Geviso
$\operatorname{sen} x$

\square

تأليف
 لاديس د . كووالك

تر جمهـ
دكتر اصغــر كرايه جيـــنــن
دكتر ابوالقاسه بزرك كنيا

```
Kovach, Ladis D.
كوواكـ، لاديس ، 191*-
```



```
(ISBN: 964-6335-30-6)
فهرستنو يسى بر اساس اطلاعالت فيبا (فهرستنو يسىى يـش أز انتتـار)
Advanced engineering mathematics.
                                    عنوان اصصلى:
                                    وازدْنامهـ
                                    for - كتابنأمه : ص .
```



```
        \(97.1 \cdot 101\)
                                TArr./sa/a
                                    IrvV
- \(V \vee-\wedge 9.9\)
```

شناسنامهُ كتاب
تأليف : لاديس د د .كورواك مهندسى
ويراستار علمى : دكتر محـدعلى پور عبدالشنتزاد
ويراستار ادبى : مصطفى كدكني
ناشر : انتشارات دانشگاه فردوسى مشهد
تاريخ انتشار : بايزز Irvv
تعداد : . . . Y نــيخه ـ جهاب اوّل

امور كنّى و جاب : مؤ تسسه جاپ و انتشارات دانشگاه فردو سى مشهد
قيمت : . . . الريال

فهرست مطالب

لهصل اوّلـ بـبر خطى

رباضيات مهندسى

101
101
iv.

1人.
191
$Y \cdot 0$
$r \cdot 0$
Yis
YYA
YrA
pfq

Y\&
Yq1
YVI
YヘV
r.r
ryo
rrA
r4o
r40
ros
rys
ryo

فلصل سوم ـ سريباى ثؤوريه و انترالهاى ثوريهـ
خ-
سريهآى سينوسى، كسينوسى و نمایى
 كاربردهـا

كصل يهارم ـ مساثل مقدار مرزى دو منتصات لاثم

¢-ه روشهاى عددى

فلصل ششم ـ مكثيرهاى مغثّلط

جبر اعداد مشتلط
توابع مقدماتى r-q
مشت
ناتُاشت

$$
\begin{aligned}
& \text { جوإبهاى به صورت سرى معادلات ديفر انسيل معمولى } \\
& \text { توابع بسل } \quad \begin{array}{r}
\text { بی }
\end{array} \\
& \text { هندجمله إيهاى لثُانثلر } \\
& \text { كاربردها } 0
\end{aligned}
$$

$$
\begin{aligned}
& \text { معادلئ لإبلاس } \\
& \text { معادلهُ موج } \\
& \text { معادلك انتشار } \\
& \text { روشهای تبديل } \quad \text { ر-Y } \\
& \text { O-Y }
\end{aligned}
$$

هفت	نهرمـت مطالب
rav	($0-9$
Y. 1	كاربردها
F19	جلدولها
fyr	باسخ و راهنمايع براى تمرينهاى انتخابى
401	مراجع
for	
fay	فهرست راهنما

بيشُتفتاز مؤ لف

 آينده شالمل طرحهاى عظيم نيروى خورئى

 بعذارد، آكاه باشد.

 بس از درس رياضيات عبومى مطرح مى شوند، گُنجانيده شدهاند.

1- Saaty, Thomas L., Mathematical Models of Arms Control and Disarmament. New York: Wiley, 1968.

 تمام مباحث را مى توان در كتاب يافت. كوشش فراواوان به عمل آمده است كه فصلهان، و حتّى بخشهـاى
 است، توانايى انعطاف بيشترى دارند.

 گرفت. جون در اين كتاب تمرينهاى زيادى وجود دارند، بسادگى مى توان آنهايى راكه برانى كلاس خاصى مناسب هـتند انتخاب نـون درد

 آورد. بــراى مـتال، اگیر نتيجهاى

 تمام بخشهايى راكه با باروشهاى عددى سر سروكاي
 بيشتر موضوعات اين كتاب در در درسا

 در اينجا مايلم دِيْنِ خود را باه آنها ابراز كنمْ

يادداشت مترجمان

 همكارى راداشتهاند، صميمانه تشكر مىكينيم.

اصغركرايهاجيان

ابوالقاسم بزركّنيا

(

جبر خطى

ماجريسها

 بعضمى از معادلات ديفر انسيل (معادلات ديفرانسيل خخطى با ضرايبت ثابـت) به مـعادلات جبرى،

 در نظريءُ تبلديلات خمطى السـت .

هرماتريس توسط اندازه، طبيعت عناصرش و محلل آنها در آرايه تابل تشنخيص خواهد بود ـ بس $\left(\begin{array}{rrr}2 & -3 & 5 \\ 0 & 1 & 4\end{array}\right)$
يك ماتريس Y Y Y اس

 دارند . بطور كلى عناصر يك ماتريس ممكن است توابع يا حتـى ماتريس باشــند؛ اين حالات را بعدآ نخواهيم ديد .

بنويسيم
$\left(\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23}\end{array}\right)$.
توجـه كنيـد كه انديس اول نيــانگر سطر و انديس دوم نـــانگر ستونى است كـه مـحل عنصر را

 به عبارت ديگر، اگر . $a_{i j}=b_{i j}$ ، j
$\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right) \neq\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 6 & 5\end{array}\right)$,
حال الكر
$\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)=\left(\begin{array}{rr}-5 & 3 \\ 0 & 2\end{array}\right)$
آن كاه نتيجه مى شودد

يكسان داشته باشند . در اين صورت جمع با افزودن عناصر متناظر بهد دست مى آيد . بنابراين
$\left(\begin{array}{rrr}1 & -2 & 3 \\ 0 & 4 & 5\end{array}\right)+\left(\begin{array}{rrr}2 & 2 & -2 \\ -3 & 1 & -3\end{array}\right)=\left(\begin{array}{rrr}3 & 0 & 1 \\ -3 & 5 & 2\end{array}\right)$
با توجه به جـمع مـاتريسـهـا جند خـاصـيت در ارتباط با اين عـمل ثابت مى كنـبم • جون
 تمرين گذاشته مى شوود.

الف) (A+B

$$
\text { ب) } A+B=B+A \quad \text { (خاصبت تعويض بذيرى) }
$$

(

تعريف بالا بيان مى كند كه وتى يك ماتريس را در يكا اسكالر ضرب مى كنيمهرعـيمنصر آن
 ($1-1-1$)

$$
\begin{aligned}
1\left(a_{i j}\right) & =\left(1 a_{i j}\right)=\left(a_{i j}\right), \\
-1\left(a_{i j}\right) & =\left(-1 a_{i j}\right)=\left(-a_{i j}\right)=-\left(a_{i j}\right)=-A, \\
0\left(a_{i j}\right) & =\left(0 a_{i j}\right)=0 .
\end{aligned}
$$

$A+O=A$,

در 1-1-1 (ب) تعريف شد) وجود دارد به گونهأى كه
$A+(-A)=O$,
اين معادله نشان مى دهد كه بر ایى هر ماتريس يكى وارون جمعى وجود دارد. در مطالب بالا بر اين واتعيت تأكيد شدهأمـت كه با تعاريف داده شُهه، مجموعهُ ماتر يسها با عمل جمع همان خاصيتهاى اعداد حقيقى را دارد . اما در مورد ضربب ماتريسها وضعيت كاملاٌ متفاوت اسـت . قبل الز تعريف ضربب مـاتريسها، مثالى ساده از يك تبلـيل خططى ارائه مى دهيم . (در 1 - - V- تعريف تبديل خطى داده خواهد شد) . معادلات زير رأدر نظر مى گیريم
$y_{1}=a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}$,
$y_{2}=a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}$.
كه مـتغيّر هاى
 $A=\left(\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23}\end{array}\right)$.

حال أكر دانتّه باشيبم

$$
\begin{align*}
& x_{1}=b_{11} z_{1}+b_{12} z_{2}, \\
& x_{2}=b_{21} z_{1}+b_{22} z_{2}, \tag{0-1-1}\\
& x_{3}=b_{31} z_{1}+b_{32} z_{2},
\end{align*}
$$

كه تبديل خططى ديگرى المـت كه متغيرّ هاى
 $y_{1}=\left(a_{11} b_{11}+a_{12} b_{21}+a_{13} b_{31}\right) z_{1}+\left(a_{11} b_{12}+a_{12} b_{22}+a_{13} b_{32}\right) z_{2}$, $y_{2}=\left(a_{21} b_{11}+a_{22} b_{21}+a_{23} b_{31}\right) z_{1}+\left(a_{21} b_{12}+a_{22} b_{22}+a_{23} b_{32}\right) z_{2}$. با استفاده از نماد ماتريسى، اكر A ماتريس نوق باشد و $X=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right), \quad Y=\binom{y_{1}}{y_{2}}, \quad Z=\binom{z_{1}}{z_{2}}, \quad B=\left(\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32}\end{array}\right)$. آن كَاه معادلات (1-1 $Y=A X \quad, \quad X=B Z$,

$$
Y=(A B) Z
$$

با توجه به حاصـل ضرب ماتريسها در بالا، تعريفس زير تابل توجيه است

 $C=\left(c_{i k}\right)=\left(\sum_{i=1}^{n} a_{i q} b_{q k}\right)$,
كه در آذ، مجموع نشانكر عنمر سطر i أم و ستون kام در ماتريس ساصل ضرباباست. (به خاطر

 سـتونهـاى A برابر تعداد سطرهایى B باشـد . هـمـجنين تعريفـ ضـرب نشان مى دهد كـه ضـرب ماتريـسها يكى نرآيند سطر در مستون است . در اين نرآيند عنصر هاى يكى سطر را در عنصـر هاى

 در متون k ام B به دست مى آيل . با جند مثال ضرب ماتريسها را تشّريع مى كنيم • مثال 1-1-1 ماتريسهاى زير مفروضند $X=\left(\begin{array}{r}2 \\ -3 \\ 1\end{array}\right), \quad Y=\binom{3}{-2}, \quad A=\left(\begin{array}{rrr}1 & -2 & 3 \\ 0 & 4 & 5\end{array}\right), \quad B=\left(\begin{array}{rr}2 & 2 \\ -3 & 1 \\ 4 & 5\end{array}\right)$,

ماتريسهاى
حل : داريم
$A X=\left(\begin{array}{rrr}1 & -2 & 3 \\ 0 & 4 & 5\end{array}\right)\left(\begin{array}{r}2 \\ -3 \\ 1\end{array}\right)=\binom{1(2)+(-2)(-3)+3(1)}{0(2)+4(-3)+5(1)}=\binom{11}{-7}$,
$B Y=\left(\begin{array}{rr}2 & 2 \\ -3 & 1 \\ 4 & 5\end{array}\right)\binom{3}{-2}=\left(\begin{array}{r}2(3)+2(-2) \\ -3(3)+1(-2) \\ 4(3)+5(-2)\end{array}\right)=\left(\begin{array}{r}2 \\ -11 \\ 2\end{array}\right)$,

$$
\begin{aligned}
A B & =\left(\begin{array}{rrr}
1 & -2 & 3 \\
0 & 4 & 5
\end{array}\right)\left(\begin{array}{rr}
2 & 2 \\
-3 & 1 \\
4 & 5
\end{array}\right) \\
& =\left(\begin{array}{cc}
1(2)+(-2)(-3)+3(4) & 1(2)+(-2)(1)+3(5) \\
0(2)+4(-3)+5(4) & 0(2)+4(1)+5(5)
\end{array}\right) \\
& =\left(\begin{array}{rr}
20 & 15 \\
8 & 29
\end{array}\right) .
\end{aligned}
$$

توجه كنيد كه ماتريس BA در مهال | - ا- ا تعريف نمى شُود، و بطور كلى ضربب ماتريسها تمويض بذير نيست (تمرين ا(ب)) با وجود اين خواص بيان شـلده در تضيهُ زير را داريم . فرض بر اين اسـت كه تمام حاصل ضربها و مجموعها تعريف شده اند .
 الف) (ب) ب) $A(B+C)=A B+A C$ (خاصيت توزيع يذيرى از خب) (خاصب) (خاصيت توزيع بذيرى از راست) ($A+B) C=A C+B C \quad$ (

 می كنيم . خاصيتى ديكر دربارهُ خرب ماتريسها مست كه با خاصيت آنّناى جبر متفاوت أست . در جـبـر اععداد حـتيـقى و مـختلط اكـر
 داده شده المست : $\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)\left(\begin{array}{rr}2 & 3 \\ -2 & -3\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$.

بنابراين حاصل خرب دو ماتريس غير صفر ممكن امست ماتريس صفر باشد . كـاهى لازم الست بالى سطرهـا و ستـونهالى يـك ماتريس راعـوض كنيم كـه به اينترتيبـ (عـــومـا) يكى مـاتريس جـليـد به دست مى آيل . اين فـرآيند ترانهش نام دارد و به حــورتـ زير
 محى شُود يكى ماتريس n n به صورت زير اسـت $A^{T}=\left(a_{j i}\right)$.
خـواص ترانهس در تضبئ زير فهرسـت شـده اند .
ثليه 1-1 - -" برايى ماتريسهاى A و B داريم

$$
\begin{array}{r}
\text { الفب }(A+B)^{T}=A^{T}+B^{T} \\
\left\{(A B)^{T}=B^{T} A^{T}\right. \\
.\left(A^{T}\right)^{T}=A
\end{array}
$$

أبُاتها به عنوان تمرين كذاشُته مى شود . توجه كنيـد كه ترانهادهُ يكى حـاصل ضرب برابر اسـت با حاصل ضرب ترانهاده ها، باترتيب مكس .

 تطرى تغيير نمى كنتد .
اگر يكى ماتريس مربعى باثُد و عناصر غيرتطرى آن همگي صفر باثـند، آن كاه ماتريس را
$D=\left(\begin{array}{llll}a_{1} & 0 & 0 & 0 \\ 0 & a_{2} & 0 & 0 \\ 0 & 0 & a_{3} & 0 \\ 0 & 0 & 0 & a_{4}\end{array}\right)$ تمرى كويند . براى مثال

يكى ماتريس تطرى اسـت كه مى توان آن را به شكل مـختصر زير نوشـت
$D=\operatorname{diag}\left(\begin{array}{llll}a_{1} & a_{2} & a_{3} & a_{4}\end{array}\right)$.
يكى ماتريس تطرى كه nعنصر تطرى آّن همه برابر، مثلاّ، c باشـند
$E=\operatorname{diag}\left(\begin{array}{llll}c & c & \ldots & c\end{array}\right)$,

$$
\begin{aligned}
& \text { با استفاده از ماتريسهاى مثال ا - ا - ، داريم } \\
& X^{T}=\left(\begin{array}{lll}
2 & -3 & 1
\end{array}\right), \quad B^{T}=\left(\begin{array}{rrr}
2 & -3 & 4 \\
2 & 1 & 5
\end{array}\right) .
\end{aligned}
$$

 $I_{n}=\operatorname{diag}\left(\begin{array}{llll}1 & 1 & \ldots & 1\end{array}\right)$,

كه ماتريس مهانىn n نام دارد ـ اين ماتريس در خاصيت
$A I=I A=A$

 نشان مى دهيم
با داشتن ماتريسهاى صفر و همانى كاهى مى توان ضربـ ماتريسها را با استفاده از روشى
 تقسيم نمود . برایى مثال،

$$
\begin{aligned}
& A_{1}=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right) \\
& A=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{23} \\
\hdashline a_{31} & a_{32} \\
\hdashline-a & a_{33}
\end{array}\right),
\end{aligned}
$$

است كــه با انـراز كــردن A به صــورت فـوق بـهدسـت مى آيـــ . بهاين طريـق يكـ مـاتـريس را

$$
A=\left(\begin{array}{ll}
A_{1} & A_{2} \\
A_{3} & A_{4}
\end{array}\right)
$$

مى توانيمبنويسبم

كه در آن علاوه بر ${ }^{\text {I }}$ كه در بالا تعريف شُده داريم
$A_{2}=\binom{a_{13}}{a_{23}}, \quad A_{3}=\left(\begin{array}{ll}a_{31} & a_{32}\end{array}\right), \quad A_{4}=\left(a_{33}\right)$.
 به عنوان عناصر A انجام دهيـم . بس انكر آن كاه محاسب4 حاصل ضرب A در يكى ماتريس ديگر تا حدى زياد ساده مى شود . اين نوع ضرب راضربب بلوكى مى ناميم و آت را با مـال زير تشريح مى كنيم

$$
\begin{aligned}
& A=\left(\begin{array}{ll:rr:r}
1 & 0 & -2 & 3 & 1 \\
0 & 1 & 5 & 2 & 4 \\
\hdashline 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right) \\
& B=\left(\begin{array}{rrr:rrr}
3 & 4 & -3 & 0 & 0 & 0 \\
-2 & 1 & 2 & 0 & 0 & 0 \\
\hdashline 0 & 0 & 0 & 1 & 2 & -1 \\
0 & 0 & 0 & 3 & -2 & -\frac{4}{2} \\
\hdashline 0 & 0 & 0 & 1 & 0 & 2
\end{array}\right) .
\end{aligned}
$$

 بريم • با الفراز نوق ضرب بر بلوكى به صورت زير در مى آيد

$$
\left(\begin{array}{lll}
A_{1} & A_{2} & A_{3} \\
A_{4} & A_{5} & A_{6}
\end{array}\right)\left(\begin{array}{ll}
B_{1} & B_{2} \\
B_{3} & B_{4} \\
B_{5} & B_{6}
\end{array}\right)=\left(\begin{array}{ccc}
I_{2} & A_{2} & A_{3} \\
O & I_{2} & O
\end{array}\right)\left(\begin{array}{ll}
B_{1} & O \\
O & B_{4} \\
O & B_{6}
\end{array}\right)
$$

بس حاصل ضر ب به صورت زير نونته مى نـود

$$
\left(\begin{array}{cc}
B_{1} & A_{2} B_{4}+A_{3} B_{6} \\
O & B_{4}
\end{array}\right)=\left(\begin{array}{rrrrrr}
3 & 4 & -3 & 8 & -10 & 16 \\
-2 & 1 & 2 & 15 & 6 & 11 \\
0 & 0 & 0 & 1 & 2 & -1 \\
0 & 0 & 0 & 3 & -2 & 4
\end{array}\right) .
$$

در رياضيات كاربردى اغلبب با ماتريسهاى بزرى (ماتريسهاني كه تعداد سطرها و ستونهایى

 در افراز كـردن علاوه بر بلوكهاى صفـر، ماتريسهـايع تطرى (ممجنين مـانريسهايى مهانى) بايد در نظر كرفتـ شود .

 بايِن مثلثى باشد، آن ماتريس تطرى خواهد بود .

$$
\left(\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
0 & a_{22} & a_{23} & a_{24} \\
0 & 0 & a_{33} & a_{34} \\
0 & 0 & 0 & a_{44}
\end{array}\right) \quad\left(\begin{array}{cccc}
a_{11} & 0 & 0 & 0 \\
a_{21} & a_{22} & 0 & 0 \\
a_{31} & a_{32} & a_{33} & 0 \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{array}\right)
$$

ثكل 1-1-1 ماتريسهاك مثلثى : (الن) بالا مثلثى؛ (ب) بايين مثلفى

جول خربب ماتريسى نعويض بذير نيست بـايد مشخص كنيم كه يك ماتريس را از راست
 ضرب شُدهاست .

تمريثهاى 1-1

ثابت كنيد

$$
\begin{array}{lll}
(A+B)+C=A+(B+C) & \text { (ب) } \\
A+(-A)=O & \text { (ت) } & A+B=B+A \\
\text { ب } & A+O=A
\end{array}
$$

(1-1-1) بد دسـت آوريد .

(1-1-1) به دست آوريد .

 بب) خاصيت توزيع بذيرى از جب را ثابت كنيد : قسمت (ب) تضيئ ا-Y-Y .
 استفاده كنيد) . - - ماتريسهاى زير داده شُده اند $A=\left(\begin{array}{rr}3 & 0 \\ -1 & 4\end{array}\right), \quad B=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right), \quad C=\left(\begin{array}{ll}2 & 3\end{array}\right), \quad D=\binom{1}{-1}$,

هريك از ماتريسهاى زير رامحاسبب كنيد.
$A B, B A, C D, D C, B D, C A$

$$
\begin{aligned}
& \text { (الف) } \quad A+B, A-B, B-A \text { (} \\
& 2 A+3 B, 4 C D,(A+B) A B, A^{2} \\
& \text { - }
\end{aligned}
$$

$A=\left(\begin{array}{rrr}1 & 2 & 3 \\ 0 & -1 & 1 \\ 2 & 3 & 0\end{array}\right), \quad B=\left(\begin{array}{rrr}3 & 1 & 0 \\ 1 & -1 & 2 \\ 0 & 2 & 1\end{array}\right)$,
. هريكا از مانريسهاى زير را محاسبه كنيد الفـ (
$A B,(B A-A B)^{T},(B+A) A^{T} \quad$ ب
$A^{3}, A^{3}-10 A\left(\right.$ e $\left.: A^{3}=A A A\right) \quad$ ب
$B^{3}, B^{2}, B^{3}-3 B^{2}-6 B+16 I$

$B^{T} X, \quad A^{T} Y, \quad, \quad B^{T} A^{T}$.
A- انر
$A=\left(\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 0 & 2 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right), \quad B=\left(\begin{array}{llll}1 & 2 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 2 & 2\end{array}\right)$,

$$
A=\left(\begin{array}{rrr}
1 & 1 & -1 \\
-1 & 0 & 1 \\
1 & -1 & -1
\end{array}\right):
$$

الف)
بـ (
ليا

$$
\cdot A^{2}=-2 I
$$

$$
B=\left(\begin{array}{rrr}
2 & -2 & -1 \\
2 & 3 & 4 \\
3 & 5 & 9
\end{array}\right) \quad, \quad A=\left(\begin{array}{rrr}
1 & 1 & 1 \\
1 & 1 & 1 \\
-1 & -1 & -1
\end{array}\right)
$$

آن كاه BA=A
بتوان آن ر! ماتريس همانى ناميد؟ 11- نشان دهيد ماتريس

$$
B=\left(\begin{array}{ll}
5 & 4 \\
1 & 2
\end{array}\right)
$$

در معادلهُ (Y Y Y Y Y

- IY - تمام ماتريسهاى $\left(\begin{array}{ll}0 & 1 \\ 0 & 2\end{array}\right) A=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$.
 $A=\left(\begin{array}{ll}0 & 1 \\ 0 & 2\end{array}\right)$.
- If

$$
\left(\begin{array}{ll}
0 & 1 \\
0 & 2
\end{array}\right) A=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 2
\end{array}\right) .
$$

- 10 تاببت كنيد مجموع و حاصل ضربب ماتريسهاى مثلثى، مثلثى مستتن .

18- الف) با استفاده از خاصيت توزيع يذيرى خبي يا راست، عبارت زير را بسط دهيد . $(A+B)(A-B)$.
بب) ت تحت چه شر ايطى

n×n
i) $0 \leq a_{i j} \leq 1$;
ii) $\sum_{j=i}^{n} a_{i j}=1$, for $i=1,2, \ldots, n$.

الفس) نشان دهيد

$$
A=\left(\begin{array}{ccc}
\frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
\frac{1}{6} & \frac{1}{6} & \frac{2}{3}
\end{array}\right), \quad B=\left(\begin{array}{ccc}
\frac{1}{5} & \frac{2}{5} & \frac{2}{3} \\
\frac{1}{6} & \frac{1}{2} & \frac{1}{3} \\
\frac{1}{8} & \frac{2}{8} & \frac{5}{8}
\end{array}\right)
$$

. ماتريسهاى ماركف هستند
ب) نشان دهيد $B A$ و $A B$ نيز ماتريسهاى ماركف هستند . بT نشان دهيد هر ماتريس ماركف Y Y به حـورت زیير اسـت

$$
\left(\begin{array}{cc}
p & 1-p \\
1-q & \psi
\end{array}\right), \quad 0 \leq p \leq 1, \quad 0 \leq q \leq 1
$$

ت با برض

$$
C=\left(\begin{array}{ll}
0.1 & 0.9 \\
0.9 & 0.1
\end{array}\right)
$$

. را بيابيد؛ س C^{A} ، C^{3} ، C^{2}

الـت بـ شـر ط آن كه

- ماتريس مربعى A A مى توان به صـورت مـجـمــوع يكى مـاتريس مـتـفـارن و يكى مـاتريس هـاد مـتـفـارن نوشـت
 رابه كار بر2 .

$$
\begin{aligned}
& \text { (رامنهايع : نثـان دهيد (} \\
& A+(-A)=O \text { M }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ماتريس بوجتوان با ساخص n مى نامند ؛ نشان دهيد } \\
& \left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
3 & 0 & 0 & 0 \\
4 & 1 & 0 & 0 \\
1 & 2 & 6 & 0
\end{array}\right)
\end{aligned}
$$

 A ا A-YV

با $A+A^{T}$ متقارن است

P-1

در موارد بسيار كوناكونى با دستگاه معادلات جبرى خططى روبهرو مى شويم . اين موارد
 يك معـادلئ ديفر انســيل با مسـتمات جـزئى با روشُهـاى عددى را شامل مى شـود ـ در حاللت انخـير ممكن است با تعداد زيادى معادله (مثلاً، هزار معادله) با متغير ماى زياد سر و كار دانشته باثيـيم . در اين صوررت لازم اسـت حـجم عظيمى از داده هـا را به كـار ببريمه، در اين بخخش خحواهيم ديد كه روشهاى ماتريسي براى اين منظور بسبار مفيد خواهند بود . ابتدا دسـتخامهاى با دو مـعادله و دو متغغيّر را در نظر مى كيـريم . الين دستكامهـا به نشكل

$$
\begin{align*}
& a_{11} x_{1}+a_{12} x_{2}=b_{1} \tag{1-r-1}\\
& a_{21} x_{1}+a_{22} x_{2}=b_{2}
\end{align*}
$$

كه

 مجموعهُ جواب دمتانكاه كفنه مى شود اكنون سه حالت متمايز بهصورت زير می توان در نظر كرنت .

حالت1 : مجموعه جوابب دقيقاً ثامل يك زوج مرتب الست .
عالت II :مجموعئ جواب شـامل هيج زوج مرتب نيست. حالت III : مجموعئ جواب شامل تعدادى نامتناهى زوج مرنب است .

 دو اصططلاح بعدآ آشكار خواهد نـا نـد .

برسمى می شود .
مثال 1-Y 1-1 مجموعئ جواب هر يكى از دستگاههاى زير را بيدا كنيد.

$$
\begin{array}{r}
x_{1}-2 x_{2}=3 \\
2 x_{1}-4 x_{2}=6
\end{array} \quad \text { (} \quad \text { الف } \quad \begin{array}{r}
2 x_{1}+3 x_{2}=2 \\
4 x_{1}+6 x_{2}=5
\end{array} \quad \text { (ب) } \quad \begin{array}{r}
3 x_{1}+2 x_{2}=0 \\
-2 x_{1}-x_{2}=1
\end{array}
$$

حل : با استغاده از اطلاعات جـبرى، مى توانيم دسنگاه (الف) را با روئ سذفى (حذف

 نتـيجه رابا مـعادلةُ اولك جمع كنيـم خواهيم داشت 2
 جواب دستگاه (الفـ)، عبارت است در از $\{(-2,3)\}$,
 به أين معنا كـه هيج زوج مر تب (متفاوت) ديگرى نمى توان يافت كـه در دو معادلهُ دســتاه صدت كند . نمودار معادلات در (الف) نتيجهُ جبرى را تأيمد مى نمايد (تمرين 1) .

I

II

III
 بدن جواب (غطرط موازی) . حالت III : تعداد نامتناعى جراب (غطرط منطبت) .

اگكر بخخـواهيم دسـتُاه (ب) رابا روش حـذنى حل كنيم، مـونـت نمى شـويهم و به كـزاره

 خطوط، موازى اند و بنابراين نقطءّ مشترلـ ندارند .

در مـورد دسـتگاه (ب) مـلاحظه مى شــود كـه مـعـادلهُ دوم، دو برابر مـعـادلهُ اولّل است .
از اين رو هيح اطللع جديدى به دسـت نمى دهد . بنابراين در واتع فقط يكى معادله داريم و هر زوج مرتبى كه در اين معادله صدت كند، به مجموعه ججواب دستگاه تعلت دارد . به اين ترتيب مجموعئ جـواب شامل تعـدادى نامنتـاهى زوج مـرتب اسـت، هر زوج متنـاظر با نقطه اى روى خخط نمودار

معادله است . مجموعهُ جواب را بهحورت زير مي توان نوشت

 ساير بخشههاى اين فصل را اسـاده خواهد كرد .

 به كار بريمه، داريم

$$
x_{1}=\frac{\left|\begin{array}{rr}
0 & 2 \\
1 & -1
\end{array}\right|}{\left|\begin{array}{rr}
3 & 2 \\
-2 & -1
\end{array}\right|}=\frac{0(-1)-(1)(2)}{3(-1)-(2)(-2)}=\frac{-2}{1}=-2,
$$

$$
x_{2}=\frac{\left|\begin{array}{rr}
3 & 0 \\
-2 & 1
\end{array}\right|}{\left|\begin{array}{rr}
3 & 2 \\
-2 & -1
\end{array}\right|}=\frac{3(1)-(-2)(0)}{1}=3
$$

در اين جا x يكى عدد حقيقى به نام دترمينان A نسبت داده و آنن را با 1 نشان مي دهيم (نماد (A (A) det نيز به كار مى رود) . اكر

$$
A=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)
$$

$$
\begin{aligned}
& \left\{\left(3+2 x_{2}, x_{2}\right) \mid \text { يك عدد حقيقى امـي } x_{2}\right\} \\
& \{(3+2 k, k) \mid \text { | } k \text { يك عدد حقبقى الست } k\} \text {. }
\end{aligned}
$$

$$
|A|=\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|=a_{11} a_{22}-a_{21} a_{12}
$$

 اكنون مى توان دتر مينأن يكـ مانريس
ماتريسهاى Y Y Y تعريف نمود . بس اكر

$$
A=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)
$$

$|A|=a_{11}\left|\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right|-a_{12}\left|\begin{array}{ll}a_{21} & a_{23} \\ a_{31} & a_{33}\end{array}\right|+a_{13}\left|\begin{array}{ll}a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right|$.

 را بر حسب سطر دوم آن بسط دهيم بهدست مى آوريم
$|A|=-a_{21}\left|\begin{array}{ll}a_{12} & a_{13} \\ a_{32} & a_{33}\end{array}\right|+a_{22}\left|\begin{array}{ll}a_{11} & a_{13} \\ a_{31} & a_{33}\end{array}\right|-a_{23}\left|\begin{array}{ll}a_{11} & a_{12} \\ a_{31} & a_{32}\end{array}\right|$.
از معادلات (Y-Y
 يك كام جلوتر ببريم، مى توانيمدتر مينان يك ماتريس زير انتريسهاى
 كه در اين مجمـوع دخالت دارند، مربوط به زيرماتريسهايمى هــتند كه بهنوبت بان با حذف يكى سطر

و يكـ سـتون از مـاتريس اصلى به دست مى آيند . دترمـينان بكـ ماتريس را مي توان با اسـتفـاده از هر مطر يا ستون ماتريس بسط داده و مدحاسبه نمود (تهرين Y) .
 بياننتود

$$
\text { لهيه 1-ף - } 1 \text { (تاعدءُ كرامر): دمستكاه AX=B، } n \times n \text { مفروض است كه در آن }
$$

$$
A=\left(\begin{array}{llll}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & & & \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right), \quad X=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right), \quad B=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right)
$$

جواب منحصر به فرد اين دستكاه عبارت است از

$$
x_{k}=\frac{\left|A_{k}\right|}{|\tilde{A}|}, \quad k=1,2, \ldots, n
$$

 حاحسل مى شود .

 (

روش علف تاوس
روشن است كه حل دستـامهاى بزرك با قاعــهُ كرامر ثـــامل مـهاسـبات زيادى استـ و

 دستکاه $m \times n$ زير را بيابيم

$$
A X=B
$$

$$
(Y-Y-1)
$$

$$
\begin{aligned}
& A=\left(\begin{array}{llll}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & & & \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right), \quad X=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right), \quad B=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right) \\
& \text { بهتر است كه با ماتريس } m \times(n+1) \text { زير كار كنيم } \\
& A \left\lvert\, B=\left(\begin{array}{llll:l}
a_{11} & a_{12} & \cdots & a_{1 n} & b_{1} \\
a_{21} & a_{22} & \cdots & a_{2 n} & b_{2} \\
\vdots & & & & \\
a_{m 1} & a_{m 2} & \cdots & a_{m n} & b_{m}
\end{array}\right)\right.,
\end{aligned}
$$

 مثال، سطر دوم نمايانگُر معادلة زير است . $a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2}$.

حـال ملاحظه مى كنيم كه مجـموعهُ جـواب دستتاه ((Y-Yروى ماتريس افزوده، عوض نمى شود . اين تغيـرات را ا/ممال سطرى مقلماتى مى ناميم، كه بهورت زير نعريف مى شوند.

ثا : : هر دو سطر را مى توان عـوض كرد (اين عـمل نتـط ترتبب معـادله هاى دستگاه راعـوض میى كند) .
 طرفين مسادله در يكى ثابت غيرصفر ري) .

نتيجهاش كميتهاى مساوى است) .

به عبازتى دو ماتريس معادلند . اين نوع معادل بودن را معادل بودن سطرى كويند و آن را با نماد ~ نتشان مى دهند . مـى نويسيم " $A \sim B$ ، يعنى A معادل سطرى B امسته به اين معنـى كه مى توان با يك يا هند عمل سطرى مقدماتى A ابه B (يا Bا به A) تبديل كرد . با يكى مئال مزاياى كاريرد اعمال سطرى مقدماتى را نشان مى دميـم •

$$
\begin{array}{rr}
2 x_{1}-4 x_{2}+x_{3}= & 0 \\
x_{1}+x_{2}+4 x_{3}= & 5 \\
3 x_{1}+x_{2}-3 x_{3}= & -1 .
\end{array}
$$

حل : با ماتريس انزودهُ دستكاه، يعنى

$$
\left(\begin{array}{rrrr}
2 & -4 & 1 & 0 \\
1 & 1 & 4 & 5 \\
3 & 1 & -3 & -1
\end{array}\right)
$$

شروع مى كنيم و اعمال سطرى مقدماتى را انجام مى دهيـم تا به جواب برسيم الفن) سطرهاى اوّل و دوم را عوض مى كنيهم

$$
\left(\begin{array}{rrrr}
1 & 1 & 4 & 5 \\
2 & -4 & 1 & 0 \\
3 & 1 & -3 & -1
\end{array}\right)
$$

ب) سطر اولَ را در Y خـرب كرده و نتيجه را با سطر دوم جـع مى كنـم

$$
\left(\begin{array}{rrrr}
1 & 1 & 4 & 5 \\
0 & -6 & -7 & -10 \\
3 & 1 & -3 & -1
\end{array}\right)
$$

ب) سطر اولّ را در ب- خربب نموده و نتيجه رابه سطر سوم اضافه مى كنيم

$$
\left(\begin{array}{rrrr}
1 & 1 & 4 & 5 \\
0 & -6 & -7 & -10 \\
0 & -2 & -15 & -16
\end{array}\right)
$$

$$
\text { ت) سطر دوم را در } \frac{1}{6} \text { ضرببمى كنيم }
$$

$$
\left(\begin{array}{rrrr}
1 & 1 & 4 & 5 \\
0 & 1 & \frac{7}{6} & \frac{10}{6} \\
0 & -2 & -15 & -16
\end{array}\right)
$$

ث) سطر دوم را در Y خرب كرده نتيجه را به سطر سوم اخـافه مى كنبم

$$
\left(\begin{array}{rrrr}
1 & 1 & 4 & 5 \\
0 & 1 & \frac{7}{6} & \frac{10}{6} \\
0 & 0 & -\frac{38}{3} & -\frac{38}{3}
\end{array}\right)
$$

ج) سطر سوم رادر 38 - خربب مى كنيم

$$
\left(\begin{array}{rrrr}
1 & 1 & 4 & 5 \\
0 & 1 & \frac{7}{6} & \frac{10}{6} \\
0 & 0 & 1 & 1
\end{array}\right)
$$

سطر سوم ماتريس آخر نشان مى دهد كه 1 = 1 . سطر دوم به حورت زير نوشتنه مى شود

$$
x_{2}+\frac{7}{6} x_{3}=\frac{10}{6}=x_{2}+\frac{7}{6},
$$

كه از آن داريـم $x_{2}=\frac{1}{2}$ سطر اوّل بيان مى كند كه

$$
x_{1}+x_{2}+4 x_{3}=5=x_{1}+\frac{1}{2}+4
$$

بنابراين $\left\{\left(\frac{1}{2}, \frac{1}{2}, 1\right)\right\}$.
 Y-Y - \ddagger

 اينروند، ججـا نــــانى از آخـر نامـيـده مـى شـــرد . هند نكتـه را دربـاره́ روش ححـنفى كــاوس يادآور مى شويـم •
1- عناصر ماتريس الفزوده مىتوانتد اعداد حبسيح نباشنـد .

ץ- اين روش بآسانى براى دستگاههاى بزركّتر از
F

به سطر دوم و سطر دوم به سطر سوم نادرسـتأمـت . زير أين عمل مهكن اسـت بهيك سـطر صفر
منشجر شود در سحاللى كه هنتن سـطرى نبايل وجود داثـته باثـلـ .

سشرى المـت .

باشد . علاوه برآن تمام عناصر زير. اين عنصر صفر باشند .
 واتع باشلد .

 دوم، داراى صـفر در زير آن نيسـت ؛ در (ب) سـطرى كه هــه عناصـر آن صـفـر المـت، در هايين
 اولّ نيسـت.
$\left(\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 5 \\ 0 & 0 & 1\end{array}\right)$
(الفـ)

$$
\left(\begin{array}{llll}
1 & 2 & 0 & 3 \\
0 & 1 & 0 & 2 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

(ب)

$$
\left(\begin{array}{lllll}
0 & 1 & 4 & 3 & 0 \\
0 & 0 & 1 & 5 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

(ب)
شـكل Y-Y-Y ماتريسها بششكلل پلكانى سطرى مستند

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 5 \\
0 & 1 & 0
\end{array}\right) ~\left(\begin{array}{llll}
1 & 2 & 0 & 3 \\
0 & 1 & 0 & 2 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad\left(\begin{array}{ccccc}
0 & \left(\begin{array}{lll}
0 & 1 & 5
\end{array}\right. & 0 \\
0 & 1 & 4 & 3 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

رباضيات مهندمى

دستگاه مـال r-Y Y r- با با روشى ديگر كه نيازى به جايگزينى از آخر ندارد، مى توان حل
نمود. از كام (ج) ثمروع كرده و به صورت زير ادامه مى دهيم .
ع) سـر دو رادر ا - خربو نتيجه را با سطر اولّ جمع مى كنيم •

$$
\left(\begin{array}{cccc}
1 & 0 & \frac{17}{6} & \frac{20}{6} \\
0 & 1 & \frac{7}{6} & \frac{10}{6} \\
0 & 0 & 1 & 1
\end{array}\right)
$$

ع) سطر سـه را در

$$
\left(\begin{array}{rrrr}
1 & 0 & 0 & \frac{3}{6} \\
0 & 1 & \frac{7}{6} & \frac{10}{6} \\
0 & 0 & 1 & 1
\end{array}\right)
$$

خ (سطر سه را در

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & \frac{1}{2} \\
0 & 1 & 0 & \frac{1}{2} \\
0 & 0 & 1 & 1
\end{array}\right)
$$

 سطرى تحقول يانته المت . بهنظر مى رسلد كه سحجم محاسبهُ لازم برای به دست آوردن جوابب از
 ديد كه هميشه هنين نيست .

معكوس ماتراسس مربعى
يك راه ديگر بـراى حل دسـتگاه مـعـادلات جـبرى خـطى اراثه مى دهيم . اكـر دمـتگاه $n \times n$ ، $A X=B$ باشـد به قســى كه
$A A^{-1}=A^{-1} A=I$,

 داشمته باشد به كونهاى كه معادلى ((
 اتبات آن رابه عنوان تمرين مى كذاريم (تمرينهاى ه تA A).

$$
\begin{aligned}
& \text { الف) } \\
& s\left(A^{-1}\right)^{-1}=A \quad(ب \\
& \text { ! }(A B)^{-1}=B^{-1} A^{-1} \\
& \text {. }\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T} \quad(ت
\end{aligned}
$$

معكوس يكى ماتريس را مى توان با روش تحويل كاوس ـ زردان به ديست آورد . ماتريس مقلماتى را ماتريسى تعريف مى كنيم كه با يكى از اعمال سطرى مقدماتى روى ماتريسا با به دست مى آيد . براى مئال
$\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right), \quad\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & c\end{array}\right), \quad, \quad\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & c & 1\end{array}\right)$
ماتريسهاى معدماتى اند كه از

 $\left(E_{1} E_{2} \cdots E_{r}\right) A=I$,

ك ك

مصاسب4 نشان مي دهد . مثال I-Y-Y مطلوب امست محاسببء

$$
A=\left(\begin{array}{rrr}
1 & -1 & 1 \\
2 & 1 & 2 \\
3 & 2 & -1
\end{array}\right)
$$

حل : بانوشتن بكى مـاتريس همـانى

$$
\begin{aligned}
& \left(\begin{array}{rrrrll}
1 & -1 & 1 & 1 & 0 & 0 \\
2 & 1 & 2 & 0 & 1 & 0 \\
3 & 2 & -1 & 0 & 0 & 1
\end{array}\right) \sim\left(\begin{array}{rrrrrr}
1 & -1 & 1 & 1 & 0 & 0 \\
0 & 3 & 0 & -2 & 1 & 0 \\
0 & 5 & -4 & -3 & 0 & 1
\end{array}\right) \\
& \sim\left(\begin{array}{rrrrrr}
1 & 0 & 1 & \frac{1}{3} & \frac{1}{3} & 0 \\
0 & 1 & 0 & -\frac{2}{3} & \frac{1}{3} & 0 \\
0 & 0 & -4 & \frac{1}{3} & -\frac{5}{3} & 1
\end{array}\right) \sim\left(\begin{array}{rrrrrr}
1 & 0 & 1 & \frac{1}{3} & \frac{1}{3} & 0 \\
0 & 1 & 0 & -\frac{2}{3} & \frac{1}{3} & 0 \\
0 & 0 & 1 & -\frac{1}{12} & \frac{5}{12} & -\frac{1}{4}
\end{array}\right) \\
& \sim\left(\begin{array}{rrrrrr}
1 & 0 & 0 & \frac{5}{12} & -\frac{1}{12} & \frac{1}{4} \\
0 & 1 & 0 & -\frac{2}{3} & \frac{1}{3} & 0 \\
0 & 0 & 1 & -\frac{1}{12} & \frac{5}{12} & -\frac{1}{4}
\end{array}\right) .
\end{aligned}
$$

بنابراين

$$
A^{-1}=\left(\begin{array}{rrr}
\frac{5}{12} & -\frac{1}{12} & \frac{1}{4} \\
-\frac{2}{3} & \frac{1}{2} & 0 \\
\frac{1}{12} & \frac{5}{12} & -\frac{1}{4}
\end{array}\right)=\frac{1}{12}\left(\begin{array}{rrr}
5 & -1 & 3 \\
-8 & 4 & 0 \\
1 & 5 & -3
\end{array}\right)
$$

و (تمي توان نمـان داد كها 1 (1) $A A^{-1}=A^{-1} A=1$
مـعكوس يكى مـاتريس ناتكين يكتاست (تمرين ه) . روش نـوق مـعكـوس ماتريس را

 مى رسـم كه ماتريس همانى با اعمال سطرى به A A تبديل مى شود . بطور خلاصه
$(A \vdots I) \sim\left(I: A^{-1}\right)$.

دستگاه AX=B را كه دأراىى جوابب منتحصر به فرد باشـد با روش حــفـى كاوس مى توان حل نمود يا اين كه ديكُ بسـتگى دارد . اكر لازم باشد دسـتكاه نتط بكـ بـار حل شود، روش حذفى كـاوس مناسبب

خخو اهل بود .

سستكاههأى همكت

 (مـوسـوم به جـواب بليعى) امـت (تمرين IY) . اکر A تكين باثشـد، دسـتكاه داراى بینهـايت جو ابب اسـت . در حالث اخخير، اعمال سطرى A به تعدادى، مثّلاّr تا سطر صفر منجر مى شـود . در نتيجه n - r متغيّر را مى توان برحسب r متـغير كه اختـيارى اند بهد دست آورد . دسـتكاههاى همكّن غيرمربعى را مانند مثال زير مى توان حل نمود .

$$
\begin{array}{r}
x_{1}-2 x_{2}+2 x_{3}=0 \\
2 x_{1}+x_{2}-2 x_{3}=0 \\
3 x_{1}+4 x_{2}-6 x_{3}=0 \\
3 x_{1}-11 x_{2}+12 x_{3}=0 .
\end{array}
$$

حل : تحــويـل سطرى مـــاتريـس ضــرايب را بـرأى بهدــتآوردن صــورت بلكانى سـطرى به كارمى بريم :
$\left(\begin{array}{rrr}1 & -2 & 2 \\ 2 & 1 & -2 \\ 3 & 4 & -6 \\ 3 & -11 & 12\end{array}\right) \sim\left(\begin{array}{rrr}1 & -2 & 2 \\ 0 & 5 & -6 \\ 0 & 10 & -12 \\ 0 & -5 & 6\end{array}\right) \quad\left(\begin{array}{rrr}1 & -2 & 2 \\ 0 & 5 & -6 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right) \sim\left(\begin{array}{rrr}1 & -2 & 2 \\ 0 & 1 & -\frac{6}{5} \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$.
مسومـين سطر مـاتريس سـوم كـه براببر صـفر اســت از خـرب دومـين سطر مـاتريس دوم در Y ا و جمع آن با سوميسن سطر به دست مى آيد، و سطر خهارم آن از ضرب سطر دوم در ا و جمع آن با

سطر ههارم به دمت مى آيد . حال از حورت بلكاني سطرى نتيجه مى شود :

$$
\begin{aligned}
& x_{2}=\frac{6}{5} x_{3}, \\
& x_{1}=2 x_{2}-2 x_{3}=\frac{2}{5} x_{3} .
\end{aligned}
$$

بنابراين مجموعءّ جوابب را به حورت زير مى توان نوشـت : $\left\{\left.\left(\frac{2}{5} k, \frac{6}{5} k, k\right) \right\rvert\,\right.$ |
 السكالر (2, 5, 6$)$ به مجمرعهُ جواب بستگكى دارد .

تمرانهاى 1
-
Yاتريس زير مغروض امست

$$
A=\left(\begin{array}{rrrr}
5 & -6 & -1 & 1 \\
0 & 2 & -3 & 2 \\
1 & 2 & -1 & 4 \\
-1 & 0 & 2 & 1
\end{array}\right)
$$

مطلوب امست محاسبه́| 1 با هريك از روشهاى زير :
الف) بسط آن با استفاده از ستون اوكل؛ ب) بسط آن با استفاده از سطر خههارم؛ ب) بسط آلن با امتنفاده از ستون سوم 1 Y-Y-1 اع به حورت بلكانى سطرى تحويل يانته تبليل مى كند، نهرمـت كنيد .
 $-F$ به (الفـ) صـورت بلكاني سطرى؛ (ب) صـورت بلكانـى سطرى تحـويل يانـتـه تبــديل

مى كند، فهرمت كنيد

سیس نشان دهيد $C=$ () .

ت تسمت (ب) از تضيه́ \quad - ا تا بنويسيد .
9- برای هر ماتريس

$$
\begin{aligned}
& \left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & c
\end{array}\right) A \quad\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) A \text { (الفـ) } \\
& \left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & c & 1
\end{array}\right) A \text { (ت } \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & c & 1
\end{array}\right) A \\
& \text {. } A A^{-1}=I \text { - } \\
& \text {. } A A^{-1}=A^{-1} A=I ، r-r-1 \text { - } 11
\end{aligned}
$$

 جواب بديهى است، اكر A ناتكين باشد . مساله را :
الف) با باستفاده از معكوس Aحل كنبد؛ \quad (ب) با با استفاده از تاعدهُ كرامر حل كنيد.

- آ مجموعء جواب هريكى از دسنكامهاى زير را يِدا كنيد.

$$
\begin{align*}
x_{1}+2 x_{2}-x_{3} & =0 \\
2 x_{1}+x_{2}+2 x_{3} & =3 \\
x_{1}-x_{2}+x_{3} & =3 \\
& \\
& \\
& \\
& \\
& \\
x_{1}-x_{1}+3 x_{2}+5 x_{3} & =23 \\
x_{1}-2 x_{2}+3 x_{3} & =6 \\
2 x_{1}+x_{2}+x_{3} & =0 \\
x_{1}+x_{2}+3 x_{3} & =0
\end{align*}
$$

- If

$$
\begin{aligned}
& x_{1}-x_{2}+x_{3}=0 \\
& x_{1}+x_{2}+x_{3}=0 \\
& x_{1}-x_{2}-x_{3}=0
\end{aligned} \quad \begin{aligned}
& x_{1}+5 x_{2}-5 x_{3}=1 \\
& x_{1}-x_{2}+x_{3}=2 \\
& x_{1}+x_{2}-x_{3}=1
\end{aligned}
$$

$$
\begin{array}{rlr}
2 x_{1}-3 x_{2}+x_{3} & =0 \\
3 x_{1}-2 x_{2}+2 x_{3} & =0 \\
x_{1}+3 x_{2}-2 x_{3} & =0 \\
& & \\
3 x_{1}-2 x_{2}+2 x_{3} & =5 \\
2 x_{1}+x_{2}-3 x_{3} & =5 \\
5 x_{1}-3 x_{2}-x_{3} & =16 & \\
3 x_{1}+2 x_{2}=0
\end{array}
$$

19- تشان دهيد دترمـينان يك ماتريس مئلئى برابر ساصـل خـرب عناصر واتع بر تطر اصلى آن
. - اV
$\left|\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 2 & 3\end{array}\right| \quad$ ($ب$ (الف)
$\left|\begin{array}{rrrr}1 & 0 & -1 & 1 \\ 0 & 4 & 0 & 1 \\ 3 & 2 & -2 & 1 \\ 0 & -1 & 1 & 4\end{array}\right|$
(ت)

$$
\left|\begin{array}{rrr}
1 & 2 & 3 \\
0 & -4 & 2 \\
-1 & 5 & 4
\end{array}\right|
$$

$$
\left|\begin{array}{ccc}
1 & \frac{1}{2} & \frac{1}{3} \\
\frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\
\frac{1}{3} & \frac{1}{2} & \frac{1}{5}
\end{array}\right|
$$

(
$\left|\begin{array}{ll}1 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{3}\end{array}\right|$

$$
\left|\begin{array}{rrrr}
1 & 4 & -2 & 1 \\
-1 & 2 & -1 & 1 \\
3 & 3 & 0 & 4 \\
4 & -4 & 2 & 3
\end{array}\right|
$$

(ح

$$
\left|\begin{array}{lll}
0 & 1 & -1 \\
3 & 1 & -4 \\
2 & 1 & \cdot 1
\end{array}\right|
$$

 اعمال سطرى مقدماتى مشنخص زير را روى A انجام دهد : الف) سطرهاي Y و Y عوض سُوند . ب) سطر 「 در يك ثابت c
〒) (

 . E_{3}
ا

$$
A=\left(\begin{array}{rrrr}
3 & 2 & -1 & -4 \\
1 & -1 & 3 & -1 \\
2 & 1 & -3 & 0 \\
0 & -1 & 8 & -5
\end{array}\right) \quad, \quad B=\left(\begin{array}{r}
10 \\
-4 \\
16 \\
3
\end{array}\right)
$$

دارای جـواب نيسـتـ، الما أكر $B=\left(\begin{array}{llll}2 & 3 & 1 & 3\end{array}\right)^{\tau}$ ، آن كــاه دسـتاه نعـدادى نامتناهى
جواب دارد .

با استفاده از روش حذنى كاوس، دستگاه زير را حل كنيد :

$$
\left(\begin{array}{rrr}
5 & -1 & 1 \\
2 & 4 & 0 \\
1 & 1 & 5
\end{array}\right) X=\left(\begin{array}{r}
10 \\
12 \\
-1
\end{array}\right)
$$

YY - كدام يك از ماتريسهاى زير تكين هستند ؛

$$
\begin{aligned}
& \left(\begin{array}{rrrr}
1 & 0 & -2 & 3 \\
3 & 1 & 1 & 4 \\
-1 & 0 & 2 & -1 \\
4 & 2 & 6 & 0
\end{array}\right)
\end{aligned} \begin{aligned}
& \left(\begin{array}{rrr}
3 & 2 & -1 \\
0 & -1 & 4 \\
6 & 3 & 2
\end{array}\right) \\
& \left(\begin{array}{rrrr}
1 & 0 & -2 & 3 \\
3 & 1 & 1 & 4 \\
-1 & 0 & 2 & -1 \\
4 & 3 & 6 & 0
\end{array}\right)
\end{aligned}
$$

 عبارت است از : $\left|\begin{array}{ccc}x_{1} & x_{2} & 1 \\ a & b & 1 \\ c & d & 1\end{array}\right|=0$.

Y0 - مجموعهُ جوابب شريك از دستُّاههاى زير را بيابيد .

$$
\begin{aligned}
& 2 x_{1}+3 x_{2}=3 \\
& 3 x_{1}+2 x_{2}=7 \\
& x_{1}-2 x_{2}=5 \text { (ب) } \begin{aligned}
4 x_{1}-7 x_{2}+x_{3}-6 x_{4} & =0 \\
x_{1}+2 x_{2}-5 x_{3}+4 x_{4} & =0 \\
2 x_{1}-3 x_{2}+2 x_{3}+3 x_{4} & =0 \\
x_{1}+2 x_{2}-x_{3}+3 x_{4} & =3 \\
3 x_{1}+6 x_{2}-x_{3}+8 x_{4} & =10 \\
2 x_{1}+4 x_{2}+4 x_{3}+3 x_{4} & =9
\end{aligned} \text { (七) }
\end{aligned}
$$

 زيرند، بيابيد :

$$
\begin{aligned}
& A=\left(\begin{array}{rrr}
3.000 & -4.031 & -3.112 \\
-0.002 & 4.000 & 4.000 \\
-2.000 & 2.906 & -5.387
\end{array}\right), \quad B=\left(\begin{array}{r}
-4.413 \\
7.998 \\
-4.481
\end{array}\right) \\
& A=\left(\begin{array}{rrr}
4.23 & -1.06 & 2.11 \\
-2.53 & 6.77 & 0.98 \\
1.85 & -2.11 & -2.32
\end{array}\right) . \quad B=\left(\begin{array}{r}
5.28 \\
5.22 \\
-2.58
\end{array}\right) \\
& A=\left(\begin{array}{rrr}
2.51 & 1.48 & 4.53 \\
1.48 & 0.93 & -1.30 \\
2.68 & 3.04 & -1.48
\end{array}\right), \quad B=\left(\begin{array}{r}
0.05 \\
1.03 \\
-0.53
\end{array}\right)
\end{aligned}
$$

$$
A=\left(\begin{array}{rrr}
4 & 1 & 0 \\
2 & -1 & 2 \\
a & b & -1
\end{array}\right) .
$$

$$
\begin{aligned}
& \text { الف) مقادير a } \text { a را جنان تعيين كنيد كه A تكين باشهد . }
\end{aligned}
$$

$$
\begin{aligned}
& \text {-YA- هريك از دستگامهاى زير را احل كنيد }
\end{aligned}
$$

$$
\begin{aligned}
x_{1}+x_{3} & =3 \\
x_{2}+3 x_{3} & =2 \\
2 x_{1}+x_{2}+x_{3} & =4 \\
2 x_{1}+x_{2}+2 x_{3} & =5 \\
x_{1}+x_{2}+2 x_{3} & =2 \\
x_{2}+2 x_{3} & =1 \\
3 x_{1}+x_{2}+2 x_{3} & =4
\end{aligned}
$$

$$
\text { (ب) } \begin{aligned}
x_{1}-2 x_{2}+x_{3} & =1 \\
x_{1}+x_{2}-x_{3} & =0 \\
2 x_{1}-3 x_{2}+x_{3} & =0 \\
-3 x_{1}+2 x_{2}+3 x_{3} & =1 \\
5 x_{1}+3 x_{2}-2 x_{3} & =0 \\
-2 x_{1}-2 x_{2}+x_{3} & =4 \\
-8 x_{1}-8 x_{2}+3 x_{3} & =-4
\end{aligned}
$$

- - Y --
 (رالمنمايع : دو مطلب بايد ثابت شـــود : يكى اين كه نشـان دهيم اكر A متقارن و ناتكين
 متقارناسـت .)

$$
\begin{aligned}
& \text {) (نخاصيت انعكاسى) A ~A (i }
\end{aligned}
$$

 سه معـادله داراي جواب يكتا، بدون جوابب و نعلاد نامستاهى جيوابِ امست، مورد بـحث ترار دهيد .
: F - 1
در بخشت 1-1 ننـان داديم كه جكونه تعريف ضرب ماتريسها بطور طبيعى از تبديلات

$\left(\begin{array}{rrr}1 & 2 & -3 \\ -2 & 4 & 1\end{array}\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\binom{x_{1}+2 x_{2}-3 x_{3}}{-2 x_{1}+4 x_{2}+x_{3}}$

تعريف مى كنيم •
 $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.
 داراى خحواص زير است .
اكر u v $\mathbf{~ v ~ د و ~ ب ر د ا ر ~ د ر ~}$

$$
\mathbf{u}+\mathbf{0}=\mathbf{0}+\mathbf{u}=\mathbf{u}
$$

$$
. \mathbf{u}+(-\mathbf{u})=(-\mathbf{u})+\mathbf{u}=\mathbf{0}
$$

أكـر u بردارى در $\mathbf{~ u}$
 دارانى خوام زير است :

$$
\text { ب- بهازاى هر } \mathbf{~ ب ر ~} \mathbf{~ د ر ~ ه ر ~ د و ~ ع ل د ~ ح ق ي ق ى ~ c ~} c
$$

$$
\text { بازاز هر } \mathbf{~ د ر ~} \mathbf{~} \mathbf{~}
$$

 همحننـن مى توانيم از مـاتريسهاى 1×1 (يا بردارهاى ستـونى) الستفـاده كنيه، زيرا تمام خحواص

 بردارى كــه بايـد تبــديل شـو د بردارى در ترار دارد .

به صورت $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.
 بردارهاى به شكل $\mathbf{u}=\left(u_{1}, u_{2}, \ldots, u_{n-1}, 0\right)$

كه زير مجموعهاى از R ${ }^{\prime \prime}$ را تشكيل مى دهند . بنابراين زيرنغا را تعريف مى كنيم .
 است، هركاهW يكى نضاى بردارى باشد . تاكيد مى كنيم كه هر زيرمجموعه ای از يكى نفاى بردارى، زير نفـا نيسـت . براى مثال، ،

 دارد : خود نضـا و نضاى ثــامل فقط بردار 0 (تمرين Y) . زيرنضاهاى ديكر به كـمكـ تضيهُ زير بآسانى به دست مى آيند .
 اسـت اكر و فقط اككر W تتحت عمل جـمع بردارى و ضربب امسالر بسته بامُد .

 بيشترى نياز داريـر .

تعريل $\mathbf{v}=c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}+\cdots+c_{j} \mathbf{u}_{j}$,

كه در آن c_{i} ها اعلداد حقيفى اند، يكتركيب خخطم از بردارها در S ناميلده مى شود .

$\mathbf{u}_{1}=(2,3,4), \quad \mathbf{u}_{2}=(-1,0,5), \quad \mathbf{u}_{3}=(1,-4,7)$,
آن كاه بردار
$\mathbf{v}=c_{1}(2,3,4)+c_{2}(-1,0,5)+c_{3}(1,-4,7)$,
كه درآن
 رامى توان به حـر
 تعريل أ S نضاى V را بديد مى آورد هر كاه هر بردار در V تركييى خطا

$S=\{(1,0,0),(1,1,0),(1,1,1)\}$
. را بديد مى آورد R 3
 مى توان به صورت تركيِى خطـى از بر دارهاى S نوشـت . بـس
$c_{1}(1,0,0)+c_{2}(1,1,0)+c_{3}(1,1,1)=\left(x_{1}, x_{2}, x_{3}\right)$

كه به معادلات خطى زير منجر مى شُود :

$$
\begin{aligned}
c_{1}+c_{2}+c_{3} & =x_{1} \\
c_{2}+c_{3} & =x_{2} \\
c_{3} & =x_{3} .
\end{aligned}
$$

جوابب يكتاى اين دستگاه حنين است (تمرين ץ) $c_{1}=x_{1}-x_{2}, \quad c_{2}=x_{2}-x_{3}, \quad c_{3}=x_{3}$,

با المتفاده از اين مقادير مى توان نـُـان داد كه براى مثال : $(-2,5,7)=-7(1,0,0)-2(1,1,0)+7(1,1,1)$.

مجموعهُ S مثال ا را ندارند. براى مثالن، مججـوعهُ
$T=\{(1,0,2),(1,2,0),(1,1,1)\}$
$2 x_{1}-x_{2}-x_{3}=0^{\infty}$ (\mathbf{R}^{3}
 المتقّلال خططى نام دارد و به صوردت زير تعريفـ مى شود .

تُريلـ 1
 هر كاه معادلي

$$
\begin{aligned}
& c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}+\cdots+c_{j} \mathbf{u}_{j}=0 \\
& c_{1}=c_{2}=\cdots=c_{j}=0,
\end{aligned}
$$

صادق باثشد كه در آن c_{i} ها اعداد حقيقى اند.
 نشود . اكُ معادلي ()
 نوشت . در يكـ مجموعةُ مستقل خططى هيج يك از بردارها را نمى توانيم به صررت تركيبي خطى

 تمرين واكذار مى شود (تمرين ه)

الف) هر بردار غيرصفر، مستقل خطى المت . ب) بردار صفر وابستهُ خططى است . ب) هو مجموعهاى از بردارها كه شـامل بردار صفر باشد وابستهٔ خططى است .
 را برای فضاى بر دارى V تعريف نمود .
 برايى Vاست هركاه

الفس) S مستقل خططى باشدل، و
 بهعنوان مثالل، مجموع4
$S=\{(1,0,0),(1,1,0),(1,1,1)\}$
 براى است، هر جـند هنوز هم

 تضيةُ نير را مى توان بيان كرد .
 شامل n بردار الست .

انبـات اين تضسيه را مى توان در كتابهـاى جبر خططى (مـلاّ، جبر خططى مـدمـاتى نوشته الستانلى كراسمان) يافت

حال معنى دفيقترى را از عبارت انضاى بردارى nبُعدى ارائه مىدهيم •
 V Vم نامند و با نماد "dim (V)" نمايش می دهند . نغـاى بردارى شامل بردأر صفـر، دارابى بُعد صفر امـت .
 هايه هاى " يكى از آنها به نحاطر سادكى مورد توجه امبت . أين بأيه به صمررت زير است :

$$
\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right\}
$$

\checkmark

$$
\begin{aligned}
& \mathbf{e}_{1}=(1,0,0, \ldots, 0) \\
& \mathbf{e}_{2}=(0,1,0, \ldots, 0) \\
& \vdots \\
& \mathbf{e}_{\mathbf{n}}=(0,0,0, \ldots, 1)
\end{aligned}
$$

يعنى
1-r-1 را ببينيد) .

R ${ }^{3}$ شكل ا-1-

حال به رابطةُ بين توابع د تبديلات مى بردازيم , وتتى مى نويسيم ($y=f(x)$ ، نماد f اعمال

رياخيات مبندسى

يك و فـقط يكـ مســــدار را نسـبـت مى دهـد . همـسحنين مـنظور از دامنه و بـرد تابع f، بهترتيب
 (است . تابع را بكى نكائُت نيز مى ناميم، زيرا
 مى نگارد .

با تو جه به مطالب فوق يكى تبديل خطى را به حورت زير تعريف مى كنيم .

تعريف 1 نگاثشت يكى مقدارى "

$$
\begin{aligned}
& \text { الفـ) بهازاي هر }
\end{aligned}
$$

الفـ) ب) $L\left(u_{1}, u_{2}, u_{3}\right)=\left(u_{1}, u_{2}, 0\right)$ (

ه(
. حز : فــرض كنيــد در تسمت (الفـ)
$L(\mathbf{u}+\mathbf{v})=L\left(u_{1}+v_{1}, u_{2}+v_{2}, u_{3}+v_{3}\right)=\left(u_{1}+v_{1}, u_{2}+v_{2}\right)$,
,
$L(\mathbf{u})+L(\mathbf{v})=\left(u_{1}, u_{2}\right)+\left(v_{1}, v_{2}\right)=\left(u_{1}+v_{1}, u_{2}+v_{2}\right)$.

$L(c \mathbf{u})=L\left(c u_{1}, c u_{2}, c u_{3}\right)=\left(c u_{1}, c u_{2}\right)=c L(\mathbf{u})$.
بنابراين نگاتــت (الفـ) يكى تـبـيل خططى انست . اين تبـديل، يكتصـوير نامـيده مى شـود . زيرا خحظى كـه از نقطهُ مى كتند. . شـكل ا

تـســمت (ب) را بهعنـوان تمرين مى كــناريم (تمرين 9) . توجـه كنيـد كـه ايـن نگاشت

$\left(u_{1}, u_{2}, u_{3}\right)\left(\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right)=\left(u_{1}, u_{2}\right)$,
به دست آورد، در حالى كه دومى بهحورت زير خواهد بو2
$\left(u_{1}, u_{2}, u_{3}\right)\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)=\left(u_{1}, u_{2}, 0\right)$,
كه نشان مى دهد دو ماتريس متفاوت به كار رنته اند .
$L(\mathbf{u}+\mathbf{v})=L\left(u_{1}+v_{1}, u_{2}+v_{2}\right)=\left(u_{2}+v_{2}, u_{1}+v_{1}, 1\right)$

$$
\begin{aligned}
L(\mathbf{u})+L(\mathbf{v}) & =L\left(u_{1}, u_{2}\right)+L\left(v_{1}, v_{2}\right)=\left(u_{2}, u_{1}, 1\right)+\left(v_{2}, v_{1}, 1\right) \\
& =\left(u_{2}+v_{2}, u_{1}+v_{1}, 2\right)
\end{aligned}
$$

جون دو عبارت متفاوتند، اين نگاثشت يك تبلديل خطى نيسـت . در تسـمـ (ت) داريم $L\left(c u_{1}, c u_{2}, c u_{3}, c u_{4}\right)=\left(c^{2} u_{1} u_{2}, c\left(u_{3}-u_{4}\right)\right)$,
$c L\left(u_{1}, u_{2}, u_{3}, u_{4}\right)=c\left(u_{1} u_{2}, u_{3}-u_{4}\right)=\left(c u_{1} u_{2}, c\left(u_{3}-u_{4}\right)\right)$,
جون دو عبارت يكسان نيستند، ايزن نگاشت نيز يكى تبديل خطط نيست . تبديل خططى مثال I-Y-Y (ب) را مى توان به ثـكـل ماتريسى بهصورت
$\left(u_{1}, u_{2}, u_{3}\right)\left(\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right)=\left(u_{1}, u_{2}\right)$,

 به صوريت زير نيز بيان كنيم
$\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)\left(\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right)=\binom{u_{1}}{u_{2}}$.
هريكى از اين نمادها مزايا و معايبى دارد و هركدام كه مناسبتر باشثد، آن را به كار خواهيم كرفت.
 تبديلات خططى بكى بـ يك را بررسى مى كنيم كه بهحورت زير تعريف مى شوند .

توجه كنيد كه تبديل 1-r-r (الفـ) يكى به يكى نيسـت جون
$L\left(u_{1}, u_{2}, 2\right)=L\left(u_{1}, u_{2}, 3\right)=\left(u_{1}, u_{2}\right)$.
تعريف 1-Y-9 روشى عـملى برالى تـعيـين يكـ به يكـ بودن تبـديـل بهد دست نـى دهد . روش بهتر آن است كه تعيبن كنيم كدام بردارها به بردار صـفر تبـديل مى شوند . توجـه كنيـد كه
 زير رامى آوريم •

لعرال 1 بردارى W بأُد . مستلُ L كه آن را به صورت ker L مى نويسيم، عـبأرت است از زيرمجمـوعه
تشككيل شده از تمام اعضاى v در V به تسميى كه

از نمادهاى تضية زير را مى توان بيان كرد . الميג آن كاه ker يكى زيرنفهاى V ا است .

الهيا آن كاهL يكى به يكى است اكر و نتط اكر

يكى به يكى اسـت،، فـرض كنـــد
 يكـ به يك است .

 تعريف شـده است
$L: \mathbb{R}^{5} \rightarrow \mathbb{R}^{4}$

$$
L\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right)=\left(\begin{array}{c}
x_{1}-x_{3}+3 x_{4}-x_{5} \\
x_{1}+2 x_{4}-x_{5} \\
2 x_{1}-x_{3}+5 x_{4}-x_{5} \\
-x_{3}+x_{4}
\end{array}\right)
$$

رياخيات مهندسم,
 دستگاه خطى همگن زير را داريم

$$
\begin{aligned}
x_{1}-x_{3}+3 x_{4}-x_{5} & =0 \\
x_{1}+2 x_{4}-x_{5} & =0 \\
2 x_{1}-x_{3}+5 x_{4}-x_{5} & =0 \\
-x_{3}+x_{4} & =0 .
\end{aligned}
$$

شكل بلكاني سطرى تحويل يافته ماتريس ضرايب حنين است
$\left(\begin{array}{rrrrr}1 & 0 & 0 & 2 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right)$,
كه نتان مى دهد دستگاه همكن بهصورت زير است
$\{(-2 t, s, t, t, 0):$: g s حقيفى $s\}$
و يك هابيه برایى ker عبارت است از
$\left\{\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{r}-2 \\ 0 \\ 1 \\ 1 \\ 0\end{array}\right)\right\}$.
 با

 در زير تعريف مى شُود داراي اهميتى خاص است .

ناميده مى شود . اكِر W = برد L ، آن كاه تبديل را بوشّا مى نامند.
 برد L يكى زيرفضاى W است .

 در اين صــوردت بـه ازای دو بــردار كـه نهــان مى دهـد u $\mathbf{u}+\mathbf{v}=L\left(\mathbf{u}_{1}\right)+L\left(\mathbf{v}_{1}\right)=L\left(\mathbf{u}_{1}+\mathbf{v}_{1}\right)$

 زير تعريفـ شـده است
$L: \mathbb{R}^{5} \rightarrow \mathbb{R}^{4}$
بطورى كه
$L\left(\begin{array}{c}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right)=\left(\begin{array}{c}x_{1}-x_{3}+3 x_{4}-x_{5} \\ x_{1}+2 x_{4}-x_{5} \\ 2 x_{1}-x_{3}+5 x_{4}-x_{5} \\ -x_{3}+x_{4}\end{array}\right)$.
حل : حون دامنهُ تبديل بردارهايى تبديل مى شوند (هرا؟) . بنابراين داريـم
$(1,0,0,0,0) L=(1,1,2,0)$,
$(0,1,0,0,0) L=(0,0,0,0)$,
$(0,0,1,0,0) L=(-1,0,-1,-1)$,
$(0,0,0,1,0) L=(3,2,5,1)$,
$(0,0,0,0,1) L=(-1,-1,-1,0)$.

$\left(\begin{array}{rrrr}1 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & -1 & -1 \\ 3 & 2 & 5 & 1 \\ -1 & -1 & -1 & 0\end{array}\right)\left(\begin{array}{rrrr}1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$.
بس، يكـ بِايه برای برد اعبارت اسـت از
$\left\{\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{r}0 \\ 1 \\ 1 \\ -1\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right)\right\}$,
. $\operatorname{dim}(L$ كه نشان مى دمد 3 = 3 (اين بخشت را با بيان سه تضهيك كاريرديى به بايان مى بريم
 به نضاى بردارى Wباشد، آن كاه
$\operatorname{dim}(\operatorname{range} L)+\operatorname{dim}(\operatorname{ker} L)=\operatorname{dim}(V)$.

كنيـد كه شـكل نتـان مى دهد

$L: v \rightarrow w$.

تمرئهاى
$R^{3}{ }^{3}$. نيست

r- دستگاه معادلات منالل ا-r-1 را حل كنيد . نشان دميد مجموعهُ

$$
T=\{(1,0,2),(1,2,0),(1,1,1)\}
$$

\mathbb{R}^{3}
 -

- - - نشان دهيل مجموعهُ

$$
S=\{(1,0,0),(1,1,0),(1,1,1)\}
$$

مستقل خططى است .
نشان ديله مجموعهُ

$$
S=\{(1,0,0),(1,1,0),(1,1,1),(-1,2,3)\}
$$

$$
\begin{aligned}
& \text { (الف) } \\
& \text { - - نشان دهيد مجموعهُ }
\end{aligned}
$$

$S=\{(1,0,0),(1,1,1)\}$
$\left(\begin{array}{rrrr}1 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & -1 & -1 \\ 3 & 2 & 5 & 1 \\ -1 & -1 & -1 & 0\end{array}\right) \times\left(\begin{array}{rrrr}1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$.

نـگاشت $L\left(u_{1}, u_{2}\right)=\left(u_{2}, u_{1}, 1\right)$.

الف) نشـان دهيد اين نگانُت يك مفدارى است .
ب) (آيا اين نگاشت يك تبديل خططى است؟ جـر
ب) اين نگاثـت را ازنظر هندسى توصيف كنيد .

$$
\text { الف) \}(2,2,0),(0,2,2),(0,0,2) }
$$

$$
\{(-1,2,3),(3,2,1),(0,1,2)\}
$$

$$
\text { ب(}[(1,1,0),(0,0,1),(3,3,1)] \quad
$$

- ألف) ثابت كنيد بردارهاى
$\mathbf{v}_{1}=(1,1,1), \quad \mathbf{v}_{2}=(1,2,3), \quad \mathbf{v}_{3}=(2,2,0)$ يك بايه برایى
ب) بر بر بارهاى بايهُ طبيعى برايى - 10
$u_{1}=(1,0,2), \quad u_{2}=(1,2,3), \quad u_{3}=(-4,3,5), \quad u_{4}=(11,-6,-16)$.
الف) نتمان دهيد
و و بنويسيد .

$$
\begin{aligned}
& \text { (الفـ) مستقل خطى است و (ب) فضـاى }
\end{aligned}
$$

•
ا1 11 نثـان دهيد
(19 - نشــان دهيـد زيرمسجـمـوعـه يكى يرنضاى "
نشان دهيد تعريف I-Y-N - IV
يك نگاثـت يكى به يكى " براى هر u u v در " $\mathbf{~ v ~}$
$L(a \mathbf{u}+b \mathbf{v})=a L(\mathbf{u})+o L(\mathbf{v})$
1^ - نشـان دهيد مجموع\&
$\{(1,-1,0),(2,1,0)\}$
يكى زيرنفا از R³ بديد مى آررد . بُعد اين زيرنضا هيست

19- 19 زير نفـا ست 9

ت) تمام بردارهايع كه برايى آنها

$$
x_{1}+x_{4}=x_{2}+x_{3} \text { •Y- }
$$

 $\{(1,0,0,-1),(0,1,0,1),(0,0,1,1)\}$

$$
L\binom{x}{y}=\binom{-x}{y}
$$

يك تبديل خطى است .
ب) (بفهوم هندسى ا را بيان كنيد .
.

$$
\begin{aligned}
& \text { V را } \\
& \text {-Y الف) نشان دهيد }
\end{aligned}
$$

$$
\begin{aligned}
& \text { الف) تهام بردارهايى كه برایى آنها } \\
& \text {. } x_{2}=1 \text { (} 1 \text { (أمام بردارهايع كه برانیا } \\
& \text { ب) }
\end{aligned}
$$

$$
\begin{aligned}
& L\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \quad L\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), L\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \\
& L\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) . L\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right), \quad L\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \quad L\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{l}
1 \\
-1 \\
-3
\end{array}\right) \\
& \left(\begin{array}{llll}
1 & 2 & 0 & 1 \\
2 & -1 & 2 & -1 \\
1 & -3 & 2 & -2
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)\left(\omega \quad\left(\begin{array}{rrr}
1 & 0 & 1 \\
2 & 1 & 1 \\
-1 & 1 & -2
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)\right. \\
& (1,0,0) L=(0,1,0,2), \\
& (0,1,0) L=(0,1,1,0), \\
& (0,0,1) L=(0,1,-1,4)
\end{aligned}
$$

Y Y - زيرفـضــايى از

$$
\begin{array}{lll}
(2,9,5) & \left(\begin{array}{c}
\text { (} \\
\left(-\frac{1}{2}, 1,1\right)
\end{array}\right. \\
\left(-\frac{1}{2},-\frac{1}{2},{ }^{3}\right) & (0,9,4)
\end{array}
$$

- - Ff

$$
\{(1,0,2),(2,1,-2)\}
$$

$$
(\quad\{(2,1,3),(-1,2,1)\}
$$

الفب

$$
\{(1,1,0,0),(1,0,1,0),(0,1,1,0),(0,1,0,1)\}
$$

الفـ
$\{(1,1,1,1),(0,1,1,1),(0,0,1,1),(0,0,0,1)\}$
 تمرين YQ بنويسيد
تعـيـن كنيـد كدام يكا از مسجموعـهُ بردارها در Y - YV خطى اند .
$\{(-1,3,2),(3,4,0),(1,4,4)\}$
$\{(2,-2,1),(1,-3,4),(-3,1,2)\}$
$\{(-2,1,3),(3,-2,-1),(-1,0,5)\}$
$\{(1,0,-5),(4,2,2),(1,1,6)\}$

$$
\begin{aligned}
& (1,0,2,-1),(3,-1,-2,0),(1,-1,-6,2),(0,1,8,-3) \\
& (1,1,10,-4),\left(\frac{1}{2}, 0,1,-\frac{1}{2}\right),\left(-\frac{1}{2}, \frac{1}{2}, 3,-1\right)
\end{aligned}
$$

-

$$
\begin{array}{rll}
\mathbf{u}=-3 \mathbf{e}_{1}+5 \mathbf{e}_{2}+2 \mathbf{e}_{3}, & \text { (}, & \mathbf{u}=2 \mathbf{e}_{1}-\mathbf{e}_{2}+2 \mathbf{e}_{3}, \\
\mathbf{v}=4 \mathbf{e}_{1}-3 \mathbf{e}_{2}-3 \mathbf{e}_{3}, & & \mathbf{v}=-\mathbf{e}_{1}+\mathbf{e}_{2}-3 \mathbf{e}_{3}, \\
\mathbf{w}=2 \mathbf{e}_{1}+7 \mathbf{e}_{2}+\mathbf{e}_{3} \\
\mathbf{u}=4 \mathbf{e}_{1}-2 \mathbf{e}_{2}+3 \mathbf{e}_{3}, & (& \mathbf{w}=-2 \mathbf{e}_{1}+2 \mathbf{e}_{2}-\mathbf{e}_{3} \\
\mathbf{v}=2 \mathbf{e}_{1}-8 \mathbf{e}_{2}+7 \mathbf{e}_{3}, & & \mathbf{u}=-2 \mathbf{e}_{1}+5 \mathbf{e}_{2}-6 \mathbf{e}_{3}, \\
\mathbf{w}=\mathbf{e}_{1}+3 \mathbf{e}_{2}-2 \mathbf{e}_{3} & & \mathbf{v}=5 \mathbf{e}_{1}+\mathbf{e}_{2}-3 \mathbf{e}_{3}, \\
\mathbf{w}=-4 \mathbf{e}_{1}-\mathbf{e}_{2}+6 \mathbf{e}_{3}
\end{array}
$$

ا- تابت كنيد هريك از تبديلات زير ، يكى تــديل خططى از

$$
\begin{array}{ll}
\left(x_{1}, x_{2}\right) L=2\left(x_{1}, x_{2}\right) \\
\left(x_{1}, x_{2}\right) L & =\left(x_{2}, x_{1}\right)
\end{array} \quad\left(\begin{array}{r}
\left(x_{1}, x_{2}\right) L=-\left(x_{2}, x_{1}\right) \\
\left(x_{1}, x_{2}\right) L \\
\left(x_{1}, x_{2}\right) L
\end{array}\right)=\left(x_{1}, x_{2}, 0\right)
$$

(الف)
(ب)
(ث)
b ، a و $x_{4}=a x_{1}+b x_{2}+c x_{3} \mathrm{R}^{4}$ رادر نظر بكيريد
 . سبس يكى مجموعةُ بديدآر رنده برانى V بيابيد

$$
. x_{1}+x_{2}+x_{3}+x_{4}=0
$$

$$
L\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{2}\right)\left(\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) .
$$

(توجه : اين تبديل يكى دوران در مسفحهُ
عقربه هاى ســاعت اندازه كيرى مى شـود) .

بود . (رامنمايى : از بر مان خلف امستفاده كنبد)

وץ- دو بردار (2, , , 1,) و (1, 1, 0, 3) در ${ }^{4}$ داده شدهاند، دو بردار ديكر بيابيد به قسمى كه
جهار بردار يك بايه براى R³ تشكيل دهند . آيا جواب مساله يكتاست ؟ چرا؟
 كدام يك از اين زوجها تعويض بنيرند؟

$$
\begin{aligned}
\left(x_{1}, x_{2}, x_{3}\right) L & =\left(x_{2}, x_{1}, x_{1}+x_{2}+x_{3}\right), \\
\left(x_{1}, x_{2}, x_{3}\right) M & =\left(x_{2}, x_{1},-x_{1}-x_{2}-x_{3}\right) \\
\left(x_{1}, x_{2}, x_{3}\right) L & =\left(x_{2}, x_{1}+x_{3}, x_{1}+x_{2}+x_{3}\right. \\
\left(x_{1}, x_{2}, x_{3}\right) M & =\left(x_{1}+x_{2}+x_{3}, x_{2},-x_{1}-x_{2}-x_{3}\right)
\end{aligned}
$$

- نابت كنيد يك تبديل نحطى بردار صفر را به بردار صفر تبديل مى كند .
 يانته بد دست آيد و از آن جا يك بايئ ديكر برای برا برد $ا$ بيابيد .

مقادير ويزّه و بردارهاى ويزه
انكر x يك بردار ستونى باشد، آن كاه حاصل ضرب
است، بردار ديگرى مانند y است . در بختش تبل ديديم كه
$A \mathbf{x}=\mathbf{y}$
يك تبديل خطى $L: \mathbb{R}^{\prime \prime} \rightarrow \mathbb{R}^{m}$ تعريف مى كند و در آن جا مشــخصه هاى هنين تبديلى را بر رسى نموديم

در اين بخش توجه خودد را به مـتريسهاى n n n و تبديلات خططى كه به شكل زير باشـند، ممطوفمى كنيم
$A \mathbf{x}=\lambda \mathbf{x}$,
در اين معادله λ يك اسكالر است . يك دليل مـهم براي مطالعـهُ معادلهُ (1 (1-1-1) اين است كه

 در معادلهُ (1-Y-1) صدق كند . جنين بردارهايِى را، بردار ويزّه يا بردار مشخصصه يا بردار نهفته

مى نامند . ما از اصطلاح ابردار ويرّها استفاده خوراهيم كرد .

 بعداً امسنخصصهل ترجمه شـد معادلة (1-₹-1) را مى توان بهصورت زير نوشت

$$
A \mathbf{x}-\lambda \mathbf{x}=\mathbf{0}
$$

$$
(A-\lambda I) \mathbf{x}=\mathbf{0} .
$$

 يكى دمتكاه مسادلات خحلى همكن بهصورت زير است :

$$
\begin{aligned}
& \left(a_{11}-\lambda\right) x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=0 \\
& a_{21} x_{1}+\left(a_{22}-\lambda\right) x_{2}+\cdots+a_{2 n} x_{n}=0
\end{aligned}
$$

$$
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+\left(a_{n n}-\lambda\right) x_{n}=0
$$

جنين دستگامى ممواره داراي يك جواباباست، يعنى

 $|A-i I|=0$.

اين معادله يك جندجمله|ی درجهئnر برحسب آ است،

$$
(-1)^{n} \lambda^{n}+\cdots+|A|=0
$$

به كمكك آنها مى توان بردارهانى ويرْه A رابه دست آورد ـ به مثال زير توجه كيد .
 $A=\left(\begin{array}{rrr}0 & -1 & -3 \\ 2 & 3 & 3 \\ -2 & 1 & 1\end{array}\right)$.

حل : ابتدا معادللُ مينخصه را با بسط دترمينان ماتريس A- A A بهدسـت مى آوريم

$$
\begin{aligned}
|A-\lambda I| & =\left|\begin{array}{rrr}
-\lambda & -1 & -3 \\
2 & 3-\lambda & 3 \\
-2 & 1 & 1-\lambda
\end{array}\right| \\
& =-\dot{\lambda}[(3-\lambda)(1-\lambda)-3]+[2(1-\lambda)+6]-3[2+2(3-\lambda)] \\
& =-\lambda\left(\lambda^{2}-4 \lambda\right)-2(\lambda-4)+6(\lambda-4) \\
& =(\lambda-4)\left(-\lambda^{2}+4\right)=0 .
\end{aligned}
$$

بنابراين مقادير ويزٔه عبارتند از

$$
\left(\begin{array}{rrr}
0 & -1 & -3 \\
2 & 3 & 3 \\
-2 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=-2\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)
$$

$$
\begin{aligned}
& 2 x_{1}-x_{2}-3 x_{3}=0, \\
& 2 x_{1}+5 x_{2}+3 x_{3}=0 .
\end{aligned}
$$

از جمع اين مـعادلات نتيجه مى شوود
 رأ . $\lambda_{3}=4$
俍

 بكى مقدار ويرّه تكرارى است جه جيزى ممكن است بيثّ آيد .

$$
A=\left(\begin{array}{ccc}
-4 & 5 & 5 \\
-5 & 6 & 5 \\
-5 & 5 & 6
\end{array}\right)
$$

حل : داريم

$$
\begin{aligned}
|A-\lambda I|= & (-4-\lambda)[(6-\lambda)(6-\lambda)-25] \\
& -5[-5(6-\lambda)+25]+5[-25+5(6-\lambda)] \\
= & (-4-\lambda)(\lambda-1)(\lambda-11)-25(\lambda-1)-25(\lambda-1) \\
= & (\lambda-1)\left(-\lambda^{2}+7 \lambda-6\right)=-(\lambda-1)^{2}(\lambda-6)=0 .
\end{aligned}
$$

بنابراين مقادير ويزُٔ A عبارتند از است . با جاى كذارى اين مقدار در Ax = نها يكى معادله به دست مي آيد كه عبارت است از $-5 x_{1}+5 x_{2}+5 x_{3}=0$
$x_{1}=x_{2}+x_{3}$.
 ابتـدا تُرار مي دهيم ويزهُ متناظر با مقدار ويزٔه أ عبارتند از به دست مى آيد . (تمرين
بردار ماى ويرٔه مستتل خططى
ג = 1
 مثال

$$
B=\left(\begin{array}{rrr}
4 & 6 & 6 \\
1 & 3 & 2 \\
-1 & -5 & -2
\end{array}\right)
$$

$$
\text { خ خواهيم دانُـت } \lambda_{2}=\lambda_{3}=2
$$

$$
x_{1}+3 x_{2}+3 x_{3}=0
$$

$$
x_{1}+x_{2}+2 x_{3}=0
$$

$$
-x_{1}-5 x_{2}-4 x_{3}=0
$$

و با استفاده از تحويل كاوسى به دمـت مى آوريم نظير آن

 ناتكين P و.جود داشته باشد بطررى كه ${ }^{\text {P }}$. $P^{-1} A P=B$ ا

تشـابه مـاتريسـهـا مـفـهـومى، مـفيـد اسـت زيرا ايله هاي مـهـم در هنـدسـه و دينامـيك برآن
 مـعادلات ديفـو انسيل را سـاده مى كند . در حـال حاضهر توجه كنــد كه اگكر A متــنـابه با مـاتريس تطرى D باشد، مي توانيم بنويسيم
$P^{-1} A P=D=\operatorname{diag}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$.

(تمرين بץ در بشخ

$$
\begin{aligned}
& \text { حل : مقادير ويزه عبارتند از } \\
& x_{1}+2 x_{2}+2 x_{3}=0 \\
& -x_{1}-5 x_{2}-3 x_{3}=0 \text {, }
\end{aligned}
$$

$$
\begin{aligned}
|D-\lambda I| & =\left|P^{-1} A P-\lambda P^{-1} P\right| \\
& =\left|P^{-1}(A-\lambda I) P\right|=\left|P^{-1}\right||A-\lambda I||P| \\
& =\left|P^{-1} P\right||A-\lambda I|=|A-\lambda I| .
\end{aligned}
$$

和 ، ... ، λ_{2} ، λ_{1}
 تطرى D هستند .

 متفاوتند. برای ماتريس A مى توانيم يكى ماتريس نانكين P بيابيم كه

H'ت : فرض كنيد دهند . آن كاه

$$
A \mathbf{x}_{i}=\lambda_{i} \mathbf{x}_{i}=\mathbf{x}_{i} \lambda_{i}, \quad i=1,2, \ldots, n .
$$

اثكر P ماتريسى باشد كه ستون أم آن شامل عناصر بردار x باشد و اكر
$D=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$,
آن كاه معادلُ (1-ヶ-
$A P=P D$.
هون بردارهاى ويزءٔ A مستقل خططى اند، نتيجه مى سود P ناتكين است" ر
$P^{-1} A P=D$,
يعنى، A متـنـابه با يكى مـاتريس تطرى D اسـت، الثبات عكس مطلب بهعنوان تمرين كذاثـتــه

مى شود (تمرين 9 , ا ملاحظه كنيد) .
 حل : با استفاده از بردارهاى ويزهُ A كه در مثال I-Y-Y به دسـت آمدند، داريمم $P=\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1\end{array}\right) \quad, \quad P^{-1}=\left(\begin{array}{rrr}1 & -1 & 0 \\ 1 & 0 & -1 \\ -1 & 1 & 1\end{array}\right)$

بنابراين

صورتهاي درجه موم

يكى كاربـرد مهم تُطرى سـازى در رابطه با صورتهـاى درجهُ دوم اسـت كـه باختتصسار آن را

$$
\begin{aligned}
& \text { مورد بححث قرار مى دهيم • }
\end{aligned}
$$

$a x^{2}+b x y+c y^{2}$,
 x و y ناميده مى شود .
صـررتهـاى درجـهُ دوم در مطالعـهُ مـــاطع مـخـروطي در هندسسهُ تحليلى بيش مى آيند .
 ملا-حظه كنيد) . صورتهاى درجـه دوم علاوه بر هندسـه، نقتش مهمى در ديناميك، آمسار و مسائل ماكزيمـم و مينيهم دارند
هر صــورت درجــهٔ دوم را مى توان به ثـكـل مــتريـسى با اممـتــفـــاده از يكى مـاتريس مـتــــارنـنوشت . برالى مــــالل، حــورت درجــهُ دوم در تعــريف Y-Y-Y به مــورت زير نوشته مىشود
$(x, y)\left(\begin{array}{cc}a & \frac{1}{2} b \\ \frac{1}{2} b & c\end{array}\right)\binom{x}{y}$.
با المـتـفـاده از اين مطلب و تـُــــهُ ا به دست مى آيد . ابتدا بردار هاى متعامد را تعريف مى كنيم .
$\mathrm{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \quad, \quad \mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$,

 . خطوط عمود بر مـم نعبير مى شوند
 . متعامدند
 بهترتبب بردار ويزٔ متناظر با آنها باشـند ـ در اين صورت
$A \mathbf{x}_{i}=\hat{\lambda}_{i} \mathbf{x}_{i} \quad, \quad A \mathbf{x}_{j}=\lambda_{j} \mathbf{x}_{j}$.
اكر اولّى را الز حب در x ${ }_{j}^{T}$ ضرب كنيم، داريم
$\mathbf{x}_{j}^{T} A \mathbf{x}_{i}=\lambda_{i} \mathbf{x}_{j}^{T} \mathbf{x}_{i}$,
, اكر دومى رالز جب در x
$\mathbf{x}_{i}^{T} A \mathbf{x}_{j}=\lambda_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j}$.
ترانهادة معادلّ فوق جنين الست
$\mathbf{x}_{j}^{T} A^{T} \mathbf{x}_{i}=\mathbf{x}_{j}^{T} A \mathbf{x}_{i}=\lambda_{j} \mathbf{x}_{j}^{T} \mathbf{x}_{i}$.
يا اكر معادلئ (1-4-9) را از اين معادله كم كنـم، داريم
$\left(\lambda_{j}-\lambda_{i}\right) \mathbf{x}_{j}^{T} \mathbf{x}_{i}=0$,
و از اينجا مضيه ثابت مي شُود .

$5 x^{2}-6 x y+5 y^{2}=8$.
صورت درجي' دوم زير را در نظر بكيريد
$(x, y)\left(\begin{array}{rr}5 & -3 \\ -3 & 5\end{array}\right)\binom{x}{y}=\mathbf{x} A \mathbf{x}^{T}$,
كه داراى ماتريس متفارن A است . مقادير ويزهA عبارتند از r و ^و بردارهاى ويزء متناظر باآنها

به ياد داثشته بامُيد كه بردارهاى ويزّه را با تقريب يكى ضريب ثابت مى توان بيدا كرد، يس بردارهاى ويزه را به حـورت ماتريس زير را تشكيل مى دهيم $P=\frac{1}{\sqrt{2}}\left(\begin{array}{rr}1 & -1 \\ 1 & 1\end{array}\right)$.

هعكوس اين ماتريس عبارت است از
$P^{-1}=\frac{1}{\sqrt{2}}\left(\begin{array}{rr}1 & 1 \\ -1 & 1\end{array}\right)=P^{T}$,
يعنى، معكوس P با ترانهادهُ آت برابر است . هر ماتريسى با اين خاصيترا ماتريس متعامل كويند . اين نام كـذارى از آن جـهـت است كـه سـتـونهـاى P به عنوان دو بـردار، بر هـم عــــود هــــتند . . بنابراين، با قرار دادن

$$
\begin{aligned}
& \mathbf{X}^{T}=(X, Y) \quad, \quad \mathbf{x}^{T}=P \mathbf{X}, \\
& \mathbf{x} A \mathbf{x}^{T}=\mathbf{X}^{T} P^{T} A P \mathbf{X}=(X, Y)\left(\begin{array}{ll}
2 & 0 \\
0 & 8
\end{array}\right)\binom{X}{Y} \\
& =2 X^{2}+8 Y^{2} \text {, }
\end{aligned}
$$

و مععـادلهُ $5 x^{2}-6 x y+5 y^{2}=8$ بهـورت $X^{2}+4 Y^{2}=4$ در مى آيد . مسعـادلهُ اخــيـر معــادلكُ
 اين محورها از نتطهُ (1, 1) و (1, 1-) در صفـحهُ xy مى كذرند . در اين جا تبديل مختصات مهادل اسـت با دوران محورهاى x و y به اندازهُ زاويةٔ/4/ در جهت عكس حركت عقربه هاى ساعت .
 اين روش را بآسانى مىي توان به سطوح درجهُ دوم تعميم داد . به مثال زير تو جه كنيد .

$f(x, y, z)=4 x y+4 x z+4 y z$
را به محورهاى احلى تبديل كنيد . مسس سطح درجهُ دوم $f(x, y, z)=1$ را مُـخخص كنيد .

مفـلهير ويزٔه مـاتريس متقارن نرق عبارتند از

$P=\left(\begin{array}{rrr}1 & 1 & 1 \\ -1 & 0 & 1 \\ 0 & -1 & 1\end{array}\right)$
$P^{-1}=\frac{1}{3}\left(\begin{array}{rrr}1 & -2 & 1 \\ 1 & 1 & -2 \\ 1 & 1 & 1\end{array}\right)$
$\frac{1}{3}\left(\begin{array}{rrr}1 & -2 & 1 \\ 1 & 1 & -2 \\ 1 & 1 & 1\end{array}\right)\left(\begin{array}{lll}0 & 2 & 2 \\ 2 & 0 & 2 \\ 2 & 2 & 0\end{array}\right)\left(\begin{array}{rrr}1 & 1 & 1 \\ -1 & 0 & 1 \\ 0 & -1 & 1\end{array}\right)=\left(\begin{array}{rrr}-2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 4\end{array}\right)$.
 است (تمرين ^ر را ملاحظه كنيد) .
 به محورهاى اصلي روشن نيست . اين مبحث در بخش V-1 در رابطه با ساختن يايه هالى متعامد باز هم بررسى خوامد شد .

P- - I

- ج جزئيات بانتن بردارهاى ويزٔ' متناظر با مقادير ويزٔة
. بنويسيد

ات اكر معادلة مـشخصه بهصورت زير داده شوده، مقادير ويزه را بيدا كنيد.

 $\lambda^{3}-3 \lambda^{2}+4 \lambda-2=0$.بامراججعهبه مثال الY-Y-Y،

 مستتل خطظى اند .
 باشد، يعنى -V $Q=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1\end{array}\right)$,

$$
\text { آن كاه }{ }^{\text {إ }} A Q=\operatorname{diag}(6,1,1)
$$

- - مقادير ويزه و بردارهاى ويزهُ نظير هريكى از ماتريسهاى زير رابيابيد .

$$
\left(\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right) \quad\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \quad\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right)
$$

$$
\left(\begin{array}{rrr}
11 & -4 & -7 \\
7 & -2 & -5 \\
10 & -4 & -6
\end{array}\right) \quad\left(\begin{array}{rrr}
-3 & -7 & -5 \\
2 & 4 & -3 \\
1 & 2 & 2
\end{array}\right) \quad\left(ب\left(\begin{array}{rrr}
4 & 6 & 6 \\
1 & 3 & 2 \\
-1 & -4 & -3
\end{array}\right)\right.
$$

الف)

11-1 هقادير ويزه و بردارهاى ويزءه ماتريسهاى متقارن زير رابيابيد .

$$
\left(\begin{array}{lll}
0 & 2 & 2 \\
2 & 0 & 2 \\
2 & 2 & 0
\end{array}\right) \quad\left(\begin{array}{rrr}
2 & 4 & 6 \\
4 & 2 & -6 \\
-6 & -6 & -15
\end{array}\right) \quad\left(\begin{array}{lll}
3 & 0 & 0 \\
0 & 3 & 4 \\
0 & 4 & 3
\end{array}\right)
$$

> ("وجه : مقادير ويزه ممكن است ميختلط باشند .) . بردار ويزٔ مثال

- IY - مقادير ويزه و بردارهأى ويزٔه ماتريسهاى زير را بيابيد.

$$
\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right) \quad\left(\varphi (\begin{array} { r r r }
{ 4 } & { - 2 } & { - 1 } \\
{ 6 } & { - 3 } & { - 2 } \\
{ - 3 } & { 2 } & { 2 }
\end{array}) \quad \left(ب\left(\begin{array}{rrr}
1 & 1 & 3 \\
1 & 0 & 1 \\
-1 & 1 & 0
\end{array}\right)\right.\right.
$$

دارند، بيابيد

$$
\begin{array}{rll}
\left(\begin{array}{rrr}
4 & 2 & 3 \\
2 & 1 & 0 \\
-1 & -2 & 0
\end{array}\right) & \left(\begin{array}{rrr}
-2 & 2 & -3 \\
2 & 1 & -6 \\
-1 & -2 & 0
\end{array}\right) & \left(\begin{array}{rrr}
7 & -2 & -4 \\
3 & 0 & -2 \\
6 & -2 & -3
\end{array}\right) \\
\left(\begin{array}{lrr}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right) & \left(\begin{array}{rrr}
-7 & 0 & 6 \\
-6 & -1 & 6 \\
-8 & 0 & 7
\end{array}\right) & \left(\begin{array}{rrr}
2 & 4 & -2 \\
4 & 2 & -2 \\
-2 & -2 & -1
\end{array}\right)
\end{array}
$$

$$
\begin{array}{ll}
\left(\begin{array}{rrr}
1 & 0 & 1 \\
0 & 2 & 0 \\
1 & 0 & -1
\end{array}\right) & \left(\left(\begin{array}{rrr}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right)\right. \\
\left(\begin{array}{lll}
1 & 2 & 1 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right) & \left(\begin{array}{rrr}
5 & -6 & -6 \\
-1 & 4 & 2 \\
3 & -6 & -4
\end{array}\right)
\end{array}
$$

كدام يكى از ماتريسهاى بالا تطرى نـندنى هستند

$$
\begin{aligned}
& \left(\begin{array}{rrrr}
-1 & 2 & 1 & 3 \\
0 & 0 & -2 & 1 \\
0 & 0 & 2 & -3 \\
0 & 0 & 0 & 4
\end{array}\right) \quad\left(ب\left(\begin{array}{rrrr}
1 & 0 & -1 & 0 \\
0 & 1 & 1 & 0 \\
-1 & 1 & 2 & 1 \\
0 & 0 & 1 & -1
\end{array}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
2 x^{2}-y^{2}-4 x y \\
x^{2}+y^{2}-2 x y
\end{array} \\
& \text { (ب) } 3 x^{2}+3 y^{2}+2 x y \\
& \text { (ت) } 2 x^{2}+5 y^{2}-12 x y
\end{aligned}
$$

$$
\begin{aligned}
& 2 x z \\
& 7 x^{2}+7 y^{2}+4 z^{2}+4 x y+2 x z-2 y z \\
& x^{2}+5 y^{2}+2 z^{2}+4 x y+2 x z+6 y z \\
& x^{2}+2 y^{2}+4 z^{2}-x z
\end{aligned}
$$

ت

1 1- مفادير ويزّه و بردارهاى ويزٔهنظير آنها را در ماتريس زير بياييد
$A=\left(\begin{array}{rrr}7 & -2 & 0 \\ -2 & 6 & 2 \\ 0 & 2 & 5\end{array}\right)$.

 (مر عـدد حســيع و مـتبت n يك مـــدار ويزه

الستفراء رياضى استفاده كنيد)
r

$$
\text { الف) بهازاى هر عدد صعيتحو مبُبت } n \text { ، A = A . }
$$

ب) تنها ماتريس نانكين خودتوان ماتريس مهانى است . ب) بمقادير ويزٔ A برابر حهفر يا أ مستند .
 ث) خاصيتهاى فوت را برانى ماتريس نير تشريح كنيد
$A=\left(\begin{array}{rrr}2 & 4 & 6 \\ 4 & 8 & 12 \\ -3 & -6 & -9\end{array}\right)$.

 ديفرانسيل مرتبه اولّ با ضرايب ثابت زير را در نظر بغيريد

$$
\begin{aligned}
& \dot{x}_{1}=x_{1}+x_{2}+x_{3} \\
& \dot{x}_{2}=2 x_{1}+x_{2}-x_{3} \\
& \dot{x}_{3}=-8 x_{1}-5 x_{2}-3 x_{3},
\end{aligned}
$$

كه در آن، نقطه منتّت كيرى نسبت بها را نمنان مى دهد . با نماد ماتريسى اين دستكاه بهصورت سادة زير نونشه مى شود

$$
\begin{equation*}
\dot{\mathbf{x}}=A \mathbf{x}, \tag{1-0-1}
\end{equation*}
$$

$$
\text { كه ك x = (x. } \left., x_{2}, x_{3}\right)^{T} \text { ماتريس ضرايباست . }
$$

 ازآن وجود دارد و داريم
$\dot{\mathbf{v}}=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) \mathbf{v}$,
كه

 تابل حل است . در اين مثال داريم 2

$$
P=\left(\begin{array}{rrr}
-4 & -3 & 0 \\
5 & 4 & 1 \\
7 & 2 & 1
\end{array}\right)
$$

((r- -1$)$
$\mathrm{v}=\left(c_{1} \exp (-2 t), c_{2} \exp (-t), c_{3} \exp (2 t)\right)^{T}$
بنابراين
$\mathbf{x}=P \mathbf{v}=c_{1}\left(\begin{array}{r}-4 \\ 5 \\ 7\end{array}\right) e^{-2 t}+c_{2}\left(\begin{array}{r}-3 \\ 4 \\ 2\end{array}\right) e^{-r}+c_{3}\left(\begin{array}{r}0 \\ 1 \\ -1\end{array}\right) e^{2 t}$
جواب معادلئ (1-ه-1) است . از اين جواب عمومى مى توانيم جورابهاى خصوصم رابه دست آوريم • برای مثال، اكُر دادهُ اضـافى
$\mathbf{x}=4\left(\begin{array}{r}-4 \\ 5 \\ 7\end{array}\right) e^{-2 t}-6\left(\begin{array}{r}-3 \\ 4 \\ 2\end{array}\right) e^{-\prime}-8\left(\begin{array}{r}0 \\ 1 \\ -1\end{array}\right) e^{2 t}$.
جزيّاتبهعنوان تمرين كذاثته مى شود (تمرين ب را ملاحظه كنيد) . يكـ راه ديكر برايى حل مثال فوق به شكل زير است :
ابتــدا مـعــادلئ

 داده شدهاند .

مثلل ا-ه-1 دسنگاه معادلات ديفرانسيل زير را حل كنيد $\dot{\mathbf{x}}=\left(\begin{array}{lll}-4 & 5 & 5 \\ -5 & 6 & 5 \\ -5 & 5 & 6\end{array}\right) \mathbf{x}$.

حل : مقادير ويزّه ماتربس ضرايب عبارتند از بردارهاى وبئه بتناظر بدترنيب عبارتند از ($1,1,1)^{T} \exp (6 t)$) $(1,1,0)^{T} \exp (t) ،(1,0,1)^{T} \exp (t)$
$\mathbf{x}=c_{1}\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right) \exp (t)+c_{2}\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right) \exp (t)+c_{3}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right) \exp (6 t)$.
عبارت اخحير جواب حـمومى دستكاه داده شده است، زيرا تركيبى خطى از مــجواب
مستقل خطى است، بهاين دليل كه
$\left|\begin{array}{ccc}\exp (t) & \exp (t) & \exp (6 t) \\ 0 & \exp (t) & \exp (6 t) \\ \exp (t) & 0 & \exp (6 t)\end{array}\right|=\exp (8 t)$,
و مر كز حـفر نـى شود . دترمينان نون دترمينالن رونسكمى سه جـواب دستكاه ناميـده مى شود .

 الليه ا -ه -1 : دستكاه معادلات ممكن زير را در نظر مى كيريم

$$
\dot{\mathbf{x}}(t)=A(t) \mathbf{x}(t), \quad \mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0},
$$

 علاو•بر آن، اكر $\mathbf{x}_{1}(t), \mathbf{x}_{2}(t), \ldots, \mathbf{x}_{n}(t)$

جوابهای مستقل خطى
$\mathbf{x}(t)=A(t) \mathbf{x}(t)$ ($\Delta-\Delta-1$)

بر باز: \ggg a باشند، آن كاه جواب عمومى معادلئ (1-ه-

$$
\begin{equation*}
\mathbf{x}(t)=c_{1} \mathbf{x}_{1}(t)+c_{2} \mathbf{x}_{2}(t)+\cdots+c_{n} \mathbf{x}_{n}(t) . \tag{9-0-1}
\end{equation*}
$$

 غيرصفر برآن بازه است . در مثال 1-ه-1 مجموعة
$\left\{(1,0,1)^{T} \exp (t),(1,1,0)^{T} \exp (t),(1,1,1)^{T} \exp (6 t)\right\}$
 خطى باشد، آن كاه جواب عـومى را مى توان مستقيماً به دست آورد. وتتى تعداد بردارهاى ويرئ مستمل خططى كمتر از n باشد (كه تنها وتتى اتفاق مى افتد كه يكى يا هند مقدار ويزه تكرارى باشند، در آن صورت، همان كونه كه در مثال بعدى نشان داده شده امست روش ديگرى بايد به كار برد .

$\dot{\mathbf{x}}=\left(\begin{array}{rrr}4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -5 & -2\end{array}\right) \mathbf{x}$
(با مثال
 (4, 1, - 3$)^{T}$ نمى توانيم نورآّ جـواب عـومى را بنويسبـم ولى با اطلاعاتى كه از معـادلات ديفرانسيل معـمولى
 كافى اسـت cرا بيابيم • براى اين كار ترار مى دهيم
$\mathbf{x}=\mathbf{c} t \exp (2 t), \quad \dot{\mathbf{x}}=\mathbf{c}[\exp (2 t)](2 t+1)$
و در معادله
$\mathbf{c}(2 t+1) \exp (2 t)=A c t \exp (2 t)$
$2 t c \exp (2 t)+\mathbf{c} \exp (2 t)-A c t \exp (2 t)=0$.
أما

$\mathbf{x}=\mathbf{b} \exp (2 t)+\mathbf{c} t \exp (2 t)$

كه b وc بردارهايع ثابتند . در اين صورت
$\dot{\mathbf{x}}=2 \mathbf{b} \exp (2 t)+\mathbf{c} \exp (2 t)+2 \mathbf{c} t \exp (2 t)$
و با ترار دادن در معادلג XX =Ax نتيجه مى شود
$2 \mathbf{c t} \exp (2 t)+(2 \mathbf{b}+\mathbf{c}) \exp (2 t)=A(\mathbf{b} \exp (2 t)+\mathbf{c t} \exp (2 t))$.

$(A-2 I) \mathrm{c}=0$,
$(A-2 I) \mathbf{b}=\mathbf{c}$.
از اولين مـعـادله نتـبـجه مى شــود

 كرد . بس جواب عمومى را مى نوان بهصورت زير نوشت $\mathbf{x}=c_{1}\left(\begin{array}{r}4 \\ 1 \\ -3\end{array}\right) e^{t}+c_{22}\left(\left(\begin{array}{r}3 \\ 1 \\ -\frac{3}{2}\end{array}\right) e^{2 t}+\left(\begin{array}{r}3 \\ 1 \\ -2\end{array}\right) t e^{2 t}\right)$.

 اين عناصر را به سبنوس و كسينوس تبديل سازيم. با يك مثال اين روش را تشريح مى كنـم • متال 1-ه-r ج جواب عمومى دستكاه زير رابيابيد

$$
\dot{\mathbf{x}}=\left(\begin{array}{rr}
2 & -1 \\
2 & 4
\end{array}\right) \mathbf{x} .
$$

حل : از معادلة مشـخصئ

$$
\left|\begin{array}{lr}
2-\lambda & -1 \\
2 & 4-\lambda
\end{array}\right|=(2-\lambda)(4-\lambda)+2=\lambda^{2}-6 \lambda+10=0,
$$

مثادبر ويزٔةٔ

$$
\left(\begin{array}{rr}
2 & -1 \\
2 & 4
\end{array}\right)\binom{x_{1}}{x_{2}}=(3+i)\binom{x_{1}}{x_{2}}
$$

$$
\text { بي } 2 x_{t}-x_{2}=(3+i) x_{1}
$$

$$
x_{1}=\frac{-x_{2}}{i+1}=\frac{(i-1)}{2} x_{2}
$$

 با

$$
\begin{aligned}
\mathbf{x} & =\left(\begin{array}{cr}
i-1 & i+1 \\
2 & -2
\end{array}\right)\binom{k_{1} \exp (3+i) t}{k_{2} \exp (3-i) t} \\
& =\binom{\left(k_{2}-k_{1}\right) e^{3 t}(\cos t+\sin t)+i\left(k_{1}+k_{2}\right) e^{3 t}(\cos t-\sin t)}{-2\left(k_{2}-k_{1}\right) e^{3 t} \cos t+2 i\left(k_{1}+k_{2}\right) e^{3 t} \sin t} \\
& =\binom{c_{1} e^{3 t}(\cos t+\sin t)+c_{2} e^{3 t}(\cos t-\sin t)}{-2 c_{1} e^{3 t} \cos t+2 c_{2} e^{3 t} \sin t} \\
& =c_{1}\left(\binom{1}{-2} \cos t+\binom{1}{0} \sin t\right) e^{3 t}+c_{2}\left(\binom{1}{0} \cos t+\binom{-1}{2} \sin t\right) e^{3 t}
\end{aligned}
$$

$$
(\lambda-\Delta-1)
$$

كه در آن به جاى

 (1)

$$
\begin{align*}
\mathbf{x}= & b_{1}\left(\binom{-1}{1} \cos t+\binom{0}{-1} \sin t\right) e^{3 t} \\
& +b_{2}\left(\binom{0}{-1} \cos t-\binom{-1}{1} \sin t\right) e^{3 t}
\end{align*}
$$

توجه كنيـد كه اكر x
عمومى به حـورت زير نوشته مى شُود

$$
\mathbf{x}(t)=c_{1} \mathbf{x}_{1}(t)+\mathrm{c}_{2} \mathbf{x}_{2}(t),
$$

كه
تا اين جا نقط دستكاه معادلات ممكن را بررسى كرده ايم . حال مثالهايى از دستكاههاى ناعمگن نــان مى دهيم • روش ما همانُد معـادلات ديفرانسيل مرتبء دوم ناعمكن است، يعنى، بك جواب خحصوصى به دست مى آوريم و آن را به جـواب دستکاه عمكن متناظر (جواب مكمل) اضافه مى كنيه • خوأميم ديد كه روش تغير بارامترها كه در معادلات ديفر انسيل مرتبه دوم خططى مورد استفاده ترأر مى كيرد، در يافتن جـواب خحصوصى مغيد خواهد بود . ولى تحت شـرايطى، روي روش ضرايب نامعين محاسبه را آَسان مى كند . مثالهايه از هر دو روش را الرائه مى كنيـم .
 $\dot{\mathbf{x}}=\left(\begin{array}{rrr}4 & -9 & 5 \\ 1 & -10 & 7 \\ 1 & -17 & 12\end{array}\right) \mathbf{x}+\left(\begin{array}{l}1+13 t \\ 3+15 t \\ 2+26 t\end{array}\right)$.

سل : با استفاده از روش ضرايب نامعيّن، نرض مىكنيم
$\mathbf{x}_{p}=\mathbf{a}+\mathbf{b} t, \quad \mathbf{x}_{p}=\mathbf{b}$,
كه a و b بر دارهاى ثابت شستند و بايد تعيين شوند . با جايكزين نمودن در دستكاه داده شده، داريم $\mathbf{b}=\left(\begin{array}{rrr}4 & -9 & 5 \\ 1 & -10 & 7 \\ 1 & -17 & 12\end{array}\right)(\mathbf{a}+\mathbf{b} t)+\left(\begin{array}{l}1+13 t \\ 3+15 t \\ 2+26 t\end{array}\right)$,

كه در واتع يكى دستكاه خطلى شـامل شُش مسعادله و شـّ مجهول است و مجـهولات مؤلفه ماى a معـادله مـساوى هـم ترار مى دعيم • بهاين ترتيب مى آيد . (تمرين • () . يس يكى جواب خصصو صى عبارت است از $\mathbf{x}_{\rho}=(t, 3 t, 2 t)^{T}$.

حال روس تغيير هارامنرها را براى معادلة
$\dot{\mathbf{x}}=A \mathbf{x}+\mathbf{f}(t)$

$$
(1 \cdot-0-1)
$$

به كار مى كيريم با اين محدوديت كه ماتريس

 $\mathbf{x}=c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}+\cdots+c_{n} \mathbf{x}_{n}$

ا

جواب عمومى دستگاه ممكن
$\mathbf{x}_{p}=u_{1} \mathbf{x}_{1}+u_{2} \mathbf{x}_{2}+\cdots+u_{n} \mathbf{x}_{n}$,
 $\mathbf{x}_{p}=\sum_{i=1}^{n} u_{i} \mathbf{x}_{i}$

بد دست مى آوريم

$$
\dot{\mathbf{x}}_{p}=\sum_{i=1}^{n}\left(u_{i} \dot{\mathbf{x}}_{i}+\dot{u}_{i} \mathbf{x}_{i}\right)
$$

و با جايكذارى در معادلذ (1-ه - •) و تجلبد آرايش خواهـم داشـت
$\sum_{i=1}^{n} u_{i}\left(\dot{\mathbf{x}}_{i}-A \mathbf{x}_{i}\right)+\sum_{i=1}^{n} \dot{u}_{i} \mathbf{x}_{i}=\mathbf{f}(t)$.
اما مجمرع اولّ برابر صفر الست، زيرا $\sum_{i=1}^{n} \dot{u}_{i} \mathbf{x}_{i}=\mathbf{f}(t)$,
كه مى توان آن رابر

 داراى جـواب يكتـاستا، زيرا مــتريس ضــرايب دسـتگاه ناتكين اسـت؛ ؛ در واتع اين مـاتريس
 مثال 1-a-ه جواب عمومى دسنكاه ممكن $\dot{x}=\left(\begin{array}{ll}-1 & 1 \\ -5 & 3\end{array}\right) \mathbf{x}$
عبارت است از
$\mathbf{x}=c_{1}\binom{\cos t}{2 \cos t-\sin t} e^{t}+c_{2}\binom{\sin t}{2 \sin t+\cos t} e^{\prime}$.
يك جواب خصوصى برأى دستگاه ناممكن زير بيابيد
$\dot{\mathbf{x}}=\left(\begin{array}{ll}-1 & 1 \\ -5 & 3\end{array}\right) \mathbf{x}+\binom{\cos t}{0}$.
حل : جواب خحصوصى را بهصورت نير در نظر مى كيريم
$\mathbf{x}_{p}=u_{1}\binom{\cos t}{2 \cos t-\sin t} e^{t}+u_{2}\binom{\sin t}{2 \sin t+\cos t} e^{t}$,
از اين مـعـادله مــُـتت مى كيــريـم و آن رادر دستگاه داده ثـــده جـايكزين مى كنيم . از مسعـادله (1)

$$
\dot{u}_{1} e^{r} \cos t+\dot{u}_{2} e^{t} \sin t=\cos t
$$

$\dot{u}_{1}(2 \cos t-\sin t)+\dot{u}_{2}(2 \sin t+\cos t)=0$,
اكر اين معـادلات را نسبت به استفاده از اتحدهاى مثلثاتى به دست مى آوريم
$\dot{u}_{1}=\frac{e^{-t}}{2}(1+\cos 2 t+2 \sin 2 t)$,
$\dot{u}_{2}=\frac{-e^{-t}}{2}(2+2 \cos 2 t-\sin 2 t)$.
با انتگرال كيرى خواميـم داثـت
$u_{1}=-\frac{1}{2} e^{-t}(1+\cos 2 t)$, $u_{2}=\frac{1}{2} e^{-1}(2-\sin 2 t)$.

$\mathbf{x}_{p}=\binom{1}{2} \sin t-\binom{1}{1} \cos t$.

رياخيات مهندسى

$$
\dot{\mathbf{x}}=\left(\begin{array}{rr}
4 & -2 \\
1 & 1
\end{array}\right) \mathbf{x}+\binom{-2 e^{i}}{\mathrm{e}^{-2 t}}
$$

حل : فرض كنيد

$$
A=\left(\begin{array}{rr}
4 & -2 \\
1 & 1
\end{array}\right), \quad \mathbf{f}(t)=\binom{-2 e^{t}}{e^{-2 t}}
$$

داريمم

$$
|A-\lambda I|=\left|\begin{array}{lr}
4-\lambda & -2 \\
1 & 1-\lambda
\end{array}\right|=\lambda^{2}-5 \lambda+6=0
$$

كه نــُان مى دهد مـقادير ويرّة دسـتگاه همگن عبـارتند از ويزّه́ دستگاه همگن.) جنين است

$$
x_{c}=c_{1}\binom{1}{1} e^{2 t}+c_{2}\binom{2}{1} e^{3 t}
$$

كه

$$
P=\left(\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right)
$$

اين ماتريس ناتكين امت و ستونهاى آن بردارهاى ويزّه A هـستند . داريم

$$
P^{-1}=\left(\begin{array}{rr}
-1 & 2 \\
1 & -1
\end{array}\right)
$$

. ${ }^{\text {. }} P^{-1} A P=\operatorname{diag}(2,3)$, زير در مى آيل

$$
P \dot{\mathbf{v}}=A P \mathbf{v}+\mathbf{f}
$$

$$
\begin{aligned}
\dot{\mathbf{v}} & =P^{-1} A P \mathbf{v}+P^{-1} \mathbf{f}=\left(\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right) \mathbf{v}+P^{-1} \mathbf{f} \\
& =\left(\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right) \mathbf{v}+\binom{2}{-2} e^{t}+\binom{2}{-1} e^{-2 t}
\end{aligned}
$$

$$
\mathbf{v}_{p}=u_{1}\binom{1}{0} e^{2_{1}}+u_{2}\binom{0}{1} e^{3 t} ;
$$

در اين صورت از معادلئ (1-0-1Y) نتيجه مي شرد

$$
\dot{u}_{1}\binom{1}{0} e^{2 t}+\dot{u}_{2}\binom{0}{1} e^{3 t}=\binom{2}{-2} e^{t}+\binom{2}{-1} e^{-2 t}
$$

از اين معادله بسادكى به دست مى آوريم

$$
\begin{aligned}
& \dot{u}_{1}=2 e^{-t}+2 e^{-4 t}, \\
& \dot{u}_{2}=-2 e^{-2 t}-e^{-5 l} .
\end{aligned}
$$

و با انتگرال كيرى خواهيم داشـت

$$
\begin{aligned}
& u_{1}=-2 e^{-r}-\frac{1}{2} e^{-4 t}, \\
& u_{2}=e^{-2 t}+\frac{1}{3} e^{-5 t},
\end{aligned}
$$

بنابراين جواب خصوصى عبارت استاز

$$
\mathbf{v}_{p}=\binom{-2}{1} e^{t}+\frac{1}{10}\binom{-5}{2} e^{-2 t} .
$$

$\mathrm{v}=c_{1}\binom{1}{0} e^{2 t}+c_{2}\binom{0}{1} e^{3 t}+\binom{-2}{1} e^{t}+\frac{1}{10}\binom{-5}{2} e^{-2 t}$
$\mathbf{x}=P \mathbf{v}=c_{1}\binom{1}{1} e^{21}+c_{2}\binom{2}{1} e^{3!}+\binom{0}{-1} e^{t}+\frac{1}{10}\binom{-1}{-3} e^{-2 t}$
جواب عمومي دستكاه داده شده است .
 در اين بخشت تابل استغاده اند .

د $A(t)$

艮
 وزن هستند و نبروى ميرا وجود ندارد ـ اين دسـتكاه رامى توان بان با تغيير مكان اولّيه و / يا سرعـي اولّئُ مششخص دو جرم و يا اعمال يكى تابع نيرو به يكى يا هر دو جرم بـن نوسان در در آورد .

با استفاده از قانون دوم نيوتن و توجهه بهنيروهاى وارد بر هر جرم مى توانيم معادلات زير رابنويـيم
$m_{1} \ddot{y}_{1}=k_{2}\left(y_{2}-y_{1}\right)-k_{1} y_{1}$,
$m_{2} \ddot{y}_{2}=-k_{2}\left(y_{2}-y_{1}\right)$.

در اين جا
$\ddot{y}_{1}=-\frac{\left(k_{1}+k_{2}\right)}{m_{1}} y_{1}+\frac{k_{2}}{m_{1}} y_{2}$,
$\ddot{y}_{2}=\frac{k_{2}}{m_{2}} y_{1}-\frac{k_{2}}{m_{2}} y_{2}$,
يا به شكل ماتريسى y
$\mathbf{y}=\binom{y_{1}}{y_{2}} \quad, \quad A=\left(\begin{array}{cc}-\frac{\left(k_{1}+k_{2}\right)}{m_{1}} & \frac{k_{2}}{m_{1}} \\ \frac{k_{2}}{m_{2}} & -\frac{k_{2}}{m_{2}}\end{array}\right)$.
اين دستكاه با دستگاههايى كه در إين بخشت بررسى نمودهايـم از اين جهت كه در آن به جاى مئتق
 $\ddot{\mathbf{y}}=A y$ آشنا هسـتيم • ترارمى دهيمبر

 (تمرين 10 راملاحظه كنيد) .

تمرينهاى 1-0

- - ماتريس زير مفروض است

$$
A=\left(\begin{array}{rrr}
1 & 1 & 1 \\
2 & 1 & -1 \\
-8 & -5 & -3
\end{array}\right),
$$

مقادير ويزُه و بردارهاى ويزَّ متناظر بآآنها را يـدا كنيد .
. - معكوس ماتريس زير رابيابيد

$$
P=\left(\begin{array}{rrr}
-4 & -3 & 0 \\
5 & 4 & 1 \\
7 & 2 & -1
\end{array}\right) .
$$

د . ${ }^{\text {a }}$ را بيابيد
) ممستت بطيريد تا معادلهُ ديكرى به دست آيل $c_{1} \exp (2 t)+c_{2} t \exp (2 t)=0$ در مثال 1-0-

$$
(A-2 I) \mathbf{b}=(3,1,-2)^{\mathrm{T}}
$$

است . 9-9 نشان دميد مجموعهُ بردارهاى

$$
\left\{(4,1,-3),(3,1,-2),\left(3,1,-\frac{3}{2}\right)\right\}
$$

يكى مجموعهُ مستقل خططى است .
محانببات مثال I-0-r-r را بنفصيل انتجام دهيد . -V

.

- 4
- 11
- IY

$$
\dot{\mathbf{x}}=\left(\begin{array}{ll}
-1 & 1 \\
-5 & 3
\end{array}\right) \mathbf{x}
$$

(با مثال 1-0-0 معايسه كنيد .)

- ا
. . أ در مثال أ

. در شُكل 1-0 ا- نشان داده شده، در حالـت نحاص $m_{1}=m_{2}=m g k_{1}=k_{2}=k$
19- جواب عمومى هريك از دستگامهاى همگّن زير را بيابيد .

$$
\begin{aligned}
& \dot{\mathbf{x}}=\left(\begin{array}{rr}
1 & -2 \\
-4 & -1
\end{array}\right) \mathbf{x}\left(\underset{\mathbf{x}}{ }=\left(\begin{array}{rr}
4 & -4 \\
12 & 17
\end{array}\right) \mathbf{x} \quad\left(\underset{\mathbf{x}}{ }=\left(\begin{array}{ll}
3 & 2 \\
1 & 2
\end{array}\right) \mathbf{x}\right.\right. \\
& \dot{\mathrm{x}}=\left(\begin{array}{rrr}
1 & 1 & 1 \\
2 & 1 & -1 \\
-8 & -5 & -3
\end{array}\right) \mathbf{x} \quad(\dot{\mathrm{x}}
\end{aligned}
$$

$$
\begin{aligned}
& \dot{\mathbf{x}}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \mathbf{x}, \quad \mathbf{x}(0)=(1,0)^{T} \\
& \dot{\mathbf{x}}=\left(\begin{array}{rr}
4 & 1 \\
-8 & 8
\end{array}\right) \mathbf{x}, \quad \mathbf{x}\left(\frac{\pi}{4}\right)=(0,1)^{T} \\
& \dot{\mathbf{x}}=\left(\begin{array}{rr}
1 & 3 \\
1 & -1
\end{array}\right) \mathbf{x}, \quad \mathbf{x}(0)=(4,12)^{T} \\
& \dot{x}=\left(\begin{array}{rr}
6 & -7 \\
1 & -2
\end{array}\right) \mathbf{x}, \quad \mathbf{x}(0)=(-2,1)^{T} \\
& \dot{\mathbf{x}}=\left(\begin{array}{rrr}
1 & -1 & 4 \\
3 & 2 & -1 \\
2 & 1 & -1
\end{array}\right) \mathbf{x}, \quad \mathbf{x}(0)=(3,-5,0)^{T}
\end{aligned}
$$

(ت)

11- هريكى از دستكامهاى ناهمكن زير راحل كنيد.

$$
\begin{array}{ll}
\dot{\mathbf{x}}=\left(\begin{array}{rr}
2 & -1 \\
3 & -2
\end{array}\right) \mathbf{x}+\binom{1}{2} t & \binom{\mathbf{x}}{\text { الف }}\left(\begin{array}{rr}
1 & 3 \\
1 & -1
\end{array}\right) \mathbf{x}+\binom{\sin t}{-\cos t} \\
\dot{\mathbf{x}}=\left(\begin{array}{rr}
-4 & 2 \\
2 & 1
\end{array}\right) \mathbf{x}+\binom{t}{3} e^{2 t} & \left(\begin{array}{r}
\text { (} \\
\mathbf{x} \\
=
\end{array}\left(\begin{array}{rr}
2 & 1 \\
4 & -1
\end{array}\right) \mathbf{x}+\binom{1}{-1} e^{t}\right.
\end{array}
$$

اY- جواب هريكى از دستگامهاى زير رابهد دست آوريد.

$$
\begin{aligned}
& \dot{\mathbf{x}}=\left(\begin{array}{ll}
6 & -7 \\
1 & -2
\end{array}\right) \mathbf{x} \\
& \dot{\mathbf{x}}=\binom{-3}{2} \mathbf{x}
\end{aligned}
$$

الفـ)

$$
\left(\because \quad \dot{\mathrm{x}}=\left(\begin{array}{ll}
2 & -1 \\
3 & -2
\end{array}\right) \mathbf{x}\right.
$$

ب)
. - - ج

$$
\dot{\mathbf{x}}=\left(\begin{array}{rrr}
1 & 1 & 1 \\
2 & 1 & -1 \\
-3 & 2 & 4
\end{array}\right) \mathbf{x} \quad\left(ب \quad \dot{\mathbf{x}}=\left(\begin{array}{rrr}
1 & 1 & 1 \\
2 & 1 & -1 \\
0 & -1 & 1
\end{array}\right) \mathbf{x}\right.
$$

$$
t \mathbf{x}=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right) \mathbf{x}=A \mathbf{x}
$$

دارأى جواب غيربديهى
 $t \dot{\mathbf{x}}=\left(\begin{array}{rr}2 & 1 \\ -2 & -2\end{array}\right) \mathbf{x}$ (ب) $t \dot{\mathbf{x}}=\left(\begin{array}{rr}5 & -1 \\ 3 & 1\end{array}\right) \mathbf{x}$
$\mathbf{k}=\left(\begin{array}{rr}0 & a \\ -a & 0\end{array}\right) \mathbf{x}$,
حركت مى كند كه a يكى نابـت مثبت أست
الف) معادلات بارامترى مسير آن را به دست آوريد .

$\mathbf{x}=\left(\begin{array}{rrr}0 & -1 & -2 \\ 1 & 0 & 1 \\ 2 & -1 & 0\end{array}\right) \mathbf{x}$.

$$
\begin{align*}
& \dot{\mathbf{x}}=\left(\begin{array}{rrr}
1 & -1 & 4 \\
3 & 2 & -1 \\
2 & 1 & -1
\end{array}\right) \mathbf{x} \quad\left(\underline{\mathbf{x}}=\left(\begin{array}{rrr}
-1 & 0 & 1 \\
0 & -1 & 1 \\
1 & 1 & 0
\end{array}\right) \mathbf{x}\right. \\
& \text {. } \\
& \dot{\mathbf{x}}=\left(\begin{array}{ll}
3 & -2 \\
5 & -3
\end{array}\right) \mathbf{x} \quad\left(\underset{\mathbf{x}}{\mathbf{x}}=\left(\begin{array}{rr}
-2 & -3 \\
3 & 4
\end{array}\right) \mathbf{x}\right. \\
& \dot{\mathbf{x}}=\left(\begin{array}{rr}
4 & 2 \\
-8 & -4
\end{array}\right) \mathbf{x} \quad\left(\boldsymbol{e} \dot{\mathbf{x}}=\left(\begin{array}{rr}
1 & -1 \\
1 & 3
\end{array}\right) \mathbf{x}\right. \\
& \text { ب) }
\end{align*}
$$

$$
\begin{aligned}
& \text { معادلات بارامترى مسير ذرهّه رابيابيد . }
\end{aligned}
$$

$\mathbf{x}=\left(k_{2}-k_{1}\right) \mathbf{u}_{1}+i\left(k_{1}+k_{2}\right) \mathbf{u}_{2}$,

$$
\text { بنويسيد كه un } u_{1} \text { حقيقى اند . }
$$

ب) نـنان دهيل u
ب) نشان دهيد ت) نتيجه بكِيديد كه مـعـادلة (1 (

دستكاه است .

 مسائل را بـ كمكى كاميووتر بهدست مي آورند .

دستكاه معادلات جرى خطى

 است . برآورد شـده است كـه براى حل يكى دستکاه شـامل ده معـادله با تاعــده كـرامر در حـدود

 تاعدهُ كامر عملى امـت .

 حذفى كاوس بدعمليات نياز دارد .

 دربايان كتاب ذكر شدهاند، مراجعه نمايبيد

 جنين مفـسوم عليه هاى كوجكى مـواجي

اكـر مـاتريس خــرايب ناتكين باثــد يـافتن مـعكوس يكـ مـاتريسن روشّى ديكر براىى حل
 به آن اشـاره شــد، بيش مى آيد . مـعكوس كـردن يكـماتريـس با روش كاهش كـاوس - زردان نيز عيوب ممان روش را به هـمراه خوالمد داشت . در اين مورد بايد متذكر شويم كه يافتن معكوس با روش حذفى كاوس و كاهس كاوس - زردان تقريباً به يكى اندازه عمليات نياز دارد ـ اين نتيجه ايى ري دور از انتظار است، از اين نظر كه در حل دستكامها، روش سذلفى كاوس كاراعـ خيلى بيسترى
 شامل ده معادله و ده مبهول مربوط مى ثـوند .

 همكرا نيسـت .

 مى نامند) . فرض مى كنيم بسادلات قبلاً امعياس بندىى شُده اند ـ ـ در اين صورت اولّانين معادله را
© Carl G. J. Jacobi * رياضى دان أكانى (

رياضيات مهندسى
 زير امست
$x_{i}=\frac{1}{a_{i i}}\left(b_{i}-\sum_{\substack{j=1 \\ j \neq i}}^{n} a_{i j} x_{j}\right), \quad i=1,2, \ldots, n$.
(0) ، ... ، ، $x_{2}^{(0)}$ ، $x_{1}^{(0)}{ }_{1}^{(0)}$
 (1) از مقادير را برایى
 فرمول تكرارى زير نيز مى توان نوشـت :

$$
\begin{equation*}
x_{i}^{(k+1)}=\frac{1}{a_{i i}}\left(b_{i}-\sum_{\substack{j=1 \\ j \neq i}}^{n} a_{i j} x_{j}^{(k)}\right), \quad i=1,2, \ldots, n . \tag{r-9-1}
\end{equation*}
$$

$$
\begin{aligned}
8 x_{1}+x_{2}-x_{3} & =8 \\
2 x_{1}+x_{2}+9 x_{3} & =12 \\
x_{1}-7 x_{2}+2 x_{3} & =-4,
\end{aligned}
$$

حل : بس از محوركيرى و نوشُتن معادله بهشكل (1-9-1)، داريم(تمرين ا را ملاحظه كنيد)

$$
\begin{aligned}
& x_{1}=1 \quad-0.125 x_{2}+0.125 x_{3} \\
& x_{2}=0.571+0.143 x_{1}+0.286 x_{3} \\
& x_{3}=1.333-0.222 x_{1}-0.111 x_{2} .
\end{aligned}
$$

مــاده ترين حــس اولّيه عـبـارتامـت از داده تُدها اند (تمرين ب را ملاحظه كنبد) .

$k=$	0	1	2	3	4	5	6	7
$x_{1}^{(k)}$	0	1.000	1.095	0.995	0.993	1.002	1.001	1.000
$x_{2}^{(k)}$	0	0.571	1.095	1.026	0.990	0.998	1.001	1.000
$x_{3}^{(k)}$	0	1.333	1.048	0.969	1.000	1.004	1.01	1.000

مـــال بالا از كتابب آناليز عـددى كاربردى نوشته جرالد انتـخاب شـده است . اشتـاينبر

$\max _{\operatorname{for} i=1,2, \ldots, n}\left\{\sum_{j=1}^{n}\left|a_{i j}\right|\right\}<1$.
به عبـارت ديكر، مـجـموع تـدر مطلفـهـاى عناحـر سطر i ام بايد براى هر i كــتـر از 1 باشـد تا
همكرا'يهى تضمين شود .
روئ زاكوبي، روش جـابه جا سـازى توام نيـز ناميـده مى شود، زيرا هر عنصـر در بردار

 بردار جــواب امـتــفـاده كـنــم . اينروش جــابه جـا سـازى مـتـوالى يا روش كـاوس ـ ســايدل"

 باششد، يعنى اكر

$$
\left|a_{i i}\right|>\sum_{\substack{j=1 \\ j \neq i}}^{n}\left|a_{i j}\right|, \quad i=1,2, \ldots, n .
$$

فاديوا بـطرر كلى تر ثابت كرده است كـه يكـ شرط لازم و كـانى برایى آن كه يكى فرآيند تكرارى با

 كردهالست .

ممادير ويزه و بردارهاى ويزه
 (IA99-\AYI) ، P. L. Seidel *

در تمام سحالات مـاتر يسها بزركتـر از

 يك نحاصيت ههمم، مربوط به محموع عناصر تطرى يكى ماتريس A اسمت . اين مسموع را

اثتر A ناهيده و آن را به صبورت زير مى نويسيم

$$
\operatorname{tr}(A)=\sum_{i=1}^{n} a_{i i}
$$

می توان نشان داد كه اكر

$$
\begin{equation*}
\operatorname{tr}(A)=\sum_{i=1}^{\pi} \lambda_{i} \quad, \quad|A|=\prod_{i=1}^{\pi} \lambda_{i} \tag{4-9-1}
\end{equation*}
$$

 مفيد خخواهلـ بود .

فبالٌا اهـيت ماتريسـهاى متـقارن را در رياضيـات كاربردى يادآور شديهم . خــواص آنها را
در تضيهٔ زير بلون أُبات بيان دى كنيم •

الفس) مقادير ويرٌ و بردارهـاى وير؛ \& A حقيقيى اند؛
بـ) بردار هاى ويزُ هُ متناظر با مقادير ويرُّ متمايز ، متعاملند؛ $P^{\gamma} A P=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ (ی) (كه،

$$
\left|\lambda_{1}\right| \leq \max _{i=1,2 \ldots \ldots n}\left\{\sum_{j=1}^{n}\left|a_{i j}\right|\right\}
$$

است . يكـروش براى بهد بست آرودن بزر كـترين مـدّار ويزه از حيث قـدر مطلق روشُ توانى نام
 ويزهُ متناظر بآٓن، و و(0) بردارى دلخواه باه باشد، آن كاه معادلات زير را ما مى توان نوشـت :

$$
\begin{aligned}
& A \mathbf{v}^{(0)}=c_{1} \mathbf{v}^{(1)} \\
& A \mathbf{v}^{(1)}=c_{2} \mathbf{v}^{(2)} \\
& \vdots \\
& A \mathbf{v}^{(m)}=c_{m+1} \mathbf{v}^{(m+1)}
\end{aligned}
$$

 دتّتى مطلوب
روشن خواهد كرد .
 $A=\left(\begin{array}{rrr}5 & -2 & 0 \\ -2 & 3 & -1 \\ 0 & -1 & 1\end{array}\right)$.

انجام دهيد
 و $A v^{(1)}=(5.8,-3.2,0.4)^{T}=5.8(1,-0.5517,0.0690)^{T}=5.8 v^{(2)}$
 (1,-0.65, 0.12 $)^{T}$

$i=$	0	1	2	3	4	5	6	7	B
c	-	5.	5.8	6.104	6.220	6.264	6.280	6.266	6.268
v	$\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$	$\left(\begin{array}{c}1 \\ -0.4 \\ 0\end{array}\right)$	$\left(\begin{array}{c}1 \\ -0.552 \\ 0.069\end{array}\right)$	$\left(\begin{array}{c}1 \\ -0.610 \\ 0.102\end{array}\right)$	$\left(\begin{array}{c}1 \\ -0.632 \\ 0.115\end{array}\right)$	$\left(\begin{array}{c}1 . \\ -0.640 \\ 0.119\end{array}\right)$	$\left(\begin{array}{c}1 \\ -0.643 \\ 0.121\end{array}\right)$	$\left(\begin{array}{c}1 \\ -0.644 \\ 0.122\end{array}\right)$	$\left(\begin{array}{c}1 \\ -0.645 \\ 0.122\end{array}\right)$

روش توانى ممـايبى مم دارد؛ ممكن الست در فرآيند تكرارى وتتى دو مقـدار ويرّه خيلى تزديك بـيكدبكرند امّا مساوى نيستتد، الشكال ايجاد شـود ـ ا اينوضعـبت را مى توان با با افزودن
(190Y-1AAr) (Richard E. von Mises ،

 ويزها الى كه تبلاً به دست آمده است، باشد .

تمرينهاى 1-9

1- با الستفاده از محور

> بنويسيد .

- -

$$
\begin{aligned}
2 x_{1}+x_{2} & =2 \\
x_{1}+4 x_{2}+2 x_{3} & =0 \\
2 x_{2}+4 x_{3} & =0
\end{aligned}
$$

$$
5 x_{1}-4 x_{2}=2
$$

$$
-4 x_{1}+10 x_{2}-5 x_{3}=0
$$

$$
-5 x_{2}+6 x_{3}=-1
$$

¢- دستغاهزير رابا روش سذفى كاوس حل كنيدو محامباترا تاسهر تم اعثـار انجام دهيد.

$$
\begin{aligned}
3 x_{1}+2 x_{2}-x_{3}+2 x_{4} & =-2 \\
x_{1}+4 x_{2}+2 x_{4} & =1 \\
2 x_{1}+x_{2}+2 x_{3}-x_{4} & =3 \\
x_{1}+x_{2}-x_{3}+3 x_{4} & =4
\end{aligned}
$$

دسنگاه زير رابا روش كـامش كاوس -زردان حل كنيد د محـاسبات را نا سـرتم اعـــار انجام دهيد

$$
\begin{aligned}
x_{1}+2 x_{2}-2 x_{3} & =-3 \\
2 x_{1}-4 x_{2}+4 x_{3} & =0 \\
8 x_{1}-6 x_{2}+2 x_{3} & =4
\end{aligned}
$$

- - دستغاه زير مفروض است

$$
\left(\begin{array}{rrr}
3 & 2 & 100 \\
-1 & 3 & 100 \\
1 & 2 & -1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
105 \\
102 \\
2
\end{array}\right) .
$$

$$
\begin{aligned}
& \text { رابا روشهاى زير حل كنيد } \\
& \text { الف) معكوس ماتريس } \\
& \text { ب) (روش جذنى كاوس } \\
& \text { ب) (روش كاوس-سايدل }
\end{aligned}
$$

$$
\begin{aligned}
& \text { رابا روشهاى زير حل كنيد } \\
& \text { الف) روش حذنى كاوس ؛ } \\
& \text { ب) (روش زاكوبى (با جهار تكرار)؛ } \\
& \text { ب) (ب) رون كاوس -سايدل (با جهار تكرار)؛ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { - - دستغاه }
\end{aligned}
$$

الف) آن رابا استفاده از روش حذفى ثارس تا دو رقم اعشار حل كنيد .
 سبس آن را مانند تسمت (الف) حل كنيد . - -

$$
\left(\begin{array}{rrr}
-0.002 & 4.000 & 4.000 \\
-2.000 & 2.906 & -5.387 \\
3.000 & -4.031 & -3.112
\end{array}\right) \mathbf{x}=\left(\begin{array}{r}
7.998 \\
-4.481 \\
-4.14 .3
\end{array}\right)
$$

الف) آن را با روش حــفى كارس و اسـتـفــده از حسـاب جهـار رقمى حل كنيد، يعنى در هر عدد مجمورعاً از جهار رتم استفاده شود

 - • - دستگاه زير مغروض است

$$
\left(\begin{array}{rrr}
3.02 & -1.05 & 2.53 \\
4.33 & 0.56 & -1.78 \\
-0.83 & -0.54 & 1.47
\end{array}\right) \mathbf{x}=\left(\begin{array}{r}
-1.61 \\
7.23 \\
-3.38
\end{array}\right) .
$$

الف) مقدار دترمينان ماتريس ضرايب رابيدا كنيد .

> باثشند - براى مثال

ج) نامساعلى را در اينجا مى توان با استفادهاز دتت بالاتر در عمليات بهبود بخشـيد. قسمت (ب) را با استفاده از حسـاب شـت ر رتمى تكرار كنيد .

- ال دستغاه تمرين • 11 دهيد جواب نادرسـت

$$
\mathbf{x}=(0.880,-2.35,-2.66)^{T}
$$

اتقريبآَه در دستغاه صدق مى كند، بهاين ترتيب يك بديدهُ جـالب دستغاههاى نامسـاعد نشان داده مى شود .

$$
A=\left(\begin{array}{rrr}
2.38 & -1.42 & 3.24 \\
1.36 & 2.54 & -1.62 \\
-1.82 & 3.65 & 1.81
\end{array}\right) \quad, \quad \mathbf{b}=\left(\begin{array}{l}
1.11 \\
1.97 \\
2.42
\end{array}\right)
$$

هريكي از موارد زير رأتا سه رقّم اعشٌار بيابيل .
|A| الفـشا
بب)
A^{-1}
تـ) x را با اهستفاده از روش گاوس -سايدل برای بر دستگاه $A x=b$ ، كه در آن

$$
A=\left(\begin{array}{rrr}
5 & -1 & 1 \\
2 & 4 & 0 \\
1 & 1 & 5
\end{array}\right) \quad, \quad b=\left(\begin{array}{c}
10 \\
12 \\
-1
\end{array}\right)
$$

x را تا سه رقم اعشار و با هريك از روشتهای زير بيابيد الفش) روش حخفى گاوس؛
ب؟) روش كاهش گاوس -زردان؛
 - أ
$\boldsymbol{A}=\left(\begin{array}{rrr}2.51 & 1.48 & 4.53 \\ 1.48 & 0.93 & -130 \\ 2.68 & 3.04 & -1.48\end{array}\right) \quad, \quad \mathbf{b}=\left(\begin{array}{r}0.05 \\ 1.03 \\ -0.53\end{array}\right)$,
. را تا سهه قِم اعشار و با هريكي از روشهاي زير بيابيلد
الفـ) روش نكرارى زاكوبی ؛

10-1 إلفـ) بزرگترين مقدار ويزءُ غالتب مـاتريس زير را بيابيل

$$
A=\left(\begin{array}{rrr}
2 & 2 & 2 \\
\frac{2}{3} & \frac{5}{3} & \frac{5}{3} \\
1 & \frac{5}{2} & \frac{11}{2}
\end{array}\right)
$$

$$
\begin{aligned}
& \text { 1-1 }
\end{aligned}
$$

$A=\left(\begin{array}{rrr}4 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & -1\end{array}\right)$,

هريكى از موارد زير را تا سهر تم اعـشار محاسبه كنيل .

 او"ليه
A^{-4}
ت) مقدار ويزء́ مغلوب را با استفاده از - IV
$A=\left(\begin{array}{lll}1 & 1 & 2 \\ 0 & 1 & 3 \\ 1 & 1 & 1\end{array}\right)$,
بزرگترين مـقدار ويزه غـالب و بردار ويرهُ متناظر آن را بيـابيد . از روش توانیى از سـهر رتم اعشار استفاده كنيد
 و بردار ويزّه نظير آن را بيابيد .
19- تمام مقادير ويزه و بردارهاى ويزءُ نظير ماتريس زير را بيابيد
$\left(\begin{array}{lll}4 & 2 & 2 \\ 2 & 5 & 1 \\ 2 & 1 & 6\end{array}\right)$.
در محاسبات از سهرفم اعشّار استفاده كنيل .

$$
\left(\begin{array}{rrr}
9 & 10 & 8 \\
10 & 5 & -1 \\
8 & -1 & 3
\end{array}\right),
$$

كدام يك از اين ماتريسها معين مشبت، يعنى همه مقادير ويرُه أنها مبثتند؟

ماتريس ضر ايـب هريك از دستگاههای تمرينهای V - -

روش هـهگراسـت .
با با مراجعه به تمرين IV تطرى كـم كرده و روش تواني را به كـار بريد . بايل بـس از آن كه تفويت به ومـيلهُ يك بحمع

نظير آن ججبران شد، نتيجهُ $\lambda=-0.834$. يعني مقدار ويرُم مياني به دست آيل .

ويرّه مياني تمرين Y Y بيان كنيلا .

اسـت** ماتريس هيلبرت F F عبارت اسـت از

$$
H=\left(\begin{array}{cccc}
1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\
\frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{3} \\
\frac{1}{3} & \frac{1}{4} & \frac{1}{3} & \frac{1}{6} \\
\frac{1}{4} & \frac{1}{3} & \frac{1}{6} & \frac{1}{7}
\end{array}\right)
$$

الفـ) نشان دهيد H עتقريبآه تكنين أسـت .

$$
\mathbf{b}=(2.083,1.283,0.950,0.760)^{T}
$$

مباتث اضال3ى $\quad Y-1$
در مطالعـهُ جبـر خحلى دركيـر شــدن با جزئيـات مـمكن السـت بآسـانى اتفاتِ بيـانتـد . براى
 (19FY-\AFY) (David Hilbert * . $n \times n$ كه n كا n نامتناهي اسـت

 نتان دهيم كه هكونه اصطلاحات و مغاهيم اين نصـل را مى توان تعميم داد تا بسيارى از مباحث رياخيات را در بر كيرد . اين توسـيع يا تعميم مفهوم عميقـترى را از رياخيات به عنوان يك كليت فراهمم مى سـازد و در نتيجه مطالعهُ بيــُتر در اين موضوع را سـاده تر خحواهدنمود . علاوه بر اين، بخشُ حاضر مرورى بر بسيارى از مباحث اين نصل خخو اهد بود .

 $c_{1} \mathbf{u}+c_{2} \mathbf{v}+c_{3} \mathbf{w}$,

كه در آن كنيم . مثلال، $c_{1} A+c_{2} B+c_{3} C+c_{4} D$,
 تركيبهاى خطى زير راداريـم
$c_{1} f(x)+c_{2} g(x)+c_{3} h(x)$
$c_{1} P_{n}(x)+c_{2} Q_{n}(x)$,

 حقيقى اند، مكُر آن كه خللانـ آن تصمريح شود . حال يكى نضاى بردارى هجرد را تعريفـ مى كنيم .
 هر گـــاهبـرأى هر b، b و c در V ، و هر اسكـالر برترارباشند

$$
\begin{aligned}
& \text { و عضو V } \alpha \odot \mathbf{a} \text { باشد، } \mathrm{C} \text { (ii } \\
& \text { } \alpha \odot \mathbf{a}=\mathbf{a} \odot \alpha-1
\end{aligned}
$$

$$
\leq \alpha \odot(\mathbf{a} \oplus \mathbf{b})=\alpha \odot \mathbf{a} \oplus \alpha \odot \mathbf{b}-r
$$

$$
!(\alpha+\beta) \odot \mathbf{a}=\alpha \odot \mathbf{a} \oplus \beta \odot \mathbf{a}-r
$$

$$
!(\alpha \beta) \odot \mathbf{a}=\alpha \odot(\beta \odot \mathbf{a})-\psi
$$

$$
.0 \odot \mathbf{a}=\mathbf{0}, 1 \odot \mathbf{a}=\mathbf{a}-\Delta
$$

ابتداب به تشابه بين تعريف ا

 اين اعمال تعريف شده اند . در واقع، اكر اعضايى V ماتريس باشند، آن كاه

 بـاشند، ت $\alpha a_{1} x^{2}+\alpha b_{1} x+\alpha c_{1}$

سه بعدى، را دارد . در اين صـورت مى گويـمى V
 بردارى دوم ربط داد .

 تعريف مى كنيم
$f(x) \oplus g(x)=(f+g)(x)$
$\alpha \odot f(x)=(\alpha f)(x)$.
 آنها را با هم جــمع مى كنيم تا مـــدار بهاين صورت تعريف شـد، يك نضاى بردارى الست (تمرين Y) .
 تعريف شـده در قسمت (ب)، اين مجموعـه يك نضاى بردارى است (تمرين ؟) . برایى

 است، هستند. ت) مجموع4 همه بردارها در $\mathbf{a} \oplus \mathbf{b}=\left(a_{1}, a_{2}, a_{3}\right) \oplus\left(b_{1}, b_{2}, b_{3}\right)=\left(a_{1}+b_{1}, a_{2}+b_{2}, 0\right)$
$\alpha \odot \mathbf{a}=\alpha \odot\left(a_{1}, a_{2}, a_{3}\right)=\left(\alpha a_{1}, \alpha a_{2}, 0\right)$.
اين مجموعه از بر دارها يك نضاى بردارى تشكيل نمى دهد، زيرا شرط
$1 \odot \mathbf{a}=\mathbf{a}$
برترار نيست .

كنيم • براى مثال، نضضاي بردارى را كه اعضايش چجندجـمله ايهاى درجئ دوم از x به صورت زير هستند، در نظر بكيريد :
$a x^{2}+b x+c$.
يك بايه برایى اين نضاى بردارى كه اعضايش جندجمله ايهاى درجئ دوم هستند، بايد مجموعهداى

 يكتركيبخطى از اعضاى بايه نرشت، و (ب) اعضاى بايه مستقل خطى اند (تمرينهاى هو و ع).
 است . (حرا؟؟)

 نامتناهي اسست .

بيان مى كنيم
لفية

 آن كاه تناظرهاى زير را نيز داريم
$\mathbf{x} \oplus \mathbf{y} \leftrightarrow \mathbf{x}^{\prime} \oplus^{\prime} \mathbf{y}^{\prime} \quad$ and $\quad \alpha \odot \mathbf{x} \leftrightarrow \alpha \odot^{\prime} \mathbf{x}^{\prime}$.

أين نيز با جحمع عناصر متناظر دو ماتريس انجام Aمي شـود .
يك اصيطلجح مفيل در جيبر خطلى را در تعريفت زير مى آوريـم .

. المـت
با استفاده از اين مفهو

ماتريس ضرايب آن برابر با 1 باشد .

و هاتريس افزودذ؛ $A \mid B$ رتبه هاى برابر داشُته باشـنـ .

$n=r+\operatorname{dim}(\operatorname{ker} A)$.

.

به تصريفـ زير تو جه كنيل .
تعريف زيرماتريس مربعي ناتكين A الدت . (ثوجه : يكى ماتريس
 رتبهُ يك مـاتريس معـادل اسـت با يافتن بز زكتـرين زيرماتريسـى كـه دترمينان مسخالفـ صـفر داثشته بانشد . ولى در بيشتتر حالات به كار بردن تعريف Y-V-Y بماده تر أست .
 ($\left.{ }^{\prime \prime}\right)^{i+i} c_{i j}$
 نشان بي دهند .
$A=\left(\begin{array}{rrr}1 & 2 & 3 \\ 2 & 1 & 2 \\ -2 & 1 & -1\end{array}\right)$.
$\operatorname{adj} A=\left(\begin{array}{rrr}-3 & -2 & 4 \\ 5 & 5 & -5 \\ 1 & 4 & -3\end{array}\right)^{7}$
توجهي كنيذ كه عنصر
$c_{21}=(-1)^{2+1}\left|\begin{array}{rr}2 & 3 \\ 1 & -1\end{array}\right|=-(-5-5$.
كـاهى الحاقى يك مـاتريس A در يافتن A مـفيـد اسـت . تـضيـة زير را در اين باره بدون
اثبات مى آوريم .

$A(\operatorname{adj} A)=(\operatorname{adj} A) A=I|A|$.
بس اكر A ناتكين باشُد، آن كاه

$$
A^{-1}=\frac{1}{|A|}(\operatorname{adj} A) .
$$

مثال
$\operatorname{adj} A=\left(\begin{array}{rrr}-3 & 5 & 1 \\ -2 & 5 & 4 \\ 4 & -5 & -3\end{array}\right)$.
سل : دانتيم
$A^{-1}=\frac{1}{5}\left(\begin{array}{rrr}-3 & 5 & 1 \\ -2 & 5 & 4 \\ 4 & -5 & -3\end{array}\right)$.
جون

به كمك تضيئ
 $x_{k}=\frac{\left|A_{k}\right|}{|A|}, \quad k=1,2, \ldots, n$,

رياخيات مهندسى
 B الست .
 . با استفاده از تضبئ C . $X=A^{-1} B$ $X=\frac{1}{|A|}(\operatorname{adj} A) B$.
 استـ؛ بنابراين معادله (($1-\vee-1$) را مى توان هنين نوشت $x_{\mathrm{k}}=\frac{c_{1 \mathrm{k}} b_{1}+c_{2 \mathrm{k}} b_{2}+\cdots+c_{n k} b_{n}}{|A|}, \quad k=1,2, \ldots, n$.

 صـورت طرف رامت معـادلهُ (Y-V-1) برابر بسط ا معادلّ (Y-V- 1) به صوردت زير نوشته مى شود
$x_{k}=\frac{\left|A_{\mathbf{k}}\right|}{|A|}, \quad k=1,2, \ldots, n$
و أبّات تضيه كامل انست.
اين نصل را با مطلبى درباره́ تعويض هابه به بايان مى بريم . هر جند بحـث ما برالى سـادگى
 هايهُ طبيعى
$\mathbf{e}_{1}=(1,0,0), \quad \mathbf{e}_{2}=(0,1,0), \quad \mathbf{e}_{3}=(0,0,1)$.
در بختّ Y-Y نشان داديـم كه بردارهأى
$\mathbf{w}_{1}=(1,0,0), \quad \mathbf{w}_{2}=(1,1,0), \quad \mathbf{w}_{3}=(1,1,1)$
نِّز يكى لِايه برایى

 ديكر در حالت كلّى معلوم خواهد شد ـ ـبنابراين
$(1,0,0)_{w}=(1,0,0)_{e}$,
$(0,1,0)_{w}=(1,0,0)_{e}+(0,1,0)_{e}$,
$(0,0,1)_{w}=(1,0,0)_{e}+(0,1,0)_{e}+(0,0,1)_{e}$,
 به صررت زير نوثته مى نـود

$$
T \mathbf{x}_{w}=\mathbf{x}_{e},
$$

$$
T=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

توجه كنيد كهT ترانهادة ماتريس ضرايب در معادلات ((
 حل : مستقيماً داريم
$(2,3,4)_{w}=2(1,0,0)_{e}+3(1,1,0)_{e}+4(1,1,1)_{e}$ $=(9,7,4)_{e}$.
$\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{l}2 \\ 3 \\ 4\end{array}\right)_{\omega}=\left(\begin{array}{l}9 \\ 7 \\ 4\end{array}\right)_{\rho}$.
با استفاده از ماتريسTدايريم

مـاتريس T لزوماً ناتكين امــت؛ بنابراين مـــادلهُ (Y-V-1) به صـورت زير هم نوشتـه
مى نـود

$$
\mathbf{x}_{w}=T^{-1} \mathbf{x}_{e},
$$

$$
(\Delta-v-1)
$$

كه در آن (تمرين vا الفـ)
$T^{-1}=\left(\begin{array}{rrr}1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1\end{array}\right)$.

به عبارت ديگُر با استفاده ازT و T بين نمايشهها در دو هايه مي توان ارتباط برقر ار نمود .

$\mathbf{v}_{1}=(1,1,1), \quad \mathbf{v}_{2}=(1,2,3), \quad \mathbf{v}_{3}=(2.2,0)$
يكـ لايه براى
$S \mathbf{x}_{v}=\mathbf{x}_{e}$,
$S=\left(\begin{array}{lll}1 & 1 & 2 \\ 1 & 2 & 2 \\ 1 & 3 & 0\end{array}\right)$
و (تمرين V (ته)
$\mathbf{x}_{v}=S^{-1} \mathbf{x}_{e}$,
$S^{-1}=\left(\begin{array}{rrr}3 & -3 & 1 \\ -1 & 1 & 0 \\ -\frac{1}{2} & 1 & -\frac{1}{2}\end{array}\right)$.
حال بآسانى مى توان ازطريق پايةُ طبيعى از يكى بايه به بايهُ ديعُر دست يافت . داريم $\mathbf{x}_{v}=S^{-1} \mathbf{x}_{e}=S^{-1}\left(T \mathbf{x}_{w}\right)=\left(S^{-1} T\right) \mathbf{x}_{w}$
$\mathbf{x}_{w}=T^{-1} \mathbf{x}_{e}=T^{-1}\left(S \mathbf{x}_{v}\right)=\left(T^{-1} S\right) \mathbf{x}_{\mathrm{c}}$.

 (تمرين VV) . اين نكات در مثال زير تشريح شـده اند . مثال
$L\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+x_{2}, x_{2}+x_{3}, x_{3}+x_{1}\right)$
 به هريكاز دو هايهُ ديكر تبديل كنيد اين

حل : اكُر تبديل, داده شده را در مررد هريك از بردارهاى بايهُ طبيعى به كار بريم، ماتريس تبديل را بهصورت زير بهدست مى آرحـم

$$
A=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right)
$$

در آن صورت (تمرين V)

$$
T^{-\mid} A T=\left(\begin{array}{rrr}
1 & 1 & 0 \\
-1 & 0 & 0 \\
1 & 1 & 2
\end{array}\right)_{w}
$$

$$
S^{-1} A S=\left(\begin{array}{rrr}
2 & -2 & 8 \\
0 & 2 & -2 \\
0 & \frac{3}{2} & 0
\end{array}\right)
$$

$$
A\left(\begin{array}{l}
9 \\
7 \\
4
\end{array}\right)_{e}=\left(\begin{array}{l}
16 \\
11 \\
13
\end{array}\right)_{e}
$$

$$
T^{-1} A T\left(\begin{array}{l}
2 \\
3 \\
4
\end{array}\right)_{w}=\left(\begin{array}{c}
5 \\
-2 \\
13
\end{array}\right)_{w}
$$

$$
S^{\dashv 1} A S\left(\begin{array}{c}
10 \\
-2 \\
\frac{1}{2}
\end{array}\right)_{v}=\left(\begin{array}{c}
28 \\
-5 \\
-3
\end{array}\right)_{v}
$$

Y-1 تمرينهاى

 صدق مى كتد و در نتيجه V يك نضهاى بر دارى است
 صدق مى كتند .

1-v-1 صدق مى كتند .
(ت كنيد هی شرايط ديكرى از تعريفـ برقرار نيستند .

ه- نتان دهيد

نوشت
-V
$A=\left(\begin{array}{rrr}1 & 2 & 3 \\ 2 & 1 & 2 \\ -2 & 1 & -1\end{array}\right)$,
. $|A|$

- - الف) ماتريس
 ب) با با بوجه بهفسمت (ب)،
俍 $T^{-1} A T \mathbf{x}_{w}$ مى شود .
 ج) در منال
$(16,11,13)_{e}=(5,-2,13)_{w}=(28,-5,-3)_{v}$.

 - با تعاريف معمولى

ت (ت
ث ()
ج) جنضاى جندجملهايهاى

$$
P_{n}(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}
$$

ج) مجموعهُ همه جوابهاى يكى معادلُّ ديفرانسيل ممكُن خطى داده شُده بهصورت $a_{0}(x) \frac{d^{n} y}{d x^{n}}+a_{1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{n}(x) y=0$.
-1- الف) ننان دهيد مجموعء
$\left\{\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right),\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right),\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right),\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right),\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0\end{array}\right),\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)\right\}$
يك بايه براي فضاى بردارى ماتريسهاى

$$
\begin{array}{lll}
\left(\begin{array}{rrr}
1 & 0 & -2 \\
-1 & 3 & 5 \\
1 & 5 & 3
\end{array}\right) & \left(\begin{array}{rrr}
5 & -6 & -1 \\
5 & 1 \\
0 & 2 & -3 \\
1 & 2 & -1 \\
-1 & -2 & 0
\end{array}\right) & \left(\because\left(\begin{array}{rrrr}
1 & 0 & 1 & 1 \\
-1 & 0 & 2 & 1
\end{array}\right)\right.
\end{array}
$$

$$
A=\left(\begin{array}{rrrr}
0 & -1 & 1 & 4 \\
3 & 2 & -2 & 1 \\
0 & 4 & 0 & 1 \\
1 & 0 & -1 & 1
\end{array}\right) \quad\left(ب A=\left(\begin{array}{rrr}
1 & 2 & 3 \\
0 & -4 & 2 \\
-1 & 5 & 4
\end{array}\right)\right.
$$

 وجودبيابيد

$$
\left(\begin{array}{rrrr}
5 & -6 & -1 & 1 \\
0 & 2 & -3 & 2 \\
1 & 2 & -1 & 4 \\
-1 & 0 & 2 & 1
\end{array}\right) \quad\left(ب\left(\begin{array}{rrr}
1 & 3 & 5 \\
2 & 4 & 4 \\
1 & -1 & 1
\end{array}\right)\right.
$$

$\mathbf{w}_{1}=(1,-1,0), \quad \mathbf{w}_{2}=(1,0,-1), \quad \mathbf{w}_{3}=(0,1,1)$

ب)
ب)
ت) ماتريس زير رابه w - بايه تبديل كنبد
$A=\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1\end{array}\right)$
19-18) نشان دهيد بردارهاى
$\mathbf{v}_{1}=(1,0,1), \quad \mathbf{v}_{\mathbf{2}}=(0,-1,-1), \quad \mathbf{v}_{3}=(1,1,0)$
يكى بايه براى

ت)
ث) ماتريس زير را به v ـ بايه تبديل كنيد
$B=\left(\begin{array}{rrr}-1 & 1 & 0 \\ 0 & 0 & 0 \\ -1 & 0 & 1\end{array}\right)$.
-IV ب) باتر
ب)
 نمى كند
 $. r \leq \max (m, n)$
فتط اككر رتبهٔ A برابر n باشـد .
ا-Y رتبهُ A و رتبهُ ماتريس افزودهُ B؛ A A با هم برابر باشثند
 $n=r+\operatorname{dim}(\operatorname{ker} A)$.

سسس از تمرين זY استفاده كنيد .)

در تمرين YF استفاده كنيد .)
وя- الف) نشان دهيد
$\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)\left(\begin{array}{l}a \\ b \\ c\end{array}\right)=\binom{2 a}{b}$
بك تبديل خطط تعريف مى كند (به بخش 1-r رجوع كنيد)
 را مى توان هامشتّت كيرى ها ناميد .

ت (ت) هستهٔ تبديل رابيابيد
ث) همدامنئ تبديل را توصيف كنيد.

 .
ب) (ماتريسى كه بك عضو دلخواه اين فضـاى بردارى را بـه فضـاى مـستْهاى اين اعضا تبديل مى كند، جيست؟
 (تعريف 1-F-1, اراملاحظه كنيد.)

ماتريس زير رادر نظر بكيريد
$A=\left(\begin{array}{lll}2 & 1 & 2 \\ 1 & 2 & 2 \\ 2 & 2 & 3\end{array}\right)$.

(x,y,z) باشيم . نـنان دميد $A(x, y, z)^{T}$ نيز دارانى همبن خاصيت است .

Tige

معادلات با مشتقات جزئى

معادادله هالى عرتبه اوّل

معادله هاى ديفر انسيل معمولى نفتّى بسـبار مهم در رياخيـيات كاربردى دارند . مسسائل

 اغلب بايد علاوه بر يكى يا جند متغير مكانى، زمان را نيز لزومآدر نظر نظر بغيريم .

در اين كتاب تاكيد روتى معادلات با مشتّقات جزئي مرتبُ دوم است . ولى در اين بـينت
 ترموديناميك، حساب تغييرات، و احتمال كاربرد دارند .

كلى ترين معادلهُ با مشتقات جزّثى مرتبهُ اوّل با دو متغير مستقلّبه صورت نزير است :

$$
\begin{equation*}
F\left(x, y, z, z_{x}, z_{y}\right)=0 \tag{1-Y-Y}
\end{equation*}
$$

كه در آن بايد (x,y) z را بيانيم كه در آن
$\frac{\partial z}{\partial x}=z_{x} \quad, \quad \frac{\partial z}{\partial y}=z_{y}$.

 زيرنوشت :

$$
\begin{equation*}
a_{0}(x, y) z(x, y)+a_{1}(x, y) z_{x}+a_{2}(x, y) z_{y}=b(x, y) \tag{Y-1-Y}
\end{equation*}
$$

اكر مسادله بهصورت زير باشد، آن را شُبه خخطى كويند
$P(x, y, z) z_{x}+Q(x, y, z) z_{y}=R(x, y, z)$.
تو جـه كين كـه بعـفى نويسندگـان معادلئ (Y-Y مـمكن امـت باعث ابهام شود، زيرأ در اين صورت معادله أى به صورت $\sin z z_{x}+z^{2} z_{y}=z^{3}(x+y)$

 بطر خ خطى ظاهر شوند الما مسلوديت ديگرى ندارند
زوز
به ثـكل (Y-Y معادلكُ (Y-Y-Y) , كلى تر، معادلات لاكرانزّ ناميله هى شوند، اشُتباه شود) . تضبئ زير رأ بدون أثبات بيان مى كنيمه . لفيه $P(x, y, z) z_{x}+Q(x, y, z) z_{y}=R(x, y, z)$

$$
\text { " نمادهاى } q=z_{y} \text { ، } p=z_{x} \text { بهار ميرود. }
$$

$v(x, y, z)=c_{2} g u(x, y, z)=c_{1} و$ به جوابب عمومى دو معادلهُ ديفر انــيل معمولى زيرند
$\frac{d x}{P}=\frac{d y}{Q}=\frac{d z}{R}$.

$\frac{d y}{d x}=\frac{Q}{P} \quad$ and $\quad \frac{d z}{d x}=\frac{R}{P}$
$y=y\left(x, c_{1}, c_{2}\right)$ كه در آن متغير مستقل x است . جواب عمومى معادلات
 آورد . شرح بيشتر را مى توان در تمرينها ياغت (تمرين Y) . مثال Y - - ا-1 جواب عمومى معادله زير را بهدست آوريد
$z z_{x}+y z_{y}=x$.
 ك $R=x$
$\frac{d x}{z}=\frac{d y}{y}=\frac{d z}{x}$,
كه از آن باشد . در اين جا از تركيب $d x+d z$ استغاده مى كنيـم • لس $d x+d z=\frac{z}{y} d y+\frac{x}{y} d y=\frac{x+z}{y} d y$

و با جدا كردن متغيّرْ ها داريـم
$\frac{d x+d z}{x+z}=\frac{d y}{y}$,
كـ از آن به هنين اسست
$F\left(x^{2}-z^{2}, \frac{x+z}{y}\right)=0$.
$(9-1-Y)$

 يكـروش معادل برایى نوشّتن جواب عمومى جنين است
$x^{2}-z^{2}=f\left(\frac{x+z}{y}\right)$ or $\frac{x+z}{y}=g\left(x^{2}-z^{2}\right)$,

$A(x, y, z) d x+B(x, y, z) d y+C(x, y, z) d z=0$.
كه معـادلهُ ديفرانسيل بیافى" با سه متغيّر ناميــه مى شُود . اين نوع معادله با دو متغير در مبـحث

 شدها است.
 معلوم باشند، آن كاه

$C: \quad x=x(t), \quad y=y(t), \quad z=z(t)$,
داده ثــــــده باشـــد، آن گـــاه

 نــــت اما روى سطح انتگرال قرار دارد . مثال r-1-r سطح انتگرال معادلئ
$y z_{x}+x z_{y}=0$
$C: \quad x=0, \quad y=t, \quad z=t^{4}$.
مى كُّرد، معين كنيل حل : با استغاده از قضيةُ Y - ا- ا داريمم

$$
\frac{d x}{y}=\frac{d y}{x}=\frac{d z}{0}
$$

$$
\text { (1-1-Y }) z=\left(x^{2}-y^{2}\right)^{2}
$$

z=1 دارد (تمرين †) . ازطرف ديكر، اثكر C به صورت
$C: \quad x=t, \quad y=\sqrt{t^{2}-1}, \quad z=t$
تعريف شود، جـوابیى وجود ندارد (تمرين ه) . در اين حالت C يكى منحنى مشـشخصه نيــــت اما تصويرش بر صفحهx xy بر تصوير يكى منحنى مئشخصه منطبن استت .

يك روشّ برایى حل معادلات با مشتقات جـزئي مرتبهُ اولّ خطلى مشابه روشى اسـت كه

تشثريع هى كند .
مثنو

$$
z_{x}+x z=x^{3}+3 x y
$$

حل : كار را با معادله شمخن زير شـروع بى كنيم

$$
z_{x}+x z=0 \quad \text { or } \quad \frac{\partial z}{\partial x}=-x z
$$

چحون از معمولي در نظر كرفت، مگك از جهت مقدار ثابـت آن . جواب جنين اسـت $z=f(y) \exp \left(-x^{2} / 2\right)$,

 متناظر

$$
z_{1}=A x^{3}+B x^{2}+C x+D
$$

$$
z_{2}=E x^{2} y+F x y+G y
$$

كه از آن تتيجه بى شود
$z=f(y) \exp \left(-x^{2} / 2\right)+x^{2}-2+3 y$.

اين معلب بويزه وتتى روثُنهاى حل مساثل را در سحالثهاى كوناكون نشان مى دهند. .

$$
x z_{x}-y z_{y}=0
$$

را احل كنيد .

حل : با استفاده از معادلات (Y- - - ا) داريم
$\frac{d y}{d x}=-\frac{y}{x} \quad, \quad \frac{d z}{d x}=0$,
كه جـوابهاى آنهـاعبـارتند از竍 $z=f(x y)$

مثال F-I-T معادلف
$z_{x}=x^{2}+y^{2}$.

حل : جون در معادلهz وجود ندارد، بسادگى با انتگر ال گيرى بهدست مى آوريـم $z=\frac{x^{3}}{3}+x y^{2}+f(y)$.

مثال Y-1-4 معادلة
$x z_{x}+y z_{y}=\log x, \quad x>0, \quad y>0$.
را ححل كنيد
حل : إكرجه اين مـعادله را با استـفاده از تفسيهُ Y- ا-1 (تمرين V) مى توان حل كرد، در اين جا
 $\frac{\partial z}{\partial x}=\frac{\partial z}{\partial u} \frac{d u}{d x}=\frac{\partial z}{\partial u} \frac{1}{x}$

و متنتابهاً
$\frac{\partial z}{\partial y}=\frac{\partial z}{\partial v} \frac{1}{y}$
يس معادلئ داده شُده بهصررت زير در مى آيد
$\frac{\partial z}{\partial u}+\frac{\partial z}{\partial v}=u$.
با حل اين معادله بهدست مى آوريم (تمرين ^)
$u=\dot{v}+c_{1} \quad, \quad \frac{u^{2}}{2}=z+c_{2}$,

بنابراين
$z=\frac{u^{2}}{2}+f(u-v)$
$z=\frac{1}{2}(\log x)^{2}+f\left(\frac{x}{y}\right)$.

 $\left(f_{x}, f_{y}, f_{z}\right)$.
$z=g(x, y)$ برای سـادگى ايـن اعـداد هادى را با
 تـائم بر داشتهباشيمر
$P z_{x}+Q z_{y}=R$.

$\frac{d x}{P}=\frac{d y}{Q}=\frac{d z}{R}$.

$$
(v-1-r)
$$

يك كاربرد رويه هاى متعامد را مى توان در نظريهُ بتانسيل يانت. فرض كير كيد
 داراى بتانسيلى معينى است . آن كاه منحنيهاى مسخخصه معادله هاى

$$
\frac{d x}{f_{x}}=\frac{d y}{f_{y}}=\frac{d z}{f_{z}}
$$

. خطوط نيرو را نشان مى دهند
مثال Y-1-Y رويه هاى عمود بر خانواده هاى زير را بيابيد
$f(x, y, z)=\frac{z(x+y)}{z+1}=c$.
حل : داريم
$f_{x}=\frac{z}{z+1}, \quad f_{y}=\frac{z}{z+1}, \quad f_{z}=\frac{x+y}{(z+1)^{2}} ;$
بس معادله ماى (V-1-Y) بهصورت زير نوشته مى شود (تمرين 4)
$\frac{d x}{z(z+1)}=\frac{d y}{z(z+1)}=\frac{d z}{x+y}$.
از دو مـــعـــادلــهُ اولّ داريــم كه از اين جـا نتيجه مى ششود $\left(2 y+c_{1}\right) d y=\left(z^{2}+z\right) d z$ اخير بهدست مى آوريم
$c_{2}=6 x y-2 z^{3}-3 z^{2}$.
بنابراين رويه هاى عمود عبارتند از
$F\left(x-y, 6 x y-2 z^{3}-3 z^{2}\right)$
$6 x y-2 z^{3}-3 z^{2}=g(x-y)$.

تمرينهاى Y-

$\frac{d x}{d y}=\frac{P}{Q} \quad, \quad \frac{d z}{d y}=\frac{R}{Q}$
كه در آنها y متغير مستقل است . (با معادلات rer

مىتوان بهصورت
$\frac{d x}{z}=\frac{d y}{y}=\frac{d z}{x}$
r-
مربوط به مثال Y- ا-1 را حل كنيد .
 $C: x=t, y=\sqrt{t^{2}-1}, \quad z=1$.

مى كذرد (با مثال Y-Y Y Y بقايسه كنيد).

- - نشان دهيد معادلذ
$C: x=t, y=\sqrt{t^{2}-1}, \quad z=t$.
(با منال Y-Y
- 9 مثال

$x z_{x}+y z_{y}=\log x$

$$
\text { (با مثال Y - ا - } 9 \text { مقايــه كنيد) }
$$

- - معادلةُ زير رابا استفاده از تضبئ Y- ا- ا- حل كنيد .
$\frac{\partial z}{\partial u}+\frac{\partial z}{\partial v}=u$
- -

$$
\text { . مستند ، وبابر اين } \mathrm{dx} /(x+z)=d y /(y+z)=d z / 0
$$

$$
x z z_{x}+y z z_{y}=-\left(x^{2}+y^{2}\right)
$$

$$
z_{x}+x z_{y}=z \text { ب }
$$

$$
y z_{x}+z_{y}=z
$$

$$
(y+x) z_{x}+(y-x) z_{y}=z
$$

$(d x / x+d y / y-d z / z=0$ ($) x^{2} z_{x}+y^{2} z_{y}=(x+y) z \quad$ (e

$$
\begin{aligned}
& x z_{x}+y z_{y}=0 \\
& x z_{x}+y z_{y}=z
\end{aligned}
$$

$$
\begin{aligned}
& \text { (با مثال } \\
& \text { - - مثال }
\end{aligned}
$$

11-11 هريكى از معادله هاى زير راحل كنيد .

$$
\begin{aligned}
& z_{x}-2 x y z=0 \\
& z_{y}=x^{2}+y^{2}
\end{aligned}
$$

$$
\left(z_{y}+2 y z=0\right.
$$

الف)
(-) $\quad z_{y}=\sin (y \mid x)$
$z_{x}-2 z_{y}=x^{2}$

- IY $C: x=t^{2}+1, \quad y=2 t, \quad z=(t+1)^{4}$.

ץ1- الف) جواب عمومى معادلةز زير را بيايد $z_{x}+z z_{y}=1$.

ب) جوابیى راكه از منحنى زير مى كذرد بهدست آوريد
C: $x=t, \quad y=t, \quad z=2$.

- أ هريك از معادله هاى زير راحل كنيد (يعنى جوابعمومى رابهدست آوريد)

$$
z\left(y z_{y}-x z_{x}\right)=y^{2}-x^{2}
$$

$\left(x^{2}-y^{2}-z^{2}\right) z_{x}+2 x y z_{y}=2 x z$
$(y+1) z_{x}+(x+1) z_{y}=z$
$y z z_{x}+x z z_{y}=x+y$
 باشدلـ، بيابيد .

$$
\begin{align*}
& (y+x z) z_{x}+(x+y z) z_{y}=z^{2}-1 ; C: x=t, y=2, z=t^{2} \\
& (y-z) z_{x}+(z-x) z_{y}=x-y ; C: x=t, y=2 t, z=0 \\
& y z_{x}-x z_{y}=2 x y ; C: x=y=z=t \\
& x^{2} z_{x}+y^{2} z_{y}=z^{2} ; C: x=t, y=2 t, z=1 \tag{ت}
\end{align*}
$$

$$
\begin{aligned}
& z=e^{-x} F(x+2 y) \\
& z=y f(x) \\
& x+z=y f\left(x^{2}-z^{2}\right) \\
& z(x-y)=x y \log \left(\frac{x}{y}\right)+f\left(\frac{x-y}{x y}\right)
\end{aligned}
$$

```
رياضيات بهندسى
```

نشـان دهيد جواب عمو مي
$2 x z_{x}-y z_{y}=0$

$$
\text { عبارت است از } z=f\left(x y^{2}\right) \text {. }
$$

$$
\begin{aligned}
& 2 x z_{x}-3 y z_{y}=0 \\
& x z_{x}-2 y z_{y}=x^{2} y \\
& 3 x z_{x}-y z_{y}+4 z=x^{2} \cos x
\end{aligned}
$$

(الف)
(ب)
ب

- • نشـان دهيد رويه هاى
$z(x+y)=c(z+1) \quad$ and $\quad 6 x y-2 z^{3}-3 z^{2}=g(x-y)$,

$$
\begin{aligned}
& \text { متقاطع بودن بر هـم عمردند . (با مثال V- Y - Y مقايسه كنيد) } \\
& \text { معادلهُ زير را حل كنيد }
\end{aligned}
$$

$\frac{\partial z}{\partial x}=\frac{\partial z}{\partial y}$.
معادلهُ همگُن زير را حل كنيد
$a z_{x}+b z_{y}=0$,
. كه
Y
ب) جند رويه از اين رويه هاى عمرد بر هـم را رسـم كنيــ .

معادله هاى مراتب بالاتر Y-Y

نمادهالى انديس دار استفاده كنيم • بر اي مثال مي نويسيبم
$\frac{\partial^{2} u}{\partial x^{2}}=u_{x x}, \quad \frac{\partial^{2} u}{\partial y^{2}}=u_{y y}, \quad \frac{\partial^{2} u}{\partial x \partial y}=u_{y x}=\frac{\partial}{\partial x}\left(\frac{\partial u}{\partial y}\right), \quad$ etc.
هون با مـعادلات با مــئتــات جزثي مـرتبهُ دوم بـيشتـر سر و كـار داريمه، عمـومى ترين معـادله از

اين نوع را بررسى مى كنيم كه عبارت است از
$A u_{x x}+B u_{x y}+C u_{y y}+D u_{x}+E u_{y}+F u=G$.

 ناهمگن است .

جـوابعـمـومى، جـوابى المت كـه شــامل دو تابع دلخــواه مـــتـقل (در مـقـابل دو ثابت دلخــو اه در يكـ معادلهُ ديفـرانــيل مـعمـولى مـرتبهُ دوم) باشــل . جـواب تخصـوصمى، جوابى الـــت كه با انتخايى خاص برالى توابي دلنخواه از جواب عمومى به دست مى آيلد .
معـادله هالى خصطى به ثُكل (Y-Y Y Y
تحليلى به خاطر بياوريد كه عمومى ترين معادلةُ درجهُ دوم برحسبب دو متغيّر هنين اسمت
$A x^{2}+B x y+C y^{2}+D x+E y+F=0$,
كه A ، B ، ... ، F ثابنتد. اين نوع معادلات مقاطع مختروطى (گاهى هـم تباهيده) را بهصورت زير نـنـان مى دهند :

$$
\begin{aligned}
& \text { بيضــي اكر } \\
& B^{2}-4 A C=0 \text { سهـمى اكر } \\
& B^{2}-4 A C>0 \text { هــلونى اكر اكر }
\end{aligned}
$$

 ملـلولىوار نامـيده مى شسوند برحسب اين كـه چون در معـادلئ (مشتقات جزنى از نوع مخلوط باشثد . براى منال، معادلئ $x u_{x x}+y u_{y y}+2 y u_{x}-x u_{y}=0$ بيضوى است هر كاهx $x y>0$
 ههارم هذلولى وار، و روى محورهاى مشختصات سهموى است . نظريه معادلات ازنوع مخلوط را ابتدا تريكومى" در IMY I مطرح كرد . در مطالعهُ جريان ترانسونيكي با معادلئ تريكومى
(- ا^AqV) ، Francesco G. Tricomi *

رياضيات مهندس
$y \Psi_{x x}+\Psi_{y y}=0$,

 به انواع مـختلف حـايز امميت است جـون برایى هرنوع، تحت شر ايط مرزى مختلف جورابهـاى وايدار يكتا بـد دست مى آيد .

أكرجه عموماً x و y براى نشـان دادن مختصات مكانى به كار مى روند، ولى هميشن جنين

 در نصلهاى
 اين مطالها در بخشهاى بعدى ارائه خواهد شـد . مثئل 1-Y-Y مساله مقدار مرزى بيضوى .

$$
\begin{aligned}
& u_{x x}+u_{y y}=0, \quad a<x<b, \quad c<y<d ; \quad: \text { : لم } \\
& u(a, y)=u_{0}, \quad u(b, y)=u_{1}, \quad c<y<d, \quad \text { : نرايط برزی } \\
& u(x, c)=u_{2}, \quad u(x, d)=u_{3}, \quad a<x<b ;
\end{aligned}
$$

كه
 نمود . شـرايط مرزى نشــان مى دهـد كه $u(x, y)$ در اين مثال بيان مى كند u(x,y) در هر نتطءُ درون مستطيل باز در معادله صدق مي كند .

اين نوع مسائل مـقدار مرزى، يعنى مسـائلى كه در آنها u در معادلك لابِلاس در يكى ناحيهُ
 مسائل ديريكله" ناميده مى شوند . اكر شرايط مرزى فوق با ششرايط نير :
$u_{x}(a, y)=u_{0}, \quad u_{x}(b, y)=u_{1}, \quad c<y<d$,
$u_{y}(x, c)=u_{2}, \quad u_{y}(x, d)=u_{3}, \quad a<x<b$.
 در اين سالت مى گويمّ كه مُستت مائم ، است (شكل Y-Y-Y) . البـته مسـاتل مـتـدار مرزى، همـان كونه كـه دربخش
 بعضى از اين نمادها عبارتند از :

$$
\begin{aligned}
\left.\frac{\partial u(x, y)}{\partial x}\right|_{x=a} & =u_{0} \\
\lim _{x \rightarrow a^{+}} u_{x}(x, y) & =u_{0} \\
u_{x}\left(a^{+}, y\right) & =u_{0}
\end{aligned}
$$

رياخيات مبندسى

شـكل

شكل Y-Y - Y مــألذ دبريكلد در دو بعدى

مثال F-Y- مسالهُ مقدار مرزى هذلو لى وار .

$$
\begin{aligned}
& u_{n}=a^{2} u_{x x}, \quad t>0, \quad 0<x<L \\
& u(0, t)=u(L, t)=0, \quad t>0 \\
& u(x, 0)=u_{0}, \quad u_{i}(x, 0)=u_{0}^{\prime}, \quad 0<x<L
\end{aligned}
$$

معادله
ثـرايط مرزى : نـرط اوليه :

در اين جا a ثابت و и مقدار تغيير مكان اسـت و شر اليط مرزیى و شر ايط اولّلي هر دو داده شـدهاند .

 داريـم $u=0$ به صورت بعد سرعت اسـت (تمرين 1) .

شـكل

اين معادله و جواب عمومى آن را به دست خواهميم آَردد. در بخش (مثال r-r-r مسالة مقدار مرزى سهموى.

$$
\begin{aligned}
& u_{t}=k u_{x x}, \quad t>0, \quad 0<x<L, \quad k>0 ; \quad \text { م } \\
& u(0, t)=a, \quad u(L, t)=b, \quad t>0 ; \quad \text { نر ايط مرزى : } \\
& u(x, 0)=f(x), \quad 0<x<L . \quad \text { نرط ارنهي : }
\end{aligned}
$$

 (شكل

شكل 0-Y-Y معادلג بغش يلك بعدى (مثال
 توابعى كه در خنين معادلهایى صدق مى كند بسيار زيادند . برایى مثال، توابع $\arctan \frac{y}{x}, \quad e^{x} \sin \therefore, \quad \log \sqrt{x^{2}}+y^{2}, \quad \sin x \sinh y$
 در كاربر دهايى كه شامل معادله هاى ديفرانسيل با مـتقات جزني هستيند. با توجه بهاطلاعاعاتى كه

در مورد يك سيستم نيزيكى داريبم مى توانيـم جوابهـاى خصـوصصى را بيدا كنيم • بيـنتر كار مـا در بارة مسائل مفدار مرزى متوجه اين نكته خواهد بـو بود ـ

 $a u_{x x}+b u_{x y}+c u_{y y}=0$

و وتـرار مى دهيم . با قرار دادن اين مقادير در معادلَ (Y-Y-Y) نتيجه مى شو

$$
\left(a r^{2}+b r+c\right) f^{\prime \prime}(y+r x)=0
$$

و از آن جا معادلهُ مئتخصه زير را بهدست مى آوريـم
$a r^{2}+b r+c=0$.
 عمومى (Y-Y-Y) رابه صورت زير مى توان نونـت : $u(x, y)=f\left(y+r_{1} x\right)+g\left(y+r_{2} x\right)$,
 مثال $a^{2} u_{x x}-b^{2} u_{y y}=0$,

كه در آن a و ثابتهاى حقيقى اند . حل : معادلةُ مشخْضصه حنين است

$$
a^{2} r^{2}-b^{2}=0
$$

و جوابب عمومى عبارت است از

$$
u(x, y)=f\left(y+\frac{b}{a} x\right)+g\left(y-\frac{b}{a} x\right)
$$

$$
\begin{equation*}
u(x, y)=f(y+r x)+x g(y+r x) \tag{Y-Y-Y}
\end{equation*}
$$

تمرينهاى Y Y - - درباره حالتى است كه معادلهُ مشتخصه دو رينـهُ مـختلط دارد .

F-F تمرئهاى

1- 1 نشان دهيد توابع زير در معادلهُ لابلاس صدق مى كتند
$e^{2} \sin y$.
(ب) $\arctan \frac{y}{x}$,
$\sin x \sinh y$,
(ت $\quad \log \sqrt{x^{2}+y^{2}}$,

$$
u(x, y)=f\left(y+r_{1} x\right)+g\left(y+r_{2} x\right)
$$

كه در آن
$a r^{2}+b r+c=0$,
صدق مى كتند، جوابِ عمومى معادله (Y-Y-Y) المـت .

$$
u(x, y)=c_{1} f\left(y+r_{1} x\right)+c_{2} g\left(y+r_{2} ;\right)
$$

نيز در مـعادلّ (Y-Y-Y) صدق مى كـند كه جواب عمو مى چگكونه مقايسه مى كنيد
ه- هريكى از معادلات با مشـتقات جزيّى زير را بهصورت بيضوى، هذلولى وار ، يا سهموى دسته بندى كنبد . در هر حالت مقادير مناسب متغيرهاى مستقل را بررسى كنيد .

$$
\begin{aligned}
& u_{x x}+4 u_{x y}+3 u_{y y}+4 u_{x}-3 u=x y \\
& x u_{x, 2}+u_{y y}-2 x^{2} u_{y}=0 \\
& u_{x y}-u_{x}=x \sin y \\
& \left(y^{2}-1\right) u_{x x}-2 x y u_{x y}+\left(x^{2}-1\right) u_{y y}+e^{x} u_{x}+u_{y}=0
\end{aligned}
$$

-

 $g_{1}(x-a t)=\frac{d g(x-a t)}{d(x-a t)} \frac{(x-a t)}{\partial t}=-a g^{\prime}(x-a t)$.

رياضيات مهندسى

نشان دهيد -V
$u=\left(c_{1} \cos \lambda x+c_{2} \sin \lambda x\right)\left(c_{3} \sin \lambda a t+c_{4} \cos \lambda a t\right)$
جوابي براي معادلهُ موج $u_{1 \prime}=a^{2} u_{x 2}$ است، كه

- ^ - نشان دهيـد تابع مرزی و اولّيه به صورت زير بانــند :
$u(0, t)=0 \quad, \quad u_{t}(x .0)=0$
$u_{t}=k u_{u} \quad$ جـواب مـعـادلهُ بخشش $u=\exp \left(-k \lambda^{2} t\right)\left(c_{1} \cos \lambda x+c_{2} \sin \lambda x\right)$ - q
است، كه
-

$u(x, t)=\frac{1}{2 a} \int_{x-a t}^{x+a t} g(s) d s$
 مى كند . (راهنمايى : از دستور لا يبنتيس براى مشتت گيرى از انتّكُرال استفاده كنيد) .

- ا 11 كنيد معادله خطي است يا نه ؛ اكر خطى نيست، دليل آن را توضيح دهيد .

$$
\begin{array}{ll}
u\left(u_{x x}\right)+\left(u_{y}\right)^{2}=0 & \text { (ب) } x u_{x}+y u_{y}=u \\
u_{x x}-2 u_{y}=2 x-e^{u} & \text { (ت } \quad u_{x x}-u_{x y}-2 u_{y y}=1 \\
\left(u_{x}\right)^{2}-x\left(u_{x y}\right)=\sin y
\end{array}
$$

Y تـابل اسـتفاده نيست . ولى نتــان دهـيلد در اين حــالت با جايگزينى

جواب عمرمى بهدست مى آيد .

ب)
 معادلّهُ (- If آن كه اين مشتقها موجود و پيوسته باشند، با هم برابرند . نشان دهيد براى هريكى از توابع

$$
\begin{array}{ll}
u=\arctan \frac{y}{x} & \left(ب u=e^{x} \cos y\right. \\
u=\sqrt{\frac{x+y}{x-y}} & \left(\text { (e } u=e^{x y} \tan x y\right.
\end{array}
$$

10- جواب معادلهُ زير را بيابيل
$u_{x x}+u_{x y}-6 u_{y y}=0$.
19-

$$
\begin{array}{ll}
u_{x x}-9 u_{y y}=0 & \text { (ب } u_{x x}+u_{x y}-6 u_{y y}=0 \\
6 u_{x x}+u_{x y}-2 u_{y y}=0 & \text { (ت } u_{x x}+4 u_{y y}=0
\end{array}
$$

هريكاز معادله هاى زير رابهصورت بيضوى، هذلولى وار، و سهموى دسته بندى كنيد

$$
\begin{aligned}
& x^{2} u_{x x}+2 x y u_{x y}+y^{2} u_{y y}=4 x^{2} \\
& u_{x x}-(2 \sin x) u_{x y}-\left(\cos ^{2} x\right) u_{v y}-(\cos x) u_{v}=0 \\
& u_{x x}+u_{v y}+u_{x y}+a u=0 \quad(-1+a) \\
& x^{2} u_{x x}-y^{2} u_{y y}=x y \\
& 4 u_{x y}-8 u_{x y}+4 u_{x y}=3
\end{aligned}
$$

الف)
ب)

$$
u=f_{1}(x+i y)+f_{2}(x-i y)
$$

$$
\text { جوابب } u_{u r}+u_{n n}=0
$$

- 19- نتيجهٔ تمرين 19 رابراى حالتى كه معادلهُ (Y-Y-Y) ريشّه مختلط دارد، تعميم دهيد . - Y نشان دهيد
$u=f_{1}(y-i x)+x f_{2}(y-i x)+f_{3}(y+i x)+x f_{4}(y+i x)$
جواب معادله؛
$u_{x x x x}+2 u_{y y x x}+u_{y y y y}=0$.
-

 به دست آوريد .

رباضيات مهـندمى

$$
\begin{aligned}
& \frac{\hat{\imath}^{4} u}{\partial x^{4}}+2 \frac{\hat{\imath}^{4} u}{\partial x^{2} \partial y^{2}}+\frac{\partial^{4} u}{\partial y^{4}}=0^{\star} \\
& \frac{\hat{\imath}^{4} u}{\partial x^{4}}-\frac{\partial^{4} u}{\partial y^{4}}=0 \\
& \frac{\imath^{4} u}{\lambda^{4}}-2 \frac{\partial^{4} u}{\partial x^{2} \partial y^{2}}+\frac{\partial^{4} u}{\partial y^{4}}=0
\end{aligned}
$$

الفـ)
 $\phi(x, y)=x \psi_{1}(x, y)+\psi_{2}(x, y)$

صدقّ مي كتد)

F-Y
معادلئ لУبْم

$$
\begin{equation*}
u_{x x}+u_{y y}+u_{z z}=0 \tag{1-r-Y}
\end{equation*}
$$

 در مطالعهُ الكتريسيته سـاكن، نشان داده شُـله كه بردار شدت ميلـان الكتريكىى E ناشتى از شصجموعه أي از بارهاي مهاكن به صورت زير داذه مي شـود $\mathbf{E}=-\nabla \phi=-\left(\phi_{x} \mathbf{i}+\phi_{y} \mathbf{j}+\phi_{z} \mathbf{k}\right)$,

$$
\nabla \cdot \mathbf{E}=\nabla \cdot(-\nabla \phi)=-\left(\phi_{x x}+\phi_{y y}+\phi_{z z}\right)=4 \pi \rho(x, y, z)
$$

كه
 بّانسـيل هدر معادلهُ زير صدت ميكند

$\phi_{x x}+\phi_{y y}+\phi_{z z}=-4 \pi \rho(x, y, z)$
 به معادلهُ لابلاس زير تبديل مى شود :
$\phi_{x x}+\phi_{y y}+\phi_{z z}=0$.
($\Gamma-\Gamma-\Gamma$)

 (r-r-Y)
 يتانسيل سرعت دارای خاصيت

 صدق مى كندّ توابع بتانسيل (و ممجنين توابع هـساز) مى نامند .

 g z $z(x, y)$

 صدق مى كند .
 ارزش آنذرا دارد كهتوجه خودر ابهجوابآن معطوف كنيم . ابتدا كار را با يكى مسألهُ مقدار مرزى

ساده شامل معادلهُ لابلاس با دو متنيّر آغاز مى كنيم . مثال

$$
\begin{array}{lcr}
u_{x x}+u_{y y}=0, & 0<x<\pi, \quad 0<y<b ; & : \text { : معاديط } \\
u(0, y)=g_{1}(y), & u(\pi, y)=g_{2}(y), \quad 0<y<b, & \\
u(x, 0)=f(x), & u(x, b)=f_{1}(x), \quad 0<x<\pi . &
\end{array}
$$

 مستطيل بايد يوستگى وجود داشته باثمد، يعنى بايد داششه باشيم $\lim _{x \rightarrow \pi^{-}} u(x, 0)=\lim _{x \rightarrow \pi^{-}} f(x)=\lim _{y \rightarrow 0^{+}} u(\pi, y)=\lim _{y \rightarrow 0^{+}} g_{2}(y)$

ر حدهايى مشابه براى سه كوشهُ ديعر نيز بايد برقرار باشدل .

مسطالك فوق را مى توان تا حد تابل ملاحظه ایى ساده نمود، زيرا معادلهُ لابلاس يكى معادلهُ
 در معادلهُ لابلاس و شرايط مرزى
i) $u_{1}(0, y)=g_{1}(y), \quad u_{1}(\pi, y)=u_{1}(x, 0)=u_{1}(x, b)=0$,
ii) $u_{2}(\pi, y)=g_{2}(y), \quad u_{2}(0, y)=u_{2}(x, 0)=u_{2}(x, b)=0$,
iii) $u_{3}(x, 0)=f(x), \quad u_{3}(0, y)=u_{3}(\pi, y)=u_{3}(x, b)=0$,
iv) $u_{4}(x, b)=f_{1}(x), \quad u_{4}(0, y)=u_{4}(\pi, y)=u_{4}(x, 0)=0$,

صدق كند (شكل

شهكل

مثال r-r-r مسالهُ مقدار مرزى زير راحل كنيد .

$$
\begin{aligned}
& u_{x x}+u_{y y}=0, \quad 0<x<\pi, \quad 0<y<b ; \\
& u(0, y)=u(\pi, y)=0, \quad 0<y<b, \\
& u(x, b)=0, \quad u(x, 0)=f(x), \quad 0<x<\pi .
\end{aligned}
$$

 (ثـكل r-r-r (iii)) . در نصل

 مؤنّر است . فرض كنيد $u(x, y)$ را بتـوان بهصورت حـاصل ضرب دو تابع، يكى تابع تنهـا x و ديگرى تابع تنها y نوشُت ؛ آن كاه

$$
u(x, y)=X(x) Y(y)
$$

$$
u_{x x}=X^{\prime \prime} Y, \quad u_{y y}=X Y^{\prime \prime}
$$

كه در انْها، بريم مشتقهاى معمولى را نتــان مى دهند، و مشتتق كيرى نسبت به متغير هاى توابع وY مى باشد . با جاى كذارى در معادلك ديفرانسيل، داريم
$X^{\prime \prime} Y+X Y^{\prime \prime}=0$.
توجه كنيـد اكر جه $u(x, y)=0$ در معـادلهُ با مشـتقات جـني صدت مى كند، مى خـواهيم جوابي غير از اين جواب بليهى به دست آوريم • بنابراين هيج يكـ از توابع $X(x)$ و $Y(y)$ نمى توانند متحد با صفر باشند و در نتيجه مى نوانيم معادلهُ اخير را بر XY تقسيم كنيم • بس
$\frac{X^{\prime \prime}}{X}=-\frac{Y^{\prime \prime}}{Y}$

تابعى تنها از y
 بنابراين، در حالت كلى تساوى نقط وتحّى برقرار اسـت كه دو طرف ثابت باشند، يعنى $\frac{X^{\prime \prime}}{X}=-\frac{Y^{\prime \prime}}{Y}=k$.

براى تعيين طبيعت ثابت k ، مسالهء مقدار مرزى زير را بررسى مى كنيم :
$X^{\prime \prime}-k X=0, \quad X(0)=X(\pi)=0$,

(تو جـه كنيـد كه اين تبـديل فقط با شر ايـط همگن امكان بذير الست .)

قالت I

به $X(\pi)=0$ - بنابراين حالت $k=0$ را كنار مى كذاريم

$k>0 \quad$ II

جواب عمومى عبارت است از

$$
X(x)=c_{3} e^{\sqrt{k x}}+c_{4} e^{-\sqrt{k} x},
$$

$$
\text { و مُرط X(0)=0 نتيجه مى دمد } \mathrm{X} \text { مد } \mathrm{c}_{3} \text {. بس جواب به صورت زير نوشته مى شود }
$$

$X(x)=c_{3}\left(e^{\sqrt{ } k x}-e^{-\sqrt{v x})}\right.$.
(همواره سـعى مى كنيم جواب را با آخرين اطلاعاتى كه از آن در دست است بنويسـيم) . حال، ، شُرط $X(\pi)=0$ نتيجه مى دمد
$c_{3}\left(e^{\sqrt{k} \pi}-e^{-\sqrt{k} \pi}\right)=0$.
اما كميت داخل بر انتز نمى نواند صفر بانـد مكر آن كه $k=0$ (تمرين ا)، كه در اين حالت ممكن
 كنار كذاشت.

$$
\text { قالت k>0 III } k \text { ، براي مثال }
$$ در اين حالت جواب عمومى جنين است

$X(x)=c_{5} \cos \lambda x+c_{6} \sin \lambda x$,
 نوشته مى شود $X(x)=c_{6} \sin i x$.

از شرط بهدست مى آيد، يا $\sin \lambda \pi=0$ • بس גبايد عددى صحيح و غيرصفر باشـد . قرار مى دهيم $\lambda=n, \quad n=1,2,3, \ldots$, (\wedge - - - \boldsymbol{Y})

در اين صورت جوابها عبارتند از
$X_{n}(x)=c_{n} \sin n x, \quad n=1,2,3, \ldots$.

يعنى، اعـداد

$X_{n}(x)=\sin n x, \quad n=1,2,3, \ldots$.
حال مى توان برایى هر n ، تابع (Y)

$Y_{n}^{\prime \prime}-n^{2} Y_{n}=0, \quad Y_{n}(b)=0, \quad n=1,2,3, \ldots$.
($1 \cdot-r-r$)
شُرط روى
$Y_{n}(y)=d_{n} e^{n y}+f_{n} e^{-n y}$
و شر ط
$d_{n} e^{n b}+f_{n} e^{-n b}=0$.
$d_{n}=-f_{n} e^{2 n b}$
و با توجه بهروابط فوق جوابها عبارتند از

$$
\begin{aligned}
Y_{n}(y) & =f_{n}\left(-e^{-2 n b} e^{n y}+e^{-n y}\right) \\
& =f_{n} e^{-n b}\left(-e^{-n b} e^{n y}+e^{n b} e^{-n y}\right) \\
& =f_{n} e^{-n b}\left(e^{n(b-y)}-e^{-n(b-y)}\right) \\
& =2 f_{n} e^{-n b} \sinh n(b-y) .
\end{aligned}
$$

$$
\begin{equation*}
Y_{n}(y)=g_{n} \sinh n(b-y) \tag{1}
\end{equation*}
$$

حال با توجه به معادلهُ (Y-Y-Y) داريم $u_{n}(x, y)=B_{n} \sin n x \sinh n(b-y), \quad n=1,2,3, \ldots$

كه در آنها

آنجه باتى مى مـاند آن امست كه جوابها در شـرط مرزى ناممكن u(x, 0) =f(x) نيز صدق
كنند . از عبارت
$u_{n}(x, 0)=B_{n} \sinh n b \sin n x=f(x)$
روشن أمـت كـه هيج يكى از جــوابهـاى居 $f(x)=C_{n} \sin n x$ نمود . در فصل

 همان كونه كه در مثالل زير نـنان داده شد است، به كار برد . مثال

$$
2 x u_{x}-y u_{y}=0
$$

را كه از منخنى
$C: \quad x=t, \quad y=t, \quad u=t^{3}$.
مى كذرد (شكل

$$
u(x, y)=X(x) Y(y) .
$$

حل : اكر از معادلةُ نوق مشُتق كرفته و در معـادلهُ با مشتقات جزنى داده شـده ترار دهيم، نتبجه مى شود $2 x X^{\prime}(x) Y(y)-y X(x) Y^{\prime}(y)=0$

$$
\frac{2 x X^{\prime}}{X}=\frac{y Y^{\prime}}{Y}=k .
$$

با حل اين دو معادلُّ ديفرانسيل معمولى مرتبهُ اولّ، تفكيكـبِير، به دسـت مى آوريم

$$
X=c_{1} x^{k / 2} \quad, \quad Y=c_{2} y^{k}
$$

بنابر اين

$$
u=c_{3}\left(x y^{2}\right)^{k / 2}
$$

حالل، با به كار بردن شرط داده شــده، نتيجه مى شـود
. $u=x y^{2}$

مختصات مـختلف در نصلهاى F و 0 مطرح مى شوند، به كار خو اهيم برد .

شكل r-r-r متعنی c مثال

تمرينهای F-F
1- نـان دهيد از
$\exp (\sqrt{k} \pi)-\exp (-\sqrt{k} \pi)=0$
 - Y

در معادله (Y-Y-Y () تغيير نمى كنثذ .
Y- نشـان دهيد توابِ داده ثــده در معادلهُ (Y-Y
مرزى همگن مثال Y-Y-Y صدق مى كنتن . مشتكل حل معادل؛

$$
u_{x x}-u_{x y}+2 u_{y y}=0
$$

را با روش جذاسازى متغيّرها توضيح دهيد .

و-
الف) (ل
ب ب ب
$u=\arctan \frac{2 x y}{x^{2}-y^{2}}$
. جواب خصوصى مسالة مقدار مزرى زير رابهدست آوريد -V

$$
\begin{array}{lr}
u_{x x}+u_{\mathrm{vy}}=0, \quad 0<x<\pi, \quad 0<y<1 . & : \text { : شراديط برزى } \\
u(0, y)=u(\pi, y)=0, \quad 0<y<b . \\
u(x, b)=0, \quad u(x, 0)=3 \sin x, \quad 0<\cdot<\pi . &
\end{array}
$$

^- در تمرين 4 با انتخاب $u(x, y)$ رادر هريكاز نقاط زير محاسبه كنيد .

$$
\begin{aligned}
& (\pi, 1) \\
& (\pi / 2,1)
\end{aligned}
$$

$$
\text { (} \pi / 2,0 \text {.بس) }
$$

$$
\text { (} \quad(\pi / 2,2)
$$

در هريكى از تمرينهـاى 9-1 ا، روش جـداسـازى متغـيرها را به كـاربريد تا دو مـعـادل

در تمرينهای Y Y ا
آَن جا كه هي توانيد كار را ادامه دهيد
T ا - مسألهُ مقدأر مرزى زير را حل كنيد .

$$
\begin{array}{lr}
u_{x x}+u_{y y}=0, \quad 0<x<\pi, \quad 0<y<b ; & : \text { : } \\
u(0, y)=g_{1}(y), \quad u(\pi, y)=0, \quad 0<y<b, & : \text { Sjen } \\
u(x, 0)=u(x, b)=0, \quad 0<x<\pi . &
\end{array}
$$

- مسائل مقدار مرزى زير را حل كنيد .

$$
\begin{array}{lr}
u_{x x}+u_{y y}=0, \quad 0<x<\pi, \quad 0<y<b ; & : \quad: \quad \text { : شرادط مرزى } \\
u(\pi, y)=g_{2}(y), \quad u(0, y)=0, \quad 0<y<b, & \\
u(x, 0)=u(x, b)=0, \quad 0<x<\pi . &
\end{array}
$$

$$
\begin{aligned}
& \text { ديفرانسيل معمولى به دست آوريد . معادلات حاصري را راحل نكنيد . } \\
& \text {. } u_{1}=k u_{\text {кr }} \quad-9 \\
& \text {. } \\
& \text {. } u_{\text {, }}=k u_{\text {, }}+a u-11
\end{aligned}
$$

رياضيات تهندسى

- 17 مسالهُ مقدار مرزى زبر را حل كنيد

$$
\begin{array}{lr}
u_{x x}+u_{y y}=0, \quad 0<x<\pi, \quad 0<y<b ; & : \quad \text { : } \\
u(x, b)=f_{1}(x), \quad u(x, 0)=0, \quad 0<x<\pi, & \text { : } \\
u(0, y)=u(\pi, y)=0, \quad 0<y<b . &
\end{array}
$$

. بايل ثابـت باثــند
 $X(x)=C_{3} \cosh \sqrt{k} x+C_{4} \sinh \sqrt{k} x$.

F-Y
اكريحه هلفن اصلي، الراثهُ روشـهاى كوناكون براى سحل مسائل الست، ولى بررسى طرز
 يكى مسـالّه فـيزيكى، به فزضهايُ ساده كنـتده كه براى به دست آوردن معادله أى با مشتـقات سخزئى
 تارى را به طول L كه بين دو نقطه بسته مُلده اسـت در نظر بگيريل . مسور x ها را وضعيت
 نقاطى بانتُند كه تار در آن نقاط بسته شـده الست . وقتى تار را بهارتعاث در آرديـمَ يكى نقطه روى
 كه ע به عنوان تابعي از x و t در آن صدت كنـد . به عبارت ديـگر ، اكر $y(x, t)$ معـدار تغيـير مكان
 صدت قى كتل، به بهه صورت تخو اهلد برد؟ ابتدا هـند فرضي را در نظر مى كيريـم كه يافتن معادله را سـاده ختو اهل كرد . اين مفروضات در زبير نهر ست شمله و مورد بتحت ترار كرفته انـل .

تار مرتعش : مغروغهات ساده كتنلـه

 قرار دارد .

شكل Y- Y ا
 است . مختصات دو نتطهُ مجاور در دو نقطه به ترتيب با
 مى سـازند . نرض كنيـد طول تطعـئ مـررد بررسى از تار
 $-T_{1} \cos \alpha_{1}+T_{2} \cos \alpha_{2}=0$
$T_{1} \cos \alpha_{1}=T_{2} \cos \alpha_{2}=T_{0}, \quad$ ثبابت

$$
\text { مؤلفـُ قاثم كـثــن بر تطع\& } \Delta s^{\text {عبارت اسـت از }}
$$

$T_{1} \sin \alpha_{1}-T_{2} \sin \alpha_{2}$

$$
T_{2}=\mid \mathbf{T}_{2}!\text { و } T_{1}=\left|\mathbf{T}_{\mid}\right| \text {توجه كنبد ** }
$$

$T_{0}\left(\tan \alpha_{1}-\tan \alpha_{2}\right)=T_{0}\left(-\frac{\partial y(x, t)}{\partial x}+\frac{\partial y(\mu+\Delta . x, t)}{\partial x}\right)$.

 اندازه كيرى مى شود. .
بنابه تانون دوم نيوتن براى تعـادل بايد مـجــــوع نيروه هاى وارد بر تطعــئه Δ برابر صـفر باشد . بنابراين
$T_{0}\left(-\frac{\partial y(x, t)}{\partial x}+\frac{\partial y(x+\Delta x, t)}{\partial x}\right)=\delta \Delta s \frac{\hat{\partial}^{2} y(\bar{x}, t)}{\hat{\partial} t^{2}}$,
كه هعادلهُ (
$T_{0} \frac{\hat{\frac{C}{}}^{2} y}{\partial x^{2}}=\delta \frac{\partial^{2} y}{\partial t^{2}}$
يا
$\frac{\partial^{2} y}{\partial t^{2}}=a^{2} \frac{\partial^{2} y}{\partial x^{2}}, \quad a^{2}=\frac{T_{0}}{\delta}$.
 مقـايسه كنيد) . جون معادله هذلولى وار است، جواب مى آيد و بهصورت زير داده مى شود

$$
y(x, t)=\phi(x+a t)+\psi(x-a t),
$$

كه هو و دوبار مشتُت يذير ولى دلخواهند . حال اكر شرايط اوليه
$\cdot y(x, 0)=f(x), \quad y_{t}(x, 0)=0, \quad 0<x<L$,
را اعمال مى كنيم، مى توانيم توابع \$ و رابهد دست آّوريم . از معادلهُ (Y-Y-Y) داريم $y_{t}(x, t)=a \phi^{\prime}(x+a t)-a \psi^{\prime}(x-a t)$,

كـه يريم مــــــتق كا
. $\phi^{\prime}(x+a t)=d \phi(x+a t) / d(x+a t)$
$\frac{\partial \phi(x+a t)}{\partial t}=\frac{d \phi(x+a t)}{d(x+a t)} \frac{\partial(x+a t)}{\hat{\partial t}}=a \phi^{\prime}(x+a t)$.
يس داريم
$a \phi^{\prime}(x)-a \psi^{\prime}(x)=0$,
كه نشانمي دهد در نتيجه
$y(x, 0)=\phi(x)+\psi(x)=2 \psi(x)+C=f(x)$
$\psi(x)=\frac{1}{2}(f(x)-C)$

$$
\phi(x)=\frac{1}{2}(f(x)+C) .
$$

بس جواب معادلهُ (Y-Y-Y با شرايط اركّلئ (Y-Y-Y) جنين المت
$y(x, t)={ }_{2}^{1}(f(x+a t)+f(x-a t))$.
($0-Y-Y$)

x=L

 بس مي توانيم مطالب فوق رادر مثال زير خخلاحهـ كنبه م مثال Y-Y

$$
\begin{aligned}
& y_{n 1}=a^{2} y_{x x}, \quad-\infty<x<\infty, \quad t>0 ; \quad: \text { : } \\
& y(x, 0)=f(x), \quad-\infty<x<\infty, \quad: \quad \text { شرايط مرزی } \\
& y_{t}(x, 0)=0, \quad-\infty<x<\infty,
\end{aligned}
$$

$y(x, t)=\frac{1}{2}(f(x+a t)+f(x-a t))$.
جواب خصصوصى (Y-Y-Y) با تغيير مكان اولّلئُ معين و سرعت اولّلئُ صفر به دست آمد .
 مبين است

مثال P-Y-Y مسألهُ مقدار مرزى زير را حل كنيد .

$$
\begin{array}{lll}
y_{\mathrm{tI}}=a^{2} y_{x x}, & -x<x<x, \quad t>0, & : \\
y(x, 0)=0, & -x<x<x, & : \text { معادلي } \\
y_{t}(x, 0)=g(x), & -x<x<x . &
\end{array}
$$

حل : نقطهُ شتر عع باز هم ججواب عمومي داده شـده بهو سبلهُ معادلئ (Y-Y-Y) است، يعنى $y(x, t)=\phi(x+a t)+\psi(x-a t)$.

در اين جا شـرط
$y(x, t)=\phi(x+a t)-\phi(x-a t)$
$y_{i}(x, t)=a \phi^{\prime}(x+a t)+a \phi^{\prime}(x-a t$

$$
\text { در نتيجه از (x,0)=g(x); } ;
$$

$\phi^{\prime}(x)=\frac{1}{2 a} g(x)$
و با استفاده از تضيهُ اساسي حساب انتظر ال،

$$
\phi(x)=\frac{1}{2 a} \int_{0}^{x} g(s) d s
$$

يس جو اب عمومى به شكل زير تبديل مى شود

$$
\begin{align*}
y(x, t) & =\frac{1}{2 a}\left(\int_{0}^{x+a t} g(s) d s-\int_{0}^{x-a t} g(s) d s\right) \\
& =\frac{1}{2 a} \int_{x-a t}^{x+a t} g(s) d s \tag{Y-Y-Y}
\end{align*}
$$

با استفاده از اصل برهم نهى (تمرين ب) هى توان جواب مشال زير را به دسـت آورد .

جواب اين مسالّه به حورت زير است

$$
y(x, t)=\frac{1}{2}(f(x+a t)+f(x-a t))+\frac{1}{2 a} \int_{x-a t}^{x+a t} g(s) d s .
$$

$$
(A-Y-Y)
$$

جواب نوت، جواب دالامبر "ناميده مى شود .

 تار را در t=0 نشان مى دهد . وضعيت ضربه در زمانهـاى بعدى را مى توان مساسبه كرد . براى
 متادير جذول زير مطابت شكل (Y-Y-Y) رسـم كرد .

$$
\begin{array}{c|ccccc}
x & 0 & \pm \frac{1}{2} & \pm 1 & \pm \frac{3}{2} & \pm 2 \\
\hline y & 4 & 4 & 2 & 2 & 0
\end{array}
$$

ثكل Y-Y-Y تغير مكان اوّلبه
(IVAr-IVIV) ، Jean-Le Rond D’Alembert *

$$
\begin{aligned}
& \text { مثال } \\
& y_{t \prime}=a^{2} y_{x x}, \quad-\infty<x<\infty, \quad t>0 ; \quad: \text {, alen } \\
& y(x, 0)=f(x), \quad-\infty<x<\infty, \quad: \quad \text { : شر ايط مرزی: } \\
& y_{l}(x, 0)=g(x), \quad-x<x<\infty,
\end{aligned}
$$

شـر
 در دو جهت نتشان مي دهند . أين مطلب در شككل Y-Y-Y نشـان داده شـده اسـت .

$t=0$

$t=\frac{1}{2 a}$

$t=\frac{1}{d}$

شُكل Y-Y-Y تار هرتعش در زمانهاى منتلف

اين بخش را با بر رسى اى كوتاه در مورد معادلهُ موج يكيعدى د ر فيز يكي اتمى ـ كه شـبيه به معادلهُ موج در بالاسـت ـ به هايان مي بريمه، داريم

$$
y_{t t}(x, t)=c^{2} y_{x x}(x, t),
$$

$$
(q-Y-Y)
$$

كه در آن c سرعت نور امست (تقريبآ بر ابر $y(x, t)=\phi(x) e^{i \omega t}$,
 $\phi_{x x}+\frac{\omega^{2}}{c^{2}} \phi=0$.
 است، بنابراين معادلهُ فوق به صررت
$\phi_{x x}+\left(\frac{2 \pi}{\lambda}\right)^{2} \phi=0$.
نوشّه مي شود .

$\phi_{x x}+\frac{4 \pi^{2} p^{2}}{h^{2}} \phi=0$.
 وأبسته است، بس داريم
$\phi_{x x}+\frac{8 \pi^{2} m E}{h^{2}} \phi=0$.
معـادله (Y-Y دارد، كه هارالى شيـي معنى صريح فيزيكى نـست .

تمرينهاى P-Y

$\mathbf{T}_{1}=-T_{1} \cos \alpha_{1} \mathbf{i}+T_{1} \sin \alpha_{1} \mathbf{j}$,

$$
\begin{aligned}
& \text { ب) بر بر بار را به همين روس تجزيه كنيد }
\end{aligned}
$$

$T_{1} \cos \alpha_{1}=T_{2} \cos \alpha_{2}=T_{0}, \quad \quad$ ثابت
($1991-\mid$ AAV) ، Erwin Schrödinger *

رياضيات مهندسى
 $T_{1} \sin \alpha_{1}-T_{2} \sin \alpha_{2}$.
 رياضيات عمومى داريم
$\frac{\partial y}{\partial x}=\lim _{\Delta x \rightarrow 0} \frac{y(x+\Delta x, t)-y(x, t)}{\Delta x} ;$
حال به جاى y از

- معدالـه - -

$f(x)=\left\{\begin{array}{lc}a(a x+1), & -\frac{1}{a} \leq x \leq 0, \\ a(1-a x), & 0 \leq x \leq \frac{1}{a}, \\ 0, & b \text { b },\end{array}\right.$
 در زمانهاى زير رسم كنيد

$$
\begin{array}{ll}
t=\frac{1}{2 a} & \text { (ب } t=0 \\
t=\frac{3}{2 a} . & \text { (ت } t=\frac{1}{a}
\end{array}
$$

(الف)
(~

- A

$$
\text { x=0 به طرفـ x=- } x=0
$$

- 9 شـده حل كنيد
" معادلهُ (
- 11 - توضيح دهيـل هرا نتـبجـهُ به دست آمـله در معـادله (V-Y-Y) مستقل از ثابتى است كه

بهع عنوان كران بِايِن انتكرالل در مرحله تبل به كار رفته است
L IY $v(x, t)=-v\left(L-x, t+\frac{L}{a}\right)$

تعبير فيزيكى اين نتيجه را بيان كنيد .

- ا جايگزينى زير است
$y(x, t)=X(x) e^{i \omega t}$.
مسالّهُ زير را با اين روسُ حل ككيد .

$$
\begin{aligned}
& y_{u t}=a^{2} y_{x x}, \quad 0<x<L, \quad t>0 ; \\
& \text { معادله } \\
& \left.\begin{array}{l}
y(0, t)=0, \\
y(L, t)=0,
\end{array}\right\} t>0 ; \quad: \quad: \quad \text { :rرايطمرزی } \\
& y(x, 0)=3 \sin \frac{2 \pi x}{L}, \quad 0<x<L, \quad: \quad: \quad \text { : } \\
& y_{t}(x, 0)=0, \quad 0<x<L .
\end{aligned}
$$

تعبير فيزيكى مسأله را بيان كنيد و توضبي دهيد هرا ثابست جداسازى ظاهر نمى شود . - IF
$y(x, 0)=0, \quad 0<x<L$,
$y_{t}(x, 0)=2 \cos \frac{3 \pi x}{L}, \quad 0<x<L$.

$y_{t r}(x, t)=a^{2} y_{x x}(x, t)+F / \delta$.
 در مى آيد
$y_{t t}(x, t)=a^{2} y_{x x}(x, t)-g$.

> كه و شتاب كرانشى است .

IV
 يكى سهـمى است و ماكزيمم تغيير مكان رأ بيابيد .
 دهيد معادلهُ با مشتفات جزتى آن به صوردت زير است
$y_{I t}(x, t)=a^{2} y_{x x}(x, t) \cdots \frac{b}{\delta} y_{t}(x, t)$.
19- 19
$y_{v x}=y_{x x}$.

فn

سريهاى فوريه و انتگرالهاى فوريه

ض

 روى سهن خلع شـده $u_{n}(x, y)=B_{n} \sinh n(b-y) \sin n x, \quad n=1,2,3, \ldots$, (1-1-r)

را بهدست آورديم كه در تمام شرايط حدق مى كتند بجـز اين كه وتتى كه
f(x) نيستند . در اين بخشٌ اين مشُكل باتيمانده را حل خواهبيم كرد .

 بحت قرار كرفته بود. در 1N11 نوريه" اين مفهوم را تا با آنذ جا كــترش داد كه تو توانست موارد

استفادهُ كلى يداً كند . فوريه درباره نظريهُ رياضى هدايت گُرما مطالعه مى كرد كه در ضمن آن با حل مسالهاى همانند مثال

 همگن صدق مى كند . بهعبارت ديعر، ، مجموع $u(x, y)=\sum_{n=1}^{N} B_{n} \sinh n(b-y) \sin n x$
بهازاى هر مقدار متناهى N ، همه خـاصيتهاى توابع در (Y- ا-1-1 را دارد . در نتيجه، طبيعى است كه سؤال كنيم آيا سرى نامتناهى
$u(x, y)=\sum_{n=1}^{\infty} B_{n} \sinh n(b-y) \sin n x$
 جون در
 ثابتهاى

$u(x, 0)=f(x)=\sum_{n=1}^{x} B_{n} \sinh n b \sin n x$
$f(x)=\sum_{n=1}^{\infty} b_{n} \sin n x$,
كه برایى سـادكى به جايى ثابتهاى دلخواه

$$
f(x)=\left\{\begin{array}{cl}
-f(-x), & \text { for }-\pi<x<0 \\
0, & \text { for } x=-\pi, x=0, x=\pi
\end{array}\right.
$$

 $f(x)=b_{1} \sin x+b_{2} \sin 2 x+b_{3} \sin 3 x+\cdots$,

 مى كيريم • چس

$$
\begin{align*}
\int_{-\pi}^{\pi} f(x) \sin 2 x d x= & b_{1} \int_{-\pi}^{\pi} \sin x \sin 2 x d x \\
& +b_{2} \int_{-\pi}^{\pi} \sin ^{2} 2 x d x \\
& +b_{3} \int_{-\pi}^{\pi} \sin 3 x \sin 2 x d x+\cdots \tag{Y-1-r}
\end{align*}
$$

اما دازيم (تـرين 1)
$\int_{-\pi}^{\pi} \sin n x \sin m x d x=0, \quad$ if $n \neq m$
$\int_{-\pi}^{\pi} \sin ^{2} n x d x=\pi$.
 صفر مى شود، و داريـم
$l_{2}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin 2 x d x$.
همين روش را مى توان برای هرi
$b_{n}=\frac{1}{\pi} \int_{-\pi}^{n} f(x) \sin n x d x, \quad n=1,2,3, \ldots$.
 خاصيت
$F(-x)=-F(x)$,
را دارند، به عبارت ديگر نـسبت به مبدأ قرينه اند . [مثالهاى ديگر ازتوابع فردعبارتند از
 است، كه خاصيت
$F(-x)=F(x)$
 (شكل $\cosh x$ و ، $\sec x \times \cos x$
$b_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin n x d x, \quad n=1,2,3, \ldots$
و با تو جه بها اين كه
$B_{n}=\frac{b_{n}}{\sinh n b}$,

$u(x, y)=\sum_{n=1}^{x} \frac{b_{n}}{\sinh n b} \sinh n(b-y) \sin n x$
$\left.u(x, y)=\frac{2}{\pi} \sum_{n=1}^{x} \frac{\sinh }{\sinh n b}-y\right) \sin n x \int_{0}^{\pi} f(s) \sin n s d s$.

شكل r- -

در معادلهُ (الشتباه نشـود .

اين ادعا، جندين سؤال بیى باسخ در اين مرحله وجود دارند . بعضى از آنها عبارتند از :

- - تحت جه شرايطى از يكى سرى نامتتاهى مى توان جمله به جمله مشتـق كرفت براى نشاند دادن اين كه (Y-1-9) در معادلئ لابلاس صدف مى كند لاز لازم است.

$f(x)=\frac{1}{2} a_{0}+\sum_{n=1}^{x}\left(a_{n} \cos n x+b_{n} \sin n x\right)$
$a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(s) \cos n s d s, \quad n=0,1,2, \ldots$
,
$b_{\pi}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(s) \sin n s d s, \quad n=1,2,3, \ldots$,
به شـرط آن كه دو انتگرال انخير هــمـكرا باشند . ضـرايب

$$
\begin{equation*}
\int_{-\pi}^{n} \sin n x \cos m x d x=0 \tag{1r-1-r}
\end{equation*}
$$

,

$$
\int_{-\kappa}^{\pi} \cos n x \cos m x d x=0, \quad n \neq m,
$$

 نام دارند
تعريه ${ }^{\text {-1 -1 :1 :مجموعهُ توابع }}$

$$
\left\{\phi_{i}(x), \quad i=1,2,3, \ldots\right\}
$$

$\int_{a}^{b} \phi_{n}(x) \phi_{m}(x) w(x) d x=0, \quad n \neq m$,
,
$\int_{a}^{b}\left(\phi_{n}(x)\right)^{2} w(x) d x \neq 0$.
تعامد توابع بهصورت تعريف r-1 - - تعميم تعامد بردارهامست . توجه كنيد كه مجموع

 بعدى مقادير ديگرى اخختيار خوأهد كرد . تا اين جا مجموعهُ توابع متعامد زير را بررمسى كرده ايمـ - 1
$\{\sin n x, \quad n=1,2,3, \ldots\}$
بر باز؛
$\{\cos n x, \quad n=0,1,2, \ldots\}$
بربازة
(r-| - ا |) و روابط زير (تمرين Y) نتيبه مى شود
$\int_{-\pi}^{\pi} \cos ^{2} n x d x=\pi, \quad n=1,2,3, \ldots$
,
$\int_{-\pi}^{\pi} d x=2 \pi$.
r-r- مجموعهٔ
$\{1, \cos x, \sin x, \cos 2 x, \sin 2 x, \ldots, \cos n x, \sin n x, \ldots\}$
بر بازء́ (

توابع متعامد در رياضـيات كاربردى نتشّى مهم را برعهده دارند . قبلخّ از خاصيت تعامد

روشّهاى مشابهى را براى حل بسيارى از مسائل مقدار مرزى ديگُر به كار خواهيم برد .
مجموعه الى از توابع با يك خحاحيت اضافى، كه در تعر يفـ زير داده مي تــود، بيش از اين
در كارهايمان باارزش خواهد بود .

$$
\left\{\phi_{i}(x), \quad i=1,2,3, \ldots\right\}
$$

بر بازه

$$
\int_{a}^{b} \phi_{\pi}(x) \phi_{m}(x) w(x) d x=0, \quad n \neq m
$$

$$
\int_{a}^{b}\left(\phi_{n}(x)\right)^{2} w(x) d x=1
$$

هس توابع متـعامد يكه دار ایى همان خـاحيت توابع متعـامدند و علاوه بر آن، نرمال نيـز شـلـهاند . دو رابطه در تعريف r - ا - r را مى توان با الستفاده از علامتت دلتاى كرونكر * كه بهحورت

$$
\delta_{m \pi}= \begin{cases}0, & m \neq n, \\ 1, & m=n .\end{cases}
$$

تعريف مى شـود ساده تر نو ثــت .

خاصيت زير هستند

$$
\begin{equation*}
\int_{u}^{b} \phi_{n}(x) \phi_{m}(x) w(x) d x=\delta_{m n} \tag{1V-1-r}
\end{equation*}
$$

مجموعهُ توابع

$$
\left\{\frac{1}{\sqrt{2 \pi}}, \frac{\cos x}{\sqrt{\pi}}, \frac{\sin x}{\sqrt{\pi}}, \frac{\cos 2 x}{\sqrt{\pi}}, \frac{\sin 2 x}{\sqrt{\pi}}, \cdots\right\}
$$

 متناوب p كويـم هر كاه بهازاى هر مقدار x x ،
$f(x+p)=f(x)$
 به ازای هر مـقدار P در تعـريف تابع متناوب صـدت مى كند .) بس يـكتابع بايل مـتناوب با دوره

 تابع $f(x)$ را تكه الى ـ هـمـواره كــويـم هركـــاه

(الفـ)

شكل ץ-4-4 (النش)

شرايط كانى (نه لازم) براى بهدست آوردن نمايش سرى فوريئ يكتابع در تضيهئ ب-1 ا-1

 همگراست .

 تشريح مى كنيم

: يكل

$$
\begin{aligned}
f(x) & = \begin{cases}0, & -\pi<x<0, \\
x, & 0<x<\pi,\end{cases} \\
f(x+2 \pi) & =f(x) .
\end{aligned}
$$

$$
\begin{aligned}
a_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(s) \cos n s d s=\frac{1}{\pi} \int_{0}^{\pi} s \cos n s d s \\
& =\left.\frac{1}{\pi}\left(\frac{s}{n} \sin n s+\frac{1}{n^{2}} \cos n s\right)\right|_{\dot{0}} ^{\pi} \\
& =\frac{1}{\pi n^{2}}(\cos n \pi-1) \\
& =\frac{1}{\pi n^{2}}\left((-1)^{n}-1\right)= \begin{cases}0, & \text { زو } n \\
-\frac{2}{\pi n^{2}}, & \text { نر } n\end{cases}
\end{aligned}
$$

 در اين صورت داردبم
$a_{0}=\frac{1}{\pi} \int_{0}^{\pi} s d s=\frac{\pi}{2}$.

جـملكُ ثابت در سرى نـوريه، يعنى $\frac{1}{2} a_{0}$ ميانگين" مـقدار تابعى است كه روى بازة داده شـــده به صورت سرى نوريه نمايش داده مى شود، شـكل (Y- (V) .

تـكل

$$
\int_{-\pi}^{\pi} f(x) d x=\pi a_{0} \text { v-1-世 }
$$

 $b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(s) \sin n s d s=\frac{1}{\pi} \int_{0}^{\pi} s \sin n s d s$

$$
=\left.\frac{1}{\pi}\left(-\frac{s}{n} \cos n s+\frac{1}{n^{2}} \sin n s\right)\right|_{0} ^{\pi}
$$

$$
=\frac{1}{n}(-\cos n \pi)=\frac{(-1)^{n+1}}{n}
$$

$$
\begin{aligned}
f(x)= & \frac{\pi}{4}-\frac{2}{\pi}\left(\frac{\cos x}{1^{2}}+\frac{\cos 3 x}{3^{2}}+\frac{\cos 5 x}{5^{2}}+\cdots\right) \\
& +\left(\frac{\sin x}{1}-\frac{\sin 2 x}{2}+\frac{\sin 3 x}{3}-\cdots\right)
\end{aligned}
$$

$f(x)=\frac{\pi}{4}+\sum_{n=1}^{\infty}\left(-\frac{2}{\pi} \frac{\cos (2 n-1) x}{(2 n-1)^{2}}+\frac{(-1)^{n+1}}{n} \sin n x\right)$.

 نمايش سرى فوريه تابع از علامت ~ به جاى = استفاده خو|هيم نمود . بنابراين معادلهُ (ץ-1 - اه ا) به صورت زير نومُمته مى شود $f(x) \sim \frac{\pi}{4}+\sum_{n=1}^{x}, \quad$ آبى

 N $S_{N}=\frac{\pi}{4}+\sum_{n=1}^{N}\left(-\frac{2}{\pi} \frac{\cos (2 n-1) x}{(2 n-1)^{2}}+\frac{(-1)^{n+1}}{n}-\sin n x\right)$.
نمودار هاى مـعـادلهُ (Y- - - -

 تابع 1
 باقى مى ماند.

مثال F- F-

$$
f(x)=\left\{\begin{array}{lr}
x+2, & -2<x<0 \\
1, & 0<x<2
\end{array}\right.
$$

$f(x+4)=f(x)$.
 أين كه دوره́ تناوب آَن به جاى در مقياس برطبق تناسسب زير برطرفـ سازيم $\frac{x}{\pi}=\frac{t}{2}$.

+

بس در مى آيند
$a_{n}=\frac{1}{2} \int_{-2}^{2} f(s) \cos \frac{n \pi s}{2} d s, \quad n=0,1,2, \ldots$
g
$b_{n}=\frac{1}{2} \int_{-2}^{2} f(s) \sin \frac{n \pi s}{2} d s, \quad n=1,2, \ldots$,
$a_{n}=\frac{1}{2} \int_{-2}^{0}(s+2) \cos \frac{n \pi s}{2} d s+\frac{1}{2} \int_{0}^{2} \cos \frac{n \pi s}{2} d s$

$a_{0}=2$;
$b_{n}=\frac{1}{2} \int_{-2}^{0}(s+2) \sin \frac{n \pi s}{2} d s+\frac{1}{2} \int_{0}^{2} \sin \frac{n \pi s}{2} d s$

بنابراين
$f(x) \sim 1+\frac{4}{\pi^{2}} \sum_{m=1}^{n} \frac{1}{(2 m-1)^{2}} \cos \frac{(2 m-1) \pi x}{2}-\frac{1}{\pi} \sum_{m=1}^{\infty} \frac{\sin m \pi x}{m}$.
(Y)-1-Y)

 r-
مانند قبل فرض كنيد نشان دهد . انتظار داريم كه عبارت
$\int_{-\pi}^{\pi}\left(f(x)-S_{N}(x)\right)^{2} d x$

$\lim _{N \rightarrow x_{1}} \int_{-\pi}^{\pi}\left(f(x)-S_{N}(x)\right)^{2} d x=0$,
آن كاه كنته مى شُود كه توابع متعامد يكه (Y-| تشكيل مى دهند . عبارتى معادل برأى بيان معادل؛ (Y-
$\underset{N \rightarrow \infty}{\operatorname{li.m.}} S_{N}(x)=f(x)$,

 نكهایى همولر كامل است . واضح است كه كامل يودن خـاصيتى مهم در مجـموعهالى از توابع

 مى آيد به هايان مى بريـم . آكر ترار دهيمب

$$
f(0)=1+\frac{4}{\pi^{2}} \sum_{m=1}^{3} \frac{1}{(2 m-1)^{2}}
$$

اما از تضئ ب- ا-1 مى دانيم كه
$\sum_{m=1}^{\infty} \frac{1}{(2 m-1)^{2}}=\frac{\pi^{2}}{8}$,
اين نتيجه را با روشُهاى ديگُر نيز مى توان به دست آررد .

تمرينها

$\int_{-\pi}^{\pi} \sin n x \sin m x d x=0$,
$\int_{-\pi}^{\pi} \sin ^{2} n x d x=\pi$.

رياضيات مهندسى

Y- هريكى از روابط زير را ثاببت كتيد

$$
\begin{aligned}
& \int_{-\pi}^{\pi} \sin n x \cos m x d x=0 \\
& \int_{-\pi}^{\pi} \cos n x \cos m x d x=0, \quad n \neq m \\
& \int_{-\pi}^{\pi} \cos ^{2} n x d x=\pi, \quad n=1,2, \ldots
\end{aligned}
$$

(الفـ)

سـ متعاملد يكه اسـت .

$$
\text { نحاصيت } F(-x)=-F(x) \text { را دارد . }
$$

$\tan x$
$\sinh x$

الفـ)
$\csc x$
تـحـفـيت كنيـل هـريكـ از توابی نير تابعى زوج
. خاصيت
$\sec x \quad \cos x \quad$ (ب)
$(x-a)^{2}$

- - - نشان دهيل هريك از توابع زير نه نرد الست و نه زوج
$\log x$ (ب
$x^{2} /(1+x) \quad$ (ت

$$
\begin{array}{ll}
a x^{2}+b x+c \\
e^{x} & \text { الفـ }
\end{array}
$$

x	2;	زوج
د,	زوج	د;
زوج	;	زو

 يك تابع زوج تابعى فرد اسـت .)

- ا -

امـت .
11
مى شود . دورهُ تناوبـ اساسمى هريك از توابع زير را بيابيل .
$\cos 3 \pi x$
: $\cos 2 x$
(4) $\sin \frac{1}{2} x$

الفـف)

$$
\cos \frac{\pi}{2} x
$$

(*) $\sin \pi x$
(ت)
|Y ا

$$
\text { . } u(x, y)
$$

هب)

 بيابيل .

- If
u($/ 2,1)$
10- الفـ) ثابت كنيد

$$
\sum_{m=1}^{\infty} \frac{1}{(2 m-1)^{2}}=\frac{\pi^{2}}{8}
$$

برای الباتت (Y

مقّايسه كثيل

- 9
n= $n= \pm 2, \ldots$
$f(x)$ (أكر $f(x)$ - IV
تابعى زوج اسـت .

مى توان به موردت مبجموع يك تابع زوج و يك تابع نرد با تو بجه به|تحاكد زير نوشـت

$$
f(x) \equiv \frac{1}{2}(f(x)+f(-x))+\frac{1}{2}(f(x)-f(-x)) .
$$

19 - 19 نشان دهيد مجموعهُ توابع مثلثاتى
$\left\{\frac{1}{\sqrt{2 \pi}}, \frac{\cos n x}{\sqrt{\pi}}, n=1,2, \ldots\right\}$
 . را نمى توان به صورت يكـ سرى از توابع در مجموعهُ داده شُـده نوشت $f(x)=\sin x$

سريهاى سينوسى، كسيلوسى و نمايحى F-r
در بسيارى از كـاربردهاى سري فوريه، تابِ (f) $f(x)$ بر بازها بهصوردت
 يكي سرى نقط شُامل جملات كـسينوسى نوشّت، اين كـار بهترتيب با سانختن يكـ توسيع تناوبى فرد يا زرج از تابع داده شـده انجام مى شود . با تعميم فرمولهاى ميال

$$
\begin{equation*}
f(x) \sim \frac{1}{2} a_{0}+\sum_{n=1}^{x} a_{n} \cos \frac{n \pi x}{L}+b_{n} \sin \frac{n \pi x}{L} \tag{1-Y-r}
\end{equation*}
$$

$$
a_{n}=\frac{1}{L} \int_{-L}^{L} f(s) \cos \frac{n \pi s}{L} d s, \quad n=0,1,2, \ldots
$$

,

$$
\begin{equation*}
b_{n}=\frac{1}{L} \int_{-L}^{L} f(s) \sin \frac{n \pi s}{L} d s, \quad n=1,2, \ldots \tag{r-Y-r}
\end{equation*}
$$

تو جـه كـنيـد كـه سـه رابطهُ فـوت در حـالت $L=\pi$ به معـادلات (Y-Y . تبديل مي شوند (1 (

 حاصل كه بهصورت

$$
\begin{aligned}
f(x) & = \begin{cases}f(x), & 0<x<L, \\
f(-x), & -L<x<0,\end{cases} \\
f(x+2 L) & =f(x), \quad f(0)=\lim _{\varepsilon \rightarrow 0^{+}} f(\varepsilon), \quad f(L)=\lim _{\varepsilon \rightarrow 0} f(L-\varepsilon),
\end{aligned}
$$

تعريف مى نـود يكى تابع تناربى زوج است؛ بس مى توان بهصورت زير ساده نمود
$a_{n}=\frac{2}{L} \int_{0}^{L} f(s) \cos \frac{n \pi s}{L} d s, \quad n=0,1,2, \ldots$.

 ($\uparrow-Y-Y$) داريم

$$
a_{n}=\frac{2}{\pi} \int_{0}^{\pi} s \cos n s d s
$$

$$
a_{n}= \begin{cases}0, & \quad \text { in } \\ -\frac{4}{\pi n^{2}}, & 2 \mathrm{i} n\end{cases}
$$

$$
a_{0}=\frac{2}{\pi} \int_{0}^{\pi} s d s=\pi
$$

H-r-r-r

بنابراين سرى مطلوب به صور ت زير نونتَه مي شود (تمرين ه)
$f(x) \sim \frac{\pi}{2}-\frac{4}{\pi} \sum_{m=1}^{n} \frac{\cos (2 m-1) x}{(2 m-1)^{2}}$.

سرى سـينوسى

$$
\begin{aligned}
& f(x)= \begin{cases}f(x), & 0<x<L, \\
-f(-x), & -L<x<0,\end{cases} \\
& f(x+2 L)=f(x), \\
& f(0)=f(L)=0,
\end{aligned}
$$

 به صورت زير مى توان سـاده نمود
$b_{n}=\frac{2}{L} \int_{0}^{L} f(s) \sin \frac{n \pi s}{L} d s, \quad n=1,2,3 \ldots$.

شككل

مثال آر
 ($¢-Y-Y$)
$b_{n}=\frac{2}{\pi} \int_{0}^{\pi} s \sin n s d s=\frac{2}{n}(-1)^{n+1}$
بثابراين سرى مطلوب به صورت زير نوثّته مى شمود (تمرين V)
$f(x) \sim 2 \sum_{n=1}^{\infty} \frac{(-1)^{n+1} \sin n x}{n}$.

ش-r-r

بايدتوجه داشـت اكر جه عبارتهاى(Y) هستند، ولمى همهُ انَها تابع x " نوريه آن را روشي با ارزش در رياضيات كاربردى مى مـازد . قبلا ديله ايم كه در بعضىى از مسـائل

سرى نمايى

يكى شكل مفيد ديكر سريهاى فوريه، ثُكل نمايع است . اين سرى از شكل متعارف

رياضيات مهندسى
$f(x) \sim \frac{1}{2} a_{0}+\sum_{n=1}^{x} a_{n} \cos n x+b_{n} \sin n x$,

$e^{i n x}=\cos n x+i \sin n x$.
داريم
$\cos n x=\frac{1}{2}\left(e^{i n x}+e^{-i n x}\right)$,
$\sin n x=\frac{1}{2 i}\left(e^{i n x}-e^{-i n x}\right)$,

لس مى توان نوشـت

$$
\begin{aligned}
f(x) & \sim \frac{1}{2} a_{0}+\frac{1}{2} \sum_{n=1}^{\infty} a_{n}\left(e^{i n x}+e^{-i n x}\right)-i b_{n}\left(e^{i n x}-e^{-i n x}\right) \\
& =\frac{1}{2} a_{0}+\frac{1}{2} \sum_{n=1}^{\infty}\left(a_{n}-i b_{n}\right) e^{i n x}+\left(a_{n}+i b_{n}\right) e^{-i n x}
\end{aligned}
$$

حال اكگر ضرايب فوريهُ هـتلظ را بهصورت زير تعريف كنيم $c_{0}=\frac{1}{2} a_{0}, \quad c_{n}=\frac{1}{2}\left(a_{n}-i b_{n}\right), \quad c_{-n}=\frac{1}{2}\left(a_{n}+i b_{n}\right), \quad n=1,2, \ldots, \quad($ А $-Y-Y)$

داريم
$f(x) \sim \sum_{n=-x}^{\infty} c_{n} e^{i n x}$,
كه ثـكل مـختلط (يا نـكل نمأيى) سـرى نوريه اسـت . از اين شُكل عمـوماً به خـاطر سـادگى نماد در فيزيكى و مهندسى المتفاده مى شود .

$f(x) \sim \sum_{n=-\infty}^{\infty} c_{r} e^{i n \pi \times / L}$
و تغييرات متناظر رابراى c نيز در نظر مى كيريم • جزئيات اينتغييرات و نيز بهد دستآوردن
فرمول
$c_{\Pi}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(s) e^{-i n s} d s, \quad n=0, \pm 1, \pm 2, \ldots$,
بهعنوان تمرين كذاثتههمى شود .

مشتت كبرى ازسريهاى فوريـ

$f(x) \sim \frac{\pi}{2}-\frac{4}{\pi} \sum_{m=1}^{x} \frac{\cos (2 m-1) x}{(2 m-1)^{2}}$
اكر از دو طرن معادلل (O-Y-Y) مشتت بگيريم، به دست مى آوريم
$f^{\prime}(x) \sim \frac{4}{\pi} \sum_{m=1}^{\infty} \frac{\sin (2 m-1) x}{2 m-1}$.
 انتظار مى رود، $f^{\prime}(x) \sim 2 \sum_{n=1}^{\infty}(-1)^{n+1} \cos n x$,

 كافى در تضيها زير داده مى شوند كه آن را بابون البات مى بذيريم ـ
كظيه $f(x) \sim \frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)$
$a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(s) \cos n s d s, \quad n=0,1,2, \ldots$
,
$b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(s) \sin n s d s, \quad n=1,2, \ldots$.
آن كاه نمايش سرى فوريه در هر نقطه ایى كه بر $f^{\prime}(x) \sim \sum_{n=1}^{x} n\left(-a_{n} \sin n x+b_{n} \cos n x\right), \quad-\pi<x<\pi$.

انتحرال كيرى از يكى سرى نوريه

انتگُ ال كيرى از يكـ سرى فورده كار خخيلي ساده ترى است . اين انتظار همم هست، زيرا
 مشتّ گيرى اثرى متقابل دارد . تضيهُ زير برانى انتگرال كيرى از يك سرى فوريه به كار مى رود .
 $f(x) \sim \frac{1}{2} a_{0}+\sum_{n=1}^{x}\left(a_{n} \cos n x+b_{n} \sin n x\right)$,
$\int_{-\pi}^{x} f(s) d s=\frac{1}{2} a_{0}(x+\pi)+\sum_{n=1}^{\infty} \frac{1}{n}\left(a_{n} \sin n x-b_{n}(\cos n x-\cos n \pi)\right)$

تمرئهای F-r

1- هريك از روابط تعامدى زير راثابت كنيد .

$$
\begin{aligned}
& \int_{-L}^{L} \sin \frac{m \pi x}{L} \cos \frac{n \pi x}{L} d x=0 \\
& \int_{-L}^{L} \cos \frac{m \pi x}{L} \cos \frac{n \pi x}{L} d x=0, \quad n \neq m
\end{aligned}
$$

الف) (ب)

$$
\begin{equation*}
\int_{-L}^{L} \sin \frac{m \pi x}{L} \sin \frac{n \pi x}{L} d x=0, \quad n \neq m \tag{بی}
\end{equation*}
$$

- Y

$$
\int_{-L}^{L} \sin ^{2} \frac{n \pi x}{L} d x=\int_{-L}^{L} \cos ^{2} \frac{n \pi x}{L} d x=L, \quad n=1,2, \ldots
$$

$$
\left\{\frac{1}{\sqrt{2 L}}, \frac{\cos \frac{n \pi x}{L}}{\sqrt{L}}, \frac{\sin \frac{n \pi x}{L}}{\sqrt{L}}\right\}, \quad n=1,2, \ldots ?
$$

تو ت
صدتى Aي كند .
جزئت
Y - تو
صلدت Aي كند .
جز جّيات Y

- - الفب) نشان دهيل

$$
\int_{-x}^{n} e^{i n x} e^{-i m x} d x= \begin{cases}0, & n \neq m \\ 2 \pi, & n=m\end{cases}
$$

 يكه باشد . (توجه : نوع تعامـلد در اين جا، تعـامل هرمينتى **اعيلده مـى شـود . اكر مجيوعه ايى از توابع متختلط از متغير سقيةى x مانند

$$
\left\{\phi_{n}(x)\right\}, \quad n=1,2, \ldots
$$

دأراي خاحيت

$$
\int_{a}^{b} \phi_{n}(x) \overline{\phi_{m}(x)} d x=0, \quad n \neq m
$$

 هي شود . عهلامت بار مزدوج مختتط را نشان مي دهد (بخشّ ، ا-1 را ملاحظه (19•1-1AヶY) ، Charles Hermite 象

كنيـد) . در حـالتى كـه توابع حـقـيـقى باثــند، تعـريف نـوت همـان تعريف تعـامــ

> در تعريف r-1-1 اسـت .

توابع داده شـده را به دسـت آوريد .
$\begin{array}{lll}f(x)=a, 0<x \leq 3, a>0 & -1 \cdot & f(x)=2-x, 0<x \leq 2 \\ f(x)=e^{x}, 0<x<2 & -1 Y & f(x)=x^{2}, 0 \leq x<1 \\ f(x)=\cos x, 0<x \leq \pi_{i} 2 & -1 F & -11 \\ \end{array}$
10- تابع تمرين 11 را با يك سـرى فوريه كـه نُامل سـبنوس و كسـينوس باشُد نمايش دهـيد.

هى نهايت راه وجود دارد .)

 - ا^ الف) نمايش سرى فوريهُ تابع زير را بيابيد

$$
\begin{aligned}
f(x) & =\left\{\begin{array}{lr}
x+1, & -1 \leq x \leq 0 \\
-x+1, & 0 \leq x \leq 1
\end{array}\right. \\
f(x+2) & =f(x)
\end{aligned}
$$

ب) با باستفاده از نتيجه فسمت (الف) نشان دهيد

$$
1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\cdots=\frac{\pi^{2}}{8}
$$

. 19 - - هريكا از روابط زير رابهد دست آّريد

$$
\begin{align*}
& \frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+-\cdots \\
& \frac{\pi}{4}=\frac{\sqrt{2}}{2}\left(1+\frac{1}{3}-\frac{1}{5}-\frac{1}{7}++--\cdots\right)
\end{align*}
$$

(رامنمايى : از نتيجهٔ تمرين 19 با مقادير مناسبب برايى x استفاده كنيد.) تا تابع مثلثى زير رادر نظر بكيريد
iva
نمـل سـوم ـ سريهاى نورديه و انتكر الهاى نوردي

$$
f(x)= \begin{cases}2-x, & 1<x<2 \\ x-2, & 2<x<3\end{cases}
$$

الفـ) يكـ نمايش نوريهُ مينوسـى از اين تابع به دسـت آوريد .
بـ) . تابع زير منروض المت

$$
\begin{aligned}
& f(x)= \begin{cases}1, & 0<x<2, \\
-1, & -2<x<0,\end{cases} \\
& f(x+4)=f(x), f(0)=f(2)=0
\end{aligned}
$$

فر ايبـ ملاحظد كنيل)
تابع زیر مفروض است

$$
f(x)=1, \quad-\infty<x<\infty
$$

شـكل نمايع نهايش سركى نوريهُ اين تابع دا بنويـميل .
 هـمكرا به كنيل و آن را با نهو دار ($f(x)$ در متن نشان داده شل، مقايسه كنيل .

- Y - تو خيت دهيل هـئونه (- Y ا x^{2} بـ در تمرين \mid أ به دست آوريد . به ازأي جه مقاديرى ازx نتيجه معتبر اسمت؟ - - YA

$$
\left\{\sqrt{\frac{2}{L}} \sin \frac{n \pi x}{L}\right\}, \quad n=1,2, \ldots
$$

بر [0, L] يكى ميجموعهٔ متعامل يكه امـت . راهنْها عى : از فرهول زير الستفاده كنيل

$$
\begin{aligned}
& \sin \frac{n \pi x}{L}=\frac{e^{\mathrm{i} \pi \pi x / L}-e^{-i n \pi x / L}}{2 i} . \\
& (\wedge-Y-Y) و \text {) }
\end{aligned}
$$

به دسـتآَوريد .
 داده هى نوند
$c_{n}=\frac{1}{2 L} \int_{-L}^{L} f(s) e^{-i n n s / L} d s, \quad n=0,1,2, \ldots$.
 جنين تابعى به صورت زير داده مى شود
$f(x)=(-1)^{n} h, \quad n=0, \pm 1, \pm 2, \ldots, n<x<n+1$.

$$
\begin{aligned}
& \text { الف) تابع رارسم كنيد . }
\end{aligned}
$$

$$
\begin{aligned}
& \text { تابت زير داده شـده است }
\end{aligned}
$$

$f(x)=2-x, \quad 0<x<2$,
تابعى تعريف كتيد كه نمايش سرى فرريهٔ سينوسى آن بهازاى همهُ مقادير x همگرا به (x) باشُد . (توجه : جواب منحصر به فرد نيست .)

 خو|هد كرد.

 ميل مى كند . برايى مثال، تابع

$$
\begin{align*}
f(x) & =e^{-|x|}, \quad-L<x<L, \tag{1-r-r}\\
f(x+2 L) & =f(x)
\end{align*}
$$

داراى نمايشّ سـرى فوريهُ زير استـ

$$
\begin{equation*}
f(x) \sim \frac{1}{2} a_{0}+\sum_{n=1}^{\alpha}\left(a_{n} \cos \frac{n \pi x}{L}+b_{n} \sin \frac{n \pi x}{L}\right) \tag{r-r-r}
\end{equation*}
$$

كه

$$
\begin{array}{ll}
a_{n}=\frac{1}{L} \int_{-L}^{L} f(s) \cos \frac{n \pi s}{L} d s, & n=0,1,2, \ldots \\
b_{n}=\frac{1}{L} \int_{-L}^{L} f(s) \sin \frac{n \pi s}{L} d s, & n=1,2, \ldots
\end{array}
$$

در اين جا از s به عنو ان متـغيّر ظاهرى انتُكال كـيرى استفـاده شـده أست . براى مثـال داده شـده با هعـادله هاى (مى آيلد، زيرا $f(x)$ تابعى زوج است .
 تناوبـى بودن تابِ و برابر نـصفـ دورهُ تناوب امست، آن كــاه يكى مطـلـب بليهي به دسـت مى آيل . نمايشُ سـرى فوريهُ داده مــده در (Y-Y
 $f(x)=\lim _{L \rightarrow \infty} f_{L}(x)$,
 نيـست ولم تكه أى ـ هـموار امست . يكى شــر ط ديگُر روى بر هخط حققيقى بطور دطلت انتگر ال يلذير باشثد، به اين معنى كه

$$
\int_{-\infty}^{\infty}|f(x)| d x
$$

متناهى باشُـد . برالى تابّع مورد بحث نحودمان داريـم

$$
\int_{-\alpha_{1}}^{\alpha}\left|e^{-|x|}\right| d x=2 \int_{0}^{x_{1}} e^{-x} d x=2 \lim _{1 .} \int_{0}^{1} e^{\cdot} d x
$$

بسادگىمى توان نشان داد كهمقدار انتگُ ال برابر Y امست (تمرين 1) . هحنان كه معمول اسستت به جاىى

$$
\int_{0}^{x} f(x) d x \text { مى نويسمبم } \lim _{L \rightarrow x} \int_{0}^{L} f(x) d x
$$

(الفغ)

(ب)

شكل

$$
\begin{align*}
f_{L}(x) \sim & \frac{1}{2 L} \int_{-L}^{L} f_{L}(s) d s \\
& +\frac{1}{L} \sum_{n=1}^{\infty}\left(\cos \left(\alpha_{n} x\right) \int_{-L}^{L} f_{L}(s) \cos \left(\alpha_{n} s\right) d s\right. \\
& \left.+\sin \left(\alpha_{n} x\right) \int_{-L}^{L} f_{L}(s) \sin \left(\alpha_{n} s\right) d s\right) \tag{r-r-r}
\end{align*}
$$

$$
\begin{align*}
& \Delta \alpha=\alpha_{n+1}-\alpha_{n}=\frac{(n+1) \pi}{L}-\frac{n \pi}{L}=\frac{\pi}{L} \\
& f_{L}(x) \sim \frac{1}{2 L} \int_{-L}^{L} f_{L}(s) d s+\frac{1}{\pi} \sum_{n=1}^{\infty}\left(\cos \left(\alpha_{n} x\right) \Delta \alpha \int_{-L}^{L} f_{L}(s) \cos \left(\alpha_{n} s\right) d s\right. \\
& \left.\quad+\sin \left(\alpha_{n} x\right) \Delta \alpha \int_{-L}^{L} f_{L}(s) \sin \left(\alpha_{n} s\right) d s\right) .
\end{align*}
$$

معتبر است.

بهـــــت صفر ميل مى كند زيرا (fx f بطور مطلق انتكر البذير است". علاوه براين مـوجه به نظر

$$
\begin{align*}
f(x)= & \frac{1}{\pi} \int_{0}^{\infty}\left(\cos (\alpha x) \int_{-\infty}^{\infty} f(s) \cos (\alpha s) d s\right. \\
& \left.+\sin (\alpha x) \int_{-\infty}^{\infty} f(s) \sin (\alpha s) d s\right) d \alpha, \tag{0-r-r}
\end{align*}
$$

كه نمايش انتكرال فوريه (fx است . معادلهُ ($f(x)=\int_{0}^{\infty}(A(\alpha) \cos \alpha x+B(\alpha) \sin \alpha x) d \alpha, \quad-\infty<x<\infty$,

4
$A(\alpha)=\frac{1}{\pi} \int_{-\infty}^{\infty} f(s) \cos \alpha s d s$
,
$B(\alpha)=\frac{1}{\pi} \int_{-\infty}^{\infty} f(s) \sin \alpha s d s$.
به نباهت نزديك بين ضرايب در انتگرال نوريه و سرى نوريه توجه كنيد .

بياننمود .
لليه ($f(x)$ نايـوستــها است، مـــــدار $f(x)$ انتكر الل فوريه برابر متوسط حدهاى جب و راست (

 انتكرالها ترار داد ـ در آنصورت داريم
: بادآوى مى كنبم كه بك انتكرالن نامره انتكرال بذبر امست هر كاه بطرر مطلت انتعرال بذير بائد. .
$f(x)=\frac{1}{\pi} \int_{0}^{\infty} \int_{-\infty}^{\infty} f(s)(\cos \alpha x \cos \alpha s+\sin \alpha x \sin \alpha s) d s d \alpha \quad$ (A-r-r) $=\frac{1}{\pi} \int_{0}^{\infty} \int_{-\infty}^{\infty} f(s) \cos \alpha(s-x) d s d \alpha$.
 به صورت زير ساده مي شود

$$
f(x)=\frac{2}{\pi} \int_{0}^{\infty} \int_{0}^{\infty} f(s) \cos \alpha x \cos \alpha s d s d \alpha
$$

 ساده مى شود
$f(x)=\frac{2}{\pi} \int_{0}^{\alpha} \int_{0}^{\alpha} f(s) \sin \alpha x \sin \alpha s d s d \alpha$.
($11-r-r$)

بنويـميم
$f(x)=\frac{1}{2 \pi} \int_{-,}^{x} \int_{-x}^{x} f(s) \cos \alpha(s-x) d s d x$.
$(1 r-r-r)$
از طرف ديگُ
$\frac{i}{2 \pi} \int_{-x}^{x} \int_{-x}^{x} f(s) \sin x(s-x) d s d \alpha=0$
$(\mid r-r-r)$
 بهدست بى آّوريم

$$
f(x)=\frac{1}{2 \pi} \int_{-x}^{x} \int_{-}^{x} f(s) e^{i x|s-x|} d s d \alpha
$$

كه نـكل مختلط انتگرال فوريه است.

تبديل فوريه
تبديل فوريـه از معادله ((را بهصورت يك انتگرال مكرر مى نويسيم
$f(x)=\frac{1}{2 \pi} \int_{-, x}^{(x)} f(s) e^{i x s} d s \int_{-\infty}^{x} e^{-i x x} d \alpha$.
سالْ توجه كنيد كه s يكى متغير ظلاهرى امست و مى توان به جاي آن هر حرف ديعر، ازجمله x ، را ترار داد . انتگَّرال اوّل تابعى است از α ، بنابر اين جفت معادلات زير را داريم
$\bar{f}(\alpha)=\int_{-\infty}^{\infty} f(x) e^{i a x} d x$,
$f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \bar{f}(\alpha) e^{-i \alpha x} d \alpha$.

اين دو معادله را يك جفتت تبـلـيل فوريه نامند . در (艹-Y-Y از يكـ تابع ساده و تبديل فورئُ آن در شـكل

شكل r-r-r-r يلك جفت تبديل فريد

 $\bar{f}(\boldsymbol{\mu})=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{i \alpha x} d x$,
$f(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \bar{f}(\alpha) e^{-i \alpha x} d \alpha$

رياضيات مهندمى

بعضي ديگر عـلامتهاى مننفى را در نماها تغيــر مي دهند، و بعضي هم تركييى از اين دو تغيير را به كار مي برند . به علت علامت منفى فتط در بكى از نماها تقارن كامـل در جفتت وجود ندارد .
 ثس در كاربردها مهم نيست كه از ضريب 1/2 1 وتى تابع تبديل مي شود امستفاده شود، يا وتىى
 اين مطلب را به ياد داششته باشيد .
تبـليلات در ريـاضـيـات مـــلاولـند، جون بسـيـارى از مـــــائل با اسـتـنـاده از تبـنيلات
 به جمع مفيدند، تبديل لآلاس برایى بركرداندن معادلات ديفر انسيل معمولى به معادلات جبرى

 برایى داثمتن آمادكى برايى مثال بعد، تبديل توريه

$\int_{-\infty}^{\infty} \frac{d u}{d x} e^{i x x} d x=\left.u e^{i \alpha x}\right|_{-\infty} ^{\infty}-i \alpha \int_{-\infty}^{\infty} u e^{i \alpha x} d x$

$$
\begin{equation*}
=-i \alpha \bar{u}(\alpha), \tag{19-r-r}
\end{equation*}
$$

 $\int_{-\infty}^{\infty} \frac{d^{2} u}{d x^{2}} e^{i a x} d x=\left.\frac{d u}{d x} e^{i a x}\right|_{-\infty} ^{\infty}-\alpha i \int_{-\infty}^{\infty} \frac{d u}{d x} e^{i x x} d x$ $=-i \alpha(-i \alpha \bar{u}(\alpha))=-\alpha^{2} \bar{u}(\alpha)$,

تايب معادله هاى (Y-Y-Y

$$
\begin{gathered}
\mathscr{F}\left(\frac{d u}{d x}\right)=-i \alpha \mathscr{F}(u)=-i \alpha \bar{u}(\alpha) \\
\mathscr{F}\left(\frac{d^{2} u}{d x^{2}}\right)=-\alpha^{2} \mathscr{F}(u)=-\alpha^{2} \bar{u}(\alpha)
\end{gathered}
$$

با تو جه به نماد گـذارى درمبحث تبــيلات لا بلاس كه (مي برند، از با نوشّست علاوه بر جـفت تبديـل نوريهُ تعـريف شـده در (Y-
 ارائه خواهيم كرد . اين بخش را با يك مشال به بايان مي بريم . مثال $u_{t}(x, t)=u_{x x}(x, t), \quad-\infty<x<\infty, \quad 0<t$, . $|u(x, t)|<\infty, u(x, 0)=f(x) \Delta$ با نرض آن

 به حورت زير است

$$
\begin{aligned}
\vec{f}(\alpha) & =\int_{-\infty}^{\infty} f(x) e^{i \alpha x} d x \\
& =\int_{-\infty}^{\infty} f(s) e^{i z s} d s
\end{aligned}
$$

 عبارتاست از

$$
\begin{aligned}
\int_{-\infty}^{\infty} \frac{\partial u(x, t)}{\partial t} e^{i \alpha x} d x & =\frac{\partial}{\partial t} \int_{-\infty}^{\infty} u(x, t) e^{i \alpha x} d x \\
& =\frac{\partial \bar{u}(x, t)}{\partial t}=\frac{d \bar{u}(\alpha, t)}{d t}
\end{aligned}
$$

 در به دست آوردن تبديل نقش يك بارامتر را دارد .
با تبديل كردن معادلهُ با مشتقتات جزنُى و شرط اوكّبه داده شُده، بهد دست مي آوريـم
$\frac{d \bar{u}}{d t}+\alpha^{2} \bar{u}=0, \quad \bar{u}(\alpha, 0)=\bar{f}(\alpha)$.

جوابس اين مسآله بسادگى به دست مى آيد (تمرين †) و عبارت است از

$$
\bar{u}(\alpha, t)=\bar{f}(\alpha) e^{-\alpha^{2} t}
$$

با استفاده از فرمول تبديل معكوس (Y-r-r $u(x, t)$ را به دست آوريم، داريم

$$
\begin{aligned}
u(x, t) & =\frac{1}{2 \pi} \int_{-\infty}^{x} \bar{u}(\alpha, t) e^{-i a x} d \alpha=\frac{1}{2 \pi} \int_{-x}^{x} \bar{f}(\alpha) e^{-\alpha^{2} t} e^{-i x x} d \alpha \\
& =\frac{1}{2 \pi} \int_{-x}^{x} \int_{-\infty}^{x} f(s) e^{i a s} e^{-\alpha^{2} t} e^{-i x x} d \alpha d s \\
& =\frac{1}{2 \pi} \int_{-x}^{\alpha} \int_{-x}^{\infty} f(s) e^{i x(s-x)} e^{-\alpha^{2} t} d \alpha d s
\end{aligned}
$$

$$
e^{-x^{2 t}} e^{i a(s-x)}=e^{-\alpha^{2} t}(\cos \alpha(s-x)+i \sin \alpha(s-x))
$$

و اوّلين جــملةُ ايـن مـجـمـوع تابعى زوج از α است، در صـورتى كـه جـمـلهُ دوم تابعى فـرد از اسـت . بنابراين
$u(x, t)=\frac{1}{\pi} \int_{-}^{\alpha} \int_{0}^{x} f(s) \cos \alpha(s-x) e^{-x^{2} t} d \alpha d s$.
$(1 \wedge-r-r)$

ملاحظه كنيـد اكر $f(x)$ مـعلوم باشـد، جـوالبـ نوق را مى توان سـاده كرد ـ در آن صـورت

 در اين حالت استفاده از روش تبديل فوريُ سريع (FFT) توصيه مى شود .

تمرینهای F-r - 1

$$
f(x)=e^{-|x|}
$$

بر خط حقيقى بطور مطلق انتگرال يذير است . الگر (

$$
\lim _{L \rightarrow \infty} f_{L}(x)=f(x)
$$

نتـان دهيد

$$
\lim _{L \rightarrow \alpha} \frac{1}{2 L} \int_{-L}^{L} f_{L}(x) d x=0
$$

r- جزئيات انتگر ال كيرى با روش جزء به جزء را بر ای به دسـت آوردن معادلات (r-r-به)
و (r-r-r اV) انجأم دهيد .

جوابـ زير را در مثال

$$
\bar{u}(\alpha, t)=\bar{f}(\alpha) e^{-\alpha^{2} t}
$$

معين كنيد كذام يك از توابي زير بر خط حفيقى بطور مطلق انتقكرال یذير أست .

$$
\begin{aligned}
& -1 \leq x \leq 1 \text { ، } f(x)=|1-x| \text { (الفس } \\
& f(x)=\sin \pi x \quad \text { (ب } \\
& f(x)=x^{1 / 3}
\end{aligned}
$$

$$
f(x)= \begin{cases}1, & |x|<1 \\ 0, & |x|>1 \\ \frac{1}{2}, & |x|=1\end{cases}
$$

آن گـاه ($f(x)$ در شــرايط تــضـيـهُ انتگُرال نرريهُ معتبر بهازاى همهُ مقادير x اسست و به صورت زير داده هى شود

$$
f(x)=\frac{2}{\pi} \int_{0}^{\infty} \frac{\sin \alpha \cos \alpha x}{\alpha} d \alpha, \quad-\infty<x<\infty .
$$

با المتفاده از نتيجهُ تمرين 9 نتشان دهيل

$$
\int_{0}^{x} \frac{\sin 2 \alpha}{\alpha} d \alpha=\frac{\pi}{2}
$$

人-

$$
\int_{0}^{\infty} \frac{\sin a x}{x} d x=\frac{\pi}{2}, \quad a>0 \quad s 1
$$

(رامنمايع : از يكى تعويض متغير در تمرينV المتفاده كنيد)

رياضيات مهندسى
-

$$
f(x)= \begin{cases}e^{-x}, & x>0 \\ 0, & x<0 \\ \frac{1}{2}, & x=0\end{cases}
$$

 انتگرال نوريهُ معتبر بهازاى هر xاست و و به صورت زير داده مى ثمود

$$
f(x)=\frac{1}{\pi} \int_{0}^{\infty} \frac{\cos \alpha x+\alpha \sin \alpha x}{1+\alpha^{2}} d \alpha, \quad-\infty<x<\infty .
$$

- - - با الستغاده از تمرين ${ }^{\text {ثابت كنيد }}$

$$
\int_{0}^{\infty} \frac{1}{1+\alpha^{2}} d \alpha=\frac{\pi}{2}
$$

 معتبر امــت؟ Y

$$
f(x)= \begin{cases}0, & x \leq 0 \\ \sin x, & 0 \leq x \leq \pi \\ 0, & x \geq \pi\end{cases}
$$

دارانى يكى نمايش انتگرال نوريه به صورتت زير است

$$
f(x)=\frac{1}{\pi} \int_{0}^{x} \frac{\cos \alpha x+\cos \alpha(\pi-x)}{1-\alpha^{2}} d \alpha, \quad-\infty<x<\infty
$$

Yا

$$
\int_{0}^{\infty} \frac{\cos (\pi \alpha / 2)}{1-\alpha^{2}} d \alpha=\frac{\pi}{2}
$$

- IY

$$
f(x)=\frac{1}{1+x^{2}}
$$

) . - 10- نمايش انتگرال نوريهُ تابع

$f(x)=\frac{\sin x}{x}$.

را بيابيد
19- نشان دهيـد تابع تمرين 10 بطور مطلت انتگرال بذيـر نيست، با وجـرد اين نمايش انتگرال
 . تابـت كنيد تبديل نوريه يك تبديل خطى است ا IV
.

كإر

$$
\begin{align*}
\mathscr{F}_{s}(f(x))=\bar{f}_{s}(\alpha) & =\int_{0}^{\infty} f(x) \sin \alpha x d x \\
f(x) & =\frac{2}{\pi} \int_{0}^{\infty} \bar{f}_{s}(x) \sin \alpha x d \alpha \tag{1-Y-Y}
\end{align*}
$$

 محاسبه مى كنيم
$\int_{0}^{\infty} \frac{d^{2} u}{d x^{2}} \sin \alpha x d x=\left.\frac{d u}{d x} \sin \alpha x\right|_{0} ^{\infty}-\alpha \int_{0}^{x_{1}} \frac{d u}{d x} \cos \alpha x d x$
$=-\alpha \int_{0}^{\infty} \frac{d u}{d x} \cos \alpha x d x$
$=-\left.\alpha u \cos \alpha x\right|_{0} ^{x}-\alpha^{2} \int_{0}^{\alpha} u \sin \alpha x d x$.

رباضيات مهندسى

$$
\begin{equation*}
\mathscr{F}_{s}\left\{\frac{d^{2} u}{d x^{2}}\right\}=\alpha u(0)-\alpha^{2} \bar{u}_{s}(\alpha) \tag{Y-Y-Y}
\end{equation*}
$$

$$
\int_{0}^{x_{1}}|u| d x
$$

متناهى است .

$$
\begin{align*}
\overline{\mathscr{F}}_{\mathrm{r}}(f(x))=\bar{f}_{c}(\alpha) & =\int_{0}^{\infty} f(x) \cos \alpha x d x \\
f(x) & =\frac{2}{\pi} \int_{0}^{\infty} \bar{f}_{c}(\alpha) \cos \alpha x d \alpha . \tag{-Y-Y}
\end{align*}
$$

با روشُى مشابه روش قبل مى توانيـم تبـلـيل فرريئ كسينرسى به صورت زير به دست آوريم (تمرين ا)
$\mathscr{F}_{c}\left\{\frac{d^{2} u}{d x^{2}}\right\}=-u^{\prime}(0)-\alpha^{2} \bar{u}_{c}(\alpha)$
وتتى احتمال اشتباه در كار نباشد انديسهاى "s" و "c " وا براى ساده كردن نماد سذن مي كنيم . مثال

$$
\begin{aligned}
& u_{1}=k u_{x x}, \quad 0<x<\infty, \quad 0<t \\
& u(0, t)=0, \quad 0<t \\
& u(x, 0)=f(x), \quad 0<x<\infty
\end{aligned}
$$

:
شرط مرزى :
نـر او اوليه :
حل : حون به عبارت ديگر، به نظر مى رسد كه مساله با الستفاده از تبديل فورئُ سينوسى يا كسينوسى قابل حل الست . ولى ملاحظه مى كنيم كه در مُرط مرزى مقدلار $u(x, t)$ در $x=0$ داده شُـده امست به اين دليل

$u(x, t)=\frac{2}{\pi} \int_{0}^{x} \bar{u}(x, t) \sin \alpha x d x$,
و اكر از معادلهُ (Y-Y-Y) أستفاده كيمه، معادلهُ با مشتقات بجزئى بهصورت زير تبديل هى شود $\frac{d \bar{u}}{d t}+\alpha^{2} k \bar{u}=0, \quad \bar{u}(0)=\bar{f}(\alpha)$.
(مشال ب-r-1 را نيزِ ملاحظه كنيد) . بنابراين
$\bar{u}=\bar{f}(x) e^{x^{-k} k t}$
و با استفاده از تبديل سينوسي معكوس، داريم
$u(x, t)==\frac{2}{\pi} \int_{0}^{x} \bar{f}(\alpha) e^{-\alpha^{2} k t} \sin \alpha x d x$.

شكل

$$
\begin{aligned}
\bar{f}(\alpha) & =\int_{0}^{x} f(x) \sin \alpha x d x \\
& =\int_{0}^{x} f(s) \sin \alpha s d s
\end{aligned}
$$

$$
u(x, t)=\frac{2}{\pi} \int_{0}^{x} f(s) \sin x s d s \int_{0}^{x_{1}} e^{-x^{2} k 1} \sin \alpha x d \alpha
$$

مثال F-P-F مسألهُ مقدار مرزى زير را احل كنبد .

$$
\begin{aligned}
& u_{t 1}=a^{2} u_{x x}, \quad-\alpha_{i}<x<\infty, \quad 0<t ; \quad: \quad \text { معادנ } \\
& u(x, 0)=f(x), \quad-\infty<x<\infty, \quad \text { ثرايطبرزیى } \\
& u_{1}(x, 0)=g(x), \quad-\infty<x<\infty .
\end{aligned}
$$

 مشتقات جزئى بهصورت زير تبديل مي شود

$$
\frac{d^{2} \bar{u}}{d t^{2}}+\alpha^{2} a^{2} \bar{u}=0
$$

و شرايط اولكيه عبارتند از
$\bar{u}(0)=\bar{f}(\alpha) \quad, \quad \bar{u}^{\prime}(0)=\bar{g}(x)$.
بنابراين
$\bar{u}(\alpha, t)=c_{1}(\alpha) \cos \alpha a t+c_{2}(\alpha) \sin \alpha a t$,
كه
$\bar{u}^{\prime}(\alpha, t)=-\alpha a \bar{f}(\alpha) \sin \alpha a t+c_{2}(\alpha) \alpha a \cos \alpha a t$
و از شرط
$\bar{u}^{\prime}(0)=\bar{g}(\alpha)$
نتيجه مي شود
$c_{2}(\alpha)=\bar{g}(x) / \alpha \Omega$.
$\bar{u}(\alpha, t)=\bar{f}(\alpha) \cos \alpha a t+\frac{\bar{g}(x) \sin \alpha a t}{\alpha a}$
$u(x, t)=\frac{1}{2 \pi} \int_{-x}^{\alpha}\left(\bar{f}(x) \cos \alpha a t+\frac{\bar{g}(\alpha) \sin \alpha a t}{\alpha a}\right) e^{-i \alpha x} d \alpha$.
رابطءُ اخير را ميتوان با استفاده از روابط اويلر
$\sin x=-\frac{1}{2} i\left(e^{i x}-e^{-i x}\right)$
g
$\cos x=\frac{1}{2}\left(e^{i x}+e^{-i x}\right)$.

$$
\begin{aligned}
u(x, t)= & \frac{1}{2 \pi} \int_{-\infty}^{\infty} \bar{f}(\alpha) \frac{e^{-i a(x-\alpha)}+e^{-i a(x+\alpha)}}{2} d \alpha \\
& +\frac{1}{2 \pi} \int_{-\infty}^{\infty} \bar{g}(\alpha) \frac{e^{-i x(x-\alpha)}-e^{-i a(x+\alpha)}}{2 \alpha a i} d \alpha
\end{aligned}
$$

$$
f(x-a t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \bar{f}(\alpha) e^{-i \alpha(x-a t)} d \alpha
$$

$$
\frac{1}{2}(f(x-a t)+f(x+a t))
$$

علاوه بر اين، از

$$
g(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} g(\alpha) e^{-i a x} d \alpha
$$

بهازالى مقادير دلخو co و d نتيجه مى شـو

$$
\begin{aligned}
\int_{c}^{d} g(x) d x & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \bar{g}(\alpha) d \alpha \int_{c}^{d} e^{-i \alpha x} d x \\
& =\left.\frac{1}{2 \pi} \int_{-\infty}^{\infty} \bar{g}(\alpha) d \alpha\left(\frac{e^{-i x x}}{-i \alpha}\right)\right|_{c} ^{d} \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} g(\alpha) \frac{e^{-i a c}-e^{-i x d}}{i \alpha} d \alpha
\end{aligned}
$$

البته با اين فرض كه بتوان ترتيب انتگّران كيرى را تغيير داد . بس

$$
\frac{1}{2 \pi} \int_{-\infty}^{\infty} g(\alpha) \frac{e^{-i a(x-a t}-e^{-i a(x+\alpha)}}{2 a i \alpha} d \alpha=\frac{1}{2 a} \int_{x-a r}^{x+a t} g(s) d s
$$

و جوابب نهانع مسـاله به شـكل آثـناى زير نوشته مي شـود

$$
u(x, t)=\frac{1}{2}(f(x+a t)+f(x-a t))+\frac{1}{2 a} \int_{x-a t}^{x+a t} g(s) d s
$$

حـال يك كاربـرد خاص مهـم را الرائه مي كنيم • فرض كنيـد يكـ تـش مـسـتطيلى به طول زمان $2 c$ داريم كه بهصورت زير تعريفـ شده است
$f(t)= \begin{cases}1, & |t|<c, \\ 0, & |t|>c, \\ \frac{1}{2}, & |t|=c .\end{cases}$
اين تُش در شكل Y-Y Y Y نُــان داده شـده است .

تـكل r-r-r-Y تـش مستطيلم

جون (كه طيف نيز ناميده مي شود) به صورت زير مـحاسبه كنيم :

$$
\begin{aligned}
\bar{f}(x) & =\int_{-c}^{c} f(t) e^{i z t} d t=\int_{-c}^{c} e^{i \alpha t} d^{\prime} \\
& =\left.\frac{e^{i z t}}{i \alpha}\right|_{-c} ^{c}=\frac{1}{i \alpha}\left(e^{i \alpha c}-e^{-i \alpha c}\right)
\end{aligned}
$$

حال با استفاده از رابطة
$\frac{e^{i x}-e^{-i x}}{2 i}=\sin x$,
بهدست مي آوريم
$\bar{f}(\alpha)=\frac{2 \sin x c}{\alpha}$.
نمودار

ثكل

توجه كنيد كه
$\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1$.
بس ($f t$ (f (

 باريكتر هى شـود.

 بين اندازه كيريهاى مكان و اندازهُ حركت تجلى مى كند . از روابطط قبل مى توان فرمولى بين ححوزه هاى زمان و بسامل بهدست آورد . تصور كنين كه هههُ مؤلْفه هایى هارمسونيك (مينوسىى) كه با

 رياضى عبارت اسـت از

$$
f(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \bar{f}(\alpha) e^{-i x t} d \alpha
$$

 ($\bar{f}(\alpha)$ $\delta(\alpha)=0 \quad, \quad \alpha \neq 0$

$$
\int_{-x}^{x} \delta(\alpha) d x=1
$$

ثابِ دلتاى ديرالُ در هعادلات ديفر انسيل ثهـمولى وفتى توابِ نيرو بهصورت ضهربه بانُند، نقش مههي دارد .

مثال $\lim _{y \rightarrow 0^{+}} u(x, y)=f(x)$. حر : معادلّل لإلِس

$$
u_{x x}+u_{y y}=0
$$

را با رومُ جذاسازى متغيّرها سل مى كنمب . الين روش دو معادلئ ديفرانسيل معمولى زير را نتيجه مى دهل

$$
X^{\prime \prime}+\alpha^{2} X=0
$$

$$
Y^{\prime \prime}-\alpha^{2} Y=0
$$

$X(x)=c_{1} \cos \alpha x+c_{2} \sin \alpha x$
$Y(y)=c_{3} e^{\alpha y}+c_{4} e^{-\alpha y}$,
جون جواب بايل برایى جواب به شكل زير نوشته مي شود
$u(x, y)=\int_{0}^{\infty} e^{-a y}(A \cos \alpha x+B \sin \alpha x) d \alpha$
با در نظر گُـرفتن A و B به حـورت تاببى از α ، هي توانــيم شــرط مـرزى داده شـــده را برآورده سازيم • يس
$u(x, y)=\int_{0}^{\infty} e^{-\alpha y}(A(\alpha) \cos \alpha x+B(\alpha) \sin \alpha x) d x$
,
$f(x)=\int_{0}^{\alpha}(A(\alpha) \cos x x+B(\alpha) \sin \alpha x) d \alpha$.

با تو جه به معادلهُ (r-r-
$A(\alpha) \cos \alpha x+B(\alpha) \sin \alpha x=\frac{1}{\pi} \int_{-\infty}^{\infty} f(s) \cos \alpha(s-x) d s$.
در آن صورت
$u(x, y)=\frac{1}{\pi} \int_{0}^{\infty}\left(\int_{-x .}^{\infty} f(s) \cos \alpha(s-x) d s\right) e^{-a y} d x$

$$
u(x, y)=\frac{1}{\pi} \int_{-\infty}^{\infty}\left(\int_{0}^{\infty} e^{-x y} \cos \alpha(s-x) d \alpha\right) f(s) d s
$$

در نتيجه با محامبيءُ انتخرال داخخلى (تمرين ه) به دست مى آوريم

$$
u(x, y)=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{y f(s)}{y^{2}+(s-x)^{2}} d s
$$

 خو اهد شد . اين بختُ را با يكى كاربرد هزشكي از آناليز فوريه به بايان مى بريم
الستــــاده از امـواج حـوتى با بسـامــد بالا در تشـخخيـي بزسُكى متــداول ثشـده است .
امـواج مــوتى برخلاف اثسعـهُ x عـوارض جانبى ندارنــد و از آن مى توان با اطمينـان براى معـاينه مسل و رشد جنين استفاده نمود . تلب انسـان را مى توان با ارسال تـشهانى كوتاه صوتى از طريت
 صوتى متفاوت اسست، يكى اكوكارديوكرام در تشخـيص مفيـد الست . اگر (fft نشان دهندهُ دامنهُ
 به شكل زير داده مى شود
$f(t)=\sqrt{C_{0}}+\sum_{n=1}^{N} \sqrt{C_{n}} \sin \left(n \omega_{0} t+\theta_{n}\right)+e(t)$.

تمرينهاى ب-

- D. E. Raeside, W. K. Chu, and P. A. N. Chandraratna, "Medical Application of Fourier Analysis" SIMA Review 20, no. 4(1978), pp. 850-854.

$$
\begin{aligned}
& \text { 1- ج جزئيات لازم براى به دست آوردن معادلهُ (F-F-Y) را النجام دهيل . } \\
& f(x)=e^{-r} \text { جواب مسـأله مثال } \quad \text { - Y }
\end{aligned}
$$

$$
f(x)=e^{-x} ?
$$

 يعنى أكر انتهاى واتع در x=0 عايت شُده باشـد . مثال - 0
$\int_{0}^{x} e^{-x y} \cos x(s-x) d x$
را مححاسبه كنيل و نتيجهُ به دست آمده در متن را بيابيد .
-

$$
\text { مى شود (راهتمايع : اتحاد مثلثانى مربوط به } \sin (A+B \text { را به كار بريد) }
$$

 يكى انتـهاى آن در دمـاى ثابت حل اين مسآله را با المتفاده از تبديل فوريهُ سينوسى بيان كنيد .
 داده شده است . دماى $u(x, t)$ را با روشهاى زير بيابيد : الف) با استفاده از جلداسازى متغيرّها؛ ب) با با استفاده از تبديل نوريهُ كسينوسى ا ب) نشان دهيد نتايج قسمتهاى (الف) و (ب) يكسانـي 9 (اده مـى شود $f(x)$

$$
f(x)=\left\{\begin{array}{lc}
u_{0}, & 0<x<L \\
0, & b \text { ساير نقاط }
\end{array}\right.
$$

$$
\text { (رامنماعى : با مثال ب-Y- } 1 \text { مقايسه كنيد .) }
$$

-1- الف) طيف تايع زير را به دست آوريد

$$
f(t)=\left\{\begin{array}{lc}
\cos t, & -\pi / 2 \leq t \leq \pi / 2 \\
0, & \text { ساير نقاط }
\end{array}\right.
$$

ب) نمودار تابع و طيف آنّ رارسم كنيد .

رياضبيات مرهندنىي

 در دماى صفر نگّهدارى شودد، بهصورت زير است
$u(x, y)=\frac{1}{\pi}\left(\arctan \binom{c+x}{y}+\arctan \binom{c-x}{y}\right)$.
(رامنمايى : نتيجهُ
$\int_{0}^{n} e^{-a x} x^{-1} \sin b x d x=\arctan \frac{b}{a}$,

$$
\begin{aligned}
& \text { (}) ~
\end{aligned}
$$

erf $x=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-s^{2}} d s$.

> بنويسيد (راهنمايى : از نتيجهُ
$\frac{\sin \alpha x}{\alpha}=\int_{0}^{x} \cos \alpha s d s$
و اين كه تبديل نوريه
$\frac{1}{\sqrt{4 \pi a}} e^{-x^{2} / 4 a}$

$$
\text { برابر است با } a>0 \text { ، } e^{-a a^{2}} \text { استفاده كنيد.) }
$$

 sin ω, t
$f(t)=\left\{\begin{array}{ll}\sin \omega_{0} t, & |t|<\frac{N \pi}{\omega_{0}}, \\ 0, & b \text { ساير }\end{array}\right.$,
با استفاده از تبديل نوريئ سينوسى نشان دهيد
$f_{s}(\alpha)=\frac{2}{\pi} \int_{0}^{N_{n} / \omega_{0}} \sin \omega_{0} t \sin \alpha t d t$.
. $\bar{F}_{1}\left(\omega_{1}\right)$

- If

$$
\text { نتـان دهيد برای } a>0 \text { : }
$$

الف) (
ب) (
 بَازای هر عدد حقيفى b ، نتـان دهيد الف) (.
 نامتناهي مى باشد عبارت است از

$$
\theta \frac{\partial \Psi(x, \theta)}{\partial x}+S \psi(x, \theta)=\frac{1}{2} n S \int_{-1}^{1} \Psi(x, \theta) d \theta+\delta(x) / 4 \pi .
$$

 $(S+i \alpha \theta) \bar{\Psi}(\alpha, \theta)=\frac{1}{2} n S \int_{-1}^{1} \bar{\Psi}(\alpha, \theta) d \theta+\frac{1}{4 \pi}$.

ب) طرفـراست معادله در قسـت (الف) مستقل از θ است، آن را C (H بناميد. نـنـان دميدكه
$F(\alpha)=\frac{1}{2} n S F(\alpha)(1 / i \alpha) \log \left(\frac{S+i \alpha}{S-i \alpha}\right)+\frac{1}{4 \pi}$.
ب) با باستفاده از اينك

$$
\frac{1}{2 i} \log \left(\frac{S+i \alpha}{S-i \alpha}\right)=\arctan (\alpha / S)
$$

$$
F(\alpha)=\frac{1}{4 \pi}\left(1-\frac{n S}{\alpha} \arctan \frac{\alpha}{S}\right)^{-1}
$$

تش)

$$
\Psi(x, \theta)=\frac{1}{8 \pi^{2}} \int_{-\infty}^{\infty} \exp (i \alpha x)(S+i \alpha \beta)^{-1}\left(1-\frac{n S}{2 i \alpha} \log \frac{S+i \alpha}{S-i \alpha}\right)^{-1} d \alpha
$$

تبديل فوريهٔ ساصل ضربب \quad - IV

$$
\bar{y}(\alpha)=\int_{-\infty}^{\infty} y(x) e^{i a x} d x
$$

نسبت به α مشتت بگّيريد) .

P)

مسائل مقدار مرزى در مختصات قائم

1-Y ا-
در بخشُ Y- بَ اشاره كرديم كه يكى از متدأرلترين معـادلات با مسُتقات جزئى مرتبهُ دوم
معادلُّ لاباس امست،

$$
\begin{equation*}
u_{x x}+u_{y y}+u_{z z}=0 . \tag{1-1-f}
\end{equation*}
$$

 مقدار مرزى سهبعدى ارائه مى دهـمـ .

مثال

$$
\begin{aligned}
& u_{1 x}+u_{y y}+u_{z z}=0, \quad 0<x<a, \quad 0<y<b, \quad 0<z<c ; \quad: ~ ل م \\
& \text { : } \\
& u(x, 0, z)=u(x, b, z)=0, \quad 0<x<a, \quad 0<z<c \text {. } \\
& u(x, y, c)=0, \quad u(x, y, 0)=f(x, y), \quad 0<x<a, \quad 0<y<b .
\end{aligned}
$$

حل : اين مسأله مى توائد در يافتن يكتابع يتانــيل درون يكـ مكعب مستطيل كه جهار وجه جانبى
 شده، بيش آيد (شكل Y-1 ا-1 را ملاحظه كنبد) . بعداً خواصى را كـه اين تابع بايد داشتته باشد، ، م مُنخص مى كنيم

شـكل +1-1-1

مسأله را با روش جداسازى متغير ها حل مى كنيم. فرخ كنيل

$u(x, y, z)=X(x) Y(y) Z(z)$,
اكر از آن مشتق گُرفته و در معادلّ (1-1-1) جانشين كنيم، به دست مى آوريم
$X^{\prime \prime} Y Z+X Y^{\prime \prime} Z+X Y Z^{\prime \prime}=0$.
در اين معادله بريمهـا مـتـتهاى معـولى را نسبت به متغير هاى نابع نــــان مي دهند . طبق معمول
 تقسيم كنيم . در اين صورت
$\frac{Y^{\prime \prime}}{Y}+\frac{Z^{\prime \prime}}{Z}=-\frac{X^{\prime \prime}}{X}=\lambda$,
كه

 در صورتى ممكن است كه هر دو جمله ثابت باثــنـ مسالّه مقدار مرزى برحسب X به صورت نزير نوشته مى شو

$$
\begin{equation*}
X^{\prime \prime}+\lambda X=0, \quad X(0)=0, \quad X(a)=0 . \tag{r-1-r}
\end{equation*}
$$

به عنوان تمرين نشـان دهيد (تمرين ' را ملاحظه كنــد) كـه $\lambda=0$ و 0 > λ به جـوابهاى بديهى متتهى مى شوند . بس $X(x)=c_{1} \cos (\sqrt{\lambda} x)+c_{2} \sin (\sqrt{\lambda} x)$
 ($n=1,2, \ldots ، \sqrt{\lambda}=n \pi / a$ $\lambda=n^{2} \pi^{2} / a^{2}, \quad n=1,2, \ldots$,

و توابع ويزٔ متناظر به صورت زيرند
$X_{n}(x)=\sin \left(\frac{n \pi}{a} x\right), \quad n=1,2, \ldots$.
 مرزى (Y- (Y) نيز هست. يكى بار ديگر با جداسازى متغيّرّها داريم
$\frac{Z^{\prime \prime}}{Z}-\frac{n^{2} \pi^{2}}{a^{2}}=-\frac{Y^{\prime \prime}}{Y}=\mu$.
مساله مقلار مرزى برحسبY دقيقآ به همان شكل (Y-1-Y) إست؛ بنابراين $\mu=m^{2} \pi^{2} / b^{2}, \quad m=1,2, \ldots$

و توابع ويزه عبارتند از
$Y_{m}(y)=\sin \left(\frac{m \pi}{b} y\right), \quad m=1,2, \ldots$.
اكر جه هر دو ثابت جذاسازى نوأبعى از اعداد صحيح و منبت هستند ولى از يكديگر مستنلند . مسـالهُ برحسبZ 2 را بهصورت زير میىت توان نوشت
$Z^{\prime \prime}-\pi^{2}\left(\frac{n^{2}}{a^{2}}+\frac{m^{2}}{b^{2}}\right) Z=0, \quad Z(c)=0$,
يا با قرار دادن
$\omega_{m n}^{2}=\pi^{2}\left(\frac{n^{2}}{a^{2}}+\frac{m^{2}}{b^{2}}\right)$,

رياضيات مهندنسى

تُتيجهـ مى شـود

$$
Z^{\prime \prime}-\omega_{m n}^{2} Z=0, \quad Z(c)=0
$$

جوابس اين مسآله برأى مقادير معين m و " جنين أست (تمرين Y را مل>حظه كنيد) $Z_{m n}(z)=B_{m n} \sinh \omega_{m n}(c-z)$,

كه هحاسبه خو اهلد شلد .
 جوابس نهايع در نظل بڭيريم . در اين صورت سـرىىنامتناهى مضاعفب زير را داريم

$$
u(x, y, z)=\sum_{n=1}^{x} \sum_{m=1}^{x} B_{m n} \sinh \omega_{m n}(c-z) \sin \left(\frac{m \pi}{b} y\right) \sin \left(\frac{n \pi}{a} x\right), \quad(\psi-\mid-\psi)
$$

كه بايد به أين صورتت تعبير شود : بهازاى هر هقدار n 6 علد m مقادير .. $m=1,2,3, ~ ا 1$ اختيار $m=1$
مى كتن كه به اين ترتيـب مسرى هضاعفـه به و جود بى آيل . با استمفاده از آخرين شُر ط مرزى داريمم

$$
\sum_{n=1}^{s}\left(\sum_{m=1}^{x} B_{m n} \sinh \left(c \omega_{m n}\right) \sin \left(\frac{m \pi}{b} y\right)\right) \sin \left(\frac{n \pi}{a} x\right)=f(x, y)
$$

و بر انترها نــان مى دهنـ كه بر أى هر m بايل

$$
\begin{equation*}
\sum_{n=1}^{s} B_{m n} \sinh \left(c \omega_{m n}\right) \sin \left(\frac{m \pi}{b} y\right)=\frac{2}{a} \int_{0}^{a} f(s, y) \sin \left(\frac{n \pi s}{a}\right) d s \tag{9-1-F}
\end{equation*}
$$

 عى توانيم بنويسيـم

$$
\sum_{n=1}^{\infty} B_{m n} \sinh \left(c \omega_{m n}\right) \sin \left(\frac{m \pi}{b} y\right)=F_{n}(y)
$$

اين معادله بيان مى كند كه (y)

$$
B_{m n} \sinh \left(c \omega_{m n}\right)=\frac{2}{b} \int_{0}^{b} F_{n}(t) \sin \left(\frac{m \pi}{b} t\right) d t
$$

$$
\begin{align*}
B_{m n} & =\frac{2}{b \sinh \left(c \omega_{m n}\right)} \int_{0}^{b} F_{n}(t) \sin \left(\frac{m \pi}{b} t\right) d t \\
& =\frac{4}{a b \sinh \left(c \omega_{m n}\right)} \int_{0}^{b} \int_{0}^{a} f(s, t) \sin \left(\frac{n \pi}{a} s\right) \sin \left(\frac{m \pi}{b} t\right) d s d t . \tag{V-i-Y}
\end{align*}
$$

بنابراين ج-واب مسسأله بهصورت (Y-1-Y) است كه به صورت زير تعريف مى شود
$\omega_{m n}=\pi \sqrt{\frac{n^{2}}{a^{2}}+\frac{m^{2}}{b^{2}}}$.
 مستغير صـــق كند؛ يعنى، براي
 تكهالى - هموار از

در مثال بعدى معادلُّ لابلاس را در يك حوزهُ نيمه نامتناهى حل مى كنـهم .
مثال
در صورتى كه

حل : مسأله را بـا فرمولهأى رياضى يــان مى كنيّه با نوجه بهاين كه دامنهُ تغييرات متغيّرها را هم بايد مشـخص كنيم (شـكل Y Y با

$$
\begin{array}{lll}
V_{x x}+V_{s y}=0, & 0<x<\infty, \quad 0<y<b ; & : \\
V(0, y)=0, & 0<y<b, & \\
V(x, b)=0, & 0<x<\infty, & \\
V(x, 0)=f(x), \quad 0<x<\infty . &
\end{array}
$$

از تــديل فـوريهُ مـينوسى المستـفـاده مـى كنيم و x را تبـديل مـى كنيم زيرا (. 0 . در اين صورت $\bar{V}(x, y)=\int_{0}^{s} V(x, y) \sin \alpha x d x$

و إكر از معادلك (Y-F-Y) المتفاده كنيم، معادلهُ با مشتقات جزئى بهصورت $-\alpha^{2} \bar{V}(\alpha, y)+\frac{d^{2} \bar{V}(\alpha, y)}{d y^{2}}=0$.
. در مى آيد
 عبارت است از $\lim _{x \rightarrow r^{+}} V(x, y), \quad \lim _{x \rightarrow x} V_{x}(x, y)$

 $\widetilde{V}(\alpha, y)=C_{1}(\alpha) \cosh (\alpha y)+C_{2}(\alpha) \sinh (\alpha y)$.

$$
\text { |ز تُرطط } \bar{V}(\alpha, b)=0 \text { نتيجه مى شو د }
$$

$C_{1}=-C_{2} \frac{\sinh (\alpha b)}{\cosh (\alpha b)}$

$$
\bar{V}(\alpha, y)=-C_{2}(\alpha) \frac{\sinh (\alpha b)}{\cosh \frac{\cosh }{(\alpha b)}(\alpha y)+C_{2}(\alpha) \sinh (\alpha y)}
$$

$$
=\frac{C_{2}(\alpha) \sinh \alpha(y-b)}{\cosh (\alpha b)}
$$

حال از شمرط $\overline{\text { ال }}$
$C_{2}(\alpha)=\frac{-f(\alpha) \cosh (\alpha b)}{\sinh (\alpha b)}$
در نتيجه جوأبب به صورت زير الست

$$
\bar{V}(x, y)=\frac{\bar{f}(\alpha) \sinh \alpha(b-y)}{\sinh (\alpha b)}
$$

با الستهاده از تبديل معكوس (Y-Y-1)، داريـم
$V(x, y)=\frac{2}{\pi} \int_{0}^{x} \frac{f(\alpha) \sinh \alpha(b-y)}{\sinh (\alpha b)} \sin (\alpha x) d \alpha$

$$
=\frac{2}{\pi} \int_{0}^{x} \int_{0}^{x} f(s) \sin \alpha s \frac{\sinh \alpha(b-y)}{\sinh (\alpha b)} \sin (\alpha x) d s d \alpha
$$

 باشد . (تمرين و را ملا-حظه كنيد)

خاصينهاى ويزُ دارند كه آنها را در تضاياى زير بيان مـى كنيم .
 صفر باشد، آن كاهf
 روى مرز نآحيه صفر باشثد، آن كاهf در اين ناحيه نابت اسمت .

يك مسـالّل ديريكله عـبارت المت از يانتن يكى تـابع كه در يكى ناحـيــُ مفـروض هـمسـاز و روى مرز ناحيه هقادير معيني داشته باشـد .
 . يكتاست

يكى مسألُ نويمان عبارت است از يافتن يك تابع f كه در يكى ناحبه مـفروض ممـساز بوده و مشتق فائم آن
 با اختلاف يك ثابت جمعى يكتاست . مسائل ديريكله و نويمان طبيعةً از معادلهُ رسانايى كرما (يا انتشار) وتتى كه جواب حالت بايا مورد نظر باشد، بهو جود مى آيند . معادلنُ رسانايعى كرما در دو بعدى حنين الست $u_{1}=k\left(u_{x x}+u_{y y}\right)$,

 برقرار است .

 توزيع حر ارت در لبهٔ

حل : يادآورى مى كنيم كه برطبق تـانون سردشدن نيوتن، آهنگ تغيير دما در امتداد مرز متسترك

 بيان كنـم :

$$
\begin{aligned}
& u_{x x}+u_{y y}=0, \quad 0<x<a, \quad 0<y<b ; \\
& \left.\begin{array}{l}
u_{x}(0, y)=0, \\
u_{x}(a, y)=0,
\end{array}\right\} \quad 0<y<b, \\
& \left.\begin{array}{l}
u(x, b)=0 \\
u(x, 0)=\frac{10}{a}(a-x),
\end{array}\right\} \quad 0<x<a .
\end{aligned}
$$

با استفاده از روش جداسمازى متغيرها، مسألّا مقدار مرزى زير نتيجه مى شود $X^{\prime \prime}+i^{2} X=0, \quad X^{\prime}(0)=0, \quad X^{\prime}(a)=0$.

توابع ويزه عبارتند از (تمرينهاي 9، • ، ، و 11)

$$
X_{n}(x)=\cos \left(\frac{n \pi}{a} x\right), \quad n=0,1,2, \ldots
$$

همجنين داريم

$$
Y_{n}^{\prime \prime}-\frac{n^{2} \pi^{2}}{a^{2}} Y_{n}=0, \quad Y_{n}(b)=0
$$

كه جوابهاى آن (تمرين 1) عبارتند از

$$
Y_{n}(y)=\frac{c_{n}}{\cosh \left(\frac{n \pi b}{a}\right)} \sinh \frac{n \pi}{a}(y-b), \quad n=1,2, \ldots
$$

 توابع ويزه تشكيل دهيم • در اين صورت (تمرين ז1 ا)

$$
u\left(x, y^{\prime}\right)=c_{0}(y-b)+\sum_{n=1}^{\infty} c_{n} \cos \left(\frac{n \pi}{a} x\right) \frac{\sinh \frac{n \pi}{a}(y-b)}{\cosh \left(\frac{n \pi b}{a}\right)}
$$

با به كار بردن ههارمين شرط مرزى، بهدست مى آوريم
$-b c_{0}+\sum_{n=1}^{\infty} c_{n}\left(\frac{-\sinh \left(\frac{n \pi b}{a}\right)}{\cosh \left(\frac{n \pi b}{a}\right)}\right) \cos \left(\frac{n \pi}{a} x\right)=\frac{10}{a}(a-x)$
$-b c_{0}+\sum_{n=1}^{x} a_{n} \cos \left(\frac{n \pi}{a} x\right)=\frac{1}{a}^{\prime}(a-x)$.
 (ثـكل $a_{0}=\frac{2}{a} \int_{0}^{a} \frac{10}{a}(a-s) d s=10 ;$

$$
\begin{aligned}
& a_{n}=\frac{2}{a} \int_{0}^{a} \frac{10}{a}(a-s) \cos \left(\frac{n \pi}{a} s\right) d s
\end{aligned}
$$

حال اينز جواب به صورت زيور نوشته مي شود
$u(x, y)=\frac{5}{b}(b-y)+\frac{40}{\pi^{2}} \sum_{n=1}^{x} \frac{\cos \frac{(2 n-1) \pi x}{a} \sinh \frac{(2 n-1) \pi}{a}(b-y)}{(2 n-1)^{2} \sinh \frac{(2 n-1) \pi b}{a}}$.

تمرينهای P-

$$
\begin{aligned}
& \text {. } X(x)=0 \text { - } \\
& \text { ت Y Y }
\end{aligned}
$$

$Z^{\prime \prime}-\omega_{m n}^{2} Z=0, \quad Z(c)=0$,
عبارت اسمت از
$B_{m n} \sinh \omega_{m n}(c-z)$,
كه . $a=b=c=\pi$ مسألهُ مئال $1-1-1$ - 1 -

$f(x, y)=x y$.

- در مثال Y- Y -
$\bar{V}(\alpha, y)=\frac{c_{2}(\alpha) \sinh \alpha(y-b)}{\cosh (\alpha b)}$
را از مرحلهُ قبلى بهد دست آوريد .

 $f(x)= \begin{cases}\sin x, & 0<x<\pi, \\ 0, & b \text { ر م } 2,\end{cases}$
^- م- متـال -

$$
\text { . } V(0, y)=0
$$

 -1-

$$
X^{\prime \prime}-i^{2} X=0, \quad X^{\prime}(0)=X^{\prime}(a)=0
$$

فتط داراى جوابب بديهى است.
11- توابع ويزٔ
$X_{n}(x)=\cos \left(\frac{n \pi}{a} x\right), \quad n=0,1,2, \ldots$
رادر منال ¥ - ا ب-r به دست آوريد .
-IY توابع ويرهُ $Y_{n}(y)=\frac{c_{n}}{\cosh \left(\frac{n \pi b}{a}\right)} \sinh \frac{n \pi}{a}(y-b), \quad n=1,2, \ldots$

رأهر مثال r-
r|
$Y_{0}(y)=y-b$
جواب متناظر مقدار ويزه $n=0$ است
F| F
$a_{2 n-1}=\frac{40}{(2 n-1)^{2} \pi^{2}}, \quad n=1,2, \ldots$

$$
\begin{array}{lr}
u_{s x}+u_{y y}=0, \quad 0<x<1, \quad y>0 ; & : \\
u(1, y)=0, \quad y>0, & : \\
u(0 . y)=e^{-a y}, \quad a>0, \quad y>0 . & \\
u_{y}(x, 0)=0, \quad 0<x<1 . &
\end{array}
$$

بـكل F-1-1

 ديگرى را كه بايد برترار باشـد، بيان كنيد . (رامنمايى : از تبديل نوريه استفاده كنيد .)

ثـك
$x=a, x=0$ - 1 آن در دماى حفـر قرار دارند . با استفاده از روش جــداسـازى متغيّرهـا دماى حالت بايا را
 مى كند؟
 . $u=0$ ، $u(0, y, z)=\sin (\pi y f b) \sin (\pi z / c)$
. - - \ddagger شُ ايطى u همساز اسـت ؟ ن - Y Y $\exp (\pm i \alpha x) \exp (\pm i \beta y) \exp (\pm \gamma z)$.
 جيگونه اين تغيير را مى توانذ تو جيه نمود .

معادلهُ موع

 يافتن معادله را مى تو ان به طريق طبيعى (تمرين ا) به يك غشاي مرتعـُ (نظير رويهُ طبل) تعميم داد تا معادلهُ موج دو بعدى
$u_{\mathrm{tt}}=c^{2}\left(u_{x x}+u_{y y}\right)$.
به دسـت آيد . در اين جا ثابت c به جاي a در بـخش Y Y Y به كـار رنتـه امـت . أين ثابت به صـورت

مثال 1-Y-P مسألهُ زير راحل كنيد .

حل : از روش جداسازي متنـيرهـا بهشكل متفاوت با أنجهه تبلاً به كـار برديم، استفاده مى كنيم .
فرض مى كنيـم

$$
u(x, y, t)=\Phi(x, y) T(t)
$$

و آن رادر معادلهُ با مشتقات جزنى جايگزين مى كنيـم . در اين صورت

$$
\begin{aligned}
& u_{u}=c^{2}\left(u_{x x}+u_{y y}\right), \quad 0<x<a, \quad 0<y<b, \quad t>0 ; \quad: d . \\
& u(0, y, t)=u(a, y, t)=0, \quad 0<y<b, \quad t>0, \quad \text { :~رايط مرزى } \\
& u(x, 0, t)=u(x, b, t)=0, \quad 0<x<a, \quad t>0 ; \\
& u_{t}(x, y, 0)=0, \quad u(x, y, 0)=f(x, y), \quad 0<x<a, \quad 0<y<b: \text { : شرط اوليه }
\end{aligned}
$$

$T \Phi=c^{2} T\left(\Phi_{x x}+\Phi_{y y}\right)$,
كـه نقطه، مـــتـق كيـري نسـبـت بهt را نشـان مى دهد . با تقسـيـم بر c $c^{2} \Phi T$ جداسـازى هطلوب به دست مى آيد
$\frac{\psi}{c^{2} T}=\frac{\left(\Phi_{x x}+\Phi_{y y}\right)}{\Phi}=-\lambda^{2}$,
كه

 به اين كه uبايد نسبت بهt متناوب باثهد صورت گر فته است .

A-Y-F

از معادلُ (Y-Y-Y) و با استفاده از شُرط اولّلئ شمكن داريم
$T+c^{2} \lambda^{2} T=0, \quad T(0)=0$,
جو׳ب اين مــأله عبارت اسـت از (تمرين ؟)
$T(t)=\cos (c \lambda t)$,

$$
\text { كه } \lambda \text { بايد تعيين شود . }
$$

$\frac{X^{\prime \prime}}{X}+\frac{Y^{\prime \prime}}{Y}=-\lambda^{2}$.
اما اين دقيقاً همان مسسالثه الى امست كه در مثال F - ا - ا حل كرديم (با همان شر ايط مرزى) . يس جوابهاى مسالّه حاضر ساصل ضرب توابع زير هستند
$X_{n}(x)=\sin \left(\frac{n \pi}{a} x\right), \quad n=1,2, \ldots$,
$Y_{m}(y)=\sin \left(\frac{m \pi}{b} y\right), \quad m=1,2, \ldots$,
$T_{m n}(t)=\cos \left(c \omega_{m n} t\right)$,
كه m و n مستقلّند و
$\omega_{m n}^{2}=\pi^{2}\left(\frac{n^{2}}{a^{2}}+\frac{m^{2}}{b^{2}}\right)$.
تر كيبى خططى از اين ساصل ضربها كه روى m و n جمع بندى شود، عبارتى است كه هنوز نـامل
 ناهمكن مانند مثال F - ا-1 به دسمت آورد . بس
$u(x, y, t)=\sum_{m=1}^{\infty} \sum_{n=1}^{x} B_{m n} \sin \left(\frac{m \pi}{b} y\right) \sin \left(\frac{n \pi}{a} x\right) \cos \left(c \omega_{m n} t\right)$
ك
$B_{m i n}=\frac{4}{a b} \int_{0}^{b} \sin \left(\frac{m \pi}{b} y\right) \int_{0}^{a} f(x, y) \sin \left(\frac{n \pi}{a} x\right) d x d y$.

 و هم به n بستگى دارد و با مـضهارب صصحيـحى از بسامد يايه أى ثابت تغـيـير نمى كند . در نتيـجه ، غنشاى مرتعش مانند تار مرتعش يك نت موسيقى توليد نمى كند (تمرين ه) .

اسواج طولى

 كثـــنى ارتعاش طرلى خواهد كرد .

شكل

شكل

 بنابه تعريف مدول يانگى E ، نيروى وارد بر سطع هتطع درx عبارت انست از $E A \frac{\partial u}{\partial x}$
 به طول
$\rho A \Delta x \frac{\partial^{2} u}{\partial t^{2}}$,
كه " در واحد طول جنين است
$\frac{E A}{\Delta x}\left(\frac{\partial u(x+\Delta x, t)}{\partial x}-\frac{\partial u(x, t)}{\partial x}\right)$

$$
\text { با مساوى قرار دادن دو نيرو و كرفتن حد وتتى 0 } 0
$$

$\frac{\hat{\sigma}^{2} u}{\partial t^{2}}=\frac{E}{\rho} \frac{\partial^{2} u}{\partial x^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$.

$F_{1 \mid}$ مثال
 و تحت كرنش نباشد، تغيير مكان طولى يكى مقطع عرضى دلخواهر ادر هر زمانا بيدا كنيد .

$$
\begin{aligned}
& u_{u}=c^{2} u_{x x}, \quad 0<x<L, \quad t>0, \quad c^{2}=E / \rho: \\
& u(L, t)=0, \quad t>0 \\
& E u_{x}(0, t)=F_{0}, \quad t>0 \\
& u(x, 0)=0, \quad 0<x<L \quad \text { شرابط اولبه: } \\
& u_{r}(x, 0)=0, \quad 0<x<L
\end{aligned}
$$

در نرمول بندى نوق نشان دادهايم كـه جگونه واتمـيتهـاى فـبزيكى به زبان رياضى بيان

 وارد بر مقطع عرضى در x عبارت است از
$E A \frac{\partial u}{\partial x}$
ر در انتهاى x=0 اين نيرو بهصورت A F داده مى تمود . در نتيجه
${ }^{I} E u_{x}(0, t)=F_{0}$.

 خواهد داد (تمرين ^) . مىى توانيم با تعريض متغير زير يكى جواب غيربديهى به دست آوريم $u(x, t)=U(x, t)+\phi(x)$,

كه

$$
\begin{aligned}
& \left.\begin{array}{l}
U(L, t)+\phi(L)=0, \\
E U_{x}(0, t)+E \phi^{\prime}(0)=F_{0}
\end{array}\right\} \quad t>0 ; \quad: \quad: \quad \text { :ر }
\end{aligned}
$$

$$
\phi^{\prime \prime}(x)=0, \quad \phi(L)=0, \quad \phi^{\prime}(0)=F_{0} / E
$$

آن كاه (

$$
\begin{aligned}
& U_{t 1}=c^{2} U_{x x}, \quad 0<x<L, \quad t>0 ; \quad: d \text { den } \\
& U(L, t)=0,\} t>0 . \quad: \quad \text { : شرإط مرزى } \\
& \left.U_{x}(0, t)=0,\right\} \quad t>0 ; \\
& \left.\begin{array}{l}
U(x, 0)=\frac{F_{0}}{E}(L-x), \\
U_{\mathrm{t}}(x, 0)=0,
\end{array}\right\} 0<x<L . \\
& \text { شرابط ارليه : }
\end{aligned}
$$

جواب اين مسالله به صورت زير است (معادلُّ Y-Y-Y را در مثال Y-Y-Y $U(x, t)=\frac{F_{0}}{2 E}(\Phi(x+c t)+\Phi(x-c t))$,

كه (Φ ملاحظه كنيد) . جواب مسألُّ اصلى بهص صورت زير است
$u(x, t)=\frac{F_{0}}{E}(x-L)+\frac{F_{0}}{2 E}(\Phi(x+c t)+\Phi(x-c t))$.

(الف) $\phi(x)$

(ب) $\Phi(x)$
$\Phi(x)$ هـكل Φ
 صدق مى كند (تمرينهاى • ا و ا 1 را بيبيد)

 داده مى شود .

 صدق مي كند
$\theta_{41}=c^{2} \theta_{x x}$,
كـه كرانشاست .

 آزاد آن در لحظفُ است. تمام شر ايط رابيان و مسالهُ مقدار مرزى را سل كنيد .

حل : مختصات را طورى مى گيريم كه ميل كردان در طول محور x ها ها ترار گيرد و انتهاى آزاد آن در x=L باشد . در آن صررت داريم

$$
\begin{aligned}
& 0_{u}=c^{2} \theta_{x x}, \quad 0<x<L, \quad t>0 ;
\end{aligned}
$$

$$
\begin{aligned}
& \left.\begin{array}{l}
\theta\left(x, t_{0}\right)=0, \\
\theta_{1}\left(x, t_{0}\right)=\omega_{0} x / L,
\end{array}\right\} \quad 0<x<L . \quad: \quad \text { : }
\end{aligned}
$$

مساله را مى توان با انتخاب $0=0$

$\frac{\ddot{T}}{c^{2} T}=\frac{X^{\prime \prime}}{\bar{X}}=-\lambda^{2}$.

$X^{\prime \prime}+\lambda^{2} X=0, \quad X(0)=0, \quad X(L)=0$,
داراى جو!ابهايى بهصورت زير است
$X_{n}(x)=\sin \left(\frac{n \pi}{i} x\right), \quad n=1,2, \ldots$
و مسـالهُ مقدار اولّكه
$T_{n}+\frac{n^{2} \pi^{2} c^{2}}{L^{2}} T_{n}=0, \quad T_{n}(0)=0$,
جوابهايى به شكل زير دارد (تمرين r")
$T_{n}(t)=\sin \left(\frac{n \pi c}{L} t\right), \quad n=1,2, \ldots$.
بنابراين
$\theta(x, t)=\sum_{n=1}^{x} b_{n} \sin \left(\frac{n \pi}{L} x\right) \sin \left(\frac{n \pi c}{L} t\right)$

$$
\begin{aligned}
\frac{n \pi c}{L} b_{n} & =\frac{2}{L} \int_{0}^{L} \frac{\omega_{0} s}{L} \sin \left(\frac{n \pi}{L} s\right) d s \\
b_{n} & =\frac{2 \omega_{0} L}{c \pi^{2}} \frac{(-1)^{n-1}}{n^{2}} .
\end{aligned}
$$

تمرينهای r-r

 آورد . (راهنمايى : بخشت Y-Y را 1 ملاحظه كنيد) Y- جوابهاى مسـالهُ زير رابيابيد
T
$+c^{2} \dot{\lambda}^{2} T=0, \quad T(0)=0 . ~$
Y- جزئيات باقيمانده در مثال Y-Y - Y را انجام دهيد
 اين تابع در شر ايط مثال صدق مى كند . - -
$u(x, y, 0)=k \sin \frac{\pi x}{a} \sin \frac{\pi y}{b}$,
كه در آن k ثابت است . تو جـه كنيـد كه با اين شـرط غــــاى مـرتعش نُت موسـيقى تولـيـ نمى كند . بسامد نُت هیسـت

$$
\text { فهرست كنيد . در صورتى كه } a=b=\pi \text {. }
$$

نشان دهيد در معادلئ

- - در مـال
 Q- هـــالة مقدار مرزى زير راحل كنيد $\phi^{\prime \prime}(x)=0, \quad \phi(L)=0, \quad \phi^{\prime}(0)=F_{0} / E$.
- 1.

 مى كند (ر/منمايعى : تو جه كنيد كه Φ تابعى زوج اسـت . - IY

$$
X^{\prime \prime}+\lambda^{2} X=0, \quad X(0)=0, \quad X(L)=0
$$

- اr مسـالمزير راحل كنيد

$$
\ddot{T}+\frac{n^{2} \pi^{2} c^{2}}{L^{2}} T=0, \quad T(0)=0
$$

$$
\begin{aligned}
& \text {. أ } \\
& \text { - } 10 \\
& \text { ب) بُ بُ E }
\end{aligned}
$$

> 1- أر شر ايط اولّيه مسالة ميال Y-Y-1 به صورت
$u_{1}(x, y, 0)=g(x, y), \quad u(x, y, 0)=0$,

$$
\text { باشند، جواب } u(x, y, t) \text { جيست ؟ }
$$

- IV

$$
\begin{aligned}
& \text {. به صورت } u \text {. } u \text { باشند }(x, y, 0)=g(x, y) ، u(x, y, 0)=f(x, y) \\
& \text { 1^-الف) با مراجعه بهتمرين ه، بيدا كنيد }
\end{aligned}
$$

$u_{r}\left(\frac{a}{2}, \frac{b}{2}, t\right)$.
ب) نتيجه تسمت (الف) را ازنظر فيزيكى تعبير نماييد .
19 - مثال - 19 تغيير نكنتد

- r. شرايط اولّيهُ
$u(x, 0)= \begin{cases}\frac{2 h}{L} x, & 0 \leq x \leq \frac{L}{2}, \\ \frac{2 h}{L}(L-x), & \frac{L}{2} \leq x \leq L,\end{cases}$
$u_{t}(x, 0)=0$.
(شكل (

معادله التششار F-P

$$
u_{t}=k \nabla^{2} u
$$

$$
(1-r-r)
$$

$$
\text { كه }{ }^{2} \text { عملگُر لابلاسمى اسـت }
$$

$$
\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}
$$

 نقشى مهم در مسائل رسانايـ گرمايهى دارد . در اين كاربرد 4 دما را در يكـ جسـم نــان مى دهد

$$
k=\frac{K}{\sigma \rho}
$$

 در مقياس t بهدست آورد . (تمرين ا را ملاحظه كنيد)

 در واحد زمان در آن نقطه از S عبـور مى كتد . شار Φ متتناسبـ با مـشتق سـويى دماى قائم بر S استت، يعنى،

$$
\begin{equation*}
\Phi=-K \frac{\hat{\partial} u}{\hat{i n}} \tag{Y-r-Y}
\end{equation*}
$$

كه ثابت تناسبب K ، كه مئبت اسـت، رسانندكي كرمايى و آها

 نيرتن بيان مى كند كـه شار؛ متناسـب با تفاضل دما بين جسـم و مسحيط اطراف انــت . به كار بر دن
 ممكن السـت درسـت بانشـ .

در منالهاى

 لبه هاى آن در دماى ثابت نگاه داشمته مى نوند يا اين كه عايت شُده اند به كار مى رود .

ثـكل

$$
\begin{aligned}
& u_{t}=u_{x x}, \quad 0<x<L, \quad t>0 \\
& \left.\begin{array}{l}
-u_{x}(0, t)=0, \\
u(L, t)=0, \quad
\end{array}\right\} \quad t>0 \\
& u(x, 0)=f(x), \quad 0<x<L
\end{aligned}
$$

مثال م-r-r-r مسالة زير راحل كيد
مسادل :
شرايط برزى :
 در دماى صفـر ترار دارد و در طول ميله يك توزيع دماى اولّكيه كه با (ا

حل : از روش جداسسازى متـغيرها استـفاده مى كنيم. ت ترار مى دهيم $u(x, t)=X(x) T(t)$ و آن را در معادلهُ با مشتقات جزنئى جايكزين مى كنيه . در اين صورمت داريم
$X(x) T^{\prime}(t)=X^{\prime \prime}(x) T(t)$ و با تقسيـم بر X(x)T(t) ، به دست مى آرريم
$\frac{T^{\prime}(t)}{T(t)}=\frac{X^{\prime \prime}(x)}{X(x)}=-\lambda^{2}$
مسالّه مقدار مرزى برحسب X حنين است
$X^{\prime \prime}+\lambda^{2} X=0, \quad X^{\prime}(0)=0, \quad X(L)=0$,
و جوابهاى آن عبارتند از
$X_{n}(x)=\cos \frac{(2 n-1)}{L} \frac{\pi}{2} x, \quad n=1,2, \ldots$.
هون معادله
$T_{n}^{\prime}(t)+\frac{(2 n-1)^{2} \pi^{2}}{4 L^{2}} T_{n}(t)=0$
جوابهايع بهصورت
$T_{n}(t)=\exp \left(\frac{-\pi^{2}(2 n-1)^{2}}{4 L^{2}} t\right)$,
دارد، هس براى $u(x, t)$ تركيب خططى زير رادر نظر مى كيريم
$u(x, t)=\sum_{n=1}^{x} a_{2 n-1} \exp \left(\frac{-\pi^{2}(2 n-1)^{2}}{4 L^{2}}-t\right) \cos \frac{(2 n-1) \pi}{2 L} x$.
سال با استفاده از شمرط ارّلّيه داريم
$\sum_{n=1}^{\text {(x) }} a_{2 n-1} \cos \frac{(2 n-1) \pi}{2 L} x=f(x)$.
اكر بسط دأد و بنابراين
$a_{2 n-1}=\frac{2}{L} \int_{0}^{L} f(s) \cos \frac{(2 n-1) \pi}{2 L} s d s, \quad n=1,2, \ldots$.

جوابب نهايعى با (Y-Y-Y) تعريف مى شـود .

مثال

$u_{t}=u_{x x}, \quad 0<x<L, \quad t>0 ;$: Nis
$\begin{aligned} & u(0, t)=0, \\ & \left.u(L, t)=u_{0}, \quad \text { ثاببت } \quad\right\} \quad t>0, ~ \end{aligned}$	شـرابط مرزى :
$u(x, 0)=0, \quad 0<x<L$.	نـرطاوله :

حل : در اين جا روش جلداسازى متغيرها كاربرد ندارد، زير! بهجرابب بديهى منجو خواهد شلد .
 بنابراين، فرض كنيد

$$
u(x, t)=U(x, t)+\phi(x)
$$

در اين صورت مسأله به صورت زير در مى آيد

$$
\begin{array}{lr}
\left.\begin{array}{l}
U_{1}=U_{x x}+\phi^{\prime \prime}(x), \quad 0<x<L, \quad t>0 ; \\
U(0, t)+\phi(0)=0, \\
U(L, t)+\phi(L)=u_{0},
\end{array}\right\} t>0 ; & : \text { : نراديط مرزى } \\
\begin{array}{l}
\text { : } \\
U(x, 0)+\phi(x)=0, \quad 0<x<L .
\end{array}
\end{array}
$$

حال اگر $\phi(x)$ را طورى انتخابب كنـيم كه

$$
\begin{equation*}
\phi^{\prime \prime}(x)=0, \quad \phi(0)=0, \quad \phi(L)=u_{0}, \tag{0-r-r}
\end{equation*}
$$

 به عنوان تمرين واكذار مى شود (تمرينهاى \ و ^ را ملاحظه كنيد) .

 تمرينهاى 19 و •Y را نيز ملاحظه كنيد .

 به سمت (مستقل از زماذt) مساله است . اين مساله را مى توان به صورت زير بير بيان كرد $u^{\prime \prime}(x)=0, \quad u(0)=0, \quad u(L)=u_{0}$. بس تابع (در ((

مثال
 دماى آن صفر است منتقل مى شوود (شكل $u(x, t)$ ر را بيدا كنيد . .

ث-r-F

حل : در اين جا مسـأله را مى توانيم بهصورت زير بيان كنيم

رياضيات مهندمى

$$
\begin{aligned}
& u_{r}=u_{x x}, \quad 0<x<L, \quad t>0 \\
& u(0, t)=0 \\
& u_{x}(L, t)=h u(L, t), \quad h>0, \\
& u(x, 0)=A \sin x, \quad 0<x<L
\end{aligned}
$$

$$
\frac{X^{\prime \prime}}{X}=\frac{T^{\prime}}{T}=-\lambda^{2}
$$

با جداسـازى متغير ها داريم

بنابراين

$$
X(x)=c_{1} \cos \lambda x+c_{2} \sin \lambda x
$$

$$
\text { از اولّين شر ط مرزى نتيجه مى شود كه } 0 \text { = } 0 \text { ، ، و از شرط دوم نتيجه مى شود }
$$

$$
\tan i L=i / h
$$

$$
(q-r-F)
$$

مس يكى جوالبس، را مى توان به صورت زير نوشت

$$
u(x, t)=c_{2} e^{-\lambda^{2} t} \sin i x
$$

و اكگر شر ط اولّله را به كار بريمه، داريم

$$
u(x, 0)=c_{2} \sin \lambda x=A \sin x
$$

$$
u(x, t)=A e^{-t} \sin x \quad(\vee-r-\psi)
$$

تحـقيق اين كـه تابع فـوق جـوابـ مـــأله أست بهعنوان تمرين واكَّذار مى شـود . (تمرين • ار 1
ملاحظه كنيد)

 نامتناهى از توابع متـعـامـد يكه بنويسـيم، زيرا ممكـن اسـت جخنين توابعى در دســــرس نبـاثـنـد . اين حالت رادر بخشُ F-0 برر بمى خواهيم نمو2 2
 نظير گراففيت به هايان مى بريم اين معادله به صورت زير است (1904-19 - 1) ، Enrico Fermi * به عهده دامُته امست .
$\frac{\partial^{2} q(x, \tau)}{\partial x^{2}}=\frac{\partial q(x, \tau)}{\partial \tau}$.

 از دست رفته است .

تمرئهاى P-P

1- 1 به ثـكل زير تبديل مى كند
$u_{\mathrm{r}}=\nabla^{2} u$.

الف) انتخاب
ب) انتخاب ب- مقادير ويزّه و توابع ويزه در مسالهء زير را بيابيد

$$
X^{\prime \prime}+\lambda^{2} X=0, \quad X^{\prime}(0)=0, \quad X(L)=0
$$

 $\phi(x)=\frac{u_{0}}{L} x$.

$$
\begin{aligned}
& \text { با } \\
& \text { - } 9 \\
& \text { الف) }
\end{aligned}
$$

ب) (نابت جـداسازى ($\lambda=0$ صفر است الما با بررسى $\lambda(\lambda)=\tanh \lambda L-(\lambda / h)$

$$
\begin{aligned}
& \text { هيج مقدار ديگرى صفر نمى شود . . } \\
& \text { - - } \\
& \text {-11-1 } \\
& u_{1}=u_{x x}, \quad 0<x<L, \quad t>0 ; \quad: \text { : } \\
& \left.\begin{array}{l}
u_{x}(L, t)=0, \\
u(0, t)=0,
\end{array}\right\} \quad t>0 ; \quad: \quad: \quad \text { : } \\
& u(x, 0)=f(x), \quad 0<x<L . \quad \text { : شرطاونيه }
\end{aligned}
$$

- IY $f(x)= \begin{cases}0, & 0 \leq x<\frac{L}{2}, \\ L-x, & \frac{L}{2} \leq x \leq L .\end{cases}$
 با در هر زمانt بيابيد .

شك
C C أ أ توليد شود، معادلهُ كُرما در يكى بُـد به شُكلى زير است
$u_{1}=u_{x x}+C, \quad C>0$.
اين معادله را با فرض آن كه لبه هاي x=0 $x=L=L$ تيغهُ در دماي صفـر نگاه داشته شود،
 تعويض متغير

 بالا تأمين مى شود 19- مسألهٔ زير راحل كنيد .

- IV مسألهُ زير راحل كنيد -

$$
u_{\mathrm{r}}=u_{x x}, \quad 0<x<1, \quad t>0 ;
$$

معادله :

$$
\left.\begin{array}{l}
u(0, t)=0, \\
u_{x}(1, t)=0,
\end{array}\right\} \quad t>0
$$

$$
u(x, 0)=u_{0} x, \quad u_{0}>0, \quad 0<x<1 . \quad: \quad: \quad \text { : }
$$

1^ ای آر
$f(x)= \begin{cases}0 . & 0 \leq x<\frac{L}{2}, \\ L . & L \overline{2} \leq x \leq L,\end{cases}$
تعريف شود، نتيجه زير را به دست آرريد

$$
\begin{aligned}
u(x, t)= & \frac{2 L}{\pi}\left(\exp \left(\frac{-\pi^{2} t}{4 L^{2}}\right)(2-\sqrt{2}) \cos \left(\frac{\pi x}{2 L}\right)\right. \\
& -\exp \left(\frac{-3 \pi^{2} t}{4 L^{2}}\right)\left(\frac{2+\sqrt{2}}{3}\right) \cos \left(\frac{3 \pi x}{2 L}\right) \\
& \left.+\exp \left(\frac{-5 \pi^{2} t}{4 L^{2}}\right)\left(\frac{2+\sqrt{2}}{5}\right) \cos \left(\frac{5 \pi x}{2 L}\right)+\cdots\right) .
\end{aligned}
$$

- اq 9 صفر نكاه داشته مى شــود و توزيع دماى اولّيه بر روى وجه بايين با

$$
\begin{aligned}
& u_{t}=u_{x x}, \quad 0<x<2, \quad t>0 ; \\
& \left.\begin{array}{l}
u_{x}(0, t)=0, \\
u(2, t)=0,
\end{array}\right\} \quad t>0 ; \\
& u(x, 0)=a x, \quad a>0, \quad 0<x<2 . \\
& \text { :ـرط اولبه }
\end{aligned}
$$

 در هر لحظذt بيابيد . (رامنمايى : تموين اV ا را ملاحظه كنيد) .

 مسادلهُ زير به كار مى رود
$v_{t}(x, t)=k v_{x x}(x, t)-h v(x, t)$,
 $v(x, t)=\exp (-h t) u(x, t)$,

ثـكر

تم ت Y نكاهداشاشته شوند .

روشهاى لبديل \quad -
هر وتت لازم باشد كه يك مسأله مقدار مرزى را روى يكححوزه نا نامتناهى يا نيمه نامتناهى
حل كنيه، روشههاى تبديل مناسب هستند . در بخت فوريه ارائه كرديم . در اين بختش مــالهاى بينترى با استفاده از هر دو روش تبديل نوريه و و تبديل
لابالاس ارائه مى كنــم .

مثال بيابيد كه در شرايط زير صدق كند
$v(0, y)=0 \quad$ (الف
$v_{r}(x, 0)=0 \quad$ ب
$v_{r}(c, y)=f(y) \quad$ ب اين مسآله را از نظر فيزيكى تفسير نماييد . حل : معادلهُ لابلاس
$v_{x x}+v_{y y}=0, \quad 0<x<c, \quad y>0$
بايد حل شود .

از تبـديل فوريهُ كـــينوسى امستغـاده مى كنيم و با توجـه به شـرط (ب) ، مـتغيّر و و را تبديل مى كنيم • لس (به معادلهُ Y-Y $\frac{d^{2} \bar{v}(x, \alpha)}{d x^{2}}-\alpha^{2} \bar{v}(x, \alpha)=0$
$\left(a^{\prime}\right) \bar{v}(0, \alpha)=0$,
($\left.c^{\prime}\right) \frac{d \bar{v}(c, \alpha)}{d x}=\bar{f}(\alpha)$,

جواب عمومى معادلهُ ديفر انسسل معمولمى مرتبهُ دوم عبارت است از

 $\bar{v}(x, \alpha)=c_{1}(\alpha) \cosh (\alpha x)+c_{2}(\alpha) \sinh (\alpha x)$,
$c_{2}(\alpha)=\frac{\bar{f}(\alpha)}{\alpha \cosh (\alpha c)}$
بنابراين
$\bar{v}(x, x)=\frac{\bar{f}(\alpha) \sinh (\alpha x)}{\alpha \cosh (\alpha c)}$

$$
\begin{aligned}
v(x, y) & =\frac{2}{\pi} \int_{0}^{x} \frac{\bar{f}(\alpha) \sinh (\alpha x)}{\alpha \cosh (\alpha c)} \cos (\alpha y) d \alpha \\
& =\frac{2}{\pi} \int_{0}^{x} \frac{\sinh (\alpha x) \cos (\alpha y)}{\alpha \cosh (\alpha c)} d \alpha \int_{0}^{1} f(s) \cos (\alpha s) d s .
\end{aligned}
$$

شكل + + +-1

در مثال بعدى از تبديل نوريهُ سينوسى استفاده مى كنــم •

$$
u_{t}=u_{x x}, \quad x>0, \quad t>0
$$

$$
u(0, t)=u_{0}, \quad t>0
$$

$$
u(x, 0)=0, \quad x>0
$$

منرايط مرزي :
نمرط اوليه:

حل : با استفاده از تبديل فوريهُ سينوسى :" $\frac{d \bar{u}(\alpha, t)}{d t}=\alpha u_{0}-\alpha^{2} \bar{u}(\alpha, t)$
 به صورت زير است (تمرين ب) $\bar{u}(\alpha, t)=\frac{u_{0}}{\alpha}\left(1-\exp \left(-a^{2} t\right)\right)$,

تبديل نوريهُ سييوسى واروت $\overline{\prime \prime}$ عباربت است از
$u(x, t)=\frac{2 u_{0}}{\pi} \int_{0}^{,}\left(1-\exp \left(-\alpha^{2} t\right)\right) \sin \alpha x \frac{d \alpha}{\alpha}$.

$\int_{0} \frac{\sin \alpha x d \alpha}{\alpha}=\frac{\pi}{2} \quad$ if $x>0$.
بنابراين
$u(x, t)=u_{0}-\frac{2 u_{0}}{\pi} \int_{0}^{s} \exp \left(-\alpha^{2} t\right) \sin \alpha x \frac{d \alpha}{\alpha}$

و با استفاده از اين كه
$\frac{\sin \alpha x}{x}=\int_{0}^{x} \cos \alpha s d s$,

$$
\begin{aligned}
u(x, t) & =u_{0}-\frac{2 u_{0}}{\pi} \int_{0}^{x} \exp \left(-\alpha^{2} t\right) d \alpha \int_{0}^{x} \cos \alpha s d s \\
& =u_{0}-\frac{2 u_{0}}{\pi} \int_{0}^{x} d s \int_{0}^{\alpha} \exp \left(-\alpha^{2} t\right) \cos \alpha s d \alpha . \\
u(x, t) & =u_{0}-\frac{u_{0}}{\sqrt{\pi}} \int_{0}^{x} \frac{\exp \left(-s^{2} / 4 t\right) d s}{\sqrt{t}} .
\end{aligned}
$$

$$
\begin{aligned}
u(x, t) & =u_{0}-\frac{2 u_{0}}{\sqrt{\pi}} \int_{0}^{x / 2 \sqrt{ } t} \exp \left(-v^{2}\right) d v \\
& =u_{0}-u_{0} \operatorname{erf}(x / 2 \sqrt{t}) \\
& =u_{0}(\mathrm{I}-\operatorname{erf}(x / 2 \sqrt{t})) \\
& =u_{0} \operatorname{erfc}\left(\frac{x}{2 \sqrt{t}}\right)
\end{aligned}
$$

كه در آن erfc ، متمّمْ تابع خحطا، به حورت زير تعريف مى شود $\operatorname{erfc} x=1-\operatorname{erf} x=\frac{2}{\sqrt{\pi}} \int_{x}^{,} e^{-s^{2}} d s$,
 $\operatorname{erf} x=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-s^{2}} d s$

مسالّه مثال مى دانيـم كه تبديل لا, u س u عبارت است از
$U(s)=\int_{0}^{\infty} e^{-s t} u(t) d t, \quad s>0$.
بنابراين

$$
\begin{aligned}
\int_{0}^{x} e^{-s r} \frac{\partial u(x, t)}{\partial t} d t & =\left.e^{-s t} u(x, t)\right|_{0} ^{x}+s \int_{0}^{x} e^{-s t} u(x, t) d t \\
& =s U(x, s)
\end{aligned}
$$

 در مى آيد
$\frac{d^{2} U(x, s)}{d x^{2}}-s U(x, s)=0$
$U(0, s)=\int_{0}^{x} e^{-s t} u_{0} d t=\frac{u_{0}}{s}$.

حال جواب اين معادلهُ ديفرانسيل معمولى، همگّ، مر تبهُ دوم جنين است $U(x, s)=c_{1}(s) e^{\sqrt{s x}}+c_{2}(s) e^{-\sqrt{s} x}$.
 خواهد ماند و با به كار بردن شرط
$U(x, s)=\frac{u_{0}}{s} e^{-\sqrt{s} x}$.
با استفاده از جدول تبديلات لابلاس، جدول ا، مانند قبل خواهيم داشثت $u(x, t)=u_{0} \operatorname{erfc}(x / 2 \sqrt{t})$

 جڭونه از تبديل لابلاس مي توان بعضى از مسائل با شر طمرزى ناهمگن را بسادكى حل مثال

$$
\begin{aligned}
& u_{1}=u_{x x}, \quad 0<x<d, \quad t>0 ; \quad \text { : م } \\
& \left.\begin{array}{l}
u(0, t)=a, \\
u(d, t)=a,
\end{array}\right\} t>0 ; \\
& u(x, 0)=a+b \sin \left(\frac{\pi}{d} x\right), \quad 0<x<d, \quad: \quad: \quad \text { نرط }
\end{aligned}
$$

كه a و ثابابتد .

حل : با تبديل محادله و شرايط مرزى مسالهُ زير نتيجه مى شود
$\frac{d^{2} U(x, s)}{d x^{2}}-s U(x, s)=-a-b \sin \left(\frac{\pi}{d} x\right)$,

$$
U(0, s)=\frac{a}{s},
$$

$$
U(d, s)=\frac{a}{s}
$$

اين يكى معادلُّ ديفرانـسيل معمولى با جوابب متمّمْ زير است :
$U_{c}(x, s)=c_{1}(s) e^{\sqrt{s x}}+c_{2}(s) e^{-v s x}$.
مى توان يكى جواب خصوصى به شكل
$U_{r}(x, s)=\frac{a}{s}+\frac{b d^{2}}{d^{2} s+\pi^{2}} \sin \binom{\pi}{d}$.
با روش خرايب نامعين بر ای معادله بهد دست آورد ـ مجمرع (s) است، وبا محاسبهُ
$U(x, s)=\frac{a}{s}+\frac{b d^{2}}{d^{2} s+\pi^{2}} \sin \left(\frac{\pi}{d} x\right)$.
 در اين صورت
$u(x, t)=a+b \sin \left(\frac{\pi}{d} x\right) \exp \left(-\pi^{2} t / d^{2}\right)$.
جزئيات مسالد بهعنوان تمرين واگذار مى شود ـ (تمرين ه را ملاحظه كنيد) مثال P-Y-Y مسالثة زير رابا استفاده از تبديل لابلاس حل كنيد .

$$
\left.\begin{array}{lr}
u_{\|}=u_{x x}, \quad 0<x<c, \quad t>0 ; \\
u(0, t)=0, \\
u(c, t)=0,
\end{array}\right\} \quad t>0 ; \quad \text { مرادله : مرزی : }
$$

$$
\left.\begin{array}{l}
u(x, 0)=b \sin \left(\frac{\pi}{c} x\right) \\
u_{1}(x, 0)=-b \sin \left(\frac{\pi}{c} x\right)
\end{array}\right\} \quad 0<x<c
$$

حل : با تبديل معادله و شرايط برزى نتيجه مى شود

$$
\begin{aligned}
\frac{d^{2} U(x, s)}{d x^{2}} & =s^{2} U(x, s)-b s \sin \left(\frac{\pi}{c} x\right)+b \sin \left(\frac{\pi}{c} x\right) \\
U(0, s) & =U(c, s)=0
\end{aligned}
$$

جواب اين مسـاله بهصورت زير است (تمرين V) $U(x, s)=\frac{c^{2} b(s-1)}{c^{2} s^{2}+\pi^{2}} \sin \left(\frac{\pi}{c} x\right)$.

بنابراين

$$
u(x, t)=b \sin \left(\frac{\pi}{c} x\right)\left(\cos \left(\frac{\pi}{c} t\right)-\frac{c}{\pi} \sin \left(\frac{\pi}{c} t\right)\right) .
$$

در مثال بعلى شر ايط مثال اين ساده سازى، حل مسـاله با روش تبديل لابلاس سخت است است

$$
u_{1}=u_{x x}, \quad 0<x<1, \quad t>0 ;
$$

$$
\left.\begin{array}{r}
u(0, t)=1, \\
u(1+t)=1
\end{array}\right\} t>0 ; \quad: \quad \text { ثرايط مرزى }
$$

$$
u(1, t)=1,\} \quad t>0 ;
$$

$$
u(x, 0)=0, \quad 0<x<1 .
$$

ثرطا اولبه :

$$
\begin{aligned}
\frac{d^{2} U(x, s)}{d x^{2}} & =s U(x, s), \\
U(0, s) & =\frac{1}{s}, \quad U(1, s)=\frac{1}{s},
\end{aligned}
$$

كه ساده به نظر مى رسـد . ولى جوابب آن (تمرين Q) به صوردت زير است

$$
\begin{aligned}
U(x, s) & =\frac{1}{s} \cosh \sqrt{s} x+\frac{(1-\cosh \sqrt{s}) \sinh \sqrt{s} x}{s \sinh \sqrt{s}} \\
& =\frac{\sinh \sqrt{s} x+\sinh \sqrt{s}(1-x)}{s \sinh \sqrt{s}}
\end{aligned}
$$

حتى با الستقاده از جدولهاى تبديلات لابلاس نسبةُ جامع كه در دسترس باشُـد، نـيى توان انتظار داشت تابع U(x,s) در مئـال Y-Y-Y

تمرينهاى \%-|

$$
\begin{aligned}
& \text { - مثال ما } \\
& \text { م مثال }
\end{aligned}
$$

$d \bar{u}(t)+\alpha^{2} \bar{u}(t)=\alpha u_{0} . \quad \bar{u}(0)=0$.

$$
\text { كه } \alpha \text {, }
$$

ج ه- با فرض آن كه

$$
\begin{gathered}
\frac{d^{2} U(x, s)}{d x^{2}}-s U(x, s)=-a-b \sin \left(\frac{\pi}{d} x\right), \\
U(0, s)=U(d, s)=\frac{a}{s} .
\end{gathered}
$$

ب) بكى جواب خصصوصى با روش ضرايب نامعين به دست آوريد . ب) جواب كامل زير را بهدـت آوريد . $U(x, s)=\frac{a}{8}+\frac{b d^{2}}{d^{2} s+\pi^{2}} \sin \binom{\pi}{d}$.

$$
\begin{aligned}
d^{2} U(x, s) \\
d x^{2}
\end{aligned} s^{2} U(x, s)=b(1-s) \sin \frac{\pi}{c} x, ~ \begin{aligned}
& x \\
& U(0, s)=U(c, s)=0
\end{aligned}
$$

(با مثال F-F-F مقايسه كنيد)
$u(x . t)=U(x, t)+\phi(x)$.
سمس مسآله را با روش جدامـازى متغيّر ها حل كنيد .

$$
\begin{aligned}
& u_{t}=u_{x x}, \quad x>0, \quad t>0: \\
& u_{2}(0, t)=u_{0}, \quad t>0 ; \quad \text { ثتر ايط مرزى }
\end{aligned}
$$

اين مسآله را أزنظر فيزيكى تعبير نماييد .

- ت ت ت
- - الفـ) تابع كران دار و همساز (x,y) آوريد بطورى كه در سُرايط زير صدق كند :
i) $v(0, y)=0$;
ii) $v_{3}(x, 0)=0$;
iii) $v_{\mathrm{s}}(c, y)=f(y)$.

ب) اين مسـاله را ازنظر فيزيكى تعبير نماييد .
 آوريد بطورى كه در شُرايط زير صدن كند :
i) $v_{y}(x, 0)=0$;
ii) $v_{x}(0, y)=0$;
iii) $v(x, b)=f(x)$.

$$
\begin{aligned}
& \text { ب) (اين مسـآله را ازنظر فيزيكى تعبير نماييد . }
\end{aligned}
$$

$$
\begin{aligned}
& u_{n}=u_{x x}+\sin \frac{\pi x}{c} \sin \omega t, \quad 0<x<c, \quad t>0 ; \quad: \quad: \quad \text { معاد } \\
& u(0, t)=0, \quad u(c, t)=0, \quad t>0 ; \quad: \quad \text { : } \\
& u(x, 0)=0, \quad u_{t}(x, 0)=0, \quad 0<x<c . \quad: \quad \text { : شرايط ارليه }
\end{aligned}
$$

$\int_{0}^{a} \frac{\exp (-a x)}{\sqrt{x}} d x=\sqrt{\frac{\pi}{a}}, \quad a>0$.

$$
\text { - IV } f(x)=\exp \left(-x^{2}\right) \text { الفـفـم كنيد . }
$$

ب) نمودار
 . برایى راحتى u_{0} بكيريد

مساثل اشترم- ليوويل D-Y

مسالهُ مقدار مرزى بهشكل
$\frac{d}{d x}\left(r(x) \frac{d y}{d x}\right)+(q(x)+i w(x)) y=0$,
$a_{1} y(a)+a_{2} y^{\prime}(a)=0$,
$b_{1} y(b)+b_{2} y^{\prime}(b)=0$,

 زيادى يانته است .
در معادلهُ (

 ג يكى ثابت (مستـقل از هر دو صفر نباشند. اكربرایى

منظر از حل يك مسالةُ انتترم -ليوويل منظم، يافتن مقادير λ (كه مقادير ويزه يا مقادير
 المت . اين كار با توجه به وأفعيتهاى زير كه آنها را بدو ن اتبات بيان مى كنيّه، سـاده تر مى شمود . - - همهُ مقادير ويزو حقيقى اند . $\lambda_{1}<\lambda_{2}<\lambda_{3} \ldots$ تعـلـادى نامتناهى مقادير ويثّه وجـود دارند و آنها را مى توان بـه صورت مرتب نمود .
r-r بهر مقدار ويزه يك تابع متناظر مى گردد .
 - - توابع ويزْبر بازء $. \lim _{n \rightarrow \infty} \lambda_{n}=\infty \quad-¢$ حال جند مثال مى آوريم و در اين مثالها موارد فوق را تحقيق مى كنيم . مثال ب-ه-1 دستكاه زير راحل كنبد :
$y^{\prime \prime}+i y=0 . \quad y(0)=0, \quad y(\pi)=0$.
$. a_{2}=b_{2}=0, a_{1}=b_{1}=1 ، b=\pi ، a=0 ، m(x)=1 ، q(x)=0 ، r(x)=1$ ح حل جواب معادلهُ ديفرانسيل عبارت الست از
$y=c_{1} \cos (\sqrt{\lambda} x)+c_{2} \sin (\sqrt{\lambda} x)$
 اين جواب موردنظر نيست، زيرا هر دستگاه اشترم -ليوريل يكى جواب
 شرط
$y=c_{2} \sin (\sqrt{\lambda} x)$.
 ، $\lambda_{1}=1$ يا 1 يس

$y_{1}(x)=\sin x, \quad y_{2}(x)=\sin 2 x, \quad y_{3}(x)=\sin 3 x \ldots$.

YOI
نصل حهارم - مدائل مقدار مرزى در مشتتصات تانم

كه ثُابثهاى دلـخواه برابر يك انتخذابـ شــده إند .
حال بسادكى ثى توان تحقيت نهود كه اين توابع ويزُ بر بازه W $w(x)=1$

$$
\int_{0}^{\pi} \sin n x \sin m x d x=\frac{\sin (n-m) x}{2(n-m)}-\left.\frac{\sin (n+m) x}{2(n+m)}\right|_{0} ^{\pi}=0
$$

 برخحردار إستت .

ثـكل F-0-ا توابع ويزه (مثال F-0-1)

مثال P-ه

$$
y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y^{\prime}(\pi)=-0
$$

. $a_{2}=b_{2}=1$

$$
y=c_{1} \cos (\sqrt{\lambda} x)+c_{2} \sin (\sqrt{\lambda} x), \quad \lambda \geq 0
$$

كه از آن داريـم

$$
y^{\prime}=-c_{1} \sqrt{\lambda} \sin (\sqrt{\lambda} x)+c_{2} \sqrt{\lambda} \cos (\sqrt{\lambda} x)
$$

$y=c_{1} \cos (\sqrt{\lambda} x) \quad, \quad y^{\prime}=-c_{1} \sqrt{\lambda} \sin (\sqrt{\wedge} x)$.
 ، عبارتند از $y_{0}=1$ ، بك يك ترار داده شـدهاند .

تعامد توابع ويزّهرا به صورت زير مى توان تحقيف كرد :

$\int_{0}^{\pi} \cos n x \cos m x d x=\frac{\sin (n-m) x}{2(n-m)}+\left.\frac{\sin (n+m) x}{2(n+m)}\right|_{0} ^{\pi}=0$
بنابراين مجموعء (شكل Y- Y-
$\{1, \cos x, \cos 2 x, \cos 3 x, \ldots\}$
بر بازءٔ سرى فوريهن نيز مفيد است.

بليهى منجر مى شود .

شكل Y-

$$
\begin{aligned}
& \text { منال ب-ه- } \\
& y^{\prime \prime}+\lambda y=0, \quad y(0)+y^{\prime}(0)=0, \quad y(1)=0 . \\
& \text { را } \\
& \text { 友 ، } \lambda<0
\end{aligned}
$$

اكر
$y=c_{1} \cos (\sqrt{\lambda} x)+c_{2} \sin (\sqrt{\lambda} x)$.
ش شرط شرط
 . شـكل تبلاً بهد دست آمده است را نـنان مى دهد.

از شُكل بيداست كه تعدادى نامتنامي مقادير ويرّه وجود دارند كه به سمت مجلذر مضارب فرد $\pi / 2$ ميل مى كنند . بهع عبارت ديگر،

رياضيات مرندمي

$$
\lambda_{n} \doteq \frac{(2 n+1)^{2} \pi^{2}}{4}
$$

 سهه رتم اعشُـار به كمك ماثشين ححساب تشـان فى دهل .

t	$\tan t$
$F / 0$	$9,9 \mathrm{rv}$
F, F	$r, 098$
$F, F D$	r,VYr
4,78	H, FYY
4, 480	H, oty
F,faro	4,490
F,pary	F,far

 مى توان يافت .

$$
y_{n}(x)=\sin \left(\sqrt{\lambda_{n}} x\right)-\sqrt{\lambda_{n}} \cos \left(\sqrt{\lambda_{n}} x\right)
$$

$$
\int_{0}^{1}\left(\sin \left(\sqrt{\lambda_{n}} x\right)-\sqrt{\lambda_{n}} \cos \left(\sqrt{\lambda_{n}} x\right)\right)\left(\sin \left(\sqrt{\lambda_{m}} x\right)-\sqrt{\lambda_{m}} \cos \left(\sqrt{\lambda_{m}} x\right)\right) d x=0
$$

$$
\text { . } \lambda_{2}=7.725
$$

$$
\int_{0}^{1}(\sin 4.493 x-4.493 \cos 4.493 x)(\sin 7.725 x-7.725 \cos 7.725 x) d x
$$

$$
=-0.002
$$

 برابر صفر تشده اسـت .

$$
A(x) y^{\prime \prime}+B(x) y^{\prime}+C(x) y=0
$$

با فرض
 $\frac{1}{A(x)} \exp \left(\int \frac{B(t) d t}{A(t)}\right)=\mu(x) / A(x)$,

ضرب كنيه، نتيجه بهصورت زير نوشته مى شود
$\frac{d}{d x}\left(\mu(x) \frac{d y}{d x}\right)+\frac{C(x)}{A(x)} \mu(x) y=0$,
 دستگاه مى بانـد .

براى سادگى نماد يك شملگر ديفر انسيل L ا با بهصور ت زير تعريف مى كنيم

$$
L \equiv \frac{d}{d x}\left(r(x) \frac{d}{d x}\right)+q(x)
$$

$$
\begin{aligned}
& \text { يعنى، } \\
& L y=\frac{d}{d x}\left(r(x) \frac{d y}{d x}\right)+q(x) y=\left(r y^{\prime}\right)^{\prime}+q y,
\end{aligned}
$$

$$
\begin{align*}
& \text { نوشته مى سُود } \\
& L y=-i w y,
\end{align*}
$$

$$
\begin{aligned}
& \text { (بابخشش 1- }
\end{aligned}
$$

اكر إ,

رباضيات مهندسى

$$
\begin{aligned}
y_{1} L y_{2}-y_{2} L y_{1} & =y_{1}\left(r y_{2}^{\prime}\right)^{\prime}-y_{2}\left(r y_{1}^{\prime}\right)^{\prime} \\
& =y_{1}\left(r y_{2}^{\prime \prime}+r^{\prime} y_{2}^{\prime}\right)-y_{2}\left(r y_{1}^{\prime \prime}+r^{\prime} y_{1}^{\prime}\right) \\
& =r^{\prime}\left(y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}\right)+r\left(y_{1} y_{2}^{\prime \prime}-y_{2} y_{1}^{\prime \prime}\right) \\
& =\left(r\left(y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}\right)\right)^{\prime} .
\end{aligned}
$$

 از معادلهُ (

$$
y_{1} L y_{2}-y_{2} L y_{1}=\left(\lambda_{1}-\lambda_{2}\right) w y_{1} y_{2}
$$

هس، با مساوى قرار دادن دو كميت، به دسـت مى آوريم

$$
\left(\lambda_{1}-\lambda_{2}\right) w y_{1} y_{2}=\left(r\left(y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}\right)\right)^{\prime}
$$

و با انتگر ال كيرى از a تا b نتيجه مى شود

$$
\left(\lambda_{1}-\lambda_{2}\right) \int_{a}^{b} w(x) y_{1}(x) y_{2}(x) d x=r\left(y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}\right)_{a}^{b} .
$$

سالل ديـده مى شود كـ الكر
 شود . به عنوان تهرين نشان دميلد كـ شر ابيط مرزیى مثال

 اين بدان معناسـت كه مجموعع'

$$
\left\{\phi_{n}(x), n=1,2, \ldots\right\}
$$

 $\lim _{N \rightarrow x} \int_{a}^{b}\left(f(x)-\sum_{n=1}^{N} c_{n} \phi_{n}(x)\right)^{2} w(x) d x=0$.

به عبارت ديكر،f fا مى توان به وسيلة يكـ سرى از توابع ويزه نمايش داد، يعنى

$$
f(x) \sim \sum_{n=1}^{\infty} c_{n} \phi_{n}(x)
$$

$c_{n}=\int_{a}^{b} f(s) \phi_{n}(s) w(s) d s, \quad n=1,2,3, \ldots$

و بطورى كه معادله (V-ロ-F) برترار باشد. .

 صـنــر شــود، وتـتى كــه .بى كـرانباشد

تمرنانهای

- 1

ن نشان دهيد در مـال \quad -
 نـ F F . $x=0$ د $y_{n} y_{m}^{\prime}-y_{m} y_{n}^{\prime}$
ويزه متعامدند . (رامنهايع : طرن راسست معادلئ F-0-9 را بررسى كتيد)
 $y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y(\pi)=0$.

در تـرينهاى IIVV، مقادير ويزه و توابع ويزٌُ هر دستگاه را بيابيد
$v^{\prime \prime}+\lambda y=0, \quad y^{\prime}(-\pi)=0, \quad y^{\prime}(\pi)=0$
$y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y^{\prime}(\pi)=0$
$v^{\prime \prime}+(1+\lambda) y=0, \quad y(0)=0, \quad y(\pi)=0$
$y^{\prime \prime}+2 y^{\prime}+(1-\lambda) y=0, \quad y(0)=0, \quad y(1)=0$
$y^{\prime \prime}+2 y^{\prime}+(1-\lambda) y=0, \quad y^{\prime}(0)=0, \quad y^{\prime}(\pi)=0$

رياخيات مهندسى

به صورتى كه در متن نشان داده شلده است بيايبد .)

نعامد رابرایى هريكي مشنخص كنيد . (1F منظم لازم است؟ 10- مسأله زير مفروض است $y^{\prime \prime}+i y=0, \quad y(-c)=y(c), \quad y^{\prime}(-c)=y^{\prime}(c)$

در اين جا شرايط مرزى رانشرابط مرزى تناوبى كويند .

 ب) برایى $y_{n}(x)=a_{n} \cos \left(\frac{n \pi}{c} x\right)+b_{n} \sin \left(\frac{n \pi}{c} x\right)$,

را بهدست آوريد كه
 وزن 1 و 1 ($n(x)$ متعامدند $؟$

19- معادلهُ زير رادر نظر بگيريد
$L y(x)=A(x) y^{\prime \prime}+B(x) y^{\prime}+C(x) y$,
كه
 علاوه بر اين، ، $A(a, b)$ ($)$ صفر نـى شـود ـ در آن صورت
$L^{\star} y(x)=\frac{d^{2}}{d x^{2}}(A(x) y(x))-\frac{d}{d x}(B(x) y(x))+C(x) y(x)$
الحاتى y نا ناميده مي شود .
الف) نشان دهيد
$L^{\star} y=A y^{\prime \prime}+\left(2 A^{\prime}-B\right) y^{\prime}+\left(A^{\prime \prime}-B^{\prime}+C\right) y$. - IV

$$
x y^{\prime \prime}+(1-x) y^{\prime}+\lambda y=0,
$$

$$
y^{\prime \prime}-2 x y^{\prime}+2 \lambda y=0
$$

در نظريه مكانيكى كوانتومى نوسانگر خخطى ظاهر مى شو2 .
الف) معادله را به شكل (Y-ه-1) تبديل كنيد .
ب) تابع وزن خیست؟

- Y.
$\left(1-x^{2}\right) y^{\prime \prime}-x y^{\prime}+n^{2} y=0$,

> در رياضي فيزيكى كاربرد دارد .

الفـ) معادله را به شكل خود الُحات تبذيل كنيد . ب) تابع وزن جيست؟

$$
\begin{aligned}
& \text { در مكانيكى كوانتومى از اهميتى ويزّه برخوردار است }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ب) تابع وزن چخست } \\
& \text { 19- معادلهُ ديفرانسهيل هرميت }
\end{aligned}
$$

ب) نشان دهيد معادلهٔ اشترم -ليوريل ((

مسائل مقدار مرزى در ديكِ دستكاههاى مختصات

ه- ا- مسانل مقدار مرزى در نواحى دايرهاى
وتتى ناحيه ایى داراى تقارن دايرهاءى باشد معـمولا استـفاده از مختتصات تطبى مناسبتر
الست . رابطهُ بين مختصحات قايم و تطبى در شكل ه - ا - ا نشان داده شده اس است .

ثـكل 0-1-1 مختصات تطبى

از اين روابط مى توانيم مستقههاك جزنُى را محاسبه كنيم :

رياضيات سهندسى

$$
\begin{array}{ll}
\frac{\partial x}{\partial \rho}=\cos \phi . & \frac{\partial y}{\partial \rho}=\sin \phi \\
\frac{\partial x}{\partial \phi}=-\rho \sin \phi, & \frac{\partial y}{\partial \phi}=\rho \cos \phi
\end{array}
$$

$$
\begin{equation*}
\frac{\partial u}{\partial \rho}=\frac{\partial u}{\partial x} \frac{\partial x}{\partial \rho}+\frac{\partial u}{\partial y} \frac{\partial y}{\partial \rho}=\frac{\partial u}{\partial x} \cos \phi+\frac{\partial u}{\partial y} \sin \phi \tag{1-1-0}
\end{equation*}
$$

بنابر اين

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial \rho^{2}} & =\frac{\partial}{\partial \rho}\left(\frac{\partial u}{\partial x}\right) \cos \phi+\frac{\partial u}{\partial x} \frac{\partial}{\partial \rho}(\cos \phi)+\frac{\partial}{\partial \rho}\left(\frac{\partial u}{\partial y}\right) \sin \phi+\frac{\partial u}{\partial y} \frac{\partial}{\partial \rho}(\sin \phi) \\
& =\frac{\partial}{\partial \rho}\left(\frac{\partial u}{\partial x}\right) \cos \phi+\frac{\partial}{\partial \rho}\left(\frac{\partial u}{\partial y}\right) \sin \phi
\end{aligned}
$$

زيرا دو جحملهُ ديشر برابر صفرنل .
برایى صحاسبهُ جحمله ایى مانند (
بر اي $u(x, y)$ به كار مى u, برد . در واقع معادلة (ه- - - ا) را مى توانيـم به صوربت نمادى زير بنويسيم

$$
\frac{\partial()}{\partial \rho}=\frac{\partial()}{\partial x} \cos \phi+\frac{\partial()}{\partial y} \sin \phi
$$

$\frac{\partial u_{x}}{\partial \rho}=u_{x x} \cos \phi+u_{x y} \sin \phi$
$\frac{\partial u_{y}}{\partial \rho}=u_{y x} \cos \phi+u_{y y} \sin \phi$.
بنابر اين
$\frac{\partial^{2} u}{\partial \rho^{2}}=u_{x x} \cos ^{2} \phi+2 u_{x y} \sin \phi \cos \phi+u_{y y} \sin ^{2} \phi$,

با فرض آن كه به همين طريت بهد دست مى آوريم
$\frac{1}{\rho^{2}} \frac{\partial^{2} u}{\partial \phi^{2}}=u_{x x} \sin ^{2} \phi-2 u_{x y} \sin \phi \cos \phi+u_{y y} \cos ^{2} \phi$

$$
-\frac{1}{\rho} u_{x} \cos \phi-\frac{1}{\rho} u_{y} \sin \phi
$$

و
$\frac{1}{\rho} \frac{\partial u}{\partial \rho}=\frac{1}{\rho} u_{x} \cos \phi+\frac{1}{\rho} u_{y} \sin \phi$,

$$
\frac{\partial^{2} u}{\partial \rho^{2}}+\frac{1}{\rho^{2}} \frac{\partial^{2} u}{\partial \phi^{2}}+\frac{1}{\rho} \frac{\partial u}{\partial \rho}=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}} . \quad(ץ-1-\Delta)
$$

 مختصصات تطبى داريم . اكر u مستقل از هباشد، ن نتيجهُ ساده تر زير را داريـم
$\frac{\hat{\sigma}^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=\frac{\partial^{2} u}{\partial \rho^{2}}+\frac{1}{\rho} \frac{\partial u}{\partial \rho}=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial u}{\partial \rho}\right)$.

شكل

رياخيات مهندسى
 باشــل . همـجنتين توجـه داريـم كـه ضرورى اند هون در اين مورت دماها بطر يكتا معين خواهند شد . بس مسألهُ زير را داريم :

$$
\begin{aligned}
& \frac{1}{\rho} \frac{\hat{\partial}}{\hat{i} \rho}\left(\rho u_{\rho}\right)+\frac{1}{\rho^{2}} u_{\phi \phi}=0, \quad 0<\rho<c, \quad-\pi<\phi \leq \pi ; \quad: \text { م } \\
& u(c, \phi)=f(\phi), \quad-\pi<\phi \leq \pi . \\
& \text { شـرايط مرزى : }
\end{aligned}
$$

به نظر مي رسـد كـه ثــرايط مرزى بـراى حل مســأله كـافى نـيسـتـند امـا اين واقعيـت كـه دمـاها بايد
 مى كنيم و فرض مي كنيم بتوانيـم بنويسيم

$$
u(\rho, \phi)=R(\rho) \Phi(\phi)
$$

در اين صورت

$$
\frac{\Phi}{\rho} \frac{d}{d \rho^{\prime}}\left(\rho \frac{d R}{d \rho}\right)+\frac{R}{\rho^{2}} \frac{d^{2} \Phi}{d \phi^{2}}=0
$$

يا با تقسيـم بر R R داريـم

$$
\frac{\rho}{R} \frac{d}{d \rho}\left(\rho \frac{d R}{d \rho}\right)=-\frac{1}{\Phi} \frac{d^{2} \Phi}{d \phi^{2}}=n^{2} . \quad n=0,1,2, \ldots
$$

 دورهُ متناوب 2π نسبت به 2 باشد . اين انتخابِ را طبيعت فيز يكى مسآله به ما تحميل مى كند . يس معادلة́

$$
\frac{d^{2} \Phi}{d \phi^{2}}+n^{2} \Phi=0, \quad n=0,1,2, \ldots
$$

دأراى جو'بهاى زير امست
$\Phi_{n}(\phi)=a_{n} \cos n \phi+b_{n} \sin n \phi$.
معادلهُ ديفر انسـيل معمولى مرتبهُ دوم را مي توان بهصورت زير نوشت

$$
\begin{equation*}
\rho^{2} \frac{d^{2} R_{n}}{d \rho^{2}}+\rho \frac{d R_{n}}{d \rho}-n^{2} R_{n}=0 \tag{F-1-0}
\end{equation*}
$$

أبتدا حالت $n=0$ را در نظر مي گُـيريم و معـادلهُ حاصل را با روش كـاهش مرتبـه حل مي كنيـم •
$R_{0}(\rho)=c_{1} \log \rho+c_{2}$.
براي آن كه اين جواب در هـمسايگى
بنابراين جواب متناظر با با n ، ، يكى نابت است
 $R_{n}(\rho)=A_{n} \rho^{n}+B_{n} \rho^{-n}, \quad n=1,2, \ldots$.

 اختيار كنيم. در آن صورت
$u_{n}(\rho, \phi)=\left(a_{n} \cos n \phi+b_{n} \sin n \phi\right) \rho^{n}$
 مرزي بر آورده شُود تركيبى از جوابها را به صورت زير در نظر مـي كيريم
$u(\rho, \phi)=\frac{1}{2} a_{0}+\sum_{n=1}^{\dot{1}}\left(a_{n} \cos n \phi+b_{n} \sin n \phi\right) \rho^{n}$
و به عنوان تمرين (تمرين †) نشان دميدجواب مسأله بامعادلئ (0-1-0) داده مى شود كه ضرايب
$a_{n}=\frac{1}{\pi c^{n}} \int_{-\pi}^{\pi} f(s) \cos n s d s, \quad n=0,1,2, \ldots$
$b_{n}=\frac{1}{\pi c^{n}} \int_{-\pi}^{\pi} f(s) \sin n s d s, \quad n=1,2, \ldots$.
جون تابع (f(f به وسيلهُ يك سرى نوريه نمايش داده مى شـود، اين تابع بايد در نـرايط لازم برايى جنين نمايشى صدق كند (بخش ب-1 را ملاحظه كنيد)
در مئال بعدى، شيوهُ نوق را برايى سهبعد تعميم مى دهيم، يعنى، از مخختصات استوانهالى استفاده مى كنيم

$$
\begin{aligned}
& \nabla^{2} u=0 \quad b<\rho<c, \quad \text { معادله در يختصات المتوانها } \\
& -\pi<\phi \leq \pi, \quad-\infty<z<\infty ; \\
& u(b, \phi, z)=f(\phi), \quad-\pi<\phi \leq \pi, \quad-\infty<z<\infty, \quad \text { : نرايط مرزى } \\
& u(c, \phi, z)=0, \quad-\pi<\phi \leq \pi, \quad-\infty<z<\infty \text {. }
\end{aligned}
$$

 مـعادلات ديـرانسـيل مـعـمولى زير و شرايط مـرزى زير رابه دسـت مى آوريم (بـا منـال ه- ا - ا مقايسه كنيد) :
$\Phi^{\prime \prime}+n^{2} \Phi=0, \quad \Phi(-\pi)=\Phi(\pi), \quad \Phi^{\prime}(-\pi)=\Phi^{\prime}(\pi) \quad n=0,1,2, \ldots ;$ $\rho^{2} R_{\pi}^{\prime \prime}+\rho R_{n}^{\prime}-n^{2} R_{\pi}=0, \quad R_{n}(c)=0$.

جو ابهای اين معادلات را مى توان بهترتيب به حورتهاى زير نرشت (تمرينهای ل و $\Phi(n \phi)=A_{n} \cos n \phi+B_{n} \sin n \phi$
$R_{n}(\rho)=\left(\frac{c}{\rho}\right)^{n}-\left(\frac{\rho}{c}\right)^{n}, \quad n=1,2, \ldots$,
 با تـكـيل تركيبي خطى از حاصل ضربها، داريم
$u(\rho, \phi)=A_{0} \log \left(\frac{\rho}{c}\right)+\sum_{n=1}^{\gamma}\left(\left(\frac{c}{\rho}\right)^{n}-\left(\frac{\rho}{c}\right)^{n}\right)\left(A_{n} \cos n \phi+B_{n} \sin n \phi\right)$.
حال شرط مرزى ناممگُن نتيجه مى دهد
$u(b, \phi)=f(\phi)$

$$
=A_{0} \log \left(\frac{b}{c}\right)+\sum_{n=1}^{x}\left(\left(\frac{c}{b}\right)^{n}-\left(\frac{b}{c}\right)^{n}\right)\left(A_{n} \cos n \phi+B_{n} \sin n \phi\right)
$$

$$
\frac{1}{2} a_{0}=A_{0} \log \left(\frac{b}{c}\right), \quad a_{n}=\left(\left(\frac{c}{b}\right)^{n}-\left(\frac{b}{c}\right)^{n}\right) A_{n}, \quad b_{n}=\left(\left(\frac{c}{b}\right)^{n}-\left(\frac{b}{c}\right)^{n}\right) B_{n}
$$

$u(\rho, \phi)=\frac{\log \left(\frac{\rho}{c}\right)}{2 \log \binom{b}{c}} a_{0}+\sum_{n=1}^{\prime} \frac{\left(\frac{c}{\rho}\right)^{n}-\left(\frac{\rho}{c}\right)^{n}}{\left(\frac{c}{b}\right)^{n}-\left(\frac{b}{c}\right)^{n}}\left(a_{n} \cos n \phi+b_{n} \sin n \phi\right)$,

كه

شكل 0-1-0

فبل از آن كـه حل هعادلات موج و انتشار را در مختـصات اسـتونهأى بررسى كنيم، لازم
 ديفـرانسيل مــمولى مـرتبهُ دوم، خطط، هــمُن را بررسى كنيـم . اين مبـحث را در بـخش بعـلـى بررسى خواهيم كرد .

تمرينهاى ه- ا-1

تناوب 2π نسبت به ϕ باشد

$\rho^{2} \frac{d^{2} R}{d \rho^{2}}+\rho \frac{d R}{d \rho}=0$
r- معادلات كثي -اويلر زير را حل كنيد
$\rho^{2} \frac{d^{2} R_{n}}{d \rho^{2}}+\rho \frac{d R_{n}}{d \rho}-n^{2} R_{n}=0, \quad n=1,2, \ldots$.
(با مثال ه- ا - ا مقايسه كنيـ)

F F

 آيا اين مطلب با وضعيت فيزيكى سازگًار است؟ در مشال - \quad - - V $\Phi^{\prime \prime}+n^{2} \Phi=0, \quad \Phi(-\pi)=\Phi(\pi), \quad \Phi^{\prime}(-\pi)=\Phi^{\prime}(\pi), \quad n=0,1 \quad, \ldots$, عبارتند از
$\Phi(n \phi)=A_{n} \cos n \phi+B_{n} \sin n \phi$.

$$
\begin{aligned}
& \rho^{2} R_{n}^{\prime \prime}+\rho R_{n}^{\prime}-n^{2} R_{\mathrm{n}}=0, \quad R_{n}(c)=0 \\
& R_{n}(\rho)=\left(\frac{c}{\rho}\right)^{n}-\left(\frac{\rho}{c}\right)^{n}, \quad n=1,2, \ldots
\end{aligned}
$$

$$
R_{0}(\rho)=\log (\rho / c)
$$

Q-
با واتعيتهأى فيزيكى مطابقت دارد ؟ توضيح دهيد .
-1- الف) در مشال ه-1-1 أكهر صورت زير داده شود

$$
f(\phi)= \begin{cases}0, & -\pi<\phi<0 \\ u_{0}, & 0<\phi<\pi\end{cases}
$$

$$
\begin{aligned}
& \text { (توجه : در اين جا شـر ايط مرزى الشر ايط مرزى تناوبى ناميله مى شونده) } \\
& \text { - ^ در مشال ه- ا }
\end{aligned}
$$

 حل كنيد.

- IY . $u=u_{0}$

 دماى ثابت

- أ

مـرزهاى 1
شوند (شككل ه- ا-9) .

ثـكل 0-1-9

- 10 . $-\pi<\phi \leq \pi$

ب) آيا نتيجهُ به دست آمده در تسمت (الف) با واقعيت فيزيكي مطابقت داردد؟
ب) اين تناتض ظاهرى را توضيح دهيد .
. درستى نتيجهُ به دست آمده در مثال ه- - - اV
 حل كنبد :

$$
\begin{aligned}
& \frac{d}{d \rho}\left(\rho \frac{d z}{d \rho}\right)=0, \quad 1<\rho<\rho_{0} ; \\
& \text { : معادل } \\
& z(1)=0, \quad z\left(\rho_{0}\right)=z_{0} . \quad: \quad: \quad \text { : }
\end{aligned}
$$

ب) مسالهُ تسمت (الف) راازنظر فيزيكي تعبير نماييد .

شود حل كنيد .
 به كار بريد و تا حدامكان كار را أادامه دهيد .

جوايهاي به صورت سرى معادلات ديفرانسيل معمولى

در اين بخش بـ منظور بر رسـى رونـى توانمند براي حل معـادلات ديفـرانسيل مـعمـولى،

 هريك از عبارات زير مثالى از يك سرى از ثابتهاست :

$$
\begin{array}{ll}
1+2+3+4+\cdots+n+\cdots ; & (1-Y-\theta) \\
1-1+1-1+1-+\cdots+(-1)^{n+1}+\cdots ; & (Y-Y-\theta) \\
0+0+0+\cdots+0+\cdots ; & (\Gamma-Y-\theta) \\
1+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\cdots+\frac{1}{n^{p}}+\cdots ; & (\digamma-Y-\theta) \\
a\left(1+r+r^{2}+\cdots+r^{n}+\cdots\right) ; & (\theta-Y-\theta) \\
1-\frac{1}{3}+\frac{1}{5}-+\cdots+\frac{(-1)^{n+1}}{2 n-1}+\cdots ; & (\varsigma-Y-\theta)
\end{array}
$$

سرى (
$S_{1}=1, \quad S_{2}=1+2, \quad S_{3}=1+2+3, \quad S_{4}=1+2+3+4 \ldots$.
$\left\{S_{1}, S_{2}, S_{3}, \ldots\right\}=\{1,3,6,10, \ldots\}$.
را مى دمند كه نقطُ حدى "ندارد .
از طرف ديگر ، سرى ((

 $\left(\frac{1}{2}, \frac{1}{4}, \frac{2}{8}, 1+3, \ldots\right)$

$a \sum_{n=0}^{\infty} r^{n}=\frac{a}{1-r}, \quad|r|<1$.
سرانجام، سرى ((Y-Y) مثالىى از يكى سرى متناوب است كه مى توان ثاببت نمود (با استفاده از قضيهُ لايب نيتس) همـرُرالمت زيرا دو شرط زير برقرار المت :

1- قدر مطلت هر جمله كمتر يا مسـاوى قدر مطلت جملهُ قبلى است .

تو جه كنيد ثعيين اين كه يكى سرى همڭراست و اين كه به جه هيزى همـغراست دو مو ضوع

جالبتر از سرى ثابتها برانى ما ، سرى توانى خواهد بود كه به شيكل زير است $a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)^{2}+\cdots+a_{n}\left(x-x_{0}\right)^{n}+\cdots$.
 ($x_{01}-R, x_{01}+R$) (V-Y-৫) مهـمّاست . R راشُعاع همكرايع سرى توانى مى ناميم و مقدلار آن را مى توان با استفاده از آزمون نسبت بهد دست آورد، جنان كه در مثالن زير نـشان داده شده است .
 $(x-1)-\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{3}-\frac{(x-1)^{4}}{4}+-\cdots$.

حل : بهتر أست سرى را با استفاده از نماد مجمرع يابى بنويسيم :
$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(x-1)^{n}}{n}$.
برطبق آزمون نسبت سرى همڭراست هرگّا.

$$
\lim _{n \rightarrow+}\left|\frac{u_{n+1}}{u_{n}}\right|<1
$$

كه در آنز

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{u_{n+1}}{u_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+2}(x-1)^{n+1}}{n+1} \cdot \frac{n}{(-1)^{n+1}(x-1)^{n}}\right| \\
& =\lim _{n \rightarrow \times,} \frac{n}{n+1}|x-1|=|x-1|<1
\end{aligned}
$$

لسس 1 < 1 -

 به دو تضيه زير نياز خو اهبم داشتت كه آنها را بدون اثباتت بيان مى كنيم .
لــضيـه ه ها شُعاع همگر ايو يكسان هستند .

 به صورتت زير داده مى شود

$$
f^{\prime}(x)=\sum_{n=1}^{\prime} n a_{n}\left(x-x_{0}\right)^{n-1}
$$

حـال آمـاده ايمم كـه با المـتفـاده از سـريهـا به حل يكـ مـعـادلهُ ديفـانسـيل سـاده بـردازيمم .
 امكان بذير نيسـت .

حل : فرض مى كنيم جوابي به صورات زير وجود داشمته باشد

$$
y=\sum_{n=0}^{s} a_{n} x^{n}
$$

رياضيات مهندسي

$$
y^{\prime}=\sum_{n=1}^{x} n a_{n} x^{n-1} \quad, \quad y^{\prime \prime}=\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
$$

با جاى كذارى اين مقادير در معادلهُ داده شُلده نتيجه مي شود

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}-\sum_{n=0}^{\infty} a_{n} x^{n+1}=0
$$

 به أين كه n يك انديس ظلاهرى در ميجموع يأبى استت و مي تواند با هر حرف ديگر تعويضي شود،
 تبلديل مي كنيـم • در اين صورت

$$
\sum_{n=0}^{x}(n+2)(n+1) a_{n+2} x^{n}-\sum_{n=1}^{x} a_{n-1} x^{n}=0
$$

 هر جمله اعى را كه به حسابِ نيامله باثمد بهآن اضافه مي كنيم . يّس

$$
\sum_{n=1}^{x}\left((n+2)(n+1) a_{n+2}-a_{n-1}\right) x^{n}+2 a_{2}=0
$$

كه تركيبى خطى از

$$
\left\{1, x, x^{2}, x^{3}, \ldots\right\}
$$

مسـتفل خطمى امـت، تر كيبي خطط از اين توابع برابر صفـر المـت أكر و نقط إكر هر ضريبى برابر صفر باثـد . بنابراين $2 a_{2}=0$

$$
(n+2)(n+1) a_{n+2}-a_{n-1}=0
$$

$$
a_{n+2}=\frac{a_{n-1}}{(n+2)(n+1)}, \quad n=1,2, \ldots
$$

 $a_{5}=a_{2} /(5 \cdot 4)=0$ ك $n=3$ داريـم $n=3$ ، $a_{4}=\frac{a_{1}}{(4.3)}$

در نتيجـه 2n=5 عبارتاست از
$y=a_{0}+a_{1} x+\frac{a_{0}}{6} x^{3}+\frac{a_{1}}{12} x^{4}+\frac{a_{0}}{180} x^{6}+\frac{a_{1}}{504} x^{7}+\cdots$.
معادلُّ اخير بهصورت زير نيز نوشته مي شود
$y=a_{0}\left(1+\frac{x^{3}}{6}+\frac{x^{6}}{180}+\cdots\right)+a_{1}\left(x+\frac{x^{4}}{12}+\frac{x^{7}}{504}-\cdots\right)$,
 نشان داد (تمرين Y) كه هر دو سرى برایى \ggg \gg - همكرا هستند . اثرجهه بسيارى از سريها را مى توان بهصورت بــته نوشت، براى منال

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots ;
$$

$\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots \cdot$
$\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots ;$
$\log (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+-\cdots$
 ميكرابهصورت $x=x_{0}$ تحليلى نامند . توابع معادله هالى (تعريف خود تحليلى باشد آن را يكى تابع تحليلى نامند . تمام جند توابع كويا بجز در نقاطى كه مخرج آنها صنر می شود د، تحليلى اند .
حال به مثاللى ديكر از جواب يكى معادلُّ ديفرانسيل به صورت سرى توجه كنيد . مثال ه-
$(x-1) y^{\prime \prime}-x y^{\prime}+y=0$.

رياضبات مهندسى

حر : مانند، قبل فرض كنيد

$$
y=\sum_{0} a_{n} x^{n}, \quad y^{\prime}=\sum_{1} n a_{n} x^{n-1}, \quad y^{\prime \prime}=\sum_{2} n(n-1) a_{n} x^{\prime \prime-2}
$$

و آنها را در معادلهُ ديفرانسيل داده ثـده جايگزين نمايِد

$$
\sum_{2} n(n-1) a_{n} x^{n-1}-\sum_{2} n(n-1) a_{n} x^{n-2}-\sum_{1} n a_{n} x^{n}+\sum_{0} a_{n} x^{n}=0
$$

در اوكّين مجمرع nرا به 1 + 1 و در دومين مجموع nرا به 2 n تبديل مى كنيم، داريم

$$
\begin{aligned}
& \sum_{1}(n+1) n a_{n+1} x^{n}-\sum_{0}(n+2)(n+1) a_{n+2} x^{n}-\sum_{i} n a_{n} x^{n}+\sum_{0} a_{n} x^{n}= \\
& \sum_{1}^{n}\left(n(n+1) a_{n+1}-(n+1)(n+2) a_{n+2}-n a_{n}+a_{n}\right) x^{n}-2 a_{2}+a_{0}=0 .
\end{aligned}
$$

با مساوى صفر، قرار دادن خرايب توانهاى هـتلفـ x، به دمـت مى آوريم

$$
\begin{aligned}
& a_{2}=\frac{1}{2} a_{0} \\
& a_{n+2}=\frac{n(n+1) a_{n+1}+(1-n) a_{n}}{(n+1)(n+2)}, \quad n=1,2, \ldots ; \\
& a_{3}=\frac{2 a_{2}}{2 \cdot 3}=\frac{a_{2}}{3}=\frac{a_{0}}{3 \cdot 2} ; \\
& a_{4}=\frac{6 a_{3}-a_{2}}{3 \cdot 4}=\frac{a_{3}}{2}-\frac{a_{2}}{12}=\frac{a_{0}}{12}-\frac{a_{0}}{24}=\frac{a_{0}}{4!} ;
\end{aligned}
$$

اللى آخر

كه

$$
y=a_{1} x+a_{0}\left(1+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots\right)
$$

و مـى توان نـــان داد كـه (تمرين
 متأسفانه، روش سريها براى حل معادلات ديفرانسيل معمولى هميشه به سادكى دو مثال قبل نيست . معادلهُ زير را در نظر بكيريد
$2 x^{2} y^{\prime \prime}+5 x y^{\prime}+y=0$.

 كثى -اويلر بر هر بازهاى كه مبدا را شامل باشُد مستقل خطى نيستند .

$y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$.
 ($1 Y-Y-Q$ (O) مـعـادلة (هر دو در $x=x_{10}$ تحليلى بـاشنده، آن كـاه مى شُود . ساير نقاط تكين، نقاط تكين نامنظم نام دارند .
 $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+n(n+1) y=0$,

حل : تنها نقاط تكين عبارتند از
$\frac{(x+1)(-2 x)}{1-x^{2}}=\frac{2 x}{x-1} \quad, \quad \frac{(x+1)^{2} n(n+1)}{1-x^{2}}=\frac{n(n+1)(x+1)}{1-x}$.
 برایى 1
$\frac{(x-1)(-2 x)}{1-x^{2}}=\frac{2 x}{x+1} \quad, \quad \frac{(x-1)^{2} n(n+1)}{1-x^{2}}=\frac{n(n+1)(1-x)}{1+x}$,

 بهصورت وى
 كشى ـ اويلر روش را تشريح مى كنيم منال ه- - م- معادلهُ زير رابا روش نروبينوس سل كنبد.

$$
\begin{aligned}
& x^{2} y^{\prime \prime}-x y^{\prime}-3 y=0 \\
& y=\sum_{0} a_{n} x^{n+r}, \\
& y^{\prime}=\sum_{0}(n+r) a_{n} x^{n+r-1}, \\
& y^{\prime \prime}=\sum_{0}(n+r)(n+r-1) a_{n} x^{n+r-2},
\end{aligned}
$$

و با جايى كذارى در معادلة داده شُده، داريم
$\sum_{0}((n+r)(n+r-1)-(n+r)-3) a_{n} x^{n+r}=0$.

$$
\left(r^{2}-2 r-3\right) a_{0}=0
$$

با انتخاب a_{0} دلخواه، يعنى، هخالف صفر ، نتيجه مى شود
$r^{2}-2 r-3=0$, كه آن را معالنُ انديسى مى نامند . ريشه هاى آن ا - و بَ هستند . در حالت كلى
$a_{n}\left(n^{2}+2 n r-2 n\right)=0, \quad n=1,2, \ldots$,
كه نقط وتتى مى تواند برترار باشد كه $n=1,2, \ldots$ ، $a_{n}=0$. بنابراين دو امكان وجود دارد $y_{1}(x)=a_{0} x^{-1} \quad, \quad y_{2}(x)=b_{0} x^{3}$

كه ثابتها دلخوالمند . تو جه كنيد كد هر ريشهُ معادلهُ انديسى به يكى سرى نامتناهى منجر مى شـود، ولى در اين ممال مر سرى شـامل نقط يكـ جمله است .

نهرست كنيم .

 خطى مى توان بهد دست آورد .
 اراثه مى كند، در حـورتى كه عدد كـو جكتر ممكن است يكى جـواب ارائه كند يا جـوابى ارائه نكند .
اين بختش را با حل دو معادلًّ ديفـرانـيل مهم كه در دو بخشّ بعدى مجلدداً مـورد استفاده
ترار مى كيرند، به بايان مى'بريم .

$\frac{d^{2} y}{d x^{2}}+\frac{1}{x} \frac{d y}{d x}+\left(1-\frac{n^{2}}{x^{2}}\right) y=0, \quad n=0,1,2, \ldots$.
 رياضى دان آلمانى ضمن مطالعات وى دربارهُ حركت سيارات به دست آمد ـ از آن زمان اين معادلّ در مسائل رسانايي كرما، نظريهُ الكترومغناطيس، و آكوستيكى كه در مـختصـات استرانه الى يبان شـوند، ظلاهر شده اســت .
 (

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-n^{2}\right) y=0
$$

رياضبات مهندسى
 فرضى كنيد

$$
\begin{aligned}
y & =\sum_{m=0} a_{m} x^{m+r} \\
y^{\prime} & =\sum_{m=0} a_{m}(m+r) x^{m+r-1} \\
y^{\prime \prime} & =\sum_{m=0} a_{m}(m+r)(m+r-1) x^{m+r-2}
\end{aligned}
$$

و انَها را در معادلئ (Q-Y-Y

$$
\begin{aligned}
\sum_{m=0} a_{m}(m+r)(m+r-1) x^{m+r} & +\sum_{m=0} a_{m}(m+r) x^{m+r} \\
& +\sum_{m=0} a_{m} x^{m+r+2}-n^{2} \sum_{m=0} a_{m} x^{m+r}=0
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{m=2}\left(a_{m}(m+r)(m+r-1)+a_{m}(m+r)+a_{m-2}-n^{2} a_{m}\right) x^{m+r}+a_{0} r(r-1) x^{r} \\
& \quad+a_{0} r x^{r}-n^{2} a_{0} x^{r}+a_{1} r(r+1) x^{r+1}+a_{1}(r+1) x^{r+1}-n^{2} a_{1} x^{r+1}=0
\end{aligned}
$$

با مساده كردن به دسـت مى آوريـم

$$
\begin{aligned}
& \sum_{m=2}\left(a_{m}\left((m+r)^{2}-n^{2}\right)+a_{m}{ }_{2}\right) x^{m+r}+a_{0}\left(r^{2}-n^{2}\right) x^{r} \\
&+a_{1}\left(r^{2}+2 r+1-n^{2}\right) x^{r+1}=0
\end{aligned}
$$

ضريب

$$
a_{n 1}=\frac{-a_{m-2}}{m(m+2 n)}, \quad m=2,3, \ldots
$$

$$
m=2: \quad a_{2}=\frac{-a_{0}}{2^{\overline{2}}(n+1)}
$$

$$
n=4: \quad a_{4}=\frac{-a_{2}}{2^{\frac{3}{3}(n+2)}}=\frac{a_{0}}{2^{4} \cdot 2(n+1)(n+2)} ;
$$

$$
m=6: \quad a_{6}=\frac{-a_{4}}{2^{2} \cdot 3(n+3)}=\frac{-a_{0}}{2^{6} \cdot 3!(n+1)(n+2)(n+3)} .
$$

در حاللت كلى داريم
$a_{2 m}=\frac{(-1)^{m} a_{0}}{2^{2 m} m!(n+1)(n+2) \cdots(n+m)}, \quad m=1,2, \ldots$,
و يك جواب براي معادله ((Y-Y-Y) به صورت زير نو شته مى شود

$$
\begin{aligned}
y_{n}(x) & =a_{0} \sum_{m=0} \frac{(-1)^{m} x^{2 m+n}}{2^{2 m} m!(n+1)(n+2) \cdots(n+m)} \\
& =2^{n} n!a_{0} \sum_{m=0} \frac{(-1)^{m}}{m!(m+n)!}\left(\frac{x}{2}\right)^{2 m+n} .
\end{aligned}
$$

تابع بسل نوع اوّل مرتبه n با انتخاب معدار $\frac{1}{2^{n} n!}$ براي ${ }^{\text {تمريف مى شود ـ ـ بنابراين داريم }}$ $J_{n}(x)=\sum_{m=0} \frac{(-1)^{m}}{m!(m+n)!}\left(\frac{x}{2}\right)^{2 m+n}, \quad n=0,1,2, \ldots$,
 خواهيم كرد . مثال

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+n(n+1) y=0, \quad n=0,1,2, \ldots .
$$

اين معادله را معادلك ديفرانسيل لثاندر" "مى نامند . حل : جون x=さ1 نقاط تكين منظم هستند (ميال ه-Y-Y) مى توانتيم جواب را به صورت سرى (IAYY-IVOY) ، A. M. Legendre *

$$
\begin{aligned}
& \text { توانمى در حول } x=0 \text { كه يكى نقطهُ عادى است، فرض كنيهم • بنابراين قرار مى دهيبم } \\
& y=\sum_{m=0}^{\infty} a_{m} y^{m}, \quad y^{\prime}=\sum_{m=1} a_{m} m x^{m-1}, \quad y^{\prime \prime}=\sum_{m=2} a_{m} m(m-1) x^{m-2} .
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{m=2} a_{m} m(m-1) x^{m-2}-\sum_{m=2} a_{m} m(m-1) x^{m} \\
& -2 \sum_{m=1} a_{m} m x^{m}+n(n+1) \sum_{m=0} a_{m} x^{m}=0 . \\
& \text { با تبلديل m به2 } m \text { در اولّين مجعبوع، بهد دست مي آوريم } \\
& \sum_{m=0} a_{m+2}(n+2)(m+1) x^{m}-\sum_{m=i} a_{m} m(m-1) x^{m} \\
& -2 \sum_{m=1} a_{m} m x^{m}+n(n+1) \sum_{m=0} a_{m} x^{m}=0 .
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{m=2}\left(a_{m+2}(m+2)(m+1)-a_{m} m(m-1)-2 a_{m} m+\imath_{m} n(n+1)\right) x^{m} \\
&+2 a_{2}+6 a_{3} x-2 a_{1} x+n(n+1) a_{0}+n(n+1) a_{1} x=0
\end{aligned}
$$

با صفر قرار دادن ضريب هركدام از توانهاى x در بالا، داريم $2 a_{2}+n(n+1) a_{0}=0, \quad a_{2}=\frac{-n(n+1) a_{0}}{2}, \quad a_{0} \quad$ دلخورا $6 a_{3}-2 a_{1}+n(n+1) a_{1}=0, \quad a_{3}=\frac{(2-n(n+1)) a_{1}}{6}, \quad a_{1}$ of 1

$$
\begin{align*}
& a_{m+2}(m+2)(m+1)-(m(m-1)+2 m-n(n+1)) a_{m}=0 \\
& a_{m+2}=\frac{m(m+1)-n(n+1)}{(m+2)(m+1)} a_{m} ; \\
& a_{m+2}=\frac{(m-n)(m+n+1)}{(m+2)(m+1)} a_{m}, \quad m=0,1,2, \ldots
\end{align*}
$$

 مساسبة جحند ضريب اولّ نتيجه مى دهد

$$
\begin{aligned}
& a_{2}=\frac{-n(n+1)}{1 \cdot 2} a_{0}, \\
& a_{4}=\frac{(2-n)(n+3)}{4 \cdot 3} a_{2}=\frac{n(n-2)(n+1)(n+3)}{4!} a_{0} \\
& a_{6}=\frac{(1-n)(n+5)}{6 \cdot 5} a_{4}=\frac{-n(n-2)(n-4)(n+1)(n+3)(n+5)}{6!} a_{0}, \\
& a_{3}=\frac{(1-n)(n+2)}{3 \cdot 2} a_{1}=\frac{-(n-1)(n+2)}{3!} a_{1} \\
& a_{5}=\frac{(3-n)(n+4)}{5 \cdot 4} a_{3}=\frac{(n-1)(n-3)(n+2)(n+4)}{5!} a_{1} \\
& a_{7}=\frac{(5-n)(n+6)}{7 \cdot 6} a_{5}=\frac{-(n-1)(n-3)(n-5)(n+2)(n+4)(n+6)}{7!} a_{1}
\end{aligned}
$$

بنابراين جوابب معادلُّ لُّاندر به صورت زير نوشته مى شود

$y_{n}(x)=a_{0}\left(1-\frac{n(n+1)}{2!} x^{2}+\frac{n(n-2)(n+1)(n+3)}{4!} x^{4}\right.$

$$
\left.-\frac{n(n-2)(n-4)(n+1)(n+3)(n+5)}{6!} x^{6}+-\cdots\right)
$$

$$
+a_{1}\left(x-\frac{(n-1)(n+2)}{3!} x^{3}+\frac{(n-1)(n-3)(n+2)(n+4)}{5!} x^{5}\right.
$$

$$
\left.-\frac{(n-1)(n-3)(n-5)(n+2)(n+4)(n+6)}{7!} x^{7}+-\cdots\right) \cdot(1 \wedge-Y-\Delta)
$$

$$
\text { هر دو سرى براى } 1 \text { >x> 1- هـمكرا هستتد . }
$$

اگر ...

$$
\begin{aligned}
& y_{0}(x)=a_{0} \\
& y_{2}(x)=a_{0}\left(1-3 x^{2}\right) \\
& y_{4}(x)=a_{0}\left(1-10 x^{2}+\frac{35}{3} x^{4}\right),
\end{aligned}
$$

$$
\begin{equation*}
P_{0}(x)=1, \quad P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right), \quad P_{4}(x)=\frac{1}{8}\left(35 x^{4}-30 x^{2}+3\right), \ldots . \tag{1q-Y-0}
\end{equation*}
$$

 اكر ...

عبارتند از
$y_{1}(x)=a_{1} x$,
$y_{3}(x)=a_{1}\left(x-\frac{5}{3} x^{3}\right)$,
$y_{5}(x)=a_{1}\left(x-\frac{14}{3} x^{3}+\frac{21}{5} x^{5}\right)$, آى
 بهدست آوريم
$P_{1}(x)=x, \quad P_{3}(x)=\frac{1}{2}\left(5 x^{3}-3 x\right), \quad P_{5}(x)=\frac{1}{8}\left(63 x^{3}-70 x^{3}+15 x\right), \ldots$.

 در مختصات كروى بيان شُده باشنـد، ظاهر مى شوند

F-A تمرينهای

$$
y_{1}(x)=a_{0} \sum_{n=0} \frac{1 \cdot 4 \cdot 7 \cdots(3 n-2)}{(3 n)!} x^{3 n} .
$$

زير نوشتـه بى شود

ب) جواب دوم را بهصورتى مشابه بنويسبد .

تr
.
 $y(x)=c_{1} x+c_{2} e^{x}$.

ب) بهازاى جه مقاديرى از x جواب نوق معتبر است؟ ه-
$2 x^{2} y^{\prime \prime}+5 x y^{\prime}+y=0$
به جواب بديهى y=0 منجر مى شُود .

9- 9 ثابت كنبد كه بر هر بازهاى كه شامل مبدا نباشـد

$$
\begin{aligned}
& \text { دنبالم زير رادر نظر بكيريد }
\end{aligned}
$$

$\left\{\frac{1}{2}, \frac{3}{4}, \frac{7}{8}, \frac{15}{16}, \ldots\right\}$.
الفس) جملئ nام دنباله را بنويسيد

با 9- الفس) سرى زير را مشُشضص كنيد $\frac{1}{10}+\frac{1}{100}+\frac{1}{1000}+\cdots$.

ب) (مجموع سرى را بيابيد .

- ا-
$(x-1)+\frac{(x-1)^{3}}{3}-\frac{(x-1)^{5}}{5}+\cdots$
$1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\frac{x^{6}}{6!}+\cdots$
ب
$1+\frac{(x+3)}{2}+\frac{(x+3)^{2}}{3}+\frac{(x+3)^{3}}{4}+\cdots$
ب
$x+\frac{2!x^{2}}{2^{2}}+\frac{3!x^{3}}{3^{3}}+\frac{4!x^{4}}{4^{4}}+\cdots$
(ت
(راهنمايى : از تعريف حدى׳ اسستفاده كنبد)
$1+\frac{(x+2)}{3}+\frac{(x+2)^{2}}{2 \cdot 3^{2}}+\frac{(x+2)^{3}}{3 \cdot 3^{3}}+$ (ث
$1+\frac{(x-1)^{2}}{2!}+\frac{(x-1)^{4}}{4!}+\frac{(x-1)^{6}}{6!}+\cdots$
. 11 - نقاط نكين هريكاز معادلات ديفرانسيل نير را دستهبندى كنيد $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-n^{2}\right) y=0, \quad n=0,1,2, \ldots$

الف)
$x^{3} y^{\prime \prime}-x y^{\prime}+y=0$
(ب)
$x^{2} y^{\prime \prime}+(4 x-1) y^{\prime}+2 y=0$
$x^{3}(x-1)^{2} y^{\prime \prime}+x^{4}(x-1)^{3} y^{\prime}+y=0$

$$
13
$$

ت
. IY

$$
\begin{aligned}
& y^{\prime \prime}+y=0 \\
& y^{\prime \prime}-y=0
\end{aligned}
$$

ب) (توجه كنيدكهروش سريهاى توانىبه معادلاتممكن منحصرنمىشود)
ت) (در صورت امكان جواب را به شككل بسته بنويسيد)

$$
\left(1+x^{2}\right) y^{\prime \prime}+2 x y^{\prime}-2 y=0
$$

ث (

$$
x y^{\prime \prime}+y^{\prime}+x y=0
$$

الف)

$$
4 x y^{\prime \prime}+2 y^{\prime}+y=0
$$

$$
x^{2} y^{\prime \prime}+2 x y^{\prime}-2 y=0
$$

- أ - أمادلهُزير رابادو روس حل كنيد

$$
x y^{\prime \prime}+2 y^{\prime}=0
$$

(راهنمايא : x يك عامل انتـرال سـاز است)

- 10 معادله
$y^{\prime \prime}-x y^{\prime}-y=0$

积 $A=A(x-1)+B$ -19

$$
y^{\prime \prime}-x y=0
$$

معادله ايرى" و جـوابهاى آن را كه در نظريه انكـــار كاربردهايى دارندتوابع/يرى نامند
(شكل

الف) جوابِ را برحسـب يكى سرى توانى ازx به دست آوريد .

ثكل 0- 0 - توابع ايرى

- IV

مشتق تشريح كنيد (تو جه كنيد كه اين كار الثباتى برابي تفيه نيست .

$$
\text { (} 11-r-\Delta \text { تشريع كنيد . }
$$

ب) (شعاع همكرايى سريها در معادلآت (بايد از اين واتعيت استفاده كنيد كه اكر سرى تدر مطلقها همكرا بانُدن آن كاه سرى
متناوب نيز همكراسـت .

- 19

توابع بسل \quad H-A

معادلهُ لإلاس در مـختصـات امستوانهاى (ρ, ϕ, z) به شكل زير است (تمرين ا)
$\nabla^{2} u=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial u}{\partial \rho}\right)+\frac{1}{\rho^{2}} \frac{\partial^{2} u}{\partial \phi^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=0$.
روش جداسازى متغيّرها را با اين فرض كه u بهصورت حامل ضريى از توابي م ، ه و به كار مى بريم، يعنى :
$u=R(\rho) \Phi(\phi) Z(z)$,
با جايگزين نمودن مشتقهاى مناسب در معادلكُ با مــتقات جزثى، نواهيم داشـت
$-\frac{\Phi Z}{\rho} \frac{d}{d \rho}\left(\rho \frac{d R}{d \rho}\right)+\frac{R Z}{\rho^{2}} \frac{d^{2} \Phi}{d \phi^{2}}+R \Phi \frac{d^{2} Z}{d z^{2}}=0$,
و با تقسيم بر R R نتيجه مى شـود
$\frac{\rho}{R} \frac{d}{d \rho}\left(\rho \frac{d R}{d \rho}\right)+\frac{\rho^{2}}{Z} \frac{d^{2} Z}{d z^{2}}=-\frac{1}{\Phi} \frac{d^{2} \Phi}{d \phi^{2}}$.

باشد كه هر دو طرفـ برابر مقدارى ثابـت باشنـد . بنابراين
$-\frac{1}{\Phi} \frac{d^{2} \Phi}{d \phi^{2}}=n^{2}, \quad n=0,1,2, \ldots$,
و دومين جلاعمازى نتيجه مى دهد
$\frac{1}{\rho R} \frac{d}{d \rho}\left(\rho \frac{d R}{d \rho}\right)-\frac{n^{2}}{\rho^{2}}=-\frac{1}{Z} \frac{d^{2} Z}{d z^{2}}=-\lambda^{2}$.
اولّين ثابـت جـداسازى را برحسب ϕ خــواهنـد بود و اين در بسـبارى از مـسائل كـاربردى وضـعيتى مطلوبـ أست . دومـين ثابـت جداسازى را
مقادير ثابتهاى جدامعازى n و λ در واقت از طبيعت ثـرايط موزى كه u بايد در آنها صدق كند نتيجه مى ثــوند . در اين جا مـقاديرى را انتـخابب كـرده ايم كه با شــر ايط مرزى اغلب هـسـائل مربوط بها اين مبحث تطبيق مى كنتد .
پس ، با جداعـازى متغيّرها، معادلهُ لابلاس را به سه معادلهُ ديفر انسيل معمولى، خحطى و همگن زير تبديل كردهايم :

$$
\begin{align*}
& \frac{d^{2} Z}{d z^{2}}-\lambda^{2} Z=0 \\
& \frac{d^{2} \Phi}{d \phi^{2}}+n^{2} \Phi=0, \quad n=0,1,2, \ldots \\
& \frac{d^{2} R}{d \rho^{2}}+\frac{1}{\rho} \frac{d R}{d \rho}+\left(\lambda^{2}-\frac{n^{2}}{\rho^{2}}\right) R=0
\end{align*}
$$

جوابهاى دو معادلهُ الولّ بآسانى, بهدست مى آيند و به ترتيب عبارتند از

$$
Z(\lambda z)=A e^{\lambda z}+B e^{-\lambda z}
$$

$$
\Phi(n \phi)=C \cos n \phi+D \sin n \phi
$$

مـعـادله

 نو شُته عى شـو د

$$
R_{n}(\hat{\lambda} \rho)=E J_{n}(\dot{\lambda} \rho)+F Y_{n}(\hat{\lambda} \rho)
$$

 در مسعـادله هاى (
 هـهـازهاى /ستتوانهاءى مى نامند . جون (

 توابع جيبحبلـ أى نيستتند .

 انست كه جواب آن به حورت زير است (تـرين Y)

$$
\begin{equation*}
J_{n}(x)=\sum_{m=0} \frac{(-1)^{m}}{m!(m+n)!}\left(\frac{x}{2}\right)^{2 m+n}, \quad n=0,1,2, \ldots \tag{A-r-0}
\end{equation*}
$$

حال (x)
\# توابع بسل نوع دوم را بعداً در اينبشش مورد بـحث ترار خخواهيم داد .

$$
\begin{aligned}
& J_{0}(x)=1-\frac{x^{2}}{2^{2}}+\frac{x^{4}}{2^{2} \cdot 4^{2}}-\frac{x^{6}}{2^{2} \cdot 4^{2} \cdot 6^{2}}+-\cdots, \\
& J_{1}(x)=\frac{x}{2}-\frac{x^{3}}{2^{2} \cdot 4}+\frac{x^{5}}{2^{2} \cdot 4^{2} \cdot 6}-\frac{x^{7}}{2^{2} \cdot 4^{2} \cdot 6^{2} \cdot 8}+-\cdots .
\end{aligned}
$$

با مقايسهُ اين توابع با سريهاي مكلورن برايى $\cos x$ و \sin ؛
$\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+-\cdots$,
$\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+-\cdots$,

$J_{0}(0)=1, \quad \cos 0=1 ;$
$J_{0}(-x)=J_{0}(x), \quad \cos (-x)=\cos x ;$
$J_{0}^{\prime}(0)=0,\left.\quad \frac{d}{d x}(\cos x)\right|_{x=0}=0 ;$
$J_{1}(0)=0, \quad \sin 0=0 ;$
$J_{1}(-x)=-J_{1}(x), \quad \sin (x)=-\sin x ;$
$J_{0}^{\prime}(x)=-J_{1}(x), \quad \frac{d}{d x}(\cos x)=-\sin x$.

اين شمباهتها را مى توان در نمو دأرهاي

 در حل مســائل مـقدار مرزي صـفـرهاي خاص برخوردارند . مقادير تقريبى حند صفر ارّل

	اولّين	دومين	/rnين	-جهارمين	لِّجمين	شُشمين
$J_{0}(x)$	$r, 4 \cdot 0$	$\Delta, \Delta r$.	A,901	11,var	17,471	$\|A, \cdot v\|$
$J_{1}(x)$	-	r,Ary	$\mathrm{v} / .19$	$1 \cdot 1 \mathrm{Vr}$	Mr,mer	$19,4 \mathrm{~V}$ \|

شكل 0-r-1

يكـ رابطهُ مفيد ديگر ، يعنى؛
$\frac{d}{d x}\left(x^{n} J_{n}(x)\right)=x^{n} J_{n-1}(x), \quad n=1,2, \ldots$,
$(9-r-0)$
بسادكى از معادلهُ (Q- (به صورت زير نوشته مى شود
$d\left(x^{n} J_{n}(x)\right)=x^{n} J_{n-1}(x) d x$
و با انتگّرال كيرى أز 0 تا c (c>0) ، داريم
$\left.x^{n} J_{n}(x)\right|_{0} ^{c}=\int_{0}^{c} x^{n} J_{n-1}(x) d x$

$$
\int_{0}^{c} x^{n} J_{n-1}(x) d x=c^{n} J_{n}(c)
$$

بهازایى $n=1$ ، داريم
$\int_{0}^{c} x J_{0}(x) d x=c J_{1}(c)$,
نتيجه ایى كه در بتخش ه-0 از آن امستفاده خواهد شل .

تعامد توابع بـل

توابع بسل نوع الوّل تحت شُ ايط معينى در يكى رابطُ تعامل صدت مى كنتد كه اين خاصيت را در اين جا نحواهيم ديد .

معادلهُ ديغرانسيل بسل مرتبهُ nبه مسورت زير نوشته مى شود
$x^{2} \frac{d^{2} u}{d x^{2}}+x \frac{d u}{d x}+\left(\lambda^{2} x^{2}-n^{2}\right) u=0$.
$(11-r-\Delta)$
يك جواب خحصـوصى اين معادله (يك جواب نخصرصى معادلهُ زير است
$x^{2} \frac{d^{2} v}{d x^{2}}+x \frac{d v}{d x}+\left(\mu^{2} x^{2}-n^{2}\right) v=0$.
$(1 r-r-\Delta)$
حال مـعادله (ه- (I-Y) را در
كم مى كنيم
$v x \frac{d^{2} u}{d x^{2}}+v \frac{d u}{d x}+\left(\lambda^{2} x^{2}-n^{2}\right) \frac{u v}{x}-u x \frac{d^{2} v}{d x^{2}}-u \frac{d v}{d x}-\left(\mu^{2} x^{2}-n^{2}\right) \frac{u v}{x}=0$. اين معادله را مى توان به صورت زير نوشـت
$\left(i^{2}-\mu^{2}\right) x u v=u x \frac{d^{2} v}{d x^{2}}-v x \frac{d^{2} u}{d x^{2}}+u \frac{d v}{d x}-v \frac{d u}{d x}$

$$
=\frac{d}{d x}\left(x\left(u \frac{d v}{d x}-v \frac{d u}{d x}\right)\right)
$$

$\left(i^{2}-\mu^{2}\right) \int_{0}^{c} x u v d x=\int_{0}^{c} d\left(x\left(u \frac{d v}{d x}-v \frac{d u}{d x}\right)\right)$
يا اگر به جاي
$\left(\lambda^{2}-\mu^{2}\right) \int_{0}^{c} x J_{n}(\lambda x) J_{n}(\mu x) d x=\left.x\left(\mu J_{n}(\lambda x) J_{n}^{\prime}(\mu x)-\lambda J_{n}(\mu x) J_{n}^{\prime}(i x)\right)\right|_{0} ^{c_{0}^{c}}$ $=c\left(\mu J_{n}(\lambda c) J_{n}^{\prime}(\mu c)-\lambda J_{n}(\mu c) J_{n}^{\prime}(\lambda c)\right)$.

يس داريـم
$\int_{0}^{c} x J_{n}(\lambda x) J_{n}(\mu x) d x=\frac{c}{\lambda^{2}-\mu^{2}}\left(\mu J_{n}(\lambda c) J_{n}^{\prime}(\mu c)-\lambda_{2} J_{n}(\mu c) J_{n}^{\prime}(\lambda c)\right)$.
كه از آن نتيجه مى شود
$\int_{0}^{c} x J_{n}(j x) J_{n}(\mu x) d x=0$.
به شر ط آن كه $\lambda \neq \mu$
$\mu J_{n}(\AA c) J_{n}^{\prime}(\mu c)-\lambda J_{n}(\mu c) J_{n}^{\prime}(\lambda c)=0$.

$$
\begin{aligned}
& \text { الفـ (} \\
& \text { ؛ } J_{n}^{\prime}(\lambda c)=0 \text { و } J_{n}^{\prime}(\mu c)=0 \text { (} \\
& h>0 \Delta \text { ، } h J_{n}(x)+x J_{n}^{\prime}(x)=0 \quad \text { (ب) }
\end{aligned}
$$

$h J_{n}(x)+x J_{n}^{\prime}(x)=0$ برایى ديدن شـرط آخخر توجـه كنيـد كه اكـر باشند، نتيجه مى شود
$h J_{n}(i c)+i c J_{n}^{\prime}(i c)=0 \quad, \quad h J_{n}(\mu c)+\mu c J_{n}^{\prime}(\mu c)=0$.

$h \mu J_{n}^{\prime}(\mu c) J_{n}(\lambda c)+c \dot{\mu} \mu J_{n}^{\prime}(\hat{\lambda} c) J_{n}^{\prime}(\mu c)=0$,
$h i J_{n}^{\prime}(\lambda c) J_{n}(\mu c)+c i \mu J_{n}^{\prime}(\lambda c) J_{n}^{\prime}(\mu c)=0$.
از تفريق اين معادله ها، داريم
$h\left(\mid t J_{n}^{\prime}(\lambda c) J_{n}^{\prime}(, c)-i J_{n}(\mu c) J_{n}^{\prime}(\lambda c)\right)=0$
$\mu J_{n}(\lambda c) J_{n}^{\prime}(\mu c)-\lambda J_{n}(\mu c) J_{n}^{\prime}(\lambda c)=0$,
كه همان معادلهُ (ه-r-r

$$
\text { شرط (ب) المت . بنابراين مى توانيم در شرط (ب)، فرض كنيمم h } 0 \text {. }
$$

در بالا نشان دادبم كه توابع بسل

$$
\text { متعامدند به شرط آن كهر } \mu \neq \lambda \text { و بكى از شرايط (الف)، (ب) يا (ب) برترار بانتند . }
$$

سريهای فوربي - بسل

 در انتهاى بنشش

 سرى: نوربي-بسل نمايس دهيم.
. فرض كنـــد
 . . $n=0$

حال نمايشf f را بر بازء́ (0, 0 د در نظر بكيريد :
$f(x)=A_{1} J_{n}\left(\lambda_{1} x\right)+A_{2} J_{n}\left(\lambda_{2} x\right)+A_{3} J_{n}\left(\lambda_{3} x\right)+\cdots$.
($1 f-r-\theta$)
برالى منال اكر بخواهيم مقدار 0 تا c انتُرال مي كيريم . در اين صورت داريم
$\int_{0}^{c} x f(x) J_{n}\left(\lambda_{2} x\right) d x=A_{1} \int_{0}^{c} x J_{n}\left(\lambda_{1} x\right) J_{n}\left(\lambda_{2} x\right) d x$

$$
+A_{2} \int_{0}^{c} x J_{n}\left(\lambda_{2} x\right) J_{n}\left(\lambda_{2} x\right) d x
$$

$$
+A_{3} \int_{0}^{c} x J_{\pi}\left(\lambda_{3} x\right) J_{\Pi}\left(\lambda_{2} x\right) d x+\cdots
$$

بد علت تـعـامـد توابع بــل، تمـام انتكرالهـا در طرف راست بجـز انتكر ال دوم برابر حـفــرند . بس داريم
$\int_{0}^{c} x f(x) J_{n}\left(\lambda_{2} x\right) d x=A_{2} \int_{0}^{c} x J_{n}^{2}\left(\lambda_{2} x\right) d x$,
$A_{2}=\frac{\int_{0}^{c} x f(x) J_{n}\left(\lambda_{2} x\right) d x}{\int_{0}^{c} x J_{n}^{2}\left(\lambda_{2} x\right) d x}$.
كه از آن بد دست مى آوريم

جون همين رون را براى هر ضريب مى توان بـ كار برد، در حالتت كلّى داريم
$A_{j}=\frac{\int_{0}^{c} x f(x) J_{n}\left(\lambda_{j} x\right) d x}{\int_{0}^{c} x J_{n}^{2}\left(\lambda_{j} x\right) d x}, \quad j=1,2,3, \ldots$.
حال مخرج عبارت فوق را محامبـه مى كنيم • برايى اين كار به معادله ديفرانــيل مرتبهُn
برمى كرديم
$x u^{\prime \prime}+u^{\prime}+\left(\lambda_{j}^{2} x-\frac{n^{2}}{x}\right) u=0$.
يكى جواب خصوصى اين معادله $u=J_{n}\left(\lambda_{f} x\right.$ است . با ضرب در عامل انتكر ال ساز $2 u^{\prime}$ نتيجه مى كيريم

$$
2 x^{2} u^{\prime} u^{\prime \prime}+2\left(u^{\prime}\right)^{2} x+\left(\lambda_{j}^{2} x-\frac{n^{2}}{x}\right) 2 x u^{\prime} u=0
$$

$2 x u^{\prime}\left(x u^{\prime \prime}+u^{\prime}\right)+\left(\lambda_{j}^{2} x^{2}-n^{2}\right) 2 u u^{\prime}=0$.
با استفاده از اين واقعيت كه

$$
\frac{d}{d x}\left(x u^{\prime}\right)^{2}=2 x u^{\prime}\left(x u^{\prime \prime}+u^{\prime}\right)
$$

$$
\frac{d}{d x}\left(x u^{\prime}\right)^{2}+\left(\lambda_{j}^{2} x^{2}-n^{2}\right) \frac{d}{d x}\left(u^{2}\right)=0
$$

بنابراين، با انتگُرال كِيرى از 0 ناc ، داريـم
$\int_{0}^{c} d\left(x u^{\prime}\right)^{2}+\int_{0}^{c}\left(\lambda_{j}^{2} x^{2}-n^{2}\right) d\left(u^{2}\right)=0$.
انتغرال دوم را با روش جزء به جزء محاسبه مى كنيم :

$$
\begin{aligned}
w & =\lambda_{j}^{2} x^{2}-n^{2}, & d v & =d\left(u^{2}\right), \\
d w & =2 \lambda_{j}^{2} x d x, & v & =u^{2},
\end{aligned}
$$

$$
\left.\left(x u^{\prime}\right)^{2}\right|_{0} ^{c}+\left.u^{2}\left(\lambda_{j}^{2} x^{2}-n^{2}\right)\right|_{0} ^{c}-2 \lambda_{j}^{2} \int_{0}^{c} x u^{2} d x=0
$$

الما $\lambda_{j}^{2} c^{2}\left[J_{n}^{\prime}\left(\lambda_{j} c\right)\right]^{2}+J_{n}^{2}\left(\lambda_{j} c\right)\left(\lambda_{j}^{2} c^{2}-n^{2}\right)+n^{2} J_{n}^{2}(0)=2 \lambda_{j}^{2} \int_{0}^{c} x J_{n}^{2}\left(\lambda_{j} x\right) d x$.
$(1 \nabla-r-\Delta)$

خلاصه مى شود
$\int_{0}^{c} x J_{n}^{2}\left(\lambda_{j} x\right) d x=\frac{c^{2}}{2}\left[J_{n}^{\prime}\left(i_{j} c\right)\right]^{2}$.
$(1 \wedge-r-\Delta)$
بنابراين در معادلهُ (ه- (10-1) ضرايب به صورت زير در مى آيند
$A_{j}=\frac{2}{c^{2}\left[\left.J_{n}^{\prime}\left(\lambda_{j} c\right)\right|^{2}\right.} \int_{0}^{i} x f(x) J_{n}\left(i_{j} x\right) d x$,

$$
j=1,2,3, \ldots
$$

$(19-r-\Delta)$
توجه كنيد كـه در انتگگرال معين نوق متـغيّر x را با حرفى ديگر مى توان تعويض نمود . بسى سرى

$f(x)=\frac{2}{c^{2}} \sum_{j=1}^{\infty} \frac{J_{n}\left(\lambda_{j} x\right)}{\left[J_{n}^{\prime}\left(\lambda_{j} c\right)\right]^{2}} \int_{0}^{c} s f(s) J_{n}\left(\lambda_{j} s\right) d s$.
در اين نمايش $f(x)$ ، تساوى بهصورت وانعى به كار رنته است . اينسرى، هانتد حاللت

معادلُ (
$\left\|J_{n}\left(\lambda_{j} x\right)\right\|=\frac{c}{\sqrt{2}} J_{n}^{\prime}\left(\lambda_{j} c\right)$.
$\left\{\frac{\sqrt{2}}{c} \frac{J_{n}\left(\lambda_{1} x\right)}{J_{n}^{\prime}\left(\lambda_{1} c\right)}, \frac{\sqrt{2}}{c} \frac{J_{n}\left(\lambda_{2} x\right)}{J_{n}^{\prime}\left(\lambda_{2} c\right)}, \cdots\right\}$
 . $J_{n}(\lambda c)=0$
اكر
$J_{n}^{\prime}\left(\lambda_{j} c\right)=-\frac{h}{\lambda_{j} c} J_{n}\left(\lambda_{j} c\right)$.
با جايگزين نمودن اين مقدار در معادلئ (اV-Y-Q) نتيحهه مى شـود
$\int_{0}^{c} x J_{n}^{2}\left(\lambda_{j} x\right) d x=\frac{\lambda_{j}^{2} c^{2}-n^{2}+h^{2}}{2 \lambda_{j}^{2}} J_{n}^{2}\left(\lambda_{j} c\right)$.
بس در اين حالتٍ، به جـاى معادلة (ه-r-q ا)، فرمول زير را برای خـرايب سرى فوريه ـ بسل

$$
\begin{aligned}
A_{j} & =\frac{2 \lambda_{j}^{2}}{\left(\lambda_{j}^{2} c^{2}-n^{2}+h^{2}\right) J_{n}^{2}\left(\lambda_{j} c\right)} \int_{0}^{c} x f(x) J_{n}\left(\lambda_{j} x\right) d x \\
j & =1,2,3, \ldots
\end{aligned}
$$

فـرمــول (Q-

$J_{0}^{\prime}\left(\lambda_{j} c\right)=0$,
يعنى، اولّين صضر (با استفاده از تاعدهُ هوبيتال مى توان محاساسبه كرد ـ بنابراين
$A_{1}=\frac{2}{c^{2}} \int_{0}^{c} x f(x) d x$,

 زير زير داده مى شود $Y_{0}(x)=\frac{2}{\pi}\left(J_{0}(x)\left(\log \frac{x}{2}+\gamma\right)\right)+\frac{2}{\pi}\left(\frac{x^{2}}{4}-\frac{3 x^{4}}{128}+\frac{11 x^{6}}{13,824}+-\cdots\right),(r r-r-\Delta)$

كه در آنَ ر را ثابات اويلر مى نامند و عددى است گنگّ كه به شنكل زير تعريف مي شود $\gamma=\lim _{n \rightarrow x}\left(\sum_{k=1}^{n} \frac{1}{k}-\log n\right) \doteq 0.577215$.

مطلب تـابل امميت در كـارهاى آينده مـان اين وافععيت المـت كه تمام توابع بسل نوع دوم

 در بعضى موارد، برانى مثال، در حل مساثل شامل اموائج الكترومغناطيسى در كابلهاى همميحور لازم مى شوند .

تمرنهاى A-r

 تبلديل مى شود .

$$
\begin{aligned}
& J_{1}(0)=0 \\
& J_{0}^{\prime}(x)=-J_{1}(x) \\
& x J_{n}^{\prime}(x)=-n J_{n}(x)+x J_{n-1}(x), \quad\left(\underset{y}{c} J_{0}^{\prime}(0)\right. \\
& \frac{d}{d x}\left(x_{1}(-2, \ldots\right. \\
& \left.J_{n}(x)\right)=x^{n} J_{n-1}(x), \quad n=1,2, \ldots
\end{aligned}
$$

- ت تحقبق كنيد كه x=0 يك نقط؛ تكين منظم معادل؛ بسل ((
9- جوابب عمويى ثريك از معادلات ديغرانسسل زير رابا جستجو بهدسـت آوريد .

$$
4 x y^{\prime \prime}+4 y^{\prime}+y=0 \quad \text { (ب } \frac{d}{d x}\left(x \frac{d y}{d x}\right)+x y=0
$$

الفـ)

$$
\frac{d^{2} y}{d x^{2}}+y e^{x}=0
$$

(ر/منمايى : فرض كنيد
.

$$
\begin{aligned}
\int_{0}^{\lambda_{j}} J_{1}(s) d s=1
\end{aligned} \quad \text { (ب) } \begin{array}{r}
\int_{0}^{1} J_{1}\left(\lambda_{j} s\right) d s=1 / \lambda_{j} \\
\int_{0}^{1} J_{1}\left(\lambda_{j} s\right) d s=0
\end{array}
$$

$$
\begin{aligned}
& \text { - هـريكى از روابط زير رابهدست آوريد . } \\
& \left.\int^{x} s^{2} J_{0}(s) J_{1}(s) d s=\frac{1}{2} x^{2} J_{1}(x)\right)^{2} \quad \text { (ب } \quad \int^{x} J_{0}(s) J_{1}(s) d s=-\frac{1}{2}\left(J_{0}(x)\right)^{2} \quad \text { (ا } \\
& \text { - } 9 \text { - هريكى از توابع زيـر را به يك سـرى فـوريه - بـسل از توابع (} \\
& \text { دهيد، كه } \\
& \text { در همـهُ حالالت قابل محاسبه نيست) } \\
& f(x)=1 \\
& f(x)=x^{2} \\
& \text { الفـ } \\
& \text { (ب) } \\
& \text { (توجه : فرمول كاهشي زير را به كار بريد : } \\
& \int_{0}^{x} s^{n} J_{0}(s) d s=x^{n} J_{1}(x)+(n-1) x^{n-1} J_{0}(x)-(n-1)^{2} \int_{0}^{x} s^{n-2} J_{0}(s) d s, \\
& n=2,3, \ldots \text {) } \\
& f(x)= \begin{cases}0, & 0<x<1, \\
1 / x, & 1 \leq x \leq 2 .\end{cases}
\end{aligned}
$$

(شكل 0

شـكل
 هريك از معادله هاى زير يكى معادلهُ ديغرانسيل بسل است

$$
\frac{d y}{d x}+a y^{2}+\frac{1}{x} y+\frac{1}{a}=0
$$

(اين يكـمعادلة ربكاتى است اما با جايگذارى $y=\frac{1}{a z} \frac{d z}{d x}$ مى شود)
$y=\frac{1}{a z} \frac{d z}{d x}$

$$
r^{2} \frac{d^{2} R}{d r^{2}}+2 r \frac{d R}{d r}+\left(\lambda^{2} r^{2}-n(n+1)\right) R=0
$$

 حـل صى شود به دست مى آيذ . با استفاده از جأيگذارى

$$
R(\hat{i} r)=\frac{Z(\dot{i} r)}{(\hat{\lambda} r)^{1 / 2}}
$$

آن را به يك معادفُهُ بسـل مرتّبُ $n+\frac{1}{2}$ تبديل كنيل .)

$$
\frac{d^{2} y}{d x^{2}}+\frac{1}{x} \frac{d y}{d x}+\frac{n}{k} y=0
$$

تبلديل صى كنـ .)
در معادلهُ ديفرانسيل بسل مرتبه $\frac{1}{2}$ با استفاده از جائذارى به دست آوريد

$$
\frac{d^{2} u}{d x^{2}}+u=0
$$

با ححل اين معادنه نشان دهيد

$$
y=c_{1} \frac{\sin x}{\sqrt{x}}+c_{2} \frac{\cos x}{\sqrt{x}}
$$

 Y ا كه,
ب) r الفـ

$$
J_{1 ; 2}(x)=\sqrt{2 / \pi x} \sin x
$$

(راهنمايع : از مسرى مكلورن اس استفاده كنيد)
بـ بابت كنيل

رباضيات مهندمى

$$
r+r
$$

$J_{-1,2}(x)=\sqrt{2 / \pi} \bar{x} \cos x$.

- أ أتقرال زير را محاسبه كنيد
$\int^{x} s^{n} J_{n-1}(s) d s$.

(رامنمايى : 1ز تمرين

- ا الفـ) ثابت كنيد
$\frac{d}{d x}\left(x^{-n} J_{n}(x)\right)=-x^{-n} J_{n+1}(x)$.
لبس) حسابس كنيد
$\int \frac{x J_{n+1}(s)}{s^{n}} d s$
19 الفـ) هع
$y^{\prime \prime}+\frac{1}{x} y^{\prime}-y=0$
را معادلهُ بسل مرتبة صفر تعليل شـلـه مى نامند . نشان دهيد يكى جوابس اين معادله به صورست زير است
$J_{0}(i x)=1+\frac{x^{2}}{2^{2}}+\frac{x^{4}}{2^{2} \cdot 4^{2}}+\frac{x^{6}}{2^{2} \cdot 4^{2} \cdot 6^{2}}+\cdots$.
همـحتنين مى نويســم (ix) تعلديل شُـلـه مى نامنـد .
 - IV

$$
Y_{0}^{\prime}(x)=-Y_{1}(x)
$$

 اشترم -ليوويل (F-ا- ا- ا) است .

 استفاده مى كنند، بعفى جاى ${ }^{\text {و }}$ ها راعوض بنابراين ترجه به تعريف خخاص هر نويسنده ضرورى است .

ثكل ه- ه- ا مختصات كرى

$$
\text { در مختصصات امـتوانهابى (} \rho, \phi, z \text {) لابلاسى عبارست انست از }
$$

$\nabla^{2} u=\frac{\partial^{2} u}{\partial \rho^{2}}+\frac{1}{\rho} \frac{\partial u}{\partial \rho}+\frac{1}{\rho^{2}} \frac{\partial^{2} u}{\partial \phi^{2}}+\frac{\partial^{2} u}{\partial \dot{z}^{2}}$.
رابطهُ بين مختصات كروى و تائم به حرربت زير داده هى شـود
$x=r \sin \theta \cos \phi, \quad y=r \sin \theta \sin \phi, \quad z=r \cos \theta$,
و از اين روابط مى توانيم لإلاسى را در مــختصـات كـروى به دست آوريم . ولى كمى سـاده تر و
 -روى محاسبه كنيـم

رياضيات مهندسى

$$
z=r \cos \theta, \quad \rho=r \sin \theta
$$

uتابعى از r و θ اسـت . سیس بنابه قاعلدهُ زنجيرى داريم

$$
\begin{align*}
\frac{\partial u}{\partial \rho} & =\frac{\partial u}{\partial r} \frac{\partial r}{\partial \rho}+\frac{\partial u}{\partial \theta} \frac{\partial \theta}{\partial \rho} \\
& =\frac{\rho}{r} \frac{\partial u}{\partial r}+\frac{z}{r^{2}} \frac{\partial u}{\partial \theta} \tag{Y-Y-0}
\end{align*}
$$

در معـادلئ (
 مى داريم، حال دازيم

$$
\frac{\partial^{2} u}{\partial \rho^{2}}=\frac{\partial}{\partial \rho}\left(\frac{\rho}{r} \frac{\partial u}{\partial r}+\frac{z}{r^{2}} \frac{\partial u}{\partial \theta}\right)
$$

 هر تابعي از r و θ استفاده مي شود . به صوردت نمادى داريم

$$
\frac{\partial(\hat{l})}{\partial \rho}=\frac{\partial()}{\partial r} \frac{\rho}{r}+\frac{\partial(\quad)}{\partial \theta} \frac{z}{r^{2}} .
$$

بنابر اين

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial \rho^{2}}= & \frac{\partial u_{r}}{\partial \rho} \frac{\rho}{r}+\frac{1}{r} u_{r}+u_{r} \rho \frac{\partial}{\partial \rho}\left(\frac{1}{r}\right)+\frac{\partial u_{\theta}}{\partial \rho} \frac{z}{r^{2}}+u_{\theta} z \frac{\partial}{\partial \rho}\left(\frac{1}{r^{2}}\right) \\
= & \frac{\rho}{r}\left(\frac{\hat{\sigma}^{2} u}{\partial r^{2}} \frac{\rho}{r}+\frac{\partial^{2} u}{\partial \theta \partial r} \frac{z}{r^{2}}\right)+\frac{1}{r} u_{r}+u_{r} \rho\left(-\frac{1}{r^{2}} \frac{\rho}{r}\right) \\
& +\frac{z}{r^{2}}\left(\frac{\partial^{2} u}{\partial r \partial \theta} \frac{\rho}{r}+\frac{\partial^{2} u}{\partial \theta^{2}} \frac{z}{r^{2}}\right)+u_{\theta} z\left(-\frac{2}{r^{3}} \frac{\rho}{r}\right) \\
= & \frac{\rho^{2}}{r^{2}} \frac{\partial^{2} u}{\partial r^{2}}+\frac{2 \rho z}{r^{3}} \frac{\partial^{2} u}{\partial r \partial \theta}+\frac{1}{r} \frac{\partial u}{\partial r}-\frac{\rho^{2}}{r^{3}} \frac{\partial u}{\partial r}+\frac{z^{2}}{r^{4}} \frac{\partial^{2} u}{\partial \theta^{2}}-\frac{2 \rho z}{r^{4}} \frac{\partial u}{\partial \theta}
\end{aligned}
$$

با روشى شمُابه مى توانيم

$$
\begin{aligned}
\frac{\partial u}{\partial z}= & \frac{\partial u}{\partial r} \frac{\partial r}{\partial z}+\frac{\partial u}{\partial \theta} \frac{\partial \theta}{\partial z}=\frac{\partial u}{\partial r} \frac{z}{r}+\frac{\partial u}{\partial \theta}\left(-\frac{\rho}{r^{2}}\right) \\
\frac{\partial^{2} u}{\partial z^{2}}= & \frac{\partial}{\partial z}\left(\frac{z}{r} \frac{\partial u}{\partial r}\right)-\frac{\partial}{\partial z}\left(\frac{\rho}{r^{2}} \frac{\partial u}{\partial \theta}\right) \\
= & \frac{1}{r} \frac{\partial u}{\partial r}+z \frac{\partial u}{\partial r}\left(-\frac{1}{r^{2}}\right) \frac{z}{r}+\frac{z}{r}\left(\frac{\partial^{2} u}{\partial r^{2}} \frac{z}{r}-\frac{\rho}{r^{2}} \frac{\partial^{2} u}{\partial r} \partial \theta\right) \\
& -\rho \frac{\partial u}{\partial \theta}\left(-\frac{2}{r^{3}}\right) \frac{z}{r}-\frac{\rho}{r^{2}}\left(\frac{\partial^{2} u}{\partial \theta} \frac{z}{\partial r}+\frac{\partial^{2} u}{\partial \theta^{2}}\left(-\frac{\rho}{r^{2}}\right)\right) \\
= & \frac{1}{r} \frac{\partial u}{\partial r}-\frac{z^{2}}{r^{3}} \frac{\partial u}{\partial r}+\frac{z^{2}}{r^{2}} \frac{\partial^{2} u}{\partial r^{2}}-\frac{2 \rho z}{r^{3}} \frac{\partial^{2} u}{\partial r \partial \theta}+\frac{2 \rho z}{r^{4}} \frac{\partial u}{\partial \theta}+\frac{\rho^{2}}{r^{4}} \frac{\partial^{2} u}{\partial \theta^{2}}
\end{aligned}
$$

بنابراين

$$
\begin{aligned}
u_{z}+u_{\rho \rho} & =\frac{\partial u}{\partial r}\left(\frac{r^{2}-z^{2}+r^{2}-\rho^{2}}{r^{3}}\right)+\frac{\partial^{2} u}{\partial r^{2}}\left(\frac{z^{2}+\rho^{2}}{r^{2}}\right)+\frac{\partial^{2} u}{\partial \theta^{2}}\left(\frac{z^{2}+\rho^{2}}{r^{4}}\right) \\
& =\frac{1 \partial u}{r} \frac{\partial^{2} u}{\hat{\partial} r}+\frac{1 \partial^{2} u}{\partial^{2}}+\frac{r^{2} \theta^{2}}{}
\end{aligned}
$$

سرانجام با افزودن معادل جمهلات

$$
\frac{1}{\rho} \frac{\partial u}{\partial \rho} \quad, \quad \frac{1}{\rho^{2}} \frac{\partial^{2} u}{\partial \phi^{2}}
$$

$$
\begin{align*}
& \text { دأريمم } \\
& \nabla^{2} u=\frac{\hat{\partial}^{2} u}{\partial r^{2}}+\frac{2}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} u}{\partial \phi^{2}}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}+\frac{\cot \theta}{r^{2}} \frac{\partial u}{\partial \theta},
\end{align*}
$$

$$
\begin{aligned}
& \text { استو انهأى و متناظر با } \\
& \nabla^{2} u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}
\end{aligned}
$$

معادلهُ لابِلاس (يا معادله بِّانسيل) در مختصات كروى بهصورت زير نوشته مي شود

$$
\nabla^{2} u=\frac{\partial^{2} u}{\partial r^{2}}+\frac{2}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} u}{\partial \phi^{2}}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}+\frac{\cot \theta}{r^{2}} \frac{\partial u}{\partial \theta}=0 .
$$

كه آٓن را بهصورت زير نيز مى توان نوشت (تمرين ا)
$\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial u}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} u}{\partial \phi^{2}}=0$.
يك جوابب اين معادله رابا روش جداسازى متغيّرها يِدا مي كنيم . فرض كنيد $u(r, \phi, \theta)=R(r) \Phi(\phi) \Theta(\theta)$.

$\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \Phi \Theta \frac{d R}{d r}\right)+\frac{1}{r^{2} \sin \theta} \frac{d}{d \theta}\left(R \Phi \sin \theta \frac{d \Theta}{d \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} R \Theta \frac{d^{2} \Phi}{d \phi^{2}}=0$.
حال، با تقــيـم هر جـله بر $R \Phi \Theta / r^{2} \sin ^{2} \theta$ بهدست مي آوريم
$\frac{\sin ^{2} \theta}{R} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)+\frac{\sin \theta}{\Theta} \frac{d}{d \theta}\left(\sin \theta \frac{d \Theta}{d \theta}\right)=-\frac{1}{\Phi} \frac{d^{2} \Phi}{d \phi^{2}}$.
جون طرن جب مستقل ازه استى، داريم
$-\frac{1}{\Phi} \frac{d^{2} \Phi}{d \phi^{2}}=m^{2}, \quad m=0,1,2, \ldots$,

 به ملاحظات فيزيكى لازم مي شُود . يكى بار ديگر جداسازى متغيّر ها نتيجه مي دهد
${ }^{1} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)=-\left(\frac{1}{\Theta \sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d \Theta}{d \theta}\right)-\frac{m^{2}}{\sin ^{2} \theta}\right)=\lambda$,

بس مـعادله لا بـلاس را به سه مـــادلئ ديفرانسـيل معــولى، همكّن، خططى، مرتبه دوم
تبديل كردهايم :
$\frac{d^{2} \Phi}{d \phi^{2}}+m^{2} \Phi=0$,
$\frac{1}{\sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d \Theta}{d \theta}\right)+\left(\lambda-\frac{m^{2}}{\sin ^{2} \theta}\right) \Theta=0$,
$\frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)-\lambda R=0$.
توجه كنيد كه معادلدُ اوّلّ و سوم هريكـ نـامل يكى از دو ثابت جداس اسازى هستند، در صورتى كه
 ناميده مى شوند

عبارتالست از
$\Phi(m \phi)=A_{m} \cos m \phi+B_{m} \sin m \phi, \quad m=0,1,2, \ldots$,
كه
حال معادلهُ (茴 $r^{2} \frac{d^{2} R}{d r^{2}}+2 r \frac{d R}{d r}-\lambda R=0$.
 معادله بهصورت زير در مى آيد
$r^{2} k(k-1) r^{k-2}+2 r k r^{k-1}-i r^{k}=0$
$\left(k^{2}+k-\lambda\right) r^{k}=0$.

 ($\lambda=n(n+1)$
 $R_{n}(r)=C_{n} r^{n}+D_{n} r^{-(n+1)}$.

$x=\cos \theta, \quad \Theta(\theta)=y(x), \quad \frac{d}{d \theta}=\frac{d x}{d \theta} \frac{d}{d x}=-\sin \theta \frac{d}{d x}$.

$$
\begin{aligned}
\frac{d}{d \theta}\left(\sin \theta \frac{d \Theta}{d \theta}\right) & =-\sin \theta \frac{d}{d x}\left(\sin \theta \frac{d x}{d \theta} \frac{d \Theta}{d x}\right) \\
& =-\sin \theta \frac{d}{d x}\left(-\sin ^{2} \theta \frac{d y}{d x}\right) \\
& =\sqrt{1-x^{2}} \frac{d}{d x}\left(\left(1-x^{2}\right) \frac{d y}{d x}\right) .
\end{aligned}
$$

با اين جايگذاريها معادلهُ (Y-Y-Q) به صورت زير $\frac{d}{d x}\left(\left(1-x^{2}\right) \frac{d y}{d x}\right)+\left(n(n+1)-\frac{m^{2}}{1-x^{2}}\right) y=0$

يا به صورت معادل
$\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+\left(n(n+1)-\frac{m^{2}}{1-x^{2}}\right) y=0$.
$(11-Y-0)$
در مى آيد .
 روش سـريها بهدست مى آيد، عبارت انسـت از
$y_{n, m}(x)=c_{n, m} P_{n}^{m}(x)+d_{n, m} Q_{n}^{m}(x)$,
كه

$\left(1-x^{2}\right) \frac{d^{2} y}{d x^{i}}-2 x \frac{d y}{d x}+n(n+1) y=0$,
كه آن را معادلئ ديفراتسيل لثراندر مى ناسند . يكى جوابِ خصصوصى آن عبارتاسـتاز $y=P_{n}(x)$.
$r+9$

 ($\theta \neq \pi) x \neq-1$ (ممان طور كه بعداً خواهيم ديد) مى نوان آن را فتط و تتى به كار برد .
 ($\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial u}{\partial \theta}\right)=0$,

و داراى جوابهايى است كه حاصل ضربهاى توابع زيرند :
$R_{n}(r)=C_{n} r^{n}+D_{n} r^{-(n+1)}$
$\Theta_{n}(\theta)=E_{n} P_{n}(\cos \theta)+F_{n} Q_{n}(\cos \theta), \quad n=0,1,2, \ldots$.

جندجمله|بهاى لزانلـر

در مثال و جوابهاى خحصوصى (تعدادى از جندجمله ايهاى لوأندر را در اين جا نهرست مى كنـبم (ثنكل ه-Y-Y) :
$P_{0}(x)=1, \quad P_{l}(x)=x, \quad P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right)$, $P_{3}(x)=\frac{1}{2}\left(5 x^{3}-3 x\right), \quad P_{4}(x)=\frac{1}{8}\left(35 x^{4}-30 x^{2}+3\right)$.

نهرست مى شوند . (تمرين † را نيز ملاحظه كنيد)

[^0]

$P_{2 n+1}(0)=0$
$P_{n}(1)=1$
$P_{n}(-1)=(-1)^{n}$
$P_{n+1}^{\prime}(x)-x P_{n}^{\prime}(x)=(n+1) P_{r}(x), \quad n=1,2, \ldots$
$x P_{n}^{\prime}(x)-P_{n-1}^{\prime}(x)=n P_{n}(x), \quad n=1,2, \ldots$
$P_{n+1}^{\prime}(x)-P_{n-1}^{\prime}(x)=(2 n+1) P_{n}(x), \quad n=1,2, \ldots$
تو جه كنيد كه نحاصيت (ج) مجموع خواص (ت) و (ت) است . مى توانبـم خاصيت (ت
\[

$$
\begin{align*}
& P_{n}(x)=\frac{1}{2^{n}} \sum_{k=0}^{N} \frac{(-1)^{k}(2 n-2 k)!}{k!(n-2 k)!(n-k)!} x^{n-2 k},
\end{align*}
$$
\]

$$
\begin{aligned}
& P_{n+1}(x)=\frac{1}{2^{n+1}} \sum_{k=0}^{N} \frac{(-1)^{k}(2 n-2 k+2)!}{k!(n-2 k+1)!(n-k+1)!} x^{n-2 k+1} \\
& P_{n+1}^{\prime}(x)=\frac{1}{2^{n+1}} \sum_{k=0}^{N} \frac{(-1)^{k}(2 n-2 k+2)!(n-2 k+1)}{k!(n-2 k+1)!(n-k+1)!} x^{n-2 k} \\
& P_{n}^{\prime}(x)=\frac{1}{2^{n}} \sum_{k=0}^{N} \frac{(-1)^{k}(2 n-2 k)!(n-2 k)}{k!(n-2 k)!(n-k)!} x^{n-2 k-1} \\
& x P_{n}^{\prime}(x)=\frac{1}{2^{n}} \sum_{k=0}^{N} \frac{(-1)^{k}(2 n-2 k)!(n-2 k)}{k!(n-2 k)!(n-k)!} x^{n-2 k} \\
& P_{n+1}^{\prime}(x)-x P_{n}^{\prime}(x)=\frac{1}{2^{n+1}} \sum_{k=0}^{N} \frac{(-1)^{k}(2 n-2 k+2)(2 n-2 k+1)(2 n-2 k)!}{k!(n-2 k)!(n-k+1)(n-k)!} x^{n-2 k} \\
& -\frac{1}{2^{n}} \sum_{k=0}^{N} \frac{(-1)^{k}(2 n-2 k)!(n-2 k)}{k!(n-2 k)!(n-k)!} x^{n-2 k} \\
& P_{n+1}^{\prime}(x)-x P_{n}^{\prime}(x)=(2 n-2 k+1-n+2 k) \frac{1}{2^{n}} \sum_{k=0}^{N} \frac{(-1)^{k}(2 n-2 k)!}{k!(n-2 k)!(n-k)!} x^{n-2 k} \\
& =(n+1) P_{n}(x) .
\end{aligned}
$$

خاصيت (ث) را با روشى مشابه مى توان ثابـت كرد (تمرين ץ)

تعامل هثندجمهلهايهاى لرانلدر
 همان كونه كه در بـخش بعد خواهيـم ديد، در حل مساثل مقذار مرزى اساسى الست .
 $\frac{d}{d x}\left(\left(1-x^{2}\right) P_{n}^{\prime}(x)\right)+n(n+1) P_{n}(x)=0, \quad n=0,1,2, \ldots$.

با ضرب اين معادله در P ${ }_{\text {P }}$ و انتگرال كيرى از ا - تا ا نتيجه مى شود $\int_{-1}^{1} P_{m}(x) \frac{d}{d x}\left(\left(1-x^{2}\right) P_{n}^{\prime}(x)\right) d x+n(n+1) \int_{-1}^{1} P_{m}(x) P_{n}(x) d x=0 .(10-\xi-\Delta)$ انتگرال اولّ رامى توانبا روش جزء به بزء مساسبه كرد، قرار مى دهيم
$u=P_{m}(x)$, $d u=P_{m}^{\prime}(x) d x$, $d v=\frac{d}{d x}\left(\left(1-x^{2}\right) P_{n}^{\prime}(x)\right) d x, \quad v=\left(1-x^{2}\right) P_{n}^{\prime}(x)$.

آن كاه
$\int_{-1}^{1} P_{m}(x) \frac{d}{d x}\left(\left(1-x^{2}\right) P_{n}^{\prime}(x)\right) d x$

$$
=\left.P_{m}(x) P_{n}^{\prime}(x)\left(1-x^{2}\right)\right|_{-1} ^{1}-\int_{-1}^{1}\left(1-x^{2}\right) P_{n}^{\prime}(x) P_{m}^{\prime}(x) d x
$$

اولّين جملةُ طرن راستدر دو حد بهخاطر جملة (بهصورت زير خلاصه مى شود
$-\int_{-1}^{1}\left(1-x^{2}\right) P_{n}^{\prime}(x) P_{m}^{\prime}(x) d x+n(n+1) \int_{-1}^{1} P_{m}(x) P_{n}(x) d x=0$.
در مـعادلـُ انخير m و n مـعنى خـاصى ندارند بجز اين كـه هر دو صــيحِ و نامنفى اند بنابر اين مى توان m و n را تعويض نمود ـ در اين صورت داريم
$-\int_{-1}^{1}\left(1-x^{2}\right) P_{m}^{\prime}(x) P_{n}^{\prime}(x) d x+m(m+1) \int_{-1}^{1} P_{\pi}(x) P_{m}(x) d x=0$.
اكر اين معادله رالز تبلى كم كنيم، خو اهيمه داشتـت
$(n-m)(n+m+1) \int_{-1}^{1} P_{m}(x) P_{n}(x) d x=0$.
 نيجهة زير بهدست مى آيد
$\int_{1}^{1} P_{m}(x) P_{n}(x) d x=0, \quad m \neq n$.
$(19-y-\Delta)$

H!
فصل بنجم - مسائل مقدار مرزى در ديكر دستكاههاى مختصات ابن نشان مي دهد كه مجموعهُ
$\left\{P_{0}(x), P_{1}(x), P_{2}(x), \ldots\right\}$
بر بازهُ (1,1) نسبـت به تابع وزن ا منعامد است .

秋 ، $d x=-\sin \theta d \theta, x=\cos \theta$ معادلهُ (
$\int_{\pi}^{o} P_{m}(\cos \theta) P_{n}(\cos \theta)(-\sin \theta d \theta)=0, \quad m \neq n$
$\int_{0}^{\pi} \sin \theta P_{m}(\cos \theta) P_{n}(\cos \theta) d \theta=0, \quad m \neq n$.
"س مجموعئ
$\left\{P_{0}(\cos \theta), P_{1}(\cos \theta), P_{2}(\cos \theta), \ldots\right\}$
بر بازه́ اكر در معادلهُ ((19-ヶ-
$\int_{-1}^{1} P_{2 m}(x) P_{2 n}(x) d x=2 \int_{0}^{1} P_{2 m}(x) P_{2 n}(x) d x=0, \quad n \neq m$.
بهعـبـارت ديگر، هــندجــمله ايهـاى لزُانـدر درجـه زوج بربازهُ 1 < 1 < 0 نسـبـبت به تابع وزن

| ا متعامدند (تهرين F) .
سرى لزاندر
خاصـيت تعامـد هندجـمله ايهاى لزُاندر نمايش توابمى مـعيّن مـانندf را به مرىى لرّاندر، يعنى، يكـ سرى از هخندجمله ايهاى لزُانلر، ممكن مي سـازد . اين نمايت الـكان بذير است زيرا معادلهُ ديفرانسيل لزاندر (

رياخـياتت مهندسى

در اين بـخش به دسـت خحواهيم آورد بر بازه́ (1, 1-) نسبـت به توابـع تكهه ایى ـ هموار يكى مجــموعــُ
متعامل يكهُ كامل تثنكيل مى دهند .
براى چخنين تابعى مى نويسيم

$$
f(x)=A_{0} P_{0}(x)+A_{1} P_{1}(x)+A_{2} P_{2}(x)+A_{3} P_{3}(x)+\cdots
$$

براى مـــال به منظور يانتن A_{2} ، دو طرفـ رابطهُ فـوت را در $P_{2}(x) d x$ خـربـ كــرده و از ا - تا
انتگُرال مى كيريم . در اين صورت

$$
\begin{aligned}
\int_{-1}^{1} f(x) P_{2}(x) d x= & A_{0} \int_{-1}^{1} P_{0}(x) P_{2}(x) d x+A_{1} \int_{-1}^{1} P_{1}(x) P_{2}(x) d x \\
& +A_{2} \int_{-1}^{1} P_{2}(x) P_{2}(x) d x+A_{3} \int_{-1}^{1} P_{3}(x) P_{2}(x) d x+\cdots
\end{aligned}
$$

بهعلت خاصيت تعامد ${ }^{\text {به }}$ ، هر انتگُرال طرف راسـت بجز سـومى برابر صفر اسـت . هس

$$
\int_{-1}^{1} f(x) P_{2}(x) d x=A_{2} \int_{-1}^{1}\left(P_{2}(x)\right)^{2} d x
$$

كه أز آن بهدسـت مى آوريم

$$
A_{2}=\frac{\int_{-1}^{1} f(x) P_{2}(x) d x}{\int_{-1}^{1}\left(P_{2}(x)\right)^{2} d x}
$$

$$
A_{n}=\frac{\int_{-1}^{1} f(x) P_{n}(x) d x}{\int_{-1}^{1}\left(P_{n}(x)\right)^{2} d x}, \quad n=0,1,2, \ldots
$$

 نشان مى دهند . برالى مـحاسبهُ اين مـقدار، ابتدا به نتيـجه ایى كه فرمول رودريح" ناميده مى شـود، نياز دأريم .

شـروع كار با بسط دو جملهايى ($x^{2}-1$ الست، كه بهصورت زير نوشته مى شود

$\left(x^{2}-1\right)^{n}=\sum_{k=0}^{n}(-1)^{k} \frac{n!}{k!(n-k)!} x^{2 n-2 k}$.
انكر nبار از آن مشتت بغيريم، داريـم (تمرين 19)
$\frac{d^{n}\left(x^{2}-1\right)^{n}}{d x^{n}}=\sum_{k=0}^{N} \frac{(-1)^{k} n!(2 n-2 k)!}{k!(n-k)!(n-2 k)!} x^{n-2 k}$,
 n-1-2N=0 است، در مـعـادله ((بهصورت

تعريفـ

$$
P_{n}(x)=\frac{1}{2^{n}} \sum_{k=0}^{N} \frac{(-1)^{k}(2 n-2 k)!}{k!(n-2 k)!(n-k)!} x^{n-2 k}
$$

 ($1 \wedge-\varphi-\Delta$) نتيجه مى شود

$$
P_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}\left(x^{2}-1\right)^{n}}{d x^{n}}, \quad n=0,1,2, \ldots
$$

كه نرمول رودريكاست.
مى توانيـم معادلة ((

$$
\int_{-1}^{1}\left(P_{n}(x)\right)^{2} d x=\int_{-1}^{1} P_{n}(x) \frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n} d x
$$

و أنتگرال كيرىى جزء به جزء با

$$
\begin{aligned}
u & =P_{n}(x), & d v & =\frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n} d x \\
d u & =P_{n}^{\prime}(x) d x, & v & =\frac{d^{n-1}}{d x^{n-1}}\left(x^{2}-1\right)^{n},
\end{aligned}
$$

$\int_{-1}^{1}\left(P_{n}(x)\right)^{2} d x$

$$
=\frac{1}{2^{n} n!}\left[\left.P_{n}(x) \frac{d^{n-1}}{d x^{n-1}}\left(x^{2}-1\right)^{n}\right|_{-1} ^{1}-\int_{-1}^{1} P_{n}^{\prime}(x) \frac{d^{n-1}}{d x^{n-1}}\left(x^{2}-1\right)^{n} d x\right] .
$$

اولّين جمـلة طرف راست در هر دو حد به باط باطر جملكُ (1 (1)
$\int_{-1}^{1}\left(P_{n}(x)\right)^{2} d x=\frac{(-1)^{n-1}}{2^{n} n!} \int_{-1}^{1} P_{n}^{(n-1)}(x) \frac{d}{d x}\left(x^{2}-1\right)^{n} d x$
يك بار انتگر ال كيرى ديكر نتيجه مى دهد
$\int_{-1}^{1}\left(P_{n}(x)\right)^{2} d x=\frac{(-1)^{n}}{2^{n} n!} \int_{-1}^{1} P_{n}^{(n)}(x)\left(x^{2}-1\right)^{n} d x$.

$P_{n}^{(n)}(x)=\frac{(2 n)!}{2^{n}(n!)}$
با استفاده از فرمول كاهـُ كه در اكثر جدولهاى انتُر ال يانت مى شودد، داريم.
$\int x^{m}\left(a x^{n}+b\right)^{p} d x=\frac{1}{m+n p+1}\left(x^{m+1}\left(a x^{n}+b\right)^{p}+n p \bar{j} \int x^{m}\left(a x^{n}+b\right)^{p-1} d x\right)$,
وبا nبار انتُرال كيرى، داريم
$\int_{-1}^{1}\left(x^{2}-1\right)^{n} d x=\frac{(-1)^{n 2^{2 n+1}(n!)^{2}}}{(2 n+1)!}$.
بس، با در نظر كر نتن همئ نتايج (تمرين ه)، داريم
$\int_{-1}^{1}\left(P_{n}(x)\right)^{2} d x=\frac{(-1)^{n}}{2^{n} n!} \frac{(2 n)!}{2^{n}(n!)} \frac{(-1)^{n} 2^{2 n+1}(n!)^{2}}{(2 n+1)!}$

$$
\left\|P_{n}\right\|^{2}=\frac{2}{2 n+1}, \quad n=0,1,2, \ldots
$$

$\left\{\frac{P_{0}(x)}{\sqrt{2}}, \frac{P_{1}(x)}{\sqrt{2 / 3}}, \frac{P_{2}(x)}{\sqrt{2 / 5}}, \ldots\right\}$

$$
A_{n}=\frac{2 n+1}{2} \int_{-1}^{1} f(x) P_{n}(x) d x, \quad n=0,1,2, \ldots
$$

$$
f(x)=2(1-x), \quad 0<x<1
$$

دو جملةُ اوّل نمـايش سرى لزاندر اين تابع رابا استفاده از (الـف) جندجمله ايهـاى درجه زوج و (ب) جندجمله ايهاى درجهُ فرد به دست آَرريد .
حل : براى (الفش) يكـوسيع زوج بنا مى كنيم ومعادلهُ (Y-F-Q) رابه صورت زير تغير مي دهيم

$$
A_{2 n}=(4 n+1) \int_{0}^{1} f(x) P_{2 n}(x) d x, \quad n=0,1,2, \ldots
$$

جون تابع انتُرال زوج است، مى توانيم از تقارن استفاده كرده و حدود انتگرال كيرى راعوض كنيم . حال داريم

$$
\begin{aligned}
& A_{0}=2 \int_{0}^{1}(1-x) d x=1 \\
& A_{2}=5 \int_{0}^{1}(1-x)\left(3 x^{2}-1\right) d x=-\frac{5}{4}
\end{aligned}
$$

$$
f(x) \sim P_{0}(x)-\frac{5}{4} P_{2}(x)+\cdots
$$

$$
\begin{aligned}
& \text { زير تشّريح مي كنيم } \\
& \text { مثال ه- }
\end{aligned}
$$

 تنيير دهيـم $A_{2 n+1}=(4 n+3) \int_{0}^{1} f(x) P_{2 n+1}(x) d x, \quad n=0,1,2, \ldots . \quad(Y r-Y-\Delta)$ توجه كنيد كه تابع انتگرالـده در اين جا هم زوج است . يس

$$
\begin{aligned}
& A_{1}=6 \int_{0}^{1}(1-x) x d x=1 \\
& A_{3}=7 \int_{0}^{1}(1-x)\left(5 x^{3}-3 x\right) d x=-\frac{7}{4}
\end{aligned}
$$

بنابراين
$f(x) \sim P_{1}(x)-\frac{7}{4} P_{3}(x)+\cdots$.

(الفـ)

(ب)

شكل \%- 0 (الف) توسيع زرج. (ب) توسبع نرد .

مسائل مثال ه-

بان $f(x)$

توابع لزاندر نوع دوم

 يكى جوابب معادلهُ لْزاندر
$\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+n(n+1) y=0, \quad-1<x<1$,
عبارت اسـت از
$u=P_{n}(x) . \quad n=0,1,2, \ldots$,
كه جندجمله ایى لزاندر درجهُ n أست . با روشـي بهنام تغيير بارامترها يكى جوابِ دوم مستـل خطـى به دست مى آوريم .
$y^{\prime \prime}=u v^{\prime \prime}+2 u^{\prime} v^{\prime}+v u^{\prime \prime}, y^{\prime}=u v^{\prime}+v u^{\prime}$ فرض كنيد $y=u v$ يكى جواب باشد . آن
و با جايگزين كردن در معادلهُ ديفر انانسيل نتيجه مى شُود
$u v^{\prime \prime}+2 u^{\prime} v^{\prime}+v u^{\prime \prime}-x^{2}\left(u v^{\prime \prime}+2 u^{\prime} v^{\prime}+v u^{\prime \prime}\right)-2 x\left(u v^{\prime}+v u^{\prime}\right)+n(n+1) u v=0$
$v\left[u^{\prime \prime}-x^{2} u^{\prime \prime}-2 x u^{\prime}+n(n+1) u\right]+u v^{\prime \prime}+2 u^{\prime} v^{\prime}-x^{2} u v^{\prime \prime}-2 x^{2} u^{\prime} v^{\prime}-2 x u v^{\prime}=0$.
 بنابراين خواهيم داشت
$v^{\prime \prime}\left(1-x^{2}\right) u+v^{\prime}\left(2 u^{\prime}-2 x^{2} u^{\prime}-2 x u\right)=0$
$v^{\prime \prime}+v^{\prime}\left(\frac{2 u^{\prime}}{u}-\frac{2 x}{1-x^{2}}\right)=0$.

$w^{\prime}+w\left(\frac{2 u^{\prime}}{u}-\frac{2 x}{1-x^{2}}\right)=0$
يكى معادلئ ديفر انسيل خطى مرتبهُ اوّل امـت . عامل انتگرال ساز عبارت المت از
$\exp \left(2 \int^{4} \frac{t^{\prime}}{t} d t+\int^{x} \frac{-2 t d t}{1-t^{2}}\right)=\exp \left(\log u^{2}+\log \left(1-x^{2}\right)\right)$

$$
=u^{2}\left(1-x^{2}\right) .
$$

 $w^{\prime} u^{2}\left(1-x^{2}\right)+w\left(2\left(1-x^{2}\right) u u^{\prime}-2 x u^{2}\right)=0$
$d\left(w u^{2}\left(1-x^{2}\right)\right)=0$.
$w=\frac{d v}{d x}=\frac{A}{u^{2}\left(1-x^{2}\right)}$
$v=B+A \int \frac{d x}{u^{2}\left(1-x^{2}\right)}$,
بنابراين جواب مورد نظر بهصورت زير است
$y_{n}(x)=v P_{n}(x)=B_{R} P_{n}(x)+A_{n} P_{n}(x) \int \frac{d x}{\left(1-x^{2}\right)\left(P_{n}(x)\right)^{2}}$.
($\mathrm{Y} 0-\mathrm{F}-\mathrm{O}$)

$Q_{0}(x)=\int^{x} \frac{d x}{1-x^{2}}=\frac{1}{2} \log \left(\frac{1+x}{1-x}\right)$,
$Q_{1}(x)=x \int^{x} \frac{d x}{x^{2}\left(1-x^{2}\right)}=\frac{x}{2} \log \left(\frac{1+x}{1-x}\right)-1$.

با ادامهُ اين روشّ داريبم

$$
\begin{aligned}
& Q_{2}(x)=\frac{1}{4}\left(3 x^{2}-1\right) \log \left(\frac{1+x}{1-x}\right)-\frac{3}{2} x \\
& Q_{3}(x)=\frac{x}{4}\left(5 x^{2}-3\right) \log \left(\frac{1+x}{1-x}\right)-\frac{5}{2} x^{2}+\frac{2}{3}
\end{aligned}
$$

نمردارهاي اين توابع در شُكل ه-

از تعريفب Q ـ تابع لزثانلـر ؛

$$
\begin{equation*}
Q_{n}(x)=P_{n}(x) \int \frac{d x}{\left(1-x^{2}\right)\left(P_{n}(x)\right)^{2}} \tag{YG-Y-0}
\end{equation*}
$$

نتيجه می شـود

$$
\begin{aligned}
Q_{2 \pi}(-x) & =P_{2 \pi}(-x) \int \frac{-d x}{\left(1-x^{2}\right)\left(P_{2 \pi}(-x)\right)^{2}} \\
& =-P_{2 n}(x) \int \frac{d x}{\left(1-x^{2}\right)\left(P_{2 \pi}(x)\right)^{2}}=-Q_{2 n}(x)
\end{aligned}
$$

و همحتنين

$$
\begin{aligned}
Q_{2 n+1}(-x) & =P_{2 n+1}(-x) \int \frac{-d x}{\left(1-x^{2}\right)\left(P_{2 n+1}(-x)\right)^{2}} \\
& =P_{2 n+1}(x) \int \frac{d x}{\left(1-x^{2}\right)\left(P_{2 n+1}(x)\right)^{2}}=Q_{2 n+1}(x)
\end{aligned}
$$

از تركيب اين نتايج به دست مى آوريـم

$$
Q_{n}(-x)=(-1)^{n-1} \quad Q_{,}(x)
$$

به اين دليل است كه نمودوارها در شكل هـ
جحملة
$\log \left(\frac{1+x}{1-x}\right)$
 $\theta=\pi, \theta=0$, $x=\cos \theta$ (r (r, ϕ, θ)

انتقال مى يابند .
توابع لـرّانلدر نوعدوم (Qـ توابع) را بـه صــورت بســتـه بـه دسـتا آورده ايـم . اين تـوابع را
هي توان به صـوردت يكـ ســري نامـتـناهي با بسط (1-x) \log به سـري مكلورن نيـز بيـان
نمود، يعنى،

$$
\log \left(\frac{1+x}{1-x}\right)=2\left(x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\frac{x^{7}}{7}+\cdots\right), \quad-1<x<1
$$

تمرينهای P-A

 در مختصطات كروى هستند

Y تحقيت كنيد دتر مينان رونسكى الستفاده كنبد و توجه كنبد كه n صحيح و نامنفى است)

$$
\begin{array}{ll}
P_{n}(-1)=(-1)^{n} & \left(ب \quad P_{2 n+1}(0)=0\right. \\
x P_{n}^{\prime}(x)-P_{n-1}^{\prime}(x)=n P_{n}(x), & n=1,2, \ldots \\
P_{2 n}(0)=(-1)^{n} \frac{(2 n)!}{2^{2 n}(n!)^{2}} & \text { (e } P_{2 n}^{\prime}(0)=0
\end{array}
$$

. متعامدند

9- با با بحاسبه مستقيم نرم ماز با با . نسبت بهتابع وزن ا متعامدند -9$\int_{0}^{1} P_{2 n}(x) d x=0, \quad n=1,2, \ldots$.

$$
\begin{aligned}
\\
\end{aligned}
$$

$\int_{-1}^{1} P_{n}^{\prime}(x) P_{m}(x) d x=1-(-1)^{n+m}$.
كه 11- نشان دهيد
$\int_{-1}^{1} x\left(P_{n}(x)\right)^{2} d x=0$.

- IY

$$
\begin{aligned}
& a x+b \\
& a x^{2}+b x+c \\
& a x^{3}+b x^{2}+c x+d
\end{aligned}
$$

(الف)
(ب)
(ب)
Hا - تابـت كنيد
$P_{n}^{\prime}(1)=\frac{n}{2}(n+1)$.
. . ب)
 $f(x)= \begin{cases}0, & -1<x<0, \\ 2(1-x), & 0<x<1 .\end{cases}$
ت) (0) (0رادر تسمت (ب) محاسبه كنيد .

10- سهض

$$
f(x)= \begin{cases}0, & -1<x<0 \\ 1, & 0<x<1\end{cases}
$$

(رامنمايع : از نتيجه تمرين + (ث) استفاده كنين) .

$$
\begin{aligned}
& f(x)= \begin{cases}0, & -1<x<0 \\
x, & 0<x<1\end{cases} \\
& f(x)=|x|,-1<x<1
\end{aligned}
$$

ب!
ب)
 نرمول زير رابهدست آوريد - IV
$\int_{1}^{1} P_{n}(s) d s=\frac{1}{2 n+1}\left(P_{n-1}(x)-P_{n+1}(x)\right), \quad n=1,2, \ldots$.
(رامنمايع : از محادلة́

- ا^ أكر (
$\int_{1}^{1} f(x) P_{n}(x) d x=0$.

$$
19 \text { - يكى نمايش انتكرالى (x) به بورت زير داده ممى شـود }
$$

$P_{n}(x)=\frac{1}{\pi} \int_{0}^{\pi}\left(x+\left(x^{2}-1\right)^{1 / 2} \cos \phi\right)^{\pi} d \phi$.

$$
\begin{aligned}
& \text { اين نمايش را ابرای } n=0,1,2 \text { تحقيق كنيد . } 2 \text { م } \\
& \text { r- الف) با استفاده از نرمول رودريـى ثابت كنيد }
\end{aligned}
$$

$2^{n} n!P_{n+1}(x)=(2 n+1) \frac{d^{(n-1)} u^{n}}{d x^{(n-1)}}+2 n \frac{d^{(n-1)} u^{n-1}}{d x^{(n-1)}}$,

$$
\text { كه در آن } 1 \text {. } u=x^{2} .
$$

ب) (در رابطةّ به دست آمده در تسمت (الف) با استفاده از جايكزينى

$$
2^{n-1}(n-1)!P_{n-1}(x)=\frac{d^{(n-1)} u^{n-1}}{d x^{(n-1)}}
$$

نـنـان دهيد
$P_{n+1}(x)-P_{n-1}(x)=\frac{2 n+1}{2^{n} n!} \frac{d^{(n-1)} u^{n}}{d x^{(n-1)}}$.
 خطى اند.
 . بنويسيد

(Y- برقر ار است .

كاريردها

 دماهاى روي سطع كره با
 بنابراين مسالهة زير را داريم (معادلك ه- ه-

$$
\begin{aligned}
& \nabla^{2} u(r, \theta)=\frac{\partial^{2} u}{\partial r^{2}}+\frac{2}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}+\frac{\cot \theta}{r^{2}} \frac{\partial u}{\partial \theta}=0, \quad 0<r<b, \quad: \text { Na } \\
& \quad 0<\theta<\pi \\
& u(b, \theta)=f(\cos \theta), \quad 0<0<\pi
\end{aligned}
$$

تسمتي از كره كه در ربع اوّل واتع است در شكل ه-ه - ا نشان داده مى شود .

شكل 0-0-1

 $u(r, \theta)=R(r) \Theta(\theta)$,
$\Theta \frac{d^{2} R^{2}}{d r^{2}}+\frac{2}{r} \Theta \frac{d R}{d r}+\frac{R}{r^{2}} \frac{d^{2} \Theta}{d \theta^{2}}+\frac{R \cot \theta}{r^{2}} \frac{d \Theta}{d \theta}=0$

$$
\frac{r^{2}}{R} \frac{d^{2} R}{d r^{2}}+\frac{2 r}{R} \frac{d R}{d r}=-\frac{1}{\Theta} \frac{d^{2} \Theta}{d \theta^{2}}-\frac{\cot \theta}{\Theta} \frac{d \Theta}{d \theta}=i .
$$

و آن نتيجه مى شود

$$
r^{2} R^{\prime \prime}+2 r R^{\prime}-\lambda R=0
$$

كه برایى $\lambda=n(n+1$ ، داراى جوابهايعى بهصورت $R_{n}(r)=C_{n} r^{n}+D_{n} r^{-(n+1)}, \quad n=0,1,2, \ldots$

معادل معادلهُ ديفر انسيل لثُاندر زير امست (تمرين ا)
$\frac{1}{\sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d \Theta}{d \theta}\right)+n(n+1) \Theta=0$,
ر جواب عمومى آن بهصورت زير امست
$\Theta_{n}(\theta)=E_{n} P_{n}(\cos \theta)+F_{n} Q_{n}(\cos \theta ; \quad n=0,1,2, \ldots$.
برای آن كـــه u كـــران دار بماند بـايد حاصل ضربهاى $r^{n} P_{n}(\cos \theta)$,

المت و برایى آن كه u در شرط مـرزى ناهمكن باقى مـانده صدت كند، تركيبى خحطى از جـر ابهاى نوت در نظر مى كيريم . در آن صورت
$u(r, \theta)=\sum_{n=0} A_{n} r^{n} P_{n}(\cos \theta)$,
كه
$u(b, \theta)=\sum_{n=0} A_{n} b^{n} P_{n}(\cos \theta)=f(\cos \theta)$,
 $A_{n} b^{n}=\frac{2 n+1}{2} \int_{-1}^{1} f(x) P_{n}(x) d x, \quad n=0,1,2, \ldots$,

بنابراين جواب به حررت زير نوشُته مى شود
$u(r, \theta)=\frac{1}{2} \sum_{n=0}\left(\frac{r}{b}\right)^{n} P_{n}(\cos \theta)(2 n+1) \int_{-}^{1} f(x) P_{n}(x) d x$.
 نشان ني دهتد .

 استوانهاى استفاده مى كنيم . در اين صورت دسألّه زير دا داريم (تمرين ب) :

$$
\begin{aligned}
& u_{\rho \rho}+\frac{1}{\rho} u_{\rho}+u_{z z}=0, \quad 0<\rho<c, \quad 0<z<b: \\
& u(c, z)=0, \quad 0<z<b, \\
& u_{z}(\rho, 0)=0, \quad 0<\rho<c \\
& u(\rho, v)=100, \quad 0<\rho<c
\end{aligned}
$$

 مشـتقات جزئى به صورت زير در مى آيد

$$
Z R^{\prime \prime}+\frac{1}{\rho} Z R^{\prime}+R Z^{\prime \prime}=0
$$

$$
\frac{R^{\prime \prime}}{R}+\frac{R^{\prime}}{\rho R}=-\frac{Z^{\prime \prime}}{\bar{Z}}=-\lambda^{2}
$$

 استفاده كرد) عبارتند از

$$
Z^{\prime \prime}-\lambda^{2} Z=0, \quad Z^{\prime}(0)=0,
$$

$R^{\prime \prime}+\frac{1}{\rho} R^{\prime}+\lambda^{2} R=0, \quad R(c)=0$.
 جوأبهاى عمومى زير را داريم
$Z(\lambda z)=A e^{i z}+B e^{-\lambda z}$
$R_{0}(\lambda \rho)=E J_{0}(\lambda \rho)+F Y_{0}(\lambda \rho)$.

 مينامبـم، يعنى، عبارتند از (تمرين ه)
$Z\left(\lambda_{j} z\right)=\cosh \left(\lambda_{j} z\right), \quad j=1,2, \ldots$.
$u(\rho, z)=\sum_{j=1} a_{j} \cosh \left(\lambda_{j} z\right) J_{0}\left(\lambda_{j} \rho\right)$
ر، با به كار بردن شرط مرزى ناهمگن، داريم
$u(\rho, b)=\sum_{j=1} a_{j} \cosh \left(\lambda_{j} b\right) J_{0}\left(\lambda_{j} \rho\right)=100$,

 مـى تــواننوشت

رياخبات مهـدسى,

$$
\begin{aligned}
A_{j}=a_{j} \cosh \left(\lambda_{j} b\right) & =\frac{2}{c^{2}\left(J_{0}^{\prime}\left(\lambda_{j} c\right)\right)^{2}} \int_{0}^{c} 100 x J_{0}\left(\lambda_{j} x\right) d x \\
& =\frac{200}{c^{2}\left(J_{0}^{\prime}\left(\lambda_{j} c\right)\right)^{2}} \frac{1}{\hat{\lambda}_{j}^{2}} \int_{0}^{\lambda_{j} c} s J_{0}(s) d s
\end{aligned}
$$

آن گُاه، با اسستفاده از مـعادله (Q-Y-

$$
A_{j}=a_{j} \cosh \left(\lambda_{j} b\right)=\frac{200}{\lambda_{j} c J_{1}\left(\lambda_{j} c\right)}
$$

$$
u(\rho, z)=\frac{200}{c} \sum_{j=1} \frac{J_{0}\left(\lambda_{j} \rho\right) \cosh \left(\lambda_{j} z\right)}{\lambda_{j} \cosh \left(\lambda_{j} b\right)_{\mathrm{e}} J_{1}\left(\lambda_{j} c\right)}
$$

در مثال بعد معادلهُ موج دو بعدى را در يكى ناحيهُ دايره أى در نظر مى گيريم

 مكان اولّيه (f f در امتـداد محـور ح ها داده مى شـود . مى خواهيم تغـيـير مكانهـا را در يكـ نقطه

 ديفر انسيل معمرلى و شرايط همڭگ زير مى رسيـم (تمرين V)

$$
\begin{gathered}
T^{\prime \prime}+\lambda^{2} a^{2} T=0, \quad T^{\prime}(0)=0 \\
\rho^{2} R^{\prime \prime}+\rho R^{\prime}+\lambda^{2} \rho^{2} R=0, \quad R(c)=0
\end{gathered}
$$

$$
\begin{aligned}
& z_{t t}=\frac{a^{2}}{\rho}\left(\rho z_{\rho}\right)_{\rho}, \quad 0<\rho<c, \quad t>0 ; \quad \text { : لداد } \\
& z(c, t)=0, \quad t>0 ; \quad \text { : } \\
& \boldsymbol{z}_{\mathbf{t}}(\rho, 0)=0, \quad 0<\rho<c, \quad: \quad \text { : ثر ايط اوله } \\
& z(\rho, 0)=f(\rho), \quad 0<\rho<c .
\end{aligned}
$$

شـكل 0-0

ثابت جداسمازى به كونه ایى انتـخاب نـده اسـت كهT (و z) برحسبب t متناوب شوند تا با با واقعيت ، $J_{11}\left(\lambda_{j} c\right)=0$ فيزيكى هم ساز كار كردد . مـعادلئ دوم داراى
 تركيبي خططى از حاصل ضرب اينها را در نظر مى گيريم، يعنى،

$$
z(\rho, t)=\sum_{j=1} A_{j} J_{0}\left(\lambda_{j} \rho\right) \cos \left(\lambda_{j} a t\right)
$$

 مى بريم • بس

$$
A_{j}=\frac{2}{c^{2}\left(J_{1}\left(\hat{\lambda}_{j} c\right)\right)^{2}} \int_{0}^{c} x f(x) J_{0}\left(\lambda_{j} x\right) d x, \quad j=1,2, \ldots
$$

$$
z(\rho, t)=\frac{2}{c^{2}} \sum_{j=1} \frac{J_{0}\left(\lambda_{j} \rho\right) \cos \left(\lambda_{j} a t\right)}{\left(J_{1}\left(\lambda_{j} c\right)\right)^{2}} \int_{0}^{c} x f(x) J_{0}\left(\lambda_{j} x\right) d x
$$

. كه
در مثال بعد معادلُّ دو بعدى كرما را روى يكى ناحيءٔ دايرهأى بر رسى مى كنبم •

$$
\begin{aligned}
& \text { مثال } \\
& u_{\mathrm{r}}=\frac{k}{\rho}\left(\rho u_{\rho}\right)_{\rho}, \quad 0<\rho<c, \quad t>0 ; \\
& u_{\rho}(c, t)=0, \quad t>0 ; \quad \text { : } \\
& u(\rho, 0)=f(\rho), \quad 0<\rho<c . \quad: \quad \text { : }
\end{aligned}
$$

 سطوح داير ایى بالا و بايين آن نيز عايت شــده است . علاوه بر اين، دما از ϕ مستقل اسـت، هـون
 المتفاده از جداسازى متغيرّ ها، معادلات ديفرانسسيل معمولى زير را به دست مى آوريم (تمرين ^)

$$
T^{\prime}+k \lambda^{2} T=0
$$

$R^{\prime \prime}+\frac{1}{\rho} R^{\prime}+\lambda^{2} R=0, \quad R^{\prime}(c)=0$.

شكل 0-0-0

در اين جا نيز ثابـت جداسازى منفي انتشخاب شده است، بهاين دليل كه حد صفر شود (تمرين 9) .

مـعـادلـهُ دوم، مـعـادلهُ ديفـرانسـيل بسل مـرتبـهٔ صـفر امسـت و دارالى جـواب كـراندار
 داريم
$J_{0}^{\prime}(\lambda c)=-\lambda J_{1}(\lambda c)=0$,

مى ناميمّ، يعنى،
$u(\rho, t)=\sum_{j=1} A_{j} \exp \left(-k \lambda_{j}^{2} t\right) J_{0}\left(\lambda_{j} \rho\right)$,
 با $h=n=0$ در معادلك (Y-Y-Q h (Y- محاسبه مى كنيم • بنابراين

$$
A_{1}=\frac{2}{c^{2}} \int_{0}^{c} x f(x) d x
$$

$$
A_{j}=\frac{2}{c^{2}\left(J_{0}\left(\overline{\lambda_{j}} c\right)\right)^{2}} \int_{0}^{c} x f(x) J_{0}\left(\lambda_{j} x\right) d x, \quad j=2,3, \ldots
$$

$$
u(\rho, t)=A_{1}+\sum_{j=2} A_{j} \exp \left(-k \lambda_{j}^{2} t\right) J_{0}\left(\lambda_{j} \rho\right)
$$

$$
j=1,2,3, \ldots \text { ، } J_{1}\left(\lambda_{j} c\right)=0 \text {, } A_{1} \text { در بالا تعريف شده اند }
$$

 در هر نتطهُ درون آن بيابيد
 بس مسالّة زير را داريم .

$$
\begin{aligned}
& \nabla^{2} u=0 \quad \text { معادل : در مختصطات كروى مستقل از } \\
& 0<r<b, 0<\theta<\pi / 2 ; \quad \text { ترأيط مرزى } \\
& u_{z}(r, \pi / 2)=0, \quad 0<r<b, \\
& u(b, \theta)=f(\cos \theta), \quad 0<\theta<\pi / 2 .
\end{aligned}
$$

شكل 0-0-0

جون متـغيرّ z يكى از مـختصات دستگاه مختصات كـروى نيسـتـ، لازم است كـ شـرط مرزى

$z=r \cos \theta$,

$$
\begin{aligned}
& \frac{\partial u}{\partial \theta}=\frac{\partial u}{\partial z} \frac{\partial z}{\partial \theta}=-r \sin \theta \frac{\partial u}{\partial z} . \\
& \frac{\partial u}{\partial z}=-\frac{1}{r} \frac{\partial u}{\partial \theta}
\end{aligned}
$$

و شُرط
با مر اجعه به مثال ه-ه-1 ، داريم

$$
u(r, \theta)=\sum_{n=0} A_{n} r^{n} P_{n}(\cos \theta),
$$

كه در معادلهُ لابِلاس صدّق مي كند . حال
$u_{\theta}(r, \vartheta)=\sum_{n=0} A_{n} r^{n} P_{n}^{\prime}(\cos \theta)(-\sin \theta)$
$u_{\theta}(r, \pi / 2)=\sum_{n=0} A_{n} r^{n} P_{n}^{\prime}(0)(-1)=0$,
كه از آن نتيجه مى شـود كه n زوج است (تمرين $2 m$ $u(r, \theta)=\sum_{m=0} A_{2 m} r^{2 m} P_{2 m}(\cos \theta)$.

حال أكر شرط مرزى ناهمگُ را به كار بريم، به دست مى آوريم $u(b, \theta)=\sum_{m=0} A_{2 m} b^{2 m} P_{2 m}(\cos \theta)=f(\cos \theta)$,

 $A_{2 m} b^{2 m}=(4 m+1) \int_{0}^{\pi / 2} f(\cos \theta) P_{2 m}(\cos \theta) \sin \theta d \theta$ و جواب نهايعى به حورت زير نوشته مى شود $u(r, \theta)=\sum_{m=0}(4 m+1)\left(\frac{r}{b}\right)^{2 m} P_{2 m}(\cos \theta) \int_{0}^{1} f(x) P_{2 m}(x) d x$.
روش به كـار رفـتـه در مـنـال آخحر، يعـنى بد هنگام در آوردن جـوابـ را هركــاه كـه اطلحع

 در مثال آخر ، مى توانيـم بدون رو بهر شـد

 به معادلات ديفرانسيل معهولى جذاكانه منتقل كنيه . هـمـهنين از دانسـته هايمان دربارهُ وضعيت فيزيكى در حبررت امكان استفاده كنيم تا مقاديري خـام را بـ ثابتهاي ججاسازي نسبت دهيم.

تمرينهاى ه- ه

1-
$\frac{1}{\Theta} \frac{d^{2} \Theta}{d \theta^{2}}+\frac{\cot \theta}{\Theta}-\frac{d \Theta}{d \theta}=-n(n+1)$
معادن/ستب!
$\frac{1}{\sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d \Theta}{d \theta}\right)+n(n+1) \Theta=0$.
 در آن جستجّو هى كنيم شـامل نقاط خارج نمود ؟ (راهنماهى : به معادلهُ ديفر انسيل, جزنى مورد بـحث تو جه كنيد)
 در مثال - - Y-- ها هادله زير راحل كنيد $Z^{\prime \prime}-\lambda_{j}^{2} Z=0, \quad Z^{\prime}(0)=0$.

$$
\begin{aligned}
& \text { (با مثال } \\
& \text { ¢- }
\end{aligned}
$$

V- V
شرإيط مرزى را بهدست آوريد .
^- د در مشال Q- به دست آَوريد

- 9 (در هشال ه- $\lim _{t \rightarrow r} u_{p}(\rho, t)=0$.

 به دست آوريل . (راهنمايى : از بختش
.

 واتعيت فيزيكى مطابقت دار د
اه اهر مثال ه- ه-

$$
\begin{aligned}
& \text { توضيحدهيد } \\
& \text { - } 19 \text { - برطبق معادلهُ (}
\end{aligned}
$$

$\lim _{1 \rightarrow x_{x}} u(\rho, t)=A_{1}$.

> اين نتيجه را توضيح دهيد .

- IV

 . به دست آوريد
. $f(\cos \theta)=100$ ابه كار بريد و جواب را بيابي

 كتند . نـرايط بيوستگى بهصورت زير داده مى شوند

$$
u(b, \theta)=U(b, \theta), \quad 0<\theta<\pi,
$$

رياضيات مهندسى

$$
K u_{r}(b, \theta)=U_{r}(b, \theta), \quad 0<\theta<\pi, \quad K>0 .
$$

علاوه بر اين،

$$
\lim _{-\infty} U(r, \theta)=-E z=-E r \cos \theta
$$

$$
u(b, \theta)=0
$$

$$
\lim _{r \rightarrow \pi} u(r, \theta)=-E z=-E r \cos \theta
$$

مى شوند . بتأنسيل را در هر نقطهُ بين كره ها تعيين كنيذ .
(روشهاي عدنى
تا اين جـا تـام مــــائل مـقلار مـرزى مـورد بررسى به كـونهاى بو دند كـه جــوابهـايشـان را
 شـده در رده ای تـرار كيـرد كه آن را با روشـهـاى بحـث شــده بتـوان ححل كرد . روشـهاى كلاسـيك مهكن اسـت به يكـ با جند دليل زير قابل اجر ا نباثشند : الف) معادله با مشتـقات جزني غيرخططى باتـد و نتو انيـم بدون آن كه تأثير جدى در نـتـيجه دانشته -باثـد، آن را خطى كنيم به مرز نامنظم بانُـ .
ب) شـ شايطط مرزى از نوع مخلوط باشتند .
ت) شر ايط مرزى وابسته بهزمان باشّستد .
ت) موادى بايد بررسى شو ند كه همگُن و همسانگرد نباشيند .

عددىى را غير همكن سازند . البته روشهایى عددى نيز مشكلات مربوط به نود را دارند كـه بعداً

 شروع مى كنيم و كام بردارى دومى راآغاز مى كنيم تا $u\left(C_{2}\right)$ را به دست آوريم، و التى آخر .

 بنابراين ، بس از تعداد زيادى كام بردارى (مثلاً، . . . 1) انتظار داربم كه مقلأر متوسط $\frac{1}{1000} \sum_{i=1}^{1000} u\left(C_{i}\right)$,

به مقدار مطلوب (P) " نزديكى باثشد . مي توان نشان داد كه از لـحاظ نظرى
$u(P)=\lim _{n \rightarrow x} \frac{1}{n} \sum_{i=1}^{n} u\left(C_{i}\right)$.
رومّ توصيف ثشده در بالا را روش مونـت كارلوبرانى حل يك مسألّأ ديريكله مي نامند .

 روشى عددى كی جـو البـ را در يكى سرى از نقاط نزديكى به دست مي دهد، روش تفاضل
 از أين روش بوشُاندن ناحيهُ R با شُبكه ایى از مربعـهانــت و با هر ظرافتـ كه لاز
 مي توانبه صورت تابعى از مـقادير u در نقـاط مجـاور بيان نمود ـ اين رابطهُ تابعى با الستفــاده از يكى خار ج تسمت تفاضلي بهدست مي آيد • برایى مثال ، مى توان ديد كه مشتت $\frac{d u}{d x}=\lim _{h \rightarrow 0} \frac{u(x+h)-u(x)}{h}$

در هر نقطهُ مفروض x را مي توان بد وسيلهُ خلارج تـسمت تفاضلى

$$
\frac{u(x+h)-u(x)}{h}
$$

$$
\begin{aligned}
\frac{d^{2} u}{d x^{2}} & =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{d u(x+h)}{d x}-\frac{d u(x)}{d x}\right) \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{u(x+2 h)-u(x+h)}{h}-\frac{u(x+h)-u(x)}{h}\right)
\end{aligned}
$$

$$
\frac{1}{h^{2}}(u(x+2 h)-2 u(x+h)+u(x))
$$

$$
\frac{\partial^{2} u(x, y)}{\partial y^{2}} \doteq \frac{1}{h^{2}}(u(x, y+h)-2 u(x, y)+u(x, y-h))
$$

بنابراين معادلُّ يتانسيل به صـورت زير تقريب زده مى شود

$$
u_{x x}+u_{y y} \doteq \frac{1}{h^{2}}(u(x+h, y)+u(x, y+h)+u(x-h, y)
$$

$$
+u(x, y-h)-4 u(x, y))=0
$$

بنابراين
$u(x, y)=\frac{1}{4}(u(x+h, y)+u(x, y+h)+u(x-h, y)+u(x, y-h)) \quad(Y-9-\Delta)$
يكى تقـويب تفـاضل مـتناهـى برايى مـعادلـهُ لابلاس است . برحسسب يكـ شـبكه روى ناحـيـهُ R ،

$$
u(P)=\frac{1}{4}\left(u_{1}+u_{2}+u_{3}+u_{4}\right)
$$

اين رابطه بايـد براى هر نقطه از شـبكه بـرتُرار باثــد . بنابراين اين روش دسـتشًاهى از مـعـادلات
 تقـاط شبكه روى مـرز ترار مى كـيرند و بـنابراين معلوم هستـند . اثكـر مرز، بين دو نتطه از شــبكه

 تقريب اولّيه بهتر باشد، همكُرابع سريعتر خواههد بود .
اغلب روشهاى عددى براي معادلات با مشتقات جزّنى مبتنى بر يكـ روش تناضل متناهى

$$
\begin{aligned}
& \text { با حركت بهحب بهاندازهُ h ، عبارت فوت به صورت زير نوُّتهـ مى شود } \\
& \frac{d^{2} u}{d x^{2}} \doteq \frac{1}{h^{2}}(u(x+h)-2 u(x)+u(x-h)) . \\
& \text { الكر и تابعى از دو متغيّر x و } \begin{array}{l}
\text { باسد، آن كاه }
\end{array} \\
& \frac{\partial^{2} u(x, y)}{\partial x^{2}} \doteq \frac{1}{h^{2}}(u(x+h, y)-2 u(x, y)+u(x-h, y))
\end{aligned}
$$

است به عبارت ديكر، يكى معادلذُ با مشتقات جزئى به كمك دستگاهى از معادلات جبرى تقريب

ثـكل 0 - 0 تتريبب تفاضل متناهى

 صورت مي كيرد .
*C. E. Gerald, Applied Numerical Analysis, 2nd ed. (Reading. Mass.: Addison-Wesley, 1978).

 تفسيم كنبد و باتى مانده را ثبت كنبد . بهاين ترتبب مجموعهاى مانند زير توليد نماييد $\{2,1,0.3,1,2,2,0,3, \ldots\}$.

 صنته، با • ا كام بردارى تصـادفى و استفاده از اعداد توليـد شُـده در تمرين اعداد را مى تواذ به صورت زير تعير كرد د :
 r 1
Y r r r
r r r

 بزر كتر كنيد .

شكل 0-9-9
 به دــت آورد .

- Y
 يكى دستگاه محادلات جبرى تشكيل دهيد . أين مسادله ها را حل كنيد . - F جند نقطهُ (و جند معادله) خوراهيم داشت
 حاصل راحل كنيد . (ر/هنمايى : از تقارن استفاده كنيد.)
 . $u_{1}(x, 0)=g(x)$
$U(x, t+k)=2 U(x, t)-U(x, t-k)+\lambda^{2}(U(x+h, t)-2 U(x, t)+U(x-h, t))$, $U(x, 0)=f(x)$,
$U(x, k)=k g(x)+f(x)$,
كه نشان دهيد كه معادلئ انتشـار بكى بعدى و شر ط اوّلئُ
$u_{1}=u_{x x} \quad u(x, 0)=f(x)$
را مى توان به وسيلهُ معادلات تفاضل متناهى زير تقريب نـود
$U(x, t+k)=\lambda U(x+h, t)+(1-2 \lambda) U(x, t)+\lambda U(x-h, t)$,
$U(x, 0)=f(x)$,
كـه $\lambda=k / h^{2}$. (توجـه : مى توان نشــان داد كـه مـعـاولهُ تفـاضلى برايى λ > λ نآايدار است".

متاتيرهاى مغتلط

 در اين نصل دانسته هايمـان را الز اعداد مختلط به جبر اعداد مــتلط و سـبس به توابع مختلط ، يعنى، توابعى از يك متغير مختلط نعميم خواهيم داد ．
竍 $i^{2}=-1$

 ارائ كرد ．بهاين دليل صفحهئ مختلط（شكل و－1－1 أرا كامى نمودارآركان نامند ． به خاطر بياوريد كه دو بردار برابرند هركاه داراى جهـت بكسان ر طول برابر باشسند؛ ولى

$$
\text { دو عدد مختلط c+di, } a+b i \text { برابرندأكر و نتط اكر } c+a=d \text { و } a=d .
$$

شكل 9-1-1 يكن صنحة منتلط
 مختلط باششند، جمع اين دو عدد رابه صورت زير تعريفـ مى كنيم

$$
\begin{equation*}
\left(x_{1}+i y_{1}\right)+\left(x_{2}+i y_{2}\right)=\left(x_{1}+x_{2}\right)+i\left(y_{1}+y_{2}\right) . \tag{1-1-9}
\end{equation*}
$$

شـكل Y- Y-Y جمع اعداد ينتلط

هون كه اثبات آن رابهعنوان تمرين واثذار مى كنيم (تمرين ا راملاحظه كنيد) .

$$
\text { ت) }\left(x_{1}+i y_{1}\right)+(0+0 i)=\left(x_{1}+i y_{i}\right) \quad \text { (وجودعضو همانى جمعى) . }
$$

مى توان نشان داد (تمرين Y) كـه عدد مــختلط صفر ، 0+0i ، همان خــراصمى را براى العداد مـختلط دارد كه عــد ححقـتى صفر ، برأى اعـــلاد حقيـقى دارد . بس طبيـعى امست كه تناظر
زير را برقرار كنيم

$$
0+0 i \leftrightarrow 0 .
$$

 اعداد مختلط به ثـكل x+0i به دسـت آوريم، يعنى،
$x+0 i \leftrightarrow x$.
$(Y-1-9)$
طريقه ديگر تعبير (Y-1-Y) الستفاده از زيان مجــو عه هاسـت كه بغويبم مستموعـهُ اعداد حقيقى
 نيز هست، ديذ كاهى كه مى تواند در رفع بعضى از ابهامات در مورد اعلداد مختلط كمكى كند .

 حقيقى باشُد، آن كاه
$a(x+i y)=a x+i a y$.
در اين جا نيز، مقايسه أى با بردارها براى درلٌ بهتر اين عمل مفيد أمت (تمرين ٪) . . اكر در معادله (
$-(x+i y)=-x-i y$,
كه منغى عدد مـنتلط x+iy اسمت . حالل نتبجه مى شود كه
$(x+i y)+(-x-i y)=0+0 i$,
لضيd
الف؟ (
ب
$\left[\left(x_{1}+i y_{1}\right)+\left(x_{2}+i y_{2}\right)\right]+\left(x_{3}+i y_{3}\right)=\left(x_{1}+i y_{1}\right)+\left[\left(x_{2}+i y_{2}\right)+\left(x_{3}+i y_{3}\right)\right]$ (ب)
(خاحيت شركت بذيرى) ؛

يعنى، (x+iy) - وارون جمعى $x+i y$ أست . استفاده از وارون جمعى هـمان كونه كه در مثـال بعد نشان داده شده الست، بهعمل تفريق منجر مى شُود . مثال 9-1-1 معادلهُ زير راحل كنيد
$x+i y+2-3 i=1+2 i$.
 سُده اضافه كنيم تتيجه مى شود $x+i y=-1+5 i$.

 ($r \cos \phi, r \sin \phi)$
$x+i y=r(\cos \phi+i \sin \phi)$,

 روابط زير را بسادكى مى توان نشان داد . (تمرين ه)

$$
\begin{equation*}
\left(x_{1}+i y_{1}\right)\left(x_{2}+i y_{2}\right)=r_{1} r_{2} \operatorname{cis}\left(\phi_{1}+\phi_{2}\right), \tag{0-1-9}
\end{equation*}
$$

(ثـكل 1-9 ب-

$$
\begin{equation*}
\frac{\left(x_{1}+i y_{1}\right)}{\left(x_{2}+i y_{2}\right)}=\frac{r_{1}}{r_{2}} \operatorname{cis}\left(\phi_{1}-\phi_{2}\right), \quad r_{2} \neq 0 \tag{9-1-9}
\end{equation*}
$$

$$
(x+i y)^{n}=r^{n} \text { cis } n \phi, \quad n=1,2, \ldots
$$

$$
(v-1-9)
$$

وتتى در معادلئ
$(\cos \phi+i \sin \phi)^{n}=\cos n \phi+i \sin n \phi$,
(1 - $1-9$)

شكل

كـه آن رانــرمـول دومسوآور" "نامند . اين نـرعـول در بهدستآّوردن ريُــه هاى اعــداد مـخـتلط مغيد الست.
تا اين جـا از عبـارت العـدد مختلطط x $x+i y$ اسـتفـاده كـردهايم . برایى ساده كـردن نماد،
 برالى مثال Y-1-Y معادلهُ زير راحل كنيد
$z^{2}-i=0$.
ححل : حون (IVロF-199V) \& A. de Moiver *
 $z=\left(\operatorname{cis} \frac{\pi}{2}\right)^{1 / 2}=\operatorname{cis} \frac{\pi}{4}=\frac{\sqrt{2}}{2}(1+i)$.
 به دست مى آرريم
$z=\left(\operatorname{cis} \frac{5 \pi}{2}\right)^{1 / 2}=\operatorname{cis} \frac{5 \pi}{4}=\frac{-\sqrt{2}}{2}(1+i)$,
 مثال
$z^{1 ; n}=r^{1 / n} \operatorname{cis}\left(\frac{\phi+2 k \pi}{n}\right), \quad k=0,1,2, \ldots, n-1$.
در معادله́
$r=\sqrt{x^{2}+y^{2}}=|z|$,

 شُناسهُ مثالى ديگر از معادلات ديفرانسيل معمولى ارائه مي دهيم .
مثل r-1- r- جواب ععمومى معادلهُ ديفرانسيل خطي همگن مرتبهُ خهار زير را بهدست آوريد $\frac{d^{4} y}{d x^{4}}-8 \frac{d y}{d x}=0$.

حل : معادلهُ مسخخهه برحـبب متغير ح جنين است
$z\left(z^{3}-8\right)=0$.
علاوه بر $z=0$ ، بايد سسه مقدار zراكه در معأدلهُ () = معادله (4-1-9) داريم
$z^{1 / 3}=8^{1 / 3} \operatorname{cis}\left(\frac{0+2 k \pi}{3}\right), \quad k=0,1,2$,
 ديفر انسيل هنين اسـت
$y(x)=c_{1}+c_{2} \exp (2 x)+\exp (-x)\left(c_{3} \cos \sqrt{3} x+c_{4} \sin \sqrt{3} x\right)$.
قابل توجه اسـت كه ريشه هاى nأم يكـ عدد مستلط با فاصله هالى مساوى روى يكى دايره
 داراى يكـ ريشه در (2, 0) و ريشه هالى مـختلط واتع در مـحل تلاقى

شكل 9-1-0 ريشدهاى اعداد مختلط

هستند . بهعباربت ديگر اگر يك ريشـُ آن باشد، آن گُاه

$$
\begin{align*}
\overline{z_{1} \pm z_{2}} & =\bar{z}_{1} \pm \bar{z}_{2}, \\
\overline{z_{1} z_{2}} & =\bar{z}_{1} \bar{z}_{2}, \tag{11-1-4}
\end{align*}
$$

$$
(1 \cdot-1-9)
$$

(شكل 9-1-9 را ملاحظه كنهر)؛

$$
\begin{align*}
& \overline{\left(\frac{z_{1}}{z_{2}}\right)}=\frac{\bar{z}_{1}}{\bar{z}_{2}}, \quad z_{2} \neq 0 \tag{1r-1-9}\\
& \bar{w}=z .0 \text { آ } \overline{\text { I }} \bar{z}=w,
\end{align*}
$$

تيكل 9-9-9 نمودار معادلف (9)-9)

يكى از كـاربر دهاى مـهم مزدوج مـخـتلط از اين واقعيت ناشـي مـى شود كـه است (تمرين V) . اكگ, بهصورت زير دحاسبه مي كنيم

$$
\begin{align*}
\frac{z_{1}}{z_{2}} & =\frac{x_{1}+i y_{1}}{x_{2}+i y_{2}}=\frac{\left(x_{1}+i y_{1}\right)}{\left(x_{2}+i y_{2}\right)} \cdot \frac{\left(x_{2}-i y_{2}\right)}{\left(x_{2}-i y_{2}\right)} \\
& =\frac{\left(x_{1} x_{2}+y_{1} y_{2}\right)+i\left(x_{2} y_{1}-x_{1} y_{2}\right)}{x_{2}^{2}+y_{2}^{2}} \tag{14-1-9}
\end{align*}
$$

 مى توان فرمولمي براى تقسـم يكى عدد مشتلط بريكـ عدد مختلط غير صفر تصور كرد . جون يكى عدد مختلط شامل دو تسمتامت (اعداد حقيقى بدون i و با i) معمول است كه

آن گّاه در بيان عبارت التسمت موهومى عدد مختلط z عدد حقيقى y امـتل، وجود دارد . در بايان اين بخش يادآور مى شويم كه جون اعداد مختلط با نقاط صفـحه متناظر مى شـوند نه با نقاط روى نخط، رابطهُ > را در اعــداد مـختلط نمى توان به كار برد . بهعبارت ديگر ، اعــاد مـخـلط را نمى توان مـرتب نمود . ولى مى تـوانيـم بڭويـم كـها

 همان طور كه نـكل نشـان مى دهد، نمايش داد .

v-1-9 شكل

تمرتهاى F-|
1- تضيهُ 9-1-1 را تابت كنيل (رامنمايِ : خحواص آثـناي ميدان اعداد حقيقى را به كار بريد)

$$
\begin{aligned}
& \text { Y- نشان دهيد عدد مـختلط 0i } 0 \text { + نخواص زير را دارد } \\
& (x+i y)+(0+0 i)=(x+i y)\left(\begin{array}{l}
\end{array}\right. \\
& (x+i y)(0+0 i)=(0+0 i) \quad \text { ب } \\
& x y \neq 0 \text { ب }
\end{aligned}
$$

نشان دهيد

$$
\text { الف(} 0.5(x+i y) \text { (}
$$

 مى كنيد؟

- - أكر $\left(x_{1}+i y_{1}\right)\left(x_{2}+i y_{2}\right)=r_{1} r_{2} \operatorname{cis}\left(\phi_{1}+\phi_{2}\right)$

الف) (

$\begin{aligned} & x_{1}+i y_{1} \\ & x_{2}+i y_{2}\end{aligned}=\frac{r_{1}}{r_{2}} \operatorname{cis}\left(\phi_{1}-\phi_{2}\right), \quad r_{2} \neq 0$
(9-1-9)
(راهنمايى : صورت و مخرج طرف هب رادر
$(x+i y)^{n}=r^{n}$ cis $n \phi, \quad n=1,2, \ldots \quad(\vee-1-9) \quad$ (ب)
(راهنـهايى : از استقراي رياضى استناده كنيد .)
ه
$z_{1} \pm z_{2}=\bar{z}_{1} \pm \bar{z}_{2}$
الفـ) (1-1-9)
$z_{1} z_{2}=z_{1} z_{2}$
$\left(\frac{z_{1}}{z_{2}}\right)=\frac{\bar{z}_{1}}{\bar{z}_{2}}, \quad z_{2} \neq 0$
$\bar{w}=z \quad \triangleleft \quad w=\bar{z}$
(11-1-9) (ب)
$(1 Y-1-9)(4$
($1 r-1-9$)

نشان دهيد \quad تحقيقى است \quad -
A- حاصل عار $x+i y$ بنويسيد .
الف)

$$
(i-1)^{2}(2+i)^{3} \quad(\quad(1-i) \div(2+i)
$$

- 4- هريك از اعداد زير را به صـورت تطبى بنويسيل .

$$
\begin{array}{rr}
1-i(ب) & 1+i \text { (الفـ } \\
-\sqrt{3}+3 i(4 & -i \\
& 2-3 i
\end{array}
$$

-

$$
\begin{aligned}
& (i-2)^{3}(\square \\
& (2-2 i)^{2}(? \\
& \text { بـ (4 cis } \pi / 6)^{1 / 2} \\
& \text { الفن } \\
& \text { 0 (* } \\
& \text {-5 (ت }
\end{aligned}
$$

 $\frac{d^{4} y}{d x^{4}}+y=0$.

- IY

$$
\begin{aligned}
& 0<\operatorname{Im}(z)<1 \text { (ب } \quad \operatorname{Re}(z)>-1 \text { (} ب \text { (} 1 \text { (} 1 z \mid<1 \\
& |z+2|<3 \text { (} \quad 2<|z|<5 \text { (ت) }
\end{aligned}
$$

 تشريع و هر رابطه را با كلمات بيان كنيد .

$$
\left|z_{1}-z_{2}\right| \geq\left|\left|z_{1}\right|-\left|z_{2}\right|\right| \quad|\quad| z_{1}+z_{2}\left|\leq\left|z_{1}\right|+\left|z_{2}\right|\right. \text { (الف }
$$

دو عاعل درجهُ دوم با خرايب ححقيقى بنويسيل .

-19 ا مقادير زير را شحاسبه كنيد .
$\sqrt[3]{i-1}(ب \quad \sqrt{3+4 i}(ب) \quad$ (الف)
. معادله هاى زير را حل كنيد و در هر حالت نتيجه را به صورت $x+i y$ بنويسيد - IV

$$
\begin{aligned}
& z^{2}-2 i z-5=0 \text { (الف } \\
& z^{2} \cdot(2+3 i) z-\mathrm{I}+3 i=0 \quad \text { (ب) }
\end{aligned}
$$

آن كاه \bar{z} نيز يكى ريشه امست .

$3 \sqrt{2} \operatorname{cis} 3 \pi / 4$ (ب)
$\sqrt{2} \mathrm{c}$ is $\pi / 4$ (ت)
الفـ) 4 cis $\pi / 3$
3 cis π (w
r - Y

(.

$$
\text { (. }\left|z_{1}+z_{2}\right|^{2}=\left(z_{1}+z_{2}\right)\left(\bar{z}_{1}+\bar{z}_{2}\right)
$$

\&ץ- هريك از روابط زير را ثابت كنيد .

الف) (
(

$$
\text { به (} \operatorname{Re}(z-\bar{z})=0 \text { ، }
$$

حقيقى منفي اسـت .
م - 「^
$A=\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -4 & 0\end{array}\right)$

توابع مقدماتى Y-૬
وتتى مى نويسيـم
را نشان مى دهيـم • مقادير مـجاز x (دامنـُ تابع) زيرمـجموعـه الى از خـط حقـيقى (مسحور x ها) را
 شكل

$$
\text { مى دهد . با نوشتن w=u+iv, } z=x+i y \text { ، داريـم }
$$

$w=u+i v=f(z)=f(x+i y)=u(x, y)+i v(x, y)$,
بنابر اين هر دو متغيّر مختنط w و z داراى قسمتهاى حقـيقى و موهرمى هستند . در نتيتله، تابع f

 مثالى از يكى نگاشت را نشان مى دهيم و در مـال زير بكى نگاشت مششخص را بررسي مي كنيم .

:

مثال Y-Y -
$w=\frac{1}{z}, \quad 1 \leq|z| \leq 2$,
$w=\frac{1}{z}=\frac{1}{x+i y}=\frac{x-i y}{x^{2}+y^{2}}=\frac{x}{x^{2}+y^{2}}-i \frac{y}{x^{2}+y^{2}}$.
بنابراين
$w=u+i v=\frac{x}{x^{2}+y^{2}}-i \frac{y}{x^{2}+y^{2}}$
در نتيجهه
$u(x, y)=\frac{x}{x^{2}+y^{2}}$
9
$v(x, y)=\frac{-y}{x^{2}+y^{2}}$.
دامنهٔ تعريف f ناحـيه اى بسـته و شامل هـمهُ نقـاطى از صـفـحـهُ xy امست كه در نـامسـاريهـاى زير صدقنى كنتد
$1 \leq x^{2}+y^{2} \leq 4$.

 هى شوند (تمرين 1) . در حقيقت مىتوان نُشان داد (تمرين Y) كه $u^{2}+v^{2}=\frac{1}{x^{2}+y^{2}}$

در نتيجه بر د تابع ناحيه إى بسته در حففحة'w است كه شامل نقاط زير است
$\frac{1}{4} \leq u^{2}+v^{2} \leq 1$.
در رياضيات عممومى با توابع مقدماتى از يكى متغير حقيقى آشنا شدها ايم . حالل مى خواهيم
توابع مـدسـاتى از يكى متـغير مختلط را در حالت كـلى مورد بـحث قـرأر دهيم و منأسـب المت از اصططلاح امقدماتى" تعريفى دقيقتر داشته بانيـم . اين كار را با دو تعريف زير انجام مى دهيمم .
 شكل
 باشد . آن كاهاعمال مقلدماتى روى توابع $f(z) \pm g(z), \quad f(z) \cdot g(z), \quad \frac{f(z)}{g(z)}, \quad(f(z))^{a}, \quad(\alpha)^{f(z)}, \quad \log (f(z))$, به شـرط آن كه اعمال نوق تعريف شده باشند .
 و متغير z به وسيله تعدادى متناهى عمل مقدماتى بهدسـت آيد .

تابع w=1/z يكى تابع يكي مقدارى استت و مر وقت از يكى تابع با متغيـر مشتلط صـسبـت مي كنيم منظور همين است . ازطرف ديگر w= = $1 / 2$ تعـاريفـ تعلادى از توابع هـقـدماتى اســاسى از يكى متتغير مـتــلط از نرمـول اويلر ناشى مي شوند • براى مثالٌ، تابع نمايع زير را داريم

$$
\begin{equation*}
e^{z}=e^{x+i y}=e^{x} e^{i y}=e^{x}(\cos y+i \sin y) . \tag{1-Y-9}
\end{equation*}
$$

اين تعريف با آنجه دربارة توابع نمايى و مثلثاتى از يك متغبر حفيبى مى دانتم مطابقت دارد.

برای مــال ، سـرى مكلورن برالى (همجنين نوابع هنلولى وار نير را داريم
$\sinh z=\frac{e^{z}-e^{-z}}{2}$, $(Y-Y-9)$
$\cosh z=\frac{e^{z}+e^{-z}}{2}$, $(Y-Y-9)$
$\tanh z=\frac{\sinh z}{\cosh z}=\frac{e^{z}-e^{-z}}{e^{z}+e^{-z}}$.

 است (تمرين ¢) .
حاللتوابع مثلثاتمى از اين تعاريف به دست محى آيند :
$\sin z=\frac{e^{i z}-e^{-i z}}{2 i}$,
$\cos z=\frac{e^{i z}+e^{-i z}}{2}$.
به عنوان تمرين نتــان دهيد كه تعاريف فوق به اتحادهأى مُلثاتى آشنا منجر مى شوند (تمرين V) .
 مى توانيه تتيجه بگيريم (تمرين 9) كه
 رضتعيتى مشابه برأى \cos بر قرار است . مثال حل : از معادلئ (و-Y-Y) داريم

$$
\begin{aligned}
\cos z & =\frac{1}{2}\left(e^{i z}+e^{-i z}\right)=\frac{1}{2}\left(e^{i(x+i y)}+e^{-i(x+i y)}\right) \\
& =\frac{1}{2}\left(e^{-y}(\cos x+i \sin x)+e^{x}(\cos x-i \sin x)\right)
\end{aligned}
$$

$=\cos x\left(\frac{e^{y}+e^{-y}}{2}\right)-i \sin x\left(\frac{e^{y}-e^{-y}}{2}\right)$
$=\cos x \cosh y-i \sin x \sinh y$.

$|\cos z|^{2}=\cos ^{2} x \cosh ^{2} y+\sin ^{2} x \sinh ^{2} y$

$$
\begin{aligned}
& =\cos ^{2} x\left(1+\sinh ^{2} y\right)+\left(1-\cos ^{2} x\right) \sinh ^{2} y \\
& =\cos ^{2} x+\sinh ^{2} y \\
& =0
\end{aligned}
$$

اكر و فقط اكر $\sinh y=0$ cos $x=0$. اين دو معادله بهازالى مقادير زير برقرارند $x=(2 n+1) \frac{\pi}{2}, \quad n=0, \pm 1, \pm 2, \ldots$ and $y=0$. هِ صفرهاى $\cos z$ حقيقى اند و عبارتند از
$z=(2 n+1) \frac{\pi}{2}, \quad n=0, \pm 1, \pm 2, \ldots$.
 حقيقى باشـد، آن كاه
$\sin x=-i \sinh i x$
,
$\cos x=\cosh i x$.
 " رأ به عنوان عكس تابي نمايیى تعريف كنيم . ولى ديلهايم كه براى هر علد صحيح " $w=\log z$ $\exp (w+2 n \pi i)=\exp w$
 در مـختصات تطبى
$z=|z| e^{i \phi}=|z| e^{(i \phi+2 n \pi)}$,
بنابراين براى $z \neq 0$
$\log z=\log |z|+i(\phi+2 n \pi)$,

 نوواهد بود كه تابع لكاريتمى را بررسى كنيم؟؛ بنابراين تعريف مى كينـيم
$u^{\prime}=\log z=\log |z|+i \operatorname{Arg} z$.

$$
\begin{equation*}
\text { اكر z يك عدد مختلط و } a \neq 0 \text { ، آن كاه تعريف مى كنـبم } \tag{9-ץ-9}
\end{equation*}
$$

$a^{z}=\exp (z \log a)$,
$\log a=\log |a|+i(\arg a+2 n \pi)$,

مثال
حل : با استفاده از معادلهُ (Y-Y-9) و سبس معادلهُ (Y-Y-Y)، داريم

$$
\begin{aligned}
(-3)^{\prime} & =\exp (i \log (-3)) \\
& =\exp (i(\log 3+i(\pi+2 n \pi))) \\
& =\exp (i \log 3) \exp (-\pi-2 n \pi), \quad n=0, \pm 1, \pm 2, \ldots
\end{aligned}
$$

نتيجهُ مثال (9-Y-Y) رامى توانيم با استفاده از فرمـول اويلر ساده تر كتيم. براي مثالل،

$$
\begin{aligned}
& \exp (i \log 3)=\cos (\log 3)+i \sin (\log 3) \\
& \doteq 0.9998+0.0192 i,
\end{aligned}
$$

تمرينهاى P-4

 به نقاط با ،

نقش مى كند . جهه رابطها واي وجود دارد :
الفّ) بين شناسه ها در صفحهd
ب) بين هنگّها در دو صفنحه

$e^{\prime \prime}$ - F
به دست آيد .
 . $\cos y$
 - Q - نــان دهيد ${ }^{*}$ خاصيتهاى زير را دارد

$$
\begin{aligned}
e^{z_{1}} e^{z_{2}} & =e^{z_{1}+z_{2}} \\
e^{z_{1}} / e^{z_{2}} & =e^{z_{1}-z_{2}}
\end{aligned}
$$

ب)
ت) (
(ث بهصرت زير نوشت
$\frac{1-e^{-2 z}}{1+e^{-2 z}}$
V آوريد .
$\sin ^{2} z+\cos ^{2} z=1$ (الفـ)

$$
\sin \left(z_{1} \pm z_{2}\right)=\sin z_{1} \cos z_{2} \pm \cos z_{1} \sin z_{2}
$$

$$
\begin{aligned}
\cos \left(z_{1} \pm z_{2}\right)=\cos z_{1} \cos z_{2} \mp \sin z_{1} \sin z_{2} & \text { ب } \\
\sin 2 z=2 \sin z \cos z & \text { (} \\
\cos 2 z=\cos ^{2} z-\sin ^{2} z & \text { ج }
\end{aligned}
$$

- -

 . 2π

- - 9 - 1 . $\cos x=\cosh i x \quad$ (الفـ) $\quad!\sin x=-i \sinh i x$

$$
\log z_{1} z_{2}=\log z_{1}+\log z_{2} \text { (الف }
$$

$$
\log \frac{z_{1}}{z_{2}}=\log z_{1}-\log z_{2}
$$

$$
-I Y
$$

. $w=1 / z$
 نگاشـت را مانند مثال
10 10

$$
w=f(z)=z^{3} \quad(ب) \quad w=f(z)=z^{2}-2 z \text { (الف }
$$

$$
w=f(z)=\frac{\left(z^{2}-3\right)}{|z-1|}
$$

ب)
$\csc z \quad$ ت

$$
\begin{aligned}
& z=-1 \text { (} \quad z=i-1 \text { (} \quad \text { (} \quad z=2 \text { (} z=2 \\
& \text { - } 19 \text { تشان دهيد : } \\
& \sin (i y)=i \sinh y \quad \text { (الف) }
\end{aligned}
$$

19- بالاستفاده از تعاريف(Y-Y-9) (Y-Y-9) هريكازتوابع هنلولى وارزير راتعريف كنيد. $\operatorname{csch} z\left(\begin{array}{l}\text { (الف) }\end{array}\right.$

rץ- هريك از اتحادهاى زير رابه دست آرويد .
$\sinh \left(z_{1} \pm z_{2}\right)=\sinh z_{1} \cosh z_{2} \pm \cosh z_{1} \sinh z_{2}$ (الفري $\cosh \left(z_{1} \pm z_{2}\right)=\cosh z_{1} \cosh z_{2} \pm \sinh z_{1} \sinh z_{2} \quad$ (ب

$$
\cosh ^{2} z-\sinh ^{2} z=1 \text { ب }
$$

(YY نشان دمهد $(-1)^{2 i}=\left((-1)^{2}\right)^{i}=1^{1}=e^{i \log 1}=e^{-2 n \pi}$,

كه در اين جا نيز n عددى صحيح است . بس در حالت كلى، ، Yه- نـان دهيد
$\left(\dot{a}^{2}\right)^{w}=a^{\omega \tau} \exp (2 n \pi i) w$,

$$
F(s)=\frac{1}{s^{2}+1},
$$

را كه تبديل لابلاس، تابعى مانند 1 (t)است، در نظر بگيريد . با نوشتن
$F(s)=\frac{A}{s+i}+\frac{B}{s-i}$
A و B را بيابيد . آن كاه با استفاده از جدول تبديلات لابلاس (t f(tرابه دست آرويد .

$$
\begin{aligned}
& \text { كه }
\end{aligned}
$$

OMF F
در اين بـخـ مـشتـقات توابع يكـ هـتغير مستخـلط را بررشمي هى كنيم • براى آماده شسدن،
 ع - مدسايكى يك نقطهُ ($\left|z-z_{0}\right|<\varepsilon$,

ششكل \&
 نقطهُ

 سحداقل يكى نقطه از S و سحلأقل يكى نقطه را كه در S نباشهد شـامل شـود . مسجموعهُ تمام نقاط مرزى

شكل Y-Y-Y نقاط دروتى و مرزی
الفبال

مجموعهُ (الفـ) يكى مجموعهُ باز المـت: هر نقطهُ آَن نقطه ايى دروني أسـت . برأى مثالن،

 به مركز i i آرار دارند . مـجموعـهُ (ب) يكى مجمـوعهُ بستهه المـت . نقاط مرزى آن همـهُ نقاط روى
 (شكل و-Y-Y الفـ)

تو جه كنيد كه يكى مجموعةُ بسته بايد شامل همهُ نقاط مرزى اش باشـد . بنابراين بعضى از
 المـت (تمرين ()

مفاهيم فوق را مي توان براي تعريف يكى تابع بيوسته به كار برد . فرض كنيدf تابعى باشـد كه در يكى همسايگى ميل مي كند برابر بطررى كه

باختصار مينويسيم
$\lim _{z \rightarrow z_{0}} f(z)=w_{0}$.

$$
\text { با فرض }{ }^{\text {w }} \text { ، يعنى، اگر }
$$

$\lim _{z-z_{0}} f(z)=f\left(z_{0}\right)$.
 بيوسته إسـت .
تعريف حـد مستقـيماً به تعريف حـد برايى توابع يكى متغيّر حقيقى وابسـته المـت . بنابراين تعجب آور نيــت كه خاصيتهاي زير در مورد حلود برقرار باثـنـنـ .

لفيd
$\lim _{z=\cdots}(f(z) \pm g(z))=w_{1} \pm w_{2} ;$
$\lim _{: \rightarrow n} f(z) g(z)=w_{1} w_{2} ;$
$\lim _{\therefore=1} g(z)=\frac{w_{1}}{w_{2}}, \quad w_{2} \neq 0$ به نـر

 علاوه برايـن، أكر اكر و نـقط اگر (نتيجه بغيريم كه $f(z)=(2 x+y)+i\left(x^{2} y\right)$

همه جا بيوسته استى هو جون مؤلفه هاى نقظهُ ثابث (بهصرت
$f^{\prime}\left(z_{0}\right)=\lim _{\Delta z \rightarrow 0} \frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z}$,

 ما بيشتر بهن نوعى معيّ از مستق بذيرى كه در زير تعريف مى شود، علاته هند هستيم •
 مشتق بذير باشُد .
لازمه تعريف بالا اين واتعيـت است كه اكر تابع f در نقطهُ (مـو جـود اسـت بـلكه (z $f^{\prime}\left(z_{1}\right)$

لفيه
آن اسـت كه

$$
\begin{equation*}
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad, \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} \tag{Y-Y-9}
\end{equation*}
$$

در نقطهُ
$f^{\prime}(z)=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}=\frac{\partial v}{\partial y}-i \frac{\partial u}{\partial y}$.
مـعادلات كشي - ريمـان نتش مهـمّى در كـاربر دآتاليز مـختـلط در جريـن سيـالن، نظريهُ
 هنتلط يانت . توجه كنيد كه أين تضهيه فقط يكى شرط لازم را اراثي مى دهد . شـر ايط كافى برانى
 موجود باشند بلكه در اين نقطه بايد يِيوسته مـم باشنـد . مثال
$f(z)=e^{x}$
$e^{z}=e^{x} \cos y+i e^{x} \sin y ;$
بنابراين
$u(x, y)=e^{x} \cos y \quad, \quad v(x, y)=e^{x} \sin y$.
$\frac{\partial u}{\partial x}=e^{x} \cos y=\frac{\partial v}{\partial y}$
$\frac{\partial u}{\partial y}=-e^{x} \sin y=-\frac{\partial v}{\partial x}$,

$f^{\prime}(z)=e^{x} \cos y+i e^{x} \sin y=f(z)$
همان طور كه انتظار دأشتيم
مثال
$f(z)=\left(x^{2}-y^{2}\right)-2 i x y$
در هيح نقطهاي تحليلى نيست . در اين جا داريم
$\frac{\partial u}{\partial x}=2 x, \quad \frac{\partial v}{\partial y}=-2 x, \quad \frac{\partial u}{\partial y}=-2 y, \quad-\frac{\partial v}{\partial x}=2 y$,
بنابر اين معادلات كتـى - ريمان فقط وتّى برابرند كه $x=y=0$ ، يعنى، $x=0$. \quad. اما تحليلى بردن هستلز مشتت, بذيري در يك همسايگى السـت؛ بنابر اين تابع داده شـده هيج جا تحليلى نيست .

 $\sin z=\sin (x+i y)=\sin x \cos (i y)+\cos x \sin (i y)$ $=\sin x \cosh y+i \cos x \sinh y$,
در نتيـجـه، ($\mathbf{~ د ا ر ي م ~}$

$$
\begin{aligned}
\frac{d(\sin z)}{d z} & =\cos x \cosh y-i \sin x \sinh y \\
& =\cos x \cos (i y)-\sin x \sin (i y) \\
& =\cos (x+i y)=\cos z .
\end{aligned}
$$

به عنو ان تمرين نشان دهيدz \sin و \cos توابع تام هستند (تمرين ${ }^{\text {ت }}$
در اين جا تعريف نوعى خاص از مجموعهُ باز يعنى مجموعءُ همبند، مناسبب خواهلد برد.

 مـجمـوعهُ شكل

يك مجموعئ باز همبند را حوزهمى نامند بنابراين موضوع بحث ما تابعى مشتق بذير در يك حوزه يا تابعى تحليلى در يك حوزه خواهو بيود . توابع تحليلى خاصيتى مهم دارند كه تبلاً در بختههاى
اكـر (x, (D صدق مى كتند . اين مطلب مستقيماً از معادلات كـتى - ريمان
 همساز مى نامند .

(الفـ)

(ب)

ثـكل

هثال Y-Y$f(z)=(z+1)^{2}$

> تول : دوابع همساز هستند .

$$
\begin{aligned}
(z+1)^{2} & =(x+i y)^{2}+2(x+i y)+1 \\
& =(x+1)^{2}-y^{2}+2 y i(x+1)
\end{aligned}
$$

$$
u(x, y)=(x+1)^{2}-y^{2}, \quad v(x, y)=2 y(x+1)
$$

كه در نتيجه

$$
u_{x x}=2, \quad u_{y y}=-2, \quad, \quad v_{x x}=v_{y y}=0
$$

$$
\text { لسس } u(x, y) \text { و (x(x,y) هر دو توابعى ههسازند . }
$$

در مثال و-ץ-4
 ازنظر عملي اهمميت دارد اين واقعيت الست كه خانوادهٔ منحنيهاى
$u(x, y)=\quad$ ثابت

 خحانو ادء منحنيهاى عمود بر هـم مربوط به مثال

$f(z)=u(x, y)+i v(x, y)$

تابعى تحليلى باشد . با يكى مثال مطلب راروشن مى كنيم • مثال ؟-T-ه تابع همساز زير داده شده است

 $u(x, y)=\cosh x \cos y$, $u_{x}=\sinh x \cos y=v_{y} ;$$v(x, y)=\sinh x \sin y+\phi(x)$.

$$
v_{x}=\cosh x \sin y+\phi^{\prime}(x)
$$

$$
=\cosh x \sin y=-u_{y}
$$

در نتيجه0 = =

$$
v(x, y)=\sin x \sin y+C .
$$

با استفاده از تمرين ث، در مي يابيم كه تابع تحليلى مطلوب عبارت است از $f(z)=\cosh z+\alpha$,

كه α يكى ثاببت موهومي شحض است .

 كه در بخخت 9-1 تعريف شمد، به كار رفته است .

نمرينهاى F-T

 (Y

$$
\text { . } v(x, y) \text { هر دو بيو سته باشـند . }
$$

ץ- نشـان دهيد هريكـ از توابع زير تابمى تام انست

$$
\begin{aligned}
& \text { يكى تابع تحليلى } f(z) \text { بسازيد كه تُسمـت حقيقى آن } u(x, y) \text { باشُد . } \\
& \text { حل : با المتفاده از معادلات كشني-ريمان (Y-Y-Y)، داريم }
\end{aligned}
$$

رياضيات مهندسى

نشان دهيد $\cosh z=\cosh x \cos y+i \sinh x \sin \quad$ -

$$
\text { (9-Y-9 } 0-Y-9, Y-Y \text { استفاده كتيد .) }
$$

- - هريك از مجموعه هاى زير را توصيف كنيد . مرز را در هر مورد مشخصص كنيد . $\rho_{1} \leq \mid d \leq \rho_{2}$ (ب) $\left|z-z_{0}\right|<\rho$ (ب) $0 \leq \arg z \leq \pi / 2$ (

$$
\operatorname{Im} z>0 \text { (} \Leftrightarrow \quad \operatorname{Re} z \leq 0
$$

 كنيد

$$
\text { الفـ } 1 \leq|z|<2 \text { (ب } 1<|z|<2 \text { ب } 1|z-a| \leq 1
$$

تُابت كنيد هريك از توابع زير همه جا بـجز احتمالآ در بیضى از نقاط بيوسته اند . ابستثناها

$$
\begin{array}{lll}
w=1 / z(- & w=|z| \text { (} & w=1+z^{2}() \\
w=\frac{z+2}{z^{2}+z-2}(\tau & w=\bar{z}(\uplus & w=\operatorname{Im}(z)
\end{array}
$$

 استفاده كنيد و نشان دهيل حد موجود نيست .)

- 9

$$
\begin{aligned}
& f(z)=\sinh z(u) \\
& f(z)=\tan z(ب \\
& f(z)=\cos z(\text { الف } \\
& f(z)=z^{1 / 2} \text { (} \quad f(z)=1 / z \text { (} \quad f(z)=\cosh z \text { (ت }
\end{aligned}
$$

 $\frac{d}{d z}(\log z)=\frac{1}{z}$

$$
\begin{aligned}
& \text { - اY تحقين كنبد هر دو قسـمت حقيقى و موهومى توابع زير همــازند } \\
& f(z)=z^{3}-i(z+1) \quad \text { (ب } \\
& f(z)=1 / z \text { (الف } \\
& f(z)=e^{-y}(\cos x+i \sin x) \quad \text { (ت) }
\end{aligned}
$$

> - ا - مزدوجهاى همساز هريك از توابع زير را بيابيد الفـ (
> $\frac{1}{2} \log \left(x^{2}+y^{2}\right), \quad x y \neq 0 \quad$ (
 هرجا كه (
، $z=x+i y ، f(z)=u(x, y)+i v(x, y)$ - 10 نتيجه مى دهد كه $\lim _{i \rightarrow 4} f(z)=u_{1} ، w_{1}=u_{1}+i v_{1} g ، z_{1}=x_{01}+i y_{0}$
$\lim _{\substack{x \rightarrow x_{0} \\ y \rightarrow y_{0}}} u(x, y)=u_{1} \quad, \quad \lim _{\substack{x \rightarrow x_{0} \\ y \rightarrow y_{0}}} v(x, y)=v_{1}$.
19 أكر أكر
الفـ) (z) (z)
ب)

IV

در مشال

 مى كنيم . مثال زير ننـان مى دهد كه جگُونه اين كار را مى توان در حالتى سـاده انتجام داد . مثال $u_{x x}+u_{y y}=0, \quad x^{2}+y^{2}>1$; $u=x+1, x^{2}+y^{2}=1, \quad, \quad$ كراندار امست \mid

 نگاشـت انعكاس 1/z = ا استفاده مى كنيم . مسأله به صورت زير در مر مى آيد

$$
\begin{aligned}
& U_{s \zeta}+U_{\eta n}=0, \quad \zeta^{2}+\eta^{2}<1 \\
& U=\xi+1, \quad \zeta^{2}+\eta^{2}=1 .
\end{aligned}
$$

$U(\xi, \eta)=u(x(\xi, \eta), y(\xi, \eta))$

 $\zeta(x, y)=\frac{x}{x^{2}+y^{2}} ;$

بنابر اين جواب مسـالةٔ داده شده عبارت أسـت از
$u(x, y)=\frac{x}{x^{2}+y^{2}}+1$.

 مى دهد (تمرين ()

تـكل -4-4-4

نگاثـــت انعكاس حالتى خاص از نگانتـى ابست كه بهصورت
$w=\frac{\alpha z+\beta}{\gamma z+\delta}, \quad \alpha \delta-\beta \gamma \neq 0$

ز و
لازم است (تمرينهاى r و Y) .

ملاحظه كنيد كه نگاشت $w=1 / z$ حالنى خاص از تبديل دو خططى تريف سُده در معادله . است .
 به نقطكُ ديكر ر مى توان نتيجهُ جمع دو برابر در نظر كرفت .

شكل

اسـت . داريم
$w=|\boldsymbol{\alpha}||z| \exp (i \arg (\alpha+z))$

(Y

$$
\text { بردار } \beta \text {. }
$$

. $\beta=\gamma=1$ ت $\beta=\delta=0 \quad$ - α
 از انبات اين كزاره ملاحظه كنبد) .

رياضيات مهندسي

از اين مثالهالى خحاص مى توان ديد كه هر تبديل دو خططى را مى توان بـه صورت يكي دنبالهُ
 مهم ديZر هـم دارند. اين تبديلها بر الى هر اين مفهوم در تعريف زير مشتخص خواهد شل .
 همديس است هر گاه با زاويهُ θ تطع مى كنّد به دو منحنى θ تطع كنّد .
در تعريف بالا اين واتـعيت نهـفتـه است كـه يك نگاشت همـديس هم اندلازه و هم جـهـت

 همديس است .

(الفس)

$$
w=\frac{1}{2}\left(z+\frac{1}{z}\right)
$$

حل : ابتدا ملاحظه مى كنيم كه اين نگاشتـ يك تبديل دو خطى نيست . داريم

$$
\begin{aligned}
w=u+i v & =\frac{1}{2}\left(x+i y+\frac{1}{x+i y}\right) \\
& =\frac{1}{2}\left(x+\frac{x}{x^{2}+y^{2}}\right)+\frac{i}{2}\left(y-\frac{y}{x^{2}+y^{2}}\right)
\end{aligned}
$$

بنابراين

$$
u=\frac{1}{2}\left(x+\frac{x}{x^{2}+y^{2}}\right) \quad, \quad v=\frac{1}{2}\left(y-\frac{y}{: x^{2}+y^{2}}\right)
$$

$$
u_{x}=\frac{1}{2}\left(1+\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}\right)=v_{y}
$$

$u_{y}=\frac{-x y}{2\left(x^{2}+y^{2}\right)^{2}}=-v_{x}$.
اين نشـان مى دهد كه f هر جبا بجز در =0= z تحليلى الست . علاوه براين
$f^{\prime}(z)=\frac{1}{2}\left(1-\frac{1}{z^{2}}\right)=\frac{1}{2}\left(\frac{z^{2}-1}{z^{2}}\right) ;$
 نوشته مى شود
$w=\frac{1}{2}\left(|z| e^{i \phi}+\frac{e^{-i \phi}}{|z|}\right)$.
و أز اين جا ملاحظه مى كنيم كه اگُر $1|z|=c>1$ ، آن كاه
$w=\frac{1}{2}\left(c(\cos \phi+i \sin \phi)+\frac{1}{c}(\cos \phi-i \sin \phi)\right)$
كه نتيتجه مى شُود
$u=\frac{1}{2}\left(c+\frac{1}{c}\right) \cos \phi, \quad v=\frac{1}{2}\left(c-\frac{1}{c}\right) \sin \phi$,
بنابراين با به دست آوردن ϕ ($\cos \phi$ و مربع كر دن و جـمع كردن آنها به دست میى آوريم $4\left(\frac{c}{c^{2}+1}\right)^{2} u^{2}+4\left(\frac{c}{c^{2}-1}\right)^{2} v^{2}=1$.
 اگگ,
$u=\frac{1}{2}\left(x+\frac{1}{x(1+m)^{2}}\right), \quad v=\frac{m}{2}\left(x-\frac{1}{x\left(1+m^{2}\right)}\right)$
$m^{2} u^{2}-v^{2}=\frac{m^{2}}{1+m^{2}}$.
 مى توان نتشان داد كـه كانونهـاى بيضيـها و هنذلو ليهها در $w= \pm 1$ هستند .

به كار برد .

(الفـ)

(ب)

شكل $w-\boldsymbol{F}$

$$
\text { مثال } w=\sin z \text { را بررسىى كنيد . }
$$

仿

$$
\begin{aligned}
w=u+i v & =\sin z=\sin (x+i y) \\
& =\sin x \cos i y+\cos x \sin i y \\
& =\sin x \cosh y+i \cos x \sinh y
\end{aligned}
$$

بنابراين
$u=\sin x \cosh y, \quad v=\cos x \sinh y$.
($\uparrow-Y-9$)

 براى يكى مثال ديگر بيينيد) .

شكل

بنابراين
 $f(z)=\frac{3 z+1}{z-2}$
 شامل تصوير كُنجنگارى و نقطهُ در مى نهايت در تمرينها ديده مى شوند .

شكل Y-F-9 تصمير كنبنكارى

تمرينهاى F-7

.
ب) $u(x, y)=x d\left(x^{2}+y^{2}\right)+1$ در معادلهُ با مشتقات جزنیى و شُرط مرزى

را بهصورت 1 + [1 [$\cos (\arg z) / \mid z$ بنويسيد و سد را وتتى
نـنان دهيل يكى تبديل دو خططى بهصورت زير نوشّته مى شود
$A w z+B w+C z+D=0$,
كه نسبت بهw و z هر دو خططى است و بها اين علت آن را ددو خطى " ناميله اند . ץ- نشان دهيلد هر تبديل دو خططى را مى توان به حورت زير نونـت
$\omega=-\frac{\alpha \delta-\beta \gamma}{\gamma} \frac{1}{\gamma z+\delta}+\frac{\alpha}{\gamma} ;$
بنابراين w ثابـت الست اثكر در صورت كسر معادلهُ Y-Y-Y اخانه و كم كنيد .)

باز هـم نتيجه مى دهد كه w يكى ثابت است . دليل اين مطلب را بتفصيل بيان كنيد .
 اشاره شد، الفـ) نشـان دهيد خطوط مستقيمى كه از مبدا مى كذّرند به خططوط مستقيمى كه از مبدا!

ب) (بنـان دهيددايرههاي ت) نقاط نصل مشترك دايره ها در قسمتهاي (ب) و (ب) به كجا نقش مى شوند؟ -9-
$w=\frac{1}{2}\left(z+\frac{1}{z}\right)$
مثال Y-Y-Y را در نظر بگيريد .

$$
\text { |z| | = } 1
$$

 به بيضيهاى يكــان نقش مى شوند .

محدود مى شود ؟

 زاويه هـا را حفظظ مى كند اما جهـت أنها را عكس مى كـى كند . -
$w=\frac{1}{z}$

نوار نامتناهي
$u^{2}+(v+a)^{2}>a^{2}, \quad v<0$.
"
$w=\frac{z}{z-1}$

11- نتـان دهيد تبديل دو خططى
$w=\frac{z-i}{z+i}$

$$
\text { قرص } 1 \text { > |z| را به نيم صفتحه́ } 0 \text { > } 4 \text { نقش مى كند . }
$$

 مى شُوند ؛ . ثابت كنيد يكى تبديل دو خططى حداكثر مى تواند دو نقطهُ ثابـت داثتـه باشـد .

با - نقاط ثابت هريكـ از تبديلات زير را بيابيد .

- If بحرانى هريكى از تبديلات زير را بيابيد .

$$
\begin{array}{cc}
w=\frac{z-i}{z+i} \\
w=z^{2} & \text { (الفب } \\
\text { ب }
\end{array}
$$

 $\xi^{2}+\eta^{2}=\zeta(1-\zeta)$.

ب)
$z=x+i y=\frac{\xi+\eta i}{1-\zeta .}$.
 وجود دارد كه
$\xi=t x, \quad \eta=t y, \quad ;-1=-t$,
با استفاده از نتيجهُ قسمت (الف) t، t را بابيد و در اين صررت نشـان دهيد
$y=\frac{x}{x^{2}+y^{2}+1}, \quad \eta=\frac{y}{x^{2}+y^{2}+1}, \quad y=\frac{x^{2}+y^{2}}{x^{2}+y^{2}+1}$.

19- 19 نگاشت $w=\cos z$

مربوطه به مثال 9-7-1 رامى توان در مختصات تطبى بهصورت زير نوشت

ب) مسالهُ نوق راباروش جداسازى متغيّرها حل كنيد و نتيجه زير رابه دست آوريد
$U(\rho, \phi)=\rho \cos \phi+1=\xi+1$.

$$
z_{1}=-1 \rightarrow w_{1}=1, \quad z_{2}=0 \rightarrow w_{2}=\infty, \quad z_{3}=1 \rightarrow w_{3}=i .
$$

$$
\text { ا-Y تبديل w= } \text { رادر نظر بگيريد }
$$

$$
\begin{aligned}
& \text { (ثوجه : تابع } 1 \text { + } 1 \text { تابعى زوج است . } \\
& \text { 19- با استفاده از نگاشت } \\
& \text { الف) با استفاده از مختصات قاثم؛ } \\
& \text { ب) با با بتفاده از مخختصات تطبى، }
\end{aligned}
$$

$$
\begin{aligned}
& \rho^{2} U_{\rho \rho}+\rho U_{\rho}+U_{\phi \phi}=0, \quad 0<\rho<1, \quad-\pi<\phi<\pi ; \quad: \text { dism } \\
& U(1, \phi)=\cos \phi+1, \quad-\pi<\phi<\pi . \quad: \quad:
\end{aligned}
$$

.
الف) نقش نـبم خط
.ب)
ب) با بتش كردن مزرها، نتش مستطيل
نگاشت

- iv
الف) در كجا اين نگاشت همديس است؟
ب) نقش نوار اصلى

$$
\begin{aligned}
& \text {. }
\end{aligned}
$$

1^- الف) نسان دهيد مسالكا
$U_{\ell \xi}+U_{n n}=0, \quad \xi^{2}+\eta^{2}<1 ;$
$U=\xi+1, \quad \zeta^{2}+\eta^{2}=1$,
: ثرايط مرزى، :

ب)

- YY

كنيل و نقاط متناظر را در صفـحهُ Z و صفـحهُ w مشنخص كنيل .

التكوال \quad الث
انتگرال معين تابِ f از يكى متغير هيتتلط را به صوريت زير در نظر بگيريل
$\int_{\alpha}^{\beta} f(z) d z$

 منتلط f در واتع يكى انتكرال منحنى النـط اسـت . در اين جـا ثـايل مرور مـطالبب مربـوط به انتگّرال منحنى الـخط مـفـيـل باثــد . بـخـمـرص

 همـوار ه كه در رياضـيات عــهومى تعريفن عى شــود، استناده نخـواهيمم نــو د . مسـير يكى زنـجـير بيو سته متشكل از تعلادى متناهى كمانهاى هموار اسـت، به اين جهـت انتگر الهاى منحنى الخخط را، انتكرالهاى مسيرى نيز مى نامند . مثال

$$
\oint_{C} \bar{z} d z
$$

را بر مسير C كه نيمهُ بايِن نيهم دايرهُ واحد يسته به مركز مبدا اسـت، بيابيد .

 اين تسمت،
$\int_{1}^{-1} x d x=0$.
براي قـسـمت منحنى بهتـر است از مـختصـات تطبى اسـتــاده كنيم، در اين صـورت هض ‘، $\bar{z}=e^{+\phi} ، d z=i e^{i 0} d \phi$
$i \int_{\pi}^{2 \pi} d \phi=\pi i$.
بی انتگرال در روي مسير بسته برابر i $ا$ است .

شكل 5-0-1-1

لارامتري كردن مسير انتگرال كيري اغلب مز اياعى دربر دارد ـ و وتى اين كار صورت گيرد، يكى مسير C , امى توان به صوريت زير تو صيف نمود :
$C: \quad x=x(t), \quad y=y(t), \quad a \leq t \leq b$.
$w=u(x, y)+i v(x, y)=f(z)$
9

$$
\begin{aligned}
\int_{c} f(z) d z & =\int_{a}^{b}(u(x(t), y(t))+i v(x(t), y(t)))\left(\begin{array}{l}
d x \\
d t
\end{array}+i \frac{d y}{d t}\right) d t \\
& =\int_{a}^{b}\left(u(x(t), y(t)) \frac{d x}{d t}-v(x(t), y(t)) \frac{d y}{d i}\right) d t
\end{aligned}
$$

$$
+i \int_{a}^{b}\left(v(x(t), y(t)) \frac{d x}{d t}+u(x(t), y(t)) \frac{d y}{d t}\right) d t
$$

يا، اكر نماد را ساده كنيم
$\int_{C} f(z) d z=\int_{C}(u d x-v d y)+i \int_{C}(v d x+u d y)$.

كنيم و بنويسيـم

$$
\int_{C}(u d x-v d y)=-\iint_{R}\left(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\right) d x d y
$$

$\int_{C}(v d x+u d y)=\iint_{R}\left(\frac{\partial u}{\partial x}-\frac{\partial U}{\partial y}\right) d x d y$,
كه R يكى نأحئُ بسـتهُ محدود به C است ، و هرز در جهـت مثبت تعريفـ مى شود . اكر

 نتيجه مى شود .

لضيه f - - - ا : در تمام نقاط درون و روى يك مسير بسته C اتكر f تحليلى و'f $\oint_{C} f(z) d z=0$.

تضيهُ 9-ه-1 جالب توجه است زيرا بيان مى كند كه توابع تحليلمى انتگرالل منحصربه فرد و همحهنين مسـتق منشصر به فرد دارنن . ولى مـهمتر از اين، تعـيمم تضيه براى توابع غـيرتحليلى

دز تتو يت آّ كوشُيد . در اين جـا شكل تتويت شدهُ تضيه را كه امروزه به نام تضيـهُ كشُى يا تفضيهُ كشى ـ گُورسا معروف أست . ارانه مى دهيم .
 بانشد، آن كَاه $\oint_{C} f(z) d z=0$.

تضيهُ كشى كاربر دهاي متعدد داردو به همين دليل درنظريهُ توابع تتحليلى آنزرا قضيءُ اماسسى مى نامند . تو جـه كنيد اگـر جه اين قضيـه بيان مى كند كـه انتگر ال رووى يك مسـير بسـته برابر صـفر

 تعميـم خخواهيم داد كه در آن جا نتيجه برابر صفر نـخواهـد بود .

مثال Y-ه-Y
$\int c \frac{d z}{z^{2}\left(z^{2}+9\right)}$,
كه C مرز ناحيهُ 2 > $2|z|$ ا است .
 مى دهيم كه مسير از الست و اين برش را دز جاي ديگرى مى توان ايجاد كرد تا دو دايره به هم وصل شموند و يكى منغنى سـاده بسـتـُ C به وجـود آيد . تـابع انتگُر الده همـه جـا بـجـز در
 صفر است .
نتطهُ
 در هر ع- همــــايگى اz بیجـز در خـود مى نامئد . تابع

$$
\begin{equation*}
f(z)=\frac{1}{z^{2}\left(z^{2}+9\right)} \tag{1-0-9}
\end{equation*}
$$

. در $z= \pm 3 i, z=0$ داراي نقاط تكين تنهاست
اكر

$$
\left(z-z_{0}\right)^{m} f(z)
$$

 يك تطب مرتبهُ

 به آن مسير و روى مرزش تحلبلى باقى بماند
 در اين صورت كمّيت
$\frac{1}{2 \pi i} \int_{C} f(\zeta) d \zeta$
 مى نويسيم
$\operatorname{Res}\left[f(z), z_{0}\right]=\frac{1}{2 \pi i} \int_{C} f(\zeta) d \zeta$.
براى فهم روشتتر تعريف بالا، انتگرالـ زير را محاسبه مى كنيم
$\int_{C}\left(z-z_{0}\right)^{m} d z$,
كه در آن C مايرهأى به شـعاع م و به مركز, 1 بإرامتر t ، مسير C را مىتوان به صورست زير نوشت
$z=z_{0}+\rho(\cos t+i \sin t), \quad 0<t \leq 2 \pi$.
بنابراين انتُكرال (Y-Q-Y) به حوربت زير در مى آيد
$\int_{0}^{2 \pi}(\rho(\cos t+i \sin t))^{m} \rho(-\sin t+i \cos t) d t$

$$
\begin{aligned}
& =i \rho^{m+1} \int_{0}^{2 \pi}(\cos (m+1) t+i \sin (m+1) t) d t \\
& =0
\end{aligned}
$$

 $\int_{C}\left(z-z_{0}\right)^{m} d z= \begin{cases}2 \pi i, & m=-1, \\ 0, & m^{2}, ~ ب ـ ر ا ی ~ س ا ي ر ~ م ق ا د ي ر ~\end{cases}$

شكل F-0-T مسبر C براى (F-0-ए

$$
f(z)=\frac{a_{-1}}{z-z_{0}}+a_{0}+a_{1}\left(z-z_{0}\right)+a_{2}\left(z-z_{0}\right)^{2}+\cdots
$$

و انتگرالل روى هر مسير بستهُ ساده شامل فتط نقطهُ تكين (z ، نشان مي دهد كه

$$
\begin{equation*}
a_{-1}=\frac{1}{2 \pi i} \int_{C} f(\zeta) d \zeta=\operatorname{Res}\left[f(z), z_{0}\right] \tag{4-0-9}
\end{equation*}
$$

معادلهُ (qبِيّشنهاد مي كند . داريمب

$$
\lim _{z \rightarrow+0}\left(z-z_{0}\right) f(z)=a_{-1}=\operatorname{Res}\left[f(z), z_{0}\right]
$$

 تـحليلى باشـد . آن كُاه

$$
\begin{equation*}
\left.\operatorname{Re}_{0} \mid f(z), z_{0}\right]=\frac{1}{(m-1)!} \lim _{z \rightarrow z_{0}} \frac{d^{m-1}}{d z^{m-1}}\left(\left(z-z_{0}\right)^{m} f(z)\right) \tag{9-0-9}
\end{equation*}
$$

مسيرى بـميار ههـم هــتند .

بحز در تعداد متناهى نقاط تكين

$$
\begin{equation*}
\int_{c} f(z) d z=2 \pi i \sum_{j=1}^{n} \operatorname{Res}\left[f(z), z_{j}\right] \tag{V-0-9}
\end{equation*}
$$

كه C در جههت مثبت بـيموده مي شود .
مثال

$$
\int_{c} \frac{3 z+1}{z^{2}-z} d z
$$

كه C داير أى به شعاع Y و به مركز مبلأاستت و در جهت مثبـت بیموده مى شود (شكل و و--

$$
\lim _{z \rightarrow 0} \frac{z(3 z+1)}{z(z-1)}=-1
$$

$\lim _{z \rightarrow 1} \frac{(z-1)(3 z+1)}{z(z-1)}=4 ;$
 . $6 \pi i$

شكل F-0-9
$\int_{c} z^{2} \exp (2 / z) d z$,
كه C دايره ایى به شـعاع Y و به مركز مبدأ است . حل : با مرى تيلور تابعz \exp حول نقطهُ $z=0$ ششروع مى كنيم :

$$
\exp z=1+z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\frac{z^{4}}{4!}+\cdots
$$

$$
\exp \left(\frac{2}{z}\right)=1+\frac{2}{z}+\frac{2^{2}}{2!z^{2}}+\frac{2^{3}}{3!z^{3}}+\frac{2^{4}}{4!z^{4}}+\cdots,
$$

$$
f(z)=z^{2} \exp \left(\frac{2}{z}\right)
$$

$$
=z^{2}+2 z+\frac{2^{2}}{2!}+\frac{2^{3}}{3!z}+\frac{2^{4}}{4!z^{2}}+\cdots
$$

هس z=0 تنها نقطهُ تكين در ناحيئ محدود به C است . در نتيجه ضريب برابر امت با
$a_{1}=\operatorname{Res}[f(z), 0]=\frac{2^{3}}{3!}$
و مقدار انتگُرال داده شده برابر $8 \pi / 3$ است .

 سرى لوران تابع (z $f(z$ ، يعنى، ،
$f(z)=\sum_{n=-1}^{\prime} a_{n}\left(z-z_{0}\right)^{n}$,
بهصوت زير داده هى شوند
$a_{n}=\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z$
و منحصـربه فر دند . تسـمتى از سرى كه ثــامل زماهاى نامنفى (z-z) آن قسمت از سـرى كه شامل نماهاى منفى از ($)$ سرى در يكى ناحيهٔ حلقوى؛ يعنى ناحيهُ بين دو دايره همكراست (تمرين Y را ملاحظه كنيد)
 يك فرمول ناميله مى شود زير ا نشان مى دهد كـه مقدار يكـ تابع تـحليلى در يك نقطهُ تكين تنها را با استفاده از انتگُرالى مسترى مى توان محاسبه كرد . تضيةُ را بلدون الثبات بيان مى كنيم .
 بيموده شده است . نرض كنيد (z) f(z يكى ناحيه مسدود به C و روى C تتحليلى باشد . آن كًاه $f\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{C} \cdot \frac{f(z)}{z-z_{0}} d z$.

$f^{(n)}\left(z_{0}\right)=\frac{n!}{2 \pi i} \int_{C} \overline{\left(z-z_{0}\right)^{n+1}} d z, \quad n=1,2,3, \ldots$.

مثال ؟-ه-ه انتگرال زير راحساب كنيد

$\int_{c} \frac{5 z^{2}+2 z+1}{(z-i)^{3}} d z$,
كه
 را با كه علامت منفى به خاطر جهت منفى مسـير است .

$$
\begin{aligned}
& \text { اين بخشُ رابا يك تضيهُ مهم در مورد توابع تحليلى به بايان مى بريم • }
\end{aligned}
$$

اثبات : فرض كنيد (z) fيك تابع تام كراندار باثـد ـ بس يكنابت Mوجود داردبطورى كه $|f(z)| \leq M$

$$
\begin{aligned}
\qquad\left|f^{\prime}\left(z_{0}\right)\right| & =\left|\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{\left(z-z_{0}\right)^{2}} d z\right| \leq \frac{1}{2 \pi} \int_{C}\left|\frac{f(z)}{\left(z-z_{0}\right)^{2}}\right| d z \\
& =\frac{1}{2 \pi} \cdot \frac{M}{r^{2}} \cdot 2 \pi r=\frac{M}{r}
\end{aligned}
$$

كه
 ثابت اسـت

تمرينهاى 9-0

1- الفش) ننـان دهيد
$\int_{0}^{2 \pi} \cos (m+1) t d t= \begin{cases}2 \pi, & m=-1, \\ 0, & m \text { برای ماير مقادير صتيع }\end{cases}$
$\int_{0}^{2 \pi} \sin (m+1) t d t=0$
. . .
-

$$
f(z)=\frac{z^{2}+1}{z\left(z^{2}-3 z+2\right)}
$$

$$
f(z)=\frac{(z+1)^{2}-2(z+1)+2}{(z+1-1)(z+1-2)(z+1-3)}
$$

ب) با نرض

$$
\frac{\zeta^{2}-2 \zeta+2}{(\zeta-1)(\zeta-2)(\zeta-3)}=\frac{1}{2(\zeta-1)}-\frac{2}{\zeta-2}+\frac{5}{2(\zeta-3)}
$$

بّ (آت آريد

$$
\frac{1}{2 \zeta} \sum_{n=0}^{\infty} \frac{1}{\zeta^{n}}-\frac{2}{\zeta} \sum_{n=0}^{\infty}\left(\frac{2}{\zeta}\right)^{n}+\frac{5}{2 \zeta} \sum_{n=0}^{\infty}\left(\frac{3}{\zeta}\right)^{n}
$$

كه برای 3 > $3 \mid$ معتبر اسـت .
ت بتابراين نشثان دههل

$$
\frac{z^{2}+1}{z\left(z^{2}-3 z+2\right)}=\frac{1}{2} \sum_{n=0}^{x}\left(1-2^{n+2}+5(3)^{n}\right)(z+1)^{-(n+1)}
$$

برای $|z+1|>3$. معتبر اسـت 1

شـلـه اسـت .
معادله (- F
انتشرال

$$
\int_{C} f(z) d z
$$

رادر هر حالت اكر
$C: z=e^{i \phi}, 0 \leq \phi \leq \pi ; \quad$ الفـف) در جههت ععقربه هاى ساعت

رياخيات ،هندمى

عقربه هاى ساعت .
-

$$
\int_{C} f(z) d z
$$

را در هر حالت اگر $f(z)=\frac{(z+2)}{z}$ و C به صورتهای زير باشُد، محاسبه كنيد .
 $C: x^{2}+y^{2}=4$ (ب) مسير بسته؛ در خحلان عقربه هأى ساعت $C: x^{2}+y^{2}=4$ (4 (
 ^- انتگرال زير را حسابس كنيد

$$
\int_{c} \frac{\left(9 z^{2}-i z+4\right)}{z\left(z^{2}+1\right)} d z
$$

استفاده كتيد .)
-

$$
\int_{C} P_{n}(z) d z=0 .
$$

$$
\int_{1} \frac{\sqrt{z}}{(z-1)^{3}} d z
$$

إ إنتكرال زير را حساب كنيد

$$
\int_{1} \frac{e^{z}+\sin z}{z} d z
$$

كه C مسير بستهُ 3 = $3|z-2|$ اسـت كه در جهت مثبت بيموده مى شود .
-

$\sin z \quad$ (ب)
e^{i}
$\cosh ^{2} \quad($
$\sinh z \quad(\pi$

- If

$$
\frac{1}{1+z^{2}}=\frac{1}{(z+i)(z-i)}
$$

$$
\int_{x}^{x} \frac{d x}{1+x^{2}}=\pi
$$

- 10

$$
\begin{aligned}
& \int_{x}^{x} \frac{d x}{1+x^{4}}=\frac{\pi}{\sqrt{2}} \\
& \int_{-}^{x} \frac{\cos \omega x}{a^{2}+x^{2}}=\frac{\pi}{a} \exp (-\omega a), \quad a>0 .
\end{aligned}
$$

- IV

$$
\frac{1}{1-z}=1+z+z^{2}+z^{3}+\cdots
$$

ب) با تقسيب طو لانى نشان دهيل

$$
-z+1=-\left(\frac{1}{z}+\frac{1}{z^{2}}+\frac{1}{z^{3}}+\cdots\right)
$$

 قسمـت (ب) برایى | $|z|>0$ همگراست .

$$
\frac{1}{(1-z)(2-z)}=\frac{1}{z-1}+\frac{1}{z-2}
$$

$$
-\frac{1}{z-1}=-\frac{1}{z\left(1-\frac{1}{z}\right)}
$$

نشان دهيد

$$
-\frac{1}{z-1}=-\sum_{n=1}^{\infty} \frac{1}{z^{n}}
$$

و اين كه براى \mid | \mid معتبر است. به (با تقسيم طو لانى نشان دهيد
$\frac{1}{-2+z}=-\sum_{n=0}^{1} \frac{z^{n}}{2^{n+1}}$,
و اينبرابرى براى 2 > $2 \mid z$ معتبر است . ت سرى لوران رابرایى
$\frac{1}{(1-z)(2-z)}$,
طورى بنويـيد كه براى 2 > $12 \mid$ | 1 معتبر باشد .

- 19
$\frac{1}{(z-1)(z-3)}$,
كه براى 3 < 1 | 1 معتبر باشد، بنويـيـد .
 $P_{n}(z)=\frac{1}{2^{n} n!} \frac{d^{n}\left(z^{2}-1\right)^{n}}{d z^{n}}, \quad n=0,1,2, \ldots$.

به كمكى معادلئ (9-0-1 (1) نمايش انتكراللى زير را بهدست آوريد . $P_{n}(z)=\frac{1}{2 \pi i} \int_{C} \frac{\left(\zeta^{2}-1\right)^{n}}{2^{n}\left(\zeta^{\prime}-z\right)^{n+1}} d \zeta$,

كه C مسير بستهُ سـاده ایى الست كه زتطهُz را در بر دأرد .
 $\exp \left(z\left(t-\frac{1}{t}\right)\right)=\sum_{n=-t}^{x} J_{n}(z) t^{n}$.

وقتى طرف جـب بـرحـسب مـرى توانى از t بسط داده شــود و ضـرايب "t مــــــاوى همـ قرار داده شـوند ، نتيجه عـبارتى براى (z)
$J_{n}(z)=\frac{1}{\pi} \int_{0}^{\pi} \cos (n \theta-z \sin \theta) d \theta$.
f(z) تابعى تام باثـد . نشـان دهيد
$\int_{z_{1}}^{z_{1}} f(z) d z$

 كتابِ فهرسـت ثــده اند، مى توان يافت .

تجزيه به كسرهاى جزئى

 حندجـمله اي هستند، كـاربردهاي زياد دارد . در رياضيـات عمـومى، اين شيـوه بهعنوان يكى از

 استفاده هى شود .

 فرض كنيد اين عوامل همگیى متمايز باشند . آن كاه

$$
f(z)=\frac{P(z)}{Q(z)}=\frac{A_{1}}{z-z_{1}}+\frac{A_{2}}{z-z_{2}}+\cdots+\frac{A_{n}}{z-z_{n}}
$$

و مى توانتمب بنويسيم

$$
\left(z-z_{j}\right) f(z)=\phi_{j}(z)
$$

$$
\phi_{j}\left(z_{i}\right)=A_{j}, \quad j=1,2, \ldots, n
$$

$$
A_{j}=\operatorname{Res}\left[f(z), z_{j}\right],
$$

$$
(1-9-9)
$$

كه ماندهُ (f $f(z$ در مثال 5-4-1 تابع كوياى زير رابه كسرهاى جزئى تجزيه كنيد $f(z)=\frac{-7 z-1}{z^{3}-7 z+6}$
حل : جون مى باشد . عرامل ديكرُ بــادكى با تقسيم بهد دست مى آيند؛ بس

$$
\begin{aligned}
f(z) & =\frac{-7 z-1}{z^{3}-7 z+6}=\frac{-7 z-1}{(z-1)(z-2)(z+3)} \\
& =\frac{A_{1}}{z-1}+\frac{A_{2}}{z-2}+\frac{A_{3}}{z+3},
\end{aligned}
$$

و با استفاده از معادله (9-9-1)، داريم

$$
A_{1}=2, \quad A_{2}=-3, \quad A_{3}=1 .
$$

بعد حالتى رادر نظر مى كيريم كه $f(z)=P(z) / Q(z)$ يكى تطب مر تبئ n در $f(z)$ داثتهه باشـد. در آنصورت

$$
f(z)=\frac{P(z)}{Q(z)}=\frac{A_{1}}{z-z_{1}}+\frac{A_{2}}{\left(z-z_{1}\right)^{2}}+\cdots+\frac{A_{n}}{\left(z-z_{1}\right)^{n}}
$$

$$
\begin{aligned}
\phi(z) & =\left(z-z_{1}\right)^{n} f(z) \\
& =A_{1}\left(z-z_{1}\right)^{n-1}+A_{2}\left(z-z_{1}\right)^{n-2}+\cdots+A_{n}
\end{aligned}
$$

$$
A_{n}=\phi\left(z_{1}\right)
$$

$$
A_{j}=\frac{\phi^{(n-j)}\left(z_{1}\right)}{(n-j)!}=\operatorname{Res}\left[f(z), z_{1}\right]
$$

$$
f(z)=\frac{3 z^{2}+8 z+6}{(z+2)^{3}}
$$

حل : در اين جا داريـم

$$
\begin{aligned}
\phi(z) & =(z+2)^{3} f(z) \\
& =3 z^{2}+8 z+6 \\
& =A_{1}(z+2)^{2}+A_{2}(z+2)+A_{3}
\end{aligned}
$$

بنابراين،
$A_{3}=\phi(-2)-2$.

$\phi^{\prime}(z)=2 A_{1}(z+2)+A_{2}$
$\phi^{\prime \prime}(z)=2 A_{1}$,
بنابر اين

$$
A_{2}=\phi^{\prime}(-2)=6(-2)+8=-4
$$

$$
A_{1}=\frac{\phi^{\prime \prime}(-2)}{2}=3
$$

$$
\frac{3 z^{2}+8 z+6}{(z+2)^{3}}=\frac{3}{z+2}-\frac{4}{(z+2)^{2}}+\frac{2}{(z+2)^{3}}
$$

توإبعى را كـه هـم تطبهـاى سـاده و هـم تطبـهاى مـرتبهُ 1 > n دارند مى توالن با اسـتفـاده از تركيبى إز روشـهانى كه در دو مــال بالا تشريح شد، تـجزيه نمود . مسـائلى از اين نوع را مى توان در تمرينها يافت .

تبديل لآلاس
 تعريف مى شود .
$\bar{f}(x)=\int_{-\alpha)}^{\infty} f(t) e^{i x t} d t$.
، $f(t)=0$ اگر
 زير نوشـت
$\bar{f}(\alpha)=\int_{0}^{\alpha} f(t) e^{\prime \alpha t} d t$,

و اگكر به جاى α قرار دهـيم(
$F(s)=\int_{0}^{,} f(t) e^{\cdot x} d t$,
 $|f(t)| \leq M \exp (a t)$

 لإِلاس كه در حاللت حقيقى عبارتند از

$$
f(t)=\exp (a t) \leftrightarrow F(s)=\frac{1}{s-a}, \quad s>a,
$$

در اين جا به حـورت زير نو شتّه مى شوند

$$
\begin{equation*}
f(t)=\exp (a t) \leftrightarrow F(s)=\frac{1}{s-a}, \quad \operatorname{Re}(s)>\operatorname{Re}(a) \tag{4-9-9}
\end{equation*}
$$

در اين جا نرمول انمكاس لابلاس مـورد توجهه است، خجون نمى توان انتظار داست كـه

 عمل مى كنـم .
به خـاطر بيـاوريد براى آن كه تبـديل فورئ

$\phi(t)=\exp (-\gamma t) f(t), \quad \gamma>0$,
 يكـنمايش انتگرال نوريه است كه بهصورت زير داده مى شود (معادلهُ ب-r-ץ $\phi(t)=\frac{1}{2 \pi} \int_{-i}^{x} \exp (i \eta t) d \eta \int_{0}^{x} \phi(\xi) \exp (-i \xi \eta) d \xi$.

اكر به جاى (t) از معادلئ (9-9-0) قرار دههم، داريم $f(t)=\frac{\exp (\gamma t)}{2 \pi} \int_{-x}^{x} \exp (i \eta t) d \eta \int_{0}^{0} f(\xi) \exp (-\xi(\gamma+i \eta)) d \xi$.

سرانجام با جايكزينى
$s=\gamma+i \eta, \quad d s=i d \eta, \quad F(s)=\int_{0}^{\sigma} f(\xi) \exp (-s \xi) d \xi$,
بهدست مى آوريم (تمرين 「)
$f(t)=\frac{1}{2 \pi i} \int_{\nu-i \infty}^{\gamma+i \alpha} F(s) \exp (s t) d s$,
كه فرمول معكوس سازى تبليل لابلاس امت .
در معـادله ()
انتگرال انعكاسى در طول يكى مسير بهصورت خحط مستقيم در صفحهئ مختلط است . إين مسير،

(1aY - - ا^AV) : T. J. I.A. Bromwich

رياخيات مهندسى

بسادكى به يكى انتگرال منحني الخظط حقيقى تبديل كـرد، ولى محاسبةء آن تا حدى مشكل الست . اغلب خيلى سـاده تر است كه از انتگرال كيرى مسيرى و نظريهُ مانده ها الستفاده كنيم. . با يكى مثال
روشُ را تشريح مى كنيم •

مثال F-9-9 تابع زير داده شده است

$$
F(s)=\frac{s}{s^{2}+\omega^{2}}
$$

f(t) حل : داريم

$$
f(t)=\frac{1}{2 \pi i} \int_{\gamma-i \infty}^{\gamma+i \infty} \frac{s \exp (s t)}{s^{2}+\omega^{2}} d s .
$$

 $\gamma \pm i \beta$ عـددى به تـــر كافى بزر
 $f(t)=\lim _{\beta \rightarrow x} \frac{1}{2 \pi i} \int_{C_{\gamma}+C_{\beta}} \frac{s \exp (s t)}{s^{2}+\omega^{2}} d s-\lim _{\beta \rightarrow x} \frac{1}{2 \pi i} \int_{C_{B}} \frac{s \exp (s t)}{s^{2}+\omega^{2}} d s$.
مى توان نشان داد كه در اين حالت حد دوم برابر صفر است، همين طور اين حد برانى ديگر توابع F(s) تحت شـرايطى معـيّن صفـر است (تمرين Y\&) . اولّين انتگرال روى يكى مـسـير بسـتهُ سـاده است كه دو تطبب سـاده را دربر دارد، بنابراين مقدار آن بنابر معادلهُ (Y-ه-Y) عبارت است از : $\frac{i \omega \exp (i \omega t)}{2 i \omega}+\frac{-i \omega \exp (-i \omega t)}{-2 i \omega}=\cos \omega t$.

در كاربردها $F(s)$ بيشّتر به شكل زير است
$F(s)=\frac{p(s)}{Q(s)}$,
كه $Q(s)$ حندجمله أى از درجهُ n و كمتر از درجهُ متـمايز (s-sj) بهصورت زير نوشت
$f(t)=\mathscr{L}^{-1}\left\{\frac{p(s)}{Q(s)}\right\}=\sum_{j=1}^{n} \frac{p\left(s_{j}\right) \exp \left(s_{j} t\right)}{Q^{\prime}\left(s_{j}\right)}$.
$(V-9-9)$

نرمول اخـير را: نـرمول بسط هويسايد (Heaviside) نيز مى نامند . در تمام بحث تبلى نرض كردهايم 0 . $p\left(s_{j}\right) \neq{ }^{\text {كر }}$

شيكل 9-9-1-1 مسبر يردميج

 V با مؤلنه هاى V
$\int_{C}\left(V_{x} d x+V_{y} d y\right)=\iint_{R}\left(\frac{\partial V_{y}}{\partial x}-\frac{\partial V_{x}}{\partial y}\right) d x d y$,
كه C يكى منحنى بستنُ سـاده است كه ناحيهُ R ر ا احاطه مى كند . اكـر سيـلا غيرجرخـنـى باشد

 مى كند، بطورى كه
$\frac{\partial \phi}{\partial x}=V_{x} \quad, \quad \frac{\partial \phi}{\partial y}=V_{y}$.
بنابراين بردار V بهعنوان بك متنيرّ مـتلط به صورت زير نوشته مى شود $\mathrm{V}=V_{x}+i V_{y}=\frac{i \varphi}{\partial x}+i \frac{\partial \phi}{\partial y}$,

كه نشان مي دهد V Vراديان ه ا است .
 عمود بر جريان عبارتند از $\int_{C}\left(-V_{y} d x+V_{x} d y\right)=0$,

كه شار عبورى از مرز C را بيان مى كند . مجددآ با استفاده از تضيئ كرين در صفخه، داريم $\int_{C}\left(-V_{y} d x+V_{x} d y\right)=\iint_{R}\left(\frac{\partial V_{x}}{\partial x}+\begin{array}{c}\partial V_{y} \\ \partial y^{\prime}\end{array}\right) d x d y$. بنابراين تابع اسكالر (x,y) \downarrow وجود دارد بطورى كه
$\frac{\partial \psi}{\partial x}=-V_{y} \quad, \quad \frac{\partial \psi}{\partial y}=V_{x}$.
علاوه براين، $\phi(x, y)$ و $\phi(x, y)$ در معادله هاى كتـى - ريمان صـدق مى كتند و بنابراين مى توانيم تابع تحلبلى $w=f(z)=\phi(x, y)+i \psi(x, y)$,
 $w=f(z)$ هم بجز در نقاطى كه مثال . $\operatorname{Im}(z) \geq 0$

حل : در اين جا داريم $w=z^{2}=\left(x^{2}-y^{2}\right)+i(2 x y) ;$

بنابر اين هم تِانسيلها هذلوليهاي

 در شكل 9-9-9 نشان داده شـدهاند .

$$
w=z^{2} \text { شكل } w-9-9
$$

حلّ مسائل مقدار مرزى به كمك نكاشت
قبلاً يك كاربرد نگاثمت همديس را در مثال 9-4-1 ديلده أيم . حال مسائل مشكلترى را

 لكيل 9-9-1 :اكر f تابعى تحليلى بانـد، آن كاه تعويض متغيّرهانى
$x+i y=f(u+i v)$

هر تابع همـــاز از x و y را به يك تابع ممسـاز از u و v نقش مى كند .
 بلكه بعضى از شـرايط مرزى متداول را كه ييش مى آيند نيز حفظ مى كند . اين مطلب را با مـثالى
تنـريح مى كنبم •
 .

 نوع مخلوط، در مقابل شر ايط ديريكله و نويمان نامند .

مسالد داده شده را بهصورت رياضى به شكل زير مى توان فرمول بندى نمود :

$$
\begin{aligned}
& T_{x x}+T_{y y}=0, \quad-\infty<\varepsilon<\infty, \quad y>0 ; \\
& T(x, 0)=0, \quad x<-1, \\
& T_{y}(x, 0)=0, \quad-1<x<1 . \\
& T(x, 0)=100, \quad x>1 .
\end{aligned}
$$

نگاشت $w=\sin ^{-1} z$ ، مساله را به صورتى كه حل آن خيلى ساده است

 انــت (تمرين צ) .

$$
\begin{aligned}
& \frac{d^{2} U}{d u^{2}}=0, \quad U\left(-\frac{\pi}{2}\right)=0, \quad U\left(\frac{\pi}{2}\right)=100 . \\
& U(u)=50\left(1+\frac{2}{\pi} u\right) .
\end{aligned}
$$

اما همان طور كه اغلب اتفاق مى افتد، سادكي حل مساكله تـديل شـده با مشكلى كه برا الى بر كشت

$$
\begin{aligned}
z=x+i y & =\sin w=\sin (u+i v) \\
& =\sin u \cosh v+i \cos u \sinh v
\end{aligned}
$$

بنابراين
$\frac{x}{\sin u}=\cosh v \quad, \quad \frac{y}{\cos u}=\sinh v$.
$\frac{x^{2}}{\sin ^{2} u}-\frac{y^{2}}{\cos ^{2} u}=1$,

 2 2 in u
$\sin u=\frac{1}{2}\left(\sqrt{(x+1)^{2}}+y^{2}-\sqrt{(x-1)^{2}+y^{2}}\right)$. ($1-9-9$)

سرانجام جواب مساله عبارتاست از
$T(x, y)=50\left(1+\frac{2}{\pi} u\right), \quad-\frac{\pi}{2} \leq u \leq \frac{\pi}{2}$,
 مي كذاريم(تمرين ه)
در مـثال بعـد مـــالكهاى را در مـورد دیانـنسيل الكتـريسيته سـاكـن نانـى از يك ورتهُ رسـانا
بردسى مي كنيّ .
 است . نوار بين
 بتانسيل (

شكل \&-5-0
 به صورت مسالهُ دو بعدى زير خلاصه كرد .

$$
\begin{aligned}
& V_{x x}+V_{y y}=0, \quad-\infty<x<\infty, \quad y>0 ; \\
& V(x, 0)=0, \quad|x|>a, \quad \text { نر ايط مرزى } \\
& V(x, 0)=1, \quad|x|<a \text {, } \\
& |V(x, y)|<M, \quad-\infty<x<x, \quad y>0 . \\
& \text { اين مسآله را مى توان با امسفاده از تبديل" زير خيلى ساده كرد }
\end{aligned}
$$

$$
w=\log \left(\frac{z-a}{z+a}\right)
$$

 يكـ معادله́ ديفرانسيل معمولى امـت . جوابب عبارت امـت از $U(u, v)=v / \pi$ (تمرين • 1) .

شكل 4-9-9

حالن
$\log (z-a)=\log \sqrt{(x-a)^{2}+y^{2}}+i \arctan \frac{y}{x-a}$

$$
\begin{aligned}
v & =\arctan \frac{y}{x-a}-\arctan \frac{y}{x+a} \\
& =\theta_{2}-\theta_{1}
\end{aligned}
$$

كه $\theta_{2}-\theta_{1}=\theta$
$V(x, y)=\frac{1}{\pi} \arctan \left(\frac{2 a y}{x^{2}+y^{2}-a^{2}}\right)$

*-

 مر اجعى كه در پايان كتاب آور رده شده بهره كرفت .

تمرينهاي \$-5

 1-1 با نرضم آن كه$\phi(z)=\left(z-z_{1}\right)^{n} f(z)$,
نـــُن دهيد
$\psi^{\prime n}{ }^{j}\left(z_{1}\right)=\operatorname{Res}\left[f(z), z_{1}\right]$.
نتُان دهيد اكر براىى \quad - Y

HIO
نصل شـُمْ-متغير هاى مختلط

$$
\phi(t)=\exp (-\gamma t) f(t), \quad \gamma>0
$$

بر خطط حقيمى بطور مطلت انتگرال هذير است .
r- جزئيات لازم رأ برابى رسيدذ به معادله (9-9-9) انجام دهيد .
 دهيد بر هر ناحئُ R .

$$
\iint_{R}\left(\frac{\partial V_{y}}{\partial x}-\frac{\partial V_{x}}{\partial y}\right) d x d y=0
$$

$$
\int_{C}\left(V_{x} d x+V_{y} d y\right)=0
$$

$$
\frac{\partial \phi}{\partial x}=V_{x} \quad, \quad \frac{\partial \phi}{\partial y}=V_{y}
$$

بطورى كه

عمود بر V داراى مؤلفه هاى لV - و و
¢-

متناظرند
مسألة مقدار مرزى زير را حل كنيد

$$
\frac{d^{2} U}{d u^{2}}=0, \quad U\left(-\frac{\pi}{2}\right)=0, \quad U\left(\frac{\pi}{2}\right)=100
$$

(با مثال 9-9-0 مقايسه كنيذ)

مي كند .

ب) (
ب) (
9-9

$$
w=\log \left(\frac{z-a}{z+a}\right)
$$

 -1• مسالة مقدار مرزى مثال 9-9-9 راحل كنيد،
$\frac{d^{2} U}{d u^{2}}=0, \quad U(0)=0, \quad U(\pi)=1$.
11-1 الف) در مثال 9-9-9 ن 9-9

ب) رابطهُ زير رابه دسـت آوريد
$\tan \theta=\frac{2 a y}{x^{2}+y^{2}-a^{2}}$.
ب) تحقيق كنيد جواب (9-9-9) در معادلهُ بتانسيل و همهُ شر ايط مرزى صدق
 Y ا

$$
F(s)=\frac{s}{\left(s^{2}+1\right)^{2}},
$$

أين تابع را به كسرهاى جزئى تجزيه كنيد

$$
f(z)=\frac{z^{2}-5}{z^{3}-6 z^{2}+11 z-6}
$$

| أ رابه كسرهاى جزئى تجزيه كنيد .

$$
f(z)=\frac{z}{z^{2}-3 z+\overline{2}}
$$

19- تبديل لاليلاس معكوس هريكـاز توابع زير رابدون استفاده از تجزيه به كــرهـاى جزئى،
بهد دست آوريد .
$\frac{1}{s^{4}-1} \quad$ ($\quad \frac{s}{s^{4}-2 s^{2}+1} \quad$ (ب) $\frac{2 s+1}{s\left(s^{2}+1\right)}$ (ب)
. تبديل لابلاس معكوس هريك از توابع زير رابهد دست آريد - IV
$F(s)=\frac{s}{(s+1)^{2}\left(s^{2}+3 s-10\right)}$
$F(s)=\frac{s+1}{s(s+3)^{2}}$
الف)
 هويسايد (V-9-9) تبديل لابلاس معكوس هريك از توابع زير را بيابيد .
$(s-b)^{2}+\omega^{2}$

$$
\left(\begin{array}{c}
\frac{s-b}{(s-b)^{2}}+ \\
\frac{a}{s^{2}-a^{2}}
\end{array}\right.
$$

(ب) $\frac{\omega}{s^{2}+\omega^{2}}$
الف)

$$
\text { (ث } \frac{s}{s^{2}-a^{2}}
$$

(ت)

19 - مســالة مـثال 19 -
به
$c_{1}<0 ، c_{1}=0 ، c_{1}>0$ -
كدامند؟
 . كنيد

رسم كنيد.

ب) اهمبت فيزيكى مبدأ در هيست؟

$$
f(z)=\operatorname{Re}\left(\frac{1}{2}\left(z+\frac{1}{z}\right)\right) .
$$

(نوجه : از ماشين حساب مى توان در رسم منحنيها كمك كرفت . از تقارن استفاده كنيد

$$
\text { و نتط ناحبئ x } 0 \text { ، y } \mathrm{y} \text { رادر نظر بكيريد.) }
$$

> تمرين VI بخش 9-4 بر ا ملاحظه كنيد.)
ro- مسائل ديريكلة زير راحل كنيد .
الف) T(0,y)=100، T(x,0)=0، y>0، x>0

$$
\text { (رامنمايع : از تبديل w= = } w \text { و سبس از }
$$

$$
T(\rho, \pi)=100 ، \pi(\rho, 0)=0 ، T_{\rho}(1, \phi)=0 ، 0<\phi<\pi ، \rho<1 \quad \text { ب }
$$

$$
\text { (رامنمايى : از تبديلw = } \log z \text { استفاده كنيد) }
$$

، $-\pi<\phi<0$ (- برایى
. $7(1, \phi)=0$
-

$$
|F(s)|<\frac{M}{|s|^{\alpha}}
$$

نثـان دهيد
$\lim _{\beta \rightarrow x} \frac{1}{2 \pi i} \int_{C_{\beta}} F(s) \exp (s t) d s=0$.
تابع نمايع
$f(x)=A \exp \left(-\frac{x}{a}\right), \quad x>0$,
 سِداكنيد .

جولهوا

جدول 1- تبديلات لإس	
$F(s)$	$f(t)$
1. $\frac{a}{s}$	a
2. $\frac{1}{s^{2}}$	t
3. $\frac{2}{s^{3}}$	t^{2}
4. $\frac{n!}{s^{n+1}}$	f',
5. $\frac{\Gamma(\alpha+1)}{s^{\alpha+1}}$	β_{1} ع علد- α a $\quad \alpha>-1$
6. $\frac{a}{s^{2}+a^{2}}$	$\sin a t$
7. $\frac{s}{s^{2}+a^{2}}$	$\cos a t$
8. $\frac{1}{s-a}, s>a$	$\left.\exp (a)^{\prime}\right)$
9. $\frac{1}{(s-a)^{2}}$	$\left.t \exp (a)^{\prime}\right)$
10. $\frac{2}{(s-a)^{3}}$	$t^{2} \exp (a t)$
11. $\frac{n!}{(s-a)^{n+1}}$	$\mathrm{r}^{n} \exp (8 t), \quad$,
12. $\frac{a}{s^{2}-a^{2}}$	sinh at
13. $\frac{s}{s^{2}-a^{2}}$	cosh at
14. $\frac{s^{2}+2 a^{2}}{s\left(s^{2}+4 a^{2}\right)}$	$\cos ^{2} a t$
15. $\frac{s^{2}-2 a^{2}}{s\left(s^{2}-4 a^{2}\right)}$	$\cosh ^{2}$ at
16. $\frac{2 a^{2}}{s\left(s^{2}+4 a^{2}\right)}$	$\sin ^{2}$ at

ادامن جدول

$F(s)$	$f(t)$
17. $\frac{2 a^{2}}{s\left(s^{2}-4 a^{2}\right)}$	$\sinh ^{2}$ at
18. $\frac{2 a^{2} s}{s^{4}+4 a^{4}}$	\sin at sinh at
19. $\frac{a\left(s^{2}-2 a^{2}\right)}{s^{4}+4 a^{4}}$	cos at sinh at
20. $\frac{a\left(s^{2}+2 a^{2}\right)}{s^{4}+4 a^{4}}$	\sin at \cosh at
21. $\frac{s^{3}}{s^{4}+4 a^{4}}$	cos at cosh at
22. $\frac{2 a s}{\left(s^{2}+a^{2}\right)^{2}}$	$t \sin a t$
23. $\frac{s^{2}-a^{2}}{\left(s^{2}+a^{2}\right)^{2}}$	$t \cos a t$
24. $\frac{2 a s}{\left(s^{2}-a^{2}\right)^{2}}$	$t \sinh$ at
25. $\frac{s^{2}+a^{2}}{\left(s^{2}-a^{2}\right)^{2}}$	t cosh at
26. $\frac{a}{(s-b)^{2}+a^{2}}$	$\exp (b r) \sin a t$
27. $\frac{s-b}{(s-b)^{2}+a^{2}}$	$\exp (b t) \cos a t$
1	$\exp (a t)-\exp (b t)$
$\overline{(s-a)(s-b)}$	$a-b$
s	$a \exp (a t)-b \exp (b t)$
(s-a)(s-b)	$a-b$
1	$1 b^{\text {a }}$ exp (af) - a exp (bf)
$s(s-a)(s-b)$	$\overline{a b}+\frac{a b(a-b)}{}$
1	$(c-b) e^{a t}+(a-c) e^{b t}+(b-a) e^{t t}$
$(s-a)(s-b)(s-c)$	$(a-b)(a-c)(c-b)$
s	$a(b-c) e^{a l}+b(c-a) e^{b t}+c(a-b) e^{c t}$
$(s-a)(s-b)(s-c)$	$(a-b)(b-c)(a-c)$
33. $\frac{1}{s\left(s^{2}+a^{2}\right)}$	$\frac{1}{a^{2}}(1-\cos a t)$
34. $\frac{1}{s\left(s^{2}-a^{2}\right)}$	$\frac{1}{a^{2}}(\cosh a t-1)$
35. 1	$\delta(t)$
36. $\exp (-a s)$	$\delta(t-a)$
37. $\frac{1}{s} \exp (-a s)$	$u_{a}(t)$
38. $\left(s^{2}+a^{2}\right)^{-1 / 2}$	$J_{0}(a t)$
39. $\frac{1}{s} \log s$	$-\log t-C$

ادامئجدرل

$F(s) \quad f(t)$
40. $\log \frac{s-a}{s} \quad \frac{1}{t}(1-\exp (a t))$
41. $\log \frac{s-a}{s-b} \quad \frac{1}{t}(\exp (b t)-\exp (a t))$
42. $\log \frac{s+a}{s-a} \quad \frac{2}{t} \sinh a t$
43. $\arctan \left(\frac{a}{s}\right) \quad \frac{1}{t} \sin$ at
44. $\frac{\sqrt{\pi}}{2} \exp \left(\frac{s^{2}}{4}\right) \operatorname{erfc}\left(\frac{s}{2}\right) \quad \exp \left(-t^{2}\right)$
45. $\frac{1}{b} F\left(\frac{s}{b}\right), b>0 \quad f(b t)$
46. $F(s-b) \quad \exp (b t) f(t)$
47. $\frac{1}{s} \exp (-k \sqrt{s}), k>0 \quad \operatorname{erfc}(k / 2 \sqrt{t})$

پاسخ و راهنمايى براى تمرينهاى انتخابى

U井

بخش 1-1 ، حمعه •

$$
\begin{aligned}
& \left(\begin{array}{ll}
4 & 2 \\
2 & 8
\end{array}\right),\left(\begin{array}{rr}
2 & -2 \\
-4 & 0
\end{array}\right),\left(\begin{array}{rr}
-2 & 2 \\
4 & 0
\end{array}\right) ; \\
& \left(\begin{array}{ll}
9 & 6 \\
7 & 20
\end{array}\right),(44,64),\left(\begin{array}{rr}
34 & 52 \\
94 & 124
\end{array}\right),\left(\begin{array}{rr}
9 & 0 \\
-7 & 16
\end{array}\right) \\
& \left(\begin{array}{rrr}
3 & 5 & 10 \\
5 & 9 & 2 \\
2 & 1 & 2
\end{array}\right) \cdot\left(\begin{array}{rr}
-2 & 6 \\
0 & 6 \\
3 & 2 \\
3 & -4
\end{array}\right) \cdot\left(\begin{array}{rrr}
19 & 0 & 17 \\
6 & 5 & -4 \\
15 & -4 & 19
\end{array}\right) ; \\
& \left(\begin{array}{rrr}
32 & 12 & 6 \\
12 & -4 & 12 \\
6 & 12 & 5
\end{array}\right),\left(\begin{array}{rrr}
10 & 2 & 2 \\
2 & 6 & 0 \\
2 & 0 & 5
\end{array}\right),\left(\begin{array}{rrr}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
& \binom{17}{6},\left(\begin{array}{r}
3 \\
-14 \\
-1
\end{array}\right),\left(\begin{array}{rr}
20 & 8 \\
15 & 24
\end{array}\right)
\end{aligned}
$$

$$
\left(\begin{array}{rrr}
-1 & 2 & 1 \\
0 & -2 & 0 \\
1 & 2 & -1
\end{array}\right),\left(\begin{array}{rrr}
-2 & -2 & 2 \\
2 & 0 & -2 \\
-2 & 2 & 2
\end{array}\right),\left(\begin{array}{rrr}
4 & 4 & -4 \\
-4 & 0 & 4 \\
4 & -4 & -4
\end{array}\right), 16 A^{2} \quad \text { (} \begin{aligned}
& \text { الف }
\end{aligned} \text { - }
$$

ب) O(ماتريس3 3 ، صفر
.
, $B^{2}-7 B+6 I-11$

رياخيات مهندسى
fry
$\left(\begin{array}{ll}a_{11} & a_{12} \\ 0 & 0\end{array}\right) \quad$ لنخواهند a_{12}, a_{11}
$-1 Y$
$B=\left(\begin{array}{lc}b_{11} & b_{12} \\ 0 & b_{11}+2 b_{12}\end{array}\right)$
-14
$A=\left(\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ 0 & 0 & 1\end{array}\right)$
-17

ب) اكر A و B تعريضل پذير باشند
: $A^{2}-A B+B A-B^{2}$ (الفـ 19

ب) ($\left.A-A^{T}\right)^{T}=A^{T}-A=-\left(A-A^{T}\right)$ كهنشان مى دهد $A-A^{T}$ متقارن اريباست .

YA بلش Y Y Y Y ا
$96-\boldsymbol{r}$
r-
سطر سوم رادر 5- خرب كنيـد و نتيجـه را به سـطر دوم اضافه كنيـد؛ سطر سومر دا در 7

ضرب كنيد و نتيجه را به سطلر اوّل اضانه كنيد .
براى تبديل به صورت بلكانى : در قسمت (ت) سطر دومرا در 1- ضرب كنيد و نتيجه را به سطلر سـوم اخـافه كنيـد؛ سمس سـطر سـو ورا در

تعريض كنيد

$$
\begin{aligned}
& \left(\begin{array}{ccc}
a_{21} & a_{22} & a_{23} \\
a_{11} & a_{12} & a_{13} \\
a_{31}+c a_{21} & a_{32}+c a_{22} & a_{33}+c a_{23}
\end{array}\right) \quad \text { (ت) } \quad\left(\begin{array}{ccc}
a_{21} & a_{22} & a_{23} \\
a_{11} & a_{12} & a_{13} \\
a_{31} & a_{32} & a_{33}
\end{array}\right) ; \\
& \{(2 c,-5 c, c)\}\left(\begin{array}{c}
\text { ¢ } \\
\hline
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { ج }
\end{aligned}
$$

$\left\{(2.556,1.722,-1.056)^{T}\right\}$ يا
ب

$$
\left\{(-6.3333 c,-4.8182 c,-2.3939 c, c)^{T}\right\}\left(\begin{array}{c}
-1 \\
\hline-1
\end{array}\right.
$$

ب(

$$
\left\{(1.45,-1.59,-0.27)^{T}\right](\underset{\sim}{1}
$$

$$
4 b-a \neq 3(ب) \quad 4 b-a=3(4 \vee
$$

 . $A^{-1} B=B A^{-1}$ درنتيجه $A^{-1} B A=A^{-1} A B=B \quad$-r $A^{-1} B A A^{-1}=B A^{-1}$ نـنان میر

1- ا- مجمرعه نه تحت عمل جمـ بسته است و نه تحت عمل ضربـ.

ب)

$$
\begin{aligned}
& \left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & c & 0 \\
0 & 0 & 0 & 1
\end{array}\right) ; \quad\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right) ; ~\left(\begin{array}{ll}
-1 \wedge
\end{array}\right. \\
& \left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & -2 & 1 & 0 \\
0 & 3 & 0 & 1
\end{array}\right) \quad\left(\quad\left(\begin{array}{llll}
1 & 0 & k & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) ;\right. \text { (} \\
& \left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & c \\
0 & 0 & 0 & 1
\end{array}\right) ; \quad\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right) ; \\
& \left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 2 & 1 & 0 \\
0 & -3 & 0 & 1
\end{array}\right) \quad \text { (ت) }\left(\begin{array}{rrrr}
1 & 0 & -k & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) ; \text { (ب) }
\end{aligned}
$$

$\left\{\begin{aligned} c_{1}+c_{2}+c_{3} & =0, \\ c_{2}+c_{3} & =0, \\ c_{3} & =0,\end{aligned}\right.$

كه دارایى جواب منحصربه فرد
 مى شُودبه
$\left(\begin{array}{ccccc}1 & 1 & 1 & -1 & x_{1} \\ 0 & 1 & 1 & 2 & x_{2} \\ 0 & 0 & 1 & 3 & x_{3}\end{array}\right) \sim\left(\begin{array}{ccccc}1 & 0 & 0 & -3 & x_{1}-x_{2} \\ 0 & 1 & 0 & -1 & x_{2}-x_{3} \\ 0 & 0 & 1 & 3 & x_{3}\end{array}\right)$
بنابراين با انتخاب هر بردار در (1) را شريرار ($1,1,0$ ، و ($1,1,1$) نوشت
b و a a a
x
, $L\left(u_{1}, u_{2}, u_{3}\right)+L\left(v_{1}, v_{2}, v_{3}\right)=L\left(u_{1}+v_{1}, u_{2}+v_{2}, 0\right) \quad-9$
. $L\left[\left(u_{1}, u_{2}, u_{3}\right)+\left(v_{1}, v_{2}, u_{2}\right)\right]=L\left(u_{1}+v_{1}, u_{2}+v_{2}, 0\right)$

$$
L\left(c u_{1}, c u_{2}, c u_{3}\right)=L\left(c u_{1}, c u_{2}, 0\right)=c L\left(u_{1}, u_{2}, u_{3}\right)
$$

- -

 .
ب) يك نتطه در صفحه

$$
\text { 3va } \mathbf{v}_{1}-\mathbf{v}_{2}-\frac{1}{2} \mathbf{v}_{3}=\mathbf{e}_{1}
$$

- ا^ بردارها زيرنضسايى شامل همه بردارها بهصورت

، $b=x_{2}$ ، $a=x_{1}$ ب $a(1,0,0,-1)+b(0,1,0,1)+c(0,0,1,1)=\left(x_{1}, x_{2}, x_{2}, x_{4}\right) \quad$ - \cdot
x منجر مي شود.

 يكى بِايه برایى بُرد أست .

يكـ بايه برایى بُرد اسـت .
ث) تبديل ر(ا مى توان به صورت زير نوثـت
$\left(x_{1}, x_{2}, x_{3}\right)\left(\begin{array}{rrrr}0 & 1 & 0 & 2 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & -1 & 4\end{array}\right)=\left(0, x_{1}+x_{2}+x_{3}, x_{2}-x_{3}, 2 x_{1}+4 x_{3}\right)$.
 . $\{(0,1,0,2),(0,0,1,-2)\}$
 معيّن بي شـود .
بV - ب) ، ب) ، و ت) وابسته خططى اند.

- r- الف)، ب)، و ب) مستمل خطىى اند.

$$
\text { انr- الف) دوران بهزاريه } \theta=\arctan \left(x_{2} / x_{1}\right) \text { ؛ }
$$

ب) انعكاس نسبت به مبد!؛
ث) تصوير بر محود

$$
\{(-1,1,0,0),(-1,0,1,0),(-1,0,0,1)\}-r{ }^{-1}
$$

 . $(0,1,0,0)$

$$
\begin{aligned}
& L M\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}, x_{2},-x_{3}\right), \\
& M L\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}, x_{2},-2 x_{1}-2 x_{2}-x_{3}\right) \\
& L M\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{2}, 0, x_{2}\right), \\
& M L\left(x_{1}, x_{2}, x_{3}\right)=\left(2 x_{1}+2 x_{2}+2 x_{3}, x_{1}+x_{3},-2 x_{1}-2 x_{2}-2 x_{3}\right)
\end{aligned}
$$

ثيج يك از جهتها تعويض يذير نيستند.
$\{(1,0,0,1),(0,1,0,-1),(0,0,1,0)\}-r q$

ب| بش

$$
\lambda_{3}=1-i, \lambda_{2}=1+i, \lambda_{1}=1 \quad-Y
$$

- F

$$
\left(x_{3}+x_{2}, x_{2}, x_{3}\right)^{T} .
$$

بايد نشان دهيم كه بردارهائى بها اين شكل تحت عمل جــمع و خرب اسكالر بـسته است .
تضيه 1-ז-| را ببينيد.

- ه هترمينان را با الستفاده از عناصر سطر سوم بسط دهيد.

$$
\lambda_{1}=-1,(1,-1)^{T} ; \lambda_{2}=3,(1,1)^{T}
$$

$$
\lambda_{1}=0,(2,-1)^{T} ; \lambda_{2}=3,(1,1)^{T}
$$

4- الف)

$$
\lambda_{1}=0,(1,1,1)^{T} ; \lambda_{2}=1,(1,-1,2)^{T} ; \lambda_{3}=2,(2,1,2)^{T}
$$

$$
\lambda_{1}=-1,(0,1,-1)^{T} ; \lambda_{2}=3,(1,0,0)^{T} ; \lambda_{3}=7,(0,1,1)^{T}
$$

$$
\lambda_{1}=\lambda_{2}=-2,(1,0,-1)^{T} ; \quad(1,-1,0)^{T} ; \lambda_{3}=4,(1,1,1)^{T}
$$

$$
\lambda_{1}=1,(4,3,-1)^{T} ; \lambda_{2}=-i,(1-i, 1,-1)^{T} ; \lambda_{3}=i,(1+i, 1,-1)^{T}
$$

$$
\lambda_{1}=\lambda_{2}=0,(1,0,-1)^{T}, \quad(1,-1,0)^{T} ; \lambda_{3}=3,(1,1,1)^{T}
$$

$$
\lambda_{1}=\lambda_{2}=1,(1,3,0)^{T} \quad, \quad(0,-2,1)^{T} ; \lambda_{3}=2,(2,1,2)^{T} ;
$$

$$
\lambda_{1}=\lambda_{2}=-3,(-2,1,0)^{T}, \quad(3,0,1)^{T} ; \lambda_{3}=5,(1,2,-1)^{T}
$$

$$
\lambda_{1}=\lambda_{2}=-2,(1,0,2)^{T},(0,1,2)^{T} ; \lambda_{3}=7,(2,2,-1)^{T}
$$

$$
\lambda_{1}=\lambda_{2}=\lambda_{3}=1,(1,0,0)^{T} ;\left(? \quad \lambda_{1}=\lambda_{2}=\lambda_{3}=1,(-3,1,1)^{T}\right.
$$

$$
\lambda_{1}=0,(1,0,0)^{T} ; \lambda_{2}=1,(0,1,0)^{T} ; \lambda_{3}=2,(1,0,1)^{T}
$$

$$
\lambda_{1}=-\sqrt{2},(1,0,-1-\sqrt{2})^{T} ; \lambda_{2}=\sqrt{2},(1,0, \sqrt{2}-1)^{T} ; \lambda_{3}=2,(0,1,0)^{T} ;
$$

$$
\lambda_{1}=1,(3,-1,3)^{T} ; \lambda_{2}=\lambda_{3}=2,(2,1,0)^{T} \quad(2,0,1)^{T}
$$

$$
\lambda_{1}=0,(3,-2,1)^{T} ; \lambda_{2}=(5+\sqrt{5}) / 2,(2,2, \sqrt{5}-1)^{T} ; \lambda_{3}=(5-\sqrt{5}) / 2
$$

$\lambda_{1}=-1,(1,0,0,0)^{T} ; \lambda_{2}=0,(2,1,0,0)^{T} ; \lambda_{3}=2,(1,3,-3,0)^{T} ; \quad(\underbrace{}_{4} \quad-10$
$\lambda_{4}=4,(7,10,-15,10)^{T}$
$P=\frac{\sqrt{5}}{5}\left(\begin{array}{rr}2 & 1 \\ -1 & 2\end{array}\right) ; \operatorname{diag}(3,-2) ; \quad\left(<\quad P=\frac{\sqrt{2}}{2}\left(\begin{array}{rr}1 & -1 \\ 1 & 1\end{array}\right) ; \operatorname{diag}(4,2) ; \quad\left(\begin{array}{ll}(19 & -19\end{array}\right.\right.$
$P=\frac{\sqrt{2}}{2}\left(\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right) ; \operatorname{diag}(0,2)$
$P=\left(\begin{array}{ccc}\frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} & \frac{-1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\ \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0\end{array}\right) ; \operatorname{diag}(3,6,9) ;$
$P=\left(\begin{array}{ccc}\frac{2}{\sqrt{5}} & 0 & \frac{-1}{\sqrt{5}} \\ 0 & 1 & 0 \\ \frac{1}{\sqrt{5}} & 0 & \frac{2}{\sqrt{5}}\end{array}\right) ; \operatorname{diag}(0,2,5)$

- 1 1 -

$$
\text { (} \lambda \text {) تجزيه مى شود . } 3 \text {) }(\lambda-6)(\lambda-9)=0
$$

-9-9 كافى است نتنان دهيم دترمينان ماتريسى كه سطرهايش بردارهاى داده شـده هــتـند صفر $\lambda_{1}=\frac{k}{2 m}(-3+\sqrt{13}),(2,1+\sqrt{13})^{T} ; \lambda_{2}=\frac{k}{2 m}(-3-\sqrt{13}),(2,1-\sqrt{13})^{T}-10$ $\mathbf{x}=c_{1}\binom{1}{-1} \exp (t)+c_{2}\binom{2}{1} \exp (4 t) ; \quad \quad\left(\begin{array}{l}\text { (} ا ٔ 19\end{array}\right.$
$\mathbf{x}=c_{1}\binom{1}{-1} \exp (3 t)+c_{2}\binom{1}{2} \exp (-3 t)$; (-
$\mathbf{x}=c_{1}\left(\begin{array}{r}-4 \\ 5 \\ 7\end{array}\right) \exp (-2 t)+c_{2}\left(\begin{array}{r}-3 \\ 4 \\ 2\end{array}\right) \exp (-t)+c_{3}\left(\begin{array}{r}0 \\ 1 \\ -1\end{array}\right) \exp (2 t)$

$$
\text { x=(exp (t),0) })^{T} \text { - الف }
$$

$$
\begin{aligned}
& \mathbf{x}=4\binom{3}{1} \exp (2 t)-8\binom{1}{-1} \exp (-2 t) \\
& \mathbf{x}=\frac{2}{3}\left(\begin{array}{r}
-1 \\
1 \\
1
\end{array}\right) \exp (-2 t)-\frac{13}{6}\left(\begin{array}{r}
-1 \\
4 \\
1
\end{array}\right) \exp (t)+\frac{3}{2}\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right) \exp (3 t)
\end{aligned}
$$

$$
\mathbf{x}=c_{1}\binom{3}{1} \exp (2 t)+c_{2}\binom{-1}{1} \exp (-2 t)-\frac{1}{5}\binom{1}{2} \sin t+\frac{1}{5}\binom{2}{-1} \cos t ;
$$

^ا- الف)

$$
\mathbf{x}=c_{1}\binom{1}{1} \exp (t)+c_{2}\binom{1}{3} \exp (-t)-\binom{1}{2}+\binom{0}{1} t
$$

ب)

$$
\begin{aligned}
& \mathbf{x}=c_{1}\binom{7}{1} \exp (5 t)+c_{2}\binom{1}{1} \exp (-t) \\
& \mathbf{x}=c_{1}\binom{1}{1} \exp (t)+c_{2}\binom{1}{3} \exp (-t)
\end{aligned}
$$

$$
\mathbf{x}=c_{1}\left(\begin{array}{r}
-1 \\
4 \\
1
\end{array}\right) \exp (t)+c_{2}\left(\begin{array}{r}
1 \\
-1 \\
-1
\end{array}\right) \exp (-2 t)+c_{3}\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right) \exp (3 t)
$$

(ب-Y- ب-

$$
\mathbf{x}=c_{1}\binom{1}{-1} \exp (t)+c_{2}\left(\binom{3}{-3} t \exp (t)+\binom{0}{-1} \exp (t)\right) ;
$$

r- (الف)

$$
\mathbf{x}=c_{1}\left(\binom{3}{5} \cos t-\binom{1}{0} \sin t\right)+c_{2}\left(\binom{1}{0} \cos t+\binom{3}{5} \sin t\right)
$$

بب

$$
\mathbf{x}=c_{1}\binom{1}{-1} \exp (2 t)+c_{2}\left(\binom{1}{-1} t \exp (2 t)+\binom{0}{-1} \exp (2 t)\right) ;
$$

ب)

$$
\mathbf{x}=c_{1}\binom{2}{-4}+c_{2}\left(\binom{2}{-4} t+\binom{0}{1}\right)
$$

(ت

$$
\mathbf{x}=c_{1}\left(\begin{array}{r}
0 \\
1 \\
-1
\end{array}\right) \exp (2 t)+c_{2}\left(\left(\begin{array}{r}
0 \\
1 \\
-1
\end{array}\right) t \exp (2 t)+\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) \exp (2 t)\right) \quad(ب-Y Y
$$

$$
+c_{3}\left(\left(\begin{array}{r}
0 \\
1 \\
-1
\end{array}\right) t^{2}+\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right) t+\left(\begin{array}{l}
3 \\
0 \\
5
\end{array}\right)\right) \exp (2 t)
$$

ب) انخـتـلان بـه علت خحطـاهاى بزرك كـرد كــردن امــت بـخـصـوص در سـطر ســوم

در تسمـت (الف)

$$
\left(\begin{array}{rrr}
0.190 & 0.260 & -0.107 \\
0.009 & 0.184 & 0.149 \\
0.173 & -0.110 & 0.144
\end{array}\right)
$$

$$
\begin{aligned}
& x_{1}=0.880, x_{2}=-2.35, x_{3}=-2.66 \quad \text { (} \quad-1 \text {. } \\
& x_{1}=0.9998, x_{2}=1.9995, x_{3}=-1.002 \text { (ب } \\
& \text { (0.464, 0.733, 0.323) }{ }^{T} \text { (55.385) ؛ }
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}=1.200, x_{2}=-0.400, x_{3}=0.200 \text {; (الف) -f } \\
& x_{1}=1.125, x_{2}=-0.344, x_{3}=0.125 ; ~(ب) \\
& x_{1}=1.189, x_{2}=-0.395, x_{3}=0.198 \quad \text { (ب) } \\
& x_{1}=-0.591, x_{2}=-1.340, x_{3}=4.500, x_{4}=3.477 \quad-9 \\
& x_{1}=-1.500, x_{2}=-3.625, x_{3}=-2.875 \quad-\vee \\
& x_{1}=x_{2}=x_{3}=1.00 \text { (ب) } \quad x_{1}=1.00, x_{2}=1.09, x_{3}=0.94 \text { (الف - } \\
& x_{1}=x_{2}=x_{3}=1.000 \text { (ب) } \quad\left\{x_{1}=-1496.000, x_{2}=2.000, x_{1}=0.000\right. \text { (الفـ) }
\end{aligned}
$$

رياخـيات مهندسى

$$
\begin{aligned}
\lambda_{1}=8.387,(0.808,0.772,1)^{T} ; \lambda_{2} & =4.487,(0.217,1,-0.947)^{T} ;-19 \\
\lambda_{3}= & 2.126,(1,-0.567,-0.370)^{T} \\
& .19 .29 \quad-Y .
\end{aligned}
$$

 نتمان داده شـده، به دست آَورد .

$$
|H| \doteq 1.65 \times 10^{-7} \text { (الف }
$$

بغش

$\{(\cos x, 0),(0, \sin x)\}-11$
-
adj $A=\left(\begin{array}{rrr}-26 & 7 & 16 \\ -2 & 7 & -2 \\ -4 & -7 & -4\end{array}\right),|A|=-42$;
شا-
adj $A=\left(\begin{array}{rrrr}6 & 21 & -9 & -36 \\ -1 & 1 & 6 & -3 \\ 10 & 17 & -6 & -51 \\ 4 & -4 & 3 & 12\end{array}\right),|A|=27$
(ب)
$\operatorname{adj} A=\left(\begin{array}{rrr}8 & -8 & -8 \\ 2 & -4 & 6 \\ -6 & 4 & -2\end{array}\right),|\boldsymbol{A}|=-16$
(If

$$
\frac{1}{2}\left(\begin{array}{rrr}
1 & -1 & 1 \\
1 & 1 & -1 \\
1 & 1 & 1
\end{array}\right) \quad\left(\div \quad\left(\begin{array}{rrr}
1 & 1 & 0 \\
-1 & 0 & 1 \\
0 & -1 & 1
\end{array}\right) ; \quad\left(\begin{array}{r}
-10
\end{array}\right.\right.
$$

$$
\left(\begin{array}{llll}
3 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) \quad\left(ب \quad\left\{x^{3}, x^{2}, x, 1\right\} ; \quad\left(\begin{array}{l}
\text { الف }-Y V
\end{array}\right.\right.
$$

$$
\begin{aligned}
& F\left(\frac{y}{x}, x^{2}+y^{2}+z^{2}\right)=0 ;\left(\quad F\left(z, \frac{x+z}{y+z}\right)=0 ; \quad \text { (الفـ) } \quad\right. \text { ال } \\
& F\left(2 x-y^{2}, z \exp (-y)\right)=0 \text {; (ت } \quad F\left(2 y-x^{2}, z \exp (-x)\right)=0 ; \text {; } \\
& F\left(x^{2}+y^{2}-z^{2}, x y+z\right)=0 \text {; (飞 } \quad F\left(\frac{x y}{z}, \frac{x-y}{z}\right)=0 ; \quad \text { (ج } \\
& F\left(\frac{y}{x}, \frac{z}{x}\right)=0 \quad\left(\dot{\text { 己 }} \quad z=f\left(\frac{y}{x}\right) ; \quad(\mathcal{C}\right. \\
& z=f(y) \exp \left(x^{2} y\right)(ب) \quad t z=f(x) \exp \left(-y^{2}\right)(11 \\
& z=y^{3} / 3+x^{2} y+f(x) \text { (ت } \quad \leq z=-x \cos (y / x)+f(x) \text { (ب) } \\
& z=x^{3} / 3+f(2 x+y) \text { (ث } \\
& z=(x+y)^{2}-I Y \\
& z=1+\sqrt{1-2(x-y)} \text { (ب) \& } F\left(x-z, y-z^{2} / 2\right)=0 \text { (الفـ) } \\
& F\left(x y, x^{2}+y^{2}+z^{2}\right)=0 \text { (الف أل أ }
\end{aligned}
$$

$$
\begin{aligned}
& x^{2} z_{x}+y^{2} z_{y}=x y(ت) \\
& z=f\left(x^{3} y^{2}\right) \text { (} 19 \\
& z=f(b x-a y) \quad-Y Y
\end{aligned}
$$

r

x＝0－－－ ت）خارج دايره واحد به بركز مبدأ، هذلولى وار؛ درون دايره واحد بيضوى؛ روى دايره

1FA بغش 1F-F

$u(x, y)=\frac{3 \sin x \sinh (b-y)}{\sinh b}$

$$
\begin{aligned}
& \text { 0.9721 (} \\
& u_{n}(x, y)=\frac{B_{n}}{\cosh \left(n \pi^{2} / b\right)} \sin \frac{n \pi}{b} y \sinh \frac{n \pi}{b}(x-\pi) \quad ب \quad u_{n}(0, y)=g_{1}(y) \\
& \text {-IY }
\end{aligned}
$$

Y YY Y بشش Y-Y ، صمه

$y(x, t)=\frac{1}{2}(\sin (x+a t)+\sin (x-a t))=\sin x \cos a t$
$y(x, t)=\frac{1}{a} \cos x \sin a t$
$\exp (i \omega t)=\cos \omega t+i \sin \omega t$ (توجه كنيـد $) y(x, t)=3 \sin \frac{2 \pi}{L} x \cos \frac{2 \pi a t}{L} \quad-1 r$ و شرط 0 = $y_{1}(x, 0)$ ايجابب مى كند كه فتط جمله كسينوس باتى بماند.)
$y(x, t)=\frac{2 L}{3 \pi a} \sin \frac{3 \pi x}{L} \sin \frac{3 \pi a t}{L}$
 ك كه جوابس آن عبارت است از y ، $y(0)=y(L)=0$

أهـر $f(x) g(x)$ (فرد است
4(4 (الف(11
 . $\cos n \pi=(-1)^{n}$ كين
$u(x, y)=2 \sum_{n=1} \frac{(-1)^{n+1} \sinh n(b-y) \sin n x}{n \sinh (n b)}$

$$
0.617-19
$$

10- 10 ب) از 10 جمله اولّل 1.2087 به دست مى آيد. مقدار واتعى 1.2337 است.

$$
f(x)=f(x+1)=(x+1)-(x+1)^{2}=-x^{2}-x=f(-x)-\mathrm{IV}
$$

 r- م- مجموعه بر بازه ه (F 9- برای 9 بر<$$
\frac{4}{\pi} \sum_{n=1} \frac{\sin \frac{n \pi x}{2}}{n}
$$

9- الف)

$$
a(ب-1
$$

$$
\begin{aligned}
& \frac{2}{\pi} \sum_{n=1} \frac{1}{n}\left((-1)^{n+1}-2 \frac{1+(-1)^{n+1}}{n^{2} \pi^{2}}\right) \sin n \pi x ; \\
& \frac{1}{3}+\frac{4}{\pi^{2}} \sum_{n=1} \frac{(-1)^{n}}{n^{2}} \cos n \pi x \\
& \frac{1}{2}\left(e^{2}-1\right)+4 \sum_{n=1} \frac{(-1)^{n} e^{2}-1}{4+n^{2} \pi^{2}} \cos \frac{n \pi x}{2} \\
& \frac{2}{\pi}+\frac{4}{\pi} \sum_{n=1} \frac{\cos 2 n \pi x}{1-4 n^{2}}
\end{aligned}
$$

$$
\frac{2}{\pi}+\frac{4}{\pi} \sum_{n=1} \frac{(-1)^{n} \cos 2 n x}{1-4 n^{2}} \quad \text { (ب) } \quad \frac{8}{\pi} \sum_{n=1} \frac{n \sin 2 n x}{4 n^{2}-1} ; \quad \text { (أف }
$$

(ا^

$$
\frac{4}{\pi} \sum_{n=1} \frac{\sin (2 n-1) x}{2 n-1}
$$

رياخيات مهندسي

(بّ) در نتينجه تمرين 9 ، 9 ، $x=\pi / 4$ ترار دهيل - Y الفّ (يكى شيوه آن اسـت كه تعريف كنيم

$$
f(s)= \begin{cases}1-s, & 0<s<1 \\ s-1, & 1<s<2\end{cases}
$$

تو سيع تُاوبى نرد اين تابع دارالى نمايش سركى نوريه زير است

$$
\begin{aligned}
f(s) \sim & \frac{4}{\pi}\left(1-\frac{2}{\pi}\right) \sin \frac{\pi s}{2}+\frac{4}{3 \pi}\left(1+\frac{2}{3 \pi}\right) \sin \frac{3 \pi s}{2} \\
& +\frac{4}{5 \pi}\left(1-\frac{2}{5 \pi}\right) \sin \frac{5 \pi s}{2}+\cdots .
\end{aligned}
$$

 نمودار (s) مفيلـ نحو اهل بود . ملاحخه كـنيل كه سرى فوريه برسسبـ x در اين سحالتـ، در واتع يكـ سرى كسينوسى است.
 $f(x) \sim \frac{2}{i \pi} \sum_{n=-\infty}^{x} \frac{1}{2 n-1} \exp (i(2 n-1) \pi x / 2)$.

توجه كنيذ كه اين را مي توان به صورتت زير نوشت

$$
f(x) \sim \frac{2}{i \pi} \sum_{n=-\infty}^{\infty} \frac{1}{2 n-1}\left(\cos \frac{(2 n-1) \pi}{2} x+i \sin \frac{(2 n-1) \pi}{2} x\right)
$$

حال مـلاحظه كنيذ كه بــمالت كسـينو صو صفر می شـوند ولى جحـلالت سينوس دو برابر مي شو ند، بنابراين داريم

$$
f(x) \sim \frac{4}{\pi} \sum_{\pi=1}^{x} \frac{1}{2 n-1} \sin \frac{(2 n-1) \pi}{2} x
$$

كه با نتتيجه أى كه از معادله (Y-Y
 . $c_{n}=0$ براى مـاير ضرايب -YA

$$
\begin{aligned}
& \frac{4 h}{\pi} \sum_{n=1} \frac{\sin (2 n-1) \pi x}{2 n-1} \\
& \text { (ب) -r } \\
& \text { IAA ande: P-P AHy }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{2}{\pi} \int_{0}^{x} \frac{\cos \alpha x}{1+\alpha^{2}} d \alpha \text { is valid for }-\infty<x<\infty \\
& f(\alpha)=a \frac{k \sin ^{2}(a \alpha / 2)}{(a \alpha / 2)^{2}} \\
& -11 \\
& -11
\end{aligned}
$$

$$
\begin{aligned}
& u(x, t)=\frac{2}{\pi} \int_{0}^{n} \frac{\alpha \exp \left(-\alpha^{2} k t\right) \sin \alpha x d \alpha}{\alpha^{2}+1} \\
& u(x, t)=\frac{2}{\pi} \int_{0}^{\infty} f(s) \cos \alpha s d s \int_{0}^{\infty} \exp \left(-\alpha^{2} k t\right) \cos \alpha x d \alpha \\
& u(x, t)=\frac{2 u_{0}}{\pi} \int_{0}^{\pi}\left(1-\exp \left(-\alpha^{2} k t\right)\right) \frac{\sin \alpha x}{\alpha} d \alpha \\
& -V \\
& u(x, t)=\frac{2 \mu_{0}}{\pi} \int_{0}^{n}(1-\cos \alpha L) \exp \left(-\alpha^{2} k t\right) \frac{\sin \alpha x}{\alpha} d \alpha \\
& -4 \\
& f(\alpha)=\frac{2 \cos (\alpha \pi / 2)}{1-\alpha^{2}} \\
& \text { (1. } \\
& u(x, t)=u_{0}\left(\operatorname{erf}\left(\frac{x}{\sqrt{4 k t}}\right)-\frac{1}{2} \operatorname{erf}\left(\frac{x+L}{\sqrt{4 k t}}\right)-\frac{1}{2} \operatorname{erf}\left(\frac{x-L}{\sqrt{4 k t}}\right)\right) \\
& -1 Y \\
& \text { (} \\
& F(x y)=-i \frac{d y(\alpha)}{d \alpha}
\end{aligned}
$$

$u(x, y, z)=\sum_{n=1} \sum_{m=1} B_{m n} \sinh \omega_{m n}(\pi-z) \sin (m y) \sin (n x)$
$B_{m n}=\frac{4}{\pi^{2} \sinh \left(\pi \omega_{m n}\right)} \int_{0}^{\pi} \int_{0}^{\pi} f(s, t) \sin (n s) \sin (m t) d s d t \quad, \quad \omega_{m n}=\sqrt{n^{2}+m^{2}}$.
$B_{m n}=\frac{4(-1)^{m+n} a b}{\pi^{2} m n \sinh \left(c \omega_{m n}\right)}$

- $V(x, y)=\frac{2}{\pi} \int_{0}^{\infty} \frac{\alpha}{\alpha^{2}+1} \frac{\sinh \alpha(b-y)}{\sinh (\alpha b)} \sin (\alpha x) d x \quad$ با استغاده از اين كه اکر $\int_{0}^{\infty} \exp (-a x) \sin b x d x=\frac{\alpha}{\alpha^{2}+b^{2}}$ هر جــدول انتكرالها يانت $a>0$
$V(x, y)=\frac{2}{\pi} \int_{0}^{x} \frac{\sin \alpha \pi}{1-\alpha^{2}} \frac{\sinh \alpha(b-y)}{\sinh (\alpha b)} \sin \alpha x d \alpha$
$u(x, y)=\frac{4}{\pi} \sum_{1} \frac{\cos 2 n x \sinh 2 n(\pi-y)}{\left(1-4 n^{2}\right) \sinh 2 n \pi}+\frac{2}{\pi^{2}}(\pi-y)$
$u(x, y)=\frac{2 a}{\pi} \int_{0}^{r \cdot \sinh (\alpha(1-x)) \cos (\alpha y)} \frac{\left(a^{2}+\alpha^{2}\right) \sinh \alpha}{\alpha} d \alpha$

$$
\phi_{r}(x, y)=-\phi_{y}(x, y), \zeta 1-Y \mid
$$

$$
B_{m n}=\frac{64 a^{2} b^{2}}{\pi^{6}(2 \dot{n}-1)^{3}(2 m-1)^{3}}, n=1,2, \ldots, m=1,2, \ldots
$$

$$
u(x, y, t)=k \sin \left(\frac{\pi y}{b}\right) \sin \left(\frac{\pi x}{a}\right) \cos \left(\frac{c \pi}{a b} \sqrt{a^{2}+b^{2}} t\right) ;
$$

$f=\frac{c}{2 a b} \sqrt{a^{2}+b^{2}} \sec ^{-1}$
$u(x, y, t)=\sum_{m=1} \sum_{n=1} A_{m n} \sin \binom{m \pi y}{\bar{b}} \sin \binom{n \pi a}{\cdots} \sin \left(c \omega_{m n} t\right)$
$A_{m n}=\frac{4}{a b c} \omega_{m n} \int_{0}^{a} \int_{0}^{b} g(x, y) \sin \left(\frac{m \pi x}{a}\right) \sin \left(\frac{n \pi y}{b}\right) d y d x$
$b_{2 n-1}=4 k L / c \pi^{2}(2 n-1)^{2}, n=1,2, \ldots$

Yrه بغش

جواب حالت

$$
u(x, t)=\sum_{n=1} b_{2 n-1} \exp \left(\frac{-\pi^{2}(2 n-1)^{2}}{4 L^{2}} t\right) \sin \frac{(2 n-1) \pi}{2 L} x
$$

$b_{2 n-1}=\frac{2}{L} \int_{0}^{L} f(s) \sin \frac{(2 n-1) \pi}{2 L}-s d s, n=1,2,3, \ldots$
$b_{1} \doteq 0.213 L$
$u(x, t)=\frac{1}{2} a_{0}+\sum_{n=1} a_{n} \exp \left(\frac{-n^{2} \pi^{2} t}{L^{2}}\right) \cos \frac{n \pi x}{L}$
$a_{n}=\frac{2}{L} \int_{0}^{L} f(s) \cos \frac{n \pi s}{L} d s, n=0,1,2, \ldots$
$u(x, t)=\frac{C x(L-x)}{2}+\sum_{n=1} b_{n} \exp \left(-n^{2} \pi^{2} t / L^{2}\right) \sin \frac{n \pi x}{L}$
$b_{n}=\frac{2}{L} \int_{0}^{L}\left(\frac{C s(s-L)}{2}+f(s)\right) \sin \frac{n \pi s}{L} d s$
$u(x, t)=\frac{C x(L-x)}{2}-\frac{4 C L^{2}}{\pi^{3}} \sum_{n=1} \frac{\exp \left[-(2 n-1)^{2} \pi^{2} t / L^{2}\right]}{(2 n-1)^{3}} \sin (2 n-1) \frac{\pi x}{L} \quad-10$
$u(x, t)=\sum_{n=1} c_{n} \exp \left(\frac{-(2 n-1)^{2} \pi^{2} t / L}{4}\right) \sin \left(\frac{(2 n-1) \pi x}{2}\right)$.

برالى يافتن

$$
\begin{gathered}
\text { متعامد باششند . تحقيت كنيد كه اين شرط برقرار اسـت . سسب بيدا كنيد } c_{n}=\frac{(-1)^{n+1} 8 u_{0}}{(2 n-1)^{2} \pi^{2}}
\end{gathered}
$$

$u(x, y, t)=\sum_{m=1} \sum_{n=1} B_{m n} \exp \left(-k \pi^{2} t\left(\frac{m^{2}}{a^{2}}+\frac{n^{2}}{b^{2}}\right)\right) \sin \left(\frac{m \pi x}{a}\right) \sin \left(\frac{n \pi y}{b}\right)$,

$$
B_{m n}=\frac{4}{a b} \int_{0}^{b} \sin \left(\frac{n \pi v}{c}\right) d v \int_{0}^{a} f(s, v) \sin \left(\frac{m \pi s}{a}\right) d s
$$

$c_{n}=\frac{16 a}{\pi^{3}(2 n-1)^{3}}\left((-1)^{n+1} \pi(2 n-1)-2\right)$

$v(x, y)=\frac{2}{\pi} \int_{0}^{x} \frac{\sinh (\alpha x) \cos (\alpha y)}{\alpha\left(1+\alpha^{2}\right) \cosh (\alpha c)} d \alpha$
الز روش ضرايب نامعين براى يانتن يكى جواب نحصوصي استفاده كنيد .
 هستند كه جوابس مكمّل صفر مى شود .

$$
v(x, y)=\frac{2}{\pi} \int_{0}^{\infty} \frac{\sinh (\alpha x) \cos (\alpha y)}{x \cosh x c} \int_{0}^{\infty} f(s) \cos \alpha s d s d x
$$

$v(x, y)=\frac{2}{\pi} \int_{0}^{\infty} \frac{\cos (x x) \cosh (x y)}{\cosh (\alpha b)} d x \int_{0}^{\infty} f(s) \cos \alpha s d s$
$u(x, t)=c^{2} \sin \frac{\pi}{c} x /\left(\pi^{2}-c^{2} \omega^{2}\right)\left[\sin (1) t-\frac{c(t)}{\pi} \sin \frac{\pi}{c} t\right]$

$$
\begin{aligned}
& \lambda_{n}=\left(\frac{2 n-1}{2}\right)^{2} \cdot n=1,2, \ldots ; y_{n}(x)=\cos \binom{2 n-1}{2} x \\
& -9
\end{aligned}
$$

$$
\begin{aligned}
& y_{n}(x)=\sin (2 n+1) x / 2 \\
& y_{n}(x)=\sin n x \leq \lambda_{n}=n^{i}-1, n=1,2,3, \ldots \quad-9 \\
& y_{n}(x)=\exp (-x) \sin n \pi x \leq \lambda_{n}=-n^{2} \pi^{2}, n=1,2,3, \ldots \quad-1 .
\end{aligned}
$$

$$
\begin{gathered}
y(x)=1 \\
\exp (-x)(ب-11 \\
\exp \left(-x^{2}\right)(ب-19 \\
\left(1-x^{2}\right)^{-1 / 2}(ب)
\end{gathered}
$$

- - يكى تعبير آن است كه دمـاى حالت بايا رادر يكلوله بلند كه نـعاع داخلى آلن b و شـعاع
 دماى سطح خارجي آن با
- \&
 - - نوجه كنيد كه معادله ديفرانسيل، يكى معادله كُشى - اويلر است. $u(\rho, \phi)=\frac{4 u_{0}}{\pi} \sum_{n=1}\left(\frac{\rho^{2 n-1}-\rho^{-(2 n-1)}}{c^{2 n-1}-c^{-i 2 n-11}}\right) \frac{\sin (2 n-1) \phi}{2 n-1}$
$u(\rho, \phi)=\frac{\log \rho}{2 \log c} a_{0}+\sum_{n=1} a_{n} \frac{\rho^{2 n}}{c^{2 n}}-\frac{\rho^{-2 n}}{c^{-2 n}} \cos (2 n \phi)$
$a_{0}=\frac{4}{\pi} \int_{0}^{\pi / 2} f(s) d s$ and $a_{n}=\frac{4}{\pi} \int_{0}^{\pi / 2} f(s) \cos 2 n s d s, n=1,2,3, \ldots$
$z(\rho)=z_{0} \frac{\log \rho}{\log \rho_{0}}, 1 \leq \rho \leq \rho_{0} ;$
1^ الف)

 ري د داده شده است.

YAY بغش - Y ا

1- الز آزمون همگرايى سريهاى متناوب الستفاده كنيد تا همگرائى در x=2 ثابت شود. $y_{2}(x)=a_{1} \sum_{n=0} \frac{2 \cdot 5 \cdot 8 \cdots(3 n-1)}{(3 n+1)!} x^{3 n+1}$
(ب)
(توجه : در اين جا و در تسمـت (الف) وتتى n=0، به جاى صورت 1 ق قرار دهيد)
(2n-1)/2n (الف -V

4- الف) اين يك سرى هندسى است با جمله اوّل 1/10 و تدر نسبت 1/10 ؛ با/9 با
-

$$
\begin{aligned}
& \text { - } 11 \text { (الف) } x=0 \text { يك نقطه تكين منظم اسست؛ } \\
& \text { ت) } \\
& y=a_{0} \cosh x+a_{1} \sinh x\left(ب \quad y=a_{0} \cos x+a_{1} \sin x\left(\begin{array}{ll}
\text { (الف } & \text { - } 1 Y
\end{array}\right.\right. \\
& y=a_{0} \exp \left(x^{2} / 2\right)\left(\begin{array}{l}
\text { (} \\
\text { ب }
\end{array}\right. \\
& y=a_{01}(1+x \arctan x)+a_{1} x \text { (} \\
& y=a_{0} J_{0}(x)=a_{0}\left(1 \cdot x^{2} \cdot \frac{x^{4}}{x^{2} \cdot 4^{2}}-\frac{x^{6}}{2^{2} \cdot 4^{2} \cdot 6^{2}}+-\cdots\right) ; \\
& \text { F| الف } \\
& y=a_{0} x+a_{1} x^{-2} \quad \text { (ぃ } \quad y=a_{0} \cos \sqrt{x}+a_{1} \sin \sqrt{x} \text {; } \\
& \begin{aligned}
y= & a_{0}\left(1+\frac{1}{2}(x-1)^{2}+\frac{1}{6}(x-1)^{3}+\frac{1}{6}(x-1)^{4}+\cdots\right) \\
& +a_{1}\left((x-1)+\frac{1}{2}(x-1)^{2}+\frac{1}{2}(x-1)^{3}+\frac{1}{4}(x-1)^{4}+\cdots\right)
\end{aligned}
\end{aligned}
$$

$y=c_{1} J_{0}(\sqrt{x})+c_{2} Y_{0}(\sqrt{x}) ; ~\left(ب \quad y=c_{1} J_{0}(x)+c_{2} Y_{0}(x) ; \quad\right.$ (الف \quad (أя
$y=c_{1} J_{0}\left(e^{x}\right)+c_{2} Y_{0}\left(e^{x}\right)$

$\frac{1}{\lambda_{j}} \int_{0}^{\lambda_{j}} J_{1}(u) d u=\left.\frac{1}{\lambda_{j}}\left(-J_{0}(u)\right)\right|_{0} ^{\lambda_{j}}=\frac{1}{\lambda_{j}} ;$
ب)
 $\frac{2}{c} \sum_{j=1} \frac{\left(\lambda_{j} c\right)^{2}-4}{\lambda_{j}^{3} J_{1}\left(\lambda_{j} c\right)} \cdot J_{0}\left(\lambda_{j} x\right) \quad$ (ب) $\quad \frac{2}{c} \sum_{j=1} \frac{J_{0}\left(\lambda_{j} x\right)}{\lambda_{j} J_{1}\left(\lambda_{j} c\right)} ;$ (له $\frac{d y}{d x}=\frac{1}{a z} \frac{d^{2} z}{d x^{2}}-\frac{1}{a z^{2}}\left(\frac{d z}{d x}\right)^{2} ;$ (1. الف)
. $r^{2} \frac{d^{2} Z}{d r^{2}}+r \frac{d Z}{d r}+\left(\lambda^{2} r^{2}-\left(n+\frac{1}{2}\right)^{2}\right) Z=0$ معادله تبديل شـده عبارتاست
$\frac{1}{2} \sum_{j=1} \frac{J_{0}\left(\hat{\lambda}_{j}\right)-J_{0}\left(2 \lambda_{j}\right)}{\hat{\lambda}_{j}\left(J_{2}\left(2 \lambda_{j}\right)\right)^{2}} J_{1}\left(\lambda_{j} x\right) ;$

$$
\begin{aligned}
& \text { ب) (} \\
& x^{n} J_{n}(x)-1 f \\
& -x^{-a} J_{n}(x)(ب-10
\end{aligned}
$$

 ت) (جهـلات غيرصفر وتتى
$P_{2 \bullet}(x)=\frac{1}{2^{2 n}} \sum_{k=0}^{\mathrm{N}} \frac{(-1)^{\star}(4 n-2 k)!}{(2 n-2 k)!(2 n-k)!} x^{2 n-2 k}$.

$$
\begin{aligned}
& \frac{2}{3} a P_{2}(x)+b P_{1}(x)+\left(c+\frac{a}{3}\right) P_{0}(x) ; \quad a P_{1}(x)+b P_{0}(x) ; \\
& \frac{2}{5} a P_{3}(x)+\frac{2}{3} b P_{2}(x)+\left(c+\frac{3 a}{5}\right) P_{1}(x)+\left(d+\frac{b}{3}\right) P_{0}(x) \\
& A_{2 n+1}=\frac{1}{2}(4 n+3) \int_{0}^{1} x P_{2 n+1}(x) d x, \quad n=0,1,2, \ldots \\
& \quad=\frac{1}{2}(4 n+3) \int_{0}^{1} P_{1}(x) P_{2 n+1}(x) d x=0
\end{aligned}
$$

$$
\text { برایى هر n بجز } n=0
$$

$$
u(r, \theta)=\frac{r}{b} \cos \theta-11
$$

$$
u(\rho, z)=28.63 . J_{0}(2.405 \rho) \cosh (2.405 z)
$$

$$
-0.85 J_{0}(5.520 \rho) \cosh (5.520 z)
$$

$$
+0.03 J_{0}(8.654 \rho) \cosh (8.654 z)+\cdots ;
$$

$u(0,0) \doteq 27.81$

$$
\begin{aligned}
& \text { (}
\end{aligned}
$$

```
رياضيات دهندسى
```

$u(\rho, z)=\frac{200}{c} \sum_{j=1} \frac{J_{0}\left(\lambda_{j} \rho\right) \sinh \left(\lambda_{j} z\right)}{\lambda_{j} \sinh \left(\lambda_{j} b\right) J_{1}\left(\lambda_{j} c\right)}$
$z(\rho, t)=\frac{2}{c} \sum_{j=1} \frac{J_{0}\left(\lambda_{j} \rho\right) \cos \left(\lambda_{j} a t\right)}{\lambda_{j} J_{1}\left(\lambda_{j} c\right)}$
$u(r, \theta)=\sum_{m=0}(4 m+3)\left(\frac{r}{b}\right)^{2 m+1} P_{2 m+1}(\cos \theta) \int_{0}^{\pi / 2} f(\cos \theta) P_{2 m+1}(\cos \theta) \sin \theta d \theta \quad-1 \wedge$
.
$u(r, \theta)=-\frac{3 E}{K+2} r \cos \theta, r<b ;$
$U(r, \theta)=-E r \cos \theta+E b^{3}\left(\frac{K-1}{K+2}\right) r^{-2} \cos \theta, r>b$
$u(r, \theta)=-E r \cos \theta+E \frac{b^{3}}{r^{2}} \cos \theta$
-Y
$u(r)=\frac{1}{r(b-a)}\left(u_{1} a(b-r)+u_{2} b(r-a)\right)$

$$
u(5,5)=1.786, u(10,5)=7.143, u(15,5)=26.786 \quad-r
$$

$21-F$

$$
u(10 / 3,10 / 3)=0.69, u(20 / 3,10 / 3)=2.08, u(10,10 / 3)=5.56 \quad-0
$$

$$
u(40 / 3,10 / 3)=14.58, u(50 / 3,10 / 3)=38.19
$$

u (x, 20/3) $=u(x, 10 / 3)$ بسادگى با روش حذنى حل كرد ـ

هنگى تغيير مى كند ولى شناسه تغيبر نمى كند. - -22-4i($\quad!\frac{1}{5}(1-3 i)(13+7 i(1) \quad-1$ $2 \operatorname{cis}(-\pi / 3)(\tau \quad \leq \operatorname{cis} 3 \pi / 2(\pi) \quad \sqrt{2} c$ is $(-\pi / 4)(-4$

$$
\pm \sqrt{2}(-1+i) / 2
$$

$$
y=\exp (\sqrt{2} x / 2)\left(c_{1} \cos (\sqrt{2} x / 2)+c_{2} \sin (\sqrt{2} x / 2)\right)
$$

 ب) طول هيج خلع مثلثى از تقاضل طولهاى دو خلع ديگر كمتر نيست.
$\left(z^{2}+\sqrt{2} z+1\right)\left(z^{2}-\sqrt{2} z+1\right)$
$2 \sin \frac{\phi}{2} \operatorname{cis}\left(\frac{\pi-\phi}{2}\right)$
-10
$2 \operatorname{cis} \frac{(2 k+1) \pi}{6}, k=0,1,2,3,4,5 ;$
19 الفض)
$2^{1 / 6} \operatorname{cis}(8 k+3) \frac{\pi}{12}, k=0,1,2$

r- از معادله (
ه- الفس) از اتحادهاى مبلثاتى زير استفاده كنيد.
$\cos (A+B)=\cos A \cos B-\sin A \sin B$,
$\sin (A+B)=\sin A \cos B+\sin B \cos A$.

$$
\text { ب) با استفاده از معادله (1-Y-Y)، نشان دهيد (} \exp (z+2 \pi i)=\exp)
$$

$$
\begin{aligned}
& z^{2}-4 z+5=0 \text { (الفـ }-19
\end{aligned}
$$

$$
\begin{aligned}
& (0,1,-2 i)^{T} \text { ، } \lambda_{3}=-2 i:(0,1,2 i)^{T} \cdot \lambda_{2}=2 i!(1,0,0)^{T} \text { ، } \lambda_{1}=1 \quad-Y \wedge
\end{aligned}
$$

$$
\begin{aligned}
& x=-1 \text { - IY } \\
& x^{2}+y^{2}=25, x^{2}+y^{2}=4 \text { ناحيه بين دايره هاى }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 11.180, -1.391 5 } 5 \sqrt{5}, \arctan (-11 / 2) \text { (}-1 \text { (} 2, \pi / 3 \text { (} \\
& \text { 8,3 } 3 \text { /2(2) } \\
& \text { (11 } \\
& +\exp (-\sqrt{2 x} / 2)\left(c_{3} \cos (\sqrt{2 x} / 2)+c_{4} \sin (\sqrt{2 x} / 2)\right)
\end{aligned}
$$

$e^{z}=e^{i v}=\cos y+i \sin y=1$ ت ات آكر

. $e^{z}=1.0$ U آن ، $z=2 n \pi i$

exp $\left(z_{1}-z_{2}\right)=\exp (0)=1$

$$
\begin{aligned}
& \text { - } z_{1}-z_{2}=2 n \pi i \\
& \text {-9 } \\
& \text { 23.1361+0.4443i(4 } 0.0001 \text { (}
\end{aligned}
$$

 $\log (i-1)=0.346+(3 \pi / 4+2 n \pi) i \quad$ ب
$\log (i-1) \doteq 0.346+2.356 i$
ب) $\left((x-1)^{2}+y^{2}\right)^{-1 / 2}\left(x^{2}-y^{2}-3+2 x y i\right)\left(ت \quad!\left(x^{3}-3 x y^{2}\right)+i\left(3 x^{2} y-y^{3}\right)(u-1 V\right.$
 $\exp (i \log 2) \exp (-\pi-2 n \pi), n=0,1,2, \ldots \quad-Y Y$
$\left(a^{z}\right)^{w}=(\exp (z \log a))^{w}=\exp (w \log (\exp (z \log a)))$
$=\exp (w(z \log a+2 n \pi i))=\exp (w z \log a) \exp (2 n \pi i) w$
$=a^{w z} \exp (2 n \pi i) w \neq a^{w z}$
$\frac{1}{s^{2}+1}=-\frac{1}{2 i} \frac{1}{s+i}+\frac{1}{2 i}-\frac{1}{s-i}, f(t)=\frac{i}{2} \exp (-i t)+\frac{1}{2 i} \exp (i t)$
$-r A$ $f(t)=\frac{i}{2}(\cos t-i \sin t)+\frac{1}{2 i}(\cos t+i \sin t)=\sin t$

1مرزىاش نيــتـ.
r-

. -

ت) نيبم صفتحه هحب صفخه z و محور y ها .
\& المت. نقــاط مـرزى عبـارتند از نقــاط روى دايره، يعنى هـــه نقـاط (x, y) كـه

$$
\text { در معادله } 1 \text { x } x^{2}+(y-1)^{2} \text { صدق مى كنند. }
$$

| 11 كنيد وتتى از نيبم صفخه بالل
 تحليلى نيست.

$$
\text { arctan }(y / x)+C\left(\underset{\sim}{4} \quad 3 x^{2} y-y^{3}-x+C(\text { الفـ }\right.
$$

(الفـ) - IV

$$
\begin{aligned}
& \text { مى شود، و نقطه (} 1 / 2 a,-1 / 2 a) \text { (} a \text {) نقش مى شُود. } \\
& \text { - }
\end{aligned}
$$

در كاربر دها وضعيت مطلوب را دارد .

-$\xi^{2}+\eta^{2}+\left(\zeta-\frac{1}{2}\right)^{2}=\frac{1}{4}$ ز 10

Im $w>0$ (ب) $\quad 6=0 ،-\infty<u \leq-1$ (الفـ 19

$1 \leq x \leq \cosh \mathrm{I},-\cosh \mathrm{I} \leq x \leq-1$

رياضهيات مهندمى
-IV الف) همه جا؛ ب) (ايره واحد بهمركز مبدأ.
ث) ث'حلقه نبم دايرها الى به مركز مبدأ بالاى محور

Y - - ت از آزمون نسبت استفاده كنيد و صورتو مخر ج را بر "3 تبل از حدكيرى تقسيمبميد. 4 4 (9 (الف)
 در مبدا تحليلى نيست.

$$
\begin{array}{rr}
18 \pi i & -1 \\
-i \pi / 12 & -11 \\
2 \pi i & -1 Y
\end{array}
$$

ه- ضرب دأخلى برابر صفر اسـت
$F(s)=\frac{i}{4} \frac{1}{(s+i)^{2}}-\frac{i}{4} \frac{1}{(s-i)^{2}} ;$ (Y) (الف)
$\frac{i}{4}\left(t e^{-i t}-t e^{i t}\right)=\frac{t}{2}\left(\frac{e^{i t}-e^{-i t}}{2 i}\right)=\frac{t}{2} \sinh (i t)=\frac{t}{2} \sin t$ ب
$\frac{-2}{z-1}+\frac{1}{z-2}+\frac{2}{z-3}$
$\frac{2}{z-2}-\frac{1}{z-1}$
$-\frac{1}{2} \frac{1}{z-2}+\frac{5}{3} \frac{1}{z-1}-\frac{1}{6} \frac{1}{z-4} ;$
10-10
$\frac{3}{8} \frac{1}{z}+\frac{1}{2} \frac{1}{z^{2}}+\frac{1}{2} \frac{1}{z^{3}}-\frac{3}{8}-\frac{1}{z-2}+\frac{5}{4} \frac{1}{(z-2)^{2}} ;$
$\frac{-4}{z}-\frac{2}{z^{2}}+\frac{5}{z-1}-\frac{1}{(z-1)^{2}}$
ب!

$$
\frac{1}{2}(\sinh t-\sin t)(4)-1 \%
$$

$$
\frac{1}{9}\left(6 t e^{-3 t}-e^{-3 t}+1\right) \quad\left(ب \quad \frac{e^{-t}}{12}\left(t-\frac{11}{12}\right)+\frac{5}{112} e^{-5 t}+\frac{2}{63} e^{2 t} ;\left(\begin{array}{c}
\text { (الفـ }
\end{array}-1 V\right.\right.
$$

 متناظر با هـم بتانسيلهایى بالاكى (\quad - Y

$$
T(x, y)=\arctan (y / x)-Y \psi
$$

$$
T(\rho, \phi)=\frac{100}{\pi} \phi ; \quad \text { (ب) } \quad T(x, y)=\frac{100}{\pi} \arctan \left(\frac{2 x y}{x^{2}-y^{2}}\right) ; \quad \text { YO }
$$

$$
T(x, y)=1-\frac{1}{\pi} \arctan \left(\frac{1-x^{2}-y^{2}}{2 y}\right)
$$

ب

$$
\bar{f}(\alpha)=\frac{a A}{1+i a \alpha}
$$

مراجع

Arfken, G., Mathematical Methods for Physicists, 2d ed. New York: Academic Press, 1973.
Churchill, R. V., J. W. Brown, and R. F. Verhey, Complex Variables and Applications, 3d ed. New York: McGraw-Hill, 1974.
Churchill, R. V., Operational Mathematics, 3d ed. New York: McGraw-Hill, 1972.

Erdelyi, A. (ed.), Tables of Integral Transforms, vol. I. New York: McGraw-Hill, 1954.

Faddeeva, V. N., Computational Methods of Linear Algebra.(Translated from the Russian by Curtis D. Benster). New York: Dover, 1959.

Gerald, C. F., Applied Numerical Analysis, 2d ed. Reading, Mass.: Addison Wesley, 1978.

Greenleaf, F. P., Introduction to Complex Variables. Philadelphia: W. B. Saunders, 1972.
Grossman, S. I., Elementary Linear Algebra, 2d ed. Wadsworth Poblishing Company, 1984.

Henrici, P., Applied and Computational Complex Analysis, 2 vols. New York: John- Wiley, 1977.

Hildebrand, F. B., Advanced Calculus for Applications, 2d ed. Englewood Cliffs, N.J.: Prentice-Hall, 1976.

Jennings, A., Matrix Computation for Engineers and Scientists. New York:

Wiley, 1977.
Kaplan, W., Advanced Mathematics for Engineers. Reading Mass.: Addison Wesley, 1981.

Marsden, J. E., Basic Complex Analysis. San Francisco: W. H. Freeman, 1973.
Noble, B., Applied Linear Algebra. Englewood Cliffs, N.J.: Prentice-Hall, 1969.
Ralston, A., and P.Rabinowitz, A First Course in Numerical Analysis,2d ed. New York: McGraw-Hill, 1978.

Rice, J. R., Matrix Computation and Mathematical Software. New York: McGraw-Hill, 1981.
Rudin, W., Principles of Mathematical Analysis, 3d ed. New York: McGraw-Hill, 1976.
Silverman, R. A., Complex Analysis with Applications. Englewood Cliffs, N.J.: Prentice-Hall, 1974.

Williams, G., Computational Linear Algebra with Models, 2d ed. Boxton : Allyn \& Bacon, 1978.

وازهنامهُ انگَليسى به فارسى

Absolutetly integrable
Abstract vector space
بطور مطلت انتگرال پنير

Adjoint
of a differential operator of a matrix
Alternating series
Amplitude
Annihilator property
Argand diagram
Argument

Bar

Back substitution

Basis

change of
natural
Bilinear transformation
Block multiplication
Boundary condition
nonhomogeneous
periodic

نضـاى بر دارى ميزّد
الحاقى

- يكت عمالگر ديفرانسيل
- يكت ماتريس

سرى متناوب
دامنه
خاصيّت يوع ساز
نمودار آركان
شناسه
FOF

Boundary-value problem	مساله مقدار مرزى
Bromwich contour	مسير برمويج
Cauchy's integral formula	فرمول انتّرالـ كتى
Characteristic	مشخّصهن
equation	-
frequency	- بسـامد -
value	- مقدار
Codomain	هـم دامنه
Cofactor	ها
Complex conjugate	مزدوج مختلط
Complex Fouricr coefficients	ضرايب فوريه مختلط
Condition	شر
boundary	- هرزی -
initial	- اولِّهِ
periodic boundary	- مرزى متناوب
Conformal mapping	نگاشت همديس
Consistent system	دستگاه سازكار
Convergent series	سرى همغرا
de Broglie wavelenght	طول موج دوبروى
Decomposition into partial fractions	تجز يه به كسر ها ها
Deflection	جابه جايى
Definite integral	انتگرال معّين
Dielectric sphere	كره نارساناي الكتر يكى
Differnce quotient	خارج قسهت تفاضلى
Differential operator	عملغر ديفرانـيل
Displacement	تغيير مكان
Domain	3امنه

$$
\begin{aligned}
& \text { اكوكارديوگرام } \\
& \text { تإع ويثه }
\end{aligned}
$$

Eigenspace
Eigenvalue
Eigenvector
Elasticity

Electric potential

Electrostatic
Elementary row operation

Equation

biharmonic
diffusion
elliptic
heat
hyperbolic
indicial
quasilinear
wave
Equipotential surfaces
Even periodic extension
Extended complex plane

Fast Fourier transform

Finite-difference method
Fluid
compressiblc
ideal
incompressible
irrotational
Fluid dynamics
Fluid mechanics
Function(s)
Air.
analyik:

نضاى ويزه
مقدلار ويزه
بردار وبئه
 بتانسيل الكـريكى الكحريسيته ساكن عمل سطرى مقدماتى معادله

- دو هدساز
- تخشـ ، انتـار
- بيضوى -

ـ ترما

- هذلولى وار
- انديسى
- شبه خطى
-

سطوح همبتانسيل
مفوسيع تناوبى زوج تعميم بانته

تبديل ووريد سريع
زوش تفاضل متتأىى

سيّال

- تراكم جذير
- ايدها
- تراكم نايذير

ديناميك سِّن

تا
- أيرى
- تحليلى

Besse]
complementary error

$$
\begin{aligned}
& \text { - بسل } \\
& \text { - متمّم خطا } \\
& \text { - دلتاى ديراك } \\
& \text { - همسار } \\
& \text { ـ لزَاندر } \\
& \text { - نرهال } \\
& \text { - متعأمد } \\
& \text { - متعاملم يكه }
\end{aligned}
$$

$$
\begin{aligned}
& \text { - السكالر } \\
& \text { - وزن } \\
& \text { - تناوب } \\
& \text { - نوار }
\end{aligned}
$$

Dirac delta
exponential

Legendre
normalized
orthogonal
orthonormal
piecewise smooth
scaler
spectrum of
weight
Fundamental
period
strip

Gaussian elimination
Gaussian reduction
Gauss-Jordan reduction
Gauss-Seidel method
Gibbs phenomenon
Gravitational potential

$$
\begin{aligned}
& \text { حذفى گاوس } \\
& \text { تحويل تاوسى } \\
& \text { تحويلگاوس - زرداون } \\
& \text { روش گاوس - سايدل }
\end{aligned}
$$

$$
\begin{aligned}
& \text { بتانسيلگگرانثـى }
\end{aligned}
$$

Hermitian orthogonality
Hydrodynamics
تعامد هر ميتي
هيلروديناميكى

111-conditioned system
دستگاه نامساعد
Impulse
Inconsistent system
Integral surface
Integrating factor
lnverse
Fourier transform
Laplace transform

- تبديل فوريه
- تبديل لا هالاس

Kronecker delta

Law
قانون
of cooling
of elasticity
of nullity
Linear
fractional transformation
oscillator
Lineatly dependent
Linearly independent
Longitudinal waves

- تبديل كسرى
- نوسانگگر

وابسته خطى
بطور خطى مستقل امواج طولى

Magnetostatic
مغناطيس ساكن
Magnification
Mapping bicontinuous conformal isogonal

تجانس ، بزرگّنمايى نگاشت

- همسان ريختي - همديس

ـ ـ حافظ زاويه

رياضيات مهندسى	$40 \wedge$
Matrix	ماتريس
augmented	- افزوده
diagonalizable	- قطرى شـدنى -
elementary	- مقدّماتى
idempotent	ـ خود توان
nilpotent	- بوت توان
orthogonal	-
positive definite	- معيّن مثبت
rank of	- رتبه
sparse	- تنكك
singular	- تكين -
skew-symmetric	- متقارن اريب - إيبـ
stochastic	- احتحمان
symmetric	- متقارن
trace of	-
traspose of	- ترانهاده
triangular	- مئلثى
Modulus	مدون، هنگّ
Neutron	نوترون
transport	- إنتال
diffusion of	ـ انتشار
Normal derivative	مشتقّ قائم
Normalized eigenfunction	توابع ويزه نر
Nullity	بوهی
Odd periodic extension	توسيع تناوبى فرد
Overshoot	فراجهث
Partial sums	جمعهایى جز
Partitioning of matrices	انفاز ماتريسها
Phase	فاز

409	وأزهنامنُ إنگكليـى به فارسى
Plucked string	تار كشيده شله
Point	نقطه
boundary	- مرزى
critical	- بحرانى
interior	- درونى -
stagnation	- ركو2
isolated singular	- تكين تنها
regular singular	ـ تكين منظّم
Potential	ختانسیل
electrostatic	- الكتريسيته ساكن
gravitational	.
magnetic	- مغناطيسى
Principal	اصلى
axes	- محورها
value	- مقدار
of superposition	- برهمنهـه
Pulse	تش
Recurrence relation	رابطه بركّشتى
Reduced row echelon form	شكل پلك كانى سطرى تحويل يافته
Reduction of order	كاهئ مرتبه
Relaxtion method	روش تخفيف
Residue	مانده
Resultant	برآيند
Riemann sphere	كره ريمان
Schrodinger wave equation	معادله موج شرودينغر
Shaft	ميل Fردان
Self-adjoint operator	عملگ, خود الكحاق
Set	مجموغ4
boundary of	-
closed	- بسته -

رياضيات مهندسى	4%.
complete orthonormal	-
connected	- همبند
fundamental	- اساسى -
spanning	- بـديل آورنده
Simple pole	تطب ساده
Shear modulus	هدول برشي
Simultaneous displacement	جابه جا سازى بـى توام
Sink	\%
Slab	تیغه
Solution	جواب
Complementary	- متّم
D'Alembert's	-
particular	- خصوصى
steady-state	- حالات
transient	ـ
trivial	- بدئى
updated	- بهنگام -
Source	حشهم
Space(s)	فضاى
isomorphic	- يكريخت
null	-
Specific heat	كرمایى ويزه
Spectral bandwidth	عرض نوار طيفى
Spherical coordinate system	دستگّاه مختصات كروى
Static displacement	تغير مكان ايستايى
Steady-state temperature	دماى حالت
Stereographic projection	تصوير گنجنگارى
Strain	تنش
Streamlines	خطوط جريان
Strip	نوار
Successive displacement	جابه جا سازى متوالى

Surface(s)	سطع
equipotential	- همیِّانسيل
Temperature	د01
Thermal	كرمايى
conductivity	
diffusivity	
Transformation	تبديل
bilinear	- دوخطى
Mobius	- موبيوس
Translation	انتقال
Transonic flow	جريان ترانسونيك
Transposition	ترانهش
Transverse waves	مو جهاى غرضى
Undershoot	فروجهث
Vector	بردار
column	- ستونى
row	-
Vibrating membrane	غشاء مر تعش
Vibration	ارتعاش
Wave propagation	انتشار موج
Young's modulus	هدول يانگ,

فهرست راهنما

$$
\begin{aligned}
& \text { TVI TV TV } \\
& \text { TVY TY آزمون نسبت } \\
& \text { TM| Tآئرديناميكت } \\
& \text { اثرمانتريس } \\
& \text { استقالل خطى } \\
& \text { اشتانِبرگّ } \\
& \text { |YYG|FF اصل برهم } \\
& \text { 1 } 1 \text { V عدم قطعيت } \\
& \text { Yo اعمال سطرى } \\
& \text { Yoo اكوكازديوترام } \\
& \text { ro9، الحاقى } \\
& \text { YVYけए. الكتريسيته ساكن } \\
& \text { Y انتشارنوترون } \\
& \text { rVV انتقال }
\end{aligned}
$$

$$
\begin{aligned}
& \text { MAV سختلط } \\
& \text { MAV مسـيرى } \\
& \text { rAV منحنى الخخط } \\
& \text { rvo انعكاس } \\
& \text { ivf اويلر }
\end{aligned}
$$

V ترانهاده	F＾\ تابع ايرى
V	بسل
تركيب خطى	サهワ،
Fo تصوير	Yヘ9［YV تحليلى
YAY	ب－بVV
r 4 Y Y	\％${ }^{\text {\％}}$
｜VV هرهينى	YFY Gror خط
تعويض	18＾
	F01
10F	لزَانلدر نوع دوم
فرد	لیًاريثمى
109	M
｜V｜توسيع تناوبى زوج	صتناوب 109
｜VY ${ }^{\text {F }}$	مقدماتى
تابع متناوب 109	F0．
Y Y	نمايى
	هذلولى وار
جانـــانى از آخر	rVr، ${ }^{\text {¢ }}$
YYY، جـ	r
YY ${ }_{\text {Y }}^{\text {جrراعداد }}$	توابع وابسته لز
191،1＾D جفت تبلديل فوريه	IFo تار مرتعش
جF جمع بردارها	Hr،f تبلد
جمع دو ماتريس	PV
IHF جواب بديهى	فو فوريه
\％ايا	
	FOFGTFYG لإلاس
IFD	
rVi	
FV 7 \％	توv rva
حزبرا	FO1
	FF تحويل زردان
\％	Y Y Y \％

$$
\begin{aligned}
& \text { Ar تكرارى زاكوبی } \\
& \text { توانى AV } \\
& \text { یاوس - سايدل } \\
& \text { حنفى گاوس } 19 \\
& \text { TVA فروبينوس } \\
& \text { r|9 كامش مر تـه } \\
& \text { rfo مونت كارلو } \\
& \text { ريشه نهفته } \\
& \text { روشهای مستقيم حل دستگاهاها نr } \\
& \text { زیر فضاى بردارى } \\
& \text { MVY سر يهأى توانى } \\
& \text { سينوسى IVo } \\
& \text { فوريه | اهو }
\end{aligned}
$$

> SVo كسينوسى
> كران
> KIr Hik
> YVY متناوب
> roA مضاعف
> ivy نمأيى
> YV) واگیا

> TVY هندسى
> سهتايى فيثاغورثى

$$
\begin{aligned}
& \text { |Y| سهموى }
\end{aligned}
$$

> F०V ،Ir| تراكمناينذ
> رته
> روابط تعامدى 1 رو
> rfo روش تحخفيف
> VI تغيير
> FOV
YfV خاصيت بسته بودن
جوتج ساز 9
توزيع جـيرى 7
TFV، تعويض پذيرى
HFV،4 شركت بذيرى
MfY خطاى گردكردن
fon خطوط جريان
rvy همتِانسيل
Y خود الحاق
ff 4 inls
IV دترمينان

$$
\begin{aligned}
& \text { دFI درون يابى } \\
& \text { V7 دستگاه جرم - فنر }
\end{aligned}
$$

> سازگار 10
> |داناسازگار
> AY نامساعد
> *هعادلات ديفرانسيل
> TV 6YV همگِ
> v) ناهمگين
> TFO تفاضل متناهى

رياضيات مهندسى

Hif	Mr9 شار
كاهشى	MFY شبكه
Fod معكوس سازی	شدّت ميدان الكتريكى
فضای بردارنى	170 شرايط ديريّكله
Q ${ }^{\text {¢ }}$	ش شر
FF \%	Mr
ويرهه	شFA Mr
	\| AF شكل مختلط انتکرالف فوريه
1V قاعده كرامر	IVF مختلط سرى فوريه
F7 قانون بو جا	شناسه
V ${ }^{\text {Vوم }}$	
YD. قدر مطلق	
Yq ${ }^{\text {M }}$	صورتهای درجه دوم
منظّم سرى Mas	
	ضرايب سرى لوران
rao	
FoV r*a	IFV طون موج دوبرو
لايب نيتس	ط 197 طيف
ليوويل	
rarour	
ral ${ }^{\text {G }}$	
v تطراحلى	Y! ${ }^{\text {¢ }}$
قطرى شدنى	M19 19 M
كيلى	TD -
	فراجهش 17 بر
F०ه \%راديان	فروجهش 17
	فومول انتگال كشى
	Fos انعكاس لإ
	بو بFF
ماتريس اسكالر	FoV
Y	دومو آور

110 11 \%	Ir	
لا 110	Y	
r 4 ¢	1F 1 F	
M	H0	
معادله انتثار	V	
YVA اند	ماركف	
Mor بسل	70	
\|r		V
Irs	AD هrيّن مشبت	
\|r		مقدماتى Y
HM H	Y	
r ${ }^{\text {T }}$	ه همانى	
دو هو	هيلبرت	
ديفرانسيل وأبسته إلزاندر	MFD متغير مستلط	
HFV شرودينگ,	میور	
YAI لزاندر	TV مجمو	
ريكاتي	باز	
كشّى - اويلر	بسته	
مشخغصه	بديد آورنده	
rol فوريه	جوابه	
لا	17 V كالـل	
\%	rif متعامد	
\%01 هلمهلت	هVo همبند	
+	TVI مجموعهائى جز	
Ar مقياس بندى		
مقدار اصلى r	rvr	
F०V مكانيك سِّالات	CYY	
بیV	\% 1 ¢	
	معادلات بإمشتقات	
	V 11% \%	
YQV نزم تابع ويزه	خطو 110	

YV وابسته خطى
|Y| هذلولى وار
ه هـ هـ
©FF هم
YA4 همسازهاي استوانهابی
هA r همسان ريختى

róz
| |

4V،49 يكرينخت

Fon،
ثابت
PVI حدّى
ركود
KVV معمولى
Y40، نVVV نقط تكين
تكين تنها
PA P بر بى نهايت
درونى
مرزی
نظر يه احتمال 4 بر
r^Y ، MFD نمودار Tرگان Vq نيروى ميرا

FERDOWSI UNIVERSITY OF MASHHAD
Publication No. 2.37

ADVANCED

ENGINEERING MATHEMATICS

Ladis D. Kovach

Translated by
A. Kerayechian
A. Bozorgnia

[^0]:

