

جلد اول

سيستمهاى راديويى

> نوشتهُ دى. سى. ترين

ترجمهُ محمد رهبر

> تهران عדזشا
اين كاب ترجمهاى است از:

Radio Systems
By: D. C. Green
Pitman Publishing Limited, London, 1978

تهران، خيابان استاد مطهرى، تقاطع خيابان دكر مفتح، ساختمان جامجم جاب اول:
ويراستار: فلورا شباويز و بيرايه كلهر بانجيست: بوراننغت جاويلى نونهوان: مريم حسينمخاد صاعحفارا: محمود نيكفرجام طراح روى جلد: شهوام كليريان
ناظر جاب: عليرضا جمثيدى و ابرامير كوريرزى حرونجينى: لاينوترون انتشارات سروش ليتوكرافى: بيجاز
 ههن حتوق محفوظ است.

بها: . 7 ريال

فهرست مطالب

مقامهـ	
9	\%
1.	خطو ط انتقال تطبيت شده
Y.	خطو طانتقال تطبيق نشده
YY	r
YV	dosen
YV	تشعشع ازيك أنتّ
r.	تو زيعجر يانوولتارَدرآنتها
rr	الكوهاى تشعشع، ،خاصيت جا
rV	تو ان تشعنّع شدهمؤثر
r^	,
$r \mathrm{~A}$	
ra	
FY	بازتابندهها ها
FV	
PA	اندازهيرى ى:هر0إنتن
or	r انتشارامواجراديويى
Δr	- גetas

of
Of
gr
45
90

99
99
\wedge.
A)

As
Ar

مو جسطحى يازمينى موج هوايى موج فضايى
جثرثرش (محوشدگى)
استفاده ازنوارهاى فر كانس مختلف

> F مدارهاى F تقو يت كنندههایاىميزان شدهد
> آشكارسازها آشكارسازديوديى
> آشكارسازترانزيستورى تقو يت كنندههانى صوتى
> نوسانسازها
پايدارى فركانس

اه گيرندههاى راديويى اصول
كيرندهُراديويى سو يرهترودين كير ندهماى كيرندهمای ارتباطى
¢ فرستندههاىى راديويى مقدم تتويت كندهدهاى توانفر كانسراديويىى
فرستندههاى مدولاسيوندامنه

منطفتدهاى خروجى
تطبيقتغذيد كنندرإْنتن بهفر ستنده
مقدمد سيستمهاى ارتباطى
مدارهاى بين المللى CCIR,CCITT

$1 T$	
ITY	
ira	هدفهاى آموزش
Ifr	
IFY	وازرْنامهٔانغانيسى_فارسى
101	اختصارات

مقدمه

 تكنسينى كهدررشتن ارتباطات راديو يى كارمى كند بايد اطاعلاعات كافى ازيخطر طا انتقال فر كانس

 نو سان سازها و آشكارسازها

 مى تو اند مناسب باشبد.

 شدهاندر
اميد برآن است كه اين كتاب جو ابيُو ى برخى از سؤ الهاى جو انان مشتاق و علاقهمند بـ سيستمهاى راديو يى باشد.
|سفندماه

ا خطوط انتقال بدون افت فركانس راديويى

مقدمهـ

 شكل ا ـ الب نشان داد اده شده است.

(ب)

(ل)

اهو ل اساسى عملكرد خط انتقال , جزئنات ساختمانى انواع مختلف كابل در كتاب سيستمهاي ا'تقال دز مخابرات'مطر ح شد. تضعيف، يا افت، خط انتقال انقال با افزايش فر فر كانس

خطوط انتقال تطبيق شده

 مشخصه خط باشد. به جنين خطى تطبيق شده گو يمّد.
ضر ايب اولئَ خط

 هادى بالايى طى كند كهد دراين صو رت تأخير فاز كلى (1)
 با بكديگ, هم فازند و بنابر اين خنتى نمى شوند.

ضر ايب ثانو يهُ خط

 فر ستندهاش داده شود، تعيين مى كنند.

مقاومت ظاهر ى مشخصه

خط, يعنى:

$$
\begin{equation*}
Z_{u}=\frac{V_{s}}{I_{s}} \tag{1-1}
\end{equation*}
$$

بم همين ترتيب در هر نقطهْ xدر طول خط نسبـت

 ب) به مقاومت ظاهر ى مشخخصـ

 خط انتقال بدون افت با رابطلُ زير نتشان داده مى شمود:

$$
\begin{equation*}
Z_{o}=\sqrt{\frac{L}{C}} \tag{-}
\end{equation*}
$$

ك ك L القا و القرفيت توزيع شده در هر متر هستند.

$$
Z_{o}=\sqrt{\frac{\mid v \Lambda / \Delta v \times 10^{-1}}{V \backslash / T r \times 10^{-1 r}}}=0 . \Omega
$$

 براى خط مبمقور با فاصلة هوا:

$$
\begin{aligned}
& \mathrm{Z}_{0}=\mid r \lambda \log , \frac{R}{r} \\
& \mathrm{Z}_{0}=\text { rvg } \log _{1} \cdot \frac{D}{r}
\end{aligned}
$$

$$
(r-1)
$$

برای خط درقلو:

r_1 مثال

قابليت نفوذ نسبى بليتن برابر r/r باشد، مقارمت ظاهرى مشخخصi كابل را حساب كيدن

$$
Z_{0}=\frac{r V q}{\sqrt{T / r}} \log _{1} \cdot \frac{\Lambda}{1}=1 q \varphi / ז \Omega
$$

r_1 مثال

:

A-1 شكل

$$
\begin{align*}
& I_{s}=\frac{1 .}{\mathrm{V} \Delta+\mathrm{V} \Delta}=99,9 \mathrm{VmA} \tag{الف}\\
& V_{s}=I_{s} Z_{0}=99,9 \mathrm{~V} \times 1{ }^{-r} \times \mathrm{V} \Delta=\Delta \mathrm{V}
\end{align*}
$$

ضر يب تضعيف

 هـ شُود.

$$
\begin{equation*}
B=\omega \sqrt{(L C)} \mathrm{rad} / \mathrm{m} \tag{0-1}
\end{equation*}
$$

سرعت فاز انتشار

 دارد، بنابر اين موج سينوسى با سرعت فازf λ م متر بر ثانيه حر كت مى كند. يعنى: $V_{p}=\lambda \mathrm{fm} / \mathrm{s}$
 در فاصله يك طول مو مو ج. تغيير فاز هرمتر برابر

$$
B=\frac{r \pi}{\lambda} \quad \lambda=\frac{r \pi}{B}
$$

$$
V_{p}=\lambda f=\frac{Y \pi}{\beta} \times f=\frac{\omega}{B}
$$

ولى ازرابطُ (1 ـ
$v_{p}=\frac{\omega}{\omega \sqrt{(L C)}}=\frac{1}{\sqrt{(L C)}} \mathrm{m} / \mathrm{s}$
بهعبارت ديگر علامتها در تمام فر كانسها در طول خط بـر بدون افت با سرعت يكسانى حركت مى كند. سرعت فاز قدرى از سرعت نور كتر استر است.

F-1 مثال

$$
\begin{aligned}
& Z_{0}=\sqrt{\frac{L}{C}}=\sqrt{\frac{Y G Y / Y \times 1)^{-q}}{Y \& / \Lambda \times 10^{-1 Y}}}=V Q \Omega \\
& \begin{array}{r}
\left.B=\omega \begin{array}{r}
\sqrt{(L C)}=r \pi \times r \cdot \times 10^{4} \times \sqrt{\left(r a r / r \times 10^{-4} \times+9 / \wedge \times 10^{-1 r}\right)} \\
\\
=0 / 99 \mathrm{rad} / \mathrm{m}=r \wedge^{\circ} / \mathrm{m}
\end{array}\right)
\end{array} \\
& v_{p}=\frac{1}{\sqrt{(L C)}}=\frac{1}{\sqrt{\left(Y g r / r \times 10^{-1} \times+9 / \wedge \times 10^{-1 r}\right)}}=r, \Delta \Delta \times 1 \cdot{ }^{\wedge} \mathrm{m} / \mathrm{s} \\
& \text { فريب تغير فازB , امى تو ان با روش ديڭرى هم تعيين كرد: } \\
& \lambda=\frac{v}{f}=\frac{r / \wedge \Delta \times 1 . \wedge}{r \cdot \times 10^{q}}=9 / \Delta \mathrm{m} \\
& B=\frac{r \pi}{\lambda}=\frac{r \pi}{9 / 0}=0,99 \mathrm{rad} / \mathrm{m} \\
& \text { (كـ هـان جو اب قبلى است) }
\end{aligned}
$$

سرعت گر وهیى انتشار

 وجود نخو اهد داشت.

انتشار موج در طول خط

 آورده شده است.

نأخيرفاز（9）
rvo rio
ry．
$F \cdot \Delta$
40.

فاصله از انتهاى
فرستنده（m）
9.

V 。
人。
9.
1.0

تأخير فاز（）
فاصله از انتهاى
فرستنده（m）

\circ	0
ro	10
90	r_{0}
$1 r 0$	r_{0}
11_{0}	μ_{0}
ro	0.

 حركت مى كند، مى توان ازازنمودار قطبى اسففاده كرد．نصودار شامل يك سرى بردارارهايى است

 ．．C

شكل V_ Vمودار تطبى ولتازها در طول خط بدون افت تطبيت شـده

فر كانس راديو يى به طور خالص ازنوع مقاومتى است، شكل موع جر يان با شكل موج ولتاز هـمفاز خو اهد بود.

خطوط انتقال تطبيق نشده

 شمداند.

 انتا

(all)

(ب)
 جذر مبانكين شجذور جر يان كلى در هر نقطه

(ب)
 لتاز كلى هر نتطه

شكل ا - اr خط انتقال اتصال كوتاه شده.

 IITYpF/m
 جارى در آن حقدر خو اهد بود؟

 ورودى صفر ودر حال رفتّن به طرف مثبت استا

 فاصله دارند مشتخص كنيند

تسرينهای كوتاه

 ظاهر ى امشخخص

در بك فر كانس دو بر ابر معدار فور جقدر خو اهد بود؟

r r آتنه

مقدمه

تشعشع از يك آنتن

 بستگى دارد و مى تواند با استفاده از قانون لنز' 'تعيين شود. باههيين ترتيب تغير ات ات ميدان

 موجود باشد و بالعكس، ولى غبر مسكن است هر كدام ازميدانهادر حالى كه متغير هستند بهبطر

1. Lenz's law

جداگگانه وجود داشته باشند.
اكر جر يانى سينو سى درهادى جارى شودميد انهاى الكتر يكى ومغناطيسى اطر اف هاني هادى نيز

 ميدان الكتر يكى مر بوط بـ آن زمان محدودى لازم است، ولى در فر فر كانسهاى بالانى بانى حدود

 هادى نخو اهد بود.

شكل ب- ا- تمعشع ازيك آنتن

 دارد. در يك مو ج الكتر ومغناطيسى ميدانهاى الككتريكى وميناطيسى عمود بر يكديگر ند و در

 اثرى بر هادى افقى نخو اهد داشاشت.

در مجاورت يك آنتنى ميدانهاى الكتر يكى و وغناطيسى نسبت بمميدان تشعشع يافته مقدار

 آنتن است.
دامنههاى ميدان الكتر يكى E. و ميدان مغناطيسى H در مو ج الكتر ومغناطيسى رابطُّ ثابتى ارْى
 شدت ميدان الكتر يكى به شدت ميدان مغناطيسى، يعنى:

$$
\begin{align*}
& =\left|r \cdot \pi \cdot \pi_{r}\right| \tag{1-r}\\
& =r v \Omega \Omega
\end{align*}
$$

(الف إ
معهولا دامنهُ مو ج راديويى را بـ شدت ميدان الكتر يكى آن ارجاع مى دهند.

مثال

$$
\frac{E}{H}=r v v \Omega(i l)
$$

$$
E=r v v H=r v v x \cdot / \cdot \Delta r \simeq r \cdot m v / m
$$

$$
E=\frac{r_{c}}{\Delta}=r_{\mathrm{m}} V / \mathrm{m}
$$

بنابر اين در -0 كيلومترى آئتن، شـدت ميدان الكتر يكى يى شودد:

توزيع جريان و ولتارٌ در آنتنها
 نيبطول موج (

شكل r-r بو قطبى نيهوت

 نشان مىدهد.

 است، مثلا $ا$ ا $/ 1$ يا كمتر، توزيع جر يان، مطابق شكل

شكل Y Y Y توزيع جر يان روى آنتن كوتاه الكتر يكى

هقاومت ظظاهر ى آنتن

 دوتطبى صفر نيست وتقر يبأ

 واكنشى كوجّى باشد و بنابر اين بايد از هادى ضخيهى استفاده شود.

π

 مشخصن

(الف)

الگوهاى تشعشع، خاصيت جهتى و بهره آنتن

تمام آنتهادارای اين خاصيت هستند كي مى توا انندتوان رادر بعضى جههتها بهتر ازجهتهاى ديخر

باشند. جون آنتنها معهولا نزديك اشياى ديگر قرار دارند، الگُوى تشعشتع تصو ير صحيحى از

 نيز مفيد است هو ن به نحوى به آنتن امكان تشخيص بين عالامتهاى مطلوب و غير مطلوبرا می دهد.

(ب)

(الف)

نسبت جلو به عقب
اغلب الگُوهاى تشعشع دريك جهت خاصيت جههتى بيشتر ى نسبت به جهت ديگر دارند. نسبتى

جلوبه عقب آنتن عبارت است از نسبت شدت ميدانهاى الكتر يكى حاصله در فر فو اصل مساوى از از

r_r ror
 اسmV/m :
= $=\frac{E_{f}}{E_{b}}=\frac{1 \cdot \times 10^{-r}}{1 \times 10^{-r}}=1$.
با بر حسب دسى بل:
=r-log, $10=r=d B$
.يهنای اشعه

 جهت حداكثر تشعشع ايجاد كنند.

 شدت ميدانها در محل آنتها يكسان باشد انـي

 X/Y

r_r rer ror

تـاب كنيد

$$
\begin{align*}
& \frac{\lambda}{r}{ }^{r} \text {. } \tag{الن}\\
& =0,10 \mathrm{~dB}=\mathrm{r} / 10+\mathrm{r}=0,10 \mathrm{~dB} . \text {. }
\end{align*}
$$

$$
\begin{aligned}
& \text {. }=\mathrm{r} \cdot \log _{1 .} \mathrm{r}=9 \mathrm{~dB}
\end{aligned}
$$

$$
\frac{\lambda}{r} \text { r }=r+9=9 \mathrm{~dB}
$$

F_r ro

 r dB تح

$$
\begin{aligned}
& \text { 届 }=r-9=r F d B
\end{aligned}
$$

توان تشعشع شده مؤثر

 تو اذ كلى تشعشتع شده P , بهر

$$
\begin{equation*}
\text { e.r.p. }=P_{r} G \tag{r-r}
\end{equation*}
$$

$$
\begin{aligned}
& \text { O_r ror }
\end{aligned}
$$

$$
\begin{aligned}
& \text { شنا } \\
& \text { e.r.p. }=10 \times 10.0=10 \mathrm{~kW}
\end{aligned}
$$

بهناى نوار

 بإين تر از rdB نباشد.

مقاومت تشعشع و بازده آنتن

 شده از آنتن ازرابطّ زير بدست میا آيد:

$$
\begin{equation*}
\text { = }=I^{\top} R \text {, } \tag{r-r}
\end{equation*}
$$

 بابورت درصد بيان نى شود:

$$
\begin{equation*}
\eta=\frac{I^{r} R_{r}}{I^{2} R_{L}+I^{\prime} R_{r}}=\frac{R_{r}}{R_{L}+R_{r}} \times \% \ldots \tag{-}
\end{equation*}
$$

مثال

آنتن زرستندن:

. $=I^{\prime} R_{r}=00^{r} X \cdot r=\mathrm{VO} \cdot \mathrm{W}$

$$
\text { توان ورودى }=I^{\dagger} R_{r}+I^{\dagger} R_{L}
$$

$$
\begin{aligned}
& =\left(0 \cdot{ }^{+} \times \cdot, r\right)+(0 \cdot+\times 1,0)=90 \cdots \mathrm{~W} \\
& =\frac{1 \cdots R_{r}}{R_{L}+R_{r}}=\frac{1 \cdots \times \cdot r}{-r+1 / 0}=\% 19 / 9 \mathrm{~V}
\end{aligned}
$$

 اقتصادى از انواع دكلهاى كوتاهتر استفاده مى شود.

شكل r r r r r ríi r

 خواهند داشتر.

 بمبفدارى كـ انتظار مى رود نخوراهد بود.

$$
\begin{align*}
& I_{\text {pixy }} I_{\text {macum }}=I_{\text {cht }} I \\
& I_{\text {eff }}=\frac{I_{\text {phys }} I_{\text {mean }}}{I} \tag{-}
\end{align*}
$$

 نتيجه می شود:

$$
I_{\text {eff }}=\frac{1}{r} l_{p h r s x}
$$

R_r مثال

 ارتناع منوثر آنت را احساب كنيد.

mo... ارتفاع مؤثر

 $e=E l_{\text {eff }}$

بنابر اين ولتاز القا شده بـ آنتن گيرنده به طور رمستيهم با شدت ميدان الكتر يكى متناسب
مثال A r r

:

$$
e=1 \times 1 \cdot \times 10^{-r}=1 \cdot \mathrm{~m} V
$$

شـكلr_r اr استفاهـ ازنولٌ خازنى
آنتن Lوارونه

६r

شكل + - ا آنتن Lوازونغ
 آنتن خاصيت جهتى بهترى،دردريافت بار ارسال درجهت نوك

ايستاكاههاى دور بسيار رضايتبخش خو اهد بود.

بازتابندهها و جهت دهندهها

 هـرهان با رسيلان انز

درتطبى

(c)

(il)

شكل بازتا بئده: در صفحا نصف النهار. (ج) دوتطبى

 كه افزايشى درخاصيت جهتى آنتن خو اهد بود. فاصلدُ بين دوتطبى وجهت دهنده معهولا جايى در كستر: خ ا

م

 حساب كنيد در صورتى كي عملكرددر فر كانس MHz ما 1 باشد.

$$
\lambda=\frac{r \times 10^{\wedge}}{1.0 \times 10^{\circ}}=r \mathrm{~m} \quad, \quad \frac{\lambda}{r}=1 / 0 \mathrm{~m} \quad \cdots \cdot \mathrm{MHz} \rho
$$

 =1/^^Am
 .
.

(

 داده شده است.

 فر كانس مورد طر ح محاود شده است الست.

اندازهگيرى الگوهاى تشعشع

 بدون تغير باقى مى ماند. سهس نتايج حاصل رابيهم وصل مى كند تا الكوى تشعشع آنتن بددست

 مى شَود.

مثال rer rer

 آزنمايشّ را حساب كنيد. :

$$
\begin{aligned}
& \\
&=r \cdot x \cdot 1,9=1 \mathrm{rdB}
\end{aligned}
$$

بنابراين:

$$
\frac{\lambda}{r} \text { بر = }=1 r+1=r r d B
$$

تصرينها

₹4.

度

 دريافت عالامتهأى تلو زيويونى به كا مى مروند. S T T T T

$$
\text { كـ~ } 40 \mathrm{MHz}
$$

بی ك

ايسـگاه گير نده منحرف شتود.
 آرإشن آنتى براي استثاده در
 Y Y

.بهانى نوار نسب توان را تشر بح كنيد.

 53 كنيد.

هر كو نه تشابه يبن آنتّ يك قطبى ودو تطبى (ا توضيع دهيد. (ج) يكى از كار بردهاى آنتن يكه تطبى رابيان كنيد Y Y Y Y

 میرو

تهرينهاى كوتاه

 الكُوها جه اطلاعاتى رال الارانـ مى دهنـ.
rr-r

 آنتن بططو رخطى از

r ا انتشار امواج راديويى

مقدمهـ

هو فضايى بها آتن كيرنده برسد (شكل r ـ ا).

 دونقّه عبور بیى كند.

 باشد.

موج سطحى يا زمينى

مو ج زمينى بر آيند موج فضايى ومو ج سطحى است. ولى در فر كانسهای بإيين ومتو سط ارتفاع

محمد رهبر، انتشارات سروشغ،ر اجعه شود.
 آن مى كذرد. موع سطحى زمين خرديك مانع است.

00

شكل r_r r- انتشار موج سطحى در ناحين فرازو نشيبدار
 فاصلهُ d متر از فرستنده از رابطهُ زير بهدست مى آيد:

$$
\begin{equation*}
E_{d}=K \frac{E_{1}}{d} \tag{1-r}
\end{equation*}
$$

 ناشى از اتلاف توان در زمين را نشمان مى دهـد.

موج هوايى

 مى شود واگر شر ايط درست باشد مـكن است بلزمين برگردد.

شكست موج الكتر ومغناطيسى
 احتمال دارد جهت حركت آن تغيير كند. در اين صورت میى وَ يند موج شكسته شده است.

براى دومحيط داده شده ثابت است وضريب شـكست ناميده مى شود. اگر يكى ازدووحميط هوا

 (شكل r r ب)

$\mu_{2}>\mu_{1}$ (ب)

$\mu_{2}<\mu_{1}$
(لa)
 هى ود. (ب) بوت بهمحيطى باضريب شكست بطلق يشتر واردمى شود.

 بسيار كم باشده ضر يب شكست مطلق به سرع عت كاهش مى يابد و مو ج مداوم شكسته مى شود.

بيتدريج كاهن ميابابد.

يونوسفر

 مى يكر يند كه يونيزه شده است است.

 آزاد و يون باهم تركيب مى شوند و اتم خنتى را مى سازند. بنا بابر اين به طور رمد هداوم عمليات

 به سرعت كاهش مى يابد. هم حنين، از آنجايى كه، اتمسفر نسبناً غليظ است، احتصل ز زكيب

بهنـــتـن زياد است. بنابر اين غلظت الكتر ونهاى آزاد درست در بالایى سطع زمين كم است ودر
 ثيدا مى كند. لذا زمين با كمر بند عر يضى از كاز يونيزه بلانام يونوسفر احاطه شده است.

(ب)

(il)

دريونوسفر لا يَهايى وجوددارند كه غلظت الكتر ونهاى آزاددر آنها ازار ارتفاعهاى بلافاصله الا

(9_r

 ارتفاع آن بهطور قابل ماحاحظهاى تغيير مى يابد.
شكست موج هو ايى

درلائ يو نوسفرى غلظت الكتر ون با افزايش ارتفاع بالاى زمين افزايش مى يابد. مى توان نشان

 بر گشت داده مى شوند.

 مسيرانتقال (HOPS) هو ج نياز دارد.

فر كانس بحر انى در تابش عمودى

 رابطذ سادماى با حداكثر فركانس مغيد شبكْ راديويى خو اهد داشت.

حداكثر فر كانس مفيد

 خاصى نامناسب باشد ارسال مجلد بايد يس از مناسب شدن شر ايط انجام شود.

فاصلّ گُ ريز

ارتباط مى تو انددر فر كانس معينى ازطر يق مو ج هوايىدر حداقل فاصيله برقر ارشود. معبو لا اين فر كانس m.u.f. شبكد است. اگر سعى شود كه اين حداقل فاصله با با استفاده از زاويةٌ تابش

3. m.u.f. $=$ Maximum Usable Frequency

انتقالهاى چنـد مسير ى

شكل

گيرنده عبارتاست ازجمع بردارى شدتميدانهاى حاصله ازورود انر انى ازط ازطر يق هر يك ازدو

 اطمينان بيشترى به شبكه مى دهد. برای ارتباطات فاصلaهاى بيشتر لازم است از تعدادى

Prepared by Behshad Baradaran, spiring 1395

ترثمرش (محو شدگى)

 كاهش مى يابد در حالى كه هـزمان ساير مؤلفههاى فر كانس در دامنه افزايش يِيدا هى كنتن.

برّمرش عمومى

 عموهى جلو گيرى كرد.

يرّمرش شر بخشى

[^0]
(c)

 شـ

 بخصوص مانند لاين كيكسين.

5. Line compex

(الف) علامت ارسال شده.

-

 اتفاق مى افتد.

استفاده از نوارهاى فركانس مختلف

 تلفنى بين المللى است.

 كشتى و هوابيما استفاده مى شود.

فر كانس خيلى بالا.
 r

 اطهبنان را كتنر ل مي كيندي

لثهي شدم، و توان فر ستندة بورد نياز را جدول بندى كنيد.

 (ج) اُد انتشار در هر حالت را با بان كنيد

 (9) حداكثر فر كانس مثميد.

تمرينهاى كوتا.

 بهر نـ نمين بر گردد.
 در يك مسير بمين به كار مى كيرد.

.r r r r rer

〒 مدارهاى گيرندهُ راديويى

تقويت كنتدههاى ميزان شده

 LC

$h_{f e}=\frac{h_{f b}}{\left(1-h_{f b}\right)}$

(e)

(-)

(ill)
شكل + + ا-
, , , . ,
2. superheterodyne

 براى آنها بهر ه هايين تر از كا

 زياد كاهش يابد.

 (

اتصLال وصل مى شود (ن. لك. بششكل F - ا ج).

 r F F

T. 2 جلو گير ى مى كند.
隹
 هe المار الم

 بالا رود.

 عناصر داراي عمالكر دهأى رايت باياس و بايدارى

共

 مى كنتد ـ اين عيب مى تو اند از بين بر ود.

شكل O-F تمركز هنای ئوار

 ثابت مى شود.

 انحامهى شود. ولى اگر القاى ثانو يه كم باشد اتصال بهمر كز لازم نخوا اهد بود.

آشكارسازها

 حامل ورودوى دارد.

آشكارساز ديودى

 شـهن وجود خواهو اهد داشت.
مؤلفتهاى ديگرى نيز، در .d.c.، در فر كانس حامل، و در هماهناكهاى فر كانس حامل. وجود
دارند.

 مى شود: نو سانهايهى كه وجوددا رند كو جكند وبا فر كانسى برابر فر كانس علامت حاملر ورونى نو سان مى كتند.

 مدولا سيو ن در حال كاهش است، نيم دور مثبت داراراى معدار رأسى كمتر از نيس دور مثبت قبلى است، و خازن تا ولتاز كمتر عى مجدا ابر می شود.

 و نسبت بـ زمان تناوب عا(مت مدوله كو تاه باشد.

 شود، شبكثه صافى مقاومت - ظر فيت را تغذيه مى كند.

(u)

(لن)

آشكارساز ترانزيستورى

مى شود.

شكل شا

كمى دارد. d.c.

$$
n=\sqrt{\frac{R_{L}^{\prime}}{R_{L}}}
$$

.

حل

$$
n=\sqrt{\frac{r 9}{r}}=11 . .9
$$

وقتى كه تو انخ خر وجى موجو دازيك تر انزيستو رمعين كهدرمدارتك فازبد كار رفقها است كافى

 تعادل a.c. مدار افزايش خواهد يافت.

 هـان توان خر وجى را وا تهيه مى كند.

 , ورور

(-)

(ell)

 اين كار بايد برداخت كاهس بازدهى تقو توريت كننده الست.

شكل شكل

 بتانسسل در بيوند 1

بيو ند

 ترانزيستو ر خر وجى در شرايط اشباع باشد.

 آن كمتر منبت مى شودو T T,

 خيلى نزديك به ب/ /

نوسان سازها

سينو سى را تهيه مى كنتد بحث مى شود.

 انتقال اتصال كوتاه باشد. ولى دراين فصل فتط نو سان سازهانى LC و وكر يستالى مطر ح خور اهند

 مورد انتظار در شر ايط پیش بينى شده در هنگام استفاده.

نوسان سازهای LC

 ترانزيستور ورصل شده است.

 ثانويه
 يافته باشد كي جابهجايى فاز

$$
f_{m r x}=\frac{1}{r \pi \sqrt{L_{p} C_{r}}}
$$

3. Hartley oscillator

19

 مى سود كه أسانتر ين هقادير القا و ظرفيت , ا بدهد.

> پایدارى فركانس

يايدارى فر كانس نو سان ساز مقدارى است كهدر آن مقدار فر كانس آن نسبت بهم مقدار تعيين شده

 تابعى ازبارى است كهدر آن نو سان ساز كارمى كندوهمتابعى ازيارامتر هاى ترا انزيستو رىاست.

> بار در نوسان ساز
 تحو يل مى دهد. اگر مقدار بار ثابتا نبا شد، فر كانّس نو سان سازى بايدار نخو اهد بود. تغيير اتدر

 خر وجى است، باطور رمؤثرى حذف شود.

تغيير ات در ولتاز منبع تغذيه

 علت نايايدارى فر كانسى نُسبتاً كم است ولى درصو رت نياز ايدارى منبع تغذئن تو انن بايد بيشتر

مؤلفههای مدار ميزان شده

 روشن نگهدانتّن دائمى نو سان ساز به حداق اقل رساند.

 اقتصادى امكان ساخت تعداد زيادى وجو دوا داشته باشند.

5. titanium

 بستگى به قطبيت ولتاز داده سده دار دارد. كر يستال كو ارتز در حالت طبيعى دارأى سطع مقطع شسر ضلعى است كي دو سرسى به تقطه

 الصلى آنها از

شكل Tr- F نو سان ساز كر يستالى

(il)

(ب)

تمرينها

 -

 مدرله شـله بـيّار برده می شود.

共
6. Pierce circuit
7. Miller circuit
8.germanium

ब\%

个 F F

باسلـ. بعضى ازعوامالملى طا كد در بايدارى فر كانس موثر ند نام ببريد.

بايدارى عملكردمى شود ذكر كنيد.

 - A- F F

 ترانسفورمانورها بيان كنيد.

 كنده هيشيث ميزان نيست؟؟ اll F

منطته جقدر خواهدبود؟

نشان داده شده را توضيح دهيد.
F F F F

تمرينهاى كوتاه
rdB ع ع F F F F F تقو يت كننده حيست؟؟

باشد و حه مشكلاتى در اين رابطه وجود دارد؟

راديو يى سو بر هتر ودين جيست؟؟

ا9 ا 19 ـ F آشكارسازديودى كدامندئ

ه گيرندههاى راديويى

اصول

 مطلو بى را مى توان با استفاده از خاصيت گزينّ

 گو شيها جلو گيرى شود؛ اين كار بهآسانى با مهاركردن گوشيها توسط خازن مناسب انجام

توان خروجى فر كانسى صونى (a.f.) گير ندهُ ساده را مى توان با استفاده از تقو يت كنندهُ فر كانس صوتى مطابق شكل

 معكوس مى كند.

شكل r- r-اساس گير ندهُ راديو يـى يك ترانزيستورى

در تو ان صوتى كه به گير نده مى رسد، احتمالا مى تواند افزا ايش بيشترى عا حاصل شود، در

 ولت باشد.

१४

 خازنها بهندرت برای انتخاب

 خر وجى بهمقدار بيشترى افزايش يا يابد.

بهطور سرى بهمنبع تغذيه توان وصل شده و خازنى كـاز انتهاى مر بوط بهتقو يت كتنده:

 تغذئ جمع كندهُ منطقه را كاهش مى دهد.

 مشخصه بهره / فر كانس منطقه اثر مى گذارد. افزايشا الما

99

گيرندهُ راديويى سويرهترودين

شكل هـه هـير نده: راديويى سو يرهتر ودين

位 $-f_{s} L f_{s}-f_{o}$

لازم است تقويت مى شود.

 شود. اين امر باعث مى شود كه بهره و گزيندگى لازم نسبتاً بهآسانى فراهم شود.

تنخاب فر كانس نوسان سازهاى محلى

 عالمت مطلوب انتخاب مى كنند؛ يعنى،

$$
\begin{equation*}
f_{o}=f_{s}+f_{i} \tag{1-0}
\end{equation*}
$$

مؤلفنُ فر كانس مجمو ع خروجى مخلوط كننده براى فر كانس ميانى انتخاب نشده است، است،

 اشاره شود كه استفاده از فر كانس مجمو ع مانع استفاده از فر كانس انس ميانى مطلو انو با خو اهو اهد شد.

 ظرفيت وجود دارد.

تداخل كانال مجازى

 ديگرى نيزهست كه فر كانس ميانى راتهيامى كند. اين فر كانسديگگ, را فر كانس مجازى نامند.

عالامت مجازی دارانى فر كانس هحالى بر ابر با فر كانسى ميانى $f_{v}=f_{u m}-f_{o}$

با جايڭزينى

$$
\begin{align*}
& f_{i}=f_{i m}-\left(f_{s}+f_{i}\right) \\
& f_{i m}=f_{s}=r f_{i} \tag{r-0}
\end{align*}
$$

بنا بر اين علاهت مجازى از علامت مطلوب بهاندازْ

 فر كانس علامت محلو ب و در نتيجه فر كانس علاهت مجازى است. داشتن مدار تشديدى با با

 صوت خر وجى را توليد كنند.

 (الن) فركانس نو سان سازمحلى، و (ب) فر كانس علامت تصور رى را مهاسبد كنيد.

$$
\begin{align*}
& f_{o}=1.90+490=10 r_{0} \mathrm{kHz} \\
& f_{i m}=1.90+9 r_{0}=1990 \mathrm{kHz} \tag{r}
\end{align*}
$$

(إ ا 1

 نوسان ساز محلى براى فر كانس

 راديويى و نوسان سازرا رد گيرى گو يند. ترتيب دادن ردگير ت درسىى كه تقر يبأ در طول تمام

 \& بيش مى آيد. درگيرندهاى كه بر ای كل گستره ميزان سازى ميزان شده است خازنهاى تنظيمو

 فر كانس بين مدارهاى نوسان ساز و فر كانس علامت هميشه مساوى فر كانس ميانى باشد كـ F\&0kHz

گزيندگى كانال مجاور

i.f. فر كانس حامل عالامت مطلوب. كزيندگى اصولا بامشخصأ بهره/فر كانس تقويت كندا تعيين مى شود.

r _ - مثال
 ا ا 00 . mW باشثد، نـبت كانال مجاور راحساب كينيد

$$
\text { نست }=r \cdot \log _{1 \cdot} \cdot\left(\frac{1 \times 10^{-r}}{1 . \times 10^{-5}}\right)=0 \cdot d B
$$

حساسيت

حساسيت گيرندنُ راديويى توانايى آن دردريافت علامتهاى خيلى كو جاك وتهيه ياك خر وجى با

 درغير اين صورت مسكن است توان خر وجى شامل اغتشاش زياد و غير قابل استفاده باشد.
i.f. عبو راز

 اتصال مو ازى مى كند.

ساير منابع تداخل

 دريافت انتقالهايى راازايستاناه فاصله دور (ازز لحاظ جغر افيايى) توسط آنتن عملى مى سازد.

 مولفئاى در فر كانس ميانى توليد كند.
تشعشع نوسان ساز محلى

نوسان سازمحلى در فر كانسراديو يى كارمى كدو ومكـن استايانمستفيمأُرياباجفت شدن بديك
1.0

 ندارد ولى منبع تداخلى نسبت به كير ندههاى مجاور ديخر است.

r-a مثال

(الف) فركانس ووسان ساز مهلى
 9kHz
 \% 0 kHz
انتخاب فر كانس ميانى

 گزينندگى كانال مجاور مورد لزوم حداقل يهناى نوارض

 حذف كانال مجازى با انتخاب فر كانس ميانى بالا آسان تر آنر خواهد با بود.

 فر كانس ميانى VMHz ال/ الستفاده مى كتند.

r.f. استفاده از تقو يت كنندهr

 فر كانسهاى بالاتر اغتشاش آنتن كاهش مى يابد و اغتى اغتشاش توليد شده بموسيلهُ تغيير دهندهُ

 بهره" r.f استفاده مى كنتد.
تنظيم خودكار بهر 0(a.g.c.)'

 بهرم: "يرنده را طورى تغيير دهد كه توان خروجى را - حتى در مقابل تغيير ات بزرگد در سططح

جلو گيرى مى كند.

 تكميل كند (شكل ه ـ 9) . مدار طورى ترتيب يافته است كه افزايش ولتازَباياس بهرْ هر مرمنطتْ

1. a.g.c. $=$ Automatic Gain Control

تحت كنترل را كاهش مي دهد.

 صوتى مى تواند حاصل شود.

 جانبى كم مى شوند - بدسرعت كاهش يابد.

عملكرد گيرندهُ راديو يمى سو برهترودين مى تو اند با فهر ست كردن عملكردهاى هر يك از

|فزايش دهد.

 بلندگو را فراهم كند.

گيرندههاى سوير هترودين دو گانه

 نو سان ساز محلى ثابت است جون وروودى بدتغيير دهندهُ دوم هميشه در هـان فر كانس انجام

1.9
 دهد كه اغلب حدود 1 الست

> F_Q مثال

$f_{o}=f_{s}+f_{t}=r_{0}+r=r+\mathrm{MHz}$
$f_{o r}=f_{n}+f_{i r}=r_{\ldots}+1 \ldots=F_{1 . \ldots \mathrm{kHz}}$

گيرندهماى ارتباطى

 , (Yo _ YoMHz

 مدار صافيهاى كر يستالى مختلف، انتخاب شوود. بدهمين تر تيب بهناى نو أر ارهاى مـختلف مى تو اند با كليدزنى مقادير مختلف مقاومت دوسر القاى مدارهاى ميزان شدهُ جفت شدهأى حاصل شود كـ،

شكلهـ اr كيرندهُ ارتباطى
 مناسب برای خدمات بخصوصى را انتخاب كردي

(مو ج بيو سته) بـ كار مى رود.

 مى تواند طورى ترتيب يابد كه در بين نوار عبو رى تقويت كنندْ صوتى قرار گيرد.

ترينها

بددست آورد.
 اi. اi.تفاقمى افتد؟ حداقل ههنای نوار 9 kHz rir.f.

$$
\text { فر كانس lfMHz } 1 \text { نشان دهيد. }
$$

توضيح دهيد. هر گونه عيب اصلى اصول سو برهتر ودين را بيان كنيد.

 مجذور) NV (r.m.s.) الست.

 موردنظر باشد كد در آن بالاتر ين فر كانس مدوله شدر هده برابر هـ ${ }^{\text {Q }}$

 براى علاهت

 بهناى نوار فر كانس ميانى.
 (Y)
 كانال 4 كجازى، (r)

 (Y)

تصرينهاى كوتاه

 Ir 0
 جداكنتده استفاده شود.
 فر كانس ميانى را اذكر كنيد.

 حِيسِك

استفاده مى شود؟

9 فرستندههاى راديويى

مقدمه

عملكر دفر ستندهُ راديو يى در سيستم ارتباطى ترجمه علامت فر كانس صوتى بد قسمت لاز

 بالا بحث خواهند شد.

تقويت كنتدههاى توان فركانس راديويى

 بر ای رسيدن به بازدهاى بزرگ تر از اين مقدار، مى توان يا از شر ايط كلاس B يا كلاس C يك تقو يت كنتده استفاده كرد. درعملكرد كاس B (ن. ك. بـش اشكل
 خر وجى بممقدار زيادى وإيحيدگى يافته است؛ بنابر اين باياس كلاس B فقط مى تواند با

(ب)

(a)

 دستكاههايى بانوان بالان وردنظر باشنديك جنين بازدن زياني

 C AD/VkW

 اضافى

 رأسهاى نيمدوردهاى مثبت ولتاز علامت ورودى-وقتى كد ولتاز علامت بزرگ تر ازولتازباياس

(الف)

(ب)
شكل r_4 تقويت كنتدههاى توان كاس C

 تشديددر فر كانس عانامت تنظيم شده است. اميدانس مدار تشديدموازیىدرفر كانس تشديد خود

 مخالف يكديگرند و جر يان شبكه براى زمان تناوب كوتاهترى نسبت به جريان آند جارى

انتشارت سرونس منتشر مى شود.

 نشان مى دهد.

$$
\text { شكل } 9 \text { ــ0 تقويت كندهُ توان ك"س Cفشارى ـ كتشى }
$$

ضرب كنتدههای فر كانس

 حند ضرب كننده استفاده مى شود.

تقو يت كننده هاى ميزان شدهُ كلاس C بامدولهُ دامنه

 طر يق القاى متقابل بين التا

عبارت است ازمجهو عولتارهاى منبع تغذيه ومدولي يعنى:

 باشد.

فرستندههاى مدولاسيون دامنه

 سطح بالا و سطِح پايسن نام دارند.

151

 بالا آن است كه منطقّك كلاس B بايد منطقت خر وجى با با مدولd كا كافى را تغذيه كند، كه خود به مدار گران انيمت و بزرگى (از نظر فيزيكى) نساز دارد.

شـكل A_

 تقويت مى شود. اكنون بر آوردن نيازهاى قسمت فر كانس صوتى فرستنده آسان تر وارزان انـ ترانتر
 كلاس C بابازده زياد بهسطح تو ان لازم خر وجى فر ستنده رساند: بهجاى آن بايد از طبقههاى كلاس B با كاهش منتج در بازده كلى فر ستنده استفاده كرد انـي

 قسمت مناسب طيف فر كانس داده می شـو مود. فر ستندههاى مخابر اتى فر كانس بان بالا با تغيير شر ايط انتشار بايد فر كانس را با بانسرعت تغيير

$$
\text { شكل } 9 \text { ــــ 1 } \quad \text { فر ستنده هخابر اتى فر كانس بالا }
$$

را بد فر كانس خر وجي ميزان مى كند.

نوع ديگر فرستنده مخابراتى h.t. كد مي تو اند علامتهاى تلفنى نوار جانبى را مخابره كند شرشكل 9 است , قبل از اينكه به ورودى مدار مخلو ط كنيده داده شود تقو يت مى شود. نوسان كتندهُ

 خودكار خواهد بود.

باید ارى فر كانس

 i.s.b. و s.s.b.

كوتاه مدت و هم بلندمدت ـ باشد. اگر فر كانس عملكرد فرستنده غالباً تغيسر يابد، نوعى
 مشكل خواهد بود.

 فر كانس بر ابر $\pm 1 \mathrm{~Hz}$ ار

فر ستندههاى موج چیيو سته

Y. ب. وضيح بيشتر اين مطلب در جلد دوم كتاب حاضر آمده است كه با بر كردران همين مترجم بزودى ازطرف انتشارات سروش منتشر مي شود.
 كنيد.
 حاصل شود كه لامثي هدايت نمى كند. نوع ترانزيستورى اين ملارها برانى الستفاده در فرستندههای تو ان بايين نيز موجودند.
 اين خرستنده از نو سان ساز كر يستالى استفاده شده الست تا الطمينان حاهل شور كه فر كانس

 قطّ وروـل مى شود.

 هعمولا مدار صافى منا مبـى يدترتهب كليد كردن افزوده مى شود.

منطقههاى خروجى

 نو سانهاى غير مطلو ب، بهنامنوسانهإى مزاحمرمنحرف شود. سر انجام،منطقه بايد بهآسانى قابل تنظيم به فر كانس عملكر2 و جفت شدن بهتغذيه كننده أنتن با بهتر ين بازده بار بار انشد در اغلب

 بو بينهای جفت شدگى بين

 جفت شدگى بهينه بهتغذيه كتنده با تنظيم مناسب مقدار بو بين هو اكاههاى فر كانس راديو يى هستند. شكل

 تغذيه كننده _ لامبـ تنظيم شو شند.

 برده مى شود.

تطبيق تغذيه كننده آنتن بهفرستنده

خر وجى تبديل شود. مدار آند با تنظيم صحيح القاوياظر فيتش ميزان مى شود، وبار بهينه باتغيير

 نيمدورمثبت آن است، جر يان آند مقدار حداكثر خود وولتازرآند مقدار حداقل خودرادارارد. اگر

مدار آند در حال تشديد نباشد. ولتازَ آند، زمانى كه رأس مببت ولتازَشبكه اتفاق مى افتد، درمقدار

 توان حداكثر به تغذيه كندنده تحو يل داده شوه شود. وقتى كه شبكهُ جفت شدگى نو عِ

تمرينها

 , الازحنين فرستندالى دريافت كنيد؟ اجر ا حنين بايدارى لازم است؟؟
 دهيد جگو نه مدولا سيون علامت حا حاصل مى ششود.

 مداردا توضيّ دهيدن

 بايين است و عملكرد آن آن ابرا بيان كنيد.

 \& ـ هنمودار مدارى يك تقويت كند: كلاس C مدولى شد: آند رارسم كنيد و عملكرد آن را توضنح دهيد.

تمرينهاى كوتا.

فر كانس خوب باشد، و(ب) آيا مى توان ضرب كندذ فركانس را بهآن افزود؟
\&

 10_ ا ا ع ا 4 \& توضنِ دهيد.

V

مقدمه

سيستمهاى تلفن عمومى طورى طر احى شدهاند اند كه برقر ارى ارتباط بين هر دونقطه از شبكه را
 اساسأ بهدلا يل اقتصادى، بخشى ازارتباطهاى فاصله بيشتر يا تمام آن ازازطر يق سيستمهاى تلفنى جند كاناله هدايت مى شو ند. سيستمهايلى جند كانا
 سيستم همحنين قدرت انتقال علامتهاى تلو يزيونى رادارارند. اصول عـل عملكرد سيستمهاى تلفنى
 رله در همين فصل مطر ح خو اهد شد.

مدارهاى بين المللى

 اعتماد طر احى شدهاند. كابلهاى زير دريايى بسيار گران هستند وظرفيت حمل تردد آنها براى

ا. ر.ك. بـ كتاب سيستمهای انتقال درمخا برات. نوشتئدى. سى. كُ ين، ترجمئمحمدرهبر. انتشارات سروش.

بر آوردن نيازهاى مخابر اتى بين المللى كافى نيست. بمامنظو ر افزايش قابل تو جيه ظرفيت تردد

ايـتكاه زمينى دراروبا
ايستكاه زمينى درشمال امر يكا

شكل I-V \quad سيستم مخابراتى ماهو ارة زمينى

شكل r_V بعضى از rالتهاى ممكن مدارهاتى ماهواره زمينى

IV

 (كنسر سيوم مخابرات بين المللى ماهو ارْاى)

 حامل نوارا $r / V \circ \ldots$ ب

2. Intelsat
3. COMSAT $=$ Communication Satellite Corporation
4. Intelsat $=$ International Telecommunication Satellite Consortium

 مختلف بر ای دوجهت مخا بر هازطر يق شبكثّ راديو يـى استفاده مى شود تا از امكان سوت زدندر
اطر اف مدار جلو گيرى شود.

راديو تلفنهای كشتى

 طر يق شبكئ تلكس متصل شدهانداند.

شك F F V V ارتباط تلفنى ساحل بد كشتى

${ }^{4}$ CCIR $9{ }^{\circ} \mathrm{CCITT}$

براى اطمينان از سازگارى بين شبكههاى تلفنى كشو رهاى مختلف كه بخشى ازيك اتصالتلفنى
5. CCITT $=$ Consultative Committee for International Telegraphy and Telephones
6. CCIR $=$ Consultative Committee for International Radio

 (CCITT) انجام مى دهد. دو كمينه در

 انتقال نامناسبى خو اهند داشت.
عناوين زير از يِشنهادهایى CCITT/CCIR هستند كه كاربردهاى
 r. را با ظرفيت بيشتر تشكيل دهند.
r.ط طرح كليد زنى رابط راه دور بين المللى.

ه. اختصاص دادن فر كانسها به خدمات مختلف.

سيستمهای راديو رلذ SHF , UHF

 سيستمهاى راديو -رله كد در تعدادى نوارهارهاى ثابت در نوارهارهاى S.

7. ITU $=$ International Telecommunications Union

ت- V- تونها
 (Y-Y

iro

بين المللى توضيّع دهيد.

Q_V

 در هردو حالت فر كانسهاى حامل و ,ههناى نوارها را انكر كنيد.
تحرينهاى كوتاه
 V V_V

[^1]
جوإبهاى عددى تمرينها

$$
\begin{aligned}
& Z .=r \circ 0 \Omega, r / \Delta \times 10 \wedge \mathrm{~m} / \mathrm{s}, 19 /\left.9 \mathrm{VmA}\right|_{-} 1 \\
& \text { Do. Wf_l } \\
& \text { D. } \Omega . \Delta . \Omega \text { ^_ } 1 \\
& \mathrm{r} / 90 \times 1 .{ }^{\circ} \mathrm{m} / \mathrm{s} \text {, } \mathrm{HF} \cdot \Omega \Omega_{\text {- }} 1 \\
& \text { YIF/ } \mathrm{KnH} / \mathrm{m} \text {, } \Delta 9 / \Delta \mathrm{pF} / \mathrm{ml} \text { lo- } 1 \\
& \text { YFo, \Yo IV_I }
\end{aligned}
$$

$$
\begin{aligned}
& \text { r/яdB } 9 \text { _ } Y
\end{aligned}
$$

$$
\begin{aligned}
& 0 \cdot / \text { FAkW \% \% © } 10 _ \text {- } \\
& \text { r/9^dB 19_r } \\
& \text { lrdB \A_r } \\
& \text { rv/omrg_r } \\
& \text { r/AF:I Yo_F }
\end{aligned}
$$

هدفهاى آموزش

الف. تشعشع. آنتنها و خطوط

(1
r r 1

مى شود.

ا ـ ـ 1
1, $\lambda /$ / 1 تشر يح مى كند.

r r r

 تشر يح مى كند.
r r -

 V_r r توان تشعش A - r r r r r r r

ب. گيرندههاى راديويى

دمدولاتو رو تقو يت .a.f.است.
 r r _ F

 مطر ح مى كند.

 تداخل كانال دوم (مجازی) را تعر يف مى كند.

ج. فرستندههاى راديويى

 r - V
(+ V V V

 ض V _ V
 ال ا 9

وازهنامه
 فارسى_انگليسى

	radio-navigation tracking
absolute refractive index	class
capacitance	cascade j
dielectric عايق، دى الكتر كك	compatibility m
porcelain insulator عايق جينى	velocity of propagation سرعتانتشار
عبور لز فر كانس ميانى	phase velocity m
intermediate frequency breakthrough	group velocity
	high-level سطح بالا
skip distance فاصلة كريز	low-level
transmitter فرستنده	
radio transmitter فرستندهراديو	triode سهفقبى
critical frequency فر كانس بحرانى	earth-satellite system سيستم.
traffic frequency فر كانس ترافيك	
فركانس راديو يى ميزان شده	
tuned-radio frequency(t.r.f.)	satellite radio systems
audio frequency فر كانسصوتى	cycle mar.دور
optimum working frequency	charge شارثّبركردن
intermediate frequency(i.f.) فركانسميانى	grid شبك
push-pull فشارى-كششّى، يوش-بول	screen grid شبكغ \%
polarization	refraction شكست،انكسار
cut-off قطع	
كانالمباور	common-emitter
class كالس. كاده كارد	
كلكتور,جّع كنّنهد	antinode
keying كليدكرد	primary coefficients
volume control كنترلصدا كا	secondary coefficients ضر ايبثانوانويه
thermionic \%رمايونى.ترمويونيك	phase-change coefficient ضريبتغير فاز

leakance
double sideband(d.s.b.) نشوارجانبى دوگانه
baseband نوارمبنا oscillator

Colpitts oscillator
Crystal oscillator
Hartley oscillator
parasitic oscillation capacitance top
node
lobe گگ radio receiver كير ندْرْراديو يـى

گيرندهُ راديو يعى سوبر هتر ودين superhetrodyne radio receiver
reactive component
isotropic
مؤلفْواكاكشـى
متجانس، ايزوتر وبكك
fading
mode
orbit oدار
open-circuit مدار-باز
equivalent circuit مدارمعادل
مدارهاى تلمنى بين المللى international telephony circuits amplitude-modulated مدولفدامند trap هسدودكنتنده
parameter
مشخخصه، بارامتر reactance

مقاومتراكتششى
radiation resistance
هو اكام، جوك impedance
مeاومتتشعشع

يك قطبـ يونوسفر characteristic impedance
driver stage
interstage
cascaded stages
electromagnetic wave continuous wave(C.W.)
ground wave
standing wave
surface wave
space wave
complex wave
sky wave
center-fed

منطقّهم ميانى

موج الكتر ومغناطيـيـى
مو جويّو سته
هو جومينى
موجساكن
هو جوطحى
ووت فضا
موجر
موت هوايى
ميانتغذيه

radio receiver	low-level سطع
radio transmitters فرستندْ	سطع
	maximum usable frequency
reactive اكنشى،.آكتيو,	ح
reactive component	mode
relay station systems	monopole
reference antenna آنتزبنا	multi hop links
reflected بازتابيده	
reflection بازتاب، انعكاس	node
بازتابنده	
refraction شكست، انكسار	open-circuit مدار_باز
refractive index ضر يبشكست	optimum working frequency
resonant تشديد	كارك د د بهينه
	orbit
satellite radio systems	oscillator
screen	
screening effect	
اثريوششفى	parameter
screen grid شبكهبرده	parasitic
secondary coefficients ضرايبثانويد	
	pattern
self-radiation خوديخّى	phase-change coefficient الحريبتغيرفاز
self-tuning خردميزان	phase velocity
sensitivity	polarization
ship-to-shore radio-telephony	porcelain insulator
راديوتلفن كشتّى به ساحل	primary coefficients
single-tuned ميزان شده تكهى	propagation انتشار
skip distance فاصلك كريز	push-pull فشارى-كششى.يوش-يول
sky wave موجهوايى	
space wave	radiation
standing wave	radiation field
superhetrodyne radio receiver	radiation pattern
كِيرندهُ سوبر هتر ودين	radiation resistance
surface wave	radiator كندّ
	radio-navigation

اختصارات

[^0]: 4. a.g.c. $=$ Automatic Gain Control
[^1]: Thalymit

