
$1+1 \times / a s$: 4×14

4 b-
$4 \Leftrightarrow+8+8+8)$

طرح و مها سبه
سازههاى فولادى

$$
\begin{aligned}
& \text { tأليف } \\
& \text { جالز } \\
& \text { جان .أى -جا نسن }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ترجمـو } \\
& \text { فريدون ' يرانى } \\
& \text { عضو هيأت علمى دانشكده بهندئى } \\
& \text { Trat The }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ام كتاب : طرع و مهاسه" سازهماي فولادی }
\end{aligned}
$$

تـــــراز
قـريهت
حق هط ب مصنوظ

فهرست مطالب

نوانزد• نوزد
هيشكفتار مولنين
ثيشكفتار مترجم

$$
\begin{aligned}
& \text { فصل اول - عقد مه } \\
& \text { 1-1 } \\
& \text { - } 1 \\
& \text { شيهر طراحى } \\
& \text { ا } \\
& \text { } \\
& \text { هار مرد } \\
& \text { بار زندهـهـ } \\
& \text { بار زنده بزرك راهـها } \\
& \text { ضرهـ } \\
& \text { سربار هرف } \\
& \text { بار باد } \\
& \text { بار زلزلـه } \\
& 1 \\
& \text { قطعات كششیى } \\
& \text { قطعات فشارى } \\
& \text { تيرها }
\end{aligned}
$$

بار محورى و خمشى

- 1

سازهماى يوستهاي
سازهماي معلق

- 1

روش طرح بر اساس تنـش موجود
روش طرحخعيرى
روش طرح بر اساس ضرايب بار و و ما ماومت
AISC تاريخجه تكا مل طراحى در در

- 1

مراجع نصل اول

فصل دو م ـ فولاد و خواص آن
r - ا - نولاد هاى سا ختمانى

فولاد هاى كربنـى
نولاد هاى مقاوم
نولاد ها ع -
-
Y - Y ـ منحنـى تنـش _كرنش فولاد در درجه حرارت محيط
r -
-

تنـف تسليم عربیى
نسيت بواسن

ضر يب ارتجا عى برثى

- - Y - Y
r -
q- r -
تاثير دما

تاثير تّش هنـد هحورى
تـش سه محورى حاصل از جوشكارى تاثير ضخا مت
تاثير بارهاى جنـشثى (دينا ميك)
r - ا

$$
\text { r - } 11 \text {-استحكا م خستكى }
$$

I - r - r متاو مت در برابر خورندكى و فساد و فولاد هاى خود حفاظ
مراجع نصل دوم
فصل سوم - قطعات كششى

فصل جها رم - يّهَ و يرع

$$
\begin{aligned}
& \text { - } 1 \text { - } \\
& \text { - } \\
& \text {; }
\end{aligned}
$$

$$
\begin{aligned}
& \text { - - - } \\
& \text { - } \\
& \text { - Y - } \\
& \text { - } \lambda \text { - } r \\
& \text { - } \\
& \text { r } \\
& \text { مساءل } \\
& \text { مراجع نصل سوم }
\end{aligned}
$$

150
† - ب- علـل عد م كاربرد برع
（
بار دوام
فنون نصب
† - - ـ انتقال بار توسط ابزار اتصال
تنشهاى تراردادى

$$
\text { ץ - }- \text { - اتصا لات rشیى }
$$

مظاومت برشى
لهيدكى سوراخها در برابر نشار بيتجما

نكات مهم در طرح اتصالات يثيجى تطعات كششى و نشارى
Y - Y - اتصالات اصطكاكى
Y - - - برش با خروج از مركزيت

تحليل به روش ارتجا عـى تديمى اري
تحليل به روش ارتجا عى تصحيّع شده
تحليل به روث مقاومت نهايهى

－ 9 － أ 10 －－ 10
اتصالات برشى متعارف

اتصالات اصطكاكى متعارف كشش و برش حاصل از بار با خروج از مركزيت الـا
 در نظر كرفتن كشش اوليه－روش ساده

$$
\begin{aligned}
& \text { كرجها } \\
& \text { 范 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { بیتجهاى آجدار }
\end{aligned}
$$

نهرست مطالـب / نه
T.1A

Y1A
TrA

YY
rrur
ruy
rro
rif
iry
rra
rra
ifo
rfi
rfy
rify
rrr
ify
pff
iff
rfo
pfq
roo
ral
rar
ror
rof
ros

مسائل مراجع نصل هـهارم

$$
\text { - } Y \text { - }
$$

جوشكارى خود حغاظ با قوس الكتريكي
جوشكارى با قوس غوطهور

$$
\text { جو شكارى } 4 \text { حفاظكازى }
$$

جو شكارى با الكترود مغزه شودرى

- - - جوش جخ يرى فولاد سا ختمانى
ه - ץ ــانواع درزهای جوش

درز دويههم
Tرز
درز كنج
درز ییشانی
-
جو ش لب
جوش كوثه
جوش انكشتانه و كا

$$
0 \text { - } 0 \text { - علاءـم جو شكارى }
$$

- Y - Q

Tا Tاده كردن مناسب لبهء اتصالات

$$
\begin{aligned}
& \text { كتـرل اعوجاج } \\
& \text { - - - } \\
& \text { اختلاط نا تصص } \\
& \text { نغوذ نامناسب جوش }
\end{aligned}
$$

ras
ras
ras

تخلخل جو
كود امتادكى
اختلاط سرباره با جور
ترك خوردكى

- 9

$$
\text { ه - ا } 1 \text { ـ مهدوديت هاى ا اععادى جوش كوشه }
$$

حدا تل اندازهء جوش
حداكثر اندازه' جوش كوشه كـر كار ورتها
حدا تل طول موثر جوش كوشه

- Ir-
- -

در جوش لب
در جر ش كوشه
در جوش انكثتانه و كام
حداكثر اندازهُ موثر جوش كوشه

- ا ا ا -

با جوش لب
با جوش
با جوش انكشتانه و وكا م
- ه - اء اتصالات جوشى با خروج از مركزيت

برش با خروج از مركزيت
برش و لنكر خـشى
طراحى خطوط جوش تحت اثر لنكر خمشى
مسائل
مراجع نصل بنجم

فهرست مطالـبـ / يازده
roy
roy
rio
rir
rif
rin
rri
rrr
rre
rry
rif
r40
ryy
rol
res
rat
rgy
reso
r8A
\& - ا -كليات

8
-

$$
\text { ¢ - } \ddagger \text { - كـانش غهير ارتجاع عى }
$$

نظريه مدول دوكانه

$$
9 \text { - ه - تنش هس باند }
$$

צ

- Y -

ضواببط AISC در مورد ابعاد متاطع تطعات فشارى Qقدار ضر يبب

- 9 - 9 -

نـودا ر زوليان لرنس
¢ -
¢ -
AASHTO-77 ضو!
فرمول سكانت

ستونهاي يست دار
مقاومت كانشى ستون مركب
¢-
ضوا بـط AISC در طراحي ستونهاى مركب از جند نبهرخ

Y Y Y
\& -

كانش صفسه تحت اثر بار نشارى بكنواخت

$$
\begin{aligned}
& \text { فصـل ششم ـ قطعات فشارى } \\
& 1 \text { - ستونـهـ| }
\end{aligned}
$$

Yor	
409	AISC ¢
Pir	IV - ا

كانشى عناصر ورق شكل متا ومت كلى ستون

9 - 9 - ا ـطرأحى تطهات فشارى هركاه المكان كاتش موضعى وجود داشته باشد
سا
مراجع نصل شثم

فصل هغتم ـتيرها با تكيهكاه جانبى

- Y - Y خ - Y ساده نهيرخهاى متقارن
ط - r - Y
روش طرح ارتجا عمى
دوش طرح خميرى

مشخصا ت الهعادى متطع در طرح خميرى

Tب آنبا شتكى در ستغهاى تخت
Y - Y - - هرث در تيرهاى نورد شده
روش ارتجا عیى ALSC
دوش طرح خميرى

Y Y
دوش طرح خميرى
ات - Y - Y Y بوراخ در تيرها
سوراخ جان

- - Y - - نظريه' خمش در حالت كلى

- نهرستسمطالب / سيزده
fay
fAN
$4 \wedge 9$
$4 \wedge 9$
490
0.1
$\Delta \cdot \Delta$
010

Dir
air
$\Delta 14$
$\Delta 1 \Delta$
Div
$\Delta 14$
$\Delta 19$
$\Delta T 0$
arl

$$
\begin{aligned}
& \text { محورها املى املى } \\
& \text { ثيب محور اصلى } \\
& \text { - } 9 \text { - Y } \\
& \text { - } 10 \text { - Y } \\
& \text { سائل } \\
& \text { مراجع فصل هغتم }
\end{aligned}
$$

ضصيهـ
انواع تداول نهيرخهاي نورد
نيهرخ I الاريك
IPE نهيرغ
نيهرخ بال هتهن
نيمرخ ناودانى
نيهرغ نششي
نيهرغ سرى
ميلكرد
جداول نيدرخهاى سلاختطانى
;

ييشَّفتار موّلفين

لازم الاجرا كرد هده است أستفاده شده است .

 استغاده شده است ، در اين مثالها انتخاب مستدل منوطبه تعيين حدا تل وزن در محاسيات میا شد .

 توضيح مطلب به كونهاى است كه خواني دتهق و با عملى

سنتى عملكرد ارتجاعى تحت اثر بارهاي كاريردى است . این فلسفه تسمت اول آئين ناهـ را را

 A A SC مككن است خواننده مجبور كردد كه همزمان با استغاده از كتاب از كتابراهنـا

 كنجانده شود .

 جو ش(نصل هنجم)) و (د) بردسى اختمامى تكيها همها ایجانبى تيرها وستونها (نصل نهم)

 همكارى A I SC توسط فرانك و . استاكولi فردريك هالمر ، ريموند ع .ر . تايد و روبرت لورنز

پیشكنتار بوء/لفين/ عغده

تشكر مىكند
از خوانندكان هاب دوم تقاضا دارد در هر موردى از كتاب با تذكرات لازم مخصوصا"

مولف اول كتاب مد بون همسر خود بت است زيرا بدون تشويقوى مطمئنا" "بازنكرىكتاب ناتما بـاقى هى ماند

چارلز ج. سلمن -جان ئى . جانسن

شی

بكى از عوا مل موءثر در اعتلاى سطع علمي بانشجويان، به موازات بـهر هكيرىاز اساتيد

 طراحان و دانشجويان نيست

 Steel Structures Design and Behavior
. (Johnson) موكن كرديد (Salmon)

نيمرخهاي متداول در بازار نولاد ايران مرتفع كرد بد .

واحد طول عاد

دانست لذا ترجيح داده شد كه مقادير تنس با واحد بار بـيان شود .
از معايسه' متن كتاب حاضر با كتاب موءلغين ملاحظه خواهد شد كه در برخى از موارد

 T'

 بر مترجم منت كذارند .
در خاتّه اميد است اين خد مت ناهيزي مورد توجه و قيول اهل فن قرار كيرد .

فريدون ايرانى
استاديار دانشكده مهندسى
بهیمن ماه

مقدمه

$$
\text { - } 1
$$

 جز نتايج محا سباتى ندارند.

- - ب = اصول طراحى

(1) structural design
(2) arches
(3) criteria

$$
\begin{aligned}
& \text { الف _ حداتل هزينه } \\
& \text { ب - حداقل وزن } \\
& \text { ع - حدا قل زمان ساخت } \\
& \text { د - حداتل كاركر }
\end{aligned}
$$

 كيفى (r) خواهد بود . اكر بتوان ضوابط علمى مخصوصى كه براساس روابط رباضى استوار شده است تميين نمود

 شرح

شيوهة طراحى :

 دانست . طرح عملكردى به طرحى كفته مى شود كه درطى آن عملكرد سازه در مسير اهدان ان آن بردسى مى شود نظير :
الف ــا ايجاد فضاهاى كار مناسب
ب - 〒يش بينى لازم جهت تهويه و تبربد سازه

ع-تسهيلات مناسب نظير بالابرها ، بلكان ، جراثقالها و ماشين Tلات للاز م حهت
(1) measurable criteria (2) qualitative
(3) optimization technique(4) functional design
(5) structural framework design

م

جابجابی لوازم .
د ـ ـروشنـايى مناسب

آن بتواند تحت اثر باركذارىهاى مختلف آيمنى لازم را را داشته باشد .

r - r

Y

$$
\begin{aligned}
& \text { تطسات و انتمالات بررسى خواهد شد } \\
& \text { مرحله كنترل مقاومت (r) }
\end{aligned}
$$

Y - Y

 ^ - تصميم نها يی، در اين مرحله معلوم مى مردد كه طرح انتخابى بهتر ين طرحمىاشد
اي خبر .
: ت $=$ = - 1
استغاده از زلز بعنوان يكى از مطالح ساختعانى با كاربرد جدن در طاتى قوسى بادهانهء
(1) framework
(2) strength
(3) stability

 كرديدها است

 ساز ههاى فولادى عرضه ميشود .
ا -

[^0](1) wrought iron
(2) Brittania Bridge
(3) Menai Straits
(4) Walse
(5) Bessmer process
(6) Bessmer converter
(7) yield stress
 خواهد بوء. ـرخي از انواع متداول بارها ذيلا" شرع داده شدها است .
بار مرده

بود و از Tن جدا نشواهند شد .
 نیى باشد . بدين جهت در كا مهاى r r

 قبل از طرح وونٍ مردهء الحاتات سازه با تقريبى قابل قبول معلوم خواهد شد .
بار زنده

 موقعيت و شدت بارهاى مختلف زنده نامعلوم است تعيين مقدار و موقعيت واقعىى اين جنين بارما مثكل خواهد بود .

 كلى كشور استغاده شود . در جدول (1-1 ا 1) برخى از بارهاى زندهء متعارف ذكر كرديده

جدول 1 - 1 ـ بارهاى زندهء متداول در ساختمانها (بصورت كسترده ه)

زمانى كه باركذارى سازه تحت اثر بار زنده مورد نظر باشد ، موتعيت الين بار بايستى به

 كرفت كه ابن جنـين باركذارى تطابق كا مل با واتعيت داشته و يا باتتر يـّقا بل قبولمى بروالتعيت
(1) maximum effect

عقد هـ/V

 مقدار حداكثر تقليل فوقالذكر را به رابطه؛ :

$$
\begin{equation*}
\text { (درصد تقلـلـ) } R_{\max }=23\left(1+\frac{D}{L}\right)<50 \tag{1-1}
\end{equation*}
$$

 ($\mathrm{daN} / \mathrm{m}^{2}$ (اشیبا محدود كرده الست (

بارزنده هيزرك راههها
T' (I AASHTO خود معين كرده است . به اين صورت كه دونوع كاميون HS , H كه تغاوت T T انها در تعداد محور هاى خرخ T Tنها مى باشد معرفى شده است . دستكاه كاميون H دارای دو مسور و دستكاه كاميون HS داراى سه محور است . علاوه بر باركذارى فوق ينج درجه بندى باركذارى نبز بـه

 باركذارى دهانـههاى بل بايل بنحوى باشد كه حداكثر اثر در باركذارى بوجود آيد و هعهرنين
(1) American Association of State Highway and Transpor tation| Officials
(2) truck load,
(3) lane loading

HS2O , H2O باركذارى توسط

AASHTO بر طبق T'ئين نامه HS20وH20 شكل (1-1) باركذارى بزدك راهها توسط

مه درصد Tنرا)

بار متمركز در مقطعي از یل قرأر كيرد كه بيسنترين لنـكر يا برثيرا ا ايهاد كند. اكر در سازهاى سرتاسرى غ غرض تعيين سداكثر لنكر هنغى روى تكيهكاه باثد از يك بارمتـركز ديكر دردهانهاى آى

انجام خواهد كرفت .

اكر باركذارى توسط تك كاميون انتجام كيرد اثرى نظير بار متـهركز سنكين خواهد داشت

 جهت طرح بلهاى جاده (عندتا") در كشور مالك متحده آمريكا بكار رفته است . قـا

(1) bridge deck
(2) supporting structure

 T T أينينامه AREA ارائه شده است .

$$
\begin{aligned}
& \text { باركذارى تئودور كوبر با حرف ع و يك عدد بـر بعد از آن مشخص مى ششود . عدد مذكور }
\end{aligned}
$$

(E60 LE50 () (
لازم ر1 مشخص نمود.
(1) Cooper E72 train

 (

(1) impact
(2) simple harmonic motion
(3) damped out
(4) impact factor

وريب ضربه از فرمول تجر بى زير تعيين خواهد شد .

$$
\begin{equation*}
I=\frac{15.2}{L+38}<0.30 \tag{r-1}
\end{equation*}
$$

 محافظه كارانه عمل نمود .

 (0) AISC مقادير زير درنظر كرنته خواهد شد .
(1) super structure
(2) subs tructure
(3) abutments
(4) retaining walls
(5) American Institute of Steel Construction

AISC برطبق.
برطبقنشر يه
درمد درصد
100.

100
براى تكيهكاههاى Tا سانسور ها
برایتير هاى حامل و اتصالات الات تيرها در

جراثقالههای كابيندار (1)
ro نشش به مراجعه شُود

برای تيرهاى حامل و اتتمالات تيرها در

10
 براى تكيهاه ماشين Tالانتى كه داراییحركت متناوب

200
$\Delta 0$ مى باشند rr
rr

جهت طرح تير حعال جراثقال بايد نيروهاى افتى حاصلاز حركت ا, إبه فوقانى جراثقال

(1) caboperated traveling crane
(2) Pendant Operated traveling crane

 خواهد بود .
علاوه بر نيروى فوق بعلت شنابكيرى و ترمز حرا ثقال از طريق اصطكاك ببين جرخ

 حداكثّر بار جرخههاى جراثقال كرفت ، نقطه اثر اين نيرو بالاى ريل خواهد بود .
 و وزن ارابه متحرك خواهد بود و فرض مى شود كه بر ربل هر طرف و در هر در در حهـي (از
سر بار افقى طولى برابر با 1 أ درصد وز و در امتداد طولى

سربار بزف :
بار زنده؛ محا سباتي يشتبام ها مىتواند شامل بار برف باشد . ازازنحا ئيكه وزنمخصوص برف متغير است حتى اكر عمق برف مقدار معلومى باشد بار وارده بر واحد سـطح یشت بام از طريت وزن برف، مقدارتخمينى خوا هـد دا داثت .

با ارتغاعات منتلـف ضرايبى بـنظور تصحيح مقدار بار برفـ بـهار خواهد رفت د

 نامتغارن داشته با شد لازم است اين باركذارى در محاسبات ملحوغ شود . ممكن ابست سازهایىكه

تحت اثر بار برف قرار كرفته است تحت اثر باد نيز واتع شود و و زمانى نيز معكن است كه سازه
،تحت اثر بيشترين برف و باد با حداكثر سرعت ، فرار كيرد .

 مهافظهكارانه نيز با شد .
 فوقالذكر مراحغه شود .

بار باد :

$$
\begin{equation*}
q=\frac{1}{2} f v^{2} \tag{r-1}
\end{equation*}
$$

(1) suction
(2) presure
(3) wind ward
(4) leeward
(5) Bernoulli's theorem

درين رابططه q فشار د ينا ميكى بر روى جسم ؛ P حرم مخصوص هوا (وزن مخصوص هوادر
 الست و به عبارت د يكر فشار د يناميكى باد بر دحسـ daN/m² شـ

$$
q=\frac{1}{2}\left(\frac{1.225}{9.81}\right) \quad v^{2}=\frac{v^{2}}{16.0} \quad\left(\mathrm{daN} / \mathrm{m}^{2}\right)
$$

 طر ح و مهاسبه ساختهانهاى متعارف فشار ديناميكى باد را به فشار ايستايى (ا ستاتيكى) ممادل

$$
P=q C_{e} C_{g} C_{p}
$$

 داشت .

 كيلوكوم بر مترمربع و از فشار موءثر p برحسب شكل ، نوع و موقعيت ساختمان برحسببضرا اببى با معينبودن q م مـاسبه خواهد شد .

بار زلزله :
زلزله به حركت افقى و عمودى زمين كفته ميشود ، كه اصولا" هقدار حركت عمودىنسببت

(1) exposer factor
(2) gust factor
(3) shape factor

جرم مىاباشد بناكاه حركت كند همانكونه كه در شكل (ه - 1) نشان داده شدهاست حرم سازه

(الف) در حال سكون

(ب) - - ا تحت اثر نيروى انقى حاصل از زلزله

تما يل به مقاومت در برابر حركت خواهد داشت و لذا بيروبى بر شى فیى مابين حرم و زمين

 زلزله را با رابطه (1) (1) معين ميكند .

$$
I V=K C W
$$

$$
(\varepsilon-1)
$$

درين رابطه:
. تلاش بر شی در تراز بی كه بيان كنـدهء اثر دينا ميكى نيروى حر مى است : V W俍 $\mathrm{C}=\frac{0.05}{\sqrt[3]{\mathrm{3}}}$

(1) Structual Engineering Association of California
(2) natural period of structure

iV/ace

 در ساختمان توزيع كردد .

$$
\begin{equation*}
F_{n}=\frac{W_{n} F_{n}}{\Sigma W h} V \tag{v-1}
\end{equation*}
$$

درين رابطه ه

hn
. مهموع Wh : C Wh
 مىتوان مقدار Tنرا برطبق رابطه (1-1 - 1 فرض كرد .
($) T=\frac{0.09 \mathrm{H}}{\sqrt{D}}$

$$
(\lambda-1
$$

درين رابطه :

 مىنما يد يبروى نمود .

1
هعانطوريكه در بند (1 -

 امكان ساخت نيـرخهاى تركيبى از ورق و يا ساير نيمرخهاى نورد شده وجود دارد كه طراحان

بر حسب اليجاب انتتاب از ${ }^{\text {T }}$ استفاده مىنمايند .

بال بهن

INP
IPE

نبشى ناودانی
س

1000

شكل (1-ء) - نيمرخهاى نورد شدهُ استاندارد

يكى از متداولتر ين نيمرخ جهت قطعات ستونى نيمرخ بال يهن (1 ') الستكه دربازاراروريا

 نيهر ¿ IPE INP شكل كشيدهاي دارد و اكثرا" جهت قطعات خمشى بكار برد دمیشودد،

(1) wide flange
(2) channel
(3) angle
 L50. 5 نبشى اكثر اوقات جهت ايجاد و طرح اتصالات استات الاناده مى شود .

$$
\begin{aligned}
& {[[\square]} \\
& \text { ناودانى } \\
& \text { د) } \\
& \text { شكل (زوج ناودانی) } \\
& \text { L } \\
& \square \square \\
& \text { نبشى } \\
& \text { متاطع كلاه }
\end{aligned}
$$

شكل (Y-Y - برخى از انواع نيمرخهاي برسى شده

 ها ميليمتر باشد نبز وجود دارد . برخى از اين انواع نيـرخها در شكل (Y (Y) نشان داده
(1) tee
(2) pipe section
(3) Structual tubing
(4) plates
 أسـاندارد معينى براى ابعاد و ضهامتهاى اين نوع نيمرخها وجود ندار د .

شكل ((- -) - قطعات متعارف كششى

انواع مختلف تطعات كششى بجز طراحى كابلهاى مر بوط به ساز هماى معلق در فمل سوم بيان شدهاست.
قطعات فشارى :

(1) chord member
(2) bracing

(ب) نبشى زوج (الف) نــرْ I I شكل
(() سبرى
(د) توطى

(هـ) لوله

(و)) نيهرخهاى ساخته شده مركب

شكل (1-9) - قطعات متعارن فثارى

(1) upper chord
(2) beams
(3) neutral axis
(4) plate girders

$$
\text { شكل (1 - } 0 \text { 1) - قطعات متعارف تيرها }
$$

 مععولا" از نبشى استفاده ميشود و جهت تير انير انتى در نماهاى يوشش شده (با آحركارى يا ورقهاى موجدار) معولا" از ناودانى استفاده ميشود .

بار محودى و خششى:

 شده با شد ، مساللاى با تركيب تنشها بوجود خوا هد آـد و نوع قطه مورد استفاده د درين نوع
(1) Open - web joists
(2) Steel Joist Institute
(3) lintels

تطعات بـستى به نوع تنش غالب خواهد داشت . قطهعايكه تحت اثر نبروى مكورى فشارى و
 نوع تططات در مصل سيزدهم بيان حواهد شـد شد

 به آنها اشا شد.

$$
1 \text { - } 9 \text { = ساز ههاى فولادى }
$$

 در آنها تنش غالب كشش مهورى مى باشـد .

سازههاى قابى :

 كنبدى خواهد بود و يا مىتواند بنوعى از بيك تاب با تبر مسطح يا شيبدار تشتكيل كردد .
(1) beam - column
(2) framed structures
(3) shell - type structures (4) suspension - type structures

$$
\begin{aligned}
& \text { به صورت سرتأسرى طرح مى شوند تنكيل مى كیردند . }
\end{aligned}
$$

ساز;ههاى يوستمایى :

 يكى ازْ انواع بسـا, متداول

 به صورت فشارى عمل كنند و در حاليكه بهصورت همزمان و در اتصال بال باساير قطعات به صور

مورد آن خارج از; سطح اين كتاب مىباشد .

سازههاى معلق :
در سازهماى معلق كابلهاى كششى عمدهتر بن قطعات باربر سازه را را تثكيل ميدهند .
مى توان سقف يكسازه را توسطكابل معلق نسود , ولى عمدهترين نوع اين ساز هما ثلهايى هملق
مى با شند .

روزبروز امزو ده مى شوند .

 قابى مـلط باشد .
(1) stiffening truss

آئين نامهها و ضوابط ساختمانى - Y - 1

(1) American Institute of steel construction
(2) synthesize
(3) American Association of state Highway and. Transportation.

منتشر مىكردد .

 را خواهد دا

 جهت طراحى ساختمان نظير آنجه در بند (1 -

 , محاسبات ساختمان جنبهُ رسىى دأشته و كدا بيك ميتواند بصورت راهنـا تلقى كردد .

(1) American Railway Engineering Association
(2) Building codes
(3) allowable stress
(4) safety factor
(5) yield stress

تنش بحو انى (1) در كمانش درنظر مىكيرد . تنشهاى محاسباتى در يك جنينرووشى هموار هدر

 ه وجود مي'
 تغ تغ . حاصل شدهاست FS

$$
\begin{equation*}
\left[f_{b}=\frac{M c}{I}\right] \odot\left[F_{b}=\frac{F_{y}}{F s} L \frac{F_{c r}}{F S}\right] \tag{9-1}
\end{equation*}
$$

 حالات حدى مقاومت عبارتند از مقاومت نهابي تغيير شكليذيرى قطعه (كه عموما" مقار مت
(1) critica! stress
(2) elastic range
(3) safety criterion
(4) moment of inertia
(5) buckling stress
(6) factor of safety
(7) limit state design
(8) ultimate strength design, strength design
(9) plastic design
(10) load factor design
(11) 1 imit design
(12)Load and resistance factor design

 $M(F S)<M_{u}$ ($10-1$)

در اين رابطه Mلنكر خمثى حداكثر تعت بارهاى واردها است كه مقدار آن در ضريـ
 تير را به مقاومت حدى موردنظر بر ساند . در اين حالت MU مقاومت حدى فوقالذكر میاباشد.
A I SC - دوش طرح براساس تنش موجود

 داشته باشد حد بالاى متاومت همان مقاومت خميرى خواهد بود و اكر حد نهاني بـي بدليل عدم
(1) Strain
(2) plastic strength

بابدارى كانشیى و يا عملكرد ديكرى بنويمى باشد كه رسيدن تنش به تنش تسليم وجود نداشت

 اثر با;هاى مورد استفاده در سازه بررسى میىردد .
روش طرح خميرى A I SC

 خمبرى ممكن است بيانكر مقاومت نهابيى

مورد استعاده در سازه با كنترل عوا ملى نظبر تغيير شكل و غيره بردسى كردد .

دوش طرح براساس ضرايب بار و مقاومت

 لنظ LRFD كه بر اين روش كلى دلالت مى كند نتيجه زحماتى است كه توسط "واحد مستقل

 ارائه شده است بيانكر اين نكر جديد است .
(1) collapse mechanism
(2) Advisory Task Force
(3) Galambs
(4) Pinkham
(5) Hansell
(6) Ravindra
(7) Wiesner

شكل رابطه پيشنهادى (17) براى حالات حدى بمورت زبر مى باشد : $\Phi R_{n} \geqslant \gamma_{0}, \Sigma \gamma_{j} Q_{i}, i=(D L),(L L), W, S, \ldots(1-11)$
 درهد عدم اطمينان (r)
 تزايد (r)

 موجود در رابطه محاسبه كرد .

تاريخجهْ تكامل طراحى در A ISC

 سازهماى فولادى مخعوصا " تعت بارهاى عدى مسكن كرديد بطور هيوسته تغيهرات متعددىدر
(1) nominal strength
(2) undercapacity factor
(3) overload factor
(4) analysis factor

متدمه/ |

 به عنوان روث انتخابى ديكرى در برابر روش تنشهاى موجود ارائه داده است .

$$
1 \text { ـ } 9 \text { = غريب اطمينان }
$$

 صورت اكر سياست نصب معلوم باشد و بدانـي كهآن جنان سياستى سبب تغيير شرايط طرح
(1) load factor
(2) deviation

H

مى مردد مىبا يد درخلال طراحى ، ‘آن شرا يط خاص را درنظر كرفت .

از حد معقول معينى ثائينتر نكهدارند .

 داده شد هاست نيازمند است " .

 درست هحاسبه شده با شد , بايستى روابط زير د رمورد آن صدق نماءد :

$$
\begin{align*}
& R-\Delta R=S+\Delta S \\
& R\left(1-\frac{\Delta R}{R}\right)=S\left(1+\frac{\Delta S}{S}\right) \tag{1r-1}
\end{align*}
$$

 خوا هد هود .

$$
\begin{equation*}
F S=\frac{R}{S}=\frac{1+\frac{\Delta S}{S}}{1-\frac{\Delta R}{R}} \tag{1r-1}
\end{equation*}
$$

رالـطه ((ا I) برحسب اضاغه بار وارده بر سازه
 شود برحسب اضافه بارى اتغاتى ($\frac{\Delta S}{S}$ (

متح مه/ rr

تقليل مقاومتى شود خوا ههم داشت :

$$
F S=\frac{1+0.4}{1-0.15}=\frac{1.4}{0.85}=1.65
$$

 خميرى بارها در ضريب I/Y كه عدد مناسبى است ضرب مششوند .

1. Hans Straub, A History of Civil Engineering. Cambridge. Mass.: M.I.T. Press. 1964 (pp. 173-180).
2. American National Standard Building Code Requirements for Minimum De sign Loads in Buildings and Other Structures. New York: American Standards Institute, ANSI A58.1-1972.
3. Standard Specifications for Highway Bridges. American Association of State Highway and Transportation Officials. 12th ed., Washington, D.C., 1977 (also 1978-79 Interim Provisions).
4. "Specifications for Steel Railway Bridges." Chicago, Ill.: American Railway Engineering Association, 1965.
5. Specification for the Design Fabrication and Erection of Structural Steel for Buildings. New. York: American Institute of Steel Construction, 1978.
6. "Wind Forces on Structures." Task Committee on Wind Forces, Committee on Loads and Stresses. Structural Division, ASCE, Preliminary Reports, Joumal of Structural Division, ASCE, 84, ST4 (July 1958); and Final. Report, Transactions, ASCE, 126, pt. II (1961), 1124-|198.
7. "Lateral Forces of Earthquake and Wind." Joint Committee of San Francisco Section, ASCE, and Structural Engineers Association of Northern California, Transactions, ASCE, 117 (1952), 716-780. (Includes extensive bibliography.)
8. John M. Begs, Introduction to Structural Dynantics. New York: McGraw-Hill Book Company, Inc., 1964, Chap. 6
9. C. H. Norris et al., Structural Design for Dynamic Loads. New York: McGraw-Hill Book Company, Inc.. 1959, Chaps. 16-18.
10. Recommended Lateral Force Requirements and Commentary. San Francisco: Seismology Committee, Structural Engineers Association of California, 1967.
11. Manual of Steel Construction. 8th ed., Chicago: American Institute of Steel Construction, Inc., 1980.
12. Cold-Formed Steel Design Manual. New York: American Iron and Steel Institute, 1977 (see part V, Charts and Tables).
13. Standard Specifications Load Tables and Weight Tables. Richmond, Va.: Steel Joist Institute, 1978.
14. Alfred M. Freudenthal, Jewell M. Garrelts, and Masanobu Shinozuka, "The Analysis of Structural Safety," Journal of Structural Division, ASCE, 92, ST 1 (February 1966), 267-325.
15. C. Allin Cornell, "A Probability-Based Structural Code," ACI Journal, Proceedings, 66, December 1969, 974-985.
16. National Building Code of Canada. Ottawa: Associate Committee on the National Building Code, National Research Council of Canada, 1977.
17. C. W. Pinkham and W. C. Hansell, "An Introduction to Load and Resistance Factor Design for Steel Buildings," Engineering Journal, AISC, 15, 1 (First Quarter 1978), 2-7.
18. Theodore V. Galambos and M. K. Ravindra, "Proposed Criteria for Load
and Resistance Factor Design," Engineering Joumal, AISC, 15, I (First Quarter 1978), 8-17.
19. Kenneth B. Wiesner, "LRFD Design Office Study," Engineering Journal, AISC, 15, 1 (First Quarter 1978), 18-25.
20. Standard Specification for General Requirements for Rolled Steel Plates. Shapes, Sheet Piling, and Bars for Structural Use. ANSI/ASTM A6-78. Philadelphia, Pa: American Society for Testing and Materials, 1978. Also adopted by the American National Standards Institute.
21. Mayasandra K. Ravindra and Theodore V. Galambos, "Load and Resistance Factor Design for Steel," Journal of Structural Division, ASCE, 104, ST9 (September 1978), 1337-1353.

فولاد وخواص آن

r - ا - فولادهاى سا ختمانی

 استغاده مىشد .

(1) pressure vessels

به منظر درك خرام مقاومتى نولاد در مسائل طراحى ، آئنانامهمانى مختلف مخصوها"
تنش تسليم فولاد در كشش را بعنوان مشخصه؛ اهلى فولاد

 مازندكان نولادهاى مختلف مراجعه نمود .

فولادها ى كربنى

(بجز كوكرد و فسغر)

(1) yield stress
(2) carbon steel
(3) high - strength low - alloy steel
(4) alloy steels

نولاد و خواع

 كاربرد الكترودهاىغيرمتعارف انجنام ميكيرد ععدتا " زمانى همكن است كه د رمد كربن فولاد كـتر از

فولادها ى مقاوم :

 فولاد بعمل نمىَّيد ***

فولادها ى آليا زُى

A570, A529, A501, A500, A53, A36 نولادهاي ASTM تم طبق خوانط
A706, A611 در رمره نولادهاى كرهنى ڤرار دارند

A709, A618, A607 در رده‘ نولادهاى بظاوم قرار دارند
(1) quenched and tempered steels

 خواهد ثد جلوكيرى مىشود .

 باربخت معكن مى بود .

Y- Y -

(1) toughness
(2) ductility
(3) precipitation
(4) transformation zone
(5).martensite

A 709 , A514 14 : بر طـير فولاد هوابط ASTM

نولاد و خـوام آـ / /

 - مربوط بـه كرنش

 به ترتيب الئ

است . ا ين نوع پيعها به قطرهاي بـيشتر از بَ اينج نيز سا خته مى شود .

-r r r

 E110 xx , E100 xx, E90 xx, E80 xx, E70 xx , E 60 xx

(1) shielded metal arc welding
 شدهاند بيان كننده كروه
 F11X - EXXX, F10X-EXXX, F9X-EXXX, F8X-EXXX, F7X-EXXX, F6X-EXXX

(1) submerged arc welding (2) Charpy
(3) gas metal arc welding (4) flux cored arc welding

نولاد و خـواح Tَن / سر

(Y - Y
در شكل (r - r

 داده شد ها بست .
 معطع اوليه فولاد تقسيم كرده و مقدار تنش را معين مىكنـد و كرنش نيز از نـقسـيم ازدياد طول

(1) engineering stress - strain
(2) tensile strength
(3) true strain - true strain curve

فولات و خوامس Tم/

فولادها يى كه تنش تسليم Tنها از

 برابر با (r-r

 هد ارتجاعى با شد مورد نياز خواهد بـي بود .

(1) proportional limit
(2) young's modulus
(3) modulus of elasticity
(4) elastic range
(b) service load
(6) plastic range
محاز نمى با شد .

 به طور متوسط متدار و E

زير معين كردهاند :

A36	$\boldsymbol{\varepsilon}_{\text {st }}=\% /{ }_{\text {f }}$	$\varepsilon_{\text {st }}=9 \% 000$
A441	$\varepsilon_{s t}=\sigma_{r l}$	$\varepsilon_{s t}=41000$

 فولاد در ناحيهء سختى كرنش استفاده هم شود .
 مىتوان متدار تغيير شكل غير قابل بركشت فولاد دانست . انداز هكيرى نرمى فولاد

- - ه - جقرعكى (r) و فنريت (Y)

(1) strain hardening
(2) ductility
(3) toughness
(4) resilience

نولات و خواس Tن/

$$
\text { (نظير منحنى r - } 1 \text {) بدست }{ }^{\text {بر د . }}
$$

 انرزى ارتجاعى تابل جدب توسطواحد حجم مصر مصالح را مى رساند كه مقدار آن براى فولاد

 مراجعه كرد . جدول (T-T) - مقدار جقرمكى و فنريت براى چند نوع فولاد- .

1-1/20	منرس		بتركى	
	$\left(\right.$ (n-1b/in. ${ }^{3}$)	($\mathrm{kN} . \mathrm{m} / \mathrm{m}^{3}$)	(in-1b/in. ${ }^{3}$)	($\mathrm{ki} / \mathrm{m} / \mathrm{m}^{3}$)
فولاد كربى				
(A36 ط/ F $\mathrm{F}_{\mathrm{y}}=36 \mathrm{ksi}$)	22	152	12,000	82,700
نولاد				
(A441, ط- $\mathrm{F}_{\mathrm{y}}=50 \mathrm{ksi}$)	43	296	15,000	103,000
ملاد تبربد				
($\mathrm{F}_{\mathrm{y}}=70 \mathrm{t} 80 \mathrm{ksi}$)	110	758	16,000	124,000
(A 514 , طُ: $\mathrm{F}_{\mathrm{y}}=100 \mathrm{ksi}$)	170	1170	19,000	131,000

كميت هابى مربوط به سه نوع فولادـLA514 , A441, A36 تقريب اندكى با سطع زيرمنحنى ماى شكل (r - $)$
(1) modulus of resilience (2) modulus of toughness

از آ آجا ئى كه در سازههاى نولادى وضعيت كشش ساده مخصوما" در ناحيه؛ اتصالات

「' ${ }^{\top}$ جهت شكستن نمونه با تعيين اختلاف ارنغاع Tونك در زمان شروع به حركت و در ر زمان بركشت

 (r - r
 خوام كيغى فلزات مىاشاشند ، بدين جهت نولا

 را كه در Tا در درجه انرزیى برابر با تعداد خواهند كنت .

 انقباض و جوش جديرى آنرا تحت تأثير ترار مىده هند .
(1) notch toughness
(2) Charpy
(3) transtion temperature (4) ductile behavior
(b) brittle behavior
(6) ductility transition temperature

نولا د و خوام

 شاريى تتهيه شد ها ند
-

 براى كليه حالات تنش بـجز هالنت تتش تك محورى . تعريفى معين جهت جارى شدن (تسليم) لازم است . ابن تعاريف كه عموما " براى حالت مشخصى از تنش ها با بصورت متعدد
 اثر متغابل(تُنشهاى وارده تشكيل مى شوند .
انررثى اعوجاج (\$) (هوبر ، فن مايزز ، هنىى (ه))
 تك مهورى را برحسب سه تنش اصلى قطعه معين مى كند . ضابطه" تسليم (جارى شدن) را مىتوان با رابطه؛ :

$$
\begin{equation*}
y^{2}=\frac{1}{2}\left[\left(\sigma_{1}-\sigma_{2}\right)^{2}+\left(\sigma_{2}-\sigma_{3}\right)^{2}+\left(\sigma_{3}-\sigma_{1}\right)^{2}\right] \tag{1-r}
\end{equation*}
$$

| كه در Tن فصل مشترك سه صفحه عمود برهم كه صفحات برش صغر مى باشند قرار دارند) قطعه واتع ثـد
 كششى است فرض شود .

 كليه تنش ها در سكاصغحه عمل ميكنند) به صورت معادلهء (($)$

$$
{ }^{\circ} y^{2}=\sigma_{1}^{2}+a_{2}^{2}-\sigma_{1} \sigma_{2} \quad(r-r)
$$

 عمود بر صفههء خمشى نيز صفر فرض مى شود . به عبارت ديكر جون قطعات سازههاى فولادىاز

* به كتاب زسر رجوع شود
(Fred B. Seely, James 0.Smith, Advanced Mechanics of Materals 2rd ed. New York: John Wiley \& Sons Inc 1952, pp. 76-91).
(1) yield conditions
(2) theories of fallure
(3) interaction
(4) energy-of-distortion
(5) Huber - vonMises - Hencky)

فولاد و خوام 7ن/ ا

صفحات نازك تشكيل شدهاند لذا در اين نوع تطعات معادله (($)$ بدين جهت در صفحات بعد اين كتاب درصورت لزوم نتطاز رابطه؛ (r - $)$ ا استفادهخوا هد شـ

وضعيت تنش ثابت هـه جانبه (هيدرواستاتيكى)

ما يزر - هنكى

تنش تسليم برشى
مقدار تنش تسليم براى وضعيت خالص برشى را مىتوان از منحنى تنش برشى ــرينش

 صغعهاي كه با صفحات اصلى تنش زاويه؛

$$
\begin{aligned}
& { }_{y}^{c}{ }^{2}=0_{1}{ }^{2}+0_{1}{ }^{2}-\sigma_{1}\left(-0_{1}\right)=30_{1}^{2} \\
& \text { خواهيم داشت : } \\
& 1(r-r) \\
& { }^{c}{ }_{1}=\tau=\frac{{ }^{e} y}{3}=(\text { تنش تسليم برشى) } \\
& (r-r) \\
& \text { ديده مى شود كه تنش تسليم برشى برابر با } \\
& \text { نسبت بواسن (1) }
\end{aligned}
$$

 شد . مقدار متعارن

 معدار براى حالتى است كه فولاد بدون افزايش نيرو نغيير شكل بيدا مىكند) .
ضريب ارتجاعى برشى .

ارتجاعى برشى از رابطه، ((
$G=\frac{E}{2(1+\mu)}$

$$
(\Delta-r)
$$

> Y - Y - عملكرد نولاد در درجه حرارنهاى بالا

(1) Poisson's Ratio

فولاد و خـوام 7ن/

فولاد تحت اثر ده ماى بالا نخوراهد بود ولى اكر رفتار نولاد طى عمليا

 دارد با اين وجود رابطه كلى تغييرات خواص نورا
 100 ا و 100
 r

 ضر يب ارتجاعى فولاد تا حدود دماى

سابر تأثيرات دماى بالا بر روى فولاد به شرح زير است :

ا فزا يش مى يابد .

سانتيكراد ا فزا يش مى يابد .
 اغلب عملياتى، كه بر روى نولادها انجام مىيكيرد بايد در كمتر از
(1) strain aging
(2) creep
C® تغييرات دما

نولاد و خوام Tنا/ $\Delta \Delta$

باشد و عموطا " فولادهاى حرارتى (1) را نبايستى بيشتر از مب 4 درجه سانتيكراد حرارتداد .
$\varepsilon=F_{y} \quad$ = $=A-r$

شكل (F-r
(1) heat treated steels
(2) cold work
(3) strain hardening

45/سازهسأى فولاد ع

منحنى تنش - كرنش نمونه؛ جديد از نتطه B شروع شده و بله؛ خميرى كوتاهترى نيز خواهد
داشت .

كهينكي كرنش
 كرنته باشد
 T مبدأ باركذارى مجدد نمونه نقطه: D مى شد . ديده مى شود كه طول خط CD بلندترو بهعبارت

 نيز خأرج از موضوع اين كتاب مىبا شد .

فولاد و خوام 7ن

 ($¢$ -

 Y Y - Y

 نيهرخ كافى خواهد بود با با

 خوام اوليه فولاد بـ آن برخواهد كثت .
(A) (A) = $=1$
 مىتواند تحت شرا بط مختلف ترد و شكنده شود ، طراح بايستى علل اين تغيير حالت رابداند
(1) Cold-formed Steel Design Specification
(2) strain aging
(3) annealing
(4) transformation range
(5) brittle fracture

تا بتواند مانع از جنان حالاتى شود .

 شكل هندسى درز نولاد و نحوهء اجراى اتصالات خواهد داشت .
تأ ثير دما

 قستتهاى تبل كغته شده است .

تأثير تنش جند محورى

 شدن كرده (شكل Y - -

 شدت تنش بد ست Tهده براساس سطع متطع باريك شده در نمونه آزمايش تك محورى نيزيا شد.
(1) Rolfe

نولاد و خوام 7ن/

در اين حالات تنش موجود در مقطع قطعه مىتراند حتى بيشتراز استحكا مكثشى فولاد (ماصل الـا

$$
\begin{aligned}
& \text { در حوالى شكست آ حوالى شكست }
\end{aligned}
$$

شكل (
كرجه در مبحث جقر مكى (بند

(1) yield criterion

نشان داده شده أست ـ د د اين آزمايش سطح مقطع فولاد درقست شكافداربرابربا سطع متطع

نمونه بدون شكاف در شكل ((

جوشكارى به هداتل رسانيد .

 مى باشد

تنش سه محورى حا صل از جوشكارى
درحالت كلى ازنظر داخلى ، جوش ا هكانا يجاد يك وضعينت تنش دومحورى ويا سهمحورى
را ممكن مىنما يد . يك شنين وضعيت تنشثى ، رفتارى شكنـنده براى قطعه ابجاد خخوا هد نمود .

 حال بهشكل (Y - ا

 كششى حاصل از تسعه و بال تير قرار كرفته و در جـهت سوم نيز بدليلل اتصالبیيوسته جوش، در
 طراحى جوشهما مىبا يُ احتعال اثر تنش سه همورى جوش را در شكنـندكى قطعه د رنظر كرفت .

تأ ثير ضخامت
ههانكونه كه در بند ((

(1) Poisson's ratio
(2) lamellar tearing

شكل (Y - 1.0) ـ مقايسهء وضعيت تنش در دو ا تمال بيجى و جوشى

لازم خواهد بود تا حد تسليمى برابر با حد تسليم ورقهاى نازك ايجاد كند لذا فولاد اين نوع وتها شكنـندهتر خواهد شد .

تآثير بارهاى جنبشى (ديناميك)

 فولاد به حدود
 وجود دارد مشاهده شده است كه بنظر مىرسد اصولا" بخاطر وجود عوارض ديكرى نـير نظير

(1) strain rate

غولاد و خـوام Tن

كه به اعمال بارهاى د يناميك مربوط مى شود اين نيست كه طى اين نوع باركذا ارى افزايشكرينش

 حدول (Y بودن تردشینىرا هيشبيني كردهو درهماسباتو طراحى خود دقت لازم و ضرورى ورا بكاركير يم . جدول (Y- خواهد بود .

ا ـ حداڤل دما حين استفاده از سازه جه خواهد بود ؟ هرقدر دها پائـنتر رود خطر ترد شكنى افزايشش خواهد بامت . Y وقوع پیدا ميكند .
r r- صخامت مصالح پقدر الست؟ هرقدر فولاد صخيم تر باشد خطر تزد شيكى افزا'بشش
بيشتر حواهد يافت
Y ـ ـ آ با پيوستكى سه بعدى وجود دارد ؟ بيو ستكى سه بعدى ازتغيير شكل خميرىفولاد جلوكيرى كرده و خطر ترد شكنى را افزا يش مىد هد
 ترد شكنى مولاد را افزا ايش ميد هـد

شوند خطر ترد شكنى بيششتر خواهد بود .
 ميكند كه شدت تنش ا فزايـش يابد .
 شكافى جدى عمل كند
(1) fatigue
r

 خطر برش لا يماى تدورين نـود .

شكل (1 - (1) - نمايـث جهات مختلف يك نيمرخ

بدليل فرا يند نولاد سازى در كارخانههاى فولاد سازى ، نيمرخهاى فولا

(1) lamellar tearing
(2) Thornton

 -اس

(()

نيهر خهای I شكل فولادى قاعدتا" تحت تأثير تنش هاىا عمالىدر راستاى طولىوعرضى
(1) ductility

خود به اندازه؛ كافى شكليذير مىباشند و بدين حهت هركا باه به صورت موضعى تحت كرينش

 تسليم فراتر رفته و سبب حدا شدن دو قست از فولاد شده و به عبارت ديكر پاركى لا يهايى را سبب میشود . در شكل (T (

 باثد كه انقباض جوش درجهت نورد قطعه عمل كند .
(r) (r استحكام خستى 11 - r

تكرار عمل باركدارى و حذف بار اكر بدفعات قابل توجهى انحا المام كيرد حتى اكر تنشى

 ارتباطنزديك دارند
(1) - yield strain
(2) thru-thickness
(3) fatigue strength

نولاد و خواع

 داد (مرجع (8))

به شكل (r - r
توجه كنيد . متغير تربين نوع تنش ا
 يـيدا كرده و نهايتا" از حداكثر فشار به صفر بازميكردد . در اين حالم الت نسبت حداكثر كشش

(1) Cycle stress

(شكل (

$$
\text { R=-1 الى } R=+1 \text { از }
$$

(1) fatigue limit
(2) endurance limit

نولاد و خوام 7 59

 ساز هما اثر خستكى بررسى نخواهد شد ولى در پل بزرى راهها انتظار مىرود كه تعداد دورهـا

شكل (Y-Y (Y) - منحنى تغييرات متداول

تناوب باركذارى در عمر سازه بـيش از يكمد هزار باشد و بدين جهت در اين سازهما خستكى مسألهى مهیى را تشكيل خواهد داد . تست شيب دار منحنى در شكل ((مرجع (10))

$$
F_{n}=s\left(\frac{N}{n}\right)^{k}
$$

$$
(\varepsilon-r)
$$

در, اين رابطه علائم بكار رفته بعانى زير را دارند :
F

(1) Goodman diagranı
 استغاد هاز مرجع (10) نشاي دادهايم .

شكل (

 تسليم مولادى برابر با Fy (استاتيك) (مىد هد حاكم خواهدبود . زمانى

(1) Stress cateçory B

نولا د و خـوام Ti / V/

اكر نسبت تنش كمتر ار

 حالت فشارى و كششى فقطi8ksi خواهد شد . بـطريقى منابه با الستفاده از دياكرام كودمن

مىتو'ن براى هر نسبت تـش موردنظر مقدار تنـُن محاز را معين نمود .

 از Y0000 نيز كردد (دو بار باركذارى در روز و در مدت YQ سال) انتظار داشت .

 ضوابط AISC مربوط به سال اMYA ميلاد ي براى فولاد و حوثي لتب بهلت بانفوذ كامل معين مىشود .

مكانيزم خستكى هنوز كاهلا" مشخص نيستولمى معلومابـت كهدتيتا " به عواملىكه بنـحوى

با نرمى مولاد ارتباط دارند مربوط مى شود . مخصوصا" يوشكارى مى دتواند تأثير ناخوش" بيندى
 مورد خستكى كسب كند مىتواند به مراجع (10) و (2) مراجیه نمايد .
(r) Ir - r

 مصارف متعارف بسيار كران خواهن باه بود . همانكونه كه در شكل (

 . برابر ديد ترار مىدهند ، فولادهاى خود حفاظ مى موينـا

(2) weathering steels

* Architeclural Record August 1962.

Administrative Center for Deere \& Company

نولاد و خوام آن/

 استفاده هى شود * .

 سازه بدليل عدم بياز اين نوع سازهها بها رنك آميزى در طول عمر ساختمان جبران خواهد شد.

.

داخل ساختمان توسطد ديوار يـتـت نيمرخ حفاظلت شود .

- Y

حريق ساختمان د ماى نيمرح نولادى را پا ائين كـهدارد . (12)

1. Standard Specification for General Requirements for Delivery of Rolled Steel Plates, Shapes, Sheet Piling, and Bars for Structural Use (ANSV/ASTM A6-78). Philadelphia, Pa.: American Socicty for Tcsting and Materials, 1978. Also adopted by the American National Stardards Institute.
2. Welding Handhook, 7th ed., Vol. 1, Fundamentals of Welding, Miami. Fa.: American Welding Society, 1977.
3. Structural Welding Code (AWS D1.1-79). Miami, Fla : American Welding Society, Inc., 1979.
4. R. L. Brockenbrough and B. G. Johnsion. Steel Design Manual, Pittsburgh, Pa.: U.S. Steel Corporation, 1968, Chap. I.
5. Specification for the Design of Cold-Formed Steel Structural Members. New York: American Iron and Steel Institutc, 1968, with Addendum No. 1 (November 19, 1970) and Addendum No. 2 (February 4, 1977).
6. S. T. Rolfe, "Fracture and Fatigue Control in Steel Structures," Engineering Journal, AISC, 14, 1(First Quarter 1977), 2-15.
7. A Primer on Brittle Fracture, Booklet 1960-A, Steel Design File, Bethlehem Steel Corp., Bethlehem, Pa.
8. "Commentary on Highly Restrained Welded Connections," Engineering Joumal, AISC, 10, 3(Third Quarter 1973), 61-73.
9. Charies H. Thornton, "Quality Control in Design and Supervision Can Eliminate Lamellar Tearing," Engineering Joumal, AISC, 10, 4(Fourth Quarter 1973), 112-116.
10. W. H. Munse and LaMotte Grover, Fatigue of Welded Structures, New York: Welding Research Council, 1964.
11. C. P. Larrabee, "Corrosion Resistance of High-Strength Low-Alloy Steels as Influenced by Composition and Environment," Corrosion Magazine, 9, 8(August 1953), 259-271.
12. "Weathering Steels Become Loadbearing," Progressive Architecture (September 1967).

قطعات كششى

- $=1-r$

 متغاوت خواهد بود .

 جراثتال

(1) tension members
(2) principal member
(3) secondary member
(4) transmission tower
(5) bracing systems

 نير سرعت خواهد داد . با وجود اين هر بك از حالات رير مىتواند منحـر به انتخاب هروميلى مركب كردد :
الـ - نيروى كششى بـش از ظرفيت باربرى يك نيـرخ باشد .
 آט) نيهرخ ساده طلبيت كافى به قطعه ندهد .

 هـ دـ زيبايى قطعه موردنظر با شد. .
در شكل (r - 1) نيهرخهاى ساده و مركب متداول در قطعات كشثى را نشان دادهاهيم. هر كاه در اتصال تطعات كششى به سازه؛ اصلى از جوش.استفاده كردد امكان اتصان اتصال مستقيم

رورنيلهای مركب قوطى شكل
شكل (r - () - نيمرخهاى متداول قطعات كشش
(1) slenderness ratio
(3) radius of gyration
(5) starred angle
(6) latticed channels

V7/ قطعات كششی

 قيددار از يك يا از دو ورق اتمال و در مورد سابر اشتكال •ركـ از دو ورق اتصال استغاده مى مكند

 كه در آنها سوراخهابیى تعبيه شده است است (مشكا

(1) gusset plate.
(2) filler

تركيب دو نيهرخ يا دو ورق بكك لقتمهاى اتصال با يكديكر

تيد هاى اتصال كه در صغحه توخالى هروفيل تركيبى ترار مى كيرد

تمطعان كئشم / /

از قطعات سوراحدار (كه بـمنظور دسترسى بدرون قطعه ايجاد شده است) نيّز در قطعات كششى
مىتوان استغاد ه كرد .
شكل (Y-r-) - قطعات كششى مركب

هركاه تطعاتكششى دارایصلبيت خـشى اندكى انشـد زير اثر وزنخود تغيبر شكل داده و باصطلاح شكم مىدهند ، اين جنين تغيير شكلى باعث مى شود كه اين قطعات تحـت اثر بار خارجى تغيير شكل قابل توجهى داده و و بعبارت ديكر تا زمانيكه تاني قطعات موجود است طول ظاهرى قطعه طول واتعى Tن نبوده و همبي مسألـه سبـ تغيبير قدرت
 اين تغييرشكل اوليه را أز بين ببرند . بكى از روشهأى حلوكبرى از ايحاد تغيير شكل اوليه

 در تطعاتيكه وسيلهاى نظير موق در آنها وجود ندلرد مىتوان قطعات موردنظر را تـالي" حرارت داد تا طول آنها افزايش هيدا كند وسيس بهنصب آنها افدام نمود ويا اينكهبا استناده

ينحه

بست قورباغه شكل (r-r
(1) turnbuckle
(2) clevise
(i) أر تنش هاى پس ماند $=r-r$

در جهت ماف نمودن آنها بوجود مىا آيند .

شكل (
(1) residual stresses

تشعات كششی /HM
 دارد : طى T زمايشان متعددى كه بر روى يروفيل W آهر يكا بيى * از نوع فولاد A7 انحا مكريته

 بار YAYo

 به ازد ياد متدار خود نشان ميد هند ، در آزمايشات فوقالـذكر از بيست نمونه؛ آزمايشى فقط در بك يروفيل ضخات بـيش از
خون در عمليات جوشكارى تصركز حرارتى بالايــى وجود دارد لــذا معمولا" شدت

 تنش يسهاند در يروفيل جـيزى شبيه شكل (r -
 امزايش خواهد بافت

(الـن) تسعه نـورد شده
(بب) تتسنه برش خورده هـ

تسهههـاى بريده شده از ورق به كمك مشعل برشُ بـه علـت اينكـه بَس ار بــرش

 كند حال اكر از يك چنـين ورقى هرونيلي I شكل با استغاده از جوشكارى ايهاد كنيم تغييرات

ساخته شده باشد بالاخواهدبود . (شكل Y - Y) ، درصورتيكهد رمورد يك.
 بود.

(العـ) بروفيل ساخته شدهاز
(ب) بروفيل ساخته شده از
تسمه نورد شده
تسمه بر يده شده

شكل (

تنشهایى یسى ماند حرارتى تقريبا" در هعهء طول يك تطعه وجود دارد منتهى در دو
 متادير فوتاللذكر میرسد .

تشطـات كششى / 10

شكل (Y - Y) - ـ دياكرام تنش پس ماند در قوطى ساخته شُده

 . خواهد بود .
 مطابق شكل (r ا منحنى شكل (

(1) straightening
(2) bending

دياكرامى نتيجه جمع جبرى تنش حاصل از نيرو و تنش یس ماند موجود قبلى مىاشاشد.براثر تنش حاصل از نيرو،كرنشى برابر با

شكل (A-r
(11 رافزايش
 مانند شكل (ا خواهد آهد و مقدار بار كثشى هبرابر با: $P=(1 \Delta+r / \Delta)\left(r Y_{00}\right)+\left(\frac{r Y_{00}+1900}{Y}\right.$ ban $) \times r \times Y / \Delta \times r / \Delta=190000 \mathrm{daN}$ خواهد بود كه تنش متوسطى برابر باه

$$
P=\left(r Y_{00}\right) \times r_{0} \times r / \Delta=1100000 \mathrm{daN}
$$

 شدن معطع خواهد شد و اين جارى شدن تا زمانيكه بار ديكر فولاد تسعه در مقابل ازلا اديادنيرو

از خود مقاومت نشان دهد ادامه خواهد يافت.

شكل (१-r)

OAD اكر در ايي تسهه تنش يسس ماند وجود نداشت تغييرات تنش با كرنش بر طبت خـي

 ستونها بسيار موءثر است .
r
 آين تطعات مسئله پايدارى در مرتبه دوم اهميت قرار داشته و بدين ترتيـ فقط مى بايستى

قطعهاى با سطح مقطع كافى كه با صريب اطمينانى مناسـ قادر سه تحمل بار وارده باشد طرح

 بتوسطجو شKارى كا لمى به هفحات انتال دو انتهاى خود متمل ثده باثد عموما" مورد فبول
 درنظر كرفتن دو نوع احتمال خرابى زير رير :

- r -

شكل (r -
(1) ultimate strength
(2) fracture
(3) yield point

$$
L \frac{F_{y}}{E}=r \times 100 \times \frac{r r r r}{r / 1 \times 10^{9}}=0 / r r \mathrm{~cm}
$$

$$
\begin{aligned}
& \text { موجود برابر با }
\end{aligned}
$$

(1) strain hardening
(2) tension strenght
(3) let section
(4) gross section

منتهى مى شود (بینى داراى مقطع سورا'خ دارى است) مىا يستى رابطه؛ زبر بررسى شود :

$$
\emptyset_{u} A_{n} \geqslant F_{y} A_{g}
$$

 مهاز بركزيد كه در اين صورت خواهيم داشت :

$$
\begin{equation*}
\frac{\emptyset_{u} A_{n}}{1.67}>0.60 F_{y} A_{g} \tag{1-r}
\end{equation*}
$$

 با ضوابط طرح و مهاسبه سازههاى مولادى (AISC) در طرح و محاسبه تطسات كششى

 همواره بايسستى روابطزير مادق باشد:

$$
\begin{aligned}
& f_{a}=\frac{T}{A_{g}}<0.60 \mathrm{~F}_{y} \\
& \mathrm{f}_{\mathrm{a}}=\frac{T}{A_{e}} \leqslant 0.5 \mathrm{~F}_{u}
\end{aligned}
$$

(r الف)

$$
(ب r-r)
$$

(1) capacity reduction factor
(2) effective net area

تطـات كششـى / 91

جدول 1 r 1 = تنششها ى مجاز در قطهات كششى
AISC الe ــ ضوابط طرح و محاسبه ساختمانهاى نولادى
ا ــدر مورد كلـيه تطهات كششى بحز در محل سوراخهاى مغصل

در دط $\mathrm{F}_{\mathrm{t}}=0.50 \mathrm{~F}_{\mathrm{u}}$
r - ار محل سوراخهای مغصل
در در سطع خالص فطعه $\mathrm{F}_{\mathrm{t}}=0.45 \mathrm{~F}_{\mathrm{y}}$

- r
($\mathrm{F}_{\mathrm{t}}=0.33 \mathrm{~F}_{u}$

غرض از قطر بزرك ميل كرد تطر بيرونى آن مىباشدو بععارتديكر درمحا سبه ميلكردهاى لرزوه شده سطع معطع ناخالص آنها منظور مىكردد .

ب - اضوابطط طرح و مها سبه بلهاى فلزى حاده AASHTO در د $\mathrm{F}_{\mathrm{t}}=0.55 \mathrm{~F}_{\mathrm{y}}$
در سطع خالـص قطعه $\mathrm{F}_{\mathrm{t}}=0.46 \mathrm{~F}_{\mathrm{a}}$
(مكر ضوابطط مربوط به خسستى مقدار كمترى را تحويز كند)

$$
F_{t}=0.55 F_{y}
$$

(مكر ضوابط مربوطبه خستكى مقدار كمترى را تحويز كند)

خ
 سوراخها يى جهـت اتصال تطعه تعبيه شود و لذا سطح مقطع قطعه در محل اتهال تتليل بافتهو بدنبال Tا امكان داردبار مجاز كششى تطعه نـيز كه بستكى به اندازه و مهل سوراخها دارد نـيز تغليل بابد . روش هأى متعددى جهت تعبيه سوراخ در تطلعات فلزى بكار برده مىشودكه متداولتربن

 بودن سوراخهاي تطعات اتمال بنحو احسن تأمين ميكرد دد .

 فبلى است .

الين قطعهי كششى .
(1) punching machine
(2) punched holes
(3) alignment
(4) drilling

($)=A_{g}=10 \times 0 / 5=5 \mathrm{~cm}^{2}$
اكر با روش سورأخ زنى Tنرا تعببيه كرده باشند (كه براى ضخامت \& ميليمتر جنين روشى
بكار مبرود) خواهيم داشت :
(ضخا مت ورق) (تطر محاسباتى سوراخ))

$$
=s-(r+0 / r)(0 / \varepsilon)=r / \varepsilon r \mathrm{~cm}^{2}
$$

و اكر تطر نهايى سوراخ با برقو زدن و ا مته زنى حاصل شده با شد خواهيم داشت :

$$
A_{n}=s-(r+0 / \mid 0)(0 / \varepsilon)=Y / Y \mid \mathrm{cm}^{2}
$$

انجام مىكيرد .

(الغ)

(ب)

ثكل (IY-r)

در شكل (
(
 تصور شود كه مسير A-B مسير بـحرانی است زيرا كه طول A-B از طول A-C كمتر است ولم الم از
 لذا بدين طريق ديده مى شود كه امكان دارد مسير A-C مسير بـحرانى با شد ، بدينج

 عذيرفته شده است بمنظور تصحيع مسيرهاى ما يل أستفاده مى شود ، توسط اين رابطه؛ AISC تجربى اختلاف مسير بين دو مسير A-B A-C با عبارت الم
 با استفاده از رابطه فوق كه به فا عده بصورت زير معين مىكردد :

و بدين ترتيب سطح خالص حداقل از حاهلضرب عرض خالص حدا جاقل (كه يكى ازدو مقدارفوق خواهد بود) در ضخا مت تسمه بد ست خواهد T Tهد .
مثال
 برأبر با بY ميليمتر بوده و در تعبيه Tنها از روش سوراخ زنى استفاده میكردد . حل :
 بصورت زير هعين مىكردد :

$$
\left[(r \circ-r(r / r+0 / 10)] \times \circ / 4=1 \psi / 9 \psi \mathrm{~cm}^{2} \quad:(A-D)\right. \text { مسبر }
$$

(1) Cochrane

تقعات كششى /9

 براى تعيين متدار و در است فاصله؛ بين مراكز دو سوراخ در در روى مار بانتار نبشى اندازه كراز

$$
\begin{equation*}
g=g_{a}-\frac{t}{2}+g_{b}-\frac{t}{2}=g_{a}+g_{b}-t \tag{r-r}
\end{equation*}
$$

شكل (

جدول

h ا'b	d	a	g	F	${ }^{1}$	${ }^{2}$	ht 6	d	\bullet	g	er	${ }^{1} 1$	${ }_{2}$
20	6	12	-	1	12	25	90	20	50	-	1	0	70
25	c	14	-	1	14	28	100	22	55	-	1	0	75
30	8	16	-	1	15	30	110	20	45	25	II	25	80
40	10	22	-	1	16	32	115	20	45	30	II	25	85
45	12	25	-	1	16	35	120	20	50	30	II	25	85
50	12	28	-	!	20	40	130	22	50	40	11	25	95
55	14	30	-	1	22	44	140	22	55	45	II	15	100
60	16	32	-	I	25	52	150	24	55	55	II	0	110
65	16	35	-	1	25	52	160	24	60	55	11	0	120
70	10	38	-	1	25	58	170	24	60	65	II	0	120
75	18	40	-	1	20	62	200	24	70	70	11	0	125
80	20	45	-	1	15	66	230	24	80	80	II	0	150
85	20	50	-	1	0	68							

تطبا ت كششى /9V
مثال

شكل ($10-r)$

 خالم تسمه معادل كه برابر با سطع خالم نبشى خواهد بود بـصورت زيرهعينمى بود :

$$
A_{n}=A_{g}-D t+\frac{S^{2}}{4 g} t
$$

ع در رابـطهء فوق D قطر محاسبا تى سوراخ مى باشد .

$$
r v / \Delta-r(r / 4+0 / 10) \times 1 / r=r 1 / r \wedge \mathrm{~cm}^{2}
$$

A-B-C مسير

$$
\begin{aligned}
& r Y / \Delta-r\left(r / Y^{\prime}+0 / 1 \Delta\right) \times 1 / r+ \\
& 1+\left(\frac{Y / \Delta^{r}}{r \times \Delta / \Delta}+\frac{Y / \Delta^{r}}{Y \times q / r}\right) \times 1 / r=r r / Y_{0} \quad \mathrm{~cm}^{2}
\end{aligned}
$$

د د

شكل (r -

 "در صورتى كه تنش مما س بر جدار سوراخ درروى محور X-X برابربا f

تطبات كششى/99

 خوبى پيداست اينست كه مقدار تنش در جدار سوران روى هحور لامدار بسيار بالايـى را
 . مى

$$
f=f_{1}\left[1+\frac{1}{2}\left(\frac{r}{y}\right)^{2}+\left(\frac{r}{y}\right)^{4}\right]
$$

fl
شع ع سوراخ

 فولاد تجاوز نكند در صورتيكه در اثر ازدياد بار مقدار تنشاز حد خطى تـنـاوز كند ، توزيع

 ازد ياه تنش افزا ايش خواهد بافت ولى اكر دياكرام تنش ـكرنش فولاد بـدون بلهء خعيرىباشد
 تنش مطابق با دياكرام تنش - كرنش فولاد و لذا كند خوا هد بود .
= بيشاز مقدأرى خوا هد بود كه با احتساب سطع متطع خالص تسعه براى تنش معين ميكردد .

 علت خاصيت تورت فولاد نر مه ممكن مى با شد ، دوراز واتعيت نيزنيست ، زيرا كه هنـينفولادى در اغلب اوقات در تنش هاى بالا به يكنواخت نمودن شدت تنش مى هردازد بنسوريكه قدرت باربرى سطع متطع خالص در قطعات سوراخ دار و بدون سوراخ با يكديكر برابرى مىنـايايد .
 آزما يشات متعدد نشان دأده•است كه در تطعات كثشثى تنش متوسط نها بیى متطع خالص كمتر از تنش مربوطبه مقاومت نهايى نلز تطعهء كششى مى با شد . يك خنـين مقاومت تطعهاى را

با لفظكارابى مقطع خالص (1) كه خارج قسمت تنش متوسط در كسيختكى به مناوصت نمونهء

هتطع تطهه نسبت به ورقهاى ا تصال دارיـ .

 تابعى از تتليل متطع نمونه؛ استاندارد كششى مى باشد و برطبق رابطه ((نشان مى دهند

$$
K_{1}=0.82+0.0032 R<1
$$

: R
هركاه نولادى طى آزمايش كشش ساده

(1) net section efficiency

قطمات كششى /10
 جنان كرنش غيريكنوا ختى خواهد شـا كه مىتواند باعث كسيختكى قطعه قبل از توزيع تنش كردد . بدين علت نسبت بالاى

$$
\begin{equation*}
K_{3}=1.6-0.7 \frac{A_{n}}{A_{g}} \tag{s-r}
\end{equation*}
$$

:سطه $: A_{n}$
: Ag

 زبر برقرار خواهد بود :

$$
\frac{A_{n}}{A_{g}}=\frac{(g-d) t}{g t}=1-\frac{d}{g}
$$

شكل (r-r 19 - ـ تأثير -

خط حبين مربوط به

 . $0.85 \mathrm{~A}_{\mathrm{g}}$ محدود شده اس استا

 بیِّه و يرجها با نولاد قطعه بصورت زير بيان خواهد شد :

$$
\frac{A_{n}}{A_{b}}=\frac{(g-d) t}{d t}=\frac{g}{d}-1
$$

شدها است بررسى كرديدها ست .

اينهِرج شده (شكل ro ro) تشكيل كرديده است .

(1) bearing pressure

تشمات كششم / 101

شكل (T0-T) - مشخمات اتصال مورد T

كسيختكى در متطع خالص باللهاى نبشى هاى متصل شده :به ورقا تصال ود راولين رد ينـيشهـهاى

 نمونه؛
. بـرابر با Kips /artrdaN

 (rir Kips) IrAAoodaN L

 متوسطدر كل مقطع خالص بدست آوردهايم ما ما

 اتمال بد قطعه قرار دارد ، میكردد د .
هر جدول (r r است ، تنش متوسط منطع خالص كه برابر با

$$
0.6 \text { Fy } A_{n}=r_{0} \times 1 \Delta / \varepsilon=r 1 r \text { kips غىباشد. * }
$$

(1) high - strength bearing̣ bolts

جدول r r r = نتايج آزمايشات انجام شده بر روى نمونههاى اتصال نوع خريايى

 إِ

 مى شود كه عملكرد غيرخطى نمونههاى ها و ع در بارها بيى كـتر از بار مجاز AISC اتغات افتاده التا

 بار و تحت اثر بار نشان دادها

 تغييرشكل برشى مى با شد .

شكل

 انصال ، اندازه‘ سادهانى جهت توزيع سطح مقطع قطعه مى باشد . بعنوان مثال سطع دركير در
(1) tributary area

10V/ فتعات كشتسى

ا:تصال يك نبشى (شكل r - r r الف) كل سطع نبشى بوده و اندازهء

 از صفحات اتصال نيمى از سطح متطع قطعه خواهد بود و اندازп از مركز ثقل مىدهد . باتوجه به حالات مذكور در بجدول (r r r
 مى مكنـم

$$
\begin{equation*}
K_{4}=1-\frac{\bar{x}}{L} \tag{Y-r}
\end{equation*}
$$

شكل (r-r

با درنظر كرفتنTنيجه كذ شتـ ديده مى شودكه متاومت يك تطعهء كششىرا كهتوسطاتصا لات
برجى باجيجى متصل شده است بىتوان با درنظر كرفتن اثر عوا مل مختلف موءثر بر متاومت

 تطعه ، مقدار بار مجاز را با ضرب سطع متطع موءثر در تنش مجاز كه از طريق تقسيم حدات تل متاو تت كثشى تطمه موءثر Ae را از رابطهء زير بدست خواهيم Tورد :

$$
\begin{aligned}
& A_{e}=K_{1} K_{2} K_{3} K_{4} A_{n} \\
& (A-r)
\end{aligned}
$$

 مى

 بين تنش نهايیى و تنش تسليم (جارى شدن) آنها وجود ندارد عملا" غيرمعكن است .

$$
\text { r - } \ddagger \text { = سطح خالص مؤثر }
$$

با توجه به Tنجهِ در بند (
 قطعات كششى را ميتوان با استغاده از جدول ((

$$
\begin{equation*}
A_{e}=A_{n}\left(1-\frac{\bar{x}}{L}\right) \tag{q-r}
\end{equation*}
$$

\qquad

جدول

سطع خالصموءثر	شرطاضا في		
$\begin{gathered} A_{e} \\ A_{n} \quad 0.85 A_{g} \end{gathered}$	ندارد ندارد	1	 متصل شده ودر باربرىقطعه شركتنــا يند ب - تطعات كوتا ككششى نظظيروصلههاى اتمـال ،ورقهاىاتصالوعناصر ا تصال تهر
$0.90 A_{n}$		r	به ستون ج- جرونيلهاى I شكل و T شكل
$0.85 A_{n}$	ندارد	r	د - بروفيل/هاى I T T ثكل كه ناتد متطمى خارج ازسطوح 1 تهال با شند .
$0.75 A_{n}$	ندارد	r	

K

 كه توسطد و بال خود بههم وصل شده و توسطبالمهاى ديكر خود به مغنهء انصال متصل شده

 .

شكل (

$$
A_{e}=0.85 A_{n}=0 / \Delta \Delta \times 1 \Delta / F Y=1 r / Y A \quad \mathrm{in}^{2}
$$

طبت رابطه؛ (

$$
\bar{X}=\frac{r \times 0 / Y \circ \psi \times r / A F+\frac{1}{r} \times A \times Y}{r \times r / A F+\frac{1}{r} \times A}=r / 0 q \text { in }
$$

شكل (Y

 AISC توسط

يكى از متداولترين و ساد هترين قطعات كشثى ميلكرد هاى فولاد يست ، از انـجا ئيكه اين چنـين قطعاتى بارهاي محورى اندكى را تحمل مى

 r r r r r F مده در قأبها و طا قها

 نوع قطعات كه داراى سختى خمشىناهيزى هستند جلوكيرى نما يند با يك جـيـن سياستى از از

 T/Q ميلبيهتر كوتاهتر كرفت و با اعمال كتش اوليه Tنها را جا انداخت در يك چنـين حالتى تنشى برابر با:
$\sigma=\varepsilon E=\frac{Y / \Delta}{10000} \times\left(\mathrm{Y} / 0 \mathrm{Y} \times 10^{\varepsilon}\right)=\Delta 1 \mathrm{Y}$ bar
در تطعه ا يجاد خواهد شهـ كه در تعيين مقطع قطعه مىبابيستى موردنظر ترار كبرد .

برش عمودى سقف ساختمان صنعتى

بلان سقف
ثكل (r -r -r) - لابـه در ساختمان صنستى
(1) sag rods

$$
\begin{aligned}
& F_{\mathrm{t}}=0 / r \mathrm{~F}_{\mathrm{U}}=0 / T r \times r Y_{0}=1 T_{0} \text { bar } \\
& \text { و قطر ميل كرد خوا هد شـ، : } \\
& A_{D} \geqslant \frac{4000}{1 Y \% 0}=r / Y A \quad \mathrm{~cm}^{2} \quad D=r r \min \quad A_{D}=r / \lambda \mathrm{cm}^{2}
\end{aligned}
$$

 Y/Q لا لاهها ، وزن شوشش ستا

$$
\begin{aligned}
& \text { شكل (ry-r) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { مى اشد كه بار }
\end{aligned}
$$

$$
\begin{aligned}
& \text { مى باشد تحمل خواهد شد ، لذا خواميم داشت : } \\
& p_{y}=p \sin 25^{\circ}=r / r / \Delta \sin \left(r \Delta^{\circ}\right)=90 / r \mathrm{daN} / \mathrm{m}^{2} \\
& \text { (بارحداكثردرميلمهارلاهه) }=T=\left(\frac{Y / \Delta}{Y} \times Y / \Delta\right) \times 90 / Y=1 \Delta r r \text { daN } \\
& F_{t}=0 / r r F_{U}=0 / r r \times r Y_{00}=1 r r_{0} \text { bar } \\
& A_{D} \geq \frac{T}{F_{t}}=\frac{1 \Delta Y r}{1 Y Y_{0}}=1 / r \Delta \mathrm{~cm}^{2} D=1 \% \mathrm{~mm} A_{D}=1 / \Delta \% \mathrm{~cm}^{2}
\end{aligned}
$$

 يا دستكا هماى نوساندار مرار مرار دارد ، مىكردد .

(1) slenderness ratio
 جد ول

ضوابطـطلهای فو'لإدى © $T_{0} 1$, AREA	ضوابطبـهـاى فو'دیى فوكراهـه AASHTO	ضوأبط ساختعانهـاى فولیدى AISC	
$\begin{gathered} \text { Yoo } \\ \text { roo } \\ - \end{gathered}$	$\begin{aligned} & \text { roo } \\ & \text { r\%o } \\ & 1 \% 0 \end{aligned}$	$\begin{gathered} \text { rYo } \\ \text { roo } \\ - \end{gathered}$	قطهات احلى قطهاتد رحهد وم بدونتغيير (تدت) تـتشد رقطعه قلهاتد رجهد وم بـأمكان نغبير (شدت) تتشدد رقطه

حهت اعمان تحا بطمه' صريـ لِاغتى قطعه' كششى مى بايستى براساس محورهاى اصلى

نيبىكرده و وقدارحداكنر ضر يب لاغغرى را با آنجه در حذول (
نمود .

(1) radii of gyration

UNP 20

L 120×12

2L 120×12

$$
\text { شكل (rı-r })
$$

اكر ازتطعات فوق بعنوانتطعه اصلى كشش نظبرقطعات خريا الستفادهشودخواهيم داشت • $\frac{L}{r_{\min }}=L / r_{Y Y}=\frac{L}{\Gamma / T Y} \leqslant r \psi_{0} \quad L \leqslant \Delta 1 r \mathrm{~cm} \quad: \quad$: مورد ناودانی
 $L / r_{Y Y}=\frac{L}{\Gamma / 9 \Delta} \leqslant Y Y_{0} \quad L \leqslant \lambda Y \& \mathrm{~cm} . \quad: \quad$ درموردجفتنبشى اكى ازتطعات موق بعنوان تطعه درجه دوم نظير بادبندها استغادهشود خواهيمداشت •

L/r/if

$$
L / r / 9 \Delta \leqslant r_{00} \quad L \leqslant 109 \Delta \mathrm{~cm} \quad \text { درموردوتنبشى }
$$

(الف)

(ب)
ثكل (rq-r)

 اثر دحالت تغييرشكل ورق قطه مى باشد لذا اكر انتخاب جهجها نسبت به تطـه فعيف باثد

بعبارت ديكر كرنش ورق تطعه ناهيز باثد كسبختكى اتصال با تمايل به بر ش توأم بيتها بوترع خواهد يبوست.

 انتخاب طول اتصال مى بايستى دقت قابل تو

تطعا ت كششى / 1/9
$=\varphi_{0}+\frac{10^{r}}{Y \times \psi / \Delta}+1 / \Delta-r \times T / r \times 1 / \Delta=\psi 1 / \psi r \mathrm{~cm}^{2}$ سط خالم تعيين كنفده ه مو‘ثر برابـر با مقدار زبر مییردد : $A_{e}=0 / \lambda \Delta A_{n}=0 / \lambda \Delta \times r \varepsilon / \Delta \Delta=r 1 / 0 \gamma \mathrm{~cm}^{2}$ و برطبق رابططه (9 (9) متدار سطع خالص موء $A_{e}=A_{n}\left(1-\frac{x}{L}\right)=r \varepsilon / \Delta \Delta\left(1-\frac{\psi}{r \times I_{0}}\right)=r 1 / 4 \lambda \mathrm{~cm}^{2}$ ظرفيت باربرى تطعه خوا هد شد :

$$
\begin{aligned}
& T=0 / \Delta 0 F_{u} A_{e}=0 / \Delta \times r Y 00 \times r 1 / 0 Y=\Delta Y 000 \operatorname{daN} \\
& T=0 / 80 F_{y} A_{g}=0 / \varepsilon \times T Y Y Y \times \psi_{0}=\Delta \varepsilon 000 \operatorname{daN} \\
& \text { كه عملا" مقدار محاز ظرنيت باربرى تطعه } \Delta \& 000 \text { daN خواهد. بود . }
\end{aligned}
$$

$$
\begin{aligned}
& \text { مثال } \\
& \text { مطلوبست تعيين ضُرفيت باربرى تسهمه شكل (} \\
& \text { : }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{r}
A_{e}=A_{n} \leqslant 0 / \lambda \Delta A_{g} \\
0.85 A_{g}=0 / \Delta \Delta \times \psi 0 \times 1 / \Delta=\Delta I>A_{n} \\
A_{e}=A_{n}=\psi \Delta / 9 \psi \mathrm{~cm}^{2}
\end{array} \\
& \text { ظرفيت باربرى تسههء فوق خواهد شد : } \\
& T=0 / \Delta 0 F_{u} A_{e}=0 / \Delta \times Y Y_{00} \times \psi \Delta / Q Y=\Lambda \Delta 000 \mathrm{daN} \\
& T=0 / \& F_{y} A_{g}=0 / \& \times \operatorname{rrrr}\left(\varphi_{0} \times 1 / \Delta\right)=\lambda \neq 000 \operatorname{daN}
\end{aligned}
$$

|'ز بـن نبشيهاى استأدارد بهنظر مير هد كه براي قطعهاى حامل از تكنبشى داشتنه باشبم

$$
\mathrm{L} 10 \times 1 \quad\left(A_{g}=1 \mathrm{r} / \mathrm{rcm}^{2} \quad, \quad r_{\min }=1 / \Delta 9 \mathrm{~cm}\right)
$$

|هر كاه دوبل نبشى موردنظر باشد به نظر مىرسد كه داشته با شـيم :

$$
L \Delta 0 \times \Delta \quad\left(A_{g}=r \times \% / \lambda \quad r_{\min }=1 / \Delta 1\right)
$$

|سطح خالص موءثر جفت نبشى نوق با يك رديف سوراخ در هر يك ار نبشى ها خواهد شد :

$$
A_{e}=0 / \wedge \Delta A_{n}=0 / \wedge \Delta(r \times r / \lambda-r(r+0 / 1 \Delta) 0 / \Delta)=r / r \Delta \quad g / V \varepsilon O K
$$

$$
\text { r - } 10 \text { = قطسات كششى با اتصال جوشى }
$$

كه با اتصالاتجوشى قطعات كثشى ظرفيت كاملخود را درانتقال نيروحفظ مىنما يند . بعبارت

$$
\begin{aligned}
& \text { مثال }
\end{aligned}
$$

$$
\begin{aligned}
& \text { romm } \\
& A_{e} \Rightarrow \frac{T}{0 / \Delta F_{U}}=\frac{1 \gamma \Delta 00}{0 / \Delta \times Y Y_{00}}=\varepsilon / \mathrm{YG} \mathrm{~cm}^{2} \\
& A_{g} \geqslant \frac{T}{0 / \varepsilon F_{y}}=\frac{1 r \Delta 00}{0 / 9 \times T H F T}=1 / 9 \mathrm{~cm} \mathrm{~cm}^{2} \\
& \text { |ا نظر سختى خمشى (كنترل } \\
& \frac{L}{r} \leqslant r \mu_{0} \leqslant \frac{r / \Delta \times 100}{r} \quad r \leqslant 1 / 49 \mathrm{~cm}
\end{aligned}
$$

 ($\left.A_{e} \rightarrow A_{n}\right)$

 تعاريف فبلى را خواهد داشت . بحاى L مىتوان طوال نوار حوش اتصال (مؤوالمينرين بوار) را فرار داد .

مسائل
= 1 = $\begin{array}{r}\text { = }\end{array}$ تسهه بـوعى كه قادر باشد نبروئى كششى برابر با ا با

شكل (rr-r)
= $=T-r$. قطر سوراحها Tomm

نكل (rr
= $=r-r$

شكل (ro-r)

Tr.kN L

ثكل (rq-r)
= $=0-r$ (ry-r) (منتقل نما يد . طول تطعه؛ كششى HookN

شكل (rr-r)
-

$$
\begin{aligned}
& \text { = }=1 \mathrm{r} / \Delta \mathrm{daN} / \mathrm{m}^{2} \\
& \text { = بار زنده (بصورت انتى) }
\end{aligned}
$$

ح = Y - r

 هر يك به ضخامت I I Mm و بعرضى برابر با عرض بال نيـرخ به تكيهكاه خود متصل است معين

Ira/ $/$

(9

ثانبا " - تعسين متدار تمطر سوراخـا 1 Tr mm

(

شكل

نـكل (rr-r)
=10-r

مراجع مولفين

1. John W. Fisher and John H.A. Struik, Guide to Design Criteria for Bolted and Riveted Joints. New York. John wiley \& Sons Inc. 1974
2. V.H.Cochrane, "Rules for Rivet Hole Deductions in Tersion Members ,"Enfineerinm iNews-Record, 89(NOV.16, 1922).
3. W.M. Wilson, Discussion of "Tension Tests of Larre RivetJoints, "Transactions. ASCE, 105(1942),
4. W.M. Wilson, W.H.Manse, and M.A.Cayci, 'A Study of the Practical Efficiency under Statjc Loading of Riveted Joints Connecting Plates, "U. of Illu nois Enme. ExDerimerit Syation Buljetin 402,1952.
5. F.W.Schutz, "Effective Net Section of Riveted Joints," Proc. Second Illinois Structural Enge. Conf., November 1952.
6. "Here's a Better Way to Design Splices," Engineering News-Record. 150. Part I (Jan.8, 1953)
7. P.F.Bijlaard, Discussion of "Investigation and Limit Analysis of Net Area in Tension," Transactions, ASCE, 120 (1955).
8. G.W.Erady and D.C.Drucker. "Irvestication and Limit Analysis of Net Area in Tension," Transactions, ASCE, 120 (1955),
9. W.H.Munse and E.Chesson, Jr.: "Riveted and Bolted Joints: Net Section Design," Journal of Structural Division, ASCE, 89. ST2 (February 1963).
10.E.Chesson and W.H.Munse. "Behavior of Riveted Connections in Truss-Type Members," Journal of Structural Division, ASCE, 83, STl(January igy\%). 11. William McGuire, Steel Structures, Englewcod Cliffs, N.J.:Prentice-Hall, Inc.., 1960

ييج 9

> F - ا

بيهِ هاى با متاومت بالا
 *"

(1) rivet
(2) bolt
(3) high strength bolt
(4) unfinished bolt

 باشد استفاده شده است اس
 از مربوط به قطرهاى . ${ }^{Y}$! 1 , $\frac{Y}{A}$

مشردن تططات فولادى تاحدى مطلوب به يكديكر مى شود بوجود آيد ـ د در ابن حالت الت انتالال

(1) medium carbon
(2) friction type
(3) bearing type
(4) rivet
"屏

1 لــف

ب

C

شكل (

هيلكرد و عمل پرچكارى بعدى سبب تغيير مشخصات مكانيكى نولید پرح ميكردد .
 شكل ترمز آلبالوبي روشن درآيد حرارت مىدهند و سيس برج داغ را در سورانخ آهاده شده

 داغ وجود نـخواهد داشت

(1) shank
(2) clamping force
(3) unfinished bolts

 سر و مهره اين هيجها با شكل مريه نيز ساخته بي شيود .

ييهههاى دقيت (1)

(r) (r)
 نحوى كه ' ${ }^{\text {T }}$

(1) turned bolts
(2) alingning
(3) ribbed bolts

 interrupted - rib bolt

 كامل تطهات مورداتمال كامى غير ممكن مى شود .

 نـايد .

(1) bearing type connection
(2) Batho
(3) Bateman
(4) ResearchCouncilon Rivited and bol ted structural joints

 , بدبال مقاورت بالا انجام داد .

 دراتصالات هر جهى نيز كمتر ديده مى شمد .

 مجاز كرديد .

 ياهت
 , اشرهاى پیتها را حذف نمود (6) و در سال

 مبلادى مى باشد ذكر كرديدها است.

 خوا هد شد . علىالاصول اضافه بر علل فوقالذكر برخى از عيوص ذانى بر جيارى نيز سبب
(1) Fisher
(2) Struik

شكل (

تسريع در عدم كاربرد یرع مخصوصا" پر چكارى كاركاهى كرد يد

نحوى كه صداى حاصله مزاحمت كا ملى در مراكز كسب و كار ابحاد خوا خـه الهد كرد .

 مقار مت بالا اتتصا دىىتر خوا هد بود .

 اتصالات ديكر بيباشد .
†

 , كار خانجات سازنده همانكونـه كه درشكل (
 كارخانه بى باشند .

 معين شده اـــ

 در موارد الستثنابیى كه نباز به پیجهايى با تطر بيشتر از
(1) martensite steel
. استغاده ميكنتد ASTM . A449

A325

يا هردو طرفـ آسها بمصورت
(ب) باشد.

A490

 برشى تحت اثر بارهاى متغير (1) و متناوب (†) موردنياز باشد . اين پيتها داراى سر كروى
(2) vibratory

بوده و در موارد لزوم از مهر ههای ا مقاو مت L'L اسنفاده حواهذ شد .

جد ولي (

بار دوام یييجها
هركاه بیيج با مقاومت بالا بیى نصب كردد ، الساسىترين الرامى كه درنمب؟ آن وحوددارد

 داده شده است داراى پله؛ خميرى معينى نبوده و لـذا در اين بيحها بـاي تنـّن تسلـيماز بار

(1) proof load
(2) tensile stress area

$$
A_{s}=\frac{\pi}{4}\left(0-\frac{0.9743}{n}\right)^{2}
$$

شكل (

 بيتعهأى

(1) minimum tensile strength
(2) turn - of - the - nut method

 مههره را بـيش از پ

براى رسيدن به مقدار پيش تنيدكى مذكور در حدول (Y - Y
 جد رل (

ابعادا سمي_يجها		
$\frac{1}{r}$	Δr	gY
$\frac{\Delta}{\lambda}$	$\wedge \Delta$	loy
$\frac{r}{r}$	170	$1 \Delta 8$
$\frac{y}{\lambda}$	IYr	ris
1	YYY	ras
$1 \frac{1}{\lambda}$	pqq	ros
$1 \frac{1}{4}$	ris	P $\Delta \psi$
$1 \frac{1}{\lambda}$	rya	ord
$1 \frac{1}{r}$	$\psi \Delta A$	$9 \Delta A$

 كه در آن حد يبش تنيدكى معين ثده بر طبق حدول (آ

 روش دوم "یِجانيدن مناسِ مهره" آم

† -

(1) pin

			¢
\mid			
$\begin{aligned} & \mu \frac{r}{r} \\ & \mu \frac{\Delta}{r} \\ & , ~ \end{aligned}$		$\begin{aligned} & \hline \nu \frac{1}{r} \\ & \mu \frac{1}{T} \\ & , ~ د \frac{T}{r} \end{aligned}$	طابهاردرا س minn

 با

 حاصل از نيروهاى وارده بر سوزن است بسيار ناجيز است) نيروى اصطكاكاكبين قطعات
 در خرباها تما يل به استقاده از اتصالات سوزنى به جشم مى خورد .

(اللف) اتصطالاتبر شى

(ب) اتصطالِ برشى با خروج 'ز مركزيـت
(ج) اتصالات كششى

(د) انصالات كثشثى توأم بـا برش

شكل (

شدن پیدا ميكند و چون تطعات موردا تصا ل از اين كوتاه شدن جلوكيرىمىنـمايند لـذانيرويى

نما يش آزاد ورق 6. كه انتقال برش رانثان مى دهد

شكل (£-£) - انتقال بار در اتصالات سوزنى

شكل (Y-Y) انتقال نيوو در اتصالات پرحی

 بوجود ${ }^{\top}$ هـه صر صنظر میشَود

 قطعات اتصال كافى براى انتقال كل نيروى مورد انتقال بين قطعات A A A مىاشد و ا

شكل (A-Y) ـ ـانتقال نيرو در اتصالات با بیِح مقاومت بالا
 زياد مى شود) اين بدان معنى الست تا زمانيكه انتقال نيرو توسطاصطكاك بين قطعات باشد
 داراى يك قطر و اندازه باشند) و هركاه كه بار وارده افزايش فوقالعاده پيداكند بطور بكهد يعر

 (ا

(الـف) كُسيختكى برشה پییجها

(ع) له ثدكى پییهـا

(ب) كسيختكى برشي ورقها

() له شدكى ورقها

(هـ) كسيختكى كششُى چیيجما

(ز) كسيختكى كششى ورقها

شكل (q-q -

تنش هاى تراردادى (1)

 بعنوان مثال اكراتصالى نظير اتصال شكل (با $\frac{1}{\Delta}$

 درصورتيكه تغييرشكل واقعى ورق بين بـجّها يكـان نيست .

شكل (f - 10) سهم باربرى بيجهاى يك اتصالات رويهم با پنج بیج

 باشد، خواهيم داشت :
(1) nominal stresses
(2) nominal stress

$$
\begin{align*}
& f_{v}=\frac{P}{m\left(\frac{\pi D^{2}}{4}\right)} \tag{1-y}\\
& f_{t}=\frac{P}{\frac{\pi D^{2}}{4}} \tag{r-r}
\end{align*}
$$

 شود)
تتش السى فشارى بين پيج و قطعه f بر! باس تطر و ضخامت ورق مها سبه مىشود. بعنى داريم :

$$
\begin{equation*}
f_{p}=\frac{P}{D t} \tag{r-r}
\end{equation*}
$$

در اين رابطه t : ضخاست ورق ا ابت .
(ا) بصورت خلاصه مىتوان دلايل زير را بمنظور اثبات يكىنبودن تنشهاياسىىباتنشعاى
واقیى. (' ب بيان داشت":

و

(1) actual stress

تحت نكات الى Y در فوق ذكر كرديد موارد ديكرى نيز وجود دارد كه عـلا " كننرل آنها

 نظر به آنجه در قبل كفته شد جون فولاد داراى خاصيت شكلـذيرى بالإيى مى باشدلذا

 برابر خرابى انصال ضريب اطمينان قابل قبولى را رعايت كردها است

$$
\text { | - } 4 \text { = اتصالات برشى }
$$

(1) service load
(2) friction type
(3) bearing type

 بار ا ايستابا شد وباروارده تغييرجهت

مقاومت برثـى

در حالت كلى تنش برشي اسعى • مجاز FV اتصالات معمولى با رابطه زير بيان ميشود :

$$
F_{v}=\beta_{1} \beta_{2} \beta_{3} \times\left(\mathrm{F}_{v}\right)
$$

درين رابطه

ميشود (سطح متطع محاسباتى همان A A خوامد بود) .

د β_{3}, β_{2} ، β_{1} اتصالات معولى جون لغز برابر با /1 درنظر كرفته ميشود . مقادير . Y - Y
ضر يب اطعبينان
 بعيزان تأثهر نيرو مى باشد . در جدول (Y (\&) بتادير تنشهالى مجاز ذكر كرديذها است.

هركاه بخواهيم از خرابى اتصال جلوكيرى كنيم علاوه بر كنترل تنشكتشیى درسطمعمطع
 وارده ازطريق پيته نيز كنترل شود .

 صغر كـفت لذا درين حالت خواهيم داشت :

$$
P=2 t\left(L_{e}-\frac{D}{2}\right) \tau_{u}^{p}
$$

 در دن رابطه 0.7 U 0.7 Fu
$P=2 t\left(L_{e}-\frac{D}{2}\right)\left(0.7 F_{u}\right)$

$$
(0-y)
$$

 (r-r

$$
P=f_{p} D t
$$

$$
\begin{array}{r}
(r \\
(\varepsilon-\gamma)
\end{array}
$$

(1) bearing strength
| 1 U $/$ /

$$
\begin{aligned}
& \text { از تساوى مهادلات (} \\
& f_{p} D t \leqslant 2 t\left(L_{e}-\frac{D}{2}\right)\left(0.7 F_{u}\right) \quad(v-f) \\
& \text { اعر قرار باشد كه پاركى سوراخ اتفاقنيافتد لازمست كه } \\
& \frac{L_{e}}{D} \geqslant\left(0.5+0.714 \frac{f p}{F_{u}}\right) \\
& (A-F)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{L_{e}}{D}>\frac{f_{p}}{F_{u}} \\
& (9-4) \\
& \text { حون درطرح اتصالات ضر يب اطمينانى حداقل برابر با Y/ه درنظركرفتهمىشود لـذا در } \\
& \text { دو رابطه (} \\
& \frac{L_{e}}{D} \geqslant\left(0.5+1.43 \frac{f_{p}}{F_{u}}\right) \\
& (10-y) \\
& \frac{L e}{D}>\frac{2 f_{p}}{F_{u}} \\
& (11-f) \\
& \text { حو }
\end{aligned}
$$

$L e>\frac{2 P}{F_{U} t}$

 . نيبر اندازهكيرى مى مشوند

جدول

Tآزايشات تشانمى دهد كه هركاه
 تیى تايستى :

$$
f_{p}<1.5 F_{u}
$$

$$
(i r-r)
$$

* هركاه تنش از هr درصد حداكثر تتش مجاز تجاوز نكداين مقادير را مىتوانبمميزان「 بيليمتر تقليل داد .

باشد. در چنين حالتى
 ار ار
 مثال با -

ب - مغسه برش بر تسـت دندانهدار بيجّ نمى كذرد .
 مها سبه مى كتيم .

شكل ((11-)

$$
\text { كه متدار T = } 59 / \Delta L N \text { تعيين كنده ظرفيت كثشى تسه مىباشد. }
$$

$$
\begin{aligned}
& A_{n}\left[=10-r\left(\frac{Y}{\lambda} \times r / \Delta r+0 / r\right)\right] \times 1 / 8=10 / 9 r \mathrm{~cm}^{2} \\
& \mathrm{Ag}=10 \times 1 / 9=r \mathrm{~cm}^{2} \\
& A_{e}=A_{n}=10 / 9 \mathrm{rcm}{ }^{2} \\
& T=0 / \varepsilon \quad F_{y} A_{g}=1400 \times r Y=r r_{G} \quad K N \\
& T=0 / 0 \quad \text { FuAU }=10 \Delta 0 \times 10 / 9 \mathrm{r}=190 \mathrm{KN}
\end{aligned}
$$

 سطع برش نيز وجود دارد .

توجهبه جدول (r- (r) برابر است با:

$$
R_{55}=F_{V} A=\left(1 \Delta 00 \frac{V}{\lambda} \times T / \Delta Y\right)^{r}=\Delta \Lambda Y_{0} d a N
$$

ظرعيت برش كليه هبهجها در انصال خواهد شد .

$$
T=4 R_{s s}=Y \times \Delta A r_{0}=r \Psi r / A \mathrm{KN}
$$

 بر جدار سوراخهاي 'نـنها خوا هد شد .

$$
F_{p}=1.5 F_{u}=1 / \Delta\left(r \gamma_{00}\right)=\Delta \Delta \Delta 0 \quad d a N
$$

$$
F_{B}=F_{p} D t=\Delta \Delta \Delta_{0}\left(\frac{V}{A} \times Y / \Delta F\right) 1 / F=19 Y / F K V
$$

 فاصله مركز سورا'خ بيج از جدار ورق مى بابيستى دررابطه؛ زير صدت كند .

$$
L_{e}>\left[\left(\frac{2 P}{F_{u t}}=\frac{Y \times \Delta A Y_{0}}{r Y_{00 \times 1 / G}}=Y / 0 \mathrm{Cm}\right)\right]
$$

بر طبق صوابط مندرج در جدول (Y -

Tنرا برخوا اهيم كزيد .

rيجها برابر با KT/A KN تعيين خوامدشد.
 خوامد شد كه درين هالت داريم :

[^1]
|AV/

$$
4 R_{s s}=\varphi\left[r_{0} \Delta 0\left(\frac{Y}{\lambda} \times r / \Delta \varphi\right)^{\gamma} \frac{\pi}{r}\right]=r / \lambda \quad \mathrm{kN}
$$

از آنجا ئى كه اين معدار از ظرفيت كشثى تسهه بيثتر مى باشد لذا تعيبين كنّده ظرفيت باربرى اتصال ، معان ظرميت كششى تسمه خواهد بود.

شكل (
با تدرى توجه معلوم مى شود كه در هر مورت سطعمقطع باربر تسمه مباني كـتر اذ مجموع
 شود.

$$
\begin{aligned}
& A_{n}=\left[1 \Delta-r\left(\frac{r}{r} \times r / \Delta r+0 / r\right)\right] \times 1 / 0=10 / \varepsilon \\
& \begin{array}{cc}
\mathrm{Cm}^{2} \\
\mathrm{Cm}^{2}
\end{array} \\
& T=0 / 8 \quad \mathrm{FyAg}=1 \% 00(1 \Delta \times 1)=10 \quad \mathrm{KN} \\
& T=0 / \Delta \quad F_{U A C}=1 \wedge \Delta 0(10 / 8)=198 / 1 \quad \mathrm{kN}
\end{aligned}
$$

$$
R_{D S}=r\left(\frac{r}{\psi} \times r / \Delta r\right)^{T} \frac{\pi}{r} \times r_{0} \Delta_{0}=11 \% / 9 \quad \mathrm{kN}
$$

ظرفيت مجاز هر پيج در برابر لهيدكى فولاد جدار پّج خوا هد شد :

$$
R_{B}=F_{p} D_{t}=1.5 F u D t=1 / \Delta\left(r Y_{00}\right)\left(\frac{r}{\psi} \times r / \Delta \psi\right) \times 1=100 / \mathrm{VkN}
$$

$$
=\frac{198 / 1}{100 / Y}=1 / 9
$$

$L e \geqslant \frac{2 P}{F_{u} t}$

$$
L_{e} \leqslant\left[\frac{r \times \frac{19810}{r}}{r r_{00} \times 1}=\Delta / r\right] \mathrm{Cm}
$$

جدول ((است لذا ملاى ه/r سانتيمتر خوامد بود.
مثال

تي

$$
\begin{aligned}
& A_{n}=\left[r \Delta-r\left(\frac{r}{r} \times r / \Delta r+0 / r\right)\right] \times 0 / 5=1 r / r \Delta \\
& A_{e}=A_{n}=1 r / r \Delta \mathrm{~cm}^{2} \\
& T=0.6 \mathrm{~cm}_{y} A_{g}=1400 \times 10=r 10 \\
& T=0.5 F_{U} A_{e}=1 A 00 \times 1 r / r \Delta=r Y A / \Delta
\end{aligned}
$$

لذا ظرفيت كثشى تسعة: YlokN خوا مد بود .
با درنظر كرفتن مغروضات مسئلهظرفيت بوشى يك پییِ خواهد بود :

$$
R_{D s}=r \times r 0 \Delta 0\left(\frac{r}{\psi} \times r / \Delta H\right)^{r} \frac{\pi}{\psi}=11 \% / \lambda \varphi
$$

$$
k N
$$

و ظرفيت باربرى مباز يك بيهج باجر نظر كرفتن لههدكى جدار سوراخ خواهد شد .

$$
R_{B}=1.5 F_{U} D t=1 / \Delta \times r Y 00\left(\frac{r}{H} \times r / \Delta H\right) \times 0 / 5=g r / H \quad \mathrm{kN}
$$

$$
n=\frac{T}{R_{D S}}=\frac{Y 10}{F r / Y^{\circ}}=r / r 1
$$

 ناصله سوراخ تاكنار لبهء ورق خواهد شد.
$L e \geqslant \frac{2 P}{F_{U L}} \quad L e \geqslant\left[\frac{r \times \frac{Y 100}{r}}{r Y_{00 \times 0 / F}}=Y / Y Y\right]$ cm

جدول ((\ddagger -
 انتخاب ميشود .

نكات مهم در طرح اتصالات بيجى تطعات كششى و فشثارى

 شود)
r r ا انتخاب سطعمتطع ناخالم مناسب براى تطعه فشارى (به نصل ششم مراجععشود) .

أ
 بود)

شود (جدول (Y-Y))
¢ -

Y
 برطبق ضوابط فاصله
 1-ا از طرح اتمالطويلخوددارى كرده و تا هد امكان از اتصالات متمركز استنادهنمود.

 بيشتر نباشد.

 استغاده مى شود . هعانكونه كه در شكل (

 امطكاك مىكويند .

 دخالت دارد .
Tا $ا$
 نتايج
از Y/o تا \&/ه متغير مى با شد .

$$
\begin{aligned}
& 0 / T Y Y \times \Delta \Delta A_{0}=1 \Delta Y_{0} \text { bar } \\
& 0 / \text { TYY } \times \text { YqYo }=\text { riso bar }
\end{aligned}
$$

(1) Friction Factor
مثtال

 بر رويهم خواهد شد . يس از مهاسبه ايّ نيرو ، تنش برشى معادل بيّ را محاسبه كنيد.

ثكل (1r-f)

خواهد بود با :

kN

daN

$$
f_{V}=\frac{P}{A}=\frac{\Delta A A T}{\left(\frac{V}{\lambda} \times T / \Delta T\right)^{T} \frac{\pi}{F}}=1 \Delta 19
$$

bar

در جدول ((f -

$$
\text {) }(\dot{\omega})=F S=\frac{1019}{1500}=1 / 59
$$

$$
\begin{aligned}
& \text { زير بیین مى شود. }
\end{aligned}
$$

جدول

A490	A325		
1/ri	1/ro	1/91	
1/ry	1/r	r/AD	$19 \quad 3 \quad \frac{r}{F}{ }^{19}$
1/49	1/54	r/AA	$\text { ir " } \quad \frac{y}{\lambda}$
1/49	1/T9	$\Delta / 0 Y$	ro " ${ }_{\text {ro }}$
1/T4	1/09	4/41	$r q \quad-1 \frac{1}{\lambda}{ }^{1}$
1/7A	1/19	y/ar	rr " $\quad 1 \frac{1}{\psi}$

 رابطه؛ ((ا -

برانر با ז است .

 كرفت:

سوراخهاي بزرك و كشيده براير با /AQ/ه تعيين شده است.

هر كاه از راوطه (Y (Y
 خواهيم داشت:

$$
F_{v}=\beta_{1} \beta_{2} \beta_{3}\left(\Delta \& F_{V}\right)=0 / f \lambda \times 0 / \Delta \Delta \times 1 \times r_{0} \Delta 0=11 \Delta \Delta \text { bar }
$$

 F FV "

(1) Fisher, Struik

مى مياهستى در حدود دو برابر معاومتى باشد كه در صورت برشى بودن اتمال . از آن انتظار مى میت (بعنى با Y/0
 اينك مركز حاصلضرب

$$
\text { مثال }=\Delta-
$$

 حل
 (

$$
R_{s S}=F_{V} A_{b}=1 r o 0\left(\frac{\gamma}{\lambda} \times r / \Delta \psi\right)^{r} \frac{\pi}{\psi}=\gamma \varepsilon \Delta \Delta \quad \text { daN }
$$

 ورتههاى مولادى براى هر دو نوع اتصال برشى و اصطكاكى صادق خواهد بر بود .
مثال
 ههعها هی به تطر
 حل :
در مثال (($199 /$ / KN K

با شد خوا مد شد (حدول † - ؟)

$$
\mathrm{kN}
$$

ظرفيت مجاز دربرابر لههيدكى فولاد جدار ییجها كنترل نخوا مد شد . فواصل سوراخهاىییيج تا جدار ورقها براساس ضوابط معبن ميكردد .
(1 (برش با خروج از مركزيت $=\lambda-F$
هركاه بار P بنحوى اثر كند كه راستاى اثر آن از مركز ثقل مجموعهء ییيجها نكذرد
(شكل Y
 و يك لنكر كه برابر با Pe مىباشد ، كرفت . هون مم نيرو و هم لنكر (نيرو) هردو سبب برش

شكل (
در سالـهاى احير جندين كار تحقيقاتى مفيد به منظور تعيين مقارمت يك هنيسن اتصالاتى انجام كرفته أست ، در حال حاضر سه روش كلى .جههت بررسى ايننوع اتصالات بهشرح زير دردسترسهما سبين ترار داردد :

(1) eccentric shear

$$
\begin{aligned}
& \text { (تعداد } \\
& n=\psi
\end{aligned}
$$

ارتجاعىتصحيحشده: كهبراساسآزمايشات فتجربى مقدار خروج از مركزيت ظاهرى را تقليل مى دهند ولى فرضيات محاسبات همان فرضيات قبول شده در روش (() میى باشد .

 ازآن مركز مىباشد .

 روث نوق خوا ميم هرداخت .

تحليل به روش ارتجاعى قديمى

(1) plastic analys is
(2) instantaneous centre of rotation

(الغ) اتصال

(ب) نيروهاى موجود در اتصال

شكل (

بمنظور استخراج هعادلاتمربوط به اين روث تحلـيلى • ا'تصالى را كه لنـكر M بر بر آنوارد
 اتصال ، لنكر M بَرابر با مجموع حاملضر بـهاى نبروهاى نشان داده شده درشكل (Y

$$
M=R_{1} d_{1}+R_{2} d_{2}+\ldots+R_{6} d_{6}=\Sigma R d \quad(1 \varphi-\psi)
$$

اكر فرض شود كه سطع متطع كلبه هییها (يا پرجها) با هم برابر باشند ، تنش برشىوارده بر آنها خواهد شد :

$$
f_{1}=\frac{R_{1}}{A}, f_{2}=\frac{R_{2}}{A}, \ldots f_{6}=\frac{R_{6}}{A} \quad(1 \Delta-r)
$$

 ثكل برشى هريك از Tنها متناست با فاملهء Tانها از مركز ثقل مجموعه خواهد شدويا خوا هـهم داشت:

$$
\begin{equation*}
\frac{f_{1}}{d_{1}}=\frac{f_{2}}{d_{2}}=\ldots=\frac{f_{6}}{d_{6}} \tag{18-r}
\end{equation*}
$$

154/24

$$
f_{1}=\frac{f_{1} d_{1}}{d_{1}}, \quad f_{2}=\frac{f_{1} d_{2}}{d_{1}}, \ldots f_{6}=\frac{f_{1} d_{6}}{d_{1}}(i v-\psi)
$$

, اكر بـجاى

با معادل f

$$
M=\frac{f_{1} d_{1}^{2}}{d_{1}} A+\frac{f_{1} d_{2}^{2}}{d_{1}} \dot{A}+\ldots+\frac{f_{1 d_{6}}^{2}}{d_{1}} \quad A=\frac{f_{1}}{d_{1}} \Sigma A d^{2}
$$

يا تنش در هـهِ ا خوا هد شد :

$$
f_{1}=\frac{M d 1}{\Sigma A d^{2}}
$$

بهعين ترتيبـمىتوان تنش در یییها (يا عرتها)ی دبكر رابهصورت روابـط زبربدستآورد :

$$
f_{2}=\frac{M_{2}}{\Sigma A d^{2}} \quad f_{3}=\frac{M_{1}}{\Sigma A d^{2}}, \ldots, \quad f_{6}=\frac{M d_{6}}{\Sigma A d^{2}}
$$

و يا ا ينكه بهصورتكلى مىتوان نوشتكه :

$$
f=\frac{M d}{\Sigma A d^{2}}
$$

$$
\begin{aligned}
& f_{x}=f \frac{y}{d} \quad, \quad f_{y}=f \frac{x}{d} \\
& (19-r)
\end{aligned}
$$

$$
\begin{aligned}
& f_{x}=\frac{M y}{\Sigma A d^{2}}, \quad f_{y}=\frac{M x}{\Sigma A d^{2}} \\
& \left(r_{0}-r\right)
\end{aligned}
$$

شكل ((\mid -) - مؤ لفههاى افقى و عمودى تنش

$$
d^{2}=x^{2}+y^{2}
$$

موئلفه هاى افتى و عمودى تنشبهصورت زبر بيان خواهد شد :

$$
\begin{gathered}
\left.f_{x}=\frac{M y}{A\left(\Sigma x^{2}+\Sigma y^{2}\right)} \quad, \quad f_{y}=\frac{M x}{A\left(\Sigma x^{2}+\Sigma y^{2}\right)}(r)-\psi\right) \\
\\
f=\sqrt{f_{x}^{2}+f_{y}^{2}}
\end{gathered}
$$

 مهاسبه كنيم (شكل f
 ننـان دهيم خواهيم دانت :

$$
f_{s}=\frac{F}{\Sigma A}
$$

$$
(T T-F)
$$

, تنش برT بيند f خواهد شد:

$$
f=\sqrt{\left(f y+f_{s}\right)^{2}+f_{x}^{2}}
$$

$$
(T \psi-\psi)
$$

مثال
 اتصال از بّجهانی به قطر

با توجه به شكل ((- ا 19 ب) ديد
اتصال تحت اثر تنش بالاترى قرار دارند و چون مقدار تنش در هر يكاز ين پيتجما با يكديكر

 برابر است با:

$$
f=\sqrt{\left(F r_{0}+H r_{0}\right)^{r}+\left(S F_{F}\right)^{r}}=10 Y \psi \quad \text { bar }
$$

مثال

 استغاده شده استـ.

$$
\begin{aligned}
& e=\frac{10}{Y}+Y / \Delta=1 r / \Delta \quad \mathrm{cm} \\
& M=10000 \times 15 / \Delta=150000 \quad \text { daN cm } \\
& \Sigma x^{2}+\Sigma y^{2}=s(\Delta)^{r}+r(y / \Delta)^{\top}=r Y \Delta \quad \mathrm{~cm}^{2} \\
& f_{X}=\frac{M y}{A\left(\Sigma x^{2}+\Sigma y^{2}\right)}=\frac{1 r \Delta 000 \times Y / \Delta}{r / \Delta A \times Y Y \Delta}=644 \mathrm{bar} \\
& f_{y}=\frac{M x}{A\left(\Sigma x^{2}+\Sigma y^{2}\right)}=\frac{1 r \Delta 000 \times \Delta}{r / A A \times r Y \Delta}=r r_{0} \quad \mathrm{bar} \\
& f_{S}=\frac{P}{\Sigma A}=\frac{10000}{5 \times Y / A A}=F r_{0} \text { bar }
\end{aligned}
$$

IV/ / $/$ /
حل:
$e=19 / 0 \mathrm{~cm}$
$M=F \Delta 00 \times 1 F / \Delta=Y F Y \Delta_{0}$ daN.cm
$\Sigma A d^{2}=H(1 \times Y / \Delta Y)^{r} \frac{\pi}{F} \times q^{r}=1 F Y Y \quad \mathrm{~cm}^{4}$
$f_{X}=\frac{M y}{\Sigma A d^{2}}=\frac{Y \psi Y \Delta 0 \times Y / \Delta}{1 \& \psi Y}=r r$ bar

$$
f y=\frac{M x}{\Sigma A d^{2}}=\frac{Y F Y \Delta 0 \times \Delta}{1 \& F T}=\text { YY\& bar }
$$

$$
f_{S X}=\frac{P_{X}}{\Sigma A}=\frac{0 / \lambda \times \psi \Delta 00}{\psi \times \bar{\Delta} / 0 \gamma}=\mid Y Y / \Delta
$$

bar

$$
f s y=\frac{P_{y}}{1 \Sigma A}=\frac{0 / 8 \times 4 \Delta 00}{4 \times \Delta / 0 V}=1 \psi \psi
$$

bar

$$
f=\sqrt{\left(f_{x}+f_{s x}\right)^{2}+\left(f_{y}+f_{s y}\right)^{2}}=
$$

$$
\sqrt{(Y Y q+\mid Y Y / 0)^{Y}+(T Y F+1 Y Y)^{r}}=9 Y q \quad \text { bar }
$$

 حالـتى وجود ندارد .

تحليل بروش ارتجاعىى تصحيح شده :
سالهـاى متمادى روش تحليل ارتجاعى اتصالاتت با خروح از مركزيت بـدون برخورد بـ بـ
 بودن روثن فوق توسط (26)AISC بكمك آزها يشات متعددى بررسى و كاملا " قطعى شد . لـذا
 از مركزيت واقعى نيرو در اتمطل ، خروج از مركزيتى تقليل يافته (موءثر ') برطبق مقادير زير در محا سهات مربوط بـه بیج با پري درنظر كرفته شود :

(1) reduced effective ecentricity

كرفتهاند تشكيل شده باشد (شكل Y - ا الف)

$$
e_{e f f}=e-0.64(1+2 n)
$$

n
r
(بr)-Y

$$
e_{e f f}=e-1.25(1+n)
$$

n
. دواهو هر دو رابطه برحسب :Cm : e
 خوا مد شد ازTنجا ئىكه معدار تنششهاى برشى مجاز در ضوابـطا بيران تاحد قابل توحهى ازدرجه الطعينان بالابى برخوردار است لذا هركاه از روش ارتجاعى تصحيح شده در تحلـيل اين نوع اتصالات استغاده شود عملا" مى توان مططمئن بود كه ضريب اطمينانى برابر با

$$
\text { مثال } 9-9-q \text { = }
$$

مثال (Y-Y) را با ا استغاده ازروش تحلـيلارتجاعى تصحيح شدهبارديكربر وسى نما ئيد .

مقدار خروج از مركزيت تقلـيل يافته (موءثر) خواهد شد .

$$
\begin{aligned}
& \epsilon_{\text {eff }}=1 r / \Delta-1 / r \Delta(1+r)=Y / \Delta \quad \mathrm{cm} \\
& M=10000 \times Y / \Delta=Y \Delta 000 \quad \text { daN.cm }
\end{aligned}
$$

با توجه به معادلات تنش ديدهمیشود كه رابطهاى خطى بين لنكر پیخشى و تنش وجود

دارد لـذا مىتوان براحتى مقادير تنـش را برابر با مقادير زير بدست Tورد :

$$
f_{x}=r \lambda s / \Delta \text { bar } f_{y}=r \Delta \lambda \text { bar } f_{s}=r r_{0} \quad \text { bar }
$$

$$
f=\sqrt{\left(r A \Delta+Y r_{0}\right)^{r}+(r A s / \Delta)^{r}}=Y \wedge q \quad \text { bar }
$$

ديدهمى شود كه مقدار تنشش محا سباتي برطبق ابي روثن بهميزان بY درصد تقلـيل مى يابد .

 عملا" يك چچنين عملى را روشى قابل قتول مىدانـد .

تحليلـ بروش مقا ومت نـها يـى
 هدود

 مىنامهم دانست (ثـكل
تعادل تُطه به شرطبرترار بودن روابطز بر معكن خواهد بود :

$$
\begin{aligned}
& \Sigma F_{H}=0 ; \sum_{i=1}^{n} R_{i} \sin \theta_{i}-P \sin \delta=0 \\
& \Sigma F_{V}=0 ; \sum_{i=1}^{n} R_{i} \cos \theta_{i}-P \cos \delta=0 \quad(\gamma \xi-Y) \\
& \Sigma M=0 ; \sum_{\zeta=1}^{n} d_{i} R_{i}-P\left(e+r_{0}\right)=0
\end{aligned}
$$

ثكل (Fr-Y) - مركز آنى دوران

هركاه عكسيالعمل Ri را متناسب با تغيير شكل موجود (يابهعبارت ديكر تنش متناسب

 كرافرت

$$
R_{i}=R_{u l t}\left(1-e^{-4 \Delta}\right)^{0.55}
$$

درين رابطه

(1) Fisher
(2) Kulak
(3) Crawford
(4) Naperian base

برش

مثال

 حل
 $R_{i}=0 / \& r(\lambda Y y)(r / \Delta \Lambda)\left(1-e^{\gamma j i}\right) \quad \circ / \Delta \Delta=199$

$$
\left(1-e^{-\psi \Delta_{i}}\right)^{0 / \Delta \Delta}
$$

kN(الف)

جون بار در راستاى محور y اثر میكند لذا

(1) ultimate shear Strength
(2) appropriate relationship

$$
\begin{align*}
& \Sigma R_{i} \frac{y_{i}}{d_{i}}=0 \tag{ب}\\
& \Sigma R_{i} \frac{x_{i}}{d_{i}}=P_{u} \\
& \Sigma R_{i} d_{i}=P_{u}\left(e+r_{0}\right) \tag{s}
\end{align*}
$$

$$
(z)
$$

همجنين فرضيه اصلى تغييرشكل خوامد شد :

$$
\Delta_{i}=\frac{d_{i}}{d_{\max }} \Delta_{\max }=\frac{d_{i}}{d_{\max }}(0 / \lambda q)
$$

شكل (

$$
\begin{aligned}
& \text { جون براى حل معادلات (ب) و (ح) و (د) (بياز به سعى و خـا دار داريم لذا بهتراستدر } \\
& \text { اولين انتخاب }
\end{aligned}
$$

-	χ^{1}	y_{i}	d_{i}	Δi	R_{i}	$\frac{\mathrm{Rj} \times \mathrm{j}}{\mathrm{dj}}$	Ridi
1	r / Δ	v / Δ	V/91	- /far	lat	$\Delta \lambda$	144y
r	r / Δ	-	r/b	- /lar	1ro	1ro	rra
r	r / Δ	$-Y / \Delta$	$v / 91$	- fatr	IAT	$\Delta \lambda$	lfyr
ψ	Ir/0	v / Δ	$14 / \Delta \lambda$	- /A9	198	181	rada
Δ	1r/0	0	Ir/0	- /var	194	194	tria
4	1T/0	$-\mathrm{V} / 0$	$14 / \Delta \lambda$	- / 19	195	181	rava
						vys	lltgo

$P_{u}=. Y \& \varepsilon \quad k N$
معادلـه
$P_{u}=\frac{11 r \varepsilon_{0}}{r_{0}}=\Delta \varepsilon \mathrm{A} \quad \mathrm{kN}$
معادله (د)

¢	X_{j}	y_{j}	${ }^{\text {j }}$	Δi	R_{j}	$\frac{\mathrm{Rj} \times \mathrm{i}}{\mathrm{di}}$	Ridj
1	- /r	Y / Δ	$\mathrm{r} / \mathrm{\Delta}$	- / DTY	$1 \lambda \Delta / T$	+/94	1r90
r	$0 / r$	\bigcirc	$0 / r$	$0 / 014$	Forr	Fo/ro	\wedge
r	$0 / r$	- Vyo	Y / Δ	- / ory	$1 \lambda \Delta / r$	t/9r	1590
ψ	10/Y	v / Δ	Ir/ge	- / 190	190/9	IDY/AT	rłA。
0	10/r	-	10/r	- MVIY	19Y/V	19 / / Y	1959
ξ	10/r	$-\mathrm{Y} / \mathrm{D}$	1r/ge	- /A90	198/9	lya/at	rłA。
						$\Delta \Delta \lambda / \psi$	qY If

$$
\begin{aligned}
& P_{u}=\Delta \Delta \lambda / 4 \quad \mathrm{kN} \\
& P_{u}=\frac{9 Y \mid \psi}{1 Y / Y}=\Delta \digamma \lambda / \lambda \mathrm{kN}
\end{aligned}
$$

 مطالعات اخير (29, 25, 27, 29) راه براى تعبين مقاومت برشي اتصالات با خروج از مركزيت مىبا شد . تحلـيل با روش ارتجاعيا

 انجام شده (8) ضريب اطمينان محا سبا تى برابربا

 بيش از مجاز نمى با شد .

 مجاز خوا هد شد :

$$
P=\frac{P_{u}}{F \cdot S}=\frac{\Delta \Delta_{0}}{r / \Delta}=r_{0} \quad \mathrm{kN}
$$

در اتصالاتى كه در Tنسها نیاز به عدم لفزش تطعات داشته باشيم (اتصالإت اصطكاكي)

بار مقاوم فرض میشود) •

مثال

جون R

$$
\begin{align*}
& R_{s} \Sigma \frac{y_{i}}{d_{i}}=0 \tag{الف}\\
& R_{s} \Sigma \frac{x_{i}}{d_{i}}-P=0 \\
& R_{s} \Sigma d_{i}-P\left(e+r_{0}\right)=0
\end{align*}
$$

$$
(-)
$$

با فرض ro

$$
\begin{aligned}
& \text { بررسى آن اتصال. } \\
& \text { حل: }
\end{aligned}
$$

$$
\begin{array}{ll}
P=R_{S} \Sigma \frac{x_{i}}{d_{i}}=2.6 R_{S} & : l^{\prime} \\
P=\frac{R_{1} \sum d_{i}}{e+r_{0}}=\frac{R_{S}(50)}{17.5}=2.86 R_{S} & :(ب)
\end{array}
$$

 بـش از $0 / \circ \mathrm{Cm}$ بكيريم بقدارى كـه از طريق هعادله (ب) بدست مـى آيد مساوى
 (ب) برابر با

 FV = 1000 bar نبز بهصورتمجاز خواه مى باشد لذا داريم :

$$
R_{S S}=1050\left(\frac{7}{8} \times 2.54\right)^{2} \frac{\pi}{4}=4073 \quad \mathrm{daN}
$$

و ظرميت مجاز بار برى يبّه در انصال اصطكاكى خواهد شد :

$$
P=2 / 86 \quad R_{S S}=2.86 \times 4073=116.5 \quad \mathrm{kN}
$$

روش طرح عملى (بيشنهادى)

 بكمك اين روش مشاهده شده است است بدين جهت مرجع (8) براى هر دو نوع اتصال روش واحدى را با رابطهء زير توصيه

$$
P=C m A_{b} F_{V}
$$

دري رابطه : m : تعداد سطوح برش در اتصال :
 : ضريب آرا ايش محموعهُ بيجها $C=a^{\prime} I^{\beta}$

$$
\text { باشد } A_{b}=1 \text { فرض اين } I=0.155\left(I_{x}+I_{y}\right)
$$

.
.
.
. هر ها β. دو رديف ييج موحود باشي مثال

 نمايند A325 به تطر ال 5
(الف) روش طرح ارتجاعى : (مثال Y ب ب)
 اتصال اصطكاكى خواهيم داشت:

$$
\text { مداكثر محاز در اتصال اصطكاكى } \quad P=10000 \times \frac{1050}{789}=133.1 \mathrm{kN}
$$

$$
\text { حداكثر محاز در اتصال معولى } \quad P=10000 \times \frac{1540}{789}=195.2 \mathrm{kN}
$$

(FS =)2/5 با در نظر كرعتن ضريب اطعينانى برابر با

$$
\text { حداكثر بار محاز در اتصال معولىى } \quad P=220 \text { kN }
$$

$$
\text { حداكثر بار محاز در اتصال اصطكاكى } \quad P=116.5 \text { kN }
$$

(د) روش طرح عملى (ييشنهادى)

$$
I_{x}+I_{y}=4(7.5)^{2}+6(5)^{2}=375 \mathrm{~cm}^{2}
$$

$$
\alpha=0.0125+\frac{2.07}{12.5}+\frac{13.81}{(12.5)^{2}}-\frac{134.7}{(12.5)^{3}}=0.3383
$$

$$
\beta=0.651-\frac{0.465}{12.5}-\frac{20.19}{(12.5)^{2}}+\frac{102.42}{(12.5)^{3}}=0.5370
$$

$$
I=0.155\left(I_{x}+I_{y}\right)=0.155 \times 375=58.125
$$

$$
\begin{aligned}
& \text { P حداكثر محاز } P=10000 \times \frac{1050}{1074}=97.8 \mathrm{kN} \\
& \text { جوى تنش مجاز در اتصال معونلى } \\
& \text { P P P }=10000 \times \frac{1540}{1074}=143.4 \mathrm{kN}
\end{aligned}
$$

$C=\alpha \cdot{ }_{\mathrm{I}}{ }^{\beta}=0.3383(58.125)^{0.5370}=2.995$

ظرويت مجاز اتصال بصورت زير خواهد بود :
: $\mathrm{P}=\mathrm{C}_{\mathrm{m}} \mathrm{A}_{\mathrm{b}} \mathrm{F}_{\mathrm{V}}=2.995 \times 1 \times 3.38 \times 1050=122.1 \mathrm{kN}$ P $P=C_{m} A_{b} F_{v}=2.998 \times 1 \times 3.88 \times 1540=179.1 \mathrm{kN}$ هر كاه مرض شود كه نتايج حاصل از تحليل به روش مقاو دت نهابي از د دقت قابلتوحهيى بر خوردار بانتد مىتوال درصد صعت نتايج حاصل از روشهاى هـتلف را نسببت به روث مفاومت نها يى بهصورتسزبر سنجيد .

رابطه طراحى اتصالات با يك رديف پيهِ تحت لنكر

 از روش توماس شد (1)كه ذيلا"شرح داده مى شود براي تعيين مشخصات اوليه طرح الستفاده.
(1) Thomas C. Shedd, Structural Design in Steel (John Wiley \& sons, New York 1934) P. 287

 ($f=\frac{M d}{A d^{2}} ;$ شدر بـُ

 دريى حالت ، ميروى وارده بر يك سانتيمتر از ارتفاع اتصال برابر با با با با حعظنمودار مثلثى شكل براى تغيبرات تخش، شدت بار وارده بار بر واحد طول از باز
بيرونى دياكرام برابر است با :

$$
\text { (شدت بار در تار بيرونى) = }=\frac{R}{p}\left(\frac{n}{n-1}\right)
$$

نيروى كششى برآيند حاحل از دياكرام خواهد شد :

ثكل (Y - -
$T=\frac{1}{2}\left(\frac{n P}{2}\right)\left(\frac{R}{P}\right)\left(\frac{n}{n-1}\right)=\frac{R n^{2}}{4(n-1)}$

, لـكر موءثر بر اتنـال خواهد شد :
 (ب)

$M=T\left(\frac{2}{3} n P\right)$

اكر بهجاىT در رابطه(ب) از رابطه (الع) قرار دهيم خواهيم داشت :
$M=\frac{R n^{2}}{4(n-1)}\left(\frac{2}{3} n P\right)=\frac{R n^{3} P}{6(n-1)}$
رابطه موق را بر حسبn مىتوان بهصورتزير نوشت:
$n=\sqrt{\frac{6 M}{R P}\left(\frac{n-1^{\prime}}{n}\right)}$
رابطه (Y -

$$
\begin{equation*}
n=\sqrt{\frac{6 M}{R P}} \tag{0}
\end{equation*}
$$

از آنجائي كه را بطه (Y (Y لذا اكر بحواهيم از اين رابطه هرایى حالاتد يكرى استغادهكنيم مىبايستى مقدأر R را بهنتوى

 نظر كرفته شود .

مثال
 شده باشد مطلوبست تعيين تعداد پیمهاى لازم . نوع اتصال برشى و سطح برش از قسمت

حل

$F_{v}=1050 \mathrm{bar}$

$$
R_{D s}=1050(3.88)(2)=81.5 \mathrm{kN}
$$

هون دو سطح برش وجود دارد لذا مىبايد مقاوصت هر دو سطح را در ظرفيت برشى پيجها به حساب

$$
\begin{array}{ll}
F_{P}=1.5 F_{U}=1.5 \times 3700=5550 & \text { bar } \\
R_{B}=5550\left(\frac{7}{8} \times 2.54\right)(1.2)=148 & \mathrm{kN}
\end{array}
$$

شكل (rs-r)
(ب) با استفاده از رابطه (Y

$$
n=\sqrt{\frac{\epsilon M}{R P}}=\sqrt{\frac{6 \times 210 \times 15}{81.5 \times 10}}=4.8
$$

براى تعيين لنكر وارده خروج از مركزيت كامل نيرو در نظر كرفته شده است (همانكونه كه در

روش ارتجاعى عمل مى شود) • در مقدار R تأثير برش مستقيم در نظر كرفته نشده است ، 5

$$
\begin{aligned}
& \text { (ع) با استغاده از روش ارتجاعى امكان استفاده از } 5 \text { هيج كنترل مى شود . } \\
& A f_{s}=\frac{P}{n}=\frac{210}{5}=42 \mathrm{kN}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{Af}_{x}=\frac{M y}{\Sigma x^{2}+\Sigma y^{2}}=\frac{210 \times 15 \times 20}{2\left(10^{2}+20^{2}\right)}=63 \mathrm{kN} \\
& \text { (برآين) R }=\sqrt{(42)^{2}+(63)^{2}}=76 \quad \mathrm{kN}<81.5 \text { ok. }
\end{aligned}
$$

-

- $n=5$
شكل (Y -
مثال Y ب

مطلوبست تعيين تعداد بیعهاى لازم از نوع A325 به قطر

پ

سكدست (1) ثكل (Y) - Y اتمال اصطكاكى خواهد بود .

فواصل استاندا رد

$$
\text { شكل (YY - })
$$

(الف) با هرضا ينكه فواصل عمودى پيیهها از يكديكر 7.5 سانتيمتر باشد (كه عموما"
مقدار متعارف شـرده مى شود) با استفآده از روش ارتجاعى به بررسى اتصال مى يردازيـم :

$$
\text { (يك سطع برشى) } R_{S S}=1050(2.85)=29.9 \mathrm{kN}
$$

با استفادده از مقدار خروج از مركزيت كامل نيرو خواهيم داشت :

$$
n=\sqrt{\frac{6 M}{R P}}=\sqrt{\frac{6\left(\frac{135}{4}\right)(40)}{29.9 \times 7.5}}=6.01
$$

در رابطههء بالا بارى كه به هر صفحه سكد ست وارد مىشود برابر با . 135 كيلو نيوتن
(1) bracket

 در مقدار Rانجام نداددايم . لذا مسئله را براى 5 رديف پيج كنترل مىكنيم .
$F_{S} A=\frac{P}{n}=\frac{135}{20}=6.75 \mathrm{kN}$
$\Sigma x^{2}+y^{2}=10\left(7.5^{2}+15^{2}\right)+8\left(7.5^{2}+15^{2}\right)=50 € 2.5 \mathrm{~cm}^{4}$
$F \times A=\frac{135 \times 40 \times 15}{5062.5}=16 \quad f_{y A}=\frac{135 \times 40 \times 15}{5062.5}=16 \quad \mathrm{kN}$
R $=\sqrt{(6.75+16)^{2}+16^{2}}=27.8 \mathrm{kN}<29.9$ OK

$$
\text { † - } q \text { = پ }
$$

 تشكيل مىدهد .
در جدول († -
 مىبأشد .
(1) hangers
(2) nominal

$$
\begin{aligned}
& \text { *** }
\end{aligned}
$$

$$
\begin{aligned}
& \text { * }
\end{aligned}
$$

(r)

$$
7 \frac{d_{0} d_{v}}{f_{0}-!_{0}}={ }_{Q}^{d}
$$

(2)

$$
7 \frac{q_{3} q_{y}}{!_{1}-f_{1}}=d_{8}
$$

$(-)$
${ }^{ \pm}+{ }^{+} 0+d$

(ire)


```
dy-m
```



```
#
```


 NY $\quad \varepsilon \cdot 8 I T=\left(89^{\circ} \varepsilon\right) 0 G 0 \varepsilon=q_{\forall} 7^{7}=d$

ר ศ:
-
1.97

先 - 0 - $1=$

$$
(1-11)
$$

$$
\frac{\frac{q_{b}}{d_{b}}+1}{d}+!_{1}=t_{1}
$$

$$
d+f_{1}-!_{1}=\frac{q_{b}}{d_{\forall}}\left(!_{1}-f_{1}\right)
$$

(r)

$$
\frac{d_{3} d_{\forall}}{f_{0}-!_{0}}=\frac{q_{3} q_{\forall}}{!_{1}-f_{1}}
$$

 ר

6 TT0,
准

N N $\quad 08 I=\frac{\frac{88 \cdot \varepsilon}{09}+\tau}{\varepsilon \cdot 8 I I}+\varepsilon L I=f_{1}$

$$
\frac{\frac{q_{b}}{d_{\forall}}+I}{d}+!_{\perp}=f_{1} \quad \frac{8}{L}
$$

Ans orr

$$
6^{\circ} G=\frac{G \cdot G 0 I}{029}=\frac{1_{y}}{1}=u
$$

morn tor

$$
N X
$$

$$
\text { G. SOI }=(28 \cdot z) 00 \angle \varepsilon=q_{\forall} f_{f}=1_{y}
$$

$\uparrow:$

M

可

$$
N X
$$

$$
\varepsilon \angle t=\varepsilon \cdot 8 I I \times t=d u={ }^{x E w_{1}}
$$

$$
\left.G \cdot I \approx 9 \nabla^{\circ} 0=\frac{\varepsilon \cdot 8 I I}{\varepsilon L I}=S\right\rfloor(0 \text { orin } 19 \cdot \square \cdot)
$$

$$
\begin{aligned}
& \text { דרך } \\
& \text { reningre. }
\end{aligned}
$$

```
uo!sual pue deaus pau!qmos (I)
```


 1*5

的

$$
\pi 5(x-0 d)
$$


```
\(A-01=\operatorname{ran}^{2} \sin \min ^{\circ}(1)\)
```


许
"

$(\dot{\sim})$
(2)

(1)

 ssad7s uo!suaf leuplou (Z) ssad7s deays leuṭou (t)

ת OR
$(4-1 \lambda)$
$0 \cdot \pi \quad 2^{\left.\left(\frac{7_{t}}{7_{f}}\right)+2^{\left(\frac{\Lambda_{f}}{\Lambda_{f}}\right.}\right)}$

$$
(\alpha-1+1)
$$

$$
I \gg\left(\frac{n^{n 7}}{n 7}\right)+\left(\frac{n \wedge}{2}\left(\frac{n_{f}}{f}\right)\right.
$$

「ivp,

$$
\begin{aligned}
& n_{j} \text { : : } \\
& n 7_{f}: n_{n} n_{n} n_{n} n^{n}(1) \\
& { }^{n \wedge} f: \text { : } \\
& \text { remeipo: }
\end{aligned}
$$

 ～ローシ	－0．Ad $>^{\wedge}+\lambda / 1-0.6 \Delta \lambda=7$ －Yal $>+\{Y / 1-0$ obl $=7$		
$\square \bigcirc 3-2$		$\sim \sim$	

غ $\Gamma(A-\lambda)$－

$$
(\lambda-\alpha \lambda)
$$

$$
\left.\Lambda_{t} \frac{\Lambda_{j}}{7}-j^{7}\right\lrcorner>^{7}
$$

חִ

$$
J>\frac{7_{\ddagger}}{7_{f}}+\frac{\Lambda_{f}}{\Lambda_{f}}
$$

7_{j} ：

A \ddagger ：
rering：

$$
(\lambda-5 \lambda)
$$

$$
0 \cdot \tau>\frac{d_{f}}{f_{f}}+\frac{\Lambda_{f}}{\Lambda_{f}}
$$

1 meromel
祘
 Tr，1－m，，

保 एँच स्रुण का．
（和 （2和
 ITAKT 107

$$
(0 \lambda-\lambda)
$$

$$
\left.\left.\imath^{\wedge}\right\lrcorner>{ }_{2}(7\rfloor \subseteq \subseteq \subseteq \cdot 0\right)+\imath_{2} \pm
$$

$$
\imath^{\wedge_{f}>}{ }_{2}\left(-\frac{7_{f}}{n_{f}} 7_{f}\right)+\tau^{n^{\prime}}
$$

$\left(\lambda-Y_{\lambda}\right)$

$$
\begin{aligned}
& (\lambda-1 \lambda) \\
& \left(\frac{!_{1}}{Q_{\forall f}^{f_{f}}} 0 \cdot I\right)^{\prime}>\wedge_{f} \\
& \text { ר ר }
\end{aligned}
$$

seq \quad BE8 $=\frac{\left(88^{\circ} \varepsilon\right) 9}{0096 \tau}=\frac{\forall 3}{\kappa_{d}}={ }^{\wedge} \downarrow$

$$
N \times G 6 T=(G Z \varepsilon) \frac{G}{\varepsilon}=\kappa_{d}
$$

$$
N \neq 09 Z=(G Z \varepsilon) \frac{G}{b}=x_{d}
$$

$$
\begin{aligned}
& \text { r: }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ous su. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 名 } \\
& \text { - } \\
& (x-b d)
\end{aligned}
$$

$$
\begin{aligned}
& \varepsilon 2000 \cdot 0=\frac{0092 T}{98^{\circ} 2}=\frac{!_{1}}{q_{\forall}}
\end{aligned}
$$

$$
\begin{aligned}
& (x-b x)
\end{aligned}
$$

$$
\begin{aligned}
& \text { ? } 5
\end{aligned}
$$

Mr $\$-Y 1=$

R
 $\angle T 9 Z=(8 ६ 8) \forall \cdot \tau-06 カ \varepsilon=$

$\cdot x \cdot 0 \quad \wedge_{t} \leqslant \mathrm{Neq} 66 \cdot 8=\left(\frac{00 \varepsilon \angle I}{88 \varepsilon \angle T I T}-I\right) 002 \tau=$

$$
=\pi r(x-\lambda)
$$

$$
\begin{aligned}
& (\lambda-\lambda \lambda)
\end{aligned}
$$

$$
\begin{aligned}
& \left(\frac{!^{\prime}}{a^{7}}-I\right)^{\wedge} \rightarrow \hat{i}^{\prime} \\
& \text { ueq } \angle\left[t I=\frac{(88 \cdot \varepsilon) 9}{0009 z}=\frac{\forall \mathbf{3}}{x_{d}}=f_{f}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { d } 79700^{\circ} 0-06 \angle \varepsilon= \\
& (d 8920 \cdot 0) 8^{\circ} \tau-06 L \varepsilon={ }^{\wedge} \pm 8^{\circ} \tau-06 L \varepsilon={ }^{7} \pm
\end{aligned}
$$

$$
\begin{aligned}
& N \neq \varepsilon \cdot 2 \downarrow \varepsilon>d
\end{aligned}
$$

$$
\begin{aligned}
& \text { d } 92600^{\circ} 0-0021=
\end{aligned}
$$

$$
\begin{aligned}
& \text { d to } 20 \cdot 0=\frac{\left(88^{\circ} \varepsilon\right) 9}{d 8^{\circ} 0}=7_{t} \\
& \mathrm{~d} 9820^{\circ} 0=\frac{\left(88^{\circ} \varepsilon\right) 9}{\mathrm{~d} 9^{\circ} 0}={ }^{\wedge} \mathrm{f} \\
& d 9 \cdot 0=d \frac{G}{\varepsilon}=\kappa_{d} \\
& d 8 \cdot 0=d \frac{G}{b}={ }^{x}{ }_{d}
\end{aligned}
$$

($-\infty$)

or:

 $50.1 / 710055$

Triment:

筑

(r.
$r:$

略
व
*
ك

$$
N \neq 9^{\circ}+6 L>d \quad \because \quad 0 G 0 Z>d 8 G 20 \cdot 0={ }^{\wedge} f
$$

.

$$
N \geqslant 8.89 t>d
$$

$$
\left(\frac{!_{1} 7}{q_{\forall}} \downarrow-\tau\right) 002 \tau>\hat{r}^{1}
$$

和

$$
\text { (}-1 \text {) : }
$$

ك若

$$
6=\frac{G 8 \cdot 2}{\nabla \cdot G Z}=u=-T_{15}+2 \mathbb{K}^{\circ} \mathrm{J}
$$

$$
\cdot x \cdot 0 \quad \text { OIE }<N X \quad \angle O Z S=(O G O Z) t \cdot G Z=\Lambda \text { TIS }
$$

$$
z^{w כ} \quad \nabla \cdot G Z=\frac{06 L \varepsilon}{(000 \tau \varepsilon) b \cdot \tau+000 \varepsilon G}=q^{q}
$$

Tor so.

$$
\begin{aligned}
& \text { (10) } \\
& \frac{r_{0}}{a^{2} \partial+1}=q_{b}
\end{aligned}
$$

$$
\begin{aligned}
& { }^{7} \not+\angle L C 0-002 I= \\
& \text { rin } \\
& { }^{7}+(822000 \cdot 0) 002 I-002 I={ }_{\wedge}^{\wedge} \\
& 822000 \cdot 0=\frac{0092 \tau}{98^{\circ} 2}=\frac{!_{1}}{q_{\forall}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 5یッ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Sin Tisw } \\
& \text { \& } \\
& z^{\omega 0} 8 \varepsilon=\frac{008 t}{(000 \tau \varepsilon) t+(000 \varepsilon G) \tau \cdot \tau}=\frac{008 t}{\Lambda t+1 \tau \cdot \tau}=q^{q}
\end{aligned}
$$

$$
\begin{align*}
& \frac{0009}{1 \tau \cdot \tau+\Lambda t}={ }^{q} \forall \\
& \therefore \text { ת } \\
& \frac{008 t}{\perp \tau \tau+\Lambda t}={ }^{7} \forall \tag{-}
\end{align*}
$$

$$
\begin{aligned}
& \frac{002 I}{1+\angle Z^{\circ} 0+\Lambda}=q_{\forall} \\
& \text { 7. } \\
& \perp カ \angle て \cdot 0-{ }^{q} \forall 00 Z I=\Lambda \\
& 1 \forall \angle Z \cdot 0-{ }^{q} \forall 002 I={ }^{q} \forall^{7}+t \angle Z \cdot 0-q_{\forall 00 Z T}=\hat{1}^{\wedge}{ }^{q} \forall
\end{aligned}
$$

notsuaf [e!

-等
(σ)
(r)
(2)

(-)
(1,0)

2.

1 !

$$
\frac{z^{p q}}{W 9}=\frac{1}{-\frac{2}{p} W}={ }^{q 7}
$$

7ar 5 ग्Ts

$$
\begin{aligned}
& (\lambda-0 \lambda) \\
& \frac{p q}{!\perp 3}=\stackrel{!q}{+}
\end{aligned}
$$

Mr！

和
和
和

合

 $r:$
.

$$
\text { רו } 1 \text { ו }
$$

or $1 \rightarrow-0 \lambda=$

$$
\begin{aligned}
& \left(\frac{p}{d-p}\right) \frac{\tau^{p} q^{q}}{d W g}=\left(\frac{p}{d-p}\right)^{q^{\prime}}=q_{t}(10-0) \\
& (x-1 x)
\end{aligned}
$$

$$
(x-(d)
$$

$$
\frac{2^{p q^{q}}}{d W 9}=\frac{q^{q}}{7 \partial u_{1}}=q_{f}
$$

和

$$
\frac{\tau^{p}}{d W g}=d q \frac{\tau^{p q}}{W 9}=z_{1}
$$

די" $d q_{\downarrow}^{q 7_{\perp}}=7 \partial u_{\perp}$
Q7trem
 -

$$
d 670^{\circ} 0=\frac{98^{\circ} \cdot 2 \times 2}{d\left[82^{\circ} 0\right.}=\frac{q_{\forall}}{1}={ }^{7} t
$$

$6 \pi \mathrm{~m}$

$$
d\left[82^{\circ} 0=(5 \cdot L)(9 I) d \downarrow \varepsilon 200^{\circ} 0=d q q_{t}=1\right.
$$

$$
d \downarrow \varepsilon 200^{\circ} 0=\frac{G I}{G L \cdot \varepsilon-G I} d\left[\varepsilon 00 \cdot 0=G 7_{f}\right.
$$

T.
NT

d $1 \varepsilon 00 \cdot 0=\frac{z^{(0 \varepsilon) 9 \tau}}{(G \cdot L) d 9}=\frac{\tau^{p q}}{W 9}=97 \downarrow$

Sor

$$
N \rtimes \quad 9 \cdot 2 \downarrow \varepsilon=d
$$

$$
\left.\left(d \triangleright \vdash 0^{\circ} 0\right)\right)^{\circ} \tau-06 \angle \varepsilon=d 6 \nleftarrow 0^{\circ} 0
$$

$$
0 G 0 \varepsilon>{ }^{\wedge}+\forall \cdot 1-06 \angle \varepsilon={ }_{i}^{7} \downarrow
$$

Forro．

$$
d \rightarrow+0^{\circ} 0=\frac{\left(98^{\circ} \cdot 2\right) 8}{d}=\frac{\forall}{d}={ }^{\wedge} f
$$

$$
\begin{aligned}
& (d-\alpha)\left(\frac{Z}{(I-u) d} \frac{\tau^{d} \varepsilon^{u \forall}}{W Z I}=\left(\frac{d u}{d-d u_{0}}\right) \frac{\tau^{d} \tau^{u \forall}}{d W 9}=f_{t}\right.
\end{aligned}
$$

$$
\begin{aligned}
& (\lambda-\lambda \lambda) \\
& \frac{2^{\hat{K} \forall 3}}{\kappa W}=\frac{I}{\hat{K} W}=f_{f} \\
& \text { 有 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 位 } \\
& \therefore \text { ค }
\end{aligned}
$$

$\because \Gamma-1+1=$

$$
d \varepsilon \varsigma 0^{\circ} 0=\frac{\varepsilon 09 I}{\left(G Z^{\circ} I I\right)\left(G^{\circ} L\right) d}=\frac{\tau^{\kappa} \forall}{K W}=7_{\downarrow}
$$

$\uparrow:$

S".

而 $1 \downarrow-1 \downarrow=$

50 $\varepsilon(d \dot{u})\left(\frac{d}{\forall}\right)-\frac{Z I}{I}=I$

* م
r'or or $\nabla^{\circ} G={ }_{Z}\left(\varepsilon^{\cdot} \varepsilon\right)+{ }_{Z}\left(\varepsilon^{\cdot} \nabla\right) /=u$
n $6^{\circ} z=\frac{(999 t) z}{000 L Z}=u$

$\varepsilon^{\circ} \nabla=\frac{G^{\cdot} L \times \cdot \downarrow \varepsilon 8 I T}{0000 L Z \times 9} /=u$

*

$$
\frac{d y}{W 9} \Lambda=u
$$

和 * $-p:$

$$
\pi r\left(1-\nabla \lambda \sigma_{5} r\right)
$$

 -

 leq $969=\frac{88^{\circ} \varepsilon \times 0 T}{000 \angle Z}=\frac{\forall \mathbf{3}}{d}={ }^{\wedge}+$ Leq 998I $=\frac{\text { G9عt }}{(G I)(0 Z) 000 L Z}=\frac{\tau^{K \forall 3}}{\kappa W}=\gamma_{\downarrow}$

$$
\begin{aligned}
& f_{t}=\frac{M y}{\Sigma A y^{2}}=\frac{27000(20)(11.25)}{2182.5}=2784 \text { bar } \\
& f_{y}=\frac{P}{\Sigma A}=\frac{27000}{8 \times 3.88}=870 \quad \text { bar }
\end{aligned}
$$

تنش مجاز كششى بیِّجِّ درين حالت خواهد شد .

$$
F_{t}^{\prime}=3790-1.4 f_{y}=3790-1.4 \times 870=2572<2784 \quad N G
$$

$$
\text { لذا درين حالت نيز از } 10 \text { ییی؟ }
$$

$$
\text { † + } 11 \text { = طرح خميرى اتصالات با ييج مقاومت بالا }
$$

 (

مسائل

ا

(1) load factor
(2) service load

ئ كنيد . Tا انتظار لمزش اتصال را در اثر نيروى وارده داريد

آينه

است با خحير • سطح برشى بر قسمث دندانهدار پيجها ميكذرد .

(
 مسأله را براى دونوع اتصال بر شی و اصطكاكى حل كنيد . قطر بيتجها با

شكل (rA-r)

位 دندانمدار ريتهها باشد حل كنيد .
شا
 . است A 325

شكل (rq-r)

L120×12 12 شكل
(Fo - Y) به ورق اتصال .

پr

فرضمىشودكه سه سور'خ در بال آزاد نبشثى وحود داشته با شد . پیتجهاى مورد نظردر بكـرد يف

- A ب A 325 و قطر Tنها Tr ميليمتر بوده و سطع برش نيز از قسمت دندانهدار بـيیهها نكذرد . نوع اتصا ل را برثى مرض كنيد .

شكل

- 9 - Y

ا ا 1 -

ايي مسأله را بـدو روشارتجاعى فد يمى و ارتجاعى اصلاح شده حل كنيد .

شكل (fr-f)

 شدها است. الف -روش ارتجاعى قديمى
ب - روش ارتجاعي اصلاع شده

د - روش محاسبانى پيشنها دى
نتايج بدست آمده را طى جدولىبا يكديكر مقا يسه كنيد.

شكل (ff-p)
| I - Y

تيجهها وافع شده است.

الـف ــاز روش ار تجاعى قديمىى استفا دهنو د .

شكل

A325 1
 دندانهدار پییها است با دو روش زبر مساله را حل كنيد .
الف - روشار تتجاعى قد يمى
ب - روش مقاومت نهابى با ضريب اطمينان r/ه

و

الف - روش ارتجاعي قديمى
ب - روش ارتجا عياصلاح تـده
〒 - روش مقاوصت نها بیى با ضريب اطمينان

شكل (fy-f)
(

الـف - روش ارتجاعـى قد بيمى
ب/ Y/

شكل (FA-F)

- IY - Y
 T T أنها اتصال برشى فوقالـذكر با دو روث زير محا سهـ كنيد .

الـف - روش ارتجاعى تديمى
 Tا با برطبت ضوابطط AISC اين اتصالمناسب است .

19- f首 $\frac{Y}{\Lambda}$ زير را با هم مقا بيسه كنيد .
الـ - روشارتجاعى قديمى
ب -
ضخامت نبثى ما را جهت جلوكبرى از لهيدكى سوران معين كنبـ .

شكل (
(Yo- Y
 كنش خواهند بود) . A325 5 - +1 - \uparrow

 حداكثر نبشى ها استغاده خواهد شد .
rrv/

- T T T Y Y

الـف ـاز رونت ا تصال اصطكاكى ا ستيفاده شود .

شكل (

1. C. Batho and E. H. Bateman, "Investigations on Bolts and Bolted Joints," Second Report of the Stee! Structures Research Committee. London: His Majesty's Stationery Othec, 1934.
2 W. M. Wilson and F. P. Thomis, "Fatigue Tests on Riveled Joints," Bulletin 302, Engg. Experiment Station, U. of Illinois, Urbana, Ill., 1938.
2. A. E. R. De Jonge, "Riveted Joints; a Critical Review of the Literature Covering Their Development." New York: American Society of Mechanical Engineers, $19+5$.
3. "Symposiunt on High-Strength Bols," Proc. AISC' National Engineering Conference, 1950. pp. 22-43
4. William 11. Munse, "Research on Bolted Connections," Transactions, ASCE, 121 (1456), 1255-1266.
5. "Rivets and High-Sirength Bolts, A Symposium," Transactions, ASCE, 126, Part II (1961), 693-820).
6. Specifications for Siructural Joints Using ASTM A325 or A490 Bolts, Research Council on Riveted and Bolted Structural Joints of the Engineering Foundation, Feb. 4, 1976.
7. John W. Fisher and John II. A. Siruik, Guide to Design Criteria for Bolted and Riveted Joints. New York: John Wiley \& Sons, Inc., 1974.
8. John L. Rumpf and John W. Fisher, "Calibration of A325 Bolts," Joumal of Siructural Division, ASCE:, 89, ST6 (December 1963), 215-234.
9. G. H. Sterling, E. W. J. Troup, E. Chesson and J. W. Fisher, "Calibration Tests of A49 H ligh-Stachgth Buhts," Journal of Structural Division, ASCE, 91, ST5 (October 1965), 279-298.
10. Kichard J. Christopher, Geofrey L. Kulak, and John W. Fisher, "Calibration of Alloy Slect Bolts;" Jomrnat of Structaral Division, ASC:E, 92, ST2 (April 1966), 19-40.
11. W. C. Stewart, "What Torque?," Fasteners, 1, 4(1944), 8-10.
12. G. A. Maney, "Bolt Measurements by Electrical Strain Cages." Fusteners, 2, 1 (1945), 10-13.
13. G. A. Maney, "Predicting Bolt Tension," Fasteners, 3, 5 (1946), 16-18.
14. J. W. Fisher, P. O. Ramseier, and L. S. Beedle, "Strength of A440 Steel Joints Fastened with A325 Bolts," Publications, IABSE, 23 (1963).
15. John H. A. Struik, Abayomi O. Oyeledun, and John W. Fisher, "Bolt Tension Control with a Direct Tension Indicator," Engineering Journal, AISC, 10, 1 (First Quarter I973), 1-5.
16. Desi D. Vasarhelyi. Said Y. Beano, Ronald B. Madison, Zung-An Lu and Umesh C. Vasishth, "Effects of Fabrication Techniques on Bolted Joints," Transactions, ASCE, 126, Part Il (1961), 764-796.
17. R. A. Hechtman, D. R. Young, A. G. Chin, and E. R. Savikko, "Slip of Joints Under Static Loads," Transactions. ASCE, 120 (1955), 1335-1352.
18. Robert T. Foreman and John L. Rumpf, "Static Tension Tests of Compact Bolted Joints." Transactions, ASCE, 126, Part II (1961), 228-254.
19. Gordon H. Sterling and John W. Fisher, "A440 Steel Joints Connected by A490 Bolts," Journal of Structural Division, ASCE. 92, ST3 (June 1966), 101-118.
20. Desi D. Vasarhelyi and Kah Ching Chiang, "Coefficient of Friction in Joints of Various Steels," Journal of Structural Division, ASCE, 93, ST4 (August 1967), 227-243.
21. George C. Brookhart, I. H. Siddiqi, and Desi D. Vasarhelyi, "Surface Treatment of High-Strength Bolted Joints," Joumal of Structural Division. ASCE, 94, ST3 (March 1968), 671-681.
22. Ronald N. Allen and John W. Fisher, "Bolted Joints With Oversize or Slotted Holes," Journal of Structural Division, ASCE, 94, ST9 (September 1968). 2061-2080.
23. Sherwood F. Crawford and Geoffrey L. Kulak, "Eccentrically Loaded Bolted Connections," Journal of Structural Division, ASCE, 97, ST3 (March 1971), 765-783.
24. Geoffrey L. Kulak, "Eccentrically Loaded Slip-Resistant Connections," Engineering Journal, AISC, 12, 2(2nd Quarter 1975), 52-55.
25. T. R. Higgins, "New Formulas for Fasteners Loaded Of Center," Engineering News-Record (May 21, 1964).
26. A. L. Abolitz, "Plastic Design of Eccentrically Loaded Fasteners," Engineering Journal, AISC, 3, 2 (July 1966), 122-132.
27. Carl L. Shermer, "Plastic Behavior of Eccentrically-Loaded Connections," Engineering Journal, AISC. 8, 2 (April 1971), 48-51.
28. T. R. Higgins, "Treatment of Eccentrically-Loaded Connections in the AISC Manual," Engineering Journal, AISC, 8, 2 (April 1971), 52-54.
29. J. W. Fisher, "Behavior of Fasteners and Plates with Holes," Journal of Structural Division, ASCE, 91, ST6 (December 1965), 265-286.
30. T. R. Higgins and W. H. Munse, "How Much Combined Stress Can a Rivet Take?," Engineering News-Record (Dec. 4, 1952), 40-42.
31. Eugene Chesson, Jr., Norberto L. Faustino, and William H. Munse, "HighStrength Bolts Subjected to Tension and Shear," Joumai of Structural Division, ASCE, 91, ST5 (October 1965), 155-180.
32. Hans William Hagen and Richard C. Penkul, "Design Charts for Bolts with Combined Shear and Tension," Engineering Journal, AISC, 2, 2 (April 1965), 42-45.

جوش

اتصط ل قطعات فلزى بكمك حرارت به نحوى كه حرارت وارده آنها را به شكل خميرىو يا
مذاب درآورد ، مرآ يند جو شكارى ناميده مىشود . امكان دار دد حهت اتصطل ل جوشى ، تطمات

 نشاندهاند . اين نوع جوشكارى اولين اقدام بـشر در متصل نمودن فلزات بـه يكديكر است . با با

 .

(1) Winterton
(2) forge welding
(3) Vulcan
(4) brazing

يكى از مههترين مرَ يند هاى جوشكارى را بیريزى كرد .

 فلزات هر داخت بدنبال Tا
 ظهور 'وردند .

 امروزه بيش از هo مرآ يند مختلف جوشكارى وجود دارد كه به ككك آنها مى توان فلزات
(1) Elihu Thompson
(2) Coffin
(3) Zerner
(4) Slavinoff
(5) Strohmeyer
(6) Thomas Fletcher
(7) Fouche, Picard

خالص و يا آليازى را بهم متصل نمود . روشهماى جوتكارىمناسبى كه ازآنهادر ساز ههاینولادى استعاده مى شود در بند (
 حرارت با دهاى مناسب به تلفيق و اتمال نلزات مى بردازد ـ ـ درين درين عمل ممكن است از از فشار

 سطحى فلزات كمك مى نمايا د .

استفاده نمى شود .

 قطعات مولادى جدار نازكمى توان از فرآيند جوشكارى مقاومتى نيز بمورت عمدهاري استفاده
(1) Solid State

(SMAW)) جوشكارى خود حفاظ با قوس الكتريك

مولادى استـ، گاهي اين نوع جوشكارى را حو شكارى با الكترود دستي نيز مىكويند . درين جوشُكارى حرارت براثر قوس الكتريكى كه بين التكرود هوششدار و فولاد قطعات مورد اتشال

$$
\begin{aligned}
& \text { شكل (0 - 1) - جوشكارى خودحفاظ با قوس الكتريك }
\end{aligned}
$$

الكترود بوششدار به تدريج ممزمان با پيششرفت جوشكارى ذوب شده و مصرفـ میشود ،
 جذبقلز مذاب میگردد . جنس پوشش الكترود شبا مت به خاك رس دارد زيرا كه از مخلوط موادى نظير فلوريدها ، كربـناتها ، اكسيدها ، آليا زها و سلولز است ، اين مخلوط بــس از
 انتغال فلز از الكترود به مسل اتصال بدون أعهال فشار و صرفا " به علت جذ وبـ ملكولىو
كشش سطحى انجام مىكيرد . حفاظت قوس الكتريكى سببـمىكردد كه فلز مذاب در محوطءء
(1) Shielded Metal Arc Welding

قوس و در حوضجهء مذاب از آلودكَى جوى دراهان بماند و ازتشكيل تركيبات اكسي٪زن و
ازت كه سبــ ترد شدن ملز جوشى مى شوند جلـوكبرى شود .
پوثش الكترود وظا يف زبر را احرا مىكند :

 r نا منا سب اكسيرن و ازت طي كمل جوشكارى ايجاد كرده و بكمك سرباره از سرد شدن سربع ملز جوش ممانمت مى كند .

 Ksi اعداد60و70بيانكر مقاومتكششى فلزالكترودبرحسب E 70 X X, E 60XX علائعي نتظير ودورقم X Xعد از اين اعداد معيي كنـده؛ وضعيت حوشكارى ، نوع جر يان برى ، توع هوشش
 براى فولادى معين به كتب راهنما نظير مراجع (5 (19 - (19) مراجعه نما يـد .

جوشكارى با قوس غوطه دد (SAW) '

شكل (
(1) Submerged Arc Welding (SAW)
(2) Flux

 فلز جوش استغا ده همى شود .

در موارد لزوم مىتوان بدانسها مراجعه نمود .

و يا نيهه خودكار استغا ده مىشود .
جوثكارى با حفاظ كازى (GMAW) ()

كازيست كه ازطريق تهانجه جوشكارى به آنقست وارد مى شود .

در ابتدای كار متطاز كازها
 تنها و با بهمراه كازهاى بیى ثر در جوشكارى نولاد كاربرد مراوانى بيداكر ده است .

شكل (د -
(1) Gas Metal Arc Welding

جوش/HVV

از كاز آركن مىتوان براى حوثكارى كليه؛ هلزات استغاده كرد . با با اين وحود بدليلـهالا

 Tا, اكن و

نيز عهدهدار مى باشد :

r ا r Y

 CO 2

از جو شكارى با حعاطكا وى بكمك كار
كم و مولادهاى مقاوم مصرفى در سازهماى فولادى (بل و ساختمان) بخخوبى التفاده كرد .

جوشكارى با الدكترود مغزه يودرى ' (FCAW) (

اينكه الكترود اين نوعجوثكارىبهشكلمداوم در تپانجه حوشكارى تزريق شده و از نوعى است
(1) undercut
(2) Flux Cored Arc Welding

يا به كا تالوكى سازندكان مربوطه مراجعه نمود .
-

 كرد

 ترار دارند درحالى كه برخى از نولادهاى اعلا ممكن است داراى تجزيهء ايدهآل حدولزير نباشند .

جدول ((- 1) -تجزيهء ثيميايى ترجيجى فولادهاى كربنى با جوش يذيرى مناسب

درصدكههنيازبهمراقبتويزهد ارد	درهد هتعارف عنصر	نام عنصر
0.35	0.06-0.25	كربن
1.40	0.35-0.80	منكنز
0.30	حداكثر	سيليسيم
0.050	0.035 "	كوكرد
0.040	0.030	فسفر

جـوش/H9

زمانى كه در كار خانه هاى فولاد سازى از شمشى بخصوص ،نيمر خهاى متعددى سا ختهم يْيشود،

 تشكبل دهـدهء عولاد حالت بخصوصى داشته باشد مى توان از روشاحوشكارى منا منا بـيى به منظور دـ ستبابى به جوش محكم و مطمين أستاده نـود .

- - - - انواع درزهاى جوش

(() T ر

درز كنج (د)

شكل (
درز لب به لب

عموها " هركاه اتصال ورتهاى تخت با ضخامت يكسان و يا تقريبا " يكسان مورد نظرباثد
(1) butt
(2) lap
(3) tee
(4) corner
(5) edge

 .

درز رويهم

اين نوع درز دأراى محاسن زير است :
 درين حالت ميتوان قطعات را بمنظور ترميم خطاى ساخت و يا خطاى طول قطهه اندكى حابَبـا

> نـود .
r

 رويهه قرار كرفته و براى جوشيا

 رها نـا نمود) .

(1) groove weld
(2) fillet weld

جوش//H

(الف)

(ب)

(c)

(د)

(-)

شُكّل (

قرار بود اين اتصال توسطنوعى درز اتصال ديكر طراحى شود تا جههحدى اشكالات ساخت , نهب بهمراه مىداشتـ.

از اين نوع درز انصال در ساخت تطعات T و I تكل ، تبر ورقها ،اتصالقيدهاي تقويتى
 مىكردد (شكل ه -
 الستفاده در اين نوع درز جوش كوشهو يا جوش لب است .

$$
\begin{aligned}
& \text { درز كنج } \\
& \text { از اين وع درز اتصال در ساخت قطعات قوطى شكلى كه براى ستونها و با تيرها ئى كه } \\
& \text { نياز به مقاو مت پبچشى بالايى هستند استفاده میى شود . }
\end{aligned}
$$

درز ييشانى اين نوع درز اتصال بك نوع درز مقاوم و محا سباتى نيست و عموما " از آن بهمنظور حفط

 درزهاى اتصال موقالذكر را برای سازه بهيسندد .

- - - انواع جوشها

شكل (
(1) Slot
(2) Plug

هريك از اين نوع جوشها داراى مزيت مخصوص به خود ميباشد . برطبق آمار نتريبىى ميزان

جوش لب

 بايد مقاومتى برابر با خود تطعه داشته باشد . جوثى كه داراراى مقارمتى حداقي

 با نفوذ عبر كا لـ بايستى ضوابط خاص طراحى رعايت كردد .

(الف) جوشمربع

(د) نيم جناعى

(ب) جوش جناعى

(ع) جنا عى دوطرفه

() نيم لالـهاى دو طرفه

شكل (Y- () ــانواع جوش لب

 Tادهه نمودن محل جوشكارى و هزينه جوش دارد . همانكونه كه در شكل (ه - 1) نشان داده
شدهاست از جوش لب مىتوان براى درز انصال نـيز استغاده نمود.

جوش كوشه

 اتمال در صورتى كه با قيجى و يا مشعل برشكارى بر يده شده با شند عملا" برا برا ابنـنوع حوش مورد تبول خواهد بود .

شكل (
جوش انكشتانه(

 انكشتانه و كام بهمنظور جلوكيرىاز كمانش تططاتى كه داراى اتصال رويهه مى باشند نيز مفيـ خواهد بود. .
(1) Slot
(2) Plug

(ح) اتصال لولـهها

شكل ((- -) - موارد استعمال متعارف جوش كوشه

شكل (0 - ا 1) ــ كاربر د جوشهـاى ا نگَثتانه و كام به همر اه جوش كوشه

$$
0 \text { - } 0 \text { - علائم جوشكارى }
$$

 اكر بخواهيم جزئيات دستوراتلازم جهت اجراى اتصالات را روى نقشهها ذكر كنيم نياز بـه علائم جا معى درين مورد خواهيم داشت
به منظور تبادل افكار بـين طلراح و سازندهء سازه؛ فولУدى علائم سادهاى كه بـيانكنـده•
 آمريكايی جوشكارى AWS " كه در شكل (D (11 (نشثان داده شده است، نوع ، اندازه ،

طول و موقعيت حوثى را به همراه هر نوع اطلاعات لازم ديكُرى مشخص مىكند . اكثر اتصالات سازههاي هولادى نياز به علائم و دستورات حاصى ندارند و تنسها آنجه
 مندرج در ضوابط AWS مراجعه نمود. .
ممكن است حس شود كه تعداد علائم زياد و خسته كنـنده است ب بابيستى دقت كرد كه رونّ نماينش حوشها غـملا" بـه چند نوع اصلى تقسيم شده كه مجموعا" دستورات كاملى را تشكيل مىدهند . اكُ اتصال هخصوصى در اغلب قسمتهاي سازهاى بكار مىرود شايد كافى

كات ســ :

AWS شكل (ه - 1 ا 1) علائم استاندارد جوشكارى بر طهق ضوابط

شكل ((IT-) - علائم متعارف جوشكارى
 اتصال مشخصى را با علائم جوشكارى معيى مىكنيم با يد اطالاكات دا دادهشده انا حدى با باشد كه

هيج سئوالى براى مجرى طرح باقى نكّارد (نظظير شكل ه - ها
 كه جوش نيم جناغى ورق اتصالى را كه نبشى را به ستون وصل مىكند در كاركاه معلوم كرده
(1) typical detait

$$
\text { = - = = } 0
$$

 با علم بدان عوامل ارائه كند .

انتخاب صحيح الكترود ، دستكاه حوث (1) و فرآ يند حوشكارى (r)
تس از آنكه نوع الكترود بر حسبب مقاومت قططات فولادى مورد حوش انتخاب شورد شود

 جريانى كتـر از شدتحريان حداكي كم ازبي نظر بلامانع خواهد بود .

شكل (0 - ه 1 |) - وضعيتهای جوشكارى

جون نشست جوش بر اساس نيروى الكترومغناطيس صورت مى يكيرد و نيروى ثنل درين

(1) welding apparatus,
(2) Welding Procedure
 , اراءاءه شود .
آماده كردن مناسب لبه؛ اتصالات

(الف) - نبيم حناغى با لبه نيز

(د) - جناغي دوطرفه با يشت بند ميانى (ج) - نيم جناغى با ديواره

$$
\text { شكل (ه - ا } 1 \text {) - ـانواع مختلف و متدا ول آهاده سازى لبهء ورقها }
$$

(1) root opening
(2) backup plate
(3) land
(4) Spacer

جهت جلوكّبرىاز سوختن لبهء تيز ورقها استفادهمى ششود ، در بك جنين حالتى حتما" بايستى

كنتر ل ا عوجاج

 مى شود و بعد از آن اقدام به جو نكارى يكسره؛ أين تطهات مى منما يند .

شكل (ه - -

(1) preheat
(2) interpass

جوش/r

طرح غلطط

شكل ($1 Y$) - ا اثر محل جوثكارى

L

(الف) - در ابتدا

ا

شكل (

آنهـ ذيلا" ذكر شده است خلاصهاى از روشهاى ممكن حهت تقليل اعوجاج حاصل از
جوثكارى ا است .

1 ـ نـيروى انقباض را با رعايت نكات زير به حداقل بر سانيد :

د ـ از جوش منقطع (1) حداتل در اتصالات مقد ماتى الستفاده هـ شود .
هــــ در بر كردن جوشهاى منقطع جهت جوشثارى از انتهاى جوش منقطع بـه سمت ابتداى جوش و به عبارت ديكر جهت هر قسمت أز جوشكارى در خ'لاف حهت ادامه كلى
(1) intermittent weld

حونكارى باشد .

r ا

عكـ يكديكر عمل خوا هد كرد .

ب- آر جوشهاي منقطع با ترتيب حوشكارى يك در ميان در يك طرف ورق استفاده

> ع ـ با استفاده از كوبيدن (1) ورق معوج را صاف كنيد .

-

 نده است.

اخنلاط ناقص
احتلاط ناقص زمانى بوجود مى آيد كه فلز جوش با فلز مبنا بخخوبى احتلاط بيدا بكا بكرده

(1) peening
(2) incomplete fusion
(3) porosity
(4) undercut
(5) slag

جوش/

(ب) - نفوذ ناكا مل

خلل و فرج در حوش

(ج) - خلل وخرح در جوش

(هـ) - ا اختلاط سرباره با جوش

(د) - كود افنتادكى

نفوذ نامناسب جوش
 داد ه شده است كمتر از آنیه ضوا بـط جو شكا رى معين مىكند عمق پیيدا كند . جوش با با عمق غير

لبهءورقها ، كاربرد الكترود تطور ، شدت جرياي نامـا سب (پاءين) و يا بالا با بودن سرع جوثكارى خواهد بود . طراحى درر انصال لا بايستى بر اساس ضوابـط AWS و يا ضوابط قابل قبول ديكرى با شد .

تخلخل جوش

 بوده و يا اينكه استغاده از بشتبند نا بابجا باشد

كود افتادكى

 با ذوب فلر حوشاضاعى ترميم نمود .

اختلاطسرباره با جوش

جنـين ترك خورد ديى جلوكيرى نتود .

$$
\text { ه - } 9 \text { = بازدسى و كنترل }
$$

 موجود انتخاس كرد .

 با جوشى مناسب جا يكا يمزين كردد .

 . نمود

(1) welding gage
(2) ultrasonic
(3) radio graphic
(4) magnetic particle

جوشـ/ raq

را با فركانس بسيار بالا از قسمت جوش شنده مىكذرانند ، اكر جوش معيوب با شـد روى عبور

 افراد مجرب سا خته خواهد بود .

- ه - 0

 ايجاد كند ، به همين ترتيب شكلى را كه قادر بـه انتنقال بار از يك قطعه بـه قطعهء ديكر باشد
بـار بَرَد .

 جوشى به مقطعى كوجكتر هنتهى مى شوند

「 - متدا ر الكترود مورد نيا ز جهت جو شكا رى
 + ه - هزينه بالاسرى كلى
 كار به سازنده هستكى دا شته و سازنده پس از اتمام كلى طرح انتخاب مى شود . . در هر صورت

「

$$
\begin{align*}
& \text { x } \tag{1-0}
\end{align*}
$$

در حال حاضر انصال جوشى اكثر فريب باتغأق اتهالات كارخانماي را را تشكيل داده و

(1) Donnelly

> حداقل اندا زء جوش

به منظور تأ مين اختلاط كا مل فلز مبنا و ولنز جوش و بهحداقل رسانيدن اعوجأج ، ضوابط

 در جدول (حداكثر اندازءء (لا لجوش كوشه كنار ورقهوها

كوثه برابر با ضذامت قطعه خوا هد بود (شكل ه - بr الغ) .

حدا قل طول مؤثرّ جوش كوشه

(1) weld size
(2) effective length

	$\begin{aligned} & 45 \\ & 45 \\ & 7, ~ \\ & \square 7 \end{aligned}$											\| مـروراخ	
1/16	0.55		-	-				-	-		0.55	$7 / 16$	25.20
$1 / 6$	0.70	0.80	-	-	-	-	-	-	-	-	0.60	4716	39.50
$3 / 16$	0.85	0.95			-				-		0.80	${ }^{1 / 16}$	57.50
$1 / 4$ $5 / 16$	1.00	1.25	1.35 1.95 1	1,75 270	1.30 1.80	1.35 1.95	1.20	1.30	-		1.00	$13 / 16$	78.80
3/8	1.45	2.55	2.70	3.60	2.50	1.95 2.70	1.45	1.75	1.75		150	196	104.00 132.00
$9 / 16$	2.00	3.30	3.45	4.95	3.15	3.45	1.85 2.40	2.90 2.90	2.20	2.50	1.50 4.80	$1 \begin{aligned} & 17 / 16 \\ & 1\end{aligned}$	132.00 165.00
t/2	2.60	4.20	3.80	5.10	3.50	3.90	2.90	3.70	2.70	3.10	5.55		
5/8	3.80	6.30	5.55	8.00	5.05	5.55	4.70	5.40	3.80	4.30	-		
3/4	5.30	8.90	7.85	11.50	7.10	7.90	5.45	7.55	5.05	5.85			
7/R	7.10	12.00	10.20	15.30	9.10	10.22	7.05	10.10	6.45	7.55			
1	9.15	15.50	12.80	20.15	11.50	12.95	9.15	13.25	8.20	9.65			
$11 / 8$	11.50	19.50	15.70	25.60	14.15	15.95	11.15	16.45	10.00	11.80			
$13 / 4$	14.10	24.00	19.00	35.20	16.90	19.10	13.15	19.85	11.90	14.10			
13/8	17.00	29.10	22.50	35.70	20.15	22.75	15.70	24.00	14.10	16.70			
$11 / 2$	20.60	34.50	26.40	42. k 5	23.60	26.75	18.30	28.10	16.40	19.64			
$15 / 8$	-	-	30.90	49.80	27.30	31.20	20.80	32.50	18.70	22.60			
$13 / 4$	-	-	35.40	59.00	31.20	35.60	23.40	36.90	21.00	25.40			
17\%	-	-	40.00	69.20	35.50	40.40	26.20	41.15	23.30	28.20			
2	-	-	45.00	79.00	40.60	45.50	29.00	46.41)	25.60	31.10			
$21 / 4$	-	-	-	-	-	-	-	-	-	3\%.ki	-		
2 3/R	-	-	-	-	-	-	-		32.90	-			
$21 / 2$	-	-	-			-	-	-	35.00	-			
$23 / 8$ 2 $2 / 4$	-	-	-	-	-	=	-	-	38.70	-			
2 7 /	-	--	-	-	-	-	--	-	jask	-	-		
3	-	-	-	-	-	-	-	-	+4.149	-	-		

جدول (غير كامل

اندازه هدافلضضاهـاهت موءثر حوش لب بانفوذ غيركامل (mm)		ضخامضضيم تر بنورق مورد اتسال (mm)
r	r	$T<9 / 0$
Δ	0	$9 / 0<T<1 r / 0$
¢	¢	$1 r / \Delta<T<19 / 0$
\wedge	\wedge	19/0<T<rA/1
10	\wedge	$r \lambda / 1<T \leqslant \Delta v / 1$
ir	\wedge	$\Delta Y / 1<T<1 \Delta T$
19	\wedge	$10 r<T$

* اندازه جوش كوشه برابر با يك ضلع حوش است . نيازى نيست كه اندازء، حوث بر بيش از
 به نلز ضخيم بر سد نا توشىيمحكم بوجود آيد .

شكل ((Y ه) - حداكثراندازه جوش كوشه

ثكل ((- - ا) - بركثت جوش در انتـها

طول اسمى جوش را بايستى برابر با $\frac{1}{4}$ طول موءثر حوش كرفت .

هـ -

متنا سب با مقدار بار طراحي بوده و در حوشكارى نيز از الكترود مناسب ! استناده شود .

 قطعات مورد اتصال وجود دارد .
 معمولى جهت جوشكارى استغاده شده باشد و كيفيتحوشا

 تحقيقات صنعتى ايران استخراج ثده است كرفته مىشود .
(1) end returns
(2) effective area

جدول (ه -

$9 r_{0}$	bar	برش در جوش كوشه
9०。	bar	
11co	bar	كشش در دو شو لـ
1400	bar	فشار در جوش لــ

 مطابق با ارقام جدول ((- ه د درنظر كرمت.

جدول (ه - ه) -تنشهاى مجاز جوشٌ در صورت مصرفالكترودهاى 60 (ها

$$
\begin{aligned}
& \text { بrgs bar برش در جوش كوشه }
\end{aligned}
$$

$$
\begin{aligned}
& \text { برش در جوش انكشتانه وكام }
\end{aligned}
$$

$$
\text { ه - } 1 r \text { = سطح مؤثر جوششها }
$$

 جوش بدست خواهد آهـ آد
 عرضى كه ا امكان كسيختكى در فّن مقطع وجود داشتن باشد ضخامت موءثر حوش كفته مى شود.
(1) effective throat

جوش لب

ضحا مت موءث جو ش لـب با نفوذ كامل برابر Lا ضحامت نازكتر ين ورق مورد اتصال حواه هد
 يا سبـم حنا غى با ند بـشرطى كه زاويهء درر اتصال مـاوى يا بـينتر از 45° و ككتر از 60° ما شـد

خوا هد بود .

AISC تشكل (Q

جوش كوشه
همانطور كه در شكل ((Q -

 درمورد جوش غوطهور (SAW) ضوابط AISC بدليل مرغوبيت نوع حوشتصحيهاتى دراندازه

شكل ((-

 Tنرا ارزش حوش خواهيم كفت .

$$
R_{w}=t_{e} \times 920=a \times 0 / 707 \times 920=650 a \quad d a N / c m
$$

$$
\text { اكر از فولاد نرهه و با ا علا و از الكترودهاي } 60 \text { E استفاده شود ارزش حوش خواهد شد . }
$$

$$
R_{w}=a \times 0 / 707 \times 1265=895 a
$$

در اين دو را بطه مقدأر a برحسب سانتيتر 'است .
جوش انكشتانه و كام

 مجاز برشى جوش انكشتانه با كام خراهد بود .

مثال
نيروى برشى متاوم جوشا انگشتانهاي به قطر ז سانتيتر را سمين كنيد ، الكترود مصرنى

$$
\text { E } 60
$$

حـ :

$$
=\frac{\pi D^{\top}}{\psi} \times 1265=3974 \mathrm{daN}
$$

حداكثر اندازهء موءثر جوش كوشه

 تحمل بكى از قطعات حوش شده با شـد .

شكل (YY-ه) - حالات بحرانـى تنث براى يكى از قطعات جوش شده

 جوشها برابر با قد رت تحمل نيروى برشى ورق حوش شده باشد لـذا با يستى داشته باشيم : انكر مولاد نرهه و الكترود ازنوع متعارف باشد .
$650 \mathrm{a}<0.4 \times 2333 \mathrm{t}_{2}$
$895 \mathrm{a} \leqslant 933 \mathrm{t}_{2}$

$$
\mathrm{a}_{\max } \leqslant 1.04 \mathrm{t}_{2} \simeq 1.0 \mathrm{t}_{2}
$$

$$
(ب)
$$

اكر مقاطع e e-e g d-d

$4 \times 650 \mathrm{a}<2 \times 0.4 \mathrm{~F}_{\mathrm{y}} \mathrm{t}_{2}$

$$
\begin{aligned}
& a_{\max } \leqslant 1.44 \mathrm{t}_{2} \simeq 1.5 \mathrm{t}_{2} \\
& \text { (} \\
& \text { اكر از فرلاد نرمه و الكترود نوع E } 60 \text { ا استفاده شود }
\end{aligned}
$$

$$
\begin{aligned}
& 2 \times 650 \text { a } 00.4 \mathrm{~F}_{\mathrm{y}} \mathrm{t}_{1}=0.4 \times 2333 \mathrm{t}_{1} \\
& a_{\max } \leqslant 0.72 t_{1} \simeq \frac{3}{4} t_{1} \quad\left(\begin{array}{l}
1 \\
r-0)
\end{array}\right. \\
& \text { اكر فولادنر مهو الكترود از نوع } 60 \text { E باشد. } \\
& 2 \times 895 \mathrm{a}<933 \mathrm{t}_{1} \\
& a_{\max }<0.52 \mathrm{t}_{1} \simeq \frac{1}{2} \mathrm{t}_{1} \quad(ب r-\Delta)
\end{aligned}
$$

$$
\begin{aligned}
& \text { اكرفولاد از نوع نرهه و الكترود از نوع متشارف باشد . }
\end{aligned}
$$

جوشر/VIT

$$
\begin{aligned}
& a_{\max } \leqslant 0.72 \mathrm{t}_{2} \simeq \frac{3}{4} \mathrm{t}_{2} \\
& \text { (0) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { مثال ه - }
\end{aligned}
$$

ارزش جوش
است تعيين كنيد
:
$a_{\text {min }}=3 \mathrm{~mm}:$ برطبق حدول (, حداكثر اندازه‘ جوش كوشه برطبق رابطه؛ ((

$$
a_{\max }=\frac{3}{4} \quad t=\frac{3}{4} \times 8=6 \mathrm{~mm}
$$

شكل (

حتى اكر جوش دادهه شده برابر با 6 m m

$$
2 R_{W}=2 \times 650 \mathrm{a}=2 \times 650 \times 0.6=780 \mathrm{daN} / \mathrm{cm}
$$

وتتى طراحى اتصالات جوشى مورد نظر باشد ، بمانند طراحى انصالات بيهى و يرجى

 در شكل ((

 عرض دو ورق در ناحيه؛ انتال دارد د د

شكل (9 - 9) - نحوه تغييرات تنش برثى در جوش كوشه

جوش//rV/

دررهاى T شكل بسبار پيجيدهنر است . دربن نوع انصال جون حوش تمايل به دوران حول نقطهء C جهار برار مغدار سنوسط تنش ' ${ }^{\prime}$ میرسد

شكل (ه -

شكل (
(1) nominal or average stress

اكر قرار بود قبل از طراحى عر اتصال جوشى تحليل دتيق تنش انحام مىكرفت عمال "

 به تعيين تنش مجار محا سباتى اتدام نمود وبها ين ترتيب طراح خواه هد توانست با با استغاده از

 بـيار بالا جارى شده و بـد بن ترتبببار اضافى خود را به فلز حوش محاور خود منتقل خواهند كرد .
كندوكاودتيق در تحليل اتصالات حوشى عماذ " جندان مغيد واقع نخوا هد شد زيرا كهدر
اعلب مسا ثل طرأحى مهندسى نحووه؛ باركذارىبهصورت آنهنان دتيق معبن نمى باشد . در هر
 هحا سب را از توزيع واقعى تنش مطلع كرده و او را در نـحوه، تغكرش درمورد طراحي اتصالات جوشى يارى دهد .
= 10 - 0

 قبولى به بار وارده تحعيل نكتد .

جوش لب

 مثال
غر كاه در اتصال شكل ((
 ح
اكر جهت أتصال فوق از الكترود متعارف استفاده شده باشد ، تنش هماز كششى حوشلمب

جوش/rVA

برطبق جدول (ه - †) برابر با 1100 بار خوا هد شد . لذا ضخامت ورق به صورت زير معين مى شود .

$$
t=\frac{320 \times 100}{10 \times 1100}=1.9 \mathrm{~cm} \quad \mathrm{t}=20 \mathrm{~mm}
$$

درصورتى كه از الكترود E E0 E اـتغاده شود خواهيم داشت. :

$$
t>\frac{320 \times 100}{10 \times 1400}=1.52 \mathrm{~cm} \quad t=16 \mathrm{~mm}
$$

شكل (هr-a

واضح ا ست كه دربن مثال بيان صشا مت جوش و طول
بدليل نغوذ كا مل ' برابر با ضخامت ورق و طول آن برابر با عرض تسهه خوا هد بود .
مثال
 مل مل : T T متاومت لازم را داه داشته باشد (نوع فولاد نرمه است) .

قدرت كششى ورق برابر خوا هد شد با :

$$
T=A \times F_{t}=2 \times 20 \times 1400=560 \mathrm{kN}
$$

(ب)

شكل (r4-a)

در صورتى كه از الكترود متعارف جهت حوشكارى استفاده شود . مقدار محاز T حواهد

$$
T=2 \times 20 \times 1100=44000 \mathrm{daN}
$$

 درر جوش در هر صورت مطابق شكل ((جوش كوشه
طراحى جوش كوشه برا ساس تـن مجاز حوش وبه عبارت بههتر بستتى به ارزش حوش حوش كه در

 مورد جوش با الكترودد ستى مربوطبه اندازه؛ 8 mm در يكاساسجوشبودهوبرا'ى جوش غوطهور

جوس/ جVV

مربو طبه اندازء‘ 12 mm دريت پاساست. الُـتّ اكر حوش ديكرى در حوالمي حوش مورد ــ

 جوش دريك چنـين حالـتى سهلـتر خوا هد بود .
مثال

مطلوبـتـاندازه وطولجوش نوع فولاد نـرهه و از الكترود هاى معمولى ا ستفاده حـواهد شد .

(الف)
(ب)

با درنظر كرفتن ابعاد ورقهای مورد انصال اندازه؛ حداكثر ورحداقل حوش كوشهبرابربا مقاد ير زير خواهد شد :

$$
a_{\max }=16-1.5=14.5 \mathrm{~mm}
$$

الرشت جوش خواهد شد:

$$
R_{W}=650 \text { a } 650 \times 14.5=942.5 \quad \mathrm{daiv} / \mathrm{cm}
$$

طول حوش در هر طرف خواهد شد (در تنسمههالى كششى اين طول بـابستى كمتر از عرض تسیه -
$L>\frac{1}{2} \times \frac{420 \times 100}{942.5}=22.3 \quad L=24 \mathrm{~cm}$
اكر بخواهيم ورق را در عرض نـيز جوش دهيم طول جوثن در هر سمت طولى تسمه حوا هد شد .
$L>\frac{1}{2}\left(\frac{420 \times 100}{942.5}-17.5\right)=13.5 \quad L=14.0 L=17.5 \mathrm{~cm}$

 كذشت در امتداد محور مركز ثقل نبشىى عمل خواهد كرد . اين نيرو در ا'تصال توسط سهنبيروى

جوش/ PV9

 الب $\frac{d}{r}$ لنكّركيرى كنيم و جهت ساعت كرد را مثبت بكيريم خواهيم داشت :

$$
\Sigma M_{A}=-F_{1} d-F_{2} \frac{d}{2}+T_{y}=0
$$

$$
F_{1}=\frac{T y}{d}-\frac{F_{2}}{2}
$$

$$
(\Delta-\Delta)
$$

نسروى F2 براهر با حاصلضرب طول جوش و 'اززش جوش' خواهد بود و يا:

$$
F_{2}=R_{w} L_{w 2}
$$

تعادل نيروهاى افتى رابططه زير را بد ست مىدهد :

$$
F_{H}=T-F_{1}-F_{2}-F_{3}=0
$$

از حل معزمان مطادلات

$$
F_{3}=T\left(1-\frac{y}{d}\right)-\frac{F_{2}}{2}
$$

طرح انصال شكل (ه - هr ديكر منجر به جوشهاى متعادل كردد برطبق روش خلاصه شده، تدم هه تدم زيرانحام خواهد كرفت . 1 ا- تس از تصصيم كيرى نسبت به اندازه جوش و نوع الكترود مصرنى نيروى

$$
\text { طهق رابطهُ ((- }) \text { معين مىكنيم . }
$$

r
r r بـدار
(1) resistance of weld per cm

$$
\begin{equation*}
F_{3}=T-F_{1}-F_{2} \tag{9-0}
\end{equation*}
$$

ب

> مى نـما ئيم .
$L_{W 1}=\frac{F_{1}}{R_{W}}$
$L_{w 2}=\frac{F_{3}}{R_{w}}$

$$
(-10-0)
$$

اكر جهنقر يبا " نرجيح داده ميثود كه از طرح جوش متعادل مطابق روش فوق استفاده شود
 حالات طرح انتصا لات متعادل براى نبشى هاى تك، نبـشى هاى زوجو قطعات نظير آن الزامى نخخواهد بود .

مثال

خروج از مركزيت اتمال به حداقل خود بر سد مطلوبستت تعبين مشخصات حوشهماى موردنياز. صشامت نبشى بـيش از ضخامت ورق ا بـت .

L 160×10

شكل (rY-Q)
: حل
قدرت كثششى حداكثر نبشى بـرابر خوا هد شد با :

$$
R_{\mathrm{w}}=650 \mathrm{a}=650 \times 0.6=390 \mathrm{daN} / \mathrm{cm}
$$

$$
F_{2}=R_{w} \times 10=390 \times 10=3900 \mathrm{daN}
$$

$$
F_{1}=\frac{26880 \times 2.82}{10}-\frac{3900}{2}=5630 \mathrm{daN}
$$

$$
F_{3}=26880-5630-3900=17350 \text { daN }
$$

$$
L_{W 1}=\frac{F_{1}}{R_{W}}=\frac{5630}{390}=14.4 \quad L_{W 1}=15 \mathrm{~cm}
$$

$$
L_{w 2}=\frac{F_{?}}{R_{w}}=\frac{17350}{390}=44.5 \quad L_{w 2}=45 \mathrm{~cm}
$$

بدين نرتيب بايد از جوشهابيى با مشخصات شكل (ه-
 كنيم كه جوش تحتانى مى بايد برطبق توصيهء AWS در فاصلهء 2.5 از لبهء ورق خـاتمـه "يدا كند .

جوش انكتشانه و كام

هيزان مقاوت در برابر بارهاى وارده در جوش انكّنتانه و كام بستكى به سطعبرشي دارد

$$
\begin{aligned}
& T=0.6 \mathrm{~F}_{\mathrm{y}} A_{\mathrm{g}}=1400 \times 19.2=268.8 \quad \mathrm{daN} \\
& \text { حداتل و حداكثر اندازه夭 جوش گُوشه خو'هد تـد . } \\
& a_{\max }=10-1.5=8.5 \mathrm{~mm} a_{\min }=5 \mathrm{~mm}
\end{aligned}
$$

شكل (r

در درز رويهه است . كاهي نيز ازا ين جوشبه منظور هر كردن سوراخهاى موجود در تطعات نظير

 و يا كام بمنظور همكارى در باربرى نيروها با جوشهاى ديكر مخصوصا " جوش كوشه در درز رويهـ بــَار میروند .
مثال
 فولاد تطعات مورد اتمال نرمه مىباشد .

برخي د يكر از ضوا بط A I SC در مورد درز رويهه و جوش انكشتانه و كا م بشرح زبرمىباثد

 ب - حداقل روبهه Tمدكى تطعات در درز رويهم بـه 5 برابر ضهام مت ورق نازكتر و

هـهننين به 2.5 سانتيمتر محدود مى شود .

شكل (

مقاومت جوشهاى طراحى شده در شكل به قرار زير خوا هد بود :
مقارت حوش كوشه $T_{1}=R_{W} L=500 \times 1 / T \times(T \times 1 T / \Delta)$
$=19000 \mathrm{daN}$

F

$T_{2}=\frac{\pi(r / 0)^{r}}{\varphi} \times 900=9540 \mathrm{daN}$

T = $\mathrm{T}_{1}+\mathrm{T}_{2}=$ مقاومت كل حوشها
قدرتتحعلتسه $T=0 i \% F_{y} A_{g}=1400(Y \times Y)=91900$ daN
ديده مى شودكهتدرت تحعل|تصال (كيلونيوتن) T T T T خوا هد بود (بهتربود كه طول حوش كتر از عرض تسمه كرفته نميشد) . مثال

انصال از نولاد اعلا با (بار) F حل: ظرفيت برشى جوش را محا سبه مىكنيم .

ظر $T_{1}=\lambda 9 \Delta \mathrm{aL}$

$$
=19 \Delta \times 0 / \Delta \times r \times 1 T / \Delta=111 \Delta \Lambda d a N
$$

ظرفيت جوش كام $T_{2}=(0 / Y \Delta \times Y / \Delta) \times 1 Y \& \Delta=Y / 19 \mathrm{daN}$

ظرفيت جوشها $=T=T_{1}+T_{2}=1$ Arop daN

ظرفيت كثشى تسعه خواهد بود :
$T=0 / \& F_{y} A_{g}=0 / 8 \times r 900 \times 1 \times 10$
= Yrroo daN

شكل (
 خوا هد بود ، اللبته ابعاد جـوشها منا سب نـيــت .

مثال

رويهم Tمدكى ناودانى و ورق برابر با IT/ I سانتيهتر ميباشد .

حل : اندازه؛ جوش كوشه در لبهء خارجى ناودانى

$$
a=\lambda / \Delta-1 / \Delta=r m m
$$

$$
\text { ظ } T=F_{t} A=1 \psi 00 \times r Y / Y=\psi \Delta 0 \lambda_{0} \text { daN }
$$

اندازه؛ جوش كوشه در طول انتهاى ناوداني حداكثر ميتواند برابر با ب ميليمتر باشد .
مىتوان در امتداد بال ناودانى از ضخا مت بـشترىا ستفاده كرد .

$$
\text { (حداكثر } a_{\max }=1 / \Delta t_{p L}=1 / \Delta \times 10=1 \Delta \mathrm{~mm} \text {) . ولى بهتر است كرداكرد ناودانى را }
$$

با همان a= vmm جوش دهيم . ظرفيت باربرى كل جوش كوشه خواهد شد .

$$
T_{1}=s \Delta 0 \times 0 / r(r \times 1 r / \Delta+r \times r 0)=r q \Delta v \Delta \quad \text { daN }
$$

$T_{2}=T-T_{1}=1 \Delta \Delta / \Delta$ حال با يستى اضافه ظرفيت لازم را كه برابر با (دكا نيوتن) است با جوث كام تأمين كنيم .

عرض جوش كام را (ميليبتر)) D = مىكيرشم . لذا طول جوش خواهد شد .

$$
T_{2}<D L_{W} \times 900=1 / A \times 900 L_{W}
$$

$$
L_{W}>\frac{1 \Delta \Delta 0 \Delta}{1 / \Delta \times 900}=9 / \Delta r \mathrm{~cm} \quad L_{W}=10 \mathrm{~cm} \quad \text { طول جوش كام }
$$

- ه

 بمانند حالت باركذارى با خروج از مركزيت اتصالات پيجى در اتصالات جوشى نيز تهليل

(الـف) برش و پبیشش

ثكل (Y (

, اصول مكانيكا استوار شدها است . بهصورت خلاصه اين روش به كام هاى زير خلاصه مى شودد .

r - محور مفتصطاتى را بعين كردهو مركزثتل مجموعهء حوشها را معين كنيد .
r - نيروى مو‘ثر بر مجموءهء جوشها را بمين كنيد .
(1) Butler
(2) Pal
(3) Kulak
(4) Dawe

ث
ه - برا ينـ بردارى تنشهاى فوق را تعيين كنيد .

روش كلى كه در فوق بيان شد در مثالها
برش با خروج از مركزيت (برش و پيجش)

است • برای ارا ئه روش علاءم زبر بكار خوا هد رفت :

$$
\begin{equation*}
\text { تنش حامل از برش مستقيم }=f^{\prime}=\frac{P}{A} \tag{11-0}
\end{equation*}
$$

تنش حاصل از لنكر بيحشى $=f^{\prime \prime}=\frac{T r}{I_{p}}$

 مركز ضخامت موءثر جوش) سبب اندكى تغاوت در محاسبات خوا هند شد زيرا كه اندازهاءحوش عموها" كم است .
 مى با شند به صورتزير مى باشد :

$$
\begin{aligned}
& f_{x}^{\prime}=\frac{P_{x}}{A} \\
& f_{y}^{\prime}=\frac{P_{y}}{A}
\end{aligned}
$$

(ه - rir الغ)

$$
(r-\Delta)
$$

موءلفههاى Y X X تنش " X كه حاصل از بيجش مى باشد خواهد بود :

$$
f_{x}^{\prime \prime}=\frac{T y}{I_{p}}=\frac{\left(P_{x} e_{y}+P_{y} e_{x}\right) y}{I_{p}}
$$

(ه -

$$
\begin{array}{ll}
f_{y}^{\prime \prime}=\frac{T_{x}}{I_{p}}=\frac{\left(P_{x} e_{y}+P_{y} e_{x}\right) x}{I_{p}} & (-1 \psi-\Delta) \\
:(ب)
\end{array}
$$

$$
I_{p}=I_{x}+I_{y}=\sum I_{x x}+\left(\Sigma \cdot A \bar{y}^{2}+\Sigma I I_{y y}+\Sigma A \bar{x}^{2}(1 \Delta-\Delta)\right.
$$

در رابطه؛' (0 - (10) الز نوار جونا

(الغ) اتصال

(ب) اب سطح متطع موثر
شكل (ه - -

$$
\begin{aligned}
& \text { بالاخره براى شكل ((}+ \text { - } \\
& I_{p}=2\left[\frac{L_{w}\left(t_{e}\right)^{3}}{12}\right]+2\left[L_{w}\left(t_{e}\right)(y)^{2}\right]+2\left[\frac{t_{e} r\left(L_{w}\right)^{3}}{12}\right] \\
& =\frac{t_{e}}{6} L_{w}\left(t_{e}\right)^{2}+12 L_{w}(y)^{2}+L_{w}{ }^{3} \\
& (19-0)
\end{aligned}
$$

در حالات عملى هون مقدار
مقايسه با عبارات ديكر قابل صرفنظر كردن خوا هد بود ، لذا در حالات عملى اهوا هيم داشت :

$$
I_{p}=\frac{t_{e}}{6}\left[12 L_{w}(\bar{y})^{2}+L_{w} 3\right]
$$

 هوءلفههاى تتش به صورت زير بيان خواه هـ شد .

$$
\begin{aligned}
& f_{x}=f_{x}^{\prime}+f_{x}^{\prime \prime} \\
& f_{y}=f_{y}^{\prime}+f_{y}^{\prime \prime}
\end{aligned} \quad(\text { ell } 1 \wedge-\Delta)
$$

, برT يند كلى تنش خواهد شد.

$$
f_{r}=\sqrt{\left(f_{x}\right)^{2}+\left(f_{y}\right)^{2}}=\sqrt{\left(f_{x i}+f_{x}^{\prime \prime}\right)^{2}+\left(f_{y}^{\prime}+f_{y}^{\prime \prime}\right)^{2}}(19-\Delta)
$$

و پون داريم :
$\frac{R_{w}}{t_{e}}=$ تش مجاز

$$
\left(r_{0}-\Delta\right)
$$

لذا براى اينكه ضريب اطمينان كافى داشته باشيم بايستى رأبطه؛ زير برقرار با شد :

جو ش//9r.

$$
\begin{equation*}
f_{r} \ll \frac{R_{W}}{t_{e}} \tag{r}
\end{equation*}
$$

 در مخرج وارد مىشود. هال اكر
 (1 (1 استفاده شود

$$
f_{r} t_{e} \ll R_{W}
$$

 بهعبارتديكر جنينيهنظر خواهد رسيد كه زير برقرار باثد.

$$
(r r-\Delta)
$$

اكر fr برحسب daN / cm انت با يستى داشته باشيم .
$t_{e} \quad \frac{f_{r}(1)}{R_{W}}$

$$
\text { درا'يندابطهه } f_{r}(1)=f_{r} t_{e} \text { است متدار } t_{e} \text { كرفنه ثده است. }
$$

اكر در شكل (

$$
\text { استفاده كنيم مقدار t t } t_{e}=1 \text {, d }
$$

$$
I_{p} \lesssim \frac{1}{6}\left[12 b\left(\frac{d}{2}\right)^{2}+b^{3}\right]=\frac{b}{6}\left[3 d^{2}+b^{2}\right](r \mu-\Delta)
$$

شكل (- - -) - فرض نوارهاى جوش با ضخامت واحد
در جدول ((-

$$
\text { مثال } 10-0 \text { = }
$$

الدازه جوش كوشه رأ برا'ى شكل اتصال جوشى (ه -
ول و : عوع فولاد نرمه است .
 راه حل.بدين ترتيب خواهد بود كه te را بعنوان ضريبى در كليه هماسبات درنظربكيريم .

شكل (49-

جد ول (ه

محل مركز ثقل را با فرض اينكه حوش تاءم محور قائم هحا سباتى باشد معين مىكنيم .

$$
\bar{x}=\frac{2 t e^{(15)(7.5)}}{2(15) t e^{+20 t} e}=4.5 \mathrm{~cm}
$$

$$
I_{p}=t_{e}\left\{\frac{20^{3}}{12}+2\left[15(10)^{2}\right]+2\left[\frac{(15)^{3}}{12}\right]+2\left[15(3)^{2}\right]\right.
$$

$$
\left.+20(4.5)^{2}\right\}=t_{e}(4904) \mathrm{cm}^{4}
$$

$A=t e^{(2 \times 15+20)}=t_{e}(50) \mathrm{cm}^{2}$
$f^{\prime} y=\frac{P_{y}}{A}=\frac{6600}{50 t_{e}}=\frac{132}{t_{e}} \quad$ bar
$f^{\prime \prime} x=\frac{T y}{I_{p}}=\frac{6600(30.5) \times 10}{t_{e}(4904)}=\frac{410.5}{t_{e}}$ bar
$f^{\prime \prime} y=\frac{T x}{I_{p}}=\frac{6600(30.5) \times 10.5}{t_{e}(4904)} \quad \frac{431}{t_{e}}$ bar بردار برآيند مقدار fr را بـدست خواهد داد .
$f_{r}=\sqrt{\frac{(410.5)^{2}+(431+132)^{2}}{t_{e}^{2}}}=\frac{697}{t_{e}} \quad$ bar

لازم $t_{e}=\frac{f_{r}}{920}=0.76$

$$
\begin{aligned}
& \text { اندازه حوش لازم a }=\frac{t_{e}}{0.707}=\frac{0.76}{0.707}=1.07 \\
& a=1.2 \mathrm{~cm}
\end{aligned}
$$

برش ر لنكر خمشي

 شكل (ه- -

 بصورت بردارى با تنش خمشى حداكثر جمع خواهد شد .

شكل (4Y-ه) - جوش تحت اثر برش و خشش

دربي حالت مخصوص تنش برشى عمودى با استغا ده ازرابطهء (ه - اr 1 ب) بدست خواهد

$$
\text { ' }{ }^{\text {. }}
$$

$f^{\prime} y=\frac{P_{y}}{A}=\frac{P}{2 t_{e} L_{w}}$

و تنش افقى حاصل از خـش خوا هد شد .
$f_{x}^{\prime \prime}=\frac{M c}{I}=\frac{\left(P e_{x}\right)\left(L_{w} / 2\right)}{\frac{2 \cdot t_{e}\left(L_{w}\right)^{2}}{12}}=\frac{3 P e_{x}}{t_{e}\left(L_{w}\right)^{2}}$

(د) توزيع تنش خمشى (ج) توزيع مـاسباتى (ب) توريع وا تكى (الف) مجموعه جوش

شكل (ه - -

$$
f_{r}=\sqrt{\left(f_{y}^{\prime}\right)^{2}+\left(f_{x}^{\prime \prime}\right)^{2}}
$$

تنشبرT آند خوا هد شد :

در مورد مو‘لفه؛ خمشى تنش، I I برحسـ آنكه محور خشش كدام يك ازمحور هابا شدبرابر

مثال ه -

از نوع متعارفـ و نوع فولاد نيز نر عه با شد .

بكل (49-0)

$$
f_{y}^{\prime}=\frac{P}{A}=\frac{4500}{2(25) 1}=90 \text { bar }
$$

$$
I_{x}=\frac{2(1)(25)^{3}}{12}=2604 \quad \mathrm{~cm}^{4}
$$

$$
f_{x}^{\prime \prime}=\frac{M c}{I}=\frac{4500(15)(12.5)}{2604}=324 \text { bar }
$$

$$
f_{r}=\sqrt{(90) 2+(324)^{2}}=336 \text { bar برای يك سانتيمتر ضخاصت موءر }
$$

$$
t_{e}=\frac{336}{920}=0.37 \mathrm{~cm}
$$

$$
\text { اندازه حـرش لازم } a=\frac{0.37}{0.707}=0.52
$$

$$
\text { اندازه جوش برابر با (سانتيهتر) a=0/8 } a=0
$$

طراحى خطوط جوش تحت اثر لذكر خمشى

 براى لنكر تنها در يك خط جوش دار ديم :

$$
R_{w}=\frac{6 M}{L_{w}{ }^{2}}
$$

$$
L_{W}=\sqrt{\frac{6 M}{R_{W}}}
$$

$$
(r 8-0)
$$

رابطه؛ ((

$$
\begin{aligned}
& \text { م }
\end{aligned}
$$

$$
\begin{aligned}
& \text { نره هـ است . } \\
& \text { حل : } \\
& \text { با استناده از رابطهء (ه- \& } \\
& R_{W}=650 \mathrm{a}=650 \times 0.8=520 \mathrm{daN} / \mathrm{cm} \\
& M=18000 \times 10=180000 \quad \text { daN.cm }
\end{aligned}
$$

$$
\begin{aligned}
& f_{r}=\frac{M}{S}=\frac{M}{\left(-\frac{1}{6} L_{w}{ }^{2}\right)} \quad \mathrm{daN} / \mathrm{cm} \quad(r \Delta-\Delta) \\
& \text { زيرا كه حداكثر متدار fr همان }
\end{aligned}
$$

جوش/ 199

شكل (

$$
ل ا=\sqrt{\frac{6 M}{R_{W}}}=\sqrt{\frac{6(180000 / 2)}{520}}=32.2 \mathrm{~cm}
$$

 است . دو جوش بركشتى مقاومت باقيما نده راليجاد خواهند كرد . (میشود
از نما يش جوشـهصورت خط بهمنظورد ستيابى به مجهول مورد محاسبه استغاده مىكنيم .

$$
\begin{aligned}
& \bar{y}=\frac{2\left(\frac{30) 15}{2(30+1.2)}=14.4 \quad \mathrm{~cm}\right.}{\mathrm{f}_{y}^{\prime}=\frac{18000}{2 \times 30}=300 \quad \mathrm{daN} / \mathrm{cm}}
\end{aligned}
$$

برش مستقيم :

جون هقدار برش متحمله توسطدو جوش بركشتى ناهيز 'است . لذا از آنصرفنظر شده
. 1

$$
\begin{aligned}
& I_{x}=\frac{2 L^{3}}{12}+2 L(15-14.4)^{2}+2(1.2)(14.4)^{2} \\
& =\frac{2(30)^{2}}{12}+2 \times 30(0.6)^{2}+(2.4)(14.4)^{2}=5019 \mathrm{~cm}^{3}
\end{aligned}
$$

تنـش خمنیى خواهد تـد :

$$
\begin{aligned}
& S=\frac{I}{Y}=\frac{5019}{14.4}=348.6 \quad \mathrm{~cm}^{2} \\
& f_{x}^{\prime \prime}=\frac{M}{S}=\frac{180000}{348.6}=516.4 \quad \mathrm{daN} / \mathrm{cm}
\end{aligned}
$$

برآيند تـــ ها خوا هد شد :

$$
\begin{aligned}
& f_{r}=\sqrt{(300)^{2}+(516.4)^{2}}=460 \quad \mathrm{daN} / \mathrm{cm} 520 \quad \text { O.K. } \\
& \text { vس مفدار (سانتيمتر) L=ro }
\end{aligned}
$$

مطالــ اها فى درمورد باركذاريبهای بـا خروج از مركزيت در فصل مربوط به ا تصالاتبياي خوا هد شد .

مسائل

نككل

جوش//ar

(0
نرهه است (شكل

شكل (ar-a) (الف)
(ب)

(ب $\mathrm{r} \Delta \mathrm{r}-\Delta$

 مطلوبست طرح مشخخصات جوث لازم براي تحمل نيروى ما

$$
\begin{aligned}
& \text { نوع فولاد قطعات نرمه و نوعا لكترود مصرفى از نوع متعارف است ا }
\end{aligned}
$$

$$
\text { شكل (} \Delta \Delta-\Delta
$$

ه كام در شكل (ه -

اندازه جوش.

-

(الف)

(ب)

$$
\text { شكل (} \Delta \lambda-\Delta
$$

- - ا - مطلوبست تعيين اندازه جوش لازم در اتصال زير .

ثكل (

1. K. Winterton, "A Brief History of Welding Technology," Weiding and Metal Fabrication (November 1962; December 1962).
2. "100 Years of Metalworking-Welding, Brazing and Joining," The Iron Age (June 1955).
3. H. Carpmael, Electric Welding and Welding Appliances. London: D. Van Nostrand Company, 1920.
4. Preston M. Hall, "77 Years of Resistance Welding." The Welding Engineer (February 1954, 54-55); (March 1954, 36-37); (April 1954, 62-63).
5. G. Herden, Schweiss und Schneid-Technik. Halle, East Germany: Carl Marhuld Verlag, 1960.
6. E. Viall, Electric Welding. New York: McGraw-Hill Book Company, Inc., 1921.
7. Welding Handbook, 7th ed., Vcl. 1, Fundamentals of Welding. Miami, Fla.: American Welding Society, 1076.
8. D. W. Morgan, "Classification and Use of Mild Steel Covered Electrodes," Welding Journal, December 1976, 1035-1038.
9. Structural Welding Code, AWS D1.1-79. Miami, Fla.: American Welding Society, 1979.
10. Welding Handbook, 6th ed., Vol. 2, Welding Processes; Gas, Arc, and Resistance. New York: American Welding Society, 1969.
11. Omer W. Blodgett, Design of Welded Structures. James F. Lincoln Arc Welding Foundation, 1966.
12. Symbols for Welding and Nondestructive Testing, AWS A2.4-76. Miami, Fla., American Welding Society, 1976.
13. "Weld Defects Sound Off," The Iron Age (March 27, 1969).
14. J. A. Donnelly, "Determining the Cost of Welded Joints," Engineering Journal, AISC, 5, 4(October 1968), 146-147.
15. T. R. Higgins and F. R. Preece, "Proposed Working Stresses for Fillet Welds in Building Construction," Engineering Joumal, AISC, 6, 1 (January 1969), 16-20.
16. Commentary on Siructural Welring Code, AWS D1.2-77. Miami, Fla.: American Welding Society, 1977.
17. Lorne J. Butler, Shubendu Pal, and Geoffrey L. Kulak, "Eccentrically Loaded Welded Connections," Journal of Structural Division, ASCE, 98, ST5 (May 1972), 989-1005.
18. John L. Dawe and Geoffrey L. Kulak, "Welded Connections under Combined Shear and Moment," Joumal of Siructural Division, ASCE, 100, ST4 (April 1974), 727-741.

قطهات فشارى

```
| - ستونها
```

¢-1 =

 معلومات كافى درمورد پا يدارى تطهات فشارى كـب نما نـايد .

復

 كليهء تارهاىاين تطهه (شكل و - 1) تا لحظهءكمانش، ارتجاعئى عملكند . اين قطعبرا اندكى
(1) Column, Stanchion, Post,Strut
(2) Euler
 انتهاي شغصلي تشكيل شده بود با وجود

 در فاصله Z ار مركز مختصات ، لنكر خمشى MZ 2 (حول محور X شكل خميده دارد بـهورت زبر بـيان مبشود .

$$
\begin{aligned}
& M_{z}=P y \\
& \frac{d^{2} y}{d z^{2}}=-\frac{M_{z}}{E I}
\end{aligned}
$$

$$
(1-f)
$$

و جون داريم :

$$
(r-f)
$$

لذا معا دلهء ديفرا نسيل به صورت زير درمىTيـ .

$$
\frac{d^{2} y}{d_{z}^{2}}+\frac{p}{E I} y=0
$$

$$
(r-s)
$$

در صورتى كه دا شته باششي زير خواهد هود .

$$
y=A \operatorname{Sin} k z+B \operatorname{Cos} k z
$$

$$
(\psi-\xi)
$$

$z=L \quad y=0(ب), \quad z=0, y=0 \quad$ با درنظر كرفتن شرايط بترتبب خواهـيم ذاثت :

$$
B=0, \quad 0=A \operatorname{Sin} k L
$$

$$
(\Delta-\varepsilon)
$$

معادله (خمثى ندا شته باشد دوم Tنكه

تطعات فشاري/09

$$
\begin{align*}
& \left(\frac{N \pi}{L}\right)^{2}=\frac{P}{E I} \\
& P=\frac{N^{2} *{ }^{2} E I}{L^{2}} \tag{s-s}
\end{align*}
$$

($N=A=A \operatorname{Sin} \frac{\pi Z}{L}$
بار بحرانى ' اولر براى ستونى كه داراى دو سر منملى باشد به صورت زير ارائه ميشود .

$$
P_{c r}=\frac{\pi^{2} E I}{L^{2}}
$$

$$
(Y-\varepsilon)
$$

$$
\text { تنش بحرانى فشارى خوامد ثد (با I =Ag })
$$

$$
F_{c r}=\frac{P_{c r}}{A_{g}}=\frac{\pi i^{2} E}{(L / r)^{2}}
$$

$$
(\lambda-s)
$$

(I) Critical
(2) Considere
(3) Engesser
(4) inelastic
(5) Shanley

بديههي بخود كرفتة است ممكن نشنده بود .

شكل (\& - 1) - ستون الر

ا'ستد لال او جنين بود كه بك ستون عملا " مىتواندخمش پـيدا كرده ولى بازهم باراضا فى

 تسعتى از تارهاى مقطع ستون و ا كا كليه تارهاى آن مىا شد . اين نوع عمكرد غير ارتجاعىىد بـتد (؟
 جا نستن ${ }^{\Gamma}$ (7) بـا ن شده است .

$$
\text { ¢ - } 4 \text { = مقا ومت ستونـها }
$$

 از جوشكارى با توجه به شكل و شرايط تكيهكا هى ستون وجود نداشته باشد . فرض مى شود
 دتيفا" بر محور ثقل قطعه مىكدرد (Q هرا يط تكيهكاهى بايستى به نوعى باشد كه بتوان طول معيني بعنوان طول سعاذل ستون دو سر 「「 مغصل تعيين كرد . سابر فرضيات لازم را مى توان هه صورت زير دانست (؟) نظريه افت كم مربوط به تئورى متعارف خمشى قابل اعهال بوده و

(1) N.J.Hoff (2) B.G.Johnston
(3) equivalent pinned length

اكر فرضيات فوقالذكر صاد ق باشد ، مىتوان یذيرفت (9) كه مقاومت ستون بر طبق رابـطهء زير مشخص كردد .

$$
\begin{equation*}
F_{c r}=\frac{p}{A}=\frac{r^{2} E t}{\left(\frac{K L}{r}\right)^{2}} \tag{9-6}
\end{equation*}
$$

بحش شده است) •

 فشارى بعلت كهانش Tنيها به صورتى كه فتسمتى از تارهاى مقطع آنها حارى شثده باشد اتفاق
مى افتد . يك هنـين كهانشى را كمانش غير ارتجا عى ميكوئيم •

على الاصول كهانش ' ' خالص قطعات نشأرى تحت اثر نيروى هحورى نتط زمانى اتغاق
مىانتد كه فرضيات (1) الى (f) فوق الذكر بر ترار باشد . ستونها معمولا" عضوى از يك
 منحنى مرزى بـين منحنى تغيبر شكل

 هعانكونه كه قبلا"نيز ذكر شد سلالهای متمادى نتايج آزما يشات با مقدار بار نها

(1) buckling
(2) deflection
(3) practical buckling lood
(4) ultimate load.

 تطبيق بكار رود بكار برده ندهـا است .

 كه بيان كنتده؛ كيفيت كمانش غير ارتجاعى است معين خؤوا هد شد .

$$
9 \text { - } 9=\text { كـكانش غير ارتجاعى }
$$

 بوده استّ، كه ذيلا" بشرح آن میردازيم .

(1) tangent modulus

 زير خوا هد بود .

$$
F_{c r}=\frac{P_{t}}{A}=\frac{\pi^{2 E} t}{\left(\frac{K L}{r}\right)^{2}}
$$

درين رابططه Pt بار مدول مما سى (1) مى باشد .

$$
F_{\mathrm{ct}}=\frac{\pi^{2} E_{1}}{\mid K L / r)^{2}}
$$

(1) Tangent modulus . load

در هر صورت بار محاسباتى بر الساس اين نظر يه نيز منطبق بر بارهاى تجربى نبوده

 كرفت
نظريهه مدول دو كاند (()

 رفتّ

 ارتجاعى E غوا هد بود . .

 با استغاده از قانون هوك خوا هد شد .

$$
\begin{equation*}
f_{2(\max)}=\left({ }^{(S)}\right) E=\frac{\Delta d z}{d z} E \tag{11-5}
\end{equation*}
$$

در تارى كه تحت افزايش بار ترار ميكيرد خواهيم داشت :
(1) double modulus

تشعا ت فشارى/

$$
\begin{align*}
& f_{1(\max)}=\frac{\Delta d z d}{d_{2}} \frac{E_{t}}{d z} \\
& -\frac{1 d z}{d_{2}}=d \Phi \tag{1r-s}\\
& f_{2(\max)}=E d_{2} \frac{d \Phi}{d z} \\
& f_{1(\max)}=E_{t} d_{1} \frac{d \Phi}{d z}
\end{align*}
$$

$$
(1 T-9)
$$

$$
(14-8)
$$

در انحناى كم خواهيم داشت :

$$
\begin{equation*}
\frac{1}{\operatorname{Lin}^{\prime} \varepsilon^{\operatorname{lom}}}=\frac{M}{E_{r} \bar{I}}=\frac{d \Phi}{d z}=\frac{d^{2} y}{d z^{2}} \tag{10-9}
\end{equation*}
$$

درين رابطه E

براى توزيع تنتى نظير شكل (4 -

شكل (؟-4) - توزيع تنش در شرايطتعادل نابايدار (نظريه ضريب دو كانه)

شكل (5 - ه) - عنصرىبرابربا dz در طول ستون و در وضعيت تعادل نايايدار

$$
M=-P y=\int_{0}^{d_{1}} f_{1}\left(y_{1}-\delta\right) d A_{1}+\int_{0}^{d_{2}} f_{2}\left(y_{2}+\delta\right) d A_{2}
$$

$$
(18-8)
$$

$f_{1}=f_{1(\text { max })} \frac{y_{1}}{d_{1}}=E_{t} d_{1} \frac{d^{2} y}{d z^{2}} \cdot \frac{y_{1}}{d_{1}}$
$f_{2}=f 2(\max) \frac{y_{2}}{d_{2}}=E d_{2} \frac{d^{2} y}{d z^{2}} \cdot-\frac{y_{2}}{d_{2}}$
بدين تن نيب بعادله ((4)
$-P y=E_{t} \frac{d^{2} y}{d z^{2}} \int_{0}^{d} y_{1}\left(y_{1}-\delta\right) d A_{1}+E \frac{d^{2} y}{d z^{2}} \int_{0}^{d} y_{2}\left(y_{2}+\delta\right) d A_{2}$ $(1 A-9)$
تعادل نيرو دابطه زير را ديكته مىكند :

$$
\begin{aligned}
\int_{0}^{d} f_{1} d A_{1}=\int_{0}^{d} f_{2} d A_{2} \\
:(1 q-\rho)
\end{aligned}
$$

فتعات فشأرى/HIV

$$
E_{t} \frac{d^{2} y}{d z^{2}} \int_{0}^{d} y_{1} d A_{1}=E \frac{d^{2} y}{d z^{2}} \int_{0}^{2} y_{2} d A_{2}\left(\Gamma_{0}-\xi\right)
$$

 مى شوند و خواهيم داشت :
$-P y=E_{t} \frac{d^{2} y}{d z^{2}} \int_{0}^{d} y_{1}^{2} d A_{1}+E \frac{d^{2} y}{d z^{2}} \int_{0}^{d} y_{2}^{2} d A_{2}$
$\frac{d^{2} y}{d z^{2}}\left[E_{t} \int_{0}^{d} y_{1}^{2} d A_{1}^{2}+E \int_{0}^{d} y_{2}^{2} d A_{2}\right]+P y=0$
معادله ((شظريه ضر يـ دو كانه بـصورت زير بيان مي شود :
$P_{c r}=\frac{2}{L^{2}}\left[E_{t} \int_{0}^{1} y_{1}^{2} d A_{1}+E \int_{0}^{d_{2}} y_{2}^{2} d A_{2}\right](T r-s)$

 كعتر از بار صريب مطا سى مو، ماند (نظطه A در شكل

شكل (\&

زير معين كرد (7) : " " بار ضريس مماسى كمتربن مفدار بار محورى ابـت كه ستون رادر

 و نقط تعادل ستون را در حول و حوش وضعيتى نزديك به مستقيم الخطط بردسى میى المرد .

 خـش ستون شروع مى شود بذ يرفت .
§- هـ ت تنش بس ماند (r)

(1) خنك شدن غبر يكـوا خت نيمرخهاى فولادى پس از نورد
(r) خمش سرد قطلعات هين اجرا

(1) bifurcation
(2) Critical load
(3) residual stiesses
(F)
 عمدهتر بن حالانت را تشکكيل ميد هد كه در بارهء آن قبلا"در فصل تطعات كثشى بحث كرد يده است . در مورد تنـش بس ماند حاصل از خنك ثدن قطعات حوشى در كتاب راهنماىحوشكارى

 تتششماى بسماند در نيمر خهها تابع ابعاد مقـلع آن نيمرخ مى باثد .
 (

شكل (Y-9) -

كلا" قابل قبول است ولى شدت تتش در كليه؛ تارهاى بقطع بـه يك ميزان نـخواهد بود . مقدار مدول ثماسى Et در يك تار مقطع به همان مقدار براى تار بعدى نـخوا هد بود .
 با در نظر كرفتن تنش متوسط مقطع نشـان داده شده الست . معلوم شده.است كه شأثير تنش

(1) elastic-plastic

 فرض شود كه توصيه مدول عما سى ممكن باشد ، مىتوان مقاومت ستون را بر ا ـاس كمانش غير

عير خططى به خود مىيكيرد .

 بلكه عـدتا" به شكل و ابعاد هقطع كه عامل اصلى در نرخ خنك شدن قسمتهاى مختلف نيمرخ است بستكّى چیدا مىكنـد (13)
هما نكونه كه قبلا" نيز ذكر شد (بند r r r r

شكل (9-9) - ثـكل توزيع متعارف تنش پس ماند در قطعات جوشى

ار استحكام ستونهاي مركب از H نورد شده خواهدبود و برعكس جون در نبمرخهایتوطى شكل

 نورد شده توطى شكل مطا لعه نموده استـ

 با قبول استد لال واضح ضريب مما سى بعنوان ضا بطه املى اس استحكا
 نقش عمدهاى در پيشبرد مسا ئل مربوط به استحكام تطعات فشارى ايفا مى ايند .

я -
روش تهليلى زير كه ها يهء منطق معادلها استحكام ستون توسط SSRC (9) مىانـي
(1) Stierman
(2) Structural stability research council(SSRC)

عمدنا" توسط هوبر و بيدل (11) تنظيم شده اسـتـ د دو روش كلى براى تعيين استحكام

 $d M=($ بازوى لنكر $)=\left(\Phi E_{t} x\right)(d A)(x)(r r-s)$
(1) Yu
(2)Tall
(3) Johns ton
(4) Batterman

تطعات فشا دى/

 در مورد كل, مقطع خواهد شد :
$M=\int_{A} \Phi E_{t} x^{2} d A=\Phi \int_{A} E_{t} x^{2} d A$
$(t+s)$

شكل (از نظريه ابتدايى خمش مقدار شماع انحنا به صورت زبر داده شده اهـت :

$$
\begin{aligned}
& R=\frac{1}{\Phi} \\
& \Phi=\frac{1}{R}=\frac{M}{J \operatorname{Sen} E I}=\frac{M}{E^{\prime} I}
\end{aligned}
$$

$$
(r \Delta-s)
$$

بدين ترتهب داريم :

$$
E^{\prime} I=\frac{M}{\Phi}=\int_{A} E_{t} x^{2} d A
$$

$$
(r \varepsilon-s)
$$

$$
E^{\prime}=\frac{1}{I} \int_{A} E^{x} x^{2} d A
$$

 استغاده شود (براى

صورت معادله (4- \&) خواهد ثد :

$$
E^{\prime}=\frac{E}{I} \quad \int x^{2} d A=\frac{I e}{I}
$$

$$
(r y-s)
$$

تنشى كهرطبق (سطمتسمتارتجأىى) A سبب خشش ستون خوامدشد ههصورتزير معينمىشود :

$$
F_{c r}=\frac{p}{A}=\frac{r^{2} E\left(\frac{I e}{I}\right)}{\left(\frac{K L}{r}\right)^{2}}
$$

 . معين شده باشد Ie

حالت (الف) ـ كمانث حول محور ضعيف
منطق حكم مىكند كه فرض كنبم بالهاى نيمرح قبل از حان نيمرخ كلا" حارى شوند

شكل (4-4 - (IT) تسمتىازمقطع جارى شده است
(1)effective modulus

قكعا ت غشا رى /

$$
\begin{aligned}
& K=\left\{=-\frac{{ }^{2 x_{0}}}{b}=\frac{A_{e}}{A_{f}}\right. \\
& \text { معادلـه (ry-q) خواهد شد: } \\
& E=-\frac{I}{I}=E \frac{t_{f}\left(2 x_{0}\right)^{3}}{12}\left(\frac{12}{t_{f} b^{3}}\right)=E k^{3} \quad(r q-\varepsilon)
\end{aligned}
$$

اكرازلنكرلختتىجاند مهاسهه' I صرفظر كنيم و تعريف ضربب مهاسى را در نظر بكيريم ، خواهيم داشت:

$$
\begin{equation*}
E_{t} A=A_{e} E=E\left(A_{W}+2 k A_{f}\right) \tag{51-9}
\end{equation*}
$$

$$
\begin{aligned}
& \text { درين روابطداريم : } \\
& \text { سطع جان }=A_{W} \\
& \text { = } A_{f} \\
& \text { = A }
\end{aligned}
$$

اكر معادله (كنيم خوا هيم داشت:

$$
\begin{aligned}
& k=\frac{E_{t} A^{2}}{2 E A_{f}}-\frac{A_{w}}{2 A_{f}} \\
& F_{c r}=\frac{\pi^{2} E_{k}^{3}}{\left(\frac{K L}{r}\right)^{2}}=\frac{\pi^{2} E}{\left(\frac{K L}{r}\right)^{2}}\left[\frac{A E_{t}}{2 A_{f} E}-\frac{A_{w}}{2 A_{f}}\right]^{3}(r r-q)
\end{aligned}
$$

اين رابطه اثر جان ارتجاعى مقطع لـا در كمانش حول محور ضعيف نيمرخ(y-y (y نشان

مى دهد .

حالت (ب) ـ كمانث حول محور قوى ستون

لنكر لـنتى مرفنظر كنيم به صورت تتريبى خواهيم داشيت :

$$
E \frac{I e}{I}-E \frac{2 A e\left(\frac{d}{2}\right)^{2}}{2 A_{f}\left(\frac{d}{2}\right)^{2}}=E k
$$

اكر تنش جان ارتجاعى در نظر كرفته شود خواهيم داشت: :

$$
E \frac{I_{e}}{I}=E\left[\frac{2 k A_{f}\left(\frac{d^{2}}{4}\right)+t_{w^{\prime}} \frac{d^{3}}{12}}{\left.2 A_{f(} \frac{d^{2}}{4}\right)+t_{w} \frac{d^{3}}{12}}\right]=E\left[\begin{array}{c}
2 k A_{f}+\frac{A_{w}}{3} \\
\frac{2 A_{f}+\frac{A_{W}}{3}}{(r \Delta-\varepsilon)^{3}}
\end{array}\right]
$$

$$
2 k A_{f}=\frac{E_{t} A}{E}-A_{w}
$$

اكر اين مقدار ر! در را!بطه (؟

$$
E-\frac{e^{e}}{I}=\left[\frac{\frac{E_{t} A}{E}-2 \frac{A_{w}}{3}}{2 A_{f}+\frac{A_{w}}{3}}\right] E
$$

بدين ترتيبـ خواهيم داشـت :

$$
\begin{equation*}
F_{c r}=\frac{\pi^{2} E k}{\left(\frac{K L}{r}\right)^{2}} \tag{rY-q}
\end{equation*}
$$

 Tهد، در غير اينصورت میتوان هقدار دقيت (F-qمقدار دقيت آورد .

$$
F_{c r}=\frac{\pi^{2} E}{\left(\frac{K L}{r}\right)^{2}}\left[\frac{\frac{E_{t} A}{E}-\frac{2 A_{w}}{3}}{2 A_{f}+\frac{A_{w}}{3}}\right]
$$

 كرجه مقدار
 سطحمقطع نأحالص ستون می با شد به و با

 بكار برده شود .

مثال

 در برابر كانش صرفنظر مى نـا ئيم . حل
 خوا هد بود . بار خارجى درين حالتـ برابر خواهد بود با :"

$$
P=\int_{A} f d A=f A
$$

$$
\begin{aligned}
& P=\left(A-A_{e}\right) F_{y}+\int_{A_{e}} f d A \\
& \text { در دن مسئله برای حالـت } \\
& \text { يعنى } \\
& F_{c r}=\frac{2 F_{y}}{3}=\frac{x^{2} E}{\left(\frac{K L}{r}\right)^{2}} \\
& \frac{K L}{r}=\sqrt{\frac{\pi^{2} \times 2 \times 10^{6}}{\left(\frac{2}{3}\right)(2333)}}=112.7 \quad(14-9 \text { (i) } 1 \text { (})
\end{aligned}
$$

 خواهد شد . لذا حواهيـم داشت :

$$
\begin{aligned}
& \frac{I}{I}=\frac{\left(\frac{b}{2}\right)^{3}}{b^{3}}=\frac{1}{8} \\
& F_{C r}=\frac{2 F y^{.}}{3}=\frac{\left.\pi^{2} E^{\left(\frac{\mathrm{L}}{\mathrm{I}}\right.}\right)}{\left(\frac{\mathrm{KL}}{r}\right)^{2}}=\frac{\pi^{2} E}{8\left(\frac{\mathrm{KL}}{r}\right)^{2}} \\
& -\frac{K L}{r}=39.8(1 Y-9 \text { نقطه } \mathrm{H} \text {) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { است داريم : } \\
& F_{c r}=F_{y}=\frac{x^{2} E_{E}}{8\left(\frac{K L}{r}\right)^{2}} \\
& \frac{K L}{r}=32.5 \quad \text { (} 1 \text { ب }-\boldsymbol{\varepsilon} \text {) }
\end{aligned}
$$

 - دا $F_{c r}=F_{y}$
$\frac{K L}{r}=\sqrt{\frac{\pi^{2} E}{F_{y}}}=92$
(نقطه $)$

مثال
منحنى نسبتا" حقيقى مقاومت ستون را با تغييرات تنش پسماند مطابق شكل((10-q)

رسم نما ئد . كها نش ستون حول مسور صعيف مد نظر مى باشد . مسئله را براى دو تتش تسلميم
 مى شود .

شكل (10 ($)$ مشخمات عددى مسئله ($)$

اكر تنش اعمالنى بر ستون $f=\frac{P}{A}<\frac{2}{3} F_{y}$

$$
\begin{aligned}
& \text { Et E E نمود (شكل \& } \\
& F_{c r}=\frac{\pi^{2}-\frac{E^{\frac{1}{I}}}{I}}{\left(\frac{K L}{r}\right)^{2}} \\
& \frac{I_{e}}{I}=\frac{2\left(\frac{1}{12}\right)(2 x .)^{3} t}{\left.2\left(\frac{1}{12}\right)\right) b^{3} t}=\frac{8 x \cdot .^{3}}{b^{3}}
\end{aligned}
$$

اكر از تأثير جان صرفنظر كنيم خواهيم داشت:

$$
\begin{equation*}
F_{c r}=\frac{8 \pi^{2} E\left(\frac{x}{b}\right)^{3}}{\left(\frac{K L}{r}\right)^{2}} \tag{الف}
\end{equation*}
$$

ديده مى شود كه ا بن رابطه Fr را تابعى از نيز لازم خوا هد بود . كل بار وارده در حيطهء عملكرد الاستوـ یلاستيك نيمرخ خواهـ بود:

$$
P_{c r}=2\left[f b t-2\left(\frac{1}{2}\right)\left(f-\frac{2 F_{y}}{3}\right)\left(\frac{1}{2}-\frac{x_{e}}{b}\right) b t\right](ب)
$$

كه سطح تسمت ها شور خوردهء تنش در شكل (F~ی
املاع نقطه جيس در شكل (६-\&

$$
\frac{f-\frac{2}{3} F_{y}}{\left(\frac{1}{2}-\frac{x}{b}\right) b}=-\frac{\frac{2}{3} F_{y^{\prime}}}{\frac{b}{2}}
$$

اكگ اين رابـطه را نسبت به f حل كنيم خواهيم دا شت :

$$
f=\left[1-\frac{x \cdot}{b}\right] \frac{4 F_{y}}{3}
$$

اءى از دو رابطهه () و (-) f را حذف كنيم خواهيم داشت:

$$
\begin{align*}
& P_{c r}=2 b t\left\{\left(1-\frac{x}{b}\right) \frac{4 F_{y}}{3}-\left[\left(1-\frac{\kappa \cdot}{b}\right) \frac{4 F_{y}}{3}-\frac{2 F_{y}}{3}\right]\right. \\
& \left(\frac{1}{2}-\frac{x \cdot}{b}\right)\left(=A_{y} F_{y}\left[1-\frac{4}{3}\left(\frac{x_{0}}{b^{0}}\right)^{2}\right]\right. \tag{د}\\
& F_{c r}=\frac{P}{A_{g}}=F_{y}\left[1-\frac{4}{3}\left(\frac{x}{b}\right)^{2}\right]
\end{align*}
$$

اين رابطه بههمراه رابطه (الف) بكار میرود. نتايج

اكر مى خواستيم كه اثر جان را در محاسبات منظور كنيم ، نسبت

است بـكار بريم .

شكل (f

$\frac{x}{b}$	$F_{c r}$	$F_{c r}$ $\left(F_{y}=2333\right)$	$\frac{K L}{r}$	${ }^{\left(F_{y}=6900\right)}$	$\frac{K L}{r}$
0.50	$0.67 F_{y}$	1555	113	4600	65.5
0.45	$0.73 F_{y}$	1703	92	5037	53
0.40	$0.787 F_{y}$	1836	74	5430	43
0.35	$0.837 F_{y}$	1953	59	5775	34
0.30	$0.88 F_{y}$	2053	46	6072	26.5
0.25	$0.917 F_{y}$	2140	34	6327	20
0.20	$0.947 F_{y}$	2210	24	6534	14
0.10	$0.987 F_{y}$	2303	8	6810	4.8

شكل (Y Y 9) منحنىهاى مقاومت ستون بادرنظر كرفتن تغش یسهاند

منحنى مقاومت "شوراى تحقيتا تي پا يدارى سازمها " Y -

 قبل ملاحظه كرد هم كه (معادلات و

 وارد مى شوند .

 هس ماند بين

منحنى مقاومت ستونها كه توسط " شورا'ى تحقيقاتى بايدارى سازه المها " تنظيم شده أست

 نتايج تجربى حاملاز كمانش ستونها در حيطه غير ارتجا عي منحر به منحنى هاى سهمى شكل
(1) Bleich

تطعات فشا ر5/

 مى رسد. منحنى كعانشى آقاى بليج ه صورت زير مى باشد .

$$
\begin{equation*}
F_{c r}=F_{y}-\frac{F_{p}}{\pi_{E}^{2}}\left(F_{y}-F_{p}\right)\left(\frac{K L}{r}\right)^{2} \tag{rq-q}
\end{equation*}
$$

 موق بجاى Fp

$$
F_{c r}=F_{y}\left[1-\frac{F_{r}}{\pi^{2} E}\left(\frac{F_{y}-F_{r}}{F_{y}}\right)\left(\frac{K L}{r}\right)^{2}\right] \quad\left(\psi_{0}-\varepsilon\right)
$$

براي اينكه رابطهء (4-40
据 $\frac{F_{C r}}{F_{y}}=0 / 0$ كانش غير ارتجاعى سهمى شكل د ست يابد . دو منحنى الر و سهمى در , يكديكر مماس مىباشند . لذا منحنى SSRC به صورت زير می' بد .

$$
\begin{equation*}
F_{c r}=F_{y}\left[1-\frac{F_{y}}{4 x_{E}^{2}}\left(\frac{K L}{r}\right)^{2}\right] \tag{41-9}
\end{equation*}
$$

اكر به شكل (

 مقاوصت ستون حول مسور ضعيف منطبق خواهد ثدا ــد

$$
\begin{aligned}
& \text { لذا رابطه (q-q) به صورت زير در مى آيد: }
\end{aligned}
$$

با توجه به شكل (
 ـيمر خهاى محتلف مربوطبه ستونهاى مختلف و در نظر كَرفتن مظاطع صختلف ستونهـا چنـد بن مسني مختلف جهت تعيين مقاومت ستونها تهيه شود ، ولى همانكرنه كه در بند بـن بعدى
 مقاومت به كمانـن كليه ستونها ا استفاده ميكند .

AISC معادلات طراحى بر طبق ضوابط = $=$ م

 خوا هـم داد .

$$
\begin{aligned}
& 0.5 F_{y}=\left[1-\frac{F_{y}}{4 \pi^{2} E}\left(\frac{K L}{r}\right)^{2}\right]_{y} \\
& C_{C}=\frac{K L}{r}=\sqrt{\frac{2 \pi^{2} E}{F_{y}}}=\pi \sqrt{\frac{2 E}{F_{y}}=-\frac{6390}{\sqrt{F_{y}}} \quad(\psi Y-F)}
\end{aligned}
$$

درين سعادله Fy بر حسب بار در نظر كرغته خواهد شد .

$$
F_{a}=\frac{F_{y}}{F S}\left[1-\frac{\left(\frac{K L}{r}\right)^{2}}{2 C_{c}^{2}}\right] \quad(f r-q)
$$

 نيببدار مى باشند برابر ضخامت محلى است كه فاصله Tن از لبهء آزاد و حان نيمرخ به يك |اندازء باشد .
اعضاى تقويت نشدهاى كه تحت اثر تنشهاى فشارى محورى و يا تنشهاى

 الف - ا ـ قطعات فشارى تشكيلشده از يك نبشى يا زوج نبشى هابيكه از يكديكر محزا با شند (رابطه

$$
\frac{b}{t}<\frac{630}{F_{y}}
$$

$$
(4+-9)
$$

(1) Factor of safety
(2)Unstiffened elements
(3) projecting
(4)stiffener

> ضوابط A ISC در مودد ابعاد مقطع (بند (-9)
> الف : اعضاى فشارى تقوبيت نشده (r)

تنطعات فشارى/9 هبر \qquad

ب : اعضاى تقويت شده (1)
اعضاى تتويت شده .إعضايى هستند كه در امتداد هر دو لبهء خود كه موازى تتشهـاى

اعضاى تتويت تحت اثر نيروى مهورى نشارى و يا فتار ناشى از خمش در بال تيرها *ـا
 زير كمتر با شد .
(YY-\&)

 متناوبى (Y)

$$
\begin{aligned}
& \frac{\mathrm{b}}{\mathrm{t}} \leqslant \frac{2630}{\sqrt{{ }^{\mathrm{F}_{y}}}} \\
& (\varphi \lambda-\xi) \\
& (4 \lambda-s) \\
& \text { |ب - - - برای هر عضو تقوبت شده د يـكـرى كه تحت تنش فشارىيكنواخت قرار داشته| }
\end{aligned}
$$

* الين ضا بطه شا مل جان تير ها نمى شود . . ***** (1)stiffened elements (2)perforated cover plates
$\frac{b}{t} \leqslant \frac{2100}{\sqrt{F_{y}}}$

 آن در رابطهه ((
$-\frac{D}{t} \leqslant \frac{227500}{F_{y}}$
$(4 q-q)$
 صدق نكند دو رابطهء ((
$C_{c}=\pi \sqrt{\frac{2 E}{Q F_{y}}}=\frac{6390}{\sqrt{Q F_{y}}}$

$$
(\Delta 0-\varepsilon)
$$

$$
F_{a}=\frac{Q F_{y}}{F s}\left[1-\frac{\left(\frac{K L}{r}\right)^{2}}{2 C_{c}^{2}}\right]
$$

$$
(\Delta)-9)
$$

(1) reduction factor

تـطعات غشارى // ت

العس - قطعات فنشارى سخت نشـد
مقدار ضر يب Q برایى قطعات با فشار محورى به صورت زير معين خوا هد شد :
 : باشد داريم $\frac{630}{F_{y}}<\frac{t}{t}<\frac{1290}{F_{y}}$

$$
Q_{S}=1.340-0.00054\left(\frac{b}{t}\right) \sqrt{F_{y}} \quad(\Delta T-\varepsilon)
$$

: باشد داريم $\frac{b}{t}>\frac{1290}{F_{y}}$
$Q_{s}=-\frac{1069000}{F_{y}\left(\frac{b}{t}\right)^{2}}$
$(\Delta r-s)$

$\therefore \quad \frac{790}{F_{y}}<\frac{b}{t}<\frac{1460}{F_{y}}$
اكر
$\left.Q_{S}=1.415-0.00053\left(\frac{b}{t}\right)\right) \sqrt{F_{y}}$
$(\Delta r-s)$

اكر اشد داريم :
$Q_{s}=\frac{1379000}{F_{y}\left(\frac{b}{t}\right)^{2}}$
$(\Delta \Delta-\xi)$
|الف -

$$
\begin{aligned}
& \text { :باشد داريم } \quad \frac{1055}{F_{y}}<\frac{b}{t}<\frac{14 E 0}{F_{y}} \\
& Q_{s}=1.908-0.00086\left(\frac{b}{t}\right) \sqrt{F_{y}} \quad(\Delta \varepsilon-s) \\
& \text { باشد داريم : } \\
& \stackrel{b}{\mathrm{t}} \geq \frac{1460}{\mathrm{~F}_{\mathrm{y}}} \quad \text { si } \\
& Q_{s}=\frac{1379000}{F_{y}\left(\frac{b}{t}\right)^{2}} \\
& (\Delta Y-\varepsilon) \\
& \text { ب - تطعات فشارى سخت ثده }
\end{aligned}
$$

 عرض مؤثر (1')

$$
b_{e}=\frac{2100 t}{\sqrt{f}}\left[1-\frac{418}{\left(\frac{b}{t}\right) \sqrt{f}}\right]<b \quad(\Delta \lambda-9)
$$

A1SC ب -

تـعـات نشاري/

ض t
 هند سي مقطع مذكور در ذيل (الكر مقطع فئارى داراى فسمتى سخت نتـده نيز باشد در هر صورت
 كردـد د) .
مشخصات هندسي مقطع براى محا سبه f

$$
\begin{equation*}
Q_{a}=\frac{A_{e}}{A_{g}} \tag{90-9}
\end{equation*}
$$

مقدار سطع مؤثر از لـابـطهء زبر معبن خواهد شد .

$$
A_{e}=A_{g}-\mathbf{\Sigma}\left(b-b_{e}\right) t
$$

خجون كليه ستونها از ابتدأ داراى انحناىمختصرى بوده و يا بارهاى واردده داراى خروج

 تطهات كششى يعنى I/GY مورد نياز با شد (در T Tي بيننامه AISC) . هر تدر ضريب لاغري تطعه بزركتر باشد تأثير خروج از مركزبت اتغاقى بار ، خميدكى اوليه ستون و ضريب طول ان

 ضربب اطمبنان را از مقدار اوليهء T FS
(1) effective length factor

$$
F S=\frac{5}{3}+\frac{3}{8}\left(\frac{\frac{\mathrm{KL}}{r}}{\mathrm{C}_{\mathrm{C}}}\right)-\frac{1}{8}\left(\frac{\frac{\mathrm{KL}}{\mathrm{r}}}{\mathrm{C}_{\mathrm{c}}}\right)^{3} \quad(\varepsilon T-q)
$$

 در مورد ستونها يـي كه ضريــ لاغرى آنها بيثتر از مقدار
 معادله (q-9 (q) بايستى بجای

$$
F_{a}=\frac{\pi^{2} E}{F S\left(\frac{K}{r}\right)^{2}}
$$

$$
(s r-s)
$$

رابطه ((\&T-s) مقدار تتش مجاز ستونهاى بلند را در سطع ناخالص Tنها معين مىكند ـ اكر
FS = $\frac{\Gamma T}{1 T} L$ مقدار

$$
\begin{equation*}
F_{a}=\frac{12 \pi^{2} \mathbf{E}}{23\left(\frac{K L}{r}\right)^{2}} \tag{4}
\end{equation*}
$$

 . معين مىكند

$$
\text { در رابططه (q-q - }) \text { مقدأر K برأبر با واحد كرفته شده است . }
$$

 خواننده به مطالعه مرجع (9) دعوت مى شود .

 تدوين شده الـت مىتوان مراجعه نمود .

$$
9 \text { - } 9 \text { = طول مؤثر }
$$

 يك سر ستون نسبت به انتهاى ديكر Tن ممكننباشد ارتفاع يك جنين ستونى كه برابر طول
(1) Sherman
(2) Snyder
(3) Lee
(4)Chen
(5) Ross
(6) Galambos
(7) Kennedy
(8)Murty

 مغل) ستون را معين خواهد كرد .
 سر ستون وصل مى شوند و يا توسط بیى ستون به انتهاي ستون اعمال مى شوند بسيار مشكل .

 دهد

K بين او /ه/ه مىباثد.

 ستونها يى ازين نوع استـ . براى تعيين ضريب طول موءثر K اين نوع ستونها همواره انحام
(I) effective length
(2)braced frame
(3) unbraced frame
(4) bending stiffness

تher

 نمودار در نصل مربوط به مـطا سبهء قابهاي ملب در جزئهيات كا مل آورده مي شود .

(1) effective-length factor
(2) Julian, Lawrence
. ستون بـه كمك روا بط زير محا سبه نموده B , A

$$
G_{B}=\left(\frac{\Sigma \frac{I_{c}}{L_{c}}}{\sum \frac{I_{b}}{L_{b}}}\right)_{B 0,5} \quad G_{A}=\left(\frac{\sum \frac{I_{c}}{L_{c}}}{\sum \frac{I_{b}}{L_{b}}}\right)_{A \Delta, s}^{(s q-q)}
$$

 (يعنى (

$$
G_{i}=G_{e} \frac{F_{a}}{F_{e}^{\prime}}
$$

$$
(s Y-g)
$$

$$
\begin{aligned}
& \text { مقدار } \\
& \text {. تنش مجاز الر است Fé Fe }
\end{aligned}
$$

$$
F_{e}^{\prime}=\frac{12}{23} \frac{\sigma_{I^{1}}^{2} E}{\left(\frac{K L}{r}\right)^{2}}
$$

تصتم نشده باشد معدار

| /ه خوا هد هود .

- هر كاه انتنهاى ديكر تير به تكيهكاه كيردار ختتم شود مقدار ضريبتصصيح برابر با
|\&Y/ /

ب - هر كاه ستون عضوى از بك تاب مهار شده باشد .

قطـا فشا رى/هع

كرجه مقدار طول مؤثر را براي تطعات تحت انر بار فشار محورى مهين كردهايم استغاده اديه

 جهت طراحی ستونها يى كه عضو تابسهاي ههار نـيا
 تغهيم نحوهء كان نش انواع مختلف ستونها آورده خوا هد شد شد .
خوانندها

 است
براى تعيين متدار ضريب K جهت قطعات فشارى خرياها ، جون انتهاى اين قطعات به

 اثر شدت هاى مختلف تنش قرار خواهد كرديد دريك جنين مواردى بر بريق توصيه
(1) Yura
(2) Disque
(3) Smith

قطعا ت فشا رتـ / / ه

در صورتى كه طراحى ايین نوع خرها ها براىوضعيت ثابتى از باركذارى باشد بهتتر است مقدار ضريبK متحرك باشد جون تطعات مختلف تحت اثر شدتهاى مختلف تـش ترار خواهند كرفت لـذا مقاومت كرهها در برابر دوران انتهاى قطعات فشارى خريا همچپنا حفظ خواههد كرديد دريك حنيى مواردى بر طبق توصيه SSRC ميتوان مقدار K را برابر با A / /ه كرفت (مرجع و) .

شك

 محا سبه خوا هد شد . در همهء موارد مقدار تنش مجاز بستكى به ضريب لاغرى قطعهوتنشتسليم فولاد مصرفى خوا هد دا شت . جون تنش مجاز تطعه بستكى به ضريب لاغرى لـا r بسته به شكل مقطع قطعه متغير است دارد ، لذا طراحى تطعات فشارى روشى غير مستقيم وبه

صورتسعى و خطا خواهد بود . روش مها سبه مراحل كام بهكام زير را را خواهد دا داشت . ا - تنش مجازى انتخاب كنيد .

$$
\text { بنـوعى با شد كه فـا بـطه بـند } 1 \text { - q } 1 \text { זيهنا هـ AISC رعا يت شود) . }
$$

 . را مها سبه كرده و $\frac{P}{P}$ A
ه آ اكر
خاتم هافته خواهد بود در غيراينصورت بايد كام هاى ا الى ه را دوبارهتكرار كرد .
مثال

سكترين نيمرخ بال ههن متوسطى را كه بعنوان ستونى دو سر هغصل بطول †

چون ستون دا, إى دو سر مغصلى است لذا با توجه به مندرجات شكل (\& -

> ضريب K برابر با واحد خواهد بود . لــا داريم :

KL $=1 \times 4.8=480 \mathrm{~cm}$

A $>\frac{P}{F_{a}}=\frac{87000}{1100}=79 \mathrm{~cm}^{2} \Rightarrow$ IPB20
 كمانش ستون را محا سبه می كنيم .
$r_{y}=5.07 \mathrm{~cm} \quad \frac{\mathrm{~kL}}{\mathrm{r}}=\frac{1.0 \times 480}{5.07}=94.7$
$c_{c}=\frac{6390}{\sqrt{F_{y}}}=132$
$F S=\frac{5}{3}+\frac{3}{3}\left(\frac{94.7}{132.0}\right)-\frac{1}{8}\left(-\frac{94.7}{132.0}\right)^{3}=1.89$
$F_{a}=\frac{F_{y}}{F_{s}}\left[\frac{\left(\frac{K L}{r}\right)^{2}}{2 C_{c}{ }^{2}}\right] 917 \quad$ bar <1100
. فعلوم استه
IPB22

$$
r_{y}=5.59 \mathrm{~cm}
$$

($F_{y}=2333 \mathrm{bar}$											
$\left\lvert\, \begin{array}{l\|l} \lambda=\frac{K L}{r}>\left[C_{c}=\sqrt{\frac{2}{2} \frac{\pi^{2} E}{F_{y}}}\right] & \lambda=\frac{K L}{r}<\left[c_{c}=\sqrt{\frac{2 \pi^{2}{ }_{z E}}{F_{y}}}\right] \\ F_{a}=\frac{12}{23}-\frac{\varepsilon^{2} \pi E}{\lambda x^{2}} & F_{a}=\frac{\left(1-\frac{\lambda}{2 C_{c}^{2}}\right) F_{y}}{\frac{5}{3}+\frac{3 \lambda}{8 C_{c}}-\frac{\lambda}{8 C_{c}} \frac{\overline{3}}{3}} \end{array}\right.$											
λ	0	1	2	3	4	5	6	7	8	9	λ
0	1400	1398	1395	1393	1390	1367	1385	1362	1379	1376	0
10	1373	1370	1367	13 E 4	1361	1357	1354	1351	1347	1343	10
20	1339	$\underline{2} 335$	1332	1328	1324	1320	1316	1312	1308	1304	20
30	1300	1296	1291	1287	1283	1278	1274	1269	1264	1260	30
40	1255	1250	1245	1240	1235	1230	1225	1220	1215	1210	40
50	1205	1199	1194	1189	1183	1178	1172	1167	1161	1155	50
40	1150	1144	1138	1132	1126	1120	1114	1108	1102	1096	60
70	1090	1084	1078	1072	1065	1059	1053	1046	1040	1033	70
80	1026	1019	1013	1006	999	992	986	979	972	965	80
90	957	950	943	93E	929	922	914	907	900	892	90
100	885	877	869	862	854	876	839	831	823	815	100
110	807	799	791	783	775	767	759	750	742	734	110
120	725	$\begin{aligned} & 717 \\ & 721 \end{aligned}$	$\begin{aligned} & 709 \\ & 716 \end{aligned}$	$\begin{array}{r} 700 \\ 710 \\ \hline \end{array}$	$\begin{aligned} & 692 \\ & 705 \\ & \hline \end{aligned}$	$\begin{aligned} & 683 \\ & 700 \\ & \hline \end{aligned}$	$\begin{aligned} & 674 \\ & 695 \end{aligned}$	$\begin{aligned} & 665 \\ & 689 \end{aligned}$	$\begin{aligned} & 656 \\ & 684 \end{aligned}$	$\begin{aligned} & 648 \\ & 679 \end{aligned}$	120
130	$\begin{aligned} & 638 \\ & 672 \\ & \hline \end{aligned}$	$\begin{aligned} & 629 \\ & 66 t \end{aligned}$	$\begin{aligned} & 620 \\ & 660 \end{aligned}$	$\begin{aligned} & 611 \\ & 654 \end{aligned}$	$\begin{aligned} & 602 \\ & 648 \end{aligned}$	$\begin{aligned} & 593 \\ & 641 \\ & \hline \end{aligned}$	$\begin{aligned} & 5 \varepsilon 5 \\ & 635 \end{aligned}$	$\begin{aligned} & 576 \\ & 630 \\ & \hline \end{aligned}$	$\begin{aligned} & 568 \\ & 624 \end{aligned}$	$\begin{aligned} & 560 \\ & 618 \end{aligned}$	130
140	$\begin{aligned} & 552 \\ & 613 \end{aligned}$	$\begin{aligned} & 544 \\ & 608 \\ & \hline \end{aligned}$	$\begin{aligned} & 536 \\ & 603 \end{aligned}$	$\begin{aligned} & 529 \\ & 598 \end{aligned}$	$\begin{aligned} & 521 \\ & 593 \end{aligned}$	$\begin{aligned} & 514 \\ & 588 \end{aligned}$	$\begin{aligned} & 507 \\ & 583 \end{aligned}$	$\begin{aligned} & 500 \\ & 579 \end{aligned}$	$\begin{aligned} & 494 \\ & 574 \end{aligned}$	$\begin{aligned} & 487 \\ & 570 \end{aligned}$	140
150	$\begin{aligned} & 481 \\ & 565 \\ & \hline \end{aligned}$	$\begin{aligned} & 474 \\ & 561 \end{aligned}$	$\begin{aligned} & 468 \\ & 557 \end{aligned}$	$\begin{aligned} & 462 \\ & 553 \end{aligned}$	$\begin{aligned} & 456 \\ & 549 \end{aligned}$	$\begin{aligned} & 450 \\ & 546 \end{aligned}$	$\begin{aligned} & 444 \\ & 542 \end{aligned}$	$\begin{aligned} & 439 \\ & 538 \\ & \hline \end{aligned}$	$\begin{aligned} & 433 \\ & 535 \end{aligned}$	$\begin{aligned} & 428 \\ & 531 \end{aligned}$	150
160	$\begin{aligned} & 42 \hat{2} \\ & 528 \\ & \hline \end{aligned}$	$\begin{aligned} & 417 \\ & 525 \\ & \hline \end{aligned}$	$\begin{aligned} & 412 \\ & 522 \end{aligned}$	$\begin{aligned} & 407 \\ & 518 \end{aligned}$	$\begin{aligned} & 402 \\ & 515 \\ & \hline \end{aligned}$	$\begin{aligned} & 397 \\ & 513 \end{aligned}$	$\begin{aligned} & 392 \\ & 510 \\ & \hline \end{aligned}$	$\begin{aligned} & 388 \\ & 507 \\ & \hline \end{aligned}$	$\begin{aligned} & 383 \\ & 504 \end{aligned}$	$\begin{aligned} & 379 \\ & 501 \end{aligned}$	160
:70	$\begin{aligned} & 374 \\ & 499 \end{aligned}$	$\begin{aligned} & 370 \\ & 496 \end{aligned}$	$\begin{aligned} & 36 \varepsilon \\ & 494 \\ & \hline \end{aligned}$	$\begin{aligned} & 361 \\ & 492 \end{aligned}$	$\begin{aligned} & 357 \\ & 489 \end{aligned}$	$\begin{aligned} & 353 \\ & 487 \end{aligned}$	$\begin{aligned} & 349 \\ & 485 \\ & \hline \end{aligned}$	$\begin{aligned} & 345 \\ & 483 \end{aligned}$	$\begin{aligned} & 341 \\ & 481 \end{aligned}$	$\begin{aligned} & 337 \\ & 479 \end{aligned}$	170
180	$\begin{aligned} & 334 \\ & 477 \end{aligned}$	$\begin{aligned} & 330 \\ & 475 \end{aligned}$	$\begin{aligned} & 326 \\ & 473 \\ & \hline \end{aligned}$	$\begin{aligned} & 323 \\ & 471 \end{aligned}$	$\begin{aligned} & 319 \\ & 470 \end{aligned}$	$\begin{aligned} & 316 \\ & 468 \\ & \hline \end{aligned}$	$\begin{aligned} & 313 \\ & 467 \end{aligned}$	$\begin{aligned} & 309 \\ & 465 \end{aligned}$	$\begin{aligned} & 306 \\ & 464 \end{aligned}$	$\begin{aligned} & 303 \\ & 462 \end{aligned}$	280
190	$\begin{aligned} & 300 \\ & 461 \\ & \hline \end{aligned}$	$\begin{aligned} & 296 \\ & 460 \\ & \hline \end{aligned}$	$\begin{aligned} & 293 \\ & 458 \\ & \hline \end{aligned}$	$\begin{aligned} & 290 \\ & 457 \end{aligned}$	$\begin{aligned} & 287 \\ & 456 \end{aligned}$	$\begin{aligned} & 284 \\ & 455 \end{aligned}$	$\begin{aligned} & 281 \\ & 454 \end{aligned}$	$\begin{aligned} & 279 \\ & 453 \end{aligned}$	$\begin{array}{r} 276 \\ 452 \\ \hline \end{array}$	$\begin{aligned} & 273 \\ & 451 \end{aligned}$	190
200	$\begin{aligned} & 270 \\ & 451 \end{aligned}$										200

$$
\begin{aligned}
& \frac{K L}{r}=\frac{1.0 \times 480}{5.59}=85.9 \Rightarrow F_{a}=985 \text { bar } \\
& \quad f_{a}=\frac{P}{\bar{A}}=\frac{87000}{91}=956 \text { bar }<985 \text { ok } 0 \mathrm{~K}
\end{aligned}
$$

Fy $=$ تعيين تنش مجاز ابن نـوع نيهرخهـا ميتوان از جـدول (و
تنتظيم شده است استفاده نموده و از محا سبات خسته كنـده تعيبي تنش مجاز اجتناب نمود .
مثtال
 محورى برابر با Yoo كيلونيوتن تحمل ميكند ، مطابت شكل دالراي ارتناعى برابر با 9 متر
 قطعه دارای تكيهكاهى مفصلى دردوانتتهاى خود بوده و عضوى از بك قاب بهار شده اسـت .
 انتخاب ميكنيم • Fa

$$
\left.A=\frac{P}{F_{a}}=\frac{70000}{10000}=70.0 \text { (} 1 \text { (}\right)
$$

با اين سطع بقطع IPB-20 انتخاب خواهد شد .

$$
\lambda_{y}=\frac{K_{y} L}{r_{y}}=\frac{0.5 \times 900}{5.07}=88.8
$$

$$
\lambda_{x}=\frac{K_{x} L}{r_{x}}=\frac{1 \times 900}{8.54}=105.4
$$

كمانش سول محور X-X تعيبن كنـنده خواهد بود.
$\lambda_{\text {max }}=105.4 \Rightarrow F_{a} \simeq 842$ bar $<f_{a}=896$

شكل (ry-q)
.

$$
\lambda_{x}=\frac{K_{x} L}{r_{x}}=\frac{1 \times 900}{9.43}=95.4
$$

$$
\lambda_{y}=\frac{K y L}{r_{y}}=\frac{0.5 \times 900}{5.59}=
$$

$$
\lambda_{\max }=95.4 \Rightarrow F_{a}=918 \text { bar }
$$

$$
f_{a}=\frac{P}{A}=\frac{70000}{91}=769<918 \quad 0 \mathrm{~K} .
$$

דس متوان IPB22 بكار برد.
مثال

سبكترين IPB لازم براى ستونى با ارتغاع

ح

$$
A \geqslant \frac{P}{F_{a}}=\frac{130000}{1000}=130 \mathrm{~cm}^{2}
$$

با ايى سطح مقطع دا ا متحان مىكنيم .

شكل (YA-Y)

$$
\begin{aligned}
& \lambda_{y}=\frac{K_{y} L}{r_{y}}=\frac{0.80 \times 650}{7.09}=73.3 \\
& \lambda=\frac{K_{x} L}{r_{x}}=\frac{0.85 \times 650}{12.1}=45.7
\end{aligned}
$$

$$
\lambda_{m}=\lambda_{y}=73.3 \Rightarrow F_{a}=1070 \text { bar }
$$

هال همين مقطع را الز نظر تنش كنترل مىكنيم .

$$
\begin{aligned}
& \text { شكل ((}
\end{aligned}
$$

$$
f_{a}=\frac{P}{A}=\frac{130000}{131.4}=989 \& 1070 \text { 0K. }
$$

 بود

مثال

 كرفت . الدنغاع ' اين ستون \%/o

ثكل (
 با اين وجود طرامى هرخى از ستونهاى ميانى كه بهورت متقارن بار شده باشند ميتواند تنها
تعت اثو بار معورى انبام كيرد .

برابر با (با, Fa=1000 انتخاب مىكنهم .

$$
F_{e}^{\prime}=\frac{12}{23} \times \frac{\bar{\pi}^{2} \times 21 \times 10^{5}}{94.2^{2}}=1218 \quad \text { bar }
$$

از رابطه (FY-F) خواهيم داشت.

$$
G_{Y L}=1 \times \frac{928}{1218}=0.76
$$

$$
\begin{aligned}
& A>\frac{P}{F_{a}}=\frac{120000}{1000}=120 \mathrm{~cm}^{2} \rightarrow \text { IPB26 } \\
& \lambda_{y}=\frac{K_{y} L}{r_{X}}=\frac{600}{6.58}=91.2 \Rightarrow F_{a}=949 \text { bar } \\
& f_{a}=\frac{120000}{118.4}=1014 \text { bar }>F_{a} \quad \text { N.G. } \\
& \text { "سس بنا هار IPB28 انتخاب خواهد شد. } \\
& \text { حال در صعدء؛ قاب ستون نوق را طرح مىكنيم . } \\
& G^{y}=\frac{\frac{I_{c}}{L_{c}}}{\Sigma \frac{I_{\mathrm{t}}}{L_{b}}}=\frac{\frac{19270}{600}}{2 \times \frac{19270}{1200}}=1 \\
& { }^{G}{ }_{10} \\
& \text { با استغاده از شكل (} \text { K } \\
& \lambda_{x}=\frac{K_{x} L}{r_{x}}=\frac{1.9 \times 600}{12.1}=94.2 \Rightarrow F_{a}=928 \text { bar } \\
& f_{a}=\frac{120000}{131.4}=913.2<928 \text { 0.K. }
\end{aligned}
$$

تطعات: نشاري/49

حال بار ديكر ضريب K' را از نمودار شكل ((Y -

$$
\begin{aligned}
& K_{x}=1.82 \\
& \lambda_{x}=\frac{1.82 \times 600}{12.1}=90.2 \Rightarrow F_{a}=956 \mathrm{bar}
\end{aligned}
$$

مثال \& - ه = =
 بار وارده كنا يت مىكند يا خير .

شكل (ro-f)

براى بررسى كمانش ستون فوقالذكر ابتدا مشخصات هندسى لازم ستون را معينمىكنيم

$$
\begin{aligned}
& A=94.56 \mathrm{~cm}^{2} \\
& I_{x}=I_{y}=24471 \mathrm{~cm}^{2} \\
& r_{x}=r_{y}=16.09 \mathrm{~cm}
\end{aligned}
$$

$$
\lambda=\frac{\mathrm{KL}}{r}=\frac{1.980}{16.09}=60.9 \Rightarrow \mathrm{~F}_{\mathrm{a}}=1145 \mathrm{bar}
$$

$$
f=F_{a} \approx 950 \text { bar }
$$

$$
b_{e}=\frac{2100 t}{\sqrt{f}}\left[1-\frac{418}{\left.\frac{b}{t} \right\rvert\, \bar{f}}\right]=\frac{2100 \times 0.6}{\sqrt{950}}\left[1-\frac{418}{\frac{40}{0.6} \sqrt{950}}\right]=32.6 \mathrm{~cm}
$$

$$
A_{e}=A_{g}-\Sigma\left(b-b_{e}\right) t=94.56-4(40-32.6 \times 0.6=76.71 \mathrm{Cm}
$$

$$
\begin{aligned}
& A_{e} \\
& A_{g}
\end{aligned} \frac{76.71}{94.56}=0.311 \quad C_{c}=\frac{6390}{\sqrt{2 F_{y}}}=147
$$

$$
F S=\frac{5}{3}+\frac{3}{8}\left(\frac{K L}{r_{C}}\right)-\frac{1}{8}\left(\frac{K_{L}}{r_{C}}\right)^{3}=1.81
$$

$$
F_{a}=\frac{Q F_{y}}{F S}\left[1-\frac{\left(\frac{K L}{r}\right)^{2}}{2 C_{C}^{2}}\right]=954<951.8
$$

ديده مى شود كه ميتوان عملا" نيمرخ فوقالذكر را براي بار وارده كافى دانسـت .

$$
G_{A}=\frac{0.652+0.761}{0.5 \times 1.608+1.478}=0.62
$$

$$
\begin{aligned}
& f_{a}=\frac{P}{A}=\frac{90000}{94.26}=951.8 \quad \text { bar }<11450 \mathrm{~K}
\end{aligned}
$$

$$
\begin{aligned}
& \text { تبمرح بررسى كنيم , مرص مىكنيم كه : }
\end{aligned}
$$

تطعات فشارى//55

(-)

شكل (r)-s)
برايقاب شكل ((- اץ ب) خواهيم داشت.

$$
K=0.7 \epsilon
$$

$$
\text { §- } 11 \text { = فرمول هاي طراحى براساس ساير آئيننامهها }
$$

 تجربى با تصد محا سباتى محافظهكارانه مطرح مىكرديد .
(1) T.H.Johnson

$$
\begin{aligned}
& G_{A}=\frac{-0.652+0.761}{2 \times 1.608+1.5 \times 478}=0.26 \quad G_{B}=10
\end{aligned}
$$

$$
\begin{aligned}
& G_{B}=1 \\
& \text { با توجه به سمودار شكل (Y-Y } \\
& K=1 / K
\end{aligned}
$$

1 AASHT0-77 ضوابط

 شدهولى براى تطعات فشارى با لاغرى

$$
F_{a}=\frac{F_{y}}{2 \cdot 12}\left[1-\frac{\left(\frac{K L}{r}\right)^{2}}{2 C_{c}^{2}}\right]
$$

$$
(99-9)
$$

$$
\text { و براى لاغرى } \quad \frac{K L}{r}>C_{C} \text { رابطهء زير استفا ده خواهد شد . }
$$

$$
\begin{equation*}
F_{a}=\frac{\pi^{2} E}{2.12\left(\frac{K L}{r}\right)^{2}} \tag{0}
\end{equation*}
$$

در اين ضوابطضريب اطمينان ستونها (يعنى انتخابي براى فطعات كثشى يعنى ا ا سى اشاشد .

فرمول سكانت

 ستونها ست و بد ين جهت استغاده از فرمول سكانت ديكر اهميت سالهاي متطادى اوليه خودرا ازدست داده است .
(1) American Association of State Highway and Transpor tation officials.
(2) Secant

قتعات فشا دى/Fr

را بططها يكه براى تنـش حداكثر در تطعهاى از سازه كه تحت اثر نيروى فشار محورى و خمش

$$
f=\frac{P}{A}+\frac{M}{S} \sec \frac{k L}{2}
$$

$$
(Y \mid-9)
$$

 نوشته خوا هد شد .

$$
F_{y}=\frac{P}{A}\left(1+\frac{e A}{S} \operatorname{Sec} \frac{L}{2} \sqrt{\left.\frac{P}{E I}\right)} \quad(Y r-s)\right.
$$

-اكر مقدار خروج از مركزيت بار راحتيزما نییكازمحورىبودن آن مطمئنبا شيم برا برباها

$$
F_{y}=\frac{P}{A}\left(1+0.25 \sec \frac{L}{2 r} \quad \sqrt{\left.\frac{F}{E A}\right)} \quad(y r-\xi)\right.
$$

شكل (Y -

با درنظر كرفتن ضريب اطمينانى منا سبب مقدار تنش مهاز متوسطدر سطعح ناخالص مقطم به صورت زير معين خواهد شد .

$$
F_{a}=\frac{P}{A}=\frac{F_{y}}{F S\left(1+0.25 \sec \frac{L}{2 r} \sqrt{\frac{F_{a}(F S)}{E}}\right.} \quad(Y \varphi-q)
$$

ساير فرمولهاى طراحى ستونها را هيتوان در ساير كتب طراحى نظير مراجع (35 (34)
بد ست آورد .

براى ستون شكل (\&-q-
مثال

$L=0.875(480)=420 \quad \mathrm{~cm}$
FS = 1.77 براى نولاد نرمه

$$
\frac{L}{2 r}=\frac{420}{2 \times 5.59}=37.6
$$

$$
2333
$$

$F_{a}=\frac{1.77\left[\left(1+0.25 \sec \left(37 . \epsilon \sqrt{\left.\frac{F_{a}(1.77)}{21 \times 105}\right)}\right]\right.\right.}{}$

$$
F_{a}=\frac{1318}{1+0.25 \operatorname{Sec}\left(0.0345 \sqrt{F_{a}}\right)}
$$

(1) pinned ends

قطـات تشا رى / F

اين رابططه با سعىو خطا حل خواهد شد .
$F_{a}=1000$ bar $\sec 1.091=2.17 \quad F_{a}=855$ bar
$\mathrm{F}_{\mathrm{a}}=900 \quad \operatorname{Sec} 1.035=1.96 \mathrm{Fa}=885$
$F_{a}=890 \quad \operatorname{Sec} 1.029=1.94 \quad F_{a}=888$
$F_{a}=888 \quad$ Sec $1.028=1.94 \quad \mathrm{Fa}_{\mathrm{a}}=888$

 تنش مجاز توسطاين فرمول اراءه شده است .

 اضا فه نمود تا انحناي كل ستون بدست آيد ـ ا از تهل ميدانيم كه :
$V=\frac{d M_{z}}{d Z}=p \frac{d y}{d Z}$ $(y \Delta-4)$

هتدار M از رابطه (
(1) lacing bars
(2) battens

(1)

(ه)

شكل (؟ - بr) -ــانواع ستونـهاى بستدار
شيب منحنى تغيير شكل حاصل از برث بـرابر است با :

$$
(Y \varepsilon-\varepsilon)
$$

درا ينرابطه م ضربيـي است كه بـستكي به شكل متطع ستون دارد . سهم بـرث در انسناىى ستون خوا هد شد .

$$
\begin{aligned}
& \frac{d \theta}{d z}=\frac{\beta}{A G} \quad \frac{d V}{d Z}=\frac{P \beta}{A G} \quad \frac{q^{2} y}{d Z^{2}} \quad(y Y-s) \\
& \text { انتسناى كل حاصل جمع دو رابطه (Y-q) }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d^{2} y}{d z^{2}}=-\frac{P y}{E I}+\frac{P \beta}{A G} \times \frac{d^{2} y}{d z^{2}} \\
& \frac{d^{2} y}{d z^{2}}+\frac{P}{E I}\left(\frac{1}{1-\frac{P B}{A G}}\right) y=0 \\
& \cdots
\end{aligned}
$$

قطعات تشار5/5VV

اين معادله هعان شكل معا دله (و (نوق به صورت زير خوا هد بود .

$$
\begin{equation*}
P_{c r}=\frac{m^{2} E I}{L^{2}} \times \frac{1}{\left(1+\frac{\beta}{A G} \frac{\pi}{i L^{2}}\right)} \tag{Yq-q}
\end{equation*}
$$

$$
F_{c r}=\frac{P_{c r}}{A}=\frac{x^{2} E_{t}}{\left(\alpha \frac{K L_{r}}{r}\right)^{2}}
$$

$$
\left(\Lambda_{0}-s\right)
$$

درين رابطه مقدار ' ${ }^{\text {به صورت زير خوا هد بود . }}$

$$
\begin{equation*}
a=\sqrt{1+2(1+4) \frac{m^{2}-\beta}{\left(\frac{K L}{r}\right)^{2}}} \tag{A1-9}
\end{equation*}
$$

 ض $\|$ كرفته شود ضريب ه ه به صورت زير محا سـه خوا هد شد .

$$
\begin{aligned}
\frac{\mathrm{KL}}{r} & =50 & \alpha & =1.01 \\
& =70 & & =1.005 \\
& =100 & & =1.003
\end{aligned}
$$

برابر با حداكثر يك درصد در طول موءثر ستون خوا هد بود كه از اين تأثير نا جِيز برشعيتوان با اطمينان خاطر صرفنظر نمود . ستونها

 در ثكل () برابربا

الف ــ تأثير ازدياد طول ميله قطرى

ب - تأثير تقليل طول ميله افقى

شكل (9 - -

 با ورقهاى سوراخدار در كتاب راهنماى SSRC (مرجع 9) ود در مراجع (36 - 38)بهنغسير بحث شدها است ,

 ع و د) نثـان داده شدها است
(1) latticed Column
(2) main Segment
 ا'

 ;ا كه تحت مبروى منـار محورى واقع غده با شـد با
$F_{c r}=\frac{\pi^{2} E_{t}}{\left(\alpha \frac{\mathrm{KL}}{r}\right)^{2}}$

$$
(A 0-F)
$$

نسنا ن ميد هد . درا ينـرابطه مقدا, مقدار ג ג را براى ستونهها بـستدار ميتوان با روشُها ئى كه بصورت نقربيى تغيير شكل
بست ستوت را معبن مىكند محا سبه نمود .
(1) reduced Stiffness

 (レTV - ;

$\alpha=\sqrt{1+\frac{\Lambda^{2}}{\left(\frac{L}{r}\right)^{2}} \times \frac{A}{A_{d}} \times \frac{1}{\cos \theta \sin ^{2} \theta}} \quad$ or -91

" طول " L

: A

جدول ($)$

				ه0 $\theta=60^{\circ}$				
90	70	50	30	90	70	50	30	
1.01	1.02	1.03	1.08	1.01	1.01	1.03	1.07	5
1.04	1.06	1.11	1.28	1.03	1.05	1.10	1.26	20
1.08	1.14	1.25	1.60	1.08	1.12	1.24	1.57	50

(1) Perforated Plates
T - براى ستونسهاى با پيودد امقى تتها

$$
\alpha=\sqrt{1+\frac{\pi^{2}}{12\left(\frac{L}{r}\right)^{2}} \times\left(\frac{A}{A_{b}} \times \frac{a b}{r_{b}^{2}}+\frac{a^{2}}{r_{1}^{2}}\right)} \quad(\lambda r-q)
$$

درايسرا ب-طه:

Ab a

جد ول ($)$

$\frac{L}{r}=80$			$\frac{L}{r}=60$			$\frac{L}{r}=40$			a
30	20	10	30	20	10	30	20	10	
1.06	1.03	1.00	1.10	1.04	1.01	1.21	1.10	1.03	0.0
1.06	1.03	1.00	1.10	1.04	1.01	1.21	1.10	1.03	10.0
1.07	1.04	1.01	1.12	1.12	1.02	1.23	1.12	1.06	100.0

درين جدول مقدار 3 ’ 'ز رابطه زير معين خواهد شد. .

$$
\beta=\frac{A}{A_{b}} \times \frac{a b}{r_{b}^{2}}
$$

فطـا ـ فشا رى/TVH

$$
\begin{aligned}
& \alpha=\sqrt{1+\frac{\pi^{2}}{\left(\frac{L}{r}\right)^{2}}\left(\frac{A}{A_{d}} \times \frac{1}{\cos \theta \sin ^{2} \theta}+\frac{A}{A_{b}} \operatorname{tg} \theta\right)(A \varphi-s)} \\
& \alpha=1 \sqrt{1+\frac{\pi}{12\left(\frac{L}{r}\right)^{2}}\left(\frac{a}{r 1}\right)^{2}}
\end{aligned}
$$

درين رابطه: :
: فواصل مراكز سوراخها بـت كه حداقل مـاوى با از مقادير جدول (千ورق سوراخدار ا ستفا ده نمود .

F

 شا مل ميثود . برطبق ضوابط AISC در طرا حمى اين نوع ستونهها بايد مقررات زير را رعايت
 مركب به مرجع (39) كه توسط بـلاجت ا نأليف شده استـ مرا جعه كدـ .

ضوابط A ISC در طراحى ستونـهاى مركب از چنـد نيمرخ

1
 بيش از \uparrow برابرقطر شان نبودهو در طولى معادل با 1 / ابرابر بز ركتر بن بعد متطع متصلنمود
 | بعد متطع باشد (شكل
(1) Blodgett

 شكل ()

 |تخشهاى موجود كا فى با شند .

(i) Intermittent fillers
 \qquad

شكل (f) -

ضخامت اين بيوندها هـى اعقى نبا يد از

 (r (rl) با شد ($40-9-9$)

اشكل (६-\& -

بستههاى حی و را ست و پیيوندهای افقى را با يد طورى طراحى نمود كه بتوانند يك

 با شد ، سطع خالص مقطع قطعهء فشارى بايستى فا در به تنحمل تخشهماى فشارى با شد و علاوهبر

شكل (FY-F) ــاتصال با صفحه سورانخار
مثال

(1) Perforated Cover Plates

ـلانتيمتر ، اتصا لات آن جوشى و نوع فولاد آن از نوع نر هـ است . حل :
الف - ميتوا نيم با حد سا ارتفا ع مقطع (h) مقدار شعاع زبراسيون Tنرا كه عملا" فقط

 زيرا سيون مقطع را برحسب شكل مقطع معين مى كند .
جد ول (ヶ-4) -

تش

شكل (ヶ $)$ -

ضريب لاغرى ستونبرابر خوا هد يد با :
$\frac{\mathrm{KL}}{r}=\frac{880}{0.42 h}=\frac{2095}{h}$
جدول زير را جهت انجام سعى وخطاى لازم طراحى تشكيل ميدهيم .

 بكيريم مدار ضريب α برای اين ستون به صورت زير مسا هـه خوا هد شد .

$$
I=4\left[1050+51.0(30-4.37)^{2}\right]=138207 \mathrm{~cm}^{4}
$$

$$
r=\sqrt{\frac{138207}{4 \times 51}}=26.03 \mathrm{~cm}
$$

متدار برش براي مها سبه بست هاى جب و راست برابر است با :
$V=0.02 \mathrm{P}=0.02 \times 255000=5100 \mathrm{daN}$
نيرو در بك $F=\left(\frac{1}{2} \times 5100\right) \operatorname{Sin} 60=2944 \mathrm{daN}$
اكر طول آزاد بستها را برا اساس فواصل مراكز ثعل اعضاى اصلى ستون بكيريم معداران
خواهد شد. .

$$
1^{\prime}=(60-2 \times 4.37) / \sin 60^{\circ}=59.2 \mathrm{~cm}
$$

اكر تتش محا ساتى بست ر! برابر با (بار) Fa=1000 بكير شم خواهيم داثت .

$$
\begin{aligned}
& A_{d}=\frac{2944}{1000}=2.944 \mathrm{~cm}^{2} \rightarrow<40 \times 4 r_{\text {min }}=0.78 \mathrm{~cm} \\
& \frac{\mathrm{KL}}{r}=\frac{1 \times 59.2}{0.78}=75.9<140 \text { 0.K. } \Rightarrow F_{a}=1053 \text { bar } \\
& A>\frac{2944}{1053}=2.80<3.08 \text { O.K. . } \\
& a=\sqrt{1+\frac{\pi^{2}}{\left(\frac{L}{r}\right)^{2}} \times \frac{A}{A_{d}} \times \frac{1}{\cos \theta \sin ^{2} \theta}}= \\
& \sqrt{1+\frac{\pi^{2}}{\left(\frac{880}{26.03}\right)^{2}} \times \frac{4 \times 51.0}{2 \times 3.08} \times \frac{1}{\cos 60 \sin 60}}=1.33
\end{aligned}
$$

$$
\begin{aligned}
& \lambda=\frac{\alpha \mathrm{KL}}{r}=1.33\left(\frac{880}{26.03}\right)=45.0 \Rightarrow \mathrm{~F}_{\mathrm{a}}=1230 \mathrm{bar} \\
& \text { كنترل ديكرى كه بايد انجطام كيرد ، عدم كمانش هريكازا اعضاى أملى ستون (نبشى اما) } \\
& \text { در حدفاصل اتصال دو بست هج و راست مى باشثـ . } \\
& S=2 \operatorname{btg} 30=2(60-2 \times 4.37) \operatorname{tg} 30^{\circ}=59.2 \mathrm{~cm} \quad A \\
& \frac{S}{r_{1}}=\frac{59.2}{2.92}=20.3 \Rightarrow F_{a}=1336>1230 \quad 0 K \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (فواصل اتصالات صفحهء نـشى هما) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (ضخامتصفسهانتهابيى) (}
\end{aligned}
$$

مثال צ-9 = =

K در دو جهت برابر با ז// و ا معين شده استـ .

$A=\frac{P}{F_{a}}=\frac{100000}{1100}=91 \mathrm{~cm}^{2} \Rightarrow 2 L 24 \Rightarrow 2 \times 42.3=84 / 6 \mathrm{Cm}^{2} \quad 2 \mathrm{U} 24$

$$
\begin{aligned}
& \lambda_{x}=\frac{k_{x} L}{r_{x}}=\frac{\cdot 1 \times 500}{9.22}=54.2 \Rightarrow F_{a}=1181 \mathrm{bar} \\
& f_{a}=\frac{100000}{2 \times 42.3}=1182 \approx F_{a} \quad 0 . \mathrm{K} .
\end{aligned}
$$

$\frac{\alpha K_{y} L}{r_{y}}<\frac{K_{x} L}{r_{x}}$
(شعاع زيرا سيونحدا قل نيمرخها) > (فوامل ميان دو نيمرخ اصلى)
2.4²×20 > (فوامل مياندو نيمرخاهلى)
اكر بيرون به بيرون دو عضو اصلى را ro Cm بكيريم خوا هيم دا ثت .
$\frac{b}{2}=\frac{30}{2}-2.23=12.77 \mathrm{~cm}$
$\mathrm{I}_{\mathrm{y}}=14292 \mathrm{~cm}^{4}$
$r_{y}=13.0$
$\lambda_{y}=\frac{K_{y} L}{r_{y}}=\frac{1.2 \times 500}{13}=46.2$
$t>\frac{(\text { (فوا ملمياندونيمرخ) }}{35}=0.8$
"يبوند افقىى را به صورت زير انتخاب مىكنيم .

PL 140×10
a $a \geqslant 2.5 b=2.5 \times 14=35 \mathrm{~cm}$

$$
\begin{aligned}
& \frac{a}{r_{1}}<\frac{L}{2 r_{x}}=\frac{500}{2 \times 9.22}=27.11 \\
& \frac{a}{r_{1}}<50
\end{aligned}
$$

يس بايد دا شته باشيم

$$
\begin{aligned}
& d>0.42 \text { (}{ }^{\text {(}} \\
& 0.42(30-2 \times 0.55)=11.8 \mathrm{~cm}
\end{aligned}
$$

شكل (pq-q)
$27.11 \times 2.42=65.6 \geqslant a \geqslant 35 \mathrm{~cm}$

$$
\begin{aligned}
& \alpha=\sqrt{1+\frac{\pi^{2}}{12\left(\frac{K L}{r}\right)^{2}}\left(\frac{A}{A_{b}} \times \frac{a b}{r_{b}^{2}}+\frac{a^{2}}{r^{2}}\right)=} \\
& \sqrt{1+\frac{\pi^{2}}{12\left(\frac{1.2 \times 500}{13}\right)^{2}}\left(\frac{84.6}{2 \times 14 \times 1} \times \frac{50 \times 25.24}{4.04^{2}}+\frac{50^{2}}{2.42^{2}}\right)}=1.12
\end{aligned}
$$

نيروى برشى $V=0.02 P=0.02 \times 100000=2000$ dail
نيروى برشید رهربيوند $\frac{T}{2}=\left(\frac{V}{2} \times \frac{a}{2}\right) \frac{2}{b}=1958 \mathrm{daN}$
. هال جوش را برای برش ش هراي اينكه مركز نقل بر مركز ثتل ناودانى منطبق باشد ، معدار X X جوش را معين مىكنيم .

$$
\begin{aligned}
& \frac{x_{0}^{2}}{2 x_{0}+14}=(2.23-1) \Rightarrow x_{0}=5.5 \mathrm{~cm} . \\
& I_{p}=\frac{8 x_{0}^{3}+6 x_{c} d^{2}+d^{3}}{12}=878 \mathrm{~cm}^{3} \\
& \text { لنكر خششى در قيد ولنكر يجثشی در جوثي قيد خوا هد شد } \\
& M_{b}=M_{t}=\frac{T}{2} \frac{b}{2}=1958 \times 12.77=25000 \quad \text { daN. } \mathrm{m}
\end{aligned}
$$

قـطـات مشارى/rav

$$
f_{b}=\frac{M_{b}}{S_{x}}=\frac{\frac{T}{2} \times \frac{b}{2}}{\mathrm{td}^{2} / 6}=\frac{25000}{1 \times 14^{2} / 6}=765 \quad \text { bar }<0.6 F_{y} \quad 0 \mathrm{~K} .
$$

ديده ميشود كه متدار تنش خششى در قيد پائين است بهتر است ابعاد قيدرانآتد مجازتتليل

$$
\begin{aligned}
& f_{x}^{\prime \prime}=\frac{M_{t} \frac{d}{2}}{I_{p}}=\frac{25000\left(\frac{14}{2}\right)}{878}=199.3 \quad \text { bar } \\
& f_{y}^{\prime \prime}=\frac{25000(5.5-1.23)}{878}=121.6 \quad \text { bar } \\
& f_{y}^{\prime}=\frac{T}{2 L_{w}}=\frac{1958}{(2 \times 5.5+14)}=78.3 \quad \text { bar } \\
& f_{r}=\sqrt{199.3^{2}+(121.6+78.3)^{2}}=282 \text { bar } \\
& \text { ثو } f_{e}>\frac{f_{r}}{920}=\frac{282}{920}=0.31 \quad \Rightarrow \quad \text { a }>0.43=5 \mathrm{~mm}
\end{aligned}
$$

هال عدهد (
 حل:

 خوا هد شد .
$r \simeq 0.42 h$
$\frac{\mathrm{KL}}{\mathrm{r}}=\frac{880}{0.4 \mathrm{~h}}=\frac{2290}{\mathrm{~h}}$
سطح مقطع تطعه $A \vec{\approx} 4 h t \ldots=t \approx \frac{A}{4 h}$

شكل (8)

جدول زير را جهت تسهيل در محاسات تشكيل مىدهيم. .

$\begin{aligned} & \mathrm{h} \\ & \mathrm{~cm} \end{aligned}$	$\frac{\mathrm{KL}}{r}$	Har $\begin{gathered}\text { Fa } \\ \text { bar مجاز }\end{gathered}$		Cm
50	44	1235	206	1.03
45	48.9	1210	210	1.17
40	55	1178	216	1.35
38	57.9	1160	220	1.45

قطعا ت غشا ري/ M99

 ,
 . $A_{n}=45 \times 45-(45-2 \times 1.8)^{2}-2 \times 18 \times 1.8=246.24 \mathrm{~cm}^{2}$ $I_{x}=\frac{(45-18) 45^{3}}{12}-\frac{(45-2 \times 1.8-18)(45-2 \times 1.8)^{3}}{12}=66660 \mathrm{~cm}^{4}$ $I_{y}=\frac{45^{4}}{12}-\frac{(45-2 \times 1.8)^{4}}{12}-2 \times \frac{1.8 \times 18^{3}}{12}=95165 \mathrm{~cm}^{4}$
$r_{x}=\sqrt{\frac{I_{x}}{A}}=16.45 \quad \mathrm{~cm} . \Rightarrow \frac{\mathrm{KL}}{r_{x}}=\frac{880}{16.45}=53.5 \Rightarrow F_{a}=1186 \mathrm{bar}$ $r_{y}=19.66 \quad \frac{K L}{r_{y}}=44.8$
ضريب ر را براى ستون مما سبه مى كنيم .
$Z=\frac{2 \times 13.5 \times 1.8 \times \frac{13.5}{2}+(45-2 \times 1.8)(1.8)(1.8 / 2)}{2 \times 13.5 \times 1.8+(45-2 \times 1.8)(1.8)}=3.21 \mathrm{~cm}$
$I_{1-1}=1765 \quad \mathrm{~cm}^{4}$
$A=123.12 \quad \mathrm{~cm}^{2}$
$r_{1}=3.78 \mathrm{~cm}$

$$
\alpha=\sqrt{1+\frac{\pi^{2}}{12\left(\frac{L}{r}\right)^{2}}\left(\frac{a}{r_{1}}\right)^{2}}=\sqrt{1+\frac{\pi^{2}}{12(44.8)^{2}}\left(\frac{75}{3.78}\right)^{2}}=1.08
$$

$$
\lambda_{y}^{\prime}=\alpha \frac{K_{y} L}{r_{y}}=1.08 \times 44.8=48.3<\dot{\lambda}_{x}=53.5 \quad 0 K
$$

شكل (Ar-q)

بايستى شاطر نشان كرد كه در ضوابط SSRC (مرجع 9) ضابطها وانى وجود دارد كه عدم كانش قسمت سورانخدار را تضمين مىنـطايد واين ضابطه به ترار زير ا است .

با توجه به آنهه قتلا" بحاسهـ شد خوا هيم داشت .

$$
\frac{30 \mathrm{~cm}}{\mathrm{r}_{1}}=\frac{30}{3.78}=7.9<\left(\frac{47}{3}=15.7\right)<20 \quad 0 \mathrm{~K}
$$

اكر ضابطه؛ فوق تضمين شده با شد بر طبق SSRC فتطدر بيك جنين موقعى است كه مى توان متطع خالص تطعه را موءثر دانست .
Y ـ صفحات

倍

قطعات فشارى//

 ستونها معادلات ديغرانسيل خمش صغطات نيز تتظيم كردد .

معادلات ديغرانسيل خمش صفحات هعكن

 با توجه به شكل (؟

 يغنى

شكل (Ar-s) خصوصيات عنصر صفحه و محورهاى مختصات
(1) Timoshenko
(2) Shearing Strain

$$
\begin{array}{ll}
\varepsilon_{x}=\frac{4+-\frac{\partial u}{\partial x} d x-u}{d x}=\frac{\partial \partial u}{\partial x} & (\text { (ف } 1(\wedge \varepsilon-\varepsilon) \\
\varepsilon_{y}=\frac{\partial v}{d y} & (ب \wedge \varepsilon-\varepsilon) \\
\gamma_{x y}=\gamma_{1}+\gamma_{2}=\frac{\partial v}{\partial x}+\frac{\partial}{\partial} \frac{u}{y} & (\tau \wedge \varepsilon-\varepsilon)
\end{array}
$$

اكر تغيير مكانها را در صفحه ورق برحسب تغيير مكان جانبـى W ، هما نكونـه كه درشكل
 - را بصورت منفى خوا هد داد ، دارهـ

$$
\begin{equation*}
-u=z \frac{\partial W}{\partial x} \quad-v=z \frac{\partial w}{\partial y} \tag{AY-1}
\end{equation*}
$$

 طبت انحنا ، برای خعش درجهت X ، خعش در جهت Y Y ویيجش بـه شكل زير بـيان خوا هدشد.

$$
\begin{aligned}
& E_{x}=\frac{\partial u}{\partial x}=-z \frac{\partial^{2} w}{\partial x^{2}} \\
& \text { (} \\
& E_{y}=\frac{\Delta \Delta x}{\partial y}=-z \frac{\partial^{2} W}{\partial y^{2}} \\
& \gamma_{x y}=-\frac{\partial V}{\partial x}+\frac{\partial u}{\partial y}=-z\left(\frac{\partial^{2} W}{\partial x \partial y}+\frac{\partial^{2} W}{\partial x \partial y}\right)=-2 z \frac{\partial^{2} W}{\partial x \partial y}(\tau \wedge A-\varepsilon)
\end{aligned}
$$

حال اكر با ا ستغاده از قانون هوى كرنشهها را برا ساس تنشهاي x
 دا شت .

شكل ($x y$ -

شكل (9-

$$
\begin{aligned}
& E_{x}=\frac{1}{E}\left[v_{x}-\mu 0_{y}\right] \\
& \text { (} \\
& E_{y}=\frac{1}{E}\left[\begin{array}{lll}
0 & -\mu \sigma_{x}
\end{array}\right] \\
& \text { (- } 19-9 \text {) } \\
& \gamma_{x y}=\frac{r_{x y}}{G} \quad\left(\tau^{\wedge q-q)}\right.
\end{aligned}
$$

 برشى است .

براى هر طلتـ تنش، نظير حالتّ
 معادل موجود در شكل ((ه -

$$
\begin{equation*}
\frac{1}{2} \cdot \varepsilon_{x}-\frac{1}{2} \boldsymbol{N}_{x} c_{y}=\frac{1}{2} \bar{\tau} \tag{90-9}
\end{equation*}
$$

اكر متادير معادلات (q-

$$
\begin{aligned}
& \frac{{ }^{\sigma} x}{E}\left(\sigma_{x}-\mu \sigma y-\mu_{\sigma} x^{\sigma} y\right)=\frac{\tau^{2}}{G} \\
& \text { ا } \\
& \frac{1}{E}(1+\mu+\mu+1)=\frac{1}{G} \quad G=\frac{E}{2(1+\mu)} \quad(91-\varepsilon)
\end{aligned}
$$

و بـجأى كرنشها از معادلات (1 (1) ترار دهيم خواه هيم داشت .

$$
\begin{aligned}
& \sigma_{x}=\frac{-z E}{1-\mu^{2}}\left(\frac{1 \partial^{2} W}{\partial^{\prime} x^{2}}+\mu \frac{\partial^{2} W}{\partial y^{2}}\right) \\
& y_{y}=\frac{-2 E}{1-\mu \mu^{2}}\left(\mu \frac{\mu^{2} W}{\partial x^{2}}+\frac{\partial^{2} W}{\partial \frac{y^{2}}{2}}\right)
\end{aligned}
$$

$$
\tau_{x y}=-2 z G \frac{\partial^{2} w}{\partial x \partial y}
$$

$$
\left(e^{q r-q}\right)
$$

 ميشود كه متدار لنكرها براى واحد عرض به صورت زير بيان خواهد شد .

ش شكل (H) $y=0$

$$
\begin{aligned}
& M_{x}=\int_{-t / 2}^{t / 2} z x_{z}^{d}=\frac{-E t^{3}}{12\left(1-\mu^{2}\right)}\left(\frac{\partial^{2} w}{\partial x^{2}}+\mu \frac{\partial^{2} w}{\partial y^{2}}\right) \\
& \text { (} \\
& M_{y}=\int_{-t / 2}^{t / 2} z{ }_{y} d_{z}=\frac{-E t^{3}}{12\left(1-\mu^{2}\right)}\left(\mu \frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial y^{2}}\right) \\
& \text { (ب9r-s) } \\
& M_{x y}=-\int_{-t / 2}^{t / 2} t_{x y} 2 d z=+2 G\left(\frac{t^{3}}{12}\right) \frac{\partial^{2} w}{1 \cdot \partial-x \cdot \partial y} \\
& \left(c^{9 r-s}\right)
\end{aligned}
$$

توجه شود كه خمش صفحه سبب انحناى دوربل (صفسه شكل بشقابى رييدا مى بكند) آن

$$
\begin{equation*}
M_{x}=\frac{-E t^{3}}{12} \frac{d^{2} w}{d x^{2}} \tag{94-9}
\end{equation*}
$$

 هـادله ديفرانسيل زير درخواهد آهد .

$$
M_{x}=-E I \frac{d^{2} w}{d x^{2}}
$$

$$
(9 \Delta-9)
$$

$$
\text { درين معادله I } \mathrm{I}=\frac{\mathrm{t}^{3} \mathrm{~b}}{12} \text { است. }
$$

 8 x

 نيروها به موازات محور Z سه معاد دله بد ست خوا
 نشان داده شدها است.

FqV/ تـطـات فشارى

شكل ((
(نيروها دا خل در دوران حول X نشثان داده نشد هاند) .

از لنكركيرى حول محور y معادله زير بدست مى Tيد .

$$
\begin{aligned}
& M_{x} d y+\frac{\partial M_{x}}{\partial x} d x d y-M_{x} d y+M_{y x} d x+\frac{\partial M_{y x}}{\partial y} d x d y-M_{y x} d x \\
& -\left(U_{x} d y+\frac{\partial Q_{x}}{\partial x} d x d y\right) d x-q d_{x} d y \frac{d x}{2}=0 \\
& \text { (صرفنظر ميشود)(بازوىلنكر ;) (صرفنظر ميشود) }
\end{aligned}
$$

أكر از بى نها يتكو چكـهايى (1) لد رجهبالاصرفنظركنيم و هعه را بـه dx dy تقسيم نما ئيم خو هيم دا شـت .

$$
\begin{equation*}
\frac{\partial M_{x}}{\partial x}+\frac{\partial M_{y x}}{\partial y}-Q_{x}=0 \tag{95-9}
\end{equation*}
$$

بهـمين ترتيب از لنكركيرى حول محور x خوا هبم داشت .

$$
\frac{\partial M_{y}}{\partial y}+\frac{\partial M_{x y}}{\partial x}-Q_{y}=0
$$

(1) infinitesimal

تعا دل نيروها درراستأى محور Z منجر به رابطهءزير خواهد شد .

$$
\frac{\partial Q_{x}}{\partial x}+\frac{\partial Q_{y}}{\partial y}+q=0
$$

$$
(9 \lambda-9)
$$

اكر مقادير دهيم نـها هيا " خوا هيم داشت .

$$
\frac{\partial^{2} M_{x}}{\partial x^{2}}+\frac{\partial^{2} M_{y}}{\partial y^{2}}-2 \frac{\partial M_{x y}}{\partial x^{\partial} y}=-q
$$

اك $D=\frac{t t^{3}}{12\left(1-\mu^{2}\right)}$ هعادله ديغرانسيل خمش صغسات به صورت زير بدست خوا هد آهد .

$$
D\left(\frac{\partial^{4} w}{\partial x^{4}}+2 \frac{\partial^{4} w}{\partial x^{2} \partial y^{2}}+\frac{\partial^{4} w}{\partial x^{4}}\right)=q \quad(100-9)
$$

اكر معادله (- 400 ا) را براى تيرى بعرض b بنويسيم ، معا دله ديغرانسيل نيز به صورتزبر درىیآيد .

$$
E I \frac{d^{4} w}{d x^{4}}=q b
$$

$$
(101-9)
$$

درين معا دله qb متدار بار در واحد طول دهانه تير مىبا شد .

كانش مغحه تحت اثر بار فشارى يكنواخت

 فشارى N ر را زمانيكه صغحه بمورت مختصرى كانش يا فته با شد بيدا كنيم . با توجه به شكل
(1) Gerstle

تفطها ت نشارى/99

 درنظر بكيريم خواهيم داشت.
$N_{x} d y \frac{\partial w}{\partial x}-\left(N_{x}+\frac{\partial N_{x}}{\partial x} d x\right) d y\left(\frac{\partial w}{\partial x}+\frac{\partial^{2} w}{\partial x^{2}} d_{x}\right)=q d x d y$
$q d x d y-\left(N_{x} \frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial N_{x}}{\partial u x} \frac{\partial w}{\partial x}+\frac{\partial^{N_{x}}}{\partial x} d x \frac{\partial^{2}}{\partial x^{2}} d v d x=q d x d y\right.$

(الف)

(ب) عنصر صغهـ در هالت خششى

شكل (5-49) - مغحه تحتانر بار فشارى يكنواخت
اكر أزجملات بينهايت كوجك درجه بالا مر فنظر كنيم دارهم .

$$
q=-N_{x} \frac{\partial^{2} w}{\partial x^{2}}
$$

$$
=\quad(1 . r-4)
$$

و بدين ترتيب معا دله؛ ديغرانسسل (F - 100) خوا هد شد .

$$
\frac{\partial^{4} w}{\partial x^{4}}+2 \frac{\partial^{4} w}{\partial x^{2} \partial y^{2}}+\frac{\partial^{4} w}{\partial y^{4}}=-\frac{N_{x}}{D} \frac{\partial^{2} w}{\partial x^{2}} \quad(10 p-q)
$$

W راملصلضرب دو تابع كه اولى X X X

بدانيم . علاوه بر اين هيتوان فرض كرد كه كطانش صفهد در راستاى محور X منحنى سينوسىبه

$$
W=X(x) Y(y)
$$

$$
(10 \Delta-\varepsilon)
$$

و فرض ميكنيم كه.

$$
x(x)=\sin \frac{m \pi x}{a}
$$

 , $\sin \frac{m \pi x}{a}$

$$
\left(-\frac{m \pi}{a}\right)^{4} Y-2\left(\frac{m \pi}{a}\right)^{2} \frac{d^{2} Y}{d y^{2}}+\frac{d^{4} Y}{d Y^{4}}=+\frac{N_{x}}{D}\left(\frac{m \pi}{a}\right)^{2} Y
$$

$$
\frac{d^{4} Y}{d Y^{4}}-2\left(\frac{m \pi}{2}\right)^{2} \frac{d^{2} Y}{d y^{2}}+\left[\left(\frac{m \pi}{a}\right)^{4}-\frac{N_{X}}{D}\left(\frac{m \pi}{a}\right)^{2}\right] Y=0
$$

$$
(109-9)
$$

 جواب اين بعادله ميتواند به صورت زير با شد .
$Y=C_{1} \sinh \alpha y+C_{2} \cosh \alpha y+C_{3} \sin \beta y+C_{4} \cos \beta y(1 o y-s)$
$\alpha=\sqrt{\left(\frac{m \pi}{a}\right)^{2}+\sqrt{\frac{N_{x}}{D}\left(\frac{m \pi}{a}\right)^{2}}} \quad \beta=\sqrt{-\left(\frac{n \pi x}{a}\right)^{2}+\sqrt{\frac{N_{x}}{D}\left(\frac{m \pi}{a}\right)^{2}}}$
بدين ترتيب معادلهء كا مل تغيير مكان تير خوا هد شد .
$W=\left(\sin \frac{m \pi x}{a}\right)\left(C_{1} \sinh \alpha y+C_{2} \cosh \alpha y+C_{3}^{2} \sin \beta y+C_{4} \operatorname{Cos} \beta y\right)$

$$
(10 A-9)
$$

تطعات نشارى//

اين معا دله با يستى شرا بيط حدى را تأمين كند , اكر فرض كنيم كه محور •X محور تقارن صفحه

با شد . ضرايب فرد C C 1 C با با بـد صفر كردند ، لذا

$$
\begin{aligned}
& W=\left(C_{2} \operatorname{Cosh} \alpha y+C_{4} \operatorname{Cos} \beta y\right) \operatorname{Sin} \frac{m \pi x}{a} \quad(109-\varepsilon) \\
& y= \pm \frac{b}{2} \text { با با فرض ساده بودن تكيهكاه در لبههای } y=-\frac{b}{2}, y=\frac{b}{2} \\
& \text { دا شته با شيـم } \\
& W=0=\left[C_{2} \cosh \left(\alpha \frac{b}{2}\right)+C_{4} \cos \left(\beta \frac{b}{2}\right)\right] \sin \frac{m x x}{a} \\
& \frac{\partial^{2} W}{\partial y^{2}}=0=\left[c_{2} \alpha^{2} \cosh \left(\alpha \frac{b}{2}\right)-c_{4} \beta^{2} \cos \beta \frac{b}{2}\right] \sin \frac{m \pi x}{a}
\end{aligned}
$$

 ضرايب برابر با صفر كردد لذا :

$$
\begin{equation*}
\left(a^{2}+\beta^{2}\right) \cosh \alpha \frac{b}{2} \cos \beta \frac{b}{2}=0 \tag{111-8}
\end{equation*}
$$

 است تنها شرطبرقرارى معادله ()

$$
\cos \beta \frac{b}{2}=0
$$

$$
\beta \frac{b}{2}=\frac{\pi}{2}, \frac{3 \pi}{2}, \frac{5 \pi}{2}, \ldots
$$

و يا اينكه داشته با شيم . .

اكركمترين متدار را براى بجا يش بكذاريم خوا هيم دا شت ,

$$
\frac{b}{2} \sqrt{-\left(-\frac{m \pi}{a}\right)^{2}+\sqrt{\frac{N}{D}\left(-\frac{m \pi}{a}\right)^{2}}}=\frac{\pi}{2}
$$

$$
\frac{{ }_{x}}{D}\left(\frac{m \pi}{a}\right)^{2}=\left[\frac{n^{2}}{b^{2}}+\left(\frac{m \pi}{a}\right)^{2}\right]
$$

$$
N_{x}=D\left[\frac{\pi^{2} a}{b^{2} m x}+\frac{m \pi}{a}\right]^{2}
$$

$$
\begin{equation*}
N_{x}=\frac{D \pi^{2}}{b^{2}}\left[\frac{1}{m} \frac{a}{b}+m \frac{b}{a}\right] 2 \tag{11T-8}
\end{equation*}
$$

با هحون

$$
\begin{equation*}
F_{c r}=k \frac{\pi^{2} E}{\frac{12\left(1-\mu^{2}\right)}{\left(\frac{b}{t}\right)^{2}}} \tag{114-8}
\end{equation*}
$$

يراى حالت خام فوقالذكر متدار k خوا هد شد .

$$
k=\left[\begin{array}{lll}
\frac{1}{m} \times & \frac{a}{b}+m & \frac{b}{a} \tag{114-8}
\end{array}\right]^{2}
$$

 شد ها است) و نسبت

تطعات فشا رك/
! X مى با شد . در شكل (
 زما نى وجود خواهد داشت كه طول صنـهـ ضريب زوجـى از عرض ور ورقبا دهند هז تعداد نيـم بوجهاي (1) منـحنى كمانش صفخه خوا هد بـود

 ترار دا شته باشد)

$$
\begin{equation*}
F_{c r}=\frac{4 \pi^{2} E}{12\left(1-\mu^{2}\right)\left(\frac{b}{6}\right)^{2}} \tag{110-F}
\end{equation*}
$$

(4 از Tنجا أيكه نيهر وحها ي نورد شد ه و نيمرخها ى سطاخته شد ه همكى تركبهي از ورقمىا شند

```
half - wave
```


 تنش بحرانى هربوطبه كمانش ارتجا عى ورتها از طريق رابطه؛ زير مشخص ميكردد .

$$
\begin{equation*}
F_{c r}=k \frac{r^{2} E}{12\left(1-\mu^{2}\right)\left(\frac{b}{t}\right)^{2}} \tag{11r-9}
\end{equation*}
$$

 به عرض ورق ، E ضريب ارتجا عى

(- - اء) مراجعه شود .

براى قطعات نشان داده شده هد در شكل (

شكل (¢
(1) Stiffened elements

قطما ت فشارى/ FOW

' شكل (F -

دراثر يك هنين نحوهء تغيير مكانى ، توزيع تنش از متطع صفسه هتىايكر بار منشارى ازطريق دو
 با توجه به شكل (\& -

 اكر متدار $\frac{\text { Cr }}{F_{y}}$
 ¢ جارى شدن (قطعات A اكر نسبت $\lambda=\frac{b}{t} \sqrt{\frac{F_{y}(12)\left(1-\mu^{2}\right)}{\pi^{2} E k}}$
با توجه به شكل ((\& -

 و تورليمان ' در مرجع (44) به هورت زير معين شده است است :
$\lambda_{0}=0.173\left(\frac{\mathrm{KL}}{\mathrm{r}}=15.7\right)$
$\lambda_{0}=0.455\left(\frac{b}{t}=8.15\right)$
$\lambda_{0}=0.461\left(\frac{b}{t}=14.3\right)$
بالهاى طويل منصلى
$\lambda_{0}=0.588\left(\frac{b}{t}=32.3\right)$
بالهاى كيردار
$\lambda_{0}=0.579\left(\frac{b}{t}=42.0\right)$
جا نهاي كيردار
(1) Haaijer
(2) Thurlimann

از نتايج بدست آهده فوق دبده ميشود كه على الاصول عامل اصلى تعيين كنــده

 هنحنى انتغال براي قطعات فشار

$$
\begin{equation*}
\frac{F_{c r}}{F_{y}}=1-\left(1-\frac{F_{p}}{F_{y}}\right)\left(\frac{\lambda}{\lambda_{p}-\lambda_{0}}\right)_{0}^{n} \tag{11y-4}
\end{equation*}
$$

در بن رابطهم

$$
\lambda=\frac{K L}{r} \sqrt{\frac{F y}{\pi^{2} E}}
$$

 معلوم مششود كه اكر كرنش در امتداد اد
 مقادير مختلف E را پيشنهاد مى
 (IVY-4)

شكل (\&

$\lambda=\sqrt{F_{r}}=\frac{b}{i} \sqrt{\frac{F_{x}\left(\overline{112\left(1-\mu^{2}\right)}\right.}{\pi^{2} E k}} \quad$ شكل (
(1) Von Karman
(2) Sechler
(3) Winter
(4) Jombock
(5) Clark
(6) Rolf
(7) Bulson

بهصورتخلاصه مقاومت ورقها در برابر فشار وارده بر لبهماى آن ميتواند با حـا حدود زير
 ,

 دوباره؛ تنش و تغيير شكل بزرك برالـ با

 مقاومت ورقها هعين ميكردد .

AISC 9

شكل (ヶ -
(1) Cover Plates

ورقها نيز تحت اثر فشار رفتارى مشابه رفظار ستونتها داريد و رابطه؛ السا سى كمانشى براى
 زير بدست Tهد .

$$
\begin{equation*}
F_{e r}=k \frac{x^{2} E}{12\left(1-\mu^{2}\right)\left(\frac{b}{t}\right)^{2}} \tag{115-5}
\end{equation*}
$$

در ينر! ابـطه K ضريببثابـتى استكهبـستكى بـنوع تنش ، شرا يط لبههاى ورق و نسبـت طول به

ميدانيم كه بازاء مقادير كم سختى میرسد و بازاء متادير متوسط
 غيرا رتجا عى خوا هد بود و هر كاه هتدار ال

(I) Post buckling strength

 منطتا " نيز جلوكيرى از كانش موضعى هر يكا از عناصر ستون قبل از كمانشركلى آن كهبرطبق
 عملكردى' بهصورتزير خوا هد بود

رابططه نوقبماين معناست كه

از آن T آيننا هه (به بند و - ^) مراجعه شود) ممكن ــاخته است .

بممنظورتسهيلدر روش طرا

 براى جلوكيرى از كانش به صورت زير خوا هد بود :

$$
\begin{equation*}
F_{c r}=\frac{k \pi^{2} E}{12\left(1-\mu^{2}\right)\left(\frac{b}{t}\right)^{2}} \geqslant F_{y} \tag{119-9}
\end{equation*}
$$

(1) Performance requirement
(2) Cold formed steels

أكر

$$
\begin{equation*}
\frac{b}{t}<1360 \lambda \sqrt{\frac{k}{F_{y}}} \tag{1T0-8}
\end{equation*}
$$

 شده استا بكار برد . لذا متدار $\lambda=0 / V$ كه عددى منطقى است كُرفته شدها استبدينترتيب خوا هيم داشت

$$
\frac{b}{t}<1360 \lambda \sqrt{\frac{k}{F_{y}}}=950 \sqrt{\frac{k}{F_{y}}}
$$

 هالاث مختلف فشار يكنواخت ذكر كردهايم .

AISC \quad = $=9$

 (я -

$$
\text { كرنت(شكل \& - } 4 \text {) . }
$$

تطعا ت فشارى/

جد ول ((- ه) ـ ضوابط مربوط به نسبت عرض به ضخامت عناصر ورق مانند قطعات كه تحت فشار يكنواخت مىباشند .

		ضكر يبك (9T-4	عناصر سازه
$\begin{aligned} & 630 / \sqrt{F_{y}} \\ & 790 / \sqrt{F_{y}} \end{aligned}$	$\begin{aligned} & 620 / \sqrt{F_{y}} \\ & 795 / \sqrt{F_{y}} \end{aligned}$	$\begin{aligned} & 0.425 \\ & 0.70 * \end{aligned}$	اعضاى تقويت نشده ($10-9$) ()
$1055 / \sqrt{F_{y}}$	$1075 / \sqrt{F_{y}}$	1.277	$(r 1-я)$ اعضاى تقويت شده: (الف) - اع عضاىقوطى شكلباضخامه
$1980 / \sqrt{F}_{y}^{* *}$			(ب) صفساتيكسره هوراخ دار
$2630 \neq \sqrt{F_{y}}$	2010/ $\sqrt{F_{y}}$	$6.97^{* * *}$	
$2100 / \sqrt{F_{y}}$	2120/ $/ \sqrt{F_{y}}$	$5.0{ }^{* * * *}$	

 ما مقاومت كافى با شد .

k= f/o

$$
\begin{align*}
& \frac{b}{t}<625 \sqrt{\frac{k}{F y}} \tag{1TY-4}\\
& \text { اكتر مقدار K }
\end{align*}
$$

$$
\begin{equation*}
\frac{b}{t}<\frac{410}{\sqrt{F_{y}}} \tag{1rr-4}
\end{equation*}
$$

جون اثر تخش چس ماند درنا حيه؛ خميرى

 در مورد فولادها بيى با F F AISC
 ظا يل ا ست اعمال نمى كند . و را بطهتنش و كرنش براى فولاد

$$
\frac{b}{t} \leqslant 790 \sqrt{\frac{k}{F_{y}}}
$$

اكر براى
 خوا هيم داشت .

$$
\begin{equation*}
\frac{b}{t}<\frac{1578}{\sqrt{F_{y}}} \tag{150-4}
\end{equation*}
$$

تطها ت فنسارى/ه/

ضا بطهء AISC - محدوديتى برابر با محدوديت رير بصورت زبر معيس مىكد .

$$
\begin{equation*}
\frac{b}{t}<\frac{1580}{\sqrt{F_{y}}} \tag{1+9-9}
\end{equation*}
$$

 مينوان به مراجع (49) توسط لاى' و (50) مك درموت

جد ول (؟ - \ddagger) ضابطه نسبت عرض به ضخامت در طرح خميرى قططات تحت فشار يكنواخت

	عناصر تقوبتنشده		
	(1TT-4)	AISC-2.7	
32.7	8.5	8.5	فولاد نرهمهتعارفـ 2333-
28.3	7.2	7.4	3100
26.9	6.9	7.0	3400
24.5	6.3	6.3	4100
23.6	t. 0	6.0	4500

با ورق شكل
در ضوابط AISC قبل از سال 1999 ميلادى، هر كا ها نسبت عرض به ضمامت قطهماى

(1) Lay
(2) Mc Dermott

 با توجه به شكل (9 - با رابطه؛ زير نشان داد . .

$$
\begin{equation*}
P_{u \upharpoonleft t}=t \int_{0}^{b} f(x) d x \tag{1ry-s}
\end{equation*}
$$

كه بيانكر انتكرال كيرى از يك وضعيت غير يكنوا خت تنش فىباشد . روش ديكر استغادهاز از

$$
P_{u l t}-t b_{E} f_{\text {max }} \quad \text { (عناصر تقويت شده) (} 1 \text { (} 1 \text { (}-9 \text {) }
$$

در بن رابطه b b عرض مؤثريست كه براساس سآن تنش حداكثر بهصورتيكنوا خت طرفيتصحيح

شكل (£ - \ddagger (£) - عناصرورقمانند تحت اثر فشارى محورى ، وضعيت حقيقى توزيعتنشوشكل معادل توزيع

FIV/ تطعات فشا ر5

شكل (9 -

 را ميتوان (شكل

$$
\mathrm{P}_{\mathrm{u}\} \mathrm{t}}=\mathrm{tbf} \mathrm{avg} \quad \text { (عناصر تغويت نشده) (}
$$

ضوابط AISI , AISC (مرجع : 5) براى طراحى قططات با جدار نازك معادلات (

 دارند اين نوع قطعات اصولا" كان انه ننما يند .

معا ومت كلى ستون
 براى عناصر تقويتنشده خوا هيم دا شت :

$$
\begin{equation*}
\frac{P_{u l t}}{A_{g}}=\frac{A_{\text {eff }}}{A_{g}} f_{\max }=Q_{a} f_{\max } \tag{150-9}
\end{equation*}
$$

و براى عناصر تقويت شده خوا هيم دا شت :

$$
\begin{aligned}
& \frac{P_{u l t}}{A_{g}}=\frac{f_{\text {avg }}}{f_{\max }}\left(f_{\max }\right) \frac{A_{g}}{A_{g}}=Q_{s} f_{\max } \\
& (|r|-s) \\
& \text { درين روابط }
\end{aligned}
$$

(1) form L Shape factor

با يستیى آنرا بمانند قطعهاي تقويت نشيه هد رنظر كرفت ، درين حا لت عرض موءثر عـاصر تقويت
 شد

$$
\begin{equation*}
P_{u l t}=F_{a v g} A_{e f f} \tag{1YY-8}
\end{equation*}
$$

اكر طرفيي ايى رابطهة را بـه Ag تقسيم كنيم خوا هيم دا ست :

$$
\frac{P_{u l t}}{A_{g}}=\frac{f_{a v g}}{f_{\max }}\left(f_{\max }\right) \frac{A_{\text {eff }}}{A_{g}}=Q_{s} Q_{a} f_{\max } \quad(1 r r-s)
$$

با دقت در روابطط (

 ترا ر دهيم دريى حالت بهه صورتزبر نوشته خواه هد شد .

$$
\begin{align*}
& F_{C r}=Q F_{Y}\left[1-\frac{Q F_{Y}}{4 \pi^{2} E}\left(\frac{K L}{r}\right)^{2}\right] \tag{1ry-9}
\end{align*}
$$

$$
\begin{aligned}
& \text { ضريب لاغرى مربوطه خواهد شد . }
\end{aligned}
$$

$$
C_{C}=\pi \sqrt{\frac{2 E}{Q F_{Y}}}
$$

كه همان معا دلد (
 بدون اعما ل ضريب شكل جهت بررسى پا يدارى قطعه استفاده خوا هد شد .

.

مقدار ضريب شكل Q براى عناصر تقريت نشده هي

 (9 -

 تئوربك (C)

 ديده ميشود متنا سب با

 $\frac{P}{A}=F_{a}$ كلى
 متطع را تقليل دهد كه مقدار Fr براى عنصر ورق مانند تطعه كمتر از (ضريب اطمينان)
. باشد Fa

$$
\lambda=\frac{1}{109}\left(\frac{b}{f}\right) F_{r}=\sqrt{\frac{F_{c r}}{F_{v}}}
$$

شكل (¢q-¢) ¢
مقدار ضريب شكل Qa براي عناصر تقويـت شل ه

 زير مى با شد.

$$
\begin{aligned}
& \frac{b_{E}}{t}=1.9 \sqrt{\frac{E}{f}}\left[1.0-\frac{0.475}{\left(\frac{b}{t}\right)} \quad \sqrt{\frac{E}{f}}\right] \quad(1 r v-c) \\
& \text { درين رأبطه } \\
& \text { (نســت عرض وا تعى بـه ضهنا مت عنصر }
\end{aligned}
$$

(1) Von Karman

تشكات غشا رـ/ / Fr

على الاصول شكل معا دله و مقادير ثابت آن بنوعى تعيين شده ماند كه هقادير عددى آنبتواند

$$
\frac{\mathrm{b}_{\mathrm{E}}}{\mathrm{t}}=\frac{2730}{\sqrt{\mathrm{f}}}\left[1.0-\frac{680}{\frac{\mathrm{~b}}{\mathrm{t}} \sqrt{\mathrm{f}}}\right]
$$

از طريق 'اين معلد دله با قرار دادى تنش موجود f برحسب بار و بدوس أكمال ضريب الطمينان
 بار ديعر از طر يق معا دله ((

$$
\begin{aligned}
& P_{u l t}=b_{E} t f_{\text {max }} \\
& (15 \lambda-8) \\
& \text { اكير ضريب أطمينان را العمال كنيم (FS) بار مهاز و ايمى: كاربردى بدست خواهد Tمد . } \\
& P_{W}=b_{E} t\left(\frac{f_{\text {max }}}{F S}\right) \\
& (179-9)
\end{aligned}
$$

$$
\begin{equation*}
P_{W}=b_{E} t F_{a}=A_{e f f} F_{a} \tag{0}
\end{equation*}
$$

:كته اصلى اينجا ست كه مقدار

 تنش برابر با حاصلضرب F S د
 خوا هيم داشت:

$$
\begin{equation*}
\frac{b_{E}}{t}=\frac{2100}{\sqrt{f}}\left[1-\frac{530}{\frac{b}{t} \sqrt{f}}\right] \tag{|f|-8}
\end{equation*}
$$

و بديى جهت ضوابط AISC ضر يب 1 با را را بكار مى برد. .

$$
\begin{equation*}
\frac{b_{E}}{t}=\frac{2100}{f}\left[1-\frac{418}{-\frac{b}{t} \sqrt{f}}\right] \tag{1fr-s}
\end{equation*}
$$

اختلاف موجـود فی مابين دو معادلـه (
فسمى حامل از درجهء كيـردارى فرض شده بــراى لبهء كيردار ورق (لنكر خـثى در طول

 موجود در ورتها ي نازك برس شده مى با شد (درين ورقها ضخا مت هل عموا " كـتر از ه ميليمتر است)
 به آثار كارول
 را براى عناصر تنويت نشده نيز ارائه كردهاناند .

(1) Korol
(2) Sherbourne
(3) Daws on
(4) Walker
(5) Kalyanaraman
(6) Pekoz
(7) Controlling Stress

تطـات فشا رى/ تر

عناصر تقويت شده نيز خوا هد بود . لذا تنش كاربردى خوا هد شد .

$$
f=\frac{F C r}{F S} \quad(\text { بr| } \quad \text { (}) \quad(1+r-\&)
$$

$$
\begin{equation*}
Q_{s}=\frac{F_{c r}}{F_{a} \cdot(F S)} \tag{1ff-9}
\end{equation*}
$$

نها يـا " هما نُونه كه فـلا" نيز ذكر شد (رابطه \& -

$$
\text { كه درين رابطab } A_{e}=A_{g}-\Sigma\left(b-b_{E}\right) \text { شد . }
$$

مشخبات طراحى بمنظور تعيين. تنشهاى اسمى

$$
\begin{aligned}
& \text { بايستى از قوا عد زير تبميت نمود (بر طبق ضوابط طر'حى) : } \\
& \text { در مورد فثار محورى }
\end{aligned}
$$

ا - از سطح مقطع نا
ا
 استخراج كرديد مطلابقت دا رد . در هورد خهش
اــاز مشخصات هند سى تقليل يافتهء تير در صورتى كه داراى عناحر تقويت شدهباشد استغاده شود .
(1) nominal Stress.
r
 ميزان تقليل را به ناحيهء كتشَى نيز اعمال نمود .
 از مشخصات هندسى موءثر مقطع خوا هد بود .
در مورد تير ستونها

位 $\frac{M_{y}}{S_{y}}, \frac{M_{x}}{S_{x}}$ - r شود
r ب برای مها ببه
q 9 Fa

9 - 19 - طراحى قطعات فشارى هر كاه امكان كانش موضعى وجود داشته باشد
 I

 مكن نخوا هد بود .

$$
\text { مثال \& - } 11
$$

تشعات فشارى /

خریا فتط در دو انتتها ى خود دارأى مهل ر جانبى مىبا شد (شكل
 الست نعيين حداكثر بار مجلز فنازى ممكن در عضو فشارى خرپا نوع فولاد مصرفى نرهـ (بار) متدا ول در با زار ا يران مى

حل

 كلى Tن بررسى كردد .

(الف)

(ب)

شكل (FO-f)
$\left[\frac{b}{t}=\frac{200}{10}=20\right]>\left[\frac{630}{\sqrt{F_{y}}}=13\right] \quad$ كنترلنسـت عرض به ضخامت
 $Q_{S}=1.34-0.00054\left(\frac{b}{t}\right) \sqrt{F_{y}}=1.34-0.00054(20) \sqrt{2333}=0.82$ چون با يستى از سطع مقطع نا خالص جهت قطعات فشارى ا ستغا ده شود خوا هيم دا شت.

$$
\frac{\mathrm{KL}_{X}}{r_{x}}=\frac{1 \times 200}{2.68}=74.6 \quad \frac{\mathrm{KL}_{y}}{r_{y}}=\frac{1 \times 800}{9.85}=81.2
$$

$$
\begin{aligned}
& A_{g}=2 \times 29.2=58.4 \mathrm{~cm}^{2} \quad r_{x}=2.68 \mathrm{~cm} \quad r y=9.85 \mathrm{~cm} \\
& \text { اكر برالى خرپا K=1 K فرض شود خوا هيم داشت. }
\end{aligned}
$$

با استغاد ده از معادلـه (F -

$$
\begin{aligned}
& C_{C}=\pi \quad \sqrt{\frac{2 E}{Q_{S}} \frac{F_{y}}{\sqrt{Q_{S} F_{y}}}}=\frac{6390}{\sqrt{0.82 \times 2333}}=146 \\
& F S=\frac{5}{3}+\frac{3}{8}\left(\frac{81.2}{146}\right)-\frac{1}{8}\left(\frac{81.2}{146}\right)^{3}=1.85 \\
& F_{a}=Q_{s} F_{y}\left[1-\frac{(K L / r)^{2}}{2 C_{c}^{2}}\right] \times \frac{1}{F S}=0.82 \times 2333\left[1-\frac{81.2^{2}}{2 \times 146^{2}}\right] \\
& \frac{1}{1.85}=872 \text { bar } \\
& \text { مقدا ر بار مجلز خوا هد بود . } \\
& P=A_{g} \quad F_{a}=58.4 \times 872=509 \mathrm{kN} \\
& \text { مثا ل }
\end{aligned}
$$

$$
\text { . } \left.F_{y}=r \gamma_{0 o}\right)
$$

شكل (Y)
 حل :
 حوا هيم داشت :

$$
\frac{\mathrm{KL}}{r}=\frac{600}{5.04}=119
$$

$$
C_{c}=\frac{6390}{\sqrt{F_{y}}}=\frac{6390}{\sqrt{3700}}=105<\frac{\mathrm{KL}}{r}
$$

$$
F_{a}=\frac{12}{23} \frac{2 \mathrm{E}}{\left(\frac{\mathrm{KL}}{\mathrm{r}}\right)^{2}}=753 \mathrm{bar}
$$

رابطهء (s

$$
A>\frac{15000 \times 4}{753}=79.7<\mathrm{cm}^{2}
$$

از نيم شده 45 IPB استناده مى كنيم (عملا استفاده از زوج نبشى مقرو بهصرفهنخواهد (

$$
\begin{aligned}
& r_{x}=5.62 \quad r_{y}=7.29 \quad \mathrm{~cm} \\
& \frac{\mathrm{KL}}{r}=\frac{600}{5.62}=106.8
\end{aligned}
$$

$$
F_{a}=832 \text { bar }
$$

$$
\begin{aligned}
& r_{x} \approx 0.29 \times 20=5.8 \mathrm{~cm} \quad r_{y} \approx 0.24 \times 21=5.04 \mathrm{~cm} \\
& \text { لاغرى قطعه خواهد شد . }
\end{aligned}
$$

$$
\begin{aligned}
& r_{x} \approx 0.29 \mathrm{n} \quad r_{y}=0.24 \mathrm{~b}
\end{aligned}
$$

$$
Q_{s}=1.908-0.00086\left(\frac{b}{t}\right) \sqrt{F_{y}}=1.908-0.00086(19.13)^{\prime}
$$

$$
\sqrt{3700}=0.907
$$

$$
c_{c}=\frac{6390}{\sqrt{Q_{s} F_{y}}}=\frac{6390}{\sqrt{0.907 \times 3700}}=110
$$

$$
F S=\frac{5}{3}+\frac{3}{8}\left(\frac{106.8}{110}\right)-\frac{1}{8}\left(\frac{106.8}{110}\right)^{3}=1.916
$$

از معل دله ((

$$
F_{a}=\frac{0.907 \times 3700}{1.916}\left|1-\frac{106.8^{2}}{2 \times 110^{2}}\right|=926 \quad \text { bar }
$$

$$
f_{a}=\frac{15000 \times 4}{89}=674<926 \quad 0 \mathrm{~K} .
$$

مثال 9-1r -

در بازار (بار K

$$
\begin{aligned}
& A \geq \frac{15000 \times 4}{832}=72.12<89 \quad 0 K . \\
& \text {. الـ با يستى امكان كطانتن موصعى درجان سيرى را كنترل كنيم } \\
& \left.\frac{b}{t}=\left[\frac{220}{11.5}=19.13\right]\left[\frac{1055}{\sqrt{3700}}=17.3\right] \quad(4-9) \Delta b\right) \\
& \text { از رابططه (}
\end{aligned}
$$

در يك چنبـ مقطمى كه داراى عناصر تقويت نشده و تقويت شده مى با شُد ، ابـتدابابـيستى
قسمت نقويت نتشده؛ نيمرخ را بمنظور تعيين حداكثر تنـى ممكي. اعمالى بررسى نـودد . الف - شنسخصات مقطع ناخالص

$$
I_{y}=2 \cdot \frac{0.6 \cdot 26^{3}}{12}=1758 \mathrm{~cm}^{4}
$$

$$
A=2 \cdot 26 \cdot 0.6+40 \cdot 0.6=55.2 \mathrm{~cm}^{2}
$$

$$
r=\sqrt{\frac{I}{A}}=5.64 \quad \mathrm{~cm}
$$

ب - مشخصات عناصر نقويت نـشده

$$
\left|\frac{b}{t}=\frac{13}{0.6}=21.7\right|>\left|\frac{790}{F_{y}}=\frac{790}{2333}=16.36\right|
$$

هشخصا ت عناصر تقويت نششده هـبـ ميشود كه كط نش موضعى قبل از كمانـن كلى قطعه ممكنبا ثـد

$$
\begin{array}{r}
Q_{5}=1.415-0.00053\left(\frac{b}{t}\right) \sqrt{F_{y}}=1.415-0.00053(21.7) \\
\sqrt{2333}=0.859
\end{array}
$$

$$
\left[\frac{b}{t}=\frac{40}{0.6}=66.7\right]>\left[\frac{2100}{F_{y}}=\frac{2100}{2333}=43.5\right]
$$

 تـش هجاز در قسمت تقويت نشده خواه هد بود . برالى نعييى مقدار - مجا ز شروع میكنيم $f=0.6 F_{y} Q_{s}=1400 \div 0.859=1203$ bar
$\frac{b E}{t}=\frac{2100}{\sqrt[f]{f}}\left[1-\frac{418}{\frac{b}{f}}\right]=\frac{2100}{1203}\left[1-\frac{418}{66.71203}\right]=49.6$
$A_{e}=A_{g}-\left(\frac{b}{t}-\frac{b_{E}}{t}\right) t^{2}=55.2-(66.7-49.6) \cdot 0.6^{2}=49.04 \mathrm{~cm}^{2}$
$Q_{a}=\frac{A_{e}}{A_{g}}=\frac{49.04}{55.2}=0.888$
$\mathrm{Q}=\mathrm{Q}_{\mathrm{s}} \mathrm{Q}_{\mathrm{a}}=0.859 \times 0.888=0.763$
$\frac{\mathrm{KL}}{r}=\frac{260}{5.64}=46.1$
$C_{c}^{\prime}=\frac{6390}{\sqrt{Q F_{y}}}=\frac{6390}{\sqrt{0.763 \times 2333}}=151.5$
$F S=\frac{S}{3}+\frac{3}{8}\left(\frac{\lambda}{C_{C}^{\prime}}\right)-\frac{1}{8}\left(\frac{\lambda}{C_{C}^{\prime}}\right)^{3}=1.78$

$$
F_{a}=\frac{Q F_{y}}{F S} 1-\frac{\lambda^{2}}{2 C^{\prime 2}}=954 \quad \text { bar }
$$

$$
\frac{b_{E}}{t}=54.2 \quad A_{e}=50.7 \mathrm{~cm}^{2} \quad Q_{a}=0.918 \quad Q=0.789
$$

$$
C_{C}^{\prime}=148.9 \quad F S=1.78 \quad F_{a}=985 \text { bar }
$$

بديسترتيب بار مجاز مغطع خوا هد شد .

$$
P=A_{g} \quad F_{a}=55.2 \times 985=544 \quad \mathrm{kN}
$$

مسائل

 نيوتن) ه أل دارای طولى كانشى برابر با (متر) KL - 9
 - نوع فولاد ستون نرمه موجود در بازار كتور أسا

PL 400.8
شكل (yr-q)
-
ديكر بنصلى باشد بار ديكر حل كنيد .
(

تحعل كند معبي كنيد ايى ستون در وبطارارتفاع خود ودرحهت ضعيف نيمرح داراى مهارى
 §-

 جانبى بفاهله؛ (متر) \&

(Y Y -

 و با نولاد فوتالذكر معين كنيد .
 نيمرخ بال بهسن متـوسط رسم كنيد . فرض ميشود كه از اثر جان نيمرخ نيز صرفنظر كردد . از رابطه تنش ـ كرنش نـثان داده شده درشكل (YG-\&)

$$
\underbrace{F_{v}}_{(V \Delta-s) \text { J }}
$$

شكل (8q-8)
(ب) .بكترين نيمرخ بال بهنی را كه قادر باشد بار فشارى (ت)
 الطمينانى برابر با ضريب اطمينا (ج) نيمرخ بدست Tهده را با نيمرخ حامل از طرح ستون براسا س ضوا بط AISC مقا يسه
¢ 9 - 9 - با ا استغاده از نظر يهء مدول بطا سى منحنى متاومت ستون (تغييرات تنششمتونط

 بال هاى نيمرخ مطالـق شكل زير باشد . تنش تسليم فولاد را Fy

L. كرنـ

از جان صرفنظر ميشود

شكل (YY-9)
 (VA-9) ستون داراى تكيهكاه جانبى الست بار وارده بر اين ستون (تى) P

شكل
 بار وارده بر ابهن ستون (ت) -

تُعـات فشازى / هس
-
أ أ -
. با شند طرح نـا
¢ --
 عهي كنيد اين عضو از
 -برر

 ها تن را تحمل كند ، طول كانشي قطعه را \& متر بكيريد .

- 9
 فشا رى دريس تطعه مه تن است كه حاصل از بار باد نيز می با شد . اين قطعه در صفحهخريادر

. نيز بجرسي نما ئيد - $¢$

$$
\begin{aligned}
& \text { فولاد Tان نرمه دا خلى است . } \\
& \left.\left.\left(F_{y}=r 900\right) \text { (با, }\right) \text { (}\right) \\
& \text { با شد نيز بررسي كنيد }
\end{aligned}
$$

سلانتيمتر وضخامت جدار /\&
Y/ ب متر و ه / / متر میابا شد نوع فولاد اينستون نرمه دا خلى است .
(Y -
ستون (متر) KL

$$
\begin{aligned}
& \text { 5 ك } \\
& \text { الين ستون بترتيب در دو صفحه؛ كمانشى }
\end{aligned}
$$

شكل

شكل (10-9)

1. 2. Euler, De Curvis Elasticis, Additamentum I, Methodus Inveniendi Lineas Curvas Maximi Minimive Proprietate Gaudentes. Lausanne and Geneva, 1744 (pp. 267-268); and "Sur le Forces des Colonnes," Memoires de l'Academie Royate des Sciences et Belles Lettres, Vol. 13, Berlin, 1759; English translation of the letter by J. A. Van den Broek, "Euler's Classic Paper 'On the Strength of Columns','" American Journal of Physics, 15 (January-February 1947), 309-318.
1. F. Engesser, "Ueber die Knickfestigkeit gerader Stabe," Zeitschrift fur Architektur und Ingenieurwesen, 35 (1889), 455; also "Die Knickfestigkeit gerader Stabe," Zentralblatt der Bauverwaltung. Berlin (December 5, 1891), 483.
2. A Considère, "Resistance des pièces comprimèes," Congrès International des Procèdés de Consiruction, Paris, 1891, Vol. 3, p. 371.
3. F. R. Shanley, "The Column Paradox," Joumal of the Aeronautical Sciences, 13, 5 (December 1946), 678-679.
4. F. R. Shanley, "Inelastic Column Theory," Journal of the Aeronautical Sciences, 14, 5 (May 1947), 261-264.
5. N. J. Hoff, "Buckling and Stability," J. Royal Aeronaut. Soc., Vol. 58, Aero Reprint No. 123 (January 1954).
6. Bruce G. Johnston, "Buckling Behavior Above the Tangent Modulus Load," Journal of Engineering Mechanics Division, ASCE, 87, EM6 (December 1961), 79-98.
7. Bruce G. Johnston, "A Survey of Progress, 1944-51," Bulletin No. 1, Column Research Council, January 1952.
8. Bruce G. Johnston, ed., Structural Stability Research Council, Guide to Stability Design Criteria for Metal Structures, 3rd ed. New York: John Wiley \& Sons, Inc., 1976.
9. Welding Handbook, Vol. I, American Welding Society, 7th ed., 1976, Chap. 6.
10. A. W. Huber and L. S. Beedie. "Residual Stress and the Compressive Strength of Steel," Welding Joumal, (December 1954), 589s-614s.
11. Lynn S. Beedle and Lambert Talt, "Basic Column Strength," Journal of Structural Division, ASCE. 86, ST7 (July 1960), 139-173.
12. C. H. Yang. L. S. Beedle, and B. G. Johnston, "Residual Stress and the Yield Strenglh of Steel Beams," Welding Journat, (April 1952), 205s-229s.
13. N. R. Nagaraja Rao. F. K. Estuar, and L. Tall, "Residual Stresses in Welded Shapes," Welding Journal, (July 1964), 295s-306s.
14. Donald R. Sherman, "Residual Stress Measurement in Tubular Members," Journal of Structural Division, ASCE. 95, ST4 (April 1969), 635-647.
15. Donald R. Sherman, "Residual Stresses and Tubular Compression Mem-. bers," Journal of Structural Division, ASCE, 97. ST3 (March 1971), 891-904.
```
i|\mp@code{i}
```

17. Ching K. Yu and lambert Tall. "Significance and Applicalion of Stuh Column Test Results." Journal of Structural Division, ASCE, 97, S'「7 (July 19711. 1841-1861.
18. Bruce G. Johnston, "Inchastic Buch ling Gradient." Jummal of Enginecring Mechanics Divisiom. ASCE, 90, EM6 (December 1964), 31-47.
19. Richard H. Batterman and Bruce (i. Johnston. "Behavior and Maximum Strength of Metal Columns," Journal of Structural Division, ASCE, 93, ST'2 (Aprit 1967), 20.5-230.
20. Friedrich Bleich. Buckling Strength of Metal Structures. New York: McCirawHill Book Company, Inc., 19.52 .
21. Julian Snyder and Seng-Lip I.ce. "Buckling of Eaksic-Plastic Tubular Columns," Journal of Siructural Division. ASCE, 94, SГ1 (January 1968). 153-173.
22. Seng-Iip Lee and Julian Suyder. "Stability of Sirain-Hardening Tubular Columns," Jourmal of Siructural Division. ASCE, 94, ST'3 (March 1968), 683-707.
23. Wai F. Chen and David A. Ross, "Tests of Fabricated Tubular Columns," Journal of Structural Division. ASCE, 103, ST3 (March 1977), 619-634.
24. Theodore V. Galambos, "Strength of Round Steel Columns," Journal of Structural Division. ASCE, 91, S'I (Fehruary 196.5), 121-140).
25. John B. Kennedy and Madugula K. S. Murty, "Buckling of Steel Angle and Tee Struts," Joturnal of Structural Division, ASCE, 98, ST 11 (November 1972), 2507-2,22.
26. John P. Anderson and James H. Woodward, "Calculation of Effective Lengths and Effective Slenderness Ratios of Stepped Columns," Engineering Joumal, AISC, 9, 3 (October 1972), 157-166.
27. Balbir S. Sandhu, "Effective Lenglh of Columns with Intermediate Axial Load," Engineering Journal, AISC, 9. 3 (October 1972), 154-156.
28. Le-Wu Lu, "Effective Length of Columns in Gable Frames," Engineering Journal, AISC, 2, 1 (January 1965), 6-7.
29. Joseph A. Yura, "The Effeclive Length of Columns in Unbraced Frames," Engineering Journal, AISC, 8, 2 (April 1971), 37-42 Dise. 9, 3 (October 1972). 167-168.
30. Robert O. Disque, "Inelastic K-factor for Colunin Design," Engineering Journal, AISC, 10.2 (2nd Quarter 1973), 33-35.
31. C. V. Smith, Jr.. "On Inelastic Column Buckling," Engineering Jourtal. AISC, 13, 3 (3rd Ouarter 1976), 86-88.
32. T. H. Johnson, "On the Sirength of Columns," Transactions, ASCE, 15 (July 1886), 517-536. Also Appendix.
33. Ainerican Association of State Highway and Transportation Officials (AASHTO), Standard Specificaloms for Highway Bridges. 12th ed. 1977. Atso Interim Specifications. 1978, and 1979.
34. Jack C. McCormac, Structural Sieel Design, 2nd ed. New York: Intext Educalional Publishers (Harper and Row), 1971.
35. D. H. Young, "Rational Design of Steel Colunns," Transactions, ASCE, 101 (1936), 422-50).

قـعـات نشا

36. (yrus Omidvaran, "Discrete Analysis of Latticed Columns," Journal of Structural Division, ASCE, 94, STI tinnary 196K), 119-132.
37. Fong J. Lin, Ermst C. Giluser, and Bruce (i. Johnston, "Bchavior of Laced and Batlened Structural Members," Journal of Sirtithral Division, ASCE, 96. S17 (Inly 1970), 1377-1 $\mathbf{1 0 1 1}$.
3x. Brace (i. Johnston, "Spaced Steet Collums," Jomrial of Strathral Division. ASCE, 97, STS (May 1971), 1465-1479.
38. Omer W, Blodgen, Design of Welded Strurneres. Cleveland, Ohio: James F. Lincoln Are Welding Foundation. 1966.
39. S. Timoshenko and S. Woinuwsky-Krieger, Theory of Plates and Shells, 2nd ed. New York: Mc(iraw-Hill Booh Company, Inc., 1959 (pp. 79-82).
40. Stephen P. Timoshenko and James M. Gere. Theory of Elastic Stability, 2nd ed. New York: McGraw-llill Book Company, Inc. 19f1 (pp. 319-328, 351-356).
41. Kuri HI. Gerstle, Basic Structural Design. New York: McGraw-Hill Book Company, Inc. 1967 (p). $88-90$).
42. George Gerard and Herbert Beeker, Handhook of Structural Stability, Part J-Buckling of Flat Plates, Tech. Note 3871 , National Advisory Committee for Aeronautics, Washington, D.C.. July 1957.
43. Geerhard Haaijer and Brano Thiurtimann, "On Inelastic Buckling in Steel," Transactions, ASCE, 125 (1960), 308-344.
44. Theodure von Kármán. E. E. Sechicr, and I.. H. Donncll, "The Strength of Thin Plates in Compression," Transactions, ASME, 54. APM-54-5 (1932), 53.
45. G. Winter, "Strength of Thin Compression Flanges," Transactions, ASCE, 112 (1947), 527-576.
46. J. R. Jombock and J. W. Clark, "Postbuckling Behavior of Flat Plates," Journal of Structural Division, ASCE, 87, STS (June 1961), 17-33.
47. John W. Clark and Richand I. Rolf, "Buckling of Aluminum Columns, Plates, and Heams," Journal of Structural Division, ASCE, 92, ST3 (June 1966), 17-38.
48. Maxwell G. Lay, "Flange Local Buckling in Wide-Flange Shapes," Journal of Siructural Dicision, ASCE, 91. STh (December 1965), 95-116.
49. John F. McDermott, "Local Plastic Buckling of A5it Steel Members," Journal of Structural Division, ASCE, 95, STM (September 1969), 1837-1850.
50. Specification for the Design of Cold-Formed Steel Structural Members, American Iron and Steel Institute, New York, 1968 (with Addendum No. 1, November 19, 1970 and Addendun No. 2. February 4, 1977).
51. Robert M. Korol and Archibald N. Sherlourne, "Sirength Predictions of Plates in Uniaxial Compression," Journal of Siructural Division, ASCE, 98, ST9 (Seplember 1972), 1965-1986.
52. Archibald N. Sherbearme and Renert M. Korol, "Post Buchling of Axially

Compressed Plates," Journal of Structural Divisiom. ASCE. 98. STIO (Ocwher 1972), 2223-22.34.
54. Ralph G. Dawson and Alastair C. Wialker, "Post-Buckling of (icometrically Imperfect Plates." Journal of Structural Divisiom. ASCE, 9B, STI (Jimuary
1972), 75-94.
55. George Abdel-Sayed, "Eifective Widh of Thin Phates in Compression."

56. Maurice L. Sharp, "longitudinal Stifleners fon (iompersion Members," Journal of Structural Division. ASCE. 92, STS (Octoher 19th), 187-211.
57. V. Kalyanaraman, Teoman Pekoz, and George Winter, "Unstiffened Compression Elements," Journal of Structural IDivision. ASCP: 103. STO (September 1977). 1833-18.48.
58. Reidar Bjorhovde. "The Safety of Siect Columms." Jourmal of Struchural Division, ASCE, 1(14. S13 (March 1978), 463-477.
59. P. S. Bulson. The Stahility of Hlat Plates. New York: American Ekevier Publishing Company. 1969.

تيرها با تكيهَّاه جانبى'

عموما " تير به قطعهاى اطلاق ميشود كه تحت نأثير بارهاى جان جانبى ثقلى قرا ر كيرد البتـه

 روى در و يا بنجر هها را تحمل كند .

(1) Laterally Supported
(2) girder
(3) Joist
(4) Purlin
(5) lintel

 مصل نههم اراكه خوا هد تـد .
 مرمول حمشى f=

شكل (1 ($)$ مقدار اساس مقطع 'در نيمرخهاى متقارن

 موء لفههاى Myy

$$
\begin{equation*}
f=\frac{M_{x x}}{S_{x}}+\frac{M_{y y}}{S_{y}} \tag{1-Y}
\end{equation*}
$$

 C
(6) Section modulus

تيرسا با تكيهذه جا نبى /

b $=$ Y - V

 لنكر خمشى فزا يند هاى قرار دأرد در شكل (r Y در اين شكل برا اسا س الاستو- پلاستيك ـودى آن استوار ا است بدين صورت كه تا لـحظه؛ جارى شد فولاد افزا يش كرنش و تخش بصورت متنا سب انـجا مر كرمته و پس ار رسيدن تنش بـه تنتش

 مقدار لنكر تسليم را از را بطنه زير مها سبه مىكنيم (ثكل

$$
\begin{equation*}
M_{y}=F S_{x} \tag{r-v}
\end{equation*}
$$

شكل (Y - Y) - تتوزيع تنش در تير تحت اثر مراحل مختلف باركذارى

شكل (Y-Y) - منحنى تنـش - كرنش براى اغلب فولاد هاى ساختمانى
(1) yield moment

ار (ب) حهت طرمبت خمسنى نيمرخ دا درين حالت با لفظ لنكر خمبرىمعيى خواهيم كرد كه مقدار آن ار رابطهء زير معيى خواهد شد .

$$
M_{p}=F_{y} \int A^{y d A}=F_{y} z
$$

$$
(r-r)
$$

$$
\text { دريس رابطه Z } z=\int_{A}^{A} y d A \text { بوده و آنرا ا'Lاس خميرى' خواهيم كفت. }
$$

ديده مينود كه نسبت $\frac{M_{p}}{M_{y}}$ بستكى به شكل مقطع دا شته و مستقل از خواه ار مصا لح

حل :
با توجه به شكل (Y - Y الف) لنكر تسليم مقطع برابر است با :
(1) Plastic modulus
(2) shape factor

$$
\begin{aligned}
& \text { • } 1 \text { - Y } \\
& \text { ضريب ثكلل را براى تيرى با عرض b و عمق d مطا سبه كنيد . }
\end{aligned}
$$

$$
\begin{align*}
& f=\frac{M_{p}}{M_{y}}=\frac{Z}{s}
\end{align*}
$$

() مظا طع h شكل

شكل (\ddagger (- (حول هحور ضعيف خهشى آن)

$$
\begin{aligned}
& M_{y}=\int_{A} \text { fyda } \\
& f=\frac{F_{y}(y)}{\frac{d}{2}}=F_{y} \frac{2 y}{d} \\
& M_{y}=2 \int \frac{d}{2} \quad \cdot \frac{2 F_{y}}{d} y^{2} b d y=F_{y} \frac{b d^{2}}{6} .
\end{aligned}
$$

با توجه به شكل (Y

$$
\begin{aligned}
M_{p} & =\int_{A} \operatorname{fyd} A \\
& =2 \int_{0}^{\frac{d}{2}} F_{y} b y d y=F_{y} \frac{b d^{2}}{4}
\end{aligned}
$$

بد بن ترتيب ضريب شكل خوا هد شد

$$
f=\frac{M_{p}}{M_{y}}=1.5
$$

 متذكر ميشويم كه اكر خمش حول مصورضعيفمطاطع I I شكل مورد توجه قرا, كيرد (حول y-y)

ايي مغاطع را ميتوان با دو مستطين كه توسط جان بيكديكر متعل شدهاندبرا بردانست . (نكل

$$
\left(\tau^{Y-Y}\right.
$$

روش طرح ارتجاعى

 به صورت زير مها سبه خوا هد شد . $M=F_{b} S$

مقادير متداول تنشهاى مجاز به فرار زير است .

$$
\begin{aligned}
& \text { AISC برطبق Tكين نام } \quad F_{b}=0.6 F_{y} \\
& \text { AASHTO برطبق Tكيـ نامه } \quad \mathrm{F}_{\mathrm{b}}=0.55 \mathrm{~F}_{y}
\end{aligned}
$$

(1) load factor
(2) Compact Sections

نيرسا با تكيمڭاه جانبى/KV/

 درصدهاى ذكر شده ها الفزايش دارد .

 My

 منا سبى دا شتـه باشد . ابعاد مقطع در متاطع فشردهـ

$$
\frac{b_{f}}{2 t_{f}}<\frac{540}{\sqrt{F_{y}}} \quad(\xi-Y) \quad \text { عناصر تقويت نشده (تحت تنش يكسان فشارى) }
$$

$$
\frac{b}{t_{f}}<\frac{1580}{\sqrt{F_{y}}} \quad(Y-Y) \quad \text { عناصر تقويت شده (تحت تنش يكـلن فشارى) }
$$

$$
\frac{d}{t_{W}}<\frac{5310}{\sqrt{F_{y}}} \quad(\Lambda-Y) \quad \text { عناصر تقويت شده (تحت تنش خمشى) }
$$

برطبق AISC تـشهاى مجاز در روش ارتجاعى به صورت زير بيان خواهد شد . ا ــ در مورد قطعات با تكيهكاه جطنبى "قطعات فشرده " كه شكل هتظارن دارند ور و در
(1) local buckling
 بتوانند تا لـكر خميرى M بار تحمل كند) برابر است با $F_{b}=0.66 \mathrm{~F}_{\mathrm{V}}$ $(q-y)$
-

 $F_{b}=F_{y}\left[0.79-0.00024\left(\frac{b_{f}}{2 t_{f}}\right) \sqrt{F_{y}}\right]$

$$
(10-Y)
$$

شكل (ابعادى بال آنها (رابطه
r r ت r

$$
\begin{equation*}
F_{b}=0.75 F_{y} \tag{11-y}
\end{equation*}
$$

با علم بر اينكه ضريب شكل نيمرخهاى دستطيل شكل بالا بى:اشد (مثال Y - Y) . براي اين
وع خمش تكيهاه هطبـى لازم نحوا هد بود .

 o/VD Fy L. $0 / 9 F_{y}$ تضمي كند (يا برطبق زابطه؛ زير تعييرخواهد كرد .

$$
F_{b}=F_{y}\left[1.075-0.0006\left(\frac{b_{f}}{2 t_{f}}\right) \sqrt{F_{y}}\right] \quad(1 r-v)
$$

شكل (チ-Y) -
بال آنها (رابطه Y - Y I)
 برابر با لنكر تسليم My در مقطلع خود بذيرفته ولى شرا يط مقاطع فشرده و و يا نيمه فشرد هـ ه اراذدارند . مغدار تنـش مجاز برابر با مفدار زير خوا هد بود :

$$
F_{b}=0.60 F_{y}
$$

$$
(i r-y)
$$

بايستى يادT ور شد كه در ضو! بط AASHTO در طرحارتجاعى قطعات از متاطع فشرده
(1) Partially Compact

 بعلت تأثير خستى در طرإحى بلها
 باركدا رى سازه مورد طرح مى با شد .

روش طرح خميرى

 S Φ_{U}

 شروع ميشود و بمان جهت وقتى كه مفصل خميرى در قطعهتشكيل ميشود ، هيجّ نسبت مشخصى
(1) Plastic Collapse (2) Collapse mechanism
(3) Plastic hinge

تيرسا با تكيه太اه جانبى / |

بين دياكرام لنـكر و دياكرام لنـكر ارتجاعى وجود نـخوا هد داشت.

شكل (Y-Y) - عملـكرد خميرى

بر طبق ضوا بط A ISC براى ' ينكه قطعه؛ خمشى بتواند به لنـكر خميرى خود تحت اثر بار

مشخصات ابعاد ى مقطع در طرح خميرى
نسبت عرض بـه ضخا مت بال هاي نـيمر خها

 نسبت عمق به ضها مت جان أ عضا يیى كه تحت لنكّر خميرى مى با شندنبا يد ازمقا ديردادهـ
مثال Y - Y:

$$
\text { شكل (} 1
$$

حل :

جون اغلب نيمرخهای I شكل دا راى ثرا يط فشردكى مقطع مى با شند لذا تنش مجا ز را

$$
\cdot م F_{b}=0 / 9 \varepsilon F_{y}
$$

$$
M=\frac{w L^{2}}{8}=\frac{1500 \times 4.5^{2}}{8}=3800 \quad \text { daN. } \mathrm{m}
$$

$$
\text { S } S>\frac{M}{F_{b}}=\frac{380000}{0.66 \times 2333}=247 \mathrm{~cm}^{3}
$$

$$
\begin{aligned}
& \begin{array}{l}
\frac{d}{t}<\frac{r Y_{0}}{\sqrt{F_{y}}}\left(1-1 / H \frac{P}{P_{y}}\right) \\
\frac{d}{t}<\frac{r 1 r_{0}}{\sqrt{F_{y}}}
\end{array}
\end{aligned}
$$

 كه آنرا انتخلاب مىكنيم , ـ ــتنرل مشخطات ابمادى متطع IPE22

$$
\begin{aligned}
& \frac{b_{f}}{2 t_{f}}=\frac{11.0}{2 \times 0.92}=5.98<\frac{54.0}{\sqrt{2333}}=11.18 \quad 0 . K .(\varepsilon-Y) \\
& \frac{d}{t_{w}}=\frac{22.0}{0.59}=37.3 \quad<\frac{5310}{\sqrt{F_{y}}}=109.9 \quad 0 K . \quad(1-Y)
\end{aligned}
$$

مثال Y - Y

مثال تبل را با روش طرح خميرى بورسى كنيد .
ضريب بار براى بار وارده Y/ Y خوا هد بود لذا لنكر خميرى برابر خوا هد شد با :

$$
W_{u}=1.7 \times 1500=2550 \quad \mathrm{daN} / \mathrm{m}
$$

$$
M_{p}=\frac{W_{u} L^{2}}{8}=\frac{2550 \times 4.5^{2}}{8}=6455 \quad \mathrm{daN} / \mathrm{m}
$$

الL $z>\frac{M_{p}}{F_{y}}=\frac{645500}{2333}=277 \mathrm{~cm}^{3}$
بايد

$$
\frac{b_{f}}{2 t_{f}}=\frac{11}{2 \times 0.92}=5.98<8.8 \quad 0 . \mathrm{K} .
$$

$$
\text { رابطه (} 1 \text { (}
$$

$$
\frac{d}{t_{w}}=\frac{22}{0.59}=37.3<\frac{2130}{\sqrt{F_{y}}}=4.4 . \quad 0 . \mathrm{K} .
$$

كتـرل كنتده؛ طراحى 'ن باشد .

مطا لب همين نصل مورد بردسى قرار خوا هد كرنت .

ارتجاعى ميتوان از را ب بطه؛ زير مطا سبه نمود .

$$
\begin{equation*}
د_{\max }=\beta_{1} \frac{W L^{3}}{E I} \tag{18-Y}
\end{equation*}
$$

درين رابطه: : لـ بار در دهانهء تير
(1) Wright
(2) Walker
(3) Murray
(4) Ponding

$$
\begin{aligned}
& 6 \text { طول دهانهء تير : L } \\
& \text { (} E=2.07 \times 10^{6} \text { bar) مدول ارتجاعى تير : } \\
& \text { I }
\end{aligned}
$$

(
 بد

$$
\begin{equation*}
\Delta=\frac{5 L^{2}}{48 E L}\left[M_{s}-0.1\left(M_{a}+M_{b}\right)\right] \tag{iY-Y}
\end{equation*}
$$

شكل (q-Y - - -

زير نوشته خوا هد شد .

$$
\Delta_{\text {max }}=\frac{5 \mathrm{WL}}{}{ }^{4}
$$

ميتوان اين عبارت را با روا بط $C=\frac{d}{2}, f=\frac{M C}{I} \cdot M=\frac{W L^{2}}{\delta}$ بصورت \quad.
(1) Continuous beams

$$
\begin{equation*}
\Delta_{\text {max }}=\frac{10 f L^{2}}{48 \mathrm{Ed}} \tag{19-Y}
\end{equation*}
$$

ازين عبارن نا زما نيكه حداكثر تنش در حول و حوش مقطع ميانى تير باشد ميتوانبراى

$$
\text { جد ول ((} 1 \text {) مقدار خيز برطبق رابطد؛ (Y - Y) }
$$

1 max	L/d	L/d فولاد نزمه for	
L/360	$\frac{28000}{f}$	20	12.7
L/300	$\frac{33600}{f}$	24	15.3
L/240	$\frac{42000}{f}$	30	19.1
L/200	$\frac{50400}{f}$	36	22.9

 حاصله از بارهاى زنده در آنها از انها

 ـا ختمان بر سازه است .

$$
\begin{aligned}
& \text { درجدول (} 1 \text { (} 1 \text { رابطه؛ خيز برحس }
\end{aligned}
$$

تيرها با تكيهگه جانبى

 .بر طبق نوع و Tارايش مصالح بكار رفته معين كردد .
ملحقات ضوابط AISC محد وديت ها ي زير را توصيه مى نما يد .
تيرها و شاهتيرهاى كف كه تحت ضربه و يا لرزش قرار ندا شته با شنـــــ :

$$
\frac{L}{d}<\frac{55000}{F}(\text { bar })
$$

(الف ro-y)

تير هط و شاه تيرهاى كف كه تحت ضربه و يا لرزش ترار دارند بشرطى كه در تسمت اعظم سطح خود تيغه و يا بارهاى ستمركز و نظير דنرا تتحمل نكنـند .

$$
\begin{equation*}
\frac{L}{d} \leq 20 \tag{r}
\end{equation*}
$$

لاهه هاى سقف بشرطى كه شيب سقف كمتر از \% C با بـد :

$$
\frac{L}{d} \leqslant \frac{69000}{F}(\text { bar })
$$

(

اكر تيرهاى كف فشرده بوده با شند لذا تنش مجا ز Tنها
 خوا هد شد .

$$
\begin{align*}
& \frac{L}{d} \leqslant \frac{36400}{f} \\
& \frac{L}{d} \leqslant \frac{45500}{f} \tag{-YY-V}
\end{align*}
$$

$$
\left(-r_{0}-v\right)
$$

$$
M_{e}=M_{s}-0.1\left(M_{a}+M_{b}\right)
$$

$$
(r r-v)
$$

آب انباشتكى در سقفـ هاى تخت

 'اب انبا شتكى ' خوا هيم كفت .

تير هاى بشت بام را مى با يد برطبق رابطهء (YY - V) مده ود نمود :

$$
\begin{equation*}
\frac{L}{d} \leqslant \frac{41400}{f_{b}} \tag{rY-r}
\end{equation*}
$$

r r

 مكاني برابر با Δ دارد بطوريكه خود تطعه در وسط دارای تغيير شكلى برابربا d
به دو سر خود مى با شد .

در شكل (Y-Y -

(1) ponding
(2) Marino

تـيـها با تكيده، جانبي/

شكل ($10-Y$) - آرايش سازه بمنظور تحليل آب انباشتكى

تكيها هاكا
شكل (

 البته بار ديكرى بر اين قطنه كه بشكل نيمه سينوسى خوا هدبود بعلت خيز خود قطعها خرخواهو كرد.

شكل ((Ir-Y) - بار فرضى آب انباشتكى

تطعه اصلى توسطبارىكسترده و نيمه سينوسى شكل كه ار حطصل از تغيير شكل خودقطعه
مى با شد

تطعه اصلى توسط بارىككسترده و نيمه سينوسى شكل كه از حطصل از تغيير شكل خودتطعه

اصلى وارد ميشود برا بر است با :

$$
\frac{2}{\pi} \gamma L_{s}\left(\delta_{0}+\delta_{w}\right)
$$

اين عكسالعمل حطصل از بار وارده بر وا حد طول در امتداد قطعه؛ اصلى الست . تطعهء
 با فته خوا هد بود و بدان نجد بود با

$$
\frac{2}{\pi} \gamma L_{S}\left(\delta_{0}+\delta_{w 1}\right)
$$

اين بار نيزدر واحد طولل
با توجه به شكل (IY-Y) لنكر شخمثي در قطعه اصلى را مها سبه كنيد , ابتـدا با فرض
سينوسى بودن بارهاى وارد ه عكسنا لعمل تير را معين كنيد. .

$$
\begin{aligned}
& R=\frac{\gamma L_{s} L_{p}}{\pi}\left(\Delta_{0}+\Delta_{w 1}\right)+\frac{2 L_{s} L_{p}}{\pi 2} \\
& \left(\delta_{w}-\delta_{w 1}\right)+\frac{\pi \gamma L_{s} L_{p}}{\pi}\left(\delta_{0}+\delta_{W 1}\right) \\
& =\frac{\gamma L_{s} L_{p}}{\pi}\left[\left(\Delta_{0}+\Delta_{W}\right)+\frac{2}{\pi}\left(\delta_{U}-\delta_{W 1}\right)+\left(\delta_{0}+\delta_{W 1}\right)\right](T \varepsilon-Y)
\end{aligned}
$$

لنكر خـشي در وسطد هلانه خوا هد بود .

$$
M=-\frac{\gamma L_{s} L_{p}}{\varepsilon}\left[\left(\Delta_{0}+\Delta_{w}\right)\left(\frac{L_{p}}{2}-\frac{L_{p}}{2}+\frac{L_{p}}{2}\right)+\frac{2}{\pi}\left(\delta_{w}-\delta_{w 1}\right) \frac{L_{p}}{*}\right.
$$

$$
\begin{aligned}
& \left.+\left(\delta_{0}+\delta_{w 1}\right)\left(\frac{L_{p}}{2}-\frac{L_{p}}{4}\right)\right]=\frac{\gamma / L_{s} L_{p}^{2}}{\pi}\left[\frac{1}{\pi}\left(\Delta_{u}+\Delta_{w}\right)\right. \\
& \left.+\frac{2}{x^{2}}\left(\Delta_{w}-\Delta_{w 1}\right)+\frac{1}{4}\left(\delta_{0}+\delta_{w 1}\right)\right]
\end{aligned}
$$

شكل (Y - Y

را مهط سبه كرد . جون منحني تغييرات بار وارده بشكل منحنى نيمه سينوسي است لذا دياكرام
 rكه بار كستردهء يكنواخت مى با شد براى

$$
\begin{aligned}
\Delta_{W} & =\frac{\gamma L_{s} L_{p}}{\beta 3 E I_{p}}\left[\frac{1}{\pi}\left(\Delta_{0}+\Delta_{W}\right)+\frac{2}{\pi^{2}}\left(\delta_{W}-\delta_{W 1}\right)+\frac{1}{4}\left(\delta_{0}+\delta_{W 1}\right)\right] \\
& =\frac{\gamma L_{s} L_{p}^{4}}{\pi^{4} E I_{p}}\left[\left(\Delta_{0}+\Delta_{W}+\frac{2}{\pi}\left(\delta_{W}-\delta_{W 1}\right)+\frac{\pi}{4}\left(\delta_{0}+\delta_{W 1}\right)\right](\gamma Y-Y)\right.
\end{aligned}
$$

$$
\begin{align*}
& \text { 5 } 5 \\
& \text { باشد مقدار } C_{D}=\frac{\gamma L_{S} L_{p}^{4}}{\pi{ }^{4} E I_{P}} \text { روا هد شد } \\
& \Delta_{W}=\frac{C_{P}}{1-C_{p}}\left(\Delta_{0}+\frac{\pi}{4} \delta_{0}+\frac{2}{\pi} \delta_{W}+\frac{\pi}{4} \delta_{W 1}-\frac{2}{\pi} \delta_{W 1}\right)(\tau A-y) \\
& \text {. } \\
& \delta_{W}=\frac{\gamma^{S L}{ }^{4}}{\pi^{4} E I_{S}}\left[\frac{\pi^{2}}{8}\left(\Delta_{0}+\Delta_{W}\right)+\delta_{0}+\delta_{W}\right] \\
& \text { (rq-y) } \\
& \text { با شد مقدار } C_{S}=\frac{\gamma L_{s} L p^{4}}{\pi^{4 E I_{p}}} \\
& \delta_{W}=\frac{C_{S}}{1-C_{S}}\left(\frac{x^{2}}{8} د_{0}+\delta_{0}+\frac{\pi^{2}}{8} د_{W}\right) \\
& (r o-Y) \\
& \text { در تكيه كاه قطعه أصلى } \\
& \text { رابطه (Yo - Y) خواهيم داشت : } \\
& \delta_{w 1}=\frac{C_{s}}{1-C_{s}} \delta_{0} \tag{r}\\
& \text { از طا شت : ديكر جون نسبت } \\
& \frac{\delta_{0}}{\Delta_{0}}=\frac{C_{s}}{C_{p}} \\
& \text { (rr-y) }
\end{align*}
$$

($\left(r_{0}-Y\right),(T \wedge-Y)$

تيرها با تكيهكاه جانبى/45
 سيستم وقتى كه
 جون خيز متنا سب با تنشى است لذا داريم :

$$
\frac{f_{W}}{f_{0}}=\frac{\Delta_{W}}{\Delta_{0}} \frac{\Delta_{W}}{\Delta_{0}}
$$

زير مهدود نمود .

$$
f_{w} \leqslant 0.8 F_{y}-f_{0}
$$

$$
(r s-Y)
$$

رابطهء فوق براساس معادير خيزها با استغادهاز معادله (Y - Y) بصورت زير بيان خواهد

$$
\Delta_{w}<\left(\frac{0.8 F_{y}-f_{0}}{f_{0}}\right) \Delta_{0}
$$

$$
(r Y-Y)
$$

$$
\begin{aligned}
& \Delta_{W}=\frac{\alpha_{P} \Delta_{0}\left[1+\frac{\pi}{4} \alpha_{S}+\frac{\pi}{4} \rho\left(1+a_{S}\right)\right]}{1-\frac{\pi}{4}{ }^{\prime}{ }_{P} \alpha_{S}} \quad(T r-Y) \\
& \delta_{W}=\frac{\alpha_{5} \delta_{0}\left[1+\frac{\pi^{3}}{32} \alpha_{p}+\frac{\pi^{2}}{8 p}\left(1+\alpha_{p}\right)+0.185 \alpha_{5} \alpha_{p}\right]}{1-\frac{\pi}{4} \alpha_{p} \alpha_{S}}(r \varphi-Y) \\
& \text { درين روابط داريم : } \\
& \alpha_{s}=\frac{C_{s}}{1-C_{s}} \quad, \quad \alpha_{p}=\frac{C_{p}}{1-C_{p}} \quad, \quad \rho=\frac{\delta_{0}}{\Delta_{0}}=\frac{C_{s}}{C_{p}}
\end{aligned}
$$

يا اكر معادله (Y - Y (بصورت زير بيان خوا هد شد .

$$
\left[\frac{0.8 f_{y}-f_{0}}{f_{0}}\right]_{P} \frac{\alpha_{p}\left[1+\frac{\pi}{4} \alpha_{s}+\frac{\pi}{4} \rho\left(1+\alpha_{s}\right)\right]}{1-\frac{\pi}{4} \alpha_{p} \alpha_{s}}(r \wedge-v)
$$

و ضابـطهء ايمنى قطعات فرعى خواهد شد .
$\left[\frac{0.8 F_{y}-f_{0}}{f_{0}}\right] \geq \frac{\alpha_{s}\left[1+\frac{\pi^{3}}{32} \alpha_{p}+\frac{\pi^{2}}{8 p}\left(1+\alpha_{p}\right)+0.185 \alpha_{s} \alpha_{p}\right]}{1-\frac{\pi}{4} \alpha_{p} \alpha_{s}}$
(rq-y)
برطق آنجه در ضوا بط AISC ذكر شده است با معلوم بودن
(C_{p}
 نمودار شكل (10 (Y) محا سبه نمود . مقدار مى با شد .

$$
\begin{array}{ll}
C_{p}+0.9 C_{s} \leqslant 0.25 & \left(\mu_{0}-\gamma\right) \\
I_{d} \geqslant 0.395 s^{4} & (\mu 1-\gamma) \tag{FI-Y}
\end{array}
$$

تيرسا با تكيه太هـ جانبى/50/

. طول تطعهء اطلى برحسب متر : L
L

(نُكر لختىيعرشه فولادى كه توسط تطهه فرعى عملى مى شود برحـبب

F5V/تيرسا با تكيهمه جانبي

 در غابطه C انباشتى تحت تنـن كا مل ترار كرفته با شند . بعنوان مثال :

$$
\frac{0.8 F_{y}-f_{0}}{f_{0}}=\frac{0.8 F_{y}-0.66 F_{y}}{0.66 F_{y}}=0.212
$$

$$
=\frac{0.8 F_{y}-0.6 F_{y}}{0.6 F_{y}}=0.33
$$

 برجت درابطه (

 بر واحد طول مىبا شد تحمل كند . عكسالعمل تير خوا هد شد .

$$
R=\gamma\left(\Delta_{0}+\Delta_{W}\right) \frac{S}{\pi}
$$

(1) Stee 1 deck
(2) Burgett

اكر لنكر خمشي وسط دهانه را مها سبه كيم و هجس با استغادهاز تير مزدوج خيز وسط دهانه را معين كنيم خواهيم داشت :

$$
\begin{aligned}
& \Delta_{W}=\frac{\gamma S^{4}}{v_{E I}}\left(\Delta_{0}+\Delta_{W}\right) \\
& \Delta_{W}=\Delta_{0} \frac{\frac{\gamma S^{4}}{\pi_{E I}^{4}}}{\left[1-\frac{\gamma S^{4}}{R^{4} E I}\right]} \\
& . \quad(Y T-Y) \\
& I=\frac{\gamma_{1} S^{4}}{\pi{ }^{4} E}
\end{aligned}
$$

اكر از ضريب اطمينانى برابر، بلهז / ا استغاده كـيم ايمنى تطعه در زمان Tب انبا شتكى بشرط رابطه؛ زير تأمين خوا هد شد .

$$
I>\frac{\gamma S^{4}}{1.25 \pi^{4} E}=0.391 \mathrm{~s}^{4}
$$

$$
(\psi \Delta-v)
$$

 استوارت
(1) Salama
(2) Moody
(3) Sawyer
(4) Mansouri
(5) Adams
(6) Avent
(7) Stewart

مثال

$$
\begin{aligned}
& M=\frac{1}{8}(1500+90)(12.0)^{2}=28620 \quad \text { m.daN } \\
& F_{b}=0.66 F_{y}=1540 \quad \text { bar } \\
& S_{x}>\frac{2862000}{1540}=1858 \mathrm{~cm}^{3} \Rightarrow \text { IPE } 50
\end{aligned}
$$

تنش موجود در تبر شوا هد شد .

$$
f_{b}=\frac{2862000}{1930}=1483 \text { bar }
$$

سهم تنش از بار زنده

$$
f=\frac{10}{15} \times 1483=988.6 \text { bar }
$$

$$
\frac{L}{d} \leqslant \frac{28000}{f}=\frac{28000}{988.2}=28.3
$$

$$
d>\frac{L}{28.3}=\frac{1200}{28.3}=42.4 \leqslant 50 \quad \text { OK. }
$$

روش ديكر طرح به صورت زير اسست :

براى بار زنده $\Delta=\frac{5 w L^{4}}{384 E I}=\frac{5 \times 1000 \times 12 \times 1200^{3}}{384 \times 2.1 \times 10^{6} \mathrm{I}}=\frac{128570}{I}$

$$
\text { مثال } \Delta-Y
$$

 مطلوبست كنترل اين سقف براى آب انبا شتكى، فواصل تيرهاى فرعى ا 1 ا متر است . هعلومات مسأله:

كنترل شا هتيرها :

$$
f_{0}=0.6 \times 1500=900 \text { bar }
$$

U = $\frac{0.8 \mathrm{~F}_{\mathrm{y}}-\mathrm{f}_{0}}{\mathrm{f}_{0}}=\frac{0.8(2333)-900}{900}=1.07$

$$
\begin{aligned}
& C_{p}=0.049 \frac{L_{s} L_{p}^{4}}{I_{p}}=0.049 \frac{10 \times 13.5^{4}}{107180}=0.152 \\
& C_{s}=0.049 \frac{S L_{s}^{4}}{I_{s}}=0.049 \frac{1.5 \times 10^{4}}{8356}=0.088 \\
& C_{p}+0.9 C_{s}=0.152+0.088=0.24<0.25 \quad O K .
\end{aligned}
$$

$$
\begin{aligned}
& \text { جون حداكثر خيز بار زنده به } \\
& I=\frac{128570}{\Delta \dot{\Delta}}=\frac{128570 \times 360}{1200}=38570<I_{\text {IPE } 50}=48200 \quad 0 \mathrm{~K} .
\end{aligned}
$$

FVI//تيرسا با تكيهكاه جانبـ

شكل (I
 . حال براى تير فرعى كنترل مىكنيم

$$
f_{0}=0.6 \times 1250=750 \text { bar }
$$

U $\mathrm{U}=\frac{0.8 \mathrm{~F}_{\mathrm{y}}-\mathrm{f}_{0}}{\mathrm{f}_{0}}=\frac{0.8 \times 2333-750}{750}=1.49$

$d C^{\prime}=v t d z$
(4 - -y)
نيروهاى افنى حاصلاز لنكر خمشى به ترار زهر است :
$c^{\prime}=\int_{y_{1}}^{y_{2}} f d A$

$$
C+d C^{\prime}=\int_{y_{1}}^{y_{2}}(f+d f) d A
$$

اكر طرفين دو رابطهء نوقالذكر زا از بكديكر كم كنيم خوا هيم داشت :

$$
\begin{equation*}
d C^{\prime}=\stackrel{y}{2}_{y_{2}}^{y_{1}} \mathrm{df} \cdot \mathrm{dA} \tag{fY-Y}
\end{equation*}
$$

(الف:)

(-)

(c)

$$
\begin{aligned}
& d f=\frac{d M \cdot y}{I} \\
& d C^{\prime}=\int_{y_{1}}^{y_{2}} \frac{y \cdot d M}{I} d A=\frac{d M}{I} \int_{y_{1}}^{y_{2}} y d A \quad(Y A-Y)
\end{aligned}
$$

اكر هعادله (Fq-Y) را

تيرها با تكيمڭه جانبـ/

$$
\begin{align*}
& v=\frac{d M}{d z}\left(\frac{1}{t I}\right) \int_{y_{1}}^{y_{2}} y d A \\
& \text { و ثون مى دانيم كه V V V است و اكر دا شته با شيم : } \\
& Q=\int_{y_{1}}^{y_{2}} y d A
\end{align*}
$$

رابـطهء آشناى تنش برشى به صورت زير محا سبه خواه هد شد :

$$
v=\frac{V Q}{I t}
$$

دراينرابـطه Q عبارتست از لنكر سطح بـي ظار خارجى فوقانى و تارى كه غرض تعيينتنش برشى در Tن تار میباشد . در شكل (
y قرأر كرفته است .

$$
f_{v}=\frac{V}{A_{w}}=\frac{V}{d t}
$$

 و انر آنها را در تعيين تنش برشى ناديده كرفت .
در مثال زير ديده خوا هد شد كه پكونه قسمت عمده؛ تنش برشى توسط جان تيرهاى شكل تحمل مى شود .
مثال Y - Y :
 نيوتن قرار دا رد معين كنيد ، همهنين مقدار برشى را كه توسط بال لها وجانتتحمل مى شود معلوم كنيد

الف - تنش در محل اتصال بال به جان
$V=30000$ daN
$Q=19 \times 1.49\left(\frac{42.02}{2}+\frac{1.49}{2}\right)=615.9 \mathrm{~cm}^{3}$
$v=\frac{30000 \times 615.9}{33740 \times 0.94}=582.6$ bar
$v=\frac{30000 \times 615.9}{33740 \times 19}=28.8 \quad$ bar
ب - تنش در تار خنثى
$Q=849 \mathrm{~cm}^{3}$
$v=\frac{30000 \times 849}{33740 \times 0.94}=803 \quad$ bar
ج - تعيين تلاش برشى تحمل شده توسط بالو جان نيمرخ
(V=2($\left.\frac{28.8}{2}\right)(19 \times 1.49)=815 \quad$ daN.

```
    | V=30000-815=29185 daN
```


$f_{v}=\frac{V}{d t_{w}}=\frac{30000}{45 \times 0.94}=709$ bar
ديده ميشود كه اين مقدار متوسط 11 / درصد كمتر از متدار حداكثر تنش مىباشد .

 حَّدان تغاوتى بـدا رد .

AISC ووش ارتجا عـى

 از تنش برشى و تنش خمشى قرار ندا شته با شند مىتواند تنش متوسطى برطبق رابططه (Ar - Y تحمل كـند

$$
f_{v}=\frac{V}{A_{w}}<F_{v}=0.40 F_{y} \quad(\Delta r-v)
$$

 مجاز

$$
\frac{h}{t}=67 \text { = حداكثر }
$$

$$
(\Delta \varphi-\gamma)
$$

تعيين تنش برشى مجاز حدا كثر برابر با 0.40 Fy با استفاده از نظريههاى كسيختكى
(I) Stiffener

> دراين طالت بـش از وq درصد از تلاش برشى توسط جان نيمرخ تحمل شده است . د ـ تنـن متوسط f

h براى نيمرخهاى نورد شده
شكل (Y-y - مكرر)

 برابر با تنش تسليم $\quad \sqrt{\text { بو }}$ خد بود

$$
\tau_{y}=\frac{F_{y}}{\sqrt{3}}
$$

 نمود

هثال
سبكتر ين نيمرخ IPE را كه بتواند بارى كسترده با شدت (
 حل
چون شدت بار وارده بالا است و دهلنهء تير نيز كما ستسراح بايد هم برش وهم خشش را كتّرل كند .

FVV/ تيرها با تكيدكه جانبيى

$$
\begin{aligned}
& M=\frac{1}{8}(23000)(1.5)^{2}=6469 \quad \mathrm{~m} . \mathrm{daN} . \\
& V=\frac{1}{2}(23000)(1.5)=17250 \quad \mathrm{daN} .
\end{aligned}
$$

با فرض فشرد هبودن مقطع خوا هيم دا شت :

$$
S>=\frac{646900}{1540}=420 \quad \mathrm{~cm}^{3} \Longrightarrow \text { IPE } 27
$$

$$
f_{v}=\frac{V}{d t_{w}}=\frac{17250}{27 \times 0.66}=968 \mathrm{bar}
$$

$$
F_{v}=0.4 F_{y}=0.4 \times 2333=933 \leqslant 96 \varepsilon \quad N G .
$$

سطع متطع جان لازم براى تلاش برشى خوا هد بود .

$$
\text { لاز } A_{w} \geqslant \frac{V}{F_{v}}=\frac{17250}{933}=18.48 \quad \mathrm{~cm}^{2}
$$

($A_{W}=30 \times 0.71=21.3$ ات امتحان كنيم خواهيم ديد كه تابل قبول استر I IPE 30 امتر

$$
f_{v}=\frac{V}{A_{w}}=\frac{17250}{21.3}=810<933 \quad 0 \mathrm{~K} .
$$

با يستى توجه كنيم كه بشرطى ميتوانيم تنش مجاز برقرار با شد ، لذا مقدار t

كاربرد قطعات تعويتى در مواردى كه مقدار رو ربوطبه تير ورقها آورده شده است.

AISC روش طرح خميرى

زمانى كه از تطعات تتويتى عمود بر جان و ورقهاي تـتويت

$$
f_{u v}=\frac{V_{u}}{d t_{w}} \leqslant 0.55 \mathrm{~F}_{y}
$$

مقدار 0.55 بر متدار محا مباتي از طريق نظريهء "ابرزى اعوجاج" بطلبقت دارد زيرا كه بر طبق To نظر يه متدار تنش تسليم برشى برابر اســ با :

$$
\tau_{y}=\frac{F_{y}}{\sqrt{3}}=0.577 F_{y}
$$

$$
9-Y \text { = لـهيدكى جان و وقهاى زير سرى }
$$

تير به ستون منتقل مىشود بوجود مى يد .

(1) bearing length

تيرها با تكيهذه جانبى /

در همهجا جلوكيرى كنيم بلكه هدف أيناستكه درجا ثي كهجا رى شدن فولاد سـبـبكانشموضعى بعبارت ديكر لـهيدكى ميكردد جلـوكيرى شود .

مطلب كه عملا" متدار k g 2 2 كتر از متدا روا قتى است ، ضريبى متنا سببا معدارضريباطميينان بكار رفته در موارد ديكر ضابطه AISC مى باشد .

روش طرح خميرى

 در مكانيسم خرابى ' لـازه ممكن مىباشد بايد تطعهالى تقويتى بمنظور تقويت جانبكاركرفته

 با
 باربر كه بمنظور جلوكيرى از لهيدكى جان بكار میروند در مبحث تير ورقها مورد رسيدكى قرار خوا هد كرفت . مثال

 حل با استفادهاز رابطه (

$$
N=\frac{R}{0.75 F_{y} t}-k=\frac{12000}{0.75 \times 2333 \times 0.66}-2.5=7.9
$$

حال كه تير روى مصالح بنايى قرار دارد با يد برطبق شكل (19 - Y ا نيز معين كنيم .
(1) collapse conditions

$$
B=\frac{R}{N F_{p}}
$$

 بار با شد مقدار F F خوا هد شد .
$F_{p}=0.35 f_{c}^{\prime}=70$ bar
$P Y B>\frac{12000}{10 \times 70}=17.1 \mathrm{~cm}$.

$$
\text { (شكل } 19-4)
$$

است بنابراين مقدار تنش مجاز خششى براى صفـات بر طبق ضوابط A ISC برابر است با :

$$
F_{b}=0.75 F_{y}
$$

 0.60 Fy
 تكيهكاه توزيع شود لذا صلبيت قطعه زيرسرى سيشتر مورد توجه است و بـي

 خواهد شد .

P= $\frac{12000}{10 \times 18}=66.7$ bar

$$
M=\frac{P\left(\frac{B}{2}-k\right)^{2} N}{2}=\frac{66.7\left(\frac{18}{2}-2.5\right)^{2}}{2} \times N=1408 \mathrm{~N} \mathrm{~cm} . \text { daN }
$$

S $=\frac{1}{6} \mathrm{Nt}^{2}$
الساس متطع مورد نياز s> $\frac{M}{F_{b}}=\frac{1408 \mathrm{~N}}{0.75 \times 2333}=0.805 \mathrm{~N}$

$$
\frac{N t^{2}}{6}>0.805 N
$$

$t>\sqrt{6 \times 0.805}=2.2 \mathrm{~cm}$.
. مشخصات زير سرى به صورت زير انتخاب ميشود .
اكر بخوا هيم ضخا مت وت زيرسرى را در هالت كلى هعين كنـيم خواهيم داشت.

$$
\frac{N t^{2}}{6}=\frac{P\left(\frac{B}{2}-k\right)^{2}}{2 F_{b}} N
$$

$$
t \geqslant \sqrt{\frac{3 P\left(\frac{B}{2}-k\right)^{2}}{F_{b}}}=2\left(\frac{B}{2}-k\right) \sqrt{\frac{P}{F_{y}}} \quad(q \circ-\gamma)
$$

= Y - Y Y

تيرها با تكيهذه جانبـ/ /FAF

شد كه چككونه سطع خالص تطمات كه از حذف سطع مربوط به سورا خها بد سـت مى آيد ر محا سبات

 لذا هيج نوع تقليلى در سطع معطع قطعه اعمال نمى شود .
واضح است كه وجود سوراخ بيع با برج در تير مطـئنا " از مقاومت تير خوا هد كا ست و به

 تمركز تنش در اطرا ف سورا اخها ست .
با در نظر كرفتن درمد دقت روشهاى متدا ول طراحي بنظر نمىرسد كه مسا سبه انتقال
 ظر فيت باربرى بال كششى تحت اثر بارها ى وارده با و بدون وجود سوراخ تظا وتى نمىكندوتنـيا نحوهء توزيع تنش در ' نحوا هد كرد .
 را فتطزمانى از سطع متطع نا اخالص بال كم مىكند كه مقدا رآنببش ازها\% سطع متطع ناخلـس بال با شد و فقط مازاد بر ها درمد سطع متطع را نيز از سطع مقطع ناخالص بالكسر مىنما يد . يك هنين تتليلى منطقى بنظر میرسد زبرا كه وجود سوراخ در بال كششى سبب تقليل

 سورا خها تقليل خوا هد يافت . بد ين ترتيب ديده ميشود كه ضوا بـططراحي A ISC تقليلاندك

 آهدن ضريب اطمينان يك هنان کا هثش سطحى را مجاز مى شها رد .
(1) service loads

اير ضوابط طراحى هططروشهای مها فظهكارانه؛ قديمى را دنبال مىكنـد . ضوابط

 مربوط به اتصالات تيرها و تير ورقها ديده خوا هد شد .

سورا' جان

 6اندل ردوود
 سوراخهاى مستطيلى توسطردوود در مرحع (27) داده شده , مثـالهـاى طراحى توسط
(1) American Association of state Highway and Transportation Officials
(2) American Railway Engineering Association
(3) Bower
(4) Frost
(5) Leffler
(6) Mandel
(7) Brennan
(8) Wasil
(9) Antoni
(11) Chen
(13) Wang
(14) Larson
(15) Shah
(16) Knostman
كوسمان' و كوبر در مرجع (1) ذكر شدهابت.

 مى كند . تير هأى كه سطح مقطع آنها در كل طولثـان تغيير نكرده و تحت نأثير بيجشنيز قرار . نكيرند
تير با مقطع يكنواخت و مستقيـم شكل (YO-Y (Y) را در نظر بكيريد فرضمى شود كه اين تير در صفحه؛ XBCD
 (لنتر هاى مثبت را توسط فا عدهء دوران دست راست ععين خوا هيم كرد) .

شكل (Y0-Y) - تير منشُورى تحت اثر خمش خالص

روابط زير برقرار باثد .
(1) Kussman

$$
\begin{array}{ll}
\Sigma F_{z}=0, & \int_{A} \cdot d A=0 \\
\Sigma M_{x}=0, & M_{x}=\int_{A} y \in d A \\
\Sigma M_{y}=0, & M_{y}=\int_{A} x \cdot d A
\end{array}
$$

$$
(F)-Y)
$$

$$
(g r-Y)
$$

ثكل (Y) - Y - ج جسم آزاد قستى از تير بطول

از شكل (Y) - Y ا لنكر بشر طفشردن تارهاى نوتا
 مـى

هر كاه خمش فتط.در مغحهر y z با شد اكر خمش فتط ذر صفسه؛ yz اتغا ق افتد ، تنش متنا سب y y خوا هـد شد ، لذا خواهيم دا شت :

$$
\begin{equation*}
\theta=k_{1} y \tag{FY-Y}
\end{equation*}
$$

اك از معلا دلات (

$$
\mathrm{k}_{1} \int_{A} y \mathrm{dA}=0
$$

تيرسا با تكيه太ه جانبى/4AV/

$$
\begin{aligned}
& M_{x}=k_{1} \int_{A}^{*} y^{2} d A=k_{1} I_{x} \\
& M_{y}=k_{1} \int_{A} x y d A=k_{1} I_{x y}
\end{aligned}
$$

از رابططه أول تنش را مىتوانأز روابططزير معين كرد .

$$
0=\frac{M_{x} y}{I_{x}} \& \frac{M_{y} y}{I_{x y}}
$$

و زاويه: Φ

$$
\operatorname{tg} \Phi=\frac{M_{x}}{M_{y}}=\frac{I_{x}}{I_{y}}
$$

از نظر عملى بعبد است كهمقطى از تير كه صغحهء تظارنتير نيست بر صفحهالى واقع شود كه با

 هر دو در صنـهـ؛ y z
ستيجهكيرى مهمايناست كهفقطاكر

$$
\theta=k_{2} x
$$

ازطريق بـادلات (Fا-Y) الى

$$
k_{2} \int_{A} \times d A=0
$$

معاد دله فوقالذكر هنين معنى ميدهد كه محور y از مركز ثقل مى كذرد همجنـينخوا هيم دا شـت":
$M_{x}=k_{2} \int_{A} x y d A=k_{2} I_{x y}$
$M_{y}=k_{2} \int_{A} x^{2} d A=k_{2} I_{y}$
$\operatorname{tg} \Phi=\frac{M_{x}}{M_{y}}=\frac{I_{x y}}{I_{y}}$

$$
(\xi Y-Y)
$$

 . خوا هد شد xz

 حاصل از خهش در هر يك از صفطات yz , xz خوا هد بود و يا داريم :

$$
\begin{aligned}
\sigma & =k_{1} y+k_{2} x \\
M_{x} & =k_{1} I_{x}+k_{2} I_{x y} \\
M_{y} & =k_{1} I_{x y}+k_{2} I_{y}
\end{aligned}
$$

الك, (Yol (ध^-Y)

$$
\begin{equation*}
a=\frac{M_{x} I_{y}-M_{y} I_{x y}}{I_{x} I_{y}-I_{x y}^{2}} y+\frac{M_{y} I_{x}-M_{x} I_{x y}}{I_{x} I_{y}-I_{x y}^{2}} x \tag{Y}
\end{equation*}
$$

تيرها با تكيمكاه جانبى/99٪

اين معادله ، همان معادله كلى خمش مى با شد . فرضيات حاكم بر معا دله (Y) - Y) به قرا برزير
 (د و X X
از حد خطى فولاد تجاوز نمىكند .

محورهاي اصلى
محور هاى اصلى محورهاي يى هستند كه دوبدو بيكديكر عمود بوده و ازمركزثقل متطع قطهد

 يكى از محورهاى اصلى بوده و معا دله (Y) - Y) به صورت زير در مى آيد :

$$
\begin{equation*}
=\frac{M_{x}}{I_{x}} y+\frac{M_{y}}{I_{x}} x \tag{YY-Y}
\end{equation*}
$$

 بشر طانكه كليه مقادير

ازجحيت پيدا نمى كند .

شيب محور خنثى

 (YY-Y)
 ديديم داريم :
$\operatorname{tg} \Phi=\frac{M_{x}}{M_{y}}$

$$
(Y r-Y)
$$

از آنجائىكه تنش در راستاىمحور خنثى مقدار صفر بيدا مىكند ، مىتواندر معادلهء
 قرار دا ده و بعا دله دا نسبتـ به
$-\frac{x}{y}=\left(\frac{M_{x} I_{y}-M_{y} I_{x y}}{I_{x} I_{y}-I_{x y}^{2}}\right)\left(\frac{I_{x} I_{y}-I_{x y}^{2}}{M_{y} I_{x}-M_{x} I_{x y}}\right) \quad(v 千-v)$
 My را تقسيم كنيم خوا هيم داشيت:
$\operatorname{tg} \alpha=\frac{\frac{M_{x}}{M_{y}} I_{y}-I_{x y}}{I_{x}-\frac{M_{x}}{M_{y}} I_{x y}}$
اكر مقدار بعادله (Y -
$\operatorname{tg} \alpha=\frac{I_{y} \operatorname{tg} \varphi-I_{x y}}{I_{x}-I_{x y} \operatorname{tg} \Phi}$
 زير درخوا هد T هد .
$\operatorname{tg} a=\frac{I_{y}}{I_{x}} \operatorname{tg} \Phi$
$(r y-v)$

م
 قرار كرفته است (ثكل Y Y Y

شكل (YY - Y) - تير تحت بار دو محورى

$$
\begin{aligned}
& \begin{array}{l}
I_{x}=29210 \mathrm{~cm}^{4} \quad I_{y}=1160 \mathrm{~cm}^{4} \\
\operatorname{tg~} 85^{\circ}=\operatorname{tg} \Phi^{\prime} \\
\\
:(Y y-Y)\left(y^{\prime}\right) \\
\operatorname{tg} \alpha=\frac{I_{y}}{I_{x}} \operatorname{tg} \Phi=\frac{1160}{29210} \operatorname{tg} 85^{\circ}=0.4539 \\
\alpha=24.41^{\circ}\left(24^{\circ}, 24^{\prime}, 50^{\prime \prime}\right)
\end{array} .
\end{aligned}
$$

مثال
هداكثر تنش خعشى را در نبشى $10 \times 100 \times 150 \times$ كه روىدوتكيمكاهـاده قراركرفته
(1) Biaxially loaded beam

شكل (rr-Y)
(الف) هركاه خمش نبشى در هر جهت لازم ممكى باشد .

$$
\begin{aligned}
& I_{x}=552 \mathrm{~cm}^{4} \\
& I_{y}=198 \mathrm{~cm}^{4} \\
& I_{x y}=\left[\begin{array}{c}
15(-2.34+0.5)(7.5-4.8)+(10-1)(5.5-2.34) \\
(-4.8+0.5)
\end{array}\right]=-196.8 \mathrm{~cm}^{4} 4 \\
& M_{x}=\frac{500 \times 3^{2}}{8}=562.5 \mathrm{~m} \mathrm{daN} \\
& M_{y}=0
\end{aligned}
$$

B تش در نتطهء

$$
f_{B}=\frac{562.5[198(15-4.8)+196.8(-2.34+1)]}{552 \times 198-(-196.8)^{2}}=1400 \quad \mathrm{bar}
$$

Cتش در نتطه؛ C

$$
f_{C}=\frac{562.5[198(-4.8)+196.8(-2.34)]}{552 \times 198-(-196.8)^{2}}=-1125 \text { bar (فشار) }
$$

 هعا دله و (qロ -

 میشود (شكل خمش در صفحه؛ قائم :

$$
M_{*}=\frac{35.65(-19 E .8)}{198} 64.56 \mathrm{mdaN}
$$

شكل (
$M_{x}=562.8\left(\frac{100}{64.50}\right)=871.7 \mathrm{~m} . \mathrm{daN}$.
$f_{A_{1}}=f_{B_{1}} \frac{871.7(15-4.8)}{552}=1617$ bar
${ }^{f_{C}}{ }_{1}=\frac{871.7 \times 4.8}{552}=758 \quad$ bar
而
$M_{y}=-\frac{871.7(-196.8)}{552}=310.8 \quad \mathrm{~m} . \mathrm{daN}$.
$\mathrm{f}_{\mathrm{A}_{1}}={ }^{\mathrm{f}} \mathrm{C}_{2}=\frac{310.8 \times 2.34}{198}=367 . \quad$ bar \quad (C)
$f_{B_{2}}=\frac{310.8(2.34-1)}{198}=210 \quad$ bar (, فشا,
$f_{A}=1611-367=1244$ bar \quad مقادير تنش در خمش كلى .
$f_{B}=1611-210=1401 \quad$ bar
$\dot{r}_{C}=-758-367=-1125$ bar

رابطها يكه مقدار تنش را در حالـت كلى براى هر نتطه از قطعه ععين مىكند به صورت زير
$f=\frac{87170 y}{552}+\frac{31080 x}{198}$
درين رابطه اكر f=0 ترار داده شود بعادله محور خنثى بهصورت زير معين خواهد شد . $y=-0.994 x$

تيرها با تكيهکهه جانبى/هوهر

$$
\begin{align*}
& f_{A}=f_{B}=\frac{562.8(15-4.8)}{552}=1040 \tag{كششى}\\
& f_{C}=\frac{562.8(-4.8)}{552}=-489 \quad \text { bar } \tag{فشار}
\end{align*}
$$

 غيرا يمن خوا هد شد .

- - -

 شد .

$$
\theta=\frac{M_{x}}{S_{x}}+\frac{M_{y}}{S_{y}}
$$

$$
(Y A-Y)
$$

دراينرابطه
(1) superim Position method

از طر يق معاد دله (YA - Y) مىتوان براحتى مغدار تتش در تبر را كنترل نمود ولى درهر
 دا شـت .

فرض كنيم كه مغدار حدا كثر تنش مركب ه را به تنش مجاز F F محد ود كنيم ، درين ـ صورت بما دله (YA - بهمورت زير درخوا هد آمد .

$$
\begin{equation*}
\frac{M_{x}}{S_{x}}+\frac{M_{y}}{S_{y}} \leqslant F_{b} \tag{Yq-Y}
\end{equation*}
$$

$$
\begin{equation*}
S_{x} \geqslant \frac{M_{x}}{F_{b}}+\frac{M_{y}}{F_{b}}\left(\frac{S_{x}}{S_{y}}\right) \tag{0}
\end{equation*}
$$

با توجه به اين مطلب كه نسبت
ثى توانمقدار SX . نمود .

جد ول (Y-Y)

FqV/تيرسا با تكيaهاه جا نبـ

روث ديعرى كه وجود دا ردوتوسطكى لرد ، كى لرد در مرجع (29) اراءه شدهاست جاكذارى نسست
 خوا هيم داشت :

$$
\begin{equation*}
\frac{S_{x}}{S_{y}}=\frac{I_{x} \frac{b}{2}}{I_{y} \frac{d}{2}}=\frac{2 b t\left(\frac{d}{2}\right)^{2}\left(\frac{b}{2}\right)}{\left(\frac{d}{2}\right)(2)\left(\frac{1}{12}\right) t b^{3}}=\frac{3 d}{b} \tag{A}
\end{equation*}
$$

كه بهتر است اين مقدار را بدليل صرفنظر نمودن از تأثبر جلن نيمرخ برابر با

در روشهاى هحا سبا تى نوقالذكر حدا كثر تـش مجاز را

 0.75 Fy

 با توجه به اينكهكر جه ضوابـط طراحى AISC درموردطرا وحي اينيكونه قطعات تقريبا "سكوت

$$
\frac{f_{b x}}{F_{b x}}+\frac{f_{b y}}{F_{b y}} \leqslant 1.0
$$

$$
(\lambda T-V)
$$

درين رابطه :

 كـــد
مثال ل - I

 $\left(F_{y}=\right.$ rrrrbar)

را برابر بان/ Y/ مىكيريم .

$$
S_{x} \geqslant \frac{M_{x}}{F_{b}}+\frac{M_{y}}{F_{b}}\left(\frac{S_{x}}{S_{y}}\right)=\frac{40000}{1400}+\frac{15000}{1400} \times 7=104 \mathrm{~cm}^{3}
$$

با توجه به متدار نوقالذكر 16 IPE را كنترل مىكتيم .

$$
\frac{M_{x}}{S_{x}}+\frac{M_{y}}{S_{y}}=\frac{40000}{109}+\frac{15000}{16.7}=1265<1400 \quad 0 K
$$

اكر 14 IPE را كنترل كنيم خوا هيم ديد كه آن نيمرخ ضعيف مىباشد . أكر از روش معادله (1) ا استغاده كنيم خواهيم دا شت .

تيرسا با تكيمكهـ جا نببى/99

$$
\frac{S_{x}}{S_{y}}=3.5 \frac{d}{b}
$$

$$
\frac{S_{x}}{S_{y}}=3.5 \times 2=7
$$

كه نها ينا " به همان جواب فوقالذكر منتهى خوا هد شد .
:
تيرى بدهانهي \&

 مجاز

مقدار مؤلفهماي نيرو در راستای دو محور X X X خواهد شد.

كرد . لذا خوا هيم دا شت جـو

$$
\begin{array}{r}
S_{x} \geqslant \frac{M_{x}}{F_{b}}+\frac{M_{y}}{F_{b}}\left(\frac{S_{x}}{S_{y}}\right)=\frac{428700}{1400}+\frac{247500}{1400} \times 3=836 \quad \mathrm{~cm}^{3} \\
. S_{x}=736 \mathrm{~cm}^{3} \text {, IPB } 22
\end{array}
$$

$$
f_{b x}=\frac{M_{x}}{S_{x}}=\frac{428700}{736}=582.5 \quad \text { bar }
$$

$$
f_{b y}=\frac{M_{y}}{S_{y}}=\frac{247500}{258}=959.3 \text { bar }
$$

دراين حاللت مى دانيمر استفاده مىكنيم و بهاين ترتيب خواهيم دا شت .
$\frac{f_{b x}}{F_{b x}}+\frac{f_{b y}}{F_{b y}}=\frac{582.5}{1400}+\frac{959.3}{1750}=0.416+0.548=0.964<1.0 \quad$ OK.
 مقدار حدا كثر تنش را مىتوان از رابطه (YA - Y) بصورت زير بد ستع Tورد .

$$
\begin{aligned}
& P_{y}=P \cos 30^{\circ}=3300 \times 0.87=2858 \mathrm{daN} \\
& P_{x}=P \sin 30^{\circ}=3300 \times 0.50=1650 \mathrm{daN} \\
& \text { و متدا ر لنـكر خمشى حولدو محور Y, X بصورت زير مها سبه خوا هد شد . } \\
& M_{y}=\frac{P_{x} 1}{4}=\frac{1650 \times 6}{4}=2475 \quad \text { m.daN } \\
& M_{x}=\frac{P_{y} 1}{4}=\frac{2858 \times 6}{4}=4287 \text { m.daN }
\end{aligned}
$$

تيرسا با تكيهگاء جانبى/

$$
\theta=\frac{M_{x}}{S_{x}}+\frac{M_{y}}{S_{y}}=f_{b x}+f_{b y}=582.5+959.3=1542 \quad \text { bar }
$$

 حول'دو محور x و y مى باشد.

- - - ا - مقاطع نا متقارن

 . نمود
در روش زبر كه هثال ديكرى از روش طراحی ارارائه شده توسط كی لرد و كى لرد در مر مرجع

 داشت:

$$
\begin{aligned}
& \bar{y}=\frac{A_{f} y_{1}}{A_{i}+A_{f}} \\
& \text { (الف } \\
& \text { اكردراينرابطه } \quad \gamma=\frac{A_{f}}{A_{i}} \\
& \bar{y}=\frac{1 \gamma y_{1}}{1+\gamma} \\
& \text { (بAT-y) } \\
& \text { لنكر لختى مقطع مركب خواهد شد . } \\
& I=I_{i}+A_{i} \bar{y}^{2}+A_{f}\left(y_{1}-\bar{y}\right)^{2} \\
& \text { (} \mathrm{Af} \boldsymbol{\mu}-\mathrm{Y} \text {) }
\end{aligned}
$$

اكر مقدار

$$
I=I_{i}+A_{i}\left(\frac{y_{1}^{2}}{1+\gamma}\right)
$$

.$(\lambda \Delta-v)$

شكل (Y Y Y Y - - نيهرخ مركب با يك محور تقارن

برای اغلب نيمرخهاى I شكل متدا ول مقدار شعاع زيرا سيون بـين d 0.42 d و 0.38
متغير است و لذا بطور متوسط ميتوانيم رابـطه؛ زبر را بنويسيم :

$$
I_{i}=A_{i} \gamma_{i}^{2}=A_{i}(0.4 d)^{2}
$$

$$
S_{1}=I\left(\frac{1+\gamma}{y_{1}}\right)
$$

با قرار دادن 1ين مقدار در معاد دله (($\wedge \Delta-Y$ نها يتا " خوا هيم داشت :

$$
\begin{equation*}
S_{1}=\frac{I_{i}}{y_{1}}+\frac{I_{i}}{y_{1}}+A_{i} \gamma y_{1} \tag{AY-Y}
\end{equation*}
$$

اكر بـجای

$$
\begin{aligned}
& S_{1}=S_{i}+A_{i}\left[\frac{(0.4 d)^{2} \gamma}{y_{1}}+\gamma y_{1}\right] \\
& \text { : خوا هد (AY }-V \text {) }
\end{aligned}
$$

و جون

$$
S_{1}=S_{i}+A_{f}\left(\frac{0.16 d^{2}}{\frac{d}{2}}\right)=S_{i}+A_{f} d(0.32+0.5)=S_{i}+0.82 A_{f} d
$$

از طر يق معلادلهء فوق مقدار Af

$$
\begin{equation*}
A_{f}=1.22\left(\frac{S_{1}-S_{i}}{d}\right) \tag{90-v}
\end{equation*}
$$

 نيمرخ I شكل باشد از را بطهء زير استغاده شود .

$$
\begin{equation*}
A_{f} \approx 1.2\left(\frac{S_{1}-S_{i}}{d}\right) \tag{91-Y}
\end{equation*}
$$

در موا ردىكهنيمرخ اصلى نيمرخ I شكلنمىیبا شد مىتوان با حد س شعاع زبرا سيون بار ديكر از
 نـود .
مثال

مطلوبست تعيين سطح مقطع ورق تقويت در بال فثارى نيمرخ IPE 36 هركاه اين تير

 خوا هد بود . مقدار اساس مقطع 1 S لازم جهـت مثابله با تنش فشارى (محلى كه ورق تقويت بهار

> خوا هد رفت) به صورت زبير محا سبه خوا هد كریيد .

$$
\mathrm{S}_{1}=\frac{M}{\mathrm{~F}_{b}}=\frac{1260000}{1000}=1200 \mathrm{~cm}^{3}
$$

$$
\text { لاز } A_{f} \approx 1.2\left(\frac{1260-904}{36}\right)=11.9 \mathrm{~cm}^{2}
$$

مى توانورق تنوويت را انتخط ب كرده و سجّس با كنترل تتششهاى فشارى و كثششى مقطع نهها بیى را

$$
\begin{equation*}
S_{2}=\frac{1}{\frac{d}{2}+\bar{y}} \approx \frac{I}{y_{1}+\bar{y}}=\frac{S_{1}}{1+2} \tag{9r-Y}
\end{equation*}
$$

$\mathrm{S}_{2}=\frac{1260000}{1400}=900 \mathrm{~cm}^{3}$
با در دست بودن مقدار لازم $\gamma=\frac{A f}{A_{j}}=\frac{11.9}{12.7}=0.164, S_{2}$ مقدار لازم S_{1} خوا هدشد

$$
\mathrm{S}_{1}=900(1+2 \times 0.164)=1195 \mathrm{~cm}^{3}
$$

$$
\begin{aligned}
& A_{f}=12 \times 1=12 \quad \mathrm{~cm}^{2} \\
& \bar{y}=\frac{12(18+0.5)}{72.7+12}=2.62 \mathrm{~cm} \\
& I=16270+72.7(2.62)^{2}+12(18.5-2.62)^{2}=19795 \mathrm{~cm}^{4}
\end{aligned}
$$

تيرها با تكيهكاه جانبى /
با $(ك) f=\frac{1260000(18+2.62)}{19795}=1313<1400$ OK.
 الست بجاى

$$
\begin{aligned}
A_{f} & =14 \times 1=14 \quad \mathrm{~cm}^{2} \\
\bar{y} & =\frac{14(18+0.5)}{72.7+14}=2.99 \quad \mathrm{~cm} \\
I & =16270+72.7(2.99)^{2}+14(18.5-2.99)^{2}=20288 \quad \mathrm{~cm}^{4}
\end{aligned}
$$

$(\mathrm{s}, \mathrm{L}) \mathrm{f}=\frac{1260000(19-2.99)}{202 \mathrm{~B} 3}=995<1000$
(كشیى) $f=\frac{1260000(18+2.99)}{20288}=1303<1400$ OK.

مسائل

- I - Y

 استظا ده شود .
- Y-Y نتايج حاصله. - Y - Y

 سهار شدها است - Y - Y زنده؛ تير به - - - Y

 جانبى است.

شكل (YY-Y)
.

 صورت نيز مقدار حداكثر بار وارده را را معين كتيد .

$\Delta a V /$ تيرها با تكيهكه جا نبـ

واز روش طرح ارتجا عى استغاده كردد .

- - - Y

نيمرخ تشر از نيمرخ Z با مشخصا ت شكل (Y (Y Y) تشكيل شدهبا شد مطلوبست (الف) تعيين
 بكيريد) (ب) هوكاه براى خمش اين تير در هيج جهت ممانعتى وجود ندا شته با شد مطلوبـت
 اصلى اين نيمرخ را محا سبه كنيم و لنكر خمشى حداكثر زا به مو‘لنههاى خود روى اين دو محور
 متايس؛؛ نتايج حاصل با نتايج بد بـت Tهدهاز بند (ب) بار كستردهدر صغسهوY عمل كرده و

$$
\text { } \mid Y A-Y \text { شكل } \mid
$$

نوع فولاد نيهرخ از نوع نر هه است .

- ا 10 -

(Pq)

(Y0-Y شكل)

(r) - Y شكل)
(11 - 1 - 1 -

(rr - v شكل)

اكر بال افقى در متطع ميانى در برابر خمشن افقى مهار شده ها شد وا وايى مهار بشككل تكيهاها هى

 شيب ستف

 با با $M_{y} \approx 2 M_{f}$ 0.6 Fy بكيريد . - $10-Y$

 , ال (بار)

$M_{X}=1000(m . d a N)$ سطع

(بعدها هوا هيم ديد كه يكاپنين متطعى هركا ه كمانش جانبى بال فثارى موردنظربا شد
ميتواند بكار برده شود) .

1. Joint Committee of Welding Research Council and the American Society of Civil Engineers, Commentary on Plastic Design in Steel, 2nd ed., ASCE Manual and Reports on Practice No. 41, New York. 1971.
2. Richard N. Wright and William H. Walker, "Vibration and Deflection of Steel Bridges," Engineering Journal, AISC, 9, 1 (January, 1972), 20-31.
3. Thomas M. Murray, "Design to Prevent Floor Vibrations," Engineering Journal, AISC, 12, 3 (Third Quarter, 1975), 82-87.
4. Frank I. Marine, "'Podding of Two-Way Roof Systems," Engineering Jourwal, AISC, 3, 3 (July 1966), 93-100.
5. Lewis B. Burgett, "Fast Check for Poncing," Engineering Journal, AISC, 10, 1 (First Quarter, 1973), 26-28.
6. James China, "Failure of Simply-Supported Fat Roofs by Podding of Rain," Engineering Joumel, AISC, 2, 2 (April 1965), 38-41.
7. A. E. Salama and M. L. Moody, "Analysis of Beans and Plates for Ponging Loads," Journal of Structural Division, ASCE, 93, ST ı (February 1967), 109-126
8. D. A. Sawyer, "Pounding of Rainwater on Flexible Roof Systems," Journal of Structural Division, ASCE, 93, ST1 (February 1967), 122-147.
9. D. A. Sawyer, "Roof-Structure Roof-Drainage Interaction," Journal of Structural Division, ASCE, 94, ST1 (January 1968), 175-198.
10. James Chin. Abdulwahab H. Mansouri, and Staley F. Adams, "Pending of Liquids on Flat Roofs," Journal of Structural Division, ASCE, 95, ST5 (May 1969), 797-8(17.
11. R. Richard Avent and William G. Stewart, "Rainwater Podding on BeamGirder Roof Systems," Journal of Structural Division, ASCE, 101, ST9 (September 1975), 1913-1927.
12. R. Richard Event. "Deflection and Pending of Steel Joists," Journal of Structural Division, AṢCE, 102, ST7 (July 1976), 1399-1.10.
13. J. D. Graham. A. N. Sherbourne. R. N. Khabbaz, and C. D. Jensen, Welded Interior Beam-10-Coltum Connections. New York: American Institute of Stet Construction, Inc., 1959.
14. I. Lyse and 1I. J. Godfrey, "Imestigation of Web Buckling in Steel Beams," Transactions. ASCI: 106)(1935), 675-706.
15. 13. G. Jotustom and (; G. Kubo, "Web Crippling at Seat Angle Supports," Frizz Lalmoratury Report No. 192A2, I.chigh University, Bethlehem, Pa., $19+1$.
1. John EE. Bower. "Elastic Stresses. Around Holes in Wide-Flange Beams," Journal of Sirncural Division, ASCE, 92, ST2 (April 1966), 85-101.
2. John E. Bower. "Experimental Stresses in Wide-Flange Beams with Holes," Journal of Structural Division, ASCE, 92. ST5 (October 1966), 167-186.
I8. Ronald W. Frost and Robert E Lefter, "Fatigue Tests of Beams with Rectangular Web Holes," Journal of Structural Division, ASCE, 97, ST2
(18thruary 1971). 5019.527.
3. Jabas A. Mandet, Paul J. Bremban, Benjamin A. Wasil, and Charles M. Antoni. "Stress Distribution in Castellated Beams," Journal of Siructural Division, ASC1:, 97, S17 (July 1971), 1947-1967.
4. John E. Bower, Chaiman, "Suggested Design Guides for Beams with Web Holes," Sournal of Struitural Division, ASCE, 97. ST1! (November 1971), 2707-2728.
5. Peter B. Cooper and Rubert R. Snell, "Tests on Beams with Reinforced Web Openings," Journal of Structural Division, ASCE, 98, ST3 (March 1972), 611-632.
6. Peter W. Chan and Richard G. Redwood, "Stresses in Beams with Circular Eccentric Web Holes," Journal of Structural Division, ASCE, 100, ST1 (January 1974), 231-248.
7. Richard (;. Redwood and reter W. Chan, "Design Aides for Beams with (ircular Eccentric Web Holes," Jourrat of Siructural Division, ASCE, 100, ST2 (trebruary 1974). 297-303.
8. Tsong-Miin Wang, Robert R. Snell, and Peter B. Cooper, "Strength of Beams with Eceentric Reinforced Holes," Joumal of Structural Division, ASCE, 101, ST9 (Septembet 1975), 1783-1800.
9. Marvin A. Larson and Kirit N. Shah, "Plestic Design of Web Openings in
 11131-114.4.

 103. S'J (September 147?). 1731-17.38.
10. R. G. Reduond. "Tahes for Plantic Devin! of Beam with Rectangutar

 Web Openinge." Engincering Jomernal, AlSC. 13. 2 (Scond Ouarter 1976), 48-56.
11. E. H. Gaylord, Jr., and C. N. Giavord. Iesign of Steed Simethres. New York: McGraw-Hill Book Company, Inc. 19.57. (hiap. S.

انواع متداول نيمرخهاى نوردشده

INP نيمرخ I باريك يا نرمال يرونيل

 از ارتغاع الا 40 يا فت نمى شدها است

 نيز نشان داده مى شود .
\bar{x}

INP نيمرخ

از اين نيهرخ در تطعات خمشى بـه شكل تبر فرعى و تير اصلى استفاده هكرده ، ، در نعل

شده و در اعضاء خربا نيز از آن استغاده ه مى شود .
عيبـا ين نيمرخ اهن الست كه سطع دا خلى بالهـا

نيهرخ IPE

IPE نيهرغ
 اهن نيمرخ با يكديكر موازى است الا

$$
\text { مى هـند . مثلا " IPE } 14
$$

تندريج جاى نيمرخ I را در كليهء كشورهاى ارويا سيى مىكيرد .
 ثى توان موارد زير را نام برد :
 معمولا " عدد كا ملى است
r - موازى بودن سطوح خارجى و داخلى بالهاي اين نيهرخ يكى ديكر از مزاياى Tن از نظر اتصلات است .
 . ا

10 اللى 30 در كارخانه ذوب آهن اصغهان توليد مىشود .

نيمرخ با ل بهن :

 هروفيل هاى بال ههن به سه نوع اراءه مى شوند

1

 . 130 cm L

$\mid y$
IPB_{1}

IPB

IPB
ارتغاع و عرض بال اين بروفيل تا نمره 30با يكديكر هراهر است واز نمره30 به بالا

$$
\text { برابر با } 34 \text { و عرض بالى برابر با } 30 \text { است . }
$$

هعمولا " فقطاين نوع بال تهن در بازار ايران يا فت مى شدها است .
IPB

$1 y$
IPbv
به بالا عرض بال در حدود 30 cm با تى مانده و فقطار تفاع نيمرخ افزا يش مى يا بد . بـه عنوان

نيمرخ دارای يك محور تقارن بوده و سطوح داخلى بالهاى آن داراى شيب است كه اين شيب

براى هروفيل هاى t نمرهء 30 هـاوى 8 درصد و براى بروفيل بزركتر از نمرهة 30 برابر 5 \% است

$* 1$
نا ودا نـى

 هعواره به صورت زورج به كار رود .
 با بالهـاى مساوى و با بالهاي نا نامساوى تهيهي مى شود . علامت اختصارى نبشى بهمورت Lايا با'مى الماشد ، براى نما يش اين نيمرخ به صورتهاى زير عمل مى شود :

غهيوه/

الف) در مورد نبشي با بالمساوى بعد از علامت اختمارى اندازهء بال بر بسسب ميليمتر

 L اندازه؛بال كوحكتر وسهس ضخا مت بال برحسب ميليمترنوشتهمى شود . مثلا ' $120 \times 80 \times 12$ يعنى نبشى با باللها يى بـه طول 120 و 80 ميليمتر و ضخا مت بالى برابر با 12 ميليمتر .

 و در در و بـنجرهسلزى استظاده مى شود .

نششى

انواع نبشي با بالها ى مساوى نراوانتر از نبشیى با بال نا مساوى است .

 مىكردد ، علامت اختصا رى ابی نبشى

نیهرخ سهرى

الـن نيهرخ كه شكل متطع آن به صورت T است و داراى يك محور تمألرن است در دو نوع

از نمرهء 20ميليمتر تا 140 mm 140 خته مى شود . براي نشان دادن آنها بعدار علامت نمره

 بال برابر با 155 ميليمتر

سیرى
از نصف كردن هروفيلهاى I و IPE و بال ههن نبز سهرى تهيه مى شود .

 از نوع فولاد نر مه است • نوع A II فولاد ممتازترى است ولذا داراى متاومت نها بـى در

3000 bar كششى برابر با 5000 bar است ودارأى حد جاریشدني برابربا

AIIIدلمـرد

. نولاد ميل كرد است نمايش مىدهمند

- جدا ول نيمرخها ى سا ختمانى ري

A
a

وزن يك متر طول نيیرخ G

لنكر لختى متطع نسبت به هحور
لنكر لنختى متطع نســت بـه هحور
ل لر يب ثابـت پيهش

$$
\text { C C }{ }_{W}
$$

X-x لنكر سطع متطع نسبت به محور خنتثى Q

S
ض t
t t_{f}

II
$S_{x}=\frac{1}{C_{x}} \quad x-x$ الــ S_{x}

$S_{y}=\frac{l_{y}}{C_{y}} \quad y-y$ mand S_{y}

* علامت ستاره در جدا ول مربوط بـه نيمرخهالى غيرا ستا ندار رد است .

	$ง^{3}{ }_{E}$	
	$\cdots{ }^{\text {F }}$	
$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 3 \\ & 1 \\ & 1 \\ & 3 \\ & 3 \\ & 5 \\ & 6 \\ & 6 \end{aligned}$	\wedge^{2} E	
	$\cdots{ }^{2} m_{E}$	
	$\rightarrow \pm$	
	- ${ }^{\text {m }}$	
	$\sim^{\times} \mathrm{E}$	
	$\sim^{\times m^{m}}$	N~N
	$\sim \sim_{\text {* }}^{\text {E }}$	
	$=N_{E}^{E}$	(1)
	< $\sim_{\text {N }}$	呙
	0 鸟	
1	$\stackrel{\text { E }}{\text { E }}$	
	$5^{-1} \mathrm{E}$	
	\pm - E	
	$\sim^{3} \mathrm{E}$	
	$\xrightarrow[\sim]{\text { c }}$	
	- E	
	W	

－0009b82	2－99\％	99^{\bullet}	80ε	L8¢	09／t	$\varepsilon \cdot \downarrow 2$	020ε	08026	$20 \cdot 2$	9St	221	DIS	b2	$0 \cdot 61$	$0 \cdot 2$	022	009	009	
－000688t	－ 8 ¢t	90°	¢¢ 2	8932	$068 t$	$\varepsilon \cdot z 2$		02tL9	$88 \cdot$	det	901	896	¢2	2＇く1	1＇t	012	oss	oss	
－0006ヤZt	$00 \cdot 68$	IE．b	ti2	2012	00tt	＋ 02	0861	0028t		9 It	L．06	92t	12	0.91	2－0t	002	009	009	
000162	08．$\varepsilon 9$	टt ${ }^{\circ}$	$9<1$	9291	678	5.81	009I	$\bigcirc \downarrow \angle \varepsilon \varepsilon$	19.1	9.86	$9 \cdot \angle L$	618	12	$9 \cdot$ ¢	${ }^{-6}$	061	ost	0st	
－00006t	08．9t	$56 \cdot \varepsilon$	9tI	$81 \varepsilon t$	t99	¢．9t	09II	0ع1є		¢．\square_{8}	8．37	เย	12	$5 \cdot \varepsilon \tau$	9.8	091	00t	00t	
－009¢18	$02 \cdot 98$	$6 C^{\circ} \mathrm{E}$	£ <1	EbOI	ota	$0 \cdot \mathrm{gI}$	506	$0<291$	$58 \cdot \mathrm{~T}$	L＇z	I $\stackrel{L S}{ }$	662	81	C＇z1	0.8	$0<1$	098	098	
－001661	00＇52	$59 \cdot \varepsilon$	9•86	882	204	L＇$\varepsilon 1$	£1／	OLLIt	sz＇t	$9 \cdot 29$	［＇6t	$1 \angle 2$	81	g＇tl	$5 \cdot L$	091	0¢¢	O\＆¢	
－006S2I	Lt－61	¢ \％ε	9.08	009	เI¢	¢•2t	Ls	99¢8	9t＇t	8．ع	2＊2t	6 b 2	¢	Cor	I＇L	OSI	008	00ε	
－08502	E6．$\dagger t$	$20 \cdot \varepsilon$	$2 \cdot 29$	02t	6 62	2＇II	62 t	$06 / 5$	70.1	6．5t	I＇98	022	st	$2 \cdot 01$	$9 \cdot 3$	¢¢T	$0 \angle 2$	$0 \angle 2$	＋ 2 －
$068 / \varepsilon$	09＇It	$69^{\circ} 2$	£ $\llcorner\stackrel{ }{ }$	¢82	¢8I	$26^{6} 6$	Ъてع	268ε	126°	1＇68	$\iota^{\circ} 0 \varepsilon$	061	si	8.6	－9	021	062	0tz	
－04922	98.8	$80^{\circ} 2$	£ 1ε	502	Ebt	II＇6	252	2LLz	$868{ }^{\circ} 0$	－$\varepsilon \varepsilon$	2＇92	BLI	21	$2 \cdot 6$	6.5	0it	022	022	，
－0662t	$9{ }^{6} \cdot 9$	$22 \cdot 2$	¢ ${ }^{\text {¢ }} 82$	2 tt	OIt	$92 \cdot 8$	tธ1	£ $\dagger 61$	$891^{\circ} 0$	$5 \cdot 82$	－ 22	6st	21	5.8	$9 \cdot 9$	001	002	002	
$0 ¢+L$	06 ＇\quad	$50 \cdot 2$	2＇23	tot	$2 \cdot \varepsilon 8$	$2 b^{-} /$	9 tI	＜IET	869°	6• $\varepsilon 2$	8.81	97 I	6	0.8	$\varepsilon \cdot 9$	16	081	081	．
－0968	$\varepsilon \varsigma^{\prime} \varepsilon$	t8 1	1．9t	ع 89	6．19	RS．9	60t	698	2290	［．02	8．si	L 21	6	${ }^{\circ} \mathrm{L}$	$0 \cdot 9$	28	091	091	－
－086t	bs 2	99.1	ع 21	6＊カ	2＇t	$t<\cdot s$	E．LL	It¢	095．0	－9t	6．21	2II	\angle	6.9	L＇b	εL	ObI	ObI	
068	U＇I	$55^{\circ} \mathrm{I}$	59.8	－くて	－ $0 ¢$	$06^{\circ} \mathrm{b}$	－¢	818	DL $\square^{\circ} 0$	て＇£I	－0¢	$\varepsilon 6$	\angle	$\varepsilon \cdot 9$	$\square^{\circ} \mathrm{b}$	¢9	221	021	
－${ }^{\text {cse }}$	OT ${ }^{\text {I }}$	D2＇I	61＇9	6．9I	C．61	$40^{\circ} \mathrm{b}$	$z^{\prime} \downarrow \varepsilon$	t＜t	10t．0	ع．0t	I＇8	¢ 2	\angle	L＇s	$\mathrm{I}^{\circ} \mathrm{b}$	59	001	001	－
8II	00°	50＇I	$69^{\circ} \mathrm{\varepsilon}$	66．8	9．It	b2＇ε	0.02	108	$628^{\circ} 0$	99\％$/$	$0 \cdot 9$	09	5	\％$¢$	$8 . \varepsilon$	95	08	08	
$9^{\text {w }}$	$t^{W 0}$	แ	$\varepsilon^{\text {w }}$	$\square^{\text {w }}$	$\varepsilon^{\text {T }}$		$\varepsilon^{\text {wJ }}$	$0^{\text {w }}$	W／$z^{\text {T }}$	$z^{\text {¹ }}$	$6 \times$		แแ	шш	wıu	แแ	шш		
${ }^{3}$	r	κ_{s}	${ }^{\text {s }}$ S	κ_{1}	0	${ }^{4}$	${ }^{\text {x }}$	${ }^{\times}{ }_{1}$				I_{4}	4	${ }_{5}$	${ }^{\prime \prime}$	${ }^{4} \mathrm{q}$	P		
												\cdots							

	$\lrcorner^{x}{ }^{\text {® }}$	
	$\sim{ }^{\circ}{ }_{\text {E }}$	
113111$\frac{3}{3}$444	¢ ${ }^{\text {¢ }}$	$\underset{\sim}{\sim}$
	$\omega^{\text {m }}{ }_{\text {m }}$	
	$\therefore{ }^{\text {J }}$	
	$0^{\text {m }}$	号灾离
	$\left\llcorner^{\times} \mathrm{E}\right.$	
	\cdots	
	$\sim^{\times}{ }^{\text {E }}$	
	N	
\bar{I}	$\stackrel{\text { E }}{E}$	品式
	－E	
	$+^{4}$ E	
	$د^{3}$ E	
	\square^{4} E	
	－E	\＆妇鲄
2		

	C
	－
	\cdots
	${ }^{3}{ }^{-3}$
	\cdots
	者
	灵 ${ }^{\text {a }}$
	\approx
 	\cong_{\sim}^{0}
	$\stackrel{n}{\#} \times$
	${\stackrel{\Im}{3} \times{ }^{\text {n }}}$
	$\bigcirc{ }^{\text {¢ }}$
	$\overbrace{\omega} 0$
	$3_{8} \times$
	$3{ }^{3}$
	刍。c
	$\cong_{0} x^{n}$

$\begin{aligned} & 1 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$		
	$\stackrel{1}{>}$	
	\therefore ¢	
	$-N_{N}^{m} \tilde{m}^{m}$	
	$3 \quad-{ }^{2}{ }_{5}^{5}$	
	N E	
$\begin{array}{ll} 1 & \lambda \\ 1 & \grave{x} \\ \vdots \\ \vdots \\ \vdots \end{array}$	$\stackrel{\text { L }}{\text { L }}$ L	
	$\nabla_{x}^{\infty} \sigma_{E}$	
	\＆E	
	${\underset{E}{E}}_{E}$	
	$\leqslant \quad \sim_{\text {E }}$	
	\bigcirc	
\bar{J}	$\therefore E$	
	－E	
	$\checkmark \quad \underset{E}{E}$	芯m大芯
	－E	

	気	
	$\stackrel{\square}{3}$	L
	3 3	
	$\cdots \square$	
 	n_{\sim} >	
clollll		c
	${ }_{n}^{n}$	
	§	
	$\xrightarrow{3}$	
	$\bigcirc 3{ }^{3} \times$	
	9. \sim^{\sim}	
	$\hat{3}_{\omega} N^{-}<$	
	$3 \mathrm{~N}^{3}$	
	$\bigcirc \square$	
	$\hat{3}_{\omega} \sim \nmid<-$	
	$\ldots{ }^{3}$	

	克	
	䃀 \rightarrow	\sim
	灵 7	$\underline{1}$
	ヨ－	
 	® п	
W	$\overbrace{N}>$	
	$\frac{i_{n}}{3}$	
 	${\underset{N}{N}}^{\Xi}$	
 	3	
	$3 x^{-11}$	＋
 	$\begin{aligned} & x_{n}^{n} / x_{x}^{-} \\ & w_{x}^{n} / x_{x} \end{aligned}$	\％
盛	$)_{3}{ }^{\text {x }}$	
百 	$\cdots{ }^{\text {n }}$	
	$\mathrm{SaNT}^{\text {N }} \mathrm{N}$	
		\％
 	介 ${ }^{\text {N }}$	5
	\bigcirc	1
	〇嵒	\％
 		\cdots
会品 $\dot{\sim}$		

9 6 6 5 5 5 5		$\underline{5}$
$\begin{array}{lll} \text { No } \\ \text { © } \\ \hline \end{array}$	灵	
	$\cdots+$	
	31	
	灵	
	\cdots	
	$\bigcap_{n}>$	
苟		
	$\begin{aligned} & \underset{\sim}{n} \\ & \hline \end{aligned}$	
	30	5$!$1166
～		
	$3 \mathrm{~F}^{\mathrm{N}}$	\｛
志 㰤	$\exists_{6} \mathrm{O}_{1 / 2}$	
	¢ ${ }^{\circ}$	
	$\bigcirc \sim^{\circ}$	
	${ }^{n_{\omega}-<k^{-}}$	
	§ く	

	د-1																				$\mathrm{cm}^{\text {J }}$
	m	ח	$\begin{gathered} t_{w} \\ m_{m i} \end{gathered}$	$\left\|\begin{array}{c} t_{f} \\ m m \end{array}\right\|$	$\begin{aligned} & r_{1} \\ & m m \end{aligned}$	$\begin{array}{\|c} \mathrm{r}_{2} \\ \mathrm{~mm} \end{array}$	$\begin{gathered} r_{3} \\ \mathrm{~mm} \end{gathered}$					${ }^{\text {cm }}$	$\mathrm{c}_{\mathrm{c}}^{\mathrm{cm}}$		$\int_{c^{3}}^{x^{3}}$	${ }_{\text {cm }}^{\text {cm }}$	C_{4}	$\begin{aligned} & y \\ & I_{y} \\ & \mathrm{~cm}^{4} \end{aligned}$		${ }_{\text {r }}^{5}$	
	20	20	3	3	3	1.5	1	0.88	1.12	0.08	85.2	0.58	1.42	0.38	0.27	0.58	1.00	0.20	0.20	0.42	0.037
7	25*	25	3	3	3	2	1	1.11	1.41	0.10	79.0	0.735	1.765	0.82	0.46	0.76	1.25	0.41	0.	0.54	0.059
23 - 0^{2}	25	25	3.5	3.5	3.5	2	1	1.29	1.64	0.10	72.9	0.73	1.77	0.87	0.45	0.73	1.2	0.43	0.3	0.51	0.074
$.2-10$	30	30	4	4	4	2	1	1.77	2.26	0.12	64.5	0.85	2.15	1.72	0.80	0.87	1.50	0.87	0.5	0.62	0.134
	35	35	4.5	4.5	4.5	2.5	1	2.33	2.97	0.14	57.1	0.99	2.51	3.10	1.23	1.04	1.75	1.57	0.90	0.73	0.223
$\therefore-\frac{1}{1}$	40	40	5	5	5	2.5	1	2.96	3.77	0.16	51.7	1.12	2.88	5.28	1.81	1.18	2.00	2.56	1.29	0.83	0.350
	45	45	b.5	5.5	b.5	3.	1.5	3.67	4.67	0.18	46.6	1.26	3.24	8.13	2.51	1.32	2:25	4.01	1.78	0.93	0.523
نيمبر	50	50	6	6	6	3	1.5	4.44	5.66	0.20	c3.0	1.39	3.61	12.1	${ }^{3.36}$	1.46	2.5	6.06	2.42	1.03	0.757
	60	60	1	7	7	3.5	2	6.23	7.94	0.24	36.6	1.66	4.34	23.8	5.43	1.7	3.0	12.2	4.02	1.24	1.45
	70	70	${ }^{\text {y }}$	¢	${ }^{8}$	4	2	8.32	10.6	${ }^{0.28}$	32.2	1.94	5.06	44.5	8.79	2.05	3.5	22.1	6.32	1.44	2.52
	80	80	y	9	9	4.5	2	10.7	13.6	0.32	28.7	2.22	5.78	73.7	$12 . \varepsilon$	2.33	4.0	37.0	9.25	1.65	4.11
	100	100	11	11	11	5.5	3	16.4	20.5	0.40	23.4	2.74	7.26	179	24.6	2.9	5.0	88.3	17.7	2.05	${ }^{9.38}$
	120	120	13	13	13	6.5	3	23.2	29.6	0.48	19.8	3.28	8.72	366	42.0	3.51	6.0	178	29.7	2.45	18.6

年白	寻 \quad－
	\％
	\cdots
	$\stackrel{n}{3} \times$
	$\left.\theta_{w}^{n} x_{n}^{n}\right\|_{x} ^{n}$
	$\stackrel{0}{3}$
	§ antor
	搂 1，
	$\boldsymbol{\sim} \boldsymbol{\square}$
	$\mathrm{P}_{n}>$
	$\stackrel{\square}{\text { a }} \times$
	${ }_{3} 0^{-\infty}$

d mm	G kg	A cm^{2}	$\begin{gathered} I_{x} \\ \mathrm{cmi}^{4} \end{gathered}$	$s_{x}=\frac{1}{c m^{3}}{ }^{\frac{d}{2}}$	$\begin{gathered} I_{p} \\ c m^{4} \end{gathered}$	$\begin{gathered} \frac{1 p}{\frac{d}{2}} \\ \mathrm{~cm}^{3} \end{gathered}$
B5	44.54	56.74	256.23	60.291	512.47	120.583
BB	47.74	60.82	294.37	66.903	588.74	133.80
90	49.94	63.61	322.06	71.569	644.12	143.13
95	55.64	70.88	399.81	84.172	799.63	168.34
100	61.65	78.54	490.87	98.175	931.74	196.35
105	67.97	86.59	596.66	113.650	1193.30	227.30
110	74.60	95.03	718.63	130.671	1437.3	261.34
115	81.54	103.87	858.54	149.312	1717.0	298.62
120	88.78	113.09	1017.8	169.646	2035.7	339.29
125	96.33	122.72	1198.4	191.748	2396.81	383.49
130	104.19	132.73	1401.9	215.690	2803.9	431.38
135	112.36	143.14	1630.4	241.547	3260.9	483.09
140	120.84	153.93	1885.7	269.392	3771.4	538.78
145	129.62	165.13	2169.9	299.298	4339.8	598.59
150	138.72	176.71	2485.0	331.340	4970.0	662.68
155	148.12	188.69	2833.3	365.590	5666.6	731.18
160	157.83	201.06	3217.0	402.125	€434.0	804.25
165*	167.85	213.82	3638.3	441.012	7276.6	882.02
170	178.18	226.98	4099.8	482.332	8199.6	964.66
180	199.76	254.47	5153.0	. 572.555	10306	1145.10
190	222.57	283.53	6397.1	673.380	12794	1346.76
195	234.43	298.64	7097.5	727.953	14195	1455.90
200	246.61	314.16	7854.0	785.398	15708	1570.80
210	271.89	346.36	9546.5	909.195	19093	1818.39
220	298.40	380.13	11499.0	1045.364	22998	2090.72

	H	s	t	${ }^{*}$	A_{b}		G	${ }^{1} \times$	${ }^{5} \times$	$l_{y b}$	${ }_{5} \times 1$	u_{x}	5×0
	mm	mm	mm	cm^{3}	cm^{2}	$\left.\begin{aligned} & \mathrm{kg} / \mathrm{f} \\ & \mathrm{I} / 5 \mathrm{~h} \end{aligned} \right\rvert\,$	kg/m	cm ${ }^{4}$	cm^{3}	cm^{4}	cm^{3}	cm^{3}	cm^{3}
100	150	6	10	29.0	23.0	3.37	20.4	1140	152	1090	145	86.3	79.0
120	180	6.5	11	37.9	30.1	5.30	26.7	2170	241	2030	231	137	125
140	210	7	12	47.9	36.1	1.83	33.7	3770	359	3610	344	202	185
160	240	8	13	66.7	47.9	11.3	42.6	E230	519	5950	496	292	266
180	270	4. 5	14	73.6	57.7	15.3	51.2	9540	706	9120	676	39t	362
200	300	4	15	B7. 1	69.1	20.4	61.3	14150	943	135:5	903	528	483
220	330	9.5	16	101	80.6	26.1	71.5	20050	1220	19:00	1160	672	621
240	360	10	17	118	94.0	33.1	83.2	27860	1550	26760 c	1480	B63	79.
260	360	10	17.5	131	105	39.9	93.0	36780	1890	35320	1810	1050	963
280	420	10.5	18	146	116	47.8	103	47430	2260	45514	2170	1250	1150
300	450	11	19	166	133	58.2	117	E13S6	2750	59420	2640	1850	1400
320	480	11.5	20.5	179	143	67.3	127	75430	316L,	72790	3030	1760	1610
340	510	12	21.5	191	151	76.3	134	90430	355L	36500	3390	1970	1800
360	540	12.5	22.5	204	159	85.9	142	106700	3550	101900	3770	2200	2000
400	600	13.5	24	225	171	105	155	1436000°	4770	135700	4520	2670	2400
450	675	14	26	250	167	132	171	198400	5680	167600	5560	3310	2950
500	750	14.5	28	275	203	161	287	266700	7110	251100	6710	4010	3560
550	825	15	29	295	213	190	199	341100	: 2274	$32030^{\circ} \mathrm{C}$	7760	4680	4120
600	900	15.5	30	317	224	223	212	428000	95:0	400100	9890	5410	4710
650	975	16	31	338	234	$258{ }^{*}$	225	528700	$1 \mathrm{CB5} 0$	492100	10090	6200	5350
700	1050	17	32	366	247	300	241	649200	12350	599600	11420	7100	6060
800	1200	17.5	33	404:	264	379	262	911200	15100	8je600	13940	8810	7410
900	1350	18.5	35	454	286	460	291	1262000	1870́0	1150460	17040	10940	9060
1000	1500	19	36	495	305	501	314	1657000	22100	1499000	19990	13020	10650

STEEL STRUCTURES

Design and Behavior

Charles G. Salmon

John E. Johnson

Volume One

Translated by

F. IRANI

Ferdowsi University Press

[^0]: * هركاه عددى لاتين در داخل دو يرانتز ذكر كردد غرض ارجاع به بكى از منايع مولنين
 كتاب است .

[^1]: (1) allowable bearing stress

