مباحث بِيّادى


## 

(Fin) nemo was

$$
\operatorname{lin}_{3}
$$




> انتشارات دانشثاه فردوسي (مثهد ) شعاره 0 | |

## مباحثبنيادى

 تحلبي سازههاتأيف
نويس ، ويلبر، (اونكو)
ترجمi

مريدونايرانى

## فهرست مطالب


هروزءهاكي مربوط بـهازهماي بهندـى
فلسغه طرح سازهما
مصالع ساختماني
انواع نارساهيها وكسيختكيهاي سازهها
شكــهاى سازهما
سازههاى كابلى
تحلهل رنتار سازهها
دركهرهها , مستوليتتهاى حرف مهندسى
فمل اول " متد مه "
Fa

$$
\begin{aligned}
& \text { ( } 1 \text { - } 1 \\
& \text { r-1 } \\
& \text { • بارهاي مرد r-1 } \\
& \text { بارهای زنده _ } \\
& \text { - }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ريشڭفتار عترجم } \\
& \text { متد مه مو'لغين } \\
& \text { پيشكفتار } \\
& \text { تاربغخته }
\end{aligned}
$$

fs
$\forall Y$
\& $\lambda$
$\Delta 1$
$\Delta T$
$\Delta T$
af
$\Delta \Delta$
$\Delta Y$
$\Delta Y$
$\Delta \lambda$
$\Delta \lambda$
$\Delta 9$
90
91
gr
gy
GY
5A
99

Yr
yf
YY
$Y A$
(2)
s-1

ض $\quad \lambda$ - 1
9-1

- 1

11-1 1 1 بارهاى حاصل از باد
ف $1 r-1$
ir-1 1
|
10-1 10
| 9 - 1
نيروهاى ناشى از تغيير دما 1 ا
1 1 - 1 ساخت تير ورقها
19-1


- 1

ت r r - 1
ضr-1
位


فصل فصل دوم " عكسالعملهها"

1-T
ك $\quad$ - $Y$




Ar $\quad$ Y - Y


فصل سوم " تلاش برشى و و لنكر خشیى " r 11 - $T$
r -
r 10 -
loy
109
111
ilr
110
111
119
iry
iro
iry
r-r
 a-r r-r
 A-r ( 10 - $-r$ ll

نصل جههارم " خرياها با شبكههاى مستوى"
ب- ا
خرهاهاى موجود ايدهال Y -
r - † ترتيب اعضاء هك خرها
ث- ( $\quad$ بعث روش $\quad$ Y - $-\uparrow$


فصل هنجم " ايستايى ترسيمى

- 1 - 0
r-
تر- $\quad$ -
بـ ه ه ه ه ها ها ها - $\quad$ كثيرالاضلاع (تعادل ) نونيكولر $\quad$ و $\quad$ اله



ه- 10 - 10
ا 11 - ه
IT- 0 -
-
فصل ششم " خطوط تأثير "

- 1 - 9
r-q
rra خ-
خ-Y
rro
Yry
rro
rra
ryo
fit
rys
YYA
rfi
rfa
roo
ras roy 509 §
r80
rey
ryr
ryr
YYA
YYq
rat
ray
TAF
ras
TAE

جداول تاتثر \& -

فصل هفتم "خرياهاى علـها و ستفها "
$\Delta-q$
¢شرح خشوط تأثير شاهتيرها با تبر ربزى كف Y-

 § \&-
\& \& 8k 10 - 9

$$
+\quad r+0 \quad 0
$$

مقد مــه $\quad 1-Y$
تحلـيل كلى بی خرهاى سقف
تنشهای هجاز براى تطعات تحت تنش حاصل از باد
تحليل $F$ تلى
تغيير علامت تنـث $\quad \Delta-Y$
$\varepsilon-Y$
علـهاى متحرك ــكلـيات $Y$ -
$A-Y$
بلـهاى بالارونده $\quad$ ه-Y
$10-Y$
عل-

TAF
Y Y Y

فصل هشتم " سازههاى با د هانه وسيع "

Y 91
1-A
Y91
T-A
Yq4

Y97
-
Y9F
ه
Y99
я-
rol
تحلهيل توس خرهایی به مغصل Y-A
ror
خ $A$ - A
$r \circ \Delta$
roy
roy
11-A

فصل نـهم " شبكههاى سهبعدى
ril
(1-9
rir
شرط تعادل $\quad$ - $q$
ris
riv

rro $\quad$ - 9 .
rrr
ध 9
rrr
كاربرد قضا Yای مخصوص _كنتد شودلر
rys
A-9
rYY
rrq
rri
9 - 9 - 9 تئورى كلى شبكههاى سهبعدى
11-9

بِازده

> فصل دهم " كابلـها "
rrq
rrq
rHI
ryt
ryf
rys
rys
r4A
ryq
rol
rof
ray
ra人
roq
rgo
rgT
r\&s
rq9
req
ryi
ryp
rys
ral
ryl
rıs

11 - 11
1010 1-10
r 10 - 10 r-10 - 10 ه - ا 10 - 10 ط ط - 10

 -10-10 الـهاي معلق معين |1-1| مساءيل

فصل يازد هم "تحليل تقريبي سازههاى نامعين"


$$
\text { ! } 11 \text { تعداد مغروضات لازم }
$$

$$
\text { † - } 11
$$

$$
\text { 11 - } 11 \text { خرباى جند كونه }
$$

11
خرياهاى قابى كارخاندها
1-1 - برجهما با با يههاى مستقيم

1ا-ه أتش حاصل از بارهاي جانبي در تابههاى ساختمانى
|1-1| روش برتال

$$
\text { || | } 1 \text { روش طرهاى }
$$

| آ-| روش ضريب
| 1 | 1 مسائل

فصل دوازد هم＂تغيير مكان سازهها＂
rqu
「9ヶ
ア9я
「99
fol
$f \circ \Delta$
p10
frs
pro


PFI
ffy
$4 \Delta 0$
$f \Delta s$
fey
PYO
YYY $\quad$ PY－IY
fYo
fys
PYY
PYA $\quad$ YY 1 －IT
far
fat


Ir
Y

Ir－Ir
｜A－IT
I－I I

－IT－Ir
Mr－Ir
فصل سيزد هم＂تحلیل تنش در سازههاي نامعين＂

ヶ9 9
متد
YqY $\quad$ Y－IY
499


$$
\begin{aligned}
& \text { Dor } \\
& \text { - } \\
& \text { D1F } \\
& \text {-1A }
\end{aligned}
$$

ArI مثالها A－Ir
ary
orq
－－IT
－ 9 －Ir
arr
ary
$\Delta Y$ 。
ays
aYF
$\Delta y Y$
$\Delta \Delta s$
$\Delta \wedge \Delta$
IA－IT IT
reoror

فصل جهارد هم＂خطوط تأثير هازهماى نامعين＂
gor
sor
soy
sil
810
r If If
 M P IP位

ضمائـــــ
ضميه الف ：تبديل Tحاد متعارف بهـكديكر

ضمهي ع ：متادهر FEM در تهرهاى مختلف
وازههاب (فارسى _ا:كلهسى )

## تيـئكفتا ر مترجم

خداي را شكر كه توفيق ترجمه كتاب حاضر را بهمن عطا فرمود تا بها يا بن وسيله بتوانم
 "Elementary Structural Analysis " حاضرك ترجمه بدون دخل و تصرفكتاب


 , صنعت جديد عصر حاضر است لذا در موارد لزوم مطالب مغتلف كتاب براساس آن جاه تصحيع كرد يده است .

 جهت تبد يل Tحاد ارائه كرديدها است .

 در ايران بهموازات آن Tورده شده است




 ادبي

نا مهردكان بـاهن وسيله صميهانه سـا سكزارى مىشود .
 ههعهده داشتهاند و همجنين از ساير دستاندركاران مؤ سسه هاب و انتشارات
 خالصانه تشكر مىشود .
بدهیى است كه اين ترجعه خالى از اشتهاه نيست ، از ممكاران كرامى ،اساتيد ارجمند و دانشجويان عزهز انتظار دارم كه هركونه اشتباه و لغزث موجود در آن را بـا هنجانب هادآورى فرماهند
بريـون ايرانی

## مقدمه مؤ لفين

از سال 19 ال ميلادى كه اولين ها






 سال اخير بنحو خارقالعادهایى توسعه يافته است .












 تأكيد مىشود كه وظيفه اساسى مهندس سازه طرح سازه است و ونه تحليل فـن , و تحليل سازه

مباحث بنيادى تحلـيل سازهها

فقط وسيلهاى جههت بـاتمام رساندن وظيغه هـهندس سازه مى باشد و نـها يت وظيفه او نيست . امروزهكتابهاى ارزندهأى جهت طراحیى وجود دأرد كه مؤلغين در طول اينكتاب بهانـها شـاره كردهاند
مؤلفين از همكارى افراد نامبرد ه؛ زير در تههيه دوچاپ قبلى اين كتاب تشكر فـراوان
 هارولد اسميت . يرفسورنوريس يكى از مؤلغين كتاب حاضر همواره خودرا مديون و سإسكـرار


مؤلغين اين كتاب (یروفسور نوريس و هروفسور ويلبر ) عميقا"سـاسكزار مرحوم هروفسور


 والتر فايف و جان ميـج تشكر مىنها يند .
جا الز هد نوريس
جا ن نلسون ويلبر
جنّل/وتكو

## بیشتخنتار











 احتياجات اساسى بشر كه همان غذا و مكان مىباشـد ،درطول زمان همواز زه ثابت مانده
 الفزونطلبى بشر همواره او را بهكسب بيشترى در جهت رفع اين نياز وا دا داشتـ است . كاهي تغاوت بين اين دو جنان فاحش بودهه الست كه بشر بدون اينكه واقعا" معين كندكهنياز

 اوست كه زمانى سبب تيشرفتى محسوس و زمانى كو ياى تنـزلى فا حش است .







 ذوق و تتجربه طراح است حهَ باشد .


 طرح و اجراى سازهها طبقهبندى شدهاند . در يك جنين موقعيت حرفهاى آثار طراحان و Torroja Maillart فرازيـد , Nervi بيشتر تحت تأثير بيشينيان خود بوده است ، كليه اين مهند سين مشـهور
 توجها سـتاينا است كه د ركار هاى خود نـ تـنها از معلومات علمى و رياضى خود ود يكرانا استغاده



 برد ه شده است T T موخت


قد يمترين ساختمانههايىى درموردانيها اطلاعات حقيقى وجوددارد دراعماقدريا جهها


Eduardo Torroja "Philosophy of Structures''C'niversity of California Press, Brerkeley, 1958;
Eduardo Torroja, "The Structures of Eduardo Torroja," F. W. I odge Corporation
Now York, 1958.
Pier Luigi Nervi, "Structures"F. W. Dodge Corporation, New York, 1956
Leonard Michaels, "Contemporary Structure in Architecture," Reinhold l'ublishing Corporation, Now York, 1950.




را در T Tيا , Tسياى صغير كثف نموده الست *.

شايد مههترين و جالبترين اشكال ساختماني كه مورد توجه مسنـد سين سازههاى الوليـه


 000 00000 كوتيك Gothic در كليسا های با شكوه اروها در ترون وسطى و در حدفاصل سالـهاى الـا



 نظر با شد .
شكى نيست كه مسند سين مصرى و سابير مهند سين با ستان براى طرح سازههاى جـد يـد



* كتب عالى و متعددی در مورد تاريخهجه , تكامل مكانيك ساختمان و مهندسىسازهها وجود دارد كه از آن جمله مىتوان كتب زير را نام برد :

Steplien P. Timsishenko, "Ifixtory of Strength of Materials," MeGraw-Hill Romk Company, Inc., 1953;
H. M. Westergaard, "Theory of Eleaticity and Plastirity," Harvard Univer sity Press,

Cambridge, Mass. 1952;
David H.Steinman and Sara Ruth Watson, "Bridges and Their Builders," Dover Publications. Inc., New York, 1957

مبا حد بنـيادى تحلميل سازهما



ولى T Tنجه Tنان در مورد تنتورى سازهها بـنا نهادهاند مسدود بهنظريات فلاسغهاى نظير TAY-TIY)Archimedes

 اشكال ساختعانى ها يهكذارى شده است ولى واضح است كه Tنهـا نـيز معلومات نا جيزید رمورد

 بوده است استغا ده میىردند . اكثر معلومات مهندسى سازهء يونانيان و روميان در قرون وسطى مغتود شد و رــــساز











 است ،نامبرده با فرض صلب بـودن مهالح جنـين نتيجهكيرى كرد هاست كه در لحظهז كسيختكىى تارهاى تحتانى متطع كسيخته شده و تحمل فشار هتمركز را ندارد و تنش كششى دری دركلارتغاع مقطع بهصورت يكنواختت كسترده شده است . چحنين فرض كسترش تنش در حيطهء عـلكرد ارتجاعى مصالحى كه از مانون هوك تبعيت مىنـمايند صحيح نيست و فتط در حيطهُ خعيـرى
 بهمقاومت واقعى يك تير تره نـىكردد ولىى ازابين نظركه نسبت مقاومت دوتبـر ورا با مقطع مشابه



 حال حاضر توازن بـهترى بين مقارمت سازهها و عـلكرد ارتجاعى قطعات اراءـه مى انمود .








 , بها هنتنرتيب عملكردى از حالت خميرى را ان انشان داد .

 مكانيك مصالح ايمهكارى كرديد و لذا مى بايد كولمب و ناويه را دوبا يهكذار اصلى اين رشته







 ننـودها الـت .




 Castigliano (1Ar|-1AYq) Maxwell (1A01-1A9Y)
 (|AMO-19YY)A. Foppl ( $1 \wedge \Delta 9-1 \wedge 99$ (1)
, ( $1 \wedge$ مولر برسلو (
 اراءه نظريه مكانيك مصالح و تحلـيل سازهها بهنتحوعك اساسا"بههمان صورتكه د رحال حاضر اراءءه ميشود زحـات غراوانى تحمل نعودها اند . در مباحث بعدى ابين كتاب همزمان با اراءءه

 در اولمين سالهاى ترن نوزدهم توسط بنديكسن Bendixen • مانیى Maney و استنفلد Sstenfeld از سال 1900 ميلادى دوران مهندسى جديد سازهها توسط هيشرفتههاى شكرف زير

مشخص كرد يده است :

صفحات و ارتعاشات*

##  نقش بسيار زيادى ، در ـنجاه ساله كذشته داشتهاند ميتوان كتب زير را نام برد .

A. E. H. Love, "The Mathematical Theory of Elasticity," Cam bridge University Press, London, 1892, 4th ed., 1927;
A. Föppl and L. Föppl, "Drang und Zwang," R. Oldenburg-Verlag, Munich, 1920, 2d ed., 1928;
H. Lorenz, "Tech nische Elastizitätslehre," R. Oldenburg-Verlag, Munich, 1913;
A. Nádai, "Plas ticity," McGraw-Hill Book Company, Inc., New York, 1931;
S. P. Timoshenko, "Theory of Elasticity," McGraw-Hill Book Company, Inc., New York,l 1934, 2d ed. with J. N. Goodier, 1951;
S. P. Timoshenko, "Theory of Elastic Stability," McGrawHill Book Company, Inc. New York, 1936;
S. Timoshenko, "Theory of Plates and Bhells," McGraw-Hill Book Company, Inc., New York, 1940, 2d ed. with S. Woinowsky-Krieger, 1960;
R. V. Southwell, "An Introduction to the Theory of Elesticity for Engineers and


ثكل (ه -

Y - توسعه ماشينآلات ، وسايل و فنون بيشرفتها زما بيشممالح و توسعهكاربرد تحليل
تجربى و تحقيقى در سازهها

†

Physicists," Oxford University Press, London, 1938;
I. S. Sokolnikoff, "Mathematical Theory of Elasticity," MeGraw-Hill Book

Company, Inc., New York, 1946;
F. Bleich, "Buckling Strength of Metal Structures," McGraw Hill Book Company, Inc., New York, 1952;
W. Flügge, "Statik und Dynamik der Sohalen," Springer-Verlag, Berlin, 1934;
K. Girkmann, "Flächentragwerke," Springer Verlag, Berlin, 1946, 4th ed., 1956.

سازهها و استغاده از نتايع حاصل در روثـهاى طرح سازها
 غيرقابـل مصرفـبودن قطعات و مقا يسه نتايج حاصل با ضرا يبـ متعارفـ ا فُمينان


 شد ممكن كرد يد . Y
فشرده بتنى د ر ا جراى سازهما

 فلزى و بتنى استغاده كرد يد .

 0 ا ـ كاربرد متداوم روثـهاى جد بد اجراى سا حمل ، نصب و نكهيدارى سازهما . بدون شك د رشصت سال اخير روش تخـش لنكر مههترين سهـم را د ر نظريه سازهها داشته است ا ين روشتوسط مرحوم یرفسورها ردىكراس Hardy Cross اراءَكرد يد و سبهس بـصورت




 معادلات جند مجهولى ميكردند تحتا الثعاع قرار داد .
 بيشترى مييافتند سبب شد كه در مسائل طراحى و محاسبات تحليلى سازهمأ كه در امور
 اليننوع ماشينهاى حسابكر، مهند سين قادرندكه نظريه كلاسيكى سازهها را براحتى وحتىزهانى كه أين تتؤويها منـجر بهد ستكاه معادلات جندين و جند مجهولى ميكردند بهكار كيرند. اين



 مى مـاشد
همانطورىكه اشينهاى حسابكر بسيار مهم بودهاند ، يكى از مهمترين تحولات موجود






 در شيكاكو و 110 البقه "مركز تجارت جهانى "World Trade Center در نيـويـورك
 برانــويك Brunswick Building در شيكاكو ، bor طبقـــه " ساختمان ميدان شل " " د در هستــون , One shell plaza Buildina در نيواورلئان هنر ساختمان سازى بتتـى را نشان One shell Square Buildina
 رويايى متعددى بودهايم

## پرورثههاى مربوطبهـازههاى مهندسى

معمولا" مهندس سـازه زير نظــر و در خد مت مهندس طراح تروزره كـهـ به طــور




 در طرح ماشين' لات سنكين كه مورد نياز مهندسين مكانيك ، شيمى و يا برق مى. اشد بآنان






طرح -اجرا











 جهت متأيسه مالى و يا منا قصه تهيه مى مكردد .
 دركارخانه و نصب اوليه آنها ، حمل قطعات بهكاركاه و بالاخره ساخت و و نصب آنهادر انكاركاه

 عدم امكان تهيه مصالح موردنظر و يا برخورد با مشكل ديكرى ديكا وجود دارد .

فلسفه طرح سازهها
همان طورىكه قبلا"ذكركرديم منظورازطرح الـازهها اراءه منا سبترين خصوصياتو ابعــاد براى تطعات سازه و طرع جزئيات و اتصالات آنها مى با شد . بديههى است كه اين مرهله از



























 با $1400 \mathrm{Kg} / \mathrm{Cm}^{2}$ بك باشد ضريب اطمينانى برابر با







ميباشد .

مبا حتث بنـيادى تحلـيـل با زها

موجود است و روش مبتنـى بـر تنـش مجاز بـهعنـوان روش بكملى بـر ا'هن نـوع محاسبات تلقى

 بارهاى مؤثر بـر سازه در اعداد منا سبى كه ضريب بار خوانده مىشود و مقدار عددى Tنـها
 باركذاريههاى مختلغ و طول زمان تركيب چنـد باركذارى حاكمالست تعيهن ميكردد . همصنـين در اهن روش هركاهمحاسبه سازههاى بتتـى مطرح باشد مقاومت تـظرى قطعاتبـتنىرا با انتخاب

 موردنـظر تعيــن هقطع ميكردد و بـرطبق شرايط موجود بارهاى ازد باد بافته معكن است ( 1 ) سبـب كسيختكى ناشى از خستكى ، كماتشى و با تردى مصالح و با (T) سبـب جاریشدن كا مـل
 خميرى سازه و عا (f) سبب قرار كرغتن كل سازه بـركسيختكى كامل . كردد . طرغداران اهن روش عقيـده دارندكه نتا يج حاصل از اين طريته بيان كتنده مقاومتى
 و غير خطى كه در حـيطهء عـلـكرد نـها يیى سا زه وجود دارد منظور ميكردد .
 اعست كه روش مبتـى بـر ضريب الطمينان نـهتنهها نـادرست و دور از واقعيت الست بـلكه فلسفه




 بـراسا س مطالعات T مارى انجام كيرد و يـرا ساس شود . د ر حال حاضر امكان ندارد كه چنـين روشی را د ر طراحیى سازهای بـكار بـرد ولـىامكان

 واضح ضريب و عا احتعال مربوط بـهرموردى را هبان كنـند .

## مصالح ــاختمانـى





 قدرت ذوب آن در حد وسيعى همكن كرديد .













T هنى در سال IVY| ميلادى در ا:كلستان احداث كرديد .

 براين نياز بود. اختتراع كوره بسمر Bessemer در سال \&



 مى شود با فنون مختلف و روشهاي متعدد بدون آنكه بهطورمشخصى خصوصيات فيزيكى ${ }^{\top}$ نـن
 مقاومت كثشیى






 داده شده انست . مههتربن عيب فولاد اكسا يش سهل آن است و لذا آنرا مى بايد توسط رنـ و يا ساير


شكل (ษ - 0 ) نمودار تتش - كرنشي مصالع مختلف

مواد ديكر هوشانيد . اكر فولاد در مكانى كه امكان حريق آن وجود داشته باشد بهكــار رود


 محورى قرار كيرند (كسيختى ناشى از تردى فولاد هنوز هم بهطور كا مل مل حلنشدهاست استرجه مكانيسم اهن شكست بهنحو مطلوبى تحليل كرديده است است ) .

















 هیشرفت مهم و روزافزونى در طرح ساختم













و بتن ريزى كاهش داد . .





 روانیى بتن , امكان تهيه مصالْ لَ
















 ابعاد موردنظر را با درنظركرفنت تغيير Tن د ر اثر حرارت و رطوبت طرح نمود . واضح الست
 Tنها است . در حال حاضر بهد لـيل توسعه وسيعى كه در اجراى سازهمای فولادى و بتتن مسلعبوجود










 مشخصات مكانيكى T
 مخصوص يكنوع بـلا ستيك مناسبى را انتخاب نمود . تتجربه نشان مىدهـ هد كه كاربرد مصالح علاستيكى در مهاورت هوا محدود است لـذا با يد بـها ين خاصبيت مواد بلاستيكى در طرح قطهات اولـيه سازهها توجه نمود . يكى از موارد كاربرد مصالح هلاستيكى استفاده ها از آنها در
 سازهها يـيشعينى مى شـود. .
بكى د يكراز مصالع بيششرفته ساختمانى تركيبى از فيبر و يا ا جسا منظير فيبر و بتن است كه سبب مnلحشدن بـتن مىگردد ، كرجه از تركيباتى متشكل از فيبرهاى شيششهاى و بـتن كهاز
 در انواع عناصر درجه دوم ساختمانى بـيشتراست . بتن مسلحشده توسط فيبر يكي ديكــر ا†


 بتن و فيبر T هنى بهعمل T مده الست .

انواع نارساييـها و كسيختكيهـاى سازهها
 زمانيكه كمترين تلفات جاني را سبب شود كسيختكى سازه خواهد بود ـ ـ كسيختكى سازهممكن

 بهدلـل برنامدريزى غلط اجرا و نامنا سببودن تكيهكا هها ومهار هاى سازه های نا ناتمام بوجود
 حريق كامل اتفاق مىافتد ولى اغلب كسيختكى ها بهسبب باركذاريهاى معمول بهسازه بوجود میى يـد .
شكل ديكرى ازنامناسببودن يك سازهكه نسبت بهحالت قبلكمج سيبتر است غيرقابل


 خاصيت ارتعاشى نامتعارف كاركرد مناسب برخياز ماشينّالات حساسكه بـا با تركهای مويى در روكارى و يا توكارى سا ساختمان بوجود
 د ديكر ممكن است خاصيت ارتعاثى سازه بهدلبل ضعف آن در برابر بارها

 Tacoma Narrows Suspension Bridge

بىتوجهى هاى متعددى علاوه بر نامنا سببودن عناصر اصلى يك سازه مىتواند عامل اولبه كسيختكى سازه باشد ، بهعنوان رثال روث غلطـلاطفاء حريق مىتواند باعــث حريقى

خارج از مهار شده و سبب چنان انزا يش د هايیى كردد كه تغبيرشكل نوقالعاده فولاد سازه را

 كف يك آزها يشكاه بـطور ناقصى اجرا شده و سبب كردد كه انغجارى موضعى كه باعث حريقى
 Tميزى ناتص ضد زنك اتصا لات مههم شده و لذا باعث زنكزدكىى ان اتصال كردد كهخود عامل كسيختكى آن اتصال تحت اثربارهاى ديناميكى خخواهد شد .درحالت ديكرىا شتباهمحاسباتى





 در باربرى Tنها انججام مىكيرد بهطورى كه سبب مىكردد سازه تحت اثر بارهابیى كه هركــز برای آن محاسبه نشده است ترار كيرد و بها بن ترتيب وازكونیى آن حادث كردد . با لاخـــــره وازگونى , كسيختكى يك سازه معكن است در اثر حركت و نششست يك هیى كه بهطور نادرستــى محاسبه شده الست بوجود آيد . كسيختكى يك سازه مـكن است در اهر كسيختكى بكى از عناصر آن درمالات زيربوجود
 - مصالح ، كانش و با خـستكى مصالح








 كسيختكي سازه نمىشوتد .









 حالتى زمانىىه فولاد نامناسب قطرى نيز درمقطع وجود داشته باشد امكان وقوع ييداخواهد نم نمود
در سازههاى مربوطبهمهندسى (راه و ساختمان) عمران كه در اغلب بارهـــاى وارده




 است ، كه در اين صورت اكربار وارده بر سازه حذف شود آن سازه بهشكل اوليهُ خود



 است در اينـالت شدت تنش موجود عامل مؤثر و تعيينكننده خواهد بود زيرا درا دراينحيطه



 و در نتيجه باعت خرابي
وازڭونــي حاصل از خستكــي عمـوما" در سازههـــاى متعارف مهندسى ساختمان

كعتر اتغات مىيافتــددولى متاسغانه در برخیى مــوارد احتمـال تـنـين وازكونى رو بهافزابش




 اثر فساد تدريجىمصالح اتغات افتاده بود ا يهاد كرد يـالبته مهند سين خبره در علـتا ايجاد
 برخى بر خرابى حاصل از خستكى اصرار مىورزند . د ر كزارش رسمى كه علت خرابـى را بايد بيان كند نيز اين اختلاف حـل نكرديــ .
 امكان شكستكى حامل از خستكى را در مد نظر داشت . شكستكى حاصل از خستكى ارتجاعى
 البته خسـكَى خميرى نـيز امكـان وقوع دارد ولى الــن نـوع خستكـى زمانــى امكـــان


 امكان تغييرجههت خمشى با مقدار بالاوجود ندأرد ،جنين شكستكى ندرتا" ا مكان بيدالمىيكند با وجود اين بابـ خنين حالت وازكونى را شناخت و مورد بررسى قرار داد .


 T「 با شد با استغاده از تتجربـيات خود اقدام بهم مدل بازى و يا آزما يشات لازم بنـما يد .

شكـهاى سازه

مهعتــرين تصميــم طراحـــى كــه توسط مهنـــد س سازه كرفتــه مىشود انتتخـاب
 خصوصبات مورد نظر باشد . اغلب اوقات مهندس سازه قادر نيست كه بهطور مطمئن و سريع

بهترين شكل سازه را انتخاب نمابيد و مجهور است هندين اسكلت ميختل را النتخابكردهو و








 مى مكند ، بهعنوان مثال مىتوان تيرها ، قابهای صلب ، دالها و و صفهات را ذكر كرد .






ساز مماى كابلى












وارد شدن اين بار ناهيز خواهد بود . اصول حاكم بر تغييرشكل ایَن سازه واضح اسست زيرا با



 لازم الست-ت. از آن جائى
 بارهاى متمركز وارده بـر كابـل اضافه كردد .


(c)

شكل (پ - s) - سازهمای كابلىى










$$
\text { شكل (Y - }) \text { غشاء استوانهاى }
$$

بايد برابر با صغر شود - بياد داريم كه در تعادل كابل نتطدو شرطم موبود بود ، ملاهظـه







خود داشته باشد ، قادر بهتحمل بارهاى كسترده است . واضع است كه أثر يك بار بار متمركز
 كابلها سبب تغيبرشكل ناكهانىمىشود در ان نيزيك هنين تغييرشكلىرا بوجودخواهد . ${ }^{\top}$
اكر يك طاق (با توس) نظيـر آنجه در شكل (ت -



 همان طورىكهد رشكل (ب - ب ب) نشان دادهشدهاس ست طاق تمايلبهتغييرشكل هيدا خواهدكرد


شكل (
درست ماننديك كابل ـ تابتواند بهثكل كثيرالاضلاع تعادل باركذارى جدي بدد ر آيد ، ولـى




مبا هث بنيادى تحلـيل سازهها

 در حالتى كه طاتَ هعان شكل كثيرالاضلاع تحادل نـيروهاك، وارد هرا داشته باشد حضور لنكــر د ر مقاطع طاق بـىمورد خواهد بود .
 بـر كثيرالاضلاع تعادل تحتى باركذارى حداكثر طاق ، انتخاب نمود ، در بيك هنـين حالتــى
 ععوها"تعيين كنتده نـيز نيـيتنـد و از نظر شدت باركذارى نسبت بـهحالت اول در در رجه د وم اهعيت قرار دارند بهطور رضايت بـخشى عمل خواهد نمود . واضح است كه در هريكاز زحالات




 تنش تعيين كنتده در T Tنها كششى نبوده و بلكه قشارى خواهد بـود و بـهاين جهـت اغلـب
 د ليلى كه در مورداختلاف بين غشاء و كابل ارائه شد با تعدادىاز طاق كه بهلـو يـهـهلوقرار

كرفته باشند متفاوت خواهد بود .
كرجه يك بوسته داراى مقاومتتى بوده و دارایى سختى خمشى است ولى ولى در هر صورت هعاد لات اساسى تعادل ل
 در غشاى نظظير اكر براين سازهء يوستهاى ، بارى كسترده اتر كند عمده اين بار توسط تنشـها يى نـظير آنیهـ در غشاء ها اليجاد ميكردد تحمل خواهد شد ، حتى آكر شكل بوسته بر سطع تعادل بارهایوارارد

 معمولا" امكان تأمين دقيق نيـروهاى تكيهكا مى لازم توسط غشاء ها مقدور نيـيست لـذا تنشهـاى

 آن باركذا,ى بوجود خوا هد آمد و يك جنـين حالتتى شبيه باركذارى نظيهر در غشاء ها است .

تنشهاى خششى د رمجاورت تغيهر ضخاست و با تغيهرشكل ناكهانى اتوستهها نيز بوجودخواهد
T هد .






 خوامد شد . اكر لازم باشد كه بارهاى متمركز ديكرى را كه بر a و e وارد مىشوند نيز مهار


شكل (4-9) شيكههاى مستوى و نضايقى
 جديد را بـر خرهايى كه قبلا" بوجود T مده است متصل نـود . واضضح است كه يكهنـين ا را يش











 نيروى محـورى ميلمها طول Tنـها تغيير نـوده و بهد نبال اين تغيير طول زاويهء بـين اعضاءدر كرههاى اتصال مختصر تغييرى خوا هد كرد . هال اكرات الصالات خربا صلبب باشد ، تغييرزاويهء بين اعضاء غيرمقدور بـوده و جهت تأمين تغيير طول اعضاء لازم استكه درات اتصالات موجود


بوده و لذا يك جنان تنشها يى را تنشَهاى ثًا نويه مىكويند .

جالب است بدانيم كه شبكههاى باكرهـهاى ملب بـهنوعىكا ملا" شبيه سازهماى موستهاى
 , لذا تما يل دارند كه مانند شبكههاى متشكل از كرهـهاى مغصلى و يا كروى عمل كنـند ولي


 بود كه هانتد غشاء ها عمل كنـند لذا معمولا" خمشى بااهميت درجه دوم د رحد ود تكيهكاهى خـود تحمل خوالهند نـود . بايد يادا ور شد كه شبكهها نمىتوانتد بارى بجز در كرهـهاى خود تحـمل كنـند زيرادر غـير اینصورت خمشى فوقالعاده در ميلمى بار شده و در هيلههاى مجاور در انتتهاىآن ميله

بوجود خوا هد T Tد .بهعبارت د يكر بارى كه براى خریاها مطلوبست فقط بارهاى متمركزكرهى


اغلب اوقات بهد لايل اجرايىى، اقتصادى و يا طراحى مخصورها" هركاه طرح هلـها و هـا


 مثال د ر حالت فرضى خمش خالص تير شكل (ب - ه الف ) ، مىىتوان كليه مصالح مقطع تير


 , آلومينيومى تعدادزيادى معاطع استاندارد I I I




 سازههاى فولادى و بتن مسلح را تحت اثر بارهاى بيشترى قرار داد كه در ایـن صورت در



از چنـين روشههايى همانطورى كه قبلا"نيز ذكر شد ، طرح خميرى نا ميده مى شود . بد يههي است كه د ر تيرهاى با دهانه وسيع و با باركذارى زياد نمىیتوان از ان بروفيلههاى نوردشده استغادهكرد و در الين حالات لازم است كه از يروفيلسهاى ساختهشده از ورق ، نبششى








را بـهصورت سرتاسرى روى جندين تكيهكاه ميانى قرار داكه و يا بـهصورت ڤا ببـهيكد يكرمتصل

 شده الست . عموما" اين قأبها بهصورت سهبعدى ساخته مىشوند كه البته اغلب اوتاتT انسها را


(الغ)

(-)

(c)

شكل (ب- ا ) قطعات خمشى


 طرح مىشود و ندرتا" بهشكل كرهمهاى مغصلى طرح مىى

 شده الست لازم است كه از بادبندهاى زالنويى و با قطرى استغاده شود .

د ر اصل اعضاء سازههاى قابیى تحت اثر خمش و برش قرار دارند . البته كلـيــه اعضـاء
















شكل (؟ - 11 ) عملكرد سازهاى يك صفعه

تحليل رفتار سازهها
بكى از قابليتههاى مهندس سازه تدرت وى در تحلـيل رياضى عملكرد سازهء مورد نظـــر

تحت اثر بارهاى وارده است هركاه مهندس سازه بهنظريهاي كه با تجربيات آزمايشكا میى ودر



 بتواند خود را در تحليل و طرح سار سازه مونق نمايد .
 1 ـ تعيين مشخصات تتش ، كرنش و تغيير مكان حاصل از بارهاى ساكن و شبه ساكن و اها حاصل از تغييرشكل سازهها . الـا
Y -
r r

 مهاساساتى سازه استفاده نـا نمايد
بد يهیى اسست كه د ستهبندى مراحلفوق المرى اختيارى استـ ولى در هرصورت بررسيهای


 ترتيب واضح است كه





 اين مجهولات را مىتوان'ز طريق برقرارى معادلات لازم كه بهيكى از سهطريق زيركه منطبق



بر رفتار سازهها مى.باشند هحاسبه نـود .: 1 - شرايط حاكم برتعادل استاتيكى نيروها و لنكرهاى داخلى و خارجى مؤ تُربرسازه. Y - روا بـط موجود بـين تنش و كرنش مصالح مصرنى
r r روا بـط هند سیى موجود بـين كرنشها و تغييرمكانـهاى نقاط سازه .
 مستقيما" بـتعيين رابـطهاى بـين تنش (با نيروى داخلى ) و تغيير مكان اقدام كرد .بـنابر اين میكن است برخى از هnاسبين هنيـن نظر دهند كه فقطد دونوع رابـطهء اصلى در سازءهاوجود د

1
r
 فوت را مىتوان جههت تعيين نرمولسهاى اساسى حل مسألّه ترار داد .
 بهصورت زير شرح داد . هريك از اين روثها كلى بوده و بـراى هر عضو سازه نيـز كاربــرد .

در ا ينجا غرض از كلعه نهـرو و تغيير مكان برداشت كلى از اين كلمات است .كلمهو نيرو را مىتوان هم بهنسيرو و هم بهلنكر تغسيركرد و بههمانترتيب كلعه تغييرمكان شامل تغييـــر

مكان خطى و دوران زاويهاى خوا هد بـود . (\#*



 شرا بطط حاكم بر تعادل و يا تغيهر مكان يك سازه عضوى را مىتولان بهتوسط متدار مشخخصى معاد لات جـرىكه بـين بارها وعكسالعملها و مؤ لغههاى مستقلنيروى قطعاتـ و يامولفههاى مستقل تغيـرهكان كرهها - وجود دارد نوشت . يك سازه كه بهطور عكسره در طول لبهها و يا قسعتى از T'نـها بهيكديكر متصل شده باشند . بكل مجهوعه
 قرار كيرد . هريك ازبانلـهاى جنان سازهاى مىتواند مسطح يا منحنى باشد ولى در هرصورت

1 - 1
الف : نتخست مقدار نيروهاي (داخلىى و خارجىى) مجـهول و مستقل تعيين ثدهوتعداد Tنها با تعداد معادلات مستقل تعادل استاتيكى ، كه امكان برقرارنمودن Tنهـا با اين نيروها وجود دارد مقا يسه مىكردد ، اكر تعداد نيـروهاي مجههول برابر با مقدار معادلات تعادل لبا شد
 اين معادلات تعيين نمود . اكر تعداد نيروهاى هجههول از مقدار معادلات تعادلبـيشتر باشد






 اضافى بهطور همزمان حل نمود .



هحاسبه تغيير مكانهها را با استفاده از روا بـط بـين تتش و تغيير مكان بهاتنهام رسانتيد . Y الف : إـتدا به تعيين تغيير مكانهاى هيههول و مستقل موجود در سازه اقدام كرده و

 هريك از مولغههاى تغيهرمكانههاى هجهول يك معادله تعادل برحسب نيروهاى خارجى معلوم و نيروهاى دأخلى مجـهول كه بهتوبه خود بـرحسب تغيـرمكانتها معين شدهانـد بـرقرارمىكردد،

 .تشكيل شده و شامل تنشههاى داخلى و تغيير مكانهها در طول سازه است نوشت . حل ابـا معادلات بايد با تأمين شرايط معلوم حاكم بـر نيروهاى خارجىى و يا تغيير مكا تهاىحدى سازه
 . مىیرينـد

تعداد اين معادلات برابر با نتعداد تغبير مكانهاى مجههول خوا هد بود و با حل دستكاه معادلات موجود مىتوان به تعيين تغيير مكانها هرداخت .

 را نْيز مىتوان بـككك معادلات تعادلنى كه در تنظهم د ستكاه معادلاتیى كه از طريــق آنـهـا


 بهشرح Tنها خواهيم هرداخت منطبق بر روث تغيير مكان مىياشند .

 شده است . اولا" بايد توجه نمود كه در اغلب اوتات تعلـبل كامل تنش يا تغبير مكان كليـه نتاط سازه در مقاصد طراحى امرى غيرضروربست و عمورا" تصوير كا ملى ازنتششها مورد نيــاز بوده ولى فقط پجند تغيير مكان لاز مم محا سبه مىكردد . علاوه برآن معمولا" سازههاى مای مهند سیى


 كتراز درجه نا معينى سازه اسـتـ.
 سا ختمانتي كه مورد ظرح مهندسين سازه مىباشند مقدور نيـست ، اين مطلب مخصوصا"درمورد

 اكر تتجربهاى مثابه در مورد سازهاى مشابه موجول باشد استغاده از آن تجربه منـجر بـهتحليل
 مجرب د بيكرى قرار كيرد د



 برابر كانش و ارتعاش ، مهندس محاسب ضرايبب اطمينان محا فظهكارانهاى بهكار خوا هد هرد .



 عناصر 'ان ايجاد خواهد كرد .

دركيريبها و مسئوليتهاى حرف مهندسى




















 خوا هد بود لازم است .

## douno

ا-1







 منتقل نمايند .
علاوه بر سازهماى نوقالذكر ، سازههاى متعدد ديكرى نيزوجود دارند.س هس ها ، اسكلهما ،

 قاب يك هواييعا براي مهندسي صنايع هوايي اهميت دارد و اسكلت يك كشتى مورد توجه


 بههمين ترتيب وسايل برقى وا استقرار آنها در صلا ديلا

 ساختمان (عمران) كهك كرنته شده است . واضح است كه از روشهاى تحليلى كه دراينكتاب

شرح داده شده مىتوان در ساير سازههاى يراهميت سا ير رشتههاى مهندسى نيز كیك كرفت .

- r- طرح سا زهها.

يكن بـازه بهمنظور تأمين هدفى طرح مىشود و لـذا برأى این كه آنینان هدفــى را بـا


طرح كامل يك سازه تقريبا" با بـي تنج مرحلـه زير را شامل شود :
ا- تعيين اهداف كلى مورد نـظر كه بايد توسط سازه تأمين كردد .

r †


- 0

طرح سازههاى اوليه كه در مرحله بr عنوان شده است و همهنين طرح كامل سازهكه




اثيات اينكه اين سهبخشي عملا"بـهيكد يكرمرتبط هستند دربررسبي زيرمشا هد همىكردد :


 قطعات اصلى طرح و محاسبه نشده با شند نا معلوم استىو بها بن ترتيبت معلوم ميشود كه طرح



 كهانتظار بوجودT مدن Tن تنشههاى حداكترى iلازم استكه هم .بـدانيم مهه بارها بيى برآن وارد خـوا هد شد و هم موقعيت
 بها اين ترتيب وتنى تطارى از بلي عيور مىكند تسعت مشخصى از يل تحت موقعيت

د يكرى از قطار بهتنش حداكثر خود ميرسد
 تهليل سازهها بهنحو مطلوبترنى شرح داده شود بههتر است كه نـخست مختصرى بارد بارهاىموء ثر بر يك سازه و طرح و محاسبه تطعات و اتضالات آنها تشريح كرد د . در هيشكنتا, ذكركرد يه كه اساس قراردادى ظرح و محاسبه سازهها ،هرطــرح ارتجاعى







موسسهئ بتن T مريكا (ACI)



دفتر هماهنكى Tكينـا

ا ـ ب با رهاى مرده

بار هرده مؤثر بر يك سازه شامل وزن سازه و هربار غيرمنقولي استكه همواره بهصورت



مؤ سسه استاندارد و تخقيقاتصنعتىايران "نشرياتتى درموردباركذارى 'بنيه و تنششهاى



جد ولها ، بياده روها ، حصار و يا نـردهها تيرهاى روشنايى و ساير وسايلـ متغرقه خواهد بود . جون نخست مقدار بار مردها موثر بر يك تطعه را بايد قبل از طرح لذا تطعات يك سازه را بايد بهنوعى طرح نمود كه تا جائى كه ا مكان دارد وزن هرقطعهاى كه
 مورد يك بل جادهابتدا بايد دال ماشين روى يل و سِس تيرهاى طولى را كه بــار دال را



شاهتيرها و يا خریاها مبادرت نـا ردود .
 تعريبا" بتخش كوچكى ازكل تنش قطعهرا تشكيل مىدهند وبها ين جهت حتىاكر مقداربارهاى الى مرده بهطور واقعى خود تخمين زده نشده باشند ، تنش كل حاصل از اولين محا سبات نيز تا



 جنان مشخصات معبين و سهلالاجرايىى انجام كرفته است . بايد تأكيد كرد كه در هر صورت تخمين وزن مردهء واقعى ازطريق مشخصاتى كه مورداستغاده قرارمىكيرد جنبئ تجربىيدارد .

 اكر ابعاد سازهاى معلوم باشد بارهاى مردهُ آن را مىتوان بـراساس وزن واحد
 مهندسي بسيارى از كتب و كتب راهنما درج شده است ( بهعنوان مثال مـال مىتوتوان بهنشريه 19 ها موسسهء استاندارد و تحقيقات صنعتى ايران مراجعه نمود .مترجم )
ا - ب با رهاى زنده _ كليات

برخلاف بارهاى مرد هكه همواره از حبث مقدار و همجنين ازحبيث موععيت (محلنأثير )




باشد ، نظير كالاى موجود در يك انبار . تأثير اين كونه بارها بر سازهما عما بموما" بهصورت

 بهسرعتوارد شده و لذا اثرىضربهاي بر سازه خرا هرا هند داشت ا















 , موتعيت رفت وT امد وسائطنتليه خوا هد داشت .

 بهعمل مى


 ( 80100 N ) $18,000 \mathrm{lb}$ ( 93.5 N/m)


 از بارهای واقعى نزد


HS .

AASHO شكل ا - ا. سرى كا ميوتهای H بر طبق

بارهای زنده هلـهاى راها هن شامل بار لـوكوموتيوها و واكنهایى مى ششود كه توسـط.





براى باركذارى هلـها وساختمانـها درايران مىتواناز جلد اول كتاب " طرح ومحاسبات









شكل أنـ
بيشترطرح مىشوند .البته با يدخاطرنشان كردكه سايرباركذارينهاى كوير را مىتوانبا استفاده ه

 .

با بارها Y Y -

عموما" بارهای زنده ساختمانهارا بهصورنت بارهایمنتول كستردهه با شدت ثانبتدرنظر
 در جدول (1-1 ) درج شده است جد ول (1-1


سإختمانهای مسكونى و ادارات
مساكن خصوصى ، خانههاى T Tا رتمانى و غيره انى
اتاق ادارات ، بدارس و غبيره ،
راهروها ،اماكن انتظار و غيره در ساختهانـانهای عمومى
ساختعانهای صنعتى ز تجارتى
انبارها و مشاهـه Tنها
كارخانجات (سبك)


بد يههى است در صورتىكه كف هاى فوتالـذكر بار زندهأى با شدت بيشتر از ارقـام ־يشنههادى نوق تححل كنند ارقام بـيشتر در مهاسبات بـهكار خوا هد رفت .
I - ا ضوبه

اكر بار زنده بهصورت تدريجى وارد نشود تغييرشكل سازهایكه تحت تأثير بار زنده مىباشد بزركتراز زمانى خواهد بود كه بار زار زنده بهصورت ساكن برآن اثر كند و جهون در




 بهزمان اثر بار زنده، بهتسمتى از سازه كه بار برآن اثر مىكند و بالاخره بهمشخصات

 زير ارائه شدها است:

$$
I=\begin{gather*}
50  \tag{1-1}\\
L+125
\end{gather*}<0.300
$$

در اينر رابطه L طول قسمتىاز دهانه استكه بممنظورا يجاد تنش حداكثر در قطعه ،باركذارى شده است ، مقدار Tن برحسب نوت مىباشد . بهعنوان مثال فرض كنيد كه حداكثريرشمثبت

در وسط شاهتير طولى چل جادهاى برابر با 1,000,000 lb باشد كه در اثر باركذارى نصف



$$
I=50 /(50+125)=0.286
$$

برش حاصل از ضربه ، از حاصلضرب افزا اشش ضربه در برش حاصل از بـار زنده برابر بامقدار زير خواهد بود :

$$
1,000,000 \times 0.286=286,000 \mathrm{lb}
$$

كل بـرش حاصلاز بار زنده يعنىبرش حاضل از ضربهه بار زنده بـاضاغهء برش بار زندهبدوت در نـظر كرفتن اثر ضربهاى آن برابر خواهو شد شد با :

$$
1,000,000 \mathrm{lb}+286,000 \mathrm{lb}=1,286,000 \mathrm{lb}
$$

 است ،ضربه را بـهورت زير بررسىمىكنند (توجه شودكه درصد ضربه بـرابـربا صدبرابـر انزايش ضربه اس است ) . "بهحداكثر تنش محا سباتى جامل از بارهاى زنده ساكن براى در نظر كرغتننضربهبا يد

هتاد ير زيـر را اضاغه نـمود :
1 -اثر حاصل از غلت


شاهتيرهاى عرضمى است (برحسب فوت )
— ا
د ر لـوكومتيوهای بـخارى (ضربه اهرم بـخار ، ناهافى ريل ، ضربه واكنـها ) برابربا
درصدى از تنش حاصل از بار زتده كه معادل است با : الف - براى تبرها ، تتيرهاى طولى ، شاهتيرها و تيرهایى كف

$$
60-\frac{L^{2}}{500}
$$

$$
\text { در صورتتى كه L كمتراز } 100 \text { باشد }
$$

* در د ستكاه متريك رابـطه (1-1) بهصورت متدار L بـرحسب متر خوا هد بود . مترجم ) .

در لوكومتيو هاى بـرقى (نا مافى ريل ،ضربه واكنـها ) بـرابـربا د رصدى از تنش هاصل
از بار زنده ساكن معادل با :

$$
40-\frac{3 L^{1}}{1,600}
$$

$$
\text { در مورتّى كدها كمتراز } 80 \text { باشد }
$$

$$
\frac{600}{L-30}+16
$$

در صورتي $L$ برا'بر با بـشتراز 80 ft

و اعضاى اصلى خربا ) ا است (برحسب فوت أ

- L
 حسب فوت ) " بـراى اينكه در مورد ضربه شرحى عملى بـراى اين باشيـم فرض كنيـد كه شاهتير طولى كه در مثال قبل شرح داد هايم يكى از دو شا شاهتيـير
 18 ft
 لـذا درصد ضربه بـرابر با

$$
1,800 /(100-40)+10=40.0 \%
$$

مى شود ( توجه شود كه در اينجا



$$
5.5+40.0=45.5 \%
$$

خواهد شد و بـرش ماصل از ضربــه برابـر با

$$
1,000,000 \times 0.455=455,000 \mathrm{lb}
$$



$$
1,000,000+455,000=1,455,000 \mathrm{lb} .
$$

خواهد شد .
سابر ا ئين نا ههها قواعد ديكرى هراى تعيهن اثر ضربه اراءه مىد هند ولى'اعندو
روش شايد مههمترين قوا عد متداول با شند .
عموما" در مورد بارهاى زنده منتول كه بارهاى زنده ساختمانها را تشا تشكيل مىدهند بهكاربردن تتش حاصل از ضربه موردى هيدا نمىكتد و بهعلاوه وتتى سازه بهصورت جوبى
 است كه در برابر بارهاى با مدت اثر كوتاه نسبت بهبارهاى دائعى بسيار قويتر استر بهاين جهت از این ذخيره مقارمت مىتواند در برابر بارهاى ضر بهاي استفاده كند .

ا 1
بارهاى حاصل ازهرف اغلب بسيار مهم هستتد مخصوما" اكر محا سبه ششت بام ها مورد نظر باشد . برف در رديف بارهاى منتول است و بهاءن جهت الزاما" تعام سطع بشت بام را نحواهد هrشاند لذا برخیاز حمالـهاى ستف ممكناست تحت امر بوشش تسمتىاز سڤف توسط برف ، تنشهاى حداكثرى را تحمل كنند ، برحسب محل ريزث برف وزن مخصوص تا حد زبادى تغيير خواهــد كرد و مصجنيــن در هك محل معين ارتغاع برفى كه درهك
 بامهاى صاف كه د ر معرض ريزش برفهاى سنكين ترار دارند ممكن است بار حاصل از برف به

 تتريبا" قسمت اعظم برف آنرا بائين خواهد ريخت .



 كرجه امكان رسيدن بهضخا مت بيشتر نيزموجود است ولى در درجنان حالتى در در هرف شبنم جمع
 تصويرى ${ }^{\top}$ تطعه هوشيده شده از يخ بهحساب آبد .
ا- ا ا بارهاى جا نبى - كليات

معمولا" بارها يهى كه قبلا" ذكر شد. بهصورت عهودى اثر مىكنـند ولى اثر بارهاى زندههو
 برخى از بارها نيز تقريبا" همواره در جههت افقى وارد مى نـونـد و بايد اثر آنهارا در طرح و و

 كريز از مركز و نـيروهاى طولى رأ عموا" تحت ا ين طبتهبندى ذكر ميكنـند .
1-1 ابارهای حاصل از باد

بارهاى حاصل از باد بسيار مهم است مخصوصا" در هحاسبه سازههاى بـزرك نظيـر
 ساختما نساي كارخانجات T. شيانه ها و انبارها كه درداخل فضاي وسيعىدارند و با د يوارهاییى


بادكير سازه دارد**.

بارهای محاسباتى كه براى باد در T Tئيننا مهماي مختلف توصيه مىشود بهانتد بارهاى

 صلبيت منا سب ميكردد .
TTئـن نامه AASHTO براى یلههای بـزرك جاد ه نـيروى باد را معادل با بارى منقــول كه بهصورت افقى بهشدت ( $350 \mathrm{daN} / \mathrm{m}^{2}$ ) $75 \mathrm{lb} / \mathrm{ft}$ براى خـرعا ها و ( براى شاهتيرها و تيرها در نظلر میكيرد . البته اين خنين
 آن اتر میكند مجموع سطوح كليه قطعات تشثكيل دـ هنده كف سازى و تـرده هخوا هد بـود كه در

*     * سرعت باد در سطع زميـن بـراى كثــور ايران بـرابـــر با 125 كرفتـه شده است. مترجم )




 كه قادربهتحمل نشار زيادى حداقل برابر با شده عمودى سازه اثر میكند باشد .




صورت زير تعيين مىشود*:

$$
q=1 / 2 m V^{2}
$$

$$
(r-1)
$$

در اين رابطه m جرم واحد حجم هوا و V سرعت باد در همان دستكاه اندازهكيرى


 د دمورد سقف هاىشيبداربا ركذار اريهاى زيربرای شيب سمتبا دكير توصيهمى شود








 برحسب
 Y

$$
\begin{equation*}
p=(0.07 \alpha-2.10) q \tag{f-1}
\end{equation*}
$$

كه در
r ب- براى شيبهايى بـين 30 و $60^{\circ}$ فشارى بـرابر با :

$$
\begin{equation*}
p=(0.03 \alpha-0.90) q \tag{0-1}
\end{equation*}
$$

† باركذارى در اشر باد ، براى هشت بادكير سقف هاى شيبدار مكثى بـرابـر با $0.6 q$ براى كليه مقادير شيب در نـظركرغته شود ، البته جهست انر فشار و مكش در كلـيهء ا اينيحالات عمود بر سطوح تحت تأثير باد خوا هد بـود .
 قسمت استغا ده شدهاست بحثى در مورد مقدار و طرز پخشش فشار باد بر سقغنهائهمدور
 در T T بيننامه AISC بار حاصل از باد بر ساختـانـها بهصورت فشارى مؤثر هــر
 ساختمانهاى بلند رضا يت بـخش است ، كرحّه عملا" بارهاى عرضى حاصل از باد شامل نـيرويى فشار در سعت بادكير و مكش در تسعت مقاـل سعت بادكير مىشود .




 اكر خاك بهطرف خاكريز فشرده شود فشار بـين دهوار و خاكرهز هشت آن بهـحداكتر خود كــهـه بـهفشار غيرعامل خاك معروف است مىرسد . تعت شرابیط متعا رف فشار عامل در هرعهعقىد ر هدود

"نسبتهاى فشارى Tب ساكن " بهترتيب هرایى فشار عامل و غيرعامامل ميكويند .


 كسترش اين فشار بر ديوار بهصورت مثلثى فرض مىكردد كرجه جنين فرضى نيزكا ملا " صحصح نـيست •
در مورد خاكهاى بدون جسيندكى فشار عامل خاك را را مىتوان بر نوارى بهع عرض

 نهير: بر ديوار راباP نشان دادهايممكه درفاصله دوسوم ارتغاعد يوار از بالاى ديواردر جهيهتى

شكل ا ـ ب د ديوار حايل

كه زاوههاى برابر با '


را با زاويه o نشان دادهايم .

نيروى كل P را برحسب هاوند بر طبق تئورى كولمب از رابطه زبر معين مىكنند :

$$
P=\frac{1}{2} \gamma H^{2}\left[\frac{\csc \theta \sin (\theta-\phi)}{\sqrt{\sin \left(\theta+\phi^{\prime}\right)}+\sqrt{\frac{\sin \left(\phi+\phi^{\prime}\right) \sin (\phi-i)}{\sin (\theta-i)}}}\right]^{2} \quad(\xi-1)
$$






در مورد ديوارهاى صاف قدرى كمتراز م مى باشد (در سيستم متريك فرمول (1-ء )تغيير


اكر

$$
I^{\prime}=\frac{1}{2} \gamma I^{2}\left[\begin{array}{c}
\cos \phi \\
(1+\sqrt{2} \sin \phi)^{2}
\end{array}\right]
$$

 3.05 mL ) 10 ft ( $1630 \mathrm{daN} / \mathrm{m}^{3} \quad$ ()
 . بهورت زير محاسبه مىكردد .
(در دستكاه Sl خواهد شد.

$$
P=k(1630)(3.05)^{2}\left\{\frac{0.867}{[1+1.414(0.5)]}\right\}=2250
$$

 و بهطرف بائين با زاويهاي برابر با با $30^{\circ}$ بر بر آن ایر خواهد كرد .


1r-1
سدها مخازن و نظايرآنها تحت تأثير فشارTب ساكي كه بهسادكى بر طبق قواعد معمول



 زمانى امكان كسيختكى در آن وجود دارد كه بهحالت خالى باشد تا هر و يا يك مخزن روى

خاكى ا مكان رسيدن T'ن بهحالت تتشى بحرانى زماني است كه مخزن نيهـهر باشد .



ا ا

 سازه تحمل شتاب مىنمايد , هنين شتابي داراى مولفه افتى عمدهاى است معمولا" از مؤلفه



 خوا هد كرفت و يا بـعنـوان مثال :
 تقريبى است . زيرا معمولا" فرض اين كه كل سازه ماتند جسمى صلب شتاب بيدا كند از نظسر ععلى صحيح نيست ، حون عملا"سازه تغييرشكل ارتجاعىى يبيا مىكند كه هعين وامعيـت در شتاب قطعات مختلف T Tن تأثير مىكذارد .
 مىكند بلكه در اثر حركت سريع سد بهطرف آب يشت آنسبب ايجاد نيروهاى دينا ميكىى ب نيز مىشود .


در طرح بلى كه داراى مسير ماشين رو و يا ريلى منحنى مى اشا شد وسائط نقليهاى كه از

 بارهاى جانبى بوده و بايد مانند بارهاى متحرك در نظر كرفته شوند .


از مركز C :(كه بر مركز ثقل جسم بوزن W اثر مىكند ) برحسب رابـطه زير بـيان خوا هد شد .

$$
C=(\text { (ثتاب خروج از مركز ) })=\frac{W}{g} \cdot \frac{V^{2}}{R}
$$

| - \& أ نيروهأى طولى

در مورد يك یل نيروهاى افقى كه در جهتت مهور طولى آن اثر مىكند يعنى درجهت






$$
\text { بوجود }{ }^{\top} \text {. }
$$

برای رلـهاى راه T هن آئين نامه AREA فرض مىكند كه نيروهاى انقى در فاصلـه (183cm) 6 ft



 با نيرويى طولى برابر با ها د رمد بار زنده مؤثر بر سازه كهد در فاصله جاده نرض مىشود انجام كيرد
اY - Y نيروهأى نا شیى از تغيير دما

تغيير د ما سبب ايجاد كرنشـ در قطعـات يك سازه مىشود و بـهاين جهت باعث تغيير





انبساطو انقباض سازه مخصوها" در طرح اتصالات تكيهكاهى بسيار مهم است .



ا ـ ا | ساخت تير ورقها






 , تسمه تشكيل شده و بال تحتانى (


 متصل كردهاند ،اغلب اوقات بجاى يرع از جوش استفاده مىشود ، در ا اين حالت جزئيسات


ثكل

اجرايى تيرودق كمى تغيير خواهد كرد ولى بابد ا جزاى تشكيلد هنده؛ آن كه جان ، بالههاى
نوقانى و تحتانى و تقويتكنـدهمهاى جان مىباشد بازهم تأمين كردتد .
( 1 -

مساءيل ناشى از ساخت ، حمل و نصب تيرورقها معولا" ارتفاع Tنـها را بـهحدود ب متر
 تيرورقى بـها ن ارتغاع خارج كردد ا ستفاده از خرهاها لازم خوا هد بود . در شكل (1-هالف )

 , , $\quad U_{2} L_{2} \cdot U_{1} L_{1}$ بـاعضای,

 خريا در يك كره بـدان هتصل مىشونـد مفسه اتصال كويند . در خربا هاى با د هانه هاى وسيع ممكن است اعضاى خريا در كرهى توسط يك ميله هحورى كه از وسط جان كليه اعضاء عبور

(الغ)


شكل 1-1 اجزاى يك خريا با اتصالات يرجى

مىكند و يا از اتصالاتی كه در Tنهها براى عبور ميله محورى اتداملازم انتجام كرفتهو, Tنهها را بـاعضاء خرها وصل كردهاند ،بهـم متصل شوند ، البته عـوها" خرهاها را بهـــــم جوش مى

## 







شكل 1- ه







 عبوركاه ميانى نشانمىدهد . در این شكل تيرريزى كف نشان داده شده الست ، تراورسها مستقيما" برروى تيرهاى طولى كه بهموازات شاهتيرهاى اصلى قرار دارند واقع شدهانـي اند ،كليه


شكل Y-




 شكل ( ا (
 هل دال كف بل بر روى تيرهاى طولى واقع شده كه اين تيرها بهتيرهاى عرضى (تيرهایكف )









, لذا تحمل خمش اوليه نـخواهند كرد .


شكل 1-1 تيرريزى كف ساختمانهنا
(

 مى شوند علاوه بـرقطمات اصلي اعلبب سا زهها بهسيستم مهارى و باد بنـد نيز نيازمندمىباشنـد

 با عبوركاه تحتانى د رشكل ( ا-ף )نتان داده شد.ها ست .اعضاي اهلى سيستم مهارى جانبى

 نوقالذكر را بههم وصل مىكند ، تشكيل شده است . سيستم مهارى جانبى تحــتانى كه در در تراز صفحهء ميلمهاى اهلى تحتانى خربا قرار دارد و از تيرهاى كف (تنيرهاي عرضى ) كه در


 اعضاى انتتهايىى را در مقابل تغيير شكل جانبى تنوبيت مىنـما يـ .


شكل 1 - 1 سيستم مهارى (باد بند ) جانبىى در خربا با عبوركاه تحتانى

## ;





 بوجود مى

خوانده مىشوند .

در مسائل عملى همواره ابسهاماتتى در مورد تعيين ابعاد مورد استغاد در در مهان ساسبات
 واضحى بر روى مقاديـر محاسباتى خواهد كذاشت بـهاين جهت آئين نامهها نهتنها مقادير

تنشهاى مجاز را معين مىكنند بلكه جنبدهاى اساسى قابل رعايت در مهار ماسبات را نيز بيان







 معلوم شود كه اين تنشها بهكدام يك ازسطوح مقاطع خالص يا ناخالص مربوطـمى شورند .





معين شده است در ذ يل نقل مىشود :


فشار : ستونها ، سطح متقطع ناخالص
براى ستونهابا باركذارى محورى اكر r// بيشتراز 120 نباشد

$$
\left.\left(1218-0.03481^{2} / r^{2} \text { bar }\right) \quad \quad 17 . \text { (HH) }\right)-0.185 \frac{l^{2}}{r^{2}} \quad \text { DSi }
$$

براى ستونها با باركذارى محورى اكر ب٪ بـيشتر از 120 باشد

$$
1290 /\left(1+1^{2} / 18000 \mathrm{r}^{2}\right) \text { bar } \quad \frac{18,000}{1+\left[l^{2} / 1 \times 0,0\left(\overline{10} r^{2}\right)\right.} \text { p51 }
$$

در اين رو'بُط ، طول مهارنشده ستون و ז شعاع زيرانسيون مقطع آن ستون است ، هرد,
بايد با يك واحد محاسبه شوند .

خمش : ( براساس لنكر لختى ناخالص) كشش در تارهاى انتهايى نيمرخهاي نورد ـ

شده ، تثير 'ورقها ،تطعات مركب 1433 bar 20000 psi نيهرخهاى نورد شده . تيرورقها و تطعات مركب 1433 bar 20000 psi



960000/(ld/bt) bar
12000000/(ld/bt) psi


| 1075 bar | 15000 psi | תرجها |
| :---: | :---: | :---: |
| 1075 \% | 15000 " | مهور مغصلها |
| 717 " | 10000 " | **جهاي ناتص |

جانتيرها و تير ورتها ، با سطع مقطع ناخالص' 13000 " 932

| با دوسطع برث |  |  |  | با بك سطع برث |  |  |  | كاهـه |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2867 |  | 40000 |  | 2293 |  | 32000 |  | \% |
| 2867 | / | 40000 | " | 2293 | ィ | 32000 | " | $\mathrm{L}^{\text {c\% }}$ |
| 1792 | \% | 25000 | " | 1433 | $\prime$ | 20000 | " | ${ }_{\text {ه\% }}$ |
| 2293 | " | 32000 | " | 2293 | \% | 32000 | " | مهور ما |


| 2150 bar | 30000 psi | تيدهاى تقوبتى كارخانهاى |
| :---: | :---: | :---: |
| 1935 * | 22000 " | تيلهاي تقوبتى اجرا شـده در محل |





 راهنما مرا-جعه نمود*
.T (T) *
 بهآخرين هاب كتابههاى راهنمائي مربوطه مراجعه نمود . درايران متاد
 استا:داردههاى فنى درج كرد يده است .مترجم ) .

- 1



 شكستكىناشىازتردى و با الملاحظات مربوط بـهتغييرهكان مجاز تغيير خوا مدكرد .اكرامعررات مربوط به محاسبات سازها
 /طمينان در برابــر تتش تسليم در كشش برابر با 1.65 يعنى 33,000/20,000 خوا هدبود . واضح استكه عـملا"ايجاد ضريب الطمينانى برابربا رقم فوق معكنـنيست ، زيرا بارهـا






 بخشى و درجهت اطمينانتغييرات تتش محاسباتىبا تغييرات تنــش تسليم حتـى با احتمال
كمى يكديكر را هوشش مىدهند يا نه .

نتحوه محا سبه ضريباطمينان را ذكركرد يـم ،بهاين ترتيب كه ضريب اطمينان در برابـر بـر
 است كه اين يك روش غير جامع براى بررسى







位
 عملا" غيرممكن است ، نه مصالح مصرف شده د ر ساخت سازه دارای همان خصوصياتات فــرض شده درتحليل سازه مىـباشد و نه ابعادان دقيقا"بر مقاد برنظرى ابعاد سازه حقيقى انطباق


 ضخامت قطعات امكان دارد تغاوت فاحشى بـبين فامله بيرون بهبيرون قطعات و ناصله مركــر


 بهعنـوان مثال سازه واقعى شكل (ا-ها الف ) را ممكن است براساس سازه حقيقى شكل



(-)

شكل ا-10 المازه حقيقى بك سازه وامَعى
عملا" ممكن است چنين نباشد ، سطح مقطع بـزرك ستون در قسمت اتصاللات مربوطبـه تـلاب و هصالح صفحات اتصال د ر كوشه همكى ناد يده كرفته شدهاند ،صغحه اتصال كوشه دقيقا" ماننـد يك اتصال كيردار فرض شده است در صورتى كه عملا" چنيين اتصالىىيك دوران جزيى
 خط مركزى ناهتير فرض شده و دهانه مؤثر شاهتير از خط ستون تا مرئ مركز بار مؤثردرنظركرفته شدها
براى عملى نمودن محاسبات اجرا'يى لازم است كه يك سازهواقتى را بـهسازهاءحقيقى


 نمود كه در برابر كليه تحليلهماى تنش مقاومت داشته باشد .

## 






 كند محاسبه كنيد

 تسمت (الف ) جقدر خواهد بود .
 مهاسبه كنيد
.
$M_{I}=9.00 \mathrm{kip}-\mathrm{it}$ $20.25 \mathrm{kip}-\mathrm{lt}$ $36.00 \mathrm{kip}-\mathrm{ft}$ $53.63 \mathrm{kip}-\mathrm{It}$ $72.00 \mathrm{kip}-\mathrm{ft}$ $94.08 \mathrm{kip}-\mathrm{ft}$ 117.12 kip-ft $141.55 \mathrm{kip}-\mathrm{ft}$ $160.67 \mathrm{kip}-\mathrm{ft}$
 بهفاصله مركز بـهركزي برابر با 20 ازيكد يكر تراردارند .بارهاى حاصل ازباد را برای يكي

 بادى برابر با 100 mph جواب:
: $: P_{N}=400 \mathrm{l} / \mathrm{ft}$



شكل 1 1 1 مسأله 1-1


 اثر میكند واقع شده است با فرض صلببـودن سدر خالىيبودن آن لنـكر حـول a از نيروهاي



ا-ه بال فشارى شاهتيرى از دو نبشى بابعاد " 16 ft است ارتغاع شاهتير 10 ftere داراى مهارهاى جانهى باشد. متدار تنش مجاز مراى مساسبه هال فشارى این شاهتير بر طبق

Tأــنانـا AISC هقدر است .
جواب:
= 7.29 kips sq in

# r <br> <br> عكسسالعمله| 

 <br> <br> عكسسالعمله|}
r-1 تعاريف










 . نامكذارى كنيم د دستكاه نيروى هم صفصه متقارب جنـانجهد رشكل (Y-ا الف )نشاند دا دهشدها ستد ستكاهى است كه در آن خطوطاثر كليه نيروها در يك نقطه مشترك تلاقى نما يند .

(الغ)

(-)

(c)

(د)

شكل

 مشخص دستكاهى است شامل چنـد ين نيرو كه خطوط اشر آنها در جهات مختلف بوده و در



دو نيروى مساوى و هوازى متقابل است كه داراى يك خط انر نـمىباشند . از Tنیجائى كه در بك سازه مستوى خطوط اتر كليه نيروها در صفـهه سازه قرار دارد ، هريك از نيروها را مىتوان بهد. محورهاى فوقرا مىتوان بهشرطىك روى يكد.يكرقرارنكيرند در هرجهت دلنخواه الختيارنـود. . نتريبا"هميشه محورهاى x هو $F_{y}$ محور

براى ایـنكه اغلبب سازهها بهصورتT زاد د رفضا حركت نكنـندكلا" و جزء "مهارمىشوند . مهارهاييى را كه ازحركت آزاد جسم جلوكيرىمىيكنـد قيود اتصالى كويندكه توسط تكيهة كا هـها




 طى چنين حركتى نتطه B در طول توسىي بهمركز A حركت خواهد كرد كه آن حركت بههورت
 اكر قيد د يكرى بهشكلى كردد د يكر از دوران حول مغمل A جلوكيرى شده ه و حركتا زاد جسم كا ملا"مهار خوا هد شد .
 . عملي نـهود ( C ( H )



نيروى عامل ميله از خود تشان مهـد هند بهعكسالعمل معروف است ، بـها بين ترتيب مىتـوان



 ( درهحل خود دورانكند در چنـبن حالتى خنـاربين ميله محور هفصل و سورأخ ميله ، بهصورت
 عكسالعمل R كه توسط تكيهكاه بـهـازه اعـمال مىشود مىبا يـ كاملا" بـرابـر با نيروى عا هــل
 انركنند بهالينترتبب واضح مىشودكه تكيةكاه مغصلى نيروى عكسالععلى از خود بروزمىد هد




(c)

(2)
( $\Delta$ )

(1)


شكل ( (T-Y) عكس العملـهايتكيهكا هی

افتى و عمودى














 را نيز با علامت .





 دو نيروى افتى و عمودى كه از مركز ثقل انتهاي مقطع مىكذرند نـان نشان داد ـ ـ تكيهكاه كيردار را با علامت الح
 بارهاي واردهP را (ك با بـ نيروي عكسألعملرا د ر تكيهكاه a با با



اكر تكيهكاههـاى يك سازهء مستوى را با عكسالعملهها يبى كه Tن تكيهكاهها ا ايجاد مىكــــد


 نقطهاى معلوم میباشد و يا يك زوج نيروى بـرا يند است .







 يك سازء مستوى هر سه شرط زير بايد در مورد بارها و عكسالعملههاى سازه تأمين كردهد تا تا اين كه سازه در حالت تعادل استاتتيكى باقى بـاند :

$$
\begin{equation*}
\Sigma F_{x}=0 \quad \Sigma F_{y}=0 \quad \Sigma M=0 \tag{r-1}
\end{equation*}
$$

سهمعادله فوق را معادلات تعادل / ستا تيكى سازه مستوى تحت اثر دستكاه نيروى غيرمشخص . كويند
در حالت خاص كه يك سازه مستوى تحت اتر دستكاه بار و عكسالعمل متتــارب

 براى اينكه سازه د رتعادل استاتيكى بـاقى بماند لازماست كه دوشرط زير تأمينكردد .

$$
\begin{equation*}
\Sigma F_{x}=0 \quad \Sigma F_{y}=0 \tag{r-r}
\end{equation*}
$$

اين معادلات را معادلات تعادل استاتيكى حالت خاص سازهاى مستوى كه تحت اثـر د دستكاه نيروى متقارب قرار دارد كويند .
اغلب اوقات درمباحث بعدى قطعات مازه را بـعنـوان اجـام م صلب خطابـ مىكنيــم . بـهمعنى درست كلمه د ر يك جسم صلب هيعكونه هـركت نسبى بيـن دوجزء آن وجود ندارد .

واضح است كه كليه قطعات سازهها هركز بهصورت مطلبق صلب نيستتد زيرا Tنهها تحـت
 تغييير بعد ، جابـجايى خط اشر نيروها و غيره هنكام بررسى شرط تعادل جسـم صرفنظر مىشود تس د ر بسيارى از هسايل مربوطبهبررسى معادلات تععادل استاتيكى در قطعات سازهها هركاه متاصد عـلى هطرح باشد سازهها را جسم صلب نرض خوا هيم كرد و بها اينترتيب شكل هند سى Tنـها بعداز اثر بارها نيز عملا" مانند قبل از اثر نيرو نرض خواهد شد .

K-r


 مى شود . در هر صورت براى ابنكه سازه در هالت سكون باقى بـهاند ، د سـتكاه نيـروى متشكل
 نوع دوم اتصالات ناشي از نوع سازه كه جهست بهم بيوستن اجزاء هختلف بـهكاررنتهأند قيود
 توسط مضصل ،يا تكيهكاه ساده بهيكديكرمتصل شوند لذا هريك ازاين اتصالات قادر بـها نتقال نيرويیى با مشخصاتتى خاص از تسمتى از سازه بهقسعت د يكر هستتـد . شكل (Y-Y) ایننوع سازهرا كه از دوقطعهصلب ab و bc ك بدون اصطكاك بـهم متصل شد هاند و داراى دو تكيهكاه مغصلى در نغاط a و c مى
 ايجاب مىكندكه اشر يك قسهت از سازه بـر قسمت د يكر T T كه اتصال Tنها توسط مفصل تأمين
 بار ها و عكسىالعملهاى وارده بـر هريك از دوقستهت سازه كه حول محور هار بـر مركز محورمغصل تعيين شود برابر با صغر است . چنـين شرايطى كه حاصل نوع خاص سازه مى.باشد بـهمعادلات
 خاص سازهها موسوم است .
 بدلن در نظر كرفتن بعادلا








 تعادل استاتيكى دانست .














 تحت حالت كلى باركذارهها تعادل نابايدار خواهندداشت و بهاين جهت آنها رادررده

سازهمای نابا يدار بهحساب مى

















 نايايدارنيز باشد ،بهاين دليلاست كه سازه مستوى هايدار را دا در بحث باريند قبلمعينينمودريم . مساله تعداد عكسالعلههایكافى
 مولفههاى افقى وعمودى عكسالعمل درانتهای A $A$ و توس

 مىتوانتا جائىكه هم راستا نباشند درجه













 تعادل استاتيكى Tن سازهى مستوى كه تحت اثر دستكا

 مربوطمى مودو .




 بندهاى تكيهكامى نتاط



 بـاتهام خوا مند رساند كه جمع جبرى مولفههاى انقى نيروهاى دأخلى بندها برابر با با مولنه

شكل r - م سازه نابايدار هندسى


شكل ب

انقى بار وارد هكردد . ازזتجأئىكه تحليل وضعيت نهايى اين سازه نهتنها بممعادلات لعادل




 بود . بايد يادآورى نمودكه در حـنين حالتى نيزتعيين عكسالعملها ازنظر استاتيكىنامعانين

است .
r






 بود ، اكر تعداد اجزاء عكسالمعل برابر با تعداد معادلات باشد سازه مار مزبور معبين است مكـر


 واصل بين a $a$ c قرار كيرد هيج عانلى از دروران لحظهاى قطهات a








 بـىنـهايت و يا نا معلوم كردد .


در بـحث قبل ديد يم كه هحا سبه اجزاء مجهول عكسالعمل سازههاى باعدار و معين را مىتوان با حل د ستكاهمعا دلات تعادلاستاتيكي و دربرخیى از حالات با حل مجـوع معادلات



 رسم جنـين نـمودارهايى اساس مونقيت در تعيين تنش سازههاست . دانشجويان بـايد بدانـنـد


تلققى نـمى




 عكسالمعلهها و كليهنيروهاى میكن كه بهسطع متا طع اليجاد شـده در قطعه كه توسط خط بـسرش ايجاد شدهاند وارد مى شوند رسم نـمود . جهت هر نيرويتى مجهول مىتواند بههرسوىدلخواه امتداد داشته باشد ، نيرو با جهتتى كه برايشث انتخاب مىشود در تشكيل معا دلات داخل
 علامت نيرو جهت نيروهمان جـهت انتخابـياست علامت شنفى كوياى جهتى بـرخلاف جـهـت

انتخابي خوا هد بود .
بعضى اوقات لازم است كه قسمتى يا قسمتهاى متعددى از سازه را جدا كرده نـودارآن
 سطوح داخلمىا كه توسط خط برش ظاهر شدهاند تيزنشان داد . اكر بشخوا هبم برایدوقسمت


شكل
هجاور از سازه نمودار آزاد رسم كنيم و نيّرُوهاى داخلى را كه بر سطع داخلى بكى از تسمتها

 عمل و عكسالعمل عك جسم بر جسم ديكر بايد از نظر عددي با عكديكر برابر بوده هو و از از نظر
 اكر جنين طريتى دنبال نشود معادلات تعادلاستا
 در روى يك نمودار اززاد جهت مشخصى فرض كردد در روى ساير نمودارها نيز باعد همان جهت نشان داده شود .

## (

اكر در سازهاى معين معادلهاى ناشى شرايط خاص وجـوـود نداشته باشد مساسبـــهـه عكسالعملـهاي را مىتوان با شرح تير ساده شكل (

 تصور نمود
 , $\Sigma M=0, \Sigma F_{y}=0$ , $R_{A y}$ ' $R_{A x}$ سه معادله تعادل استأتيكى بهطريق زير و حل
(a)
(b)


شكل Y - Y محاسبه عكسالعمل ها

$$
\begin{aligned}
\Sigma F_{z} & =0, \pm, R_{A y}-36=0 \\
\Sigma F_{y} & =0, \uparrow+, R_{A y}+R_{D_{y}}-60-48=0 \\
\Sigma M_{C} & =0,+2,12 R_{A y}-6 R_{D_{y}}-(60)(6)=0
\end{aligned}
$$






$$
\begin{gathered}
\Sigma . M_{A}=0,+1 \cdot(60)(6)+(48)(12)-\left(R_{D_{y}}\right)(18)=0 \\
\therefore R_{D_{y}}=93,18=52 \mathrm{kip} f
\end{gathered}
$$



$$
\begin{gathered}
\Sigma M_{D}=0,+2,\left(R_{A_{k}}\right)(18)-(60)(12)-(48)(6)=0 \\
\therefore R_{.1 v}=1,008 / 18=56 \mathrm{kips} \neq
\end{gathered}
$$

بد بههى است كه اين معادهر بابـد در معادله

$$
\begin{aligned}
& \Sigma F_{y}=0, \uparrow+, 56+52-60-48=0 \quad \therefore \text { O.K } \\
& \text { از رابـطه }{ }^{\prime} \\
& \Sigma F_{z}=0, \xrightarrow{+}, R_{A x}-36=0 \quad \therefore R_{A x}=30 \text { kips } H
\end{aligned}
$$

بهاين ترتيب با عمليات مبتكرانه در كاربرد بعادلات تعادل استاتيكى تعههــــن عكسالعطلـها ساده ميكردد .

 يكديعر








 دستكاه در تعادل استاتيكى باشد
 عموما" انتخاب محورىكه لنكركيرى كل حول , در نتيجه بهمحاسبه مستقيم



* سئوالات مهم

1

 میشود ؟
Y

 دو معادله تعادل متعارف د A $A$
r-r r r
هركاه ساختمان سازهاي شرايط خاصى را' ايجاب نمايد محاسبات عكسالعملها به شكــل

 معادلات خاصى در بين نباشد لازم دارد .


 دارد و علاوه برسه معادله تعادل الستاتيكى يك معاد دله خاص(شرط) بها


 با صفر باشد ، بيان فرمولى مطلب نوق هـنين است .

$$
\sum^{a b} M_{b}=0 \quad \text { or } \quad \sum^{b c} M_{b}=0
$$







شكل

 b
之 $M_{b}^{\infty}=0$ سازهها استغاده بیكنـد در خاطر داشته با شند و هركز تصور نكنـند ، معادلات مستقلىبـيشاز



حال اكر بهحل این مثال بـردازيم با انتخاب مبتكرانه معادلات الستاتيك مىتوان
عكسيالعملهها را بهسادكى معين نمود .

$$
\begin{gather*}
\Sigma M_{a}=0, \underset{\mp}{\mp}(20)(15)+(40)(55)-80 R_{c y}+15 R_{c z}=0 \\
\therefore R_{c y}=31.25+3 / 16 R_{c x}  \tag{الغ}\\
\sum c M_{b}=0, \underset{\mp}{f}(40)(15)-40 R_{b y}+45 R_{c z}=0 \\
\therefore R_{c z}=8 / 9 R_{c y}-13.33 \tag{ب}
\end{gather*}
$$

با جا هكزعننـمودن

$$
R_{c x}=8 / 9\left(31.25+3 / 16 R_{c \pi}\right)-13.33 \quad \therefore R_{c z}=17.33 \mathrm{kips} H
$$

حال با جا هكزينى برعكس تبل در (الف)

$$
R_{c y}=34.5 \mathrm{kips} \uparrow
$$

بهمه! طـن

$$
\begin{gather*}
\Sigma M_{0}=0, \stackrel{\mp}{+} 80 R_{a y}+15 R_{a \varepsilon}-(20)(65)-(40)(25)=0 \\
\therefore R_{a y}=28.75-316 R_{a s} \tag{e}
\end{gather*}
$$

 د هندهء تكرار بیىتها یت آن رقم مىبا شد .

$$
\begin{aligned}
& \sum^{a b} M_{b}=0, \mp, 40 R_{a y}-30 R_{a s}-(20)(25)=0 \\
& \therefore R_{a z}=4 / 3 R_{a y}-16.67 \\
& \text { سهس با جايكزيننمودن معادله (ج ) در معادله (د ) . } \\
& R_{a x}=43\left(28.75-33_{16} R_{a x}\right)-16.67 \quad \therefore R_{a x}=17.33 \mathrm{kips} \rightarrow \\
& \text {, جايكزيننمودن برعكس قبل در (ج ) } \\
& R_{a y}=25.5 \mathrm{kips} f \\
& \text { با استفاده از معادلات } \\
& \Sigma F_{x}=0, \overrightarrow{\text { + }}, 17.33-17.33=0 \quad \therefore \text { O.K. } \\
& \Sigma F_{v}=0, \uparrow+, 25.5-20-40+34.5=0 \quad \therefore \text { 9.K. }
\end{aligned}
$$


 معادلات





 بهصورتهاي مختلف بهكا ر كرفته شود ولى در هر صورت معادلات جديدى نيستتد .
rror r r




 در باسن مساءيل نداشته باشد انـجام خـواهيم داد .
تير شكل (Y-q الف) را در نظر بكيريد ، مولفههاى مستقل , مجهول عكسالعمسل عبارتّداز مقدار و جهت عكسلعمل و مقدارعكسالعمل دـ B , و يا در كل مولغه .اين محهولات را همهنْين میتوان مقدار مولفههاى انقى و عمودى عكسالعمل در A و يكي از د و مولنه انقى يا عمودى در B فرض نمود .بايد توجه داشت كه اكرنقطه اثر و جهت عكسالعملى معلومباثد عكـىالعمل مجهول را مىتوان مقدار عكسالعمل برآ يند يا مقدار يكى از مولفدهاى عمودى يا


(الض)

(c)

(*)

(J)

(b)


10

(p)


(c)

(s)

(J)


شكل ( (9-Y )- مثالـها يیى براى د ستهبـندى سازهها

اعن سازه بایدار است .بنابراين سه عكسالعمل مجهولرا میتوانبا دردستداشتنسهمعادله


 از عكسالعملها فرض نمود . از آنجائى كه سه معادله تعـادلـادلاستا




 عكسالععلهـاى Tن نرا میتوان با استغاده از معادلات تعادل استاتيكى بهد ست آورد .



ادامه ثكل ( (q-q )- مثالهائى براید ستهبندى سازههـا

 هستتد و نه متقارب بنابراين ا اين سازه پايدار و معين خواهد شد . جون عكسالعمل مجهول

را مىتوان با استغادهاز سه معادله تعادل استاتيكى بدستآ ورد .از طرف ديكر اكرتكيهكامى
 خواهد شد زيرا خطوطا شر تكيهكاههاى آ
 است كه یس از دوران لحظهاى بهميزان زاويهاى محدود حول نتطهء O Oتعادل خود را را بـاز خواهد يافت . از Tنجائىكه وضعيت جديد سازه تابعىاز تغييرشكل سازهاست عكسالمملهاى

مؤثر بر سازه در وضعيت تغيير يافته از نظر استانتيكى نامعين خوا هد بـود .


 معادله خاص بهمعادلات اضافه مىكند و سازه را دو درجه نا معين مىنما يد . با اضا اضا انه نمودن
 منتقل مىكردداين عمل معادلا يجاد دو معادلهشر طـدر سازهاست يكى اينكه جمع لنكركيرى حول a از كليه نيروهاى مؤثر بههريك از دو قسمت بـرابر صفر مى انـاشد ديكرى أين كه جمع

 در شكلهاى p $p$ بهعد كليه تسمتهاى خريايىى را مىتوان بهعنوان يك جسم صلبب درنظر
 معين است . Tرايش مبياههاى يك خريا كه برایبإيدارى آن لازم استبا جزئياتكانىدرنصل هیهارم شرح داده شده است فقط در این بححث كانى أست كه قسمتهاى خربايى را بهمثال

 تكيدكامي مجهول است . متدار عكسالعملها در تكيهكاههاى بتددار A A B . . مقدار وجهت عكسالعمل تكيهكاه مفصلى C • براى أينكه اين جههار مجهول را معين كنيم نقط سـه معا دلــــ




 در ا ين حالت اكر مقطع جداكتندهاى از ميان بند BD بكذ رانيم و تكيهكاه مفصلى E را با دو

مولنه افقى و عمودي عكسالعمل ${ }^{\top}$


 با بـهاربردن


 تعادل استاتشكى تعيين نـود . لـذا مىتوان كفت كه اين سازه ها ايدار و معين است .

## (I - -

 زير معين است ، ولى دانـنجويان ميتوانتن بـهعنوان تمرين T Tنها را بنـحو نامعين نيز مورد . مطالعه قرار د هند

> مثال r-ا عـ عكسالعملهای تير ab را تعيين كنيد .


روش ج


$$
\begin{aligned}
& \begin{array}{l}
R_{a v}=\frac{20}{36 . .^{k}} \uparrow \\
R_{a x}=4 \\
4 \pi \cdot 5^{k}
\end{array} \\
& \begin{array}{l}
R_{b x}=29 \\
R_{b x}=29.3^{k}
\end{array}
\end{aligned}
$$

سهروشىكه بـراى تعيين عكسالعمل ارائهشد الساسا"يكى هستند , نقط درجزئياتمريوط بهنظم محاسبات با يكد يكر اختلاف دارند ، طريقه الف اهتـما لا" بههترين وش بـراى محاسبه سازههاى غيرهعمولىى و ییییيده است . در صورتيكه روش نظام يانته محاسبات بـهطريقههاىب
 هتوجه ميشويد كه جا يكزينكردن هر نيروى مايل با مولقَهماى انقى و ععود محاسبات , كاربردابن مولغدها بـهجايخود نيـرو درنوشتن معاد لاتت تعادلا ستا تيكى ، محا سبات
,ا عموما" بسيارساده ميكند (الكر نيرويى بـههمراه مولنمها يش در روى نمودارى از ييكــر ا زاد رسم شده باشد خطى موجدار بر روى یییكان نمايش نيرو رسم شود تا نشان داده شوه شود كه نيرو توسط. مولفهها يش جاهيزين شدها شاست ) .
 جهت نيروها را مشخص نمايد .توجه شود كه اكرجوابیى بهصورت هثبت بهدستا ابيد جهت نبرو


 معادله

 خوا هد T Tمد .
$\qquad$
مثال r-Y = عكسىالعملهاي اهن سازه را هحاسبه كنيد .


$$
\begin{aligned}
& \Sigma M_{n}=1, \quad . \\
& \left(\begin{array}{l}
(1)(4)
\end{array}(S)(9)=0\right. \\
& s=1 \cdot i^{*} 1 \\
& 2 F_{x}=0 \\
& \therefore R_{a c}=3 r^{\mu}+4 \\
& \begin{array}{c}
2 F_{2}=0 \\
\therefore H_{1}=3 \mu^{*}
\end{array} \\
& \text {-6if } \\
& \begin{array}{r}
12 \% \\
12
\end{array} \\
& 12 \\
& R_{s u}=\frac{-226 . h^{4}}{-2014 . s}=\underline{12.7 k} \uparrow \\
& \Sigma f_{y}^{\prime}=0, \uparrow+, \quad 22.2-40-40+103-32-30+16.7=0 \\
& 142-142=0 \quad \therefore O . K \text {. }
\end{aligned}
$$

بحث :

 عبور كند انتقال دهد ـ اكر مولفههاى افقى و عمودى اين نيرو را با



$\qquad$
مثال r-r عكـقالععلهای اين تير را تعيين كنيد .


$$
\begin{aligned}
& \Sigma F_{v}=0, \uparrow+ \\
& 14.37-40-90+109.04-44.72-8.69=0 \\
& 129.41-128.41=0 \quad \therefore \text { O.K. }
\end{aligned}
$$

$$
\mathbf{\Sigma} F_{x}=0, \overrightarrow{+}
$$

$$
\begin{aligned}
10.78-22.36+11.59 & =0 \\
-22.30+2.2 .92 & =0 \quad \therefore O . K .
\end{aligned}
$$

مثال

: $a b$ بهتنتها

$$
\begin{gathered}
\Sigma M_{a}=0, \mp,(10)(12)+(6)(9)+(8)(6)-M_{a}=0 \quad \therefore M_{a}=2 \ell 2^{t 1} \\
\Sigma F_{v}=0, \dagger+, R_{a y}-8-6-10=0 \quad R_{a y}=24^{4} \uparrow
\end{gathered}
$$

$$
\begin{aligned}
& \\
& \text { كل } \mathrm{S} \mathrm{\Sigma} F_{y}=0,24-8-6-20+10=0 \\
& \therefore 0=0 \quad \therefore O . K .
\end{aligned}
$$

$$
\begin{aligned}
& \Sigma M_{b}=0, \underset{\text { F }}{ }(\underline{\ell})(10)(\delta)-\left(R_{\text {cy }}\right)(10)=0 \\
& \therefore R_{a y}=10^{4}+ \\
& \Sigma M_{c}=0, \underset{\mp}{T},(S)(10)-(\$)(10)(5)=0 \\
& \therefore S=\overline{10} \uparrow
\end{aligned}
$$

$$
\begin{aligned}
& \Sigma M_{b}=0,7 \\
& \left(R_{a_{v}}\right)(20)-(40)(12)-(90)(6)+(44.72)(6)-\left(R_{c y}\right)(12)=0 \\
& 20 R_{a y}=12 R_{c y}+391.68 \\
& \Sigma F_{x}=0, \vec{~}, ~{ }_{4}^{3} R_{\mathrm{av}}-2.2 .36-4 / 3 R_{\mathrm{cy}}=0 \quad R_{\mathrm{cy}}=0.5625 R_{\mathrm{u}}-16.77 \\
& \therefore 20 R_{a y}=6.75 R_{a v}-201.24+391.68 \quad R_{a y}=+14.37^{k} \uparrow \quad R_{a x}=\underline{10.78^{k}}+ \\
& R_{c y}=8.08-16.77=-8.69 \quad R_{c y}=-8.6 .9 \mathrm{k} \ddagger \quad R_{c z}=-11.59 \overline{4}+ \\
& \Sigma M_{a}=0,7 \\
& (40)(8)+(30)(14)-\left(R_{b y}\right)(20)+(44.72)(26)+(8.69)(32)=0 \\
& \boldsymbol{R}_{b y}=109.04^{k} \text { 个 }
\end{aligned}
$$

مبا حث بنيادى تحلـيل سازهما

مثال r－a＝عكسالعملههاي اين خرپا را تعيـين كنيـ ．


$$
\begin{aligned}
& \Sigma F_{a}=0 \quad R_{b s}=84^{4} \text { (十 } \\
& \Sigma M_{b}=0, \text { 千 },\left(R_{a y}\right)(40)-(40)(37.5)-0 \quad R_{a y}=37.5^{4} \text { 千 } \\
& \Sigma M_{\mathrm{a}}=0, \underset{+}{\boldsymbol{+}}(40)(18.5)-(24)(50)-\left(R_{b y}\right)(40)=0^{-} R_{b y}=-5.5^{n} \ddagger
\end{aligned}
$$

$$
2 F_{y}=0, \uparrow+, 57.5-38-5.5-0 \quad \therefore 0 . K
$$

وارسى ：

بحث ：

در هنين مسائلى ابـتدا بارهاى هؤثر برسازه را محاسبه كتيـد ، بـها اين منظوربايد بهطور

 مىشود ．توجه شود فرض بر اين است كه اصطكاكى بـين حرخغ و خرها وجود ندارد و بـنابرانین



$$
\begin{aligned}
& \text { (a a } a \text { ( } a \\
& \mathbf{2} M_{d}=0, \overbrace{1}\left(H_{1}\right)(30)-\frac{(1)(30)}{D}(10)=0 \quad H_{1}=5^{k} H \\
& \Sigma M_{0}=0, \frac{(1)(30)}{8}(20)-\left(R_{d z}\right)(30)=0 \quad R_{d x}=10^{k} \mathrm{H}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore R_{a y}=29.27^{k}+
\end{aligned}
$$

$$
\begin{gathered}
2 F_{\mathrm{k}}=0, \uparrow+,-5.16 .+99.77-36.8+11.18=0 \\
\therefore-0.01=0 \quad \therefore 0 . K .
\end{gathered}
$$

$$
\begin{aligned}
& \begin{array}{l}
\Sigma M_{b}=0, \mp,(12.9)(20)-\left(R_{a y}\right)(15)=0 \quad \therefore R_{a y}=17.2_{t} \ddagger \\
\Sigma M_{7}=0, \underset{\mp}{ }+(12.9)(20)-(5.16)(15)-\left(R_{b y}\right)(15)=0 \quad \therefore R_{b v}=\underline{12.04^{k}} \ddagger
\end{array} \\
& \Sigma F_{z}=0 \quad R_{b x}=12.9^{k}+ \\
& \text { وارسى عمليات با در نظر كرفتن كل سازه بهعنوان يك قطُعه : } \\
& \mathbf{\Sigma} F_{x}=0, \rightarrow,-12.9+17.9+10-\frac{(1)(30)}{2}=0 \quad \therefore 0=0 \quad 0 . K . \\
& \begin{array}{l}
\Sigma F_{y}=0, \uparrow+,-17.2+12.04+29.7 \pi-35.8+11.18=0 \quad-0.01=0 \quad \text { o.K. } \\
\Sigma M_{\mathrm{a}}=0,7,-(12.04)(15)-(29.77)(40)-(11.18)(120)+(17.9)(40) \quad
\end{array} \\
& \begin{array}{ll} 
& +(30.8)(\theta 0)-\frac{(1)(30)}{2}(10)=0 \\
-2,86 S+2,864=0 & O . K .
\end{array}
\end{aligned}
$$






 اين مىتواند اساس تعيين عكسا لعملهاي مجهوهل و نيروهاى بين قطمات با باشد .

 تحتيق نمود



 تعيين نموديم و ديديم كه جمع جبرى اين سه عكسالعمل مقدار كل عكسالعمل را ات تحت اثر

هعزهان سهبار معين میكند و بـهعبارت د يكر از جـع T ثار اثرات جـداكانه هريك بـهجمع اشرات
Tنـها رسيدـيم •



 ارتجاعى تحمل كنــد و يا ایـنكه اصولا"تغييهرات تتشش ــ كرنش يا تسمتتى از T ن از قانون هوك تبعييت نكنـد









 جـ اكانـه بار

 كه د ر امر بـار مسورى اثر جـواگانهs



شكل Y

قبلا" ذكر شد كه اصل جمع T'ار براى حالاتیى كه در مورد آنها از اثر تغييــر هندسى




 در مقطع را كه ناشیاز معينبودن تيراست مىتوان با جمع آثار بهدست آورد ولمىد رهرصورت


 تغييرشكل سازه خواهد بود .
rer rer rer
 و معين و نامعين بودن د ستهبندى كنيد و برای باسخ خود دليل ارايأه دهيد .

جواب :

$$
\begin{aligned}
& \text { بهرطف بالا } \\
& \text { ( ) } R_{a x}=0, R_{\mathrm{ay}}=2.0 \mathrm{kips} \text { up بat } \quad M_{a}=16.6 \text { kip-ft c.c. } \\
& \text { ( е ) } R_{a s}=30.0 \mathrm{kips} \quad R_{\text {ay }}=22.92 \mathrm{kips} \text { up بهع } \\
& R_{\mathrm{by}}=90.42 \mathrm{kips} \quad \text { بهر بهرف بالا } \quad R_{\text {cy }}=54.20 \mathrm{kips} \quad \text { بهرفبالا } \\
& R_{f z}=22.19 \mathrm{kips} \quad \text { بهرف }
\end{aligned}
$$

$$
\begin{aligned}
& \text { جواب : } \\
& \text { (ه) (ها (ها }
\end{aligned}
$$

(الغ)



(J)


$$
\text { شكل r - } 11 \text { مساله Y-Y }
$$

 $R_{L y}=13.64 \mathrm{kips} \quad$ بهطرف بالا
(ه) $\quad R_{a r}=40.0 \mathrm{kips} \quad R_{a y}=23.6 \mathrm{kjps} \quad$ بهرطف
 $R_{\mathrm{by}}=22.3 \mathrm{kips} \quad$ بهطرف بالا
(g) $\quad R_{o x}=5.5 \mathrm{kipm}$
$M_{a}=30.0 \mathrm{kip}-\mathrm{ft}$ c.c.
$R_{\text {di }}=7.3$ kips
بهطرف بالا
(j) $R_{a r}=0, R_{a y}=8.5 \mathrm{kips}$
$R_{A_{x}}=1.0 \mathrm{kips} \quad$ بهطرف راست

$$
R_{d x}=10.0 \mathrm{k} 1 \mathrm{ps}
$$

هطرف هع


## 

| (الف)$R_{a x}$ $=1.48 \mathrm{kips}$ <br> $R_{b s}$ $=25.18 \mathrm{kips}$ <br> (ب) $R_{a x}$$=56.0 \mathrm{kips}$ |  |
| ---: | :--- |
| $R_{b x}$ | $=24.0 \mathrm{kips}$ |
| $R_{e x}$ | $=80.0 \mathrm{kips}$ |

( © ) $R_{\mathrm{u} \kappa}=3.51 \mathrm{kips}$
$R_{i x}=14.07 \mathrm{kips}$
$R_{f_{x}}=32.42 \mathrm{kips}$

$$
R_{\sigma x}=0
$$

(د) $\quad R_{0 x}=26.6 \mathrm{kipy}$
$h_{d \nu}=11.85 \mathrm{kips}$

بهطرف بالا



بهرفـبالا $\quad R_{\text {ev }}=30.0 \mathrm{kips} \quad$ برفراست



$R_{0 y}=68.3 \mathrm{kjps} \quad$ بهطرف بالا
 بهطرف بالا

شكل r - r با مساله r-r
r
 و برأى آن سه هیهر
 مجهول دارد با يكد يكر مقايسه وتركيبكند ونشان دهيد كه فقط جهار معار معادله مستقلباجهار مجهول وجود دارد .
r -

(e)


$$
\text { شكل r - r } 1 \text { مسئله r-a }
$$

## $r$ <br> تلاش برشى ولنتر خمشى






 .






تعين تنـ در تيرها r - ت







معلوم مىشود كه اين قسمت ها نمىتوانند فتط تحمت ا:ير نيروهاى خاربیى در تعادل استاتبكى باشند




هكي از قستتهاي جداشده را در حالت تعادل استأتيكى نكـهدانرد .

 قستتهای" و

 در خلاف جهت Tنان خو!هند بود .

(الف)

( $๘)$
شكل, ب-1 تنش در تشرها








 همان رواابط را داشتب باشند .
 امرى ساد هاست ، نيروى هحورى" . C






 (


 متعارف متاومت مصالع تعيهن نعود .
r r r r

ازبحثش قبلى معلوم مىشود كه اكر بخغواهبم متدار نيروى متاوم محورى ، تلاش مقاوم برشیولنكر


 لنكر آن حول هحور مار بر مركز ثتل متطع مورد نظر نشان دهيم ، این سه از نظر استاتـكى معـادل
 برشّى و لنغر خمئى ، تعاريغ ابن سه را مىتوان بهشرع زهر خلاصه نمود . نيروى هحورى F
 مقطع مورد نظر واقع شدها متت .

 در يككطرف مقطع مورد نظر واقع شدها ند


 صفصه باركذارى مى با شـد .
كرجه قصد مؤلغين هادآ ورى زهادهاز سداصول سازهها ، رواهط و غهرهنمىيا شد ولى اهنتماريغ آنجنان بهصورت مستعر وجود دارند و براى مهند سهن سازه اساسى بىاشاشند كه مطالعه و فهم Tنهـا





خمشى در آن هقطع خوا هد بود .

 است الهن علائمكه بـها نها علائم تراردادى تيرها كويند هم واضع است و مم كاريرد آنان امرى اساده
 تسمت از غك قطعه (توسط كشش )داثته هاشد لذا تماهل باهجاد كششن در متطع خوا هدداشت ،نيروى


لـكر غـنـ (+)
شكل ( (r-r ) علاءم قراردادى تهرها





F- r روثّ هما سبه برثَ و لـكر خـثى

 نيروى هرشى و لنكر خْشُى را در متاطع





 از تسمتهاى طرغين متطع تيررا مىتوان انتخاب كرد ولى بعمولا" مىتوان با انتخاب تطعهايكايععداد
 و عكسالعطلههاي موّثر بر T تسمت در تعيين مولفههاي نهيرو ها لنكرها وارد مىشوند .


 متطع d ال التدا ها ا استاده از قسمت سمت هب و سهس با استفاذه از تسمت سمت راست بترتيب 4 ثهيكر هاى Tازاد e g f محاسبـكردهاهم .توجه شود كه تا جه حد بحا سبات نموودار(و) نسبت بهنمودار


 اعن هقطع هراهر است ها جمع جهرى عكسالعمل هرا'هر با



$$
S=+57-16-30=+11 \mathrm{kips}
$$





（ب）

（＊）


＊
نهروى هرشى و لتكر خـشى
وارسى :

$$
2 r_{y}=0, \uparrow+
$$

$$
57+89-16+90-40-60=0 \text { O. } . \pi .
$$

نمودار ب :

$$
\begin{aligned}
& S=57-(4)(4)=+44^{k} \\
& M=(6 i)(6)-(16)(4)=+278^{*}
\end{aligned}
$$

نمودار ع :
طرف تهـ نتطه \& .

$$
\begin{aligned}
s & =5 \%-18-90=+11^{k} \\
M & =(5 \pi)(2,2)-(16)(10)-(30)(4) \\
& =+404^{*}
\end{aligned}
$$

نمودار د :

$$
\left.M=(5 y)(t)^{\prime}\right)-(16)(1)+23=4+2 s^{n}
$$

نمودار هـ:

نمودار و ：



$$
\begin{aligned}
& \therefore R_{a y}=\frac{1,968}{24}=57^{4} \text { 个 } \quad \therefore R_{a y}=\frac{2.136}{24}=89^{K} \text { 个 }
\end{aligned}
$$


 لذا مقدار لنكر خـشى برابر غوا هد شد با با

$$
M=(57)(12)-(16)(10)-(30)(4) \Rightarrow+404 \mathrm{kip-ft}
$$



 لازم را دارد .









 . نيز مشخص شذه الست bc

位












شكل r -
بهمدار 57+میرسد در فاصله af مقدار بزش در متطعى بمفاصله x از نمطه a از رابطه زير بهد ست

$$
S=57-4 x
$$














مى ثود كه از نظر رهاضى امكان † ثر هارهاى متمركز هر يك نتطه ميكن باند .

 در نعطه f هرسد ، در تسیت و ( $M=196+41 x$ هرالهر با 196 در f همرضى برانهر 360 در و





 شده است .
r






شكل r
a


 . خراهد $M+d M$,



$$
\begin{equation*}
S+d S=S+p d x \tag{الغ}
\end{equation*}
$$

$$
\begin{equation*}
M+d M=M+S d x+p d x \frac{d x}{2} \tag{ب}
\end{equation*}
$$

از رانجه (الغ) واضع است ك:

$$
\begin{equation*}
d S=p d x \quad \therefore \quad \frac{d S}{d x}=p \tag{ع}
\end{equation*}
$$

, با صرفنظرنمودن از متادهر ديغرانسيلى درجه دوم از رابطه (ب ) مىتوان دريافت ك:

$$
\begin{equation*}
\frac{d M}{d x}=S \tag{د}
\end{equation*}
$$


 لاكته است .






$$
d S=\frac{d S}{d x} d x=p d x
$$

هنإراين تغيهر در برش دو متطع A , B بترار زهر خرامد شد .

$$
S_{B}-S_{A}=\int_{x_{A}}^{x_{5}} p d x \therefore S_{B}=S_{A}+\int_{x_{A}}^{x_{B}} p d x
$$

بهأهن ترتهب اختلاف هسن عرض منحنى برشددر B و A.



















 ذكر شد تطاهت دارد. .





$$
d M=\frac{d M}{d x} d x=S d x
$$

لذا أختلاف بين لنكر خـشى دو مהطع A و B برابر :ا متدار زهر خواهد شد :

$$
\int_{M_{A}}^{M_{g}} d M=M_{B}-M_{A}=\int_{x_{A}}^{x_{B}} S d x \quad \therefore M_{B}=M_{A}+\int_{x_{A}}^{x_{B}} S d x
$$

 منحنى برثى.


 متدار آن تماهل بازدهاد مقدارمشت خـه











 حداتل شيدا خـوا هد كرد .









Y Y
Y f
در شيب نمودار لنكر خمثى اتغات خوامد انتاد .


تغيهر بهدا مىكند و با در نتاطى كه نمودارها بهمقدار عداكثر با حداتل خود ميرسند لازم مىشود .

 بر طبت اهول زهر وارسى نمود : ه الختلانـ بين عرضهاى نـمودار هرش در دونتطه براهر است با جمع كل بارهاى مؤثر بـرتير
 بارهاى متمركز در این حد نامل .

 . شد













^ م مثلهاى عددى - تيرهاى معين
 در تهرهاى معين با شرح لازم هرداهـته خوا مد شد .
مثال re -

$$
\begin{aligned}
& \Sigma M_{c}=0,+ \\
& -(2)(10)(8)=-256 \\
& +(2)(102)\left(10 \frac{1}{3}\right)=-+33.8 \\
&
\end{aligned}
$$

$$
\therefore R_{a y}=11.13^{k} \ddagger
$$



$$
\boldsymbol{\Sigma} M_{a}=0, \underset{+}{ }
$$

$$
(2)(16)(12)=+384
$$

$$
(z)(102)(28.8)=\frac{+238.5}{+617.8}
$$

$$
\therefore R_{i y}=30.8^{7^{1 k}} \uparrow
$$

$$
\Sigma F_{y}=0, \uparrow+,
$$

$$
11.19+30.8 \gamma-32-10=0 \quad \therefore 0 . K
$$

$$
M_{i j}=+(11.13)(4)=+44.5 \mathcal{B}^{x}
$$

$$
M_{6}=-\frac{(2)(10)}{2} \cdot\left(\frac{10}{3}\right)=-33.9^{k \prime}
$$

c,

$$
\begin{aligned}
M_{\text {mai }}=(11.13)(9.57)-\frac{(2)(5.57)^{2}}{\bar{g}} & \\
& =+75.48^{\mathrm{k}^{\prime}}
\end{aligned}
$$

$$
\begin{aligned}
& S_{i}(\operatorname{left})=11.18-(2)(16)=-20.8^{7^{k}}
\end{aligned}
$$

:



 در c

 بههمين طريق :مودار لنكرخمشى در a از
 1/18




مثال


$$
\begin{aligned}
& \Sigma F_{x}=0, \underset{\ddagger}{\ddagger} R_{a x}-(1,12 \overline{i n})\left(1, \frac{1}{2}\right)=0 \quad R_{a x}=10,12 \sigma^{\circ} 4 \\
& \Sigma M_{a}=0, \underset{\mp}{\mathcal{F}},(1,125)(18,2)(6)-M_{a}-0 \quad M_{a}=60,750^{\prime \prime} \psi^{*}
\end{aligned}
$$

$y=g^{\prime} \quad$ برش و لنكر خمثى در

$$
\begin{aligned}
& p=-1,125+(62.5)(9)=-1,125+582.5=-662.2^{\prime \prime \prime} \\
& S=+(582.5)(9 \%)=+2,591.3^{\prime} \\
& M=-(562.5)(92)(9)=-7,599.8^{\prime \prime}
\end{aligned}
$$

بحث :

هس از هحاسبه عكسالعملها نـودارهاى بار ههرث و لنكر خمنتى را.میتوان رسم كرد ، تاركـار



 در



 9 كه بين نقطه موردنظر و b ترار دإرد در نظلر كرفت .


بهت :


 صلر هود در نعطه b هاز مىكردند وارسى لازم بهعمل T آمده اسـ .

c., b

اكر
$S=48.8-5 x$

$$
S=0=48.8-5 x \therefore x=9.7^{\prime}
$$

$$
\therefore M_{\text {maz }}-M_{b}=\frac{(48.8)(9.7)}{2}
$$

$$
M_{\max }=M_{\kappa}+239.02
$$

$$
=-180+239.02
$$

$$
=+79.08^{k r}
$$

بهث :

 مككن است زهر سطّ زير نـودار برث هك ميلث است .

$$
\begin{aligned}
& \begin{array}{l}
\Sigma M_{c}=0, \underset{+}{+} \\
\left(R_{b v}\right)(18)-(92)(6)(10)=0
\end{array} \\
& \therefore R_{b v}=88 . \mathbf{g}^{*}+ \\
& \Sigma M_{b}=0, \text { ج } \\
& -\left(R_{c \psi}\right)(18)+(38)(5)(8)=0 \\
& \therefore R_{c y}=71.1 k+ \\
& \Sigma F_{\nu}=0, \uparrow+, 88.8+71.1-180=0 \\
& \begin{array}{l}
M_{b}=-(5)(8)(4)=-160^{k^{\prime}} \\
M_{c}=-(5)(6)(3)=-90^{t^{\prime}}
\end{array}
\end{aligned}
$$






$$
\Sigma M_{c_{R}}=0, \underset{+}{P}
$$

$$
+252.5-(30)(3)-(1.25)(0+)
$$



$$
\begin{aligned}
& -M_{c_{D}}=0 \\
& =+182.5 \mathbf{b}^{\mathbf{k}} \\
& \hline
\end{aligned}
$$

در d (درست در طرف هیه

$$
M_{d_{L}}=(1.25)(8)+(80)(9)=+100^{k^{\prime}}
$$

در d (درست در طرف راست T
$M_{d_{B}}=(1.25)(3)=+10^{k^{\prime}}$

 لنكر خمشى و سحاسهات مربوط بهتنشهاى داشلى در تيرها در هرصورت لازم خواهد هود كه جز"
 , هس از تعهین هارهاى وارده از طرف ترقرهها ، نمودار سازه مىتوات رسم كرد .


 مثالهای ( هماسبات فوق بدون اغڭال تابل فـهم است .
مثال


بحث :



بهعلاوه باید باداورىكرد كه كامى بارهاى شيبدار 50-kip كه بهنتطه f اثر ميكند وارد ميشوند در هنـين حالاتى واضع است كه مولفه انتى خنان بارهاء لنكرى كه سهب تغيـرى ناكهانى در عرض نمودار لنكر خدشى ايجاد ميكند وارد مينـايند .


$$
\begin{gathered}
\Sigma M_{a}=0, \mathcal{F} \\
(\sigma)(30)(12)-\left(R_{b y}\right)(24)=0 \\
\therefore R_{b y}=7 \sigma^{k} \\
\Sigma M_{b}=0, \overparen{F} \\
\therefore(6)(9 O)(12)+\left(R_{a v}\right)(24)=0 \\
\therefore R_{a v}=75^{k}
\end{gathered}
$$



رث و لنكر خمشى :
a در فاملك از

$$
\begin{aligned}
S_{x} & =60-4 x \\
M_{z} & =60 x-2 x^{2}
\end{aligned}
$$

اكر'

$$
\begin{aligned}
& S_{15}=60-4(15)=0 \\
& M_{15}=(60)(15)-(2)(15)^{2}=+450^{k^{\prime}}
\end{aligned}
$$








عمليات مىتوان در جنـين مـاغلى بـكار برد .
「 - q مثالهاى عددى ـ ـ ـاهتير با تيرريزیى كف






 طرهت تهرهاى كت اثر ميكند ظاهر ميشوند .







 متمركز باركذارى شده باشد انجام خواهو اهد كرفت .





مثال r-

$$
\Sigma M_{0}=0, \mp \text { هرسى ثاهتير تحت الثر عكسالمعلـهاى تهر طولى . }
$$

تلا شَ برشّى و لـنغر خمسى






## r - -

جنانكه در بهث نمل





 تعسين نمعود .

 نمودار هاى هرث و لنكر خمشى هيروى خوا همي كرد .

مثال



$$
M_{6}=-85.17^{\prime \prime} \quad M_{6}=-60.05^{\prime \prime} \quad M_{0}=0
$$



$$
\begin{gathered}
\Sigma M_{b}=0,7,\left(R_{\text {av }}\right)(10)+60.05-86.17 \\
\quad-(60)(4)=0 \\
\therefore R_{a y}=26.51^{k} \ddagger \\
\therefore S_{b_{L}}=26.51-60=-98.49^{\mathrm{k}}
\end{gathered}
$$

***
$\Sigma M_{b}=0$, Ғ,
$(5)(10)(5)-60.05-\left(R_{\mathrm{cy}}\right)(10)=0$
$\therefore R_{c y}=19.00^{k} \ddagger$
$\therefore \mathrm{~S}_{\delta_{z}}=-19.00+50=+31.00^{k}$

$\mathbf{\Sigma} \mathrm{F}_{y}=0, S_{b y}=\$ 8.49+81.00$

$$
=\underline{(i 4.19)^{k}} \mp
$$

لنكر -خمشى

$M_{*}=-85.17+(26.5 i)(6)$

اكر
$S_{x}=0=31-5 x$,

$$
M_{\max }=-60.05+(31.00)\left(\frac{6.20}{2}\right)
$$

$$
=+36.05^{k^{\prime}}
$$

=


لنكرها غمشى زيرين تتوسط روثـهاى
تهليل مازءهاى ناسعين محاسبه شده الست
د د انتهاى A از نتطه
د د انتهاى B از نتطه AB AB
$M=-68.0$ : در انتهاى BD

$M=+78.6: D E$ در انتهاي
$M=+508.7: D G$ د
 (+) در تارهاي تحتانى ايجاد كشش ميكند .


$$
\begin{aligned}
\Sigma M_{B}^{(I)}=0, & \frac{280.9}{} \\
R_{A x}= & \frac{68.0}{198.9} \\
12 & =16.58
\end{aligned}
$$


r

Y - ا


شكل
 باشد مغدار عداكثر لنكر هتدر است ؟
.


جواب :

) $\|=+5$, 败 $\%$

r Y Y Y Y Y

*

لنكر هرعسب

Y - Y رهم كته .
r-r - r



جواب :
 $B=+40 \quad D=+608,-120 \quad(!=-180),-2192:$ kip-ft


شكل ب-


 مساله (

Y -


شكل (A-r)
r


ثكل ب-r-

برش هرحسب

$$
\begin{aligned}
& a=+637.2 \text { ( } a=-52.7 \\
& \text { (24 }
\end{aligned}
$$





(c)

(s)


شكلr-10 مساله (11-r)


( $\varepsilon$ )


شكل r-r

خرپاها با شبكههاى مستوى
ץ - ا كليات - تعاريف













در مورد آن شرا يط فوق فرض شدده با شـد خربِاى /يِدآل كويند .



 كره انتهاى عضو مىباشد و از آنجائى كه كليه محورها فرض كردهايم لذا كليه اين نبيروها بايد دقيظا" از مركز محور مغصل كره بكذ رند . برایايا بينكه
 را تأمين نما ينـ واضح است كها ين دونيرو با يـد هم راستاى خطاتمال مراكز كرههاىد وانتهاى ميله بوده و از نظلر عددى برابر ولى از حيث جـهت د ر خلاف هم باشند . خون محورهایمار بر مراكز ثقل اعضاى يك خریاى ایِدهال مستقيم بوده و بـر خـطوط اتصال كرهمهاى دو انتهاى
 خمشى تحمل نـخواهند كرد . وقتى كه نـيروى محورى كليه اعضاى يك خريا محا سبه شدهباشد
 اعضاء را مىتوان به از آن بهراحتى محا سبه نـود . توعى از سازههاى سهبعدى را كه توسط تعدإدى ميله با اتصال مفصلى بـهيكد يكر وصـل ثده باشند بهتوعى كه جسم مشبك صلب را تتمكيل داده باشند شبكههاى فضايهي كويند . جنين سازههايى را با جزئيات لازم در فصل 9 شرح خخواهيم داد . خرپاهاى مستوى و فضآیى سازههايی هستند كه مخصوص تحمل بار در كرههای خخود مى ماشند . نتتيجه اثر بارها بهكرهها ا'ين است كه اساسا" اعضاى اين شبكه ها نيروى محورى



 بين كرهها مىشود (مساله f-\& جنـين حالتى را شرح مىد هد ) ولى اكر كرهها صلب باشنـ سازه بهمانتد يك قاب هـلب عمل خـوا هد كرد (بهبخش اثرات خخمى ناشى از باركذارى عرضى اعضاء از طريق كرهمها بهـاير اعضاء منتقل شدهو در كليه اعضاء سازه امكان بوجودT مدن برش و لنكر قابـل ملاحطه وجود خواهد داشت






.

 ندارد (بهسه ها, الكراف اوليه بخش (
 نيروى عرضى و لنكر خواهد شد و بـنابراين مقطع يك عضو تحت اتــر نـهـروى محورى،نـروى برشى و لنكـر خمش ترار خواهــد كرفت و علاوه بر آن وزن مــرده اعضاه نهــز كــهـ











 معمولا" رضا بيت بخشى مىبا شد" .

 . فرض نمود
r ـ ـ F ت ترتيب اعضاى يك خربا


* بهنصل 9 كتاب زير مراجعه شود :
J. I. Parcel and R. B. B. Moorman " تحلـيل سازههأى نامعين "












شكل H-1 تبر مشبك




 به d ميلهماييى بهطول
 كره c بهصورت صلب بدمتلث abd متصل مى مود لذا شبكهاى صلبب با هنج ميله و نقاط




 د ستكاه باركذارى وارد بـر كرهسها ,ا تححل نـا يند .
 با اتصال ميلهها بوجود Tورتم ، شروع عمل با انتخاب سهنقطه كه روى يك خط مستغيم واتع



 طريت بعنى ابـتدا بـا ايهجاد مثلث ملب abc و سيس با بـكاربردن دوميله بـراى ايهجان كـره


شكل Y-Y خرهاهاى ساده ه

جديد با ترتيب الغباء ايجاد شده است .
 كويند زيرا اين طريق سادهترين و معمولترين نوع Tا إبش ميلمها مىباشد .




نقطه تلاقى Tنها كرمى وجود ندا شته باشد .


 Tورن بحتى كه در بـخش (r-
 كنند تشكيل شوند سازه هاءدار بوده و عكسالععلهاى آنرا مىتوان تحت اثر حالت كلى




شكل - -

 كويند يك خرباى ساده را مىتوان بهخرباى ساده ديكرى متصل كرد بـها ين ترتيب كه Tـنها را توسط سهـند كه نه با يكد يكر موازى باشند و نه متقارب و يا توسط هرنوع اتصال معادلى بهم

وصل نمود . اكر دوخرها بـاين ترتيب ههم متصل شوند تشكيل يك شبكه مركب كا ملا" صلبـي


تههه خرهاى مركب عظّهم ترى متصل نمود .




 . استناده شده اس C
 كل شهك را مىتوان بهفمان طريق خرياى ساده هـر تكيهكا ههای لازم قرار داد .
(الغ)

(د)

( - )


شكل
(F-Y

قـل از اينك بـبـحث تعيين تنش در خرهاها بهردازهم لازم است كه علا بتكذارى
مشخصى را برای نـيروى ميلهها در اعضاء بك خريا تعيين كنيم


 مى ماشد . اغلب مقاد يرنيروى ميله در اعضاى يك خرپا را بـهصورت جدول ويا د رطول اعضاى خريا كه توسط يك خطط در نمودار خربا نشان داده شده است درج كردهايم ، بـا ين منظور راحتّتر خواههم بود آكر قرا رداد مشخصى براى تعيين نوع تتس لـر يـك عضو را بهصورتى كـه




 يا نيـروى منفى ميله سبب نقصانطول ميله و يا سبب تغييرى منفى د ر طول مبله مى مردد . در تععيين تنشي خريا ها اغلب كاركردن با دو مولغه قاءم نـيروى ميــه بـهمراتببراحتتراز كاركردن با خود نيروى ميله است ، بهاين جههت دوجههت عمود بـرهم x و y را (كه معمــولا" بهترتيب افقى و قاءم كرفته مىشوند ) انتخاب كردهايم و در این صورت دو مولفهمتناظرميله به بهترتبي با $a h$

 برخى از اين روابـط را در ا اينجا يادآورى مىكنيم ، با در نظر داشتن اين كه نـيروى ميله در راستاى شحور عضو عهل مىكند كنتار زير بـخودى خود مادق خواهد بود .



「 تصوير افقى عضو بهتصوير ڤائم عضو و برعكس
اهل زبر نيّز در مسالسبات نـهروى ميلد ها مههم و مغيد مىباشد .



© - $\dagger$

بـراى تعيـين تابليت يك خربا در تتحمل باركذارى ، ابـتدا باهد معدار نيروهاى ميله را




 تنشها فقط عك نيروى محورى الست كه همان نيروى ميله عضو مىباشد .
 در تعادل با شد ، هر قسـت جداشده از خربا تحت اتر دستكاه نيروعى كه ممكن اسـت شـامل


 بـتعيين Tنهيا هرداخت این عملكرد را مىتوان باملاحظه هثال مشخصى نظيرخرياى سازهشكل ( (



 شكل (


 اكر آ نظر فقط دونيروى ميلهمجـهول باشد و خطوط اثر ایندو نيهرو همراستا تبا شند بااءن دوشرط
 در كره بـيش از دونيروى ميلهُ مجهول موجود باشد متادير مجههول را نمىتوان توسطاين دو

مسادلـه بلاناصله بعد ست Tرد"
در این حالت ، كره آزاد شده a تحت اثر عكسللعمل بعلوم و دونيروى ميلـ مجـهــول


$$
\begin{array}{rlc}
R_{o y}=\frac{3}{4} \times(20+12) & =24 & 32 \\
\frac{1}{2} \times(40+8) & =24 & 4 \theta \\
\frac{1}{4} \times 40 & \left.\frac{510}{58^{k}}+\frac{40}{120^{k}}\right\}
\end{array}
$$



(2)

( $\rightarrow$

شكل ثـه تحليل يك خرهاى ساده


 با فرض كششى بودن هردوى هo -نوشت

$$
\begin{equation*}
\Sigma F_{v}=0,+\uparrow, 58+45 F_{a b}=0 \tag{الف}
\end{equation*}
$$

$$
\begin{equation*}
\Sigma F_{x}=0, \overrightarrow{+}, 3 / 5 F_{a t}+F_{a b}=0 \tag{ب}
\end{equation*}
$$

از معادله (الف ) داريم :

$$
\begin{equation*}
F_{\mathrm{a} \alpha}=-72.5 \mathrm{kips} \tag{فشار}
\end{equation*}
$$

و سهس از معادله (ب) خواهيم داشت :

$$
\begin{equation*}
F_{a b}=-3,5 F_{a b}=-(3 / 5)(-72.5)=+43.5 \mathrm{kips} \tag{كشش}
\end{equation*}
$$

تس بولفههاي F

$$
\begin{aligned}
& X_{\mathrm{at}}=(3 / 5)(-72.5)=-43.5 \mathrm{kips} \\
& Y_{\mathrm{as}}=(45)(-72.5)=-58 \mathrm{kips}
\end{aligned}
$$

بها بنترتيب علامت منغى مى ماشد (ععنى فشارىاست ) و در صورتىكه علامت بثبت



 مىيسينيم روى نمودار خطى دري در نمود .



 انتخابى ولذا فشارىبودن آن است و بها ين ترتيب علامت باسخها بـمورت خودبـبخودىبا

علائم قراردادى تطابت هیذا مىیند .
از روش هساسباتى بـهكار رفته مىتوان بـراى تعيين نيروى ميلههاى مجهـول د رهركرهى
كه در آن نقطدو نيـروى مبلهء مجههول وجود داشته بـاشد استغاده كرد .
 كرهها با انتخابهى كه در طى آن كليه نـيروى ميلههاى اعضاى كره بعدى بجز دو عضو
 بديههى است كه لازم است این درونـيروى ميله مجهول داراى دو خط اثر متفاوت باشند . فنـى كه طى آن توسط برشى ، يك كره را از بغيه خربا جدا مىكنيم بـه روت

كرهها معروف است .
كاهی منا سبتر اين استكه توسطبرشى ، قسمتىاز خربا را كه دارایهنـد ينكرهمىها شد

 كه این نبـروها مىتواند شامل جنـد نيروى خارجى و هم جنين نيـروى ميلهها در اعضاء هـرش
 عM: عM = 0, قسمت فتط سه نيروى ميله مجهول داشته باشيم و این سهنيرو نـه با عكد هير موازى باشنـــد و نه متقارب مقادير Tن سهنيروى مجهول را مىتوان توسطاین سهمعادلـه تعادل بـهد ستاورد .
 در اینحالت برشی مبلههاى hg h h h $b c$ خريا توسط ايى برش جداشده است و مىتوان نيروهاي مجهول در ميلههاى بريدهشده را با حل سهمعادله تعادل براى قسمت جداشده بهد ست Tورد . در مباحث تبلـي كهاز
 معاد لات تعادل در مورد نيروهاى غيرمتقارب حل مسالـه را سادـهكرد مثلا"براى اهنـكه متدار ( $F_{a p}$
 $X_{h o}$

$$
\begin{aligned}
& \Sigma M_{c}=0, \widetilde{+},\left(X_{h q}\right)(42)+(58)(48)-(32)(24)=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { مىشود بـهروشى مشابه خوا هـيم داشت }
\end{aligned}
$$

$$
\Sigma M_{h}=0, \overparen{\mp},(58)(24)-\left(F_{b e}\right)(32)=0
$$

از T نجا . براى تعيين مولفه انتى لا عمودى F F بهنترتيب بهكار برد .

$$
\Sigma F_{z}=0, \overrightarrow{+}, X_{h c}+43.5-48=0
$$





 از آنها نتط عكى مجهول داشته باشد .
\&







 شده است واضع است برای اینیه
 متعادل كند
جون نيروى ميله در ab معلوم شده است هيداكردن نيروهاى



43.5-هوده و براى تأمين
 T آن دوميله داراى مقدارنـيروى ميلهُ معلوم و دوميله ديكر مقدأر نهروى ميلهنا معلومداردجدا

 ههوروت زير نوشته خواهد شد :

$$
\begin{aligned}
& \Sigma F_{x}=0, \overrightarrow{+}, 12 / 1 / 3 F_{h g}+3 / 5 F_{h c}+43.5=0 \\
& \Sigma F_{y}=0,+\hat{\uparrow}, 5 / 33 F_{h g}-4 / 5 F_{h c}-12-20+58=0
\end{aligned}
$$

در اين حالت متأسغانه هريك از دومعادله داراى دومجهول هستتد لذا لازم است كها اين

 زير دقت كنيم :
 كه يك يا هردوى


 میىند بلكه محاسبه ساده لنكرهاى نيروى ميلدهاى
 طريق نتط مولفه عمودى


$$
\Sigma M_{o}=0, \mp\left(X_{h_{\theta}}\right)(42)+(58)(48)-(32)(24)=0 \quad \therefore X_{h_{\theta}}=-48
$$

وبا تنا سبكيرى

جون
 مثال جون
 الين بدان معنى است كه ميله بهكشث كار مىیند و بس از آن با نسبتكيرى بهترتيب نيـروى
 محاسبات را مىتوان با تأمهن رابططه








 , ها اينكه بهمساله مشكلى هرخورن مىنماهند هـرسم هیكر آزاد لازم و نوشتن معـادلات . میهردازند











 در آهن نصل در درج نـيروى ميلهما ما نـيز هنين روشى را دنيال خوامـيم كرد .

مثال بارهاى نشانداده شده مىياشد محاسبه كنهد .


$$
\begin{array}{rl}
\Sigma M_{b}=0, & \\
20 \times 1 & 20 \\
40 \times 2 & =80 \\
20 \times 5 & =\frac{100}{200} \\
-10 \times 1 & =\frac{-10}{190} \\
R_{f v} & =47.6 \dagger
\end{array}
$$



$$
\begin{array}{r}
\Sigma M_{f}=0,7 \\
40 \times 2=-80 \\
20 \times 3=-60 \\
10 \times 5=\frac{-60}{-190} \\
20 \times 1=\frac{20}{-170} \\
R_{b_{y}}=42.5 \uparrow \\
\Sigma F_{\nu}=0, \uparrow+ \\
47.6+42.5-10-20 \\
-40-20=0
\end{array}
$$

$$
\begin{aligned}
& \Sigma M_{m}=0,7 \\
& 10 \times 2=+20 \\
& 42.6 \times 9=\frac{-127.5}{-107.5 n}
\end{aligned}
$$

$$
\therefore F_{C e}=+\frac{107.5}{4}=+2 \theta .88
$$

$$
\Sigma M_{1}=0,7
$$

$$
42.5 \times 1=+42.5
$$

$$
10 \times 2=\frac{-20}{+22.5}
$$

$$
\therefore X_{C D}=\frac{-(22.5)(30)}{40}
$$

$$
\begin{aligned}
\therefore F_{C D}=-\left(1 C^{\circ} 9\right) & =\frac{-16.88}{\left(\frac{\$ 1.69}{90}\right)} \\
& =-17.80
\end{aligned}
$$

برش co co (2)-(2) ميلـه co


$$
\begin{aligned}
& =-17.80 \\
& \Sigma M_{m}=0,9 \\
& 10 \times 2=+80 \\
& 80 \times 4=\frac{80}{+100} \\
& 48.5 \times 3=\frac{-187.5}{-87.5 m} \\
& \therefore Y_{\text {eD }}=\frac{-27.5}{4}=-6.88 \\
& \therefore F_{c D}=-6.88 \times \frac{58.3}{50}
\end{aligned}
$$



توجه شود كه هـى از هحا سبه نبـرو در Cc مولغه عمودى نبرو در cD را مىتـــوان بهسادكى با جدانمودن كره c محاسبه نمود ، همهنـين توجه شود كه بس از معلوم شدن نبرو در cD مولغه عهودى در
 نيرو در CD $\Sigma F_{x}=0$ نحاسبروى نيرو در عضو DE را میتوان با بداكردن قــمت راست با جب خريا توسطبرش

مؤثر خارجى انتخاب كرد هاءم •





$$
\begin{aligned}
& \Sigma M_{1}=0,7 \\
& (20)(S O)= \\
& (30)(40)=\frac{1,200}{1,800} \\
& \\
&
\end{aligned}
$$


$\Sigma 2 F_{y}=0,+\uparrow$ وارسى توسیط
$-20-20+60-20=0$
برش (1)-(1) ميله


$$
\begin{gathered}
\Sigma M_{f}=0+ \\
(10)(20) \pm+200 \\
(20)(30)=\frac{-600}{-400} \\
\therefore F_{d d}=-\frac{400}{30}=-19.93
\end{gathered}
$$


 Y شود



01
بهأین ترتهب از

$$
10+10+10-3 / A-3 / A=0 \quad A=80
$$

$$
\therefore X_{u}-+16 \quad \text { and } \quad X_{1}=-16
$$

$$
\begin{array}{ll}
Y_{4}=+20 & Y_{\text {m }}=-20 \\
F_{4}=+85 & P_{\text {ma }}=-25
\end{array}
$$


 شهردازهم . د ر این خرها شاهد این مغيدتربن روش برای يافتن نـيروى ميله ها باشد ، ولى اكرمحاسبه تعداد بـخصوصىاز نـيروى ميلمها موردنـياز




$$
\begin{aligned}
& \mathbf{\Sigma} M_{0}=0,7 \\
& 10 \times 43 p=+13 . s_{p} \\
& 20 \times 1 p=20 p \\
& 30 \times 2 p=60 p \\
& 40 \times 9 p=\frac{120 p}{+213.9 p} \\
& \therefore R_{c y}=53.3 \uparrow \\
& \Sigma M_{0}=0, \Psi \\
& 20 \times 3 p=-60 p \\
& 30 \times 2 p=-80 p \\
& 40 \times 1 p=\frac{-40 p}{-160 p} \\
& 10 \times 4 \frac{4}{} p=\frac{+13 . \$ p}{-146.6 p} \\
& \therefore R_{a y}=96.6 \uparrow
\end{aligned}
$$

$$
\Sigma F_{y}=0, \uparrow+, 36.6-20-30-40+53.3=0
$$

ميله bc : قسمت طرف هیب برش ا-|

$$
\begin{aligned}
\Sigma M_{c}=0, \underset{+}{26.6 \times I p} & =78.4 p \\
20 \times 1 p & =\frac{-20.0 p}{\frac{53.3 p+10 \times 40}{40}} \\
& =F_{b c}=+50
\end{aligned}
$$

ميله aC : قسمت طرف حهب برش R-2 :

$$
\begin{aligned}
\Sigma F_{y}=0 \quad \therefore & Y_{a c}=-96.6 \\
& \therefore F_{a c}=\frac{\sqrt{3^{2}+8^{2}}}{8}(-56.6)=-66.1
\end{aligned}
$$

ميله bC

$$
\therefore Y_{b c}=+80
$$

$$
\begin{aligned}
& \text { (أز كره } \\
& \therefore Y_{b c}=+80
\end{aligned}
$$

مثال


ميله cd : قسمت طرف جب برش ا-1

$$
\begin{aligned}
& \Sigma M_{B}=0, \widetilde{\mp}, 86.6 \times 1 p+40 \times 1 p=108.6 p \\
& \therefore F_{t d}=+80
\end{aligned}
$$

مملـه BC : همان قسمت

$$
\begin{aligned}
& \Sigma M_{d}=0, \underset{\neq}{ } \\
& 66 . d \times 3 p-40 \times 1 p-20 \times 8 p=180 p \quad \therefore F_{C D}=-90 \\
& \text {, } F_{B C}=-80 \\
& \text { كره C را جدا كنيد : }
\end{aligned}
$$

$$
F_{C_{m}}=0 \quad \text { مملـه bm : آادكردن كره C نشان میدهد كه }
$$

حال قسمت جداشده توسطبرش ع-2 عا در نظر بكيريد :


$$
\begin{aligned}
& \Sigma M_{d}=0, \mp,+40 \times 1 p=+40 p \\
& \therefore Y_{b m}=-20 \\
& \therefore X_{b m}=-90 \\
& \therefore F_{h m}=-96.06
\end{aligned}
$$

ملهه nf : شده توسطبرش s-s

$$
\Sigma M_{d}=0, \frac{7}{7}, 10 \times 1 p=10 p \quad \therefore Y_{n j}=-5 \quad X_{n j}=-7.5 \quad F_{n j}=-9.01
$$

 $\Sigma F_{y}=0 \quad \therefore Y_{m d}=+6.6 \quad: 1-1$ ميله 1 م




$$
\begin{array}{ll}
\Sigma M_{D}=0, \mp \\
50 \times 3 p=180 p \\
60 \times 1 p & =\frac{-60 p}{\frac{90 p}{50}}=\frac{1-1}{50}=84
\end{array} \quad \therefore X_{b d}=+54
$$

تسمت چبّ ا-1

بـحث :

F

 نيروى ميله در عضو





مثال


بحث :

در حل اين مثال ميتوان از يكى از انتهاهاي خرها هحاسبات را شروع كردهو تا

 هس از تعيين عكسالعطلها بههمين طريق بهتعيين نيروى ميلهها هرداخت . همجنين دقت شود كه مولفه عمودي نيروى ميله را در تطريها ميتوان بان با اعمال معادله
 در كرههاى مربوطه هساسبه نمود و مقدار نيرودر $\Sigma F_{\iota}=0$ اعمال معادلـ



Y - F




روث مىيا شد .









 دستكاه $n$ معادله منجر بهتعيين $n$ مجهول مىكردد





嫁


 وجهن دو نهروى هac

(الن)

(-1)

(c)

شكل (ץ-\&) حالات ياص

نيروى بافيعاندهكره بعنى

 كره صدق كند یس لازم مى یید كه هردو نيروى










 سبب میشود .







كنترلىيبراى محاسبات انجام شده تا آن مرحلـه مىيا شد .


 مقدارتنش در تنها ميلهء مذكور را ميتوان با استناده از مـادله از كليه نيروها حول نقطه a بهد سـت آ ورد . حالت مشا بـه د ديكر وقتى است كه كلـيه نيروهـاى ميله مجهول بهجز يكى از آنها با يكديكر موازى باشتد . در این صورت متدار تنش در تنهـا ميلءء با تيهانده را ميتوان با جمع تماوير كليه نيروها روى محور عمود بر جهات ساءرنيروى ميلمها بهد ست Tر وده د رهردوحـالت فوق تعداد مجهولات موجود در تسمت جداشده همواره
 مجهولات ممكن نـيست .
در كاربرد هريك از روشهاى كرهها و بتاطع باهـ متوجه بود كه بههيع عنوان تعـداد ميلههاى بريدهشد هكه در آنها نيروى ميله معلوم مىبا شد مههم نيست بلكه تتها تعدادنيروى ميلههاى مجهول مههم مىباشد .
†
تا كنون همهء تأكيد ما بر روشههایمحاسياتى تعيين نبروى ميلمها درخرهاها ها بودها ست . بها ين خاطر كليه مثالهاى بهكار رفته هم معين بودهاند و هم پایدار . حال با داشتن زمينهُ
 - مطرح سازيه در هبحث ترتيب اعضاي يك خرياىساده هنشان داديم كه يك خرياى هلبرا با باتصال سهكره توسط سهميله بهشكل يك مثلث شروع ميكنيم و سيس مر كره اضافى ديكر را با دوميلد

 از(3-n

داشت :

$$
b=3+2(n-3)=2 n-3
$$

اين تعداد حداتل ميله لازم براى ايجاد يك خرپاى سادهء هلب مىباشد بهكاربردن بـشـاز


 تحت انــر باركذارىهاى غهـرششخص باءدار بــرده و عكسالعملهاى آن نهــــز معيــن خوا هد بود .
 ميله آن توسطروشي كرهـها مـكين مىباشد .





 عكسالمملها نامعين خواهد هود برد .


 و تعداد كل ميلمهاى خرِاى مركب b باشد خواهـيم داشت :

$$
b=\left(2 n_{1}-3\right)+\left(2 n_{2}-3\right)+3=2\left(n_{1}+n_{2}\right)-3
$$



$$
b=2 n-3 \quad \text { داريم } b
$$



 ساده و مركب بهصورت يكسان صادق است اري


 تما ميكميله با قسمتى ازَّن تا زمانى تعادل ميلمها را تغييرى نخواهد داد و بدين ترتيب مىتوان هريكا از n كره را را بهنوبهـورد

ازاد كرده و برای هريك از

 2n $2 n$ مستقل مىتوان فهميدكه Tا T T ا رفته مشابه استدلالى است كه در بخش






 ساده و مركب أنجام كرفت تطاهت كامل دارد .

 - ز بلكه شامل سه معادله




 ( (Y-Y)


شكل ( ( $)$ - - نكات مربوطبهتعادل















 $\Sigma F_{x}=0 \quad$ كهدرنمودار(الف)نثانْ








 با ملاحظه مثالهاى مذكور در شكل ( ا استبا وجودى (الف)


است زبـرا كه در طانـل د وم متارمتـى د د بـرابـر بـرش منتقل شده از انتهالى راست وجود نـدارد .

$b=13 \quad r=3 \quad n=B$
$b+r=16 \quad 2 n=16$
(الغ)

$b=17 \quad r=4 \quad n=10$
$b+r=21 \quad 2 n=20$
( $\boxed{\text { ) }}$

$b=13 \quad i=3 \quad n=0$
$b+s=16 \quad 2 n=16$
(-)

$b=25 \quad r=4 \quad \pi=14$
$b+r=29 \quad 2 n=28$
(د)

شكّل




 باشد ، بالاخخرهمعلوم خوا هد شد زيرا درصوزتى كه تحليل تنش انجا مكيرد باسخسهاي بهد ست

(




 نسبت بهحالات تيروى ميلمها و عكسالعملها سازهرا طبقدبندى نمايد .اكر شمارش نشان دهد

كه سازه معين و ها نا معين مىبا شد سوال مربوط بهبا يدار بوودن سازه هنوزمطرح استرزيرا شما رش





 اكر سه جزء عكسالعمل موجود باشد اين اجزاء معين مىاشاشند و اكر بيش از سهـجزء عكسالمعل

 دارند در شكل (4-9) ) نشان داده شدهاست .




(د)

ثكل
شمارن ميلمها ، كرمها و اجزاى عكسالعمل در هريك از خرباهاى شكل ( (\%-9 ) نشــان
 است زيرا

سازهاب؟) نتـان مىد هد كه معين است زيرا كهي






 , كل



 نظير بلهـاى طرهاى و توسي با سه مغصل- بهاين كروه تعلق دارند و بها بان جهت است كه


$$
\text { شكل ( ( } 10 \text { ) نمونههايىى كلى از این سازهها را نشان دادهايم . }
$$





 اجزاى مجهول عكسالعمل با تعداد معادلاتيكه بهطريق بخشهماى (
 براى كل سازه بهاضافه تعدادى معادله .
اكر دو خريا در بيك كره مشترك بهيكديكر مغصل شوند همانطورى كه در ر كره a شكـهانى


 بند دار و يا غلتكدار نظير بند $l$ در سازهؤ بهيكديكر متصل شوند در اين هالت دو معادله







 بانل



 امريكا بآن خریاى و يهرت Wichert كويند و آن را مىتوان فتط با شما رش ميلهها ،كرهها و عكسالعملمها ارزيابىا نـود *





 نابايدارى معلوم 'ست ولى معمولا" تا كسى بهمحا سبه عكسالُعلمها و غيره اتدام نكند Tشكار
نــىـشود

4

اعضاى يك خربا را تقريبا" مىتوان بـطريتى نامســـدود آرايش, داد ولى اكتــر قربـب

 با يد با اساس ايت خرهاهاى هتعارفـ Tشنا باشند ,




D. B. Steinman, "The Wichert Truss," D. Van Nostrand Company, Inc., New York, 1932.
 W. M. Fife and J. B. Wilbur, "Theory of inatically Indeterminate Structures," McGrawHill Book Company, Inc., New York, 1437.

مباحث بنيادى تحليل بازهها

T
 وسيع نبا شد. مىتواننـد نأمين نما يند ، براى یلـها بيى با د هانهء وسبع در هر صورت لازم است كه بكي از انواع تقسيم شدهاى نظير (و ) ( (ز) , ( ع ) را بهكار بـرتد .

( $\mathfrak{c}$

(,)

 6
(j)

( 1 )

( - )


(c)

شكل F


شرياى فاي
(c)

(ب)


غرهاء نهنك
(د)

ك大يه خربا های ثوشش ستفها كه در شكل (Y-Y





مثال خوقانى منحنىى شكل اسـت محاسبه كنيد .


بحث :




 تحتانى انجام داد ،اين محاسبات




 واقع شده ـ باشد، بد بهيه است كه اكر بارهاى انقتى نيز وجود داشته باشداين مطلب صحيح نحواهد بود .


 نوتانى معلوم شود عملي ساده خوا هد بـود .




بحث






 كه كرههاى مىباشند .



خربا توسط روش كرهـها انجام مىيرد .

، Gf, Cb ، Cd توجه شودكه مىتوان تحليل تنش را بامحاسبه نيروري ميلهما

برش r-r تبسريع نمود .

نكته اساسى الين است كه همواره بهخاطر داشته باشيم كه از تركيب كاربرد دو و
روش كرهها و مقاطع بـنـحوى استغاده كنبم كه بهمساسبات سرععت لازم داده شود .
 در مورد خرِاههاى پوششى مركب صحت دأرد ، در خنين حالاتتى اغلب تعيين تنش از
طريق دوش تتحلـيل ترسيمى سادهنر خواهد بود .

مثال


$$
\begin{aligned}
& 80 \times \frac{6.5}{8}=6 i j \quad \text { so } \times \frac{1.50}{8}=15 \\
& 40 \times \frac{4.5}{8}=28.5 \quad \text { in } \times \frac{4.5}{8}=17.5
\end{aligned}
$$



$$
F_{e f}=38.75 \times 12010=+116.25
$$







 بنابـراين در استغاده از را رابطه






 جنانكه در اولين نمودار نيرو توسطاعدادى در داخل هلال نشان دادهايم مىتوان




 Tنها بحث شد نارساتر مىباشد .

## 
















هی برد و اكر عكسالعملـها قبلا" تعيين شده ها شد مىتوان از سمعادلـه ها تيهانده بـراى نتأيج هـد ست T آمده بـراى 9 نهروى مبله مجـهول استفاده نـمود .
در مر صورت برقرارنمودن این جنــين نـه معادله برالى حل اين مساله راه حل ضعينى
است . روشهاى دیكرى كه بسيار بـهتراز این روش هستند وجود داردكه عكى ازآنهها بهصورت زيراست : هساز تعبين عكسالععلـها فرض كنيد كه نيروى ميلهُ FE براهر با نيروى كششى

 عـودى در هر دوميلهُ BC و CD بهترتيب بـرابـر با 0.5H اين كه نـروى هيلهها در این هنج ميله برحسب H معلوم شد حال هىتوان با كذراندن بـرش



$$
\sum^{R} M_{\mathrm{a}}=0, \underset{+}{ }, 15 H-(20 j(0.5 H)-(15)(20)=0
$$

 با روشكرهها جهنا نكه در شكل (F-Y







 داشت لذا در اينـجا بـش از این بـهآن نمىیردازیم هركاه مطالب بيشترى در اين هاره مورد
S. Timoshenko and D. H. Young, "Engineering Mechanics," vol. I, "Statics," McGrawHill Book Company, Inc., New York, 1956.

روثى هنهركِ توسط خـود او در كتاهش كه نام آن در زعر آمده است بسط داده شده است .
"Statik der Starren Systeme," Darmatadt, 1886.





ب بـرهـ
+

قبل از ابینك فصل بربوط بـهسازههاى خريا بیى را خاتمه دهيم جلب توجه دانتْجويان
 صلب توسط كرههايهى ملب كه قادر بـهتحـل لنكر مىباشند ، بههم متصل مىكردنـد . بـرخلاف


 صلب و دالراى متاومت در برا بر لنتئر باشند تشكيل شده با شد .


 زاويه" بـين اعضاء مختلنف د ركره همواره تحت اثرتغييرشكل قاب نيزبـد ون تغيـير باتى مىىماند.












حل Tان سازه برقرار نـود ، نظظير سألت خرياها ، تعداد مجهولات و معادلات را مىتوان بـر حسب تعداد قطهات (اعضاء ) كرهها و اجزاى عكسالعملبمان نمود .

 ععل كره بر روى بك عضو مىتوازد شامل بك لنكر و بی نيـرو با شد بهطورىكه اين نـبروبـتواند



 داخلى وجوددارد ــ حال اكر تعداد اجزاى عكسالعمل r باشد و تعداد اعضاء b ،تعدادكل مجـهول مستقل عك قاب برابـر با $3 b+r$ خـوا هد بـود . اكر كره صلبى را از سازه Tان كنـيم اين كره تحت دستكاه نـيـرو و لنكر واتع خخوا هد شد، براى اینکه :تعادلجنان كرهى برقرار باشد این دستكاه بايحـ سه معادله تعادل استاتيكي را جوابـكو باشد .اكر كل تاب در تعادل باشدلازماست $\quad \Sigma M=0, \Sigma F_{u}=0 ، \Sigma F_{z}=0$



 استاتيكي مىتوأن برقرأر نمود .
 تعداد معادلات خام سلزه 8 با تُد تعداد كل مطا دلات موجود براى تعيين مجهولا ت برأبربا $3 n+s$
 همان طورى كه قبلا " د يد يم مىتوان نتيجه كرفت .
انكر $3 n+s>3 b+r$ باشد تاب ناباهدار است . $3 n$ اس
اكر $3 n+8=3 b+r$ باشد قاب معين است . $3 n+8$ باب
اكر اكر $3 n+s<3 b+$ باشكا ماب نامعين است




 بغشى (

جدول ( ( ( جدول (f-1)

| مشخصه | $34+r$ | $3 n+s$ | $r$ | $b$ | 8 | $n$ | تاب |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| q | 33 | 24 | 3 | 10 | 0 | 8 | الف |
| גادرجهنا | 42 | 24 | 3 | 13 | 0 | 8 | ب |
| معين | 12 | 12 | 3 | 3 | 0 | 4 | ¢ |
| معين | 12 | 12 | 3 | 3 | 0 | 4 | د |
| Y | 15 | 12 | 6 | 3 | 0 | 4 | $\pm$ |
| YוY درجه نامعين | 39 | 27 | 9 | 10 | 0 | 9 | , |
| 9 9 درجهناهعين | 24 | 18 | 6 | 6 | 0 | 6 | j |
| 9 ¢ درجه نامعهن | 24 | 18 | 9 | 5 | 0 | 6 | $\tau$ |
| F | 24 | 20 | 9 | 5 | 2 | 6 | b |
| Y | 15 | 13 | 6 | 3 | 1 | 4 | $v$ |
| Y | 24 | 21 | 0 | 6 | 3 | 6 | ك |









 فوقالذكر را بهصورت كلى بـيان كنيم بايد كفت كه تعداد معادلات خاص كه در انر ايجـاد

(c)

(2)

(-)

(b)


(s)

(c)
(5)

شكل
 يكى . اكرتعداد معادلاتىكه بها ينترتبيب شمرده میى شود هرابر با

صحيع خوا هد داد .





 دـ هتد . تعداد قيودى كه بهاين طريت واقعى غا معينى سازه خوا هد بود .
(f)

Y


ثكل
(

 Tنرا ذكر كنـيد .



# جواب: 



 نامعين (ك) ناهايدار .

Y Y - Y تحت اثر بارهاى وارده مها سبه كنيد .


> :

$$
a=+18.03, b=-8.3, c=+25.0, d=-18.03
$$

جواب:

$$
\begin{aligned}
& a=+3.535, b=+29.20, c=+17.50, d=-15.00 \\
& a=-1.41, b=-5.89, c=-5.17, d=+28.18 \\
& a=-20.00, b=+24.74, c=+32.50, d=+38.89 \\
& a=-45.44, b=-41.76, c=-5.04, d=+50.85, e=+26.89 \\
& a=-22.30, b=-56.57, c=0.0, d=+60.00, e=-20.00
\end{aligned}
$$

†
. محا سبـه كنيد


ثكل

(s)

(J)

$(p)$

(ن)


دنبالهشكل (1A-Y)
† سلازهها يمى ممكن است نابايدار هند سى باشند )


شكل 19-F مساله F-

جواب :

$$
\begin{aligned}
& H l=-65.086 ; D E=+05.086 ; F g=-13.017 ; c D=+45.56: \text { : } 1 \text { (الفض) } \\
& \text { (ب) ( }
\end{aligned}
$$

$$
\begin{aligned}
& B c=-16.406 ; c d=-24.745 ; D e-+4.841 ; f g=-5.156 \quad: 1(\nu))
\end{aligned}
$$

F F F , لنكر خمثى را براى آن اعضاء كه جنان تنشههايى را تحعل مىكنند رسم كنيد .

(الث)

(4)


$$
\begin{aligned}
& B D=-28.125 ; B c=+1.563 ; a b=+27.188 \\
& \text { (الف) اعضاء: }
\end{aligned}
$$

$$
\begin{aligned}
& A b=-5.0 \quad b C=+8.125 \quad C E=+5.625 \quad: \quad \text { : } 1 \text { (ب) }
\end{aligned}
$$

جواب:



Y-Y شكل Y Y H


شكل YT-Y مساله Y-A

F كنـــــ


شكل YY-Y مساله Y-9

A
ايستايى ترسيمى

- ا- ا مندمـه




 مىكـد


 دانشجويان متوجه خوا هند شد كه داني

 هديدهماي غيزيكى موجود بهاو كمك كرد ه و او را دا در جريان تغكر راهسلهاي جهرى هرغى از مــا ثل قرار

ميد هد .






از تعاريفو خواس مربوطـبهنيروها و دستكاههاى نيرو ایاره تمود . نـيرو را مىتوان بها ينترتيببتعريف نـود كه عبارت از هرنوع عـلى اهت كه تمابل بهتغيهر حالـت حركت (با سكون ) جسمى كه بدان اثــر

 ظاهر مىكردند ) تقسبي نـود . نهروهاى خارجى را نيز بهنوبت خود مىتوان بهبارهاى مؤثر بر هازه از خارج (نتروهاى عامل ) و عكسىالعملـها (نبروهاى عكسالعمل با لنكرها ) كه نتش متعادل كنغده هـا

مهاركتندهاترات بار را دارند تعسيم نمود .
هر نهرو را مىتوان با مشخمات زبر كا ملا" معين نمود اـ نتطه اثرش rـ امتداد نيرو r- متدار
 حالىكه غرض از "مقدار هردارى " نـتتنـا اندازه عددیى آن مىباشد بلكه جهت اثر نيرو نيز مورد نظر







شكل هـــ اــ هردار نيرو
 ترتيب حروف نشاند هتده جهت نبرو اــت . لذا . مىكند
بـهكارهردن لفظ "نتطه اثر " هك نيرو بـها ين معنى است كه متمركزنمودن يكنبيرو دريكنتطهمكن



 كردد ، ولى در هر صورت اكر هررسى شرط تعادل كلي جسم مورد نظر باشد منطتى اين است كــ بار


جنانك تبلا"در بخش(r)

 بهـهكل تهل از باركذارى باقى خواهد ماند .
ه - r تركيب و تجزيه نيروها



 هراى تعهين مقداريردارى و امتداد برَ هند دو نيروى

(-1)

(s)

ثكلهـا تركهب نيروها



آبده الست. امتداد دو متدار هردارى هرآ هند مىياشد بعين بى الشود .
 الاضلاعى با بردارماى AO, و



 میى بيد .

 دونيروى



 نهز ازا'نتطه ${ }^{\prime}{ }^{\prime}$ بكذرد .
 را مى توان بهطريت زير نشان داد : درونيروى در نظر بكيريد هرآيند

 ,



شكله-r متوازیالاضلاع نيروها
 كرفتن هراهرى كار

$$
\begin{aligned}
\left(R_{12} \cos \alpha\right)\left(b_{1}\right) & =\left(F_{3}\right)\left(b_{1}\right)+\left(F_{1} \cos \beta\right)\left(\delta_{1}\right) \\
R_{19} & =\frac{F_{2}+F_{1} \cos \beta}{\cos \alpha}
\end{aligned}
$$



$$
\begin{aligned}
{\left[R_{19} \cos (\beta-\alpha)\right]\left(\delta_{2}\right) } & =\left(F_{1}\right)\left(\delta_{2}\right)+\left(F_{2} \cos \beta\right)\left(\delta_{2}\right) \\
R_{12} & =\frac{F_{1}+F_{3} \cos \beta}{\cos (\beta-\alpha)}
\end{aligned}
$$

حال الن دو معادله را ایاءد نسبت بـ بـ


$$
\tan \alpha=\frac{F_{1} \sin \beta}{F_{2}+F_{1} \cos \beta}
$$

بنابرا'هن دارهم :
$\cos \pi=\frac{F_{2}+F_{1} \cos \beta}{\sqrt{\left(F_{1} \sin \beta\right)^{2}+\left(F_{2}+F_{1} \cos \beta\right)^{2}}}$
4اكذارى معادلم (د ) در معانله (الن ) هوامهم داهت :

$$
R_{12}=\sqrt{ }\left(F_{1} \sin \bar{\beta}\right)^{2}+\left\langle\bar{F},+F_{1} \cdot \cos \beta\right)^{1}
$$


 بهدست Tورد . بنابراین واضح است كه بردار

 جايكزين مىكتيم تركيب نيرورواى



 آنك امتداد و بقداربردارى هردو مولفي'


نيروى R وارد كنهـ •

## هـ




 اهتداد و بتدارهردارى برTبيند

 از آن يرT هند . نيروى


ثكل هـ
 د ست مى R12344

 برآهند را در نمودأر نضا يهى

شرح داده شـد بايد ترسهم نـا





بهنظظور راحتى Tنها را در جههت ساعتكرد رسم مينـايند .
位
 باشد ، درا!ين حالت معلوم مىشودك كثهرالاضلاع نيروها هراى اعن هنج نيرو درهـان نتطه شروع اوليه
 ,

*كل هـه د دستكاه نـيروى مستوى معادل با يك لنكر

باشد ، در سعيتت دو نـودار فضاتى

 . كهروى ديكر كويند
شال نرض كنهد كه نـروى شككل (ه-ه ) توسط نهروى كرهه

 .




مىبا تُد .





- ه $\boldsymbol{\text { ® }}$







بیار میرود تثكيل مىد هد .






شكل هـ\& تعهن عكـيالصلـها هروث سه نهرو
هرای الينك هازه در تعادل باشد لازم است ك اين سـ نهرو متأارب باشند دراین سالت متداربردارى دو عكىالعمل و امتداد



 با رسم خطلى از نتطه 2 بهموازات



$$
\text { ديكرى ههموازات R از از نتطه } 2 \text { نرتى در امل مساله نمىينمايد . }
$$


 عكسُلعملها را تمع نـا بـ .
ه - Y كميرالا فلا ع (تـادل ) نونيكولر

ولى




 كهتوسط مثث نيروهایOP1 نتيروى F



 د ستكاه نيروى املى از آين شش مولفه ، جغتهاي




 ק كثهرالاضلاع نهروها را بهتطب د



 خطوط اثر دونيرويس رسم نودكه در روى كثيرالاضلاع نيروها مجاوز هكديكر باشند و بهعلاوهـهموازات











 نمود و بنا يراْن د ديتكاه نيروى املى باید در تعادل باشد . فرض كتيد بهجای آنی






(الغ)


شكل -












 نهروها امكانجذر است .


شكل ه-A بسته شدن كثهرالاضلاعبهاى نهرو و فونيكولر


كاريرد كتيرالاضلاع فونهكولـر را در تعيسن عكىالعلـهاى سازههــاى معين ،مىتوان با بررسى




عكسالعقلـها این است كه كثيرالاضلاع خونهكولر باهد بسته شود تعهين نـمود . تستى از كثيرالاضلاع نيروها را مىتوان هلانا مله رسم كرد ، بهاعن صورت كه بردارهاى

䄯
 با
 تهروى , F را تمل كند ؟

معلوم










ثكل هـو تعيهن عكـالعملها با استغاده از كثيرالاضلاع فونيكولر






 مییاشد
 نـيباثد .

هـ - 9 رسم كثيرالا فلا ع نونيكولر 'ز يكه ، دو و يا سه نتمطه معلوم



نيروها وجود دارد ، زهرا مىتوان ك هینـهايت نتطه بععنوان تطب كثهرالاضلاع نيروها انتخاب'نـود

 اهتدا حالتى را فرض كنهد ك كذثتن كثهرالاضلاع فونيكولر از بك نتطه مشـضص در روى نـودار
 بـين نـيروهاى ريهسان را بهموازات آن رسم كرد بهطورى كه از همل تلاقى بردارهای نهروها هكذرد و حال میتوان تطب P را در هر نتطهاي از اهن شعاع انتخابنمود و شتهه كثيرالاضلاع




شكل هـهـ ا كذراندن كثيرالاضلاع فونيكولر از بك نتطه معلوم








شكل هـ-1| كنذراندن كثهرالاضلاع فونيكولر از دونتطه مشغص

 a


 '




 , عكسالعملـهأى نموده و موتعيت راس v را در كتيرالاضلاع نيروها تعيين كنيد ا


 خنثى شوند . اهن عكیالعلـهاى







شكل هـها

## ه - ه ا تعيين ترسيمى برثّ و لنيكر خمشى














ثكل هـاT تعهین ترسییى لنكر



$$
\begin{equation*}
M_{0}=\left(R_{1 m}\right)(m)=(\overline{O T})(m) \tag{الغ}
\end{equation*}
$$

در اهن رامهله


$$
\begin{equation*}
\frac{d e}{m}=\frac{\bar{O}}{H} \quad b \quad(H)(d e)=(\overline{O T})(m) \tag{ب}
\end{equation*}
$$

$$
M_{\mathrm{a}}=(H)(d e)
$$







فونهكولر را ترسيم نــاتهد .

كثهرالاضضلاع نـيروها معين شده الست رسم كنيد .
Y
 ץ - مـ مصهنين

كثهرالاضهلاع نـهروها ميها شد اندازه هكيريل .


 هنتلف تيرى بهكار هرد .










هـال هـ - ا= نـودار برثن و لنكر خمشى براى ابن تـر بهطريق ترسمیى رسم كنيد .


بحث :




 اندازه كرنته مىشوند همكى خططوط عمودى خوا هند هود .



بحث :

 روثى در عد تاهل توجههى هشخيده مىشود .


 III











 كثيرالاضلاع نيرو معادل تأمسن در شرط جبرى














$B$ B
شكل هـا أ ملاثم باو








 . فشارى بوده و در ميلهن "ab هس از


















 ك در طول شردسى هريك از این كرهـها فتطهك رأى نامعلوم در هررسى 'ن كره وجود دارد .


شكل هـه نـ نمودار ماكسوئل

هس از آنكه نمودار ماكسوئل بهصورت كامل ترسهم شد تعيهن متدار و جههت اثر نهروى ڤرمهلمدر



 است




T'ن جهت كرد شى برخلاف جهت هاعتكرد نيز انتخاب كردد ععل خوامد كرد.










 دارد . در ذيل بهشرع يكى از جندهن روش غلبه براين شكل مییهردازهم :


شكل هـه


艮


هباحث بنبادى تحلـبل سازهها



 هو dE DE
 يعنى از 7 تا 13 را معهن نمود .

- ا



اغانى دارد .





















ثكل هـها طاق سه مغصل
 و' اعن بدان معنىا ست كه دو كثهرالاضلاع جداكانـعرا مىتوان هسك كثهرالاضلاع مـتد دركلطول طاق بششكىيك كنــم ك كثهرالاضلاع نونهكولر كليهنهروهاى خارجى از اعن سهنتطه بكذرد ميتوان با اندازدكـهـرى شعا عهاى اول و آخر روى كثيرالاضلاع نهروها هی بمقدأر عكـالمعلها در دو سـ طأق هرد .

$$
\text { - } 1
$$





شكل هـA مساله هـا




(الغ)

(ب)
*ك




 تعيين كنهي


H $\rightarrow$.
 . ( f ( $\mathrm{H}-\mathrm{A}$ )

(ب)


شكل YY

- ه ه 0
 ترسهي معين كنيد


شكل




*ك


(c)
(a)


شكل هـوءץ مسال ه-q




ثـكل هY


 الـت . طول كا بل و حداكثر كثش را د د كابل تعهين كتيد ؟ از روشـهاى ترسيمى ا استناد ه شود . ه- ا

 و مثال (

## 1

## خطوط تأثير

## ( -




 موقعيتهاي مختلف هيدا كنتد كغته شد .
「 ${ }^{\top}$








 بار زنده كه سبب ايجاد بيشترين تنش در بیى نقطه معلوم از سازه مىتمايـ براي براى تحليلكر سازه امرى الزمى است .
¢-
 كند ، با لنكركيرى حول نتطس B ، عكسالعمل RAy برابر با ا و بهسمت بالا تعيهن مىشود. از نتطه 'A كه روى $A^{\prime}$ +

 شود , مقدار -واتع است بعصورت عمودى رسم مىكنهـ


شكل \&-1 خط تأثهر ساده

این عمليات را براى كليه موتعيتهاى ایر بار واحد بين A و B تكرار كنيد ، متادير







1 اشر كند (متذكرمىشويمكه كليه عرض نقاط مربوط بهعكسالمعل درنتطه A است ونشاند هنده

مهل تأثير بار واحد ایهجادكننده Y - Y
 r -
 هناهراهن أكر الين سازه تحت اثر بارى زنده هوصورت يكنواخت قرار كرفت هاشد اهن بارزنده

¢ - ب خط تأثير ــ تعريف


 مكان بار درطول دمانه تغيهر كند باشد ، نظير لنكر ها هرث در متطعى از بك شا هتهرو ها يك نهرو ها نهروى ميلهاى درعضو معلومى از يكشخراً و با تغيهرمكان يك نتطه معلوم از غكسازه .

 كه در أن نقطهامُ میعند






 اكر بار واعدى درست در سمتراست نتطه Dاشركند برش در D هرابر با با





 جاهجاهيى موج ها در روى جدأر عك كثتى باشد .


شكل \&-r خطوط تأثهر براى تهر ساده
\&-4
خطوطتأثهر را مىتوان براى دو عمل مهـ بهكار برد : ا - براى تعيهين موقعيتى از


.
 كرد :




 ( r r r


 هرهك از بارهاى متمركز بـد ست آورد .






 Dوارد مىشود جنين خوا هد شد .

$$
(2.5 \mathrm{ft}-\mathrm{lb})(750)=1,876 \mathrm{ft}-\mathrm{lb}
$$





$$
(2.5 \mathrm{ft})(750 \mathrm{lb})=1,875 \mathrm{ft}-\mathrm{lb}
$$

هرخى ديكراز مهندسين مساسب ترجهِ مىدهندك عرض خطـ تأثهر را نسبت تابع مورد نظر هـر بار داراى بعد هك هاوندى كه سبب اهجاد آن تابع شده است بكيرند و با اين

 : و ا
$(2.6 \mathrm{ft-lb}$ per lb$)(750 \mathrm{lb})=1,875 \mathrm{ft}-\mathrm{lb}$


هرطبق جنينكاربردى عرضهاىخطوط تأشير بـعنوان ضرابب تأشيربـكار برد همىشوند .

 متدار حداكثر هرش مثبت حاصل از اثر اهن بار در D وقتى است كه بار نوقالذكر درست در
 خواهد شد و معدار حداكثر هرش هنفى در همان معططع وقتى است كه بار درست درطرف هـه
 شكل ( هـ خواهد شد با:

$$
10,000\left(+^{21} / 10\right)=+21,000 \mathrm{ft}-\mathrm{lb}
$$

با در نظر كرفتن تعريغ خط تأثهر تضهي زهر كه در مورد. بارهاى زنده كسترده ها شـدت هكنواخت مىا شد واضح است :


 هراى محاسبه متدارواتعى تابعىكه بـدليل واردشدن بارزند هكسترده ه و يكنواختى هاصل

 حاصلضرب شـدت أن بار در سطع خالم أن قسهت از خط تأثير تابع موردنغلر كه مربوط بدقسمت بارشده سازه مىكردد .
 تأثهرتابع مشخص F باشد ، قسعتى از این سازه هنانكه درشكل (؟-r) ديده مىشود تحتواثر


شكل s-r قسـتـى از خط تأثهر
 شده باشد ، قسمتى از خطـ تأثير را كه در ناهله هراهر با م $M$ ميتوان بهصورت $M$ و $N$ (سطع زیر خط تأثير محدود بهن تسمت بارشده سازه )

$$
F=\int_{0}^{a} w y d x=w \int_{0}^{a} y d x=w
$$

هرایى اين كه كاربرد عملى تضأهاى r و




$$
1,000\left[1 / \frac{1}{2}(5)(+1 / 2)+1 / 2(7)(+7 / 10)\right]=+3,700 \mathrm{lb}
$$

هراى برش سداكثر منفى در D بايد سازه را از A تا هاصل در D برابر خواهد شد ها :

$$
1,000[1 / 2(3)(-3 / 10)]=-450 \mathrm{lb}
$$

با در نظر كرنتن شكل (\&-ץ هـ) جـهت دهاسبه لنكر مداكثر مثبت در D سازه را باهد درعد


$$
1,000[1 / 2(10)(+21 / 10)]=+10,500 \mathrm{ft}-\mathrm{lb}
$$

براى اهن كه متدارهداكثر تابِع, حاصل از بار زنده هتمركز و بار زند ه كسترد هيكـواختى


 ( (


$$
1,000[1 / 2(5)(-5)]+10,000(-5)=-62,500 \mathrm{ft}-\mathrm{lb}
$$


 تعيهن نمود .بهعنوان مثال لنكرحامـل در D با استغاد هاز شكل (

$$
1,000\left[1 / 2(5)(-7 / 2)+1 / 2(10)\left(+{ }^{2} 1 / 10\right)\right]=+1,750 \mathrm{ft}-\mathrm{lb}
$$

\& - ه دسم خطوط تأُير تيرها





 از تهر هراهر با هغر خواهد شد حال خط تأثهر برش در D را هنانكه در شكل ( ع-







 Y ـ اكر غامله بار از بهانيان اتر خوا هد كرد برابر ها $x / 10$ خوا هد شد ، رسم است . بههعان ترتيب كه هار واهدد از A تا بتطع سمت حب D تغيهر مكان مىد هد عكـالممل


ثكل f-9 خطوط-تأثير برای تير طرددار


 متدار مغر در


 ديكر الكر هرش در D كنيم نتط عكسالعمل در A لازم شخواهد هود د



بوده و لذا هرش مراهر 4 7/10 + مى شود كه اين مقدار عرض مخط تأثهر در سمت راست

 كه بار وإمد از متطع راست D $D$
 . معدار مغر در A.تغيهر خواهد كرد


 .

بارهاى واتع در سمت هـ A ا استنباطنـود .
هراى رسم خط تأثهر لنكر در D هبطورى كه در شكل (f-f



 بـ +3/10× $7=+{ }^{2} 1110$ در D


 .


 ( فتط از طرهت تيرهاى عرضى كف كه در نقاط هانلى A, B, . . , , واتع شدهاند امكان


بانل از شاهتير ممواره ثابت مىيا شد .

 مى G و F ، E • D از نـيروهاى مؤثر هر شاهتيرها در سمت راست ، اهين بانل مقدار برثى براهر با صفرخوا هد شد وتتى كه بار واعد در $B$ ترار كيرد (1/6 C, D, . . . , $G$ خواهد شد .


هـل عــه هطوط تأثير شراى شاهتير
وتتىكه هار واعد درطول تير طولمىاز هك نقطه بـنقطه د هـكر هانلى تغيهرمكانمىد مد.


 هكان مىد هد عكسالعملهایى تيرهاى طولى كه همان هارهاى مؤثم. هر شاهتهر ازطريق تيرهاى


 وقتى بارىوا


تأثير خططى مستیهم از B تا C خوا هد بود .
عرضههاى خططوط تأثهير در نقاطهانلى
 ثأثير خط مستقهعى در حد ذاصل نتاطه هانلى خواهد بود ، معلوم مىشود كه خط تأثيهر خـط



 از بابد خاطرنشان كرد كه مىتوان همواره يك خط تأثير را با مهاسبه مقاد بر مختلغتابع




 ـأثير در تسمتهاى مختلـف سازه را بـد هد ، كرجه حهنين تجربـهأى الزا مى نـيست ولى مىتواند از بقدار مهاساسبات بـا هد .

 (R $R_{G y}$ حالتى كه عكسالعملـهاى تيرهاى عرضى كف در F و G صغر باشتد فهمهد . خون لنكرد رنتطه


 مىيا بـد و عكسالعملـهاى تيرهاى عرضى كف در و تأثير خط مستقبعى از مقدار



در آن حالت تيرهاى طولى در بانل BE تره شده و تير طولى انتهايهى در بانل EF تانتطم G
 ترتيب كه ابارواحد از


شكل و-9 تأثير نمع تراركرفتن تيرهاى طولى



 ك ك در A


 Gتنيهر خوامد كرد .

૬-Y



 را در هانل




 C

$$
1,000[1 / 2(+2 / 3)(48)]+10,000(+2 / 3)=22,1667 \mathrm{lb}
$$

 ادامه داشته و بار متمركز در B وارد شود ، در این صورت مقدار آن خواهد شد شـ

$$
1,000\left[1 / \frac{1}{2}(-1 / 6)(12)\right]+10,000(-1 / 6)=-2,667 \mathrm{lb}
$$


 در اين صورت مقدار آن براهر خواهد شد با :

$$
1,000[1 / 2(+40 / 3)(60)]+10,000(+4 \% 3)=+533,333 \mathrm{ft}-\mathrm{lb}
$$















رl,000 lb ft




 در اهن صورت حداكثر هرش هرآهند حاصل از هار زنده در هانل BC هراهر خوا هد شد با :

$$
10,000(2 / 3+1 / 2+1 / 3+1 / 6)+10,000(2 / 3)=28,333 \mathrm{lb}
$$









 مىد هد اراءه نمىكند .



 لنكر مثهت حداكثر حاصل از بار زنده براهر خواهد شد ها ا:

$$
10,000(+10 / 3+29 / 3+30 / 3+40 \%+2 \%)+10,000(+40 / 3)
$$

$=+533,333 \mathrm{ft}-\mathrm{lb}$
اين رقم با آنجه برورش دقيت بهدست آمد براهر است .
§
چِنانكه تبلا" ذكر شد استغاده از خخطوطتأثهر هم براى بارهاى زنده كسترده هكنواخت



 متمركز بايد در موقعيت عـرض حداكثرخط تأثبر واقع شوند تا اينيك بتـوان حداكثر تايع مورد

تظر را بافت .
روشى كه براى جنان بار زندهاى بیبا يستتي بهكار برد عملا" بر سعى و خـطا أستوار است



 لازم را د رخود دارد .اعداد مذكور در شش رد يغزیرين را مىتوان تنـها با شك شرع هختصر توضيح داد : عدد 1,900زیر بار 4 كه در متاهل Tـن "جمع لنكرها حول بار7" نوشته شده است
 kips L :ــارد ارها

غبواصل بحرغـها
ناعله ا; بار 1 ان






"ستوع لنكرها سول بار 2
شكل (Y-8) نمودار لنكر
استنشان دهنده لنكر بارهاى از ا تا 4 حولبار 7 مىباشد وبها ينترتيب خواهمم داشت :

$$
10(40)+20(30)+20(25)+20(20)=1,900
$$

يراى اينكه نمودار لنكر را شرح دهيم فرض كنيد كه بخواه ميم لنكر در متطلع بار 3 از



شكل (


 ( 1;870/50 = + 37.4 kips L جه هرا'هر است با (28) $250=+798$ kip-ft

250 kip-ft




شكل ( عــ $\ddagger$ ) كارهرد نمودار لنكر
 واتع نخوامد شد و عكسالعمل شاهتهر در'A هراهر خوا هد شد با:

$$
R_{A v}=\frac{(1,650-350)+(110-10) 3}{36}=+44.5 \mathrm{kips}
$$

مجموع عكسالعملهاى تيرهاى عرضى كن در A و B هراهر خوا هد شد با :

$$
20+5 / 6(20)=31.1
$$

مباحث بنبادى تحلـل بازهـا
+44.3-31.1=+18.4 kips : هنابرا
در كاربرد عملى نـودار لنتكر راشتتربن را هـها اهين الست كه آندا بامتها سیى معهن روى كالك رسم كتيم و سهس آنرا در محل لازم روى سازه مورد نظر قرار دهيه بد هـهیىاست سازه موردنظر با يد بهممان متيأى رسم شده با شد .

F -
 شاهتر شكل ( f


 بهمنظور اهجاد لنكر حداكثر در C وارد شوند .


شكل ( 10 ا ) خخطوط تأثهرشا هتيرها.
 هعين میكنهـ و بهعنـوان مثال قستى ازخـط تأثيرى كه براى لنتكر در C رسم شده است و از F



د ستكاه بارها را يـطرف جه Tنتقدر حركت دارهم كه بار 2 در C ترار كرفت ، محاسبـــات را

 بارهاى مورد بررسى را بـهسكروه تتسيم كنهم : ا- بارهائى كه قبل از حركت بارها روىسازه





 لنكر برأهر با $4 d m$ مخواهد شد .

| كاهش لنكر | افزاءش لنكـر | بار 1 در متطع اثر مىكند و سهسى جاى خود را ــهـار 2 مىد هد |
| :---: | :---: | :---: |
| $\begin{array}{r} 10(10)(-35)=-60 \\ 0 \\ 0 \\ \hline-80 \end{array}$ | $\begin{array}{r} 80(10)(+3 / 3)=+320 \\ 0 \\ 20(5)(+3 / 5)=\frac{+40}{+360} \end{array}$ |  <br> بارهای كروه <br> بارهاى كروه <br> تركيب كل بارها |

تغيهرخالص درمتدارلنكر براهر با



 انجام مىد هيم •

| كا هـ لنكر | انزا يشى لنكر | بار 2 در مقطع اثر مىيكند و سيس خود را بـهبار 3 مىى هد |
| :---: | :---: | :---: |
| $80(5)(-3 / 5)=-90$ | $100(5)(+2 / 5)=+200$ | بارهاى كروه |
| 0 | 0 | بارها |
| 0 | 0 | با بارها كا كروه - |
| $-90$ | $\overline{+200}$ |  |

خون 200 از 90 بزركتر است بازهم لنكر انزايـث بافته است . حال بهجستتجـو ادامـه


| كاهش لنكر | انزا'يش لنكر | بار 3 د در مقطع اتر ميكتد و سيس جايى خود را بهبار 4 مىدهد |
| :---: | :---: | :---: |
| $\begin{array}{r} 50(5)(-3 / 5)=-150 \\ 0 \\ 0 \\ \hline-150 \end{array}$ | $\begin{array}{r} 80(5)(+2 / 5)=+160 \\ 0 \\ 0 \\ \hline+160 \end{array}$ | بارهاي كروه ا _ـكليه بارها <br> بارهاى كروه <br> بارهای كروه <br> تركيب كل بارها |

باز هم لنكر انزا'يش يافته است حال بار 5 را در مقطع وارد ميكنيم

| كا هش لنكر | \| فزا يشى لنكر | بار 4 د در بقطع اثر ميكند و سـس جاى خود را بهبار 5 مید هد |
| :---: | :---: | :---: |
| $\begin{array}{r} 60(10)(-3 / 5)=-360 \\ 0 \\ 0 \\ -\frac{-360}{} \end{array}$ | $\begin{array}{r} (60(10)(+36)=+240 \\ 0 \\ 0 \\ \overline{+240} \end{array}$ |  |

دقت شود كه كرجه بار 1 وتتى كه بار 4 در مقطع اثر ميكند روى سازه ترار دارد ولى









$$
R_{A y}=\frac{2,200+130(10)}{50}=+70 \mathrm{kips}
$$


 در C برابر خواهد شد با :

$$
+70(20)-500=+900 \text { kip-ft }
$$

צ -

 از كارهرد باركذارى شكل(Y-Y) محا


 (8) انز'اهش برش در هانل BC خواهد شد .

| كا هش برش | افزاهث برش | بار 2 در متطع اثر مىكند سهس جاىي خود را بهـار 3 مىد هد |
| :---: | :---: | :---: |
| $20(5)\left(-K_{0}\right)=-80$ $\begin{array}{r} 0 \\ 0 \\ \overline{-8.0} \end{array}$ |  | بارهای كروه 1 _كلهيه بارها <br> بارهای كروه <br> بارهاى كروه <br> تركيب كل بارها |

د يده مىشود كه انزايش در برش پانـل BC ايجاد شده است و لذا بار 4 را در متطــع
ترار مىد هـهم

| كاهش برث | افزاهش برش | بار 3 در مقطع اثر مىكند سيس جاى خود را بهبار ه بیىد هد |
| :---: | :---: | :---: |
| $\begin{array}{r} 40(6)\left(-K_{0}\right)=-16.0 \\ 0 \\ 0 \\ -16.0 \end{array}$ | $\begin{array}{r} 80(5)\left(+Y_{0}\right)+10(5)\left(+Y_{0}\right) \\ -+90 \\ 0 \\ 0 \\ \hline-9.0 \end{array}$ | بارهاي كروه 1 ـ كلهي بارها <br> بارهاى كروه <br> بارهاى كروه <br> تركيب كل بارها |

ديده مىشود كدكا هشى درمتدار مثبت برش درهانل BC ايجاد شدهاست ، لذا حداكثر هرث در بانتل BC وتتى ايججاد خوا هد شد كه بار 3 در C وارد شود و مقدارا ينحداكثربرش را مىتوان بهطريتق زهر با ا استفادهاز نمودار لنكر شكل

$$
R_{A y}=\frac{2,200+130(5)}{50}=+57.0 \mathrm{kips}
$$

جمع عكسلعطلهاى تيرهاى عرضى در A و B برابر خوا هد شد با :

$$
10+20 / 2=20 \mathrm{kips}
$$

لذا حداكثر برش مثبت حامل از بار زنده در بانل BC برابر خواهد شد با :

$$
+57.0-20.0=+37.0 \mathrm{kips}
$$

\& - ( ا برش حداكثر مطلق حاهل از بارهلى زنده


 از بارهاى زنده موردنهاز مىياشد و بهعبارت ديكر لازم است كه برش حدالكثر حاصلاز بارهاى زنده را كه امكان بوجود





. محاسبـ كنيم

## \& - ا




 در دمطع ميانى



 حداكتررا براى مقاطع مختلف كه دران مقاطع احتطال وقوع لنكر حداكثر مطلقّارهاى زنده وجود دارد مهاساسيه نمود .



نمودا ر لنكربراى د سته بارهاى متمركزشامل يك د سته خطوط مى.

 كدام يك از بارها لنكر حداكتر مطللق بارهاى زنده ايجاد خوا خاهد شد



شكل \&-1| موقعيت لازم برانى لنكر حداكثر مطلق

٪اسخ سئوالنـخست اغلب توسط روث آزمون و خطا إمكانهذهر است ولى بردسى سئوال
 بارهاي زنده زير بار B بوجود آيد . هعهنين فرض كنيد كه فاصله بار B را از مركز دهانـهتير با x و غاصله برT يند R كلبيه بارهای A A
 , $R_{M U}$ م م $D$, C ، B ' A

$$
\begin{aligned}
& R_{M_{y}}=\frac{R\left(\frac{L}{2}+x-d\right)}{L}=\frac{R}{2}+\frac{R x}{L}-\frac{R d}{L} \\
& \text { اكر لنتكر زبر بار } \\
& M_{B}=R_{M \nu}\left(\frac{L}{2}-x\right)-A a=\left(\frac{R}{2}+\frac{R x}{L}-\frac{R d}{L}\right)\left(\frac{L}{2}-x\right)-A a \\
& =\frac{R L}{4}-\frac{R d}{2}-\frac{R x^{2}}{L}+\frac{R x d}{L}-A a
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d M_{B}}{d x}=-\frac{2 R x}{L}+\frac{R d}{L}=0
\end{aligned}
$$



 در دهانه تير ترار كيرد .

 دران شكل فاصله بار 10-kip ازبرآيند R الين دوباربرابربا



شكل و-TT لنكر حداكثر مطلق هراى دوبار



 قرار دارند و لنكر حداكثر مطلق بارهاى زنده مستقيها" زير بار 10-kip بوجود ميّآيد ومتدار

$$
M=\frac{15(12-2)^{2}}{24}=+62.5 \mathrm{kip}-\mathrm{ft}
$$




 لنكرهاى حداكثر ، لنكر حداكثر مطلق بارهاى زنده انده خوا هد بود .

$$
9 \text { - با خطوطتأثير خرباها ـ كليات }
$$

خطوط تأثهر را مىتوان براى نیروى ميلمهاى تطعات خرها ترسيم كرد اين خطوط براي
 و هعهنين در معاسبه متدار حداكثر این نهروى ميلهما مههم مىاشنده . براي خرهاهانيز






 الستاده از يكى باركذارى معين و تحليل تنش مانند آنجه در مورد تيرها و شاهتيرها ذكرشد

انجام خوا هد كرفت .



اثرمىكنند ترسيم مىشود .
\& -


 أكر بار واحد درسمت هـه مقطع واتع شود ،كشش در ار ار Rov تعهـ خواهد داشت و جون متدار ;

 متدار عرض خط تأثير را در L

براهـر با 1/2 +


 در : كشش را در بالأى خط مبنا نشان داد هاهـ رسم شد هـ است .

(c)



 خط تأثير خط عستتهىى از مقدار صفر در




,


 اكر روش كرهها را برای كره بهجز
 الز بار وأحد تنتش مىیذ يرد عضو ثانير انويه خربا كغنته مى شود .

 عمودى


 حداكثر در متمركز ذر $L_{3}$ اثر كند ، در اين صورت مقدار اين فشار حداكثر برابر خواهد شد با :

$$
2,000(1 / 2)(108)(-1 / 2)+15,000(-1 / 2)=-61,500 \mathrm{lb}
$$

بـا الستغـاده از روش تقريبـــى ، بـار بانلـــى بــراى بـار يكنــواخت برابربا 2,000 $\times 30=60,000 \mathrm{lb}$

$$
\begin{aligned}
& 60,000(-1 / 2-1 / 3-1 / 6)+15,000(-1 / 2)=-67,500 \mathrm{lb}
\end{aligned}
$$

--


 از خرهاهأ هيجيده اغلب لازم است كه يا ا- عرضهاي نقاط پانلّى متوالى را محاسبه نمود

 با بررسى قطرى3 , نقاط هانلى نوقانى
 . طرف معين عستند





 هك مؤلغه عمودى است كه شرطتعادل نوقالذكر بايد آن را نبيز ملحوظ دارد .



K شكل \& -




بااعمال

 د در معين خواهد شد و هون انين دو خط تأثير نتطدر مولفهعمودى نيروى ميله در كه عبارت از عرض نقاطتغيير مسير خط تأثير حاصل مىيا شند در اعنجا تعيين شده است .

$$
\begin{array}{ll}
{[-1 / 4+(-1 / 4)] 1 / 2=-1 / 4} & L_{2}, د \\
{[+5 / 8+(-3 / 8)] 1 / 2=+1 / 8} & L_{3}, د
\end{array}
$$

خط تأثير هاصلبرالىمولنفعمودىنيروىميلم

$$
\begin{aligned}
& \text { ايُر سرى بارهاى زنده متمريز }
\end{aligned}
$$










محاسبات بهطريق زهر است (مىتوان حدس زد كه بار 1 در L ايجاد هدالكثرنشوا هد
كرد ) :


بنا براين كشش هدار اكثر در اين متدار حداكثر دو عملكرد متفاوت يشيشنهاد مى


$$
R_{0 y}=\frac{2,200+130(95)}{180}=80.8 \mathrm{kips}
$$

لذا نيروى ميله در ر

$$
\frac{+80.8(60)-250}{40}=115.0 \mathrm{kips}
$$

روث $\uparrow$ (كه بر ها يه محاسبه عرضهاى خط تأثير در هر نتطه بانلى مىباشد ) :



 مى ( )
مىتوانند وارسى كنند .

جدول (


 جدول(ף-r) نشان داده شده تهيه نمود .


 جمع عرضهاى منفى براى يك عضو با جمغ نمودن كليه عرضهاي منغي از جا جدول تأتهـر براى ${ }^{\top}$

 , حاصلجمع عرضهاى منفى برأى Tان عضو بهدست آورد . اكر بارهاى بانلى حاصل از بارمرده

با بكديكر برابر باشند از حاصلضرب ابن حاصل جمع و بار پانلى حاصل از با رهاى مــــــرده

 ميلههاى اصلى فوقانى تصحيع نمود .

جدول \&-ץ خلاصهاى ازجدول تأثير براى خرباىشكل ( \&-rالف )


عرض حداكثرمثبت براى يكعضو بالنتخاب مقدار رحداكثر مثبتبراى





 از خربا با استغاده از خلاصه جدول نأثير با بررسى ميله ميشود :

$$
\begin{aligned}
\text { ه } & =2,000 \mathrm{lb} / \mathrm{ft} \\
\text { يكنواخ } & =1,000 \mathrm{lb} / \mathrm{ft} \\
\text { بار مند } & =10,000 \mathrm{lb}
\end{aligned}
$$

| kips فشار حداكثر | كips ، كشر |  |
| :---: | :---: | :---: |
| +37.5 | $60(+0.625)=+37.5$ | - |
| $30(-0.625)=-18.8$ | $30(+1.250)=+37.5$ | بكنواخت |
| $10(-0.417)=-4.2$ | $10(+0.625)=+6.3$ | متهركز |
| $\overline{+14.5}$ | $\overline{+81.3}$ |  |

ديده مىشود كه در اين حالت تغيهر تنش وجود ندارد
\&

طول بارشده عبارت از طولى از بك سازه است كه بهمنظور ایهجاد حداكثر تنش حاصل



 با 12 ft مىاشد . طول بارشده بارامترى است كه در بسيارى از روابط موجود براى ضربه

بهعنوان وارسى بـكار برده مىشود .
وقتى بارهاى زنده معادلى بهجاى درده دسته بارهاى زنده متثركز بـهار بردهمىیشود ،


 طول بارشده نظير توسط بار هكنواخت خوا هد هود هود .






در هسا سه نهروى مهلههاى حاصل از ضربه در اعضاى مختلغ كیك مينمابيد .
\& - 4 ( نحونه د ئرى برأى تعيين خطوط تأثير

با'هجاد تغيهرشكل هجازى در عضوى از خخرها و با در متطعى از شك شا هتير ‘مىتوان










 از اهن هار در وا اهن نـيرو كارى هراهر با خود نیروهي بر كششى هرابربا




(الل)


$$
J=F \frac{A}{2}+F \frac{A}{2}=+F \Delta
$$

بهت تونافـ
(-)

شكل \&-\&| نُحوه د يكرى براى تعيهن خطوط تأثهر

بار واحد در

 تتشهاى موجود درسازه در طول أين تغيـيرشكل تغييرى نـخواهد كرد و بـنابـراينانـرزى
 ارتجاعى ثابت باتى مىاند ، در طول اين تغييرشكل هركاه كليه نـيروها را در نظر بـكيريـم كارى انـجام نـميشود لـذا خواهيم داشت :

$$
\begin{gather*}
+F(\Delta)-(1)\left(\delta_{1}\right)=0 \\
F=+\frac{\delta_{1}}{\Delta}
\end{gather*}
$$


بـهنتبج-هكيرى زير مى شد .

$$
F=+\frac{\delta_{m}}{\Delta}
$$

و حیون F برابـر با نيروى بیله خط تأثشر نـشروى بیله در بهيله
 ( نشان خواهد داد . مقياس خطط تأثير را مىتوان با تقسيم نعودن تغيبر مكان

 استفاده كامل از ايهن روش هراى رسم خطوط نأثير نـاز بهمدلى از سازه و با بـهمعلوماتى



 بهردازيَم بعين نمود بهعنوان مثال ، خط جينههاى شكلِ (

$U_{2} L_{3}$ نتط در




$L_{6}, L_{1}$ ، بارهاى زنده در

 معادلات تعادل استغاده نمود .
-roror
( ( ( ) عكسألعطل در .


جواب :
(الف) عرض در: 0. 0.5 = راست a
隹
( ب ) عرض در: 5.0





 تحتت اشر مجموع بار مرده و زنده هحاسبه كنيد .
$-40.625 \mathrm{lb}-\mathrm{ft}$
$+68,750 \mathrm{lb}-\mathrm{ft}$ (د)

$$
\begin{equation*}
+50,000 \mathrm{jb}-\mathrm{it} \tag{r}
\end{equation*}
$$

$-3,750 \mathrm{lb}$
$14,062.5 \mathrm{lb}$ (لف)
$+10,312.5 \mathrm{lb}$ (ب)
६نقطه بانلـى e رسم كنيد .


شكل, \&-9 أهسا
¢


 نقطه صانلـى E رسم كنيد .


شكل
جواب :
(الف ) خط تأثير بهطور خطىى از



.

شكل و Y بسا ئل Y-Y تا \&-1


 در نـتطه بانلـى D هركاه بـار 2 در. D قرإر كيرن .
 از شاهتير شكل, (६ جواب : $+i, 068$ kip-ft
 الف ) را محا سبه كنـيد .
جواب :
 1,000 le/ft 10 kips
 20 ft

12 kiря 12

.
¢
 خود فشار و كشش هردو مورد بررسى قرار كيرد .


شكل \&-Y
جواب:
a a = $-112,500 \mathrm{lb}$
$b$ b $\quad=+30,300 \mathrm{lb},-17,045 \mathrm{lb}$

 در c (د ) نيروى ميله در d


جواب :
(الف ) خط تأثير بهصورت خطى از 0.0 در خیه تا 1.25 - در نقطه بانلى 3 و تا 0.0
در انتهای راست نتطه هانلـى اداهه دارد .

در نتطهه پانلى 4 E 0.0 در انتهای راست ادا اهه دارد .

در نتطه هانلى 6 تا 0.0 در انتهاى راست ادامه دارد .
( د ) خطط تأثير بـششكل خطى از 0.0 در هیب تا 0.333+ در تعطه هانلى 4 تا 0.0 در
انتهاى راست اداهه دارد .
 (Yا . ,
 در نتطه بانلى 1 ر رسم كنيد .


(z)

(د)

شكل MY M
 د د آن ميله را رسم كنيد



## r

## 

- 

باركذارى خرهاها را در نصل ا، تحليل تنش خرياها را بهطريق رياضى و ترسيمى












 جانبى قــرار دارد در تعادل نكهدارند


 براى دستكاه مهاربندى فوقاني عمل خوا هند كرد .

مورد بررسى قرار كيرد . مولنفهای عمودى نبروى مبلـهما در جـب و راستههـاى مقاوم در متابـل

 العمل د ستكاه مهاربندي نوتانى را به بیى منتقل مينـما يند .


شكل
 , و '

 قادر بـهتحمل مولنههأى عمودى میباشند ، اكر ميلـههاي قطرى a قادر بـهتحمل فشارر باشند
 كذاشت .در هر صورت ا!بن تأثيركذارى داراى اهميت ثانوى ميباشد و لذا هجاز هستيـم ,


الشر بارهای






 عمودى مؤثر بر دوخرپاى عمودى اصلى مركز يكسان نمى.باشد ولى عموما" ا اينبارها درموارد



جهت هريك از خرهاهاى اهلى عـودىرا مىتوان جداكانه بهصورت سازهاى مستوى تحليـلـ
. نمود
r - Y
 اعضاى خرها تحت اثر انواع مختلف هاركذارى مؤثر بر خرها مىباشد ، بلكه براى هر عضوى از خرها شامل تركيب نيروهاى ميله مربوطه بههريك از انواع باركذاريها نيز مى شود تابتوان
 باركذاريها حاصل مى شود رسيد . برأى اين كه هنبين عـلكردى را شرح دهيم خريـاى ستف شكل(Y-Y) را كه در دوانتهای خود بر ديوار تكيه دارد موردبررسى قرار مىدهيم ، اين خريا

 هر نقاط پانلمى ميلمهاى اصلى فوتانسى خرها وارد شوند . وزن هوشش ستف بهاضا فـ وزن لاهـه
 فرض مى شود . وزن خود خرهاها را برابر با 75 بر هر فوت انقى فرض خواهيم كرد كه به طـور




شكل Y-Y خرهاى ستف

 در نظر مىكيربم ، تحليل را بهتركيب بارهاى زير محدود مىكنيـم : ا- بار مرده بهاضا نفبار



از هردو طرف راست عا هچب باشد .
ابتدا نتحروى ميلهها را حأصل از اثر بار مردد مشا سبه مىكنيه ،لدر مورد ميلههاى اصلى
 بارهاى هإلنى مرده بـر':بر با با با






شُكلى Y-Y نـيروى ميلهما حاصل از بار مرده















 خواهد شد .

$$
20 \times 10 \times 20=4,000 \mathrm{lb}
$$

اكر بار برف فقطدر سمت بشت بادكير باشد ، بار پانلى حاصل از بار برف در لـ

 كلـيه اعضاى خروا محا سبك شده است .


شكل Y-Y نيروى ميلمها حاصل از بار برف بر بشت بادكير

هراى تعيين نيروى ميلهها تحت اتر بار كامل برف میتوانيـم از اصل جمع آثار جنا نكه
 "الغ" (حنا نكه تبلا"د رشكل (Y-Y) مهاسهه شدهاست ) را بر نيـروى ميلمها بـر طبق باركذارى "ب " (كه با در نظركرفتن تقارن از طريق شكل (Y-Y) استخراع شد




شكل Y -
و برای ميله

 انجا م مىكيرد بهد ست Tور


 شكل (Y-Y) نشا


$$
q=0.002558(100)^{2}=25.6 \mathrm{lb} / \mathrm{ft}
$$


( $\ddagger$ ( 1 (

$$
p=[0.07(26.6)-2.10](25.6)=6.4 \mathrm{lb} / \mathrm{ft}
$$

مكش در شيب سعت هشت بادكير برابر است با با


 با 1,280 lb هانلي
 شد , شكل(


تتحلـيل داخل كردهايم و مولغه افقى باد موء ثر در أيجا
 Nomen شكل Y-Y تيروى ميلهها حاصل از بار كامل برف





 حاصل از بار مرده S : تُبروى ميله حاصل از بار هرغ بر كل خریا


 مربوطبهخود ميلـه تحت انر بار موردنظر اقدام كرد ها ايم و سيس نيـروى ميله ترينه آن را در



شكل Y-Y نيروى ميلههما حاصل از بار كامل =
*



| ميلهصا | D | $s$ | SL | I | W | $\begin{gathered} \text { (1) } \\ D+S \end{gathered}$ | $\begin{gathered} (2) \\ D+W \\ +S_{L} \end{gathered}$ | $\begin{gathered} (3) \\ D+H^{\prime} \\ +I \end{gathered}$ | نـيرور | تركاركبب |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LoLi | +8,600 | +20,000 | $\begin{array}{r} +6,000 \\ +14,000 \end{array}$ | +10,000 | $\left\|\begin{array}{r} -9.460 \\ -13,950 \end{array}\right\|$ | +28,600 | $\begin{aligned} & +5,140 \\ & +8,650 \end{aligned}$ | $\begin{aligned} & +8,140 \\ & +4,650 \end{aligned}$ | +28,600 | 1 |
| $L_{1} L_{1}$ | +8,600 | +20,000 | $\begin{aligned} & +6,000 \\ & +14,000 \end{aligned}$ | +10,000 | $\begin{array}{r} -9,460 \\ -13,950 \end{array}$ | $+28,600$ | $\begin{aligned} & +\quad 5,140 \\ & +8,650 \end{aligned}$ | $\begin{aligned} & +9,140 \\ & +4,650 \end{aligned}$ | +28,600 | 1 |
| $L_{3} L$, | +6,880 | +16,000 | $\left\lvert\, \begin{aligned} & +6,000 \\ & +10,000 \end{aligned}\right.$ | $+8,000$ | $\begin{array}{r} -7,860 \\ -10,100 \end{array}$ | +22,880 | $\begin{aligned} & +\quad 3,020 \\ & +\quad 0,780 \end{aligned}$ | $\begin{aligned} & +7.020 \\ & +4.780 \end{aligned}$ | +22,880 | 1 |
| L.OT: | -9.050 | -22,400 | $\left\|\begin{array}{r} 6,720 \\ -15,680 \end{array}\right\|$ | -11,200 | $\begin{array}{r} +10,950 \\ +13,470 \end{array}$ | -32,050 | $\left\|\begin{array}{r} 5,420 \\ -11,860 \end{array}\right\|$ | $\begin{aligned} & -9,900 \\ & -7,380 \end{aligned}$ | -32,050 | 1 |
| $U_{1} U_{3}$ | -7,710 | -17,920 | $\left\|\begin{array}{r} -6,720 \\ -11,200 \end{array}\right\|$ | - 8.860 | $\left\|\begin{array}{l} +9,880 \\ 1+10,880 \end{array}\right\|$ | -25,630 | $\left\|\begin{array}{l} -4.550 \\ -8.030 \end{array}\right\|$ | $\begin{aligned} & -6,790 \\ & -5,790 \end{aligned}$ | -25,630 | 1 |
| $\mathrm{U}_{2} \mathrm{H}_{2}$ | -5,780 | -13,440 | $\left\|\begin{array}{l} -6,720 \\ -6.720 \end{array}\right\|$ | - 8,720 | $\begin{aligned} & +8,800 \\ & +8,300 \end{aligned}$ | -19,220 | $\left\|\begin{array}{ll} -3,700 \\ -4,200 \end{array}\right\|$ | $\begin{aligned} & -3,700 \\ & -4,200 \end{aligned}$ | -19,220 | 1 |
| $U_{1} L_{1}$ | -1,030 | - 4.480 | $\left\|\begin{array}{c} 0 \\ -4,480 \end{array}\right\|$ | - 2.240 | $\begin{array}{r} +1,790 \\ +4,320 \end{array}$ | -6.410 | $\left\lvert\, \begin{array}{rr} -\quad 140 \\ -2,090 \end{array}\right.$ | $\begin{array}{r} -2.380 \\ +\quad 150 \end{array}$ | $\left\|\begin{array}{rr} + & 150 \\ - & 8.410 \end{array}\right\|$ | $3$ |
| $U_{1} L_{1}$ | -2,430 | - 5,660 | $\left\lvert\, \begin{gathered} 0 \\ -5.660 \end{gathered}\right.$ | - 2830 | $\begin{aligned} & +2,260 \\ & +5,450 \end{aligned}$ | -8,090 | $\left\|\begin{array}{rr} - & 170 \\ -\quad 2,640 \end{array}\right\|$ | $\begin{array}{r} -3,000 \\ +\quad 180 \end{array}$ | $\left\|\begin{array}{rr} + & 190 \\ - & 8,090 \end{array}\right\|$ |  |
| $U_{1} L_{1}$ | + 375 | 0 | $0$ | 0 | 0 | + 375 | + 375 | + 375 | + 375 | 1, 2, 3 |
| $U_{1} L_{7}$ | +1,235 | + 2,000 | $\left\lvert\, \begin{gathered} 0 \\ +2,000 \end{gathered}\right.$ | + 1,000 | $\left\|\begin{array}{rr} - & 800 \\ - & 1,925 \end{array}\right\|$ | +3,235 | $\left\lvert\, \begin{array}{rr} + & 435 \\ + & 1,310 \end{array}\right.$ | $\begin{aligned} & +1,435 \\ & +\quad 310 \end{aligned}$ | + 3,235 | 1 |
| $U_{1} L_{1}$ | +3,815 | +8,000 | + 4,000 | $+4,000$ | - 5:450 | +11,815 | + 2,365 | +2,365 | +11,815 | 1 |

رتمهاى دوم مربوط بهزمانى مىشود كه جهتت وزش باد بر خلاف حالت نتخستباشد .بد يـهى

خرِّاهاى بلها و سقفها


r Y Y Y تنشهای مجاز براى قطعات ثحت تنش هاصل از باد

وتتى تطعاتى تحت تخش حاصل از بار باد قرار مىيكيرند معمولا" مجاز هستهم كه براى







 براساس تتش مجاز متعارفـ ولىىبا نبروى ميلمأى برابربا 3/4 نيروى ميله واتمى بهد ستآ ورهم زيرا : ستون مربوطبه "نيروى ميله حداكثر " بزركتربن ارقام 34 $(D+W+I)$

حداكثر براساس تتش مجاز متعارف محاسبه منىكنيم .
Y- Y ت ت

تهليل كلى يك خرپاى یل شامل محاسبه نيروى ميله در هر عضو از آن خرها تحت اثر

 مخصوص شاهرامها ازنوع وارن (Warren) را كه درشكل (q-Y) نشان داد هانيم مورد بردسى

 وزن داشته باشد و اين وزن بـطور مساوى بين نتاطهانلى فوقانى و تحتانى تقسيم شود .وزن


نقاط تحتانى پانلى اثر خواهند كرد . براى تأثير بار زنده د ستكاه بار معادل زندهاى بـي بهكـار
 . 00.0 kipsi





 سبس خلاصصاى از جدول تأثير (جدول ز


 $30(0.650)$ ( $7.5+30(0.800)=31.5 \mathrm{kips}$ . 20.0 kips . $=19.5 \mathrm{kips}$

| هبله | نيروى ميلهها تحت اثر بار واحد در |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $L_{0}$ | $L_{1}$ | $L_{2}$ | $L_{3}$ | $L_{4}$ | $L_{i}$ | $L_{6}$ | $L_{7}$ | $L_{8}$ |
| $L_{0} L_{2}{ }^{*}$ | 0 | +0.875 | +0.750 | +0.625 | +0.500 | +0.375 | +0.250 | +0.125 | 0 |
| $L_{2} L_{4}$ | 0 | +0.625 | +1.250 | +1.875 | +1.500 | +1.125 | +0.750 | +0.375 | 0 |
| $L_{0} U_{1}$ | 0 | -1.238 | -1.060 | -0.885 | -0.708 | -0.530 | -0.354 | -0.177 | 0 |
| $U_{1} U_{1}$ | 0 | -0.750 | -1.500 | $-1.250$ | -1.000 | -0.750 | -0.500 | -0.250 | 0 |
| $U_{8} U_{4}$ | 0 | -0.500 | $-1.000$ | -1.500 | $-2.000$ | -1.500 | $-1.000$ | -0.500 | 0 |
| $U_{1} L_{2}$ | 0 | -0.177 | +1.060 | +0.885 | +0.708 | +0.530 | +0.354 | +0.177 | 0 |
| $L_{3} \mathrm{C}_{3}$ | 0 | +0.177 | +0.354 | -0.885 | -0.708 | -0.530 | -0.354 | -0.177 | 0 |
| $U_{3} L_{4}$ | 0 | -0.177 | -0.354 | -0.530 | +0.708 | +0.530 | +0.354 | +0.177 | 0 |
| $U_{1} L_{1}$ | 0 | +1.000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $U_{2} L_{2}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $U_{3} L_{1}$ | 0 | 0 | 0 | +1.000 | 0 | 0 | 0 | 0 | 0 |
| U،L | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

 خواهد شد لذا در اين جدول و جدول بعدى اين دو عضو را مانند يك عضو تلتى كردهاهم .


شكل -

در جدول تنـش (جدول Y-Y ) نيروهای ميله حاصل از بار مرده بـراساس اصلجمعT ا همان طورثى كه درشكل (
 بارهاى مرده بر ميلههاى اصلى تحتاني اثر مىكند لذا بار بانلى مرده براى نقاط تحتانى
 طانلى تحتانی تههيه شده است نيروى ميلههاى مسربوط بـهاعن حالت از باركذارى را مىتوانبا حاصلضرب جمع كليه عرضهاى خط تأثير بـراى هريك از اعضاء در بار پانلى كل حاصل انـار

 مىیاشد . محاسبه نـيروى این خرها بسسار ساده است و چنانكه نتيجه محاسباترا در شكل










ثكل (Y-Y ا ) محاسبه نيبروهاى ميله حاصل از بار مرده

جدرل (r-Y) خلاصه جدول تأثير براى خرپاى شكل Y-Y


طريق مرحله | بهدست میTد مقدار بار بانلى بربوط بهبار مرده ميلمهاى اصلى فوقانىراكم
مىكتيم •

جون بارمرده بهطوريكنواخت كسترده نشدهاست نيروى مبلدها را كه مربوط بهباركذارى



 براى تعيين نيروى ميلههاى حاصل از اثر بار مرده بهمسا سبه جداكانهمستقلى بدون استفاده از خصوصيات تأثير اتدام نمود .
 تعيين اين ارتام كافى است كه حاصلضرب بار پانلى حاصل از بار زنده يكنواخت (19.5) را را
 و فشار حداكثر ناشىاز بار زنده متمركز درستون بعد در درج شده است .بـراى تعيين اين مقادير











 و ضربه در ستون دهكرى از جدول درج نمود . در اين مثال از محاساسبه نيروى ميلمهاكياصل


|  |  | L= نيرو |  |  | ابزا ضرهب | $I=$ <br> نيروي ميل j; ضرب؛ | $L+I$ | $\begin{gathered} c \\ =\bar{c} \\ +\bar{L}+I \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | هكراغت | - | - |  |  |  |  |
| $L_{0} L_{2}$ | +136.5 | + 68.3 | +17.5 | + 85.8 | 0.137 | +11.8 | + 97.6 | +234.1 |
| $L_{9} L_{4}$ | +292.5 | +146.2 | $+37.5$ | +183.7 | 0.137 | $+25.2$ | +208.9 | +501.4 |
| $L_{0} U_{1}$ | $-\overline{183.0}$ | - 96.5 | $-\overline{24.7}$ | - -121.2 | $0.137$ | -16.6 | -137.8 | -330.8 |
| $U_{1} U_{3}$ | $-234.0$ | $-\overline{117.0}$ | $-30.0$ | $-147.0$ | $0.137$ | $-20.2$ | -167.2 | $-\overline{401.2}$ |
| $U_{3} U_{4}$ | $-312.0$ | $-156.0$ | -40.0 | $-\overline{196.0}$ | $0.137$ | $-26.8$ | $-\overline{-2 \% 2.8}$ | -534.8 |
| $U_{1} L_{2}$ | +138.0 | + 72.5 | +21.2 | + 93.7 | 0.151 | +14.2 | +107.9 | +245.9 |
|  |  | 3.5 | - 3.5 | - 7.0 | 0.300 | - 2.1 | - 9.1 |  |
| $L_{2} U_{3}$ | - 83 | + 10.4 | + 7.1 | + 17.5 | 0.2 | + 4.5 | + 22.0 |  |
|  | 83.0 | - 51.8 | -17 | 69.5 | 0. | -11.8 |  | -184.3 |
| $U_{2} L_{4}$ | $+27.6$ | + 34.5 | +14 | + 48.7 | 0.191 | +9.3 | + 58.0 | +85.6 |
|  |  | - 20.7 | -10.6 | - 31.3 | 0.219 | - 6.9 | - 38.2 | - 10.6 |
| $U_{1} L_{1}$ | +31.5 | + 19.5 | +20.0 | $+39.5$ | 0.270 | +10.7 | + 50.2 | +81.7 |
| $U_{1} L_{2}$ |  |  |  |  |  |  |  |  |
|  | $-7.5$ |  |  |  |  |  |  | - 7.5 |
| $U_{1} L_{1}$ | + 31.5 | + 18.5 | +20.0 | + 39.5 | 0.270 | +10.7 | $+50.2$ | + 81.7 |
| $U_{4} L_{4}$ |  | - | - | - | - | - | - | - |
|  | $-7.5$ |  | - |  |  | - | - | - 7.5 |

از اثر باد صرفنظر شده است زيرا كه تحليل دستكاه ـهاريهأى جانبى و ثرتالهها را به يكىاز فصول بعدى واكذار كردها يم .

Y-

در تحليل خرياى مخحصوص شاهراه در بخش (Y-Y) فرض شذه است كه كليه تطعات آ خرها قادر بهتحمل فشار و كشش باشند ونيروى ميله حداكثررا با هر دوعلامتبراىهرميلـهاي فـاه
 مرد ه+ زند +
 زنده و ضربه از مقدار نيروى ميلهحاصل از بار مرده تجاوز كرده است و علامت نيروى ميلـهـ حاصلاز بار زنده و ضربه مغاءر با علا مت نيروى ميله حاصل از بار مرده مىباشد .
 زنده روى سازه در جه محلى باشد نيروى ميله كل حاصلاز بار مرده + بار زنده ما افزا يشض
 د هانه سازه بوجود مى'


 تغيير علامت تنش بوجود آيد بايد هريك از تنشها را برابر با 50 درصد كوحكا






 براى إين كه كاربرد نكات فوقالذكر آئين نامه را شرح داده باشيم
: مىكيرـبم

$$
\begin{array}{rlrl}
0.7(+27.6)= & +19.3 & +27.6 \\
& -38.2 \\
& -18.9 & +58.0 \\
& -9.5=18.9(0.50) & +85.6 \quad \\
& & +9.5=18.9(0.50) \\
& -28.4 \mathrm{kips} & \\
& & +95.1 \mathrm{kips}
\end{array}
$$

حال قطعه را بايد طورى طرع و محاسبه نمودكه در برابـر این هردونيروى ميلهاءيستابيى
نـا
-

هر عضوى كه دا,اى ضريب لاغرى (خارب قسمت طول هر شعاع زهرا سيون ) بزركى.باشد





 مرده د ر پانل فقط اليجاد كشش دتر آن تطريهها بنمايد . ولى هركاه بارهاى زنده نيــز مـورد بررسى قرا, كـرند ، همواره اين امكان وجود دارد كه بـر اثر موقعيت معينى از بارهاى زنـد هكه









شكل I-Y

 نموده و برش حاصل از مجموع بار مرده ، بار زنده و و افزايش ضربه را مانند قطعهاى كثشىى تحمل مینمايه .







دادها
 مىياشد شرح دهيم همهحاسهه حداكثر نشار در تطعه میهردازيه . ترسيم خط تأثير مربوطه ، تغيير نهروى ميله را در د



 متغير خواهد بود . بهعنوان مثال اكر بار وار واحد در د نمود ولى در در در درار كيرد ، كرد . در حقيقت عرضهاى مختلف خط تأثشير متناظر با عملكرد متغاوت سازهما



 كه بر ميلههاى تخت پائين واردمى شوند برابر با با 20.0 kips و بار زنده متمركز برابر با 25.0 kips بوده و از اثر ضربه هرفيا حهار حالت مختلفى كه تطربهاي دو هانل ميانى میتوانند عمل نمايند در شكلهـايا
( با اعمال روش كرمها بر كره
 نیىتواند طورى ترار كيرد كه در
 اكر تطربها مانند شكل (Y-V شدهاست قراركيرند تا اينكه در ر وجود دارد زهرا در هك هنين هالتى التى برابر 4 ا 4.3 kips نشار قبلى يعنى


شكل Y-Y

مى منند لذا يك جنين شالتى نيز امكان اتغاق دارد .


هركاه خريا يى داراى كشهاي قطرى باشد تعيين حداكثر نير نيروى ميلهمائىيك تحت تأثير



 تطرعهيا نشاند هنده كتش در آنها باشند .
Y بلهاى متحرك _كليات Y Y







 امكان.ذير مىياشد .

> Y-




C سبب تقليل نيروى لازم محرك مىیردد .

 عمليات تا اندازهاى افزايش يابدكه از كلنـيروى ميلدها_ حتى زماني كه هل بستهوددهوتحت اثر عبور باشد - بيشتر كردد .


شكل Y-
 مى مَيد تعيين كنبي نرض كنيد كه





 مى میاهند ،نهروى ميلدهايقى برابر با
 خواهندكردو بنابراين براى زاويهغيرمشخص ه نيـيوى ميله حاصلاز بار مرده يعنى


شكل Y-Y

هر عضو غيرمشخص برابر خواهد شد با :

$$
\begin{equation*}
F_{D}=F_{V} \sin \alpha+F_{H} \cos \alpha \tag{الغ}
\end{equation*}
$$



$$
\frac{d F_{D}}{d \alpha}=F_{V} \cos \alpha-F_{H} \sin \alpha=0
$$

از اين رابطه خواهيم داشت : $\tan \alpha=F_{V} / F_{H}$ با ترار دادن اين مقدار در معادله (الغ)

$$
\begin{equation*}
\operatorname{Max} F_{D}=F_{v} \frac{F_{V}}{\sqrt{F_{V}^{2}+F_{H}^{2}}}+F_{n} \frac{F_{n}}{\sqrt{F_{V}^{2}+F_{H}^{2}}}=\sqrt{F_{V}^{2}}+\overline{F_{H}^{2}} \tag{1-Y}
\end{equation*}
$$


 انتهايى در هردو انتهاى هل الجاد عكسالعمل خواهند سود .

Q - Y


 ترترهماى (D -

 الست ،عموما" اين وزتهها را طورى طرح مىكنـد كه جـهت تعادل كل بار مرد ه د هانـه متـحـرك

 وارد مىشوند .
( 10 - Y







 مربوط بهسازههاى نامعين در كتاب بى وبا شد انـجام خخواهد كرفت .




شكل Y-Y




شد ، معمولا" از وتوع جنـين حالتتي توسط بـلندكردن دو انتتهاى T' به مقدار نا جيزى در زمان بسته بودن چل جلوكيرى مىكنتن ، بهاين ترتيب عكسلعمل بار هرده را مىتوان بهنوعى مساسبه نمود كه مقدار Tن از عكسلعمل حداكثر بار زنده با علامت مخالف آن بيشتر باشد .
(

اكر تكيهكاههاى شلى در امتداد عمود بر محور طولـى چل ترار نكرفته باشد چل را اريب



 عـلى معكن است منجر بها يجاد ميله متمايلى نظلير a در شكل (Y-Y الف ) الف كردد .


شكل 1Y-Y بل اريب

مساسبه نـيروى ميلهها دراعضاى يك خربای پـل اريبمىتواند بههمان روث كلىمشروح برالى یلهایى عهود بـر تكيهكاههاى خود انجام كيرد ولى در هرصورت وقتى بـهاثربارهایزنده
 در جزءيات مربوط بههحاسبات بارهاى زنده پانلمى نأثيركذاشته و سبب خواهد شدكهبارهاى وارده بر كليهنتاط پانلـى يـكسان نباشد .
 (الف ) حداكثر كششى و فشارى نـيروى ميلههاى هريك از اعضاى نـيهه خـه اثر بار شرده بهاضاضه بار باد مساسبه نمائيد .
( ب ) نيروهاى ميله بهد ست T مده در قسعت "الل "را با حداكثرنيروها ارياى ميله داده





 . فرض كنيد
r - Y 15-ft




 ميلمها براى طرع و بحاسبه اعضاى خرها بهكار خراه اهد رفت . $L_{0} L_{1}=+4,310,-20 ; U_{1} U_{2}=+1,530,-3,610 ; U_{2} L_{2}=+1,000,-3,760 \mathrm{lb}$


شكل |A-Y مسالـ Y
Y Y Y


دارد ، اثر ضربه را براساس رابـطه (1-1 ) هما سبه خواهيم كرد . بـراي نيروى مبلـههاياعضاى نيعه جي اين خربا جدولى تههيكنيد كه داراي ستونها يیى براي : بارمرد ه ،بارزنـد هيكتواخت

 را بـهار كيريد .اكر براي ميلهاي نـيروى ميلهاي فشارى و كششُى موجوداست هردو راذكركنيد،
 مذكور در بـخش (Y-Y) ) هـراى اعضاي تحت اثر تنش با امكان تغيـير علا مت ، معين كنيد .



$$
\begin{align*}
& L_{0} L_{1}=+93.1: U_{1} U_{2}=-148.9 ; U_{1} L_{2}=+101.6 \mathrm{kips} \\
& U_{3} L_{3}=-14.3,+56.5 ; U_{2} L_{2}=-48.3,+6.0 \mathrm{kips}
\end{align*}
$$

جواب :

بهجز اعضاى نوق عضو ديكرى تحت تنش با دو علامت قرار نمىكيرد .

از یانلـهاى T'ن نياز بهكشهاي قطرى مى باشد .
جواب : كُثهای قطرى

 بارهاى زنده : يكنواخت بهشدت


 شكل Y Y Y Y Y بسالـ
(Yا-Y (Y - Y - Y
. اتر ميكند kips
(الف ) نيروى ميله ما و كشث د ربـند اتصال بهوزنه تعادل را تتحت اثر بارماى مردهدر
. حالت بسته د مانه مطاهت ثكل محا سبه كنيد
( ب ) حداكثر نـيروى ميله حاصل از بارهاى مرده را هركاه د هانه فوتالذكر تا زاوـــه
º
(ج ) آبا روش تتحلـيل هذكور در قسمت (ب) براى محاسبه حداكتر نيروى ميله حاصـلـاز بار مرده در ا

$$
\begin{aligned}
& L_{0} L_{1}=-105.0 ; U_{1} L_{2}=+84.85 ; U_{2} U_{2}=+45.0 \mathrm{kips} \\
& L_{2} L_{3}=-31.62 ; U_{1} U_{2}=+45.0,-10.0 ; L_{2} U_{3}=-49.50 \mathrm{kips}
\end{aligned}
$$

جواب :
(الف)
(ب)
( )


(YY-Y) شك خ Y Y - Y
 كثش ميباشند


مبا حثت بنيادـى تحليـل سازهها
(اللف ) نيروى ميلهها را تتحتاثر بار مرده T ن زمانىیه جل حرخخبده و بهحالتباز ترار
كرغته باشد حساب كنيد .
( ب ) وتتى كه جل بسته است هريك از دو انتهاى سازه بهاندازه 1 in بالاتر ازسطل
 كه هل باز است اثر كند ، اين نيرو سبب بیشود كه in بسته باشد حساب كنيد

A - Y وزن ريل با بستههاى T وزن هر تير عرضى كف با اتصالات Tا $175 \mathrm{lb} / \mathrm{ft}$ مىبـاشد . (الف ) 「

كف بـهاهتير در نتاط پانلىى (C, D, E و وارد مىشود محاسبه كنبد .
 سازه وارد شود ، بارهاى یانلى زندهاى كه بر شاهتـر AB از طريق تيرهاى عرضىكفدرنقاط خإنلى


A-Y شكل YY-Y مسالـ

سازهماي با دهانه وسيع

- ا- ا مقد هه


 متناسب با مربع دهانه تغيير خوامد كرد . عملا" بار مرده متناسب با دا دهانهافزايش مىى ابـا

 مىشود كه وسعت دهانه اهميت بسيارى در طرح و محاسبهخرهاها و مهجنـيند رطرح ومحاسبه تيرها و شامتيرها دارد . در سازههاى اقتصادى ، ترجيح داده مىشود در صورتى كه دهانه آنها وسـيــع باشـ




r-i

در سازههاى طرهأى لنكرهای خمشی را با كوجكنمودن تسمتى از د دهانه كه تحمل لنكر
 كوجكتر از دهانه كل را بر تيرهاىطرهاى كه تحمل لنكر منغى مىنـما يند تكيه مىد هند . سازه شكل(1-1) طرز ساختن شك سازهاى طُرهاى را نشان مىد هد ،اين سازه معبن مىبا شد . لنكر



شكل 1-1 طرز ساختن سازه طرهاى
هداكتر در تبر BC برابر است با:

$$
\frac{1}{8} w\left(\frac{2 L}{3}\right)^{2}=\frac{w L^{2}}{18}
$$

حداكثر لنكر در بازوىطرهاى AB در نتطه A بوده و برابر با مقدأر زير خواهد بود :

$$
-\frac{w}{2}\left(\frac{2 L}{3}\right)\left(\frac{L}{6}\right)-w\left(\frac{L}{6}\right)\left(\frac{L}{12}\right)=\frac{-5 w L^{2}}{72}
$$



 تتها ضابطهاى نيست كه برحسب T

 بارهاى زنده را با يـد د ر طول كل دها هانه سازه محاسبه نمود .
 CD



كرده ولى مشكلات موجود را نـيز رنع كردهاند ، ههنوعى كه لنكر در بـين A و $D$ 'انعنسازهعينا"
 كنارى DF AE مها رمیشوند بهعنـوانمثال لنكر در A توسط عكسالعملدر E و كل بارمؤثر

بين $A$ و مهار میكردد .


هراي این كه سازهای طرهاي نسبت بـهنيروهاي خارجى خود معين باشد بابد بتوان بهتعداد عكسالعملهــاى مستتل سازه معادلات مستقل جههت هحاسبه نيروهاى خارجى هرقرار نـودد ، ههاستثناى تير ساده طره، ساير سازههایطرهای همواره داراى بيش از سه عكسالعمل مستتل میباشتد در جائى كه فقط سه معادلـه مستقل تعادل جـهت اعمال بـهكل سازه وجـود


 خاص سازه نيز بر هسادلات فوت اضافه مىكردد . برخى از این اتصالات اجرايى درشودسازه
 در ثكل( ( H ) اتصالات اجرایى فوقالذكررا شرح دادهايم . مغصل a $a$ يكىازايناتصالات اجراءى است ، زيرا كه معادلـه سازه نسبت به a اععال نـمود ، مغصل b نيز مانتد مغصل a است زيرا كه مىتوان رابطـه . $1, \Sigma M_{b}=0$


ثكل
مغصل c نيز امكان بـهاربردن رابطه $\mathbf{~}$



در هردو نقطه b $b$ عغصل وجود دارد لـذا ميلهء bc مانند يك بـند اتصال عمل مىنمهايد و بـاهن طريق نتتجهه كرفته مىشود كه اكر بـرشي بهنـحوى كه bc را تطع كند در نظر بكيــريـم مجموع نـيروهاى عمود بـر bc كه بـهريك از دوقسمت بـرش فوقَالذكر وارد مىشوند بـرابـــر با صنر خوا هد بود ، در این حالت مورد بحـث مطلب فوق بهابين بعنى است كه امكان اعمـال معادلـه 0 م حذف قطرى در بانل defg نيز ايجاد نوعى اتصال ا جرايى مىكند كه اجازه استغادهاز بك معادله مستقل تعادل د يكر را نسببت بـهنيروهاى خارجى بـهما مىد هد ، زيرا كه به دلیل

 د يده مى شود كه هنت معادلـه مستقل زيرين را مىتوان هرایى محا سبـــه عكسالعملـهـاى

اين سازه اعمال نـمود :
(1)

براى كليه نيروهای موهي $\Sigma F_{y}=0$ (r)




$R_{\text {ku }}, R_{i y}, R_{i x}, R_{f y}, R_{f x}$, درابن سازههمجنـين هنت عكسالمعل مستقلبهترتيبزير (

 برابر با دو بـرا'بر تعداد كرههـاست
-
 محاسبه كنيم مىتوان بهصورت زير عمل نـودد : فرض كنيد كه كليه عكسالععلهـا در جـهـــاتـات نشان دادهه شده عمل كنتد . معادلـه
 معادله

$$
+R_{h y}(6)(30)+R_{i y}(2)(30)=0 \quad R_{i y}=-3 R_{h y}
$$

معادله

$$
\begin{gathered}
-(100)(3)(30)+R_{h y}(12)(30)+\left(-3 R_{k y}\right)(8)(30)=0 \\
R_{i y}=-3(-25)=+75
\end{gathered} \quad R_{h_{y} y}=-25
$$

معادله

$$
-25+75-100+R_{f y}=0 \quad R_{f y}=+50
$$

معادله

$$
+R_{o v}+R_{j y}=0 \quad R_{v y}=-R_{j y}
$$

, اعمال كنيد

$$
\begin{gathered}
-50(3)(30)-\left(-R_{j y}\right)(4)(30)-R_{j y}(9)(30)=0 \\
R_{j y}=-30 \quad R_{g y}=+30
\end{gathered}
$$

معادلات موجودرا مىتوان با ترتهيهاي مختلف بیكار برد و اكر سازه هايدار باشدكليه

هس از T'




 نظر اتدام نمود .




 عبارت از نبروى موجود در Tوبز FE ، نيروى واحد وارده و نيرو در محلـّ a خواهمد بود .



كاهث لنكر حداكثر را كه حا صل كوجك نـمودن د هانههاي بو' ثر سازه است و نها يتا "


 ABCD


 در A وD برای سازههای با دهانـء وسيع درعمل نوعى كـردارى نسبـى كه بعلت وجــود



 تحلـل Tن بستكى بهروثهايمى خواهد داشت كهي خصوصيات ارتجاعى اين سازه را را نيز در بر . بكيرند


البته مىتوان با حذف جند ميله ،ـيك خرياى سرتاسرى معين ايجاد نـورد ، هنـينعملى



 براى حل نيروهاى داخلى و خارجى T
: بهكتاب زر مراجعه شود :
D.B.Steinman "the Wichert turss" D.Van Nostrand

Company. Iuc., New York. 1932

تعداد مجهولات و معادلات موجود براى تعليل آن برابر بوده و لذا عملا" معين اســت ,

 استاتيكى T ان تحعيق نمود .


شكل
$\Sigma F_{z}=0$ در مورد سازه شكل (Aبر كل سازه نشان مىد هد كه در رآن
 برث N-N و با فرض رو بهبالا عمل نمودن عكىالعملهای عمودى سازه داريم :

$$
\begin{gathered}
-R_{c_{v}(5)(30)}+X_{b}(50)=0 \quad X_{\mathrm{b}}=+3 R_{c_{v}} \\
Y_{b}=+23 X_{b}=+2 R_{C_{\psi}}
\end{gathered}
$$

با لنكركيرى حول D از نيروهأى واقع در شهـ برثى M-M داريم :

$$
\begin{gathered}
+R_{A v}(5)(30)-100(3)(30)-X_{a}(30)=0 \quad X_{a}=+3 R_{A y}-180 \\
Y_{a}=+23 X_{a}=+2 R_{A y}-120
\end{gathered}
$$

با اعمال

$$
+R_{B y}+2 R_{C y}+2 R_{A y}-120=0
$$

$$
R_{B y}=120-2 R_{A y}-2 R_{C u}
$$

, جون 'این عبارت بيانكندده مقدارعكسالعمل ميانى برحسب دوعكى|لعملانتهايقمى:اشد

هال میتوانته عكسالعملـهاثى انتتهايهى وا با اعمال مهاسبه كنهم • هرای0 $+100(2)(30)-\left(120-2 R_{A y}-2 R_{C_{u}}\right)(5)(30)-R_{C_{u}}(10)(30)=0$. و والعمال

$$
R_{A y}-100+\left(120-2 R_{A y}-2 R_{C_{y}}\right)+R_{C y}=0
$$

با حل ابن دو معادله خواهيم داشت : $R_{C v}=-20 . R_{A y}=+40$

$$
\left.R_{B y}=120\right)-2(+40)-2(-20)=+80
$$

 و چون در سالى كه بارى واحد بههريك ازنتاطهانلى اثر كند مىتوان بـطريت ذكر شده فوق
 رسم نمود .

$$
\text { - } \uparrow \text { قوسها ــكلـات }
$$

روثى ديكرى كه براى كاهش لنكرهاى حداكثر در سازههاى با د هانه وسيع بهكـار برده





شكل Y-


 ازكليه نيروهاى مؤ ثر بـرقوس بهد ست Tورد : اكرنيروى مؤثرخارجى P




 سازهء ابهجاد شده د يكر توس نبود ه بلكه تتيرى منحنىى و معين مىبا شد و لنـكر خششى در مشل
 متدار لنكر بـهميزانهى بـرابر با


 نشان دادهاهـم و بـآن ثوس سه مغمل كويند . الهن سازه داراى جـهار عكسالعمل بستتل است و براى كل سازه سه معادله مىتوان برقرار نمود و همجنين با لنكركيرى حول مغمل C ازكـبه


شكل 人-q توس سه مغمل



$$
R_{B y}=+100(20 / 100)=+20
$$

, بهمعين ترتيب با لنكركيرى حول مفصل B ، خواهيم داشت ،

$$
R_{A y}=+100(80 / 100)=+80
$$

, راست اين مفصل واقع است داريم :

$$
+R_{B x}(30)-20(50)=0 \quad R_{B_{x}}=+33.3
$$

با اععال
مقدار لنكر در نتطه اثر بار خواهد شد :

$$
M_{D}=+80(20)-33.3(25)=+767 \mathrm{kip}-\mathrm{ft}
$$

در مورد تترى يناده روى دو تكيهكاه انتهايهى كه دارای همان دهانه و باركذارى باشد ،





 صورتىكه تنشهاى محورى فشارى باشند مىبا يستى پايدارى تطعه دربرابر كانش ارتجاعى تأمين كردد .

Y-1 تحليل قوس خربايى سـمفصل
دو نوارتوسى



شده است در دو انتهاى خود بهنحوى اتمال بافته كه نـيروبی محورى تحمل نمىكنــد لــذا



شكل ג-0 ا قوس خرهايیى سه مغصل
عكسالعقلهاى اين سازه را مىتوان بهطريق زير محاسبه نمود : با لنكركيرى حول a ! كليه نيروهاى مؤثر بر سازه خواهيم داشت :

$$
\begin{gathered}
+100(30)+200(2)(30)+300(6)(30) \cdots R_{i 4}(8)(30)=0 \\
R_{\text {iy }}=+28 \bar{i} .5 \mathrm{kips}
\end{gathered}
$$

با اعمال شرط 0

$$
+R_{a y}-1(16) \quad 2(0)-300+28 \overline{0} .5=0 \quad R_{a y}=+312.5 \mathrm{kips}
$$

 بر تسمتى از سازه كه بر قسمت راست اين مفصل اثر مىكنند اععال مىكنيم :

$$
+300(2)(30)+R_{r}(18)-285.5(1)(30)=0 \quad R_{1 x}=+3.4 .4 \mathrm{kips}
$$

با اعمال 0 با Rax نيز بهد ست

$$
\begin{gathered}
+312.2(-4)(30)-R_{u x}(48)-100(3)(30)-200(2)(30)=0 \\
R_{n x}=+34+\mathrm{kips}
\end{gathered}
$$

در محاسبه نيروى ميلمها ،اثر عكسالعقلـهاى افتى را نبايستى ناديده كرفت •بهعنوان

ـازههاى با دـها نـئ وسبع


$+300(30)+3 f f(4)-.287.5(10)-F_{F G}(15)=0 \quad F_{P G}=-93 \mathrm{kips}$
اكر بارى در حد فاصل بـين مغصل بركزى و يكى از نقاط انتهايیى خربا وجود نداشتـــهـ
 مغصل مركزى بكذردزهرا لنكر حول مغمل مركزى ازنيروهایواتع دران سمت مغصل مىبايستى

 به ¢ ترار ميكهرد ، بهسرعت ميتوان نتيجه كرفت كه :

$$
R_{1 s}=+1_{8}\left(1_{4}\right)=+51_{6}
$$

اين واقعيتا غلب سبب راستتـترشدن تحلبل قوس مخصوصا" د ر رسم خط تأثير ميكردد .



Y

Y برابر با عكسالیملههاى افتى خواهد شد .واتعيت اين مطلب را دانشجووان میاتوانتد برزسى




 شد .





 براى اين قسمت از نـيرو ، مثلثـه خواهد بـود كه حداكثر مقدار Tان زمانى اتنفاق مىافتدكه بـار واحد مستقيما"بـر مركز لنكركيرى f وارد شود و در اين صورت همان طورى كه در شكــــــلـ

 مىكند ، وتتى بار در E واقع شود R $R_{i x}$
 1.25
 با بود كد رأس T

 مىیردد . بـهد ست آوريـم .


ديده مىشود كه سطع خالص زير
منـحني Tنكونه كه بايد برا'بر با صفـــــر است زيرا بار يكنواختى انـوكه بركل د هانه
 فوتانى ايـجاد نـخواهد

شكل
-





 الف ) و لنكركيرى حول a از كليه نـيروهاى موثر بر سازه داربه :

$$
+100(60)-R_{i x}(20)-R_{i y}(240)=0
$$

$$
R_{i x}=+300-12 R_{i v}
$$

, حال مىتوانهم با لنكركيرى حول منصل e از نيروهاتى مؤثر بر راست مغصل بنوعسيم :

$$
\begin{gathered}
+R_{i x}(38)-R_{i y}(120)=0 \\
R_{i y}=+38 / 120 R_{i x}=+38 / 120\left(+300-12 R_{i y}\right)
\end{gathered}
$$

و از Tنـجا دارسـم :

$$
R_{i x}=+300-12(19.8)=+62.5 \mathrm{kips} \quad R_{i y}=+19.8 \mathrm{kips}
$$

د ر راه حل فوق حل دستكاه دو معادلـه دو مجههولى الزامى است ولى مىتوان با در نظركرفتن جـهت عككيالعملـها طهيق شكل ( ( شكل راستاى



$$
+100(60)-R_{i v}^{\prime}(240)=0 \quad R_{i v}^{\prime}=+25.0
$$

با لنكركيرى هول e و فرض اهن كه

$$
+\frac{12.00}{12.04} R_{i x}^{\prime}(48)-25.0(120)=0
$$

, از أنجا خواهد شد : $R_{2 x}+62.7\binom{12.000}{12.0 .1} \quad+62.5 \mathrm{kip}$

و عكسالعمل واقعى عمودى در i بـربـبر خواهد شد با ؛

$$
R_{i y}=+25.0-\underset{j 2.10 i}{1}(62.7)=+198 \mathrm{kijs}
$$



$$
\text { شكل ( } 1 \text { ) ) اختلاف سطح تكيهكاهى }
$$

در حالت خاصى كه بارى بر تسمت راست مفصل ؟ ا ار نكند مىتوان نتيجه كرفت كــه


$$
R_{i x}=120.35 R_{i,}=+3.10 R_{i y}
$$

سيس با لـنكركيرى حول a نتيجه مىشود كه:

$$
+100(60)-3.16 R_{n}(20)-R_{i}(210)=0
$$

$$
R_{i x}=+3.16 i(19.8)=+(62.5 \mathrm{kips}
$$

10-1

روش مهمى كه در تتلـيل لنكرخمشى سازهماى با دهانـأه وسيع بهكار برده مى بشودعبارت






 باربرى بـارها دارد تتحعل بیشود .


شكل (
ثل معلقى نظيرشكل( ( مىتوان بررسى ترار كرفته است .




جواب:
(الف) خطط تأثبر بصورت خطى از 0.0 در E تا 1.33+ در B و تا 0.0 در C تغيـر مىكند .


ساد ه بـراهر با

 2,000 lb/ft را در ميله de تحت اثرباركذار


جواب :
 رسم میشود



$$
747,000 \mathrm{lb}(\mathrm{~J})
$$

ג-
100 kips
ث-
جواب :
خط تأثير بهطور خطلى از در نظظر بكيرشد در صورتى كه محور تقارنى از ( هكنواختى بهشدت $\quad w \mathrm{lb} / \mathrm{ft} \quad$ در كل دهانـ سازه و بر نقاط هانلى فوقانى Tن قرار كيــرد . محاسبه كنيد
 فرض كنيد كه شيب توس در D بـرابـر با $30^{\circ}$ با افق با شد .
( بهشدت نقاط چانلـى نوتانى وارد مىشوند A - A

جواب :
 در i ا رسم مىشود .

$500 \mathrm{lb} / \mathrm{ft}$ خواهد 5,000 lb با متمركز زندهاى برابـر با با با
| 0 مساله ( 1 ( جواب :
خط تأثبر بهطور خطى از 0.0 در a تا 0.220+ در b و از آنجا تا 1.761 - در e 0.0 وازTنـجاتا در i : رسم میشود .

جواب :
$B c=+19,110 \mathrm{lb},-16,930 \mathrm{lb}$

(الغ)

(4)



شبكهdهاى سهبعدى
q-1 مقد مه



 بوده و آن را مىتوان بـششی سازه مستوى تتجزيه نــود . ایــن سازههــا عبارتنداز دو خرهاى




 تنش كل را با رو بههم كذارى جنـد تنـش محا سباتى در آن تطعه محا سبه نـورد .


 بتخصوص سـبعدى آن مورد لـزوم خواهد بـود .






در اين بخش از تحليل سازههاى سهبعدى از سه محورمختصات الستفاد دمىشوداز OX


مىكردد و OZ افتى و عمود بـر صغحه XOY در نظر كرنته مىشود .
 مستوى مىباشد . هريك از معادلات تعادل را مىتوان در مورد كل سازه يا بهاهريك قسمت از سازه بهكاربرد ، البته تعداد معادلات تعادل در ابنـحالت بيشتر استزيرا نيروها رامىتوان درامتداد محورهاى جديدى برآ يند نـود . همهنين لنكركيرى را مىتوان حول دوهحورجد بد د دكر نيز انجام داد .
-

معمولا" فرض مىشود كه قطعات يك شبكه سهبعدى بهنوعي بهـهكد بكر مغصل شدهاند كه تطعات فقط قادر بهتحعل بارهاى محورى باشند و لذا فقط يك مولغه مستقل نيروىميلـه براى هر عضو از شبكه وجود خوا هد داشت .


نشان خواهيم داد . البته هر عضوى داراى سه مولفه نـروى ميله كه بهترتيب بهموازات هريك از سـه هحور
 مورد نظر بهد ست آورد . در نتطه تكـهكامى شبكه فضايهى امكان وجود سه مولفه سستقل نيروى عكسالعملموجود




 مقاومتخواهد كرد لذا عكسر العملهـای





همان طورىیه درشكل (q-ا الف ) نشان داده شده است با سه بند متقاطع كه در بك صنسه

 در شكل (


(د)

( - )

( 1 )

شكل(1-1) انواع تكيهكا مهاى شبكه فضايى






 Tا




شكل ( Y-१ ) وضعيتهای مختلف مولفههاى انقى عكسالعمل

هها ين ترتيب تعداد كل عناصر هجهول تحلـيل تنـن كه در تهلـبيل شبكههاى سهيعـدى وجود دارند عبارت خواهد بود از تعداد ميلهها باضأنه تعداد مولنههاى مسنتقل عكسالعمل


در نظر كرفته مىشود مىتواند يك ، د و و عا سا سه باشد .

 , $\Sigma F_{z}=0 \cdot \Sigma F_{y}=0 \cdot \Sigma F_{z}=0 j^{\prime}$.
 نهروهای مر'ثر بر سازه حول هحور OX خواهمد بـود و . . . .



مولفههاى مستقل عكس/ لعمل T ن برا بر با شـش با بـد




 تعدا د كل ميلهها و تعداد كل مولفههاى مستقل عكسا لعمل أن سه برابر تعداد كرهها باشد .

كارهرد این اصول را مىتوان با هردسى شكل (و-r الغ ) شرع داد . اكر در وهله اول نقط نيروهاى خارجى را در نظظر هكيرهم در صورتى كه عكسالعملـهاى انتى مطابـق تصويرا نتى شكل Tاهشث هافته باشند در اهن صورت كلا" و مولفه مستقل عكسالعمل وجود داشته و لــذا

 مستقل ا بين سازه به شش رسيده و این سازه معين خوا هد شد .اكر فرض شودكه غلتكهها بهنوعى



b
(8)

هلاس


داشت . بهعنوان مثال عكسالعمل $Z$ در $\quad$ برحسب ابين كه با استغاده از بهكل سازه اعمال شود (كه در اين حالـت تعداد †'ن برابر با صغر خوا مد شد ) و يا اين كه با استغاد ه از معادله داراى مقدارى خواهد شد ) . دارایى دو هقدارخوا هد بود . این نشانمىد هد كه كرجهشمارش



 مقابـل دوران عحول محور مار از اين نقطه متارمت نـا يند .



وجود دارد لذا $4 \times 3=12$ م $4 \times$ معادله مستتل تعادل وجود خواهد داشت ، معلوم مىشودك این سازه (سه درجه ) IT-ا

 و خارجى معهن خوامد بود .
r-q - 9
 روى سه نتطه دارای تكيهكاه هاشد مقادير عكسالعملـهاى آن را مىتوان با اعمـال معــادلات
 قرار كرفته با شد معولا" لازم است كه نيروى چند ميله و يا نيروى كل ميلهها را تبلا"مهاسيه

 در شكل ( كه اكر حول معورى كه از دو تكيهكاه مىكذرد از كليه نيروهاى مؤثر بر سازه لنكركيرىنـائيم


شكل (

متدار مكسالعمل عمودى تكيهكاه سوم بععنوان تنهامجههول ابينمعادله خوا هدهود و همهنين بان عمال معادله لذا متدار داشت

$$
+10,000(20)-R_{c y}(20)=0
$$



$$
\begin{aligned}
R_{a y}+ & 10,000=0 \\
& \text { از اهن معادله } R_{a y}=-10,000 \mathrm{lb}
\end{aligned}
$$

براى محاسهه عكسالعملهانى اغتى اكر با استغاده از معادلـ
 انتى موجود تنـها مجهول بعادله خوامد بود . بـعـنوان مثال اكر عول محور ععودى مار بـر


$$
-10,000(5)-R_{c s}(20)=0 \therefore R_{e s}=-2,500 \mathrm{lb}
$$

هال اكر معادله سازه عمل كند خواهيم داشت :

$$
R_{a \mathrm{a}}-2,500=0 \quad R_{\mathrm{aa}}=+2,500 \mathrm{lb}
$$

و بالاخره با اعمال خواهيم داشت :

$$
+10,000-R_{b x}=0 \quad R_{b x}=+10,000 \mathrm{lb}
$$

همان طورى كه در سازههاى مستوى ذكر كرد يد هريكاز معادلات تعادل دارا مىتوان بانظم
و طرق مختلغى كه نسبت بـابتكار محاسب متغاوت مىياشد بهكار هرد .

9
كك ميله از شبكه سهعدى مىتواند داراى سه تصوهر روى سه محور مختصات با شد ،اهن

 . بهصورت زير هحاسبه خواهد شد

$$
a b=\left[(a x)^{2}+(a y)^{2}+(a x)^{2}\right]^{1 / 2}
$$

جون نیحروى خوا هند بود .

$$
X_{a b}=F_{a b} \frac{a x}{a b} \quad Y_{a b}=F_{a b} \frac{a y}{a b} \quad Z_{a b}=F_{a b} \frac{a z}{d b}
$$

از تركيب این روابطبهسادكى ميتوان مقدار هر تصوير مهله را هـرحسب مقدار ساير تصاوهـر ... $\quad X_{a b}=Y_{a b}(a x / a y) \quad{ }^{\top}$




شكل (q-


 با فرض كششى بودن كليه مهلهما در كره d معادلات زير هرقرار خواهد هـوه بـود .

$$
\begin{array}{rr}
\Sigma F_{x}=0 & +10,000-X_{a d}+X_{c d}=0 \\
\Sigma F_{v}=0 & -Y_{a d}-Y_{b d}-Y_{a d}=0 \\
\Sigma F_{a}=0 & +Z_{a d}-Z_{b d}+Z_{c d}=0
\end{array}
$$

| تطهه | طول | تصاوير |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\boldsymbol{X}$ | $\boldsymbol{r}$ | $z$ |
| $a d$ | 22.9 | 10 | 20 | 5 |
| bd | 20.6 | 0 | 20 | 5 |
| cd | 22.9 | 10 | 20 | 5 |
| $a b$ | 14.14 | 10 | 0 | 10 |
| $b c$ | 14.14 | 10 | 0 | 10 |
| ac | 20.0 | 20 | 0 | 0 |




$$
\begin{aligned}
+10,000-\frac{10}{22.9} F_{a d}+\frac{10}{22.9} F_{c d} & =0 \\
-\frac{20}{22.9} F_{a d}-\frac{20}{20.6} F_{b d}-\frac{20}{22.9} F_{c d} & =0 \\
+\frac{5}{22.9} F_{a d}-\frac{5}{20.6} F_{b d}+\frac{5}{22.9} F_{c d} & =0
\end{aligned}
$$

حل د سنتكاه سه معادله سه بجـهولى فوق بنجر به پاسخهاى زیرين ميكردد .

$$
F_{\mathrm{od}}=+11,450 \mathrm{lb} \quad F_{b d}=0 \quad F_{c d}=-11,450 \mathrm{lb}
$$

 داده شده اسست محاسبهنمود و نـيروىميلـهعاى
 و برابر با 10,000 lb خواهد بود . با عمال

$$
-10,000+Y_{a d}=0 \quad Y_{a d}=+10,000
$$

$$
F_{a d}=+10,000\left(\frac{22.9}{20.0}\right)=+11,450^{*}
$$

 $-10,000+\frac{20.0}{22.9} F_{\text {ad }}=0 \quad F_{a d}=+11,450$
c, $b$, $\quad$ بهمعيننحو میتوان


 شده عكسالعملههاى أفتى بر طبق، محاسيات بخش (r-q) انجام داد .



شكل (9-9) بحا سبه نيروى ميلمها بهروش كرهها
را با برترارنمودن معادلـه 0 = 0 مورد بررسى قرار مىدهيم با ذكر اهن كه

$$
\text { - مىبا شد دار } Z_{a d}=+11,450(5 / 22.9)
$$

$$
+2,500+11,450\left(\frac{5}{22.9}\right)+F_{a b}\left(\frac{10}{14.14}\right)=0 \quad F_{a b}=-7,070 \mathrm{lb}
$$

بههمين ترتيب مىتواننيروى ميله ac را باع عـال

$$
\text { * } \Sigma F_{z}=0 \text { در كره } F_{b c} \text { با بهد اعمال }
$$




 شدهاست .تحليل این كره را مىتوان با عد قابل ملا مظظهاى با بهكاريهردن قضيه (الف ) از بند . ( $9-9$ ) تسهيل نـود

 را با در نظر كرفتن مولغهماى ععودى اين نيروى ميلمها محاسبه كتيه •


شكل (Y-q) مثال مشروح








 موقتا" بهعنوان مجهول بر مىكزينـيم . در كره c معادله 0 م 0 .

$$
F_{c d}+\frac{5}{25.5} F_{a c}=0 \quad F_{a c}=-5.10 F_{c d}
$$


در كره d با بـهكاربردن مسادله

$$
F_{\varepsilon d}+\frac{10}{26.9} F_{a d}=0 \quad F_{a d}=-2.69 F_{c d}
$$

فرض كنيد كه عكسالععلـهاي عمودى در م و ال رو بهسوى بالا باشند ، حال در كره ع معادلـن
:

$$
\begin{aligned}
& R_{\text {eu }}+{ }_{2.50}^{20} F_{4 s}=0 \\
& R_{\mathrm{cy}}=-0.784 F_{a r}=-0.7 \times+\left(-5.10 F_{c, t}\right)=\cdot+1.00 F_{w,} \\
& \text { در كره } \\
& R_{d y}+\frac{20}{26.9} F_{\alpha d}=0 \\
& R_{d y}=-0.744 F_{a d}=-0.741\left(-2.69 F_{c d}\right)=+2.00 F_{c d} \\
& \text { حال با لنكركيرى حول } \\
& +150(20)-R_{c v}(20)-R_{d y}(20)=0
\end{aligned}
$$

بنابراين

$$
+150(20)-4.00 F_{c d}(20)-2.00 F_{c d}(20)=0_{d} \quad F_{c d}=+25 \mathrm{kips}
$$

جون متادير


بوجود نخوا هد Tورد .

9 - 9

كرجه شبكههاى سهبعدى را مىتوان بهروثهائى كه ذكر شد تحلبيل نـود ، با وجودابن

از اهميت بسبارى مرخوردار مىىاشند .
 همكى در يك صفسه واتع شده باشند ، مولغه عهود برا ين صغحه نيـروى n • برابر است بامولفه


 را در مورد كره بر صفحه adc نيروى ميله bd باءدي برابر با مولغؤ عمود بر آن صفسهء نيروى موثر بر آن كره
 عمود بر صغحه ندأرد و بدين ترتيب نتيجه كرنته مىشود كه نبروى ميله bd برابر با صفـر


 در بك صفسه واحدى واتع شده باشند و بر آن كره نيز نيروعى اثر نكند نيروى ميله n براهر با صغر خواهد بود .

هم راستا نباشند و برآن كره تيز نيروى خارجى وارد نشود نيروى ميله هريك از اين ميلهمـا ديا هر'بر با صفر سخواهد بود .

 شودلر شكل(

مياحث بنيادى تحلـيل بازهـ

هلان با خط خبين نشان داده شده است با بهكاربردن قضا ياى نوت بهصورت زيهـر مىتــوان دريافت كه نـيروى ميلـهاى وجود ندارد .

 بود . بههمينترتيب میتوان بهبررسي كرههای
 B,H,N


L


شكل (


 مشابه كرههای نيز همكى نتروبيى تحمل نمىيكنتد



. نبيروبیى تتحمل نـى

 ميكردند بنابراين اين دو مبله نيز نيرويى نـنخواهند داشت • بررسى مشابه كره J لشان
 از آنجائى كه اين ثبكهى كنبدى تحت نأثير بار عمودي در $A$ قراي

 I و H G G • L هس از آن عكسالعملهاى عمودى را مىتوان با بهكاربردن كاهى معين نمود .

 ميلهماي تاعده املى بهطور موتت مجهول فرض نمائهيم فرض كنيد باشد . اكر در كره
 تأثير مولغهماي Z X X P : Qساع 0


 قبلا" برحسب

 ازآن نعىد هد* .
** بهبخش 19 كتاب زير كه در مورد شبكههاى فضائى اسِت مراجعه شود . C.M. Spofford " Theory of structures" 4th ed. Mc. Graw - Hill Book Company Inc. New York 1939

9 -

حتى اكر ساقهاى (اعضاى ستونى )بيك برج مشبك در كل طول خود داراى شيبظابتتى




 ساقهاى مجاور هانل فوقانى درهك صفحه واقع شده باشند نيروى ميلهرا در هريك از ميلـهاهاى
 بهعنوان مثال نيروبايد مولفدء عمود بر همين صفحه بار خارجى مؤثر بركره . a را درتعادل نكهدارد مسانسيهـ



شكل(9-9 ) برج مثلثى





 اكر رححسب

 وجود دارد و اغلب در نقاط هانلمى كه حتى شيب ساقها نيز تغيـير نمىيكند اين ممهاربنـــدى



 جنين سازهاى بهصورت معين باتى مىماند .

9-9 9




در يك صغخهء مجاور برج








شكل (9-10) برج مستطيلى با ساقهاى مستقيم
تعليل قرار داد لذا اين جنين روشى يك روش كلى براى تحلبيل خواهد بود .






 اعضاء مىتوان با استفاده از اصل جمع T آ ار بهدست آورد .

- 9





 باشند مىتوان توسط عك شيكه نضا هی صلب و معاوم بـهصورت مشروح زير بـهـكد يكرمتصلنمود .




ثكل ( 11-9) شبكه فضا هیى ساده
 صفحات Y\&ا الى S.P. Timoshenko D.H. Young "Theory of structures"

Mc Graw Hill Book Company Inc. New York 1945.


شكل ( 1 ) ) شبكه فضايى مركب

اتصال كرههاى 1 ، 2 ، 3 و 4 بهكار رفته است با ايجاد يك هسته ههاروجههى بهمم متصل كند.






 . $b=3 n-6$





مىشودكهتعدادكل ميلمهاىبـهاررفته دريكجنـينحالتى.بر'هربا :

$$
\left(3 n_{1}-6\right)+\left(3 n_{2}-6\right)+6, \quad\left\llcorner\quad b=3\left(n_{1}+n_{2}\right)-6, \quad \text { ᄂ } \quad b=3 n-6\right.
$$

مىباشد .د رابن روابط بوده و n نشاند هنده تعداد كل كرههاى كـل سازه است .



 بههمان نحـو نوقالذكر تعداد ميلمهاى لازم جههت ايجاد عك شبكه صلب و مقاوم توسـطـ يك



شكل (


 rنهـا تــو سط شش معادله تعادل كلى سازه كه دربند (


 ميلهها بهنحو مطلوبىى انجام نكرفته با شد امكان ناباهِدارى هندسى شبكه فضا بیى وجود دارد .

$$
\text { از } 1 \text { الـى } 6 \text { مشخص كرد هايم . }
$$








 سه خواهد بود .





$$
b=(3 n-6)-(r-6)
$$





را مىتوان مستقيها" با اصتغاده از تركيب معادلات خاص و معادلات تعادل در موردكل سازه



 مى میاند ، در مورد شبكههاى نضابي كلا" 3 معادله مستتل تعادل موجود است كه این $\Sigma F_{k}=0 \quad$, $\quad \Sigma F_{x}=0$ لات با با جداكردن هريك از كرهها و برقرارنمودن سه مهادله , $b+r$ ( $)$ (
 مىياشد . هركاه تعداد مجهولات را با تعداد معاد لات موجود متايسه كنيم نتا يجزيربهد ست مى

اكر
اكر

 كرفتن ميلهما و با مولفدهاى عكسالعمل وضع مطلوبى نداشته باشد ممكن است سازه از نظــر




 بـهعنوان مثال يك شبكه ساده فضايّى را كه بـهنهو معينى روى تكيهكاه ترار كرفته ا ســت در نظر بكيريد . در يك جنهن حالتتى عكيالعملها را ميتوان با در نظر كرفتن تعادل كلـي
 ميكردد . حال مىتوان آخربن كره ايجاد شده د ر شبكه ساده شضايهىرا (نظهر كره 12 در شكل


 د ر مورد هر كره فقط سه نيروى ميله مجهول وجود خواهد داشت و لـذا تعيين كامل نيهروى

ميلمها فقط با اعهال نوبـت روش كرهها در كرهـهاى متعدد انجام خوا هد كرد .






 متوسل شد (بهمراجعى كه در بـخش (IY-Y) ذـكر شده است مراجعه شود ) . .
 استناده مىشود در يك هنيـن سازههايى مقدار وسيعى كره و ميله وجود داشته و كاهــى نـيز داراى شكل هندسى بغرنججىمىباشند و اغلب بجاىمعارمت قطعات مسدود يتهاى تغيييرمكان
 از ماشيتهاى حسابكر با بـهاربـردن روثهاى ماتريسى استناده هـ مىشود .


شك


$a b=-500 ; b c=+1,000 ; c a=-1,000 ; e d=-1,000$ : ميله هاى
. $e a=+1,414 \mathrm{lb} ; e b=-1,000$


مثلت متـاوى الاضلاع def واتع است بكذرد .


$a b=-433 ; b c=+866 ; c a=-289 ; e d=e b=-577 ; d a=+577$ : ميلمهای
. $d c=-815$; ca $=+815 \mathrm{lb}$
9

 برابر با نصف بار موثر بر سازه مىباشد .


ثكل (

 با شد ثابت كنيدكه تحت اثر هربارعمودى موثر بر كنبد جمع جبرى كلهيه عكس العطلـهاى افتى برابربا صغر است
 $j k=k l=l j=40 \mathrm{ft}$ میى


 سمت بائين اثر مىكند : (الف ) قدار نيروى ميله را در اعضاء

 ( ) ع عكسالعملهاى هرج جتدر است . جواب :

$$
c a=0 \quad b c=0 \quad a b=-8.45 \text { kips; } \quad \therefore \text { (الف (الف } c a b
$$

$d: Z=-0.41, X=+6.34, Y=-7.04 ;$ e: $Z=-0.41 \quad$ : $Z(ب)$
$X=+0.70 ; Y=-7.04 ; f: Z=+5.81 ; X=+2.96 ; Y=-5.92 \mathrm{kips}$








 را در عضو /و برابر با 100 یاوند فشارى فرض كنيد

$$
\text { شكل ( } 1 \text { ) ) مسالـه q-q-q }
$$

## $1 \cdot$ <br> كابلها

。 1 - 1 مقدمه







 تحليل كابل را تا حد بالايمى ساده نمود .





 $21 I_{m}$ و 2.


مباحث بنيادى تحلـيل ـازهها


مىكنـند باشد ، اكر جنانتجه لنترهاى كليه نيروهاى موثر بر كابلرا حول b محاسبـ كنيـم خواهبهم داشت .

$$
\begin{gather*}
+H(L \tan \gamma)+R_{a y} L-\Sigma M_{b}=0 \\
R_{a y}=\frac{\Sigma M I_{b}}{L}-I I \tan \gamma \tag{الف}
\end{gather*}
$$

: ا

داشت :

$$
+H\left(x \tan \gamma-y_{m}\right)+R_{u, m}-\Sigma M_{m}=0
$$

اكر بجاى

$$
H y_{m}=\frac{r}{L} \Sigma M_{b}-\Sigma M_{m} \quad(ب)
$$



 اثر بارهاى

مقطع فرضى بـهفاصله با ملاحظه معادله (ب) قضيه كلى كابلمها بـهصورت زير بيان مىكردد : در هر نقطــها ز



HFI
 هـ
بايد تاكيد نمودكه اين قضيه در مورد كليه انواع بارهاى عمودى موثر بـر كا بلـها صادق است اعم از ابين كه خط اتمال دو انتهاى كابل افقَى و با اهيل باشد .

Sr-10

 ثود لنكر خعشى در نقطه d از تتير فرضى با فمان دهانه كابـل بـرابر خوا هد بود با :

$$
\because, 330(20)-1,000(16)-36,669)[1-16
$$

 براى اينكه فاصله نتطه د يكرى نظير نتطه c از كابل را از خط اتصال دو انتتهاىكابلممحاسبه كنيم ، قضيه عمومى كابلـها را در مورد متطع c اعمال مىكنيه كه در نتيجه خواهيم داشم ( $3,660 y_{c}=2,330$ (10) خط مستقيمى بـخود خواهد كرفت زبرا از وزن كابل صرفنـظر شده است و در اين فاصلهطول كابل بـرابر با مقدار زير خواهد بود .

$$
\sqrt{(10)^{3}}+(6.38)^{2}=11.85 \mathrm{ft}
$$

 ( $3.660(11.85 / \mathrm{L} 0)=1,340 \mathrm{lb}$


شكل ( 0 ( 0 ) كاربرد قضيه عـومى كابلـها
 برابـر با عكسالعمل عمودى سمت خب تير ساده خرضى مىيـاشد . اكر خط واصل بـين دو انتههاى كابل شيبدالر مىبود مقادير عكسالععلههاى كابل و تير متفاوت مىشـد .

。

حالت باركذارى يكنواخت كابل بعنى بـا شدت يكنواخت در هر واحد طول افقى كــل

 از وزت خود بـهشرطاينكه وزن آنرا در طول افقى دههانه آن ثابـت فرض كنيم تتحليلنـائيم . در شكل ( ا- ا
(الف)




$$
\begin{equation*}
H=\frac{w L^{2}}{8 h} \tag{10-1}
\end{equation*}
$$



شكل( (10
ابين رابـطه كه بـيان كنـنده مقدار // مىباشد بـسيار مهم است ، د يده مى شود كه مقدار فوق در


راشت :

$$
\begin{equation*}
y_{m}=\frac{4 h x}{L^{3}}(L-x) \tag{r-10}
\end{equation*}
$$

معلد لم(





$$
y=\frac{4 h 2}{L^{2}}(x-L)+x \tan \gamma \quad(r-10)
$$

اكرخط اتصال دو انتتهاىكابـل افقى باشد در اينصورت $\quad$ tan $\gamma=0$ بـود هخواهيم داشثت.

$$
y=\frac{4 h x}{L^{2}}(x-L) \quad(f-10)
$$


 با توجه بـشكل (10

$$
x=\frac{L}{2}+x_{0} \quad, \quad y=-h+y_{0}
$$

اكر اين روأبط را د ر معادله (10 أ٪) قرار دهيم خواهيم داثت :

$$
y_{0}=\frac{4 h}{\bar{L}^{2}} x_{0}^{9}
$$



شكل( ( 10 ) شكل هندسى كاسل

نيروى داخل كابل همواره محورىاست و مولفه انقىكشش كابل را در هر هرصورتمىتوان
 در نظر بكيريد ، در اين صورت كشش ا



$$
\begin{aligned}
\frac{d y}{d x} & =\frac{8 h x}{L^{2}}-\frac{4 h}{L}+\tan \gamma \\
& =\frac{8 \theta x}{L}-4 \theta+\tan \gamma
\end{aligned}
$$

در اين معادله $T_{x}=H\left[1+(d y / d x)^{2}\right]^{3 / 4}$ علاوه بر

$$
\begin{aligned}
T_{x}=H\left(1+\frac{64 \theta^{2} x^{2}}{L^{2}}+16 \theta^{2}+\tan ^{2} \gamma-\right. & \frac{64 \theta^{2} x}{L} \\
& \left.+\frac{16 \theta x}{L} \tan \gamma-8 \theta \tan \gamma\right)^{3 / 2}(\text { الف })
\end{aligned}
$$

حداكث. كشش در يكى از دو انتهاى كابل خواهد بود .
$T_{\text {max }}=H\left(1+16 \theta^{2}+\tan ^{2} \gamma-8 \theta \tan \gamma\right)^{3 / 4} \quad: \quad$ ا

اكر خط اتصال دو انتهاى كا بل افتى باشد $\tan \gamma=0$ شده و در هردو انتهاى كابل داريم :

$$
\begin{equation*}
T_{\text {max }}=H\left(1+16 \theta^{2}\right)^{1 / 2} \tag{Y-10}
\end{equation*}
$$






$$
\begin{aligned}
& \text { *ون } \\
& T_{\text {max }}=\left(I^{2}+R_{\eta}^{2}\right)^{1 / 2} \\
& =\left(I^{2}+16 I^{2} \theta^{2}\right)^{1 / 2} \\
& =H\left(1+16 \theta^{2}\right)^{1 / 2}
\end{aligned}
$$

10- 10 شثالهاى مشروح


 مىباشد . كششت حداكثر كابل جتدر است

$$
\begin{gathered}
H=w L^{2} / 8 h, 2,500=1(2,000)^{2} / 8 h, h=200 \mathrm{ft} \\
\theta=\frac{h}{L}=\frac{200}{2,000}=\frac{1}{10} \\
T_{\max }=H\left(1+16 \theta^{8}\right)^{3 / 2}=2,500(1+18100)^{1 / 2}=2,600 \mathrm{kips}
\end{gathered}
$$





 هقا., است .

$$
\begin{aligned}
H & =\frac{w L^{2}}{8 h}-\frac{100(200)^{2}}{8(12.5)}=40,000 \mathrm{lb} \\
\theta & =\frac{h}{L}=\frac{12.5}{200}=0.0625 \quad \tan \gamma-\frac{50}{200}=0.25
\end{aligned}
$$

حداكثر كشش كابل در تكيهكاهى كه در تراز بالا ترار دارد اتناق خوا هد افتاد كه مقدار آن $T_{\text {mas }}=H\left(1+10 \theta^{2}+\tan ^{2} \gamma+8 \theta \tan \gamma\right)^{1 / 2} \quad: \quad: \quad$ برابر است
$=40,000\left(1+16(0.0625)^{2}+(0.25)^{2}+8(0.0625)(0.25)\right]^{3 / 4}$

- $44,700 \mathrm{lb}$


اكر هs طول كل كابـل باشد خوا هيم داشت:

$$
s_{v}=\int_{0}^{L} d s=\int_{0}^{L}\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{1 / 2} d x \quad \text { (الف) }
$$



داريم :

$$
\begin{gathered}
\frac{d y}{d x}=\frac{8 h x}{L^{2}} \\
s_{0}=2 \int_{0}^{L / 2}\left(1+\frac{64 h^{2} x^{2}}{L^{4}}\right)^{1 / 2} d x
\end{gathered}
$$

با انتكرالاكيرى از 'اين رابـطه بهعبارت دقيتِ زير خواهيم رسيد .

$$
s_{0}=\frac{L}{2}\left(1+16 \theta^{2}\right)^{\frac{14}{4}}+\frac{L}{8 \theta} \ln \left[4 \theta+\left(1+16 \theta^{2}\right)^{34}\right] \quad(\lambda-10)
$$




$$
\left(1+\frac{64 h^{2} x^{2}}{L^{4}}\right)^{3 / 4}
$$

 و ینـد عبارت اوليه اين سرى را در محاسبه معادله ( b ) در نظر مییيريــم در الينصورت خواهيم داشت .

$$
\begin{aligned}
& s_{0}=2 \int_{0}^{L / 2}\left[(1)^{1 / 4}+\frac{1}{2}(1)^{-1 / 2}(64) \frac{h^{2} x^{2}}{L^{4}}\right. \\
&\left.+\frac{1}{2}\left(-\frac{1}{2}\right)\left(\frac{1}{2}\right)(1)^{-36}(64)^{2} \frac{h^{4} x^{4}}{L^{\mathrm{B}}}+\cdots\right] d x
\end{aligned}
$$

كه بهصورت ساده زير د ر مىT يد :

$$
s_{v}=L\left(1+\begin{array}{cc}
80^{2} & 320^{1}  \tag{9-10}\\
3 & \bar{j}+\cdots)
\end{array}\right.
$$

اين معادله بهشدت هعكراست و سهعبارت اوليه ا'ينسرى داراى دقتسافي دراغلب مسا سبات
مىـاشد .

اكر خط اتصال دو انتهای كابـل دارای شيب باشد مقدار دقيق su را مىتوان با قرارـ دادن
 مساسباتى با دقت كا فی مىكردد .



 - فرضيات داريـم

$$
\theta^{\prime}=\frac{h \cos \gamma}{L \sec \gamma}=\frac{\theta}{\sec ^{2} \gamma}
$$

حال با اععال معا دله (0 آ9 ) بـرابين كابـل كه توسط فرضيات نوق حاصل شدهاست و با بهكار بردن فتطدو عبأرت الوليه T ن خواهمـم داشت :

$$
\begin{aligned}
& s_{o}=L \sec \gamma\left(1+\frac{8}{3} \frac{\theta^{2}}{\sec ^{4} \gamma}\right) \\
& =L\left(\sec \gamma+\frac{8}{3} \frac{\theta^{2}}{\sec ^{3} \gamma}\right) \quad(10-10)
\end{aligned}
$$

$$
\begin{aligned}
& \text {. خوا عيم داشت ( } \theta=1 \text { 1́0) } \\
& 8_{0}=2,000\left[1+\frac{8}{3}\left(\frac{1}{100}\right)-\frac{32}{5}\left(\frac{1}{10,000}\right)\right] \\
& =2,000(\mathrm{~J} .000+0.0267-0.0006)=2,052 \mathrm{ft}
\end{aligned}
$$


(

$$
\begin{gathered}
\theta=0.0625 \quad \sec ^{2} \gamma=1+\mathrm{tan}^{2} \gamma=1+(0.25)^{2}=1.0625 \\
s_{0}=200\left[1.0331+\begin{array}{l}
8\left(0.0(225)^{2}\right. \\
3(1.0: 3 i)^{\prime \prime}
\end{array}\right]=208 \mathrm{ft} \quad \text { see } \gamma=1.031
\end{gathered}
$$


 ضربب ارتجاعى دا اريم .

$$
\Delta I=\frac{F L}{A B} \dot{u}^{\top}, د \Delta \quad E=\frac{F / A}{\Delta / / /}
$$

 يك روش ساده حههت تعيـين ازدهاد طول در وهله اول ثامل تعيـين تعريف عبارت از كشش متوسطى است كه هركاه در كل طول كابـل بر آن اثر كند همان ازد ياد طولكابل واتعىرا ايجاد نمايد . هركاهاهن مقدار را بهزبان رياضي بيان كنيم خواهيم داشت :

$$
\begin{aligned}
& \frac{T_{\mathrm{nv}} s_{o}}{A E}=\int_{0}^{s_{0}} \frac{T_{x} d s}{A \bar{D}^{-}}
\end{aligned}
$$

$$
\begin{aligned}
& T_{\mathrm{av}}=\frac{1}{s_{0}} \int_{0}^{\alpha_{0}} T_{\mathrm{x}} d s=\frac{1}{s_{0}} \int_{0}^{s_{0}} I I \frac{d s}{d x} d s=\frac{H}{s_{0}} \int_{0}^{L}\left[1+\left(\frac{d y}{d x}\right)^{2}\right] d x \quad(\mathrm{~d})
\end{aligned}
$$

اكر بار موثر بر كابل, را بارى كسترده و يكتواخ الخت با شدت ثابت د ر هر نوت الفقى فرض كنيم , خط اتصطال دو انتهاى كابل را مايل بكريم . مقدأر $d y / d x$ برابر با

$$
\begin{align*}
& \text { راد رمعادلـه (الف ) قرارد هيـمو سهس بـا نتنكرالكيرى رابـطه بـردازيم داريم : } \\
& T_{\mathrm{av}}=\frac{M L}{s_{0}}\left(1+\frac{16}{3} \theta^{2}+\tan ^{2} \gamma\right) \tag{ب}
\end{align*}
$$



$$
\begin{equation*}
T_{\mathrm{av}}=\Pi \frac{1+\left(16 \theta^{2} / 3\right)+\tan ^{2} \gamma}{\sec \gamma+8 / 3\left(\theta^{2} / \sec ^{3} \gamma\right)} \tag{10-11}
\end{equation*}
$$

اكر خط اتصال دو انتتهاى كابلـافتى با شد در آن صورت $\gamma=0$ شده و خواهيم داشت .

$$
\begin{equation*}
T_{\mathrm{av}}=H \frac{1+\left(16 \theta^{2} / 3\right)}{1+\left(8 \theta^{2} / 3\right)} \tag{10-1r}
\end{equation*}
$$

 (10) موردنظر باشد در مورد آن كابل مقدار شد ، اكر $A=50 \mathrm{sq} \mathrm{in}, E=27,000,000 \mathrm{psi}$ باشد خواهيم داشت :

$$
T_{\mathrm{av}}=2,500 \frac{1+16 / 3(1 / 100)}{1+8 / 3(1 / 100)}=2,570 \mathrm{kips}
$$

$$
\text { ) اتساع ارتجاعىى }\rangle=\frac{T_{\mathrm{ar}} S_{0}}{A E}=\frac{2,570(2,052)}{50 / 144(27,000)(144)}=3.91 \mathrm{ft}
$$

با تقريب مىتوان طول بين تنش كابل را بهصور ت زير تعيين نمود :

$$
2,052-4=2,048 \mathrm{ft}
$$

。
با بررسى سازه شكل (0 ا-ه) میتوان بهكاربرد روابط مختلف موجود در مورد كابلهاي
 100,000 lb $4.16 \mathrm{lb} / \mathrm{fl}$



$$
100 \mathrm{H}=100,000(10) \quad H=10,000 \mathrm{lb}
$$

اين متدار H مىبايستى جهت عمودنكهداشتن دكل در كابل بوجود آيد و لذا افت كـابل مى با=ستى د ر عبارت زير صدق كند .

$$
\begin{aligned}
10,000 & =\frac{w L^{2}}{8 / h}=\frac{5.00(150)^{2}}{8 h} \\
h & =1.41 \mathrm{ft}
\end{aligned}
$$



$$
\text { شكل(0 ا- }) \text { كابل مهارى }
$$

در اين حل تقريبى ، شكل كابل سهمى فرض شده و تحت اثر بارى كسترده و يكنواخت برابر با زير در نظر كرفته شده است .

$$
w=4.16(180.2 / 150)=5.00 \mathrm{lb} /(\text { فوت افقى) }
$$


برابر با مقدار زیر خواهد شد .

$$
T_{\max }=10,000\left[1.000+16\left(\frac{1.41}{150}\right)^{2}+\left(\frac{100}{150}\right)^{2}+8\left(\frac{1.41}{150}\right)\left(\frac{100}{150}\right)\right]^{3 / 2}
$$

$$
=12,240 \mathrm{lb}
$$

با فرض اين كه كابل مانند ميلهاى كه در امتداد خط اتصال دو انتهاي كابل يعنى AB ترار
 اين خط برابر با 180.2•ft مى باشد لذا كشش كابل برابر با

 نسبت افت (يا شكم ) كاكل بزرك باشد اين اختلاف شيب مهر خوا



 همانطورىكه در فوق ذكر شد درحالى كه بارى افتى بهدكل اثرنكند تنظيم كرده باشنــد و

 با
 ا0,000 lb





$$
+11,000 \times 1.414=+15,500 \mathrm{lb}
$$

عملا" وقتى بار 5,000 lb بر بالاى دكل وارد ميشود نقطه A $A$ بهسمت راست حركـت






شكل( (10) دكل مهارشده با كابل
ها - ا 1 بلهاى معلق معين



معمولا" فرض مىشود كه بار مرده بهصورت يكنواخت بر واحد طول افقى وارد شود و براساس












 زياد خطا ندارد خواهد شد شد .





 ( انتهاي آن برابر و داراى يك راستا خواهند بود ، اكر حول نتطه A لنكركيرى نمائيم خواهيم

$$
\left(V_{L}+V_{L}^{\prime}\right)(240)-40(60)=0 \quad V_{L}+V_{L}^{\prime}=+10 \text { (بمطرف بالا) }
$$

 داده شده است را با لنكركيرى از كليه اين نيروها حول مغصل B بررسى كنيد .

$$
\left(V_{L}+V_{L}^{\prime}=10\right)(120)+H(30)-H(54)=0 \quad H=50.0 \mathrm{kips}
$$


 مقدار Tا ن برابر با
X/20 kips/ft اكر X كثش درهريك ازآويزها باشد ،باريكنواخت موئثرمعادل با
 مىياشد استغاده نمود .

$$
50.0=\frac{X}{20} \frac{(240)^{2}}{8(24)} \quad X=+\frac{10}{3} \mathrm{kips}
$$


 VL

نشان داده شده است محاسبه نـود .
$+120 V_{L}+19 / 3(20+40+60+80+100)=0 \quad V_{L}=-25 \frac{3}{3}($ رو بهسمت بائين) $)$


 اثبات نـود . نرض مىشود كه
 مقدار این بارها ازهب بهراست برحسبب kips برابـر با 100 ، 50 ، 200 و 300 مى باشد، انتتهاى راست كابلـ 100 بالاتر ازانتهاى جب الن است .حداكثر ناصلهعمودى بـينكابـل و خط اتصال دو انتنهاى كا بـل بـرابر با 50 مى 5 مـاشد ، با صرفـنظرنهودن از وزن خود كابـل مطلوب است . (اللف ) ناصله عمودى كابـل از نتطه اشر هريك از بارها
( ب ) طول كابـل
( ع ) حداكثر كشش كابـل


 سطع مقطع كابـل برابر با 50 sq in (الف) شيب حداكثر كابـل شیقدر است ( ب ) حداكثر كشش كابل هتدر است
( ج ) طول كابل را برحـسب مقدار صحيح فوت (بدون اعشار) بـيان كنيد .

 از طريت Tنـها بتوان نـبـت
 0ا
 . $A=40 \mathrm{qq} \mathrm{in} \quad E=27,000 \mathrm{kipg}$ (الف ) شكم كا بـل در وسط د هانه جقدر است . ( ب ) طلولى خالـى از تتش كابـل در


 (الف ) فشار ناشى از كليه كابـلـها كه حاصل از عكسالعملههاي عمودى T'نها مىباشد بـر

دكل جقدر است .
( ب ) حداكثر نـيرو در هر كابـل مهارى جقدر است .

ك 100,000 lb





 را تعبيهن كنيد . ( ب ) خطوط تأثير را بـراىا عضاي نا مبـرده زبر رسـم كنـهد ( 1 ) مولفه افقى كشش كا بــل (T)


 تتش مجاز را $50 \mathrm{kips} /$ in براى كشش كابل فرض نما يند . جواب : (كشش حداكثر كابل ) ميلههاى اصلىتحتانى بارى تحمـل
. نـىىكنـد

و ت ا (T)
. 0.10 د
(r)

 2.84 sq in ( $(\mathrm{c})$

## 11 <br> تحليل تقريبي سازههاى نامعين

11-1 مقدمه













 تقريبي است .
وتتى از روش تقرهجى يك مساله معلوم هساسباتى صحبت مى شودو الزاما" "بهميع مجموعه


 ابداع كرد يده است و توسطTنان درجه دتت آن روشها مشخص كرديده است با خاطر اسوده

استناده نمود . البته روشهاي تقرببىى ، محاسبات كليه سازههاى نامعين را در بـر نمىكيــرد
 تا بتواند درشرايطى كه مشخصات سازهاي بامغروضات قبلى'او تطلبق ندارد مغروضاتصصحيحى جهت محاسبه T ن سازه اتخاذ نما يـ در ابين فصل تعدادى از روشهاي تقرببى تحلـيل سازهماى متعارف نامعين ارائــه شده


 نهرداختهايم ابـاع نـها بد .
(1-1

درتحليل يكسازهمعين مشخصات ارتجاعىتطعات T ن وارد عـلكرد محاسباتىنمىشود .
 در سازههاي نا معين هـمواره مشخصات ارتجاعىى تطعات آن سازه در تعيين تتشش قطعات وارد مىشوند الين هشخصات عبارتند از ضريب ارتجاعى ، سطع متطع لنكر لتختى سطع مقطـع و طول تطعه . براى تفهيم بهتتر مطلب مىتوان از شكل (11-1 ) كیى كرفت . $E_{1} I_{1} / L_{1}^{3}$ فرض كنبد كه سختى تير AB نسبت بـه P را نسببت بهتير AB تحمل خوا هد كرد . حال تصور كنيد كه تطعه كششى EF كه دو تـهـر


شكل (1-1 ) انر مشخصات ارتجاعى در محاسبه تنش

را بـهم متصل مىكند از سختتى بسـيار كمى برخوردار باشديهنى كه مقدار
 شرط الخير تير CD بازهم قسمت بـيشترى از بار P را نسبـت بـهحالت نـخست تعحل خواهدكرد .


 است از انتجام يك محا سبه دقيت جلوكيرى نـا يد .
1 - فرد محاسب معلومات كافي و لازم بـراى حل سازههاى نامعين نداشته باشد . Y Y هحاسباتي كنار كذاشته شود ، مثلا" در برخیى مواتع نمودار زماني ، تعيينكنـنده' زمان ارائــه
 تقريبى را تجوعز نــا يد ،بد ين صورتكه امكان دارد بهكاربردن هصالحبههمراه ضربيباطهبنان


 اهميت و در محاسبات قسمتهای كم اهميت سازههاى مههم بهعمل Tيد . در ا این موارد محاسب با قضاوتيكه در مورد درصد خحطاى ناشى از بهكاركرفتن روث تنريبى محاسباتي

 متطع كليه قطعات T' نـامعلوم است بـراى اين كه تخمين تقريبى در مورد مقاد بر فوقالذكـر
 محاسبه تغريبى و تعيين مقاطع مىتوان محاسبات دتيق ارتجاعي را شروع نمود ، عموما"

 رسيد ، از 'اينرو روش تحليل تقرببى در سازههاى نامعين مىتواند د ربـررسيهایا بتدا'يیيا ين نوع سازهها بسبيار مغيد باشد رو

11 11


معادلات تعادل اقدام نــود بايد همواره بهتعداد مولغههاي مستقل نيـرو كه در داخــلـ سازه مىيا يستى معلوم كردد معادلـه مستقل تعادل وجود داشته باشد ـ اكر تعداد n مولغه مستقل تعادل وجود داشته باشد ، سازه موردنظر نامعين از درجه n خـواهد
 مى.يا يستى n فرض مستقل كه هر يك از اين فرضها تأمينكنـنده يك معادلـه بـا رابـطــه مستقل تعادل بـاشد ابـداع نـود . هركاه تعداد مغروضات ابداعیى كعتر از n باشد سازه را نـعىتوان فقط بـراساس تعـادل




(1)
 مثال خریاهای افقى تحنتانى و فوقانى یلـهای فلزى "بها ين صورت طــرح مىشوند . روش
 خرها فرض برابن است كه ميلمهاى ميانى (تطريهها ) خربا قادر بـهتحملكشش و و يا فشارهستتن..


 كه در هر یانل برش موجود بـهتساوى توسط دو ميله تطرى تحمل شود از آنجائى كــهـ شش یانل وجود دارد لـذا اين فرض معرف شش فرض مستقل است .



 ( $L_{1}^{\prime} L_{2}$ و $L_{1} L_{2}^{\prime}$ اين خرباها مهاركنـد ه هلـها در برابـر نيروهاى ا فقى مىباشند (مترجم )


 نـثان داده هـ شده ها است .


 كهانهكنـد ، و قطرى د عكر حداكثر نـروى برشى بانـل را بهصورت كشش تحـل كند . البتــه با در نظركرفتن جهت نيروى بـرشى در هر هاتل میتوان از ابتدا بـهراحتى فهميد كه كداميكاز


 مربوطه بهمشكلى بر نتخواهد خورد .


شكل ( 11 - 11 خريا با تطرههاي سضاعف

** جهت توضيح بيشتر بهمثال (f-q ) مراجعه شود .
(1)

 مى







 خربا شكل (1-هـه ج )








 نيروهاى ميلههاى قطرى بههمان مقدار كه در هريكا از خرياهاى تشكيلـد هنده بهدست T Tمده


شكل( ( 11 ) خرباهاى تشكيلدهنده خرباى شكل ( 1 ( $)$ )


شكل (11-ه) خرهای جندكونه
است باتى مىماند ولى نيروهاى ميلههاى فوقانى و تحتانى و ميلمهاى عمودى كنا رى با جمع












 (11)
 نيروى ميله را بهصورت زبر بهدست Tورد هايم :

$$
-50.00-38.9-55.5=-144.4
$$




خطوط تأثير میلمهاى (


 شده و لذا نيروى محورى $\quad U_{2} L_{3}$ برابر صفر خواهد شد شد ، از آنجائى كه خط تأثهـر

 ميله




شكل(Y-11) خطوط تأثيرخرپاى شكل ( 1 ( 1 )

بهصورت خـطوط بر ، تبره و خط جیي د ر شكل (Y-11 ب Y ) خ مربوط به خرباى شكل (II







 (11)





برابر يكد يكر و يا هريك برابهر P/2 باشد**.

سا ير مجهولات را مىتوان با بهكاربردن معادلات تعادل بهد ست Tا ورد ، بـها ينترتيب كه عكس!لعمل عمودى ستون سمت راسـت با لنـكركيرى حول هغصــل ستون سمت جيه بهد ست

 برشى را كه بهصورت كوعاءى تغيهرات لنكر خمشى را در مقاطع بختلف قاب بهد سـت مىد هد



\% اين فرض زمانى منطقى است كه قاب ترينه بوده و منسنى خمشى ستوتها با يكد يكر برابر



تغاوت اين هرتال كه در شكل (1-q الف ) نثان داده شده با هرتال قبلــى اين استكـه











 هركاه حول نتطه a لنكركيرى نمائيم خواهيم داشت ،

$$
+P \frac{h}{2}-R_{c y} b=0 \quad R_{c u}=+\frac{P h}{2 b}
$$

لنكر كيردارى تكيـهـاهمهأى ستونها برابر خواهد بود با مقدار تلاش برشى در در نقاط عطف


$$
(P / 2)(h / 2)=P h / 4 \quad \text { خواهد شد با }
$$

هس از تعيين معادير عكسالعملـها بهراحتي مىتوان مقدار تلاش برشى و لنكر خمشىرا براى كليه مقاطع هرتال تعيين نمود ، در شكل (1 (1-9 ع) نمودار تغييرات لنكر خمشى ترسيم شده


(-)

(e)
شكل(11-9) قاب يرتال با تكيهكاه كيردار

هرتال هلـها اغلب بهصورتى كه در شكل (11-ها الف ) نشان داده شده است ساختـه مى شود ، در يك هنين هرتالى ستونهاياى CD نوعى طرامنى مىشودكه قادر باشند تلاش برشى ،لنكر خمشى و هعجنـيننيروى همورىتحمل نمايند ، ساءر قطعات اين هرتال از جمله تطعات خرهاى T بكيريد ، جنين سازهاى سهدرجه نامعين خواهد بود و براى حل تعيهن مىكنيم ،

(الغ)

## 1 - عكسالمعلهاي انقى برابر يكا.يكرند .

r - r
r


نتاط از تكيهكا هها ولذا برابر خواهد شد با
 a $a$
 كرد

 لنكركيرى نمائيد . خواميم داشت :

$$
\begin{gathered}
+\frac{P}{2}(28)-5 P-X_{H F}(8)=0 \quad X_{H F}=+\frac{9 P}{8} \\
: Y_{H F}=+\frac{9 P}{8}\left(\frac{4}{5}\right)=+\frac{9 P}{10}
\end{gathered}
$$

براى تعيين نيروى محورى ميله BF كافى 'ست كمعادله


$$
+Y_{B F}-\frac{9 P}{10}+\frac{9 P}{10}=0 \quad \therefore Y_{B F}=0 \quad \therefore X_{B F}=0
$$

 موئثر بر ستون AB بنويسيد

$$
+X_{B E}+0+\frac{9 P}{8}+P-\frac{P}{2}=0 \quad \therefore X_{B E}=-\frac{13 P}{8}
$$








 ستونها با يكد يكربرابر هوده و دونقطه عطف در ارتناع 7.5 نوتى ستونها از هیى تراردارد .
 در مورد هرتالها كفته شد ، استوار مىیاشـد .

A-11
إكر ها يههاى يك برج معين در طول خود از يك شيب يكتواخت برخوردار باشد ،هريك از صفحاتبرج در يك صفحه واتع خواهند شد ، براى حل يك هنين برجى تحت اثر بازهاى جانبى مىتوان ابتتدا كليه نيررهاى موجود را بهد و مولفه واتع در صفحههاى مجاور نتطه اثر نيرو تجزهي نـوده و سهي مىتوان هريك از خرهاهاى مستوى صفحات جانبى برج را تحت اثر
 داخلى ميلههاى ميانى خرباها را بهد ست خواهد داه داد ولى نيروى محورى ها يهها را مىتوأن
 مى باشند معين نـود .

شكل (1-11) خرهاى تابى كارخانه

 بخواهيم كه حل سازه فقط بnكعك معادلات تحادل انتجام كيرد بد يهیى استـكهغرضياتاضاضافى مناسبى موردنياز خواهد بود .

(الف)

(-)

( -1

(s)

$$
\text { ثكل (11-1 } 1 \text { ) خرـای برجى }
$$

فرض كنبد در شكل (11T-1 الف ) بخخواهيم نيروهاى داخلى ميلمهاى قطرى


 مولفههاى انقى نيروهاى داخلى ميلمهاى قطرى كه همان بازوى لنـكر برابـر با لنكر نيروهای اكر ميلههاى قطرى فقط قادر بهتحمل كشش باشند نيروى داخلى ميله ad برابر با صغـر

 و فشار باشند مىبايستى فرض كردد كه مولفههایى انقى دو ميله قطرى از نظر مقدار بـا يكد يكر


 شكل (1 ا 1 ا





 مىباشد .

يك قاب ساختمانهى عبارت است از شاهتيرها كه بار عـودى را بهستونـها هنتقلممىتند



شكل(1 1 1 ا) تأب ساختمانیى
بهنحوى كه كا ملا" يك قاب بععين را ايجاد نـما يد مىيـينيم كهجنان قابى در متابل نيروهـاى انقى بسيار ضعيف است ، بهاين جهت در عمل فتابهـاي ساختمانى را بهصورتى كـهـ در شكـل


 كويند ابن كونه قابـها بهد ليل اتصالات ملب در حد بالايى نا صعين مىباشند . تعيين درجه نا معينى Tنها بهصورتى كه در شكل (1 آكنيد كليه شاهتير ها را در وسطد هانه خود قطع كنيم ، سازه ايجاد شده معين خواهد بـود كه


تلاش برشى و نيروى محورى بهصورتتى كه نـشان داده شـده است عمل خوا هند كرد ، اكـــر
 $3 n$
 رد يف ستون شامل 700 شاهتير بـوده و لذا 2,100 درجه نامعين خواهد بود ؛ بــد ين صـورت

 هر اسكلت ساختمانى هر ثاهتير ایجاد سهد رجهنا معينى مىنـها يد ، لذا مىبا يـستى بـرای هر شاهتير سه فرض اضا فى در نظر بـيريم .در شكل (11 أا الغ الف ) يك شاهتبر را كه تحت اشـر بار يكنواختى بـشدت


(الغ)


شكل (1 (1ヶ-1) شاهتير تإـهـاى ساختمانى

 نتطه عمف شا هتير كارى سهل و ساده بود و مىدانستيـم كه اين نقاط بـهناصله $0.21 L$ از 0
 كه نتاط عطف د رمسل تكيهكاهها ترار دارند . بـراى حالت عـلى كه تكيهكاهـها كا ملا"د ربـرابـر
 واقع خواهد شد و اكر اين فاصله را برابـر با 0.1L بكيريم يك محل تقريبى ولى هنطقـى

براى نتاط عطلف انتخاب كرد هايم •

اثر بارهاى تائم غعوما" ناهيز است . بها ين ترتيب سه فرض اضافى زير بـراى حل تقريبى قابههاى ساختمانى تحت اثر بارهماى
 1 - نيروى محورى در هر شاهتير بـرابر صغر است. .
 r r r شد هپنين فرضياتى معادل با اين است كه قاب ساختمانى از نظر نوع اسكـت مساسباتى



$$
M=+1 / 8(1.0)(16)^{2}=+32.0 \mathrm{kip-ft} \quad: \quad: \quad \text { بواهد شد با }
$$



شكل (11-19) ممان خمشى شاهتيرها شكل (11-10) فرضيات اضافى شاهتيرها

لنكر حداكثر منغى در انتهاى دهانه شاهتير برابر خواهد شد با :

$$
M=-8.0(2)-1.0(2)(1)=-18.0 \mathrm{kip}-\mathrm{ft}
$$

تلاش برشى حداكثر در انتهاى هر دهانه هرابر خواهد شد با :

$$
S=8.0(1)+2.0(1)=10 \mathrm{kips}
$$

هون مقدار تلاثى برشى در انتهاي هر شاهتير برابر با نيروى عمودى موئثر بر ستوناز طرف





 شاهتيرها از يك طرف بهستون لتكر وارد مىكنـد لـذا لنكر خمشى ستونـها قابل ملاحظه بـوده و در محاسبات بايد منظور كردد . در هر صورت در محاسبهستونهافرضاضافى (1 ) فاقداعتبار

(1)

د ر بند (1 ا-9 ) كنته شد كه روث تقريبي بررسى قابهاى ساختهانى از آنجائى كه اين قابسها دارای د رجه نامعينى بالايهى مىبا شند از اهميت بسيارى بـرخوردار است ، كفته شد كه
 آن قاب است .لذا مقدارنرضيات اضافى براى ايننكه بـتوان قاب مزبور را نقط بهكمى معادلات


شكل (1Y-11) قاب ساختمانى تحت اثر بارهاى جانبى
 اضافى رتمى است ثابت و ربطى بـهنوع باركذارى قاب ساختمانى ندارد .نرضياتى كه د رمورد




 عمودى متغاوت مىباشد . عملا" وقتى بیى قاب ساختمانى تحت اثر بارهاىا فقى واقع مى شود
 واقع مىشود ، نرض اين كه اين نتاط درمراكز ستونها و تبرها واقع اند ازجمله نرضهاتاضافى

استكه در روشهاى تقريبي جهت حل سازمها فتط بهكمكمعادلات تعادل بهكاركرفته مى بود .
 رسم خط جين نشان داده شده است نما يش داد .





| 10,000 ${ }^{10}$ | 10,600 | $\stackrel{\sim}{\mathrm{N}} \stackrel{10,000}{\circ}$ | 14,800 | \% | 14,400 | 18,000 | $\xrightarrow{\circ}$ | $18,500$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 10,600 | $\stackrel{1}{5}$ | 24,800 | $\stackrel{\square}{2}$ | $\pi$ | 32,400 | * | L | 18.500 |  |
| $k=$ | 0.133 | $K=$ | 0.267 |  | $K=$ | 0.333 |  | $k=$ | 0.200 | ${ }^{15}$ |
| 10,000 ${ }^{\text {7 }}$ | 6.500 3,600 | ${ }_{\sim}^{\sim}$ | $\begin{aligned} & 18,300 \\ & 42550 \end{aligned}$ | $\stackrel{8}{\circ}$ | 41,300 | $\begin{aligned} & 25,200 \\ & 52,200 \end{aligned}$ | 앙 | 53,600 | 13,500 |  |
|  | 25,100 | $\stackrel{\sim}{*}$ | 53,700 | $\stackrel{\text { "10 }}{ }$ | G | 68,300 | $\stackrel{\square}{*}$ | H | 40,00 |  |
| $\kappa=$ | 0.100 | $k=$ | 0.200 |  |  | 0.250 |  | $K=$ | 0.150 | $20^{\prime}$ |
|  | 29,000 |  | 60,900 |  |  | 76,800 |  | ${ }_{0}$ | 45,600 |  |
|  | - | $20^{\prime}$ |  | $25^{\prime}$ |  |  | $30^{\prime}$ |  |  |  |

شكل(1 (1 |1) مقادير دقيق لنكرهاى انتهايى قطعات تحت اثر بارهاى افتى








 .
|l ال ال دوش هرتال

در دوش هرتال فرضيات اضانى زير اتخاذ شده الست :
 Y Y Y r ـ ـ كل تلاش برشي در هر طبته بهنوعى بـين ستونهاي ستون ميانى دوبرابر سهـم ستونهاى كناریى مىياشد .



 تحمل نمايند .


شكل (19-9 1) مجموعه پرتالهاى معادل تاب ساختمانى
با در نظر كرفتن روابط بين تلاش برشيستونسها ،هركاه درطبتماى از يكساب ساختمانى m ستون داشته باشيم ، مجموعه فرض معرف( (m - ) فرض اضانى است
 زير الست .
$2 \times 3=6 \quad$ تعداد نتاط عطف شاهتيرها
$1 \times 2=8 \quad$ تعداد نتاط عقلف ستونها
روابط تلاش برشي ستونهها
جمع 20 جم
جون قاب مورد نظر داراى شش شاهتير مى.باشد لـذا فتط هيجده در دجه نامعين الست . بدينترتيب ديده مىشود كه در روش برتال تعداد فرضيات اضانى بيشتر از فرضيـات للازم است ولى از آنجائىكه اين فرضيات با يكديكر سازكارى دارند لذا بهنتايج ناساز انكار از طريت اعمال بعادلات تعادل بر نتخواهيم خورد .

5YY
تحليل تقريبى سا زهای ي با معين

هراى شرح عمليات لازم براى أعمال روش هرتال این عمليات را در مورد تاب شـكـل

 مبانی همان طبته هرابر با $2 x$ خوا هد بود ب با اهي شرح براى طبته اول خواههم داشت .

$$
\begin{gathered}
x+2 x+2 x+x=6 x=10.000+10,000=20,000 \\
x=3,333 \quad 2 x=6,667
\end{gathered}
$$

$$
\text { برالى طبته دوم خواههم داشت : 0. } x=10.000 ; x=1,667 ; 2 x=3,333
$$



شكل (1

 ستونها ضربدر نصغ الرتغاع ${ }^{\top}$

$$
\begin{aligned}
& 3,333 \times 10=33,333 \mathrm{ft-lb} \text { مییباشد هرابر خوا هد شد با AE }
\end{aligned}
$$





صورت واضحى نـثان داده شدها ست با توجه بها بن شكل مىتوان معادله زير را بـين لنكرهای




كره :غ داريم :

$$
M_{\mathrm{EF}}=33,333+12,500=15,8: 3: 3 \mathrm{ft}-\mathrm{lb}
$$


(الف)

(ب)

(e)


هون برطبت فرضبات (1)در مقطع ميانى شاهتير EF يكنقطه عحلف وجود دارد ،لذا مقدار خواهد شد .با مساوى قراردادن لنـكرهایشاهتتيرها با لنترهای ستونها در كره

 T' نتحو تعيين مىكردد ، خواهيم د يد كه در اين طبته مقدار عدد ى كليه آن لنـكرهــــا بـرابـر با،
. 12,500 ft-lb

تلا شَ برشي شاهتيرها : با توجه بـهشكل (II
كليه نيروها و لنكرهاى موءثر بـريك شاهتير با لنكركيرى حول يكانتهاى آن شاهتير بـنويسيم
 خواهد شد .

$$
S_{E F}=\frac{2 \times 45,833}{20}=4,583 \mathrm{lb} \quad S_{I J}=\frac{2 \times 12,500}{20}=1,250 \mathrm{lb}
$$

نيروىمحورى ستونها : با توجه بـششكل (1-


$$
F_{E I}=+1,250 \mathrm{lb} \quad F_{A E}=+1,250+4,583=+5,833 \mathrm{lb}
$$

نيروى محورى ثاهتيرها را كه عموما"د رمحا سبات نقش همهمى ندارد نيز مىتوان بـهمميننسحو تعيين نـود ، يـها ين ترتيب ها يد نـيروهاى بـرشى هنتقل شده از ستونـها بـهيك طرف شاهتير را
 بـهـساب T Tرد .


فرضيات اضافى در روث طرهاى بـهترار زير است :
| ا د ر مقاطع ميانى دهانه هر شاهتيو يك نقطه عمطف وجود دارد .
Y Y
r كليه ستونهای T ن طبعه موردنظر است . جهت تحقيق فرضيات ( مقاطع بيك تبر طرهاى عمل ميشود استغاده نمود . اكر در طبتهاى m ستون داشته باشيم اجراى مجهوعه فرضيات (
 روش هرتال روش طرهاى نيزمغروضات بيشترى ازمقدار مجهولات ارائهمىد هد ولىي بازبههمان
 براى شرع عملى روش طرهاى ، اين روش را در مورد قاب شكل (ا بحث زيرين بـشكل (II I . طرهاى قاب درج شده اسـ نيروى مصورى ستونها : با فرض اين كه سطع مقطع كليه ستونـها برا'بر باثـــد موقعيـت

$$
\begin{aligned}
& \text { مركز ثتل ستونها در هرطبته بتوسط رابطهه زير معين خوا هد شد . }
\end{aligned}
$$





شكل (1 ( 1 ) مقادير لنكرهاى انتهاى شاهتيرها و ستونها در روش طرهاى

بهترتيب برابر با حول نقطه a از كليه نيروهاى مؤثر سه قسمت فوقاني سازه واقع در بالاى صفحه افقى مار بر كليه نتاط عطف ستونهاى آن طبقه خوا هيم داشت :

$$
\begin{array}{r}
+10,000(25)+10,000(10)-F_{A E}(75)-15_{35} F_{A E}(55) \\
+{ }_{10,}^{15} F_{A E}(30)=0
\end{array}
$$

$$
\left.\left.F_{A B}=+3,8!0\right) ; F_{u r}=+1555(+3.890)=+1.670\right) \quad: \quad \text { لذا داريم }
$$

نيروهاى محورى ستونهاى طبقه دوم نـيز نسبت بهيكديكر همان روابط ستونهاي طبتـه


نسبت بهنقطه عحلف ستون /III از كلـيه نيروهایمو‘ثر بر قسعت نومانى سازه واتــع در بالایى
 هرستون در شكل (11 (Y-



$$
\begin{aligned}
& S_{B F}=+833-3,890=-3,057 \\
& S_{F G}=-3,057+358-1,670=-4,369 \quad: ~ د
\end{aligned}
$$


لنتر خمشى شا هتيرها : هون لنـكر خمشى در وسط شاهتهرها هرابر با صغر است ، لـــــا
 خواهد شد . بهعنوان مثال دارهـم :
, $M_{E F}=3,057 \times 10=30,570 \mathrm{ft}-\mathrm{lb} M_{K J}=1,191 \times 12.5=14,880 \mathrm{ft}-\mathrm{lb}$
لنثر خمشى ستوتـها :لنكر خمشى ستونـها هـطورى كه در ادا هـ بـحث مىT يد با محاسبه

 تيرها است خوا هيم داشت .

$$
M_{J F}=8,330+14,880=23,210 \mathrm{ft}-\mathrm{lb}
$$

 23,210 ft-lb

$$
M_{F B}+23,210=30,570+54,600
$$

یس داریم ‘ ستون BF وجود دارد بـرابر 4ا 61,960 ft-lb خواهد شد .


روش ضريب در مقام مقايسه با دو روش قبلى يعنى هرتال و طرهاى كه هك سازه را تحت





 الطلاعى داشته باشيم قبل ازاجراى روش ضريب لازماست كه بقدار ار الا

 تطعات بهيكديكر بهصورت صحيحى تعيين كردد . روش ضريب را مىتوان با اجراى شش مرحله زير اعـي اعمال نمود . 1- اK






r
 كنيد





 ميتوان برابر با مجموع جمع تلاش برشى افقى Tن طبته ضربدر ا ارتغاع همان طبته تعيبــن

كرد ، لذا با تعيين يك ضريب ساده براى هرطبقه مىتوان ضريب لنكر ستونـهاى C دا تبد بل بعلنكر انتهاى ستونـها نمود .
و -





انتهاى شاهتيرها نعود .



 طيته ابتتدا د رسمت راست شكل مقادير H كه جمع تلاش برشى انتى آن طبقه مىباشدو انقدار لا كهحاصل Hh $H$ در ارتغاع طبقه h مىباشد محاسبه شده است ، شرح جزئيات عملهات
لازم ذ هلا" د رج شده است :

مرحـله ا- محا سبه ضريبشاهتيرها

$$
g_{s}=\frac{0.133+0.100}{0.133+0.100+0.250}=0.482
$$

این مقدار در انتهاى حب شاهتير EF نوشته مىشود
براى كره F :

$$
g_{F}=\frac{0.267+0.200}{0.267+0.200+0.250+0.400}=0.418
$$

ابن مقدار در انتهاى جيه شاهتهر FG و انتهاى راست شاهتهر EF نوشته مىشود .
براى كره I :

$$
g_{I}=\frac{0.133}{0.133+0.250}=0.347
$$

اين مقدارراد رانتهاى حب شاهتير IJ مى
ضريب شاهتيرها براى ساير كرهها بههمين نحو محاسهه ميكردد و مقادير محا سبهشده د ر نزد يك انتهاى هر شاهتير كه بـآن كره ختم مى شود نوشته مىكردد .

$$
\begin{aligned}
& \text { مرحله r- هnاسبه ضربب ستونهها } \\
& c_{B}=1-g_{B}=1.000-0.482=0.518 \\
& \text { برایلره E } \\
& \text { اهن مقدار در هالاى ستون AE و در هایهن ستون EI نوشته مىشود . } \\
& c_{J}=1.000-0.291=0.709 \\
& \text { : هرای كره }
\end{aligned}
$$

اهن مقدار در بالاى ستون FJ نُوشته مىشود .

$$
c_{A}=1.000
$$

: براى كره

در باتهن ستون AE نوشته شود .
 ستونى كه بآ ن كره ختم مى شود درج مى بیردد .
مرحله rـ ازد ياد مقدارانتهاى هرقطعه بهاندازه نيمى از عدد انتهای ديهر قطمه

$$
\begin{aligned}
& 1.000+0.5(0.518)=1.259: A E \text { براي كره A } \\
& 0.518+0.5(0.653)=0.845: E I \text { هرای كره E } \\
& 0.482+0.5(0.418)=0.691: E F \text { تطع } \\
& 0.518+0.5(1.000)=1.018: E A \text { تطع }
\end{aligned}
$$

 مرحله \&- مهاسبه ضربب لنكر ستون و ضربب لنكر شاهتهر

$$
\begin{aligned}
& C_{A B}=1.259(0.100)=0.126 \cdot A E \text { برای كّره A } \\
& C_{B I}=0.845(0.133)=0.112: E I \text { تطع } E \\
& G_{E F}=0.691(0.250)=0.173: E F \text { تطع } \\
& C_{B A}=1.018(0.100)=0.102: E A \text { تطع }
\end{aligned}
$$

 برحله ه - محا سبه لنكر ستونـها



$$
M_{A K}=A C_{A K} \quad M_{E A} \quad A C_{V A}^{\prime} \quad M_{u r}=A C_{B r}^{\prime} \quad \text { jer نثان داد }
$$

كه در اين روابط


(مجموع ل:كرهاى $)=A\left(C_{A K}^{\prime}+C_{B A}+C_{B \mu}+C_{F A}+C_{C G}^{\prime}+C_{A C}+C_{D H}^{\prime}+C_{M D}^{\prime}\right)$ براى هرطبقه 'انتها يى,
(الغ)

 a خواميم داشت :

$$
\begin{array}{r}
\left.S_{4}+S_{9}+S_{8}+S_{4}\right) h \\
=M_{1}+M_{2}+M_{3}+M_{4}+M_{5}+M_{0}+M_{7}+M_{8}
\end{array}
$$

مجموع مىاشد ، مجمع لنكرها در طرف د يكر يعنى لنكرهاى انتهاى ستونهاى طبقه موردنظر است لذا :
(ب ) = Hh (مجموع لنكرهاى انتهايق ستونها )
از رواهط (الف ) و (ب ) نتيجه مىكيرهم كه :

$$
A=\frac{H h}{\Sigma C_{\text {براى هر طبقه }} \text { برا }}
$$


 در ابنجا محاسبات لازم نوق را براى طبقه اول قاب ساختمانى شكل (11-rr٪) انجام

$$
\begin{array}{cc}
A_{1}=\frac{400,000}{0.126+0.102+0.258+0.216+0.326+0.276+0.194+0.163} \\
M_{A E}= & 0.126(241,000)=30,300 \mathrm{ft}-\mathrm{lb} \\
M_{B A}=0.122(241,000)=24,500 \mathrm{ft-lb} \\
M_{B F}=0.258(241,000)=62,100 \mathrm{ft}-\mathrm{lb}
\end{array}
$$

لنكر انتهايىى ساير ستونتها بهروشى مشابه با استغاده از مقدار $A_{1}=241,000$ بهد ست خوا هد T مد .





شكل ( 11 - 1 ) ستونـهاى تغكيك شده بك طبته

هراى تعيهن لنكرهاى انتهايـى طبقه دوم مىبا يستى متدار . براى طبته د وم بهد ست Tورد ، اكر جنـين كنـيم مقدار مرحله 9 - تعيين لنكر شاهتيرها

از Tنجائى كه ضريب لنكر شاهتيرها بهصوزت نـسهى كوهاى متــدار لنكر انتهای
 لنكر انتهاى شا هتيرها روابطز زهر را نوشت :

$$
M_{A B}=B_{A} G_{A B} \quad M_{A C}=B_{A} G_{A C}
$$

كه در اين رواهط لنكرهاى ستونـها برابـر با لنكر شاهتـرها است لـذا مقدار زير تعيين نعرد .

$$
B_{A} G_{A B}+B_{A} G_{A C}=M_{A B}+M_{A D}
$$

بههمين ترتيب در هركرهى نظظر N خواهـم داشت :

$$
\begin{equation*}
B_{N}=\frac{(N \text { (مجمعوع لنكر ستونهها در كره ضربـ لنكرشا هتيرهادركره })}{(N)} \tag{د}
\end{equation*}
$$

 انتهای هر شاهتير را در هر كرهى با ضرب ضريب لنكر شاهتـر مرهوطه در
 ميشود .


شكل (11)

$$
\begin{aligned}
B_{P} & =\frac{52,000+20,700}{0.165+0.246}=176,500 \\
M_{P E} & =0.165(176,500)=29,100 \mathrm{ft}-\mathrm{lb} \\
M_{P G} & =0.246(176,500)=43,400 \mathrm{ft}-\mathrm{lb}
\end{aligned}
$$

شاهان توجه استكه اعمال مرحلـه (ع) بـهكرههاى خارجى هك تابرا بال ستغاده از تعــاد كره كه بهدنبال Tن مجموع لنكرهاى انتهايق ستونها براهر لنكر انتهاى شاهتير مىباشد نيز
 انتهاى شاهتيرها را تو سط تعادل كره بهد سـت Tورد و بها ينن ترتنبب معلوم مىشود كه معاسبه ضريب لـنكر شاهتيرها در كرههاى خارجى بيهودده مىباشد .

از روابط تعادل مىتوان بهمعاسبه تلاثن برشى : نـروى بحورى تك تك تطعات هرداخت .
$500 \mathrm{lb} / \mathrm{ft} \quad 1$ - 11 قرار كرفته باشد معدار حداكثرنيروى صحورى ميلمهاى زهرين را در حالات اثر بار بـكرههای انى و با بهكر هـهاى تحتانى محاسبه كنيد .
(ميلمهاى تطرى مىتوانند تحمل فشار نـما يند )
+47,812.8 lb (الف )

$$
\text { (ب) } \mp 8,437.5 \mathrm{lb}, \pm 3,750 \mathrm{lb}
$$

جواب :
1,000 lb/ft 11
 (الف) $U_{0} U_{n}$
(ب) $L_{4} U_{6}$
( $\lessdot$ ) $U_{0} L_{0}$.
را مهاسهه كنـيد .
(الف) +46.6 kips
(ب) +33.00 kips
( $\quad$ ) -31.6 kips
جواب :
11 - 1
و $h=10 \mathrm{fl}$ ك $200 \mathrm{lb} / \mathrm{ft}$
. باشد نمودار لنكر خـشي را بـرای كليه اعضاى هرتال رسم كنيد


ذكر شده الست .

$$
11 \text { - }
$$

الف : نمودار لنكر خمشي و تلاش بـرشى را ـراى ستون سعت حهـ رسم كنيد .

وارد مىشود هيدا كنيد .
جواب :
+2,500 + = (مقدار تلاش هرشى از تكيهكاه تا زانويى )
الف :

$$
\begin{aligned}
& \text { (لنكر در بالا) = } 0.0 \quad \text { (لنكر در زانوئى) }
\end{aligned}
$$

(نـروى محورى در ستون سمت حبه ) (نـهروى محورى در ستون سمت راست) +2,846 lb


(نيزوى محورى در زانوبیى سمت چیب)
(نيروى محورى در زانوبيى بهسمت رأست ) =
Y - 11




قرارداردبهطورى كه اين نيروها در هفـهد همان خرها واتعند ، مطلوب است تعيـين نيرومـاى
 مقدار ولى مخالف از نظظر علامت تحمل مىكينند . - 11 با 12 ft $300 \mathrm{lb} / \mathrm{ft}$ بشتدت
 الف - حداكثر لنكر خمشى مثبت شاهتيرهاي اين اين قاب ب - حداكثر لنكر خمشى مثبت شاهتيرهاى اين تاب ج - حداكثر تلاش برشى شاهتيرهاى اين تاب د

 ز
5,000 lb 11
 تعيين لنكر خمشى انتهای هريك از اعضاى اين تاب در در محاسبات از روش هرنال استار استاده كنيد
جواب :

لنكرهاى خمشى تكيهكاهى از سمت جه بهطرف راست عبارتنداز: 15.0, 30.0, 30.0, 15.0 kip.ft
|11 ه ه ا مساله : (11-9) را بهروث طرهاى حل كنيد .

لنكرهاى خمشى تكيهاهى از سعت جه بهطرف راست عبارتنداز:
13.5, 31.5, 31.5, 13.5 kip-ft

11 - 11 مساله(11-9) را بهروش ضريب حل كنيد ، لنتر خمشى ثاهتيرهــا را سهبرابر لنكــر
لختتى ستونها بكيرحد .

لنكرهاى خمشى تكيهامى از سعت جه بهطرف راست عبارتتداز:
$23.80,25.45,25.45,23.80$
 فرضيات اضافى لازم و منطقى حود را نهز بـان نمائيد انـيد


شكل(11)
 . منطتى را تعيين كنيد


$$
\text { شكل (11 } 1
$$

 نتطه عطفى در فاصله 4 از از هوهاى ستونها ترار داشته باشد مطلوب است تعيين نيروى


مباحت بنـادى تحليل سازها



شكل (1-1-19) مساله( (11-10)

## IT

## تغيير مكان سازهها

سازهماى مهند سى ازمصالحى ساخته مى شوندكه تعت اثرتنش و وا تغيهيرد ما تغيير شكل




 كويند











 آنها تغيهرمكان آنها را بايد محدود كرد . در موارد رديكه عملكرد دينا ميكى و ارتعاشىسازهما

مطرع است نيزمحاسبه تغيهرمكان سازهها اجبارىاست ولى باالين وجود شابد مهعتربندليلى

 روشهاى متعد دى براى محاسبه تغيير مكانها وجود دارد كه از بـين آنها طرق زيهـر از


هرداخت :
1 - روشهاهی. كه د ر T ا

- روش كا, مجازى (تآلـل استناده در كليه سازهها ما )

ـ تضهي دوم كاستيكليانو (قابل استناد ده در كليه سازهها )
Y



- روش سطع لنكر (روثى با; ارتجاعىى يا روش تير مزدوج ) (قابل استناده در تيرهـا و تأهسا )

محاسبه تغيهرمكان سازهها الزاما" يك مساله هندسى و يا مثلثاتى است ،البته در وهلــه


مكانـها را مىتوان با بهكارهردن اصول هندسى يا مثلثاتى محاسهـ نـود .
اهن مطلب بخصوص در حالت يك خرهاى ساده كه از تعدادى مثلث تشكيل شده اسـت كا ملا" واضح است , شكلبندى آين مثلثها با معلومبودن طول سه ضلع Tـنها مشخص مىكردد بهاهن ترتهب انكر طول تطعات تبل و بعداز تغيهرشكل بعلوم باشد ، موقعيت كرهها تبلو بعد از تغيهرشكل بهكمك مثلتأت قابل محاسبه مى اباشد با تعيين اختلاف دو موتعيت كره ( تبل و


 حل كرد بهاهن ترتيب كه تصوير Tا


"روث د وران " وسبله د يكرى براى مدا سبه نغيهرمكان خرها هاست،ابينوسيلـاز



 تعيين جداكانهُ اثر هربي از ميلمها و جمع كليه اهن اثرات تغيهرهكان بيك كره راتحت

 اصلى
 بتوانيه بتوعسيـم

$$
\alpha=\sin \alpha=\tan \alpha
$$


 كه تأثيرتغهير طول $U_{2} U_{3}$ را درتغهيرمكان خربا

 شوند لازم استكه ميله U2
 حركت انتى خحوا هد داشت .



$$
\delta=\alpha b=\frac{\Delta L}{a} b-\frac{b}{a} \Delta L
$$



شكل (I-IY) تغيهر مكان ناشى ازتغهيرطول میله فوقانی خریا


 خط حينى كه , تغيهرمكان عمودى' بهسمت هائين كره

$$
\delta_{L_{1}}=\frac{L-b}{L} \delta=\frac{L-b}{L} \frac{b}{a} \Delta L
$$

شد با:

با روشى مشابه مىتوان تغيهرهكان نانى از تغيهر طول ميله تطرىرا به

 مستقيم در روش ويليوت مور كه در بخخش (Y Y Y Y ا ) شرح داده شده استاستغادهشده است .



كرجه روشهاى متعددى كه,در بالا شرح داده شد غيرعملى هستند ولى اطلاع از وجود Tنها مهم است زعرا هنـين اطلاعى بهما مى موزد كه مساله تغيهرمكان را مىتوان با بكاركهـرى
 نمود تا زحمت اجراى آن در حل مسايل ععلى كاهش هابد .


شايد متداولتربن، مستقيم ترين و كم خطاترين روش محاسبه تغيهر مكانهای سـازه روس كار مجازى باشد ،اين روشكه بر هابه يكى از موارداستعمال اصل تغيير هك نهایى مجازیاستوار است اولين بار در سال IY IY توسط جان برنولى بهصورت فرمولى ا, ائه شد ، اصل كغتهشده را مىتوان بهصورت زعر اراءه داد .

فرض كنيد كه جسم صلبى تحت اثر دستكاه نيروى Q در تعادل ها شد - منظوراز


 نيروى Q تغيهرمكان كوهكى بدون دوران متحمل شود ، هس از انتخاب مركز

 الين دو تصوير را زماني مثهت خوا ميم كرفت كه در جـبت مثبت محورهای نـشانداد هـ
 انتقال خوا هند بانـت .


ثكل (Y-اY ) انتقال مجازى جسم ملبب

كليه نيروهای Q را مىتوان بهدو بولفه درجهت $Q$,

 T ا

$$
\Sigma Q_{n x}=0 \quad \Sigma Q_{n y}=0 \quad \Sigma\left(Q_{n z} y_{n}-Q_{n z} z_{n}\right)=0
$$

حال بهتعيهن كار
 فرض نمود كه كليه نيروهاى Q همان وضع و جـبت نسبى خود را نسببت بهجسم ملمب و

يكد يكر حفظ مىنما يند لذا در طول اءن أنتقال در تعادل باقى خوا هند هاند ، با اءن
ثرح مىتوان نـوشت كه :

$$
W_{Q}=\Sigma\left(Q_{n z} \delta_{o z}+Q_{n y} \delta_{o y}\right)=\delta_{o x} \Sigma Q_{n x}+\delta_{o y} \Sigma Q_{n y}
$$

Q Q
در حنين حالتى برابر با صغر است .
بهممين ترتيب مىتوانكار اننجام شده توسط نيروهاى Q را در اثر دورانكوجك ao جس ملب حول نقطه o بهد ست آورد ـ د ر این دوران • مىتوان فرض كرد كه هـر


 جهون زاوته دوران كوجك است باز هم نيروهاى Q در تعادل باقى خواهند ماند ، هس

مىتوانيـم بـنويسيم :

$$
W_{Q}=\Sigma\left(Q_{n t} \alpha_{v} y_{n}-Q_{n v} \alpha_{o} x_{n}\right)=\alpha_{0} \Sigma\left(Q_{n s} y_{n}-Q_{n v} x_{n}\right)
$$

با توجه بهمعادلات (a) معلوم مى شود كه كل كار انجام شده توسطنيروماى Q درطول
دوران جسم صلب نيز برابر با صغر مىباشد . هس از كمى تغكر واضع ميشود كه هر تغييرمكان كوهك جسم هلب قابل تبديل به يك


شكل (Y-| Y) د وران مجازى جسم هلب

انتالال نتطه معلوم و يك دوران جسم صلب حول معان نعطه مىياشد ، از آنجائى كه درهر









(T















 اثر مىكند تكان خورده و إجاداد كار مجازى خواهند نـود ، اكر كار مجازى انجام شده
 از اين كار مجازى ناشى از حركت سطوع اطراف اهن 'اجزاء مىياشد كه در اثر تغيهرشكل خود
 dW.
 اين حركت باتى مانده ناشىاز انتقال و دوران آن جز‘‘مىاشد كه مانند جسم هلب متعمل
 با صغر خوا مد شد هس .

$$
d W_{d}-d W_{d}=0 \quad \therefore \quad d W_{d}=d W_{d}
$$


Q. شكل ( $Q$ Q

هال اكر كار مجازى انجام شده توسط تنتسهاى Q را در مورد كلهه اجزاى جسم بهـم بهنزائـم


$$
\begin{equation*}
W_{\mathrm{d}}=W_{d} \tag{1r-1}
\end{equation*}
$$

 شده توسط تنـشها و نتروهاى Q موءثر بر كلهـ سطوع اجزاء جسم مىبا شد ، جون در هراهر هر






 معادله (I-| آ ) را ميتوان بهصورت زهر تغسبير نـعود :



 خوا هد بود .
تانـون كار مجازی اساس دوثى كار مجازى مورد استغاده در محاسبـه تنغيشر مكا نهها ستولـى

 جـهت انتتحاب د ستكاه Q ميبابستى بـهكار كرفت تا بـتوان مولغه هاى موردتـظر تغيهو مكانهها را مساسبـه كرد . كايه اهين مطالب در كفنارهاى زيّر شرح دالده خخواهد شد .
 فرضهيات و محددود هتتهای زیر مهـ مىباشد .

 بـديهى است كه ا'ین شرط در حورتى كه تغيحرشكل مجازى شكل هندسى سازه ,ا بـصــورت محسوس تغبيهر دلد هـادق نـخواهد هود . Y




 , تأمين نـها يند
r



 كار مجازى انجام شده توسط نيرومای Q خواهد شد با :

$$
W_{1}=Q_{1} \delta_{1}+Q_{2} \delta_{2}+Q_{8} \delta_{3}+\cdots
$$

اهسن راهطه را مىتوان بهورت زهر نتشان داد .

$$
\begin{equation*}
W_{\mathbf{s}}=\mathbf{\Sigma} Q \delta \tag{1T-T}
\end{equation*}
$$






 تغيهرطول ( محورى ) تغيهرشكل برشى، تغييرشكل خمشى و غيره را محا سبه كنيم ،ابتدا حالت ساده شكل( نشان مىد هد ملاحظه كنيد فرض كتيم كه شدت تنش معطع a كسترده شده است ه شد . اكر تغييرشكل مجازى اين تطعه فقط كرنش بحورى يكنواخت e با شد تغيهر طول بحورى



$$
\begin{equation*}
W_{d}=\sigma_{Q} a \Delta s=\sigma_{Q} a e s \tag{r-Ir}
\end{equation*}
$$

حال مىتوانيهم ابين رابطه را هراى محاسبه كار تغيهرشكل مجازى داخلى يك تهر يا ميلـهـاى


از خرها و با تاب بهكار برهـم •



 هر نـيروى محورى نظهير در كلهه تارهای متطع خواهد نمود و بههمين ترتيب نرض نما هـهد كه تغيهر درجه حرارت نـيز

 هرشى و لنكر خمشى در همان متطع خوا هد شد بـدلـلـل این دو اتر هك تطعه انتى نظهيرا نـهـه





تنشههاى برشى صرفنظر میكردد .


شكل (Y-

با صرفـنظرنـودن ازتغيهرشكل برشى صحاسهكار سجازى تغيهرشكل ناشىاز فتط ازد ياد

 تلا ث هرشى و لنكر خمشى در متطع قطعه خواهند نـعود . سال مى مخوا هيم عبارتو، جههتبـيان
 تغهيرشكلى مجازى بهنـوعى كه در بند قبل ذكر شد تعمل میانمايد بهد ست آ ورهـم • محورهاى بتعا مد مختصات 8,

محور z عمود بر صغخحهء كاغذ باشد انتخاب مىكنيم ، حال اكر مانند شكل( (





تغيهرشكل كل تطمه بهد ست خواهد T آمد .
با فرض اين كه تنشهای عمودىرا مىتوان با استظاده از نظريه مقدماتى تهرها بهد ست
「ورد و تعاريف زیر را داشته باشتم •

مىیردد ) .
mm' لنكر خمشى حاصل از بارهاى Q در مقطع : $A I_{Q}$
mm' نيروى محورى حاصل از بارهاى ${ }^{\prime}$ در در متطه


مىبا شد .

.
( $\left.F_{\Omega} / A\right)+\left(M_{0} y / I\right)$ (
مىاشد .
c كرنش محورى حاصل از بارهاى P و تغيسرات درجه حرارت جزء طولى در نتطـهـ
 -نتطهاى روى محور مار بر مراكز ثقل

mm' 1
E
b: b

عرض برابر با b و ارتفاعىى برابر با $d y$ مى

$$
e=e_{o}+\frac{\sigma_{P}^{\prime \prime}}{E}=e_{o}+\frac{M_{P} y}{E I}
$$

كار شجازى تغهير شكل آهن جزء خخوا هد شد .

$$
\left(\sigma_{\Omega} b d y\right)(e d s)=\left(\frac{F_{Q}}{A}+\frac{M_{Q} y}{I}\right)(b d y)\left(e_{o}+\frac{M_{P} y}{E I}\right) d s
$$

بناهـراهن كل كار مجازى تغهيرشكل براى كل قطعه خواهد شد .

$$
\begin{aligned}
W_{d} & =\int_{0}^{L} \int_{-c_{1}}^{+c_{z}}\left(\frac{F_{Q}}{A}+\frac{M_{Q} y}{I}\right)(b d y)\left(e_{0}+\frac{M_{P} y}{E I}\right) d s \\
& =\int_{0}^{L} \int_{-c_{1}}^{+c_{2}}\left(\frac{F_{Q} e_{0}}{A}+\frac{M_{Q} e_{0}}{I} y+\frac{F_{Q} M_{P}}{E I A} y+\frac{M_{Q} M_{P}}{E I^{2}} y^{2}\right) b d y d s
\end{aligned}
$$

L توجه بـهاين كه همواره داريم .

$$
\int_{-c_{\mathrm{t}}}^{c_{\mathbf{2}}} b d y=A \quad \int_{-c_{\mathrm{t}}}^{c_{\mathbf{1}}} y b d y=0 \quad \int_{-c_{\mathbf{1}}}^{c_{\mathbf{2}}} y^{8} b d y=I
$$

رابـطه نوت بهصورت شكل ساده زير در مىT ايد .

$$
W_{d}=\int_{0}^{L} F_{Q} e_{0} d s+\int_{0}^{L} \frac{M_{Q} M_{p}}{E T} d s \quad(\uparrow-I \Gamma)
$$



شكل (
(r
 است كه معادلات (Y-IT ( $)$ (

 قطهات فتط تحت اثر بارهاى مسورى واقع شده و هيه بـرش و لنكرى را تحمل نـخوا هندكرد و


مشخص ثاهت خواهد بود و خون :

$$
\left.\int_{0}^{L} e_{0} d s=\text { ) تغيير طول محورى در يك تطعه }\right)=\Delta L
$$

كار مجازى تغييرشكل براى تطعه خمشى از خرها خواهد شد .

$$
W_{d}=F_{Q} \int_{0}^{L} e_{o} d s=F_{Q} \Delta L
$$

حاصل جمع كلهـ مقاد برنوق هراى تك تك تطعات خريا براهر با كار مجازى داخلمى تغيهرشكل هراى كل خرها خواهد شد كه برابر با مقدار زبر مىكردد .

$$
W_{d}=\Sigma F_{Q} \Delta L
$$


مىباشد بهصورت زیر در مى هـد :

$$
\Sigma Q \delta=\Sigma F_{Q} \Delta L
$$



 باشد
اكر تغييرشكل حاصل از اثر بارهأى P هر كرههاى خرها باشد .

$$
\Delta L=\left(e_{o}\right)(L)=\left(\frac{\sigma_{P}^{\prime}}{E}\right)(L)=\left(\frac{F_{P}}{A}\right)\left(\frac{L}{E}\right)=\frac{F_{P} L}{A E} \quad\left(e^{1} \quad-\mid \Gamma\right)
$$

اكر تغييرشكل حاصل از تغيير هكنواخت درجه حرارت t باشد .

$$
\Delta L=\left(e_{o}\right)(L)=\left(\alpha_{t} t\right)(L)=\alpha_{t} t L \quad(\varphi \Delta-\mid r)
$$

اكر تغيهرشكل حاصل از هردو عامل نوق بهصورت همزمان باشد .

$$
\Delta L=\frac{F_{P} L}{A E}+\alpha_{i} L L
$$

در ايننجا علاوه بر تعاريغى كه قبلا" ذكر شد داريم :

Q $Q$ : Fe

L : طول تطعه


 (r)






 اعضاى خرها در اتر تنشهاي


$$
(1)(\delta!)+W_{R}=\sum F_{Q} \frac{F_{P} L}{A E}
$$





$$
(1)\left(\delta_{c}^{0}\right)=\sum F_{Q} F_{1}^{\prime}, \frac{L}{A L^{\prime}}
$$

نيروى ميلههاى

 مجهول















 كثشى.بودن مثبتكرفته میشود و $t$ زمانى مثبت كرفته مى شود كه ازد آاد درجه حرارتوجود داشته باشد .




 عوض كنيم • بهعنوان مثال در اين مسائل A و $E$ را برحـر

صورتى كه ا را برحسب فوت بـيان كردهايـم . Tنـجه د ر این زممنـه انـجا م مىكيرد عموما"بستكى



 , مولغدهاى انقى و يا عمودى نمىیباشند .


مثال Y 100 ${ }^{k}$

(a) $\sum Q s=\sum F_{Q} \Delta L=\sum F_{0} F_{P} \frac{L}{A E}$ $\left(j^{*}\right)\left(\delta \frac{d}{d}\right)=\frac{l}{E} \sum F_{Q} F_{P} \frac{L}{A}$

$$
=\frac{+325.01 \mathrm{k}^{1} / /^{\prime \prime}}{30 \times 10^{\mathrm{s}} \mathrm{k}^{\prime \prime 1}}
$$

$\therefore \delta_{0}=+0.01089 \mathrm{ft} \quad$ بطرن بانین
(b) $\Sigma Q \delta=\Sigma F_{0} \Delta L=\Sigma F_{\ell \alpha_{1}} L L$

$$
\begin{aligned}
\left(1^{*}\right)(\delta!) & =\alpha_{t} \Sigma F_{Q} \ell L \\
& =\left(\frac{1}{150,000} \text { per }^{\circ} F\right)\left(-1,125^{\circ} F^{\prime}\right) \\
\therefore \delta_{c}= & =-0.0075 \mathrm{ft} \quad \text { لا }
\end{aligned}
$$



جدول تنظيم محاسبات

 $E=90 \times 10^{0} \mathrm{kips}$ in - محاسبه كنيد


با بحث

توجه شود كه هر ميلهأى را كه براى T از جد ول حذف نمود زهرا بـراى حنان ميلهاى حاصلضرب

مثال I I Y
از جابجاليى تكيهكا هـها بهصورت زيز مىباشد مسا سبا
a. $0.0^{\prime \prime}$
a $0.75^{\prime \prime}$
0.20"

برای تحليل تنش تحت اثر دستكاه نـيروى Q از مثال تبل استفاده كنيد .د رابين مثال
 بوجود نمى
$\Sigma Q \delta=\Sigma F_{\mathrm{G}} \Delta L=0$
$\left(1^{k}\right)\left(\delta_{\vec{B}}\right)+\left(1^{k}\right)\left(0.6^{\prime \prime}\right)+\left(3 s^{4}\right)\left(0.75^{\prime \prime}\right)-\left(3 / s^{k}\right)\left(0.25^{\prime \prime}\right)=0$
$\therefore \delta_{B}=-0.5-0.5+0.187=-0.899 \mathrm{in}$.

بحث :

در محاسبه كار مجازى خارجى كه توسط عكسالعملـهاى Q انـجام مىشود دقت كنيدكه علا مت صصيح بهكار برده شود علامت مثبت یا هنفى كار مجازى يك عكسالعمل بـستكىبهاين دارد كه نتطهء اثر Tن عكسالعمل بهترتيب در جههت و با در خلافـجهت عكسالعمل جابـجـا

محاسبه تغييرمكان حاصل از نشست تكيهكاههها را مىتوان بهسادكى بـاستفاده از عـلمــ
 مىتوان فرض نـودكه خرها ابـتدا خنـان حركتى انتقالىىا متحمل شود كه تكيهكاه ه د درضعيت


(الن)

 c در وضعيت منا سب خود ترار كيرد وضعيت نههابي خرپا را با خط جبين نشان دادها يـم ،در



بهسمت حب "
a
به سمت چیب
محاسبه جابـجا يهى در اثر دوران نياز بهتوضيح دارد و بهصورتى است كه كويا ععلكــرد قضيه مغيدى را بـيان ميكند حركت نقطه m از يك جسم صلب را كه حـلا مركز o $O$ به اندازه

 است (برحسب راد عان )كه سبينوس و تانـرانت T T



 OmA

$$
\frac{\delta_{\nu}}{\delta}=\frac{d}{R} \quad \delta_{\nu}=\frac{\delta}{R} d=a d
$$

زيرا




$$
\alpha=\frac{0.6^{\prime \prime}}{30^{\prime}}
$$

بنابراين جابجايى انتى نتطه E كه در اثر دوران حول O مىيا شد خوا هد شد .

$$
\frac{0.5^{\prime \prime}}{30^{\prime}}\left(20^{\prime}\right)=0.5^{\prime \prime}
$$

مثال



$$
\alpha_{t}=1 / 150,000 \text { per }{ }^{\circ} \mathrm{F} \quad \text { ر تخت تحتانـى }
$$


(a) $\sum Q \delta=\sum F_{Q} \Delta L=\sum F_{Q} F_{P} \frac{L}{A E}$
$\left(I^{k}\right)\left(\delta_{o}^{*}\right)+\left(I^{k}\right)\left(\delta_{D}^{\prime}\right)=\frac{1}{E} \sum F_{O} F_{P} \frac{L}{A}$

$\therefore \delta_{b-D}=+0.00189 \mathrm{ft}$ 药
(b) $\Sigma\left(0 \delta=\Sigma F_{8} \Delta L=\Sigma F_{c o d} / L L=\alpha_{1} \Sigma F_{\sigma} L L\right.$


| ميلدها | $L$ | A | $\cdots$ | $F_{Q}$ | $F_{P}$ | $F_{Q} F_{P}, \frac{L}{A}$ | $t$ | $F_{6} L^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T | , | /' | , 1,1 | $k$ | $k$ | $k^{2 / 1, \ldots}$ | ${ }^{\circ} \mathrm{F}$ | $k^{\circ}$ |
| $b c$ | 15 | 5 | 3 | -0.416 | +67.5 | - 84.5 | -20 | $+125$ |
| cd | 15 | 5 | 8 | -0.416 | $+67.5$ | - 84.5 | -20 | +125 |
| $C D$ | 15 | 5 | 3 | -0.831 | - 78.75 | +19\%.0 | + ${ }^{\prime} 0$ | $-997.2$ |
| - ${ }^{1}$ | 25 | 2.5 | 10 | -0.695 | $-18.75$ | +130 | 0 | 0 |
| Cd | 25 | 2.5 | 10 | +0.595 | + 18.75 | +130 | 0 | 0 |
| $d D$ | 20 | 5 | 4 | -0.50.5 | +105 | -2.93 | 0 | 0 |
| $\Sigma$ |  |  |  |  |  | + $\overline{0} 0$ |  | $-747.2$ |










كليه خرياهائى كه مورد بررسى قرار كرفت خرياهاي أيدهآل منصلى بودند كه تحتا مراثر
 تحتاثر قسمتى ازبارهای



 هصاسبه تغيهرمكان اعمالبارهای
 حالت لنكر خعشى., M وجود نـخواهد داشت . حالتى كه بك خرهای هفصلى تحت انر بارهای
 مىىيرد،حالات شامل خرهاهاى برجمى نهز در همان بـند بـحث مىكردد .

Y - Ir

 تهرى را در نظر بكهريد كه توسط بارهاى عـرضى تغيهرشكل مىد مد در جنانـهالتى اكر عكسالععلهبا مولفه افتى نداشته باشند ، كليه متاطع تبر بـدون نهيروى محوى فتط تحت تأشهر



 عهودى ، افتى و با هردو مولفه بعهنى از تغيهرشكل نتطهاى از آن را معلوم كنيم ، بارىىوا احد
 د ستكاه Q , Q خوا هد داد كه د ر طول تغيهرشكل نهيز متحمل تغيشيرمكان خواهد شد هحل مسالـه


شكل (IT-IT) تغيهر مكان تيرها

معادله (Y-IY) تغيير كردده است

 كل تير را بـهونرت حاصل جمع ا; چند انتـكرال براى قسمتهاى مختلف تير بـيان كنيـمم ایـن تقسيم انتكرالكيري مى. يستى د ر نقاطى انـجا م كيرد كه توابع مربوط به



 علا مت كذارى مناسب د يكرى بـرایی كذارى انتخاب شود هجاز خواهد بـود ولى عموما" علا متكذارى متداول تيرها بيـشتر رضايت بخش مىباشد. . بـديهى است كه ס زمانى مشبت خواهد بود كه در همان جهـت نـيروى نـظير . خود قرار داشته باشد $Q$
اغلب لازم است كه دوران مقطمىاز تير را معين نماءيم • براى هنين هنظورى د ستكاه $Q$
 واحدى كردد . فرض كنيد كه شدت أين بار در فاصله لو از تار خنتـى بـرابر با
 بودهاست بعد ازخمش نيز مسطح و عمود بر منحنى ارتجاعىى تير باقى مىمانـد و اكر مقطـى


 خواهد شد :

$$
\int\left(q_{z} b d y\right)(\alpha y)=\alpha \int q_{y} b y d y=(1)(\alpha)
$$



شكل (

جون لنكر بار


 داشت :

$$
(1)\left(\alpha_{a}-\right)+W_{H}=\int M_{\mathrm{e}} M_{z} \frac{d s}{E^{\prime}}
$$

باقى مساله شبيه تغيـرمكان عمودى مى.
مثال
مهاسبه كنيد

$$
\begin{aligned}
& \sum Q \delta=\int 1 T_{Q} M r \frac{d g}{E T} \\
& \left(I^{*}\right)\left(\delta_{A} \downarrow\right)=\int_{A}^{B} M_{Q} M_{P} \frac{d x}{E l} \\
& +\int_{B}^{C} M_{Q} M_{P} \frac{d x}{d T} \\
& 0<x<a \quad M_{Q}=-x \quad M_{P}=0 \\
& \begin{array}{c}
0<x<(L-a) \\
M_{0}=-(a+x) \quad M_{P}=-P_{x}
\end{array} \\
& \left(a^{n}\right)\left(\delta_{\Lambda} \downarrow\right)=0+\frac{1}{E I} \int_{0}^{L-a}\{-(a+x)\} \\
& \begin{array}{l}
=\frac{P}{E I}\left[\frac{a x^{2}}{2}+\frac{x^{2}}{9}\right]_{0}^{L-a} \quad[-P x] \\
=\frac{P}{E I}\left[\frac{a(L-a)^{2}}{2}+\frac{(L-a)^{2}}{S}\right]
\end{array} \\
& \delta_{\lambda}=\frac{P}{a E I}(L-a)^{2}((2 L+a)
\end{aligned}
$$

مثال

$$
E=30 \times 100 \mathrm{kipo} / \mathrm{in} . \quad I=200 \mathrm{in.} 4
$$

$$
\begin{aligned}
\sum Q \delta & =\int M_{Q} M_{P} \frac{d \theta}{E l} \\
\left(r^{t}\right)(\delta d) & =\int_{a}^{b} M_{Q} M_{P} \frac{d x}{E I}
\end{aligned}+\int_{b}^{c}+\int_{d}^{c}
$$


-


 را تقليل دهد جنين عملى حجم عمليات را در جاكذارى حدود أنتكرال كم خواهد نمود .

مثال Y Y Y $E=30 \times 10^{\circ} \mathrm{kips}$ in. $\quad I_{1}=150 \mathrm{in}.{ }^{4} \quad I_{2}=200 \mathrm{in} .4 \quad . \quad$ است

$$
\begin{aligned}
\sum Q^{b} & =M_{Q} M_{P} \frac{d s}{E I} \\
\left(1^{n^{\prime}}\right)\left(\alpha_{a}^{a}\right)= & \int_{a}^{b} M_{Q} M_{P} \frac{d x}{E I} \\
& +\int_{b}^{c}+\int_{0}^{d}+\int_{d}^{c}
\end{aligned}
$$



$$
0<r<5 \quad I_{1} \quad M_{Q}=1-\frac{x}{20} \quad M_{P}=5 x
$$

$$
b \overline{\sigma_{j}}
$$

$$
\begin{aligned}
& c \text { tebl } \\
& 5<x<10 \quad 1.83 I_{1} \quad M M_{Q}=1-\frac{x}{20} \quad M I_{P}=5 x \\
& 0<x<\bar{\sigma} \quad I_{1} \quad M_{Q}=\frac{x}{y=0} \quad M_{1}=\bar{\sigma} x \\
& \text { dtej } \\
& d t c ; \\
& 0<x<0 \quad 1.33 I_{1} \quad M_{Q}=\frac{1}{4}+\frac{x}{20} \quad . M_{y}=25+6 x \\
& \left(1^{\prime}\right)\left(\alpha_{a}^{C}\right)=\frac{1}{E I_{1}}\left[\int_{0}^{5}\left(1-\frac{x}{20}\right)(\overline{j r}) d r+\int_{5}^{10}\left(1-\frac{x}{20}\right)(5 x) \frac{d x}{1.39}\right. \\
& \left.+\int_{0}^{5}\left(\frac{x}{20}\right)(5 x) d x+\int_{0}^{5}\left(\frac{1}{4}+\frac{x}{20}\right)(x, 5+i x) \frac{d x}{1.33}\right]=\frac{1}{E I_{1}}\left\{\left[\frac{\sigma x^{3}}{2}-\frac{x}{1 /}\right]_{0}^{6}\right. \\
& \left.+\frac{1}{1.39}\left[\frac{5 x^{2}}{2}-\frac{x^{2}}{12}\right]_{0}^{10}+\left[\frac{x y}{72}\right]_{0}^{5}+\frac{1}{1.39}\left[\frac{25 x}{4}+\frac{5}{4} r^{2}+\frac{x^{2}}{12}\right]_{0}^{6}\right\} \\
& =\frac{1}{E I_{1}}\left\{\frac{5}{2}(25)+\frac{1}{1.99}\left[\frac{5}{2}(100-2.5)-\left(\frac{1,000-125}{12}\right)\right]\right. \\
& \left.+\frac{1}{1.99}\left[\frac{25}{4}(5)+\frac{5}{7}(25)+\frac{125}{12}\right]\right\} \\
& =\frac{1}{E I_{1}}\left[62.5+\frac{1}{1.99}(187.5-62.5+62.5)\right]=\frac{1}{E I}(62.5+140.6)=\frac{209.1^{2},}{E I_{1}} \\
& \therefore \alpha_{a}=\frac{(203.1)^{k^{\prime \prime}}}{\left(30 \times 10^{\mathrm{a}} \times 144\right)^{k^{\prime}}\left(\frac{1.50}{144 \times 144}\right)^{\prime 4}}=+0.0085
\end{aligned}
$$

انتخاب مبداء اندازهكيرى x د در مل اين مساله شايد بهترين انتخاب نباشد غرض از

 كه يكى.بودن حدود انتكرال حتما" وارسى شود .

مثال

$$
\begin{aligned}
& \sum Q \delta=\int M_{Q} M T r \frac{d s}{E T} \\
& \left(\mu^{\prime \prime}\right)\left(\alpha_{B}^{\prime}\right)=\int_{A}^{B} M_{Q^{\prime}} M_{p} \frac{d x}{E I} \\
& 0<x<L \\
& B \text { Ł. } A \\
& M_{\varphi}=\frac{x}{L} \quad M_{P}=\frac{w L}{Z} x-\frac{w r^{2}}{2}
\end{aligned}
$$



$$
\begin{aligned}
& \left(1^{b^{\prime}}\right)\left(\alpha_{B}^{\kappa}\right)=\int_{0}^{L}\left(\frac{x}{L}\right)\left(\frac{w L x}{2}-\frac{w x^{2}}{2}\right) \frac{d x}{E 1} \\
& =\frac{w}{E 1}\left[\frac{x^{3}}{6}-\frac{x^{4}}{\overline{B L}}\right]_{0}^{L}=\frac{w L^{3}}{24 E 1} \\
& \therefore \alpha_{B}=\frac{w L^{3}}{\dot{2} 4 E 1} \text { در خلاف }
\end{aligned}
$$

حال حالـت كلىتر عك تيهر و با عك تاب صلب را كه مقاطع أعضاى آنها تحتىاثر نهـروى

 محورى و لـترهاى خمشى كه نتتجهه بارهاى P مىباشنـد در ا'ر تغيهر درجه حرارتنتيزبوجود





نـود .

$$
\sum Q \delta=\int F_{Q} e_{0} d s+\int M_{Q} M_{P} \frac{d B}{E I} \quad(Y-1 Y)
$$

دراءن عبارت كرنش محورى e شامل اثر نيروى محورى و حرارت خواهد بـود يهنى :

$$
e_{a}=\alpha_{t}+\frac{F_{P}}{A E}
$$

 , t t t t


 عبارت دوم نخواهد بود . در هر صورت بعادله (Y-IY)را برانى راحتى بيشتر مىتـــوان بهصرت زير نشان داد :

$$
\begin{aligned}
& \sum Q \delta=\sum r_{\Delta} \Delta L+\sum \int M_{Q} \Delta I_{1} \cdot \frac{d s}{D T} \\
& (\lambda-i r) \\
& \Delta L=\int r_{0} d s=\alpha_{t} I L+\frac{r_{v} L}{A H^{i}} \quad: \quad \text {, }
\end{aligned}
$$


 كاربرد معادله (




 شكلهای

(C)


شكل (

مثال ir - 9 = دوران متطع را در طرف جه مغصل c را تحت اثر بارماى نشانداده

$$
\begin{aligned}
& I \underline{Q \delta}=\sum F_{Q} F_{P} \frac{L}{A E} \\
& \quad+\sum \int M M_{Q} M_{P} \frac{d s}{E I} \\
& \left(i^{\prime \prime}\right)\left(a_{C L}\right)=\int_{A}^{B} M_{Q} M_{P} \frac{d y}{E I} \\
& \quad+\int_{B}^{C} M_{Q} M_{P} \frac{d x}{E I} \\
& \quad+\int_{E}^{D}+\int_{D}^{C}+\sum F_{Q} F_{P} \frac{L}{A E}
\end{aligned}
$$

توجه : محاسبه نـودد , خخط تهره نشان $D C$, $E D, B C, A B$
د هنده تار زهربين بـراى استغاده از قرارداد علام كذارى در تترها جهت علائم :


$$
\begin{aligned}
L & =10^{\prime} & & 0 \rightarrow y \rightarrow 10 \\
F_{Q} & =+\frac{1}{16} & & M_{Q}=-\frac{y}{20} \\
F_{P} & =-80 & & M_{P}=-48 y
\end{aligned}
$$

. $c \operatorname{t}_{B}$

$$
\begin{array}{cl}
L=8^{\prime} & \\
F_{q}=-\frac{1}{20} & \\
M_{Q}=-\frac{1}{2}-\frac{x}{16} \\
F_{p}=-48 & \\
M_{p}=-480+60 x
\end{array}
$$

أ

$$
\begin{array}{cll}
L=10 & 0 \rightarrow y \rightarrow 10 \\
F_{Q}=-\frac{1}{16} & & M_{Q}=-\frac{y}{20} \\
F_{P}=-60 & M_{P}=-48 y
\end{array}
$$

$L=8$

$$
\theta \rightarrow x \rightarrow s
$$

$F_{Q}=-\frac{1}{20} \quad M_{Q}=-\frac{1}{2}+\frac{x}{16}$

$$
F_{P}=-48 \quad M_{P}=-480+60 x
$$

$$
\left(1^{k^{\prime}}\right)\left(a_{a}\right)=
$$

$$
\frac{1}{E I}\left[2 \int_{0}^{10}\left(\frac{-y}{20}\right)(-48 y) d y+\int_{0}^{8}\left(-\frac{1}{2}-\frac{7 y}{16}\right)(-480+60 x) d x\right.
$$

$$
\left.+\int_{0}^{8}\left(-\frac{1}{2}+\frac{7 x}{f 6}\right)(-480+60 x) d x\right]+\frac{2}{A E}\left(-\frac{1}{20}\right)(-48)(8)
$$

$$
=\frac{1}{E I}\left[\left.\left(1.6 y^{3}\right)\right|_{0} ^{10}+\left.2\left(240 x-15 x^{3}\right)\right|_{0} ^{8}\right]+\frac{98.4}{A E}
$$

$$
\therefore \alpha_{C L}=+0.00676+0.000064=+0.006824
$$

رادبان در جـهت ساعتكرد

د رمسا علىكه هم خمش و هم تغيهرشكل محورىمطرح میباشد بـاT حاد دقتكافىمبذول

 در مسا ئل مربوط بـهتغييرمكان تابـهامى4 شد ، لذا معمولا" صرنـنظرنمودن ازتغيهرشكل محورى در جنهن حالاتى مجاز میباشد .

















$$
\begin{aligned}
& \left(1^{\prime \prime}\right)\left(a_{C L}\right)=\frac{3,580}{E I}+\frac{98.4}{A E}=\frac{(9,520)^{4^{1,2}}}{\left(90 \times 10^{2} \times 144\right)^{4 / 12}\left(\frac{2,5(0)}{144 \times 147}\right)^{4}}
\end{aligned}
$$

مبا هث بنيادى تحلـبل سازهـا


شكل (10-1 10 ) تغيهر مكان خرها با كرههاى صلب






 (Y-IY)






 شوا مد هافت .

اغلب تضاهاى سطح لنكر در مهاسبات بربوط بهشيب و تغييرمكان تيرها و قابسها








شكل (1Y-|צ) استخراب تضاياى سطع لنكر
زاوهه

 زاوهایى نظير

كسينوس




$$
d \tau=\frac{\left(\sigma_{\mathrm{c}} d s\right) / E}{c}=\frac{M c}{E I} \frac{d s}{c}=\frac{M}{E T} d s
$$

 زواياي خواهيم داشت :

$$
\begin{equation*}
\Delta \tau_{A B}=\int_{A}^{B} d r=\int_{A}^{B} M I d s \tag{9-15}
\end{equation*}
$$

فرض كنيد كه RST منحنى لنكر خمشى براى قست AB AB باشد بهصورتى كه هرعرضى ازاءن


 بهصورت زير بـان مىاشود .


شكل ( $\mid$ ) تغيير شيب ديغرانسيلى
M/EI تغيير شيب بين دو مطاس بر منحنى خيز در نفاط A و B برابر با سطم منحنى



 s $s^{\prime} d \tau$

$$
d=\int_{A}^{B} s^{\prime} d \tau=\int_{A}^{B} \frac{M}{E I} s^{\prime} d s \quad(10-1 r)
$$

 مار بـر نتطه B مىباشد و بـدينترتيب د ومهن تضيه سطع لنـكر بهصورت زيـر بـيان مى بشود .


B مىكَذرد . .
(البتك بهشرطى كه در قسهت AB ازتير هيمِ نـوع غهريهوستكى نظير مغصل وجود نداشتهبا شد) بايد د تت شود كه این تغييرشكل د ر جههت عمود بر وضهيت اوليه تبراندازهكيرى مى اهن دو تضيه را مىتوان مستقيها" جـهت تعبيين شيـهها و تغيير مكانهاى تير ثقط با رستم





 داد ، الهته بررسى جنان حالاتى خارج از موضوع اين كتـاب مىىـاشد .




با استغاده از د وممن تضيه سطع لنكر دارهم : بهس سعت بائين

$$
\sigma_{6}=\left(\frac{180}{E I}\right)\left(\frac{6}{2}\right)(4)=\frac{2,160}{E T}
$$

بهسعت پائين

$$
\delta_{c}=\left(\frac{180}{E I}\right)\left(\frac{6}{2}\right)(4+6)=\frac{5,400}{E T}
$$

مبا حث بنـادى تحليل بازهها


با استغاده از اولين تضيه سطع لنـكر داريم :

$$
\begin{aligned}
& \Delta_{T}=\binom{18 \theta}{E /}\binom{\pi}{z}=\begin{array}{c}
5 / 6 \prime \\
E /
\end{array} \\
& \therefore t_{b}=\frac{61 \%}{b i}
\end{aligned}
$$

جهت كاربرد تضاياى سطح لنكر مىتوان علامتكذارى معينى تعيين نمود ، از حنـنـين



 لنكر خمشى رسم كردهاهم . در محاسبات مربوط بهتغيـرمكان (و ها زاويه دوران ) قسمت بعينى از نـودار

 شده تأهـهـد مىكردد .

مثال
.


هون شيـهـا كوحكند هس : $\tan \tau_{a}=\tau_{a}$

$$
\therefore r_{0}=\frac{d}{18}
$$

با استفاده از تضهه دوم سطع لنكر

$$
\begin{gathered}
d=\left(\frac{120}{E I}\right)\left[\left(\frac{12}{2}\right)(6+4)+\left(\frac{\theta}{8}\right)(4)\right] \\
=\frac{8,640}{E I} \quad \therefore \tau_{E}=\frac{480}{E I}
\end{gathered}
$$





$$
\begin{aligned}
\Delta_{t} & =\left(\frac{90}{E I}\right)\left(\frac{9}{2}\right)=\frac{405}{E I} \\
\therefore \tau_{m} & =\frac{480-405}{E I}=\frac{75}{E I}
\end{aligned}
$$

باز هم با استغاده از شكل دارهم :
$\delta_{m}=g_{\mathrm{m}}-\boldsymbol{\delta}_{\mathrm{m}}^{\prime}$

$\therefore 8=(9)\left(\frac{480}{E I}\right)-\frac{1,815}{E I}=\frac{3,106}{E I}$
مثال : ما شهب نتطه e را محاسهه كنيد .


$$
\begin{aligned}
& r d=\frac{d_{1}}{20}, \\
& d_{1}=\frac{1}{E I}\left[(37.5)\left(\frac{20}{2}\right)(10)\right. \\
& \left.-(85)\left(\frac{10}{2}\right)\left(10+\frac{2}{3} \times 10\right)\right]=\frac{6,000}{3 E I} \\
& \therefore \tau_{4}=\frac{250}{3 E I} \\
& \delta_{b}=10_{\tau}+\delta_{b}^{\prime}, \\
& \delta_{b}^{\prime}=\frac{1}{E I}\left[(25)\left(\frac{10}{2}\right)\left(\frac{20}{9}\right)\right. \\
& \left.-(57.5)\left(\frac{10}{2}\right)\left(\frac{10}{3}\right)\right]=\frac{625}{3 E 1} \\
& \therefore \&_{5}=\frac{2,500}{3 E I}+\frac{625}{3 E I}=\frac{9,125}{3 E I} \\
& \delta_{1}=\delta_{7 d}-\delta_{i}^{\prime}, \\
& s_{4}^{\prime}=\frac{1}{E I}\left[(25)\left(\frac{5}{2}\right)\left(\frac{10}{9}\right)\right]=\frac{625}{3 E I} \\
& \therefore \delta_{1}=\frac{1,250}{3 E I}-\frac{625}{3 E I}-\frac{625}{3 E I} y L_{\text {4 }} \\
& T_{i}=\tau_{d}+\Delta \tau_{\text {, }} \\
& \Delta r=\frac{(2 \hbar+12.5)(5)}{2 E I}-\frac{(18.75)(5)}{2 E I}-\frac{98.75}{2 E I} \\
& \therefore \mathrm{r}_{\mathrm{c}}=\frac{950}{3 E I}+\frac{99.75}{2 E I}=\frac{781.25}{6 E I}
\end{aligned}
$$


 شكل منحنى ارتجاعى را تا حد امكان دتيت رسـم نماعيد . رسـم د قـيق شكل منـحنى را مىتوان
 رو ببالاى منحنى



 لنتر واتعى را با خطوط تيره نشان دادهشده جا يكزين نما يند . دراين حالـت هثلتـهاى مثبت
 25 و قاعده 10 جايكزين شده ، با اندكى دقت و بررسى بعلوم میكردد كه جنـين عطلكـردى براى تعبين محاسبات لازم جهت سطلح خالص و يا لنكر خالص سطلح حول هر محورىعمودى لازم ، منطقىتر خواهد بـد بـد .

$$
\text { r- } 9 \text { - روش بار ارتجاعى }
$$

با در نظركرفتن منحني خـيز ACB قطعه AB كه د ر وضعيت اوليـه خود بهشكل مـتتيـم

 تضيه دوم سطح لنكر داريم :

$$
\begin{align*}
d & =\int_{A}^{B} s^{\prime} \frac{M}{E I} d s \\
r_{A} & =\frac{d}{L}=\frac{1}{L} \int_{A}^{B} s^{\prime} \frac{M}{E I} d s
\end{align*}
$$







 كه در بالا محاسهه شد خواهد كرديد .


شكل (




$$
\tau_{m}=\tau_{A}-\Delta \tau
$$

و با در نظر كرفتن تضيه 'ول سطح لنكر داريم ،

$$
\tau_{m}=\tau_{A}-\int_{A}^{m} \frac{M}{E I} d s
$$

با همان فرضى كه نموداد t


تير خيالى فرض نـود . بهممان منوال دارهم :

$$
\delta_{m}=(a)\left(\tau_{A}\right)-\delta_{m}^{\prime}
$$

, با در نظر كرفتن تضيه دوم سطط لنكر داربم ، خواهيم داثت :

$$
\delta_{m}=\left(\tau_{A}\right)(a)-\int_{A}^{m} s^{\prime \prime} \frac{M I}{E I} d s
$$



 دهانه AB بوده و توسط بار كسترده جانبى برابر با نمودارا M/KI تير حتيقى AB A بار شــده







 سـاده قرار داشته و توسط بار كسترده جانبى باركذارى شده باشد . مثالهاى زير سهلـبــودن روش بار ارتجاعى را نشان مىد دهد مد

 وضعيت تبلاز تغيهرشكل محورتير منطيق خواهد شدي لذاشي






. در حالت كلى كه ظلع مذكور ممكن است تغيهر محل بدمد با نـد مد ، كارهرد روش هار

ارتجاعي را مىتوان در بيان زير خلاصه نمود .




 محاسباتى مثبت فرض مىشوند عرضهاى مثبت M/EI نشان د هنده بارهاى روبهـا لا لـوا منـد







مثال
. محاسبه كتيد

$\mathbf{\Sigma} \boldsymbol{M}_{d}=0$
(1) $120 \times 3=360 \times 14=5,040$
(2) $120 \times 6=720 \times 9=6,480$
(8) $30 \times 9=90 \times 8=720$
(4)

$$
\begin{aligned}
& 150 \times 3=\frac{460}{1,620} \times 4=\frac{1,800}{\frac{14,040}{18}} \\
& 780 \pm \\
& \Sigma M_{a}=0 \\
& 360 \times 4=1,440 \\
& 780 \times 9=6,480 \\
& 90 \times 10=900 \\
& 450 \times 14=\frac{6,300}{15,120} \\
& \begin{array}{r}
\frac{15,120}{18}=\frac{840}{} \pm \\
0=80
\end{array} \\
& r_{a}=-780 \quad-780 \times 6=-4,680 \\
& +860+360 \times 2=\frac{+780}{-3,960}=\delta_{0}
\end{aligned}
$$



$$
\begin{aligned}
& -1.2(2) \quad+720 \times s=+2,(1 ; 0
\end{aligned}
$$

$$
\begin{aligned}
& -4,141)=\delta_{0} \\
& r_{c}=-13(\%) \quad \mid 3(0) \times 6=+2, \%\{\theta \\
& 1,60 \% \quad 1,200 \times 4=+1,5(\pi) \\
& \tau_{i}=+8 / 000=\delta_{\mathrm{d}}
\end{aligned}
$$

حداكثر مقدار ס زمانى خواهد بود كه $0=1$ = باشد و اين وتتى است كه برشدر تهـر خهالـى صفر شود كه جنين نتطهای بين

$$
\begin{aligned}
& E I \tau=-420+120 x_{1}+\left(\frac{30}{6}\right) \frac{x_{1}^{2}}{2} \\
&=-420+120 x_{1}+2.6 x_{1}^{2}=0 \\
& \therefore x_{1}^{2}+48 x_{1}=168 \\
&\left(x_{1}+24\right)^{2}=188+(24)^{2}=744 \\
& x_{1}+24 \therefore+27.28 \quad \therefore x_{1}=9.28^{\prime}
\end{aligned}
$$

در اين نتطه داريم :

$$
\begin{aligned}
E 7 \delta_{\text {max }} & =-3,960-(420)(9.28)+(120)(3.28)\left(\frac{3.28}{2}\right)+(5)(3.28)\left(\frac{3.28}{2}\right)\left(\frac{3.28}{3}\right) \\
& =-3,960-1,378+646+29=-4,669 \mathrm{kip-ft}^{2}
\end{aligned}
$$


 بهاين ترتيب هركاه مقادير I I E برحسب feet و


$$
E=30 \times 10^{1} \mathrm{k} /^{\prime \prime} \quad I_{1}=600 \mathrm{in.}{ }^{4} \quad I_{2}=900 \mathrm{in.} .
$$








$E I_{1} \delta_{a}=96 \times 6-96 \times 3 \times 4$
= -
مقدار حداكثر دقيقا" در سمت راست ع جائى كه 0 = . باشد قرار خواهد داشت :

$$
E I_{1 \tau}=+624-\left(12 x_{1}\right)\left(\frac{x_{1}}{2}\right)=0 \quad \therefore x_{1}^{2}=104 \quad x_{1}=\underline{10.2 E^{\prime}}
$$

$E I_{1} \mathrm{~d}_{\max }=-(624)(10.22)+\frac{(12)(10.22)^{3}}{(2)(3)}=-6,385+2,124=-4,261 \quad$ به سعت با قراردادن هتاد شر E و $\delta_{\text {max }}=\frac{-(4,261)^{t^{2}}}{\left(30 \times 10^{2} \times 144\right)^{k t^{2}}\left(600 / 144^{2}\right)^{4}}=\frac{-0.0941 f t}{} \quad$ بهسمت

$$
\begin{aligned}
& \text { براى تغيير بهان تيرها و هابها }
\end{aligned}
$$



 كه نحوه كاربرد روش مها
 بهمارست فراوان خواهد هود ولى در عـين حال يك مبتدى نيز مىتواند با با تبعيت از نمودار











 نمىتوان در حد فاصل دو نقطه ازمنحنيخيز زمانيكه مغملى در ا آنتسمت از تير قرارداشته باشد بهكار برد .

مثال
 بa بتسمت ab مهاسبه نمود با اين تغييرمكان موقعيت خط مبناى كرفتن اين مبنا تغيير مكانها و شيبها را مىتواون با استفاده از رونى بار ارتجاعي كه بر تيرى

خيالى بهد هانه be اعمال مىشود مهاسبه نـمود .


$$
\begin{aligned}
& E 1 \delta_{b}=[(180)(3 \cdot 6)(5)+(60)(96)(3) \mid \\
& =1,890(\mathrm{l}) \\
& \text { ) bce (دوران خط مبناء bc }=\frac{1,890}{18}=105 \\
& \text { (1) } 240 \times 6=1,440 \times 10=14,400 \\
& \text { (2) } 240 \times 3=780 \times 4=8,880 \\
& \frac{17,980}{18} \\
& =960 \ddagger \\
& 1,440 \times 8=11,520 \\
& 780 \times 14=\frac{10,080}{21,600} \\
& \frac{\frac{21,600}{18}}{18}=\underline{1,200} \ddagger
\end{aligned}
$$

نتطه حداكثر ه در حاءّى قرار دارد كه مماس
 نتطه شيب مما س نسببت بهـخط مبناى bc و رو بهسمبت راست بهطرف عائين باشد و با این كه $E 1 \tau_{\mathrm{m}}=-105$
$E I \tau_{m}=-960+\left(20 x_{1}\right)\left(\frac{x_{1}}{2}\right)=-105$ $x_{1}^{2}=85.5$
$x_{1}=9 . \boldsymbol{q}^{\prime}$

$$
\begin{aligned}
& E I \delta_{m}^{\prime}=-(960)(9.24)+\frac{(20)(9.24)^{3}}{6}=-6,285 \\
& E I \delta_{m}=-6,825-(105)(18-9.24)=-7,146
\end{aligned}
$$

بحثث :

دقت كنيد كه بـهدلـيل وجود بغصل b اعمال روش بار ارتجاعى بر تير خيالىيبهد هانم مجاز نمىياشد .

مثال

مبا حت بنيادى ثهليل بازهها




 نشان داد ه شده است .


 اوليه تشر در شكل نشان داده شر شده است همحنـين بهسادكى مىتوان بـاعمال قضبهد وم سطع لنكر بهقسمت طرهاى تغيهرمكان منصل در ز شرداخت .



 دهانهها بهد ست آورد
 داشته باشد زيراشيب خط مبنا در اين قسمت بيشتر از شيب مماس بر c نسبت بهـخط مبنا


 شكل طولى در اكثر مسائل مربوط بهتغييرسكان قابهـا مجاز مىیباشد .
متال


براى اين كه نتَطه حداكثر تغييرمكان را بيابيم

$$
\begin{aligned}
& E I \tau_{m}=0=-240+(4 x)\binom{x}{2} \\
& x^{2}=120 \quad x=10.98 \\
& E I \delta_{m}=-(240)(10.98)+(4) \frac{(10.98)^{\circ}}{6} \\
&=-1,769(\downarrow) \\
& E i \delta_{d}=(48)(6)-(48)(8)(4)=-288(\mathrm{~d}) \\
& E I \delta_{f}=(48)(12)=576(\rightarrow)
\end{aligned}
$$

جون كره c هلب میى
 مىرسند بهيك مقدار دوران خوا هند كرد . جون ستون
 راستى خواهد بود كه دارالى زاوهي تمايلى بهممان مثال


 $=\frac{61,8,60}{(\cdots)}$

از اهت میالـها و مسا

 مىتوان بهچند مستطيل و مثلك تجزيه نموده و محا سيات مربوطه بسسيار ساده خواهد بــود . وتتى كه بار كسترده هاشد نمودارلنكر يك خط هنـحنىشده ه و محا سبات مشكلتر ميشود، وقتى

 مععولا" لازم أست كه نمودار M/EI را بههند ين قسعت كوحك كه هربك در اين تسمتتهـا بـه تناسب بهمثلتها و مستطيلههايى تقسيم مىكردد تجزيه نمود . كاهى بـهتر الست براى اهن كه نتيجه جـع تقريهى را دقيتتر كنيم از قاعده هسمسون Simpson ا استفاده كنيم .
 خورده هـن منحنى سههمى و وترى از اعن هنحنى را ملاحظه كنيد . اكر تصوير افقىاين
 و بین اجن وتر و هنحنـى قرار دارد برابر است بـا
 است r- مركز ثتل این قطعهء هاشورخورده هروى خط عمودىكه از وسط وترميكذ رد قرأر
دارد .

زمانى لازم است كه از روشهاى ترسبهي در كاربرد روش بار ارتجا معى استغاده كنيــم .
.




## (1) - أ روش تير مزدوج










 كاه c تغييرمكان صفر بوده ولى منحنى
 طرف جه و طرف راست مغصل وجود دارد .






 نتط با معلومبودن مشخصات منحنى تير ، نظير مغصل b ، جنان تكيهاهمهاى برای تتير مزدوج انتتخاب كرد كه بتوانبههدفـيمورد








 خششى نيز باشد و بهعبارت د يكر نتطه b در تير مزدور بايد دارارا تكيهكاهى غلتكى با شد

( 1 )
شكل (1 ( 1 ) الستخراج روث تير مزدوج
 شدد و داراى تكيهكاهـهاى نشان داده شده خواهد بود .



 شكل تير اتدازهكيرىشود معلوم مىكنـد .قراردادع علائم بـراى بار (ارتجاعى ) بـرش (ارتجاعى )


 وتيدهاى تيرهای مزدوجمى تكيهكا هـها و قيد هاى تيرههاى مزدوج متعارف درشكل (




 نمود .براى هرنوع باركذارى (مانند بار متمركزى كهبهوسطد هانه اثر كردها ست ) معلوم مىشود كه نمود ار M/EI منتهیى بـهيك باركذارى ارتتجاعى مى







 بهردازيهم امكان اشتبا هات محاسبات


$$
\text { r ا } 15 \text { - روسّ ويليو(ت) - مود }
$$

وتتىكه از روش كارمجازى براى مساسهيه تغيـرمكان يك خرها استفد دكنيم در هر مرحله





 خوا هد داشت . اساس روث ويليو (ت ) - مور را ميتوان با بررسى خرهاى ساده شكل ( ( فرف كنيد كه با استغاده از معادلات (Y (I





> تير واقعى
> نا
> شكل (Y)
> شكل (Y-I Y) علمالحركات تغيهرمكان يك خربا



 كه مغصل D دوباره بوجود
 - را ترتيب تغييرمكان هر كره را مىتوان با با معلوم.بودن وضعيتهــاى اوليه و تغيير محل داده كــــــــره مسلوم نـود .





 نتطه در شكل ( ( Y Y Y الف ) نشا



توسهاءيى حول مراكز دوران نمى باشيم .

نمودار ساده شدهاى كه در شكل ( ( ( ) تطعات , مباسهای مرسوم برقوس




 مانده و قطعه AB افتى باقى مى $A$

انتهاى D تطهـه $\quad \Delta L_{A D}$ ان $b^{\prime}, a^{\prime}$ AD حركت را با بردار



 با بردارهاى $\overline{n^{\prime} d^{\prime}}$ نشان داده شدهاست حركت بهترتيب عمود بر قطعات



بردهايم اندازهكيرى كنيم .

رسم نمودار ويليو (ت ) براى خريايىي مفصلتر براسناس همان روشي كه در د بالا ارائه شد



 از خرهاى سازه ارائه شده در بالا وجود داشت معلوم نـيانى












 مكانهاى حقيقى كرههای






 بردارى انتى باشد معين نمود . تغغيرمكان حققى برآ بیند بران بردار


 را كه نشاند هنده حركت c كه از ' بردار انتى ( ترتيب نقطه "c تثبيت مى شود .





 , $\overline{c^{\prime \prime} a^{7}}$ براي كره d با بردار

 عمود است و


,






 بر مىكردهم و نتاط 'D كرفته هاهد هركـاه محل نتطه
 .


اعمال روث ولهيو (ت ) مور برایتوس سه مغصل نـاز بهفنى متفاوت دارد كه در مثـال .



فرض كنيد نعطه c د در جاى خود ثابت بماند
فرض كنيد كه راستاى ميله


 هردارهائى كه در روى نمودار ويليو (E) از از





 بهموازات بردار









 , نهـه هیه و هردار



(

 مولر - هرسلا ارا: هر خرها بهعوض تـرها مىاشد .













 بهممين دليل این روش را بهاءن اسم مى ايخوانند .


شكل (TY-1 T) اساس روش سلسله، ميلمها


 زوايه


 ثكل (T (TY

 مىد هد ، متدار ه هر هراه

 d و
 . داده شد معين نمود

مثال Y I خرهاى شكل (YY-IY) را معين كنيد .




نمود



هون در این حالت نظر علامت در خلاف جههت داريم :
$\therefore \Delta \theta_{b}=+9.520$
و بناهـراين بار ارتجاعى رو بـبالا هىـاشـد .
$1.780 \times 25=-44.0$

$$
\begin{aligned}
\therefore \delta_{b} & =0.044 \mathrm{fl} \quad \text { (بـمت } \quad \text { ) } \\
& =0.588 \mathrm{in} .
\end{aligned}
$$

 هغاصل تخت يائين را بهدا كنيد .


برایى راحتى عمل e را در $10^{\text {ضرب }}$ كنيد و سيس نتايج نها يی را بـراى بـ



| 4 | $\underset{\left(e_{1}-e_{1}\right) \times 10^{3}}{ }$ | cot $\beta_{1}$ <br> (e) | $\underset{(\varepsilon)}{(I)} x$ | $\underset{(3)}{\left(c_{1}-\theta_{1}\right) \times 10^{2}}$ | cot $\mathcal{A}_{1}$ (4) | (3) $\times$ <br> (4) | $\begin{gathered} \Delta \phi X X \\ 10 a^{2} \end{gathered}$ | $\begin{gathered} 40 \times x \\ 103 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $a b$ A | -0.520-0 $=-0.540$ | 0 | 0 | $-0.580-0.695=-1.14 .5$ | 1.5 | $-1.5 \% \%$ | - 1.587 |  |
| $\boldsymbol{A b B}$ | $-0.347-0.625=-0.972$ | 0.75 | -0.789 | $-0.947-0=-0.547$ | 0 | 0 | -0.729 | +1.501 |
| ${ }_{B b} \mathbf{C}$ | $-0.347-0 \quad=-0.347$ | 0 | 0 | $-0.547+0.417=+0.070$ | 0.75 | +0.058 | +0.062 |  |
| Cbe | $+0.260+0.417=+0.677$ | 1. ${ }^{\text {d }}$ | +0.903 | +0.260+1.041 $=+1.301$ | 0 | 0 | +0.008 |  |
| $\mathrm{BeC}^{\text {c }}$ | $-0.417+1.041=+0.624$ | 0.75 | +0.468 | -0.417-0.860 $=-0.677$ | 1.9 | -0.903 | -0.485 | +0.485 |
| Ced | $-0.208-0.260=-0.468$ | 1.5 | -0.624 | $-0.208+1.041=+0.893$ | 0.75 | +0.625 | 0 |  |
| cdC | $+0.260+1.041=+1.301$ | 0 | 0 | $+0.280+0.20 .4=+0.485$ | 1.8 | +0.684 | +0.624 |  |
| CdD | $+0.694+0.208=+0.902$ | 0.75 | +0,676 | $+0.694+0.260=+0.904$ | 0 | o | +0.676 | $-4.500$ |
| DdE | $+0.694+0.860=+0.954$ | 0 | 0 | $+0.694+0.625=+1.319$ | 0.75 | +0.988 | +0.089 |  |
| Ede | $+1.040+0.625=+1.665$ | 1.9 | +2.220 | $+1.040+0.847^{7}=+1.387$ | 0 | 0 | +2.220 |  |
| doE | $-0.625+0.347 m-0.278$ | n.7is | -0.208 | $-0.625-1.040=-1.005$ | 1.9 | -2.220 | -2.428 | +2.25s |
| Eff | $+0.685-1.040=-0.415$ | 1.5 | $-0.558$ | $+0.62 .5+0.347=+0.072$ | 0.75 | +0.729 | +0.176 |  | با بهكاربردن تيرى خـبالى بهد هانه



$$
\begin{aligned}
& \Sigma M_{a}, \\
& 1.901 \times f=+1.901 \\
& 0.495 \times 2=+0.870 \\
& -4.509 \times 3=-19.587 \\
& 2.252 \times 4=+0.008 \\
& 5 \frac{-2.348}{0.470} 7
\end{aligned}
$$

ميلمها ، باركذارى مذكورهرابر خواهد بودبا تغيبر زاويه
 تغيير بافته در كره "! با "."1 نشان داده شود داريه :

در آين رابطه

 or مجاور از سلسله مبلمها تشكيل ميشود ( نظظيـر هرای اينكه معادلات بهطرهقى صحيحتنظهي كردد هماهنكى و محت علائم امهيت بسياردارد .

زه زمانى مثـت الست كه

ه زمانى مثت است كه شيب اوليه قطهه سمت راست رو بهبا لا باشد .

مثال مغاصل تحتانى رِا محاسهه كنيد

$W_{m}=\Delta \theta_{m}-e_{L} \tan \alpha_{L}+e_{R} \tan \alpha_{R}$.
$W_{b} \times 10^{9}=+0.889-(0.490)(-1.0)+(0.990)(-0 . \$)=+1.043$
$W_{c} \times 10^{3}=+0.888-(0.990)(-0 . \$)+(0.990)(0.8)=+1.498$
$W_{d} \times 10^{3}=+3.298-(0.990)(0.8)+(0.736)(1.0)=+3.699$




$$
\text { 4) } 15.186
$$

$$
\begin{aligned}
& 0=\delta_{A} \times 10^{3} \\
&-2.456-2.456 \times 15=\frac{-36.84}{-36.84}=\delta_{0} \times 10^{\mathrm{s}} \\
& \frac{+1.043}{-1.413}-1.419 \times 15=\frac{-21.20}{-58.04}=\delta_{c} \times 10^{3} \\
& \frac{+1.498}{+0.085}+0.085 \times 15=\frac{+1.28}{-56.76}=\delta_{1} \times 10^{3} \\
& \frac{+3.699}{+3.784}+3.784 \times 15=\frac{+56.76}{0}=\delta_{E} \times 10^{3} \\
& \frac{-3.784}{0}
\end{aligned}
$$

مثال (Y


 قطعات در سلسلـهميلههاى تغيهرمكان بافته مى.باشد .هركاه سلـسلـه ميلهها در حالت كلى



 تغييرمكان عمودى كرههاى B B يكسان خوا مند بود . دوران ميله AB در جههت ساعتكرد




 با دنبالكردن كره بـهكره سلـله ميلمها و بااستفاده از مقادهر



 نمود . سلسله ميلهماى موردنظر را بـطورى انتخاب مىكنيم كه كرهسايى را كه تغيهرمكان

 میله ها داراى وضعيت اولبه مستقهم و افقى بى (






 نظير D D D


 مورد نـيز لازم است قـل از اين كه تغيهرات زوالا مورد محاسبه قرار كيرد ميلـها D و C C C'


 بــود بنتشركرد ، او ازدو قضهيه كه بـنام خود او ناميدهمىشوند استغاد ه كرده هود .مضهـــهـ

دوم 5 ستيعليا نو را مىتوان بهصورت زهر بهان كرد .



 در اینعيارت كلمات نهرو و تغيهرمكانرا مىشود بـترتهب بهمعانیزوت و دورانزاوههاى

 ممكن باشد .






شكل (Y (Y Y) استخراج قضه دوم كاستيكليانو


 نـان دههم ، مىتوان رابطه زهر را نوشت :

$$
\begin{equation*}
W_{I}=W_{B}=f\left(P_{1}, P_{2}, \ldots, P_{n}\right) \tag{الف}
\end{equation*}
$$

حال نرض كنهد نهروى

داخلى افزاهش هافته و مقدار جدهـ

$$
W_{i}^{\prime}=W_{i}+\begin{gathered}
i W_{i}^{\prime} \\
i W_{n}^{\prime}
\end{gathered} W_{n}^{\prime} \quad(ب)
$$

متدار كل انمرزى داخلى مستقل از ترتهب اتر نـيروهاست و فتط بستكى بهمقدار نهايى نيروها دارد و علاوه هـر آناكر مصالح سازه از تانون هوك تبعيت كند ،تغيهر شكلها و تغيهرمكانهای حاصل از بارهای

 ــناهرالين اكر نهروى بینهايت كوحكي


خوا هد هود .
$d \delta_{n}$ اكر بار $d P_{n}$
 از آ توسطاهن نهروها بهدليل الهن كه dP
 بهم $P_{n}$ ( انجا $d P_{n}$


$$
W_{E}^{\prime}=W_{E}+d P_{n} \delta_{n}
$$

خوا هيم داشت :


$$
\begin{equation*}
W_{E}+d P_{n} \delta_{n}=W_{I}+\frac{\partial W_{I}}{\partial P_{n}} d P_{n} \tag{د}
\end{equation*}
$$

, از Tنجا كه W

$$
\begin{equation*}
\frac{\partial W_{I}}{\partial P_{n}}=\delta_{n} \tag{Ir-Ir}
\end{equation*}
$$

این رابطه بيان رباضى قضييه دوم كاستيكليانو ميبانهد . براى استفاده از قضضيهه دوم كاستيكليانو ابتدا لازم است كه عباراتى دبرای انرزیى تغيهر








$$
\Delta(d L)_{t}=d F_{t} \frac{d L}{A E}
$$

 واهد شد با


$$
\begin{equation*}
d W_{I}=\int_{0}^{F} F_{i} \Delta(d L)_{t}=\int_{0}^{F} F_{t} \frac{d L}{A E} d F_{t}=\frac{F^{2}}{2 A E} d L \tag{,}
\end{equation*}
$$

هرای كــل قطعه ، مقدار كار داخلى هرابر خواهد هود با مجموع جملات : بنابرانين $d L$

$$
W_{I}=\int_{0}^{L} \frac{F^{2}}{2 A E} d L=\frac{F^{2} L}{2 A E}
$$



شكل (
هراى كليه قطعات سازه ، كار داخلى بـرابر خواهد شد با مجغوع حنين جملات هراى هريكاز ميلمهای سازه و با : (انرزی تغيهرغكل ذخيره شده توسط نيرووهای محورى ) $W_{I}=\sum \frac{F^{2} L}{2 A E} \quad(1 f-1 \uparrow)$ حال مىتوان از اعن معادله هراى تعيين عيارت انرزى تغيهرشكل ذ خـيره شده در هـك



كهريك دارای طولى برابر dL و ارتغاعى هراهربا dy و عرضى عمود برصفسه كاعذ و برابر


$$
F=\sigma b d y=\frac{M y}{I} b d y
$$


 و سهس جمع كليه اين متا هير را هرای كل اجزاء در طول تير بـد سـت آورد . در ا ايـن صورت داریم :

$$
\begin{align*}
& W_{I}=\int_{0}^{L} \int_{-c_{2}}^{c_{1}}\left(\frac{M y}{I} b d y\right)^{2} \frac{d L}{2(b d y) E}=\int_{0}^{L} \frac{M^{2}}{2 E I} \int_{-c_{1}}^{c_{1}} \frac{y^{2} b d y}{I} d L \\
&=\int_{0}^{L} \frac{M^{2}}{2 E I} d L \tag{b}
\end{align*}
$$



شكل (YY-IY) انرزى تغهیرشكل ذخيره شده توسط ل:نكر خعشى
زهرا
(انرزى شغهرشكل ذخيره شدهتوسطلنكرخششى ) WI $=\sum \int \frac{M^{2}}{2 E I} d L$

توسط تنشهاى برشى در تيرها صرفنظر نـود .
r| 1 |
هراى اين كه مبحث مرهوط بـتضا ایاى كاستيكليانو كامل شود ، قضهيه اول او نيزد ر اهن



را مىتوان بهصورت زیر بـان كرد




نظيو بههمان مولفه تغييرمكان هـ
اهن قضهي را مىتوان بههمان نـحوى كه تضيهه دوم استخراج كرد يد معين نـورد . فرض



 ولى ساهر تغيير مكانـهای


$$
\begin{equation*}
W_{t}^{\prime}=W_{t}+\frac{\partial W_{t}}{\partial \delta_{n}} d \delta_{n} \tag{الف}
\end{equation*}
$$

از كار خارجى د رجه دومى كه توسطنيروى كوجك نظر كرغتن تغيير مكان اضافى . . خواهد يافت , در این صورت دارهم :

$$
\begin{equation*}
W_{E}^{\prime}=W_{s}+P_{n} d \delta_{n} \tag{ب}
\end{equation*}
$$

هون W W W W W W W (الف )و(ب ) خواهـم داشت

$$
\frac{\partial W_{1}}{\partial \partial_{n}}=P_{n}
$$

" Theorem de lequilibre des ** بـهتاب كا ستهكليانو با عنوان : systemes etastiques etses applications"

و و با بـهكتاب ماتسون Mat heson باعنوان زعر مراجعه شود :
" Hyperstatic Structures"

 در این كتاب قسمت اول و قسمت دوم را بـهترتيب قضيهي اول كاستيكلهانو و قضيهـيـهـه د د و م كاستيكليانو نا مددهاهم .

اين عبارت بـيان رياضى تضيهه اول كاستيكليانو مىـاشد .
 بهكتابى كه توسط هاتسون كه هدان اشاره شد و با به مقاله آرجريس ( Arggris ) مراجعهنـما يد . بهمنظور استغاده از این تضيهيه واضح است كه عبارت د يكرى براى انـــرزى تغيـر شكل مى:ايستى استخراج كرد د اين عبارات بايد بـيانكنند ؤ انرزى تغيـرشكل برحسب تغييـــــر مكانهای

IV - Ir


 مسائل عددى زير خواهيم ديد كه جكونه محاسبات عددى هردوى اين روشها تقربيا"يكى است .

 با متغييرى جايكزين نعود و جس از آن كه مشتق نسبى مربوط بهعبارت خمشى كرفته شد مىتوان متغيهر را با بعدار عددى Tن جايكزين كرد .



$$
\theta<x<L \quad M=\cdots P_{x} \quad \frac{\partial M}{\partial H^{\prime}}=-x
$$

$$
\delta_{i}^{t}=\int_{0}^{L}\left(-I_{x}^{\prime}\right)(-s) \frac{d x}{I N I}=\left|\begin{array}{c}
I^{2} r^{2} \\
3 L_{1}
\end{array}\right|_{0}^{L}
$$

$$
\delta_{1}=\frac{\Gamma}{3} L^{3} B
$$

 در عك حنين حالاتى مىتوانيم بـطور موقت نيبرو (يا لـنكرى ) خيالـى در جهـت مولفه تغيير

$$
\begin{aligned}
& W_{i}=\sum \int \frac{1 / 2}{2 k I} \\
& \frac{\partial W_{t}}{\partial P}=\delta_{b}^{\frac{1}{b}}=\sum \int 1 \frac{\partial \cdot M I}{\partial I^{\prime}} \frac{d x}{E I} \\
& \text { بناهراين } \\
& \text { تس داريم : }
\end{aligned}
$$





د ر مثال (Y أ هـين ترتيب با اضافهنـودن بارهایخـيالـو مطلوب امكان محا سبه هرمولغهي دلهوا مى


 مسا ثل Tشكار مى سازد .

 انجام مكيرد . كاربرد اين روش بهطور مو*كد در سالاتى بمكن است كه تغيهر مكان ساملاز اتر
 حرارت و با اثر حاصل از نشست تكيهكا مى مىكردد بمكن نـىىباشد .

 مىتوان بهصورت زهر عمل نـمود :

b. E $^{\text {l }}$

$$
\begin{gathered}
0<x<10 \quad M=M_{1}+\left(\tau-\frac{M_{1}}{20}\right) x \quad \frac{\partial M}{\partial M_{1}}=\left(1-\frac{x}{20}\right) \\
0<x<4 \quad M=\left(13+\frac{M_{1}}{20}\right) x \quad \frac{\partial M}{\partial M_{1}}=\frac{x}{20} \\
4<x<10 \quad M=\left(13+\frac{M_{1}}{20}\right) x-10(x-4) \quad \frac{\partial M}{\partial M_{1}}=\frac{x}{20}
\end{gathered}
$$

از
از

مباحث بنـادى تحليل بازهها

$$
\begin{aligned}
& \frac{\partial W}{\partial M_{1}}=E I \alpha_{a}^{-}=\int_{0}^{10}\left[M_{1}+\left(y-\frac{M_{1}}{20}\right) x\right]\left(1-\frac{x}{20}\right) d x \\
& \quad+\int_{0}^{4}\left[\left(14+\frac{H_{1}}{210}\right) x\right]\left(\frac{x}{40}\right) d x+\int_{4}^{10}\left[\left(13+\frac{M_{1}}{20}\right) x-10(x-4)\right]\left(\frac{x}{20}\right) d x
\end{aligned}
$$


دأهم :

$$
\begin{aligned}
& \boldsymbol{E} / \alpha_{a}^{-x}=\int_{0}^{10}(\gamma s)\left(1-\frac{x}{90}\right) d x+\int_{0}^{4}(13 x)\left(\frac{x}{20}\right) d x+\int_{4}^{10}(3 x+40)\left(\frac{x}{20}\right) d x \\
& =\left[\frac{\pi x^{2}}{2}-\frac{\pi x^{2}}{60}\right]_{0}^{10}+\left[\frac{13 x^{2}}{60}\right]_{0}^{4}+\left[\frac{3 x^{2}}{60}+x^{2}\right]_{4}^{10}=\left(350-\frac{700}{8}\right)+\left(\frac{208}{16}\right) \\
& +\left[\left(\frac{1,000-64}{80}\right)+(100-16)\right] \\
& \alpha_{a}=\frac{s i g}{E J} \\
& \text { و با الين كه: } \\
& I=200 \text { in. }{ }^{4} \quad E=50 \times 10^{4 n} \quad 51
\end{aligned}
$$

$$
a_{0}=\frac{(9 \pi 8)^{t^{2}}}{\left(301 \times 10^{2} \times 144\right)^{k / 2}\left(200 / 144^{2}\right)^{\prime 4}}=0.00007 \text { راديان }
$$

مثال

بارهای P را بهصورت نـثان باده شـده اضافه كنيد .


$$
\begin{gathered}
W_{1}=\sum \frac{F 3}{Z A E} \\
\frac{\partial W_{1}}{\partial P}=\delta_{B-D}^{\prime}-\sum \frac{F L}{A Z} \frac{\partial F}{\partial P}
\end{gathered}
$$




در Tان سلسله میباشد ، میتوان بهصورت زهر عمل كرد .
 اهن كه فتط قسمت ثاهت

$$
\delta_{k-D}^{\prime \prime}=\frac{+65}{E}=\frac{(65)^{\omega^{\prime} / \prime^{\prime \prime}}}{\left(50 \times 10^{0}\right)^{1 / 1^{2}}}=+0.00189 \mathrm{fl}
$$



دقت كنيد كه كليهى ميلمهابی كه در Tنها نيروى حامل از بارهاى خيالى P
 بنابراين بهذكر آنها در جدول نبازى نيست










با استغاده از روش كار مجازى

$$
\begin{aligned}
& \sum Q_{6}-\sum r_{q} \Delta A=\sum r_{4} r_{i}^{A} A_{B} \\
& \left.(1)^{k}\right)\left(\delta_{s_{1}}\right)=\frac{1}{A E} \sum P_{4} H_{1}^{\prime} H_{1}
\end{aligned}
$$

| هيله | $L$ | $F_{Q}$ | $F_{P}$ | $F_{0} F_{P} L$ |
| :---: | :---: | :---: | :---: | :---: |
| T Tـاد | , | $k$ | $k$ | $k^{2}$ |
| ab | 14.14 | +0.354 | +0.884 | $+4.4$ |
| $b e$ | 14.14 | +0.354 | +0.884 | + 4.4 |
| ac | 20 | -0.75 | +0.625 | - 9.4 |
| ad | 24.91 | +1.145 | -2.863 | $+75.0$ |
| $b d$ | 20.82 | -2.082 | -5.154 | +219.4 |
| cd | 82.91 | +1.145 | -2.863 | $-75.0$ |
| $\Sigma$ |  |  |  | + 68.8 |

$$
\begin{aligned}
& \left(1^{k}\right)\left(\delta_{d,}\right)=\frac{+68.8^{4^{\prime}}}{\left(8^{\prime \prime \prime}\right)\left(50 \times 10^{12} 4^{\prime \prime 2}\right)} \\
& \delta_{\mathrm{d},}=+0.00115 \mathrm{ft} \\
& \text { بنايراين }
\end{aligned}
$$


(19-17


 آن معلوم شود میا هستى بعمل





 هيشرفتهترى كه مربوط بـهاين حالات مى شود ذكر كردند . با وجود ا اين بايستي خاطــر نـان

 مىىاشند نيز استغاده نمود .
ro-ir
مينظور از كوزدادن سازه اين است كه شكلى بدون تنش قطعات سازه را هبنسورىانتماب


 . حامل مىكردد .





 هيدا كنـد .'
هرای این كه كوز خرها را بهطور دتيق ايهاد كتيه • تغيهر طول هريك از اعضاى آن را

 اكر تحت اثر بار لازم براى كوز ترار كيرد خرها تغيهرمكان بافت و شكل نظرى سـري


「T روش ععلى در كوزدادن خرهاها این الست كه فتط طولهاى تطعات املـــى آن را


انتهاهیى مىبايستي
 حنيّن تغيهر طولى معادل ایجاد شدت تنشى بـرابـر با زهر است :

$$
29,0610,000 \times 332 \times 1120=22,600 \mathrm{psi}
$$

خون فقط ميلههاى اصلىتصيحع مىكرد تد ، مقدار اين تصحيح بـهمظور اثر تَطعات جــان در
 دخالت دارند تغيير طولى كه در بار ذكر شد سبب بارى در بـيلدهاى اصلى مىشود كها يجاد

شدت تنشى بـرابـر با زير مىكردد :

$$
0.8 \times 20.1000=18,000 \mathrm{psi}
$$

بهعبارت د يكر روش تتجربى كه در بالا هـشتههاد شد معادل انتخاب بارى بـراي محا سبــه كور



 در خرها ا'هجاد بیىتردد نيز قرار كيرد .
(Betti ( ) Ir - Ir

قانون ماكسوئل حالت خاصياز قانون كلى بتتى مىباشد . هردوى اين قوانيـنرامىتوان بههرنوعى از سازهها اعم از تير

 نيروى ،





هردو وضعيت بـهكار میبرهم و از طريق مبرف است مىكنيم •


ثكل ب| |
بدين منظور فرض مینماءهي كه تكيهاههاى این سازه غهرتابل تغهر شكلى هوده و درجه حرارت نهز ثابت بـاند و هم جنين فرض مىكنيم كه :


- ${ }^{\prime}{ }^{\prime \prime}$ ס : $_{\text {nm }}$
د دستاه نيروى

حال كاربرد قانون كار مجازى را در وضعيت نتخست در نظر بكيرهدهدر این حالت دستكاه نيروى سازه بدان تغيهر محلى اعمال مىثود ب بدهن ترتهب با كــار:برد معادله (ا آ-

$$
\begin{align*}
& \Sigma P_{m} \delta_{m n}=\Sigma F_{m} \Delta L \\
& \text { در آن عبارت } \Delta L=F_{n} L / A E \text { مى شد و لذا: } \\
& \sum P_{m} \delta_{m n}=\sum F_{m} F_{n} \frac{L}{A} \tag{الف}
\end{align*}
$$

د د وضعيت دوم د ستكاه نـيروى $P_{n}$ مانند د ستكاه نـيروى $Q$ خوا هد بود و در اتر وارد شــــن د ستكا ه لـا


$$
\begin{aligned}
& \Sigma P_{m} \delta_{m n}=\Sigma F_{m} \Delta L \\
& \text { در اين عبارت } \Delta L=F_{\mathrm{R}} L / A E \text { مى: } \\
& \sum P_{n} \delta_{n m}=\sum F_{n} F_{m} \frac{L}{A E} \quad \text { (ب) }
\end{aligned}
$$

از بعا دلات (الف ) و(ب ) رابـطه زيـر تـتيجه مىشود .

$$
\begin{equation*}
\Sigma P_{m} \delta_{m n}=\Sigma P_{n} \delta_{n m} \tag{18-1Y}
\end{equation*}
$$

كه هركاه اين رابـطه بـهورت نوشته بـيان شود Tا را قانون بتى مىكويند .





 از قانون بتى نتتيجه كيرى نمود .
سازهای نظير خریای.شكل (Y-IY

بارى بههمان مقدار P ولي در نقطه 2 واقع شود ، اكر :
اס ${ }_{12}$
, ,
ab باشد ، تانون بتـى را د ر اين حالت بهكار میبـريم :

$$
(P)\left(\delta_{12}\right)=(P)\left(\delta_{21}\right)
$$

$$
\begin{equation*}
\delta_{12}=\delta_{21} \tag{IY-1r}
\end{equation*}
$$

يس خواهيم داشت :

كه اكر اهن راهطه بهصورت الغاظ در آهـ آن را قانون تغييرمكانهاي متقابل ماكـوئل مىنامند.

 بط ند ، تنيتيرمكان نتطه ا درا متداد







شكل ( را بهكمك تيرى شرع دادهاهم ، تعيین می' هـ . دقت كنيد كه دوران P هوجود مى


 زيرنويس دوم نـاند هنده مصل /ثر بارى / ست كه ايجاد تغييرمكان مىنما يد .
\% خr-ir - ir


 بد





شكل (Y-
م $m$




 واحدى هرآن نتطه اثر دميم و بممهاسهه منعنى حاصل شده در سازه بهردازهم .

IT

با



Y Y Y Y با Y Y



كr ا
 كوتاه شود مساسهـ كتهد .

جواب: . 0.375 in


 مغطع ميلمها برهسب اينجّ مربع در داخل برانتز نشان دادهايم $E=30 \times 10^{3} \mathrm{kips} /$ in $\quad \alpha_{t}=1 / 150,000$ per ${ }^{\circ} \mathrm{F}$

 a $E=30 \times 10^{\mathrm{k}} \mathrm{kips}$ in. مربع در داخل برانتز نشان دادها

جواب:
tit 0.00642 بهطرف بائين


شكل (Y|-|Y) مساله (
Ir است و $E=30 \times 10^{0} \mathrm{kips}$ sq in نشـان داده شده محاسبه كنيد .


Y Y-
 نشان دادهايم ، با استفاده از روش كار مجازى :
 (ب) - هركاه بر قطعه f f
 كردن بوجود مى آد جقدر خواهد بود



ثكل (Y-IY) (fr-ir) مساله
IT. بهطور موقت د ر كره

 كيرد ، سطع متطع ميلهما را برحسب اينغ مريع در داخل هرانتز نشان دادهاهم ، $E=30 \times 10^{3} \mathrm{kips}$ in

 درج شــده است ، بـراى تطهـه ed
 هرآ هند كره d را تحت اتر باركذارى نشان داده شده محاسبه كنيد . جواب : 0.01695 ft


 $E_{2}=30 \times 10^{3} \mathrm{kips}$ in
(الف) مولفه عمودىتغيهرمكان كره c را تحت اثرباركذارى نشان دادهشده مساس ( ب )هركاه بر طناب مزبور يك هست تورباغه افزوده شود ، مقدار تغيـر طول ملنــاب را

ك بـراى رساندن كره ، بعوضعبت اوليه طناب تبل از تغيهر مكان لازم است معبن كتيد .


شكل ( $10-1$ (YY-IY) مساله



( $11-1 Y$ )
 الف - مولفه ععودى تغيهرمكان نتطه b را تحت باركذارى شكل محاسيه كنهد .

2 kips ft ب ب - تغهير شيب مغملع نـقطه d در طول كل د هانه مهاسبه كنهد

$$
E=30 \times 10^{3} \mathrm{kip} / \mathrm{in} \quad I_{1}=300 \mathrm{in.4} \quad I_{2}=500 \mathrm{in} .^{4}
$$

جواب :
(د رجـهت عكس ساعتكرد )رادهان 0.003635 (ب) بیسعت هائين 0.00585 ft (الغ )

|r - IT



شكل (
 ضريب ارتجاعى

0.000877 ft بهطرف بائين جواب :

 ذكر شده است و دارهم :
 تحت اثر باركذارىنشان داده شده مساسبه كنيد .


 نتطه a a بهسمت جه




شكل (


.
 ه را برحسب اينْع و شيب نقطه b را هرحسب راديان محاسبه كنيد . ج




مباحث بنيادى تحليل سازهها

( IA - IY
(الف) تغهيرمكان عمودى تصر را هرحسب E E /

هردو داراى مگدار ثابتى مستند


شكل ( $\Delta P-\mid Y$ ) مساله ( $|A-| Y$ )
ما $E=30 \times 10^{0} \mathrm{kips}$ sq in $\quad$ مكان عبودى عداكثر را در تطعه .

شكل (1Y-1Y (



> را محا سبه كنيد .
0.02151 (بمطرفـاثين )

جواب:

 $a b$ مقد $E=30 \times 10^{2} \mathrm{kips}$ in $\quad I=192$ in. ${ }^{4}$ را مساسهه كنيد


شكل ( $\Delta Y-1 Y$ ) مساله
 (10kips in
 مسا سـه كتيـد
a جواب: 0.00698 ft 8.56 ft جطرف بالا بهفاصلـ

شكل (

IY IY IY

محاسبه كنيد ، در اين محا سبه از قضاياى سطح لنكر و تطابق بار ارتجاعى استفاده نماينــد "

$$
t=1,200 \text { in. } 4 \quad H=30 \times 10^{3} \mathrm{kip} \text { sq ia }
$$



شكل (Tr-Ir) (



 كنيد ، E و I داراى مقادير ثابتى بهصورت زیر هىباشند . $E=30 \times 10^{3} \mathrm{kips} \mathrm{sq}$ in $\quad I=432 \mathrm{in} .{ }^{6}$


شكل (

و IY - IY
 . برأهر با $I=1,440 \mathrm{in.'} \quad, E=30 \times 10^{2} \mathrm{kips}$ in
شكل (
 اثر كرده و عكسالعملى براهر با مقدار و محل تغيير مكان عهودى حداكثر را در ا ين تير محأسبه كنـي .

$$
E=30 \times 10^{2} \mathrm{kips} \text { in } \quad I=5 \overline{1} 6 \mathrm{in} .
$$

جواب: : 1,440/EI بهسمت پائين در فاصله 12 ft از $a$

( 1 Y
 وا امتداد ميله hd نمودار ويليو (ت) را رسم كنيد و نتائج را برحسب اينج ثبت نمائيد .

 داخل برانتز نثان دادهاعم .

r
 ( ) ( ) مساله (


 مساله (



Ir
تحليل تتش درسازمهاى نامعين

花

در جههل سال اخهر سازهماى نامعين همواره بهطور كسترد هتر از قهلبهكاربرد ه شد هاند





 هلهای ملق و تابهای ساختماني





 نهایق مهرسهم ادامه د ههم . r
 آن نيز مربوط ميكرد د .



 شده است بهاين تير ابر كند واضح است كه ابي تير حول مغصل ا. خواهد جرخيد . لذاتيرى كه بد بن صورت تكيهكاه داشته باشد يك سازه نآایدار خواهد بود ، حال آكر ماننــــد شكل (Y (



شكلب|-1 طبقهبندى سازهها


شكل Y - ا انطباق ساده Tثار


 قطهه جلوكيرى كردهايم بلكه از تغييرمكان عمودى نتطه C نيز جلوكيرى شدها است . با اندك دقتى فورا" مىتوان روشى براي تعيين عكسالعمل عمودى نتطه C $C$ بـيشنـهــاد

 C C



 شده استِ اكز; مقدار تغيير مكان در اين حالت برابر با



 از معادلات تمادل مىتوان بهراهتى مقادير عكسالعملهاى نتطه A B ,


بسيارى از سازههاى نا معهن ساده را مىتوان بـهريتى كه ذكر شد عل و بررسى نمــود.









عكـولعمل اضافى فرض مىكنهم •




(-)



شكل r - ا مساسبه بهطريته معادلات انطبات

مبا حث بنيادى تحليل سازهها

فرض كنيد كه از سازه موجود تكيهكاه در نقطه b و عكسالعمل عمودى

 r|

اصلى و نبروى اضافى •امعين
اكر نيروى اضافى , اX كه به سازه اولبهه وارد مىشود از نظر مقدار بـرابر با عكسالعمـل




 سازه موجود تغيير مكان عمودى وجود ندارد لازم است كه در سازه اوليه كه تحت اثر مجموع


 باشد و تعاريف زهر را نيز داشته باشيـم :
( $\Delta_{b}$


$$
\text { - شكل باr- د د } X=0
$$

$X_{b} \Delta_{b b}$
مئـاشد
محاسيه
: : تغيهر مكان بـهسمت بالاى نقطه b در سازه اولبه كه غقطط تحت اثر بار واحــــد
بـهست بالا در نقطه b قرار كرنته باشد "يعنى 1 +
مىتوان كغت تا زمانى كه اصل رويهمـذارى صادت است داربهم :

$$
\begin{gather*}
\frac{\Delta_{b b}}{X_{b}}=\frac{\delta_{b b}}{1^{k}} \\
\Delta_{b b}=\frac{X_{b}}{1^{k}} \delta_{b b} \quad \text { or } \quad \Delta_{b b}=X_{b} \delta_{b b} \quad \text { (ب) }
\end{gather*}
$$

, جون

 جمع تغييرمكانهاي حاصل از اثر تك تك باركذاريها يعغى بار موجود و مجهول

$$
\Delta_{b}=\Delta_{b o}+\Delta_{b b} \quad(\tau)
$$

لذا با درنظركرفتن رابطه (b) خواهيم داشت :

$$
\begin{equation*}
\Delta_{b}=\Delta_{b o}+X_{b} \delta_{b b} \tag{1-1r}
\end{equation*}
$$

ابين معادله را معادله روبهمكذارى (النطباق ) برای تغييرمكان نقطه b در سازه اوليه كويند . جحون

$$
\begin{equation*}
X_{b}=-\frac{\Delta_{b n}}{\delta_{b b}} \tag{r-ir}
\end{equation*}
$$

مىكنيم .

تعيين متادير عددى با جاكذارى مقادير Tنها در معادله (T-ا شد

 - (f-آ (



* از طرف د بكر معادله(الف) را بهصورت زير نبيز مىتوان نها يش داد . $\Delta_{\Delta b}=X_{b} \frac{\delta_{b t}}{\frac{1}{1^{k}}} \quad$ or $\quad د_{\Delta s}=X_{b} d_{d_{b}} \quad$ (ب)
در اين صورت نقطه b را با بازاء واحد نيرو نشان مىدهد لذا داراي بعد واحد تغيير مكان بهواحد نيـرور
 واحدهاى نيرو بيان خواهد شد .

 موجود نــست , روث منطبق بر معادلات انطباق براى كلبه سازهما اعم از تيرها ، قابسها و عـا



كتيم تابـل استغاد ه خـوا هد بـود .
نتط يك شرط در مورد كاربرد معادلات (روبههم كذارى ) انطباق باعستى رعايت شــود و


 تيز مانند الين روش بايستي شرط فوق در مورد ا نـها مادق باشد .



 (T T آن درك نما يند فرض كنيد كه بـخواهيم يك سازه تا معين معلومى را تحت يك با كليه حالاتى كه در آن



 مجههول








هس از انتخاب مجهولات مىتوانيم بـكوئيم كه اكر مجهولات بارهاهى را بـهازه اوليهـ

 بود و اكر تغبيرمكان تكيهكاهـهاى مازه اوليه با تغنيـر مكان تكيهكا هـهاى نظظهر مازه موجود هكى


 اكر n معادله انطبات هـراى n تغيهر مكان نـوشته شود این معادلات n مجهول $n$ ما




 زیرنوعه اول نشان د هنده؛ مسل تغيهرمكان مورد يـعث و زهرنوهس دوم مريوط هـباركــذارى


- .
$\Delta_{m}$
(يعنى تحت اتر بار موجود بدون اثـــر
مجهولات موردنظر )
" $\Delta_{m T}$
: تغيهرمكان نتطه m : $\Delta_{m} S$


$X_{b}=+1 \mathrm{kip} \delta_{m b}^{\prime}$

توجه كنـد كه تغيهر مكان تاشى از اثر مقدار وأحد مجهولات را با دلتاى كوجك (ס) نشـــان مىد هيم
 جهت مئبت T

. خوا هد بود
بد ينترتيب با بـكاربـردن تعاريف و قراردادن علامت . د ستكاه "/ معادله انحطبا قي كم
 تحت اثر هريك از " مجهول بهسازه اوليه مىباشد .

$$
\begin{aligned}
& \Delta_{b}-\Delta_{b, p}+\Delta_{b T}+\Delta_{t, N}+\lambda_{b E}+\lambda_{a} \delta_{b a}+\lambda_{b} \delta_{t h}+\cdots+\lambda_{n} \delta_{b n}
\end{aligned}
$$

$$
\begin{align*}
& \Delta_{N}=\Delta_{n c}+\Delta_{n t}+\Delta_{n S}+\Delta_{n E}+X_{\Delta} \delta_{n a}+X_{b} \delta_{n b}+\cdots+X_{n} \delta_{n k} \tag{r-ir}
\end{align*}
$$

الكر معاد ير معلوم
 $n$ . نــــود
 اراته شده است
اكر در آهجاد معادلات انمطباق بـططرهقى كه دربـخش (Y-IY ) بـبان شد از ضربب تغبير



بهصورت زهر نوشته خوا هد شد .

$$
\begin{align*}
& \Delta_{a}=\Delta_{a o}+\Delta_{a} \tau+\Delta_{a S}+\Delta_{a E}+X_{a} d_{a a}+X_{b} d_{a b}+\cdots+X_{n} d_{a n} \\
& \Delta_{b}=\Delta_{b o}+\Delta_{b T}+\Delta_{b} S+\Delta_{b E}+X_{a} d_{b a}+X_{b} d_{b b}+\cdots+X_{n} d_{b n} \\
& \Delta_{n}=\Delta_{n o}+\Delta_{n T}+\Delta_{n} s+\Delta_{n E}+X_{\Delta} d_{n a}+X_{b} d_{n b}+\cdots+X_{n} d_{n n}
\end{align*}
$$

هنانكه تبلا" نـيز كفته شد مجهولات X در این معادلات داراى بعد نترو عا لنكــر برحسب حالت موجود خواهند بـود .
توجهكنيدكه از' ين معادلات مثادير جنـين مطلبى واضع مىباشد زيرا باءد
 برای این كه واحدى هرای مظاد بر




 تمروطه مانند
"
 نا نعين كه تحت اثر باركذارى معلوم خارجى قرار دارند روشن مى



 خوا هد شد
 بهعملى غهرمعكن و يا جوا بهاتيى ناسازكار خـا خوا هد شد .





 جهت مثبت / بتد'يى ندارد .

 كرفته شود ،بار د هكر توجه كنيدكه متادهر د
 $X_{a}=+1$ kip برابـربا 10.5 باشدنشانمىد مدكه 10.5 برابربزركترازبارواحددرحالت


اكر يك نوع واحد نيرو و يكنوع واحد طول در كل مساله بكار برده باشيم واحــدهـا




 بايد توجه كرد كه معدار

 . تحمل حركتى مى X X

مثال


$$
\Delta_{b}^{\dagger}-\Delta_{b 0}+X_{b} \delta_{b b}=0
$$




$$
\sum Q s=\sum \int M_{Q} M_{P} \frac{d s}{E I}
$$

$\Delta_{\infty}$ :

$$
\begin{aligned}
& M_{Q}=M_{b} \quad M_{P}=M_{0} \\
& \left(I^{\bullet}\right)\left(\Delta_{s_{0}}^{1}\right)=\int M_{b} M_{0} \frac{d s}{E I}
\end{aligned}
$$

at

$$
\begin{gathered}
M_{b}=x \quad N H_{0}=-x^{2} \\
\left(I^{*}\right)\left(\Delta_{t_{0}}^{\dagger}\right)=\int_{0}^{20}(x)\left(-x^{2}\right) \frac{d x}{E / I} \\
\Delta_{b 0}=\frac{-40,006 k^{\prime 2}}{E I}
\end{gathered}
$$

$$
\begin{aligned}
& \delta_{66} \text { : } \\
& M_{Q}=M_{*} \quad M_{P}=M_{b} \\
& \left(1^{\star}\right)\left(s_{b b}^{\dagger}\right)=\int M_{b}^{2} \frac{d x}{E I} \\
& \left(1^{4}\right)\left(\delta_{b S}^{1}\right)=\int_{0}^{20}(x)^{2} \frac{d x}{E I} \quad \delta_{x 0}=\frac{9,667^{4}}{E I} \\
& \frac{-40,000}{E I}+\frac{2,667}{E I} X_{b}=0 \quad \text { بفست بالا } \\
& \therefore X_{b}=+15
\end{aligned}
$$


هحا سبه میشود .

مثال
ترسيمنـائهد

سازه عك درجه نامعين است عX را بهعنوان عامل مجهول انتخاب مىكنيم رس:

$$
\Delta_{t}^{\dagger}=\Delta_{c c}+X_{c} \delta_{c c}=0
$$

متاد بر

 نـتـه b مشنحص مىكنيم

$$
\begin{aligned}
216 \times 3 & =648 \times 4=2,692 \\
216 \times 4.5=972 \times 9 & =\frac{8,748}{\frac{11,840}{15}}=768
\end{aligned}
$$

$$
\begin{array}{r}
E I \Delta_{c s}=766 \times 18=19,608 \dagger \\
\therefore \Delta_{c c}=\frac{+13,608^{\downarrow^{\prime 2}}}{E I}
\end{array}
$$

b


$$
\begin{aligned}
& E 18_{\mathrm{cc}}=90 \times 18+18 \times 9 \times 12 \\
& =3,564 \uparrow \\
& \therefore 8_{c e}=\frac{+3,564^{k^{\prime \prime}}}{E I} \\
& \frac{18,608}{E I}+\frac{3,564}{E I} X_{c}=0 \\
& \therefore X_{c}=-8.82 \quad \text { يعنیى }
\end{aligned}
$$

b , a حال میتوان عكسالمملهاي مربـوط بـه را بـهسادكي بهكیك معادلات تعادلمعين نـعود و بـه هبين "ترتهب؟ تـودار لنكر خمشى را بـدون اشكال رسـم كرد.

هثال r ا

$$
E=30 \times 10^{3} \mathrm{kips} \text { sq in مقاطع را در داخل }
$$


صورت خوا هيم داشت :

$$
\Delta_{b}^{!}=\Delta_{b}+X_{\Delta} \delta_{b b}=0
$$


(bo

$$
\sum Q \delta=\sum F_{Q} \Delta L=\sum F_{\psi} H_{\mu} \frac{L}{A E}
$$

$$
\Delta_{\Delta u}: F_{Q}=F_{b} \quad F_{P}^{\prime}=F_{0} \quad\left(I^{t}\right)\left(\Lambda_{t_{v}}^{\dagger}\right)=\frac{1}{E} \sum F_{b} F_{0} \frac{L}{A}
$$

$$
\delta_{b b}: F_{Q}=F_{b} \quad F_{P}=F_{b} \quad\left(I^{*}\right)\left(\delta_{L_{b}}^{\dagger}\right)=\frac{1}{E} \sum F_{b}^{2} \frac{L}{I}
$$


 نمود . نـدروى ميلهها را نـيز مىتوان بههعين "نرتيب با استغاده از جدول و بـكاربردن رابطــه زير كه بُيان كننده روش انطبا ق مى شاشد مساسبه كرد .

$$
F=F_{u}^{\prime}+\lambda_{b} F_{b}
$$

$$
\begin{aligned}
& \left(I^{k}\right)\left(\Delta_{b o}\right)=\frac{+1, i 5 k^{1^{\prime}, \prime^{\prime}}}{E} \quad \Delta_{b a}=\frac{13 a^{j^{\prime}, r^{1}}}{E}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \frac{13 J}{E}+\frac{\pi .97}{E} X_{b}=0 \quad X_{b}=-16.98 \quad \text {. }
\end{aligned}
$$



$$
E=30 \times 10^{5} \mathrm{kips} \text { sq in } \quad \text { داخل برانتز ذكر شده است }
$$

خون اين سازه هكدرجه نامعين است X را بهعنوان مجهول انتخاب مىكنيم .

$$
\Delta_{c}^{-}=\Delta_{c o}+X_{c} b_{c c}=0
$$



با استناده از روث كار بجازی بهمحاسبه مقادير
$\Delta_{c a}$ : $F_{Q}=F_{G} \quad F_{P}=F_{0} \quad\left(I^{k}\right)\left(\Delta_{c o}^{+}\right)=\frac{l}{E^{\prime}} \sum F_{c} F_{0} \frac{L}{A}$
$\delta_{c i}: \quad F_{Q}=F_{0} \quad F_{P}=F_{G} \quad\left(I^{*}\right)\left(\delta_{c c}^{-}\right)=\frac{l}{E} \sum F_{c}^{2} \frac{L}{A}$
از Tن.جائىكه هم از نظر باركذارى هم از نظر شكل سازه و هم از حيث تكيهكا هـها تقارنوجود دارد ، فقطنصف ميلمهاي خرها در جدول درج شـده ها است .

$$
\frac{-279.5}{E}+\frac{19.875}{E} X_{\mathrm{c}}=0 \quad \therefore X_{c}=+13.7 \quad \therefore H
$$

مبا حث بنبادى ثحليل سازهها



اعضاء عابت مستند .

این خرها ازنظر تكيهكاهى معين است ولى از نظر نهروى ميلههاى خود دودرجهنامعين
 میىترهم :

$$
\begin{align*}
& \Delta_{1}^{\prime}=\Delta_{10}+X_{1} \delta_{11}+X_{3} \delta_{19}=0  \tag{1}\\
& \Delta_{3}^{\prime} x_{1}-\Delta_{30}+X_{1} \delta_{21}+X_{3} \delta_{22}=0 \tag{r}
\end{align*}
$$

ههدليل تانون ماكسوئل مجهولها اين تغيهر مكانسها عبارتتداز خواهـم داشت :

$$
\begin{aligned}
& \left(1^{k}\right)\left(E A \Delta_{10}\right)=\Sigma F_{1} F_{0} L=-2,040^{3 \prime} \\
& \left(1^{k}\right)\left(E A \Delta_{20}\right)=\Sigma F_{1} F_{0} L=+\gamma \theta 0^{*^{\prime \prime}} \\
& \left(1^{*}\right)\left(E A \Delta_{12}\right)=\Sigma F_{1} F_{L} L=+12,8^{\prime \prime} \\
& \left(1^{\circ}\right)\left(E A \Delta_{11}\right)=\Sigma F_{1}^{2} L=+8 \theta .4^{4^{\prime \prime}}
\end{aligned}
$$

 داشت :

$$
\begin{array}{r}
-2,040+86.4 X_{1}+12.8 X_{2}=0 \\
+760+12.8 X_{1}+86.4 X_{2}=0
\end{array}
$$



$$
X_{1}=+25.5 \quad X_{x}=-18.0
$$



 مهله شود ، طــرا ؟


 الن ميلمها حول مغصلماى كرهها وجود دارد براى اهن كم امكان صحهع هنينعـلىرا نـشان
 د رميلهاى كه در دوانتهاى خود بدهنصورت منصل شدها يـت معهن مىبا شدلذا جنـهناتمالى

قابل إنفصال نخواهد بود و بـدينترتيب وتتى عا مىكوئهم كه ميلهاي را برث مىد هيم منظور







الهته نـشاندادن هنـين شرع اتصالـى در هیه مواردى كه ميله را بهـمنظور سلب قــدرت
 كه ذر نمودأر خطى نشان دادهايم هنـين حالاتى را بــان شواه هيم كرد ولـى منظـورما اتصالـى
از نوع بالا خـوا هد بود .



$$
E=30 \times 10^{2} \mathrm{kips} \text { sq in } \quad .
$$



$$
\begin{align*}
& \Delta_{b}^{)_{b} C}=\Delta_{t b}+X_{b} \delta_{b b}+X_{c} \delta_{b c}=0  \tag{1}\\
& \left.\Delta_{c}\right)^{C}=\Delta_{r u}+X_{b} \delta_{r b}+X_{c} \delta_{c c}=0 \tag{T}
\end{align*}
$$

مىكيهم لذا خواهيم داهت :


: خواهيم داشت $\delta_{c c}$, $\delta_{c b}$ • $\delta_{c c} \cdot \Delta_{c o}$

$$
\begin{aligned}
& E I_{1 \tau_{10}}= \\
& \frac{108}{15}\left[\frac{(9)(6)}{2}\right. \\
& \begin{array}{l}
\left.+\frac{(6)(11)}{2}\right] \\
E I_{1} \tau 90= \\
72 \\
1 \overline{5}\left[\frac{(9)(6)}{2}\right.
\end{array} \\
& \left.+\frac{(6)(11)}{2}\right]=288
\end{aligned}
$$



با جاكذارى اين متادير در معادلات (1) و (Y) و حذف از معادلات خخواهيم داشت :

$$
\begin{aligned}
& 780+6.67 X_{b}+0.89 X_{c}=0 \\
& 788+0.83 X_{b}+4.87 X_{c}=0
\end{aligned}
$$

از حل أین د ستكاه معادله معاد هر زهر بهد ست مى عـد :

$$
X_{b}=-00.3 \quad X_{0}=-142.0
$$

ته از معلوم شدن اين متاد ير لنكر مىتوان در قسمتهاى مختلف تهر با استاده از معادلات تعادل بهمحاسبه برش • عكسالعملها و لنتكرها پرداخت كه در اين صورت نتايع نشثان داده شده هاصل خواهد شد

## بحث :

وتتى لنتكرهاى تكيهكاهى را بـعنـوان مجهول انتتخاب مىكنـي ، متأومـت در هراهر لنـكر
 بهنحوهء هرخورد با تغيهر I در طول تهر اين مسالـه توجه نـما يند ، د يـده مىشودكهيك
 از انججام ا'ين عمل دهكر ذكر متادير متغير I در این مساله مورد هـيا نشخواهد كرد .

متال Y - Ir
را برای آن رسم كنيد



$$
\Delta_{c}=\Delta_{0}+X_{0} \delta_{\infty}=0 \quad: \quad: \quad \text { خواهنم داشت }
$$

حال با استغاده از تضاهاى سطح لنكر معادهر

$$
E / \mathrm{r}_{\mathrm{bo}}=(720)(12)\left(\frac{12}{24}\right)=4,320 \quad \therefore \Delta_{4}=-\left(\frac{4,520}{E I}\right)(18)=\frac{-77,7800^{\prime}}{E I}
$$

$$
E I r_{b c}=(18)(12)\left(\frac{16}{84}\right)=164 \quad \therefore 8_{c t}=\left(\frac{144}{E I}\right)(18)+\left(\frac{18}{E I}\right)(9)(18)^{\circ}=+\frac{4,588^{4^{3}}}{E I}
$$

بدين ترتيب خحوا ميم داشت :

$$
\frac{-77,760}{E I}+\frac{4,856}{E I} X_{i}=0 \quad X_{c}=+17.16 \quad \therefore 4
$$

بتيه محاسبات را مىتوان با استغاده از روابط تعادل انجام داد .

متال

اين سازه عك درجد ناهعين مىباشد ، تطعه كششى را بريـده و نهـروى داخلىى Tن را بهعنــوان

 استغاد ه از روث كار مجازى محاسيه مىينمائهم •


$$
\sum Q \delta=\sum F_{Q} F_{P} \frac{L}{A \tilde{E}}+\sum \int M_{Q} M_{P} \frac{d \theta}{E I}
$$

B

$$
\begin{array}{ll}
0<x<18 & L=18 \\
M_{0}=\delta x & F_{0}=0 \\
M_{0}=-0.4 x & F_{0}=-0 \\
& \\
& \\
0<x<\theta & \\
M_{0}=15 x & F_{0}=0 \\
M_{a}=-0.4 x & F_{a}=0
\end{array}
$$

$$
\text { BE } E
$$

$$
\begin{array}{ll}
\theta<x<12 & \\
M_{0}=120-5 x & F_{0}=0 \\
M_{a}=-0.4 x & F_{a}=0
\end{array}
$$

از
號

$$
\begin{array}{ll} 
& L=10 \\
M_{0}=0 & F_{0}=0 \\
M_{0}=0 & F_{0}=+1
\end{array}
$$

از

$$
\begin{aligned}
& \left(I^{\Delta}\right)\left(\Delta_{00}\right)=\sum F_{a} F_{0} \frac{L}{A E}+\sum \int M_{0} M_{0} \frac{d s}{E I}=0+\int_{0}^{12}{ }^{(6 x)(-0.4 x)} \frac{d x}{E I_{\mathrm{i}}} \\
& +\int_{0}^{0}(15 x)(-0.4 x) \frac{d x}{E I_{2}}+\int_{6}^{12^{-}}(120-6 x)(-0.4 x) \frac{d x}{E I_{3}} \\
& \therefore E I_{1} \Delta_{00}=-3,168^{\prime \prime}{ }^{1}
\end{aligned}
$$

$$
\begin{aligned}
& \left(I^{\prime}\right)\left(\mathrm{d}_{\mathrm{oa}}\right)=\sum F_{0} \frac{L}{A E}+\sum \int M_{a}^{\prime} \frac{d s}{E I}=\frac{(-0.6)^{?}(12)}{E A_{1}}+\frac{\left(I^{\prime}\right)(10)}{E A_{1}} \\
& +2 \int_{0}^{12}(-0.4 x)^{\prime} \frac{d x}{E I_{2}} \quad \therefore R I_{3} \mathrm{~d}_{0 c}=+208.05^{4^{\prime}}
\end{aligned}
$$

جون دارءم :

$$
\begin{array}{cc}
\frac{I_{1}}{A_{2}}=\left(\frac{600}{144^{4}}\right)\left(\frac{144}{20}\right)-\left(\frac{50}{144}\right)^{\prime \prime} & \frac{I_{2}}{A_{1}}=\left(\frac{600}{144^{4}}\right)\left(\frac{144}{8}\right)-\left(\frac{500}{144}\right)^{\prime \prime} \\
\frac{-5,168}{E I_{2}}+\frac{206.05}{E I_{2}} X_{4}=0 & \therefore X_{0}=+16.38 \quad \therefore \quad:
\end{array}
$$

اكر از تغهير شكل هاصل از نهيروى محورى صرفـنظر ثود خواههم داشت :

$$
X_{\mathrm{a}}=\frac{s, 168}{184.38}=+17.8
$$


در مثالهاى زیر بهشرح جكونكى كاربرد معادلات انطباق در تحلـيل تنش سازهمــــاى


- غهره تراد دارند میهردازهـ






 ميلمهاى aB
 - دادهاهـ

اين خرها يك د رجه نامعين است ، ميله bC را تطع كرده و نـهروى ميله T ان را بـهعنوان
مجهول اضا فى فرن مىكنهم ، در ا اين عالت خوا ههم داشت :

$$
\Delta_{a}^{\prime}=\Delta_{a} r+X_{a} d_{a \Delta}=0
$$

با استغاده از روث كار مجازى ،

$\Delta_{a}: F_{Q}=F_{B}$

$$
\left(1^{*}\right)\left(\Delta_{a}^{a} a^{*}\right)-\sum F_{\Delta a_{d} d L}=a_{i} \sum F_{d} d L
$$

$\delta_{c a}: F_{Q}=F_{P}=F_{a} \quad\left(I^{\prime}\right)\left(\delta_{c a}^{\prime}\right)=\frac{1}{E^{\prime}} \sum F_{a}^{\prime} \frac{L}{A}$


$$
\begin{aligned}
& \delta_{a c}=+\frac{8.64^{\prime \prime \prime, \prime \prime}}{30 \times 10^{2 k} i^{\prime \prime}}=+0.000288 \mathrm{jl} \\
& -0.0056+0.000888 X_{4}=0 \quad X_{\mathrm{a}}=+12.5 \quad \text { كشش }
\end{aligned}
$$

مثال تطعه AB بهاندازه " 3 كوحكتر ساخته شده باشد حساب كنهـ .

$$
\Delta_{c}^{+}=\Delta_{c E}+X_{c} \delta_{c c}=0
$$

با بهكارهردن روثي كار مجازى و استفاده از معلومات مثال (ץ-Y أ ) متدار مساسبه میكردد

$$
\begin{aligned}
& \left(1^{d}\right)\left(\Delta_{0 B}^{+}\right)=\Sigma F_{0} \Delta L_{B}=\left(+1^{4}\right)\left(-16_{6}\right)^{\prime} \quad \Delta_{0 E}=-0.0104^{\prime} \\
& \text { از مثال ( ( } \\
& \delta_{\text {ea }}=+\frac{18.875^{b / \prime^{\prime \prime}}}{E}=+\frac{19.875^{b^{\prime \prime} \prime \prime \prime}}{30 \times 10^{244^{\prime \prime}}}=+0.0006625^{\prime} \\
& \therefore-0.0104^{\prime}+0.0000625^{\prime} X_{0}=0 \quad \therefore X_{c}=+16.7 \quad \therefore \$
\end{aligned}
$$

هس از T

$$
F=X_{0} F_{\varepsilon}=16.7 F_{\varepsilon}
$$

مثال


تكـهكا 0.96 in
$E=30 \times 10^{2} \mathrm{kips}$ sq in مقادير سطع متاطع را در داخخل هرانتز نشان دادها يم عكسالعمل عمودى c را بـعنـوان مجهول اضافى انتخاب مىكنهم $\Delta_{!}^{\dagger}=\Delta_{0} s+X_{0} \delta_{00}=-0.04^{\prime}$

با استغاده از روش كار مجازى خوا هيم داشت :
$\Delta_{c s}: \quad$ 玉Qs $=0$

$$
\text { خون } \Delta L=0 \text { (بـعمال } \Delta L-1 \text { مرا جعه شود ) }
$$

$\left(1^{b}\right)\left(\Delta_{c s}^{\dagger}\right)+\left(0.5^{\mathrm{k}}\right)\left(0.08^{5}\right)$

$$
\begin{aligned}
& +\left(0.5^{b}\right)\left(0.0 s^{\prime}\right)-0 \\
\therefore \Delta_{k} s & =-0.085^{\prime}
\end{aligned}
$$

كه بر مقدار حاصل از هررجي هندسى در شكل نشان داده شده تطابت دارد

بهدلـيل تقارن د رج نهيى از ميلههاى خرها در جدول كافى خـواهد هود .


$$
\begin{aligned}
& \therefore-0.085+0.000816 \mathrm{X}_{0}=-0.04^{\prime} \\
& X_{e}^{\prime}=\frac{-0.015}{0,00016}=-69.5 \quad \text { بعسعت }
\end{aligned}
$$



مثال نـوده و نـودار لنكر خمثى را برای

نتطه b: 0.04fl 0 , بطرفتاتين
o 0 :d

$$
E=90 \times 10^{3} \mathrm{kips} / \mathrm{sq} \text { in }
$$

$$
\begin{align*}
& \left.\Delta_{h}\right)\left(=\Delta_{u} B+X_{b} \delta_{b b}+X_{c} \delta_{L E}=0\right.  \tag{1}\\
& \left.\Delta_{c}\right)\left(=\Delta_{u s}+X_{b} \delta_{c b}+X_{c} \delta_{c t}=0\right. \tag{r}
\end{align*}
$$

در الین حالت:

با با استفاده از روش كار مجازى و با با استفاده از هررسى مندسى مقابل خواههم داشت:

$$
\begin{aligned}
& \Delta_{L s}=-0.000867 \\
& \Delta_{c s}=-0.008444
\end{aligned}
$$

از متال (ץآף ) داريم :

$$
\begin{aligned}
& \delta_{\Delta b}=\frac{6.867^{w^{2}}}{E I_{1}} \quad \delta_{E c}=\frac{4.667^{\prime \prime}}{E I_{1}^{\prime}} \\
& \delta_{b c}=\delta_{c b}=\frac{0.859^{w^{\prime}}}{E I_{1}}
\end{aligned}
$$

$$
6.667 X_{b}+0.888 X_{0}=0,000667 E I_{1}
$$

$$
0.839 X_{b}+4.667 X_{0}=0.003444 E I_{4}
$$

هـين طرهت خواههم داشت :

$$
\begin{aligned}
& E I_{1}=\left(50 \times 10^{3} \times 144\right)^{4 \prime \prime}\left(\frac{1,000}{144^{2}}\right)^{, 6} \\
&=0.208 \times 10^{4} \mathrm{r}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& X_{b}=+0.00000885 E I_{1}=+1.4 \\
& X_{c}=+0.0007 s 6 E I_{1}=+153.2
\end{aligned}
$$



هس از معلوم شدن ايتن دو مقدار محاسبه عكسالعملها و رسم نمودار لنكر خمشى سادهخواهد
ri ـ
از بعث قبلى چنين هر مى چـد كه انتخابـهاى متغاوتى در مجهولات اضافى وجوددارد



جننين نتهجهاي در صورتى هاصل مىكردد كه بـنـكات زیر توجه شود : ا ـاز هرنوع تقارن سازه استفاده شود .

متناوت را بتوان درهم ادغام نهود .
هررسي انتخابـهاي متعدد بجهولات اضافى در مورد خرهاى سرتا سرى شكل (
 كه هراى مجهولات اضافى بعمل 「ید منجر بهد و معادله زعر خواهد شد .

$$
\begin{align*}
& \Delta_{a}=\Delta_{a c}+X_{a} \delta_{a a}+X_{b} \delta_{a b}=0 \\
& \Delta_{b}=\Delta_{b o}+X_{a} \delta_{b a}+X_{b} \delta_{b b}=0 \tag{الغ}
\end{align*}
$$

جون

$$
\begin{aligned}
&(1)\left(\Delta_{a o}\right)= \sum F_{a} F_{0} \frac{L}{A E} \\
&(1)\left(\Delta_{b o}\right)=(1)\left(\delta_{a a}\right)=\sum F_{b}^{2} \frac{L}{A E} \\
& F_{b} F_{o} \frac{L}{A E} \\
&(1)\left(\delta_{a b}\right)=\sum F_{a} F_{b} \frac{L}{A E}
\end{aligned}
$$

 اكر سازه متقارن باشد و مجهولات اضافى نيز بهصورت متقارن انتخاب شوند نيروماى F $F_{b}$
 مهاسبه كردد . هركاه انتخاب مجهولات بهنوعى باشد كه اثر باركذارههاى مختلغ تا حد امكان بهميلمماي كیترى اختصاص شهدا كند حجم مها
 در هرسه انتخاب مختلف شكل (Yآها را كه تحت اثر باركذاريهاى مختلغ تعت اثر بار ترار مىكيرند در هرحالتى نشان دادهاهـم




شكلبr-a انتخاب مجهولههات اضافى


 ههعنوان مجهول اضافى در نظر كرفته شود ، از طرف ديكر اكر تطمهاى دردوانتهاى خود



「 「
 در روش قيل تحليل مازهماى نامعهن از طرهق ایجاد معادلات انطباق هرایتغيهد

مكانهاى نقاطاثر مجهولات اضا فى انجام مىكرفت ، بهعوض جنينكارىمىتوان روابط مربوط

 جهت كارمرد آن توسط برخى از مهندسين و با داتشجويان ترجيح داده مىشود .از آنجائى




 تغيهرشكل حاصل از خمش د ر محاسبات داخل مىشود و لـذا خواهيم داشت :

$$
\begin{gathered}
W_{I}=\sum \int M^{2} \frac{d s}{2 E I} \\
\frac{\partial W_{I}}{\partial X_{b}}=\Delta t
\end{gathered}
$$

و جون دارهم : (الغ)
حهون نعظه b از سازه اهلى تغيهرمكانى ندارد ، لـذا مقدار هراهر با هغر شود و ها اهن كه :

$$
\begin{equation*}
\frac{\partial W_{I}}{\partial X_{\mathrm{b}}}=\sum \int M \frac{\partial M}{\partial \bar{X}_{\mathrm{b}}} \frac{d s}{E I}=0 \tag{ب}
\end{equation*}
$$


بارهای وارده و مجهول اضافى X

$$
M=M_{\mathrm{b}}+X_{b} M_{b} \quad \frac{\partial M}{\partial X_{b}}=M_{b}
$$

بدهن ترتيب معادله ( ب ) بهصورت زير د ر خواهد آمد .

$$
\begin{equation*}
\sum \int M_{o} M_{b} \frac{d s}{E I}+X_{b} \sum \int M_{b}^{\frac{1}{b}} \frac{d s}{E I}=0 \tag{}
\end{equation*}
$$

تعيينا ين انتكرالها هراى سازهاوليه ساده است و بس ازآن مىتوان مقدار X X را محاسبهنعود . اكر از روش انطباق استغاده كرده بودهم متادير مه زهر حاصل مىشد :

$$
\begin{equation*}
(1)\left(\Delta_{b 0}\right)=\sum \int M_{0} M_{b} \frac{d s}{E I} \quad(1)\left(\delta_{b b}\right)=\sum \int M_{0}^{z} \frac{d s}{E I} \tag{ه}
\end{equation*}
$$

از معادلات (هـ ) بلافاصله جنين بر مى بيد كه معادله (د ) را مىتوان بهشكل زيرنيزاراءهنمود :

$$
\Delta_{b u}+X_{b} \delta_{b b}=0
$$

بهاين ترتيب د بده مىشود كه اكر از روش كار مجازى براى محاسبه انطباق استفاده شود اين دو روش اساسا" يكى خواهند شد .





 در مثالهای مربوط بهـخشش (


 معادلات انطبات وجود ندارد .
اكر درتحليل سازههاى نامعين ،تغيهر مكان نتطه اثر مجهولى براهر با صغــر باشــــــد ،

 متدارمجهول را بهنوعى بايستى انتخابنمود كه عبارتأنرزى كرنشى (يا تغهيرشكل ) به متدار


حداقل خوانده شده و بهصورت زير بـان مىشود .


-
مثالـهاى زیر عمدتا"تـخاطر شرح كاربرد تضهيهد وم كاستهكليانو در تحليل تنشسازههاء نامعين انتخاب شده است ،اكر در هربك ازاین حالات مسالمرا بااستفاده از معادلاتانطبات


خواهيم دريافت كه محاسبات أنجام شده الساسا" با هحاسبات مريوط همروش كاستهكليانو هككى مىبا شد .تنها فرقىكه درابن دو روش وجود دارد اين استكه در راهحل بهطريقتكاستهكليانو

 در راه حل ها ستيكليا نو مجهولا تا اظ فى درطول حل مـا له برحسب أحاد خود د درعمليات

 ) كه متدار X X $_{\text {b }}$



ابعاد در طول كليه هحاسبات بـهنظور سازكارى عطاتيات همواره اليزامى خواهد بود .
 مكان سازهها در اثر باركذارى بوجود Tمده باشد البته بهطريقى كه در بائهن بـيـان مىشود

 را حذف كنهد . حال سازه اوليه را تحت اثر تغيهر درجه حرارت ها ما نشست ترار د هيدوتغيهر مكان نتاطاثر اتمالات، اضافى را در این سازه اوليه و در این شرا بط مساسهـ كنيدالبته جنهن


 مكان حاصل از این مجهولات استفاده نمود . با جاكذارى متادهر تغيسرمكانها كهتهلا" محاسهـ شده است معادلاتى بهد ست مى' يـ كه در ر انـها مجهولات اضافى تنـها مجهولات بعــادلات


 هثال rir -

$$
E=30 \times 10^{3} \mathrm{kips} \text { sq in } \quad \text { داخل يرانتز نشان دادهايم }
$$

اين خرها یك درجه نامعين مىباشد . نــروى محورى ميله bd را بهعنوان مجهـــول اضافى


حال ساير نيروى ميلهما را میتوان بهكمك معادلات تعادل و با با اداهه جدول فوقمماسبــ

مثال . شكل حاصل از نيروى معورى و لنكر خمشى را در مهاسبات داخل كنيا

اين تاب سه درجه ناسعين است ، شاهتير آن در وسط دهانه برش داده و لنكر نيروى مهورى



$$
\begin{gathered}
W_{I}=\sum \int M^{2} \frac{d s}{\partial E I}+\sum \frac{P L L}{Z A Z} \\
\frac{\partial W_{1}}{\partial X_{0}}=\Delta_{a}^{J}=0 \\
\frac{\partial W_{1}}{X_{0}}=\Delta_{0}^{-}=0 \\
\frac{\partial W_{1}}{\partial X_{e}}=\Delta^{J I}=0
\end{gathered}
$$

با مشتقكيري و حذف E خواهيم داغت :


$$
\begin{align*}
& \sum \int M \frac{\partial M}{\partial X_{\mathrm{a}}} \frac{d s}{I}+\sum F \frac{L}{A} \frac{\partial F}{\partial X_{\mathrm{a}}}=0  \tag{1}\\
& \sum \int M \frac{\partial M}{\partial X_{b}} \frac{d s}{I}+\sum F \frac{L}{A} \frac{\partial F}{\partial X_{b}}=0  \tag{r}\\
& \sum \int M \frac{\partial M}{\partial X_{c}} \frac{d s}{I}+\sum F \frac{L}{A} \frac{\partial F}{\partial X_{\mathrm{c}}}=0 \tag{r}
\end{align*}
$$



$$
\begin{aligned}
& 0<x<2 \quad M=X_{\mathrm{a}}-x X_{\mathrm{c}} \quad \frac{\partial M}{\partial X_{\mathrm{c}}}=1 \quad \frac{\partial M}{\partial X_{b}}=0 \quad \frac{\partial M}{\partial X_{c}}=-x \\
& L=\mathscr{Q}^{\prime} \quad F=X_{b} \quad \frac{\partial F}{\partial X_{a}}=0 \quad \frac{\partial F}{\partial X_{b}}=1 \quad \frac{\partial F}{\partial X_{c}}=0 \\
& B \text { Ł } C \\
& 2<x<10 \quad M=X_{a}-x X_{a}-100(x-2) \quad \frac{\partial M}{\partial X_{a}}=1 \quad \frac{\partial M}{\partial X_{b}}=0 \quad \frac{\partial M}{\partial X_{e}}=-x \\
& L=g^{\prime} \quad F=X_{b} \quad \frac{\partial F}{\partial X_{a}}=\frac{\partial F}{\partial X_{t}}=0 \quad \frac{\partial F}{\partial X_{b}}=1 \\
& A_{B} E^{\prime} \\
& 0<y<15 \quad M=X_{a}-y X_{b}-10 X_{c}-800 \quad \frac{\partial M}{\partial X_{a}}=1 \quad \frac{\partial M}{\partial X_{b}}=-y \quad \frac{\partial M}{\partial X_{c}}=-10 \\
& L=15^{\prime} \quad F=-100-X_{c} \quad \frac{\partial F}{\partial X_{a}}=\frac{\partial F^{\prime}}{\partial X_{b}}=0 \quad \frac{\partial H^{\prime}}{\partial X_{c}}=-1 \\
& \text { DEF } \\
& 0<x<10 \quad M=X_{a}+x X_{0} \quad \frac{\partial M}{\partial X_{a}}=1 \quad \frac{\partial M}{\partial X_{b}}=0 \quad \frac{\partial M}{\partial X_{c}}=x \\
& L=10^{\prime} \quad F=X_{b} \quad \frac{\partial F}{\partial X_{a}}=\frac{\partial F}{\partial X_{c}}=0 \quad \frac{\partial F}{\partial X_{b}}=1 \\
& { }_{K} \in D j \\
& 0<y<15 \quad M=X_{a}-y X_{b}+10 X_{e} \quad \frac{\partial M}{\partial X_{a}}=1 \quad \frac{\partial M}{\partial X_{b}}=-y \quad \frac{\partial M}{\partial X_{s}}=10 \\
& L=15^{\prime} \quad F=X_{c} \quad \frac{\partial F}{\partial X_{a}}=\frac{\partial F}{\partial X_{b}}=0 \quad \frac{\partial F}{\partial X_{c}}=1 \\
& \text { با جاكذارى در معا دله (1) خواهميم داشت : } \\
& \int_{0}^{2}\left(X_{a}-x X_{c}\right)(1) \frac{d x}{4 I_{1}}+\int_{2}^{10}\left(X_{a}-x X_{c}-100 x+200\right)(1) \frac{d x}{4 I_{1}} \\
& +\int_{0}^{15}\left(X_{a}-y X_{b}-10 X_{c}-800\right)(1) \frac{d y}{I_{1}}+\int_{0}^{10}\left(X_{a}+x X_{c}\right)(1) \frac{d x}{4 I_{1}} \\
& +\int_{0}^{15}\left(X_{a}+10 X_{e}-y X_{b}\right)(1) \frac{d y}{I_{1}}=0
\end{aligned}
$$



$$
35 X_{\mathrm{a}}-225 \mathrm{X}_{\mathrm{b}}=12,800
$$

حال معادله (Y) را ايـجاد مىكتهم

$$
\begin{aligned}
\int_{0}^{15}\left(X_{e}-y X_{i}-10 X_{e}-800\right)(-y) \frac{d y}{I_{1}}+\int_{0}^{15}\left(X_{a}\right. & \left.-y X_{b}+10 X_{e}\right)(-y) \frac{d y}{I} \\
& +X_{b} \frac{(1)(10)}{2.6 A_{1}}+X_{b} \frac{(1)(10)}{2.6 A_{1}}=0
\end{aligned}
$$

بههمان ترتيب ६س از ضرب , حذف انتكرالكيرى لازم عبارت زهر حاصل خوا هد شد .

$$
\begin{gathered}
(-225) X_{\mathrm{c}}+\left(2,250+7.5 \frac{I_{1}}{A_{1}}\right) X_{\mathrm{b}}=-90,000 \\
\frac{I_{1}}{A_{1}}=\left(\frac{500}{144^{2}}\right)\left(\frac{144}{50}\right)=\frac{50}{452}
\end{gathered}
$$

و هون :
بـابرابن خواهيم داشت :

$$
-225 X_{.}+2,250.87 X_{\mathrm{b}}=-90,000
$$

بـهنحوى مثاهه فوت معادله (r) بهصورت زهر در مئ بهد :

$$
\begin{aligned}
\left(3,100.7+30 \frac{I_{1}}{A_{1}}\right) X_{0} & =-\left(185,800.7+1,500 \frac{I_{1}}{A_{1}}\right) \\
3,170.14 X_{0} & =-100,040.8
\end{aligned}
$$

$$
\begin{aligned}
& \text { هس از حل د ستكاه معادلات حاصل از ( } 1 \text { (r) • (r) } \\
& X_{4}=+504.2^{\prime \prime} \\
& X_{b}=-9.56^{*} \\
& X_{c}=-\underline{95.7 \theta^{*}}
\end{aligned}
$$

 شامل A را از معادلات حذف مينمودهم در این صورت نتا هي زهر بهد ست مىآهـ .

$$
\begin{aligned}
& X_{\bullet}=+504.0^{\circ} \\
& X_{6}=-\underline{9.60^{\dagger}} \\
& X_{8}=-\underline{39.74^{\star}}
\end{aligned}
$$

 با اثر تغيهرشكل خخمثى در سازههاي ساخته شده از قآهـاى صلب صرفنـلر نمود .

مثال 10 - $10=$ نيروى داخلى ميله كششى را محاسبه كنهد ، هردو اشرحاصلاز نيروى مهورى و لنكر خمنى را در نظر بكيريد .

اين سازه هك درجه ناسعهن مىباشد ، نيروى داخلى ميله كششى را بهعنوان مجهول اضانــى
 انتخاب مىكنهـ در اعن صورت خوامهي داشت :

$$
\begin{align*}
& \frac{\partial W_{t}}{\partial X_{1}}=\Delta_{1}^{\prime} X_{1}=0 \\
& \partial W_{1}^{\prime}  \tag{1}\\
& \partial X_{1}^{\prime}=\sum \int \dot{M} \frac{\partial M}{\partial X_{1}} \frac{d x}{E^{\prime}} \\
&+\sum F \frac{\partial F}{\partial X_{1}} \frac{L}{A E}=0
\end{align*}
$$

$c$ ビ $_{B}$

$$
M=0 \quad F=X_{1} \quad \frac{\partial F}{\partial X_{1}}=1
$$

$$
L=20^{\prime}
$$

Dt $_{E_{j}}$

$$
\begin{array}{rlrl}
M & =0.8 x X_{1} & F & =-0.8 X_{1} \\
\frac{\partial M}{\partial X_{1}} & =0.8 x & \frac{\partial F}{\partial X_{1}} & =-0.8
\end{array}
$$

$$
0<x<8 \quad L=8^{\prime}
$$



$$
M=0.6 x X_{1} \quad F=-0.8 X_{1}
$$

$$
-10(x-8)
$$

$$
\frac{\partial M}{\partial X_{1}}=0.8 x \quad \frac{\partial F}{\partial X_{1}}=-0.8
$$

$$
8<x<1 \theta \quad L=8^{\prime}
$$

بدهن ترتيب معأدله ( 1 ) خواهد شد .

$$
\begin{aligned}
\int_{0}^{8}\left(0.8 x X_{1}\right)(0.8 x) & \frac{d x}{I_{1}}+\int_{8}^{18}\left(0.6 x X_{1}-10 x+80\right)(0 . \theta x) \frac{d x}{I_{2}}+\frac{X_{1}(20)(1)}{A_{1}} \\
+\frac{\left(-0 S X_{1}\right)(18)(-0.8)}{A_{2}} & =0
\end{aligned}
$$

$$
\begin{aligned}
& X_{1}\left(491.58+80 \frac{I_{\mathbf{2}}}{A_{1}}+10.24 \frac{I_{\mathbf{2}}}{A_{2}}\right)=2,560 \quad \text { از آن رايطه حاصل خوا هد شد } \\
& \frac{I_{2}}{A_{1}}=\frac{25}{I_{2}} \quad \frac{I_{2}}{A_{1}}=\frac{\sigma}{2 / 4} \\
& \therefore 585,32 X_{1}=2,560 \\
& \therefore X_{1}=+4.80^{*}
\end{aligned}
$$

و اكـراز اشر نبروى محورى مرف نظر مىشد مقدار نهـرو بـهترار زبر میبود .

$$
X_{1}=+6.20^{ \pm}
$$

r



 مطابق ثكل ( (
 C
 هرابر با میكردد.








 -نشان دادها

$$
\theta_{C L}=\beta_{L}-\tau_{C L} \quad \theta_{C R}=\tau_{C R}-\beta_{R}
$$

, جون منحنى خهر در نتطه 'C هیوستكى خود را حغظ مىكند لذا :

$$
\begin{aligned}
\theta_{c L} & =\theta_{C R} \\
\beta_{l .}-\tau_{C L} & =\tau_{C l:}-\beta_{R}
\end{aligned} \quad \text { (الغ } \quad \text { (ازنجا }
$$

و جون كلهي اهن زوايا كوجك هستند ، مىتوانهم فرض كنهم كه .

$$
\beta_{L}=\frac{\delta_{L}-\delta_{C}}{l_{L}} \quad \beta_{K}=\frac{\delta_{R}-\delta_{C}}{l_{R}}
$$

 استفاده از قضيهي دوم سطع لنكر مهاسبه نمائهم :

$$
\begin{aligned}
& \tau_{C L}=\frac{M_{L}}{E I, i,}\left(\frac{M_{L^{\prime}}{ }^{\frac{2}{L}}}{6}+\frac{M_{C} l_{L}^{2}}{3}+\int_{0}^{L_{L}} M_{o}^{L} x_{L} d x_{L}\right) \\
& \tau_{C R}=\frac{1}{E I_{R} l_{R}}\left(\frac{M_{R} l_{R}^{2}}{6}+\frac{M_{C} l_{R}^{2}}{3}+\int_{0}^{t_{R}} M_{o}^{R} x_{R}^{\prime} d x_{R}^{\prime}\right)
\end{aligned}
$$

اكر مقادير زهر با علامْ نشان داده مشخص كنهي •

$$
\left(\pi_{0}\right)_{L}{ }^{*}=\int_{0}^{l L} M_{0}^{L} x_{L}{ }^{\prime} x_{L} \quad\left(\pi_{0}\right)_{R}=\int_{0}^{L_{R}} M_{0}^{R} x_{R}^{\prime} d x_{R}^{\prime} \quad(\varphi-i \varphi)
$$

اكر معادهر معادله( (٪)


در الستفاده از اهن معادلات بهنكات زهر دقت كامل نمائيد .

$$
\begin{align*}
& M_{L} \frac{l_{L}}{I_{L}}+2 M_{c}\left(\frac{l_{L}}{I_{L}}+\frac{l_{L}}{I_{R}}\right)+M_{R} \frac{l_{R}}{I_{R}}=-\frac{\boldsymbol{\Sigma}_{o}}{I_{L}}-\frac{\mathfrak{R}_{o}}{I_{R}} \\
& +6 E\left[\frac{\delta_{L}}{l_{L}}-\delta_{C}\left(\frac{1}{l_{L}}+\frac{1}{l_{k}}\right)+\frac{\delta_{R}}{l_{K}}\right] \\
& \text { در رابطه فوق مغا ههم زهر مطرح مىياشند : } \\
& \mathcal{L}_{o}=+\frac{6\left(M_{L_{0}}\right)_{L}}{l_{L}} \quad \mathcal{R}_{0}=+\frac{6\left(\Re_{0}\right)_{R}}{l_{R}} \tag{s-ir}
\end{align*}
$$

ا - متادير
كشش نما يند .
Y
.
 † كه تطع مزهور روى دو تكيهكاه ماده قرار كهرد . و در اهـن صورت

 لنكرها فتط بستكى بععلامت عرضهاى نمودار
 مىكردد .

$$
\begin{aligned}
M_{L} l_{L}+2 M_{c}\left(l_{L}+l_{R}\right)+M_{R} l_{R} & =-\mathscr{L}_{0}-\mathbb{R}_{o} \\
& +6 E I\left[\frac{\delta_{L}}{l_{L}} \cdots \delta_{C}\left(\frac{1}{l_{L}}+\frac{1}{l_{R}}\right)+\frac{\delta_{R}}{l_{R}}\right](\mid \mathrm{Y}-\mathrm{Y})
\end{aligned}
$$

عبارات مرهوطبهباركذارى در هالات تصر تحت اثر باركذارى كل د هانه و تحتاثر بارمتمركز در شكل (Y- (Y) نشان داده شده است .


الف -ار متبركز


لا
شكل Y- Y عهارات مرهوطههباركذارى


اعمال معادله سه لنكر به هر سه نقطهاى در طول كکتهر تا زمانى كه در آن طول تهـر
 سرتاسرى بهكار بريم و سه تكيهكاه متوالى Tا نـ را بهترتهب بهغيهيرمكان در طر فـ راست اعن معادله يا برابر با صغر بوده و و با بر بر ابر با با معدار معلومنتاط


 سرتاسرى برقراركنهي و بدين ترتين







مثال

با بكاربردن معادله (r - ه ه و فرض a ، " ، r بهترتهب بهعنوان L • C و R داريم :


$$
\begin{aligned}
& M_{0}=0 \quad M_{t}=7 \quad M_{c}=0 \\
& \delta_{a}=\delta_{i}=\delta_{c}=0 \\
& \mathscr{L}_{0}=\frac{(30)(6)(f)(2 t)}{16}=2,2 \theta 8 \\
& G_{0}=\frac{(4)(18)^{3}}{4}=5,892 \\
& 0+2 M_{6}\left(\frac{16}{I}+\frac{18}{1.51}\right)+0 \\
& =\frac{-2,268}{I}-\frac{\overline{5}, 892}{1.5 I} \\
& 54 M_{C}=-6,156 \quad M_{b}=-\underline{11^{\prime}{ }^{\prime}}
\end{aligned}
$$

مثال

 جايكزبنكرد . بـاهين ترتيب مىتوان معا دلات موردنبازرا با اعـا بهنحوى كه در هربار
 T


$$
\delta_{a^{\prime}}=\delta_{a}=\delta_{b}=\delta_{a}=\delta_{d}=\partial_{d^{\prime}}=0
$$



$$
\begin{gather*}
\mathscr{L}_{0}=0 \quad \mathcal{G}_{0}=\frac{(5)(8)(18)(88)}{80}+\frac{(\theta)(15)(5)(85)}{80}=1,350.5 \quad M_{4}^{\prime}=0 \\
\therefore 40 M_{0}+20 M_{6}=-1,550.5 \tag{1}
\end{gather*}
$$



$$
\begin{align*}
\perp_{0}=\frac{(5)(8)(18)(88)}{80} & +\frac{(8)(16)(5)(35)}{80}=1,459.5 \quad Q_{0}=\frac{(0.9)(18)^{2}}{4}=1,812.2 \\
& \therefore 80 M_{a}+78 M_{6}+18 M_{0}=-8,771.7 \tag{T}
\end{align*}
$$



$$
\delta_{0}=1,518.2 \quad Q_{a}=0 \quad \therefore 18 M_{b}+66 M_{0}+1 \hbar M_{d}=-1,518.2 \quad(Y)
$$

- 

$$
\begin{equation*}
\Omega_{0}=G_{0}=0 \quad M_{d}^{\prime}=0 \quad \therefore 15 M_{e}+30 M_{d}=0 \tag{Y}
\end{equation*}
$$



$$
M_{a}=\underline{-19.17^{k^{\prime}}} \quad M_{b}=\underline{-28.20^{k^{\prime}}} \quad M_{\mathrm{c}}=\underline{-13.74^{k^{\prime}}} \quad M_{d}=\underline{+6.87^{k^{\prime}}} \text { میشد }
$$



 تكيهكاه b: نششستى هرا'هر با 0.0808 fl با



$$
\begin{aligned}
& M_{0}=+0.000658 E I_{1}=+20.8^{* \prime} \\
& M_{b}=+0.0001291 E I_{1}=+40.0^{*}
\end{aligned}
$$

خوا هيـم داشت :

G. A. Maney روثن شيب - تغهيرمكان درسال 191 19 توسط برغسور جي -ا'ى مانى
 كاربرد معادلاتى را كه تهلا" توسطـ ماند را ( Mand rla )و موهر جههت مهاسبه تنشهــاى


و توجهه بسبار عالى بـراى روش بخشش لنـكر مىباشد .
 معادلات تغهيرشكل حامل از لنكر خمشى ملحوظشده ولى از تغهير شكل شاصل از برث و و



اين معادلات بهعنوان اساس استخراج روش شيب ـتغيهرمكان در تحليل سازهما بسيـار كم



 علائم زهر سيب تسهيل در مر محاسبات مىيكردد :





 ـاعترد دوران كرده هاشد .


 ال از قطعه AB بوده ه $A$






 در الهن صورت






مباحث بنـادى تحليل ــازهها


شكل A-1Y استخراج معادلد شيب -تغهيرمكان

متدار لنكر خمشى در هر نتطه از اين قطعه را مىباهستتى با جمع جهرى متادير


بررسي نماتـه .
اكر نمودار لنكر را بـنـمودارM/EI تبديل كنهم در اهن صورت متادير


$$
\begin{align*}
& \Delta_{A}=-\frac{L^{2}}{6 E I} M_{A B}+\frac{L^{2}}{3 E I} M_{H A}-\frac{\left(\mathcal{M}_{1}\right)_{A}}{B I}  \tag{الـ}\\
& \Delta_{B}=\frac{L^{2}}{3 E I} M_{A B}-\frac{L^{2}}{6 E I} M_{B A}+\frac{\left(\operatorname{MM}_{B}\right)_{B}}{E I} \tag{ب}
\end{align*}
$$

در این رواهط هار بر A
 بتد ریكوحكـدكه عملا"یك زاويه را مىتوان با سهنوس و تانزوانت آن يكى فرض كرد با مراجعد بـشكل ، روا بـطزهر را مىتوان يرقرار داشت .

$$
\begin{equation*}
\frac{\Delta_{A}}{L}=\tau_{B}=\theta_{B}-\psi_{A B} \quad \frac{\Delta_{B}}{L}=\tau_{A}=\theta_{A}-\psi_{A B} \tag{e}
\end{equation*}
$$

با حل د ستكاه معادلات (الغ) (ب) (ب) نسبت به


$$
\begin{align*}
& M_{A N}=\frac{2 E I}{L}\left(2 \theta_{A}+\theta_{A}-3 \psi_{A A}\right)+\frac{2}{L^{2}} I\left(\left(M_{0}\right)_{A}-2\left(m_{0}\right)_{n}\right]  \tag{}\\
& M_{H .1}=2 E I \\
& L
\end{align*}
$$



 ك S ا
都




$$
\begin{align*}
& \operatorname{FEM}_{A B}=\frac{2}{L^{2}}\left[\left(\mathfrak{\Pi}_{0}\right)_{A}-2\left(\pi_{0}\right)_{B}\right] \\
& \operatorname{FEM}_{B A}=\frac{2}{L^{2}}\left[2\left(\mathfrak{N}_{0}\right)_{A}-\left(\pi_{0}\right)_{B}\right]
\end{align*}
$$



$$
\begin{align*}
& M_{A B}=\frac{2 E I}{L}\left(2 \theta_{A}+\theta_{B}-3 \psi_{A B}\right)+\mathrm{FEM}_{A B}  \tag{9-ir}\\
& M_{B A}=\frac{2 E I}{L}\left(2 \theta_{B}+\theta_{A}-3 \psi_{A B}\right)+\mathrm{FEM}_{B A}
\end{align*}
$$

N
 داد . اكر تعريغ زهر را در نظر بكهرهم :

$$
\begin{equation*}
K_{N} P=(N F F)=\frac{I_{N F}}{L_{N F}} \tag{10-1r}
\end{equation*}
$$

هعادلد اساسى شهب - تغيهر مكان بمصورت زهر نوشته مىشود .

$$
\begin{equation*}
M_{N} P=2 E K_{N} r\left(2 \theta_{N}+\theta_{r}-3 \psi_{N r}\right)+\text { FEM }_{N P} \tag{11-1r}
\end{equation*}
$$

واضع است كه متدار FEM را میتوان بهسادكى هران هرنوع هاركذارى معين نمودو اكرعلاوه

هرآن دوران مطاس در هردوانتهاى تهر و دوران خط اتصال دو ا انتهایقطعمع علوم شود مىتوان





شكل ri－q بار متمركز

$$
\begin{gathered}
(\mathfrak{M})_{A}=\frac{P a b}{L}\left[\frac{a}{2}\left(\frac{2 a}{3}\right)+\frac{b}{2}\left(a+\frac{b}{3}\right)\right]=\frac{P a b}{6}(2 a+b) \\
\left.(\mathfrak{M})_{B}\right)_{B}=\frac{P a b}{L}\left[\frac{b}{2}\left(\frac{2 b}{3}\right)+\frac{a}{2}\left(b+\frac{a}{3}\right)\right]=\frac{P a b}{6}(2 b+a) \\
\mathrm{FEM}_{A B}=\frac{2}{L^{2}}\left[\frac{P a b}{6}(2 a+b)-2 \frac{P a b}{6}(2 b+a)\right]=-\frac{P a b^{2}}{L^{2}} \\
\mathrm{FEM}_{B A}=\frac{2}{L^{2}}\left[2 \frac{P a b}{6}(2 a+b)-\frac{P a b}{6}(2 b+a)\right]=+\frac{P a^{2} b}{L^{2}}
\end{gathered}
$$



$$
\begin{gather*}
\left(\mathbb{T}_{0}\right)_{A}=\left(\mathfrak{N ⿰ 丿 丿}_{0}\right)_{B}=\frac{w L^{4}}{24} \\
\mathrm{FEM}_{A B}=-\frac{w L^{2}}{12} \quad \mathrm{FEM}_{B A}=+\frac{w L^{2}}{12} \tag{ir-ir}
\end{gather*}
$$



شكل 17－10 10 بار كسترده يكنواخت در كل دهانه

باهستى هادדورى نمودك علامت صحيع FEM

هعمولا" تادر بهتعيين وكنترل علامت FEM هستهم .

 كه داراى حالت اوليه مستقهمالخطهوده و در T ن قطعه E و I داراى معادير ثابتى باشند .

ابتدا بـكاربرد روش شيب ـ تغيهرمكان در مسائل مربوط بهتيرهاى سرتاسرى نظيرانيجه
 غيرتابل تغهيرشكل باشند ، اين تير را مجموعهاى از دو تطعه BC AB S

 $ك_{\text {FEM }}^{4} M_{C B}$, $M_{B C}$ ، $M_{B A}$ • $M_{A B}$



$$
\begin{aligned}
& \mapsto)^{M_{B A}}\left(\frac{B}{\square}\right)\left(\longrightarrow \quad \stackrel{M_{C B}=0}{M_{B C}}\right. \\
& \text { شكل rir II تغكيك كرمـها }
\end{aligned}
$$

$\psi_{A B}$ • $\theta_{A}$ جون تكيهكاهـها غيرتاهل تغيهرشكل مىباشند ، مىدانيم كه در اين حالت ,

 و وجود دارند مجهولهستند ،اكربتوانهيم بهنحوى متادير


و عكسالعمل مورد نظر با الستغاده از معادلات تعادل قابـل مساسهـ شـواهد بود . بـععــارت


تبدهل میكردد .





$$
\begin{array}{ll}
M_{B A}+M_{B C}=0 \longleftarrow \Sigma M_{B}=0 & j \\
M_{C B}=0 & \Sigma M_{C}=0
\end{array}
$$

 بـدينترتيب دو مهادلـه ها مجههولات معادلـه و تعيين اين مجهولات قادر خوا هيم شد كه لنـكرهاى انتههایى را شعين كرده و تعليل -تنش تير را بانتها برسانيه



را هراى Tن رسم كنهد تكيهكا مها غيرقابل تغيهرشكل مىباشند .


زوایای e و $\downarrow$ را تحليل كنيد. .

$$
\begin{gathered}
\theta_{a}=0 \quad \psi_{a b}=\psi_{b c}=0 \\
\theta_{b}=9 \quad \theta_{c}=9 \\
K_{a b}=\frac{1}{10}=K \quad K_{b c}=\frac{8 l}{15}=2 K \\
F E M_{a b}=-\frac{(20)(6)(4)^{2}}{(10)^{2}}=-19.2^{k^{\prime}} \\
F E M_{b a}=+\frac{(20)(6)^{2}(4)}{(10)^{2}}=+28.8^{k^{\prime}} \\
F E M_{b c}=-\frac{(2)(15)^{2}}{12}=-37.5^{k^{\prime}} \\
F E M_{c b}=+37.5^{k^{\prime}} \quad M_{c d}=-2.5^{k^{\prime}}
\end{gathered}
$$

 لنكرهاي انتهاءى مینوهسهيم :

$$
\begin{aligned}
M_{a b} & =2 E K \theta_{b}-119.2 \\
M_{b a} & =4 E K \theta_{\mathrm{b}}+28.8 \\
M_{b c} & =8 E K \theta_{b}+4 E K \theta_{c}-37.5 \\
M_{c b} & =8 E K \theta_{c}+4 E K \theta_{b}+37.5
\end{aligned}
$$

كرههای b و c را جـدا كرده و معادلات مربوط بهآن كرهـها را مىنويسهم و در Tن معـادلات مقادير

$$
\begin{align*}
& M_{b o} \\
& \rightarrow\left(\frac{b}{\square}\right)\left(-\quad \Sigma M_{b}=0 \quad M_{b a}+M_{b x}=0 \quad \therefore 12 E K \theta_{b}+4 E K \theta_{c}-8.7=0\right. \text { (1) } \\
& { }_{f}^{M_{c b}{ }^{c}{ }^{c} b c}{ }^{25 \mathrm{x}^{\prime}} \quad \Sigma M_{0}=0 \quad M_{o b}-25=0 \quad \therefore 4 E K \theta_{\mathrm{b}}+8 E K \theta_{c}+12.5=0 \tag{Y}
\end{align*}
$$

هس از حل معادلات (1 ) و (Y) جو'أهـای زير بهد ست می' يد :

$$
E K \theta_{b}=+1.495 \quad E K \theta_{c}=-2.91
$$

هس از تراردادن اهن مقادير در روابط مربوط بـلنكرهاى انتتهايى خواهيم داشت :

$$
\begin{array}{ll}
M_{a b}=+2.99-19.2=-16.21^{k^{\prime}} & M_{b c}=+11.96-9.24-97.5=-34.78^{k^{\prime}} \\
M_{l a}=+5.98+28.8=+94.78^{k^{\prime}} & M_{c l}=-18.48+5.98+37.5=+25.0^{k^{\prime}}
\end{array}
$$

بقيه محاسهات بـكعك معادلات تعادل انجام خوا هد كرفت :

بحث :
 تعادل معلوم است ولى همين طره ، معادله كره را در كره ع تتحت تاثبر ترار بید هد . هركا هـ


 - مىكيريـم

بهترين راه براى برخورد با ضرايب K انتغخاب يك ضريب K استانداربد و بيان سمايهر ضرابي برحسب آن میباشد .
همواره سازكارى Tحاد را مىتوان با انتخاب T راهحل دییرى جهت برخورد با ا ثر طره بهصورت زهر بىباشد . بهدليل تعادل لنكرها


$$
M_{m a}+M_{m b}+\cdots+M_{m i}=0 \quad: \quad \text { داريهم }
$$

اكر هريك از این لنكرهاى انتهايهى معلوم هاشد معدار آن را مىتوان با علامت و معداردرست
 لذا خواهيم داشت :

 است برای این وارسى كانى است كه مثادير معلوم را در این معادلات ترار دهـم .

مثال

 و برابر با 0.001 راديان


مقذار

$$
\begin{gathered}
\theta_{a}=+0.001 \quad \psi_{a b}=\frac{0.04-0.01}{10}=+0.00 s \quad \psi_{c}=-\frac{(0.04-0.0175)}{15} \\
\theta_{c}=9 \quad \text { and } \quad \theta_{c}=9
\end{gathered}
$$

خكن بارى هراین تهر وارد نمىشود لذا كلهه مقادهر EEM مراهر با صغر است ، با استفادهاز


$$
\begin{aligned}
& M_{a s}=\mathbf{8 E K}\left(0.008+\theta_{b}-0.009\right)=8 E K \theta_{n}-0.014 E K \\
& M_{b a}-8 E K\left(2 \theta_{b}+0.001-0.009\right)=4 E K \theta_{b}-0.016 E K \\
& M_{b c}=8 E(2 K)\left(2 \theta_{b}+\theta_{0}+0.0045\right)=8 E K \theta_{b}+4 E K \theta_{c}+0.018 E K \\
& M_{\infty}=2 E(2 K)\left(2 \theta_{c}+\theta_{0}+0.0045\right)=4 E K \theta_{b}+8 E K \theta_{c}+0.018 E K
\end{aligned}
$$

$$
\begin{array}{lrr}
\Sigma M_{b}=0 & M_{b c}+M_{b c}=0 & 18 E K \theta_{0}+4 E K \theta_{c}+0.002 E K=0  \tag{1}\\
\Sigma M_{c}=0 & M_{c b}=0 & 4 E K \theta_{b}+8 E K \theta_{c}+0.018 E K=0
\end{array}
$$

از حل د ستكاه معادلات ( 1 ) و (

$$
\theta_{b}=+0.0007 \quad \theta_{c}=-0.008 A
$$

با جإیذارى این متادهر خوا هيم داثت :

$$
\begin{gathered}
M_{a b}=-0.012 A E K=\frac{-262.5^{k^{\prime}}}{} \quad M_{h c}=+0.0192 K^{\prime} K=\frac{+276.0^{\prime \prime}}{0} \\
M_{b a}=-0.0192 E K=\frac{-275.0^{\prime \prime}}{M_{c b}=} \quad 0 \quad=\frac{1,000}{144^{2} \times 10}=20,838 \mathrm{kip-gt}
\end{gathered}
$$

زهرا:
بعت :

 . بـانند
 هعان طورى كه معمولا" در مآهباى صلب معمول است از تغيهر طول حاصل از نـيروى مسورى


 بكيرهد واضع است با مرفـنـظر كردن ازتغيهر طول مهورى قطمات BE BE AB صورت جاهجآهى تكهيكاه مىتواند تغيهر محل بد مد و اكر كره B تغيهر محل ند مد مىتوانهم



نتيجه بكيرهم كه كره C نيز بههمان طريت جاهجا نشواهد شد . در اين صـورت زوايایى
 در هر كره مقدار زاويه $\theta$ برای انتهاى كليه قطعاتى كه بهصورت صلب بهـ

 جهت تعیين لنكرهانى انتهايهى برحسب جـهار زاويه $\Sigma M=0$ خوا هدآ بد و جون میتوانيهم دركليه كرههائى كه د رTنها


 o استغاد دكنــم مابقى محاسباتلازم جهـت تحليل تنش بهيك مساله تعلادلمنتههىمىكردد .
 زواياى $\psi$ بهعنوان مجهول وجود ندارند عملا" بههمان طريق تهر سرتاسرى مىباشد ، حــلـ قاب شكل (
 ثيدا كرده و لذا درانتهاى فوقانى ستونها تغييرمكانى افتى وجودتخواهد داشت و درنتيجه
 در اغلب انواع كلى قاهـهاى صلب حتى اكر منحصرا" تغييرشكل حاصل از خمشي را در نظربكيرهم هردو زوایاى وجود دارد و هم دوران خطاتصال در كره انتهايى كه جابـجايهى جانبى كنته مىشود ، انواع مختلغى از اين قابـها در شكل (Yآها مسائلى مىیبايستى بهراهحلهاى جد يدى دست بافت ، بد بن منظور قاب شكل (

در نظر بكيريد . اكر اين تابداراى تكيهكاهمهاى غيرقاابل تغييرشكلى باشد در این صورت غتط دوزاوبه $\theta$ براى جلوكيرى از جابجايى جانبى نقطهء B وجود ندارد ، جون ازتغييرشكل حاصلازنيروى

 بود . فرض كنيد اين جابجايَى را با $\Delta$ نشان دهيم ‘ مىتوانـيم بههمان طرهق استدلالكنـيم



شكل
شكل طولى BC نيز صرفنظر شدهاست بـناهراين جاهجاهى انقى كره C نهز مىبا هستى براهر
با ه كردد .

 اتصال كرههاست ، از اين شكل معلوم مىشود كه:

$$
\begin{gathered}
\psi_{B C}=0 \quad \psi_{A B}=\frac{\Delta}{20}=\psi_{1} \\
\psi_{C D}=\frac{\Delta}{25}=\frac{4}{5} \psi_{1}
\end{gathered}
$$





 الستفاده نمود كه ذ يلا" در این مورد شرح داده مىشود :


 بهصورت نآايدار بوده و تماهل بهجاهجا هـى انتقالى ازمحل خود داشته هاشد ،دراین صورت

بقيه هاورقى




 بهروش زهر معين نمود . تصور كتيد كه تطعات سازه را از تكيهكاهها هـا جدا نـوده و همرنـينددر

 قطعات پـش مىرود معلوم خواهد شد كه در جه كرهى بهمنظور جلوكيرى از نایا هدارى سـازه

 باءــدار سازه متصل مىباشد . Y -
廿 و روابط بـين آن زوايا در تاباصلى هرداخت ، هريك از اهنتكيهكاهها را مىتوانبـهـعدار




 خاطرنشان كرد كه امكان دارد كه زاويه دوران خطاتصال دو انتهاى قطعهاى از هـك تاب




 تغيهريافته (بهعبارت د عكر تعداد زواياى مستتل $\downarrow$ سازهء اصلى ) بهترتهب خواهد هـد
(a) 1
(b) 1
(c) 1
(d) 3
(e) 1
(f) 3
(g) 2
(h) 2
 حالت بـعباراتى خواهيم رسيد كه در Tنـها سه بجهول







$$
\begin{array}{ll}
M_{A B}+M_{B A}+20 H_{1}=0 & \text { ستونـها لن:كركيرى نماءيد . } 1 \text { (الف }+25 H_{2}=0
\end{array}
$$



شكل r|

$$
\begin{align*}
& \text { بههمين ترتيب در مورد شاهتهر نيز } \quad \Sigma F_{z}=0 \quad \text {, برقرار میكنهم } \\
& H_{1}+H_{2}=5 \tag{}
\end{align*}
$$

 تعادل بـهد ست خواهد T T $T$ مد

$$
\begin{equation*}
M_{A B}+M_{B A}+0.8 M_{D C}+0.8 M_{C D}+100=0 \tag{د}
\end{equation*}
$$

 بود كه یس از حل ابين دستكاه سه معادله مقادير را مانند مساءل قبلى حل كنيم •



مثال Y ا - ا I .


معادلات هرش :

$$
M_{A B}+M_{B A}+15 H_{1}=0
$$

$$
M_{D C}+M_{C D}+15 H_{2}=0
$$

$$
H_{1}+H_{2}=80
$$

: AB
: DC ستون
شا هتهر :
$\therefore M_{A B}+M_{B A}+M_{C D}+M_{D C}+500=0$

$E K \theta_{B}=+18.6 s \quad E K \theta_{C}=+20.60 \quad E K \psi_{1}=+29.54$




 انتخاب كرد ولى هس از آن كه نهرويىى نظير
 هعين كنهم .

 مزهور مرهوط بهتاب صلب الجاد تنش فشارى كرده باشد . مثال آن رسم كنيد



 را بعموازات خود آنتدر انتقال دهيد كه انتهاى B از از
 هروضعيت اوليه خودبـاندازهء





$$
\begin{aligned}
& \psi_{A B}=\frac{B B^{\prime}}{L_{A B}}=\frac{\Delta}{(\cos \alpha)} \frac{\Delta}{L_{A N}}=\frac{\Delta}{2(0)}=\frac{10}{18} \psi_{1} \\
& \psi_{B C}=-\frac{C^{\prime \prime}\left(C^{\prime}\right.}{10}=-\frac{\Delta}{10}(\tan \alpha+\tan \beta) \\
& =-\frac{13}{200} \Delta=-\psi_{1} \\
& \psi_{C D}=\frac{C C^{\prime}}{Z_{C D}}=\frac{\Delta}{(\cos \beta) L_{C D}}=\frac{\Delta}{25}=\frac{8}{19} \psi_{1}
\end{aligned}
$$





$$
K_{A B}=\frac{412}{20.6}=20=K \quad K_{B C}=\frac{900}{10}=30=1.5 K \quad K_{C D}=\frac{807}{86.9}=1.5 K
$$




$$
\begin{align*}
& M_{A B}=2 E K \theta_{B}-{ }^{6} \mathrm{~K}_{3} E K \psi_{1} \quad \quad M_{C B}=s E K \theta_{B}+6 E K \theta_{C}+9 E K \psi_{\mathrm{t}} \\
& M_{B A}=4 E K \theta_{B}-6 \oint_{3} E K \psi_{1} \quad M_{C D}=6 E K \theta_{C}-7 K_{3} E K \psi_{1} \\
& M_{B C}=\theta E K \theta_{B}+9 E K \theta_{C}+9 E K \psi_{1} \quad M_{D C}=9 E K \theta_{C}-73_{3} E K \psi_{1} \\
& \text { : B } \\
& \Sigma M_{B}=0 \quad M_{B A}+M_{B C}=0 \quad \therefore 10 E K \theta_{B}+9 E K \theta_{C}+4.985 E K \psi_{1}=0  \tag{1}\\
& \Sigma M_{C}=0 \quad M_{C B}+M_{C D}=0 \quad \therefore 8 E K \theta_{B}+1 E E K \theta_{C}+s .48 B E K \psi_{1}=0 \tag{Y}
\end{align*}
$$

مهادلات برش :

| $\Sigma M_{4}=0$ | $M_{A B}+M_{B A}+20 H_{1}-5 V_{1}=0$ |  | ستون |
| :---: | :---: | :---: | :---: |
| $\Sigma M_{D}=0$ | $M_{D C}+M_{C D}+25 H_{2}-10 V_{2}=0$ | $(4): C D$ | ستون |
| $\Sigma M_{C}=0$ | $M_{B A}+M_{C D}+10 V_{1}=0$ | ( 己) | شا هتتير : |
| $\Sigma F_{v}=0$ | $V_{1}=V_{2}$ | ( د) |  |
| $\underline{\Sigma F z}=0$ | $H_{1}+H_{2}=100$ | ( ) |  |

مقادير H،
$M_{A B}+8.5 M_{B A}+2.1 M_{C D}+0.8 M_{D C}+2,000=0$ $11.2 E K \theta_{B}+15 E K \theta_{c}-31.292 E K \psi_{1}=-2,000$

حال معادلات ( 1 ) • (r) (r) رالز طريق جدول زهر هل كنهد :

| سادلد | ram | $\boldsymbol{E K O}_{\boldsymbol{s}}$ | $E K \theta_{c}$ | $\boldsymbol{E K} \boldsymbol{\psi}_{1}$ | const $\times 10^{-2}$ | Check |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  | $+10$ | + 9 | + 4.985 | 0 | +17.385 |
| 8 |  | + 9 | +12 | + 3.482 | 0 | +18.462 |
| 3 |  | +11.2 | +16 | -31.292 | -80 | -25.098 |
| $s^{\prime}$ | $9 \times 0.898$ | +10 | +18.389 | -27.989 | -17.857 | -88.404 |
| $3^{\prime \prime}$ | $9 \times 0.268$ | $+9$ | + 4.018 | - 8.382 | - 6.357 | - 8.721 |
| 4 | 1-9' |  | -10.393 | +92.924 | +17.857 | +39.789 |
| 5 | 2-9'1 |  | + 7.382 | +11.844 | + 6.357 | +85.189 |
| $4^{\prime}$ | $4 \times 0.768$ |  | - 7.888 | +24.825 | +13.715 | +30.658 |
| 8 | $5+4^{\prime}$ |  |  | + 98.668 | +19.072 | +65.742 |
|  |  |  |  | $+1.0$ | + 0.5801 |  |

$$
\begin{gathered}
7.888 E K \theta_{Q}=5.357-6.158=-0.808 \quad E K \theta_{C}=-0.1005 \\
S E K \theta_{B}=-6.857+4.359+0.404=-0.584 \quad E K \theta_{B}=-0.1980
\end{gathered}
$$

نتاهج نوق براى متدار ثابتى برابر با 0.01 مقدار ثابت واتعى است مساسبه شدهاند،نتآهع حتيتى 100 برابر مقادير نوق است :

$$
E K \theta_{B}=-19.80 \quad E K \theta_{C}=-10.05 \quad E K \psi_{1}=\underline{+58.01}
$$

بنابراين لنكرهاى انتهايیى براهر با مقادير زهر خواهند بود :


$$
\begin{aligned}
& \begin{array}{l}
M_{A B}=-38.6-840.0=\frac{-879.6^{k^{\prime}}}{-919.2^{k^{\prime}}} \\
M_{B A}=-79.8-840.0=\underline{-18.1}
\end{array} \\
& M_{\mathrm{sc}}=-118.8-50.2+\overline{408.1=}+319.1^{4} \\
& M_{C B}=-59.4-60.4+408.1=+548.7^{\mathrm{h}} \\
& M_{C D}=-60.4-288.1=-348.5^{4^{\prime}} \\
& M_{D C}=-30.2-288.1=\overline{-318.5^{2^{\prime}}}
\end{aligned}
$$

بحث :

زمانىكه بهتحلهل روابط بينزواهاى $\psi$ مى شويد و بد هن ترتهب معين كنيد كه خطوطاتصال دو انتتهاى تطعات در جهـت و با درخلاف جهت سا عتكرد دوران مىنـما يند . در این مساله حل دستكاه معادلات جند مجهولى را در جزئيات لازم بهصورتجدولى شرح دادهاهم ،اين جنين راه هلى در مواقعىكه سه با بـهشتراز سه معادله وجود داشته باشد راه حل سادهاى است ، خصوصيات مهم اين نحو عمليات ذهلا" ذكر مىكردد .
 هزركتربن ضريب را داشته باشد عملبات لازم را روى اين هعادله بهمنظور مساوىكردن ضريب
 الين معادله در اعدادى كمتراز هك ضرب خوا هد شد ، عمل بهجنين نحوى در جهت تعلـهـل خطا مییاشد
r r-جهت تسهیل در وارسى ، محاسبات انتجام شده در هر معادله را ذكر كنيد .



 عذف خطاهاى وارد شده د ر محاسبات كافي نيست . f شود ، اهن عمل اعداد درج شده در ستوت وارسى را اعدادى موءثرتر خوا هد نـود . هس از از
 این بأسخها با عدد ثابت واقعى ضرب نمود .

از اینهس دانشجووان بعمتابيسه مزايا و معايب روشهایمختلف تحليلتنش ميشردازند .


 تغيـرمكان خواهد اند هشيه . متدار محاسبات كم و بيش هرابر با مربع تعداد معادلات موجود در راه حل مىياشد .


درحالت كلى ، ههترهن روث الس است كه كترهن مجهولات را داشته باشد . بد ينترتهباكر



روش هخش لنكر روشى مبتكرانه و سهل در تحلهل تنش سازهماى متشكل از كرههاى
ملب مىىاشد**.

كلهه روشها يیى كه تا كنون ذكر شد بهد ستكاه معادلات جند مجهولى منتههي میكردند و
 معادلات مىكردد ، روثى هخش لنكر معمولا" بهجنان تعدادى از معادلات منتهوى نـــــشود و
 , أرائهكرديد و بدونشك اين روثى عكى ازمهمترين روشهانى تحليلنكرىدرسالهأىاخيراست..

اغلب ازنظر مهاسباتى از كليه روشها ئى كه تا كنون ذكر شد كوتاهتر است ،بهعلاوه اينحسن

 لزوم ختم نمود .
اكر بهمعادله (
 FEM 1 r r Y †
 وارد نموده و بها ين طريق به جمع اثرات آنها رسيد .

 صورت متدار $\downarrow$ براى كليه تطعات آن صغر خوا
 قابل تغييرشكل باشند دراين صورت در كرهـاي






شكل r|!-19 تعيين اهداف روش بخش لنكـر (نتط دوران كره وجود دارد )

لنكر اكر این كره راTزادكنهم لنكر مزبور سبب دوران كره bا در جهت مخالغ ساعتكرد خواه هد



 لنكر واقع خوا هند شد هس از T'ن كهتعادل لنكرى در كره b بوجود T مد در این حالبت سـازه










 د وران مىكندلذا سبب خمش تطملت شده و درانتتهاى دهكر تطعات سبب ابهجاد لنكرمىكردد
 قبل از T T


 جهت سا عتكرد بر /تتهاى قطعات /ثر كتند .






لنكرهای بخش شده تعادل كره b میىردد .


شكل riv-iv دوران كره

 عهـل كنـند . لنكــر نامتعادل M كه حاصــل از لنكر انتهايهى كيهـردارى مثتت مىيا شد نـهـز


$$
M_{b a}+M_{b 0}+M_{b d}+M_{b a}+M=0
$$

(الف)

 دارهم :

$$
\begin{array}{ll}
M_{b o}=4 E K_{b 0} \theta_{b} & M_{b c}=4 E K_{b o} \theta_{b} \\
M_{b d}=4 E K_{b d} \theta_{b} & M_{b c}=4 E K_{b 0} \theta_{b}
\end{array}
$$

حال اكر معادلات(ب) زا در معادله(الغ) قرارد ههم و متدار
 Tورد . مثلا" :

$$
M_{b c}=\frac{-K_{b c}}{K_{b c}+K_{b d}+K_{b c}+K_{b c}} M
$$

, در حالت كلى لنكر تخش شده در مهله bm بهصورت زهر معهن مىشود :

$$
\begin{equation*}
M_{b m}=-\frac{K_{b m}}{\sum_{b} K} M \tag{}
\end{equation*}
$$

در مخرج كسر اين رابطه ، سختى كلهه تطعات بـكره b وارد مىشوند و اكر:

$$
\begin{equation*}
D F_{\mathrm{bm}}=\left(b m \text { ضريب بخش انتهاى b تطعه } b=\frac{\sum_{b m}}{\sum_{b} K}\right. \tag{17-1r}
\end{equation*}
$$

در اين صورت خوامهم داشت :

$$
\begin{equation*}
M_{b m}=-D F_{b m} M \tag{10-1r}
\end{equation*}
$$


لنكربجش شُده ها مل درانتهای
M دوران نما يد برابر $/$ ست با ماملضرب ضريب تخش در لنعر نامتعادل با علا مت عكس.
 بهاندازه




$$
M_{b m}=4 E K_{b m} \theta_{b} \quad M_{m b}=2 E K_{b m} \theta_{b}
$$



شكل

و بنابراعن

$$
\begin{equation*}
M_{m b}=1 / 2 M_{b m} \tag{18-1r}
\end{equation*}
$$

بهعبارت ديكر ، لنكر انتقالى هرابر با يكدوم لنكر بخششده نظهر خود بوده و داراى

 شده است ، دقت شود كه Tنيهه در بالا ، ذكر شد نتطزمانى صادت است كه سازهء مورد نظر دارای قطعاتى با لنكر لختى ثابت باشد . در مبحث ( كه از تركيب قطعاتى با لنكر لختى متغهر تشكيل شده باشد بسط خواههم داد .


 كه موقتا" از دوران كرههای b و c جلوكيرى كرده و تـر را تحت اثر باركذارى ترار دههم ،


$$
\begin{array}{ll}
\mathrm{FEM}_{a b}=-9.6 \mathrm{kip}-\mathrm{ft} & \mathrm{FEM}_{b c}=-18.75 \mathrm{kip}-\mathrm{ft} \\
\mathrm{FEM}_{b c}=+14.4 \mathrm{kip}-\mathrm{ft} & \mathrm{FEM}_{c b}=+18.75 \mathrm{kip}-\mathrm{ft}
\end{array}
$$

برای این كه خود را جهت آزادكردن كرهـای b و
 مهاسبه كردند

$$
\begin{array}{llll}
\Sigma K=0.3 I & D F_{b c}=1 / 3 & D F_{b c}=2 / 3 & \vdots b \text { در در } 5 \text { دره }
\end{array}
$$





 ولى براى قابها بسيار مناسب بـهنظر میراي هس ازمهاسبه لنكرهایكيردارى ،كرههای b و c را بهنوبت آزادكرده و بهطورتدريجى




 مى بيد كه در اين حالت برابر با 9.38 -





 لنكرهاى انتقالى حاصل در a و برابر با 2.29+و 8.58+ در محل خود ثبت مىنمائيم .


شكل 1ヶ1-1 1 مثال عددى



 2.29- دوران كرده و لنكرهاى هخش شده





 مهاسبه نمود .
از آنجائى كه در اين مثال كره c


ديده مىشود همكرايى لنكرها را زودتر هاصل نمود .


شكل ro-1 ro مثال تشريخى براى كاربرد ضريب سختى تقلهل یانته
مانند سابق با جلوكيرى نمودن ازدوران كليه كرهها و واردنمودن بارخارجي كهبهنوبه
 c رآ زاد كرده و مىكذارهي كه دوران نـايد و در اثر اين دوران لنكر بخش شده 18.75-




 - مقدار تتلـِل سختى آن میيردازيم با مراجعه بهاشكال (
 مفصلى میهود ، در اهين صورت تحت اثر لتكر نامتعادل M در b ، در كره c
 قبلى بهصورت زهر تغيهر مىيافت :

$$
\begin{gathered}
M_{\infty}=4 E K_{b c} \theta_{c}+2 E K_{b c} \theta_{b}=0 \\
\theta_{c}=-\frac{\theta_{b}}{2}
\end{gathered}
$$

و از انـجا:
بنابرا'ين :

$$
M_{b c}=4 E K_{b c} \theta_{b}+2 E K_{b c} \theta_{c}=3 E K_{b c} \theta_{b}=4 E\left(3 / 4 K_{b c}\right) \theta_{b}=4 E K_{b c}^{R} \theta_{b}
$$

كه در T:

$$
\left.K_{b c}^{R}=( \rangle\right)=3 / 4 K_{b c} \quad(I Y-1 Y)
$$

بد ينترتهب روابط قبلى مربوط بهضرايب بخش را بـشرطى كه براى تطعاتــى كه در انتهاى
 الستغاده نــائـم" .
حال با بهكاربردن ضريب سختى تقليل يافته تطعه be ، ضرايب توزتع b را معهــن

$$
\Sigma \text { eff } K=0.25 I \quad D F_{b a}=0.4 \quad D F_{b c}=0.6 \quad: b \text { در }
$$

* جون ضريب سختى موءثر در انتهاى b از تطعه bm هركا ه انتهاى m كيردار باشد براهر با


در این رابطه علامت eff K نشاند هند هضريب سختـى مؤثرقطعه است كه اهين ضريـبـ


در نتيجه جهت متعادل نـمودن لتـكر نامتعادل 13.73 -ـ در


 محاسباتى خـاتعه يافته است و بد عنترتيب كليه كرهههاى موجود در تنعادل هستتد و اكربراى


 بهها سخهای صحيح نـى


 هستند محاسبات لازم را انجام دادهايم •

مثال را رسم كنيد ، تكيـهاهمها غيرتابل تغيـر شكل مى.باشند .


$$
\begin{aligned}
\text { At B: } \mathbf{\Sigma} \text { eff } \mathbf{K} & =2.8 \\
D F_{B A} & =0.268 \\
D F_{B C} & =0.446 \\
D F_{B G} & =\frac{0.286}{1.000}
\end{aligned}
$$

At C: $\Sigma$ eff $K=9.0$
$D F_{C B}=0.417$
$D F_{C D}=0.417$
$D F_{C H}=\frac{0.167}{1.000}$

At $D: \Sigma$ eff $\mathrm{K}=9.788$
$D F_{D C}=0.930$
$D F_{D J}=0.212$
$D F_{D E}=0.248$
$D F_{D I}=\frac{0.212}{1.002}$

$$
\begin{aligned}
& \text { لنكرهاى كبردارى : } \\
& F E M_{A M}=-\frac{(90)(\theta)(4)^{2}}{(10)^{4}}=-88.8^{\mathbf{n}^{\prime}} \quad F E M_{B A}=+\frac{(90)(6)^{2}(4)}{(10)^{3}}=+49.8^{b^{\prime}} \\
& F E M_{\text {cC }}=\frac{(8)(18)^{2}}{1 \Phi^{2}}=-8 / 4^{k^{\prime}} \quad \quad N K M_{C B}=+64^{k^{\prime}} \\
& N E M_{C D}=-\frac{(20)(I D)}{8}=-30^{k^{\prime}} \quad N E M_{D C}=+50^{N^{\prime}} \\
& \text { لنـكر طــره : } \\
& M_{E P}=-(10)(6)=-60^{6}
\end{aligned}
$$




بحث :
در این سازه ه هـ از آن كه كليه كرهها در متاهل دوران تغل شدند و سهس بارهـــاى


 ملاحظه مى شود كه بازوى طرهأى هيج تأثبرى در جلوكيرى از دوران كره E E نــداردد و

نا متعادل توسط ساير قطعاتى كه بـ بين كره شختم مىشوند منتقل مىكردد .

كرد نـد . اين عمل نه تنهها شامل كرههاي
 دوران هيدا میكنـند .اكر در حين عمل بها زادسازى كرهى بـيردازبهم كه داراي بيشترين لنـكر
 نهايیى بستكى بـهترتيب آزادكردن كرهـها ندارد .

مثال
 تكيدكاهـها را اعهال كنيم • خـواهيم داشت :


$$
\begin{array}{rl}
\theta_{a}=+0.001 & ر ا د ا د ا ن ي ا ن ~
\end{array}
$$



 زهر محاسبه تــود :

$$
\begin{aligned}
M_{a b} & =2 E(0.1 I)(0.002-0.009) \\
& =-0.0014 E I=-292^{k^{\prime}} \\
M_{b a} & =2 E(0.1 I)(0.001-0.009) \\
& =-0.0010 E I=-934^{k^{\prime}} \\
M_{b c} & =2 E(0.2 I)(+0.0045) \\
& =+0.0018 E I=+376^{\mathbf{k}^{\prime}} \\
M_{\mathrm{a}} & =+0.0018 E I=+376^{k^{\prime}}
\end{aligned}
$$

 كرفته شده است . بـقيه مساسبات را با فرض اين لنكرهای اوليـه بـهعنوان لنـكرهاي كيــردارى
 شكل (YO-I Y) ا'نجام كرفته است .

 مكان جانبى وجود دارد و بهعبارت ديكر زواياى $\downarrow$ مجـهول مىباشند هردا
 C





Bx (هالت)
شكل با-|








 جانبى برابر با تعداد منتقل زواياى مجـهول $\psi$ ميباشد .












 آورد . حال بازهم میتوان بهمحاسبه نيروى P كه بـتاب وارد شده و سببا يـجاد اين لنكرها شده اسنت برداخت .









 حالت B با لنكرهاى حالت A بهدست خواهد آمد.

مثال

| BJ | $K_{A E}=15$ | $D F_{B A}=0.429$ | $10^{100^{k}}+10^{\prime}$ | $\begin{gathered} 100^{k} \\ 20^{\circ} \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
|  | $K_{B D}=20$ | $D F_{B D}=0.571$ | $50^{k} 8+$ | Eी- |
|  | $\Sigma$ eff $\mathrm{K}=35$ |  | $I=400$ | T=400 ${ }^{\text {m }}$ |
| در | $K_{D E}=\mathscr{E}$ | $D F_{D B}=0.486$ | \|5 $\quad I=225$ |  |
|  | $K_{D B}^{R}=15$ | $D F_{D E}=0.919$ | $I=320$ | $20^{\prime}$ |
|  | $\begin{aligned} K_{D C}^{B} & =12 \\ \mathbf{\Sigma e f f} \mathbf{K} & =47 \end{aligned}$ |  | $\pm$ |  |
|  | $\Sigma$ eff $K=47$ |  |  |  |

حالت (الف)از جا بـجا يیى قاب جلوكيرى مىشود ، كره R تتبيت مىكردد . كليه بارهارا برسازه


$$
F E M_{H}=-2 \pi() \quad M_{E \mu}=-4(k)
$$

$$
F N M_{m}=+250
$$


 در كره B كه برابر با با . خيه خواهد بـود .
حالت(ب) با جابجانمودننغطه B ،در سازه تغيهر محل جانبى ايجادكنيد ، در ابـتداموقتا"



اوليه را صحاسبه كنيد .
$M_{A B}=M_{B A}=-6 E(15)\left(\frac{\Delta}{15}\right)=-6 E \Delta$
$M_{C D}=M_{D C}=-6 E(16)\left(\frac{\Delta}{20}\right)=-4.8 E \Delta$
اكر ;

$$
\begin{aligned}
& M_{A B}=M_{B A}=-600 \\
& M_{C D}=M_{D C}=-480
\end{aligned}
$$

تركيبحالت(الف) )وحالت (ب) :اكر B ضرهبنتاءَجحالت (ب )باشدهحاصلانطباق B در




 $-58.7_{i}+66 B=0 \quad$ or $\quad B=0.89$
(حالـت ب) (

$$
\begin{array}{ll}
M_{A B}=+\sim 8.9-4215=-342.6^{\prime \prime} & M_{D C}=-141.6-196.7=-338.9^{\prime} \\
M_{B A}=+157.8-310.5=-152.7^{\prime \prime} & M_{D E}=+23.0+20.7=+49.7^{\prime} \\
M_{B D}=-1.57 .8+910.5=+152 k^{\prime}
\end{array}
$$

: بحث


 از ضريب سختى تتلـيل بافته استغاده هنشده است است

 الستغادهاز تسمت حالت(ب) ا'ز محاسبه بهد ست آورد .




قابى با

 جلوكيرى شده است • (T) حالات نقط يك زاويه $\psi$ مستقل مىتواند وجود داشته باشد زبرار نيروهائى كه در حالت(الف) از تغيير مكان جانبى n كره بلـوكيرى مينمودند هنوز در جاى خود قرار دارند و تتـها يك كره باقى مانده از كرهههاى نكههدارى شده حالتـ(الف)تتحت انــر

فشار جانبى قرار مىتيرد

 حالات تغييرمكان جانبى د ر اين جعع بندى وارد مىشوند بهد ست خوا هد آـد ـ ـ اين n معاد له با برقرارنمودن يك معادله بـراى هريكاز n كره نكهدارى شد هحالت (الف ) بهد ست مى بآ بنـ. درمورد يك كره غيرمشخص باد ارنده كره ز ازحالتت(الفب ) بهاضافه حاصل ضرب ضريب B د درنـروى بازدارندهء و يا فشـار
 افقى در حالت (ع ) و الى آخر بـراى هريك از n حالت مربوط بهتغيـير مكان جانبىمىبايستى برابر با صغر باشد
 برابر تغيهرمكان جانبى مىباشد نظير قابشكل (








 جهتهای نشان داده شده روى شكل ( ( ج ) باشند .




تنكر : متادديرى كه در شكل جههت نـيروهاى فشارد هنـده انقي و با باز دارنده
 خـطوطى كه با خـطل جـين نشان داده شده است شكل تغيهـر يافته قابنرا نسسيت




داده نـشدهاست .
هـهعنوان مثال د رحالت (ب) از تغيشرهكان افقيكرهـهای C و













بهد ست آمده د ر آن حالات جهتت تعيبن نتايج نها بيى محاسبه نمائيم . مقادير اين ضرا يـب را میتوان با حل د ستكاه سهمعادله كه هريك از اين معادلات بهصورت زير تشكيل بىكــردد


$$
\begin{array}{r}
12+22 B-13(y+9 B=0 \\
-8-6 B+1 \cdot 1(21 D=0 \\
-4+3 B-5(+13 D=0
\end{array}
$$

خواهيم داشت :
: در درهره
مقادير خارجى حالت (ب) )رادر B ونيروهاییخارجىحالت (ج ) رادر C و بالاخره نيروهایحالت(د) را در D ضرب كرده و سبس مقادير تغيبر يافته اين نيروها را كه از الين سه حالت بـهـ د ست مي' يند بر نيروهاى حالت (الف) منطبق نمائيم حاصل نيروهاى موءثر خارجى خـواهد بـود
 بازدارنده و فشارد هنده افقى را حـذف خواهد نمود . واضح است كه نتايج تـها يـــــى ( نظير


 جانبى كا ملا" اختياريست ، تغها شرطى كه وجود دارد اين است كه هريك از حالات اعمال جابجا يىى جانبى مستقلاز حالات د يكر با شد ، بهعنوان مثال درحالت (ب ) مىتوانيم بيكليه كرهـهاى B B • B و بد ينترتيب اين دوحالت جديد (ب) (و (ج ) را باد وحالتقبلمى(الف) و (د ) تركيبن نمائيم . دراينصورت معادلاتجدي يدى بهد ست خوا هدا مدكه ازطربق حل آن دستكاه معادلات ، مقادير


 منجر بهد ستكاه معادلات هند مجهولى نمىكردد ، در اين روث همزمان با تغيير مكان كرهـها نـروهای خارجى را كه سبب ايجاد لنكرهاى كيردارى مىشوند بر سيستم واردمىكنيم،

 مكان اضانى ديكرى بر كره اععال مىكتيم و به جرخه يخش لنكر ديكر مى بردازيـم و بازهم

فلسغف اساسى ز: كه از قطعات با I و جهت لن:كرهاى كيردارت • ضرايب سختى و لنكرهاى انتقالى در اين قسمت معلوم كرد يد كلا" براى تطعاتي با E
 بوده ولى با ضويب| نتقال C C لنكرانتقالى عبارت از لنكرىا ست كه در يك انتـهاى كيردار تطعةأي
 هـه B را مىتوان بهسادكى برحسب حاصلضرب لنكر موءثر بر A $A$ و ضريب انتقال نمود ، ترتبي زعرنويس ضريب انتقال بيان كننده جهتت انتقال لنـكر مىيا شد بـاينترتيبكه نشان ميد هد لنكر از A به B منتنل شذه است و با :

$$
M_{B A}=C_{A B} M_{A B}
$$

*     * شرح كامل اين طريته؛ از بحشث اين كتاب خارج است ، جههت اطلاع بـشترخواننده مىتواند بهكتبد يكرىكهـهصوت مغصلتربهروشيبخشلنكرميهردازندنظيركتب زيرهرا الجعنما يد. مرا جعه نـما يـ .
L.E. Grinter "Theory of Modern Steel Structures"
J.A.L. Matheson "Hyperstatic Structures"
J.I. Parcel and R.B Moorman " Analysis of Statically

Indeterminate Structures"
كلا" براي تحلـيل وسيعترى از سازههاى نامعين ميتوان علاوه بـر Tنيجه در بالا ذكر شـــ بهكتب زهر نيز مرا جعه نـهود :
S.F. Borg and J.J. Gennaro "Advanced Structural Analysis"
L.C. Maugh " Statically Indeterminate Structures"
S.P. Timoshenko and D.H. Young"Theory of Structures"
C.K. Wang " Statically Indeterminate Structures"
J.S. Kinney " Indeterminate Structural Analysis"

با استغاده ازين معادله ، تعريف ضريبب /نتثال عبارت خواهد هد بود از لنترى كه در انتهـا


 مركزى خـود متقارن باشد .
شرح روثى مساسبه ضريب انتتال در سك حالت غيرمشخم بهصورت زير خوا هد بــود :
تطسه AB را مطابت شكل (YM-IY
 نقطه A واتمع روى منـحنى




 بود بر میكرد هـ و شكلههاى (




$$
\begin{equation*}
M_{B A}=K_{B A}^{\prime} \theta_{B} \quad M_{B C}=K_{B C}^{\prime} \theta_{C} \tag{الف}
\end{equation*}
$$

در اين روا يـط ( از قطعه BC B B



 ضرايب سختى حقبقى يك قطعه مىباشد . شايد بـهتر بود كه K را "ضريب سختى نسبــــى "
 آن كوتاء انتتخاب شود. ـدر حالـت كلى ضريب سختى حقيقى براي هر انتهاي قطعماي متغاوت است فتط در صورتى كه آن قَطعه متتان باشد ضريب سختى حقيقى آن در هر دو انتتها يكى خوا هد بـود .
 بهصورت زير محاسبه نـود : بـرحسب تعريغ هركاه لنـكرى انتهايى بـرابـر با با A وارد شود ، هركاه انتهاي R كيردار باشد مماس نقطه A بـهانـدازه زاويهاي بـرابر با واحــد دوران خواهد نـود ، بـر طبق تضيه اول سطع لنـكر بايد سطع خالص زبر نـمودار M/EI بـرا بـر
 معادله فوت مقدار ${ }^{\prime}$ را مىتوان محاسبه نـمود


شكل rf-I ضريب سختى

ضريب سشختى تقليل يـافته حقيقى


,
ميله 1 A. را كه موقتا" از دوران انتههاي B T ن جلوكيري كردها يـم در نظر بكيريد ، لنكرىبرابر



ا. را در وضعيت جد يد خود قفل كنيم و انتهاى B رآ زاد كنيم اين انتها تحت اثر لنكـر نا متعادل (CAB




$$
\begin{equation*}
K_{A B}^{\prime R}=K_{A B}^{\prime}\left(1-C_{B A A} C_{A B}\right) \tag{19-1r}
\end{equation*}
$$


 با وارسى رابطه بين سختى و ضرايب انتقال لمىتوان رابططه مغيدى جهت وارســى بـين


باركذارى I I I ترار دارد د ر نظر بكيريد با اعمال قانون بتى I اهواهم داشت :

$$
\begin{equation*}
C_{A B} K_{A B}^{\prime}=C_{B A} K_{B A}^{\prime} \tag{r0-1l}
\end{equation*}
$$

اين رابطه هركاه نيازبهوارسى مماديرضرايب سختى و ضرايب انتعالباشد بسيار مغيدخواهد بود.


شكل rir

ضرا يب تخش لنكرهاى تخش شده: اكر با استناده از معادلات (الد ) كه در اين مبحـث

 معادلات (r بهجأى ضرابب سختى K قرار كرفته است .

 روابطى معين نمود ، براى جنان لنكرهاى انتهايى روابط زبر برقرار است :

$$
\begin{align*}
& M_{A B}=J_{A B} \psi_{A B} \\
& M_{B A}=J_{B A} \psi_{A B} \tag{r|-|r}
\end{align*}
$$


اتر دوران برا بر با وا حد خطاتصال دو ا نتتهاى ؟ن بوجود مى؟ يـد بهشُرطى كهاز د وران هــر
 خوا هد شد . ضريب تغيهرمكان جانبى در صورتى كه قطمه متقارن باشد براى هردوانتـهاىاین
rكسان خوا هد بود .
مقدار ضريبـ تغيـرمكان جانبى تطمه AB از شكل (YY-IY الف ) را ميتوان بر طبـت استدلال زغر برحسب ضرايب سختتى و ضرايبانتنقال بـيانتمود :فرض كنـد كه موقتا"كيردارى




شكل ry-Ir ضريب تغبيرمكان جانبى

كه لنتكر انتتها يَى كرده و انتهای A آنتدر دوران دهیه كه انتهای A لنـكر انتههايَى
 انتتها بیى كل بـرابـر با ضراعب تغيهرمكان جانبى خوا هند بود و بL:

$$
\begin{align*}
& J_{A B}=-\left(K_{A B}^{\prime}+C_{B A} K_{B A}^{\prime}\right)  \tag{r-Ir}\\
& J_{B A}=-\left(K_{B A}^{\prime}+C_{A B} K_{A B}^{\prime}\right)
\end{align*}
$$





حالت با استغاده از تضاشای سطع لنكر بـهماسبه زواياى حاصل از دوران لنكرها يعنى的 $\theta_{B 0}$ o $\theta_{A 0}$ كرده و!انتهاى A را Tنتدر دوران دهيم كه بـهشيب صغر برسد و سهس انتهاى A را در انین وضعيت قفل نموده و انتهای B را Tانقدر دوران د هيم كه بـوضعيت اوليه خود بـركــــردد ،

لنـكرهای انتها يَى حاصل بـهورت زير خوا هد بـود :

$$
\begin{align*}
& \mathrm{FEM}_{A B}=-K_{A B}^{\prime} \theta_{A \circ}+C_{B A} K_{B A}^{\prime} \theta_{B \bullet} \\
& \mathrm{FEM}_{B A}=+K_{B A}^{\prime} \theta_{B \circ}-C_{A B} K_{A B}^{\prime} \theta_{A \circ}
\end{align*}
$$




 منـحنى +يهردازد از بحث ابين كتاب خارج است .


شكل


مهاسبه شده وجود دارد* *

٪ ا

شبكه هاى فضا بیى نامعبين را ميتوان بـكمك معادلات انطباق و يا قضيه كاستيكليانــــــو

انـجمن سيمان شرتلتد كه در

 مربوطبهسازه اوليه معين T ن بهعلت سهبعدى بودن بـهراتب يـيحيـيدهتر از يكخرياىمسنتوى
 در مورد TTنها نيز صادق است و در هر صورت بسط جزيىتتر مطالب مربوط بـهشبكههاىفضاءى خارج از بحث اين كتاب مىياشد
|Y I I

هس ازآن كه تعلـيل تنش براى يك سازه نامعين كلا"بهاتهام رسيد مىتوان بدوناشكال


مكان سازه هرداخت .
بهعنوان مثال خرض كنيـ كه نـيروى ميلهما و تغيير طول تطعات مختلف خرهاى شكــلـ

 و بار عمودى واحدى همان طورى كه در شكل ( (Y-


(الف)

(ب)

(e)








 تغيهرمكان عمودى كره f بهروش كار مجازى استغا ده كنيه . در این عالت نيروى واعد موءثر

 وارد مىشود و بـاهن ترتيب محاسبات هسهار خستهكنـده تبلى در اين حالت خاص بــه أين صورت تتألــل مىيابـد . برخى توضيح تشرهحى اران شده بالا را كافى نمىدانند و ترجيع مىد مند كهـهصورت









 لنكرهاى خمشى در نتاط تكهوامى تهر سرتاسرى اصلى مىاشد ترار دارد عملى متداول و طبيعى مىاشد .


در فصل ץ كغته شد كه تهليل متدماتى تنش خرهاها بر اساس فرضهات زيراستوار
است :


اثر مىكندد .
r
 , خطوطاثر نيروها مى:ـاشد قرار دارند .












 لنكرهاى تطعات بـر روى نيروى محورى آنها بسيار كم است و***.



 زواياي ه مجهول باشند حل نمود .
 نوشته شده الست . *** بهكتاب زير نوشته هإرسل و مورمان مراجعه شود . "Analysia of Statically Indeterminate Structures,"

حل مسائل مربوط بهتنشهاي غانويه را مىتوأن در جـهار هوب زير اراءه نمود .
1 - نتروى ميلهها را با فرض مغصلى بودن كرهمای خريا بحا سبه كنيد .
. Y r






در كرهها بهسبب خروج از مركزيت ميلمها وجود دارد محاسهـ كنيد .

- f

 برش د رتططعات ساده هوده وهعجنين مىيتوان بااستغاده از روابط تعادل متادهير جد يدنيروىى ميلمها را محأسبه نـمود .


 هنين عملكردى رادر مثال (YاY (Y) نشان دادهـاهم .

مثال

ا

مرحله


زواياى
در این حالت متدار زوايا صحيع مىباشد . د ر هر صورت مىتوان هرهى از زواياى


بدان هعنى است كه خربا را مانند جسمى صلمب دوران داده باشيم بـديهى ا است كه درخنـين صورتى شـرايط تنـث تغيهر مىنـمايـ .


| زلا | $f 3-f_{1}$ | $\cot \beta_{1}$ |  | $\cot \beta_{2}$ | $\begin{gathered} \text { 1at } \\ \operatorname{cer} n \end{gathered}$ | $\begin{gathered} \mathrm{Ed} \\ \text { term } \end{gathered}$ | $\boldsymbol{E} \boldsymbol{\Delta y}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $B-a-b$ | $+11.71+15.50=+25.21$ | 1.12 |  | 0 | +28.25 | 0 | +28.85 |
| $b-B-a$ | $+1582+13.50=+27.32$ | 0.99.3 |  | 0 | +24.40 | 0 | +84.40 |
| $a-b-B$ | $-15.50-13.82=-27.32$ | 0.803 | $-1.350-11.78=-25.21$ | 1.12 | $-24.40$ | -28.25 | -58.65 |
| c-B-b | +19.82-9.1t $=+4.71$ | 0.893 |  | 0 | $+4.21$ | 0 | +4.81 |
| $B-b-c$ | $+8.11-11.71=-2.60$ | 1.18 | + $9.11-15.88=-4.71$ | 0.883 | -2.81 | $-4.81$ | -7.18 |
| b-e-B |  | 0 | +1t.7t-8.11= +8.60 | 1.18 | 0 | + 2.81 | +8.81 |
| $C-B-C$ |  |  | $0 \quad-9.11=-8.11$ | 1.18 | 0 | -10.80 | $-10.20$ |
| $C-C-B$ | $+9.11-0=+8.11$ | 1.12 | $+9.11+12.60=+21.61$ | 0.883 | $+10.20$ | $+19.30$ | +89.60 |
| $B-C-C$ |  | 0 | $-12.80-8.11=-21.61$ | 0.898 | 0 | $-19.30$ | $-18.50$ |


$E \psi_{a B}=+47.91$
$E \Delta_{a B}=+24.40$
$E \psi_{B b}=+29.51$
$E \Delta_{B B_{B}}=+4.21$
$E \psi_{\mathrm{B}_{\mathrm{c}}}=+19.30$
$E \Delta_{A B C}=-10.20$
$E \psi_{B C}=\overline{+29.50}$
$\begin{aligned} E \Delta_{B C_{c}} & =\frac{+29.50}{0} \\ E \psi_{C_{0}} & =\frac{1}{0}\end{aligned}$



| 4 | $\boldsymbol{K}$ | $E \psi$ | $-6 E K \psi$ |
| :---: | :---: | :---: | :---: |
| $a b$ | 0.589 | +76.16 | -966.081 |
| $b c$ | 0.588 | +16.59 | - $57 . \mathrm{s}^{\prime \prime}$ |
| $a B$ | 2.194 | +47.91 | -618.5* ${ }^{\text {k }}$ |
| $B C$ | 3.076 | +29.50 | -544.0*" |
| Bb | 0.456 | +28. 61 | -64.9 ${ }^{\text {k }}$ |
| Cc | 0.285 | 0 | 0 |
| Be | 0.292 | +19.50 | - $39.8{ }^{\text {k }}$ |

$$
M_{*}=-(374)(2.20)+(938)(1.969)
$$

$$
=-174^{\prime \prime \prime}
$$

مرحله


 معلوم استكه كرههای C C c دوران نـعىكنند و لـذا هركزآ زادكردن اينكرهها لازم نخوا مد


برای معرفى مقد ماتى از يك موضوع ، نويسنده مىيا يستى حد و مرزى دلـخواهبـيناصول
 ـهذكر Tنـها يرداخت و ويا از ذكر Tانها صرف نظر نـود ، البته بههتر است بهشرح مختصرى از مضمون كلى Tنـها هرداخت و بهـخوانـنده هيشنههاد نـود در صورت تمايل بهمطالعه بـشتــــر در 'T
در بحثهاى تهلى بهتقارن در معنى محدود آن بهكرات اشاره شده است ، هركاه سازه مورد تحليل دارای تقارن باشد بر ما واجب استكه تا حد امكان ازاين تقارن استغادهكنتهم'
 سه درجه نامعين است اكر هم قاب و هم باركذارى آن حول هردو محور x و y داراكیتقارن باشد ، بهدلـل تقارن مىتوان استدلال نـود كه در مقطع وسط شاهتتر برش صغر بودهومقدار نيروى محورى برابر با 6 kips فشارى مىاباشد و بها اين ترتيب نتط مقدار لنكر نامعلــــو م م باتى مىماند و اين بخاطر تقارن است كه فقط يك مقدار نا معلوم از سه درجه ناسعينى باقـى مى مـاند
از تسـيلى كه در وضعيت يـشى مشاهده كردهم جنين معلوم مىشود كه هركاه برسازهایى متقارن بارى نامتقادن وارد شود نبز مىتوان تسههيلات بسيار در محاسبه بهدست فورد وضعي را نظهر Tنيهه در شكل (ri-1 (r) نشان داده شده است در نظر بكيريد ، فرض كنهدكه


شكل r ro-ror سازه متتارن -باركذارى متقارن

اين قاب (كه خرهاى ويرند يل خوانده مىشود ) نقط حول محور عمودى خود داراى تقــارن

 o



شكل r|-1 rr كاربرد باركذارى متقارن و با ضد تقارن
تجزبه كنيم واضم است كه جمع اين دو دستكاه باركذارى برابـر با باركذارى موجود بــوده ه و
 كذارى معلوم خواهد بود .




$$
\begin{array}{cc}
\theta_{a}=-\theta_{d} & \theta_{b}=-\theta_{c} \\
\psi \operatorname{col}=\theta_{s}=-\theta_{s} & \theta_{c}=0
\end{array} \quad \psi_{d}=-\theta_{0}=-\psi_{g \lambda}
$$

در حالت باركذارى با ضد تتارن ششث مجهول مستقل خوا هـم داشت - خهار زاويه ه و دو
زاويه

$$
\theta_{a}=\theta_{\mathrm{d}} \quad \theta_{\mathrm{b}}=\theta_{c} \quad \theta_{\mathrm{c}}=\theta_{\mathrm{n}} \quad \theta_{f}=\theta_{\mathrm{c}} \quad \psi_{\mathrm{d}}=\psi_{\mathrm{bA}}
$$

از آنجائى كه حجم محاسباتى بهطور تعريبى متناسب با مجذور تعداد هجهولات مىیاشد اكر


بيشترى هرداخته شود".

 نظهرقابیى در شكل (Yا-




|(الف|

(ب)

(t)
شكل r Y r-اربرد مركز ارتجاعى

عمل كنهم هـل مساله منجر بهحل د ستكاه سه معادله سممجهولى زير مىكرد د :

$$
\begin{aligned}
& \Delta_{a c}+X_{a} \delta_{a a}+X_{b} \delta_{a b}+X_{c} \delta_{a c}=0 \\
& \Delta_{b o}+X_{a} \delta_{a b}+X_{c} \delta_{b s}+X_{c} \delta_{b c}=0 \\
& \Delta_{c a}+X_{a} \delta_{a c}+X_{b} \delta_{b c}+X_{c} \delta_{c e}=0
\end{aligned}
$$




J. S. Newell, Symmetric and Anti\&ymmetric Logdings, Civil Eng

Civil Eng شمارهTورهل سال 1 ا 1 مجله
W. L. Andrée, Das B = U Verfahren, R. Oldenbourg-Verlag, Munich, 1919
W. M. Fife and J. B. Wilbur, "Theory of Statically Indeterminate Structurea,




 بوده ولى داراى يك متدار نخواه


 خـش و تتش مستقهم ترار دارد ارائه نموده است ، وى این جنين ارائه هماسباتى را روش "تشابه ستونى " ناميده است"

$$
\text { ro - } 11 \text { مسائل }
$$

را 1 راه حل محاسباتى معين كنيد ، براى كلهه تطعات $1 / A=1$ كرفته شود . 1 . 1 جواب :

در B B44 بهسمت راست و در $174^{4}$ بهطرف بالا.


H. Gross and N.D. Morgan, "Continuous Frames of Reinforeed Concrete," John Wiley \& Sons, Inc., New York. 1932.
r كنيد ، سطلم متطع اعضأ، را بر حسب اينج مربع در داخل برانتز نشان دادهاهم .


شكل HY-1t rir مسالa

 -نشان دادهاهر

$$
F_{a d}=+3.06^{\star}
$$ جواب:




 $E=30 \times 10^{3}$ kips per sq in., $\alpha_{t}=1 / 150,000$ per ${ }^{\circ} \mathrm{F}$.

جواب :

$$
F_{s b}=+14.4^{k} ; F_{a d}=-15.6^{k} ; F_{\infty}=+16.1^{k}
$$



rir -


 انـها را با اعمال زور در جاى خود قرار ددهند (ج ) اكر تكيهكا هـها بـهمتاد عر زير نشست داشته

باشند :
تكيهكاه هِ. : 0.48 in = بهسمت بائين
انتــــي= 0.24 in بهسمت چب٪
تكيهكاه سمت راست : 0.24 in = بهمودت عائين
انتــى = 0.36 in بهسمت راست .
 rir -





 $E=30,000 \mathrm{kips} / \mathrm{sq}$ in A $A=2$ in $\quad 0.036$ بهدا مى

r-ir شكل ra-ir ratr
ri - -
 30-kip مىياشد . نيروى ميلدها را در كلهي تطمات اين سازه تحت اثر نهروى عمودى معاسته كتدي




تعر را حدي بزنيد ،البته بايستى مطمئن شوعدكه اهن متاديرحد سي شما حداتل درهعادلات


جنـد تير را نيز رسم كنيد
( ب ) با استغاده از معادلات انططباق بـراى حل این تير تحلهل كامل تـررا تعـت اثر


 ( د ) مقاد يرى را كه شما در قسمت a برای عكسالعملها حدسي زدهاهددرحالـتكلى


 جه مقدار خوا هند بود ؟


كاستيكليانو استغاده نـمائبد و فقط تغيهرشكل خمثشى را در نظر بكيريد . جواب :
متدار M در هیى ستون $270^{* \prime *}$ كه سبب كشش در تارهای سمت جب مینـمايد .


شكل Fi-lif مساله


محورى صرفنظر نمائيد ، I I دارای مقادير ثابتى هستتد

$$
M_{a}=195.4^{k^{\prime}} \quad \text { وبهوبت } R_{a y}=31.1^{k} \quad R_{a x}=0 \quad ل \quad \text { جاب }
$$




شكل HY-1r
 مهورى صرفنظر كنيد ، I $I$ دارای مقادير ثابتى هستند . جواب :
, $R_{a y}=30^{k} \quad$ بهست بالا ، , $R_{a z}=18.3^{k}$
, $R_{c y}=10^{k} \quad$ بوسمت بالا .


rir از تغييرشكل حاصل از نتروى محورى صرفـنظر نمائيد . جواب :
برش دارای بقدار ثابتى برابر با تارهاى خارجى میىكند ،


شكل شf-ir

كنيد

 از قضيه كاستيكليانو استغاده شود .

جواب :
+14.07** متطع بار M


|

$A=12$ in $\quad I=432$ in." $A C$ براي تطعه
$A=3$ in $A D$ براي تُط
$A=2$ in $\quad B D \quad A=3$ in $\quad D C$ برای הطعه تطعه


د
 ميله كششى كه تير را بهخرها متصلمىيسازد محا سبهكنيد دو انتهاي اينميله مغصلىمىباشد .

$$
F_{L_{1} b}=+47.0^{k} \quad: \quad \text { جواب }
$$






شكل pq-p

(الف ) عكسالعمل حامل از بار وارده زا مها باسبه كنيد


 محاسبه كنيد
تكهوكاه a 0.72 in $\quad 0.0$ بشستى برابر با با

تكههكاه d دورانى براهر با 0.005 راديان در جهت عكس عقربهماى ساعت .


شكل 1r
د To - IT
 دليل خود را در مورد تحليل تنشا

ro-ira




# (الض) لنكر خمشى محاسبه شده با در نظر كرفتن باركذارى بعلوم . <br>  <br>  


Y IY -
 - $B D$

جواب :

$$
\begin{array}{llr}
M_{A B}=-275^{\prime} & M^{\prime} & M_{D B}=-35^{k^{\prime}}
\end{array}
$$



شكل
رr Ir
 نـائيد
جواب:

$$
\begin{array}{ll}
M_{a b}=-160^{t^{\prime}} & \quad M_{b c}=-90^{t^{\prime}} \quad M_{L C}=-80^{k^{\prime}} \quad M_{00}=-40^{t^{\prime}}
\end{array}
$$


rir - ir كنيد
 قاب شكل (

جواب

$$
\begin{aligned}
& M_{A n}=-16.1 .6^{4} \\
& \text { با در نظر كرفتن علانم شيب - تغييرمكان } \\
& M_{B C}=+1500: 2^{k^{\prime}} \quad M_{H A}=-150.2^{4^{\prime}} \quad M_{C B}=+147.4^{k^{\prime}} \\
& M_{c} c^{\prime}=-147.4^{k^{\prime}} \\
& M_{\text {se }}=-163.5^{5^{\prime}}
\end{aligned}
$$



شكل rof-ir
 تكيهكامى تاب شكل (Y (


 وجود دارد ${ }^{\top}$ رابطه را تعهين كنيد
( ) ) معادلات تعادل را كه الساس حل اين سازه بهروش شيب ــغغييرمكان مىباشـد


شكل



كه باركذارى اهن تاب نسبت بـهمحور عمودى داراى تقارن باشد بـنويسيد . ( ب ) همين عمل را هراى باركذارى با ضد تقارن انجام دهيد .


شكل AY-Ir بسباله
rir - ir اين قاب محاسبه كرد ه و منحنيهای برثى و لنكر را براى تطعه $A B$ رسم كنيد . جواب:

$$
M_{A B}=-180.8^{k^{\prime}} \quad \text { با د ر نظر كرفتن علائم شيب - تغيهرمكان }
$$

تحليل تنسَ در ساز زمهاى أمعين

$$
\begin{array}{lll}
M_{D B}=-10.3^{k^{\prime}} & M_{n A}=-28.33^{\prime \prime} & M_{B A}=+88.33^{\prime} \\
M_{D E}=+5.1^{k^{\prime}} & M_{\Delta H}=+5.1^{\prime \prime} &
\end{array}
$$

ro - Ir (
ثخشش لنكر محا سبه كنيد .


r - Ir . ماسبه كنهد جواب:

$$
\begin{array}{ll}
M_{A B}=+26.8^{k^{\prime}} & M^{\prime} \\
M_{A D}=-26.8^{\prime \prime} & M_{D A}=-33.2^{k^{\prime \prime}} \\
M_{D C}=+10.4^{\mathrm{n}^{\prime}} & M_{D E}=+15.2^{k^{\prime}}
\end{array}
$$


شكل ro-ir مساله
 از روش بخش لنكر محاسهه كنهد .


$$
\text { شكل rו-1 } 9 \text { مساله rו-rr }
$$

Y


$$
\begin{aligned}
& M_{B 1}=-123.0^{\prime \prime} \quad \text { با در نظر كرفتن علاتم شهب -تغيهر مكان } \\
& M_{D C}=-208.2^{\prime \prime} \\
& M_{A B}=-158.2^{\prime \prime} \\
& M_{C D}=-223.0^{\prime \prime}
\end{aligned}
$$


شكل rı
rir - هr هr هr رسم نمائهد .
جواب :
$M_{8 A}=-55.8^{\mu}$
با در نظر كرفتن علائم شهب -تغيير مكان
$M_{A B}=-69.2^{\prime \prime}$
$M_{D C}=-167.0^{\prime \prime}$
$M_{C D}=-233.44^{\prime}$

.
(الف ) با استغاده از روث بخش لنكر كليه لنكرهاي انتهايهى حاصل از از باركذارينشان
داده شده را در كليه تطعات آن محاسبه كنيد .

. را محاسبه خواهميد كرد C
 - خود بركردانيـ


ثكل
r Y -

داده شده را در اهن سازه محاسهـ كنيد



ميله كششى را كه در اثر نـيروى عمودى 10-kip كه بر كره ' ' وارد بیشود محاسبه كنيـــ • الز تغيير طول محورى حاصل در این ميله صرف نـظر نـائهد .
 روث بخش لنـكر داخل نـود .


شكل
ץ
 - بـان كنيد


شكل
ץ
جوابب :

$$
M_{80}=+23.9^{\prime}
$$

$$
\begin{aligned}
& M_{B A}=-M_{B C}=+8.6^{b^{\prime}} \quad \text { دا نظر كرفتن علائم شيب - تغهير مكان } \\
& M_{C B}=+8.6^{k^{\prime}}
\end{aligned}
$$



ץוi . (fAーا ( )

$A=30$ in , $\quad I=500$ in.4 متدار $E=30 \times 10^{0} \mathrm{kips} / \mathrm{sq}$ in C (
 نا معين مى.ـاشد ؟
Tآ عكسالعملهای افتىرا با استغاده ازروشـهاى سه لنكر و شيب تغيهر مكان مىتوانهماسبه نـمود ؟ كدام یک از اهن روشـها بـر هـه برترى دارند ؟ تعداد معادلات ایجاد شده در هر بـك از این راه حلـها حه مىباشد ؟


شكل firqur for
r Y -
.
if
خطوط تأتير سازمهاى نامعين
( If IF

در فصل با أ روشهاى كوناكون تحليل سازههاى نامعين مورد بحث و هررسى تراركرفت








 تاتيرعموما" ها منحنى شكل هستند و ها ازهند ين خـط شكسته كه منحنىوار هـهم وصل شدهاند تشكيل هافتهاند
خوشبختانه اغلبخطوط تاثير ايننوع سازهها ازنوع دوم هستند .اكر شك سازه نامعين








 اولين قدم دررسم خطوط تاثيرهراى تنشهاى مختلف يك سازهنامعين ، تعيهن خطوط تاثهر براى قيدهاى اضافى تاثير هراى عكسالمعل نيروهاى ميله ،هرش ها لنكر بهكك معادلات تعادل ا امكانذذر خواهد

If If
 تراردادن بار واجدد در وضعيتهاى مختلفى كه در آن نتاط امكان اثر بار بر سازه وجود دارد
 بهد ستT وردن خطوطتاثير اتصالات (قهدهاى ) اضافى بك سازهء نامعين بهكار برد . عمــل
 در وهله نتخست هينظر میرسد كه جنيت غملى بسسار خستكى آور خواهد بود ولـى همان طورى كه در مثال (أا



 جدولى از طرتق رابطه زهر يهد ست Tورد

$$
F=F_{0}+X_{1} F_{1}+X_{2} F_{2}
$$

ملاحظه مىكنيد كه خنين كارى هسبار ساده است زيرا نهروهاى ميله
 خطوطتاثير براى مجهولات (مَيود اضافى ) يك سازه نا معين بااستغاده از این طريت طولانى
 از طريق د بكرى باهمين زسمت خواهـ اهد بود .

مثال ميلهعاى اضافى این خرها را رسم كنيد .

نيروى داخل ميلمهأى (! )



$$
\begin{align*}
& \Delta_{1-}^{-a}=\Delta_{1 n}+X_{1} \delta_{11}+X_{2} \delta_{12}=0  \tag{1}\\
& \Delta_{2}^{\rightarrow-}=\Delta_{t n}+X_{2} \delta_{21}+X_{12} \delta_{72}=0 \tag{r}
\end{align*}
$$

با استغاده از تقارن دارعم :


. خوا هنـد بود
(1الف)
$\Delta_{14}+X_{1} \Delta_{11}+X_{2} \delta_{12}=0$
(r)

با بـهاربردن روش كار مجازیى جـهت هـا سهه
مقادهر تغيهر مكانـها متادهر ثابـت سازهـهـهورت زهر خوا هند بود .

$$
\begin{aligned}
& \left(1^{*}\right)\left(\delta_{11}\right)=\frac{1}{E A} \sum F_{1}^{2} L \\
& \left(1^{*}\right)\left(\delta_{14}\right)=\frac{1}{E A} \sum F_{1} F_{3}^{\prime} L
\end{aligned}
$$

در حالىى كه عبارات برهوط بهها ر خوا هند هود .

$$
\begin{aligned}
& \left(1^{k}\right)\left(\Delta_{1, A}\right)=\frac{1}{E A} \sum F_{1} F_{n} L \\
& \left(1^{b}\right)\left(\Delta_{3 n}\right)=\frac{1}{E A} \sum F_{2} F_{n} L
\end{aligned}
$$









ثابتتهاى سازه :
$\therefore \delta_{11}=+115.83 \quad \delta_{12}=+1.57$

مقادير مربوط بـبار


(Müller-Breslau ) ) جهت ثعيين خطوط تأـير
بر طبقاصل مولر - برسلا مىتوان دوش بسسيارساد هأىجهت محا سبهخطوط تا ثشربوجود
 اين اصل را مىتوان بهصورت زهر بـان نـود .


 این اصل را مىتوان هركليه سازهها اعماز تهر • خرها با قاب؟ بهصورت معين بانا معين

 جنين محدود تتى مهم نمى.شد زهرا در سطع هسهار وسيعى از كارهردهاى عملى این شر ط مادت مى.
اعتتار این اصل را مىتوان بهصورت زهرنشان داد i بـها ين منظور تهر سرتا سرى

 عمودى در نتا ط مختلغ n در طول سازه و مساسبه عكىالعمل براى آن بار ، رسم نمود

 كنيد كه هراین سازهء اوليه بار واحد عمودى در نتطه n اثر كتد كه سبب عكـالعــلـ عمودى R R در a شود . اكر این نـرو دارای همان مقدار عكـالعمل عمودى در نتططه د $a$

 با صغر مىباشد .

* بهمهين ترتيب با استفاده از اصل مولر -برسلا اغلب مىتوان بهطور تقريـي بهرسم
 جكونكى باركذارى سازه بـمنظور ايجاد حداكثر ا'ثر مورد نظر اتدام نـود .
(الغ)

(ب) $\frac{a_{0}-2}{f_{R_{a}}}$
(c)

( s$)$


شكل (1-1



مذكور در شكل (ب )و (Y) نيروهاى مذكور در شكل( (Y ) . با اعمال قانون بتى هر اين حالت خوا

$$
\left(R_{\mathrm{a}}\right)\left(\Delta_{\mathrm{aa}}\right)+(\mathbf{1})\left(\Delta_{\mathrm{na}}\right)=(F)(\mathbf{0})
$$

و بنابراین

$$
R_{a}=-\frac{\Delta_{\mathrm{na}}}{\Delta_{a \mathrm{a}}}(1)
$$

علامتهائى كه براى نشان دادن تغيير مكانها بـكار رفته است همان علائم ذكرشد ددر
روش معادلات انطبات مىىباشد .
از اين معادله جنبين بر مى
 ، مانتد شكل منحنى Ra مقدار عرض خط تاثير در هر نتطهه نامعلوم n را مىتوان با تتسيم نمودن تغيهر مكــان





$$
\begin{equation*}
X_{a}=-\frac{\Delta_{n e}}{\Delta_{a}}(1) \tag{r-1Y}
\end{equation*}
$$

ذكر ترارداد علائم د ر مورد این معا دله بسيار مبم است ،بـنتترتيب هX زمانى مثـتاست



 .
ذكر اهن نكته نيز مهم است كه عرض كليه خطوط تأثيرما بستكى بهمقدار نهروى جهت اءجاد تغيهر مكان عرضهای خط تأثير معولا" مقدار .


 نامعين خواهد بود ـ در هر صورت جنين مطلبى اججاد اشكال نمعنـمايد فقط مىبا يستى تيل
 هكى از روشهاى مذكور در فصل سيزد هم تهلـهل نمود .

مثال

با بهكاربردناصل مولر-برسلاسازه اوليه شكل متابلـرا انتغاب مىكنهم ،مىتوانهم بنوهسهم :

$$
X^{\top}=-\frac{\Delta_{b b}^{t}}{\Delta_{b t}^{t}}\left(I^{n}\right)
$$

در رابطه فوت جهت متهت مريك از علاعم نشان داده شده است .
اكر بهمنظور راحتى بـشتر تصمهم بكيريم كه
مى:بايستى علامت راست اين معادله را تغيير دهيم و بنويشهي :

$$
X_{b}^{\dagger}=\frac{\Delta_{\mathrm{at}^{\dagger}}^{\dagger}}{\Delta_{\Delta t}^{\dagger}}\left(I^{k}\right)
$$

مباحث بنيادى تحلـيل بازهها


بر طهق تضسه دوم سطح لنكر :

$$
\begin{aligned}
E / \Delta_{n, b} & =(2 O)\left(\frac{x}{2}\right)\left(\frac{2 x}{3}\right) \\
& +(20-x)\left(\frac{x}{2}\right)\left(\frac{x}{3}\right)-\frac{x^{2}}{6}(60-x) \\
E / \Delta_{\Delta b} & =\frac{(20)^{2}}{6}(60-20)=\frac{8,000}{3} \\
\therefore X_{b}^{\dagger} & =\frac{x^{2}(60-x)}{16,000}
\end{aligned}
$$



مثال


$$
\begin{aligned}
& E I_{1} \tau_{1}=(0.5)(i .5)=3.75 \quad \therefore E I_{1} \Delta_{b 0}=3.75+3.89=7.58 \\
& E 1_{1,2}=(1 . i)(6)(223)-(0.305)(6)(1 / 3)=3.894 \quad
\end{aligned}
$$

$$
\begin{aligned}
E I_{1} \Delta_{4}^{\dagger} & =\left(\frac{x}{15}\right)\left(\frac{x^{2}}{6}\right)-\left(\frac{1}{2}\right)\left(\frac{x}{2}\right)\left(\frac{2 x}{3}\right)-\left(\frac{1}{2}-\frac{x}{30}\right)\left(\frac{x^{1}}{6}\right)-\frac{x^{3}}{60}-\frac{x^{1}}{4} \\
: X_{b} & =\frac{1}{7.58}\left(\frac{x^{2}}{60}-\frac{x^{2}}{4}\right)
\end{aligned}
$$

$$
\begin{aligned}
E f_{1} \Delta_{x L}^{\top} & =-3.834 x+(1.1)\left(\frac{x^{2}}{3}\right)+(1.1-0.0928 x)\left(\frac{x^{2}}{6}\right)-(0.02548)\left(\frac{x^{2}}{6}\right) \\
& =-3.894 x+0.556 x^{2}-0.0197 x^{\mathrm{j}} \\
\therefore X_{b} & =\frac{1}{7.58}\left(-9.894 x+0.566 x^{2}-0.0197 x^{2}\right)
\end{aligned}
$$


مقاد بر عرضهاى خـط تأثير را در نواصل سهنوتى مىتوان از این معادلات بهد ست اورد .
( If






هـطور اساسى ايت روش از مراهل زهر تشكيل مىكردد :
ا ـلنكرى كيردارى برابر با واحد بهانتهاي يك مطعه وارد كنيد ، با استفاده از روش هخش لنكر لنكرهاى انتهايقى حاصل را در كليه تطمات هساسبه كنيد . اين عمل را براى هـر انتهاى كليه تطهاتى كه مىتوانند دارایى لنكر كيردارى حاصل از بارهاى وارده هاشندتكـرار كنيد
「 ــلنكرهایكيردارى حاصلاز اثر بار واحدى را كه بهنوبت در هريك از نتاط مفتلف
باركذارى اتر مىكند صحاسبه كنيد
r -
واحد در هريك از نتاط مهتلف باركذارى سازه با هكديكر تركيب كنيد .








مثال
 معين كتيد

بايد بهحالت (الف ) و (ب ) هل سازه را با هكدهر تركيب كنــم .

-تسيم بیكتيه
مرهلد $1=$

- معين مىكتــ

$F E . M_{B D}=+1.0$


اين ارقام تنـها هاسخهاى املى بخش لنكر لازم جهت عطليات محاسياتى مىباشند ، لنكرهاى


 - EF , ED

خلاصه لنكرهاىانتهايق هاملاز FEM = + درنقاط مختلف


مرحله Y : FEM حاصل از اثر بار واحد در نتاط مختلف باركذارى :


مرحله r : جدول تأثير هراى لنكرهاى انتهايىى •


م

از خرياى شكل ( ( أ
( ب ) با استفاد هاز معلومات قسمت (الغ ) خطوط تأثيرى براي نيرو در ميلههاى Bc Bc


شكل (


(الغ ) لنكر در نتطه e از تير مثال (
( ب ) عكسالممل عمودي در نتطهم b از همان تير .
(


## ضمائم

ضميمه الف ـتبديـل آحاد متعارف بـيكديكر

| in | $=0.025400$ | m |
| :---: | :---: | :---: |
| ft | $=0.304800$ | m |
| in ${ }^{2}$ | $=645.1600$ | mma ${ }^{2}$ |
| $f t^{2}$ | $=0.092903$ | $\mathrm{m}^{2}$ |
| in ${ }^{3}$ | $=16.387064 .1$ | $-6{ }^{3}$ |
| $f t^{3}$ | $=28.31685 .10$ | $3 \mathrm{~m}^{3}$ |
| quart | $=0.946353$ | liter |
| gallon | $=3.785412 .10$ | $\mathrm{m}^{3}$ |
| in ${ }^{4}$ | $=41.623143$ | $\mathrm{cm}^{4}$ |
| cm ${ }^{4}$ | $=1.000000 .10$ | $\mathrm{m}^{4}$ |
| $f t^{4}$ | $=8.360975 .10$ |  |
| gram | $=980.665000$ | dyne |
| kg | $=9.806650$ | N |
| lb (جرم) | $=0.453592$ | kq. (جرم) |
| kips (=1000 lbs) | $=4.448222$ | kN |
| kip/ft | $=14.593904$ | kN/m |
| lb/ft | $=1.488164$ | $\mathrm{kg} / \mathrm{m}$ |
| $\mathrm{kg} / \mathrm{cm}^{2}$ | $=9.806650$ | $\mathrm{N} / \mathrm{m}^{2}$ (Pascal) |
| $\mathrm{kg} / \mathrm{cm}^{2}$ | $=98.066500$ | $\mathrm{kN} / \mathrm{m}^{2}$ (kPa) |
| kip/ft ${ }^{2}$ | $=47.880260$ | $\mathrm{kN} / \mathrm{m}^{2}$ |
| lb/in ${ }^{2}$ (psi) | $=6.894757$ | $\mathrm{kN} / \mathrm{m}^{2}$ |
| lb.in(torque) | $=0.112985$ | N.m(لنكر) |
| 1b.ft | $=1.355818$ | N.m |
| kip.ft | $=1.355818$ | kN.m |
| ft.lb ( كار ها انرزى | $)=1.355818$ | joure |
| cal.g ( C ( | $=4.136800$ | joule |
| $1 \mathrm{~b} / \mathrm{ft}{ }^{3}$ | $=16.018460$ | $\mathrm{kg} / \mathrm{m}^{3}$ |
| kip/ft ${ }^{3}$ | $=157.087616$ | $\mathrm{kN} / \mathrm{m}^{3}$ |
| $g / \mathrm{cm}^{3}$ | $=62.427900$ | lb/ft ${ }^{3}$ |
| $\mathrm{g} / \mathrm{cm}^{3}$ | $=9.806650$ | $\mathrm{kN} / \mathrm{m}^{3}$ |

ضيمه ب: سطع و مركز ثقل برخى از اشكال باركذاريهها

| نوع شكل | مشخصات شكل | سط | مرتعهت مركز ثتل |
| :---: | :---: | :---: | :---: |
| 4 |  | $A=\frac{b h}{2}$ | $e^{\prime}=\frac{1}{3} n$ |
| 3 |  | $A=b h$ | $C_{x}=\frac{h}{2}$ |
| 2 |  | $\mathrm{A}=\frac{1}{2}(a+b)$ | $\mathrm{C}_{\mathrm{x}}=\frac{h}{3} \frac{a+20}{a+b}$ |
| b <br> $\substack{\text { a } \\ \\ 3 \\ \hline}$ |  | $A=\frac{7}{2} r^{2}-1,57080 r^{2}$ | $e_{x}=\frac{4 r}{3 \pi} \approx 0,4244$, |
|  |  | $\begin{aligned} A & =\frac{\prime^{\prime}}{2}\left(\frac{\pi \varphi^{\prime}}{180^{\circ}}-\sin \varphi\right) \\ & =\frac{r(b-s)+s h}{2} \end{aligned}$ | $\begin{aligned} e_{m} & =\frac{s^{2}}{12 \operatorname{A}} \\ & =\frac{r^{2} \operatorname{rin}^{2}}{3} \frac{\varphi}{2} \\ e_{x} & =e_{m}-r \cos \frac{\varphi}{2} \end{aligned}$ |

\begin{tabular}{|c|c|c|c|}
\hline نوع شكل \& مثخصات \& سطع \& موقعهت مركز ثغل <br>
\hline 2

$\substack{4 \\ 0}$ \&  \& $A=\frac{\pi}{4} r^{2} \sim 0,7854 r^{2}$ \& $$
\begin{aligned}
& e_{x} \sim 0,4: 44 r \\
& e_{1}=0,5756 r \\
& r_{Y} \sim 0,6002 r \\
& e_{\xi} \sim 0,1071 r
\end{aligned}
$$ <br>

\hline $$
\begin{gathered}
4 \\
2 \\
2 \\
1 \\
\hdashline \\
\hdashline 3 \\
2
\end{gathered}
$$ \&  \& \[

$$
\begin{aligned}
A= & r\left(1-\frac{\pi}{4}\right) \\
& \sim 0,2146 r^{4}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& e_{1} \approx 0,2234 r \\
& e_{x} \approx 0,7766 r \\
& e_{\eta} \approx 1,0983 r \\
& e_{k} \approx 0,7071 r \\
& e_{i} \approx 0,3159 r \\
& e_{1} \approx 0,3912 r
\end{aligned}
$$
\] <br>

\hline $$
\begin{gathered}
\mathfrak{b} \\
b
\end{gathered}
$$ \&  \& $A-\frac{\pi}{2} a b \sim 1,571 a b$ \& $P_{x}=\frac{4}{3 x} a \sim 0,4244 a$ <br>

\hline $$
\begin{aligned}
& \dot{y} \\
& \dot{y}
\end{aligned}
$$ \&  \& $A-\frac{\pi}{4} a b \sim 0,7854 a b$ \& \[

$$
\begin{aligned}
& e_{x}=\frac{4}{3 \pi} a \sim 0,4244 a \\
& e_{y}=\frac{4}{3 \pi} a \sim 0,4244 b
\end{aligned}
$$
\] <br>

\hline
\end{tabular}

| نوع شكل | مشخصات شكل | سطع | موقعيت مركز ثغل |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & 4 \\ & 2 \\ & 3 \\ & 3 \\ & -3 \\ & -1 \\ & -3 \end{aligned}$ |  | $\begin{aligned} A & =\left(1-\frac{\pi}{4}\right) a b \\ & \sim 0,2140 a 0 \end{aligned}$ | $\begin{aligned} & { }_{x} \sim 0,7766 a \\ & { }_{y} \sim 0,77680 \end{aligned}$ |
| $\frac{1}{5}$ |  | $A=\frac{4}{3} a b$ | $e_{x}=\frac{2}{5} a$ |
| $\begin{aligned} & \frac{2}{5} \\ & \frac{1}{2} \end{aligned}$ |  | $A=\frac{2}{3} a b$ | $\begin{aligned} & e_{x}=\frac{2}{5} a \\ & c^{\prime}=\frac{3}{8} b \end{aligned}$ |
| $\begin{gathered} 4 \\ b \\ 1 \\ 5 \\ \hdashline-1 \\ 1 \\ 3 \\ 3 \end{gathered}$ |  | $A=\frac{1}{3} a b$ | $\begin{aligned} & e_{x}=\frac{7}{10} a \\ & e_{y}=\frac{3}{4} b \end{aligned}$ |

ضصيمه ج : مقادير FEM در تيرهاى مختلف تير طرهاى

$\mathrm{FEM}_{\mathrm{AB}}=-w\left(a+\frac{b}{2}\right)$

$\mathrm{FEM}_{A B}=-\frac{W G}{3}$

$\mathrm{FEM}_{\mathrm{AB}}=-\frac{2 W_{Q}}{3}$


$$
\mathrm{F}_{\mathrm{AB}}=-P . a
$$



$$
\mathrm{FEM}_{\mathrm{AB}}=-M_{C}
$$



$\mathrm{FEM}_{A B}=-\frac{W^{\prime} b}{i S L^{2}}\left(5 L^{2}-3 \Delta^{2}\right)$
$\begin{aligned} m & =a / L \\ & =-W a\left(\frac{m^{2}}{5}-\frac{3 m}{4}+\frac{2}{3}\right)\end{aligned}$
$\mathrm{FEM}_{\mathrm{AB}}=-\frac{W \Delta}{6 O E}\left(1 O L^{2}-3 \Delta^{2}\right)$
$F E M_{A B}=-\frac{14 a}{8 L}(2 i \cdots a)$

FEM $_{A B}=-\frac{W q}{8 L}(\Delta L-3 \dot{a})$

$\mathrm{FEM}_{A B}=-\frac{P L}{5}$




فارسى - انكليسى
naval architect
guyed mast
anchorage
hangers
construction features
stress element
rolling effect
vibration
elongation
pier
raqs ا
principle of the conservation of energy principle of superposition
bottom chords
top chords
end posts
primary truss members
web members
sag
impact fraction

ازد باد طول
السكه
Tرثينتكت صنايه درياهی
آنتن مهارشده
Tآنكـراز
'
اتصالات اجرانهي
اثر تنش زا اثر هاصل از غلت

ارتعاش

اصل , بتاى انرزى
اصل روهجمكذارى (النطياق )
 اصلى فوتانى (ميلمهساى )

اعضاى اوليه خريا
اعضاى جان
انت (شكم )
افزاهش ضرب
expantion
far end
near end
American Railway
Engineering Association

American Association of State
Highway and Transportion officials
elastic strain energy
contraction
graphic static
انجمن مـندسـين راه و حمل و
نتل ایالات امريكا انـرزى ارتجاعى كرنـث
انعـاض
ابستايی ترسيهى
(ب)
rim bearing type
center bearing type
elastic load
wind load
double - prime
full snow load
full panel load
antisymetrical
lateralloads
hydrodynamic loads
live loads
moving loads
dead loads
movable loads
ice load
tower
transmission tower
radio .tower

با تكيهكاه حلتوى
با تكيهكاه مركزى بار اتجا عـى

بار باد
با دا دهرهـم بار كامل هـرف بار كامل هانلى با ضد تعارن بارهاى جانتى بارهاي دهنا مانـا بارهاى زنده بارهاي متهرك بأرهای مردهـ بارهای منتول بار كغ زدكى برب
برج انتقال نـهرو
برج راديو
elastic shear
planning
turnbuckles
link

| هرش ارتجا عى |
| :---: |
| هرنا مهرهزى |
| هست تورباغ |
| هند |

$$
(5)
$$

## Paleolithic

stable


ها هـدار
leg
portal

rivet
هr
leeward
skew bridge
through bridge هل با عهوركاه تعتانى
deck bridge
half-through bridge
بل با عهوركاه مهانى
vertical lift bridge
هل بالا رونده
horizotal-swing bridge
هل هرشان افتى
through - parrallel chord truss bridge
هل خرنايّ دوى كذر
three hinged bridge
cantilever bridge
هل با عبوركا ه نوتانـى

bascule bridge هل طرهأى
movable bridge
suspension bridge
هل قهانى هل متحرك
shell
كل معلق
twisting هوستـــــــ
unfinished bolts


مباحك بنـادى تحلـل بازهها
function
theorem
stress analysis
structural analysis
structural analyst
bottom chord
top chord
resolution
composition
top plate
column analogy
static equilbrium
deformation
virtural deformation
stress reversal
displacement
linear deflection
angular deformation
relative deflection
support
link support
roller support
partial support
ball support
fixed support
hinge support
universal joint support
shear force
E.

تئورى
تعلحيل تتش
تتحلــل سازهاى
تحليهلك سازه
تهت تحتانیى
تغت فوتانى
تعزهيه نيرو
تركهب نهرو
تسمه بال
تثابه ستونى

تعادل إستاتیكى
تغيهرشكل
تغيهرشكل مبازى
تغيهر علا مت تنـثـ تغيهر بكان تغيهر مكان هطى تغيهر بكان زاوهها

تغيهر مكان نسهي تكيهكـاه تكيهكاه هيند دار تكيهكاه غلتكى تكيهكاه فرعمى تكيهكا كروى

تكيهكاه كيردار
تكيهكاه مغمل
تكيهكاه مغملى سهـعدى
تلاش بـرثى

| shear resisting force | تلاث مقاوم برشى |
| :---: | :---: |
| primary stress | تنش اولهي |
| shear stress | تنش |
| yield stress | تنش تسلهم |
| live stress | تنش زنده |
| impact stress | تنش ضربهاى |
| normal stress | تتش عمودى |
| permissble stress | تتش هجاز |
| dead stress | تنش مرده |
| beam | تحــ |
| girder | تهر اصلى |
| stringer | تهر طولى كف |
| conjugate beam | تهر مزد |
| girder (plate) | تّهـر ودق |
| continuous beam | تير يكسره |
|  | (c) |
| sidesway | جابها |
| weld | جوش |
| . | (E) |
| bracing | جه و راست |
| sway - bracinq diagonals | جبه و راست معاوم |
|  | (e) |
| elastic limit | حد ارتجاعى |
| minimum |  |
| maximum | حداكثر |

truss
ideal truss
complex truss
multiple - system truss
simple truss
compound truss
planar truss
fatigue
plastic fatigue
line of action
influence line
track
base line
pipeline
(د)
degree of freedom
degree of indeterminacy
equivalent live-load system
original force system
general coplanar force system
classification
National Bureau of standards
Uniforme Building Code
derrick
rotation
retaining wall


|  | ( ) ) |
| :---: | :---: |
| direction. | راستا |
| renaissance | رنسانس |
| elastic load method | روش بار ارتباعى |
| distribution method | روش هخش ل:نكر |
| displacement method | روش تغيهر مكان |
| rotation method | روش دوران |
| factor method | دوث ضرهب |
| method of joints | روش كرهـها |
| method of sections | روش باطع |
| force method | روش نیيرو |
| relaxation procedures | روشها |
| string | رهسمان |
|  | ( ; ) |
| friction angle | زارهx اصطكاك |
| catenary | زنجهر |
| couple | زوج |
|  | (0) |
| compatible | سازكار |
| primary structure | سازه اوليه |
| panel structure | سازه هانلى |
| continum structure | سازه هـرسته |
| modified structure | سازه تغهر بانته |
| framed structure | سازه تأهى |
| steel-cable structure | سازه كإلنى |
| descrete structure | سازه هجزا |

م4اهث بنهادى تعليل سازهـا gris
actual structure
guyed structure
engineering structure
leg
net area
dam
moment area
gross area
bar - chain
space framework
complex space framework
simple space framework
compound space framework
planar truss
plane framework
circular acceleration
secondary stress intensity
radius of gyration
sketch
structural form
brittle fracture

## sag

sketch
slope-deflection

(ル)
شهك فغايق
شهك فغاتيا سهريده
شهك فنايق ساده
شهك مفايعى مركب
شهك مستوى
شهك مستوى
يتاب خرع از مركز
شدت تنش ثانوه
شعاع زعراسيون
شك
.
شكسئى ناشى از تردى
شكم (افت)
*
شهب -تغبير مكان
(0)
gusset plate
bearing plate
rigid

صفعه تقسمي فشار
$\square$
(ض)
impact
coefficient of thermal expansion
load factor
distribution factor
influence coefficients
deflection coefficient
sidesway factor
stiffness factor
reduced stiffness factor
true reduced stiffness factor
true stiffness factor
effective stiffness factor
relative stiffness factor
column factor
girder factor
slenderness ratio
column moment factor
girder moment factor
elastic design
plastic design

|  | frf |
| :---: | :---: |
| redundant reaction |  |
| Bow's notation | علاتم |
| notation | علأم تراردادى |
| sign convention | علا |
| kinematics | علمبركات |
| vertical | عمودى (ملهد) |
|  | (غ) |
| membrane | 4* |
| flexible membrane | غيشاء |
| roller | غلتك |
| nonelastic | غهر ارتباعى |
|  | (e) |
| clear span |  |
| polar distance | فاملـ تطهم |
| intelligent assumptions | فرضهات هوشهارانه |
| pressure | فنار |
| hydrostatic pressure | فهار آب ـاكن |
| soil pressure | فثار هـ |
| active pressure | فتار مامل |
| passive Pressure | فهار غهرهامل |
|  | (i) |
| building frame | تاب كاغتهانهى |
| mill bent | قاب كاریاند |
| Simpson's rule | كا عده هـهسون |
| binomial theorem |  |
| theorem of least work | تغهبه كار مداتل |

pole
diagonal
build up members
haunched member
anchorage
arch
analogy
redundant(restaint)
fitted stiffeners
milled stiffeners
restraints

تطب
تمطرى (ميله)
تطعلات مركب تطعه ماهيجهدار تلاب تــوس تياس
تيد اضافى
تيد هاى تتويتى اجراشدا شده در محل


تيود اتصال

- (S)
virtual work
handbook
equilibrium (funicular) polygon
strain
counters
elastic buckling
plastic buckling
buckle
كثيرالاضلاع (نونيكولر ) تعادل
كرنش
كشـهاى قطرى
كانشارتجاعى كانش خميرى

كانه كردن
(s)
joint
Schwedler dome
gothic
ball joint
كوى بدون اصطكاك
(J)

symetrical متقارن
concurrent
متاطم
shear center
مركز برش
centroid
مركز ثمل
shaft
centroidal axis
tank

مهورهاى مار هر مركز ثتل

lane
مسير عهور
hinge
construction hinge
universal joint
magnitude
shear equation
equation of construction condition
superposition equation
three moment equation

مغ مغصل ساطنتانی مغمل

متــدار معادله بث مادله ماس(شرط) مادله روهـمكذارى (انططـاق ) ما دله سه لنكر

erection
نصب
theorem
critical points نقاط بحرانى
yield pointنتطه تسليمم
neutral pointنتطه ختنىpoint of infection
نتطهُ عطف
free body sketche
load curve
shear curve
Mohr correction diagram
line diagram
moment diagram
bending moment curve
inertia forces
نمودار بارنمودار برش
نمودار خطى
تمودار لنـكر
نمود ار لنكر خمشى
Maxwell diagram
تـودار ماكسوئل
redundant forces
نـيروهاى اضافى
نيروهاى جرمى
thermal forces
نمودار تصحيحى مور
نيروهاى حرارتى
outer forces
inner forces
frictional force
index force
earthquake force
longitudinal force
نيروهاى خارجىنـيروهای داخلىنيروى اصطكاكينيروى راهنما
active force
axial thrust
نيروى زلزلهنيروى طولىنيروى عامل
نيروى فشار محوىcentrifugal force
motive force
axial force
axial resisting force
bar force
نيروى كريز از مركز نيروى محركنـيروى محورى
نيروى مقاوم مسورى
نـيروى ميلـه

|  | (3) |
| :---: | :---: |
| web plate | وتق جان |
| dead weight | ونت مرده |
| counter weight | وزنـ تعادل |
| viaduct | و با دوك |
| Vierendeel | وهرنديل |
|  | ( |
| collinear | هم راستا |
| coplanar | - |

