

فلسفئ فيزيك

تأليف
پيوفسور ماكس بلانكك

ترجمه
دكتر سيدمحمد عترتى خسروشاهـي

نشر بقعه
تاببستان |rA|

فلسفهٔ فيزيك

سيد محمد عترتى خسروشاهى

$$
\begin{aligned}
& \text { ويراسبِّاران: سبد ضياءالدين اعلىزاده ـ الهه محبى } \\
& \text { طراح جلد: حميدرضا رحمانى }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ليتوگرافى و چابٍ: دلارنگ } \\
& \text { جاب اول: } \\
& \text { شابك: شя }
\end{aligned}
$$

Email: nashreboghe@yahoo.com

فهرست مطالب

11 فيزيك و فلسفهُ جهان .عليت در طبيعت .
$9 V$ انديشههاى علمى: ريشهها و اثرات آنها .
91 علم و ايمان. .

 به دو شكل مطرح مى شود:
「 - يادگيرى و ارضضاى نياز به دانستن

 بر طبيعت، ارادهُ انسان، آزادى، عليت و يا عـدم وجـودو آن ... مـىتوانـد مطرح باشد.
در.طول تاريخ علم، سؤالاتى از اين قبيل براي بسيارى امميت خاصى
 (فيزيكذانان، شيمى دانان، زيست شناسان ...) قرار داشتهاند.
^ / فلسفهُ فيزيك
در اين كتاب، پلانك به عـنوان يك فـيزيكدان بـرجسسته و بـنيانگذار
فيزيك كوانتوم و عضو فعال جــامعهُ فـيلسوفان آلمـان تـوانستته است بـا مهارت خود نكات بسيار مهم و ارزشمند مربوط به فيزيك و فلسفهُ جهان را در جهار فصل به تصوير كشاند. به اعتقاد او فيزيك به عنوان مادر تمام علوم جايگاه خاصى در حفظ آرمانهاى اخلاقى و معنوى بشريت دارد، چجراكه فيزيك بر اساس اصل عــدم تـناقض بـى ريزى شــده است و ايـن ويزگى به روشنى در اخلاق به معناى صداقت و حقيقت گويى نهفته اسبت و از آنجا كه عدالت جدا از حقيقت گويى نيست، پس عملاً به مـنزلهُ بـه كارگيرى قضاوتهاى اخلاقى است كه به طور مساوى براى تمام اعضاى جامعه صدق مىكند. پِلانك در فصل دوم، با ظرافت و سادگى خاصى نشـان مـى دهد كــه عليت در طبيعت نه تنها تناقضى با اراددء آزاد انسان ندارد، بلكه وجود يك روح و عقل آرمانى و جاودانى محيط بر معرفت و آگاهى گذشته، حال و آينده، ضرورى است؛ جنين روحى فقط مىتواند يك فاعل بـاشد و نـه مفعول كه خود تضمينى است براى وجود و هدايت افكار علمى. پِلانك شديداً با نحوه: استنباط نامعينگرها در مورد عليت، مبنى بـر اصل عدم قطعيت مبارزه مىكند، نه بدين معناكه با اين اصل مخالف باشد بلكه آمـارى تـلقى نـمودن طـبيعت بـا تـمام زيـبايى ها و زيـركى هايشنو جستجوى هرگونه بى نظمى در وراى هر قانونى را رد مىكند. البته به گغتهُ خود پِانكى ما نمىتوانيم به انسانها دستور دهيم كه حقيقت را آن طور كه

هست مشاهده كنند و آنها را از خطا باز داريمr.
در فصل سوم، بحث بر سر اهـميت وجـود نظرهاى جــيلد در يك جامعه است، زيرا.كه موجب پديد آمـدن سـؤالات بـيشتر و جــلديدترى مى شود كه نتيجهُ مستّقيم مطالعات عميقتر علمى و كسب موفقيتهاى

سخن مترجم / 9

بيشتر است. در اين فرآيند، يك تغيير و تحول علمى تنها با تحت الشعاع قــرار دادن نــظريهٔ مـخالف، جـايگاه خـود را تـثبيت نـمى كند، در در واقـع استنباطهاى غلط و دورهُ جهالت به تدريج در حال از بين رفتن است. به
 بوده و آينده متعلق به جوانان است.
نكتهُ قابل توجه اين است كه پِانكى با استغاده از از قوانين طبيعت، بـهـ

 مىتوان از دستاوردهاى افكار علمى بهره برد كه درك عميقى اهـى از ريشه و و خواستگاه علم داشته باشيم و مهمتر از هر چیيز اينكه درست يا يا غلط بـر بودن
 جل يد علمى موجب انجام امور مثبت و ارزشمند گردد و اين نشان دهند توسعهُ فرهنگى و معيار بارز سلامتى و موفقيت فرد و جامعه است است.
 مى مساند. در انديشهُ او، ايمان اگر به مغهوم اعتقاد اجبارى و يا بـى چجون و و
 گردد، انسان را گمراه و انگيزهُ كنجكاوى و سؤال را را در او از بين مى بربرد. (شايد به تعبيرى اگر دين را راه و روش حقيقت بـينى فـرض كـنيم، آيـهُ شريفهٔ لا اكراه فى الدين قد تببن الرشد من الغى ... ناظر به هـمين نكـته

باشد).
 رسيد، بلكه چهه بسا با وجود تلاش، جهت درست گم شود و موج و گمراهى گردد. البته بر اين نكته، يعنى ايمان در انديشه و تفكر اسلامى

- 1 /

تأكيد بسيار شده است. مرحوم استاد مطهرى علم را به نور و ايمان را به
گرما تشبيه كردهاند و اعتقاد داشتند كه اين دو بايد در يك ور جـه
 طول زندگى خود صادقانه براى دست يافتن به اهذاف متعالى و فرامادى
 قطعاً بدون وجود ايمان امكان پذير نبود و به قول مولوى:

$$
\begin{aligned}
& \text { عشــق بـسر دل مسـىنهل بـنياد را آخر ای جان ازكه خواهم داد را؟ }
\end{aligned}
$$

سيد محمد غترتى خسروشاهى

فيزيك و فلسفهُ جهان

موضوع اين فصل ارتباط بين فيزيكـ و تــلاش بـراى رسـيدن بـه يك
 چهه زمينهاى است. ممكن است چنين مطرح شِ شود كه فيزيك فقط به اشياء

 را در بر گيرد و پاسخخگوى سؤالات مربوط به روح و مسائل اخـالاقى در بالاترين سطح باشد. در نگاه اول ممكن است اين هدف متقاعد كننده به نظر برسد و و نيازى

 را نيز در بر بگيرد. دوم اينكه در درازمدت اگر چخنين فلسفهاى
 نيست كه من به تعداد قابل ملاحظهاى از دگـمهمهاى مــذهبى، كـه عـلوم

 منغى و نابود كننده نمى شود، بلكه سبهم مثبت آن حايز اهميت بـيشترى

منفى و نابود كننده نمى شود، بلكه سهم مثبت آن حايز اهميت بـيشترى
 كه روشههاى علم فيزيك به دليل دقيق بودنشان بسيار مفيد و مثمر ثمر

 شخضيتى است با مجموعهاى از خصوصيات معنوى و اخلاقى و از از اين رو فلسفهُ كلى او هميشه بر كارهاى علمىاش تأثير خواهــد گـذاشـي
 خواهد داشت. هدف اصلى اين فصل نشان دادن دقيق مباحث فـر فـو در در در ارتباط با فيزيك است.
من پيشنهاد مى كنم از يك بررسى كلى شروع كنيم. هر برخورد علمى

 مى شود اين است كه اين اصول كدامند؟ كشف اين مطلب نه تنها اولئ اولين گام، بلكه همان طور كه بر اساس تجربه ثابت شد، غاهو غالباً گامى حياتى راه تو سعهُ علمى بوده است.
در اين مرحله لازم به ذكر است كه هيج اصـل قطعى به طـور أستقرايى (a Priori)

فيزيك و فلسفة. جهان / re
اين أمر در مورد همهُ علوم صادق است. بنابرايـن غـيرممكن است ابـراز

 نكته حايز اهمميت اساسى است، جرا كه نشان دهندهُ ضرورى بـا بودن اين نكته است كه اگر بخواهيم آگاهى علمى داشته باشيم بايد آن اصلى رانى راكه مطالعاتمان طبق آن بيگيرى مى شود، تعيين نماييم. اين تـعيين صـرفاً بـر اساس ملاحظات عملى نمى تواند باشد، بلكه سؤالات مربوط به مغاهيم ارزشى نيز نقش خود را ايفا مىكنند.
 سادهاى بزنيم. رياضيات با مقادير اعداد سروكار داردن درين برای بران بررسى تمام اعداد روش مشخص، طبقهبندى آنان برحسب مقاديرشان است كه در اين

 حالى كه جذر، يكى عدد گنگ است و نمى وتوان آن را به طريق فوق نشان داد. حال اگر سؤال شود كه آيا اين دو عدد ارتباط نزديك با با يكديگر دارند

 كدام طرف راست و كدام طرف چپپ

من اين مثال ساده را به اين دليـل انتتخاب كـردم كـه مـتقاعد شــدهام بسيارى از بحثهاى علمى كه برخى از آنها بيشترين تلخى را با بـهـ وجـود

 شد. انتخاب اصل طبقهبندى در علوم طبيعى حتى مهمتر از اين است. بـر به
 فهرست نامگذارى ضرورى است و تمام گياهان بايد طـبق نـوع، جـرئس، گروه و غيره طبقهبندى شوند. امـا هــمينكه اصـول مـتنفاوت طـبقهبندى

 ذهنى تأثير پذيرفتهاند. نظام طبقهبندى گياهان كه در حال حاضر استر استفاده
 نه به وضوح در هر جزء تـعريف شــده است. هـمصتنين ايـن نـظام
 محققين برجسته، با برسش درباره بهترين اصل طبقهبندى، ايـجاد شـده است.

ضرورت معرفى نوعى طبقهبندى همراه با اشتياق رسيدن به آن حتى در مطالعات غيرعلمى به ويزه تـاريخ بسـيار چشــمـيـير و قـابل مـلاحظه است. تاريخ چه به صورت عمودى يا افقى طبقهبندى شـود و يـا طـبق
 اقتصادى، بيوسته بايد تمايز بين آنها قائل شد و در يك بر برسى دقيقى

فيزيكى و نلسفهُ جهان / 10
مى توان بی برد كه اين طبقهبندىها همه ناكافى و ناقص است. آن هـم به اين دليل ساده كه هر نوع طبقهبندى الزاماً موضوعات هم ريشه و بسيار نزديك به هم را از هم جدا مى سازد، بنابراين هر علمى يك نوع گرايش متغير در خود دارد و لذا (پودگذرى)" در بنياد ساختارش وجود دارن دارد، از آنجا كه اين عيب در طبيعت علم ريشه دارد هرگز نمىتوان آن را از بـين

حال با برگشت به فيزيك، موظف هستيم كه رويدادهاى تحت مطالعهٔ خود را به دستهجات گوناگونى تقسيم نماييمّ، تا اين حد يكـ درخواست جزيُى و مقدماتى است. تمام تجربيات فيزيكى بر اساس ادراكات حسى ما بنا شده است و قاعدتاً اولين و مشخصترين نظام طبقهبندى ما بر پايهُ
 و گرما تقسيم شده بود كه با هر يك چجون موضوعاتى جدا از هم برخورد مینشد. اما پس از گذشت زمان متوجه شديم كه اين موضوعات ظـاهراً مختلف ارتباط نزديكى با يكديگر دارند به اين معنا كه خـيلى راحتـتـر است قانونهاى فيزيكى را با كنار گذاشتن حـواس و بـا تــمركز بـر روى رويدادهاى خارج از حواس پايه گذارى كرد. براى مثال امواج صوتى كه از يك منبع صدادار توليد مى شوند باكنار گذاشتن گوش و يا پرتوهايیى كه از منبع نورانى ساطع مى شوند، با كنار گذاشتن چشــم بررسى شوند. اين به طبقهبندى ديگرى در فيزيک منجر مى شود كه بخشت هاى مشخصى از آن
 بنابراين طبق اين اصل، پرتو گرمايى كه از يكى اجاق داغ ساطع مـى شود ديگر در قلمرو گرما نبوده و به شاخهُ ابتيك تعلق دارد و با آن كاملاً شبيه امواج نور برخورد منى شود. البته بايد اعتراف كرد كه چنين نظم و آرايش جليدى كه از ادراك حسى صرفنظر مىكند، يكـ نـوع عــامل دلخـواه و

تصادفى است. كوته كه هميشه بر اولويت حـواس اصـرار اصرار داشت از ايـن آرايش جديد كاملاً وحشت زده

 نور را مشاهده كني؟؟"

 شده كه او شديداً با آن مخالف است است

 جديد در فيزيك برگرديمـم

 مستقيم در بارها طبيعت پديدهمهاى فيزيكى به ما ما مى دهل و در نتيجه، وقوع

رويدادها مستقل از تجهيزاتى است كه بـراى انـدازه

 رويدادها از آن تبعيت مى ركند.

 جزئيات آن نيست.
فيزيكدانان كه از اين موفقيت تشويق شده بودند با با خشنودى رامى را

 تقسيم شدند. همين طور كه فرآيند تقسيم ادامه يافي انعطاف جاى خود را به قوانين سادهتر دادند. البته هيجّ دليلى هم به به نظر

[^0]/ 11 / فلسفd فيزيك
تغييرات براى حالت اوليةٌ طبيعت داده شده را توصيف مىكند و به همين
 نگرش به رويدادهاى فيزيكى جهان حسى كـه جـامع و مـقبول بـاشد و مقبوليت آن به واسطهُ نظم و هماهنگیى اش باشی باشد، ميسر است. اها شگفت انگيزتر و ناخوشايندتر از همهُ اينها، اين بود كه در انـ اور اوايل

 مـحاسبهُ حركت الكترون، فيزيكى كـلاسيكـ بـايد فـرض

 سرعت آن را نخواهل داد و بعد بيشتر مسعلوم شــد كـه عــدم دقت اولىـ، دهـ، نسبت معكوس با دومى دارد و برعكس. اين پديله توسط قانونى كنترل
 ديگر، (ا/گر مكان الكترونى را به طور دقيق بدانيم، تندى آن را اصلاً نمىدانسيم و بالعكس1).

بديهى است كـه تـحت ايـن شـرايـط، مـعادلات ديـفرانسسيل فـيزيكـ
 همان كشف قوانين كنترل كنندهُ فرآيندهاى واقعى فيزيكى است، بايستى
 قوانينى وجود ندارند. به بيان ديگر، هر گونه عدم موفقيت در كشف يك يـ قانون به دليل واضح بيان نكردن مسئله و ياطرح ناقص سؤال است. حال

فيزيك و نلسفهُ جهان / 19
بايد بپر سم كه اشتباه كجاست و جخگونه مىتوانيم آن را برطرف نماييم.

 كلاسيك به دست آورده خيلى مهمتر از آن است كه اجازه انـ انجام اين كار
 مقياس بزرگ مییردازد، قوانين فيزيك كلاسيك همچجنان پايدار بـوده و و اهميت خود را حفظ كرده است. بنابراين، پرواضح است كه اشتباه نه در

 بى شك حذف آنها، در ارتقا و بيشرفت تئورى بسيار مفيد خواهد بود. حال اجازه دهيد، كُنه واقعيت را در نظر بگيريم. فيزيك نظرى نـي بر اين فرض بنا شده است كه رويدادهاى واقعى، مستقل از حواس ما هسـتند. اين فرض بايد تحت تمام شرايط مدنظر بـاشد و حتـى فـيزيكدانـانـى بـا بـا
 مىكنند. حتى اگر مكتب (پوزيتيويزم) بر اين عقيده باشد كه تنها پـايه و اساس فيزيك، دادهها و اطلاعات حواس است، باز مسجبور است بـراى بـا رمايى از خودمدارى نامعقول فرض كند كه اشتباهات حوات حواس و توهمات
 فيزيكى با اراذه و در صورت وت لزوم عيناً تكرار گردند. البته اين ثابت مى ايكند كه چیزى كه ما قبل تجربه مشخص نيست، يعنى همان روان
 زمان و مكان مشاهده بوده و دقيقاً همين مؤلفهها هستند كه بخش وار واقعى يك رويداد فيزيكى را توصيف مىنمايد و با كمك آنها تلاش مى مكنيم تا

همان طور كه در بالا مشاهده كرديم، فيزيكى كالاسيك ضــيمن ايـنكه فرض مىكند رويدادهاى واقعى وجود خارجى

 اندازه گيرى قابل تحريف خواهد بود. اين تحريف و در نتينـي در يى خواهد داشت، هر دو به ميزان قابل ملاحظها

 هرگز مقدور نيست اين تداخل به طور كامل از ميان برود چرا كا كه اگر ایا اين

 اندازهگيرى اتمها و الكترونها نيازمند روش ها و تجهيزات بسيار حساس و دقيق است كه به معناى وجود رابطهُ نزديك سببى استـ ونـ بنابراين تعيين
rl / فيزيك و فلسفهُ جهان
دقيق مكان يك الكترون، مستلزم تذاخل نسبتاً شديد با حركت آن است و برعكس اندازهگيرى دقيق سرعت الكترون نيازمند زمان نسـبتاً طـولانى است. در حالت اول، تداخل با سرعت الكترون وجود دارد و در حـالت دوم مكان الكترون در فضا نامعين است. اين تـوضيح سـبـبى است بـراى بى دقتى كه در بالا توصيف شد. هر چحند ممكن است توضيحات فوق متقاعل كننده به نظر برسلـ ولى به عمق مطلب نربداخته است. اين حقيقت كه رويداد فيزيكى با وسـيلهُ اندازه گيرى، تداخل دارد بحثى است كاملاً جا افتاده و آشسنا در فـيزيك
 توسعهُ شيوههاى اندازه گيرىى، نهايتاً به ما امكان نمى دهد كه هنگام كار با الكترونها، بيشاييش به صورت نظرى، مقدار اين تداخل را مداسبه كنيم.
 كوچك ناموفق است بايل بررسنى ها و تحقيقات عميق ترى انجام گيرد.
 كوانتوم و يا مكانيك موج پيشرفت كرد و تـوسط مـعادلات آن مـى توان فرآيندهاى اتمى قابل مشاهده را از قبل محاسبه نمود. اگر قواعل رعايت بشوند، نتايج اين محاسبات دقيقاً با تجربه موافقت مىكنند. درست است كه مكانيك كوانتوم بر خالف مكانيك كالاسيك، مكان يك الكترون را در زمانى خاص به ما نمى دهد ولى در عوض، احتمال اين حلد را بـه مـا مىدهل كه يك الكترون در زمانى خاص، در كدام نتطهُ خاص خوراهد بود و يا اين كه در مورد گروهى از الكترونهاى مشخص تعداد آنها را در زمان و مكان معين مشخص مىكند. اين قانونى است با ويزگى كاملا أ آمارى و واقعيت ايـن است كـه ايـن قانون توسط همهُ انذازه گيرىهايحى كه تاكنون انجام شـلـه تأيـيد شــده و

 بى معناست.
اكنون ما در اين مرحله به نكتهاى رسيدهايم كه كفتغو درياره آن بسيار

 خواهد شد.
اول بايستى بررسى كرد كه آيا اعتبار قوانين آمـارى كـاملاً بـا عـليت

 مطابق قوانين فيزيك بوده و در نتيجه كاملاً به طور سبيبى روى داد داده است.

فيزيك و فلسفهُ جهان / r
مستقيم نشان داد چراكه يك اندازهگيرى هر قدر هم دقيق باشد، به طور

 سببهاى شخصى نسبت دادهاند. وقتى ما شاهد شكسته شدن امواج در
 حباب به دليل قانون عليت محض است، اگرچهه هرگز نمى نوتوانيم اميدوار باشيم كه بالا پايين شدن موج از قبل آن را محاسبه كنيمَ.
در اينجاست كه رابطهُ نامعينگرى مطرح مى شود. موقعى كه فيزيك
 مشاهدهگرى، با افزايش مناسب دقت اندازهگيرى به زير آستـ آستانه كـاهش
 پِانكى دلالت بر اين دارد كه هر دقت اندازهگيرى، محدوديتى واقـعى و

 احتمال دارد اين خطاها به علت وجـود مـفاهيم غـلط و هـمـچنين طـرح سؤالات نامناسب روى دهد.
دقيقاً به دليل همين تأثير معكوس بين انين اندازهـيرى و رويـداد واقعى
 است. طبق اين نگرش ما ديگر نمىتوانيم حركت يك الكترون را دنـبال
 طول موج آن رنگ است بينيم. بى معنا و باطل است اگر تصور كنيم كه بالاخره روزى فرا خواهد رسيد

 بخواهند نامتناقض و استوار باقى بمانند نيز صدق مين مئكندي

 نزديك به ميلى گرم وزن كند.

 نيست؟ آيا بايد قبول كنيم كه اميدى براى هـي به دست آي

 وسايل اندازهگيرى رهايیى مى دهد.
بسيار بيهوده و نـامعقول است كـهـ بـبنداريـم آزمـايشهاى ذهــــى تـا
ro / فيزيكى و فلسنهُ جهان
 اين طور بود ديگر اثبات دقيق هندسهاى وجود نداشت

 ندارد كه تفسير هندسهاى دلايـل مستدل و مـحكمى در در ايـن خـينـي دارند.

 حذف كنيم تا بلكه بتوانيم جزئيات رويداد را با با درستى و صحت بير بيشترى درك كنيم. بين اين دو امر انتزاعى يكى نوع تضاد وجود دارد: در عين اينكه

دنياى واقعى خارجى، عينى است ولى روح آرمانى نظارهگر ذهنى است.
 وجود هر يك از آنها انكار شود ديخر reductio ad absurdum ممكن نخواهد بود. تاريخ فيزيك شاهد ايفاگرى نقش مهر ديم دانشمندان در طول

 قانون عقلانى ماورا آن و حاكم بر آن الهام گرفتند.

 دانشمند است. هر چند به مرور زمان شكلى مستقل و مـعين مـى درست است كه هميشه در فيزيكى افكار اشتباهى بودهاند كه بـر بـرانى آنـها

 مهم تبديل شوند. بنجاه سال بيش فيزيكدانان اثباتگرا پـرسش در در بـار بـاره

 حساسترين و ظريفترين دستگاه اندازهگيرى موجودها چــندان بـهتر از از

 هيج ملاكى وجود ندارد كه قبل از تجربه مشخص سازد كـه مان مسئلهاى در فيزيك معنى دارد يا نه؟ اين نكته بارها توسط اثباتگراها نـاديده گـرفته

1- Kepler	2- Newton
3- Leibniz	4- Farady

فيزيكـ و فلسفdُ جهان / YV
شده است. تنها راه قضاوت صحيح يك مسئله بـررسى جــمعبنلىیاى حاصل از آزمايش آن مسئله است. حالل با اين فرض كه قوانين ثابتى وجود دارند كه در فيزيكى به كار گرفته مى شوند و حائز اهميت بنيادى هستنل، لذا ما بايستى قبل از اين پرسش: كه آيا اين قوانين در فيزيك اتمى بـى معنا هستند يا نه، قدرى تأمل كنيم. نخستين تالاش، درست بر خلافت تصور، بايستى بيگيرى مشكل به كارگيرى قوانين در اين زمينه باشد.
 اندازه گيرى توأم بـا دقت نـاكـافى آن دسـتگاه سـؤال مـى شود، فـيزيـي كالاسيك در كنكاو و بررسى عليت شكست مى خورد، و در توضيح اين شكست ناتوان است. به سادگى بايد بگوييم كه ما مجبور به اتـخاذ ايـن فرض واضح و در عين حال بنيانى شديم كه مغاهيم اوليهٔ فيزيك كالاسيك، ديگر در زمينهُ فيزيك اتمى كارآيى ندارند. فيزيك كالاسيك بر اين فرض پايه گذارى شده كه قوانينش در مقياس
 جريان هر رويداد فيزيكى، در هر جاى جهان، كاملاً توسط حالتى تعيين شود كه در آن محل و اطراف آن چچيره باشد. بنابرايـن، مـقادير فـيزيكى مربوط به حالت فيزيكى رويـداد از قـبيل مكـانا تـندى، شـدت مـت مـيدان الكتريسته و مغناطيسى و غيره فقط يكى ويزگى مكانى هستند و قوانـين

 نخواهد كرد، در نتيجه مغاهيم فوق بايد تكميلتر يا جهانىتر شوند. امـا اين كار بايد در كدام جهت انجام پذيرد؟ شايد نشـانههايى در شـناخت، يافت شوند كه هر روز گستردهتر هــم مـى شونلـ، مـعادلات ديـغرانسـيل فضايى - زمانى، براى بحث دقيق محتواى پديلههاى يک سيستم فيزيكى

و در نظر گرفتن محدوديت حواس ديگر كافى نيستنل. اين امر حـتى در مورد مكانيك موج هم صدق مىكنل. حال ديگر بدون استثنا دامنهُ حواس محدود و متناهى است و تداخل مستقيم آن بـا رابـطهُ سـبـى، مـىتوانــ نگرشى جديل به عليت باشد كه تاكنون در فيزيك كالسيك مطرح نشده است.

آينده نشان خواهل داد كه آيا در اين جهت بيشرفت امكان پٍير است يا نه؟ و در صورت پاسخ مثبت، تا كجا ييش خواهل رفت؟ امـا چحـنانجهه نتايج آن در نهايت مشخخص شود، مطمئناً ما را قادر نمىكنل كه كليت جهان را، بيشتر از آنچه كه هوش بشرى قادر به پيشروى در حوزهُ روح آرمانى است، بفهميم. به هر حال اينها هميشه به صورت انتزاعى باقى خواهـند ماند و طبق تـعريف اوليـهشان خــارج از واقـعيت. هـر جــنـ، هـيّع چــيز نمى تواند ما را از اين باور باز دارد كه مى توانيمه، آهسته و بدون وقفه، به طرفف اين هدف دور از دسترس ييشرفت كنيم. اين دقيقاً همان وظيفةُ علم است كه وقتى تشخيص داد كه مسيرى اميلدوار كننده است، بـا تـصتحيح بيو سته و بهبود خود در اين راه بلون وقغه تلاش نمايد. اين يك بيشرفت واقعى خواهل بود و نه يك راه ييتچايِيِ و بیى هدف، و اين حقيقت، ثابت گرديله كه دسترسى به يك مرحلهُ جديد ما را قادر مى سازد تا مـراحـل قبلى را بررسى و مطالهd كنيم، اگرپجه مراحلى كه هنوز بررسى نشدهانل، مبهم باقى مى ماننل. درست شبيه آن كوهنوردى كـه در حـال صـعود بـه ارتغاعات بالاتو است و گاه به عقب بر مى گردد تا از مسافتى كه طى كردهه
 نيست، بلكه بـه سبب يادگيرى دايم معرفت و آگاهى هاى جـليد است. تا اينجا من خودم را به فيزيك محدود كرده بودم 6 امـا مـمكن است احساس شود چیيزهايى كه گفتم كار.ردههاى وسيعترى داشته باشل. علوم
ra / فيزيك و فلسفدٌ جهان
طبيعى و علوم معنوى نمىتوانند به طور تمام و كمال از هم جدا باشند. آنها يكى سيستم درونى متصل به هم را تشكيل مى دهند كـد كه اگـر بـه هـ هـر قسمتى از آن آسيب وارد شود، اثرات آن به صورت بيامدهايى در كل آن احساس مى شود و سپس بلافاصله تماميت سيستم از آن اثر مـى پذيرد. خيلى نامعقول است كه تصور كنيم يك قانون مشخص و ثابت در فيزيى
 صدق كند.

شايد بهتر باشد در اينجا به ارادهُ آزاد بِردازيم. بـه رغـم هـمـهُ ايـنها،
 مىدهد كه ارادهُ آزاد انسان مافوق است. اما با اين وجود مجبور هسستيم
 مى گردد يا خير؟ مطرح كردن سؤال بدين صورت، همان طور كـه بـارها

 تبيين و طرح ناقص سؤال است. حقايق واقعى را مىتوان به صورت زير بيان كرد. از منظر يكـ روح ايدهال و كاملاً جامع و مسبسوط، ارادهُ انسـان

 شناخت قطعى از ارتباط علّى نـاممكن است. بـه بـيان ديعــر مـى تـوتوانيم بگويم اگر ما به اين مسئله از خارج (به طور عينى) نگاه كنيم، اراده به طور

علّى تعيين شده است، ولى اگر از درون (فردى يا ذهنى) نیا نیاه كنيم اراده،
 راجِ به سمت چֶٍ و راست تـناقضى نبود. و كسـانى كـه ايـن را را قبول

 نشانهاى بارز داده كه در همان جهت استا است، و آن آموختن اين مطلب است است

 نظام و رابطءُ درونى بين اجزاى آن متمركز سازيم.
 است كه يك مرزيندى و تمايز دقيق بين علم، مذهب و و هنر داشي

اين در مورد انسان نيز صدق مى كند. اين يك حماقت و نادانى است است كه

 فراموش كرده بودند.

 بعخرد، ديگر نمىتوان آن را علم ناميد و در اير اين مورد فيزي

 مورد آن مطرح شود كه آيا ممكن است كه تاريخ عينى را به عـنوان يك

YY / نلسنفٔ فيزيك

 اخلاقى، حركت كردهاست.

 ضرر وقتى آغاز مى شود كه هدف، گمراه كردن طرف مرف مقابلِ و و انتقال تأثير
 اصالح نمايند و در عين حال يكى الكُو براي پيروى باشندي
 ساده يعنى كاربرد پيوستئ قضاوتهاى اخلا

نيزيك و نلسفن جهان / rr

مساوى براى همگان است، حقوق مساوى براى كوچك و و بزرگ، فقير و
 در قطعيت قانون شكى نمايد: اگر چجنانجه مقام و و رتبه و تبار خان

 تلاش كند.

 ممكن است حتى پرسيده شود كه اصولاًا فلسفه واجد اري ارزش است يا يا نه؟ و

 فورى و قاطع بدست آورد؟
خوشبختانه اين سؤال باسخ مثبت دريافت كرده است. يك يك نتطهُ ثابت

 مطمئن كه توسط آنها مىتوان ارزشها واى اخلاقى هر فردى را سنجيد.

آنها يی كه هميشه در حال تلاش و پيشرفت هستند آنها يى هستندكه ما مىتوانيم نجاتشان بدهيم.

عليت در طبيعت

اخيراً اميدهاى زيادى درباره́ شناخت طبيعت پديد آمده كه ناشى از موفقيتهاى درخشان علم فيزيك است، اما همين بيشرفتها نا نشانگر اين امر است كه بايد أين اميد در بعضى موارد مهم تعديل شود. براى مثال، مشاهده شد كه قانون عليت نمىتواند در سطح جهان به صورت سـنتى كالاسيك اعمال شود؛ چحراكه عدم موفقيت آن در دنياى اتمها كاماملاً اثبات شده است. در نتيجه تمام كسانى كـه بـه مـعنا و اهـميت مـطالعهُ عـلمى علاقهمند هستند، مجبورند از نو كيفيت اصلى قوانـين طبيعت بـه ويـرْه منهوم دقيق عليت را بررسى نمايند.
 قانونى تخييرناپٍير و قابل اعمال به تمام رويدادها مى دانست. بنابراين، او قانون عليت را در زمرهُ مقولههايی غريزى قلمداد مىكرد كه تجربه بدون آن ممكن نيست. بدون شكى اصلى كه كـانت اعـتقاد دارد ايـن است كـهـ برخى از مقولات، اصول موضوعه و مقدم بر تمام تجربهها هستندلد، يعنى نوعى آگاهى كه مستقل از تجربه به دست مى آيد كه كماكان براى هميشه بدون تغيير باقى خواهل ماند. اما اين اصل، خود به ما جـيزى راجـع بـه

بدون تغيير باقى خواهد ماند. اما اين اصل، خود به ما جـيزى راجـع بـه

 دارد و اين امر باعث شد تا فيزيكدانان در اين مورد بسيار محتاط باشند.
 خطرناك برهيز كنيم و در واقع بايستى از نقطهُ قابل اعتماد و مطمئنى آغاز جذيدى داشته باشيم تا بتوانيم مغهوم عليت را به درستى تبيين نماييم.

 مى شود اين است كه ماهيت اصلى رابطهُ بين اين دو جیيست؟ آيا معيارى
 ديگرى است؟
قدمت اين سؤال به اندازه خود علوم طبيعى است و از آنجا كه بيوسته مطرح مى شود، نشان مىدهد كه تاكنون جواب قطعى براى آن به دست

 روزى اميدوار باشيم كه نخست تعريف دقيقى از عليت صورت گـيرد و سپس اين تعريف را به عنوان پايهه و اساس برای تحقيق اعتبار قانون عليت
 مطاللفُ طبيعت به دست آمله ساده لوحانه و احمقانه بـه نـظر مسىرسد. همانند هر علم ديگرى، در علوم طبيعى نيز هدف اصلى اين نيسست كه از تعدادى مغاهيم بنيادى شروع كنيم و سعى كنيم بغهميم كه آيا اين مفاهيم
rV / عليت در طبيعت
در دنياى اطراف ما قابل درك هستند يا نـه؟ درست خــالف آن صـحيح است، بدون هيج گونه آمادگى يا اطلاعات قبلى متولد شدهايم و درست در بحبوحهُ زندگى قرار گرفتهايم تا راه خود را در اين زندگى پيدا كنيم. اين زندگى به ما تعلق دارد چهه آنرا بحخواهيم، چجه نخخاهيم. بايد سعى كـى براى تجربيات خود نظمى ايجاد نماييم. براى اين مـنظور، مـى توانـيم از امكانات فكرى و توانمندى ذاتى كه در بدو تولد به ما بخشيده شده است استفاده كنيم تا بتوانيم مغاهيم مشخصى را شكل دههى كنيم، تا شـايد در تجاربى كه كسب كردهايم و يا در آينده به دست خواهيم آورد قابل اعمال باشد. پبر واضح است كه چنين رويهای، تلويحاً به معناى سر در گـمى و نامغهومى است و حقايق بى شمار در هر شاخهاى از علم گواه اين مدعا است. در اينجا كافى است اشاره كنيم كه حتى در رياضيات كه دقيقترين علوم است، بحث و گغتگو در مورد ريشه و معنى مغاهيم اوليه آن بيش از هر زمان ديگرى شدت يافته است. اگر در مورد رياضى اين مسئله صدق مىكند به تبع نمىتوان انتظار داشت كه از مغهوم عـليت كـه بـه طـبيعت اطالاق مى شود، تعريف دقيقى ارائه داد كه در تمام زمانها و جوامع معتبر

باشد.
با وجود اين، مردان متفكر هرگز از پرسش دربـاره́ طـبيعت و اعـبار قانون عليت باز نايستادهانذ، توجه روزافزون به اين مسئله و نتايج حاصل از آن، بيانگر اين است كه عليت مسئلهاى بـنيادى است. شك است كـه علت كاملاً خارج از حواس و ادراكات ما باشد و آنجا كه بررسى دقـيتِ علمى ميسر نيست، عليت، عميقاً ريشه در جهان واقعيت دارد. مطمئناً اگر كره́ زمين با تمامى ساكنانش نابود گردد پديدههاى جـهان، هـمـجنان بـه تبعيت خود از قانون عليت ادامه مى دهند حتى اگر انسانى زنده نباشد كه صحت و حقانيت اين ادعا , آزمايش كند.

تلاشههاى بسيارى كه تاكنون در اين رابطه انجام گرفته است به ما نشان
 است كه ما در بيش گويى رويدادهاى آينده آن راكسب كرده و در تجارب روزانهُ خود به كار بستهايم. در حقيقت براى نشان دان دادن رابطهُ على بين دو دو رويداد، بهترين روش اين است كه نشان دهيم وقوع يكـ رويـداد بـه مـا اجازه بيش بينى قاعدهمند رويداد ديگرى را مـى دهد. بـراى كثـاورز در داستان زير همين روش صادق است و او بدون هر گونه شك و شبههاى در مورد رابطهُ سببى بين كود مصنوعى و حاصلخيزى خاكى مطان مطالب فوق را
 هحصول پربار شبدر در زمين آن كشـاورز هـمان كـود مـصنوعى است است و

 رها نمود. وقتى بهار بعد سررسيد شبدره پر شده و كلمات به صورت زير خوانده مى شدند:
((اين قسمت از زمين توسط سولفات آهك كودريزى شده است). نظر من اين است كه مرحلهُ بعدى را با يكى گزارهُ ساده و و كلى انى شروع
 رويداد به طور سببى شرطى شده است و و منظورم هم بيش از اين نيست كه بغويم \#امكان بيش بينى صحيح آينده، يك معيار قابل اطمينان براى
 مثال بارز را در نظر بگيريد. ما مىتوانيم در طول روز با اطـمينان از قـبل بگوييم كه شب خواهد آمد و لذا شايد ما اين طور استنباط كنيم كه شب يك علت دارد، اما ما نمىتوانيم دليل آمدن شب را روز بدانيم. از طرف

عليت در طبيعت / 9 r
ديگر بسيار اتفاق افتاده است جايى فرض مى كنيم رابطهُ سببى وجود دارد

 جدى تر از اينها تلاش كنيم. در خصوص يشن بينى وضع آب هورا هوا، بازتاب روشن آن آين است كه وضع آب و"هوا غير قابل اعتماد است، صرفاً به ديليل اينكه موضوع سور سؤال،

 محيط خارجى از قبيل رطوبت، گرما و فشار قرار دار دارد ما برای بير بيش بينى بينى

 رويدادهاى فيزيكى را دقيقاً يِيش بينى كنيم.

 وضعى دشوار و گريزنإنذيرى خواهيم يافت. حال اگر در گفتهُ اولئُ خود

مجبور هستيم قسمتهايى از نظريهُ اوليهُ خود را تغيير دهيم.

 مى كند و ادعا دارد كه براى هر مشاهدهُ منفرد بيش از يك اع اعتبار تخمينى وجود ندارد و هميشه استثنائات را را مى يذيرند.

 دارد. فشار وارده از طرف گاز به دليل برخورد ريبوستهُ تعداد بیى شمارى از از

F1 / عليت در طبيعت
مولكولهما است كه با سرعت زياد به طور منظم در تمام جهات در در حار الر الـ

 اين محاسبه تا حلود رضايت بخشى با با اندازه دارد، به شرط اين كه حرارت به عنوان يك معيار اندازيْ انيرى سرعت در نظر گرفته شود.

 نامنظم همديگر را خنثى مى كنند.
 جاهايى مشاهده مى شود كه مولكولها حركت حركت سريع دارند و و با اجسامى در تماس هستند كه به سهولت به حركت در مى آيند. البته اين تـغييرات

 نوسانات نامنظم حول يك نقطهُ تعادل است، مورد ديگرى از ازين جـن

پيديدهماى گوناگون راديو اكتيو، مثال ديگرى از قوانين آمارى است

 خيلى بيشتر از بازده متوسط بين دو گسيل متوالى نيـي فرآيند كاملاً بَى نظم است.

 فيز يك را بر اساس حساب ابي احتمالات بنا بناكنندي

 نمودهاند. به بيان ديگر، اگر قرار است كه ما دحار تناقض نشويم، اصـل

عليت در طبيعت / Fr
عليت نمى. طور سببى قابل تعيين است كه بتوان آن را، به طور دقيق، بيش گو گويى كردى،
 است كه معناى وازه́ (ارويداده) كه تاكنون از آن استفاده مى كرديها اسيم عوض

 منظور فيزيك از يك رويداد، صرفاً يكى فرآيند عقلانى است. فرايندى كـى

 واقع همان تصوير دنياى فيزيكى است كه صرفاً يكى سـاختار عـقلانى ،

 شود و در عوض يكى تعريف دقيق كسب كند.
بنابراين هر مقدار قابل اندازهگيرى، هر طول، هر مدت

 نمادهاى معين رياضى نشان مى دهند كه ما مىتوانيم طـي عمل نماييم. اگر ما در فيزيـى راجع به ارتفاع يك برج بـي و و از معادلهُ مثلثات
 تعريف شده دقيق آن است. از طرفى، اندازهگيرى واقعى برج، مقدار دقيق
 محاسبه نمود، هميشه با آن جیيزى كه اندازه گيرى مى كنيم متفاوت خوراهـ اهد

 هيج وجه شامل مقادير قابل مشاهده نيست و ونها تيا جيزى كه دارد ارد در واقع

اجازهُ عمل مى دهند.

عليت در طبيعت / F0
تئورى كالسيى عملكرد بدين گونه است كه يك هدف، بـراى مـثال، از
 اندازه گيرى شده، نشان گذارى مى شود، پس از نشانه گذارى به تصوير دنيا انتقال داده مىشود. در نتيجه ما يك ساختار فيزيكى كه در حالت اوليـهُ خود مشخص و تعريف شده است به دست مى آوريم. بعدها كه تأثيرات

 عمل مىكنند و يا به بيان ديگر، به شرايط آستانهاى دست مى ديا ديابيم. ايـن دادهها رفتار سيستم را در تـمام اوقـات بـه طـور عـلّى تـعيين مـى مى توانيم آن را با دقت زيادى از معادلات ديفرانسيل كه از ازتئورى به دست آمده، محاسبه كنيم. در اين روش، مختصات و سرعت تمام نقاط مـادى

 حواس به هم مرتبط شدهاند، بنابراين دومى ما را قادر مـى سازد تـا يكـ پيش گويى تقريبى از اولى داشته باشيم. لذا، مىتوانيم اين بحث را اين گونه خلاصه كنيم: در حالى كه هميشي

 مشخصى روى مىدهند و به طور سببى تعيين شدهاند. بنابراين، معرفى

تئورى كلاسيك تلاش كرده است تا اين بى دقتى هاى ناشى از انتقالل را ناديده بغيرد و در عوض روى اعمال عليت به وقايع تصوير دنياى فيزيكى ايكى
 است. تئورى كالاسيك حتى حتى در كثف توضيح رون قانع كننده براى تـغييرات

 مولكول و يا يكى مولكول با محفظه، تحت حا حاكميت قوانين آمارى قـرار

 تصادم بين هر دو مولكول به طور سببى تعيين شده است است
 بولتزمن (1) را در بر گرفت و يكى از ظريفترين دستاوردهاى تـحقيقات
 نوسانات حول نقطهُ تعادل با دماى مطلق تغيير مى كند كه با آزمايشه هاى متعددى تأييد شدند، بلكه به ما اجازءّ محاسبهُ بسيار دقيق تعداد مطلق و و

FV / عليت در طبيعت
جرم مولكولها را نيز مى دهد كه براى مـثال تـنها بـا يك تـرازوى بسـيار حساس از طريق اندازهگيرى صورت مى چذيرد. به نظر مى رسيد، اين موفقيت و ساير موفقيتهاى مشابه به ما اين اميد را مىدهد كه تصوير جهان فيزيك كلاسيكى بتواند وظيفهاى كه به عهدهُ آن گذاشته شده است را تضمين نمايد و همحچنين بى دقتى هاى باقيمانده
 شوند و يا به مرور به دليل بيشرفت تجهيزات انـ اندازه گردند. أين اميد با ورود كوانتوم پالانك به صحتنه براى هميشه از بين رفت. تئورى كوانتوم اساساً از ثرتو نور و گرما تكـامل يـا يـافته است. در اسر ايـن مقطع چه بسا بهتر باشد با فرآيندهاى پرتو آغاز كنيم. حقايق بی شمارى بـ به ما اجازه مى دهد كه اين مطلب را ثابت شده قلمداد كنيم كـه انـرزى هـر باريكه نور رنگگ به صورت يك جريان ثابت و بيوسته حركت نمى ايكند
 فقط بستگى به رنگ نور دارد، اين فوتونها از منبع خود حركت كرده و در

 بيوسته به نظر مى
 فاصلهأى بيشتر نسبت به هم حركت مىكنـد. مانند بكـ فواره آب كه بـه تدريج باريكتر مى شود تا اينكه نهايتاً به ذرات منفرد با اندازها مانى مشخص

> يكديگر را / فلسنؤهُ فيزيك مىكنند.

حال به راحتى مى بينيم كه كاریرد عليت براى اين وقايع چچگونه ما را با

 خواهد شد و بخشى ديگر از آن، حدوداً بيش از سه برابر، عبور خواهد كرد. نسبت بين اين دو قسمت به شدت نور، بـه بـيان ديخـر، بـه تـعداد
 نشان داده شده است. حال اگر تعداد فوتونهايیى كه برخورد میى مكنند زياد
 چچه تعداد نفوذ خواهند كرد: دويست و پنجاه هزار عدد از آنها مـنعكس

 و پرسيده شود كه آيا اين فوتون منعكس مى گیردد و ويا نفوذ خواهي كمى خجالت زدگى دارد! آسان ترين حل ايـن است كـه آن را بـه چـهـهار قسمت تقسيم كنيم، اما اين كار غير ممكن است است.
البته بدتر از اينها در راه است. در مر مثال قبلى، شايد رايد راهي

 ديگرى نيز بر روى حالتهاى فوتون تأثير مى گذاشتند. امـا بـراى مـورد
 گزينشى منعكس مى شوند و برخى گزينشى إجازهُ عبور دارند، وقتى پرتو اري نور سغيد به صفحه برخـورد مـىكند، صـغحه در نـور مـنعكس شـده و همچجنين غبور كرده و ديله مى شود. تئورى كلاسيك موج نور نور، با بيان اين مطلب توضيح كاملاً قانع كنندهاى ارائه مىدهدن: نور منعكس شده از از جلو

عليت در طبيت / 19
با نور منعكس شده از عقب تداخل ايجاد مىكند و در نتيجه اين دو يرتو

 در نور ضعيف با حداقل شدت مشاهي

 قسمت تقسيم شود و اين غير مدكن است. بنابراين مى يبينيم كه نمى تواينيم از اين نظريه دفاع كنيم.

 با سرعت مشخصى حركت مى كند با روشى بررسى مى شود به نام رابطئ

عدم قطعيت، كه نخستين بار ورنر هايزنبرگ((1) ارائه كرد. اين رابطه، يك

 خيلى مشكل نيست. ما وقتى مىتوانيم مكان الكترون در حال حركي

 الكترون، سرعت آن طـورى تـغيير مـىكند كـه مـحاسبهُ آن غـير مــمكن

 برخورد شديدتر خواهد شد و در نتيجه، درجهُ بـى دقتى در تعيين سرع رِّ هم باللا خواهد رفت. همين اندازه معلوم مى شود كه حتى در تئورى هم غيرممكن است كـي

 مى منيم، به دنياى حواس منتقل ساز مازيم. اين عدم امكان، شرايط را براى اعمال عـليت مـحض بسـي مى

1- Werner Heisinberg

هليت در طبيعت / (ها
رِرهيز كنيم، روشى كه اغلب كمكههاى زيادى در موارد مشابه كرده است. اين روش فرضى را بيش مى آورد و و آن اين است كـي كه در فيزيكا P.

 جانشين آن شود. در واقع چحنين چجيزى صـورت پـذيرفته است. تصوير دنـياى جـديد

 تجزيه شود كه اين امواج مادى مؤلفههاى تصاي تصوير دنياى جديا

 امواج كه به گونهاى با يكديگر تداخـل مـى
 البته اساساً قوانين مكانيكى موج با مكانيك كالاسيك در در ويزگى ماديى ماري

 شرودينگر(1)، ماتريس هـايزنبرگ(T) و يـا اعـداد Q ديـراك (r) اسـتفاده

 جايگزين آن شدهاند قادر به انجام اين كار هستند. در نتيجه تدان

 روى مىدهد كه به طور دقيق مى توان آنها را تبيين كري كردي
 كلاسيك، معينگرى شديد و دقيق وجود دارد. تنها تفاوت آنـا تاريا در نـوع

 كلاسيك اتفاق مى افتاد. خطاى بيشكويى وقايع در دنياى حواس برطرف

2- Matris Hisenberg
3- Dirac

هليت در طبيعت / /r

شده و خطاى ارتباط بين تصوير دنيا و دنياى حـواس جـانشين آن شـده است. به بيان ديگر ما با بنيدقتى در انتقال علايم تصوير دنيا بـه دنـياى حواس و بالعكس مواجهيم. اينكه جرا فيزيكدانان مايل هسـتند بـا ايـن بى دقتى مضاعف بسازند و آن را تحمل كنند، بدين دليل است كه ثـابت شده كه حفظ قاعدهُ معينگرى در تصوير دنيا چقلدر مهم و مؤثر است. در عين حال يك مشاهدهگر دقيق، بهاى گزافى بـراى حـغظ عـليت مـحض پِرداخته است. يك بررسى سطحى نشان مى دهد كه فاصلهُ بين تصوير دنيا و دنياى حسى فيزيكى كوانتوم بسيار زياد است و همچچنين در فيزيکى كوانتوم مشكل است كه يك رويداد را از تصوير دنيا به دنياى حسى و
 بودند، نيستند. در آنجا تمام علائم معناى كاملاً واضحى داشـ داشتند، مكان، سرعت و انرزى نقطهُ مادى، كه كمابيش مى توانستيم آنها را با اندازه گيرى
 باقى مانده را به كمك رشد و بيشرفت روزمرهُ روش هاى اندازهگيرى به زير حد آستانه برسانيم وجود نداشت. از طرف ديغر، در در نغاه اون اول تابع موج مكانيك كوانتومى به هيجِ وجه كمكى به ما در تفسير دنياى حواس

 در فيزيك كوانتوم، كاملاً متفاوت با معنى آن در فيزيك كا كاسيك است است. در
 براى حواس با مـيدان الكـتريكى متـناوب كـه مـى توانـيم منُتـتيماً آن را اندازهگيرى كنيم، در حالى كه در فيزيى كوانتوم، موج حقيقتاً چجيزى بيث از احتمال وجود يك حالت مشخص نيست. هنگامى كه فوتون يا الكترون با صفحهٔ بلور برخورد مىكند، اين ماهيتها و جوهرهمها نيستند كه تقسيم

مى شوند و لذا پديدهٌ تداخل ايجاد مى شود، تنها جيزى كـه در واقـع مـا
 تعداد بسيار زيادى از الكترونها يا فوتونها برخورد مى انكنند، اين مقدار كاملاً نشان دهندهُ تعداد مشخصى از الكترونها يا فوتا فوتونهاستا فـا ملاحظاتى از اين قبيل باعث شده تا نامعينگرها حمالات خور خود را را عليه عليت دوباره سازماندهى كنند. در مورد مسئلهٔ فعلى، آنها تا حدور آنى انتظار يك موفقيت قطعى هستند. جراكه، تا جايى كه، تمام اندازه گيرى مربوط به توابع موج شود، صرفاً بايد يكى معنى آمارى داشته باشند. اما

 در حقيقت هر اندازهگيرى، با هر روشى، همواره كمابيش با با رويدادى اري

 مى شود با مسير حركت آن تداخل ايجاد مىكند و تداخل، با شدت تابش نور تغيير مىكند و تابش نور براى اندازه گيرى ضرورت دارد، در نتيجه يك موج مادى مغروض به دفعات با رويداده

عليت در طبيعت / هD

 و دستگاه اندازهگيرى تفكيكى قائل شويم.

زيادى كه مـتخصصان در ايـن خـصوص مـتحمل شـدند، بـراى فـيزيكى بى نهايت مغيد واقع شده است. چهه بسا در همين راستا پـىگیرى مسـئلةُ
 بيش رو خواهيم داشت و ممكـن است ثابت شود كه حل ايـن مسـئله از خيلى سؤالات ديگر مطرح شده در فيزيك سودمندتر باشد.
 طبيعتاً تنها كارى كه مىتوانينم انجام دهيم اين است است اسه يكى الئى از اين دو نظر
 منتهى مى شوند. همين كه تا اين مرحله مىبينيم فيزيكدانان علاقهمندى خود را به اين مسئله نشان مى دهند

 اطمينان داشت و شايد به مرور زمان تغييراتى اتغاق بيافتد. البتهه مـمكن است گروه سومى هم وجود داشته باشد كه حالت ميانى دارند، يعنى بر

 براى دنياى حواس دارند. ولى شايل چنين نظرى به دليل عدم وحـر
 بررسى دو ديدگاه كاملاً منسجم بیردازيم.
وقتى يك نامعينگر متوجه شود كه توابع موج در فيزيك كوانتوم صرفاً مقادير آمارى دارند، كنجكاوى او ارضا مى شود و نيازى احساس نمىكند كه سؤالات بيشترى در اين زمينه بيرسد. همين طور وقتى او او با فرآيندهاى

هليت در طبيعت /
راديواكتيو سروكار دارد، از ايـنكه مـتوجه مـى شوده بـراى مــالل، تـعداد

 مسلم طبيعى مانند قانون جاذبهُ الكتريكى كولوم (1)، برانى او او مسئلهاى حلى حل

جامع در نظر بگيرد و آنها را بررسى نمايد.

 قسمت هاى كوچكـتر تقسيم نماييم بلكه حتى تداخل خـارجـى قيمت از بين رفتن وحدت آن مجاز نيست. بنابراين بـررسى مسـتقيم آن

 نتيجه بيامدهاى آن را امتحان كنيم. آينده نشان خرو خراهي
 نمىتوانيم تشخيص دهيم كه بيشرفت احـتمالى در جــه جـهـهـه

 فرآيندهاى ظريف فيز يكى، آن طور كه هستند، جدا از از مبدأو و اثرات ات آنها براى هميشه محروم خواهيم ماند.

 نارضايتى عليت باوران از تفسير و برداشتى شود كه در اينجا از عليت ارائه گرديد.

در واقع اين ايراد بيشتر مورد پسند معينگرها قرار مى گیيرد تا اشخاص

هو / / عليت در طبيعت
بسط دهيم كه در اينجا تشريح گرديد، ولى هـميشه بـه دليـل يك نـتص اساسى و مهم محروم خواهد ماند. ما موفق شديم بـا جـايگزين نــمودن تصوير دنياى فيزيكى با دنياى بلاواسطه حواس، ديدگاه عليتى نسبت به
 تغيير است كه از روى اضطرار انـجام مسىيرد و از نـظر فـيزيكى ارزش چندانى ندارد. حال، سؤالى كه مطرح مى شود اين است كه آيا امكان دارد كه ما مغهوم عليت را با مستقل ساختن آن از تـعريف مـصنوعى انسـان،
 را نه به تصوير دنياى فيزيكى، بلكه به تجربيات دنياى حواس اعمال كنيمه.
 رويداد وقتى به طور علّى قابل تعيين است كه بتوانيم آن را به طور دقي بيشبينى كنيم. در غير اين صورت شايد مـجبور شويم از اصل خود مبنى
 مجبوريم كه دومين ديدگاه را قبول كنيم و آن اينكه هيج رويدادى هـرگز
 طبيعت را حفظ كنيم، ديدگاه اول بايد تا اندازهاى تعديل شود شود تا تاكنون همه
 متفاوت و تا حدودى خلاف آنجپه تا كنون بوده است، داشته باشيم. چيزى كه در بالا آن را اصلاح كرديم موضوع بيش بينى (شـىء) بـود يعنى خود رويداد. اما كارى كه اينجا انجام داديم اين بو د كه به جا جاى اينكه
 ساختگى ارجاع داديم، دنيايى كه توسط آن موفق شديم ديم معينگرى وقايع را به طور دقيق تعيين نماييم. حال، به طور مساوى اين امكان وسان وجود دارد كه موضوع بيشبينى را تغيير دهيم، يعنى نيروى خرد پبيش بـينى كـردن

رويدادها. هر پيشبينى مستلزم بيشىيينى كننده است. براى بحث بـعدى پيشنهاد میىنم روى موضوع بيش.يينى و رويداد مورد نظر دنياى حواس
 تصوير مصنوعى دنيا معرفى نخواهد شل.

به راحتى مىتوان ديل كه دقت يیش بينى، بستگى به فرد پـيش بـينى
 گويى وضع هواى روز بعله توسط شخصى كه راجع به فشار جو، جهت باد، رطوبت و دماى هوا چيزى نمى داند با كشاورز با تجربهاى كه از همهُ اينها آگاهى دارد و به علاوه تجربيات زيادى كسب كرده است و و يا نهايتاً توسط متتخصص هـواشـناس كـه در ايـن زمـينه دوره ديـلـه و عـاووه بـر اطلاعات مححلى، از تمام نقشههاى آب و هوايى دنيا اطلاعات دقيت دارد. ييشکويى هاى اين افراد، نشان مى دهل كه ميزان بیى دقتى به ترتيب كاهش مىییابد و از آنجاكه اين گفته صحت دارد، ترغيب مى شويم چحنين استنباط كنيم كه هوش ايله آلى وجود دارد كه آكَاهى كامل از وقايح فيزيكى امروزه

 رويدادهاى فيزيكى مصداق دارد.
چنين فرضى، يعنى حدس و گمان وراى مقادير شناخته شده و حكم عام دادن امرى است كه فرآيندهاى منطقى نه مىتوانند آن را ثابت و نه رد كننل. در نتيجه تنها مىتوان بر اساس ارزش آن قضاوت نمو حقيقت آن. از اين ديدگاه ظاهراً غيرممكن بودن بيش گويى رويدادى بـا دقت كامل در هر لحظه، جه از نظر فيزیی كالسيك و چچه كوانتومَ نتيجهُ طــيـعى ايـن حـقيقت است كـه انسـان بـا حـواس خـود و دسـتگاههاى اندازه گيريش بحخشى از طبيعت بوده كه هر دو مقيد قـوانـين آن هسـتند،

عليت در طبيعت / 9
گرجه هوش و خردآرمانى چجنين قيدى ندارد.

 در مغز انسانها وجود دارد و يا در صورت عدم ايم وج

 نمى شود، حتى اگر تمام نوع بشر هـر هم از بي بين بروند. بنابراين بايد خيلى مواظب باشيم تا تا روح و ع علل آرمانى را هـمرديف

 وجود اين پاسخ باز هم لجاجت كند و اصـرار ورزد

SY /
گاليله، كپلر و نيوتن از آن الهامهاى عـلمى خـود را مـى مى سازد. اين مردان آگاهانه يا ناآگاهانه از روى ايمان اليان خود كردند و ايمان تزلزلناپٍ
در عين حال پذيرفتن يك عقيده اجبارى نـيست؛ مـا نـــى توانـيم بـهـ

 نوع اخطار يا گوشزدى در مورد هماهنگى بين دنياى خارج و روح انر انسان
 اهميت ثـانوى بـرخـوردار است. بـيشترين هــماهنگى كــامل و در نـتيجه

 حياتى است اينكى اجازه نمى دهم كه اين فرصت بـه دست آمــده بــدون آرن
 تناقض و تضادى بين تسلط عليت محض ، آن گونه كه ايـنجا مـورد نـظر

عليت در طبيعت / זr
است و ارادهُ آزاد وجود ندارد. واقعيت اين است كه اصل عـليت از يك

 توسط ضمير آن فرد تعيين گردد. تصور اراده آزاد انسان فقط وقتى مـعنا مى دهد كه هر فرد احساس كند كه آزاد است ولى
 حقيقت، كه انگـيزههاى شـخص بـا تــا دريافت مى شود، سازگار است. اين احساس كه چحنين وضعيتى براى شأن
 بـىتوجهى بـه تـغاوت فـاحش بـين روح آرمـانى و هـوش فـرد را نشـان نمىدهد.

اين طور به نظر مىرسد كه مؤثرترين راه بـراى اثـبات ارادهُ هـر فـرد مستقل از قانون عليت اين باشد كه سعى شود از قبل، انگيزهمها و اعمال خود شخص، صرفاً بر اساس قانون عليت تعيين گردد، يـعنى يكى روش
 است، چرا كه هر كاربرد قانون عليت براى ارادهُ شخصى و يا هر اطلاعات ديگرى كه از اين طريق به دست مى آيد، خود انگيزهاى انست كه بر اساس اراده عمل مى كند و بنابراين نتيجها|ی كه به دنبالث هنستيم بيوسته در حال
 گويى اعمال شخصى بر اساس تفكر على را، به فقدان آگاهى نسبت دهيم وو اميدوار باشيم روزى با افزايش هوش انسان بر اين فقدان غلبه خواهيم

اين جنين تداخلى قابل قياس با فرآيندى است كه در تشري تريح غيرممكيكن

 وجود ندارد كه باعث تغيير آن نگرددر.

 فرض يك روح ايدهآل تضمين مى علت باشد و ونه عين.

 يك شخص از خود مى يرسل، جه شده است كه تعداد زيادى از فيزيك

عليت در طبيعت / 90
دانان وفادارى خود را به تز نامعينگرى اعلام نمودهاند. اين مسئله جنانجهd اشتباه نكرده باشم، يك علت روان شناختى دارد. هر بار يكى نظر جديد و با اهميت در علوم مطرح مى شود، در هر جهتى آزمايش مى شود و اگر با ارزش تلقى گرديد، سعى مسى شود، تـا آن را پـايهُ يك سـيستم عـقالنى، حدالامكان قابل درك و جامع، قرار دهند. تئورى نسبيت دچار اين چنين سرنوشتى گرديد و در حال حاضر تتوزى كوانتوم در اين شرايط بـه سـر مى.برد. در مرحلهُ فعلى آنها، فيزيك كوانتومه در نظريهُ توابع موج به اوج خود رسيد و به همين دليل تمايلى وجود دارد تا يکى اهميت قـطعى بـه توابع موج اختصاص داده شود. اكنون كه تابع موج خود بيش از يك مقدار احتمالى نيست، لذا متعاقباً همتها در اين جهت مصروف مسى شود كـه تحقيق براى اين احتمالات را يک وظيفهُ مهـمتر و غايى قلمداد كـنـند. در اين راه، مغهوم احتمالات، اساس غايى تمام فيزيك را تشكيل مىدهد. بعيل مى دانم در آينده باز هم اين روش تبيين سؤال قانع كننده باشد. حتى در حيطهُ عقلانى كه قوانين آن احتمالات را بسيار بيشتر و فراتـر از حد قوانين فيزيک شرح مى دهد، هيتِ رويداد مـنفردى كـاملاً بـه لحـاظ علمى توضيح داده نمى شود مڭر نورى بر روى مـبدأ عـليتى آن تـابانده
 نسئله تداوم عليت را در حيطهُ علوم طبيعى حذف نماييم.
/ البته به طور منطقى اين درست است كه قانون عـليت را نـه مـى توتوان ثابت و نه تكذيب كرد، يعنى اين قانون نه صحيح است و نه اشتباه. ايـن يك اصل اكتشافى است كه راه را به ما نشان مى دهد و به عقيلدء مـن بـا ارزشترين نشانهاى است كه ما مىتوانيم داشته باشيم تا راه خـود را در ميان وقايع گيج كننده پيدا كنيم و براى اينكه بدانيم در چجه جهتى تحقيقات علمى بإيل ادامه پيدا كند تا به نتايج مفيدى برسيم. اين قانون عليت است

كه به روح بيدار يكى بجهه پنجه انداخته و او را مجبور مى سازد كه مرتب ببرسد (اجحرا)؟ دانشمند را در طول جريان زنـدگى اش هــمراهـى كـرده و و
 بيهوده بر روى پيكره́ مشتى از دانش و معرفت نيست بلكه به معنى سعى و
 شاعرانه انسان آن را درك كند ولى هوش دو و عقل هرگز آن را به طور كامل نفهمد.

انديشههاى علمى: ريشهها و اثرات آنها

بد نيست اگر با توضيحى مختصر در بارهٌ مقالهُ فعلى، سخن را آغـاز كنيم. ريشهها و اثرات نظريات علمى ممكن است تا تا حدودى كلى به نظر

 اما در آن صورت، نظرات ارائه شده طورى محدود می می شدند كـه كه ديغر من

 بن زيست شناسى و انسان شناسى و از آنجا به علوم اجتماعى و عقلانى

 در شاخههاى گوناگون علوم، يك تشابه قوى درونى دارند و اگر متفاوت

 بيشتر آشكار شده است كه نتايج زيادى براى كليت عـلم دانسـته است.

بيشتر آشكار شده است كه نتايج زيادى براى كليت عـلم دانستـه است.

 موضوعات رشتهُ خود محدود خواهم كـر كرد.
إجازه بدهيد با اين سؤال كه چجگونه يک انديشهُ علمى به وجود مى آيد و خصوصيات آن چيست، شروع كنيم. البته در پرسيدن اين گونه سؤالات من قصد ندارم فـرآيـندهاى ظـريف فكـرى را كـه در مـغز مـحقق نـقـ
 او مى گذرد. اين فرآيندها اسرارآميز هستند و اگر اصولاً هم آشكار شار شوند
 نسنجيده است اگر سعى شود تا ماهيت ذاتى آنها را مطالعه كنيم. حداكثر كارى كه ما مى توانيم انجام دهيم اين است كه با با حقايق كاملاً بديهى شروع

 محتوايشان در آن زمان جه بود؟
اولين نتيجهُ اين بررسى كشف آن زمان اين قاعده است: اهر فـر فكر علمى كه در
 مشاهدهگرى و يا نوعى حقيقت است:[حهه از نوع اندازه گيرى فيزيكى و جه نجوم شناسى، يك مشاهدهُ شيميايیى يا زيست شـناسى، كتــفـى در مــيان مـدارك بـايگانى شـده و يـا حـتى حـفارى و اسـتخراج بـرخـى از يادگارهاى ارزشمند تمدن اوليه.محتواى فكرى كه در اين تجربه وجود

[^1]انديشههاى علمى: ريشهها و اثرات آنها / 99
دارد، با تجربيات گوناگون و خاص ديغرى كه در ذهن بزوهنده وجود دارد
 و جديد پايه گذارى مى شود. بنابراين تعدادى از حقايق كه تاكنون ارن ارتباط چندان محكمى نداشتند اكنون بدون ترديد دارای ارتباط درونى شـي شدها اين فكر در صورتى مفيد واقع مى شود و در نتيجه مى تواند واجد ارند ارزشى

 اعمال نظر جديد در كليت خود، منجر به سؤالات جديدى خرى خراهد شد شد در نتيجئ به مطالعات و موفقيتهاى موضوع براى فرضيات فيزيكـدانان كمتر از تغسيرهاى ارائه شده توسط زبان شناسان نيست.
حال من بيشنهاد مىكنم جزئيات نكتهُ فوق را بيشتر بررسى كنيم و در در عين حال علاقمندم خود را به فيزيك كه با آن سروكار دارم محدود ساو سازم شايد به ظاهر تا حدودى زاويهُ ديد محدود به نظر رسـدن، ولى از طـرف ديعر، مىتوانم اين موضوع را روشنتر بيان كنم. يك مثال كلاسيكى، تشكيل ناگهانى يكـ نظر و فكر عـلمى مـهـهم در داستان اسحاق نيوتن (1) است، او زير درخت سيبى نشسته بود و و با افتادن يك سيب به فكر حركت ماه به دور زمين و در نتيجه| ارتباط شتاب سيب بـا با ماه افتاد. اين حقيقت كه نسبت اين دو شتاب به هم، مانند مجذور شعاع مدار ماه نسبت به مجذور شعاع زمين است)اين فكر را به ذهن او خطور
(به همين ترتيب، جيمز كارك ماكسول(1) هنگام مقايسهُ شدت جريان به روشٌ الكترومغناطيسى با شدت جريانى كه به روش الكترواستاتيكى

 فكر نقطهُ شروعى براى نظرئُ الكترومغناطيس نور او شلد

 تفاوتهاى مشخصى نيز در رابطه با محتوا و تكوين آن به چششم مى خور هورد.
 سرنوشت نظريههاى گوناگون علمى مى شوند. برخى از آنها نهايتاً جـزء

 الذكر بود: نظرية نيوتن در بارهُ شباهت بين شتاب

 ادامه داشت تا اينكه هنريش هرتز (r)، آزمايش بـى نظير خـو تود را با نوسانات بسيار سريع الكتريك انجام داد و نظريهُ ماكسول، آن قدردانى و شهرتى كه

1- James Clerk Maxwell 2- Wilhelm weber
3- Heinrich Hertz

انديشههاى علمى: ريشهما و اثرات آنها / VI
شايستگى اش را داشت به دست آورد.
نظرهاى ديغرى كه وارثين ابدى علم شدند اين بـي بودند كه امواج صوت دارایى ماهيت مكانيكى هستند و پـرتوهاى نـور و گـرما مـاهيت يكسـا دارند. معلمان فيزيكى تمايل دارند كه با اين مسائل خيلى سـريع و گــــنـرا

 يكـى از مـخالفان نتـايج آزمـايشه هاى خـود شــد گـفت، دانثــمندى كــهـ

 تغسير هاى نظرى است.
 شدند متفاوت هستند. مثالهاى پيشين از همان ابتداى شكلرگيرى خود كامل بودند و براى هميشه نيز اعتبار خود را حفظ خواهند كرد. بـرخىى
 براى مدتى حفظ كرده و سيس يا از بين مى موند و يا كم و بيش تا حدود قابل ملاحظهاى تغيير مى يابند. بارها مشاهده شده كـه ايـن نـظريات در مقابل اين اصالاحات مقاومت نموده و به نظر مىرسـد كـه ايـن مـقاومت تمايل به لجاجت داشته و متناسب با موفقيتهاى پـيشين إيس نظريات باشد. گاه ييش آمده است كـه ايـن مـقاومت بـه طـور مـعقولانهاى مـانع

باشد. گاه بيش آمله است كـه ايـن مـقاومت بـهـ طـور مـعقولانهاى مـانع بيشرفت علم شده است. فيزيك نــمونههاى آمـوزندهاى دارد كـهـ شـايد جزئياتش اززش بحث را داشته باشد و من بيشنهاد مىكنم كه با مـاهيت گرما آغاز كنيم.
اولين مرحله توسعه نظريهُ گرما، باگرماسنجى آغاز شد. نظريهُ گرما بر اساس اين فرض بیىريزى شده بود كه وقتى دو جسم با دما دماهاى مختلف
 محل سردتر جريان مىيابل. هيج نوع تغيير كمّى در جريان ايـن فـرآيـند

 وججود داشت و به نظر مىرسيد كه اين مشكل قابل حل باشد بـا فـرض
 جسم تحت فشار خارج شود، مانند آبى كه از اسفنج خيس بيرون مرن می آيل،

 مكانيكى از گرما را مطرح و ضرورى ساخت. سادى كارنو سعى كرد تـا توليد كار از گرما را در قياس با تا توليد كار از جاذ

 همان ترتيب بيز، كار حاصل از گرما با مقكار گرماى انتقال يافته و اختلاف دما تغيير مىنمايد.
 اجسام عملاً از اصطكاك و يا تراكم تأثير نمى يذيرد، ضربهایى وارد شلد و

Vr / انبيشههاى علمى: ريشهها و اثرات آنها
نهايتاً اين نظريه، با كشف معادل گرماى مكـانيكى رد شـد. اهـميت أيـن

 جليدى ساخته و ارائه كردد. اين كار توسط رادولف كلاسيوس انجام شد

 ترموديناميك كالاسيوس ارائه كردند. اوليـن اصـل ايـن نـظريه بـا نـا نـظريه
 واقع نشانگر جهت رويدادهاست، تشبيه گذار دما از بالا به پايين و افتادن وزنه از ارتفاع بالاتر به پايينتر و يا حتى انتقال الكتريسته از پتانسيل بيشتر

 پپتانسيل است كه در آن فقط مىتوانيم تغاضل ها و نه مقادير مطلق را اندازه

مى خورد، قبّل از اينكه بايستد از نقطه تعادل عبور مىكند و يا يك جرقه بين دو هادى، كه داراى بارهاى مختلف هستند، نوسان مىكند. در حالى
 شود، وجود ندارد و توسط طرفداران مكتب انرزتيك گذشته آن را بـى ريط تلقى كردنل و بلون سروصد| اين نظريه كنار گذاشته شل.
من خود در سالنهاى • 1 و • 9 ميلادى قرن گذشته تجربه كـردم كــه واقعاً احساس يک دانشججو چيست هنگامى كه خود را داراى انليشهُ برتر مىیدانل و در مى يابلد كه تمام برهانها و استلالالنهاى عاللى كه تـوسط او
 دنياى علمى به فراموشى سـشبرده مسى شود. مـردانـى كـهـ داراى اعـتبار و
 بودنل، البته چحنين مشكلى نداشتنل. مبدأ تغيير روى هم رفته از يكـ طرف كاملاً متغاوت آفاز شد: نظريهُ اتمى حضور خود را تثبيت كرد. فوكر وجود اتم بى نهايت قديمى است اما
 هـمزمان با كشف مـعادل گرماى مكانيكى بود.]نخست، هـواداران نـظريهُ انرزتيك، شديداً مخالفـ اين تئورى بودند، ولى بـعلدها در اواخـر قـرنى، اعتبار آن تا حدودى پذيرفته شل و به هر حال تـحقيقات تـجربى بـعلى مو جب پيشرفت و موفقيت سريع اين نظريه گرديد.(طـبت نـظريهُ اتـمىى؛ انتقال گرما از جسم گرمتر به جسم سردتر شبيه افتادن وزنه نيست، بيشتر شبيه فر آيند ادغام دو نوع پودر مختلف در يك ظرفـ است كه ده در ابتل| به صورت لايههاى محزا قرار میى گيرنل و سیس با بيوسته تكان دادن،

1- Wilhelm Ostwald
2- Georg Helm
3- Ernest Mach
vo / انديشههاى علمى: ريشهما و اثرات آنها
مخلوط مى شوند. در اين حالت، نمىتوان گفت كه پودر بين حالت كامها

 ونلو (1 بيان شده است

 واقع روى مىدهد از بين رفتن تدريجى نظرئى رئه مخالف و و آشنا شدن نـي نسل

 اين نكته بِردازم.

 دانش پ夫وه فههيده شود، ارزش آن بسيار بيشتر از آن است است كه ده تا تا فرمول

[^2]

 هدف از تحصيل نه كسب آكاهى استى واري و نه تواني

 هوشيارى سطحى و غرور توخالى علمى در اشخاص گردرد. مر من شخصاً

انديشههاي علمى: ريشهها و اثرات آنها / VV

برخورد استثنايى دارند، اما برنامهُ آموزشى براى چنين چـيزى طـراحىى
 موضوع خاتمه نيافته و مورد مناقشات جلى در فيزيك هسـتهاى استى است.
 در زمينهُ جنين موضوعاتى را مورد بحث وبـررسىى دانش آمـوزانـى قـرار دهد كه هنوز جرك صحيحى از آن و اصول مربوط به آن ندارند، چهه رسد به حوزههاى بالقوهُ آن.
عواقب اين طور به روز تلريس كردن، همگام با تـحولات دقات ديقهاى، هنگامى بر ماكاملاً آشكار مى شود كه از ورجود بحث بحثهايى مطلع شويم كه
 متداول است كه هميشه افرادى افكـار مـبتكرانـهُ خـودشان را امـروز در
 مهار كردن برتوهاى اسرارآميز زمين است. از اين تعجب انگيزتر اين كه،

 اميدوار كننده و ارزشمند، به دليل فقدان وسايل مورد نياز، بـا دشـوارى روبه روست و يا كاملاً متوقف منى شود. شايد در ايـنجا وجـود آمـوز

 بعد از اين همهٔ حاشيه رفتن ها در زمينهُ آمـوزش، مـايلم فيزيكى را مورد بحث و بررسى قرار دهم كه سرنوشت مـتغيرش بـسـيار آموزندهتر از تغييرات حادث شده در نظريءٔ گرماست، و آن نظريةُ ماهيت نور است. مطالعهٔ طبيعت نور با اندازهگيىههاى سرعت نور شروع شد. نظريهاى

 نظريه داريم كه مانند دو رقيب داراى قدرت هاري مساري مساوى، سلاحهاى مؤثر

انديشههاى علمى: ريشهها و اثرات آنها / Va
و نقاط حساس هستند. بنابراين بسيار مشكـل است كـه بـرندهُ نـهايى را
 به طور كامل بيروز نمى شوند. احتمال بسيار زيادى دارد كه نهايتاً به يكى
 و ضغف هاى هر يك از دو فرضيه را بررسى كنيم.
 جستجوى خود را براى يافتن منبع تمام تجربيات شـدت بـخشيم و ايـن بدان معناست كه در حال حاضر، ما بايد توجه خـود را بـه انـدازهگـيرى
 روى تجهيزات اندازه گيرى. اين مرحله در واقع حائز اهميت بسيار زيادى

 و درك باشند كه ويـزگگى ها و خـصوصيات فـرآيـند انـدازه گـيرى، و نـيز رويدادهاى فيزيكى در نقاطى كه نور از آنجا سرجشـي مى رگردد، تحت مطالعه قرار گيرند. تجهيزات اندازه گيرى كنندههاى منفعل نيستند كه فقط پرتوهايى راكه با با آنان برخورد مـى ثبت كنند، بلكه يك نقش فعال در زويـداد انـدازه گـيرى ايـفا مـى بـنـند و و
 فيزيكى تحت مطالعه، تنها در صورتى مى تواند كاملاً بِيرو و وابستهُ قانون

باشد كه فرآيند اندازه گيرى، خود جزئى از سيستم محسوب شورد
جِگونه در اين راه بيشرفت حاصل مى شود؟ سؤالى است بس مشكا مشل
 ميذان ديد بررسى را فراتر از شرايط خـاص إـا ديدگاه كلىترى مطالعه كنيم. آيا واقعاً امكان دارد كه با اعتماد به نـغس،

 نهايت برخى از دانشجويانى كه از زمان خود جلو و ضعيفى از آنها داشتند. اما وقتى كه انسان كم كم كم نسبت به آن آن نظريهها
 جاهاى مختلف شكوفا شدند. درك اصل بقاى انرزیى، به صورت رشـا رشـد

 ولى باكمى تأخير. من با جرأت همين مطلب را در مورد ريشهُ نظريههاى

 رويداد فاقد هر گونه ارزشى است، از از اين كار امتناع مى دورزم
 نهغته باشد كه با گسترش آزمايشهها و بهبود در زوش ها تحقيقات نظرى خودبه خود مجبور باشند تادر يك جهت خاص در دورت

1- Julius Robert Mayer	2- James Prescott Jule
3- Ludwig August Colding	4- Herman Von Helmholtz

انديشههاى علمى: ريشهها و اثرات آنها / 1
چذيرند.

 وجود هر فكر جديد نتيجهُ تخيل خالق آن است و تا اين حـــ بـيشرفت، حتى در ريـاضيات كـه دقـيقترين عـلمههاست، گـاهى اوقـات بـهـ عــامل غيرعقلانى بستگى دارد، زيرا غيرعقلانى بودن خود يك يك جزء ساختن هر فردى است.
اگر ما همواره در نظر داشته باشيم كه هر فكر مشـخص در اثـر يك تجربهُ خاص كسب شده است، آنگاه متوجه می شويم كه زمانى كه در در آن به سر مىبريم، رويدادهـاى جــديد فــراوانـى هــمراه خـود دارد و بسـتر مناسبى براى توليد و ترويج افكار مهيا مى سازد و اين يكى امر طـبيعى و و
 جديد تبيين شود، بين دو واقعه متفاوت ارتباط ايجاد مى شُود. بنابرايـن،
 افكار همواره بيش از رويدادهاى موري موجود استـ. دلايل ديخرى كه مىتواند تعلّد انديشههاى عـلمى را را در ايـن زمــانه توضيح دهلد، احتمالاً اين واقعيت است كه بيكارى گسترده، خود موجب تشويق افراد با استعداد و پرنشاط براى داشتن يک تجربهُ كارى ارزشمند
 :راى آنان خوشايند است، بلكه يک گريز رضايت بخش ور و آسان محسوب

 بگويم كه به ندرت هفتهاى مى گذرد كه من مقالات مختلفى با حجمههاى

بغويم كه به ندرت هفتهاى مى گذرد كه من مقالات مختلفى با حجمهـاى مختلف از اعضاى حرفههاى گوناگون دريافت نكنم: معلمان، كـارمندان
 هستند، بررسى كامل اين نوشتهها تمام وقت مرا، حتى اوقات بيكارىام را مى
اين مكاتبات مى تواند به دو دسته تقسيمبندى شوند. گروه اول كاملاً

 دوران سخت تلاش شخصى است. همختنين اين گروه دچار توهم شده شداند

 ناگهانى خواهد بود، مڭر آن كه يك ريشهُ عميق در واقعيت داشته باشد. هر فردى كه خواهان كسب ديدگاه علمى از جهان است نخست بايد ذر

انديشههاى علمى: ريشهها و اثرات آنها / rer
آگاهى و شناخت حقايق بكوشد. امروزه ديغر يك دانششجو نمىتواند ديدگاه جامعى از هـر بـخشتى از علم داشته باشد و در اكثر مواقع او بايد حقايق را با واسطه دريافت كند. اين خيلى اهميت دارد كه او در يك زمينه مهارت داشته باشد و در رشته

 تبحر و آگاهى خود را در زمينهُ خاصى از علم نشان دهند. حال اهميتى ندارد كه دانشكدهُ فلسفه به علوم طبيعى وابسته باشد و يا به علوم عقلانى. ديگر چيزى كه اهميت دأرد اين است كه آن داوطلب توانستنه بـاشد بـا مطالعهُ واقعى با روش علمى آشنا شده و آن را آموخته باشد.

 زيرا اينان نويسندگان و دانشجويان با دقتى هستند كه كار بسيار عالى در زمينهُ خاص خود ارائه مىدهند. امروزه مقياس كار علمى طورى است كه ضرورت داشتن تخصص همچجنان شديدتر احساس مى شود و در نتيجه دانشجويان جدى، مايلند كه به ماورای محدودهُ حوزهُ كارى خود بنغرند و آموختههاى خود را در ساير شـاخههاى عــلم بـه كـار بـرند. بــنابرايـن مشاهده مىكنيم نوعى گرايش وجود دارد كه دو شاخئهُ مجزاى علم علم را با با يك فكر به هم وصل كند كه به نظر دانشجو هم متقاعد كننده مى اين راه او سعى مىكند تا قوانين و روشها هايى راكه تاكنون در حيطهُ كارى خود آموخته و با آنان آشناست به يك حي حيطهُ نامأنوس ديگر تعميم دهد تا تا شايد بتواند مسائل آن را حل كند. اين تمايل به ويزه در ميان رياضى دانان، فيزيكى دانان و شيمى دانان بيشتر بوده و تلاش مىكنند تا بـا اسـتفاده از روشهــاى دقــيق خـود، نـورى بــر مسـائل بـيولوزى، روانشــنأسى و

جامعهشناسى بيافكنند. در عين حال نبايد فراموش كرد براى اينكه چحنين

 آشنا باشد، بلكه براى اينكه انديشههاى او بيشتر ثمربخش با باشند حقايق و مشكلات ساير زمينههايى كه مى خواهــد نـظر خـود را در آنها اعمال كند، آگاهى داشته باشد. اين نكته بسيار مهم و قابل تأكيد است زيرا
 مدت زمانى كه براى آن صرف كرده و مشكالاتى كه با آنها مواجه شدهده با با اهميت نشان دهد. بس از بيدا كردن راه حل مسئله او سعى مى الى

 كسب كنند، هرگز نبايد فراموش كنند كـه دانشـجـويان ديگـرى در سـاير

 حقيقت است كه چققدر بارها به اين قاعده بیى توجهى شــد
 تا خود را به فيزيك محدود سازم كردهام، پرهيز نمايم.
همهُ نظريههاى عمومى فيزيك، در عمل، كم و بيش با باكمى مهارت به حيطههاى ديگر تعميم يافته|ند، تعميمى كه اغـلب مـربوط بـه وازْههـا و اصـطلاحات است. جــنانحه، وازهء (اانـرزى)" را بـا مـفهوم فـيزيكى آن در

انديشهماى علمى: ريشهما و اثرات آنها / /

 اصطلاح ثابتهاى جهانى از قبيل جرم، بار الكترون يا يا يروتون يا ياكوانتوم
 تغييرى هستند كه اصولاً ساختار نظريهُ اتمى بر اساس آنـا آنها بنا شده استا وتا

 حالت به تنهايى احتمال ندارد و و به طور ميانگين حار دالات الات محتمل بيشترى در پیى خود دارد. تغسير اين اصل از نظر زيستشـنـاسى بيشتر نشـانغر

تجزيه است تا بهبود، به بيان ديگر احتمال آشوب، روزمريگى و ويا يا ابتذال

 انديشهٔ دستيابى به كيميا و تبديل فلزات بیى

 اينكه حركات الكترونى شبيه حركات سيارات است، است، بنيان فيزيك اتمى رئ را

انديشههاى علمى: ريشهها و اثرات آنها / NV
ديگر، اقبال با افراد جسور است. در نتيجه، براى موفقيت در اين امر، بهتر

 واقعيت دنياى خارج و يا نظريهُ عليت مصداق داشت اشته دو مورد مهم اين نيست كه آيا آنها حقيقت دارند يا نها بار بلكه اين مهم است است

 چنانجه فقط ارزش آن را در نظر بگيريم؟

 به افرادى داشت تا آن را بنا كنند و با ديگران نيز در ار ارتباط بـا بـاشد و و ايـن يعنى مقدمهاى بر اصل كليت.
در اصل يكـ رويداد فيزيكى از دستگاه اندازه گيرى و ياعضو حسى كه
 اصل هم نمىتواند جدا ا از محققينى باشد كه در آن رشته فعاليت مى مكنتد.

قسمتهاى كوجكتتر تبديل مىكند، به آن آسيب رسانده و و يا در واقع آن

 دو ديدكاه بود. اما حتى فكر باز و و جامع گوته تابع محدوديت

انديشههاى علمى: ريشهما و اثرات آنها / 19
|حساس نور در ذهن قائل نشد. بنابراين، باعث شد تا با قضاوت نادرست
 ولى به هرحال با مشاهدهُ هر نظريهٔ مدرنى از كليت در فـيزيكى، مـمكن است او اين تغيير را تائيدى بر طرز تفكرش استنباط كرده باشد.
 آن بوديم، اين بود كه در مركز علم يكى هستهُ غيرعقلانى وجو

 نمىتواند موفق باشد. در نگاه اول اين پــنين وضـعيتى كـاملاً عـجيب و نارضايتبخش است، ولى در نگاه دقيقتر مى بينيم كه تهيزى به به غير از اين اين نمىتواند باشل. يك بررسى دقيق نشان خواهد داد داد كه وظيغهُ هر علمى در ميان راه، واقعاً مشخَص مى گردد و نه در آفاز. به همين دليل مجبور است

 فعاليت مى سازد و توانايى تغسير صحيح نتايج بـه دست آمـلده را بـه او

 آزمايشگر، تاريخدان را مفسر تاريخ و متن شناس را خط شناس با تجربه

تعريف معينى دارد يا نه كاملاً بى اهميت است، آن چجيزى كه اهميت دارد

 يا يك جامعه كار صورت گرفتئ ارزشمند است است

 است تحقيق است).

علم و ايمان.

هر سال حجم عظيمى از تجربيات كسب مى كنيم كه حاكى از يبشرفت
 جديدى قرار مى
 به دست فراموشى سيْرده مـى شوند و اتـر آنـها يك ريك روزه مـحو و نـابود

 است، لازم است خود را در معرض انبوهى از از اين تـغييرات مـتنوع قـرار

 هر جهتى مى يبند كه گمان رود در آنجا آرامش و ونشاطى برانى براى ارواح خسته و درمانده يافت مىشود.
كليسا بايد چنين آرمانخواهى هايیى را فراهم سازد، اما امروزه كـلينـا

كليسا بايد چنين آرمانخواهى هايى را فراهم سازد، اما امر امروزه كـليسا
 بنابراين جوانان كم و بيش به جانشين هایى نامطمئنى متوسل مسى شوند و و
 تعاليم جديدى هستند. مايهُ بسى حيرت است است كـه تـعداد اد بـى شمارى از از مردم، حتى از قشر تحصيلكرده، شيغتهُ اين مكاتب مى شوند، مرامهايىى
 خامترين خرافات.
-سهل است كه بيشنهاد كنيم، شايد بتوان از طـريق ديـدگاه عـلمى بـهـ فلسفهُ جهان هستى دست يافت. اما چحنين بيشنهادى معمولاً توسط همين جستجوگرها با اين عنوان كه ديدگاه علمى ورشكسته است، رد میى شود. در اين بيشنهاد پايهاى از حقيقت يافت مى شود و در واقع كاملاٍ است. چنانجٍه وازهُ علم را به معناى سنتى خوده، كه معنا و مفهوم اعتماد به قوهُ ادراك و استنباط از آن مستغاد مى شوده، به كار ببريم. اين روش ثابت مى كند كسانى كه به آن باور دارند، درك صصحيحى از از واقعيت علم ندارند حقيقت چچيز ديگرى است. هر كسى كه در تكوين و توسعهُ شانـاخها

 مى شود و اين اصل همانا ايمان است، ايمانى كه رو به به سوى آي آينده دارد. گغته شده است كه علم هيج گونه فرضى ندارد: هيجِ گفتهاى تا اين اند اندازه بل و اسغبار فهميله نشده است. اين درست است كه هر شاخهاى از علم
 است كه جوهر هستى علم، فقط محدود به اين مواد خام نمى شود، بلكه بستگى به روش, استفاده از آن دارد. ماده هـميشه نـاقص است و و شـامل

علم و ايمان / 9 ج
قسمتهايى متعدد و مجزاست. اين مسئله در بارهٌ مقولههاى علوم طبيعى و واقعيات متعدد علوم مصور صدق مىكيند.
 است و اين نيز به نوبهُ خود با مشاركت و اتحاد افكار انـار انجام مى انديشه از طريق ادراكات حاصل نمى شود، بلكه زايـيدهُ تصصور و تـخيل محقق است، فعاليتى كه شايد ايمان و يا احتياطاً فرضيهُ مقدماتى نا ناميده شود. نكتئ اساسى اين است كه محتواى آن به هر شكل به وراى دادههاى
 نيروى هماهنگ كننده به كيهان نسبت داد و بر همين مـقياس اطـلاعات
 هوشمندانهٔ روحى كه توسط ايمان برانگيخته شدهـ، يكى علم واقعى و تمام و كمال را عرضه نمايل.
حال، سؤالى كه مطرح مى شود، اين است كه آيا بينش عميقتر مـا از
 در مشكلات زندگى از آن بهره ببريم. بهترين پاسخ را مى توان ان با رجوع به دانشمندان بزرگى يافت كه اين ديدگاه را پذيرفتهاند و در حقيقت كسانى
 بسيارى از محققين كه علم، وجود عصبى و ناآرام آنان را قابل تحمل كرد و و و اون حتى باعث شهرتشان شده من نام يوهان كپلر (1) رادر مقام اول قرار مى دهمهم. تمام زننگى كپلر آكنده از فقر، ناميدى و رنج بوده فقر و تنگدستى حقيقناً
 شد براى دريافت مستمرى از حكومت، كه مدتها به تعويق افتاده بود، به

پإرلمان رُزنبرگ متوسل شود. شايد بزرگترين گرفتارى وى زمانى بود كه

 كار كرده ارائئه خدمت علمى بوى بود. منظور اعداد و ارقامى نيست كه او در در

 بنابر اين، مشاهده مى كنيم كه در جنين مواردى و يا مشابه آن، نوعى ايمان

علم و ايمان / 90
فعال در جريان است كه قدرت اصلى آن بر دادههاى منفرد علمى اعمال مى شود. شايل ما بتوانيم حتى يك گام جلوتر بروني يك ايمان بيامبر گونه در ايجاد هماهنگى و و توازن در مراحـي

 مدارك و اسناد مى گردد و آنهايى را كه كشف كرده مطالعه مـى كند و يـا

 عقلانى در بيش گرفته باشد تا سبب هدايت تـحقيقاتش شـود و او را در
 اثبات طرح و بيشنهادى، آن را كشف و فرمول بندى كرده باري باشد.
 سر راه محقق كمين كرده است و به هيج وجه نبايد از آن به راحتـي ونى و بـا بـا
 داده شده كذب تفسير شوند و يا حتى مورد غفلت قرار گيرند. اگر چنين

 به سبب هيجان و احساسات ناشى از اعتقاد جزمى علمى خـى خود به به دام اين خطر افتادهاند. امروزه اين خطر همحون گذشته، به شدت وجود دارد و تنها داروى آن، احترام گذاشتن به حقايق است. هر قدر تخيل و تصورات

99 / 99
فراموش نكند كه حقايق گوناگون همواره بدون استثناء، اساسى را تشكيل مى دهند كه بدون آن علمنممى تواند وجود داشته بايد پيو سته از خود بيرسد كه آيا برخوردش با با با اين حقايق درست و مقبول

بوده است.

 منطقى در جهان ميسر است.

[^0]: * - جدأسازى قلمروها

[^1]: (.3cholar -*

[^2]: 1- Max Von Laue

