روهجهاى خميوى براى سازهه هاى فُولامى و بتئى
$3+2$

(4)

انتشارات دانشكاه فردوسى مثهج، شــارif 119

روشهاى خميرى براى سازههاى فو لادى و بتنى

ونشته: استوارتهوى

ترجهـ
دكثر محمدرضا اصفهانىى

Moy. Stuart S. J. موى .استرارت

 بها : . 1 أر ريال .
نهرمـتنريسى بر ا'مأس اطلاعاتات فيبا (نهرمتتويسى بيش از انتشـار) .
Plastic Methods for Steel and Concrete Structures :عنوان اصـلى : كهر كتابنامه : ص .
ISBN 964-6335-05-5 Trys:جاب دوم

 irv.
per. rodr
كتابـغانه ملى ابيان

نام : روشهاى خخيرى براى سازههاى نولادى و بنـى تاليف : استوارت موى

ترجمه : دككر مnحدرضا اصفهانى
ناشر : انتشارات دانشگاه فزدوسى مشهد

> تعداد : نس ن

امور لنّى و جابه : مؤسّسة هجاب و انتشارات دانشگاه فردوسى مشهد
ليمت : ريال

فهرست مهالب

هغ	
\cdots	مقامهـ مترجم
هارد	علائم
1	1 － 1
1	－ 1 － 1
r	（ r － 1
Δ	r－1－
11	－
19	r
19	－ $1-r$
19	
rr	俉
r2	（\％\uparrow ¢－Y
rr	－
ra	¢
11	r غرנربختكى
P1	M－1－r
P1	俉
YY	－
PA	
P1	
Af	－
ys	－
YA	ل－
A）	\％
$\lambda 1$	－ $1-r$
Ar	（ا）
AF	－
1.1	俍

روشهـاى خميرى براى ساز ههاى فولادى و بتنـى

101

100
100
lof
loy
119
iry
IYA
iri
ITI
ITr
ifr
lar
lar

IAY

لهーロ
ه طراحم با استفاده از نظريه خعيرى
－ا－0
ه－
－
－
ى－ 0 － 0
لهـ
\＆تنيير شكان و بايدارى
4－9
位

f
－هー
Y الستفاده از رويشهاى خميرى در سازهمأى ينن ارمس
$1-Y$

位

－ $0-Y$
－

$$
\begin{aligned}
& \text { m } 1 \text { - } \\
& \text { r-A } \\
& \text { r-A } \\
& \text { r-A } \\
& \text { - } \\
& \text { ضمبه الن معهارماي تسلمه }
\end{aligned}
$$

$$
\begin{aligned}
& \text { جو'به بـايل } \\
& \text { منابع }
\end{aligned}
$$

مقد مـه نـويـسنـد ه

تحرشر اين كتاب را مديون دانشجويان كارشناسى و كارشناسى ارشد خود میىدانم كهبا

لذا به نوشتن ابن كتاب اهتمام نمود م .

 ساده بيان شد ها:د .اميدوارم این روث باعثنا باخرسندى متخصصينى كه بطورمصض با موضوع برخورد میكتند نكردد .

روشهـاى خميرى براى سازههاى فولادى و بتنى

A , Y Y

 تشريح مىكردد .

 با دتت انتخاب و مرتب شدها هاند .

 امكان حل نماهد هرا كه تمرين بهترهن وسيله براى شروع هادكيرى روشهاى خميرى است.
استوارت موى

Stuart S.J. Moy

مقدهـه مترجـم

 مربوطه در آلمان بوسيله Maier-Leibnitzانجام كرديد و نتشان داد كه ظرفيت نهايى

「 ${ }^{\top}$

 شا يستهاى انجأم داد هاند كمال تشكر را دارم .

محمدرضا اصفهانى

عضو هيأت علمى دانشكد همهندسى

علائُـــم

 مختلف جهت رساندن مغهومى خاص ، استغاده مى شده است . الهن روش در كتاب حاضر نها نهز بهكار كرنته شده است .

C, T
 N نيروى برشى در هي P نهروى محورى در د

نيروى برشى (مخغف) SF
q بار كسترده روى دال
 خ خريب بار
'
خ λ_{c}
, باراكنشها ها بارهای اعمال شال شده عمودى و افقى W بار اعمال شده
w, Q
لنــــرها
) لنكر خمشى (مخنف) BM) نمودار لنكر خمشى (مخنف (منی) BMD
) لنكر كيردارى (مخفن (FEM
M لنكر ، مقدار لنكر خـشير انی ، لنكر مقاوم در واحد طول

 Me

> خواص مقاطع و مصالع A As b
d ار ارتناع كل ، ارتناع موءثر فولاد كششى
 E
Esh部 G تابع وزن سازه
G' $G^{\prime \prime}$
g وزن واحد طرل / لنكر دوم سطع
/ طول موئر ا/r ا/ ضريب لاغرى

$$
\text { [= ل }(I / A)] \text { شعاع زهراسيون r }
$$

S الساس متطع خميرى

仿
/w
X ار ارتأع تا محور كرنش صفر در سك تير بتتى (علامت مربوطبه 110 CP
/ اساس متطع
ر كرنش برشى
є كرنش محورى
o

† تنش برشیى
ry
طولها و تغيير مكانها
c
إباد بيرونى L, h
lla, 1
R R
s فاصله ، در طول يك خط س سيلان
x, y, z
和 $\alpha, \gamma, \theta, \phi$
Δ, δ تغيهر مكانها
انحنا

ساير علائم
c,,k
i i نسبت لنكرهاى متاوم مثبت و منغى
K ضريب تصحيح هيلريورىT

$$
\begin{aligned}
& \text { m } \\
& \text { n تعداد مغصلهـاى خعيرى } \\
& \text { p } \\
& \text { r }
\end{aligned}
$$

م قرارداد علائم

در این كتاب مناسهترين قرارداد علائم مورد استفاده قرار كرفتهاست .تتشها ،كرنشـها و نـهروها یمحورى كششى ، مثبتفرض شده و تتـها درفصل ششم نهروه ها یفشا رىنـيزمثبتد رنظر

 ستون كردد .

مناهيم كلـي

1 - 1 مقدهد

 ديكرى ابداع شد كه امكانات تاز ازهاى را نرا نراهم

 در هازه را هشناسیم .

 مى.باشد . (شكل 1-1) در ميانه ميله، دور از دو انتهاى كيره ،كشش تكمحورى خالص وجود دارد .

اكر ازدهاد طول نـونهاي از فولاد نرمه (مثلا" كرنش) در در اين محدوده اندازهكهرىشود

شكل

 مى ${ }_{\text {Tu }}$

 . مىبا شد
كرنش در تنش تسلهي تقرهبا"
 (انزا بش كرتش بدون آنكه تنش تغيهر كند جريان خميرى ناميده مىشود) . ا'نتسهاى تسمـت

 انزاحش بـشتر كرنش باعث لاغرشدن عضو و سرانجام شكست عضو بهشكل بخروطى مى

 هـهمدار

 . نا منــد

رفتارارتجاعی-خمهرى ,در شكل
با در نظر كرفتن موارد زهر براى فولاد نرمهجذرفتنى اسـت .

اعضاى سازهاى اثرى نـخواهد داشت .
r - strain hardening.
r - Bauschinger effect.

روشهـاى خميرى براى سازههاى فولادى و بتنى

r-1

 T
 هستتد , شكل ا
 است خطا قابل ملاحظه مىشود .

بكل

دقت و ملاحظه نـورد . اهين موضوع در فصل \& مغصلتر بـهان خواهد شد .

برای Tنكه بـكونهاى ساده و بـدون اهیجاد اشكال زياد از نظر رهاضى و موضوعى مفاهيم

 سط خته شده از فولاد نرمه تصور كرد .

$$
1 \text { - } 1 \text { - } 1 \text { خرها ى كثشي معين }
$$

خرپاى شكل ا-\& بصورت استاتيكى معين است شیعنى بهوسيله معاد لات تعادلبمىتوان T

شكل
براي تعادل در نتطه
$F_{\mathrm{OB}} \cos 45^{\circ}=F_{\mathrm{OC}} \cos 30^{\circ}$

$$
\begin{align*}
& F_{\mathrm{OB}} \frac{1}{\sqrt{2}}=F_{\mathrm{OC}} \frac{\sqrt{ } 3}{2} \\
& F_{\mathrm{OB}}=1.225 F_{\mathrm{OC}} \tag{1-1}
\end{align*}
$$

معادله تعادل در جهت قائم در :نظطه 0
$F_{\mathrm{OB}} \sin 45^{\circ}+F_{\mathrm{OC}} \sin 30^{\circ}=w$

$$
(r-1)
$$

با جابججاهى معادله 1-1 در معادله 1-Y خواههم دانتـ.

$$
\begin{align*}
& F_{\mathrm{OB}}=0.897 \mathrm{~W} \tag{r-1}\\
& F_{\mathrm{OC}}=0.732 \mathrm{~W}
\end{align*}
$$

نرض میشود كه OB دارای سطع متطع OC, A دارای سطع متطع $2 A$ مىباشد , بنابرا'هن

$$
\begin{align*}
& \text { OB }=0.897 \frac{\mathrm{~W}}{\mathrm{~A}} \\
& \text { OC } \mathrm{H} \text { د }=0.366 \frac{\mathrm{~W}}{\mathrm{~A}} \tag{f-1}
\end{align*}
$$

 بدست آورد .

$$
0.897 \frac{W}{A}=o_{y}
$$

$$
w_{\mathrm{c}}=1.115 A \sigma_{\mathrm{y}}
$$

در اسن مثال دو نكته مهم روشن شده است
ا ـ در سازه بطور استاتهكى ععین ، نرو رهختكى آنكاه رخ مید هد كه عضوى كه داراى بهشترهن تنش است جارى كردد .
Y - بارفرورهختكى بهنهروى كه هاعث جارى شار شدن عضو (مقدار ثابت ($/$ (در اهن حالت) نتط به مشخخمات هندسى اعضاء بستكى دارد .

$$
1 \text { - r-r ب خرياى كششى نامعين }
$$

-

 نا ععهن لازم است هردو معادله تعادل و سازكارى در نظر كرفـر دينه شود .

براى تعادل در جهت قائم در نقطه 0
$F_{\mathrm{OB}} \sin 45^{\circ}+F_{\mathrm{OC}}+F_{\mathrm{OD}} \sin 45^{\circ}=W$

 مكان يابد و عضو OB باندازه عضو OD تغيـر شكل دهد (كشيده شود) . از آنجا كـــــه اعضاء مشابهند (از نظر مقطع) خواهيم داشت .

$$
F_{\mathrm{OB}}=F_{\mathrm{OD}}
$$

$$
(\lambda-1)
$$

شكل 1-1

$$
\begin{equation*}
\delta=\Delta \sin \theta \tag{9-1}
\end{equation*}
$$

$$
\frac{F_{\mathrm{Ox}}}{A} \left\lvert\, \frac{\delta}{\mathrm{OX}}=E\right.
$$

با قرار دادن مقادهر ס OX دارسهم :

$$
\begin{equation*}
F_{\mathrm{Ox}}=\frac{A E}{L} \Delta \sin ^{2} \theta \tag{10-1}
\end{equation*}
$$

$$
\begin{align*}
& \delta_{\mathrm{OB}}=\delta_{\mathrm{OD}}=\Delta \sin 45^{\circ}=\Delta / \sqrt{ } 2 \tag{11-1}\\
& \delta_{\mathrm{OC}}=\Delta \sin 90^{\circ}=\Delta
\end{align*}
$$

$$
\begin{aligned}
& F_{\mathrm{OB}}=F_{\mathrm{OD}}=\frac{A E}{L} \Delta\left(\frac{1}{\sqrt{2}}\right)^{2}=\frac{A E \Delta}{2 L} \\
& F_{\mathrm{OC}}=\frac{A E \Delta}{L}
\end{aligned}
$$

كه ه تغيهر مكان قائم نتطه O خواهد بود . از معادله ((1 Y) ملاحظه مىكردد كه

$$
\begin{equation*}
2 F_{\mathrm{OB}}=F_{\mathrm{OC}} \tag{1r-1}
\end{equation*}
$$

روثشهاى خميرى براى سازههاى فولادى و بتنى
 با جاهجاسى بعادله((

$$
\sqrt{ } 2 F_{\mathrm{OB}}+F_{\mathrm{OC}}=w
$$

$$
(1 f-1)
$$

و با جابججايى بعادله (1 (1) در معادله اخهر دارهم :

$$
\begin{align*}
& \left(\frac{\sqrt{ } 2}{2}+1\right) F_{\mathrm{OC}}=w \tag{10-1}\\
& F_{\mathrm{OC}}=0.585 \mathrm{~W} \\
& F_{\mathrm{OB}}=F_{\mathrm{OD}}=0.293 \mathrm{~W}
\end{align*}
$$

وتتى بار تا مقدار W1 افنزاهش بابد عضو OC جارى میشود ، خواههم داشت

$$
\frac{0.585 W_{1}}{\boldsymbol{A}}=\sigma_{y}
$$

$$
W_{1}=1.709 \mathrm{~A} \sigma_{\mathrm{y}}
$$

 بهدست می'

$$
\begin{align*}
& F_{\mathrm{OC}}=A \sigma_{\mathrm{y}}=\frac{A E \Delta_{1}}{L} \\
& \Delta_{1}=\frac{L \sigma_{\mathrm{y}}}{H}
\end{align*}
$$

شكل 1-10

 در میآيد .

$$
\begin{equation*}
\sqrt{ }(2) F_{\mathrm{OB}}=W-A \sigma_{\mathrm{y}} \tag{19-1}
\end{equation*}
$$

بناهراين

$$
\begin{equation*}
F_{\mathrm{OB}}=0.707\left(W-A \sigma_{\mathrm{y}}\right) \tag{0}
\end{equation*}
$$

 خرها معين شده است .OB وOD وتتى جارى مى شوند كه :

$$
\begin{equation*}
F_{\mathrm{OB}}=A \sigma_{\mathrm{y}} \tag{r1-1}
\end{equation*}
$$

ها جا يكزينى معادله (Y0-1) در معادله((Y1-1) بار W بهدست مى

$$
0.707\left(W_{2}-A \sigma_{y}\right)=A \sigma y
$$

$$
\begin{equation*}
W_{2}=2.414 A \sigma_{y} \tag{Yr-1}
\end{equation*}
$$

بهكك معادله ((Y1- (مرهوطه بعنى

$$
\begin{equation*}
\Delta_{2}=\frac{2 L \sigma_{y}}{E} \tag{Y-1}
\end{equation*}
$$

تمام اعضا بـوجود T مده و نقطه O در جههت نـامعلومى حركت خواهد نـود .

 1 وقتى كه عضو OC جا رى شد در تحلميل مطرح كرد يد . وقتى خرها از نظر استاتـكى معين شد

 رنتار سازهاى مىيا شد .
 (W/Aoy

 ديكر مىتوان كفت فروريختىى زمانى /ست كه سختى سازه صفر مى شود .
r- جدول r

 تبلا" نشان داده شد (بند 1-ץ) كه وتتى نمونٌ تحت كشش هس از جارى شدن ، بارـ

 ارتجاعى در هر عضو انجام مىكردد ، از معادله ا. بهدست مى آهد

$$
\text { FOC تغيهر در }=-0.585 \text { Wc }
$$

$$
\begin{equation*}
F_{O B} \text { د }=-0.293 W_{c} \tag{rf-1}
\end{equation*}
$$

مدار W W از معادله ((YT-1) بهد ست مى آهد ، نيروهاى حاصل شده در اعضاء بازاى بارصغر عهارتست از:

$$
\begin{align*}
& F_{\mathrm{OC}}=A \sigma_{\mathrm{y}}-0.585 \times 2.414 A \sigma_{\mathrm{y}}=-0.414 A \sigma_{\mathrm{y}} \\
& F_{\mathrm{OB}}=A \sigma_{\mathrm{y}}-0.293 \times 2.414 A \sigma_{\mathrm{y}}=0.293 A \sigma_{\mathrm{y}}
\end{align*}
$$

معادله (1-ra) نشان مىدهد كه در بار صغر نيروهاى داشلى اعضاء صغر نمىشوند . الهـن

$$
\begin{aligned}
& \sqrt{ } 2 \times 0.293 A \sigma_{y}-0.414 A \sigma_{y}=0 \\
& (0.414-0.414) A \sigma_{y}=0 \\
& 0=0
\end{aligned}
$$

بهعارت ديكر نيروهاى هس ماند با يكديكر در حال تعادلند و بهاTنها مجموعه نيروها كجّس 6 ند خود متعادل كويند

$$
\begin{equation*}
\Delta_{\mathrm{r}}=\frac{2 L \sigma_{\mathrm{y}}}{E}-\frac{0.585 \times 2.414 A \sigma_{y} L}{A E}=\frac{0.588 L \sigma_{y}}{E} \tag{58-1}
\end{equation*}
$$

مىكردد كمتر هستند . مثال ذكرثده بهنحوى انتخاب ثده است كه نتيجه فوق را تأميـــ
 باشد كه در باربردارى باعث جا رى شدن در جهـت هخالف كردد . بـدههى است هnا ســــات
 اكر در راه رسهدن ههمار صفر ، خربا مجددا" با ركذارى شود ، رفتا رى در جهست معكوس
 ارتجاعى دوهاره ظاهر شده و ا فزاهش بار باعث تغهيرات ارتجاعى E نتطه تسليم مىكردد .
 بناهراهن مىتوان نتيجهكيرى كرد كه جنانـهـ هس از آنكه عضوى ازنقطهتسليمكذ شت،

1 - 1 هركاهطرل بعضى اعضاء در هك سازه نامعين بهدرستى اجرا نشوند كها غلببهـآن

 توجه بهتقارن

$$
F_{\mathrm{OB}}=F_{\mathrm{OD}}
$$

هراى تعادل در جهت قائم ، شكل ا-هז الف (نيروى عضو فشارى منغى است)

$$
\sqrt{ }(2) F_{\mathrm{OB}}=-F
$$

هرایتعادل در جهت قأم ، شكل اک

$$
F_{\mathrm{OC}}=F
$$

شكل -

با جابجايى در معادله 1Y-1 (خيز در جهت بايين مثبت است) دارهم : $\delta_{1}=\frac{2 F_{\mathrm{OB}} L}{A E}=\frac{-\sqrt{ }(2) F L}{A E}$
$\delta_{2}=\frac{F_{\mathrm{Oc}} L}{A E}=\frac{F L}{A E}$
براى از بـين بردن فاصله و بستن اعضاء
$\left|\delta_{1}\right|+\left|\delta_{2}\right|=\frac{0.75 L \sigma_{y}}{E}$
با جابجاسی معادله YY-Y در معادله ا
$(\sqrt{ } 2+1) \frac{F L}{A E}=\frac{0.75 L \sigma_{y}}{E}$
بنابراين

$$
F=0.311 A \sigma_{y}
$$

$$
F_{\mathrm{OB}}=-0.220 A \sigma_{\mathrm{y}}
$$

$$
\begin{equation*}
F_{\mathrm{OC}}=0.311 A \sigma_{\mathrm{y}} \tag{rq-1}
\end{equation*}
$$

$$
\delta_{1}=\frac{-0.439 L \sigma_{y}}{E}
$$

در روند اتصال اعضاء نيروهاى F يكديكر را خنثي مىكنند بهنحوى كه هرا يند نهروى وارده

وقتى بار W روى خربا كذا شته مىشود ، نيروى اعضاء تغيير مىیابـ .
 ا

جد			
$W / A \sigma_{y}$	$F_{O B} / A \sigma_{y}$	$F_{\mathrm{OC}} / A \sigma_{\mathrm{y}}$	$\Delta\left(\times \frac{L \sigma_{\mathrm{y}}}{E}\right)$
0	-0.220	0.311	-0.439
1.178	0.125	I	0.250 جارى می OC
2.414	1	1	2 فرورهختكى

منحنى بار ، تغيهر مكان این حالت و حالتى كه در Tن خرها صحيح اجرا شده ها شـد درشكل

 نقطه بار و تغيير مكان در هردو حالت هكسان هستند .
 رهختكى ندا شته با شد . خطاي نُصب باعث مىشود كه توزبع مجدد نيروها بها شكالم مختلف انجام شود و جريانهاى خمهرى متفا وتى بـوجود Tا

شكل

روشـهاى خميرى براى سازههاي فولادى و بتـنى

ا عامل خطاى نصب در تعيـين بار فروريختنى اثرى ندارد ، محا سبات بروشى بار فروريختكي
 در نقطه O بصورت زير است .

$$
\begin{aligned}
& 2 A \sigma_{\mathrm{y}} \sin 45^{\circ}+A \sigma_{\mathrm{y}}=W_{\mathrm{c}} \\
& W_{\mathrm{c}}=2.414 A \sigma_{\mathrm{y}}
\end{aligned}
$$

سا دكي محاسبات در اين روش را با تحليل ارتجاعى كه در قسمت ا

$$
1 \text { - } 1
$$

هدف آين بخش آشنايّى با مغا هيم مهم متعدد و ترغهب خخوا نـند هـهتغكر درمورد رفتار

مورد سازههاى با اعضاى تحت خعش لازم است ایهن مفا هيم جمع بندى شود . 1 - محاسبات بار فروربختكى مشكل نيست ، محا سبات رياضى T ن نسبت بـه محاسبات
 r - r

در لحظه فروريختكى ، سازه بـهطور استا تيكى معين است است .

سختى به صغر كاهش می ميابـد .
†
سازه فرو میريزد و تعادل هركشت نايذير مىشود

¢ -

خمش خميوى

| 1 - Y Y

 استغاده مى:

Y وقتى يك تير تحت خش قرار مىكيرد چه مىشود؟ Y Y

 تحمل مىكد . بار توسط تير خعشى بـهتكهكا مها منتقل مى شود .

تير ساده(الغ)

نمودار لنـر خمشى (ب)
شكل r - i

براى بـرقرارى تعادل لازم است واكنش تائم در هر تكيهكاه W/2 با شد .
 نمودا ر لنكر خمشي(BM)تتهر در شكل Y-1 ب نشان داده شد ه است . تير تحت بار متمركزدر
 تهر را در محل خمش هداكثر بررسي هرأساس نظريه ساده خمشي (كه هراسا س رفتا ر ارتجاعى مصالح استوار است) اطلاع عات

$$
\sigma_{\max }=\frac{M}{Z}
$$

H-
 ثا عين متطع متظاوت است .

 مطابق شكل r-r و و

 تتش ثابت تا محور كرنش صفر ادا مه ها فته است .

r-r شكل

با جارى شدن كليه تارهاى مقطع (فشار در بالا و كشش در ها تهين محور كرنــش صغــر)

 حالت تبدهل بهمفمل خميرى شد هاست . در مغصل خميرى لنكرى BM براهر با لـيكر متـارم خمرى مقطع بهوجود مى' بحد كه بـشترتن لنكرى است كه مقطع مىتواند تحمل كند .معمولا" لنكر خميرى را با M نشان مىد هند .

افزايش طرل بيداز جارىثدن كامل بقطع

ث-

كرفتفرو خواهدرهخت . درك اين موضوعكه تشكيلمغصلخميرى (نه در اولهن جارى شدكى)

 بار اعمال شده و لنكر خميرى تهر بهسادكى تعيهن مى شود .

$$
\begin{align*}
& \frac{W_{\mathrm{c}} L}{4}=M_{\mathrm{p}} \\
& W_{\mathrm{c}}=\frac{4 M_{\mathrm{p}}}{L} \tag{1-r}
\end{align*}
$$

هu

r - Y
(1 -r-r
هك مقطع كلى در شكل rمغمل خميرى در متطعى كه حول محور y تحت خمش قرار دارد نشان داده شده ها است.

$$
A-r \text { - }
$$

از آنجا كه مفصل تتها تحت خعش شكل كرفته است ، تعادل افقى مقطع اءجاب مىكنــد كــه . $C=T$

$$
\begin{equation*}
C=T \tag{r-r}
\end{equation*}
$$

C' ناشى از جارى شدن كششى مقطع در هايين محور مى با شد .از اعنرو

 حول محور كرنش صفر متقارن با شد .
-
 كرنش صفر در فاصله $2 / 2$ از بالاى مقطع قرار مىيكيرد .

$$
C=T=\frac{b d}{2} \sigma_{y}
$$

از آنجا كه نيروها بهوسيله لنكر خمشى مساوى با M M بهوجود مى آـد با لنكركيرى حول محور

$$
\begin{aligned}
M_{\mathrm{p}} & =C \times \frac{d}{4}+T \times \frac{d}{4} \\
& =2 \times \frac{b d}{2} \sigma_{\mathrm{y}} \times \frac{d}{4}
\end{aligned}
$$

$$
\begin{align*}
& \text { بناهراهن } \\
& M_{\mathrm{p}}=\frac{b d^{2}}{4} \sigma_{\mathrm{y}} \\
& (\Delta-r) \\
& \text { رابططه نوق بهصورت زير نوشته مى شود . } \\
& M_{\mathrm{p}}=S \sigma_{\mathrm{y}}
\end{align*}
$$

 هندسى مقطع است . نسبت اساس خميرى بـطاساس مقطع " ضريب شُكل" متطع ناميد همى شود

$$
\begin{equation*}
\frac{S}{Z} \tag{Y-Y}
\end{equation*}
$$

براى متطع مستطيل $Z=b d^{2} / 6$ است ، بنابراين

$$
\text { 范 }=\frac{b d^{2}}{4} / \frac{b d^{2}}{6}=1.5
$$

با توجه به مراحل زهر براى مقطع مستطهل مساسبات براى شكلهاى شيخيد هتر نهـز عمومهت دا دد .

 r r
 r - اساس خعيرى مجموع اساسهاي خعيرى هريكا از مستطيلما خواهد بود .تنـا مشكلدر

قسمت (
كونه كه در شكل
وقتى كه مركز سطع بر هحور كرنشث صغر منطبق شود معادله r-rـه قابل استفاده است .

位 $=\frac{b d^{2}}{4}$
و وقتى كه منطبق نيست ، عينا" مىتوان نشان داد كه
= اساس خميرى مستطهل $b d x$
$(\lambda-r)$

'1

.
شكل r-r

جدول r -
مرحله

مهور \quad محور كرنش صفر (1)
 اسطــع

$$
\begin{array}{lll}
1 & b t_{\mathrm{f}}\left(\frac{d}{2}-\frac{t_{\mathrm{f}}}{2}\right) & \frac{b^{2} t_{\mathrm{f}}}{4} \\
2 & \frac{\left(d-2 t_{\mathrm{f}}\right)}{2} \times t_{\mathrm{w}} \times \frac{\left(d-2 t_{\mathrm{f}}\right)}{4} & \frac{\left(d-2 t_{\mathrm{f}}\right)}{2} \frac{t_{\mathrm{w}}^{2}}{4} \\
3 & \frac{\left(d-2 t_{\mathrm{f}}\right)}{2} \times t_{\mathrm{w}} \times \frac{\left(d-2 t_{\mathrm{f}}\right)}{4} & \frac{\left(d-2 t_{\mathrm{f}}\right)}{2} \frac{t_{\mathrm{w}}^{2}}{4} \\
4 & b t_{\mathrm{f}}\left(\frac{d}{2}-\frac{t_{\mathrm{f}}}{2}\right) & \frac{b^{2} t_{\mathrm{f}}}{4}
\end{array}
$$

(f) (الساس خميرى $\quad b t_{f}\left(d-t_{f}\right)+\frac{t_{w}\left(d-2 t_{f}\right)^{2}}{4} \quad \frac{b^{2} t_{f}}{2}+\frac{\left(d-2 t_{f}\right) t_{w}{ }^{2}}{4}$
 $d=4 \Delta 0 \mathrm{~mm}, b=190 \mathrm{~mm}, t_{\mathrm{w}}=9 / 4 \mathrm{~mm} t_{\mathrm{f}}=1 \% / \mathrm{f}_{\mathrm{mm}}$

روشههاى خميرى براى سازههأى فولادى و بتنى

z مىباشند . مقادهر واقعى بـستكى بـهابعاد مقطع خواهد داشت .

مقاطع نامتقارن Y م
در مقاطع نا متقارن جارى شدن در بالا و پايهين معطع هعزمان صورتنـمىكيرددرنتـيجه مححور كرنش صفر ازمحل مححورسطح مقطع بـهمحورى كه مقطع را بـهدوسطع مسا وى تقسـهم مىكند تغهير مكان ميمابابـ
براي نشان دادن اینموضوع ، محاسبات اساس معطع واساس خعيرى يك مقطع T شكل

F Y Y Y
در بـخش ا در مورد خرها ها ملاحظه شد كه هعزمان با كسترش جارى شدن درقسمتهاى

 انحناى دايرهاي مطاتق شكل Y-

 برجا در نظركرفته شده و با هرتوزيع تتشى ، توزيع كرنش در ار ارتغاع مقطع همبششمطابقششكل r r-r جدول

، ماسبه إساس مظطع
هـاسبه اساس خميرى

$$
\begin{aligned}
& \text { موتعيت محور سطح } \\
& \text { ربقييت محور نصفكننده سطح متطع } \\
& A=300 \times 20+430 \times 15 \\
& 15 \times z=300 \times 20+(430-z) \times 15 \\
& =12450 \mathrm{~mm}^{2} \\
& 15 z=6000+6450-15 z \\
& \Sigma A z=6000 \times 440+6450 \times 2.5 \quad z=\frac{12450}{30}=415 \mathrm{~mm} \\
& =4026750 \mathrm{~mm}^{3} \\
& \bar{z}=\frac{4026750}{12450}=323.4 \mathrm{~mm} \\
& \text { از اياينين } \\
& I=\frac{300 \times 20^{3}}{12}+6000 \times 116.6^{2} \quad S=6000 \times 25+\frac{15 \times 15^{2}}{2} \\
& +\frac{15 \times 430^{3}}{12}+6450 \times 108.4^{2} \quad+\frac{15 \times 415^{2}}{2}=150000+1700+ \\
& =200000+81573000 \quad 1291700=1443400 \mathrm{~mm}^{3} \\
& +99384000+75791000 \quad S=1443400 \mathrm{~mm}^{3} \\
& =256948000 \mathrm{~mm}^{4} \\
& \text { = } \frac{1443400}{794500} \\
& Z=\frac{256948000}{323.4}=794500 \mathrm{~mm}^{3} \\
& =1.817
\end{aligned}
$$

$$
\begin{aligned}
& \text { طول انسناء }=\delta x\left(1-\epsilon_{\mathrm{C}}\right) \\
& \text { لانحنى }=\delta x\left(1+\epsilon_{\mathrm{T}}\right)
\end{aligned}
$$

با استفاده از أدازهماى شكل (r-r

$$
\begin{align*}
& R \theta=\delta x \\
& \left(R+z_{2}\right) \theta=\delta x\left(1+\epsilon_{\mathrm{T}}\right) \tag{10-r}\\
& \left(R-z_{1}\right) \theta=\delta x\left(1-\epsilon_{\mathrm{C}}\right) \tag{11-r}
\end{align*}
$$

$$
(q-r)
$$

با جا بجاهي معادله r-

$$
\begin{aligned}
& R+z_{2}=R\left(1+\epsilon_{\mathrm{T}}\right) \\
& R-z_{1}=R\left(1-\epsilon_{\mathrm{C}}\right)
\end{aligned}
$$

$$
(I r-r)
$$

$$
(1 r-r)
$$

با كم كردن معادله r-r آ از معادله r-r| داريم :

$$
z_{1}+z_{2}=R\left(\epsilon_{\mathrm{T}}+\epsilon_{\mathrm{C}}\right)
$$

عكس شعاع انحناء ، R ، را انحناء كويهـ ، X ، بنابراين
انيمنا

انحناء ميزان سادهاى هراى تعهين تغيهرشكل خمشى است.

مىها شد .
در تسمت Y-Y نرضن شد كه وتتى منصل خميرى شكل كرفت . تمام متطع بحرانىجا رى
 صغر ، كرنشها هراهر كرنش جارى شدن با علامت مختلف ها شند . اين موضوع و فرض مسطــع
 هـكونهأى نامعدود هزرك ها شند . واضع است كه بهطور فهزهكى اين موضوع غهر معكن است .

 واحد (تهر 1 شكل شكل زهاد از رفتار اهدهال دور هستند .

 تدرهجىتر است ، كسترش. بششترى دارد . منطته خمهرى فوقالذكر ، خمش تدر رجبىترى را نسبت بـهحالتى كه شكل منطتَهخمرى

روشهاى خميرى براى ساز هماى فولادى و بتنى

شكل
r

- - 1 -

 توزيع تنشها بهدو تسمت مجزا تقسيم شده است . تنش در A تطا ما " نا شى از نيروى مهـورى

$$
\begin{equation*}
P=b z \sigma_{y} \tag{10-r}
\end{equation*}
$$

$$
\begin{aligned}
M_{\mathrm{p}}^{\prime} & =2 \frac{(d-z)}{2} \times b \times \sigma_{\mathrm{y}}\left(\frac{d-z}{4}+\frac{z}{2}\right) \\
& =(d \cdot z) \times b \times \sigma_{\mathrm{y}}\left(\frac{d+z}{4}\right) \\
& =\left(\frac{d^{2}-z^{2}}{4}\right) b \sigma_{\mathrm{y}} \\
& =\frac{b d^{2}}{4} \sigma_{y}\left[1-\frac{z^{2}}{d^{2}}\right]
\end{aligned}
$$

$$
\frac{M_{1}^{\prime}}{M_{\mathrm{r}}}=1 \ldots\left(\frac{z}{d}\right)^{2}
$$

$$
(19-r)
$$

حداكثرنهروى محورى Pp كه با صرفـنظر از كمانش توسط مقطع تحمل بى شود ، "با رفشردكى"

$$
P_{\mathrm{p}}=b d o_{\mathrm{y}}
$$

بناهرا ين

$$
\frac{P}{P_{\mathrm{p}}}=\frac{z}{d}
$$

$$
\begin{equation*}
\frac{M_{\mathrm{p}}^{\prime}}{M_{\mathrm{p}}}=1-\left(\frac{P}{P_{\mathrm{p}}}\right)^{2} \tag{iY-r}
\end{equation*}
$$

متطع

كرنثى

شكل r-r
(P/P $\left.{ }^{\prime}\right)^{2}$ معادلــه لنكر خميرى را كاهشش میدهند . معادله

 در نظر كرفته شود ، هكى وتتى كه محور كرنش صغر در جان و ديكرى در هال تهر واقع شود .

معادلات براى معولترهن حالت خمش حول محور لو عبارت است از : (1) محور كرتشُش صفر در مان وا وا عـع شود .

$$
M_{\mathrm{p}}^{\prime}=M_{\mathrm{p}}-\left(\frac{A^{2}}{4 t_{\mathrm{w}}}\right) n^{2} a_{y}
$$

كه A مجموع سطع متطع و n=P/Pp مى

$$
\begin{equation*}
\frac{P}{P_{\mathrm{r}}} \leqslant 1-\frac{2 b t_{\mathrm{f}}}{A} \tag{19-r}
\end{equation*}
$$

(r) وقتى كه هحور كرنتش صفر در بال وا قع شود .

$$
\begin{equation*}
M_{\mathrm{p}}^{\prime}=\left[\frac{A^{2}}{4 b}(1-n)\left(\frac{2 b d}{A}-1+n\right)\right] \sigma_{y} \tag{0}
\end{equation*}
$$

 وجود دارد . هورن' در مرجع (r) 'الن موضوع را نـان داده است است .

> r - - -

 تتش عمودى وجود دارد مردو معهار مذكور لازم میدارد كه راهبطه

$$
\begin{equation*}
\left(\frac{a}{\sigma_{y}}\right)^{2}+\left(\frac{\tau}{\tau_{y}}\right)^{2}=1 \tag{r}
\end{equation*}
$$

جهت تسليم برقرار با شد . در اين رابطه τ_{y} تنش تسليم در برش خالص مىبا شد . ملاحظه

 .

شكل -

مشاهدهشدهكه توزيع تنش عمودى لازمبراى تمام لنـكر: خمبيرى هركز صورت نمىكيرد . وقتى مغصلخميرى شكل مىيكيرد مىتوان فرض كرد كه توزيع تتش برش سهمىياست (توزيع
 يك مقطع مستطيل شكل ، كا مش لنكر خميرى عمارت است از :

$$
M_{\mathrm{p}}^{\prime}=b\left(\frac{d^{2}}{4}-\frac{z^{2}}{3}\right) \sigma_{\mathrm{y}}
$$

با توجه بهتوزهع تتش در شكل r-19 ، دارهم

$$
\begin{equation*}
N=\frac{4}{3} b z \tau_{y} \tag{Y-Y}
\end{equation*}
$$

از آنجا كه

$$
\begin{equation*}
\frac{M_{\mathrm{p}}^{\prime}}{M_{\mathrm{p}}}=1-\frac{3}{4}\left(\frac{N}{N_{\mathrm{p}}}\right)^{2} \tag{rr-r}
\end{equation*}
$$

Lا توجه بها ينكه

مىشود كه معادلهץ-

$$
\frac{N}{N_{\mathrm{p}}}<\frac{2}{3}
$$

 نمود ، لنكر

$$
\begin{equation*}
M_{\mathrm{p}}^{\prime}=M_{\mathrm{p}}-\frac{3}{4}\left(\frac{N}{N_{\mathrm{pw}}}\right)^{2} M_{\mathrm{pw}} \tag{ra-r}
\end{equation*}
$$

$$
\begin{aligned}
& \text { در جان است و } \\
& M_{\mathrm{pw}}=\frac{t_{\mathrm{w}}\left(d-2 t_{\mathrm{f}}\right)^{2}}{4} \sigma_{\mathrm{y}}
\end{aligned}
$$

r r - r - r

 قابل توجههيرلنكرهاى خميرى ندارند . الهته در سازههاى مرتنع اهميت بششترى عهدا

 محورى اثر كمترى در كاهش لنكر خميرى دارند و فقطدر مواثع نادرى كه استثناء " داراى مقادهر بزركى هستند لازم است مورد نظر قرا ركهيند .

Y
اين بـخش عمدتا" مريوط بهجارى شدن مقطع بك عضو تحت خمش است . وتتي تمــام مقطع جارى شد و جرهان خميرى بهطور نامهدودى بـهورجود T مد ، مىتتوان كفت كـــــه مقهـل خميرى شكل كرفته است . حداكثر لنكرى كه مقطع مىتواتد تحمل كند لنـثر خميرى مىیا ثـد

رفتار مقطع واقعى مى.با شد .
نهروهاى برشیو محورىمىتواند در متدا ر لنكرموءثر خميرى تأثهر دا شته با شد ،اكرجه
آنها معمولا" عوا مل تَاهل توجهـي نـيستـند .
 مارهاى است . درست است كه در قسمت غشارى مقطع تحت خمش معكن است كمانس موضعى

 خارج از حوصلـه اهن بخش است باهستو استفاده ه نـود .

مسا Y - Y
r-

محور خمش موازى صفهات است ا
ص= $S=1 Y \circ \mathrm{Fcm}^{3}$)
 .
r r r r r r
$S=5 D^{2} t \quad$ هرا

$$
S=1.75 D^{2} t \quad z \text { براى خمش حول محور }
$$

M-r -
r r r .

.

 موازى اضلاع
ج -متطعى مانـد (b) و خمش حول قطــر .
 - حول محورى موازى با

 محور z بهد ست آوريد .

روشههاى خميرى براى سازههاى فولادى و بتننى

تير I P E D

$$
\begin{aligned}
& d=\Delta \Delta \circ \quad \mathrm{mm} \\
& d=r 10 \mathrm{~mm} \\
& A=Y H \mathrm{~cm}^{2} \\
& S=r Y A \cdot \mathrm{~cm}^{3} \\
& S=r Q 4 \mathrm{~cm}^{3}
\end{aligned}
$$

لنكرهاى خميرىאا هش بافتهرا وقتى نيروهاى محورى

- مى شوند هما سبـه كنيد
r-
نيهرخ ا شكل بـها ر بريد .
 نيهروى برشى باشد ، لنكر خـيرى كاهش يافته عبارت است از

$$
M_{\mathrm{r}}^{\prime}=M_{\mathrm{p}}-\left\{1-\sqrt{ }\left[1-\left(\frac{N}{N_{\mathrm{pw}}}\right)^{2}\right]\right\} M_{\mathrm{pw}}
$$

فروريختگى قابهاى ساده

F

 بيان مى مردد .
 هرتال معرفى میشود .
r - r رفتار قاب پرتال تحت افزايش بار

يك قاب هرتال درشكل
مقادير نسبى بهوسيله H, مو و مقادير مطلق توسط ضريب بار
 است .

ردشهاى لميرى براى ساز مهاى فولادى و بتنى

	$\underbrace{102}_{s+0}$		 <का

 مرحله

 با لنكر خـيرى باقى مىیاند) حداكثر لنـكر زبر بار قائم بعنى نقطه C الست .

$$
M_{\mathrm{C}}=8.2 .7+2.47 \lambda^{\prime}
$$

كه : (تغيير $)$

(ا ين اسا س تحلـيـل هروش شبـب - افت است)

ب شرط تسليـر - BMs (لنـكرهاى كيردارى) در هيه جا از لنكر خميرى عضو بيشتــر نعىنود • (بررسى هجموع BMs در هر مرحلـه نشان دهنده موضوع فوت است) .
 $\lambda=00$ هـها ر مغصل بـدون اصطكاك غبرمیكن است و با تتها معادلـهاى كه وجود دا رد مسألهتابـل حل

 داده شده است ، كه در آن ضريبب بار λ مىبا شد .

موقعى كه دوران بغصلها ناجيز است ، شكل سازه فقط كىى تغيهر مىكند ، اما با دوران بـششتر شكل كا ملا" متفاوت خوا هد بـو بود . مطالب فوق بهطور تجربىى ثابت شده ها است . شكل rنشان مىد هد كه با تركيب با رهاي مختلف تحت T Tما حش قرار كرفتهاند .

روشهجاى خميرى براى سازهها ى فولالى و بتنـى

با رها : مكانيزم ها ی فرورريختتكى مختلفى را ايجا د كرد هاند لـيكن در هر حالـت مفصل خميرى
بـوضوح ديده مى شـود .
مكانيزم مرحله را نـيز میتوان حد س زد و مقادير ג مربوط بـهآنها را هحا سبه نمود . مكانيزم شكل r-rـو الــف
 آنها عوض شده است . با استفاده از روش موجود در ضميهه ج نـعودا ر لنـكر خمشى BMD ستون در شكل r-

عكسالعمل انقى در پا يين ستونـها عبارت است از

$$
H=\frac{100+100}{5}=40
$$

بـنابـراءـن بـرای تعادل در جهـت افتى

$$
\text { } \lambda=40+40=80 \text { مى بـا شد }
$$

الين بدان معناست كه مكانيزم بـهازای ضريب با ر $\lambda=\lambda=1$ بـوجود بیى فروربختكى بـزركتر است . وقتـى كـــه
 فرضى اشتباها ست ولى جالب توجه است كه BMD مربوطه هنـوز شرا عـط تعادل و مكانهـــزم را

r - r بنظريههماى تحليل خميرى
اطلاعات راجع به سه شرط مطرح شده در قسمت قبل در ا ينـجا جمع بـندى شده ا استـ كه
در

مىتوان ثابـت كرد كه سه شرطنوق همواره صحبح بوده و جزء سه نظريهه اساسى و ضرورى

| - + -
اكر در يك سازهع تحت باركذا رى با ضرهب بار
تعادل و تسلهـم را بـرا ورده مى سازد وجود داشته با شد ، \quad كمتر با مسا وى با ضريهب بار فــرو
ربختنكي
r-r-r r-r
اكر در يك سازه تحت باركذارى با ضريب بار λ ، بك توزيع لنكر خمشى كه شــــرا'يط

فروربختكي
r $r-r-r$
اكر بك سازهو تحت باركذارى، با ضريب بـار λ معرفي شود بهطورى كه توزيع لنكــــــر

 ممكن است .
مقصود از تحليل خميرى تعيين مستقيم بارهاى فروربختيكي مىبا شد . هما نكونـه كهدر قسمت ا

براى حل مسأله ، دستكاه معادلات خطى وجود ندا رد . بقيه اين بـخش و تمام مطالب بعدى
 براسا س نظريههای مطرح شده ه در اين بـند مىیبا شد .
r - r تعداد مفصلـهاى لازم در يِك مكانيزم
همانطور كه در قسمت r-Y و همینـين در فصل ا نشان داده شد ، عمــوما" تـــــداد

$$
\begin{equation*}
n=r+1 \tag{1-r}
\end{equation*}
$$

 استثنا براى ايهن قانون وجود دارد كه بايستيمطرح شود .
 $\lambda_{c}=Y \circ$ شد ها ست .نتأيح درشكـها ی

 هفصلههای خميرى توأ ما "تشكيل مى شوند بـنا بـرا بـن درموقع فروريختكى ينـج مفصل وجوددارد .

$\lambda=200$
شكل r-r

شكل
r -
اينروش بهتحلـيل تترها منحصرمى شود ، زيرا كه لنـكرهاى خمشى BMs در موقع فوريختكى
با ا استغاده هاز قوانين ساد هاى تعييين مىكردد . اين روش بهوسيله هند مثال بـيان مى شــود .
 بهترتيب ذكر شده مطالعه كند . -

تيرى ساده با يك بار هتمركز در ميانها

$$
\begin{align*}
& \frac{W_{\mathrm{c}} L}{4}=M_{\mathrm{p}} \tag{r-r}\\
& W_{\mathrm{c}}=\frac{4 M_{\mathrm{p}}}{L}
\end{align*}
$$

(ب) بهكانيزم

() (د دياكرام لنـكر
شكل
,

 كا ر نمودار لنكر خمشى (BMD) در موقع فروربيختكى و مكانيزم فروريختكى مطابق شكلr-11 بهد ست میT

(الـ) تير

(ب)) نكّرماي خـشى
اردجاءيى
شكل r - ـ

, BMD ملاحظه ميشود كه با استفاده از قوا عد ساده میتوان بهراحتى نمودار لنكر خمشى مكانيزم فروريختكى را رسم كرد .

ثا عد هاول:عموما" مفصلها در دو انتهاي كيردار د تير تشكيل مى مشوند .

 در دوتع فروريختكى بمدست مى

$$
M_{\mathrm{p}}+M_{\mathrm{p}} \quad=\frac{W a b}{L}
$$

$$
W_{c}=\frac{2 M_{\mathrm{p}} L}{a b}
$$

$$
(r-r)
$$

 است 4 استفاده از تواعد 1 ا و r بند
 توجه بهمشخصات هندسى

شكل r-r

$$
M_{\mathrm{p}}+\frac{b M_{\mathrm{p}}}{L}=\frac{W_{\mathrm{c}} a b}{L}
$$

لنكرخششى آزاد لنكر خـشى واكتش لنكرختشىوا تعى
تحت بار تحت بار

$$
W_{c}=\frac{M_{\mathrm{p}}(L+b)}{a b}
$$

تتها تقاوت در اهين مثال نسبت بهمثال تيلى، استغاده ازتشابه مثلتها براى بهدا كردنلنكر خـشى واكنش میبا
r - - - -

تير يكسره نهيز بهروشهاى فوق تحليل مىشود . در اين مبحث دو نكته جديد بايستـى
در نظر كرغته شود . •

 بهكمك تأ عده زهير تعيهن مى شود .
tا عده سوم : در يكتكيهكاه مفصلخميرى بازاء لنكرخميرىعضو ضعيفتر شكل مىگيرد .

 بهوجود مى يّد تمام آنها تشكيل نمىشوند . هردهانه بايستى براى فروريختكى كنترل

اكر ابتدا د هانـهای AB و CD فرورهخته شوند نمودا ر لنكر خمشىد ر هوقع فرو ريختكي

مطابق شكل

$$
w=\frac{600(8+4)}{4 \times 4}=450 \mathrm{kN}
$$

$$
\begin{aligned}
& 4.5 W_{c}=600+900 \\
& W_{c}=333 \mathrm{kN}
\end{aligned}
$$

شكل r - -

 كه در شكل r-r

(ب-r

-

$$
\text { مى:باشد } \frac{\mathrm{d} M}{\mathrm{dx}}=0
$$

با استفاده از رالبطه بين لنكرخمشى نهروىبرشى

$$
\begin{equation*}
\frac{d M}{d x}=N \tag{s-r}
\end{equation*}
$$

 نسبت به B براي مقطع دست راست .

$$
-\frac{w_{\mathrm{c}} x^{2}}{2}+2 M_{\mathrm{p}}+M_{\mathrm{p}}=0
$$

$$
\begin{equation*}
\text { مى شود } \frac{w x^{2}}{2}=3 M_{p} \tag{r-r}
\end{equation*}
$$

شكل r -

بهطور مشابه هراى مقطع ستحهـ، با كرفتن لنكر حول A دارهم :

$$
\frac{w_{c}(L-x)^{2}}{2}-2 M_{\mathrm{p}}-2 M_{\mathrm{p}}=0
$$

$$
\frac{w_{c}(L-x)^{2}}{2}=4 M_{p} \quad(\Lambda-r)
$$

با جابجايهى معادله ((

$$
\frac{w_{c}(L-x)^{2}}{2}=\frac{4}{3}\left(\frac{w_{c} x^{2}}{2}\right)
$$

$$
3(L-x)^{2}=4 x^{2}
$$

Lا حذف w و ساده كردن معادله دارهم :

$$
3\left(L^{2}-2 x L+x^{2}\right)=4 x^{2}
$$

$$
x^{2}+6 x L-3 L^{2}=0
$$

با حل معادله درجه دوم فوق .

$$
x=(-3 \pm 2 \sqrt{3}) L
$$

رششه مثت،موقعيت مغصل دهانه را مشخص بىسازد

$$
x=(-3+2 \sqrt{ } 3) L=0.464 L
$$

با جابججا هیى متدار فوق در معادله

$$
w_{\mathrm{c}}=\frac{27.86 M_{\mathrm{p}}}{L^{2}}
$$

r -

 مورد تابهها قابل اجراست . اين روش برا باساس دور قضهه زير استوار است .

 تغيهر مكانها و دورانها بهعنوان تغيهر مكانهاى بجازى تلقى مى شوند ، بنابراين
كلهه بارها تار تارجى (مجازی) انجام شده اعمالى
. Y
بنابـرابن علاوه هر صرفنظر كردن از كوتاهشدكى محورى، از شكست زودرس در اثـــر كمانش نيز صرف نظر مىشود . ا ين نكته با جزئهات بـشتر در فصل و مورد توجهترار خوا هدكرفت دراهن قسمت نقطا ستخخوابندى روش كار مجازى ارائه شد . موارد ععلى آنتوسط
 بُعد جديدى از روثى فوق معرفى مىشود .
-
تكرار الهن مثال ازا ین جهت ارزشمند است كه حل بسأله را بهروش كار مجازىههروشنى . شرح بیدهد

مثال

مرحله
مكانيسم فرورهختكى
مفصلهاى خعيرى در دو انتتها و زیر بار .'

مرحله
دورانههاى خميرى مجازى بـمغصلها داده بیشود

بهجهتهاي دودانهها توجه شود . اكر دوران توسط يك لنكر مثبت اهجاد شود , مثبتمىبا شد .

مرحله
كار هجازی انـجام شد ه توسط بارهاى خارجى (كا ر خا رجى) عبارت است از

مرحمه F
'كار هجازى جذب شده در ا ثر دوران مغمل (كار دا شلـى)

$$
-M_{\mathrm{p}} \times-\theta+M_{\mathrm{p}} 2 \theta+-M_{\mathrm{p}} \times-\theta=4 M_{\mathrm{p}} \theta
$$

بواى علا مت لا زم نيست .

مرهلد ه هندسـ مكا ــهزم

 م $\delta=\frac{L}{2} \tan \theta=\frac{L}{2} \theta$

مرحله

كار جذب شد ه = كار انجام شده ه
Lا توجه بهتعادل و هند سـه مكانيزم

$$
\begin{aligned}
& W_{\mathrm{c}} \delta=4 M_{\mathrm{p}} \theta \\
& W_{\mathrm{c}} \frac{L}{2} \theta=4 M_{\mathrm{p}} \theta \quad \text { i,e. } \quad W_{\mathrm{c}}=\frac{8 M_{\mathrm{p}}}{L}
\end{aligned}
$$

روشهای خميرى براى سازههاى فولادى و بتنى

نتتيجه , T

$$
\text { مي شود } W_{\mathrm{c}}=\frac{2 M_{\mathrm{p}} L}{a b}=\frac{2 M_{\mathrm{p}} L}{\left(L^{2} / 4\right)}=\frac{8 M_{\mathrm{p}}}{L}
$$

بنابـرا ين مىتوان كنترل كرد كه در هردو روش بـرأى بار فروريختكى نتايهج بكسانى بـه دســت

$$
\text { میا }{ }^{\text {ren }}
$$

البتته نيا زى بـانـجام محا سبات بـهصورت مرحله بـهرحله وجود ندا رد و اين كار در اين هثال
بد بن علـت اننجام شد كه هيدا كرد ن با ر فروريختكى بـا ا استدلال نـشان داد ه شود .
(
 مى شود این بدان معنا ست كه در مرحله اول ، كه تصميم كيزى در مورد مكانيزم فــرو ريختكى

است،با مشكل روبرو مىشوــم زيرا مكانيزمهاى ممكته مختلفى وجود دارد . در واتع بـراى هر مكانيزم يك محا سبـه جداكانـه لازم است .

Y-Y-Y-Y

 شد ه است . محا سبات مشا بـه مثال قبلى ا ســ .

$$
\begin{align*}
& V_{\mathrm{c}} \frac{L}{2} \theta=4 M_{\mathrm{p}} \theta \\
& \frac{V_{\mathrm{c}} L}{M_{\mathrm{p}}}=8 \tag{11-r}
\end{align*}
$$

$$
(10-r)
$$

توجه شود كه نهروى افتى كار انجام نمىدهد زيرا فرض مىشود انتهالى بالایى ستونها ثابت . باقى مى.

 أهن متاومتى در متابل دوران نخوا هد داشت) .

ri-r re

نمىكند و بالاى ستونها بـهاندازه مساوى (بينـهايت كوحك) بـهطور جانبي حركت مىكنــــد . در نتتيجه دوران مغصل در هردو ستون مشا بـه است .

$$
\begin{aligned}
& \text {, } \\
& =H_{\mathrm{c}} h \alpha \\
& \text { 位 }
\end{aligned}
$$

براى تعادل

$$
\begin{equation*}
H_{c} h \alpha=2 M_{p} \alpha \tag{ir-r}
\end{equation*}
$$

بنابـرا ين در موقع نروربختكى

$$
\begin{equation*}
\frac{H_{\mathrm{c}} h}{M_{\mathrm{p}}}=2 \tag{ir-r}
\end{equation*}
$$

در این مكانيزم نهروى قأم كار انجام نمىد هد زيرا فرض مىشود بالاى ستونها بدون ها هيهن

r r r - -

مرورنتىى تم

فرريختكى با حركت جانبيى

شكل

دوران ستون سیت جهه و انتهاى تهر سمت چه طورى است كه در محل اتصال اعضاء زاوهه اتصال همهنان قائعه هاتى مىماند . اهن بدان معناست كه در آن نتطه د وران خميرى وجود
ندارد .

بناهراهن عغصل خميرى (و ظرفهت جذب كار آن) د د محل تلاقى تهر و ستون سمت حبـ

كار داخلى در مغصلى - كار داخلى + كار داخلى = كارخارجى + كار خارجى

$$
\begin{align*}
& \frac{V_{\mathrm{c}} L \theta}{2}+H_{\mathrm{c}} h \theta=4 M_{\mathrm{p}} \theta \\
& \frac{\mathrm{I}}{2} \frac{V_{\mathrm{c}} L}{M_{\mathrm{p}}}+\frac{H_{\mathrm{c}} h}{M_{\mathrm{p}}}=4
\end{align*}
$$

 قرار خوا هد كرغت .

 Hh/Mp VL/Mp است.

$$
\begin{aligned}
& \frac{V_{\mathrm{c}} L \theta}{2}+H_{\mathrm{c}} h \theta=4 M_{\mathrm{p}} \theta+2 M_{\mathrm{p}} \theta-M_{\mathrm{p}} \theta-M_{\mathrm{p}} \theta \\
& \text { جانبي }
\end{aligned}
$$

روشـهاى خميرى براى سازههاى فولادى و بتنـى

، $A: M_{p} / L ;{ }^{\prime}$ با شد شكست تهر در تاب بهوجود نمي؟ هـد .

بحث فوت هرای سا يرمكانـيزمها نيز قابـلا ستفاده است و سطع ها شور زده دا خلـىتـودار ر
تقا بلى تشان دهنده هحد وده اهين ا بست .

 H
 مرهوط بهمكانـزم جانهى تشكيل مى شود .

 تقابلى ID در نظر بكيريد هحل تلاقى خطى كه از مهداء. و نتطه (nh/Mp, L / M_{p}) میكذرد و خط مرزى محدوده مهاز PR را قطع مىكتد . مكانهـزم فرورهختكى (مطا بق شكل ، مكانهـزم مركب) و مقادهر V
. H در فروربختككى را مشخص میسا زد (مطابت شكل

 مقا دهر دهكرى داده شده است .
r -

قاب زهر را درنظر بكيريد .برخلاف مثال تـل ،دراين قاب، تكيها هها كيردا ر،لنكّرهاى
 در نظر كرفت

> (الف) مكانيزم تتهـر

با توجه بهابعاد هندسى این مكانيزم

$$
\delta=4 \theta=6 \alpha
$$

$$
\alpha=\frac{2}{3} \theta
$$

يعنــي

در اتصال بهن دو عضو ، مغصل خميرى در عضوى كه لنكر خميرى آن كمتر است بــه وجود

$$
\begin{aligned}
V \delta & =210 \theta+390(\theta+\alpha)+210 \alpha \\
& =600(\theta+\alpha)
\end{aligned}
$$

$$
V \times 4 \theta=600\left(1+\frac{2}{3}\right) \theta \quad \therefore \text { با جا بجاهیى متادهر } \alpha,
$$

$$
V=250 \mathrm{kN}
$$

$$
(1 q-r)
$$

(ب) مه نيزث جا نبى

 با توجه بـهابعاد قاب :

$$
\Delta=5 \theta=3 \beta
$$

$$
\beta=\frac{5}{3} \theta
$$

$$
H \Delta=2 \times 210 \theta+2 \times 210 \beta
$$

$$
H \times 5 \theta=420\left(1+\frac{5}{3}\right) \theta
$$

$$
H=224 \mathrm{kN}
$$

$$
(1 Y-r)
$$

(ع) مكانـزم مركب

معادله تعادل مبارت است از:

$$
V \times 4 \theta+H \times 5 \theta=600\left(1+\frac{2}{3}\right) \theta+420\left(1+\frac{5}{3}\right) \theta-2.210 \theta
$$

$$
4 V+5 H=1700
$$

N
($1 人-r$)
 رسم كــرد .

الهن نتطه را روى نمودار نقابلى رسم مىكتهـ .

است $V=212.5 \mathrm{kN}$, $H=170 \mathrm{kN}$ نشان مىدهد كه وقتى ID نمودار تقابلى

 الست . نيروماى محورى لنكرهاى خميرى رابعترتيب نا فروريخنتكيراتا V V =

 زهاد است ، كاهش در بار فرورهختكي مىتواند قابل ملاهظه با شد .
r -

 - بهوجود Tــا

AB شكل r-r مطاهق شكل
$\delta_{\mathrm{h}}=\mathrm{AB}^{\prime} \cos (\alpha-\theta)-\mathrm{AB} \cos \alpha$
از آنبا كه
$\delta_{\mathrm{h}}=l \cos \alpha \cos \theta+l \sin \alpha \sin \theta-l \cos \alpha$

$$
\text { براى زوالاى كوجك } \sin \theta=\theta \quad, \quad \cos \theta=1 \text { ، بنابرا ين }
$$

$$
\begin{align*}
\delta_{\mathrm{h}} & =l \cos \alpha+l(\sin \alpha) \theta-l \cos \alpha \\
& =l(\sin \alpha) \theta \\
& =x h \theta \tag{0}
\end{align*}
$$

$$
(19-r)
$$

(all)

شكل r -

$$
\begin{align*}
\delta_{\mathrm{v}} & =\mathrm{AB} \sin \alpha-\mathrm{AB}^{\prime} \sin (\alpha-\theta) \\
& =l \sin \alpha-l \sin \alpha \cos \theta+l \cos \alpha \sin \theta \\
& =l(\cos \alpha) \theta=\frac{L}{2} \theta
\end{align*}
$$

با استفاده از معادلات

$$
\text { خميرى } \theta \text { بهد ست مى آيد . }
$$

خهـز افقى حاصلضرب تصوير قاءم AB در مقدا ر دوران خميرى و همـينطور خـهــز قائم

 هك مكانيزم تير بهوجودTآد نقاط
 در شكل r-rq نشان داده شده است ، كار دا خلى در هر حالت بكسان است .

شя-r
 C $C=2 x h \theta=h \phi$

$$
\begin{aligned}
& \phi=2 x \theta \\
& \text { 准 }=M_{\mathrm{p}} \theta+3 M_{\mathrm{p}} \times 2 \theta+M_{\mathrm{p}}(\theta+\phi)+M_{\mathrm{p}} \phi
\end{aligned}
$$

$$
=8 M_{\mathbf{p}} \theta+2 M_{\mathbf{p}} \phi
$$

با جا بججا يـى مقدا ر

$$
\text { = }=4 M_{p}(2+x) \theta
$$

بـدهـى است كه (ج) و (د) مشابهند . حالت (الف) را نهز مىتوان كنترل كردتظاوت
 است ، كه براى حالات (الغ) تا (د) متفاوت مىیبا شد .

انـجام د هنـــد .

 (ب) به دليل نكهدارى نـنطه A توسط
 دتيعترى وجود دا رد كه خوانتـده میىتواند آن را مطالعه كنـ .

$$
\begin{aligned}
& \text { (مانند مكانيزم تهر) } \\
& \text {) : } \\
& \text { (د) الت }
\end{aligned}
$$

 شــود ، مكانيزم قاب شهـدار (بجاى مكانيزم تهر) ، مكانهــزم جانيهى بو بالاخره مكانهزم . مركب (1) مكانيزم تاب شهيدار .

كــاررا FCD. .

$$
\text { خمهرى } \phi \text { در D عبارت است از: }
$$

$$
\begin{aligned}
& \delta_{\mathrm{h}}=\mathrm{FD} \sin \alpha \phi \\
& \delta_{\mathrm{V}}=\mathrm{FD} \cos \alpha \phi
\end{aligned}
$$

$$
(Y Y-r)
$$

$$
(r r-r)
$$

كه مشابه معادلات r- 19 و مكان با رهاى متمركز در تاب بهد ست مىى با بد .

$$
\begin{aligned}
& \delta_{\mathrm{V}_{\mathrm{I}}}=5 \theta=4 \phi \\
& \delta_{\mathrm{h}_{\mathrm{F}}}=\frac{5}{6} \times 2 \theta=\frac{5}{3} \theta \\
& \delta_{\mathrm{C}_{\mathrm{I}} \mathrm{C}}=\frac{5}{3} \theta+\frac{5}{6} \times 2 \phi=\frac{5}{3} \theta+\frac{5}{3} \times \frac{5}{4} \theta=\frac{45}{12} \theta \\
& \delta_{\mathrm{h}_{\mathrm{C}}}=\delta_{\mathrm{h}_{\mathrm{D}}}-2 \phi=\frac{45}{12} \theta-2 \times \frac{5}{4} \theta=\frac{5}{4} \theta
\end{aligned}
$$

 مىىا شند) بنابـراهن معادلـه كار عبارت است از :

$$
200 \lambda \delta_{\mathrm{v}}+30 \lambda \delta_{\mathrm{h}_{\mathrm{C}}}+50 \lambda \delta_{\mathrm{h}_{\mathrm{D}}}=250 \theta+500 \theta+500 \phi+250(\phi+\beta)+250 \beta
$$

بخاطر دارهم كه

$$
\begin{aligned}
& 200 \lambda 5 \theta+30 \lambda \frac{5}{4} \theta+50 \lambda \frac{45}{12} \theta=750 \theta+750 \frac{5}{4} \theta+500 \frac{45}{48} \theta \\
& \left(1000+\frac{150}{4}+\frac{375}{2}\right) \lambda=750+\frac{3750}{4}+\frac{22500}{48} \\
& \frac{9800}{8} \lambda=\frac{17250}{8} \\
& \lambda=1.76
\end{aligned}
$$

 , در اثر همان متادهر بايستى بهطور جانبى حركت كنتد .

$$
\begin{aligned}
& (50+30+50) \lambda 4 \theta=4 \times 250 \times \theta \\
& 520 \lambda=1000 \\
& \lambda=1.92
\end{aligned}
$$

(r)

$$
\begin{aligned}
& \left(\frac{9800}{8}+520\right) \lambda \theta=\frac{17250}{8} \theta+1000 \theta-500 \theta \\
& \frac{13960}{8} \lambda=\frac{21250}{8}
\end{aligned}
$$

$$
\lambda=1.52
$$

 "ضريب بار فروريختىى " نا ميده مى مشود .

 آن مكانيزم تير در شيب سعت جه است .

$$
\mathbf{B F} \times \theta=\mathbf{F} \mathbf{C} \phi
$$

$\mathrm{BF}=5 / \cos \alpha$
$F C=1 / \cos \alpha$
بنأبراهن

$$
50=\phi
$$

4اتوجه به معادلـه كار
$200 \lambda 50=250 \theta+500(\theta+\phi)+500 \phi$
$1000 \lambda=250+500 \times 6+500 \times 5$
$\lambda=5.75$
با توجه بـه كا داخلى طولمسهر طى شده توسط بار 50 بعئى حركت تأئم F مىباشد .

شكل r -
 شكل r-r rr در مورد مكانيزم تهر هكونه بايستى عمل كرد . - - \uparrow -

مـراحل لازم در روث كار مجا زى عبارت است از :
(1) (1) تعيدن مكانيزم هاى فروريختكى وا اعمال دورانـهاي هجا زى در مفصلـها . (Y)

را حذف كـرد .
. مرحله نها يوى بستكى بـنتتهجه حاصله از تحليل دا رد (H)

تقابلى براى تعيين هكونكى فروريختكى سا زه رسم مىشود .

 بار را دارا مىبا شد .

جمع بنــدى Y - r
در اولمن قسمت اهن فصل نتايج حاصلـه از بخشههاى ا و Y ذكر و د د مورد قابيهاهـهار

 مثالهاى اهن بـخش شا مل جه مها سباتى بودها است

 مركب تـام سه شرط را برآورده مى میتد .

() شبيدار
شr -

 لموق غهر تالـل استغاده میكردد .
 روشى بنام " تحليل حدى" وجود دا رد كه بـر اساس روش كار مجا زى هوده و مشكل فوقرا مرتفع مى سلا زد . این روش در بـخش بـعد تشريح مى شود .

 در قسمت Yحداكثر لنكر خمشى بهوجود مىTيد ، تحت بارهاى كسترده تعيين محل Tن بهسادكـى
 با يستى از تحلــل حدى استغاده شود .
^ A -
 با مقدا w w در وا حد طول ا عمال مى شود محاسبه كنيـ . فرض كتيد كه لنتكر خميرى تير ثاهـت
و بـرابر Mp است .

V . H, بهطور مستقل از يكديكر تغيير مىكنـد

r-

 نمودار لنكر خمشى را در موقع فرورشختكى رسم كنـيد .

rكه H O V V lV=5H.g $. V=H$

(
 مساوى میبا شد .

تكليل حهى

تحلـيل حدى ربـطى بـهفلسفه طراحى حالت حدى ندارد . شا هـ باعث تعجب شود كـه

 تركيـههاى مختلف بار مها مسا سبــات را جداكانه مىتوان انـجام داد . روش تحليل بهشرح زهر است .

1 -
 كرانه بالايى .

$$
\text { . مى شود } \lambda \geqslant \lambda_{c}
$$

 . خميرى بزركتر خوا هد بـود

$$
\begin{aligned}
& \lambda_{r} \leqslant \lambda_{c} \\
& \lambda_{r} \leqslant \lambda_{c} \leqslant \lambda
\end{aligned} \quad . \quad \text { ـودار }
$$

 تسلهيم را برآورده سازند . از اینـرو ضريب بار جديه
 تحليل سازه تحت اثر بارهاى با ضريب

 لنكرهاى واتعى ناشى از بار ها با شند .
(ب)

(0)

اين موضوع در شكـل f-ا الف توسـططيك تير يكسر كيردار و بكسر مفصــل تحت بـار هينوا خت نشان داده مىشود . بدون در نظر داشتن الطلاعات كذ شته ، فرض در نظر كرفتن
 عـارت است از:

$$
\begin{align*}
& \lambda w \times \frac{L}{2} \times \frac{L}{2} \theta=3 M_{\mathfrak{p}} \theta \\
& \lambda=\frac{12 M_{\mathrm{p}}}{w L^{2}} \tag{1-f}
\end{align*}
$$

با ا ستفاده از عكسالعملهای شكل f-أ ع نيروهاى برشى در نقطهای ماننـد x برابـر است با:

$$
N=-\frac{\lambda w L}{2}+\frac{M_{\mathrm{p}}}{L}+\lambda w x
$$

و در نتطماى كه نيروى برشى صفر است دارهـم .

$$
\lambda w x=\frac{\lambda w L}{2}-\frac{M_{\mathrm{p}}}{L}
$$

با جا بجا بتى در معادله fr-1 داريم :

$$
\frac{12 M_{\mathrm{p}} x}{L^{2}}=\frac{6 M_{\mathrm{p}}}{L}-\frac{M_{\mathrm{n}}}{L}
$$

$$
\begin{equation*}
x_{\mathrm{crit}}=\frac{5 L}{12} \tag{r-Y}
\end{equation*}
$$

لنكر خمشى در نتطه x مىشود .

$$
M=\left(\frac{\lambda w L}{2}-\frac{M_{\mathrm{p}}}{L}\right) x-\frac{\lambda w x^{2}}{2}
$$

و با جا بـجايَى معادلات

$$
M_{\text {max }}=\left(\frac{6 M_{\mathrm{p}}}{L}-\frac{M_{\mathrm{p}}}{L}\right) \frac{5 L}{12}-\frac{6 M_{\mathrm{p}}}{L^{2}}\left(\frac{5 L}{12}\right)^{2}
$$

$$
=\frac{25 M_{\mathrm{p}}}{12}-\frac{25 M_{\mathrm{p}}}{24}
$$

$$
=\frac{25 M_{p}}{24}
$$

با كاهث مقدار

$$
\begin{aligned}
\lambda_{\mathrm{r}} & =\frac{24}{25} \times \frac{12 M_{\mathrm{p}}}{w L^{2}} \\
& =\frac{11.52 M_{\mathrm{p}}}{w L^{2}}
\end{aligned}
$$

$$
(r-\varphi)
$$

بنابرا ين

$$
.
$$

 مغصل در تكيهاه كيردار و يكى هـها لنكرخمشىدرمكانيزم تبل مىتوا نمكانيزم را درستترانتخابكرد . مسا سباتنشانمانمىدهدكه :

$$
.
$$

وتتى x=0.4142Lبا شد ، نـروى برشى صفر است و خواهمم داشت .

$$
\begin{aligned}
& M_{\max }=M_{p}(\text { با سه رقم اعشارى) } \\
& \lambda_{c}=\lambda
\end{aligned}
$$

 .

(Y - Y

 مطا بت شكل با-

 كمى مشكل با شد ، ولى در Tينده هوا رد استغاده ها ن روشنتـر شخوا هد شد .

روشههاى خميرى براى سازدهاى فولادى و بتنى

را p در نظر مىكيريم (10 با شد مىتوان نمودار لنكرخمشى را رسم كرد بنابـراين تعداد p مجهول وجود دارد . . بها زای
 حسب بارهلى وارده بهدست مى بينـد . از آنجا كه p مجهول و m معادلـه وجود دا رد . . میی $p-m=r$
 ضميهه ب بهدست مى عيد و تعداد مكانيزمهاى هستقل بهكمك معادلـه زير حاصل مىشود $m=p-r$
 مكانيزم بهراحتى قابل تشخيص است ، دو مكانيزم تير ، هيك مكانيزم مفصل و يك مكانيزم جانبى
f

 مى شود تا مكانهزم فروريختكى واتعى و ضريب بار تعيـين و با محدودهاى بـراى ضريببار فروربختكى مشخص كردد . تركيب مكانيزمها مطا هق روشى كه در بـخش قبلى بـيان شد ، صورت مىيكيرد . معادلات
 معادلات كار كا سته مىكردد . مثال بعدى جريان كار را نشان مىیدهد .

 f مكانيزم اصلى دارد . مرحلـه اول تعيين ضريب بار براى هرشكى از این مكانيزمها ست .

مكانيزمهاى تير
(1) تير سمت جهب

$100 \lambda \times \frac{10}{2} \times \theta=4 \times 250 \theta$
$500 \lambda \theta=1000 \theta$
$\lambda=2.0$
(r) تير سمت راست

$100 \lambda \frac{10}{2} \times \theta=4 \times 250 \theta$
$500 \lambda \theta=1000 \theta$
$\lambda=2.0$

* (T) مكانيزم جانبى

$100 \lambda \times 10 \times \theta=6 \times 2500$
$1000 \lambda \theta=1500 \theta$
$\lambda=1.5$
* د د بعضى مراجع مكانيزم جانبى را مكانيزم قاب كويند . (مترجم)

مغصل از بالاى ستون سمت هب ميشود . معادله كار عبارت است از:

$$
\begin{aligned}
& 1000 \lambda \theta+500 \lambda \theta=1500 \theta+1000 \theta-2 \times 250 \theta \\
& 1500 \lambda \theta=2000 \theta
\end{aligned}
$$

$$
\lambda=1.33
$$

الهنضرهب بار كهكمترازمقدا رمريوط بهمكانيزم جا نبىا ست . بتدا رمنا ستترى براى λ ميها شد .

$$
\begin{aligned}
& 1000 \lambda \theta+500 \lambda \theta=1500 \theta+1000 \theta \\
& 1500 \lambda \theta=2500 \theta \\
& \lambda=1.67
\end{aligned}
$$

اهت مكانيزم نامنا سبتر است . اكتون اتصال را با جزئيات بـشترى در نظر مىكيريم ، شكـلـ

ش
 ساعت در تير سمت جي موجو

 مكانيزم واتعيتر تبديل مىكتد بهوضو دوران اتصال ، مغصلهاى تهر سعت راست و ستون ميانـــى را حـذف (Y)=(f)+(f)
 در معادله كار منعكس كردد .

$1500 \lambda \theta=2250 \theta$
$\lambda=1.5$
.

$1500 \lambda \theta+500 \lambda \theta=2250 \theta+1000 \theta-2 \times 250 \theta$
$2000 \lambda \theta=2750 \theta$
$\lambda=1.38$
در این مثال تمام تركيهات ممكن در نظر كرفته شده است . از مكانــزم (ه) كمترينضريب بار

نمودار لنكرخششى نشان میدهدكه
 شرط مكانيزم (مفصلـهاي كا فیى براى ايجا د مكانيزم) و شرط تعادل را را برآورده مى سازد . .

 فرض كتيد كه مكانيزم (كنترل كنيد . (شكل

$$
\lambda_{t}=\frac{1.5 \times 250}{375}=1.0
$$

كه محدودهاى برای

$$
1.0 \leqslant \lambda_{c} \leqslant 1.5
$$

 وجود ندارد . آنیّه لازم است تعيـين روشى است كه بـهكمك آن بهظور منطقى و ســريع متدار نزد يكى بـهضريبب بار فروريختتكى بـهد ست آ بـ .
 بهصورت زبر مجددا" نوشته مىشود .

$$
\lambda \Sigma w \delta=\Sigma M_{\mathrm{p}} \theta
$$

$$
\begin{equation*}
\lambda=\frac{\Sigma M_{\mathbf{p}} 0}{\Sigma w \delta} \tag{Y-Y}
\end{equation*}
$$

وتتى معاد لات كار تركيب مىشوتد عبارت كار خارجــى همــواره درست مجموع كـار خارجى

 در تركيب مكانيزمها مورد نظر است بـهد ست آوردن كوحكتريهن مقدار ممكن λ میىـا شد وتنـهـا
 مورد نظر با شد حتتيالامكان حذف مفصلـهاى خمـرى میـا شد .

شكل

استفاده از مكانيزم مفصل بـراى كا هشى دادن كا ر داخلىى بدون Tنكه كار خارجى تغيهر

 نشان داده شده است . دراتصال، كارداخلمى برابر است باس با
 . $2\left(M_{p} 2 \theta\right)=4 M_{p} \theta$

 این كار درصورتى امكانهذير استكه دورانـها درمكانيزمهاى جدا از هم بـهطور صحيحانطباق ها بالند ، هصهنان كه در شكل

r r - r

 با توجه هه شكل ملاحظه مىشود كه :

$$
\begin{aligned}
& p=12 \\
& r=6 \\
& m=6
\end{aligned}
$$

بناهرا ين

 شد ، خطا كم است . خطاى مذكور در مرحله بعدى كنترل مى شود .

نـودار هكانيزم	معادله كار و ضريب بار
	معادلـه كار وجود ندارد ג محا سبه نمى شود .
	معاد لـه كار وجودد ندارد خ محا سبه نمى شود .
	مكانيزم جانبى طبقه بايهن كمترين ضريب بار را دارد بنابرا بین نتطه شروع خوبــــــي بـــراى تركيبها ميبا شد .
	دورانهاى مفصل فورا" انجام مىشود تا كار دا اخلى كاهش يابد . $3 \lambda w L^{2} \theta+4 \lambda w L^{2} \theta=$ $8 M_{\mathbf{p}} \theta+16 M_{\mathrm{p}} \theta-6 M_{\mathrm{p}} \theta+M_{\mathrm{p}} \theta-4 M_{\mathrm{p}} \theta+3 M_{\mathrm{p}} \theta$ $7 \lambda w L^{2} \theta=18 M_{\mathrm{p}} \theta$ $\lambda=\frac{18}{7} \frac{M_{\mathrm{p}}}{w L^{2}}=1.929$

$98+1+2+6$
$4 \lambda w L^{2} \theta+2 \lambda w L^{2} \theta+4 \lambda w L^{2} \theta=12 M_{\mathrm{p}} \theta+6 M_{\mathrm{p}} \theta$
$+16 M_{p} \theta-2 M_{p} \theta$ (top LH joint) $-7 M_{p} \theta$
(lower LH joint) $-4 M_{p} \theta+3 M_{p} \theta$
$10 \lambda w L^{2} \theta=24 M_{p} \theta$
$\lambda=\frac{24}{10} \frac{M_{\mathrm{p}}}{w L^{2}}=1.8$
اهن مقدار كهترين ضرهب بار است . با رسم
نمودا ر لنكر خمشى این مكانيزم كنترلفمى شود .

 كسترده ، مقادهر لنكرها در هر تير با يستى كنترل شود .
(الف) تير بالايى

 ستونهاى بالاهى هستند . با كرفتن لنكر حول هحور B دارهم .

$$
\begin{aligned}
& V_{\mathrm{A}} \times 2 L+0.2 M_{\mathrm{p}}+M_{\mathrm{p}}-3.6 w \times 2 L \times L=0 \\
& \dot{V}_{\mathrm{A}}=\frac{7.2 w L^{2}-1.2 M_{\mathrm{p}}}{2 L}=\frac{7.2 w L^{2}-1.2 \times 0.75 w L^{2}}{2 L}=3.15 w L
\end{aligned}
$$

لنكر خمشى(خمش بهطرف إيهن مثبت است) در هر نتطه روى تير برابر است با

$$
M=0.2 M_{p}+3.15 w L x-\frac{3.6 w x^{2}}{2}
$$

هراي حداكثـر لنكر $\mathrm{d} M / \mathrm{d} x=3.15 w L-3.6 w x=0$ يعنــى در هحل ببشتــرين لنكــــر x = $3.15 \mathrm{~L} / 3.6=0.875 L$

$$
\begin{aligned}
M_{\max } & =0.2 M_{\mathrm{p}}+3.15 w L(0.875 L)-\frac{3.6 w(0.875 L)^{2}}{2} \\
& =0.2 M_{\mathrm{p}}+1.378 w L^{2} \\
& =2.04 M_{\mathrm{p}}
\end{aligned}
$$

تير پا يينى در شكل

$$
\begin{aligned}
& V_{\mathrm{c}} \times 2 L+1.4 M_{\mathrm{p}}+3 M_{\mathrm{p}}-7.2 w \times 2 L \times L=0 \\
& V_{\mathrm{c}}=5.55 w L \\
& M=1.4 M_{\mathrm{p}}+5.55 w L x-\frac{7.2 w x^{2}}{2} \\
& \frac{\mathrm{~d} M}{\mathrm{~d} x}=5.55 w L-7.2 w x
\end{aligned}
$$

$$
\text { در نقطه لنكر حداكثر } x=0.771 L \text { است. }
$$

$$
M_{\max }=4.25 M_{\mathrm{p}}
$$

شكل Y Y

 ضربب

$$
\begin{aligned}
& \lambda_{\mathrm{r}}=\frac{2 \times 1.8}{2.04}=1.76 \\
& \lambda_{\mathrm{r}}=\frac{4 \times 1.8}{4.25}=1.69
\end{aligned}
$$

محدوده ضربب با ر فروريختكى عبارت است از:

مهانكهن اهن محدوده Yه/ امىباشد . دو حد نوق از جنبه عملى بهاندازه كافى بهــم . نزدهكند

 اينكه مغصلها در وسط دهانه تشكيل شوند بهنتاط حداكثر لنكر نزد.

(ب) ن نودار لنـكر خـثى بربوطه

 بهد ست Tورد . با استغاده از ابعاد هندسى مكانيزم .

$$
\begin{aligned}
& 1.125 \alpha=0.875 \theta \\
& \alpha=0.778 \theta \\
& 1.299 \beta=0.771 \theta \\
& \beta=0.627 \theta
\end{aligned}
$$

محاسبه كارهاى دا خلى را از هايين قاب شروع كرده و بهطرف بالا ميدوهم .

$$
\begin{aligned}
\sqrt{\text { خ }}= & 2 M_{\mathrm{p}} \theta+2 M_{\mathrm{p}} \theta+4 M_{\mathrm{p}}(\theta+\beta)+2 M_{\mathrm{p}}(\theta+\beta)+M_{\mathrm{p}}(\theta+\beta)+ \\
& 2 M_{\mathrm{p}}(\theta+\alpha)+M_{\mathrm{p}}(\theta+\alpha) \\
= & 14 M_{\mathrm{p}} \theta+7 M_{\mathrm{p}} \beta+3 M_{\mathrm{p}} \alpha \\
= & 20.73 M_{\mathrm{p}} \theta
\end{aligned}
$$

با مسا وى قراردادن كار داخلى و خارجى داريم :

$$
8.834 \lambda w L^{2} \theta=20.73 M_{\mathrm{p}} \theta
$$

$$
\lambda=\frac{20.73 M_{\mathrm{p}}}{8.834 w L^{2}}=1.76
$$

 در تيرها نشان مىدهد كه :
ا - براى تير بالاسیى در نتطه لنكر حداكثر

$$
M_{\max }=2 M_{\mathrm{p}}\left(2.00002 M_{\mathrm{p}} \text { بهطور دتيق }\right)
$$

r=0.779L ب- براى تير بايتنى در نقطه لنكر حداكثر

$$
M_{\max }=4 M_{\mathrm{p}}\left(4.0002 M_{\mathrm{p}}\right. \text { بهطور دقيق) }
$$

 تهر صورت كرفت و باعث كرديد كار داخلى كاهش هابد • توانا هـى براى جنين عملياتى بـا تهربه بهدست میى

$$
\begin{aligned}
& \text {. } \quad \text { خار }=4 \lambda w L^{2} \theta+\frac{2 \lambda w(0.875 L)^{2} \theta}{2}+\frac{2 \lambda w(1.125 L)^{2} \alpha}{2}+\frac{4 \lambda w(0.771 L)^{2} \theta}{2}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{4 \lambda w(1.229 L)^{2} \beta}{2} \\
& =5.9545 \lambda w L^{2} \theta+1.2656 \lambda w L^{2} \alpha+3.0209 \lambda w L^{2} \beta \\
& =8.834 \lambda w L^{2} \theta
\end{aligned}
$$

در ا'هن فصل روش تحليل حدى هـراى مكانيزمهاى مركب در مورد سازههاى قابى شكل •
 بـرا ضريب بار فروريختكى قاب ميبا شد . مرا حل اصلي در تحلعيل عبارتند از: (1) تعيين مكانهزمها ى اصلى و معادلات كار مرهوطه . (T)

(با توجه بهنظريه كرانه هالاهى) . با رسـم نـمودا ر لنكر خمشى مربوطه مكانيزم كنترل شود .
 مذكور ، مكانيزم فرورربختكى واقعى قاب است . و ضربب بار مرهوطه مساوى ضريب بـار فــرو ريختكى مىيا شد .

 بنابرا بین

$$
\lambda_{r}<\lambda_{c}<\lambda
$$

فرض إينكه مفصل خميرى در اعضاى تحت باركسترده د ر وسط د هانـه تشكيل مى شود به طـــور

 متعدد ى بـهمراه داشت كه با يستتى توسط خواننده تمرين كردد .
-
F مالت مكانيزم بـعرانيى را با رسم نمودار لنكر لمبشى مروطه كتنرل كنيد .

() : توجه شود كه ستونها دوراننهاى شتغاوت دارند ()
شكل f -

(د)

شكل

Y

 فروريختكىي بيدا كنيد

(الن)
شكل \&-1 الف

$$
\begin{aligned}
& \text { (ب) تام بارها هرحسب وامد طول میباشند } \\
& \text { شكل f-10 ب }
\end{aligned}
$$

طراحى با استفاده از نظريه خميرى

- ا مقدمه

در دو بـخش قبل راجع بـتحلـــل بسحث شد ، يعنـى با استفاده از ابعاد هنـدسى ســازه (طول تيرها و ارتفاع ستونها) و اندازه متاطع ، ظرفيت سازه مشخص كرديد . بـه عبارتد يكر

 خميرى כاهل هررسى و توجه است؟ " مغيد خوا هد بود . خـهار دليل اصليهـرای برسش نوق وجود دا رد .

 Y
 سريعتر منجر مىشود . خطاى نصب اعضاء در مقدار بار فروريختكى نهــز موءثر نـست .
(بمقستهای

 البته دو نكته وجود دارد كه با بابتي در نظر در دا شا شت :

 و در هر طرح رضابـت بخش با يستى آنها را مرتغع سا خت . اثر كانش در ر فصل بعدى در ر نظر
كرفته خوا هد شد .

- r ضرايب بار

منظور از طراحى برا ساس نظريه خميرى طرح ســـــازهاى با ضريب بار مشخخص در مقابل

 مجادله است .
الين موضوع خارج از بحث اهن كتاب است زبرا بهنظريه خميرى مربوط نيست ولى

 بهد ست مى

 1.75 - 1.7

ترار كرفته عبارتند از .
 هذيرفته شده است ، ضرايب بار را براساسا احتمال وجود تركيبات با رهلى مختلف ترار داده ه

 صورت كرفته است كه مقادهر جد ول هـأ را تا Y/
 خميرى انزا حش با فته است .
T T

با با رهاى بـاد با زلزله بـرابـر ٪/ ا لازم دانسته است .

 دا شته اند

جدول ه -
نوع بار يا تركيب بارها
بار مرده حداكثر
$1 / 4$
حداقل
1/0
حداتل براى بـا ركذا رى متنا وب
$1 / T$

$$
\begin{aligned}
& \text { بار زنـده (بـدون بار باد) } \\
& \text { بار باد (فتط با وجود بار مرده ها } \\
& \text { بارها ى باد و زنده (در تركيب بارها) }
\end{aligned}
$$

ه -
تهر تشان داد ه شده در شكل هـ-1 را مى خوا هيهم بهرش خمميرى طرا حى كنـهم . مثــال تدرى اید هال است زيرا نتط يك تركيب باركذارى در نظر كرفته شده (ضهنا" با رها شا مل وزن

تير نهز مىبا شند) ولى ابین مثال نشان دهنده هك راه حل كلى براى طرح خميرى مى.

 لنكرخمشى واقعى در هر نقطه قابل استناد هاند .
$A B$ A $=\frac{000 \times Y 0}{Y}=r \Delta 00 \mathrm{kN} \mathrm{m}$

CD $=\frac{r \nmid \circ \times A \times 1 \&}{r f}=|A| r \mathrm{kN} \mathrm{m}$

 الا متادير نسبيى لنكرهاى خميرى در اين مرحله معلوم نيست .

$$
\begin{array}{ll}
M_{\mathrm{B}}=M_{2}, M_{1} & \text { كترين مقدين مقدار } \\
M_{\mathrm{C}}=M_{3}, M_{2} &
\end{array}
$$

مىتوان بن يست نوق را با در نظر كرفتن مفروضاتى در مورد هريك از د هانمهالازبـن هرد . دهانه
مى دهد . بـا توجه بـها نداز ههاى نمودار ر
$2 M_{1}=2500 \mathrm{kN} \mathrm{m}$
$M_{1}=1250 \mathrm{kN} \mathrm{m}$

 در شكل ه -

$$
\begin{align*}
& 2 M_{2}=1600 \mathrm{kN} \mathrm{~m} \\
& M_{2}=800 \mathrm{kN} \mathrm{~m}
\end{align*}
$$

د دهانه $M_{3}<M_{2}$ فرضمیشود .باتوجه بهتشا بهمثلثها درنمودار لـكرخمشىك د رشكل - ه هنشان داده شدهاست:

$$
\begin{aligned}
& \frac{2}{3} M_{3}+M_{3}=1813 \\
& M_{3}=1088 \mathrm{kNm}
\end{aligned}
$$

 كنترل فرضيات بها ر برده شده تابـل وارسى است .

$$
\begin{aligned}
M_{2}(=800 \mathrm{kN} \mathrm{~m}) & <M_{1}(=1250 \mathrm{kNm}) \\
& <M_{3}(=1088 \mathrm{kN} \mathrm{~m})
\end{aligned}
$$

 الست . نتهيه حاصله باتوجه به ${ }^{\text {ب }}$ تكرار شود

$$
\begin{align*}
& \frac{M_{1}+800}{2}+M_{1}=2500 \\
& \frac{3}{2} M_{1}=2100 \\
& M_{1}=1400 \mathrm{kN} \mathrm{~m} \tag{f-0}
\end{align*}
$$

$$
\begin{aligned}
& \frac{2}{3} \times 800+M_{3}=1813 \\
& M_{3}=1280 \mathrm{kN} \mathrm{~m}
\end{aligned}
$$

$$
(0-\Delta)
$$

 T مده است.با بـها ركيرى از فولاد نرمه (تنشى تسلهيم

 بهطرحهاي مختلفى دست بهدا كتد ـ ا اين طرحهاي مدكن عبارتند از:
طرح'ول :

 در اهن صورت مفصل خميرى در عضو ضعيفتر تشكيل مى شود . این اتصالات علات اوه بر بر ديكـر

 اين بدان معنى است كه
 خميرى) AB. قبــل از ديكـر

 مصرف شده است .

طرع سوم :
استغاده از ضعيفترهن عضو ممكن (M)

 به بالهاى مقطع اصلى مىتوان افزايش داد (بهمساّلد ب-امراجعه شود) .طول ورتها از نمودار

لنكر خهشى بهدست T مده است .

شكل

جزئيات ورق ، دهانه AB

شكل
$=1700 \mathrm{kN} \mathrm{m}$

$$
\begin{aligned}
\text { اصلم } M_{\mathrm{p}} & =800 \mathrm{kN} \mathrm{~m} \\
\text { ورقها } M_{\mathrm{p}} & =b t D o_{\mathrm{y}}
\end{aligned}
$$

هغنى

$$
b t=\frac{900 \times 10^{6}}{400 \times 250}=9000 \mathrm{~mm}^{2}
$$

b و t بهمقدا رهنا سب انتتخاب مى شوند . بـا تشابه م ملـثها در شكل ه-ه خوا هیم دا شت .

= 1280 kN m متطــع اصلى $=800 \mathrm{kN}$ m

$$
\text { M } M_{\mathrm{p}}=480 \mathrm{kN} \mathrm{~m}
$$

$$
b t=\frac{480 \times 10^{6}}{400 \times 250}=4800 \mathrm{~mm}^{2}
$$

با توجه بـتنشا بـه مثلتـها در شكل ه - ا ا دا ريم :

$$
\frac{x}{8-x}=\frac{800}{1280}
$$

$$
1280 x=6400-800 x
$$

$$
\begin{aligned}
& x=\frac{6400}{2080}=3.08 \mathrm{~m} \\
& \frac{y}{16}=\frac{800}{1280} \\
& y=\frac{800 \times 16}{1280}=10.0 \mathrm{~m} \\
& \text { 和 }=(8-2 x)+(16-y) \\
& =24-2 \times 3.08-10 \\
& =7.84 \mathrm{~m}
\end{aligned}
$$

شكل هـ - 11 جزئيات طرح را نشان میدهد .

در مثال فوق با كمى مها سهات اضافى مىتوانوانستهم بهسه طرح مختلف دست يا البيم .درطراحى

 توجهى در مشخصات ارتجاعى اعضا

 لا كمتر؟

(الف) اونهن طراسیى : اعفماء متفارت در هر دهانه

(ب) دوسين طراحى: عضر يزركتر بهصورت سراسرى

شكل

 اهن كتاب است ر

- \uparrow -
- - - ا عوامل موءثر در طراحى

مثال تبل نـشان دا دكه هكونه با استغا دهاز روشهای خميرى هكي تير بكسره طرحمى شود .
 خهست . دوشن استكه هدن طراح محا سبه سازهاي با هكي ضريبا ر فرورهختكي مغروض مىبا شد

راه بـهطاح واكذار ميشود . بـهعبارت ديكر طراح بايد طرح بههينهاى بهد ست آورد .

مههترهن عوامل عهارتند از :
1 - حداقل مجموع وزن مصالح
Y Y

. هسه كدام با صرنه نيستند
-

- ه حدا قل مجموع هزينهـ .

دومقطع هختلف محدود مى سازد . همان طور كه ملاهظه خوا هد شد با ا استفاده از كام ميــوتر محد ودهتى در تعداد مجهولات اعضاء وجود نخوا هد دا شت .

- - - -

 داشت . منحنى بهصورت تابع زير است

$$
g=c\left(\frac{M_{\mathrm{p}}}{\sigma_{\mathrm{y}}}\right)^{n}
$$

1 ـ استاندارد انكليسى معاطع فولادى
 هستند براى مقاطع با مصالح همجنس، o ثابـت است ، بنابرأين داريم

$$
g=k M_{p}{ }^{n}
$$

كه

 معادله

$$
g=k_{1} M_{\mathfrak{p}}+k_{2}
$$

كه بسيار تابـلاستغاده تر است . در جدول ه ه ب مظادير

$\left(\mathrm{cm}^{3}\right)$	r-ه			
			ساير فولادها	k_{2}
	$M_{\mathrm{p}} \mathrm{p}^{\text {(}}$ (kN m)	k_{1}	k_{1}	
0-2000	0-500	0.154	38.6/ F_{y}	15.2
1000 - 3000	250-750	0.112	28.1/ $/ \sigma_{y}$	30.7
2000-6000	500-1500	0.086	21.6/ $/ \mathrm{y}$	48.0
5000-10000	1250-2500	0.068	17.0/ σ_{y}	73.1

 بـين

$$
\begin{align*}
& G=\Sigma L\left(k_{1} M_{\mathrm{p}}+k_{2}\right) \tag{9-0}\\
& L=\text { طول عضو } \\
& G=\Sigma k_{1} M_{\mathrm{p}} L+\Sigma k_{2} L \tag{10-0}
\end{align*}
$$

در معادله ه- ا ، قسعت اول طرف سعت راست آن بستكى به هو دارد ، قسعت دوم كوجك ساختن قسمت متغير مىیا شد .

- - - - ب طرح حداقل لذن تير سراسرى

 زهر نوشته شود .

$$
\begin{align*}
& \frac{13}{3} M_{1} \theta \geqslant 500 \lambda \theta \\
& \left(\frac{8}{3} M_{1}+\frac{5}{3} M_{2}\right) \theta \geqslant 500 \lambda \theta \tag{11-0}\\
& \left(M_{1}+3 M_{2}\right) \alpha \geqslant 1000 \lambda \alpha \\
& 4 M_{2} \alpha \geqslant 1000 \lambda \alpha
\end{align*}
$$

 مقدار لازم باشد . مقدار دورانهاى مجازى در هر حالت قابـل حذف است . معادلات هـا هـا

د دهانه با نقطه Y تركيب خواهد شد

 با استغاده از معادله هـها أ أبع وزن هـراى هر تير عبارت است از .

$$
\begin{equation*}
G=k_{1}\left(8 M_{1}+10 M_{2}\right)+18 k_{2} \tag{1T-0}
\end{equation*}
$$

براى اهداف طراحى ابتدا فقط در نظر كرفتن تسمت متغير معادله ه-r الازم است .

$$
G^{\prime}=k_{1}\left(8 M_{1}+10 M_{2}\right)
$$

و در آخر مقدار

$$
\begin{array}{ll}
M_{1}=0 & M_{2}=400 \mathrm{kN} \mathrm{~m} \\
M_{2}=0 & M_{1}=500 \mathrm{kN} \mathrm{~m}
\end{array}
$$

 میكردد .آن كمترين مقدار ر'Gاست كه از مقادير مما س مى شود .اين خط را "خط حداقل وزن " نامند .مقادير
 حداقل وزن براى تير عبارت است از :

$$
\begin{aligned}
& M_{1}=230.8 \mathrm{kN} \mathrm{~m} \\
& M_{2}=589.7 \mathrm{kN} \mathrm{~m} \\
& G_{\text {min }}^{t}=k_{1}(8 \times 230.8+10 \times 589.7)=7743 k_{\mathrm{I}} \\
& \text { هنايرا هن حداقل وزن وامعى عبارت است از : } \\
& G_{\text {min }}=7743 k_{1}+18 k_{2}
\end{aligned}
$$

 . 500 kN m

 لازم مییا شد .

(ب) نـودار لنُنر غششى در نرورهختكى : طرح تك عضون

(E)
شكل ه - -

倍
طرح حداتل وزنهراى قاهها منا سهتراست زهرااتصال عمودبرهم (عا درقابهاى شيهدار

تقريبا" عمود برهم) قطعات با مقاطع متفاوت نسستا" معمول و منا سب است .جريان انكا رمشابـه
 باركذارى وجود دارد روش مذكور تابل استفادها است .

بد ون بار افقى و بنابراهن بدون تغيهر مكان جانبى

$\gamma=\frac{1}{3} \beta$

 زهر مییا شند :

$$
\left.\begin{array}{ll}
\frac{8}{5} M_{1}+\frac{8}{5} M_{2} \geqslant 5250 & \text { a } \\
\frac{16}{5} M_{2} \geqslant 5250 & \text { b } \\
4 M_{1} \geqslant 4620 & \text { c } \\
2 M_{1}+2 M_{2} \geqslant 4620 & \text { d } \\
\frac{18}{5} M_{1}+\frac{8}{5} M_{2} \geqslant 9870 & \text { e } \\
2 M_{1}+\frac{16}{5} M_{2} \geqslant 9870 & \text { f } \\
2 M_{1}+2 M_{2} \geqslant 7000 & \text { g } \\
4 M_{2} \geqslant 7000 & \text { b } \\
\frac{10}{3} M_{1}+\frac{4}{3} M_{2} \geqslant 4667 & \text { j } \\
2 M_{1}+\frac{8}{3} M_{2} \geqslant 4667 & \text { k }
\end{array}\right\} \text { حالت دوم باركذارى }
$$

شكل ه-

تايع وزن هراى تاب عيارت است از

$$
\begin{equation*}
G=k_{1}\left(6 M_{1}+8 M_{2}\right)+14 k_{2} \tag{18-0}
\end{equation*}
$$

با فرض معاطع بككان هراى تير و ستونها . تسعت متغير تأيع وزن بهصورت زهر است

$$
G^{\prime}=k_{1}\left(6 M_{1}+8 M_{2}\right)
$$

ك مىتوان هراى تعهين عدا قل وزن روى نمودار تعابلمى رسم كرد .

$$
\begin{aligned}
& M_{1}=1898 \mathrm{kN} \mathrm{~m} \\
& M_{2}=1898 \mathrm{kN} \mathrm{~m} \\
& G_{\min }^{\prime}=k_{1}(6 \times 1898+8 \times 1898)=26572 k_{1} \\
& G_{\min }=26572 k_{1}+13 k_{2}
\end{aligned}
$$

توجه شودكه تعين هداقل وزن هدوناطلطلاع ازمتادهر ثابت

 در بعضى حالات خخط حداقل وزن بر مرز منطته مجاز منطبـق شد ه و و ديكر جواب منحصريفرد
 و وزن مصالح بهدست Tهده هكسان است .

片 - - -

 روشهاى زيادى برالى حل مسأله وجود دارد و شايد مفيدترين آنها روش " سيميلكس! "است

 بین م و M

 متعددى مورد استغاده هرار كرغته است .
$\Delta-\Delta$

 طرحى كه استغاده از حدا مل وزن مصالح را شامل كردد تا ضريبب بار لازمهراى فروريختكى را

[^0]روشهاى خميرى براى سازههاى فولادى و بتنى
 كاميهوتر استغادهمىشود . همهنين درموا ردى خاص مانند نبودن مقاطع استاندارد بـهيرهكيرى از كا مبيوتر سودهند است .

- - -

 -

 ضمنا" كدا ميكا از طرحها بهتر است

شكل
 را هـراى حداتل وزن طراحىكنيد . فرض كنيدكه وزن واحدطول $\quad g=k_{1} M_{p}+k_{2}$ میباشد

براى ستونها $\quad g_{C}=0.75 M_{p}+90$
برای شهـهـا $\quad g_{R}=0.4 M_{p}+75$

 ديكر مىها شند . حداتِل وزن فولاد لازم را اكر وزن واحد طول هر برابـر

$$
g=0.4 M_{p}+75 \mathrm{~kg} / \mathrm{m}
$$

 دو حالت ها ركذارى بـهتاب اعمال مىكردد .

در وسط د مانه ، ضهيب بار لازم ه/ /ا'است .

هـ هبراى ستونها و يك مقطع براى تهرها در نظر بكيريد . ممحنين

$$
\begin{array}{ll}
g_{\mathrm{C}}=0.75 M_{\mathrm{p}}+90 \mathrm{~kg} / \mathrm{m} & \text { براى ستر تيرها } ا \text { سا } \\
g_{\mathrm{B}}=0.4 M_{\mathrm{p}}+75 \mathrm{~kg} / \mathrm{m}
\end{array}
$$

.

تغيير مكان و بايدارى

9-1 ا مقدهـ
در فصلـهاى

 هرخها كير كرده ه د دیكر جر اثقال حركت نخواه هد كرد .

تغيهر مكان با يستى وارسى شود ، تححت با رهاى متعارف سازه باهستى هنوز ارتجاعىى

باشــد . بنابــر اين مىتـــوان تغييـر مكانها را بوسبيله تحلـيــل ارتجاعى تعييننموده .

 شكل

 فروربيختىى تغيير مكانهاى واقعى محدود شوند ، بخصوص اكر بـهرا احتى قأبل مها سبه باشند .

حالت ديكرى نيز ممكن است بـهوجود آبه . قبل از فروريختكى ممكن است تغييرمكانـها

 |ثر خيز روى با ر فرو ريختكى بررسى میگردد .
¢-

- -

 داريم :

$$
\begin{align*}
& M_{\mathrm{AB}}=\frac{E I}{L}\left(4 \theta_{\mathrm{AB}}+2 \theta_{\mathrm{BA}}-6 \frac{\delta}{L}\right)+(\mathrm{FEM})_{\mathrm{AB}} \\
& M_{\mathrm{BA}}=\frac{E I}{L}\left(2 \theta_{\mathrm{AB}}+4 \theta_{\mathrm{BA}}-6 \frac{\delta}{L}\right)+(\mathrm{FEM})_{\mathrm{BA}} \tag{1-9}
\end{align*}
$$

شكل فوق جهت مثبت تغيهرشكلها و لنكرها را نشان مىدهد . در مثال بعد قرار داد

روشـهاى خميرى براى سازههاى فولادى و بتنـى

مشبت در جهـت عقربههای ما عت رعايت شده است . معادله \&-ا را بهصورت زبر ميتـــوان
نوشت .

$$
\begin{align*}
& \theta_{\mathrm{AB}}=\frac{\delta}{L}+\frac{L}{6 E I}\left(2 M_{\mathrm{AB}}-M_{\mathrm{BA}}\right)-\frac{L}{6 E I}\left[2(\mathrm{FEM})_{\mathrm{AB}}-(\mathrm{FEM})_{\mathrm{BA}}\right] \\
& \theta_{\mathrm{BA}}=\frac{\delta}{L}+\frac{L}{6 E I}\left(-M_{\mathrm{AB}}+2 M_{\mathrm{BA}}\right)-\frac{L}{6 E I}\left[-(\mathrm{FEM})_{\mathrm{AB}}+2(\mathrm{FEM})_{\mathrm{BA}}\right] \tag{r-q}
\end{align*}
$$

از معادلات شيب افت \&-T مىتوان تغيهر مكان نـهايیى را در موقع فروريختكى بعنى درست
وقتى كهT خخرين مفصل خعيرى شكل كرفته ولى دوران هنوز شروع نشـد ه است بهد ست آ برد . بـا
ذكر مثال موضوع بهسا دكي روشن ميشود .
§
در شكل \&ـץ تشر و مراحل مختلف تحلـيل نشان داده شده است .

مرحله اول
مرحلـهاول تحلـيل تعیهن مكانيزم و بار فروريختكى است (يا ضريب بار) .

を

شكل

در اين مثال ، شكل متقارن است و مىتوان روث لتكرخمشىواكنش و آزاد را بـكا ربـرد.

$$
\begin{aligned}
& \frac{\lambda_{c} w L^{2}}{8}=2 M_{p} \\
& M_{p}=3 w L^{2} / 16 \\
& \lambda_{c}=3
\end{aligned}
$$

لنكر خمشى داريم

بنابـرا ين وقتى

مرحلـه د دوم
اكنون لازماست كه سازه بها عضاى (ارتجاعى) هجزا تغسهم و براى هر عضو معادلات
شثبـ _ـافت نوشته شود .

تير به دو عضو AB و BC ها بـين مغصلمهاى خمبرى تقسهي مىشود . لنكرهاى انتتها يبى براى هردو عضو با لتكر خعيرى M تعيين جهت

 كيردار (با دهانه

$$
\begin{aligned}
& \theta_{\mathrm{AB}}=\frac{2 \delta}{L}+\frac{L}{12 E I}\left(-2 M_{\mathrm{p}}+M_{\mathrm{p}}\right)-\frac{L}{12 E I}\left(-\frac{w L^{2}}{8}-\frac{w L^{2}}{16}\right) \\
& \theta_{\mathrm{AB}}=\frac{2 \delta}{L}-\frac{M_{\mathrm{p}} L}{12 E I}+\frac{w L^{3}}{64 E I} \\
& \theta_{\mathrm{BA}}=\frac{2 \delta}{L}+\frac{L}{12 E I}\left(M_{\mathrm{p}}-2 M_{\mathrm{p}}\right)-\frac{L}{12 E I}\left(\frac{w L^{2}}{16}+\frac{w L^{2}}{8}\right) \\
& \theta_{\mathrm{BA}}=\frac{2 \delta}{L}-\frac{M_{\mathrm{p}} L}{12 E I}-\frac{w L^{3}}{64 E I} \\
& \theta_{\mathrm{BC}}=-\frac{2 \delta}{L}+\frac{L}{12 E I}\left(2 M_{\mathrm{p}}-M_{\mathrm{p}}\right)-\frac{L}{12 E I}\left(-\frac{w L^{2}}{8}-\frac{w L^{2}}{16}\right) \\
& \theta_{\mathrm{BC}}=-\frac{2 \delta}{L}+\frac{M_{\mathrm{p}} L}{12 E I}+\frac{w L^{3}}{64 E I}
\end{aligned}
$$

$$
\theta_{\mathrm{CB}}=-\frac{2 \delta}{L}+\frac{M_{\mathrm{p}} L}{12 E I}+\frac{w L^{3}}{64 E I}
$$

 در مثال ، BC در خلاف جهت عقربهماي ساعت دوران مىكند ، و بنابـراهن علامتآنمنفى
 الما كدام يك آخرينمفصل است ؟ ؟ روشى براى دانستي
 را براي هر حالت انـجام داد .

$$
\theta_{\mathrm{AB}}=\frac{2 \delta}{L}-\frac{M_{\mathrm{p}} L}{12 E I}+\frac{w L^{3}}{64 E I}=0
$$

$$
\frac{2 \delta}{L}=\frac{M_{\mathrm{p}} L}{12 E I}-\frac{w L^{3}}{64 E I}=\frac{w L^{3}}{E I}\left(\frac{3}{12.16}-\frac{1}{64}\right)
$$

$$
\delta=0
$$

$$
\begin{aligned}
& \theta_{\mathrm{BA}}=\theta_{\mathrm{BC}} \\
& \frac{2 \delta}{L}-\frac{M_{\mathrm{p}} L}{12 E I}-\frac{w L^{3}}{64 E I}=-\frac{2 \delta}{12 E I}+\frac{w L^{3}}{64 E I} \\
& \frac{4 \delta}{L}=\frac{2 M_{\mathrm{p}} L}{12 E I}+\frac{2 w L^{3}}{64 E I}=\frac{2 w L^{3}}{E I}\left(\frac{3}{12.16}+\frac{1}{64}\right) \\
& \quad=\frac{4 w L^{3}}{64 E I}
\end{aligned}
$$

$$
\frac{2 \delta}{L}-\frac{M_{\mathrm{p}} L}{12 E I}-\frac{w L^{3}}{64 E I}=-\frac{2 \delta}{12 E I}+\frac{w L^{3}}{64 E I} \quad . \quad \text { با جا بجا }
$$

$$
\delta=\frac{w L^{4}}{64 E I}
$$

اكنون با يد جرسيد كدام يك از ابن مقادير صحيح است ؟
مرحله جهها رم
يك راه براى یاسخ دادن ، قراردادن مقادير ס در معادلات شيب ـافت و به دست Tوردن
دورانهـا 1 است .
نتا يج آين كار در جدول \&-ا 'ورده شدها است ، با ملاحظه جدول مشا هده مى شود كه

 مفصل در نـاعد . بـشترين تغيهر مكان هما سبه شده هوراب مسئله است . جدول 9 -1

از آنجا كه هحا سبات هراسلس شرا يط فروريختكى مىیا شد نمىتوان مغصلى را نشانداد كه تشكيل شده و سهس از بـين برود . بههرحال ، الين امكان بعيد است و بيشتربن تغيريرمكان معمولا" صحيح مىا شد .
-
در این مثال دو نكته مهعتر بـيان مىشود . تحليل در شكل 9 - ه آورده شده است .

مرحله /ول :
 مى شود . دهاكرام لنكرخمشى در فرورهختكى و مكانيزم نرورهختكى در شكل وهـه ب و و بنشان داده هدها

همانكونه كه شكل و

 نشان داده شدهاست

شكل 9-9

 قراركرفت) . معادلات شهب -افت عهارتند از :

$$
\begin{aligned}
& \theta_{\mathrm{AB}}=\frac{\Delta}{5}+\frac{5}{6 E I}(-200-50)=\frac{\Delta}{5}-\frac{1250}{6 E I} \\
& \theta_{\mathrm{BA}}=\frac{\Delta}{5}+\frac{5}{6 E I}(+100+100)=\frac{\Delta}{5}+\frac{1000}{6 E I} \\
& \theta_{\mathrm{BC}}=\frac{\delta}{5}+\frac{5}{6 E I}(-100+100)=\frac{\delta}{5}
\end{aligned}
$$

$$
\begin{aligned}
& \theta_{\mathrm{CB}}=\frac{\delta}{5}+\frac{5}{6 E I}(50-200)=\frac{\delta}{5}-\frac{750}{6 E I} \\
& \theta_{\mathrm{CD}}=-\frac{\delta}{10}+\frac{10}{6 E I}(200-100)=-\frac{\delta}{10}+\frac{1000}{6 E I} \\
& \theta_{\mathrm{DC}}=-\frac{\delta}{10}+\frac{10}{6 E I}(-100+200)=-\frac{\delta}{10}+\frac{1000}{6 E I} \\
& \theta_{\mathrm{DE}}=\frac{\Delta}{5}+\frac{5}{6 E I}(-200+100)=\frac{\Delta}{5}-\frac{500}{6 E I} \\
& \theta_{\mathrm{ED}}=\frac{\Delta}{5}+\frac{5}{6 E I}(100-200)=\frac{\Delta}{5}-\frac{500}{6 E I}
\end{aligned}
$$

مرحله سوم
در نقطه B سلزه هنوز ارتجاعى است .بـرای اينكه در نقطه B تيتوستكــى سفظ شود

$$
\begin{aligned}
& \theta_{\mathrm{BA}}=\theta_{\mathrm{BC}} \\
& \frac{\Delta}{5}+\frac{1000}{6 E I}=\frac{\delta}{5}
\end{aligned}
$$

كه عبارت فوق رابطهد بين دو تغييرمكان نامعلوم مىباشد . اشـ اكنون بـهتوبت فرض مى شود كه هر مفصل ، آخربن مفصل با شد . ($\theta_{\text {AB }}$ A

$$
\text { می شود } \Delta=\frac{1041.7}{E I} \quad \delta=\frac{1875}{E I}
$$

$$
\begin{gathered}
\frac{\delta}{5}-\frac{750}{6 E I}=-\frac{\delta}{10}+\frac{1000}{6 E I} \\
\text { می } \delta=\frac{972.2}{E I} \quad \Delta=\frac{138.9}{E I}
\end{gathered}
$$

$\theta_{D C}=\theta_{D E}$ D \quad D

$$
\text { میشد }-\frac{\delta}{10}+\frac{1000}{6 E I}=\frac{\Delta}{5}-\frac{500}{6 E I}
$$

با جابـجا يهى مقدار δ خـواهيم داشت .

$$
\begin{aligned}
& -\frac{\Delta}{10}-\frac{500}{6 E I}+\frac{1000}{6 E I}=\frac{\Delta}{5}-\frac{500}{6 E I} \\
& \Delta=\frac{555.6}{E I} \quad \delta=\frac{1388.9}{E I}
\end{aligned}
$$

旣

$$
\text { میشود } \Delta=\frac{416.7}{E I} \quad \delta=\frac{1250}{E I}
$$

مرحله جها رم
بــشترين تغيهر مكان وتتى صورت ميكيرد كه T خرين مغمل در A باشد از 'ا ينرو در موقع فرو
ربختككى داريـم :

$$
\Delta=\frac{1041.7}{E I} \quad \delta=\frac{1875}{E I}
$$

اعن قاب در فصل

位
 هرتال شيبدار را نشان ميد هد . در ا هنجا نيز همهنان كه در مكانيزم شيـدار ملاحظه شد ،

اين تغيهر مكانهل با يستى بهدست Tبــ . با توجه به شكل دارهم :

$$
\begin{equation*}
\Delta_{2}=\Delta_{1}+\delta(\tan \alpha+\tan \beta) \tag{r-9}
\end{equation*}
$$

 تغيير مكانههاى عمود بر اعضاى شيبدار (يعنى ترار كيرد .
§ -
مثالهای قسمت قبل نشان داد كه قبل از شروع فروريختكى تغيـر مكانـهلى قـابل

 ¢

هورن (†)اثر نغيهر مكانهلا را روى بار فروريختكى بهخوهى نشان داده استمثالوىكى جامعتر در اینـجا تكرار ميكردد .

شكل A-s

 تغيهر مكان جانبى مىكردد . مشخصات ستون عبارتند از :
L L $L=2 \mathrm{~m}$
恠 $e=0.1 \mathrm{~m}$
($E=200 \mathrm{kN} / \mathrm{mm}^{2}$
تنش تسليم $o_{y}=250 \mathrm{~N} / \mathrm{mm}^{2}$
d $d=0.1 \mathrm{~m}$

$$
\begin{aligned}
& I=\frac{d^{4}}{12}=8.333 \times 10^{-6} \mathrm{~m}^{4} \\
& Z=\frac{d^{3}}{6}=1.667 \times 10^{-4} \mathrm{~m}^{3} \\
& S(\text { مدول خمیرى })=\frac{d^{3}}{4}=2.5 \times 10^{-4} \mathrm{~m}^{3} \\
& A\left(\text { سطم مقطع) }=\mathrm{d}^{2}=0.01 \mathrm{~m}^{2}\right.
\end{aligned}
$$

اهتدا رفتار ستون ارتجاعى در نظر كرفته مىشود . شكل \& (محل تطع نتطه X (X نشان مىدهد . با تعادل لنكرها حول نتطه X دارهم :

$$
M=-P(\Delta+e-y)
$$

با استناده از رابطه لنكر ــانحنا حاصلـه از نظريهه خمش دارهم :

$$
\begin{aligned}
& E I \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=-M=P(\Delta+e-y) \\
& \frac{\mathrm{d}^{2} y}{d x^{2}}+\alpha^{2} y=\alpha^{2}(\Delta+e)
\end{aligned}
$$

كه بهشكل, زعر نـوشته مىشود

$$
(4-9)
$$

كه

$$
y=(\Delta+e)(1-\cos \alpha x)
$$

با جابجا بیى

$$
\Delta=e(\sec \alpha L--1)
$$

با جا يكزينى a و مشخصات ستون در معادله

$$
\Delta=0.1\left[\sec \left(1.55 \times 10^{-3} \sqrt{ } P\right)-1\right]
$$

رابطه تغيير مكان - بار (
 منحنى حاصله غير خطى است .وقتى ه بـاندازه نامحد ودى بزرك شود .

$$
\begin{aligned}
& \sec \left(1.55 \times 10^{-3} \sqrt{ } P_{\mathrm{E}}\right)=\infty \\
& 1.55 \times 10^{-3} \sqrt{ } P_{\mathrm{E}}=\frac{\pi}{2} \\
& P_{\mathrm{I}:}=1.027 \times 10^{6} \mathrm{~N}
\end{aligned}
$$

شكل

مىتوان نشان داد كه وقتى خروج از مركزيت ، e ، صفر است ، عضو فتارى تا رسيدن

 تشى حاصله در ستون تركيبى از تنشهاى محورى و خمشي است . بزركترين تنـشش در
 مىرسد تحليل ارتجاعىیحت خود را از دست ميدهد . و'ين وتتى است كه . $\frac{1}{A}+\frac{P}{Z}+\frac{P(\Delta+e)}{Z}=\sigma_{y}$
 $100 P+600 P \sec \left(1.55 \times 10^{-3} \sqrt{ } P\right)=250 \times 10^{6}$

اين معادلهء نسبتا" ييخيده بهروش آزمون و خطا قابل حل است و توسطآن مقدار باردر اولين لحظه جارى شدن بهد ست مىّ يد .

$$
P_{y}=0.262 \times 10^{6} \mathrm{~N}
$$

دنبال كردن و ترسيم كسترش تنشا،ممكن ولى توام با يبحيدكى است ليكن اكنون بهتراست

 $\Delta-r$

$$
\frac{M_{\mathrm{p}}^{\prime}}{M_{\mathrm{p}}}=1-\left(\frac{P_{\mathrm{c}}}{P_{\mathrm{p}}}\right)^{2}
$$

براى يك مقطع مستطيلى شكل با استغادهاز

$$
\begin{aligned}
& M_{\mathrm{p}}=S \sigma_{\mathrm{y}}=\frac{d^{3} \sigma_{\mathrm{y}}}{4} \\
& P_{\mathrm{p}}=A \sigma_{\mathrm{y}}=d^{2} \sigma_{y}
\end{aligned}
$$

$$
\text { و با جا يكزينى } P_{\mathrm{c}}=n P_{\mathrm{p}}
$$

$$
M_{\mathrm{p}}^{\prime}=\left(1-n^{2}\right) \cdot \frac{d^{3} \sigma_{y}}{4}
$$

لنكر بار فروريختكى Pe حول هايه ستون باعث دزدان مىشود ،

$$
\text { = }=(\Delta+e) P_{c}=(\Delta+e) n d^{2} \sigma_{y}
$$

در موتع فروريختكى لنكر مخرب و لنكر مقاوم مساوى هستتد زیرا ستون در حال تعادلاست بنابـرا ين در موقع فروريختكى

$$
\begin{aligned}
& \text { میى }(\Delta+e) n d^{2} \sigma_{y}=\left(1-n^{2}\right) \frac{d^{3} \sigma_{y}}{4} \\
& n^{2}+\frac{4}{d}(\Delta+e) n-1=0
\end{aligned}
$$

كه بهشكل زهر نوشته مییود :
 بستكى بهتغيهر مكان Δ در بالاى ستون دا رد . با رهاى فروريختكى برحسب مقادهر متعسدد ه در شكل \&-9 رسم شده است

 نشان مىدهد . دو نكتـه قابل توجه وجود دارد .

1 - تبل از اهجاد فرورشختكى تغيهر مكان تابل توجهيى وجود دارد . Y است ولى با

ایـــن مثال نسبتا" خلاج از محد وده عملى است ولى اثر تغيهر شكل را تبل از فرو

 شد) ولى غـير قابل اغهاض است .
Y-r - r مثال قاب پرتال
r-r r r r ran

 كرفتن وتت كامهيوتر غير اقتصادى است .

روشهای خميزى براى سازههاى فولادى و بتنى
(l/r=500) تغيتر مكانها در ترتهب تشكهل مفصلمها تأثير مىكذارد . جدول
فروريختكى ,ا نشان مىدهد .

		جدو	
نسبت لا غرى	100	200	500
ضريب بار فرورشختكى كاهش يافته	49.10	48.25	45.93

 است كه بـازاى آن كاهش ضريب بـار حدود f

(علا" نتابيج تحليل سئوال برانكيز است زيرا تغيير مكانها ديكر كوجّك نيستند ولى حداقل
نتابيج حاصله موضوع را از نظر كبفى روشن مى سازد) . جدول 9 -r

 ملاحظه نمود .

 براى قاب اصلاح شده با مغصل بـدون اصطكاكى واقع در مسل مغصل خميرى مىبا شد .

$1 / r$	ضريب بار فروريختتكى	$\begin{array}{r} \lambda_{e} \text { قاحشده } \end{array}$	قاب اصلى	$\begin{aligned} & \text { خميرى ساده }) ~ \end{aligned}$	λ_{R} مسادله
100	49.10	400	2124	50.0	48.9
200	48.25	200	1062	50.0	47.8
500	45.93	80	424	50.0	44.7
100*	46.67	200	531	50.0	45.7
200*	45.13	100	265	50.0	42.1
500*	36.60	7.6	106	50.0	34.0

جدول

 كتراز بار اعمال شده است بنابراين كمانش باهستى بهاوجود آيه .

- - - - - ضريب بار رانكين † - مرجنت

امرات نيروى محورى و تغيير مكان نسبتا" مخرب هستند . احتمالا" بجز برايقابهـاى
1-Wood
r - Merchant
r-Horne
f - RANKINE - MERCHANT

كا مهيوترى غيرخطى ، سا دكى و ظرافت كار را از بـين مى انـرد .

 رانكين كه در تحلـهل عضو فشارى مورد استفاده ترار كرنت و بهكمك فروربختنكى خميرى ساده هـ
 ريششنهاد كرد .

 به ضريب بار رانكين - مرجنت ، معروف است كه با معادله زبر بهدست مىى بيد .

$$
\begin{equation*}
\frac{1}{\lambda_{R}}=\frac{1}{\lambda_{c}}+\frac{1}{\lambda_{e}} \tag{Y-9}
\end{equation*}
$$

$\lambda_{e}=$ ضريب بار بحرانى ارتجاعي
بههراه نتايج بار هاى نروريختكىقا بهایمتعدد كه توسط لو' آزمـا يش شد هاند رابطه نوق در شكل \&-

داراى تقريهي در جهت الطمينان است
 در هر حالت تقريب رانكين مـرجنت تزديك به ضريب بار فروريختكى نظرى ولى كمتراز ان میايا شد .
همان كونه كه در شكل \&
 تقريب بـهترى معادله

$$
\begin{align*}
& \lambda_{R}=\lambda_{c} \quad S_{G}, \frac{\lambda_{e}}{\lambda_{c}}>10 \\
& \frac{1}{\lambda_{R}}=\frac{0.9}{\lambda_{c}}+\frac{1}{\lambda_{e}} \quad S_{G} S_{G}, 10>\frac{\lambda_{e}}{\lambda_{c}}>4
\end{align*}
$$

 وتتى
 ¢ -

 روش عهارت است از:

ا - تعیين مكانهزم فروريختكى ، ضرهب بار مربوطه ، نمودار لنكر خششى و لنكرمـاى

انتهايى (شا مل لنكرهاى كيردارى انتهلهى) هر عضو سازه.
r -

 مغصل تشكيل شده با شد . † - انتخاب مفصلى كه در آخر تشكيل مىشود و تعيين تغيير مكانهاي مربوطه بهوسيله نظريه تغيير مكان.

 به سختى ســازه دا رد (كه بهوسبيله نسبت لاغرى محا

 ريختكى بهد ست بالاست . اصلاحى كه وود انجام داد ضريب بار را بـنتايجِ زَمايشها نزا نزيكتر كرد .
\& - ه هسايل

 طول اعمال مىشود . تغيير مكان قائم را در موتع فروريختينى در در مغصل خميرى نزديك وسط دهانه تعهين كنـي . فرض كنـيد
 ريختكى مسا سبه كنيد .

 . مى $M_{\mathrm{p}}=100 \mathrm{kN} \mathrm{m}$.

 - $\lambda W=5 M_{p} / 22$ ربختكى محا سبه كنيد

§-ه-9 قاب دو دهانه شكل \&-גا الف داراى ضريب بازه/זدر فروريختكى است . نمودار

 (توجه : در B , B مغصلسهاى خميرى وجود ندا رد) .

\& برابر P/2L در واحد طول وارد مى شود . مقطع تيتر مستطلملى بهعرض b و ارتفاع d ${ }^{\text {است }}$ بناهراهن

$$
M_{\mathrm{p}}=\frac{b d^{2}}{4} \sigma_{\mathrm{y}} \quad P_{\mathrm{p}}=b d \sigma_{\mathrm{y}}
$$

$$
M_{\mathrm{p}}^{\prime}=M_{\mathrm{p}}\left(1-n^{2}\right)
$$

$$
\text { كه } n=P / P_{\mathrm{p}} \text { است . فرض كنيد كه } d=L / 24 \text { باشد . }
$$

(الف)) بار فروربختكى خميرى ساده (هرحسب P) را محاسبه كنيد ، از روثى نمــودار

(ب) نشان د ههد كه وتتى هك تغيهر مكان محد ود ه در مغصل وسطد هانـه وجــود

$$
\frac{\Delta}{L}=\frac{1}{48}\left(\frac{1}{n}-3-n\right)
$$

$$
\begin{aligned}
& \frac{\Delta}{L}=\frac{n}{32(3-n)} \\
& \text { تخمينى از بار فروريختكى واقعى تهر بهد ست آوريد (برحسب P) } \\
& \text { () بار رانكين مرجنت را (برحسب P) بهد ست آورهد . بار بحرانیى ارتجاعـى } \\
& \text { از معادله بند (ج) بهد (ج }
\end{aligned}
$$

استفاده از روشهاى خميرى در سازههاى بتن آرمه

I - Y
در برخورد اول بـنظر میرسد سازههاى يتنـى شباهت كمى بـه سازههای فولادى دارند.

 جه میشود

بـآنها شرح داد ه شد ه است .

 بهمنابع منا سب ديكر مراجعه نـمابي (19 ا 19 ا) .

روثهإى خميرى براى سازههاى فولادى و بتنى

$$
\begin{aligned}
& \text { r-Y - } \\
& \text { - } 1 \text { - }-Y
\end{aligned}
$$

 است . فرضيات زير ضرورى است .

r - بتـن مقاومتى در كشش ندا دد .

 از ازن كه شكسته شود كا مش میى انـا .

(RC) تنـها با فولاد كثششى Y Y Y Y

 با ركذا

 است كه در منطقه كششى چنين نـخوا هد بود . آزما يشها (YY) نـشان داد ده است كه كرنـش در

 مى شود ، ولى هيوستكى نــايد فرا موثى شود . بـدون وجود بيشوستكى بتـن مسلح وجود ندا شتــه

سـح نولاد كششی

شكل Y-Y

 بهصورت دو منـحنى سههمى زهر نـر نظر كرفته شده است .

$$
\begin{array}{ll}
\sigma=0.76 \mathrm{f}_{\mathrm{cu}} \frac{\epsilon}{\epsilon_{\mathrm{co}}}\left(2-\frac{\epsilon}{\epsilon_{\mathrm{co}}}\right) & \epsilon<\epsilon_{\mathrm{co}} \\
\sigma=0.76\left(\mathrm{f}_{\mathrm{cu}}-2.85 \times 10^{6}\left(\epsilon-\epsilon_{\mathrm{co}}\right)^{2}\right) & \epsilon>\epsilon_{\mathrm{co}}
\end{array}
$$

از آنجا كه بخشش كرنش معلوم است (با توجه بـه فرض اول) تنشهاى فولاد و بتن با استفـاذه از هنحنيهاى تتش - كرنش مهوطه بهدست میى آيند .

مشخصات بـتن	
	30
$\sigma_{\mathrm{c}} \max \left(\mathrm{N} / \mathrm{mm}^{2}\right)$	22.8
ϵ_{c}	0.0035
ϵ_{co}	0.002

	مشخصات فولاد	ج- Y Y
	فولاد نرمه	با متا
(N/mm ${ }^{2}$)) 250	410
$E\left(\mathrm{kN} / \mathrm{mm}^{2}\right)$	210	205
كرتش تسلهيم	0.00119	0.002
نر در شروع كرنش سختى	0.015 كرنش	0.007
$E_{\text {SH }}\left(\mathrm{kN} / \mathrm{mm}^{2}\right)$	8.4	8.2

مطابق شكل Y-Y انتخاب كنهد .

شد ، x را تصحیع كرده و بـه بند (T) مراجعه كتهد .
با ـلنكر كه بـهرنش انتخاب شده بتتن مربوط مى شود . مجـوع كرنشههاى فولاد و حداكتر بتن تتسهمـرـ

تتارب جوابت تحلـيل همهشه سربع نيست و البتـه كا ميهوتر كوجكى لازم است .

(ب) برهله اولهه (الض) كرنش

(د)) يكتـ هتن (

H-Y خود میرـ شـو

روشهاى خميرى براى سازههاى فولادى و بتنى

افزا چش سريع انهناءها فولاد كمهد راثر جارى شدنفولاد قـولاز رسيدن يتتن به حداكثر

رسيد (در این مثال هro
 در مقا يسه با تيرهاى فولادى بـسيار محدود است . در مقاطع با فولاد زياد ترد شكنى بتــنـ

 افزايش نولاد باعث پا يهن افتادن محور مىشود . محد ود كرد ن موقعبت محور كرنش صفر وسيله مناسهى بـراى جلوكيـرى از مشكلات نـا شىى از حالت با نولاد زياد ميبـاشد .

Y Y Y Y
در تـام تـرههاى بتتن آرهه در عملمقدا رى نولادفشارى قرار داد ه مي شود . مقدار ا ايـن

روشهاى خميرى براى ساز ههاى فولادى و بتنى
 خميرى مقطع را نيز افزايش مىدهد . اين افزايش در بعضى حالات قابلا ملا ملاحظه مىبا شد .

Y - Y - Y رابطه لنكر -انحناء

 ظرفيت دوران خميرى بسيارى زيادى دارد . شكل ץ-q بـ اثر سودمثد فولاد فشــارى را در

 محورى هستند قا بل استناد ه است .

شكل

Y Y Y Y

> (الف) تير

() (ع بلاد كم (مثلا" ب)
(د) نولاد زهاد (مثلا" ج\%)

مغصل خميرى در B تيكـيل بیشيون
 (1/100 kN)

امكان د وران شخعرى وجود ندإرد .

 ساده تـتيم مینرد.

اكر تنها درصدكمى نولاد در تير وجود داشته باشد ،مقطع بتن 'آرمه ظرفيت دورانیى خميرى

 است .

شكل
Y - Y توافق پـذيرغته شده در آيين نامه

 هكى از نتايتج مهم قسمتهاي Y Y Y Y Y Y Y Y Y Y

بدين ترتيب ${ }^{\top}$

 براي تعيين لنكرهاى مقاوم ، موارد زهر را هقرر كرده است :

جدول Y-Y مقايسه توزيع تنش بتن در حالات مختلف

بت ب-	فولاد نرهه						
	$\mathrm{M} / \mathrm{bd}{ }^{2}$						
$100 \mathrm{As} / \mathrm{bd}$	\|توزيع تنش استفادهشده در اهين بـش	توزيع تنش سهمى CP 110			$\begin{gathered} \text { توزيع تنث مستطهلى } 110 \end{gathered}$		
1%	2.00	1.99			1.97		
2%	3.64	3.63			3.56		
	4.73	4.63			4.50		
و/2/d = 0.5	فولاد	(2.8\%	فولاد)	(2.8\%	فولاد	

روشههاى خميرى براى سازههاى فولادى و بـتنى

لـنكرهاى واكتش بهد ست مى آيند

الف ـ - وقتى لنـكرهاى مقاوم در اثر توزغع مجدد افزايش مىيابند محد ود يتتى وجود
ندارد .

هحد ود مى شود .

$$
\begin{align*}
& \text { K اهش در } \\
& \beta_{\text {red }}=\frac{\text { بزركترين لنـكرا رتجاعىدرعضو }}{\text { رعـون }} \\
& \beta_{\text {red }} \ngtr 0.3 \text { or } 0.6-\frac{x}{d} \tag{r-Y}
\end{align*}
$$

كا هش مىيابد) .

تابـل ملاحظه در لنكر ستونـها مجاز بـهنظر نمىرسد .

شـــود .

 مقاوم لازمى هستنـــد كه در عينـ حال موقعيت و محل فولاد ها را مشخص مىكنـد . بـهخاطر
 شكل

 طُور كه با خط نتطه در شكل Y-Y ا مشخم شده إست .تركهاى حاملـه نشان د هنده وضعيـت
 الكوى لنكرههاى ماواوم مظابق شكل

در CP 110 بـان شد. ها است كه در طراحى ، توزهع هجدد كا مل لنكرها هميشـــه لازم نـيست.
 لنكرهای متاوم داده شده است
در توزهع مجدد لننكرها دو خط مشى اصلمى وجود دارد ـ اكر مقطع عضو ، مستطيلســى

شكل Y-Y

 از بخش لنكر بمد ست T همدهاند .

 زهرا اين لنكر مقاوم براي حالت ا در نظطر كرفته شده اسـتالنكر هتبتت ساصلهه دردهانهطرف هـب بـرابر با
 هوثّ لنكرخهشى
 بعداز یخشى مجدد نشان داده ه شد ه است . ارزش توزيع مجدد لنكر معلوم است . سداكثر لنكر منفى بـه اندازه قابـل ملاحظـهاي
 نقاط قطع (جا يى كه لنكرهاي مثبت و منفى صفر هستند) بهاوسيله توابع رباضى مربـوط
 د ياكرا مهاي لنكر خمشي بهد ست مىی بـند .

 فولاد كم تأمين شود .

- Y

 بعدى ذكر خواهند شد .

Y
Y-Y-Y

 براى فولاد هاى فوقانیى و تحتانیى تعيين كنيد
 ريختكى برابر 300 kN,m (شامل وزن تير) است و نمودار لنكر خمشى براس اساس تحليلي

شكل 1A-y

(Y - 母 - Y

تحليل خط سيلان و روش نوارى هيلربوری براى دالهاى بتن آرمه

-

 ساده و راحت است .

 آنهه او فكر مىكرد و يا در نظر میى سيلان با نظريه خميرى سنتى (بـكونهاى دقيقتر) بود .

 براى درك موضوع با شد .

كم نشان هید هد (وتتى تركـخخردكکى شروع هى شود) و سهس با كسترش خطوط سبيلاند ردال

شكل A - ه : T زمايش روى دال (تاوه) مستطيلى با لبههاى كيردار

آزما يشث و رفتار تجربیى ما را بـه تعيين شك مدل سادهاز فروربختتــي تاوه هـداهت

 معناست كه دوران خميرى خطوط سيلان تُسها تغيـرشكل مربوط بـه تاوه مىبا شند . فصلـهاى「 و

روشي محا سباتى در مبخحث فعلمى اشكالى ایجاد نـخوا هد كرد .
 كيردا ر) و تحت باركسترده هيكواخت در شكل A ه ه نـشان داده شده است . اين دال معادل
 لنكرها د روسط و لبههاى تاوه مخالفـيكديكر باشند .اين موضوع بـهوسبيله شكل شده است . تركها بیى در قسمت فوقانى تاوه وجود دا ردكه شكل Tنـها بسيار شبيه بـهحالـت تاوه

 شكل مــو نشان داده شده است . توجه شود كه خطوط سيلان مثبت قطرى بطور متفاوتى از خطوط سيلان منفى اطرافـ لبهها نـما يـش داد هـ شده ها - r- r - علائمى براى تحليل خط سيلان

شكلهای مربوط ههحل مسايل تاوهها بهعلتتعدد الطلاعاتلازم معمولا"تهحيد همى شود .

هراى سا دكى كار علائم مفيدى تعريف شده است . تا كنون تعدادى از آنها هـه كار رفته اسـت و در اهنجا با جزئبات بـيشترى مطرح مىشوند .

```
#5%
F5*)
C
## ت
```

------- -- خطسيلان بنغى
-...-~~توردوران
—
-
مشكلاصلىى تحلـيلل خط سيلان تصميمكيرى درمورد مكانبزم فروريختكى ا ست،.خوشبشتانه

 تضمينىوجودندارد كه الكوى انتخاب شده صحهح با شد . این الك, شرابط تعادل و مكايـيـزم

 r r ا نظر
 كونه نيست . اكر تنها خمش وجود دا شت شيب منـحنى بـار تغيهر مكان تا مرحلـه شكستبهطور

 است) • " عمل غشا يى

شكل Y - A.

براى تعادل افقـى نيــروهاى كششى و فشارى لازمند . عمل غشايهى باعث كاهشبا رها

روشههاى خميرى براى سازههاى فولادى و بتـنى

 خط سيلان،عمود بر لنكر خمشىكه با لنكر مقاوم تاوه مساوى شده است بـهوجود مى' بيد . لنـكر فوق را مىتوان بهصورت لنكرى كه باعث بازشدن تر كها مى شود تصور كرد . بـهطورى كه تركها

 معيار در هر نقطه تتهلا دو خط سيلان را اجازه مید هد . H-Y-А
از ینـج قانون زبر بـراى تعيهين مكانبيزم فروربختكي استفاده مىشود . بـراى تأيهد مكانيزمهاى شكل

1 - خططوط سيلان معمولا" مستقبم بـوده و محور هاى د وران هستتد .
. Y

و از روى ستونهلا مىكذرند

مدكن است در فاصلـه نا محد ودى قرار كـيرد) . ه - غالبا " خطوط سيلان منفى در طول حدا قل تسمتى از لبـه كيردار بـهوجودد مى' بـند.

- - -

 در ابتدا دالى را با نولادكذارىتنتها دريك جهت دريلا درنظر بكيريد .عموها "خط سيلان نسبتبه جهت فولادكذارى مورب است . مانند شكل فـها 11

فرض شدهاست كه فولادها جا رى شده ولى مستیم باتى مىمانند . براى اینفولاد ما

لنـكر مقاومى برابـر با MB در واحد عرض درجهتت فولادكذارى در نظركرفته شده . د رطول
 خط سيلانلنكر برابر است با :

$$
\begin{align*}
& M_{\mathrm{n}} L=M L \sin \theta \times \sin \theta \\
& M_{\mathrm{n}}=M \sin ^{2} \theta
\end{align*}
$$

 استفاده هى شود . شكل A-

 جهت فولادكذارى است

$$
\begin{align*}
& M_{\mathrm{n}}=M \sin ^{2} \theta+\mu M \sin ^{2}(90+\theta) \\
& M_{\mathrm{n}}=M \sin ^{2} \theta+\mu M \cos ^{2} \theta
\end{align*}
$$

 حالت خاصى كه 1 = 1 است فولاد

شكل

$$
\begin{align*}
& M_{\mathrm{n}}=M\left(\sin ^{2} \theta+\cos ^{2} \theta\right) \\
& M_{\mathrm{n}}=M
\end{align*}
$$

1 -orthotropic r-isotropic

 استفاده مجدد از معلدله الـ الـ داريم .

$$
M_{\mathrm{n}}=M \sin ^{2} \theta+\mu M \sin ^{2}(0-\alpha)
$$

شكل A

ا ـ بـياددا رهم كه در طول خط سيلان حاصل ضرب M د در طول خط مذ مذكور است .

 كذارده مى شوند .
-

 شد هاند . محا سبات بر اساس روثى كار مجازیى است .

سطع)

 بـهصورت هم مقدا ر با ظرفيت M در واحد عرض فولاد بـندى شده أاست .
 بهطورى كه توجه شده است كه صفحات مثلثتى ين خطوط سيلان مسطع باقى مىمانتند • براى محا سبه كار خارجى :

$$
\begin{aligned}
& \mathrm{ABE}=q \times\left(\frac{1}{2} \times \mathrm{L} \times \frac{L}{2}\right)=\frac{q L^{2}}{4} \\
& \text { مسا حت سطع ABE } \times \text { بار كسترده يكنوا شتت }
\end{aligned}
$$

 مثلتـها در شكل ب

$$
\begin{aligned}
& \text { ABE }=\frac{1}{3} \times q \frac{L^{2}}{4}=\frac{q L^{2}}{12} \\
& \text { بار روى ABG تغييةر مكان مركز ثقل = }
\end{aligned}
$$

از Tنـجا كه شهها ر مثلث يكسانتد .

$$
\text { = } 4 \times \frac{q L^{2}}{12}=\frac{q L^{2}}{3}
$$

هحالسبات مربوط بـه كار خا رجمى تقريشا" مشا بـه مها سبات مورد استفاده ه براى قابـهاى فلزى است . كار خارجى در حالت لكى بـهصورت زير نـوشته هى شود .

$$
\text { 综 }=\Sigma\left[\int_{A} q \Delta \mathrm{~d} A\right]
$$

تمام قسمتههاى
ملب

انتكرال حاصلضرب بار روى جزء سطح در
فاصلـهاي كه جزء سطع طى مىكند
انتكرالكيرى لازم است زيرا الزاما" بار دوى قسمت ملب يكنوا خت نبيست .

 باقى مىمانند ،دوران خط سيلان BED در تمام طول, خود ثابـت است و مططابق شكل مساوى با 2θ مىياشـا شد .

BED $=M_{\mathrm{n}} \times \sqrt{ }(2) \mathrm{L} \times 2 \theta$

$$
\theta=\frac{1}{\mathrm{EC}}=\frac{1}{\left(\frac{\sqrt{ }(2) \mathrm{L}}{2}\right)}=\frac{\sqrt{ } 2}{L}
$$

BED $=M \times \sqrt{ }(2) L \times 2 \times \frac{\sqrt{ } 2}{L}=4 M$
بـه دليلـ تقارن تاوه ، كار داخلـى براى AEC مشابـه مقدار فوق است و بـنا برابن

$$
\text { = } 2 \times 4 M=8 M
$$

$(Y-\lambda)$

توجه شود كه ابعاد تاوه از عبارت كار داخلى حذف شده است . كار داخلىى در حالت كـــى ههصورت زهر مىبا شد

$$
\begin{aligned}
& \text {, } S=\Sigma\left[\theta \int_{S} M_{\mathrm{n}} \mathrm{~d} s\right] \\
& \text { هر خط سيلان } \\
& \text { طول خط سيلان } \\
& \text { مجموع لنكر در }
\end{aligned}
$$

أنتكرالكيرى لازماست زيرا لنـكر درطول خط سيلان ممكناست در اثرتفيهر درضخا مت
تاوه عا فاصلم فولاد ها تغيهر كند .

$$
\frac{q L^{2}}{3}=8 M
$$

بنابـرابن

$$
q=\frac{24 \mathrm{M}}{L^{2}} \mathrm{~L}_{\mathrm{K}} M=\frac{q L^{2}}{24}
$$

با مسا وى قرار داد ن كار داخلـى و كار غارجى در سالت تعادل داريم .
$(\lambda-\lambda)$

مقا طع X-X و Y-Y شكل Y- Y مي شود بهدلهل وجود قسعتهای صلب دوران خم

است . با استغاده از ابعاد شكل

$$
O_{x}=1 / \frac{L}{2}=\frac{2}{L}
$$

كار داخلى انـجام شده توسط لنكر در جهت x بـرابر است با

$$
\text { كار دا خلــى }=\frac{M L}{2} \times \frac{2}{L}=M
$$

مىتوان رسم كرد و نشان داد كه :

$$
\theta_{y}=\frac{2}{L}
$$

بنابراين كار داخلى هجددا" برابـر M مى شود .
AE مجموع كار داخلىى براى $=M+M=2 M$
سه تسمت ديكر الكوى خط سيلان مشابه AE LE مىیا شند ، يعنى
(مانند تبل) (
در اهن روث لنكر درطول خط سيلات و دوران خمهرى خط سيلان به مؤلفهمای بردارى
. شدهاند

$$
\begin{align*}
& \overrightarrow{\int_{S} M_{x} \mathrm{~d} s}=\overrightarrow{\int M_{x} \mathrm{~d} y}+\overrightarrow{\int M_{y} \mathrm{~d} x} \\
& \overrightarrow{\vec{\theta}}=\overrightarrow{\theta_{x}}+\overrightarrow{\theta_{y}} \\
& \vec{\theta} \cdot \overrightarrow{M_{\mathrm{n}}}=\left(\theta_{x}+\theta_{y}\right) \cdot\left(\overrightarrow{M_{x} \mathrm{~d} y+\sqrt{M_{y} \mathrm{~d} x}}\right) \\
& \\
& =\overrightarrow{\theta_{x}} \cdot \int M_{x} \mathrm{~d} y+\theta_{y} \cdot \int M_{y} \mathrm{~d} x
\end{align*}
$$

اكر رابـطه فوق براى هر خطط سيلان نوشته شده و با يكديكر جمع شوند عـارت عمومى براىكار دا اخلى را بـه د و شكل مىتوان نوشت
,

براى مثال فوق استفاده از اءن روش سودى ندارد ، ولى همان طور كه ملاحظه خوا هد شد در مثالههای بعد غالبا" تنـها روش معكن إست .
(
ابن تاوه درشكل

 فولاد هاى فوقانـي را نـشان ميد هند.در هر دو حالت فولادكذارى هم مقدار د رد وجههت عمود برهم است .

 خا رجي مشا به مثال قبل است .

$$
\text { 泣 }=\frac{q L^{2}}{3}
$$

كار داخلـى خطوط سيلان مثبت هما نـند مثال قبل است .
=8M

= $=8 i M$
توجه شود كهمىتوان از علا هتلنكر و دوران صرفنظر كرد و كا ردا خلى هميشهمثبتمى شود . دوران خط سيلان منفنى عبارت از زاويه α در مقطع شكل $8(1+i) M$

$$
\frac{q L^{2}}{3}=8(1+i) M
$$

براى تعادل

 كه بذيرفنتى نيست .براى مكانيزم فوق مهطاسبات كا ملا" معتبر بوده ولى روشن است كهجواب بك كرانه بالايمى است .

در اهن مثال از مدل شكست تاوه مستطلم شكل

شكل A - \& \& آزمايش براى تاره مستطيلى با ليمماى كميردار

روشهاى خميرى براى سازههاى فولادى و بتنى

الكوى سيلان شكل Y-A

 Q واحد تعريف مى شود كه در شكل

浣 $=q \frac{\alpha L \times \beta L}{2} \times \frac{1}{3} \times 2+q \frac{\alpha L \times(1-2 \beta) L}{2} \times \frac{1}{2} \times 2$
$+q \frac{\alpha L}{2} \times \frac{\beta L}{2} \times \frac{1}{3} \times 4+Q \beta L \times \frac{1}{2} \times 2+Q \times(1-2 \beta) L \times 1$

$$
5,6,7,8 \quad 1,2 \quad 3,4
$$

براى سادكى محاسبات قسمتهاي صلب بهمثلثها و مستلميهايى تقسهم شدها است . هريــكاز قستتها شما رهكذارى شد هتا مها سبات مربوطبه بهاعداد شكل

$$
\begin{aligned}
\text { خار } \quad= & q \frac{\alpha \beta L^{2}}{3}+q\left(\frac{\alpha}{2}-\alpha \beta\right) L^{2}+q \frac{\alpha \beta L^{2}}{3} \\
& +Q \beta L+Q(1-2 \beta) L \\
= & q\left(\frac{\alpha}{2}-\frac{\alpha \beta}{3}\right) L^{2}+Q(1-\beta) L
\end{aligned}
$$

براى محاسِه كار داخلى قدرى با يد تأمل كرد . خطوط سِيلان شكل تنتها با استفاده از موألفهماى بردارى در جـهت x x خوا مهيم داشت. $={ }^{\prime}=M \times \alpha L \times \theta_{x}+\mu M \times \alpha L \times \theta_{x}$

$$
\begin{aligned}
& \text { خطوط سيلان منغى خطوطسيلان مثبت }=\mu M(1+i) \times \alpha L \times \frac{1}{\beta L} \\
& =\mu M(1+i) \frac{\alpha}{\beta}
\end{aligned}
$$

شكل

براى طرف ديكر تاوه نيزمىتوان از عبارت نوق استفادهكرد . ساهر خطوط سيلانموازى مهور
 هراى موء لفه جهت x عيارت است از

$$
=2 \mu M(1+i) \frac{\alpha}{\beta}
$$

 خط سيلان در شكل ر-9 ا مىبا شد .

$$
\text { = } 2 \mu M(1+i) \frac{\alpha}{\beta}+4 M(1+i) \frac{\mathrm{I}}{\alpha}
$$

$$
=2 M(1+i)\left(\frac{2}{\alpha}+\frac{\mu \alpha}{\beta}\right)
$$

, وعادله كار عبارت است از :

$$
2 M(1+i)\left(\frac{2}{\alpha}+\frac{\mu \alpha}{\beta}\right)=q\left(\frac{\alpha}{2}-\frac{\alpha \beta}{3}\right) L^{2}+Q(1-\beta) L
$$

معادله مقدارى است كه بها ازاى داد
 $\frac{d M}{d \beta}=0 \quad 女 \frac{d q}{d \beta}=0$

$$
\begin{aligned}
& \text {, } K=M L \theta_{y}+i M L \theta_{y} \\
& \text { خطوط سيلان منفى خطوط سيلان مثبت } \\
& =M(1+i) L \times \frac{1}{\alpha L / 2} \\
& =2 M(1+i) \frac{1}{\alpha}
\end{aligned}
$$

(از معادله دوم بر مىآيد كه رابـطهاى بين q و Q وجود دارد) . براى نشان دادنجكّونكى

$$
2 M(1+i)=q\left(\frac{\alpha}{2}-\frac{\alpha \beta}{3}\right) L^{2} /\left(\frac{2}{\alpha}+\frac{\mu \alpha}{\beta}\right)
$$

با استفاده از قاعد هء ديفرا نسيل

$$
\frac{2(1+i)}{q L^{2}} \frac{\mathrm{~d} M}{\mathrm{~d} \beta}=\frac{\left(\frac{2}{\alpha}+\frac{\mu \alpha}{\beta}\right)\left(-\frac{\alpha}{3}\right)-\left(-\frac{\mu \alpha}{\beta^{2}}\right)\left(\frac{\alpha}{2}-\frac{\alpha \beta}{3}\right)}{\left(\frac{2}{\alpha}+\frac{\mu \alpha}{\beta}\right)^{2}}=0
$$

كه بهصورت زير خخلاصه مىشود .

$$
\begin{aligned}
& \left(\frac{2}{\alpha}+\frac{\mu \alpha}{\beta}\right)\left(-\frac{\alpha}{3}\right)+\left(\frac{\mu \alpha}{\beta^{2}}\right)\left(\frac{\alpha}{2}-\frac{\alpha \beta}{3}\right)=0 \\
& -\frac{2}{3}-\frac{\mu \alpha^{2}}{3 \beta}+\frac{\mu \alpha^{2}}{2 \beta^{2}}-\frac{\mu \alpha^{2}}{3 \beta}=0 \\
& \frac{2}{3}+\frac{2 \mu \alpha^{2}}{3 \beta}-\frac{\mu \alpha^{2}}{2 \beta^{2}}=0
\end{aligned}
$$

با ضرب طرفين معادلهه در $6 \beta^{2}$ داربم :

$$
4 \beta^{2}+4 \mu \alpha^{2} \beta \cdots 3 \mu \alpha^{2}=0
$$

كه با حل Tن

$$
\begin{aligned}
\beta & =\frac{-4 \mu \alpha^{2} \pm \sqrt{ }\left(16 \mu^{2} \alpha^{4}+48 \mu \alpha^{2}\right)}{8} \\
& =-\frac{\mu \alpha^{2}}{2} \pm \frac{1}{2} \sqrt{ }\left(\mu^{2} \alpha^{4}+3 \mu \alpha^{2}\right)
\end{aligned}
$$

 كه خطوط سيلان خارج از تاوه ترار مىيكيرند) بنابراين

$$
\beta_{\mathrm{crit}}=\frac{-\mu \alpha^{2}}{2}+\frac{1}{2} \sqrt{ }\left(\mu^{2} \alpha^{4}+3 \mu \alpha^{2}\right)
$$

IY-A وضعيت فولادكذارى عمود بـرهم و نسبـت اضلاع تاوه هستـند . خواننـده مىتواند تحقيق كند كه وقتى و $Q=k q L$ است معلد لـــه درجــه دوم بـراى

$$
4 \beta^{2}+4\left(\mu \alpha^{2}+3 \mu \alpha k\right)-3\left(\mu \alpha^{2}+2 \mu \alpha k\right)=0
$$

-

 دو متغـر معادلـه عبارت است از

$$
\frac{7 M}{4}\left[\frac{1.5 \beta_{2}\left(1-\beta_{1}\right)+\beta_{2}+0.3265 \beta_{1}\left(1-\beta_{1}\right)}{\beta_{1} \beta_{2}\left(1-\beta_{1}\right)}\right]=\frac{14 q}{3}\left(3-2 \beta_{2}\right)
$$

$$
\frac{\partial M}{\partial \beta_{1}}=0 \quad \frac{\partial M}{\partial \beta_{2}}=0
$$

با حل توام معادلات زير

مقادير بـحرا'نى
 ستس براى تركيبات متعد دى از

در ابن حالت مى منيم , مىكيريم . محا سبات در جد ول

M / q								
$\beta_{2} \^{1} 0.3$	0.35	0.4	0.45	0.5	0.55	0.6	0.65	0.7
0.15	0.603	0.663	0.713	0.754	0.785	0.805	0.814	0.811
0.2		0.726	0.770	0.803	0.825	0.835	0.832	0.812
0.25				0.803	0.826	0.836	0.832	0.812
0.3					0.815	0.825	0.821	
0.35						0.796	0.807	0.803

نتا يج جد ول را با مقادهر واقعى كه در دا خل هرانـتزها نـشان داده شد هاندمقايسـكنيد

$$
\begin{array}{lr}
\beta_{1 \text { crit }}=0.6 & (0.613) \\
\beta_{2 \text { crit }}=0.25 & (0.227) \tag{0.227}\\
M=0.836 q & (0.838 q)
\end{array}
$$

ملاحظه مى شود كه اختلاف قامـل توجه نـيست .

Y

 نيست در هر هسأله كدا م مكانهزم يهـوجود مىاT يد . به نظر میرسد هnاسب باهستى هر مكانهزم را آزما يش كند تا معلوم شود كه كدام هـك

روشهاى خميرى براى سازههاى فولادى و بتنى

هراي مكانيزمهاي مختلف بهشرع زهر است .

شكل A - ا ا T T

مكانيزم قبلا" تعيهنشد هاست(بـتسمت

$$
q=\frac{24 M}{L^{2}}
$$

$(1 \lambda-\lambda)$

$$
\begin{aligned}
& \text { (ب) معادله كار با نرض تغيير مكان واحد در طول خط سيلان بهدست مى بيد . } \\
& \text { كار داخلـى }=M L\left(2 \times \frac{1}{L / 2}\right)+2 M_{\mathrm{b}}\left(2 \times \frac{1}{L / 2}\right) \\
& =4 M+\frac{8 M_{\mathrm{b}}}{L} \\
& \text { كارشارجى }=q L \times \frac{L}{2} \times \frac{1}{2} \times 2 \\
& =\frac{q L^{2}}{2}
\end{aligned}
$$

$$
q=\frac{8 M}{L^{2}}\left(1+\frac{2 M_{\mathrm{b}}}{M L}\right)
$$

(ارای نرورديختكى دارهم :
(19-人)
(ج) با مراجعه به قوانين محور هاى دوران تعيين تغيهر مكانهاى نسبى د م مكانيـزم

$$
\begin{aligned}
\text {, كا راخلى } & =\left[M L\left(2 \times \frac{1 / 2}{L / 2}\right)+2 M_{\mathrm{b}}\left(2 \times \frac{1 / 2}{L / 2}\right)\right] \times 2 \\
& =4 M+\frac{8 M_{\mathrm{b}}}{L}
\end{aligned}
$$

, $K=4 \times \frac{L}{2} \times \frac{L}{2} \times \frac{1}{2} \times 4$

$$
=\frac{q L^{2}}{2}
$$

بنابرابن با استغاد هاز معادله كار

$$
\begin{equation*}
q=\frac{8 M}{L^{2}}\left(1+\frac{2 M_{\mathrm{b}}}{M \mathrm{~L}}\right) \tag{0}
\end{equation*}
$$

كه مثابـه با مكانيزم قبل است .
()

$$
\begin{aligned}
& \text { موءلفههاى بردارى) }
\end{aligned}
$$

$$
\begin{aligned}
& =4 M+\frac{4 M_{\mathrm{b}}}{L}+\frac{M L}{x} \\
& =4 M\left(1+\frac{M_{\mathrm{b}}}{M L}+\frac{L}{4 x}\right)
\end{aligned}
$$

, $K=q \frac{L x}{2} \times \frac{1}{3}+q \frac{L}{2} \times \frac{x}{2} \times \frac{1}{3} \times 2+q(L-x) \times \frac{L}{2} \times \frac{1}{2} \times 2$

$$
\begin{aligned}
& \quad 1 \quad 2,3 \\
& =q \frac{L x}{6}+q \frac{L x}{6}+q \frac{L^{2}}{2}-q \frac{L x}{2} \\
& =\frac{q L}{2}\left(L-\frac{x}{3}\right)
\end{aligned}
$$

بنـابـرا

$$
\begin{equation*}
q=\frac{8 M}{L}\left(1+\frac{M_{\mathrm{b}}}{M L}+\frac{L}{4 x}\right) /\left(L-\frac{x}{3}\right) \tag{r}
\end{equation*}
$$

از رابـطه فوق نسبت بـه x مشتق كرفته و نتيجهرا مساوى صفر قرار مىدهيـم در ايـنحالمقدار بحرانی X بهد ست مى در نظر كرفتن بارهاى فروربختكي در معادلات
 لنكرهای مقاوم تترهای هحهطى و تاوه است ، دارد.شكل فروربختكي بـرحسباM
 است بار فروريختكي مكانيزمهلا بكسان است

شr

 مثال نمونهاى را نشان مىدهد .

خ

- ا

 شكل
 مقدار W كه باعث نروريختكى مى ششود با تغيير مكان واحد آن بهطور تائم به روشمعمول محا سبه مىشود .

كار خارجى=W×1
w
 قرار كـيرد . منطقه صلب خارج از خظ سيلان منفى،مسطح و ا'فتى باقى مىماند . هر قسمت از از

 نظر كرفته مى شونـد .

از Tنجا كه هنطقهء خارج از مكانيزم مسطـر و افقى است . هنـحنى خط سيلان منفى نـيز افقـى است . اين بدا نمعنى استكه در امتداد جـهت شعاعيهرقسمت نسبـت بـهقسمت ديكردورانـى نخوا هد كرد ، يعنى براى موء لفمها انى شعاعي دوران

0
بـراى موء لفه عما سى دوران
$=M R \mathrm{~d} \phi \times \theta_{\mathrm{t}}+i M R \mathrm{~d} \phi \times \theta_{\mathrm{t}}$

$$
=M(1+i) R \mathrm{~d} \phi \times \frac{1}{\mathbf{R}}
$$

$$
=M(1+i) \mathrm{d} \phi
$$

روشههاى خميرى براى سازههاى فولادى و بتنى

زاويه مركزى
M($=\mathrm{M}(1+i) \phi$
و بـراى يك يَروانه كامل
=M(1+i)2r= مجموع كار داخلى

نكتنه جالب توجه آنست كه كا ر دا خلىى مستقل از شعاع یروانه مىبا شد اين بـدان هعنـي است
 خواهد دا شت . بار فروريتختگى بـهصورت زير ا ست .

$$
w_{\mathrm{c}}=2 \pi M(1+i)=6.28 \mathrm{M}(1+i)
$$

 Tآد . ضربيب i صرفا" وسيلـهأىبـراى بيان لنكر درطول خطوط سيلان منفيبرحسب لـكرمثبت

 فروريختّه خواهد شد

$$
w_{\mathrm{c}}=6.28 \mathrm{M}
$$

 را انتتخاب خوا هد كرد . از الكوى قطرى رابـطه زير بـه دس ست میى آيـ :

$$
w_{c}=8 M(l+i)
$$

انـن مقدار YY درصد بـيشتر از بار فروربختكى بروانـهاى است :

مثال بـخش R-A

 از مكانيزم فرورةختكتى باشد .

شكل PY - A

 داد كه معادله كار بـراي اين مكانبزم عبارت است از :

$$
q=\frac{24 M(1+i)}{L^{2}}\left[\frac{\frac{\phi}{2}+\tan \left(\frac{\pi}{4}-\frac{\phi}{2}\right)}{\frac{\phi}{2} \sec ^{2}\left(\frac{\pi}{4}-\frac{\phi}{2}\right)+\tan \left(\frac{\pi}{4}-\frac{\phi}{2}\right)}\right]
$$

قسعت اول معادله فوق (كه داخل كادر است) مسا وى با جواب مربوط بـهحالت خــط سيلان

$$
q=\frac{21.75 M(1+i)}{L^{2}}
$$

 نشان داد كه مكانيزم فروريختكى شرايط تعادل ، تسلحيم و مكانيزم را بـرT ورده هیى سازد ، حل مسألـه با ا استفاده از عمليات رياضى و كا مييوتر انـجام كرديد . مقدار واقعى بـار فروريختـكـى

عبارت إست از :

$$
q=\frac{42.851 M}{L^{2}}
$$

مقدار اظافهبار فروريختتكي حا صله نسبـت بـه حالت مكانيزم قطرى
 در مقابـل اععمال افزا «شى در ضريب اطمبينان مورد سنـجش قرار كيرد • بـهياد بـيا وريم كه بـتن

q-r-A جزئيات طراحى

بهكمكروث خطسـلان، لنـكرهاى مقاوم لازم جهـت مقاومت در مقابـل فروريـختكى بـه دســت

10-r-A

A - ا

A

$$
\frac{\partial^{2} M_{x}}{\partial x_{x}^{2}}+\frac{\partial^{2} M_{y}}{\partial y^{2}}-\frac{\partial^{2} M_{x y}}{\partial x \partial y}+\frac{\partial^{2} M_{y x}}{\partial x \partial y}=-q
$$

 هـهابن موضوع معادلـه تعادل بـه صورت زبهر د ر مى آهـ .

$$
\frac{\partial^{2} M_{x}}{\partial x^{2}}+\frac{\partial^{2} M_{y}}{\partial y^{2}}=-q
$$

اكتون خرض كنيد كه قسمتى از بار توسط خمش حول مسور x و قسمتى توسط خمش حول محـور y تحمل شود ، بـنابراهن :

$$
\begin{gathered}
\frac{\partial^{2} M_{x}}{\partial x^{2}}=-\propto q \\
\frac{\partial^{2} M_{y}}{\partial y^{2}}=-(1-\alpha) q
\end{gathered}
$$

 تبديل شده است . احتمالУ" بسسار مناسب و نـه ضرورهست كه م برابر با يك يا صغر ترضشود، بنابراءن :

$$
\frac{\partial^{2} M_{x}}{\partial n^{2}}=-q \quad \frac{\partial^{2} M_{y}}{\partial y^{2}}=0 \quad \text { v- } \alpha=1
$$

$$
\frac{\partial^{2} M_{\mathrm{x}}}{\partial n^{2}}=0 \quad \frac{\partial^{2} M_{y}}{\partial y^{2}}=-q \quad \quad \text { برای } \alpha=0
$$

خطوطانغصال صرنا" بار روى تاوه را تقسيم میىند . براى هر خط وضعيت بـعرانـــــــى وجود

 توسط جند مثال روشن شود .

r r - r-^ تاوه مستطيلى با تكيهّا هها ساده تحت بار كسترده يكنواخت

 شد هاند • (مطلابق شكل) • (نامكذارى روث فوق بهدليل وجود همين نوارهالاست) تحليل

بار كـترده هكنواخت

روشهاى خميرى براى سازههاى فولادى و بتنـي
 كه تحت بار بيكواخت میهاشد .

$$
\begin{aligned}
\text { در راحد طــول واحد عرض } 1 \text { رو }
\end{aligned}
$$

الهن لنكر ، لنكر طراحى نوا ر است . تحلبـل نوارهاى

نوار استغاده نـود .

نوار

ضريب تصحيح K در بخش بعدى مورد هردسى قرار مىكيرد .

 دشوار مى شود .

K K
شكل -

. عكسالممل تكهها هى) مجموع بار د ر هريك از د و انتهاى نوار .
هراى هشدا كردن فاصله مركز ثقل بار از انتهاي تهر اين كونه عمل مىشود .

$$
\begin{aligned}
& \text { در واحد عرض } \\
& \text { در واحد عرض }
\end{aligned}
$$

$$
\begin{aligned}
& q b \frac{\left(l_{1}+l_{2}\right)}{2} \times \bar{x}=q b \times l_{2} \times \frac{l_{2}}{2}+q b \frac{\left(l_{1}-l_{2}\right)}{2} \times\left(l_{2}+\frac{l_{1}-l_{2}}{3}\right) \\
&=q b\left[\frac{l_{2}^{2}}{2}+\frac{\left(l_{1}-l_{2}\right)}{2} \frac{\left(2 l_{2}+l_{1}\right)}{3}\right] \\
&=\frac{q b}{6}\left(3 l_{2}^{2}+2 l_{1} l_{2}+l_{1}^{2}-2 l_{2}^{2}-l_{1} l_{2}\right) \\
&=\frac{q b}{6}\left(l_{1}^{2}+l_{1} l_{2}+l_{2}^{2}\right) \\
& \bar{x}=\left(l_{1}^{2}+l_{1} l_{2}+l_{2}^{2}\right) / 3\left(l_{1}+l_{2}\right)
\end{aligned}
$$

بناهرا ين لنكر در مقطع X-X عبارت است از

$$
\begin{aligned}
M & =q b \frac{\left(l_{1}+l_{2}\right)}{2} x-q b \frac{\left(l_{1}+l_{2}\right)}{2}(x-\bar{x}) \\
& =q b \frac{\left(l_{1}+l_{2}\right)}{2} \bar{x}
\end{aligned}
$$

(لنـكر در هر مقطعى كه

$$
M=\frac{q b}{6}\left(l_{1}^{2}+l_{1} l_{2}+l_{2}^{2}\right)
$$

$$
\begin{aligned}
& M=\frac{q b\left(l_{1}+l_{2}\right)^{2}}{8} \\
& K q b \frac{\left(l_{1}+l_{2}\right)^{2}}{8}=\frac{q b\left(l_{1}^{2}+l_{1} l_{2}+l_{2}^{2}\right)}{6} \\
& K=\frac{4}{3} \frac{\left(l_{1}^{2}+l_{1} l_{2}+l_{2}^{2}\right)}{\left(l_{1}+l_{2}\right)^{2}} \\
&=\frac{4}{3}\left[\frac{\left(l_{1}+l_{2}\right)^{2}-l_{1} l_{2}}{\left(l_{1}+l_{2}\right)^{2}}\right] \\
&=\frac{4}{3}\left(1-\frac{l_{1} l_{2}}{l_{1}^{2}+2 l_{1} l_{2}+l_{2}^{2}}\right) \\
& K=1.333-\frac{1.333}{\frac{l_{2}}{l_{2}}+2+\frac{l_{2}}{l_{1}}}
\end{aligned}
$$

$$
\text { میش K } K=1.333-\frac{1.333}{\frac{L_{1} / 2}{0}+2+\frac{0}{L_{1} / 2}}=1.333
$$

= لنكر طراحى براى هردو نوار

در شكل رـ

 تماليل بششترى بیدا كرده است .

شr شr

روش لنكرخمشى واكنش وTازاد براى تععهن لنكرهاى طراحى از همه مناسبتر است. نوار 1

نوا رهاى فوق حالات استاندا ردى هستتن كه در بـخش سوم در نظر كـرفته شدنـد .نسبـت

-

 بـراى سا عر نوارها مسسوب شده و اطراف حفره را نبيز تقويت ميكتند . با ملاحظه باركـذارى

نوار

 شود (

نوار 9

توجه به جند نكته در مثال ثايان ذكر است .
1- تـطامى بار هاى وارده روى تاوه توسط لبهماى تاره تحمل میىردد . حتى اكر بعضى از نوار رها تكيهاه ساير نوار رما باشند .

 r r

^- - -

بهتر است كنترل شود كه مجموع, بار روى تمام تيرهاى لبه هساوى با بار وارده شده هـ به تاوه باشد .اين تنتها كنترل مستقل از محاسبات نوار منغرد است كه مىتوان انجام دام داد .

$$
\text { ^ - } \uparrow \text { جمعبندى }
$$

 طبيعت «يجهده رفتار تاوها ين روشها رادهـلـها

 از روشهاي نوق مىشوند .

 تيرهای لبه وجود دا رد .
ـ - ـ ه مسايل
 در اطراف روى تكيها مهاى ساده قرار دارد تعيهن كنهد در حالى كه فولادوكذارى هم متدار
 . طراحى كنـي
ط

شكل

شكل

 A-A نشان داده شدها است . با استغاده از معادله كار مشخص كنيد كه :

$$
q_{c}=\frac{3 M}{(42-4 x)}\left(\frac{17.5}{y}+\frac{7}{4-y}+\frac{4}{x}\right)
$$

بهازاى $q=9 \mathrm{kN} / \mathrm{m}^{2}$

A-A גֹكه تحت بار كسترده يكنواخت q ترار دارد نثان (الف) مشخص كيد كه با استفاده از معلدله كار خواههم داشت . $q\left[(L-2 R)\left(L^{2}+2 L R+4 R^{2}\right)+2 \pi R^{3}\right]=48 M\left(L-2 R+\frac{\pi R}{2}\right)$

(ب) بهروش ترسيمى ها دهكر روشها نثا ند هيد كه مقدار بحرانى R هراهر $0.3 L$ است .
() بار فروريختىى

تعام لبهها كيردار

شبندى هم مقدار در دو جـهت عمود بـرهم با لنكر مقاوم M در واحد طول قرار دا رد . تمــام

 تسمل بار فروربختكى 12 kN/m² 12 طرح كنيد ط .

 بارى بـرابـر 12 kN/m² بهتاوه وارد شود .
با

 . 8 kN/m²

ضميمه ا\$ف

معيارهاى تسليم

 در عمل تتشهاي مختلفى در هك مادهممكن أست وجود دا شته با شد ،مثلا" تنش عمودىناشى

 اين معها رها باجزئهات بهثترى بررسى خواهند شـد شد .

اهن معهار بهان مىدارد كه وتتى حداكثر تنش برشى ناشى از تركيب تنشهاىميختلف

 مور رسم كرد ، همان كونه كه در شكل الف ا-الف و ب نتشان داده شده است (ry) •

با جا بجايىى معادله الف ــ 9 در معادله الف - ه خواهيم داشت .

$$
\begin{aligned}
U & =\frac{1}{2 E}\left[\sigma_{1}\left(-v \sigma_{2}\right)+\sigma_{2}\left(-v \sigma_{1}+\sigma_{2}\right)\right] \\
& =\frac{1}{2 E}\left(\sigma_{1}^{2}+\sigma_{2}^{2}-2 v \sigma_{1} \sigma_{2}\right) \\
& =\frac{(1-2 v)}{6 E}\left(\sigma_{1}+\sigma_{2}\right)^{2}+\frac{(1+v)}{6 E}\left(2 \sigma_{1}^{2}+2 \sigma_{2}^{2}-2 \sigma_{1} \sigma_{2}\right)
\end{aligned}
$$

G=E/2(1 + v) : با توجه به ضريب ارتجاعى برشي

$$
U=\frac{(1-2 v)}{6 E}\left(\sigma_{1}+\sigma_{2}\right)^{2}+\frac{1}{6 G}\left(\sigma_{1}^{2}+\sigma_{2}^{2}-\sigma_{1} \sigma_{2}\right)
$$

(الف -

انرزى كرنشى برثى در

واحد مجم • USSE

انرثى كرنشى ناشى از تغيهر شكل در اثر عمل هرشى تنشها

مىشود ماده تسلهم بیىردد . در آزما

$$
\begin{aligned}
& \sigma_{1}=\sigma_{\mathrm{y}} \\
& \sigma_{2}=0 \\
& U_{\mathrm{sse}}=\frac{\sigma_{\mathrm{y}}{ }^{2}}{6 G}
\end{aligned}
$$

بنابراهن تسليم بهوجود مى'ّهد اكر :

$$
\sigma_{1}^{2}+\sigma_{2}^{2}-\sigma_{1} \sigma_{2}=\sigma_{\mathrm{y}}^{2}
$$

 بهإيعاد هندسى دايره

$$
\begin{aligned}
& \sigma_{1}=\tau_{y} \\
& \sigma_{2}=-\tau_{y}
\end{aligned}
$$

تنشها ع عمودى حداكثر و حدا قل حداكثر z-x

 حداكثر تنش برشى شعاع بزركترهن دايره مور است .

وقتى

$$
r_{\max }=\frac{\sigma_{1}-0}{2}=\frac{\sigma_{1}}{2}
$$

(الف - (الف)
وتتى $\sigma_{1}>\sigma_{2}$ ولي با علامت مخالفند

$$
\tau_{\max }=\frac{\sigma_{1}-\sigma_{2}}{2}
$$

(الف -
در آزما يشث كشش بك سيستم تنش بكـ بعدى وجود دارد ، بـنابـراین

$$
\sigma_{2}=\sigma_{3}=0
$$

 برا بـر است با با

$$
\tau_{y}=\frac{\sigma_{y}-0}{2}=\frac{\sigma_{y}}{2}
$$

با مسا وى قراردادن معادلات الف - ا و الف - Y با معادلـه الف - ب شــروط بــرای تسلمهـم بهد ست میآبي

$$
\begin{align*}
& \sigma_{1}=\sigma_{y} \text { L } 42 \tau_{y} \quad \sigma_{1}>\sigma_{2} \quad \text { هم علامت } \\
& \sigma_{1}-\sigma_{2}=\sigma_{y} L 2 \tau_{y} \quad \sigma_{1}>\sigma_{2, i}^{i}
\end{align*}
$$

هرحسب تنشهای اصلى عهارت از :

$$
\begin{equation*}
U=\frac{1}{2}\left(\sigma_{1} \epsilon_{1}+\sigma_{2} \epsilon_{2}\right) \tag{الف-0}
\end{equation*}
$$

با استنا ده از قانون هوك

$$
\begin{align*}
& \epsilon_{1}=\frac{1}{E}\left(\sigma_{1}-v \sigma_{2}\right) \\
& \epsilon_{2}=\frac{1}{E}\left(-v \sigma_{1}+\sigma_{2}\right)
\end{align*}
$$

با توجه بهمعيار فوق ، تسليم وقتى بهوجود مى

$$
\begin{align*}
& \left(\tau_{y}\right)^{2}+\left(-\tau_{y}\right)^{2}-\left(\tau_{y}\right)\left(-\tau_{y}\right)=\sigma_{y}{ }^{2} \tag{الف-9}\\
& 3 \tau_{y}{ }^{2}=\sigma_{y}{ }^{2}
\end{align*}
$$

هر دو معيار در معا دلات الف - † و الف -
 بيشترى برخوردار ا است . در فصل تتشها ع عمودى σ نا شى از خمش و تنشها با محور تهر هستند ، بنابراين تنشها مطابق شكل الفـ ا الف هستند . كه در آن

$$
\begin{aligned}
& \sigma_{x}=\sigma \\
& \sigma_{z}=0 \\
& \tau_{x z}=\tau
\end{aligned} \quad \text { تنشهـا ی عمود بـر محور تـير وجود نـدارد }
$$

داهيره مور برای این تنشها در شكلالف ـ \ddagger نشان داده شده است با توجه بـهابعاد هندسـى دا دايره.

$$
\begin{align*}
& \left.\sigma_{1}=\frac{\sigma}{2}+\sqrt{\left(\frac{\sigma^{2}}{4}\right.}+\tau^{2}\right) \\
& \left.\sigma_{2}=\frac{\sigma}{2}-\sqrt{\left(\frac{\sigma^{2}}{4}\right.}+\tau^{2}\right) \tag{الف-10}
\end{align*}
$$

شك

H- شكل الف

 معيار شرط جارى شدن در تير وقتى است كه :

$$
\begin{equation*}
\left(\frac{\sigma}{\sigma_{y}}\right)^{2}+\left(\frac{\tau}{\tau_{y}}\right)^{2}=1 \tag{الفe-11}
\end{equation*}
$$

تنها اختلاف بين Tنها متدار Ty يهنى متدار تنش برشي تسليم است . جدول الف - 1

ترسكا
فون ماهزز

از از معادله الف ـ
با علامت مخالف ، تسليم وتتى به

L

$$
\left.\left.-\left[\frac{\sigma}{2}+\sqrt{\left(\frac{\sigma^{2}}{4}\right.}+\tau^{2}\right)\right]\left[\frac{\sigma}{2}-\sqrt{\left(\frac{\sigma^{2}}{4}\right.}+\tau^{2}\right)\right]
$$

$$
=o_{y}^{2}
$$

$$
\frac{\sigma^{2}}{2}+2\left(\frac{\sigma^{2}}{4}+\tau^{2}\right)-\frac{\sigma^{2}}{4}
$$

$$
+\left(\frac{\sigma^{2}}{4}+\tau^{2}\right)=\sigma_{y}^{2}
$$

$$
\begin{aligned}
& \left(\frac{\sigma}{\sigma_{y}}\right)^{2}+\left(\frac{\tau}{\tau_{y}}\right)^{2}=1 \\
& \tau_{y}=0.5 \sigma_{y}
\end{aligned}
$$

$$
\sigma^{2}+3 \tau^{2}=\sigma_{y}^{2}
$$

$$
\left(\frac{\sigma}{\sigma_{y}}\right)^{2}+3\left(\frac{\tau}{\sigma_{y}}\right)^{2}=1
$$

از معادله الغ -

$$
3 \tau_{y}^{2}=\sigma_{y}{ }^{2}
$$

بناهراین تسلهم وتتى بهوجود می' يد كه :

$$
\begin{aligned}
& \left(\frac{\sigma}{\sigma_{\mathrm{y}}}\right)^{2}+\left(\frac{\tau}{\tau_{\mathrm{y}}}\right)^{2}=1 \\
& \tau_{\mathrm{y}}=0.577 \sigma_{\mathrm{y}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { وجود مى } \\
& \left.2 \sqrt{\left(\frac{\sigma^{2}}{4}\right.}+\tau^{2}\right)=\sigma_{y} \\
& \sigma^{2}+4 \tau^{2}=\sigma_{y}{ }^{2} \\
& \left(\frac{\sigma}{\sigma_{y}}\right)^{2}+\left(\frac{2 \tau}{\sigma_{y}}\right)^{2}=1 \\
& \sigma_{y}=2 \tau_{y}{ }^{\dagger}-\text { از معادله الف }
\end{aligned}
$$

ضميمه ب

د رجـه نامعينـي

 مطالب مربوط.به اين حالت خام را بهطور اختيار بار بـان كان كرد .

$$
r=3 n-k
$$

مى

كه درجه نامعينى = r و تعداد دها دانهها = n مى باشد .

 عضو قابل تعميم است .

$$
\begin{aligned}
& \text { r- بكل ب }
\end{aligned}
$$

ضميمه ج

نمودار هاى لنتو خمشى

ج - ا مقدمه

غالبا" لازم است كه نمودار لنكر خمشى مربوطـبه هكانيزم فروربختكى تعييــن شــود .

 د د ريك مسأله بـيان مىشود
ج - Y مطلبى راجع به مـكانيزم
 خميرى بهوجود مى'يد .در هر مغصل خميرى مقدا رلنكر خمشى معلـوم و مسا وىى با لـنكرخميرى

 هكانيزم اهكان ونـير با شد .

 ترجهج مىد هد كه مقدار لنكر در طرنى از عضو نوشته شود كه تحت كشش ا ست ا ـ ا هـنترارداد

روشهاى خميرى براى سازدهاى فولادى و بتنى

در تمام نمودا رهاى لنـكرخششى در نظر كرفته شده است .)

r- شكل

ج-ץ لنكرهاى خمشى وكنش و ازاد

 لنكرهاى واكنش لنـرهـايخمشىدو انتهاى عضو هستتد كه با توجه به كيردار هود ندو

 روابـط سادهاى بين ابـعاد هندسى نمودارهاى لنكر خمشى واكـتش وآزاد و نـــودار

 ترار دارد و با توجه بـه ابعاد هندسى نمودار خوا هـيم داشت:

$$
\text { - } \frac{M_{\mathrm{p}}+M_{\mathrm{B}}}{2}=M_{\mathrm{p}}
$$

كتشد در بالا

هرای بيك تترساده هـد هانه L و با ها رمتمركز V در وسط دهانـه ،حدا كتر لنكرخمشى آزادبرابر

$$
\begin{aligned}
& \frac{V I .}{4}-\frac{M_{\mathrm{p}}+M_{\mathrm{B}}}{2}=M_{\mathrm{p}} \\
& M_{\mathrm{B}}=\frac{V L}{2}-3 M_{\mathrm{p}}
\end{aligned}
$$

ع - ه نشان داده شده است.و اكر منفى شد فرض غلطبوده و كشش در نیر تير وجودخواهد

شكل ع -

نكته ديكرى وجود دارد كه در موقع تركيب لنكرهاى خیشــي واكنـش و آزاد

 موضوع نوق اكر جه باعث تعجب است ليكن كا ملا" منطقى است .

ج -

 معن مىشود) .

$$
H L=M_{1}+M_{2}
$$

نتطه بالاى ستون

 وقتىىه درطول ستون بارهايى اعمال مىشود ،نيروهاى افقى مجموع نيروهاى ناشىاز لنتكرهاى انتتهابیى و واكنشهاى انتهها بیى با قرض آنكه ستون را تير ساده فرض كنيـم ، مىباشد الـن موضوع در شكل جــهـه مشخص شثده است .
غالبا" در نظر كرفتن تعادل افقى قستتها بیى از سازه بـراى تعيهين بـخشها يىى از نـوودار

ج -

'اهن ضا بـطه در تعبين نـمودا رهاى لنـكرخعشى بسيار مفيد 'است .

 صفر باشد ، بـنابـراين در اين حالت . مى بـاشد $M_{1}-M_{2}-M_{3}=0$

ج -
روش تحليـل حدى كه در قسمت Y-Y

روشهاى خميرى براى سازهماى فولادى و بتنى

 مرا حل مختلف در زهرآمده و در شكل ج - م جمع بندى شدها است .

شكل ع

براى تعادل : ك با كشش در بالاى تير همراه مىيا شد .

1 - تصام لنكرهاى معلوم را در مغملهاى خعيرى نوشته و نمودار لنكرخمشى هراى ستونهاى سعت راست را كامل كنيد .

 Tزاد كا مل كنيد .

r - كثهد . با در نظر كرفتن تعادل مغصل ، محاسهات را كتترل كتيد .
A - عكل

سهق لنكرهاى نامعلوم در انتنهاى سعت جهب هر دو تير با در نظر كرفتن مقادهر نـودا رهاى

لنكر خمشى آزاد در وسط د هانه (الف) تير بالايى

ازTنجا كه

$$
\begin{aligned}
& \frac{M_{\mathrm{p}}+V}{2}+2 M_{\mathrm{p}}=2.4 M_{\mathrm{p}} \\
& V=-0.2 M_{\mathrm{p}}
\end{aligned}
$$

 ركنوا خت بك سهمى خوا هد بـود . (ب) تتر با بهانیى

$$
\begin{aligned}
\text { 持 }=\frac{4 \lambda w(2 L)^{2}}{8} & =2 \lambda w L^{2} \\
& =4.8 M_{\mathrm{p}}
\end{aligned}
$$

و بـا توجه هـابعلد نـمودارهایى لنكر خمشى :

$$
\begin{aligned}
& \frac{3 M_{\mathrm{p}}+x}{2}+4 M_{\mathrm{p}}=4.8 M_{\mathrm{p}} \\
& x=-1.4 M_{\mathrm{p}}
\end{aligned}
$$

> براى تعاد ل افقى خوا هيم داشت :

$$
N_{1}+N_{2}=\lambda w L=1.8 \times \frac{4 M_{\mathrm{p}}}{3 L}=\frac{2.4 M_{\mathrm{p}}}{L}
$$

با ا ستغا ده از مطالب تسعت ع - f

$$
N_{1}=\frac{2 M_{\mathrm{p}}}{L} \quad N_{2}=\frac{0.2 M_{\mathrm{p}}+y}{L}
$$

بنا براهن
$\frac{0.2 M_{\mathrm{p}}+y}{L}+\frac{2 M_{\mathrm{p}}}{L}=\frac{2.4 M_{\mathrm{p}}}{L}$
$y=0.2 M_{p}$
بنابراعن نمودا ر لنكر خمشى ستون سمت هب بالايى كامل مىكردد . (و) تعادل افقى طبقه ها يينى

براى تغادل افقى

$$
\begin{aligned}
H_{1}+H_{2} & =N_{1}+N_{2}+2 \lambda w L \\
& =\frac{7.2 M_{\mathrm{p}}}{L}
\end{aligned}
$$

$$
H_{1}=\frac{4 M_{\mathrm{p}}}{L} \quad H_{2}=\frac{2 M_{\mathrm{p}}+z}{L}
$$

بناهـرا هـن

$$
\frac{4 M_{\mathrm{p}}}{L}+\frac{2 M_{\mathrm{p}}+z}{L}=\frac{7.2 M_{\mathrm{p}}}{L}
$$

$$
z=1.2 M_{p}
$$

در هر حال كتترل محا سهات بهوسيله نوشتن معادله تعادل در اتصال سمت جهـ ها يهينــى
امكان بذهر و مغيد است .

$$
\begin{aligned}
& 1.2 M_{p}+0.2 M_{\mathrm{p}}-1.4 M_{\mathrm{p}}=0 . \\
& 0=0
\end{aligned}
$$

جواب مسائل

فصل

مقطع مركب $M_{\mathrm{p}}=$ Dbtoy $\quad M_{\mathrm{p}}=660 \mathrm{kNm} \quad 1-\mathrm{Y}$
$M_{\mathrm{p}}=19.73 \mathrm{kN} \mathrm{m} \quad r-r$
(a) $M_{\mathrm{p}}=D^{3} \sigma_{\mathrm{y}} / 6$; (b) $M_{\mathrm{p}}=1.5 d^{2} t \sigma_{\mathrm{y}}$; (c) $M_{\mathrm{p}}=\sqrt{ }(2) d^{2} t \sigma_{\mathrm{y}}$; (d) $M_{\mathrm{p}}=$ $(7 \sqrt{ } 3 / 16) a^{2} 1 o_{y}$
$Y-r$
$S^{\prime}=S-\frac{A^{2}}{4 d} n^{2} \quad n \leqslant \frac{d t_{w}}{A}$
$\Delta-Y$
$S^{\prime}=\frac{A^{2}}{8 t_{\mathrm{f}}}(1-n)\left(\frac{4 b t_{\mathrm{f}}}{A}-1+n\right)$

$$
\lambda_{c}=1.70
$$

$$
r-r
$$

$$
\lambda_{c}=1.50
$$

$$
\text { (ه) } \lambda_{c}=2.235
$$

(الف) $\lambda=1.407,1.287<\lambda_{c}<1.407$ (ب) $\lambda=1.191,1.169<\lambda_{c}<1.191$

(الن) $M_{\mathrm{p}}=657.7 \mathrm{kN} \mathrm{m} ;$ (ب) $M_{\mathrm{p}}=267 \mathrm{kN} \mathrm{m}, \mathrm{BC}$. ورتها د $\quad M_{\mathrm{p}}=426 \mathrm{kN} \mathrm{m} ,\mathrm{ا} \mathrm{-} \Delta$ CD \quad, $\quad M_{\mathrm{p}}=106 \mathrm{kN} \mathrm{m}$

$$
G=12.3 w L^{3}, \text { هداقل ونن }
$$

$$
M_{\mathrm{p}}=2.44 w L^{2}, \mathrm{BC} \quad M_{\mathrm{p}}=1.13 w L^{2}, G=13.1 w L^{2}
$$

$$
\text { سترنبا و تيرما } \quad M_{p}=1.167 W L
$$

$$
r-\Delta
$$

$$
M_{\mathrm{p}}=0.43 W L \quad \psi-\Delta
$$

$$
M_{\mathrm{p}}=580 \mathrm{kN} \mathrm{~m}
$$

$$
\Delta-\Delta
$$

$$
\text { . } M_{\mathrm{p}}=133.3 \mathrm{kN} \mathrm{~m}, \quad M_{\mathrm{p}}=311.2 \mathrm{kN} \mathrm{~m}
$$

$$
\varepsilon-\Delta
$$

$$
\begin{aligned}
& \text { (الن) } M_{\mathrm{p}}=2 w L^{2} \quad G=14.0 w L^{3} ;(ب) \text { (بت) } \\
& M_{\mathrm{p}}=1.13 w L^{2}, \mathrm{CD}, \mathrm{AB}, د \text { 滕 } \quad . M_{\mathrm{p}}=1.31 w L^{2} \text {, }
\end{aligned}
$$

$$
M_{\mathrm{r}}=w L^{2} / 16
$$

فصل
$:-Y$
$Y-Y$

$r-Y$
$Y-Y$

: فصل A A
$q=17.54 \mathrm{kN} / \mathrm{m}^{2}$, در مركز دال $\quad M_{\mathrm{r}}=8 \mathrm{kN} \mathrm{m} / \mathrm{m}$, $1-\mathrm{A}$ $M_{\mathrm{r}}=12 \mathrm{kN} \mathrm{m} / \mathrm{m}$
(الن) $q=59.06 M / L^{2}(-) q=10.7 M / L^{2}$
$r=\lambda$

1. A. Ghali and A. M. Neville, Structural Analysis, 2nd ed (Chapman \& Hall, London, 1978)
2. Structural Steelwork Handbook, new edition (BCSA/Constrado, 1978)
3. M. R. Horne, Plastic Theory of Structures, (Nelson, London, 1971)
4. B. G. Neal, The Plastic Methods of Structural Analysis, 3rd (SI) ed (Chapman \& Hall, London, 1977)
5. CP 110: Part 1: 1972 The Structural Use of Concrete

6 B/20 Draft: Draft Standard Specification for the Structural Use of Steelwork in Building (British Standards Institution, 1978, Draft for Public Comment)
7. BS 449: Part 2: 1969 The Use of Structural Steel in Buildting
8. The Collapse Method of Design, Publication No. 5 (British Constructional Steelwork Association, London, 1952)
9. A. Battersby, Mathematics in Management (Penguin, Harmondsworth, 1970)
10. K. 1. Majid, Non-linear structures (Butterworth, London, 1972)
11. Genesys Applications Software (Genesys Limited, Loughborough, Leics., 1978)
12. Engineering Design Programs - Software Archives
13. A. R. Toakley, Optimum design using available sections, J. Struct. Div., Am. Soc. civ. Engrs, 94 (1968) 1219-41
14. M. R. Horne and W. Merchant, The Stability of Frames (Pergamon, Oxford, 1965)
15. A. C. Walker, The Buckling of Struts (Chatto \& Windus, London, 1975)
16. R. H. Wood, The stability of tall buildings Proc. Instn civ. Engrs, 11 (1958) 69-102
17. R. H. Wood, Effective lengths of columns in multistorey buildings, $B R E$ Current Paper 85/74 (September 1974)
18. F. K. Kong and R. H. Evans, Reinforced and Prestressed Concrete (Nelson, London, 1975)
19. B. P. Hughes, Limit State Theory for Reinforced Concrete Design, (Pitman, London, 1976)
20. R. G. Smith, The determination of the compressive stress-strain properties of concrete in flexure, Mag. Concr. Res., 12 (1960) 165-70
21. E. Hognestad, N. R. Hanson and D. McHenry, Concrete stress distribution in ultimate strength design, J. Am. Concr. Inst., 27 (1955) 455-79
22. A. A. Mufti, M. S. Mirza, J. O. McCutcheon and J. Honde, A study of the behaviour of reinforced concrete elements using finite elements, Civil Engineering Report No. 70-5 (Department of Civil Engineering and Applicd Mechanics, McGill University, 1970)
23. A. L. L. Baker, The Ultimate-Lead Theory Applied to the Design of Reinforced and Prestressed Concrete Frames (Concrete Publications Lid, London, 1956)
24. A. L. L. Baker, Ultimate load design of reinforced and prestressed concrete frames, Proccedings of a Simposium on the Strength of Concrete Structurcs (Cement and Concrete Association, London 1956) 277-304
25. C. E. Massonnet and M. A. Save, Plastic Analysis and Design, Vol. 1, Beams and Frames (Blaisdell, London, 1965)
26. K. W. Johansen, Yield Lime Theorl' (English translation, Cement and Concrete Association, London, 1962)
27. K. W. Johansen, Yicld Lime Formulac for Slabs (English translation, Cement and Concrete Association, London, 1972)
28. A. J. Ockleston, Tests on the Old Dental Ihospital, Johannesburg (Concrete Association London, 1956)
29. S. P. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells, 2nd edn. (McGraw-Hill Kogakusha Lid, New York, 1959)
30. R. H. Wood, Plastic and tilastic Design of Slabs and Plates (Thames \& Hudson, London, 1961)
31. R. H. Wood, Studies in Composite Construction, Part 2: The interaction of floors and beams in musti-sturey buildings (HMSO, 1961)
32. E. N. Fox, Limit malysis for plates: the exact solution for a clampted square plate of isotropic homogeneous material obeying the square yield criterion and loaded by unifurm pressure, Phil. Trans. R. Soc. A, 277, (1974) 121-55
33. L. L. Jones and R. H. Wood, Yichd Line Analysis of Slabs (Thames \& Hudson, London, 1967)
34. A. Hillerborg, Strip) Method of Design (Viewpoint Publications. Cement and Concrele Assuciation, London, 1975)
35. R. II. Wood and G. S. T. Armer, The theory of the strip method for design of slabs, Proc. Instn civ. Fingrs, 41, (1968) 285-311
36. J. E. Gobdon, The New Sidence of Strong Materials, 2nd edn, (Penguin, Harmondsworth, 1977)
37. W. A. Nash, Strcngth of Matorials, 2nd edn, (Schaum's Outline Series, McGraw-Hill, New York, 1972)
38. Specticication for the Design, Pabricatisn and Ereetion of Structural Steel for Buildings (American listitute ol Sleel Construction, New York, 1969)

FERDOWSI UNIVERSITY OF MASHHAD

Publication, No 119

Plastic Methods for Steel

Stuart S. J. Moy

Translated by
M. Reza Esfahani

[^0]: 1- Simplex

