm{m} . \mathrm{s} \\
k & =0.03003 \mathrm{~W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{C}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Re}_{L}=\frac{u_{\infty} L}{v}=\frac{(50)(0.5)}{20.76 \times 10^{-6}}=1.204 \times 10^{6} \\
& \text { بنابراين از جدول هـ ا ا رابطه برای تعيين hبرابر است با } \\
& \widetilde{\mathrm{Nu}}_{L}=\frac{\bar{h} L}{k}=\left(0.037 \operatorname{Re}_{L}^{0.8}-850\right) \operatorname{Pr}^{1 / 3} \\
& =\left[(0.037)\left(1.204 \times 10^{6}\right)^{0.8}-850\right](0.697)^{1 / 3}=1648 \\
& \bar{h}=\frac{(1648)(0.03003)}{0.5}=99 \mathrm{~W} / \mathrm{m}^{2} .{ }^{\circ} \mathrm{C} \\
& \text { مساحت سطع براى جابججايى برابر است با } A=/ \Delta \times \cdot / \Delta=\cdot / \Delta \mathrm{m}^{2}=/ \Delta \text { بنابراين } \\
& q=\bar{h} A\left(T_{w}-T_{\infty}\right)=(99)(0.25)(400-200)=2475 \mathrm{~W}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Pr}=0.697 \\
& \beta=\frac{1}{T_{f}}=\frac{1}{350}=0.00286 \\
& \text { رزيم جريان بهوسيله مساسبه ساملضضرب عدد گراشف -يرانتل تعين مىشود : } \\
& G r_{d} \operatorname{Pr}=\frac{g \beta \rho^{2}\left(T_{w}-T_{\infty}\right) d^{3}}{\mu^{2}} \operatorname{Pr} \\
& =\frac{(9.8)(0.00286)(0.998)^{2}(400-300)(0.06)^{3}}{\left(2.075 \times 10^{-5}\right)^{2}} 0.697 \\
& =9.76 \times 10^{5}
\end{aligned}
$$

$$
\text { از جدول } \backslash \text { - } 11 \text { بهدست مى Tوريـم }
$$

$\overline{N u}_{d}=C(\mathrm{GrPr})^{n}$

$$
\text { , m }=\frac{1}{f} ، C=\cdot / \Delta r \text { بنابراين }
$$

$N \mathrm{Nu}_{d}=(0.53)\left(9.76 \times 10^{5}\right)^{1 / 4}=16.66$

$$
\begin{equation*}
\bar{h}=\frac{(16.66)(0.03003)}{0.06}=8.34 \mathrm{~W} / \mathrm{m}^{2} \cdot{ }^{\circ} \mathrm{C} \tag{و}
\end{equation*}
$$

 بنابراين انتقال حرارت برابر امت با

$$
q=\bar{h} A\left(T_{w}-T_{\infty}\right)=(8.34)(0.1884)(400-300)=157 \mathrm{~W} / \mathrm{m}
$$

ه- ا | ا انتقال حرارت تابشى

در واحد زمان متتاسب با توان جهارم دماى مطلت است. بنابراين

$$
\begin{equation*}
\frac{q}{A}=\sigma T^{4}=E_{b} \quad \mathrm{~W} / \mathrm{m}^{2} \tag{11-19}
\end{equation*}
$$

كه خريب تتاسب σ بهعنوان ثابت استغان - بولتزمن تعريف مىشود و داراى مقدار زير مىاشد

$$
\sigma=5.669 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}^{4}=0.1714 \times 10^{-8} \mathrm{Btu} / \mathrm{h} . \mathrm{ft}^{2} \cdot{ }^{.} \mathrm{R}^{4}
$$

Eb E_{b} جذب نمايد.

تابش حرارتى در طيفى از طول بوجهاي 1 / • تا بهوسيله فر مول توزيع جـم سياه بلانك تشريع مىشود

$$
\begin{align*}
& E_{b \lambda}=\frac{C_{1} \lambda^{-5}}{e^{C_{2} / \lambda T}-\mathrm{i}} \\
& \lambda=2 \cdot \mathrm{C} / \mu \mathrm{m} \\
& T=\mathrm{L}_{2} ، \mathrm{~K} \\
& C_{1}=3.743 \times 10^{8} \mathrm{~W} \mu \mathrm{~m}^{4} / \mathrm{m}^{2} \\
& C_{2}=1.4387 \times 10^{4} \mu \mathrm{~m} . \mathrm{K}
\end{align*}
$$

W/m². $\mu \mathrm{m}$ توان نماينى تكـرنكى (تكـفام) جـسم سياه ناميده مىشود و داراى واحد
 ضريب صلور تشعشُعى ع بهصورت زير تعريف مىشود :

$$
\begin{equation*}
\varepsilon=\frac{E}{E_{b}} \tag{11-YY}
\end{equation*}
$$

 تك رنگى آن در تمام طول موجها ثابت باشد :

$$
\varepsilon_{\lambda}=\frac{E_{\lambda}}{E_{b \mathrm{~b} \lambda}}=\text { برای جسم خاكسترى ثابت }
$$

 مى ماشند. باين ومف فرض جسم خاكسترى، تقريب نسبتاً خوبى برایى اكثر مسائل تابشى عملى مى باشد.

 عبورمىكند. اين نسبتها بهترتبب ضريب انعكاس، ضريب جذلب و آريب مى توان براى يكت جسم خاكسترى نشان داد كك (بهمرجع [1] مرابعه شود):

$$
\begin{equation*}
\varepsilon=\alpha \tag{11-YY}
\end{equation*}
$$

اين رابطه تانونكيرشف ناميده مىشود. انتقال انززى تابشى وانعى بين دو سطع I و Y نثان داده شده

 در فضا دارد. ضريب شكل تابشس،
 دريافت مىشود تعيف مىشود.
ممتوان نشان داد (بعمرجع [1] مراجعه شود) كه رابطه متقابل زير وجود دارد.

$$
\begin{equation*}
A_{1} F_{12}=A_{2} F_{21} \tag{11-YF}
\end{equation*}
$$

با براى سطوح كلى i

$$
A_{i} F_{i j}=A_{j} F_{j i}
$$

تجزيه و تحليل كبادل تابشم

دو اصطلاع جديد بهمورت زير تريفـ مىشود.
 انرزيهاي تابنده و منعكس شده)
تابش ححرارتى

$$
\text { ، } \tau=\text { • موررت تحليلى برای سطع كدر با }
$$

1- Radiosity
2. Irradiation

ترمود يناميكى
 شكل 1 ا ـ ـ | | 1

$$
J=\varepsilon E_{b}+\rho G=\varepsilon E_{b}+(1-\alpha) G
$$

$$
\frac{q}{A}=J-G
$$

$$
\text { با تزار دادن } \alpha=\varepsilon \text { و يس از عمليات جبرى }
$$

$$
\begin{equation*}
q=\frac{E_{b}-J}{(1-\varepsilon) / \varepsilon A} \tag{11-Y7}
\end{equation*}
$$

 سطع 1، مقدار دريافت شده در Y برابر خواهد بود با

$$
q_{1 \rightarrow 2}=J_{1} A_{1} F_{12}
$$

و از انرثى تركى كننده Y مقدار انرزى رسيده به أ برابر اسـت با

$$
q_{2 \rightarrow 1}=J_{2} A_{2} F_{21}
$$

تبادل خالص برابر استـ با

$$
\begin{equation*}
q_{12}=J_{1} A_{1} F_{12}-J_{2} A_{2} F_{21}=\frac{J_{1}-J_{2}}{1 / A_{1} F_{12}} \tag{11-YV}
\end{equation*}
$$

 در شكل ب A ا - ا ا نشان داده شده است.

روش شبكه تابش شامل تركيب اجزاى مقاومتى بالا و ميس سل Tنها برایى شلت جريانها بهعنوان انتقالهاى سرارت، مـورت مىگيرد.

شـه استت. روش عمومى اين استكه مقاو مت سطـحى بين هر متصل شود.

براي حالت خاصى كه مطـع ا بهوسيله مطـع خيلى بـزرگٌ Y معصور شده باشد، مقاومت

$$
\begin{align*}
q & =\frac{E_{b 1}-E_{b 2}}{\left[\left(1-\varepsilon_{1}\right) / \varepsilon_{1} A_{1}\right]+\left(1 /\left(A_{1}\right)\right)+0} \\
& =A_{1} \varepsilon_{1}\left(E_{b 1}-E_{b 2}\right)=A_{1} \varepsilon_{1} \sigma\left(T_{1}^{4}-T_{2}^{4}\right)
\end{align*}
$$

(a)

(b)

منال 11-9
دو سيلندر طويل هم مركز با تطرهاى ها و • ا سانتيمت، حرارت را از از طريت تابش مبادله
$T_{2}=\varphi \cdot$. K K ميكند. سيلندر داخلمى با و مهاسبه كنيد.

حـــل : طرسوارة اين مــأله در شكل مـراه و شبكه تابشى در شكل 19 ـ ـ ا ال نشان داده شـده است.

$$
A_{1}=\pi d_{1}=\pi(0.05)=0.157 \quad A_{2}=\pi(0.1)=0.314
$$

$$
\begin{aligned}
& \frac{1-\varepsilon_{1}}{\varepsilon_{1} A_{1}}=\frac{1-0.65}{(0.65)(0.157)}=3.43 \quad \frac{1-\varepsilon_{2}}{\varepsilon_{2} A_{2}}=\frac{1-0.4}{(0.4)(0.314)}=4.78 \\
& \frac{1}{A_{1} F_{12}}=\frac{1}{(0.157)(1.0)}=6.38 \\
& E_{b 1}=\sigma T_{1}^{4}=\left(5.669 \times 10^{-8}\right)(800)^{4}=23220 \mathrm{~W} / \mathrm{m}^{2} \\
& E_{b 2}=\sigma T_{2}^{4}=\left(5.669 \times 10^{-4}\right)(400)^{4}=1451 \mathrm{~W} / \mathrm{m}^{2} \\
& \text { هالا انتقل حرارت كلم از شبكه شكل } 19 \text { - } 11 \text { بهدست مى Tيد: } \\
& q=\frac{E_{b 1}-E_{b 2}}{\Sigma R}=\frac{23220-1451}{3.43+6.37+4.78}=1493 \mathrm{~W} / \mathrm{m} \text { طول }
\end{aligned}
$$

ترمود يـناميى

ثكل مثال 1-11

مثال • 1-| | ا صفهات داغ در اتاق
دو صفهه موازى ه/ / در ا متر بهفامله ه/ / متر از عمديگر قار دارند. يكت صفهه در

 گرمته مىشوند. تعداد انتقال حرارت خالص از هر صفـهه و اتاتَ را يـداكنيد.

11-1 • ثكل مثال

حـــل : اين يكت مــأله سه بجسمى است. دو صفـهـ و اتات ، بنابراين شبكه تابشى آن مـماند شكل

$$
\begin{array}{ll}
T_{1}=1000^{\circ} \mathrm{C}=1273 \mathrm{~K} & A_{1}=A_{2}=0.5 \mathrm{~m}^{2} \\
T_{2}=500^{\circ} \mathrm{C}=773 \mathrm{~K} & \varepsilon_{1}=0.2 \\
T_{3}=27^{\circ} \mathrm{C}=300 \mathrm{~K} & \varepsilon_{2}=0.5
\end{array}
$$

$E_{b 3}=J_{3}$ هون سطع اتاتن

$$
\begin{aligned}
& F_{12}=0.285=F_{21} \\
& F_{13}=1-F_{12}=0.715 \\
& F_{23}=1-F_{21}=0.715
\end{aligned}
$$

مقاو متها در شبكه بمصورت زير مساسبه مىشوند
$\frac{1-\varepsilon_{1}}{\varepsilon_{1} A_{1}}=\frac{1-0.2}{(0.2)(0.5)}=8.0 \quad \frac{1-\varepsilon_{2}}{\varepsilon_{2} A_{2}}=\frac{1-0.5}{(0.5)(0.5)}=2.0$
$\frac{1}{A_{1} F_{12}}=\frac{1}{(0.5)(0.285)}=7.018 \quad \frac{1}{A_{1} F_{13}}=\frac{1}{(0.5)(0.715)}=2.797$
$\frac{1}{A_{2} F_{23}}=\frac{1}{(0.5)(0.715)}=2.797$
با در نغر گرلنن مقاو مت
 بعع شدت جريانهاى هرارت وارده در هر گره هو

$$
\begin{align*}
& \qquad J_{1}: \frac{E_{b 1}-J_{1}}{8.0}+\frac{J_{2}-J_{1}}{7.018}+\frac{E_{b 3}-J_{1}}{2.797}=0 \tag{a}\\
& \cdot \xi J_{2}: \frac{J_{1}-J_{2}}{7.018}+\frac{E_{b 3}-J_{2}}{2.797}+\frac{E_{b 2}-J_{2}}{2.0}=0 \tag{b}
\end{align*}
$$

$$
\begin{aligned}
& E_{b 1}=\sigma T_{1}^{4}=148.87 \mathrm{~kW} / \mathrm{m}^{2} \quad\left(47190 \mathrm{Btu} / \mathrm{h} . \mathrm{ft}^{2}\right) \\
& E_{b 2}=\sigma T_{2}^{4}=20.241 \mathrm{~kW} / \mathrm{m}^{2} \quad\left(6416 \mathrm{Btu} / \mathrm{h} . \mathrm{ft}^{2}\right) \\
& E_{b 3}=\sigma T_{3}^{4}=0.4592 \mathrm{~kW} / \mathrm{m}^{2}\left(145.6 \mathrm{Btu} / \mathrm{h} . \mathrm{ft}^{2}\right)
\end{aligned}
$$

 هستم .كى با حل شمز مان دو معادله مىدهد

$$
J_{1}=33.469 \mathrm{~kW} / \mathrm{m}^{2} \quad J_{2}=15.054 \mathrm{~kW} / \mathrm{m}^{2}
$$

حرغات كلى اتلان بهوسيله سطع 1 برابر است با

$$
q_{1}=\frac{E_{b 1}-J_{1}}{\left(1-\varepsilon_{1}\right) / \varepsilon_{1} A_{1}}=\frac{148.87-33.469}{8.0}=14.425 \mathrm{~kW}
$$

و حرارتكلى اتلافى بهوسيله سطع 「 برابر امت با

$$
q_{2}=\frac{E_{b 2}-J_{2}}{\left(1-\varepsilon_{2}\right) / \varepsilon_{2} A_{2}}=\frac{20.241-15.054}{2.0}=2.594 \mathrm{~kW}
$$

حرارت كلى دريافت مُده بهوسيله اتاق برابر است با :

$$
\begin{aligned}
q_{3} & =\frac{J_{1}-J_{3}}{1 / A_{1} F_{13}}+\frac{J_{2}-J_{3}}{1 / A_{2} F_{23}} \\
& =\frac{33.469-0.45922}{2.797}+\frac{15.054-0.4592}{2.797} \\
& =17.020 \mathrm{~kW} \quad(58070 \mathrm{Btu} / \mathrm{h})
\end{aligned}
$$

از لهاذل موازنه كلى بايد داشته باشيم

$$
q_{3}=q_{1}+q_{2}
$$

مثال || - | | سطع در توازن تابش

 يكى سطع دارانى تابشى با اتاق بزرگث محيط بهآن، در K K K K سطع در 1 . . . مسطاسبه كيد.
 است. توجه كنيدك

$$
F_{12}=0.2=F_{21}
$$

هون

$$
\begin{aligned}
& F_{12}+F_{13}=1.0, F_{13}=1-0.2=0.8=F_{23} \\
& A_{1}=A_{2}=(0.5)^{2}=0.25 \mathrm{~m}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1-\varepsilon_{1}}{\varepsilon_{1} A_{1}}=\frac{0.4}{(0.6)(0.25)}=2.667 \\
& \frac{1}{A_{1} F_{13}}=\frac{1}{A_{2} F_{23}}=\frac{1}{(0.25)(0.8)}=5.0 \\
& \frac{1}{A_{1} F_{12}}=\frac{1}{(0.25)(0.2)}=20.0
\end{aligned}
$$

$$
E_{b_{1}}=\left(5.669 \times 10^{-8}\right)(1000)^{4}=5.669 \times 10^{4} \mathrm{~W} / \mathrm{m}^{2}
$$

$$
J_{3}=E_{b 3}=\left(5.669 \times 10^{-8}\right)(300)^{4}=459.2 \mathrm{~W} / \mathrm{m}^{2}
$$

مدار كلى يكث Tرايش سرى ـ موازى است و انتقال حرارت برابر است با:

$$
q=\frac{E_{b_{1}}-E_{b_{3}}}{R_{j, k}}
$$

$$
R_{\mathrm{J} / \mathrm{k}}=2.667+\frac{1}{1 / 5+1 /(20+5)}=6.833
$$

$q=\frac{56690-459.2}{6.833}=8.229 \mathrm{~kW} \quad(28086 \mathrm{Btu} / \mathrm{h})$ اين انتقال حرارت ميتواند بهمورت زير نيز نوشته شود

$$
q=\frac{E_{b_{1}}-J_{1}}{\left(1-\varepsilon_{1}\right) / \varepsilon_{1} A_{1}}
$$

با جايگزينى مقادير بهدست مى Tوريم

$$
J_{1}=34745 \mathrm{~W} / \mathrm{m}^{2}
$$

مقدار J از تناسب قرار دادن مقاومتهاى بين

$$
\frac{J_{1}-J_{2}}{20}=\frac{J_{1}-J_{3}}{20+5}
$$

$$
J_{2}=7316=E_{b_{2}}=\sigma T_{2}^{4}
$$

g

نهايتأ، دما رابهصورت زير بهدست بى Tوريم

$$
\begin{aligned}
T_{2} & =\left(\frac{7316}{5.669 \times 10^{-8}}\right)^{1 / 4} \\
& =599.4 \mathrm{~K} \quad\left(619^{\circ} \mathrm{F}\right)
\end{aligned}
$$

7-7 ا1 كينها (يرهها)
اكر خوانددگان جندين نوع سطح انتقال حرارت رابا فينهاى متصل بهآن جهت افزايش سطع

 [1] مراجعه شود).

$$
\begin{equation*}
\frac{T-T_{\infty}}{T_{0}-T_{\infty}}=\frac{\cosh \left[m\left(L_{c}-x\right)\right]}{\cosh \left(m L_{c}\right)} \tag{11-79}
\end{equation*}
$$

倍 آزاد، h خريب انتقال حرارت است، kضريب هدايت سرارتى فين و

بازده فين رامىتوان بهمورت زير تعريف نود :

$$
\begin{align*}
& m=(2 h / k t)^{1 / 2}
\end{align*}
$$

برای نين مربع مستطيل شكل بازده فين از رابطه زير محاسبه مىشود :

$$
\begin{equation*}
\eta_{f}=\frac{\tanh \left(m L_{c}\right)}{m L_{c}} \tag{11-ry}
\end{equation*}
$$

شكل | | | | \mid لين صال با يروليل مربع مستطيل
توابع هيربوليكت بهصورت زير تمريف مىشوند

$$
\cosh x=\frac{e^{x}+e^{-x}}{2} \quad \tanh x=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}
$$

روابط تحليلى رابراى فينهاى مدور نيز مى توان امتتتاج كرد، اما خيلم يِّجيده است و بنابراين نتايج آن

 بددست میى آيد.

$$
\begin{equation*}
q_{\text {q }}=\eta_{f} \times h \times\left(T_{0}-T_{\infty}\right) \tag{11-rr}
\end{equation*}
$$

مثال 11-1

$$
\begin{align*}
& L_{c}=L_{+}+\frac{t}{2}=7.5+0.15=7.65 \mathrm{~cm} \tag{3.01in}\\
& m=\frac{2 h}{k t} \\
& m=\left[\frac{(2)(10)}{(200)\left(3 \times 10^{-3}\right)}\right]^{1 / 2}=5.774 \tag{يا}
\end{align*}
$$

$\eta_{f}=\frac{\tanh \left(m L_{c}\right)}{m L_{c}}$

$$
m L_{c}=(5.774)(0.0765)=0.4417
$$

$$
\eta_{f}=\frac{0.4151}{0.4417}=0.94
$$

براى واحد عرض، انتقال حرارت هداككر برابر است با

$$
\begin{aligned}
q_{\text {泣 }} & =h \times\left(T_{0}-T_{\infty}\right) \\
& =(10)(2)(0.0765)(300-50)=382.5 \mathrm{~W} / \mathrm{m}
\end{aligned}
$$

بـابراين انتقال حرارت واتعى برابر است با

$$
q_{\text {q. }}=\eta_{f} q_{\text {عدانتر }}=(0.94)(382.5)=360 \mathrm{~W} / \mathrm{m}
$$

 . $k=\mathrm{Y} . \mathrm{W} / \mathrm{W} /{ }^{\circ} \mathrm{C}$
 مساسبه كنيم. پارامترهاى لازم عبارت است از

$$
\begin{aligned}
& L_{c}=L+\frac{t}{2}=1.5+0.05=1.55 \mathrm{~cm} \\
& r_{1}=\frac{2.5}{2}=1.25 \mathrm{~cm} \\
& r_{2 c}=r_{1}+L_{c}=1.25+1.55=2.8 \mathrm{~cm} \\
& \frac{r_{2 c}}{r_{1}}=\frac{2.80}{1.25}=2.24 \\
& A_{m}=t\left(r_{2 c}-r_{1}\right)=(0.001)(2.8-1.25)\left(10^{-2}\right)=1.55 \times 10^{-5} \mathrm{~m}^{2} \\
& L_{c}^{3 / 2}\left(\frac{h}{k A_{m}}\right)=(0.015)^{3 / 2}\left[\frac{130}{(200)\left(1.55 \times 10^{-5}\right)}\right]^{1 / 2}=0.396
\end{aligned}
$$

از شكل برابر است با (هر دو طرن انتقال حرارت فين)

$$
\begin{aligned}
q_{\max } & =2 \pi\left(r_{2 c}^{2}-r_{1}^{2}\right) h\left(T_{0}-T_{\infty}\right) \\
& =2 \pi\left(2.8^{2}-1.25^{2}\right)\left(10^{-4}\right)(130)(170-25)=74.35 \mathrm{~W} \quad(253.7 \mathrm{Btu} / \mathrm{h})
\end{aligned}
$$

بنابراين انتقال حرارت واتعى برابر است با حامل ضربـ اين جريان حرارت و بازده فين :

$$
q_{\text {gilin }}=(0.82)(74.35)=60.97 \mathrm{~W} \quad(208 \mathrm{Btu} / \mathrm{h})
$$

| | - - 1
هنگامى كه از سبكلهاى قدرت و تبريد بهث ميشد بمبدلهاى حرار تى نظير گر مكنهاى آب تغذيه و كويلهاي سرمايش تهويه مطبوع اشاره كرديم. حال ابتدا يكت نوع اصلى مبلى حرارتى، يعنى
 سيال گرستر باشد، انتقال حرارت بهوسيله معادله (| | | | |) داده مىشود كه برايى راحتى كار دوباره در اين جا تكرار مىشود :

$$
q=\frac{T_{A}-T_{B}}{1 / h_{i} A_{i}+\left[\ln \left(r_{o} / r_{i}\right) / 2 \pi k L\right]+1 / h_{o} A_{o}}
$$

و معمول است كه خريب انتقال حرارتكلى U، بهمورت زير تعريف مىگردد :

$$
q=U A\left(T_{A}-T_{B}\right)
$$

داده شده است.
مبل حرارتى دو لولهاي ممانگونه كه در شكل 1 ا نشان داده مُده امست مىتواند به
 بهد ست مى آيد و سؤال اساسى اين است : حهاا-ختلاف دماي ستو سطى در مساسبه انتقال حرارت در معادله

توسوديناميك

(الف) طرحواره (ب) شبكن مقاوهت حرارتى براى انتقال حرارت
 متوسط لگّاريتمى اختلافت دما، LMTD، است كی بهصورت زير تعريف مىشود :

جدول Y - 1 - مقادير تقريبى ضرايب انتقال حرارتكلمى

U		حالات ليزيكى
$\overline{\mathbf{W} / \mathrm{m}^{2}{ }^{\circ}{ }^{\circ} \mathrm{C}}$	Btu/h.ft ${ }^{2}{ }^{\circ} \mathrm{F}$	
$r / \Delta 0$. $/ 80$	ديواره
I/fy	- /ro	عاين نـهد.
./f	. /.v	عايت با بـّ
$7 / \mathrm{Y}$	$1 / 1$.	
r / r	, /f	
11.1-87..	r..-1...	خگّالنده بخار
11..-AD..	r..-10..	گرمكن آب تغنيه
ra.-As.	0.-10.	جگالنده فريون Ir
No.-iv..	10.4.	مبدل حرارتى آب - با ـ آب
Yo- Δ -	$\Delta-1$.	روى لولها
11.-ro.	$r .-r^{\text {r }}$	مبدل - حرارتى آب - با با - روغن
iv.-rf.	r--7.	بخار آب باكاز
OT-IV.	$1 .-r$.	بخار آب بار آكازويليل سنگين
YA.-lif.	Q.-r..	بخار آب با با نفت با با بنز بن بن
ra-ra.	$\Delta-\Delta$.	
AD.-if.,	10.-ro.	جكّالنده آمرنياكى، آب در لولها
r $\Delta \Delta-q \lambda$.	por-ir.	جكالنده الكلى، آلـ،
1.-F.	r-A	مبدل حرارنى

$$
\begin{equation*}
\mathrm{LMTD}=\Delta T_{m}=\frac{\left(T_{h_{2}}-T_{c_{2}}\right)-\left(T_{h_{1}}-T_{c_{1}}\right)}{\ln \left[\left(T_{h_{2}}-T_{c_{2}}\right) /\left(T_{h_{1}}-T_{c_{1}}\right)\right]} \tag{11-rq}
\end{equation*}
$$

مبدل حرارتى برابر است با

$$
\begin{equation*}
q=U A \Delta T_{m} \tag{11-rV}
\end{equation*}
$$

نوع ديگر مبدل حرارتى مبدل با لوله فيندأر يا مبدل حرارتى با جريان عمودى است كه در
 به كار مىرود. روش ديگر تحليل مبدلهاى حرارتى بر اساس تعريف خريب سودمندى مبدل ححرارتى ع

براىى مبدل حرارتى دو لولهُ جريان موازى، موازنهُ انرزى مىدهد

$$
q=\dot{m}_{h} c_{h}\left(T_{h 1}-T_{h 2}\right)=\dot{m}_{c} c_{c}\left(T_{c 2}-T_{c 1}\right)
$$

حداكثر انتقال حرارت مدكن، بهصورت زير بيان مىشود

شكل Tهـ ا | م مبدل حرادتى با جريانى عمودى، هردو سيال مخلوط نمىشوند

$$
\begin{aligned}
& \dot{m}_{h} c_{h}=\frac{170.97}{60} 1900=5414 \mathrm{~W} /{ }^{\circ} \mathrm{C} \\
& \dot{m}_{c} c_{c}=\frac{40}{60} 4180=2787 \mathrm{~W} /{ }^{\circ} \mathrm{C}
\end{aligned}
$$

بنابراين آب (سيان سرد) سيال حداتل است و
 است با

$$
\varepsilon=0.744
$$

و جون سيال سرد سداتل است، مىتوانيم بنويسيم

$$
\begin{align*}
& \Delta T_{2,}=55.8^{\circ} \mathrm{C} \tag{c}
\end{align*}
$$

ودماى آب خروجى برابر است ب!

$$
T_{w, ~}=35+55.8=90.8^{\circ} \mathrm{C}
$$

انتقال حرارت كلى تحت شرايط جليد بهصورت زير محاسبه مىشود

$$
\begin{align*}
q & =\dot{m}_{c} c_{c} \Delta T_{c}=\frac{40}{60}(4180)(55.8) \tag{d}\\
& =155.5 \mathrm{~kW}\left(5.29 \times 10^{5} \mathrm{Btu} / \mathrm{h}\right)
\end{align*}
$$

$$
\begin{aligned}
& \text { خود آزمايـ (سؤالات مرورى) } \\
& \text { ا } 1 \\
& \text { تانون هدايت سرارتى فوريه جيست ؟ - } \\
& \text { خ - 「 } \\
& \text { تـتشابه مقاومت حرارتى برای هدايت وجابجايى راشرح دهيد. } \\
& \text { - - هريب ششكل هدايت پیيست؟ } \\
& \text { - } 7 \text { - منظور از تحليل ظرفيت يكـارجه حيست ؟ } \\
& \text { مكانيزم فيز يكى جاببجايى راسرح دهيل؟ -V } \\
& \text { A - A } \\
& \text { - } 9 \\
& \text { • } 1 \text { - تانون سرمايـش نيوتن چيسـت؟ } \\
& \text { - } 11
\end{aligned}
$$

$$
\begin{aligned}
& \text { ٪ - } \\
& \text { | } 1 \text { - } \\
& \text { - } 10 \text { - جسم خاكسترى جيست؟ } \\
& \text { - } 19 \text { - زوش شبكه تابش حيست؟ } \\
& \text { - IV }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ض - Y. }
\end{aligned}
$$

مسائل

| 1-1 نرخ انتقال حوارت بهازایواحد سطع از ديوار مركب نشان داده را يِدا كـنيل. جريـان

حرارت را يكث بعدى فرض كنيد.

شكل مسأله 1-1

يك طرف بلوكى مسى بهضخامت $11 . r$

 تاتطه باريكت جقدر است؟
 ($k=1.49 \mathrm{Btu} / \mathrm{h} . \mathrm{ft} .{ }^{\circ} \mathrm{F}$)

 مساسبه كنيد.
II-F

 از IAY . W ت تجاوز نكند. با فرض اين كه دماهاى سطوح داخلى و خارجى ديوار عايق شده

 ضريب هدايت حرارتى پشم شيشه W/m. ${ }^{\circ} \mathrm{C}$ ه H . / / • امست. حرارت منتقل شده از ميان هاده را بهازاى هر ساعت و هر واحد سطع شهاسبه كنيد. دماهاى سطع ديواره صانى بهضخامت $\rho=$ YV. . kg/m ${ }^{3}{ }^{\prime} k=\cdot / V A W / m .{ }^{\circ} \mathrm{C}$ مخصوصى باخواص زير ساخته شدهاست

 كردن مختزن نگهـارى مايع نيتروزن در هر هوند جرم نيتروزن در اين دما لازم است. بافرض اينكه مخنزن كروى ود واراى تطر داخلى I in باشُد، مقدار نيتروزن تبغير شده در هر روز را براى عايق بهضهنامت Yft(ID) دماى متحيط V V ${ }^{\circ} \mathrm{F}$ تعين كنيد. فرض كنيد كه دماى سطع خارجى عايق V • ${ }^{\circ} \mathrm{F}$ است.
 معرض دماى محيط Y - - مى در بر گرفته و داراى ضريب هدايت حرارتى V mW/m. ${ }^{\circ} \mathrm{C}$ مى
 هر هتر طول تخمين بزنيد. 11-9
 k=1/7 W/m. ${ }^{\circ} \mathrm{C}$ معاسبي كنيد. (I 1-1 •
 Q . ${ }^{\circ} \mathrm{C}$ هه سطحى برایى بلوكت لازم است؟

كه برابر خواهل بود با

$$
q_{\text {, عدانزل }}\left(T_{h_{1}}-T_{c_{1}}\right)
$$

برایى مبدل حرارتى با جريان موازى و

براى مبل

باگگرفن.
بهشكل زير ارائه كرد :

$$
\begin{align*}
& N T U=\frac{U A}{C_{\text {. }}} \tag{كه}
\end{align*}
$$

NTU NTU NT ضريب سودمندى بهصورت تابعى از اين متغيرها در شكلهاى I - YA F | | F حرار تى دو لوله با اجريان موازى و مـنالف و مبل سرارتى لوله فيندار با جر يان عـودى تشان داده شله استت، مثالهاى زير كاربرد روابط بالا بجهت ميحاسبه عهلكرد مبدل سراز تى را نثـان مىدهل.

$$
11-1+J
$$

 / / $9 \mathrm{~kJ} / \mathrm{kg} .^{\circ} \mathrm{C}$
 حرارت كلى Y Y . W/m². ${ }^{\circ} \mathrm{C}$ Y

حــل : انتقال حرارت كلى ، از انززى جذب شده بهوسيله آب تعين مىشود :

$$
\begin{align*}
q & =\dot{m}_{w} c_{w} \Delta T_{w}=(68)(4180)(75-35)=11.37 \mathrm{MJ} / \mathrm{min} \tag{a}\\
& =189.5 \mathrm{~kW} \quad\left(6.47 \times 10^{5} \mathrm{Btu} / \mathrm{h}\right)
\end{align*}
$$

چون تمام دماهاى سيال معلوم است، متوسط دماى لگاريتمى LMTD را مى توان بهكمكت شكـل I I- YY

$$
\begin{equation*}
\Delta T_{m}=\frac{(110-75)-(75-35)}{\ln [(110-75) /(75-35)]}=37.44^{\circ} \mathrm{C} \tag{b}
\end{equation*}
$$

شُكل I I - YY ضريب سودمندى عملكرد مبدل حرادتى با جريات تاهمسو

$$
q=U A \Delta T_{m} \text { و حون }
$$

$$
A=\frac{1.895 \times 10^{5}}{(320)(37.44)}=15.82 \mathrm{~m}^{2} \quad\left(170 \mathrm{ft}^{2}\right)
$$

مثال 10-11

مبدل حرارتى مثال أ - ا | همان طورى كه در آن مثال توضيح داده شده است بـرایى گرمايش آب به كار مىرود. با استفاده از همان دماهاي ورودكى، هنگامى كه با مهان مقدار روغن تنها آ T , kg/min

شكل Y

تحت اين شرايط جديد را محاسبه كنيد.

حـــل : نرخ جريان روغن از موازنه انرزُى را براى مسأله تبل مى توان مداسبه نمود :

$$
\begin{align*}
& \dot{m}_{h} c_{h} \Delta T_{h}=\dot{m}_{c} c_{c} \Delta T_{c} \tag{a}\\
& \dot{m}_{h}=\frac{(68)(4180)(75-35)}{(1900)(110-75)}=170.97 \mathrm{~kg} / \mathrm{min}
\end{align*}
$$

ظرفيتهایى سرارتى برايى شرايط جديد؛ بهصورت زير محاسبه مىشود.

IL_FT

بهاتاق چققدر است؟
IL_Fs
 لوله مداسبه كنيد.
Y $\Delta .{ }^{\circ} \mathrm{C}$ IL-FY

حرارت با جابجايى آزاد بهازاى واحد طول لوله صورت مىگيرد?
 شود، اتلاف حرارتى جابججايى آزاد را برایى دماى سطع Vهº . $7 \wedge^{\circ} \mathrm{F}$
S ا - FA

طول كانال تخمين بزنيد .
11-F9 F

1 ا- Δ.

نگهدائته مىشو د. حرارت اتلافى از سيم را معاسبه كنيد.

II- Y Y هواي اتاق در V. ${ }^{\circ}$ F ترار مى V I_ or r $\Delta^{\circ} \mathrm{C}$ I I_ ΔF
 جابجايى آزاد بهازایى واحد طول لوله جقلدر است؟ Il- $\Delta \Delta$ حرارت بهازاى واحد سطع را مساسبه كنيد. اگر ورتى نازكت و كاملأ سياه بين صففهات
 وسطى حقدر است؟ 4. ${ }^{\circ} \mathrm{C}$ I $1 . \Delta 7$ نگهداشتته مىشود. جهار سطع ديگ, كاملأعايق مىگردد. فرض كنيد كه تمام مطوح سياه باشند. انتقال حرارت خالص بين ديواره گرم و كف سرد را مساسبه كنيد.

 سطوح ^ / • است. با استفاده از روش شبكهالى ، مقدار تبادل خالص بين كف و سقف و دماى ديوار را محاسبه كنيد.
II- AA به خلع ا / در هر سفينه برائى انجام اين امر موجود است. سفينهما طورى هدايت

 تشُشُعى بتر تيب برابر ه/ ه و ^/ • الست. يِداكنيد (الف) حرارت خالص منتقل شده بين

 يك
 صفحاتت جقَلر است ؟ 11-7. دماي
 مى گیرند. دماي حفسهه عايق و انرزي تلف شده از صفسه گرم را محاسبه كنيد.

 منبع خارجى حرارت دريافت نمىكند. دماي حفـسه Y جقدر است?

سكل مسأله |-7| $\mid 1$

I 1-7Y يكديگر تزار دارند.

VI-Tr بزرگّ در Y Y قوار میگيرد. يكت ديسك داراي گرمكن الكتريكى مىباشد كه تلوى
 ديگُر اسـت. سطع يشتى كاملاُعايق است. ديسكت ديگُر داراي ه/ / = ع عر هر دو طرن

ترمود يناميك

مىباشـد و در توازن تابشثى با ديسك ديعگر و اتاق است. دماى هر يكت از دو ديسكت را
مساسبه كنيد.
11.7F
的 $=, / v g(q / A)_{3}=1 \ldots \mathrm{~W} / \mathrm{m}^{2}$

سطح " مساسبه كنيد.
(1)
(3)

11-7| 1 1 1
|ll ادماى Y Y قرار مى تشعشععى لوله 7 / / باشُد، اتلال حرارت تابشـى را بهازای هر فوت طول لوله مساسبه كنيل. | 1-7 $T_{2}=F \cdots{ }^{\circ} \mathrm{C} \varepsilon_{1}=\cdot / v_{6} T_{1}=\Delta F \cdot{ }^{\circ} \mathrm{C}$ قرار دارنذ. و

در نظر بگيريد).
|l_TV د يسـها سوراختى بهتطر Y.CM در مركز دارد. ضريب شـكـل را از اين د يسكت به ديسك بدون سوراخ حساب كنيـ.
| l- 1 A

ديوارى از نولاد ضد زنگث (k=17 W/m. 1711

 عرض اين Tرايش II-IY

 طول لوله را امساسبه كنيد. فرض كنيد براى لوله
Y هcm
 طول لوله تلف مىشودْ برايى مونل |l-IF la $k=1 / \mathrm{FW} / \mathrm{m} .{ }^{\circ} \mathrm{C}$

 مى ماشد. حرارت اتلانى بهوسيله كره را ما محاسبه كنيد.
 k $k=1 / \mathrm{rW} / \mathrm{m} .{ }^{\circ} \mathrm{C}$ اتانانى از كره را ما محاسبه كنيد.
 نهـهداشته مى شوند و بهو ميله مادهاى با با F/ استا استقال حرارت بهازاي واحد طول بين سيلندرها را محاسبه كيد.
| 1.1A
 محاسبه كنيد. ضريب هدايت حرارتى زمين در اين ناحيه V W/PC / • است.

 اتلافي را مساسبه كنيد.
V 1 Y Y . در $1 \Delta^{\circ} \mathrm{C}$ فرو برده مى شود. ضريب انتقال سرارت جاببجايى تطعه آلومينمب كروى باشلـ زمان لازم را براى خنكت شدن آن تا روش تحليل ظرفيت يكیارجه استفاده كنيد.
V I-Y|
 دماى كره به
| I-YY
 حرارت از صفهه را مساسبه كنيد.
M ا1-YY
 بهازإى واحد سطع صفشه محاسبه كنيد.
V I - YF مففه مربع شكل بهضلع cm . 7 است و در دماى يكنواخت انتقال حرارت كلى هقدر است؟
 روى آن عبجر مىكند، محاسبه كنيد. دماى حفیحه
 عبور ميكند. دماى صفسهג V. V است. انتقال حرأرت كلى را سحاسبه كنيد.

 جابجايى از سطح را سشاسبه كنيل.
II-YA
 از صفتهه را سحاسبه كنيد.

 مي يابد. صفـهه در دماى ثابت Ir ، ${ }^{\circ}$ F مساسبـه كنيد.

 آب دز تدام طول لوله ميباشد. طولْ لوله جقدر است؟

 خارجى لوله در سرعت 10 m/s و در جهت عمود بر محور لوله عبور میىكند. حرارت اتلافى بهازايى *ر متر طول لوله جقدر است
(1.TFF
 را بـازایى *ر متر طول سيلندر سحاسبه كنيد.

تقريب زد، محاسبه كنيد حرأرتى راكه انسان در معرض بادى بهسرعت mi/h . بr با دماى . ${ }^{\circ}$ ، از

 M I-rV

 كنيد.
 دماى اتلافى را بهاز'ى هر متر طول لوله تخمين بزنيد.
نرخ انتقال حرارت را بهازاى واحد طول برای جريان طبوزى از روى سبلندزى بهاتطر 11.ra / ك / • / Y mm仿
 جريان بهانداز

 وارد و در تا انتقال حرالرت لازم حاصل شود.
1 1-FY سيلندر اتفاق مىانتد. با اين فرض، انتقال حرارت از سيلندر در جريان عرضى را با انتقال حرارت از صفـهه تختى با طولى معادل با فاصله از نقطه سكون بر روى سيلندر مقايسه و
 ترار میگيرد. حداكثر اتلان حرادنى مدكن را برای دماى بايه $h=0 \ldots \mathrm{~W} / \mathrm{m}^{2} .{ }^{\circ} \mathrm{C}$

 $10^{\circ} \mathrm{C}$ محاسبه كنيد.
II-Y. / 9 mm ضخامت آنها
 لوله را بهازاى هر متر طول آن محاسبب كيند.
II.VI و / / F mm

 H-vy

 واحد عمق محاسبه كيد.
II-Vr

 (II.VF

را براي دماي بايه
I I_V

مساسبه كنيد.

معاسبه كنيد.

 استـ. سطع مبدل حرازتى را با استفاده از (الفض) روش LMTD (ب) ضريب سودمندى

NTU
II_VA همر اه با دماهاى ورودى سيال ثابث باتى مى ماند. درصـد كاهش انتقال حرارتـ را در نتيهيه كاهسُ نرخ جر يان، سحاسبه كنيد. نزض كنيدكه ضريب انتقال حرالرت كلى ثابت باقى مى ماند.
 دماى اوليه IV $\Delta^{\circ} \mathrm{C}$ حرازت دهند. جريان جرمى روغن حرارتى دو لوله در اختيار است.
كدام مبدل بايد بهكار رود؟؟

II A.

$$
\begin{aligned}
& A=\cdot / \& \vee \mathrm{~m}^{2}, U=\Delta V \cdot \mathrm{~W} / \mathrm{m}^{2} \cdot{ }^{\circ} \mathrm{C}: 1 \text { مبدل }
\end{aligned}
$$

 باشـد و دماى خروجى روغن نبايد كهثر از (Y A است. W/m². ${ }^{\circ} \mathrm{C}$

 آب سرد از گرم حرارتى هقدر است؟ ضريب سودمندى مبلل حرارتى را مساسبه كنيد. آب در llıY برایى گرم كردن روغن از جقدر است ؟
r اlı آب در
 را متحاسبه كنيد.
N_AF مسـرود. نـرخ جريــان روغن V/ / kJ/kg. ${ }^{\circ} \mathrm{C}$ حرارت كلى FYD W/m².․․ بحاسبه كنيد.

II-^ه هوا از

 II_^4

طراحى Tن كامثي يابد يساسبه كنيد.
 آب سردكنده در
 دو لوله محاسبه كنيد.
II_AA انزايش نرخ جريان لازم است كه همان نرخ تقطير سفظ شود
V اl-^9
 خريب انتقال حرارت كلى HF. W/m².․ محاسبه كنيد.
واحد بازيابى حرارتى هوا-بههوا، از يكت مبدل حرارتى با جريان عمودى و بدون مخلوط تئدن گازها و جريان هوايى
 و سطع مبدل حرارتى Y Y M M محاسبـ كنبد.
 حالت جقدر خواهد بود، با فرض اين كه $ل$ تنييرى نكند؟ در صر صور تى كهى نرخهاى جريان دوبرابر گردد هه مى شوود؟
آب داغ در

York, 1986.
2 Schneider, P. J.: "Conduction Heat Transfer," Addison-Wesley Publishing Company, Inc., Reading Mass., 1955.
3 Kern, D. Q., and A. D. Kraus: "Extended Surface Heat Transfer," McGraw-Hill Book Company, New York, 1972.
4 Sparrow, E. M., and R. D. Cess: "Radiation Heat Transfer," Wadsworth Publishing Company, Belmont, Calif., 1966.
5 Eckert, E. R. G., and R. M. Drake: "Heat and Mass Transfer," 2d ed., McGraw-Hill Book Company, New York, 1959.
6 Kays, W. M., and A. L. London: "Compact Heat Exchangers," 3d ed., McGraw-Hill Book Company, New York, 1982.
7 Kraus, A. D.: "Heat Transfer Software," McGraw-Hill Book Company, New York, 1987.

8 Rudenberg, R.: Die Ausbreitung der Luft-und Erdfelder und Hochspannu gsleitungen, besonders bei Erd-und Kurzschlussen, Electrotech. Z., vol. 46, p. 1342, 1925.
9 Andrews, R. V.: Solving Conductive Heat Transfer problems with Electrical Analogue Shape Factors, Chem. Eng. Prog., vol. 51, no. 2, p. 67, 1955.

OTO TOR

اصول ترموديناميك TOمارى

|Y-| مقدّمه
تا اين جا بيشتر بر ترموديناميك ماكروسكيى و امل بقاى انرزى تأكيد شده است. در نصل

 بين مدلهاى ميكروسكمى اين فصل و زفتار ماده، هینان كه در سيستههاى بهندسى مسدود مئــاهده "مىشود، ايجاد كنيم.
| | \mid احتمال

در بحث ما، استمال عبارت است از نسبت دنعاتى كه يكت بديده مثـشضص در تعلاد زيادى از
 روى شير (يا خط) بهز مين خواهد Tمد و مـجنين يكك تاس سالم هنگامى كه بد دنعات زياد انداخته شود، به بتعاد يكى دسته ورت

 كه آن هادثه مى تواند اتفاق بيفتد بر تعداد كل حوادث مـركن. برایى مثال، انداختن دو تاس را در نظر
 برايى حصول هفت موجود است و و 9

 احتمال ' اين كه جفت شش و يا هفت اتفات بيفتد برابر است با

$$
\frac{6}{36}+\frac{1}{36}=\frac{7}{36}
$$

 حادثه بهتهايى بهدست مى آيد. بد ين ترتيب

$$
\begin{equation*}
p=\prod_{i} p_{i} \tag{1r-1}
\end{equation*}
$$

دراينجا Π علامت حاصلضرب است. احتمالى برابر با واحد؛ مربوط بهيكت امر مسلم مىشود.
 كه N شيئ تميزبذير داريم و مى خواهيم تعداد راههاى مختلفى راكه مـكن است اين اشيا را در يكت

1- Probability
2- Sequence

مهكن برأبر است با

$$
\begin{equation*}
N(N-1)(N-2) \ldots(2)(1)=N! \tag{1r-r}
\end{equation*}
$$

 كار تهاى بازى داراى استمالات متفاوت مىيود. بحثهاى بعدى مربوط است بهتعداد راههايى كه ذرات ميكروسكيى مسكن است در ميـان

 رابا اجراى يجموعه زير مساسبيكنيم.

$$
E=\sum n_{i} \varepsilon_{i}
$$

در اينجا

'r-r |Y فضای فازی'

 در مكانيك است. بيش از يكك باز تذكر داده شده است كه خواصّ ترمو وديناميكى تابل ششاهذه يعنى
 اتفاقى در سطع ميكر وسكيى مىافتد، بهاحتمال توى مىتوانستيم خوراصّ ترموديناميكى ماكروسكيى را
 مؤلفه ممتتو

$$
\begin{aligned}
& p_{x}=m v_{x} \\
& P_{y}=m v_{y} \\
& p_{z}=m v_{z}
\end{aligned}
$$

دز حقيقت فضاى فازى جيز جديدى نيست. فضاى فازي مفهو مى است كه در مكانيكت حتى

 فازى تعين كنيم، دقيقاً مىتوانيمر حالت ترموديناميكى سيستم را مشخص نـايِمr.
|Y-Y
بخربى مششخص است كه هكانيكت كلاسيك بايد موتعى كه در مقياس ميكروسكيى عمل مى مند با نظريه كوانتمى كامل و اصلاح گردد. مقصود از اين بحث مختصر درباره نظريئ كوانتمى

 خواصّ ترموديناميكى ماكروسكيى سازگار با نتيجه آزمايش شود. منظور با استفاده از الصول نظريه
 تاريخى موضوع نخو اهيم برداخت، الا خواننده را بهمرجع [1] براى اطلاعات بيشترى در اين زمينه رجوع مددهيم.

1- Impulse-momentum

تفـيه اساسى نظريه كوانتمى عبارت است از اين كه انرزيى تنها در كوانتاهاى مجزا' 'تفاق مىامتد و علاوه بر ماهبت موجى دارايى ماهيت ذرهاى نيز مى بائد. نـو شششضصه انرزى برای تابش الككرومغناطيس برابر است با

$$
\begin{equation*}
E=h v \tag{1Y,r}
\end{equation*}
$$

 تابش الككترومغناطيس باسرعت نور (c) -سركتركرده وطول موج آن גبهصورت زير تعريف

مىشود.

$$
c=\lambda v
$$

بر طبق نظربه ويزه نـبيت، انززى با جرم بوسيله رابطه زير مربوط مىشود.

$$
E=m c^{2}
$$

بنابراين "جرم" يك نتون بهصورت زير تعريف مىشود

$$
\begin{equation*}
m=\frac{E}{c^{2}}=\frac{h \nu}{c^{2}} \tag{1r-7}
\end{equation*}
$$

و ميتوم يكك نتون بهصورت زير مساسبه مىگردد

$$
\begin{equation*}
P=m c=\frac{h v}{c}=\frac{h}{\lambda} \tag{1Y-y}
\end{equation*}
$$

1- Discrete quanta
2- Transition process

كليه اصول فيزيكى مبتني بر نجر.بهاست. اين در مورد نظريه كوانتمى نيز مانند اصول بقاى

 جابهجايى نموى " را بر طبت رابطه زير مسلدود مىكند.
$\Delta p_{x} \Delta x \sim h$
 نتيجه كلى اصل علم تطعيت يعنى بهترين كارى كه مى توانيم اميلوار بهانـبامش باشيم اين است كه ذرات را در سحجمهاى كو شكى از فضاى فازى بهابعاد اندازه باگكلوله هايى كه در داخل جعبه ها ترار داده شُده است. در هر جعبه بسته است بهطورى كه نتوان موتعيت دتيت هر گلوله رادر جعبه مشتـصص كرد. تنها مباز هستيم كه تعلداد گلولهچا را در هر جعبه مـُـخص كتيـم.

 نظريه كوانتمى فزض مىكند كـه ذرات مـانند تشعنـع الككرومغنـاطيس داراى انرزيهـا و

$$
\begin{equation*}
\lambda=\frac{h}{p} \tag{1r-q}
\end{equation*}
$$

بهطور كلى، مى توان انتظار داشت كه ذرات نقط داراى سرعتها و ممنتو مهايى باسند كه منجر بهاعداد

1- Heisenberg uncertainty principle
2- Incremental displacement

صسيحى از طول موجهاى سشُخصه مىشود. يعنى اگر طول موج ششُخصه نـبت بهبعد ششخصه ذره يا

 ابتدا حركت kg ا جرم در سرعت m/s ا را در نظر مى تيربم. طول موج مشنخصه برايى اين

حركت برابر استبا

$$
\lambda=\frac{h}{p}=\frac{h}{m v}=\frac{6.625 \times 10^{-34}}{(1)(1)}=6.625 \times 10^{-34} \mathrm{~m}
$$

 (اتفاق بيفتد موجود نيست. بنابراين، همجنان كه از ابتدا مشخصص بود مىتوان نتيجه گَرفت كه ملاحظات كوانتمى در اين حركت مهم نسـتا هالا حركت يكت الكتوون با جرم بگِيريد. طول موج مشنخصه در اين حالت برابر است با (مرن نظر از از اثر نسبيت)

$$
\lambda=\frac{h}{m v}=\frac{6.625 \times 10^{-34}}{\left(9.106 \times 10^{-31}\right) 10^{6}}=7.28 \times 10^{-10} \mathrm{~m}
$$

 بزرگّ است و مى توالن انتظار داشت كه ائرات كوانتـى، تأثير قابل ملاحظهايى بر روى حركت الكترون اعـال كند.

 محاسبه دتيق براى توزيع انرزى يكانيك كو انتم از حيطه بحث ما خارج است است

[^7]
I Y- -

فبلاُ دريانتهايم كه انرزى در سطع ميكروسكيى بِمانهاى مىباشـلـ. علاوه بر نظر ترازهاى
 و اصول مكانيكت كوانتم نيز همجخنان صادق باششد. براى يكت ترلز انرزى كوانتم داده شـده حالات كوانتمى داراى انر زى با انرزى
 تبهگنى، با در نظر گُرفتن يكن ذره تنهاكه داراى سه درجه آزادى انتقال باثـد، بهدست آوريم. اجازه ه دهيد واحد انر زى را انتخابِكنيم كه حداقل نمو مجاز بر طبق ملاحظات كوانتمى است و سسس تعداد راههاى مدكن راكه بهو سيله آنها جهار تراز انز زیى مىتواند حاصل شود بررسى كنيم. شـالات مـورد

شكل | |

 كوانتمى مشخص براى انرزّى هرشخـى نمى تواند مانند انرزّى انتقالى بائـد و لذا در مـحاسبات بعـدى
 انرزى بهكار رود.

 بِكسانى مىبانُد.
سبستـم ناتهبگك سيستمى استـ كه طريق حامل شود.

اكنون اجازه دهيد ملكولهاى يكت كاز تكت اتمى كه مانند گويهاى بيليارد عمل مىكنـد رادر

 برایى مشخص كردن حالت ميكروسكتى چنين سيستمى بايد بكان دتيق و سرعت هر ذره وا در نضاى فازى مشخص كرد. يعنى بايد موقعيت و سرعت هر ذره رادر سـيـتم مشخصس كرد. اگكرجه هـنين مشخصات كاملى براي محاسبه خواصّ تر مو ديناميكت تابل مشاهده ماكروسكىى لازم نيست. يعنى براى
 بدانيم. بهعبارت بهتر، احتياج داريمركه تعداد ذرات هرالمان سجم (يكث المان ا بعد) از نضاى نازى را

1- Microstates
2- Macrostates
3- Thermodynamic probability

 حالت هاكروسكِى تعيِن شده است. بعداً هيزهاى بيثترى در مورد اين مفاهيم خواهيم گفت، اما خواننده بايلد تـتخيص دهد كه تعيِن حالت ماكروسكيى سيستم هجون بهخو اصّ ترموديناميكى تابل مشاهده مربو ظ مىشود مورد توجه اصلى خواهد بود.

 كوانتمى خواهند بود كه ذرات مدكن السـت اشغغل كنتد.
منظور نهايى ما تعيين حاللت ماكروسكهى كه بيـّترين احتمال را دارد و ستس محاسبه انرزّى

1- Permutations
2. Combinations
 ميكروسكيى ممكن رادارد، يعنى Tن حالتى كه مى تواند در بيثترين تعداد اتفاق بيفتل. در مساسبات

 براي انداختن يازده برابر دو مم بود وغيره. اين نكه، ههم رابايد بهخاطر سير دكه تعداد آرايشها ستناسب با
 حاصل شوود.
سهس حالت رياضى مربوط بمدلهاى فيز يكى بعدى بدين قر از است.
 بزرگّ به صورت

 بذير بى باشند و مى تواند از
 مىشود.
حالت حالت

برابر با ! راههايع راكه گويها در جهعههاى بزرگُ متفاوت ترار ميگيرند تعين كنيم بايد بر تعلاد آرايشها در هر جعبه بخت كنيم بهل نو خارج تسمت زير

$$
\frac{N!}{N_{1}!N_{2}!N_{3}!\ldots N_{i}!}
$$

$$
\Omega=\frac{N!}{\prod_{i} N_{i}!}
$$

 شوند. برای هر گوى،

$$
\begin{equation*}
g_{i} \cdot g_{i} \cdot g_{i} \cdots=g_{i}^{N_{i}} \tag{1r-11}
\end{equation*}
$$

بنابراين تتجهه بیگيريم كه
 ممكن بابد. بهمورت زير اصلاح گردد.

$$
\begin{align*}
& \Omega=\frac{N!}{\Gamma_{i} N_{i}!} g_{1}^{N_{1}} \cdot g_{2}^{N_{2}} \cdot g_{3}^{N_{3}} \ldots g_{i}^{N_{i}} \\
& \Omega=N!\prod_{i} \frac{g_{i}^{N i}}{N_{i}!} \tag{1Y-1r}
\end{align*}
$$

حالت Y با انداز
 كو جكك از نوع اiم وجو د دارد و وكل تعداد راههاى ترار دادن تراز دادن يكى يكى

 ممكن بدين ترار است:

$1 A$,	$2 B$	$2 B$,	$1 A$
$1 A B$,	20	20,	$1 A B$
$1 B A$,	20	20,	$1 B A$
$1 B$,	$2 A$	$2 A$,	$1 B$
10,	$2 A B$	$2 A B$,	10
10,	$2 B A$	$2 B A$,	10

 و و شيئ تميزبذير برابر است با

$$
\left(g_{i}+N_{i}\right)!=\left(g_{i}+N_{i}\right)\left(g_{i}+N_{i}-1\right)!
$$

و تعداد كه هميــه با gi (يكت جعبه) شُروع مى شود برابر است با

$$
\begin{equation*}
g_{i}\left(g_{i}+N_{i}-1\right) \tag{1r-1r}
\end{equation*}
$$

$1 A, \quad 2 B \quad 1 B, \quad 2 A$
$1 A B, 201 B A, 20$
واقًأ يكــان هـتند. حالا دو جفت زير رادر نظر بگيريد:
$1 A B, 20 \quad 20,1 A B$
$1 B, 2 A \quad 2 A, \quad 1 B$

 تر تيب توسط !

$$
\Omega_{i}=\frac{g_{i}\left(g_{i}+N_{i}-1\right)!}{g_{i}!N_{i}!}=\frac{g_{i}\left(g_{i}+N_{i}-1\right)!}{g_{i}\left(g_{i}-1\right)!N_{i}!}
$$

$$
\begin{equation*}
\Omega_{i}=\frac{\left(g_{i}+N_{i}-1\right)!}{\left(g_{i}-1\right)!N_{i}!} \tag{1r-1f}
\end{equation*}
$$

كل احتمال ترمو ديناميكى باگر تتن حاصل ضربكليه جنين توابعى بر ای تمام جعبه هاى "بز رگى" محاسبه
كيشود.

$$
\Omega=\Pi_{i} \Omega_{i}=\Pi_{i} \frac{\left(g_{i}+N_{i}-1\right)!}{\left(g_{i}-1\right)!N_{i}!}
$$

 سوادث مستقل مربوط بى كند. لازم بهتذكر است كه معادله (1 (1 1 - هنگامى كه خلاصه مىشود.

$$
\begin{equation*}
\Omega=\Pi_{i} \frac{\left(g_{i}+N_{i}\right)!}{g_{i}!N_{i}!} \tag{1Y-17}
\end{equation*}
$$

 دنبالههايى كه با عدد شروع مى مشود برابر است با

 ماكروسكيى بهدست بى آوريم. اين سه آرايش عبارت از يكت گوى در هر جعبه و هر دو گوى درهر جعبه مىباشد.
حالت r به بور آشكار شامل محدوديتىكه $N_{i} \leq g_{i}$
 شروع كيم. براى اولين گوى
 تميزبذير بودند، برابر مى يشد با

$$
g_{i}\left(g_{i}-1\right)\left(g_{i}-2\right) \ldots\left[g_{i}-\left(N_{i}-1\right)\right]=\frac{g_{i}!}{\left(g_{i}-N_{i}\right)!}
$$

جون گويها تميزنايذـيرند، بايد بر !
بدين ترتيب :
$\Omega_{j}=\frac{g_{i}!}{N_{i}!\left(g_{i}-N_{i}\right)!}$
بنابراين، تعداد آرايشهاى ممكن برايى تمام جعبههاي i ام برابر است با

$$
\Omega=\prod_{i} \Omega_{i}=\prod_{i} \frac{g_{i}!}{N_{i}!\left(g_{i}-\overline{N_{i}}\right)!}
$$

مثألهاى زير كاربرد اين فرمولها را براى مقاصد محاسبه نشان مىدهد. تسمتهاى بعدى نشان خواعند داد

مثال - -
 باششد، محاسبه كنيد. $N_{4}=1, N_{3}=r$

$$
\Omega=\frac{N!}{\Pi_{i} N_{i}!}=\frac{6!}{1!1!3!1!}=120
$$

مثال r-r
تعداد آرايش شش گوى تميزنايذير رادر جهار جهبه تميزبذير يحاسبهكني.

$$
\Omega=\frac{g(g+N-1)!}{N!}=\frac{4(4+6-1)!}{6!}=2016
$$

$$
\Omega=\frac{(g+N-1)!}{(g-1)!N!}=\frac{(4+6-1)!}{(4-1)!6!}=84
$$

تعداد آرايش شش گوى تميزنابذير را در هثت جعبه تميزيذير با توجه بهاينكه بيش از يكت گوى در هر جعبه نباثد مساسبه كنيد.

$$
\Omega=\frac{g!}{N!(g-N)!}=\frac{8!}{6!(8-6)!}=28
$$

IT-Y

 تمام مدلها در نظر گر فنه مى شود.

آمارى قابل اجرا خواهند بود.

اندازه احتمال دارد كه در يكى المان حجم از نضاى فازى باشلد كه در هر المان حجمى
ديگرى مىتواند باشد.

دو فرض اوليه لازم است زيرا انزذى و جرم يكى سيستم منوى ثابت باقى مىماند، حال Tآن
كه دو فوض بعدى طريق برخورد ما با مسأله را از نظر آمارى تعيين مىكند.
| ـ مدل ماكسـول - بولتزمن ' (MB) . ذرات تميز بذيرند و در بين ترازهماى كوانتم متفاوت ششخصص شده بهوسيله زيرنويس أ توزيع مىشوند. بدين ترتيب، iأم مو جود مىباشلم. مقادير انر زيهاى بهانرزّى
 انرزءى جنبشى برابر شش واحد است مى تواند بهصورت زير وجود داشته باشد.

$$
\left\{\begin{array}{l}
\mathrm{KE}_{x} \\
\mathrm{KE}_{y} \\
\mathrm{KE}_{x}
\end{array}\right\}=\left\{\begin{array}{l}
1 \\
2 \\
3
\end{array}\right\} \leq\left\{\begin{array}{l}
3 \\
0 \\
3
\end{array}\right\} \leq\left\{\begin{array}{l}
2 \\
1 \\
3
\end{array}\right\}
$$

بدين تر تيب جهت تعميم، بايد فرض كنيم كه هرگروه از ذرات (در تراز انرزیى اiم) مىتواند از جندين
 ذرات اشغغال كننده هر تراز انتر زیى

 در تعداد حالات مشتلف كوانتمى ${ }^{\text {و }}$ وجو د ندارد.

「 ـ ـ مدل فرمى - ديراك؟ (FD). اين مدل مانتد مدل BE مىباشد با اين تفاوت كه بيش از

يكت ذره نمىتواند هر حالت كوانتمى را اشغغال كند. اين محدوديت ايجأب مىكند كه اين سه مدل: فيز يكى براثى تحليل تعداد زيادى از چديلههاى ميكروسكيى به كار مىروند. در هر سه مدل لزض بر اين است كه تراز انرزّى كوانتصى مششخصى مى تواند از جند ين طريت متفاوت حاصل

 اختصار آورده شده است.

جدول 1Y-1 جخلاصه مشخخصات مدلهاى آمارى

تعداد ذرات بهازاى هر حالتكوانتومى	انزُ	نوع ذرات	مدلهاى آمأرى
هر تعدادى هر تعدادى يكـ	آرى آرى آرى	تميز بذ ير تميز نایذير تميزنایذير	

|Y-А هدف تحليل آمارى

در اين جا نوع سيستم (كَاز - مابع يا جامد) كه برایى هركدام يكى از مدلهای فيز يكى بيش گَفته بهكار میرود موزد نظر نتواهد بود. منظور ما بهدست 'آوردن توزيع انرزیى تعادلى' برایى هر مدل
 ذراتى كه هر حالت انرزُى (تراز) را الثغغال مىكند تعيين كنيم؛ كه در نتيجه تعداد ذرات را در هر تراز

توزيع تعادلى مورد علاقه ماست زيرا"ين توزيع، خواصّ ماكروسكيى سبستمها راكه معمولُّبه طور تجربى مشـاهده مىشود كنترل مىكند. بدين تر تيب تحليل ما مـتو جه يكت رابـطه امتمـالى بـا

ترمو ديناميكت ماكروسكيى أست، همانطور كه در ابتداى ملاحظات اين نصل وعدواش داده شـده بود.

 ماكروسكیى سبيستم رابطه בاشمته باششد. هدين كه توزيعهاي انرزّى بهدست آملم: قادر خواهيم بود كه
 ارائه خواهد شـد.

 بيشينهي برسانيم.
| T-Q تقريب استرلينتك

زير مورد توجه خو/عد بود.
$\ln x!\quad x \gg 1$ برای

$$
\begin{equation*}
\ln x!=\ln 2+\ln 3+\ldots+\ln x=\sum_{i=1}^{n} \ln x_{i} \tag{1Y-19}
\end{equation*}
$$

متحموع 'ين سطوح مربع مستطيل بهسمت سطع زيـر منـحنـى $y=\ln x=\operatorname{~ميـل~مىكند.~بديـن~تر~تيب~}$ مى توان بوشت : $\ln x!\approx \int_{1}^{x} \ln x d x \quad x \gg 1$ برائ

 $\ln x!\approx x \ln x-x-1$ براى ($\mathrm{Y}^{\mathrm{Y}} \mathrm{Y} \cdot \mathrm{H}$
 - ا ا سالا توريع تعادنى برايى مدل نيز يكي BE را بهدست خو اهيم آوز2. یاريـم. $\Omega=\prod_{i} \frac{\left(N_{i}+g_{i}-1\right)!}{N_{i}!\left(g_{i}-1\right)!}$

و مى خواهيم Ω را با تو جه به تيدهاى زير بهمقدلر بيثينه برسانيم.

$$
\begin{align*}
& N=\sum_{i} N_{i} \quad \text { كعل انز زوى داد ذرات ثابتى ثابت } \tag{1Y-YY}
\end{align*}
$$

در اينجا سمبل حالا مى خو/هيم Ω را باتوجه بهتعداد ذرات بيشينه برسـانيم. بدين تر تيب ما در جستجوي توزيع انتز زيهاي ذره كه مستمل ترين الهت مىباشيم و

$$
\ln \Omega=\sum_{i}\left[\ln \left(N_{i}+g_{i}-1\right)!-\ln N_{i}!-\ln \left(g_{i}-1\right)!\right]
$$

اكرَ استرلينگّ را مىتوان برا'ي بهدست آوردن رابطه زير به كار برد.

$$
\begin{align*}
\ln \Omega=\sum_{i}\left[\left(N_{i}+g_{i}\right) \ln \left(N_{i}+g_{i}\right)-\left(N_{i}\right.\right. & \left.+g_{i}\right)-N_{i} \ln N_{i} \tag{1Y-YF}\\
& \left.+N_{i}-g_{i} \ln g_{i}+g_{i}\right]
\end{align*}
$$

فر آيند بهمقدار بيشينه رسانيلدن با برترارىي رابطه زير حاهـل مى شمود.

$$
\frac{\partial(\ln \Omega)}{\partial N_{i}}=0
$$

 $\delta(\ln \Omega)=0=\frac{\partial(\ln \Omega)}{\partial N_{i}} \delta N_{i}$

با به كار بردن معادله (I Y - YF) اين شر ط بهصورت زير در مى آيد.

$$
\begin{equation*}
\sum_{i} \ln \frac{N_{i}+g_{i}}{N_{i}} \delta N_{i}=0 \tag{1+rq}
\end{equation*}
$$

$$
\delta U=0=\frac{\partial U}{\partial N_{i}} \delta N_{i}
$$

$$
\begin{equation*}
\sum_{i} \varepsilon_{i} \delta N_{i}=0 \tag{IY-YV}
\end{equation*}
$$

در خاتهه، شرط بقاى ذره عبارت است از

$$
\delta N=0=\frac{\partial N}{\partial N_{i}} \delta N_{i}
$$

$$
\begin{equation*}
\sum_{i} \delta N_{i}=0 \tag{IY-YA}
\end{equation*}
$$

 عنوان شرط بهمقدار بيينينه رساندن بهدست آوربم :

$$
\ln \frac{N_{i}+g_{i}}{N_{i}}=0
$$

بهمحض اينكهك كل تعداد ذرات مشخصص شود، معلوم مىشودكه تمام ذرات مربوط به N مـي مـتقل نيستند.

 حاصل شده را با معادله (IY Y Y Y Y جمع كنيه، بهدست مى آوريم :

تومود يناميكى

$$
\begin{equation*}
\sum_{i}\left[\ln \left(1+\frac{g_{i}}{N_{i}}\right)-\beta \varepsilon_{i}-\alpha\right] \delta N_{i}=0 \tag{1Y-Yq}
\end{equation*}
$$

 را بهدست مى آوريمَ.

$$
\begin{align*}
& \ln \left(1+\frac{g_{i}}{N_{i}}\right)-\beta \varepsilon_{i}-\alpha=0 \\
& \frac{N_{i}}{g_{i}}=\frac{1}{A e^{\beta_{i}}-1}
\end{align*}
$$

 انتگرال را دز حل معادلات ديفرانسيل بازى مىكند كه مقادير آنها بايد بهوسيله شرايط سـرحـدى فيز يكى مربوطه تعين شود. مقادير اين ثابتها را در قـمتهاى بعدى تعين خخواهيم كرد.

|

توزيع FD مثـابهطريق مدل BE معين مى شود. توزيع احتمال تر موديناميكى بهوسيله معادله

$\delta(\ln \Omega)=\frac{\partial(\ln \Omega)}{\partial N_{i}} \delta N_{i}=\sum_{i} \ln \frac{g_{i}-N_{i}}{N_{i}} \delta N_{i}=0$
$\delta U=\frac{\partial U}{\partial N_{i}} \delta N_{i}=\sum_{i} \varepsilon_{i} \delta N_{i}=0$
$\delta N=\sum_{i} \delta N_{i}=0$

1- Undetermined multipliers
2- Lagrange multiplier method

$$
\begin{align*}
& \text { مانند قِّ، با استفاده از روش ضرايب نامعين بهدست مى آوريم: } \\
& \sum_{i}\left[\ln \left(\frac{g_{i}}{N_{i}}-{ }^{1}\right)-\alpha-\beta \varepsilon_{i}\right] \delta N_{i}=0 \\
& \text { نتيهه میگيريم } \\
& \frac{N_{i}}{g_{i}}=\frac{1}{A e^{\xi_{i}}+1} \\
& \text { برایى مدل MB بددست مى آوريم } \\
& \frac{N_{i}}{g_{i}}=\frac{1}{A e^{\beta_{i}}} \tag{1+r-4}
\end{align*}
$$

معادلات ((شـدن عامل 1 در مخرج بى باشد. شرايط فيزيكى راكه

 تهلبل نمايِم.
|Y_ |Y مدل كلاسيك ماكسول ـبولتزمن
 g $g_{i}=1$
 اين هنگام هر تراز انر متفاوت از حالات انزرُى در نظر گَ زته شو د، بنابراين
 مدلى بم مل آمار كلاسيكـ مشهوزاست زيرا الز احتمال انواع متفاوت حالات كوانتسى حاوى انزرُى

$$
\begin{equation*}
N_{i}=\frac{1}{A e^{\beta \varepsilon_{i}}} \tag{-}
\end{equation*}
$$

مشُكلى برايى مدل MB وجود دارد. بعضى از انواع ذرات ميكروسكیى درست تميزيذير نيستند. برايى مثال، نمى توانگفت كه يكت ملكول اكسيئن از ملكول ديگر يا يكـ الكـر ون از الكـر ون ديگر تميز داده مىشُو د. بعداً ديله خخو اهد شد كه اين حقيقت، مدل MB را برايى تحليل بعضى از موارد نامناسب مىكند مگر در موتعىكه بهعنوان حالت حدى مدلهاي آمارى $B E$ يا F به كار رود.

توزيع تكادلى
 Tr-1r

تحليل گفتهشده در جهت برقرارى محتملترين توزيع ذرات در ميان حالات انرزي متفاوت،
 نمايِم، اما نوع تابع توزبع بهدست آمله است. در حقيقت اين توزيع مـرف مـحتملترين حـالت ماكروسكتى مىباشد و توزيع انرزى راكه بإيد در اككر مواقع مشاعده شود تعريف مىكند. جالُب است بدانيم كه آيا توزيع، در ست كـى مصتملتر از جند توزيع ديگر مىباشد يا بهطرز خـيلى زياد مستملترين رويداد مىباشد. اين محتملترين توزيع را حالت ماكروسكيت تعادلى سيستم مىناميم هون اين غمان حالُتى است كه ما انتظار داريم بس از اين كه سيستم جند لُحظه به حالل خود گخذايتته شود، مشاهده كنيم.

$$
\Omega=N!\prod_{i} \frac{g_{i}^{N}}{N_{i}!}
$$

باگگرنت لگاريتم و استفاده كردن از تقريب استرلينگّ، داريم.

$$
\ln \Omega=N \ln N+\sum_{i} N_{i} \ln g_{i}-\sum_{i} N_{i} \ln N_{i}
$$

$$
\begin{equation*}
\ln \Omega_{\max }=N \ln N+\sum_{i} N_{i}\left(\ln A+\beta \varepsilon_{i}\right) \tag{1r-rq}
\end{equation*}
$$

$\Omega_{\text {max }}{ }^{\text {مى خواهيم تأثير تغير در }}$
 حامل ميشود. مى توانيم بنوبيميم:

$$
\begin{equation*}
\ln (\Omega+\delta \Omega)=N \ln N+\sum_{i}\left(N_{i}+\delta N_{i}\right) \ln g_{i} \tag{-}
\end{equation*}
$$

$-\sum_{i}\left(N_{i}+\delta N_{i}\right) \ln \left(N_{i}+\delta N_{i}\right)$
با تفريق معادله (Y-YA () از معادله () ()، داريم:

$$
\begin{align*}
& \ln \frac{\Omega+\delta \Omega}{\Omega}=\sum_{i} \ln g_{i} \delta N_{i}-\sum_{i} N_{i} \ln \left(1+\frac{\delta N_{i}}{N_{i}}\right) \\
& -\sum_{i} \ln \left(N_{i}+\delta N_{i}\right) \delta N_{i} \\
& \text { يكى از شرايط براى }
\end{align*}
$$

$$
\begin{equation*}
\sum_{i}\left(\ln g_{i}-\ln N_{i}\right) \delta N_{i}=0 \tag{IY-FY}
\end{equation*}
$$

$$
\ln \frac{\Omega_{\max }+\delta \Omega}{\Omega_{\max }}=-\sum_{i} N_{i} \ln \left(1+\frac{\delta N_{i}}{N_{i}}\right)-\sum_{i} \ln \left(1+\frac{\delta N_{i}}{N_{i}}\right) \delta N_{i}(I Y-F Y)
$$

 كو جكت باشد، خلاصه كرد.

$$
\begin{equation*}
\ln \frac{\Omega_{\max }+\delta \Omega}{\Omega_{\max }} \approx-\frac{1}{2} \sum_{i} \frac{\left(\delta N_{i}\right)^{2}}{N_{i}} \tag{ir-ff}
\end{equation*}
$$

اين رابطه ابزارى براى مقايسه احتمال توزيعى با انحران بهمقدار نتيجه تغير

 مىگيريم. اجازه دهيدكه در احتمال انتعراف از اين محتمل توين توزيع تحقيق نمايبي. نرض كنيد كه نقط | • / د درصل از ذرات سلولهايشان را عوض مىكتند، داريم

$$
\begin{aligned}
& N_{1}=N_{2}=5 \times 10^{19} \\
& \delta N_{1}=-\delta N_{2}=(0.0001)\left(5 \times 10^{19}\right)=5 \times 10^{15}
\end{aligned}
$$

تشكيل مجمو عه در معادله (I Y - F F) میدهد :

$$
\begin{aligned}
\ln \frac{\Omega_{\max }+\delta \Omega}{\Omega_{\max }} & =-\frac{1}{2} \sum_{i=1}^{2} \frac{\left(\delta N_{i}\right)^{2}}{N_{i}} \\
& =-\frac{1}{2}\left[\frac{\left(5 \times 10^{15}\right)^{2}}{5 \times 10^{19}}+\frac{\left(-5 \times 10^{15}\right)^{2}}{5 \times 10^{19}}\right] \\
& =-5 \times 10^{11}
\end{aligned}
$$

$$
\frac{\Omega_{\max }+\delta \Omega}{\Omega_{\max }} \approx e^{-5 \times 10^{11}}
$$

بلدين تزتيب، در مىيابيم كه احتمال حتى جنين انحراف ميختصرى از مستملترين حالت در حقيقت خيلى كم است.

 مواردند. بعلاوه، توزيعهاى تعادلى Tنتدر غالبندكه نبايد مشاهده Tن دسته از خواص ماكرور هسكيى راكه از مقادير محاسبه شـده با اين توزيعها متفاوت است، جز در موارد خخيلى خاص، انتظار داشته باشيمr.
 ماكر وسكیى از ملاحظات ميكروسكیى مى.اششد. اگگر جه بايد اشاره كنيم كه نواحى مهمى از تثورى نوسان و يد يدههاى انتقال و جود دارد كه انتحرالن از محتملترين توزيع تعادلى خيلى قابل ملاحظه است، اما اين موضوع از حيطه بحث ما سخارج است.

ديديم كه قانون اول ترموديناميكت را براى يكك سيستم بــته بىتوان بهصورت زير نوشت.

$$
\begin{equation*}
d U=d^{\prime} Q+d^{\prime} W \tag{-}
\end{equation*}
$$

از معادله (Y Y Y Y Y تغير انرزّى داخلم را مى توان بهصورت زير نوشت.

$$
\begin{equation*}
d U=\sum_{i} \varepsilon_{i} d N_{i}+\sum_{i} N_{i} d \varepsilon_{i} \tag{1Y-pq}
\end{equation*}
$$

 مجاز هنين سبستمى متناسب با بآ هالات انرزى مجاز ثابت است. بنابراين مى توان F نوشت.

$$
\begin{equation*}
d U=\sum_{i} \varepsilon_{i} d N_{i}+\sum_{i} N_{i}\left(\frac{d \varepsilon_{j}}{d V}\right) d V \tag{1Y-FV}
\end{equation*}
$$

 تغير حجم صفر، كار برابر با صفر مى باشد و انزرىى داخلمى بهعلت تأثيرهاى متقابل سرارت بايد ازدياد يابد، بنابراين مشتخص مىكينيم :

$$
d^{\prime} Q=\sum_{i} \varepsilon_{i} d N_{i}
$$

اما با افزايش كار در مرز براى انتقال حرارت صفر، تعبير میكنيم.

$$
\begin{equation*}
d^{\prime} W=\sum_{i} N_{i}\left(\frac{d \varepsilon_{i}}{d V}\right)^{d V}=\sum_{i} N_{i} d \varepsilon_{i} \tag{-}
\end{equation*}
$$

از طريق اين بحت مىتوانيم فر آيند شبه ايستا را بمصورت زير ارزيابى ميكروسكي كينيم النزودن حرارت در حجم ثابت با بكت تغير در تجمع' سالات انرزى (

 انرزى

1 10

$$
S=k \ln \Omega_{\max }
$$

 آنترويى میباشد.

 (سمت راست) تراكم آدياباتيك منجر به انتقال در ترازهایى انز ثُى ممشود.

 آنتروجى را برای اين سالات مهكن بهصورت زير تعريف كنيه.

$$
S=k \ln \Omega
$$

 ثابـت و تعداد ذرات ثابس) بهمستملترين ساللت خود نزديكت مىگردد، آنتروبى بهبيشترين مقدارش
 مقدارش كاهن بیداكند. بايلد تو جهـ كردكه خنين كاهشى غير ممكن نيست، تنها خيلى غير مستـل است.

 از قانون اول ترمود يناميكت سامسل مىشود.
راه ديگ, بيان ملاحظات قبلى اين است كه بگوبيم در هر تغير شامل يكت سيستم منزوى،
آنترويى بهاستمال خيلى زيلدى ازدياد يـدا خو اهلدكرد. بهمـورت تحليلى چخنين مىنويسيم : بيشترين ا-حتهال
|T-17

در بخش ساخت يكت ماشين سركت داثم از نوع دوم ترار داشيتى. درواتع، تعريف آنترويى براى ترموديناميكت ميكر وسـكى یذير نته شده در بالا طورى انتـذاب شده اسـت كه با مفاهيهم ماكروهـكى مطابقت داشته باشُد. همانطوركه ديدهايم يكى سيستم منزوى هميشه متمايل بهسمت شرط آنتر ويى بيشينه مىباشـدكه

 داشـت كه قانون دوم "مبرهن " باشد. در سالىكه بعضى از نككه گيران مدكن است بـحث كنند كه امكان

اتفاقات خاصى وجود دارد كه در آن قانون دوم تنها "مستملترين" است، خنين حوادثى به ندرت در تجربيات مهندسى مشاهلده مى شوند و ذانون دوم مى تواند بهمـورت مطلق در نظر تگر نهه شود.

> IY - IY

$$
\begin{align*}
& \text { بر طبق معادله (Y Y Y Y) ممكن است رابطه زير را برا؟ى مدل MB بنويسيم. } \\
& N_{i}=\frac{1}{A} g_{i} e^{-\beta \varepsilon_{i}}
\end{align*}
$$

كميت
 داده هى شود.

$$
N_{i}=\frac{1}{A} e^{-\beta \varepsilon_{i}} \quad g_{i}=1 \text { برایى مدل كلاسيكك }
$$

$$
\begin{aligned}
& \text { حالا } \\
& N=\sum_{i} N_{i}=\frac{1}{A} \sum_{i} e^{-\beta \varepsilon_{i}} \\
& (1 Y-\Delta f)
\end{aligned}
$$

$$
\begin{align*}
& Z=\sum_{i} e^{-\beta \varepsilon_{i}}
\end{align*}
$$

مى توانيـم معادله را بهصورت زير بنويسيم.

$$
\frac{N_{i}}{N}=\frac{1}{Z} e^{-\beta \varepsilon_{i}}
$$

تابع افراز همان گُ نه كه از اسمش بيداست دقيقاً تابعى است مربوط بهراه مشصوصى كه ذرات ميان

1- Partition function
2-Sum of state

حالات انزرُى متفاوت دستر س بذير "افراز " مىشونـن.
 كه اما لازم است كهي مجموعه براى تهام حالات انرزي
 بهدست مى آوريم.

$$
Z=\sum_{i} e^{-\beta z_{i}}=\sum_{i} g_{i} e^{-\beta z_{i}}
$$

اين رابطه نتيجه مى شود زيرا اجندگانگى تراز انر رزى سخصوص ناسيدها
 "وزينتر" باشند.
با بـذ
را بدون محدوديت 1

$$
N=\sum_{i} N_{i}=\sum_{i} \frac{g_{i} e^{-\beta \varepsilon_{i}}}{A}=\frac{Z}{A}
$$

$$
\frac{N_{i}}{N}=\frac{1}{Z} g_{j} e^{-\beta \varepsilon_{i}}
$$

مثال |Y-Y

 تجمعهاى جزئى مرخهار تراز انز زُى را مهاسبهكيد.

$$
\begin{aligned}
Z & =\sum_{i} g_{i} e^{-\beta c_{i}}=g_{0} e^{-\beta c_{0}}+g_{1} e^{-\beta c_{l}}+g_{2} e^{-\beta \varepsilon_{2}}+g_{3} e^{-\beta c_{3}}= \\
& =(1) e^{0}+(3) e^{-1}+(6) e^{-2}+(10) e^{-3} \\
& =1.0+1.104+0.813+0.498
\end{aligned}
$$

$$
Z=3.415
$$

$$
\begin{aligned}
& \frac{N_{i}}{N}=\frac{1}{Z} g_{i} e^{-\beta s_{i}} \\
& \frac{N_{0}}{N}=\frac{1.0}{3.415}=0.293 \\
& \frac{N_{1}}{N}=\frac{1.104}{3.415}=0.323 \\
& \frac{N_{2}}{N}=\frac{0.813}{3.415}=0.238
\end{aligned}
$$

$$
\frac{N_{3}}{N}=\frac{0.498}{3.415}=0.146
$$

$$
\beta g A \text { ثابتهای } \mid \text { | }
$$

 توزيعهاى آمازى رادر چند حالت خاص به كار محبريم، بهتعويق خواهيم انداختـ. برايى مساسبه مقدار ثابت β ، احتياج است كه، وارد يكت بـحثكاملتر از آنون دوم ترموديناميكى
و روابط كلى خواحّ ترموديناميك بشويم، آكرجهه مىتوانيم حداتل نتايج را در اين مرحله بيان كنيم. نشان داده خواهد شدكه

$$
\beta=\frac{1}{k T}
$$

كه K ثابت گًاز بهازای هر ملكول يا ثابت بولتزمن مىباشد.

$$
k=1.3803 \times 10^{-23} \mathrm{~J} / \text { molecule. } \mathrm{K}
$$

, T داى مطلتق مىباشد. همحنين نشان داده خواهد شدكه ثابت بولتّمن مقدارى است كه در معادله

 قرار زير داده مىشود.

$$
\begin{equation*}
k=\frac{\Re}{N_{0}} \tag{1Y-71}
\end{equation*}
$$

مانُد تِل No عدد آورگادرو مىباشد.

خود آزمايى (سؤالات مرورى)
1-
Y - طول موع دوبروگلى چیست؟
-r
منظور از اصططلح تبهكنى هيست؟
ه - تمايز بين حالت كوانتمى و تراز انرزُى را مششخص كنيد.

- 7

مفهـوم احتهال ترموديناميكى مورد استفاده براى تخميـن رفتار ماكروسكبـى يكت سيستـم
جگگونه بی بِاشد ؟

- A

9 - - حرارت و كار اضانه شده بهيكت ماده ساده تراكم يذير را براساس یديلههاى مـيكروسكـيى
تشريع كنيد.

- 1. آنترويى راتعريف كنيد.

11 - 11

- IT
- Ir
- If
- 10 - 17 -
$N_{2}=Y$ و $N_{1}=1$ IY- I باشد مجاسبه كنيد.

 میعاسبه كنيد.

اY_ F

سـه مدل ذيز يكي انبجام دهيد.

 كوانتـى برابر دو وا-حد انرزُى مىباشُد تعين كنيد. تعيين تـهگنى را براثى يكت تراز انرزى شش واسدى تكرار نـايلد.

يكت واسحد باشُد را تعين كنيل.
I Y_ A بگيريد.

$$
g_{i}=2 i+1
$$

و تيهگنى هر تراز برابر استـ با

$\beta=\(\mathrm{eu})^{-1}$ | Y-A بيمانهأى مىباشد، در نظر بيگیريل.

$$
\varepsilon_{i}=\left(i+\frac{1}{2}\right)^{\mathrm{eu}} \quad i=616 \text { Y. ... }
$$

ذرات از مدل Toارى MB تبعيت كنند مهعاسبه كرده و رسـم نـاييل. جهار ذره تميز نايذير بايد در دو تواز انرزى كه هركدام دارای تبهگنى برابر سه مىباشند ترار داده شوند. استهال تو بوديناميكى برأى تمام Tرايشهـاى مسـكن را مســاسبه كـنيل.

$$
\begin{aligned}
& \text { محتملترين آرايش چيست؟ } \\
& \text { احتمال ترموديناميكى برای ترار دادن شش گوى تميز نايذير را در سه جعبه برای سالات زير } \\
& \text { محاسبه كنيد. } \\
& N_{1}=1, N_{2}={ }^{6} \text { ، } N_{3}=1 \text { (الف) } \\
& N_{1}=N_{2}=N_{3}=r \text { (ب) } \\
& \left.N_{1}=1, N_{2}=r, N_{3}=r \quad \text { (}\right)
\end{aligned}
$$

 انر زُى نشان داده شده در شكل I I Y ا مداسبه كنيد. تعداد ذرات را در شر تراز براي اين توزيع تعادلى به دست آوريد. كاهش نسبى را در احتمال ترموديناميكى منتج از تغير, يكى [β ذره از ثوزيع تعادلى تخمين بزنيل.
 محساسبه كنيد.
 تكرار كنيد. با فرض اين كه ذرات تميز نائذير بأشند حل مسأله را تكرار نمايد.

مـرا:جــع

1 Kaplan, I.: "Nuclear physics," 2d ed., Addison-Wesley Publishing Company, Inc., Reading, Mass., 1963.
2 Allis, W.P., and M. A. Herlin: "Thermodynamics and Statistical Mechanics," McGraw-Hill Book Company, New York, 1952.
3 Callen, H. B.: "Thermodynamics," John Wiley \& Sons, Inc., New York, 1960.
4 Crawford, F. H.: "Heat, Thermodynamics, and Statistical Physics," Harcourt, Brace \& World, New 'York, 1963.
5 Lee, J. F., F. W. Sears, and D. L. Turcotte: "Statistical Thermodynamies," Addison-Wesley Publishing Company, Inc., Reading, Mass., 1963.
6 Lewis, G. N., and M. Randall: "Thermodynamics," 2d ed. (revised by K. S. pitzer and L. Brewer), McGraw-Hill Book Company, New York, 1961.
7 Mayer, J. E., and M. G. Maycr: "Statistical Mechanics," John Wiley \& Sons, Inc.,

New York, 1940.
8 Reynolds, W. C.: "Thermodynamics," 2d ed., McGraw-Hill Book Company, New York, 1968.
9 Schrodinger, E.: "Statistical Thermodynamics," Cambridge University Press, Cambridge, 1952.
10 Sears, F. W.: "An Introduction to Thermodynamics, The Kinetic Theory of Gases, and Statistical Mechanics," Addison-Wesley Publishing Company, Inc., Reading, Mass., 1950.
11 Sornmerfeld, A .: "Thermodynamics and Statistical Mechanics," Academic Press, Inc., New York, 1956.
12 Tolman, C.: "The Principles of Statistical Mechanics," Oxford University Press, London, 1938.
13 Hatsopoulos, G. N., and J. H. Keenan: "Principles of General Thermodynamics," John Wiley \& Sons, Inc., New York, 1965.

V̂̉

كاربر دهاى ترمود يناميك Tا مارى

1 1

 برداششن شيو هماى محاسباتى برايى خواصّ ترمو ديناميكى بر اساس يكت مدل ميكروسكيكى است. براي الى وارد نمو دن مفهوم دما در يكك تحليل ميكروسكيى، تعريف اكيروسكيى آنتروبى مورد لـزوم است.

 ماكروسكيى از دما داريم.

 روش برخورد آمارى با بــأله تنها روش موجود نيست و در بسيارى از جهات نيز كامانلاُ مسدود كـنده

است. در بكى از بـششهاي بعدى اين فصل بهبعضى از مشخصات روش معجموعه ' اشاره خواهيم كرد كه شيو ههايى مؤثرى براى تحليل سيستمهاي ترموديناميكى خيلى بيحيده نراهم مىكند.

$$
k g \beta \text { g } k
$$

گسترش روابط عمو مى خاميت در فصـل مى سازد كه در تمام توزيعهاي آمارى فصل از معادله زير را تشكيل خواهيمّ داد.

$$
\begin{equation*}
S=k \ln \Omega \tag{1r-1}
\end{equation*}
$$

در يكى از بخثهاي بعدى نشان خواهيمي داد كه k k ثابت بولتّز من مىباشد.
توزيع انرزي بوز - اينشتين (BE) رادر نظر بغيريد :

$$
\begin{equation*}
\frac{N_{i}}{g_{i}}=\frac{1}{A e^{\beta_{i}}-1} \tag{1r-y}
\end{equation*}
$$

لكگاريتم احتمال ترموديناميكى براى اين توزيع توسط رابطه زير داده شده بود.

$$
\ln \Omega=\sum\left[\left(N_{i}+g_{i}\right) \ln \left(N_{i}+g_{i}\right)-g_{i} \ln g_{i}-N_{i} \ln N_{i}\right]
$$

با استفاده از روش تقريب استرلينگُ و با تنير آرايش جملههاو استفاده از معادله (- - ب)، آنتروبى به صورت زير نوشته هيشود :

$$
\begin{equation*}
S=k \sum\left(g_{i} \ln \frac{N_{i}+g_{i}}{g_{i}}+N_{i} \ln \frac{N_{i}+g_{i}}{N_{i}}\right) \tag{1r-f}
\end{equation*}
$$

$$
\frac{1}{T}=\left(\frac{\partial S}{\partial U}\right)_{V}
$$

1- Ensemble method

گر نته و بهدست مي آوريـم :

$$
\begin{align*}
\left(\frac{\partial S}{\partial U}\right)_{v}=k \sum g_{i} \frac{g_{i}}{N_{i}+g_{i}} \frac{1}{g_{i}}\left(\frac{\partial N_{i}}{\partial U}\right) v & +N_{i} \frac{N_{i}}{N_{i}+g_{i}} g_{i} \frac{-1}{N_{i}^{2}}\left(\frac{\partial N_{i}}{\partial U}\right) v \\
& +\ln \frac{N_{i}+g_{i}}{N_{i}}\left(\frac{\partial N_{i}}{\partial U}\right) v \tag{1r-7}
\end{align*}
$$

در اين ميــتّ گُرى جهله ها در معادله (Y-7 | () ساصل میشـود:

$$
\begin{equation*}
\left(\frac{\partial S}{\partial U}\right)_{v}=k \sum \ln \frac{N_{i}+g_{i}}{N_{i}}\left(\frac{\partial N_{i}}{\partial U}\right) v \tag{1r-V}
\end{equation*}
$$

از توزيع تعادلى معادله (TY-Y)

$$
\ln \frac{N_{i}+g_{i}}{N_{i}}=\ln A+\beta \varepsilon_{i}
$$

بناير'ين

$$
\begin{equation*}
\left(\frac{\partial S}{\partial U}\right)_{v}=k \ln A \sum\left(\frac{\partial N_{i}}{\partial U}\right)_{V}+k \beta \sum \varepsilon_{i}\left(\frac{\partial N_{i}}{\partial U}\right)_{v} \tag{15-9}
\end{equation*}
$$

$$
\begin{align*}
& U=\sum \varepsilon_{i} N_{i} \\
& \left(\frac{\partial U}{\partial U}\right)_{V}=1=\sum \varepsilon_{i}\left(\frac{\partial N_{i}}{\partial U}\right)_{V} \\
& N=\sum N_{i} \\
& \left(\frac{\partial N}{\partial U}\right)_{V}=0=\sum\left(\frac{\partial N_{i}}{\partial U}\right)_{V} \tag{1r-11}
\end{align*}
$$

$$
(1 r-1 \cdot)
$$

$$
\frac{1}{T}=k \beta
$$

$$
\begin{equation*}
\beta=\frac{1}{k T} \tag{1Y-1Y}
\end{equation*}
$$

مىتوان نشان داد كه اين رابطه براى توزيعهاى فرمى -ديراكى (FD) و ماكسول - بولتزمن (MB) هم

'

نهايتى كه تعريف كنيم

$$
Z=\Sigma g_{i} e^{-\beta \varepsilon_{i}}
$$

و توزيع تعادلى بهمورت زير در مى آيد.

$$
\begin{equation*}
N_{i}=\frac{N}{Z} g_{i} e^{-\beta \varepsilon_{i}} \tag{1r-1F}
\end{equation*}
$$

آنترويى براى
$S=k \ln \Omega_{\text {max }}=k \sum g_{i} \frac{N_{i}}{g_{i}}+N_{i} \ln \frac{g_{i}}{N_{i}}=N k+k \sum N_{i} \ln \frac{g_{i}}{N_{i}}$

$$
S=N k+k \sum N_{i}\left(\ln \frac{Z}{N}+\beta \varepsilon_{i}\right)
$$

انززى كل برابر است با

$$
S=N k+k N \ln \frac{Z}{N}+\frac{U}{T}
$$

1- Partition functions

بلين تو تيب آنتر ويّى رابر سحبـ تابع افراز و انوزى داخلمى سيسته بيان كردهايِم. برایى يكت سيستم منزوى (انرزى كل ثابـت و تعداد ذرات ثابت)؛ تابع افراز فقط بهدما بستگى دارد هون

میىباشد و شدت تغير تابع افراز نسبت بهدما عبارت الستت از $\beta=1 / k T$

$$
\begin{equation*}
\left(\frac{\partial Z}{\partial T}\right)_{V}=\sum-g_{i} \varepsilon_{i} e^{-\beta s_{i}}\left(\frac{\partial \beta}{\partial T}\right)_{V}=\frac{1}{k T^{2}} \sum g_{i} \varepsilon_{i} e^{-\beta \varepsilon_{i}} \tag{15-18}
\end{equation*}
$$

حال انرزى دا-خلى كل مهكن اسـت بهصورت زير بيان شود :

$$
\begin{equation*}
U=\sum \varepsilon_{i} N_{i}=\frac{N}{Z} \sum g_{i} \varepsilon_{i} e^{-\beta \varepsilon_{i}} \tag{|T-|V}
\end{equation*}
$$

$$
U=\frac{N k T^{2}}{Z}\left(\frac{\partial Z}{\partial T}\right)_{V}=N k T^{2}\left(\frac{\partial \ln Z}{\partial T}\right)_{V}
$$

$$
\begin{equation*}
S=N k\left[1+\ln \frac{Z}{N}+T\left(\frac{\partial \ln Z}{\partial T}\right)_{V}\right] \tag{14-19}
\end{equation*}
$$

عهل مشتقگيرى در حجم ثابت انـجام شده اسـت زيرا يكت سيستم منزوى را با نـعداد ذرات ثـابتى بررستى میكنيم••
 حسـب يكك خاميـت منفرد Z بيان نمو كه مقدار آن را مى توان با تو جه بهنقطه نظر هاى ميكرو سشِي
 هلمهولتر

$$
A=U-T S=-N k T\left(1+\ln \frac{Z}{N}\right)
$$

$$
p=-\left(\frac{\partial A}{\partial V}\right)_{T}
$$

با انجام مشتقگيرى مذكور در مورد معادله (- Y - Y) نتيجه میگيريم:

$$
\begin{equation*}
P=N k T\left(\frac{\partial \ln Z}{\partial V}\right)_{T} \tag{|r-r|}
\end{equation*}
$$

حال توابع انتالِى گيبس را مىتوان بهصورت زير نوشت.

$$
\begin{align*}
& H=U+p^{V}=N k T\left[T\left(\frac{\partial \ln Z}{\partial T}\right)_{V}+V\left(\frac{\partial \ln Z}{\partial V}\right)_{T}\right] \tag{Ir-YY}\\
& G=A+p^{V}=-N k T\left[1+\ln \frac{Z}{N}-V\left(\frac{\partial \ln Z}{\partial V}\right)_{T}\right] \tag{Ir-Yr}
\end{align*}
$$

سال تابع افراز را به كليه خواصّ ترموديناميكى ماكروسكى مورد نظر برايى مواد ساده ارتباط دادهايمَ.

 براى كمكك بهاين انديشه جند نكه جالب را تذكر مىدهيم :

1 - برایى ار تباط دادن تحليل ميكر وسكيى با دنياى ماكروسكهى بايد دما را تعريف كنيم. اين

آمده است.
Y ـ ـلازم است كه رنتار احتمال ترموديناميكى را با رفتار كميتى كه آتترويم ناميده مىشود تميز
بدهيم. در غير اين صورت تعر يفـ دما ران نمى توان بها كار برد.
「 - برای تعريف دما فقط سيستمهاى در هال تعادل را مىتوان در نظر گرفت. در غير اين
$\beta=1 / k T$ مورت نسبت دادن يكت معنـى فيز يكـى بهدماى بهدست Tمـده از رابطـه
مشكل است.

F
بهعنوان اولين سثال دركاربرد تحليل ترموديناميكت آمارى، بكث گاز تكثاتمى ساده رادر نظر

 بنابراين مدل آمارى BE را انتخاب مىكينيم،

$$
\frac{N_{i}}{g_{i}}=\frac{1}{A e^{\beta \varepsilon_{i}}-1}
$$

 كاُيه شده است.

$$
\frac{N_{i}}{N}=\frac{1}{Z} g_{i} e^{-\beta_{c_{i}}}
$$

بنابراين مـأله ما عبارت از تعيين مقادير
 انرزيهاى

$$
\begin{equation*}
\varepsilon_{i}=\frac{1}{2} m\left(v_{x}^{2}+v_{y}^{2}+v_{z}^{2}\right) \tag{15-Yq}
\end{equation*}
$$

كه نظر بگيريد، تعين ممنتو و جابهجايكيى بوسيله رابطه زير محدود شده اسهت

$$
\Delta_{x} \Delta p_{x}-h
$$

اين بدان معنى است كه كو جكترين حجم تميزيذير در نضاى فازى
 مشخصى ممكن است بوجود آيد. بنابراين در نظر مىگيريمر.

$$
\begin{equation*}
g_{i}=\frac{d x d y d z d p_{x} d p_{y} d p_{z}}{h^{3}} \tag{1r-YV}
\end{equation*}
$$

$$
Z=\sum \frac{m^{3}}{h^{3}} \exp \left[\frac{-m \beta}{2}\left(\nu_{x}^{2}+\nu_{y}^{2}+\nu_{z}^{2}\right)\right] d x d y d z d \nu_{x} d \nu_{y} d \nu_{z}(\mid \varphi-\uparrow \wedge)
$$

喽 $=m v_{x}$

 بالا هستند. بدين ترتيب

$$
Z=\iiint \iiint \frac{m^{3}}{h^{3}} \exp \left[\frac{-m \beta}{2}\left(v_{x}^{2}+v_{y}^{2}+v_{z}^{2}\right)\right] d x d y d z d v_{x} d v_{y} d v_{x}
$$

 زير در مى آيد.

$$
\begin{align*}
Z & =\frac{m^{3} V}{h^{3}}\left[\int_{-\infty}^{\infty} \exp \left(\frac{-\beta m \nu_{x}^{2}}{2} d v_{x}\right)\right]^{3} \tag{ir-rq}\\
& =\frac{m^{3} V}{h^{3}}\left[2 \int_{0}^{\infty} \exp \left(\frac{-\beta m v_{x}^{2}}{2} d v_{x}\right)\right]^{3}
\end{align*}
$$

واضع استكه هد بالايى اين انتگرال هيجّگونه مفهوم فيز يكى ندارده، الا ذرات بـيار معدودى دارايى

 مناسبى از وضعيت فيزيكى واتمى مى ياشد.

$$
Z=\frac{m^{3} V}{h^{3}}\left(\frac{2 \pi}{m \beta}\right)^{3 / 2}
$$

با ترار دادن

$$
Z=V\left(\frac{2 \pi m k T}{h^{2}}\right)^{3 / 2}
$$

جايگزين كردن معادلات (• بردارى مىگردد.

$$
\begin{equation*}
\frac{d^{6} N}{N}=\frac{m^{3}}{V}\left(\frac{1}{2 \pi m k T}\right)^{3 / 2} e^{-m \nu^{2} 2 k T} d x d y d z d v_{x} d \nu_{y} d v_{z} \tag{1r-ri}
\end{equation*}
$$

علامت
 |استفاده خواهد شد.

 سيستم انتگرال گرفت تا رابطه زير بهدست آيد.

$$
\frac{d^{3} N}{N}=\left(\frac{m}{2 \pi k T}\right)^{3 / 2} e^{-m \nu^{2} / 2 k T} d \nu_{x} d \nu_{y} d v_{x}
$$

$$
\begin{aligned}
& \ln Z=\ln \left[V\left(\frac{2 \pi m k}{h^{2}}\right)^{3 / 2}\right]+\frac{3}{2} \ln T \\
& \left(\frac{\partial \ln Z}{\partial T}\right)_{V}=\frac{3}{2} \frac{1}{T}
\end{aligned}
$$

$$
U=\frac{3}{2} N k T
$$

 اتمى ايدهآل فقط تابع دما میباشُد.

سريع بهدست آوريم :

$$
\begin{align*}
& p=N k T\left(\frac{\partial \ln Z}{\partial V}\right)_{T} \\
& p=N k T \frac{1}{V} \tag{يا}
\end{align*}
$$

بنابراين

$$
\begin{equation*}
p V=N k T \tag{1r-rF}
\end{equation*}
$$

 برتزار باشـد

$$
N k=\eta \Re
$$

ך تعداد مولها و ß ثابت مدگانى گاز هاست. تعداد كل, ملكولها N عبارت است از

$$
N=\eta N_{0}
$$

 داريم كه

$$
\begin{equation*}
k=\frac{\Re}{N_{0}} \tag{1r-rq}
\end{equation*}
$$

 براى آنترويى گاز تكاتمى ايدهآل مىیگردد:

$$
\begin{aligned}
& S=N k\left(\frac{5}{2}+\frac{3}{2} \ln 2 \pi m k-\ln h^{3}+\ln V+\frac{3}{2} \ln T-\ln N\right) \quad(\mid r-r V) \\
& C_{\nu}=\left(\frac{\partial U}{\partial T}\right) V=\frac{3}{2} N k=\frac{3}{2} \eta \Re
\end{aligned}
$$

يا در مبناكى سولى

$$
\bar{c}_{1}=\frac{3}{2} m
$$

لنا

$$
\begin{equation*}
\bar{c}_{p}=\bar{c}_{\nu}+\Re=\frac{5}{2} \Re \tag{-}
\end{equation*}
$$

اين گَونه روابط گرماى ويزه با تجارب مربوطه براي گاز هاى تكىاتمى در شرايط فشار و دمايى كه

 بر روى توزيع انرزى ملكولى نميگذارد.

تفاوت عمده بين گازهاى تكت اتـى و هند اتـى در اين است كه گازهانى جند اتـى علاوه بر انرزيهاى انتقالى، دارالى حالتهاى انرزّى جرخشى و ارتعاشثى براساس حركت مركز جرم ملكول نيز مى باشند. هنوز هم اگر ملكولها بهقدر كافى از يكديگر دور باشنلـ، يعنى جرم مختصوص گاز بهقدر كافى

 محاسبه خواصّ ترموديناميكى بهكار مىگيريم. حال مسأله بهصورت تعيين انواع ترازهاى (سطوح)
 مى توان به وسيله جمع زير بيان نود.

$$
\varepsilon_{\zeta}=\varepsilon_{\text {trans }}+\varepsilon_{\text {rot }}+\varepsilon_{v i b}
$$

لذا در مـورتى كه بتوان فزض نـود هر نوع انرزّى مستقل از ساير انواع آنست، تابع افراز بهمورت زير نوشته مىشود

$$
Z=\sum\left(g_{\text {trans }} e^{\left.-\beta \varepsilon_{\text {trans }}\right)}\left(g_{\text {rot }} e^{-\beta \varepsilon_{r x x}}\right)\left(g_{v i b} e^{-\beta \varepsilon_{v i b}}\right)\right.
$$

سِس جمعها ممكن است بهطور جداگانه گرفته شوند و

$$
\begin{aligned}
& Z=Z_{\text {trans }} Z_{\text {rot }} Z_{v i b} \\
& Z_{\text {Trans }}=\sum g_{\text {trars }} e^{-\beta \varepsilon_{\text {rrans }}} \\
& Z_{\text {rat }}=\sum g_{\text {rot }} e^{-\beta \varepsilon_{r a t}} \\
& Z_{v i b}=\sum g_{v i b} e^{-\beta \varepsilon_{v i b}}
\end{aligned}
$$

فرض مستقل بودن انواع مختلف انرزّى كاملأ صسيع نيست. يكك ملكول دواتمى دمبلى شكل
 مركز جرم و يكك انرزى هرخشىى تابل بيان بر حسب ممان اينرسى ملكول حول مركز جرم مىباشد.

 بالا احتياج بهتحليلى نوقالعاده بيجيدهتر از مطالعه ما دارد. در دماهايى بهقدر كافى باللا بايد تغيير در ترازهاى انرزى الككرون داخل اتمها را نيز در نظر بغيريمـ
 هكانيكك كوانتمى نشان مىدهد كه ترازهاى انرزّى حرخشىى مجاز بهوسيله رابطه زير داده شده است :

$$
\varepsilon_{j}=j(j+1) \frac{h^{2}}{8 \pi^{2} I} \quad j=0,1,2, \ldots
$$

I عبارت از مهان اينرسى ملكولى سول مركز جرم است. مى توان نشان داد كه تهغگنى نرازهاى انرزى خرخشّى بهعورت زير است الـت

$$
\begin{equation*}
g_{\text {rot }}=2 j+1 \tag{|r-F|}
\end{equation*}
$$

 خرخشتى بهصورت زير نوشته ميشود

$$
\begin{equation*}
Z_{r o r}=\sum_{j=0,1,2, \ldots}(2 j+1) \exp \left[-j(j+1) \frac{h^{2}}{8 \pi^{2} I k T}\right] \tag{IY-FY}
\end{equation*}
$$

سال دهاى مشنخصه برأى جحرخـد؛

$$
\theta_{r o t}=\frac{h^{2}}{8 \pi^{2} I k}
$$

لذا عبارت تابع افراز تبديل ممشود به

شكل 1

$$
Z_{r o t}=\sum_{j=0,1,2, \ldots}(2 j+1) \exp \left[-j(j+1) \frac{o_{r o t}}{T}\right]
$$

هالو رفتار مalدله (در مقايسه با
 (IT FFF)

$$
Z_{r o t}=\frac{T}{\theta_{r o t}}\left[1+\frac{1}{3}\left(\frac{\theta_{r o t}}{T}\right)+\frac{1}{15}\left(\frac{\theta_{r o t}}{T}\right)^{2}+\cdots\right]
$$

همين طُور كه دما در مقايسه با

$$
\begin{equation*}
Z_{r o t}=\frac{T}{0_{r o t}} \quad \frac{T}{\theta_{r o t}} \gg 1 \text { براى } \tag{1YF母}
\end{equation*}
$$

حالل ممكن است كه در دماهاى بالا در مقايسه با مشطاركت حركت هحرخستى در انرزّى داخلمى بهكارگيريم. در نتيجه

$$
\begin{equation*}
U_{r o t}=N k T \quad \frac{T}{\theta_{r o t}} \gg 1 \text { برا'ى } \tag{1r-FV}
\end{equation*}
$$

سبس گر ماى ويزه مولى برای بحر خش بهصوزت زير در مى آيد.

$$
\bar{c}_{v, r o t}=\Re \quad \frac{T}{\theta_{r o t}} \gg 1 \text { برا'ي }
$$

 مكانيكت كو انتمى مشـخص گرديله است كه ترازهاى انر زُى ارتعاشیى مجاز براى يكت ملكول دواتـى بوسيله رابطه زير داده شده است.

$$
\varepsilon_{v i b}=\left(n+\frac{1}{2}\right)^{h \nu} \quad n=0,1,2, \ldots
$$

 فرخيه در دماهایى خيلى بالا معتبر نيست.

$$
Z_{\text {vib }}=\sum_{n=0}^{\infty} \exp \left[-\frac{(n+1 / 2) h v}{k T}\right]
$$

خوشبختانه اين جمع مسكن است بهصورت معين و مشخص بيطور تحليلى بيان گَردد. با تعريف دماى مشـخصه براى ارتعاش،

$$
\theta_{v i b}=\frac{h V}{k}
$$

رابطه نهايى برایى تابع افزاز عبارت است از

$$
Z_{v i b}=\frac{e^{-\theta_{v i b} / 2 T}}{1-e^{-\theta_{v i b} T T}}
$$

$$
U_{v i b}=N k \theta_{v i b}\left(\frac{1}{2}+\frac{1}{e^{\theta_{v i b} / T}-1}\right)
$$

سِس مشاركت ارتعاشى در گر ماى ويزه مولى بهصورت زير در مى آيد.

$$
\bar{c}_{v, v i b}=\left(\frac{\partial \bar{u}_{v i b}}{\partial T}\right)_{V}=\Re\left(\frac{\theta_{v i b}}{T}\right)^{2} \frac{e^{\theta_{v i b} / T}}{\left(e_{v i b / T}^{\theta_{v i}}-1\right)^{2}}
$$

 درمقايسهبا

شكل 〒

نصسل با ــكاربردهای ترموديناميك آهطى

جمع يذير ڤستند، مىتوانيم بنويسيم

$$
\bar{c}_{v}=\bar{c}_{v, \text { trans }}+\bar{c}_{v, r o t}+\bar{c}_{v, v i b}
$$

در دماهایى بايِن در متايسه با

جدول I IF

$\theta_{r o x}, \mathrm{~K}$	$\theta_{v i b}, \mathrm{~K}$	ماده
71F.	AD/D	H_{Y}
ArY.	YV/0	OH
fr..	$10 / r$	HCl
Fl.	Y./V	CH
PrF.	F/AT	N_{Y}
rV..	1\%/1	HBr
YY..	9	HI
MIP.	$Y / V V$	CO
PVF.	F/FV	NO
YYY。	F/P9	O_{7}
入1.	-/rFV	Cl_{Y}
FV.	-/11V	Br_{γ}
Pr.	,/YYF	Na_{Y}
IF.	. $/ 1.11$	$\mathrm{K}_{\boldsymbol{Y}}$

ترموديناميك

مىشُود، بهطورى كه انتظار داريم

$$
\bar{c}_{v}=\frac{3}{2} \Re \quad T \ll 0_{r o t}
$$

 بالاتـر از نزديكت مىگردد.

$$
\bar{c}_{v}=\frac{3}{2} \Re+\Re=\frac{5}{2} \Re \quad \theta_{r o t} \ll T \ll \theta_{v i b}
$$

بالاخره در دماهاى خيلى بالأتر، حالات انرزّى ارتعاشُى تحريكت شـده وگر ماى ويزه بيثتر افزايش

شكل + |

$$
\bar{c}_{\nu}=\frac{3}{2} \Re+\Re+\Re=\frac{7}{2} \Re \quad \theta_{v i b} \ll T
$$

گَرماهاى ويزه در نثار ثابت تا وتتى رابطه زير مساسبه ئود.

$$
\bar{c}_{p}=\bar{c}_{\nu}+\Re
$$

اين تحليل نسبتأ يجحيده مدكن است با بررسى رنتار گرهاى ويزه بكت كاز آشنا نظير N2 در

$$
\begin{aligned}
& \bar{c}_{\nu}=\frac{5}{2} \Re \\
& \bar{c}_{p}=\frac{7}{2} \Re
\end{aligned}
$$

نسبت گرماهاى ويثه عبارت است از

$$
\gamma=\frac{\bar{c}_{p}}{\bar{c}_{v}}=\frac{7}{5}=1.4
$$

جدول Y - Y Y يكى مقايسه ساده بين مقادير گرماى ويزه محاسبه شده با روابط گفته شده و مقادير بهدست آمده از طريق آزمايش را الرائه مىدهد. مطابقت بين آنها بسيار خوب است.

جدول

$$
\text { از طريق آزمايش بواى } \theta_{r o x} \lll \lll \theta_{v i b}
$$

كاز	γ		\bar{c}_{p} / \Re		\bar{c}_{ν} / \Re		$\left(\vec{c}_{p}-\bar{c}_{\nu}\right) / \Re$	
	محاسبه	آزمايش	محاسبه	آزمايش	محاسبه	آزهايش	محاسبه	آزمايش
A	1/rı	1/4v	Y/0..	r/ar	$1 / 0$.	1/0.9	$1 / \cdots$	1/•A
He		1/709		r/ar		1/019		1/.1
CO	1/F..	1/f.f	r/0..	$r / 0$.	Y/0..	r/PFA	$1 / \cdots$	1/.08
H_{Y}		1/f1		r/fy		r/FrA		./999
N_{Y}		1/F.F		r / Δ.		Y/FFA		$1 / \cdots 0$
$\mathrm{O}_{\boldsymbol{\gamma}}$		1/F.1		r/ar		$r / 0 . F$		1/.9

ترصوديتاميك
 (حركت نرضی الككر ونها در اتم) درگگ شاى ويزه آن مشـاركت دارد. تعليل مفصل آن از مـحدو ده بحت ما خارج است، الما شايسته است تذكر دهيم كه در اين محدوده دما دو نوع هيدروزن موجود است : باراهيدروزن با حالات السبين هستهایى نامتقارن و ار تو هيدروزن با حالات اسيبن هستهاى متقارن. تجربه

 برايىاطلاعات بيشتر خواننده بايد بهمأخذ [4] رجوع كند.

مثال ا -
مقادير سه تراز انززى خرخشي اوليه برای نيتروزن را مساسبه كنيد.

$$
\begin{equation*}
\varepsilon_{j}=j(j+1) \frac{h^{2}}{8 \pi^{2} I} \tag{a}
\end{equation*}
$$

$$
\begin{equation*}
\theta_{\text {rot }}=2.86 \mathrm{~K}=\frac{h^{2}}{8 \pi^{2} I k} \tag{b}
\end{equation*}
$$

بهُورى كه
$\frac{h^{2}}{8 \pi^{2} I}=(2.86)\left(1.38 \times 10^{-23}\right)=3.95 \times 10^{-23} \mathrm{~J} /$ molecules
لذا سه تراز انز زیى اوليه كه صـفر نمىباشند از رابطه (a) بهصورت زير بهدست مى آيند.
$\varepsilon_{1}=(1)(1+1)\left(3.95 \times 10^{-23}\right)=7.9 \times 10^{-23} \mathrm{~J} /$ molecules

$$
\begin{aligned}
& \varepsilon_{2}=(2)(2+1)\left(3.95 \times 10^{-23}\right)=2.37 \times 10^{-23} \mathrm{~J} / \text { molecules } \\
& \varepsilon_{3}=(3)(3+1)\left(3.95 \times 10^{-23}\right)=4.74 \times 10^{-23} \mathrm{~J} / \text { molecules }
\end{aligned}
$$

مثال Y-TH

$$
\frac{T}{\theta_{v i b}}=\frac{2000}{3340}=0.599
$$

از شكل r - با داريم

$$
\bar{c}_{v, w i b}=0.85 \Re
$$

وگرماى ويزه كل بهصورت زير در مىآيد.

$$
\bar{c}_{v, j}=\frac{3}{2} \Re+\Re+0.85 \Re=3.35 \Re
$$

 خيلى يبجيده برخور دهايم و احتياج بهيكت روش ارزيابى مفصلت براى حمصول بهتابع ارْاز است.

> Y- Y| همالفراز انرزى’

بررسى گاز هاى تكتاتمى و دو اتمى بهاطلاعات نسبتأ جالبى درباره رنتار گرماكى ويزه گازهاى

انرزّى يكت درجه آزادى وجود دارد. سه حالت انرزّى انتقالمى وجود دارد لذا سه درجه آزادى انتقالى هو جو د مىباشد. در گاز دو اتمى ملكول در سه جهت مىتواند هرخش كند، اگر جه ممان اينرسى حول مصورى كه از مراكز دواتم مى گذرد در مقايسه با مـمان اينرسى هول دو مسور كار تزين ديگكر كه از مركز جرم عبور مىكند خيلى كوجك (تابل صرف نظر) است. بنابراين مىگويم كه ملكول داراى دو سالكت انرزى خرخشـى مهم است. هالات انرزى ار تعأشى يكت ملكول دو اتمى از نوسان در طول محورى كه دو اتم را بهيكديگُر متصل مىكند ساصل ممى دود. براى مشخص كردن اين انرزى ارتعأشى احتياج بهتعين انرزیى جنبشى اتههاى نوسان كنتده و انرزى یتانسيل آنها منتج از بوتعيتثان در ميدان نيرو، ميباشد. تتيجتاُ مىتو يمبم كه دو درجه آزادى ازتعاشثى وجود دارد. يكت بررسى سريع تحليل بيش گفته نشان مىدهد كه براي هردرجه آزادى كاملُّ تحريكى شُلـه هـاركتى برابر با $N K$

 مشتخصات تحليلى نسبتأ عمومى از اصل مذكور ممكن است بهطريت زير داده شود. تصور كنيد كه انرزى توأم با يكك درجه Tزادى بهصورت تابعى درجه دوم از مسور هاى ششخص كننده مو تعيت ذره، سرعت بردارى و غيره تابل بيان باشد.

$$
\varepsilon_{x}=a x^{2}
$$

بعلاوه فرض مىكنيم كه توزيع بين حالات انرزّى بوسيله فرمول نمايى MB داده شده است.

$$
d N_{x}=e^{-\beta \varepsilon_{x}} d x
$$

كه يكت توزيع يبوسته سالات انرزى را فرض كردهايـم. بنابراين انرزى متوسط توأم با درجه Tزادى عبارت است از

$$
\bar{\varepsilon}_{x}=\frac{\int \varepsilon_{x} d N_{x}}{\int d N_{x}}=\frac{\int_{0}^{\infty} a x^{2} e^{-a x^{2} k T} d x}{\int_{0}^{\infty} e^{-a x^{2} k T} d x}=\frac{1}{2} k T
$$

NkT اين انرزی متوسط بهازاى هر ذره و بهازای هر درجه Tزادى است. كل انرزّى توأم با سالت x برابر

$$
\text { بوده و مشاركت } \frac{1}{r}
$$ در تحليل ساده بخشههاى بش گفته جندين فرض محلـود كننده وجو د دارد. يكت تابع انرزى درجه دوم، يكت توزيع يوسته انترزى و فرمول توزيع نمايى از نوع MB همگگ برایى بهدست آوردن تشيجه تكکاتـى بهخاطر بستگگى انرزى بیه

 بايد انتظار مىداشتيم كه أراز برابر در اين مورد هـم صـدق مىكرد. بههر صورت همان طور طور كه اكنون مشاهده گرديد اين گونه رنتار فقط در دماهايى كه در مقايسه با

|Y-Y

بحثهاى گذشته ماكاربرد ترموديناميكت Tاريى رادر مورد سيستمهايى مورد بررسى قرار داده است كه ذاصله ملكولى در مقايسه با اندازه ملكو لها خيلى بزرگّ هستند. بهخاطر اين ذاصله زياد مىتوان فرض كرد كه ملكولها آزاد هستند تا بهصورت موجوديتهاى مستقلى حركت نمايند بلدون اين كه اس اساسأ ميدانهاى نيروى ملكولهاى مجاور تأثيرى بر روى انززى آنها بعذارند. حالت جامد وضعيت كاملاُ متفاو تى را اراثه مىدهد. در اين مورد ذاصله. اتـها خخلى نزديكت بهيكديگر استت بهطورى اكه ميدانهاى نيروى آنها الساسأ اتدها را در محل خود ساكن مىكند، لنا فقط مجاز هستند حول يكت موتعيت تعادلى تحت تأثير ميدانهاى نيروى اتمهاى مجاور نوسان نمايند. يكى از مسائل تحليل آمارى حالت جامد اين است كه بتوان بطور مناسبى دخالت اين حركت نوسانى را در انززى داخلى وگرماى ويزه جسم جامد

بيان نمود.
اگر جسم جامل يكـ هادى الكتر يكى است، تعداد قابل ملاحظهایى از الحكر ونها نسبتاً آزادندكه حركت كنند و بار الكحريكى را انتقال دهند. معمولڭا اين الكترونهاى †زادكاز الكتروت ناميده مىشوند. جون الكحرونها دارای حركت و انرزیى جنبشى هستند، انتظار مىرود كه در انرزّى داخلى كل وگر ويزه كل جسم جامد دخالت داشته باشند. بنابراين يكت بخش اخافى در تحليل آمارى حالت جاملـ،

انتظار مىرودكه برای عايقهاى الكتريكى دخالت گاز الكترون در انرزى داخلم جسم بامدكم باشد. ابتدا مشاركت انرزّى منتجه از ارتصاشات شبكه را در نظر مىگيريم. اوليـن تـعليل نسبتـأ

 است با روشهاى مكانيك كوانتسى تجزيه و تحليل گردند. ترازهاى انرزَى مجاز توسط همان رابطه مورد استفاده برای تحليل انرزيهاى ارتعاشّى در ملكولهاى دواتهى داده شدهاند.

$$
\varepsilon=\left(n+\frac{1}{2}\right) h \nu \quad n=0,1,2, \ldots
$$

كه v فركانس نو سان ساز است. فرض شده كه برای هر تراز انرزى ذقط يكت حالت كوانتم مجـاز مى ماششد بهورىىكه تابع افراز نظير قبل بهوسيله رابطه زير داده مىشود.

$$
Z=\sum_{n=0}^{\infty} \exp \left[-\left(n+\frac{1}{2}\right) \frac{h v}{k T}\right]=\frac{e^{-\theta_{E} / 2 T}}{1-e^{-\theta_{E} / T}}
$$

كه حال $\theta_{E}=h v / k$ دماى /ينـتستين جسم جامد نايلده مىشود.
 هر اتم سه نوسان ساز هارمونيكت وجود خواهد داشت (يكك عدد برايى هر محور فضهايى) بهطورىك تعداد كل نوسانسازهاى مورد نظـر برابر NN مى.

$$
\begin{align*}
& \text { نوشته مىشود : } \\
& U=3 N k T^{2}\left(\frac{\partial \ln Z}{\partial T}\right) v \\
& \text { از تركيب اين رابطه با معادله ((I - - حامصل مىشود : } \\
& U=\frac{3}{2} N k T \frac{\theta_{E}}{T}+3 N k T \frac{\theta_{E} / T}{e^{\theta_{E} / T}-1} \\
& \text { بدين ترتيب گرماى ويزه مولى در حجم ثابست برابر است با } \\
& \bar{c}_{\nu}=3 \Re\left(\frac{\theta_{E}}{T}\right)^{2} \frac{e^{\theta_{E} / T}}{\left(e^{\theta_{E} / T}-1\right)^{2}} \tag{1r-71}
\end{align*}
$$

 درجه Tزادى بهاندازه R

 مقايسه شده با مقادير تجرلهـ
 الما در دماهاى بايين مقاديرى برائى

$$
\begin{equation*}
U-U_{0}=\frac{9 N k T}{\left(\theta_{D} / T\right)^{3}} \int_{0}^{\theta_{D^{r}}} \frac{x^{3}}{e^{x}-1} d x \tag{1r-qr}
\end{equation*}
$$

U_{0} زير بهدتـت آيد.

شكل Y Y

$$
\bar{c}_{\nu}=3 \Re\left[\frac{12}{\left(\theta_{D} / T\right)^{3}} \int_{0}^{\theta_{D^{2}} T} \frac{x^{3} d x}{e^{x}-1}-\frac{3\left(\theta_{D} / T\right)}{e^{\theta_{D} T T}-1}\right]
$$

$\theta_{D}=\frac{h v_{m}}{k}$

1- Elastic-wave theory

 همان طور كه بو سيله نقاط داده هاى تجربى مشاي مى ماششد. مقادير دطاى دباكن D برای دماهاى بالا در مقايسه با بائين در مقايسهب با داده شده

جدول

0	K. K.	θ_{0}	ماده	K K/ K-	θ_{D}
-		AA	سيلويوم (KCl)	rr-so.	Yr.
تاليوم	$r r-r .1$	97	روى	rr-qur	rro
حيو	rerry	4 V	نوكت (NaCl)	ro- 0 -7F	(A)
يد	ry-ras	1.7	مس	if-var	ris
كاكدميوم	0.-rs.	171	آلو بينيم	19-vvr	r9A
سد	D-MF.	ivy	آهن	$r r-4 \Delta$	FAT
بر مبدبتاسبيم	vi-fiv	Ivv	(CaF ${ }^{\text {(}}$	iv-rys	FVF
نقرد	ro-svr	Y10	(FeS ${ }_{\text {¢ }}$	rr-ov	7Fs
كلسبم	Yr-rq	Y゙ワ	الهاس	r.-1199	119

$$
\begin{aligned}
\bar{c}_{v} & \approx 3 \Re^{2}\left[\frac{12}{\left(\theta_{D} / T\right)^{3}} \int_{0}^{\theta_{D} / T} \frac{x^{3} d x}{e^{x}}\right] \\
& =\frac{12}{5} \Re \frac{\pi^{4}}{\left(\theta_{D} / T\right)^{3}}=464.4\left(\frac{T}{\theta_{D}}\right)^{3} \mathrm{cal} / \mathrm{g} \cdot \mathrm{~mol} . \mathrm{K} \quad T \ll \theta_{D} \quad(1 r-\imath \Delta)
\end{aligned}
$$

$$
\text { با مراجعه بهشكل } 7 \text { - } 7 \text { ييدا مىكنـم كي }
$$

$$
\bar{c}_{\nu}=4.9 \mathrm{cal} / \mathrm{g} \cdot \mathrm{~mol} . \mathrm{K}=20.5 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~mol} . \mathrm{K}
$$

مثال Y-Y
كرمأى ويزه مس رادر I K K محاسبه كنيد.

$$
\begin{aligned}
\bar{c}_{v} & =464.4\left(\frac{T}{\theta_{D}}\right)^{3} \\
& =464.4\left(\frac{10}{315}\right)^{3}=0.01486 \mathrm{cal} / \mathrm{g} \cdot \mathrm{~mol} \cdot \mathrm{~K}=0.0622 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~mol} \cdot \mathrm{~K}
\end{aligned}
$$

| |

يادآورى مىشود كه بحث ابتدايى ما درباره جامدات نشان داد كه الكترونهاى آزاد در يكت

$$
\begin{aligned}
& \text { مثال } \\
& \text { گر هاى ويزه آلومينــم را در Y . . K K شامبه كنيد. }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{T}{\theta_{D}}=\frac{200}{398}=0.502
\end{aligned}
$$

 اصل عدم تطميت بهكار مىدود، بهطورىكه نبهگنى بوسيله رابطه زير داده شده است :

$$
\begin{array}{ll}
g_{i}=\frac{2}{h^{3}} d x d y d z d p_{x} d p_{y} d p_{z} & \text { (1r-iๆ) } \\
\frac{N_{i}}{g_{i}}=\frac{1}{A e^{\beta \varepsilon}+1} & \text { (1r-iv) }
\end{array}
$$

حال فرض مىكنبمكه تعداد زيادى تراز انززَى براى الككر ونهاى موجود در جـس جامد در دسترس است

ترمود يناميك

دست مى آوريم:

$$
d^{6} N=\frac{2 / h^{3}}{A e^{\beta \varepsilon}+1} d x d y d z d p_{x} d p_{y} d p_{z}
$$

از انتگرالن گُرفتن روى حجم سيستم V حاصل مىشود :

$$
d^{3} N=\frac{2 V / h^{3}}{A e^{\beta \varepsilon}+1} d p_{x} d p_{y} d p_{z}
$$

حالْ با مسـأله تعين ثابت A روبرو هـتيه. جايگز ينى زير را انجام مىدهيم.

$$
\begin{equation*}
A=e^{-\beta \mu \theta} \tag{1r-99}
\end{equation*}
$$

欮

$$
\frac{N_{i}}{g_{i}}=\frac{1}{e^{\left(\varepsilon-\mu_{0}\right) / k T}+1}
$$

شكل TH-Y توزيع فرمى ـ ديراكك بهصورت تابعى از دما

كاملاُ بير نشـلده و بعضى سالتهاي انرزیى بالأى حول همانى باشد كه در T = مشاهلده گرديده است. بيشينه انرزّى الكترونها در برابر T بر ايـن اترزّى تراز فرمى ناميده شده است. حال احتياج بهتعيسن عبارتى برايى

جنبشثى انتقالمى است بهطوزى كه

$$
\begin{equation*}
\varepsilon=\frac{1}{2} m_{e} v^{2}=\frac{p^{2}}{2 m_{e}} \tag{|r-v|}
\end{equation*}
$$

P تا يكن انرزى بيشينه يكت ممنتوم بيشينه وجود دارد.

$$
p_{m}^{2}=2 m_{e} \mu_{0}
$$

 بهصورت زير داده مىشود.

$$
\rho_{c_{o}}=\frac{2 V}{h^{3}}
$$

اين عدد بر روى تمام بتش قابل كاربرد فضاكي منتوم عدد ثابتى است، بنابراين براي بهدست آوردن
 حجم برابر با حجم كر هاى بهشعاع عاع

$$
N_{e_{o}}=\frac{2 V}{h^{3}}\left(\frac{4}{3} \pi p_{m}^{3}\right)
$$

$$
\mu_{0}=\frac{h^{2}}{8 m_{e}}\left(\frac{3 N_{e_{o}}}{\pi V}\right)^{23}
$$

 جاى

$$
\begin{equation*}
\mu=\mu_{0}\left[1-\frac{\pi^{2}}{12}\left(\frac{k T}{\mu_{0}}\right)^{2}+\ldots\right] \tag{IT-VD}
\end{equation*}
$$

 در يكت بوسته كروى باريكت از نضاى سرعت $F \pi v v^{2} d \nu$ يكنواخت است. ايـن تراكـم از معـادلد

$$
\frac{d^{3} N}{d v_{x} d v_{y} d v_{z}}=\frac{2 m^{3} V / h^{3}}{A e^{\beta \varepsilon}+1}
$$

با بتفاده از زير حامل بىشود.

$$
\begin{equation*}
d N_{\nu}=\frac{8 \pi m^{3} V}{h^{3}}=\frac{\nu^{2} d \nu}{\exp \left\{\left[\left(m \nu^{2} / 2\right)-\mu\right] / k T\right\}+1} \tag{1r-va}
\end{equation*}
$$

مىتوان آرايش اين رابطه را تغير داد تا توزيع انززى بهصورت زير بهدست آيد.

$$
\begin{equation*}
d N_{\varepsilon}=4 \pi V\left(\frac{2 m}{h^{2}}\right)^{3 / 2} \frac{\varepsilon^{1 / 2} d \varepsilon}{e^{(\varepsilon-\mu) k T}+1} \tag{1r-vV}
\end{equation*}
$$

در معادلات (1r-vV) (1r-vq) ضريب

$$
f_{e}=\frac{1}{e^{(e-\mu) / k T}+1}
$$

 $d N_{\varepsilon}=4 \pi V\left(\frac{2 m}{h^{2}}\right)^{3 / 2} \varepsilon^{1 / 2} d \varepsilon \quad T=0 \mu$
انززى متوسط الككرون در • = برابر استـبا

$$
\bar{\varepsilon}_{0}=\frac{\int_{0}^{\mu_{0}} \varepsilon d N_{\mathrm{E}}}{\int_{0}^{\mu_{0}} d N_{e}}=\frac{3}{5} \mu_{0}
$$

حدبالايى براى اين انتگرالها بالاى صفر مطلت انرزى متوسط الككرون بايد از رابطه زير محاسبه گردرد

$$
\begin{equation*}
\bar{\varepsilon}=\frac{\int_{0}^{\infty} \varepsilon d N_{\varepsilon}}{\int_{0}^{\infty} d N_{\varepsilon}} \tag{|r-A|}
\end{equation*}
$$

 است با جايگزينى توزيع انرزى از مسادله (I Y_VV) همراه بـا رابـطه سـامرفلد بـرايى μ از معـادله (I Y-V V)

$$
\bar{\varepsilon}=\frac{3}{5} \mu_{0}\left[1+\frac{5}{12} \pi^{2}\left(\frac{k T}{\mu_{0}}\right)^{2}+\cdots\right]
$$

سسس انرزُى داخلى برابر است با

$$
U=N \bar{\varepsilon}=\frac{3}{5} N \mu_{0}+\frac{1}{4} \frac{\pi^{2} N k^{2}}{\mu_{0}} T^{2}
$$

N تعداد كل الكترونها است. لناگَرماى ويزءه مولمى عبارت است از

$$
\bar{c}_{\nu}=\left(\frac{\partial \bar{u}}{\partial T}\right)_{\nu}=\frac{\pi^{2}}{2} \frac{k T}{\mu_{0}} \Re
$$

(1 r -Af)

شكل \&_T| توزيع انرزى براي كاز الكترون
 بهدست مى Tوريم كه مقدار خخيلى بزرگترى است. تحليل جيشگفته عدم ضرورت در نظر گرفنت گَاز الكترون را در موتع مساسبه گرماهاى ويزه جامدات توضيع ميدمد. مشاركت Tنها براى تمام دماهاى معمولمى شخيلى كوجكت است زيرا $k T \ll \mu_{0}$
 (IT - AY)

مثال ه-
تراز انرزى فرمى را براى سس تخمين زده و دماى گاز ايدهـه آل معادل را براى اللكرونهاى آزاد بر اساس انرزى متوسط آنها در • T محامبه كنيد.

$$
\frac{N_{e_{0}}}{V}=\frac{N_{0}}{M} \frac{m}{V}=\frac{N_{o}}{M} \rho
$$

 بطوريكه

$$
\frac{N_{e_{o}}}{V}=\frac{\left(6.025 \times 10^{23}\right)(8.94)}{63.57}=8.47 \times 10^{22} \text { electrons } / \mathrm{cm}^{3}
$$

هال معادله (IT-VF) را براي محاسبه

$$
\begin{aligned}
\mu_{0} & =\frac{h^{2}}{8 m_{e}}\left(\frac{3 N_{e 0}}{\pi V}\right)^{23} \\
& =\frac{\left(6.624 \times 1^{-27}\right)^{2}}{(8)\left(9.1 \times 10^{-23}\right)}\left[\frac{(3)\left(8.47 \times 10^{22}\right)}{\pi}\right]^{23}= \\
& =1.13 \times 10^{-11} \mathrm{erg}=7.07 \mathrm{eV}
\end{aligned}
$$

$$
\begin{aligned}
\bar{\varepsilon}_{0} & =\frac{3}{5} \mu_{0}=(0.6)\left(1.13 \times 10^{-11}\right) \\
& =6.78 \times 10^{-12} \mathrm{erg}=6.78 \times 10^{-19} \mathrm{~J}
\end{aligned}
$$

براى مساسبه دماى گاز ايدهآل معادل براى الكترو نهاى آزاد مى

$$
\bar{\varepsilon}_{0}=\frac{3}{2} k T_{e q u i v}
$$

از حل برإى دماى معادل بهدسـت مى آوريمك

$$
\begin{aligned}
T_{\text {equiv }} & =\frac{2 \overline{\varepsilon_{\theta}}}{3 \bar{k}} \\
& =\frac{(2)\left(6.78 \times 10^{-19}\right)}{(3)\left(1.38 \times 10^{-23}\right)}=32800 \mathrm{~K}
\end{aligned}
$$

مثال

حــــل : اين مساسبه را مى توانبا معادله است. بدين ترتيب

$$
\begin{aligned}
\bar{c}_{v, \text { elec }} & =\frac{\pi^{2}}{2} \frac{k T}{\mu_{0}} \Re \\
& =\frac{\pi^{2}\left(1.38 \times 10^{-23}\right)(300)}{(2)\left(1.13 \times 10^{-18}\right)} \Re=0.0181 \Re
\end{aligned}
$$

از اين مساسبه مشاهده مىكيم كه مشاركت الككتون در گرماى ويزء براستى خيلى كو جكك است.

ا ـ ارتعاشُ شبّه مشاركت عمده درگرماى وئزه جامدات را ايجاد مىكند.

ميل مىكند.

پتانسيل ذخيره شده در ميدانهاى نيروى متصل كننده اتمها بهيكديگر وجود دارد بلكه

9-

 از يكديگر باشند (نظير يكت جسم جامد)، الحكرونها بهطور خيلى توى بر روى يكديگِر اثر گَذاشته و

 ممنوع ممكن نيست بهوسيله الحكرونها اشغال شود.

 ناميده ميشو د. بهطور كلى نوار ممنو عىى كه جداكننده اين دونوار مجاز است خيلى عريض است (يعنى

خيلى خيلى بزرگّت از kT امست). نوارهاى مجاز مدكن ديگرى وجود دارند الما دو نوار اشاره شده بيشتر مورد تو جه هستند.
 جامل. بهدست مىدهد. دز T تمام الكترونها نوار والانس را الشغال خو اهنلـكرد.كسرى از الكرونها كه مهكن است بهنو'ر هدايت بالا برده شوند بها و عرض نوار ممنوع بستگى دارند. اتكر نوار والانس كاملاُ برشده باشد در آن صورت جــم جاملـ مدكن نيست هدايت كننده باشـد
 اگر نوار ممنوع باريكى بوده و نوار هدايت خخالى باشد در آن صورت براى الككرونها خيلى سادهتر خواهلد بود كه از نوار والانس بهداخخل نوار هدايتـ عبور كتند. در اين مورد جــم يكت نيمههادى ناميده مى شود.
اگر نوار هدايت بهطور جزيى يرشده باشد در آن مورت براى بالا بردن الكرونها بهيكت بتانسيل اندكى بالاتر در داخل نوار هدايت يعنى بهـحالتى اشغغال نشده در يكت تراز انرزى بالاتر، انرزیى

(الفّ)

(ب)

شكل • 1 ا 1 تتُورى نوار (الف) عايقها و (ب) نيمه هاديها

شكل | | 1 T تنورى نوار هاديها

وتىكه يكت الككرون ناصله نوار والانس بهنوار هدايت را مى جهـ، هالت خالي ايجاد شده
در نوار والانس را حفره مى نامند. حفره مذكور ممكن است خاني
 نوار هدايت حركت مىكتند با دما الزايش مىيابلد و حيون تمام الككرونهاييى كه نوار هدايت رايت را اشغال
 در نوار والانس يكسان باشد.

 ايجاد مىكند لذا بكك نيهدهادى نوع n اماميده مىنشود.

شكل

تراز انرزى زرمى را ممى توان بهطريق زير بهعرض نوار مـنوع ارتباط داد. براى سهولت، تراز

 بدين تر تيب

$$
\left.N_{h}\right|_{\text {nدابت }}
$$

نشان دهنده تعداد حفرهها و N_{h} ץ

$$
g_{i} \left\lvert\,=4 \pi V\left(\frac{2 m_{e}}{h^{2}}\right)^{3 / 2}\left(\varepsilon-\varepsilon_{g}\right)^{1 / 2}\right.
$$

از • = ع شروع مىگرديد). باز هم رابطه زير را براى تابع توزيع انرزى FDبهكار میگيريم

$$
f_{e}=\frac{1}{e^{(e-\mu) k T}+1}
$$

> بدين تر تيب تعداد الككر ونها در نوار هدايت برابر است با

$$
N_{e}=4 \pi V\left(\frac{2 m_{e}}{h^{2}}\right)^{3 / 2} \int_{e_{g}}^{\infty} \frac{\left(\varepsilon-\varepsilon_{g}\right)^{1 / 2} d \varepsilon}{e^{(\varepsilon-\mu) k T}+1}
$$

هون عرض نوار منوع معمولأ خيلى ييشتر از kT است لذا انتظار مـمرود كه در نـوار هـــايت

$$
N_{e}=V\left(\frac{2 \pi m_{e} k T}{h^{2}}\right)^{3 / 2} e^{\mu k T} e^{-\varepsilon_{g} k T}
$$

تابع توزيع براى حفر ههاى موجود در نوار والانس عبارت است از:

$$
\begin{equation*}
f_{h}=1-f_{e}=1-\frac{1}{e^{(e-\mu) k T}+1}=\frac{e^{-(\mu-e) k T}}{e^{-(\mu-\varepsilon) k T}+1} \tag{1r-q.}
\end{equation*}
$$

انتظار مىرودكه در نوار والانس

$$
f_{h}=e^{-(\mu-\varepsilon) k T}
$$

سيس تعداد سفرهها در نوار والانس با تشكيل انتگرال زير بهدست مى آيد

$$
\begin{equation*}
N_{h}=4 \pi V\left(\frac{2 m_{h}}{h^{2}}\right)^{3 / 2} \int_{-\infty}^{0} \varepsilon^{1 / 2} e^{-(\mu-\varepsilon) k T} d \varepsilon \tag{1r-91}
\end{equation*}
$$

m m_{h}

$$
\begin{align*}
N_{h} & =V\left(\frac{2 \pi m_{h} k T}{h^{2}}\right)^{3 / 2} e^{-\mu / k T} \\
& :(\mid r-q Y) \\
\mu & =\frac{1}{2} \varepsilon_{g}+\frac{3}{4} k T \ln \frac{m_{h}}{m_{e}}
\end{align*}
$$

يا اگگر ججم الكترونها و سفرهها برابر بابشد، بهدست مى Tوريم

$$
\begin{equation*}
\mu=\frac{1}{2} \varepsilon_{g} \tag{1r-qra}
\end{equation*}
$$

و تراز انرزى فزمى دقيقاً در مركز نوار ممنوع قرار مىگيرد. اين نتـجه مـهـى است و در تـوضيع دستگاههاى تبديل انرزى ترموالكتريكت دارای ارزش عملى است. بعضمى از عرضهاى نوارى براى نيهـ هاديها در ججدول F - Y F داده شـده است.
-1 •
بهعنوان بكي كاربرد جالب آماركوانتمى ' يكك كميت تابش حرارتى را در داخل يكك سحره

$$
\varepsilon_{i}=h v_{i}
$$

1- Quantum statistics
2- Quanta

ماده	$\varepsilon_{g}, \mathrm{eV}$
Ge	\cdot / VA
Se	$Y /$.
Si	1/Fi
Te	- /rr
$\mathrm{Cu}_{Y} \mathrm{O}$	1/.
InAs	\cdot / Δ
InSb	r / r
UO_{Y}	\cdot / Y
ZnS	$r / 4$

است كه ${ }^{\text {U }}$ نشان دهنده فركانس نونهاست. ممنتوم تونها عبارت است از

$$
\begin{equation*}
p_{i}=\frac{h v_{i}}{c}=\frac{h}{\lambda_{i}}=\frac{\varepsilon_{i}}{c} \tag{1r-9F}
\end{equation*}
$$

نتونها معر ف راذراتى" هستندكه حالتهاى كوانتم مـختلفى رااشغغال مىكنتد، اما يكت مجهو عه منزوى شده آنها، شامل تعداد ثابتى از ذرات نيست. مانند سيستمهاى ذزهای مرسوم، تراكم بيمانههاى انز زيى را جستّجو مىكنيم كه هر حالت انز زیى بر روى تعلاد حالتهاي كوانتم در دسترس وجود ندارد، لذا مدل Tمارى BE را به كار مىگيريم.

$$
\Omega_{B E}=\prod_{i} \frac{\left(g_{i}+N_{i}-1\right)!}{N_{i}!\left(g_{i}-1\right)!}
$$

با تشكيل شرط بهمقدار بيشينه رساندن

$$
\delta(\ln \Omega)=0
$$

$$
\delta U=0=\sum \varepsilon_{i} \delta N_{i}
$$

نتيجه مىدهدكه

$$
\begin{equation*}
\frac{N_{i}}{g_{i}}=\frac{1}{e^{\beta_{i}}-1} \tag{1r-97}
\end{equation*}
$$

لازم بهتذكر است كه شرايط ثابت بودن تعداد ذرات را بر روى توزيع اعمال نكردهايم زيرا نونها

 حالتهاى كوانتم مجاز (كوجكرين حج h^{3}
 طرن ديگر تراز انرزیى حجم جزئى در فضاى فازى يكث بوسته كروى را انتخاب كرده :

$$
V \times 4 \pi p_{i}^{2} d p_{i}
$$

تعداد حالتهاى كوانتم در اين حجم رابهوسيله رابطه زير سحاسبه بىكنيم.

$$
\begin{equation*}
g_{i}=\frac{4 \pi V p_{i}^{2} d p_{i}}{h^{3}} \tag{1r-9v}
\end{equation*}
$$

اين رابطه بايد در يكك ضريب Y ضربگر
 نتيجه ميگيريم:

$$
N_{i}=\frac{8 \pi V p_{i}^{2} d p_{i}}{h^{3}\left(e^{\beta_{i}}-1\right)}
$$

يكبار ديگر يادآورى مىنود كك حجم V است.اين در واتع عددى داراى انززیى بين بهاين مطلب كه از معادله ((1 (

$$
p_{i}^{2}=\frac{h^{2} v_{i}^{2}}{c^{2}} \quad d p_{i}=\frac{h d v_{i}}{c}
$$

ممكن است بر حسب فركانس بيان گرددد بهطورىكه

$$
N_{i}=\frac{8 \pi V v_{i}^{2} d v_{i}}{c^{3}\left(e^{\beta h v_{i}}-1\right)}
$$

بدين تر تيب تعداد فتونها بر واحد حجم و بر واحد ذركانس برابر است ب!

$$
\frac{d N}{V d v}=\frac{N_{i}}{V d v_{i}}=\frac{8 \pi v^{2}}{c^{3}\left(e^{\beta h \nu}-1\right)}
$$

vi در اينجا فز
 واسد فركانس برابير است با

$$
\begin{equation*}
u_{\nu}=\frac{8 \pi h v^{3}}{c^{3}\left(e^{\beta h \nu}-1\right)} \tag{1r-99}
\end{equation*}
$$

 بهصورت زير نوشته شود.

$$
\begin{equation*}
u_{\lambda}=\frac{8 \pi h c \lambda^{-5}}{e^{h c / \lambda k T}-1} \tag{1r-99a}
\end{equation*}
$$

كه حالّ
مى توان نشان داد كه انرزّى تابشى انتشار يإته از سططعى در داخل سصفظه بسته (حفره) بر واحد
سطع و بر واحد زمان و بر واحد طول موج،

$$
E_{b \lambda}=\frac{u_{\lambda} c}{4}
$$

بهطورىكه

$$
E_{b \lambda}=\frac{2 \pi h c^{2} \lambda^{-5}}{e^{k c / \lambda k T}-1}
$$

$$
E_{b \lambda}=\frac{c_{1} \lambda^{-5}}{e^{c_{2} / \lambda T}-1}
$$

$$
E_{b}=\int_{0}^{\infty} E_{b \lambda} d \lambda=\int_{0}^{\infty} \frac{c_{1} \lambda^{-5} d \lambda}{c^{c_{2}} \beta T-1}=\sigma T^{4}
$$

1- Stefan-Boltzmann constant
2- Emissive power

بيان مىكند. تابش حرادتى با توجه بـهايـن حـقيقت كـه بهدمـا بسـتگگى دارد از سـاير انـواع تـابش الككر ومغناطيسى تميز داده مىشود.
بعضى از ثابتهاى مناسبس برايى استفاده در فرمولهاى تابش عبارث است از :

$$
\begin{aligned}
& \sigma=5.669 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} . \mathrm{K}^{4}=1.714 \times 10^{-9} \mathrm{Btu} / \mathrm{h} \cdot \mathrm{ft}^{2} .{ }^{\circ} \mathrm{R}^{4} \\
& c_{1}=3.743 \times 10^{-8} \mathrm{~W} \cdot \mu \mathrm{~m}^{4} / \mathrm{m}^{2}=1.187 \times 10^{8} \mathrm{Btu} . \mu \mathrm{m}^{4} / \mathrm{ft} \cdot \mathrm{~h} \\
& c_{2}=1.4387 \times 10^{4} \mu \mathrm{~m} . \mathrm{K}=2.5896 \times 10^{4} \mu \mathrm{~m} \cdot{ }^{\circ} \mathrm{R}
\end{aligned}
$$

مثال
كل انززى صادر شده بهوسيله يك تابنده ايدهآل رادر Y Y K K محاسبه كنيد.

در اراثه بنيادين روش آمارىى نهسل دوازدهم و در كاربر دهاى اين مدلهاى آمارى در اين نصل ذراتى مورد نظر بودهاند كه با يكدبگر عكسالعمل داخلى نداشتهاند. ارتعاش اتمها در يكت جـسم جامد

1- Ensembles and interacting systems

$$
\begin{aligned}
& E_{b}=\sigma T^{4}=\left(5.669 \times 10^{-8}\right)(1000)^{4} \\
& =56.69 \mathrm{~kW} / \mathrm{m}^{2}=5.669 \mathrm{~W} / \mathrm{cm}^{2} \\
& T=Y \cdots K \\
& E_{b}=\left(5.669 \times 10^{-8}\right)(2000)^{4}=907 \mathrm{~kW} / \mathrm{m}^{2}
\end{aligned}
$$

بـر فتار اتمهاى مجاور آنها بستگى دارد. اما هنوز در تـــتـت آمارى تحليل مورد نظر، ذرّات بهموروت

 تاككون بررسى شده مجموعهاى منزوى از ذرات فرض كل و هـينطور تعداد كل ذرات ثابت است.

 خلاصهاى از نكات عمده آن رادر اين بخش ارارائه خواهيميم نمود.

 N انر

متوسط نـونه مذكور برابر است با

$$
U=\sum_{i} \eta_{i} U_{i}
$$

تعداد كل سيستههاث فزعى برابر \quad است بططورىكه

$$
\eta=\sum_{i} \eta_{i}
$$

ما علاتهند بهتعداد روشهاى آرايش سيستمهاى فرعى در بين حالتهاى گوناگون معادله (- (- Y (1) بهصورت زير محاسبهگرديده بود.

$$
\Omega=\frac{\eta!}{\Pi \eta_{i}!}
$$

 بنيادى توزيع MB نـل دوازدمم دارند. بايد بهخاطر سيرد امطلِح مجموعه تـداخـل انرزيهـاى

 اما انرزّى و تعداد ذرات در هر سيستم فزعى مدكن است تغيير كند. بدين طريق ما قادر بهمطـالعه

 جندتايمى بهكار گر فته شوند. البته باتوجه بهامكانات موجود برايى تحليل سيستههاى ليزيكى بُغر نجتر، اين

يِجيدگى تو جيه شده الست.

V و انز زى ثابت هستند.
تادر نتواهيم بود كه بـحث خود را درباره مجموعهها بيشتر از اين گكترش دهيم بجز اين كه
 است. براى اطلاعات بيشتر در اين مورد خواننده ممتواند بهمأخذهاى داده شده در انتهاى فصل مذكور مراجعه نهايد.

خود آزمايى (سؤالات مرورى)

$$
1 \text { - تابع افراز هيست؟ }
$$

Y Y Y Y - r r r

- - F

 بحث كنيد.
در بيشتر برنامههاى علمى دبيرستانها (و بعضى داتثكـدهها) تأكيد زياد وجود دارد كه دماى صفر - V

مطلق بهعنـى انرُّى حفر است. درباره اين مفهو مبـث كنيد. A

 9 - از نقضه نظر ميكروسكيى تفاوت بين هاديها، نيسههاديها و عايقهاى الكتر يكى را مشـخص كنيل. - If 10 - درجه آزادى جيست؟I 19 تفاوت بين مدلهأى اينشتين و دباى يكك جسم جامد رابيان كنيد. - IV
 19 - 19 - Y.

- Y ا تفاوت بين مدلهأى توزيع انرزى 1
_ Y Y
TY - Y درباره اثر ناخالصيها در رفتار نيـه هاديها بهـث كنيل.
 - Y -
 قانون الستفان-بولتزمن جيست؟ - YV

مسائل

$1 r-1$

$$
\begin{aligned}
& \text { (1-1 - تابش جسم سياه جيست؟ } \\
& 11 \text { - آنترو بی דيسـت? } \\
& \text { - } 1 \text { - }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ترماهاى ويزٔه جامدات زير را تخمين بزنيد: } \\
& \text { Y. . K 6 1. . K 6F. K الف) سديم در (1) }
\end{aligned}
$$

 هرشخشم رابرای سالات زير سساب كنيد:

$$
\begin{aligned}
& \frac{T}{\theta_{\text {rot }}}=\cdot / r \quad \text { (الف) } \\
& \frac{T}{\theta_{\text {rot }}}=\cdot / \Delta \\
& \frac{T}{\theta_{\text {rot }}}=\cdot / \wedge \\
& \frac{T}{\theta_{r o t}}=1 / \cdot \text { (ب) }
\end{aligned}
$$

نتايج اين جهار جـمله اوليه سرى را با منحنى شـكل I Y-Y بقايسه كنيد. تراز انرزی يزمى را برای نقره و تنگگتن تخمين بزنيد.

$$
\begin{aligned}
& T=, ~ K(ا ل ف) \\
& T=\Delta \cdot \mathrm{K} \quad \text { (ب) } \\
& T=1 \cdots \mathrm{~K} \quad \text { (ج) } \\
& T=\mathrm{r} \cdot \mathrm{~K} \quad \text { (s) } \\
& T=\Delta \cdots \mathrm{K} \quad(\infty)
\end{aligned}
$$

درباره منحنى مذكور بهعث نمايد.

$$
\begin{aligned}
& \text { است برايى دماهاى زير رسم كنيد: } \\
& T=\text {, K (الف) } \\
& T=\Delta \cdot K \quad \text { (ب) } \\
& T=1 \cdots K \quad \text { (ج) } \\
& T=\mu \ldots \mathrm{K} \text { (} \mathrm{H}^{2} \\
& T=\Delta \cdots \mathrm{K} \quad(\infty)
\end{aligned}
$$

منحنيها را در ظاصله نظر گرفته شده است. براى اين محاسبه عرض نوار ممنوع را برابر eV 1 در نظر بگيريد. درباره منتحنيها بحت كنيد.

بيشترين احتمال را والزد جيست؟

عبار تى برای انتالبى بر حسب تابع افراز بهدست Tاوريد. IT-1.

كنيد.
 مساسبه كنبد.

منحنيهای $\quad\left|Y_{\text {. }}\right| Y$

 تحداكثر سوعت بردارى الكترون آزاد در مس را در • مساسبه كنيد. IY-IV

 نقر ه از
(تخمين بزنيل.
(. 1 . . K K
 | Y_Y| \mid معاسبه كيد.
 بيشينهالى وجود دارد و اين نقطه بهوسيله رابطه زير داده شُده است.

$$
(\lambda T)_{\max }=5215.6 \mu \mathrm{~m} \cdot{ }^{\circ} \mathrm{R}
$$

'اين رابطه قانون جابدجا عى وين' ناميده شده است.

مــراجــع

1 Allis, W. P., and M. A. Herlin: "Thermodynamics and Statistical Mechanics," McGraw-Hill Book Company, New York, 1952.
2 Crawford, F. H.: "Heat, Thermodynamics and Statistical Physics," Harcourt, Brace \& World, New York, 1963.
3 Hill, L.: "Statistical Mechanics," McGraw-Hill Book Company, New York, 1956.
4 Lee, J. F., F. W. Sears, and D. L. Turcotte: "Statistical Thermodynamics," Addison-Wesley Publishing Company, Inc., Reading, Mass., 1963.
5 Mayer, J. E., and M. G. Mayer: "Statistical Mechanics," John Wiley \& Sons, Inc., New York, 1940.
6 Reynolds, W. C.: "Thermodynamics," 2d ed., McGraw-Hill Book Company, New York, 1968.

7 SchrOdinger, E.: "Statistical Thermodynamics," Cambridge University Press, Cambridge, 1952.
8 Sears, F. W.: "An Introduction to Thermodynamics, The Kinetic Theory of Gases, and Statistical Mechanics," Addison-Wesley Publishing Company, Inc., Reading, Mass., 1950.
9 Sommerfeld, A.: "Thermodynamics and Statistical Mechanics," Academic Press, Inc., New York, 1956.
10 Tolman, C.: "The Principles of Statistical Mechanics," Oxford University Press, London, 1938.
11 Tribus, M.: "Thermostatics and Thermodynamics," D. Van Nostrand Company, Inc., Princeton, N. J., 1961.
12 Hatsopoulos, G. N., and J. H. Keenan: "Principles of General Thermodynamics," John Wiley \& Sons, Inc., New York, 1965.
13 Fay, J. A.: "Molccular Thermodynamics," Addjson-Wesley Publishing Company, Inc., Princeton, N.J., 1961.

14 Knuth, E. S.: "Introduction to Statistical Thermodynamics," McGraw-Hill Book Company, New York, 1966.

A ${ }^{\text {P }}$

جدول A-I ثابتهاى هيزيكى مهم

$$
\begin{aligned}
N_{0} & =6.022045 \times 10^{26} \text { molecules } / \mathrm{kg} \mathrm{~mol} \\
\Re & =1545.35 \mathrm{ft} . \mathrm{lbf} / \mathrm{bm} . \mathrm{mol} .{ }^{\circ} \mathrm{R} \\
& =8314.41 \mathrm{~J} / \mathrm{kg} \mathrm{~mol} . \mathrm{K} \\
& =1.986 \mathrm{Btu} / \mathrm{lbm} . \mathrm{mol} .{ }^{\circ} \mathrm{R} \\
& =1.986 \mathrm{kcal} / \mathrm{kg} \mathrm{~mol} . \mathrm{K} \\
h & =6.626176 \times 10^{-34} \mathrm{~J} \\
k & =1.380662 \times 10^{-23} \mathrm{~J} / \mathrm{molecule} . \mathrm{K} \\
& =8.6173 \times 10^{-5} \mathrm{eV} / \mathrm{molecule} . \mathrm{K} \\
c & =2.997925 \times 10^{8} \mathrm{~m} / \mathrm{s} \\
g & =32.174 \mathrm{ft} / \mathrm{s}^{2} \\
& =9.80665 \mathrm{~m} / \mathrm{s}^{2} \\
m_{e} & =9.1095 \times 10^{-31} \mathrm{~kg} \\
e & =1.602189 \times 10^{-19} \mathrm{C} \\
\sigma & =0.1714 \times 10^{-8} \mathrm{Btu} / \mathrm{h} . \mathrm{ft}^{2} \cdot \mathrm{R}^{4} \\
& =5.67032 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}^{4}
\end{aligned}
$$

ثابت بلانگت
ثابت بولتز من
سرعت نور در خلا
شتابـ جاذبةٌ ثقلى استاندارد
جرم الكـر ون
بار الكترون

ترموديناميك		Q AY
	جدول A-Y ضرايب تبديل	
1 cm	$=0.3937 \mathrm{in}=10^{4} \mu \mathrm{~m}=10^{4} \mathrm{~A}$	طول
1 in	$=2.540 \mathrm{~cm}$	
1 ft	$=0.3048 \mathrm{~m}$	
1 lbm	$=0.45359237 \mathrm{~kg}$	جرم
1 slug	$=32.174 \mathrm{lbm}$	
1 N	$=10^{5} \mathrm{dym}$	نيرو
1 lbf	$=444822 \mathrm{dyn}=4.44822 \mathrm{~N}$	
1 kgf	$=9.80665 \mathrm{~N}$	
	$=1.0$ kilopond	
1 Pa	$=1 \mathrm{~N} / \mathrm{m}^{2}$	نثـار
$1 \mathrm{lbf} / \mathrm{in}^{2}$	$=2.036 \mathrm{inHg}$ at $32^{\circ} \mathrm{F}=6894.76 \mathrm{~Pa}$	
1 inHg	$=33864 \mathrm{dyn} / \mathrm{cm}^{2}=0.0334 \mathrm{~atm}$	
	$=0.491 \mathrm{lbf} / \mathrm{in}^{2}$	
1 atm	$=14.69595 \mathrm{lbf} / \mathrm{in}^{2}=760 \mathrm{mmHg}$ at $32^{\circ} \mathrm{F}$	
	$=29.92 \mathrm{inHg}$ at $32^{\circ} \mathrm{F}=2116.21 \mathrm{lbf} / \mathrm{ft}^{2}$	
	$=1.01325 \times 10^{5} \mathrm{~Pa}$	
$1 \mathrm{kgf} / \mathrm{cm}^{2}$	$=9.80665 \times 10^{4} \mathrm{~Pa}$	
1 bar	$=10^{5} \mathrm{~N} / \mathrm{m}^{2}=0.98692 \mathrm{~atm}$	
1 liter	$=0.2642 \mathrm{gal}=0.0353 \mathrm{ft}^{3}=61.03 \mathrm{in}^{3}$	حجم
1 gal	$=231 \mathrm{in}^{3}$	
$1 \mathrm{ft}^{3}$	$=28.3168$ liters $=7.4805 \mathrm{gal}=0.0283168 \mathrm{~m}^{3}$	
$1 \mathrm{in}^{3}$	$=16.387 \mathrm{~cm}^{3}$	
1 Btu	$=778.16 \mathrm{ft} .1 \mathrm{bf}=252.16 \mathrm{cal}=1055.04 \mathrm{~J}$	انزدى
$1 \mathrm{ft.lbf}$	$=1.3558 \mathrm{~J}$	
1 J	$=1 \mathrm{~N} \cdot \mathrm{~m}=10^{7} \mathrm{ergs}$	
1 cal	$=4.1854 \mathrm{~J}$ (ترموشيميايى)	
1 W	$=1 \mathrm{~J} / \mathrm{s}=860.13 \mathrm{cal} / \mathrm{h}=3.413 \mathrm{Btu} / \mathrm{h}$	توان
1 hp		
	$=2545 \mathrm{Btu} / \mathrm{h}$	

$90 r$		A
	جدول A-r (اد10)	
${ }^{\circ} \mathrm{F}$	$=1.8{ }^{\circ} \mathrm{C}+32$	Los
${ }^{\circ} \mathrm{R}$	$={ }^{\circ} \mathrm{F}+459.67$	
K	$={ }^{\circ} \mathrm{C}+273.15$	
${ }^{\circ} \mathrm{R}$	$=1.8 \mathrm{~K}$	
$1 \mathrm{Btu} / \mathrm{lbm} .{ }^{\circ} \mathrm{F}$	$=4186.8 \mathrm{~J} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}$	متفر ته
1 Btu/bm	$=0.5559 \mathrm{cal} / \mathrm{g}$	
	$=2326 \mathrm{~J} / \mathrm{kg}$	
$1 \mathrm{ft}^{3} / \mathrm{lbm}$	$=0.062427 \mathrm{~m}^{3} / \mathrm{kg}$	

SI مشتقات آحاد A-Y جدول

واحد بيان شُده بر حسب آحاد اصلى يا مكمل	نشانهياعلامت اختصسارى واحد، جايعىكه باشكل اصلى متفاوت باشد	نام(هاى) واحد	كميت
m^{2}		متر مربع	مساحت
m^{3}		متر مكعب	-
s^{-1}	Hz	هر تز،	فركانس
$\mathrm{kg} / \mathrm{m}^{3}$		كيلوگرم بر متر مكعب	
m / s		متر بر ثانيه	سرعت
$\mathrm{rad} / \mathrm{s}$		راديان بر ثانبه	مرعت زاوبهاءى
$\mathrm{m} / \mathrm{s}^{2}$		متر بر مربع ثانيه	نـتابِ
$\mathrm{rad} / \mathrm{s}^{2}$		رادبان بر مربي بر بانيه	ثتّاب زاويهاى
$\mathrm{m}^{3} / \mathrm{s}$		متر مكعب بر نانيه	2بى حجى جريبن
$\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}^{2}$	N	نيرنن	نيرو
$\mathrm{kg} / \mathrm{s}^{2}$	$\mathrm{N} / \mathrm{m}, \mathrm{J} / \mathrm{m}^{2}$	نيوتن بر متر، ز'ول بر	كـتش سطحى
		متر مربع	
$\mathrm{kg} / \mathrm{m} \cdot \mathrm{s}^{2}$	$\mathrm{N} / \mathrm{m}^{2}, \mathrm{~Pa}$	نيوتنبر مترمربع،	كنـا
$\mathrm{kg} / \mathrm{m} . \mathrm{s}$	$\mathrm{N} . \mathrm{s} / \mathrm{m}^{2}, \mathrm{Pl}$		لزجت، دينّاكِك
$\mathrm{m}^{2} / \mathrm{s}$		براز متر مربع بر ثانيه	لزجّ،
			انتـبار، هدا ها
kg.m²/ ${ }^{2}$	J, N.m, W.s	زورل، نيرتن متر، وات ـ ثانبه	كار، گُشـاور، انرزيى، كميت حرارت
kg. $\mathrm{m}^{2} / \mathrm{s}^{3}$	W, J/s	وات	توان، نلوى حرادرتى
$\mathrm{kg} / \mathrm{s}^{3}$	$\mathrm{W} / \mathrm{m}^{2}$	وات بر متر مربع	جكانلى نلرى حرانى
$\mathrm{kg} / \mathrm{m} \cdot \mathrm{s}^{3}$	$\mathrm{W} / \mathrm{m}^{3}$	وات بر منر بكعب	نرخ حجى حرإرت
$\mathrm{kg} / \mathrm{s}^{3}$. deg	$\mathrm{W} / \mathrm{m}^{2}$. deg	وات برمترمربی- درجه	ضريب انتقال
$\mathrm{m}^{2} / \mathrm{s}^{2}$	J/kg	زول بر كـلوگّرم	ترّاي نهان انتاليى (مخصرص)

جدول A-Y (ادامه) مئتقات آحاد SI

909

جدول A- A ثابتهاى بحرانى

$z{ }_{\text {c }}$	$\frac{\mathrm{lbm}}{\frac{\mathrm{ft}}{} \mathrm{j} / \mathrm{mol}}$	$\mathrm{cm}^{3 /} \mathrm{mol}^{\dagger}$	$\begin{gathered} p_{c} \\ \mathbf{a t m} \end{gathered}$	$\begin{gathered} \boldsymbol{T}_{c} \\ \mathbf{K} \end{gathered}$	M	علامت	ماده
0.274	1.81	113	61.6	309.5	26.038	$\mathrm{C}_{2} \mathrm{H}_{2}$	'استيلن
0.320	1.49	93.25	37.25	132.41	28.967		هر
0.243	1.16	72.5	111.3	405.4	17.032	NH_{3}	آمونياك
0.291	1.25	75	47.996	150.72	39.944	A	Tآرگن
0.274	4.17	260	48.6	562.6	78.114	$\mathrm{C}_{6} \mathrm{H}_{6}$	بنزن
0.274	4.08	255	37.47	425.17	58.124	$\mathrm{C}_{4} \mathrm{H}_{30}$	n- بونان
0.283	4.21	263	36.00	408.14	58.124	$\mathrm{C}_{4} \mathrm{H}_{10}$	ايزوبو
0.277	3.84	240	39.7	419.6	56.108	$\mathrm{C}_{4} \mathrm{H}_{8}$	ا-
0.275	1.51	94	72.90	304.20	44.011	CO_{2}	دى اكـــيدكربن
0.294	4.42	93	34.529	132.91	28.011	CO	منو أكـيدكربن
0.272	4.42	276	45.0	556.4	153.839	CCl_{4}	ترا
			16.421	38.43	4.029	D_{2}	n ـ ديتريم
0.237	11.5		17.9	659	170.340	$\mathrm{C}_{12} \mathrm{H}_{26}$	دو دكان
0.285	2.37	148	48.20	305.43	30.070	$\mathrm{C}_{2} \mathrm{H}_{6}$	أتان
0.262	4.53	282.9	35.6	467.8	74.124	$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$	1-تيل انتر
0.270	1.99	124	50.50	283.06	28.054	$\mathrm{C}_{2} \mathrm{H}_{4}$	اتبلن
0.279	3.47	217	40.6	385.16	120.925	$\mathrm{CCl}_{2} \mathrm{~F}_{2}$	F-IT
0.308	0.929	58	2.26	5.19	4.003	He	هلـم
0.260	6.82	426	27.00	540.17	100.205	$\mathrm{C}_{7} \mathrm{H}_{16}$	n-
0.264	5.89	368	29.94	507.9	86.178	$\mathrm{C}_{6} \mathrm{H}_{14}$	nـ هـغزان
0.304	1.04	65	12.797	33.24	2.016	H_{2}	ميدروزن
0.284	1.57	98	88.8	373.7	34.082	$\mathrm{H}_{2} \mathrm{~S}$	سولفيد مبدرورّن
					200.610	Hg	-
0.290	1.59	99	45.8	190.7	16.043	CH_{4}	متان
0.251	1.81	113	58.0	317.71	34.035	$\mathrm{CH}_{3} \mathrm{~F}$	فلوريد متيل
0.308	0.668	41.7	26.86	44.39	20.183	Ne	نؤون
0.256	0.929	58	65.0	179.2	30.008	NO	اككيد نينريك

$$
\dagger-\left(1 \mathrm{~cm}^{3} / \mathrm{g} \mathrm{~mol}=10^{-3} \mathrm{~m}^{3} / \mathrm{kg} \mathrm{~mol}\right)
$$

－515：355c	$(8)^{2} \mathrm{OS}$	L0＇t9	OELLZI－	$016962-$	027621 －	0LEOOE－	0t゙ 6S	£ $¢ 8 \downarrow \square$
150	（8） $\mathrm{HO}^{5} \mathrm{H}^{2} \mathrm{~J}$	20＇9t	Oeziol－	01Esez－	0zszl－	0LS891－	t5 19	65.882
｜roser	（9） $\mathrm{HO}^{\varepsilon} \mathrm{HO}$	Soze	0t598－	0L9002－	00269－	000291－	$6 \sigma^{\circ} \mathrm{LS}$	0L＇6Ez
号	（8）${ }^{(0)} \mathrm{H}^{9} \mathrm{O}$	IT8L	0895E＋	0E628＋	08LSS＋	0996 I＋	セど5	02\％ 69
$u-90$	（8）${ }^{3 l} \mathrm{H}^{8}$ ）	でもした	08968－	0St80z－	0ill +	0¢591＋	SS III	£L＇ $99{ }^{\text {¢ }}$
\boldsymbol{u}－	（8）${ }^{9} \mathrm{H}^{\text {c }} 5$	02001	00808－	028L81－	06 tE	0ll8－	たでで1	Lぐくで
$u-\mathrm{nc}$	（8）${ }^{\prime \prime} \mathrm{H}^{9} \mathrm{O}$	L198	066t L－	002L91－	9ZI－	E6z－	E8 26	0ヶ＊ 88ε
\boldsymbol{u}－m？	（8）${ }^{2 l} \mathrm{H}^{5}$	SIZL	$000 ¢ 9$－	0ヶt9けI－	009E－	09 E －	＋E¢ 8	69^{818}
$\boldsymbol{u} \boldsymbol{- 8}$ \％		2185	0L2tS－	0st9zi－	$0929-$	0LCSI－	いいもし	21＊0IE
\％rin	（8）${ }^{8} \mathrm{H}^{\text {¢ }}$ O	60%	0896＋－	058E0I－	Solot－	06tcz－	IS ${ }^{\text {t9 }}$	1669
N\％\％	（8）${ }^{9} \mathrm{H}^{\text {¢ }}$ O	80%	$0628+$	$01502+$	08692＋	0ZLて9＋	$08{ }^{\text {¢ }}$ ¢	16998
$1 \mathrm{~A}^{\text {？}}$	（8）${ }^{4} \mathrm{H}^{2} 5$	LOOE	02t9\％－	08978－	OSItI－	0682£－	$58^{\circ} \mathrm{ts}$	6t＇6zz
ITr	（8）${ }^{4} \mathrm{H}^{2}$	5088	$06 t z z+$	08zzs＋	9026z＋	02189＋	ts 28	£8 612
－	（8）${ }^{2} \mathrm{H}^{2} 5$	t0＇92	0¢SL6＋	0eL9zz＋	$00006+$	0Lt602＋	008	$5800{ }^{\circ}$
\square	（8）＇ H	＋0＇91	01zze－	058\％L－	098Iz－	$06 \mathrm{LOS}-$	66° to	91「981
169	（8）${ }^{\boldsymbol{\varepsilon}} \mathrm{HN}$	t0 LI	OSL6I－	0619t－	0til－	06591－	L6．St	£E 261
\％15\％mider	（8）${ }^{2} \mathrm{O}^{2} \mathrm{H}$	20＊）	0t985－	01E9EI－	OEtSt－	009501－	095	£9 2¢z
$1 \sim$（ $\mathrm{m}^{\text {2）}}$	（1）${ }^{2} \mathrm{H}$	2081	0L6zzi－	0 08582－	0tozol－	08LLEz－	LL＇9 9	2669
$1-19$（	${ }^{(8)} \mathrm{O}^{2} \mathrm{H}$	2081	0totol－	0Z8Itz－	OSE86－	065827－	II＇St	2L＇ 88 I
cs 1505	${ }^{(8)}{ }^{2} \mathrm{O}$	10%	00E69I－	02SE6E－	089691 －	09Et6E－	L0 is	ค9 ¢ ¢
\％ 15	（8）03	$10 \% 8$	OtSLT－	OESOLI－	0106s－	OSLLEI－	しでく	95－661
150	${ }^{(8)}{ }^{2} \mathrm{O}$	00 ZE	0	0	0	0	006	E0＇ 00
virer？	${ }^{(8)}{ }^{\text {r }} \mathrm{H}$	810 Z	0	0	0	0	Iで 1 ¢	LS OEI
5 Sin（	（8）3	10＇zı	09608＋	0068LL＋	025682＋	0862L9＋	$9 L^{\circ} \mathrm{LE}$	66.151
$5 \sin (\mathrm{SH}$	（s） 3	tozt	0	－	0	0	9 E －	$t L^{\circ} \mathrm{s}$

 $\longrightarrow{ }^{s}$
＊65 L－v V
جدول A-Y خواص T T ب : جدول دماي اشباع (آ-هاد اتايسم)

		حجهم ماصوص				بانتاليى			آنترويف			
		مايع اشباع	بخار الثباع	مايع اشباع	\| بیار اششباع	مابع اششاع	تبنخير	\mid	مايع 'شاءباع	تبختير	بهار أشاع	
300	66.98	0.01745	6.472	269.5	110000	2697	910.4	1180.2	0.4772	1.1984	1.6356	00
310	77.64	0.01759	5.632	279.8	1102.1	2801	903.0	1183.0	0.4507	11731	1.6238	310
320	89.60	0.01765	4.919	290.1	1104.2	290.4	895.3	1185.8	0.4640	11483	3.6123	320
330	103.00	0.01776	4.312	300.5	1106.2	300.8	887.5	1188.4	0.4772	1.1238	1.6010	330
340	117.93	0.01787	3.792	310.9	1108.0	3113	879.5	1190.8	04×13	1.0997	1.5901	340
350	13453	0.01799	3.346	321.4	$114 \% .8$	321.8	871.3	1193.1	0.5033	1.0760	1.5791	350
360	152.92	0.01811	2.961	331.8	1111.4	332.4	862.9	1195.2	0.5162	1.0526	1.5688	360
376	173.23	0.01823	2.628	3.32 .4	1112.9	343.0	8542	1197.2	05289	10795	1.5585	370
38)	195.60	0.01836	2.339	353.0	1114.3	353.6	845.4	1199.0	0.4416	1.0064 7	1.5483	380
36	220.2	0.01850	2.087	363.6	1115.6	3643	8362	1200.6	0.9542	09841	1.5383	390
400	2471	0.01864	1.866	374.3	1116.6	375.1	8268	1202.0	0.5067	0.6.17	1.5284	400
410	276.5	0.01878	1.673	385.0	1117.6	386.0	817.2	1203.1	0.5792	0.9795	15187	410
470	308.5	0.01894	1502	395.8	1118.3	3\%99	8072	12041	0.5915	09175	15091	420
430	343.3	0.019 (*)	$13 ¢ 2$	406.7	11189	407.9	7\%.9	1204.8	0.6038	0.8957	$1.49 \% 5$	430
440	$3{ }^{3} 1.2$	0.019 26	1.219	417.6	1119	419.0	786.3	12053	0.6161	0.8740	14900	449
450	422.1	0.01943	1.1811	428.6	1119.5	430.2	775.4	12054	0.6282	0.8523	1.4800	450
460	466.3	0.01961	0.9781	439.7	11196	441.4	764.1	1205.9	0.6404	0.8308	1.4712	450
470	514.1	0.01980	0×125	450.9	11194	452.8	752.4	12052	0.6525	0.8093	1.4618	470
480	565.5	0.020 00	0.4187	462.2	1118.9	468.3	740.3	12044	0.6646	0.7878	1.4524	480
490	630.7	0.02121	0.7436	473.6	1118.3	475.9	727.8	12037	0.6767	0.7683	1.4430	490
500	680.0	0.02043	0.6761	485.1	11174	4877	714.8	12029	06888	0.7448	1.4335	5
520	B11.4	0.02091	0.5605	508.5	1114.8	511.7	687.3	1198.9	07170	0.7015	1.4145	520
540	961.5	0.02145	0.4658	532.6	117.0	536.4	657.5	1193.8	07374	0.8576	1.3950	540
560	1131.8	0.02207	0.3877	548.4	1105.8	562.0	625.0	1187.0	0.7620	06129	1.3749	56
580	1324.3	0.02278	0.3225	583.1	1698.9	588.6	5893	1178.0	6.7872	0.5668	1.3540	580
600	1541.0	0.02363	0.2677	609.9	1090.0	616.7	549.7	1166.4	0.8130	0.5187	13317	600
620	1784.4	0.02465	0.2209	638.3	1078.5	646.4	5050	1151.4	0.8398	04677	1.3076	620
640	2057.1	0.02593	0.1805	668.7	1063.2	678.6	4534	1131.4	0.8681	04122	1.2×183	640
660	2362	0.02767	0.1446	702.3	1042.3	14.4	391.1	1105	0.8990	0.3493	1.2483	660
680	2709	0.03032	0.1113	741.7	1011.0	756.9	309.8	1066.7	0.9150	0.2718	1.2016	680
700	3098	0.036 cc	0.0744	801.7	947.7	822.7	167.5	990.1	0.9902	0.1444	1.1346	700
705.4	3204	0.05053	005053	872.4	872.6	902.5	0	902.5	1.0580	0	10589	70.4

	$\begin{aligned} & \text { h } \\ & \text { p, } \\ & \text { bars } \end{aligned}$			tit		انتالمِ				
		مالع اشباع	بطار اشثباع	مايع أهباع	\|بخّأر اشباع	مايع اشهباع	$\begin{aligned} & \text { تبخير } \\ & \text { hin } \end{aligned}$		هايع انيباع	بهار الشباع
0	0.00011	1.0002	206278	$\cdot 0.03$	2375.4	-10 02	2.01 .4	25013	$--0.0001$	9.1565
5	0.00872	$1 .(0001$	147!20	20.97	23421	20.48	2489.6	25106	00761	9.0257
10	0.01228	1.0004	106379	42.00	23892	42.01	2477.7	2×198	0.1510	8.9008
15	0.01705	1.0009	77926	62.99	23\% 1	52.59	2465.4	2×28.9	0.2245	8.7814
20	0.023 .39	1.0018	57791	81.95	24029	83.96	2454.1	2598.1	0.246%	8.6672
25	0.03169	10029	43160	104.86	2409.8	104.89	2442.3	2547?	0.3674	8.5580
30	0.04246	1.0043	32894	125.78	2416.6	125.79	2430.5	25563	0.1369	8.4533
35	0.056 2B	1.0060	25216	145.67	2423.4	14668	24.8 .6	25653	05053	8.3531
40	0.07384	1.0078	19523	16750	2470.1	16757	2406.7	2574.3	0.5725	8.2570
45	0.09593	1.0099	152.56	18844	24368	188.45	2394.8	25812	0.6 .187	8.1548
90	0.1235	1.0121	12032	209.32	2443.5	209.33	23827	2592.1	0.7038	8.0763
55	0.1576	10146	9568	230.21	2450.1	23023	2376.7	26009	07679	79913
60	0.1994	10172	7671	251.11	2456.6	25113	23585	26046	0.8122	7.9096
65	(1)2503	1.0199	6197	2?202	2463.1	27204	23402	2618.3	08939	1.8310
70	0.3119	1.0228	5042	29295	24646	292.98	$2333 . \mathrm{K}$	$2626 . \mathrm{K}$	0.9549	7.7553
75	0.3858	1.0259	4131	31390	2475.9	313.93	2321.4	2635.3	1.0155	7.6824
80	0.4739	1.0291	3407	334.86	2482.2	3.491	23088	26.43. 7	1.075 .3	7.6122
85	0.5783	10325	2R28	355.84	2488.4	15590	22960	$26 \div 19$	1.144]	75445
90	0.7014	1.0360	2361	376.85	2494.5	37692	2283.2	2660.1	1.1925	7.4791
95	08455	1.0397	1982	397.88	2500.6	397.96	2270.2	2008.1	12500	7.4159
100	1.014	1.0435	1673.	41894	2506.5	419.04	2257.0	2676.1	1.3069	7.3549
110	1.433	1.0516	1210.	461.14	2518.1	461.30	2230.2	2691.5	1.4185	7.2387
120	1.985	1.0603	891.9	503.50	2529.3	503.71	2202.6	2766.3	1.5276	7.1296
130	2.701	1.0697	68.8 .9	546.02	2539.9	546.31	21742	27205	1.6144	7.0269
140	3.613	1.0797	50 H .9	588.74	2550.0	58913	21447	2733.9	17391	6.9299
150	4758	1.0505	392.8	63168	2559.5	6.32.20	2114.3	2746.5	1.8418	6.8379
160	6.178	1.1020	307.1	674.86	25684	675.55	2082.6	2758.1	1.9427	6.7502
170	7.917	1.1143	242.8	718.33	2576.5	719.21	2049.5	2768.7	2.0419	6.6663
180	10.02	1.1274	194.1	762.09	2581.7	763.22	2015.0	2778.2	2.1396	65897
190	12.54	1.1414	156.5	806.19	2590.0	807.62	1978.8	2786.4	2.2359	6.5079
200	15.54	1.1565	127.4	850.65	2545.3	R52.45	1940.7	2793.2	23309	6.4323
210	19.06	1.1726	104.4	895.53	2599.5	R97.76	1900.7	2798.5	2.4248	6.3585
220	23.18	1.1900	88.19	940.87	2602.4	943.62	18585	2802.1	2.5178	6.2861
230	27.95	1.2088	71.58	98674	2603.9	990. 12	18138	$2 \mathrm{BO4.0}$	2.6099	6.2146
240	33.44	1.2291	59.76	1033.2	2604.6	1037.3	17665	2803.8	2.7015	6.1437
250	39.73	1.2512	5013	1080.4	2602.4	10854	176.2	2801.5	2.7927	6.0730
260	46.88	1.2755	42.21	1128.4	2549.3	1134.4	1662.5	2796.9	2.8838	6.0019
270	54.99	1.3023	35.64	1177.4	2593.7	1184.5	1505.2	2789.7	2.9751	5.9381
280	64.12	1.3321	30.17	1227.5	2586.1	1236.0	1543.6	2779.6	3.0668	5.8571
290	7436	1.3656	25.57	1278.9	2976.0	1289.1	1477.1	2766.2	3.1594	5.7821
300	85.81	1.4036	21.67	1332.0	2563.0	1144.0	1404.9	2749.0	3.2534	5.7045
320	112.7	1.4988	15.49	1444.6	2525.5	14615	1238.6	2700.1	3.4480	\$.5362
340	145.9	1.6379	10.80	1570.3	2484.6	1594.2	1027.9	2622.0	3.6594	5.3357
360	186.5	1.8925	6.945	1752.2	2351.1	1760.5	720.5	2481.0	3.9147	5.0526
374.14	220.9	3.155	3.155	2029.6	2029.6	2099.3	0	2099.3	4.4298	4.4298

Sourcr: Abridged from Keenan, J. H., F. G. Keyes, P. G. Hill, and J. G. Moare. "Steam Tables." John Wiley \& Sons, Inc., New York, 1969.

	\|rem
 	± 5
	* ${ }^{\text {c }}$
	$=\frac{R}{E}$
	\cdots
	$+\frac{C}{\frac{C}{E}}$
	${ }_{\text {cke }}$

جدول A－AM خوام آب ：جدول لثار اشباع（آحاد S1）
v

$\begin{aligned} & \text { bid } \\ & \text { p, } \\ & \text { bary } \\ & \hline \end{aligned}$				انز⿰㇒⿻土一⿰丿⿺⿻⿻一㇂㇒丶		انثالبف			آنترو	
		مايع اشباع	بخار اشباع	هايع اشباع ${ }_{H}$	\|بحار اشباع	ثايع أثباع h_{f}		بكّاز اشباع	مايع اشباع	ع
0040	2896	1.1×140	34890.	121.45	24152	121.46	2432.9	2554.4	0.4226	R 4746
0060	36.16	1.0064	2.3729	151.53	2425.11	151.63	2415.9	2567.4	0.5210	8．3304
0.480	41.51	1.0084	18103.	173.87	24332	173.88	2403.1	2577.0	0．5926	8.2287
0.111	45.81	1.0102	14674.	191.82	2437.9	191.83	$2392 . \mathrm{K}$	2584.7	0.6493	4．1502
0.20	60.06	$1.01 \% 2$	7649.	251.36	2456.7	25140	2358.3	2609.7	0.8320	7.9085
0.30	69.10	1.0223	5229.	289.20	2468.4	289.23	2316.1	2625.3	0.9439	7.7686
0.40	75.87	1.0265	3993.	317.53	2477.0	317.58	2319.2	26.36 .8	1.0259	7.6700
0.50	81.13	1.0300	3240.	340.44	2483.9	340.49	2305.4	264.5 .9	1.0910	7.5939
0.60	K5．94	10331	2732.	359.79	2489.6	359.86	2293.6	2653.5	1.1453	7.5320
0.70	89.95	1.0760	2365 ．	376.63	2494.5	176.70	2283.3	2660.0	1.1919	7.4797
0.80	93.50	1.07818	20187.	391．54	2498.8	191.66	2274.1	26658	1.2329	74346
0.90	96.71	1.0410	1869．	405.06	2502.6	405．19	2265.7	2670.9	1.2605	73949
1.50	99.63	1．0432	$16,44$.	417．36	$2 \mathrm{th6.1}$	41746	2253.11	2675.5	1.3026	7.3594
1.50	111.4	1.052 k	11.59.	46×6.94	2519.7	467．11	2226.5	2693.6	1.4 .336	7.2233
2.00	120.2	1.0605	885.7	9114．49	2524． 5	904.70	2201.9	2706.7	1.5301	7.1271
250	127.4	1.0672	718.7	535.111	2537．2	53517	2181.5	2716.9	1.0072	70527
1.00	133.6	1.0732	fi05．8	5611．35	2543.6	561.47	2163.8	2725.1	1.6718	69919
3.50	138．9	1.078	524.1	583.45	25.48 .9	58431	2148.1	2732.4	1.7275	6.9405
480	143.6	1.0836	462.5	604.31	2553.6	604.74	2133.8	2738.6	1.7766	6.8959
4.50	147.9	1.0882	414.0	622.77	2557.6	$523{ }^{2} 5$	2120.7	2743.9	1.8207	6.8565
9.00	151.9	1.0926	374.9	639.68	2561.2	（40）23	2108.5	27487	1.8607	6.8213
6.00	158．9	11006	315.7	669.90	2567.4	67056	2086.3	2756.8	1.9312	6.7600
7.00	165.0	11080	272.9	69.44	2572.5	69722	2066.3	2763.5	1.9922	6．74R0
3．00）	170.4	$111+8$	240.4	220.22	2576.8	721.11	2048.0	2769.1	2.0462	66×128
9.00	175．4	1.1212	215.0	741.83	2580.5	74． 81	20311	2773.9	2.0946	6，6226
10.0	179.9	1．127．	154.4	761.68	2983.6	762.81	2015．3	2778.1	2.1387	6.5863
15.0	198.3	1.1539	131.8	843.16	2594.5	844.89	1947.3	2792.2	2.3150	6.4448
30.0	212.4	11767	49.63	906.44	2600.3	908.79	1890.7	27995	2.4474	6.3409
25.0	224.0	1.1973	79.88	959.11	2603.1	\＄82．11	1841.0	2803.1	2.5547	6.2575
30.0	233.9	1.216 .5	66.68	10048	2604.1	1008.4	1795.7	2804.2	2.6457	6.1869
35.0	242.6	1.2347	57.07	11945．4	2603.7	1049.8	1753.7	2803.4	2.7253	6.1253
40.0	750.4	1.2522	44.78	1082.3	2602.3	108？ 3	1714.1	2801.4	2.7964	6.0701
45.0	257.5	1.2692	44.06	1116.2	2600.1	11219	1676.4	2798.3	2.8610	6.1199
51.0	264.0	1.2859	3944	1147.8	2597.1	1154.2	1640.1	2794.3	2.9202	5.9734
60.0	275.6	$1.318{ }^{7}$	32.44	1205.4	2589.7	1213.4	1571.0	2784.3	3.0267	5.8892
71.0	285.9	1.1513	27.37	1257.6	2580.5	1267.0	1505.1	2772.1	3.1211	5.8133
80.0	295.1	1.1842	23.52	1305.6	25698	1316.6	1441.3	2758.0	3.2068	5.7432
90.0	303.4	14178	20.48	1351 t． 5	2557.8	1363.3	1378.9	2742.1	3.2858	5.6772
100.0	311.1	1.4524	18.03	1393.0	2544.4	1407.6	1317.1	2724.7	7．3596	S．6141
110.0	318.2	1.4886	15.99	14.337	2529.8	1450.3	1255．9	2701.6	3.4295	5.5527
120.0	324.8	1.5267	14.26	1473．0	2513.7	1491.3	1193.6	2684.9	3．4962	5.4924
130.0	3309	1.5671	12.78	1511.1	2496．1	1531.5	1130.7	2562.2	3.5605	5.4323
140.0	336.8	1.6107	11.49	154B．6	2476.8	1571.1	1066.5	2637.6	3.6232	5.3717
150.0	． 342	1.6581	10.34	1585.6	2455.5	16！0．5	1000.0	2610.5	3.6848	5.3098
160.0	347.4	1.7107	9.306	1622.7	2431.7	1650.1	930.6	2580.6	3.7461	5.2455
170.0	352.4	1.7502	8.364	1660.2	2405.0	1690.3	856.9	2547.2	3.8079	5.1777
180.0	357.1	1.8197	7.489	1698.9	2374.3	1732.0	777.1	2509.1	3.871 .5	5.1044
190.0	3615	1.9247	6.657	1739.9	2338.1	1776.5	688.0	2464.5	3.9188	5.0228
200.0	365.8	2.036	5814	1785.6	2293.0	1826.3	583.4	2409.7	4.0139	4.9269
220.9	374.1	3.155	3.155	2029.6	2029.6	20\％9． 3	0	2099.3	4.4298	4．4298

Source：Abndged from Keenan．J．H．，F．G．Kcyes，P．G：Hill，and J．G．Moxre，＂Sieam Tables，＂John Wiley \＆Sons，hic．，New Yort，I9eg，

جدول A-4 خوام آب : بخطار داع (آحاد اتعليس) [Btu/lbm. ${ }^{\circ}$ R								
	0	*	A	s	t	-	h	5
${ }^{\circ} \mathrm{F}$	1 psia (101.TV)				$5 \mathrm{psim}\left(162.2^{\circ} \mathrm{F}\right)$			
Sat.	335.6	1044.0	1105.8	1.9779	73.53	1063.0	1131.0	4.8441
150	3625	1060.4	1127.5	2.0151				
200	392.5	10775	11.80 .1	2.0508	78.15	1076.0	1148.6	1.8715
2.50	422.4	1094.7	1172.8	2.0839	84.21	1093.8	1171.7	1.9052
300	452.3	1112.0	1195.7	2.1150	90.24	1111.3	1194.8	1.9367
400	511.9	1147.0	1241.8	2.1720	102.24	1146.6	1241.2	1.9941
500	571.5	1182.8	1288.5	2.2235	114.20	1182.5	1288.2	2.0458
600	6311	1219.3	1336.1	2.2706	126.15	$12!9.1$	133.5 .8	2.0930
700	6×0.7	1256.7	1384.5	2.3142	138.08	12.56 .5	1384.3	2.1367
800	750.3	1294.4	1433.7	2.3550	150.01	1294.7	1433.5	2.1775
900	1809.9	1333.9	1483.8	2.3932	161.94	1333.8	1483.7	2.2158
1000	869.5	1373.9	1534.8	2.4294	173.86	1373.9	1534.7	2.2520
	$10 \mathrm{psio}\left(193.2^{\circ} \mathrm{F}\right)$				14.7 psir ($\mathbf{2 1 2 . 8}{ }^{\circ} \mathrm{F}$)			
Sal.	38.42	10722	1143.3	1.7877	26.80	1077.6	1150.5	1.7567
200	38.85	1074.7	1146.6	1.7927				
250	41.95	1092.6	1170.2	1.8272	28.42	1091.5	1168.8	1.7832
300	44.99	1110.4	1193.7	1.8592	30.52	1109.6	1192.6	1.8157
400	51.03	1146.1	1240.5	1.9171	34.67	1145.6	1239.9	1.8741
500	57.04	1182.2	1287.7	1.9691)	38.77	1181.8	1287.3	1.9263
600	63.03	1218.9	1335.5	2.0164	42.86	1218.6	1335.2	1.9737
700	69.01	1256.3	1384.0	2.0601	46.93	1256.1	1383.8	2.0175
BOO	74.98	1294.6	1437.3	2.1009	51.00	1294.4	1433.1	2.0584
900	80.95	1333.7	1483.5	2.1393	55.0^{7}	1333.6	1483.4	2.0967
1000	86.91	1373.8	1534.6	2.1755	59.13	1373.7	1534.5	2.1330
1100	92.88	1414.7	1586.6	2.2099	63.19	1414.6	1586.4	2.1674
		20 psi	$\left.8.0^{\circ} \mathrm{F}\right)$			40 psi	$7.3{ }^{\circ} \mathrm{F}$)	
Sal.	20.09	10820	1156.4	1.7320	10.50	1093.3	1170.0	1.6767
250	20.79	10×0.3	1167.2	1.7475				
300	22.36	1108.7	1191.5	1.7805	11.04	1105.1	1186.8	1.6993
350	23.90	1126.9	1215.4	1.8110	11.84	1124.2	1211.8	1.7312
400	25.43	1145.1	1239.2	1.8395	12.62	1143.0	1236.4	1.7606
500	28.46	1181.5	1286.8	1.8919	14.16	1180.1	1284.9	1.8140
600	31.47	1218.4	1334.8	1.9395	15.69	1217.3	1333.4	1.8621
700	34.47	1255.9	1383.5	1.9874	17.20	1255.1	1382.4	1.9063
800	37.46	1294.3	1432.9	2.0243	18.70	1293.7	1432.1	1.9474
900	40.45	1333.5	1483.2	2.0627	20.20	1333.0	1482.5	1.9859
1000	43.44	1373.5	1534.3	2.0989	21.70	1373.1	1533.8	2.0223
1100	46.42	1414.5	1586.3	2.1334	23.20	1414.2	1585.9	2.0568

Source: Abridged from Kennan, J. H., F. G. Keyes, P. G. Hifl, and I, G Moore. 'Stean Tables." John Wiley \& Sons, Inc., New York. 1989.

	\boldsymbol{v}	4	h	5	v	\pm	h	5
${ }^{\circ} \mathbf{F}$	60 psis (292.7 ${ }^{\circ} \mathrm{F}$)				80 psid ($312.1^{\circ} \mathrm{F}$)			
Sat.	7.17	11998.3	1178.0	1.6444	5.47	1102.6	1183.6	1.6214
300	7.26	1101.3	1181.9	1.6496				
350	7.82	1121.4	1208.2	1.6830	5.80	1118.5	1204.3	1.6476
400	8.35	1140.8	1233.5	1.7134	6.22	1138.5	1230.6	1.6790
500	9.40	1178.6	1283.0	1.7678	7.02	1177.2	1281.1	1.7346
600	10.43	1216.3	1332.1	1.816 .5	7.79	1215.3	1330.7	1.7838
700	11.44	1254.4	1381.4	1.8609	8.56	1253.6	1380.3	1.8285
806	12.45	1293.0	1434.2	1.9022	9.32	1292.4	1430.4	1.8700
900	13.45	1332.5	1481.8	1.9408	10.08	1332.0	1481.2	1.9087
1000	14.45	1372.7	1533.2	1.9773	10.83	1372.3	1532.6	1.9453
1100	15.45	1413.8	1585.4	2.0119	11.58	1413.5	1584.9	1.9799
1200	16.45	1455.8	1638.5	2.0448	12.33	1455.5	1638.1	2.0130
	$100 \mathrm{psin}\left(927.8{ }^{\circ} \mathrm{F}\right)$				$120 \mathrm{psig}\left(341.3^{\circ} \mathrm{F}\right.$)			
Sat.	4.434	1105.4	1187.4	1.6034	3.730	1108.3	1191.1	1.5886
350	4.592	1115.4	1200.4	1.6191	3.783	1112.2	1196.2	1.5950
400	4.934	\$1.36.2	1227.5	1.6517	4.079	1133.8	1224.4	1.6288
450	5.265	1156.2	1253.6	1.6812	4.360	1154.3	1251.2	1.6590
500	5.587	1175.7	[279.]	1.7085	4.633	1174.2	1277.1	1.68868
600	6.216	1214.2	1329.3	1.7582	5.164	1213.2	1327.8	1.7371
700	6.834	1252.8	1379.2	1.8033	5.682	1252.0	1378.2	1.7825
800	7.445	1291.8	1429.6	1.8449	6.195	1291.2	1428.7	1.8243
900	8.053	1331.5	1480.5	1.8838	6.703	1330.9	1479.8	1.8633
1000	8.657	1371.9	1532.1	1.9204	7.208	1371.5	1531.5	1.9000
1100	9.260	1413.1	1584.5	1.9551	7.711	1412.8	1584.0	1.9348
1200	9.861	1455.2	1637.7	1.9882	8.213	1454.9	1637.3	1.9679
	$140 \mathrm{psiag}\left(353.1{ }^{\circ} \mathrm{F}\right)$				160 pria ($\mathbf{3 6 3 . 6} 6^{\circ} \mathrm{F}$)			
Sat.	3.221	1110.3	1193.8	1.5761	2.836	1112.0	1196.0	1.5651
400	-3.466	1131.4	1221.2	1.6088	3.007	1128.8	1217.8	1.5911
450	3.713	1152.4	1248.6	1.6399	3.228	1150.5	1246.1	1.6230
500	3.952	1172.7	1275.1	1.6682	3.440	1171.2	1273.0	1.6518
550	4.184	[192.5	1300.9	1.6945	3.646	1191.3	1299.2	1.6785
600	4.412	1212.1	1326.4	1.7191	3.848	1211.1	1325.0	1.7034
700	4.860	1251.2	1377.1	1.7648	4.243	1250.4	1376.0	1.7494
800	5.301	1290.5	1427.9	1.8068	4.6931	1289.9	1427.0	1.7916
900	5.739	1330.4	1479.1	1.8459	5.015	1329.9	1478.4	1.8308
1000	6.173	1371.0	1531.0	1.8827	5.397	1370.6	1530.4	1.8677
1100	6.605	1412.4	1583.6	1.9176	5.776	1412.1	1583.1	1.9026
1200	7.036	1454.6	1636.9	1.9507	6.154	1454.3	1636.5	1.9358

[BtuAbm. ${ }^{\circ} \mathrm{R}$ [بر-								
103	D	4	h	s	'	4	h	5
${ }^{\circ} \mathrm{F}$	180 psia ($373.1{ }^{\circ} \mathrm{F}$)				$200 \mathrm{psis}\left(381.8{ }^{\circ} \mathrm{F}\right.$)			
Sat.	2.533	1113.4	1197.8	1.5553	2.289	1114.6	1199.3	1.5464
400	2648	1126.2	1214.4	1.5749	2.361	1123.5	1210.8	1.5600
450	2850	1148.5	1243.4	1.6078	2.548	1146.4	1240.7	1.5938
500	3.042	1169.6	1270.9	1.6372	2.724	1168.0	1268.8	1.6239
550	3.228	1190.0	1297.5	1.6642	2.893	1188.7	1295.7	1.6512
600	3.409	1210.0	1323.5	1.6893	3.058	1208.9	1322.1	1.6767
700	3.76 .9	1249.6	1374.9	1.7357	3.379	1248.8	1373.8	1.7234
800	4.110	1289.3	1426.2	1.7781	3.693	1288.6	1425.3	1.7660
900	4.453	1329.4	1477.7	1.8174	4.003	1328.9	1477.1	1.8055
1000	4.793	1370.2	1529.8	1.8545	4.310	1369.8	1529.3	1.8425
1100	5.131	1411.7	1582.6	1.8894	4.615	1411.4	1582.2	1.8776
1200	5.467	1454.0	1636.1	1.9227	4.918	1453.7	16.35 .7	1.9109
	$250 \mathrm{psig}\left(401.0^{\circ} \mathrm{F}\right)$				$300 \mathrm{psia}\left(417.4^{\circ} \mathrm{F}\right)$			
Sat.	1.845	1116.7	1202.1	1.5274	1.544	1118.2	1203.9	1.5115
450	2.002	1141.1	1233.7	1.5632	1.636	1135.4	1226.2	1.5365
500	2.150	1163.8	1263.3	1.5948	1.766	1159.5	1257.5	1.5701
550	2.290	1185.3	1291.3	1.6233	1.888	1181.9	1286.7	1.5997
600	2.426	1206.1	1318.3	1.6494	2.004	1203.2	1314.5	1.6266
700	2.688	1246.7	1371.1	1.6970	2.227	1244.0	1368.3	1.6751
800	2.943	1287.0	1423.2	1.7301	2.442	1285.4	1421.0	1.7187
900	3.193	1327.6	1475.3	1.7799	2.653	1326.3	1473.6	1.7589
1000	3.440	1368.7	1527.9	1.8172	2.860	1367.7	1526.5	1.7964
1100	3.685	1410.5	1581.0	1.8524	3.066	1409.6	1579.8	1.8317
1200	3.929	1453.0	1634.8	1.8858	3.270	1452.2	1633.8	1.8653
1300	4.172	1496.3	1689.3	1.9177	3.473	1495.6	16884	1.8973
	$350 \mathrm{psid}\left(431.8{ }^{\circ} \mathrm{F}\right.$)				$400 \mathrm{psia}(444.70 \mathrm{~F})$			
Sat.	1.327	1119.0	1204.9	1.4978	1.162	1119.5	1205.5	1.4856
450	1.373	1129.2	1218.2	1.5125	1.175	1122.6	1209.6	1.4901
500	1.491	1154.9	1251.5	1.5482	1.284	1150.1	1245.2	1.5282
550	1.500	1178.3	1281.9	1.5790	1.383	1174.6	1277.0	1.5605
600	1.703	1200.3	1310.6	1.6068	1.476	1197.3	1306.6	1.5892
700	1.898	1242.5	1365.4	1.6562	1.650	1240.4	1362.5	1.6397
800	2.085	1283.8	1418.8	1.7004	1.816	1282.1	1416.6	1.6844
900	2.267	1325.0	1471.8	1.7409	1.978	1323.7	1470.1	1.7252
1000	2.446	1366.6	1525.0	1.7787	2.136	1365.5	1523.6	1.7632
1100	2.624	1408.7	1578.6	1.8142	2.292	1407.8	1577.4	1.7989
1200	2.799	1451.5	1632.8	1.8478	2.446	1450.7	1631.8	1.8327
1300	2.974	1495.0	1687.6	1.8799	2.599	1494.3	1686.8	1.8648

جدول A-1 (ادامه)
" برعــب [Brufbm. ${ }^{\circ} \mathrm{R}$ [

د01	v	4	h	s	v	*	h	s
${ }^{\circ} \mathrm{F}$	1000 psis (544.7 ${ }^{\circ} \mathrm{F}$)				$1200 \mathrm{psia}\left(567.4{ }^{\circ} \mathrm{F}\right.$)			
Sat.	0.446	1109.0	1192.4	1.3903	0.362	1103.5	1183.9	1.3673
600	0.514	1153.7	1248.8	1.4450	0.402	1134.4	1223.6	1.4054
650	0.564	1184.7	1289.1	1.4822	0.450	1170.9	1270.8	1.4490
700	0.608	1212.0	1324.6	1.5135	0.491	1201.3	1310.2	1.4837
800	0.688	1261.2	1388.5	1.5665	0.562	1253.7	1378.4	1.5402
900	0.761	1307.3	1448.1	1.6120	0.626	1301.5	1440.4	1.5876
1000	0.831	1352.2	1505.9	1.6530	0.685	1347.5	1499.7	1.6297
1100	0.898	1396.8	1562.9	1.6908	0.743	1393.0	1557.9	1.6682
1200	0.963	1441.5	1619.7	1.7261	0.798	1438.3	1615.5	1.7040
1300	1.027	1486.5	1676.5	1.7593	0.853	1483.8	1673.1	1.7377
1400	1.091	1531.9	1733.7	1.7909	0.906	1829.6	1730.7	1.7696
1600	1.215	1624.4	1849.3	1.8499	1.011	1622.6	1847.1	1.8290
		1400 psi	$7.2{ }^{\circ} \mathrm{F}$)			1600 psi	5. $1^{\circ} \mathrm{F}$)	
Sat.	0.302	1096.0	1174.1	1.3461	0.255	1087.4	1162.9	1.3258
600	0.318	1110.9	1193.1	1.3641				
650	0.367	1155.5	1250.5	1.4171	0.303	1137.8	1227.4	1.3852
700	0.406	1189.6	1294.8	1.4562	0.342	1177.0	1278.1	1.4299
800	0.471	1245.8	1367.9	1.5168	0.403	1237.7	1357.0	1.4953
900	0.529	1295.6	1432.5	1.5661	0.456	1289.5	1424.4	1.5468
1000	0.582	1342.8	1493.5	1.6094	0.504	1338.0	1487.1	1.5913
1100	0.632	1389.1	1552.8	1.6487	0.549	1385.2	1547.7	1.6715
1200	0.681	1435.1	1611.4	1.6851	0.592	1431.8	1607.1	1.6684
1300	0.728	1481.1	1669.6	1.7192	0.634	1478.3	1666.1	1.7029
1400	0.774	1527.2	1727.8	1.7513	0.675	1524.9	1724.8	1.7354
1600	0.865	1620.8	1844.8	1.8111	0.755	1619.0	1842.6	1.7955
		1800 psi	$1.2{ }^{\circ} \mathrm{F}$)			2000 psi	6.00\%)	
Sat.	0.218	1077.7	11.50 .4	1.3060	0.188	1066.6	1136.3	1.2861
650	0.251	1117.0	1200.4	1.3517	0.206	1091.1	1167.2	1.3141
700	0.291	1163.1	1259.9	1.4042	0.249	1147.7	1239.8	1.3782
750	0.322	1198.6	1305.9	1.4430	0.280	1187.3	1291.1	1.4216
800	0.350	1229.1	1345.7	1.4753	0.307	1220.1	1333.8	1.4562
900	0.399	1283.2	1416.1	1.5291	0.353	1276.8	1407.6	1.5126
1000	0.443	1333.1	1480.7	1.5749	0.395	1328.1	1474.1	1.5598
1100	0.484	1381.2	1542.5	1.6159	0.433	1377.2	1537.2	1.6017
1200	0.524	1428.5	1602.9	1.6534	0.469	1425.2	1598.6	1.6398
1300	0.561	1475.5	1662.5	1.6883	0.503	1472.7	1659.0	1.6751
1400	0.598	1522.5	1721.8	1.7211	0.537	1520.2	1718.8	1.7082
1600	0.670	1617.2	1840.4	1.7817	0.602	1615.4	1838.2	1.7692

130	v	\boldsymbol{u}	h	s	v	4	h	s
${ }^{9} \mathbf{F}$	2500 psie ($668.3^{\circ} \mathrm{F}$)				3000 psix ($695.5{ }^{\circ} \mathrm{F}$)			
Sat.	0.1306	1031.0	1091.4	1.2327	0.0840	968.8	1015.5	1.1575
700	0.1684	1098.7	1176.6	1.3073	0.0977	1003.9	1058.1	1.1944
750	0.2030	1155.2	1249.1	1.3686	0.1483	1114.7	1197.1	1.3122
800	0.2291	1195.7	1301.7	1.4112	0.1757	1167.6	1265.2	1.3675
900	0.2712	1259.9	1385.4	1.4752	0.2100	1241.8	1361.7	1.4414
1000	0.3069	1315.2	1457.2	1.5262	0.2485	1301.7	1439.6	1.4967
1100	0.3993	1366.8	1523.8	1.5704	0.2772	1356.2	1510.1	1.5434
1200	0.3696	1416.7	1587.7	1.6101	0.3086	1408.0	1576.6	1.5848
1300	0.3984	1465.7	1650.0	1.6465	0.3285	1458.5	1640.9	1.6224
1400	0.4261	1514.2	1711.3	1,6804	0.3524	1508.1	17037	1.6571
1500	0.4531	1562.5	1772.1	1.7123	0.3754	1557.3	1765.7	1.6896
1600	0.4795	1610.8	1832.6	1.7424	0.3978	1606.3	1827.1	1.7201
	3500 psia				4000 psia			
650	0.0249	663.5	679.7	0.8630	0.0245	657.7	675.8	0.8574
700	0.0306	759.5	779.3	0.9506	0.0287	742.1	763.4	0.9345
750	0.1046	1058.4	1126.1	1.2440	0.0633	960.7	1007.5	1.1395
800	0.1363	1134.7	1223.0	1.3226	0.1052	1095.0	1172.9	1.2740
900	0.1763	1222.4	1336.5	1.4096	0.1462	1201.5	1309.7	1.3789
1000	0.2066	1287.6	1421.4	1.4699	0.1752	1272.9	1402.6	1.4449
1100	0.2328	1345.2	1496.0	1.5193	0.1995	1333.9	1481.6	1.4973
1200	0.2566	1399.2	1565.3	1.5624	0.2213	1390.1	1553.9	1.5423
1300	0.2787	1451.1	1631.7	1.6012	0.2414	1443.7	1622.4	1.5823
1400	0.2997	1501.9	1696.1	1.6368	0.2603	1495.7	1688.4	1.6188
1500	0.3199	1552.0	1759.2	1.6699	0.2784	1546.7	1752.8	1.6526
1600	0.3395	1601.7	1821.6	1.7010	0.2959	1597.]	1816.1	1.6841
	4400 psia				4800 psia			
650	0.0242	653.6	673.3	0.8535	0.0237	649.8	671.0	0.8499
700	0.0278	732.7	755.3	0.9257	0.0271	725.1	749.1	0.9187
750	0.0415	870.8	904.6	1.0513	0.0352	832.6	863.9	1.0154
800	0.0844	1056.5	1125.3	1.2306	0.0668	1011.2	1070.5	1.1827
900	0.1270	1183.7	1287.1	1.3548	0.1109	1164.8	1263.4	1.3310
1000	0.1552	1260.8	1387.2	1.4260	0.1385	1248.3	1317.4	1.4078
1100	0.1784	1324.7	1469.9	1.4809	0.1608	1315.3	1458.1	1.4653
1200	0.1989	1382.8	1544.7	1.5274	0.1802	1375.4	1535.4	1.5133
1300	0.2176	1437.7	1614.9	1.5685	0.1979	1431.7	1607.4	1.5555
1400	0.2352	1490.7	1682.3	1.6057	0.2143	1485.7	1676.1	1.5934
1500	0.2520	1542.7	1747.6	1.6399	0.2300	1538.2	1742.5	1.6282
1600	0.2681	1593.4	1811.7	1.6718	0.2450	1589.8	1807.4	1.6605

جدول A-M جوام آب : بهار داع (آحاد SI)
[$\mathrm{b} / \mathrm{kg} . \mathrm{K}]$ برهـبـ

Los	v	u	H	s	*	u	h	5
${ }^{\circ} \mathrm{C}$	$6 \mathrm{kPay}\left(36.16^{\circ} \mathrm{C}\right)$				$35 \mathrm{kPa}\left(72.69^{\circ} \mathrm{C}\right)$			
Sat.	23739	2425.0	2.546 .4	H.3304	4526.	2473.1	2631.1	77158
80	27132	2487.3	2650.1	S. 5804	4825	2483.:	2645.6	77564
120	30219	25447	2726.0	87840	5163	25424	2723.1	7.9644
160	33302	2602.7	2802.5	8.9693	561 K.	2foll ?	2800.6	$\times 1519$
200	36383	26611.4	2879.7	9.1398	6238.	26600.4	3876.4	8.1237
240	39462	2721.0	2957.8	9.29 H 2	6758.	2720.3	2956.8	H.4828
280	42540	2781.5	3036.8	9.4464	7247.	27809	3036.0	R.6.1/4
320	45618	2843.0	3116.7	9.5859	7×15.	2842.5	3161	N.7712
360	48696	2905.5	3197.7	9.7180	K. 44.	2945.1	?197.1	8.903 34
400	51774	2969.0	3279.6	9.8435	8872	2968.6	1279.2	9.0291
440	54851	3033.5	3362.6	9.9633	9400.	3033.2	1362.2	9.1490
500	59467	3132.3	3489.1	10.134	10192.	3132.1	34888	9.1194
	$70 \mathrm{kPa}\left(89.95^{\circ} \mathrm{C}\right)$				$100 \mathrm{kPa}\left(99.63^{\circ} \mathrm{C}\right.$)			
Sat.	2365.	2494.5	2860.0	7.4797	1694.	2506.1	2675.5	7.3594
100	2434.	2509.7	2680.0	7.5341	1696	2.506 .7	2676.2	7.3614
120	2571.	2539.7	2719.6	7.6375	1793.	2537.3	2716.6	7.4668
160	2841.	2599.4	2798.2	7.8279	$19 \mathrm{H4} 4$.	2597.8	2796.2	7.6597
200	3108.	2659.1	2876.7	8.0012	2172.	2658.1	2475.3	7.8343
240	3374.	2719.3	2955.5	8.1611	2359.	2718.5	29.54 .5	7.9949
280	3640.	2780.2	303.5.0	8.316 ${ }^{2}$	2546.	2779.6	3034.2	8.1449
320	3905.	2842.0	3115.3	8.4504	2732.	2841.5	3114.6	8.2849
360	4170.	2904.6	3196.5	8, 5828	2917.	2904.2	3195.9	8.4175
400	4434.	2968.2	3278.6	8.7086	3103.	2967.9	3278.2	8.5435
440	4698.	3032.9	3361.8	8. 8286	3288.	3032.6	3361.4	8.6636
500	5095.	3131.8	3488.5	8.9991	3565.	3131.6	3488.1	8.8342
		150 kPa	. $37^{\circ} \mathrm{C}$)			300 kPa	$\left.55^{\circ} \mathrm{C}\right)$	
Sal.	1159.	2519.7	2693.6	7.2233	606.	2543.6	2725.3	6.9919
120	1188.	2533.3	2711.4	7.2693				
160	1317.	2595.2	2792.8	7.4665	651.	2587.1	2782.3	7.1276
200	1444.	2656.2	2872.9	7.6433	716.	2650.7	2865.5	7.3115
240	1570.	2717.2	2952.7	7.8052	781.	2713.1	2947.3	7.4774
280	1695.	2778.6	3032.8	7.9555	844.	2775.4	3028.6	7.6299
320	1819.	2840.6	3113.5	8.0964	907.	2838.1	3110.1	7.7722
360	1943.	2903.5	3195.0	8.2293	969.	2901.4	3192.2	7.9061
400	2067.	2967.3	3277.4	8.3555	1032.	2965.6	3275.0	8.0330
440	2191.	3032.1	3360.7	8.4757	1094.	3030.6	3358.7	8.1538
500	2376.	3131.2	3487.6	8.6466	1187.	3130.0	3486.0	8.3251
600	2685.	3301.7	3704.3	8.9101	1341.	3300.8	3703.2	8.5892

Source: Abridged from Keenan. J. H., F. G. Keyes, P. G. Hill, and J. G. Moore, "Steam Tables," John Wiley \& Sons, Inc., New York. 1969.

(401د1) A-M جu 								
Los	\boldsymbol{v}	ω	k	5	v	\boldsymbol{u}	h	s
${ }^{\text {a }} \mathrm{C}$	$500 \mathrm{kPg}\left(151.86{ }^{\circ} \mathrm{C}\right)$				$700 \mathrm{EPg}\left(164.97^{\circ} \mathrm{C}\right)$			
Sat.	374.9	2561.2	2748.7	6.8213	272.9	2572.5	2763.5	6.7080
180	404.5	2669.7	2812.0	6.9656	284.7	2599.8	2799.1	6.7880
200	424.9	2642.9	2855.4	7.0592	299.9	2634.8	2844. B	6.886 .5
240	464.6	2707.6	2939.9	7.2307	329.2	2701.8	2932.2	7.0641
280	503.4	2771.2	3022.9	7.3865	357.4	2766.9	3017.1	7.2233
320	541.6	2834.7	3105.6	7.5308	385.2	2831.3	3100.9	7.3697
360	579.6	2898.7	3188.4	7.68160	412.6	2895.8	3184.7	7.5063
400	617.3	2963.2	3271.9	7.7938	439.7	2960.9	3268.7	7.6350
440	6.54 .8	3028.6	3356.0	7.9152	466.7	3026.6	3353.3	7.7971
5000	710.9	3128.4	3483.9	8.0873	507.0	3126.8	3481.7	7.9299
600	804.1	3299.6	3701.7	8.3522	573.8	3298.5	3700.2	8.1956
700	896.9	3477.5	3925.9	8.5952	640.3	3476.6	3924.8	8.4391
	1.0 MPa ($179.91^{\circ} \mathrm{C}$)				1.5 MPa (198.32 ${ }^{\circ} \mathrm{C}$)			
Sal.	194.4	2583.6	2778.1	6.5865	131.8	2594.5	2792.2	6.4448
200	206.0	2621.9	2827.9	6.6940	132.5	2598.1	2796.8	6.4546
240	227.5	2692.9	2920.4	6.8817	148.3	2676.9	2899.3	6.6628
280	248.0	2760.2	3008.2	7.0465	162.7	2748.6	2992.7	6.8381
320	267.8	2826.1	3093.9	7.1962	176.5	2817.1	3081.9	6.9918
360	287.3	2891.6	3178.9	7.3349	189.9	2884.4	3169.2	7.1363
400	306.6	2957.3	3263.9	7.4651	203.0	2951.3	32.55 .8	7.2690
440	325.7	3023.6	3349.3	7.5883	216.0	3018.5	3342.5	7.3940
500	354.1	3124.4	3478.5	7.7622	235.2	3120.3	3473.1	7.5698
540	372.9	3192.6	3565.6	7.8720	247.8	3189.1	3560.9	7.68005
600	401.1	32\%.8	3697.9	8.0290	266.8	3293.9	3694.0	7.8385
640	419.8	3367.4	1787.2	8.1290	279.3	3364.8	3783.8	7.9391
	2.0 MPs ($212.42^{\circ} \mathrm{C}$)				$3.0 \mathrm{MPa}\left(233.90{ }^{\circ} \mathrm{C}\right)$			
Sat.		2600.3	2799.5	6.3409	66.7	2604.1	2804.2	6.1869
240	108.5	2659.6	2876.5	6.4952	68.2	2619.7	2824.3	6.2265
280	120.0	2736.4	2976.4	6.6828	77.1	2709.9	2941.3	6.4462
320	130.8	2807.9	3069.5	6.8452	85.0	2788.4	3043.4	6.6245
360	141.1	2877.0	3159.3	6.9917	92.3	2861.7	3138.7	6.7801
400	151.2	2945.2	3247.6	7.1271	99.4	2932.8	3230.9	6.9212
440	161.1	3013.4	3335.5	7.2540	106.2	3002.9	3321.5	7.0520
500	175.7	3116.2	3467.6	7.4317	116.2	3108.0	3456.5	7.2338
540	185.3	3185.6	3556.1	7.5434	122.7	3178.4	3546.6	7.3474
600	199.6	3290.9	3690.1	7.7024	132.4	3285.0	3682.3	7.5085
640	209.1	3362.2	3780.4	7.8035	138.8	3357.0	3773.5	7.6106
700	223.2	3470.9	3917.4	7.9487	148.4	3466.5	3911.7	7.7571

 L برهــب [L								
Las	0	${ }_{*}$	h	5	\boldsymbol{v}	0	h	5
${ }^{\circ} \mathrm{C}$	4.0 MPE ($\mathbf{2 5 0 . 4 0}{ }^{\circ} \mathrm{C}$)				$6.0 \mathrm{MPa}\left(275.64{ }^{\circ} \mathrm{C}\right)$			
Sat.	49.78	2602.3	2801.4	6.0701	32.44	2589.7	2784.3	5.8892
280	55.46	2680.0	2901.8	6.2568	33.17	2605.2	2804.2	5.9252
320	61.99	2767.4	3015.4	6.4553	38.76	2720.0	2952.6	6.1846
360	67.88	2845.7	3117.2	6.6215	43.31	2811.2	3071.1	6.3782
400	73.41	2919.9	3213.6	6.7600	47.39	2892.9	3177.2	6.5408
440	78.72	2992.2	3307.1	6.9041	51.22	2970.0	3277.3	6.6853
500	86.43	3099.5	3445.3	7.0901	56.65	3082.2	3422.2	6.8803
540	91.45	3171.1	3536.9	7.2056	60.15	3156.1	3517.0	6.9999
600	98.85	3279.1	3674.4	7.3688	65.25	3266.9	3658.4	7.1677
640	103.7	3351.8	3766.6	7.4720	68.59	3341.0	3752.6	7.2731
700	111.0	3462.1	3905.9	7.6198	73.52	3453.1	3894.1	7.4234
740	115.7	3536.6	3999.6	7.7141	76.77	3528.3	3989.2	7.5190
	8.0 MPa ($295.06^{\circ} \mathrm{C}$)				$\mathbf{1 0 . 0 ~ M P a ~ (~} 311.06^{\circ} \mathrm{C}$)			
Sat.	23.52	2569.8	2758.0	5.7432	18.03	2544.4	2724.7	5.6141
320	26.82	2662.7	2877.2	5.9489	19.25	2588.8	2781.3	5.7103
360	30.89	2772.7	3019.8	6.1819	23.31	2729.1	2962.1	6.0060
400	34.32	2863.8	3138.3	6.3634	26.41	2832.4	30\%6.5	6.2120
440	37.42	2946.7	3246.1	6.5190	29.11	2922.1	3213.2	6.3805
480	40.34	3025.7	3348.4	6.6586	31.60	3005.4	3321.4	6.5282
520	43.13	3102.7	3447.3	6.7871	33.94	3085.6	3425.1	6.6622
560	45.82	3178.7	3545.3	6.9072	36.19	3164.1	3526.0	6.7864
600	48.45	3254.4	3642.0	7.0206	38.37	3241.7	3625.3	6.9029
640	51.02	3330.1	3738.3	7.1283	40.48	3318.9	3723.7	7.0131
700	54.81	3443.9	3882.4	7.2812	43.58	3434.7	3870.5	7.1687
740	57.29	3520.4	3978.7	7.3782	45.60	3512.1	3968.1	7.2670
	12.0 MPa (324.75 ${ }^{\circ} \mathrm{C}$)				$14.0 \mathrm{MPL}\left(336.75{ }^{\circ} \mathrm{C}\right)$			
Sel.	14.26	2513.7	2684.9	5.4924	11.49	2476.8	2637.6	5.3717
360	18.11	2678.4	2895.7	5.8361	14.22	2617.4	2816.5	5.6602
400	21.08	2798.3	3051.3	6.0747	17.22	2760.9	3001.9	5.9448
440	23.55	2896.1	3178.7	6.2586	19.54	2868.6	3142.2	6.1474
480	25.76	2984.4	3293.5	6.4154	21.57	2962.5	3264.5	6.3143
520	27.81	3068.0	3401.8	6.5555	23.43	3049.8	3377.8	6.4610
560	29.77	3149.0	3506.2	6.6840	25.17	3133.6	3486.0	6.5941
600	31.64	3228.7	3608.3	6.8037	26.83	3215.4	3591.1	6.7172
640	33.45	3307.5	3709.0	6.9164	28.43	3296.0	3694.1	6.8326
700	36.10	3425.2	3858.4	7.0749	30.75	3415.7	3846.2	6.9939
740	37.81	3503.7	3957.4	7.1746	32.25	3495.2	3946.7	7.0952

L0	v	4	h	s	v	μ	h	${ }^{5}$
${ }^{\circ} \mathrm{C}$	16.0 MPa (347.44 ${ }^{\circ} \mathrm{C}$)				$18.0 \mathrm{MPa}\left(357.06{ }^{\circ} \mathrm{C}\right)$			
Sal.	9.31	2431.7	2580.6	5.2455	7.49	2374.3	2509.1	5.1044
360	11.05	2539.0	2715.8	5.4614	8.09	2418.9	2564.5	5.1922
400	14.26	2719.4	2947.6	5.8175	11.90	2672.8	2887.0	5.6887
440	16.52	2839.4	3103.7	6.0429	14.14	2808.2	3062.8	5.9428
480	18.42	2939.7	3234.4	6.2215	15.96	2915.9	3203.2	6.1345
520	20.13	3031.1	3353.3	6.3752	17.57	3011.8	3378.0	6.2960
560	21.72	3117.8	3465.4	6.5132	19.04	3101.7	3444.4	6.4392
600	23.23	3201.8	3573.5	6.6399	20.42	3188.0	3555.6	6.5696
640	24.67	3284.2	3678.9	6.7580	21.74	3272.3	3663.6	6.6905
700	26.74	3406.0	3833.9	6.9224	23.62	3396.3	3821.5	6.8580
740		3486.7	3935.9	7.0251	24.83	3474.0	3925.0	6.9623
	$\mathbf{2 0 . 0 ~ M P * ~ (3 6 5 . 8 1 ~}{ }^{\circ} \mathrm{C}$)				$\mathbf{2 4 . 0 ~ M P a}$			
Sal.	5.83	2293.0	2409.7	4.9269				
400	9.94	2619.3	2818.1	5.5540	6.73	2477.8	2639.4	5.2393
440	12.22	2774.9	3019.4	5.8450	9.29	2700.6	2923.4	5.6506
480	13.99	2891.2	3170.8	6.0518	11.00	2838.3	3102.3	5.8950
520	15.51	2992.0	3302.2	6.2218	12.41	2950.5	3248.5	6.0842
560	16.89	3085.2	3423.0	6.3705	13.66	3051.1	3379.0	6.2448
600	18.18	3174.0	3537.6	6.5048	14.81	3145.2	3500.7	6.3875
640	19.40	3260.2	3648.1	6.6286	15.88	3235.5	3616.7	6.5174
700	21.13	3386.4	3809.0	6.7993	17.39	3366.4	3783.8	6.6947
740	22.24	3469.3	3914.1	6.9052	18.35	3451.7	3892.1	6.8038
800	27.85	3592.7	4069.7	7,0544	19.74	3578.0	4051.6	6.9567
	28.0 MPa				32.0 MPa			
400	3.83	2223.5	2330.7	4.7494	2.36	1980.4	2055.9	4.3239
440	7.12	2613.2	2812.6	5.4494	5.44	2509.0	2683.0	5.2327
480	8.85	2780.8	3028.5	5.7446	7.22	2718.1	2949.2	5.5968
520	10.20	2906.8	3192.3	5.9566	8.53	2860.7	3133.7	5.8357
560	11.36	3015.7	3333.7	6.1307	9.63	2979.0	3287.2	6.0246
600	12.41	3115.6	3463.0	6.2823	10.61	3085.3	3424.6	6.1858
640	13.38	3210.3	3584.8	6.4187	11.50	3184.5	3552.5	6.3290
700	14.73	3346.1	3758.4	6.6029	12.73	3325.4	3732.8	6.5203
740	15.58	3433.9	3870.4	6.7153	13.50	3415.9	3847.8	6.6361
800	16.80	3563.1	4033.4	6.8720	14.60	3548.0	4015.1	6.7966
900	18.73	3774.3	4298.8	7.1084	16.33	3762.7	4285.1	7.0372

[Br [$\mathrm{H} / \mathrm{lbm} .^{\circ} \mathrm{R}$ [
${ }^{0}{ }^{\text {a }}$	$500 \mathrm{psia}\left(\mathrm{T}_{22}=467.1^{\circ} \mathrm{F}\right)$				$1000 \mathrm{psia}\left(T_{\text {sti }}=544.7^{\circ} \mathrm{F}\right)$			
	v	\pm	h	5	v	H	h	5
32	0.015994	0.00	1.49	(1.)0000	0.015967	003	2.99	0.00005
50	0.015998	18.02	19.50	0.03599	0.015972	17.99	20.94	0.03597
100	0.016106	67.87	69.36	0.12932	0.016082	67.70	70.68	0.12901
150	0.016 .318	117.66	114.17	0.21457	0.016293	117.38	120.40	0.21710
200	0.016608	167.65	169.19	0.29341	0.016580	167.26	170.32	0.29281
190	0.017416	268.92	270.53	043641	0.017379	268.24	271.46	$0.4355 ?$
400	0.018608	373.68	375.40	0.56604	0.018550	372.55	375.98	0.56472
Sal.	0.019748	447.70	449.53	0.64904	0.021591	538.39	542.38	1). 74.320
	1500 psia ($T_{\text {nol }}=596.4^{\circ} \mathrm{F}$)				$2000 \mathrm{psia}\left(T_{\text {me }}=636.0^{\circ} \mathrm{F}\right)$			
32	0.015939	0.05	4.47	0.060007	0.015912	0.06	5.95	0.00008
50	0.015946	17.95	22.38	0.03584	0015920	17.91	23.81	0.03575
100	0.0160 .58	67.53	71.99	0.12870	0.016034	67.37	73.30	0.12839
150	0.016268	117.10	121.62	0.21364	0.016244	116.83	122.84	0.21318
200	0.016554	166.87	171.46	0.29221	0.016577	166.49	172.60	0.29162
300	0.017343	267.58	272.39	0.43463	0.017308	266.93	273.33	0.43376
400	0.018493	371.45	376.59	$0.5634]$	0.018439	370.38	377.21	0.56216
500	0.02024	481.8	487.4	0.68 .53	0.02014	479.8	447.3	0.6832
Sat.	0.02346	605.0	611.5	0.8082	0.02565	662.4	671.9	0.8623
	3000 psia ($T_{\text {Lt }}=695.5{ }^{\circ} \mathrm{F}$)				4000 psiz			
32	0.015859	0.09	8.90	0.00009	0.015807	0.10	11.80	0.90005
50	0.015870	17.84	26.65	0.03555	0.015821	17.76	29.47	003534
100	0.015987	67.04	75.91	0.12777	0.055942	66.72	78.52	0.12714
150	0.016196	116.30	125.29	0.21226	0.016150	115.77	127.73	0.21136
200	0.016476	165.74	174.89	0.29046	0.016425	165.02	177.18	0.28931
300	0.017240	265.66	275.23	0.43205	0.017174	264.43	277.15	0.43038
400	0.018334	368.32	378.50	0.55970	0.018235	366.35	379.85	0.55734
500	0.019944	476.2	487.3	0.6794	0.019766	472.9	487.5	0.6758
Sat.	0.034310	783.5	B02.5	0.9732				

Source: Abridged from Keenan, J. H., F. G. Keyes, P. G. Hill, and J. G. Moore, "Steam Tables," John Wiley \& Sons, Inc . New York, 1969.

[$\mathbf{k} / \mathbf{k g} \mathrm{K} \mathrm{K}$ [
$\mathrm{c}^{\mathrm{log}}$	0	${ }^{*}$	h	s	v	\checkmark	h	s
	$2.5 \mathrm{MPa}\left(223.99^{\circ} \mathrm{C}\right)$				$5.0 \mathrm{MPa}\left(263.99^{\circ} \mathrm{C}\right)$			
20	1.0006	83.80	166. 30	0.2961	0.9995	83.65	88.65	0.2956
40	1.0067	167.25	169.77	0.7715	1.00 .6	166.95	171.97	0.5705
80	1.0280	334.29	336.46	1.0737	1.0268	333.72	338.85	1.0720
120	1.0590	502.68	505.33	1.5255	1.0576	501.80	507.09	1.5233
160	1.1006	673.919	67665	1.9404	1.0988	672.62	678.12	1.9375
200	1.1555	8499	852.8	2.3294	1.1536	848, 1	848.1	2.3255
220	1.1898	9407	943.7	25174	1.1866	938.4	9444	2.5128
Sal.	1.1973	959.1	962.1	2 5946	128.59	1147.8	1154.2	2.9202
$7.5 \mathrm{MPa}\left(290.59^{\circ} \mathrm{C}\right)$					$10.0 \mathrm{MPa}\left(311.06^{\circ} \mathrm{C}\right)$			
20	0.9984	83.50	90.94	02950	0.9972	B3. 36	93.33	0.2945
40	1.104 .5	166.64	174.18	0.5696	1.0034	166.35	176.38	0.5686
80	1.0256	131.15	340.84	1.0704	1.0245	332.59	342.83	1.0648
100	10397	416.81	424.62	1.3011	1.0385	416.12	426.50	1.2992
141	1.0752	5 SS .72	593.78	1.7317	1.0737	584.68	595.42	1.7292
180	11219	758.13	766.55	2.1308	1.1199	756.65	767.184	2.1275
220	1.8135	936.2	945.1	2.5083	1.1805	934.1	945.9	2.5039
2611	1.2696	1124.4	1134.0	2.8763	1.2645	1121.1	1133.7	2.8699
Sat.	1.3677	1282.0	1292.2	3.1649	1.4524	1393.0	1407.6	3.3596
$15.0 \mathrm{MPa}\left(342.24{ }^{\circ} \mathrm{C}\right)$					$\mathbf{2 0 . 0 ~ M P a ~ (~} \mathbf{3 6 5 . 8 1}{ }^{\circ} \mathrm{C}$)			
20	0.9950	83.06	97.99	0.2934	0.9928	82.77	102.62	0.2923
40	1.0013	$16 ¢ .76$	180.78	0.5666	0.9992	165.17	185.16	0.5646
100	1.0361	414.75	430.28	1.2955	1.0337	413.39	434.06	1.2917
180	1.1159	753.\%	770.50	2.1210	1.1120	750.95	773.20	2.1147
220	1.1748	929.9	947.5	2.4953	1.1693	925.9	949.3	2.4870
260)	1.2550	1114.6	1133.4	2.8576	1.2462	1108.6	1133.5	2.8459
300	1.3770	1316.6	1337.3	3.2260	1.3596	1306.1	1333.3	3.2071
Sat.	1.6581	1585.6	1610.5	3.6848	2.036	1785.6	1826.3	4.0139
$\mathbf{2 5 . 0 ~ M P a ~}$					30.0 MPa			
20	0.9017	82.47	107.24	0.2911	0.9886	82.17	111.84	0.2899
40	0.9971	164.601	189.52	0.5626	0.9951	164.04	193.89	0.5607
100	1.0313	412.08	437.8 .5	$1.28 \mathrm{R1}$	1.0290	410.78	441.66	1.2844
200	1.1344	834.5	B62.8	2.2961	1.1302	831.4	865.3	2.2893
300	13442	1296.6	1330.2	3.1900	1.3304	1287.9	1327.8	3.1741

Source Abndged from Kcenân, J. H. F G. Keyes, P. G. Hill, and J. G Moore, "Slearn Tables," John Wiley \& Sons, Inc., New York, 1969
جدول A- | | خواص آب : انحرالات مايع متراكم از مايع اشباع ((آحاد اتليسم)

Source: Differential values calculated from tabulated data for compressed water in "Thermodynamics and Transport Properties of Stream," American Society of Mechanical Engineers, New York, 1967.

Lでじ1	158 ${ }^{\circ} 0$	9LSE0	0ヶtc9	0．55t	0.641	2001	958200	＋1982	021
995İI	1618．0	てLEE0	L＇EE9	L＇99t	0．291	LIでI	$06 \angle 200$	0 Lゅて	011
S0LI＇I	6858.0	991E0	0＇Eย9	8．LLt	でS¢1	61t＇I	Lt $\angle 200$	6.112	001
9781.1	$8888{ }^{\circ}$	8562．0	0＇2E9	5．88t	¢＇Eもl	199\％1	L0 L20＇0	9.081	06
＋06I＇I	62060	SL82＇0	S＇IE9	$9{ }^{\circ} 26$	68EI	てLL＇I	169700	て＇691	98
1661＇1	2t26．0	6ヵLで0	L＇0E9	L．86t	0 0．ZEI	S56．${ }^{\text {I }}$	899200	0 －¢¢	08
0ャIで1	£0960	LESて0	1689	9.805	5．02I	てIE＇Z	てを9て00	8.821	01
か6で「1	ZL66．0	てZ£で0	どLZ9	［＇815	て＇60］	$15 L^{\prime}$ \％	$\angle 65200$	9.201	09
EStで1	8t50＇I	Solて＇0	て「sて9	£＇LZS	6.16	V6\％$\%^{\circ}$	¢9 S2000	61．68	05
819て．1	£ 1 LO． 1	58810	0 －¢ \％9	て．95s	8.98	IL6．E	E¢ ¢20\％0	てEとL	$0{ }_{0}$
06しで1	LZIII	£9910	5．029	$8 \cdot 6 \mid 5$	L＇S L	SZ8＊	¢0 ¢ 200	－L゙65	OE
6962＇I	てESII	LEtI＇0	8.159	1．ESS	L＇t9	016．5	$\downarrow \angle \downarrow 200$	Iて．80	02
LSIET	67615	80210	6\％19	I＇195	8．ES	H0c．L	$9 \downarrow$ ¢ 200	15．8E	OI
ESてE1	191で！	2601.0	£ ¢19	0.595	¢ 8	05188	てE t200	$\angle て ゙ も く$	s
てらโ¢ 1	LLEでて	S 5600°	8．159	6895	6%	911．6	6 l †Z0\％	で0¢	0
855E．	0て8で1	8 E 100	5.809	＋6945	I＇てを	OS＇11	$\mathfrak{E 6 \varepsilon z 0} 0$	－L \＆	O1－
ヤLLE＇1	LLZE．1	L600\％	0.509	9.185	＊12	89＊$\dagger 1$	69 £200	0¢．8I	0Z－
100\％ 1	15くE「I	OSZO\％	$\checkmark 109$	L＇06S	LOI	L6．81	St ¢ZOO	$06 . E 1$	0¢－
でです！	ででが1	00000	9.465	9 L6S	00	$98 . \downarrow て$	てZ £Z0．0	ItoI	Ot－
L6tt＇I	¢Sぐ「	95200－	L＇E65	¢＇\％09	9．01－	$80^{\circ} \mathrm{EE}$	66 てZOO	L9\％	0S－
69Lti	9825 1	LIS0．0－	9685	8.019	でIて－		8 2 てZ00	5 $5 \cdot 5$	09－
$\begin{gathered} \text { ss } \\ \dot{4} \boldsymbol{q}^{2} \stackrel{1}{7} \cdot 3 \end{gathered}$								$\begin{aligned} & \text { ungd } \\ & \text { did } \end{aligned}$	$\begin{gathered} \text { 芹 } \\ \text { eq } \end{gathered}$
						mq／／a x			

خميهة
جدول A-1T خواص آمونياك اشباع : جدول لشار (آحلد اتليسم)

		حجم: مسحصوص At ${ }^{2}$ hbe		, انتالبى , Bta/lbm					
p, ркія	$\stackrel{t}{6}$	مايع اشباع of	بخار اشباع D_{s}	مايع اسُباع	$\underset{k_{\text {th }}}{ }$	$\begin{aligned} & \text { بخار اشباع } \\ & h_{t} \end{aligned}$	مايع اشباع s	تبخير	بحار اسباع
5	-63.11	0.02271	49.31	-24.5	612.8	588.3	-0.0599	1.5456	1.4857
10	-41.34	0.02319	25.81	-1.4	598.5	597.1	-0.0034	1.4310	1.4276
15	-27.29	0.02351	17.67	13.6	588.8	602.4	0.0318	1.3620	1.3938
20	-16.64	0.02377	13.50	25.0	581.2	606.2	0.0578	1.3122	1.3700
30	0.57	0.02417	9.236	42.3	569.3	611.6	0.0962	1.2402	1.3364
40	11.66	0.02451	7.047	55.6	559.8	615.4	0.1246	1.1879	1.3125
50	21.67	0.02479	5.710	66.5	551.7	618.2	0.1475	1.1464	1.2939
60	30.21	0.02504	4.805	75.9	544.6	620.5	0.1668	1.1119	1.2787
80	44.40	0.02546	3.655	91.7	532.3	624.0	0.1982	1.0563	1.2545
100	56.05	0.02584	2.952	104.7	521.8	626.5	0.2237	1.0119	1.2356
120	66.02	0.02618	2.476	116.0	512.4	628.4	0.2452	0.9749	1.2201
140	74.79	0.02649	2.132	126.0	503.9	629.9	0.2638	0.9430	1.2068
170	86.29	0.02692	1.764	139.3	492.3	631.6	0.2881	0.9019	1.1900
200	9\%.34	0.02732	1.502	150.9	481.8	632.7	0.3090	0.8656	1.1756
230	105.30	0.02770	1.307	161.4	472.0	633.4	0.3275	0.8356	1.1631
260	113.42	0.02806	1.155	171.1	462.8	633.9	0.3441	0.8077	1.1518

Source: Data from Tables of Thermodynamic Properties of Ammonia, Natl. Bur. Sid. (U.S.) Circ. 142, 1945.

	15E＂ LTL $199{ }^{\circ}$	8！！ $0 \cdot L$ 855：	E82＇1 BIIL Ist＇I	5ヶでI 9 569 6 ［E＇ 1	＊で1 $6 \cdot 189$ $6 L^{\prime \prime}$	102\％ 9299 しIで	$\begin{aligned} & 94 \cdot 1 \\ & 2.259 \\ & 151^{\circ} \mathrm{l} \end{aligned}$					$\begin{aligned} & 8(5 \cdot 811) \\ & 4 \quad 08 Z \end{aligned}$
												－
	19.1 $6.2 L$ $96 \mathrm{C}^{\circ}$			$9 \mathrm{~s}^{\circ} 1$ CLES E57：	$\begin{gathered} s \varepsilon z^{\prime} \\ +\quad+89 \\ 16 c^{\prime} \cdot 1 \end{gathered}$		$681{ }^{\circ} 1$ 9559 LE＇	$\begin{aligned} & 291 \cdot 1 \\ & 5699 \\ & 281 \cdot 1 \end{aligned}$				
$\begin{aligned} & 20+1 \\ & r=1 \\ & 690<2 \end{aligned}$	$\begin{aligned} & \text { TLE:I } \\ & \text { VKLL } \\ & \text { W } 56.1 \end{aligned}$	$\begin{aligned} & \text { 6EC.I } \\ & 8.6+L \\ & \text { scs. } \end{aligned}$	$\begin{aligned} & \operatorname{soc} \cdot I \\ & 1 \cdot \operatorname{sic} \\ & \operatorname{ri} \cdot 1 \end{aligned}$	$\begin{aligned} & 89 \mathrm{C}^{\prime} \mathrm{I} \\ & 8.669 \\ & \angle 85^{\prime} 1 \end{aligned}$	$\begin{aligned} & 8+z \cdot \\ & c \cdot 989 \\ & i z s: 1 \end{aligned}$		$\begin{aligned} & \text { EOR.1 } \\ & 8 \cdot 85^{\circ} \\ & \text { OAK.' } \end{aligned}$	$\begin{aligned} & 94 \cdot 1 \\ & 5 \mathrm{Ck} 9 \\ & \text { 20C1 } \end{aligned}$				$\begin{aligned} & 5(60801) \\ & 4 \\ & 4 \\ & n \end{aligned}$
$\begin{aligned} & \mathbf{5 I + 1} \\ & 566 \mathrm{~L} \\ & 59 \mathrm{Z} \end{aligned}$	E8K＇I E．5LL $0+1 \cdot 2$	$\begin{aligned} & \text { Ise. } \\ & 1 \cdot 15 L \\ & 210.2 \end{aligned}$	$\begin{gathered} \text { LE: } \\ 8924 \\ 188.1 \end{gathered}$	$082 \cdot 1$ $610 L$ $5+1$	0971 ［ 689 6L9＇I	$\begin{gathered} 6[71 \\ 8: \$ 29 \\ 109 \% \end{gathered}$		$261^{\circ} 1$ \＆゙ $1+9$ 6 $\boldsymbol{6}$				$\begin{aligned} & I(z r 201) \\ & 4 \quad 0 \pi \\ & n \end{aligned}$
	80 CLLL L59\％		$\begin{aligned} & \text { Wil } \\ & 10 \mathrm{~L} L \\ & \text { szez } \end{aligned}$	80\％ 1 $650 L$ 2912	682 I 9.269 120%	$6 \% \cdot 1$ 0.189 666 I	$8+て ゙$ 0899 0161		$\begin{aligned} & 661.1 \\ & 6.6 E 9 \\ & 08 L 1 \end{aligned}$			$\begin{aligned} & 5(8 \angle \angle B) \\ & 4 \quad 081 \end{aligned}$
	0.082 $\mathbf{0 Z F} \mathbf{E}$	$\begin{aligned} & 60+1 \\ & L \cdot 9 S L \\ & L \pi c \varepsilon \end{aligned}$			かてE： 086 LZLZ	$\begin{aligned} & \text { soc } 1 \\ & 0.969 \\ & 209 z \end{aligned}$						$\begin{aligned} & 5(6 L+0) \\ & 4 \quad 0+1 \\ & 0 \end{aligned}$
		$\begin{aligned} & \text { IS'I } \\ & \quad \begin{array}{r} 65 L \\ 25 \% \end{array} \end{aligned}$	6101 59 L $\mathrm{maz}^{\boldsymbol{*}}$	$58 \mathrm{E} \cdot 1$ L＇$\vDash 1 L$ 120＇ท	B\％ 1 E 20 L โ88\％	$6 \mathrm{~F}^{\prime} \mathrm{I}$ 8 80 EDC：	$\begin{aligned} & \text { IEE: } \\ & \tau \cdot 649 \\ & 009 . \varepsilon \end{aligned}$		680° で559 WOE			$\begin{aligned} & s(50.9) \\ & 4 \quad 001 \\ & n \quad 0 \end{aligned}$
		$150 \cdot 1$ 0.092 180 ＇s	ZEr＇I E＇LEL s8L	$00 \mathrm{~F} \cdot$ L＇しに か8t		E9E． 0.269 8LI＇	WE＇ 5089 I20＇	$\begin{gathered} 5 z \varepsilon^{\prime} \\ 6.899 \\ 298 \varepsilon \end{gathered}$	WOF： 0259 869	188．I CWH $625 \cdot \varepsilon$		$\begin{aligned} & 5(L+D) \\ & 4 \\ & n \end{aligned}$
		$8 \mathrm{CH} \cdot \mathrm{I}$ L．09L ELS	L 1＇84 86 E ． 5	tirl 9 SIL 290．5	$96 \kappa^{\circ} 1$ ryoc C68＇	$8<C^{\circ}$ でと6 zZ＇＊	09% 8 IR9 $8+5 \cdot \%$	OWCI － 049 1ぐも			sくでし を\％ 218＇	$\begin{array}{ll} 5 & (t+\infty) \\ 4 & 08 \\ n \end{array}$
				0 OH 9.91 L 408.5		S6E＇I ［＇bge OZt＇s		$\begin{aligned} & \text { BSE: } \\ & 8.1 / 9 \\ & \text { szos } \end{aligned}$			$\begin{gathered} 16 Z 1 \\ 9.969 \\ 100^{\prime} \% \end{gathered}$	$\begin{aligned} & l \\ & y \\ & y \\ & n \end{aligned}$

$8{ }^{89} 991.0$	L¢ Efio	10 ££0\％	$61+08$	198．59	850 SI	088160	9 LOCO	$85+5100$	$8 \pm 1 \mathrm{Cb}$	0 or
$61 \mathrm{L910}$	$\angle 98 \mathrm{EF}{ }^{\circ}$	2s 8zoo	585\％6	22S＇99	¢98 $\boldsymbol{1}$	$8860^{\circ} \mathrm{I}$	SL80＇1	96 ILO 0	9LL＇s¢	$0 z$
$86299^{\circ} 0$	¢0 $\mathrm{trl}^{\circ} \mathrm{O}$	$56 ¢ 20{ }^{\circ}$	¢¢¢．8L	159.9	＋69\％0	Itze：	6zicit	091100	SEE＇6Z	$0{ }^{\text {O }}$
888910	9S6tro	zE 6100	ILでLL	OSLC9	Lorss	6809.1	62651	0 EO 100	648×2	0
686910	L2 SSIO	29 ＋1000	96192	\＄28．69	91LE＇9	L26\％1	82\％ 1	9060100	68181	Of－
20 LLT 0	61590	E8 600°	OHISL	＋2802	Lsez＇＊	$6 \mathrm{bt} \boldsymbol{\tau}$	Izet：	8820100	L92＇si	0z－
6z ZLIO	E£ 2910	961000	SIOtL	E06 $1 /$	OZIİ	S850\％	$8 \angle 00$ ¢	t29 000	666 II	0ε－
ELELL0	ELELIT0	0	£16\％L	E16 21	0	OSL8＇${ }^{\text {c }}$	＋98\％	\＄950000	9LOE： 6	$0{ }^{\text {－}}$
Ef ¢LJo	8 EPI 0	905000^{-}	508.1 L	906 EL	¢01z－	2¢L6＇t	LE9\％	6st 0100	891%	05－
ャ1 Llo	912810	I20100－	£6902	588＇L	$616{ }^{\text {＇t－}}$	tLt＇9	029＊9	LSE 0100	slse＇s	99
91620	－9 610	$8{ }_{8} 5100^{-}$	$085 \cdot 69$	E58．SL	OELZ $9-$	L895＇8	H8558	652010\％	15\％\％	0＜－
Et $188^{\circ} 0$	$6280 \%^{\circ}$	9808000	L9＋89	21892	IStC＇8－	¢Es＇II	8zzs＇II	5910100	L088＇z	08－
86 ¢810	de 0izo	LE 9200－	S5E 49	t91．L	$60901-$	128＇s1	6018 si	ELO OLOO	60502	06
E89810	¢881200	00 2E0．0－	8てC＇99	t1 ＇8L $^{\text {c }}$	99＋でー	t912\％	Itsitiz	5866000	08zti	001－
200610	$0812 z^{\circ}$	$6 \mathrm{LLEO} 0-$	StI＇¢9	£996 6	8IS＇ti－	U－IE	［L9L＇IE	6686000	－20160	031－
65 E610	IE LEz＇0	2LE600－	250.9	LI9．08	¢9\％91－	ItL＇9	2LEC9＊	9186000	061090	0zi－
09 LEF 0	Et $\angle \mathfrak{C z}$	c8600\％－	89689	US．18	60981 －		¢0zL 0	$9 ¢ L 6000$	ャてZito	0¢I
4	4／5	F	${ }^{\prime}$	\％	14	${ }^{1}$	${ }_{5}$	${ }_{1}$	mad	4
	mox	OT1	T^{8}	كran			كr＊＊＊＊＊＊	のペ	Mr ${ }^{\text {¢ }}$	1
						－ma／d＊－			कr	

于夺
틍 응 응
N

2050	IL8911	$\angle \mathrm{COC}$	B9 9zzo	－20－2ir	2495：	し1とで0	SLIC！II	ezac．	08
ze Oz\％ 0	6E¢EII	$00 z^{\prime} 1$	$0 z$ ャzzo	LsL＇cil	SLIS	1592\％0	598.11	－6ELI	00
¢5 sizo	sez＇oli	$069 \mathrm{C} \cdot \mathrm{t}$	カ¢ 612%	$69 \% 011$	20L＊	\＆ızz\％	985．04	29991	OZZ
－90\％\％	$856 \cdot 901$	Lotil	くらがでo	ででしO！	9Ezt 1	$0691 z^{\circ} 0$	BEECOI	LzE9：	008
59 50 \％	80LEOL	0z60．1	196020		19LE 1	56112%	zz1．001	6825.1	081
IS 002\％	$58 \% 901$	6250－1	Es boz 0	88.001	zeze．t	68900°	866.001	$8 \mathrm{tzs} \cdot 1$	091
$\angle 25610$	982.46	£โ10＇	EE 6 gio	0z9 66	$881 z^{\prime \prime}$	zLiozo	58.26	10¢ ${ }^{\text {a }}$	$0 \% 1$
886810	011%	¢1¢L6\％	10 trio	Ost＇t6	bosz＇I	比96100	โ99\％6	$801+1$	02：
－tal 0	\＄8606	91266°	ds 88.0	298．16	z191＇	$01016{ }^{\circ} 0$	02516	685ET	001
2984， 0	118.28	52068.0	26 zxio	LLで88	$9061:$	2f 58.0	cos：88	Izor＇t	08
［izalo	929 t8	ELLtB 0	zt 2110	902＇58	6820.1	B9 6LI 0	E9＋＇58	てがで1	0
5S9910	O6：18	87208．0	21010	8t1 28	9520＇t	SLELT0	20tcis	0881°	0
	Mad os			ussd $\mathrm{op}^{\text {d }}$			mpd $\boldsymbol{\rho}$		
St $6 z \mathrm{z}$	โย์ร⿺	1580%	sz zezo	$080 \% 11$	16巾\％て	20920	981\％${ }^{\text {a }}$	0060%	
Ot 2 で\％	202．017	SEL6．	25 2 zzo	418011	9SLEZ	Of 1z\％O	2e6001	$68 / 68$	$0 \chi z$
Ls 612\％	5\％ 20	9176	g9 zzzo	B85 010	6108%	6t 9zz\％	2ictoi	t $1888^{\text {C }}$	oor
£9 ロizo	$95 z^{\circ} 601$	56\％＇！	8LLİO	E60．tor	6izz＇z	os izzo	$825 \cdot 001$	is6LZ	081
096080	980.101	898.1	9Lででo	Hicior	SEsit	659120	085101	9rocz	091
st boze	806.16	Lezil	£9 Loz＇0	011.86	9820%	6t IIZO	$0 ⿲ 二 丨 匕 y$	0 Orgz	Or
816610	โ188\％	$0099 \cdot 1$	Op 2020	120：56	ze00＇z	829080	881.56	6lisz	$\mathfrak{O I}$
6×6610	$0<616$	L565＇1	W0 LSTO	896.16	H26．	$56007^{\prime} 0$	－91\％6	itrer	cois
9288.0	62188	905 51	$5516{ }^{\circ} \mathrm{O}$	05688	zoss＇t	O5561\％	891.68	56z\％\％	08
Ls zalo	$91 / 58$	Wet＇ 1	165810	5\％\％58	£でい	266810	01298	ontz	09
129410	Ociez	6960°	210810	210＇E9	2669＇I	61 t810	687 cs	£¢Eİz	0
590410	59160	9LZE＇${ }^{\text {a }}$	W DLCo	88908	Sti9	628210	cotos	16600°	$\boldsymbol{\sim}$

	mad 0			ussd Sz	rpader				
tI 9EZO	900－111	17868	16 zrzo	651^{\prime} III	9066.5	IP Wro	27\％11	920 z	dez
S¢ 1ez＇0	SEBLOI	2¢98＇	¢1 8Ezo	256． 201	Stig＇s	W96\％${ }^{\text {co }}$	620801	899	008
$9{ }^{972 \%}$	199 －01	6itc＇	9 EEz 0	¢6\％ 201	10995	6くっでO	526.001	If\％	081
8t 12 ZO	szas 101	2029%	Oe bzzo	699\％	cest 5	586520	218101	2560\％	09
Ot 91200	62 ± 186	1805	¢z ¢zz\％	985＇86	ORLT＇S	18 nczo	¢tic 86	56.01	Or
で 1 ご0	¢LE．56	KLCE	608120	945＇56	$5060 \cdot 5$	8962 O	LIL． 56	H2．01	021
essceio	L5¢ 26	12sze	¢я ででo	8 Cr 26	$6206{ }^{\circ}$	St 2270	8ciz6	LtL8．6	cor
IS 0020	［85\％68	182\％	9 $20 z^{\circ} 0$	96568	8 ctio	2161で0	90868	2 ts 6	08
8 ¢610	15 ± 98	IE00＇E	LS 102°	68998	8805	L9 £IでO	27698	82516	69
IE 68.0	$195 \cdot{ }^{\circ}$	0 LLP \％	SE\％$\% 10$	$828{ }^{\circ} \mathrm{CB}$	9sse＇t	て180\％\％	06009	cosc 8	0
67 ¢910	21208	－6tiz	$19(6610$	－10． 18	$1691 . \%$	ゅてOZ00	605．18	59 t ＇8	Oz
$15 \mathrm{LLT}^{0}$	206 LL	10292	$12+810$	902＇8L	6086	¢9 \％10	285：8．	11908	0
	rpsad $\boldsymbol{\pi}$			mad ot			upd s		4．cor
s	4	a	s	4	a	－	\dagger	a	

			ャ9 9\％\％0	625001	$16 \mathfrak{1 1 \%}$	L8 02\％ 0	500 zbI	$1508{ }^{\circ} \mathrm{O}$	0
			£！\％Izo	£zs＇ori	256010	8591で0	960.8 cI	65 seio	02t
			9t Loz\％	99tzei	86 toro	96 ざで0	991 kI	ts 06：0	006
			29 zoz\％	ssc．8zi	szooro	OE LOZ 0	LOz＇0is	fe szio	085
			$\angle 51610$	L91＊で1	6825600	Lけ zozo	s02\％91	2661%	095
			L2 2610	128.611	L10 0600	$9{ }^{9+210}$	E¢T 2 \％I	92 tITO	Ote
			¢9 9810	02tsil	โ£ 5800	I2 2610	106.211	628010	025
			Es 0810	62\％OII	6508200	999810	6 U＇¢ ¢II	0610 O	00%
			－ LELJO_{0}	Le9 Soi	6580200	UL0810	LLz＇601	£26 16000	087
			995910	Ltict 6	2261900	Iて LL 10	$925 \cdot 01$	t50 280°	092
			se esfo	\＄20\％ 16	$88+2000$	z＜9910	81266	$029 \sim 400$	Otz
						¢89510	268.76	LOZ 5900	022
				Eepd 009			med cos		
¢รでで0	196 I¢，	582910	そく8120	ャマ9¢¢1	zz szzo	けとzzzo	£でヤを！	tosczo	088
$68.0 z^{\circ}$	211．8zi	89910		006681	$0<1$ Lzo	66 LİO	tscioti	659970	098
OI £oz：0	¢รでャてI	zeosio	£9 60\％\％	LLI＇9zI	zoorzo	$9{ }^{9}$ £1で0	$880<21$	6s Lszo	Ote
\＄18810	815021	てLitio	68 ＋0\％ 0	0¢tzzi	\＄20\％\％	z88020	0で「そて1	z988て\％	02 E
882610	Ex゙911	089610	$0000 \mathrm{z}^{\circ}$	0698 BII	20 ± 610	so toz\％	Lticis	＋6920	00%
962mo	98\％zal	686810	$56+610$	6L8．tII	295810	¢1 6610	0909\％1	10 oczo	082
581810	S01．801	£9 I210	696810	E00．III	589210	＋0	isczil	くz 0zzo	092
89 SLIO	sele 0 I	00 £ा「0	$61+810$	Otr 120 O	19 2910	48810	L098801	\＄1012\％	Otz
88910	$9+0 \cdot 66$	91 £0\％ 0	8 ELCO	9 c －501	－LSE ${ }^{\circ}$	92 ¢8．0	608801	256610	022
	40d 0			mped 00\％			［pod 98		
26099	8Lく̌6	$500160{ }^{\circ}$	LI ZLI．0	516\％	169810	Lt LLIT0	066001	－28810	007
			LE 5910	958\％6	28 prio	OELLCO	526.96	5092 LO	081
						$29+910$	L1L． 66	6\％ 290	091
	mpd ${ }^{\text {anm}}$			mpd 0er			Coder 9		

－inc $41-\mathrm{V}$（ 18,00 ）

A

$$
\begin{aligned}
& \text { جدول A- I خواص ترموديناميكى هوا در ششار ياين (آحاد اتليسى) }
\end{aligned}
$$

$s^{\circ}=\phi-R \ln \left(p / p_{0}\right)+1$ Bru/bm. ${ }^{\circ} \mathrm{R}$
كه كم

S ${ }^{\text {a }}$, ${ }^{\text {R }}$	h, Btu/lbm	Pr	u, Btu/lbm	v r	ϕ, Btu/lbm••®
200	47.67	0.04320	33.96	1714.9	0.36303
220	52.46	0.06026	37.38	1352.5	0.38584
240	57.25	0.08165	40.80	1088.8	0.40666
260	62.03	0.10797	44.21	892.0	0.42582
280	66.82	0.13986	47.63	741.6	0.44356
300	71.61	0.17795	51.04	624.5	0.46007
320	76.40	0.22290	54.46	531.8	0.47550
340	81.18	0.27545	57.87	457.2	0.49002
360	85.97	0.3363	61.29	396.6	0.50369
380	90.75	0.4061	64.70	346.6	0.51663
400	95.53	0.4858	68.11	305.0	0.52890
420	100.32	0.5760	71.52	270.1	0.54058
440	105.11	0.6776	74.93	240.6	0.55172
460	109.90	0.7913	78.36	215.33	0.56235
480	114.69	0.9182	81.77	193.65	0.57255
500	119.48	1.0590	85.20	174.90	0.58233
520	124.27	1.2147	88.62	158.58	0.59173
540	129.06	1.3860	92.04	144.32	0.60078
560	133.86	1.5742	95.47	131.78	0.60950
580	138.66	1.7800	98.90	120.70	0.61793
600	143.47	2.005	102.34	110.88	0.62607
620	148.28	2.249	105.78	102.12	0.63395
640	153.09	2.514	109.21	94.30	0.64159
660	157.92	2.801	112.67	87.27	0.64902
680	162.73	3.111	116.12	80.96	0.65621
700	167.56	3.446	119.58	75.25	0.66321
720	172.39	3.806	123.04	70.07	0.67002
740	177.23	4.193	126.51	65.38	0.67665
760	182.08	4.607	129.99	61.10	0.68312
780	186.94	5.051	133.47	57.20	0.68942
800	191.81	5.526	136.97	53.63	0.69558
820	196.69	6.033	140.47	50.35	0.70160
840	201.56	6.573	143.98	47.34	0.70747
860	206.46	7.149	147.50	44.57	0.71323
880	211.35	7.761	151.02	42.01	0.71886
900	216.26	8.411	154.57	39.64	0.72438
920	221.18	9.102	158.12	37.44	0.72979
940	226.11	9.834	161.68	35.41	0.73509
960	231.06	10.610	165.26	33.52	0.74030

Source: Abridged from J. H. Keenan and J. Kaye, "Gas Tables," John Wiley \& Sons, Inc., New York, 1948, by permission.

جدول A- X (ادامه)

Les, ${ }^{\text {a }}$ R	h, Btu/lbm	Pr	u, Btu/lhm	0_{r}	$\begin{aligned} & \phi, \\ & \text { Bfu/lbm- }{ }^{\circ} \mathbf{R} \end{aligned}$
980	236.02	11.430	168.83	31.76	0.74540
1000	240.98	12.298	172.43	30.12	0.75042
1020	245.97	13.215	176.04	28.59	0.75536
1040	250.95	14.182	179.66	27.17	0.76019
1060	255.96	15.203	183.29	25.82	0.76496
1080	260.97	16.278	186.93	24.58	0.76964
1100	265.99	17.413	190.58	23.40	0.77426
1120	271.03	18.604	194.25	22.30	0.77880
1140	276.08	19.858	197.94	21.27	0.78326
1160	281.14	21.18	201.63	20.293	0.78767
1180	286.21	22.56	205.33	19.377	0.79201
1200	291.30	24.01	209.05	18.514	0.79628
1220	296.41	25.53	212.78	17.700	0.80050
1240	301.52	27.13	216.53	16.932	0.80466
1260	306.65	28.80	220.28	16.205	0.80876
1280	311.79	30.55	224.05	15.518	0.81280
1300	316.94	32.39	227.83	14.868	0.81680
1320	322.11	34.31	231.63	14.253	0.82075
1340	327.29	36.31	235.43	13.670	0.82464
1360	332.48	38.41	239.25	13.118	0.82848
1380	337.68	40.59	243.08	12.593	0.83229
1400	342.90	42.88	246.93	12.095	0.83604
1420	348.14	45.26	250.79	11.622	0.83975
1440	353.37	47.75	254.66	11.172	0.84341
1460	$358.6{ }^{\prime}$	50.34	258.54	10.743	0.84704
1480	363.89	53.04	262.44	10.336	0.85062
1500	369.17	55.86	266.34	9.948	0.85416
1520	374.47	58.78	270.26	9.578	0.85767
1540	379.77	61.83	274.20	9.226	0.86113
1560	385.08	65.00	278.13	8.890	0.86456
1580	390.40	68.30	282.09	8.569	0.86794
1600	395.74	71.73	286.06	8.263	0.87130
1620	401.09	75.29	290.04	7.971	0.87462
1640	406.45	78.99	294.03	7.691	0.87791
1660	411.82	82.83	298.02	7.424	0.88116
1680	417.20	86.82	302.04	7.168	0.88439
1700	422.59	90.95	306.06	6.924	0.88758
1720	428.00	95.24	310.09	6.690	0.89074
1740	433.41	99.69	314.13	6.465	0.89387
1760	438.83	104.30	318.18	6.251	0.89697
1780	444.26	109.08	322.24	6.045	0.90003
1800	449.71	114.03	326.32	5.847	0.90308
1820	455.17	119.16	330.40	5.658	0.90609
1840	460.63	124.47	334.50	5.476	0.90908
1860	466.12	129.95	338.61	5.302	0.91203
1880	471.60	135.64	342.73	5.134	0.91497
1900	477.09	141.51	346.85	4.974	0.91788
1920	482.60	147.59	350.98	4.819	0.92076

$103,{ }^{\circ} \mathrm{R}$	h, Btu/lbm	\boldsymbol{P},	$u,$ Btu/lbm	$\boldsymbol{v}_{\boldsymbol{r}}$	ϕ Btu/lbm $\cdot{ }^{\circ} \mathbf{R}$
1940	488.12	153.87	355.12	4.670	0.92362
1960	493.64	160.37	359.28	4.527	0.92645
1980	499.17	167.07	363.43	4.390	0.92926
2000	504.71	174.00	367.61	4.258	0.93205
2020	510.26	181.16	371.79	4.130	0.93481
2040	515.82	188.54	375.98	4.008	0.93756
2060	521.39	196.16	380.18	3.890	0.94026
2080	526.97	204.02	384.39	3.777	0.94296
2100	532.55	212.1	388.60	3.667	0.94564
2120	538.15	220.5	392.83	3.561	0.94829
2140	543.74	229.1	397.05	3.460	0.95092
2160	549.35	238.0	401.29	3.362	0.95352
2180	554.97	247.2	405.53	3.267	0.95611
2200	560.59	256.6	409.78	3.176	0.95868
2220	566.23	266.3	414.05	3.088	0.96123
2240	571.86	276.3	418.31	3.003	0.96376
2260	577.51	286.6	422.59	2.921	0.96626
2280	583.16	297.2	426.87	2.841	0.96876
2300	588.82	308.1	431.16	2.765	0.97123
2320	594.49	319.4	435.46	2.691	0.97369
2340	600.16	330.9	439.76	2.619	0.97611
2360	605.84	342.8	444.07	2.550	0.97853
2380	611.53	355.0	448.38	2.483	0.98092
2400	617.22	367.6	452.70	2.419	0.98331

49.

$$
\begin{aligned}
& \text { كه }
\end{aligned}
$$

$\begin{aligned} & \boldsymbol{T}, \\ & \mathbf{K} \end{aligned}$	h, kJ/kg	P_{r}	Δ ld/kg	vr	$\begin{aligned} & \phi \\ & \mathbf{l C J} / \mathbf{k g} \cdot \mathbf{K} \end{aligned}$
100	99.76	0.02990	71.06	2230	1.4143
110	109.77	0.04171	78.20	1758.4	1.5498
120	119.79	0.05652	85.34	1415.7	1.5971
130	129.81	0.07474	92.51	1159.8	1.6773
140	139.84	0.09681	99.67	964.2	1.7515
150	149.86	0.12318	106.81	812.0	1.8206
160	159.87	0.15431	113.95	691.4	1.8853
170	169.89	0.19068	121.11	594.5	1.9461
180	179.92	0.23279	128.28	515.6	2.0033
190	189.94	0.28114	135.40	450.6	2.0575
200	199.96	0.3363	142.56	396.6	2.1088
210	209.97	0.3987	149.70	351.2	2.1577
220	219.99	0.4690	156.84	312.8	2.2043
230	230.01	0.5477	163.98	280.0	2.2489
240	240.03	0.6355	171.15	251.8	2.2915
250	250.05	0.7329	178.29	227.45	2.3325
260	260.09	0.8405	185.45	206.26	2.3717
270	270.12	0.9590	192.59	187.74	2.4096
280	280.14	1.0889	199.78	171.45	2.4461
290	290.17	1.2311	206:92	157.07	2.4813
300	300.19	1.3860	214.09	144.32	2.5153
310	310.24	1.5546	221.27	132.96	2.5483
320	320.29	1.7375	228.45	122.81	2.5802
330	330.34	1.9352	235.65	113.70	2.6111
340	340.43	2.149	242.86	105.51	2.6412
350	350.48	2.379	250.05	98.11	2.6704
360	360.58	2.626	257.23	91.40	2.6987
370	370.67	2.892	264.47	85.31	2.7264
380	380.77	3.176	271.72	79.77	2.7534
390	390.88	3.481	278.96	74.71	2.7796
400	400.98	. 3.806	286.19	70.07	2.8052
410	411.12	4.153	293.45	65.83	2.8302
420	421.26	4.522	300.73	61.93	2.8547
430	431.43	4.915	308.03	58.34	2.8786
440	441.61	5.332	315.34	55.02	2.9020

Source: Adapted to SI units from H. Keenan and I. Kaye, "Gas Tables," John Wiley \& Sons, Inc., New York, 1948.

جدول A- 1 YM (ادامه)

$\begin{aligned} & \mathbf{T}, \\ & \mathbf{K} \end{aligned}$	h, $\mathbf{k J} / \mathbf{k g}$	Pr	u, $\mathbf{k J} / \mathbf{k g}$	v_{r}	ϕ
450	451.83	5.775	322.66	51.96	2.9249
460	462.01	6.245	329.99	49.11	2.9473
470	472.25	6.742	337.34	46.48	2.9693
480	482.48	7.268	344.74	44.04	2.9909
490	492.74	7.824	352.11	41.76	3.0120
500	503.02	8.411	359.53	39.64	3.0328
510	513.32	9.031	366.97	$37.65{ }^{\circ}$	3.0532
520	523.63	9.684	374.39	35.80	3.0733
530	533.98	10.372	381.88	34.07	3.0930
540	544.35	11.097	389.40	32.45	3.1124
550	554.75	11.858	396.89	30.92	3.1314
560	565.17	12.659	404.44	29.50	3.1502
570	575.57	13.500	411.98	28.15	3.1686
580	586.04	14.382	419.56	26.89	3.1868
590	596.53	15.309	427.17	25.70	3.2047
600	607.02	16.278	434.80	24.58	3.2223
610	617.53	17.297	442.43	23.51	3.2397
620	628.07	18.360	450.13	22.52	3.2569
630	638.65	19.475	457.83	21.57	3.2738
640	649.21	20.64	465.55	20.674	3.2905
650	659.84	21.86	473.32	19.828	3.3069
660	670.47	23.13	481.06	19.026	3.3232
670	681.15	24.46	488.88	18.266	3.3392
680	691.82	25.85	496.65	17.543	3.3551
690	702.52	27.29	504.51	16.857	3.3707
700	713.27	28.80	512.37	16.205	3.5861
710	724.01	30.38	520.26	15.585	3.4014
720	734.20	31.92	527.72	15.027	3.4156
730	745.62	33.72	536.12	14.434	3.4314
740	756.44	35.50	544.05	13.900	3.4461
750	767.30	37.35	552.05	13.391	3.4607
760	778.21	39.27	560.08	12.905	3.4751
770	789.10	41.27	568.10	12.440	3.4894
780	800.03	43.35	576.15	11.998	3.5035
790	810.98	45.51	584.22	11.575	3.5174
800	821.94	47.75	592.34	11.172	3.5312
810	832.96	50.08	600.46	10.785	3.5449
820	843.97	52.49	608.62	10.416	3.5584
830	855.01	55.00	616.79	10.062	3.5718
840	866.09	57.60	624.97	9.724	3.5850
850	877.16	60.29	633.21	9.400	3.5981
860	888.28	63.09	641.44	9.090	3.6111
870	899.42	65.98	649.70	8.792	3.6240

جدول A-IYM (ادامه)

$\begin{aligned} & \mathbf{T}, \\ & \mathbf{K} \end{aligned}$	h, $\mathbf{k J} / \mathbf{k g}$	$\boldsymbol{P}_{\mathrm{r}}$	4, kJ/kg	v_{r}	ϕ $\mathbf{k J} / \mathbf{k g} \cdot \mathbf{K}$
880	910.56	68.98	658.00	8.507	3.6367
890	921.75	72.08	666.31	8.233	3.6493
900	932.94	75.29	674.63	7.971	3.6619
910	944.15	78.61	682.98	7.718	3.6743
920	955.38	82.05	691.33	7.476	3.6865
930	966.64	85.60	699.73	7.244	3.6987
940	977.92	89.28	708.13	7.020	3.7108
950	989.22	93.08	716.57	6.805	3.7227
960	1000.53	97.00	725.01	6.599	3.7346
970	1011.88	101.06	733.48	6.400	3.7463
980	1023.25	105.24	741.99	6.209	3.7580
990	1034.63	109.57	750.48	6.025	3.7695
1000	1046.03	114.03	759.02	5.847	3.7810
1020	1068.89	123.12	775.67	5.521	3.8030
1040	1091.85	133.34	793.35	5.201	3.8259
1060	1114.85	143.91	810.61	4.911	3.8478
1080	1137.93	155.15	827.94	4.641	3.8694
1100	1161.07	167.07	845.34	4.390	3,8906
1120	1184.28	179.71	862.85	4.156	3.9116
1140	1207.54	193.07	880.37	3.937	3.9322
1160	1230.90	207.24	897.98	3.732	3.9525
1180	1254.34	222.2	915.68	3.541	3.9725
1200	1277.79	238.0	933.40	3.362	3.9922
1220	1301.33	254.7	951.19	3.194	4.0117
1240	1324.89	272.3	969.01	3.037	4.0308
1260	1348.55	290.8	986.92	2.889	4.0497
1280	1372.25	310.4	1004.88	2.750	4.0684
1300	1395.97	330.9	1022.88	2.619	4.0868
1320	1419.77	352.5	1040.93	2.497	4.1049
1340	1443.61	375.3	1059.03	2.381	4.1229
1360	1467.50	399.1	1077.17	2.272	4.1406
1380	1491.43	424.2	1095.36	2.169	4.1580
1400	1515.41	450.5	1113.62	2.072	4.1753
1420	1539.44	478.0	1131.90	1.9808	4.1923
1440	1563.49	506.9	1150.23	1.8942	4.2092
1460	1587.61	537.1	1168.61	1.8124	4.2258
1480	1611.80	568.8	1187.03	1.7350	4.2422
1500	1635.99	601.9	1205.47	1.6617	4.2585

25C59	でE90 £b		20\％80\％	693．6L	1.60689	2LI 89	LRLC 15	Evi 29	でで6比	E95＇59	「82					W0：5
28059	SSLT Cb	06088	［596 6i	18826	078699	816.2	＋1565s	295：99	［＇0 26 Et	S6E E4	＋1068					002s
016.9	988240	126 Lt	8 c 606 C	$1-66818$	606t 99	$299 \% 9$	¢ 0 （19）ts	09E： 19	$1 \cdot 620$ £	£2\％E\％	9.1960					0015
5cioc	C200 00	$6 \pm L$	โ＇fuz 88	869.81	$0<60)+9$	106－L9	thises	¢61： 29	¢980 z	60089	$8 \cdot 62000$					0005
955．99	8LIS 61	＋LS＇Lb	$695 ¢$ LE	$866^{\prime} 8 \mathrm{~L}$	\＆145 29	5¢1：29	0610 てS	100\％ 29	1901t	$0<829$	${ }^{1} 66168$					0060
	6 6．19 8\％	96E L	－ 5699	160．8L	6ıZ0 19	998＇99	551205	60899	980206	689.79	561888					0×18
881.69	OTSLLE	512%	0 0¢9 รโ	$6 \angle L \angle L$	lits 65	165.99	691668	E19．99	9 9LL 68	tos 24	11比く					0027
886.59	¢．69898	0 00 ${ }^{\text {L }}$	LSLL tf	$090 \cdot L L$	$L 66085$	21\％＇99	9 ¢ 218	\＆1＊＊9）	F1ヶE85	91529	8.89598					004\％
$508 . \mathrm{E9}$	988855	2189\％	9.18658	5 El 12	0 18s 95	820.99	6 SE8 9	802.94	Blitic	EZI＇z9	8.269 Sc					Oust
L0959	z601 5E	159.90	6000 E¢	508＇9L	1＇501 \＄5	8 8． 59	6 6S5 50	000%	0．58p 92	L2619	1 1518 \＄5					0006
50t 89	でEz	95t 97	5\％	＋50．9L	12E9 ¢5	tot ${ }^{\text {c }} 9$	$0.8 L 2$ to	88 CL 5	1：955 5	92t．19	6.656 E 5					O0t
B61＇$¢ 9$	－tSE EE	1529\％	86Ct 15	6119	029125	Wrics	\＄ 800 tt	ILS．59	6.659 dc	075＇19	1 18＊¢¢					0027
88679	16Lb 2 E	950.90	8 6is 05	S9LSL	150005	618.69	15 Sb It	ObEs 9	917L ¢	01E＇19	$0 \% 6128$					colt
ULL゙てL	て5091と	$68^{\circ} 50$	SteOL hz	tot＇SL	－1E2 ob	KZS＇t9	1680 00	EzI sy	1．908 zf	46079	\checkmark fize 1§					000%
155：79	6＇ZEL OE	889.5	11／888	cias	01tclt	01です	20tz $6 i$	E68． 59	9 Y 6 （18	LL8 09	829006	Eec 29	で992で			0068
52¢で	¢．29862	E2D 5	870082	559.	0 Ot¢ 9	L88． E9 $^{\text {c }}$	6 Rfog LE	LS9 59	15860t	259．09	6． 26562	16029	8 カ¢¢ ！			0085
£60 29	S．8669z	E02－Sb	S．812 Lit	L9\％${ }^{\circ} \mathrm{L}$	5 T 98 t	L55．59	－ 5949	Sitios	5 $\angle \angle O O E$	でか199	155L 82	Eff 19	090405			00LE
558\％19	9.92188	8L6\％	S．B6E 97	$0 \angle 8 \mathrm{EL}$	01t55	12 C ¢9	100ss si	＊91＇＊9	$6 \mathrm{ELI} 6 z$	981 09		$065 \cdot 19$	662t 62			009\％
219．19	$8192 \angle Z$	$87 L^{\circ} \mathrm{H}$	678557	$290^{\circ} \mathrm{CL}$	C＇Sos It	94879	SEzEfE	\＄16．59		1665	6.510 lz	$62 ¢ \cdot 19$	H－HSS 88			OOSE
2\％ 19	¢665 9\％	1．5\％	$61 / 20 \%$	500 LL	$9{ }^{\text {c E S }}$ Ot	92579	0911 ge	tSy 59	$65 L E L Z$	$\angle 69 \% 5$	し＇65198	¢90．19	－919 Lz	Dficos	－16692	00tr
中	\underline{Y}	\pm	Y	中	y	中		\＄	4	中	Ψ	¢	$\underline{1}$	\＄		
－6．6．		－mins？		651．5misis		－				רִ\％			mis）		9659	
		we	＊${ }^{\text {d }}$			Oncor	d\％									

جدول A-

$$
\begin{aligned}
& \text { [} \mathbf{l} / \mathrm{kg} \text { mol.K] بر } \bar{u} \text {, } \bar{\hbar}
\end{aligned}
$$

$$
\begin{aligned}
& \vec{s}=\vec{s}_{\text {nef }}-\Re \ln \left(p / p_{0}\right) \mathbf{V} / \mathbf{k g} . \text { mol.K } \\
& \text { كى }
\end{aligned}
$$

T, K	H2O , بخارآب			CO2		
	$\bar{h}-\bar{h}_{\text {2\% }}$	$\bar{u}-\bar{u}_{\text {gra }}$	${ }^{\circ}$	$\bar{h}-\bar{h}_{19}$	$\bar{u}-\bar{u}_{\underline{\prime \prime}}$	5°
0	-9904	-7425	0.0	-9364	-6885	0.0
100	-6615	-4939	152.390	-6456	-4666	179.109
200	-3280	-2 453	175.486	-3414	-2 447	199.975
250	-1610	-1210	182.940	-1737	-1337	207.446
298	0.0	0.0	188.833	0.0	0.0	213.795
300	63	47	189.038	67	54	214.025
350	1748	1317	194.234	1987	1554	219.940
400	3452	2605	198.783	4008	3161	225.334
450	5176	3914	202.843	6119	4857	230.303
500	6920	5246	206.523	8314	6636	234.924
550	8697	6603	209.904	10581	8487	239.244
600	10498	7988	213.037	12916	10406	243.309
650	12326	9401	215.965	15310	12385	247.141
700	14184	10843	218.719	17761	14420	250.773
750	16073	12316	221.324	20265	16508	254.226
800	17991	13820	223.803	22815	18642	257.517
850	19942	15354	226.166	25409	20821	260.660
900	21924	16920	228.430	28041	23037	263.668
950	23937	18518	230.608	30706	25286	266.553
1000	25978	20143	232.706	33405	27570	269.325
1050	28057	21806	234.731	36138	29887	271.986
1100	30167	23500	236.694	38894	32227	274.555
1150	32307	25224	238.594	41679	32118	277.023
1200	34476	26978	240.443	44484	36986	279.417
1250	36676	28762	242.237	47312	39399	281.721
1300	38903	30575	243.986	50158	41828	283.956
1350	41163	32417	245.688	53024	44279	286.122
1400	43447	34286	247.350	55907	46746	288.216
1450	45759	36183	248.973	58803	49227	290.252
1500	48095	38103	250.560	61714	51721	292.224
1550	50459	40051	252.108	64640	54232	293.642
1600	52844	42020	253.622	67580	56856	296.010
1650	55255	44015	255.106	70531	59245	297.823
1700	57685	46030	256.559	73492	61836	299.592
1750	60139	48068	257.979	76462	64391	301.312
1800	62609	50122	259.371	79442	66955	302.993
1850	65102	52200	260.737	82431	69528	304.631
1900	67613	54295	262.078	85429	72111	306.232
1950	70144	55986	263.391	88435	74701	307.792
2000	72689	58540	264.681	91450	77300	309.320

1. K	H2O		5°	, ${ }^{\text {, } \mathrm{CO}_{2}}$		
	$h-h_{\text {\% }}{ }_{\text {m }}$	$\overline{\mathbf{u}}-\dot{U}_{\text {rex }}$		$\bar{h}-\bar{h}_{\text {28 }}$	$\bar{u}-\bar{u}_{101}$	${ }^{-0}$
2050	75252	60686	265.947	94471	79906	310.810
2100	77831	62850	267.191	97500	82519	312.269
2150	80426	65029	268.410	100534	85138	313.698
2201	83036	67224	269.609	103575	87763	315.098
2390	85658	69430	270.788	106620	90392	316.465
2300	88295	71651	271.948	109671	93027	317.805
2350	90942	73883	273.087	112727	95667	319.120
2406	93604	76128	274.207	115788	98312	320.411
2450	96.279	78386	275.310	118855	100964	321.675
2500	98964	80657	276.396	121926	103619	322.918
2550	101661	82939	277.463	125004	106281	324.135
2600	104370	85231	278.517	128085	108947	325.332
2650	107087	87533	279.550	131169	111615	326.505
2700	109813	89844	280.571	134256	114287	327.658
2750	112549	92163	281.573	137349	116964	328.793
2800	115294	94492	282.563	140444	119643	329.909
2850	118048	96831	283.538	143544	122327	331.005
2900	120813	99180	284.500	146645	125013	332.085
29.50	123582	101534	285.447	149753	127704	333.146
3000	126361	103896	286.383	152862	130398	334.193
3050	129147	106267	287.303	155977	133097	335.223
3100	131942	108647	288.211	159092	135796	336.235
3150	134744	111033	289.108	162212	138500	337.233
3200	137553	113426	289.994	165331	141204	338.218
3250	140368	115825	290.865	168458	143916	339.178
3300	143197	118224	291.715	171588	146628	340.123

	, هيدروزن , H_{2}			, CO		
\boldsymbol{T}, K	$\bar{h}-\bar{h}_{298}$	$\bar{u}-\bar{u}_{28}$	\bar{s}°	$\bar{h}-\ddot{h}_{\text {m }}$	$\bar{u}-\bar{u}_{\text {¢ }}$ m	${ }^{\circ}{ }^{\circ}$
0	-8468	-5989	0.0	-8669	-6 190	0.0
100	- 5293	- 3979	102.145	-5770	-4115	165.850
200	-2 770	-1969	119.437	-2858	-2040	186.025
250	-1357	-965	125.175	-1403	- 1002	192.520
298	0.0	0.0	130.684	0.0	0.0	197.653
300	54	38	130.864	54	39	197.833
350	1503	1072	135.318	1512	1081	202.326
400	2958	2111	139.215	2975	2129	206.234
450	4419	3157	142.647	4447	3185	209.701
500	5883	4204	145.738	5929	4253	212.82 R
550	7346	5252	148.512	7428	5334	215.681
600	8812	6302	151.077	8941	6432	218.313
650	10279	7355	153.418	10472	7546	220.765
700	11749	8410	155.608	12021	8680	223.062
750	13225	9468	157.633	13589	9832	225.224
800	14703	10531	159.549	15175	11003	227.271
850	16189	11601	161.347	16777	12189	229.215
900	17682	12678	163.060	18397	13393	231.066
950	19180	13760	164.674	20034	14615	232.836
1000	20686	14850	166.223	21686	15851	234.531
1050	22200	15949	167.696	23354	17103	236.155
1100	23723	17057	169.118	25033	18367	237.719
1150	25254	18172	170.476	26725	19642	239.221
1200	26794	19295	171.792	28426	20928	240.673
1250	28346	20432	173.054	30141	22362	242.070
1300	29907	21578	174.281	31865	23535	243.426
1350	31480	22734	175.467	33597	24852	244.732
1400	33062	23900	176.620	35338	26177	245.999
1450	34661	25084	177.739	37090	27513	247.227
1500	36267	26277	178.833	38848	28856	248.421
1550	37890	27482	179.894	40613	30205	249.577
1600	39522	28698	180.929	42384	31560	250.702
1650	41165	29926	181.940	44159	32920	251.795
1700	42815	31161	182.929	45940	34284	252.861
1750	44478	32406	183.891	47729	35658	253.896
1800	46150	33663	184.833	49522	37035	254.907
1850	47831	34928	185.754	51321	38419	255.891
1900	49522	36204	186.657	53124	39807	256.852
1950	51222	37489	187.540	54931	41197	257.792
2000	52932	38782	188.406	56739	42590	258.710
2050	54651	40085	189.257	58555	43989	259.603
2100	56379	41397	190.088	60375	45394	260.480
2150	58116	42719	190.905	62195	46798	261.335
2200	59860	44048	191.707	64019	48206	262.174
2250	61612	45384	192.494	65847	49619	262.996
2300	63371	46727	193.268	67676	51032	263.802
2350	65140	48080	194.030	69509	52450	264.589

T, K	, هيدرؤن ${ }^{\text {H2 }}$			CO , منوااكسيدك بن		
	$\bar{h}-\bar{h}_{\mathrm{man}}$	$\bar{u}-\bar{u}_{\text {va }}$	5°	$\bar{h}-\bar{h}_{298}$	$\bar{u}-\bar{u}_{2 \%}$	5°
2400	66915	49440	194.778	71346	53870	265.362
2450	68700	50809	195.512	73183	55292	266.121
2500	70492	52186	196.234	75023	56716	266.865
2550	72287	53565	196.946	76868	58145	267.594
2600	74090	54952	197.649	78714	59576	268.312
2650	75900	56346	198.338	80561	61007	269.014
2700	77718	57748	199.017	82408	62438	269.705
2750	79540	59155	199.684	84261	63876	270.394
2800	81370	60569	200. 343	86115	65314	271.053
2850	83203	61987	200.994	87970	66755	271.711
2900	85044	63412	201.636	89826	68193	272.358
2950	86890	64842	202.266	91683	69635	272.993
3000	88743	66279	202.887	93542	71077	273.618
3050	90597	67718	203.500	95404	72525	274.232
3100	92458	6.9163	204.104	97270	73974	274.839
3150	94325	76615	204.701	99133	75422	275.435
3200	96199	72072	205.293	100998	76871	276.023
3250	98077	73534	205.874	102865	78323	276.603
3300	99964	74996	206.442	104736	79775	277.166

$\boldsymbol{T}, \mathrm{K}$, ${ }_{2}$			اكسيرّن , 0_{2}		
	$\bar{h}-\bar{h}_{2 *}$	$\bar{u}-\bar{u}_{\text {cex }}$	5°	$\vec{h}-\dot{h}_{2 *}$	$\bar{u}-\bar{u}_{\text {I }}$	${ }^{\text {s }}$
0	-8669	-6190	0.0	-8682	-6 203	0.0
100	- 5770	-4 115	159.813	-5778	-4124	173.306
200	-2858	-2040	179.988	-2866	-2045	193.486
250	-1 403	-1002	186.479	-1407	-1006	199.994
298	0.0	0.0	191.611	0.0	0.0	205.142
300	54	39	191.791	54	39	205.322
350	1511	1080	196.282	1531	1100	209.874
400	2971	2124	200.180	3029	2181	213.874
450	4436	3173	203.632	4546	3284	217.451
500	5912	4233	206.739	6088	4411	220.698
550	7395	5302	209.570	7656	5562	223.685
600	8891	6384	212.175	9247	6737	226.455
650	10406	7481	214.598	10862	7937	229.041
700	11937	8594	216.865	12502	9161	231.272
750	13480	9723	218.998	14162	10404	233.758
800	15046	10871	221.016	15841	11669	235.924
850	16623	12034	222.931	17536	12947	237.973
900	18221	13217	224.756	19246	14242	239.936

جدول A- 1 (ادامه)

$$
\begin{aligned}
& \gamma=1 / \psi \text { براي يكـ }
\end{aligned}
$$

M	M^{*}	$\frac{A}{A^{*}}$	$\frac{p}{p_{0}}$	$\frac{\rho}{\rho_{0}}$	$\frac{T}{T_{0}}$
0	0	∞	1.00000	1.00000	1.00000
0.10	0.10943	5.8218	0.99303	0.99502	0.99800
0.20	0.21822	2.9635	0.97250	0.98027	0.99206
0.30	0.32572	2.0351	0.93947	0.95638	0.98232
0.40	0.43133	1.5901	0.89562	0.92428	0.96899
0.50	0.53452	1.3398	0.84302	0.88517	0.95238
0.60	0.63480	1.1882	0.78400	0.84045	0.93284
0.70	0.73179	1.09437	0.72092	0.79158	0.91075
0.80	0.82514	1.03823	0.65602	0.74000	0.88652
0.90	0.91460	1.00886	0.59126	0.68704	0.86058
1.00	1.00000	1.00000	0.52828	0.63394	0.83333
1.10	1.08124	1.00793	0.46835	0.58169	0.80515
1.20	1.1583	1.03044	0.41238	0.53114	0.77640
1.30	1.2311	1.06631	0.36092	0.48291	0.74738
1.40	1.2999	1.1149	0.31424	0.43742	0.71839
1.50	1.3646	1.1762	0.27240	0.39498	0.68965
1.60	1.4254	1.2502	0.23527	0.35573	0.66138
1.70	1.4825	1.3376	0.20259	0.31969	0.63372
1.80	1.5360	1.4390	0.17404	0.28682	0.60680
1.90	1.5861	1.5552	0.14924	0.25699	0.58072
2.00	1.6330	1.6875	0.12780	0.23005	0.55556
2.10	1.6769	1.8369	0.10935	0.20580	0.53135
2.20	1.7179	2.0050	0.09352	0.18405	0.50813
2.30	1.7563	2.1931	0.07997	0.16458	0.48591
2.40	1.7922	2.4031	0.06840	0.14720	0.46468
2.50	1.8258	2.6367	0.05853	0.13169	0.44444
2.60	1.8572	2.8960	0.05012	0.11787	0.42517
2.70	1.8865	3.1830	0.04295	0.10557	0.40684
2.80	1.9140	3.5001	0.03685	0.09462	0.38941
2.90	1.9398	3.8498	0.03165	0.08489	0.37286
3.00	1.9640	4.2346	0.02722	0.07623	0.35714
3.50	2.0642	6.7896	0.01311	0.04523	0.28986
4.00	2.1381	10.719	0.00658	0.02766	0.23810
4.50	2.1936	16.562	0.00346	0.01745	0.19802
5.00	2.2361	25.000	189(10) ${ }^{-5}$	0.01134	0.16667
6.00	2.2953	53.180	633(10) ${ }^{-6}$	0.00519	0.12195
7.00	2.3333	104.143	242(10) ${ }^{-6}$	0.00261	0.09259
8.00	2.3591	190.109	$102(10)^{-6}$	0.00141	0.07246
9.00	2.3772	327.189	474(10) ${ }^{-7}$	0.000815	0.05814
10.00	2.3904	535.938	236(10) ${ }^{-}$	0.000495	0.04762
x	2.4495	-	0	0	0

[^8]A
";

$\gamma=1 / \uparrow$ باسوماى مغصوص و وزن مولكولى لابت

$M_{\text {x }}$	M_{y}	$\frac{p_{y}}{\boldsymbol{p}_{x}}$	$\frac{\rho_{y}}{\rho_{x}}$	$\frac{\boldsymbol{T}_{y}}{\boldsymbol{T}_{x}}$	$\frac{p_{0 g}}{p_{0 x}}$	$\frac{\boldsymbol{p}_{o z}}{\boldsymbol{p}_{x}}$
1.00	1.00000	1.00000	1.00000	1.00000	1.00000	1.8929
1. 10	0.91177	1.2450	1.1691	1.06494	0.99892	2.1328
1.20	0.84217	1.5133	1.3416	1.1280	0.99280	2.4075
1.30	0.78596	1.8050	1.5157	1.1909	0.97935	2.7135
1.40	0.73971	2.1200	1.6896	1.2547	0.95819	3.0493
1.50	0.70109	2.4583	1.8621	1.3202	0.92978	3.4133
1.60	0.66844	2.8201	2.0317	1.3880	0.89520	3.8049
1.70	0.64055	3.2050	2.1977	1.4583	0.85573	4.2238
1.80	0.61650	3.6133	2.3592	1.5316	0.81268	4.6695
1.90	0.59562	4.0450	2.5157	1.6079	0.76735	5.1417
2.00	0.57735	4.5000	2.6666	1.6875	0.72088	5.6405
2.10	0.56128	4.9784	2.8119	1.7704	0.67472	6.1655
2.20	0.54706	5.4800	2.9512	1.8569	0.62812	6.7163
2.30	0.53441	0.0050	3.0846	1.9468	0.58331	7.2937
2.40	0.52312	6.5533	3.2119	2.0403	0.54015	7.8969
2.50	0.51299	7.1250	3.3333	2.1375	0.49902	8.5267
2.60	0.50387	7.7200	3.4489	2.2383	0.46012	9.1813
2.70	0.49563	8.3783	3.5590	2.3429	0.42359	9.8625
2.80	0.48817	8.9800	3.6635	2.4512	0.38946	10.569
2.90	0.48138	9.6450	3.7629	2.5632	0.35773	!1.302
3.00	0.47519	10.333	3.8571	2.6790	0.32834	12.061
4.00	0.43496	18.500	4.5714	4.0469	0.13876	21.068
5.00	0.41523	29.000	5.0000	5.8000	0.06172	32.654
10.00	0.38757	116.50	5.7143	20.388	0.00304	129.217
x	0.37796	x	6.000	x	0	*

Source: Abridged from J. H. Keenan and J. Kaye, 'Gas Tables," John Wiley \& Sons, Inc., New York, 1948.

[^9]
جدول B-Y ضريب شدايت حرارتى جند غيرلز

k, W/m.K	T, ${ }^{\circ} \mathrm{C}$	ماده
0.74	20-55	سواد ماختمانى و متارم هرارتى اسفالت:
0.69	20	
1.31	.	
0.24	200	خاكك دياثتمى
0.31	870	
1.04	500	YFYY ${ }^{\text {T }}$
1.07	800	
1.09	1100	
0.29	...	
1.37	20	بتونّ،
0.78	20	شوبّ4،
0.48	21	روككّ، سنّك
0.47	21	روككش، نونّ
0.28	21	روكّهُ، تونّالِ جوبى
1.73-3.98	\ldots	گّانيّ
1.26-1.33	100-300	سنكّ T-
0.055	30	:جوب، در عرفض بابنت : بالما،
0.147	24	كاكا با مـنوبر زبرد
0.112	30	
0.744	20	صفيّه سبمان نسرز
0.166	50	لايهماى نـوز
2.07	\cdots	سيهان نسوز
0.148	-45	ماده نـوز،
0.154	0	
0.160	100	
0.043	30	
0.061	0	-
0.048	21	مفنه
0.038	24	1/0 lb/ft ${ }^{3}$ \%
0.035	30	كإلوك (اليانى شبيه أبريّـم)
0.067	38	\|كسيد اكنيزيم'
0.071	93	
0.074	150	
0.080	204	
0.059	23	- خاكه ارٌ
0.040	32	1-1b/ft ${ }^{\text {4\% }}$

1.11

B
فتميهة

جدول B-F تواص هوا دو لهـار آتمسفر

Source: From Natl. Bur. Stand. (U.S.) Circ. 564, 1955.
جهوال B-P خواص Tب (مايع اشباع)

${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$	$\begin{aligned} & c_{p}, \\ & \mathbf{k} / / \mathbf{k g} \cdot{ }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \rho, \\ & \mathbf{k g} / \mathbf{m}^{3} \end{aligned}$	$\mu_{\mathbf{k g} / \mathrm{m} \cdot \mathrm{~s}}$	k, $W_{m} \cdot{ }^{\circ} \mathrm{C}$	$\mathbf{P r}$	$\frac{g \beta \rho^{2} c_{p}}{\mu k}$, $1 / \mathrm{m}^{3} \cdot{ }^{\circ} \mathrm{C}$
32	0	4.225	999.8	1.79×10^{-3}	0.566	13.25	
40	4.44	4.208	999.8	1.55	0.575	11.35	1.91×10^{9}
50	10	4.195	999.2	1.31	0.585	9.40	6.34×10^{9}
60	15.56	4.186	998.6	1.12	0.595	7.88	1.08×10^{10}
70	21.11	4.179	997.4	9.8×10^{-4}	0.604	6.78	1.46×10^{10}
80	26.67	4.179	995.8	8.6	0.614	5.85	1.91×10^{10}
90	32.22	4.174	994.9	7.65	0.623	5.12	2.48×10^{10}
100	37.78	4.174	993.0	6.82	0.630	4.53	3.3×10^{10}
110	43.33	4.174	990.6	6.16	0.637	4.04	4.19×10^{10}
120	48.89	4.174	988.8	5.62	0.644	3.64	4.89×10^{10}
130	54.44	4.179	985.7	5.13	0.649	3.30	5.66×10^{10}
140	60	4.179	983.3	4.71	0.654	3.01	6.48×10^{10}
150	65.55	4.183	980.3	4.3	0.659	2.73	7.62×10^{10}
160	71.11	4.186	977.3	4.01	0.665	2.53	8.84×10^{10}
170	76.67	4.191	973.7	3.72	0.668	2.33	9.85×10^{10}
180	82.22	4.195	970.2	3.47	0.673	2.16	1.09×10^{11}
190	87.78	4.199	966.7	3.27	0.675	2.03	
200	93.33	4.204	963.2	3.06	0.678	1.90	
220	104.4	4.216	955.1	2.67	0.684	1.66	
240	115.6	4.229	946.7	2.44	0.685	1.51	
260	126.7	4.250	937.2	2.19	0.685	1.36	
280	137.8	4.271	928.1	1.98	0.685	1.24	
300	148.9	4.296	918.0	1.86	0.684	1.17	
350	176.7	4.371	890.4	1.57	0.677	1.02	
400	204.4	4.467	859.4	1.36	0.665	1.00	
450	232.2	4.585	825.7	1.20	0.646	0.85	
500	260	4.731	785.2	1.07	0.616	0.83	
550	287.7	5.024	735.5	9.51×10^{-5}			
600	315.6	5.703	678.7	8.68			

Source: Adapted from A. I. Brown and S. M. Mares, "Introduction to Heat Transfer," 3d ed., McGraw-Hill Book Company, New York, 1958.

فر هنكت لغات علمى

(A)
 Bottom dead center (bdc) نقطه مرگُ 4 (

Absolute pressure	Boundary of system	نمـار مطلّ	
Absorption refrigeration cycle	Bulk temperature	دماى توده	

سيكل تبريد جذبى

Absorptivity
خريب جذب

Adiabatic		Canonical ensemble	مجـوعه متعزنى
Air/fuel ratio	نـبـت هوا باسوخت	Centrifugal Compressor	
Availability	دسترس بذرى - قابطي		كهرسور گريز 'ز

انرذى دسترس بذّبر ـأنرزُى مفبد

Axial compressor
كـهرسود مهورى
(B)

Blackbody radiation
تابش جـــم سيا

Boiler
دبگى بهار- بويلر
「ارار بوز -اينتُنين

Characteristic temperature دماى مششضص
Chemical equilibrium تعادل شيميائى

Choked flow	جريان خفه
Clearence volume	
Clased system	سيهتّ بـتّ

Coal ذغال سنگּ

Coefficient of discharge ضريب تخلي
Coefficient of expansion خريب انبــاط

ترموديناميكى		1.14
Coefficient of performance	Curie substance	ماندهورى
Combinations نركيبات	Cut-off ratio	نـبت تط
Combustion الحترا	Cycle	سيكل -
Compressed liquid		
Compressibility factor	(D)	
Compression ratio نسبت تراكم	Debye temperature	دماى دباى
Condensate	Degeneracy	تبغّن،
Condenser	Degree of reation	درجه
Conduction	Dehumidification	رطوبت زدا
Conduction band نوíر مدايت	Detached	مجز
Conduction shape factor	Deviation	انحرا
ضريب شـكل هدايت	Dew point	نقطه شبنم
Conservation of energy بفاى انرزى	Diesel cycle	سيكل دبر
Continuum (محيط)	Diffuser	بوغش كـ
Control volume	Dimension	
Convection جابجاكي	Discrete quanta	كو انتاهاى
Converging-diverging nozzle	Dissociation	تجزيه، ثنج
شيهورי مدخرا- واگكا	Divergent	واگگا
Conversion factors ضرايب تبدلي	Double-pipe beat ex	
Cooling towers برج		مبدل حرا
Corresponding states principle	Downstrean	4
قانون حالات متـبابه	Dry-bulb temperatur	دماى حباب
Counterflow ناعهـو		
Critical point نقطه بحرانى	(E)	
Cross flow جريان عمونى	Economizer	صرفه جو

Effectivenes
Efficiency
ضريب سودمندى
بازده

Emissive power توان تابنـى

Emissivity	
Endothermic reaction	,اكّ

Ensemble

Environment	محبط
Enthalpy deparature	انحران انتلالى
Entbalpy of formation	انتالهى تشكـل

Equations of state معادلات حالت
Equilibriuim constant ثابت تعادل
Equipartition of energy مم افراز انزءى
Evaporative cooling سرمايثى تبخيرى

Evaporator تبخير كنده -اوأرانتور
Exact differential
Exothermic reaction واكتُ ترمازا
Excess air

Expansion valve شير انبـاطىى
Extensive property \quad خامبت گـتردر
Extraction بردائـت
Extrapolate برون بابيى

Fanno line
خط فانو

Feed water heater Fermi-Dirac distribution

Fermi level
نوزيع نرمى - ديراكك

Fins
فينها - يرهما

Flow work
كار جريان

Flux
Fluid
سبال
Forced convection جابجانيى اججارى

Four-cycle engine موثور جهار زمانه

Fractional populations نجمهبأى جز ئى

Free convection جانبجانيى آزاد

Fuel injection
تزريت سوخت

Fusion ذوبا جوشّ
(G)

Gage pressure فـارنسبى،
نـاراندمازء گيرى شُده بوسبل نشار سـج

Gas turbine cycle سبكل نوربين گازى

Generalized charts نمو دارهأى عـومى
Gibbs phase rule
تانون ناز گيـبـ
Grand canonical ensemble
مجبر عه تمطارنى بزرگّ

Gravitational Constant ثاببت جاذبه (ثقلى)
Gray body

(H)

Heat capacity	ظرفيت حرارتى
Heat of formation	حرارت تـكبل
Heat exchangers	مـلهأى حرارتى
Heat pump	ָیب خرازتى

Heisenberg uncertainty principle

	اهـل عدم تطعبـ هايزنبرگّ
Heterogenous	نامدغن

'رزش حرادنى بالايى Higher heating values
Holes in semiconductors
حفرهn نی :ر نيـه هاديها

Homogeneous	هـ\%
Hot well	جا

Humidification رطوبت زنى
Hybrid cycles

Hydrocarbon Aيدروكربن Hyperbolic functions توابع هيربوليكت

Ice point نفطة انجـاد Tب ـ تقطن بخ

Ideal gas
Incremental displacement جابهجائى نموى
Inequality of clausius نابرابرى كلاسيوس
Inexact differential
ديفرانسيل غير تحقيق

Inflection point
نقطهُ عطف
گاز ابدهإل
2иа

Information theory تورى اطلاعات
Intensive property خاصبت متمركز
Intercooler مبان سردكن Internat combustion engines
مو تو رهانى احتراق داخلى

Intrinsic semiconductor نيه, هادى ذاتى Inversion curve Ionization برنيزأسبون

Irradiation تابش حرارنى
Irreversibility برگثـت نايذبرى
Isenthalpic انتالى
Isentropic آنترو بی ثابـت ـ آيزنتروبپك
Isobaric نشار ثابت
Isochoric حجم ثابت
Isolated system مـبـتم منزوى ـيـيـتم ايزوله
Isothermal دما ثابت
(J)

Jet propulsion
محرك جت
Joule زول (واحد انرزى)
Joule زول (واحد انرزى)
(K)

Kay's rule for mixtures
روش كِى براى مخلوطها
Kilopond force

(M)

Mach cone
Mach number عدد ماخ

Magnetism	
Magnetization	مغناطـطــس كرون

Magnetocaloric اثو ما گكتو كالريك؛
Mass action law \quad انون نعاليت جرم
Mass conservation principle اصل بقاى جرم

Maximum work كار حداككر
Maxwell-Boltzmann Statistics
Tآلار كاكــول ـ بولتزمن

Optimum بهين، أتبّ		ضريب بازيافت فـّار
Otto cycle	Probability	احتمل
Overall heat-transfer coefficient	Products of combustion	سحصولات احتراق
ضريب انتقال حرارت	Properties	خواص
	Propulsion	نيروى محركه
(P)	Pseudo-critical constants	

Partial pressure	فشار جز
Partition funetion	تابم إِفراز - نابِ تقـيم
Perfect gas	گاز كامل
Permutations	تبدبلات

Perpetual motion machine of second
kind ماشبن سركت دانم ازْ نوع 2وم
(Q)

Phase equilibriuim
تعادل فازی
Quality
كيفين
Pheton gas
گاز نتون
Physical constants
نوابـت فيزيكى
Quantity
كميت
Quasi-equilibrium
شبه نعادلى
Pont luncuon
تابع نقطه:ى
Poly'ropic process فرإيند بلى تروبيكك
Population تجـى
Porous plug experiment

	آزمايث توهى متخلخل
Potential energy	انزوزى بتانـيل
Power cycles	صبكلهایى تدرت
Prandtl number	عدد برانتل
Preheater	ريش گرشك

ثو ابت شبه بحرانى
Psychrometrie chart نـو
Pump work
كار بـب
Pure substance
ماده خالص

ترمود ينامبيك

فريب هدأيت گرمايى hermal conductivity Thermodynamic probability
انحتبال ترعوديناميكى

Thermometer دطاسنع

Throat in sonic flow
گلرگّه در چحربان مـوتى

Throttling process فر آيند خنگى (اختناتى) Thrust
نـروى بيـن برنـه

Top dead center (t.d.c.) نقطه مرگّث بال Transmissivity
Trap

Triple point نقطه سهگّانه
Turbojet engine
Two-cycle engine موتور دوزمانه

Universal gas constant

$$
\begin{aligned}
& \text { ثابـت عمومى (مـتُانى) گازهـا } \\
& \text { Upstream } \\
& \text { باللا دست جحريان }
\end{aligned}
$$

Vaccum pressure نثـر خل大.

Valence band
نوار والانسـ

Vapor refrigeration cycle
سبكل تبريل بـذار

Vaporization line
خط تبخخر
Vibrational characteristic temperature
دماى مُــختصـه أر تعانُى

Virial equation of state مسادله ويريالل حألـت Viscosity
الزجت ـيران روى

Volume coefficient of expansion
Volume fraction

Water
بخار آبب

Water vapor
Weight وزن

Wet-bulb Temperature دماي حبابط تر
Work modes

Working fluid مـال عامل

Zeroth law of thormodynamics
تانون صفر: ترمودبذمبك

Zone of silence ناحيه سكوت

وازْهياب فارسى

$$
\begin{aligned}
& \text { ــ } \\
& \text { ـ مطلت، } 010 \\
& \text { آيزنتروييكى : } \\
& \text { PVr تعريف نرآينذ ت }
\end{aligned}
$$

$$
\begin{aligned}
& \text { اينشتين، دما، } \\
& \text { 《الفه } \\
& \text { اتو، سيكل، ffl } \\
& \text { ـ بازده، } \\
& \text { احتراتى، خواص محصرولات، } 011 \\
& \text { احتراق، عهوبى : } \\
& \text { ـ ا محصـولات، } \\
& \text { ـ نسبتهاى استوكيومترى، } \\
& \text { - واكنش كنتدهـا } \\
& \text { - هوای اضانی، }
\end{aligned}
$$

استمالل،
ا/حتهال ترموديناميكى،
${ }_{«} \bar{T}_{*}$

- بع
- تواكم دما ثابت، IV0
-

آ-
Of الكتر يكى و مغناطيسى،

$$
\begin{aligned}
& \text { ـ } \\
& \text { DI، SI . }
\end{aligned}
$$

آمونياك :

- بعنوان مبرد،
- خواص،
آنتروبهى :
_احـل النزايش،
ـ تع تريف ماكروسكيّ،
ANY در ترموديناميكى آمارى،

VAD انتقال حرارت،	'ارزش حرارتى
-	- بالإلـ، -
V9^, VA¢	-
ـ هـ	VM1 استاتيكّ،
انرزى آزاد،	استرلينى
انزوزى	AV¢ ، تقريب -
91 ${ }^{\text {انرزى }}$	-
41 4 انرزى داخلى	
9V	اثبّع :
- HFA	10\% بخار، -
1-	-
- ATY	- نوآحى،
\|-نرزى	
انرزى	اطلاعات، تُورى،
Y^44 انرزى مفيد،	انراز، تابع :
《ب》	-
بازده، 0 ¢	احصل انحصـار
- 900 بازيابه،	اصل
- ¢	
¢ ${ }^{\text {¢ }}$	V¢A
-	- vor
ـوr	انبساط كاز تا كا
- ¢YY	التالجى :
بركتـت جـير، نرآيند	-
_ TVF آدياباتيكـ،	-
- F\%.	Vr • سـكون،
بركتـت نإِيرى :	ـكاز ايدهآلّ
- در ديح بهار،	rAv كاز حقيقى،

برايتون،	ـ د - در جريان دانم، در مشعل،
	- دF .
لِخش كن :	بازياب برای
- بازده،	ــبازده،
VrA	YV بتى بريجهن،
- VV.	بحرانى
A. 1 ¢رانتل،	-
IY.	ـ
_ 'rY	VF.
\%	بنار :
- P- آدياباتيك، كارّ	- آثّباع ،
-	VFF -
بِيوسته،	-
9V9 بيوندى،	-
	ـ 100
《》	بخار آب، خواص :
تابش :	- Pry
ـ Al انتقال	
-	
- -	
- روش شبكه،	بff
- فا	
Af.	VrV
-	بقاه، احل :
تبتخير،	
9^0 تبريد،	- 197 -7
- 497 -	بوز- اينشتين، مدل آلماري،
AFY	

> ثابت تعادل،
> - مربوط به حرارت واكنش، هو (
> ثابت ثقلى (جاذبه)،
> ثابت كاز :

FIA براكى مخلوط،

- تعريف ،

ـ عمومي،

- مربوط به كرماهاى ويرّه،

ثابتهاى نيزيكى، 401

《"
جابجا ـ آزاد،

 جدOF جلاول كاز، VFI جريان خنف شـده (اختتنتى)، جريان دائتى : - تابع كاردهى، ـ مقدلار كاردهى در، ـ ــ VF • جريان شييوره، خواص بحترانی، جريان مانوت صوت، VYV A|r جسم خاكسترى،
«"
حالات كار، $10 Y$

ـ ثابتهاى تعادلى برای،

> ترموديناميكـ :

ـ تانون اول، - 40 -
YOV، ـ ـانوت سوم،

FI،

تصعيد، $10 r$
تعادل :

- بـحـ عمومي،

ـ در واكتُشهأى جندتا يه،

 ـ
AA • مربوط به ترموديناميك آمارى، تله بخار، 9 . 9
AY • AIT ، توان تابششى،
توربين گازى :
ـ
ـ بابازياب،

- براك توربوجـت، SVA

توربو جـت، موتور، SVA
تُورى :
ـ ـكالريك

ثابتت بولتزمن در توزيعهاى آمارى، هA

- مربوط بد حالت،
«コ»

درجةُ آزادي، دVه

درجة أشباع،
درجئ واكنش، دو4 دما

- ترموديناميكى،

- حباب نحشك، VTI ،

دما ثابت :
- ضريب، انرابي

ـ انريب تراكم بذيرى، IVY

- فرآيند، كار كاز ايدهآلن،

دماسنج ، كاز اليدهآل، 98

A. . دماى توده (انبو!)، Ar. دماى آدياباتِيك شـعله، دواي د. دماى نيلم، دماي

$$
\text { ـ بازده، } 4 \text { 80 }
$$

$$
\begin{aligned}
& \text { - براى ارتعاش، } 9 \text { - } 9
\end{aligned}
$$

حالات متشابه، قانون، rVf
 حالت ـاصل، 101

- بعـث عمومي،
- يسكون،

Tr. حجم ثابت، فرآيند،

ـ تحليل قانون دوم، raY
حجرارتم مرده، FYD
حرارت :
- تابع مسيرى،

ـ ـ تشكيل ، جداول،

- تَرار داد علامت،
- واكشش، 019

«宅"
خفكى، نرآيند، ra
Yr.
 خ خواص :
ـ

ـ تعداد لازم براى مد.

PV	《．2）
－باز، 19 1914	راد 10 （0）
－بـسته،	راكهr
YV ترمود يناميكى－	رام
－واحد	رانكين،
سيستم باز،	－
«ش»	Vا
شيبوره ：	رطوبت（moisture）
－انبساط،	VY 9 ،（humidity）رطوبت）
－	FFY رطوبت زدا
V\＆0	FFV رطوبت زنى
－	FFI رطوبت سنجي）
VV．ضريب تخليه،	
－	رطوبت مخصوص،
VrA	JV4 رطوبت نسبى،
\＆A¢	رينولدز، علدّ، ．
«ض»	《产》
¢AF	زY ．
ضهr	
IVF ضريب انبساط حبجمى	＂س》
IVV	Vro
ضريب انتقال حرارت ：	Vr 1 ＇
－VA¢	FFD
－كلى	سكون ：
A｜r ${ }^{\text {¢ }}$	－Vr．
ضريب تراكم بذيرى ：	－VY4
IVF	－
－عVه	－vri،

نريون
نشار ： ． ＿Lrl استاتيكـ، ـ تعريف، 09 ال －جزئى،－
－．．
Vrl
－معطلق،
ـ نسبى（relative）، ـ
MY＇نشار ثابت، نرآيند،
نعاليت جرمه، تانون،
 AYO نينها ـ بازده،

《قヵ
rA＠تابليت كاردهى،
F．تانون ارل ترموديناميك،
－برایى سيستّم باز، 19V،

F．Fانون درم ترموديناميك،
－بيان كلانسيوس، ro9
ro9 بيان كلوين－بلانك،－ تانون سـوم ترموديناميك، r تانون صفرم ترمود يناميك، تدرت، سيكلها ：
－بهحت عهومى، \＆\＆V تحليل قانون دوم－

ضr

ضrY فريب سـودمندى مبدل حرارتى

ضاr ضريب عبور،
ضريب عهلكرد، 019
ضريب شـكل ：
ـ تابش،
－

《ظ》
ظونيت توده، Va\＆

《ف»
ناز ：
ـ ．AOV نضشا، ناز، تانون،

 نتون، كاز،

فرمى، تراز، فره،
－مربوط به نوار مهنوع،
نرمى－ديراك ：
－توزيع،
AVA، AVY مدل آماری، S＾O نريون بعنوان مبرد،

$$
\begin{aligned}
& \text { «ك» } \\
& \text { ـ AD النكتريكى، } \\
& \text { A انبـساط، A. } \\
& \text { - تعريف، } \\
& \text { - جريانی، } 199 \text { - } \\
& \text { - } 199 \text { ـ } \\
& \text { - ترارداد علامت، AV } \\
& \text { ـ AV مغناطيسـ، } \\
& \text { كاردهي، مقدار : } \\
& \text { ـ در جر جريان دائمى، } \\
& \text { ـ ـو دو سيكل توربين كازی، } \\
& \text { ـ مـلاحظات كاربردى، . } \\
& \text { كار شاكزيهم، }
\end{aligned}
$$

$$
\begin{aligned}
& \text { كارنو، سيكل : } \\
& \text { ـ تعريف، YAl }
\end{aligned}
$$

$$
\begin{aligned}
& \text { FMF كارير، معادله، كاله } \\
& \text { كالريكى، تُورى، } \\
& \text { كاA كسر موله، } \\
& \text { كلابِرون، رابطه، } \\
& \text { كلإسيوس - كلابيرون، معادله، } \\
& \text { كلاسيوس، نابرابرى، كهA } \\
& \text { كهبرسود : }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ـ كازی، } \\
& \text { EYV كريز از مركز، } \\
& \text { ـ AYA A A A }
\end{aligned}
$$

> - روابط، rfA
> - شيطانك،
> AVQ،AVY ماكــول - بولتزمن، مدل آمارى،

> مايع
> ـأشباع،
> ـ ـ ا مادون سرد،

$$
\begin{aligned}
& \text { AYQ، مبدلهاى حراردتى، }
\end{aligned}
$$

> - فريب سـودمندى، Arr
> AFY مجهوعه متعارفى،

> -جزئى،
> PV محيط،
> مخلوطها :

> FFV كازهاى حقيقى،
> _كرماهاى ويزه،
> - FYV موا- بخار آب،
> مخلوطهاى هوا- بخار آب
> FTr روابط خاصيت برايت ـ HFA مخلوط شدل آدياباباتيك،
> برز سيستم،
> F. 1 مغناطيس، أثرات، ترموديناميك،
> مقياس بين المللم دما، rer

> منحنى معكوس، •
> - جامدات،

$$
\begin{aligned}
& \text { - روابط عمومى، ror }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ـ } \\
& \text { ـ FYF مخلوطها } \\
& \text { ـ } \\
& \text { S•V S، كرمكن آب تغذيهي }
\end{aligned}
$$

> VFI كلوكاه در جريان صوتي، VF كيبس، تابع :
> - تعريف، TYV
> - مربوط به تعادل،
> كيبس، قانون فاز،
> FIV، كيبس ـ دالتون، قانون،
> 《ل
> لايه مرزى، V9^
> 《合》
> KYY

> ماده تراكم קذير ساده، 101 ماده خالص، 101
> K.r

$$
\begin{aligned}
& \text { ماكــول : }
\end{aligned}
$$

«夕》	موتور ：
وانت هون،	＿Ar9
Y\＆V واندروالز، معادله	Er9－
وFA وانكل، موتور،	AF．دو زومانها
＇وزن ملكوله،	\＆VA توربوجت－
	－وانكل،
ويريال،	VロI
	VDY－فشار عرضس،
《＊）	S ${ }^{\text {S }}$
AS • ها يزنبرك، إلم عدم تطعيت،	FVA مولير، نمودار،
هدايت ：	－برای آبك،
－	ASY ميكروسكوجّ،
－v90－	
هدايت حرارتى ：	《ن》
－تعريف،	YV．نابرابرى كلاسيوس،
－VAA مقادير نمونه،	V\＆r
هلهولتز، تابع ：	S．F ${ }^{\text {¢ }}$
－تعريف،	GFI نسبت تراكم،
－	SIY
Als	تقهك ：
هوا،	－بـ
هواى اضانى، A．A	ـ
هوأى تُورى،	－
	نمودار دها آنتروبي،
«S＂	9rY
بغ، خواص ：	نوار هدا
هو	نيمه هادى ذاتى
	Arr
－	A．• نيوتن، تانون سرمايشّ

-

\because

Ferdowsi University of Mashhad
Publication, No. 165

THERMODYNAMICS

Fourth Edition
J. P. HOLMAN

Translated by

M.R. MODARRES - RAZAVI

Ferdowsi University Press

[^0]:

[^1]: 1- Randomness

[^2]:

[^3]: بدين ترتيب :

[^4]: 1- Partial pressure

[^5]: 1- Enthalpy of sublimation

[^6]: displacement

[^7]: 1- Continuous displacement spectrum

[^8]: Source: Abridged from J. H. Keenan and J. Kaye, "Gas Tables," John Wiley \& Sons. Inc., New York, 1948.

[^9]:

