
(5ibusilosin

مبانى بهينه سازى سازه هـا

تاليف:
آر. تى. هفتكه و زد. كوردال

استّاان دانشكله هاى مهندسى هوالفضا و علوم دربلايق- علوم مهنلدسى و مكانيل مؤسسه' بلـلكنيك و دانشكاه ايالتى ويرجنيناى امريكا
ترجمه'

وكتر محملاحسيت ابوالبشرى

r
0. 0 .
\qquad

* فهرست
IfV
\qquad
\qquad

1AV

 10V 109 190 $19 v$ $19 \wedge$ 19^ ivA 1A9 194 19F 194 197\qquad
\qquad
rs
rf．
ryp
pry
ryg
PAY
ror
rat
ros

「へ人
491
r90
ran

FPr
$F \cdot 0$
F1．
FIA
F19
419
FYF
Fri

Frr
FYV
．．

V．r． 1
V．r．Y مشتقات دوم V．
V．Y．r
تحليل غيرنحطى V．r．F
V．Y．©
م V．r r．V．r． 1
 م V．r．．r

حسانميت تيود باميغ كنرا V．F
V．F． 1
V．F．Y

V．ه
F．s

فصل A．．مقدمهاى بر تجليل حساسيت متنير
A． 1
A．1． 1 رؤشمستقيم

A．Y．Y

．．ارتعائن و كمانت ا A．r

A．r． 1 رون مـستفيم
A．r．r．r روش مجاورتى

FFI	- حساميت ثـكل ايسثايم	A.F
Ffr 1 A. F. 1	
FFD	.. 1 A. F. Y	
FFA		
FAF	.. 1 ¢ 1 . F. F	
FOV	تهرينها	A. ${ }^{\circ}$
FOA	..	0.9
PAq		4
F9.	رومهاى معيار بهينكى شهودى	9.1
F\%.	(.................................... 9 ¢ 1 . 1	
F9\%	... 9 . 1 . r	
fov	ورشههى وركان	9.r
FFA		
pr. 9 . 9 . Y. Y	
FYY	9.................................... 9 . Y. Y	
fra	9 9. Y. F	
far	رومّهاى معيار بهينكى برایى يكى قيد	9.r
*AF	9. r. 1	
fas 9 9. Y. Y	
Fq.		
Far 9 . r. F	
F90	قيدهاى متعلد	9.4
F90	9. P. 1	
0.1		
0.F	.. را 9. F. r	
0.9	تهرينها	9.0
$\Delta \cdot \wedge$	مراجعع	9.9
$\Delta 11$		-
$\Delta 11$	رابطه' بين رابطه سازى تجزيها	
dir	تجزيه	$1.1 . r$

Ory	
ara	
arr	... 1 . 1 . 0
arr 1 . 0.1
ars	... 1 . 1 . 0 . r
arg	
OFY تمرينه I . .V
OFF	...1. 1 . 1
$\Delta P Y$.
AFA	11. 11
OfA	... 11.1 .1
$\Delta 01$ 11.1 . \%
Dor	
000	ط Wh. 11.
$\Delta \Delta 5$	(1. Y. 1
090 طا 11. r. Y
ovo	. W.r
ove 11 . r. 1
ovy	... $11 . r$ r. r
ΔA_{1}	II r r. r
09.	(1)........................... 11 . Y. F
091 كاربردهاى طراحى II . F
091 11 . F. 1
9.1	11. F. Y
G.P	
8.9	(1...........9
s.A	I . . V
gir	وازهه
519	وازٌ
syo	نـايه

بهين، مناسبترين متن درسى است. .

 Elements of Structural optimization, Third revised and expanded edition, R.T. Haftka

م 17
and Z. Gurdal, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1993
است بس از يكسال از هابب اول آن در سـال 1992 ، دو بار تجديد جاب و مطالب آن افزوده كـرديـده كه
ويرايش سوم آن مبناى تر جمه، اين اثر است.
اين كتاب دارايى ويرَيهاى بر جسته الى است كه به بارها الى از آنها به أجمال اشماره مى شــود ـ اولاً در آن تلالش شـده جديدترين روشهاى تحليلى وعددى بهينه سازى طراحى سازه ها از مراجع مختلف جمع آورى و در تالب نظام مندى اراثه شود. ثانياً سابقهُ طولانى تدريس و هئوهش مولف مبب شـده كه با يكـ تسلط علمى نسبتاً جامع روشها و كاربردهاى مختلف آنها رابا ببانى ساده و در يكى مجموعه؛ مماهنگى در اختيار خورانندكان قرار دهد. ناليأ درج مراجع در هايان هر نصل وبه روز بودن آنها، كه نشانگر تلان مؤلف در
 علاتمند به مطالعه بيشتر در دسترس ترار مى دهد. براساس توصيهُ مؤلف در بـش كفتار، بخثشهايع از اين اثر مى تواند به عنوان يكى درس سـه واحـدى (طراحى بهينه) براى دوره هاى كارشُناسى و كارشُناسى ارشـد اراثه شود.

 محترم و دانشجويان عزيز قرار كيرد و بزو هشـكران نيز از آن بهره مند كردند.
 دتتنظر و حرصله مطالب اين اثر رابازبينى و يسشنهادات ارزنده ایى ارائه نمودندتشكر و تدردانى مى نمايد. همحنين از آتاى ساسان بهرامى و مسؤولين محترم جإبخانه دانشكاه فردوسى مشهد كه كار حروفجينى، صفحهآرايع و جاب را به عهده داشتند سلاسگزارى مى شود.
 معرض تنيرات سريع ترار دارد. ناكنون بين تعلاد زياد نوشُته ها، مقالات و نعلاد كم كاربرد در مساتل
 در زميــ' مطالب متتشر شده جديد، كمبودى وجود ندارد و كاربردهايى از روشهاى بهينه سازى سازه ما

 روز همسوست.

 الكوريتمهاى تحليل سازه ایى كه در اين نرم افزار ها به كار مى رود تنها آكاهى مختصرى دارند.

 بسيارى از مسايال بيجيدهُ وانعى روزمر•است. در بسيارى از حالتها مهندسان طرّاح سازه، ، توانايع تحليل

جز در مواردى كه به دةّت كـى نياز داشُته باشد را ندارند. جنين واتقعتهائه، انكيزهُ امبال به روشههى بهينه سازى كه نياز كهترى به تعامل بانرم |فزار تحليل سازه را دارند و تنها به تعلاد محدودى از اجراى تحليل سـازه نيازمندند را شـكل مى دهد. دستـه ایى از اين نـوع روشّها، توسطل نوسين اثــمـيـت' تدوين و به طور كـترده الى به كار كرنته مى شوند كه در ايـن كتـابـ بـه عنوان روشهاى بهينه سازى تعريبى دنبالهاى مطرح مى شوند . اين روشها، به منظلور ساشحتن يـك شــكـلـ
 ريـاضى مسختلفـ را بـراى حل مسآله تقريبى به كار مى برند . سهس طرح بهين مسأله تقريبى، بـه عـنـوان مبنايع براى انجام يكى يا حند تـحليل سازه، به منظلرد به روز كردن يا بالايش مسآله طرّاحى تقريبى به كـار
 مى بانشند .
در اين موتعيت ججديد، طرّاحان سازه معهو لا به فراهم كردن تعاملى بين يك برنامه تحليل تجارى در دسترس و يك بسته نرم | فزارى بهينه سازى تجارى در دسترس فرا خوانده مى شوند . سه جزه از مهمترين اجزای اين تعامل عبارتند از : مساسببه' مشتّت حساسيّت، ساختن يك مسأله تقريبى و ارزيابي نتيهجه هابـ منظلور تنظيم دقيت مسناله تقريمى يا روش بهينه سازى براى بازدهى بالاتر و تابليت اعتماد بيستر .
 تتريّى و بدست آوردن مستت حساسبيت بحث مى كند . ارزيايّى نتيهه هاى بهينه سازى، نياز به فهم اساسى ثرايط بهينگى و روشُهاى بهينه سازى دارد . اهصلهاى ا تاه به بحت در اين باره مى بردازد . سه نصل آخر اختتصاص به مباحث ويزّهاى حون روشتهاى معيار بهينگى، بهينه سازى جنلد مـطحى، و كـاربرد آنـهـا در
مواد مركب دارد .

مطالب كتاب مى تواند به روشهاى كوناكونى براى تدريس يك درس كارشناسى ارشد در بهينه سازى سازه ها به كار كرفته شود . اين روسْها، به زمان در نظر كرفته شده و به آكاهى تبلى دانسّجويان در زسينـ روشّهاى بهينه سازى بستكى دارد .
بدون آمادكى تبلى در زمينه' روسُهاى بهينه سازى، حدذّاقل زمان لازم يكى نيمسال يِّ بينى مى شود.

10 بـش 10

 بركزيدهاى از نصلهاى
 برايى نيمسال دوّم يـشـنهاد مى شُود .

 اوليّة و ارائه يـيشنهادماى مهم، صميمانه تشكر و مدردانى مى نمابند.

1) H. Adelman
2) B. Barthelemy
3) J.F. Barthelemy
4) L. Berke
5) R. Grandhi
6) D. Grierson
7) E. Haug
8) R. Plaut
9) J. Sobieski
10) J.Starnes
.

بهينه سازى عبارتاست از : رسبدن بب بهترين نيجه، در مورديكعمليّات، در حالى كه محدوديتهاى مسُخْصى برآورده ثُـده باشند. انسان محعور در طبيعت، ذاتأتمام نعاليتهايش رابه شُكللى انجام مى دهد كه در انرزّى حرنهجوعى شود با ناراحتى و دردش به حداتل برسلد. اين تمايل واراده به خاطر استفاده از منابع محدود موجود، به منظور ماكزيمم كردن خروجى يا سود است . اختراعات اوليّهُ اهر مها يا مكانيزم قرقره، به روشنى تمايل بشر رابه افزايش بازدمى مكانبكى مى نماياند. مثالهاى بى شُمارى از اين دست در

 'بهترين طرّاحى قابل تبول بر اساس يك معيار كيغى شايستكى از بيش تعيين شـدها نعريف مى كنيم . از آن جا كه هـ كيرى تاريخخه تدوين و توسعه بهينه سازى، فراتر از هـدن اين كـتـاب امست، تـــهـا

 ميستههاى مهندمى ساختمان، مكانيك و خودرو، ممكن است هزينه در درجه اوّل امميتت بـاشدل مر مر جند كه وزن سيسنم، هزينه ر عملكرد آن را تحت تأير مرار مى دمد. توجّهُ فزاينده به كمبود مواد خام و نتصان شـديد منابع انرزى شناخته شـده، موجب تمايل بد داشُتن سازه هايى سبك، كاراو ارزانْ قِمت شُده

[^0]

1.1 بهينه سازى تابع و بهينه سازى هارامتر

بيش از ظهور محامبات سريع، بيثتر جوابهاى مسائل تحليل سازه بر اساس رابطه سـازى بـه كــــى ممادلات ديفرانسيل صورت مى كرفت . اين معادلات ديفرانسيل به صورت تحليلى (به عنـوان مشال بـه كمكى سريهاى نامحدود) و در بعضى از مواتع با استفـاده از روشـهـاى عـددى در آخرين مـراحـل ، حـل مى شدند. مجهو لات توابعى بودند (مانتد تغيير مكانها، تنشها و غيره) كه روى يك محيط بيوسته تعريف

شكل 1 1.1. 1 مثاللير

 بكيريد . تحليل ساز 0 الى درباره‘ يافتن تغيير مكان

$$
\begin{equation*}
\frac{d^{2}}{d x^{2}}\left(E I \frac{d^{2} w}{d x^{2}}\right)=q(x) \tag{1.1.1}
\end{equation*}
$$

طرّاح سـازه ممكن است بـخواهد توزيع بهين كــتـاور مـانـد
 عنوان مثال تابع هدن ممكن است جرم تير باشد. براى بيشتر تيرهاى با سطع مقطع معمـولى، جرم m برابر است با:

بنشش 1.1 : بهينه سازى تابع بـهينه سازى بارامتر

$$
\begin{equation*}
m=c \int_{0}^{l} I^{p}(x) d x \tag{1.1.r}
\end{equation*}
$$

كه در آن نماى p معمـولا بين 0.4 تا 0.5 و معمولآتعدادى قيد دارد. بـدون در نظر كرنتن قيد، تير بهين كشتاور ماند و جرم صفر خوراهد داشت . در
 تعيين شــهـه ${ }^{\text {با }}$ بــد .

$$
\begin{equation*}
w_{\max }=\max _{0 \leq x \leq I} w(x) \leq w_{0} \tag{1.1.r}
\end{equation*}
$$

بدست آوردن شـرايط لازم بهينگى به شثكل يك معادله' ديفر انسيل بر حسبب $w(x)$ امكان يذير الست . قواعد رياضى كه با اين نوع مساله مروكـار دارد حصابتنغيراتـى ناميله مى شّود كه در فصـل Y به ااختصهار مطرح مى شود . آن دسته از مسائل بهينه سازى سازه ها كه به دنبال يافتتن يكيتابع سازه أى بهين هـستند بهينه سازى سازه ایى ، تابع يا بارامترتوزيع شُلـه ناميله مى شوند. در اواخر دههُ ينجاه و اوايل دهه' شمهت، رايانه هاى الكترونيكى باسرعت بالا بر روشهاى سل تحليل
 روش اجزاى محدود (FEM) - غالب شـدند . روش أجزاى محدود در ابتذاى تحليل، سازه را به اجزاى كوجكى تقسيم مى كنل، به ثـكلى كه مجهولات تحليل، به جاى تابع، مقادير كسسته تغيير مكانها و تنـشها در گرههاى مدل اجزاى محدود است . معاملهُ ديفر انسبلى كه توسسط تحليل گران حل مى شد، با دستگاه هعادلات جبرى بر حسب متغير هامى كه سيستم تقسيم شـهه به اجزا را مششخص مى كند جايگزين مى كردد.
 بهينه سازى، سازه ای كه توسط اجز ایى محدود جزء جزء شُمده، طبيعى اسـت كه نخواحي از سازه كه ترار
 كاربرد رومُ اجزاى محدود براى بدست آوردن تغير مكانها، با تقسيم نير به تسمتهايه كه داراى خخواص ثابثت هستند يا اجزا'ى محدود شُروع مى شود. بهينه سازى تير به طور طبيعى كثشتاور ماند تطعـات را بـه عنوان متغير هاى طّااحى به كار مى برد . بنابراين، به جاى جسست و ججو براى يكى تابع بهين، دنبال مقادير بهين تعدادى یارامتر خحو اهيم بود . رامكارهاى رياضى كه دربار هُ بهينه سازىى یارامتر بـحث مى كنند برنامه
 برنامهريزى رياخیى و كاربردثـان در مسـائل بهينه مـازى سـازه ها كه توسط مدلهاى تقـــيـم شــده بـه اجـزا تعريف مى شوند، اخختصاص دارد . به ويزه، اغلب صراحتاً فرض مى شود كه تحليل سـازه برامـاس روش الجزانى محلدود است.

P P مباني رابطة سازى مساله

I . r . 1

 بـارامـترهـايع در اصـطلاح بـهينه سـازى مـعمو لا مـنغيرمـایى طـراحتِّى ناميله مى شوند و دراين كتاب با يك بـردار) مقطع يا انــلازه' اعضـا، بارامترهاى كنترل هـنـدسه' مـازه، خواص مصـالح آن و غيره باثـند. متغـــرهـاى طرّاحى ممكن است مقادير بيرسته ياكسسته داشته بامـند. متغير هاى طرّاحى بيوسته يكى محلدوده' تغييرات دارند و مى توانند هر مقدار در آن محدوده را بكيرند، به عنوان مـال، در مساله طرّاحـى شـكـل 1 . 1 . 1 كشتاور ماند هر تطعه از تير يك متغير طرّاحى بيوسته است. متغيرهاى طرّاحى كسسته تنهـا مـى تـوانـنـد مقادير خاصى داشته بامُند كه معـمـولا از بين يكى سرى از مقادير مجاز خواهد بود. متغير هــاى طرّاحىى مصصالح اغلب كسسته اند. اكر در طرّاحى تير ينج نوع مصالح در نظر بكيريم، آن كاه مى توانيم يك متغير طرّاحى كه مى تواند هر مقدار صسحيح از يكى تا ینج را بكيرد تعريف كنيم كه نشان دهنده نوع مصـالع باشهد . آن دسته از متغيرهاى طُراحى كه عموماً به عنوان بيوسته در نظر كرنته مى شوند اغلب به خاطر ملاحظلات توليد كسـسته مى شوند . به عنوان مثال، اكر نير شـكـل I . ا . ا براى مينيمـم شُـدن هزينه طرّاحـى شـود، ممكن اسـت مجبور شويم خودرا به مططع مقطع هايى از تير كد در بازار مو جود اسـت محدود كنيم . آن كاه كثتاور ماند، ديكر متغير طرّاحى بيو سته نخخوامد بود و كسسسته است.

در بيتنر مسائل طرّاحى سـازه ها، در حل مسـاله بهينه مـازى، از طبيعت كسـسته متغيرهـاى طرّاحـى هسشّم يومّى مى شود. وتتى متغير بهين بدست آمد، آن كاه مقدار متغير طرَاحى را به نزديكـتريـن هـقـدار

PI بخش 1 P ا مبانمرابلكهسازى مساله

كـسته در دسترس تـغيير مى دميم. اين بـرخورد بـ ناطر اين امست كه سل بكى مساله بهـينـ سازى با

 نزدبك به هم در دسترس باشند، خوب كار مى كند و تغيير متغيرهاى طرّاحى به نزديكترين مقدار صحيح

 كتاب فرض مى شود كه متغيرهاى طرّاحى، ييوسته باشند، مكر غير آّن بيان شود.

شكل 1 . 1 . تونيع ضشامت بهينه' يك صفهد
انتخاب متغيرهاى طر ا-حى مى تواند در مونقيت فرآيند بهينه سازى بسيار مؤثر باثمد . به ويرّه بايد مطمثن شد كه انتخاب متغير هاى طرّاحى با مدل تحليل هماهنى امست. به عنوان ميال، فرآيند تقسيم بندى بـى سازه با يكى مدل اجزایى مهدودرا در نظر بكيريد و روش بهينه سازى را روى مدل اعمال كنبد. اكر توزيع

 7×7 تحليل شُده [20] و بيستر متغيرهاى طرזحى ضـغامت اجزاى منغودند، در حالى كه مـلـ 7×7 براىى

شده، مناسـب نيست .
مساّله مشابه برایى حالتى كه مختهـات گره هأى مدل اجزایى دحدود، به عنوان متغير طرّاحى در نظر

 بارامترهاى طرّاحى در نظر گرفته شده أسـت. در اين جانيز، مدل اجز الى محدود، بـرإى تهـلـيـل ثــكـل دايرهأى اوليّه سوراخ مناسبب بود، ولى براى لاشكل بهين٪ مناسبب نيست . به طزر كلى، توزيع متغيرهاى طرّاحى بايد بسيار بازتر از توزيع اجزايى محدود باند (به جز برالى سازه هاى أسكلتى و نازلُ كه اغلب هر جزَ به يك عضو فيزيكى سازه اختصـاص دارد)
r. r . r
 وجود داثته باشد كه بتواند بهبود يابدو از آن بهعنوان معيار مؤثّر $f(\mathbf{x})=\left[f_{1}(\mathbf{x}) ، f_{2}(\mathbf{x}) \ldots ، f_{p}(\mathbf{x})\right]$ بودن طرّاحى استفاده شود . اصطلاح معمول برایى جنين توابعى توابع هلف الست . بهينه سازى با بيثتر از
 تغييرمكانها، تنشها، بسامدهاى ارتعاشى ، بارهاى كمانش، و هزينه يا هر تركيبى از اينها را مـى توان بـه

 تنشها در اعضايش باشد. جهار تابع هدف داريم: جرم و سه تنش .

 مركب كه هايگزين ممئ توابع هدف شود درست كنيم. به عنوان مثالل، اكر جرم سازه با m و تنشهاى سـ
 كر

$$
\begin{equation*}
F=\alpha_{0} m+\alpha_{1} \sigma_{1}+\alpha_{2} \sigma_{2}+\alpha_{3} \sigma_{3}, \tag{1.r.1}
\end{equation*}
$$

 مى باشد.

روش شهودى دوّم در كاهني تعداد توابع هدن عبارت از انتخاب مهمترين آنها به عنوان تنها تابع هدف
 را به عنوان مينيمم سازى جرم با شرط تيدهاى كران بالا بر روى مفدار سه تنش رابطه سازى كنيم.

رامى توان در مراجع 27-31 يافت.
بردار متغيرهاى طراحى "x را بهين إِدج ورت- بارتو مى كريند اكر براى مر بردار x ديكر يا با بتادير تمام

 (I.Y.1) () بهين اددج ورت- بارتو مختلف انتخاب كرد . بنابراين، نرآيند طرّاحى يكى فرآيند تعاملى است، و اعمـال

 $\mathbf{x}_{1}^{*} ، \mathbf{X}_{2}^{*}$ ، . . مستقل هر يكى از توابع مدفـ بـ مفدار توابع
 از مقدار بهينه اش برابر استبا

$$
\begin{equation*}
d_{i}(\mathbf{x})=\frac{f_{i}(\mathbf{x})-f_{i}^{*}}{f_{i}^{*}} \quad i=1, \ldots, p \tag{I.Y.Y}
\end{equation*}
$$

آن كاه مسأله را مى شُود به عنوان مينيمم سـازى بزركترين انحراف توانب مدفـ از مثلار مينيـــم ثـــان (نرم

$$
\begin{equation*}
\operatorname{minimize} \max _{i=1, \ldots, p}\left[d_{i}(\mathbf{x})\right], \tag{I.Y.Y}
\end{equation*}
$$

$f^{*}=\left(f_{1}^{*}, f_{2}^{*}, \ldots, f_{p}^{*}\right)$ ويابه عنوان مينبم سازى فاصله (يعنى l_{2} يا نرم اتليدسى) از نتطه" مبناي تا $f=\left(f_{1}, f_{2}, \ldots, f_{p}\right)$ تعريف كرد؛

$$
\begin{equation*}
\operatorname{minimize} \sum_{i=1}^{p} d_{i}^{2} . \tag{1.r.Y}
\end{equation*}
$$

مثال 1.7.1

طرّاحى ابعاد مطع مهطع يك تير مستطيلى براى مينمـم شـدن مساحت را در نظر بكيريـد. در مــمـان

 بالمند 5 $0.5 \leq w, h \leq$

ترازماى دو تابع مدف

$$
\begin{equation*}
f_{1}=A=w h \quad, \quad f_{2}=\tau=\frac{3}{2 w h} \tag{a}
\end{equation*}
$$

$$
f_{2}^{*}=0.06 \mathrm{lb} / \mathrm{in}^{2}
$$

رويكرد تابع مدف با وزنهاى مساوى مينيمم سازى تابع زير رامى دهد

$$
\begin{equation*}
F=w h+\frac{3}{2 w h} . \tag{b}
\end{equation*}
$$

جون متغيّرهـاى طر"احى w، h همه جا به شكل حاصلضرب ظظاهر شمده انـد، ايـن حـاصـلضسرب را

مى توانيم به عنوان يك متغيّر طّرّاحى در نظر بكيريم . مينيمم سازى معادلهُ (b) نسبت به حاصلغرب بر ابر السـت بـ مينيمم سازى نرم اقليدسى فاصله از مينيممهاى تكى تك توابع دا به كار ببربم، تابعى كه بايد مينيمم شود برابر است با

$$
\begin{equation*}
F=\left(\frac{h w-0.25}{0.25}\right)^{2}+\left(\frac{\frac{3}{2 h w}-0.06}{0.06}\right)^{2} \tag{c}
\end{equation*}
$$

طراحی حاصل عبارت است از

دو طرّاحى بدست آمدهُ بالا و طرّاحى بدست آمده از مينيمم سازى هر يكالز توابع به تنهايى، يك بهين یارتو را تشكيل مى دهند. جوابهاى ديكرى نيز وجود دارند كه شرط بهينگى يارتو رابر آٓر رده مى كنند . اين جوابها را مى توان يابا تنيير ضرايب وزنى توابع هدف و يا با اعمال يكى از توابع هدفب بـ عنوان تيد و تنيير سطح مطلوب اين تيد بدست آورد. بهعنوان مثال، اكر تابع هدف دوم با اعمال شـرط 0.5 ك

居 $f_{2}^{*}=3.0$

هر يك از توابع را به هم وصل مى كند، همحنان كه در شكل ه . Y . ا نششان داده شـده است. اين منحنى - معهو لا منحنى بازده ناميده مى شمود . •

 متغير هاى طرّاحى را معرّفى مى كند اين قيود حدّ بالا و وايين متغيّر هاى طرّاحى به خاطر سـادكى شـان اغلب

 در نقطه' اعمال نيرو صفر باشد. مثال ديحر از قيد تساوى عبارت است از معادلات تعادل كه يكى سازه بايد بر حسب متغيرّ هاى طرّاحى اش برآورده كند.
بعضى از راهبردهاى حل مسائل بهينه سازى غير خطىى نمى توانند قيود تساوى را در نظر بكيرند و تنها قيود نامساوى را در رابطه سازى مى توان معرفى كرد . در حنين مواقعى مى شود قَيد تساوى را با دو تَيـد
 معمولا انزايش تعداد تيود مطلوب نيست. راه ديكر در نظر كرفتن فيود تساوى در جنان موتعيّتـهايـى را بعدآ در نصل ه مورد بحث قرار خواهيم داد.

نمادهايع كه در اين كتاب براى متغيّرهاى طرّاحى، تابع هدف و قيود به كار مى رود در رابططه سـازى مسآله بهينه سازى زير خلاصه شده است. در اين كتاب ما درباره مسائلى بحث مى كتيم كه تنها يكى تابع هدف دارند.

$$
\begin{aligned}
& f(\mathbf{x})
\end{aligned}
$$

$$
\begin{aligned}
& \text {. ميندم كنيد. } h_{k}(\mathbf{x})=0, \quad k=1, \ldots, n_{e},
\end{aligned}
$$

 بهينه سـازى يكى مسأله مينيمم سـازى باشـد و نه يكى ماكزيمم سـازى يكى محدوديت نيست ، زيرا بـه جـاى ماكزيمم سازى يكى تابع مميثه اين امكان وجود دارد كه منفى آن مينيمم شود. به طور مشابـ، اكـر يكـ نامساوى از نوع كوجكتر مساوى داشتتم ينى

$$
\begin{equation*}
g_{j}(\mathbf{x}) \leq 0 \tag{1.7.9}
\end{equation*}
$$

مى توانيم با ضرب معادله (Y Y Y Y) در ا - ، آن را به نوع بزر كتر مساوى صفر تبديل كنيم. هر هند در اكتر كتابها مساثل مينيمم سازى را به جاى ماكزيمم سازى مطرح مى كتند، ولى بيشتر آنها نامساوبهاى از نوع كو جكتر مساوى رابر بزر كتر مساوى ترجيح مى دهند. اين ترجيح نماد تراردادىى بعفى نتيجه هاى اين كتاب را متاثّر مى كند و خواندنده بايد منكام مقايسسه' جوابها با كتابهايى كه نماد نامساوى مخالفـ رابه كار مى برند به اين موضوع توجّه دامنته بانُد.
 طراحى X باشند، يغنى مسأله نحطى را مىتوان به شـكل زير بيان كرد:

$$
\begin{equation*}
f(\mathbf{x})=c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n}=\mathbf{c}^{T} \mathbf{x} . \tag{1.Y.V}
\end{equation*}
$$

مسائل بهينة سازى خطّى با شانخهاى از برنامهريزى رياضى كه برنامه ريزى خططّى ناميده مى شود، حل مى شرند. مسالْه بهينه سازى غير خطّى كفته مى شُود اكر تابع هدن يا تيود، توابع غير خطّى از متغير هانى طرّاحى باشد .

مثال 1.Y.Y

 براى اين مسأله بهينه سازى هستيم. نو نتّن تابع هدن بر حسب متغيّرهاى طرّاحى ساده است . $m=0.29\left(A_{1} L_{1}+A_{2} L_{2}+A_{3} L_{3}\right)$,

در حالى كه

$$
L_{i}=\sqrt{x_{i}^{2}+100^{2}}, \quad i=1,2,3 .
$$

$$
\begin{aligned}
& k_{11}(\mathbf{x}) u+k_{12}(\mathbf{x}) v=10,000 \\
& k_{12}(\mathbf{x}) u+k_{22}(\mathbf{x}) v=0
\end{aligned}
$$

در حالى كه

$$
\begin{aligned}
& k_{11}(\mathbf{x})=E \sum_{i=1}^{3} \frac{A_{i} x_{i}^{2}}{L_{i}^{3}} \\
& k_{12}(\mathbf{x})=-E \sum_{i=1}^{3} \frac{100 A_{i} x_{i}}{L_{i}^{3}}, \\
& k_{22}(\mathbf{x})=E \sum_{i=1}^{3} \frac{10,000 A_{i}}{L_{i}^{3}}
\end{aligned}
$$

$$
\sigma_{i}=E\left(-u x_{i} / L_{i}^{2}+100 v / L_{i}^{2}\right), \quad i=1,2,3 .
$$

براماس تحليل بالا، يكىراه رابطه سازى مسأله بهينه سازى به شُكل استاندارد اين است كه u، v رابه نهرست متغيرهـاى طرّاحى اضانه كنيهم . رابطه سازى عبارت اسـت از :
مغدار

$$
\begin{aligned}
& h_{1}=k_{11} u+k_{12} v-10000=0, \quad \text { بشروط } \\
& h_{2}=k_{12} u+k_{22} v=0
\end{aligned}
$$

$$
\begin{aligned}
\text { (قيود كشـن) } & g_{i}=30000-E\left(-u x_{i}+100 v\right) / L_{i}^{2} \geq 0, \\
\text { (قيود فشار) } & g_{i+3}=E\left(-u x_{i}+100 v\right) / L_{i}^{2}+30000 \geq 0, \\
\text { (قيود مينـمـمسانحت } & g_{i+6}=A_{i}-0.1 \geq 0, \quad i=1,2,3 .
\end{aligned}
$$

. مينيمـم كنيـ

 تساوى u و v رابدست آورده و دو تيد تساوى و دو متغيّر طّا"حى راحذلف كنيم. رابطه سازى جليدى كه در آن تغييرمكانها به عنوان متغير طرّاحى وجود ندارد در بهينه سازى سازه ها بسبار معمـولــر اسـت . در

- • • نتيجه به ندرت با مسائل بهينه سازى سازه ها كه شا مامل قيود تساوى باشد بر بر بورد مى كنيم
 بردن بسيارى از فنون حل استاندارد، ممكن است با مشكلات عددى مواجه شويم . دليل ايـن مـواجهـهـ
 نظر بكيريد. متغيّر هاى طرّاحى مساحت انتظار مى رود كه از مرتبهُ نسبت نيروى اعمال نمده بـ تنش مبجاز باثند كه بين 0.1 تا 0 است 1 است از طرف ديكر ، انتظار مى رود كه متغيرّهاى طرّاحى مختصات از مرتبـ 100in باشـند.

سهس فيود را در نظر بكيريد. ا اكر تغييرمكانهـاى u و v ده درصد بايين تر يا بالاتر از مقدار بهين شان

بخ بخ $1 . r$: ترايند حل
جنين تنيسرات وسيعى در مفدار متغيّرهاى طرّاحى و فيود را با نرمال سازى از بين برد. متغيّرهاى طرّاحىى

 مساحت اسمى، ' A_{o} كه نسبت بار اعممال شُده به تنش مجاز است. قيود رانيز مى شُود به شنكل مشابهى نرمال ساخت. معمو لآتيود نامساوى رامى توان با مفدارى مجاز
 كوجكتر باشـد، بييتر به شكل زير نوثته هى شوود:

$$
g=\sigma_{a t}-\sigma \geq 0 .
$$

مقدار تيد به واحدهاى استفاده شده بستكى دارد، و مى تواند بزركى يا كوجكى باشد. تيد بي تواندبه
شكل زير نرمال شود.

$$
\begin{equation*}
\bar{g}=1-\frac{\sigma}{\sigma_{a l}} \geq 0 . \tag{1.r.9}
\end{equation*}
$$

اكنون مفدار تيد از مرتبه' يكا است و به واحد استفاده شده بستكى ندارند.
r. 1 فرايِند
 طرّاحى اوليّه شروع مى شوند و با كامهاى كوجكى مقدار تابع هدن يا ميزان مقبوليت تيود، و يا هر دو را
 كرد، جست و جو منوقف مى شود . بعضى از روشهاى بهينه سازى هنكامى كهبهبود تابع هدن بسيار كند مى شود متو قف مى شوند . راه ديكر بررسى بهينگى استفاده از شرايط لازم، كه شر ايط كان-تاكر (نصله

 انججام مى شود. هر نتطه از اين نضا امكان يكى طرّاحى را تشكيل مى دهد. در مسائل بهينه سازى سازه ها، تِدهايى مانند تنشها، تنغير مكانها يا تيود بسـامد روى طرّاحى اعمـال

 قيود تنت برداشته شود، تمامى مساحتهاى سطح متطعها به مقلار مينيمم خوديعنى $0.1 \mathrm{H}^{2}$ كامش مى يابند

 انتظار داريم ك جرم بهين از 8.71 o بيشتر باشل، و در طراحى بهين، تنت دسـت كم در بك عضو برابر بـا تنش مجاز حدّاكتر 30000psiباشد.

 قبول مجموعه' نقاط طّرّاحى است كه دسـت كم يكى از قتيود را نتفض مى كتند . از آن جا جا كه ما التظار داريم
 وضعيت معادل اين است كه بهين در مرز بين ناحيه تابل قبول و غير تابل تبول باشد. تيلماى نامساوى در

 مساحت
 مى توان اين طور بردانثـت شهودى كرد كه در واتع فرض مى شودد، نمام قيود فعال در طرّاحى بهـين
 دارد كه تيدى نّال بانمد و در صورت برداشمتن آن طرّاحى بهين تغيبرى نكـند. . بـسيارى از روشـهاى

 يكى أز تيدها را اندازهكيرى مى كند. وتمى ضربكرهاى لاكرانز مربوط به يك فيد صفر اسـت، يعـنى، بـا تثريب مرتبه يك، برداشتن اين تيد تأثيرى در مقدار بهين تاني

بش~
 تا اندازهاى آزادى عمل وجود دارد. به عنوان مثال، وتمى قيدهاى تنـش را در يـى سـازهُ فولادى اعمـال

 تنش خهيلى حسـاس اسـت، مىى توانيـم از فولادى با مــماره' بهتر استفاده كنيم . يكى از مسائل اماسى در بيشتر روشهاى حل بهينه مازى بدسـت آّرددن مجهوعهُ تيود فغّال المـت . اكر روش حل به شكلم اسـت كه منگام جستجو هـهُ' تيود را در نظر مى كيرد، هزينهُ مهامبات بهينه مازى به
 طرّاحى آزمايشى در نظر بكيرد، به خاطر نومان در مـجـمـوعـ' تيود نعّالل ممكن امـت مهـرايهى نرايـــد
 برانى مشخّص كردن مجموعه’ تيو دى كه بايد در هر طرّاحى آزمايشى در نظر كرفته يُود به كار مـيرودد، كامل مى سازند .
 بهينه سازى متعدد، اكثر آنها براى حركت، جهار كام اماسى را بر مى دارند . كام اوّل انتخاب مجموعـ تيد نغّال أسـت كه در بالا بحتث شد . كام دوّم محاسبه جهت جسـت و جـوسـت بـر اسـاس تـابـع مـدف و مجهوع،'قيد نعّال . بعضى از روئهـا (مانتدروش تصويركراديان) جهتى را جست و جو مى كنند كه بر مرز قمد فعّال مماس باند . روثهاى ديكرى مانند جهت قابل تبول يا تابع جريمهُ داخللى جهتى را جسست و جو مى كنتد كه از مرز قيد دور شوند. كام سوّم عبارت است از تعيين معدار حركت در جهتى كه در كام تبلى
 انجام مى رسد، زيرا به دنبال يافتن مقدار يكى عدد اسكالر است كه فاحلـه' متدار حركت در امتداد جهت مورد نظر را تعيسن مى كند. كام آخر كام ممكرايع است كه مشخّص مى كند آيا حركت ديكرى لازم است .
f.أ رابطه سازى تحليل و طرّاحى در يكى طرّاحى عملى نوع رابطه مازى رياضى مسالد طرّاحى مازه كه بايد به كار رود هميشـه روشـن

نيست. بد عنوان منال، تير شككل 1 ـ ـ ـ ا را در نظر بكيريد و فرض كنيد طرّاح مى خواهد به يكى طرّاحى

 تئكيل يك تابع هدف مركب
 جرم يك حدّ بالا در نظر كر فته نود و و تنيير مكان ماكزيمم به عنوان تابع هدف لحاظ كردد . تمامى رابطه سازى هاى نوت برانى هدف طرّاحى به وجود آوردن يكى طرّاتى با استحكام و و سبكى وزن تابل تبولاست. اما رابطه سازى رياضى و دشواريهاى حل كاملاً متفاوت است. به عنوان مثال، اكر در

 غير خطّى اند بهتر كار مى كنتد و بعضى ديكر در موقعيتهایى كه عكس آن باشد خورب كار مى كندـ ـ بنابراين انتخاب رابطه سازى بر اساس نرم افزار بهينه سازى در دسترس طّرّاح صورت مي كيرد.
 فرايند بهينه سازى بارها تكرار شود و كاربرد روش حلّى كـا از نظر محامباتى ارزان باثــد بـسيار مهم است .
 برایى بهينه سازى منامب نباشــد و شايد بهتر باشـد كه با يكى مدل خام جايكزين كردد. انتخاب فرايند حل تحليل سـازه نيز به طرر مشابه ممكن امست تحت تأثير محيط بهينه سازى ترار كيرد.
 مى كردد. بعضى از اين روسها از تقريب اوليّه خوب بردار ويزه سود مى برند و بـــضـى ديـــر ايسن طـر نيستند. برایى كاربرد در بهينه سازى سازه ها، رونهاى دسته اوّل بهترند، زيرا بردارهاى ويزّه (تواترهاى
 مى توانتد به عنوان تقريبهاى اوليّه خوبيى براى بردارهاى ويزّه نعلى باشند بالأخره، در بعضى از حالتها، تركيب تحليل و طرّاحى سـوديندالست. اين كار وتمى اتفاق مي افتد كه تحليل سازه طبيعتى تكرارى داشته بائدن، مانثد رفتار سـازه هاى غير خططّى . جرخد هاى تحليل و طرّاحى را

سودمند است . اين ردش تحليل و طرّاحى همزمان در نهـل • ا بحث مى شود.

هـ أ روشهاى كلّى و ويزُه
روشهای حلى كه عمـومـاً برای بدسـت آوردن طّاحى بهين در بهينه سازى سازه ها بـه كـار مـى رودرا هى شُود به دو دسته' مختلف تقسيم كرد. يكى تفسيم بندى مهم روشهاى حل ، روشهاى كلّى و روشهـاى ويزه اسـت ـ روشهاى ويرْ انحصصارآ در بهينه سازى به كار مى روند (كرجه بتوان آنها را در زمينه هاى ديكر

 داششتند . اين رومهاى ويرُه روشهايع بودند كه بعضى از مسائل بهينه سازى سازه ایى را در مقايـــه بـا هـر

 براى طرّاحی سازه ایى به كار مى رود كه تنها مغيد به تيد تنش باشمد و براى سازه هايى كه از بك نوع مصالح تشكيل شُده باشند و اضانه وزن كمى دارند، خوب كار مى كند. شهرتِ روشهاى ويزه در حال حاضر كم شده ، زيرا محدوديتّاى آنها روزبه روز بيـتـت آشكار مى شود. رويكردى كه در اين كتاب در يِش كرمته شُده تاكيد روى روشهاى كلّى اسـت و نه روى روشهـانى ويرّه .
 رشته هاى مختلف اين دوشها را بيوسته توسعه مى دمند و بياده سازى آنها را در نرم افز ارها كاراتر و تابـل

اطمينان تر مي سازند.
علاوه بر كمرنت بودن نقش روشهاى خاص برایى طرّاحى سازه ها ما بعضى از روشهاى برنامه ريزى رياضى مانند برنامه ريزى ديناميكى، برنامه ريزى مندسى و فنون كنترل بهين كه در مسائلى به ثـكل خاص به كار مى روند رانيز مورد بحث ترار نخواميم داد . اين روشهادر مسايل طرّاحى سازه ها با موفتيّت به كار
 بيشتر در مورد كاربرد اين روسها در طرّاحى سازه هاخواننله به مراجع [36-34] ارجاع داده هى شود.

مهمترين توجهیى كه يك تحليلكر سازه بايد در استفاده از روشهاى بيهينه سازى كلّى داشتـه بـانــد اين است كه يك رابطه متقابل بين نرم افزار تحليل سـازه و نرم افزار بهينه سمازى به وجود بيـاورد . اين رابطـه
 اين رابطء' متقابل است.

رابطه سازى يكى مسـالد طرّاحى سازه در موفقيت نرايند طرّاحى نقش مهـى دارد . يك رابـطه سـازى ضعيف مى تواند به نتيجه هاى ضعيف و يا هزينه هاي محاسباتى بسبار زبادغير تابل قبول بيــجامــد . بـ
 هدف خطى و تيود خططى رابطه سازى نوند. دليل سودمند بودن رابطه سازى خطّى، روشـهـاى بـــيـار

 مُتّقات حتّاسيّت مطرح مى شوند در نصلهاى یو ^ بحث مى شوند . بيشتر الكُوريتمهاى بهينه سـازى
 بيحيله مدل مى نوند اغلب مهمترين هزينهُ محاسبانى أست . اين مستقها براى تشكيل تقريبهاى تيدنيز
 برهزينه اسست به كار برد. كاربر د تقريب تيد در نصل 9 بحث مى شـورد.
اهمبّت محاسبه دتيق و كاراى مشُتقات حساسيّت و به كاركيرى تفريب در تيد اكنون مورد توجّه بيشتر
 بهينه سازى را احتّى بينتر از انتخاب نوع روش بهينه سازى متأثر مى سازد.

1.9 تمرينها

 ايـن لـوله هــا روى دايـره أى به شـعـاع 9 نوت و وبا زاويهُ طرف بايين عمودى 25kips در بالا اعمال مى سُود. لازم است كه وزن سه بايه جنان مينيمم شود كه سه بايه از نظر كمانس اويلرى' ، كمانش محلى و تسليم شدن مطمنّن باشُد. فرض كنيد E E = 30×10^{6} ، psi

YY بنش 1.8 :نمرينه4

شكل 1 1.8.1 يكى سه بايه تحت ثاثير بار عمودى

و $\sigma_{\text {yield }}=60 \times 10^{3} \mathrm{psi}$

$$
\sigma_{c r}=36 \times 10^{6}\left(\frac{t}{d}\right)
$$

تيود را در يكى فضایى طرّاسی دو بعلى d (تطر متوسط لوله) و h رسـم كنيل . ناحيه هاى تابل قبول و غير قابل قبول را مششخّص كنيل، ترازهاى تابع هدن را بكشيد و جواب بهين را نشان دهيد. Y - بیى تير مستطيلى نازلُ با مفطعى به ابعـاد b h و طول 20ft در ديوار محكم شده اسست و نيروى

 طول $/$ برابر است با

$$
p_{c r}=4.013 \sqrt{E I_{\text {teast }} c} / l^{2}
$$

 عبارتست از G 0 كه 0 غريب صلبيت برشى الست. تيرى كه وزن آن مينيمـم باشد طرّاحى كنيد $\sigma_{a l}=75 \mathrm{ksi}, \mathrm{G}=12 \times 10^{6} \mathrm{psi} ، E=30 \times 10^{6} \mathrm{psi}$ كه از نظر اسنتحكام وحرخش مقاوم باشد. غرض كنيد

شكل 1.\&. Y يك تير مستطيلمنازك

در كتُش و نشار . جوابب بهين را روى ترسيمه مشخصى كنيد .
 مسشاحت سطع مقطع و مينيمم شُدن تنش نرمال حاصل از خمش سول محور خنتاى افقى باشلد. خشامت

 آوريد، در صورتى كهعرض و ارتنـاع در مـهـدوده' $0.1 \leq w \leq 10$ باشنـل . همحنيـن بـا اسـتـفـاده لز رويكرد تابع وزنى با وزنهاى مساوى، و با استماده از (Y . Y . Y () طرّاحيها را بيابيد.

بن بش 1.9 :تمرينها

شكل ب. 9.1 يك شبكهُ ارتجاعمتتحت تاثير بار يكنواخت

 r سطع مفطع مربوط مى شوند.

$$
z=\left(\frac{A}{1.48}\right)^{\mathrm{L} .82}, \quad I=1.007\left(\frac{A}{1.48}\right)^{2.65}
$$

برای كتش و فشّار تنش مجاز 20000psi در نظر بكيريد و ينج قيد و تابع هدف را رابطه سازى كنيد.
 ويز كُيهاى ناحيه تابل قبول در مقايسه با دو مساله تبلى بحث كنيد . بهترين طرّاحى برايى شُبكه را بيابيد.
[1] Wilde, D.J., Globally Optimal Design, John Wiley and Sons, New York, 1978.
[2] Wasiutynski, Z., and Brandt, A., "The Present State of Knowledge in the Field of Optimum Design of Structures," Appl. Mech. Rev., 16 (5), pp. 341-348, May 1963.
[3] Sheu, C.Y., and Prager, W., "Recent Developments in Optimum Structural Design,". Appl. Mech. Rev., 21 (10), pp. 985-992, Oct. 1968.
[4] Schmit, L.A. Jr., "Structural Synthesis 1950-1969: A Decade of Progress," in Recent Advances in Matrix Methods of Structural Analysis and Design, University of Alabama Press, Huntsville, pp. 565-634, 1971.
[5] Pierson, B.L., "A Survey of Optimal Structural Design Under Dynamic Constraints," Int. J. Num. Meth. Eng., 4, pp. 491-499, 1972.
[6] Niordson, F.I., and Pedersen P., "A Review of Optimal Structural Design," in Theoretical and Applied Mechanics, Proceedings of the Thirteenth International Congress of Theoretical and Applied Mechanics, E. Becker and G. K. Mikhalov (eds.), pp. 264-278, Springer-Verlag, Berlin, 1973.
[7] Rao, S.S., "Optimum Design of Structures under Shock and Vibration Environment," Shock Vibr. Digest, 7 (12), pp. 61-70, Dec. 1975.
[8] Olhoff, N. J., "A Survey of Optimal Design of Vibrating Structural Elements, Parts I and II," Shock Vibr. Digest, 8 (8\&9), pp. 3-10,1976.
[9] Venkayya, V. B., "Structural Optimization: A Review and Some Recommendations," Int. J. Num. Meth. Eng., 13, pp. 203-228, 1978.
[10] Lev, O. E., (ed.), Structural Optimization-Recent Developments and Applications, ASCE Committee on Electronic Computation, New York, 1981.
[11] Schmit, L.A., "Structural Synthesis-its Genesis and Development," AIAA J., 19 (10), pp. 1249-1263, 1981.
[12] Haug, E.J., "A Review of Distributed Parameter Structural Optimization Literature," in Optimization of Distributed Parameter Structures, E.J. Haug and J. Cea (eds.), Vol. 1, pp. 3-74, Sijthoff and Noordhoff, Alphen aan den Rijn, the Netherlands, 1981.
[13] Ashley, H., "On Making Things the Best-Aeronautical Uses of Optimization," J. Aircraft, 19 (1), pp. 5-28, 1982.
[14] Kruzelecki, J., and Zyczkowski, M., "Optimal Structural Dcsign of Shells-A Survey," SM Archives, 10, pp. 101-170, 1985.
[15] Haftka, R. T., and Grandhi, R. V., "Structural Shape Optimization-A Survey," Computer Methods in Applied Mechanics and Engineering, 57, pp. 91-106, 1986.
[16] Bushnell, D., Holmes A. M. C., Flaggs, D. L., and McCormick, P. J., "Optimum Design, Fabrication and Test of Graphite-Epoxy, Curved, Stiffened, Locally Buckled Panels Loaded in Axial Compression", in Buckling of Structures (ed. I. Elishakoff et al.) Elsevier Science Publishers B. V., Amsterdam, pp. 61-131, 1988.
[17] Kirsch, U., "Optimal Topologies of Structures," Appl. Mech. Rev., 42, No. 8, pp. 223-239, 1989.
[18] Friedmann, P. P., "Helicopter Vibration Reduction Using Structural Optimization with Aeroelastic/Multidisciplinary Constraints-A Survey," J. Aircraft, 28, No. 1, pp. 8-21, 1991.
[19] Sobieszczanski-Sobieski, J., "Structural Optimization: Challenges and Opportunities," Int. J. Vehicle Design, 7, pp. 242-263, 1986.
[20] Prasad, B., and Haftka, R. T., "Optimal Structural Design with Plate Fiuite Elements," ASCE J. Structural Division, 105, pp. 2367-2382, 1979.
[21] Braibant, V., Fleury, C., and Beckers, P., "Shape Optimal Design: An Approach Matching C.A.D. and Optimization Concepts," Report SA-109, Aerospace Laboratory of the University of Liege, Belgium, 1983.
[22] Edgeworth, F. Y., Mathematical Physics, London, England, 1881.
[23] Pareto, V., Manuale di Economia Politica, Societa Editrice Libraria, Milano, Italy, 1906. Translated into English by A.S. Schwier as Manual of Political Economy, MacMillan, New York, 1971.
[24] Zeleny, M., Multiple Criteria Decision Making, McGraw-Hill Book Company, New York, 1972.
[25] Stadler, W., "Natural Structural Shapes of Shallow Arches," J. Appl. Mech, 44, pp.291-298, 1977.
[26] Stadler, W., "Natural Structural Shapes (The Static Case)," Q. J. Mech. Appl. Math., 31, pp. 169-217, 1978.
[27] Adali, S., "Pareto Optimal Design of Beams Subjected to Support Motions," Computers and Structures, 16, pp. 297-303, 1983.
[28] Bendsøe, M.P., Olhoff, N., and Taylor, J.E., "A Variational Formulation for Multicriteria Structural Optimization," J. Struct. Mech., 11 (4), pp. 523-544, 1984.
[29] Stadler, W., "Applications of Multicriterion Optimization in Engineering and the Sciences," in MCDM-Past decade and Future Trends, (Zeleny M., ed.), JAI Press, Greenwich, Conn., 1984.
[30] Stadler, W., (ed.), Multicriteria Optimization in Engineering and in the Sciences, Plenum Press, New York, 1988.
[31] Eschenauer, H., Koski, J., and Osyczka, A., Multicriteria Design Optimization: Procedures and Applications, Springer-Verlag, New York, 1990.
[32] Wu, C.C., and Arora, J.S., "Simultaneous Analysis and Design Optimization of Nonlinear Response," Engineering with Computers, 2, pp. 53-63, 1987.
[33] Haftka, R.T., "Integrated Analysis and Design", AIAA J., 27, 11, pp.1622-1627, 1989.
[34] Carmichael, D.G., Structural Modeling and Optimization, Halstead Press, England, 1981.
[35] Palmer, A.C., "Optimal Structural Design by Dynamic Programming," J. Struct. Div. ASCE, 94, No. ST8, pp. 1887-1906, 1968.
[36] Hajela, P., "Geometric Programming Strategies in Large-Scale Structural Synthesis", AIAA J., 24 (7), pp. 1173-1178, 1986.
[37] Moses, F., and Onoda, S., "Minimum Weight Design of Structures with Applications to Elastic Grillages", Int. J. Num. Meth. Eng., 1, pp. 311-331, 1969.

ابزارهاى بهينه سازى كلاسيك كه براى يانتن مينيمم و ماكزيـم توابع و تابعى ها بكار مى روند، كاربرد مستفيمي در زمينه' بهينه سازى سازه ها دارند. كلمه وابزارهاى كلا سيك، در اين جا بها اين خاطر بـ كـار مى رود كه فنون كلاسبكحسساب دينر انسيل معمولى و حسساب تنييراتى رادر بر كيرد. با استفاده از اين دو فن، جوابهاى دتيق تعدادى از مسائل ساده' نامقيد و يا با قيد تساوى در مقالات بدست آمده است. بايد يادآر شُد كه جنان مسايللي اغلب نتيجه' فرضيات ساده شوندهاى هستند كه واتعيت ندارند و به شكلها و موتعيتهاى غير منطقى مى انجامد. با اين ممه، در نظر كرفتن جنان مسائلى تنها يك تمرين علمى محض نيست بلكه در نرايند حل بسيارى از مسانل واتمى مفيد استـ. در سالهاى انخير توجه به كاربرد ابزارهاى كلاسيك به ويزه روشهاى تغييراتى، در بهينه سازى سازه ها انزايش يـافته اسـت. رابطه سازى رياضـى دسـتهُ وسيعى از سازه ها تحت عنوان مسائل بهينه مـازى بـا روشهاى تنييراتى انجام مى شود. به علاوه، مطـالعـه' مساثل كلاسيكى نه تنها برایى تاكيد اصول فنـون روشهاى كلاسيك لازم استـ، بلكه به عنوان يك ضرورت اساسى در بهينه سازى سازه ها مطرح اسـت صورتكامل جوابهاى دتيق مسانل كلاسيكبه عنوان اعتبار بختشى جوابهاى بدست آمده از فنون عمومى تر
 دانتشجوى بهينه سازى سازه ها بتواند به سوال وجود و بكانكى طراحيهاى بهين و مشخخص كردن شرايط لازم و كالنى بهينگى باسخ دهد. جنين سوالاتى تنها در ساده ترين مسائل بهينه سازى مانيد آنـــه در ايـن نصل در نظر كرفته مى شود، مى تواند باسخ داده سود.

$$
\begin{equation*}
\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \ldots \ldots, \frac{\partial f}{\partial x_{n}}, \tag{r.1.1}
\end{equation*}
$$

 مى مُود

$$
\mathbf{H}=\left[\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial z_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial z_{n}} \tag{1.r}\\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} \rho}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial z_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{i}^{2}}
\end{array}\right] .
$$

朝 $(i=1, \ldots, n)$

 H

بك در ميان مبت و منفى بانشند[1] . خاصبت ديكر ماتريسهاى معين مثبت (منفى) نيز مى تواند براى بررسى مورد امتغاده فرار كيرد. يكى ماتريس متفارن معين مبنت (منفى) است اكر و تنها اكر مقادير ويزهامش مثبت (منفى) باثنـند.
 باثُد. اين حالت وتتى اتفاق مى انتد كه مقادير ويزهُ ماتربس نامنفى باثنـند. متأسفانه، شـرط طمورد انتظار نامنفى بودن كهادهاى اصلى براى نيهه معين مثبت بودن كافى نيست. اكر ماتريسى نيهه معين منبت باشد
 يكى كهاد اصلى صفر است و در نتيجه ماتريس منغردو حداتل بكى مفدار ويزْ نـبز صـفر اسـتـ. در اين حالت مُنتقات مرتبهُ بالاتر تابع f براى شُرايط كافى يك مينبم مورد نباز است . به طور مشـابه، وتتى (H نيهه معين منفى اسـت. اكـر H نيهـ معين منفى باشد و ته معين

 مينبمم است و نه ماكزيمم، بلكه يك نقطهُ زينى' است دو مثال ساده زير ، امتنفاده از حساب ديفرانسبل در يانتن سازه؛ بهين را تـتريح مى كند.

مثال P. 1.1

 اعضا از مساحت سطع متطعها مستقل است، بنابراين مساحتها تا هر عضو تمام تنيده شود (تـنش در آن

$$
\begin{aligned}
& \text { برابر تـُّ مجاز }
\end{aligned}
$$

برايى بار كذارى نشان داده شُده در شكل ، نيرو در هر عضو مى تواندبر حسب هندسه سازه به شكل زير

$$
\begin{gather*}
F_{1}=\frac{h_{1}-h_{2}}{h_{1}} P, \quad F_{2}=-\frac{P}{2}, \quad F_{3}=0 \tag{Y.1.r}\\
F_{4}=\frac{\left(h_{2}^{2}+L^{2}\right)^{\frac{1}{2}}}{2 h_{1}} P, \quad F_{5}=-\frac{\left[\left(h_{1}-h_{2}\right)^{2}+L^{2}\right]^{\frac{1}{2}}}{2 h_{1}} P . \tag{Y,1,Y}
\end{gather*}
$$

 عضو تحمل مى شمود با رابطه' زير مربوط مـود

$$
\begin{equation*}
A_{i}=\frac{\left|F_{i}\right|}{\sigma_{o}}, \quad i=1, \ldots, 9 \tag{Y.1.0}
\end{equation*}
$$

از رابطه (Y . . . Y) مساحت سمط مقطع

 متطعها در طول أعضا كه مى تواند بر حسب متغير هاى مجهول بيان مُود . مى توان نشان داد كه حیمم كلّى باقيمانْلـه برابر است با

$$
\begin{equation*}
V=2 \frac{P}{\sigma_{o}}\left[h_{1}-h_{2}+\frac{h_{2}^{2}}{h_{1}}+\frac{L^{2}}{h_{1}}\right] \tag{Y.1.9}
\end{equation*}
$$

با مشتت كيرى از ححجم نسبت به متغيرّهاى شجهول دأريـم

$$
\frac{\partial V}{\partial h_{1}}=2 \frac{P}{\sigma_{o}}\left(1-\frac{h_{2}^{2}}{h_{1}^{2}}-\frac{L^{2}}{h_{1}^{2}}\right)=0, \quad \frac{\partial V}{\partial h_{2}}=2 \frac{P}{\sigma_{o}}\left(-1+\frac{2 h_{2}}{h_{1}}\right)=0
$$

مقادير بهين الرتفاعها عبارت است از

$$
\begin{equation*}
h_{1}^{*}=\frac{2}{\sqrt{3}} L, \quad h_{2}^{*}=\frac{1}{\sqrt{3}} L \tag{Y.1.1}
\end{equation*}
$$

و مساحتهاى سطلح مقطمهاي اعضا برابر است با

$$
\begin{align*}
& A_{1}=A_{2}=A_{4}=A_{5}=\frac{P}{2 \sigma_{0}} . \tag{Y.1.9}\\
& \text { ماتريس مشتقات دوم تابع هدن برايى مسأله عبارت است از } \\
& \mathbf{H}=2 \frac{P}{\sigma_{o}}\left[\begin{array}{cc}
\left(2 / h_{1}^{3}\right)\left(h_{2}^{2}+L^{2}\right) & -2 h_{2} / h_{1}^{2} \\
-2 h_{2} / h_{1}^{2} & 2 / h_{1}
\end{array}\right], \\
& \text { كه در مقادير بهين متغيّرهاى طرّاحى برابر امست با } \\
& \mathbf{H}^{*}=2 \frac{P}{\sigma_{o}} \frac{\sqrt{3}}{L}\left[\begin{array}{cc}
1 & -1 / 2 \\
-1 / 2 & 1
\end{array}\right] .
\end{align*}
$$

ماتريس *Hمعين منبت اسست (كهادماى اصلى رابر مسى كنيد) . بنابراين، شرط كافى بهينكى طرّاحى برقرار است.

مثال P.1.Y

 از يكديكر ترار دارند و يك بار كستردهُعمودى با شـدت p(x) را تحمل مى كند. از آن جا كه مساحت سطع مغطع كابل مى تواند در امتداد طول تغير كند، تنس محورى برابر با تنش مجاز كل مصالع كابل را مينيمب مى سازد بدست آوريد .

شكل r. 1. r. طراتحى كابل سازهاى

با صرفتظر كردن از وزن كابل، سعادله هاى تعادل در جهت انفى و عمردى كابل رابه دمت مي آرريم

$$
F \cos \theta=F_{h}=\text { ثابت ، } \quad, F_{h} \frac{d^{2} y}{d x^{2}}=-p(x), \quad \text { (Y. |.|Y) }
$$

 برالى يكى بار كذارى يكنواخحت، از دومين معـادله‘ تعادل مى توان دو بار انتكرال كرفت و از شـرط صـفـر بودن تغيير مكانها در دو انتها المتفاده كرد و تغيير مكان عـودى در امـتـداد طـول كابـل را بـدمــت آورد .

$$
\begin{align*}
& y=\frac{p_{0} L^{2}}{2 F_{h}}\left[\left(\frac{x}{L}\right)-\left(\frac{x}{L}\right)^{2}\right] . \\
& \text { (Y. 1. IM) } \\
& \text { حجـم كل مصالح كه در كابل بايد مينيمـم مُود برابر است با } \\
& V=\int_{0}^{L} d V, \\
& \text { (Y. . . IF) } \\
& d V=A(s) d s . \tag{Y.1.10}
\end{align*}
$$

با فرض اين كه مساحت سطع مقطع بايد تمام تنيله بـاشـد، A(s)=F/ 0 ، ، يس حجـم كل عبـارت

$$
\begin{array}{ll}
V=\int_{0}^{L} \frac{F_{h}}{\sigma_{o}}\left(\frac{d s}{d x}\right)^{2} d x . & \text { (Y.1.|я) } \\
d s=\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{\frac{1}{2}} d x, & \text { (Y.1.|V) }
\end{array}
$$

$$
V=\frac{F_{h}}{\sigma_{o}} \int_{0}^{L}\left[1+\left(\frac{d y}{d x}\right)^{2}\right] d x . \quad(Y .|.| \wedge)
$$

با جايكزينى مشتق اول تابع تغيير مكان معادله (Y. 1 . IY) در معادله' بالا، مى توان نشان داد كه حجم
مصالح به كشن انفى به شُكل زير مربوط است

$$
\begin{equation*}
V=\frac{L}{\sigma_{o}}\left[F_{h}+\frac{p_{o}^{2} L^{2}}{12 F_{h}}\right] \tag{7.1.19}
\end{equation*}
$$

 ديكر، كشش الفقى بسيار بزرگ باشد، مساحت سطع مقطع بايد بزرگ شوود تا سطع تنش در اكر جه طول كابل به طرن مينيمـم فاصله بين دو نتطهُ تكيه كاه ميل مى كند . مقدار بهين كشش الفقى را مى توان از رابطه زير بدست آورد

$$
\begin{equation*}
\frac{d V}{d F_{h}}=0 \tag{Y.I.Y.}
\end{equation*}
$$

كه داريـم

$$
\begin{equation*}
F_{h}{ }^{*}=\frac{p_{o} L}{\sqrt{12}} \tag{Y.1.YI}
\end{equation*}
$$

اين مقدار كثشش مربوط به مينيمـم حجم كل زير امت

$$
\begin{equation*}
V^{*}=\frac{p_{o} L^{2}}{\sqrt{3} \sigma_{o}} \tag{Y.I.YY}
\end{equation*}
$$

و توزيع مساحت سطع مفطع بهين عبارت امت از

$$
A^{*}(x)=\frac{F_{h}}{\sigma_{o} \cos \theta}=\frac{F_{h}}{\sigma_{o}} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}}=\frac{p_{o} L}{\sigma_{o}} \sqrt{\frac{1}{12}+\left(\frac{1}{2}-\frac{x}{L}\right)^{2}}
$$

اكر جه كاريرد حساب كلاسيك، مى تواند در بسيارى از مازه هاى ديكر مانند تيرها و طاتها تشـريـع شود، منامب امت جنبه ها و فرضياتى كه اين مسائل را قابل كاربرد باحساب معمولى مى مازدرا بيـان كنيم. •به عنوان مــالل، مساله' خرباكه در بالا بحث شمد مى تواند توسط حساب معمولى حل شـود، زيرا
 متطع اعضاى خرِيا حذن شدند زير| فرض كرديم در هر عضو، تنش براير با مقدار مجاز ماكزيمم امت. .

- مبانى بهينه سازى سـازهـما (فصل Y : البزارماى كلاسيكـدر بهينه سازى سازه ما)

دوم، تحليل با حذف اثر وزن خود اعضاى خريا در باسخ سازه ساده شد و در نهايت از كمانش احتمالى اعضايلى كه در فنـار هستند جشمه يوشى شـد. بيشتر مسائل بهينه سازى سازه هاى واتعى را نمى نود دآن تمدر ساده سازى كرد كه بتوان آنها را با حساب معمولى حلّ كرد.

بهينه سازى با استفاده از عساب تغييراتى F.Y

بعضى از مسائل طر"احى سازه، وقتى به عنوان مسائل بهينه سازى رابطه سازى شوند، تابع هدفى بـ شـكل يكى انتعر ال معين دارند كه يكى تابع و جند مشتت آٓن مجهولند. جنان شـكلهائى، كه تابعى ها ناميده

 تابعى ها بحت مى كند حساب تغييراتى ناميله مى شود. جنبه هاى خاصى از روشهاى به كار رنته در حساب تغييراتى مانند روشههاى به كار رفته در حساب ديفرانسيل است كه در اين بخش مورد بحت قرار مى كيرد.

مقدمه الى بر حسابب تغييراتى Y. Y. I
مساله بدست آر ردن تابع y(x) كه در دو نقطه مقدار آن داده شـده انتگرال

$$
\begin{equation*}
J=\int_{a}^{b} F\left(x, y, y^{\prime}\right) d x \tag{r.1.1}
\end{equation*}
$$

مقدار مينمم ياماكزيمم داشته باشد رادر نظر بگيريد (تُرايط مرزى سينماتبكم مساله مى كويند. در حالت كلى تر Fمى تواند تابعى با بيش از يكى تابع باشـد يعنى (
 معدمهُ مختصر به تابعى هايى محدود مى شود كه بر حسب يكى تابع تنها با يكـ متغيّر مستقل بيان شدن اند اند بحث عمومى تر روشهاى حساب تغييراتى در مراجع متعلدى وجود دارد (به عنوان مثال [4-2]) .
 بكيريد كه با تغييرات كوجكى δy از (x)

$$
\begin{equation*}
y(x)=y^{*}(x)+\delta y=y^{*}(x)+\epsilon \eta(x), \tag{Y.Y.Y}
\end{equation*}
$$

در حالى كه ϵ يك بارامتر دامنه' كرجكى و سبنماتيكى را برآررده سازد

$$
\begin{equation*}
\eta(a)=0, \quad, \quad \eta(b)=0 \tag{Y.Y.r}
\end{equation*}
$$

 مى كنمه، و J فنط تابعى از بارامتر اختلال є مى شُود

$$
\begin{equation*}
J(\epsilon)=\int_{a}^{b} F\left(x, y^{\prime \prime}+\epsilon \eta, y^{* \prime}+\epsilon \eta^{\prime}\right) d x . \tag{Y.Y.Y}
\end{equation*}
$$

با دانستن اين كه انتگرال J در \quad يك اكسترمم دارد، مى توان با استفاده از حساب معمولى شُمرط لازم رانونـت

$$
\left.\left.\frac{d J(\epsilon)}{d \epsilon}\right|_{t=0}=\int_{a}^{b}\left(\frac{\partial F}{\partial y} \frac{d y}{d \epsilon}+\frac{\partial F}{\partial y^{\prime}} \frac{d y^{\prime}}{d \epsilon}\right) d x=0 . \quad \text { (Y.Y. } \Delta\right)
$$

$$
\left.\delta J=\int_{a}^{b}\left(\frac{\partial F}{\partial y} \delta y+\frac{\partial F}{\partial y^{\prime}} \delta y^{\prime}\right) d x=0 . \quad \text { (Y. Y. } 9\right)
$$

عملكرد 8 مانند عملكرد ديفرانسيل در حساب معمولى است و ممان فواعدى كه در مورد عـــلـكـرد ديفر انسيل به كار مى رود در مورد عملكرد تغيرات نيز به كار مى رود. از خاصيت جابه جايى بذيرى دو عملكر يعنى

$$
\begin{equation*}
\epsilon \eta^{\prime}=\epsilon \frac{d \eta}{d x}=\frac{d}{d x} \epsilon \eta=\frac{d}{d x} \delta y=\delta\left(\frac{d y}{d x}\right)=\delta y^{\prime}, \tag{Y,Y,V}
\end{equation*}
$$

برای رسيدن به معادلهُ (Y Y Y Y Y استفاده شـده است.
در حالت عمومى تر F به بيشتر از يكى تابع و يشتقات مرتبه بالاتر از اين توابع نسبت به متغيرّ مستقل

$$
J=\int_{a}^{b} F\left(x, y_{1}, y_{2}, y_{1}^{\prime}, y_{2}^{\prime}, y_{2}^{\prime \prime}\right) d x
$$

آن كاه شرط صفر بودن تغيير تابعى به شكل زير نوشته مى شود

$$
\begin{equation*}
\delta J=\int_{a}^{b}\left(\frac{\partial F}{\partial y_{1}} \delta y_{1}+\frac{\partial F}{\partial y_{1}{ }^{\prime}} \delta y_{1}^{\prime}+\frac{\partial F}{\partial y_{2}} \delta y_{2}+\frac{\partial F}{\partial y_{2}{ }^{\prime}} \delta y_{2}^{\prime}+\frac{\partial F}{\partial y_{2^{\prime 2}}} \delta y_{2}{ }^{\prime \prime}\right) d x=0 . \tag{Y.Y.母}
\end{equation*}
$$

$$
\delta J=\left.\frac{\partial F}{\partial y^{\prime}} \delta y\right|_{a} ^{b}+\int_{a}^{b}\left[\frac{\partial F}{\partial y}-\frac{d}{d x}\left(\frac{\partial F}{\partial y^{\prime}}\right)\right] \delta y d x=0 . \quad \text { (Y.Y.1.) }
$$

 شرايط مرزى را برآررده مى كند، $\quad \eta(a)=\eta(b)=0$ برابر صفر المت. از تعريف تغيرات داريم

$$
\begin{gather*}
\delta y(a)=\delta y(b)=0 . \tag{r.r.ll}\\
j \mid \text { از } ل=0 \text { عبارت } J=\int_{a}^{b}\left[\frac{\partial F}{\partial y}-\frac{d}{d x}\left(\frac{\partial F}{\partial y^{\prime}}\right)\right] \delta y d x=0 . \tag{Y.Y.IY}
\end{gather*}
$$

بنابراين، شُرط لازم براي اكـسترمم بودن J عبارت است از

 به عنوان معادله' اولر- لاكرانز معروف است، برآورده مازد،

$$
\begin{equation*}
\frac{\partial F}{\partial y}-\frac{d}{d x}\left(\frac{\partial F}{\partial y^{\prime}}\right)=0 \tag{Y,Y,Ir}
\end{equation*}
$$

اكر مقدار تابع مجهول در هيج يكى از دو انتها يا در يكى از آنها مشخصص نباشد، آن كاه تغييرات

 شرايط زير، كه اغلبب شُرايط مرزى طبيمى ناميله مى شود، بايد برآورده شود

$$
\left[\frac{\partial F}{\partial y^{\prime}}\right]_{x=a}=0, \quad, \quad\left[\frac{\partial F}{\partial y^{\prime}}\right]_{x=b}=0 . \quad(Y, Y, Y)
$$

F.F. 1 مثال

شكل 1

مــالله' بدسـت آوردن سالت تعـادل

 كابل شكلى را دارد كه با مينمـمّ بودن انرزیى يتانسيل آن ساز كار است . بنابراين، برالى بدسـت آوردن ثـكل تعادل $y(x)$ نياز به مينيمـم كردن تابعى انز زیى يتانسيل داريم كه مى تواند بر حسبب تابع نـكـل مجهول زير نوشته شود

$$
\begin{equation*}
J=\int \rho g y d s \tag{Y.Y.10}
\end{equation*}
$$

 مختصهات انقى X كه مركزش در وسط كابل ترار داردرا در نظر مى كيريم و معادله' (Y. Y . Y) را دوباره

$$
\begin{equation*}
J=\rho g \int_{-1 / 2}^{1 / 2} y \sqrt{1+y^{\prime 2}} d x \tag{Y.Y.|9}
\end{equation*}
$$

 برایى ايين كه أنرزى بتانــيل مينيمم ثمود به شكل معادله' ديفر انــيل معمولى نيز بدست مى آيد

$$
\sqrt{1+y^{\prime 2}}-\frac{d}{d x}\left(\frac{y y^{\prime}}{\sqrt{1+y^{\prime 2}}}\right)=0
$$

با بسط جمله' دوّم و مرتب كردن دوباره، معادله' (Y . Y. IV) به شكل زير ساده مى شود

$$
\begin{equation*}
y y^{\prime \prime}-y^{\prime 2}-1=0 \tag{Y.Y.IA}
\end{equation*}
$$

$$
\begin{align*}
& \frac{t d t}{t^{2}+1}=\frac{d y}{y} . \tag{Y.Y.19}\\
& \text { با يك بار انتگرال كيرى از (Y. Y . Y) داريم } \\
& t=\frac{d y}{d x}=\sqrt{\frac{y^{2}}{c_{1}^{2}}-1} . \tag{Y.Y.Y•}\\
& \text { و بالأخره با يكى بار ديخر إنتگرال كيرى داريم } \\
& y(x)=c_{1} \cosh \left(\frac{x}{c_{1}}+c_{2}\right), \quad t=\frac{d y}{d x}=\sinh \left(\frac{x}{c_{1}}+c_{2}\right) . \tag{Y.Y.YI}\\
& \left.\frac{d y}{d x}\right|_{0}=0 \tag{Y.Y.YY}
\end{align*}
$$

$$
\begin{align*}
& y(-l / 2)=y(l / 2)=c_{1} \cosh \left(l /\left(2 c_{1}\right)\right) . \tag{Y.Y,YY}\\
& \text { بدست آورد . هعادله (Y . Y. Y 1) معادله يك زنجير است. • " }
\end{align*}
$$

F.F روشهاى كلاسيلك براى مسائل مقيد
 تيدهايى به شُكل روابط جبرى بين متغيّر هاى طرّاحى دارند. اين تيدها ممكن است مربرط به ضرورتهاى شكل تابيع طر"احي؛ هندسه، دمترسى به منابع، يا شكل ظاهرى و جذابيت باشــــ . در ايـن بـخـش مـا
 شده بـه شكل تيدهاى نامساوى ظاهر مى شوند، آنها را مى توان به تيدهاى تساوى معادلى تبديـل كـرد ، همجنان كه بعدآ مورد بحث ترار مى كيرد.

شكل كلى مسائل مقيد به تيد تساوى را مى توان به شكل زير بيان كرد

در حالّى كه تعداد تَدهاى تساوى مستقل n كمتر و يا مساوى تعداد متغيّرهاى طرّاحى nاست . اكر تعداد قيدها بيشتر از تعداد متغيّر هاى طرّاسى باشد، آن كاه مساله فرا مقيد است و، به طور كلّى، ججوابى

وجود ننخواهد داشت .
براى حل مسائلى به ثـكـل مـعـادلهُ (1 . Y . Y) بيشـتر از يك رويكرد وجود دارد. اكر مـعـادله هـاى
 طرّاحى مستقل بدست آَورد، آن كاه تابع هدفـر را مى توان بر سسبب n-n متغيرّ طرّاحى مستتل نرشّت. تابع هدفـ جديد ديكر مقيد به هيج تِيى نيست و مى توان آن را با استفاده از فنونى كه در بخشهاى تبـلى

بحث شمد مينيمـم كرد.
به عنوان مثال، برانى يكى مساله مينيمم مـازى با دو متغيّر طرّاحى مشروط به يكى قيد تساوى زير

ما مى توانيم يكى از متغيرّ هاى طرّاحى رااز رابطه، قيد بدست آوريم

$$
\begin{equation*}
x_{1}=h_{c}\left(x_{2}\right), \tag{Y.r.r}
\end{equation*}
$$

و آن را در تابع هدف جايكزين كنـيم. تابع هدلف جديد عبارت است از

$$
\begin{equation*}
f_{r}\left(x_{2}\right)=f\left[h_{c}\left(x_{2}\right), x_{2}\right], \tag{Y.Y.Y}
\end{equation*}
$$

مقدار بهين به روشى كه در بالا كفته شد، رون حلف متغيرّ ياجايكزينى مستقبم مى كويند. برانى مسالثلى كه در
 تعريف شـده باشند، روش ديكرى كه روش خربكر انى لاكَرانز ناميله مى نوود به كار مي رود.

اين روش در حساب تغييراتى، در واتع توسعه' مستقيم رون مينيمم سازى مقيد در حساب ديفر انسيل امـت. ما با موورى بر روش آن جنان كه در حساب ديفر انسيل به كار مي رود شُروع مي كنيم • براى يك تابع هدف f(x) از متغيّر طرّاحى كه بابد مينيمـم شود، تغيير ديفر انسيل در تابع هدف ممجنان بايد صغر بانُد.

$$
\begin{equation*}
d f=\frac{\partial f}{\partial x_{1}} d x_{1}+\frac{\partial f}{\partial x_{2}} d x_{2}+\ldots \ldots \ldots . .+\frac{\partial f}{\partial x_{n}} d x_{n}=0 . \tag{Y,r.0}
\end{equation*}
$$

اما اكنون نـمى توان هر يكاز جملات مشتق رابه تنهايع برابر صغر قرار داد زيرا تغييرات ديفرانسيل در متغير هاى طراحى (
 مثغيرّهاى ط"احى بار رابطهُ زير به مم مربوط مى شوند

$$
\begin{equation*}
d h=\frac{\partial h}{\partial x_{1}} d x_{1}+\frac{\partial h}{\partial x_{2}} d x_{2}+\ldots \ldots \ldots . .+\frac{\partial h}{\partial x_{n}} d x_{n}=0 \tag{Y.r.s}
\end{equation*}
$$

$$
\left(\frac{\partial f}{\partial x_{1}}+\lambda \frac{\partial h}{\partial x_{1}}\right) d x_{1}+\left(\frac{\partial f}{\partial x_{2}}+\lambda \frac{\partial h}{\partial x_{2}}\right) d x_{2}+\ldots .+\left(\frac{\partial f}{\partial x_{n}}+\lambda \frac{\partial h}{\partial x_{n}}\right) d x_{n}=0 . \text { (Y.r.V) }
$$

 طرّاحى و ضربكر لاكرانز ג بدستميا آردرد.

$$
\begin{equation*}
\mathcal{L}(\mathbf{x}, \lambda)=f(\mathbf{x})+\sum_{j=1}^{n_{c}} \lambda_{j} h_{j} . \tag{r.r.A}
\end{equation*}
$$

 مجهول دارد.

$$
\begin{array}{ll}
\frac{\partial \mathcal{L}}{\partial x_{i}}=0, & i=1, \ldots, n, \\
\frac{\partial \mathcal{L}}{\partial \lambda_{j}}=0, & j=1, \ldots, n_{e}, \tag{r.r.q}
\end{array}
$$

مثال 1

$$
\text { . } A_{i,}(i=1, \ldots, n)
$$

شكل I Y. Y. 1 طّراحى نحريا با تيد تنغيير مكان

تغيير شكـل بلدير، الكر و تنها اكر كار مجازیى مكمل صفر باشـد، كرنشها وتغييرمكانها با شُرايط تكبه كاهى
سـازكار و هـاهنك است[5] .

$$
\begin{equation*}
\delta W_{I}^{*}+\delta W_{E}^{*}=0 \tag{Y.r.l.}
\end{equation*}
$$

در اين جا بار ظاهرى با اعمال يك بار مجازى واحد در نقطه أى كه تغيير مكان مجهول است و در امتداد مؤلّفهُ تغيير مكان مورد نظر شروع مى شُود. كار مجازى مكمل داخلى تحت تأثير جنين بارى به شكل زير است

$$
\delta W_{I}^{*}=-\delta U^{*}=-\int_{V} \delta \sigma_{i j} \epsilon_{i j} d V,
$$

براى بار ظاهرى است. در غياب نيروهاى كالبدى كار مجازى مكمل خارجى عبارت است از

$$
\begin{equation*}
\delta W_{E}^{\bar{E}}=\int_{S} \hat{\mathbf{u}}_{i} \delta t_{i} d S \tag{Y.r.|r}
\end{equation*}
$$

كه در آن برای يك سازء‘ْخرِياى دو بعدى با

و(Y. Y. Y) داريم

$$
\begin{equation*}
\Delta \times 1=\sum_{i=1}^{n} \delta \sigma_{i} \epsilon_{i} L_{i} A_{i} \tag{Y.r.IT}
\end{equation*}
$$

در حالى كـه L_{i}

نوشت

$$
\begin{equation*}
\Delta=\sum_{i=1}^{n} \frac{f_{i} F_{i}}{A_{i} E_{i}} L_{i} \tag{Y.r.|F}
\end{equation*}
$$

در حالى كه
عضو i أم امت.
اكنون مى توان مسالهُ طرّاحى را به شـكل استاندارد معادله' (. . Y Y) رابطه سازی كرد.

$$
V(\mathbf{A})=\sum_{i=1}^{n} A_{i} L_{i} \quad \text { تابع }
$$

$$
\text { مينيمم كنيد. } \quad \sum_{i=1}^{n} \frac{f_{i} F_{i}}{A_{i} E_{i}} L_{i}-\Delta=0 . \quad \text { رامشروطبی بـ. } 10 \text {) }
$$

با معرفى خربكرهاى لاكرانز، تابع هدف كمكى را به شكل زير مى نويسيم

$$
\begin{equation*}
\mathcal{L}(\mathbf{A}, \lambda)=\sum_{i=1}^{n} A_{i} L_{i}+\lambda\left(\sum_{i=1}^{n} \frac{f_{i} F_{i}}{A_{i} E_{i}} L_{i}-\Delta\right) \tag{Y.r.19}
\end{equation*}
$$

آن كاه شرايط لازم برایى اكسترمم، دستكاه معادلات زير است

$$
\begin{align*}
& \frac{\partial \mathcal{L}}{\partial A_{i}}=L_{i}-\lambda \frac{f_{i} F_{i}}{A_{i}^{2} E_{i}} L_{i}=0 \tag{Y.r.IV}\\
& \frac{\partial \mathcal{L}}{\partial \lambda}=\sum_{i=1}^{n} \frac{f_{i} F_{i}}{A_{i} E_{i}} L_{i}-\Delta=0 . \tag{Y.r.|A}
\end{align*}
$$

 ه به شكل زير بدست آورد
(F.

$$
\begin{align*}
& \lambda^{\frac{1}{2}}=\frac{1}{\Delta} \sum_{i=1}^{n}\left[\frac{f_{i} F_{i}}{E_{i}}\right]^{\frac{1}{2}} L_{i} . \tag{r.r.19}\\
& \text { آن كاه، مeادير بهين مساحتهاى سطع مقطع عبارتند از } \\
& A_{i}^{*}=\frac{1}{\Delta}\left[\sum_{j=1}^{n}\left(\frac{f_{j} F_{j}}{E_{j}}\right)^{\frac{1}{2}} L_{j}\right] \sqrt{\frac{f_{i} F_{i}}{E_{i}}} .
\end{align*}
$$

دقت كنيد كه جمله' داخل كروثشه ثابت المت. حجم كلّى مصالع با جايكزينى معادله (. . Y . Y در در تابع هدف به دست مى آيد

$$
\begin{equation*}
V^{*}=\frac{1}{\Delta}\left[\sum_{j=1}^{n}\left(\frac{f_{j} F_{j}}{E_{j}}\right)^{\frac{1}{2}} L_{j}\right]^{2} \tag{r.r.rı}
\end{equation*}
$$

تابع مشروط به يك قيد انتكرالي r r r . r براى مسالثل كه متغيرّهاى طرّاحى مجهول، توابعى هستند كه با تابعى منيد شـده انذ، حساب تغييراتى
 اويلر - لاكر انز با دادن تغيرات اختبارى به تابع نـكل كابل
 انتكرالى به شـكل

$$
\begin{equation*}
\int_{a}^{b} g[y(x)] d x=c, \tag{Y.Y.YY}
\end{equation*}
$$

را بـرآورده سـازد، آن كــاه اكــتـرمم تـابــى [بذست آورد . در اين حالت شر ط لازم براى اكسترمم عبارتاست از صفر شـدن تغييرات اوّل يكى تابــى

$$
\begin{equation*}
\mathcal{L}=J+\lambda\left[\int_{a}^{b} g[y(x)] d x-c\right] . \tag{Y.r.Yr}
\end{equation*}
$$

در مــال بعدى كاربرداين نن رابرایى بدست آوردن توزيع مساحت سطلح متطع يك تير با وزن مينمـم
و داثشتن يكى تغيير مكان مششخص در نقطه انى در امتداد دمانه تشُريح مى كنيم

مث4 F.r.F

يك تير از نظر ايستايم معين راب اسطع منطع متغير A(x) در نظر بكيريد كه تحت تأثير يك بار متمركز

 اين مساله، كه توسط بارنت' [6] مورد مطالعه ترار كرفثه، به شكل زير رابطه سازى مي شود

$$
V=\int_{0}^{1} A(x) d x
$$

$$
\text { منينم كند } \quad w(\xi)-\Delta=0 . \quad \text { رامشروطبه }
$$

با استفاده از روش بار مجازى كه در مثال تبلى بحث شد مى توان رابطه؛ سادهاى براي تغيير مكان در

$$
w(\xi)=\int_{0}^{1} \frac{M(x) m(x)}{E I(x)} d x
$$

كه در آن E

متطع تير متغيّ طرّاحى است، جمله' كثتاور ماند بايدبر حسب مساحت يانيان نود. عموماً ، تابع كثمتارر ماند تير با تابع مساحت سطع منطع بـ نـكل زير مريوط مى نود

$$
\begin{equation*}
I(x)=\alpha[A(x)]^{n}, \tag{Y.r.Y乡}
\end{equation*}
$$

كه در آن ه يك عدد ثابت استو بـ با بعاد فيزيكى سطع متطع بستگى دارد، و n يك عدد نابت است
 مى كنيم . حالت n=1 براى تبرى با سـطع متطع مستطبلى و ارتفاع ثابت وعرض متغيرّ در طرول تبر

$$
\mathcal{L}=\int_{0}^{1} A(x) d x+\lambda\left[\int_{0}^{1} \frac{M(x) m(x)}{E I(x)} d x-\Delta\right] . \quad \text { (Y.r.YY) }
$$

ثـرط لازم بـرایى مينيمم مـقيد عبارت است از صفر ثـدن تغيرات اوّل اين تابعى كمكى ـ در اين جـا

$$
\begin{equation*}
\delta \mathcal{L}=\int_{0}^{1}\left[1-\lambda \frac{M(x) m(x)}{\alpha E A^{2}(x)}\right] \delta A d x=0 \tag{Y.r.YА}
\end{equation*}
$$

معادلهُ اولر- لاكرانز مربرط عبارت است از

$$
1-\lambda \frac{M(x) m(x)}{\alpha E A^{2}(x)}=0, \quad \varphi \quad A(x)=\lambda^{\frac{1}{2}}\left(\frac{M m}{\alpha E}\right)^{\frac{1}{2}} . \quad(r . r . Y q)
$$

 (Y. Y. Y Y)

$$
\begin{equation*}
\lambda^{\frac{1}{2}}=\frac{1}{\Delta} \int_{0}^{l}\left(\frac{M m}{\alpha E}\right)^{\frac{1}{2}} d x \tag{r.r.r•}
\end{equation*}
$$

بنابراين توزيع مساحت بهين و حجم مربوط به آن به ترتيب برابر است با

$$
\begin{gather*}
A^{*}(x)=\frac{1}{\alpha E \Delta}\left[\int_{0}^{1}(M(\eta) m(\eta))^{\frac{1}{2}} d \eta\right](M(x) m(x))^{\frac{1}{2}}, \quad(Y . r . r) \\
V^{*}=\frac{1}{\alpha E \Delta}\left[\int_{0}^{1}(M(\eta) m(\eta))^{\frac{1}{2}} d \eta\right]^{2}, \tag{r.r.rr}
\end{gather*}
$$

r. r. r. شرايط اضافى ديكر

 ممكن امست m قيد اضافى ديكر به ثـكل

$$
h_{i}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{p}, \frac{\partial y_{1}}{\partial x_{1}}, \ldots, \frac{\partial y_{p}}{\partial y_{n}}\right)=0, \quad i=1, \ldots, m, \quad \text { (Y.r.rY) }
$$

در مسأله اعمال شـده باشـد. اين فيود ممكن است يكى محادله جبرى ساده يا معادلات ديغرانسيلى بسيار بيجيده باشند كه بايد در هر نقطه ایى از كل حوزه مساله برآورده شوند .

$$
\begin{equation*}
\mathcal{L}=\int_{v}\left(f+\sum_{i=1}^{m} \lambda_{i} h_{i}\right) d v \tag{Y.Y.YF}
\end{equation*}
$$

الما ضربكرهاى لاكر انز ديكر ثابت نبوده و تابعى از منتصهات

مثال F.F.F.
مسأله ایى كه در بالا بحث شـد مى تواند با يكى مثال طرّاحى بهتر تشريح شود. تيرى يكسـر كيردار بـا حجم و بار اعمالى منشخص را كه خيز آن مينيمم باشـد، طرّاحى كنيد. به جز تغيير مختصرى در نمادهـا،

 كي يك بار جانيى كسترده مشخص كردن نرم تنير مكان جانبى تير برایى يك حجم كل داده شده' لV0 . نرمى كه انتخاب مى كنيم عبارت امت از انتكرال تغيير مكان جانبى wدر طول تير . بار $w(x)$ را محدود به تكى جهت بودن مي نماييم تابانرم كرفته شده همخوانى داشتته باشد.

تابعى كه در اين حالت مينيم مى سود، انتكرالمى از ميدان تنيـير مـكان تعادل تير را برآررده كند و تيد حجم كل مصالح رانيز نقض نكند . معادلهُ تعادل به شكل زير بيان مى شود

$$
\begin{equation*}
\left[s(x) w^{\prime \prime}\right]^{\prime \prime}-q(x)=0 \tag{Y.r.ro}
\end{equation*}
$$

با شُرايط مرزى

$$
\begin{array}{llll}
\text { at } x=0: & w=0, & , & w^{\prime}=0 .
\end{array} \quad \text { (Y.Y. Yя) }
$$

(Y. Y. Y (Y) مربوط می شود

بعنى

1) Makky and Ghalib

$$
s(x)=E I(x)=\alpha E A^{n}(x), \quad n=1,2, \text { or } 3 . \quad \text { (Y.Y.YА) }
$$

$$
\int_{0}^{1} A(x) d x=V_{0} \quad \quad(Y . r . r q)
$$

تابعى كمكى عبارت است از :

$$
\begin{gather*}
\mathcal{L}\left(w(x), s(x), A(x), \lambda_{1}, \lambda_{2}(x)\right)=\int_{0}^{1} w(x) d x+\lambda_{1}\left[\int_{0}^{1} A(x) d x-V_{0}\right] \\
-\int_{0}^{1} \lambda_{2}(x)\left[s w^{\prime \prime \prime \prime}+2 s^{\prime} w^{\prime \prime \prime}+s^{\prime \prime} w^{\prime \prime}-q\right] d x \tag{Y.Y.Y.}
\end{gather*}
$$

كه بايد نـبـت به

$$
\begin{equation*}
\delta A=\left(\frac{d A}{d s}\right) \delta s \tag{Y.Y.YI}
\end{equation*}
$$

اوّلين تنيرات L عبارتاست از:

$$
\begin{gathered}
\delta \mathcal{L}=\int_{0}^{1} \delta w d x+\lambda_{1}\left[\int_{0}^{1} \delta A d x\right]+\delta \lambda_{1}\left[\int_{0}^{1} A d x-V_{0}\right] \\
-\int_{0}^{1} \delta \lambda_{2}(x)\left[s w^{\prime \prime \prime \prime}+2 s^{\prime} w^{\prime \prime \prime}+s^{\prime \prime} w^{\prime \prime}-q\right] d x \\
-\int_{0}^{1} \lambda_{2}(x)\left[\delta s w^{\prime \prime \prime \prime}+s \delta w^{\prime \prime \prime \prime}+2 \delta s^{\prime} w^{\prime \prime \prime}+s^{\prime} \delta w^{\prime \prime \prime}+\delta s^{\prime \prime} w^{\prime \prime}+s^{\prime \prime} \delta w^{\prime \prime}\right] d x=0, \text { (Y.Y.YY) }
\end{gathered}
$$

 تغييرات اختيـارى

$\delta w: \quad 1-\left(\lambda_{2}^{\prime \prime} s\right)^{\prime \prime}=0$,
(r.r. Fr)
$\delta s: \quad \lambda_{1} \frac{d A}{d s}-\lambda_{2}^{\prime \prime} w^{\prime \prime}=0$,
(Y.T.FF)
$\delta \lambda_{1}: \quad \int_{0}^{1} A(x) d x-V_{0}=0$,
(Y. Y. YD)
$\delta \lambda_{2}: \quad s w^{\prime \prime \prime \prime}+2 s^{\prime} w^{\prime \prime \prime}+s^{\prime \prime} w^{\prime \prime}-q(x)=0$,
(Y.r.fy)

همراهبا نرايط مرزى مربوط در x=0 $x=l$ رابدست مي آوريم:

$\delta s=0$,	يا	$\lambda_{2} w^{\prime \prime \prime}-\lambda_{2}^{\prime} w^{\prime \prime}=0$,	(Y.r.FV)
$\delta s^{\prime}=0$,	يا	$\lambda_{2} w^{\prime \prime}=0$,	(Y, r, Y)
$\delta w=0$,	L	$\lambda_{2}^{\prime \prime \prime} s+\lambda_{2}^{\prime \prime} s^{\prime}=0$,	(r.r.rq)
$\delta w^{\prime}=0$,	با	$\lambda_{2}^{\prime \prime} s=0$,	
$\delta w^{\prime \prime}=0$,	يا	$-\lambda_{2} s^{\prime}+\lambda_{2}^{\prime} s=0$,	(Y.r.OI)
$\delta w^{\prime \prime \prime}=0$,	L	$\lambda_{2} s=0$.	(Y.r. ($^{(H)}$

 تكيه كاه ساده و كيردار به كار مى روند. . براى تير يك سر كيردار ، شرايط مرزى عبارت است از معادله هاى
 شُده نمى تواند در x=0 صفر باشد، شرايط بالا به روابط زير تبديل هى شوند

$$
\begin{align*}
& \lambda_{2}(0)=0, \quad \lambda_{2}^{\prime}(0)=0, \\
& \lambda_{2}^{\prime \prime}(l) s(l)=0, \quad \lambda_{2}^{\prime \prime \prime}(l) s(l)+\lambda_{2}^{\prime \prime} s^{\prime}(l)=0
\end{align*}
$$

 استفاده كنيم و به روابط زير برسيم (Y . Y. OF) و (Y . Y. YV)

$$
s \lambda_{2}^{\prime \prime}=\frac{1}{2}(x-l)^{2},
$$

$$
\left.s w^{\prime \prime}=\int_{i}^{x}\left(\int_{i}^{r} q(\xi) d \xi\right) d r \equiv p(x), \quad \text { (ץ.r. } \Delta \xi\right)
$$

كه از آنها

$$
\begin{aligned}
& \lambda_{2}^{\prime \prime} w^{\prime \prime}=\frac{1}{2} \frac{(x-l)^{2} p(x)}{(s(x))^{2}} . \\
& \text { (r.r. © V) } \\
& \text { از تركيب معادله' آخر و معادله' لاكرانزٌ ــاولر (Y Y . Y . Y) داريم } \\
& \left.s^{2}(x) \frac{d A}{d s}=\frac{(x-l)^{2} p(x)}{2 \lambda_{1}} . \quad \text { (Y.Y. } \Delta \mathcal{A}\right)
\end{aligned}
$$

 n=1

$$
s w^{\prime \prime}=q_{\mathrm{a}} \frac{(l-x)^{2}}{2}
$$

معحنين براى يك تير بلهاى داريم

$$
\frac{d A}{d s}=\frac{1}{\alpha E}=c^{2}=\text { constant. } \quad \text { (Y.Y., \&.) }
$$

$$
s(x)=\frac{(x-l)^{2}}{2 c} \sqrt{\frac{q_{0}}{\lambda_{1}}}, \quad \text { (Y.r.\& } \quad \text {) }
$$

و در آن صورتت توزيع بهين مساحت سطع مقطع عبارت اممت از :

$$
A^{\prime \prime}(x)=\frac{c(x-l)^{2}}{2} \sqrt{\frac{q_{0}}{\lambda_{1}}} . \quad(Y, Y ., Y Y)
$$

$$
\lambda_{1}=\frac{c^{2} q_{0} l^{6}}{36 V_{0}^{2}}
$$

در نتيجه، مساحت بهين و توزيع ستتى خمسى عبارتند از :

$$
A^{*}(x)=\frac{3 V_{0}(x-l)^{2}}{l^{3}}, \quad \text { and } \quad s^{*}(x)=\frac{3 V_{0}(x-l)^{2}}{c^{2} l^{3}}, \quad(Y . Y . g \psi)
$$

 بهين را بدست مى آوريم

$$
w(x)=\frac{c^{2} q_{0} l^{3}}{12 V_{0}} x^{2}
$$

صفتحه ای مستطبلى با ضخامت ثاببت h و عرض متغير b(x) عبارت است از :

$$
\begin{equation*}
c^{2}=\frac{12}{E h^{2}} \tag{Y.Y.今9}
\end{equation*}
$$

تابِ خيز حاصل برابر اسست با

$$
w(x)=\frac{q_{0} l^{3} x^{2}}{E V_{0} h^{2}}
$$

برایى مقايسه، يكى تير يكنواخخت معادل كه حجم كلى V و طول l و ضـخامت نابت h ولى عرض ثابت زير را دارد در نظر بكيريد

$$
\begin{align*}
& b_{0}=\frac{V_{0}}{h l} . \tag{Y.Y.今A}\\
& \text { براحتى مى توان نشان داد كه خيز آن (x) } w_{0} \text { معادلهُ زير را برآورده مى كند } \\
& \frac{\int_{0}^{1} w(x) d x}{\int_{0}^{1} w_{0}(x) d x}=\frac{5}{9} . \tag{r.r.sq}\\
& \text { يعنى تير بهين } 1.8 \text { برابر سخت تر از تير يكنواخحت با همان حجم استت. }
\end{align*}
$$

حالتهاى محتلف ديكرى از بار كذارى و انواع محتلف تير هـا، n=1,2,3 ، در مر جمع V وجود دارد . بعضى از اين حالتها بخشتى از تمرينهاى انتهاى فصل را تشكيل مى دهند. • •

در بسيارى از مساثل بهينه سازى سازه ها قيدهايى داريم كه طلبيعتآ موضعى شستند مانتد قيذهاى تنش .

به عنوان مثال در مسأله طرّاحى تير، ممكن الست بشخواميم كه تنشها در ميج جا از سلّ تسليم تجاوز نكنند. جنان قيلهايع را مى توان به عنوان تيدهاى اخافى شُبيه به مـعـادله (Yץ . Y . Y) بيان كرد ولى تساويها بـا نامساوى جايگزين شده اند

$$
g_{i}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{p}, \frac{\partial y_{1}}{\partial x_{1}}, \ldots, \frac{\partial y_{p}}{\partial y_{n}}\right) \geq 0, \quad i=1, \ldots, m . \quad \text { (Y.Y. Y) }
$$

 شكل زير بنويسيم:

$$
g_{i}\left(x_{1}, \ldots, \frac{\partial y_{p}}{\partial y_{n}}\right)-t_{i}^{2}\left(x_{1}, \ldots, x_{n}\right)=0, \quad i=1, \ldots, m . \quad \text { (Y.Y.Y) }
$$

آن كاه تابعى كمكى معادله' (Y . Y . Y به شكل زير خواهل بود

$$
\mathcal{L}=\int_{v}\left[f+\sum_{i=1}^{m} \lambda_{i}\left(g_{i}-t_{i}^{2}\right)\right] d v . \quad \text { (Y.Y.Y) }
$$

وتتى تغيـرات C را مى كيريم، تغيـيـرات صفر ترار دادن خريب

$$
\begin{equation*}
t_{i} \lambda_{i}=0, \quad i=1, \ldots, m \tag{Y,F.Y}
\end{equation*}
$$

اين مسادله مى كويد وتتى منغيرّهاى كمبود صفر نيستند خربكر هاى لاكرانز صفرند. يعنى ضربكرشاى لاكر انزّ در نقاطى از فضاى طرّاحى كه تيدهاى مربوط بسرانى نيستند صفرند . معادله (Y . Y . Y) را مى توان به شـكل زير نيز نوشـت :

$$
\begin{equation*}
\lambda_{i} g_{i}=0, \quad i=1, \ldots, m \tag{Y.F.Q}
\end{equation*}
$$

زيرا الكر و تنها اكر $g_{i}=0$ باشد $t_{i}=0$ المـت . مى توان نشان داد كه اكر از معادله'(Y . Y . (المتفاده كيتمه كـه معادلهُ شُرط مكـلمى ناميده مى شود، مى توانيم در تابعى كهكى از تابعهاى كـمـبـود خـلاص
 به جاى آن قيدهاى نامساوى را در شرايط بهينگى اضافه مي كنيم. اين نوع برخررد با تيدهاى نامساوى در
 مثال زير تشريح مي شود .

مثل P.P.1

 كابل بايد براى مينيمم شدن ححجم جنان طراسى شُود كه تنش از مقدار مجاز
 بتواند با حداتل مساحت سطع مقطع كابل تحمل كردد . يعنى:

$$
\begin{equation*}
W \leq A \sigma_{0} \tag{Y.Y.9}
\end{equation*}
$$

همحجنين فرض مى كنيم كابل به اندازه؛ كافى بلند اسـت كه وزن آَن ايجاب مي كند مساحت سطح مقطع

$$
\text { در بالال بز ركتر از } A_{0} \text { باثُد. }
$$

مساله از نظر ايستائى معين استت. بار محورى كابل معادله هاى زير را برآورده مى كند :

$$
\begin{equation*}
P^{\prime}+\rho A=0, \quad P(l)=W \tag{Y.Y.V}
\end{equation*}
$$

$$
\begin{align*}
& \int_{0}^{1} A(x) d x \\
& A(x) \sigma_{0}-P(x) \geq 0, \quad \text { تابع } \tag{Y,F,A}\\
& A-A_{0} \geq 0 \\
& P^{\prime}+\rho A=0 \tag{g}
\end{align*}
$$

مينيمـم كنيد.
تابعى لاكرانزّ عبارت اسهت از :

$$
\begin{align*}
\mathcal{L}\left(A(x), P(x), \lambda_{1}(x), \lambda_{2}(x), \lambda_{3}(x)\right) & =\int_{0}^{l} A d x+\int_{0}^{l} \lambda_{1}\left(A \sigma_{0}-P\right) d x \\
& +\int_{0}^{i} \lambda_{2}\left(A-A_{0}\right) d x+\int_{0}^{l} \lambda_{3}\left(P^{\prime}+\rho A\right) d x \tag{Y.F.Q}
\end{align*}
$$

تغييرات C
$\delta \mathcal{L}=\int_{0}^{l} \delta A d x+\int_{0}^{l} \lambda_{1}\left(\delta A \sigma_{0}-\delta P\right) d x+\int_{0}^{1} \lambda_{2} \delta A d x+\int_{0}^{l} \lambda_{3}\left(\delta P^{\prime}+\rho \delta A\right) d x$.
(Y.F.I•)

الز جمله هايه كه 'ס 8 دارد انتكرال جزء به جزء می كيريم تا بـه 8 را مساوى صفر ترار مى دهيم . در اين صوررت داريم

$$
\begin{gather*}
1+\lambda_{1} \sigma_{0}+\lambda_{2}+\rho \lambda_{3}=0 \tag{Y.Y.II}\\
\lambda_{1}+\lambda_{3}^{\prime}=0, \quad \lambda_{3}(0)=0 \tag{Y,F,IY}
\end{gather*}
$$

$$
\begin{align*}
& \text { اين معادله ها با دو نامساوى } \\
& A \sigma_{0}-P \geq 0, \tag{Y,F,Ir}\\
& A-A_{0} \geq 0, \\
& \text { افزايش بافته أمـت كه معادله هاى يذيرش قيدها عبارتند از : } \\
& \lambda_{1}\left(A \sigma_{0}-P\right)=0 . \\
& \text { (Y.F.| } \| \text {) } \\
& \lambda_{2}\left(A-A_{0}\right)=0 .
\end{align*}
$$

 . (Y. F.V) (Y)

 هعادله' (Y. Y . Y) جايكزين كنيم و روابط زير را بيابيم:

$$
1-\lambda_{3}^{\prime} \sigma_{0}+\rho \lambda_{3}=0, \quad \lambda_{3}(0)=0
$$

(Y.Y.IV)

معادنه براحتى حل مى ثمود و جواب آن عبارست است از :

$$
\begin{equation*}
\lambda_{3}=\left(e^{\rho_{z} / \sigma_{0}}-1\right) / \rho, \tag{Y.Y.|A}
\end{equation*}
$$

و آن كاه از معادله (Y. F. IY) داريمب:

$$
\begin{equation*}
\lambda_{1}=-\left(1 / \sigma_{0}\right) e^{\rho_{z} / \sigma_{0}} \tag{Y.Y.19}
\end{equation*}
$$

 است، بنابراين از معادله' (Y. Y. Y):

$$
A(x)=P(x) / \sigma_{0} \quad A>A_{0} . \quad \text { (Y. Y. Y.) }
$$

 : داريم: (Y. F. V)

$$
\begin{equation*}
P=W+\rho(l-x) A_{0} \tag{Y,Y,YI}
\end{equation*}
$$

معتبر نيست.

$$
\begin{equation*}
x_{t}=l-\frac{A a_{0}-W}{\rho A_{0}} \tag{Y,F,YY}
\end{equation*}
$$

جايكزين شُود:

$$
\begin{equation*}
A^{\prime} \sigma_{0}+\rho A=0, \quad A\left(x_{t}\right)=A_{0} \tag{Y.Y.YY}
\end{equation*}
$$

اين معادله براحتى حل مى شود و جواب آن عبارت استـاز :

$$
\begin{equation*}
A(x)=A_{0} e^{\rho\left(x_{1}-x\right) / \sigma_{0}}, \quad x<x_{t} . \tag{Y,Y,YY}
\end{equation*}
$$

رابطه سازى ديكر مساله' مثال I . Y . . عبارت المت از يانتن كابلى كه حجم مشخخصى داشته باشد و كمنرين تنش ممكن را دارا باشد. تابع مدن عبارت است از :

$$
\min _{A(x)} \max _{0 \leq x \leq l} \sigma(x) .
$$

اين نمونها الى است از مسايلل معرون به مين ـ ماكز . مسائل مين- ماكز مشكلى كه دارند اين است كه
 يك تابع در دو نتطه ديد ـ بهعنوان مثال حالتى را در نظر بكيريد كه مساحت سطع مغطع كابل در هر تطعه

 ماكزيمم تير در نقطهاى كه ماكزيمم از يك تطعه به تطعه' ديكر جهش دارد در شيبب يك كــسـتكى دارد.

شكل Y. P. Y كسسته بودن تابع مكزيمـم

برای كابل مثال I . Y . F، دو رابطه سازى مينيمم سازى حجـم و يا مينيمم سازى تنش ماكزيمم براى حجـم مشخص مينيمم كيّم . اكر حجم بهين بدست آمده از V بيشتر بود، تنش مجاز را الفزايش مى دهيم و بهينه سازى را تكرار مى كنيم • به طور مشابه، أكر حجـم بـهيـن از V كمتر بود تنش مجاز را كاهش مى دهيم و مـجـدداً
 مينيمم سازى يكى ماكزيمم ممكن نيسـت . به عنوان مثال، هنگامى كه شككل يكـ سوراخ را بهينه مى كنيم تا تمركز تنش كاهش ييدا كند، اغلب روى حجم قيدى نداريم • بنابراين، نمى توانيم مسالّه رابه مينيمم سازى

 اضافهُ يكى معادله' تيد يـيُـنهاد كردند . مقدار

$$
\begin{array}{lll}
& \beta \\
\text { مينيمبمنيد } & \sigma(x) \leq \beta, \quad 0 \leq x \leq l . \quad \text { (Y.Y.Yq) }
\end{array}
$$

متغير طراحى اضافـى β حد تنش مجهول است كه مى خحواهيم آن را تا حدّ ممكن بايسن نگُهـلاريـم. اكنون تابع هدف عبارت است از يكى از متغيّر هاى طّاحّى كه كاملاَ هموار است. اين راهكار يعنى تبديل يك مسـأله مين ـ ماكز به يك مسأله هموار با استفاده از يكـ متغيّر اخافى، در بسيارى از كاربـردهـا مـنـيــ است . اين راهكار را برایى مسأله كابل مثال (Y . Y . Y) تشريح مى كنيم •

مثال P.P.T

 حجـم، و يك حد پايينى A_{0} روى مساست سطع مقطع رابطه سازى كنيد . مسأله ابتدا به ثـكل زير رابطه سـازى مى شود $\max _{0 \leq x \leq 1} \sigma(x)$

$$
\begin{gather*}
A-A_{0} \geq 0 \\
 \tag{Y.Y.YV}\\
\int_{0}^{l} A(x) d x=V_{0} \\
P^{\prime}+\rho A=0 .
\end{gather*}
$$

دقت كنيد كه ما تيد حجم رابه عنوان يكى تيد تساوى رابطه سـازى كرديم و نه يكى نامـــاوى، زيرا برداشت كلى و تجربه به ما مى كويد كه تمامى حجم به منظور مينمـم شـدن تنش به كـار مـى رود. اكـنون

$$
\begin{align*}
& \beta \\
& A(x) \beta-P(x) \geq 0, \\
& A-A_{0} \geq 0, \\
& \int_{0}^{l} A(x) d x=V_{0}, \tag{Y.Y.YA}\\
\text { مينيم كنيد } \quad & P^{\prime}+\rho A=0 .
\end{align*}
$$

ه. - شرايط لازم و كافى بهينگى

 بهينگى) . بر خلاف حالتى كهاز حساب ديفرانسيل و انتكرال استفاده مى شد، نـنــان دادن اين كـه حـنـان سرايطى شرايط كافى بهينگى نيز هستند، كار سـاده الى نيست. كانى بودن نـرايط بهينگى كاهى مى تواند بر اسـاس اصول تنييرات مكانيكى محيط بيوسته بنـا شـود. برای يكى مدل جزء جزء شده، با استفاده از نونون برنامه ريزى رياضى بهينه سـازى (نصـل ه)، مى توانـيم
 تحدّب تابع هدف و تيود نيز كار ساده أى نيست. بيستر مسائل بهينه سـازى نامحدّبند.
 بهآن برایى بيشتر حالتها ممكن نسست. اغلب برایى باسخ به جنين سوزالهايى يا بايد بر شّمّو ت تجربه مهندسى
 اعتماد كنيم و يا بر فنون آزمون و خططا.
با استفاده از اصرل تغييرات مكانيك، هجكونگى برقرارى كفايت شر ايط بهينكى براى دسته أى خاص از مسائل بهينه مازى را تشريح مي كنيم .

ا ـ ه ـ r سازه هاى ارتجاعى با سختى ماكزيمم
 يكى سازه؛ ارنجاعى كه تحت تأثير يكبار 2P درنقطه انى مثل Xامـت رادر نظر بكيريد. فرض كنيدبار
 انزرّى [11] داريم
انرزى داخلى ذخيره شله = كار خارجى

$$
\begin{equation*}
\frac{1}{2}(2 P \times 1)=P=\int_{v} s(X) e[Q(X)] d v \tag{Y.0.1}
\end{equation*}
$$

كه در آن ele[Q(X) eنرزى ارنجاعى ويزه يا انرزى كرنتى يكى سازه با ستختى واحد در اثر ميدان كرنس

 بنابراين $s(X)$ طراحى مازه را منـخص مى كند، در حالى كه تـبع [
 . $\frac{1}{2}$ (انحت ${ }^{2}$
مى خواهيم سازهاى را طراحى كنيم كه براى يكى سختى كلى داده شده مقدار P ، بارى كه تغيير مكان
 نسبت به قيد انتكرالى سخختى ويزه

$$
\begin{equation*}
\int_{v} s(X) d v=s_{0} \tag{Y.0.Y}
\end{equation*}
$$

مى تواند با يافتز نتطه' ايستايى تابعى كمكى

$$
\begin{equation*}
\mathcal{L}=\int_{v} s(X) e[Q(X)] d v-\lambda\left[\int_{v} s(X) d v-s_{0}\right] . \tag{Y.0.r}
\end{equation*}
$$

تحقتق يابد . شرط لازم ايستا بودن ـُ عبارت اسـت از

$$
\delta \mathcal{L}=0=\int_{v}\left(e[Q(X)]+s(X) \frac{\partial e}{\partial s}\right) \delta s d v-\lambda\left(\int_{v} \delta s d v\right) .(Y . \Delta . \nmid)
$$

از آن جا كه سـازه با هر طرّاحى بايد معادله هاى تعادل را برآورده كند، بنابراين براسـاس اصـل انـرزّى
 است)، ، جمله' دوّم اوّلين انتُكرال صغر مى شود و داريـم:

$$
\int_{v}(e[Q(X)]-\lambda) \delta s d v=0
$$

بنابراين براى تغييرات الختيارى ss داريـم:

$$
\begin{equation*}
e[Q(X)]=\lambda=\text { عدد } \tag{Y.0.9}
\end{equation*}
$$

 با انرزّى كرنشى ويرّه مى كتند

$$
\begin{align*}
& \int_{v} s(X) d v=\int_{v} \bar{s}(X) d v=s_{0} . \\
& \text { بار Pو } \\
& P=\int_{v} s(X) e[Q(X)] d v \quad, \quad \bar{P}=\int_{v} \bar{s}(X) e[\bar{Q}(X)] d v, \quad(Y . \Delta . \wedge) \\
& \text { از كم كردن }
\end{align*}
$$

$$
P-\bar{P}=\int_{v} s(X) e[Q(X)] d v-\int_{v} \bar{s}(X) e[\bar{Q}(X)] d v . \quad \text { (ץ.0. ৭) }
$$

جون Q(X) ميدان كرنش تابل تبول از نظر جنبشى براى طرّاحى s نيز هــت، الكر Q Q جايكزيـن كنيـم، از احل انـرزى بتانسسل مينـمـم تضمين مى كنيم كه

$$
\int_{v} \check{s}(X) e[\bar{Q}(X)] d v \leq \int_{v} \tilde{s}(X) e[Q(X)] d v . \quad \text { (Y.ט.।•) }
$$

بنابراين :

$$
P-\stackrel{\rightharpoonup}{P} \geq \int_{v} s(X) e[Q(X)] d v-\int_{v} \bar{s}(X) e[Q(X)] d v . \quad \text { (Y. ט. ॥1) }
$$

اكر طّرّاحى S شرط بهينگى معادله' (Y . Q . Y) را برآورده كند، آن كاه

$$
P-\bar{P} \geq 0, \quad \text { ي } \quad P \geq \bar{P} . \quad \text { (Y.0.| } \quad \text { r }
$$

اين معادله مى كويد كه شرط (Y Y . © ن نه تنها يك شرط لازم بلكه يك شر ط كانى بهينكى است.

ما مسألهُ ماكزيمـ كردن بار كمانش يكى ستون اولر -برنولى با حجم يا وزن مشتخص را كه سطع متطع
 كمانش يك سازه عبارت است از مينيمم مقدار خارج فسمت ريلى ‘ براى تمامى ميدانهاى تغير مكان هايه
 مصالح در امتداد طول ستون ماكزيمم كنيم • بنابراين مسـالـلـ فعلى عبارت است از ماكزيمم كردن مقدار مينيمم خارج قسمت ريلى براى بار كمانش

$$
p=\max _{I(x)} \min _{w(x)} \frac{\int_{0}^{l} E I(x) w^{\prime \prime 2} d x}{\int_{0}^{l} w^{\prime 2} d x}=\max _{A(x)} \min _{w(x)} \frac{\int_{0}^{l} E \alpha[A(x)]^{n} w^{\prime \prime 2} d x}{\int_{0}^{l} w^{\prime 2} d x}, \quad \text { (ץ.0.|千) }
$$

مشروط به قيد حجمم ثابت

$$
\begin{equation*}
\int_{0}^{l} A(x) d x=V_{0} . \tag{Y.0.10}
\end{equation*}
$$

با استفاده از نن ضربكر لاكرانز داريم

$$
\mathcal{L}=\max _{A(x)} \min _{w(x)} \frac{\int_{0}^{l} E \alpha[A(x)]^{n} w^{\prime \prime 2} d x}{\int_{0}^{l} w^{\prime 2} d x}-\lambda\left[\int_{0}^{1} A(x) d x-V_{0}\right]
$$

شرايط لازم برای بايدارى و بهنيكى مى تواند با صغفر ترار دادن تغييرات اول لاكرانزين بــــــت آيـد،

$$
\begin{aligned}
\delta \mathcal{L}= & \frac{2 \int_{0}^{l} E \alpha[A(x)]^{n} w^{\prime \prime} \delta w^{\prime \prime} d x}{\int_{0}^{l} w^{\prime 2} d x}-\frac{2 \int_{0}^{l} E \alpha[A(x)]^{n} w^{\prime \prime 2} d x}{\left[\int_{0}^{l} w^{\prime 2} d x\right]^{2}}\left[\int_{0}^{l} w^{\prime} \delta w^{\prime} d x\right](Y, \Delta . \mid \vee) \\
& +\frac{\int_{0}^{l} n E \alpha[A(x)]^{n-1} w^{\prime \prime 2} \delta A d x}{\int_{0}^{l} w^{\prime 2} d x}-\lambda\left[\int_{0}^{1} \delta A(x) d x\right]=0
\end{aligned}
$$

جمله هايى كه تغييرات مشتقهاى w را دارند لازم امـت اننكرال كيرى جزء به جزء شـوند . بعداز دوباره
 مى دهد در صورتى كه ضريب δA شرط بهينگى را مى دهد
: $\left[E \alpha A^{n}(x) w^{\prime \prime}\right]^{\prime \prime}+p w^{\prime \prime}=0$.
(Y.Q.|A)
: : $\quad \delta w=0, \quad\left[E \alpha A^{n}(x) w^{\prime \prime}\right]^{\prime}+p w^{\prime}=0$,

$$
\begin{equation*}
\delta w^{\prime}=0, \quad ᄂ \quad E \alpha A^{n}(x) w^{\prime \prime}=0 \tag{Y.0.19}
\end{equation*}
$$

: : $n E \alpha A^{n-1} w^{\prime \prime}-\lambda \int_{0}^{l} w^{\prime 2} d x=0$.
خون جملهُ دوم در معادل' (Y . Q . Y ' ثاببت السـت، معادله مى تواند به شكل زير سـاده شـود

$$
\begin{equation*}
A^{n-1} w^{\prime \prime 2}=c^{2}=\text { عدد نابت } \tag{Y.Q.YY}
\end{equation*}
$$

م.

كمانتّى ' ستون بهين.

$$
\begin{equation*}
w^{\prime \prime 2}=c^{2} \tag{Y.Q.Y}
\end{equation*}
$$

با دو طرّاحى جمداكانه مى كند كه به رابط؛ زير مي انجامد:

$$
\begin{equation*}
\int_{0}^{1}(A-\bar{A}) d x=0 \tag{Y.0.YF}
\end{equation*}
$$

بارهاى كمانش مربوط

$$
p_{c r}=\frac{\int_{0}^{l} E \alpha A w^{\prime \prime 2} d x}{\int_{0}^{l} w^{\prime 2} d x}, \quad \bar{p}_{c r}=\frac{\int_{0}^{l} E \alpha \bar{A} \bar{w}^{\overline{\prime 2}^{2}} d x}{\int_{0}^{l} \bar{w}^{\prime 2} d x} . \quad \text { (Y.Q.YO) }
$$

جوذ حالت كمانتس w از نظر جنبنبى برایى طرّاحى

$$
\begin{equation*}
\overline{\bar{p}}=\frac{\int_{0}^{l} E \alpha \bar{A} w^{\prime \prime 2} d x}{\int_{0}^{i} w^{\prime 2} d x} \tag{Y,0.Y9}
\end{equation*}
$$

خاصيت زير را دارد

$$
\begin{equation*}
\overline{\bar{p}} \geq \bar{p}_{c r} . \tag{Y.0.YV}
\end{equation*}
$$

$$
\begin{equation*}
p_{c r}-\bar{p}_{c r} \geq p_{\text {cr }}-\bar{p} \tag{Y.Q.YA}
\end{equation*}
$$

بنابراين

$$
\begin{equation*}
p_{c r}-\bar{p}_{c r} \geq \frac{\int_{0}^{l} E \alpha w^{\prime \prime 2}(A-\bar{A}) d x}{\int_{0}^{l} w^{\prime 2} d x} \tag{Y.0.Yq}
\end{equation*}
$$

$$
\begin{equation*}
p_{c r}-\bar{p}_{c r} \geq 0, \tag{Y.Q.r.}
\end{equation*}
$$

كه معنى آن اين است كه از تمامى طرّاحى ما با شكلهاى سطع مقطع متغاوت آن كه شرط بهينـكى را

براكر و تيلور ' [9] انبات كفايت مشـابهى برانى مساله' دو كان حالت مينيمم سازى حجم يا وزن مـتون اولر - برنولى براى يكـ بار كمانش داده شده اراثه دادند

P. D. 1 مثال

1) Prager and Taylor
2) Tadjbaksh and Keller
3) Olhoff and Rasmussen
4) bimodal
5) Masur
6) Plaut, Johnson, and Olhoff
7) multi-modal
 تمرينها محول مى كنيم . ماكزيمم سازى بار بحرانى يكى ستون با تكيه كاه ساده به طرل l را كه مفيد به تَبد
 اين مسالّه اراثه شد . ما با نوشتن معادله هاى حاكم و شر ايط مرزى مسأله شروع مى كنيم

م $\quad: \quad\left[E \alpha A^{3} w^{\prime \prime}\right]^{\prime \prime}+p w^{\prime \prime}$.
(Y.Q.rI)
: $\quad: \quad w(0)=w(l)=0$,
(Y.Q.rY)
$A^{3}(0) w^{\prime \prime}(0)=A^{3}(l) w^{\prime \prime}(l)=0$.
(Y. Q. YY)

شرايط بهينكى $\quad: \quad A^{2} w^{\prime \prime 2}=c^{2}, \quad$ or $\quad w^{\prime \prime}= \pm c / A$.
(Y, Q.YY)

$$
A(0)=A(l)=0
$$

با جايكزينى شرط بهينگى در معادلهُ بايدارى داريم

$$
\begin{equation*}
A^{\prime \prime 2}+\frac{\beta^{2}}{A}=0 \tag{Y.0.rq}
\end{equation*}
$$

كه در آن

$$
\begin{equation*}
\beta^{2}=p / E \alpha \tag{Y.O.YV}
\end{equation*}
$$

معادل ديغرانسيل (Y Y . . . Y) و شرايط مرزى مربوط رامى توان با استفاده از تغيير متغيّرها حل كرد. اكر داشته باشيم

$$
\begin{equation*}
A=u^{1 / 2} \tag{Y.Q.YA}
\end{equation*}
$$

با يك بار انتكرال كيرى از معادلهُ ديفرانسيل داريم

$$
\begin{equation*}
u^{\prime}= \pm\left(c_{1}-4 \beta^{2} u^{1 / 2}\right)^{\frac{1}{2}} \tag{Y.0.rq}
\end{equation*}
$$

كـه ${ }_{1}$ ثابت انتگرال كـيرى است. از مـعادله' بالا مى توان يك بار ديكر انتگرال كيرى كرد. داريم

$$
\left|x-c_{2}\right|=-\int \frac{d u}{\left(c_{1}-4 \beta^{2} u^{1 / 2}\right)^{\frac{1}{2}}} . \quad\left(Y . \Delta . Y_{1}\right)
$$

با استفاده از يكى تغير متغيّ ديـكر
ديكر انتكرال كيرى كنيم. داريم

$$
\left|x-c_{2}\right|=\frac{1}{6 \beta^{4}}\left[\left(c_{1}-4 \beta^{2} A\right)^{\frac{1}{2}}\left(c_{1}+2 \beta^{2} A\right)\right] . \quad \text { (Y.O.YV) }
$$

عبارتند از :

$$
\begin{array}{lll}
c_{2}=\frac{1}{6 \beta^{4}} c_{1}^{3 / 2}, & , & \left|l-c_{2}\right|=\frac{1}{6 \beta^{4}} c_{1}^{3 / 2} . \\
\text { (Y. } \Delta . Y Y) \\
c_{1}=\left(3 l \beta^{4}\right)^{2 / 3}, & , & c_{2}=l / 2 .
\end{array}
$$

بنابراين، معدار بهين مساحت سطع متطع در هر نقطه در امتداد طول ستون از معـادلـ' (Y . Q . FI) بدست مى آيد .

برایى محاسبه بارامنر بار بحرانى β از تَيد حجـم استفاده مى كنيم

$$
\int_{0}^{1} A(x) d x=2 \int_{0}^{1 / 2} A(x) d x=2 \int_{0}^{1 / 2} u^{1 / 2} d x=2 \int_{0}^{u(1 / 2)} u^{1 / 2} \frac{d x}{d u} d u=V_{0}, \quad(Y . \Delta .\lceil ץ)
$$

يا از معادله (Y. ©. Y)

$$
\int_{0}^{1} A(x) d x=V_{0}=2 \int_{0}^{u(1 / 2)} \frac{u^{1 / 2}}{\left(c_{1}-4 \beta^{2} u^{1 / 2}\right)^{1 / 2}} d u . \quad(Y . \Delta . \vdash \Delta)
$$

از طرن راست اين معادله مى توان انتكرال كيرى كرد ـ داريم:

$$
V_{0}=\frac{\left(c_{1}-4 \beta^{2} u^{1 / 2}\right)^{1 / 2}}{8 \beta^{6}}\left[c_{1}^{2}-\frac{2}{3} c_{1}\left(c_{1}-4 \beta^{2} u^{1 / 2}\right)+\frac{1}{5}\left(c_{1}-4 \beta^{2} u^{1 / 2}\right)^{2}\right]_{0}^{u(l / 2)} \cdot(Y . \Delta . Y \varphi)
$$

عبارت است از :

$$
\begin{equation*}
u(l / 2)=\frac{1}{16 \beta^{4}}\left(3 l \beta^{4}\right)^{4 / 3} \tag{Y.O.FV}
\end{equation*}
$$

 بهين بارامتر بار و بار بحرانى را بدست مى آوريـم.

$$
\beta_{\mathrm{opt}}^{2}=\frac{\left(15 V_{0}\right)^{3}}{243 l^{5}}, \quad, \quad\left(p_{c r}\right)_{\mathrm{opt}}=\frac{125}{9} \frac{E \alpha V_{0}^{3}}{l^{5}} . \quad(Y . \Delta . \Psi \wedge)
$$

x / I	0.0 1.0	0.05 0.95	0.10 0.90	0.20 0.80	0.30 0.70	0.40 0.60	0.50
Al	0.0	0.58540	0.78730	1.02345	1.15651	1.22751	1.25000
$\mathrm{~V}_{0}$							

شكل 1 Y. 1 توزيع مساست براى ستون
با مقايسه با يك تير با مسا-حت سطع مقطع ثابت كه در آن

$$
\begin{equation*}
\left(p_{c r}\right)_{\mathrm{opt}}=\frac{125}{9} \frac{E I_{0}}{l^{2}}=1.41 \frac{\pi^{2} E I_{0}}{l^{2}}=1.41 p_{0 c r} \tag{Y.0.Yq}
\end{equation*}
$$

يعنى ستون بله الى عمقى بهين از سترن يكنواخت به همان سحجم 41\% توى تر است . با دانستن c انتهاى ستو"ن توجه كنيد كه يكى نتيج' 'مطلوب نيست. اين نتيجه بر اثر تعريفـ نكردن يكى قيد كران پاينىى - • • برایى توزيع مساحت به وجود آمده اسـت
 كمانش مستقل از تغيراتت مساحت سطع مقطع در امتداد طول ستون است . ولى اين مطلب در صفـحات

نازك درست نيست. برآيندهاى تنت صفحها الى در حالت بيش كمانش در صفحات نازك در واقع توابعى از

در صفحات دايرهاى نازل؛، موقميت جندان بد نيست. زيرا معادله هاى حاكم نتيجه شده (از بايدارى و بهينكى) معادله هاى ديفرانسيل غير خططى معمولى اندكه مى شمود آنها رابا بعضى از روشهاى عددى مانند

مساله در مورد صفحات مستطيلى نازك كه معادله هاى حاكم بر آنها معادله هاى ديفرانسيل با مسـتـت

 بهينه سازى صفحه بر اماس جنان فرضى بـ جوابهاى قانع كتندها الى نمى انجامد.
 مهلى بسيار زياد به جاى يك بهين نراكير منفرد توضيح دهند. بر اماس اين توضيح ، جوابى كه توسـط
 سيميتـزز [29] نشان دادهاست كه در حجم مساوى، صفحات دايرهاى سخت تر بارهاى كمانشى بسيـار بالاترى نسبت به صفحه بهين فرايوانسال دارند. به طور مشابه ، كمت ${ }^{4}$ [27] كه مدلهاى اجزاى محدود صفحات مستطيلى را بهينه كرد، توزيعهاى خشخامتنايوستهاى را مشاهده كرد كه كرايشى به شيكل خميده دارند و عالى بودن صفحات سخت تر را بـش بينى كرد ـ هفتكه و براسـاد ه [30] در مقالهُ مروريشان در

 از صفحات بهين با توزيع ماى ضخامت يوستها اند. آلهاف [[31] براى اين رمتار و سوال منفرد بودن و

1) Frauenthal
2) Armand and Lodier
3) Simitses
4) Kamat
5) Haftka and Prasad
6) Olhoff

 رساله' كـجوسكى و زيكسكوسمكى [[32] ارجاع داده مى شود. .

 تغيير مكان از نظر جنبشى تابل تبول بدست مى آيد [11] .

$$
\omega^{2}=\max _{A(x)} \min _{w(x)} \frac{\int_{0}^{l} E \alpha[A(x)]^{n} w^{\prime 2} d x}{\int_{0}^{l} \rho A(x) w^{2} d x}
$$

 رابطه سازى مى شود، هعيار بهينه سازى ارتعان آزاد تير هاى اولر - برنولى با هعيار بهينه سازى متونهاى اولر - برنولى متفاوت است . بر خلاف ححالت ستونها، صورت نحارج تسمت ريلى براى ارتعاثى آزادتير ثـامل جوم سازه كه تابعى از مساست سطع مقطع است مى باشُد .

 و شُرط لازم بهينگى از ماكزيمم سمازى مقدلر مينيمب شحارج قسمت ريلى، w² ، مشروط به قيد حجم ثابت بدست مى آيد • به ستن ديكر، اكر از لاكرانزين زير شروع كنيم

$$
\begin{equation*}
\mathcal{L}=\max _{A(x)} \min _{w(x)} \frac{\int_{0}^{l} E \alpha[A(x)]^{n} w^{\prime \prime 2} d x}{\int_{0}^{l} \rho A(x) w^{2} d x}-\lambda\left[\int_{0}^{1} A(x) d x-V_{0}\right] \tag{1.0.01}
\end{equation*}
$$

$$
\begin{aligned}
\delta \mathcal{L} & =\frac{2 \int_{0}^{l} E \alpha[A(x)]^{n} w^{\prime \prime} \delta w^{\prime \prime} d x}{\int_{0}^{l} \rho A(x) w^{2} d x}-\frac{2 \int_{0}^{l} E \alpha[A(x)]^{n} w^{\prime \prime 2} d x}{\left[\int_{0}^{l} \rho A(x) w^{2} d x\right]^{2}}\left[\int_{0}^{l} \rho A(x) w \delta w d x\right] \\
& +\frac{\int_{0}^{l} n E \alpha[A(x)]^{n-1} w^{\prime \prime 2} \delta A d x}{\int_{0}^{l} \rho A(x) w^{2} d x}-\frac{\int_{0}^{l} E \alpha[A(x)]^{n} w^{\prime \prime 2} d x}{\left[\int_{0}^{l} \rho A(x) w^{2} d x\right]^{2}}\left[\int_{0}^{l} \rho w^{2} \delta A(x) d x\right]
\end{aligned}
$$

$$
+\lambda\left[\int_{0}^{1} \delta A(x) d x\right]=0
$$

اكر از جمله' اول طرف راست معادله' بالا انتكرال جز\& به جز\& بكيريم و ضرايـب
كنيم، نتيجه‘ زير بدست مى آَيد:
: $\quad\left[E \alpha A^{n} w^{\prime \prime}\right]^{\prime \prime}-\omega^{2} \rho A w=0$.
(Y. Q. ΔY)
: شرايط مرزى : $\delta w=0$, or $\left[E \alpha A^{n} w^{\prime \prime}\right]^{\prime}=0$,
(Y. O.OF)
$\delta w^{\prime}=0$, or $\left[E \alpha A^{n} w^{\prime \prime}\right]=0$.
علد ثابت
 بايد در حالت اصلى يكى تير الزتعاثى بهبن يكنراخت باشل .
مانتد ستونها، كفايت اين شُرط بهينكى مى تواند براى حالـت n=1 بـ سادكى تـنريح شود . براى اين

$$
E \alpha w^{\prime \prime 2}-\omega^{2} \rho w^{2}=c
$$

(Y.O.OV)

و حالتهاى اصلى w و

$$
\omega^{2}=\frac{\int_{0}^{l} E \alpha A w^{\prime \prime 2} d x}{\int_{0}^{l} \rho A w^{2} d x}, \quad \bar{\omega}^{2}=\frac{\int_{0}^{l} E \alpha \bar{A} w^{\prime \prime \prime} d x}{\int_{0}^{l} \rho \bar{A} \bar{w}^{2} d x} . \quad(Ү . \Delta . \Delta \mathcal{A})
$$

 كرد كه:

$$
\begin{align*}
& \tilde{\omega}^{2}=\frac{\int_{0}^{l} E \alpha \bar{A} w^{\prime \prime 2} d x}{\int_{0}^{l} \rho \bar{A} w^{2} d x} \geq \bar{\omega}^{2} \\
& \overline{\bar{\omega}}^{2} \int_{0}^{l} \rho \bar{A} w^{2} d x=\int_{0}^{l} E \alpha \bar{A} w^{\prime 2} d x
\end{align*}
$$

اما داريم

$$
\begin{gathered}
\omega^{2} \int_{0}^{l} \rho A w^{2} d x=\int_{0}^{l} E \alpha A w^{\prime \prime} d x . \\
:(Y . \Delta . \& 1) \\
\bar{\omega}^{2} \int_{0}^{l} \rho \bar{A} w^{2} d x-\omega^{2} \int_{0}^{l} \rho A w^{2} d x=\int_{0}^{l} E \alpha(\bar{A}-A) w^{\prime \prime 2} d x . \quad(Y . \Delta . \& Y)
\end{gathered}
$$

 مى تواند به ثُشكل زير نوشته شّود:

$$
\bar{\omega}^{2} \int_{0}^{l} \rho \bar{A} w^{2} d x-\omega^{2} \int_{0}^{l} \rho A w^{2} d x=\int_{0}^{l}(\bar{A}-A)\left(c+\omega^{2} \rho w^{2}\right) d x, \quad(Y .0 . g ץ)
$$

با ساده سازى و استفاده از معادل' (Y . O. Y) داريم:

$$
\overline{\bar{\omega}}^{2}-\omega^{2}=0 . \quad(Y . \Delta . و Y)
$$

با در نظر كرغتن معادله' (Y. © . ©) داريم:

$$
\begin{equation*}
\omega^{2} \geq \bar{\omega}^{2} \tag{Y.0.90}
\end{equation*}
$$

كه كنايت شرط بهينكى معادل' (Y. O. OV) است . بايد تو جّه كرد كه براي مسالّف' دوكان مينيمه سازى وزن يكى تير در يكى بسـامل معلوم نيز مى توان نشان

 در بك بسامل طبيعى مشتخص جواب دقيقى ارالث مى نمايند. مانند حالت ستونها ، جوابهاى عددى تقريبى متعلّدى براى ماكزيمـم سازى بساملهاى الهلى تيرهاى ارتعامُى با تكيه كامهاى ارتجاعى كه حجمشان تاببت است و جرمهاى غير مازه ای متمركز و كستردهاى را دارند و مشروط به كرانهاى بالا يع و چاينى براى مساحت سطع مقطع هستند، با استفاده از روت تغيير

مكان اجزایى محدود در دسترس است. برایى مثالهايع از اين نوع طراحيهاى تثرييى به مراجع [39 و 40] مراجعه كنبد. در مقايسه، مقاله هاى متتشر شُده در مورد مسـاله دو كان مينيمم سازى وزن تبر بر'الى يكـ
 مميشه مسائل ابتدأيع و دو كان در اين حالتت معادل باشند، روشن نيست [42 و 41] . در يـايان موضوع ارتعاشُ ترها، منامباست كه بهاين مطلب امشاره كنبم كه شرط بهينكى مـعـادلد (r. © . OV)

 نشان داده است كه مى شود كنايت شرط بهينكى رابر مبناي اصل ايستا بودن انرزّى بـانسيل كه توسط شيلد

 شد مى توان يكى كتاب شنامى بسبار جامع در موضوع بهينه سازى بامـخ ديناميكى يانت.

 يك كتاب شناسى جامع اراثه كر ده اند . حل مساله‘ طرّاحى بهين صفحه، دايره ايى ارتعاثـى اوّلين بار توسّط آلهافـ [474] ارائه شد. آلهان نشان

 اصلى بسيار بالاترى از جواب ا"وليه' ألهان داشته باشدد، آسان است [47] .
 براى صفحات مستطبلى، طراحيهاى بهين مدلهاى اجزایى محلود، كـه در آنـها داشـتن تـوزيـــهـاى ضشخامت كسسته امكان پذير استت، دوباره كرايش به توزيع مصالح صفتحه در امتدادهاى خحميدهُ جدا جدا شمده دارند [50-48] . در ححجم يكسان، انتظار مى رود كه يكى صفخـه' مستطيلى سـخت تر، بسامدهاى ارتعاشّى اصلى بسيار بالاترى نسبت به صفـحه' بهينه شده بر امساس توزيع ضشخامت بيوسته داشته باشُد .

روشُهاى حساب تغييراتى كه در بخشهاى تبلى بحث شُدند براى مسائل ساده الى كه مجهولها تابعهاى طرّاحیى مانند توزيع مساحت بودند بسيار مناسبند. اين مساثل ، مساثل بهينه سازى پارامـتر تـوزيـع شـده
ناميده مى مُوند .

رويكرد ديكر حلّ مسايلل پارامتر توزيع شده ، كه آن تدر شاده نيستند كه بشود آنها راباروشـهاى حساب تغييراتى حلّ كرد، استفاده از جوابهاى سرى اسـت . بنداره اصلى عبارت اسـت از فرض يكى ششكل سرى براى تابع طّراحى مجهول در محلودهُ سازه و عمحنين فرض توابع باسخ مانتد تغير مكانها. بنابراين، در حالت كلّى، روش جواب سرى مسائل برنامه ريزى رياخى بيوسته رابه كسستهُ با تعداد متغيرّهاى مسلود
 فوريـهُبراى مساحت سطع مقطع سازه هاى تيروستون مساثل مـختـلف ارتـمـاشـى و كـمـانـشـى راحـل

مثال P.F.
طرّاحى بهين يك ستون بـا تكيه كاه ساده برایى كمانش بحرانى در اين مشال تكـرار مـى شوده [51] تـا استفاده از رويكرد سرى فوريه تشريح كردد . مانند مساثلى كی تبـلاً بحث شد يك قيد حجحم مصالح ئابت
 بله المت كه بار كمانشى را ماكزيمم كند . يعنى، فرض مى شود كه توزبع مساحـت سـطـع مـقطع بــ
3) Parbery

تنيرات عرض (جهت عمود بر جهت تنيير شكل) يكى متطع مستطيلى مربوط مى شود كه عمق آن ثابت
 با معادلهُ بايدارى حاكم مساله سروع مى كنيم كه عبارت است الم از

$$
\begin{equation*}
E \alpha A(x) w^{\prime \prime}+p w=0 \tag{r.9.1}
\end{equation*}
$$

كمبتهاى مجهول را با دو جمله از سرى نوريه بسط مى دميم. داريم:

$$
\begin{gather*}
w=a_{1} \sin \frac{\pi x}{L}+a_{3} \sin \frac{3 \pi x}{L} \tag{Y.9.Y}\\
A(x)=\beta_{0}-\beta_{2} \cos \frac{2 \pi x}{L} \tag{r.9.r}
\end{gather*}
$$

 مى برد ـ به خاطر انتظار داشتن يك شككل حالت و توزيع مساحت سطع مقطع متـتـارن، a و و ${ }_{2}$ ازاز سرى
 مى كند كه ضربهاى سرى نوريــه (

 از معادله' (Y Y Y Y () مى نوانيم نشان دميم كه:

$$
\begin{equation*}
\beta_{0}=\frac{V_{0}}{L} . \tag{Y.9.Y}
\end{equation*}
$$

با جايكزينى β_{0} در معادله' (Y. Y. Y Y و آن كاه استفاده از معادله' (Y. Y . Y)، حاصلضرب زير را
بدست مى آوريم :

$$
\begin{gather*}
\alpha A(x) w^{\prime \prime}=-\left(\frac{\pi}{L}\right)^{2}\left[\left(\frac{\alpha V_{0}}{L} a_{1}+\frac{\alpha \beta_{2}}{2} a_{1}-\frac{9 \alpha \beta_{2}}{2} a_{3}\right) \sin \frac{\pi x}{L}\right. \\
\left.+\left(\frac{-\alpha \beta_{2}}{2} a_{1}+\frac{9 \alpha V_{0}}{L} a_{3}\right) \sin \frac{3 \pi x}{L}-\frac{9 \alpha \beta_{2}}{2} a_{3} \sin \frac{5 \pi x}{L}\right] \tag{Y.9.0}
\end{gather*}
$$

$$
\begin{equation*}
2 \cos A \sin B=\sin (A+B)-\sin (A-B), \tag{4.9.9}
\end{equation*}
$$

با استفاده از معـادله' (Y. Q Q) در معادله’ تعادل و مساوى ترار دادن ضرايب جملات سـيــوس، معادلات جبرى زير رابدست مى آوريم:

$$
\begin{gather*}
-E\left(\frac{\pi}{L}\right)^{2}\left(\frac{\alpha V_{0}}{L} a_{1}+\frac{\alpha \beta_{2}}{2} a_{1}-\frac{9 \alpha \beta_{2}}{2} a_{3}\right)+p a_{1}=0 \tag{r.9.v}\\
-E\left(\frac{\pi}{L}\right)^{2}\left(\frac{9 \alpha V_{0}}{L} a_{3}-\frac{\alpha \beta_{2}}{2} a_{1}\right)+p a_{3}=0 \tag{Y.f.A}\\
E\left(\frac{\pi}{L}\right)^{2}\left(\frac{9 \alpha \beta_{2}}{2} a_{3}\right)=0 \tag{Y.9.9}
\end{gather*}
$$

برایاين كه جواب غير صفرى داشته باشيم، دترمينان ماتريس ضرايب شيكل حالت مجهول بايد صفر باثد . اين موضوع به رابطه' درجه' دوى زير برایى بار كمانشى p بر حسب تنها ضريب مجهول باتقى مانده مسـاله مى انجامد .

$$
\begin{equation*}
p^{2}-E\left(\frac{\pi}{L}\right)^{2}\left(\frac{10 \alpha V_{0}}{L}+\frac{\alpha \beta_{2}}{2}\right) p+9 \alpha^{2} E^{2}\left(\frac{\pi}{L}\right)^{4}\left(\frac{V_{0}^{2}}{L^{2}}+\frac{V_{0} \beta_{2}}{2 L}-\frac{\beta_{2}^{2}}{4}\right)=0 . \tag{Y.9.1•}
\end{equation*}
$$

بار بحرانى با رابطء‘ زير بيان مى شود:

$$
\begin{equation*}
p=\frac{E\left(\frac{\pi}{L}\right)^{2} \alpha}{4}\left[\frac{20 V_{0}}{L}+\beta_{2} \pm\left(256 \frac{V_{0}^{2}}{L^{2}}-32 \frac{V_{0} \beta_{2}}{L}+37 \beta_{2}^{2}\right)^{\frac{1}{2}}\right] . \tag{Y.9.11}
\end{equation*}
$$

به منظور بدست آوردن مقدار نسبت به بارامتر مجهول

$$
\beta_{2}^{*}=\frac{32}{37} \frac{V_{0}}{L},
$$

و مقدار بهين بار كمانش عبارت است از :

$$
\begin{equation*}
p_{\mathrm{cr}}^{*}=\frac{45}{37} \frac{\pi^{2} E \alpha V_{0}}{L^{3}}=\frac{45}{37} p_{0 c r} . \tag{Y.9.Ir}
\end{equation*}
$$

AF بنش Y.
در حالى Pocr
 آن مثال تغيير در مساحت با تغير عمت سطع مقطع بدست آمد در حالى كه عرض آن ثاببت بـود (n=3) .

 كـنشى بحرانى يـكى است . بـه علاوه، مـزيتّ ايـن روش بـر روشـهـاى كـلاسيكى ديكر در تابليّت آنن در مورد مســاتـل

-•• . كرد
مونتيّت جـواب سرى، در بهينه سازى به ميزان زيادى به شـكل سرى التخاب شده براى نمـايس تـابـع مجهول بستكى دارد . به منظور مينيمـم نگاه داشتن تعداد متغيّرهاى طّآحى، تنها هند جمله در سرى بايد مورد استفاده ترار كيرد. المّا با تعداد جملات كمتر در سرى، تقريب جواب معادلات ديفرانسيل جـاكــم
 امكان را فرامتم مى كثد تا جوابى يكى بارامترى برایى بار كمانتى ماكزيمم به شـكل دتيت بدست آيد . با اين

 نمى شود . اكر، از طرن دبكر، فردى جملالت زيادترى رادر سرى استفاده كند، يافتن مقدار بهين ضرايب جملات مشكل مى شود و ممكن امت لازم باشد از فنون جسـت و جوى رستم استغاده شود . يك روش ساده بر ایى كم كردن تعداد متغيرّ هاى طرّاحى بدون از دست دادن دتّ، استغاده |ز خاصيّت تقارن احتمالى مساله است كه تنها بخشى از مندسه شكل بايد مدل شود. يكى مثال خوباب از اين رويكرد در مرجـع [52]

تمرينها Y.Y
ا- در يكى سازهُ ارتجاعى معادلل هاى تعادل و مُرايط مرزى آن مى تواند با مينيمـم سازى انرزى بتانسيـل سازه بدست آيد. اين موضّع را برای تير اولر - برنولى يكى سر كيردار تشريح كنيد. در مورد نوع شرايط

مرزى دو انتهاى تير بحث كنيد. نرض كنيد انرزى بیانسيل جنان تيرى از رابطه‘ زير بدست مي آيد:

$$
\mathrm{\Pi}=\frac{1}{2} \int_{v} \sigma \epsilon d v-\int_{0}^{1} q(x) w d x
$$

در حالّى كه

$$
\epsilon=-y \frac{d^{2} w}{d x^{2}}, \quad, \quad \sigma=E \epsilon
$$

, $q(x)$ بار جانبى خارجى توزيع شُده در امتداد تير است.
 r- r- مسالهُ مثال r. r. r. r را برای حالتهاى زير حل كنيد
a) $n=1 ; \quad q(x)=q_{0}(l-x) / l$.
b) $n=1 ; \quad q(x)=4 q_{0}\left(l x-x^{2}\right) / l^{2}$.
c) $n=2 ; \quad q(x)=q_{0}$.
d) $n=2 ; \quad q(x)=q_{0}(l-x) / l$.
e) $n=3 ; \quad q(x)=q_{0}$.
$f) n=3 ; \quad q(x)=q_{0}(l-x) / b$.

ه- توزيع مساحت بهين و بار كمانتى مربوط بهآن رابراى ستونهاى اولر - برنولى نير مشروط به تيد
ححجم نابت بدست آوريد .
n=1, 2,3 ستون بكى سر كيردار (a
n=1,2 ستون با تكيه كاههاى ساده (b

آن عبارت استاز:

$$
\omega^{2}=\frac{\int_{0}^{l} E A(x){u^{\prime}}^{2} d x}{\int_{0}^{l} \rho A(x) u^{2} d x+m[u(l)]^{2}} .
$$

(a

4A بنش Y.V تمرينها
(جوامب تورنر [FF] كه برای خنين ميله اى به ثـكل زير بدست آمده را بردسى كنيد

$$
\begin{aligned}
& A(x)=\frac{\beta m}{\rho} \tanh \beta l\left[\frac{\cosh \beta l}{\cosh \bar{\beta} x}\right]^{2}, \quad, \quad V_{0}=\frac{m}{\rho} \sinh ^{2} \beta l, \\
& u(x)=\sinh \beta x / \sinh \beta l . \\
& \text { در حالى كه }
\end{aligned}
$$

 شروع كنيل . فرضى كنيد تير جرم غير مـازهاى توزيـع شـدهُ

بررسى كنيد .

$$
\begin{aligned}
& A(x)=\frac{\omega_{0}^{2}}{E c^{2}} \int_{x}^{1}(\xi-x) \xi^{2} m(\xi) d \xi \\
& \cdot \xi=x / l, 2 c^{2}=I(x) / A(x) ه د ر ~ د ح ا ل ى ~
\end{aligned}
$$

 ثنكل زير است:

$$
\begin{gathered}
\frac{\omega^{2}}{C}=\min _{w(x)} \frac{\int_{0}^{1} h^{3}(\xi)\left[w^{\prime 2}+2 \nu w^{\prime \prime} w^{\prime} / \xi+\left(w^{\prime} / \xi\right)^{2}\right] \xi d \xi}{\int_{0}^{1} h(\xi) w^{2} \xi d \xi}, \\
\xi=\frac{r}{a}, \quad h=\frac{t a^{2}}{V_{0}}, \quad V_{0}=\int_{0}^{a} 2 \pi t r d r, \quad, \quad C=\frac{E V_{0}^{2}}{12\left(1-\nu^{2}\right) \rho a^{8}}
\end{gathered}
$$

كه بريمها' مشتق كيرى نسبت به مختمات شُعاعى به بعد ξ را نشان مى دمند.
همجنان نشان دهيد كه ثرط بهينكى برايى ماكزيمم سازى بسامداصلى جنان صفـحهاى با حجبم مشـخص
عبارت است از :

$$
3 h^{2}\left[w^{\prime \prime 2}+2 \nu w^{\prime \prime} w^{\prime} / \xi+\left(w^{\prime} / \xi\right)^{2}\right]-\omega^{2} w^{2}=\text { constant }
$$

- - - معادل حاكم حركت ارتعاث اجبارى حالت باياى بكى تير اولر - برنولى با نكيه كامهاى ساده به

شكل زير است

$$
\left(E I w^{\prime \prime}\right)^{\prime \prime}-\rho A \omega^{2} w=q(x, t)
$$

 بر بـ $I(x)=\alpha[A(x)]^{n}$
 جواب متقارن دو جملهاى براى تنيير مكان و توزيع مساحت فرض كنيد.
[1] Hancock, H., Theory of Maxima and Minima. Ginn and Company, New York, 1917.
[2] Gelfand, I.M. and Fomin, S.V., Calculus of Variations. Prentice Hall, Inc., Englewood Cliffs, NJ, 1963.
[3] Pars, L.A., An Introduction to the Calculus of Variations. Heinmann, London, 1962.
[4] Hildebrand, F. B., Methods of Applied Mathematics. Prentice-Hall, New Jersey, 1965.
[5] Reddy, J.N., Energy and Variational Methods in Applied Mechanics. John Wiley and Sons, New York, 1984.
[6] Barnett, R.L., "Minimum Weight Design of Beams for Deflection," J. EM Division, ASCE, Vol. EM1, 1961, pp. 75-95.
[7] Makky, S.M. and Ghalib, M.A., "Design for Minimum Deflection," Eng. Opt., 4, pp. 9-13, 1979.
[8] Taylor, J.E., and Bendsøe, M.P.,, "An Interpretation for Min-Max Structural Design Problems Including a Method for Relaxing Constraints," International Journal of Solids and Structures, 30, 4, pp. 301-314, 1984.
[9] Prager, W. and Taylor, J.E., "Problems of Optimal Structural Design," J. Appl. Mech. 35, pp. 102-106, 1968.
[10] Prager, W., "Optimization of Structural Design," J. Optimization Theory and Applications, 6, pp. 1-21, 1979.
[11] Washizu, K., Variational Methods in Elasticity and Plasticity. 2nd ed. Pergamon Press, 1975.
[12] Keller, J.B., "The Shape of the Strongest Column," Arch. Rat. Mech. Anal. 5, pp. 275-285, 1960.
[13] Tadjbaksh, I. and Keller, J.B., "Strongest Columns and Isoperimetric Inequalities for Eigenvalues," J. Appl. Mech. 29, pp. 159-164, 1962.
[14] Keller, J.B. and Niordson, F.I., "The Tallest Column," J. Math. Mech., 29, pp. 433-446, 1966.
[15] Huang, N.C. and Sheu, C.Y., "Optimal Design of an Elastic Column of ThinWalled Cross Section," J. Appl. Mech., 35, pp. 285-288, 1968.
[16] Taylor, J.E., "The Strongest Column - An Energy Approach," J. Appl. Mech., 34, pp. 486-487, 1967.
[17] Salinas, D., On Variational Formulations for Optimal Structural Design. Ph.D. Dissertation, University of California, Los Angeles, 1968.
[18] Simitses, G.J., Kamat, M.P. and Smith, C.V., Jr., "The Strongest Column by the Finite Element Displacement Method," AIAA Paper No: 72-141, 1972.
[19] Hornbuckle, J.C., On the Automated Optimal Design of Constrained Structures. Ph.D. Dissertation, University of Florida, 1974.
[20] Turner, H.K. and Plaut, R.H., "Optimal Design for Stability under Multiple Loads," J. EM Div. ASCE 12, pp. 1365-1382, 1980.
[21] Olhoff, N.J. and Rasmussen, H., "On Single and Bimodal Optimal Buckling Modes of Clamped Columns," Int. J. Solids and Structures, 13, pp. 605-614, 1977.
[22] Masur, E.F.: "Optimal Structural Design under Multiple Eigenvalue Constraints," Int. J. Solids Structures, 20, pp. 211-231, 1984.
[23] Masur, E.F., "Some Additional Comments on Optimal Structural Design under Multiple Eigenvalue Constraints," Int. J. Solids Structures, 21, pp. 117-120, 1985.
[24] Olhoff, N.J., "Structural Optimization by Variational Methods," in Computer Aided Structural Design: Structural and Mechanical Systems (C.A. Mota Soares, Editor), Springer Verlag, pp. 87-164, 1987.
[25] Plaut, R.H., Johnson, L.W. and Olhoff, N., "Bimodal Optimization of Compressed Columns on Elastic Foundations," J. Appl. Mech., 53, pp. 130-134, 1986.
[26] Frauenthal, J.C., "Constrained Optimal Design of Circular Plates against Buckling," J. Struct. Mech., 1, pp. 159-186, 1972.
[27] Kamat, M.P., Optimization of Structural Elements for Stability and Vibration. Ph.D. Dissertation, Georgia Institute of Technology, Atlanta, G.A, 1972.
[28] Armand, J.L. and Lodier, B.. "Optimal Design of Bending Elements," Int. J. Num. Meth. Eng., 13, pp. 373-384, 1978.
[29] Simitses, G.J., "Optimal Versus the Stiffened Circular Plate," AIAA J., 11, pp. 1409-1412, 1973.
[30] Haftka, R.T. and Prasad, B., "Optimum Structural Design with Plate Bending Elements - A Survey." AIA.A J., 19. pp. 517-522. 1981.
[31] Olhoff, N., "On Singularities, Local Optima and Formation of Stiffeners in Optimal Design of Plates," In: Optimization in Structural Design, A. Sawczuk and Z. Mróz (eds.). Springer-Verlag, 1975, pp. 82-103.
[32] Gajewski, A., and Zyczkowski, M., Optimal Structural Design under Stability Constraints, Kluwer Academic Publishers, 1988.
[33] Niordson, F.I., "On the Optimal Design of a Vibrating Beam," Quart. Appl. Math., 23, pp. 47-53, 1965.
[34] Turner, M.J., "Design of Minimum-Mass Structures with Specified Natural Frequencies," AIAA J., 5, pp. 406-412, 1967.
[35] Taylor, J.E., "Minimum-Mass Bar for Axial vibration at Specified Natural Frequency," AIAA J. , 5, pp. 1911-1913, 1967.
[36] Zarghamee, M.S., "Optimum Frequency of Structures," AIAA J., 6, pp. 749-750, 1968.
[37] Brach, R.M., "On Optimal Design of Vibrating Structures," J. Optimization Theory and Applications, 11, pp. 662-667, 1973.
[38] Miele, A., Mangiavacchi, A., Mohanty, B.P. and Wu, A.K., "Numerical Determination of Minimum Mass Structures with Specified Natural Frequencies," Int. J. Num. Meth. Engng., 13, pp. 265-282, 1978.
[39] Kamat, M.P. and Simitses, G.J., "Optimum Beam Frequencies by the Finite Element Displacement Method," Int. J. Solids and Structures, 9, pp. 415-429, 1973.
[40] Kamat, M.P., "Effect of Shear Deformations and Rotary Inertia on Optimum Beam Frequencies," lnt. J. Num. Meth. Engng., 9, pp. 51-62, 1975.
[41] Pierson, B.L., "A Survey of Optimal Structural Design under Dynamic Constraints," Int. J. Num. Meth. Engng., 4, pp. 491-499, 1972.
[42] Kiusalaas, J,, "An Algorithm for Optimal Structural Design with Frequency Constraints," Int. J. Num. Meth. Engng., 13, pp. 283-295, 1978.
[43] Icerman, L.J., "Optimal Structural Design for given Dynamic Deflection," Int. J. Solids and Structures, 5, pp. 473-490, 1969.
[44] Plaut, R.H., "Optimal Structural Design for given Deflection under Periodic Loading," Quart. Appl. Math., 29, pp. 315-318. 1971.

49 بخش 1.1 : : مراجع

[45] Shield, R.T. and Prager, W., "Optimal Structural Design for given Deflection," Z. Angew. Math. Phys., 21, pp. 513-523, 1970.
[46] Mróz, Z., "Optimal Design of Elastic Structures subjected to Dynamic, Harmonically Varying Loads," Z. Angew. Math. Mech., 50, pp. 303-309, 1970.
[47] Olhoff, N., "Optimal Design of Vibrating Circular Plates," Int. J. Solids and Structures, 6, pp. 139-156, 1970.
[48] Olhoff, N., "Optimal Design of Vibrating Rectangular Plates," Int. J. Solids and Structures, 10, p. 93-109, 1974.
[49] Kamat, M.P., "Optimal Thin Rectangular Plates for Vibration," Recent Advances in Engineering Science, Vol. 3. Proceedings of the 10th Annual Meeting of the Society of Engineering Science, pp. 101-108, 1973.
[50] Armand, J.L., Larie, K.A. and Cherkaev, A.V., "Existence of Solutions of the Plate Optimization Problem," Proceedings of the International Symposium Structural Design, Tucson, AZ, pp. 3.1-3.2, 1981.
[51] Balasubramanyam, K. and Spillers, W.R., "Examples of the Use of Fourier Series in Structural Optimization," Quart. of Appl. Math., 31 pp. 559-566, 1986.
[52] Parbery, R.D., "On Minimum-Area Convex Shapes of given Torsional and Flexural Rigidity," Eng. Opt., 13, pp. 189-196, 1988.
 وبا مجمرعه' S در نضایى طرّاحى محدود شده ارتباط دارد. مجموعه' S ممكن است توسّط تيود تساوى

 مى شوند) .
عبارت برنامهريزى خطّى (LP) تُروه خاصى از مساثل اكسترومم سازى را در بر مى گيرد كه در آنها

 نتواند در داخل فضاى طّ"احى قابل تبول باشد. ـبنابراين، بايد روى مرز نضاى طّا"حى كه با روابط فيود

 NLP

 Lرا براى يانتن جهت جستجبر به كار مى يكيرد.

صحيح باشـند بحث مى كنيم •

1 . 1 تحليل حذّ و طرّاحى سازه هايِى كه به صورت مسائل LP رابطه سازى مى شوند

 در نظر كرفته مى شود، ولى اين معيار مميشه يكى معيار منطقى و معقول نيست. در حالتـهـاى بسـيـارى

 ريختكى را مى توان به عنوان بار موردنباز براى به وجود آوردن نقاط تسليم بلاستيك (خميرى شكل) (كه
 سازه يكى ساز و كار شودو عملكردش تغيير فاحش بيدا كند، تعريف كرد ـ هر هند محاسبهُ دقيق بار فرو

 |مكان بذير است. ـينى فرض مى شود مصالح از نمودار تنش-كرنش شكل 1 ـ ـ ـ ب تبعيّت مى كند كه در تنت 0 تسليم مى شود ولى بعد از حد ارتجاعى به عنوان يكى مصالح حمل كنتده ت تنش ثابت عمل مى كند. LP اين فرض مهم است كه باعث مى شود بتوان تحليل حدّ انجام داد و مسائل طرّاحى را به عنران مسائل

يكى مثال سادهُ خخرياى سـه ميلهاى در مثال زير استفاده مى شود تا تفاوت بين بار شـروع تسليم و تخمين
(1 -
مثال

 شـده تحليل نرو ريختكى مى كنيم. هر سه ميله مساحت سطح مثطع بكســان A داشته و از مصالحى با

 رابطه هاى زير بدست مى آيند:

$$
\begin{equation*}
\epsilon_{B}=\frac{v}{l}, \quad \epsilon_{A}=\epsilon_{C}=\frac{v}{4 l} . \tag{r.1.1}
\end{equation*}
$$

نيروى مربوط به آنها در عضوها عبارتند از :

$$
\begin{equation*}
n_{B}=\frac{E A}{l} v, \quad n_{A}=n_{C}=\frac{E . A}{4 l} v=0.25 n_{B} . \tag{r.1.r}
\end{equation*}
$$

$$
\begin{align*}
& \text { با استفاده از معأدله هاى تعادل در لولاى D، دأريم: } \\
& n_{A}=n_{C}, \quad p=n_{B}+\frac{1}{2}\left(n_{A}+n_{C}\right)=1.25 n_{B}, \tag{r.1.r}
\end{align*}
$$

وبارهاى داخلى در سه عضو عبارت المـت از :

$$
n_{A}=n_{C}=0.2 p, \quad n_{B}=0.8 p .
$$

دوشن امـت كه أكر بار از صفر افزايشى يابد، ابتداعضو B تسليم مى شودو وتى كه

$$
n_{B}=\sigma_{0} A, \quad \text { ي } \quad p=1.25 A \sigma_{0}
$$

با اين وجود سـازه در p=1.25A 0 فرو نمى ريزد زيرا عضوهـاى C و هنوز مى توانند بار اعمـال
ثـده را بدون تغيير شكلهاى ناحش تتحمل كنند. مى توانيم تا زمانى كـه عـضـو A Aـا تسليم شود بـار را انزايش دهيم • خرن رفتار مصالع را كاملاً ارتجاعى- خميرى فرضى كرده ايم، با انزايش بار به بيش از بار
 در عضوهاى A A C اثفات مى افتل. بنابراين، در فرو ريختّك، هر سه عضو در نقطه" تسليم خرواهند بود و داريم:

$$
\begin{equation*}
n_{A}=n_{B}=n_{C}=A \sigma_{0} \tag{4.1.9}
\end{equation*}
$$

و از معادله هاى تعادل معادله' (Y . . . Y) داريم:

$$
\begin{equation*}
p_{\text {jرسيخمى }}=2 A \sigma_{0} \tag{Y.1.V}
\end{equation*}
$$

اين مقدار نسبت به بارى كه اوّلين تسليم شروع مى شود 60\% انزايش نشان مى دمد . . .
 ريختّ، ساده بود . اين واتعّيت به ما اين اجازه راداد كه بار ترو ريختكى را بدون مشكل بدسـت آوريم . در حالت كلّى بدست آّوردن تركيب عضو هامى كه در فرو ريختگى تسليم مى شوند ساده نيست و توزيع تنش در فرو ريختگى نيز مشخّصص نيست. خورشبختانه، أين امكان وجود دارد كه به منظور بدست آوردن بار فرو ريختگى[1] بر اساس يكى تضيه' كلّى در نظريه' يلاستيسيته (خميرى)، مساله به عنوان يكى مساله'LP در نظر كرفته شود. اين تضيّه، تضيّه' كران بايين است، و از مرجع [2] كلادين' 'در زير نقل مى شود. تضهيُ كران پايين: اكر بتوان در هر جايى از سازه توزيع تنشس يافت كهاز نظر داخحلى همه جا درتعادل باشُلد و بارماى خارجیى را موازنه كند، و با اين وجود شُرايط تسليمران نتض نكند ، اين بارما توسّنط سازه با ايمنى تححّمل خحوامنلد ثُـل .

1) Calladine

نيست، تشريح خواهد شد. ما از همان سازهُ مثالل قبلى استفاده مى كنيم، ولى با يكى نيروى اففى اضافى در نقطه، D

مثال r.1.r

تحليل حذّ خرياى سـه ميلـهاى شـكـل ا ـ ا ـ برا كه دو نيروى عمودى و افقى مسـاوى p به آن اتُر كي كند، در نظر بعيريد . معادله هاى تعادل در اين حالت عبارتند از :

$$
\begin{gather*}
n_{B}+\frac{1}{2}\left(n_{A}+n_{C}\right)-p=0, \\
\frac{\sqrt{3}}{2} \cdot\left(n_{A}-n_{C}\right)-p=0, \tag{r.1.^}
\end{gather*}
$$

و قيدهاى زير راداديم:

$$
\begin{equation*}
-A \sigma_{0} \leq n_{A}, n_{B}, n_{C} \leq A \sigma_{0} . \tag{r.1.9}
\end{equation*}
$$

تشـخيص اين كه كدام يك از سهه ميله در فرو ريختگى تسليم مى شود ديعر آَسـان نيــت . با اين وجـود مى شود تركيبهاى مختلفى از
 رابطهُ تعادل (1 . . . ؟) داردم

$$
n_{A}=\frac{2}{\sqrt{3}} p=1.155 p, \quad, \quad n_{B}=0.423 p
$$

روشن است كه در اين حالت ،

$$
n_{A}=A \sigma_{0}, \quad n_{B}=0.366 A \sigma_{0}, \quad, \quad p=\frac{\sqrt{3}}{2} A \sigma_{0}=0.866 A \sigma_{0} .(\uparrow .1 . \mid 1)
$$

 0.366A 0
 تخمين، مسأله را در قالب يكى مسأله ماكزيمم سـازى بيان مى كنيم

را حنان ماكزيمم كنيد كه
(
 هر الگُوريتم LP حل كرد . اين مسأله آن تدر سـاده انست كه در صورت نياز يكى حل ترسيمي نيز براى آن - • • امكان لذير اسـت (تمرين ا را نگاه كنيد)

 كمانش از بيـن نمى رود . اكـــر سازهُخريايحى داشتـه باشثيم كهr عضو داشته بـاشـد كه با يكـ سيستم بار
 مى توان با يافتن بيـترين معدار λ كه سازه مى تواند تحمّل كند بدست آورد ـ معادله هاى تعادل به شكل زير نوشته مى شوند :

$$
\sum_{j=1}^{\Gamma} e_{i j} n_{j}=\lambda p_{i}, \quad i=1, \ldots, m
$$

هر حالى كه هعادله هاى تعادل است . تيود تسليم به شكل زير نوشته مى شوند :

$$
A_{j} \sigma_{C j} \leq n_{j} \leq A_{j} \sigma_{T j}
$$

در حالى كه
(1-A
تسليم در كثشث اند، آن كاه بار سدّ يا فرو ريختگى جواب مسآلهُ برنامه ريزى خطّى زير است.
را مشروط به برآورده شدن
λ

در حاللى كه λ و نيروهاى اعضاى

مقطع بهين بايد بدست آيد. اغلب هدف عبارت است از مينيمم كردن جرم كل سازه بعنى :
را مينيمبم كنيد $\quad m=\sum_{j=1}^{r} \rho_{j} A_{j} l_{j}$,
(r.1.19)

 اعمال سُـد دارد، ولى دامنه' بار λ مشخّْص است .

مثال T.1.r

$$
. \sigma_{C}=-\sigma_{T}=\sigma_{0}
$$

معادله هاى تعادل عمودى و انقى در گره هاى، نا مقيد سازه عبارتند از :

$$
\begin{array}{lll}
n_{13}+\frac{\sqrt{2}}{2} n_{23}=0, & n_{24}+\frac{\sqrt{2}}{2} n_{14}=0, & (\uparrow .1 . \mid \vee \vee) \\
n_{34}+\frac{\sqrt{2}}{2} n_{23}=0, & n_{34}+\frac{\sqrt{2}}{2} n_{14}=p, & (\uparrow .1 . \mid \vee b)
\end{array}
$$

قيدهاى تسليم عبارتند از :

$$
\begin{array}{ll}
-A_{13} \sigma_{0} \leq n_{13} \leq A_{13} \sigma_{0}, & -A_{23} \sigma_{0} \leq n_{23} \leq A_{23} \sigma_{0} \\
-A_{14} \sigma_{0} \leq n_{14} \leq A_{14} \sigma_{0}, & -A_{24} \sigma_{0} \leq n_{24} \leq A_{24} \sigma_{0} \\
-A_{34} \sigma_{0} \leq n_{34} \leq A_{34} \sigma_{0} . &
\end{array}
$$

مسالدُ بار حلّى مانند آنجه قبلاً تعريف شد مشُخْص مى شود : با تغيير نيروى اعضا، p ر1 مشُروط به
برآورده شدن معادله هاى تعادل و تيدهاى تسليم ماكزيمـم كنيد . مساله' طرّاحى حذّ عبارت است از :

$$
\text { b } \frac{m}{\rho l}=A_{13}+A_{24}+A_{34}+\sqrt{2}\left(A_{14}+A_{23}\right) \text { عبارت }
$$

برایى مساله طّاحّى حلّ، ثـم مساحتهاى سطح مقطع و یـم نيروهاى اعضا به عنوان متغيّرهاى طرّاحى - • • . .

 منتصر به فردى برای تحليل و طّ"احى تيرها، قابها و طاتهايى كه موتعيّت مشخْصى دارند و تحت تأتير بارهاى ثابت، متغير ، تكرارى متغيرّ يا لرزشُى اند اراثه كرده اند . ما در اين جا توجّهمان را به مشالـهـاى ساده ایى از اين كروه از مساتل معطوف مى كنيـم. فرض الساسى در ارتباط با مهالع تير يا قابب اين است كه كاملا ارتجاعى خحيرى باشند ـ لنگر كاملاً خميرى، mp ، سطح مقطع تير، به عنوان لنكر خمشى، m ، مورد نباز برایى تسليم شدن تمامى سطع مقطع آن جنان كه يكى لولا با خـخامت خمشفى تاببت درست شود، تعريف مى شود.

مثال F.1.1

شكل ه 1. .r تحليل جدّى تير دو دمانه

 تحملّ كند، بدون آن كه سازو كار شود . مانند حالت منال ب . ا . شدن يـك سـاز و كـار تير و توزيع لنـكر خحمشى در امتـداد دهـانـهُ تير خيلى روثّن نيست. در سحتيـــت، ، توزيعهاى لنكّر خمشی بى شمارى وجود دارند كه از نظر ايستايى قابل تبولند و معادله هاى تعادل را برآورده مى كنند . با اين وجود، فتط دو امكان براى سماز و كار فرو ريختگى وجود دارد. دو ساز و كار ابتذايـى و توزيع لنُكر براى تير در شكل Q ه 1 . بارائه شده است . مسأله'LP براى تحليل خميرى عبارت الست از

مقدار

$$
\text { مشرورط به }-m_{p} \leq m_{i} \leq m_{p}, \quad i=1,2,3 \quad \text { (Y. . . Y +) }
$$

 لو لا هاى خميرى را دارند، در آن نقاط لننكرهاى خحمشى ماكزيمم محلى دارند. اين سه لنـكر نيز در مسأله مجهولند و بايد آتها را بدست آَررد. در شروع هر ساز و كار فرو ريختگى كه در شكل ه . ا ـ بنشان داده

شده است، مى توان به كمكى اصل تغيير مكان مجازى دو معادله براى تعادل نوشت. . نرض اسـاسى در نوشتن تغيير مكانهاى مجازى اين است كه لولاها در شكل لو لاهاى خميرى نيستند ولى برای اين معرّني
 نمايند. رابطه' تعادل حاصل عبارت است از :

$$
\begin{align*}
& 2 m_{3} \theta_{1}^{*}+m_{2} \theta_{1}^{*}=2 \lambda p(l / 2) \delta_{1}^{*}, \tag{r.l.YI}\\
& 2 m_{1} \theta_{2}^{*}+m_{2} \theta_{2}^{*}=\lambda p(l / 2) \delta_{2}^{*}, \tag{r.l.YY}
\end{align*}
$$

در حالى كــهـ مكانهاى مجازى تير در نقاط بار است. تغيير مكانها و خرخشهاى مجازى توسط رابطه هاى جنبّى بـ هم مربوط مى شُوند و مى توانند از معادله ها حذن شُوند. بهعلاوه، به كمكى معادله هاى تعادل، مى توانذ دو
 را جناذ بيابيد كه

$$
\begin{array}{ll}
& \lambda \\
& -m_{p} \leq\left(\frac{p l}{4} \lambda-\frac{1}{2} m_{2}\right) \leq m_{p}, \\
& -m_{p} \leq m_{2} \leq m_{p}, \\
\text { بشُ بـرو } & -m_{p} \leq\left(\frac{p l}{2} \lambda-\frac{1}{2} m_{2}\right) \leq m_{p} . \tag{r.l.Yr}
\end{array}
$$

$$
\text { مثل ه. } 1 .
$$

 صفتحهالى براى تحمّل مجموعهاى از بارهاى نهایى رادر نظر بكيريد . يكى قاب سر در يكى دهانه ایى و يكى

 مفطعهاى تير و ستون به ترتيب لنكر هاى كاملاَ خميرى
 سـطع مفطعهاى عضوهاى مربرط بستگى دارند و بنابراين متغيّرهاءى طرّاحى مسالث اند.

شكل 1. . .r طرّاحى تاب سردر براى جلوكيرى ازفرو ريختكى خميرى

برایى اين كه مسأله يكى مسآلهُ طّاحّى مينيمم سازى وزن باشد، بايد متغيّر هاى طرّاحى را به وزن مازه مربرط كنيم . ماسونت و سيو' [6] نشان داده اند كه برای مقاطع تير در خحمش يكى رابطه' خخطى تقريبى بين
 مى رود برأى يكى قابِ امتفاده شود. خحطاى به وجود آملهه به مبب أين خططى مـازى از مرتبه 1% الست . همين فرض الست كه مسالثه طزاحى خـميرى را خطظى مى مـازد. بنابراين فرض نحواهيم كرد كه مسالـه' مينيمـم مازى وزذ يكى تابس با صجموعه أى از بارهاى نهاييى بـه مينيهـم سـازى يكى تابع مانند

$$
w=2 m_{p_{C}} l_{C}+m_{p_{B}} l_{B}=2 m_{p_{C}}(2 l)+m_{p_{B}}(2 l) . \quad \text { (Y.1.Y千) }
$$

 تقسيم مى كنيم تا تابع هدف هتناسب با وزت را بدست آوريم كه عبارت است از

$$
f\left(x_{1}, x_{2}\right)=\left(\frac{w}{2 p l^{2}}\right)=2 \frac{m_{p_{C}}}{p l}+\frac{m_{p_{B}}}{p l}=2 x_{1}+x_{2}
$$

معادله هاى تعادل مى تواند با المتفاده از راهكارى مشابه مثال تبل بدست آيد . شككل V. . . . ماز و كارهاى فرو ريختگى ممكن تاب رانشان مى دهد . ظرفيّت تحمّل بار نهايُ مازه برای هر ساز و كار

1. $4 \mathrm{~m}_{\mathrm{b}} \geq \mathrm{pl}$

2. $4 \mathrm{~m}_{\mathrm{c}} \geq 2 \mathrm{pl}$

3. $2 m_{b}+2 m_{c} \geq p l$

4. $4 \mathrm{~m}_{\mathrm{b}}+2 \mathrm{~m}_{\mathrm{c}} \geq 3 \mathrm{pl}$

5. $2 m_{b}+2 m_{c} \geq 2 \mathrm{pl}$

6. $2 \mathrm{~m}_{\mathrm{b}}+4 \mathrm{~m}_{\mathrm{c}} \geq 3 \mathrm{pl}$

فرو ريختكى مشخّصل با تعادل كار مجازى بين كار خارجى نيروهاى اعمال شده و كار داخخلى لنـكـرهـاى
 تابل تبول طرحى است كه در آن ظرفبّت كار مجازى داخلى بزركتر يا مساوى كار خارجى باشد.
 است به عنوان تمرين باقى كذاشته مى شود (به تمرين ${ }^{\text {F }}$ (

$$
\begin{align*}
& 4 x_{2} \geq 1, \\
& 2 x_{1}+2 x_{2} \geq 1, \\
& x_{1}+x_{2} \geq 1, \\
& 2 x_{1} \geq 1, \\
& 2 x_{1}+4 x_{2} \geq 3, \\
& \text { ساز و كار تير } \\
& \text { (r.1.r.4) } \\
& \text { r } \\
& \text { (r.1.rV) } \\
& \text { ساز و كار مايل } 1 \\
& \text { (r.1. YA) } \\
& \text { Yاز و كار مايل } \tag{1.1.14}\\
& \text { ساز و كار تركيی } \\
& \text { (r.1.r.) }
\end{align*}
$$

(I P P

به علاوه جون

$$
\begin{equation*}
x_{1} \geq 0, \quad, \quad x_{2} \geq 0 . \tag{r.1.rY}
\end{equation*}
$$

بنابراين مسأله مينيمم سازى وزن تحت تأثير مجموعه بار نهايى به بدست آوردن مقادير نامنفى
 شود. روشن است كه مسأله يك مسآله؛ LP است. حلّ تحليلي اين مسالثه را تا فرحت ديكر به تـعويت -• • مى اندازيم

r.r ط.

 از مركز به سطح مططع تير اعمال مى كند كه بارى محورى و احتمالألنكّرى خمنیى به سبب انحر اف كابل
 به تنتهاى به سبب نيروى ميلهُ اعمال شدهُ خارج از مركز اضافه كنـهم . براى تيرى كه ابعاد سطح مقطع آن

 يسن تنيد
 را در نظر بگيريد. مقدار اوّليه نيروى بيش تنيدكى مسروط به قيردى روى تنتش نرمال، تنيير مكان جانبى، و قيدهاى كران بالا وبايين روى متغيرّهاى طرّاحى، مينيمم مُود. به علاوه، در طراحى يك تير بتنى يِّ تنيده كه انتظار مى رود برايى جند ساللى كار كند، بايد الجازه دهيم مقدارى از نيروى يشّ تنيدگى در انر انقباض وابسته به زمان و اثرات خزس از دســت برود. براى سـادكى فرايند طّر"احى اغلب نرض مى نُود كه نيروى يـش تنيدكى فعلى قابل بهره بردارى يك كسر ثابت α از نيروى بيس تنيدگى اوّليه

شكل I r. r. r. تير بس- تنتى ' با تكيهكامهاى ساده
 بارهاى انتهايى كه در اتر شكل منحنى ميله هاى خحارج از مركز جاسازى شده به وجو دي مي آيد را نيز در نظر
 حاصل و خيزها به شكل خطَى باكميت الست متناسبباست. با اين فرضها، تنثهاى ماكزيمّ و خيزهاى يك تير باتكيه كاههاى ساده در مركز تير

 كاه مساله بهينه سازى تير عبارت مى شمود از :

$$
\begin{aligned}
& \text { را مشروطبه } \quad f\left(f_{0}, e\right)=f_{0} \\
& \text { (r.1.Y9) } \\
& \sigma^{k i} \leq-\frac{\alpha f_{0}}{a} \pm \frac{m_{e i}-\alpha f_{0} e}{z} \leq \sigma^{\mathbf{u i}}, \\
& \text { (r.l.iv) } \\
& \delta^{l i} \leq \delta_{e i}+\alpha k f_{0} e \leq \delta^{u i},
\end{aligned}
$$

$$
\begin{align*}
& e^{t} \leq e \leq e^{u}, \\
& \text { (r.1.rq) } \\
& \text { مينيمب كنيد } \quad f_{0} \geq 0, \quad i=1, \ldots, n l .
\end{align*}
$$

در اين جا $n l$ نُسانكر تعداد شرايط بار كذارى مختلف؛ تنت ، خيز و خارج از مركزى ميله؛ a و z مساحت مؤثرّ و ضريب مقطع سطع مقطع مى باشد.

 حاوى خربب

$$
\begin{equation*}
m=f_{0} e \tag{r.r.9}
\end{equation*}
$$

خواهد بود:

$$
\begin{align*}
& \text { رام مشروط به } \quad f\left(f_{0}, m\right)=f_{0} \\
& \text { (r.r.v) } \\
& \sigma^{t i} \leq-\frac{\alpha f_{0}}{a} \pm \frac{m_{e i}-\alpha m}{z} \leq \sigma^{\pi i}, \\
& \text { (r.r.^) } \\
& \delta^{l i} \leq \delta_{e i}+\alpha k m \leq \delta^{u i}, \\
& \text { (r.r. 4) } \\
& m^{4} \leq m \leq m^{u}, \\
& \text { (r.r.l•) } \\
& \text { مينيمم كنيد } \quad f_{0} \geq 0, \quad i=1, \ldots, n l, \tag{r.r.ll}\\
& \text { در حالى كه }
\end{align*}
$$

 مـوتعيّت نيـروى بيش تنــدىى و مـيله ها مى شود بلكه بهينه سازى ابعاد سطح مـتطع تبر رانيز در بـر مى كيرد.

世.

IIV بخش ب. ب. :طرّاحمى خرباماى ازنظر/يستاعى معين، با كسترينوزن

ايستايى معين با كمترين وزن و با تيدهاى تنش و خيز را در نظر مى كيريم. دراين مسائل منـكلى كهـ بـه وجود مى آيد اين است كه خيزه ها به عنوان تابعى از متغيّه هاى طرّاحى كه هساحتهاى سطح مقطع اعضـاى
 جدايى بذير [11] معر وفند تعلق دارد. در اين دسته از برنامه ريزى، تابع هدن و قيود را مى توان به عنوان مجموع توابعى از يك متغير طّاتحى تنها بيان كرد. هر كدام از جنين توابعى را مى توان باتوابع تطهه تطعه
 درونيابي مى شودد تقريب زد.
يكى تابع جلأيى يذير غير خطى n متغيره،

$$
\begin{equation*}
f=f\left(x_{1}, \ldots, x_{n}\right)=f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)+\ldots+f_{n}\left(x_{n}\right), \tag{r.r.ı}
\end{equation*}
$$

را مى توان به شـكل :

$$
\begin{equation*}
f=\sum_{k=0}^{m} \eta_{1 k} f_{1 k}+\sum_{k=0}^{m} \eta_{2 k} f_{2 k}+\ldots+\sum_{k=0}^{m} \eta_{n k} f_{n k}, \tag{r.r.r}
\end{equation*}
$$

$x_{1}=\sum_{k=0}^{m} \eta_{1 k} x_{1 k}, \quad \ldots \quad, x_{n}=\sum_{k=0}^{m} \eta_{n k} x_{n k}$,

$$
\begin{equation*}
\sum_{k=0}^{m} \eta_{1 k}=\sum_{k=0}^{m} \eta_{2 k}=\ldots=\sum_{k=0}^{m} \eta_{n k}=1 \tag{r.r.Y}
\end{equation*}
$$

$$
\eta_{j k} \geq 0, \quad j=0,1, \ldots, n, \quad, \quad k=0,1, \ldots, m .
$$

خطّ كرد. دراين جا m+1

 كرفته مى شوند.
استفاده از m بازه با m+1 مفدار از متغير هاى طرّاحى بها اين سبب است كه تمامى مـحـدوده نضاى

 مى كند－هر هه m بزر كتر باشـد جوابب مساله خطى به جوابب واتعى نزديكتر است．با اين وجود ، در هر نقطه＇طرّاحى داده شـده، تقريب خططى برابى تابع غيرخطّى به مقدار تابع در دو مقدار متغيّر طّرّاسحى نيـاز دارد．بنابراين براى هر متغيّر طرّاحى（ ايجابب مى كند كه به عنوان مـال أكر مقدار

$$
x_{p}=\eta_{p q} x_{p q}+\eta_{p(q+1)} x_{p(q+1)}, \quad, \quad \eta_{p q}+\eta_{p(q+1)}=1 . \quad \text { (r.r.я) }
$$

بنابراين متغيّهاى تنها دو تا از آنها مقيد به غير صفربودنند، بنابراين براى تابع در هر متغيّ طرّاحى يكى تقريب خطّى داريم ．

مث5 1 Y．T．F
برايى توضيح مسالهالى مشابه آنجّه مـجيـد＇［12］حل كرد در نظر مى كيريم ．هدفـ عـبـارت اسـت از

 عمودى در لولاى 2 را مى تواذ به سادكى نشان داد كه عبارتند از ：

$$
\begin{gather*}
F_{1}=5 p, \quad F_{2}=-p, \quad F_{3}=4 p, \quad, \quad F_{4}=-2 \sqrt{3} p, \quad(\zeta . ケ . \vee) \\
\delta_{2}=\frac{6 p l}{E}\left(\frac{3}{A_{1}}+\frac{\sqrt{3}}{A_{2}}\right), \tag{广.ケ.А}
\end{gather*}
$$

در حالى كه مقادير منفى نيروها نشانگر نشارى بودن آنهانست．تنشهاى مسجاز در كشــش و فشــار بـه ترتيب فرض مى شود كه

شكل I
 وزن مسْروط به تِدهاى تنش و تغنير مكان را مى توان بر حسب متغيرّهاى لمى بعد

$$
x_{1}=\left(\frac{p}{A_{1} E}\right) 10^{3}, \quad, \quad x_{2}=\left(\frac{p}{A_{2} E}\right) 10^{3}, \quad(\uparrow . \upharpoonright . \uparrow)
$$

به شكل زير رابطه سازى كرد:
رامشتروط به $\quad f\left(x_{1}, x_{2}\right)=\frac{3}{x_{1}}+\frac{\sqrt{3}}{x_{2}}$
(r.r.1.)
$18 x_{1}+6 \sqrt{3} x_{2} \leq 3$,
(ץ.ケ.11)
$0.05 \leq x_{1} \leq 0.1546$,
(H.r.IY)

مينيــم كتيد $0.05 \leq x_{2} \leq 0.1395$,
(H.r.ir)

در حالى كه حدّ كران بايين براى غير خـطّى جــدايى بـذير السـت، بقيـه مساله خــطّى است . تابع هدفـ را مى توان با استفاده از رابطه هـاى

$$
\begin{array}{ll}
x_{10}=0.05, & x_{11}=0.1023, x_{12}=0.1546 \\
x_{20}=0.05, & x_{21}=0.09475, x_{22}=0.1395,
\end{array}
$$

مقادير تابع هدف برأى اين نقاط عبارت است از :

$$
\begin{aligned}
f_{10}=20, & f_{11}=9.76, f_{12}=6.47 \\
f_{20}=34.64, & f_{21}=18.28, f_{22}=12.42
\end{aligned}
$$

بنابراين تابع هدف خطز شنده عبارت استاز :

$$
f\left(x_{1}, x_{2}\right)=20 \eta_{10}+9.76 \eta_{11}+6.47 \eta_{12}+34.64 \eta_{20}+18.28 \eta_{21}+12.42 \eta_{22}
$$

بعد از جايكزينى

$$
\begin{aligned}
& x_{1}=0.05 \eta_{10}+0.1023 \eta_{11}+0.1546 \eta_{12} \\
& x_{2}=0.05 \eta_{20}+0.09475 \eta_{21}+0.1546 \eta_{22}
\end{aligned}
$$

 - • اين كه دو

 روش حلّ ترسيمى بهره جست. روش ترسيمى نه تنها جواب مسآلد را مى دهد، بلكه در فهـم طبيـعـت مسآله'LP نيز به ما كمك مى كند. مثال بعدى به منظر تنريح طبيعت فضاى طرّاحى و جواب بهين آورده شـه است .

مثال 1 P. 1

$$
\begin{equation*}
f\left(x_{1}, x_{2}\right)=2 x_{1}+x_{2}, \tag{r.ヶ.ı}
\end{equation*}
$$

 مختصات

 ناحيهُ تابل تبول رسبده بدستمى آيد. جهت كاهـش بهين به شكل نير مشتخص شـه

$$
x_{1}=x_{2}=1 / 2,
$$

Eq. (3.1.31)
Eq. (3.1.28) -1
Eq. (3.1.30)

(IYr

 صرفنظر از حالت تباهيده، جواب بهين در يكى مسأله' LP هميينه روى يكى كونهه يا نتطه' راس قرار دارد. حالت تباهيده وتتى يشش مى آيد كه كراديان تابع هدف ضريب ثابتى از كراديان يكى از تيودى باشد كه جواب بهين در امتداد آن ترار دارد. آن كاه، هر نقطه در امتداد ايـن قـيـد كـه نقطهُ رأس رانيـز در بـر مى كيرد، يكى جواب بهين است. به عنوان مثال اكر مسألهاى كه تازه بحث كرديم تابع هدفى به شكل زير داشت:

$$
\begin{equation*}
f=c\left(2 x_{1}+4 x_{2}\right), \tag{r.F.r}
\end{equation*}
$$

منهوم جند ضلعى محذّب با كوشهه ها يا رالسهايش در دو بعدى به يك حچند وجهى محذّب بانقاط فرين در R عموميت داده مى شُود. به عنوان مثال، يكى جند وجهى مـحـّب[11] مجموعهاي است كه از تقاطع تعداد محدودى نيمفضهاى بسته بدست تمى آيد . به طور مـتـابه، يكى نقطهُ فرين از يك مجموعهبه اين
 | $x_{1}+(1-\alpha) x_{2}(0<\alpha<1)$
 يك جند خلعى محذّب كر اندار ترار خواهددانتـ. به خو انندكانعلاقمند توصيه مى شود كه برانى آكاهى بيستر در اين باره، به مرجع [11] يا [13] مراجعه نمايند. روشن است كه روش ترسبيى بالا نمى تواند برايى مسائل برنامه ريزى خططّى كه بيش از دو مننغير دارند

 و كاراست. در آينده روش سيملِكس را مطالعه خواهبم كرد ولى اكنون حند تعريف و مغهوم بسيار مهـم در برنامه ريزى خطّى را مطرح مى كنيم.

ه. ه. يك برنامه خطّى به شكل استاندارد

$$
f=\mathbf{c}^{T} \mathbf{x}
$$

Ax = b, \quad رامشروطبه
(r.Q.Y)

مينبم كنيد $\quad x \geq 0$,
,

$$
\begin{align*}
& \text { نامساويها را مى توانيم به تساويهاى اكيد به شُخل زير تبدبل كنيم. } \\
& 4 x_{2}-x_{3}=1 \text {, } \\
& 2 x_{1}+2 x_{2}-x_{4}=1 \text {, } \\
& \text { (r.0.0) } \\
& x_{1}+x_{2}-x_{5}=1 \text {, } \tag{ケ.0.9}\\
& 2 x_{1}-x_{6}=1 \text {, } \\
& \text { (r.0.v) } \\
& 2 x_{1}+4 x_{2}-x_{7}=3 \text {, } \\
& \text { (r.0.^) } \\
& 4 x_{1}+2 x_{2}-x_{B}=3, \\
& \text { (r.0.9) }
\end{align*}
$$

$$
x_{i} \geq 0, \quad i=1, \ldots, 8
$$

 كمبود مى كويند. اكر مقادير اصلى متغيرّ هاى طرّاحى لازم نباشـد كه نامنفى باثشند باز مـم مى توانيم با يكى

$$
\begin{equation*}
x_{1}=u_{1}-v_{1}, \quad, \quad x_{2}=u_{2}-v_{2}, \tag{个.0.11}
\end{equation*}
$$

كه در آٓن

$$
\begin{equation*}
\bar{x}_{1}=M+x_{1}, \tag{r.0.IY}
\end{equation*}
$$

كه در اين صورت متغيرّ جديد هنكام طرّاحى هر كز منفى نمى شود. اين متغيّر هاى مصنوعى اغلب در

 است كه تبديل مسالث LP به ثـيكل استاندارد ممكن امست به افزايش ابعاد نضهاى طرّاحى بينجامد . استفاده

 شـدن عددى بينجامد) .

 مينيمم مى سازد مورد نظر ماست.

> ـ ـ ه ـ ـ جواب اصلى

فرض مى كنيم رتبه' ماتريس A، C ، بامُد و از ميان n سترن A، مجموعه ایى از m ستون را كه مستقل

و مى توانيم جوابب رابه مُكل زير بدمت آوريم:

$$
\mathbf{x}_{\mathbf{D}}=\mathbf{D}^{-1} \quad \mathbf{b}_{\mathbf{D}}
$$ $m \times 1 \quad m \times m m \times 1$

 مى توان نشان داد كه

$$
x=\left\{\begin{array}{c}
x_{\mathrm{D}} \\
\ldots \\
\mathbf{0}
\end{array}\right\}
$$

170

 متغيرّ هاى اصلى ناميده مى شُود. يكى جواب اصلى لازم نيست تيدهاى نامنفى بودن (Y . . . Y) را برآورده كند . آن جوابهاى اصلى كه اين تيدها رابرآورده كنتد، جوابهاى قابل قبول اصلى اند و مى توان نشان داد كه نقاط فرين اند . به سـخن ديكر تمامى جوابهاى تابل قبول اصلى معادلات (Y Y . Y) مربوط بـ كوشه ها يا نقاط فرين جند وجهى محدبند[13].
 متغيّر اختيارى از يكى كروه n متغيره تخمين زد. از تضبه' جايكستها و تركيبها مى دانيم كه اين تعلاد برابر

$$
\binom{n}{m}=\frac{n!}{m!(n-m)!} .
$$

تمامى اين امكانها قابل تبول نحخوامند بود و تنها بعضى از آنها قابل تبولند.

F.

بندارهُروش سيملكس عبارتاست از كاهش يويسته مقدار تابع هدن با رنتن از يكـ جـواب تابل قبول اصلى به جواب ديحر، ، تا زمانى كه بـ مقدار مينمه تابع هدن برسيم • بحت جكونكى دست يافتن به يك جواب تابل تبول اصلم رابه تعويت مى اندازيم و فرض مى كنيم براي شروع الكُوريتم يك جواب تابل قبول اصلى داريم. در واتع اكر تيدهاى نامساوى زير را مى داشتتهم:

$$
\begin{align*}
a_{i 1} x_{1}+a_{i 2} x_{2}+\ldots+a_{\text {in }} x_{n} \leq b_{i}, & i=1, \ldots, m, \tag{r.9.1}\\
x_{j} \geq 0, & j=1, \ldots, n, \tag{r.9.r}
\end{align*}
$$

$$
\begin{array}{rlrl}
a_{i 1} x_{1}+a_{i 2} x_{2}+\ldots+a_{i n} x_{n}+y_{i} & =b_{i}, & i=1, \ldots, m, & (r .9 . ケ) \\
x_{j} & \geq 0, & j=1, \ldots, n, & (r .9 . \uparrow) \\
y_{i} \geq 0, & i=1, \ldots, m, & (r .9 . \Delta) \tag{r.9.0}
\end{array}
$$

$$
y_{i}=b_{i}, \quad i=1, \ldots, m, \quad, \quad x_{j}=0, \quad j=1, \ldots, n, \quad(\uparrow .9 .9)
$$

يك جواب تابل تبول اصلى است. يك طرح رسمى براى يافتن يك جواب تابل فبول اصلى بعـدآ در اين بخش بحث خواهد شد . ير سش فورى مورد علاقه در اين لحظه اين امست كه جگونـ از يكى جـواب

 شكلى به كمكى طرح حذفى كوس براى يكى ماتريس Aاز از رتبه'm هميثنه تابل وصول المت) .

$$
\begin{array}{ccccccccccc}
x_{1} & +0 & +\ldots & +0 & +\ldots & +0 & +a_{1, m+1} x_{m+1} & +\ldots & +a_{1, n} x_{n} & = & b_{1} \\
0 & +x_{2} & +\ldots & +0 & +\ldots & +0 & +a_{2, m+1} & x_{m+1} & +\ldots & +a_{2, n} x_{n} & = \\
b_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & & \vdots \\
0 & +0 & +\ldots & +x_{s} & +\ldots & +0 & +a_{s, m+1} x_{m+1} & +\ldots & +a_{s, n} x_{n} & = & b_{s} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & & \vdots \\
0 & +0 & +\ldots & +0 & +\ldots & +x_{m} & +a_{m, m+1} x_{m+1} & +\ldots & +a_{m, n} x_{n} & & b_{m}
\end{array}
$$

كه جواب تابل قبول إصلى عبارت است از:

$$
x_{1}=b_{1}, \quad x_{2}=b_{2}, \quad \ldots \quad x_{s}=b_{s}, \quad \ldots \quad x_{m}=b_{m},
$$

$$
\begin{equation*}
x_{m+1}=x_{m+2}=\ldots=0 \tag{r.9.1}
\end{equation*}
$$

متغيّرهاى

 مى كنيم. بهبود تابع هدن در بخش بعدى مورد بحث ترار خواهد كرفت.

 فرض مى كنيم متغيّر t كه مى خواهيم به مجموعه اصلى بياوريم معلوم است. تنها بايد تصميميم بكيريم كه

IFV
كدام متغير بايد از مجموعه اصلى حذف شوود. جمله هاى انتخابى نــــان داده نـــده در زير براى s امـين معادله و يكى معادله' اختتارى ديكر را در نظر بكيريد.

$$
\begin{equation*}
 \tag{5.9.9}
\end{equation*}
$$

 ($i=1, \ldots, n ; \quad i \neq s)$ معادله ها كم كنـم. ضرايب بدست آمده در طرفـ راست iأمين معادله برابر است با:

$$
b_{i}^{\prime}=b_{i}-b_{s}\left(\frac{a_{i t}}{a_{s t}}\right) .
$$

$b_{i}^{\prime} \geq 0$ براي تضمين اين كه جواب بدست آمده يك جواب قابل قبول اصلى باشد بايد كارى كنيــم كـ

$$
\begin{equation*}
\left(\frac{b_{s}}{a_{s t}}\right) \leq\left(\frac{b_{i}}{a_{i t}}\right) . \tag{r.9.11}
\end{equation*}
$$

$$
\text { معادله (11 ـ ـ . } 9 \text {) و شرط }
$$

$$
\begin{equation*}
a_{s t}>0 . \tag{r.9.|Y}
\end{equation*}
$$

دو شرطى هستند كه S امين سطر رادر رفتن از يك جواب قابل تبول اصلى به جواب ديكر مشنخص مى كند. بنابراين براى متغير غير اصلى داده شده‘ x كه بايد احلى شود، ضريب ممهُ جمهلات را در t امين ستون

IPA

كر نته نمى شوند. در ميان آنهايى كه ضريب مثبت دارند نسبت

 كه در فرايند اصلى ساختن t غير اصلى خواهد شد.

مثال 1

بحث تبلى را با يك مثال تشربح مى كنهـ. دستكاه معادلات زير را در نظر بكيريد.

$$
\begin{align*}
2 x_{1}+2 x_{2}+x_{3} & =6, \\
3 x_{1}+4 x_{2}+x_{4} & =10, \\
x_{1}+2 x_{2}+x_{5} & =4 . \tag{5.9.14}
\end{align*}
$$

دستكاه در حال حاضر به ثـكل كانونى است و جواب قابل تبول اصلم عبارت است از :

$$
x_{1}=x_{2}=0, \quad x_{3}=6, \quad x_{4}=10, \quad x_{3}=4 .
$$

متغيرهـاى

$$
\left[\begin{array}{lllll}
2 & 2 & 1 & 0 & 0 \tag{r.9.10}\\
3 & 4 & 0 & 1 & 0 \\
1 & 2 & 0 & 0 & 1
\end{array}\right]\left\{\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right\}=\left\{\begin{array}{c}
6 \\
10 \\
4
\end{array}\right\}
$$

جون x ${ }_{1}$ مى خواهد اصلى شُود آن را ستون اول در نظر مى كيريم. براى انتخاب متغيرى كه مى خواهد

$$
\begin{aligned}
& \text { غير اصلى شود نسبت } \\
& \frac{b_{1}}{a_{11}}=3, \quad \frac{b_{2}}{a_{21}}=3 \frac{1}{3}, \quad \frac{b_{3}}{a_{31}}=4 .
\end{aligned}
$$

كمنريـن نسـبت

بنخس F. 1 : روش سيمبلكس

$$
\left[\begin{array}{ccccc}
1 & 1 & 0.5 & 0 & 0 \tag{5.9.19}\\
0 & 1 & -1.5 & 1 & 0 \\
0 & 1 & -0.5 & 0 & 1
\end{array}\right]\left\{\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right\}=\left\{\begin{array}{l}
3 \\
1 \\
1
\end{array}\right\}
$$

$$
x_{2}=x_{3}=0, \quad x_{1}=3, \quad x_{4}=1, \quad x_{5}=1
$$

خواننده مى تواند نشان دمد كه اكر غير از ${ }_{\text {ا }}^{11}$ را به عنوان لو لا انتخاب مى كرديم به يكل جواب اصلى غير

$$
x_{2}=x_{5}=0, \quad x_{1}=4, \quad x_{3}=-2, \quad x_{4}=-2
$$

- • • .
r . P. r
در بیخش كذشته اصلى مـانتتن متغير غير اصلى X بدون از دست دادن تابل تبولى را مورد تو جه قر ار داديم . ما بايد در مورد متغيرى كه بايد اصلى مـود نيز تصهيم بكيريم . بايد تنها متغيرى را برالى اصلى شـدن بيابيم كه هـم تابع مدف را كاهش دمد و هـم به جواب تابل تبول اصلى بينجامل . دتت كنيد كه تابع هــــ بك دعادله' خـططى مانند ديـكر معادله هاست و بنابراين مى تواند با ديكر معادله ها در نظر كرنتـه شـود. . معادلّ' تابع مدنـ را مى توان به شُكل زير نوشت :

$$
\begin{equation*}
c^{T} \mathbf{x}=f \tag{ץ.9.iv}
\end{equation*}
$$

 ديكر مــادلـه هــا اضانه شــده است؛ بـه أيـن شُكل مـعادله هـا كـه در آنها تابع مدنـ نيز كـنـجـانـــه شــده اغلب تـابلو سيميلكس كـفته مـى شـود ـ اكــون تمامـى متغيرهــاى احـلى را از مــادله' آخر با كم كردن
 شــكل (

مr.
منفى مفدار تابع هدن اسـت زبرا متغير هاى غير اصلم را ثـامل مى شود. اكنون فرض كنبد ضريب يكى از متغيرهاى غير أصلى در طرف جب آخرين معادله منفى باشدل . اكر اين متغير راالحلى كنيم آن كاه مقداراين متغير رالز مقدار نعلى اش كه صفر است به يك مقدار منبت افزايش مى دهيم. جون آخرين ممادله تنها يكى از معادله ها السـت، وتتـي
 حذذ مى كنيم، عملياتى را كه در بخشت كذشته شُرح داديم روى تمامى m+1 بعادله انجام مى دهيمم. وتتى متغير مشخصص، با ضريب منفى در آخرين معادل، حذف شد، طرفـ راست اين مــادله افزايـش
 مقدار تابع هدف است، كامش در تابع تضمين مى شود. بـابراين معيار تضمين شـدن يك بهبود در تـابع هدف اين است كه متغير در معادله تابع هدف بعد از باك شـدن از تمامى متغيرهاى اصلى ضريب منفى داشته باشد. اين تتيجه را مى شو دبا مثال زير نشان داد:

مثال r.f.r

$$
\begin{align*}
& f=x_{1}+x_{2}+x_{3} \\
& 2 x_{1}+2 x_{2}+x_{3}=6, \quad \text { را مشروط به } \\
& \text { (1.9.1A) } \\
& \text { (个.9.19) } \\
& 3 x_{1}+4 x_{2}+x_{4}=10 \text {, } \\
& \text { (Y.9.Y.) } \\
& \text {. مينيمتم كنيد } \quad x_{1}+2 x_{2}+x_{5}=4 \text {. } \tag{r.9.YI}
\end{align*}
$$

 هدف را به عنوان آخرين سطر ماتريس در نظر مى كيريم .

$$
\left[\begin{array}{ccccc}
2 & 2 & 1 & 0 & 0 \\
3 & 4 & 0 & 1 & 0 \\
1 & 2 & 0 & 0 & 1 \\
-- & -- & -- & -- & -- \\
1 & 1 & 1 & 0 & 0
\end{array}\right]\left\{\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right\}=\left\{\begin{array}{c}
6 \\
10 \\
4 \\
-- \\
0
\end{array}\right\} .(ץ . \varphi . Y Y)
$$

يك جواب اصلى عبارت است از :

$$
\begin{equation*}
x_{1}=x_{2}=0, \quad x_{3}=6, \quad x_{4}=10, \quad x_{5}=4 \tag{Y.9.YY}
\end{equation*}
$$

در نتيجه طر نـراست برابر مى شود با منفى مفدار تابع هدن.

$$
\left[\begin{array}{ccccc}
2 & 2 & 1 & 0 & 0 \\
3 & 4 & 0 & 1 & 0 \\
1 & 2 & 0 & 0 & 1 \\
-- & -- & -- & -- & -- \\
-1 & -1 & 0 & 0 & 0
\end{array}\right]\left\{\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right\}=\left\{\begin{array}{c}
6 \\
10 \\
4 \\
-- \\
-6=-f
\end{array}\right\} \cdot(\Gamma . \varphi . Y \mu)
$$

مى توان در ستون (1) يا (2) عمل لولا را انجام داد . يعنى با اصلى ساختن
 نسبت

$$
\left[\begin{array}{ccccc}
1 & 1 & 0.5 & 0 & 0 \\
0 & 1 & -1.5 & 1 & 0 \\
0 & 1 & -0.5 & 0 & 1 \\
-- & -- & -- & -- & -- \\
0 & 0 & 0.5 & 0 & 0
\end{array}\right]\left\{\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right\}=\left\{\begin{array}{c}
3 \\
1 \\
1 \\
-- \\
-3=-f
\end{array}\right\} .(r . q . Y \Delta)
$$

مقدار تابع مدن از 6 بـ 3 كامش يانت است . از آنجا كه معادلهُ آخر هيج متغير غير اصلى با ضريـب منفى ندارد، كاهش بيشتر مقدار تابع هدنامكان بذير نيست. بنابراين معدار مينيمم تابع مدن برابر 3 است كه مربوط به جواب اصلى زير است.

$$
\begin{equation*}
x_{2}=x_{3}=0, \quad x_{1}=3, \quad x_{4}=1, \quad x_{5}=1 . \tag{r.9.Yя}
\end{equation*}
$$

اكر تصميم داشتتيم كه اول x_{2} رااصلى كنيم، تابع هدن رالز 6 به 4 كاهش مى داديم، ويك عدد منفى در معادلهُ آخر و در ستون اول مى بود كه يك دور ديكر ازعمل لولايى براى اصلمى ساختن - • • مى داديم

اين مطلب بحت روش سيملكس را كامل مى كندبه جز اين كه ما براى نـروو نياز به يك جواب قابل قبول أصلى داريم كه ممكن است به سادكى در دسترس نباشّد. اين عنوان بحث بعدى ماست.

$$
A x \leq b, \quad \Delta \quad b>0, \quad, \quad x \geq 0, \quad(Y . f . Y Y)
$$

به شكل استاندارد كه با اضافه كردن متغيرهاى كمبود صورتمى كرفت، يك جواب قابل تبول اصلى

 شناسايى كنيم. در حنين حالتهايى از نن زير مى توان استفاده كرد: مسألم مينيمم سازى زير رادر نظر بكيريد
$\sum_{i=1}^{m} y_{i}$

$$
\text { مينممب كنيد } \quad x \geq 0, \quad y \geq 0,
$$

(r.9.YA)

$$
\begin{equation*}
A x+y=b, \quad \text { را نسبت به قيود } \quad \text { (r.q. } 9 \text { (} 9 \text {) } \tag{r.9.rq}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{y}=\mathrm{b}, \quad, \quad \mathbf{x}=\mathbf{0} \tag{r.9.71}
\end{equation*}
$$

مثال

استفاده از متغيرهاي مصنوعى رابا مـال زير تشربح مى كنيم. در اين مثال دنبال يكى جواب قابل تبول اصلى براى دستکا.

$$
2 x_{1}+x_{2}+3 x_{3}=13,
$$

بخش \& \% : :روش بـبلكس

$$
\begin{gather*}
x_{1}+2 x_{2}+x_{3}=7 \tag{r.9.rY}\\
x_{i} \geq 0, \quad i=1,2,3
\end{gather*}
$$

$$
\begin{align*}
& f=y_{1}+y_{2} \tag{r.9.9}\\
& 2 x_{1}+x_{2}+3 x_{3}+y_{1}=13, \\
& x_{1}+2 x_{2}+x_{3}+y_{2}=7, \\
& x_{i} \geq 0, \quad i=1,2,3, \quad y_{i} \geq 0, j=1,2 .
\end{align*}
$$

باجواب مابل قبول اصلى و متغيرهاى طراحى اصلى y_{1} و y_{2} رالز آن حذف مى كنيم تا تابلوى سيميلكس اوليه را بدست آرويم.

$$
\left[\begin{array}{ccccc}
2 & 1 & 3 & 1 & 0 \tag{r.9.r0}\\
1 & 2 & 1 & 0 & 1 \\
---3 & -3 & -4 & -- & 0
\end{array}\right]\left\{\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
y_{1} \\
y_{2}
\end{array}\right\}=\left\{\begin{array}{c}
13 \\
7 \\
--20
\end{array}\right\} .
$$

جون ستون(3) بزركترين عدد منفى رادارد، آن رابرای عمل لولا لـى انتخاب مى كنبم و عنصر لولا |ست زيرا 7/1 > 13/3،

$$
\left[\begin{array}{ccccc}
2 / 3 & 1 / 3 & 1 & 1 / 3 & 0 \\
1 / 3 & 5 / 3 & 0 & -1 / 3 & 1 \\
-- & -- & -- & -- & -- \\
-1 / 3 & -5 / 3 & 0 & 4 / 3 & 0
\end{array}\right]\left\{\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
y_{1} \\
y_{2}
\end{array}\right\}=\left\{\begin{array}{c}
13 / 3 \\
8 / 3 \\
-- \\
-8 / 3
\end{array}\right\}(\Gamma .9 . r 9)
$$

آن كاه

$$
\left[\begin{array}{ccccc}
9 / 15 & 0 & 1 & 6 / 15 & -1 / 5 \\
1 / 5 & 1 & 0 & -1 / 5 & 3 / 5 \\
\hdashline-- & - & -- & -- & --
\end{array}\right]\left\{\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
y_{1} \\
y_{2}
\end{array}\right\}=\left\{\begin{array}{c}
19 / 5 \\
8 / 5 \\
-- \\
0
\end{array}\right\} .(\Gamma .9 . r \vee)
$$

فرايند به جواب تابل فبول اصلى زير براى مساله' اصلى همكرا مى شود.

$$
x_{1}=0, \quad x_{2}=8 / 5, \quad, \quad x_{3}=19 / 5 . \quad \text { (Ү.9. ヶ^) }
$$

(1 PY

 بنابراين اكر مسأله' ابتدامع به شكل زير تعريف شود.

$$
f_{p}=c_{1} x_{1}+\ldots \ldots+c_{n} x_{n}=\mathbf{c}^{\mathbf{T}} \mathbf{x} \quad\left(\begin{array}{c}
n)
\end{array}\right.
$$

$$
\begin{equation*}
\sum_{j=1}^{n} a_{i j} x_{j} \geq b_{i}, \quad i=1, \ldots, m \tag{Y.V.1}
\end{equation*}
$$

(H (O)
مينيمر كنيد $\quad x_{j} \geq 0, \quad j=1, \ldots, n$,

آن كاه مسأنه دو كان به شكل زير تعريف مى شود :

انتخابب رابطه سازى ابتذأع و دو كان به تعلاد متغير هاى طراحى و قيد بستگى دارد . تلاش محاسباتى حل يكي مسأله'LP با افزايش تعداد تيود افزايش مي يابل . بنابراين، اكر تعداد رابطه هاى تيد در مقايسه با تعلاد متغير هاى طراحى بيشتر باشثـ، آن كاه حل مـسـالـه' دوكان كه به تلاش محاسباتي كهترى نيـاز دارد
 عنوان ابتدأهى تعريفـ شوده آن كاه مسأله مينيمم سازى دو كان آن خخراهد بود . مى توان نشان داد[13] كه مقدار بهين متغير هاى اصلى ابتدايع را مـي تـوان از جـواب دو كـان بـدسـت آورد و بنابراين اكر x يك متغير اصلى در مسأْـهُ ابتدابع باتـد، آن كاه آن دلالت بر نعال بودن ز امين قيد مسالّل' دو كان دارد و بر عكسس
ارك مساله' ابتدأع به شكل المتاندارد ش نوشته شود؛ يعني با تيدهاى تساوى، داريم:

$$
\begin{align*}
& f_{p}=c_{1} x_{1}+\ldots \ldots+c_{n} x_{n}=\mathbf{c}^{\mathbf{T}} \mathbf{x} \tag{nمتغير}\\
& \sum_{j=1}^{n} a_{i j} x_{j}=b_{i}, \quad i=1, \ldots, m
\end{align*}
$$

را مشروط به (m تيد)

$$
\begin{align*}
& f_{d}=b_{1} \lambda_{1}+\ldots \ldots+b_{m} \lambda_{m}=\mathbf{b}^{\mathbf{T}} \boldsymbol{\lambda} \quad \text { (} m \text {) } \\
& \sum_{i=1}^{m} a_{i j} \lambda_{i} \leq c_{j}, \quad j=1, \ldots, n, \tag{Y,Y,Y}\\
& \text { رامشروط به }
\end{align*}
$$

$$
\begin{aligned}
& \text { (Y.V.r) } \\
& \text { آن كاه مسأله' دو كان مربوط عبارت امست از : } \\
& f_{d}=b_{1} \lambda_{1}+\ldots \ldots+b_{m} \lambda_{m}=\mathbf{b}^{\mathbf{T}} \boldsymbol{\lambda} \text { (} \quad \text { (} m \text {) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { در حالى كه }
\end{aligned}
$$

بايد به اين نكته توجه شود كه در عمل ، بندرت مساله'LP را به عنوان يكـ مسالّهُ ابتدايى يا دوكان حل
 الكُوريتم با يكى جواب قابل تبول مسـالهُ دو كان شروع مى كند كه اين جواب قدم به تدم با بهينه سازى يكـ مسأله ابتدايى محدود شدهُ مربوط بهبود ممى يابد. جزئيات اين الكُوريثم فراتر از هدف اين كتاب اسـت و خوانندكان علاقمند مى توانند به مرجع [11]مراجعه كتند .

مثال r.Y.

 مى گيريم. شُ ط بار كذارى جديد اين است كه 25\% مفدار بار انقى انزايش يافته ولى مقدار بار عمـودى
 طرنهاى رامست متفاوتى خواهند داشتـ، بعنى :

$$
\begin{align*}
4 x_{2} & \geq 1, \\
2 x_{1}+2 x_{2} & \geq 1, \\
x_{1}+x_{2} & \geq 1.25, \\
2 x_{1} & \geq 1.25, \\
2 x_{1}+4 x_{2} & \geq 3.5, \\
4 x_{1}+2 x_{2} & \geq 3.5 .
\end{align*}
$$

با اين وجود، هنگامى كه به شُكل استاندارد نوشته شود، نه تنها مسالـه A متغير دارد بلكه يكـ جواب

دارد، جـواب مسالهُ دو كان ممكن است بازدهُ بالاترى داثتـ باشمد. مسالهُ دو كان عبارت امست از :

$$
\begin{array}{ll}
f_{d}=\lambda_{1}+\lambda_{2}+1 \frac{1}{4} \lambda_{3}+1 \frac{1}{4} \lambda_{4}+3 \frac{1}{2} \lambda_{3}+3 \frac{1}{2} \lambda_{6} & (r . \vee . \vee) \\
2 \lambda_{2}+\lambda_{3}+2 \lambda_{4}+2 \lambda_{5}+4 \lambda_{6} \leq 2, & ب-1, \\
4 \lambda_{1}+2 \lambda_{2}+\lambda_{3}+4 \lambda_{3}+2 \lambda_{6} \leq 1, & (r . \vee . \wedge)
\end{array}
$$

ماكزيمب كند $\quad \lambda_{i} \geq 0, \quad i=1, \ldots, 6$.
ماكزيمم سازى f ${ }_{\text {مانند مينيمم سازى f }}$ - اسـت و فرآيند تبديل مسـالهُ خططى فوق به شُكل استاندارد
عبارت است از :

$$
\begin{aligned}
& -f_{d}=-\lambda_{1}-\lambda_{2}-1 \frac{1}{4} \lambda_{3}-1 \frac{1}{4} \lambda_{4}-3 \frac{1}{2} \lambda_{5}-3 \frac{1}{2} \lambda_{6} \quad \text { (r.v.q) } \\
& 2 \lambda_{2}+\lambda_{3}+2 \lambda_{4}+2 \lambda_{5}+4 \lambda_{6}+\lambda_{7}=2, \quad ب \quad \text { (r.v.l.) } \\
& 4 \lambda_{1}+2 \lambda_{2}+\lambda_{3}+4 \lambda_{5}+2 \lambda_{6}+\lambda_{8}=1, \quad \text { (r.v.l. } \quad \lambda_{i} \geq 0, \quad i=1, \ldots, 8,
\end{aligned}
$$

كه جواب قابل قبول اصلى آن برابر است با

$$
\lambda_{i}=0, \quad i=1, \ldots, 6, \quad, \quad \lambda_{7}=2, \quad \lambda_{8}=1
$$

مى توانيم باتابلوى سيمبلكس ارليه كه متغيرهاى اصلى از معادله آخر آن، كه نشانكر تابع هدفـاست، حذف شُده، شروع كنيم.

$$
\left[\begin{array}{cccccccc}
0 & 2 & 1 & 2 & 2 & 4 & 1 & 0 \tag{r.v.ll}\\
4 & 2 & 1 & 0 & 4 & 2 & 0 & 1 \\
\hdashline-1 & -1 & -5 / 4 & -5 / 4 & -7 / 2 & -7 / 2 & -- & --
\end{array}\right]\left\{\begin{array}{c}
\lambda_{1} \\
\lambda_{2} \\
\lambda_{3} \\
\lambda_{4} \\
\lambda_{5} \\
\lambda_{6} \\
\lambda_{7} \\
\lambda_{8}
\end{array}\right\}=\left\{\begin{array}{c}
2 \\
1 \\
-- \\
0
\end{array}\right\} .
$$

هر جند توصيه مى مُود كه ستون ينجم با تسنم را براي عمليات لولايى انتخاب كنيم، جون بيشتربن مقدار مننى را دارند، ولى انجام عمل لولاهي روى ستون سوم جواب نهايع يكـــانى را بـا يكى تـابـلوى سيملِكس كمتر به دست مى دمد. با انجام عمل لولايع روى عنصر ${ }^{\text {د داريم: }}$

$$
\left[\begin{array}{cccccccc}
-4 & 0 & 0 & 2 & -2 & 2 & 1 & -1 \\
4 & 2 & 1 & 0 & 4 & 2 & 0 & 1 \\
-- & -- & -- & -- & -- & -- & -- & -- \\
4 & 3 / 2 & 0 & -5 / 4 & 3 / 2 & -1 & 0 & 5 / 4
\end{array}\right]\left\{\begin{array}{c}
\lambda_{1} \\
\lambda_{2} \\
\lambda_{3} \\
\lambda_{4} \\
\lambda_{5} \\
\lambda_{6} \\
\lambda_{7} \\
\lambda_{8}
\end{array}\right\}=\left\{\begin{array}{c}
1 \\
1 \\
-- \\
5 / 4
\end{array}\right\}(ץ . V .1 Y)
$$

به مببب وجود جحلات منفى در معادله' آخر، روشّن امست كه تابع هدف هنوز مى تواند بيـتر كاهش يابد . با انجام عمل لولا بع روى عنصر 14 داريـم:

$$
\left[\begin{array}{cccccccc}
-2 & 0 & 0 & 1 & -1 & 1 & 1 / 2 & -1 / 2 \\
4 & 2 & 1 & 0 & 4 & 2 & 0 & 1 . \\
--- & -- & -- & -- & - & -- & -- & -- \\
3 / 2 & 3 / 2 & 0 & 0 & 1 / 4 & 1 / 4 & 5 / 8 & 5 / 8
\end{array}\right]\left\{\begin{array}{l}
\lambda_{1} \\
\lambda_{2} \\
\lambda_{3} \\
\lambda_{4} \\
\lambda_{3} \\
\lambda_{6} \\
\lambda_{7} \\
\lambda_{8}
\end{array}\right\}=\left\{\begin{array}{c}
1 / 2 \\
1 \\
-- \\
15 / 8
\end{array}\right\}(r . v . \mid r)
$$

بنابراين نتيجه مى كيريـم كه اسست از:

$$
\lambda_{1}=\lambda_{2}=\lambda_{3}=\lambda_{6}=\lambda_{7}=\lambda_{8}=0, \quad, \quad \lambda_{3}=1, \quad \lambda_{4}=1 / 2 . \quad \text { (ץ.V. |F) }
$$

لهاى غير صهفر دلالت بر نعال بودن تيود سوم و جهارم در مساله' ابتذامع دارد، يعنى :

$$
\begin{aligned}
& 2 x_{1}=1.25, \quad \text {, } \quad x_{1}+x_{2}=1.25, \quad \text { (ץ.V.10) }
\end{aligned}
$$

در بايان بـخش ؛ جالب اسـت يادآور شويـم كه متغيرهاى دو كان را مى توان به عنوان تيمت هاى تَيـود
 مقدار بهين تابع هدن مى تواند از رابطه زير بدست آيد .

$$
\Delta f^{*}=\lambda^{T} \Delta \mathbf{b}
$$

ITA
فيد فعال نينجامد. مــأله' دو كان را نيز مى توان ماكزيمم سازى يكى سود، مشُروط به محدو ديتهايى از نظر در دسترس بودن منابع در نظر كرفت . آن كاه روسّن استت كه متغير هاى دو كان نامنفى رامى شود به عنوان
 ابتدا'يى را مى توان به عنوان يكى مينيمم سازى هزينه' كلى در نظر كرفنت در حالى كه همه' تيود برآورده ثـلـه باشند. نتش كامل متغير هاي دو كان تنها در بحث شُ ايط كان تاكر و حساسيت جواب بهين به تغيـرات هارامترهاي طراحى روشنتر خحواهد شلد كه در فصـل (ه) بحـث خواهد شـد . مثال بعدى كاربرد متغيرهاى دو كان در يانتن حساسيت جواب بهين در اثر تغيير در پارامترى از مــأله را تشريح مى كند .
F.Y.Y مشال
 بگيريد . تغيير مقدار تابع هدن بهين 25% كاهش در مقدار نيروى افنى را بدست خواهیهم آورد در صورتى كه نيروى عمودى در p به همان ميزان نگهـلاثتـه مى شود . اين نيروها مربوط به

 $\Delta b_{3}=\Delta b_{6}=-\frac{1}{2}, \Delta b_{3}=\Delta b_{4}=-\frac{1}{4}$ معادله' (Y. V. 10) بدسـت آمد داريم :

$$
\Delta f^{*}=-\left(\frac{1}{4}\right) 1+-\left(\frac{1}{4}\right)\left(\frac{1}{2}\right)=-0.375
$$

بنابراين مقذار بهين تابع هدف در اثر اين بار كذارى جديد برابر اســت بـا 1.5 = 1 ، البته فرض شـده قيود فعال (آنهايى كه مربوط به متغيرهاى دو كان غير صفرند) فعال باتى مى مانند . خوشببختانه ، آن فرض برالى مثال نعلى صحيح استت . با اين وجود، علاوه بر دو قيدى كه در ابتدا فعالْ بودند دو قيد ديگر نيز در نقطه' طراحى جديد فعال مى شوند (به شكل I . Y . Y نگاه كنيد) . هر كاهشي بيشتر از 25\% در مقدار بار انفقى تغييرى را در مجموعه قيد فعال به وجود خواهد آَورد و به يكى جواب نادرست مى انجامد.
 بارامتر طراحى رآلن قدر تغيير ندهد كه مجموعه قيد فعالل تغيير كـنـد . ايـن كـار عـــومـاً با محدود كردن

 طر احی نمونه انتخاب مى كرديم، هر اندازه تغييرات مقدار نيروى انقى راكوچكى هـم مى كرنتيم، مجهوعه قيد نعال تغيير مى كرد. اين به خاطر زائد بودن قيدها در جواب بهين مثال ا . . . Y است. • • .
' F.A
در استفاده از الكوريتم سيمیلكس كه در بشخش 9 . ז بححث شد، عمليات كاملاً روى مرز جند وجهى در R \mathbf{R}^{n} حركت از يك نتطهُ فرين (رأس) به فرين ديكر با انتخاب كوتاهترين مسير بين آنها ، يعنى يك يال هند وجهى ، انجام مى شـد. انتتخاب رأس بعدى از ميان تـامى رأسهاى مجاور راسـى كه شروع كرده ايم، ، بر اعـاس بيشترين كاهش در تابع هذن انجام مى كيرد. با الين فرخهاى اعـاسى، الكُرريتم سيمبلكس تنها يك راهبرد نظام مند براى مشخصى كردن و بررسىى جوابهاى نامزد مسالّ'LP است . تعداد عمليات مورد نياز براى همكرا'يه به شـكل نمائى با تعداد هتغير ها افزايش مى يابد . در بدترين حالت، تعداد عمليات براى
 انتخاب يك جهت حركت به جز يال جند وجهى كه با روابط تيد مـاز گار باشـد و منفعت بيشترى در تـابـع هدف داثته باشـد امكان يذير است . كرجه جنان انتخابى مى تواند به يك كاهش سريع به طرن راس بهين بينجامد، ولى اين كار توسط نتاط ميانى غير رأس انجأم مى شود. روشُههاى دانحلـى حل مســائل LP از زمـان معـرفى الـكوريتم كـارمـار كـار[14] توسط آزمايشكـاه
 از روش سبملكس سريعتر است. از آن زمان كارهاى زيادى در تعمبم و بهبو دبخسيدن الكوريتم كارماركار
 است[15]، و تصميم الكوريتم كارمار كار اين بوده كه كرانهاى بالا و پايين را با حذن متغيرهاى كمبود، كه معمولّ در جنان كرانهايى در الكوريتم سيمبلكس به كار مى رود، به شـكل مؤترترى[16] مورد توجه ترار دهد .

از آن جا كه توسـعه هاى اخخير الكُوريتم هـمراه با مباحث رياضى است و از هدفهاى ايـن كـتاب نـراتر است، تنها يك حالت كلى از الكُوريتم كارمار كار در بـخشهاى بعدى اراثه مى شود . در اين لحظه خراننده

PP.

را به اين نكته تو جه مى دهيم كه ابزارى كه در الكُوريتم استفاده شُده در اصل براى مينيمـم سازى توابع غير خطى مقيد و نامقيد در ذصلهاى (Y) و (() معرفى شُده أند. بنابراين، به خوانتده توصيه مى شود كه ايـن نصلها را تبل از مطالعه بخش بعدى مرور كند.

هf
 ببينيد، جهت كراديان عبارت امست از:

$$
\begin{equation*}
\nabla f=c \tag{广.^.1}
\end{equation*}
$$

كرجه ما جهت حركت را مدحدود به يال هند وجهى سطع قيد نكرده ايـم، در مساله'LP جهت حركت نمى تواند به سادكى منفى جهت كراديان انتتخاب شود . جهت بايل جنان انتتخاب شود كه حركت به نقطه اى P در ناحيه' قابل قبول بينجامد . اين كار با استفاده از ماتريس تصوير

$$
\mathbf{P}=\mathbf{I}-\mathbf{N}\left(\mathbf{N}^{T} \mathbf{N}\right){ }^{-1} \mathbf{N}^{T}
$$

كه در بخش
 جهت تنـدترين كامش را روى فـضاى تهى ماتريسس A تصوير مى كند. يعنى، اكر با يكـ نقطهُ طراحى
 فضهايى كه به وسيله' معادلـه' قيد تعريفـ مى شود خواهيم ماند. دتت كنيد كه در كاربردهـاى عـددى ايـن

 و با شرايط بهتر بر اساس عامل كيرى QR ماتريس A برایى جوابب ماتريس تصوير در بخش ه . 0 تشريح شده است. مثال ساده' بعدى كه توسطل استرنج' الراثه شده و از مرجع [17] آورده شـهه جهت حركت را در

نضاى طراحى سه بعدى به ثـكل ترسيمى تنريح مى كند.

مثال 1 P.A.
مسآله مينيمم سازى زير كه بر حسـب سه متغير طراحى است در نظر بكيريد،

$$
\text { با شُروع از يك نقطه' مُروع }{ }^{\text {مُ }} \text { (0) }=(1 / 3,1 / 3,1 / 3)^{T} \text { جهت حركت را بدست آرريد . }
$$

$$
\begin{gathered}
\left\{\begin{array}{lll}
1 & 1 & 1
\end{array}\right\}\left\{\begin{array}{l}
1 \\
1 \\
1
\end{array}\right\} y=\left\{\begin{array}{lll}
1 & 1 & 1
\end{array}\right\}\left\{\begin{array}{l}
-1 \\
-2 \\
-3
\end{array}\right\}, \quad \text { (r.^.я) } \\
y=-2
\end{gathered}
$$

$$
\begin{aligned}
& f=-x_{1}-2 x_{2}-3 x_{3} \\
& \text { (r.^.r) } \\
& x_{1}+x_{2}+x_{3}=1 \text { رامشروطبـ } \\
& \text { (r.^. F) } \\
& \text { (r.^. ©) }
\end{aligned}
$$

PYY
 آن كاه جهت تصورير شده Pc عبارت است از :

$$
\begin{gather*}
\mathbf{P c}=\mathbf{c}-y \mathbf{A}^{T}, \tag{r.^.v}\\
\mathbf{P c}=\left\{\begin{array}{l}
-1 \\
-2 \\
-3
\end{array}\right\}-\left\{\begin{array}{l}
-2 \\
-2 \\
-2
\end{array}\right\}=\left\{\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right\} .
\end{gather*}
$$

حركت در جهـت Pc - بيشترين كاهش در تابع هدفـ را تضمين مى كند در صـورتى كهـ حـركـت در صنحه، راس R خواهد برد كه روشن است كه با يكى جرخه نمى توان به آن رسيد. بنابراين، فبل از اين كه شـرط
 بابد تا رسيدن به يك همكرايعى منطقى به نفطهُ مينيمّ تكرار شود . • •

در ميال تبلى هيج توضبحى در مورد انتخاب نتـطهُ طراحى شُروع و براى طول مسانت طى شُـده در جهت انتخاب شده داده نشّد. كارماركار[14] حركتر اقبل از برخورد به مرز جند وجهى منوقف مى كند مثلاً در نتطه' باتى مى ماند. يعنى با شروع از هند وجهى يا نزديك به آن احتمال برخورد به مرز ديكر قبل از منتفع شدن حقيقى از تابع هدفــ را افزايش مى دهد. جوابب اين مشككل در تبديل نضأى طراحى كه در بــش بعـدى بحت مي شمود است.

r. А. 「 「 تبديل مختصات

به منظور متمركز شدن روى بندارههايى كه برای الكُوريتم همماست، كار ماركار[14] فرضهاى متعددى درباره‘ مسأله' LP در نظر مى كيرد. در شكل نمايش كانونى او، مسأله'LP شكل زير را مى كيرد،

	$f=\mathrm{c}^{T} \hat{\mathbf{x}}$		(r.^. q)
	$\mathrm{A} \hat{\mathbf{x}}=0$,	را مشروطب	(r.^.l.)
	$\mathrm{e}^{T} \hat{\mathbf{x}}=1$,		(r.A.ll)
مينيمـ كنيد	$\hat{\mathbf{x}} \geq 0$,		(r.^. ${ }^{\text {r }}$)

 اسـت به شـكلـى كـه نـــطـهُ شـروع مـركز، قبول، Ax بعدى به n بعد . سيمیلكس واحد در امتداد هر يكـ از جهتهاى دـختصات طول يال واحد دارد . كارهاركار
 به آن برسـد صفر اسـت . تبديل يكـ شكل استاندارد مساله؛ LP به اين شكل كانونى از رأه انجام يك سرى از عمليات كه شـامل تركيب شـكلهاى ابتدايع و دو كان رابطه مـازى استانلارد، معرفى متغيرهـاى كــمـبـرد و مصنوعى و تبديل شختصات مى بائـد، امكان يلذير اسـت . تركيب رابطه سازى هاى ابتدانى و دو كان از اين سبب لازم امست كه فرض صفر بودن معدار مينيمـم نهايى تابع هدف عملى شـود . جزئيات تشكيل اين شكل كانونى جديذ در مرجـع [14] اراته شـده اسـت . در اين بخش ها تبديل ميختصات را كـه بـه آن تبلديل دوبـاره مقياس بنلى شُلمهتصويرى مى كويند تشريع خواهيـم كرد. اين تبديل مانند تبديلى است كه به جا باز كردن برایى حركت از يكى خرخهه به خرخهه ديكر كهك مى كنند.

$$
\mathrm{D}_{x}=\operatorname{Diag}\left(x_{\mathrm{t}}^{(a)}, \ldots, x_{\mathrm{n}}^{(a)}\right)
$$

(H.N. ${ }^{(r)}$

تبديل
مقطع مربوط $\hat{x}_{i}=0$ فغشاى تبديل يانته منتتل مى كند و عبارت امـت از :

$$
\hat{\mathbf{x}}=\frac{1}{\mathrm{e}^{T} \mathrm{D}_{\boldsymbol{x}}^{-1} \mathbf{x}} \mathrm{D}_{\boldsymbol{x}}^{-1} \mathbf{x}
$$

 (منتقل مى كند. كارماركار نشان داد كه كاربرد صجدد اين انتقال، در بدترين حـالــت، در كمتر از $\mathcal{O}\left(n^{\frac{\pi}{2}}\right.$ عمليات اصلى حساب به كومُه' بهين همكرا مى شودد . تبلديل كار ماركار غير خخطى اسـت و يكـ شكل ساده تر از اين تبديل ارائه شـده أسـت. تبديل خططى

$$
\hat{\mathbf{x}}=\mathrm{D}_{x}^{-1} \mathbf{x}
$$

نشان داده كه در عمل مانند الكُوريتم كارما كار است و از جنبه' نظرى همكراست[18] .
(1 PP
r
بعد از عمل تبليل، كارهاركار تابع هدف تبليل يافته را روى كره الى به نـماع $r=1 /(\sqrt{n(n-1)}$

 صغغحه' معادله' تيد استت . در عمل طول كام در امتداد جهت تصهوير شده كه توسطط كارماركار استفاده شده إست كسرى، a، از شعاع است . بنابراين نتطه' جلديد در انتهاى حركت عبارت اسـت از:

$$
\begin{equation*}
\mathbf{x}^{(k+1)}=\hat{\mathbf{x}}^{(k)}-\alpha r^{(k)} \mathbf{P} \mathbf{c}^{(k)} \tag{†.^.19}
\end{equation*}
$$

در حالى كه . $1 / 4$ < $1 / 4$. مقدار نمونه α كه تو سطط كارماركار استفاده شد برابر امـت بـ هنگام كار الكُوريتم، بهينگى جوابـ در هر دور با تبليل جوابـ داخلى به يكـ جواب نـقـطـهُ فريـن در نز ديكترين رالس بررسى مى شود. اكر نقـطـهُ جواب فرين بهتر از جواب داخلى نعلى بـود آن كـاه، بـراى بهينگى آزمايش مى شود .

فنون حل مسانـل LP كه تاكنون مورد توجه ترار كرفتنل، با فرض اين كه متغيرهاى طراحـى مـــادير مثبت و بيو سته ایى دارند اراثه شدند؛ بنابراين متغيرها مى توانستند هر مقدارى را ين كرانهاى بايسن وبالף

 خوراهل بود.

$$
\begin{aligned}
& f(\mathbf{x})=\mathbf{c}^{T} \mathbf{x} \\
& \mathbf{A x}=\mathbf{b}, \\
& x_{i} \in X_{i}=\left\{d_{i 1}, d_{i 2}, \ldots, d_{i 1}\right\}, \quad i \in I_{d},
\end{aligned}
$$

مينيمبركيد $\quad x_{i} \in X_{i}=\left\{d_{i 1}, d_{i 2}, \ldots, d_{i r}\right\}, \quad i \in I_{d}$,

190 بخش 9 بـ : برناه ريزى خطى مـدصحيع

معدار كسسته دارند، مسائل برنامه ريزى كسسته ناميده هى شوند.
 صصيـح بكيرنــد تبديـل كـرد . ايـن تبديل بـاداثـــــتن

اكنون مساله زير رادر نظر بكيريد:

$$
\begin{align*}
& f(\mathbf{x}, \mathbf{y})=\mathbf{c}_{1}^{T} \mathbf{x}+\mathbf{c}_{2}^{T} \mathbf{y} \tag{r.q.r}\\
& \text { مينيم كيد } \\
& \mathbf{A}_{1} \mathbf{x}+\mathbf{A}_{2} \mathbf{y}=\mathbf{b}, \quad \text { رامشروطبه }
\end{align*}
$$

$$
\begin{aligned}
& y_{j} \geq 0
\end{aligned}
$$

 محض و يا باختصار مسـالل ILP ناميده مى شُوند. داشتن مسائلى كه متغير هاى طراحى آن براى تعبيـن

 نظر كرفت. يعنى

$$
\begin{equation*}
x_{i}=x_{i 1}+2 x_{i 2}+\ldots+2^{K-1} x_{i K} \tag{r.q.r}
\end{equation*}
$$

تبديل مسـالـهُ برنامه ريزى كسـسته' خططى بهـ يـى ILP دوتايى با استفاده از متـغيرهـاى دوتابيى
نيز امكان يذير است، به شُكلى كه

$$
\begin{array}{r}
x_{i}=d_{i 1} x_{i 1}+d_{i 2} x_{i 2}+\cdots+d_{i 1} x_{i 1}, \\
x_{i 1}+x_{i 2}+\cdots+x_{i 1}=1 . \tag{r.q.0}
\end{array}
$$ يك رويكرد عملم براى سل مسائل ILP كرد كردن مقادير بهين به نزديكترين مقدار صحيح قابل فبول متغيرهايى است كه با فرض بيوسته بودن بدست آمده اند. براى مسائل باn متغير، "2 طراحى هاى ممكن

مثال r.q.

مسالهُ ILP دوتايى انتخاب بنج متغير بـ شكلى كه جمع زير برآورده شود را در نظر بغيريد.

$$
f=\sum_{i=1}^{5} i x_{i}=5
$$

يك درخت تصميم كه بيانتر بيشرفت حل اين مساله است از كره ها و شـاخه هالى تـنـكـيل شـده كـه بترتيب جوابها و تركيهاعى از متغير ها كه به آن جوابها مى انجامد را نـتـان مـى دمــد (شكـل ا ـ 9 . T) . . كرهُ سر درخت مربوط به جوابى است كه ممهُ متغير ها خاموشُ شده اند تابع عبارتاسـتاز f=0. از اين جوابـ دو مسير مربوط به دو حالت متغير اول مـنـــعـب مى شـود. ثـاخه ای كـه 1 شرط اين كه مقدار تابع از 5 بيشتر نشود . بذيهى است كه بقيه؛ ثـاخـه ها مانند جواب اوليه اند و مى تواند
 ثـاخه ثـاخه مى شود. كرهي كه از با يك خطط عمودى نمان داده شده است. هنان رأسى بـانتها رسيله ناميله مى شود، زيرا النشعاب بيشتر به معنى اضافه كردن يك عدد است كه سبب افزايش f از مقدار مشخخص 5 مى شُود. سه راس ديكر رازنده كويند و مى توانتد بادر نظر كرفتن ترتيبى از حالتهاى مختلف متغيرهاى ديكر انشُعابهايى داشته باشند تا

1) Garfinkel and Nemhauser

اين كه كره به وجود آمده به انتها رسيده باشد و يا تُاخه به جوابهاى قابل تبول مساله برسد. براي مسالل' نعلى، بعد از در نظر كرنتن 19تركيب ممكن متغيرها، سه جواب قابل تبول را شنناسايه

 مختلف متغير ها تحليل ير هزينهايى نياز دارد، درخت شمهارش مى تواند به صرنه جويى تابـل توجهى -• • بينجامد

1 9 . 9 الكوريتم شاخه و كران
مفهوم اسـاسى زيربناى فن شمارش، زير بناى اين الكوريتم توانمند كه براى مسـائل MILP و مساثل صسحيح مـتخلو ط غيرنحطى مناسب است را تشكـيل مـى دهـد[[20,21] . الكوريتم اصلى كه توسط لـنـد و دريگُ" [22] تدرين شد بر اسـاس كرانهاى بالا و بايين تابع هدف قرار دارد كه به مو جبب آن كره هايى كه به طراحيهايع با توابع هدن خارج از كران ختتم مى شوند رأمى توان به انتها رسيله تلمداد كرد و ، بنابراين،

 بدست آمده است . اكر تمامى x متغير جواب بدست آمده متادير صحيح داشته باشند، نيازي به ادامم كار fi نيست و مساله حل شدهاست . فرض كنيد تعدادى از متغير ها مقادير غير صصيح دارندو مقدار تابع هدفي

 است. به منظور تشريح روش، فرض بی شمود تنها دو متغير كردهاند كه مقدارنـان

 است كه تنها يكى از متغيرهاى غير صصيح را، مثلاّ

 بزركتز از

دارد. يكى از آن امكانات اين است كه مسالّ' جديد جواب قابل قبولى نداشته باشد. در اين حالت كـره'

 جواب LP با مفدار بزر كترى براي تابع هدف دارد به انتها رسيده خواهد بود، و تنها آن جـوابهـابي كـه بتانسيل توليد تابع هدفى بين $f_{U} f_{U}$
 كه بهعنوان كرههاى زنله در نظر كر نته هى سوند . كرههاى زنده دوباره با در نظر كرفتّ يكى از م مقادير غير
 كره ها به انتها برسند.

مثال r.a.r

 مقياس بندى مى كنيم تا مسآله رابه صورت يكى مساله' برنامه ريزى خططى صسيح در آوريم'،

$$
\begin{aligned}
& \text { رامسنروطبه } \quad f=\left(2 x_{1}+x_{2}\right) \\
& x_{2} \geq 1.25 \text {, } \\
& x_{1}+x_{2} \geq 2.5 \text {, } \\
& x_{1}+x_{2} \geq 5 \text {, } \\
& x_{1} \geq 2.5 \text {, } \\
& x_{1}+2 x_{2} \geq 7.5 \text {, } \\
& 2 x_{1}+x_{2} \geq 7.5 \text {, } \\
& \text { مينهم كنبد } \quad x_{i} \geq 0 \text { مصيل } \quad i=1,2 .
\end{aligned}
$$

جواب ترسيمى اين مساله' مقياس بندى شده (كه در مثال Y. Y. Y بدون در نظر كر نتن متغير طراحى صصيح و تبل از مقياس بندى اراثه شد) عبارت است از :

$$
x_{1}=x_{2}=2.5, \quad f=7.5,
$$

- 18 مبانى بينه سازى سازهما (نصل

كه يك كران بايسن برای تابع هدف اسـت، 7.5 ي 7.5 يعنى جواب صصحيح بهين نمى نواند تابع هدنى كمتر از

$$
x_{1}=3, \quad x_{2}=2.25, \quad f=8.25 .
$$

جون
 در رأس هدف f=9. بنابراين، اين مقدار تابع هدف يكحد بالاى، 9 ($f_{u}=9$ براي مسآله است. از طرف ديكر، جواب حالت 2 x 2 ، در محل تلاتى $x_{2}+2 x_{2}=7.5$ فرار دارد و عبارت است از

$$
x_{1}=3.5, \quad x_{2}=2, \quad, \quad f=9 .
$$

اين جواب كـسته نيست و مى توان آن رابا شـانحه كـردن (يعنى ساختن LP هاى جديد با اضافه

 همحنان كه در مثال مى توان مشاهله كرد، عملكرد اللگوريتم ثـانهه و كران به طـور خـشــمـعـيـرى بـه انتشخاب متغير غير صسحيحى كه براي شاخحه شـدن استفاده مى شود و انتخابب گكره الى كـه شــاخـه مـ شـود بستگى دارد . الكر كره و متغير شاخحه' انتخاب شـده به يكي كران بالاى تابع هدف LP-1 قبلى طرح شـمارش نزديك باشُد، آن كاه صرفه جويع محاامباتى قابل ملاحظه الى خواهد شـد زيرا شاخه هايى كه قابليت توليد جوابهاي پايين تر از كران بالا را ندارند، حذف شـده اند. يكى قاعدهُ بديهى براي النتخاب متغير غير صحيح كه بايد شانح شود اين است كه متغير با اعشار بزركتر انتخابب كردد . براي انتتخاب كره ایى كه بايد شـاخــه شود، از ميان كره هاى زنده، عسألـ'LP را انتخاب مى كنيم كه تابع هلف كوهكترى دارد؛ اين كـره بـه احتمال زياد طراحى قابل قبرلم خواهد سانحت كه كران بالاى با اختلاف كهترى داشتّه باشد. شاخه و كران تنها يكى از الگوريتمهاي حل مسائل MILP أست . با اين وجود، به سبب ساده بودن آن در بسيارى از برنامه هاي رايانهاى تجارى كنـجانــه مُسله و در دسـترس الست[] 23 , 24 . تعـداد ديگرى از فنون نيز وجود دارند كه قابليت -حل مسائل مقلار كسـسـتـه' عمومى را دارند (به عنوان مثـال بـه

مرجع[25] نگاه كنيد) . بعضم از اين الڭكوريتمها نه تنها براى مسسايل ILP بلكه براى مسايل NLP با
 احتمالى كار مى كنند براى بسيارى از كاريردها از تبيل كاربردهاى طراحى سازه درست شده اند كه مسائل برنامهريزى خططى و غير خططى رادارا هستند. . دو فن از هنين نتونى به نامهاى سرد شـدن تدريجى شببه سازى شلده و الگّوريتمهاى زنتيكى در ذمـل 4 مورد بحث ترار مى گيرد. رويكرد ديكر كه بر اساس تعميـمى از رويكرد تابع جريمه برای مسـاتل NLP مقيد ترار دارد در فــلـه ارائه مى شود ـ در خاتمه، الستفـاده از
 بحث مى شود. يكى از كاربردهاى طراحى جالـب ILP توسط هفتكه و والـش ' [26] برایى طراحى ترتيب قرار دادن صفحات مركب لا يه أى به منظور بهبود بخشتيدن به باسخ كمانش اراثه شـهـ است . از آن جا كه رابططه سازى اين مسأله شامل مطالبى مى شود كه در فصل 1 ا ارانه شده، بحث و تشريح اين كاربرد در آن فصل مى آيل.

- 1 .

 درستى جوابتان را با الستفاده أز روش سيمیلكس آزمايش كتيل.
 و 400 lb جايگاه و كابلها صر ننظر كنيـد و وزنـه هـاى كنيد . همحنين از ثـكست خمشى جايگاه صر فنظر كنيد ـ با استفاده از برناهه ريزى خطى بار كل ماكزيممي كه سيستم مى تواند تحمل كند را بدست آوريد .
 . $A_{13}=A_{24}=A_{34}, A_{14}=A_{23}$

 تاب را در برابر فرو ريختگى خميرى (بلاستبك) رابطه سـازى كنيد.
 الف) ننـان دهيد كه نيروى رو به بالاى كــترده' يكنواخت معادل كه روى تير بتنى توسط يكـ كـابل بيش تنــده با نيروى f و يك منحنى سهموى كه با خارج از مركزهاى تعريف مى شُود اعمال بى شمود از رابطه' زير بدست مى آيد. $x=l, x=0, x=l / 2$

$$
q=\frac{4 f}{l^{2}}\left(y_{3}-2 y_{2}+y_{1}\right) .
$$

1 kip/ft ب) تير در شـكل تحت تأثير دو مُرط بار كذارى فرار دارد: اولين باركذارى از يك بار مرد و يك بار معادل به خاطر بكى كابل بسش تنيدهُ بانيروى f تشكيل نـده و دو دمين بار كذارى عبارت امـت از

 طراحى رابطه سازى كنيد. نـرض كـنيد كه تنـنـ مـجاز بـرای هر دو نـرط بـار كـذارى عبـارت امـت的

شكل r . 1 . 1 rّاب سر در دو طبقه

 ج) مسأله' LP رابه كهكى اللگوريتم سيمللكس حل كرده و جواب نيروى بيش تنيدهُ مينيمم و منحنى ميله را بدست آوريد .

خر خأى از نظر ايستامى معين شكل I توسط معادله هاى (ף . . .
 الكُوريتم سيمبلكس حل كرده و حل تقريبى را با ترسيمى يا يك حل دقيق مقايسه كنيد .
 اعضها مقاديرى از مجموعه هاى زير را مى كيرند حل كنيد .
a) $\{0.0,0.5,1.0,1.5,2.0\} P / \sigma_{0}$.
b) $\{0.0,0.3,0.6,0.9,1.2,1.5,1.8,2.1\} P / \sigma_{0}$.

11
[1] Charnes, A. and Greenberg, H. J., "Plastic Collapse and Linear Programming," Bull. Am. Math. Soc., 57, 480, 1951.
[2] Calladine, C.R., Engineering Plasticity. Pergamon Press, 1969.
[3] Cohn, M.Z., Ghosh, S.K. and Parimi, S.R., "Unified Approach to Theory of Plastic Structures," Journal of the EM Division, 98 (EM5), pp. 1133-1158, 1972.
[4] Neal, B. G., The Plastic Methods of Structural Analysis, 3rd edition, Chapman and Hall Ltd., London, 1977.
[5] Zeman, P. and Irvine, H. M., Plastic Design, An Imposed Hinge-Rotation Approach, Allen and Unwin, Boston, 1986.
[6] Massonet, C.E. and Save, M.A., Plastic Analysis and Design, Beams and Frames, Vol. 1. Blaisdell Publishing Co., 1965.
[7] Lin, T.Y. and Burns, N.H., Design of Prestressed Concrete Structures, 3rd ed. John Wiley and Sons, New York, 1981.
[8] Parme, A.L. and Paris, G.H., "Designing for Continuity in Prestressed Concrete Structures," J. Am. Concr. Inst., 23 (1), pp. 45-64, 1951.
[9] Morris, D., "Prestressed Concrete Design by Linear Programming," J. Struct. Div., 104 (ST3), pp. 439-452, 1978.
[10] Kirsch, U., "Optimum Design of Prestressed Beams," Computers and Structures 2, pp. 5і3-583, 1972.
[11] Luenberger, D. G., Introduction to Linear and Nonlinear Programming, AddisonWesley, Reading, Mass., 1973.
[12] Majid, K.I., Nonlinear Structures, London, Butterworths, 1972.
[13] Dantzig, G., Linear Programming and Extensions, Princeton University Press, Princeton, NJ, 1963.
[14] Karmarkar, N., "A New Polynomial-Time Algorithm for Linear Programming," Combinatorica, 4 (4), pp. 373-395, 1984.
[15] Todd, M. J. and Burrell, B. P., "An Extension of Karmarkar's Algorithm for Linear Programming Using Dual Variables," Algorithmica, 1, pp. 409-424, 1986.
[16] Rinaldi, G., "A Projective Method for Linear Programming with Box-type Constraints," Algorithmica, 1, pp. 517-527, 1986.
[17] Strang, G., "Karmarkar's Algorithm and its Place in Applied Mathematics," The Mathematical Intelligencer, 9, 2, pp. 4-10, 1987.
[18] Vanderbei, R. F., Meketon, M. S., and Freedman, B. A., "A Modification of Karmarkar's Linear Programming Algorithm," Algorithmica, 1, pp. 395-407, 1986.
[19] Garfinkel, R. S., and Nemhauser, G. L., Integer Programming, John Wiley \& Sons, Inc., New York, 1972.
[20] Lawler, E. L., and Wood, D. E., "Branch-and-Bound Methods-A Survey," Operations research, 14, pp. 699-719, 1966.
[21] Tomlin, J. A., "Branch-and-Bound Methods for Integer and Non-convex Programming," in Integer and Nonlinear Programming, J. Abadie (ed.), pp. 437-450, Elsevier Publishing Co., New York, 1970.
[22] Land, A. H., and Doig, A. G., "An Automatic Method for Solving Discrete Programming Problems," Econometrica, 28, pp. 497-520, 1960.
[23] Johnson, E. L., and Powell, S., "Integer Programming Codes," in Design and Implementation of Optimization Software, Greenberg, H. J. (ed.), pp. 225-240, 1978.
[24] Schrage, L., Linear, Integer, and Quadratic Programming with LINDO, 4th Edition, The Scientific Press, Redwood City CA., 1989.
[25] Kovács, L. B., Combinatorial Methods of Discrete Programming, Mathematical Methods of Operations Research Series, Vol. 2, Akadémiai Kiadó, Budapest, 1980.
[26] Haftka, R. T., and Walsh, J. L., "Stacking-sequence Optimization for Buckling of Laminated Plates by Integer Programming," AIAA J. (in press).

در اين نصل فنون برنامهر يزى رياضى كه براى اكسترمم كردن توابع غير خططى با يكى با جند (n) متغير

 بهينه سازى نامقيد به دلايل متعددى امميت دارد. اول از مهـ، اكر طراحى در وضعيتى است كه مبـع قيدى نعال نيست آن كاه نرايند تعيين جهت جـست و جـو و انـدازه' كام برايى مينيمم سازى تابع هـدن در
 طراحى دائماً نتض قيد رازير نظر داشثته باشد. دليل دوم امميت مطالعه' روشهاى بهينه سازى نامقيد اين است كه يكى مساله' بهينه سازى مقيد مى تواند در قالب يكى مــالد' مينيمم سازى نامقيد مطاله شُود هر جند
 روشهاى غير مستقيمى مستند كه مساله' مينيمم سازى مقيد را تبديل به يك مسالهُ نامقيد معادل مي كنند . در نهايت، راهبرد مينيـم سازى مقيد به شكل نزاينده أى به عنوان فنون مناسب برایى مسـائل تحليل ســازه‘ خطى و غير خطى شهرت بيدا كردهاند (به مرجع كامات و ميداك' [1] رجوع كنيد) كـ مى توانند جواب
 انرزّى بتانسيل سيستم يا مينيمم كردن باتيمانده معادلات در يك حالت مجذور مربعات مطرح شُود.

†. 1

در بيشتر مسائل طراحى سازه ها، هدن مينبمم سازى بك تابع با جندين متغير اسـت ولى مـطالـعـ

مينيمم سمازى توابع با يكى متغير طراحى به دلايل متعددى مهم إست. اول، بعضى از جنبه هاى نظرى و عــددى مينيمم سازى توابع n متغيـره را مى توان به شكل مطلوبى، به ويزه ترسيمى، در يكى فضاى يـى بعدى تشريح كرد ـ دوم، بيشتر روشهاى مينيمم سازى مقيد توابـ n با n متغير بر اساس دنباله ایى از

 \& صوردت زير بيان كرد:

$$
\begin{equation*}
x=x_{0}+\alpha s_{0} \tag{4.1.1}
\end{equation*}
$$

در حاللى كه ه معمولألهد عنوان اندازه؛ كام شناخته مى شود. بنابراين تابع f(x) كه بايد مينيمم شودرا مى توان به شـكل زير بيان كرد :

$$
\begin{equation*}
f(\mathbf{x})=f\left(x_{0}+\alpha s_{0}\right)=f(\alpha) \tag{Y.1.Y}
\end{equation*}
$$

بنابر اين، مسـالـهُ مينيمم سازى به يافتن مـــدار "م كه تابـع $f(x)$ را مينيمـم مى كند مـى انجـامـد . در حقيقت، يكى از ساده ترين رومهابهى كه در مينيمم سازى توابع n متغيره به كـار مى رود عبارت است از جست و جوى مينيمـم تابع هدنف با تغير نوبه ایى يكى متغير و ثاببت نگهداثمتن تمامى متغير هاى ديگر، و انجام يكى مينيمس سازى يكى بعدى در امتداد هر يكى از جهتهاى مختصات از يكب فضاى طراحى n بعدى . اين روشُ فن جستت و جوى بكى تغيرى ناميله مى شود . در دسته بندى الكُوريتمهاى مينيمـم سازى برایى هر يكى از مسائل يكى بعدى و جند بعدى، ماعموماًاز سه گُروه جذاكانه امستفاده مى كنيم . اين گروهها عبارتند از : روشهاى مرتبهُ صفر ، اول و دوم . روشهاى مرتبه' صفر دیخرايند مينيمم سازى تنها از مقدار تابع امتفاده مى كنتد . روشهاى مرتبـهُ اول مقدار تابع و اولين مشتق آن نسبت به متغير ها را به كار مى كيرند . در نهايت، روشهاى مرتبهُ دوم از مقدار تابع و مشُتق اول و دوم استـفاده مى كـنـند . در بحت مينيمم سازى توابع يكى متغيره ، فرض مـى شــود تـابـع بـه شـكـل

 الح

$$
\begin{aligned}
& \text { الكُوريتم[2] به طور خلاصه به شرح نيرند : } \\
& \text {. }
\end{aligned}
$$

محاسبه كنيد . در غير اين صورت به كام \uparrow برويد
r
يكى اضانه كنيد تا زمانى كه $f\left(\alpha_{k}+\beta_{k}\right)>f\left(\alpha_{k}\right)$ شود. آن كاه بـ كام 1 برويد $0<\xi<1 / \gamma$ <

$$
\begin{aligned}
& \text { صدق مى كند، و } \\
& \text {. } 0
\end{aligned}
$$

ت $\beta_{2}=\gamma \beta_{1}, \alpha_{2}=\alpha_{1}+\beta_{1} .9$

$$
\text { . } f\left(\alpha_{k}+\beta_{k}\right)>f\left(\alpha_{k}\right) \text {. آن كاه بـ كام } 1 \text { برويد. }
$$

V ^. سه نتطه آخر روابط مينيمم محصور شده است.

باول' [3] مطرح شُد و از مقادير تابع f كه بايد مينيم مُود در سه نقطه استفاده مى كند تا يك سهمى

$$
\begin{equation*}
p(\alpha)=a+b \alpha+c \alpha^{2}, \tag{ץ.1.r}
\end{equation*}
$$

از آن نقطه ها بكذراند．روش از يك نقطهُ اوليه مئلاّ $\alpha=0$ با مقدار تابع

 محصور كردن كه يِشتر تشُريح شُد ين
的 $p_{1}=p(\beta)=f\left(x_{0}+\beta \mathbf{s}\right) .1$
竍
 مى تواند بر حسب مقادير تابع

$$
a=p_{0}
$$

$b=\frac{4 p_{1}-3 p_{0}-p_{2}}{2 \beta}, \quad, \quad c=\frac{p_{2}+p_{0}-2 p_{1}}{2 \beta^{2}}, \quad$ ， $1 \quad p_{2}=f\left(\mathrm{x}_{0}+2 \beta \mathrm{~s}\right), \quad$（ $\left..1 . \uparrow\right)$
$b=\frac{p_{1}-p_{2}}{2 \beta}, \quad, \quad c=\frac{p_{1}-2 p_{0}+p_{2}}{2 \beta^{2}}, \quad$ si $p_{2}=f\left(\mathrm{x}_{0}-\beta \mathbf{s}\right)$ ．（४．1．$)$

「．．مقدار ر

$$
\begin{equation*}
\alpha^{*}=-\frac{b}{2 c} . \tag{4.1.9}
\end{equation*}
$$

 الستفاده از زمانى كه دتت مورد نظر بدست آيد ．
 دامته باشد كه در فاصله ایى بيشتر از يكى مقدار ماكزيمـم كه＊ و نفطه ای كه از اين نقطه جدبد از همه دورتر است كنار كذاشته مى شود تا فرايند تكرار شودد．

در كام F ارزيابی تابع يك جايكزين كم شزينه تر وجود دارد . نقطل' '(x

 جست وجوى فيبونا جیى وبنُس طلاعى. مانند معصور كردن، فنون جست وجوى فيبوناجى و بخش طلاجى اككر نكويـم كاراترين دست كم تابل اعتماد ترين فنون جست و جوى خحط براى بدست آوردن مينيمم نامقيد تابـع $f(\alpha)$ در بازه'
 (به شكل I باثبد آن هنان كه "م تابـع f را در

$$
\begin{array}{lll}
\alpha_{2} \leq \alpha^{*} & f\left(\alpha_{1}\right)>f\left(\alpha_{2}\right) \\
\alpha_{1} \geq \alpha^{*} & f\left(\alpha_{2}\right)>f\left(\alpha_{1}\right) \tag{F,1,A}
\end{array}
$$

شكل P. 1. 1 يك تابع تك حالتىنمونه

فرضى تكى حالتى بودن در فن جـــت وجوى فيبوناجى، كه به دنـبـال كـاهـش بـازه'عدم اطمينان، كــ مينيمـم تابِ f در آن ترار دارد، است نقش اساسى دارد.
 بيان كرد . مينيمـم سـازى f را در بازه'种 $\alpha=\alpha_{2}$ (a_{0}, α_{1}) قرار داثته $f\left(\alpha_{1}\right)>f\left(\alpha_{2}\right)$ $f\left(\alpha_{2}\right)>f\left(\alpha_{1}\right)$ باشد، بازهُ جديد (باشبد . آن كاه بازهُ جديد (
 مشخص نكرده ايم جِكونه بايد جايىى را كه f ارزيابى مى شود انتخخاب كرد . بهترين شسل اين نقاط، تعداد ارزيابـى هـاى تابع را برا'ى يك دقت مششخص مينيمبم مى سازد (يعنى ، كـاهـش بـازه' عدم اطمينان به يـك اندازهُ مشخصص) . أكر تعداد ارزيابى هاى تابـع n باثد، بر بازده ترين فرايند با يكى جايابى متقارن نقـاط توسط رابطهُ زير بدست مى آيد[4]:

$$
\begin{align*}
& \alpha_{1}=a_{0}+\frac{f_{n-1}}{f_{n+1}} l_{0} \tag{4.1.4}\\
& \alpha_{2}=b_{0}-\frac{f_{n-1}}{f_{n+1}} l_{0}
\end{align*}
$$

,

$$
\begin{equation*}
\alpha_{k+1}=a_{k}+\frac{f_{n-(k+1)}}{f_{n-(k-1)}} l_{k}=b_{k}-\frac{f_{n-(k+1)}}{f_{n-(k-1)}} l_{k} \tag{4.1.11}
\end{equation*}
$$

كه در آن مى شود و بدست آور د. مى توان نشان داد كه بازهُ عدم اططينان بعد از n بار ارزيابى تابع برابر 2 2 امست كی

$$
\begin{equation*}
\epsilon=\frac{1}{f_{n+1}} \tag{Y.1.1Y}
\end{equation*}
$$

بك نتص اين فن اين است كه تعداد ارزيابى هاى تابع بايداز يشش"مشخص شـده باندد، تأجست وجوى فيبوناجى را بتوان انجام داد ـ براى جبران اين نتصى يك فن شبه بهين كه به عنوان من جست وجوى بخـش طلالى معروناست، ندوين شده است. فن جست و جوى بخشت طلاهى براماس اين يانته هكل كر نـه كهبرای يكى n به اندازه’ كافى بزرگ، داريم.

$$
\begin{equation*}
\frac{f_{n-1}}{f_{n+1}} \rightarrow 0.382 . \tag{f.1.1r}
\end{equation*}
$$

رابطه هاى زير تقريب زد:

$$
\alpha_{1}=a_{0}+0.382 l_{0}
$$

$$
\begin{equation*}
\alpha_{2}=b_{0}-0.382 l_{0}, \tag{F.1.10}
\end{equation*}
$$

$$
\alpha_{k+1}=a_{k}+0.382 l_{k}=b_{k}-0.382 l_{k}
$$

مقدار α رابا دتت

$$
\alpha_{1}=0+0.382(2)=0.764, \quad f\left(\alpha_{1}\right)=-1.708,
$$

$$
\alpha_{2}=2-0.382(2)=1.236, \quad f\left(\alpha_{2}\right)=-2.180 .
$$

جون

$$
\alpha_{3}=2-0.382(2-0.764)=1.5278, \quad f\left(\alpha_{3}\right)=-2.249
$$

جون (محل نقطه' جديد عبارت است از :

$$
\alpha_{4}=2-0.382(2-1.236)=1.7082, \quad f\left(\alpha_{4}\right)=-2.207
$$

דون نقط4' را

$$
\alpha_{5}=1.236+0.382(1.7082-1.236)=1.4164, \quad f\left(\alpha_{5}\right)=-2.243
$$

خون

$$
\alpha_{6}=1.7082+0.382(1.7082-1.4164)=1.5967, \quad f\left(\alpha_{6}\right)=-2.241
$$

خون
 داده شـده امت . بنابراين، مينيمم با يكى دقت 0.1
 دتيق مينيمهم در $\alpha=1.5$ است كه مقدار تابع در آن 2.25-است. • • •

r r 1 . r روشهاى مرتبه اول
روش دو بششُم. مانند فنون محصور كردن جسست و جوى بـخش طلايى كه بـ شكل فزاينذه أى بازهاى كه مينيمّ در آن ترار دارد را كامش مى دهند، فن دو بخشتى محل صغر تابع 'f را با كاهش بازهُ عدم اطمينان

$$
\begin{equation*}
\alpha^{*}=\frac{a+b}{2} \tag{F,1.1V}
\end{equation*}
$$

بدست مى آيد كه نقطه اي در فاصله' ميانى بين b و aاست. آن كاه مقدار 'f در "م ارزيابى مى كردد. اكر علامت (

 (F. . . IV)

روشُ ترون بابی هرجه سوم ديويلان' . اين يكى تقريب جند جـمله ای است كه در يافتن محل مينيــــم هم مقادير تابع و مـم مشتقاتت آنها را به كار مى برد. اين روش به ويرْه برای فنون بهينه سازى حند متغيره كه ارزيابى تابع و كراديانهاى آنها مورد نياز است مفيد است. با اين فرض كه تابع مينيمّ شوندهُ زد شُروع مى كنيم •

$$
\begin{equation*}
p(\alpha)=a+b \alpha+c \alpha^{2}+d \alpha^{3} \tag{F.1.|A}
\end{equation*}
$$

$\alpha=0$ كه اعداد ثابت

$$
\text { و ديخرى در } \alpha=\beta \text { بدست مى آيند. }
$$

$$
\begin{equation*}
p_{0}=p(0)=f\left(\mathbf{x}_{0}\right), \quad p_{1}=p(\beta)=f\left(\mathbf{x}_{0}+\beta \mathbf{s}\right) \tag{F.1.19}
\end{equation*}
$$

,

$$
g_{0}=\frac{\mathrm{d} p}{\mathrm{~d} \alpha}(0)=\mathbf{s}^{T} \nabla f\left(\mathrm{x}_{0}\right), \quad g_{1}=\frac{\mathrm{d} p}{\mathrm{~d} \alpha}(\beta)=\mathbf{s}^{T} \nabla f\left(\mathrm{x}_{0}+\beta \mathbf{s}\right) . \quad(\mathcal{Y} .1 . Y \cdot)
$$

(fff

$$
\begin{array}{cc}
p(\alpha)=p_{0}+g_{0} \alpha-\frac{g_{0}+e}{\beta} \alpha^{2}+\frac{g_{0}+g_{1}+2 e}{3 \beta^{2}} \alpha^{3}, & \text { (Y.1.Y Y) } \\
e=\frac{3}{\beta}\left(p_{0}-p_{1}\right)+g_{0}+g_{1} . & \text { (Y.1.YY) } \tag{Y.Y,YY}
\end{array}
$$

 مشّتفاتت نسبت به α تعيين كنيم. اين كار به نتيجه زير مى انجامد:

$$
\begin{equation*}
\alpha_{m}=\beta\left(\frac{g_{0}+e \pm h}{g_{0}+g_{1}+2 e}\right), \tag{Y.I.YY}
\end{equation*}
$$

كه در آن

$$
\begin{equation*}
h=\left(e^{2}-2 g_{0} g_{1}\right)^{1 / 2} \tag{f.I.YY}
\end{equation*}
$$

به راستى مى توان با بررسی نگاه داشتـه شود، تا اين كه يكى مينيمم باشد و نه ماكزيمـم . بنابراين، الكُـوريـتـم درون يـابـى درجـه سـوم .
. 1
Y . . در غيابب يكى حدس ابتدايهى از طول كام اوليهُ ، مى شمود آن را بر اساس يكى درون يابى درجه
دوم كه با الستفاده از

$$
\begin{align*}
& \beta=\frac{2\left(p_{\min }-p_{0}\right)}{g_{0}} . \tag{Y,1,Y0}\\
& \text {. }
\end{align*}
$$

度
ه ه
. 9
fov

$$
\begin{equation*}
g_{\alpha_{m}}=\frac{d f\left(\mathbf{x}_{0}+\alpha_{m} \mathbf{s}\right)}{d \alpha_{m}} \geq 0 \tag{4.1.广y}
\end{equation*}
$$

از بازه' ^. انكر
 داده شد انتخاب كرد.

مساله' مينيمم سازى تابع f($f(\alpha)$ معادل بدمت آوردن رينه معادلهُ غير خطى زير است.

$$
\begin{equation*}
f^{\prime}(\alpha)=0 \tag{Y.1.YV}
\end{equation*}
$$

 نيوتن ' است . اين روش تشكيل شده از خطىى سـازى (نتطه'

$$
f^{\prime}\left(\alpha_{i+1}\right)=f^{\prime}\left(\alpha_{i}\right)+f^{\prime \prime}\left(\alpha_{i}\right)\left(\alpha_{i+1}-\alpha_{i}\right), \quad \text { (ץ.।.Yへ) }
$$

صفر شود. اين نقطه

$$
\begin{equation*}
\alpha_{i+1}=\alpha_{i}-\frac{f^{\prime}\left(\alpha_{i}\right)}{f^{\prime \prime}\left(\alpha_{i}\right)} \tag{4.1.rq}
\end{equation*}
$$

 متعددى وجود دارد[6] كه روش نيوتن را بهبود مى بخشد و آنذ را به شُكل فراكير برای توابع جند متغـيره
 روشها در بخش آينده مطرح مى شوند.

سبب آنكه اين روش به عنوان يك روش مرتبهُ دوم شناخته مى مُود نه تنها استفادهاش از از اطلاعـات

$$
\lim _{i \rightarrow \infty} \frac{\left|\alpha_{i+1}-\alpha^{*}\right|}{\left(\alpha_{i}-\alpha^{*}\right)^{2}}=\beta
$$

در حالى كه
 درون يابي هاى حـند جملهاى مـانــد درون بايى درجـه دوم و درون ياعى درجه سوم ديويدان كاهى در

 اين رونـها از تركيب درون يابى جند جمله أى با يكى نن دو بخشتى سـاده يا فن جــت و جوى بخشـ طلامه

P.Y مينيمم سازى توابع جند متغيره

رونـهاى متعددى برای مينيمم سـازى يكى تابع جند متغيره تنها با استفاده از مقدار تابع وجود دارد . بـا

 به مشتق پذير بـودنf ندارد، در حورتى كه مشتت بـذيرى f در جست وجوى خحط دفيق رون بـاول لازم است. بــ كمكـ آزمـايش آتايان نلدر و ميد' [9] روشن شـد

 صريح و يا از رابطه هاى تفاضل محدود بدست مى آيند.
 اراثه شـد و به دنبال آن توسط نلدر و ميد توسعغ يافت. اين رون با يكى شكل هندسى منظم كه سيميلكس
 با مركز و نقاطى در امــداد n جهت مشتصصات تعريف كرد. جنين سيملكسى مدكن است از نظر هندسى منظم نباشـد. روابط زير برایى محاسبهُ موقعيت رأسهاى يكى سيمبلكس منظم به اندازه؛a در نضاى طراحى n بعدى در مرجع 8 اراثه شـده اسـت.

$$
\begin{equation*}
\mathrm{x}_{j}=\mathrm{x}_{0}+p \mathrm{e}_{j}+\sum_{\substack{n=1 \\ h \neq j}}^{n} q \mathrm{e}_{k}, \quad j=1, \ldots, n \tag{F.Y.I}
\end{equation*}
$$

$$
p=\frac{a}{n \sqrt{2}}(\sqrt{n+1}+n-1), \quad, \quad q=\frac{a}{n \sqrt{2}}(\sqrt{n+1}-1), \quad \text { (F.Y. Y) }
$$

در حالى كه
 متساوى الساقين به ضلع a مى انجامد.
منكامى كه سيملكس تعريف شـد، تابع f در تمامى n+1 رأمس . فرض كنيد

راسس باشد كهاز نظر مقدار در ردهُ دوم از بالا باشد. روش سيملكس رأس x را كنار مى كذارد و آن را با يكى نقطه كه در آن f يكى مقدار كمترى دارد جايكزين مى كند. اين كار با سه عمل به نامهـاى انعكاس، انتباض وانبــاط انجام مى شود. عمل انعكاس در امتداد خطط اتصال X به مركز X نقاط باتيمانده، نقطه' جديل XX رابه وجود مى آورد

$$
\begin{array}{cc}
\overline{\mathbf{x}}=\frac{1}{n} \sum_{i=0}^{n} \mathbf{x}_{i}, \quad i \neq h . & \text { (F. Y. Y) } \\
: \\
\mathbf{x}_{r}=\overline{\mathbf{x}}+\alpha\left(\overline{\mathbf{x}}-\mathbf{x}_{h}\right), & \text { (F. Y. Y) } \tag{F,Y,F}
\end{array}
$$

كه در آن α يكى علد ميبت امست كه ضريب انعكاس ناميده مى شُود و معـمـولاً واحد فرض مى شُود.
 \mathbf{x}_{r} اكر مقدار تابع در اين نقطهُ جديد،
 بايان انعكاس از مقدار بائينى تابع
 انبساط در رابطه'

$$
\begin{equation*}
\mathbf{x}_{e}=\overline{\mathbf{x}}+\beta\left(\mathbf{x}_{\mathrm{r}}-\overline{\mathbf{x}}\right), \tag{F.Y.©}
\end{equation*}
$$

به دست مى آيد كه در آن ضريب انبساط β را راغلب 2 انتخاب مى كنتد . اكر مقدار تابع

 جديدى را تشكيل مي دهيم و ادامه مى دهيم . \mathbf{x}_{r} در نهايت، اكر فرايند انعكاس به نقطط،
 هيج جايكزينى و با الستفاده از

$$
\begin{equation*}
\mathbf{x}_{c}=\overline{\mathbf{x}}+\gamma\left(\mathbf{x}_{h}-\overline{\mathbf{x}}\right), \tag{F,Y,Y}
\end{equation*}
$$

 بزر كمر باشدد، آن كاه تمامي نقاط رابا يكى مجموعهُ نفاط

$$
\mathrm{x}_{i}=\mathrm{x}_{i}+\frac{1}{2}\left(\mathrm{x}_{l}-\mathrm{x}_{i}\right), \quad i=0,1, \ldots, n, \quad \text { (ץ.Y.V) }
$$

جايكزين كرده و فرايند رابا اين سيملِس جديد نكرار مي كنبم. عمل معـادله؛ (Y . Y . V) سبب دو نيم شـدن فاصله' بين نقاط سيمبلكس تليمى و نتطه با مقدار كترين تابع مي شوود بنابراين به آلن عمل كامش
 همكرايعى و تطع الكوريتم رابط' زير را يُشنهاد داده اند

$$
\begin{equation*}
\left\{\frac{1}{1+n} \sum_{i=0}^{n}\left[f_{i}-f(\overline{\mathbf{x}})\right]^{2}\right\}^{\frac{1}{2}}<\epsilon \tag{F.Y.今}
\end{equation*}
$$

در حالى є كه دتّ مورد نباز اسـت.

 fov ، تابم انتجام مى شود. مقلار برش با رابطه زير تعريف مى شود

$$
\begin{equation*}
f_{e v}=\frac{\left(f_{h}+f_{l}\right)}{2}+\eta s \tag{F,Y,q}
\end{equation*}
$$

كه در آن s انحراف امستاندارد مقادير تابع رأسهاى سيمبلكس است،

$$
\begin{equation*}
s=\left[\sum_{i=0}^{n}\left(f_{i}-\bar{f}\right)^{2} /(n+1)\right]^{\frac{1}{3}}, \tag{Y.Y.Y•}
\end{equation*}
$$

مبانم بهينه سازى ساز، ما (نصل F IVF

 تشكيل مى دهند. رأسهاى ديكر به عنوان نقاط مرجع هستند. اكر چارامتر 7 به اندازه’ كانفى بزرك باشد،

X x_{n} ך در جلدلII مرجع[10] اراثه شُده امت . در ميان n+ 1 رأمس سيمهلكس نعلى، رأمها را از بزركترين $i=0, \ldots, n_{c v}$ تا كو ییكترين مرتب كرده وبا عناصر كروهى كه بعداً انعكاس مى يابند امست، مركز رأمها در كروه مرجع به ثـكل زير تعريفس مى شود .

$$
\begin{equation*}
\overline{\mathbf{x}}=\frac{1}{n-n_{e v}} \sum_{i=n_{c v}+1}^{n} x_{i} . \tag{F.Y.II}
\end{equation*}
$$

 ثُده[10]، و ممجحنين با رومّهاى توانمندتر مانند روش مرتـبـ، دوم ديويدان- نلتهر - يـاول' (DFP) كه
 بهيود يانت كاراتر و توانمندتر از الـجـوريـتـم دى انـ بيى (DFP) است. نلدر و مـيـد[9] در مورد كاريرد الكوريتمشان در منيمـم سازى توابع آزمايشثى كلاسيكى توضيشاتث كاملى داده اند و عملكرد آن را با روث جهتهاى مزدوج باول كه بعدآ بحتث مى نمود مقايسه كرده اند.
 بسبارى از الكوريتمهاى مينيمـم سازى نامقيد براى مينيمـم سازى يكى نابع درجه دوم تدوين مُـده اند. . اين به سبب آن امت كه يك تابع را مى توان در نزديكى يكى مينيمـم با يكى تـبـع درجـهُ دوم بشخوبى نتريـب زد.

$$
\begin{equation*}
f(x)=\frac{1}{2} x^{T} Q x+b^{T} x+c \tag{F.Y.IY}
\end{equation*}
$$

يك ميجموعه از جهتهاى ... Q ا مزدوج كويند اكر
$s_{i}^{T} Q_{s_{j}}=0$,
$i \neq j$.
 مزدوج Q كه به ثكل خخطى مستقلند مينيمـم شود آن كاه مينيمـم f بدون اعتنا به نقطهُ ثـروع در n كام يا

مبانى بهينه سازى ساز، ها (فصل f : بهينهسازى نامقيد)
قبل از n امين كام بدست خواهد آمل مشروط به اين كه هيج كرنه خطاى كرد كردن انباشته نشـده باشد. بـ
 مزدوجى با يك تركيب مناسب از جست و جوى تك تغيرى ماده و يك فن جست و جبوى الكو يك روش آمسان اراثه داد[3] . با اين همه، الكوريتم پاول در حالتهاى مشتخصى جهتهايع به وجود مى آورد كه به طرر خطى وابسته اند و بنابراين به مينيمم همكر انمى شوند ـ بس مى توان كفت باول الكوريتمس را براى توانمند بودن بهبود بخششيد ولى به بهاى خاصيت بايانى درجه' دومش . رامبرد باول برایى به وجود آر ردن جهتهاى مزدوج برامساس خاصيت زير است (براى انبات به مرجع [3] مراجعه كنيد) . أكـر X درجه' دوم f روى خططى در امتداد s كه از s از بانتهُ باول بر اسماس يك دور مينيمم سازى هاى تك تغييرى قرار دارد. در هر دور ما كامهاى زير راااستفاده x

نسروع كرده و نقاط Y . . بعد از تكميل دور تـكـ تغيرى، نـماد m مـربرط بـه جهت جست و جوى تكى تغييرى را كه بيشنرين مقدار و كاهشْ تابع رادر ر رتن از r
 S1.F

$$
\begin{equation*}
|\alpha|<\left[\frac{f\left(\mathbf{x}_{0}^{k}\right)-f\left(\mathbf{x}_{0}^{k+1}\right)}{f\left(\mathbf{x}_{m-1}^{k}\right)-f\left(\mathbf{x}_{m}^{k}\right)}\right]^{\frac{1}{2}} \tag{F.Y.IF}
\end{equation*}
$$

آن كاه دوباره از همان جهتهاى قديمى براى دور تك تغيرى بعدى استفاده كنيد (يعنى از هيج كدام از

تا زمانى كه به يك تقريب مشخص همحكرا شود تكرار كنيد. فرض مى شود كه همكرايى وتتى به وجود مى آيد كه نرم اتليدسى |
 اكثون روشُ بهبود يافته در مثال سـاده' بعدى كه درباره‘ تتحليل سـازه هاست تشربح مى شود.

F.r. P. مثال

شكل r. r. r. تير يكسركيرداركه در سر آزاد باركذارى شده رمدل جزء محدردآن

$$
v(\xi)=\left[\begin{array}{llll}
\left(1-3 \xi^{2}+2 \xi^{3}\right) & l\left(\xi-2 \xi^{2}+\xi^{3}\right) & \left(3 \xi^{2}-2 \xi^{3}\right) & l\left(-\xi^{2}+\xi^{3}\right)
\end{array}\right]\left\{\begin{array}{l}
v_{1} \tag{F.Y.10}\\
\theta_{1} \\
v_{2} \\
\theta_{2}
\end{array}\right\},
$$

در حالى كه/l/ 1

$$
\begin{equation*}
\Pi=\frac{E I}{2 l^{3}} \int_{0}^{1}\left(\frac{\mathrm{~d}^{2} v}{\mathrm{~d} \xi^{2}}\right)^{2} \mathrm{~d} \xi+p v_{2} . \tag{F.Y.|я}
\end{equation*}
$$

$$
\begin{aligned}
& \Pi=\frac{E I}{2 l^{3}}\left(12 v_{2}^{2}+4 \theta_{2}^{2} l^{2}-12 v_{2} \theta_{2} l\right)+p v_{2} \text { (F.Y. IV) }
\end{aligned}
$$

جرخش سر آزاد تير به بك مينيمم سـازى نامقيد زير مى انجامد:

$$
f=12 x_{1}^{2}+4 x_{2}^{2}-12 x_{1} x_{2}+2 x_{1} .
$$

با شروع از نقطه' اوليه -باول مينيم خواهبم كرد . جواب دتين اين مسالد عبارت المت از جون ما يك رابطه' صريح برايى تابع مدف f داريم، مينيمم سـازى هاى يك بعدى در امتداد يك جهت

 نشان دادن تعداد دور تك تغييرى از يك النديس بالايمى و برایى تعداد جرخحه ما در يك دور از انديس بايـين الستفاده مى كنيم. $s_{1}^{1}=(1,0)^{T}$ ابندا، جست وجوى تك تغييرى رادر امتدادهاى

$$
\mathbf{x}_{1}^{1}=\left\{\begin{array}{l}
-1 \tag{F.Y.19}\\
-2
\end{array}\right\}+\alpha\left\{\begin{array}{l}
1 \\
0
\end{array}\right\}=\left\{\begin{array}{c}
-1+\alpha \\
-2
\end{array}\right\},
$$

$$
f(\alpha)=12(-1+\alpha)^{2}+4(-2)^{2}-12(-1+\alpha)(-2)+2(-1+\alpha) . \quad(\uparrow . \gamma . \gamma \cdot)
$$

$$
\begin{align*}
& \text { برابر است با } \\
& \mathbf{x}_{1}^{1}=\left\{\begin{array}{l}
\frac{-13}{-12} \\
-2
\end{array}\right\} \quad, \quad f\left(\mathbf{x}_{1}^{1}\right)=1.916666667 \\
& \text { با انتخاب } \\
& \mathbf{x}_{2}^{1}=\left\{\begin{array}{l}
\frac{-13}{12} \\
-2
\end{array}\right\}+\alpha\left\{\begin{array}{l}
0 \\
1
\end{array}\right\}=\left\{\begin{array}{c}
\frac{-13}{12} \\
-2^{+} \alpha
\end{array}\right\}, \tag{f.r.rı}
\end{align*}
$$

$$
f(\alpha)=12\left(\frac{-13}{12}\right)^{2}+4(-2+\alpha)^{2}-12\left(\frac{-13}{12}\right)(-2+\alpha)+2\left(\frac{-13}{12}\right),(Y . Y . Y Y)
$$

كه در $\alpha=3 / 8$ مينيمم امت. بنابراين در بايان جست و جوى تك تغيرى داريم

$$
\mathbf{x}_{2}^{1}=\left\{\begin{array}{c}
\frac{-13}{12} \\
\frac{-13}{8}
\end{array}\right\} \quad, \quad f\left(\mathbf{x}_{2}^{1}\right)=1.354166667
$$

در اين جا يك جهت الكُ به شـكل زير مى سازيم

$$
s_{p}^{1}=X_{2}^{1}-X_{0}^{1}=\left\{\begin{array}{c}
\frac{-13}{12} \\
\frac{-13}{8}
\end{array}\right\}-\left\{\begin{array}{c}
-1 \\
-2
\end{array}\right\}=\left\{\begin{array}{c}
\frac{-1}{12} \\
\frac{3}{8}
\end{array}\right\}, \quad(Y . Y . Y Y)
$$

و تابع را در امتداد اين جهت مينيمم مى كنيم. داريم

$$
x_{0}^{2}=\left\{\begin{array}{c}
-1 \\
-2
\end{array}\right\}+\alpha\left\{\begin{array}{c}
\frac{-1}{12} \\
\frac{3}{8}
\end{array}\right\}=\left\{\begin{array}{c}
-1-\frac{\alpha}{12} \\
-2+\frac{3 \alpha}{8}
\end{array}\right\}, \quad \text { (Y.Y.YY) }
$$

كه در نتطهُ زير با $\alpha=40 / 49$ به مينيمم مى رسد

$$
x_{0}^{2}=\left\{\begin{array}{c}
\frac{-157}{147} \\
\frac{-83}{49}
\end{array}\right\} \quad, \quad f\left(x_{0}^{2}\right)=1.319727891
$$

در اولين دور از جست و جوى تك تنييرى جهتى كه بيشترين كاهش در تابع هدن f به وجود مى آورد مربوط به متغير دوم امت. اكنون مى توانيم تصميم بكبريم كه آيا مى خواهيم جهـت جـسـت وجـوى تـى
 الكوريتم در معادله' (Y . Y . Y (انتجام مى شود. يعنى، معيار باول

$$
|\alpha|=\frac{40}{49}<\left[\frac{2-1.319727891}{1.916666667-1.354166667}\right]^{\frac{1}{2}} . \quad \text { (Y. Y. YO) }
$$

برآورده شُهه بنابراين ، جهتهاى جسست و جوى نكى تنييرى كذنته رابرایى دور دوم نگه مى داريم و روش

جدول I. I. 1

شماره' دور	x_{1}	x_{2}	f
0	-1.0	-2.0	2.0
1	-1.083334	-2.0	1.916667
1	-1.083334	-1.625	1.354167
2	-0.895834	-1.625	0.9322967
2	-0.895834	-1.34375	0.6158854
2	-0.33334	-0.499999	-0.333333

ميزان اهميت روش بهبود يافته؛ باول به شُكل مشُخص و واضح در مينيمم سازى تابع زير كه توسط اوريل '[2] مطرح شُده مشاهده مى شُود.

$$
f=\left(x_{1}+x_{2}-x_{3}\right)^{2}+\left(x_{1}-x_{2}+x_{3}\right)^{2}+\left(-x_{1}+x_{2}+x_{3}\right)^{2},
$$

كه به عنوان يكى تمرين براى خوانده كذاشثته مى شود (تمرين r را بينيد) . • •
قبل از اين كه به بحث روشهاى مرتبه اول بيردازيم، خوب است بينينم جهـ موتع بايد روش مرتبه صفر استفاده شُود . روش سيملكس دنبالهأى رامى توان براى توابع غير مشتق بذير كه روشُهاى مرتبهاول براى آنها مناسب نيستند استفاده كرد. براىى آن دستهاز مسائل مينيمم سازى نامقيد كه توابع مئتق بذير دارند بهتر الست كه مشتتهاى دقيق محاسبه شُود، يا وتتى مشتتها رامى توان دتيف محاسبه كرد آن مـتْتها رابا استفاده

 دتت ارزيابى تابع پايين است هنوز جايگاه ويزه الى دارد. هنگامى كه ارزيابى توابع دقت كمى دارد بايد از روابط تفاضل محدود با درجات بالاتر براى محاسبه مشتتها استفاده كرد، بنابراين، براى مينيـمـم سـازى استفاده از يك روش مرتبهُ صفر يك جايگزين معقول تر است.

> r. r. r. روشهایى صرتبه اول
 مينيمم سازى تابع از كراديان و مقدار خود تابع استفاده مى كند. اين روشها يكى نرخ ممكرايى خططى يـا
 1) Avriel

IV4 بين
pمى كويند كه

$$
\begin{equation*}
\left\|x_{k+1}-x^{*}\right\| \leq c_{k}\left\|X_{k}-x^{*}\right\|^{P} \tag{F.Y.YQ}
\end{equation*}
$$

 ممكرايع يكى همكرايع q مرتبه سادهُ از مرتبه' حداتل pاست. بنابراين، امر

همكرا مُود آن كاه مـكرايه را نوق خطى كويند (براى تعاريف بيشتر به مر جع6 مراجعه كنيد). شايد تديمى ترين روسى كه برايى مينيمم سازى يكى تابع n متغيره شـناسايى شده روش تندترين كاهـت
 هم توان به شـكل زير براى مينيمم سازى تابع استفاده كرد . جهت حركت با مبنيمم سازى مشتق سـويى بدست مى آيد

$$
\begin{equation*}
\nabla f_{\mathrm{s}}=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} s_{i}, \tag{F,Y,YV}
\end{equation*}
$$

مشروط به اين شرط كه 8 يكى برداريكه در R در فضاى اتليدسى بامُد.

$$
\mathbf{s}^{T_{s}}=1
$$

(F.Y.YA)

مى توان به راحتى نـنان داد (به تمرين6 مراجعه كنيد) كه جهت تندترين كاهـُ عبارتاست از

$$
\begin{equation*}
s=-\frac{\nabla f}{\|\nabla f\|} \tag{Y,Y,Y母}
\end{equation*}
$$

در حاللى كه|| || نتانكر نرم اتليدسى ست و اين جهت بيشترين كاهـُ در fاست. با ثـروع از هرخَهُ ${ }^{\prime \prime}$ نرايند مينيمبمسازى ، نتطه' بعلى

$$
\begin{equation*}
x_{k+1}=x_{k}+\alpha s \tag{F,Y,Y,}
\end{equation*}
$$

ر اين جـا 8 أز رابطه (Y . Y. Y Y) بدست مى آيـد و a جـنان بدست مـي آيـد كـه f در امتداد جهـت 1) Cauchy

انتخاب شده با استفاده از يكى از فنون مينيمم سلازى يكـ بعدى كه در بخشش تبلى ارائه شد مينيــمـ شـود. اكر تابع مينيمم شونده در R درجه دوم بانُد و به شُكل زير بيان شود.

$$
\begin{equation*}
f=\frac{1}{2} \mathbf{x}^{T} \mathbf{Q} \mathbf{x}+\mathbf{b}^{T} \mathbf{x}+c \tag{Y.Y.rı}
\end{equation*}
$$

 هر خهه و سبس مينيمم سازى f نــبت به ه كه به

$$
\begin{equation*}
\alpha^{*}=-\frac{\left(\mathbf{x}_{\mathbf{k}}{ }^{\mathbf{T}} \mathbf{Q}+\mathbf{b}^{\mathbf{T}}\right) \mathbf{s}}{\left(\mathbf{s}^{T} \mathbf{Q} \mathbf{s}\right)} . \tag{Y.Y.rY}
\end{equation*}
$$

مى انجامد بدست آورد. در بدست آوردن معادلهُ (Y. Y. Y Y) فرض مى كنيم كه ماتريس هسيان Q شكل درجه' دوم به طور صريح در دسترس است، واز تقارن Qاستفاده مى كنيم. عملكرد روش تندنرين كاهش به عدد شرطمى ماتريس هسيان Qبسنگى دارد ـ عدد شُرطى يكى ماتريس

 مى شود است. اين يّشرفت حتى براى توابع درجه دوم مم بها اين شكل استو ومى توانآنَ رابا مفياس بندى مجدد متغيرها بهبود بخشيد.

P.Y.Y مثال

 بخشيدن مقياس بندى متغيرها سبب مى شرد كه روش تندترين كاهش تنها در يك كام به مينيمـم هـــــرا شود. به عنوان مثال، تبديل زير رادر نظر بكيريد.

$$
y_{1}=\left(x_{1}-\frac{1}{2} x_{2}\right), \quad y_{2}=\frac{1}{\sqrt{12}} x_{2} . \quad(\digamma, Y, \Psi Y)
$$

1) Zigzag

اكنون تابع f را مى شود بر حسب متغير هاى جديد

$$
f\left(y_{1}, y_{2}\right)=y_{1}^{2}+y_{2}^{2}+\frac{1}{6}\left(y_{1}+\sqrt{3} y_{2}\right) . \quad \text { (F.Y.YY) }
$$

در نتيجـهُ مقياس بنلدى و حذف جـملات ضرب بردارى، عــلد ثـرطى هـــــيـان f واحلد مى شــود. .
 تندترين كاهش داريمم:

$$
y_{1}=y_{0}+\alpha\left\{\begin{array}{c}
2 y_{10}+\frac{1}{6} \\
2 y_{20}+\frac{\sqrt{3}}{6}
\end{array}\right\}
$$

(F. Y.ro)

به آمسانى مى توان نشان داد كه مقدار *م كه f را مينيمم مى كند برابر با 0.5 اسمت. . بنابراين؛

$$
\mathbf{y}_{1}=\left\{\begin{array}{c}
\frac{-1}{12} \\
\frac{-\sqrt{3}}{12}
\end{array}\right\}
$$

كه در آن كراديـان f صفر است، كه نشانكر مينبمم بودن آن نقطه است . مقادير متناظر مـتغـيـرهـاى

 - • روش تندترين كاهن در غياب يك مقياس بندى مناسب تنها نرخ همكرايى خطى دارد

 مينيمم بينجامد كار سـادهاى نيست. اين كار به محـاسببهُ ماتريس مسيان و سبس بك تحليل مقـدأر ويـرّه

الكوريتممرادبان مزدوج فلتجر - ريوز . اين الكُوريتم از يك نقطهُ اوليه در المتلاد جهت بيينترين كاهس،

 آيد. جهت بعدى
 دوم، در بايان مينيمم سازى تـابع f در امتداد جهـت مـزدوج
 را الز دسـت مى دهد زيرا هسيان توابع ديكر يك ماتريس ثابت نيستند. با باين همه، استفاده از اين الكُوريتم
 بندرت در n كام يا كمبر اتفاق مى افتد، الكُوريتم بعد از هر n كام

秋 $x_{k+1}=x_{k}+\alpha_{k+1} \mathbf{B}_{k}-1$

قرار دهيد در حالى كه

$$
\beta_{k}=\frac{\mathbf{g}_{k}^{T} \mathbf{g}_{k}}{\mathbf{g}_{k-1}^{T} \mathbf{g}_{k-1}}, \quad \quad \mathbf{g}_{k}=-\nabla f\left(\mathrm{X}_{k}\right) . \quad \text { (Y.Y.rV) }
$$

r r. أكر |
اداعه ندهيد . در غير اين صورت

مثال F.Y.T
اثر بـخنى اين روش را در مساله' تير يكــر كيردار كه در آن تابع

$$
f=12 x_{1}^{2}+4 x_{2}^{2}-12 x_{1} x_{2}+2 x_{1}
$$

را با شُروع از نتطهُ طراحى اوليه اوليه از كراديان محاسبه مى شود

$$
\begin{aligned}
\nabla f\left(\mathrm{x}_{0}\right) & =\left\{\begin{array}{c}
24 x_{1}-12 x_{2}+2 \\
8 x_{2}-12 x_{1}
\end{array}\right\}_{\mathrm{x}=\mathrm{x}_{0}} \\
\mathrm{~s}_{0} & =-\nabla f\left(\mathbf{x}_{0}\right)=\left\{\begin{array}{c}
-2 \\
4
\end{array}\right\}
\end{aligned}
$$

و در يايان اولين كام داريم:

$$
\mathbf{x}_{1}=\left\{\begin{array}{l}
-1 \\
-2
\end{array}\right\}+\alpha_{1}\left\{\begin{array}{c}
-2 \\
4
\end{array}\right\}
$$

$$
f\left(\alpha_{1}\right)=12\left(-1-2 \alpha_{1}\right)^{2}+4\left(-1+4 \alpha_{1}\right)^{2}-12\left(-1-2 \alpha_{1}\right)\left(-2+4 \alpha_{1}\right)+2\left(-1-2 \alpha_{1}\right)
$$

مقـدار

和 $=0.048077$

$$
\mathbf{x}_{1}=\left\{\begin{array}{l}
-1.0961 \\
-1.8077
\end{array}\right\}, \quad, \quad \nabla f\left(\mathbf{x}_{1}\right)=\left\{\begin{array}{l}
-2.6154 \\
-1.3077
\end{array}\right\}
$$

 است از :

$$
\beta_{1}=\frac{(-2.6154)^{2}+(-1.3077)^{2}}{(-2)^{2}+(4)^{2}}=0.4275
$$

جهت حركت جديد عبارثت است از :

$$
s_{1}=-\left\{\begin{array}{l}
-2.6154 \\
-1.3077
\end{array}\right\}+0.4275\left\{\begin{array}{c}
-2 \\
4
\end{array}\right\}=\left\{\begin{array}{c}
1.76036 \\
3.0178
\end{array}\right\}
$$

,

$$
\mathbf{x}_{2}=\left\{\begin{array}{l}
-1.0961 \\
-1.8077
\end{array}\right\}+\alpha_{2}\left\{\begin{array}{c}
1.76036 \\
3.0178
\end{array}\right\} .
$$

$$
\begin{aligned}
& \text { دوباره } \\
& \mathbf{x}_{2}=\left\{\begin{array}{c}
-0.3334 \\
-0.50
\end{array}\right\}, \quad, \quad \nabla f\left(\mathbf{x}_{2}\right)=\left\{\begin{array}{l}
0 \\
0
\end{array}\right\} .
\end{aligned}
$$

و در نهايت ، خون

$$
\left\{\begin{array}{c}
-2 \\
4
\end{array}\right\}^{T}\left[\begin{array}{cc}
24 & -12 \\
-12 & 8
\end{array}\right]\left\{\begin{array}{c}
1.76036 \\
3.0178
\end{array}\right\} \simeq 0
$$

Q مزدوج بودن دو جهت - • •تشريح شده است (F . Y. . Y)

فن كراديان مزدوج دوباره شـروع شُلهُ بيل ' . در مينيمم بـازى توابع غير درجه دوم با استفاده از روش كراديان مزدوج، شُووع دوباره’ روش بعـد از n كام يك راهبرد خورب نيسـت. به نظر مى رسد كه هنيـن راهبردى به مشخصـهُ غير خططى بودن تابعى كه مينيمم مى ثود حساسيـتى نــارد. بـيـل[14] و بعد از او

1) Beale

چاول[15] نون شروع دوبارهاى را يـشنهاد كردند كه در تصميم زمان هـروع دوباره؛ الكوريتم، غير خططى بودن تابع دخالت دارد . تجربه هاى عددى در مينيمم سازى توابع كلى مختلف به الكُوريتم زير كه تو وـطط باول أرائه شد انجاميد.
| . با

$$
\mathbf{s}_{0}=-\nabla f\left(\mathbf{x}_{0}\right)=\mathbf{g}_{0}
$$

阬 $k=t=0$

$$
\text { Y. برایى } k \geq 1 \text { جهت }
$$

$$
s_{k}=-g_{k}+\beta_{k} s_{k-1}+\gamma_{k} s_{t}, \quad, \quad g_{k}=-\nabla f\left(\mathbf{x}_{k}\right), \quad \text { (Y.Y. Y^) }
$$

تعريف مى شود كه در آن

$$
\begin{equation*}
\beta_{k}=\frac{\mathbf{g}_{k}^{T}\left[g_{k}-g_{k-1}\right]}{\mathbf{s}_{k-1}^{T}\left[g_{k}-g_{k-1}\right]} \tag{f.Y.rq}
\end{equation*}
$$

$$
\begin{aligned}
& \gamma_{k}=\frac{\mathbf{g}_{k}^{T}\left[\mathbf{g}_{t+1}-\mathbf{g}_{t}\right]}{\mathbf{s}_{t}^{T}\left[\mathbf{g}_{t+1}-\mathbf{g}_{t}\right]}, \quad \text { رi } \quad k>t+1, \quad \text { (F.Y. F.) } \\
& \gamma_{k}=0, \quad \text { را } \quad k=t+1 . \quad \text { (Y.Y.YI) }
\end{aligned}
$$

r. برایى $k \geq 1$ نامعادلهُ زير رآآزمايش كنيد

$$
\begin{equation*}
\left|\mathbf{g}_{k-1}^{T} \mathbf{g}_{k}\right| \geq 0.2\left\|\mathbf{g}_{k}\right\|^{2} \tag{Y,Y,YY}
\end{equation*}
$$

 براي شُروع دوباره هز بين رمته در نظر مى كيريم • بر اين اساس ، t دوبـاره با $t=k-1$ جايكزين مى شود تا شروع دوباره را نشان دمد. F
$-1.2\left\|\mathrm{~g}_{k}\right\|^{2} \leq \mathrm{s}_{k}^{T} \mathrm{~g}_{k} \leq-0.8\left\|\mathrm{~g}_{k}\right\|^{2}$.
انجام مـى شُود. اكر ايـن نامعادلات برآّرده نـــود، الـكـوريـــم بـا قرار دادن - - $t=k$ دوباره شروع مى شود.
ه. در نهايت، اكر $k-t \geq n$ باشد نيز مانند حالت روش فلتهر -ريوز، الكوريتم با ترار دادن
t =k-1 دوباره شروع مى شُود.

و. 9

 متنوعى بررسى كردهاست. اين بررسيها به روشنى فون العاده بودن روش جديد بر الكوريتم فلتجر - ريوز و بولك- ريبيرى' [16] رابازكو مى كند. تنها نتص اين الكوريتم جديد اين است كه حـافظـهُ مورد نياز كمى افزايش مى يابد زيرا بردارهاى

r.r.r.r r. r روشهای مرتبه دوم

تديمى ترين روش مرتبه؛ دوم برای مينيمم سازى يك تابع جند متغيرهُ غير خطى در ما R روش نيوتن

 كرديم، معادله' (Y . Y . YA) . با اين وجود، نرم اقيلدسى انحتاى سطع را در نظر نمى كيرد. بنابراين،
 يافتن جهت s كه

$$
\begin{equation*}
\nabla f^{T} s=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} s_{i} \tag{F,Y,FY}
\end{equation*}
$$

1) Polak-Ribiere

را مشُروط به

$$
\mathbf{s}^{T} \mathbf{Q s}=1
$$

(F. Y. YO)

كند خواهد بود. . حل اين مساله توسط جهت نيوتن (به تمرين 9 مراجعه كنيد) بدسـت مي آيد كه يك
عدد ضرب ثُمونده است، يعنى :

$$
\mathbf{s}=-Q^{-1} \nabla f
$$

(F.Y.Yя)

$$
\text { تابع در R }{ }^{\text {عبارت است از }}
$$

$$
x_{k+1}=x_{k}-\alpha_{k+1} Q_{k}^{-1} \nabla f\left(x_{k}\right)
$$

(F. Y. FV)

در سالى كه (Y ب Y Y . FY) براى تابع درجه دوم مى توان نشان داد كه معادلهُ بَ هنگام با

به جواب بهين

$$
\begin{equation*}
\mathbf{x}^{*}=\mathbf{x}_{0}-\left[\mathbf{Q}\left(\mathbf{x}_{0}\right)\right]^{-1}\left[\nabla f\left(\mathbf{x}_{0}\right)\right], \tag{F.Y.FA}
\end{equation*}
$$

مى رسد.
روش نيوتن رانيز مى توان نشان داد كه نرخ همگرايه درجه دوم دارد (مثال † يا 1 را ببينيل) ، اما عيب
اماسى روش نياز داشتن به ارزيابى مسيان و آن كاه حل دستكاه معادلات

$$
\begin{equation*}
\mathbf{Q s}=-\nabla f \tag{F.Y.Fq}
\end{equation*}
$$

براى بدست آرردن بردار جهـت s أست. در هر جرخه (أكر Qغير لاغر باشــد) ، روش نيوتن ثـامل
 (Y . Y . Y 4 (است . اين جنبه از روش نيوتن است كه به تدوين روشهايع انجاميده كه شبه نيوتن يا متغير متريكى ناميده مى مُوند و از اطلاعات كراديان براى تقريب ماتريس مسيان يا وارون آن استفاده مى كنند .

$$
\begin{equation*}
\nabla f\left(\mathbf{x}_{k+1}\right) \simeq \nabla f\left(\mathbf{x}_{k}\right)+\mathbf{Q}\left(\mathbf{x}_{k+1}-\mathbf{x}_{k}\right), \tag{Y.Y.O.}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{y}_{k}=\mathbf{A}_{k} \mathbf{p}_{k} \tag{F.Y.OI}
\end{equation*}
$$

كه در آن

$$
\left.\mathbf{y}_{k}=\nabla f\left(\mathbf{x}_{k+1}\right)-\nabla f\left(\mathbf{x}_{k}\right), \quad, \quad \mathbf{p}_{k}=\mathrm{x}_{k+1}-\mathrm{x}_{k}, \quad \text { (ץ.Y. } \mathrm{V}\right)
$$

$$
\mathbf{B}_{k+1} \mathbf{y}_{k}=\mathbf{p}_{k},
$$

كه
 \mathbf{B}_{k} همهُ روشهاى متغير متريك يا نببه نيوتن عبارت از اين است كه، رابطهاى كه ماتريس
 را حفظ كنتد. به سـخن ديگر، اكر يك الكُوريتم متغير متريك نمونه با يكـ وارون هسيان بهنكام را مى شود به شكل زير بيان كرد

$$
x_{k+1}=x_{k}-\alpha_{k+1} s_{k}
$$

در حالى كه

$$
\mathbf{B}_{k}=-\mathbf{B}_{k} \nabla f\left(\mathbf{x}_{k}\right),
$$

بخش F. 1 : مينيمرسازى توابع جند متغيره

 براى B

$$
\mathbf{B}_{k+1}=\mathbf{B}_{k}+\frac{\left(\mathbf{p}_{k}-\mathbf{B}_{k} \mathbf{y}_{k}\right)\left(\mathbf{p}_{k}-\mathbf{B}_{k} \mathbf{y}_{k}\right)^{\boldsymbol{T}}}{\left(\mathbf{p}_{k}-\mathbf{B}_{k} \mathbf{y}_{k}\right)^{T} \mathbf{y}_{k}}
$$

 دارد، و بنابراين از رتبه يك است. افزون بر اين، أكر B بود . با اين مهـ، معين مثبت باتى ماندن
 برويدن[19] براي انتشاب طول كام
 كاهش يابد.
بدون توجه بهنوع جست و جوى خط به كار كرمنه شدهه، بهنكام برويدن يكن خاصيت بايانى درجئ دوم
 رتبهُ يك با بهنكام هاى رتبهُ دو جايكزين مى شوند كه مـم تقارن و مم معين منبت بودن ماتريس هاى بهنكام را تضمين مى كنتد.

بهنكام ماى رتبءٌ دو . بهنكام هاى رتبه دو براى تتريب وارون هسبـان رامى شود به طور كلى بـ شـكل زير نوشت:

$$
\mathbf{B}_{k+1}=\left[\mathbf{B}_{k}-\frac{\mathbf{B}_{k} \mathbf{y}_{k} \mathbf{y}_{k}^{T} \mathbf{B}_{k}}{\mathbf{y}_{k}^{T} \mathbf{B}_{k} \mathbf{y}_{k}}+\theta_{k} \mathbf{v}_{k} \mathbf{v}_{k}^{T}\right] \rho_{k}+\frac{\mathbf{p}_{k} \mathbf{p}_{k}^{T}}{\mathbf{p}_{k}^{T} \mathbf{y}_{k}}
$$

در حالى كه

[^1]$$
\mathbf{v}_{k}=\left(\mathbf{y}_{k}^{T} \mathbf{B}_{k} \mathbf{y}_{k}\right)^{\frac{1}{2}}\left[\frac{\mathbf{p}_{k}}{\mathbf{p}_{k}^{T} \mathbf{y}_{k}}-\frac{\mathbf{B}_{k} \mathbf{y}_{k}}{\mathbf{y}_{k}^{T} \mathbf{B}_{k} \mathbf{y}_{k}}\right],
$$

و
 را $\mathbf{B}_{k+1} \mathbf{y}_{k}=\mathbf{p}_{k}$ دهيم، رابطهُ بهنگام ديويدان - فلتهر- باول (DFP)(21,22] زير رابدست مى آوريم:

$$
\begin{equation*}
\mathbf{B}_{k+1}=\mathbf{B}_{k}-\frac{\mathbf{B}_{k} \mathbf{y}_{k} \mathbf{y}_{k}^{T} \mathbf{B}_{k}}{\mathbf{y}_{k}^{T} \mathbf{B}_{k} \mathbf{y}_{k}}+\frac{\mathbf{p}_{k} \mathbf{p}_{k}^{T}}{\mathbf{p}_{k}^{T} \mathbf{y}_{k}} . \tag{4,Y.09}
\end{equation*}
$$

 خاصيت جالب ديكر نيز دارد . هنكامى كه آن رابطه برایى ميـنيـــمـمـازى توابع درجه دوم استـفـاده

 باشد كه خط عملكرد الكوريتم نيز تباه مى شود[20] . در بيـتر حالتها رابطه' دى افـيمى (DFP) كاملاَ موففيت آميز كار مى كند. در حالتهاى خاصى به سبب منفرد شدن B الكُوريتم كارايى خود رالز دست مى دمد. اين

$$
\begin{align*}
& \mathbf{B}_{k+1}=\mathbf{B}_{k}+\left[1+\frac{\mathbf{y}_{k}^{T} \mathbf{B}_{k} \mathbf{y}_{k}}{\mathbf{p}_{k}^{T} \mathbf{y}_{k}}\right] \frac{\mathbf{p}_{k} \mathbf{p}_{k}^{T}}{\mathbf{p}_{k}^{T} \mathbf{y}_{k}}-\frac{\mathbf{p}_{k} \mathbf{y}_{k}^{T} \mathbf{B}_{k}}{\mathbf{p}_{k}^{T} \mathbf{y}_{k}}-\frac{\mathbf{B}_{k} \mathbf{y}_{k} \mathbf{p}_{k}^{T}}{\mathbf{p}_{k}^{T} \mathbf{y}_{k}}, \quad \text { (Y.Y.Y.) } \\
& \text { معادله (Y Y . Y . } \\
& \mathbf{B}_{k+1}=\left[\mathbf{I}-\frac{\mathbf{p}_{k} \mathbf{y}_{k}^{T}}{\mathbf{p}_{k}^{T} \mathbf{y}_{k}}\right] \mathbf{B}_{k}\left[\mathbf{I}-\frac{\mathbf{y}_{k} \mathbf{p}_{k}^{T}}{\mathbf{p}_{k}^{T} \mathbf{y}_{k}}\right]+\frac{\mathbf{p}_{k} \mathbf{p}_{k}^{T}}{\mathbf{p}_{k}^{T} \mathbf{y}_{k}} . \tag{Y.Y.FI}
\end{align*}
$$

1) Huang 2) Goldfarb \quad 3) Shanno

 تقريب هسيان رسيد. اين رابطه بهنكام به شكل زير بدست مى آيد:

$$
\begin{equation*}
\mathbf{A}_{k+1}=\mathbf{A}_{k}-\frac{\mathbf{A}_{k} \mathbf{p}_{k} \mathbf{p}_{k}^{T} \mathbf{A}_{k}}{\mathbf{p}_{k}^{T} \mathbf{A}_{k} \mathbf{p}_{k}}+\frac{\mathbf{y}_{k} \mathbf{y}_{k}^{T}}{\mathbf{y}_{k}^{T} \mathbf{p}_{k}} \tag{F.Y.gY}
\end{equation*}
$$

كه با جايكزينى

 مى انـ جى اس]

P.T.P مثال

(BFGS) $f\left(x_{1}, x_{2}\right)=12 x_{1}^{2}+4 x_{2}^{2}-12 x_{1} x_{2}+2 x_{1}$

$$
\text { با جست وجو ماى خط دقيت و با حدس اولبه' (-2 - }-2
$$

شـه و عبارت است از

$$
\mathbf{x}_{1}=\left\{\begin{array}{l}
-1.0961 \\
-1.8077
\end{array}\right\}, \quad, \quad \nabla f\left(\mathbf{x}_{1}\right)=\left\{\begin{array}{l}
-2.6154 \\
-1.3077
\end{array}\right\}
$$

از معادله؛ (F . Y . OY) داريم:

$$
\begin{aligned}
& \mathbf{p}_{0}=\left\{\begin{array}{l}
-1.0961 \\
-1.8077
\end{array}\right\}-\left\{\begin{array}{l}
-1 \\
-2
\end{array}\right\}=\left\{\begin{array}{c}
-0.0961 \\
0.1923
\end{array}\right\}, \\
& \mathbf{y}_{0}=\left\{\begin{array}{l}
-2.6154 \\
-1.3077
\end{array}\right\}-\left\{\begin{array}{c}
2 \\
-4
\end{array}\right\}=\left\{\begin{array}{c}
-4.6154 \\
2.6923
\end{array}\right\} .
\end{aligned}
$$

با جايكزينى جملات

$$
\begin{aligned}
& \mathbf{p}_{0}^{T} \mathbf{y}_{0}=(-0.0961)(-4.6154)+(0.1923)(2.6923)=0.96127 \\
& \mathbf{p}_{0} \mathbf{y}_{0}^{T}=\left\{\begin{array}{c}
-0.0961 \\
0.1923
\end{array}\right\}\left[\begin{array}{ll}
-4.6154 & 2.6923]
\end{array}=\left[\begin{array}{cc}
0.44354 & -0.25873 \\
-0.88754 & 0.51773
\end{array}\right]\right.
\end{aligned}
$$

در معادل (Y Y Y Y) Y) داريـم

$$
\mathbf{B}_{1}=\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]-\frac{1}{0.96127}\left[\begin{array}{cc}
0.44354 & -0.25873 \\
-0.88754 & 0.51773
\end{array}\right]\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

$$
\times\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]-\frac{1}{0.96127}\left[\begin{array}{cc}
0.44354 & -0.88754 \\
-0.25873 & 0.51773
\end{array}\right]\right)+\frac{1}{0.96127}\left[\begin{array}{cc}
0.00923 & -0.01848 \\
-0.01848 & 0.03698
\end{array}\right]
$$

$$
=\left[\begin{array}{ll}
0.37213 & 0.60225 \\
0.60225 & 1.10385
\end{array}\right]
$$

بعد از آن، از معادله' (Y. Y Y (F) جهت سركت جليد را محاسبه مي كنيم

$$
s_{1}=-\left[\begin{array}{ll}
0.37213 & 0.60225 \\
0.60225 & 1.10385
\end{array}\right]\left\{\begin{array}{l}
-2.6154 \\
-1.3077
\end{array}\right\}=\left\{\begin{array}{l}
1.7608 \\
3.0186
\end{array}\right\}
$$

و داديـم

$$
\mathbf{x}_{2}=\left\{\begin{array}{l}
-1.0961 \\
-1.8077
\end{array}\right\}+\alpha_{2}\left\{\begin{array}{l}
1.7608 \\
3.0186
\end{array}\right\}
$$

با بفر ترار دادن مشتت $f\left(x_{2}\right)$ نسبت به $\alpha_{2}=0.4332055$ مقدار آن را مى يابيم،

$$
\mathbf{x}_{2}=\left\{\begin{array}{l}
-0.3333 \\
-0.5000
\end{array}\right\}, \quad, \quad \nabla f\left(\mathbf{x}_{2}\right) \simeq\left\{\begin{array}{l}
0 \\
0
\end{array}\right\}
$$

اين همكرا شـدن به جواب دتيق را مى رساند ـ اكر B1 يك بار ديكر بهنگام شود خواهيم داشت:

$$
\begin{aligned}
& \mathbf{B}_{2}=\left[\begin{array}{cc}
0.1667 & 0.25 \\
0.25 & 0.5
\end{array}\right], \\
& \mathbf{Q}=\left[\begin{array}{cc}
24 & -12 \\
-12 & 8
\end{array}\right] .
\end{aligned}
$$

كه وارون دتيق ماتريس هسيان

امت . نشـان دادن حصحت اين مطلب را به عهـلـهُ خوانندكان مي كذاريـم. همحنين مي توان نشـان داد كـه
 Q هزدوج بودن جهتهاى حركت تنها در توابع درجهي دوم معنى بيدا مى كند، و براى خنين مساثلى در حالت الكوريتههاى متغير متريك مربوط به خانـواده' هانكى در صورثى اين Q مزدوج تضمين مى شود كه جست و جوهاى خحط دقيت بانتند . در حقيتـتـ، Q مزدوج بودن جهتها براى اطمينان از خاصيت پايـانـى درجـه دوم لازم نيسـت[26] . ايـن موضوع سبب شـد كه روشهايُ بر امـاس روابط دى افـ بى (DFP) و

 را تضمين كنتد . معين مثبت بودن در صورتى تضمين مى شود كه 0 p باشـد . براى اطمينان از يكى شعاع وسيع از ممگرامی براى روش شبه نيوتن، برآورده شـدن دو معيار زير نيز لازم اسـت. ابـتـدا در كـام

 جست و جوهاى خطط غير دتيت برآورده شُدن دو شرط زير را ضرورى مى شـمارند.

$$
\begin{equation*}
f\left(x_{k+1}\right)<f\left(x_{k}\right)+10^{-4} \alpha s^{T} \nabla f\left(x_{k}\right) \tag{F.Y.YY}
\end{equation*}
$$

,

$$
\left|\frac{\mathbf{s}^{T} \nabla f\left(\mathbf{x}_{k+1}\right)}{\mathbf{s}^{T} \nabla f\left(\mathbf{x}_{k}\right)}\right|<0.9
$$

 همشُرايع مشابهى برایى روش كراديان مزدوج دوباره شروع شـدهُ بيل با مـمان دو شرط تو سط شنو انتجام ششده اسـت[28] .

تعدادى از الكوريتمهاى مينيمـم مـازى نامقيد توابع در ارامى توان براى حل دستكاه معادلات خحطى ياغير خحطى به كاربرد. در بعضى از حالتها، مانند مسائل تحليل مازهایى غير خخطى، شـرط لازم ايـسـتا بودن انرزّى يتانسيل اين است كى كراديان آن صفر مُود . صفر شُدن كراديان را مى توان تعبير به حـل يـى

$$
\begin{equation*}
\nabla f(\mathbf{x})=g(\mathbf{x})=0 \tag{F.Y.Y0}
\end{equation*}
$$

كرد كه هسيان f و جاكوبين' g ماند مم هستند . در حالتهايى كه مسائل مستقبماً ميكل

$$
\begin{equation*}
g(\mathbf{x})=0 \tag{F.Y.Y9}
\end{equation*}
$$

 غيرخطى

$$
\begin{equation*}
f=\frac{1}{2} g^{T} g . \tag{Y.Y.9V}
\end{equation*}
$$

حل مى كند. . در اين حالت، كرجه هسيان f و جاكوبين g يكسان نيست ولى يكى تقريب معين مبت

 نشود نه تنها بدست آمدن موتعيت تعادل بايدار بلكه موتعيت نابايدار رانيز در بر خوراهـد داشت . در حالت

\%.r روشهاى شبه نيوتن تغصصى

 هسيان انرزى بـانسيل (ماتريس سختى تانزانتى) لاغر است بديهى است. اين مـوضـوع ممكـن امـت در

[^2]

بسبارى از مسائل بهينه سازى ساز هها نيز صادق باشد. براى هنين مجموعه هاى لاغر در حـل مــلـهـاى

 نيستند

در كاربرد روش يى افت جى اس(BFGS) در حل مسائل غبر خطى مقياس بزر ت تحليل سازهاى متهيز
 است. در اين راهكار بردارهاى

$$
\begin{equation*}
\mathbf{p}_{k}=\mathbf{x}_{k+1}-\mathbf{x}_{k}, \tag{F.r.l}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{y}_{k}=\nabla f\left(\mathbf{x}_{k+1}\right)-\nabla f\left(\mathbf{x}_{k}\right), \tag{F,Y,Y}
\end{equation*}
$$

 و با استفاده از بهنگام هاى هى اف جى اس (BFGS)، ماتريس سختى دوباره محاسبب مى شود و اطلاعات بهنكام باكل مى شمود. بهنگام هاى لاغر برای مسائل مقياس بزركى شايد بتوان كفت اولين بار توسط اشموبرت [32] بيشنهاد شده است كه يك بهبو دبرايى روش برايدن[33] ارائه داد كه براساس آن سطر أام از مسيان

$$
\begin{equation*}
\mathbf{A}_{k+1}^{(i)}=\mathbf{A}_{k}^{(i)}+\frac{\left[g_{i}\left(x_{k+1}\right)-\left(1-\alpha_{k}\right) g\left(x_{k}\right)\right]}{\alpha_{k} \hat{\mathbf{P}}_{k}^{T} \hat{\mathbf{p}}_{k}} \tag{F.r.r}
\end{equation*}
$$

بهنگام مى شود، اين همه روش ياد شده اين عيب را دارد كه نمى تواند تقارن ماتريس حاصل را حنظ كند، حتى اكر با يك ماتريس متقارن معين مثبت شروع كرده باشد. اين عيب نه تنها باعث انزايش اندكى در ميزان حانظه مورد نياز مى شود بلكه نياز به دائتن يكى وسيله برایى حل معادله هاى نحطى لاغر را ضرورى مى سازد. انيراً

توينت' [34]و شنو[35] الكوريتمى بيسنهاد داده اند كه رابطه‘ بهنغامى را براى ماتريسهاي متقارن مى يابد
 مى آيد كه شامل شرايط لاغرى است. اين كار شـامل يكى دستعاه معادلاتت با يكى الكُوى لاغرى مـانــد هسبان است.

 نظريه' كرانها كه تعداد ارزيابى كراديانها براى محاسبه' جند درايه' غير صفر هسيان لاغر را مينيمـم مى كند استفاده كردند. با استفاده از اين راهبردهما، مى توانيم از لاغرى نه تنها در محاسبهُ جهـه تير نيوتن بلكه در تنتكيل هسيان نيز استفاده كيمب[38,39] .
راهبـرد كورتبس- بــاول- ريـد(CPR) از لاغرى استفاده مى كند ولى از تمـارن هــــيـان بهـرهاى نمى جويد. اين رامبرد ستونهاى هسيان رابه كروههايى تقسيم مى كند كه در هر كروه عدد سطر درايه هاى مجهول بردارهاى ستونى جملكى متفاوتند. بعداز تشكيل اولين كروه، كروههاى ديكر به ترتيب با اعممال

 در خواهد بود تاتمامى درايه ماى غير صفر هسيانبا استفادهاز تقريب ثفاضل بيسرو ارزيابى كردد. بنابراين :

$$
\begin{equation*}
a_{i j}=\frac{\partial g_{i}}{\partial x_{j}}=\frac{\mathbf{g}_{i}\left(\mathbf{x}_{0}+h_{j} \mathbf{e}_{j}\right)-\mathbf{g}_{i}\left(\mathbf{x}_{0}\right)}{h_{j}}, \tag{F.r.Y}
\end{equation*}
$$

 محدودهُ مشتخص بيفتد. در هر حال، هخنين تنظيمـي از اندازهُ كام به تعداد زيادى ارزيايى كراديان نيـاز دارد. بنابراين، براى اتتصادى كردن تعداد ارزيابى ماى كراديان، انـدازهُ كامها را الجازه نـى دهند كـه از

$$
\left[\max \left(\epsilon\left|\mathbf{x}_{j}\right|, \eta h_{\psi_{j}}\right), h_{v j}\right]
$$

 كران بالانيى ${ }^{\text {م مى بانـد [36] }}$
بـاول و تـونيت[37] راهبرد سى هی آر(CPR) را برایى استفاده از تقارن هسيان كـترش دادند. آنهـا

 يافت

به نظر مى رسدراهبر دباول - توينت(PT) براى حدس مستقيم هسيان هاى لاغر جايكز ين بسيار بهترى برالى الكُوريتم بهنام لاغر نوينت الست [38] . يكى از معايب اصلى الكُوريتم بهنكام توينت اين است كه حتى اكر تقريب هسيان اوليه معين مثبت باشدد، معين مبّت باقى ماندن تقريب هـسيان بهنكام شُده تضمين نمى شُود.
H. F. Y در مينيمم سازى تابع f با استفاده از روش نيوتن كـسسته يا الكوريتم بهنكام توينت بايد مطمئن شويمكه
 تضمينى وجود ندارد. برای اججبار يك هـيان نامعين به هُكل معين مثبت راهبر دهاى متعلدىى وجود دارد. بـرجـته تـرين 'يـن راهبردها، واهبردى است كه توسط كبـل و مـارى' يسشنهاد شـــده [40]. مؤرتريرين ويزگّى اين راهبرد اين است كه اين اججار هسـبان منكّام تجزيه؛ LDL مى شود. درايـه هاى تـطرى ماتريـس D را مجبور مى كتند كه بـ اندازهْ كافى منبت بانشند تا مســكــلات عددى يسش نيايد، در حالى كه درايه هاى غير تطرى LD
 انجام مى شود، راهبرد محاسبه' جهت كاهش نووتن مستلزم مقدار زيادى محاسبه اضافى نخواهد

به خوبى روشن امست كه با وجود يكى تقريب هسبان معين مثبت، روش نيونن براى بعضى از نـتـاط شروع مى تواند واكرا باشد. جابكذارى يسينى استاندارد در امتداد جهت نيوتن با انتخاب طول كامهـاى كوتاهتر مى تواند به يكى مينيمم همكرا شُود. اما، جايكذارى يسينى در امتلداد جهت نيوتن استفاده از مدل درجه' دوم n بعلى تابـع f رامانع مى شود. دنيس و اشـــابـل '[7] راهبردى بيشنهاد كرده اند كـه راهمبرد ياسگى دو برابر ناميده مى سود و براى انتخاب يكى جهت جليد از مدل درجه دوم nبعدى استفاده مى كـلد كه از يك تركيب خطى تندترين كاهش و جهت نيوتن بدست آمله استت. اين جهت جديد تابعى از شعاع ناحيهُ مورد اعتماد است كه در آن ملل درجهُ دوم n بعدى تابع، تابع اصلى را به خوبى تقريب مى زنـد. راهبرد باسگى دو برابر نه تنها روش نيوتن را همكرايى فراكير (يعنى بدون ارتباط با نتطهُ شيروع به مينيمم

 مورد مطالعه ترار كرمنه اند .

Y.ヶ الثوريتمهاى جستوجوى احتمالاتى

عيب مشترك بيشتر الكُوريتههايى كه تاكتون مورد بحت ترار كرفتند عدم توانـايمى آنـها در تمهيز دادن مينيمم فراكير از محلى استـ. ييشتر مسائل طراحیى سازه ها بيش از يكى مينيمم محلى دارند، و بستنه بـه
 آوردن يك جواب محلى بهتر اين امت كه بهينه سازى از نقاط اوليه ایى كه به ثـكـل اتفاقى انتخاب شُده اند، دوياره انجام شود تا امكان جوابهاى ديكر بررسى شود. با باين وجود، براى مسائلى كه تعلاد زيادى متغير دارند امكان دسـت نيانتن به مينيم فراكير زياد اسمت مگر آن كه تعذاد دنعات زيادى بهينن سـازى انجام سود كه عملى نيست. موضبع بهينه سازى فراكير زمينه الى الست كه بئوهش در آن نعال اسـت و الكوريتمهاى جديدى بيشنهاد مى شوند و الكُوريتههاى تديمى بهبود مى يابند[45-43] .

 آن دشوارتر مى شمود. تبل از مر جيز براى جنيّن مسائلى فضـاى طراحى نابيوسته و نامتصل است، بنابراين
 متغيرهاى طراحى سبب به وجود آمدن مينمـمهاى هندكانه مى شـود كه مربوط به تركيـيبهاى مستـتلف
 راه منطقى بر ای حل مسائل بهينه سازى كسسـته با مينيمـم هاى جندكانه يا استفاده از فنون جـسـت وجـوى اتفاتى است كه از فضاى طراحى براى يانتن مينيمـم فراكير نمونه مى كيرد و يا به كاركيرى الكوريتم هـاى

 لرهون[46] و كلد بر گ[47] مراجعه كنيد) ارائه شـلـه اند كه به عنوان ابزارهاى بسيار مطلوب براى مسائل بهينه سازى كه دنبال مينيمـم خراكير مستند مطرحـند . افزون بر توانايى يانتن جوابهاى نزديك به فراكير، اين دو الكوريتم ابزارهاى توانمندى براى مساثل با متغيرهاى طراحى گسسته اند. هر دو الكوريتم بر مـبـناى
 تصميم سازى هاى ا-حتماللى هدايت مى شمود. در بـخشهاى بعدى توخيهات مختصرى دربارهُ دو الكوريتم اراثه مى شُود. كاربرد الكوريتمها در طراحى سازه ها براي مواد مركب لايه أى در فصل 11 تشريح خواهد
 انگگيزه’ تدوين الكوريتم سرد شملن تدريجى شُبيه سازى نمده مطالعاتى در زمـيـنـ، مكانيكى آمارى كـه دربارهُ تعادل تعلداد زيادى از اتمها در جامدات يا مايعات در يكى دماى داده شُده بحت مى كند بوده است. به عنوان مثال هنگام انجماد نلزات يا شـكل كيرى ساختمان بلورى به جند حالت جامد با سانتمان اتمى داخلمى يا بلورى متفاوت كه به سطرح انرزّى شختلف مربوط مى شـوند مى توان رمسيد كه به نرخ سرد كردن بستگى دارد. اكر مجهرعه به سرعت سرد شمود، حالت جامد حاصل به أحتمال زياد حانميسه' كو جكى از بابدارى خواهد داشت زير ا اتمها بر ای رسيلن به يك حالت انرزى كه تنها محلى مينيمبم است در ساختمان

 شد، اين ويز امكانبذير مى سازد.

 انرزٔى بالاتر به شككل زير سحاسبه مى شود

$$
\begin{equation*}
\left.\mathcal{P}(\Delta E)=e^{\left(\bar{i}_{B_{B} T} T\right.}\right), \tag{f,f,1}
\end{equation*}
$$

كهد ر آن ${ }^{\text {آبت بولتز }}$ "
 بنيرش بسبار كوجكاستا
تصميم تبول يار دبا انتخاب اتفاتى عددى دربازهُ (0,1) و مقايسه آٓنبا الكر عدداز (

[^3]
مى يابد هم در بهى تكرار مى شوند تا حالت انرزى مينيمم حاصل شودد.

 متغيرهاى طراحى) مورد نياز برايى رسبدن به اتعادل حرارتى، بايد قبل از كاهـس T T مشخص شُده باشد.

 تتريباً هر حركتى در فضاى طراحى قابل قبول بانـد و باعث شود تقريباً يكى جست و جوى اتفاتى انجـام
 تابل قبول به تعداد كل حركتهاى انجام شُده تعريف مى شو د) تقريبأ $0.95=$

$$
\mathcal{X}_{0}=e^{\left(\frac{-\overline{\Delta f}^{(+)}}{T_{0}}\right)}
$$

بدست آوردند كه عبارت استاز :

$$
\begin{equation*}
T_{0}=\frac{\overline{\Delta f}}{}=\frac{(+)}{\ln \left(\mathcal{X}_{0}^{-1}\right)} \tag{F.F.Y}
\end{equation*}
$$

وتتى دما مشخص شد، با ايجاد اختلال (تغيرات كوحكـ) در طراحى، نعدادى حـركت در نضـاى

مبانى بهينه مازیى ساز، ما (لمصل F F F F

شكل I. Y. I نمودار جريانى الكوريتم سرد شـدن تدريجى شبي سازى شـده

متغير ها انجام مى شُود . تعداد حركتها در يكى دماى داده شـده بايد آن تدر زياد باشـد تا به جواب اين امكان رابدهد كه از مينيمم محلى فرار كند. يكـ روش اين است كه حركت تا بدون تنيير ماندن مقدار تابع هدف
 متغير هاى طراحى در همسايكى يك طراحى حالت يكنواخت دست كم بكى بار با احتمال P در نظر كر نته

P•P بنش
شود. بعنى اكر S طراحى همسايه وجود دارد، آن كاه

$$
\begin{equation*}
M=S \ln \left(\frac{1}{1-P}\right) \tag{Y,Y,Y}
\end{equation*}
$$

 متغير هاى با مقدار كسسته اغلب برایى تعريف شمسايگى طراحى كزينه هاى بسيارى وجود دارد . يـك راه اين است كه آّن را به عنوان تمامى طراحى هايُى كه مى تواند با تغيير يكى متغير به مقدار بلاناصله بزركتر يا كو جكتر آن بدست آيد تعريف كرد. با تعويضى بيش از يكى متغير به مقدار بلاناصله بزركـتر يـا كـو جــكـتر مى توان يك ــمسايگى وسيعتر تعريف كرد. برای اين مسالهئباn متغير، مـسايكى هاعبارتند از :

$$
\begin{equation*}
S=3^{n}-1 \tag{F.Y.©}
\end{equation*}
$$

هنگامى كه عمكرايى در يك دمايى حاصل شد، كه عـومآ به آن تعادل حرارتى مى كويند، دما كاسته
ثـده و فرايند تكرار مى شود .
برانى بهنگام كردن دما طرحهاى محتلفى اراثه شـده است . يكـ روش كه اغلب المتفاده مى شود عبارت است از بهنگام مرد كردن ثابت

$$
\begin{equation*}
T_{k+1}=\alpha T_{k}, \quad k=0,1,2, \ldots, K \tag{Y.Y.F}
\end{equation*}
$$

كه در آن 0.95 $0.5 \leq \alpha \leq$ است . نحر ' [54] تعداد كامهاى نمو كـاهـشـى K را ثاببت مى كـــد و
 كامهاى ثاببت K تقسيم شود و از رابطهُ زير استفاده شود :

$$
\begin{equation*}
T_{K}=\frac{K-k}{K} T_{0}, \quad k=1,2, \ldots, K \tag{F.Y.V}
\end{equation*}
$$

تعداد بازه ها معمو لآ بين ه تا - Y است.
 اين روش را در مسالله' طراسي يك خخرياى ده ميله ایى به كار برد كه در آن ابعاد سطح متطع اعضا بايد از ميان

يك مجموعهاز مقادير كـستـ انتخاب مى شدند. كينكيد و بادولا' [56] آن رابرايى مينيمم سازى اعوجا و نيروى خارجيى در يك خريا استفاده كرد. يكى سـازهُ قاب 109 عضوى 9 طبقه با متغيرهاى با متادير كسسته تو سط بالينگ, و مى [57] مورد بررسى ترار كرفت . موتعيت يابي اعضاى فعال و غير فعال دريكى سازه́ خربا توسط جن خخاصيت مستهلك شوندكى افزايش يابد.

الكُوريتمهاى زنتيكى از فنوني استفاده مى كتند كه از علوم زيستى كرفته شده و بر مبناى نـظريـهُ بقاى
 مى يابند، ويزكيهاى فردى كه براى بقا مفيدند، تمايل به انتقال به نسلهاى آينده دارند، زيرا عناصـرى كـه حامل آن ويزكيهايند شانس بيـّنترى براى يرورش دارند . آن ويزكيهاى نردى در جمعيـتهــى زيـسـتى در رشّته هاى كروموزومى ذخيره مـى شوند. هحركت زنتـيكى طبيعى بر مبناى عمـلـهـايـى انــت كـه بـه تـبـادل ساختارى تصادفى اطلاعات زُنتيكى (يعنى ورائت مغيد) بين رشتـه هاى كروموزومى والذين تـوـلـد يـانتـه مى انجامد، و عبارت است ازتوليد مشل، تقاطع، جهشُهاى كاه به كاه و وازكونكى رشته هاى كروموزومى. الكُوريتمهاى زُنتيكى، كه تو سط هولنده [59] تدوين شد، مكانيك زنتيك طبيعى را براى سيستمهاى مصنوعى بر اسساس عملهايى كه هـتاى طبيعى آنهايند، (حتى به يك نام ناميده مى شوند) ، ثــبـيـه ســازى مى كند، و به طور كستردهاى در الڭكوريتمهاى جسـت وجوى جند متغيره به كار مى رود . همـجنان كـه در بندهاى بعدى تتشريح خو اهد ثـد، اين عملها تبادل تصادفى و به راحتى قابل برنامه ريزى و ساده' موتعيت اعداد در يك رشتته است، و بنابراين، از ابتدا مانند يكى جست و جوى كاملاً تصادفى اكسترومـم در فضاى بارامتر، تنها بر مبناى مقادير تابع بهنظر مى رملد . با اين همه، در تجربه ثابت شده كه الڭكوريتمهاى زُتتيكى
 كلدبرى צ [47] ارجاع داده مى شود. در اين جا به بحث بيان زُنتيكى مسأله مينيمم سازى مى يردازيـمه، و روى مكانيكي سه عمل زنتيكى توليد مثل، تقاطع و جهش كه معهو لا استفاده مى شوند تأكيد مى كنيم.

1) Kincaid and Padula
2) Balling and May
3) Chen at al
4) Darwin
5) Holland
6) Goldberg

كاربرد عملهاى الكوريتم زنتيكى به يك مسأل' جـست و جو ابتدا نياز به بيان تركيب هاى ممكن متغيرها

 يك مسآله مينيمـمسازى به صورت زير دانمته بانيم

را مامينـم كنيد $\quad f(\mathbf{x}), \quad \mathbf{x}=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$,
بيان ريُتهُ دوتايم يا (مبناى Y) فضاى متغيرها مى تواند به شكل زير باشد.

$$
\begin{equation*}
\underbrace{0110}_{x_{1}} \underbrace{101}_{x_{3}} \underbrace{11}_{x_{3}} \underbrace{1011}_{x_{4}}, \tag{4.4.9}
\end{equation*}
$$

در حالى كه معادلهاى رشتهاى هر يك از متغير ها به شكل سر به انتها متصل مى شونـد، و در اين مـنـال،
 از: الكوريتمهاى زنتيكى برای مسايللى كه متغير بايد معادير كسسته يا عدي است. برایى مسائلى كه متغير هاى طراحى مقادير بيوسته در محدودهُ

 نياز براى نمايش مناسب را مى توان از رابطهُ زير بدست آورد:

$$
\begin{equation*}
2^{m} \geq\left(\left(x_{i}^{U}-x_{i}^{L}\right) / x^{\mathrm{incr}}+1\right) \tag{F.F.I.}
\end{equation*}
$$

كه در آن m نعداد ارقام است. در اين مثال، كمترين تعداد ارتام كه نياز رابرآورده مى كند m=11 خواهد

 نتـطه به نقطه' ديـكر حركت مى كـردند، الكوريتــم زنتيـكى بــا جمعيتـى از رشته ها (كروموزومها) كـار

مى كند. اين جنبـهُ الكوريتمهاى زنتيكى مسؤول رسيدن به نزديكى جوابهاى فراكير اسـت. ايـن كـار بـا
 جـت و جو در منطقه را دارند، در جمعيت در هنگام جست و جو، به جاى كنار كذااثنتن زودرس آندر فرآيند و افزايش احتمال كير كردن در يكى مينيمم محلى ، انجام مى شـود. كـار كـردن روى جـمـعـيتـى از طراحى ها احتمال بياده مـازى روى رايانه، هاى موازى را نيز فرامهم مى كند. با اين وجود، مفهـوم مـوازى

 جاى يك طراحى منفرد يك جمعيت از طراحى هاى خوب است. اين جنبه مى تواند براى طراحان بسيار مفيد باثند.

ابتـدا انــــازهُ جمعيت انتخاب مى شُودو مقلار متغيرهاى هر رشته با تعيين تصـادنى 0 و 1 در بيتهـا
 هدف برای تشكيل يك جمعيت جليد كيى مى شوند كه شـكل مصنوعى بقاى لايقتريـن اسـت. رنتن بـ طرف رشته هاى باعملكرد بهتر مى تواند با افزايش احتمال انتخاب آنها در رابطه با بقيهُ جمعيت حاصل

 دأرد

 مكان k|م در اولين والدند با مكانهاى متناظر در والد دوم دو رشته' جلديد توليد مى شود . به عنوان مثال،

$$
\begin{equation*}
\text { L = دو رشته به طول } 9 \tag{F.F.11}
\end{equation*}
$$

با نقطُ' $5=5$ آميزش شـدهاند، دو فرزند جليد تركيب زير را دارند:

$$
\begin{array}{ll}
\text { 'نرزند } & 011010001 \\
\text { نرزند } & 010010111
\end{array} .
$$

تقاطعهاى جند نقطه ای كه در آن اطلاعات بين والد مباذ تطاعهاى بيشترى از رشته ها جا به جا مى شود نيز امكاذبذير است، الما به سبب مخلوط شدن رشيته ها، تقاطع يك نرآيند تصادفى تر مى شُود و ممـكن است عملكرد الكوريتم ضعيف تر مُود كه در دى جانگى '[60] آمده است. تنها استينا در اين مورد تقاطع دو نقطهاى است . در واتع، تقاطع يك نقطهاى را مى توان به عنوان حالت خاص تقاطع دو نتطهاى در نظر
 برای تقاطع اتفافى، عملكرد الكورينم را مى توان واتماً بهبود بخشـيد. جهش به عنوان يكى عمل كه از دست دادن زودرس اطلاعات زنتيكى مهم رابا معر فنى كاه به كاه تغيير تصادفى يكى رشته مانع مى شُود انجام وظيفه مى نمايد. مـمجنان كـ بيشتر بيان شد در بايان تكثير، داشتن جمعينى با جند كیى از بك رشتته امكان بذير است. در بدترين حالت ، ممكن است جمعيتى با رئته هاى يكسان داشتته باثيم. در جنين حالتى، الكُريتم قادر به جست و جو برايى دست يافتن به بك جبراب بهتر نيست. جهن از اين يكنواختى جلوكيرى مى كند، وبا يكى انتخاب اتفاقى مو تعيت مسـخـصـي راروى رشته تعيين مى كند و مقدارش رااز 0 به 1 و يا بر عكس تغيير مى دهد. بر اساس نرخ كم اتفان اين عمل در سيستههاى زيستى و همینين در تجربيات عددى ، نقش عمل جهش روى عملكرد الكوريتم زنتيكى يكى

 يك خريـاى • • ميله أى بود. بعدها حـاجـلا ميختلفى به كار برد كه در آنها نضاى طراحى يا نامحدب يا منفصل بود . راثو ه و دبكران [64] انتخاب بهين
 دادند.

به طور خلاصه، بنداره‘ اساسى شبيه سازى يك بديده'طبيعى، يافتن يك مبنا با بجلوه' رياضى تر در

1) De Jong	2) Booker	3) Goldberg and Samtani
4) Hajela	5) Rao	

زمينهُ الكوريتههاى جستوجوى احتمالاتى به ويزه برای متغير هاى كـستـها است. ايجاد بهبود در عملكرد
 توسط سزو '[65] ارائه شُد به تدوين يك الكوريتم جديد كه سرد شُدن تدريجى سريع ناسيله مى شود ختم
 وازكونگى، غلبه يانتىى، شانس بقا و غيره) براى الكوريتههاى زنتيكى در حال ارزيابى است.

تمرينها F.D

 (ب) الكوريتم ديوبدان -فلتجر - باول حل كنيد. a = 2.0 از
 (F Y Y Y) بدست می آيد.
r . مينيمم تابع

$$
f=\left(x_{1}+x_{2}-x_{3}\right)^{2}+\left(x_{1}-x_{2}+x_{3}\right)^{2}+\left(-x_{1}+x_{2}+x_{3}\right)^{2}
$$

رابا استفاده از روس جهتهاى مزدوج باول ببابيد، با「.

$$
f(\mathbf{x})=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2},
$$

$$
f\left(x_{1}, x_{2}\right)=\frac{1}{2} m \gamma\left(-\alpha_{1} x_{1}+\frac{1}{2} x_{1}^{2}+x_{2}\right)^{2}+\frac{1}{2}\left(-\alpha_{1} x_{1}+\frac{1}{2} x_{1}^{2}-\frac{x_{2}}{\gamma}\right) \gamma^{4}-\bar{p} \gamma x_{1},
$$

$$
m=\frac{A_{1}}{A_{2}}, \quad \gamma=\frac{l_{1}}{l_{2}}, \quad \alpha_{1}=\frac{h}{l_{1}}, \quad \bar{p}=\frac{p}{E A_{2}}
$$

كـه E. خــريـب ارتجاعى،
 . $\overline{\text {. } \bar{p}=2 \times 10^{-5} ~}$ ه . با ادامه‘ تحليل مسـالـه' مى شود (شروع به خارج شلدن از بايدارى مى كند) با رابطهُ زير بُندتـ مى آيد .

$$
p_{c r}=\frac{E A_{1} A_{2} \gamma(\gamma+1)^{2}}{\left(A_{1}+A_{2} \gamma\right)} \frac{\alpha_{1}^{3}}{3 \sqrt{3}}
$$

اكنون فرض كنيد pcr كه در بالا داده شُ بايد نسبت به شرط

$$
A_{1} l_{1}+A_{2} l_{2}=v_{0}=\text { ثابت }
$$

ماكزيمم شود. رابطه سازى جريمهُ خارجى نصله مسالهُ بالا را به شكل مساله مينـمـم سازى نامقيد

$$
p_{\mathrm{cr}}^{*}\left(A_{1}, A_{2}, r\right)=\frac{E A_{1} A_{2} \gamma(\gamma+1)^{2}}{\left(A_{1}+A_{2} \gamma\right)} \frac{\alpha_{1}^{3}}{3 \sqrt{3}}+r\left(A_{1} l_{1}+A_{2} l_{2}-v_{0}\right)^{2}
$$

$$
r=10^{4} ، E=10^{6} \mathrm{psi} \cdot v_{0}=200 \mathrm{in}^{3} \bullet h=2.50 \mathrm{in} l l_{2}=50 \mathrm{in} \cdot l_{1}=200 \mathrm{in} \text { براى }
$$

- F F مبانتى بهينه سازى ساز، ها (نصل ٪ : بهينه سازى نامقيد)

يك جوابب تقريبى برایى حالت خربایى بهينه و مقدار Pcr مربوط بدست آوريد . براى مسآلد' مينيمم سازى
 . $A_{2}=0.190476$ in 2
f. الف) مشتت سوبى f در جهت 8 را

$$
\nabla f^{T} s=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} s_{i}
$$

$$
\sum_{i=1}^{n} s_{i}^{2}=1
$$

مينيمم كنيد تا نشان دهيد جهت تندترين كاهش عبارت امست از

$$
\begin{equation*}
\mathrm{s}=-\frac{\nabla f}{\|\nabla f\|} \tag{4.0.1}
\end{equation*}
$$

ب) مسـاله الفـ را با جايگزينى شرط قيدى 8 با

$$
\mathbf{s}^{T} \mathbf{Q} \mathbf{s}=1
$$

تكرار كنيد تا نشان دهيد جهـت نيوتن عبارت امست از :

$$
\mathbf{s}=-\mathbf{Q}^{-1} \nabla f
$$

. Q هسيان تابع درجه دوم f امست
F. $\%$
[1] Kamat, M.P. and Hayduk, R.J., "Recent Developments in Quasi-Newton Methods for Structural Analysis and Synthesis," AIAA J., 20 (5), 672-679, 1982.
[2] Avriel, M., Nonlinear Programming: Analysis and Methods. Prentice-Hall, Inc., 1976.
[3] Powell, M.J.D., "An Efficient Method for Finding the Minimum of a Function of Several Variables without Calculating Derivatives," Computer J., 7, pp. 155-162, 1964.

PII بنش

[4] Kiefer, J., "Sequential Minmax Search for a Maximum," Proceedings of the American Mathematical Society, 4, pp. 502-506, 1953.
[5] Walsh, G.R., Methods of Optimization, John Wiley, New York, 1975.
[6] Dennis, J.E. and Schnabel, R.B., Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice-Hall, 1983.
[7] Gill, P.E., Murray, W. and Wright, M.H., Practical Optimization, Academic Press, New York, p. 92, 1981.
[8] Spendley, W., Hext, G. R., and Himsworth, F. R., "Sequential Application of Simplex Designs in Optimisation and Evolutionary Operstion," Technometrics, 4 (4), pp. 441-461, 1962.
[9] Nelder, J. A. and Mead, R., "A Simplex Method for Function Minimization," Computer J., 7, pp. 308-313, 1965.
[10] Chen, D. H., Saleem, Z., and Grace, D. W., "A New Simplex Procedure for Function Minimization," Int. J. of Modelling \& Simulation, 6, 3, pp. 81-85, 1986.
[11] Cauchy, A., "Methode Generale pour la Resolution des Systemes D'equations Simultanees," Comp. Rend. l'Academie des Sciences Paris, 5, pp. 536-538, 1847.
[12] Hestenes, M.R. and Stiefel, E., "Methods of Conjugate Gradients for Solving Linear Systems," J. Res. Nat. Bureau Stand., 49, pp. 409-436, 1952.
[13] Fletcher, R. and Reeves, C.M., "Function Minimization by Conjugate Gradients," Computer J., 7, pp. 149-154, 1964.
[14] Gill, P.E. and Murray, W., "Conjugate-Gradient Methods for Large Scale Nonlinear Optimization," Technical Report 79-15; Systems Optimization Lab., Dept. of Operations Res., Stanford Univ., pp. 10-12, 1979.
[15] Powell, M.J.D., "Restart Procedures for the Conjugate Gradient Method," Math. Prog., 12, pp. 241-254, 1975.
[16] Polak, E., Computational Methods in Optimization: A Unified Approach, Academic Press, 1971.
[17] Axelsson, O. and Munksgaard, N., "A Class of Preconditioned Conjugate Gradient Methods for the Solution of a Mixed Finite Element Discretization of the Biharmonic Operator," Int. J. Num. Meth. Engng., 14, pp. 1001-1019, 1979.
[18] Johnson, O.G., Micchelli, C.A. and Paul, G., "Polynomial Preconditioners for Conjugate Gradient Calculations," SLAM J. Num. Anal., 20 (2), pp. 362-376, 1983.
[19] Broyden, C.G., "The Convergence of a Class of Double-Rank Minimization Algorithms 2. The New Algorithm," J. Inst. Math. Appl., 6, pp. 222-231, 1970.
[20] Oren, S.S. and Luenberger, D., "Self-scaling Variable Metric Algorithms, Part I," Manage. Sci., 20 (5), pp. 845-862, 1974.
[21] Davidon, W.C., Variable Metric Method for Minimization. Atomic Energy Commission Research and Development Report, ANL-5990 (Rev.), November 1959.
[22] Fletcher, R. and Powell, M.J.D., "A Rapidly Convergent Descent Method for Minimization," Computer J., 6, pp. 163-168, 1963.
[23] Fletcher, R., "A New Approach to Variable Metric Algorithms," Computer J., 13 (3), pp. 317-322, 1970.
[24] Goldfarb, D., "A Family of Variable-metric Methods Derived by Variational Means," Math. Comput., 24, pp. 23-26, 1970.
[25] Shanno, D.F., "Conditioning of Quasi-Newton Methods for Function Minimization," Math. Comput., 24, pp. 647-656, 1970.
[26] Dennis, J.E., Jr. and More, J.J., "Quasi-Newton Methods, Motivation and Theory," SIAM Rev., 19 (1), pp. 46-89, 1977.
[27] Powell, M.J.D., "Some Global Convergence Properties of a Variable Metric Algorithm for Minimization Without Exact Line Searches," In: Nonlinear Programming (R.W.Cottle and C.E. Lemke, eds.), American Mathematical Society, Providence, RI, pp. 53-72, 1976.
[28] Shanno, D.F., "Conjugate Gradient Methods with Inexact Searches," Math. Oper. Res., 3 (2), pp. 244-256, 1978.
[29] Kamat, M.P., Watson, L.T. and Junkins, J.L., "A Robust Efficient Hybrid Method for Finding Multiple Equilibrium Solutions," Proceedings of the Third Intl. Conf. on Numerical Methods in Engineering, Paris, France, pp. 799-807, March 1983.
[30] Kwok, H.H., Kamat, M.P. and Watson, L.T., "Location of Stable and Unstable Equilibrium Configurations using a Model Trust Region, Quasi-Newton Method and Tunnelling," Computers and Structures, 21 (6), pp. 909-916, 1985.
[31] Matthies, H. and Strang, G., "The Solution of Nonlinear Finite Element Equations," Int. J. Num. Meth. Enging., 14, pp. 1613-1626, 1979.
[32] Schubert, L.K., "Modification of a Quasi-Newton Method for Nonlinear Equations with a Sparse Jacobian," Math. Comput., 24, pp. 27-30, 1970.
[33] Broyden, C.G., "A Class of Methods for Solving Nonlinear Simultaneous Equations," Math. Comput., 19, pp. 577-593, 1965.
[34] Toint, Ph.L., "On Sparse and Symmetric Matrix Updating Subject to a Linear Equation," Math. Comput., 31, pp. 954-961, 1977.
[35] Shanno, D.F., "On Variable-Metric Methods for Sparse Hessians," Math. Cornput., 34, pp. 499-514, 1980.
[36] Curtis, A.R., Powell, M.J.D. and Reid, J.K., "On the Estimation of Sparse Jacobian Matrices," J. Inst. Math. Appl., 13, pp. 117-119, 1974.

Fif بخش
[37] Powell, M.J.D. and Toint, Ph.L., "On the Estimation of Sparse Hessian Matrices," SIAM J. Num. Anal., 16 (6), pp. 1060-1074, 1979.
[38] Kamat, M.P., Watson, L.T. and VandenBrink, D.J., "An Assessment of QuasiNewton Sparse Update Techniques for Nonlinear Structural Analysis," Comput. Meth. Appl. Mech. Enging., 26, pp. 363-375, 1981.
[39] Kamat, M.P. and VandenBrink, D.J., "A New Strategy for Stress Analysis Using the Finite Element Method," Computers and Structures 16 (5), pp. 651-656, 1983.
[40] Gill, P.E. and Murray, W., "Newton-type Methods for Linearly Constrained Optimization," In: Numerical Methods for Constrained Optimization (Gill \& Murray, eds.), pp. 29-66. Academic Press, New York 1974.
[41] Griewank, A.O., Analysis and Modifications of Newton's Method at Singularities. Ph.D. Thesis, Australian National University, 1980.
[42] Decker, D.W. and Kelley, C.T., "Newton's Method at Singular Points, I and II," SIAM J. Num. Anal., 17, pp. 66-70; 465-471, 1980.
[43] Hansen, E., "Global Optimization Using Interval Analysis- The Multi Dimensional Case," Numer. Math., 34, pp. 247-270, 1980.
[44] Kao, J.-J., Brill, E. D., Jr., and Pfeffer, J. T., "Generation of Alternative Optima for Nonlinear Programming Problems," Eng. Opt., 15, pp. 233-251, 1990.
[45] Ge, R., "Finding More and More Solutions of a System of Nonlinear Equations," Appl. Math. Computation, 36, pp. 15-30, 1990.
[46] Laarhoven, P. J. M. van., and Aarts, E., Simulated Annealing: Theory and Applications, D. Reidel Publishing, Dordrecht, The Netheriands, 1987.
[47] Goldberg, D. E.. Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley Publishing Co. Inc., Reading, Massachusetts, 1989.
[48] Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., and Teller, E., "Equation of State Calculations by Fast Computing Machines," J. Chem. Physics, 21 (6), pp. 1087-1092, 1953.
[49] Kirkpatrick, S., Gelatt, C. D., Jr., and Vecchi, M. P., "Optimization by Simulated Annealing," Science, 220 (4598), pp. 671-680, 1983.
[50] Cerny, V., "Thermodynamical Approach to the Traveling Salesman Problem: An Efficient Simulation Algorithm," J. Opt. Theory Appl., 45, pp. 41-52, 1985.
[51] Rutenbar, R. A., "Simulated Annealing Algorithms: An Overview," IEEE Circuits and Devices, January, pp. 19-26, 1989.
[52] Johnson, D. S., Aragon, C. R., McGeoch, L. A., and Schevon, C., "Optimization by Simulated Annealing: An Experimental Evaluation. Part I. Graph Partitioning," Operations Research, 37, 1990, pp. 865-893.
[53] Aarts, E., and Korst, J., Simulated Annealing and Boltzmann Machines, A Stochastic Approach to Combinatorial Optimization and Neural Computing, John Wiley \& Sons, 1989.
[54] Nahar, S., Sahni, S., and Shragowithz, E. V., in the Proceedings of 22nd Design Automation Conf., Las Vegas, June 1985, pp. 748-752.
[55] Elperin, T, "Monte Carlo Structural Optimization in Discrete Variables with Annealing ALgorithm," Int. J. Num. Meth. Eng., 26, 1988, pp. 815-821.
[56] Kincaid, R. K., and Padula, S. L., "Minimizing Distortion and Internal Forces in Truss Structures by Simulated Annealing," Proceedings of the AIAA/ASME /ASCE/AHS/ASC 31st Structures, Structural Dynamics, and Materials Conference, Long Beach, CA., 1990, Part 1, pp. 327-333.
[57] Balling, R. J., and May, S. A., "Large-Scale Discrete Structural Optimization: Simulated Annealing, Branch-and-Bound, and Other Techniques," presented at the AIAA/ASME/ASCE/AHS/ASC 32nd Structures, Structural Dynamics, and Materials Conference, Long Beach, CA., 1990,
[58] Chen, G.-S., Bruno, R. J., and Salama, M., "Optimal Placement of Active/Passive Members in Structures Using Simulated Annealing," AIAA J., 29 (8), August 1991, pp. 1327-1334.
[59] Holland, J. H., Adaptation of Natural and Artificial Systems, The University of Michigan Press, Ann Arbor, MI, 1975.
[60] De Jong, K. A., Analysis of the Behavior of a Class of Genetic Adaptive Systems (Docteral Dissertation, The University of Michigan; University Microfilms No. 76-9381), Dissertation Abstracts International, 36 (10), 5140B, 1975.
[61] Booker, L., "Improving Search in Genetic Algorithms," in Genetic Algorithms and Simulated Annealing, Ed. L. Davis, Morgan Kaufmann Publishers, Inc., Los Altos, CA. 1987, pp. 61-73.
[62] Goldberg, D. E., and Samtani, M. P., "Engineering Optimization via Genetic Algorithm," Proceedings of the Ninth Conference on Electronic Computation, ASCE, February 1986, pp. 471-482.
[63] Hajela, P., "Genetic Sèarch-An Approach to the Nonconvex Optimization Problem," AIAA J., 28 (7), July 1990, pp. 1205-1210.
[64] Rao, S. S., Pan, T.-S., and Venkayya, V. B., "Optimal Placement of Actuators in Actively Controlled Structures Using Genetic Algorithms," AIAA J., 29 (6), pp. 942-943, June 1991.
[65] Szu, H., and Hartley, R.L., "Nonconvex Optimization by Fast Simulated Annealing," Proceedings of the IEEE, 75 (11), pp. 1538-1540, 1987.

بهينه سازى مقيد

اكثر مسائل در بهينه سازى سازه ها بايد به ثنكل مسائل مينمم سازى مقيد رابطه سازى شوند. در يك مسالهُ طراحى سازه تابع هدف معــولاً بكى تابع نسبتاً ساده از متغير هاى طراحى است (ماند وزن) ، امـا

 نصل مرورى دارد بر روشّهايى كه معمولاً براى حل اين نوع مسائل مقيد به كار مى روند.
 تابع هدن و تيدها كم يا متوسط است. در اين روشها تابع هدن يا تيدها دقيقاً مهاسبه مى شُوند (مـلاًّا با يك برنامهُ اجزاى محدود) ولى اين محاسبه زمانى انجام مى شُود كه الكُوريتم بهينه سازى نياز داشتهه باشـد. اين رويكرد ممكن است به صدها بار ارزيابى تابع هدف و قيدها نياز داشته باشـد كه در مورد مسـائلـى كـه
 ميانى روى مى آوريم كه براى تابيع هدف و فيدها و يا دست كم بر ای توابعى كه ارزيابى آنها هزينهُ بالاترى دارد تقرييهايى مى سازيم. آن كاه بهينه سازى روى مسـالـ؛ تقريبى انجام مى شود. اين فرايند تقريبـى در نصل بعد تشريح مى نـود.
مساله' أصلى كه در اين نصل مورد توجه قرار مى دهيم عبارت اسـت از مينيمم سمازى يكى تابع نسـبت به
قيدهاى تساوى و نامساوى
تابع

$$
h_{j}(\mathbf{x})=0, \quad i=1, \ldots, n_{e} . \quad \text { رامشروطب }
$$

.

تيدها نضاي طراحى رأبه دو بخشش تفسيم مى كتند : بخش قابل تبول كه در آن تِيدها برآور رده مى شوند، و بخش غيرقابل تبول كه در آن دست كم يكى از تيدها نتض مى شود . در بيشتر مساثل عـلى مينيمم روى $g_{j}(\mathbf{x})=0$ ، مرز بين بخش تابل قبول و غير تابل تبول واقع مى شود يعنى در جايى كه حداتل برايى يك است. در غير اين صور ت تيلهاى نامساوى را مى شود بدون اين كه روى جوابابترى داشتته بانـد، حذف
 تنشها، تنييرمكانها، و غيره ايجاد مى كنتد . اين محلوديتها تأثير زيادى روى طراحى دارند و بدين سبب معمولاً در نتطهُ مينيمم تيدهاى نامساوى متعددى نعالند.
 نامناسبى مقياس بندى شده باشند، عملكرد آنها اغلب ضعيف انست. براى جلوكيرى از بدخيمى، تمامى

$$
\begin{equation*}
g=1-\frac{\sigma}{\sigma_{a}} \geq 0 \tag{0.r}
\end{equation*}
$$

بعضى از نون عددى الرائه شده برایى حل مساثلز بهينه سازى غير خططى مقيد در اين نصل تـادر بـه در نظر كرفنت تيدهاى تساوى نيستند و محدود به تيدهاى نامساويند . در جنان حالتى مى شود تيد تساوى به
 تعداد قيود مطلوب نيــت. براى مسالثلى كه تعداد زيادى تيد نامساوى دارند، مى شود يـى تيـلـ مـعـادل
 (
الست كه به شكل زير تعريف مى شود:

$$
K S\left[g_{i}(\mathbf{x})\right]=-\frac{1}{\rho} \ln \left[\sum_{i} e^{-\rho_{i}(\mathbf{x})}\right],
$$

[^4]PiY بنش 0.1 : تشرابيل كان-تاكر

 KS نامساويهاست . با انزايسش م توابع KS با مقدأر مينيمم توابع توانق نزديكترى دارنـد . مـقـدار تـابـع

مميشُه محلود به كرانهاى زير است:

$$
\begin{equation*}
g_{\min } \leq K S\left[g_{i}(\mathbf{x})\right] \leq g_{\min }-\frac{\ln (m)}{\rho} \tag{0.Y}
\end{equation*}
$$

 نقطهای امت كه هر دو نامساوى نعالند، نشـان داد كه بر ای يكى تابـع KS كه با يكى جفت هنبت و منفى نقطه' جواب 0 = 0
 (D . F)

$$
\begin{equation*}
0 \geq K S(h,-h) \geq-\frac{\ln (2)}{\rho} \tag{0.0}
\end{equation*}
$$

در نتيجه، مسأله بهينه مسازى

$$
\text { h(x) = شكل } 1.0 \text { تابع كريسل مير- /يثتانهاوزر بجاى } 0
$$

را مى شود به شـكل زير دوباره رابطه سازى كرد

كه در آن є بك روادارى (تلرانس) كرجكاست.

شرايط كان - تاكر
0.1

1. 1 . 1 حالت كلىى

در حالت كلى، مساللّ' (1 ـ ه) ممكن است مينيمم هاى محلى متعددى داشتته باثند. تنها در شـرايط خاصى از وجود مينيمم فراكير منفرد مى توان اطمينان حاصل كرد . شـرايط لازم براى مينيمم يكى مسـالـ'
 نظر مى كيريم. با استفاده از فن ضربكر لاكرانز، تابع لاكرانز را نعريف مى كنيم.

$$
\begin{equation*}
\mathcal{L}(\mathbf{x}, \lambda)=f(\mathbf{x})-\sum_{j=1}^{n_{0}} \lambda_{j} h_{j}(\mathbf{x}), \tag{0.1.1}
\end{equation*}
$$

كه در آن ز ضر ضربكرهاى لاكرانز مجهولند. شـرايط لازم برایى يك نقطه؛ ايستا عبارت است از

$$
\begin{align*}
& \frac{\partial \mathcal{L}}{\partial x_{i}}=\frac{\partial f}{\partial x_{i}}-\sum_{j=1}^{n_{4}} \lambda_{j} \frac{\partial h_{j}}{\partial x_{i}}=0, i=1, \ldots, n \\
& \frac{\partial \mathcal{L}}{\partial \lambda_{j}}=h_{j}(\mathbf{x})=0, \quad j=1, \ldots, n_{e} \tag{0.1.r}
\end{align*}
$$

اين شُرايط تنها در يكنقطهُ منظم كاربرد دارند، يعنى نقطهاى كه در آن كراديانهاى قيدها به طور خطى مستقلند. اكر كراديان تَدها به طور خططى وابسته باشند، معناى آن اين است كه مى توانيه بعضى از تَيدها

Yا 4 بغم 0.1 : شرايط كان -تاكر
هنگامى كه تيلهاى نامساوى وجود داشمته باشـند، كار بسيار يجّيلد تر است. براى كاربرد روش ضربگر لاكُرانث ابتدا تيدهاى نامساوى را با اضافه كردن متغيرهاى كمبود به تيلهاى تساوى تبديل مى كنيم . يعنى قيدهاى نامساوى به شـكل زير نوشته مى شوند :

$$
\begin{equation*}
g_{j}(\mathbf{x})-t_{j}^{2}=0, \quad j=1, \ldots, n_{g} \tag{0.1.4}
\end{equation*}
$$

 مى توانيمم يك تابع لاكرانثين تسنكيل دهيم

$$
\begin{equation*}
\mathcal{L}\left(\mathbf{x}, \mathrm{t}_{1} \lambda\right)=f-\sum_{j=1}^{n_{p}} \lambda_{j}\left(g_{j}-t_{j}^{2}\right) \tag{0.1.0}
\end{equation*}
$$

با مشتت كيرى از تابع لاكرانثّ نسبت به x، X و t داريم :

$$
\begin{align*}
& \frac{\partial \mathcal{L}}{\partial x_{i}}=\frac{\partial f}{\partial x_{i}}-\sum_{j=1}^{n_{g}} \lambda_{j} \frac{\partial g_{j}}{\partial x_{i}}=0, i=1, \ldots, n \tag{0.1.9}\\
& \frac{\partial \mathcal{L}}{\partial \lambda_{j}}=-g_{j}+t_{j}^{2}=0, \quad j=1, \ldots, n_{g} \tag{0.1.V}\\
& \frac{\partial \mathcal{L}}{\partial t_{j}}=2 \lambda_{j} t_{j}=0, j=1, \ldots, n_{g} \tag{0.1.1}
\end{align*}
$$

 (بنابراين متغير كــمبود مـربوط به آن غير صفر است) آن كاه ضربكر لاكرانز مربوط به قيد صفر امست ـ معادله
 نامساوى نقطهُ نامنظم نقطه اى است كه در آن كراديان قيدهاى نعال به طور خطط مستقل باتـند . اين شر ايط كمى بهبود مى يابند تا شر ايطل لازم براى يك مينيمـم را بدهند كه به آنها شر ايط كان- تاكر مى كويند. شرايط كان تاكر را مى شود به شكل زير خلاصه كرد :

ه هالى نامنفى بتوان يافت كه : I . . Y . در صورتى كه قيدى فعال نباشـد، ، مربوط به آن صفر باشدل .

شكل 1.1 . 1 تفسير هنلسى شرط كان-تاكر در صورت وجود دو تيد
 شده است.
 داشته باشد، معادلهُ (1.9 ـ ه) را مى شُود به شكل زير نوشت:

$$
\begin{equation*}
-\nabla f=-\left(\lambda_{1} \nabla g_{1}+\lambda_{2} \nabla g_{2}\right) \tag{0.1.9}
\end{equation*}
$$

 جهتى مانند s حركت كنيم كه قابل استفاده و قابل تبول باندـ . براي اين كه جهت قابل استفاده باشده، يك
 منفرجه با
 ($-\nabla g_{2}$ - $-\nabla g_{1}$ هدف را كاهش دهد در همسايكىى A يافت نمى شود. به زبان رياضى، شرط اين كه جهــت s قابل قبول

PFI بنش 1 : 1 : شرايط كان - تاكر
باشـد به شيكل زير نوشته مي شود :

$$
\mathrm{s}^{T} \nabla g_{j} \geq 0, \quad j \in I_{A}
$$

(0.1.1.)

هدن را كاهش دهد) عبارت است از:

$$
\begin{equation*}
s^{T} \nabla f<0 \tag{0.1.11}
\end{equation*}
$$

$$
\begin{equation*}
s^{T} \nabla f=\sum_{j=1}^{n_{p}} \lambda_{j} s^{T} \nabla g_{j} \tag{0.1.1Y}
\end{equation*}
$$

 .
 قيلها را نقض نكند ناممكن است. در بعضى از حالتها، حركت در جهتى كه مماس بر قيـدهـاى فـعـال و عمود بر كراديان (يعنى ميب صغر) باشـد امكان پذير است، يعنى:

$$
\begin{equation*}
\mathbf{s}^{T} \nabla f=\mathbf{s}^{T} \nabla g_{j}=0, \quad j \in I_{A} \tag{0.1.1H}
\end{equation*}
$$

اثر هنان حركتى روى تابع هلن و قيدها تنها از مـتقات بالاتر بدست مى آيد ـ در بعضـى از حـالـتهـا حركتى در اين جهت مى تواند تابِ مدنـ را بدون نقض قيد كاهش دهل، هر هند شُر ايط كان- تاكر برآورده شُده باشند. بنابراين، شُرايط كان- تاكر برايى بهينگى لازم ولى كافى نيستند. وتتى تعداد قيدهاى نعال برابر تعداد شتغيرهاى طراسى باشُد شرايط كان- تاكر كـانى اســت . در اين
 (در نضاى n بعدى ، يكـ بردار نمى تواند بر nبردار مستقل خحطى عمود باشلد) . وتتى تعداد قيدماى نمال با تعداد متغير هاى طراحى برابر نباشد، شُرايط كافى برايى بهينگى مشتقات دوم تابع هدن و قيدما رالازم

مبانى بهينه سازى ساز، ما (نصل ه: بهينه سازى مقيد) FYY

دارد ـ شرط كافى بهينكّى اين است كه ماتريس هسيان تابع لاكرانزين در زير نفاى مماس بر قيدهاى فعال معين مثبت باشد. اكر به عنوان منال تيدهاى تسـاوى رادر نظر بگيريم، ماتريس هسيان لاكرانزين عبارت اسست از:

$$
\begin{equation*}
\nabla^{2} \mathcal{L}=\nabla^{2} f-\sum_{j=1}^{n_{j}} \lambda_{j} \nabla^{2} h_{j} \tag{0.1.1F}
\end{equation*}
$$

شرط كافى برالى بهينگى عبارت اسـت از :

$$
\mathbf{s}^{T} \nabla h_{j}=0, \quad j=1 \ldots, n_{e} . \quad \mathbf{s}^{T}\left(\nabla^{2} \mathcal{L}\right) s>0, \quad \text { (0. . . . 10) }
$$

وتتى تيدهاى نامساوى وجود دارند، لاز است بردار F بر كراديانهاى تَدهاى نعال با خربحر لاكرانز منبت عمود باشد. برایى تيدهاى فعال با خربكر لاكَانز صفر، s بايد شرط زير را برآورده سازد:

$$
g_{j}=0, \lambda_{j}=0 \quad \text { وتتى } \quad \mathbf{s}^{T} \nabla g_{j} \geq 0 \quad \text { (0. 1. 19) }
$$

0.1.1 0.1 هينيهم تابع

$$
f=-x_{1}^{3}-2 x_{2}^{2}+10 x_{1}-6-2 x_{2}^{3}
$$

را با توجه به محدوديتهاى زير بيابيد

$$
\begin{aligned}
& g_{1}=10-x_{1} x_{2} \geq 0 \\
& g_{2}=x_{1} \geq 0 \\
& g_{3}=10-x_{2} \geq 0
\end{aligned}
$$

شرايط كان تاكر عبارتند از :

$$
-3 x_{1}^{2}+10+\lambda_{1} x_{2}-\lambda_{2}=0
$$

$$
-4 x_{2}-6 x_{2}^{2}+\lambda_{1} x_{1}+\lambda_{3}=0
$$

PFT بخش 1 . 0 : :شرايط كان-تكر

$$
\begin{aligned}
& \nabla^{2} \mathcal{L}=\left[\begin{array}{cc}
-6 x_{1} & \lambda_{1} \\
\lambda_{1} & -4-12 x_{2}
\end{array}\right],
\end{aligned}
$$

معينى منفى است، يس اين نقطه بك ماكزيمم است. بعداز آن فرض مى كنيم اولين قَد نعال باشده، يس新 نعال بانُد داريم نه يك ماكزيمم. اكر قيد سوم نعال نباشُد 0 =

$$
\begin{aligned}
-3 x_{1}^{2}+10+\lambda_{1} x_{2} & =0, \\
-4 x_{2}-6 x_{2}^{2}+\lambda_{1} x_{1} & =0, \\
x_{1} x_{2} & =10 .
\end{aligned}
$$

تنها جواب ايـن مـعادلات كه تيدمـاى روى

$$
x_{1}=3.847, \quad x_{2}=2.599, \quad \lambda_{1}=13.24, \quad f=-73.08 .
$$

اين نقطه شرايط كان- ناكر براى يكى مينمم رأبرآورده مى كند. با اين وجود مسبان لاكرانزين در اين نقطه

$$
\nabla^{2} \mathcal{L}=\left[\begin{array}{rr}
-23.08 & 13.24 \\
13.24 & -35.19
\end{array}\right],
$$

معين منفى است، بس شرط كانى رانمى تواند برآورده كند. در حقيقت، بررسى تابع f در نناط عمسايه در امتداد 10 د 10 اكنون اين امكان راكه

$$
\begin{aligned}
-3 x_{1}^{2}+10-\lambda_{2} & =0 \\
-4 x_{2}-6 x_{2}^{2}+\lambda_{3} & =0 .
\end{aligned}
$$

ما تبـلاً امـكان اين كه هـر دو λ صفر بانيُند را بررسى كرديم، جس لازم است تنها سه امكان ديعـر را
 حالـت عبــارت اسـت از:

和

 . $\mathrm{s}^{T} \nabla^{2} \mathcal{L} s<0$ ، $x_{2}=10 ،$ ، $x_{1}=1.826$ حالت بعدعبارت است از
 آسانى مـى توان ديد كـL نهايت، حالت شُرايط كان- تاكر برآورده مى شوند، و تعداد قيدهاى نعال برابر تعلاد متغير هاى طراحیى است، بنابراين

اين نقطه يك مينيمم است.
r 1 . 1 . 1 مسائل محدب
دستهانى از مسائل، كه مسانلل محدب ناميده مى نـوند، وجود دارند كه برايى آنها شرايط كـان-تاكـر براى يك مينيمم فراكير نه تها لازم بلكه كانى نيز هستند. براى تعريف مسائل محدب لازم است مفهـوم تحدبب مجموعهاى از نقاط و تحدب يك تابع رادرك كنيم . مجموعهاى از نقاط S رازمانى محدب كويند كه تمامى تطهه خط واصل بين دو نتطه در S نيز در S بامدل . يعنى

$$
0<\alpha<1 \quad \Delta \alpha x_{1}+(1-\alpha) x_{2} \in S \text { آن كا }
$$

يك نابع زمانى محدب است كه داثمته باشيم:

$$
\left.\left.f \mid \alpha \mathbf{x}_{2}+(1-\alpha) \mathbf{x}_{1}\right] \leq \alpha f\left(\mathbf{x}_{2}\right)+(1-\alpha) f\left(\mathbf{x}_{1}\right), \quad 0<\alpha<1 . \quad \text { (} .|.| \text { | }\right)
$$

 توجه مى كنيم كه مشتق دوم f نامنغى است ، 0 ، 0 ت محدبب است كه ماتريس مشتقات دوم آن نيمه معين مثُبت باشمد.

FFA بنغش 0.1 : شرايط كان -تاكر
يك مساله بهينه سازى محدلب تابع هدفـ محدلب و يكى ناحيه' تابل تبول محدلب دارد ـ ــى توان نشـان
 بوده و قيدماى تساوى خططى باشند . يكى مساله' بهينه سازى محدلب تنها يكى مينيمم دارد، و شرايط كانتاكر براى تأييد آن كانى استـ. تحلبب بيستر مساثل بهينه مازى واقعى را نمى توان تشـخيص داد . بـا ايـن وجود، نظريه برنامه ريزى مسلبـ در بهينه سازى سازه ها ممجنان از اهميت بالايع برخوردار اسـت، زيرا
 كنيد . . ماده ترين تقريب يكى تقريب خحطى براى تابع هدفـ و تيدهاست كه يكى مساله' برنامهريزى خحطى را به وجود مى آورد.

شككل 1. 1. . . تابع محلب

مثال

 بار كذارى نشان داده شده، نيروى اعضا و تغير مكان عمودى δ در انتها عبارت است از :

$$
\begin{aligned}
& f_{1}=5 p, \quad f_{2}=-p, \quad f_{3}=4 p, \quad f_{4}=-2 \sqrt{3} p \\
& \delta=\frac{6 p l}{E}\left(\frac{3}{A_{1}}+\frac{\sqrt{3}}{A_{2}}\right) .
\end{aligned}
$$

فرض مى كنبم تنشهاى مجاز در كنشّ و فنشار بـ ترتيب
 و تغيير مكان برحسب متغير هاى طراحى بى بعد

$$
\begin{aligned}
& x_{1}=10^{-3} \frac{A_{1} E}{p}, \quad x_{2}=10^{-3} \frac{A_{2} E}{p}, \\
& f=3 x_{1}+\sqrt{3} x_{2} \\
& \text { تابع } \\
& g_{1}=3-\frac{18}{x_{1}}-\frac{6 \sqrt{3}}{x_{2}} \geq 0, \quad \text { رامشروط بـ } \\
& g_{2}=x_{1}-5.73 \geq 0,
\end{aligned}
$$

را مى شود به شكل زير رابطه سازى كرد:

شرايط كان- تاكر عبارتند از :

$$
\begin{aligned}
& \frac{\partial f}{\partial x_{i}}-\sum_{j=1}^{3} \lambda_{j} \frac{\partial g_{j}}{\partial x_{i}}=0, \quad i=1,2, \\
& 3-\frac{18}{x_{1}^{2}} \lambda_{1}-\lambda_{2}=0 \\
& \sqrt{3}-\frac{6 \sqrt{3}}{x_{2}^{2}} \lambda_{1}-\lambda_{3}=0
\end{aligned}
$$

ابتدا احتمال 0

PFV بنش 0.1 : : شُرايط كان- تاكر
 $\lambda_{2}=\lambda_{3}=0$ نيست. نتيجه مى كيريم1 را در نظر بگيريد . براى مجهـولات جوالب عبارت است از :

$$
x_{1}=x_{2}=9.464, \quad \lambda_{1}=14.93, \quad f=44.78
$$

 g و را بررسى كنيم • برای تحدلب مسـأله بايد
 $-\mathbf{A}_{1}=\left[\begin{array}{cc}36 / x_{1}^{3} & 0 \\ 0 & 12 \sqrt{3} / x_{2}^{3}\end{array}\right]$.
 - • • . .

(A.F

يكى از ماده ترين شـكلهاى مسائل بهينه مازى مقيدغبرخـطـى، شـكـل مسـالّلهُ برنامدريزىى درجـه
 دارد . برایى مادكى مسـألهاى رابا تيد نامسـاوى تنها كـهو تيد دارد در نظر مى كيريم كه به شـكل زير بيـان

$$
\begin{array}{lll}
& f(x)=c^{T} x+\frac{1}{2} x^{T} Q x & \text { شتود } \\
& A x \geq b, \\
\text { تابع } & x_{i} \geq 0, \quad i=1, \ldots, n . &
\end{array}
$$

قيدهاى خحطى يك حوزه' تابل قبول مددبس تشكيل مى دهند. اكر تابع هدف نيز محدب باشد، آن كاه يكى مسـألهُ بهينه سازى محدبب داريم كه براى آنن، همحنان كه در بخشٌ قبلى بحث شد، شُ ايط كان- تاكر

براى بهينگى فراكير مسالد كافى است. بنابراين، داشتن يك ماتريس Qنيمه معين ممبت يا معين مثبت يكى
 مسائل بهينه سازى سكـل درجه دوم xTQx يا معين مبُت يا نيمه معين مثبت استـ. بنابراين، يكـى از روشهاى حل مسائل QP حل شرايط كان- تاكر است.

$\mathcal{L}(\mathbf{x}, \lambda, \mu, \mathbf{t}, \mathbf{s})=\mathbf{c}^{T} \mathbf{x}+\frac{1}{2} \mathbf{x}^{T} \mathbf{Q} \mathbf{x}-\lambda^{T}\left(\mathbf{A x}-\left\{t_{j}^{2}\right\}-\mathbf{b}\right)-\boldsymbol{\mu}^{T}\left(\mathbf{x}-\left\{s_{i}^{2}\right\}\right),(\Delta . r . Y)$
كه بر $\left\{s_{i}^{2}\right\},\left\{t_{j}^{2}\right\}$

$$
\begin{array}{ll}
\frac{\partial \mathcal{L}}{\partial \mathrm{x}}=\mathrm{c}-\mathbf{Q x}-\mathbf{A}^{T} \boldsymbol{\lambda}-\mu=0, & (0 . Y . Y) \\
\frac{\partial \mathcal{L}}{\partial \boldsymbol{\lambda}}=\mathbf{A x}-\left\{t_{j}^{2}\right\}-\mathrm{b}=0, & (0 . Y . Y) \\
\frac{\partial \mathcal{L}}{\partial \mu}=\mathrm{x}-\left\{s_{i}^{2}\right\}=0, & (0 . Y . \Delta) \\
\frac{\partial \mathcal{L}}{\partial t_{j}}=2 \lambda_{j} t_{j}=0, \quad j=1, \ldots, n_{g}, \\
\frac{\partial \mathcal{L}}{\partial s_{i}}=2 \mu_{i} s_{i}=0, \quad i=1, \ldots, n . & (0 . r \cdot q) \\
(0 . Y . Y)
\end{array}
$$

در حالى كـه وn تعداد تيدهاى نامـسـاوى، و n تعداد متغير هاى طراحى است. . مـا يـك بردار جـديـد
 (0.Y.V) شرايط كان- تاكر را دوباره به نُشكل زير مى نويسبم :

$$
\begin{array}{ll}
\mathbf{Q x}+\mathbf{A}^{T} \boldsymbol{\lambda}+\mu=\mathbf{c}, & (0 . Y . \mathrm{A}) \\
\mathbf{A x}-\mathbf{q}=\mathbf{b}, & (0 . Y . \mathrm{Q}) \\
\lambda_{j} q_{j}=0, \quad j=1, \ldots, n_{\boldsymbol{s}}, & (0 . Y . \mid \cdot) \\
\mu_{i} x_{i}=0, \quad i=1, \ldots, n, & (0 . Y . \mid 1) \\
\mathbf{x} \geq \mathbf{0}, \quad \lambda \geq \mathbf{0}, \quad, \quad \mu \geq \mathbf{0} . & (0 . Y . \mid Y)
\end{array}
$$

的، μ_{j} و

 ، $y_{i}, \quad i=1, \ldots, n$

	$\sum_{i=1}^{n} y_{i}$		عبارت	(0.Y.IT)
	$Q \mathrm{C}+\mathrm{A}^{\mathbf{T}} \boldsymbol{\lambda}+\boldsymbol{\mu}+\mathrm{y}=\mathrm{c}$,		رامشرو	(0.r.1Y)
	$\mathbf{A x}-\mathrm{q}=\mathbf{b}$,			(0.Y.10)
مينيـم كنب.	$x \geq 0, \quad \lambda \geq 0, \quad \mu \geq 0$,	,	$\mathrm{y} \geq 0$	(0.Y.19)

 يعنى در صورت وجـود م روشهاى ديكر حل مسالل برنامه ريزى درجه دوم نيز وجود دارد كه خواننده را براى جزينيات بيشتر به

r.

همجنان كه در مثال 1 ـ 1 ـ 1 مى توان ديد، بدست آوردن مستقيم مينيمـم از شرايط كان- تاكر ممكن است مسنكل باسد زيرا بايد تركيهاى بسيارى از تيدهاى فعالل و غير فعال را در نظر بكيريم، و اين كار در

PM. محاسبه' ضربكر هاى لاكرانز (كه ضربگر كان- تاكر نيز ناميله بى شوند) در يكى نتطـه' داده شده'X Xياز داريم. . همجنان كه در بخت بعذى خواهيم ديد، مهكن است بخخواهيم ضربگرهاى لاكرانز را به منظرر حدس ميزان حساسيت جواب بهين به تغيرات كوجك در تعريف مسأله محاسبه كنيم. براى مـحـاسبـهُ'

$$
\begin{equation*}
\nabla f-\mathbf{N} \boldsymbol{\lambda}=\mathbf{0}, \tag{0.r.1}
\end{equation*}
$$

در حالى كه ماتريس N به شكل زير تعريف بى شود:

$$
\begin{equation*}
n_{i j}=\frac{\partial g_{j}}{\partial x_{i}}, \quad j=1, \ldots, r, \quad, \quad i=1, \ldots, n \tag{0.r.r}
\end{equation*}
$$

ما تنها قيدهاى نحال و ضربكر هاى لاكرانز آنها رادر نظر مى كيريم، و فرض بى كنيم نعداد آنهـا r تا
باثشد.
معمـولا ، تعداد r ، تيـدهاى نعال كـمتـر از n است، بنابـرايـن بـا n معادله بـر حـــب r مמجهول، مـعادله (1 . r . ه) بكى دستگاه معادلات فرا معين امست. فرض بى كنيم كراديانهاى قيدها به طور خطى
 جوابب دتيق داريـم . بنابراين مى نوانيم از يكى زير مجموعهاز r معادله استفاده كنيم تا ضربگرهاى لاكرانز

 هی كنيم•

$$
\begin{equation*}
\mathbf{u}=\mathbf{N} \boldsymbol{\lambda}-\boldsymbol{\nabla} f \tag{0.r.r}
\end{equation*}
$$

جواب كهترين مربعات معادله (Y . . () مربع نرم اتليدسى باقيمانده نسبت به

$$
\|\mathbf{u}\|^{2}=(\mathbf{N} \lambda-\nabla f)^{T}(\mathbf{N} \lambda-\nabla f)=\lambda^{T} \mathbf{N}^{T} \mathbf{N} \lambda-2 \lambda^{T} \mathbf{N}^{T} \nabla f+\nabla f^{T} \nabla f .(0 . \Gamma . \uparrow)
$$

 مى كيريـم. داريم :

$$
2 \mathbf{N}^{T} \mathbf{N} \boldsymbol{\lambda}-2 \mathbf{N}^{T} \nabla f=\mathbf{0}
$$

$$
\begin{equation*}
\lambda=\left(\mathbf{N}^{T} \mathbf{N}\right)^{-1} \mathbf{N}^{T} \nabla f \tag{0.r.9}
\end{equation*}
$$

اين بهترين جواب كمترين مربعات الست. با اين وجود، اكر شرايط كان- تاكر برآوردد شـوند، ايـن

$$
\begin{array}{cc}
\mathbf{P} \nabla f=0, & (0 . r . v) \\
:(0 . r . \wedge)
\end{array}
$$

ماتريس تصوير ناميده مى شود. در بخشش ه ه ه نشان داده خواهد شـد كه اين ماتريس يك بردار رادر P زير نضاى مماس بر قيدهاى نعال تصوير مى كند. مـعادله (B. Y. V) كوياى اين مطلب است كه براى برآورده شدن شرايط كان- تاكر ، كراديان تابع هدف بايد بر آن زير نضا عمود باثـر د

$$
\begin{equation*}
\mathbf{Q N}=\binom{\mathbf{Q}_{1} \mathbf{N}}{\mathbf{Q}_{\mathbf{2}} \mathbf{N}}=\binom{\mathbf{R}}{0} . \tag{0.5.9}
\end{equation*}
$$

تحليل عددى دالكويسـت و جـارك' [5] مراجعه كنــد) . از آن جـاهQ كه يكى ماتريس متعامـد اسـتـ، نرم اقليدسى Qu مانند نرم اقليدسى u استت، يا:

$$
\|\mathbf{u}\|^{2}=\|\mathbf{Q} \mathbf{u}\|^{2}=\|\mathbf{Q} \mathbf{N} \lambda-\mathbf{Q} \nabla f\|^{2}=\left\|\binom{\mathbf{R}}{0} \boldsymbol{\lambda}-\mathbf{Q} \nabla f\right\|^{2}=\left\|\binom{\mathbf{R} \boldsymbol{\lambda}-\mathbf{Q}_{1} \nabla f}{-\mathbf{Q}_{2} \nabla f}\right\|^{2} .
$$

(0.r.1.)

مثال 1 . 0. .
بررسى كنيدآيَا نقطهُ (2,4, 2-) يك مينـمم محلى مساله نير اسـت با خيو؟

$$
\begin{aligned}
f & =x_{1}+x_{2}+x_{3}, \\
g_{1} & =8-x_{1}^{2}-x_{2}^{2} \geq 0, \\
g_{2} & =x_{3}-4 \geq 0, \\
g_{3} & =x_{2}+8 \geq 0 .
\end{aligned}
$$

تنها دو تيد اول در (2,4-2-) بحرانيند.

$$
\begin{gathered}
\frac{\partial g_{1}}{\partial x_{1}}=-2 x_{1}=4, \quad \frac{\partial g_{1}}{\partial x_{2}}=-2 x_{2}=4, \quad \frac{\partial g_{1}}{\partial x_{3}}=0 \\
\frac{\partial g_{2}}{\partial x_{1}}=0, \quad \frac{\partial g_{2}}{\partial x_{2}}=0, \quad \frac{\partial g_{2}}{\partial x_{3}}=1 \\
\frac{\partial f}{\partial x_{1}}=\frac{\partial f}{\partial x_{2}}=\frac{\partial f}{\partial x_{3}}=1
\end{gathered}
$$

$$
\begin{align*}
& \text { از اين شُكل مى توان ديد كه } \\
& \mathbf{R} \boldsymbol{\lambda}=\mathbf{Q}_{\mathbf{1}} \boldsymbol{\nabla} \boldsymbol{f} .
\end{align*}
$$

بنابراين :

$$
\begin{aligned}
\mathbf{N} & =\left[\begin{array}{cc}
4 & 0 \\
4 & 0 \\
0 & 1
\end{array}\right], \quad \nabla f=\left\{\begin{array}{l}
1 \\
1 \\
1
\end{array}\right\}, \\
\mathbf{N}^{T} \mathbf{N} & =\left[\begin{array}{cc}
32 & 0 \\
0 & 1
\end{array}\right], \quad \mathbf{N}^{T} \nabla f=\left\{\begin{array}{c}
8 \\
1
\end{array}\right\}, \\
\lambda & =\left(\mathbf{N}^{T} \mathbf{N}\right)^{-1} \mathbf{N}^{T} \nabla f=\left\{\begin{array}{c}
1 / 4 \\
1
\end{array}\right\},
\end{aligned}
$$

ممحنين

$$
\left[\mathbf{I}-\mathbf{N}\left(\mathbf{N}^{T} \mathbf{N}\right)^{-1} \mathbf{N}^{T}\right] \nabla f=0
$$

- • • يك مينيمم برآورده شده اسـت
(0. Fساسيت جواب بهين به بارامترهاى مسأله
ضربكرهاى لاكرانز نه تنها برایى بررسى بهينگى مفيدند، بلكه اطلاعاتى در مورد ميزان سـســاســـت
 است. در بيشتر مسـائل بهينه مـازى طراحى مهندسى تعداد زيادى بارامتر مانـند خــواص مـواد، ابـعـاد و سطرح بار كذارى وجود دارد كه در بهينه مازى ثابتند . اغلب حساسيت جواب بهين به اين يـارامـتر هـاى مساله مورد نياز است كه يا به سبب ندانستن دتيق اين بارامترهاست، يا به سبب اين امست كه اكر بيسنيم آنها روى طراحى بهين اثر زيادى دارند بتو انيم اتنها را تغيير دهيم•
اكنوذ فرض مى كنيم تابع هدفـ و فيدها به هِارامتر p بسنكى دارند و مساله' بهينه سازى به شكل

$$
\begin{align*}
& f(\mathbf{x}, p) \tag{0.F.1}\\
& g_{j}(\mathbf{x}, p) \geq 0, \quad j=1, \ldots, n_{g} . \quad \text { را جنان مينيم كنيد ك }
\end{align*}
$$

جواب مساله با مـى خـواهيم مشتقـــات *x و *f را نــبـت بـه p بيابيم. مـعادلاتى كـه جواب بهين را مى دهنـد شـرايـط

$$
\begin{equation*}
\mathbf{g}_{a}=0 \tag{O.Y.Y}
\end{equation*}
$$

است كه

$$
\begin{gather*}
(\mathbf{A}-\mathbf{Z}) \frac{d \mathbf{x}^{*}}{d p}-\mathbf{N} \frac{d \lambda}{d p}+\frac{\partial}{\partial p}(\nabla f)-\left(\frac{\partial \mathbf{N}}{\partial p}\right) \lambda=0 \tag{Q.F.r}\\
\mathbf{N}^{T} \frac{d \mathbf{x}^{*}}{d p}+\frac{\partial \mathbf{g}_{a}}{\partial p}=0 \tag{O.F.F}
\end{gather*}
$$

در صورتى كی A ماتريس هسبان تابع هدف f، f
آن عبارتنداز

$$
\begin{equation*}
z_{k l}=\sum_{j} \frac{\partial^{2} g_{j}}{\partial x_{k} \partial x_{l}} \lambda_{j} \tag{0.F.©}
\end{equation*}
$$

 ضربكر هاى لاكرانز است. حالتهاى خاص متفاوتى از اين دستكاه توسط سوبيسكى 'و ديكران[6] مورد بحث قرار كرفته اسـت.

مورد نياز است. در اين حالت تحليل حساسيت مى تواند بسبار مـاده تر شودد. مى توانيم بنويسيم:

$$
\begin{align*}
& \frac{d f}{d p}=\frac{\partial f}{\partial p}+\sum_{i=1}^{n} \frac{\partial f}{\partial x_{l}} \frac{d x_{i}^{*}}{d p}=\frac{\partial f}{\partial p}+(\nabla f)^{T} \frac{d \mathbf{x}^{*}}{d p} . \tag{0.f.9}
\end{align*}
$$

$$
\begin{align*}
& \frac{d f}{d p}=\frac{\partial f}{\partial p}-\lambda^{T} \frac{\partial_{\mathrm{g}}}{\partial p} . \tag{O.F.V}
\end{align*}
$$

1) Sobieski

 مى دهند . به عنوان مثال تيدى به شكل 0 م
 مى كند . مى بينبم كه

 ضربكرهاى لاكر انز بايد نامنفى باشند را توضيح مي دهد . يك ضريگر لاكرانز منفى نشانگر اين است كه مى توانيم با سخت كردن برآورده شُـدن قيد تابع هدن را كاهش دهيم كه كار بيهوده ای استـ.

مثال 1

مــاله' بهينه سازى زير رادر نظر بڭيريل.

$$
\begin{aligned}
f & =x_{1}+x_{2}+x_{3} \\
g_{1} & =p-x_{1}^{2}-x_{2}^{2} \geq 0 \\
g_{2} & =x_{3}-4 \geq 0 \\
g_{3} & =x_{2}+p \geq 0
\end{aligned}
$$

 اين جوابِ بهبن را نسبت به p بيابيم . در نقطهُ بهين داريـم بحرانيند . مى توانيم مشتق تابي هدن را از معادله (D . Y . V) محاسبه كنيم.

$$
\frac{\partial f}{\partial p}=0, \quad \frac{\partial \mathrm{~g}_{a}}{\partial p}=\left\{\begin{array}{l}
1 \\
0
\end{array}\right\}
$$

بنابراين :

$$
\frac{d f}{d p}=-0.25
$$

$$
A=0, \quad \frac{\partial \nabla f}{\partial p}=0, \quad \frac{\partial \mathbf{N}}{\partial p}=0
$$

تنها

$$
\begin{aligned}
& \text { داريم: } \\
& z_{11}=-2 \lambda_{1}=-0.5, \quad z_{22}=-2 \lambda_{1}=-0.5, \quad Z=\left[\begin{array}{ccc}
-.5 & 0 & 0 \\
0 & -.5 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& .5 \dot{x}_{1}-4 \dot{\lambda}_{1}=0 \text {, } \\
& .5 \dot{x}_{2}-4 \dot{\lambda}_{1}=0 \text {, } \\
& \dot{\lambda}_{2}=0,
\end{aligned}
$$

$$
\begin{aligned}
& 4 \dot{x}_{1}+4 \dot{x}_{2}+1=0, \\
& \dot{x}_{3}=0 \text {. } \\
& \text { جواب اين بنج معادلّ زوج يُده عبارت است از : } \\
& \dot{x}_{1}=\dot{x}_{2}=-0.125, \quad \dot{x}_{3}=0, \quad \dot{\lambda}_{1}=-0.0156, \quad \dot{\lambda}_{2}=0 .
\end{aligned}
$$

مى توانيم با تغيير p از 8 به 9 و بهينه سازى مجلد، مستتات تابع هدنـو متغيرهاى طراحى رابررسى كنيم، و به آسانى مى توان ديد كه داريم خوبى با برون يابى خططى مبتنى بر مشتقهـا كـ قابل مقايسه اند.

ه. A روشهاى تصوير كراديان و كراديان كاهش يافته
روش تصوير كراديان روزن' بر اساس تصوير جهت جست و جو در زير فضاى مماس بر تيدهاى فعال المتوار امت. ابتدابيابيم روش رابراى قيدهاى خحطى مطالعه كنبم [7] . مساله مقيد رابه شـكـل زير تعريف
f(x) را جنان مينمبم كنيدكه

$$
\begin{equation*}
g_{j}(x)=\sum_{i=1}^{n} a_{j i} x_{i}-b_{j} \geq 0, \quad j=1, \ldots, n_{g} \tag{0.0.1}
\end{equation*}
$$

به شكل بردارى

$$
\begin{equation*}
g_{j}=\mathbf{a}_{j}^{T} x-b_{j} \geq 0 \tag{0.0.r}
\end{equation*}
$$

اكر تنها r قيد نعال را انتخابب كنيم ((j \in)، مى توان معادله

$$
\begin{equation*}
\mathbf{g}_{a}=\mathbf{N}^{T} \mathbf{x}-\mathbf{b}=0 \tag{0.0.r}
\end{equation*}
$$

كه در آن ag بردار تيدهاى نعال است و ستونهاى ماتريس N كراديانهاى اين فيدهايند . فرض اسـاسي روش تصوير كراديان اين است كه x روى زير نضهاى مهام بر تيدهاى نعال ترار داد . اكر

$$
x_{i+1}=x_{i}+\alpha s
$$

و

$$
\mathbf{N}^{T} \mathrm{~s}=0
$$

اكر بـخواهيم جهـت تندترين كاهش معادلـ (Q . ه . ©) را برآورده سـازد، مى توانيم مساله را به ثـكل زير داشته باشيم :

$$
\begin{aligned}
& \mathrm{s}^{T} \nabla f
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{s}^{T} \mathbf{s}=1 \text {. }
\end{aligned}
$$

يعنى مى خواميم جهتى را بيابيم كه مشتت سويع آن منفى ترين باشـد و معادله (Q . ه . ه) را برآورده سـازد. ضربكرشاى لاكرانز ג و ر را براى تشكيل لاكرانثين استماده مى كنيم .

$$
\mathcal{L}(s, \lambda, \mu)=s^{T} \nabla f-s^{T} N \lambda-\mu\left(s^{T} s-1\right)
$$

شرط ايستا بودن L عبارت است از :

$$
\frac{\partial \mathcal{L}}{\partial s}=\nabla f-\mathbf{N} \lambda-2 \mu s=0
$$

$$
\begin{equation*}
\mathbf{N}^{T} \nabla f-\mathbf{N}^{T} \mathbf{N} \lambda=0, \tag{0.0.9}
\end{equation*}
$$

,

$$
\begin{equation*}
\boldsymbol{\lambda}=\left(\mathbf{N}^{T} \mathbf{N}\right)^{-1} \mathbf{N}^{T} \nabla f . \tag{0.0.0}
\end{equation*}
$$

$$
\begin{align*}
& \text { بنابراين از معادله (ی . ه . ه) داريم } \\
& \mathbf{s}=\frac{1}{2 \mu}\left[I-\mathbf{N}\left(\mathbf{N}^{T} \mathbf{N}\right)^{-1} \mathbf{N}^{\mathrm{T}}\right] \nabla f=\frac{1}{2 \mu} \mathbf{P} \nabla f . \tag{0.0.11}
\end{align*}
$$

 زير s تنهاجهت جست و جو را تعريف مي كند، بنابراين در حالت كلى براي اين كه نشان دهيمPPخاصيت تصوير دارد، لازم است ثابت كنيم كه أكر Wيك بردار اختيارى باششد، آن كاه Pw در زير نضاكى مماس بر قيدهاى نعال است، يعنى Pw رابطه'

$$
\begin{equation*}
\mathbf{N}^{T} \mathbf{P} \mathbf{w}=0 . \tag{0.0.1Y}
\end{equation*}
$$

 كه ماتريس تصوير P را تعريف مى كند، كاراترين راه مشاسبهُ آلن را بيان نمى كند. در عوض، مى توان نشان داد كه:

$$
\mathbf{s}^{T} \nabla f=\mathbf{s}^{T} \nabla g_{j}=0, \quad j \in I_{A} .
$$

كه در آن ماتريس Qاز آخرين معادله (9 . ب. 0 0) مراجمه كنيد).
 توسط عبادى و كارينتر ' [8] ارائه شده الست. به عنوان تدم اول r سطر به طور خططى مستقل N را انتخابب

$$
\mathbf{N}^{T}=\left[\begin{array}{ll}
\mathbf{N}_{1} & \mathbf{N}_{2} \tag{0.0.1F}
\end{array}\right]
$$

 (${ }_{1}$

مى آيد.

$$
\begin{equation*}
\mathbf{Q}_{2}^{T}=\left[-\mathbf{N}_{1}^{-1} \mathbf{N}_{2}\right] \tag{0.0.10}
\end{equation*}
$$

المت برایى Q

 شدهاند و بهينه سازى مى تواند متوتف شـود . اكر بعضى از ضربكرهاى لاكرانز منفى باشند، نشانكر اين است كه ضـمن عدم امكان بهبود با مجموعه فعلى تيدهائى فعال، اين امكان وجود دارد كه با حذن تيدهانى كه خربكر هاى لاكرانز منفى دارند، حركت را ادامه داد . يكى راهبرد اين است كه تيد مربوط به منقى ترين

 باشد، يك تيد ديكر را حذن مى كنبم تا تمامى ضربكرهاى لاكرانزَ مثبت شوند و شر ايطط كـان- تـاكر را برآورده سازيم .
 جست و جوى يك بعدى بايد انجام شـود . بر خلان سحالت نامقيد، تمدهاى غير فعال يك حد بالايمى براى مجموعه α ها به و جود مى آورند. با بافزايشه ، بعضى از آن تيدها ممكن است فعال ر سبس نغض شوند.

مبانى بهبنه سازى سازه ها (نصل ه: بهينهسازى مقيد) P *

$$
\begin{equation*}
g_{j}=\mathbf{a}_{j}^{T}\left(\mathbf{x}_{i}+\alpha \mathrm{s}\right)-b_{j} \geq 0 \tag{0.0.18}
\end{equation*}
$$

$$
\begin{equation*}
\alpha \leq-\left(\mathbf{a}_{j}^{T} \mathbf{x}_{i}-b_{j}\right) / \mathbf{a}_{j}^{T} \mathbf{s}=-g_{j}\left(\mathbf{x}_{i}\right) / \mathbf{a}_{j}^{T} \mathbf{s} . \tag{0.0.1V}
\end{equation*}
$$

 مى آرديم. حد بالايـ α مينيمس زير استـ.

$$
\begin{equation*}
\bar{\alpha}=\min _{\alpha_{j}>0, j \nexists J_{A}} \alpha_{j} \tag{0.0.11}
\end{equation*}
$$

در بايان حركت، قيدماى جديد ممكن امست فعال شوند، بنابراين لازم استت مجموعد تيدهاى نعال قبل از انتجام حركت جديد بهنكام شُود.
اين نوع روس تصوير كراديان كه تاكنون ارأثه شـد يكـ تعميم از روش تندترين كـاهـش اســت . مـانـنـد روش تندترين كامش ممكن است هـنرايه كندى دائته بامد ـ روش تصوير كراديان را مى توان به شـكلى تعميم داد كه به روشهاى نيوتن يا شبه نيوتن مربوط شود . در سالت نامقيد، اين روشها جهـت جـسـت و جوى زير رابه كار مى برند:

$$
\begin{equation*}
\mathbf{s}=-\mathbf{B} \nabla f, \tag{0.0.19}
\end{equation*}
$$

در سالى كه B وارون ماتريس هسيان f يا يكى تقريب از آن است. جهتى كه از حنين رونّى در زير نضاى مماس بر قيدهاى فعال به وجود مى آيد رامى توان نشان داد[4] كه برابر است با:

$$
\begin{equation*}
\mathbf{s}=-\mathbf{Q}_{2}^{T}\left(\mathbf{Q}_{2}^{T} \mathbf{A}_{L} \mathbf{Q}_{2}\right)^{-1} \mathbf{Q}_{2} \nabla f \tag{0.0.Y•}
\end{equation*}
$$

در سالىى ك A A هسيان تابع لاكرانزين يا يكى تُريب از آن است. روس تصوير كراديان توسط روزن برای تيدهاى غير خطى تعميم يانته امـت[9] . اين روش بر مبناى

PY بنتُ ه. Δ : ردئهاعي تصوير كرادبان وكرادبان كامن يانته

خطى مـازى قيدها حول X استوار است، بنابراين :

$$
\begin{equation*}
\mathbf{N}=\left[\nabla g_{1}\left(\mathbf{x}_{i}\right), \quad \nabla g_{2}\left(\mathbf{x}_{i}\right), \ldots, \nabla g_{r}\left(\mathbf{x}_{i}\right)\right] \tag{0.0.Y1}
\end{equation*}
$$

مشُكل اصلى كه به سبب غير خططى بردن قيدها به وجود مى آيد اين است كه معمر لا ججست وجوى بكـ بعدى از مرز تيد دور مى شود. اين دور شدن به سبب اين است كه ما در زير فضهاى مماس حركتـ مي كنيـم كه ديعر دقيقآمرزهاى قيدها را دنبال نمى كند. بعد از بايان جسـت و جوى يكى بعدى، روزن يكـ سركت
 برای يانتن معادله الى براى حركت جبرانى، ابتدا يادآور مى شمود كه اكنون به جاى بعادله' (Q . Q . Y) از تقريب خططى زير استفاده مى كنيم :

$$
\begin{equation*}
g_{j} \approx g_{j}\left(\mathbf{x}_{i}\right)+\nabla g_{j}^{T}\left(\overline{\mathbf{x}}_{i}-\mathbf{x}_{\mathbf{i}}\right) \tag{0.0.YY}
\end{equation*}
$$

مى خواهيم يك تصسحيح صفر كاهس دهد . به آسمانى مى توان نتشان داد كه :

$$
\begin{equation*}
\overline{\mathbf{x}}_{i}-\mathbf{x}_{i}=-\mathbf{N}\left(\mathbf{N}^{T} \mathbf{N}\right)^{-1} \mathbf{g}_{\alpha}\left(\mathbf{x}_{i}\right) \tag{O.Q.YY}
\end{equation*}
$$

 تقريب خحطي است، بنابراين بايد تا زمانى كه وg به اندازه؛ كافى كوجك شّود، بع در بع به كار رود. انزون بر نياز به يكـ حركت جبرانى، غير خططى بودن قيــهـا ارزيـابـى مـجـدد N در هر نقطـه را خـرورى
 است، رانيز بيجيده مى كند. هـاكى و آرورا' [10] روشى را كه برایى حالت غير خططى مناسـب تر اسـت

 رابطه زير را داريم:

$$
\begin{equation*}
f\left(\mathbf{x}_{i}\right)-f\left(\mathbf{x}_{i+1}\right) \approx \gamma f\left(\mathbf{x}_{\mathbf{i}}\right) \tag{0.0.YF}
\end{equation*}
$$

با استفاده از مسادله (Y . ه ه O و با يكى تقريب خطى داريم:

$$
\alpha^{*}=-\frac{\gamma f\left(\mathbf{x}_{i}\right)}{\mathbf{s}^{T} \nabla f} .
$$

مزيت دوم روش هاكى و آرورا تركيب حركتهاى تصوير و جبرانى است به نـكلى كه

$$
\begin{equation*}
\mathbf{x}_{i+1}=\mathbf{x}_{i}+\alpha^{*} \mathbf{s}-\mathbf{N}\left(\mathbf{N}^{T} \mathbf{N}\right)^{-1} \mathbf{g}_{a} \tag{0.0.1я}
\end{equation*}
$$

0.0 .1 مثال

مسالدُ زير رابا استفاده از روش تصوير كراديان حل كيد.

$$
\begin{aligned}
& f=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}-2 x_{1}-3 x_{4} \\
& g_{1}=2 x_{1}+x_{2}+x_{3}+4 x_{4}-7 \geq 0, \\
& g_{2}=x_{1}+x_{2}+x_{3}^{2}+x_{4}-5.1 \geq 0, \\
& x_{i} \geq 0, \quad i=1, \ldots, 4 .
\end{aligned}
$$

فرض كيد در نتيجه' حر كتهاى قبلم از نقطهُ

1) Haug and Arora

YYH بنخش ه. ه : رونهایى نصوير كراديان كراديان كامشبانهه

$$
\begin{gathered}
\mathbf{N}=\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 1 & 0 \\
1 & 2 & 0 \\
4 & 1 & 1
\end{array}\right], \quad \mathbf{N}^{T} \mathbf{N}=\left[\begin{array}{rrr}
22 & 9 & 4 \\
9 & 7 & 1 \\
4 & 1 & 1
\end{array}\right], \\
\left(\mathbf{N}^{T} \mathbf{N}\right)^{-1}=\frac{1}{11}\left[\begin{array}{rrr}
6 & -5 & -19 \\
-5 & 6 & 14 \\
-19 & 14 & 73
\end{array}\right], \\
\mathbf{P}=\mathbf{I}-\mathbf{N}\left(\mathbf{N}^{T} \mathbf{N}\right)^{-1} \mathbf{N}^{T}=\frac{1}{11}\left[\begin{array}{rrrr}
1 & -3 & 1 & 0 \\
-3 & 9 & -3 & 0 \\
1 & -3 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], \quad \nabla f=\left\{\begin{array}{c}
2 \\
4 \\
2 \\
-3
\end{array}\right\} .
\end{gathered}
$$

جهت حركت تصوير عبارت استاز s = $=-\mathbf{P} \nabla f=[8 / 11,-24 / 11,8 / 11,0]^{T}$.
 هدف 0.1 =

$$
\alpha^{*}=-\frac{0.1 f}{\mathrm{~s}^{T} \nabla f}=-\frac{0.1 \times 5}{-8}=0.0625 .
$$

$$
-\mathbf{N}\left(\mathbf{N}^{T} \mathbf{N}\right)^{-1} \mathbf{g}_{a}=\frac{-1}{110}\left\{\begin{array}{c}
4 \\
-1 \\
-7 \\
0
\end{array}\right\}
$$

است با

$$
\mathbf{x}_{1}=\left\{\begin{array}{l}
2 \\
2 \\
1 \\
0
\end{array}\right\}+0.0625\left\{\begin{array}{c}
1 \\
-3 \\
1 \\
0
\end{array}\right\}-\frac{1}{110}\left\{\begin{array}{c}
4 \\
-1 \\
-7 \\
0
\end{array}\right\}=\left\{\begin{array}{c}
2.026 \\
1.822 \\
1.126 \\
0
\end{array}\right\},
$$

در نتيجه داريـم 10% كاهش بـ $f\left(\mathbf{x}_{1}\right)=4.64, g_{1}\left(\mathbf{x}_{1}\right)=0, g_{2}\left(\mathbf{x}_{1}\right)=0.016$. سبب غير نحطى بودن تابع هدنت تها 7\% كاهش داريم . باين وجود، تيدهاى غير خططى برآورده شده اند.

مشال A.A.T

خرياى جهار عضوى منـال Y . Y ه رادر نظر بكيريد . مسألهُ طراحى يانتن وزن مينيمـم مشروط بــ

قيدهاى تنش و تغيرمكان به شـكل زير رابطه سازى شـد : $f=3 x_{1}+\sqrt{3} x_{2}$

مينيم كنيد. رامشروطبه
$g_{1}=3-\frac{18}{x_{1}}-\frac{6 \sqrt{3}}{x_{2}} \geq 0$,

$$
g_{2}=x_{1}-5.73 \geq 0
$$

$$
g_{3}=x_{2}-7.17 \geq 0
$$

در حالى كه

$$
x_{i}=\frac{A_{i} E}{1000 P}, \quad i=1,2 .
$$

اولين تيد نشانگر محدوديت تغيير مكان عمودي است، و دو قيد ديكر قيدهاى تنشند. فرض كنيد جــت و جو را از محل تقاطع
f=47.25 $x_{2}=7.17$ است. كراديان تابع هدن و دو تيد فعال عبارت است از : $\nabla f=\left\{\begin{array}{c}3 \\ \sqrt{3}\end{array}\right\}, \quad \nabla g_{1}=\left\{\begin{array}{l}0.1335 \\ 0.2021\end{array}\right\}, \quad \nabla g_{3}=\left\{\begin{array}{l}0 \\ 1\end{array}\right\}, \quad \mathbf{N}=\left[\begin{array}{cc}0.1335 & 0 \\ 0.2021 & 1\end{array}\right]$.
 فعال به طور خطى مستقل برابر با تعداد متغير هاى طراحى اسـت زير فضهاى مماس يكى نقطهُ منفرداسـت،

$$
\lambda=\left\{\begin{array}{c}
22.47 \\
-2.798
\end{array}\right\}
$$

ضريب منفى مربرط به و3 بيانگر آن است كه قيد مى تواند از مجموعهُ فعال حذن شود. اكنون داريم:

$$
\begin{aligned}
& \mathbf{N}=\left[\begin{array}{l}
0.1335 \\
0.2021
\end{array}\right] . \\
& \text { ماتريس تصحيح از معادله' (A . . . ©) محاسبه مى شود. } \\
& \mathbf{P}=\left[\begin{array}{rr}
0.6962 & -0.4600 \\
-0.4600 & 0.3036
\end{array}\right], \quad \mathbf{s}=-\mathbf{P} \nabla f=\left\{\begin{array}{c}
-1.29 \\
0.854
\end{array}\right\} . \\
& \text { 5\% كاهش در تابع هدن رام مورد نظر قرار مى دهيم و از معادلهُ (ه . ه . ه) داريم: }
\end{aligned}
$$

PrA بنشش ه. ه : روئهاىتصوير كراديان ركراديان كامشيانته

$$
\alpha^{*}=\frac{0.05 \times 47.25}{[-1.290 .854]\left\{\begin{array}{c}
3 \\
\sqrt{3}
\end{array}\right\}}=0.988
$$

از آن جايى كه قيدى در Xنقض نشّله، به كام تركيبى تصوير و تصحيح نيازى نداريم، و داريم:

$$
x_{1}=x_{0}+\alpha^{*} s=\left\{\begin{array}{c}
11.61 \\
7.17
\end{array}\right\}+0.988\left\{\begin{array}{c}
-1.29 \\
0.854
\end{array}\right\}=\left\{\begin{array}{c}
10.34 \\
8.01
\end{array}\right\} .
$$

در
 خطى تعجب آميز نيست، و اندازهُ آن نشان مى دهد كه در حر كت بعدى كاهش f رادر نظر بكيريم. در تنها $N=\nabla \mathbf{g}_{1}=\left\{\begin{array}{l}0.1684 \\ 0.1620\end{array}\right\}$.

ماتريس تصوير به نـكل زير محاسبه مى شُود. $\mathbf{P}=\left[\begin{array}{rr}0.4806 & -0.4996 \\ -0.4996 & 0.5194\end{array}\right], \quad \mathbf{B}=-\mathbf{P} \nabla f=\left\{\begin{array}{c}-0.5764 \\ 0.5991\end{array}\right\}$.

به سبب نقض شدن، كاهش f رابا 25\% در نظر مى كيريم، بنابراين

$$
\alpha^{*}=-\frac{0.025 \times 44.89}{[-0.5670 .599]\left\{\begin{array}{c}
3 \\
\sqrt{3}
\end{array}\right\}}=1.62 .
$$

$$
-\mathbf{N}\left(\mathbf{N}^{T} \mathbf{N}\right)^{-1} \mathbf{g}_{a}=\left\{\begin{array}{l}
0.118 \\
0.113
\end{array}\right\} .
$$

همه' اينها با مم به شكل زير خواهد بود:

$$
\mathbf{x}_{2}=\mathbf{x}_{1}+\alpha^{*} \mathbf{s}-\mathbf{N}\left(\mathbf{N}^{T} \mathbf{N}\right)^{-1} \mathbf{g}_{a}=\left\{\begin{array}{c}
10.34 \\
8.01
\end{array}\right\}-1.62\left\{\begin{array}{c}
0.576 \\
-0.599
\end{array}\right\}+\left\{\begin{array}{l}
0.118 \\
0.113
\end{array}\right\}=\left\{\begin{array}{c}
9.52 \\
9.10
\end{array}\right\} .
$$

 طراحى بهين واتعى عبـارت اســت از - دوخر

ه.
روش جهتهاى قابل تبول[11] در مقايسه بار رش تصويركراديان فلسفه' متضادى دارد ـ به جاى دنبال
 معمو لا از مرز ناحيهُ قابل تبول شروع مى شود (اکر قيدى نعال نبود برایى به وجود آَوردن جهت از فنون بهينه مازى نامقيد استفاده مى شود) .

شكل 1 . 1 . ه انتخاب جهت جست رجو با استفاده /ز ررش جهتهاى تابل تبول

 عنوان يكى جهت قابل تبول تعريف مى شود كه دسـت كم يكى كام كوحكى بتواند در امتداد آن بر داشته شود كه بى درنگ ناحيه‘ قابل تبول را تركُ نكند. اكر تيدها هموار باشند در صورتى اين كار محقت مى شود كه داشته باثيم :

$$
\begin{equation*}
\mathbf{s}^{T} \nabla g_{j}>0, \quad j \in I_{A} \tag{0.9,1}
\end{equation*}
$$

در حالى كه I_{A} مجموعه تيدهاى بحرانی در x أست . جهت s جهتى قابل استفاده در نقطه x است اكر

بختس 4.9 : روئ جهتهاى قابل تبول
انزون بر اين داشته باشيم:

$$
\begin{equation*}
\mathbf{s}^{T} \nabla f=\mathbf{s}^{T} \mathbf{g}<0 \tag{0.9.Y}
\end{equation*}
$$

يعنى، 3 جهتى الست كه تابع هلف را كاهش مى دهد.
از ميان تماعى كزينه هاى جهتهاى قابل تبول و قابل استفاده دنبال جهتى مى كرديم كه از جهاتى بهترين باشد . دو معيار براى انتخاب يكى جهت داريم. . از طرفى مى خواهيم تابع هدف تاس مد مدكن كاهش يابد و

تعريف مى شود.
β
$-s^{T} \nabla g_{j}+\theta_{j} \beta \leq 0, \quad j \in I_{A}, \quad$ را مش
$s^{T} \nabla f+\beta \leq 0, \quad \theta_{j} \geq 0$,
ماكزيمبم كيد .
$\left|s_{i}\right| \leq 1$.

偖 حر كت x از مرز قّدهأست. مقدار برایى يك قيد خطط مورد توجه باشُد. مقدار بزركى براى جهت حركت باشد، و بنابراين مي تواند براى يكى قيد بسيار غير خططى مورد استفاده ترار كيرد.

 مى توان نشان داد كه شر ايط كان- تاكر برآورده شده اند . زمانى كه يك جهت جسـت و جو ييدا شد، انتخاب اندازه' كام معمولًا بر اسـاس ميزان كاهمش در تابع

 بدست مى آوريم . در نهايت اكر بعضى از قيدها نقض شده بائند، بعد از كام اوليه x را براساس مقدار نقض قيـد تعيين مـي كينم. روش جهتهاى تـابل قبول در بـرنــامهـ مشهـور كـان مين (CONMIN) اراته

مثال 0.9

 قيدهاى تنش و تغير مكان به شكل زير رابطه سازى شـد :

$$
\text { مينيمـم كنيد. } \quad g_{3}=x_{2}-7.17 \geq 0
$$

در رابطه هاى فوق xi مساحتهاى بى بعد است كه به شكل زير تعريف مى شوود:

$$
x_{i}=\frac{A_{i} E}{1000 P}, \quad i=1,2 .
$$

اولين قيد بيانكر حدى روى تنيير مكان عمودى، و دو قيد ديكر بيانكر قيدهاى تنتى هاست .

届 $f=47.25$ شروع كنيم. كراديان تابع هدف و دو قيد نعال ديكر عبارت است از :

$$
\nabla f=\left\{\begin{array}{c}
3 \\
\sqrt{3}
\end{array}\right\}, \quad \nabla g_{1}=\left\{\begin{array}{l}
0.1335 \\
0.2021
\end{array}\right\}, \quad \nabla g_{3}=\left\{\begin{array}{l}
0 \\
1
\end{array}\right\} .
$$

بالنتخاب1 β

$$
\text { را مشروط به }-0.1335 s_{1}-0.2021 s_{2}+\beta \leq 0, \quad
$$

$$
-s_{2}+\beta \leq 0,
$$

$$
3 s_{1}+\sqrt{3} s_{2}+\beta \leq 0
$$

$$
-1 \leq s_{1} \leq 1
$$

$$
\text { - } 1 \leq s_{2} \leq 1 \text {. }
$$

جواب اين برنامه ريزى خططى عبارتاسستاز

$$
\mathbf{x}_{1}=\left\{\begin{array}{c}
11.61 \\
7.17
\end{array}\right\}+\alpha\left\{\begin{array}{c}
-0.6172 \\
1
\end{array}\right\} . \quad \text { يك بعدى را مداسبه كنيم. }
$$

$$
\begin{aligned}
& f=3 x_{1}+\sqrt{3} x_{2} \\
& g_{1}=3-\frac{18}{x_{1}}-\frac{6 \sqrt{3}}{x_{2}} \geq 0, \quad \quad \text { بر } \\
& g_{2}=x_{1}-5.73 \geq 0 \text {, }
\end{aligned}
$$

Pr4 بنش 4.9 : روش جهتهاى تابل تبول

شكل Y. Y. Y جواب جهت تابل تبول برايى مـال خرياى جهار عضوى
از آن جا كه تابع هدف خططى است، اين جهت تا بی نهايت يك جهت كاهشى باتى مى ماند، و α تنها
 مى انجامد كه

$$
\cdot f=46.62 ، x_{2}=12.56
$$

براي جرخه، بعدى تنها يك تيد نعال داريم

$$
\nabla g_{1}=\left\{\begin{array}{c}
0.2619 \\
0.0659
\end{array}\right\}, \quad \nabla f=\left\{\begin{array}{c}
3 \\
\sqrt{3}
\end{array}\right\}
$$

برنامه ريزي خطى بدست آَرردن s عبارت است از :

$$
\begin{aligned}
& \beta \\
& -0.2619 s_{1}-0.0659 s_{2}+\beta \leq 0, \\
& 3 s_{1}+\sqrt{3} s_{2}+\beta \leq 0, \\
& -1 \leq s_{1} \leq 1, \\
& \\
& -1 \leq s_{2} \leq 1 .
\end{aligned}
$$

جواب برنامه ريزى خطى عبارت اميت از $s_{2}=-1 ، s_{1}=0.5512$ ، بنابراين جست و جوى يک بعدى عبارت اممت از :

$$
x=\left\{\begin{array}{c}
8.29 \\
12.56
\end{array}\right\}+\alpha\left\{\begin{array}{c}
0.5512 \\
-1
\end{array}\right\}
$$

, A.Y

 يك كالن براى خحودروهاى جديل در سال $19 \wedge$ 19 بود . به جاى اين كه كنكره تنها اين قانون را بكذراند، يك

 (9AF ا * مايل طى مسافت در كالن، • هددلار جريمه تعلق مي كرفت. اين رهيافت كه مُركتهاى خودروسازى را مقيل مي كند كه اتوموبيلهاى با مصرف سوخت كمتر توليد كنتد دو جنبهُ مهم دارد . اول، با اعمال تانون جريمه متناميب با ميزان نقض به جاى حد مطلق، دولت به ثركتهاى خودروساز انعطان بذيرى بيشترى مي دمد. مفهوم اين كار اين است كه آنهـا مـى توانـنـد يـى جلول زمانى را در بيش كيرند كه نزديك به زمانهاى دولت باثُـلد بدون آن كه با صلـبـيـت بـه آن جـسـبـيـله باشنـد. دوم، رهيافت تدريجى اججبار رااز نظر سياسى ساده تر مي سازد . أكر دولت يكى دفعه حد نهايع را
 نزديكتر شود شتاب براى اراثه خودروهاى با سوختت با صرغه تر زيادتر مي شود . تلاشههاى شتابزده مى تواند هـم به طراحى خوردروهاى غير بهينه بينجامد و هـم سبب اعمال فــار براى تأنير در اعمال تانون شود .

Pه1 بنش $0 . V$: روئهاتى تابع جريمد
تانون سوخت كمتر مثالي است كه در آن قيدهاى عملكرد يا فعاليتهاى اتتصادى از راه جريـهـه هـايى اعمال مى شود كه ميزان آن به درجـه نقض تيد بستگى دارد. بديهى اسـت كه اين رهيافت سـاده و جـالـب كاربردهائى لر بهينه سازى مقيد داشته بانُدل . بـ جاى اعمال قيدها، آنها را با جريمه مائى جايكزين مى كنيم كه به ميزان نقضل قيدها بسنگى داثنته باشُد . اين رهيانت به سبب اين كه مسالهُ بهينه سازى مقيد را به يكي

مسالهُ نامقيد تبديل مى كند، مورد توجه أست.
 باثــند . با اين وجود، همجنان كه در ارتباط با اعمال ناكهانى جرايـم در زندكى روزمره، مساثل سيـاسى وجود دائتـ، در بهينه سازى عددى نيز جنين كارى دشواريهاى عددى دارد. به اين سبب يكـ رهيـافت تدريجى شروع با جرايم سبكـ و افزايش تدريجى آنها را انتخاب مى كنيم.
V. . . . 1

تابع جريمهُ خارجى براى نفض يك تيد جريمهأى رادر نظر مى كيرد ـ عبارت لاخارجى1 به اين حقيقت بر مى كردد كه جرايم تنها در خارج از ناحيهُ قابل تبول اعمال مى شوند. مشهورترين تابع جريمهُ خارجى

معادله (1 0)

$$
\begin{align*}
& f(\mathbf{x}) \\
& \\
& h_{i}(\mathbf{x})=0, \quad i=1, \ldots, n_{e}, \quad \tag{0.v.1}\\
& g_{j}(\mathbf{x}) \geq 0, \quad j=1, \ldots, n_{g},
\end{align*}
$$

با مساله' مينيمم سازى

$$
\begin{align*}
& \phi(\mathrm{x}, r)=f(\mathrm{x})+r \sum_{i=1}^{n_{i}} h_{i}^{2}(\mathrm{x})+r \sum_{j=1}^{n_{j}}<-g_{j}>^{2} \tag{0.V.Y}\\
& r=r_{1}, r_{2}, \ldots, \quad r_{i} \rightarrow \infty
\end{align*}
$$

 نامساوى و برخورد باعبارتهاى تساوى متفاوت اسـت زيرا جريمه تنها براى نقض تيد اعــــال مـى شُـود. ضريب مثبتr مقدار عبارت جريمه را كنترل مى كند. ممكـن است انتخاب بكى مقـدار بـالا براى r براى

حصول اطمينان از نتض شـدن تِد منطقى به نظر برسـد . ولى جـنين رهيانتى، همجنان كه قبـلاّ بيان شُد، مشكلات عدديى بـبار مى آورد كه بعداً در يك مثال تشريح مى شود. بـ جاي اين كار ، مينيم سازى با يكى
 است. يكى نمودار معمولى

 نقاط شـروع بسـت و جو با مقادير بزرى
 بر اساس نوع مقياس بندى فيد كه در معادله' (Y ـ Q) داده شُده، ، مى توان يكى مقدار اوليهُ منطقى براى ضريب جريمه' r انتخاب كرد. يكـ راه ساده اين است كه شخخص با مقدار كل جريمه برابر با مـــدار تـابع

$$
\begin{align*}
& \text { نهانى در حدود 50\% (يا } g=-0.5 \text {) شُروع كنيم . آن كاه داريم: } \\
& f\left(x_{0}\right) \approx r_{0} \frac{n}{4}(0.5)^{2}, \quad ᄂ \quad r_{0}=16 \frac{f\left(x_{0}\right)}{n} . \tag{Q.V.r}
\end{align*}
$$

Pهr بنش

 مجانب زير را دارد

$$
\begin{equation*}
\mathbf{x}^{*}(r)=\mathbf{a}+\mathbf{b} / \mathbf{r} \tag{Q.V.F}
\end{equation*}
$$

زمانى كه بهين برای دو مـــدار r مـلاً

$$
\begin{aligned}
& \mathbf{a}=\frac{c \mathbf{x}^{*}\left(r_{i-1}\right)-\mathbf{x}^{*}\left(r_{i}\right)}{c-1}, \\
& \mathbf{b}=\left[\mathbf{x}^{*}\left(r_{i-1}\right)-\mathbf{a}\right] r_{i-1},
\end{aligned}
$$

در حالى كه

$$
\begin{equation*}
c=r_{i-1} / r_{i} \tag{0.v.9}
\end{equation*}
$$

 بهينه سازى براى مفدار بعدىr ، معيار ممكرايى مقيد

$$
\begin{equation*}
\left\|\mathbf{x}^{*}-\mathbf{a}\right\| \leq \epsilon_{1} \tag{Q.V.V}
\end{equation*}
$$

را به ما مى دهد كه در آن a از دو معدار آخر r حدس زده مى شود و و 1 مغدار روادارى (تلرانس) است كه نسبت به مقدار معمول |||||كوجكى است.
معيار همكرايع ديكر بر اساس مقدار عبارت جريمع ترار دارد كه، ممجنان كه در مثال I . . . ه نــان
 عبارت اسـت از:

[^5]مبانى بهينه مـازی مـازه ها (نصل ه : بهينه مـازى معيل) FAF

$$
\left|\frac{\phi-f}{f}\right| \leq \epsilon_{2}
$$

در نهايت، معيار همكرامى ديگُرى بر اماس تغيير مقدار تابع هدف در مينيمم، "f ، نيز استفاده مى شود.

مشال O.Y. 1

$$
\begin{aligned}
& \text { تابع } x_{1}+x_{2}=4 \text { مينيمـم كنيد . داريم } f=x_{1}^{2}+10 x_{2}^{2} \text { با } \\
& \phi=x_{1}^{2}+10 x_{2}^{2}+r\left(4-x_{1}-x_{2}\right)^{2} .
\end{aligned}
$$

كراديان

$$
\mathbf{g}=\left\{\begin{array}{c}
2 x_{1}(1+r)+2 r x_{2}-8 r \\
2 x_{2}(10+r)+2 r x_{1}-8 r
\end{array}\right\}
$$

با مساوى صفر ترار دادن كراديان داريم:

$$
x_{1}=\frac{40 r}{10+11 r}, \quad x_{2}=\frac{4 r}{10+11 r}
$$

r	x_{1}	x_{2}	f	ϕ
1	1.905	0.1905	3.992	7.619
10	3.333	0.3333	12.220	13.333
100	3.604	0.3604	14.288	14.144
1000	3.633	0.3633	14.518	14.532

ديده مى شود كه با انزايـش

PهA بخش
است از:

$$
\mathbf{H}=\left[\begin{array}{cc}
2+2 r & 2 r \\
2 r & 20+2 r
\end{array}\right]
$$

با انزايس r ماتريس بدخيم تر مى شود زيرا تمامى درايه ها تقريبآ $2 r$ مى نسوند . بدخيمى ماتريس
 برای مسالل بزرى منـكلات عددى به بار بياورد.

$$
\begin{aligned}
& \mathbf{a}=\frac{0.1 \mathbf{x}^{*}(1)-\mathbf{x}^{*}(10)}{-0.9}=\left\{\begin{array}{l}
3.492 \\
0.3492
\end{array}\right\}, \\
& \mathbf{b}=\mathbf{x}^{*}(1)-\mathbf{a}=\left\{\begin{array}{c}
-0.159 \\
-0.0159
\end{array}\right\} .
\end{aligned}
$$

$$
\begin{aligned}
& a+b / 100=(3.490,0.3490)^{T},
\end{aligned}
$$

Q . V. Y در تابع جريمه' خارجى، فمود تنها زمانى در جملات جربمه شركت مى كردند كه نقض مى شدند. در

 باشتند. وتتى تنها تيود نامساوى وجود دارند، اين امكان رجود دارد كه يك تابع جريمد' داخلى تعريف كرد
 نامساوى

مبانى بهينه سازى سازه ما (نصل ها: بهينه سازى بعيد) PAP

$$
f(\mathbf{x})
$$

(0.V.1+)

را خنان مينيمبم كنيد كه $\quad g_{j}(\mathbf{x}) \geq 0, \quad j=1, \ldots, n_{g}$

$$
\begin{align*}
& \phi(\mathbf{x}, r)=f(\mathbf{x})+r \sum_{j=1}^{n_{s}} 1 / g_{j}(\mathbf{x}), \tag{0.Y.11}\\
& r=r_{1}, r_{2}, \ldots, \quad r_{i} \rightarrow 0, \quad r_{i}>0
\end{align*}
$$

جمله جريمه با $1 / g^{1}$ مناسب است و در مرز ناحيه' تابل قبول بسيار بزرگ مى شود و در آن جا يكى مانع ايجاد مى كند (روشهاى تابع جريمه داخلىى، كاهى روشهاى مانع ناميله مى شوند) . نرض مى شــود كـه جست و جو در ناحيهُ قابل قبول محلود مى شود. در غير اين صورت، جريمه منفى مى شود كه معنى دار نيست . شكل Q . V . Y كاربرد تابع جريمه دأخلى را برای مشال ساده الى كه براي تابع جريمه خـارجـى در
 (Q.V. 11) ، از تابع جريمه داخلىى لگاريتمى نيز استفاده مى شود

$$
\begin{equation*}
\phi(\mathbf{x}, r)=f(\mathbf{x})-r \sum_{j=1}^{n_{1}} \log \left(g_{j}(\mathbf{x})\right) . \tag{0.V.IY}
\end{equation*}
$$

در حالى كه تابع جريمه داخلى از نظر اين كه رشتهاى از طراحى ماى قابل تبول به وجود ممى آَورد بر تابع جريمهُ خارجى برترى دارد، نتطهُ شُروع قابل تبولى نيز احتياج دارد . متأسفانه، در بيشتر مروافع بيدا كردن هنان طراحى شروع قابل تبولى دشوار است. همجهين، به خاطر استفاده از تـقريب (بـه نصـل 9 مراجعه كنيد)، كاه بد كاه انتادن در ناحيهُ غير قابل تبول در فرايند بهينه سازى كاملاً عادى است . به خاطر اين دلايل، ا استفاده از تركييى از توابع جريمه داخلى و خارجى، كه تابع جريمه داخللى كسترش يانته ناميده
 استارنز' [14] است.

$$
\begin{align*}
\phi(\mathbf{x}, r) & =f(\mathbf{x})+r \sum_{j=1}^{n_{i}} p\left(g_{j}\right), \\
r & =r_{1}, r_{2}, \ldots, \quad r_{i} \rightarrow 0,
\end{align*}
$$

كه در آن

$$
p\left(g_{j}\right)=\left\{\begin{array}{ll}
1 / g_{j} \\
1 / g_{0}\left[3-3\left(g_{j} / g_{0}\right)+\left(g_{j} / g_{0}\right)^{2}\right] & \text { for } g_{j} \geq g_{0} \\
g_{i}<g_{0}
\end{array} \quad\right. \text { (Q.V. Iץ) }
$$

به آسانى مى توان ديد كـه داخلى و خارجى جملات جريمه را تعريف مى كند بايد جنان انتخاب شود كه وتتى r به سمت صفر ميل مى كند جريم4' هربوط به قيد، (است كه داثشته باشيم

$$
\begin{equation*}
r / g_{0}^{3} \rightarrow \infty, \quad \text { مصجنان كه } r \rightarrow 0 . \tag{0.v.10}
\end{equation*}
$$

با انتخاب 90 به شيكل

$$
\begin{equation*}
g_{0}=c r^{1 / 2}, \tag{0.V.19}
\end{equation*}
$$

كه در آن c يك عدد ثابت است به اين هدن مم توان رسيد.
 عنوان مثال، تابع جريمه داخلم معادله (Q. V. 11) به شـكل زير كسترش مى يابد:

PAA

$$
\begin{align*}
\phi(\mathbf{x}, r) & =f(\mathbf{x})+r \sum_{j=1}^{n_{e}} 1 / g_{j}(\mathbf{x})+r^{-1 / 2} \sum_{i=1}^{n_{e}} h_{i}^{2}(\mathbf{x}) \tag{0.V.iV}\\
r & =r_{1}, r_{2}, \ldots, \quad r_{i} \rightarrow 0
\end{align*}
$$

 هعقول بر ای تابع جريمه داخحلى كـه بـه 4 /n تيدهاى نعـال در $0.5=0$ (يعنى 50% حاشيه بر ای تيدهـاى نـرمال ثــده منــاسبب) نيـاز دارد به جريمهاى كـلى بـرابر با تابع هدف مى انجامد. با استفاده از مـعـادلـه (0.V. 11) دأريم:

$$
f(\mathbf{x})=\frac{n}{4} \frac{r}{0.5}, \quad \text { ي } \quad r=2 f(\mathbf{x}) / n
$$

 بنابر اين از معادله (艹 . V. Ir) داريم:

$$
f(\mathbf{x})=r \frac{n}{4} \frac{3}{g_{0}}, \quad \text { ي } \quad r=\frac{4}{3} g_{0} f(\mathbf{x}) / n
$$

مـقدار شُروع منطقى براى 90 برابر امـت با 0.1. مانند تابع جريمه خارجى، بدمت آوردن يكعبارت

PA9 بنش D.V : روئهايتابع جريهـ

$$
\begin{align*}
\mathbf{x}^{*}(r)=\mathbf{a}+b r^{1 / 2}, & r \rightarrow 0 \\
f^{*}(r)=a+b r^{1 / 2}, & r \rightarrow 0
\end{align*}
$$

تخمين a و b عبارت است از :

$$
\begin{align*}
& \mathbf{a}=\frac{\mathbf{c}^{1 / 2} \mathbf{x}^{*}\left(r_{i-1}\right)-\mathbf{x}^{*}\left(r_{i}\right)}{\mathbf{c}^{1 / 2}-1}, \\
& \mathbf{b}=\frac{\mathbf{x}^{*}\left(r_{i-1}\right)-\mathbf{a}}{r_{i-1}^{1 / 2}}, \tag{0.V.19}
\end{align*}
$$

در حالى كه $c=r_{i} / r_{i-1}$ است. مانند حالت تابع جريهة خارجى، اين عبـارات را مـى شـود برایى آزمايشن همكرامى و برون يابى به كار برد.

ه . V. r
توابع جريمه يك مسآله مينيمم سازى مقيد را بـ نامقيد تبديل مى كتند . ممكن است حنين به نظر برسد كه اكنون ما بايد برای مساله مينيمم سازى نامقيد، بهترين رومُهاى مرجود مانند رونـهاى شبه نيـوتن را استفاده كنيه. حنين الزامى وجود ندارد . جملات جريمه سبب مى شوند كـه تابع ه در نزديكى مرز قَد انحناى زيادى داثشته باشد، هر هند انحنايى تابع هدف و تيدها كوهكـ باشند. اين اثر سـبـب مـحـاسـبـهُ تقريبى ارزانتر ماتريس هسيان مى شود؛ بنابراين مى توانيـم روش نيوتن را بلون تحميل هزينهُ بالاى مـحاسبه مشتقات دوم تيدها الستفاده كنيم . اين كار بسيار ير جاذبه تر از استفاده از روشُهاي شبه نيـوتن (كـه در آن هسيان نيز بر اساس مشتتقات اول تقريب زده مى شود) است؛ زيرا يك تقريب خوب با يك تحليل تنـهـا بدست مى آيد و نه با n حركت كه در رون شنبه نيوتن لازم اسـت. به عنوان ميالل، تابع جريمه خارجى را در نظر بـيريد كه در مورد قيدهاى تساوى به كار مى رود.

$$
\begin{equation*}
\phi(\mathbf{x}, r)=f(\mathbf{x})+r \sum_{i=1}^{n_{0}} h_{i}^{2}(\mathbf{x}) \tag{O.V.Y•}
\end{equation*}
$$

مشتّقات دوم عبارت است از:

$$
\begin{equation*}
\frac{\partial^{2} \phi}{\partial x_{k} \partial x_{t}}=\frac{\partial^{2} f}{\partial x_{k} \partial x_{t}}+r \sum_{i=1}^{n_{4}} 2\left(\frac{\partial h_{i}}{\partial x_{k}} \frac{\partial h_{i}}{\partial x_{t}}+h_{i} \frac{\partial^{2} h_{i}}{\partial x_{k} \partial x_{l}}\right) \tag{O.V.YI}
\end{equation*}
$$

به مبب اين كه تيد تساوى h به صفر نزديك است، به ويزٌ برالى مراحل بعدى بهينه سازى، (r بزرگّ)، مى توان جمله آخر در معادله (O. V. Y (V) راحذف كرد . براي مقادير بزركتر r مى توانيم اولين جمله رانيز
 بودن مستفات دوم با هزينه' كم، المتفاده از روشي نيوتن را المكان بذير مى نمايد كه در آن تعدأد جر خخه هـا معمولآ مستقل از تعداد متغير هاى طراحى است . از طرف ديكر، روشّهاى شبه نيوتن و كراديان مزدوج به تعداد خرخخه أى متناسبب با تعداد متغيرها نياز دارند . بنابراين، كاربرد روش نيوتن وقتى تعداد متغير هـاى طراحى زياد المـت جذابب تر مى شود. كاربرد روش نيوتن با تقريب مشـتـقـات دوم بـالا بـه عــــوان روش كوس- نيوتن ' ثشناخته مى شود.

بر ایى تابع جريمه دانخلى نيز شمرايط مشابهى داريم . تابع هدف انزايش يانته'

$$
\begin{array}{cc}
\phi(\mathbf{x}, r)=f(\mathbf{x})+r \sum_{j=1}^{n_{g}} 1 / g_{j}(\mathbf{x}), & \text { (D.V.YY) } \tag{O.V.YY}\\
\frac{\partial^{2} \phi}{\partial x_{k} \partial x_{l}}=\frac{\partial^{2} f}{\partial x_{k} \partial x_{l}}+r \sum_{j=1}^{n_{i}} \frac{1}{g_{j}^{3}}\left(2 \frac{\partial g_{j}}{\partial x_{k}} \frac{\partial g_{j}}{\partial x_{l}}-g_{j} \frac{\partial^{2} g_{j}}{\partial x_{k} \partial x_{l}}\right) . \text { (D.V.Yץ) }
\end{array}
$$

اكنون بحت حذف اولين و آخرين جمله در معادله (H. Y. V) طو لانى تر المت . ابتدا مشاهده مى كثيم كه

 طرف نى نهايت ميل مى كند، بنابراين در معادله (U. V. Y) از جمله' اول در مقايسه با جمله دوم مى توان

صرفنظر كرد ـ بحث مشابهى مى تواند برایى توابع جريمه داخلى كسترش يافته نيز به كار رود[14] . تواناني روش كوس - نيوتن براى طراحى يك بال با نـبـت ظاهر بالا كه از مواد مركب ساخته شده (به شـكل Q . V . Y نُّاه كنيد) و تحت قيود تنش و تغيير مكان است در مر جع [14] نشان دأده شده امـت .
 متغير هاى طراحى كه خـخامت اجزایى مختلف را كنترل مى كــنــد از $ا$ ا تا IF\& تغيير مى كند. اثر تعـداد

Pl 1 بنشـ o.v : روشهاىتابع جريمد

شكل ه. V. r شككل مستوى آتروديناميكى و جعبه' سازهای برایى بال با نسبت ظامر بالا از مرجم[14]
جدول V. V. r نتايج مطالعات بال با نسبت ظامر بالا

تعداد متغيرهایى طراحى	CDC 6600 با زمان نانيه	تعداد كل مينيمم سـازه هـاى ناميديد	تعدال كل تحليل هـا	جرم تهائىى kg
13	142	4	21	887.3
25	217	4	19	869.1
32	293	5	22	661.7
50	460	5	25	658.2
74	777	5	28	648.6
146	1708	5	26	513.0

متغير هایى طر احیى روى تعداد خر خه، ها (تحليل ها) در جدول Y. Y. Q نشان داده شده است. ديده مى شود كه تعداد خرخه ها به ازاى Aر مينيمـم سازى نامتبد تقريـبـأنابت امست (حدود بنج) . در روش شبه نيوتـ انتظار مى رود اين عدد برابر با تعداد متغيرهاى طراحى باشد. به سبب انتحناى تيـز ϕ در نزديكي مرز تيد، منامبتر اسـت كه از يكى جست و جحوى خطط ويرْه با تـوابـع

جريمه نيز الستفاده شود[15].

ه . V . . . برنامه ريزیى عدل صحيح با توابع جريمه تعميمى از ر هيانت تابع جريمه توسطط ثُين' و ديكران[16] برا'ى مسائل بامتغيرهاى طراحى با مقادير
 كسسته يِياده شده است . اين تعميم بر اسـاس معرفى جملات جريـــهُ اضافى در تابع هدف افزايشُ يافته (الست تا مقادير كسسته كرفتن متغير هاى طراحى را منعكس كند. اين مقادير كسسته عبارتند از :

$$
x_{i} \in X_{i}=\left\{d_{i 1}, d_{i 2}, \ldots, d_{i 1}\right\}, \quad i \in I_{d}
$$

 مقادير كسستهُ مجاز امـت. دقت كنيد كه مى شود متغير هاى مختلفى مجموعه مجاز يكسانى از مـتادير كسسته داشته باثنـند. در اين حالت، تأبع هدف افزايش يافته كه به سبب قيدها و مقادير كسسته متغيرهاى طراحى شامل جملات جريمه أست به شكل زير تعريف مى شود:

$$
\begin{equation*}
\phi(\mathbf{x}, r, s)=f(\mathbf{x})+r \sum_{j=1}^{n_{d}} p\left(g_{j}\right)+s \sum_{i \in I_{d}} \psi_{d}\left(x_{i}\right), \tag{O.V.YO}
\end{equation*}
$$

كه در آن s ضريب جريمه بـراى مقادير غير كسسته متغـيرهـاى طـراحـى، و
 در مرجع [16] فرض شده كه جملات جريمهُ $\psi_{d}\left(x_{i}\right)=\frac{1}{2}\left(\sin \frac{2 \pi\left[x_{i}-\frac{1}{4}\left(d_{i(j+1)}+3 d_{i j}\right)\right]}{d_{i(j+1)}-d_{i j}}+1\right), \quad d_{i j} \leq x_{i} \leq d_{i(j+1)} . \quad$ ($\left.. \vee, Y я\right)$ هنگام جريمه متغير هاى طراحى با مقادير غير گـســتـه، تـوابـع انزايش يـافته را در مقادير كسسنه متغير هاى طراحى تضمين مى كتند. سططوح پاسنى كه توسـط مـعـادلـ (O. V. Y0) توليد شده، بر اساس مقادير ضرايب جريمه r و s بدست آمده اند. بر خلاف ضريبr ، كه در ابتدا مقادير بزر ك دانشته و با حركت از يك جر خهه به هر خهُ ديگر افزايش مى يابد، مفدار ضريب s در ابتدا صفر است و به تدريج افزايش بيدا مى كند . يكى از عوامل مهم در كاربرد روش ارائه شده، مشخص كردن زمان فعال كردن s و جشكونگى انزايش
 و زودتراز موتع مناسب در فرايند طراحى وارد شود، متغيرهاى طراحى در جايع به غير از مينيمبم فراكير محصور مى شوند و به يك جواب زير بهين مى انتجامد . براى جلوكيرى از اين اتفاق، خريب s بايد بعد از بهينه سازى سطوح یاسِخ متعدد كه تنها جملات جريمه قيد را شامل مى شود، نعال شود . در حقيقت،

جون كامى طراحى بهين با مقادير كسسته در ممسايگى بهين بيوسته اسـت، ممكن اسـت بهتر اين باشدل كه جريمه متغير هاى طراحى ناكسسته تا حصول همكرايعى معقولى به جوابب يبوسته، فعال نشود. اين كار بـ ويزه در مورد مسائلى كه در آنها بازه' بين مقادير كسسته بسيار كو جك است عـادق است .

استـ، يعنى :

$$
\begin{equation*}
\left|\frac{\phi-f}{f}\right| \leq \epsilon_{c} . \tag{O.V.YV}
\end{equation*}
$$

مقدار معمول برای 0.01 استـ. مقدار ضريب جريمه ناكسسته، s ؛ در اولين خرخه كسسته جنـان محاسبه مى شود كه جريمه' مربوط به متغير هاى طراحى با مقادير كـسـته كه در مقادير مجازنشان نبستند از مرتبه' • ادرصلد جريمه تيد باشلد.

$$
\begin{equation*}
s \approx 0.1 r p(g) \tag{©.V.YA}
\end{equation*}
$$

بـا جلو رفتن جر خه ماى بهينه سازى كـسسته، ضريب جريمه ناكسسته بـراى جـرخـهـ جديد با ضريبى از مرتبه • 1 افزايش مى يابد . تصميم جكونگى كنترل ضريب جريمه قيدها، r ، در فرايند بهينه سازى كسسته نيز مهم است. اكُ r در هر حرخهه بهينه سازى كسسته مانند فرايند بهينه سازى ييوسته كاهش يابد، به سبب جريمه' زياد نقض تيد طراحى مى تواند معطل بماند. بـنابراين، جيشُنهاد مى شود كه ضريب جـريـــه r در جايان فرايند بهينه سازى بيوسته ثابت نگهداشته شود . با اين وجود، نزديكترين جوابب كسـسته در اين سططح بامـخ ممكن است يكى طراحى تابل قبول نباشد، در اين صورت طراحى بايد با بركشتن به سـطـح ياســخ قبلى از بهين يوسته دور شود. اين كار را مى شود با افزايش ضريب جريمـه، r ، با يكى ضريب • ا انجام داد.

فرايند حل بهينه سازى كسسته در صورتى كه متغير هاى طراحى به انـدازه؛ كافى به مقادير گـسسته داده شده نزديك باشـند، تطع مى شود. معيار همكرابه براي بهينه سازى كـسـته عبارت است از :

$$
\max _{j \in \mathrm{I}_{1}}\left\{\min \left\{\frac{\left|x_{i}-d_{i j}\right|}{d_{i(j+1)}-d_{i j}}, \frac{\left|x_{i}-d_{i(j+1)}\right|}{d_{i(j+1)}-d_{i j}}\right\}\right\} \leq \epsilon_{d}
$$

كه در آن مقدار معمول روادارى (تلرانس) همكرايى

مساحتهاى سطع مقطع يـك خرياى دو عفـوى كه در شـكـله . . . ه نشان داده شده بـايد از ميـان
 تابع جريمه بهبود يانته، سازهاى با وزن مينيمم جنان بدست آوريد كه تغيير مكان انتى u در نقطهُ اثر نيرو از

بعد ازنرمال سـازى، مساله طراحى عبارت امست از:

$$
\begin{aligned}
& f=\frac{W}{\rho l}=x_{1}+x_{2} \\
& g=\frac{u E}{F l}=1.5-1 / x_{1}-1 / x_{2} \geq 0, \quad \text { بر } \\
& \text { مينيم كند. } \quad x_{i}=A_{i} \in\{1.0,1.5,2.0\}, \quad i=1, \ldots, 2 \text {. }
\end{aligned}
$$

با باستفاده از طراحى اولهـ از معادلهُ (Q.V. If) جملات جريمه براى قيدها به شكـل برايى رهيانت تابع جريمه داخلى كسترش يانته عبارت است از :

$$
\phi=x_{1}+x_{2}+\frac{r}{1.5-1 / x_{1}-1 / x_{2}} .
$$

با برابر صفر ترار دادن كراديان، مي توانيم نشان دهيم كه مينيمم تابع افزايش يانته به عنوان يك تابع از

ضريب جريمهr عبارت است از:

$$
x_{1}=x_{2}=\frac{24+\sqrt{576-36(16-4 r)}}{18} .
$$

مقدار اوليه خريب جريمهr به نسلى انتخاب مي كردد كه جريمه تيدها برابر با مقدار تابع هدف شود،

$$
r \frac{1}{g\left(x_{0}\right)}=f\left(x_{0}\right), \quad r=11
$$

 از جهار خرخه، جريمه قيد (f ناكُسسته متغير هاي طراحى را فعال مي كند.

از معادله (Q . V . Y) تابع انزايش يانته برای رهيانت تابع جريمه بهبو ديانته به شُكل زير است:

$$
\begin{aligned}
\phi & =x_{1}+x_{2}+\frac{r}{1.5-1 / x_{1}-1 / x_{2}}+\frac{s\left\{1+\sin \left[4 \pi\left(x_{1}-1.125\right)\right]\right\}}{2} \\
& +(s / 2)\left\{1+\sin \left[4 \pi\left(x_{2}-1.125\right)\right]\right\} .
\end{aligned}
$$

جدول ه. v. r. مينيمسازى ه بدرن جريمه كسستكى

\mathbf{r}	x_{1}	x_{2}	f	g	ϕ
-	5.000	5.000		10.00	1.100
11	3.544	3.544	7.089	0.9357	18.844
1.1	2.033	2.033	4.065	0.5160	6.197
0.11	1.554	1.554	3.109	0.2134	3.624
0.011	1.403	1.403	2.807	0.0747	2.954

مينيمم تابع انزايش يانته را اين بار نيز مى توان با برابر صفر ترار دادن كراديان

$$
1-\frac{r}{\left(1.5-2 / x_{1}\right)^{2} x_{1}{ }^{2}}+2 \pi s \cos \left[4 \pi\left(x_{1}-1.125\right)\right]=0
$$

بدست آورد كه مى تواند به روش عددى حل شود. معدار اوليه ضريب جريمـه sاز معادله (Q . V. YA)

$$
s=0.1(0.011) \frac{1}{0.0747}=0.0147
$$

حسب تاببعى از s نشان داده سُمه است .

r	s	x_{1}	x_{2}	f	ϕ
0.011	0.0147	1.406	1.406	2.813	2.963
	0.1472	1.432	1.432	2.864	3.021
	1.472	1.493	1.493	2.986	3.060
	14.72	1.499	1.499	2.999	3.065
	147.2	1.500	1.500	3.000	3.066

A.A روشهاى ضرايب

روشهاى ضرايب، استفاده از ضربكرهاى لاكر انزّ و توابع جريمه رابا هم تركبب مى كتند. هنگامى كه
 ايستاست. هنگامى كه تنها توابع جريمه به كار مى روند، يكم مينميم داريم، ولى بدخيمى نيز وجود دارد.

 استفاده از روشهاى ضرايب را براى مسائل با قيد تساوى مطالعه مى كنيم.

$$
\begin{aligned}
& f(\mathbf{x}) \\
& \text { (0.^.)) }
\end{aligned}
$$

تابع لاكرانزين انزايش يانته را نعريف مى كنيم

$$
\begin{equation*}
\mathcal{L}(\mathbf{x}, \lambda, r)=f(\mathbf{x})-\sum_{j=1}^{n_{\mathbf{2}}} \lambda_{j} h_{j}(\mathbf{x})+r \sum_{j=1}^{n_{4}} h_{j}^{2}(\mathbf{x}) . \tag{O.A.Y}
\end{equation*}
$$

 از طرف ديكر ، اكر از مقادير درست ضربكر هاى لاكر انز استفاده كنيم، ، "ג، مى توان نشان دان داد كه برایى هر

[^6]بتخش A.A :روشهایضرايب
 مقادير بزر گr ، كه براى تابع جريمه خارجى لازم بود، نداريم . الُتهه مقادير صسحيح ضربكرهاى لاكرانز را روشهاى ضرايب بر مبناى حدس ضربكرهاى لاكر انز ترار دارند ـ وتى حدس خوب باشد امكان دارد كه

 ايستايه براى L

$$
\frac{\partial \mathcal{L}}{\partial x_{i}}=\frac{\partial f}{\partial x_{i}}-\sum_{j=1}^{n_{e}}\left(\lambda_{j}-2 r h_{j}\right) \frac{\partial h_{j}}{\partial x_{i}}=0
$$

را با نرايط دتيق براى ضربكرهاى لاكرانز

$$
\begin{equation*}
\frac{\partial f}{\partial x_{i}}-\sum_{j=1}^{n_{1}} \lambda_{j}^{*} \frac{\partial h_{j}}{\partial x_{i}}=0 . \tag{0.N.Y}
\end{equation*}
$$

 دانته بانشيم.

$$
\lambda_{j}-2 r h_{j} \rightarrow \lambda_{j}^{*}
$$

بر اساس اين رابطه، هستنس' [18] استغاده از معادله (ه. . . ه) رابه عنوأن تخمين "خ يِشنهاد كرد . يعنى

$$
\begin{equation*}
\lambda_{j}^{(k+1)}=\lambda_{j}^{(k)}-2 r^{(k)} h_{j}^{(k)}, \tag{0.1.9}
\end{equation*}
$$

كه در آن k آشماره هرخ امه امت.

0.A. 1 مثال

$$
\begin{aligned}
& f(\mathbf{x})=x_{1}^{2}+10 x_{2}^{2}, \\
& h(\mathbf{x})=x_{1}+x_{2}-4=0 .
\end{aligned}
$$

Yكرانزين انزايش يافته عبارلت است از :

$$
\mathcal{L}=x_{1}^{2}+10 x_{2}^{2}-\lambda\left(x_{1}+x_{2}-4\right)+r\left(x_{1}+x_{2}-4\right)^{2} .
$$

براى يانتن نقاط ايستاى لاكرانزين افزايش يانته، نسبت به

$$
\begin{aligned}
2 x_{1}-\lambda+2 r\left(x_{1}+x_{2}-4\right) & =0, \\
20 x_{2}-\lambda+2 r\left(x_{1}+x_{2}-4\right) & =0,
\end{aligned}
$$

$$
x_{1}=10 x_{2}=\frac{5 \lambda+40 r}{10+11 \dot{r}} .
$$

بنابراين، با استفاده از معادله (A. \& . (0) (1) را به شكل زير حدس مى زنيم

$$
\lambda^{(1)}=-2 \times 1 \times(-1.905)=3.81
$$

$$
\text { آن كاه بهينه سازى رابا } 10=r^{(1)}=3.81 \text { تكرار مى كنيم و داريـץ: }
$$

$$
\mathrm{x}_{2}=(3.492,0.3492)^{T}, \quad h=-0.1587
$$

 دتيق

$$
\lambda^{(2)}=3.81-2 \times 10 \times(-0.1587)=6.984 .
$$

 برایى $6.984=$

$$
\begin{aligned}
& \text { ג } \lambda=0 \text { شتروع مى كنيم . داريم : } \\
& \mathrm{x}_{1}=(1.905,0.1905)^{T}, \quad h=-1.905 .
\end{aligned}
$$

$$
\mathrm{x}_{3}=(3.624,0.3624), \quad h=-0.0136,
$$

كه نشان مي دهد بدون افزايش r مي توان همكرابى خوبى بدست آورد . • • برايى كسترش روش ضرايب به قيدهاى نامساوى رامهاى مختلفى وجوددارد ـ رابطه سازى زير براساس

كار فلتهر ' [19] قرار دارد. مسـأله مقيدى كه در نظر مى كيريم عبارت است از :

$$
\begin{align*}
& \begin{array}{ll}
& f(x) \\
& \\
& g_{j}(x) \geq 0, \quad j=1, \ldots, n_{g} . \quad \text { را با تيلداى } \quad \text {. }
\end{array} \\
& \text { تابع لاكرانزين افزايش بافته عبارت اسـت از : } \\
& \mathcal{L}(\mathbf{x}, \lambda, r)=f(\mathbf{x})+r \sum_{j=1}^{n_{i}}\left(\frac{\lambda_{j}}{2 r}-g_{j}\right)^{2}, \\
& \text { كه در آن . } a>=\max (a, 0) \text { < شرط ايستايى } \mathcal{L} \text { عبارت اسـت از: } \\
& \frac{\partial f}{\partial x_{i}}-2 r \sum_{j=1}^{n_{j}}\left(\frac{\lambda_{j}}{2 r}-g_{j}\right) \frac{\partial g_{j}}{\partial x_{i}}=0 \tag{0.1.9}
\end{align*}
$$

شرط ايستايهى دتيق عبارت اسـت از :

$$
\begin{equation*}
\frac{\partial f}{\partial x_{i}}-\sum_{j=1}^{n_{j}} \lambda_{j}^{*} \frac{\partial g_{j}}{\partial x_{i}}=0 \tag{0.A.1.}
\end{equation*}
$$

كه لازم اسـت زير انتظار داريـم .

$$
\begin{equation*}
\lambda_{j}^{*}=\max \left(\lambda_{j}-2 r g_{j}, 0\right\rangle \tag{0.^.11}
\end{equation*}
$$

ه. 9 روشهاى لاكرانزى تصوير شله (يرنامهريزى درجه دوم دنبالهاى)
اضافه كردن جملات جريمه به تابع لاكرانزين، نوسط روشهاى ضرايب، بهين رااز نقطهُ ايستا بودن براي تابع لاكرانزين به نتطهُ مينيمم لاكرانزين افزايش يانته تبدبل مي كند . روشهاى لاكرانُرّى تصـوير

PV.
شده با روم ديگُرى به نتيجـهُ مشابهى مى رسند . آنها بر امامس أين تضيه قرار دارند كه مى كويد : بـهيـن مينيمم تابع لاكُرانزين در زير نضاى بردارهاى عمود بر كراديانهاى قيدهاى فعال (زير فضـاى مماس) است .
 الگُوريتم جست و جوى جهت آن از روشهاى ديگرى كه تاكنون كفته شـد يسحيلده ترند. اين الگُريتــم بـه جوالب مسآله برنامه ريزى درجه دوم نياز دارد كه يك مسآله بهينه سـازى با تابع هدفـ درجه دوم و قيدهـاى خطى امست . روشّهاى لاكرانزى تصوير شده زير هجموعه الى از روشّهاي برنامه ريزى درجه دوم دنباله أى (اند. كار بيشترى كه در جوابب مسأله يانتن جهت در برنامه ريزى درجه دوم انجام مى شـو د اغلب با (SQP) همكرايى سريعتر آن جبران مى شـود.

قيدهاى نامساوى را در نظر مى گيريم:
$f(\mathbf{x})$
(0.9.1)

را با تـدهاى
 جوأب مسآله برنامه ريزى درجه دوم زير است .

$$
\begin{align*}
& \phi(\mathbf{s})=f\left(\mathbf{x}_{i}\right)+\mathbf{s}^{T} g\left(\mathbf{x}_{i}\right)+\frac{1}{2} \mathbf{s}^{T} \mathbf{A}\left(\mathbf{x}_{i}, \lambda_{i}\right) \mathbf{s} \tag{0.9.Y}\\
& g_{j}\left(\mathbf{x}_{i}\right)+\mathbf{s}^{T} \nabla g_{j}\left(\mathbf{x}_{i}\right) \geq 0, \quad j=1, \ldots, n_{g}, \quad \text { مينيم كنيد. } \quad \text { را شرط }
\end{align*}
$$

در حالي كه و كراديان f ، و A يك تقريب معين مثبت هسيان تابع لاكراترين است كه در بالا بحتث شد . اين مسآلهُ' بـرنامه ريـزى درجـه دوم مى تواند با روشهاى مـختلفى كه از مزاياى طبيـعـت خـاص آن بـهـره

$$
\mathbf{x}_{i+1}=\mathbf{x}_{i}+\alpha \mathbf{s}
$$

كه در آن α با مينيمـم سازى تابع زير بدمت مى آيد :

$$
\begin{equation*}
\psi(\alpha)=f(\mathbf{x})+\sum_{j=1}^{n_{f}} \mu_{j}\left|\min \left(0, g_{j}(\mathbf{x})\right)\right| \tag{0.4.F}
\end{equation*}
$$

و زبرها برابر با مفادير مطلق خربگرهاى لاكرانزُ خرخهُ اولند، يعنى :

$$
\begin{equation*}
\mu_{j}=\max \left[\mid \lambda_{j}^{(i)}, \frac{1}{2}\left(\mu_{j}^{(i-1)}+\left|\lambda_{j}^{(i-1)}\right|\right)\right] \tag{0.9.0}
\end{equation*}
$$

كه انديس باينیى i نشانگر شمارهُ جرخه است، ماتريس A مفدار اوليهالى دارد كه معين مثبت است (مثلا" ماتريس واحد) و آن كاه با استفاده از يكى معادله از نوع BFGS بهنكام مى شود. .

$$
\begin{equation*}
\mathbf{A}_{\text {new }}=\mathbf{A}-\frac{\mathbf{A} \Delta \mathbf{x} \Delta \mathbf{x}^{T} \mathbf{A}}{\Delta \mathbf{x}^{T} \mathbf{A} \Delta \mathbf{x}}+\frac{\Delta \mathbf{l} \Delta \mathbf{l}^{T}}{\Delta \mathbf{x}^{T} \Delta \mathbf{x}} \tag{0.9.9}
\end{equation*}
$$

كه در آن

$$
\Delta x=x_{i+1}-x_{i}, \quad \Delta l=\nabla_{x} \mathcal{L}\left(x_{i+1}, \lambda_{i}\right)-\nabla_{x} \mathcal{L}\left(x_{i}, \lambda_{i}\right), \quad \text { (0.q.V) }
$$

و و L تابع لاكرانزين و

$$
\Delta \mathbf{l}^{\prime}=\theta \Delta \mathbf{l}+(1-\theta) \mathbf{A} \Delta \mathbf{x}
$$

(0.9.1) در حالى كه

$$
\begin{equation*}
\theta=\frac{0.8 \Delta \mathbf{x}^{T} \mathbf{A} \Delta \mathbf{x}}{\Delta \mathbf{x}^{T} \mathbf{A} \Delta \mathbf{x}-\Delta \mathbf{x}^{T} \Delta \mathbf{l}} \tag{0.9.9}
\end{equation*}
$$

مثال 0.9
خرياى خهار ميله ای مثال Y ـ ـ ه هرا در نظر بكيريد. مسأله يانتن طراحى با وزن مينيمم مسروط بــ تيدهاى تنش و تغييرمكان به شكل زير رابطه سازى شـ.

$$
\begin{align*}
& f=3 x_{1}+\sqrt{3} x_{2} \\
& g_{1}=3-\frac{18}{x_{1}}-\frac{6 \sqrt{3}}{x_{2}} \geq 0, \quad \text { رابه شرط } \\
& g_{2}=x_{1}-5.73 \geq 0 \text {, } \\
& g_{3}=x_{2}-7.17 \geq 0 \text {. } \\
& x_{2}=7.17 ، x_{1}=11.61 \text { فرض كنيد جست و جو را الز محل تقاطع }
\end{align*}
$$

و $f=47.25$ اسـت شُروع مى كنيم. كراديان تابع هدنـ و دو تيد نعال عبارت است از :

$$
\nabla f=\left\{\begin{array}{c}
3 \\
\sqrt{3}
\end{array}\right\}, \quad \nabla g_{1}=\left\{\begin{array}{c}
0.1335 \\
0.2021
\end{array}\right\}, \quad \nabla g_{3}=\left\{\begin{array}{l}
0 \\
1
\end{array}\right\}, \quad \mathbf{N}=\left[\begin{array}{ll}
0.1335 & 0 \\
0.2021 & 1
\end{array}\right]
$$

در شروع A را برابر ماتريس واحد ترار داده و داريم:

$$
\phi(\mathrm{s})=47.25+3 s_{1}+\sqrt{3} s_{2}+0.5 s_{1}^{2}+0.5 s_{2}^{2}
$$

و توابع خطى شده عبارتند از :

$$
\begin{aligned}
& g_{1}(\mathbf{s})=0.1335 s_{1}+0.2021 s_{2} \geq 0 \\
& g_{2}(\mathbf{s})=5.88+s_{1} \geq 0 \\
& g_{3}(\mathbf{s})=s_{2} \geq 0
\end{aligned}
$$

اين مسآله برنامهريزى درجه دوم را مستقيماً با استفاده از شرايط كان- تاكر حل مى كنيم.

$$
\begin{aligned}
3+s_{1}-0.1335 \lambda_{1}-\lambda_{2} & =0 \\
\sqrt{3}+s_{2}-0.2021 \lambda_{1}-\lambda_{3} & =0
\end{aligned}
$$

توجه به تمامى حالتهای ممكن برایى قيدهاى نعال نشان مى دهذ كه بهين تنها وتتـى 1 فعال اسـت بدست مى آيد، بنابرايـن

است از:

$$
\mathbf{x}_{1}=\left\{\begin{array}{c}
11.61 \\
7.17
\end{array}\right\}+\alpha\left\{\begin{array}{c}
-1.29 \\
0.855
\end{array}\right\}
$$

كه در آن α با مينيهم سـازى $\psi=3(11.61-1.29 \alpha)+\sqrt{3}(7.17+0.855 \alpha)+12.8\left|3-\frac{18}{11.61-1.29 \alpha}-\frac{6 \sqrt{3}}{7.17+0.855 \alpha}\right|$.

با تغيير نظام مند α در مى يابيم كه ψ در نزديك $\alpha=2.2$ مينيمـم اسـت، بنابراين $\mathbf{x}_{1}=(8.77,9.05)^{T}, \quad f\left(\mathbf{x}_{1}\right)=41.98, \quad g_{1}\left(\mathbf{x}_{1}\right)=-0.201$.

$$
\mathcal{L}=3 x_{1}+\sqrt{3} x_{2}-12.8\left(3-18 / x_{1}+6 \sqrt{3} / x_{2}\right)
$$

بنابراين

$$
\nabla_{x} \mathcal{L}=\left(3-230.4 / x_{1}^{2}, \sqrt{3}-133.0 / x_{2}^{2}\right)^{T},
$$

,

$$
\Delta x=x_{1}-x_{0}=\left\{\begin{array}{c}
-2.84 \\
1.88
\end{array}\right\}, \quad \Delta l=\nabla_{x} \mathcal{L}\left(x_{1}\right)-\nabla_{x} \mathcal{L}\left(x_{0}\right)=\left\{\begin{array}{c}
-1.31 \\
0.963
\end{array}\right\} .
$$

 (الــت مى توانيم از رابطء؛ ($\Delta \mathbf{x}^{T} \Delta 1>0.2 \Delta \mathbf{x}^{T} \mathbf{A} \Delta \mathbf{x}$

$$
A_{\text {new }}=I-\frac{\Delta \mathbf{x} \Delta \mathbf{x}^{T}}{\Delta \mathbf{x}^{T} \Delta \mathbf{x}}+\frac{\Delta \mathbf{l} \Delta \mathbf{l}^{T}}{\Delta \mathbf{x}^{T} \Delta \mathbf{x}}=\left[\begin{array}{ll}
0.453 & 0.352 \\
0.352 & 0.775
\end{array}\right] \text {. }
$$

براى خرخه، بعدى:

$$
\begin{aligned}
& \phi(\mathrm{s})=41.98+3 s_{1}+\sqrt{3} s_{2}+0.5\left(0.453 s_{1}^{2}+0.775 s_{2}^{2}+0.704 s_{1} s_{2}\right), \\
& g_{1}(\mathrm{~s})=-0.201+0.234 s_{1}+0.127 s_{2} \geq 0, \\
& g_{2}(\mathrm{~s})=3.04+s_{1} \geq 0, \\
& g_{3}(\mathrm{~s})=1.88+s_{2} \geq 0 .
\end{aligned}
$$

مجدداً مى توانيم برنامهر ريزى درجه دوم را مستقيمآ با استفاده از شُرايط كان- تاكر حل كنيم.

$$
\begin{aligned}
& 3+0.453 s_{1}+0.352 s_{2}-0.234 \lambda_{1}-\lambda_{2}=0 \\
& \sqrt{3}+0.352 s_{1}+0.775 s_{2}-0.127 \lambda_{1}-\lambda_{3}=0 .
\end{aligned}
$$

$$
\lambda_{1}=14.31, \quad \lambda_{2}=\lambda_{3}=0, \quad s_{1}=1.059, \quad s_{2}=-0.376
$$

$$
\psi(\alpha)=f(\alpha)+\mu_{1} g_{1}(\alpha),
$$

$$
\mu_{1}=\max \left(\lambda_{1}, \frac{1}{2}\left(\left|\lambda_{1}\right|+\mu_{1}^{\text {odd }}\right)\right)=14.31
$$

جست و جوى يكى بعدى تقريبآ به $\alpha=0.5$ مى رسد، بنابراين :

$$
x_{2}=(9.30,8.86)^{T}, \quad f\left(x_{2}\right)=43.25, \quad g_{1}\left(x_{2}\right)=-0.108
$$

-
1 ـ طبيعت نقاط ايستاى مساله' مقيد زير را بررسى كنيد.

$$
\begin{aligned}
& f(\mathbf{x})=x_{1}^{2}+4 x_{2}^{2}+9 x_{3}^{2} \\
& x_{1}+2 x_{2}+3 x_{3} \geq 30, \\
& x_{2} x_{3} \geq 2, \\
& x_{3} \geq 4, \\
& x_{1} x_{2} \geq 0 .
\end{aligned}
$$

Y. برایى مساله'
$f(\mathbf{x})=3 x_{1}^{2}-2 x_{1}-5 x_{2}^{2}+30 x_{2}$

$$
2 x_{1}+3 x_{2} \geq 8, \quad \text { رامسروطبب }
$$

$$
3 x_{1}+2 x_{2} \leq 15
$$ $x_{2} \leq 5$.

 طراحى و ضربكرهاى لاكرانزّ را مهاسبه كرده و مشتقات تابع هدفـ را كترل كنيد. در نهايت، از مشتقات جواب حدس بزنيد كه جه ميزان مى توان تغير مكان مجاز رابدون تغير مجموعه تيدهاى فعال تغير داد. F. مبنيمم مساله ا رابا استفاده از روش تصوير كراديان از نتطهُ (17, 1/2, ب) بدست آوريد.

PVA بنش

$$
\begin{aligned}
& \text { ه . دو حركت ديگر از مثال Y . ه ه ها كامل كنيد. } \\
& \text { 9. يكى جهت قابل تبول تابل المتفاده براى مسالّه } 1 \text { در نقطه' (17,1/2, 4) بيابيد. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 9 ـ طراحى يكى جعبه با بيتسترين حجم را در نظر بكيريد كه مساحت سطع جانبى آنَ S بوده و مساحت } \\
& \text { يكى وجه آن S/4 باشمد . براى حل اين مسأله از روش ضرايب امستفاده كرده و سه متغيـر طـراحـي در نـظر } \\
& \text { بكيريد }
\end{aligned}
$$

$$
\text { - } \text { ـ دو جرخه' ديعر را در مثال ا ـ } 9 \text { ـ ه كامل كنيد . }
$$

[1] Kreisselmeier, G., and Steinhauser, R., "Systematic Control Design by Optimizing a Vector Performance Index," Proceedings of IFAC Symposium on Computer Aided Design of Control Systems, Zurich, Switzerland, pp. 113-117, 1979.
[2] Sobieszczanski-Sobieski, J., "A Technique for Locating Function Roots and for Satisfying Equality Constraints in Optimization," NASA TM-104037, NASA LaRC, 1991.
[3] Wolfe, P.. "The Simplex Method for Quadratic Programming," Econometrica, 27 (3), pp. 382-398, 1959.
[4] Gill, P.E., Murray, W., and Wright, M.H., Practical Optimization, Academic Press, 1981.
[5] Dahlquist, G., and Bjorck, A., Numerical Methods, Prentice Hall, 1974.
[6] Sobieszczanski-Sobieski, J., Barthelemy, J.F., and Riley, K.M., "Sensitivity of Optimum Solutions of Problem Parameters", AIAA Journal, 20 (9), pp. 12911299, 1982.
[7] Rosen, J.B., "The Gradient Projection Method for Nonlinear ProgrammingPart I: Linear Constraints", The Society for Industrial and Appl. Mech. Journal, 8 (1), pp. 181-217, 1960.
[8] Abadie, J., and Carpentier, J., "Generalization of the Wolfe Reduced Gradient Method for Nonlinear Constraints", in: Optimization (R. Fletcher, ed.), pp. 3749, Academic Press, 1969.
[9] Rosen, J.B., "The Gradient Projection Method for Nonlinear Programming-Part II: Nonlinear Constraints", The Society for Industrial and Appl. Mech. Journal, 9 (4), pp. 514-532, 1961.
[10] Haug, E.J., and Arora, J.S., Applied Optimal Design: Mechanical and Structural Systems, John Wiley, New York, 1979.

[11] Zoutendijk, G., Methods of Feasible Directions, Elsevier, Amsterdam, 1960.
[12] Vanderplaats, G.N., "CONMIN-A Fortran Program for Constrained Function Minimization", NASA TM X-62282, 1973.
[13] Fiacco, V., and McCormick, G.P., Nonlinear Programming: Sequential Unconstrained Minimization Techniques, John Wiley, New York, 1968.
[14] Haftka, R.T., and Starnes, J.H., Jr., "Applications of a Quadratic Extended Interior Penalty Function for Structural Optimization", AIAA Journal, 14 (6), pp.718-724, 1976.
[15] Moe, J., "Penalty Function Methods in Optimum Structural Design--Theory and Applications", in: Optimum Structural Design (Gallagher and Zienkiewicz, eds.), pp. 143-177, John Wiley, 1973.
[16] Shin, D.K, Gürdal, Z., and Grifin, O. H. Jr., "A Penalty Approach for Nonlinear Optimization with Discrete Design Variables," Engineering Optimization, 16, pp. 29-42, 1990.
[17] Bertsekas, D.P., "Multiplier Methods: A Survey," Automatica, 12, pp. 133-145, 1976.
[18] Hestenes, M.R., "Multiplier and Gradient Methods," Journal of Optimization Theory and Applications, 4 (5), pp. 303-320, 1969.
[19] Fletcher, R., "An Ideal Penalty Function for Constrained Optimization," Journal of the Institute of Mathematics and its Applications, 15, pp.319-342, 1975.
[20] Powell, M.J.D., "A Fast Algorithm for Nonlinearly Constrained Optimization Calculations", Proceedings of the 1977 Dundee Conference on Numerical Analysis, Lecture Notes in Mathematics, Vol. 630, pp. 144-157, Springer-Verlag, Berlin, 1978.

سيماى بهينه سازى در عمل

معمولاً تحليلكران سـازه يكى برنامه طراحى مى نويسند كه در بركيرنـده ' سحاسبه ياسخ سازه هاست و

 يك بسته نـرم افزارى بهينه سازى در اختيار دارد. كار تحليلكر تركيب اين دو برنامه و اعـمـال آن بر روى مسائل طراحى سازهاى است كه مى خواهد آنها را حل نمايد . در فرايند تعامل يك بسته تحليل سازه با يك برنامه بهينه سازى دو مشكل اساسى وجود داردي. مشـكل
 كه تابع هدف و تيود را ارزيابى نمايد. هنكامى كه برنامه تحليل سازه بزر كـ باشده، يا زمانى كه تحليلكر به
 ترسط برنامه بهينه سازى فرا خوانده ثمُود، بسيار مشكل امتـ
مشككل جدى دوم اين امست ده در بسيارى از كاربر دها هزينه محاسبات خيلي زياد امست. برایى بـسبارى از مساثل بهينه سازى سـازه ها، الرزبابى تابع هدفو قيود مستلزم اجرا نمودن تحليلهاى اجزاى محدود بر هزينه است تا بتوان تغيير مكانها، تننـها و باسخهاى ديكر سـازه رابدست آورد . در فرايند بهـيـنه سازى، مدكن است لازم باشدتابع هدفو قيود صدها ويا هزاران بار ارزيابى كردند. هزينه تحليل اجزاى محلود براى اين تعداد تكرار ، معمولا بـبـار زياد است.

خوئبشختانه برایى تعامل برنامه بهينه سازى با يك برنامه تحليل، راهكارى وجود دار دارد كه هر دو مشكل را حل مى كند. اين راهكار كه شهرت فزايـــده ایى دارد، بهينه سازى تقريبـ دنبالهالى ناميده مي شـودو و

 نرمانزارى بيينهسازیى تركيب كرد.

 بزنيم، لازم است تا سازه رادر حداتلم

 تنييرات در طراحى تعريف نمايميم.

همكرايى معمـولاً مقدار تغيير تابع هدن و يا ميزان برآورده شدن شرايط بهينگى (به عنوان مثال، شـرايط كان- تاكر) است. از آنجا كه هر بهينه سازى ثقريبى در نرايند بهينه سازى كلى نقط يك دوره (سيكـل)

بهينه سازى ها يكى حلفه (سيكل) مى كويند و نه بك جرخه .

هنگامى كه از تقريهاى خططى استفاده و حدود حركت به عنوان نامساويهـاى خطى در نظر كرفتـ مى شوند، اين فرايند برنامه ريزى خططى دنبالهاى (SLP) ناميده مى شود و سـالها بيش از از آن كه اشميـت و

 تقريبهاي خطى محدود شود. به عنوان مثال، المُميت و فرشى كاربرد تقريبهاى غير خطى كم هزينه رابـا استفاده از تقريبهاى وارونى، كه در بخش 1 . 9 تشريح مى شودد، نشان دادند . استفاده از بهينه سازى تقريبى دنبالهاى در فرايندطراتحى، كام كليدى در تعامل يكـ برنامه تحليل سازه با بك برنامه بهينه سازى است و بنابراين موضوع اصلى در بحث اين نصل است. با اين وجود، جنبه هاى ديگرى از كاربرد عملى فرايند بيينه سازى در طراتى وجود دارد كه بايد مورد توجه ترار كيرد. در مسائل بهينه سـازى شكلى وتتى كه طراحى تغيير مى كند مهم آن است كه بتوانيم كـسـته سازى سازه (به عـنوان
 است و در بخش ه ه 9 درباره' آن بحث مى شود. موضوعات ديگرى كه در اين نصل بحث مى نـونـد عبارتند از : بسته هاى نرم افزارى بهينه سازى و مسائل آزمايشى كـه اغلـب بـرايى ارزيـابـى عـمـلـكـرد ايـن نرم انزارها استفاده مى شود. يكى از موضوعات مهـي كه در اين نصل به آن يرداختهه نمى سـود عبارت
 مطالعهُ دقيقترى نياز دارد كه در نصلهاى لو ^^ به آن يرداخته مى شُود. استفاده از بهينه سازى تقريبى دنبالهاى بدون ترديد بهعنوان تنها راه بردأختن به بهينه سازى سازه هاى بيجيده مورد أقبال عمومى است. بيشتر تحليلكران ترجيح مى دهند كه با اتكابه تضاوتشان يكـمدل طراحى از مسآله به وجود بياورند كه تقسيم بندى اجزا در آن از آنجه آنها به عنوان تحليل نهايى سازه تبول مى كتند بازتر و بزر كُتر باشد . آنها اميدوارند كه كرايش طراحى آشكار شده در بهينه سازى مدل بـازتر براى مـلـ

فشرده تر نيز كارايىى داشته باشل . هر هند چنين رهيافتى تابل تبول مى نمايد، ولى در اين جا بحت نخواهد شد زيرا به ميزان زيادى به تجربه تحليلگر متكى الست و همصحنين به نوع مسطاله مورد بـت بستگى زيـادى دارد . به اين دلايل دسته بندى منطقى آن در يكى كتاب درسى بسيار مـــكل است.

9.1 تقريبهاى عام

تقريبهاى توابع هدن و توابع تيلى كه معهولا بيـتـتر استفاده مى شوند بر اساس مقدار تابع و مششتقات آن در يكى يا جند نقطه امستوارند . بيـتـتر اين تقريبها براى هر تابعى صرفنظر از اين كه باسخ سازه باشد يانه به كار مى رود. به اين دليل، ما به خنين تقريبهايحى عام مى كوييم. تقريبهايى كه به شكل خخاصمى از تحليل مربوط مى شوند و براىى توليد تابع استفاده مى شُوند در بخش بعدى بـحث مى شوند . تقـريـبهـاى عـام را مى توان به تقريبهاى محلى، كه تنها در يكىناحيهُ محذودى از فضاى طراحیى دتت كانف دارند، و تقريبهاى
 دارند كه جيزى بين آن دو را مى دهند.

1 ـ 1 . 1 تقريبهایى محلى
 g عبارت است از

$$
g_{L}(\mathbf{x})=g\left(\mathbf{x}_{0}\right)+\sum_{i=1}^{n}\left(x_{i}-x_{0 i}\right)\left(\frac{\partial g}{\partial x_{i}}\right)_{\mathbf{x}_{0}}
$$

در بسيارى از كاربردها، تقريب خطىى حتى براى نقاط طلراحیى x كه بسـيار نزديكى X هستند، دتـت كافى ندارد ـ دتّت را مى توان با در نظر گرفتن جهلات بيـتترى از بسط سرى تيلور افزايش داد . البته ايـن كار مسستلزم مسحاسبات هزينه بر مشتقات مرتبه هاى بالاتر است. يكى راه جذاب تر ديگـر ايـن السـت كـه متغير هاى مانعى یيدا شوند كه تابع تقريب زده شده رآن كونه بسازند كه رفتار خططى بيشترى داشته باشد. يعنى، متغيرهايى مانند :

$$
\begin{equation*}
y_{i}=y_{i}(\mathbf{x}) \quad i=1 \ldots \ldots m \tag{9.1.r}
\end{equation*}
$$

تعريفـ شُوند كه در آن

PA1 بثتس 1 .9 : تقريبهاى عام
خططى،

$$
\left.g_{r}(\mathrm{y})=g\left(\mathrm{y}_{0}\right)+\sum_{i=1}^{m}\left(y_{i}-y_{0 i}\right)\left(\frac{\partial g}{\partial y_{i}}\right)_{y_{0}}, \quad \text { (я., , }, \quad\right)
$$

كه در آن

مثال

 in = 1, 2

تيرها، اين قيد را مى توان به شكل زير نوشت :

$$
g=w_{\mathrm{all}}-\left(\frac{23}{6}\right) \frac{p l^{3}}{E I_{1}}-\left(\frac{5}{6}\right) \frac{p l^{3}}{E I_{2}}
$$

اكر متغير هاى طراحى عرض و ارتفاع هر بخش باشند، مى توانيم و را بر حــبـ اين متغيرهاى طراحى به ثـكل زير بيان كنيم :

$$
g=w_{\mathrm{all}}-\frac{46 p l^{3}}{E b_{1} h_{1}^{3}}-\frac{10 p l^{3}}{E b_{2} h_{2}^{3}}
$$

اين عبارتت يك تابع غير خطى از درجهُ بالا از متغيرهاى طراححى است، اما با استفاده از متغيرهاى مانع زير :

$$
y_{1}=\frac{1}{I_{1}}=\frac{12}{b_{1} h_{1}^{3}}, \quad, \quad y_{2}=\frac{1}{I_{2}}=\frac{12}{b_{2} h_{2}^{3}}
$$

مى توان آن را خططى ساخت . بنابر اين تابع تيد را مى توان به نـكل تابي خططى زير نوشت :

$$
g=w_{\text {all }}-\left(\frac{23}{6}\right) \frac{p l^{3}}{E} y_{1}-\left(\frac{5}{6}\right) \frac{p l^{3}}{E} y_{2} .
$$

 اين وجود، همجنان كه توسط ميلز كوران و ديكران' [2] نشان داده شد، حتى اكر سازه هاى تير و تاب از
 در بسيارى از كاربردها، متغيرهاى مانع توابعى از يك متغير طراحى اند، يعنى:

$$
\begin{equation*}
y_{i}=y_{i}\left(x_{i}\right) \quad i=1, \ldots, n . \tag{9.1.4}
\end{equation*}
$$

در اين هالت، نوشتن

$$
\begin{equation*}
g_{I}(\mathbf{x})=g\left(\mathrm{x}_{0}\right)+\sum_{i=1}^{n}\left(y_{i}\left(x_{i}\right)-y_{i}\left(x_{0 i}\right)\right)\left(\frac{\partial g}{\partial x_{i}} / \frac{d y_{i}}{d x_{i}}\right)_{\mathbf{x}_{0}} . \tag{9.1.0}
\end{equation*}
$$

توجه كنيد كه در حالى كه از متغيرهاى مانع مشهور وارون متغير ${ }^{\text {(اسست. }}$

$$
\begin{equation*}
y_{\mathrm{i}}=\frac{1}{x_{i}} . \tag{9.1.9}
\end{equation*}
$$

اين بازكو كنده اين حقيقت الست كه مطالمات اوليه بهينه سازى سازه ها روى سازه هايى انجام تـده كه إز

 معين، قيدهاى تنش و تغير مكان توابع خطى از وارون اين متغير هاى طراحى اند. براى سازه هايى كـه از

$$
g_{R}(\mathrm{x})=g\left(\mathrm{x}_{0}\right)+\sum_{i=1}^{n}\left(x_{\mathrm{i}}-x_{0 \mathrm{i}} \frac{x_{0 i}}{x_{i}}\left(\frac{\partial g}{\partial x_{i}}\right)_{x_{0}} . \quad\right. \text { (я.1.v) }
$$

PAF بثفس 1 . 1 :تقرييهاى عام
يكى از جنبه هاى جذاب تقريبـ وارون، حتى براى سازه هاى از نظر ايستايى نامعيـن، ايـن اســت كـه خاحيت مقياس بندى را همـجنان حغظ مى كند . يعنى، هنگامى كه ماتريس سخختى يكى تـابـع هـمـكـن از مرتبه' hاز موّ لفه هاى x اممت، تغيير مكانها نيز توابع ممكن از مرتبـه' h- از مؤلفه ماى x هستنلد . برایى اجزای خخريا و غشائى، h=1، بنابراين تغيير مكانها توابع همكنى از وارون متغيرهاى طراحى انـد . اكـر تمامى متغير هاى طر اححى با يكى عاملى مقياس بندى شوند، بردار تغيير مكان با وارون آن عامل مقياس بندى

 تقريب ديگر، كه تقريب متحانظلد كارانه [7] ناميده مى شود، تركييى از تقريبهاى خططى و وارون است كه مدانظه كارتر از هر دو آنهاست . اين تتريب برای روشهاى تابع جريمه داخلى و تعميم يانتـه داخــلى
 مدانظه كارانه از تفاضل تقريب وارون از تقريب خططى شروع مى كنيم .

$$
\begin{equation*}
g_{L}(\mathbf{x})-g_{R}(\mathbf{x})=\sum_{i=1}^{n} \frac{\left(x_{i}-x_{0 i}\right)^{2}}{x_{i}}\left(\frac{\partial g}{\partial x_{i}}\right)_{\mathbf{x}_{0}} \tag{9.1.1}
\end{equation*}
$$

$x_{i}\left(\partial g / \partial x_{i}\right)$ علامت هر جمله در حاصل جمع از علامت نسبـت نيز هستت تعيين مى شود . نتش متغيرهاى طراحى كه براى آنها اين حاصلفهرب منفى المتـ، باعث مى شود $g(x) \geq 0$ كه تقريب وارون از تقريب خطط بزركتر (مثبت تر) شود و بر عكس . از آن جا كه قيد به شكل 0 بيان مى شود، يكى تقريب مُبت تر، كمتر محانظه كار است . بنابراين، تقريب محافظه كارانه وC براى هر متغير طرا-حى با انتخاب سهم كوچكتر (كهتر مبت) زير صمورت مى كيرد .

$$
\begin{equation*}
g_{C}(\mathrm{x})=g\left(\mathrm{x}_{0}\right)+\sum_{i=1}^{n} G_{i}\left(x_{i}-x_{0 i}\right)\left(\frac{\partial g}{\partial x_{i}}\right)_{\mathrm{x}_{0}} \tag{9.1.9}
\end{equation*}
$$

كه در آن

$$
G_{i}=\left\{\begin{array}{l}
1 \tag{9.1.14}\\
x_{0 i} / x_{i}
\end{array} \quad x_{0 i}\left(\partial g / \partial x_{i}\right) \leq 0\right.
$$

توجه كنيد كه 1

تقريب محانظه كارانه تنها تقريب تركيبى خطى - وارون ممكن نيست. كاهى جنبه هاى فيزيكى ممكن

 مععر است (تمرين l) . اكر تمامى قيدهابا تقريب محانظه كارانه تقريب زده شودد، ناحيه تابل تبول مسأله بهينه سازى تقريبى محدباست (بخت بزنيم، مسالّه بهينه سازى تقرييى محدب است. در مساثلل محدب دامتُن يك بهين منحصر به فرد تضمين

 بحانظه كارانه بدست مى آيد. بعنى (تمرين ()، ،

$$
\begin{equation*}
f_{C}(\mathbf{x})=f\left(\mathbf{x}_{0}\right)+\sum_{i=1}^{n} F_{i}\left(x_{i}-x_{0 i}\right)\left(\frac{\partial f}{\partial x_{i}}\right)_{\mathbf{x}_{0}} \tag{9.1.11}
\end{equation*}
$$

كه در آن

$$
F_{i}=\left\{\begin{array}{l}
x_{0 i} / x_{i} \tag{9.1.1r}\\
1
\end{array} \quad x_{0 i}\left(\partial f / \partial x_{i}\right) \leq 0\right.
$$

اين نرايند امتغاده از تقريب محانظه كارانه براى قيدها و تقريب محدب براى تابع هدف توسط برايينـت و

 وو ${ }^{*}$ [12]، اما با باين نكتهُ مهم بايد توجه داشي برای محانظه كار بود نشان به طور تطعى وجود ندارد (يعنى، نمى دانيم كه تقريب محانظه كارانه تر از قيد دقيت (x)

كاهى از تقريبهاى مرتبه بالاتر نيز امتفاده مى شود. بهعنوان مثال، تقريب درجه دو ، هوبا آوردن جملات

PAD بخث 19.1 :تغريباى مام
مرتبه' دو در بسط سرى تيلور بدست مى آيد.

$$
\begin{array}{r}
g_{Q}(\mathbf{x})=g\left(\mathbf{x}_{0}\right)+\sum_{i=1}^{n}\left(x_{i}-x_{0 i}\right)\left(\frac{\partial g}{\partial x_{i}}\right)_{x_{0}}+\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n}\left(x_{i}-x_{0 i}\right)\left(x_{j}-x_{0 j}\right)\left(\frac{\partial^{2} g}{\partial x_{i} \partial x_{j}}\right)_{x_{0}} .
\end{array}
$$

تقريب مرتب دو وارون HQR با استفاده از تقريب درجه دو بر حسبب وارون متغيرهاى طراحى بدسـت مى آيد (ترينץ)،

$$
\begin{align*}
g_{Q R}\left(x_{0}\right) & =g\left(x_{0}\right)+\sum_{i=1}^{n}\left(\frac{x_{0 i}}{x_{i}}\right)\left(2-\frac{x_{0 i}}{x_{i}}\right)\left(x_{i}-x_{0 i}\right)\left(\frac{\partial g}{\partial x_{i}}\right)_{x_{0}} \\
& +\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n}\left(\frac{x_{0 i}}{x_{i}}\right)\left(\frac{x_{0 j}}{x_{j}}\right)\left(x_{i}-x_{0 i}\right)\left(x_{j}-x_{0 j}\right)\left(\frac{\partial^{2} g}{\partial x_{i} \partial x_{j}}\right)_{x_{0}} . \tag{9.1.14}
\end{align*}
$$

مثال

 تشريح مى شود. نيروى افقى p مى تواند به طرن راست اعمال شمود (مانند شككل) و يا بـ طرن جــبـ. خـحيا بايد هنان طراحى شمود كه تيدهاى تنش و تغيرمكان برآورده مُوند . متغيرهاى طراحى مساحتهاى $A_{A}=A_{C}$ سطع متطع هايند، يعنى بـانـد. ما تقريب را براى تنت عـضو C به كار مى بريم كه بايد تنش كشــــى و نـشـارى در آن از

PAF
تنشهاى اعضا را مى توان بر حسسب مؤلفه هاى تغيير مكان سر خرها به شـكل زير بيان كرد :

$$
\sigma_{A}=E(v+\sqrt{3} u) / 4 l, \quad \sigma_{B}=E v / l, \quad, \quad \sigma_{C}=E(v-\sqrt{3} u) / 4 l
$$

از معادله هأى نعادل انتى دأريم

$$
\frac{\sqrt{3}}{2} A_{A}\left(\sigma_{A}-\sigma_{C}\right)=p, \quad \text { ي } \quad \frac{3 E A_{A}}{4 l} u=p
$$

بهطور مشابه، از معادله' تعادل عمومى داريم:

$$
\frac{1}{2} A_{A}\left(\sigma_{A}+\sigma_{C}\right)+A_{B} \sigma_{B}=8 p, \quad \text { ب } \quad \frac{E v}{l}\left(A_{B}+\frac{A_{A}}{4}\right)=8 p
$$

بنابراين

$$
u=4 p l / 3 E A_{A}, \quad v=8 p l / E\left(A_{B}+0.25 A_{A}\right)
$$

$$
\sigma_{C}=p\left(-\frac{\sqrt{3}}{3 A_{A}}+\frac{2}{A_{B}+0.25 A_{A}}\right)
$$

با فرض اين كه عضو C در كنشّ باثـد، تابع قَد رامى توان به شكل زير نرشت :

$$
g=1-\frac{\sigma_{C}}{\sigma_{0}}=1-\frac{p}{\sigma_{0}}\left(-\frac{\sqrt{3}}{3 A_{A}}+\frac{2}{A_{B}+0.25 A_{A}}\right)
$$

اكنون متغير هاى طراحى نرمال يـده را به شـكل زير تعريف مى كنيـم :

$$
x_{1}=A_{A} \sigma_{0} / p, \quad x_{2}=A_{B} \sigma_{0} / p
$$

بنابراين :

$$
g=1+\frac{\sqrt{3}}{3 x_{1}}-\frac{2}{x_{2}+0.25 x_{1}}
$$

g,

PAY بخت 1 P. : :تعريبهایمام

$$
\begin{aligned}
& \frac{\partial g}{\partial x_{1}}=\left(-\frac{\sqrt{3}}{3 x_{1}^{2}}+\frac{0.5}{\left(x_{2}+0.25 x_{1}\right)^{2}}\right)_{\mathbf{x}_{0}}=-0.2574 \\
& \frac{\partial g}{\partial x_{2}}=\left.\frac{2}{\left(x_{2}+0.25 x_{1}\right)^{2}}\right|_{\mathbf{x}_{0}}=1.28
\end{aligned}
$$

و مشتقهاى دوم عبارتند از:

$$
\frac{\partial^{2} g}{\partial x_{1}^{2}}=\left(\frac{2 \sqrt{3}}{3 x_{1}^{3}}-\frac{0.25}{\left(x_{2}+0.25 x_{1}\right)^{3}}\right)_{x_{0}}=1.0267
$$

$$
\frac{\partial^{2} g}{\partial x_{1} x_{2}}=-\left.\frac{1}{\left(x_{2}+0.25 x_{1}\right)^{3}}\right|_{x_{0}}=-0.512
$$

$$
\frac{\partial^{2} g}{\partial x_{2}^{2}}=-\left.\frac{4}{\left(x_{2}+0.25 x_{1}\right)^{3}}\right|_{\mathrm{x}_{0}}=-2.048
$$

با استفاده از اين مشتقها و \quad و $g\left(x_{0}\right)=-0227$ مى

$$
\begin{aligned}
g_{L} & =-0.0227-0.2574\left(x_{1}-1\right)+1.28\left(x_{2}-1\right), \\
g_{R} & =-0.0227-0.2574\left(1-\frac{1}{x_{1}}\right)+1.28\left(1-\frac{1}{x_{2}}\right)=1+.2574 / x_{1}-1.28 / x_{2} \\
g_{C} & =-0.0227-0.2574\left(x_{1}-1\right)+1.28\left(1-\frac{1}{x_{2}}\right), \\
g_{Q} & =g_{L}+0.5134\left(x_{1}-1\right)^{2}-0.512\left(x_{1}-1\right)\left(x_{2}-1\right)-1.024\left(x_{2}-1\right)^{2}, \\
g_{Q R} & =-0.0227-0.2574\left(2-\frac{1}{x_{1}}\right)\left(1-\frac{1}{x_{1}}\right)+1.28\left(2-\frac{1}{x_{2}}\right)\left(1-\frac{1}{x_{2}}\right) \\
& +0.5134\left(1-\frac{1}{x_{1}}\right)^{2}-0.512\left(1-\frac{1}{x_{1}}\right)\left(1-\frac{1}{x_{2}}\right)-1.024\left(1-\frac{1}{x_{2}}\right)^{2} .
\end{aligned}
$$

تـــمى ايـن تقـريبهـا در

جدول

x_{1}	x_{2}	g	g_{L}	g_{R}	g_{C}	g_{Q}	$g_{Q R}$
0.75	0.75	-0.3635	-0.2783	-0.3635	-0.3850	-0.3422	-0.3635
1.00	0.75	-0.4227	-0.3426	-0.4493	-0.4493	-0.4066	-0.4209
1.25	0.75	-0.4205	-0.4070	-0.5008	-0.5137	-0.4070	-0.4280
0.75	1.00	0.0856	0.0417	0.0631	0.0417	0.0738	0.0915
1.25	1.00	-0.0619	-0.0870	-0.0741	-0.0871	-0.0549	-0.0639
0.75	1.25	0.3786	0.3617	0.3191	0.2977	0.3617	0.3919
1.00	1.25	0.2440	0.2974	0.2334	0.2334	0.2334	0.2435
1.25	1.25	0.1819	0.2330	0.1819	0.1690	0.1691	0.1819

جلدول نشان مى دهد كه تقريبهاى براساس وارون متغير ها از تقريبهاى برامـاس متغير هاى واتـعى بـــــــار دقيقترند و به ويزّ اكر دو متغير با ضريب مشابهى مقياس بندى شوند (يعنى XX X جايكز ين شود كه يكى عدد اسكالر امت) ، آتها دتيقند . تقريبهاى درجه دو به مراتب از سه تقريب مرتبـه اول دتيـــتـرنـد. تضـمينى براى اينكه تقريب محانظل كارانهاى كه از تقريبهاى مرتبه دو محافظه كارانهتر باشد وججود ندارد، ولى معمولآ مانند اين مثال، محانظه كارانه تر امـت. با اين وجود مى بينيـم كه بهاى اين فوت محانظه كارانه بودن اين امست كه كهترين دتت تقريب را دارد.

تقريبهاى قيد نيز: مى توانند براى بررسي خطاهاى مشتق هايـى كه براى مـاخخت آنها به كار رفته استفـاده شوند . اين كار با محالمبهُ دقيق قيد در امتداد يكى خط در نضهاى طراحى و رسمم خطا در تقريب در امتداد آن

PA4 بخش 9 : :تقريبهاى عام

خط انجام مى شود. يكى تقريب مرتبهُ اول بايد در طراحى اسـمى منحنى خطاى ضريب زاويه صفر داشته باشد، در صورتى كه تثريب مرتبه‘ دو بايد در آن جا انحناى صفر داشتته باشد. به عنوان مـاله، نقريبهاى مختلف رادر امتداد خط

$$
x_{1}=1.25-0.5 t, \quad x_{2}=0.5+1.0 t, \quad 0 \leq t \leq 1,
$$

 تابعى از t نشان مى دهد. ديده مى شود كه تقريبهاى مرتبهاول در $t=0.5$ شيب صفر دارند، و تقريبهاى مر تبه دو در آنجا شُعاع انحناى صفر دارند. برایى اين مـال، تقريـب وارون كـاملاَّ محانظه كارانه اسست،
 تقريهايهى كه تاكنون بيان شد از عمليات جبرى روى توابع قيود بدست آمده بودند. در تلاثشهايى كه

 معرفى شد، ولى تا ده سال بعد به كار نرفت (به عنواذ مثال به مرجـع [14] مر اججعه كنيد) . اين رهبيانت
 قيد را بتوان از باسـخ ميانى با هزينه' كمى محالمبه كرد، آن كاه مى توانبم يك تقريب غير خطى كم هزينه و دقيق داشته باشيمر
 همكارانش (به عنوان مثال 17-14) ييشنهاد شد. واندريلاتز به اين نتيجه رسيد كه تقريب نيـروى اعضـا دقيقتر از تقريب تنتش اعضاست. اين نتيجه مورد انتظار بود زيرابا تغيير مساحتهاى، سطع مقطع، نيروهاى الهضا بسيار كندتر از تنشهاى اعضا تنيير مى كتند. به ويزه، براى خرياهاىى از نظر ايستايى معين، نيرو در
 انگيزه؛ استفاده از نيروى اعضا به عنوان كميتهاى باسـخ ميانى است.

$$
\begin{equation*}
g_{i}=1-\frac{\sigma_{i}}{\sigma_{\mathrm{all}}} \geq 0 \tag{5.1.10}
\end{equation*}
$$

2) Vanderplaats

يك تقريب عمومى براى تنثهاى اعضيا از وارون متغير هاى طرأحى Ai A_{i} تقسيم آن بر مساححت سـطح مقطع براى داشتن يكى تقريب براى تنش ، بر اساس بيسنهاد واندر بلاتز ، قيدى به شكل زير بدمـت مى آوريم :

$$
\begin{equation*}
g_{L F_{i}}=A_{i}-\frac{\left[F_{i}\left(\mathbf{A}_{0}\right)+\nabla^{T} F_{i}\left(\mathbf{A}_{0}\right)\left(\mathbf{A}-\mathbf{A}_{0}\right)\right]}{\sigma_{\mathrm{all}}} \geq 0 \tag{9.1.19}
\end{equation*}
$$

 از نظر ايستايع معين، كه كراديان نيروهاى اعضنا نسبت به مسا-حتهاى سـطل مقطع صفـر امــت، تـقريـب
 يكى مساحت مبنا، بى بعد ساخت . مقايسه ای بين عملكرد أين تقريب نيروى خططى و ديگـر تـتـريبـهـا در

$$
\text { بخش † . } 9 \text { إرائه مى شود. }
$$

 معمول ترين تقريب فراكير رهيانت رويه باسخ است . در اين رهيانت تابع در هند نتطه نمونه كيـرى مـى شو2، آن گـاه يكى عبارت تـتليلى به نام رويه يـاسـخ (مـعـــر لا يكى هند جملهاى) بر روى داده هـا

 مـى شــود . تقـريب، تعـدادى بارامتر مجهول (مانند ضرايب جند جمله ایى) دارد كه بايد براى تطبـيتي با
 مُده انــد، تحليل انتجـام مى شــود و آَن كــاه برانى بدست آّوردن مقادير بارامترها از نتايج تـحليل، معمولا
 هنـد نقطـهُ آزمايشى متتخب استتفاده مى شود و از روشهاى آمارى كيفيت شايستگـى آن و يـا دتـت رويـه بإسخ ارزيابى مى كردد ـ اكر نـايستگى و برازانده شـدن رضايت بـخش نبود، فرايند بار ديكُر شُروع مى شود

 مراجعه كنيد) . كاربرد كمتر آن شايد به اين سبب بوده كه اين نن تنها براي مسائلى عملى است كـه تعـداد
 به طور حشُمكيرى با امزايش تعلاد متغير ها افزايش مى يابد.

> مثال r.1.

$$
g=1+\frac{\sqrt{3}}{3 x_{1}}-\frac{2}{\left(x_{2}+0.25 x_{1}\right)} .
$$

فرض می شود رويه باسخ يك جند جملهانى خطى باشد

$$
\begin{equation*}
g_{\mathrm{rs}}=a+b x_{1}+c x_{2} . \tag{الف}
\end{equation*}
$$

فرض مي كنيم نضاى طراحى به شكل زير باشد.

$$
0 \leq x_{1}, x_{2} \leq 2
$$

 مى كنيه، مـتلا جههار نقطهُ زير $\mathbf{x}_{1}^{T}=(0.5,0.5), \quad \mathbf{x}_{2}^{T}=(1.5,0.5), \quad \mathbf{x}_{3}^{T}=(0.5,1.5), \quad \mathbf{x}_{4}^{T}=(1.5,1.5)$.

با جايگزينى هر يك از اين نقاط در معادله' (الف)، جهار معادله زير رابدست مى آوريم:

$$
\left[\begin{array}{lll}
1 & 0.5 & 0.5 \\
1 & 1.5 & 0.5 \\
1 & 0.5 & 1.5 \\
1 & 1.5 & 1.5
\end{array}\right]\left\{\begin{array}{l}
a \\
b \\
c
\end{array}\right\}=\left\{\begin{array}{c}
-1.0453 \\
-0.9008 \\
0.9239 \\
0.3182
\end{array}\right\}
$$

بـراى بدست آوردن يـك جواب حـداتل مربعات از ايـن جهار معـادله و سـه مـجهـول، دو طرفـرا در

$$
\text { c=1.5941 } b=-0.2306 ، ~ a=-1.5395 \text { را بدست مى آوريم، داريم : }
$$

$$
g_{r s}=-1.5395-0.2306 x_{1}+1.5941 x_{2}
$$

اين رابا تقريب نططى حول (I,) كه در مثال r . 1. 9 يافتهم، يعنى

$$
g_{L}=-0.0227-0.2574\left(x_{1}-1\right)+1.28\left(x_{2}-1\right)
$$

مقايسه مى كنيم. همـجنان كه انتظار مى رفت، و در نزديكى (1,1) دقيقتر است و grs در نقاط دورتر، به عنوان مـشال در

در فنون رويه باسخ، قبل از فرايند بهينه سازى از فضـاى طراحَى نمونه كـيـرى مـى شــود. امـا، هــون فرايند بهينه سازى به محاسبه قيلها و مشتقاتشان در بيـتـت از يكى تقطه نيـاز دارد، امـتـنـاده از اطـلاعـات هحاسبات قبلى در ساختنن تقريبهاى با محدلودهُ وسيعتر منطقى تر به نظر مى رسد تا اين كه نقط از يکى نقطه براى تقريب أستفاده شود . اين موضوع به مفهوم تقريبهاى جــــد نـقطـه كـه بـه تقريبهاى مـيانـه مشُهورند مى انتجامد. هفتكه و ديگران[20] تقريبهايُى بر اساس دو و مسه نقطه را مورد آزمون ترار دادنل . تجربيات آنها اين بود كه تقريب در نقاط ميانى (به عنوان مثال، در نقاط داخلل مثلث متثـكـل از سـه نـــطـه در يـي تقريب سه نقطه ای) خوب كار مى كند ولى در نقاط برونى يكى بهبود متوسط در دقت به وجود مى آورد . يكى تقريب دو نتطهاى كه عملكرد بهترى دارد تو سط فـادل' و ديگران[[21] ارائه شمل. تقريب تقريبى خطى از متغير هاى $y_{i}=x_{i}^{p_{i}}$
 شكل زير خواهد بود.

$$
g_{t p}=g\left(\mathbf{x}_{0}\right)+\sum_{i=1}^{n}\left[\left(\frac{x_{i}}{x_{0 i}}\right)^{p_{i}}-1\right]\left(\frac{x_{0 i}}{p_{i}}\right)\left(\frac{\partial g}{\partial x_{i}}\right)_{\mathbf{x}_{0}} . \quad \text { (9.1.1V) }
$$

آن كاه، نماهاى

داثته باشـد، بلست مى آبند . به آسانى مى نوان نشان داد كه نماها از رابطه زير بدست مى آيند :

$$
p_{i}=1+\frac{\log \left\{\left(\frac{\partial g}{\partial x_{i}}\right)_{\mathbf{x}_{1}} /\left(\frac{\partial g}{\partial x_{\mathrm{i}}}\right)_{\mathbf{x}_{0}}\right\}}{\log \left(x_{1 i} / x_{0 i}\right)}
$$

هنگامى كـه
 و يا

دوم با استفاده از بسط سرى تيلور مى توان نشان داد كه :

$$
\begin{equation*}
\lim _{p_{i} \rightarrow 0} \frac{\left[\left(\frac{x_{i}}{x_{0 i}}\right)^{p_{i}}-1\right]}{p_{i}}=\log \left(\frac{x_{i}}{x_{0 i}}\right) \tag{9.1.19}
\end{equation*}
$$

تقريب ميانى ديگر تقريب مقياس يا محلى- فر اكيـر [22] است. هدفـ اين المـت كه تقريب فراكيـر بلمست آمده از يكـ رهيافت سـطع باسنغ يا از يك ملن ساده تر از مساله با وارد كردن اطلاعات مسلى بهبود يابد . ساده ترين رهيافت برای انجام جنين كارى استفاده از يك ضريب مفياس بر اساس مقدار تابع در يكى نقطه

$$
s_{c}(\mathbf{x})=g(\mathbf{x}) / g_{G}(\mathbf{x})
$$

كه

$$
\begin{equation*}
g_{\Delta 0}(\mathbf{x})=s_{c}\left(\mathbf{x}_{0}\right) g_{G}(\mathbf{x}) \tag{9.1.Y1}
\end{equation*}
$$

مى توان با استناده از مشتق g و سانخت يكى ضريب مقياس خططى SeL به شكل

$$
\begin{equation*}
s_{c L}=s_{c}\left(\mathbf{x}_{0}\right)+\sum_{i=1}^{n}\left(x_{i}-x_{0 i}\right)\left(\frac{\partial s_{c}}{\partial x_{i}}\right)_{x_{0}} \tag{צ.1.YY}
\end{equation*}
$$

كه مــتّ ضريب مقياس عبارت است از :

$$
\left(\frac{\partial s_{c}}{\partial x_{i}}\right)=s_{c}\left(\frac{1}{g} \frac{\partial g}{\partial x_{i}}-\frac{1}{g_{G}} \frac{\partial g_{G}}{\partial x_{i}}\right)
$$

(9.1.M)

بهبودى در ضريب مفياس نوق به وجود آورد .

 استفاده شـده يك مدل صفتها الى ازبال بود .

F.r 9 فنون باز تحليل سريع

 نتطهُ طراحى مانند

 نتطهُ طراحى اوليه، و يانته است.

 بدست آمده)در يك نتطهُطراحى ماند

$$
\begin{equation*}
K_{0} u_{0}=f_{0}, \tag{9.r.1}
\end{equation*}
$$

كه در آن تغير معادلات تعادل در

$$
\begin{equation*}
\left(\mathbf{K}_{0}+\Delta \mathbf{K}\right)\left(\mathbf{u}_{0}+\Delta \mathbf{u}\right)=\mathbf{f}_{0}+\Delta \mathbf{f} . \tag{9.r.r}
\end{equation*}
$$

$$
\begin{equation*}
\left(\mathbf{K}_{0}+\Delta \mathbf{K}\right) \Delta \mathbf{u}=\Delta \mathbf{f}-\Delta \mathbf{K} \mathbf{u}_{0} \tag{я.r.r}
\end{equation*}
$$

$$
\mathbf{K}_{0} \Delta \mathbf{u}_{1}=\Delta \mathbf{f}-\Delta \mathbf{K} \mathbf{u}_{\mathbf{0}} .
$$

اين تقريب وتتى كه x الز نظر مقدارى كوجكى است، بسيار خوببا است. انزون بر اين، معمولا در حل

 حسب سـرى تيلور است. تقريب را مى توانيم با تكرار همين غرايند بهبود بخششيم و تثريبى از مرتبهُ بالاتر '

$$
\left(\mathbf{K}_{0}+\Delta \mathbf{K}\right)\left(\Delta \mathbf{u}-\Delta \mathbf{u}_{1}\right)=-\Delta \mathbf{K} \Delta \mathbf{u}_{1}
$$

و بار ديكر مى توانيم از بدست آوريم: Δu - $\Delta \mathbf{u}_{1}$

$$
\mathbf{K}_{0} \Delta \mathbf{u}_{2}=-\Delta \mathbf{K} \Delta \mathbf{u}_{1}
$$

فرايند را مى توان تا بى نهايت ادامه داد و رابطهُ زير را داشت :

$$
\begin{equation*}
\Delta \mathbf{u}=\sum_{i=1}^{\infty} \Delta \mathbf{u}_{i} \tag{६.Y.V}
\end{equation*}
$$

كه جمله هاى

$$
\mathbf{K}_{0} \Delta \mathbf{u}_{\mathbf{i}}=-\Delta \mathbf{K} \Delta \mathbf{u}_{i-1} . \quad(\varsigma . Y . \wedge)
$$

به دست مى آيند . البته تضمينى برای ممغرابودن مرى وجودندارد، بدويزّهزمانى كه كو جـك نيست.

1) Kirsch and Taye

تغيرات سازه را مى توان به دو تســت مقياس بندى كلى و باز توزيع مصالح تتسيم كرد . يعنى، ماتريس سختى اختلال يافته را به شكل زير مى نويسيم:

$$
\begin{equation*}
\mathbf{K}_{0}+\Delta \mathbf{K}=s \mathbf{K}_{0}+\Delta \mathbf{K}_{\boldsymbol{y}}, \tag{q,r.q}
\end{equation*}
$$

كه در آن خريب مقياس بندى است. مقايس بندى كلى رامى توان به روش ساده الى مـورد بـحث قـرار

 رابطهُ زير بدست مى آيد:

$$
s=1+\frac{\sum_{i, j} k_{0 i j} \Delta k_{i j}}{\sum_{i, j} k_{0 i j}^{2}}
$$

.كان به شكل زير است :

$$
\begin{equation*}
\mathrm{u}_{\mathrm{s}}=(\mathrm{I} / \mathrm{s}) \mathrm{u}_{0} . \tag{9.r.11}
\end{equation*}
$$

 طراحى مقياس بندى شده عبارت است از :

$$
s \mathbf{K}_{0} \Delta \mathbf{u}_{s 1}=-\Delta \mathbf{K}_{s} \mathbf{u}_{s}=-\left[\Delta \mathbf{K}-(s-1) \mathbf{K}_{0}\right] \mathbf{u}_{0} / s, \quad \text { (千.Y.|Y) }
$$

كه از معادلهُ (Y Y Y Y) أستفاده كرده ايم. با مقايسه اين معادله با معادله (Y Y Y Y Y داريم:

$$
\Delta \mathbf{u}_{s 1}=\frac{1}{s^{2}} \Delta \mathbf{u}_{1}+\frac{s-1}{s^{2}} \mathbf{u}_{0} .
$$

تغيير كلى uu u u در اين رهيافت به شكل زير بيش بينى مى شود.
$\Delta \mathbf{u}_{s}=\mathbf{u}_{\mathrm{a}}-\mathbf{u}_{0}+\Delta \mathbf{u}_{\mathbf{s}_{1}}=\left(\frac{1}{s}-1\right) \mathbf{u}_{0}+\frac{1}{s^{2}} \Delta \mathbf{u}_{1}+\frac{s-1}{s^{2}} \mathbf{u}_{0}=\frac{1}{s^{2}} \Delta \mathbf{u}_{1}-\frac{(1-s)^{2}}{s^{2}} \mathbf{u}_{0}$.

Par بخش 9.1 : نمونباز تحليلسريع

مثال 1

 يابد

ماتريس سيختى خريّى سه ميله انى را مى توان به شكل زير بدست آَورد:

$$
\mathbf{K}=\frac{E}{l}\left[\begin{array}{cc}
0.75 A_{A} & 0 \\
0 & A_{B}+0.25 A_{B}
\end{array}\right]=\frac{E p}{l \sigma_{0}}\left[\begin{array}{cc}
0.75 x_{1} & 0 \\
0 & \left(x_{2}+0.25 x_{1}\right)
\end{array}\right],
$$

$$
\mathbf{K}_{0}=\frac{E p}{l \sigma_{0}}\left[\begin{array}{cc}
0.75 & 0 \\
0 & 1.25
\end{array}\right], \quad \Delta \mathbf{K}_{0}=\frac{E p}{l \sigma_{0}}\left[\begin{array}{cc}
0 & 0 \\
0 & 0.25
\end{array}\right] .
$$

$$
\mathrm{u}_{0}=\frac{p l}{E}\left\{\begin{array}{c}
4 / 3 A_{A} \\
8 /\left(A_{B}+0.25 A_{A}\right)
\end{array}\right\}=\frac{l \sigma_{0}}{E}\left\{\begin{array}{l}
1.333 \\
6.400
\end{array}\right\} .
$$

$$
\Delta \mathbf{u}_{1}=-\mathbf{K}_{0}^{-1} \Delta \mathbf{K} \mathbf{u}_{0}=\frac{l \sigma_{0}}{E}\left\{\begin{array}{c}
0 \\
-1.28
\end{array}\right\}
$$

$$
\sigma_{C}=E(v-\sqrt{3} u) / 4 l, \quad, \quad g=1-\sigma_{C} / \sigma_{0}
$$

بنابراين :

$$
\begin{equation*}
\Delta g=-\frac{E}{4 l \sigma_{0}}(\Delta v-\sqrt{3} \Delta u) . \tag{الف}
\end{equation*}
$$

با جايگزينى مؤلفه هاى

$$
\Delta g=-\frac{E}{4 l \sigma_{0}} \frac{l \sigma_{0}}{E}(-1.28)=0.32
$$

از آن جا كه برای طراحى اوليه 0.0227

$$
g \approx g_{0}+\Delta g=-0.0227+0.32=0.2973
$$

همان كونه كه انتظار مى رنت، اين مقدار ماند تقريب خططى اسـت (به جـدول 1 ـ ـ ـ ـ 9 مراجعه كنبد).

$$
s=1+\frac{0.25 \times 1.25}{0.75^{2}+1.25^{2}}=1.147
$$

معادلهُ (Y Y Y Y Y به شكل زير خوامد شـد:

$$
\Delta \mathbf{u}_{s}=\frac{l \sigma_{0}}{1.147^{2} E}\left\{\begin{array}{c}
0 \\
-1.28
\end{array}\right\}-\frac{0.147^{2} l \sigma_{0}}{1.147^{2} E}\left\{\begin{array}{l}
1.333 \\
6.400
\end{array}\right\}=\frac{l \sigma_{0}}{E}\left\{\begin{array}{c}
0.0218 \\
-1.0780
\end{array}\right\} .
$$

باجايكزينى در معادلهُ (الفـ)، داريم:

$$
\Delta g_{s}=-0.25(-1.078-\sqrt{3} \times 0.0218)=0.2789
$$

$$
g_{\mathrm{s}}=g_{0}+\Delta g_{\mathrm{s}}=-0.0227+0.2789=0.2562 .
$$

 اين موضوع مسـلم است (به عنوان مثال به مرجـع هـالى' [25] مر اجعه كنيد) كه وتتى ماتريس يـى

 رتبه' ماتريس بهبود يافته است. هنگامى كـه r كو جك، و مرتبه' دستگاه معادلات بزر

 مثال، هنگامى كه سـختى يك عضو خريا بهبود مى يابد، ماتريس بهبود يانته از مرتبهُ يكى است، و جواب

بنش 74 . 9 : نمون باز تعليل سريع
رامى توان با يكى بار سل مسأله'اصلى به دست آورد. أنزون بر اين، مى توان نشان داد[25] كه با يانتن اين

 باشهد. به طرر مشابه، هولنيكى زولكَ r عضو يك خربا را به هزينه يانتن r مرتبه تغيير مكان خرباي اصلم ممكن مى ساخت . اين رهيانتها بـه

 ستخى از رتبهُ بالاترى دارند، اين رهيافت باز هم تابل كاربرداست، اما مزاياي آن كم مى شُود.

- . r. r
 مساله مقدار ويزه ارتعاشى را مى توان به شكل زير نوشت:

$$
\mathbf{K}_{0} \mathbf{u}_{0}-\mu_{0} \mathbf{M}_{0} \mathbf{u}_{0}=0
$$

كه در آن

 مقدار ويزه در

$$
\left(\mathbf{K}_{0}+\Delta \mathbf{K}\right)\left(\mathbf{u}_{0}+\Delta \mathbf{u}\right)-\left(\mu_{0}+\Delta \mu\right)\left(\mathbf{M}_{0}+\Delta \mathbf{M}\right)\left(\mathbf{u}_{0}+\Delta \mathbf{u}\right)=0 .(\text { ¢.Y. } 10)
$$

 اختلال صرننظر مى كنيم . داردبم:

$$
\begin{equation*}
\left(\mathbf{K}_{0}-\mu_{0} \mathbf{M}_{0}\right) \Delta \mathbf{u}+\left(\Delta \mathbf{K}-\mu_{0} \Delta \mathbf{M}\right) \mathbf{u}_{0}-\Delta \mu \mathbf{M}_{0} \mathbf{u}_{0} \approx 0 \tag{9.Y.19}
\end{equation*}
$$

با يـش ضرب

$$
\Delta \mu \approx \frac{\mathbf{u}_{0}^{r}\left(\Delta \mathbf{K}-\mu_{0} \Delta \mathbf{M}\right) \mathbf{u}_{0}}{\mathbf{u}_{0}^{T} \mathbf{M}_{0} \mathbf{u}_{0}} .
$$

 صرفنظر كنيم و به رابطه؛ نير برسيم:

$$
\mu_{0}+\Delta \mu \approx \frac{\mathbf{u}_{0}^{T}\left(\mathbf{K}_{0}+\Delta \mathbf{K}\right) \mathbf{u}_{0}}{\mathbf{u}_{0}^{T}\left(\mathbf{M}_{0}+\Delta \mathbf{M}\right) \mathbf{u}_{0}} .
$$

 مى توان نشان داد كه خطاى آنها (كه با هم يكسـان نيست) متناسببا مجذور اختلالل در طراحى اين كه آنها تقريبهاى مرتبهُ اولند. تقريب مرتبه' اول ديگرى توسط بريتجارد و آدلمن' [28] بِشنهاد شد. . اين تقريب براسماس انتـُرال
 به نـكل زير نوشت:

$$
\begin{equation*}
\frac{d \mu}{d x}=a-\mu b, \tag{9.Y.19}
\end{equation*}
$$

$$
\begin{equation*}
a=\frac{\mathbf{u}^{T} \frac{d \mathbf{K}}{d x} \mathbf{u}}{\mathbf{u}^{T} \mathbf{M} \mathbf{u}}, \quad, \quad b=\frac{\mathbf{u}^{T} \frac{d \mathbf{M}}{d x} \mathbf{u}}{\mathbf{u}^{T} \mathbf{M} \mathbf{u}} \tag{9.Y.Y.}
\end{equation*}
$$

 متغير طراحى x بدست مى آوريم كه عبارت است از :

$$
\begin{equation*}
\mu=\left(\mu_{0}-\frac{a}{b}\right) e^{-b\left(x-x_{0}\right)}+\frac{a}{b} . \tag{9.Y.Y}
\end{equation*}
$$

هنگامى كه0 $0 \rightarrow$ ميل مى كند معادله' (Y. Y. Y) به تقريب خططى استاندارد ميل مى كند. اگر متغيرهاى متعددى همزمان تغيـير يابــند، x را مى توان به عنوان فاحله در مسـبر

بنش
(مرجع [28] را بينيد) . اين تقريب رادي اي بى (DEB) (بر امـاس معادله ديفرانسيل) مى نامند[28] .
 ويزهُ اوليه استفاده از مشتتق اول)، آن كاه مى توانيم از نسبت ريلى استفاده كنيم و يكى تقريب بسيار خوب براى مقلار ويزه́ اختلال يانته بدست آوريم كه عبارت است از :

$$
\begin{equation*}
\mu_{0}+\Delta \mu \approx \frac{\mathbf{u}_{L}^{T}\left(\mathbf{K}_{0}+\Delta \mathbf{K}\right) \mathbf{u}_{L}}{\mathbf{u}_{L}^{T}\left(\mathbf{M}_{0}+\Delta \mathbf{M}\right) \mathbf{u}_{L}} . \tag{C,Y,Y}
\end{equation*}
$$

شكل 1 و. r. 1 سيـنمبرم فنر
 طرف جب راروى كمترين بسامد تخمين بزنيد. ماتريسهاى سختى و جرم براي اين سيستم عبارت امست

$$
\mathbf{K}=k\left[\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right], \quad \mathbf{M}=\boldsymbol{m}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] .
$$

كمترين مقدار ويزه و بردار ويزه' مربوط به آن عبارتند از :

مبانی بهينه سازی سازهصا (فصل F F F F F

$$
\mu_{0}=0.382 k / m, \quad \mathbf{u}_{0}^{T}=(1,1.618)
$$

برالى سيستم اختلال يافته تغييرى در ماتريس سختى به وجود نمى آيل، و داريمـ :

$$
\mathbf{M}+\Delta \mathbf{M}=m\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right], \quad \Delta \mathbf{M}=\left[\begin{array}{cc}
m & 0 \\
0 & 0
\end{array}\right]
$$

از معادله' (• • . Y . Y) داريـم:

$$
\Delta \mu \approx \frac{\left[\begin{array}{ll}
1 & 1.618
\end{array}\right](-0.382 k / m)\left[\begin{array}{cc}
m & 0 \\
0 & 0
\end{array}\right]\left\{\begin{array}{c}
1 \\
1.618
\end{array}\right\}}{\left[\begin{array}{ll}
1 & 1.618
\end{array}\right]\left[\begin{array}{cc}
m & 0 \\
0 & m
\end{array}\right]\left\{\begin{array}{c}
1 \\
1.618
\end{array}\right\}}=-0.106 k / m
$$

$$
\mu_{0}+\Delta \mu \approx 0.276 k / m
$$

به طور مشابه ، از معادله'(Y . Y. Y () داريـم:

$$
\mu_{0}+\Delta \mu \approx \frac{\left[\begin{array}{ll}
1 & 1.618
\end{array}\right]\left[\begin{array}{cc}
2 k & -k \\
-k & k
\end{array}\right]\left\{\begin{array}{c}
1 \\
1.618
\end{array}\right\}}{\left[\begin{array}{ll}
1 & 1.618
\end{array}\right]\left[\begin{array}{cc}
2 m & 0 \\
0 & m
\end{array}\right]\left\{\begin{array}{c}
1 \\
1.618
\end{array}\right\}}=0.299 k / m
$$

$$
b=\frac{\left[\begin{array}{ll}
1 & 1.618
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left\{\begin{array}{c}
1 \\
1.618
\end{array}\right\}}{\left[\begin{array}{ll}
1 & 1.618
\end{array}\right]\left[\begin{array}{cc}
m & 0 \\
0 & m
\end{array}\right]\left\{\begin{array}{c}
1 \\
1.618
\end{array}\right\}}=0.276 / m, \quad a=0
$$

$$
\mu_{0}=0.382 k / m, \quad \mathbf{u}_{0}^{T}=(1,1.618)
$$

نتيجه دقّق عبارت الست از:

$$
\mu_{0}+\Delta \mu=0.293 k / m
$$

بنغ

مقدأر ويزهُ اوليه (0.382k/m) و الختلال يافته بسيار كوجكند. • •
F.F برنامهريزى خطي ونبالثهاى

تقريبهاى تيد و روشهاى تتحليل تقرييى كه در بـتشهاى بِشين مورد بـحث ترار كرنتند، بينّتر هنگامى مفيدند كه هزينه محاسباتى يكى بار ارزيايى تابع هدف، تيلها، و مشتةاتشان نسبت به هـزيـنه' محاسباتى مربرط به عمليات بهينه سازى، مانند محاسبه جهتهاى جست و جو ، بسيار بيشتر است . اين حالتت واتمى در بسيارى از مواردى استت كه براى تحليل يكى سازه، كه با تعدادزيادى متغنر طراحى تعريف مى شود، از يكى مدل اجزای مـحدود با هزاران درجه آزادى امتغاده مى كنيم . بنابراين كاهش تعداد تحليلهاى مورد نياز برایى فراينذ طراحى، در كاريرد الكُريتّهایى بهينه سازى در مدل سازه براساس تقريبها، ارزشمند اسـت. ساده ترين و مشهورترين رهيافت تقريب، برنامهريزى خـطى دنبـالـهاى امــت (SLP). يكى مسألـه'

بهينه سازى به شكل زير در نظر بڭيريد :

$$
\begin{align*}
& \text { تابع } f(\mathbf{x}) \text {, } \tag{9.r.1}\\
& \text { مينيهم كنيل. } \quad g_{j}(x) \geq 0, \quad j=1, \ldots, n_{g} .
\end{align*}
$$

رهيافت SLP از يكى طراحى آزمايـشى X آمله از بسط سرى تيلور سحول نقطه' X جايكزين مى كند .

$$
\begin{aligned}
& f\left(\mathbf{x}_{0}\right)+\sum_{i=1}^{n}\left(x_{i}-x_{0 i}\right)\left(\frac{\partial f}{\partial x_{i}}\right)_{\mathbf{x}_{0}} . \\
& \text { تابع } \\
& g_{j}\left(\mathrm{X}_{0}\right)+\sum_{i=1}^{n}\left(x_{i}-x_{0 i}\right)\left(\frac{\partial g_{j}}{\partial x_{i}}\right)_{\mathrm{X}_{0}} \geq 0 \quad j=1, \ldots, n_{g}, \quad \text {, نس }
\end{aligned}
$$

هـجموعه قيود آَخر ححلود سركـت ناميله مى شوند كه يا مقذار مجاز تغييرات ix است.

به سبب تقريب به كار رفته و حلود حركت، طراحي نهايه مسآلهُ خططي سازى شـده، XX ، به ندرت به .
 باشتند كه يكى تقريب خحوبى را در اين حلود حركت تضمين كتند، X أ

بنابراين مى توانيم شروع جديد خطى شده، تكرار كنيم. اين فرايند تكرار مى شود و ما در واقع مسآله بهينه سازى اصلى را با رشته أى از مسائل برنامه ريزى خطى (LP) جايگزين كرده ايم (بنابراين مى توانيم بغويمب برنامه ريزى خطىى دنبالهایى . هر بهينه سازى خطى يكى خرخحه بهينه سازى ناميده مى شود . طبيعت خططى سازى يكى مـــالـه غير خطىى و كاربرد سدود حركت در مثال بعدى تتشريح مى شود .

مثال

مسألئ زير را در نظر بگيريد :

$$
\begin{aligned}
& f(\mathbf{x})=-2 x_{1}-x_{2} \\
& g_{1}=25-x_{1}^{2}-x_{2}^{2} \geq 0 \\
& g_{2}=7-x_{1}^{2}+x_{2}^{2} \geq 0
\end{aligned}
$$

$$
\text { مينيمم كنيد } \quad x_{1}, \quad x_{2} \geq 0 .
$$

توابع قيد را حول نقطهُ شُروع (1.0, 1.0) با الرزيابى توابع قيد و مشيتقات آنها در نقطهُ اوليه داريم:

$$
\begin{gathered}
g_{1}\left(\mathbf{x}_{0}\right)=25-1-1=23, \quad g_{2}\left(\mathbf{x}_{0}\right)=7-1+1=7, \\
\nabla g_{1}=\left\{\begin{array}{c}
-2 x_{1} \\
-2 x_{2}
\end{array}\right\}, \quad\left(\nabla g_{1}\right)_{\mathbf{x}_{0}}=\left\{\begin{array}{c}
-2 \\
-2
\end{array}\right\}, \\
\nabla g_{2}=\left\{\begin{array}{c}
-2 x_{1} \\
2 x_{2}
\end{array}\right\}, \quad\left(\nabla g_{2}\right)_{\mathbf{x}_{0}}=\left\{\begin{array}{c}
-2 \\
2
\end{array}\right\} .
\end{gathered}
$$

بنابراين، تقريبهاي خطى به شكل زير خراهند بود:

$$
\begin{gathered}
g_{1 L}(x)=23+[-2-2]\left\{\begin{array}{l}
x_{1}-1 \\
x_{2}-1
\end{array}\right\}=27-2 x_{1}-2 x_{2} \geq 0 \\
g_{2 L}(x)=7+\left[\begin{array}{ll}
-2 & 2
\end{array}\right]\left\{\begin{array}{l}
x_{1}-1 \\
x_{2}-1
\end{array}\right\}=7-2 x_{1}+2 x_{2} \geq 0 .
\end{gathered}
$$

در شكل (1 . . . צ) اين خطى سازيها با خحط بر و قيدهاى اصلى با خحط فاصله نشان داده شلده است. شدود حركت نيز در شكل نـــان داده شلده اند كه يكى مرز مربع مستطيـل در اطـران نـقـطـه' طراحى اوليهـ

تشكيل مى دهند.
$f=-6$ جواباين مسالة' برنامهريزى خططى جديد عبارت الست از (2.0 2.0) = الست كه نــان دهـنـده' 100\% بهبود در تابع هدن امست. اكر حدود حركتى وجـود نمى داشـتـ، جـواب مسـالـه در (5.0 8.5) كنيد).

كرحه بدون حدود حركت به مقدار تابع هدف بسيار بهترى مى رسيـديــم ولى تـيود اصلـى بـه طـور
 - تيد تابل تبول در ادامهُ اين بختش روشى اراثه خواهد شد . . روش SLP به خاطر در دسترس بودن بسته هاى نرم|فزارى LP مطمنْ در بيشتر بسته هاى كتابخانه سيستم رايانه ها، جاذبهُ بيئترى دارد. از طرن ديكر بسته هاهى نرم افزارى برنامهر ديزى غير خططى مطمئن به سادكى در دسترس نيستن. با اين مــه، راهبردSLP مسائل متعددى دارد. اول اين كه، هزينه هـاى محاسباتى مربوط به عمليات بهينه سازى رابه ميزانز زيادى انزايش مى دهد، زيرا فرآيند بهينه سازى بارها
 تكرار مى شود. (معمولا بنج تا جهل بار) . بنابراين، اين راهبرد تنها وقتى منطقى به نظر مى رسد كه هزينه اين محاسبات بهينه سازى در مقايسه بـا هزينه تحليل و مشتّقات حسـاسيت كمـتر بـاشــد . بـس ، كـارايـي

بسته هاى نرم افزارى LP كه در SLP به كار مى رود از امميت بسن ايى برخوردار اسـت.
دومين مسـاله اين كه، بدون يك انتخاب مناسب حلود حركت، فرايند هر كز همكـرا نمى شـود . بــ طور كلى، حدود حركت بايد با نزديكى شـدن طراحى به بهين كم كم كو جكى شود . بـخشى از دليل كوجك ساختن حدود حركت اين است كه دقت تقريب مورد نياز، هنگام نزديكى شـدن به بهين افزايش مى يابــ .
 خطاهأى تابل ملاحظه الى را تحمل كرده و در همان حال به سمت بهين بـش برويم . هنگامى كه به بهيـن نزديكى مى شويم، موفقيت كمتر مى شود و ممكن است اين بهبود با خطاهاى تـقريـب از بـين بروده . از طرف ديگر، كاهش زود هنگام حــود حـركت در نرايثد ممكن است باعــث كـاهـش بـى مـورد سـرعـت ههكرايه نيز بشود، به ويزه هنگامى كه طراحى اوليه از بهين واقعى دور است . دليل كاهش حدود حركت هنگامى مشخص مى شود كه طراحى نهامى يكى جرخه، د در مقايسه با تحليل دقيت، نسبت به طراحى اوليه
 حلود حر كت حدود ده تا ينجاه در صـد مقدار قبلى شان كو جكى مى شُوند تا اين كه برایى يكى حدود حر كت مشخص تابع هدف از يكى روادارى داده شـده كمتر بهبود يابل . انتخاب معمول مقـدار حــود حـركـت در شروع حدود ده تا سیى درصد مقدار متغير هاى طراحى است . با اين وجود، اين گونه انتخاب تنها وقتى منطقى السـت كه يك متغير طراحى به سبب حركت به سمت عوض شدن علامتش بسيار كو جكى نباثـد . در هنين حالتى، انتتخاب حدود حركت بين ده تا سـى درصد مقدار نمونها أى (و نه مقدار فعلى) از آن متـغير طراححى منطقى به نظر مى رسد. مشكل سوم SLP كه كاهى به وجود مى آيد اين است كه طراحى شروع غير تابل قبول باشــد . اترات مُترك تقريب و حدود حركت مى توانتد شرايطى به وجود آورند كه هـســالـه' بهينه سازى خططى شـده يـى
 قابل قبول باشـد و حدود حركت كو جكى باشد، ناحيه اى كه با حدود حركت تشكيل مى شود ممكن است به طور كلى خارج از فضاى طراحى خطى شـده باثـد و به يكى مسـاله' غير قابل قبول بينجامد . در اين حالت توصيه مى شود كه قيدها در جند جرخـ، 'اول رها شوند . اين كار، به عنوان مثال، مى تواند با جايگزينى

مسالّل بهينه سازى معادله (Y . Y . Y) با مسآله زير

$$
\text { مينيهم كنيد } \beta \geq 0
$$

بيشتر از كاهش f متهركز شود .
 نقطه رنت و بر كشّت دائنه بامُنل. به عنوان مثال، الكر بـهيـنهُ واتعى در مرز يكى قيد غير خططى بـاشـد، ، جواب مساله' خططى سازى شده ممكن امست طراحى را به نتطه' اوليه مساله' خططى ييسّين ببرد. يكى راهبرد كاهش حدود حركت مناسـب مى تواند اين مشكل را به راحتى حل كند. مثال زير بعضى از مسائل مربوط به انتخاب سدود حركت را بازگو مى كند.

شكل A. H. Y خحراتى جهارميلهای از نظر ايمتايى معين
مساله' طراحى مينيمم سازى وزذ يكى خرياى چجهار ميلهاى از نظر ايستايى معين نـشـان داده شــده در

$$
\begin{aligned}
& f\left(x_{0}\right)+\sum_{i=1}^{n}\left(x_{i}-x_{0 x}\right)\left(\frac{\partial f}{\partial x_{i}}\right)_{\mathbf{x}_{0}}+k \beta, \\
& \text { تابع } \\
& \text { (Y.Y.r) } \\
& g_{j}\left(\mathrm{x}_{0}\right)+\sum_{i=1}^{n}\left(x_{i}-x_{0 i}\right)\left(\frac{\partial g_{j}}{\partial x_{i}}\right)_{\mathbf{x}_{0}}+\beta \geq 0, \quad j=1, \ldots, n_{g}, \quad \text { را مشروط بـ, } \\
& a_{1 i} \leq x_{i}-x_{0 i} \leq a_{4 i},
\end{aligned}
$$

 شـده ، نيروهاى اعضاه و تغير مكانهاى عمودى در لـو لاى 2 را مى توان به راحتى بدست آورد كه عبـارت است از :

$$
\begin{aligned}
& f_{1}=5 p, \quad f_{2}=-p, \quad f_{3}=4 p, \quad f_{4}=-2 \sqrt{3} p \\
& \delta_{2}=\frac{6 p l}{E}\left(\frac{3}{A_{1}}+\frac{\sqrt{3}}{A_{2}}\right)
\end{aligned}
$$

 مكان را مى توان بر حسـب متغير هاي لى بعد

$$
x_{1}=10^{3}\left(\frac{p}{A_{1} E}\right), \quad x_{2}=10^{3}\left(\frac{p}{A_{2} E}\right)
$$

به شكل زير رابطه سازى كرد.

در حالىى كه هد بايين هرخهء اول را با ححدس اوليه (0.1, 0.1 =
 x_{0} x $i=1,2$ ، $a_{u i}=a_{l i}=0.01$

$$
\frac{\partial f}{\partial x_{1}}=-300, \quad \frac{\partial f}{\partial x_{2}}=-173.2
$$

بنابراين، اولين LP عبارت است از :

بنغ

$$
\begin{array}{ll}
& f_{L}=47.32-300\left(x_{1}-0.1\right)-173.2\left(x_{2}-0.1\right), \\
& 18 x_{1}+6 \sqrt{3} x_{2} \leq 3, \\
& 0.09 \leq x_{1} \leq 0.11, \\
\text { تينمـمنيد } & 0.09 \leq x_{2} \leq 0.11 .
\end{array}
$$

حـل ايـن مسـأله بـه جـوابهـاى 44.8274 حول. . خرخهء دوم، مسالة' LP زير رابدست مى آوريم;

$$
f_{L}=44.8274-281.9\left(x_{1}-0.10316\right)-143.1\left(x_{2}-0.11\right), \quad \text { تابع }
$$

$$
18 x_{1}+6 \sqrt{3} x_{2} \leq 3
$$

$$
0.09316 \leq x_{1} \leq 0.11316,
$$

رامشروطبه

$$
\text { . } 0.1 \leq x_{2} \leq 0.12 \text { مينممم كنبد }
$$

جواب اين مسالث عبارت استاز اين حركت به يكى نيجهه خوبي (از نتطه نظر
دلالت بر اين دارد كه بايد حدود حركت را كامش دهيم.
 :和 زير مى رسـيم: كامشُ حدود حركت نياز است. با اين همه، با آخرين حـدود حركت، f رالاز 44.8274 بـ 44.78560
 براى هر مساله' LP تيد غيرخطى تغيير مكان فعال بـود، بنابراين مى توانيم جواب دقيت را بـا برتر اري

$$
18 x_{1}+6 \sqrt{3} x_{2}=3, \quad x_{2}=\frac{3-18 x_{1}}{6 \sqrt{3}}
$$

شكل r. F.r.r فضاى طراحى مساله خرياى جهار ميلهاى

$$
f=\frac{3}{x_{1}}+\frac{6}{3-18 x_{1}}
$$

به راحتى مى توان نتيجه كرنت كه مينـيـمـم f عبارت اسـت از $f=$ 44.7846. ، $x_{1}=x_{2}=0.105662$

 قيلهاى مــألهُ اصلى را نقض كند . در مثال I . ب. \& ديليم كه اكر حدود حركت در آن مثال اعمال SLP نمى شد يا اين كه حدود حركت به تدر كافى بزرك بود، جواب مسألـه' خططى يكـ نفض قيد تابل توجهى نسبت به مجموعه قيد اصلى به وجود مى آورد. هنين نقف قيلهايمى معمولا با بهبود تابع هدف به وجـود مى آيد . همحنْن ممكن است از يكي جواب مسأله خطلى به جوابب مسآله' خطلى ديكر، تابع هدف بهبودى

نداشته باشد و نقض قيدها كاهـُ يابل . اين مشكلات را مى توان با تغيير حلدود حركت سل كرد . بـا ايـن وجود، هيج كدام از دو مشكل را نمى توان در همطُرايه كلى SLP مانع اصلى تلقى كرد . در بحـث بـعلى بـه اين مطلب مى بردازيم كه جكونه مى توان در مورد يكى طر أحى ججليد بدست آمله از LP تضاوت كرد كه آيا هنگامى كه تابع هدف بهتر با نتض قيد همر اه است يكى بهبوداسست و يا هنگامى كه ميجموعه قيد بهتر برآروده شده اند ولى تابع هدنـ افزايش يافته مى تواند بهبود به حسابب آيد .
 انجاميله كه J محموعد قيدهاى نعال امست . جوابب مسطالهُ خططى سازى شدله را مى نوانيم به عنوان جواب دقيق مساله' خخطى بهبود يافته زير در نظر بگيريم.

مسآلهُ اصلى كه مى خواهيم سل كنيم براى بزنيم كه مقدار بهين تابع هدن برای مسآله بهبود نيانته عبارت از :

$$
\mathcal{L}=f\left(\mathbf{x}_{i \mathrm{~L}}^{*}\right)-\sum_{j=1}^{r} \lambda_{j} g_{j}\left(\mathbf{x}_{\mathrm{iL}}^{*}\right)
$$

كه L تابع لاكرانزّين الستت. اين موخوع رهيافت زير را باز كو مى نمايل: اكر تابع هدن و بهحرانى تريـن قيدها بهبود يابند، همواره طراحتى جديل يذيرفته مى شود. اكُر تابع هدف بهبود يافته و برآورده شـدن تيدها

 ديكر، لاكرانزين افزايش يافته باشد، در حدود حركت بايد تجديدنظر كرد و آن را بهبود بخشيد . توصيـه مى كنيم كه در لاكرانثرين تنها تيود بحرانى و نقضى شـده را الستغاده كنيد.

مثال F.F.r
 شكل زير در مى آيد

$$
f(\mathbf{y})=3 y_{1}+\sqrt{3} y_{2}, \quad \text { تابع }
$$

 تابع $f=49.856$ مى باثشد . خطى سازى مسآله با 30\% حدود حركت به مسآلهُ زير مى انجامد

$$
\begin{array}{lr}
3 y_{1}+\sqrt{3} y_{2}, & \text { eبارت } \\
0.125 y_{1}+0.1624 y_{2} \geq 2.598, \\
8.4 \leq y_{1} \leq 15.6
\end{array}
$$

$$
\text { . } 8.0 \leq y_{2} \leq 10.4
$$

كه جوابب LP آن عبأرت از C ك
 به حدود حركت) بدست مى آيل. لاكرانزين عبارت است از : $\mathcal{L}=41.713-10.667(-0.2329)=44.197$,
 41.713، نشان مى دهد ولي با اين وجود تابل قبول أست. با خططى سازى تابع تيد حول آخرين نقطـه' طراحى در رابطه سازى مسآله' LP با سدود حركـت 30\% مسآله به شكل زير درمى آيد

$$
\text { مينيمم كنيد، } 8.0 \leq y_{2} \leq 12.3938,
$$

كه جواب آن عبارت از放 $=11.76$ ارزيابى تيلهاى واقعى در مقايسه بـا طـراحى اولـيه ايـن مــــالـه LP نشان دهنـده' يكى نقض قيـد كـمـتر است، $9=-0.09896$. بنابراين، به منظور تبول يا رداين طراحى بايد لالكرانزين را محاسبه كـنـيـم . در هايان اين كام، لاكرانزين عبارت است:

$$
\begin{aligned}
& 3 y_{1}+\sqrt{3} y_{2} \text {, } \\
& \text { عبارت } \\
& 0.2551 y_{1}+0.1143 y_{2} \geq 3.4658, \text { را مشّروطبـ بار } \\
& 8.0 \leq y_{1} \leq 10.92 \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& g=3-\frac{18}{y_{\mathrm{I}}}-\frac{6 \sqrt{3}}{y_{2}} \geq 0, \quad \text { بامشر } \\
& 8.0 \leq y_{1} \leq 20 \text {, } \\
& \text { ، مينمهم كنيد } \quad 8.0 \leq y_{2} \leq 20 \text {, }
\end{aligned}
$$

$$
\mathcal{L}=43.858-11.76(-0.09896)=45.022
$$

كه از مقفار لاكرانثرين محاسبه شده در بايان مساله LP تبلى بزركتر اسـت. بنابراين، طراحى رأرد مى كنيم و مسـاله'LP را بار ديگر با سدود حركت كو جكترى مى سازيم . • •

مى توانيم با استغاده از تقريبهاى غير خحطى برایى قـدها و تابع هدف، SLP را تعميم دهيم • برانى كاريرد بايد حتى توابع غير خطى ساده را نيز خطى كنيم . در يكى راهكار كلى ما نتها توابعى را به طور خطى SLP
 نيازیى به تقريبزدن ندارند . كار را با ثـناسايى اين تيود (و الحتمالا تابع هدف) كه براى ارزيابى به ححمم محاسبه بالايع نياز دارند، شُروع مى كنيم . اين قـدهارا برالى تقريب زدن جدا مى كنيـم و قيدهاى كم هزينه
 هرهزينه را حول X0 تقريب می زنيم. . مانند روش SLP ، بايد مساله تقريبى را با سحو د حركت بياميزيم . تا از تغييرات زياد متغير هاى طراححى كه سبب يك تقريب ختعيف مى ثود، جلوكيرى كنيم . جوابب مساله' تقريبى با حلود حركت، كه از يكى روش بهينه سازى بدسـت آمده بـاشـد را بـا X نشان مى دهيم . يكى تحليل سازهاى دتيت جليد در X انجام مى دهيم و از آن براي سانختن تقريبهاى جديد براي
 اصلى معادله' (1 . Y. 9) با را مسالّل' زير جايكزين مى كنيم

$$
\begin{aligned}
& f_{a}\left(x, x_{0}^{(i)}\right), \quad \text { (今.Y.1) } \\
& g_{a j}\left(\mathbf{x}, \mathrm{x}_{0}^{(i)}\right) \geq 0 \quad j=1, \ldots, n_{g}, \quad \text { را } \\
& \left\|\mathrm{x}-\mathrm{x}_{0}^{(i)}\right\| \leq a_{i}, \quad \text {, } \\
& \text { براى }
\end{aligned}
$$

 حركت انتخابب شمدهُ مناسبـ انست. از آن جا كه بيشتر هزينه' بهينه سازى مربوط به تحليل دقيت و محاسبات حسساسيت اسـت، غالبآاين كه

جه روش بهينه سازى بر ایى جواب بهين مسـألـهُ تقريبى استفاده شود مهم نيـتـ. در حالت كلى، تـاكـيـد روى قابل اطمينان بودن و توانمند بودن يكـ روش بهينه سازى بيستر اسـت تا روى بازده محاسباتى آن. منال زير كاربر د بهينه سازى غير خططى دنباله الى با تقريبهاى امتاندارد بحت شُده در بخشُ 1 . 9 و ساير تقريبهايمى كه خاص مسنالث مورد بححث اند را تسّريح مى كند.

مثال 1
 استفاده كرده اند . بلست آوردن مينيمـم وزن نخربا با تغيير مساحتهاى سطع مقطع اعضا مسُروط به قـيـود

$$
\begin{aligned}
& \mathrm{I}=360^{\circ}, \mathrm{P}=100 \mathrm{Kips}
\end{aligned}
$$

جدول 1 ج. P. 1 طراحيهاى شرياى ده ميلهاى

عضو	مساحت سطع متطع اوليهي	مساحت سطع متطّ	تنش
	$\left(i n^{2}\right)$	(in ${ }^{2}$)	(ksi)
1	5.0	7.90	25.0
2	5.0	0.10	25.0
3	5.0	8.10	-25.0
4	5.0	3.90	-25.0
5	5.0	0.10	-0.07
6	5.0	0.10	25.0
7	5.0	5.80	25.0
8	5.0	5.51	-25.0
9	5.0	3.68	37.5
10	5.0	0.14	$-2 \overline{0} .0$

جدول F. Y. Y ممكرايعى وزن بهين (يرند) با استغاده إز تقريبهای مختلف

شهار0 \%	خطّ	و'رون	محلفظه	ورجه	درجه دو والرون	نيروى خطى
1	1845	1774	2361	2002	1931	1891
2	1637	1673	1960	1741	1684	1688
3	1601	1593	1722	1650	1595	1589
4	1558	1566	1641	1586	1548	1549
5	1531	1548	1587	1547	1522	1526
6	1514	1537	1566	1525	1509	1511
7	1507	1528	1555	1514	1506	1504
8	1502	1522	1546	1507	1502	1501
9	1500	1518	1540	1503	1500	1500
10	1500	1511	1538	1501	1500	1499
11	1500	1511	1535	1500	1499	1499
12	1499	1508	1532	1499	1499	1499

 جذول Y . Y . Y تاريخخجه' همكرايى دوازده جرخه بهينه سـازى تقرييى با امتفاده از شش تقريب را در

 تقريبهاى خطى، درجه دوم وارون، و نيروى خطى شـن خرخه نياز دارند، تقريب درجه دوم هغـت تـا، تقر يب وارون ده تا، و تقريب محافظه كارانه هر كز به آن نمى رسد . تفاوت بين تقريبهاى وأرون يك ويزكى خاص اين مسأله امست. برايى بسيارى از مسائل خريا تقريب واروناز نوع خطط آن بهتر كار مى كند. اكر به كروههاى محنتلف روشهانگاه كنيه، تقريبهاى مرتبهُ دو كمى از تقريبهاى مرتبهُ اول بهترند، اما تفاوت

مشتقات دوم به بخخش V. Y. Y مراجعه كنبد) .
عملكرد بد تقريب مصافظه كارانه را مى توان به اين شـكل تو جيه كرد كه معـــولا از تقريبهاى خطلى يـا وارون دتـت كمترى دارد. در مـواتعى كه به مـافظه كارى نيازمنديم (مانند هنگامى كـه ايـن تـــريــب بــ
 فُصل 9 مرالجعد كنيد) اين تقريب سـودمند امست. با اين همه، در بهينه سازى تقريبى دنبالهاى استفادهُ كمى دارد ـ در نهايت، تقريب نيروى خخطى واندربلاتز با تقريههاى مرتبهُ دوم تابل مقايسهالمت، هر جند تنها از
 تقريب مى زند . در استفاده از اين تقريب، يك كهيت واسطه (نيروى اعضطا) را تقريب مى زنيم و تتشـها را به كمك نيروها به طور دقيت مـاسبه مى كنيم . ديد فيزيكى مشـابهى در شـناسايع بارامتر هايـى كـه تــــريبـاً خططى هستند مى تواند در مسائل ديكر مغيد واقع شود.
 عبارت بهينه سازى شكل در اين با به مفهوم فراكير آن به كار مى رود . در يكى ملل اجز أى محـلود،
 اتصال اجزا را (به عنوان مـال سذفـ اجزا ا) تغيير دميهم. بهينه سازى شكل از اين نظر بر عكس مـسـانـل
 مساحتهاى سطع مفطع ميله ها يا ضـغامت صفحه ها . بهينه سازى ثككل غالبآ به حالت خاصىى از طراحى بهين مرزهاى اجز ای مازه هاي دو بعدى و سه بعدى اطلات مى شود . در مغهوم جامعتر، به بهينه سـازى
 عنوان مثال، كدام كره ها با اجزا به هم متصل مى شـونذ) نيز اطلات مى شود. مسائل بهينه سازى شكل غالبآ از مسائل بهينه سازى اندازه مشكلترند. ابتدا بهينه سازى مرز شكل يك جسـم دو يا سه بعدى را در نظر بگيريد. محانسبهُ مستقات ححساسيت برایى اين مسائل بهينه سازى شـكل با
 با تغير شككل سازه، بايد تقسيم بندى اجز أى محلود را تغير دميهم. تواعد تقسيم بثدى مجلدد سازه كه بـا

تنير مرز موتعيت كره ها را تعيسن مى كتند معمولاً به اجزایى محلود به شدت تغيير شـكل يافته مى انجامند و هـمزمان دتت كـم مى شود . اين مـأله را مى توان با تقسيم بندى مجلدد دستى در نرايند بهينه سازى (كـه بسيار وتت كير است)، يا به كاركيرى توليدكنندكان تقسيم بنـدى خحبره، حـل كـرد . در واتـع كـار روى

مسالث" ديگر در بهينه سازى شكل مرز به وجود آمدن مرزهاى داخلمى يا موراخهاست. در بسيـارى از مسائل شـكل بهينه داراى موراخهاى داخلى است . بدون اطللع يششين از وجود اين موراخـهـا بـه وجـود آوردن آنها با رهيانت بهينه سازى استاندارد امكان يذير نيست. يعنى يكـ رمبانت بهينه سازى مى تواند بـه راحتى شكل بهين يك موراخ را در صـورتى كه وجود آن را نرض كرده بانيـم بدهد، اما نمى توانـد بـه مـا بكريد كه يك، دو و يا سه موراخ بايد وجود داشته باشد. يكـ راه براى هنين مسالهاى اين است كه نرض كنيم مصالح همكن نيست، ولى در عوض يك ريزساختار دارد. اين ريز ساختار مى تواند از اليان مــواد مركب ماتريسى باشد . با اين همه، ريزهاختار نرضل شده معـمولااز اليان و ماتريس صفحات لايـاى كلى تر است و در بركيرنده‘ مـوراخهاى ريز در مصـالع نيز مى باشد . اين نوع ريز ساختار به اين منظور در نظر كرفته شده كه بتوان محدوديتهاى معاومتى و سـتتى يك سازه را با آن تعريف كرد (به عنوان مـــال بــ
 دادند كه اين زيرساختار مى تواند براي تعيين نياز به وجود سوراخ در سازه بـه كـار رود. شـكـل I . A. 9 شكل سازه الى كه توسط بندمو و كيكاجى و با فرض المكان به وجود آمدن موارخهاى ريز بدست آمده را نشان مى دهد. . سازه' مورد مطالعه يك ميل؛' كششى است كه مساحت سطع مقطع دو انتهاى آن داده شده (مطوح تويردر شـكل)، و سطع مقطع طرف هـب آن بزركتر از سطع مقطع طرف رامــت المــت . هـدن ماكزيمـم سازیى سـغتى ميله برایى يك ححجم مششخص است . نتيجه هاى نشان داده شُده در شُكل ، در حالىى كه به تنهايع عملى نيست، به ما اين امكان را مى دمد كه محدودهُ مورانخها را شناسايع كنيم آن كاه مى توان براى يـدا كردن شكل بهينه' اين مورانهها از فنون بهينه سازى امتاندارد استغاده كرد . مثال ديكرى از كاربرد اين نن توسط راســــومسن [[35] در طراسي تير كف هراجيماهاى مسـافربرى كزارش شده است. شثكل Y . . . 9 ساختارى راكه توسط طراح فرض شده بود و ساختارى كه با رهيافت

شكل 1 .9.0. شُكلهاى بهينه مساله' ميلهُ كتشش با استفاده ازريزسانختار

همكن سـازى شنـاسايى شـده نشان مى دهد كه به طراحى بسيار سبكترى انجاميده است. مساله' يـافنت سوراخها در اججسام دو و سه بعـدى در حـوزه' بهينه سازى ساختار الست . بهينـه سـازى ساختار مساله" دشوارى امت و در سـازه هاى اسكلتى مانند خريأها و تابها كاريرد بيشترى داشته امت . در اين نوع سازه ها، ساختار بهين معمولأعبارت از تصميم در مورد اين كه كدام كره ها توسطط عضوى بـ هم متصل شُونـد امـت . رهيانت اصلى كه بيشتر يزوهشكران آن را دنبال مى كنند اين است كه يكى سـازء: ثايه

 مسألهُ بهينه سازتى خـطـى است و مى توان برایى يانتن طراحى بهين از روش سبيملـكس استـفـاده كرد . الكُوريتم نيز به طور خود بكار تمامى اعضاى غير ضرورى را حذن مى كند . اين رهيانت اولين بار توسـط

درون' و همكارانش [36] به كار كرفته شُد .
هنكامى كه سازه به جاى فروريختكى بلاستيك بر اساس قيدهاى تنت و تغيبر مكان طراسى مى شُود،

 شدن مساحت سطع متطع شان كرنتهاى زيادى داشته باشند و الكُوريتم بهينه سازى بخواهد آنها را بجاى حذف كردن تفويت كند. از آن جا كه اين مسآله به شرايط ساز كارى مـربـوط مـى شــود، آزاد سـازى اين شرايط در بخشى از نرايند بهينه سازى به منظور حذف اعضا، امكان بذير امست (به عنوان مثال به مراجمع
 ممكن اسـت به سبب حذف اعضا منغرد شُود. براى غلبه بر اين منكل مى توان از منون تحلبل و طراحى همز مان كه به وارون سازى ياعامل كيرى ماتريس سختى نياز ندارنداستفاده كرد (به بخش 9 . • 1 م مراجعه
 تابينگ" [39] و كيرش " [40] مراجعه نمايند.

بهينه سازى مندسى سازه هاى امككلت عبارت اسـتاز جستججو به منظر يانتن موتعيت بهين كره هاى سازه هاست. مسألد را مى توان از فنون استاندارد سل كرد، ولى جداسازى متغيرهاى شندسى و اندازهاى، ،
 و در بخش ه ه • ا مورد بحث ترار مى كيرد.

§.9 بسته هاى نرم انزارى بهينه سازى

درجند سال اول تدوين بهينه سازى سازه ما، بينـتر تحليلكران، براى استفاده' خيود، برنامه هاى اجزاى محدودبا كاربرى خاص تدوين مى كردند كه روشهاى بهينه سازى درداخيل آتها وجود داششت. . هنگامى كى اين برناهد ها توسط ديكر تحليلكران استفاده مى شد، ميى ديدند كه اسناد و توضبحات آنها ناكانى الست و بهبود آنها دشوار الست. در سالهاى اخير ، كاربرد بسته ماى نرم انزارى بهينه سازى مقيـد جـامـي در كنـار برنامه هاى تحليل سازه' جامع معمول شده امست. افزون بر اين، شهرت فرت فزايــدهُ بهينه سازى سازه هـا بـه عنوان اببزارى بـراى كارير دماى صنعتى، سبب شد كه تقاضا براى كنجانيدن توانـايـى بـهـينه سازى در
 نرم| فزارى مشهورتر به خواندكان است است

ابتدا بسته هاى نرم افزارى مركب كه تحليل سازه ها را با روشهايى بهينه سازى تركيب كرده اند مـورد

 جهت متعامد مدل كرده و به جالى يك مدل اجزاى محدورد از يك تحليل صفحهئ ساده سازى شده استفاده مى كند . متغير هاى طراحى ضرايب جند جملهاى هستند كه توزيع ضشخامت و جهت لايه ها را روى سطح مشخص مى كنتد. روش بهينه سازى بر اماس رابطه سازى تابع جريمهُ داخلى (به فصل ه مراجعه كنيد) الست. برناهه به طرر وسيعى در مطالعات طراحى و جند مورد مسائل طراحى واتعى هوإييا استفاده نـده
الست (به [43] مراججعه كنيد) .
 محدود بنا شده اند. يكى از بر نامه هاى يُناخته شده تر برنامهُ اكـسس(ACCESS) است كه نوسط اشميت و ممكارانتش[44,45] تدوين شده است . برنامه هاى ديكر از اين نوع عبارتنداز فستابِ (FASTOP) [46] ، اوباستت (OPSTAT) [47]، اويت كومب (OPTCOMP) [48]، آتيمم (OPTIMUM) [49]، الى اس

 سازه تر كيب يانته در يك بر نامه اجزاي محدودعمومى احساس مى شـد. دو نمونهاز اولين مثالهايـ از اين
 اجزای محدود اســار (SPAR) و نوع تجـارى آن ایِ إِل (EAL) بنا شده اند. با اين وجود، از آن جا كه

 . را كُزارش كرده است (56] (CONMIN)

بنج

انيراً آبرنامه هاى اجزاى محدود ديكرى نيز براى تهيه بسته هاى نرم افزارى بهينه سازى سازه ها استفاده
 آسكا(ASKA) و آباكوس(ABAQUS) ندوين شده است. سيستم آستراس (ASTROS) [58] از نسشه؛ عمومى نسترن) (NASTRAN) به وجود آمده و بستهُ نرم انزارى نيسـا الوبت(NISAOPT) (ثامل برنامهُ شيب (SHAPE) [59] و استروبت (STROPT) [60] بر اساس نيساى دو (NISA II) ترار دارد.
 محدود، توانايى بهينه سازى را در برنامه هايشان بكنجانتد. برنامه نسترن (61] [6ASTRAN) و آى دياس [62] در حال حاضر توانايى تحليل حساسبت و بهينه سازى دارند و انـسيس(I- DEAS)

 مى توانبم انتظار داثتـه بـاشيم كه بسته هاى نرم افزارى تجارى تحليل سازه توانايى انجام بهينه سازى داثتـه باشـند.

تآٓن زمان، و حتى بعداز آن، تقاضا برایى يك نرم انزار بهينه سازى جامع كه بتواند با يك برنامه تحليل سازه تركيب شود وجود خوامهد داششت . بيشتر بسته هاى نرم انزارى اجزاى محدود، محاسبات حساسيت

 دسترس، برنامه هاى حل برنامه ريزى خططى اند (LP) . اين نوع برنامه ها معمو لأدر بيشتر مراكز رايانـانـاى
 كتابخانهالى مشابه وجود دارد. كرجه كامى استفاده از الكوريتههاى بهينه سازى عمومى برترى دارد، بـ نظر مى رسد بسته هاى نرم افز ارى LP براى ييشتر كاربردها عملكرد خويى داثتت باشند.
 [65] و داكك (DOC (66] كه تو سط مؤسسهُ مهندسى وى أم أى (VMA) ارائه شده اندو بد كاربر اين اختبار رامى دمندكه از بين الكوريتمهاي بهينه سازى مختلفـ و راهبردهاى متعـدد، روش دلخـواه را انتـخـاب

وسيعى استفاده مى شد، بـه وجود آمـدهانـد. دات (DOT) (ابزار بهينه سازى طراحى) مـجموعـهاى از برنامه هاى فرعى بهينه سازى به زبان فر ترن است، و داك(DOC) (كترل بهنه سازى طراحى) يكى برنامهُ كترلى است كه استفاده از بهينه سازى (فراخوان بر نامه هاى غزعى دات(DOT)) را تسهيل مى كند. بسته'

 (است كه هي توايند تيدها را تقريب بزنـد [68] . بسته هاكى نرم انزارى ديكر از ايتن نـوع (NEWSUMT-A) عبارتند از أويت) كه (OPT) كه اساس الكوريتم كراديان كاهش يانته (به نصل ه مراجعه كنيد) تدوين شده ،

 شهرت كمترى برخوردارند .

Y.Y

به منظر بر رسى عملكرد الكُوريتمها ونر مافزارهاى بهينه سازى، حل جند مسآله آزمايسى امستاندارد مفيد البت. سه مسألها آزمايشى كه در اين بختش ارائه مى شود، بهطرر وسيعى براى همين منظر راستفاده شده اند.
 طراحى تمام تنده (FSD) و يك طراحى بهين است. خخاص مصالح و حداتل مساحتهاى سطع مةطع در
 اناس دى (FSD)يكساند. . با اين وجود، وقتى تنش مجاز براى عضو از 37,500 psi نجاوز كند، طراحى

المـت . برايى اطلاعات بيـتّر به مر جع [70] مراجعه كنيد.
جدول \&.V. I داده هاى خريای ده ميلهاى

مباتمى بهينه سازى سازهما (فصل و: سيماى بهينه سازى در حمل) FPP

شكل I P. V. I خحرياى بيست و ينج ميلهاى
جدول Q.V. ه داده ماى خحرياى بيست و ينج ميلهاى

جدول P.V. ج تنشهاى مجاز براى خحياى بيست و بنج ميلداى (psi)

gir	كشش	فشّر	وin)
1	40000	-35092	12,13	40000	-35092
2-5	40000	-11590	14-17	40000	-6759
6-9	40000	-17305	18-21	40000	-6959
10,11	40000	-35092	22-25	40000	-11082

PrA
بخـ
جدول f.V. V مولفه ماى بار كرهاى (lbf) براى خرياى بيـت و بنج ميلداى

توجه: برایى وضوح بيشتر تُامى اجزا در شكل نشّانداده نشده اند
شكل Y. V. Y خربِّى مفتاد و دو ميله اى

حالت بار كالرى	8	x	y	x
1	1	5000	5000	-5000
2	1	0	0	-5000
	2	0	0	-5000
	3	0	0	-5000
	4	0	0	-5000
3	5	0	20000	-5000
	6	0	-20000	-5000

HFY بتخ

\%	(in) كرانهاى تغييرمكلا		
	\mathbf{x}	y	z
1	± 0.25	± 0.25	-
2	± 0.25	± 0.25	-
3	± 0.25	± 0.25	-
4	± 0.25	± 0.25	-

متغير طراحى	عضوها	مساحت
1	1-4	0.1571
2	5-12	0.5356
3	13-16	0.4099
4	17,18	0.5690
5	19-22	0.5067
6	23-30	0.5200
7	31-34	0.1
8	35,36	0.1
9	37-40	1.280
10	41-48	0.5148
11	49-52	0.1
12	53,54	0.1
13	55-58	1.897
14	59-66	0.5158
15	67-70	0.1
16	71,72	0.1
مر(lbm)		379.66

A.A تمرينها

> صورتى كه متغير هأى طراحى تغيير علامت ندهند، محدبـ آمتـ.
 عضو C باشـد (اين تقريب خطي- نيرو توسط واندربلاتز و همكارانش يسنهاد شده است[[17-15]).

شكل I 9.1 غخرياى سه ميلهاى نامتقارن

دارد. بنج تقريب بيان شده در بخشت 9 . 1 و تتريب خططى نيرو مسألد كنثته براى تنش عضو A A را محامبه كنيد. دتت و محافظه كارانه بردن تقريبها را براي تغيـر مقايسه كنيد.

ه . برای تنش عضو A در مساله تبل يك تقريب خوب بر حسب دو زاويهُ خريا بدست آوريد.
 كثتاور ماند اسـت A= $A=\alpha \sqrt{I}$. با استفاده از تقريب فراكير - محلى بايسن ترين بسامد ارنعانـى را براى تغير براى تقريب فراكير از مدل ا جزني استفاده كنيد. دتت كنبد كه براي اين كار بايد ماتريس سختى تبر بـا مساحتهاى سطع مقطع متغير را بدست آرديد. . V

 براي مينيمم شدن وزن مشنروط به قيد تنش تسليـم 0 و قيد حداتل 0.1p/ 0 براي تمامى اعضا، طراحى
-1 . . مساله؛ تقلم رابا تقريب وارون تكرار كنيد.
[1] Schmit, L.A. Jr., and Farshi, B., "Some Approximation Concepts for Structural Synthesis," AIAA Journal, 12, 5, 692-699, 1974.
[2] Mills-Curran, W.C., Lust, R.V., and Schmit, L.A. Jr., "Approximation Methods for Space Frame Synthesis," AIAA Journal, 21 (11), 1571-1580, 1983.
[3] Storaasli, O.O., and Sobieszczanski, J., "On the Accuracy of the Taylor Approximation for Structure Resizing," AIAA Journal, 12 (2), 231-233, 1974.
[4] Noor, A.K., and Lowder, H.E., "Structural Reanalysis via a Mixed Method," Computers and Structures, 5, 9-12,1975.
[5] Fuchs, M.B., "Linearized Homogeneous Constraints in Structural Design," Int. J. Mech. Sci., 22, pp. 33-40, 1980.
[6] Fuchs, M.B., and Haj Ali, R.M., "A Family of Homogeneous Analysis Models for the Design of Scalable Structures," Structural Optimization, 2, pp. 143-152, 1990.
[7] Starnes, J.H. Jr., and Haftka, R.T., "Preliminary Design of Composite Wings for Buckling, Stress and Displacement Constraints," Journal of Aircraft, 16, 564-570, 1979.
[8] Haftka, R.T., and Shore, C.P., "Approximate Methods for Combined ThermalStructural Analysis," NASA TP-1428, 1979.
[9] Prasad, B., "Explicit Constraint Approximation Forms in Structural Optimiza-tion-Part 1:Analyses and Projections," Computer Methods in Applied Mechanics and Engineering, 40 (1), 1-26, 1983.
[10] Braibant, V., and Fleury, C., "An Approximation Concept Approach to Shape Optimal Design," Computer Methods in Applied Mechanics and Engineering, 53, pp. 119-148, 1985.
[11] Prasad, B., "Novel Concepts for Constraint Treatments and Approximations in Efficient Structural Synthesis," AIAA J., 22, 7, pp. 957-966, 1984.
[12] Woo, T.H., "Space Frame Optimization Subject to Frequency Constraints," AIAA J. 25, 10, pp. 1396-1404, 1987.
[13] Schmit, L.A., Jr., and Miura, H., "Approximation Concepts for Efficient Structural Synthesis," NASA CR-2552, 1976.
[14] Lust, R.V., and Schmit, L.A., Jr., "Alternative Approximation Concepts for Space Frame Synthesis," AIAA J., 24, 10, pp. 1676-1684, 1986.
[15] Salajeghah, E., and Vanderplaats G.N., "An Efficient Approximation Method for Structural Synthesis with Reference to Space Structures," Space Struct. J., 2, pp. 165-175, 1986/7.
[16] Kodiyalam, S., and Vanderplaats G.N., "Shape Optimization of 3D Continuum Structures Via Force Approximation Technique, " AIAA J., 27 (9), pp. 1256-1263, 1989.
[17] Hansen, S. R., and Vanderplaats G.N., "Approximation Method for Configuration Optimization of Trusses," AIAA J., 28 (1), pp. 161-168, 1990.
[18] Box, G.E.P., and Draper, N.R., Empirical Model-Building and Response Surface, Wiley, New York, 1987.

- FFF مبانى بهينه سـازى سازه ما (نصل \& : سيماى بهينه سازیى حر حمل)
[19] Barthelemy, J.-F., and Haftka, R.T., "Recent Advances in Approxir. cepts for Optimum Structural Design," NASA TM 104032, 1991.
[20] Haftka, R.T., Nachlas, J.A., Watson, L.T., Rizzo, T., and Desai, R., "Two-Point Constraint Approximation in Structural Optimization," Computer Methods in Applied Mechanics and Engineering, 60, pp. 289-301, 1989.
[21] Fadel, G.M., Riley, M.F., and Barthelemy, J.-F.M., "Two Point Exponential Approximation Method for Structural Optimization," Structural Optimization, 2, pp. 117-124, 1990.
[22] Haftka, R.T., "Combining Local and Global Approximations," AIAA Journal, Vol. 29 (9), pp. 1523-1525, 1991.
[23] Chang, K.-J., Haftka, R.T., Giles, G.L., and Kao, P.-J., "Sensitivity Based Scaling for Correlating Structural Response from Different Analytical Models," AIAA Paper 91-0925, Proceedings of AIAA/ASME/ASCE/AHS/ASC 32nd Structures, Structural Dynamics and Materials Conference, Baltimore, MD, April 8-10, 1991.
[24] Kirsch, U., and Taye, S., "High Quality Approximations of Forces for Optimum Structural Design," Computers and Structures, 30, 3, pp. 519-527, 1988.
[25] Haley, S.B., "Solution of Modified Matrix Equations," SIAM J. Numer. Anal., 24 (4), pp. 946-951, 1987.
[26] Fuchs, M.B., and Steinberg, Y., "An Efficient Approximate Analysis Method Based on an Exact Univariate Model for the Element Loads", Structural Optimization, 3 (1), 1991.
[27] Holnicki-Szulc, J., Virtual Distortion Method, Springer Verlag, Berlin, pp. 30-40, 1991.
[28] Pritchard, J.I., and Adelman, H.M., "Differential Equation Based Method for Accurate Approximation in Optimization," AIAA/ASME/ASCE/AHS/ASC 31st Structures, Structural Dynamics and Materials Conference, Long Beach, CA, April 2-4, Part I, pp. 414-424, 1990.
[29] Murthy, D.V., and Haftka, R.T., "Approximations to Eigenvalues of Modified General Matrices," Computers and Structures, 29, pp. 903-917, 1988.
[30] Shephard, M.S., and Yerry, M.A., "Automatic Finite Element Modeling for Use with Three-Dimensional Shape Optimization," in The Optimum Shape (Bennett, J.A., and Botkin M.E., eds.), Plenum Press, N.Y. 1986, pp. 113-135.
[31] Yang, R.J., and Botkin, M.E., "A Modular Approach for Three-Dimensional Shape Optimization of Structures," AIAA J., 25 (3), pp. 492-497, 1987.
[32] Kohn, R.V., and Strang, G., "Optimal Design and Relaxation of Variational Problems," Comm. Pure Appl. Math., 39, pp. 113-137 (Part I), pp. 139-182 (Part II), and pp. 353-377 (Part III), 1986.
[33] Rozvany, G.I.N., Ong, T.G., Szeto, W.T., Olhoff, N., and Bendsøe, M.P., "LeastWeight Design of Perforated Plates," Int. J. Solids Struct., 23, pp. 521-536 (Part I), and pp. 537-550 (Part II), 1987.

Pri بتش 9.1 :مراجيع
[34] Bendspe, M.P., and Kikuchi, N., "Generating Optimal Topologies in Structural Design using a Homogeneization Method," Comp. Meth. Appl. Mech. Engng., 71, pp.197-224, 1988.
[35] Rasmussen, J., "Shape Optimization and CAD," SARA, 1, 33-45, 1991.
[36] Dorn, W.S., Gomory, R.E., and Greenberg, H.J., "Automatic Design of Optimal Structures," J. Mécanique, 3, pp. 25-52, 1964.
[37] Sheu, C.Y., and Schmit, L.A., "Minimum Weight Design of Elastic Redundant Trusses under Multiple Static Loading Conditions, ${ }^{n}$ AIAA, J., 10 (2), pp. 155162, 1972.
[38] Reinschmidt, K.F., and Russel, A.D., "Applications of Linear Programming in Structural Layout and Optimization," Comput. Struct., 4, pp. 855-869, 1974.
[39] Topping, B.H.V., "Shape Optimization of Skeletal Structures-a Review," ASCE J. Struct. Enging., 109 (8), pp. 1933-1951, 1983.
[40] Kirsch, U., "Optimal Topologies of Structures," Appl. Mech. Rev., 42 (8), pp. 223-239, 1989.
[41] McCullers, L.A., and Lynch, R.W., "Composite Wing Design for Aeroelastic Tajloring Requirements," Air Force Conference'on Fibrous Composites in Flight Vehicle Design, Dayton, Ohio, September, 1972.
[42] McCullers, L.A., and Lyuch, R.W., "Dynamic Characteristics of Advanced Filamentary Composites Structures," AFFDL-TR-73-111, Vol. II, 1974.
[43] Haftika, R.T., "Structural Optimization with Aeroelastic Constraints-A Survey of US Applications," Int. J. Vehicle Design, 7, pp. 381-392, 1986.
[44] Schmit, L.A., and Miura, H., "A New Structural Analysis / Synthesis Capability - Access I, AIAA J., 14 (5), pp. 661-671,1976.
[45] Fleury, C., and Schmit, L.A., "ACCESS 3-Approximation Concepts Code for Efficient Structural Synthesis-User's Guide," NASA CR-159260, September 1980.
[46] Wilkinson, K., et al., "An Automated Procedure for Flutter and Strength Analysis and Optimization of Aerospace Vehicles, Vol. I-Theory, Vol. II-Program User's Manual," AFFDL-TR-75-137, 1975.
[47] Venkayya, V.B., and Tischler, V.A., "OPSTAT-A Computer Program for Optimal Design of Structures Subjected to Static Loads," AFFDL-TR-79-67,1979.
[48] Khot, N.S., "Computer Program (OPTCOMP) for Optimization of Composite Structures for Minimum Weight Design," AFFDL-TR-76-149, 1977.
[49] Gellatly, R.A., Dupree, D.M., and Berke, L., "OPTIMUM II: A MAGIC Compatible Large Scale Automated Minimum Weight Design Program, ${ }^{n}$ AFFDL-TR-74-97, Vols. I and II, 1974.
[50] Isakson, G., and Pardo, H., "ASOP-3: A Program for the Minimum Vveıgnt עesign of Structures Subjected to Strength and Deflection Constraints," AFFDL-TR-76157, 1976.
[51] Bartholomew, P., and Wellen, H.K., "Computer Aided Optimization of Aircraft Structures," J. Aircraft, 27 (12), pp. 1079-1086, 1990.
[52] Kiusalaas, J., and Reddy, G.B., "DESAP 2-A Structural Design Program with Stress and Buckling Constraints," NASA CR-2797 to 2799, 1977.
[53] Haftka, R.T., and Prasad, B., "Programs for Analysis and Resizing of Complex Structures," Comput. Struct., 10, pp. 323-330, 1979.
[54] Sobieszczanski-Sobieski, J., and Rogers, J.L., Jr., "A Programming System for Research and Applications in Structural Optimization," Int. Symposium on Optimum Structural Design, Tucson, Arizona, pp. 11-9-11-21, 1981.
[55] Walsh, J.L., "Application of Mathematical Optimization Procedures to a Structural Model of a Large Finite-Element Wing," NASA TM-87597, 1986.
[56] Vanderplaats, G.N., "CONMIN- A Fortran Program for Constrained Function Minimization: User's manual," NASA TM X-62282, 1973.
[57] Bråmå, T., "Applications of Structural Optimization Software in the Design Process," in Computer Aided Optimum Design of Structures: Applications, (Eds, C. A. Brebbia and S. Hernandez), Computational Mechanics Publications, SpringerVerlag, 1989, pp. 13-21.
[58] Neill, D.J., Johnson, E.H., and Canfield, R., "ASTROS-A Multidisciplinary Automated Structural Design Tool," J. Aircraft, 27, 12, pp. 1021-1027, 1990.
[59] Atrek, E., "SHAPE: A Program for Shape Optimization of Continuum Structures," in Computer Aided Optimum Design of Structures: Applications, (Edis, C. A. Brebbia and S. Hernandez), Computational Mechanics Publications, SpringerVerlag, 1989, pp. 135-144.
[60] Hariran, M., Paeng, J.K., and Belsare, S., "STROPT-the Structural Optimization System," Proceedings of the 7th International Conference on Vehicle Structural Mechanics, Detroit, MI, April 11-13, 1988, SAE, pp. 27-38.
[61] Vanderplaats, G.N., Miura, H., Nagendra, G., and Wallerstein, D., "Optimization of Large Scale Structures using MSC/NASTRAN," in Computer Aided Optimum Design of Structures: Applications, (Eds, C. A. Brebbia and S. Hernandez), Computational Mechanics Publications, Springer-Verlag, 1989, pp. 51-68.
[62] Ward, P. and Cobb, W.G.C., "Application of I-DEAS Optimization for the Static and Dynamic Optimization of Engineering Structures," in Computer Aided Optimum Design of Structures: Applications, (Eds, C. A. Brebbia and S. Hernandez), Computational Mechanics Publications, Springer-Verlag, 1989, pp. 33-50.
[63] GENESIS User's Manual (version 1.00), VMA Engineering, Goleta, California, September, 1991.
[64] Vanderplaats, G.N., "ADS: A FORTRAN Program for Automated Design Synthesis", VMA Engineering, Inc. Goleta, California, May 1985.
[65] DOT User's Manual (version 2.0B), VMA Engineering, Inc. Goleta, California, Sept. 1990.
[66] DOC User's manual (version 1.00), VAA Engineering, Inc. Goleta, California, March 1991.
[67] Miura, H., and Schmit, L.A., Jr., "NEWSUMT-A Fortran Program for Inequality Constrained Function Minimization-User's Guide," NASA CR-159070, June, 1979.
[68] Grandhi, R.V., Thareja, R., and Haftka, R.T., "NEWSUMTT-A: A General Purpose Program for Constrained Optimization Using Constraint Approximations," ASME Journal of Mechanisms, Transmissions and Automation in Design, 107, pp. 94-99, 1985.
[69] Arora, J.S. and Tseng, C.H., "User Manual for IDESIGN: Version 3.5, Optimal Design Laboratory, College of Engineering, The University of Iowa, Iowa City, 1987.
[70] Fleury, C., and Schmit, L.A. Jr., "Dual Methods and Approximation Concepts in Structural Synthesis," NASA CR-3226, December, 1980.

 ضرايشـان است كي موضوع اصلمى بحث اين نمل استا

اين ثيوه معمـولا از نظر محاسباتى بر هزينه، اما كاربرد آن ساده و بـبار شـناخته شــده امـت. كـارآيى
 تقريبهاى تفاضل محدود غالبـأز نظر دقت مشكل دارند . اين نصل رابا با بحث بر روى اين تقريبها براى مشتقات حساسبت آغاز مى كنيم.

V. 1

ساده ترين تقريب تفاضل محلود، تقريب تفاضل يسش روى مرتبه اول مى باشد. تابع (u) از متغغير

$$
\begin{equation*}
\frac{\Delta u}{\Delta x}=\frac{u(x+\Delta x)-u(x)}{\Delta x} . \tag{v.1.1}
\end{equation*}
$$

يكى ديكر از تقريبهاى تفاضل محدود كه كاريرد زبادى دارد، تقريب تفاضل مركزى مرته دومامت.

$$
\begin{equation*}
\frac{\Delta u}{\Delta x}=\frac{u(x+\Delta x)-u(x-\Delta x)}{2 \Delta x} . \tag{v.l.r}
\end{equation*}
$$

به كار كرنتن تفريب تفاضل محدود مرتبه هاى بالاتر نيز امكان يذير امت، اما در بهينه سازى سازه هـا بـه دليل هزينه بالاى محامباتى كاريرد كمترى دارد . اكر بخواهيم مُّتقات باسـخ سازه نسبت بـ n متغير هاى طراحى رابدست آّورمه، تقريب تفاضل يس رو به n تحليل اضافى و تقريب تفاضل مركزى به $2 n$ تحليل اضافى نباز دارد و تقريبهاى مرتبه بالاتر حتى هزينه برترند.
 تــده است و در بـخش زير به اججمال بيان مى كردد.
V. 1 . 1 دقت و انتخاب اندازه كام

هـر كاه رابطـه تـفاضل مــدود براى تقريب زدن مشتقات بـه كار مـى رود دو مـنـبع خطـا وجـود دارد: خـطاهـاى شـرطى و بـرش . خـطـاى بــرش تـابع اختــلال يانته مـى باشـد. بـه عنوان مثال، بسـط سـرى تيـلور

MrV بنش V. 1 :تغريبهایتناخـل مهلمدد

$$
u(x+\Delta x)=u(x)+\Delta x \frac{d u}{d x}(x)+\frac{(\Delta x)^{2}}{2} \frac{d^{2} u}{d x^{2}}(x+\zeta \Delta x), \quad 0 \leq \zeta \leq 1 . \quad \text { (V.।.Ү) }
$$

از معادله (V. . . Y) خطاى برش براى تفريب تفاضل بيش رو به صورت زير است:

$$
\begin{equation*}
e_{T}(\Delta x)=\frac{\Delta x}{2} \frac{d^{2} u}{d x^{2}}(x+\zeta \Delta x), \quad 0 \leq \zeta \leq 1 \tag{V.1.F}
\end{equation*}
$$

بطور مشابه با در نظر كرفتن يكى جمله بيشتر در بسط سرى تيلور، خطاى بـرش براى تـقريـب تنـاضـل
مركزى عبارت اسـت از :

$$
\left.e_{T}(\Delta x)=\frac{\Delta x^{2}}{6} \frac{d^{3} u}{d x^{3}}(x+\zeta \Delta x), \quad-1 \leq \zeta \leq 1 . \quad \text { (V.।. }\right)
$$

خهلای شُرطى تفاوت بين محاسبه عددى تابِ و مقدار دتيق آن اسـت . بكى تسمت از خططاى شرطى مربوط به خطاى كرد كردن در مداسسبه رايانه ما نسبــاً كوجكى امـت مكر آن كه Δx بى نهايت كرجكى بائـد . با وجود اين اكـر (x) u با يكى فرايند عددى طولانی يا بدخيم محاسبه شود سهم كرد كردن در خطاى شرطى مى تواند قابل ملاحظه باشـــــ . از طرن ديكر، اكر (x) $u(x)$

 بطور مشافظه كارانهاى به شُكل زير تخمين زده مي شود.

$$
\begin{equation*}
e_{C}(\Delta x)=\frac{2}{\Delta x} \epsilon_{\mathrm{u}} . \tag{V.1.9}
\end{equation*}
$$

 را كریكى انتخاب كنـم كه خطاى برش كامش يابد، مدكن المت خططاى شرطى بزركى شود. در بعـضـ حالات ممكن اسـت اندازه كامي كه خطاى تابل تبولى را به دست دهد، وجود نداثـته باشـد .

סشل V.1.1
فرض كنيد تابع u(x) به عنوان ججواب دو معادله زير تعريف شُده باشـد :

و مـتجنين فرض كنيد مشتت $d u / d x$ در نتطه $x=100$ محاسبه مُده باثـد .
جواب u عبارت است از :

$$
u=\frac{-10 x+1000}{10100-x^{2}}
$$

 (V. . . 1)
 يكى تابع هموار از اندازه كام الست، در خحطاى كلى غالب مى شود . مى توانبم مساله را كمى بذخيم تر كرده و خططاى شرطى را الفز ايش دهيم ـ اكر داشُته باثُيهم :
$10001 u+x v=1000$,
$x u+10000 v=1000$.

بنغش V. 1 :تعريبهاى تغاضل معلود

 مـحدوده تابل قبول اندازه هاى كام باريك شده و اكر بخواهيم يكى مـحدوده معقول داشته باشبيم بايد از بسط تقريب تفاضل مركزى استفاده كنيم.

$$
\begin{align*}
& \text { معادلات (V. 1. F (V. . F) و) به مورت بدست مى آيد. } \\
& e=\frac{\Delta x}{2}\left|s_{b}\right|+\frac{2}{\Delta x} \epsilon_{u}, \tag{v.1,v}
\end{align*}
$$

كه اندازه كام بهينه كه e

$$
\Delta x_{o p t}=2 \sqrt{\frac{\epsilon_{\mathrm{u}}}{\left|s_{b}\right|}}
$$

وتتى براى انتجام محاسبات، روشهاى تكرار بـ كار مى روند، خطاهاى شرطى مى توانتد مهم باثــند . يكى مثال ساده از يكى مؤلفه تنيير مكان منفرد u را در نظر بكيريد كه از حل يكى معادله جبرى غير خطى وابسته

به متغير طراحىx، بدست آمده اسـت.

$$
\begin{equation*}
f(x, u)=0 \tag{v.1.9}
\end{equation*}
$$

 برایى خطاى شرطى در u المـت) . غرض كنيد برايى محاسبـبهُ مشتت du/dx از تتريب تفاخـل يــش رو
 مي كنيم.

$$
f\left(x+\Delta x, u_{\Delta}\right)=0
$$

از حل تكرارى معادله (+) يكى تقريب برایى تقريب زده مى شود :

$$
\begin{equation*}
\frac{d u}{d x} \approx \frac{\tilde{u}_{\Delta}-\tilde{u}}{\Delta x} . \tag{v.1.11}
\end{equation*}
$$

براى شُروع روند تكرار براى يانتن

 خطاى شرطى كوهكـد داثته باشبم. . حدس اوليه منطتى ديكر برایى
 نـى توانيم انظظار داهمته باشيم كه خططاهاى شر طى از بين بروند . هنكامي كه با
 مثال، اكر Δx صفر شود و يا يكى عدد بى نهايت كوجك باشد جه اتفاتى مى افتد) .

PF1 بغش V. 1 :تلريبهای تناضل مسلرد
مرجيع [3] راهبردى يِّشنهاد مى كند وبه ما اجازه مى دهد نكراربرایى كه درباره افزايش خطلى شرطى نكران بامُميم . اين رامكار ادعا مى كند كه بـا تـغـيـيـر مــــالـهاى كـه آنَ را مى خواميم حل كنيم

$$
f(x, u)-f(x, \bar{u})=0
$$

المت، كه نتط معدار كمى با مسأله اصلى متـفـاوت امــت (حـون $f(x, \tilde{u})$ تقريبآصفر است) . اكنـون از معادل (V. I . IY) مشتت

$$
f\left(x+\Delta x, u_{\Delta}\right)-f(x, \tilde{u})=0
$$

مى يابيم • خون مى كثند.
V.1.r مثلـ
معادله غيرخطى

$$
f(u, x)=u^{2}-x=0
$$

وروند تكرار

$$
u_{m}=0.5\left(u_{m-1}+x / u_{m-1}\right)
$$

را در نــظر بكيريد، كـه كاربردى از روشٌ نيوتن براى مسائل ريشه مربعات امـت و بـــابرايـن خـامـيـت همكرايه درجه دو دارد.
 1000
 خطا كوجكتر مى شود نرخ هـكرايى انزايش مى يابد . ديده مى شُود كه همكرايى مشتّق كمى آهسته تـر از

$$
u=x \text { جدول V. } 1.1 \text { ساببة تكراربا شروع }
$$

تكرار	$x=1000$		$x+\Delta x=1000.1$			$x+\Delta x=1100$		
	\bar{u}	f	\bar{u}_{Δ}	f	$\Delta u / \Delta x$	\tilde{u}_{Δ}	f	$\Delta u / \Delta x$
0	1000.00	999,000	1000.10	999,000	0.99850	1100.00	1,208,000	1.00000
1	500.500	250,000	500.550	250,000	0.49800	550.500	302,000	0.50000
2	251.249	62,100	251.274	62,100	0.24900	276.249	75,200	0.25000
3	127.615	15,300	127.627	15,300	0.12450	140.115	18,500	0.12500
4	67.7253	3,590	67.7315	3,590	0.06225	73.9380	4,370	0.06258
5	41.2454	701.2	41.2486	701.3	0.03174	44.4256	873.6	0.03180
6	32.7453	72.25	32.7471	72.27	0.01862	34.5930	96.68	0.01848
7	31.6420	1.216	31.6436	1.217	0.01587	33.1957	1.954	0.01553
8	31.6228	-0.005	31.6244	0.000	0.01587	33.1663	0.0007	0.01543

. $u(x=1000)=31.6228 ; d u / d x=0.01581$
u أمت . همحنين مى بينهم كه u نمى آورد ـ اين به سبب همكوايمى يكنوا و از بين رفتن خطاهاى شرطى است.

اكنون اولين حدس از حل اختلاللى را با يكى از مقادير اسهى در تكرارها شروع مى كـنـــم. اكـر حـل اختلالى رالز يكى تقريب خوب شروع كنيم، در رسيلدن به جواب اسسى همكوايه سريعى خحواهيم داشت و معدر لا فقط به يك يا دو تكرار نياز داريـم. بنابراين مقدار مستتق تفاضل محذود بعد از دو تكــرار اوليــ

أز هر يكى از جهار تكرار آخر حل اسـىي كه در جلدول(V. . . . آَرده شده شروع شود.

جدول

	$x+\Delta x=1000.1$		$x+\Delta x=1100$	
u_{0}^{1}	u_{2}	$\Delta u / \Delta x$	u_{2}	$\Delta u / \Delta x$
41.2454	31.6436	-96.0181	33.1755	-0.08070
32.7453	31.6244	-11.2093	33.1662	0.00421
31.6420	31.6243	-0.1772	33.1663	0.01524
31.6228	31.6243	0.01572	33.1663	0.01543

+ ${ }^{1} u_{0}$

 مدحدود

جدول V. I.r مهاسبات تغيريافته مشتق

	$x+\Delta x=1100$		$x+\Delta x=1000.1$	
u_{0}	u_{2}	$\Delta u / \Delta x$	u_{2}	$\Delta u / \Delta x$
41.2454	42.4404	0.01195	41.2466	0.01205
32.7453	34.2382	0.01493	32.7468	0.01511
31.6420	33.1846	0.01543	31.6436	0.01572
31.6228	33.1663	0.01543	31.6243	0.01572

كاملاَهمكرا مده اسـت (در نتيجه هيج خطاى شـرطى وجود ندارد) بزركترند .

$$
u^{2}-x-\bar{f}=0
$$

جايگزين مى كنـيم كـه در آن \bar{f} باتيمانده آخرين تكرار از ححل اسـمى است. در حل اختلالى سعى مى كنيـم

مده امت . اكنون مى توانيـم با دو تكرار، يكى نتريب معقول برایى مشتت به دست آوريم. توجه به هزينه و دتت ؛ غالباً ما را به عدم استفاده از مشتقات تفاضل محدود ترغيب مى كـــد . بـراى تغيير مكان ايستايع و تيود تنش، مشتقات تحليلى، همان كونه كه در بـخش بعدى بهث خـوا امد شــد، بـه راحتى به دست مى آيند .
V. 1 . r بديهى است كه تغيير مكانها و تنتهاى كوحك، به دتت تغيير مكانها و تنتهاى بزرك محاسبه نمى شوند. براى مشتقات نيز اين مطلب صسحيح است . هنگامى كه تابع 4 و متغير x هر دو مبـت بانـد، بزركى نسبى مشتّ مى تواند از روى مشتق لکاريتمى زير تـتمين زده شود:

$$
\frac{d_{1} u}{d x}=\frac{d(\log u)}{d(\log x)}=\frac{d u / u}{d x / x}
$$

مشتق لگاريتمى درصد تغيـر u به ازایى يكى درصد تغيير در x را مى دهد . بنابراين هنگامى كه مشتت لگاريتمى بزركتر از واححد است، تغيير نسبى در u از تغيير نسبى در x بزركتر است و مشتق رامى تـوان بزر ى در نظر كرنت. وتثى كه مشتق لكاريتمى خيلى از واسد كوجكتر است، تغيـير نـــبـى در 4 خيلى

كوجكتر از تغيير نسبى در x استت. در اين حالت مشتق كوجك در نظر كرفته مى شود و در حالـت كـلى
 مشكل است. خو شبينتانه وتتى مشتت لكاريتمى كوجك الست غـالباً ارزيامى دتت آن مهم نـيـت، زيـرا تاثيرش بر روند بهينه سازى كم است.

هنگامى كه يك متغير در محدوده تنير علامت امست، يعنى از نظر مفدار خيلى كوجكىامت، مستتق

$$
\begin{equation*}
\frac{d_{\mathrm{lm}} u}{d x}=\frac{d u / u_{t}}{d x / x_{t}}, \tag{v.1.10}
\end{equation*}
$$

كه

مثال Y.1.1
ارتباط افزايش خطا و مستفات كوجك در مساله ساده طراحى زير نثان داده مى شود. طراحى يك تير غوطهور با سطح مقطع مستطلمى را در نظر مى كيريم و مى خواهيم سطع مفطع آن را مينيـم كنيم (براى كاهش خسارت خوردكى) . تير تحت تأثير كنتـاور خمشى M است و بايد تنش خمشى ماكزيمم از تنش
 مى توان به صورت زير رابطه سازى كرد:

$$
\begin{aligned}
& \text { 2(b+h), عبارت } \\
& \frac{6 M}{b h^{2}} \leq \sigma_{0} . \quad \text { را }
\end{aligned}
$$

مساله رابا تعريف طول منـخصـه l و استفاده از آن براى تعريفـ متغيرهاى طراحى جـديلد
صورت زير يى بعد مى كنـمه:

$$
l=\left(6 M / \sigma_{0}\right)^{1 / 3}, \quad x_{1}=b / l, \quad x_{2}=h / l .
$$

با متغيرهاى جديد مساله به صورت زير رابطه سازى مى كردد:

PRO بنش V. 1 : تعريبهاى تغاضل محلود

$$
\begin{array}{lr}
u=x_{1}+x_{2}, \\
\frac{1}{x_{1} x_{2}^{2}}=1, & \text { عبارت }
\end{array}
$$

كه نامساوى با يكى تساوى جايكزين شُده است زيرا تيد تنش نعال خوامد شُد (در غير اين صورت جواب b $=h=0$ صورت زير نوشت:

$$
u=1 / x_{2}^{2}+x_{2}
$$

اكنون مسحاسبه مـتتق با استفاده از روم تفاضل محدود رادر دو نقطه در نظر مى كيريم؛ كه يك نقطه در

كه 9 ادرصد از جواب دتيت 0.0683 كمتر است. ـمنتق لكاريتمى به ما مشدار مى دهد كـه بـايـد انتـظار
 از مـتّت تفاضل محدود به صورت نير به دست مى آيد:

$$
\frac{d_{1} u}{d x_{2}} \approx \frac{\Delta_{1} u}{\Delta x_{2}}=\frac{\Delta u}{\Delta x_{2}} \frac{x_{2}}{u}=-0.97 \times 1 / 2=-0.485 .
$$

$$
\text { در } 1.29 \text { د داريم } 1.891 \text { د } u \text { د }
$$

$$
\frac{d_{1} u}{d x_{2}} \approx \frac{\Delta_{1} u}{\Delta x_{2}}=\frac{\Delta u}{\Delta x_{2}} \frac{x_{2}}{u}=0.0791 \times 1.29 / 1.891=0.054
$$

$$
\begin{aligned}
& \text { رو با } \\
& \frac{\Delta u}{\Delta x_{2}}=\frac{1 / 1.01^{2}+1.01-2}{0.01}=-0.970,
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\Delta u}{\Delta x_{2}}=\frac{1 / 1.30^{2}+1.30-\left(1 / 1.29^{2}+1.29\right)}{0.01}=0.0791,
\end{aligned}
$$

V. Y. 1

معادلات تعادل بر سسـب بر دار تغيير مكان كرهأى u از يكى مدل اجزاي مسلود به ثشكل زير نوثته مي شـود :

$$
\begin{equation*}
\mathbf{K} \mathbf{u}=\mathbf{f} \tag{V.Y.I}
\end{equation*}
$$

كه K ماتريس سختى و f بردار بار است. يكى تيد نمونه، حلى را در تغيير مكان يا يكى مولفه تنش اعمال مى كند و به صورت زير نونُته مى شود :

$$
\begin{equation*}
g(\mathbf{u}, x) \geq 0 \tag{V,Y,Y}
\end{equation*}
$$

كه به منظور سـاده تُملن نمادمـازى فرض مى شـود كه و انقط به يكى متغير طراحى منغرد x وابسته است . با استغاده از تانون مشُتق كيرى زنجير أىى خوالهيم دائت :

$$
\begin{equation*}
\frac{d g}{d x}=\frac{\partial g}{\partial x}+\mathbf{z}^{T} \frac{d \mathbf{u}}{d x} \tag{V.Y.r}
\end{equation*}
$$

كه z يك بردار با مؤلفه هاي

$$
\begin{equation*}
z_{i}=\frac{\partial g}{\partial u_{i}} . \tag{V,Y,Y}
\end{equation*}
$$

مى بانُد . توجه كنيد كه نماد dg/dx را براى مشُتق كلى و نسبت به x كار مى بريم . اين مسُتق كلى ثـامل قسمـت صريح $\partial g / \partial x$ بعلارء تسمـت ضمنى كه بـه u وابسته است، مى باثشل . قسمـت صريح مشتق غالبـاً صفر است و يا راحت به دست مى آيد. بنابراين انقط روى مــحـاسـبـ، فسمـت ضمنى بـحث مى كتـيـم. بـا ديغرانسـيل كيرى از معادله (V. Y. . (V) نسبت به x داريم :

$$
\begin{align*}
& \mathbf{K} \frac{d \mathbf{u}}{d x}=\frac{d \mathbf{f}}{d x}-\frac{d \mathbf{K}}{d x} \mathbf{u} . \\
& \mathbf{z}^{T} \frac{d \mathbf{u}}{d x}=\mathbf{z}^{T} \mathbf{K}^{-1}\left(\frac{d \mathbf{f}}{d x}-\frac{d \mathbf{K}}{d x} \mathbf{u}\right) . \tag{V.Y.f}
\end{align*}
$$

محاسبه

$$
\begin{equation*}
K \boldsymbol{\lambda}=\mathbf{z}, \tag{V,Y,V}
\end{equation*}
$$

است. آن كاه معادله (V. Y. Y) رابه صورت

$$
\begin{equation*}
\frac{d g}{d x}=\frac{\partial g}{\partial x}+\lambda^{T}\left(\frac{d \mathbf{f}}{d x}-\frac{d \mathbf{K}}{d x} \mathbf{u}\right), \tag{V.Y.A}
\end{equation*}
$$

مى مويسيم كه از تقارن K استغاده كرده ايم.
حل معادله (V. Y. V) برای ג شبيي بد حل برايى تنيير مكان تحت يك بردار بار z است. روش الحاتى مصحنين باعنوان رون بار ظامرى شناخته مئشود، جون z غالبآبه عنوان يكى نيروى ظاهرى توصيـف مى شود. هنگامى كه و در معادله (V. Y, Y) يك كران بالا براى مؤلفه تنير مكان منفـرداسـت، بـار ظاهرى نيز بكى مؤلفه غير صفر منفرد مربوط به مولفه تنييرمكان مقيد شـده دارد. بطور مشابه وتىى ويك كران بالا براى تنش در يكى عضو خريااست، بار ظاهرى از يكى جفت نيروى مساوى و معكوس هم كه بر روى دو انتهاى عضو عمل مى كند تشكيل مى شود.

 مهانسبه كنيم مورد استفاده قرار خواهد كرفت. به دست آوردن روش الحاتى را در روندى كه تابل كاريرد در حالت عمومى مى باشمد، تكرار مى كنيه. اين روند شـامل اضافه كردن حاصلضرب مشـتـت مـعـادلات تعادل در يكى ضربكر لاكرانز به مستت تيد اسـت. ضربكر لاكرانز كه برابر بـا بردار الحـاتى اسست براى
 :رابه صورت (V. Y. Y)

$$
\begin{equation*}
\frac{d g}{d x}=\frac{\partial g}{\partial x}+\mathbf{z}^{T} \frac{d \mathbf{u}}{d x}+\lambda^{T}\left(\frac{d \mathbf{f}}{d x}-\frac{d \mathbf{K}}{d x} \mathbf{u}-\mathbf{K} \frac{d \mathbf{u}}{d x}\right), \tag{V.Y.9}
\end{equation*}
$$

بازنويسى مى كنيم، كه جمله اضافى حاصلضرب بردار الحاتى در مستتق معادلات تعادل است . با مرتـب كردن جملات در معادله (V. Y . Y) داريم:

$$
\begin{align*}
& \frac{d g}{d x}=\frac{\partial g}{\partial x}+\left(\mathbf{z}^{T}-\lambda^{T} \mathbf{K}\right) \frac{d \mathbf{u}}{d x}+\lambda^{T}\left(\frac{d \mathbf{f}}{d x}-\frac{d \mathbf{K}}{d x} \mathbf{u}\right) .
\end{align*}
$$

اكر بخواهيـم du/dx رالز الين عبارت حذف كنيم بـايـد λ به ثـكلى انتخاب شود كه ضريـب آن را حـلـف
 برای مشتق تيد اسـت.
R.T. 1 مثال در اين مثال ، مشتتق حساسبت تيدى بر تغيير مكان سر يك تير يكسر كيردار بلهأى را نسبت به كنّاور ماند I وطول ا ${ }_{1}$ محامبه مى كنيم:

تيد روى تغيير مكان سر به صورت

$$
g=c-w_{\text {tip }} \geq 0 .
$$

است . مسـاله ماده استت و يكى جواب تحليلم بر اماس تورى مقدماتى تيرها دارد.

$$
w_{\text {tip }}=\frac{p}{3 E I_{1}}\left(l_{1}^{3}+3 l_{1}^{2} l_{2}+3 l_{1} l_{2}^{2}\right)+\frac{p l_{2}^{3}}{3 E I_{2}},
$$

بنابراين

$$
\begin{aligned}
& \frac{\partial g}{\partial I_{1}}=\frac{p}{3 E I_{1}^{2}}\left(l_{1}^{3}+3 l_{1}^{2} l_{2}+3 l_{1} l_{2}^{2}\right), \\
& \frac{\partial g}{\partial l_{1}}=-\frac{p}{3 E I_{1}}\left(3 l_{1}^{2}+6 l_{1} l_{2}+3 l_{2}^{2}\right)=-\frac{p}{E I_{1}}\left(l_{1}+l_{2}\right)^{2} .
\end{aligned}
$$

حل اجزاى محدود بر اساس جز • نير درجه ب استاندارد كه براى هر فـــــت از تير يكى جزء در نظر كرفتـ
 سيختى جز\& عبارت الست از

$$
\mathbf{K}^{\varepsilon}=\frac{E I}{l^{3}}\left[\begin{array}{cccc}
12 & 6 l & -12 & 6 l \\
6 l & 4 l^{2} & -6 l & 2 l^{2} \\
-12 & -6 l & 12 & -6 l \\
6 l & 2 l^{2} & -6 l & 4 l^{2}
\end{array}\right],
$$

بنابراين ماتريس سنتى كلم مربوط به درجه آزاديهاى

$$
\mathbf{K}=E\left[\begin{array}{cccc}
12\left(I_{1} / l_{1}^{3}+I_{2} / l_{2}^{3}\right) & -6\left(I_{1} / l_{1}^{2}-I_{2} / l_{2}^{2}\right) & -12 I_{2} / l_{3}^{3} & 6 I_{2} / l_{2}^{2} \\
& 4\left(I_{1} / l_{1}+I_{2} / l_{2}\right) & -6 I_{2} / l_{2}^{2} & 2 I_{2} / l_{2} \\
\text { sym } & & 12 I_{2} / l_{2}^{3} & -6 I_{2} / I_{2}^{2} \\
4 I_{2} / l_{2}
\end{array}\right] .
$$

$$
\mathbf{u}=\left\{\begin{array}{l}
w_{2} \\
\theta_{2} \\
w_{3} \\
\theta_{3}
\end{array}\right\}=\left(\frac{p}{E}\right)\left\{\begin{array}{l}
l_{1}^{3} / 3 I_{1}+l_{1}^{2} l_{2} / 2 I_{1} \\
l_{1}^{N} / 2 I_{1}+l_{1} l_{2} / I_{1} \\
\left(l_{1}^{3}+33_{1}^{2} l_{2}+3 l_{1} l_{2}^{2}\right) / 3 I_{1}+l_{2}^{3} / 3 I_{2} \\
l_{1}^{2} / 2 I_{1}+l_{1} l_{2} / I_{1}+l_{2}^{2} / I_{2}
\end{array}\right\} .
$$

در ابتدا از روشهاى تحليلى براى محاسبه مشتق استـنـاده مى كـنـــم. بــابراين نيـاز به (

$$
\begin{aligned}
& \text { (داريم: } \left.\partial \mathbf{~ (~} / \partial l_{1}\right) \mathbf{u} \\
& \begin{aligned}
\frac{\partial \mathbf{K}}{\partial I_{1}} \mathbf{u} & =\left(\frac{E}{l_{1}^{3}}\right)\left[\begin{array}{cccc}
12 & -6 l_{1} & 0 & 0 \\
-6 l_{1} & 4 l_{1}^{2} & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\left\{\begin{array}{l}
w_{2} \\
\theta_{2} \\
w_{3} \\
\theta_{3}
\end{array}\right\}=\left(\frac{E}{l_{1}^{3}}\right)\left\{\begin{array}{c}
12 w_{2}-6 l_{1} \theta_{2} \\
-6 l_{1} w_{2}+4 l_{1}^{2} \theta_{2} \\
0 \\
0
\end{array}\right\} \\
& =\left(\frac{p}{I_{1}}\right)\left\{\begin{array}{c}
1 \\
l_{2} \\
0 \\
0
\end{array}\right\},
\end{aligned} \\
& \frac{\partial \mathrm{K}}{\partial l_{1}} \mathbf{u}=\left(\frac{E I_{1}}{l_{1}^{4}}\right)\left[\begin{array}{cccc}
-36 & 12 l_{1} & 0 & 0 \\
12 l_{1} & -4 l_{1}^{2} & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\left\{\begin{array}{l}
w_{2} \\
\theta_{2} \\
w_{3} \\
\theta_{3}
\end{array}\right\}=\left(\frac{4 E I_{1}}{l_{1}^{4}}\right)\left\{\begin{array}{c}
-9 w_{2}+3 l_{1} \theta_{2} \\
3 l_{1} w_{2}-l_{1}^{2} \theta_{2} \\
0 \\
0
\end{array}\right\} \\
& =\left(\frac{p}{l_{1}}\right)\left\{\begin{array}{c}
-6\left(1+l_{2} / l_{1}\right) \\
2\left(l_{1}+l_{2}\right) \\
0 \\
0
\end{array}\right\} \text {. }
\end{aligned}
$$

$$
\frac{\partial \mathbf{u}}{\partial I_{1}}=\mathbf{K}^{-1}\left[\frac{\partial \mathbf{f}}{\partial I_{1}}-\frac{\partial \mathbf{K}}{\partial I_{1}} \mathbf{u}\right]
$$

$$
\frac{\partial}{\partial I_{1}}\left\{\begin{array}{l}
w_{2} \\
\theta_{2} \\
w_{3} \\
\theta_{3}
\end{array}\right\}=\mathbf{K}^{-1}\left\{\begin{array}{c}
p / I_{1} \\
p l_{2} / I_{1} \\
0 \\
0
\end{array}\right\}=-\frac{p}{E I_{1}^{2}}\left\{\begin{array}{l}
l_{1}^{2} l_{2} / 2+l_{1}^{3} / 3 \\
l_{1} l_{2}+l_{1}^{2} / 2 \\
l_{1}^{2} l_{2}+l_{1} l_{2}^{2}+l_{1}^{3} / 3 \\
l_{1} l_{2}+l_{1}^{2} / 2
\end{array}\right\},
$$

بنابراين

$$
\frac{\partial \mathbf{u}}{\partial l_{1}}=\mathbf{K}^{-1}\left[\frac{\partial \mathbf{f}}{\partial l_{1}}-\frac{\partial \mathbf{K}}{\partial l_{1}} \mathbf{u}\right]
$$

$$
\frac{\partial}{\partial l_{1}}\left\{\begin{array}{l}
w_{2} \\
\theta_{2} \\
w_{3} \\
\theta_{3}
\end{array}\right\}=-\mathbf{K}^{-1}\left\{\begin{array}{c}
-\left(6 p / l_{1}\right)\left(1+l_{2} / l_{1}\right) \\
\left(2 p / l_{1}\right)\left(l_{1}+l_{2}\right) \\
0 \\
0
\end{array}\right\}=\left(\frac{p}{E I_{1}}\right)\left\{\begin{array}{c}
l_{1}^{2}+l_{1} l_{2} \\
l_{1}+l_{2} \\
\left(l_{1}+l_{2}\right)^{2} \\
l_{1}+l_{2}
\end{array}\right\} .
$$

بنابراين
در رون الحـاقى.

$$
\lambda=\mathbf{K}^{-1} \mathbf{z}=\mathbf{K}^{-1}\left\{\begin{array}{c}
0 \\
0 \\
-1 \\
0
\end{array}\right\}=\left(-\frac{1}{E}\right)\left\{\begin{array}{l}
l_{1}^{3} / 3 I_{1}+l_{1}^{2} l_{2} / 2 I_{1} \\
l_{1}^{2} / 2 I_{1}+l_{1} l_{2} / I_{1} \\
\left(l_{1}^{3}+3 l_{1}^{1} l_{2}+3 l_{1} l_{2}^{2}\right) / 3 I_{1}+l_{2}^{3} / 3 I_{2} \\
l_{1}^{2} / 2 I_{1}+l_{1} l_{2} / I_{1}+l_{2}^{2} / I_{2}
\end{array}\right\},
$$

بنابراين از معادل (V. Y. A)

$$
\frac{\partial g}{\partial I_{1}}=-\lambda^{T} \frac{\partial \mathrm{~K}}{\partial I_{1}} \mathrm{u}=\frac{p}{E I_{1}}\left(\frac{l_{1}^{3}}{3 I_{1}}+\frac{l_{1}^{2} l_{2}}{2 I_{1}}+\frac{l_{1}^{2} l_{2}}{2 I_{1}}+\frac{l_{1} l_{2}^{2}}{I_{1}}\right)=\frac{p}{E I_{1}^{2}}\left(l_{1}^{2} l_{2}+l_{1} l_{2}^{2}+l_{1}^{3} / 3\right),
$$

$$
\frac{\partial g}{\partial l_{1}}=-\lambda^{T} \frac{\partial \mathrm{~K}}{\partial l_{1}} \mathrm{u}=\frac{p}{E l_{1}}\left(l_{1}+l_{2}\right)\left(-\frac{2 l_{1}^{2}}{I_{1}}-\frac{3 l_{1}}{I_{1}}+\frac{l_{1}^{2}}{I_{1}}+\frac{2 l_{1} l_{2}}{I_{1}}\right)=\frac{p}{E I_{1}}\left(l_{1}+l_{2}\right)^{2} .
$$

تفاوت بين كار محامباتى مربوط به روش مستفيم و روش الحانى بستكى به تعداد نسبى متغيـرمـاى

 منكامى كه تعداد متغيرهاى طراحى از تعداد تبود تغير مكان و تنش كه نياز به ديفرانسيل كيرى دارند كـتر است، روش مستقيم، كارآيى بيشترى دارد ـ منكامى كه تعداد متغيرهاى طراحى از تعداد اين قيود بيشنـر است، روش الحاتى، كارآيى بيشترى دارد.

 است.

مـر دو روش، مستقيـم و الحـاتى، نيـاز بـهـهـل بك دسـكاه معـادلات، كـه تــــــت اصـلم كـار

 است از:

$$
\begin{equation*}
\frac{d \mathbf{u}}{d x} \approx \frac{\mathbf{u}(x+\Delta x)-\mathbf{u}(x)}{\Delta x} \tag{V.r.ll}
\end{equation*}
$$

 معادله

$$
\begin{equation*}
\mathbf{K}(x+\Delta x) \mathbf{u}(x+\Delta x)=f(x+\Delta x) . \tag{V,Y,IY}
\end{equation*}
$$

 تفاضل محدود هنكامى كه تعداد متغيرهاى طراحى زياد باشد بيشتر نمايان مى شمود.

V. r. r

در بعضى كاربردها (به عنوان مثال، مشاسبه حساسيت جوابهاى بهينه كه در بخش توابع تَدـد نسبت به متغيرهاى طراحى نياز داريم. در ادامه عبارتهايس برای ارزيـابـى
 صريح از متغير هاى طراحى نيست، بنابرايـن $\partial g / \partial x$ و $\partial g / \partial y$ صفرند. عبارتهاى كلى ترى در [5] بيان

شـده است.
برای يافتن مـُتقات دوم، مانند حالت مـُتقات اول، يك روش مستقيم و يكر روش الحاتى داريم. روش مستقيم با مُتت كيرى از معادله (V. Y . Y) نسبت به y مُروع مى شود.

$$
\begin{equation*}
\frac{d^{2} g}{d x d y}=\mathbf{z}^{T} \frac{d^{2} \mathbf{u}}{d x d y}+\left(\frac{d \mathbf{u}}{d x}\right)^{T} \mathbf{R} \frac{d \mathbf{u}}{d y} \tag{V.Y.IY}
\end{equation*}
$$

كه R ماتريس مسْتقات دوم وو نسبت به u مى باثـد و عبارت است از :

$$
r_{i j}=\frac{\partial^{2} g}{\partial u_{i} \partial u_{j}}
$$

متشت دوم ميدان تغير مكان را با ديفرانسيل كيرى از معادله (V . Y . () به دست ميآوريم :

$$
\mathbf{K} \frac{d^{2} \mathbf{u}}{d x d y}=\frac{d^{2} \mathbf{f}}{d x d y}-\frac{d^{2} \mathbf{K}}{d x d y} \mathbf{u}-\frac{d \mathbf{K}}{d x} \frac{d \mathbf{u}}{d y}-\frac{d \mathbf{K}}{d y} \frac{d \mathbf{u}}{d x} .
$$

 جايكذارى مى كنيم.

$$
\frac{d^{2} g}{d x d y}=\left(\frac{d \lambda}{d y}\right)^{T}\left(\frac{\partial \mathbf{f}}{\partial x}-\frac{d \mathbf{K}}{d x} \mathbf{u}\right)+\lambda^{T}\left(\frac{d^{2} \mathbf{f}}{d x d y}-\frac{d^{2} \mathbf{K}}{d x d y} \mathbf{u}-\frac{d \mathbf{K}}{d x} \frac{d \mathbf{u}}{d y}\right) . \quad \text { (Ү.Y.|q) }
$$

براى ارزيايع اولين جمله، از معادل (V . Y . V) نـسبت به y متُتت مى كيريم:

$$
\begin{equation*}
\mathbf{K} \frac{d \lambda}{d y}=\mathbf{R} \frac{d \mathbf{u}}{d y}-\frac{d \mathbf{K}}{d y} \boldsymbol{\lambda} \tag{V,Y,iv}
\end{equation*}
$$

$$
\frac{d^{2} g}{d x d y}=\left(\frac{d \mathbf{u}}{d y}\right)^{T} \mathbf{R} \frac{d \mathbf{u}}{d x}-\lambda^{T}\left(\frac{d \mathbf{K}}{d y} \frac{d \mathbf{u}}{d x}+\frac{d \mathbf{K}}{d x} \frac{d \mathbf{u}}{d y}-\frac{d^{2} \mathbf{f}}{d x d y}+\frac{d^{2} \mathbf{K}}{d x d y} \mathbf{u}\right) . \quad(\vee . Y . \mid \wedge)
$$

در اين حالت روش الحاتى هميشه كارآيى بيشترى از روشُ مستقيم دارد . فرض كنيد ח متغير طراحى و

 مشتقات اول و m مرتبه حل مـعادله (V. Y. V) برات بردارهاى الحاتى نياز دارد.
v. r. r روش نيمه تحلِيى هر دو روش مستقيم و الحاقى، به مشتقات ماتريس سشختى و بردارهاى بار نسبت به متغيرهاى طراحى نياز
 هندسه جزء را تغيير مى دهند. به اين دليل، راهكار نيمه تحليلى كه در آن مشتقات ماتريس مسختى و بردار بار با تفاضلهاى محدود تقريب زده مى شوند، شهرت يـدا كرده اسـت. مـعـــو لااين مشتقات با تقريـب تفاضل بيش رو مرتبه اول مداسبه مى شُوند. بنابراين dK/dx به صورت

$$
\begin{equation*}
\frac{d \mathbf{K}}{d x} \approx \frac{\mathbf{K}(x+\Delta x)-\mathbf{K}(x)}{\Delta x} \tag{V.Y.19}
\end{equation*}
$$

تقريب زده مى شود.
با وجود اين كه كارآيع روش نيمه تحليلى به اندازهروشهاى تحليلى مستقيم يا الحانى است، اما جون به تقريبهاى تفاضل محدود وابسته است ممكن الست مشكل دتت داشُته باشد . اين مشكل دتت مخصورصاً براى مشتقات باستخ سازه هاى تير و صفتحه نسبت به متغيرهاى هندسى مى تواند جدى باشد . مشكل دقت اولين بار در مر جع [5] براى مدل اتومبيل ننـان داده شـده در شكل (V . Y . V) كه از اجز ایى تير ماخته شده امست مسـاهده شد. . روش نيمه تحليلى براى تمام سطح مقطعها و بيشتر متغيرهاى طراحى هندسى با مونقيت استفاده شـده بود. با وجود اين برای بعضى از مشتفات نسبت به ابعاد طولى اتو مبيل، ، مشـكلات دقت جلى وجود داشت . شُكل (Y Y Y) Y Y Y Y Y

شكل V. F. Y مـل سرهم يكى اتومبيل

 محدود كلى (OFD) و نيمه تحليلى (SA)

نيهه تحليلى (SA) و راهكار تفاضل مسدود كـلى (OFD) نشان مى دهد. براى اندازه هاى بزركّ كـام، روش OFD خطاى (اكثرأ خطاى برش) كمترى از روش SA دارد. مسحوده اندازه كام براى مشتق تقريبى كه يكى خطاى كمتر از يكى درحـد دارد در OFD خحيلى بزر كت از تقريـب SA اسـت . برابى اندازه هاى كـام

دومين متغير طوكى مدل اتومبيل

 مى دهد كه برالى يكى اندازه كام نسـبـى 10-7، روش SA مشتّ را به خوبى تقريب مي زند . با وجـود ايـن برالى بعضى متغيرها، اندازه كامى كه مشتفات دقيق را بدهل، وجود ندارد. برایى سل مشكل دتت بايد از تقريب تفاضل مركزى در مشتت ماتريس ستختى استفاده شود كه هزينه محاسباتى را به ميزان جشمـگيـرى |فزايش مى دهد. شُكل (V. Y . Y) تقريبهاى تفاضل مركزى و بيش رو مشتتى نسبت به دومين متغير طول را با هم مقايسه مى كیند . علت خحطاهاى زياد برش مربوط به روش نيمه تحليلى را مى توانيـم با توجه به معادله (ه . Y) توضيح دهيم . سمت راست معادله كه كاهى اوتات به آن نيروى كاذب مى كويند ، نيروبى امـت كه بـايــ برالى توليد يكى ميدان تغيير مكان du/dx به سازه اعمال شود . برالى سازه هانى تير و صفحه، مشتت ميدان تغير مكان نسبت به متغير هاى هندسى غـالـبـاً يكـ ميدان تغير مكان تابل تبول نيسـت (برانى مئـال مــكــن است فرض كيرشهف " را نقض كند) . تقريب ا-جزالى محدرد اين ميدان غير تابل قبول، اكر جهه بسيار غير

 طول تير يكسر كيردار (اندازه كام يك درصل)

معمول أست، خود يكى تغيير مكان معتبر است كه نياز به مؤلفه هاى بزرگ خخود لغو كنتـه در بـار كاذب
 مؤلفه هاى بزر گتر خود لنو كنتده نياز دارد . بدين سان خططاى به وجود آهده در بار كاذب به علت مــتـتـت تفاضل محدود ماتريس ستختى، مى تواند بسبار بزرك شود .

 مى يابد
 بهبود تقسيمبندى با مشكلى برخورد نمى كند. با وجود اين هنگامى كه تير باريكتر يا صفـحه نازكتر شود، ميدان مشتت تغيير مكان بيشتر و بيشتر با هندسه ناساز كار مى شود و مشكل دتت مشابهى درهى آن مى آيد .
 بزر گكر از • ا دارند، خحطاى بزركى را كزارش كرده است.

R.Y.Y مثال
 نيمه نحليلى تكرار مى كنيم •با استفاده از تغاضل يسّ رو داريم: $\frac{\partial g}{\partial I_{1}} \approx-\frac{w_{\text {tip }}\left(I_{1}+\Delta I_{1}\right)-w_{\text {tip }}\left(I_{1}\right)}{\Delta I_{1}}$,

مقدار تقريبى خطاى برش؛ $e_{T}=-\frac{\partial^{2} w_{l i p}}{\partial I_{1}^{2}} \frac{\Delta I_{1}}{2}=-\frac{p}{3 E I_{1}^{3}}\left(l_{1}^{3}+3 l_{1}^{2} l_{2}+3 l_{1} l_{2}^{2}\right) \Delta I_{1}$, و نحطاى برش نسبى عبارت استاز :

$$
\frac{e_{T}}{\partial g} \frac{\partial I_{1}}{\partial I_{1}}=-\frac{\Delta I_{1}}{I_{1}}
$$

بنابراين كافى است كـ تقرييى خطاى برش براى مشتق نسبت بـه اع عبارت است از :

$$
\begin{gathered}
e_{T}=-\frac{\partial^{2} w_{t i p}}{\partial l_{1}^{2}} \frac{\Delta l_{1}}{2}=-\frac{p}{E I_{1}}\left(l_{1}+l_{2}\right) \Delta l_{1}, \\
\frac{e_{T}}{\frac{\partial g}{\partial l_{1}}}=\frac{\Delta l_{1}}{l_{1}+l_{2}},
\end{gathered}
$$

 است. مشتق نسبت به كـشتاور ماند به صورت:

$$
\frac{\partial g}{\partial I_{1}} \approx \lambda^{T} \frac{\mathbf{K}\left(I_{1}+\Delta I_{1}\right)-\mathbf{K}\left(I_{1}\right)}{\Delta I_{1}} \mathbf{u},
$$

تقريب زده مى شود و خطاى برش صفر مى شود

$$
e_{T}=\frac{\Delta I_{1}}{2} \lambda^{T^{2}} \frac{\partial^{2} \mathbf{K}}{\partial I_{1}^{2}} \mathbf{u}=0
$$

زيرا K K يك تابع خططى از

خطا عبارتأست از:

$$
e_{T}=\frac{\Delta l_{\mathbf{1}}}{2} \lambda^{T} \frac{\partial^{2} \mathbf{K}}{\partial l_{1}^{2}} \mathbf{u}=\frac{p \Delta l_{1}}{E I_{1} l_{1}}\left(3 l_{1}^{2}+7 l_{1} l_{2}+4 l_{2}^{2}\right)
$$

بنابراين خطاى نسبي عبارت امت از :

$$
\frac{e_{T}}{\frac{\partial g}{\partial l_{1}}}=-\frac{3 l_{1}^{2}+7 l_{1} l_{2}+4 l_{2}^{2}}{\left(l_{1}+l_{2}\right)^{2}} \frac{\Delta l_{1}}{l_{1}}
$$

با مقايسه خحطاى نيمه تحليلى با خحطاى به دست آمده در روش تفاضل مهدود ملاحظه مى شـود زمانى كـه

تحطلِ غيرخطى V. Y. P
در تحليل غير خخطى، معادلات تعادل مى تواند به صورت زير نوشته شـود:

$$
\begin{equation*}
\mathbf{f}(\mathbf{u}, x)=\mu \mathbf{p}(x) \tag{Y,Y,Y•}
\end{equation*}
$$

 الست . عامل مقياس بندى بار بر در روند تحلبل غير خطى براى دنبال كردن تكامل تدريجى حل در افزايس بار امستفاده مى شود. اين عامل سودمند استز زيرا معادلاتت تعادل ممكن است برايى بارهاى اعمالى مشابه، ، جندين حل داشته باشند. با افز ايس تدريجى ب مطمنن مى شويم كه حل مربوط به سازهاى است كه از بار صغر بار كذارى شدها است.

باديفرانسيل كيرى از معادله ((V. Y . Y) نسبت به متغير طراحیى x داريم:

$$
\mathbf{J} \frac{d \mathbf{u}}{d x}=\mu \frac{d \mathbf{p}}{d x}-\frac{\partial \mathbf{f}}{\partial x}
$$

كه

$$
\begin{equation*}
J_{k l}=\frac{\partial f_{k}}{\partial u_{l}}, \tag{V.Y.YY}
\end{equation*}
$$

كه غالبآ ماتريس سختى تانزانت ناميله مى شـود.

 معادلـه (Y Y Y Y) است. ماتريس J غالباً از حل معادلات تعادل با استفاده از روش نيوتـن در دسـترس است . روش نيوتن بر اساس يكى تقريب خطى معادلات تعادل حول يكى جواب نرضى

$$
\begin{equation*}
\mathbf{f}(\tilde{\mathbf{u}}, x)+\mathbf{J}(\tilde{\mathbf{u}}, x)(\mathbf{u}-\tilde{\mathbf{u}}) \approx \mu \mathbf{p}(x) \tag{V,Y,YY}
\end{equation*}
$$

أكر معادله (V Y Y Y Y Y Y Y Y
 و اگر مقدار تديمى آن استفاده شود به آن روش نيوتن تغيير يافته مى كويند. اين تكرار تا زمانى كـه بـا يـى دقت مطلوب همگرا شود ادامه مى يابل . اكر آخرين تـكـرار شده ممى تواند براى محاسبه مشتت u به كار رود. راهكار الـحاقى خيلى شبيه به روش استفاده شده در حالت خططى مى باثــد . بـردار الحـاتى X جوابب معادله

$$
\begin{equation*}
\mathbf{J}^{T} \boldsymbol{\lambda}=\mathbf{z} \tag{V.Y.YY}
\end{equation*}
$$

مى باشـد كه z بار ديگر بردار مشتثقات قيد نسبت به مؤلفه هاى تغيير مكان $z=\partial g / \partial u_{i}=$ مى توان رابطه زير را به دست آورد .

$$
\begin{equation*}
\frac{d g}{d x}=\frac{\partial g}{\partial x}+\lambda^{T}\left(\mu \frac{d \mathbf{p}}{d x}-\frac{\partial \mathbf{f}}{\partial x}\right) \tag{V,Y,YO}
\end{equation*}
$$

V. Y. ه

 يك انتخابِ خخبى نيست، زيرا در يكى نقطه حدى به يكى ماكزيمـم مى رسدو يكنوا نيــت . به جاى آن ما غالبآاز يكى مؤلفه تغيير مكان كه افزايش آن يكنواست و يااز طرل كمان در فضاي (u, $)$)استفاده مى كنيم •
 (V. Y. Y.)

$$
\begin{equation*}
\mathbf{J} \mathbf{u}^{\prime}=\mu^{\prime} \mathbf{p} \tag{V,Y,YG}
\end{equation*}
$$

 مى دهيم يعني

$$
\begin{equation*}
\mathbf{v}^{T} J^{\mathbf{t}}=0 \tag{V.Y,YV}
\end{equation*}
$$

 دأريم:

$$
\begin{equation*}
\mu^{\prime} \mathbf{v}^{T} \mathbf{p}=0 \tag{V.Y.Y^}
\end{equation*}
$$

در يكى نتطه حذى اين معادله برآورده مى شود زيرا بار به يكى ماكزيمم مى رسد و آن كاه

$$
\begin{equation*}
\mathbf{v}^{T} p=0 \tag{V.r.r৭}
\end{equation*}
$$

 مد كهانش بر بردار بار عمود أست.
برایى محاسبه حساسـيت بارهاى حلى بايد بارامتر مسير بأستخ كلى تر ע ا در نظر بگيريم كه مى تواند يك بارامتر بار ، يكى متغير طراحى ياتركيبى از هر دو (بارامترى كه هم طراحى سازه و هم بـار كـذارى را
 نسبت به ע مشتت بغيريم، داريم

$$
\mathbf{J} \dot{\mathbf{u}}+\frac{\partial \mathbf{f}}{\partial \boldsymbol{x}} \dot{x}=\dot{\mu} \mathbf{p}+\mu \frac{d \mathbf{p}}{d x} \dot{\boldsymbol{x}}
$$

اكنون بارامترى مانند ע مى خواهيم كه متغير طراحى x و يارامتر بار
حدى باقى بمانيم، '

$$
\begin{equation*}
\mathbf{J}^{*} \dot{\mathbf{u}}+\left(\frac{\partial \mathbf{f}}{\partial x}\right)^{*}=\frac{d \mu^{*}}{d x} \mathbf{p}+\mu^{*} \frac{d \mathbf{p}}{d x} \tag{V.Y.rl}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d \mu^{*}}{d x}=\frac{\mathbf{v}^{T}\left[\left(\frac{\partial \mathbf{f}}{\partial x}\right)^{*}-\mu^{*} \frac{d \mathbf{p}}{d x}\right]}{\mathbf{v}^{T} \mathbf{p}} \tag{V.Y.YY}
\end{equation*}
$$

مقدار داخل برانتز ها، در صورت كسر معـادلـه (V. Y. Y)، مشتت باقيمانده معادلات تعادل در نـتـطـه
 يعنى : در متغير طراححى اختللل ايجاد كرده، تغيير در باقيمانده (برالى تغيير مكانهاى ثابـت) را مـحـاسـبـه مى كنيم و آن را با مدكمانث ضرب دانخلى مى كنيم تاصورت كسر به دست آيد . مـخرج كـــر، ضـرب دانحلى سد كمانن در بردار بار امست .

 نيرو ها يايستارند و هيع استهلاكى در نظر كرفته نتشود، أين مسائل به مقادير ويزه سحيقى مى انتجامـــد كـه نمايانگُر بارهاى كمانش يا بسامدهاى ارتعاثمى اند. در حالت كلى تر مقادير ويزْه مختلطند . بحــث مـا بـا سالت سـاده تر مقادير ويزه حقيقى آغاز مى شود.

$$
\begin{equation*}
\mathbf{K} \mathbf{u}-\mu \mathbf{M} \mathbf{u}=0 \tag{V.r.i}
\end{equation*}
$$

كـه K ماتريس ستختى، M ماتريس جرم (ارتعاشـات) يا ماتريس ستختى هندسى (كمانش) و u شككل مود

می باشد . براي مسائل ارتعاشات W نيمه معين مثبت است . شـكل مود غـالـباً با يكـ ماتريس معين مشبت متـــارن K هر دو متقارنتـد و M نرمال سـازى مى شود به شكلى كه داريـم :

$$
\begin{equation*}
\mathbf{u}^{T} \mathbf{W} \mathbf{u}=1 \tag{V,r.Y}
\end{equation*}
$$

 جفتهاى ويزه ($\left.\mu_{k}, \mathbf{u}^{k}\right)$ برترار است. با مستّت كيرى از اين معادلات نسبت به متغير طراحى x داريم :

$$
(\mathbf{K}-\mu \mathbf{M}) \frac{d \mathbf{u}}{d x}-\frac{d \mu}{d x} \mathbf{M} \mathbf{u}=-\left(\frac{d \mathbf{K}}{d x}-\mu \frac{d \mathbf{M}}{d x}\right) \mathbf{u}
$$

$$
\begin{equation*}
\mathbf{u}^{T} \mathbf{W} \frac{d \mathbf{u}}{d x}=-\frac{1}{2} \mathbf{u}^{T} \frac{d \mathbf{W}}{d x} \mathbf{u} \tag{V,r,Y}
\end{equation*}
$$

 مجزا اصحيح است (مقادير ويزّه تكرارى در حالت كلى مستتق يذير نيستند و نقط ممكن اســت مـــتـفـات شويع آن ها را به دست آورد (مر جع هاگ' و ديكران [8] را بينيد) . در اكثر كاربردها تنها مشتقات مقادير

$$
\frac{d \mu}{d x}=\frac{\mathbf{u}^{T}\left(\frac{d \mathbf{K}}{d x}-\mu \frac{d \mathbf{M}}{d x}\right) \mathbf{u}}{\mathbf{u}^{T} \mathbf{M} \mathbf{u}}
$$

در بعضى كاربردها مشتقات بردار هاى ويزه نيز مورد نيازند . به عنوان مثال در طراحى اتومبيل اغلب لازم است مودهاى بحرانى ارتعانٌ در صندليهاي جلو، دامنه هايينى داشنته باثشند . برای اين مشّكل طراحى نياز به مشتقات ششكل مود داريـم • برایى بدست آوردن مشتقات بردار ويزه مى توانيـم از راهكار مـتتقيم استفاده

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\mathbf{K}-\mu \mathbf{M} & -\mathbf{M u} \\
-\mathbf{u}^{T} \mathbf{W} & 0
\end{array}\right]\left\{\begin{array}{l}
\frac{d \mathbf{u}}{d x} \\
\frac{d \mu}{d x}
\end{array}\right\}=\left\{\begin{array}{c}
-\left(\frac{d \mathbf{K}}{d x}-\mu \frac{d \mathbf{M}}{d x}\right) \mathbf{u} \\
\frac{1}{2} \mathbf{u}^{T} \frac{d \mathbf{W}}{d x} \mathbf{u}
\end{array}\right\} . \quad \text { (マ.г.я) }}
\end{aligned}
$$

 داشت زيرا كهاد اصلى K جندين راهبرد حل اين مشكل بحث كرده اند. يكى از روثّهاى مشهورتر حل، روش نلسـونّ [11] است. روش نلسون شـرط نرمال سازى معادله

 (V.r.r.)

$$
\bar{u}_{m}=1,
$$

$$
(v . r . v)
$$

و ومادله (V. Y. Y) رابا

$$
\begin{equation*}
\frac{d \bar{u}_{m}}{d x}=0 . \tag{v.r.}
\end{equation*}
$$

 برایى كامش درجهء آنذ با حذف سطر و ستون mام آن به كار مي رود ـ هنگامى كه مفدار ويزه μ مهجزاست، سيستم كامش يافته منفرد نيست و با شبوه هاى استاندارد دحل مي شود. برايى بازيابيى مشُتق بردار وبـره با

$$
\begin{equation*}
\frac{d \mathbf{u}}{d x}=\frac{d u_{m}}{d x} \overline{\mathbf{u}}+u_{m} \frac{d \overline{\mathbf{u}}}{d x}, \tag{v.r.q}
\end{equation*}
$$

$$
\frac{d u_{m}}{d x}=-u_{m}^{2} \mathbf{u}^{T} \mathbf{W} \frac{d \overline{\mathbf{u}}}{d x}-\frac{u_{m}}{2} \mathbf{u}^{T} \frac{d \mathbf{W}}{d x} \mathbf{u} . \quad \text { (V.r.।.) }
$$

همجنين مى توانيم براى محاسبه مشُتقات بردار ويزّه با بسط مشتق آنها به حورت يك تركيب خططى از بـردارمـاى ويزهه، از روش الحاتى يا روش مقيد مودال استفاده كنبم. بانمايش iأمين جفت ويرّه معادله

$$
\begin{align*}
& \frac{d \mathbf{u}^{k}}{d x}=\sum_{j=1}^{l} c_{k j} \mathbf{u}^{j}, \tag{v.r.lı}
\end{align*}
$$

و ضرايب

$$
\begin{gather*}
c_{k j}=\frac{\mathbf{u}^{j T}\left(\frac{d \mathbf{K}}{d x}-\mu_{k} \frac{d \mathbf{M}}{d x}\right) \mathbf{u}_{i}^{k}}{\left(\mu_{k}-\mu_{j}\right) \mathbf{u}^{j T} \mathbf{M} \mathbf{u}^{j}}, \quad k \neq j . \quad \text { (V.r.|Y) } \\
:(V . Y . V) \text { (V.r.r.|r) }
\end{gather*}
$$

$$
c_{k k}=-\frac{1}{2}\left(\mathbf{u}^{k}\right)^{T} \frac{d \mathbf{M}}{d x} \mathbf{u}^{k}
$$

 هصاسبه تمام بردارهاى ويزٔه عملى نيست، بنابراين نتط تعداد كمى از بردارهاى ويزّه هربوط به هايين ترين
 مى بتخشد اراثه داد. به جاى معادله (V. Y . Y) از

$$
\begin{equation*}
\frac{d \mathbf{u}^{k}}{d x}=\mathbf{u}_{s}^{k}+\sum_{j=1}^{1} d_{k j} \mathbf{u}^{j} \tag{V.Y.10}
\end{equation*}
$$

الستفاده مى كنــم كه

$$
\begin{equation*}
\mathbf{u}_{s}^{k}=\mathbf{K}^{-1}\left[\frac{d \mu}{d x} \mathbf{M}-\frac{d \mathbf{K}}{d x}+\mu \frac{d \mathbf{M}}{d x}\right] \mathbf{u}^{k} \tag{V.r.Iq}
\end{equation*}
$$

يك جمله تصسحيح ايستايى مى باشـد و

$$
d_{k j}=\mu_{k} \frac{\mathbf{u}^{j T}\left(\frac{d \mathbf{K}}{d x}-\mu_{k} \frac{d \mathbf{M}}{d x}\right) \mathbf{u}^{k}}{\mu_{j}\left(\mu_{k}-\mu_{j}\right) \mathbf{u}^{j T} \mathbf{M} \mathbf{u}^{j}}, \quad k \neq j . \quad \text { (V.r.|V) }
$$

 نرمال سازى (V.Y.V):

$$
\begin{equation*}
d_{k k}=-u_{a m}^{k}-\sum_{j \neq k} d_{k j} u_{m}^{j} \tag{v.r.|A}
\end{equation*}
$$

ساتر' و ديكران [12] همكرايى مشتق با افزايش تعداد مودها رابا استفاده از دو روش مودال و مودال بهبود بانته مطالعه كرده اند و بهبود همكرايى در روش مودال بهبود يانته را الثبات كرده اند.

مثال
سيستم جرم- فنر مستهلك كننده، نشان داده شده در شُكل (V. Y. 1) برای حالتى كه مستهلك كتنده غير
 مشتقات بايين ترين بسامد ارتعاشات و هايين ترين مود ارتعاش نسـبـت بـ k براى دو شـرط نرمال سـازى
 با قرار دادن دومين مولفه مود آٓن برابر يكـ.

مى يابيم

$$
E=0.5\left[k u_{1}^{2}+\left(u_{2}-u_{1}\right)^{2}+u_{2}^{2}\right], \quad T=0.5\left(\dot{u}_{1}^{2}+\dot{u}_{2}^{2}\right) .
$$

كه از آن ماتريس جرم و ماتريس سختتى به صورت

$$
\mathbf{K}=\left[\begin{array}{cc}
1+k & -1 \\
-1 & 2
\end{array}\right], \quad \mathbf{M}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] .
$$

$$
\left[\begin{array}{cc}
2-\omega^{2} & -1 \tag{a}\\
-1 & 2-\omega^{2}
\end{array}\right]\left\{\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right\}=0 .
$$

با صفر قرار دادن مقدار دترمينان دستُـاه، دو بســـامـــ $1=1$ جايكزين كردن كوهكترين بسامد در معادله (الفف) براى اولين مود ارتعاش داريم :

$$
\begin{aligned}
u_{1}-u_{2} & =0 \\
-u_{1}+u_{2} & =0 .
\end{aligned}
$$

همان طورى كه انتظار داشتيم سيستم در يكى بسامد طبيعي منفرد است، بنابراين براى مشخخص كردن بردار

$$
\mathbf{u}^{T} \mathbf{M} \mathbf{u}=u_{1}^{2}+u_{2}^{2}=1
$$

كه از نماد خطط براى نمايش مود ارتعاش با دوميـن شـرط نـرمـال سـازى اسـتفـاده مـى كـنـيـم. بــا شــرايـط نرمالسازى، جوابها عبارتنداز:

$$
\mathbf{u}=\frac{\sqrt{2}}{2}\left\{\begin{array}{l}
1 \\
1
\end{array}\right\}, \quad \overline{\mathbf{u}}=\left\{\begin{array}{l}
1 \\
1
\end{array}\right\}
$$

 مشتق نسبت به k استفاده شده اسـت . براى اين مشال :

$$
\mathbf{K}^{\prime}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], \quad \mathbf{M}^{\prime}=\mathbf{0}
$$

از مود نرمال سازى شده به وسيله ماتريس بجرم معادله (Q) استفاده مى كنيم؟ بنابراين مخرج كسر برابر يك است و آن كاه

$$
\mu^{\prime}=\left(\omega^{2}\right)^{\prime}=\mathbf{u}^{T} \mathbf{K}^{\prime} \mathbf{u}=0.5
$$

همـجنين مي توانيـم مستق بسامد و مود را با استفاده از معادله (Y Y Y Y) به دست آوريـم . تو جه داريـم كه :

$$
\mathbf{K}-\mu \mathbf{M}=\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right], \quad \mathbf{M} \mathbf{u}=\mathbf{W} \mathbf{u}=\mathbf{u}=\frac{\sqrt{2}}{2}\left\{\begin{array}{l}
1 \\
1
\end{array}\right\}
$$

$$
\begin{aligned}
& -\left(\mathbf{K}^{\prime}-\mu \mathbf{M}^{\prime}\right) \mathbf{u}=-\mathbf{K}^{\prime} \mathbf{u}=\frac{\sqrt{2}}{2}\left\{\begin{array}{c}
-1 \\
0
\end{array}\right\}, \quad \frac{1}{2} \mathbf{u}^{T} \mathbf{W}^{\prime} \mathbf{u}=0 .
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & -1 & -\sqrt{2} / 2 \\
-1 & 1 & -\sqrt{2} / 2 \\
-\sqrt{2} / 2 & -\sqrt{2} / 2 & 0
\end{array}\right]\left\{\begin{array}{l}
u_{j}^{\prime} \\
u_{2}^{\prime} \\
\mu^{\prime}
\end{array}\right\}=\left\{\begin{array}{c}
-\sqrt{2} / 2 \\
0 \\
0
\end{array}\right\} .} \\
& \text { با حل اين معادله خواهيم داشت : } \\
& u_{1}^{\prime}=-\sqrt{2} / 8, \quad u_{2}^{\prime}=\sqrt{2} / 8, \quad \mu^{\prime}=1 / 2 .
\end{aligned}
$$

به منظور به دست آّوردن ’ داريم:

$$
\mu^{\prime} \mathbf{M} \overline{\mathbf{u}}=0.5 \overline{\mathbf{u}}=\left\{\begin{array}{c}
0.5 \\
0.5
\end{array}\right\}, \quad-\left(\mathbf{K}^{\prime}-\mu \mathbf{M}^{\prime}\right) \overline{\mathbf{u}}=-\mathbf{K}^{\prime} \overline{\mathbf{u}}=\left\{\begin{array}{c}
-1 \\
0
\end{array}\right\} .
$$

$$
\begin{aligned}
\bar{u}_{1}^{\prime}-\bar{u}_{2}^{\prime} & =-0.5, \\
-\bar{u}_{1}^{\prime}+\bar{u}_{2}^{\prime} & =0.5, \\
\bar{u}_{2}^{\prime} & =0 .
\end{aligned}
$$

جوابها عبارتند از :

$$
\vec{u}_{1}^{\prime}=-0.5, \quad \bar{u}_{2}^{\prime}=0 .
$$

$$
u_{2}^{\prime}=-u_{2}^{2} \mathbf{u}^{T} \bar{u}^{\prime}=-0.5(\sqrt{2} / 2)\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left\{\begin{array}{c}
-0.5 \\
0
\end{array}\right\}=\sqrt{2} / 8
$$

$$
\mathbf{u}^{\prime}=(\sqrt{2} / 8) \overline{\mathbf{u}}+(\sqrt{2} / 2) \overline{\mathbf{u}}^{\prime}=\frac{\sqrt{2}}{8}\left\{\begin{array}{l}
1 \\
1
\end{array}\right\}+\frac{\sqrt{2}}{2}\left\{\begin{array}{c}
-0.5 \\
0
\end{array}\right\}=\frac{\sqrt{2}}{8}\left\{\begin{array}{c}
-1 \\
1
\end{array}\right\}
$$

- • • • اين نيز با نتيجه قبلى يكى است

هنگامى كه مقدار ويزه μ بأكثرت m تكرار مى شودد، mبردار ويزه مستقل خطى مربوط به آن وجود خواهد دانتت. افزون بر اين هر تركيب خطى از بردارهاى ويزه نيز يك بردار ويزّهاست؛ بنابراين انتخاب بردارهاى ويثه منحصر به هرد نيست. دراين حالت بردارهايى ويزه كه از يك برنامه تحليل سازه ها با به دست

 مى توانبه صورت

$$
\begin{equation*}
\mathbf{u}=\sum_{i=1}^{m} q_{i} \mathbf{u}^{i}=\mathbf{U q} \tag{v.r.19}
\end{equation*}
$$

 در بد بدست مى آوريم:

$$
\begin{equation*}
\left(\mathbf{A}-\frac{d \mu}{d x} \mathbf{B}\right) \mathbf{q}=\mathbf{0} \tag{ү.r.r.}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{A}=\mathbf{U}^{T}\left(\frac{d \mathbf{K}}{d x}-\mu \frac{d \mathbf{M}}{d x}\right) \mathbf{U} \tag{V.r.rı}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{B}=\mathbf{U}^{T} \mathbf{M U} . \tag{V,Y,YY}
\end{equation*}
$$

 تناتض است. باوجود اين هنكامى كه مىتوانيم مستقات نسبتبه مر متغبر را جداكاكانه بيابيم، اين مشتقات

$$
\begin{equation*}
d \mu=\frac{\partial \mu}{\partial x} d x+\frac{\partial \mu}{\partial y} d y \tag{V,r,YY}
\end{equation*}
$$

در حالت كلم به اين صورت نمى ماند. اين در ميالل زبر نشان داده خواهد شد.

$$
\mathbf{K}=\left[\begin{array}{cc}
2+y & x \\
x & 2
\end{array}\right], \quad \mathbf{W}=\mathbf{M}=\mathbf{I} .
$$

دو معدار ويزه آن عبارتند از :

$$
\begin{equation*}
\mu_{1,2}=2+y / 2 \pm \sqrt{x^{2}+y^{2} / 4} . \tag{الف}
\end{equation*}
$$

دو معدار ويزه براى $x=y=0$ نايبوستهاند . در حقيقت براى x=0 دو بردار ويزه عبارتند از :

$$
u^{1}=\left\{\begin{array}{l}
1 \\
0
\end{array}\right\}, \quad u^{2}=\left\{\begin{array}{l}
0 \\
1
\end{array}\right\},
$$

$$
y=0 \text { وبرای }
$$

$$
\mathbf{u}^{\mathbf{1}}=\left\{\begin{array}{l}
1 \\
1
\end{array}\right\}, \quad \mathbf{u}^{2}=\left\{\begin{array}{c}
-1 \\
1
\end{array}\right\} .
$$

بلديهى است كه مى توانيـم هر مجموعه بردارهاي ويزه را با نزد دبك شدن به آن در طول محور x يا y به مبدا نزديك كنيه آن كاه مشتقات دو مقدار ويزّه نسبت به x و y را در مبدأ محاسبه مى كنيم . در نقطه (0,0)، هر بردارى بك بردار ويزه اسـت و ما دو برداريكه مختصات را به عنوان مبنا انتخاب مى كنيم، يعنى:

$$
\mathbf{U}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

$$
\mathbf{A}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

جواب مسالكه مقدار ويزه معادله (. . . Y . Y) عبارت است الز :

$$
\left(\frac{\partial \mu}{\partial x}\right)_{1}=1, \quad\left(\frac{\partial \mu}{\partial x}\right)_{2}=-1
$$

و بردارهاى ويزُه مربوط به آن عبارتند از :

$$
\begin{aligned}
\mathbf{q}^{\mathbf{1}} & =\left\{\begin{array}{l}
1 \\
1
\end{array}\right\} \\
\mathbf{q}^{2} & =\left\{\begin{array}{c}
1 \\
-1
\end{array}\right\}
\end{aligned}
$$

$$
\mathbf{A}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

و دو مقدار ويزه معادله (• • Y. Y) عبارتند از :

$$
\left(\frac{\partial \mu}{\partial y}\right)_{1}=1, \quad\left(\frac{\partial \mu}{\partial y}\right)_{2}=0
$$

و بردارهاى ويزه آنها عبارتند از :

$$
\mathbf{q}^{1}=\left\{\begin{array}{l}
1 \\
0
\end{array}\right\}
$$

$$
\mathbf{q}^{2}=\left\{\begin{array}{l}
0 \\
1
\end{array}\right\} .
$$

برايى ديدن اين كه مشتقات نرق را برايى محاسبه تنيير در بر به علت تغيير همزمان در x و و نـمى نوان به كار برد، يكى تغير بى نهايت كوحكـ راى رادر نظر بكيريد . از حل دو مقدار ويزه معادل (الف) داريم:

$$
d \mu=d t \pm \sqrt{2} d t
$$

 جهار مقدار مى دهد آنها عبارتند از:

 اين محاسبات استوارند. بنابراين برایى مسالثل با مقادير ليزه تكرارى، اين الكوريتمها مى توانند مشكلات

' مشتقات حساسيت برای مساثل مقدار ويزه غيرهرميتى V. r. r
 كنترل نعال تأمين شود، در مورد حركت مبرایى هu ، معادل زير صادق است :

$$
\begin{equation*}
\mathbf{M} \ddot{\bar{u}}+\mathbf{C} \dot{\bar{u}}+K \bar{u}=0 \tag{V.r.ry}
\end{equation*}
$$

كه C ماتريس استهلالك است و فرض مى شود متقارن امست و علامت نقطه بيانكر مشتق كيرى نسـبت بـ
 زمان اسـت. با فرض

$$
\overline{\mathbf{u}}=\mathbf{u} e^{\mu t}
$$

داريـم:

$$
\begin{equation*}
\left[\mu^{2} \mathbf{M}+\mu \mathbf{C}+\mathbf{K}\right] \mathbf{u}=0 \tag{V.r.Y६}
\end{equation*}
$$

توجه داشمته بائيد كه مــــدار ويزّهر را آن كونه كه برایى مسائل ارتعاشات ناميرا بيـان كرديـم، تـعريف $\mu=i \omega$ اسـت، خواهيم داثشت

$$
\begin{equation*}
\frac{d \mu}{d x}=-\frac{\mu^{2} \mathbf{u}^{T} \frac{d \mathbf{M}}{d x} \mathbf{u}+\mu \mathbf{u}^{T} \frac{d \mathbf{C}}{d x} \mathbf{u}+\mathbf{u}^{T} \frac{d \mathbf{K}}{d x} \mathbf{u}}{2 \mu \mathbf{u}^{T} \mathbf{M u}+\mathbf{u}^{T} \mathbf{C u}} . \tag{V.r.YV}
\end{equation*}
$$

اين معادله مى تواند براى تخمين انر اضانه كردن مقدار كيى الستهلالك به يكى سيستم ناميرا بـه كـار رود.

$$
\frac{d \mu}{d x}=-\frac{\phi^{T} \frac{d \mathbf{C}}{d x} \phi}{2 \phi^{T} \mathbf{M} \phi} .
$$

مثال M.r.r
 بزنيد و سبس آن رابا الثر دقيق براى

$$
\mathbf{C}=\left[\begin{array}{ll}
x & 0 \\
0 & 0
\end{array}\right], \quad \frac{d \mathbf{M}}{d x}=\frac{d \mathbf{K}}{d x}=0, \quad \frac{d \mathbf{C}}{d x}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] .
$$

$$
\begin{aligned}
& \text { برابر يك اسـت، } \\
& \frac{d \mu}{d c} \equiv \frac{d \mu}{d x}=-0.5 \phi^{T} \frac{d C}{d x} \phi=-0.25 .
\end{aligned}
$$

信 $\mu=i$

$$
\mu_{a}=\left.\mu\right|_{e=0}+\frac{d \mu}{d c} c=-0.25 c+i
$$

 (0.25 + i. معايسه مى كنيم

$$
\left[\begin{array}{cc}
\mu^{2}+c \mu+2 & -1 \tag{الفـ}\\
-1 & \mu^{2}+2
\end{array}\right]\left\{\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right\}=0
$$

مقدار ويزّه μ با صفر ترار دادن دترمينان اين معادله به دست مى آيلد . براى دو مقدار داده شــده c خواهيم داهُت:

$$
\begin{array}{ll}
c=0.2: & \mu=-0.05025+1.0013 i \\
c=1.0: & \mu=-0.29178+1.0326 i
\end{array}
$$

مساهله مى شود كه بيش بينى اين كه c نتط امتهلاكُ را تغيير مى دهدَ نه بسامد را كاملآ صسبيع امت ر
 مرتبه مسائل ويرّ ميرا عمومآ با تقريب مود استهلاك به حوربت يك تركيب خططى از يكـ تعداد كمى از
 شود :

$$
\begin{equation*}
\mathbf{u}=\mathbf{U} \mathbf{q} \tag{v.r.rq}
\end{equation*}
$$

$$
\begin{align*}
& {\left[\mu^{2} \mathbf{M}_{R}+\mu \mathbf{C}_{R}+\mathbf{K}_{R}\right] \mathbf{q}=0,} \tag{V.r.r.}
\end{align*}
$$

$$
\mathbf{M}_{\boldsymbol{R}}=\mathbf{U}^{T} \mathbf{M} \mathbf{U}, \quad \mathbf{C}_{\boldsymbol{R}}=\mathbf{U}^{T} \mathbf{C U}, \quad \mathbf{K}_{\boldsymbol{R}}=\mathbf{U}^{T} \mathbf{K} \mathbf{U}, \quad \text { (V.r.rı) }
$$

 ويزّه را با استنفاده از دو راهكار محاسبه كنيم. اولين رويكرد كه رويكرد مود ثابت ناميله مى شمود، معادلُ (V. Y . YV) رابا
 يانته استفاده مى كند، يعنى

$$
\begin{equation*}
\frac{d \mu}{d x}=-\frac{\mu^{2} \mathbf{q}^{T} \frac{d \mathbf{M}_{R}}{d x} \mathbf{q}+\mu \mathrm{q}^{T} \frac{d \mathrm{C}_{R}}{d x} \mathbf{q}+\mathbf{q}^{T} \frac{d \mathbf{K}_{R}}{d x} \mathrm{q}}{2 \mu \mathrm{q}^{T} \mathbf{M}_{R} \mathrm{q}+\mathbf{q}^{T} \mathrm{C}_{R} \mathbf{q}} \tag{V.r.rY}
\end{equation*}
$$

ميّستت

$$
\begin{equation*}
\frac{d \mathbf{K}_{\boldsymbol{R}}}{d x}=\mathbf{U}^{T} \frac{d \mathbf{K}}{d x} \mathbf{U}+\frac{d \mathbf{U}^{T}}{d x} \mathbf{K} \mathbf{U}+\mathbf{U}^{T} \mathbf{K} \frac{d \mathbf{U}}{d x} \tag{V.r.r.r}
\end{equation*}
$$

عبـارات مشـابهى بـرای مْتـتـات استت كـه مشتـــات مـربوطه، با محامسبات ميتتق تفاضل مسحدود بـه ترتيب همر اه بـا مـودهـاى نـابـت يـا

 مودهاى ارتعاث هر هزينه امـت و به همين دليل رويـكرد مـود ثابت، مـناسـبـ تر السـتـ. بـا وجـود ايـن همان كونه كه در مثال زيـر نشان داده مى شمود رويكرد مود بهنـام بعضى اوتات مى تواند بسـيـار دمـيـــتـر

Y.r.P. مثال

 را نسبت به ثابت kى آخرين ننر سمت جب بدست آوربد. سبس آن را با مشتقات دقيق برای . 1.0

تحاليل مدل كامل:

 استفاده مى كنيم كه مؤلفه دوم،

$$
\mathrm{u}=\left\{\begin{array}{c}
\mu^{2}+1 \\
1
\end{array}\right\} .
$$

براى محاسبه مشتق μ نسبت به سختى Kk آخرين فنر سمت خب، از معادله (V. Y. YV) و با ماتريسهاى

$$
\begin{aligned}
& \mathbf{M}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad \mathbf{C}=\left[\begin{array}{ll}
c & 0 \\
0 & 0
\end{array}\right], \quad \mathbf{K}=\left[\begin{array}{cc}
k+1 & -1 \\
-1 & 2
\end{array}\right], \\
& \mathbf{M}^{\prime}=0, \quad \mathbf{C}^{\prime}=0, \quad \mathbf{K}^{\prime}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
\end{aligned}
$$

كه نماد برايم برایى مشتق نسبت بـ k به كار رفته است. آن كاه از معادله (V . Y . Y . داربم:

$$
\mu^{\prime}=-\frac{\mathbf{u}^{T} \mathbf{K}^{\prime} \mathbf{u}}{\mathbf{u}^{T}(\mathrm{C}+2 \mu \mathbf{M}) \mathbf{u}}=\frac{-\left(\mu^{2}+2\right)^{2}}{c\left(\mu^{2}+2\right)^{2}+2 \mu\left[\left(\mu^{2}+2\right)^{2}+1\right]}
$$

$$
\begin{array}{lll}
\mu=-0.05025+1.0013 i, & \mu^{\prime}=0.02525+0.2522 i & : c=0.2 \\
\mu=-0.29178+1.0326 i, & \mu^{\prime}=0.1544+0.3460 i & : c=1.0
\end{array}
$$

تحسيل كاهشى:

برایى بردار ويزه مدل كامل آن است كه مولفه دوم آنذ برابر يكى بائد، مودارتعاش بانرمال سـازى مـنابهى را
 استغاده شده حر اين جاست خط بـر بايلاى آن را بر مى داريم.

$$
u=\left\{\begin{array}{l}
1 \\
1
\end{array}\right\} .
$$

$$
\begin{aligned}
& \mathbf{M}_{R}=2, \quad \mathbf{C}_{R}=c, \quad K_{R}=2 .
\end{aligned}
$$

$$
\begin{aligned}
& \left(2 \mu^{2}+c \mu+2\right) q=0,
\end{aligned}
$$

بنابراين :

$$
\mu_{R}=-0.25 c+i \sqrt{1-0.0625 c^{2}},
$$

كه زيرنويس R برايى نشان دادن اين كه مقدار ويرّه به دست آمده مربوط به سبستم كاهش يانته است به كار مى رود. برای بردار ويزه كه داراى فتط يك مولفه است

$$
\begin{array}{ll}
\mu_{R}=-0.05+0.9987 i & : c=0.2 \\
\mu_{R}=-0.25+0.9682 i & : c=1.0
\end{array}
$$

روشّن است كه مدل كاهش يانته برایى حالت استهالك كم، نتيجه هاى بسبار خويى مى دهد و براى حالت استهالك زياد داراى خططاى متوسطى است. مشتق مود ثابت:

برای مشتت مودثابت، بار ديكر از معادله (V. Y. YV) استغاده مى كنيم، ولى اين باربا جايكزين كردن

$$
\mu^{\prime}=-\frac{\mathbf{u}^{T} \mathbf{K}^{\prime} \mathbf{u}}{\mathbf{u}^{T}\left(\mathbf{C}+2 \mu_{R} \mathbf{M}\right) \mathbf{u}}=\frac{-1}{c+4 \mu_{R}}
$$

براى دو مقدار c خواههيم داثـت :

$$
\begin{array}{ll}
\mu_{R f}^{\prime}=0.2503 i & : c=0.2 \\
\mu_{R J}^{\prime}=0.2582 i & : c=1.0
\end{array}
$$

كه از زيرنويس f براى نششان دادن اين كه مستقات از روش مود ثاببت محاسبه شده امتتفاده مى كردد . تو جه داريم كه مشتت تـسمت مجازى (بسامد) نقط در محالت استهلاك كم خوب امست و اين كه مشتت مو دثابتت،
 مى تـواند اتغات بيغتل . يادآور مى شود كه بهترين تنخمين اندازه مشتّت به كمك مشـتـت لـكـاريتــــى انجـام مى شود . مشتتق لكاريتمى قــمـت حفيقى براى حالت استهلالك كم عبارت امـت از :

$$
\frac{d \mu^{r} / \mu^{r}}{d k / k}=0.02525 /(-0.05025)=-0.5025
$$

بنابراين كاملاَ قابل توجه امـت .
مشتق مود بهنكام:
در اين حاللت به مشتت مودارتعاش نسبت به k نياز داريم . اين مشُتق در مثال I . Y. Y به صورت زير محاسبه شده امـت : (به خاطر داشته باسُيد كه از $\mathbf{u}^{\prime}=\left\{\begin{array}{c}-0.5 \\ 0\end{array}\right\}$.

ستس از معادله (V. Y. . M) داريم:
$\mathbf{K}_{R}^{\prime}=\mathbf{u}^{T}\left[\mathbf{K}^{\prime} \mathbf{u}+2 \mathbf{K} \mathbf{u}^{\prime}\right]=\left[\begin{array}{ll}1 & 1\end{array}\right]\left[\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]\left\{\begin{array}{l}1 \\ 1\end{array}\right\}+2\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right]\left\{\begin{array}{c}-0.5 \\ 0\end{array}\right\}\right]=0$.

$$
\begin{aligned}
\mathbf{M}_{R}^{\prime} & =2 \mathbf{u}^{T} \mathbf{M u} u^{\prime}=2\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left\{\begin{array}{c}
-0.5 \\
0
\end{array}\right\}=-1 \\
\mathbf{C}_{R}^{\prime} & =2 \mathbf{u}^{T} \mathbf{C u}^{\prime}=2\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{ll}
c & 0 \\
0 & 0
\end{array}\right]\left\{\begin{array}{c}
-0.5 \\
0
\end{array}\right\}=-c
\end{aligned}
$$

$$
\mu_{R u}^{\prime}=-\frac{-c \mu_{R}-\mu_{R}^{2}}{4 \mu_{R}+c}
$$

برائى دو مقدار c داريم

$$
\begin{array}{ll}
\mu_{R u}^{\prime}=0.025+0.2513 i & : c=0.2 \\
\mu_{R u}^{\prime}=0.125+0.2843 i & : c=1.0
\end{array}
$$

كه نسبت به
در بسيارى از كاربر دها ماتريس امتههلكُ متقارن نيست و بهتر امست معادلات حركت (V. Y. Y) به يكى دستگاه مرتبه اول به شـكل زير تبديل شـود.

$$
\begin{equation*}
\mathbf{B} \dot{\mathbf{w}}+\mathbf{A} \overline{\mathbf{w}}=0 \tag{V.r.rY}
\end{equation*}
$$

$$
\begin{aligned}
& \mathbf{A}=\left[\begin{array}{cc}
\mathbf{C} & \mathbf{K} \\
-\mathbf{I} & 0
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{cc}
\mathbf{M} & 0 \\
0 & \mathbf{I}
\end{array}\right], \quad \overline{\mathbf{w}}=\left\{\begin{array}{l}
\dot{\mathbf{u}} \\
\overline{\mathbf{u}}
\end{array}\right\} . \quad(v . r . r \Delta) \\
& \text { با ترار دادن } \\
& \overline{\mathbf{w}}=\mathbf{w} e^{\mu t}, \\
& \text { (V.r.r.s) } \\
& \text { يكى مسآله مقدار ويزء مرتبه اول به دمت مى آرريم : } \\
& \mathbf{A w}+\mu \mathbf{B w}=0 . \\
& \text { (v.r.ry) }
\end{aligned}
$$

برایى محاسبه مشتقات مقادير ويرّه استفاده از بردار ويزه سمت جـــي v كه بجواب مسآله ويزه مربوط به آن امت راحت تر اسـت. مسآله مقدار ويزه عبارت امست از :

$$
\mathbf{v}^{T} \mathbf{A}+\mu \mathbf{v}^{T} \mathbf{B}=0
$$

FY4 مبشُ V. F.
 به متغير طراحىى

$$
\begin{aligned}
&(\mathbf{A}+\mu \mathbf{B}) \frac{d \mathbf{w}}{d x}+\left(\frac{d \mathbf{A}}{d x}+\mu \frac{d \mathbf{B}}{d x}\right) \mathbf{w}+\frac{d \mu}{d x} \mathbf{B w}=0, \\
& \frac{d \mu}{d x}=-\frac{\mathbf{v}^{T}\left(\frac{d \mathbf{A}}{d x}+\mu \frac{d \mathbf{B}}{d x}\right) \mathbf{w}}{\mathbf{v}^{T} \mathbf{B} \mathbf{w}} \text { (vq) } \\
&: \quad \text { (V.r.ץ.) }
\end{aligned}
$$

بـرایى يافتن مشتقات بـردار ويـرّه به يك شرط نرمال سازى نياز داريم . يك شـرط درجهه دوم مانند معادلـه
 اين المكان را با جايگزين كردن ترانهاده هرميتى به جالى ترانهاده از بين بيريم، شرط

$$
\begin{equation*}
\mathbf{w}^{H} \mathbf{W} \mathbf{w}=1 \tag{V.r.FI}
\end{equation*}
$$

يك بردار ويزه منحصر به فرد را تمريف نمى كند، زيرا هنوز مى توان بردار ويزء ها در هر عدد مختلطى از

بردار ويزه به صورت:

$$
\begin{equation*}
\mathbf{v}^{T} \mathrm{~B} \mathbf{w}=1, \quad w_{m}=v_{m}=1 \tag{V.Y.YY}
\end{equation*}
$$

نرمال سازی شود، و m به كونها انى انتخابب شود كه هم mw و هم v كوجكى نباشد . مشتق شُرط نرمال سازى روابط زير را مي دهد:

$$
\begin{equation*}
\frac{d w_{\mathrm{m}}}{d x}=0, \quad \frac{d v_{\mathrm{m}}}{d x}=0 \tag{V.Y.YY}
\end{equation*}
$$

 مححاسبه مشتقات بردار ويزه است. مانتد حالت متقارن، روش الـحاتّى برایى محاسبه هميـن مــــتـــات،
 صورت

مباتى بهین سازى سازه ما (فصل V : تسـاسيت سيسنمهای كسسته) FA.

$$
\begin{equation*}
\frac{d w^{k}}{d x}=\sum_{j=1}^{1} c_{k j} w^{j} \tag{V,Y.FF}
\end{equation*}
$$

و ضرايب ck عبارتند از :

$$
\begin{equation*}
c_{k j}=\frac{\mathbf{v}^{j T}\left(\frac{d \mathbf{A}}{d x}+\mu \frac{d \mathbf{B}}{d x}\right) \mathbf{w}^{k}}{\left(\mu_{k}-\mu_{j}\right) \mathbf{v}^{j T} \mathbf{B} \mathbf{w}^{j}}, \quad k \neq j \tag{V.Y.YO}
\end{equation*}
$$

$$
\begin{equation*}
c_{k k}=-\sum_{j \neq k} c_{k j} w_{m}^{j} \tag{V,r.Y६}
\end{equation*}
$$

 مصاسبه مستق، برش سرى بدون در نظر كرفنت همه بردارهاى ويزه نيز امكان بذير است . اين، سبـب بـه وجود آمدن خطالع مى ثـود كه در حالت كلي، بستكى به نوع مساله دارد ـ اطلاعات بـيـشــترى در مـورد كزينه هاى مـختلف مـحا سبه مشُتق را در مر جع [10] مى توان يافت.

V V . r . r در مسـاتل لرزم و ارتعاشـات غير خطط با مسـاتل مقدار ويرّه الى كه وابستكى به مقدار ويرّه در آن خطىى
 كه يكي مسأله مقدار ويره نوف العاده به نـكل :

$$
\mathbf{A}(\mu, x) \mathbf{u}=0
$$

$$
(V, Y, Y V)
$$

بـا استفاده از شـرط نـرمــال سـازى ($d \mu / d x$

$$
\begin{align*}
& \text { توليد مى كند. با ديفرانسيل كيرى از معادله (V . Y . FV) داريـم: } \\
& A \frac{d \mathbf{u}}{d x}+\frac{d \mu}{d x} \frac{\partial \mathbf{A}}{\partial \mu}=-\frac{\partial \mathbf{A}}{\partial x} \mathbf{u}
\end{align*}
$$

$$
\mathbf{v}^{T} \mathbf{A}=0, \quad v_{\mathrm{m}}=1 \quad(V, r, \text { rq) }
$$

$$
\begin{align*}
\text { امكان بذير است و می توان رابطه زير رابدست آورد: } \\
\frac{d \mu}{d x}=-\frac{\mathbf{v}^{T} \frac{d A}{d x} \mathbf{u}}{\mathbf{v}^{\top} \frac{d A}{d \mu} \mathbf{u}}
\end{align*}
$$

بك راه حل مـترك مساثل لرزشى اين امت كه دو متغير حتيتى كه بسامد و سرعت است رابه صورت يك

$$
\mathbf{A}(M, \omega) \mathbf{u}=0
$$

جايكزين كرد كه در آن M عدد ماخ و M بسامد و هر دو متغير هاى حتيقيند. با استفاده از اين رويكـرد ر

$$
f_{M} \frac{d M}{d x}+f_{\omega} \frac{d \omega}{d x}=-f_{z}
$$

ك

$$
\begin{aligned}
& \left.f_{M}=\mathbf{v}^{T} \frac{\partial \mathbf{A}}{\partial M} \mathbf{u}, \quad f_{\omega}=\mathbf{v}^{T} \frac{\partial \mathbf{A}}{\partial \omega} \mathbf{u}, \quad f_{x}=\mathbf{v}^{T} \frac{\partial \mathbf{A}}{\partial x} \mathbf{u} . \quad \text { (V.r. } \Delta r\right)
\end{aligned}
$$

$$
\begin{align*}
& f_{M} \bar{f}_{\omega} \frac{d M}{d x}+\left|f_{\omega}\right|^{2} \frac{d \omega}{d x}=-\bar{f}_{\omega} f_{x}
\end{align*}
$$

$$
\begin{aligned}
& \text { (V. Y. OF) }
\end{aligned}
$$

$$
\frac{d \omega}{d x}=-\frac{I m\left[\left(\mathbf{v}^{T} \frac{\partial \mathbf{A}}{\partial x} \mathbf{u}\right)\left(\overline{\mathbf{v}}^{T} \frac{\partial \overline{\mathbf{A}}}{\partial M} \overline{\mathbf{u}}\right)\right]}{\operatorname{Im}\left[\left(\mathbf{v}^{T} \frac{\partial \mathbf{A}}{\partial M} \mathbf{u}\right)\left(\overline{\mathbf{v}}^{T} \frac{\partial \overline{\mathbf{A}}}{\partial \omega} \overline{\mathbf{u}}\right)\right]}
$$

در مقايسه با فيود یاسـخ حالت يكنواخت، قيود باسخ كذرا به يكى متغير ديكر يعنى زمان وابستش است . يعنى يك قيد نمونه به صورت زير نوشته مى ثمود :

$$
\begin{equation*}
g(\mathbf{u}, x, t) \geq 0, \quad 0 \leq t \leq t_{f} \tag{Y,Y,1}
\end{equation*}
$$

كه برای سـاده سـازى فرض مى كنيم كه قيد بايل از $t=0$ تا يك زمان نهامی $t=$ برآورده مُود. در محاسبات واتعى، قيود بايد در n نقطه زمانى به شُكل زير تقسيم شُوند :

$$
\begin{equation*}
g_{i}=g\left(\mathbf{u}, x, t_{i}\right) \geq 0, \quad i=1, \ldots, n_{i} \tag{Y,Y,Y}
\end{equation*}
$$

توزيع نقاط زمان بايل بـه أنـدازه' كافى متر اكم باشثند تا از احتمال نقض تيـد تابل توجـه بـيـن نــــاط زمـان جلوكيرى كند . اين نوع تقسيم بندى تيد مى تواند تعداد تيود و در نتيجه هزينه بهـينـه سازى را بـه ميـزان
 تعداد تيود مطلوب است. V. Y. 1 يكى راه برایى برداثتن وابستگى ڤيد به زمان، جايكزين كردن آّن با يكى تيد معادل كه برترارى فيـد را روى يكى فاصلد زمانى ميانگين سـازى مى نمايد المت. يكى نمونه تيد خارجى معادل :

$$
\bar{g}(\mathbf{u}, x)=\left[\frac{1}{t_{f}} \int_{0}^{t_{f}}<-g(\mathbf{u}, x, t)>^{2} d t\right]^{1 / 2}, \quad \text { (Y.Y.Y) }
$$

 و معادله (V. F. Y) است.

$$
\begin{equation*}
g(u, x)=\frac{-1}{\rho} l n\left[\sum_{i=1}^{n_{1}} e^{-\rho s_{i}} d t\right], \tag{V,F,F}
\end{equation*}
$$

 هسادله (V. F. F) را مى توان به صورت:

$$
\begin{equation*}
\bar{g}=g_{\text {min }}-\frac{1}{\rho} l n\left[\sum_{i=1}^{n_{t}} e^{-\alpha\left(\rho_{i}-g_{\text {mis }}\right)_{t}} d t\right] . \tag{V.F.©}
\end{equation*}
$$

نوشُت . از معادله (V. F . ©) داريم:

$$
\begin{equation*}
\bar{g}=g_{\min }-\frac{1}{\rho} l n\left[\sum_{i=1}^{\pi_{1}} e^{-\rho\left(g_{i}-g_{\min }\right)} d t\right] . \tag{V,Y,9}
\end{equation*}
$$

بنابراين ؤ يك تيد بوش الست كه هميشـه از و بحرانى تر است. متغير P مشُخصس مى سازد كه وَ هه مقدار
 مسالله ممكن است بدخيم شود.
 ممكن است كاذب به نظر رسد، جرن محاسـبه' انتـكرال در مــادله (V. F. Y يا حاصلجمع در معادله (V. F . F) يانته در بهينه سازى و محاسبه مستقات تيد بعدآ بحت خورامد شد . اشكال تيود سعادل اين امت كه ممكن است آنها روند طراحى را نامشتخص كند. . بهعنوان مثال يــ
 شُكل متقل مى كند. تيد معادل ممكن است مبت تر شود، كه نمايانكر اثر مغيدى است، در حـالـى كــ

 مى كنيم. يعنى

1) Kresselmeier- steinhauser

$$
\begin{equation*}
g\left(\mathbf{u}, x, t_{m i}\right) \geq 0, \quad i=1,2 \ldots \tag{V,F,V}
\end{equation*}
$$

كه نشان مى دهد كه تابع قيد دو مينيمـم محلى دارد : يكى مينيمم داخلى در مينيمم شاى محلى نقاط بحر انيند به اين مفهوم كه آنها نمايانكر اولين نقاط زمانى اند كه تمايل به نتض تيد دارند
 بحرانى در زمان را ثابت فرض كرد . اين مطلب با مشتق كيرى از مسادله (V. Y. . نسبت به متغير طراسىx نشان داده مى شود.

$$
\frac{d g\left(t_{m i}\right)}{d x}=\frac{\partial g}{\partial x}+\frac{\partial g}{\partial \mathbf{u}} \frac{d \mathbf{u}}{d x}+\frac{\partial g}{\partial t} \frac{d t_{m i}}{d x}
$$

 (V. Y. 1) باشلد، يك مينيمـم مرزى زمانى خواميم داشت. اين مينيمهم مرزى نمى تواند به بيرون مرز حركـت كــدـ، مكر اين كه شيب $\partial g / \partial t$ حـفر شود . اين بدان معنى است كه زمانى كـه $\partial g / \partial t$ در يك مينيمـم مرزى صفر

V. r. r

به منظور محاسبه مشتقات قيود فرض مى كنيم كه قيد به شكل

$$
\begin{equation*}
\bar{g}(\mathbf{u}, x)=\int_{0}^{t /} p(\mathbf{u}, x, t) d t \geq 0 \tag{Y,Y,9}
\end{equation*}
$$

امـت ـ اين شكل نمايانكر اكثر قيود معادل ، و قيد نقطه بحرانى امـت كه با نعريف

$$
p(\mathbf{u}, x, t)=g(\mathbf{u}, x, t) \delta\left(t-t_{m i}\right)
$$

مى توان آن را يانت. مسُتتق قيد نسبت به متغير طراحى x عبارت است از :

$$
\begin{equation*}
\frac{d \bar{g}}{d x}=\int_{0}^{t /}\left(\frac{\partial p}{\partial x}+\frac{\partial p}{\partial \mathbf{u}} \frac{d \mathbf{u}}{d x}\right) d t \tag{V.Y.11}
\end{equation*}
$$

براى محانسبه انتكراله، نياز به مشتت كيرى از معادلات حركت نسبت بـه x داريم . اين معادلات به شكل كلى مرتبه اول زير نوشته مى شوند :

$$
\mathbf{A} \dot{\mathbf{u}}=\mathbf{f}(\mathbf{u}, x, t), \quad \mathbf{u}(0)=u_{0}, \quad(V . Y . \mid Y)
$$

كه u بردار درجه آزادى تعميم يافته و f بردار در بر كيرنده بارهاى داخلى و خار جى است. اكثون بر روى جندين روش محاسبه مشتت قيد بحـ مى كنيم و با ساده ترين آنها، يعنى روش مستڤيم
 يانتن معادلهاى برأى du/dx مُروع مى شود.

$$
\mathrm{A} \frac{d \dot{\mathrm{u}}}{d x}=\mathrm{J} \frac{d \mathrm{u}}{d x}-\frac{d \mathbf{A}}{d x} \dot{\mathrm{u}}+\frac{\partial \mathrm{f}}{\partial x}, \quad \frac{d \mathrm{u}}{d x}(0)=0, \quad(\vee, Y, \mid \Psi)
$$

كه J رُاكوبين f امـت.

$$
J_{i j}=\frac{\partial f_{i}}{\partial u_{j}}
$$

 جايكزين مى شود. اشكال اين روش اين است كه براى هر متغير طراحى به حل يـك دسـتكـاه مـعـادلات
 قيد كم است، مى توانيم مانند حـالـت ايسـتاييى از يك بردار مـتغغير مـاى الحـاقى كه نقـط به توابع

 اضانه كردن آنها به مشتقـات قيود را بـيـيكـرى ممى كـنــم.

$$
\frac{d \bar{g}}{d x}=\int_{0}^{t_{f}}\left(\frac{\partial p}{\partial x}+\frac{\partial p}{\partial \mathbf{u}} \frac{d \mathbf{u}}{d x}\right) d t+\int_{0}^{t_{f}} \lambda^{T}\left(\mathbf{A} \frac{d \dot{\mathbf{u}}}{d x}-\mathrm{J} \frac{d \mathbf{u}}{d x}-\frac{\partial \mathbf{f}}{\partial x}+\frac{d \mathbf{A}}{d x} \dot{\mathbf{u}}\right) d t \text { (V.f., } 0 \text {) }
$$

مى خو/هيم مهه جملات شمامل du/dx را با هم دسته بندى كرده و يكـ متغير الحاتى تعريف كينيم آن جنان كه ضريبب

$$
\begin{align*}
\frac{d \bar{g}}{d x} & =\int_{0}^{t_{f}}\left\{\frac{\partial p}{\partial x}-\lambda^{T}\left(\frac{\partial \mathbf{f}}{\partial x}-\frac{d \mathbf{A}}{d x} \dot{\mathbf{u}}\right)+\left[\frac{\partial p}{\partial \mathbf{u}}-\lambda^{T}(\dot{\mathbf{A}}+\mathrm{J})-(\dot{\boldsymbol{\lambda}})^{T} \mathbf{A}\right] \frac{d \mathbf{u}}{d x}\right\} d t \\
& +\left.\boldsymbol{\lambda}^{T} \mathbf{A} \frac{d \mathbf{u}}{d x}\right|_{0} ^{t_{f}} . \tag{V,Y,19}
\end{align*}
$$

معادله (V. F . 19) نشان مى دهد كه متغير الحاتى بايد رابطه

$$
\begin{align*}
& \mathbf{A}^{T} \dot{\boldsymbol{\lambda}}+\left(\mathbf{J}^{T}+\dot{\mathbf{A}}^{T}\right) \boldsymbol{\lambda}=\left(\frac{\partial p}{\partial \mathrm{u}}\right)^{T}, \quad \boldsymbol{\lambda}\left(t_{f}\right)=0 . \quad \text { (V,F.VV) } \\
& \text { را برآورده كند. سبس از معادله (V. Y . 19) خواهيم داشت: } \\
& \frac{d \bar{g}}{d x}=\int_{0}^{t_{s}}\left[\frac{\partial p}{\partial x}-\lambda^{T}\left(\frac{\partial \mathbf{f}}{\partial x}-\frac{d \mathbf{A}}{d x} \dot{\mathbf{u}}\right)\right] d t,
\end{align*}
$$

كـه از ايـن حفيقت كه بكى دستكاه معادلات ديفرانسيل معمرلى بر حسب גاست كه به صورت بسرو انتكرال كيرى شده اسـت (از ايســايى منـكامى كـه تعلاد متغير طراحى كمتر از تعداد تيود باشـد، روش مستقيم ترجيح داردو در در غير ايـن صورت روش الحاتى برترى دارد. معـادلـ (V. F . IV) براى فيد نقطه بحرانى يكى شكـل سـاده تر
rar

$$
\mathbf{A}^{T} \dot{\lambda}+\left(\mathbf{J}^{T}+\dot{\mathbf{A}}^{T}\right) \boldsymbol{\lambda}=\left(\frac{\partial g}{\partial \mathbf{u}}\right)^{T} \delta\left(t-t_{m i}\right), \quad \lambda\left(t_{f}\right)=0 . \quad \text { (V.F.19) }
$$

به وسيله انتكرال كيرى از معادله (V. F. 19) از 19 (V. F. 19 (به راحتى نـان دهيم كه معادله (V. Y. 19) معادل است با:

$$
\mathbf{A}^{T} \dot{\lambda}+\left(\mathbf{J}^{T}+\dot{\mathbf{A}}^{T}\right) \boldsymbol{\lambda}=0, \quad \boldsymbol{\lambda}^{T}\left(t_{m i}\right)=-\frac{\partial g}{\partial \mathbf{u}}\left(t_{m i}\right) \mathbf{A}^{-1}
$$

سومين روشى كه براى محاسبه مشتق در دسترس است رويكرد تـابـع كريـن ' [23] مىباشد. ايـن روش زمانى مفيد است كه تعلاد درجه آزادى در معادله (V. F. IY) كمتر از تعداد متغير هاى طراحى يا تـعـداد تيود امست. اين حالت زمانى به وجود مى آيد كه مرتبه معادله (V. F F . IY) با به كاركيرى تحليل مودال
 معادله (V. F. IT) بي صورت زير در خواهد آمد.

$$
\begin{equation*}
\frac{d \dot{\mathrm{u}}}{d x}=\mathrm{J} \frac{d \mathrm{u}}{d x}+\frac{\partial \mathrm{f}}{\partial x}, \quad \frac{d \mathbf{u}}{d x}(0)=0 . \tag{V.F.YI}
\end{equation*}
$$

حل معادله (V. F. Y () مى تواند به صورت جملاتى از تابع كرين (K(t,r) به صورت: $\frac{d \mathbf{u}}{d x}=\int_{0}^{t} \mathbf{K}(t, \tau) \frac{\partial \mathbf{f}}{\partial x}(\tau) d \tau$,

نويُته شوود [23] كه K(t,r) معادلات زير را برآر رده مى كند.

$$
\dot{\mathbf{K}}(t, \tau)-\mathbf{J}(t) \mathbf{K}(t, \tau)=\delta(t-\tau) \mathbf{I},
$$

$$
\mathbf{K}(0, \tau)=0,
$$

 شده در معادله(V. Y. YY) در واتع معادل (V. Y. Y () را برآررده مى كند.

$$
\begin{array}{ll}
\mathbf{K}(t, \tau)=\mathbf{0}, & t<\tau, \\
\mathbf{K}(\tau, \tau)=\mathbf{I}, & \tag{V.Y.YY}\\
\dot{\mathbf{K}}(t, \tau)-\mathbf{J}(t) \mathbf{K}(t, \tau)=0, & t>\tau .
\end{array}
$$

 نقاط بايـانى در
 دتت مورد نظر ، به اندازه كانى متراكمند. اكنون مساله مقدار اوليه زير را تعريف ميكنيهـ :

$$
\begin{align*}
& \dot{\mathbf{K}}\left(t, \tau_{k}\right)-\mathbf{J}(t) \mathbf{K}\left(t, \tau_{k}\right)=0, \\
& \mathbf{K}\left(\tau_{k}, \tau_{k}\right)=\mathbf{1},
\end{align*}
$$

 مقدار K برایى هر جفت ديكر از نقاط به وسيله معادله زير بيان مى شود (براى انبات مرجع [23] را بيبنيد)

$$
\mathbf{K}\left(\tau_{j}, \tau_{k}\right)=\mathbf{K}\left(\tau_{j}, \tau_{j-1}\right) \mathbf{K}\left(\tau_{j-1}, \tau_{j-2}\right) \ldots \mathbf{K}\left(\tau_{k+1}, \tau_{k}\right), \quad j>k . \quad(\mathbf{Y}, \mathcal{Y}, Y \mathcal{Y})
$$

 كرين به كار رود. اين حالت به احتمال زياد وتىى اتفاق مي انتد كه مرتبه دستكاه با استفاده از بعضى انواع تقريب مودال يا تقريبهاى كاهشى ديكر كاهش يانته باشدل .
Y.Y. 1 مثال

يك سيستم يكى درجه آزادى كه با معادله ديفرانسيل زير بيانمي شود:

$$
a \dot{u}=(u-b)^{2}, \quad u(0)=0
$$

و يك قيد بر باسخ u به ثـكل

$$
g(u)=c-u(t) \geq 0, \quad 0 \leq t \leq t_{f} .
$$

دارد را در نظر بكيريد. ملاحظه شده كه باسخ محامبب شُه به طور يكنوا الزايش مى يابل، بنابراين تَيد نتطه بحرانى ثـكل زير را به خود مى كيرد:

PAR V. F تحساميت قيود باسخ كذر!

$$
\bar{g}(u)=g\left[\left(u\left(t_{f}\right)\right]=c-u\left(t_{f}\right) .\right.
$$

 از مسـاله مى توان براى يانتن :

$$
u=\frac{b^{2} t}{b t+a} .
$$

مستقيماً انتُرال كيرى كرد. با اين نمادها داريم:

$$
\mathbf{A}=a, \quad \mathbf{J}=\frac{\partial \mathbf{f}}{\partial \mathbf{u}}=2(u-b) .
$$

 a $x=a$

$$
a \frac{d \dot{u}}{d a}=2(u-b) \frac{d u}{d a}-\dot{u}, \quad \frac{d u}{d a}(0)=0 .
$$

در حالت كلى مقادير u u و نتط به صورت عددى در دسترسند، بنابراين معادله du/da نيز به صـورت
 را در معادله مشتق جايكزين كنيم

$$
a \frac{d \dot{u}}{d a}=\frac{2 a b}{b t+a} \frac{d u}{d a}-\frac{a b^{2}}{(b t+a)^{2}}, \quad \frac{d u}{d a}(0)=0,
$$

با حل تحليلى آن خواهيم داشت :

$$
\frac{d u}{d a}=-\frac{b^{2} t}{(b t+a)^{2}} .
$$

$$
\frac{d \bar{g}}{d a}=-\frac{d u}{d a}\left(t_{f}\right)=\frac{b^{2} t_{f}}{\left(b t_{f}+a\right)^{2}} .
$$

$$
\begin{aligned}
& \text { FA P * } \\
& a \frac{d \dot{u}}{d b}=2(u-b) \frac{d u}{d b}-2(u-b), \quad \frac{d u}{d b}(0)=0 . \\
& \text { با حل برایى du/db خوراهيم داثـت } \\
& \frac{d u}{d b}=\frac{b^{2} t^{2}+2 a b t}{(b t+a)^{2}},
\end{aligned}
$$

و سّس

$$
\frac{d \tilde{g}}{d b}=-\frac{d u}{d b}\left(t_{j}\right)=-\frac{b^{2} t_{j}^{2}+2 a b t_{j}}{\left(b t_{j}+a\right)^{2}} .
$$

روش الحاتی: در روش الـحاقى نياز به حل معادله (V. F. Y) مى باشُد كه عبارت است از :

$$
a \dot{\lambda}+2(u-b) \lambda=0, \quad \lambda\left(t_{f}\right)=-\frac{1}{a} \frac{\partial g}{\partial u}\left(t_{f}\right)=\frac{1}{a}
$$

$$
a \dot{\lambda}-\frac{2 a b}{b t+a} \lambda=0, \quad \lambda\left(t_{f}\right)=\frac{1}{a},
$$

كه با انتكرال كيرى از آن داريم:

$$
\lambda=\frac{1}{a}\left(\frac{b t+a}{b t_{f}+a}\right)^{2}
$$

$$
\frac{d \stackrel{g}{g}}{d a}=\int_{0}^{t_{f}} \lambda \dot{u} d t=\int_{0}^{t_{f}} \frac{1}{a}\left(\frac{b t+a}{b t_{f}+a}\right)^{2} \frac{a b^{2}}{(b t+a)^{2}} d t=\frac{b^{2} t_{f}}{\left(b t_{f}+a\right)^{2}} .
$$

به طور منـابه do $d b$ عبارت اسـت از :

$$
\begin{aligned}
& \frac{d \tilde{g}}{d b}=\int_{0}^{t_{f}} 2 \lambda(u-b) d t=-\frac{2}{a} \int_{0}^{t_{f}}\left(\frac{b t+a}{b t_{f}+a}\right)^{2} \frac{a b}{b t+a} d t=-\frac{b^{2} t_{f}^{2}+2 a b t_{f}}{\left(b t_{f}+a\right)^{2}} . \\
& \text { روش تَابع كرين: مسأله را از نو به صورت زير طرح ريزى مى كنيم: } \\
& \dot{u}=(u-b)^{2} / a,
\end{aligned}
$$

بنابراين زاكوبين J عبارت اسـت از :

$$
J=2(u-b) / a .
$$

معادله (V. F. YF) به صورت زير در خواهد آمد $\dot{k}(t, \tau)-[2(u-b) / a] k(t, \tau)=0, \quad k(\tau, \tau)=1$,

$$
\dot{k}(t, \tau)+\frac{2 b}{b t+a} k(t, \tau)=0 .
$$

جواب kعبارت استاز :

$$
k=\left(\frac{b \tau+a}{b t+a}\right)^{2}, \quad t \geq \tau
$$

بنابراين از معادله (V. Y. Y M)

$$
\frac{d u}{d a}=\int_{0}^{t_{s}} \frac{\partial f}{\partial a} k d \tau=-\int_{0}^{t_{s}}\left(\frac{b \tau+a}{b t+a}\right) \frac{(u-b)^{2}}{a^{2}} d \tau=-\frac{b^{2} t}{(b t+a)^{2}} .
$$

بطور مشـابه

$$
\frac{d u}{d b}=\int_{0}^{t_{s}} \frac{\partial F}{\partial b} k d \tau=-\int_{0}^{t_{s}} 2\left(\frac{b \tau+a}{b t+a}\right)^{2}\left(\frac{u-b}{a}\right) d \tau=-\frac{b^{2} t^{2}+2 a b t}{(b t+a)^{2}} .
$$

ديناميك سازه هایى خطى V. . . . F
برای حالت ديناميكى سازه هاى خططى، حفظ كردن معادلات حركت به صورت مرتبه Y سودمندتر اسـت تا تبديل آن به يك مجموعه معادلات مرنبه اول . استفاده از كاهش مودال نيز برايا اين حالت عموميت دارد. دراين قـسمت در مورد كاربردر روشهاى مستقيم و الحاقى در اين حالت بخضصوص بحث مى كنيم . معادلات حركت به صورت زير نوشتشه بي شوند :

$$
\begin{equation*}
\mathbf{M} \ddot{u}+\mathbf{C u}+\mathbf{K} \mathbf{u}=\mathbf{f}(t) . \tag{V.Y.YV}
\end{equation*}
$$

آزادی سيستم اصلى، معادله (V. Y. YV) ، المت كاهش بی يابد.

$$
\begin{equation*}
\mathbf{u}=\mathbf{U q} \tag{V.Y.YA}
\end{equation*}
$$

 نوشته مى شوند:

$$
\begin{equation*}
\mathbf{M}_{R} \ddot{\mathbf{q}}+\mathbf{C}_{R} \dot{\mathbf{q}}+\mathbf{K}_{R} \boldsymbol{q}=\mathbf{f}_{R}, \tag{v,4,Y4}
\end{equation*}
$$

$$
\mathbf{M}_{R}=\mathbf{U}^{T} \mathbf{M U}, \quad \mathbf{C}_{R}=\mathbf{U}^{T} \mathbf{C U}, \quad \mathbf{K}_{R}=\mathbf{U}^{T} \mathbf{K} \mathbf{U}, \quad \mathbf{f}_{R}=\mathbf{U}^{T} \mathbf{f} . \quad \text { (V.F.r.) }
$$

هنكامى كه توابع بايه، اوليـن m مود ارتعاش طبيعى سمازه مقياس بندى شده بـ جرمهـهاى مـودال واحـد الست، U معادله زير را برآورده مى كند.

$$
\begin{equation*}
\mathbf{K U}-\mathbf{M U} \theta^{2}=0, \tag{V,F,ri}
\end{equation*}
$$

و K

 شد، مى توانيم براى محاسبه u از معادله (V . F. YA) استفاده كينم. اين روش كاهش مودال بد عنوان روش تنيير مكان مودى شناخته مى شود.
 خيلى آهسته بـاشــد [24,25] . ثمكرايه را مى توان به وسيله استفاده از روش شُتـاب مـودى كه در أصـل
 معادله (V. Y. YV) به صورت زير بدست مى آيد:

$$
\mathbf{u}=\mathbf{K}^{-1} \mathbf{P}-\mathbf{K}^{-1} \mathbf{C} \dot{\mathbf{u}}-\mathbf{K}^{-1} \mathbf{M} \ddot{\mathbf{u}} . \quad(V . Y . Y Y)
$$

اولين جمـله در معـادل (V. Y. YY) جواب شبه ايستايع ناميده مى شودزيرا باسـخ سازه به بارهايع است كه به آمستكى اعمال شدهاند. جملات دوم و سوم بر حسب جواب مودال تقريب خور رده انـد . مـى توان
 كنيد

$$
\begin{equation*}
\mathbf{K}^{-1}=\mathbf{U} \boldsymbol{\theta}^{-2} \mathbf{U}^{T} \tag{V.Y.YY}
\end{equation*}
$$

$$
\begin{align*}
& \text { با استفاده از اين تقريب براى جملات دوم و سوم معادل (V. Y . YY) داريم: } \\
& \mathbf{u} \approx \mathbf{K}^{\mathbf{- 1} \mathbf{q}}-\mathbf{U} \boldsymbol{\theta}^{\mathbf{- 2}} \mathbf{C}_{\boldsymbol{R}} \dot{\mathbf{q}}-\mathbf{U} \boldsymbol{\theta}^{\mathbf{- 2}} \mathbf{q} . \tag{V,f,r}
\end{align*}
$$

اكر U نـامل مجموعه تمام مودهاى ارتعاش باشد، اين نتريب جواب دتيت است. توجه داشتت باشيد كه
 تفاوتى بين روشهاى تغيير مكان مودى و شتاب مودى در سرعتها و شتابها وجود ندارد.
 حساسيت باسخ، با مشتق كيرى از معادلد (V. Y. YQ) بدست مى آيد

$$
\begin{equation*}
\mathbf{M}_{R} \frac{d \ddot{q}}{d x}+\mathbf{C}_{R} \frac{d \dot{\mathbf{q}}}{d x}+\mathbf{K}_{R} \frac{d \mathbf{q}}{d x}=\mathbf{r}, \tag{V.Y.ro}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{r}=\frac{d f_{R}}{d x}-\frac{d \mathbf{M}_{R}}{d x} \ddot{\mathbf{q}}-\frac{d \mathbf{M}_{R}}{d x} \dot{\mathbf{q}}-\frac{d \mathbf{K}_{R}}{d x} \mathbf{q} \tag{V.Y.ra}
\end{equation*}
$$

مشتق K K مى رود. با باستفاده ازيكمجموعهثابت توابع بايها U، ياناجيز فرض كردناثر تغيير در مودها، محاسبات به طور قابل توجهى ساده مى شوند. در بعضى حالات (به عنوان مثال[28])، خطاى ناحيز انكاثتن تنيير مودها كوجك است. هنگامى كه اين خطا غير تابل تبول است، با محاسبه بر هزيـنهُ مشتقات مودها كه

برای محاسبه مشتقات ماتريسهاى كاهش يانته، مانند معادله (V. Y. Y)، لازم است مواجه مى شويم. خونُبختانه كرين[27] بها اين نتيجه رسيد كه هزينه محامبه مشُتقات مودها را مى توان با استفـاده از روش مودال بهبود يانته، معادله (V. Y. 10) و تنها با نكهداثتن ارلين جمله در اين معادله، كامش داد. اين تقريب مشتقات مودها ممكن الست ميينه دقيق نباثـد، اما به نظر مى رسد كه براى محامبه حسـاسـيـت باسخ ديناميكى كافى است.

$$
\begin{align*}
& \text { در روش الحاتى يكى تيد به نـكل معادله (Q . Y . Y) فرض مى كنبه : } \\
& \tilde{g}(\mathbf{q}, x)=\int_{0}^{t} p(\mathbf{q}, x, t) d t \geq 0, \tag{V.f.rv}
\end{align*}
$$

بنابراين:

$$
\begin{equation*}
\frac{d \bar{g}}{d x}=\int_{0}^{t_{f}^{\prime}}\left(\frac{\partial p}{\partial x}+\frac{\partial p}{\partial \mathbf{q}} \frac{d \mathbf{q}}{d x}\right) d t \tag{V.Y.,YA}
\end{equation*}
$$

 ضرب كرده و آن را به مشتق تيد اضانه مى كنبم .

$$
\begin{equation*}
\frac{d \bar{g}}{d x}=\int_{0}^{t f}\left(\frac{\partial p}{\partial x}+\frac{\partial p}{\partial \mathrm{q}} \frac{d \mathbf{q}}{d x}\right) d t+\int_{0}^{t_{f}} \lambda^{T}\left(-\mathbf{M}_{R} \frac{d \ddot{q}}{d x}-\mathbf{C}_{R} \frac{d \dot{q}}{d x}-\mathbf{K}_{R} \frac{d \mathfrak{q}}{d x}+\mathbf{r}\right) d t . \tag{V.f.rq}
\end{equation*}
$$

مى خواميم با انتخاب مناسب ג از جملات مسُتق باسخ رها شويم. براى رها شُدن از مسنقات زمانى در جملات مشتّت باسخ، از انتگر ال جزه به جزء استفاده مى كنبه. خواهيم دائـت:

$$
\begin{align*}
\frac{d \bar{g}}{d x} & =\int_{0}^{t}\left\{\frac{\partial p}{\partial x}-\lambda^{T} \mathbf{r}+\left[\frac{\partial p}{\partial \mathbf{q}}-\ddot{\lambda}^{T} \mathbf{M}_{R}+\dot{\lambda}^{T} \mathbf{C}_{R}-\lambda^{T} \mathbf{K}_{R}\right] \frac{d \mathbf{q}}{d x}\right\} d t \\
& -\left.\lambda^{T} \mathbf{M}_{R} \frac{d \dot{\mathbf{q}}}{d x}\right|_{0} ^{t_{l}}+\left.\dot{\lambda}^{T} \mathbf{M}_{R} \frac{d \mathbf{q}}{d x}\right|_{0} ^{t^{\prime}}-\left.\lambda^{T} \mathbf{C}_{R} \frac{d \mathbf{q}}{d x}\right|_{0} ^{t /} \tag{V.F.F.}
\end{align*}
$$

اكر شرايط ارليه به متغير طراحى x وابسته نباشد، معادله (V. F. F.) تعريف زير رابراى ג مى دهد:

$$
\begin{equation*}
\mathbf{M}_{R} \ddot{\lambda}-\mathbf{C}_{R} \dot{\lambda}+\mathbf{K}_{R} \boldsymbol{\lambda}=\left(\frac{\partial p}{\partial \mathbf{q}}\right)^{T}, \quad \lambda\left(t_{f}\right)=\dot{\lambda}\left(t_{f}\right)=0 \tag{V.F.FI}
\end{equation*}
$$

و دبس معادله (V. F. F) به شكل زير در خواهد آمد .

P4A تهش V. 0 :تمرينها

$$
\begin{equation*}
\frac{d \bar{g}}{d x}=\int_{0}^{t_{s}}\left(\frac{\partial p}{\partial x}-\boldsymbol{\lambda}^{T} \mathbf{r}\right) d t \tag{V,Y,YY}
\end{equation*}
$$

(V. F . YV) در روش شتابِ مودى فتط روش مستقيم را در نظر مى كيريـم . با مشتت كيرى از معادله

$$
\frac{d \mathbf{u}}{d x}=\mathbf{K}^{-1}\left[\frac{d \mathbf{f}}{d x}-\frac{d \mathbf{K}}{d x} \mathbf{u}-\mathbf{C} \frac{d \dot{\mathbf{u}}}{d x}-\frac{d \mathbf{C}}{d x} \dot{\mathbf{u}}-\mathbf{M} \frac{d \ddot{\mathbf{u}}}{d x}-\frac{d \mathbf{M}}{d x} \ddot{\mathbf{u}}\right] . \quad \text { (V.Y.YY) }
$$

 برايى تقريب ساير جملالت استفاده مى كنيم.

$$
\begin{aligned}
\frac{d \mathbf{u}}{d x} \approx \mathbf{K}^{-1} & {\left[\frac{d \mathbf{f}}{d x}-\frac{d \mathbf{K}}{d x}\left[\mathbf{K}^{-1} \mathbf{f}-\mathbf{U} \theta^{-2} \mathbf{C}_{R} \dot{\mathbf{q}}-\mathbf{U} \boldsymbol{\theta}^{-2} \ddot{\mathbf{q}}\right]-\right.} \\
& \left.\mathbf{C U} \frac{d \dot{\mathbf{q}}}{d x}-\frac{d \mathbf{C}}{d x} \mathbf{U} \dot{\mathbf{q}}-\mathbf{M} \mathbf{U} \frac{d \ddot{\mathbf{q}}}{d x}-\frac{d \mathbf{M}}{d x} \mathbf{U} \ddot{\mathbf{q}}\right]
\end{aligned}
$$

سرانجام با استناده از تقريب مودال، K K معادله (Y K. Y)، داريم

$$
\frac{d \mathbf{u}}{d x} \approx \mathbf{K}^{-1}\left[\frac{d \mathbf{f}}{d x}-\frac{d \mathbf{K}}{d x} \mathbf{K}^{-1} \mathbf{f}\right]+
$$

$$
\begin{equation*}
\mathbf{U} \boldsymbol{\theta}^{-2} \mathbf{U}^{T}\left[\frac{d \mathbf{K}}{d x} \mathbf{U} \boldsymbol{\theta}^{-2} \mathbf{C}_{R} \dot{\mathbf{q}}-\frac{d \mathbf{C}}{d x} \mathbf{U} \dot{\mathbf{q}}-\mathbf{C U} \frac{d \dot{\mathbf{q}}}{d x}\right]+ \tag{V,Y,FO}
\end{equation*}
$$

$$
\mathbf{K}^{-1}\left[\frac{d \mathbf{K}}{d x} \mathbf{U} \boldsymbol{\theta}^{-2}-\frac{d \mathbf{M}}{d x} \mathbf{U}\right] \ddot{\mathbf{q}}-\mathbf{U} \boldsymbol{\theta}^{-2} \frac{d \ddot{\mathbf{q}}}{d x}
$$

 يانت

تمرينها V.ه

ا. با باستفاده از روش اجزای محلوده، برنامهاى براى محاسبه تغيير مكانها و تنتـهـا در خـريـاى سـه
 . $A_{A}=A_{B}=k A_{C}$ وسيله روش تغاضل مركزى و بيّرو محاسبه كنبد. حالتى را در نظر بكيريد كـي

الف) (د $k=10^{-m}$ نظر بگيريد كه m تعداد رتمهاى اعشارى استفاده شده در محاسبات منهاى Y اسـت . اندازه كام بهينه رانيز بيابيد
(ب) كوجكترين مقدار k كه اجازه مى دهد خطلا كمتر از • 1 \% باشد را بيابيد.
 كنيد، فرض كنيد كه مساحت هر سـه مقطع برابر A است. ابثدا مشتت را نسبت به مساحت مفطع عضو A با استفاده از رومّهاى مستقـم و الحاتى محاسبه كنيد . سیس مشتت را نسبت به سطع مططع هاى عضورهاى
. با استفاده از يكي از رومـها حساب كنيد C , B
Y. همه مشتقات دوم تنش در عضـو A مسالثه Y را نـسبت به مساحتهاى هر سـه سطع مقطع حـسـاب
.F. .F روشى براى محاسبه مشتقات سوم قيود تغيير مكان و تنشها بيابيد (حالت ايستابى) .
 ارتجاعى E و چكّالى جرمى ρ بيابيد . از خمش صرفنظر كنيد. سنس مشتّ بساملد را نسبت به مسـاحـت سطع مقطع هر سـه عضو به دست آرويد . همه مساحتها يكسان است . 9. مشتت كمترين مقدار ويره (از نظر تدر مطلن) مسالثه ه را نسبت به مقاومت c بكى مستهلكى كنتده
 c براى ساختن يكى نسبت امتهلال (منفى قسمت حفيقى تفسيم بر قدر مطلت مقدار ويزهم) برابر 0.05 انتخاب

شود (به كمك برو ن يابى خططى بر بايه قسمت (i) اين انتخاب را انجام دهيد)

MaV بخش V.0 : تمريئها

شكل r. تيردو دمانه

كمانشى را نسبت به كُنتاور ماند تسمت جب و راست محاسبه كرده و نتيجه بكيريد كه اقتصادى ترين راه

متناسب است.
A. عـارتى براى مشتقات دوم بار كمانشى نسبت به متغير هاى سازه به دست آوريد .

- ا. معادله حركت

$$
m \ddot{w}+c \dot{w}+k w=f(t)
$$

 .

Yا . مسـاله • ا را با استفاده از تابع كرين حل كنيد.
r| . مسآله • ا را با استفاده از روشهاى تغيير مكان مودى و شتابـ مدى با يكـ مود منفرد حل كنيد.
[1] Gill, P.E., Murray, W., Saunders, M.A., and Wright, M.H., "Computing ForwardDifference Intervals for Numerical Optimization", SIAM J. Sci. and Stat. Comp., Vol. 4, No. 2, pp. 310-321, June 1983.
[2] Iott, J., Haftka, R.T., and Adelman, H.M., "Selecting Step Sizes in Sensitivity Analysis by Finite Differences," NASA TM- 86382, 1985.
[3] Haftka, R.T., "Sensitivity Calculations for Iteratively Solved Problems," International Journal for Numerical Methods in Engineering, Vol. 21, pp.1535-1546, 1985.
[4] Haftks, R.T., "Second-Order Sensitivity Derivatives in structural Analysis", AIAA Journal, Vol. 20, pp.1765-1766, 1982.
[5] Barthelemy, B., Chon, C.T., and Haftka, R.T., " Sensitivity Approximation of Static Structural Response ${ }^{n}$, paper presented at the First World Congress on Computational Mechanics, Austin Texas, Sept. 1986.
[6] Barthelemy, B., and Haftka, R.T., "Accuracy Analysis of the Semi-analytical Method for Shape Sensitivity Calculations," Mechanics of Structures and Machines, 18, 3, pp. 407-432, 1990.
[7] Barthelemy, B., Chon, C.T., and Haftka, R.T., "Accuracy Problems Associated with Semi-Analytical Derivatives of Static Response," Finite Elements in Analysis and Design, 4, pp. 249-265, 1988.
[8] Haug, E.J., Choi, K.K., and Komkov, V., Design Sensitivity Analysis of Structural Systems, Academic Press, 1986.
[9] Cardani, C. and Mantegazza, P., "Calculation of Eigenvalue and Eigenvector Derivatives for Algebraic Flutter and Divergence Eigenproblems," ALAA Journal, Vol. 17, pp.408-412, 1979.
[10] Murthy, D.V., and Haftka, R.T., "Derivatives of Eigenvalues and Eigenvectors of General Complex Matrix", International Journal for Numerical Methods in Engineering, 26, pp. 293-311,1988.
[11] Nelson, R.B., "Simplified Calculation of Eigenvector Derivatives," AIAA Journal, Vol. 14, pp. 1201-1205,1976.
[12] Rogers, L.C., "Derivatives of Eigenvalues and Eigenvectors", AIAA Journal, Vol. 8, No. 5, pp. 943-944, 1970.
[13] Wang, B.P., Improved Approximate Methods for Computing Eigenvector Derivatives in Structural Dynamics," AIAA Journal, 29 (6), pp. 1018-1020, 1991.
[14] Sutter, T.R., Camarda, C.J., Walsh, J.L., and Adelman, H.M., "Comparison of Several Methods for the Calculation of Vibration Mode Shape Derivatives", AIAA Journal, 26 (12), pp. 1506-1511, 1988.
[15] Ojalvo, I.U., "Efficient Computation of Mode-Shape Derivatives for Large Dynamic Systems" AIAA Journal, 25, 10, pp. 1386-1390, 1987.
[16] Mills-Curran, W.C., "Calculation of Eigenvector Derivatives for Structures with Repeated Eigenvalues", AIAA Journal, 26 (7), pp. 867-871, 1988.
[17] Dailey, R.L., "Eigenvector Derivatives with Repeated Eigenvalues", AIAA Journal, 27 (4), pp. 486-491, 1989.
[18] Wilkinson, J.H., The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.
[19] Bindolino, G., and Mantegazza, P., "Aeroelastic Derivatives as a Sensitivity Analysis of Nonlinear Equations," AIAA Journal, 25 (8), pp. 1145-1146, 1987.
[20] Murthy, D.V., "Solution and Sensitivity of a Complex Transcendental Eigenproblem with Pairs of Real Eigenvalues, ${ }^{\text {² }}$ Proceedings of the 12th Biennial ASME Conference on Mechanical Vibration and Noise (DE-Vol. 18-4), Montreal Canada, September 17-20, 1989, pp. 229-234 (in press Int. J. Num. Meth. Eng. 1991).
[21] Kreisselmeier, G., and Steinhauser, R., "Systematic Control Design by Optimizing a Vector Performance Index", Proceedings of IFAC Symposium on Computer Aided Design of Control Systems, Zurich, Switzerland, 1979, pp.113-117.
[22] Barthelemy, J-F. M., and Riley, M. F., "Improved Multilevel Optimization Approach for the Design of Complex Engineering Systems", AIAA Journal, 26 (3), pp. 353-360, 1988.
[23] Kramer, M.A., Calo, J.M., and Rabitz, H., "An Improved Computational Method for Sensitivity Analysis: Green's Function Method with AIM," Appl. Math. Modeling, Vol. 5, pp.432-441, 1981.
[24] Sandridge, C.A. and Haftka, R.T., "Accuracy of Derivatives of Control Performance Using a Reduced Structural Model," Paper presented at the AIAA Dynamics Specialists Meeting, Monterey California, April, 1987.
[25] Tadikonda, S.S.K. and Baruh, H., "Gibbs Phenomenon in Structural Mechanics," AIAA Journal, 29 (9), pp. 1488-1497, 1991.
[26] Williams, D., "Dynamic Loads in Aeroplanes Under Given Impulsive Loads with Particular Reference to Landing and Gust Loads on a Large Flying Boat," Great Britain Royal Aircraft Establishment Reports SME 3309 and 3316, 1945.
[27] Greene, W.H., Computational Aspects of Sensitivity Calculations in Linear Transient Structural Analysis, Ph.D dissertation, Virginia Polytechnic Institute and State University, August 1989.
[28] Greene, W.H., and Haftka, R.T., "Computational Aspects of Sensitivity Calculations in Transient Structural Analysis", Computers and Structures, 32, pp. 433-443, 1989.

روشّهاى تحليل حساسيت كسسته كه در نصل قبلى بيان شد، بسيار كلى اند و مى توان آنها رادر موارد مختلف تحليل حساسيت غير سازهأى مانند سيستم معادلات خططى، مسائل مقدار ويزّه وغيره به كار برد.

 دوار از تبيـلFASOR [5]، بدون تبديل معادلات تعادل به مـعـادلات جبرى، مستـتـيـمـآاز معـادلات انتكرال كيرى مى كنتد. دوم اين كه كار كردن روى معادلات كسسته شده ، اغلب نيازممند به دستيـابى بـ ليست برنامهُ تحليل سـازها هى مى باشد كه اين معادلات رابهد دست مى دهند . متأسغانه بسيارى از برنامه هاى

 حساسيت، يكى باشد .
يك ميال از اين رويكرد را مى توان تير صفـحهاى اولر - برنـولى' كه با معـادله' ديفرانسيـل زير، ، رابطه سازى مى شود در نظر كرفت.

$$
\begin{equation*}
\frac{d^{2}}{d x^{2}}\left[E I(x) \frac{d^{2} w}{d x^{2}}\right]=q(x) \tag{A.1}
\end{equation*}
$$

[^7]كه w تغير مكان عرضى، EI صلبيت خحشى و q بار مى باشد. معادله' (1. A با شرايط مرزى مناسب تكميل مى گردد. تصور كنيد كه بايد يكى كروه از سازه هايع راطراحى كنيم كه به وسيله اين معادله تير با

 اكنول بـا به كاربردن اين برنامه، مى خواهيم واكنتُ حساسيت باستخ را به تغيرات خـواص سـغتـى تـير بررسى كنيم. البته در اين نوع موارد، محامبات حساسيت تفاضل محدود، اولين انتخاب ماست. بـ به هر

 (توجه شود كه يارامتر x در اين نصل به عنوان متغير مختصات به كار مى رود و بارامتـر p به عنوان مت متغير طراحى نمونه استفاده مى كردد) كه روى كُنتاور ماند تير در طول دهانهُ آٓن اثر مى كذارد شروع مى كنيم.

$$
\frac{d^{2}}{d x^{2}}\left[E I(x) \frac{d^{2} w_{p}}{d x^{2}}\right]=-\frac{d^{2}}{d x^{2}}\left[E I_{, p}(x) \frac{d^{2} w}{d x^{2}}\right]
$$

علامت كاما كه به صورت نيرنويس همـراهp نونته مى شود، مفهوم مشتت نسبـت بـه p را مى رساند. بـا

 تشابه روابط، كامل مى شود. ـ مانند نصل V، اين طرفـراست را بار مجازى مى ناميم. آكر آن بار مجازى به تير اعمال شود، ياسخ به بار مجازى، برابر مشتتق ياسخ اصلى نسبت به p مى باشـد. اككنون براى استغاده
 داريم كه w و مشتت كـُتاور ماند برنامه ما براي تعريف بار، بيان كند.

رويكردهاى زيادى براى محاسبات حساسيت با الستفاده از روشّهاى تغيرات وجود دارد. مرجـع[2] رونهاى مورد نظر و مفاهيم اساسى رياضى مربوط را به نـكل بسيار خويع ارائه مى كند. فصل حاضر با
 كار مجازى كه يكا اساس مناسب برای تحليل حساسبت كسسته و ييوسته مى باشد، بنا نهاده شده است. اكثر مطالب در اين نصل محدود به محاسبهُ حساسيت نسبت به بارامترهاى مسختى(اندازه) مى شود، ولى

در بختش آخر ، سحاسيت نسبت به شكل نيز معرفى مي شود. نتيجه هاى به دمت آمده در اين فمل ، اغلب به قابليت مشتق كيرى پاسـخ سازه، نسـبــت بـه بـارامـتر سـختى يا شكل بستكى دارد . در سرتامر اين نصل، نرض بر اين امـت كه باسـخ سازه، تابلبت مشتت كيرى نسبت به پارامتر مورد سوال رادارد و خخاص مشتت كيرى ميدان حساسبت، نسبت به مختصهات نضايى، ، مانند باسـخ اصلى امست. در نهايت يـادآور مي شود كــه مطالب اين نصل ، نسبتاً به اجمال بيان مى شـوند و بسيارى از خحوانندكان

 بياده سازى در انتهاى هر بخثش مورد مطالعه ترار كيرد تا اطلاعات مربوط به جكونگى بياده سازى محاسبات سحاسيت مورد استفاده در برنامه هاى تحليل سازه بدون نياز به ليست برنامه، فرا كرفته شود.

A. 1 تحليل الِستإِى غظى

معادلات مربرط به باستخ سازه ماى ايستا، شامل معادلات كرنشـتغنير مكان، مـعـادلات حـاكـم و معادلات تعادل مي باشٌلـ . اين معادلات بسته به اين كه مسائل را سه بعدى، در نظر بگيريم يا موارد خحاص
 منظرر دمتيايى به نتايجى كه كاربرد عمومي داُمته باشند، نماد عملكر بوديانسـكى ' را براى معادلات به كار مي بريم . اين نماد، باعث خلاصه سازى مي شود و محاسبات جبرى را آسان ميكند . اين نماد مجرد المت ولى هميسه به آسانى تابل كاربرد نيست. خوانثده أى كه در فهـم اين نماد مشكل داُهته باشدل مي تواند معادلات مجرد را براي حالت خاص از فبيل تنش صفتحه اي يا تتحليل تير، تبديل نمـايـــ . بـراي تححلـيـل خحطى، رابطل' كرنش - تغيير مكان به صورت زير نوشته مى شود .

$$
\begin{equation*}
\varepsilon=\mathbf{L}_{1}(\mathbf{u}) \tag{0.1.1}
\end{equation*}
$$

كه ع تانسور عمومى كرنش و u بردار تغيير مكان و L $\mathbf{~} \mathbf{~ ي ك ـ ~ ع م ل ك ر ~ د ي ف ر ا ن س ي ل ي ~ خ ط ى ~ ا م س ت . ~ ب ر ا ي ~ م ث ا ل ~ د ر ~}$

مبانم بيئه مـازى مـازه ما (نصل A : مقلمساى برتحليل حساسيت متغير) P P P معادله' زير تبليل مي شود .

$$
\begin{equation*}
\kappa=w_{, x x} \tag{A.Y.Y}
\end{equation*}
$$

كرنش ، از كرنش عمومى אبه صورت
به هر سال در استفاده از اصل كار مسجازى، به كار كرنتن تانسور هاى كرنش و تنت عمومى نسبت به كرنش ها و تنش هاى وافتعى راحتر و مناسبتر است. براى تحليل تنش صفتحه ای، ع داراى مؤلفه هاى كرنش واقتى صورت زير در مي آيد .

$$
\mathbf{L}_{1}(\mathbf{u})=\left\{\begin{array}{c}
u_{, \boldsymbol{x}} \\
v_{, y} \\
u_{, y}+v_{r x}
\end{array}\right\} .
$$

به هر حالّ، معادلات حاكم بر حسسب تنـُ هاى عمومى نوشُته مى شوند كه برآيند تنش هاينل . مـعادلات حاكم خطى، شُكل ويزهُ مناسبى از قانون هوكُ مي باشتند و به صورت زير نوشّته مى شوند.

$$
\sigma=\mathbf{D}\left(\varepsilon-\varepsilon^{i}\right)
$$

كه يكى ميدان حرارتى قرار گر فته امست) . براى مثال در مسـأله' تنش صفـحه ایى، σ شـامل مؤلفه هاى برآينـد تنت الست و معادله حاكم به حوررت زير مى باشد :

$$
M=E I\left(\kappa-\kappa^{i}\right)
$$

كه E ضريب ارتجاعى و I لنكر ماند سطح مقطع است. معادلات تعادل توسط اصل كار مجازى به صورت زير نوشتّه مى شُود:

$$
\begin{equation*}
\sigma \bullet \delta \varepsilon=f \bullet \delta \mathbf{u}, \tag{1.1.9}
\end{equation*}
$$

كه f ميدان نيروى اعمال شده مى باشلد وعلامت نقطه، منهوم يـك ضـرب اسـكـالر اسـت كـه از

$$
\sigma \bullet \delta \varepsilon=\int \sigma \cdot \delta \varepsilon d A=\int\left(N_{x} \delta \epsilon_{x}+N_{y} \delta \varepsilon_{y}+2 N_{x y} \delta \gamma_{x y}\right) d A
$$

$$
\mathbf{f} \bullet \delta \mathbf{u}=\int \mathbf{f} \cdot \delta \mathbf{u} d A=\int\left(f_{\mathbf{x}} \delta u+f_{y} \delta v\right) d A+\int\left(T_{x} \delta u+T_{y} \delta v\right) d \Gamma_{T}
$$

(A.1.v)

كه
مى باشند.
ميدان تغيير مكان مجازى ú بإيد قابل مستت كيرى باشمد و شرايط مرزى سينماتيكى را برآورده نمايد، ولى در هر صورت اختيارى خواهد بود . ميدان كرنش مـجـازى عס از ميدان تغيير مكان مجازى از طريـق

$$
\delta \varepsilon=\mathbf{L}_{1}(\delta \mathbf{u})
$$

اين نماد عملكُر برایى معادلات كـامـلاّ متداول است و هـم در مسائل بيومته ، و هـم در رابطـه سـازى هـاى كـسـته ، قابل استفاده مى باشدل . همجنين براى محاسبات حساسيت نيز بسبار مناسبباست . در اين بخش ، مـا فتط حساسيت ها را نسبت به يكـ بارامتر سـختى كه در ماتريس سـتـى مصالـع D ظاهر مى شود، در نظر مى كيريم • برايى مسائل يكـ بعدى يادو بعدى، باراستر مى تواند شـامل متغير هاى اندازه از تبيل مساحت سطع متطع تيرها ياضخامت صفحه ها باشمد، زيرا ا'ين متغيرها در مـاتريس D D ظاهر مى شوند (همانند

1 ـ 1 ـ ـ 1 روش صستقيم
 مى شود . سبس بی دمسته معادلات برایى حساسيت بامـخ به صورت مى توان نشان داد كه معادلات حاكم ميدانهاى حساسيت ممانند معادلات بامخ مى باشمد، ولى جمـلات بار كذارى آن متفاوت است و به آلن بارهاى مجازى مى كويند . مفهـوم آن ايـن الست كـه اككر در مـسـألـه'

Pه申
 باسخ را محانسبه خواهد كرد. با هستت كيرى از رابطه كرنس -- تغيير مكان شروع ميكنيم.

$$
\begin{equation*}
\varepsilon_{p p}=\mathbf{L}_{1}\left(\mathbf{u}_{p}\right) \tag{1.1.9}
\end{equation*}
$$

به طور مشابه با مشتّ كيرى از معادلات حاكم داريم :

$$
\sigma_{, p}=\mathbf{D} \varepsilon_{, p}+\mathbf{D}_{, p}\left(\varepsilon-\varepsilon^{i}\right)
$$

(1.1.1.)

و معادلات ديفرانسيل تعادل به صوربت زير خخواهد بود :

$$
\begin{equation*}
\sigma_{, p} \bullet \delta \varepsilon=0 \tag{1.1.11}
\end{equation*}
$$

 كه واححد تمام ميدانهاى حساسبت، همان واحد ميدانهاى اصلى السـت كه بـر واحــد p تقسيهم شده اسست.
 سطع ميباشد.

 مى نواند به عنوان جوابِ سازه اصلى، تحت يك بار متفاوت كه بار مجازى ناميده مى شود در نظر كرفتـه شود. اين بارها هيِ يكى از اجزاى مكانيكى رادر بر نـى كيرند و تنها ميدان كرنش اولبـه ميدان كرنش اوليه با مرتب كردن معادله' (1) به صورت زير به دست مي آيد :

$$
\sigma_{\mathrm{up}}=\mathbf{D}\left(\varepsilon_{\mathrm{up}}-\varepsilon^{p}\right), \quad \varepsilon^{p}=-\mathbf{D}^{-1} \mathbf{D}_{\mathrm{p}}\left(\varepsilon-\varepsilon^{i}\right)
$$

به طور مثال، براى اعضهاى خربـا، رابـطهُ بين تنتُ عمودى (نيروى عغهـوN) و كرنش به حـورت زيـر
|استت

$$
N=E A\left(\epsilon-\epsilon^{i}\right)
$$

با مشتّ كيرى أز اين رابطه نسبت به A داريم:

$$
\begin{equation*}
N_{, A}=E A\left[\epsilon_{, A}+\left(\epsilon-\epsilon^{i}\right) / A\right], \tag{1.1.14}
\end{equation*}
$$

 صورت A / A - $-\epsilon^{i}$ استفاده كنيم.
به عنوان مثالى ديكر ، يك تنن صفحه الى همسانگرد كه معادلات حاكم آن به صورت زير مى بائد را
در نظر بكيريد:

$$
\left\{\begin{array}{l}
N_{x} \tag{1.1.10}\\
N_{y} \\
N_{x y}
\end{array}\right\}=\frac{E h}{1-\nu^{2}}\left[\begin{array}{ccc}
1 & \nu & 0 \\
\nu & 1 & 0 \\
0 & 0 & \frac{1-\nu}{2}
\end{array}\right]\left\{\begin{array}{c}
\epsilon_{x} \\
\epsilon_{y} \\
\gamma_{x y}
\end{array}\right\} .
$$

 ع $\varepsilon^{p}=-\varepsilon / h$ $\mathbf{D}^{-1}=\frac{1}{E h}\left[\begin{array}{ccc}1 & -\nu & 0 \\ -\nu & 1 & 0 \\ 0 & 0 & 2(1+\nu)\end{array}\right], \mathbf{D}_{\nu}=\frac{E h}{\left(1-\nu^{2}\right)^{2}}\left[\begin{array}{ccc}2 \nu & 1+\nu^{2} & 0 \\ 1+\nu^{2} & 2 \nu & 0 \\ 0 & 0 & -\frac{(1-\nu)^{2}}{2}\end{array}\right]$.

$$
(1.1 .19)
$$

كه بابد كرنش مجازى اوليه زير رالاعمال كنيم

$$
\varepsilon^{p}=\frac{1}{1-\nu^{2}}\left\{\begin{array}{l}
-\nu \epsilon_{x}-\epsilon_{y} \tag{A.1.1v}\\
-\nu \epsilon_{y}-\epsilon_{x} \\
(1-\nu) \gamma_{x y}
\end{array}\right\} .
$$

هنگامى كه مازه راب الاستفاده از يك مدل اجزاى محدود، تحليل كنيم، كرنش اوليه' مجازى، به يك

$$
\begin{equation*}
\mathbf{D} \varepsilon^{p} \bullet \delta \varepsilon=\mathbf{f}^{p} \bullet \delta \mathbf{u} . \tag{^.1.1^}
\end{equation*}
$$

P P•A

در نــون حل ديكُر، بـار مجازى از كرنش اوليه با روش متغاوتى به دست بى آيـد. براى مــال، در يــ مساله' رابطه سازى يبيستـه' سه بعدى، كرنش اوليه مجـازي مؤلفه هاى روابط، ، نسبت به مختصات

مثال A. 1.1

 كنيد. مــاحت اسـى سطع مقطع تمام تيرها A الست.

 عمودى ايجاد كرده و نيروى انقى نتط تغير مكان أفقى . انزون بر اين، عضو B در تغيير مكانهاى انقى، تأثيرى ندارد . به آسانى مى توان مقادير تغيير مكانها رادر نتطه' اعمال نيرو به صورت زير به دست 'آورد.

$$
\begin{aligned}
& u=4 P_{H} l / 3 E A_{A}, \quad v=P_{V} l /\left[\left(A_{B}+0.25 A_{A}\right) E\right] . \\
& \text { نيروهاى موجود در اعضاى B A و C به صورت زير مسانسبه مى كردند: } \\
& N_{A}=0.57735 P_{H}+\frac{0.25 P_{V} A_{A}}{A_{B}+0.25 A_{A}}=0.97735 P,
\end{aligned}
$$

$$
\begin{align*}
& N_{B}=\frac{P_{V} A_{B}}{A_{B}+0.25 A_{A}}=1.6 P \tag{ب}\\
& N_{C}=-0.57735 P_{H}+\frac{0.25 P_{V} A_{A}}{A_{B}+0.25 A_{A}}=-0.17735 P
\end{align*}
$$

به منظور مقايسه بعدى با مشتت هايى كه با استفاده از روش مستقيم به دست آمده اند، مى توان مستق ايـن نيروها را نسبت بـ ${ }_{\text {A }}^{\text {به صورت تحليلى به دست آورد. }}$

$$
\begin{gathered}
\frac{d N_{C}}{d A_{B}}=\frac{d N_{A}}{d A_{B}}=\frac{-0.25 P_{V} A_{A}}{\left(A_{B}+0.25 A_{A}\right)^{2}}=-0.32 P / A . \\
\frac{d N_{B}}{d A_{B}}=\frac{0.25 P_{V} A_{A}}{\left(A_{B}+0.25 A_{A}\right)^{2}}=0.32 P / A .
\end{gathered}
$$

$$
\begin{aligned}
& \text { براي اين مسأله، بايد يك كرنش اولبه' مجازى به عضو B اعمال كنيم. } \\
& e^{p}=-\epsilon_{B} / A_{B}=-N_{B} / E A_{B}^{2}=-1.6 P / E A^{2},
\end{aligned}
$$

در حالى كه كرنش اوليه' مجازى براى اعضاي دبكر صفر است. به ياد دانيته باشيد كه مانند تمام ميدانهاى حــاسيت، واحد كرنش اوليه مجازي، به صورت واحد كرنش تقسيـم بر واحـد p (در اينجا مسـاحـت) مى باشد. ميدان تغيير مكان ايجاد شُـده به وسيلهاى اين كرنش اوليه، با اعمال يكى جفت نيروى مخالف
 مى باشد) عبارت است از (معادله (A 1 را بينيد)

$$
f^{P} \delta v=\int_{0}^{l} E A_{B} \epsilon^{\mathrm{P}} \delta \epsilon d y=E A_{B} \epsilon^{p}(\delta v / l) t=-1.6 P / A \delta v
$$

مى توان تغير مكانهاى به وجود آمده رابا صفر ترار دادن نيروى انفى P و جايكزينى نيروى عمودى P بـا PV بنابراين

$$
\frac{d u}{d A_{B}}=0, \quad \frac{d v}{d A_{B}}=\frac{(-1.6 P / A) l}{\left(A_{B}+0.25 A_{A}\right) E}=\frac{-1.28 P l}{E A^{2}} .
$$

بهطور مشـابه، مشتّت

P P P
 نمى توان با روش مشابه، از معادله'(ب) به دست آورد، زيرا اكنون عضو B داراى كرنش اوليه امـت. در
 $\frac{d \epsilon_{B}}{d A_{B}}=\frac{1}{l} \frac{d v}{d A_{B}}=\frac{-1.28 P}{E A^{2}}$,

و سبس

$$
\frac{d N_{B}}{d A_{B}}=E A_{B}\left(\frac{d \epsilon_{B}}{d A_{B}}-\epsilon^{P}\right)=\frac{-1.28 P}{A}+\frac{1.6 P}{A}=0.32 \frac{P}{A}
$$

ملاحظه مى شود كه هر دو مشتت با عباراتى كه از مشتت كيرى صريح به دسمت آورديم مطابقت دارند . براي مساسبه' مشتقات تنت ها، از مشتقأت نيروها داريم:

$$
\sigma_{A}=\frac{N_{A}}{A_{A}}, \quad \sigma_{B}=\frac{N_{B}}{A_{B}}, \quad \sigma_{C}=\frac{N_{C}}{A_{A}}
$$

و بنابراين:

$$
\begin{aligned}
& \frac{d \sigma_{A}}{d A_{B}}=\frac{1}{A_{A}} \frac{d N_{A}}{d A_{B}}=\frac{-0.32 P}{A^{2}} \\
& \frac{d \sigma_{C}}{d A_{B}}=\frac{1}{A_{A}} \frac{d N_{C}}{d A_{B}}=\frac{-0.32 P}{A^{2}}
\end{aligned}
$$

$$
\frac{d \sigma_{B}}{d A_{B}}=\frac{1}{A_{B}} \frac{d N_{B}}{d A_{B}}-\frac{N_{B}}{A_{B}^{2}}=\frac{0.32 P}{A^{2}}-\frac{1.6 P}{A^{2}}=-1.28 \frac{P}{A^{2}}
$$

A. I . Y

اغلب ما به مشتقآت تمامى ميدان تغيبر مكان يا تنش نياز نداريم و تنها بعضي از آنها مثلاّ مشتق تغيير مكان عمودى در يكى نقطه يا تنش وان ميزز در يكى نقطه ديكر مورد نياز است. در اين كونه مـوارد الستـفـاده از روش مجاورتى براى مـحاسبه" اين مشتقأت اتتصادى تر است . بنابراين برايى محاسبه مشتقأت تابع تغيـير مكان و تنش، از روش نوق استفاده مى كنيم. ابتدا تغيير مكان زير كه به وسيله يكى انتكـرال روى دامـــــُ

سـازهV تعريف نُـده است را در نظر بكيريد.

$$
\begin{equation*}
H=\int h(\mathbf{u}, p) d V \tag{1.1.19}
\end{equation*}
$$

با به كار بردن تابع ديرك دلتا به عنوان بخخــــ از h، اين رابطه مي تواند براي نشـان دادن مقدار مؤلفه يـى تغيير مكان در يكى ننطه نيز امستفاده شود . مستق H نسبت به بارامتر طراحى p به صورت زير است :

$$
\begin{equation*}
H_{p p}=\int h_{, p} d V+\mathbf{h}_{, u} \cdot \mathbf{u}_{1 p} \tag{A.Y.Y.}
\end{equation*}
$$

 باثشد، آن كاه $h=u^{2}+v^{2}$

$$
\mathbf{h}_{, u}=\left\{\begin{array}{l}
2 u \tag{A.1.YI}\\
2 v
\end{array}\right\}
$$

محاسبـه مي بانشد. مي توان با امستفاده از روش مستتيـم
 امستفـاده از آن u,

 كه ضربكر لاكرانز به عنوان تغيير مكان مجازى در نظر كرفته شود، معادل است ـ بنابرابـن ار را با ميدان تغير مكان مجاورتى جايكزين مى كنيم . اكر ميدانهاى تنيير مكان را با يك انديس بالاى(a) مششخص كنيم

م PIP P

$$
\begin{equation*}
H^{*}=H+\sigma^{a} \bullet\left(\varepsilon-\mathbf{L}_{1}(\mathbf{u})\right)+\varepsilon^{a} \bullet\left(\sigma-\mathbf{D}\left(\varepsilon-\varepsilon^{i}\right)\right)+\mathbf{f} \bullet \mathbf{u}^{a}-\sigma \bullet \mathbf{L}_{1}\left(\mathbf{u}^{a}\right) . \tag{A.1.ry}
\end{equation*}
$$

 (A I . Y) نسبت به p صورت زير است:

$$
H_{\mathrm{p}}=\int h_{, p} d V+\mathbf{h}_{, \mathrm{u}} \bullet \mathbf{u}_{\mathrm{p}}+\left(\boldsymbol{\sigma}^{\mathrm{a}}-\mathbf{D} \varepsilon^{a}\right) \bullet \varepsilon_{\mathrm{p}}-\boldsymbol{\sigma}^{\mathbf{a}} \bullet \mathbf{L}_{1}\left(\mathbf{u}_{, p}\right)
$$

$$
\begin{equation*}
-\varepsilon^{a} \cdot D_{, p}\left(\varepsilon-\varepsilon^{i}\right)+\left(\varepsilon^{a}-\mathbf{L}_{1}\left(u^{a}\right)\right) \cdot \sigma_{1 p} . \tag{A.l.Yr}
\end{equation*}
$$

با توجه به اين كه ميدانهاى مجاورتى بايد رابطهُ خططى بين تغير مكان كرنش و قانون هوكٌ را برآورده كتند مى نوانيم از جملات شـامل por

$$
\begin{gather*}
\varepsilon^{a}=L_{1}\left(u_{a}\right), \\
\sigma^{a}=D \varepsilon^{a} .
\end{gather*}
$$

با توجه به اين كه ميدان مجاورتى بايد معادلات تعادل با يك نيروى كالـبدى مسـاوى ش، h را برآورده كند عبارات شامل up مى تواند حذف سود، بنابراين از اصل كار مجازى داريم:

$$
\sigma^{a} \bullet \delta \varepsilon=\mathbf{h}_{, u} \bullet \delta \mathbf{u} .
$$

 نهايت داريم:

$$
\begin{equation*}
H_{p}=\int h_{, p} d V-\mathbf{D}_{\cdot p}\left(\varepsilon-\varepsilon^{i}\right) \bullet \varepsilon^{a} . \tag{A.l.rv}
\end{equation*}
$$

$$
\begin{equation*}
H_{, p}=\int h_{, p} d V+\varepsilon^{p} \cdot \sigma^{a} . \tag{^.I.Y^}
\end{equation*}
$$

PIF بخش A. 1 :تحليل ايستامی نغطى
وتتى كه برایى تحليل از روش ا-جرایى محدود أستفاده مى كنيم، عبارت دوم راباز هـم مى توان تبديل كرد . اكنون در معادله'

$$
\begin{equation*}
\mathbf{f}^{p} \bullet \mathbf{u}^{a}=\mathrm{D} \varepsilon^{p} \bullet \varepsilon^{a}=\varepsilon^{p} \bullet \sigma^{a} \tag{^.1.rq}
\end{equation*}
$$

$$
H_{\mathrm{p}}=\int h_{, p} d V+\mathbf{f}^{p} \bullet \mathbf{u}^{a}
$$

(A.1.r.)
 در آن وجود ندارد (يعنى بارهاى مكانيكى مجاز هستند ولى بار سحارتى، جابججاهع وغيره وجود ندارند) و

تابع تنش را به صورت :

$$
G=\int g(\sigma, p) d V
$$

(A.1.ri)

و مشتق آن را به شككل :

$$
G_{p}=\int g_{p p} d V+\mathbf{g}_{. \sigma} \bullet \sigma_{p}
$$

(A.1.ry)

در نظر مى كيريم كه a. مشتقات بـاستخ يعـنى p,

$$
G^{*}=G+\sigma^{a} \bullet\left(\varepsilon-\mathrm{L}_{1}(\mathbf{u})\right)+\varepsilon^{a} \bullet(\sigma-\mathrm{D} \varepsilon)+\mathrm{f} \bullet \mathbf{u}^{a}-\sigma \bullet \mathrm{L}_{1}\left(\mathbf{u}^{a}\right) . \quad \text { (^. ।. } Y \text { r) }
$$

$$
\begin{aligned}
G_{p}=G_{p p}^{*} & =\int g_{, p} d V+g_{g} \bullet \sigma_{p}+\left(\sigma^{a}-\mathbf{D} \varepsilon^{a}\right) \bullet \varepsilon_{p p}-\sigma^{a} \bullet \mathbf{L}_{1}\left(\mathbf{u}_{p p}\right) \\
& +\varepsilon^{a} \bullet \sigma_{p p}-\varepsilon^{a} \bullet \mathbf{D}_{p p} \varepsilon-\varepsilon_{p p} \bullet \mathbf{L}_{1}\left(\mathbf{u}^{a}\right)
\end{aligned}
$$

با استفاده از معادله' (^. و مرتب كردن عبارات داريـم:

$$
\begin{align*}
G_{p p} & =\int g_{, p} d V+\left(\sigma^{a}+\mathbf{D} g_{, \sigma}-\mathbf{D} \varepsilon^{a}\right) \bullet \varepsilon_{, p}-\sigma^{a} \bullet \mathbf{L}_{1}\left(\mathbf{u}_{p}\right) \\
& +\left(\mathbf{g}_{, \sigma}-\varepsilon^{a}\right) \cdot \mathbf{D}_{p} \varepsilon+\left(\varepsilon^{a}-\mathbf{L}_{1}\left(\mathbf{u}^{a}\right)\right) \bullet \sigma_{, p}
\end{align*}
$$

$$
\sigma^{a}=\mathrm{D}\left(\varepsilon^{a}-\mathbf{g}_{\boldsymbol{\sigma}}\right)
$$

(^. 1. MF)

و تعادل به ثـكل :

$$
\delta \varepsilon_{p}=-\delta \vec{\varepsilon}
$$

(A. I.rv)

حذف نمود . يعنى در اين مورد بار مجاورتى يك كرنش اوليه رو بدون بار مكانيكى است. آن كاه

$$
G_{, p}=\int g_{p} d V-\mathbf{D}_{, p} \varepsilon \bullet\left(\varepsilon^{a}-\mathbf{g}_{, \sigma}\right)
$$

(A.1. Y 人)
 جمله آن نياز به محاسبهُ مشتقات ماتريس سـختى در مـطع جزه مورد نظر دارد و ممكن اسـت به اطل>عاتى در زميـنه اجــز الى مسحدود نيـاز باشـد. بـرالى غلبـه بــ اين مشكل ، تو جه داريم كه با المتغـاده از مـعـادلهُ

$$
\mathrm{D}_{, p} \varepsilon \bullet\left(\varepsilon^{a}-\mathrm{g}_{\sigma}\right)=\mathrm{D}_{p} \varepsilon \bullet \mathrm{D}^{-1} \sigma^{a}
$$

(^. 1.rq)
 مى آيد، مى توان

$$
G_{, p}=\int g_{p} d V+\varepsilon^{p} \bullet \sigma^{a}
$$

(A. 1. Y.)
 داريسم

بار مجازی نوشُت. با باستفـاده از (
داريم:

$$
\begin{equation*}
f^{p} \bullet \mathbf{u}^{a}=\mathrm{D}^{p} \bullet \varepsilon^{a}=-\mathrm{D}_{\boldsymbol{p}} \varepsilon \bullet \varepsilon^{a}, \tag{1.1.41}
\end{equation*}
$$

$$
\begin{equation*}
G_{, p}=\int g_{p} d V+f^{p} \bullet u^{a}+D_{p} \varepsilon \bullet g_{p} . \tag{A.1.FY}
\end{equation*}
$$

 برنامه تحليل سازه ایى عمومى به آسانى مابل انجام نيست. به هر حال هنگامى كه G تنس متوسط (نه تنش كلى) يكى جزء است، اغلب اولين و آخرين جمله سذن مى شوند. براى مثالل تنش متوسط را براى جزء أم خربا درنظر بكيريد. در يكى المان خربايى تنش كلى نيروى عضو N می بانشد. بنابراين :

$$
\mathbf{g}_{0}=\frac{1}{A l_{i}} \quad, \quad G=\frac{1}{l_{i}} \int \frac{N}{A} d l_{i}
$$

 معادله (

$$
\left.G_{p}=\frac{1}{l_{i}} \int\left(-N / A^{2}\right) d l_{i}+f^{p} \bullet u^{a}+\int(N / A)\left(1 / A l_{i}\right) d l_{i}=f^{p} \bullet u^{a} . \quad \text { (ᄉ. . . } F Y\right)
$$

A.1.Y مثال

و B نسبت به سطع متطع مر دو عضهو، حل مى كنيم . ابتدا تنش در عضو B كه بر حسبب تنش كلى (نيروى عضوى)

$$
G=\sigma_{B}=\frac{1}{l_{B}} \int \frac{N_{B}}{A_{B}} d l_{B}
$$

 صورت و,N نمايش داده مى شود .

$$
g_{, N}=\frac{1}{l_{B} A_{B}}=\frac{1}{l A}
$$

توجه شود كه كرنش اوليه مجاورتى با واحل (حـجـم)/\ اندازه كيرى مى شود در صورتى كه كرنش هـاى فيزيكى بدون بعدند . در نتيجه، تمام واحدهاى ميدان مجاورتى به صورت واحد مربوط تقسيم بر حجـم
 هم به عضـو B به دست مى آيد كه نيرو در انتهاعبـارت اســت از $E A_{B} g_{, N}=E / l$. با الستفاده از معادلـه (الف) مشال (1. . . 1) داريم

$$
v^{a}=(E / l) l /\left[\left(A_{B}+0.25 A_{A}\right) E\right]=0.8 / A
$$

 مى كنيـم داريم

$$
\frac{d \sigma_{B}}{d A_{B}}=G_{, A_{B}}=-1.28 \frac{P}{A^{2}},
$$

كه با نتيجه هاى به دسـت آمده از مـال (1 1 هم خحوانى دارد.
 تغييرات كرنش هاي اوليه مجازى در آنها مى شود كه به ترتيب برابـر باعـث بارهاي مجازی

$$
P_{H}^{\mathrm{p}}=-\left(\frac{N_{A}}{A_{A}}-\frac{N_{C}}{A_{A}}\right) \sin 60^{\circ}=-\frac{P}{A}, \quad P_{V}^{\mathrm{p}}=-\left(\frac{N_{A}}{A_{A}}+\frac{N_{C}}{A_{A}}\right) \cos 60^{\circ}=-0.4 \frac{P}{A},
$$

 تنيير مكان مجاورتى داريم:

$$
\frac{d \sigma_{B}}{d A_{A}}=G_{, A_{A}}=v^{a} P_{V}^{p}=-0.32 \frac{P}{A^{2}},
$$

كه مى توان به آسانى و به طور مستقيم آنها را بررسى نمود. سيس مـنتقات $G=\frac{1}{l_{A}} \int \frac{N_{A}}{A_{A}} d l_{A}$.

هحاسبه مى شوند.
بايد يك كرنش اوليه مجاورتى را به صورت

$$
g_{, N}=\frac{1}{l_{A} A_{A}}=\frac{1}{2 l A} .
$$

به مساله اعمال كنيم. اين كار با اعمال يك جغت نيروى شخالف مم با مـــدار امتداد عضو A مى بامند در دو كره' عضو Aعملى مى شسود. مؤلفه هاى انفى و عمودى نيروى مجاورتى در كره؛ بايين عبارتنداز :

$$
P_{H}^{a}=\frac{0.433 E}{l}, \quad P_{V}^{a}=\frac{0.25 E}{l} .
$$

با استفاده از معادلهُ (الفش) از مثال (A . 1 . مى توان نوشت:

$$
v^{a}=\frac{(0.25 E / l) l}{\left(A_{B}+0.25 A_{A}\right) E}=\frac{0.2}{A}, \quad u^{a}=\frac{4(0.433 E / l) l}{3 E A_{A}}=\frac{0.57735}{A} .
$$

 ضرب مى كنيم، داريم:

$$
\frac{d \sigma_{A}}{d A_{B}}=\frac{-1.6 P}{A} \frac{0.2}{A}=-0.32 \frac{P}{A^{2}} .
$$

به طور مُنابه برأى بدست آوردن مشتتّ تنش نسبت به A A ، تغيير مكانهاى مجاورتى رادر نيروى مجازى

> مربوط به A A خر بب مى كنيمه، داريم :

$$
\frac{d \sigma_{A}}{d A_{A}}=\frac{-P}{A} \frac{0.57735}{A}-\frac{0.4 P}{A} \frac{0.2}{A}=-0.65735 \frac{P}{A^{2}}
$$

 به طور كلى، بياده سازى روش مستقيم آسانتر از روش مجاورتى السـت، بـه خـصـوص اكـر در خـارج از برنامه' تحليل سازه هِياده سازى شود . براى محاسبهُ مقدار كرنش اوليه معجازى از مفادير كرنش هاى واتعى
 بايد در اين یس هردازش ارزيابى شود، به شـكل قانون هولُ امستفاده شده در برنامه' تحليل نياز دارد، اما در
 مجازى مى تواند به عنوان كرنش اوليه ورودى به همان بسته نرم افزارى تحليل سـازه بـه كـار بـرده شـود. خروجى بسته نرم افزارى، به جاى بإسخ، ميدان حساسيت نحواهد بود ـ اكر بسته نرم انزارى تحليل سازه كارآبى قبول كرنش اوليه را به صورت ورودى ندانتـه باشد، اغلب مى توان با تركيـبـى از مـيـدان درجـهُ حرارث و ضريب انبساط دمايى ناهمسانگرد، كرنش هاى اوليه را أبجاد كرد. يیاده سازى روش مسأورتى با تابع تغيير مكان H از معادله (A . 19) بسيار ساده است . بايد سازهرا
 به نيروى مجاورتى مورد المتفاده در حالت كسـسته الست كه نيروى مذكور مشتت قيد نسبت به بر دار تغيــر
 حالت كلى واحد نيرو بر واحد حجـم نيستند . در نتـجه، واحدهانى ميدان مجاورتى واحـدهـاى مـعــــول مربوط به ميدانهاى تغيير مكان، كرنش و تنش نيستند . ممحنين به يك يس بردازش كـه تـبـلـيـت انـجـام

است زير| فقط به يـك ضرب اسكالر بار مجازى در ميـدان تنير مـكان مجاورتى نيـاز دارد. مـعــادله'
 سنتى به دست نمى آيد و بنـابراين نيازى به دامُتن دانش كامل از بستهُ نرم انزارى اجزایى محدود ندارد.

 صورت تنش باشـد، اين مشككل در بـبارى از موارد به وجودنمى آيد.

تهليل اليستايى غيرخطى و بارهاى حلى A.Y

 موردى كه غير خططى بودن به طور مناسبى تومط رابطهُ نير بيان كردد را در نظر مى كيريم.

$$
\begin{equation*}
\varepsilon=\mathbf{L}_{1}(\mathbf{u})+\frac{1}{2} \mathbf{L}_{2}(\mathbf{u}), \tag{А.Y.l}
\end{equation*}
$$

كه بارهاى جانبى و محورى، كرنش تعميم يانهه، يكى مؤلفهُ كرنن محورى

$$
\begin{align*}
& \left\{\begin{array}{c}
\epsilon_{z} \\
\kappa
\end{array}\right\}=\left\{\begin{array}{c}
u, z \\
w_{, z z}
\end{array}\right\}+\frac{1}{2}\left\{\begin{array}{c}
w_{z}^{2} \\
0^{2}
\end{array}\right\} . \tag{А.Y.Y}\\
& \text { تغيرات كرنس بر حسب تغييرات تغيير مكان به صورت زير نوشته مى شود: } \\
& \delta \boldsymbol{\varepsilon}=\mathbf{L}_{1}(\delta \mathbf{u})+\mathbf{L}_{11}(\mathbf{u}, \delta \mathbf{u}), \tag{A.Y.Y}
\end{align*}
$$

كه

مبانى بهينه سانع ساز، ما (نهل ه: متلمهالى برتحليل حساسيت متغير) PY. تعريف مى شود

$$
\mathbf{L}_{2}(\mathbf{u}+\mathbf{v})=\mathbf{L}_{2}(\mathbf{u})+\mathbf{L}_{2}(\mathbf{v})+2 \mathrm{~L}_{11}(\mathbf{u}, \mathbf{v}) .
$$

و معادله' (A . Y . Y) به حورت زير در خوامهد آمد:

$$
\begin{equation*}
\mathrm{L}_{11}(\mathbf{u}, \mathbf{u})=\mathrm{L}_{2}(\mathbf{u}) \tag{А.Y.©}
\end{equation*}
$$

در حل مساثل تحليلى غير خطى معمولآبار به صورت تدريجي از صفر تا مقدار نهائش افزايش مى يابد. بنابراين، فرض مى كنيم كه بار f و كرنش الوليه iع به بارامتر دامينه' بار μ به صورت زير بستكى دارد

$$
\begin{equation*}
\mathbf{f}=\mathbf{f}(\mu) \quad, \quad \varepsilon^{i}=\varepsilon^{i}(\mu) \tag{^.Y.9}
\end{equation*}
$$

 بارامتر بار μ به دست آورد.
متأسفانه در مسائل غير خطىى، هامـخ هميشه به صورت تابع يك متغيره از لارامتر بار بر نيست . ششكل (К . Y . 1) سطوح بار نزديكى به ماكزيمم (بـار حـدى) بـراى هـر مــــدار مر دو جواب وجود دارد . اغلب بسـته هـاى نرم افزارى تحليل سـازه كه برایى باسـخ غير خططى به كار برده مى شوند، برایى بهتر مشخخص كردن منحـنـي

(^. 1. Y) و (^) به كار برده مى شود، بارامتر مسير ناميده مى شود.

به سنظور در نظر كرنتن تغيير ات در مـازه، مى خواهيم هـم متغير بار و هـم ستتتى را هـمزمان به دلخواه
 (^ . Y .
) در شـكل متصل كتنده تمام نقاط حلى براى حالتهاى با سختى هاى متفاوت است . برانى مشـخص كـردن مشتقات نسبت به لارامترهاى عمومى مسير از يكى نقطه استفاده مى كنيم. . با ديفر انسيل كيرى از معادلات

$$
\begin{align*}
& \text { شكل A Y Y } 1 \text { نمودار بار- تغيبرمكان } \\
& \left.\dot{\varepsilon}=\mathbf{L}_{1}(\dot{\mathbf{u}})+\mathbf{L}_{11}(\mathbf{u}, \dot{\mathbf{u}}), \quad \text { (^. } \mathrm{r} . \vee\right) \\
& \dot{\sigma}=\dot{\mathrm{D}}\left(\varepsilon-\varepsilon^{i}\right)+\mathrm{D}\left(\dot{\varepsilon}-\dot{\mu} \varepsilon^{i^{i}}\right), \\
& \text { (A. Y.A) } \\
& \dot{\boldsymbol{\sigma}} \bullet \delta \varepsilon+\sigma \bullet \mathbf{L}_{11}(\dot{\mathbf{u}}, \delta \mathbf{u})=\dot{\mu} \mathbf{f}^{\prime} \bullet \delta \mathbf{u}, \tag{А.Y.१}
\end{align*}
$$

 داريم:

$$
\begin{aligned}
& \boldsymbol{\varepsilon}^{\prime}=\mathbf{L}_{\mathbf{1}}\left(\mathbf{u}^{\prime}\right)+\mathbf{L}_{11}\left(\mathbf{u}, \mathbf{u}^{\prime}\right), \\
& \text { (A.Y.1•) } \\
& \sigma^{\prime}=\mathrm{D}\left(\varepsilon^{\prime}-\varepsilon^{\varepsilon^{\prime}}\right) . \\
& \boldsymbol{\sigma}^{\prime} \bullet \delta \boldsymbol{\varepsilon}+\sigma \bullet \mathrm{L}_{11}\left(\mathbf{u}^{\prime}, \delta \mathbf{u}\right)=\mathbf{f}^{\prime} \bullet \delta \mathbf{u}, \\
& \text { (A.r.ll) } \\
& \text { (A.r.ir) }
\end{aligned}
$$

 (A Y . 4 (براى حالتى با بك بارامتر سختى P به دست آمد، مى باشند . داريم:

$$
\begin{aligned}
& \varepsilon_{\cdot p}=\mathbf{L}_{1}\left(\mathbf{u}_{p}\right)+\mathbf{L}_{11}\left(\mathbf{u} \cdot \mathbf{u}_{\cdot p}\right) \text {, } \\
& \sigma_{, p}=D_{p p}\left(\varepsilon-\varepsilon^{i}\right)+\mathrm{D}_{, p}=\mathrm{D}\left(\varepsilon_{, p}-\varepsilon^{p}\right), \quad \text { (A.Y. If) } \\
& \sigma_{p} \bullet \delta \varepsilon+\sigma \bullet \mathbf{L}_{11}\left(\mathbf{u}_{p}, \delta \mathrm{u}\right)=0 . \quad \text { (^. Y. 10) }
\end{aligned}
$$

 كه در معادلهُ (A Y Y . Y) تعريف شده المت. بنابراين، براى بِياده سازى محاسبه حساسبت طراحى در يك بسته نرم |فزارى نحليل سازه، يكى مدول حساسيت بار كه در آن، بار واتعى و كرنش اوليه بـا كـرنـن اوليه مجازى
 بنابراين تنها تفاوت بين محاسبـهُ حسـاسيت خططى و غير خطى اين است كه كرنش اوليه مجازى بـه جـاى
 حساسيت بار و مم معادلات حسـاسبت طراحى خططى بانشند، هر جند مساله تحليلى غير خططى بانثد. اين يكى ناصيت عمومى تحليل حساسيت مسائل غير خطى مى باثـد. مى توان نشان داد كه اثر غير خططى بودن روى روش مجاورتى مشابهُ الثر آن روى روش مستقيم است است
 مي سازد:

$$
\begin{aligned}
& \varepsilon^{a}=\mathbf{L}_{1}\left(\mathbf{u}^{a}\right)+\mathbf{L}_{11}\left(\mathbf{u}, \mathbf{u}^{a}\right), \\
& \text { (A.Y.19) } \\
& \sigma^{a}=\mathrm{D} \varepsilon^{a}, \\
& \text { (A.Y.iV) } \\
& \sigma^{a} \bullet \delta \varepsilon+\sigma \bullet \mathrm{L}_{11}\left(\mathbf{u}^{a}, \delta \mathbf{u}\right)=\mathbf{h}_{, \bullet} \bullet \delta \mathbf{u} . \\
& \text { (A.Y.) } \mathrm{A} \text {) }
\end{aligned}
$$

بنابراين ، سازه مجاورتى يكى سازه تانزانتاست كه درآنَ، hبه عنوان بار اعمال شده مى باشد(مر جع [3] 1) Tangent

را نيز بيينيد) . بـرايى بياده ســازى محاسبهُ ميدان مجاورتى در يكـ بسته نرم افزارى تحليل سمازه، در مدول

A.Y. 1 مثّال

 است و تحت تأير يكى دماى ثابت T (كه از دماى بدون تنش جسم اندازه كيرى مى شود) قرار دارد و بار متغير عرضى μ ب به آن اعمال مى ئود. دماى به كار رنته T به كونهاى انتخاب كرديده كه بار مـحورى $E A_{0} \varepsilon^{i}=E A_{0} \alpha T=7.5 E I_{0} / L^{2}$ نانسى از آن ، نزديك به بار حدى كمانش تير مى باشـد كه به صوري

 مى كنيم كه P و I ثابت باتى مى ماندلد) .

شكل A. r. r. تير تحت تأيركرنش اوليه و بارعمودى

برایى يك تير تحت تأير بارماى تركيبى محورى و خمششى، تانسور كرنس كلى، داراى دو مؤلفه

$$
N=E A\left(\epsilon_{x}-\varepsilon^{i}\right), \quad M=E I \kappa,
$$

كه در آن $\int_{0}^{2 L}\left(N \delta \epsilon_{x}+M \delta \kappa\right) d x=\mu P \delta w_{m}$,

كه در آن

$$
\delta \epsilon_{x}=\delta u_{, x}+w_{, x} \delta w_{, x}, \quad \delta \kappa=\delta w_{, x x}
$$

 درجه سه w تقريب مى زنـمم • با به كار بردن شرايط مرزى و توابع شـكل جزء محدود داريم.

$$
u=0, \quad(w / L)=\bar{w}\left(3 \bar{x}^{2}-2 \bar{x}^{3}\right), \quad \bar{x}=x / L, \quad \bar{w}=w_{m} / L
$$

كرننش ها و تنش هاى كلى به صورت زير الست:

$$
\begin{gathered}
\epsilon_{x}=18 \bar{w}^{2}\left(\bar{x}-\bar{x}^{2}\right)^{2}, \quad \kappa=(6 \bar{w} / L)(1-2 \bar{x}), \\
\delta \epsilon_{x}=36 \bar{w} \delta \bar{w}\left(\bar{x}-\bar{x}^{2}\right)^{2}, \quad \delta \kappa=(6 \delta \bar{w} / L)(1-2 \bar{x}), \\
N=18 E A \bar{w}^{2}\left(\bar{x}-\bar{x}^{2}\right)^{2}-E A \epsilon^{i}, \quad M=(6 E I \bar{w} / L)(1-2 \bar{x}) .
\end{gathered}
$$

با انتكرال كيرى از معادله' كار مجازى روى جزء (با بار از صغر تاP در انتها) داريم

$$
\begin{equation*}
1.02857 E A \bar{w}^{3}+12\left(E I / L^{2}\right) \bar{w}-1.2 E A \epsilon^{i} \bar{w}=0.5 \mu P \tag{الفـ}
\end{equation*}
$$

 داريـم:

$$
\begin{aligned}
1.02857 \bar{w}^{3}+0.003 \bar{w}=6 \times 10^{-5} \mu & \\
& \cdot \tilde{w}=0.018000 \text { برایى } \mu=1 \text { داريw } \mu=
\end{aligned}
$$

قبل از به كار بردن روشهاى مستقيم و مجاورتى برایى محاسبهُ A.

$$
\epsilon_{x}^{\prime}=u_{, x}^{\prime}+w_{, x} w_{, x}^{\prime}=36 \bar{w} \bar{w}^{\prime}\left(\bar{x}-\bar{x}^{2}\right)^{2}, \quad \kappa^{\prime}=w_{, x z}^{\prime}=6 \bar{w}^{\prime}(1-2 \bar{x}) / L
$$

$$
N^{\prime}=E A \varepsilon_{x}^{\prime}, \quad M^{\prime}=E I \kappa^{\prime},
$$

$$
\int_{0}^{L}\left(N^{\prime} \delta \epsilon_{x}+M^{\prime} \delta \kappa+N w_{, x}^{\prime} \delta w_{, x}\right) d x=0.5 P \delta w_{m}
$$

كه از آخرين معادله مي نوان انتكرال كيرى كرد كه به صورت زير در ميآيد:

$$
3.08571 E A \bar{w}^{2} \bar{w}^{\prime}+12\left(E I / L^{2}\right) \bar{w}^{\prime}-1.2 E A \epsilon^{i} \bar{w}^{\prime}=0.5 P
$$

اين معادله مي تواند از مشتت كيرى از معادله (الف) نسبت به بر نيز به دست آيد .

$$
\begin{gathered}
\epsilon_{x, p}=u_{x p}+w_{, z} w_{, z p}, \quad \kappa_{p p}=w_{, x x p}, \\
\left.N_{\downarrow p}=E A \mid \epsilon_{x, p}+\left(\epsilon_{\tau}-\epsilon^{i}\right) / A\right], \quad M_{p}=E I \kappa_{p p}, \\
\int_{0}^{L}\left(N_{, p} \delta \epsilon_{x}+M_{p p} \delta \kappa+N w_{x p} \delta w_{r}\right) d x=0 .
\end{gathered}
$$

مى ينيم كه معادلات حسـاسيت، همان معادلات حالت تانزانت هستند به جز اين كهـ بــ جـاى بـار P، از از كرنش اوليه مجازى كه كرنس اوليه ناشى از بار مجازى، به شُشكل زير تعريف مى شوود:

$$
\begin{align*}
P^{p} \delta w_{m} & =-\int_{0}^{L} E\left(\epsilon_{x}-\epsilon^{i}\right) \delta \epsilon_{x} d x=-E \int_{0}^{L}\left[18 \bar{w}^{2}\left(\bar{x}-\bar{x}^{2}\right)^{2}-\epsilon^{i}\right] 36 \bar{w} \delta \bar{w}\left(\bar{x}-\bar{x}^{2}\right)^{2} d x \\
& =-1.02857 E \bar{w}^{3} \delta w_{m}+1.2 E \epsilon^{i} \bar{w} \delta w_{m} . \tag{ب}
\end{align*}
$$

معادله' حساسيت طراحى از معادله' حسـاسيت بار، معادلُ' (ب) ، با جايكزين كر دن بار واتعى (0.5P)با بار مجازى pp و جايكذارى $3.08571 E A \bar{w}^{2} \bar{w}_{, A}+12\left(E I / L^{2}\right) \bar{w}_{, A}-1.2 E A \epsilon^{i} \bar{w}_{, A}=-1.02857 E \bar{w}^{3}+1.2 E \epsilon^{i} \bar{w}$.
 اين نتيجه با مشتق كيرى از معادله (الفف) نسبت به A نيز به دست مى آيد . باحل كردن معادله براى بهد دست آوردن

$$
\bar{w}_{, A}=\frac{-1.02857 \bar{w}^{3}+0.096 \bar{w}}{\left(3.08571 \bar{w}^{2}+0.024\right) A}=\frac{0.6888}{A}
$$

روش مجاورتح: برای الستفاده از روش مجاورتى \bar{w} را به حورت زير تعريف مى كنيم.

$$
\bar{w}=H=\int_{0}^{2 L}(w / L) \delta(x-L) d x
$$

 است كه به وسط تير اعمال مى كردد. از آن جا كه ميدان ممجاورتى از مدول حسـاسيت بار با جايگزينى بار
 0.5P با 1 / در معادله (ب) به دست آيد .

$$
\bar{w}^{a}=\left[3.08571 E A \bar{w}^{2}+12\left(E I / L^{2}\right)-1.2 E A \epsilon^{i}\right]^{-1} / L .
$$

$$
\bar{w}_{, A}=H_{, A}=P^{p} w(l / 2)=L^{p} \bar{w}^{a}
$$

كه اين نتيجه با نتيجه حاصل از روش مستقيم بكى است.

اكـــون سراغ محاسبـه' يـكـ بــار حـدى مى رويم؛ در اين جا معادلات حسـاسيت بار يعنى مـــادلات
 معمول اين است كه مسير باسخ را با بارامتر ديخرى به جز بار (به عنوان مثال بكـ مولفه تغييرمكان يا يكـ
 نظر مى كيريم كه بارامتر باسـخ و $\dot{\mu}=0$ را كترل كنتد و نه سختى را (يعنى

(^. Y. 9)

$$
\begin{gather*}
\varepsilon_{1}=\mathbf{L}_{1}\left(\mathbf{u}_{1}\right)+\mathbf{L}_{11}\left(\mathbf{u}^{*}, \mathbf{u}_{1}\right) \tag{A,Y.19}\\
\sigma_{\mathbf{I}}=\mathbf{D} \varepsilon_{1} \tag{A,Y.Y•}\\
\sigma_{1}: \delta \varepsilon+\sigma^{*} \cdot \mathbf{L}_{11}\left(\mathbf{u}_{1}, \delta \mathbf{u}\right)=0 \tag{А.Y.YI}
\end{gather*}
$$

 معادلات مـگّن داراى ججواب غير صفرند، نشانكير اين الست كه معادلات حسـاسـيــت بـارهـا بـه صـورت منفردند (مهان طور كه در نقاط حدى انتظار مى رود) . منغرد بودن نه نتط در نقاط حذى بلكه در نـــطـهُ

 به كونهاى نوشته شوند كه بتوان مـزمان سختى و بار را تغيير داد . اما منكام تغيير سختى، بايد مقدار بار
 امت در طول مسير داريـم:

$$
\begin{equation*}
p=\nu, \quad \mu=\mu^{*}(p), \quad \mathbf{u}=\mathbf{u}^{*}(p) \tag{А.Y.YY}
\end{equation*}
$$

براى مشُشخص كردن تنيير همزمان p و بار، زيرنويس p را براى مسُتت و علامت ستاره را براى بار حذى به

$$
\begin{array}{cc}
\varepsilon_{, p}^{*}=L_{1}\left(u_{p}^{*}\right)+L_{11}\left(u^{*}, u_{p}^{*}\right), & (\Lambda . Y . Y Y) \\
\sigma_{p p}^{*}=\mathbf{D}_{p p}\left(\varepsilon^{*}-\varepsilon^{i}\right)+\mathbf{D}\left(\varepsilon_{p p}^{*}-\mu_{p}^{*} \varepsilon^{i^{\prime}}\right), & (\Lambda . Y . Y Y) \\
\sigma_{p p}^{*} \cdot \delta \varepsilon+\sigma^{*} \cdot L_{11}\left(u_{p}^{*}, \delta u\right)=\mu_{p}^{*} \mathbf{f}^{\prime} \cdot \delta \mathbf{u} . & (\Lambda . Y . Y \Delta)
\end{array}
$$

مبانمى بهينه سازى سازهما (فصل A: مقدمشاى برنحليل حساسيت متغير)
دسـت آورد .

$$
\mu_{p p}^{*}=\frac{\sigma_{p p}^{*} \bullet \varepsilon_{1}+\sigma^{*} \bullet \mathbf{L}_{11}\left(\mathbf{u}_{p, p}^{*}, \mathbf{u}_{1}\right)}{\mathbf{f}^{\prime} \bullet \mathbf{u}_{1}}
$$

(A.Y.Yя)

اين معادله به مشتقات باستخ بيشّ كمانش نياز دارد. اين مشتقات را مى توانيم بدون استفاده از يك ميـدان مهجاورتى و با تو جه به تشابه صورت كسر با آنحه از جايكزينى مى آيد حذف نمود.

$$
\begin{equation*}
\sigma_{1} \bullet \varepsilon_{p p}^{*}+\sigma^{*} \bullet \mathbf{L}_{11}\left(\mathbf{u}_{1}, \mathbf{u}_{p p}^{*}\right)=0 \tag{A.Y.YV}
\end{equation*}
$$

$$
\sigma_{, p}^{*} \cdot \varepsilon_{1}-D_{, p}\left(\varepsilon^{*}-\varepsilon^{i}\right) \cdot \varepsilon_{1}+\mu_{, p}^{*} \mathbf{D} \varepsilon^{i^{\prime}} \cdot \varepsilon_{1}+\sigma^{*} \cdot \mathbf{L}_{11}\left(\mathbf{u}_{1}, \mathbf{u}_{1 p}^{*}\right)=0 . \quad \text { (^.Y.Y^) }
$$

 پارامتر سختى به صوربت زير مى رسيم :

$$
\begin{equation*}
\mu_{, p}^{*}=\frac{D_{p, p}\left(\varepsilon^{*}-\varepsilon^{i}\right) \bullet \varepsilon_{1}}{\mathbf{f}^{\prime} \bullet \mathbf{u}_{1}+D \varepsilon^{i^{i}} \bullet \varepsilon_{1}} \tag{А.Y.Үq}
\end{equation*}
$$

$$
\mu_{i p}^{\prime}=\frac{-\mathbf{f}^{p \boldsymbol{p}} \bullet \mathbf{u}_{1}}{\left(\mathbf{f}^{\prime}+\mathbf{f}^{i}\right) \cdot \mathbf{u}_{1}}
$$

(A.Y.r•)
 مربوط به كرنش اوليه 'أع مى باشد . هـحاسبات بالا را مى توان براى كمانش شانحه نيز به كار برد . يادآور مى شود كه براى كمانش شاخهـ
 غيـر صغـر مـسـآلـه' هـمـغـن

 بختُ بعدى بحث خواهد شـل
A. P. F مثال
 الست. هنگامى كه خريا سرد مى شود، نغير مكاذ hدر اثربار P افز ايش خواهد يانت تابه يك نفطه حدى

 مى باشمد كه E ضريب ارتجاعى و ض ضريب انبساط حرارتى است.

به دليل تقارن، مى توانتبم تنها نصف خربا را با نصف بار مكانيكى اعمال شــهـ بـه آن تحـلـيـل كـنيـم. مختصات x رادر امتداد طول خرباانتخاب مى كنبم . رابطه كرنش - تغيير مكان، قانون هوك و معادله كار

$$
\begin{aligned}
& \text { مجازى به صورت زير نوشته مى شوند : } \\
& \epsilon=u_{, \Sigma}+0.5\left(u_{, x}^{2}+v_{, x}^{2}\right), \quad N=E A(\epsilon+\mu \alpha T), \quad \int_{0}^{L} N \delta \epsilon d x=0.5 P \delta h,
\end{aligned}
$$

$$
\delta \epsilon=\delta u_{, x}+u_{, x} \delta u_{, x}+v_{, x} \delta v_{, x}
$$

 از آن جا كه مسالهئ ما يكى خربِامـت مى توانيم فرض كنيم كه u و v به طور خططى با x تنيير مى كنند و داريمم :

$$
u_{, x}=-\bar{h} \sin \theta, \quad v_{, x}=-\bar{h} \cos \theta, \quad \text { S } \bar{h}=h / L
$$

بنابراين:

$$
\epsilon=-\bar{h} \sin \theta+0.5 \bar{h}^{2}, \quad \delta \epsilon=-\delta \bar{h} \sin \theta+\bar{h} \delta \bar{h}
$$

$$
N=E A\left(-\vec{h}^{\sin } \theta+0.5 \bar{h}^{2}+\mu \alpha T\right)
$$

با جايكزينى در معادله كار مجازى داريم:

$$
E A\left(-\bar{h} \sin \theta+0.5 \bar{h}^{2}+\mu \alpha T\right)(-\sin \theta+\bar{h}) \delta \bar{h}=0.5 P \delta \bar{h} .
$$

با تقسيم معادله به 0.5EA و مرنب مـازى دوباره و استفاده از اطلاعات داده ثـده در مساله مى تواذن نويُـت

$$
\begin{equation*}
\bar{h}^{3}-0.5209 \bar{h}^{2}+0.02(3.015+\mu) \bar{h}=0.001 A_{0} / A+0.003473 \mu \tag{الف}
\end{equation*}
$$

از معادلهُ (الف) مى توان باسخغ خريا به افزايش دما را بيش بينى كرد. برایى اين كار با يك بارامتر بـار داده 'ُمده' μ بايد يك معادله درجه' سوم حل شود. با باين وجود مى توان با انزايش تدريجى شَ $\bar{h}=0.09424$ محامبه كرد. از منحنى مى توان دريافت كه ضريب بار محدود كنده مربوط به تنير مكان برابر $0.56274=0$

 نيازمنديم. با استفاده از عبارت كرنش بر حسب تابعى از

$$
\epsilon^{*}-\epsilon^{i *}=-\bar{h}^{*} \sin \theta+0.5\left(\bar{h}^{-}\right)^{2}+\mu^{-} \alpha T=-0.006297 .
$$

كرنش اوليه مجازى براى يك جزءخ خيا بهصورت A/(

PHI بنش A.Y :تحليلايستايعضيرخطى وبارماى هدى

بنابراين مقدار بار مجازى به صورت زير قابل محاسبه است.

$$
f^{p-}=-E\left(\epsilon^{\prime \prime}-\epsilon^{i *}\right)=0.006297 E .
$$

بار مجازى شامل دو نيروى مم راستا باعضو خريا مى باشد كى در دو انتهاى آن اعمال مى شُود. شـمهنين بايد بار مجازى مربوط بـ

$$
f^{\prime}=-E A \alpha T=-0.01 E A
$$

 مسآله مورد نظر ما

$$
\mu_{, A}^{*}=\frac{-0.006297 E \cos \left(90^{\circ}+\theta\right)}{-0.01 E A \cos \left(90^{\circ}+\theta\right)}=\frac{0.6297}{A_{0}} .
$$

صحت اين نتيجه را با تفاضلهاى محدود بردسى مى كنيم. با افزاين يكى رصحدى مساحت و جايكزيـن نمـودن $A=1.01 A_{0}$ در معادلـ (الفـ) و حل مجـدد $0.56899=$ محدود برايى مشتّق به صورت زير خواهد برد:

$$
\mu_{\cdot A}^{*} \approx \frac{0.56899-0.56274}{0.01 A_{0}}=\frac{0.625}{A_{0}}
$$

ك، با مشتت تحليلى يكى ممخوانى منطتى دارد. • • •

 نسبت به بارامتر بار ر μ و براى حل معادلات تانزانت تعادل به ازاى هر مفدار بار، ابزار خاصىى بيش بينى

 بسته نرم افزارى تحليل سازه حل مي شُود. آن كاه خروجى بسته نرم افزارى، حساسيت به متغير ساختى

روش مجاورتى مشابهر روش استفاده شُده در حالت خطى مى باشد. همانبار مجاورتى استفاده مى شود
 اين وجود براى تحليل غير خطى، استفاده از روش مجاورنى مانند حالت خطى، دليل محكــى وجـود ندارد. در تحليل غير خطى هزينه تحليل ، خيلى بيستر از هزينه' محاسبات حسساسيت (كه هميينه خطى اند) مى باشد. بنابراين، حتى هنگامى كه تعداد توابع ياستخى كه بايد ديفر انسيل كيرى شوند، خيلى كــــتر از تعداد متغيرهاى طراحى باشدل، باز مم روش مستقيم يك انتخاب منطتى است

 مؤلفه هاى مكانيكى و مم شامل كرنش اوليه است)در مود ارتعاشى مورد نياز مى باشد.

A.r ارتعاش و كمانش

 (u($\mu), \varepsilon(\mu), \sigma(\mu))$ u

 اوليه وجود ندارد، داريم:

$$
\varepsilon_{1}=\mathbf{L}_{1}\left(\mathbf{u}_{1}\right)+\mathbf{L}_{11}\left(\mathbf{u}, \mathbf{u}_{1}\right),
$$

$$
\begin{equation*}
\sigma_{1}=\mathrm{D} \varepsilon_{1} \tag{^.r.ı}
\end{equation*}
$$

$\sigma_{1} \bullet \delta \varepsilon+\sigma \cdot \mathbf{L}_{\mathbf{1 1}}\left(\mathbf{u}_{1}, \delta \mathbf{u}\right)=\omega^{2} \mathbf{M u}_{1} \bullet \delta \mathbf{u}$,

 به صورت زير به دسـت مى آيلد :

$$
\begin{equation*}
\omega^{2}=\frac{\sigma_{1} \bullet \varepsilon_{1}+\sigma \bullet L_{2}\left(\mathrm{u}_{1}\right)}{M u_{1} \bullet \mathrm{u}_{1}} \tag{A.r.Y}
\end{equation*}
$$

. بنابراين سالت مود كمانشى u ب برآورده مى سازند. $\mathbf{~ ب ا ~}$
A. . . .

بـرایى مـحامبـه مشتـت بـسامد نسبـت بـه يـــ بـارامـتر ســختـيم، بـا ديـفر انسيـل كـيرى از معـادلات
 ترار داده و با استغاده از معادله' (艹 . Y Y د داريـم :

$$
\begin{gathered}
\varepsilon_{1, p}=\mathbf{L}_{1}\left(\mathbf{u}_{1, p}\right)+\mathbf{L}_{11}\left(\mathbf{u}_{p, p}, \mathbf{u}_{1}\right)+\mathbf{L}_{11}\left(\mathbf{u}, \mathbf{u}_{1, p}\right), \\
\sigma_{1, p}=D_{p p} \varepsilon_{1}+D \varepsilon_{1, p} \\
\sigma_{1, p} \bullet \varepsilon_{1}+\sigma_{1} \bullet \mathbf{L}_{11}\left(\mathbf{u}_{p, p} \mathbf{u}_{1}\right)+\sigma_{p} \bullet \mathbf{L}_{2}\left(\mathbf{u}_{1}\right)+\sigma \bullet \mathbf{L}_{11}\left(\mathbf{u}_{1, p}, \mathbf{u}_{1}\right) \\
=\left(\omega^{2}\right)_{p} M \mathbf{u}_{1} \bullet \mathbf{u}_{1}+\omega^{2} \mathbf{M}_{p} \mathbf{u}_{1} \bullet \mathbf{u}_{1}+\omega^{2} \mathbf{M} \mathbf{u}_{1, p} \bullet \mathbf{u}_{1}
\end{gathered}
$$

$$
\sigma_{1} \bullet\left[\mathbf{L}_{1}\left(\mathbf{u}_{1, p}\right)+\mathbf{L}_{11}\left(\mathbf{u}, \mathbf{u}_{1, p}\right)\right]+\sigma \bullet \mathbf{L}_{11}\left(\mathbf{u}_{1}, \mathbf{u}_{1, p}\right)=\omega^{2} \mathbf{M} \mathbf{u}_{1} \bullet \mathbf{u}_{1, p} . \quad(\Lambda . r, \Lambda)
$$

1) Rayleigh

$$
\left(\omega^{2}\right)_{p}=\frac{\mathbf{D}_{, p} \varepsilon_{1} \bullet \varepsilon_{i}+2 \sigma_{1} \bullet \mathbf{L}_{11}\left(\mathbf{u}_{p}, \mathbf{u}_{1}\right)+\sigma_{p} \bullet \mathbf{L}_{2}\left(\mathbf{u}_{1}\right)-\omega^{2} \mathbf{M}_{p} \mathbf{u}_{1} \bullet \mathbf{u}_{1}}{M u_{1} \bullet \mathbf{u}_{1}} . \text { (^.r.q) }
$$

اولين و آخخرين عبارت در صورت كسر معادله' (Q . . . ب) به ترتيب مربرط به مشتقات ماتريس سـختى و
 مى كنيم، جملات ديگر صور ت كسر حذف مى شوند . براى بسامدهاى ارتعانـي يكى سازه تحت بار، به جمله' ديگرى كه شامل مشتقات ميدان استاتيكي u و u نسبت به p باشد، نياز داريم . اين كُونه مشتقات

مشتق بار كمانتىى با شرط
همزمان با آن تغيير كند به كونهاى كه

$$
\begin{equation*}
d\left(\omega^{2}\right)=\left(\omega^{2}\right)_{p} d p+\left(\omega^{2}\right)^{\prime} d \mu^{*}=0 \tag{^.r.l.}
\end{equation*}
$$

 در مجموع اين دو تغيير صفر مى شوند به كونه إى كه بسامل در بار كمانتشى، صفر باقى مى ماند. از معادلـ'

$$
\begin{equation*}
\mu_{; p}^{*}=-\frac{\left(\omega^{2}\right)_{, p}}{\left(\omega^{2}\right)^{\prime}} \tag{^.r.li}
\end{equation*}
$$

$$
\begin{align*}
& \text { (} \\
& \epsilon_{1}^{\prime}=\mathbf{L}_{1}\left(\mathbf{u}_{1}^{\prime}\right)+\mathbf{L}_{11}\left(\mathbf{u}^{\prime}, \mathbf{u}_{1}\right)+\mathbf{L}_{11}\left(\mathbf{u}, \mathbf{u}_{1}^{\prime}\right), \quad \text { (^.r.ir) } \\
& \sigma_{1}^{\prime}=\mathbf{D} \varepsilon_{1}^{\prime}, \tag{^.r.|r}
\end{align*}
$$

$\sigma_{1}^{\prime} \bullet \varepsilon_{1}+\sigma_{1} \bullet \mathbf{L}_{11}\left(\mathbf{u}^{\prime}, \mathbf{u}_{1}\right)+\sigma^{\prime} \bullet \mathbf{L}_{2}\left(\mathbf{u}_{1}\right)+\sigma \bullet \mathbf{L}_{11}\left(\mathbf{u}_{1}^{\prime}, \mathbf{u}_{1}\right)=\left(\omega^{2}\right)^{\prime} \mathbf{M} \mathbf{u}_{1} \bullet \mathbf{u}_{1}+\omega^{2} \mathbf{M} \mathbf{u}_{1}^{\prime} \bullet \mathbf{u}_{1}$.
(A.r.IF)

سِس مشتقاتت ميدان ارتعاشّى نسبـت بـه μ را با جابكزينى

$$
\sigma_{1} \bullet\left[\mathbf{L}_{1}\left(\mathbf{u}_{1}^{\prime}\right)+\mathbf{L}_{11}\left(\mathbf{u}, \mathbf{u}_{1}^{\prime}\right)\right]+\sigma \mathbf{b} \mid \mathbf{L}_{11}\left(\mathbf{u}_{1}, \mathbf{u}_{1}^{\prime}\right)=\omega^{2} \mathbf{M} \mathbf{u}_{1} \bullet \mathbf{u}_{1}^{\prime}, \quad(\wedge . r . \mid \Delta)
$$

$$
\begin{align*}
& \left(\omega^{2}\right)^{\prime}=\frac{2 \sigma_{1} \bullet \mathbf{L}_{11}\left(\mathbf{u}^{\prime}, \mathbf{u}_{1}\right)+\sigma^{\prime} \bullet \mathbf{L}_{2}\left(\mathbf{u}_{1}\right)}{\mathbf{M} \mathbf{u}_{1} \bullet \mathbf{u}_{1}} . \tag{А.Y.|f}
\end{align*}
$$

$$
\mu_{1, p}^{*}=-\frac{\mathbf{D}_{p} \varepsilon_{1} \bullet \varepsilon_{1}+2 \sigma_{1} \bullet \mathbf{L}_{11}\left(\mathbf{u}_{p, p}^{*}, \mathbf{u}_{1}\right)+\sigma_{, p}^{*} \bullet \mathbf{L}_{2}\left(\mathbf{u}_{1}\right)}{2 \sigma_{1} \bullet \mathrm{~L}_{11}\left(\mathbf{u}^{\prime *}, \mathbf{u}_{1}\right)+\sigma^{\prime *} \bullet \mathrm{~L}_{2}\left(\mathbf{u}_{1}\right)}, \quad \text { (^.r.iv) }
$$

باشيل كه ميدان
A.T. 1

تغيير نمى كنند) .
 با نرض يكى شكل مود متقارن، مود ارتعاثـى را مى يابيهم

$$
u_{1}=0, \quad w_{1} / L=3 \bar{x}^{2}-2 \bar{x}^{3}
$$

به منظور محاسبه بسامد ارتعاثم، از نسبت ريلى معـادله' (A . Y . Y) استفاده مىكنـم . اولين جملـه در صوردت كسر عبارلت المت از :

$$
\sigma_{1} \cdot \varepsilon_{1}=\int_{0}^{\ell}\left(N_{1} \epsilon_{x 1}+M_{1} \kappa_{1}\right) d x
$$

$$
\begin{aligned}
& \epsilon_{x 1}=w_{r x} w_{1, x}=36 \bar{w}\left(\bar{x}-\bar{x}^{2}\right)^{2}, \quad N_{1}=E A \epsilon_{x 1} \\
& \kappa_{1}=w_{1, x x}=6(1-2 \bar{x}) / L, \quad M_{1}=E I \kappa_{1}
\end{aligned}
$$

بنابراين :

$$
\begin{aligned}
\sigma_{1} \cdot \varepsilon_{1} & =\int_{0}^{L}\left[1296 E A \bar{w}\left(\bar{x}-\bar{x}^{2}\right)^{4}+36 E I(1-2 \bar{x})^{2} / L^{2}\right] d x \\
& =2.05714 E A \bar{w} L+12 E I / L
\end{aligned}
$$

ديگر عبارتهاى نسبت ريلى به صورتت زير است

$$
\begin{gathered}
\sigma \cdot L_{2}\left(\mathbf{u}_{1}\right)=\int_{0}^{L} N w_{1, \pm}^{2} d x=1.02857 E A \bar{w}^{2} L-1.2 E A L \epsilon^{i} \\
M u_{1} \cdot \mathbf{u}_{1}=\int_{0}^{L} A \rho w_{1}^{2} d x=0.3714 \rho A L^{3}
\end{gathered}
$$

$$
\omega^{2}=\frac{3.08571 E A \bar{w}^{2}+12 E I / L^{2}-1.2 E A \epsilon^{i}}{0.3714 \rho A L^{2}}=0.01077 \frac{E}{\rho L^{2}}
$$

$$
\text { توجه كنيد كه برایى يكى تير بار كذارى نشُده } 0
$$

$$
\omega=5.68 \sqrt{\frac{E I}{\rho A L^{4}}},
$$

 مي كنيم مى توان مشتت

$$
\left(\omega^{2}\right)_{, A}=\frac{3.08571 E\left(\bar{w}^{2}+2 A \bar{w} \bar{w}_{A}\right)-1.2 E \epsilon^{i}}{0.3714 \rho A L^{2}}-\frac{\omega^{2}}{A} .
$$

PFY بنش A.r :ارتعائموكمانش
اين معادله به صورت زير محامبه مي شوند :

$$
\begin{gathered}
\mathbf{D}_{p p} \varepsilon_{1} \bullet \varepsilon_{1}=\int_{0}^{L} E \epsilon_{x 1}^{2} d x=2.05714 E \bar{w}^{2} L \\
2 \sigma_{1} \cdot L_{11}\left(\mathbf{u}_{, p}, u_{1}\right)=2 \int_{0}^{L} N_{1} w_{, x A} w_{1, z} d x=4.11428 E A \bar{w} \bar{w}_{, A} L \\
\sigma_{, p} \bullet L_{2}\left(\mathbf{u}_{1}\right)=\int_{0}^{L} N_{, A} w_{1, z}^{2} d x
\end{gathered}
$$

$$
N_{, A}=E\left(\epsilon_{x}-\epsilon^{i}\right)+E A \epsilon_{x, A}=E\left(\epsilon_{x}-\epsilon^{i}\right)+E A w_{, x} w_{, x A}
$$

بنابراين

$$
\sigma_{, p} \cdot L_{2}\left(\mathbf{u}_{1}\right)=1.02857 E \tilde{w}^{2} L-1.2 E \epsilon^{i} L+2.05714 E A \bar{w} \bar{w}, A L
$$

$$
\omega^{2} \mathbf{M}_{, A} u_{1} \cdot u_{1}=\omega^{2} \int_{0}^{L} \rho w_{1}^{2} d x=0.3714 \omega^{2} \rho L^{3}
$$

در مجموع

$$
\left(\omega^{2}\right)_{, A}=\frac{3.08571 E \bar{w}^{2}+6.17142 E A \bar{w} \bar{w}, A-1.2 E \epsilon^{i}}{0.3714 \rho A L^{2}}-\frac{\omega^{2}}{A}
$$

كه با نتايج تحليلى مطلبتت مي كند . با اسنفاده از مقادير و و

$$
\left(\omega^{2}\right)_{, A}=0.1788 \frac{E}{\rho A L^{2}}
$$

 تعداد زيادى از پارامتر هاى سـازهاى به دست آوردب؛ هزينهُ زيادى در بر خواهد داشت . در اين كونه موارد

يكى فن مجاورتى كه به حساسيت هأى استاتتيكى نياز ندارد مناسب به نظر مـى رســـ . بـه طـور مـعـمـول، ، هعادلات تعادل استاتيكى را در ضربكرهاى لاكرانز (كه ما به آنها ميدانهأى مجاورتى مى كويــم) ضـربـ

مى كنيم و سيس به

$$
\begin{align*}
\left(\omega^{2}\right)^{*} & =m_{0} \omega^{2}+\sigma^{a} \bullet\left[\varepsilon-\mathbf{L}_{1}(\mathbf{u})-\frac{1}{2} \mathbf{L}_{2}(\mathbf{u})\right]+\varepsilon^{a} \bullet\left[\sigma-\mathbf{D}\left(\varepsilon-\varepsilon^{i}\right)\right]+f \bullet \mathbf{u}^{a} \\
& -\sigma \bullet\left[\mathbf{L}_{1}\left(\mathbf{u}^{a}\right)+\mathbf{L}_{11}\left(\mathbf{u}, \mathbf{u}^{a}\right)\right] \tag{А.†.|А}
\end{align*}
$$

كه مبـبـ اضافه شـلـه امست كه عبارات نهانى برالى ميدان مجاورتى، سماده سود. با مشتت كيرى از مـعـادله'

$$
\begin{align*}
m_{0}\left(\omega^{2}\right)_{p} & =\left(\omega^{2}\right)_{p}^{*}=\mathbf{D}_{p p} \varepsilon_{1} \bullet \varepsilon_{1}+2 \sigma_{1} \bullet \mathbf{L}_{11}\left(\mathbf{u}_{, p}, \mathbf{u}_{1}\right)+\sigma_{p} \bullet \mathbf{L}_{2}\left(\mathbf{u}_{1}\right)-\omega^{2} \mathbf{M}_{p p} \mathbf{u}_{1} \bullet \mathbf{u}_{1} \\
& +\sigma^{a} \cdot\left[\varepsilon_{, p}-\mathbf{L}_{1}\left(\mathbf{u}_{p}\right)-\mathrm{L}_{11}\left(\mathbf{u}, \mathbf{u}_{1 p}\right)\right]+\varepsilon^{a} \bullet\left[\sigma_{, p}-\mathbf{D}_{, p}\left(\varepsilon-\varepsilon^{i}\right)-D \varepsilon_{, p}\right] \\
& -\sigma_{p} \bullet\left[\mathbf{L}_{1}\left(\mathbf{u}^{a}\right)+\mathbf{L}_{11}\left(\mathbf{u}, \mathbf{u}^{a}\right)\right]-\sigma \bullet \mathbf{L}_{11}\left(\mathbf{u}_{, p} \mathbf{u}^{a}\right) \tag{^.r.1q}
\end{align*}
$$

با جمع بندى عبارتهايع كه شامل مشتقات تغنير مكان، مشيتقات كرنش و مششتقات تنث هستند داريم:

$$
\begin{aligned}
m_{0}\left(\omega^{2}\right)_{, p} & =\mathbf{D}_{p} \varepsilon_{1} \bullet \varepsilon_{1}-\omega^{2} \mathbf{M}_{p p} \mathbf{u}_{1} \bullet \mathbf{u}_{1}-\varepsilon^{\mathfrak{a}} \bullet \mathbf{D}_{, p}\left(\varepsilon-\varepsilon^{i}\right) \\
& -\sigma^{a} \bullet\left[\mathbf{L}_{1}\left(\mathbf{u}_{, p}\right)+\mathbf{L}_{11}\left(\mathbf{u}, \mathbf{u}_{p}\right)\right]-\sigma \bullet \mathbf{L}_{11}\left(\mathbf{u}_{p,}, \mathbf{u}^{a}\right)+2 \sigma_{1} \bullet \mathbf{L}_{11}\left(\mathbf{u}_{\mathbf{p}}, \mathbf{u}_{1}\right) \\
& +\varepsilon_{, p} \bullet\left[\sigma^{a}-\mathbf{D} \varepsilon^{a}\right]+\sigma_{, p} \bullet\left[\varepsilon^{a}-\mathbf{L}_{1}\left(\mathbf{u}^{a}\right)-\mathbf{L}_{11}\left(\mathbf{u}, \mathbf{u}^{a}\right)+\mathbf{L}_{2}\left(\mathbf{u}_{1}\right)\right]
\end{aligned}
$$

(A.r.Y.)
 مجاورتى بايستى معادلات زير را برآورده سازد.

$$
\begin{gather*}
\varepsilon^{a}=L_{1}\left(\mathbf{u}^{a}\right)+L_{11}\left(\mathbf{u}, \mathbf{u}^{a}\right)-L_{2}\left(\mathbf{u}_{1}\right), \\
\sigma^{a}=D \varepsilon^{a}, \tag{А.Y.YY}\\
\sigma^{a} \cdot\left[\mathbf{L}_{1}(\delta \mathbf{u})+\mathbf{L}_{11}(\mathbf{u}, \delta \mathbf{u})\right]+\sigma \bullet \mathbf{L}_{11}\left(\mathbf{u}^{a}, \delta \mathbf{u}\right)-2 \sigma_{1} \bullet \mathbf{L}_{11}\left(\mathbf{u}_{1}, \delta \mathbf{u}\right)=0 .(\Lambda . r . Y \vdash)
\end{gather*}
$$

آنگاه مشتت بساعد به حورت زير خواهد برد:

Prq بخش

$$
\begin{equation*}
\left(\omega^{2}\right)_{, p}=\frac{\mathbf{D}_{, p} \varepsilon_{1} \bullet \varepsilon_{1}-\omega^{2} \mathbf{M}_{, p} \mathbf{u}_{1} \bullet u_{1}-\varepsilon^{a} \bullet D_{, p}\left(\varepsilon-\varepsilon^{i}\right)}{M u_{1} \bullet u_{i}} \tag{A.Y.YY}
\end{equation*}
$$

 دارند، عمكن اسـت به عنوان معادلات ميدانى يكى سازه مجاورتى در نظر كرفته شونـد كـه در آن عبـارت
 كالبلدى مى باشد. . در يك مساله كمانشـي (ω (قسمـت همكن منفرد و ميدانهاى مجاورتى يكتا نيـتند و هر ضريبي از مود كمانشـى U1 مى تواند اضافه كردد . هر رابـطـهُ تعامد سـاز مناسـب برأى يكتا سـاخـتن ميلانهاى مجاورتى مى تواند استفاده كردد .

به طور مشابه مشتت مقدار ويرُ كمانش به صورت زير امتت:

$$
\mu_{1 p}^{\prime *}=-\frac{\mathbf{D}_{\mathbf{p}} \varepsilon_{1} \bullet \varepsilon_{1}-\mathbf{D}_{\mathbf{p}} \varepsilon^{*} \bullet \varepsilon^{a}}{2 \sigma_{1} \cdot \mathrm{~L}_{11}\left(\mathbf{u}^{\prime *}, \mathbf{u}_{1}\right)+\sigma^{\prime 2} \bullet \mathrm{~L}_{2}\left(\mathbf{u}_{1}\right)}
$$

(A.r.YO)
 عمل بار كمانش به وسيله حل بك مساله مقدار ويزه خططى شـده در يكى بار "

A.F.F.F مثال
 ايستايع بستگى دارند را دوباره محاسبه كنيـم . از آن مثال داريـم:

$$
A=2 \sigma_{1} \bullet \mathrm{~L}_{11}\left(\mathbf{u}_{, p}, \mathbf{u}_{1}\right)+\sigma_{, p} \bullet \mathrm{~L}_{2}\left(\mathbf{u}_{1}\right)=1.02857 E L \bar{w}^{2}-1.2 E L \epsilon^{i}+6.17142 .4 L \bar{w} \bar{w}, A
$$

(الفـ)

با استفاده از رومٌ مجاورتى اين دو عبارت باعبارتت زير

$$
A=-\varepsilon^{a} \bullet D_{p}\left(\varepsilon-\varepsilon^{i}\right)
$$

در معادلف' (A . Y . YY) جايگزين مى گردنd.
 اوليه و يكى نيروى كالبدى امحت. كرنش اولـيـهـ صورت زير نوشته مى شود

$$
f_{1}^{a} L \overline{\mathrm{w}}=\int_{0}^{L} w_{1, x}^{2} E A \delta \epsilon_{x} d x
$$

$$
f_{1}^{a}=1296 \frac{E A \bar{w}}{L} \int_{0}^{L}\left(\bar{x}-\bar{x}^{2}\right)^{4} d x=2.05714 E . A \bar{w}
$$

نيروى كالبدى عبارت اممت از :

$$
\begin{aligned}
f_{2}^{a} L \delta \bar{w} & =2 \sigma_{1} \cdot \mathbf{L}_{11}\left(\mathbf{u}_{1}, \delta \mathbf{u}\right)=2 \int_{0}^{L} N_{\pi 1} w_{1, x} \delta w_{, x} d x=2 E A \int_{0}^{L} w_{1, x}^{2} w_{, x} \delta w_{, x} d x \\
& =2592 E A \bar{w} \delta \bar{w} \int_{0}^{L}\left(\bar{x}-\bar{x}^{2}\right)^{4} d x=4.11428 E A L \bar{w} \delta \bar{w}
\end{aligned}
$$

در مجموع نيروى كرهى به شكل زير نوثته مى شود

$$
f^{a}=f_{1}^{a}+f_{2}^{a}=6.17142 E A \bar{w}
$$

اين نيرو بايد به سازه" تانزانتى اعمال كردد . اين بدان معنى امست كه اكر بخخواهيمم آن نيرو را در سمت رامـت
 استفاده كنيم؛ يعنى
$3.08571 E A \bar{w}^{2} \bar{w}^{a}+12\left(E I / L^{2}\right) \bar{w}^{a}-1.2 E A \epsilon^{i} \bar{w}^{a}=6.17142 E A \bar{w}$.

$$
\begin{equation*}
\bar{w}^{a}=\frac{6.17142 A \bar{w}_{, A}}{-1.02857 \bar{u}^{2}+1.2 \epsilon^{i}} \tag{ب}
\end{equation*}
$$

با توجه به اين كه

$$
A=-\varepsilon^{a} \cdot D_{p}\left(\varepsilon-\varepsilon^{i}\right)=-\int_{0}^{L} E \epsilon_{\pi}^{a}\left(\epsilon-\epsilon^{i}\right) d x
$$

> از معادلهُ (A. Y. Y)

$$
\epsilon_{x}^{a}=w_{, z}^{a} w_{, x}-w_{1, z}^{2}=36\left(\bar{x}-\bar{x}^{2}\right)^{2}\left(\bar{w}^{a} \tilde{w}-1\right)
$$

$$
\begin{align*}
A & =36\left(1-\bar{w}^{a} \bar{w}\right) \int_{0}^{L}\left(\bar{x}-\bar{x}^{2}\right)^{2}\left[18\left(\bar{x}-\bar{x}^{2}\right)^{2}-\epsilon^{i}\right] d x \tag{ت}\\
& =\left(1-\bar{w}^{a} \bar{w}\right) E L\left(1.02857 \bar{w}^{2}-1.2 \epsilon^{i}\right) .
\end{align*}
$$

اكنون مى توان مشتت دست آّردد. به منظور بررسى اين كه نتيجه به دست آمده از معادله(ت) مانند نتيجه معادله(الفـ) مى باثشد با خير ، با استفاده از معادلهُ (ب) داريم : $\left(1-\bar{w}^{a} \bar{w}\right)=\frac{6.17142 A \bar{w}_{, A}+1.02857 \bar{w}^{2}-1.2 \epsilon^{i}}{1.02857 \bar{w}^{2}-1.2 \epsilon^{i}}$.

با قرار دادن عبارت نوت در معادله' (ت) معادله' (االف) به دست مي آيد . • •

محاسبه حساسيت نسبت به تغيرات شككل بسبار بِجيده تر از تغيرات ستختى مى باشار. بختر حاضر به حساسيت شُكل باسخخ ايستألى در محلوده ارتجاعى خططى nحدود مى شود و بر اساس مراجـع[11-5 [5 است . افزون بر اين بحت ما به رابطه سازى بلون انحتنا (از فَيل كمان و بوسته) سحدود مى شود. خواننده براى الثبات نتيجه هاى استفاده شده در اين بخنت مى تواند به مرجع [2] مراجعع كند. برايى حساسيت شكل متغير از دو راه كلى استفاده مى شود . روش اول و مشهورتر ، مشتق مادى بوده و روش دوم راه بارامترسازى دامنه مى باشثد كه بهع عنوان رون حجم كترل نيز شناخته مـى شـود . مـر دو

1) Isoparametric
 شروع مى كنيم و سهس مى بينيم كه آنها چحكونه مى توانند با روش مستقيم و مبجاورتى به كار كرفته شوند .

ميدان تغييرات شُكل هوا در نظر بكيريد به كونه أى كه يكى ذره' مادى أز مكان x به مكان x تغيير موضع
داده باشد . •

$$
\begin{equation*}
\mathbf{x}_{\phi}=\mathbf{x}+\phi(\mathbf{x}, p) \tag{A.f.1}
\end{equation*}
$$

كه p متغير طراحى مُكل مى باشد . X معمولا به مـختصهُ مادى يا لاكرانزُى معروف اسمت كه مربوط به يكي
ذرهُ مادى استـ.
تغيرات دامنه V و S مرز سازه را مانند شكل (A Y . Y) تغير مى دهل. تابع f(x, f مى نمايد و اغلب، مشتّ محلى ناميده مى شود . مشتتقى كه تغيير f در يكى نقطه' معين از ماده ر!اندازه كيرى مى كند بايد تغيير در x هنگامى كه p تغيير مى كند را نيز در بر كيرد . اين مستت به نام مشتت مادى يا مشتـتّ مجحموع f ناميده مى شود و اين جا با

PPY بخش A.F : حسامـبـت يككل اليستايـ

$$
\begin{equation*}
f_{p}=f_{p}+\nabla f^{T} \mathbf{x}_{\phi_{p}, p}=f_{p}+\nabla f^{T} \mathbf{v} \tag{A.Y.Y}
\end{equation*}
$$

كه f

$$
\begin{equation*}
\mathbf{v}=\mathbf{x}_{\phi_{\phi p}}=\phi_{p} \tag{^.f.r}
\end{equation*}
$$

اغلب ميدان سرعت ثـكل ناميده مى شود . اين الصطلاح بر اساس اين نظر كه p يكى متغير شبه زمان است استوار است و در اين صورت، ، ممساله تغيير مى كند مشخصى مى شوند و

$$
u_{i p}=u_{i, p}+\left(\nabla u_{i}\right)^{T} \mathbf{v}
$$

كه معادله نوق به صورت زير خلاصه مى شود:

$$
\mathbf{u}_{p}=\mathbf{u}_{\boldsymbol{p}}+(\nabla \mathbf{u}) \mathbf{v}
$$

(A.Y.0)

Vu

$$
(\nabla \mathbf{u})_{i j}=u_{i, j} \equiv \frac{\partial u_{i}}{\partial x_{j}}
$$

 از اين تعريف مى توان نتيجه كرفت كه :

$$
(\nabla \mathbf{u}) \mathbf{v}=\mathbf{u}_{\mathbf{j}} v_{j}
$$

(A.f.V)

كـه انديسهاي تكرارى روى بعد مساله جمع بسته مى شوند، به كونه اي كه بـراى يـك مـسـالـه دو بـعـدى
داريم :

$$
\mathbf{u}_{, i} v_{i}=\mathbf{u}_{11} v_{1}+\mathbf{u}_{, 2} v_{2}=\mathbf{u}_{, x} v_{x}+\mathbf{u}_{, \mathbf{y}} v_{y}
$$

(A.Y.A)

به طور مشابه برایى يك تانسور كرنت ع، مشتق مادى به حورت زير اسـت:

$$
\begin{equation*}
\varepsilon_{p}=\varepsilon_{, p}+(\nabla \varepsilon) \mathbf{v}=\varepsilon_{p}+\varepsilon_{i,} v_{i} \tag{A.F.Q}
\end{equation*}
$$

معهولا مشتت مادى از لحاظ فيز يكى معنى دارتر از مشتق مسلى اسـت . براى ميال اكر مكل مرزى يك سوراخ را براى رها مُمدن از تمركز تنشُ روى مرز تغيير بلميم؛ به مشتتّ تنش در مرز نياز داريم و نه در يك نقطه با مـختصات ثابـت . از لـحاظ رياضى كار با مشتت مادى يِهيده تر از مشتق مسلى امست . مشُتق مسلى در مشتق نسبت به مـتصهات، بجابه جايع پذير اسـت ، در صورتى كه مستت مادى اين كونه نيــــت . بـراى مثال، ميدان كرنش مربوط به يك ميدان تغيير مكان u را در نظر بگيريل و آن را با نماد u (u) مشتخص كنيل. كرنش با مشتت كيرى از تغيير مكانها به دست مى آيد و لذا مى توان ترتيب مشتت كيرى را براى مششتفـات مسلى تغيير داد .

$$
\begin{equation*}
\varepsilon_{p}(\mathbf{u})=\varepsilon\left(\mathbf{u}_{p}\right) \tag{A.F.|.}
\end{equation*}
$$

در ساللى كه نمى توان براى منتت مادى اين معادله را نوشّست . به منظر مشتق كيرى از معادله كار مجازى نسبـت بــه p بايل مستمات انتكرال ها روى حیجم و سـطـع سازه محاسبه كردند . فرض كنيد كه IV نمايانكر انتكرال روى دامنه سازه باثمد.

$$
\begin{equation*}
I_{V}=\int_{V} f(\mathbf{x}, p) d V \tag{A.F.IY}
\end{equation*}
$$

ميتّت IV

$$
\begin{aligned}
& I_{V p}=\int_{V} f_{p} d V+\int_{V} f(d V)_{p}=\int_{V}\left(f_{p}+\bar{V}_{p} f\right) d V, \quad \text { (^.F.MY) } \\
& \text { تغ } \bar{V}_{p}
\end{aligned}
$$

$$
\begin{equation*}
(d V)_{p}=\bar{V}_{p} d V=v_{k, k} d V \tag{A.F.IY}
\end{equation*}
$$

 بعدى داريم :

مشتق انتكرال سطحى

$$
\begin{equation*}
I_{S}=\int_{S} f(\mathbf{x}, p) d S \tag{A.f.10}
\end{equation*}
$$

با يكى روش مشابه به صورت زير به دست ميآيد:

$$
\begin{equation*}
I_{S_{p}}=\int_{S} f_{p} d S+\int_{S} f(d S)_{p} \tag{1.f.19}
\end{equation*}
$$

مشتق جزء سطح عبارت امتاز :

$$
(d S)_{p}=\bar{S}_{p} d S=-H \mathbf{n}^{T} \mathbf{v} d S,
$$

(A.f.iv)

كه n بردار عمود بر مرز S بوده و H انحناى S در نضاى دو بعدى امت كه دو برابر انحنا در حالـت سه بعدى امت.

 در اين رامبرد، بردار مـختصه' ماده X بر حسب دامنغ مرجع به صورت زير نو'شته بي شود :

$$
\mathbf{x}=\mathbf{x}(\mathbf{r}, p)
$$

(A.F.IA)
 بينيد) . منگامى كه اجزاي ايزويارامتريـك
 صورت زير نوشته مى شمود:
2) Isoparametric

سLختار ماده 0 و محعود واقعى

ساختار سرجع با 'جزایى محدود والد

ساختار ماده

شكل Y. I. Yاهبرد لارامترسازی دامنه

$$
\begin{equation*}
\mathbf{x}=\sum_{i=1}^{\text {\#nodes }} h_{i}(\mathbf{r}) \mathbf{d}_{i}(p) \tag{A.F.19}
\end{equation*}
$$

كه

هُده اند .
 زاكوبين اولرى مى كويند و معكوس آن J-E مى باثمل .

$$
J_{i j}=\frac{\partial r_{i}}{\partial x_{j}}=r_{i, j}, \quad, \quad J_{i j}^{-E}=\frac{\partial x_{i}}{\partial r_{j}}=x_{i, j}
$$

 ححسـب شكل مرجع كه از دترمينان زاكوبين اولرى أمتفاده مى كنل بيان شود. .

$$
d V=\operatorname{det}\left(\mathbf{J}^{-E}\right) d \Omega, \quad d S=\operatorname{det}\left(\mathbf{K}^{-E}\right) d \Gamma
$$

(A.F. MI)

كه K-E يك رُاكوبين تبديل ين مشتتصات مسطحى در مرجع و شكلهاى مادى مى باشمل و دترمينـان آن بـه 1) Jacobian

صورت زير نومّه مي شود :

$$
\begin{equation*}
\operatorname{det}\left(\mathbf{K}^{-E}\right)=\left(J_{j i}^{E} J_{k i}^{E} n_{j}^{\Gamma} n_{k}^{\Gamma}\right)^{1 / 2} \operatorname{det}\left(\mathbf{J}^{-E}\right) \tag{A,Y,YY}
\end{equation*}
$$

كه جمع بسته مي شوند . مشتت J-E نسبت به p طبت تعريف عبارتت الست از :

$$
\begin{equation*}
J_{i j, p}^{-E}=\left(x_{i, j}\right)_{, p} \tag{A.Y.YY}
\end{equation*}
$$

در حاللى كه براى مشـتق E J بايد از فرمولى براى محامبه' مشّتى وارون استفاده كرد .

$$
\mathbf{J}_{, p}^{E}=-\mathbf{J}^{E} \mathbf{J}_{-p}^{E} \mathbf{J}^{\Sigma}
$$

(A.F.YF)

بنابراين داريم :

$$
J_{i j, p}^{E}=-J_{i k}^{E} J_{l j}^{E}\left(x_{k . l}\right)_{p}
$$

(A.Y.YO)

در راهبرد بارامترسازى دامنه، تغير مكانها كرنش ها و تنش ما تابعى از مختصهات مرجع r در نظر كرنته مى شُوند . بنابراين هنگامى كه مشتقات آنها نسبت به p ارزيابى مى شوند، مشتقات را براى موتعيت ثابت r به دست مى آوريم كه در واقع مشتقات مادى اين كميتهايند . ابتدا يكـ تابع $f(x, p)$ بر حسبب شختصهات مرجع، مانند $\overline{\text { مر }}$ نرشُته مي نُود و سبس :

$$
f_{\mathrm{p}}=\frac{\partial \bar{f}}{\partial p}
$$

(A.Y.YG)

مشتقات نسبت به مختصهات مادى بايد با الستفاده از كاعده زنجير ها الى به مشتقات نسبت به مختصهات مرجع تبديل كردند . بنابراين رابطه تغييرمكان كرنشى خطى به صوربت زير نومُته مي شود :

$$
\epsilon_{i j}=\frac{1}{2}\left(u_{i, j}+u_{j, i}\right)=\frac{1}{2}\left(u_{i, k} J_{k j}^{E}+u_{j, k} J_{k i}^{E}\right)
$$

(A.F.YV)

اين رابطه، ، وابستكى مريح كرنش به متغير شُكل را نشان مي دهد و براى انعكاس آن معادله' (. . . . A) را به حورت زير مى نريسيمم:

مبانى بهينه سانى سازه ما (نصل APA معلمبالى برنحليل حـساسيت متغير)

$$
\varepsilon=\mathbf{L}_{1}(\mathbf{u}, p)
$$

(A.Y.YA)

مـنتقات انتكرال به حورت مشابه روش مشتت مادى به دست مى آيند . يكى انتكرال حـجــمـ بـر حـسـب
مختصات مر جع به صورت زير است :

$$
\begin{equation*}
I_{V}=\int_{V} f(\mathbf{x}, p) d V=\int_{\Omega} \bar{f}(\mathbf{r}, p) \operatorname{det}\left(J^{-E}\right) d \Omega \tag{^.Y.YQ}
\end{equation*}
$$

كه

$$
I_{V_{p}}=\int_{\Omega}\left(f_{p}+\bar{V}_{p} f\right) \operatorname{det}\left(\mathbf{J}^{-E}\right) \mathrm{d} \Omega
$$

(^.F.r.)

$$
\begin{equation*}
\bar{V}_{p}=\left(\operatorname{det}\left(\mathbf{J}^{-E}\right)\right)_{p} / \operatorname{det}\left(\mathbf{J}^{-E}\right) \tag{A.Y.rı}
\end{equation*}
$$

$$
I_{S_{p}}=\int_{\Gamma}\left(f_{p}+\widehat{S}_{p} f\right) \operatorname{det}\left(\mathbf{K}^{-E}\right) d \Gamma
$$

(A.Y.rY)

كه در آّن

$$
\bar{S}_{p}=\left(\operatorname{det}\left(\mathbf{K}^{-E}\right)\right)_{p} / \operatorname{det}\left(\mathbf{K}^{-\Sigma}\right)
$$

(A.Y.r.)
r روش مست大يم
بـرایى كاربرد روش مستفيم در مـعامبه حساسيـت شكل بـايد از رابطــ' تغيير مـكان-كـرنش معـادله'

 رابطه'كرنش تغيير مكان به صورت زير نومته مى شود:

$$
\varepsilon_{p}=\varepsilon_{p}+(\nabla \varepsilon) \mathbf{v}=\mathbf{L}_{1}\left(\mathbf{u}_{p}\right)+(\nabla \varepsilon) \mathbf{v}
$$

(A.Y.r.)

بشهـ A. PP4 :حساسيت مكل ايستايع

$$
\varepsilon_{p}=\mathbf{L}_{1}\left(\mathbf{u}_{p}\right)-\boldsymbol{z}
$$

(A.F.Y 0)

كه در آن

$$
\mathbf{z}=\mathbf{L}_{1}[(\nabla \mathbf{u}) \mathbf{v}]-(\nabla \varepsilon) \mathbf{v}
$$

(A.F.r8)

 سرعت ثـُكل مى شود . برایى مثال براى حالت سه بعدى داريمر:

$$
\bar{\epsilon}_{i j}=\frac{1}{2}\left(u_{i, k} v_{k, j}+u_{j, k} v_{k, i}\right)
$$

(A.F.rv)
 معادل' (A . F. YV) مى توان نوشت

$$
\left(\epsilon_{i j}\right)_{p}=\frac{1}{2}\left(u_{p i . k} J_{k j}^{E}+u_{p j . k} J_{k i}^{E}\right)+\frac{1}{2}\left(u_{i, k} J_{k j, p}^{E}+u_{j . k} J_{k i, p}^{E}\right)=\left[L_{1}\left(u_{p}\right)\right]_{i j}-\bar{\epsilon}_{i j},(\wedge . Y . \upharpoonright \wedge)
$$

كه در آن

$$
\bar{\epsilon}_{i j}=-\frac{1}{2}\left(u_{i, k} J_{k j, p}^{E}+u_{j k} J_{k i, p}^{E}\right)
$$

(A.f.rq)

نرخ مى كنيم كه ضرايب ارتجاعى با تنغير شيكل تنغير نـمى كنتد و هيع كرنش اوليه نيز وجـود نـدارد ـ آن كاه مشتت تانون شولك عبارت الست از :

$$
\sigma_{p}=\mathbf{D} \varepsilon_{p}
$$

(A.F.F.)

مشتت معادلات تعادل عبارت است از:

$$
(\sigma \bullet \delta \varepsilon)_{p}=(f \bullet \delta \mathbf{u})_{p}
$$

(A.F.FI)
 عبارت سمت هـب مaادلـ (A. F. FI) يكي انتكرال حجمى است كه بر اساس معادلات (A. F. I و) و
 تغيير ححجم جزه امسـت مى باشثد يعنى :

$$
\begin{equation*}
(\sigma \bullet \delta \varepsilon)_{p}=\sigma_{p} \bullet \delta \varepsilon+\sigma \bullet \delta \varepsilon_{p}+\sigma \bullet\left(\bar{V}_{p} \delta \varepsilon\right) \tag{A.F.FY}
\end{equation*}
$$

$$
\delta \varepsilon_{p}=\mathbf{L}_{1}\left(\delta \mathbf{u}_{p}\right)-\delta \vec{\varepsilon}
$$

(A.F.FH)

كه از روش مـُتت مادى داريـم :

$$
\delta \bar{\varepsilon}=\mathbf{L}_{1}[\nabla(\delta \mathbf{u}) \mathbf{v}]-(\nabla \delta \varepsilon) \mathbf{v}
$$

(A.F.FF)

در حالمى كه از راهمبرد بارامتر سلزى دامنه مى توان نومْـت :

$$
\delta \bar{\epsilon}_{i j}=-\frac{1}{2}\left(\delta u_{i, k} J_{k j, p}^{E}+\delta u_{j . k} J_{k i, p}^{E}\right)
$$

(A.F.FD)

مثتتق كار محازى بار اعهالمى به دليل اين كه كار مورد نظر با إنتكرال هـاى حـجمـى و سـطـحى تركيـب مى مُود، بيّخيله تر است

$$
\mathbf{f} \bullet \delta \mathbf{u}=\mathbf{f}_{b} \bullet \delta \mathbf{u}+\mathbf{T} \bullet \delta \mathbf{u}
$$

(A.F.Y日)

كه
 المـت . منتتت كيرى از انتكرال نيروى كالبدى، سر رامـت أمـت. با اين وجود، اكر روى عرز كوشه وجود داثـته باشُد و يا الكر مرز باركذارى، تغيير كند عبارت كشـش سطـحى مى تواند مسالث سـاز بـاشــد . فرض

 $(f \bullet \delta u)_{p}=\mathbf{f}_{b p} \bullet \delta \mathbf{u}+\mathrm{f}_{b} \bullet \delta \mathbf{u}_{p}+\mathrm{f}_{b} \bullet\left(\bar{V}_{p} \delta \mathbf{u}\right)+\mathrm{T}_{p} \bullet \delta \mathbf{u}+\mathrm{T} \bullet \delta \mathbf{u}_{p}+\mathrm{T} \bullet\left(\bar{S}_{p} \delta \mathbf{u}\right)$.

تغيير مكان مجـازى δ انختيارى اسـت ولمى بايد شر ايط مرزى سينماتـيـى (حركتى) را كه فرض مى شــود مستقل أز p بانّند برآورده كند. منكامى كه شُكل تغيير مى كند از رابطه' زير مطمُن مى شويـم كه u شمر ايط مرزى مربوط را برآورده مى كند.

$$
\delta \mathbf{u}_{p}=0
$$

(A.F.FA)

$$
\delta \varepsilon_{p}=-\delta \bar{\varepsilon}
$$

(A.F.Fq)

$$
\sigma_{p} \bullet \delta \varepsilon=\mathrm{f}_{b p} \bullet \delta \mathbf{u}+\mathrm{f}_{b} \bullet\left(\bar{V}_{p} \delta \mathbf{u}\right)+\mathrm{T}_{p} \bullet \delta \mathbf{u}+\mathrm{T} \bullet\left(\bar{S}_{p} \delta \mathbf{u}\right)+\sigma \bullet \delta \bar{\varepsilon}-\sigma \bar{V}_{p} \bullet \delta \varepsilon
$$

(A.F.O.)
 كرنت اوليه
 مجازى مربوط به كرنش اوليه ع مى بانشد.

$$
\mathbf{f}^{p} \bullet \delta \mathbf{u}=\mathrm{f}_{b p} \bullet \delta \mathbf{u}+\mathrm{f}_{b} \bar{V}_{p} \bullet \delta \mathbf{u}+\mathbf{T}_{p} \bullet \delta \mathbf{u}+\mathbf{T} \bar{S}_{p} \bullet \delta \mathbf{u}+\sigma \bullet \delta z-\sigma \bar{V}_{p} \bullet \delta \varepsilon+\mathrm{D} \bar{\varepsilon} \bullet \delta \varepsilon
$$

(A.F.OI)

هنكامى كه منـحنى جلا كننده مرزهاى باركذارى مده و بدون بار تغير مي كند و هنكامى كه مرز كوشــه دار اسـت جملالت ديكرى وجود خواهد داثشت (مـرجع [6] را بينبد) . با استفـاده از مـعـادلله (A . Y . A)

$$
\sigma_{p} \bullet \delta \varepsilon=\mathbf{f}^{p} \bullet \delta \mathbf{u}-\mathbf{D} \varepsilon \bullet \delta \varepsilon
$$

مبانى بهينه سازى سازه ها (نصل A: مقلسشاى برتحليل حسامـت متغير) PAF

A.P. 1 مثال

(b)

دامنه مرجع

باركذارى اعمال نمده بر ميلهُ نتنان داده شُده در شكـل (A . F . Y)، وزن خحودش است. حساسيـت جواب به تغييرات طول ميله (كه با يك جزه محدود تقريب زده شُده است) را با امتغاده از روش مستقيـم محاسبه كنيد. در اين مسـاله، باركذارى يكى نيروى ثابت با معدار و نيروى عضوىN بر حسب جكالى م، مساحت A و متاب جاذبه و به صورت زير است:

$$
N=\rho A g(L-x), \quad u=(\rho g / E)\left(L x-x^{2} / 2\right) .
$$

با باستفاده از بك جزء محلود خطط، نصف نيروى كالبدى به هر كره اعمال مى شود به كونهاى كه بار هر كره برابر $\rho A g L / 2$ خواهدبرد. جواب اجزابى محدود عبارت است از :

$$
u_{2}=\rho g L^{2} / 2 E, \quad \epsilon=\rho g L / 2 E, \quad N=\rho A g L / 2
$$

بنابراين تغيير مكان حداكتر درست برده، امانيروى عضوى حداكثر بايكـ ضريب 2 اختلانى دارد. مشتقات اين دو متدار نسبت به L برابر است با:

$$
\begin{equation*}
u_{2 L}=\rho g L / E, \quad N_{L}=\rho A g / 2 . \tag{الف}
\end{equation*}
$$

PAT بنش
مى كنبم با تغير طول ميله تمام نقاط در تير متناسبب با هم حركت كنند. الكر طول جديد ميله راباp نشان دميم، داريم:

$$
x_{\phi}=x(p / L), \quad \text { ب } \quad \phi=x(p / L-1)
$$

و ميدان سرعت شكل عبارت است از :

$$
v=\phi_{i p}=x / L
$$

اكنون داريـم:

$$
\bar{V}_{\mathrm{p}}=v_{k, k}=v_{, x}=1 / L, \quad \bar{\epsilon}=u_{, x} v_{, z}=\epsilon / L, \quad \bar{\delta} \epsilon=\delta u_{, x} v_{, x}=\delta \epsilon / L .
$$

برای روش بارامترسازى دامنه، با استفاده از يكى جزء مادر به طول واحد داريم:

$$
x=x_{1}(1-r)+x_{2} r, \quad u=u_{1}(1-r)+u_{2} r,
$$

كه در مساله ما $x_{2}=p x_{1} x_{1}$. زاكوبين تبديل، يكى عدد به صورت زير است:

$$
J^{-E}=\frac{\partial x}{\partial \tau}=-x_{1}+x_{2}=p .
$$

آلن كاه

$$
\bar{\epsilon}=-u_{1.1} J_{\omega}^{E}=-\frac{\partial u}{\partial \tau} \frac{-1}{p^{2}}=\frac{u_{2}}{p^{2}},
$$

كه همانند $\bar{\epsilon}$ به دست آمده از روش مستّق مادى است. تنيير نسبى حجم

$$
\bar{V}_{p}=\left(\operatorname{det}\left(J^{-\Sigma}\right)\right)_{p} / \operatorname{det}\left(J^{-E}=1 / p\right.
$$

كه اين نيز با نتيجه مشتق مادى مطابفت دارد . اولين جمله در عبارت بار مجازى در معادلـ' (A. F . OY)
 f/L= $=A g / L$
 شـده اند، زيـرا هيج كونه كششش سطحى اعمالّ نمى شُود. دو جملهُ بعدى با استغاده از اين حقيفت ارزيابى شُده اند كه براى مدل اجزایى محلودد، نيروى عضوى N و كرنش \ddagger در المان نابتند. $\sigma \bullet \delta \bar{\varepsilon}-\bar{V}_{p} \sigma \bullet \delta \varepsilon=\int_{0}^{L}(N \delta \epsilon / L) d x-\int_{0}^{L}(1 / L) N \delta \epsilon=0$.

آخرين عبارت به صورت زير نوشته مي شود : $D \bar{\varepsilon} \bullet \delta \varepsilon=\int_{0}^{L}(E A \epsilon \delta \epsilon / L) d x=N \delta \epsilon=(\rho A g / 2) \delta u_{2}$.

در مجموع داريم

$$
f^{p} \bullet \delta \mathbf{u}=\rho A g \delta u_{2}
$$

كه بيانكر اين است كه pf معادل يك نيروى pAg است. در ائر اين نيرو مي توان نوشت:

$$
u_{2 p}=\rho g L / E
$$

كه با نتايج معادلهُ (الفن) در بالا مطابفت مي كند. براى محاسبه منتّقنيروى عضوى معادله' (A. F. 19) مساسبه شود.

$$
\epsilon_{p}=L_{1}\left(u_{p}\right)-\bar{\epsilon}=u_{p, z}-\epsilon / L=u_{2 p} / L-\epsilon / L
$$

بنابراين :

$$
\epsilon_{p}=\rho g / 2 E, \quad N_{p}=E A \epsilon_{p}=\rho A g / 2
$$

كه با نتايج معادله' (الف) در بالا مطابفت مي كند . . .

$$
H_{p}=\int\left(h_{p}+h \bar{V}_{p}\right) d V+\mathbf{h}_{\mathbf{u}} \bullet \mathbf{u}_{p}
$$

$$
\begin{align*}
H_{p} & =\int\left(h_{p}+h \bar{V}_{p}\right) d V+\mathbf{h}_{\mathrm{u}} \bullet \mathbf{u}_{p}+\boldsymbol{\sigma}^{a} \bullet\left[\varepsilon_{p}-\mathbf{L}_{1}\left(\mathbf{u}_{p}\right)+\bar{\varepsilon}\right] \\
& +\varepsilon^{a} \bullet\left(\sigma_{p}-\mathbf{D} \varepsilon_{p}\right)-\sigma_{p} \bullet \mathbf{L}_{\mathbf{1}}\left(\mathbf{u}^{a}\right)+\mathbf{f}^{p} \bullet \mathbf{u}^{a}-\mathbf{D} \bar{\varepsilon} \bullet \mathbf{L}_{1}\left(\mathbf{u}^{a}\right) \\
& =\int\left(h_{p}+h \bar{V}_{p}\right) d V+\mathbf{h}_{, \mathbf{k}} \bullet \mathbf{u}_{p}-\boldsymbol{\sigma}^{a} \bullet \mathbf{L}_{1}\left(\mathbf{u}_{p}\right)+\varepsilon_{p} \bullet\left(\boldsymbol{\sigma}^{a}-\mathbf{D} \boldsymbol{\varepsilon}^{a}\right) \\
& +\sigma_{p} \bullet\left[\varepsilon^{a}-\mathbf{L}_{1}\left(\mathbf{u}^{a}\right)\right]+\left[\boldsymbol{\sigma}^{a}-\mid D \mathbf{L}_{1}\left(\mathbf{u}^{a}\right)\right] \bullet \bar{\varepsilon}+\boldsymbol{f}^{p} .
\end{align*}
$$

باتوجه به معادله؛ (A. Y. OF) مى بينيم كه مى توان جملات حسساسيت باسخ را با تعريف يك مجاور مانند

$$
\left.H_{p}=\int\left(h_{p}+h \bar{V}_{p}\right) d V+f^{p} \cdot u^{a} . \quad \text { (^. }, \Delta \Delta\right)
$$

 خواهد شد.

> A.Y.Y مثال

تير يك مركيردار نشان داده شده در شـكل (A. F. Y) با اجزآى تنس صفحهأى مستطيلى شبيه سازى مى شود. تير تركييى از دو ماه با ضريبهاى ارتجاعى متغاوت مى باشد و موتعيت نصل مسترك بين دو ماده متغير طراحى p مى باشد. حساسيت تغير مكان سر نسبت به موتعيت نصل مشنرك با استفـاده از شــن

مبانمى بهين سازى سازه ها (فصل A : متلبهالى بر تعليل سـساسيت متغير) $P \Delta F$

$$
\begin{aligned}
& \text { X تعلاداجزا اجر امتلداد = nX } \\
& \text { = nys } \\
& \text { تعداد اججزا در امتلداد y بالآى نصـل مشترك = nyh }
\end{aligned}
$$

 مرجع [5])

PAY بنشس 1.0 :تمرينها
روش محاسبه شده اسـت: (I) تفاضل- محدود كلم(OFD)؛ (II) نيمه تحليلى(SA)؛ (III) مستقــم كسـتهُ (DD)؛ (IV) تـنغيرات مستفيم(DV)؛ (V) دامنه' متغير مجاورتى(V) (IVD) و (VI) سطع متغير
 بحث شُدهاند.
 داده شدهاست. همان كونه كه انتظار مى رود، ممكرايه مشتغات آمسته تر از ممكرايهى تغيير مكانهاست.
 به خويى با روش تفاضل محدود كلى مطابقت مى كتند ، اما آنها از رون سطع متغير مجاورتى دتيـتـتر نيستند . آنها از جهتهاى متفاوت به متدار صصحيح ممكرا مى شـرند.

A. 0

 اندازه ΔT درجه، باركذارى شدهواست. با استفاده از روش مستقيم، مُنتقات تنت هـا را در سهـ عـفـو

نسبت به سطع متطع عضو A بر حسب A AT، A ، A و ضريب انبساط حرارتى α محاسبب كنيد.
 مولنفهاى كشش سطحى مرزند.

 مساله ا را نسبت بـ دو مساحت سطع متطع از روش مجاورتى محانسبه كنيد.
 9. با استغاده از روشهاى مستقبم و مجاورتى مشتق كرنش محورى

به A محاسبه كنيد.
. V

[1] Cohen, G.A., "FASOR-A program for Stress, Buckling, and Vibration of Shells of Revolution", Advances in Engineering Software, 3 (4), pp.155-162, 1981.
[2] Haug, E.J., Choi, K.K., and Komkov, V., Design Sensitivity Analysis of Structural Systems, Academic Press, 1986.
[3] Mróz, Z., Kamat, M.P., and Plaut, R.H., "Sensitivity Analysis and Optimal Design of Nonlinear Beams and Plates," J. Struct. Mech., 13 (3/4), pp. 245-266, 1985.
[4] Cohen, G.A., "Effect of Nonlinear Prebuckling State on the Postbuckling Behavior and Imperfection Sensitivity of Elastic Structures", AIAA Journal, 6 (8), pp. 1616-1619, 1968.
[5] Mróz, Z., "Sensitivity Analysis and Optimal Design with Account for Varying Shape and Support Conditions", In Computer Aided Optimal Design: Structural and Mechanical Systems (C.A. Mota Soares, Editor), Springer-Verlag, 1987, pp. 407-438.
[6] Choi, K.K., "Shape Design Sensitivity Analysis and Optimal Design of Structural Systems", In Computer Aided Optimal Design: Structural and Mechanical Systems (C.A. Mota Soares, Editor), Springer-Verlag, 1987, pp. 439-492.
[7] Yang, R.-J., "A Three Dimensional Shape Optimization System-SHOP3D", Computers and Structures, 31(8), pp. 881-890, 1989.
[8] Dems, K., and Haftka, R.T., "Two Approaches to Sensitivity Analysis for Shape Variation of Structures," Mechanics of Structures and Machines, Vol. 16, No. 4, pp. 501-522, 1988/89.
[9] Dems, K., and Mróz, Z., "Variational Approach by Means of Adjoint Systems to Structural Optimization and Sensitivity Analysis, Part I: Variation of Material Parameters within Fixed Domain," Int. J. Solids Struct., 19 (8), pp. 677-692, 1983, "Part II: Structure Shape Variation," 20, pp. 527-552, 1984.
[10] Phelan, D.G., and Haber, R.B., "Sensitivity Analysis of Linear Elastic Systems Using Domain Parametrization and a Mixed Mutual Energy Principle, ${ }^{\text {n }}$ Computer Methods in Applied Mechanics and Engineering, Vol. 77, pp. 31-59, 1989.
[11] Arora, J.S., and Cardoso, J.B., "A Variational Principle for Shape Design Sensitivity Analysis," AIAA Paper 91-1213-CP, Proceedings ALAA/ASME/ASCE/AHS/ASC 32nd Structures, Structural Dynamics and Material Conference, Baltimore, MD, April 8-10, 1991, Part 1, pp. 664-674.
[12] Choi, K.K. and Seong, H.G., "A Domain Method for Shape Design Sensitivity of Built-Up Structures", Computer Methods in Applied Mechanics and Engineering, Vol. 57, pp. 1-15, 1986.
[13] Haftka, R.T., and Barthelemy, B., "On the Accuracy of Shape Sensitivity Derivatives", In: Eschenauer, H.A., and Thierauf, G. (eds), Discretization Methods and Structural Optimization-Procedures and Applications, pp. 136-144, SpringerVerlag, Berlin, 1989.

در بيستر مثالهايع كه در فصل Y به صورت تحليلى سل شـدند، كليد حل مسأله، استفاده از معادلات
 صفر شُدن مشتقات اول تابع هدف است. وتتى كه تابع هدف به شككل تابعى (تابـعى از توابع) اسـتـ،

 رابرایى رسيدن به طراحى بهينه مورد استفاده ترار نمى دهند. خواننده مدكن است از اين كه رونهاى حل
 رونهاى عددى وجود دارند و به عنوان رونهاى معيار بهينكى شناخته مى شُوند. يكى دليل اين كه بـيـان عملكرد حنين روشهايى تا اين نصل به تعوين افتاد، هذيرش محدود آن از سوى بهينه سازان بود.

 ازنظر دست اننركاران، مورد ترديد است. ارزش رونشهاى معيار بهينكى، زمانى روشن مى شمود كه ارتباط نزديكى آنها رابا دو كانى در روشها

مباتم بهينه مازى مازه ما (نصل 4 : رونُهاى معيار بهيكمى ودوكان) مى كند . اين فصل تلاش مى كند نا توانايع روش معيار بهينگى و روش دو كان را براى حالتـى كـهـتـعـداد
 برایى متغير ها) وجود دارد با اطمينان مى توان ادعا كرد كه روشهاى معيار بهـتكى و يا روش دو كان بهترين روش امـت. اين نصل با توضيحانى برایى درك روشهاى معيار بهينگى آغاز مى كردد . اين روشها سـبـب توسعه روشهاى جامعترى شده اند كه امروزه مورد استفاده ترار مى كيرند. ــهس روش دو كان تـوضـيـع داده خحواهد شد و در انتها نشـان مى دميم كه روش معيار بهينگى بـا روش دوكـان داراي ارتبـاط نـزديـك

9.1 روشهاى معيار بهينگى شهودى

 است كه مى تواند يكى عبارت صريح رياضى مانند شـرايط كان-تاكر و يا يكى شر ط شهودى مانند يكنواخت بودن چحكالى انرّى كرنشى در سازه باشُد. دومين جزء، الكُوريتم مورد استفاده براى تغيير اندازه مازه به منظور برآورده شدن معيار بهينه مازى اسـت. بار ديكر تأكيد مى شود كه برای اطمينـان از بـرآورده سـازى معيار بهينكى روٌ حريح رباضى مورد استفاده ثرار مى كيرد، در حالى كه ممكن است فرد روش خاص ديكرى ابداع كند كه كامى كاربرد دارد و كاهى ندارد . تقسيم روشها به صريع و شهودى معمولا بيشتربد انتخاب معيار بهينكى بسنكى دارد تا اللكوريتم تعيسن اندازه . در بخشهاي بعد ايـن اصـطـلاح بـارهـا مـورد استناده تر ار خخوامد كرنت.

1 ـ 1 ـ 1 طر/حمى تمام تنیيد
فن طراحى تمام تنيده ${ }^{1}$ (FSD) شايد مونقترين روش معيار بهينكى است و سبب جذابيت اولبـه اين روس بوده امست. فن FSD براي مازه هاعى كه تنها در معرض تنت و تيدهاى حد بايين هستنـد، مـورد

استفاده ترار مى كيرد . معبار بهينكى FSD مى نواند به صورت زير بيان كردد :
 شرايط بار طراحى، تمام تنيله است .

اين معيار بهينكى ايجاب مى كند كه ما از اعضايع كه تمام تنيده نيستند، مصالع را برداريم تا اين كه تيد

 داريم، زيرا سبب كامن تنش در ساير اعضا مى شُوند.

 انتظار داثت كـ FSD حداتل وزن طراحى را براي چخين سازه هايى به دست دمد و اين به انبات رسـيـه. است[1,2] . الما براي سازه هاى نامعين ايستايى طراحی براي مينيمم شـدن وزن ممكن امست يكى طراحى
 تنده نزديكى به طراحى بهينه وجود دارد. بنابراين، اين روش به طور كسترده براي مازه هاي فلزي مـورد استفاده ترار كرفته امت، مخصوصآدر صنعت موانضا (براي نمونه مراجع دا بييني) , مماذ كونه كه در مثال بعد روشن خواهد شد، روس FSD ممكن امت هنگامى كه در سازه جندين مصالع به كار رفته به آن خويى كه انتظار مى رود نباشهد.
 كاملاَ افتى باتى مى ماند به كونه ای كه تغيير مكان عمودى نقاط D و C يكسـان است. اين امر مى تواند بـا جابه جا شدذ بار p مـزمان باتنغير مساحت سطح متطع اعضاى ا و r نيز تحقق يابد. دو عضو از آكبازماى متغاوت نولادند كه ضريب ارتجاعى يكسـان E ولى جرم حجمى متغاوت ρ_{1} و $\rho_{\text {و }}^{\text {و همجنين تنس تسليـم }}$ هر هر دو عضو به كار بكيريم. مى خواهيم مساستهاي سطح متطمهاى 1 م تنشهاى دو ميله از تنش تسليم تجاوز نكندو جرم مازه مينيممباشد . افزون بر اين، مساحت سطح متطمها

مبانى بهينه سازى سازه ما (نصل 4 : ردئهاى مميار بهينكى د دكان) PPY

شكل 9.1.1 سازه دو ميلداءى

بايد از يكى مقدار سداقل
جرم، كه تابع هدف است و بايد مينيمـم شود عبارت است از :

$$
m=l\left(\rho_{1} A_{1}+\rho_{2} A_{2}\right)
$$

تنش در هر عضو (با توجه به شرط انقى ماندن صفحه A-A) به سادكى به دست مى آيد.

$$
\sigma_{1}=\sigma_{2}=\frac{p}{A_{1}+A_{2}}
$$

: ${ }^{\text {: }}$. در اين شر ايط تيد بحراني عبارت است

$$
\sigma_{2}=\sigma_{02}=\frac{p}{A_{1}+A_{2}}
$$

بنابراين :
 بنابر'ار•
 در ->> هئيسن خود نيست. طراحى تمام تنيده (كه از فن نسبت تنت بـه دمــت مـى آيـد) عبـارت امــت از :

PPF بئش 9 : : روشهاي معيار بهينكم شُهودى
的 $A_{2}=p / \sigma_{02}-A_{1} ، A_{1}=A_{0}$ ممكن خود ترار دارد. البتهاين طرح مطلوب نيست، زير ااز آلياز مقاومتر استفاده كمتر و از آليازبا مقاومت كمتر، الستفاده بيشترى شده است. برایى روشن تر شدن تأئير جرم فرض كيد

$$
p / \sigma_{02}=20 A_{0} .
$$

در اين حالت طراحى بهينه عبـارت اســتاز: $m=18.1 \rho_{2} A_{0} l, A_{1}=19 A_{0}, A_{2}=A_{0}$ در مقابل
 انزون بر اين كه در مثال 1 ـ 1 از دو نوع مصالح استفاده شـده، ويزكى ديكر آن، اين است كه جرم اضانى زيادى دارد به كونها الى كه تنيير مساحت سطح مقطع يكى عضو تأثير زيادى بر روى نتش عضو ديكر دارد. در اين مثال تفاوت طرح تمام تنيده و بهينه به سادكى تابل مشـاهده است.

(a) طر/حى بهين

100
(b) طراحى تمام تنيده

يك ميال كلاسيك بيجيده تر (برك و خات' [9]) كه اغلب براي نمّان دادن ضعف FSD به كار مى رود
 (ضريب ارتجاعى $E=10^{7} \mathrm{psi}$ جرم جحجمى

[^8]كه براي FSD يكى است .اما براى FSi FSD 1497.6 lb

 فن FSD.معمولاًا يكى الكوريتم تغيير اندازه كه بر بايه نرض امتقللال توزيع بار در سازه از اندازه عضو ترار دارد، كامل مي شُود. يعنى تنش در هر عضو محاسبه مى شُود و مبس اندازه سـازه تغير داده مى شُود نا تنشها به مقدار مجاز آنها نزديكى كردد، با اين فرض كه بار بار حمل شُده توسط اعضا ثابت مى ماند (و اين منطقى است زيرا معيار FSD بر بايه فرض مشابهى ترار دارد) براى مثال، در خرياها كه متغيرهاى طراحى معمو لا مساحت سطع مفطع هاست، نيرو در هر عضو عبارت اسـت از $\sigma A ،$ كه σ تنش و A مساحـت سطع مفطع است. با فرض ثابت بودن σA به نن تغيير اندازه نسبت تنش مى رسبم:

$$
\begin{equation*}
A_{4-}=A_{\sim} \frac{\sigma}{\sigma_{0}}, \tag{9.1.1}
\end{equation*}
$$

كه اندازه' جديد براى يكى خريا كه از نظر ايستاعى معين است، فرض ثابت بردن نيروى هر عضو، فرضى دقيـت اسـت و
 نامعين بـاشد مـعادله (1 . 1 9 با بايد بارها تكرار مُود تابه سمت روادارى مورد نـظر هــكـرا شـود.
 انتخاب مم شُود نه مفدار به دست آمده از معادله ((1 ـ 9) . اين روش كه فن نسبت تنش ناميده مى شُود با مثال زير تشريح مى كردد.

مثال 9.1 .7

 فرض، مى كنيم در طرح اوليه

- * • . . .

P8A بخش 4.1 : روئهاى سعيار بهينمى شهودى
4. 1.1 جدول 1

}{}	A_{1} / A_{0}	A_{2} / A_{0}	σ_{1} / σ_{01}	σ_{2} / σ_{02}
1	1.00	1.00	5.00	10.00
2	5.00	10.00	0.67	1.33
3	3.33	13.33	0.60	1.2
4	2.00	16.00	0.56	1.11
5	1.11	17.78	0.56	1.059
6	1.00	18.82	0.504	1.009
7	1.00	18.99	0.500	1.0005

 و اين نكت بك علت اصلى جذابيت اين روش است. بك علت جذابيت مهمتـر ايـن امــت كه نيـازى بـ
 كدام بايد جداكانه اندازه هايشان تغيير يابد، براى به دست آوردن مشتغات تمام تنتهاى بحرانى نسبت بـ متغيرهاى طراحى لازم نــست مزينه ایى صرف شود. عملاَ تمامى الكوريتمهاى برنامه ريزى رياضى نباز بـ جنين مشتتاتى دارند، در حالى كه فن نــبت نتش به آنها نيازى ندارد. بنابراين روش FSD براى طراتى خرياهايى كه تنها تيد آن تنش باثـد بسيار مؤثر است. برایى ساير انواع سازه ها نيز نز نــبت تنت مى تواند عـومبت داده شود با الين فرض كه نيروى عضـو
 مى شود كه $t \sigma_{i j}$ ثابت است كه t ضـخامت يكى ننطه مشخص و هنين هالتى تيد تنت معمولا به صورت تابعى از بك تنش معادل

$$
\begin{equation*}
\sigma_{e}=f\left(\sigma_{i j}\right) \leq \sigma_{0} . \tag{9.1.Y}
\end{equation*}
$$

مثلاً در حالت تنش صفحهاى، تنش وان ميزز' براى يكى ماد' همسانكردعبارت است از :

$$
\begin{equation*}
\sigma_{e}^{2}=\sigma_{x}^{2}+\sigma_{y}^{2}-\sigma_{x} \sigma_{v}+3 \tau_{x v}^{2} \leq \sigma_{0}^{2} \tag{4.1.r}
\end{equation*}
$$

در اين حالت نن نسبت تنش به شـكل زير امست:

$$
\begin{equation*}
t^{m}=t_{\pi} \frac{\sigma_{e}}{\sigma_{0}} . \tag{9.1.4}
\end{equation*}
$$

[^9]وتتى تنش خمشي وجود دارد، معادله تغيير اندلزه هيجيده تر است. اين موضبع تمرين پ است . هنگامى كه نرض ثابت ماندن نير رهاى هر عضو تابل تبول نيست، فن نسبت تنـث به كنـدى هــــــرا مى شود و طر اححى FSD ممكن است بهينه نباشد. اين شرايط هنگامى اتـفـاق مى انتـد كـه سـازه داراى عضو هاى زيادى استت (به عنوان مبال مرجع آدلمن' ' ديگران[10] را بيينيد) و يا وتتى كه بار ها به اندازه ها بستگى دارند (مانند بار هاى حرارتى يا ماند) . اين روش مى تواند برای بارهاى وابستك به اندازه، تعـمـيـم
 اعضاى زيادى مستتد، كار جندانى نمى توان انجام داد. تركيب FSD ر فن نسبت تنئ عملا براى طراسى
 ناممسانگردند، طراحى FSD ممكن است از نقطه بهين دور باشـد و به دليل خحصوحيات ذاتى مواد مركب كه ماده' اضافه دأرند، عمكرائى مى نواند بسبار كند باشد . مونقيت FSD سبب توسعه آن در بهينه سازى با تيدهاى تغير مكان شد كه زير بناى روش هاى معيار بهينگى مدرن است. و نكاياّ [12] يك رون دقيق معيار بهينگى را بر اماس هگالى انرزى كرنشى سازه بنا نهاد . اين معيار بيان مى كند كه در طرح بهين، نُسبت انرزى كرنشى هر عضو به ظرفيت انرزى كرنشى آن ثاببت است. اين معيار آغاز یديد آمدن معيار بهينكى عمومى ترى بود كه به شرح آن خخواعيـم برداخحت. معيار هكالى انرزّى كرنشى در بعضى شرايط دقيق است، اما در مساثلى كه براى آنها معيار بهينه مازى
 مقيد به تيدهاى لرزشى اند به كار برده است. سيكل هيشنهاد مى كند. كه جكالى انرزّى كرنشى مـربـوط بـه مود لرزمُ بايلـ در تمام سـازه ثابت باشد . در هر دو مرجم[12] و [13]معيار بهينه سـازى با يك تاعده مـاده تغير اندازه مشابه فن نسبت تنت هـر اه است.
r 9 . 1 . r
روشُ حالتت شـكست هـزمان يكى از تديمى ترين فنون طراحى است كه شُبيه FSD است . در اين روش فزض مى شود سبكترين طرح هنگامى به دست مى آبد كه دو يا جيند مود شـكسـت هـمزمان اتفاق بــفـتـد . همصحنين فرض مى شود كه مودهاى شكستى كه در بهين (يا در سبكترين طرح) نعالنـد از يـــش شــنـانـتـه

مُـده اند .
براى مثال اسنراود' [14] توجه كنيد كه جكونه مى توان اين روش را برای طراحیى يك صفشه، كهـ بـا
 طراحى عبارتنداز را تعريف مى كنيم . تعريف اين تناسبها دو متغير طراحى راحذف مى كنند. آن كاه دو متغير باقيـانـده بـا مساوى قرار دادن بار كمانش كلى و بار كمانشى محلى بابار اعمال شُـده محاسبه مى شوند ـ بـدين ترينيب دو معادله براى دو متغير مجهول به دست مى آيل. مو نتيت اين روش در كرو تجربه و آكامى مهندسانى است

 هدف را دنبال مى كند: تعداد متغيرهاى طراتحى را كامش مى دهد و از مودهاى شنكــــت كـه تحـليل را مشكل مى سـازد الجتناب مى شود. بنابراين، اين روش مـاده سـازى شـده با توانايح تحليل مـاده سـازكار
A.F روشهاى دو كان

ممان كونه كه در مقدمه' اين فصـل عنوان نـدـ، رونـهاى دو كان براى آزمايش زير بناى نظرى بعضى از روثهاى معيار بهينكى مورد استفاده ترار مى كر نته است. از نظر تاريخى، روش معيار بهينكـى از روش
 تاريخى ابتدا به بحث روش دو كان مى بردازيم .

 عنوان ضربكرهاى لاكرانز را درك كرد (مثال| رابينيد) . اكر مساله اوليه به صورت زير نوشته شـده بانمد

رابطه سازى دوكان مساله به صورت ضربكرهاى لاكرانز به شكل زير است

$$
\begin{array}{ll}
\text { رانسبتـبه } & \lambda^{T} \mathrm{~b} \\
& \lambda^{T} \mathrm{~A}-\mathrm{c} \leq 0, \\
\text { ماكزيممكنيد } & \lambda \geq 0 .
\end{array}
$$

جندين روش برای نعميم رابطه مازى دوكان خطلى به مسائل غير خططى وجود دارد. در بهينـ سـازى سازه ها، موفنترين آن متتسب به فالكى' است كه توسط نلورى[16] در مساثل جدابه بذير به كار كرفتـه شُد. مساله بهينه مازى اصلى به شكل زير است:

$$
\begin{array}{ll}
\text { رانـبتثبـبـد } & f(\mathbf{x}) \\
g_{j}(\mathbf{x}) \geq 0, & j=1, \ldots, n_{g} .
\end{array}
$$

 بـ كرنهاى وجود داشته باشد كه

$$
\begin{align*}
g_{j}\left(\mathbf{x}^{*}\right) & \geq 0, & & j=1, \ldots, n_{g}, \tag{Q.Y.Y}\\
\lambda_{j}^{*} g_{j}\left(\mathbf{x}^{*}\right) & =0, & & j=1, \ldots, n_{g}, \tag{Q.Y.r}\\
\lambda_{j}^{*} & \geq 0, & & j=1, \ldots, n_{g}, \tag{9.Y.Y}
\end{align*}
$$

Pf4 بنش 9.r : روشهایى موكان

$$
\begin{align*}
& \frac{\partial f}{\partial x_{i}}-\sum_{j=1}^{n} \lambda_{j}^{*} \frac{\partial g_{j}}{\partial x_{i}}=0, \quad i=1, \ldots, n, \tag{9.Y.0}
\end{align*}
$$

$$
\begin{align*}
& \text { لاكرانزين دا به ثشكل زير تعريف كنيم :' } \\
& \mathcal{L}(\mathbf{x}, \lambda)=f(\mathbf{x})-\sum_{j=1}^{\boldsymbol{n}_{\mathbf{1}}} \lambda_{j} g_{j}(\mathbf{x}) . \tag{9.Y.8}
\end{align*}
$$

 رابطه سازى دو كان فالكى عبارت است از :

با را مشُروط $\mathcal{L}_{m}(\lambda)$
就 $\geq 0, \quad j=1, \ldots, n_{g}$, در حالى كه

$$
\begin{equation*}
\mathcal{L}_{m}(\lambda)=\min _{\mathbf{x} \in C} \mathcal{L}(\mathbf{x}, \lambda) \tag{4.Y.^}
\end{equation*}
$$

و C يكى مجموعه متدب بسته است كه براى خوش خيم مازى مسالل تعريف مى شود. بـ عنوان مثال اكر بدانيم كه جواب مساله كراندار است، مى توان C, را اين كونه انتـاب كرد:

$$
C=\left\{\mathrm{x}:-r \leq x_{i} \leq r, \quad i=1, \ldots, n\right\}, \quad \text { (१.Y. १) }
$$

 (9. Y . 1 (1 (

دو كان فالكى به رابطه دو كان بحث شده در بخش Y Y Y مى انجامد (تهرين I).

نامقيدند . در بعضى از شرايط اين كونه بهينه سازى ها بسيار ساده است. يكى از اين موارد ساده شنكامي است كه تابع هدف و تابع قيد هر در توابع جدايه بذيرند.

4 . Y. Y

$$
\begin{align*}
f(\mathbf{x}) & =\sum_{i=1}^{n} f_{i}\left(x_{i}\right) \tag{9.Y.1.}\\
g_{j}(\mathbf{x}) & =\sum_{i=1}^{n} g_{j i}\left(x_{i}\right), \quad j=1, \ldots, n_{g} \tag{9.Y.11}
\end{align*}
$$

در رابطه سازى ابتدايه، از اين جدايه بذيرى سود جندانى حاصل نمى شود . اما در رابطه سازى دوكان

R.Y. 1 مثل

مينــم تابع $f(\mathbf{x})=x_{1}^{2}+x_{2}^{2}+x^{2}$ را نسبت به دو ڤيد

$$
\begin{aligned}
& g_{1}(\mathbf{x})=x_{1}+x_{2}-10 \geq 0 . \\
& g_{2}(\mathbf{x})=x_{2}+2 x_{3}-8 \geq 0 .
\end{aligned}
$$

بيابيد. حل از روش دوكان :

$$
\begin{aligned}
\mathcal{L}(\mathbf{x}, \lambda) & =x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-\lambda_{1}\left(x_{1}+x_{2}-10\right)-\lambda_{2}\left(x_{2}+2 x_{3}-8\right) \\
& =L_{0}+L_{1}\left(x_{1}\right)+L_{2}\left(x_{2}\right)+L_{3}\left(x_{3}\right),
\end{aligned}
$$

در حالي, كه

$$
\begin{aligned}
L_{1}\left(x_{1}\right) & =x_{1}^{2}-\lambda_{1} x_{1}, \\
L_{2}\left(x_{2}\right) & =x_{2}^{2}-\left(\lambda_{1}+\lambda_{2}\right) x_{2}, \\
L_{3}\left(x_{3}\right) & =x_{3}^{2}-2 \lambda_{2} x_{3}, \\
L_{0} & =10 \lambda_{1}+8 \lambda_{2} .
\end{aligned}
$$

r
ب

دست آررد . مينيمم $L_{\text {با }}^{\text {با }}$

$$
2 x_{1}-\lambda_{1}=0
$$

بنابـرايـن 2 ب جايكزينى آنها در C(x, $)$

$$
\mathcal{L}_{m}(\lambda)=-0.5 \lambda_{1}^{2}-1.25 \lambda_{2}^{2}-0.5 \lambda_{1} \lambda_{2}+10 \lambda_{1}+8 \lambda_{2} .
$$

داريـم:

$$
\begin{aligned}
& \frac{\partial \mathcal{L}_{m}}{\partial \lambda_{1}}=-\lambda_{1}-0.5 \lambda_{2}+10=0 \\
& \frac{\partial \mathcal{L}_{m}}{\partial \lambda_{2}}=-2.5 \lambda_{2}-0.5 \lambda_{1}+8=0
\end{aligned}
$$

$$
\lambda_{1}=9 \frac{1}{3}, \quad \lambda_{2}=1 \frac{1}{3}, \quad \mathcal{L}_{m}(\lambda)=52
$$

$$
\mathcal{L}_{m}(\lambda)=-1.25 \lambda_{2}^{2}+8 \lambda_{2}
$$

$$
\mathcal{L}_{m}(\lambda)=-0.5 \lambda_{1}^{2}+10 \lambda_{1}
$$

كه ماكزيهم آن در
تبول است . از مقادير x_{1}, x_{2}, x_{3} كه دسـت آمد داريـم :

$$
x_{1}=4 \frac{2}{3}, \quad x_{2}=5 \frac{1}{3}, \quad x_{3}=1 \frac{1}{3}, \quad f(x)=52
$$

 از آن جا كه روش دو كان تنها به مينمـم سازى يكى بعدى در فضاى متغيرهاى طراحى مى بردازد، اين روش

 مسآل، بهينه سازى به صورت زير است.

$$
\begin{aligned}
f(\mathbf{x}) & =\sum_{i=1}^{n} f_{i}\left(x_{i}\right) \\
\text { بانسبر } g_{j}(\mathbf{x}) & =\sum_{i=1}^{n} g_{j i}\left(x_{i}\right) \geq 0, \quad j=1, \ldots, n_{g}, \quad \text { (q.Y. YY) }
\end{aligned}
$$

$$
\text { مينيمم كنيد } x_{i} \in X_{i}, \quad i=1, \ldots, n .
$$

مجموعهd $X_{i}=\left\{d_{i 1}, d_{i 2}, \ldots, \ldots\right.$ مجوعهاز مقادير كـسته است كه أمين متغير طراحى مى تواندآن مقدار را داشته باشـد. تابع لاكرانئين عبارتاست از :

$$
\begin{equation*}
\mathcal{L}(\mathbf{x}, \lambda)=\sum_{i=1}^{n} L_{i}\left(x_{i}, \lambda\right), \tag{9.r.ir}
\end{equation*}
$$

$$
\begin{equation*}
L_{i}\left(x_{i}, \lambda\right)=f_{i}\left(x_{i}\right)-\sum_{j=1}^{n_{0}} \lambda_{j} g_{j i}\left(x_{i}\right), \quad i=1, \ldots, n . \tag{9.Y.IF}
\end{equation*}
$$

برای مر λ با مينيمم سازى هر دست مى آوريم

$$
\begin{equation*}
\mathcal{L}_{m}(\lambda)=\sum_{i=1}^{n} \min _{x_{i} \in X_{i}} L_{i}\left(x_{i}\right) . \tag{9,r,10}
\end{equation*}
$$

نوجه كند كه برای هر

PYF بثش 9 : روشـهای دركان
 داشـت كه اين خطوط در مسل تتاطعها باشند، جايع كى

$$
\begin{equation*}
L_{i}\left(d_{i j}\right)=L_{i}\left(d_{i(j+1)}\right) \tag{9.Y.19}
\end{equation*}
$$

 عقادير كسسته اند، تغسيم مى كند. كاربرد اين مرزها در حل مساله دو كان در مثال زير كه از مرجـع[18] امت تشريع مى شود . Q.F.F F مثال

شكل 1. Y. I نحرباى در ميلهاى
 ' $A_{i}, i=1,2$

$$
A=\{1,1.5,2\}
$$

مينهمـم شود، در سالى كه تيدهاى تغير مكان زير نيز برآورده شوند.

$$
u \leq 0.75(F L / E), \quad v \leq 0.25(F L / E)
$$

خربا از نظر ايستاجى معين امست و تغير مكانها به مُكل نير به دست مى آيند :

$$
u=\frac{F L}{2 E}\left(\frac{1}{A_{1}}+\frac{1}{A_{2}}\right), \quad v=\frac{F L}{2 E}\left(\frac{1}{A_{1}}-\frac{1}{A_{2}}\right) .
$$

بهتر امست از م نشان دميهم، مساله بيينه سـازى را مى توانيه بـ شـكل زير رابطه سـازى كنيم :

$$
\frac{W}{\rho L}=\frac{1}{y_{1}}+\frac{1}{y_{2}}
$$

$$
\text { رابا تيود } 1.5-y_{1}-y_{2} \geq 0, \quad \text {, }
$$

$$
0.5-y_{1}+y_{2} \geq 0
$$

مينميمكنيد $\quad y_{1}, y_{2} \in\left\{\frac{1}{2}, \frac{2}{3}, 1\right\}$.
تابع لاكراينز به شسكل زير است

$$
\mathcal{L}(y, \lambda)=1 / y_{1}+1 / y_{2}-\lambda_{1}\left(1.5-y_{1}-y_{2}\right)-\lambda_{2}\left(0.5-y_{1}+y_{2}\right),
$$

$$
\lambda_{1}+\lambda_{2}=3, \quad, \quad \lambda_{1}+\lambda_{2}=1.5
$$

به شكل مشابهى مرزها برای تغيير

$$
\lambda_{1}-\lambda_{2}=3, \quad, \quad \lambda_{1}-\lambda_{2}=1.5
$$

$$
\begin{aligned}
& L_{1}\left(y_{1}, \lambda\right)=-1.5 \lambda_{1}-0.5 \lambda_{2}+1 / y_{1}+\left(\lambda_{1}+\lambda_{2}\right) y_{1} \text {, } \\
& L_{2}\left(y_{2}, \lambda\right)=1 / y_{2}+\left(\lambda_{1}-\lambda_{2}\right) y_{2} .
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{1 / 2}+\frac{1}{2}\left(\lambda_{1}+\lambda_{2}\right)=\frac{1}{2 / 3}+\frac{2}{3}\left(\lambda_{1}+\lambda_{2}\right), \\
& \frac{1}{2 / 3}+\frac{2}{3}\left(\lambda_{1}+\lambda_{2}\right)=\frac{1}{1}+\lambda_{1}+\lambda_{2} .
\end{aligned}
$$

PVA بنش 1.7 : برشهاي دركان

 مقادير كسسته $y_{1}=y_{2}=1$ مينمم مى ثـودد ممان كونه كه در شـكل نيز ديده مى شُود . براى ناحيه انى كه

اين مقادير ثابتند، تابع دوكان عبارت است از :

$$
\mathcal{L}_{m}=2+0.5 \lambda_{1}-0.5 \lambda_{2} .
$$

بدبهى است كه براى ماكزيمم سازى m مرز ناحيه در (1.5,0)بر (1 ($1, y_{2}$) برابر (2/3,1) است، يا به ناحيهانى كه مقطادير (2/3,2/3) است. در ناحيه' قبلى، تابع دو كان عبـارت

$$
\mathcal{L}_{m}=2.5+\lambda_{1} / 6-5 \lambda_{2} / 6
$$

و در ناحيه' بعدى، عبارت اسـت از :

$$
\mathcal{L}_{m}=3-\lambda_{1} / 6-\lambda_{2} / 2 .
$$

در هيج كدام از اين نواحى نمى تواتيـم مى شود كه به هر سه ناحبه تعلق دارد، براى مــــادير لوها سه امكان وجود دارد. با اين وجود، تنها يـــ انتخاب (2/3,2/3) با ماكزيمـ m اين نكته امست كه مسأل كسسته محدب نيست و بدين سبب مطمتن نيستيم كه يك مينيم براى تابع هدت بـ

 شر ط اين كه متغيرها بايد صصحيح بانند، بار ديكر حل مى كنيم.

مثال 9.T.T
رابطه سازى مسأل عبارت است از :

$$
\begin{aligned}
& f(\mathrm{x})=x_{1}^{2}+x_{2}^{2}+x_{3}^{2} \\
& g_{1}(\mathbf{x})=x_{1}+x_{2}-10 \geq 0, \quad \text { رابا شرايط } \\
& g_{2}(x)=x_{2}+2 x_{3}-8 \geq 0 . \\
& \text {, ايين }
\end{aligned}
$$

$$
\begin{array}{ll}
x_{1}=4 \frac{2}{3}, & x_{2}=5 \frac{1}{3}, \quad x_{3}=1 \frac{1}{3}, \quad f(\mathrm{x})=52 . \\
\lambda_{1}=9 \frac{1}{3}, & \lambda_{2}=1 \frac{1}{3}, \quad \mathcal{L}_{m}(\lambda)=52 .
\end{array}
$$

زير در مى آيد:

$$
9-3 \lambda_{1}=16-4 \lambda_{1}, \quad, \quad 16-4 \lambda_{1}=25-5 \lambda_{1},
$$

$$
\lambda_{1}=7, \quad \lambda_{1}=9 .
$$

براى مى بريم به شكل زير خوامد بود:

$$
\lambda_{1}+\lambda_{2}=9, \quad \lambda_{1}+\lambda_{2}=11 .
$$

به ممين ترتبب براى به شكل نير خوامد بود:

$$
\lambda_{2}=0.5, \quad \lambda_{2}=1.5 .
$$

اين مرزها، و مغادير (شده اند. جست و جو را|ز بهين يوسته با مقادير معادير مى دمدكه
 امتغاده از عبارت اكنون براى معادير
 نتض مى كتند. از دو ناحيه ایى كه در ناحيه طراحى تابل تبول ترار دارند، (5,5,2) تابع مدف كمترى دارد
 هر هـنداين مثال كوياىاين مطلب است كه روش امتغاده شـده ممكرا شُدن به بهين را تضمين نمى كند،

 همكارانت در طراحى تابهاى فلزى با مقاطع استاندارد به كار كـرفتـ شــده اسـتـ [21-19] . براي اطلاع
 حالت آميختكى متغيرهاى كسسته و بيومته، خواننده رابه مطالعه مرجع [18] نوصيه مى كنيم.
 بينستر تقريبهاى مرتبه اول كه در نصل 9 بهح شدند، جدأيع يذيرند. تقريبهاى خحطى و محانظه كارانه نيز
 تقريب وارون و براى تابع هدفـ تقريب خحطى به كار كرفته شـده المت. يعنى مسـاله بهينه مــازى تـتريبمى

عبارت است از:

$$
f(\mathbf{x})=f_{0}+\sum_{i=1}^{n} f_{i} x_{i}
$$

的 $(\mathbf{x})=c_{0 j}-\sum_{i=1}^{n} c_{i j} / x_{i} \geq 0, \quad j=1, \ldots, n_{g} . \quad$ بينيمر كنيل.

بثئ 1 : برئهایى موكان

$$
\begin{align*}
f_{0}=f\left(x_{0}\right)- & \left.\sum_{i=1}^{n} x_{0 i} \frac{\partial f}{\partial x_{i}}\left(x_{0}\right), \quad f_{i}=\frac{\partial f}{\partial x_{i}}\left(x_{0}\right), \quad \text { (q., r. । }\right) \\
c_{0 j} & =g_{j}\left(x_{0}\right)+\sum_{i=1}^{n} x_{0 i} \frac{\partial g_{j}}{\partial x_{i}}\left(x_{0}\right), \\
c_{i j} & =x_{0 i}^{2} \frac{\partial g_{j}}{\partial x_{i}}\left(x_{0}\right) . \tag{9.Y.19}
\end{align*}
$$

اكُ معهُ مساله بر حسب وارون متغيرهاى طراسي محدب امست. در مر دو حالتت يك بـهـين تـكـى داريـم . تـبـع لاكُرانزين عبارت امست از :

$$
\mathcal{L}(\mathrm{x}, \lambda)=f_{0}+\sum_{i=1}^{n} f_{i} x_{i}-\sum_{j=1}^{n_{g}} \lambda_{j}\left(c_{0 j}-\sum_{i=1}^{n} c_{i j} / x_{i}\right) \quad \text { (q., Y. Y.) }
$$

اولين كام در روس دو كاناين المت كه با مينيـم كردن (x,) از

$$
f_{i}-\sum_{j=1}^{n_{p}} \lambda_{j} c_{i j} / x_{i}^{2}=0
$$

(9.Y.Y1)

بنابيراين :

$$
\begin{equation*}
x_{i}=\left(\frac{1}{f_{i}} \sum_{j=1}^{n_{1}} \lambda_{j} c_{i j}\right)^{1 / 2} \tag{Q.Y.YY}
\end{equation*}
$$

با جايگزينى مادله (9. Y. Y Y) در معادله (9. Y. Y (9) داريم:

$$
\mathcal{L}_{m}(\lambda)=f_{0}+\sum_{i=1}^{n} f_{i} x_{i}(\lambda)-\sum_{j=1}^{n_{g}} \lambda_{j}\left(c_{0 j}-\sum_{i=1}^{n} c_{i j} / x_{i}(\lambda)\right), \quad \text { (q.Y. Yr) }
$$

ماكزيمـمسازى با استفاده از معادله (Y Y Y Y Y Yاريـم:

P PA*

$$
\begin{equation*}
\frac{\partial \mathcal{L}_{m}}{\partial \lambda_{j}}=-c_{0 j}+\sum_{i=1}^{n} c_{i j} / x_{i}(\lambda) \tag{Q.Y.YY}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial^{2} \mathcal{L}_{\mathrm{m}}}{\partial \lambda_{j} \partial \lambda_{k}}=-\sum_{i=1}^{n}\left(c_{i j} / x_{i}^{2}\right) \frac{\partial x_{i}}{\partial \lambda_{k}} \tag{Q.Y.YQ}
\end{equation*}
$$

يا با استغاده از معادله (9. Y. Y Y) داريم:

$$
\frac{\partial^{2} \mathcal{L}_{m}}{\partial \lambda_{j} \partial \lambda_{k}}=-\frac{1}{2} \sum_{i=1}^{n} \frac{c_{i j} c_{i k}}{f_{i} x_{i}^{3}(\lambda)}
$$

اكنون كه مشتقات دوم به راحتى در دمتر سند، بهتر است برالى ماكزيمـم سازى از روش نـيـوتـن امـتـفـاده
 موهومى بينجامد . بنابراين برای اطمينان بيشتر، بهتر امت از تقريب محانظف كارانه- مـحـدب امــتفــاده شود . اين كار هنگام كاربرد روش دو كان معمولا' انجام مى شود[22] .

مثال Q.r.p

 مى كنيم كه بار عمودى دو برابر بار انفى است،
 مكان در نتطه اعمال بار، كه نبـايد از مـــدار d جه در جهت انقى و هی در جهت عمودى بيشتنر شــود، طراحى شُود. متغير ماى طراحى مساحتهاى سطح متطع اعضاى خريا يعنى
 عبارت أست از:

$$
h=A_{A}+2 A_{B},
$$

كه بر اساس اين فرض كه هزينه عضو B بيشتر است، نوشته شـده است. قيدها عبارتنداز :

$$
\begin{aligned}
& g_{1}=1-u / d \geq 0, \\
& g_{2}=1-v / d \geq 0,
\end{aligned}
$$

شكل P 9. Y. P خريای مسه ميلهاى
كه u و

$$
\begin{aligned}
u & =\frac{4 p l}{3 E \overline{A_{A}}} \\
v & =\frac{2 p l}{E\left(A_{B}+0.25 A_{A}\right)}
\end{aligned}
$$

يكى مساست مبنا به ثـكل $A_{0}=4 \mathrm{pl} / 3 E d$ تعريف مى كنبم و متغير هاىى طراحى رانرمال مـازى مى كنيم. متغير هاى طراحى نرمال سازى شـده عبارتنداز: بهينه سازىى به ثـكل زير نوثـته مى شود:

$$
\begin{aligned}
& f(x)=x_{1}+2 x_{2} \\
& g_{1}(x)=1-1 / x_{1} \geq 0, \quad \text { را مشروط به قيود } \\
& g_{2}(x)=1-1.5 /\left(x_{2}+0.25 x_{1}\right) \geq 0 \text {. }
\end{aligned}
$$

اكنون براى تقريب (x

$$
\begin{aligned}
g_{2}\left(x_{0}\right) & =-0.2, \\
\frac{\partial g_{2}}{\partial x_{1}}\left(x_{0}\right) & =\left.\frac{0.375}{\left(x_{2}+0.25 x_{1}\right)^{2}}\right|_{x_{0}}=0.24, \\
\frac{\partial g_{2}}{\partial x_{2}}\left(x_{0}\right) & =\left.\frac{1.5}{\left(x_{2}+0.25 x_{1}\right)^{2}}\right|_{x_{0}}=0.96 .
\end{aligned}
$$

در نتيجه، تقريب وارون 92R عبارت اسـت از :

$$
\begin{aligned}
g_{2 R}(\mathrm{x}) & =-0.2+0.24\left(x_{1}-1\right) / x_{1}+0.96\left(x_{2}-1\right) / x_{2} \\
& =1-0.24 / x_{1}-0.96 / x_{2}
\end{aligned}
$$

مبانى بهينه سازی سازء ما (فصل 9 : رويّهالى معيار بهينمى ودوكان) PAP مساله تقريبى عبارت اسست از :

$$
\begin{aligned}
& f=x_{1}+2 x_{2} \\
& g_{1}(\mathbf{x})=1-1 / x_{1} \geq 0, \quad
\end{aligned}
$$

مينيمبم كنيد $\quad g_{2 R}(x)=1-0.24 / x_{1}-0.96 / x_{2} \geq 0$.

با علايم استفاده شـده در معادل (4. Y. IV) داريم
$f_{1}=1, \quad f_{2}=2, \quad c_{11}=1, \quad c_{21}=0, \quad c_{12}=0.24, \quad c_{22}=0.96, \quad c_{01}=c_{02}=1$.

در اين جـا معادله (4. Y. Y Y) داريم:

$$
x_{1}=(1.24)^{1 / 2}=1.113, \quad x_{2}=(0.48)^{1 / 2}=0.693
$$

از معادله (4. Y. Y Y) داريم:

$$
\begin{aligned}
& \frac{\partial \mathcal{L}_{\mathrm{m}}}{\partial \lambda_{1}}=-1+\frac{1}{1.113}=-0.1015, \\
& \frac{\partial \mathcal{L}_{\mathrm{m}}}{\partial \lambda_{2}}=-1+\frac{0.24}{1.113}+\frac{0.96}{0.693}=0.60,
\end{aligned}
$$

و از معادله (4. Y. Y९) داريم:

$$
\begin{aligned}
& \frac{\partial^{2} \mathcal{L}_{m}}{\partial \lambda_{1}^{2}}=-\frac{1}{2}\left(\frac{1}{1.113}\right)^{3}=-0.3626 \\
& \frac{\partial^{2} \mathcal{L}_{m}}{\partial \lambda_{1} \partial \lambda_{2}}=-\frac{1}{2}\left(\frac{0.24}{1113^{3}}\right)=-0.0870, \\
& \frac{\partial^{2} \mathcal{L}_{\mathrm{m}}}{\partial \lambda_{2}^{2}}=-\frac{1}{2}\left(\frac{0.24^{2}}{1.113^{3}}+\frac{0.96^{2}}{2 \times 0.693^{3}}\right)=-0.7132 .
\end{aligned}
$$

با استفاده از روش نيوتن براى ماكزيمم سازى

$$
\boldsymbol{\lambda}_{1}=\left\{\begin{array}{l}
1 \\
1
\end{array}\right\}-\left[\begin{array}{ll}
-0.3626 & -0.0870 \\
-0.0870 & -0.7132
\end{array}\right]^{-1}\left\{\begin{array}{c}
-0.1015 \\
0.60
\end{array}\right\}=\left\{\begin{array}{c}
0.503 \\
1.903
\end{array}\right\}
$$

$$
x_{1}=(0.503+0.24 \times 1.903)^{1 / 2}=0.980, \quad x_{2}=(0.48 \times 1.903)^{1 / 2}=0.956
$$

يك يرخ خه'ديكر از روش نيوتن بهنيجه'
 دو قيد بحرانى بامند. اكر

$$
\cdots \cdot f=3.5 ، x_{2}=1.25
$$

از آن جاكه روش دو كان در نضاى ضربكرهاى لا كرانزُ عمل مى كند، به خصورص منگامى كه تعداد قيدها به نسبت تعداد متغير ماى طراحى كم است، روش توانمندى است . روشهاى معيار بهينـكى كـ در بـخـش بعدى بحث خوامند شد نيز بلين كونه اند. اين روشها هنكامى كه تها بك تيد بحرانى داريم بـيـيار مناسبند.

 مكان رابه طور كلى در بر كيرد. بحت ما در اين جا محلود به معبار بهينكى كـستنه مى نسود و بـه مـيزان زيادى براسـاس مراجع [28] و [29] است. خواندكركان علاقمند به معيار بهينكى يوسته را به كتاب آتـاى

 داد كه تاعده تغيير اندازه بر اساس اين فرض شـكل مى كيرد كه بارهاى داخلى سـازه نــبت به فرايند تغيـيـر اندازه حساس نيست. اين مانند همان فرضى اسـت كه اساس روش FSD و تاعده تنيير اندازه نسبـتتنس مربوط را تنكيل مى داد. اين فرض در بسيارى از موارد معادل فرض مناسب بودن تـتريـب وارون
 برای قيدهاى تغيرمكان است. شناخت ارتباط بين روشهاى معبار بهينگى و تقريب وارون براىى داشُتن يك درلٌ بهتر از رابطه يين روشهاى معيار بهينكى و برنامه ريزى رياضى سودمند است و در بيخش بـعـدى بحث مى شود.

ا ـ ـ ـ ـ 9 تقريب وارون برايى يك قيد تغييرمكان بحت را با اين مطلب آغاز مى كنيم كه نشان مى دهيم در بعضى از مساثل طراحى سـازه، ، فرض ثابت بردن بارهاى داخلمى معادل كاريرد تقريب وارون برایى تغيير مكانهاست. معادلات تعادل سـازه بـه ثـــكـل زبـر نونته مى شود:

$$
\begin{equation*}
\mathbf{K u}=\mathbf{f}, \tag{9.r.1}
\end{equation*}
$$

كه K ماتريس مسختى مـازه، u بردار تغيير مكان، و f بردار بار است. از آن جا كه در زير از تغريب وارون به طور كسترده الى استفاده مى يُـود، بكـ بردار y از متغيرهـالى وارون

شـكل زير نوشته مى شود:

$$
\begin{equation*}
g(\mathbf{u}, \mathbf{y})=\bar{z}-\mathbf{z}^{T} \mathbf{u} \geq 0, \tag{9.r.r}
\end{equation*}
$$

كه از سازه ها كـ ماتريس ساختى يكى تابع ممكن خطى از متغيرهاى طراحمى امست (به عنوأن مناله ، سـازه هاى خريايى كه مساحتهاى سطح متطع اعضا متغيرهاى طراحى اند) ، تعريب وأرون بسيار مناسب امت.

$$
\begin{equation*}
\mathbf{K}=\sum_{i=1}^{n} \mathbf{K}_{i} x_{i}=\sum_{i=1}^{n} \mathbf{K}_{i} / y_{i} \tag{q.r.r}
\end{equation*}
$$

ممجنين فرض مى كنيم كه بار مستقل از متغيرهاى طراحى است. با شُرط بالا نشان خواهيم داد

$$
\begin{equation*}
g(\mathbf{u})=\bar{z}+\sum_{i=1}^{n} y_{i} \frac{\partial g}{\partial y_{i}} . \tag{9.5.4}
\end{equation*}
$$

يعنى هيزى كه يك تقريب مرتبه اول و به نظر مى رسد، در واتع دتيت است. معادله (Y . Y ـ ج) كواه بر

تابع خططى بردن متغيرهاى طراحى نيـسـت زبرا

 خواهد آمد:

$$
\begin{equation*}
\frac{\partial g}{\partial y_{i}}=-\lambda^{T}\left(\frac{\partial \mathbf{K}}{\partial y_{i}}\right) \mathbf{u} \tag{9.r.0}
\end{equation*}
$$

 مؤلفه هاى

$$
\begin{equation*}
\frac{\partial \mathbf{K}}{\partial y_{i}}=-\frac{\mathbf{K}_{i}}{y_{i}^{2}} . \tag{9.r.9}
\end{equation*}
$$

 $\sum_{i=1}^{n} \frac{\partial g}{\partial y_{i}} y_{i}=\sum_{i=1}^{n} \lambda^{T} \frac{K_{i}}{y_{i}^{2}} \mathbf{u} y_{i}=\lambda^{T}\left(\sum_{i=1}^{n} K_{i} / y_{i}\right) \mathbf{u}=\lambda^{T} K \mathbf{u}=-\mathbf{z}^{T} \mathbf{u} . \quad$ (q.r. $)$

 مشتقات داخلى سازه مستقل از متغيرهاى طراسیى باسند، آن كاه
 كنترل بي كنتد ولى از هندسه و بارها مستقل نيستند .
 fi طراسى كتترل لمى شمود. نيرנيى كه روى آن تسمت از سازه اعمال مي شود عبارت است

$$
\begin{equation*}
\mathbf{f}_{i}=\frac{\mathbf{K}_{i}}{y_{i}} \mathbf{u} . \tag{q.r.^}
\end{equation*}
$$

مبانى بهين سازى سازهما (نصل 9 : روئهایى معيار بهينكى و دوكان) PAF أكر جزه أام سازه در مقابل حركت جسـم حلب مقيد شُده باشد، از ماتريس مسختى كاهس يافته K K نيروى

$$
\begin{equation*}
\mathbf{f}_{\mathbf{i}}=\frac{\mathbf{K}_{\mathbf{i}}^{\prime}}{y_{i}} \mathbf{u}_{i}^{\prime} \tag{4.r.9}
\end{equation*}
$$

 در نتيجه :

$$
\begin{equation*}
\mathbf{u}_{i}^{\prime}=y_{i} \mathbf{u}_{i} \tag{q.r.1.}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{u}_{i}=\left(\mathbf{K}_{i}^{\prime}\right)^{-1} \mathbf{f}_{i} \tag{9.r.11}
\end{equation*}
$$

 مى نويسيم: :

$$
\begin{equation*}
\frac{\partial g}{\partial y_{i}}=\lambda^{T} \frac{\mathbf{K}_{i}}{y_{i}^{2}} \mathbf{u}=\lambda^{T} \mathbf{f}_{i} / y_{i}=\lambda^{T} \frac{\mathbf{K}_{i}^{\prime}}{y_{i}} \mathbf{u}_{i} \tag{9.r.1Y}
\end{equation*}
$$

بردار

ثود نيروى داشخلى مستقل از متغير هاى طراحى اند، ثاببت امست ـ ممحنين
 اكنون كاربرد روشهاى معيار بهينگى براي يكى قيد تغيير مكان را بر اماس تقريب وارون مورد مطالهـ قرالر مى دهیـم•

به سبب خواص ويرّه تقريب وارون برایى قيلهاى تغييرمكان، مسأله بهينه سازى ر' بر حسب متغيرهـاى

$$
\begin{align*}
& \text { برای اين مسأله ، شرط كان- تاكر عبارت است از : } \\
& \frac{\partial f}{\partial y_{i}}-\lambda \frac{\partial g}{\partial y_{i}}=0, \quad i=1, \ldots, n . \tag{9.5.1f}
\end{align*}
$$

در بسيارى از موارد تابع هدف بر حـب متغيرهاى طراسى اصلى خططى است با تقريباً خططى استـ، و جون

$$
\begin{equation*}
x_{i}^{2} \frac{\partial f}{\partial x_{i}}+\lambda \frac{\partial g}{\partial y_{i}}=0 \tag{9.r.10}
\end{equation*}
$$

در نتبجه

$$
\begin{equation*}
x_{i}=\left(-\lambda \frac{\partial g / \partial y_{i}}{\partial f / \partial x_{i}}\right)^{1 / 2}, \quad i=1, \ldots, n \tag{9.r.19}
\end{equation*}
$$

 نامساوى، معمولأمى توان نرض كردكه تيد نعال است) . با برابر صفر ترار دادذ تقريب وارون تبد داريم:

$$
g_{R}=g\left(\mathbf{y}_{0}\right)+\sum_{i=1}^{n} \frac{\partial g}{\partial y_{i}}\left(y_{i}-y_{0 i}\right)=c_{0}+\sum_{i=1}^{n} \frac{\partial g}{\partial y_{i}} \frac{1}{x_{i}}=0 . \quad \text { (q. r. iv) }
$$

$$
c_{0}=g\left(\mathbf{y}_{0}\right)-\sum_{i=1}^{n} y_{0 i} \frac{\partial g}{\partial y_{i}}=g\left(\mathbf{x}_{0}\right)+\sum_{i=1}^{n} x_{0 i} \frac{\partial g}{\partial x_{i}} .
$$

$$
\begin{equation*}
\lambda=\left[\frac{1}{c_{0}} \sum_{i=1}^{n}\left(-\frac{\partial f}{\partial x_{i}} \frac{\partial g}{\partial y_{i}}\right)^{1 / 2}\right]^{2} . \tag{9.r.19}
\end{equation*}
$$

 سـازه مورد استفاده ترار كيرند.

مبائم بهينه سازیى سازه ما (لمهل 4 : ردئهایى معيار بهينكى ودركان) PAA
 و در بيشتر موارد طراحى افزون بر تيد تغيير مكان، سلد بالا و پايين روى متغير هاى طراحى نيز داريـم و
 مى شود كه اكر اين حدود را نقض كند، متغير طراحى مربوط را برابر آن حـلد تُرار مـى دهـيـم . آن كـاه، ،
 نشان مى دهيـم و مجموعه متغيرهاى باقى مانده را مبجموعه فعال ناميـده و با I نشان مى دهيم . معادلك (9. Y. IV)

$$
\begin{equation*}
c_{0}^{*}+\sum_{i \in I_{i}} \frac{\partial g}{\partial y_{i}} \frac{1}{x_{i}}=0 \tag{१.Y.Y•}
\end{equation*}
$$

$$
\begin{equation*}
c_{0}^{*}=c_{0}+\sum_{i \in I_{p}} \frac{\partial g}{\partial y_{i}} \frac{1}{x_{i}} \tag{q,Y,Y1}
\end{equation*}
$$

$$
\begin{equation*}
\lambda=\left[\frac{1}{c_{0}^{*}} \sum_{i \in I_{e}}\left(-\frac{\partial f}{\partial x_{i}} \frac{\partial g}{\partial y_{i}}\right)^{1 / 2}\right]^{2} \tag{Q.Y.YY}
\end{equation*}
$$

 اوليه شان بينجامد . فرايند را مى توان براى داثتن كنترلى روى ميزان تغييرات طراحى بهبود بـخشيد كه در
 شـده در اين با، دتيتأ معادل روش تصوير كراديان است كه با تقريب وارون به كار رفته باثـلـ .
O.T. 1 Ot 1 منال Y . Y . Y , Y بار دبكر با تنها يك قيد روى تغير مكان عمودى تكرار مى كنيم . با امتفاده از متغيرهاى 1) Passive

طراحى نرمال شـده، رابطه سـازى رياضى مسـالك به صورت زير خواهد بود:
رانسبت $f(\mathbf{x})=x_{1}+2 x_{2}$
g(x) $=1-1.5 /\left(x_{2}+0.25 x_{1}\right) \geq 0$.

منتقات مورد نياز در فرايند تنيير اندازه عبارت است الز از :

$$
\begin{aligned}
\frac{\partial f}{\partial x_{1}} & =1, \quad \frac{\partial f}{\partial x_{2}}=2, \quad \frac{\partial g}{\partial y_{1}}=-x_{1}^{2} \frac{\partial g}{\partial x_{1}}=-\frac{0.375 x_{1}^{2}}{\left(x_{2}+0.25 x_{1}\right)^{2}}, \\
\frac{\partial g}{\partial y_{2}} & =-x_{2}^{2} \frac{\partial g}{\partial x_{2}}=-\frac{1.5 x_{2}^{2}}{\left(x_{2}+0.25 x_{1}\right)^{2}} ; \\
c_{0} & =g(y)+\frac{\partial g}{\partial y_{1}} y_{1}+\frac{\partial g}{\partial y_{2}} y_{2} \\
& =1-\frac{1.5}{\left(x_{2}+0.25 x_{1}\right)}+\frac{0.375 x_{1}}{\left(x_{2}+0.25 x_{1}\right)^{2}}+\frac{1.5 x_{2}}{\left(x_{2}+0.25 x_{1}\right)^{2}}=1 .
\end{aligned}
$$

با طراحقى اوليـه

> 4.r. I جدول

طراحی به سرعت به بك

 يانتن روشهايع منامبتر براى اين كونه مساتل دشوار است.

PQ •
r 4 . r. r r
روم معيار بهينگى كـه در بخش كـذـثـته بــحث شـد، بسيـار شبيه روش دو كان امست. به ويزهه، معادلـه
 هماهنكى بين قيود تغير مكان و تقريب وارون بود، ولى بديهى است كه اين روش براى هر ڤيلى كه بتوان آن را با تقريب وارون به شـكل قابل تبولى تقريب زد، مناسب خوااهد بود . در اين بخش مـا روش بـخـش تبلى را تعميم مى دهيم و كاربرد روش را برا'ى سالات عمومى تر قيود بحث مى كنيم . معيار بهينگى براى بك تيد تكى

$$
\begin{equation*}
\frac{\partial f}{\partial x_{i}}-\lambda \frac{\partial g}{\partial x_{i}}=0, \quad i=1, \ldots, n \tag{Q.r.Yr}
\end{equation*}
$$

را مى توان به ثـكل زير نونُـت

$$
\begin{equation*}
\lambda=\frac{\partial f}{\partial x_{i}} / \frac{\partial g}{\partial x_{i}}, \quad i=1, \ldots, n \tag{Q.Y.YY}
\end{equation*}
$$

 P. YY (FY (. 4) به ما مى كويد كه در بهين تمامى متغيرهاى طراحى در تغيير تيود به طور يكسان اثر هزينه ایى دارنـد.
 باثـند. يكى فن تغيير اندازه بايد به كونهاى باشد كه ميزان استناده از متغير هاى مـؤثرتـر را افزايـش داده و متغيرهاى كم اترتر را كاهش دهد. بهعنوان مـال در حالت سادهاى كه باثـند، يكى قاعده تغيير اندازه عبارت خواهد بود از :

S

$$
\begin{equation*}
e_{i}=\left(\partial g / \partial x_{i}\right) /\left(\partial f / \partial x_{i}\right) \tag{Q.r.Y.}
\end{equation*}
$$

بنش 4. : :روشهاى معبار بينكم براىيكميد

$$
\begin{equation*}
\lambda=\left[\frac{1}{c_{0}} \sum_{i=1}^{n} x_{i} \frac{\partial g}{\partial x_{i}} e_{i}^{-\frac{1}{i}}\right]^{n}, \tag{Q.r.rV}
\end{equation*}
$$

كه طراحى مازه بال تحت تيدلرزش امستغاده شُده است.

مثال 9.r.r

يكى مخزن رو باز بايد دست كم 125m²حبم داشته باشُد. تيـت تـام مُدهُ ديواره هاى جانيى مـخزن - ادلار به ازاى هر متر مربع است، در صورنى كه تيـت تمام هُسده' ديواره هاى جلو و عقب و كف $1 ه$
 عرض، طول و ارتفاع مخزن رابه ترتيب رابطه مازى مى شـود:

$$
\begin{aligned}
& \text { رانسبتب } f=20 x_{2} x_{3}+30 x_{1} x_{3}+15 x_{1} x_{2} \\
& \text { مينمم كنيد } g=x_{1} x_{2} x_{3}-125 \geq 0 \text {. }
\end{aligned}
$$

er e_{i}

$$
\begin{aligned}
& e_{1}=x_{2} x_{3} /\left(30 x_{3}+15 x_{2}\right), \\
& e_{2}=x_{1} x_{3} /\left(20 x_{3}+15 x_{1}\right), \\
& e_{5}=x_{1} x_{2} /\left(20 x_{2}+30 x_{1}\right) .
\end{aligned}
$$

با يك طراحى اوليه' مكعب
 با انتخاب

$$
\begin{aligned}
& x_{1}=5(8.62 / 9)^{1 / 2}=4.893, \\
& x_{2}=5(8.62 / 7)^{1 / 2}=5.549,
\end{aligned}
$$

$$
x_{3}=5(8.62 / 10)^{1 / 2}=4.642
$$

‘ با متغيرهاى طراحى جديد داريمf $f=1604 ، g=1.04 ، e_{1}=0.1158 ، e_{2}=0.1366 ، e_{3}=0.1053$
8.413

$$
\begin{aligned}
& x_{1}=4.893(8.413 \times 0.1158)^{1 / 2}=4.829 \\
& x_{2}=5.549(8.413 \times 0.1366)^{1 / 2}=5.949 \\
& x_{3}=4.642(8.413 \times 0.1053)^{1 / 2}=4.370
\end{aligned}
$$

' $e_{2}=0.1320$ ، $e_{3}=0.1089$.

 . $e_{1}=e_{2}=e_{3}=0.120$ جرجه متغير هاى طراحى $f=3.6056$ از آن جهه بعد از دو جر خه به دست آمد تغيير بسيارى كرده اند، ولى تابع هدن كمتر از دو درصد تغيير يانته و اين قابل انتظار بود، زيرا متادير اوليه
 همان كونه كه در بخشُ تبل يادآورى شد، معادله (Y . Y . Y) بيانكر اين است كه در بهين تمامى متغيرها (كه در كرانهاى بالY و پايين خود نيستند) از نظر اثر هزينه أى يكسانند و اثر هزينه ایى آنها برابر / / است .
 ونكايا[29] ؛ λ را به شكل زير تخمين زد:

$$
\begin{equation*}
\lambda=\frac{\sum_{i=1}^{n} a_{i}}{\sum_{i=1}^{n} a_{i} e_{i}} \tag{q.r.YА}
\end{equation*}
$$

كه تغير اندازه مانند معادله (Y. Y . Y Y) به كار برد.
 نكه داشتن تيود در بر ندارد و در نتيجه فرايند هرخه ممكن است به ناحيه قابل تبول يا غير تابل تبول مدايت

شود كه طراحى در مرز قيد باتى بى ماند. يكى ساز و كار ساده كه به طور وميعى در رابطه سـازى مـعـيـار بهينگى به كار مى رود معياس بندى متغير طراحى اسـتـ . يكى دليل شهرت متياس بندى اين اسـت كه برابى

 حالتهاى كلى تر بيشنهاد كرد. تيد ورا به ثيكل زير در نظر بكيريد:

$$
\begin{equation*}
g(\mathbf{x})=\bar{z}-z(\mathbf{x}) \geq 0 \tag{q,r.rq}
\end{equation*}
$$

كه

$$
\begin{equation*}
z(\alpha x)=\bar{z} \tag{q.r.r.}
\end{equation*}
$$

با تقريب خحطى $z(\alpha x$ سحرل x دأريم:

$$
z(\alpha x) \approx z(\mathbf{x})+\sum_{i=1}^{n} \frac{\partial z_{i}}{\partial x_{i}}(\alpha-1) x_{i}=\bar{z}
$$

(9.r.ri)

$$
\begin{equation*}
\alpha=1+\frac{\bar{z}-z}{\sum_{i=1}^{n} \frac{\delta_{z}}{\partial x_{i}} x_{i}}=1-\frac{g}{\sum_{i=1}^{n} \frac{\partial g}{\partial x_{i}} x_{i}} \tag{q.r.rr}
\end{equation*}
$$

$$
\alpha=\frac{\sum_{i=1}^{n} \frac{\partial g}{\partial x_{i}} x_{i}}{g+\sum_{i=1}^{n} \frac{\partial g}{\partial x_{i}} x_{i}}
$$

(9.r.rr)

 عبارت زير جايكزين شود.

$$
\begin{equation*}
\alpha=z / \bar{z}=1-g / \bar{z} \tag{Q.r.rF}
\end{equation*}
$$

$$
\begin{equation*}
\frac{1}{z} \sum_{i=1}^{n} \frac{\partial z}{\partial x_{i}} x_{i} \geq 0 \tag{q.r.ro}
\end{equation*}
$$

 براى α بر حسب g براى تيود كران بايسن به شكل
 برای اين دو عمل مستقات جديد را محاسبه مى كنـم . اكر مشتقات را محاسبه مي كنـيمه، آن كاه تـعـداد بارهايى كه مشتقات محاسبه مى سوند بها ازاي هر هرخه دو برابر افزايش مى يابد . در موارد بسيارى اين كار ضرورتى ندارد. مى نوانذ بااستفاده از مشتقات به دست آمده تبل از مقياس بندى، ضربكر لآكرانز را محاسبه كرد، مكر اين كه مقياس بندى به تغييرات زياد در متغيرهاى طراحى بينجامد.

مثل

 برايى تخمين λ و بد كاركيرى مقياس بندى، بار دبكر حل مى كنيم.

$$
\lambda=\frac{3}{1 / 9+1 / 7+1 / 10}=8.475
$$

$$
\begin{aligned}
& x_{1}=5(8.475 / 9)^{1 / 2}=4.852 \\
& x_{2}=5(8.475 / 7)^{1 / 2}=5.502 \\
& x_{3}=5(8.475 / 10)^{1 / 2}=4.603 .
\end{aligned}
$$

$$
\alpha=1-\frac{-2.12}{25.325 \times 4.852+22.334 \times 5.502+26.695 \times 4.603}=1.00576 .
$$

با مقياس بندى متغير هاى طراحى داريـم

 نقض نسـده . اكنون λ رابه دست مى آوريم

$$
\lambda=\frac{3}{0.1148+0.1355+0.1044}=8.457 .
$$

وبا تغير اندازه داريم

$$
\begin{aligned}
& x_{1}=4.880(8.457 \times 0.1148)^{1 / 2}=4.808, \\
& x_{2}=5.533(8.457 \times 0.1355)^{1 / 2}=5.923, \\
& x_{3}=4.628(8.457 \times 0.1044)^{1 / 2}=4.351 .
\end{aligned}
$$

$\partial g / \partial x_{3}=28.481 ، \partial g / \partial x_{2}=20.921 ، \partial g / \partial x_{1}=25.772 ، f=1570 ، g=-1.08$ برای اين طراحی位 $=0.1084 ، e_{2}=0.1315 ، e_{1}=0.1175$

$$
\alpha=1-\frac{-1.08}{25.772 \times 4.808+20.921 \times 5.923+28.481 \times 4.351}=1.0029 .
$$

با مقياس بندى متغيرهاى طراحسى داريم. (49̄9

9. 9 تَيدهاى متعلد

1 . . 9 . 1 روش مبتنى بر تعريب وارون
بار ديكر با مساله بهينه سازى بر حسب متغير هاى وارون شروع مى كنيم

$$
\begin{aligned}
& \text { در نتيجه، شرايط كان- تاكر عبارتند از : } \\
& \frac{\partial f}{\partial y_{i}}-\sum_{j=1}^{n_{0}} \lambda_{j} \frac{\partial g_{j}}{\partial y_{i}}=0, \quad i=1, \ldots, n .
\end{aligned}
$$

مانند حالت تكى تيدى فرض مى كنيم كه f بر حسـب x تقريباّ خحطى اسـت، بنابراين مشتت نسبت به 1 را با مشتق نسبت به x جايكزين مى كنيم و داريم :

$$
\begin{equation*}
x_{k}^{2} f_{k}-\sum_{j=1}^{n_{1}} c_{k j} \lambda_{j}=0 \tag{१.Y.Y}
\end{equation*}
$$

ك

$$
\begin{equation*}
f_{k}=\frac{\partial f}{\partial x_{k}}, \quad c_{k j}=-\frac{\partial g_{j}}{\partial y_{k}}, \quad k=1, \ldots, n \tag{9,Y,Y}
\end{equation*}
$$

اين معادله را مى توان برايى به دسـت آوردن

$$
x_{k}=\left(\frac{1}{f_{k}} \sum_{j=1}^{n_{1}} \lambda_{j} c_{k j}\right)^{1 / 2}, \quad k=1, \ldots, n .
$$

با اين وجود، براى استفاده از معادله (4. Y . Y) روشهاى مختلف ديكرى ييشنهاد و استفاده شـده اسـت.
 فرار دارد :

$$
\begin{equation*}
x_{k}^{\lambda k}=x_{k}\left(\frac{1}{x_{k}^{2} f_{k}} \sum_{j=1}^{n_{1}} \lambda_{j} c_{k j}\right)^{1 / \eta}, \quad k=1, \ldots, n \tag{9.7.4}
\end{equation*}
$$

كه مقدار تبلى

$$
\begin{equation*}
x_{k}^{+k}=x_{k}+\Delta x_{k}, \quad k=1, \ldots, n, \tag{q,Y,V}
\end{equation*}
$$

$$
\begin{equation*}
\Delta x_{k}=\frac{1}{\eta}\left(\frac{1}{x_{k}^{2} f_{k}} \sum_{j=1}^{n_{k}} \lambda_{j} c_{k j}-1\right) x_{k}, \quad k=1, \ldots, n . \tag{9,4.1}
\end{equation*}
$$

 فعلى را كاهش مى هد و از نوسان جلوكيرى مى كند، ولى نزديكى شـدن به طراحى نهاهِ را ممكـن اسـت
 مشكل اصلى در مورد ڤيدهاى چندكانه محاسبهُ ضربكرهاى لاكرانُّ امتـ. اين امكان وجود دارد كه روئ دركان را به كاربرد و ضربكرهاى لاكرانزّ را با استفاده از روم نـيوتن محـاســبـه كـرد. راه ديـــر
 فرض كنيد كه تعداد وn قيد شمكى بحراني اند. آن كاه ضربكرهاى لاكرانز از شر ايط زير بهد دـت مى آيند. .

$$
\begin{equation*}
g_{l}(\mathbf{x})=0, \quad l=1, \ldots, n_{g} \tag{9.Y.9}
\end{equation*}
$$

$$
g_{l}(\mathbf{x})+\sum_{k=1}^{n} \frac{\partial g_{l}}{\partial x_{k}} \Delta x_{k}=g_{l}(\mathbf{x})+\sum_{k=1}^{n} \frac{c_{k 1}}{x_{k}^{2}} \Delta x_{k}=0, \quad l=1, \ldots, n_{g} . \quad \text { (१.५.।.) }
$$

$$
\sum_{j=1}^{n_{g}} \sum_{k=1}^{n} \frac{c_{k l} c_{k j}}{x_{k}^{3} f_{k}} \lambda_{j}=\sum_{k=1}^{n} \frac{c_{k j}}{x_{k}}-\eta g_{l}(x), \quad l=1, \ldots, n_{g} . \quad \text { (q. ४.11) }
$$

 ضربكرهاى لاكرانزّ مقدار منغى اسـت كه نــانكر آن اسـت كه تيد مربوط نبايد نعال در نظر كرفنه مى شُد.

 مى توان استفاده كرد.

در مورد قيود تنش نيز مى توان از روش بالا استفاده كرد . با اين وجود در بسبارى از روشهاى معيـار بهينگى ، براى اين كار فن نـبـت تنش رابه كار مى كيرند . آن كاه اندازهُ اعضـا كه از فن نـبـت تنش به دسـت

 | است كه به سبب تقارن A_{C}
 افزايثش تغير مكان ميجاز به $1.25 d$ را حدس بزنيهم .

شكل 9. P. I خخربِي سه ميلها
خريادر مثال Y تحليل شد و تغيير مكان عمودي و تتنى اعضا به شكل زير به دست آمد :

$$
\begin{aligned}
& v=\frac{8 p l}{E\left(A_{B}+0.25 A_{A}\right)}, \\
& \sigma_{A}=p\left(\frac{\sqrt{3}}{3 A_{A}}+\frac{2}{A_{B}+0.25 A_{A}}\right), \\
& \sigma_{B}=\frac{8 p}{A_{B}+0.25 A_{A}}, \\
& \sigma_{C}=p\left(-\frac{\sqrt{3}}{3 A_{A}}+\frac{2}{A_{B}+0.25 A_{A}}\right) . \\
&\left.\lim _{2}\right) \\
& g_{1}=1-\frac{v}{0.001 l} \geq 0
\end{aligned}
$$

$$
\begin{aligned}
g_{2}=1-\frac{\sigma_{A}}{\sigma_{0}} \geq 0, & g_{3}=1-\frac{\sigma_{B}}{\sigma_{0}} \geq 0 \\
\text { مينميم } g_{4}=1-\frac{\sigma_{C}}{\sigma_{0}} \geq 0, & g_{5}=1+\frac{\sigma_{C}}{\sigma_{0}} \geq 0
\end{aligned}
$$

كه قيد دوم دوى
بي بعد داريم:

$$
x_{1}=A_{A} \sigma_{0} / p, \quad, \quad x_{2}=A_{B} \sigma_{0} / p
$$

مساله را مى توان به شكل زير نوشت:

$$
\begin{aligned}
f(x) & =4 x_{1}+x_{2} \\
g_{1}(x) & =1-\frac{16}{\left(x_{2}+0.25 x_{1}\right)} \geq 0 \\
g_{2}(x) & =1-\frac{\sqrt{3}}{3 x_{1}}-\frac{2}{\left(x_{2}+0.25 x_{1}\right)} \geq 0 \\
g_{3}(x) & =1-\frac{8}{\left(x_{2}+0.25 x_{1}\right)} \geq 0 \\
& g_{4}(x)=1+\frac{\sqrt{3}}{3 x_{1}}-\frac{2}{\left(x_{2}+0.25 x_{1}\right)} \geq 0 \\
\text { (x)} & g_{5}(x)=1-\frac{\sqrt{3}}{3 x_{1}}+\frac{2}{\left(x_{2}+0.25 x_{1}\right)} \geq 0
\end{aligned}
$$

 بكيريم . ابتدا مساله رابا استفاده از فن نسبت تنش همراه با معيار بهينكى براكى قيد تغيير مكان سل مى كنيم. با استفاده از نن نسبت تنش، مساحتها را به شـكل زير تغيير مى دهيم: :

$$
\begin{aligned}
& \left(A_{A}\right)_{\psi+}=\left(\frac{\sigma_{A}}{\sigma_{0}}\right)\left(A_{A}\right)_{\text {old }} \\
& \left(A_{B}\right)_{\text {dt }}=\left(\frac{\sigma_{B}}{\sigma_{0}}\right)\left(A_{B}\right)_{\text {old }},
\end{aligned}
$$

يا بر حسب متغيرهايى بى بعد

$$
\begin{aligned}
& \left(x_{1}\right)_{x+}=\left[1-g_{2}(x)\right] x_{1}, \\
& \left(x_{2}\right)_{4}=\left[1-g_{3}(x)\right] x_{2} .
\end{aligned}
$$

اكنون اين مقادير به عنوان مقادير حداتل در روشُ معيار بهينگّى به كار مى روند كه تـنـهـا در مـوردد و و در

$$
\begin{aligned}
\frac{\partial g_{1}}{\partial y_{1}} & =-x_{1}^{2} \frac{\partial g_{1}}{\partial x_{1}}=-\frac{4 x_{1}^{2}}{\left(x_{2}+0.25 x_{1}\right)^{2}} \\
\frac{\partial g_{1}}{\partial y_{2}} & =-x_{2}^{2} \frac{\partial g_{1}}{\partial x_{2}}=-\frac{16 x_{2}^{2}}{\left(x_{2}+0.25 x_{1}\right)^{2}}, \\
\frac{\partial f}{\partial x_{1}} & =4, \quad \frac{\partial f}{\partial x_{2}}=1 \\
c_{0} & =g(\mathbf{y})-\frac{\partial g}{\partial y_{1}} y_{1}-\frac{\partial g}{\partial y_{2}} y_{2} \\
& =1-\frac{16 x_{2}^{2}}{\left(x_{2}+0.25 x_{1}\right)}+\frac{4 x_{1}}{\left(x_{2}+0.25 x_{1}\right)^{2}}+\frac{16 x_{2}^{2}}{\left(x_{2}+0.25 x_{1}\right)}=1
\end{aligned}
$$

از

$$
g_{2}=0.2275, \quad g_{3}=0.2195, \quad \frac{\partial g_{1}}{\partial y_{1}}=-0.03807, \quad \frac{\partial g_{1}}{\partial y_{2}}=-15.23
$$

با كاريرد فن نسبت تنش دأريمم $0.7725=$ g g_{1}
 (يعنى (

$$
c_{0}^{*}=1-0.03807=0.9619, \quad \lambda=\left(\frac{\sqrt{15.23}}{0.9619}\right)^{2}=16.46 .
$$

4. P. 1 جدول

\leadsto	x_{1}	x_{2}	$\left(x_{1}\right)_{1 \mu}$	$\left(x_{2}\right)_{\mu}$	c_{0}^{*}	λ	x_{1}	x_{2}
1	1.	10.	0.7725	7.805	0.9619	16.46	0.356	15.83
2	0.7725	15.83	0.6738	7.904	0.9880	16.00	0.193	15.81
3	0.6738	15.81	0.6617	7.916	0.9894	16.00	0.169	15.83

اكنون اين مسأله را با فن معيار بهينگى براى هر دو قيد حل مى كنيم • برايى مهاسبه ضهربكرهاى لاكرانز

 9．r．r ج جدول

父穴	x_{1}	x_{2}	g_{1}	g_{2}	λ_{1}	λ_{2}	Δx_{1}	Δx_{2}
1	1.	10	-0.5610	0.2275	11.70	0	-0.4443	3.906
2	0.5557	13.906	-0.1392	-0.1814	15.00	2.648	0.0897	1.694
3	0.6434	15.600	-0.0152	-0.0243	15.63	2.826	0.0160	0.231

 در جدول I طراحى بهين

r P ．．． 4 روش مقياس－مبنا

$$
\begin{equation*}
\sum_{j=1}^{n_{f}} \lambda_{j} e_{i j}=1, \quad i=1, \ldots, n \tag{9.4.1r}
\end{equation*}
$$

4

$$
\begin{equation*}
e_{i j}=\frac{\partial g_{j}}{\partial x_{i}} / \frac{\partial f}{\partial x_{i}} \quad i=1, \ldots, n, \quad j=1, \ldots, n_{g} \tag{9.F.ir}
\end{equation*}
$$

 شكل زير تعمبم داد：

$$
x_{i}^{4+\epsilon}=x_{i}^{\mu<j}\left(\sum_{j=1}^{\pi_{s}} \lambda_{j} e_{i j}\right)^{1 / \eta}, \quad i=1, \ldots, n, \quad \text { (q.F.|千) }
$$

$$
\begin{equation*}
\lambda_{j}=\frac{\sum_{i=1}^{n} a_{i}}{\sum_{i=1}^{n} a_{i} e_{i j}}, \quad j=1, \ldots, n_{g} \tag{9.F.10}
\end{equation*}
$$

ضربكرهاى لاكرانز تنها براى بـعرانى ترين قيود محاسبه مى شوند، و براى ساير قيود مقدار آن ها را صفر در نظر مي كيرند. در نهايت بايد يادآرر شمد كه مقياس بندى بر اساس بعرانى ترين قيد طراحـى امستفــاده مى شود . اين روش با تكرار مثال تبلى تشريع مى نـود.
R.Y.r مثال مسألد بهينه سازى كه در نظر مي كيريم عبارت است از :

$$
\text { را با تيرد } \quad f(\mathbf{x})=4 x_{1}+x_{2}
$$

$$
g_{1}(\mathrm{x})=1-\frac{16}{\left(x_{2}+0.25 x_{1}\right)} \geq 0
$$

. $\quad g_{2}(x)=1-\frac{\sqrt{3}}{3 x_{1}}-\frac{2}{\left(x_{2}+0.25 x_{1}\right)} \geq 0$.

اين مسآله را با فرض اين كه قيد در حورتى بحرانى در نظر كرفته مي سُود كه مقلار آن بعد از مقباس بندى
的 $=-0.5610$ در نتيجه بايد بر اساس اولين قيد مقياس بندى كنيم • برالى اين قيد داريم

$$
\begin{aligned}
\frac{\partial g_{1}}{\partial x_{1}} & =\frac{4}{\left(x_{2}+0.25 x_{1}\right)^{2}}=0.03807, \quad \frac{\partial g_{1}}{\partial x_{2}}=\frac{16}{\left(x_{2}+0.25 x_{1}\right)^{2}}=0.1523 \\
e_{11} & =\frac{\partial g_{1} / \partial x_{1}}{\partial f / \partial x_{1}}=0.009518, \quad e_{21}=\frac{\partial g_{1} / \partial x_{2}}{\partial f / \partial x_{2}}=0.1523
\end{aligned}
$$

برای اين حالت $\frac{1}{z} \sum_{i=1}^{n} \frac{\partial z}{\partial x_{i}} x_{i}=\frac{-1}{1-g} \sum_{i=1}^{n} \frac{\partial g}{\partial x_{i}} x_{i}=\frac{-1}{1.561}(0.03807 \times 1+0.1523 \times 10) \leq 0$.

$$
\alpha=\frac{0.03807 \times 1+0.1523 \times 10}{-0.561+0.03807 \times 1+0.1523 \times 10}=1.561
$$

 ($g_{2}=0.5051 ، g_{1}=0$
 شكل كمآريم:

$$
\lambda=\frac{2}{0.009518+0.1523}=12.36
$$

 $x_{1}=1.561(12.36 \times 0.009518)^{1 / 2}=0.5354 ، x_{2}=15.61(12.36 \times 0.1523)^{1 / 2}=21.42$ تغيير زياد در متغير هاى طراحى نُنان مى دهد كه مقلار $\eta=2$
 . $x_{1}=1.561(12.36 \times 0.009518)^{1 / 4}=0.9142$的 $g_{1}=0.1357$ ، $g_{2}=0.2604$ دو تيد بحرانى خواهند بود. بنابراين مستتات را برایى هر دو فيد محانسبه مى كنيم. $\frac{\partial g_{1}}{\partial x_{1}}=0.01167, \quad \frac{\partial g_{1}}{\partial x_{2}}=0.04669, \quad e_{11}=0.00292, \quad e_{21}=0.04669$,

$$
\begin{gathered}
\frac{\partial g_{2}}{\partial x_{1}}=\frac{\sqrt{3}}{3 x_{1}^{2}}+\frac{0.5}{\left(x_{2}+0.25 x_{1}\right)^{2}}=0.6923, \quad \frac{\partial g_{2}}{\partial x_{2}}=\frac{2}{\left(x_{2}+0.25 x_{1}\right)^{2}}=0.00584 \\
e_{12}=0.1731, \quad e_{22}=0.00584
\end{gathered}
$$

ابتدا تغيير اندازه مى دهيم و مقادير زير را به دست مى آوريـم : $\alpha=1-g_{1}=0.8643, \quad x_{1}=0.7901, \quad x_{2}=15.80$. آن كاه ضربگر هاى لاكرانتز را محاسبه مى كنيم.

$$
\lambda_{1}=2 /(0.00292+0.04669)=40.32, \quad \lambda_{2}=2 /(0.1731+0.0058-4)=11.18
$$

$$
\begin{aligned}
& x_{1}=0.7901(0.00292 \times 40.32+0.1731 \times 11.18)^{1 / 4}=0.9-457 \\
& x_{2}=15.80(0.04669 \times 40.32+0.00584 \times 11.18)^{1 / 4}=18.67
\end{aligned}
$$

 ضربكرهاى لالكرانز به مقادير صسيح خود همكرا نمى شوند، زيرا آنها بر اساس تقريب يكى تيدند . " .

A. P. r. جدول

مكياس بندى شده		g_{1}	92	λ_{1}	λ_{2}	تغيير اندازه داده	
x_{1}	x_{2}					x_{1}	x_{2}
1.5610	15.61	0	0.5051	12.36	0	0.9142	18.28
0.7901	15.80	0	0.1443	40.32	11.18	0.9457	18.67
0.8004	15.80	0	0.1537	42.04	0	0.4688	18.51
0.6277	24.78	0.3584	0	0	3.017	0.7448	9.000
1.2974	15.68	0	0.4300	9.927	0	0.7598	18.36
0.6593	15.93	0.006	0	40.49	7.807	0.7910	18.77
0.6672	15.83	0	0.0096	42.34	8.453	0.8003	18.66
0.6789	15.83	0	0.0246	41.85	8.646	0.8143	18.66

 برایى روش هاى معيار بهينگى رابطه سازيهاى متعلد ديكرى نيز وجود دارد ـ اغلـب آتـهـا بـراى تيـلهـاى ويزّهاى به وجود آمله اند. به عنوان مثـال خـاتت در [32] تيدهاى بايدارى را در نظر كر فثه است . مسـالـه

مقدار ويزّه هايدإرى معمولا به شكل زير نوشته مى شود :

$$
\begin{equation*}
\left[\mathbf{K}-\mu_{k} \mathbf{K}_{G}\right] \mathbf{u}_{k}=0 \tag{9.7.19}
\end{equation*}
$$

 مود كمانش اسـت . غرض مى كنيم مودها جنان نرمال سازى شوند كه

$$
\mathbf{u}_{k}^{T} \mathbf{K}_{G} \mathbf{u}_{k}=1
$$

(9.Y.1V)

و آن كاه مقدار ويثهه

$$
\begin{equation*}
\mu_{k}=\mathbf{u}_{k}^{T} \mathbf{K} \mathbf{u}_{k} \tag{9.7.1A}
\end{equation*}
$$

قيدهاى مفدار ويزه در مرجع [32] به شكل زير است:

$$
\begin{equation*}
g_{j}=\mu_{j}-\bar{\mu}_{j} \geq 0, \quad j=1, \ldots, n_{g} . \tag{9.4.19}
\end{equation*}
$$

مشتق g

$$
\begin{equation*}
\frac{\partial g_{j}}{\partial x_{i}}=\frac{\partial \mu_{j}}{\partial x_{i}}=\mathbf{u}_{j}^{T}\left[\frac{\partial \mathbf{K}}{\partial x_{i}}-\mu_{j} \frac{\partial \mathbf{K}_{G}}{\partial x_{i}}\right] \mathbf{u}_{j} \tag{Q.Y.Y.}
\end{equation*}
$$

 متغيرهاى طراحى وابستهن نباشند، صفر امت . حتى وتتى جمله دوم صغر نيست، مواردزيادى وجود دارد كه مى توان از آن جشم بوشمى كرد ـ خات عبارت زير را تعريف مى كند.

$$
\begin{equation*}
b_{i j}=x_{i}^{2} \frac{\partial \mu_{j}}{\partial x_{i}}=x_{i}^{2} \mathbf{u}_{j}^{T} \frac{\partial \mathbf{K}}{\partial x_{i}} \mathbf{u}_{j} . \tag{Q.F.Y}
\end{equation*}
$$

اكر ماتريس سختى يكى تركيب خططى از متغير هاى طراحى باشد،

$$
\begin{equation*}
\mathbf{K}=\sum_{i=1}^{n} \frac{\partial \mathbf{K}}{\partial x_{i}} x_{i} . \tag{Q.F.YY}
\end{equation*}
$$

$$
\begin{equation*}
\mu_{j}=\sum_{i=1}^{n} \frac{b_{i j}}{x_{i}}, \tag{Q.Y.YY}
\end{equation*}
$$

و از معادله ((Y . Y. . Y) داريم:

$$
\frac{\partial g_{j}}{\partial x_{i}}=\frac{\partial \mu_{j}}{\partial x_{i}}=\frac{b_{i j}}{x_{i}^{2}} .
$$

 مى توانست ثابت بـاشد بايد يكى علامت مـنفى در يكى از اين معادلات مى داثــتـــم) . بـا الين وجـود، مى توانيم بـ همان روش كه در قيدهاى تغير بكان عمل سد، عمل كنيم . شرايط بهينگى به حـورت زير
(A F F

$$
\begin{equation*}
\frac{\partial f}{\partial x_{i}}-\sum_{j=1}^{n_{p}} \lambda_{j} \frac{\partial g_{j}}{\partial x_{i}}=\frac{\partial f}{\partial x_{i}}-\sum_{j=1}^{n_{p}} \lambda_{j} \frac{b_{i j}}{x_{i}^{2}}=0 \tag{9.Y.Y0}
\end{equation*}
$$

در نتيجه

$$
\begin{equation*}
x_{i}=\left(\frac{1}{f_{i}} \sum_{j=1}^{n_{0}} \lambda_{j} b_{i j}\right)^{1 / 2} \tag{Q.F.Yя}
\end{equation*}
$$

كی

$$
\begin{equation*}
x_{i}^{\alpha / \varphi}=x_{i}\left(\frac{1}{x_{i}^{2} f_{i}} \sum_{j=1}^{n_{0}} \lambda_{j} b_{i j}\right)^{1 / \eta} \tag{Q.Y,YV}
\end{equation*}
$$

 برایى بايان دادن به اين نصل يادآور مى شويم كه اين فصل روى ارتباط بين روشهاى معيار بهيـنظىى، روشهاى دوكان و مغاهيم تقريب تأكيد داشت . روشهاى ديكر معيار بهينگى نيز هم برأى تيدهاى خاص و هم براى قيدهاى عمومى وجود دارد. براى مرورى بر كارهاى ديكر، در زمينه روشـهاى معيار بهينكى، خواننده را به مراجع [34-32] ارجاع مى دهيم.

©.

 شود : يكى بار افقى به ميزان p ، و يكى بار عـودى به ميزان 2p 2 . تنش تــليم عباربت است از
 عدد ثابت و A مساحت سطع مقطع است . برنامه الى بنويسيد كه براى خريا يكى طراحى تهام تنيــده را بـه

$$
\text { . } \sigma_{0} l^{2} / p=10^{5}, \beta=1.0 ، \alpha=10^{-3}
$$

0.Y بخش 9.0 :تمرينها
(تمامى آنهابر واحدطرل) ، با امتفاده ازمعبار تسلبم $m_{x}, m_{y}, m_{x y}$ (تمشا ترسكا' (تنش برش ماكزيمم) به دست آريد.
و $x_{i} \geq 0, i=1, \ldots, 4$ رابا قيدهاى $f=x_{1}+x_{2} x_{3}+x_{4}^{2}$ با . $10-1 / x_{1}^{2}-2 x_{2} x_{3}-1 / x_{4} \geq 0$
 تا سه رتم اعشار دتت، ادامه دهبد.
 تنييرات بيوسته داشته باشد، تكرار كنيد.
 طراحق وجود خواهد داثــت . عضـو C تحت قيد مينمم اندازه نيست، ولى اعضـاى A و B قبد مينيمم اندازه دارند.
 باعث واكرايى جواب كردد.
 ديكر حل كنيد.

 حدود ا هرتز، و بسامد دوم بالاى 「 هرتز باشل. فرض كنيد خواص مصـالح اعضا يكسان امت.

[1] Mitchell, A.G.M., "The Limits of Economy of Material in Framed Structures," Phil. Mag., 6, pp. 589-597, 1904.
[2] Cilly, F.H., "The Exact Design of Statically Determinate Frameworks, and Exposition of its Possibility, but Futility," Trans. ASCE, 43, pp. 353-407, 1900.
[3] Schmit, L.A., "Structural Design by Systematic Synthesis," Proceedings 2nd ASCE Conference on Electronic Computation, New York, pp. 105-132, 1960.
[4] Reinschmidt, K., Cornell, C.A., and Brotchie, J.F., "Iterative Design and Structural Optimization," J. Strct. Div. ASCE, 92, ST6, pp. 281-318, 1966.
[5] Razani, R., "Behavior of Fully Stressed Design of Structures and its Relationship to Minimum Weight Design," AIAA J., 3 (12), pp. 2262-2268, 1965.
[6] Dayaratnam, P. and Patnaik, S., "Feasibility of Full Stress Design," AIAA J., 7 (4), pp. 773-774, 1969.
[7] Lansing, W., Dwyer, W., Emerton. R. and Ranalli, E., "Application of FullyStressed Design Procedures to Wing and Empennage Structures," J. Aircraft, 8 (9), pp. 683-688, 1971.
[8] Giles, G.L., Blackburn, C.L. and Dixon, S.C., "Automated Procedures for Sizing Aerospace Vebicle Structures (SAVES)," ALAA Paper 72-332, presented at the AIAA/ASME/SAE 13th Structures, Structural Dynamics and Materials Conference, 1972.
[9] Berke, L. and Khot, N.S., "Use of Optimality Criteria for Large Scale Systems," AGARD Lecture Series No. 170 on Structural Optimization, AGARD-LS-70, 1974.
[10] Adelman, H.M., Haftka, R.T. and Tsach, U., "Application of Fully Stressed Design Procedures to Redundant and Non-isotropic Structures," NASA TM-81842, July 1980.
[11] Adelman, H.M. and Narayanaswami, R., "Resizing procedure for structures under combined mechanical and thermal loading," AIAA J.. 14 (10), pp. 1484-1486, 1976.
[12] Venkayya, V.B., "Design of Optimum Structures," Comput. Struct., 1, pp. 265309, 1971.
[13] Siegel, S., "A Flutter Optimization Program for Aircraft Structural Design," Proc. AIAA 4th Aircraft Design, Flight Test and Operations Meeting, Los Angeles, California, 1972.
[14] Stroud, W.J., "Optimization of Composite Structures," NASA TM-84544, August 1982.
[15] Falk, J.E., "Lagrange Multipliers and Nonlinear Programming," J. Math. Anal. Appl., 19, pp. 141-159, 1967.

بخش 9.7 :مراجع 4 -

[16] Fleury, C., "Structural Weight Optimization by Dual Methods of Convex Pro gramming," Int. J. Num. Meth. Engng., 14 (12), pp. 1761-1783, 1979.
[17] Schmit, L.A., and Fleury, C., "Discrete-Continuous Variable Structural Synthesis using Dual Methods," AIAA J., 18 (12), pp. 1515-1524, 1980.
[18] Schmit, L.A., and Fleury, C., "Discrete-Continuous Variable Structural Synthesis using Dual Methods," Paper 79-0721, Proceedings of the AIAA/ASME/AHS 20th Structures, Structural Dynamics and Materials Conference, St. Louis, MO, April 4-6, 1979.
[19] Grierson, D.E., and Lee, W.H., "Optimal Synthesis of Steel Frameworks Using Standard Sections," J. Struct. Mech., 12(3), pp. 335-370, 1984.
[20] Grierson, D.E., and Lee, W.H., "Optimal Synthesis of Frameworks under Elastic and Plastic Performance Constraints Using Discrete Sections," J. Struct. Mech., 14(4), pp. 401-420, 1986.
[21] Grierson, D.E., and Cameron, G.E., "Microcomputer-Based Optimization of Steel Structures in Professional Practice," Microcomputers in Civil Engineering, 4 (4), pp. 289-296, 1989.
[22] Fleury C., and Braibant, V., "Structural Optimization: A New Dual Method Using Mixed Variables," Int. J. Num. Meth. Eng., 23, pp. 409-428, 1986.
[23] Prager, W., "Optimality Criteria in Structural Design," Proc. Nat. Acad. Sci. USA, 61 (3), pp. 794-796, 1968.
[24] Venkayya, V.B, Khot, N.S., and Reddy, V.S., "Energy Distribution in an Optimum Structural Design," AFFDL-TR-68-156, 1968.
[25] Berke, L., "An Efficient Approach to the Minimum Weight Design of Deflection Limited Structures," AFFDL-TM-70-4-FDTR, 1970.
[26] Venkayya, V.B., Khot, N.S., and Berke, L., "Application of Optimality Criteria Approaches to Automated design of Large Practical Structures," Second Symposium on Structural Optimization, AGARD-CP-123, pp. 3-1 to 3-19, 1973.
[27] Gellatly, R.A, and Berke, L., "Optimality Criteria Based Algorithm," Optimum Structural Design, R.H. Gallagher and O.C., Zienkiewicz, eds., pp. 33-49, John Wiley, 1972.
[28] Khot, N.S., "Algorithms Based on Optimality Criteria to Design Minimum Weight Structures," Eng. Optim., 5, pp. 73-90, 1981.
[29] Venkayya, V.B., "Optimality Criteria: A Basis for Multidisciplinary Optimization," Computational Mechanics, Vol. 5, pp. 1-21. 1989.
[30] Rozvany, G.I.N., Structural Design via Optimality Criteria: The Prager Approach to Structural Optimization, Kluwer Academic Publishers, Dordrecht. Holland. 1989.
[31] Wilkinson, K. et al. "An Automated Procedure for Flutter and Strength Analysis and Optimization of Aerospace Vehicles," AFFDL-TR-75-137, December 1975.

$$
\text { - } 1 \text { بانى بهينه مـازى سماز, ما (نصل } 1 \text { : ردئهاى معيار بهينكمو دوكان) }
$$

[32] Khot, N.S., "Optimal Design of a Structure for System Stability for a Specified Eigenvalue Distribution," in New Directions in Optimum Structural Design (E. Atrek, R.H., Gallagher, K.M., Ragsdell and O.C. Zienkiewicz, editors), pp. 75-87, John Wiley, 1984.
[33] Venkayya, V.B., "Structural Optimization Using Optimality Criteria: A Review and Some Recommendations," Int. J. Num. Meth. Engng., 13, pp. 203-228, 1978.
[34] Berke, L., and Khot, N.S., "Structural Optimization Using Optimality Criteria," Computer Aided Structural Design: Structural and Mechanical Systems (C.A. Mota Soares, Editor), Springer Verlag, 1987.

 مى يابد. يعنى، اكر تعداد متغيرهاى طراحى را در يكى مساله دو برابر كنيه، هزيــهُ حل آن معمولاًاز دو
 دنبال راههاى شنكستن يك مساله بزركُ بهينه سـازى به تعدادى مسالـ' كوجكتر هستيم. يكى از روشهاى مشهور ناثل شـدن به نُكستن مساله، تجزيهاست. فرآيند تجزيـه تـنـكـيـل شـده از

 بهينه سازى هاى تكى تكى كروهها جايكزين كثد و به بهينه سـازى كل سيستم بينجامد.
 الكوريتم انجام مى شود و آن كاه كل مسـاله بهينه سـازى يكى فرايند بهينه سـازى دو سطـي جهت دهى معمو لآ سطع بالا و به مسائل بهينه سـازى كوجكى سطع زير جهت ده مى كريند. البته، هشكـتن

(a) سـاختار درخت يهن

(b) ساختار لرخت باريك

شكل 1 1-1 1 1 ساختار مساثل جند سطحى

بهينه سـازى چخند سطحى تنها از تجزيه به وجود نمى آيد . بعضى از مساثل ، ساختار چحند سطحى طبيعى
 مراجعه كنيد) . در اين حالثها مى توان تحليل سـازه را با مينـيمم سـازى انرزى بتانسيل كل سـازه به عنوان يكـ فرايند بهينه سـازى رابطه سـازى كرد ـ در اين حاللت مساله' طراحيى رامى توان به عنوان يكى مسالكُ بهينه سـازى دو سطـحى در نـظر كرنت كه تحــليل يكى زير سطـع منفـرد امت . مـــال ديكر، بهـيـنـه ســازى بـا انـواع منتلـفـف متغير هاى طـراحى امت مانتد متغيرهاى اندازه إى و شـكلى كه بهتر اســت آنـهـا را در سـطـوح مـشتلف مورد بححث ترار داد. در نهايت، در بهينه سـازى با موضوعها و زمينه ماى يندكانه ممكـن امــت حالتهايُ داشُته باشيم كه در آنها زير سطحهاى مربوط به هر زمينه بهينه مـازى با مـم تشـكـيـل يـكى درخــت بلدهند.

از آن جا كه ننون بيهنه سـازى جند سطحى نيز نواتصى دارد (كه در زير بحث مى مود)، طبيعى امت كه دنبال روثّهايُى باثيـم كه بعضى از مسائل هند سطحى (به ويرّه مساثل درختتباريك) را به يكى سـاختار تكى سطحى تبديل كند. . به عنوان مثال، در مسائل طراحى كه تححليل به عنوان يكى بهينه ســازى مـطــع دو
 سططحى تححليل و طراحى مهزمان ناميده مى مود، و همراه مـاير مسائل جند سطـحى درشــت بـاريـكـ در بتخش 0 . • ابححث هى شود .

Afr بتشس r
| 1 F تجزيه
نرايند تجزيه با شناسايه كروههايه از متغيرهاى طراحى كه در هر كروه با هم ارتباط قوى دانثته و بـا
بقيهُ متغير هاى طراحى ارتباط ضعيفى دارند شُروع مى ثود (قوت و ضعف ارتباط بين متغيرهـا بـه زودى تعريف مى مُود) . فرض مى شود كه S تا از اين كروشها داريم. بردار متغير طراحى X به ششكل زير نوشثه

مى شّود:
$\mathrm{x}^{T}=\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{s}}\right)^{T}$.
(1..Y.1)

وتثى تابع هدف بر حسب كروشها جدإذير اسـت، كروشهاى متغيرهـاى طـاحـى بـه هـيـع وجـه ارتبـاط
ندارند، يعنى :

$$
\begin{equation*}
f(\mathbf{x})=\sum_{i=1}^{s} f\left(\mathbf{x}_{i}\right) \tag{1.,Y.Y}
\end{equation*}
$$

و هر قيد تنها به متغيرهاى يكى كروه بستكى دارد. يعنى، الكر بردار تيـدهـاى مـربـوط بـه
دهيم، قيد را مى شّود به شكل زير نوشـت :

$$
g_{i}\left(\mathbf{x}_{i}\right) \geq 0, \quad i=1, \ldots, s . \quad\left(1 . . Y . Y^{\prime}\right)
$$

 هدف و قيدهايند، و ستونها نشانكر متغيرهاى طراحی اند. علامت 'x'در جعبه نشانكر اين المـت كه تابع

(a)

(b)

هدف و يا تيد مربرط به سطر جعبه به بر دار متغيرهاى طراحى مربوط به ستون آن جعبه بستگى دارند. براى يك مسـاله جعبهاى نطرى، حل به طور طبيعى به تعدادى مسأله به شكل زير شيكسته مى شود.

4. Y. Y Y كه مى تواند براى
 جابيكزين مى كنيم بدون اين كه نيازى به جهت دهى زير مساثل باشدل . اين ساده ترين مثال تجزيهُ مسـاله نيز

به ندرت اتفاق مى افتد كه با مسائلى سروكار داشته باثيـيم كه يك ساختار جعبهاى تطرى ساده دايُـتـه باشند، ولى در بسيارى از حالتها مساثل بهينه سازيى داريم كه ارتباط بين كروههاى متغيرها بسيار ضعيف است. ارتبـاط بين كروهـهاى متغيرها يعنى ايـن كه بعضى از جهار كوشهاى غير تطرى خالى در شـكـل
 داخل مربعهاى تطرى كوجكند. در حالتهايى كه ارتباط ضعيف المت، مى نُود مسأله را جعبهاى تطرى
 خاطر ارتباط ضعيف بين كروهها جندين بار تكرار كنيم. به عنوان مثال، طراحى سازه هـاى خـربـا را كــ مقيد به تيدهاى تنش و كمانش موضعى هـتـند در نظر بگيريد ـ با فرض ثابت ماندن نيروى اعضا مى توانيم
 برآورده ثـده باشُند. البته در خرياى از نظر ايستايى نامعين، نيروهاى اعضا تغيير مى كنتد و ما بايد فرايند را تكرار كنيم. اين رويكرد يك حالت تعميم يانته فن اندازه نسبت تنش برای طراحى تمام تنيده است كه در

 يك طرح غير بهين (هر هند معمولاً نزديك بهين) همكرا شمود.
يك حـالت معمولتر ديكر، هنكامى الست كه زير مساثل تها با تعداد كمى از متغير هاى طراحـى بـا هـم

كه در آن
 هالى كه متغير هاى ارتباط، y ، را متغيرهاى فراكير مى نامند. افزون بر مسـائل سـازهاهى جعبهاى تطرى و جعبهاى زاويهاى حالتهاى ديكرى نيز وجود دارد كه براي نجزيه مناسبند. برایى بحت كاملى از مســاتل مسازهاى كه تجزيه در موردتـان به كار مى رود خواننده رابه مرجع بار نلمى '[3] ارجاع مى دهيمه.

 بكيريد كهاز يك جنس ماخته شده و تحتاثر s حالت باركذارى امت كه به صورت بردارهاى بار كرهاى路, $i=1, \ldots, s$

$$
\begin{equation*}
\mathrm{En}^{\mathrm{i}}=\mathrm{p}^{\mathbf{i}}, \quad i=1, \ldots, s, \tag{1-.Y.9}
\end{equation*}
$$

كه در آن nin بردار نيروى عضو براى أامين حالت باركذارى، و E ماتريس كسينوسهاى هادى امت. براى مسآل طراحى حد خربا لازم است قيدهاى تسلمه برایى هر باركذارى را به تـكل زير تعريف كنيه:

$$
A_{j} \sigma_{C} \leq n_{j}^{i} \leq A_{j} \sigma_{T}, \quad j=1, \ldots, r, \quad i=1, \ldots, s, \quad(1 \cdot . Y . v)
$$

 نيروى عضو $ز$ در حالت باركذارى iام است. مسـاله طراحى حد براى طراحى كمترين وزن خخيا را مى توان به ثـكـل نير رابطه سـازى كرد:

$$
\begin{array}{lr}
m=\sum_{j=1}^{r} \rho A_{j} L_{j} & \text { رابطهن } \\
\mathrm{En}^{i}=\mathrm{p}^{i}, & \text { رامشروطبه }
\end{array}
$$

$$
\text { مينيممكنيد } \quad A_{j} \sigma_{C} \leq n_{j}^{i} \leq A_{j} \sigma_{T}
$$

1) Barthelemy

$$
\begin{aligned}
& \text { بهينه سـازى به شكل زير نوشته مى شود : } \\
& f_{0}(\mathbf{y})+\sum_{i=1}^{s} f_{i}\left(\mathbf{x}_{i}, \mathbf{y}\right) \quad \text { تابع (1., Y. 0) } \\
& \text { مينـمم كنيد } \quad g_{i}\left(\mathbf{x}_{i}, \mathbf{y}\right) \geq 0, \quad i=1, \ldots, s \text {, }
\end{aligned}
$$

كه در آن و و مقطع متغيرهاى طراحى اند. در اين حالت نيـروهـاى اعـضـا بــراى اiامين حالت بـار گـذارى،n'n؛ نقش
 مى شود . مساحتهاى سطع مقطع نقشُ بردار جـفـت كـنــدهُ y را بازى مى كند زيرا آنها در تابـع هـدن و قيدهاى تمامى شُرايط بار كذارى ظالهر مى شوند .
 بار كذارى : يكـ بار عمودى به مقدار 8 و و يكـ بار افقى به مقـدار p فرو نريزد . فرض مى كنيم كه خريا نه تنها در اثر تسليم، بلكه در اثثر كمانُش اويلرى عضوهاى فشارى نيز فرو مى ريزد . نرض مى شود رفتار بعد از كمانش يكدست باثمد (يعنى بار ثابت با تغير شكل فزاينده)، بنابـراين در مـعـادلـه (Y . V . Y) براى اعضاى فشـارى، تنش كمانش را مى توان به جاى تنـُ تسليم جايگزين كرد . متغيرهاى طراحى مساستهاى سطع مقطع و كُتْاورهاى ماند اعضايند (كه فرض مى شود مستقلند) . بار افقى هم مى تواند به طرفـ راست باتملد و هم به طرف حـب، بنابراين يكـ طراحى متقارن مورد نظر است، و داريم
 طراحى حد را به شكل زير رابطه سازى مى كنيم:

$$
\begin{aligned}
& m=\rho l\left(4 A_{4}+A_{B}\right) \\
& 0.860\left(n_{A}^{H}-n_{C}^{H}\right)=p . \\
& n_{B}^{H}+0 . \bar{v}\left(n_{A}^{I I}+n_{C}^{I}\right)=0 \text {. } \\
& n_{A}^{I I} \leq \sigma_{T} \cdot \mathcal{A}_{A} . \quad-n_{B}^{I} \leq \frac{\pi^{2} E I_{B}}{\rho^{3}}, \quad-n_{C}^{B} \leq \frac{\pi^{2} E I_{A}}{4 l^{2}} . \\
& 0.866\left(n_{A}^{1}-n_{C}^{\prime}\right)=0 . \\
& n_{B}^{\mathrm{r}}+0 . \overline{3}\left(n_{A}^{\mathrm{r}}+n_{C}^{\mathrm{r}}\right)=-8 p \text {. } \\
& \text { مينيهم كنيد } \quad-n_{A}^{v} \leq \frac{\pi^{2} E I_{A}}{4 l^{2}}, \quad-n_{B}^{v} \leq \frac{\pi^{2} E I_{B}}{l^{2}}, \quad-n_{C}^{v} \leq \frac{\pi^{2} E I_{A}}{4 l^{2}} .
\end{aligned}
$$

 نمودار كروهى متغيرها آمله المـت. نمودار نتشان مى دهد كه مسآله بهينه سازى يكى شـكـل جـعـبـهاى (b) زاويه ايى دارد كه خواص سطع مقطعها متغير هاى جفت كتنده و نيروهاي اعضها براي هر بار كذارى متغيرهاي -• • محلى اند

يك شكل جعبه اي زاويهأى را مى توان از راههاي مختلفى به كار برد، كه در آينده بحث مى شود، تـا مسأله بهينه سازى كلى را با تعلدادي از مسائل كو جكتر جايگزين كرد. يكي شُكل جعبها زاويه أى افزون بر ارزنّى كه در تجزيه دارد، از نظر مـحاسباتى نيز مزايايـ دارد ـ ـزيت اصلى اين السـت كـه مـحـاسـبـات
 انتخابب مناسب متغير هاي طراحى به شكلى كه يكى ساختار جعبهاى زاويه اي به و جود بيايد به نوبه خود با
 در مثال بعدى تشريح مى شـود .
مثال
 خنان طراحى شود كه وزن آن مينيمم شود ـ فرض مى شود دو بار به طور ههز مان اعمال مى شوند، بنابراين
 بنابراين متغيرهاي طراحى عبارتند از كوجكند، بنابراين مساستهاي سطع مقطعها به شكل زير تقريب زده مى شوند.

م A AA
(a)

		$\mathrm{A}_{\text {A }}$	I_{A}	A_{B}	I_{B}	$\mathrm{n}_{\mathrm{A}}^{\mathrm{H}}$	$\mathrm{n}_{\mathrm{B}}^{\mathrm{H}}$	${ }_{\square}{ }_{C}$	$\mathrm{n}_{\mathrm{A}}^{\mathrm{V}}$	$\mathrm{n}_{\text {V }}^{\text {V }}$	${ }^{2} \mathrm{C}$
	جرم	x		x							
-••	تعادل إفى					X		X			
	تعادل عهودى					X	X	x			
	A تسلیم	x				X					
	S			X	X		x				
	ك كمانش		X					X			
$\begin{aligned} & 3 \\ & 4 \\ & 4 \\ & 3 \\ & 3 \end{aligned}$	تعادل افقى								x		X
	تعادل عهودى								X	x	x
	كهانش		X						x		
	S			x	X					X	
	ك ك		X								X

(b)

		$\mathrm{n}_{\mathrm{A}}^{\mathrm{H}} \mathrm{n}_{\mathrm{B}}^{\mathrm{H}} \mathrm{n}_{\mathrm{C}}^{\mathrm{H}}$	$\mathrm{n}_{\mathrm{A}}^{\mathrm{V}} \mathrm{n}_{\mathrm{B}}^{\mathrm{V}} \mathrm{n}_{\mathrm{C}}^{V}$
جرم	X		
	X	X	
قيدهأى بارعهودى	x		x

$$
A_{A}=A_{C}=2 \pi r_{A} t_{A} . \quad A_{B}=2 \pi r_{B} t_{B} .
$$

قيدهأى تغيير مكان، تنش و كمانش اعمال مى شموند . تغيير مكان عمـودى v بايد كمتر از $0.001 l$ بانّـــ . تنش در هر عضو بايد كمتر از كثشش و فشار است و داريم

المت و همحنين تنش بايد كمتر از تنش كمانش اويلرى
 آن نيرو راعوض كردو داريم

$$
\begin{aligned}
v & =-\frac{8 p l}{E\left(A_{B}+0.25 A_{A}\right)}, \\
\sigma_{A} & =p\left(\frac{\sqrt{3}}{3 A_{A}}-\frac{2}{A_{B}+0.25 A_{A}}\right), \\
\sigma_{B} & =-\frac{8 p}{A_{B}+0.25 A_{A}}, \\
\sigma_{C} & =-p\left(\frac{\sqrt{3}}{3 A_{A}}+\frac{2}{A_{B}+0.25 A_{A}}\right) .
\end{aligned}
$$

فرض مى كتيم كه تنتـ تسليم در فشار و كشـش يكى الست، وعضو C هميشه بحرانى تر از عضو Aخواهد بود، بنابراين مساله طراحى به شكل زير نوسته مى شود:

$$
\begin{aligned}
& m=\rho l\left(A_{B}+4 A_{A}\right) \\
& \text {, } 1+\frac{v}{0.001 l} \geq 0, \quad 1+\frac{\sigma_{B}}{\sigma_{0}} \geq 0, \quad 1 \quad \text {, جنان مينمبم كنيد } \\
& \frac{0.605 E t_{B}}{r_{B} \sigma_{0}}+\frac{\sigma_{B}}{\sigma_{0}} \geq 0, \quad \frac{\pi^{2} E r_{B}^{2}}{2 l^{2} \sigma_{0}}+\frac{\sigma_{B}}{\sigma_{0}}, \geq 0, \\
& 1+\frac{\sigma_{C}}{\sigma_{0}} \geq 0, \quad \frac{0.605 E t_{A}}{r_{\Lambda} \sigma_{0}}+\frac{\sigma_{C}}{\sigma_{0}} \geq 0 . \\
& \frac{\pi^{2} E r_{A}^{2}}{8 l^{2} \sigma_{0}}+\frac{\sigma_{C}}{\sigma_{0}} \geq 0 .
\end{aligned}
$$

همجنان كه ديده مى شود مسأله به طور كامل جفت شـده است زيرا هر قيد به تمامى جهار متغير طراحى
 اعضا وابسته اند) . با اين ممه، با تعوبض متغيرهاى طراحى، جداسمازى اعضا و سـاختـن يكـى سـانـتـار جعبهأى زاويهاى كار ساده الى است. مساستهاى سطح متطع را به عنوان متغنير هـاى جفـت كـنـنـه (y)
 مثال، ،تنها دو شعاع رابه عنوان متغيرهاى محلى استفاده مى كنبم. آن كاه ضـخامتها را مى توان از شُعاعها و مساحتهاى سطع مقطع به دست آوردد . متغير هاى مساحت بی بعد را به شيكل زير تعريف مى كنيم.

$$
y_{1}=A_{A} \sigma_{0} / p, \quad, \quad y_{2}=A_{B} \sigma_{0} / p
$$

آن كاه جرم، تغير مكان، و تنتْها را مىتوان تنها بر حسـبـ y و وy نونـتـ . تيدهاى كمانش نيز به شعـاع نياز دارند. شتعاع بى بعد را به شيكل زير تعريف مى كنيم:

$$
x_{1}=r_{A} / l, \quad x_{2}=r_{B} / l
$$

مى توانيم حدود تنش كمانش براي عضر B را به ثـبكل زير بنويسيم :

$$
\frac{0.605 E t_{B}}{r_{n}}=\frac{0.605 E A_{B}}{2 \pi r_{B}^{2}}=\frac{0.605}{2 \pi} \frac{E}{\sigma_{0}} \frac{p}{\sigma_{0} l^{2}} \frac{y_{2}}{r_{2}^{2}} \sigma_{0}=4.814 \times 10^{-4} \frac{y_{2}}{r_{2}^{2}} \sigma_{0}
$$

$$
\frac{\pi^{2} E r_{B}^{2}}{2 l^{2}}=\frac{\pi^{2}}{2} \frac{E}{\sigma_{0}} \sigma_{0} x_{2}^{2}=2467 \sigma_{0} x_{2}^{2}
$$

با استهاده از عبارت مشـابهى براي عضو C، اككنون مى توانيم مسأله طراحى را به شُكل زير بنويسيم:

 بايل براي مينيمم شدن جرم طراحى شود در حالى كه مقيذ به تيدهاى تنت ، تغيير مكان، و كمانش محلى

$$
\begin{aligned}
& m=\left(\rho l p / \sigma_{0}\right)\left(4 y_{1}+y_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& g_{2}(\mathbf{y})=1-\frac{8}{y_{2}+0.25 y_{1}} \geq 0, \quad \text { (B تتش در) } \\
& \left.g_{3}(\mathbf{y})=1-\frac{\sqrt{3}}{3 y_{1}}-\frac{2}{y_{2}+0.25 y_{1}} \geq 0, \quad \text { (C تنش } \mathrm{C}\right) \\
& g_{11}\left(x_{1}, y\right)=4.814 \times 10^{-4} \frac{y_{1}}{x_{1}^{2}}-\frac{\sqrt{3}}{3 y_{1}}-\frac{2}{y_{2}+0.25 y_{1}} \geq 0, \text { (C كمانت بو ستهای) } \\
& g_{12}\left(x_{1}, \mathbf{y}\right)=616.9 x_{1}^{2}-\frac{\sqrt{3}}{3 y_{1}}-\frac{2}{y_{2}+0.25 y_{1}} \geq 0, \quad \text { (C كـانش اويلرى) } \\
& g_{21}\left(x_{2}, y\right)=4.814 \times 10^{-4} \frac{y_{2}}{x_{2}^{2}}-\frac{8}{y_{2}+0.25 y_{1}} \geq 0, \quad \text { (B كـانش بو بستهاكي) } \\
& g_{22}\left(x_{2}, y\right)=2467 x_{2}^{2}-\frac{8}{u_{n}+0.25 u_{1}} \geq 0 . \quad \text { (B كـانش اريلرى) }
\end{aligned}
$$

arl بنشض r.1

است. تنسها از يك مدل اجزاى محلود محاسبه خوا اعند شُد. براى بهينه سازى به مـتقات تنشها نسبت به متغيرهاى طراحى نياز داريم كه محاسبه' اين مشتقات هزينهُ اصلى فرايند بهينه سازى است، به ويزّها اكر اين مشتقات از روش تفاضل محدرد محاسبه شوند. اكر شـماع و ضـخامتهاى اعضا به عنوان متغيـرهـاى طراحیى به كار روند، آن كاه مساله كامـلاً جفت شده الست كه در آن تغيير در يكى از متغير هـاى طراحـى ممكن است تنُهاى تمامى اعضار انتحت تأثير ترار دهد ـ مـتقات تنشهاى اعضا نسبتبـ 25 متغير طراحى بايد محاسبه نود. از طرف ديكر، اكر از رهيافت تجزيه كه در خرياى مسه ميلهاى به كار كرفنه شد استفاده كنيه، مساحتهاى سطع مقطع و شـماعها متغير هاى طراحى اند. . منـتقات جزئى تنتها نسبت به شماع اعضا با ثابت در نظر كرفتن مفادير سطع متطعهاى مربوط به دست مى آيد (اين كار به سبب اين كه ضـخامتـها مشُخص نتـده اند امكان بذير است) . بنابراين مشتقات تنشها نسبت به شـعاعها صفر امت، و ما تنهـا بــ محاسبه S مُتتق جزلى تنـهها نسبت به مساحتها نباز داريم. از يكى رهيانت مشابه مى توان برايى سازه هاى قاب نـكل استفاده كرد. به عنوان مشال قـاب سـردرى
 سطحی ارانث شـده است . هر سه تير سطح مفطع I شـكل دارند كه با 9 متغير طراحى تعريف مى شود. روى

تنشها و تغير مكانهاى ايجاد شده در اثر بارهاى نشان داده شده در شكل، تيدمايى اعمال مى شـود. اكـر متغيرهاى طراحى جزنى (محلى) استفاده شود، قيدهاى تنش و تغيير مكان كاملاّجفت شده اند كه در آن
 تير را بد عنوان متغير طراحى انتخاب كنـم مى توانيم از هر تير Yمتغير طراحى محلى حذف كنيم . اكنـون تمامى قيدها به مساحتها و كثتاور رهاى ماند بستگى دارند و جهار متغير ديكر براى هر تير تنها روى تنشهاى
 كه در آن صورت $2 s$ متغير طراحى جفت كنتده (y) و s سيستم فرعى خواميم دانشت.
 برحسب تعداد كمى از بارامترها (مطح مفطهها برايى خريا، سطح مفطعها و كثـتاورهاى ماند براى تاب صفنحه اى) بيان نودد، كار تجزيه انجام شد . اين بارامترها ا⿴囗راكيره يا متغيرهاى جفت كنتده مى شوند، و براى حذف همان تعداد متغير محلى به كار مى روند. ثارجا و هفتكه' [5] براى يكى تابلو ساخته شده از مواد مركب يكـ رهيافت مسابه به كار بردند كه سختى
 انتخاب متغير هاى فراكيرى كه مسالهُ طراحى را تجزيد كند ممكن است آسان نبانـاند. مشكل ديكر در رابطه باتجزيه حذف متغيرهاى محلى و بيان آنها بر حسب متغيرهاى فراكير المـت برايى مساله تابلل ، و همجنين خرياها و قابهاى با شككل سطح متطع بيجيده، بيداكردن عبارت تحلبلى بيان
 داشت و قيدهاى تساوى كه ارتباط بين متغيرهاى محلى و فراكير را بيان مى كند به مساله اضانه كرد. امـا

بدعنوان مثال، حالتهاى كلى خريا و قاب رادر نظر بكيريدكه هر سبستم فرعى مجموعهاى از متغيرهاى

1) Thareja and Haftka

 مربوط بـ آلن سيستم فرعى (ماندلد مساحت سطع مقطع اعضاى خريا) بائد.
 وحذف نود و آن رابا

$$
\begin{equation*}
\mathrm{h}\left(\mathbf{y} \cdot \mathbf{x}_{E} \cdot \mathbf{x}_{R}\right)=0 \tag{1..Y.9}
\end{equation*}
$$

 شكل عددى (به عنوان مثال، روش نيوتن) مي تواند حل شود. يانتن جواب عـددى معمولا بير هزينه

 الست.

الكر x
 طراحى است ـ به عنوان مثال يك تابع قيد ماند زير در نظر بكيريد.

$$
g(\mathbf{x})=g\left(\mathbf{x}_{R}, \mathbf{x}_{E}\right)=\bar{g}\left(\mathbf{x}_{R}, \mathbf{y}\right)
$$

مى خواهيم مشـتـتات

$$
\begin{align*}
& \frac{\partial \bar{g}}{\partial \mathbf{x}_{R}}=\frac{\partial g}{\partial \mathbf{x}_{R}}+\frac{\partial g}{\partial \mathbf{x}_{E}} \frac{\partial \mathbf{x}_{E}}{\partial \mathbf{x}_{R}} \\
& \frac{\partial \bar{g}}{\partial \mathbf{y}}=\frac{\partial g}{\partial \mathbf{x}_{E}} \frac{\partial \mathbf{x}_{E}}{\partial \mathbf{y}} .
\end{align*}
$$

به اختلاف بيـن حالى كه دومي مستق قيد با نابت بودن yاست.

$$
\begin{align*}
& \frac{\partial \mathbf{h}}{\partial \mathbf{y}}+\frac{\partial \mathbf{h}}{\partial \mathbf{x}_{E}} \frac{\partial \mathbf{x}_{E}}{\partial \mathbf{y}}=0 . \tag{Ir.Y.IY}\\
& \frac{\partial \mathrm{h}}{\partial \mathbf{x}_{R}}+\frac{\partial \mathbf{h}}{\partial \mathbf{x}_{E}} \frac{\partial \mathbf{x}_{E}}{\partial \mathbf{x}_{R}}=0 .
\end{align*}
$$

كه مى توان از آن مشتقات را به شكل زير به دست آورد:

$$
\begin{align*}
& \frac{\partial \mathbf{x}_{E}}{\partial \mathbf{y}}=-\left[\frac{\partial \mathrm{h}}{\partial \mathbf{x}_{E}}\right]^{-1} \frac{\partial \mathrm{~h}}{\partial \mathbf{y}} \\
& \frac{\partial \mathbf{x}_{E}}{\partial \mathbf{x}_{h}}=-\left[\frac{\partial \mathrm{h}}{\partial \mathbf{x}_{R}}\right]^{-1} \frac{\partial \mathrm{~h}}{\partial \mathbf{x}_{h}} .
\end{align*}
$$

اين فرابند در مثال زير تشريح مى شود.

مثال 1 -r.r

 مفطع و لنكر هاى ماند هستند. اكر مساحت و لنگر ماند متطع هر عضو رابه ترتيب با A و و 1 نشان دهيم و

$$
\begin{align*}
& h_{1}=b_{1} t_{1}+b_{2} t_{2}+H t_{3}-A=0, \\
& h_{2}=t_{3} H^{3} / 12+\left(b_{1} t_{1}+b_{2} t_{2}\right) H^{2} / 4-\left(b_{1} t_{1}-b_{2} t_{2}\right)^{2} H^{2} / 4 \cdot A-I=0 . \tag{a}
\end{align*}
$$

فرض مى كنيم يك تِد محلى داريم كه (براى غير منطقى نبودن هندسى) ايجاب مى كـد مـــــاحـت جـان حداقل •

$$
\begin{equation*}
g=H t_{3}-0.2 .4=0.8 H t_{3}-0.2\left(b_{1} t_{1}+b_{2} t_{2}\right) \geq 0 . \tag{b}
\end{equation*}
$$

AFA بثئس
در اين جا
متغير محلى، قيد را مى توان به شـكل زير نوشّـت :

$$
\bar{g}\left(A . I, b_{1}, b_{2}, t_{2}, H\right) \geq 0 .
$$

 باشُيم • برای ارزيابي مى آوريـم و آن كاه از (b)، و را الرزيابي مى كنيم و توجه داريـم كه:

$$
\left.\bar{g}\left(-A, I, b_{1}, b_{2}, t_{2}, H\right)=g h_{1}, t_{1}, b_{2}, t_{2}, H, t_{3}\right) .
$$

به عنوان مثال به مسُتق g نسبت به مساحت A توجه كنيل .

$$
\frac{\partial \bar{g}}{\partial A}=\frac{\partial g}{\partial t_{1}} \frac{\partial t_{1}}{\partial A}+\frac{\partial g}{\partial t_{3}} \frac{\partial t_{3}}{\partial A}=0.8 H \frac{\partial t_{3}}{\partial A}-0.2 b_{1} \frac{\partial t_{1}}{\partial A}
$$

(a (a) نسبت به A به دسـت مى آوريم

$$
\begin{align*}
& b_{1} \frac{\partial t_{1}}{\partial A}+H \frac{\partial t_{3}}{\partial A}-1=0 \\
& \left(\frac{b_{1} H^{2}-2\left(b_{1} t_{1}-b_{2} t_{2}\right) H^{2} / A}{4}\right) \frac{\partial t_{1}}{\partial . A}+\frac{H^{3}}{12} \frac{\partial t_{3}}{\partial A}+\frac{\left(b_{1} t_{1}-b_{2} t_{2}\right)^{2} H^{2}}{4 A^{2}}=0 \tag{c}
\end{align*}
$$

به عنوان مثال يكى طراسحى نمـونـه بـا
طراححى أوليـه داريـم c)
. $\partial t_{3} / \partial A, \partial t_{1} / \partial A$

$$
\frac{\partial t_{1}}{\partial . A}=\frac{-1}{2 H}, \quad \frac{\partial t_{3}}{\partial A}=\frac{3}{2 H}
$$

و آن كاه.

$$
\frac{\partial \bar{g}}{\partial A}=1.3
$$

ديخـر (انجام شود . آن كاه مى بينيم كه لنكر ماند I تغييرى نمى كند (با مرتبه' اول

هنگامى كه حذن متغير هاى محلي با استفاده از متغير هاى فراكير مشكل است، ممكن است بخواميم از هر دو نوع متغير استفاده كنيم. همجنان كه يش تر كفته شد، استفاده از تيدهاي مساوى برايى ايـجـاد
 و همكارانش (به عنوان مــال در مرجمع[7]) از تابع هدن مسايثل سطع بايين تر براي ايـجـاد سـاز كـارى
 بالا باشد . اين رهيافت (مانند استفاده از تيود تــاوى)، مساله سازكارى بين متغيرهــاى سـطـع بـايـين و سطع بالا رااز مر حليُ رابطه سازى يا تجزيه به مر حله' حل انتقال مى دهد. حل يكـ مسالد' تجزيه شده در بختهايى بعدى بحتث مى شود .

r.

هنكامى كه يك مساله تبديل شده يكـ شكل جمبهالى زاويهاى دامتته باشد، مى بينيم كه صرنه جـويى تابل توجهى در هزينه محاسبات مشتقات حساميت به وجـود آمـده اسـتـ. بـا ايـن وجـود، اكمر از روش بهينه سازى خاصى كه برايى مساله موردنظر تدوين شده استفاده كردد، ممكن اسست صرفه جويى بيشترى نيز حاصل شود.
يك رهيافت طبيعى براى مساله استفاده از يك روش بهينه سازى تودرتو بهينه سازى متغير مبســـم ix
 بهينه سازى سطح بالا و بايين رفت و بركشت نمايد. اكر تغييرات متغير هاى فراكير تيدهاى محلى را بـه ميزان كمى متأثر كند، اين نرايند مى تواند به سرعت مدكرا شُود (ولى نه لزوماً به بهين) . بدعنوان ميال،
 خرخهاء، قرار داثت.

با اين وجود، در بسيارى از موارد، فرابند بهينه مـازى در دو سطع بايد جهت دهمى شودد . براى مسائل

 روش جهتدهى مدل به كار مى رود. در اين جا شـكلى از آن را كه بر اماساس منتقات بهين هاى سيستـم

$$
\begin{aligned}
& f_{0}(\mathbf{y})+\sum_{i=1}^{m} f_{i}^{*}(\mathbf{y}) \\
& g_{0}(\mathbf{y}) \geq 0, \quad \quad \text { راجناذ مبيمبمكندكى } \\
& f_{i}^{*}(\mathbf{y})=\min _{\mathbf{x}_{i}} f_{i}\left(\mathbf{x}_{i}, \mathbf{y}\right) \quad \text { كه در آن } \\
& \mathrm{g}_{i}\left(\mathbf{x}_{i}, \mathbf{y}\right) \geq 0 . \quad \text { آنَ جنان }
\end{aligned}
$$

اين مساله مى تواند در دو مرحله حل شود . ابتدا يكى مفدار حدسى براى y در نظر كرفته مى شوود، و هر
 نسبت به تغيرات y محانسبه مى شود (آن جنان كه در بختش f ـ ـ ه نُرح آن داده شـد) . در نهايت، در يك يا جند جرخها از اين حساسينها براي تغير جفت ها يا متغيرهاى سطح بالاىي(y) امتفاده مى شود . يكى از مشكلات مربوط به جنين رهيافت دو سطحى اين است كه برالى بعضى از مقادير y ممكن است جواب قابل قبولى برایى بعضى از مسائل سطع بايين وجود نداشته باشُد . برايى مسائل برنامه ريزى خططى، الكُوريتم روزن[12]بايانتن يكى جواب قابل فبول شمروع مى شُود. براى مسائل غير خططى، اطمينان از اين

 حساسيتهاى سيستمهاى فرعى به منغيرماى سطع بالا بكى امكال امساسى دارد: اين حساسـيتهـا ممكـن است بيوسته نباشند (به مرجع بارنلمى و سوبيسىى[14] مراجعه كنبد) . اين مطلب در مثال بعدى تشريح
 مسالثه يك شـكل جعبهاى زاويهاى دارد كه مساحتها و لنكرهاى ماند متغير هاى طراحى نراكير ، و نيروى اعضا متغيرهاى محلى اند. بهينه سازى سطع بالاتر در بك رهيانت دو سطحى بر ای اين مساله مى تواند به ثـكل زير رابطه سازى شود.

$$
\begin{aligned}
& m=\rho l\left(4 A_{A}+A_{B}\right) \quad \text { el } \\
& p_{\mathrm{c}}^{H}-p \geq 0, \quad \text {, } \quad \text {, جنان مينيمب كنيد } \\
& p_{c}^{V}-p \geq 0 \text {, }
\end{aligned}
$$

كه در آن
 مى كنيم:

$$
\begin{aligned}
& p_{c}^{I I} \\
& \text { 0.866(} \left.n A-n_{C}^{H}\right)=p_{c}^{H}, \quad \text { را جنان مكزيم كثيد } \\
& n_{B}^{H}+0.5\left(n_{A}^{I I}+n_{C}^{I I}\right)=0 \text {, } \\
& n_{A}^{\prime \prime} \leq \sigma_{T} A_{A}, \quad-n_{B}^{H} \leq \frac{\pi^{2} E I_{B}}{l^{2}}, \quad-n_{C}^{H} \leq \frac{\pi^{2} E I_{i}}{4 l^{2}} .
\end{aligned}
$$

به نــكل مشـابهى براي بار عمودى مساله زير راحل مى كنيم:

$$
\begin{aligned}
& p_{c}^{v} \\
& 0.866\left(n_{A}^{V}-n_{C}^{V}\right)=0, \\
& n_{B}^{v}+0.5\left(n_{A}^{V}+n_{C}^{V}\right)=-8 p_{c}^{V}, \\
& -n_{A}^{V} \leq \frac{\pi^{2} E I_{A}}{4 l^{2}}, \quad-n_{B}^{V} \leq \frac{\pi^{2} E I_{B}}{l^{2}}, \quad-n_{C}^{V} \leq \frac{\pi^{2} E I_{A}}{4 l^{2}} .
\end{aligned}
$$

براى بهينه سازى مساله سطع بالا، به مشتقات دو بار فرو ريختكى نسبت به مساحتهاى سـطـع مــطع و لنكرهاى ماند نياز داريم. تنها مشتقات بار نرو ريختـكى افتى دي بسبار ساده امست، جواب بار فرو ريختكى مىتواند با يكى بررسى به دسـت آيــ . إكر A بزر و C, به ماكزيمم بار خود (تسليم يا كمانش) برسند، و از معادله نعادل انقى داريم:

$$
p_{\mathrm{c}}^{I I}=0.866\left(\sigma_{T} A_{A}+\frac{\pi^{2} E I_{A}}{4 l^{2}}\right) .
$$

آن كاه از معادلهُ تعادل عمودى مي توانيم بينـيم كه در اين بار عضو B زير بار شكست خود ترار دارد اكر

$$
I_{B}>I_{D 0}=\frac{\sigma_{T} A_{A} l^{2}}{2 \pi^{2} E}-\frac{I_{A}}{8}
$$

از طرف ديكر ، أكر از دو معادلهُ تعادل داريم

$$
p_{c}^{H}=\frac{0.866 \pi^{2} E}{l^{2}}\left(2 I_{B}+0.5 I_{A}\right)
$$

به راحتى مى توان ديل منكـامــى كـه $I_{B}=I_{B 0}$ است دو عبارت بار نرو ريختكى نتيجه هـاى يـكـــانـى مى دهند، آلن حنـان كه نيست. هنكامى كه ريننكى از خواص عضو B مستقل است . برایى $I_{B}>I_{B 0}$ داريم

$$
\frac{\partial p_{c}^{H}}{\partial I_{B}}=\frac{1.732 \pi^{2}}{l^{2}}
$$

اين نابيوستكى در مستقها در بيشتر الكُوريتمهاى بهينه مـازى مى تواند مشُكل ماز باشد، به ويزها اكر طراسى

$$
\text { بهين در نزديكى } I_{B}=I_{B 0} \text { • • • . }
$$

بكى از رامهاى دورى جستن از مشكلات رهيافت دو سـطحى كه در بالا بـحث شد، استفـاده از روش
 پايين تر است. رهـيانت تابع جريمه به ما اين امكان رامى دهد كه سطلح بالاترهايى (متغيرهاى y) را قبول كنيم كه جوابهاى قابل قبول سطع بايين تر (متغيرهاى سطوح بايين تر مبب مى مُود تا متغيرهاى سطع بالاتر از ناحيه هايى كه جوابهأى قابل قبول سطع بايين تر ندارند استخراج شوند . ممجنين، تابع جريمه تعميم يافته، نابيوستكى هاى مربوط به مشتقات بهينهاى

A Ar.
سطط ثاييتر را هموار مى كند، به ويزه زمانى كه بهينه سازى سطع ثايين تر با مقادير نريـن بـارامـتـرهـاى جريمه انجام تشُله باثمد. در نهايت، المتفاده از تابع جريمه مشكلى كه هنگام عدم دخاللـت متـغيـر هـاى سطع یايين تر در تابع هدن به وجود مى آيد را حل مى كند.
 تابع جريمه در واتع مساله‘ مقيد را با مساله زير جايگزين مى كنيه •

$$
\Phi(\mathbf{y}, \mathbf{x}, r)=f_{0}(\mathbf{y})+p_{v}\left[\mathbf{g}_{0}(\mathbf{y}), r\right]+\sum_{i=1}^{s}\left(f_{i}\left(\mathbf{x}_{i}, \mathbf{y}\right)+p_{v}\left\{\mathbf{g}_{i}\left(\mathbf{x}_{i}, \mathbf{y}\right), r\right]\right)
$$

كه در آن p ${ }^{\text {P }}$ "
اغلب از يكي تابع جريمه تجمعى الستغاده مى كنيم.

$$
p_{v}(\mathbf{g}, r)=\sum_{j=1}^{m} p\left(g_{j}, r\right)
$$

كه در آن p تابع جريمه الى مانند تابع جريمه داخلىى تعميم يافته است (به بخش V . . ه مراجعه كنيد)

$$
p\left(g_{j}, r\right)=\left\{\begin{array}{ll}
1 / g_{j} & \text { for } g_{j} \geq g_{0}, \\
1 / g_{0}\left[3-3\left(g_{j} / g_{0}\right)+\left(g_{j} / g_{0}\right)^{2}\right] & \text { for } g_{j}<g_{0}
\end{array} \quad\right. \text { (1..Y.r) }
$$

هارامتر انتقالل go به شكل زير به Γ بستكى دارد،

$$
g_{0}=g_{00} r^{1 / 2}, \quad(I \cdot F . Y)
$$

 به شُكلى كه $0 \rightarrow 0$ ميل كند حل مى شود . يكي شكل یخند سطحى از اين رابطه سازى عبارت است از :

$$
\begin{align*}
& f_{0}(\mathbf{y})+p_{v}\left[\mathbf{g}_{0}(\mathbf{y}, r)\right]+\sum_{i=1}^{s} \phi_{i}(\mathbf{y}, r) \\
& \phi_{i}(\mathbf{y}, r)=\min _{\mathbf{x}_{i}, r_{i}}\left\{f_{i}\left(\mathbf{x}_{i}, \mathbf{y}\right)+p_{v}\left[\mathbf{g}_{i}\left(\mathbf{x}_{i}, \mathbf{y}\right), r_{i}\right]\right\} . \quad \text { رامدار عبارتيمب كنيد در حالى كه }
\end{align*}
$$

 روش تغيير چار امترهاى جريمه سيستمهاى فرعى الكُوريتمهاى جند سطحى خاصى را تعريف مى كنند.

AF' بنغش
يكي رهيافت جالب اين است كي هر بهينه مـازى سطوح فرعى برایى يك متغير كه لزومى ندارد تبل از اين كه متغير هاى سطع بالاتر به مقادير نهايع شـان نزديك شوند يكي بهين سطع بايين
 به تدريج به طرف صفر كاهش يابد . مرجع [15] نشان مى دهد زمانى كه تمامى سيستمهاى نرعى پارامتر جريمه يكسانى استفاده كنتد، بهينه سـازى جند سشطحى كاملاّ معادل رهيافت يكى سطـحى است. اين موضيوع بلين معنى است كه در راه بهين نهامى، تعدادى طراحى هيانى يكسانى به دست مى آبـد و محاسبات مى تواند آن هنان انجام شود كه يكسان باشد . نرايند مى تواند به عنـوان يـك بـهـيـنـه سـازى دو سشطحى انگاشته شود، يا يكي بهينه سـازى يكى سطـحى كه ذر آن از ثكل جعبـهاى زاويـه الى بـرای كاهـش محامببات و عمليات موازى استفاده شده است. دقت كنيد حتى زمانى كه فنون ديكرى براى حل مساله بهينه سـازى چنـد سـطحى اسـتـفـاده شــود روش معمول اين اسـت كه از سلهاى تقرييى يا نيمه هـمكرا براى بهينه سـازى هاى زير سطـحها استفاده شود.

مثال 1-1.
 راححت تر اين است كه از يكي تابع جريمه بردارى استفاده كردد .

$$
p_{r}(\mathbf{g}, r)=p\left[\min _{i}\left(g_{i}\right), r\right]
$$

در حالت كلى اين رهيانت جريمه ممكن امست زمانى كه بحر انى ترين قيد تغيير ماهيت مـى دهـد مـشـكـل
 زير خوالهد بود:

$$
\begin{align*}
& \phi=m(\mathbf{y})+p_{u}\left[g_{1}(\mathbf{y}), g_{2}(\mathbf{y}), g_{3}(\mathbf{y}), r\right]+\dot{\phi}_{1}(\mathbf{y}, r)+\phi_{2}(\mathbf{y}, r) \quad \text { تابع } \\
& \phi_{1}(\mathbf{y}, r)=\min _{x_{1}} p_{r}\left[g_{11}\left(x_{1}, y\right), g_{12}\left(x_{1}, y\right), r\right], \quad \text {, } \quad \text { آينيمـم كنيد كه } \\
& \phi_{2}(\mathbf{y}, r)=\min _{z_{2}} p_{r}\left[g_{21}\left(x_{2}, \mathbf{y}\right), g_{22}\left(\tau_{2}, \mathbf{y}\right), r\right], \tag{1..4.9}
\end{align*}
$$

OMY دخالتقى ندارند، بنابراين رابطه سازى دعادلـ (1 1) تابع هذفى در سطع بايين تر ندارد، و مسائل سطع بايين تر تنها لازم امست كه يك جوابب قابل تبول بيابند . با اين رابطه سازى تابع جريمه، توابع هدنـ سطح چايين تر از آن جا كه جريمه بر اماس بحرانى ترين تَد ترار دارد، بهين سطع هايين تر هنگامى اتفاق مى انتد كه هر

داشٌت

$$
\begin{aligned}
& x_{1}=0.02972 y_{1}^{1 / 4} . \\
& \quad: \quad g_{21}=g_{22} \text { برابى سيستم فرعى دوم، داريم }
\end{aligned}
$$

با اين روابط اكنون مى توانيم مساله سطع بالاتر را به عنوان يكى مساله بـهيـنـ سـازى تـك سـطـحى حـل
-•• • كنيـ
به جاى تابع جريمه ، مى شود از يكى تابع بوش الستغاده كرد كه يك بردار از قيود را با يكى تيد بوش تكى
 مير - استينهوسر ' (KS) (به نصل ه مراججه كنيد) به طور وسيعى استفاده كرده انذ (به عنوان مثال به مرجع موبيسكي و ديحـران [16] مراجعه كنيد) . تيـد بـوش KS بر دار تيلد و را با KS(g جايكزين مى كند در حاللى كه

$$
K S(\mathbf{g})=-g_{\min }-(1 / \rho) \log \left[\sum_{i} \exp \left[\rho\left(g_{\min }-g_{i}\right)\right]\right]
$$

كه در آن تيد امست. به آمانى مى توان نشان داد كه :

$$
g_{\min } \geq I S(\mathbf{g}) \geq g_{\min }-(1 / \rho) \log (m), \quad(1 \cdot, \mathcal{Y})
$$

 می تو توان به جاى FS

ه. - ا مسائل جند سطحى درخت باريلك

 (l • . 1 . 1 a
 استفاده كرد. با اين وجود، در حالتهاى ديكر تبديل مسـاله جند سطحى به يكى تكى سطحى ممكـن امــت بهتر باشد.

ا . ه . ـ ا تحـليل و مراحى همزمان
 مسالهئ تك سطحى به شُكل ويزّهاى نمايان مى شود. رهيافت نحليل وطر احى مـزمان (SAND)ر رهيافت تودرتوى معمول در بهينه سازى سازه ها رادكر كونمى سازد. در رهيافت تودرتو، سازه برایى يكـطراحى آزمايشى تحليل مى شود، آن كاه حساسيت باسخ نسبت به اندازه ماى سازه محاسبه مى شـود، و سـيـس اندازه ها بر امساس اين حساسيتها بهبود مى يابند ط طراحى آزمايشنى جديد به دست مى آيد. تحليل سازهاى
 مى شود. رمياذـت SAND تحليل و طراحى رابه عنوان يكـ مــأله انجام مى دهــــ ايـن كـار بـا افزودن

برخورد مى شود .

دو سطحى بودن رهيانت نودرتوى معمولى در مسائلى كه تحليل سازه مى تواند به عنوان يكى مساله' بهينه سازى رابطه سازى شود بديهى است. بهعنوان مثال، طراحى حد سازه ها را مى توان به عنوان مينيمم سازى وزن كه مشروط به تيد بارماى فرو ريختكى است رابطه سازى كرد. اين بارهاى فرو ريختكى جواب

مساحتهاى سطح متطع (اندازه هاى سازه) و نيروهاى اعضا (باسخهاى سازه) به عنوان متغيرهاى طراحى (SAND) بودند. در حالت طراحى حد، رابطه سازى تكى سطمى، كهر رهيافت تحليل و طراحى همزمانى الست، رونى است كه در كار مهندسى مى توان آن را النتخاب كرد. امـا در مـحدوده؛ ارتجاعى رهيانت تودرتوى معمول است. مساله؛ طراحى كمترين وزن مشروط به تيدهاى تغيير مكان و تنش در مـحـدودهُ ارتجاعى را مى توان به شُكل زير رابطهسازى كرد:
 سختى K و بردار بار f بيان مي شود بدست آررد.

$$
U=(1 / 2) \mathbf{u}^{T} \mathbf{K}(\mathbf{x}) \mathbf{u}-\mathbf{u}^{T} \mathbf{f} .
$$

رهيافت معمول اين است كه مسالث رابه عنوان يك مسالث بهينه سازى دو سطحى حل كرد زيراحل مسالث مينيـم سازى انرزّى به سادكى از حل معادلات تعادل Ku=f(x) به دست مى آيد. در سال • 198 رهيانتت SAND در استغاده از معادلات تعادل به عنوان تيـلهـاى تسـاوى و در نظر كرفتن اندازه هاى سازه و تغيير مكانها به عنوان متغيرهاى طراحى با الستغاده از فن كراديان مزدوج(CG)
 مؤثرى با تيدهاى تساوى معادلات تعادل برخورد كند زيرا ماتريس سنتى كه توسط مدل اجزاى محـدود
 دقت خودر راز دست مى دمند؛ ولى اين مسأله را مى توان با بالا بردن تعداد اعشـار در محاسبـات رايـانـه جبران كرد (بيشتر محاسبات اجزاى محدود با دقت مضاعف انجام مى شود) . اثر بدخيمى در رونـهـاى تكرارى مانند CG كامش سرعت همكرايى است.

بينر فتهاى انخير در روشهأى بهينه سازى مانند ارائه روشـهاى CG يِش شرط دار، كارايه رهيانت ابهبود مى بخشندو وآن رابرایى مسائل سه بعدى كه به ماتريسهاى ستختى از نظر بهناى نوار تطرى

1) Fox and Schmit

ضعيف مى انجأمند تابل رتابت مى سازد. در نتيجـه، رهـيـنـت SAND مورد اتبال بيشترى ترار كرفتـه
 كنيد) . در مجموع، روش SAND نباز به تحليل هجدد همزمان سازه رادر ازاى حل يكى مسأله بهينه سازى بزرگتر (با در نظر كرفتن تغيير مكانها به عنوان متغير هاى طراحى) مرتغع مى سازد . بنابراين؛ بهتر است كه از SAND در مساثلى استفاده شـود كه تعداد متغير هاى طراحى سازه زياد باشد و اخافه كردن متغيرهـاى طراحى تغيير مكان اثر كمى, روى تعداد كل متغير هاى طراحى داشته باشدل . هنگامى كه حالتهای باركذارى زياد باشـد از روش SAND استفاده نمی شـود زيرا در آن حالت تعـداد متغير هاي طراحى تغيير مكان بسيار زياد مى شود. با اين وجود، جيبانى [22] ، در اين -حالت نيز با استفاده از يكى رهيانت دو سطهحى و برنامه ريزى هندسى براى كامش بار محـاسـبـاتـى رايـانـه، SAND را به كـار كرفت. الين روش در بهينهسازى ساختار نيز بسيار سـودمند است، زيرا رهيافـت تـودرتـوى هســـول در
 (به مرجع بندسو و و ديكران[23] مرا-جعه نماييد) .

 بكيريد . رابطه سازى دو سطهى مسأله به ثـكل زير است:
 كه در آن

$$
\begin{equation*}
w_{1}^{2}=\min _{\mathbf{u}} \frac{\mathbf{u}^{T} \mathbf{K} \mathbf{u}}{\mathbf{u}^{T} \mathbf{M u}} \tag{1,0,4}
\end{equation*}
$$

 مسألهُ تكى سطتى

$$
\begin{aligned}
& \omega_{1}^{2}=\frac{\mathbf{u}^{T} \mathbf{K u}}{\mathbf{u}^{T} \mathbf{M u}} \quad \text { x } \\
& \text { بيابيد. } W_{u}-W(\mathbf{x}) \geq 0, \quad \text { (} 1 \text { مشروط به (} 0.0 \text {) }
\end{aligned}
$$

ناممكن است، زيرادر رابطه سازى بالا ، بيينه سازى بردار ويزه مربوط به بالاترين بسامد را النتخابخخواهد
 بسامد رابه يكـ رهيـانت تكى سطـحى SAND تبـديل كرد[24]، اما فرايند از رهيانت تودرتوى معادلات

. ه . r
يكى از كاريردهاى معمول رهيانت جند سطحى در مساثل به شُكل درخت باريكى عبـارتامست از تركيب بهينه سازى اندازه و هندسى . صعمـولاً متغيرهاى طراحى هندسى به عنوان متغيرهایى سطع بالاتر انتخاب مى سوند و متغير هاى اندازه أى بهعنوان متغيرهاى سطع بايين تر ـ انكيزه كاربرد اين رهيانت اين است كه طبيعت اين دو دسته از متغير ها متفاوت المت و اكر با آنها به عنوان يكى دسته منغرد از متغير مـاى طراحى برخورد شود، ممكن اسست منكلات عددى به وجود آيد. كاريردهاى معمول در مساثل طراحى خرباها (به عنوان منال مراجع [28-25] ر تابها (به عنوان منال مراجمع [31-29]) بوده است.

f.

سيستمهايى كه از نظر مساثلز بهينه مازى طراحى ساختار جعبهاى زاويهاى دارند، معمولا در مسـاله تحليل ساختار مشابهى دارند. بعنى، اكر باسخ زير ميستمها را بـا
 سيستمها جدا سازد. ي يعن معادلات حاكم بر باسخ سيستم رامي توان به شككل زير نوشت:

$$
\begin{align*}
\mathbf{r}_{0}\left(\mathbf{u}_{1}, \cdots, \mathbf{u}_{i}, \mathbf{w}\right) & =0, \\
r_{i}\left(\mathbf{u}_{i}, \mathbf{w}\right) & =0, \quad i=1, \cdots, s .
\end{align*}
$$

از مزاياى اين ساختار جعبهاى زاويهاى مى توانيم در روش حل استفاده كنيم. به عنوان مـال ، استفـاده از روس نيوتن در حل مساله رادر نظر بكيريد. با فرض يك حدس اوله برای جواب، يك تصحيح براى آن حدس را از بسط سرى تيلور مرتبه اول محاسبه مى كنيم.

$$
\begin{aligned}
\mathbf{r}_{0}+r_{0,1} \Delta \mathbf{u}_{1}+\cdots+r_{0, s} \Delta u_{s}+r_{0,0} \Delta w & =0, \\
r_{i}+\mathbf{r}_{i, i} \Delta u_{i}+r_{i, 0} \Delta w & =0, \quad i=1, \cdots, s .
\end{aligned}
$$

 jo

$$
\Delta \mathbf{u}_{i}=-\mathbf{r}_{i, i}^{-1}\left(\mathbf{r}_{i}+\mathbf{r}_{i, 0} \Delta \mathbf{w}\right), \quad(1 \cdot .9 . r)
$$

و سبس آن را در معادله (Y. . . .) بايكزين كنيمه . داريم :

$$
\left(\mathbf{r}_{0,0}-\sum_{i=1}^{0} \mathbf{r}_{i, i}^{-1} \mathbf{r}_{i, 0}\right) \Delta \mathbf{w}=-\mathbf{r}_{0}+\sum_{i=1}^{1} \mathbf{r}_{i, i}^{-1} \mathbf{r}_{\mathbf{i}} . \quad(1 \cdot .4 . \nmid)
$$

 رونٌ مشابهى را مى نوان براى مـحاسبه حساسبتهاى باسـغ نسبـت به متغير هـاى طـراحـى بـه كـاربـرد. اكنون فرض كنيد كه سيستم به يكى متغير طراحى ديكر x نيز وابسته بامـد . يعنى داريم :

$$
\begin{align*}
\mathbf{r}_{0}\left(\mathbf{u}_{1}, \cdots, \mathbf{u}_{s}, \mathbf{w}, x\right) & =0, \tag{1..9.0}\\
\mathbf{r}_{i}\left(\mathbf{u}_{i}, \mathbf{w}, x\right) & =0, \quad i=1, \cdots, s .
\end{align*}
$$

با مشتق كيرى از سيستم نسبـت به x داريم :

$$
\begin{aligned}
\frac{\partial \mathbf{r}_{0}}{\partial x}+r_{0,1} \frac{\partial \mathbf{u}_{1}}{\partial x}+\cdots+\mathbf{r}_{0, s} \frac{\partial \mathbf{u}_{s}}{\partial x}+\mathbf{r}_{0,0} \frac{\partial w}{\partial x} & =0, \\
\mathbf{r}_{i}+\mathbf{r}_{i, i} & \frac{\partial \mathbf{u}_{i}}{\partial x}+\mathbf{r}_{i, 0} \frac{\partial w}{\partial x}
\end{aligned}=0, \quad i=1, \cdots, s,
$$

اكنون مى توانيم W W
تبلديل كنيهم
مثال نمونه' رهيافت فوت سازه هاى زير مـجموعه اند . در رابطه سازى اجزالى محدود بر امـاس تغيـيـر
 مهم ديكر درزمينه' طراحى چند منظوره الى است . هر ميستم فرعى ممكن اسـت يكى تحليل خام متغاوت از سيستم باثــد .
 مؤلفه هاىW مى تواند نشانكر يكى زمينه يا زمينه هاى ديكر باشد، بنابراين بهتر است Wا ابه زير بردارهاى
 يك جند زمبنه را متأثر مى سازد.

 مى شود كه مى تواند به شككل زير بيان شود :

$$
\mathbf{w}_{i}=\mathrm{r}_{i}\left(\mathbf{w}_{1}, \cdots, \mathbf{w}_{i-1}, \mathbf{w}_{i+1}, \cdots, \mathbf{w}_{s}, \mathbf{x}\right), \quad \mathbf{u}_{i}=\mathrm{t}_{\mathrm{i}}\left(\mathbf{w}_{1}, \cdots, \mathbf{w}_{s}, \mathbf{x}\right) .(\mathbf{l} \cdot . \boldsymbol{y}, \mathrm{v})
$$

يعنى،

 معادله' زير بدست آورد.

$$
\mathrm{J} \Delta \mathbf{w}=\Delta \mathbf{r}
$$

$$
\begin{aligned}
& \text { كه در آن }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (1-.9.4) } \\
& \text { و در آن }
\end{aligned}
$$

 نسبـت به يكى بارامتـر طراحى نيز مـى تواند به شـــكل مشـابهى انتجام شود . با دينر انسبل كيرى از معادلـ
(نسبت به يكى مولفه' x داريم :

$$
\begin{equation*}
\mathbf{J} \frac{\partial \mathbf{w}}{\partial x_{i}}=\frac{\partial \mathbf{r}}{\partial x_{i}} \tag{1..9.11}
\end{equation*}
$$

 كامش دهيم . اين كار در مثال زير تشريح مى شود. رهيافت GSE به مشتقات باستخهاى هر زمينه نسبت به ورودى زمينه ماى ديكر نياز دارد . هزينهُ ايسن محاسبات هنگامى كه هسطع تدانحل بين زمينه ها بزرك باثشد بسيار زياد است . در مقايسه هزينه هاى رهيافت و و هزينه هاى محاسبات تفاضل محدود منشتقها، هارامتر كليدى تعداد متغيرهاى طراحى است. اگر تعداد متغيرهاى طراحى زياد باشد، روش GSE كاراتر است و در صورنى كه تعداد متغير هاى طراحى كم باششل، تفاضل مـحدود كم هزينه تر است . برالى بحت بيشتر در مورد هزينه و همحنين تشخيصى حالتهايه كه در آنها ماتريس GSE مسكن است منفرد شود، خور|نندكان مى توانند به مرجع [32] مراجعه كنند.

 مى شـكند كه سطط تداخلى باريكى دارند. در تحليل هند زمبنه ایى و حـساسيت ما به دنبال يانتن راههـايـى براى باريكى كردن سـطع تداخل بين زمينه ماييم. . در مدال زير كه تحليل آتروديناميكى يكى بال و محاسبهُ حـساسبتهاست، استناده از يكى روش كاهشى براى رسيدن به أين هدف تشريح مى شود .

مثال 1.5.1* تحليل آثرو الاستيكى يكى بال هوايمما را در نظر بكيريد . ميدان جريان اطر انف بـال بـر اسـاس ثــكـل بـال محامبه شده است. آن كاه از مرعتهاى بجريان فنـارها و بارها محامبه شده اند و با استناده از آنها تغيـير .كانهاى سـازه أى محامبه مى شوند كه به نوبـه' خود روى شكل بال نيز تأثير مى كذارند. . حل اين مسا'له' جفت ششده اغلب به شكل هجرخه ایى انجام مى شود، با يكى ميدان جريان در اطر اف بال صلب شُروع كرده و بارها و تغيير مكانهاى مربرط به اين ميدان جريان محامببه مى شود و مسـس بر امـاس اين تغيير مكانهـا،

شـكل بار روز آمد مى شود و اين خرخه تكرار مى شود. خنين رهيافتـ، كه جرخهاى نتطه ثابـت ناميده مى شود، در صورتى كه محاسبات زاكوبين ير هزينه باثـدنسبت به روش نيوتن مزيت دارد. با اين وجود،

 تمركز روى سؤال سطع تداخل ما بدون توجه به متغير هاى طراحى شروع به حل تعامل آنرو الاستـيكى
 داده مى شود ميدان جريان مثلا بردار سرعت، V، را محاسبه مى كند.

$$
\begin{equation*}
\mathbf{v}=b_{n}(\mathbf{s}) \tag{a}
\end{equation*}
$$

كه در آن
 شود.

$$
\begin{equation*}
\mathbf{f}_{a}=\mathbf{b}_{f}(\mathbf{v}) . \tag{b}
\end{equation*}
$$

جعبه سياه بعدى بسته تحليل سازمای الست كه نيروهاى آتروديناميكى را با نيروهاى ماند تركيـب كرده و بردار تغيير مكان uرا محاسبه مى كند.

$$
\begin{equation*}
\mathbf{u}=\mathrm{b}_{s}\left(\mathrm{f}_{n}\right) . \tag{c}
\end{equation*}
$$

 روزآمد مى كند.

$$
\begin{equation*}
\mathbf{s}=b_{I}(\mathbf{u}) \tag{d}
\end{equation*}
$$

در نكاه اول، سيستمى كه با معادلات (a) تا (d) تشريح شد، كامـلاً جفت شـده به نظر مى رسد. حل اين

 كمى مؤلفه داشته باشند، و مى توانيم ابعاد مسآله رابا تركيب دو جعبه سياه اول و دو جعبه سياه آخر بسيار كوجك كنيم. اولين تركيب به ما نيروهاى آثروديناميكى را بر حسب شـكل بال مى دهد.

$$
\begin{equation*}
\mathbf{f}_{a}=\mathbf{r}_{1}(\mathbf{s})=\mathbf{b}_{f}\left[\mathbf{b}_{a}(\mathbf{s})\right] \tag{e}
\end{equation*}
$$

و تركيب دوم به ما شكل بال را به عنوان تابعى از نيروهاى آتروديناميكى مى دهد .

$$
\begin{equation*}
\mathbf{s}=\mathbf{r}_{2}\left(\mathbf{f}_{a}\right)=\mathbf{b}_{r}\left[\mathbf{b}_{\mathbf{g}}\left(\mathbf{f}_{a}\right)\right] . \tag{f}
\end{equation*}
$$

 تعداد مشتقاتى كه بايل محاسبه كردد مى اننجامل. با اين هــه، ، تـعـداد مـوزلفـه هـاى دوجين مى شود و محاسبه زاكوبين هنوز مى توان بسبار بر هزينه بائـد ـ با استفاده از نن كاهشي در بيـان تغيير مكانها در تشريح تعامل آتروالاستيكى كاهش بيشتر تعداد مشتقات لازم امكان بـذير اسـتـ. نرض مى شود بردارهاى تغيير مكان را بتوان با تركيب خطى سُكلهاى مود (اغلب مودهاى ارتعاشى) بيان كرد.

$$
\begin{equation*}
\mathbf{u}=\mathbf{U q} \tag{g}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{f}_{a}^{-}=\mathrm{U}^{T} \mathbf{f}_{a} . \tag{h}
\end{equation*}
$$

اكنون جعبه سياه تحليل سازماى (مودال) كاهشى را مى توان به شكل مجازى زير نـــان داد:

$$
\begin{equation*}
\mathrm{q}=\mathrm{b}_{(}^{-}\left(\mathrm{f}_{a}^{*}\right) \tag{i}
\end{equation*}
$$

بسيار بالا مى رود . يعنى نيروهاى آتروديناميكى تعميم يافته بر حسبـ دامنه هاى مدال به شكـل زيـر بيـان
شوند:

$$
\begin{equation*}
\mathrm{f}_{a}^{*}=\mathrm{r}_{1}^{*}(\mathrm{q})=\mathrm{U}^{\mathrm{T}_{\mathrm{f}}}\left\{\mathrm{~b}_{a}\left[\mathrm{~b}_{I}(\mathrm{Uq})\right]\right\} \tag{j}
\end{equation*}
$$

و و r نيز برابر
 اين ها منتقات دوسويع اند يعنى مشتقات نيروهاى آتروديناميكى نسبت به تغييرات شـكـل در اثر تـغيهير
 آتروديناميكي. مستتات ماتريس S مشتقات ${ }^{\text {S }}$ نسبت به

 اكنون معادله (1 . \& . •) را مى توان به شكل زير نوشت:

$$
\left[\begin{array}{cc}
\mathbf{I} & -\mathbf{A} \tag{k}\\
-\mathbf{S} & \mathbf{I}
\end{array}\right]\left\{\begin{array}{c}
\Delta \mathbf{f}_{a}^{*} \\
\Delta \mathbf{q}
\end{array}\right\}=\left\{\begin{array}{c}
\Delta \mathbf{r}_{1}^{-} \\
\Delta \mathbf{r}_{2}^{*}
\end{array}\right\}=\left\{\begin{array}{c}
\mathbf{f}_{a}^{* 0}-\mathbf{r}_{1}^{*}\left(\mathbf{q}^{0}\right) \\
\mathbf{q}^{0}-\mathbf{r}_{2}^{*}\left(\mathbf{f}_{a}^{* 0}\right)
\end{array}\right\}
$$

به دليل ساختار ويزهُ معادله' (k) مى توانيم بيشترى از

$$
\begin{equation*}
\Delta \mathbf{f}_{a}^{*}=\mathbf{A} \Delta \mathbf{q}+\Delta \mathbf{r}_{1}^{*} \tag{l}
\end{equation*}
$$

و با جايگزين كردن آن در مسطر دوم داريم :

$$
\begin{equation*}
(\mathbf{I}-\mathbf{S A}) \Delta \mathbf{q}=\Delta \mathbf{r}_{2}^{*}+\mathbf{S} \Delta \mathbf{r}_{1}^{*} \tag{m}
\end{equation*}
$$

 محیامبة

APr بنشـ
 به شكل زير در مى آيد :

$$
\left[\begin{array}{cc}
\mathbf{I} & -\mathbf{A} \tag{n}\\
-\mathbf{S} & \mathbf{I}
\end{array}\right]\left\{\begin{array}{c}
\frac{\partial \mathrm{f}_{a}^{*}}{\partial x} \\
\frac{\partial \mathrm{q}}{\partial x}
\end{array}\right\}=\left\{\begin{array}{c}
\frac{\partial \mathbf{r}_{1}^{*}}{\partial x} \\
\frac{\partial \mathrm{r}_{2}^{*}}{\partial x}
\end{array}\right\}
$$

از آنجا كه فن كاهـنى تعامل آتروالاستيكـرا تقريب مى زند، لازم نيسـت كه در مصاسبات هر زمينه' خاصى

| • • Y
 سه عضهو داده شُده اسمت. مى خحواهيم هندسهه خربا را جنان بهينه كنيم كه وزن آن مينيمـم كردد ، مشُروط به اين كه سـازه در الثر هيـ حالت بار كذارى (تسليم و كمانش اولرى را در نظر بكيربد) نرو نريزد. مساله رابه شيكل ججبه ایى زاويهاى رابطه سـازى كنيد.
 تيدهاى تنش در حد تغيير مكان افقى • ا سـانتى متر رابطه سـازى كنيد . متغير هاى طر اححى ابعاد سطح مقطع هر يكى از سه تير است. برایى تبديل مساله به يكى شـكل جعبه اى زاويه ايى متغيرهاى طراسى نراكير تعريف
كنيد .

ه . مثال I . F . • ا را با استناده از تابع KS حل كنيد .

مساله'طراسى رابططه سـازى كنيد

[1] Giles, G.L. "Procedure for Automating Aircraft Wing Structural Design," J. of the Structural Division, ASCE, 97 (ST1), pp. 99-113, 1971.
[2 Sobieszczanski, J. and Loendorf, D., "A Mixed Optimization Method for Automated Design of Fuselage Structures", J. of Aircraft, 9 (12), pp. 805-811, 1972.
[3] Barthelemy, J.-F.,M., "Engineering Design Applications of Multilevel Optimization Methods," in Computer-Aided Optimum Design of Structures: Applications (eds. C.A. Breblia and S. Hernandez), Springer-Verlag, pp. 113-122, 1989.
[4] Sobieszczanski-Sobieski, J., James, B.B., and Dovi, A.R., "Structural Optimization by Multilevel Decomposition", AIAA J., 23, 11, pp. 1775-1782, 1985.
[5] Thareja, R. R., and Haftka, R. T., "Efficient Single-Level Solution of Hierarchical Problems in Structural Optimization", AIAA J., 28, 3, pp. 506-514, 1990.
[6] Thareja, R., and Haftka, R.T., "Numerical Difficulties Associated with using Equality Constraints to Achicve Multilevel Decomposition in Structural Optimization," AIAA Paper No. 86-0854CP, Proceedings of the AIAA/ASME/ASCE/ AHS 27th Structures, Structural Dynamics and Materials Conference, San Antonio, Texas, May 1986, pp. 21-28.
[7] Schmit L.A., and Melrinfar, M., "Multilevel Optimum Design of Structures with Fiber-Composite Stiffcned Panel Components", AIAA J., 20,1, pp. 138-147, 1982.
[8] Kirsch, U., "Multilevel Optimal Design of Reinforced Concrete Structures", Engineering Optimization, 6, pp. 207-212, 1983.
[9] Dantzig, G.B., and Wolfe, P., "The Decomposition Algorithm for Lincar Program," Econometrica, 29, No. 4, pp. 767-778, 1961.
[10] Dantzig, G.B., "A Decomposition Principle for Linear Programs," in Lincar Programming and Extensions, Princeton Press, 1963.
[11] Rosen, J.B., "Primal Partition Programming for Block Diagonal Matrices", Numerische Mathematik, 6, pp. 250-260, 1964.
[12] Gcoffrion, A.M.. "Elcinents of Large-Scale Mathematical Programning", in Perspectives on Optimization (A.M. Gcoffrion, eclitor) Acldison Wesley, pp. 25-64, 1972.
[13] Kirsch, L'., "An Improved Multilevel Structural Synthesis Method", J. Structural Mechanics, 13 (2), pp. 123-144, 1985.
[14] Barthelenyy, J.-F.M., and Sobieszczanski-Sobieski, J., "Extrapolation of Optimum Designs based on Scusitivity Derivatives," AIAA J., 21, pp. 797-790, 1983.
[15] Haftki, R.T., "An Improved Computational Approach for Mnltilevel Optimum Design", J. of Structural Mechanics, 12, 2, pp. 245-261, 1984.
[16] Sobieszczanski-Solvieski, J., James, B. B., and Rilcy, M. F., "Structural Sizing by Generalized, Multilevel Optimization", AIAA J., 25, 1, pp. 139-145, 1987.

[17] Fox, R. L., and Schmit, L. A., "Advances in the Integrated Approach to Structural Synthesis", J. of Spacecraft and Rockets, 3 (6). pp.858-866, 1966.
[18] Haftka, R.T., "Simultaneous Analysis and Design", AIAA J., 23, 7, pp. 1099-1103, 1985.
[19] Smaoui, H., and Schmit. L.A., "An Integrated Approach to the Synthesis of Geometrically Non-linear Structures," International Journal for Numerical Methods in Engincering, 26, pp. 555-570, 1988.
[20] Ringertz, U.T., "Optimization of Structurcs with Nonlinear Response," Engineering Optimization, 14, pp. 170-188, 1089.
[21] Haftka, R. T.. and Kamat, M. P., "Simultaneous Nonlinear Structural Analysis and Design", Computational Mechanics, 4, 6, pp. 409-416, 1989.
[22] Chibani, L., Optinum Design of Structures. Springer-Verlag, Berlin, Heidelberg, 1989.
[23] Bendsoe, M.P., Ben-Tal, A., and Haftha, R.T., "New Displacement--Based Methods for Optimal Truss Topology Design," AIAA Paper 91-1215, Prorcedings, AIAA/ASME/ASCE/AHS/ASC 32nd Strnctures, Structural Dynamics and Materials Conference, Baltimore, MD, April 8-10, 1991, Part 1, pp. 684 696.
[24] Shin, Y., Haftka, R. T., and Plaut, R. H., "Simultancous Analysis and Design for Eigenvalue Maximization", AIAA J., 26, G, pp. 738-744, 1988.
[25] Pedersen, P., "On the Mininum Mass Layout of Trusses", AGARD Conference Proceedings, No. 36 on Symposium on Structural Optimization, Turkey, October, 1969, pp. 11.1-11.17, 1970.
[26] Vanderplaats, G.N., and Moses, F., "Automated Design of Trusses for Optimum Geometry", J. of the Structural Division, ASCE, 98, ST3, pp. 671-690, 1972.
[27] Spillers, W.R., "Iterative Design for Optimal Geometry", J. of the Structural Division, ASCE. 101, ST7, pp.1435-1442, 1975.
[28] Kiirsch, U., "Synthesis of Structural Geometry using Approximation Concepts", Computers and Structures, 15, 3, pp. 305-314, 1982.
[29] Ginsburg, S., and Kirsch, U'., "Design of Protective Structures against Blast", J. of the Structural Division, ASCE, 109 (6), pp. 1490-1506, 1983.
[30] Kirsch. L.., "Multilevel Synthesis of Standard Building Structures," Engineering Optimization, $\overline{7}$, pp. 105-120, 1984.
[31] Kirsch, U., "A Bounding Procedure for Synthesis of Prestressed Systems," Computers and Structures, 20 (5), pp. 885-895, 1985.
[32] Sobieszczanski-Sobieski, J., "Sensitivity of Complex, Internally Coupled Systems," AIAA Journal, 28 (1), pp. 153-160, 1990.

طراهى بهينه سازه هاى ساخته شده از مواد مركب چندلايه 11

مواد مركب لايهالى تقويت نُده با الياف به سبب دارا بودن خواص مكانيكى بسيار خوبا، در مقايسه

 يافتن يكى طراحى كارا براى سازه إى از جنس مواد مركب كه نيازماى كاربرد خاصى را برآورده سـازد، نه
 سازه همراه خواهد بود كه از طريت انتخاب جهت، نعداد

 امكان به دست آوردن يكى طراحى كاراكه در معابل مكانيزم ماى شكــــت جندكانه ايمن بانـد با اين دشوارى كره خورده كه بايد مقدار يكى مجمرعه بزر كاز متنغرهاى طراحى انتخاب كردد و هممين حميفت بهينه سـازى سـازه ها را برايى طراححى سازه هاى مواد مركب يكى ابزار سودمند مى سازد.
 زيادى به جگرنكى تركيب آن تحليل كرها با جعبه سياه بهينه ساز مربوط مى شودد . دركٌ بهتر دشواريـهاى مربوط به بهينه سازى مواد مركب، با مثالهاى ساده حاصل مى شود. در اين نصل روى مثالهايى تأكيـد
 مى كتيم كه مفاهيم اساسى را بيان هى كنند .

هر جند مواد مركب لايه ای براى بسيارى از كاربردهاى سازه كه به نسبت متختى به وزن و مقاومت به
 از سازه هاى فلزى است. يكى از دشواريهاى رابطه سازى تحليل مواد مركب لايه ایى به سبب ناهمسانگردى آنهاست . زيرا براى به دست آوردن ويرَّيهاى باسـخ مكانيكى (رابطه تنش كرنش) مواد مر كب لايه الى بـه
 دارد و دتيقآ همين ويزَكى مواد مركب است كه آنها را برایى يك طراسىى بهين و وـيزّكيهاى منحصر بـه نرد مناسب مى سازد . يرأى يك سازه كلى كه تنش در سه بعد وجود دارد، سحل معادلات حاكمب بسيار دشـوار است. خوشبـختانه بينتر سازه هاى مواد مركب سازه هالى صفنحهاى اند كه از لايه هايـى از مواد كـه داراى سه صنغه تقارن عمود بر هم اند (اورتو ترايِك) تتُكيل شـده اند و بر حسـب تعداد كمترى ثابت سـختــى
 به الجمال مطرح هى شوند .

برأى يكى ماده ارتوتروييى كه محورهاى ارتوترويـكى 2-1(جهت هاى اصلي ماده) در جهت مسور هـاى

AP9 بخش 11.1 : باسختمكانيكم يكلابا
مخنصات x-y
توسط معادلات زير بيان مى شود كه 9 نابث مستقل دارد:

$$
\left\{\begin{array}{c}
\sigma_{1} \\
\sigma_{2} \\
\sigma_{3} \\
\tau_{23} \\
\tau_{31} \\
\tau_{12}
\end{array}\right\}=\left[\begin{array}{cccccc}
C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\
C_{12} & C_{22} & C_{23} & 0 & 0 & 0 \\
C_{13} & C_{23} & C_{33} & 0 & 0 & 0 \\
0 & 0 & 0 & C_{44} & 0 & 0 \\
0 & 0 & 0 & 0 & C_{55} & 0 \\
0 & 0 & 0 & 0 & 0 & C_{66}
\end{array}\right]\left\{\begin{array}{c}
\epsilon_{1} \\
\epsilon_{2} \\
\epsilon_{3} \\
\gamma_{23} \\
\gamma_{31} \\
\gamma_{12}
\end{array}\right\} \text { (11.1.1) }
$$

الفزون بر اين، با فرض حالت تنش صفحهالى در هر يك از لايه ما در صفحه اصلى ماده 2-1 داربم:

$$
\begin{equation*}
\sigma_{3}=0, \quad \tau_{23}=0, \quad, \quad \tau_{31}=0 \tag{11.1.Y}
\end{equation*}
$$

كه رابطه تش- كرنش رابه شـكل ساده زير تبديل مي كند[1] .

$$
\left\{\begin{array}{c}
\sigma_{1} \tag{11.1.r}\\
\sigma_{2} \\
\tau_{12}
\end{array}\right\}=\left[\begin{array}{ccc}
Q_{11} & Q_{12} & 0 \\
Q_{12} & Q_{22} & 0 \\
0 & 0 & Q_{66}
\end{array}\right]\left\{\begin{array}{c}
\epsilon_{1} \\
\epsilon_{2} \\
\gamma_{12}
\end{array}\right\},
$$

 جهات اصلى مواد به شكل زيرند:

$$
\begin{gather*}
Q_{11}=\frac{E_{1}}{1-\nu_{12} \nu_{21}}, \quad Q_{22}=\frac{E_{2}}{1-\nu_{12} \nu_{21}}, \tag{11.1.4}\\
Q_{12}=\frac{\nu_{12} E_{2}}{1-\nu_{12} \nu_{21}}=\frac{\nu_{21} E_{1}}{1-\nu_{12} \nu_{21}}, \\
Q_{66}=G_{12} .
\end{gather*}
$$

از آن جا كه لايه ماى اورتوترايبيك معمـولأنسبت به محورهاى مختصات مرجع در حالـت زاويـه دار ترار مى گيرند، روابط تنش- كرنش در جهات اصلم ماده خواص يكسان، معادله (r . 1 . 11) ، بايد به

$$
\left\{\begin{array}{c}
\sigma_{x} \tag{11.1.0}\\
\sigma_{y} \\
\tau_{x y}
\end{array}\right\}=\left[\begin{array}{lll}
\bar{Q}_{11} & \bar{Q}_{12} & \bar{Q}_{16} \\
Q_{12} & Q_{22} & Q_{26} \\
Q_{16} & Q_{26} & Q_{56}
\end{array}\right]\left\{\begin{array}{c}
\epsilon_{x} \\
\epsilon_{y} \\
\gamma_{x y}
\end{array}\right\}
$$

كه تبديل سختيهاى كاهن يافته

$$
\begin{align*}
& \bar{Q}_{11}=Q_{11} \cos ^{4} \theta+2\left(Q_{12}+2 Q_{66}\right) \sin ^{2} \theta \cos ^{2} \theta+Q_{22} \sin ^{4} \theta, \tag{11.1.9}\\
& \bar{Q}_{12}=\left(Q_{11}+Q_{22}-4 Q_{66}\right) \cos ^{2} \theta \sin ^{2} \theta+Q_{12}\left(\sin ^{4} \theta+\cos ^{4} \theta\right), \\
& \bar{Q}_{22}=Q_{11} \sin ^{4} \theta+2\left(Q_{12}+2 Q_{66}\right) \sin ^{2} \theta \cos ^{2} \theta+Q_{22} \cos ^{4} \theta, \\
& \bar{Q}_{16}=\left(Q_{11}-Q_{12}-2 Q_{66}\right) \sin \theta \cos ^{3} \theta+\left(Q_{12}-Q_{22}+2 Q_{66}\right) \sin ^{3} \theta \cos \theta, \\
& \bar{Q}_{26}=\left(Q_{11}-Q_{12}-2 Q_{66}\right) \sin ^{3} \theta \cos \theta+\left(Q_{12}-Q_{22}+2 Q_{66}\right) \sin \theta \cos { }^{3} \theta, \\
& \bar{Q}_{66}=\left(Q_{11}+Q_{22}-2 Q_{12}-2 Q_{66}\right) \sin ^{2} \theta \cos ^{2} \theta+Q_{66}\left(\sin ^{4} \theta+\cos ^{4} \theta\right) .
\end{align*}
$$

 كه نـبت بـ جهت قرار كر تنت لايهها نامتغيرند تعريف كردند.

$$
\begin{align*}
& U_{1}=\frac{1}{8}\left(3 Q_{11}+3 Q_{22}+2 Q_{12}+4 Q_{66}\right), \\
& U_{2}=\frac{1}{2}\left(Q_{11}-Q_{22}\right), \\
& U_{3}=\frac{1}{8}\left(Q_{11}+Q_{22}-2 Q_{12}-4 Q_{66}\right), \tag{11.1.v}\\
& U_{4}=\frac{1}{8}\left(Q_{11}+Q_{22}+6 Q_{12}-4 Q_{66}\right), \\
& U_{5}=\frac{1}{8}\left(Q_{11}+Q_{22}-2 Q_{12}+4 Q_{66}\right) .
\end{align*}
$$

زير بنويسيم:

$$
\begin{align*}
& \bar{Q}_{11}=U_{1}+U_{2} \cos 2 \theta+U_{3} \cos 4 \theta, \\
& \bar{Q}_{12}=U_{4}-U_{3} \cos 4 \theta, \\
& \bar{Q}_{22}=U_{1}-U_{2} \cos 2 \theta+U_{3} \cos 4 \theta, \\
& \bar{Q}_{16}=-\frac{1}{2} U_{2} \sin 2 \theta-U_{3} \sin 4 \theta, \tag{11.1.1}\\
& \bar{Q}_{26}=-\frac{1}{2} U_{2} \sin 2 \theta+U_{3} \sin 4 \theta, \\
& \bar{Q}_{66}=U_{5}-U_{3} \cos 4 \theta .
\end{align*}
$$

ستختياى كاهش يانته به شُكل بالا از آنهايى كه در مـعادلات (11.9 . 11) بر حسب جهتهاى لايهها

متغير هاى جهت نباز اسست مناسبتر مى باشـند.

شكل 1 | أ قرارداد جيدمان لايهها

 صفحه كه تغير خطى در ضخامت را براى تغيير مكانهاى در صفحه فرض مى كند، در اين جـا الستـنـاده مى شود.

$$
\begin{equation*}
u=u_{o}-z \frac{\partial w_{o}}{\partial x}, \quad v=r_{o}-z \frac{\partial u_{o}}{\partial y}, \tag{11.1.9}
\end{equation*}
$$

در اين نظريه، مؤلفه هاى كرنش در خخامت صفرند، يعنى توزيع كرنش به صورت زير است:

$$
\left\{\begin{array}{c}
\epsilon_{x} \\
\epsilon_{y} \\
\gamma_{x y}
\end{array}\right\}=\left\{\begin{array}{c}
\epsilon_{x}^{o} \\
\epsilon_{y}^{o} \\
\gamma_{x y}
\end{array}\right\}+z\left\{\begin{array}{c}
\kappa_{x} \\
\kappa_{y} \\
\kappa_{x y}
\end{array}\right\},
$$

كه انديس بالايهى o نشان دهندهُ كرنشهاى صفنحه ميانى و انحناىk انحناى صفحه ميانى است. بنابراين،
 حسب سختيهاى كاهش بافته آن لايه خاص بيان شود.

$$
\left\{\begin{array}{c}
\sigma_{x} \\
\sigma_{y} \\
\tau_{x y}
\end{array}\right\}_{k}=\left[\begin{array}{lll}
\bar{Q}_{11} & \bar{Q}_{12} & \bar{Q}_{16} \\
Q_{12} & Q_{22} & Q_{26} \\
\bar{Q}_{16} & Q_{26} & Q_{66}
\end{array}\right]_{k}\left(\left\{\begin{array}{c}
\epsilon_{x}^{o} \\
\epsilon_{y}^{o} \\
\gamma_{x y}^{x}
\end{array}\right\}+z\left\{\begin{array}{c}
\kappa_{x} \\
\kappa_{y} \\
\kappa_{x y}
\end{array}\right\}\right) \cdot(11.1 .11)
$$

تنش هاى برآيند و كشتاورهاى برآيند (زوج تنس) بر واحد طول سطح متطع كه در يكى نقطه لايه اعمال

$$
\begin{align*}
& \left\{\begin{array}{l}
N_{x} \\
N_{y} \\
N_{x y}
\end{array}\right\}=\int_{-h / 2}^{h / 2}\left\{\begin{array}{c}
\sigma_{x} \\
\sigma_{y} \\
\tau_{x y}
\end{array}\right\}_{k} d z=\sum_{k=1}^{N} \int_{x_{k-1}}^{z}\left\{\begin{array}{c}
\sigma_{x} \\
\sigma_{y} \\
\tau_{x y}
\end{array}\right\} d z, \quad \text { (11.1.|Y) } \tag{11.1.1r}\\
& \left\{\begin{array}{c}
M_{x} \\
M_{y} \\
M_{x y}
\end{array}\right\}=\int_{-h / 2}^{h / 2}\left\{\begin{array}{c}
\sigma_{x} \\
\sigma_{y} \\
\tau_{x y}
\end{array}\right\}_{k} z d z=\sum_{k=1}^{N} \int_{x k-1}^{z k}\left\{\begin{array}{c}
\sigma_{x} \\
\sigma_{y} \\
\tau_{x y}
\end{array}\right\} z d z . \quad \text { (11.1.|r) }
\end{align*}
$$

با جايگزينى رابطه تنش- كرنش معادله (11 . 1 . 11)، روابط حاكم لايه به شكل زير به دست مى آيد:

$$
\left\{\begin{array}{c}
N_{z} \\
N_{y} \\
N_{x y}
\end{array}\right\}=\left[\begin{array}{lll}
A_{11} & A_{12} & A_{16} \\
A_{12} & A_{22} & A_{26} \\
A_{16} & A_{26} & A_{66}
\end{array}\right]\left\{\begin{array}{c}
\epsilon_{x}^{o} \\
\epsilon_{y}^{o} \\
\gamma_{x y}
\end{array}\right\}+\left[\begin{array}{lll}
B_{11} & B_{12} & B_{16} \\
B_{12} & B_{22} & B_{26} \\
B_{16} & B_{26} & B_{66}
\end{array}\right]\left\{\begin{array}{c}
\kappa_{x} \\
\kappa_{y} \\
\kappa_{z y}
\end{array}\right\} \text {,(11.1.14) }
$$

$$
\left\{\begin{array}{c}
M_{x} \\
M_{y} \\
M_{x y}
\end{array}\right\}=\left[\begin{array}{lll}
B_{11} & B_{12} & B_{16} \\
B_{12} & B_{22} & B_{26} \\
B_{16} & B_{26} & B_{66}
\end{array}\right\}\left\{\begin{array}{c}
\epsilon_{c}^{o} \\
\epsilon_{y}^{o} \\
\gamma_{x y}
\end{array}\right\}+\left[\begin{array}{lll}
D_{11} & D_{12} & D_{16} \\
D_{12} & D_{22} & D_{26} \\
D_{16} & D_{26} & D_{66}
\end{array}\right]\left\{\begin{array}{c}
\kappa_{x} \\
\kappa_{y} \\
\kappa_{s y}
\end{array}\right\},(11.1 .10)
$$

$$
\begin{align*}
& A_{i j}=\sum_{k=1}^{N}\left(\bar{Q}_{i j}\right)_{k}\left(z_{k}-z_{k-1}\right), \tag{11.1.19}\\
& B_{i j}=\frac{1}{2} \sum_{k=1}^{N}\left(\bar{Q}_{i j}\right)_{k}\left(z_{k}^{2}-z_{k-1}^{2}\right), \tag{11.1.1V}
\end{align*}
$$

$\Delta \Delta{ }^{\prime \prime}$ بخش

$$
\begin{equation*}
D_{i j}=\frac{1}{3} \sum_{k=1}^{N}\left(\bar{Q}_{i j}\right)_{k}\left(z_{k}^{3}-z_{k-1}^{3}\right) \tag{11.1.11}
\end{equation*}
$$

r r 11 . 1 همبستكى خششى، كششى و برشى
 ،B كستاورهاى برآيند را به انحنا مربوط مى سازند . از طرف ديكـر، مساتريسه ميانى و ماتريسس تنش هاى صفنحاى برآيند را به انتحناها و كثتاورهاى برآيند را به كرنشهاى صفشه ميانى مربوط مى كنـد، و
 كاربردهاى سازهأى خاصى ابزار مفيدى است. اكر تمايل به استفاده از اين ماتريس نبود، با ترار دادن متقارن لايه ها با جهتهاى مشختلف نسبت به حفهح ميانى يك جـند لايه، مى توان از ماتريس B الجتنابب كرد. با اين
 برای اجتناب از ليوند است. توسط كنديل و ورجرى [5] نتُان داده شد كه كروه خاصى از جند لا يه ها، مانند هند لا به هايع كه از دو زير هند لايه متمارن ديكر تشكيل شده اند و تعداد نكى لايه ها مســاوى ولـى جـهـتـت

 ممكن اسـت تركيب مشخخصى از سسختيهاى خمشى صفـحه أى را محدود كند.

 جملات لايه ها مى توان اين جملاتت بيوند را-سذف كرد. به عنوان مثال، با استفاده از زاويه منغى لايه هابه ازاى هر لايه اي باز زاويه مثبت زياد در جند لايه، فرد مي تواند ممبيتكى برشي-كششي را سذف كند . جنين لايه هايى را لايه هاى متوازن مي كويند. در همين حال، جمملاتى مشابه براى متناسـب سازى پاسخ يكى لايه در يكي طراحى مشخصى نيز به كار مي رود مانتد متناسب سازى آثروالاستنيك

 طر اسحى ، المتفاده از سينوس يا كسينوس حند برابر زوايا (معادلات A . . . ا ا بابينيد) مفيدتر امـت به ويزه براى به دست آور دن حساسيت اين ماتريسها نسبت به متغيرهاى طراسحى بهتهاى زوايه ها . به عنوان مثال

$$
\begin{equation*}
\left\{A_{11}, B_{11}, D_{11}\right\}=\int_{-h / 2}^{h / 2} \bar{Q}_{11}\left\{1, z, z^{2}\right\} d z \tag{11.1.19}
\end{equation*}
$$

و فرض اين كه لايه ها از يكى جنس باششند داريـم :

$$
\left\{A_{11}, B_{11}, D_{11}\right\}=U_{1}\left\{h, 0, \frac{h^{3}}{12}\right\}+U_{2} \int_{-h / 2}^{h / 2} \cos 2 \theta\left\{1, z, z^{2}\right\} d z+U_{3} \int_{-h / 2}^{h / 2} \cos 4 \theta\left\{1, z, z^{2}\right\} d z
$$

$$
(11.1 . r *)
$$

عبارات مشُابهى رامي توان برا؟ سماير جملات سشتي يافت كه در جدول | . 11 . 11 خلاحه شده اند كه عبارت Vها به شكل زير امـت.

	$V_{0\{\mathbf{A}, \mathbf{B}, \mathbf{D}\}}$	$V_{1\{\text { A, B. }}$ ¢ $\}$	$V_{\text {2\{A.B.D }\}}$	$V_{\text {3(A.B.D) }}$	$V_{4\{\text { A.B.D }\}}$
$\left\{A_{11}, B_{11}, D_{11}\right\}$	U_{1}	U_{2}	0	U_{3}	0
$\left\{A_{22}, B_{22}, D_{22}\right\}$	U_{i}	$-U_{2}$	0	L_{3}	0
$\left\{A_{12}, B_{12}, D_{12}\right\}$	U_{4}	0	0	$-\mathrm{C}_{3}$	0
$\left\{A_{66}, B_{66}, D_{66}\right\}$	U_{5}	0	0	$-U_{3}$	0
$2\left\{A_{16}, B_{16}, D_{16}\right\}$	0	0	$-L_{2}$	0	$-2 U_{3}$
$2\left\{A_{26}, B_{26}, D_{26}\right\}$	0	0	$-L_{2}$	0	$2 U_{3}$
$V_{0\{\mathbf{A}, \mathbf{B}, \mathbf{D}\}}=\left\{h, 0, \frac{h^{3}}{12}\right\}$					
$V_{1\{\mathbf{A}, \mathbf{B}, \mathrm{D}\}}=\int_{-h / 2} \cos 2 \theta\left\{1, z, z^{2}\right\} d z$					
	$V_{2\{\mathbf{A}, \mathrm{~B}}$	$=\int_{-h / 2}^{h / 2} \sin$	$\left.1 . z, z^{2}\right\} d z$	(11.1.r1)	
	$V_{3\{\mathbf{A}, \mathbf{B}, 1}$	$=\int_{-h / 2}^{h / 2} \cos$	$\text { 1. } \left.\approx, z^{2}\right\} d z$		

$$
V_{4\{\mathbf{A}, \mathrm{~B}, \mathrm{D}\}}=\int_{-h / 2}^{h / 2} \sin 4 \theta\left\{1 . z, z^{2}\right\} d z
$$

انتكرالهاى بالا را مى توان با علامت جمع نيز جايكزين نمود.

I I.F
ماتريسهاى سختى چخند لايه كه در بخشت تبل بيان شدند را مى تران با تغير نعداد لا يه ها و جهتهايشان
 هند لايه و ضخامتآن را تغير دهيم. در بسيارى از كاريردهاى عملى، ممبستكى خمـنى- كسـنـى و برنى- كششنى نامطلوبند. در نتيجه، بيشتر چخند لايه هايى كه امروزه بد كار مى روند متقارن و متوازنتد و هيّج كونه همبستىى ندارند. هند لايه هاى متقارن متوازن از نظر تحليل نيز ساده ترند . بهعنـوان مـــال، ،

 كار ماى بهينه سازى تاكتون در زمينه لايه هاى متفارن متوازن برده است. در ادامه اين نصلل، تنها جـنـين لايه هايى مورد نظرند.

بيتتر مواد مركب تجارى در دسترس ضخامت تكى لايه مشخص و ثابنى دارند. افزون بر اين بيشثتر

 بر اساس استفاده از آن نوع متغير ها بوده است عنوان ضخالمت تكى لايه محسوب مى شود كه معمرلا بد عنران متغيرهاى طراحى استفاده مى شُوند. جهت

 تجارى در دسترس (يا جهتهاى لايي ماى تراردادى) كرد كرد. با اين وجود، منكامى كه تعداد متنير مـاى

OAf بايد براى يكى ترتبب جيدمان خاص رابطه سازى شُمود و ن، اين كه بهينه سازى بهترين تربيت جيـلمـان را بدست آورد. به اين دلايل، روز به روز ميزان كاربرد روشهاى برنامه ريزى صحيح در طراحى جند لايه ها افزوده مى يمود. اين فصل رابا تشريح رونُهايى كه از متغيرهاى طراحى بيومته استفاده مى كـنـند شـروع مى كنيم و توضيح روشُهايى كه از برنامه ريزى صصيح استفاده مى كتندرا به بخش

 طراحى مى شُود . برایى سادكى بحث اين دو حالت رابه طرر جداكانه مرور مى كنيم.
 متغيرهاى ضتخامت تك لایه هـ : يكى از كارهاى اوليه در زمينه طراحى چند لايه براى مقاومت و مسختى صفتحه الى كار اسميت و فرشى '[6] است كه جند لايه هاى متقارن متوازن با جهت لايه هاى نأبت در نظر كرنتند. ضخامت هر لا يه $t_{i}, i=1, \ldots, I$ با جهتهاى قرار كرفتن مغتلفـ به عنوان متغير هاى طراحى در نظر كرفته شده اند. به سببـ وجود مسلوديت متقارن بودن لايه ها، تنها ضشامـت نصـف I از تعداد كل
 قرار دارند كه گKتعداد حالتهایى بار گذارى انـت . مسأله بهينه سازى به شكل زير رابطه سازى مى شمود :
$W=\sum_{i=1}^{\prime} 2 \rho_{i} t_{i}$
$g_{i j k}^{z}=1-\left(P_{j}^{(i)} \epsilon_{1 i k}+Q_{j}^{(i)} \epsilon_{2 i k}+R_{j}^{(i)} \gamma_{12 i k}\right) \geq 1$, $A_{11} \geq A_{11 t}, \quad A_{22} \geq A_{221}, \quad A_{66} \geq A_{661}, \quad$ (11.Y.Y) $t_{i} \geq 0$,

كه

مى كتند و

 A $A_{111}, A_{22 I}$
رويكردى كه توسط اشمبت و فرشى استفاده شد، مسالّه برنامهر ريزى غير خططى نعريف شده در معادلات

 ضيخامت امت و بنابراين به شكل زير خطى مى شود:
 كه مشتفات كرنتهاى اصـلى در ' أمـين لايه بارابطه انتقال زير به مشتقات كرنتهاى جـند لايه مـربوط مى شوند

$$
\begin{equation*}
\frac{\partial \varepsilon_{i k}}{\partial t_{i}}=\mathrm{T}_{i} \frac{\partial \varepsilon_{k}^{o}}{\partial t_{t}}, \tag{ll.r.v}
\end{equation*}
$$

$$
\mathrm{T}_{i}=\left[\begin{array}{ccc}
\cos ^{2} \theta_{i} & \sin ^{2} \theta_{i} & \cos \theta_{i} \sin \theta_{i} \tag{11.Y.A}\\
\sin ^{2} \theta_{i} & \cos ^{2} \theta_{i} & -\cos \theta_{i} \sin _{i} \theta_{i} \\
-2 \cos \theta_{i} \sin \theta_{i} & 2 \cos \theta_{i} \sin \theta_{i} & \left(\cos ^{2} \theta_{i}-\sin ^{2} \theta_{i}\right)
\end{array}\right] .
$$

برایى بار كذارى صنغحه|یى ضيخامت را مى تون با ديفرانسيل كيرى از معادله (N = A

$$
\begin{equation*}
\frac{\partial \mathbf{N}_{k}}{\partial t_{t}}=\frac{\partial \mathbf{A}}{\partial t_{l}} \varepsilon_{k}^{o}+\mathbf{A} \frac{\partial \varepsilon_{k}^{o}}{\partial t_{l}}=0 \tag{11.r.9}
\end{equation*}
$$

$$
\begin{align*}
& \frac{\partial \mathbf{A}}{\partial t_{i}}=\overline{\mathbf{Q}}_{\mathbf{i}}, \\
& \text { (11.Y.1.) } \\
& \text { در نتيجه از معادله (9. . Y . Y) دإيـم: } \\
& \frac{\partial \varepsilon_{k}^{o}}{\partial t_{l}}=-\mathbf{A}^{-1} \overline{\mathbf{Q}} \varepsilon_{l}^{o} . \tag{11.Y.11}
\end{align*}
$$

 مرسله از بهينه سازى طراحى مورد استفاده ترار داد .

امُميت و فرشى علاوه بر تقريب قيود يكى فن حذذ قيد را نيزُ مورد استفاده ترار دادند كه در آن تـنـهـا تيودى كه در هر مرحله تقريب سازى قيود بالقوه بحرانى اند در نظر كرفته مى شدند .

نحوه " تيدمان و تعداد لغهd ها	زاويه جهت اليانٌ (deg)	طراحي اوليه t_{i} (in.)	طرامی نهايت t_{f} (in.)	طراحى نهايس \%	تعداد لإه 10 (
[0/土45/90],					
1.	0°	0.032281	0.018793	28.96	4
2	+45 ${ }^{\circ}$	0.032281	0.023048	35.52	6
3	-45°	0.032281	0.023048	35.52	6
4	90°	0.032281	0.000000	0	0
	$\sum t_{i}$	0.129124	0.064890		
[0/士45]					
1	0°	0.034194	0.012555	21.12	3
2	$+45^{\circ}$	0.034194	0.023441	39.44	6
3	-45 ${ }^{\circ}$	0.034194	0.023441	39.44	6
	$\sum t_{i}$	0.102583	0.059438		

نتايج طراحى بهين براى انواع جند لايه هاى متداول با جهت لاى 0 درجه، \pm د درجه و 90 درجه وبا تركيب مختلف بارهاى نرمال صفتحهأى و بارهاى برشّى كه در مرجم [6] ار اثه شده ، أهميت انتخاب ترتبب هيدمان در طط.ح بهين را بازكو مى كند . به عنوان مثال، براى يكى هند لايه كه تحت اثر تنش محورى قرار

اولين لايه حذن شود . نتيجه اين لايه ها كه در مرجع [6] آملهه در جدول I . 11 . Y خلاصه شده اسـت.
 مقايسه كنيم، سدود 9% به سبب لايه اضافى 0 درجه خاخيمتر است. اين لايه اضافى به سبب جلوكيرى از نقض قيد مقارمت در لايه" 90 درجه در اولين هند لايه است. بنابر اين به منظور رسيلن به جواب بهين صحيح، طراع بايد فرايند بهينه سـازى رابا تعريف لايه هاى متفاوت تكرار كند، به ويزّه باحذن لايه هاعى كه به مقادير حدى لائين خحود همكُرا مى شوند. با اين وجود، اين حقيقت كه يك لايه مقدارى به جز ســــ لايين خود مى گيرد، نبايد اين تصور رأ به وجود آورد كه آن لايه براى طراحى بهين ضرورى است . يعنى، اين كه اگر يك لايه با ضشخامتى به جز حلـ وايين خود حذن شُود، روئ بهينه سـازى مى تواند ساير لايه ها را تغيير اندازه دهد تا به وزنى كمتر از آنجهه بود برسد، كاملزا امكان پذيراست . اين واتعيت مى تواند روند طراحى را دشوار سـازد، زيرا نياز است كه تمامى تركيبهاي با زواياى هشـخـص كـه قـبلاّانتخاب شـده اند آزمايشُ شُوند . با اين وجود، در بيشتر كاربردهاى عملى، لايه هايى با اليافهايى در جهت خـاص (مـانــد
 اععمال مى شود و حذن لايه را به عنوان بك گزينه فرار نمى دهند . در مورد بار كذارى جند كانه نيز طراحى هنان است كه حذن لايه ها امكان بذير نيــت. متغيرهاى جهت لايه : برأى يافتن ترتيب خيلمان هـند لايه كه در بار كّذارى مورد نظر بهتريـن حـالــت باشد، جهت قرار كرفتن لايه ها و ضـخامت لايه ها بايد به عنوان هتغير هاى طراحـى استـفـاده شـونـــ ـ در واتع، در بسيارى از كدهـاى' (برنامه هاى) طراحى هر دو هارامتر به عنوان متغير طراحى در نظر كرختـه مى شُود . به منظور تشريح استناده از جهتهاى لايهبهعنوان متغيرهاي طراحى، روى مثالى با تنها متغيرهاى جهت لايه متمركز مى شويـم • برای مسائل بهينه سـازى كه برای مينــمـم شدن وزن طـراحـى رابـطـه سـازى شده اند، تابع هدن مستقل از جهـت لايه هاست. بلدين سبب در همكرامى به جواب بهيـن در بـعـضى از الكوريتمها ممكن است مشكلاتى ايجاد شود. يكى كزينه جايگزين برای تابع هدن مينيمـم سـازى وزن ، ماكزيمم سـازى مقاومت لايه هاست كه توسط باركٌ [7] و مسـاردr [8] تشريح شده است .
 تقريب بوشُ شكست در نضاى كرنش[9] يك معيار شكست اولين لايه (FPF) در جه دوم به كار برد . اين
 يوش شكست تقرييى عبارت اسست از :

$$
\begin{equation*}
\epsilon_{x}^{2}+\epsilon_{y}^{2}+(1 / 2) \gamma_{x y}^{2}=b_{0}^{2} \tag{II.Y.IY}
\end{equation*}
$$

كه ${ }^{\text {b }}$ تها بر حسب نحواص سـختي در جهات ماده احلى تعريفـ مى شود . تابع هدن كه بايل مينيمبم شود
به صورت زير تعريف مى شود:

$$
\begin{equation*}
f=\epsilon_{x}^{2}+\epsilon_{y}^{2}+(1 / 2) \gamma_{x y}^{2} \tag{11.Y.1H}
\end{equation*}
$$

كه بيانكُر مجذور نرم بردار كرنش است . هر چه مقدار تابع هدن كو خكتر باشد، بارى كه مى توان قبل از نقضى یوش شكست به چند لايه اعمال كرد بيشتر الست، بنابراين ، هند لايه در FPF توى تر اسمت. يكى از ريزُ كيهاى اين بوش شكست كرنش تقريبى اين است كه در مورد كرنشهاى جند لايه اعمال مى شـود و بـه محامبات كرتش در سطع لايه ها نيازى ندارد. در مرجع[7] تنها هند لايه هاى متقارن متوازن مورد توجه

 لايه به طور خطى تغيير مى كند و مسدوده الى از جهتهاي $\theta-$ تا θ درجه را مى ثوشـاند. نتيجه هاى مرجـع [7] نـشان داد كه در شرايطط بار گذارى تركييى، بهترين چند لايه، بر امساس مـعيبار
 بار كذارى طولى، بهترين جند لا يه ه بستگى به مقدار بار عرخى

 45 درجه بود. . با انز ايش بار عرضـي مى رمد. . جند لايه ييوسته در مجموع بهترين عملكرد را در ثمر ايط تركيبى بار كذارى طولى و برشي داشته

$$
\text { . } N_{y}=0, \pm \pm 55
$$

نتيجنه هاى بالا از اين جهت جالب به نظر مى رسند كه اليانها عـمـومـاً در يكى جهت موازى با بارهـاى

بنه 11.7 :طراسم هیندلاي
وارده قرار مى كرفتند . امـا حنين بردااشتتى ممكن امست در كار با مواد مركب مـيـثـه بـه طـراحى بـهين نينجامد . به عنوان مثال، به مورد امستفاده معيار تنش تسليـم هـيل ' كه توسط ثــاى T [10] در مواد مركب برالى بيش بينى مقاومت مواد مركب تكل جهتك به ثـكل زير به كار مى رود توجه كنيد .

$$
\begin{equation*}
f=\left(\frac{\sigma_{1}}{X}\right)^{2}-\left(\frac{\sigma_{1} \sigma_{2}}{\tilde{X}^{2}}\right)+\left(\frac{\sigma_{2}}{Y}\right)^{2}+\left(\frac{\tau_{12}}{S}\right)^{2} \leq 1 \tag{II.Y.|Y}
\end{equation*}
$$

مقادير Y X X استحكامهاى نرمال در راستاى الياف و عمود بر الياف، و S مقاومت برشي تك لايه اسـت . برند ماير ${ }^{\circ}$ بنان داد[11] كـه اكـر معاومت عرضى نرمال Y از مقاومت برشى S كمتر باشـد، جهت بهينه قراركيرى اليانها در امتداد جهت تنشهاى اصلى نيست و به معادير كميتهاى متاومت و تنشهاى اعمال شدهـ بستگى دارد. اين موضوع را مى توان با بيان تنشهاى اصلى بر حسسب تنشهاى اعمال شده جهت اليانها θ ، و برابر صغر قرار دادن مستّت معادله (I I . Y . I Y) نسبت به جهت الياف نشان داد (تمرين ا را ببينيد) .
بك روشّ ترسيمى برابى طراسى بهيز: يكروش ترسيهى كه توسط ميكى " [12,13] ، براى طراحى هند لايه ها با خخواص ستختى صفحه ایى اراثه شُد ابزارى بـسيار عملى در بهينه مـازى طراحى اسـت . ايـن روش

 متوازن، يكى لايه تكى جهته كه مسورهانى اصلى موادآن با محورهاى هند لايه منطبت باشـد نيز مى توانتد در هيلمان قرار داثـته باشثد .
كار اصلى در اين روش طراحى ساخـت نمودار پارامتر لابه امست كه ناحيه قابل فبول بارامترهاى لايـه

 در آن نسبت حجم لايه ها با جهت

$$
V_{1}^{*}=\frac{V_{1 \mathbf{A}}}{h}=\sum_{k=1}^{I} v_{k} \cos 2 \theta_{k}, \quad, \quad V_{3}^{*}=\frac{V_{3 \mathbf{A}}}{h}=\sum_{k=1}^{I} v_{k} \cos 4 \theta_{k}, \quad(11 . Y .10)
$$

$$
\begin{equation*}
v_{i}=\frac{2\left(z_{i}-z_{i-1}\right)}{h}, \quad, \quad \sum_{i=1}^{I} v_{i}=1 \tag{11.r.19}
\end{equation*}
$$

به سبب نرمال سازى، مقادير بارامترهاى لايه هميشّ كراندارند بعنى

$$
\begin{array}{ll}
V_{1}^{*}=\cos 2 \theta, \quad, \quad V_{3}^{*}=\cos 4 \theta, \quad \text { (II . Y. IV) } \\
& \text { و دو بارامتر به شیل زير به هم مربوط می شوند }
\end{array}
$$

$$
\begin{equation*}
V_{3}^{*}=2 V_{1}^{-2}-1 \tag{11.r.iN}
\end{equation*}
$$

 مقادير ثابتهاى ارتجاعى مهندسى مى تواند به شُكل زير به دست آيد.

$$
E_{x}=\frac{1}{h}\left(\frac{A_{11} A_{22}-A_{12}^{2}}{A_{22}}\right)
$$

$$
\begin{equation*}
E_{y}=\frac{1}{h}\left(\frac{A_{11} A_{22}-A_{12}^{2}}{A_{11}}\right) \tag{11.r.19}
\end{equation*}
$$

$$
G_{x y}=\frac{1}{h} A_{66}, \quad, \quad \nu_{x y}=\frac{A_{12}}{A_{22}}
$$

هFW بُشت
كه عناصر ماتريس سختى كشسى هند لايه از معادلات زير از جلوول (1 . 1 . 1) به دست مى آيند.

$$
\left\{\begin{array}{l}
A_{11} \\
A_{22} \\
A_{12} \\
A_{66}
\end{array}\right\}=\left[\begin{array}{ccc}
U_{1} & V_{1 \mathbf{A}} & V_{3 \mathbf{A}} \\
U_{1} & -V_{1 \mathbf{A}} & V_{3 \mathbf{A}} \\
U_{4} & 0 & -V_{3 \mathbf{A}} \\
U_{5} & 0 & -V_{3 \mathbf{A}}
\end{array}\right]\left\{\begin{array}{c}
h \\
U_{2} \\
U_{3}
\end{array}\right\}, \quad(H . Y . Y \cdot)
$$

كه اكرجندلايه ازدو جهت اللياف يابيشترتسكيـل شـده باشد، ميكى[12] نشان داد كه معادله (1 . Y. . . .

يكى نامعادله مى شود.

$$
\begin{equation*}
V_{3}^{*} \geq 2 V_{1}^{-2}-1 \tag{II.Y.YI}
\end{equation*}
$$

ناحيه مجاز بارامترهاي لابه عبارت است از مسطحى كه توسط منـسـنى ABC در شكل I . . Y . Y مسلود شده است، و به تعداد جهتهای تك لايه هاى مشتلف بستكى ندارد. بنابرايـن مـر نـقـطه در داخـل نمـودار بارامتر لايه مربوط به جند لايهاى بادو جهت الياف يا بيشتر مى شود. از آن جا كه يكى نتطه بـا دو يـارامتر
 ستنى دلخواه كانى است. براى جند لايه ای بازاويه تكى لايه ستوازن با بيش از دو جهت، تركيبهاى متعددى از زاويه تك لايه وجود خواهد داشت كه بارامترهاى لايه مشابهى دارند و بنابراين خحواص سختى آتها همانتلـ است . هر نتطه در داخل نفـاى طراححى يك نتطه لايه ناميده مى شود و به يكى لايه با خواص سسختى خاص مربرط مى شود. محلود سازى مقادير مجاز مسختيهاي مهندسى مؤثر مـختـلنف(طريق ترميـى نيز امكان يذير است. اين كار با تعريف خخطوط سـختيهاى مهندسى مؤنر ثابت (كـانتـورهـا)

: كانتورهاى $E_{x}: V_{3}^{=}=\frac{U_{2}^{2} V_{1}^{* 2}-U_{2} E_{r} V_{1}^{m}+E_{x} U_{1}-U_{1}^{2}+U_{4}^{2}}{U_{3}\left(2 U_{1}+2 C_{4}^{*}-E_{r}\right)}, \quad$ (II.Y.YY)
: كانتورهایى E_{y} : $\quad V_{3}^{*}=\frac{U_{2}^{2} V_{1}^{2}+U_{2} E_{y} b_{1}^{r=}+E_{y} U_{1}-L_{1}^{2}+U_{4}^{2}}{U_{3}\left(2 U_{1}+2 L_{4}^{*}-E_{y}\right)}$,
كانتورهالى : ν_{3} ثابت $\quad V_{3}^{\prime *}=\frac{\nu_{x y} L_{2} \Gamma_{1}^{*}-\nu_{x y} L_{I}+U_{4}}{\left(1+\nu_{x y}\right) U_{3}^{*}}$,
كاتتورهای : $G_{\text {ثابـت }}$: $\quad V_{3}^{*}=\frac{L_{5}^{*}-G_{x y}}{U_{3}}$.

ششكل I I. Y. Y كانتورهایى خحراص ارتجاعى مهندسـى موئرثابـبت
 مى دهد كه اكر قيود ديكرى تعريف نتشوند، مقادير ماكزيمم در مـرز نضاى طراحى واتعند به دست مى آيند كه تنها يكى زاويه دارند. همجـنـان كـه انتـظـار مـى رود؛ ماكزيمّ براى جند لايـه 45 [士 45 به دست مى آيد . با اين وجود، به دسـت آوردن مـــدار زاويـه لايـه بواسان مؤنر را ماكزيمـم مى سازد، راحت نيست و يكى تابع از خـــواصى لايـه است كه تـو سـط معـادلات (I I . I . Y) و (I V)

تكى لايه السكاج يلى1002ايوكسى/شيشمه، لايه هايى كه بيسترين ضريب بواسمان را نوليد مى كتند به ترتيب عبارتند از

در مسائل طراحى كه يك يا جند ثابت مهندسى موثر مقيد است، كانتور خواص ثاببت را مى توان براى شُناسانى نضـاى طراحى تابل تبول و نقطه لايه ایى كه خاصيت ستختى مورد نظر را ماكزيمـم (يا ميـنيـــمم)
مى سازد به كار برد (تمرين 「 را بينيد) .

II . Y. Y
 ابعاد صفته نسبت به خـخامت آن زياد باشد، قيد مقاومت بى اهميت مى شود . براى جنيـن صفــحـاتى
 مطالعات اوليهأى كه در طراحى بهينه صفسات مواد مركب قيد بايلارى ارتجاعني را در نظـر كـرفتـن بـود توسط الثـميت و زششى[14] انجام شده است.
 نفط با استفاده از ضـخامت به عنوان متغير طراحى زير اعمال مى شود.

$$
\begin{equation*}
g_{b}(t)=1-\lambda_{b}(t) \geq 0, \tag{11.Y.Yя}
\end{equation*}
$$

كه در آن t بردار متغير هاى طراححى و ضشامتهاى هر لايه در جند لايـه مـى بـاشـــد و λ ضريب بار كمانـش است . براى يكى حند لايه متوازن متقارن به ابـعاد a و b كه مرزهاى آن تكيه كاه ساده اسـت و تحتـ تأثـر بارهاي صفتحه ایى است، يك تابع تغير مكان به شكل

$$
\begin{equation*}
w(x, y)=\sum_{n=1}^{N} \sum_{m=1}^{M} W_{m n} \sin \frac{m \pi x}{a} \sin \frac{n \pi y}{b}, \tag{II.Y.YV}
\end{equation*}
$$

مود كـانش مربوط بم الكُوى تنير مكانهاى عرضى $M \times N \times N$ است. الين نوع تغيير مكانها، شرايط مرزى را به طور كامل برآورده مى سازند . يكى مـرى تطـع شــده را مى توان برالى حل تقريبى مسادله ديفر انسيل حاكم بر كـانش صفتحه اورتوترابيكى به كاربرد $D_{11} \frac{\partial^{4} w}{\partial x^{4}}+2\left(D_{12}+2 D_{66}\right) \frac{\partial^{4} w}{\partial x^{2} \partial y^{2}}+D_{22} \frac{\partial^{4} w}{\partial y^{4}}=\lambda\left(N_{r} \frac{\partial^{2} w}{\partial x^{2}}+N_{y} \frac{\partial^{2} w}{\partial y^{2}}+2 N_{x y} \frac{\partial^{2} w}{\partial r \partial y}\right)$, (11.Y.YA)

كه هعادله تعادل و كاربرد روش كلركين ' برایى يك مساله مقدار ويرٔه به شكل :

$$
\begin{equation*}
\mathbf{K} \mathbf{w}=\lambda \mathbf{K}_{G} \mathbf{w}, \tag{11.Y.YQ}
\end{equation*}
$$

$\mathbf{w}=\left\{W_{11} \ldots W_{1 N} W_{21} \ldots W_{2 N} \ldots W_{M N}\right\}^{T}$ كه بردار ويزه حاوى ضرايب مجهول تابع تغيير مـكـان است. ماتريسهاى K K K

$$
\mathbf{K}=\frac{a b}{4}\left[\delta_{m p} \delta_{n q} f_{m n}\right], \quad\left\{\begin{array}{c}
m, p=1, \ldots, M \tag{11.Y.r.}\\
n, q=1, \ldots, N
\end{array}\right\}
$$

$$
\begin{equation*}
f_{m n}=\pi^{4}\left[D_{11}\left(\frac{m}{a}\right)^{4}+2\left(D_{12}+2 D_{66}\right)\left(\frac{m}{a}\right)^{2}\left(\frac{n}{b}\right)^{2}+D_{22}\left(\frac{n}{b}\right)^{4}\right] \tag{11.r.ri}
\end{equation*}
$$

$$
\mathbf{K}_{G}=\left[8 N_{x y} \xi_{m n p q}-\delta_{m p} \delta_{n q} \frac{\pi^{2}}{4}\left(\frac{b}{a} m^{2} N_{x}+\frac{a}{b} n^{2} N_{y}\right)\right] \quad\left\{\begin{align*}
m, p & =1, \ldots, M \tag{11.Y.rY}\\
n, q & =1, \ldots, N
\end{align*}\right\}
$$

AfY بخش

$$
\begin{aligned}
& \xi_{m n p q}=\left\{\begin{array}{c}
0, \text { sip } 1 p m \text { or } q=n \\
\frac{m n p q}{\left(p^{2}-m^{2}\right)\left(q^{2}-n^{2}\right)} \delta^{p m} \delta^{q n}
\end{array}\right\},
\end{aligned}
$$

 برالى يك صفنحه با تكيه كاه ساده تتحت بارهاى نشارى محورى تنها

$$
\lambda_{c r}(m, n)=\frac{\pi^{2}\left[D_{11}\left(\frac{m}{a}\right)^{4}+2\left(D_{12}+2 D_{66}\right)\left(\frac{m}{a}\right)^{2}\left(\frac{n}{b}\right)^{2}+D_{22}\left(\frac{n}{b}\right)^{4}\right]}{\left(\frac{m}{a}\right)^{2} N_{x}+\left(\frac{n}{b}\right)^{2} N_{y}}, \text { (I.Y.rr) }
$$

 انُميت و فرشّى همهنان كه در مورد تيد مقاومت معادله (I I . Y . Y) انججام دادند، يك تقريب نخطى براى تيدهاى كمانش به شكل زير به كار بردند :

$$
g_{L}(\mathrm{t})=1-\lambda_{b}\left(\mathrm{t}_{0}\right)-\left.\sum_{i=1}^{1}\left(t_{i}-t_{0 i}\right) \frac{\partial \lambda_{b}}{\partial t_{i}}\right|_{t=t_{0}} . \quad(11 . Y . \Gamma \Psi)
$$

توجه كنيد كه از مسادله (

$$
\begin{equation*}
\frac{\partial \lambda_{k}}{\partial t_{i}}=\frac{\mathbf{w}_{k}^{T} \frac{\partial \mathbf{K}}{\partial t_{i}} \mathbf{w}_{k}}{\mathbf{w}_{k}^{T} \mathbf{K}_{G} \mathbf{w}_{k}} \tag{11.r.ro}
\end{equation*}
$$

از آن جا كه ماتريـس K تابعى از سختى خحثـى است، براى مـشـتـت K نسبت به متغيرهاى طـرآحـى يـى عبارت حريح مى توان نومــت:

$$
\begin{equation*}
\frac{\partial k_{p q}}{\partial t_{i}}=\frac{a b}{4}\left[\delta_{m p} \delta_{n q} \frac{\partial f_{m n}}{\partial t_{i}}\right] \tag{11.r.rg}
\end{equation*}
$$

كه

$$
\begin{equation*}
\frac{\partial f_{m n}}{\partial t_{i}}=\pi^{4}\left[\frac{\partial D_{11}}{\partial t_{i}}\left(\frac{m}{a}\right)^{4}+2\left(\frac{\partial D_{12}}{\partial t_{i}}+2 \frac{\partial D_{66}}{\partial t_{i}}\right)\left(\frac{m}{a}\right)^{2}\left(\frac{n}{b}\right)^{2}+\frac{\partial D_{22}}{\partial t_{i}}\left(\frac{n}{b}\right)^{4}\right] . \tag{II.Y.ry}
\end{equation*}
$$

مُتقات جز نى سختيهاى خحشّى رامى توان به مشتقات جزئى ماترس سشختى صفحةأى A Aربوط كرد . براى يك جند لايه شبه همكن كه در آن از جملات بيوند خمشن - يجخش
 توسط رابطه زير بهم مربوط مى شُوند (حفحهُ Y Y ب مر جع [9] را بينيد) .

$$
\begin{equation*}
D_{i j}=\frac{h^{2}}{12} A_{i j} \tag{A}
\end{equation*}
$$

كه h ضخامت جند لايه مى باشد. بنابراين مشتقات جزئى سختيهاى خمشى عبارتند از

$$
\begin{equation*}
\frac{\partial D_{r s}}{\partial t_{i}}=\frac{1}{12}\left[\left(\frac{\partial A_{r s}}{\partial t_{i}}\right) h^{2}+2 A_{r s} h\right], \quad r, s=1,2,6 \tag{11.Y.rq}
\end{equation*}
$$

 بهينه سازى كمانُشترسيمى: مانند نمودار صفحهاى كـه قبلاً بحث شد، ميكى[15] نشان داد كهبراى
 شـكل زير تعريف ميكنيم:

$$
W_{1}^{*}=\frac{12 V_{1 \mathrm{D}}}{h^{3}}=\sum_{k=1}^{I} s_{k} \cos 2 \theta_{k}, \quad, W_{3}^{*}=\frac{12 V_{3 \mathrm{D}}}{h^{3}}=\sum_{k=1}^{I} s_{k} \cos 4 \theta_{k}, \text { (II.Y.Y.) }
$$

g $I=N / 2$ ك

$$
\begin{align*}
& s_{i}=\left(\frac{2 z_{i}}{h}\right)^{3}-\left(\frac{2 z_{i-1}}{h}\right)^{3} . \tag{11.r.F1}\\
& \text { ميكى نشان داد[15] كه رابطه|| مانتد (I Y Y Y Y Y Y به دست مى آيد. } \\
& W_{3}^{*} \geq 2 W_{1}^{* 2}-1 .
\end{align*}
$$

بنابراين، هر جند لايه زاويه ایى متقارن ستوازن با جهتهاى جند كانه را مى توان به عنوان نقطه اي از ناحيـ

محصور شـده با رابطه زير فرض كرد:

$$
\begin{equation*}
W_{3}^{*}=2 W_{1}^{-2}-1, \tag{II.Y.YY}
\end{equation*}
$$

$$
\begin{equation*}
W_{1}^{*}=\cos 2 \theta, \quad, \quad W_{3}^{*}=\cos 4 \theta \tag{II.Y.YY}
\end{equation*}
$$

نمودار بارامترهاى مواد مركب لايهاى خمشیى را مى توان برايى طراحى جند لا يه هايى با بيسترين بـار كمانش تحت بارهاى تك محورى يا دو محورى استفاده كرد. براى مقادير مشخصص mو n و يكى نسبت
 بار بحرانى بارامتر جند لايه خحشّى در طراحى جند لايه هاى با ماكزيمم بار كمانتّى اين است كه m اس به ندرت از از

 بارامتر جند لا يه خمشى در ماكزيمم سازى كمانت مرجع[15] را بيينيد . ممجنين، بحت تحليلى زير در مورد استفاده از متغيرهاى جهت تكى لايه براى مسائل كمانش، نقش m و nراتوضيح مى دهد. متنيرهاى جهت تكى لايه: تعدادى از ئووهنـكران روى مباحث تحليلى بهينه سازى كميتهاى بـامـخ

 با مجذور بسامد طبيعى و بار كمانشى است و به طور معكوس با تغيير مكانهاى خارج از از صفتحهنيز متناسب
 شده كه به نـكل زير تعريف مى شود:

$$
\begin{equation*}
\phi=d_{11}+2 \eta^{2}\left(d_{12}+2 d_{66}\right)+\eta^{4} d_{22}, \tag{11.Y.Y0}
\end{equation*}
$$

كه
3) Pederson

$$
\begin{equation*}
\eta=\frac{n a}{m b} \tag{11.Y.Y8}
\end{equation*}
$$

 ستختيهاى خحمشى مى بعد،

$$
\begin{equation*}
\mathrm{d}=\frac{8\left(1-\nu_{12} \nu_{21}\right)}{E_{1} h^{3}} \mathrm{D} \tag{II.Y.FV}
\end{equation*}
$$

برایى يك هند لا يه با ضشخامت تكى لا يه ثابت، ماكزيمم سـازى بار كمانش يا بسامد ارتعاشى، يا مينيمم سازى تغير مكانها با به دست آوردن مقادير ايستايى \$ نسبت به جهتهاى تكى لا يه حاصل مى شود .

$$
\frac{\partial \phi}{\partial \theta}=\frac{\partial d_{11}}{\partial \theta}+2 \eta^{2}\left(\frac{\partial d_{12}}{\partial \theta}+2 \frac{\partial d_{66}}{\partial \theta}\right)+\eta^{4} \frac{\partial d_{22}}{\partial \theta}=0 \text {. (\1.Y.YA) }
$$

با محدود سـازى چند لايه به جند لايه هاى زاويه إى متوازن و متقارن و صرفنظر كردناز جمالت بيوند
 آوريـم:

$$
\left[\begin{array}{l}
D_{11} \tag{11.Y.Fq}\\
D_{22} \\
D_{12} \\
D_{66}
\end{array}\right]=\frac{h^{3}}{12}\left[\begin{array}{ccc}
U_{1} & W_{1}^{*} & W_{3}^{*} \\
U_{1} & -W_{1}^{*} & W_{3}^{*} \\
U_{4} & 0 & -W_{3}^{*} \\
U_{5} & 0 & -W_{3}^{*}
\end{array}\right]\left[\begin{array}{c}
1 \\
U_{2} \\
U_{3}
\end{array}\right]
$$

 (II. Y. Yq) (II. Y. FA)

$$
\frac{\partial \phi}{\partial \theta_{k}}=\frac{2}{3}\left(z_{k}^{3}-z_{k-1}^{3}\right)\left(\left[U_{2}\left(1-\eta^{4}\right)+4 U_{3}\left(1-6 \eta^{2}+\eta^{4}\right) \cos 2 \theta\right] \sin 2 \theta\right)_{k} .(11 . Y . \Delta \cdot)
$$

مقادير ايستايى ه به ازاى زواياى نير است:

$$
\theta_{k}=0, \quad \text { يا } \quad\left|\theta_{k}\right|=90
$$

$$
\begin{equation*}
\text { ي } \quad\left|\theta_{k}\right|=\frac{1}{2} \cos ^{-1}\left(\frac{U_{2}}{4 U_{3}\left(1-6 \eta^{2}+\eta^{4}\right)}\right) . \tag{II.r.هr}
\end{equation*}
$$

وجود مقادير جند كانه برای جهت البافـ كه سبب ايستا شدن كميـت ϕ مى كردند نشـان دهنده بهينه هـاى

 (مرجع مالك' [21] را ببينيد)، كه در آن به ترتيب وتقى θ به صفر و 90 رسيد داريم:

$$
\eta_{\text {min }}^{2}=\frac{-6 \pm \sqrt{36+4\left[\left(U_{2} / 4 U_{3}\right)^{2}-1\right]}}{2\left[\left(U_{2} / 4 U_{3}\right)-1\right]}, \quad, \quad \eta_{\max }^{2}=\frac{6 \pm \sqrt{36+4\left[\left(U_{2} / 4 U_{3}\right)^{2}-1\right]}}{2\left[\left(U_{2} / 4 U_{3}\right)+1\right]},
$$

(11.r. Δr)
 نسان داده شده امـتـ. محدوده'
 بديهى است كه جهت الياف بهينه نسبت به خواص مواد حساس نيست، ولى به شدلت از بارامتر شـكل مود
 امست و جهت بهينه مستقل از موقعيت لايه در جند لايه امست.

 شكل مود ارتعاشى با كمترين بار كماننـى هربوط مى شود با بارامتر طـول مـوج عـرضـ 1 به دست 1 بـت مى آيد، ولى اين كه جه مقدار از هارامتر طول مرجع طولى mبه كهترين مقدار هارامتر ϕ مى انجامد هميشه $m=1$ روشن نيست

$$
\begin{equation*}
\left(r_{c r}\right)_{m}=\left[\frac{m^{2} \bar{m}^{2}\left(U_{1}+U_{2} \cos 2 \theta+U_{3} \cos 4 \theta\right)}{U_{1}-U_{2} \cos 2 \theta+U_{3} \cos 4 \theta}\right]^{\frac{t}{2}} \tag{11.Y.OF}
\end{equation*}
$$

كه (منیج مى شوند كه بار كمانشّى كهترى را در ارتباط بـا مـود فرض شكل مود برابـر وجود مى آورند. اين مساله بازكو كـــنــهُ اين است كه بارهاى كهانتشى در بهين مانند هـم هـسـتـنـد. در مصدوده r كه دو مود متوالى به طور همزمان فعال هستند، مقدار بهينه جهت اليانـ از $\phi(m)=\phi(\bar{m})$ از رابطه زير به دست مى آيد :

$$
\cos 2 \theta=\frac{U_{2}\left(r^{4}+m^{2} \bar{m}^{2}\right) \pm \sqrt{U_{2}^{2}\left(r^{4}+m^{2} \bar{m}^{2}\right)^{2}-8 U_{3}\left(U_{1}-U_{3}\right)\left(r^{4}-m^{2} \bar{m}^{2}\right)^{2}}}{4 U_{3}\left(r^{4}-m^{2} \bar{m}^{2}\right)}
$$

T300/5208 جهت بهين اليافها، با در نظـر كـر نتّن تـعـامـل مـودهـاى مـجـاور، بـرالى مـاده مـركـب
 نسبتهاى طول بهعرض بزركتر از واحد، زاويه بهين حول 45 درجه نوسان مى كند . دامنه؛ نوسانبا با فزابش نسبت هندسى r ، كاهش مى يابل، بنابراين ، در عمل و براى نسبتهاى هندسى 4 > 4 زاريه بهين را مى توأن

$$
\text { 0ppt }=45 \text { درجه فرض كرد . }
$$

اكر چند لايهإى تحت بار كذارى فشارى در دو محور است[20] ، براى نسبتهاى طول بهعرض كوجك،

AVF بخش

از 1.5 ، مقدار زاويه بهين با افزايش نسبت بار عرضى به بار مسورى (براى

اهميت ترتيب هیلدمان لا يـه مـا : منكامى كه متغيرهاى طراحى ضشخامت تكى لايه استفـاده ميى شـود، ترتيب جيدماناز تبل انتشاب شـله است . مانند بارهاى صفخحأى، طراحى بهين مى تواند بسته به اين كه جهت تكى لايه خاصى اضافه شود يا نتود، متأثر شود. با اين وجود، در هاسخ خحس، ترتيب خيدمـان مهتر است، زيرا به شـلـت ماتـريـس D را تحت تأثير ترار مى دهد، در صورتى كه ماتريـس A را متأثر
 حساسيت ندارد .

$$
\left.-\frac{1}{2} \leq \xi_{k-1}<\xi_{k}<\xi_{k+1} \leq \frac{1}{2}, \quad(k=1, \ldots, N-1) ; \quad \text { (।..Y. } \Delta я\right)
$$

مشتت ه نسبت به متغير مرز تكى لايه عبارت است زز :

$$
\frac{\partial \phi}{\partial \xi_{k}}=\frac{\partial d_{11}}{\partial \xi_{k}}+2 \eta^{2}\left(\frac{\partial d_{12}}{\partial \xi_{k}}+2 \frac{\partial d_{66}}{\partial \xi_{k}}\right)+\eta^{4} \frac{\partial d_{22}}{\partial \xi_{k}}=0
$$ از آن جا كه تأثير كذارى تكى لايه ما در ماتريس D كلى تنها به فاصله تكى لايه با صفخه ميانى بستگى دارد، مشتق ماتريس D به شكل زير بيان مى شُود:

$$
\frac{\partial D_{i j}}{\partial \xi_{k}}=\xi_{k}^{2}\left(D_{i j_{k}}-D_{i j_{k+2}}\right) .
$$

در اين جـ يكسانى ساخته شده اند و جملات U نابت حذن مى شوند) و به شكل زير تعريفـ مى شود.
$\mathbf{D}_{k}=h^{3}\left[\begin{array}{ccc}U_{2} \cos 2 \theta_{k}+U_{3} \cos 4 \theta_{k} & -U_{3} \cos 4 \theta_{k} & 0 \\ -U_{3} \cos 4 \theta_{k} & -U_{2} \cos 2 \theta_{k}+U_{3} \cos 4 \theta_{k} & 0 \\ 0 & 0 & -U_{3} \cos 4 \theta_{k}\end{array}\right]$.

كرد:
$\frac{\partial \phi}{\partial \xi_{k}}=2\left(\xi_{k}^{2}\right)\left[-U_{2}\left(1-\eta^{4}\right)-2 U_{3}\left(1-6 \eta^{2}+\eta^{4}\right)\left(\cos 2 \theta_{k}+\cos 2 \theta_{k+1}\right)\right]\left(\cos 2 \theta_{k}-\cos 2 \theta_{k+1}\right)$.
 ضخامت را برايى لايه k ام انتخاب مى كنبم. به عنوان مثال، اكر

 مينممّ هاى محلى است. اين ريشه هاعبارتنداز :

$$
\begin{gather*}
\left|\theta_{k}\right|=\left|\theta_{k+1}\right| \tag{11.r.91}\\
\cos 2 \theta_{k}+\cos 2 \theta_{k+1}=\frac{1}{2} \frac{U_{2}}{2} \frac{\left(\eta^{4}-1\right)}{\left(1-6 \eta^{2}+\eta^{4}\right)}
\end{gather*}
$$

انكر ضخامت كل دو لايه ثابت نكه داشته شود، مشتّ براى اين زوابا صفر امـت و به مـحل مرز در بيـن لايه ها بستگى نلارد . بنابراين بار كمانت از توزيع خشامت لايهماى مجاور مستقل است. افزون بر اين،

1) Cheng Kengtung

AVA بنش 11.r :طراسمترتيب جيدمان

$$
\begin{equation*}
\theta_{k+1}=\frac{\pi}{2}-\theta_{k}, \tag{11.Y.9Y}
\end{equation*}
$$

ثابت أست و به خواص ماده بسنگى ندارد.
 تك لايه ها نيز مى تواندبه هر شُكل دلخراهباشـدبدوناين كه ماتريسD Dتغير كند (ترين " رابينيد) . البته
 را مجبور به تغير مى نمايد، ولى اكر خشامت كل نسبت به ضـخامت زاويه تك لايه بزركى باشد، اين اثر
 ترتيب جيدمان صفحه از تكى لايه ماى 0، 90 و 45 نشان داده شـده است. ضشخامت كل تمامى شُس ترتيب جيدمان يكسان است (كه به يك نرمال سازى شـده) و همكى ماتريسD و بار كمانش يكسـانى دارند. اكر نعلاد كل تك لايهما 50 باشـد، بارماى كمانش شُش هند لايه كمتر از يكى درصدتغيير مى كتند (مرجع22

ترتيب جيدّانه	$t_{1} \quad\left(t_{1}^{\dagger}\right)$	$t_{2} \quad\left(t_{2}^{\dagger}\right)$	$t_{3} \quad\left(t_{3}^{\dagger}\right)$
[0/90/45].	0.0366 (0.04)	0.1539 (0.16)	0.8095 (0.80)
0/45/90).	0.0366 (0.04)	0.2496 (0.24)	0.7139 (0.72)
45/0/90).	0.2228 (0.20)	0.0634 (0.08)	0.7139 (0.72)
[45/90/0].	0.2228 (0.20)	0.3044 (0.32)	0.4729 (0.48)
90/45/0.	0.1399 (0.12)	0.3872 (0.40)	0.4729 (0.48)
[90/0/45].	0.1399 (0.12)	0.0506 (0.04)	0.8095 (0.84)

همجنين هر كاه مسأله استحكام مطرح باثـد، عدم حساسبت طراحى به نوع ترتيب جـيـدمان از بـين مى رود. در حنين حالتهايى، ترتيب جيدمان بسيار مهم المت ودر بخش بعدى راجع بـآن بحث مى شود.

 مركب لايه اى ارزشمند بود. با اين وجود، بكى از دشو اريهاى اساسي در يك طراحى واقتى نباز به داثنـن جند لايه است كه در حالت كلى از نك لايه مايعى با تنها جهتهاى 0، 90 و 45 (و يا كاهى با جهتهايى با

DVf نمو 15 درجه بين 0 و 90 درجه) ساخته شُده باشتند، و ضخامتهاى آنها خريب صشحيحى از خـخامت نكى لايه ها باشـد . البته، تصميم در مورد تعداد تكى لايه با جهت مشـخص برایى تعريف يكى جـــد لا يـه كـافى نيسـت، بلكه موتعيت آن تكى لايه در ضخامت نيز بايد مشخص شود. اين بدين معنـى المست كـه مـسـالـلـ طراحى امساسى اين است كه ترتيب چيلمان ماده مركب چند لايه مشخضص شـود- مساله الى كه نياز به فنون برنامه ريزى كـسـته دارد. در ادامه، روشهاى ميختلفى كه اين مساله را عنوان مى كتند معرفى مى كنيم •

 زاويه تكى لايه از تبل تعيين شـده به كار برد . ميكى و سوكيامـا' [23] نشان دادند كه ناحيهُ تابل تبول براكى هند لايه ها با زاويه تكى لايه ثابت يكى جند ضلعى است كه نقاط رأس آن روى بوش نمودار بارامـتر لايـ قرار دارد. اكُ نقطه طراحى در دور نمودار بود، جند لايه بكى جند لايـه زاويـه ايى بـا يـى جـهـت الـيـاف *ى باشُد . بنابراين، با يكى متموعه اعداد صشيح جهت تكى لايه، رأسهاى چند خلعى در موتعيتهـايـى

[^10]OVY بنش
درجه، نضاى طراحى يك مثلث با نتاط راسلA، B C المـت همجنان كه در شكل ديده مى سُود . برأى
 نقاط واقع شـده در كناره ها و نتاط داخلى هخند ضلعى مربوط به جند لا يه هايى اسـت كهاز دو جهت تكى
 لايه ها و روى خطهاى داخخلى اتصالى دو رأس به دسـت مى آوريم. .از نتاطى كه در كناره ها به دسـت مى آوريـم؛
 در آن طرن جند ضلعى הطع شود، آن كاه با توجه به طراحبهايى كه در دو انتها قرار كر اتنه اند به سـادكى مى نوان طراحى هائ كه در داخل قرار مى كيرندنام كذارى كرد . به عنوان مثال، برانى يكى جند لا يه هشت لايه إى (در كل) با زواياى 0، 45 \pm و 90 درجه (نضاى طراحى ميلثى)، هنج نقطه طراحى با ناصله هاى يكسان از هـم وجود دارد كه جهت الياف آنها به شكل نموى از يكـ رأس به رأس ديگـر تـغـيـير مـى كـــد ،
 تركيب نموى دارند، ولى تركييى از سه زاويه در دسترس دارند. نقاط طراحى بـرايى مـواد مركـب جنـد

 دتيقآ مانند نمودار لايه هينى صفـحه الى، مى توان برايى چند ل'يه الى باجهت اليان مشخصس، نمودأر لايه حينى خحمشى را ترسيم كرد. مرزهاى نضاى طراحى مانند بارامنرهاى صفحا الى اند، زواياى در نظر كرنه شده ، روى بوش نمودار لايه ترار مى كيرند و راسهاى يكـ چثئد ضلعى را تشكيل مى دهند. با اين وجود، در اين حالت نعاط طراحى كه تركيبى از زواياى داده شـده اند، با ناصله يكسان از هم ترار ندارند (هر جند تركيب زواياى مريوط به دو رأس باز هم روى كنارها الى كه اين رأسها را به هـم متصل مى كند قرار مى كيرد) ولى محل ترار كرفتن آنها از رابطه (I . Y . Y F) تبعيت مى كند .

 متغير هاى طراحى كـيسته تشريح شـلـ، اينكى در اين بختُ براكى ماكزيمـم سـازى كمانش مواد مركب جنـد

مبانم بهينه سازیى سازه ها (فصل 11 : طراحمى بهينه سازه مأى ساخته شلده الز مواد مركب جندلايه) AVA لايه هالى با متغير جهت الياف تو ڤيّي داده مى شود . به منظور دامُتن نتايجي كه بتوان آنها را با متغير هاى جهت تصسيح دفايسه كرد، يكى سرى از نتايج براى مسائل بيوسته توليد شـده امــت، مر جـع كـوردال و هفتكه' [24] را ببينيد . اين نتايج با در نظر نگركنت بجمله جريمه برا'ى مقادير غير كـدسته متغير هاى طراحى به دست آمده است. مسائل براى صفنحات مستطيلى با تى لايه و جهـت الياف به عنوان متغيرهاى طراحى حل شـده اند. مقادير ويرْ بـحـرانـى بـرأى بـارفنــارى

$$
\text { اعمال ثـده } N_{x}=1 \text { و نسبـت N } / N_{x} \text { متغير ماكزيمم شـده اند . }
$$

 جهـت بهين الباف لا يه سطحى (كه با خحط حين نشان داده شـده)، و لا يه هاى ممجاور حفیهه ميانى (خطوط

 ترتيب 45 \pm درجـه و 90درجه اند . براى نسبت بار هيانى، زالويه اليافها در لايه هاى سطحى از لايـه هـاى

[^11]
صنحات ميانى بزركتر است و اين اختلان در جـند لايه 24لايهاى بيـترين است. با اين همـه، جهــت الياف لايه هاى سطحى تنها به نسبت بار بستكى دارد و نه به ضخخامت جند لايه . سهس، همان طراحیى با جهتهاى الياف كسسته 0، 45 C و 90 تكرار شُدهاست. جوابها از روش تابع
 لايء هاى با زاويد 45+ درجه بايد در مجاورت لايه هاى 45 - درجه باشند تا ممبستكى خمشى- بيجشى
 باشند. نمودارهاى درصد كاهش بار كمانتش با محدوديت كسسته بودن جهت براى جهار چند لايه مختلف

 (حدود Y Y/ كاهش) در جند لايه هـاى نـازك 8 و 12 لايه بود. با اين همه، كاهشُ بار كمانش مربوط بـه ضشخامتهاى مختلف كاملاً اتغاتى بد نظر مى رسد. جيدمانى كه براى متغير هاى طراحى با مقادير كسسته به دست آمد برايى جند لايء هاى 8 و 16 لايه در

 متغير هاى كُسـته كه با استفاده از روش تابِ بجريمه به دست آملهه و طراحى بهينه فر اكير نيز آمده است. اكر طراحى به دست آمله از روش تابع جريمه، با طراحى بهين فراكير يكسان باشد، در ستون مربوط بـه
 برسـد به خصوص هنگامى كه تعداد لايه هاى هند لايه زياد باثشد. در هر حالت، طراحى بـا هتـغتيـرهـاى كُسته كه از روش توابع جر يمه به دست آمده اند يكي جيدمان مشتخصى را دنبال مى كتند كه در آن جهتهاى
 است كه در طراحى با متنير يموسته مشاهله شد. . از طرف ديگُر، طراحيهاى بهينه فراكير، جهتهـايـى كــ اتفاقى ترند دارند . تفاوت در بار هاى كمانش تا حـدود \ddagger ٪ \% است و اين تفاوت خطر جستجو براى بهيـن كُسـته حر ل بهين يوي سته را گوشزد مى كند.

$\frac{N_{x}}{N_{x}}$	بهين بيوسته	روش تابع جريمه	بهين فراكير
0.0	$[\pm 45]_{2}$ 。	$[\pm 45]_{2}$ s	-
0.25	$\pm 53.7 / \pm 49.81$,	$\pm 45{ }^{2}$,	[$\pm 45 / 90_{2}$],
0.50	$\pm 64.3 / \pm 53.2]$,	$\pm 45]_{2}$ s	$\left[\pm 45 / 90_{2}\right.$],
0.75	$\pm 70.0 / \pm 58.6]^{\text {, }}$	$\left.90_{2} / \pm 45\right]$,	-
1.00	$\pm 73.5 / \pm 65.8$,	902 $/ \pm 45$],	-
1.50	$\pm 79.4 / \pm 70.5)$,	$\left.90_{2} / \pm 45\right\}$,	-
2.00	$\pm 83.4 / \pm 78.1$],	$\left.{ }^{90} 2 / \pm 45\right]^{2}$	-
2.50	$[\pm 89.2 / \pm 88.4]_{s}$	[90444s	-

$\frac{N_{y}}{N_{x}}$	لجين ييوسته	روش تابع جريمه	بهين فراكير
0.0	$[\pm 45]_{4 s}$	$[\pm 45]_{4}$	\cdots
0.25	$[\pm 52.2 / \cdots / \pm 46.5]$,	$[\pm 45]_{4}$	$\left[\pm 45_{2} / 90_{4}\right]_{s}$
0.50	[$\pm 65.3 / \cdots / \pm 60.0$],	$\left[90_{2} \pm 453\right]$,	[$\left.\pm 45 / 90_{6}\right]$,
0.75	$\pm 70.9 / \cdots / \pm 52.3$],	[902 $\left./ \pm 45_{3}\right]$,	$\left[90_{2} / \pm 45_{2} / 90_{2}\right]$.
1.00	$[\pm 74.9 / \cdots / \pm 52.6]$,	$9604^{4} / \pm 45_{2}$],	$\left[90_{2} / \pm 45 / 90_{4}\right]$,
1.50	$[\pm 80.0 / \cdots / \pm 64.1]$.	$(906 / \pm 45]$,	$\left[90_{4} / \pm 45_{2}\right]_{\text {, }}$,
2.00	[$\pm 83.9 / \cdots / \pm 71.8]$,	$\left.{ }^{90} 0_{6} / \pm 45\right]_{s}$	$\left.\mid 90_{4} / \pm 45 / 90_{2}\right]_{3}$
2.50	[$\pm 89.2 / \cdots / \pm 87.9]$,	$[90]_{8,}$	-

AAI بنش

 انتگّر الهاى نرمال سازى شده كه در روش تر سيمى به عنوان متغير هاى طراحى اليتفاده ثــدنـد(مـعـادلات

 متغير هاى جليد كه وجود يك لايه با جهت مشتخص و يا جهت يك لايه مشخصى را تعريف مى كند توسط هفتكه و والش ' [25] ارائه شد. هنين متغيرهايمى متغيرهاى طراحى شناسايى تك لايه ناميله مى شوند . به عنوان مثال، اكر امكان جهار جهت قرار كرفتن لايه ها را داثتـه بـاثـيـم و N تك لايه؛ مى توانيـم براى تعريف ترتيب هيلممان N متغير طراحیى كه مقادير ا تا F مى كيرند را تعريف كنيم. اكر از تقارن استفـاده شـود اين عدد به N/2 كاهش مى يابل . استفاده از متغيرهاى طر ا-حى شناسامى لايه حسفر و يكى نيز اهكان پذير اسـتـ. بـه عـنـوان مشال، اگـر لايه ها از تكى لايه هاى 0، 90 و 45 د درجه ساخته شده باشد، ترتيب جيلمان را مى توان بر حسبب جهار
 صـحيع صفر و يكند. اكر به ترتيب تك لايهُ 0، 90؛ 45 يا 45-در i|مين لايه وجود داشتئه باشد، متغيرهاى .. f_{i}^{p} ، n_{i} ، o_{i}

A مزاباي استفاده از اين متغيرهاى شناساعى صفر و يكى اين است كه انتگرالها، و در نتيجه ماتريسهای و D توابع خطى از اين متغيرهايند. انتگرالهاى ضـخامت يك تكى لايهt به شككل زير خواهند بود:

$$
\begin{aligned}
& V_{0 \mathbf{A}}=\int_{-h / 2}^{h / 2} d z=2 t \sum_{k=1}^{N / 2}\left(o_{k}+n_{k}+f_{k}^{P}+f_{k}^{m}\right), \\
& V_{1 \mathbf{A}}=\int_{-h / 2}^{h / 2} \cos 2 \theta d z=2 t \sum_{k=1}^{N / 2}\left(o_{k}-n_{k}\right), \\
& V_{3 \mathbf{A}}=\int_{-h / 2}^{h / 2} \cos 4 \theta d z=2 t \sum_{k=1}^{N / 2}\left(o_{k}+n_{k}-f_{k}^{p}-f_{k}^{m}\right) \text {. } \\
& \text { براى باستخ خمشـى، انتگرالهاى }
\end{aligned}
$$

[^12] $V_{0 \mathrm{D}}=\frac{2 t^{3}}{3} \sum_{k=1}^{N / 2} p_{k}\left[\left(\frac{z_{k}}{t}\right)^{3}-\left(\frac{z_{k-1}}{t}\right)^{3}\right]=\frac{2 t^{3}}{3} \sum_{k=1}^{N / 2}\left[k^{3}-(k-1)^{3}\right]\left(o_{k}+n_{k}+f_{k}^{p}+f_{k}^{m}\right)$, $V_{1 \mathrm{D}}=\frac{2 t^{3}}{3} \sum_{k=1}^{N / 2} p_{k} \cos 2 \theta_{k}\left[\left(\frac{z_{k}}{t}\right)^{3}-\left(\frac{z_{k-1}}{t}\right)^{3}\right]=\frac{2 t^{3}}{3} \sum_{k=1}^{N / 2}\left[k^{3}-(k-1)^{3}\right]\left(o_{k}-n_{k}\right)$, $V_{3 \mathrm{D}}=\frac{2 t^{3}}{3} \sum_{k=1}^{N / 2} p_{k} \cos 4 \theta_{k}\left[\left(\frac{z_{k}}{t}\right)^{3}-\left(\frac{z_{k-1}}{t}\right)^{3}\right]=\frac{2 t^{3}}{3} \sum_{k=1}^{N / 2}\left[k^{3}-(k-1)^{3}\right]\left(o_{k}+\pi_{k}-f_{k}^{p}-f_{k}^{m}\right)$, (II.r.r)

كه معادله (II . Y. Y) اكر لايه kام اشغال شده باشد برابر واحد و اكر خالى باشـد برابر صفر الست. ترتبب جحيدمان براى طراحى كمانـش: از آن جا كه بار كمانش براى جند لا يدهاى متقارن تحت تأير

خطى صحيح است.
رابطه سازى مسأله بهينه سمازى به دو كونه امكان بنير است. يكـ رابطه سازى اين است كه جند لايه با يك ضيخامت مشُشص براى ماكزيمم شدن بار كمانش بهينه مـازى شود، و دومين رابطه مــازى عبارت
 بهينه سازى اول، بايين ترين بار كمانش
 اين است كه بنابراين مساله بهينه سازى به شككل زير رابطه مـازى مى شود:
, $\lambda^{*}, \quad, \quad o_{i}, n_{i}, f_{i}^{p}, f_{i}^{m}, \quad i=1, \cdots, N / 2$,
با $\lambda^{*} \leq \lambda_{c r}(m, n), \quad m=1, \cdots, m_{f}, \quad n=1, \cdots, n_{f}$,
, $o_{i}+n_{i}+f_{i}^{p}+f_{i}^{m}=1, \quad i=1, \cdots, N / 2, \quad$ (11.r.r)
. $\sum_{i=1}^{N / 2} f_{i}^{p}-f_{i}^{m}=0$.

AAF بثشش 11 : :طراحى ترتيب جيدمان

 45درجه و 45- درجـه يكسان بـاشـد و به عبارت ديخر جند لايه متوازن باشـد . مساله بهينه سازى معادلك
 در مورد آنها به كار كرفته شـود .

برايى مسأله دو كان مينيمـم مازى وزن يكى جند لايه كه تادر بائـد بار مشخصصى را بدون كمانش كـردن تحمل كند، تعداد كل لايه ها بايد متغير طراحى باشـد. اين به نظر مغاير با استفاده از متغيرهاى ثــنا مــايـى تكى لايه به عنوان متغير طراحى اسـت كـه در آن بـايـد Nاز بيش معلوم باشـد. يكى هاره جويـى برایى ايسن مغايرت، اين است كه با يكى نعداد لايه به اندازه كافي زياد شروع كرد كه طراحى اوليه كمانش نكند، ولى
 داده مى شُود خالى باثشند بايد لايه هاي خارجى هند لايه باشثـند نا كليت هند لايه حفظ شود . رابطه سازى به ثـكل زير خواهد بود.

$$
\begin{equation*}
\text { را جنان بيابيد كه } o_{i}, n_{i}, f_{i}^{p}, f_{i}^{m}, \quad i=1, \cdots, N / 2, \tag{11.r.Y}
\end{equation*}
$$

$$
\begin{aligned}
& \\
& \sum_{i=1}^{N / 2}\left(o_{i}+n_{i}+f_{i}^{p}+f_{i}^{m}\right) \\
& \lambda_{c r}(m, n) \geq 1, \quad m=1, \cdots, m_{f}, \quad n=1, \cdots, n_{f}, \\
& o_{i}+n_{i}+f_{i}^{p}+f_{i}^{m} \leq 1, \quad i=1, \cdots, N / 2 \\
& \sum_{i=1}^{N / 2} f_{i}^{p}-f_{i}^{m}=0 \\
& o_{i}+n_{i}+f_{i}^{p}+f_{i}^{m} \leq o_{i-1}+n_{i-1}+f_{i-1}^{p}+f_{i-1}^{m} .
\end{aligned}
$$

كه تيد آخر جهت اطمينان از اين است كه تكى لايه خالى در لايه هاى خارجى چند لايه ترار داشته باشـد . به طور كلى، جوابب مسآله مينيمـم مازى وزن يگانه نيست. برایى طراحى كمترين وزن يكى *N لايه، مى توان جهت اليافها را تغير داد، به كونهالى كه وزن يكسان باقى بماند ولى بار كمانش تغيير كند. خارج از طراحيهاي قابل قبول، در حالتت آرمانى، فرد ممكن است بخواهد آن طراحى را انتتخاب كند كه حاشيه

 اهكان بذير است كه در نتيجه آن تابع هدف بهبود يافته عمل دوكانه مينيمم سازى وزن و ماكزيمم سازى بار كمانش را همز مان انجام مى دهد . برای نتايج طراحيهاى مينيمم سازى وزنذ، خواننده را به مرجع هفتكه و والشد[25] ارجاع مى دهيم. در بند بعدى، نتايج ماكزيمم سـازى كمانش ارائه مى شود.

 كاهش بار كمانش برانى چند لا يه ها مقدار كمى بهبود حاصل مى شود. به عنوان مشال، بدترين كاهش بار

وجود دارد . كمتـرين و بيشترين كاهش بار كمانش به ترتيب مربـرط بـه هـــــد لايـه هـاى 24 لايه و 8 لايه الست.

هنگامى كه تعداد تكى لايه هاى مجاور هم با زاويه جهت بكسان زياد است، مواد مركب لا يه أى تركٌ بر مى دارند . بنابراين، بهتر است تعداد هنين نكى لايه هاى محدود كردد. استفاده أز حنين قيودى در طراحى
 مى كنيـم [
 ضرورترا رها سانته و صفحه را بار ديكُر به كونه اي طراحى مى كنيم كه بتوانيم تكى لايه هاى با جهات
 ($\lambda_{\text {cr }}=36.84$ است كه نسبت به طراحى كه محدو دبه جفت ظاهر شـدن هر جهت بود 1.8\% انزايش نشان مى دهد . اين حفيقت كه تكي لايه هاى 45 درجه به صورت جفت ظاهر شوند، يكى امر بذيهى و هماهنگا است. اكنون خرورت مجاور بودن تك لايه ها را با تيد زير اعمال مى كنيم.

$$
\begin{equation*}
n_{4}+n_{5}+n_{6}+n_{7}+n_{8} \leq 4 \tag{11.r.0}
\end{equation*}
$$

طراحى به دست آمله با اين تَيد عبارتا إمـت از ضريب بار كمى كوجكتـر دارد ضريب بار كمى بزركتر دارد ولى اين خرورت را كه زواياى زاويه دار با محور بايل به صورت جفت ظاهر شوند را نقضى مى كند. با معرفى تيدى به شكل :

$$
\begin{align*}
f_{i}^{p}-f_{i+1}^{m}=0, \quad i & =1,2, \ldots,(I-1) \tag{11.r.9}\\
\leqslant f_{1}^{m} & =0, \quad, \quad f_{I}^{p}=0
\end{align*}
$$

طر احيهايع كه تكى لايه 45درجه دارند به صوربت جفتّاي منبت و يا منفى مى تواند به وجو دآيل بلدون آن كه لازم مى باشثد تك لا يه هاى 0 و 90درجه به صمورت جفت باشـند و تعداد تكي لايه هاى با يكي جهت يكسان از طراحی سنتتى وكمانـش: در بعفى از حالتها، لازم مى آيد كه قيودى روى سختى صفنحات اعهمـال

AAf

$$
\begin{equation*}
A_{11} / A_{11}^{0}-1 \geq 0 \tag{11.r.V}
\end{equation*}
$$

همان كونه كه در [25] نشـان داده شـده الين فيد را مى توان به صورت يكى تابع خطى از متغيرهاى طراحى

 (بررسى می شود . لايه هالى بهين برایى اين حالتت بيشتر از تكى لايه هاى 90 درجه تشكيل شُده

 كذاشتن تكى لا يه هاى صفر درجه در نزديكى صفحه تقارن كه كمترين اتثر را روى سختي خحمشى و در نتيجه

 كمانش دارد .

AXY بخش
جيلدمان براى طراحى مقاومت وكمانش : در غياب بارهاى برشُي، كرنشهاى لايه ها
(برابى ضريب بار

$$
\epsilon_{x}=\frac{\left(A_{22} N_{x}-A_{12} N_{u}\right)}{\left(A_{11} A_{22}-A_{12}^{2}\right)}, \quad, \quad \epsilon_{y}=\frac{\left(A_{11} N_{y}-A_{12} N_{x}\right)}{\left(A_{11} A_{22}-A_{12}^{2}\right)} . \quad \text { (11.r.^) }
$$

كرنت تكى لايه k|م از انتقال زير محاسبه مى ثـود .

$$
\begin{align*}
\epsilon_{1}^{k} & =\cos ^{2} \theta_{k} \epsilon_{x}+\sin ^{2} \theta_{k} \epsilon_{y} \\
\epsilon_{2}^{k} & =\sin ^{2} \theta_{k} \epsilon_{x}+\cos ^{2} \theta_{k} \epsilon_{y} \tag{11.5.9}\\
\gamma_{12}^{k} & =\sin 2 \theta_{k}\left(\epsilon_{y}-\epsilon_{x}\right) .
\end{align*}
$$

$$
\begin{align*}
& \epsilon_{L}(\mathbf{x})=\epsilon\left(\mathbf{x}_{o}\right)+\left(\frac{\partial \epsilon}{\partial A_{11}}\right)_{\mathbf{x}_{0}}\left(A_{11}-A_{11}^{\mathbf{x}_{o}}\right)+\left(\frac{\partial \epsilon}{\partial A_{12}}\right)_{\mathbf{x}_{0}}\left(A_{12}-A_{12}^{\mathbf{x}_{o}}\right) \tag{11.5.1.}\\
&+\left(\frac{\partial \epsilon}{\partial A_{22}}\right)_{\mathbf{x}_{o}}\left(A_{22}-A_{22}^{\mathbf{x}_{o}}\right)
\end{align*}
$$

 محاسبه شُده اند . بنابر اين تقريب كرنتش خطى مى تواند در امتداد يكى جهت الياف خاص و در جهت عمود بر آن با ارزيابى كرنشهاى
 امتداد و عمود بر الياف 45 درجه و در برش به ثكل زير به دست مى آيل :

$$
\begin{gather*}
\epsilon_{1}=\epsilon_{2}=\frac{1}{2}\left[\epsilon_{x}+\epsilon_{y}\right]=\frac{1}{2}\left[\frac{\left(A_{22}-A_{12}\right) N_{x}+\left(A_{11}-A_{12}\right) N_{y}}{\left(A_{11} A_{22}-A_{12}^{2}\right)}\right] \\
\gamma_{12}=\left[\epsilon_{y}-\epsilon_{x}\right]=\left[\frac{\left(A_{11}+A_{12}\right) N_{y}-\left(A_{22}+A_{12}\right) N_{x}}{\left(A_{11} A_{22}-A_{12}^{2}\right)}\right] \tag{11.5.11}
\end{gather*}
$$

 مى توان به شكل زير نوشتا .

$$
\begin{equation*}
\frac{\partial \epsilon_{1}}{\partial A_{11}}=\frac{1}{2} \frac{\left(A_{12}-A_{22}\right)}{\left(A_{11} A_{22}-A_{12}^{2}\right)} \epsilon_{x} \tag{11.r.!Y}
\end{equation*}
$$

كه ${ }^{\text {(} A_{i j}}$
 تقريب كرنش يكى تابع خططى از متغير شناسايى لايه استـ . تو جه به اين نكته مهم استت كه كر نشها ابتدا بـر اساس يكى مقدار مبنا براى بار محاسبه مى شوند . به منظور كاربرد تيد كرنش بايد آتها را در مقدار ضريب بار كمانش $\lambda_{\text {كه }}^{\text {خود تابع متغير هاكى طر أحى انبت ضرب كرد }}$

$$
\lambda_{c} \epsilon_{i} \leq \epsilon_{\mathrm{t}}^{u n}
$$

 و بسط $1 / \lambda_{c}$ بر حسـب سرى تِلور خحطى، خططى سانحت. داريم:

$$
\begin{equation*}
\lambda_{o} \epsilon_{i}+\frac{\lambda_{c}}{\lambda_{o}} \epsilon_{i}^{u a} \leq 2 \epsilon_{i}^{u a} \tag{11.5.14}
\end{equation*}
$$

كه
 رابطه سازى شلد، اخافه كرد كه مساله طراحى مواد مركب براي مقاوم بودن در مقابل شكست كمانـش و مقاومت استـا .
 المتناده شود . در امستفاده برنامهريزى خططى دنباله ايى، اعمالّ حدود حر كت به طور كلى توصيه مى شود تا طراحيهاى به و جود آَمله بر اساس قيود خحطى در فضاى طراحى قابل قبول يا نزديكى آن تـرار كـيـرنــــ . در حالتى كه متغير هاى شناسايهى تكى لايه صنر / يكى اند، اعمالل حدود حركت روى متغيرهاى طراحیى عملى

$\mathrm{Ny}=0.25 \mathrm{l} / \mathrm{in}$.

$\left(\pm 45_{4} / 9 O_{2} / \pm 45 / 90_{2} / 90_{10}\right)_{s}\left(\pm 45_{2} / 9 O_{2} / \pm 453 / 0_{4} / \pm 45 / 0_{2} / \pm 45 / 0_{2}\right)_{5}\left(90_{2} / \pm 455_{5} / 0_{2} / \pm 45 / 0_{4} / \pm 45 / O_{2}\right)_{\mathrm{s}}$ $\lambda_{c r}=13441.85 \quad \lambda_{c r}=12622.44 \quad \lambda_{c r}=12674.84$
$\mathrm{N}_{\mathrm{y}}=0.5 \mathrm{lb} / \mathrm{in}$.

$\left(90_{2} / \pm 453 / 90_{2} / \pm 45 / 90_{4} / \pm 45 / 90_{2} / \pm 45 / 90_{2}\right)_{s}\left(90_{2} / \pm 455_{2} / 90_{2} / \pm 45 / 90_{2} / \pm 45_{6}\right)_{s}$.

$$
\lambda_{\mathrm{cr}}=9999.13 \quad \lambda_{\mathrm{cr}}=9998.18 \quad \lambda_{\mathrm{cr}}=9998.18
$$

شكل \& 1. أ طراحيهاى براساس باركمانشى ماكزيمم، با قيدهاى مقاومت

متغير هاى شناسايع تكى لايه المـت. اين كار شـش قيد ديكر را به مسآله اضانه مى كند

$$
\begin{equation*}
A_{i j}^{L} \leq A_{i j} \quad \leq A_{i j}^{U}, \quad i, j=1,2 \tag{11.5.10}
\end{equation*}
$$

طراحى با تيلهاي مقاومت، برای مواد مركب لابهاي كه از مواد مركب حالت قبل ضهخيمتر اسـت بـه

* * *

 نتيجه هـاى طراحى برای يكى ماده هركب ($N_{y} / N_{x}=0.5$ شكل 9 . ؟ ـ ا 1 الرايه شده امت . از آن جا كه روش استفاده شده تقريبهاى محلى دارد، طراحى نهـايى ممكن است يكى طراحى بهين محلى باشد . براى اطمينان بيستر از به دست آوردن بهين فراكير، الستفاده از يكى از الڭكردتمهاى جستجوى الحتمالاتى در مسائل برنامهريزى غير خطى با متغيرهاى طراحى با مقادير كسسته (نصل F ا ابينيد) توصيه مي شود. آخرين طراحى در هر يكى از حالثهاى بار كذارى اراثه شده در
 بهين فراكير بودن آنها تأيد شده امت . در مقايسه با طراحى بدوت در نظر داشثتن تيد شكــت مفـارمـت،
 باركذارى تنها يك ماكزيمـم محلى بود، ضريب بار نسبت به طراحى بهين نراكير تنهـا كسـرى از درصـد تفارتت مى كند . برالى نسبـت بـار0.5، طراحى بدون قيد كرنش، مقارمت بـرشـي را 7\% نتض هي كنـد . طراحى به دست آمده از برنامه ريزى خطى صحيح دنباله ایى نيز بهين فراكير بود .

 دارند كه مى توان آنها را برايى مساله موجود تنظيم كرد ـ درروش سرد شدن تدريجى شُبيه سازى شده ، اين پارامترها عبارتند از : درجه حرارت اوليه و سرعت سرد شدن . برايى الكوريتم زُنتيكى بارامترهاى تنظيمى عبارتند از : احتمالاتت عملكر هاى محتلف زنتيكي مانتل جهنّ، اندازهُ جمعيت و بعيار همكرايهى . طراحى
 زير. الاز نظلر مساسباتي بهينه سازى آن كم هزينه است .
لومباردى' [28] اثر درجه' حراردت اوليه و سرعت سرد شدنر أ درروش سرد شدن تدريججى شبيه سازى

[^13]بخش 841 با : كاربردماى طراسم
بهين فراكير . مسأله جوابهاى زيادى (جيدمان) دارد كه بارهاى كمانشى مشابهـى دارنـد. بـه ايـن دليل،
 لايه ها در كروههاى 0، 90درجه يا 45 ديسته بندى شده بودندبه دسـت آورده شُد. براى لايهبندى متقارن،

 انزايش مى يابد.
 رُنتيكى حل كردند. تنظيم احتمالات عملكر هاى زُنتيكى و اندازه جمعيت مى تواند به طور جشمــيـيرى تعداد تحليل مورد نياز را كاهش دهد. به عنوان مثال، براى ماده مـركـب \& \& لايه تعداد تحليل مورد نيـاز
 $N_{y}=0.5 \mathrm{lb} / \mathrm{in} و N_{x}=1 \mathrm{lb} / \mathrm{in} ، b=\operatorname{Sin} ، a=20 \mathrm{in}$ ونه به يك بهين. به عنوان مثال براى يكحفحهربا دو مورد از بهترين طراحى هاعبارتند از :
 بار كمانش مواد مركب لايهاى ، مانند وجود نكى لايه هاى ± 5 درجه در لايه خارجیى، بادرصد كاهشي يانته از تك لايه هاى 90درجه در دومين ماده مركب ممكن است از تفاوت 0.2\%در بارهاى كمانشى آنها بسيار مهمتر

أ أ كاربردهاى طراحى

11 . Y. 1 طراحمى صفحات سخت

[^14]

 توليد آنها با استفادهاز مواد نلزى هزينه بر است.

دارند بحث مى كنيم .

1) Stroud and Agranoff

A4F بخئ 11.7 :كاربردهاى طراحم

الجزای صفنحه مانند سخت كننله و يوسته صرفنظر شلده ، ويو ستگى بين شـكل مودهاى اجزایى مختلف در نظر كرنته نمى سود . معادلات بارهاى كماننى حاصل از اين فرضيات برالى صفحاتى كه با بارهاى فشهارى و برشى بار كذارى شده اند، در جدول I I . F. I ارائه شده است. معادلات كمانش محلى جلول به هر جزr حفتحه به عرض b و طول Lاعمال مى شود ـ در هر دو نوع

 مفنحه به عنوان يك ستون بهن كه لبه هاى بار كذارى آن تكبه كاه سـاده و لبه هاى بدون بار آزادنـد در نـظر

 خواص اورتوترايبی جسبي
 كهانش فراكير به شدت به شكل سطع متطعهاى سخت كننلـه ها بستكى دارند . محاسبه اين سختـيـهـاى

(ARP
جدول 1 1 F. 1 معادلات كلى و مجلى كمانش از مرجع [30]

باركذّارى	معادله	مربع
كمانش فرإيّيرى		
لشارى لـ در امتداد	$N_{x, \mathrm{cr}}=\frac{\pi^{2} E I}{p L^{2}} \frac{1}{1+\frac{\pi^{2} E I}{2 L^{2} b_{2} A_{66_{2}}}}$	$\begin{aligned} & \text { Eq. (92), } \\ & \text { Eq. (31] }, \end{aligned}$
برشى برای $\zeta>1$,	$\begin{aligned} & \zeta=\frac{\sqrt{D_{1} D_{2}}}{D_{3}} \\ & N_{x y, \mathrm{cr}}=\left(\frac{2}{L}\right)^{2}\left(D_{1}^{3} D_{2}\right)^{\frac{1}{4}}\left(8.125+\frac{5.05}{\zeta}\right) \end{aligned}$	Eqs. (2.2.2-21), (2.2.2-22), [33]
برا $\zeta<1$,	$N_{r y, \mathrm{cr}}=\left(\frac{2}{L}\right)^{2} \sqrt{D_{1} D_{3}}(11.7+0.532 \zeta+$	Pp. 468-471, [34]
تركيبى	$\frac{N_{s}}{N_{x, \mathrm{cr}}}+\left(\frac{N_{x y}}{N_{x y, \mathrm{cr}}}\right)^{2}=1$	Eq. (105.8), [34]
كمانشى		
فشارى در امتداد طول	$N_{x, \text { cr }}=\frac{2 \pi^{2}}{b^{2}}\left[\left(D_{11} D_{22}\right)^{\frac{1}{2}}+D_{12}+2 D_{66}\right]$	$\begin{aligned} & \text { Eq. (92), [31] } \\ & \text { Eq. (3), }[32] \end{aligned}$
	$\zeta=\frac{\sqrt{D_{11}} \overline{D_{22}}}{D_{12}+2 D_{66}}$	Eqs. (2.2.2-21),
براs $\zeta>1$,	$N_{x y, c r}=\left(\frac{2}{b}\right)^{2}\left(D_{11} D_{22}^{3}\right)^{\frac{1}{4}}\left(8.125+\frac{5.05}{\zeta}\right)$	(2.2.2-22), [33];
برایى $\zeta<1$,	$\begin{aligned} N_{\mathrm{ry}, \mathrm{cr}}=\left(\frac{2}{L}\right)^{2} & \sqrt{D_{22}\left(D_{12}+2 D_{66}\right)} \\ & \left(11.7+0.532 \zeta+0.938 \zeta^{2}\right) \end{aligned}$	pp. 468-471, [34]
تركيبى	$\frac{N_{x}}{N_{x, \mathrm{cr}}}+\left(\frac{N_{x y}}{N_{x y, \mathrm{cr}}}\right)^{2}=1$	Eq. (105.8). [34]

به نوع بار اعمالي لازم دارد . به دست آوردن بعضى از عبارات ستختى خسبي براي صفـحـات مـوج دار و كلاهي شُكل در مرجع [30] تشريح شده است. مسآله طر احى مر جع [30] به عنوأن يكى مسأله برنامه ريزى رباضى كه جرم صفتحه بر واحد عـرض آن تابع هدنْ است، رابطه سازى شده الست. متغير هاي طراحى عرض اجزاء و ضـخامت لايه هايى است كه اجزا را مى سازند . تيود طر احى بار كمانش ، محدوديتهاى هقاومت و سختى و كرانهايى بالا و بإيين بعضى از ابعاد صفخه الست. يك برنامه بهينه سازى جامع[AESOP[35]، كه بر اساس رابطه سازى تابع جريمه خحارجى امست، برایى بهينه سازى طراحى استفاده شده است.

يكى روش طراحى امساسى تر [36] بر مبناى كد تحليل كمانش و ارتعاش صفنحه سخت شمده[37, 38]

 تادر اسـت بارهاى كمانش سازه هايمى كه از اجزالى صفنحهاى مستطيلى كه در امتداد طول خود VIPASA به مـم متصل شمده انمدرا مساسبه نمايد . بر خلاف روش الستفاده شمده در هرجع[30]، با برترار بودن بيوستگى شبكه كمانش در تقاطع اجزاى صفهات شمسايه، تحليل اتصال نيزيكى بين اجزاى مجاور را مورد نـظر ترار مى دهد . حل كمانش بر اساس معادلات دقيتَ صفتحات نازك با جمالات سخـتـى غيـر ايزوتـرايـيـي

 وجود، صفخاتى كه اجـزا را تشكيل مى دهند بايد جيلدمان متقارن متوازن داشته بـاشـــــد بـه كـونـهاى كـه

 لبه هاى بـاركذارى شــده مهدود به شر ايط تكيه كاه ساده است. هر تركيبى از بارهاى طولى، عـرضـى و
 در حالــت بارهاى برشمى مسدوديت شرايط مرزى تكيه كاه ساده در لبه هاى باركذارى شمده مـكن الســت بـاعث به وجـود آمــدن عـدم دتـت در محـاسبات بـار كمانـش شـــود كـــه دربــاره'آلن در آينــه بــحـث

شكل I. P. Y ا تُرايط باركذلرى و شُرايط اوليه ناكامل

سرانجام برنامه تـحليـل VIPASA توسط استرود و آنْرسـون' به عنوان اسـاس يكى كد طراحى به نـام كه بيشتر براى طراحى اوليه سازه هأى صفحه أى سخت شـده تكى مــورىى اسـتـفـاده PASCO[40, 41] مى شود، مورد استنغاده تـرار كـرنــت. PASCO برایى بهينه سازى از كد برنامه ريزى رياضى غير خـطى CONMIN[39] بار كذارى رابطه سازى مى شود. قيدها عبارتند از كرانهاى بالا و پايين روى متغيـرهـاى طـراحـي، كـران

 (PASCO ، $\left(N_{x}, N_{y}, N_{x y}\right)$ كمان مانند اوليه و درجه حر ارت مى بانـد . انر كرنشهاى خمشّى كه در اثر اعمال كشتاور خشُمـى، فنار، خميدكى اوليه يا درجه حرارت به وجود مى آيد در تحليل شكـست كرنش با تركيب آنها با كرنشهاى يكنواخت حاصل از بارهاى صفحها أى، در نظر كرفته مى شود . كرنشهاى خمشی حاحل از فشار و خميدكى كهان مانتد بر اساس يكـروش تير -ستّون[42] با محاسببه كتنتاور خمشنى مربوط در ميانه طولى صفحه محاسبه مى شوند . اين كثـتاور خمششى ماكزيمم با
 ضرورت ثابت بودن توزيع تشُ در امتداد طول در VIPASAا المت . براى بتـث بيشتر در مورد كتشتاورهاى
 متغير هاى طراحى عبارتند از عرضها، b، خـخامت نكى لايه ها، t و جهتهاى θ هر جزء صفتحه كه صفحه را تشكيل مى دهند. كاهش تعداد متغيرهاى طراححى از راه ايجاد يونذ بعضى از ابعاد اجزا يا جهتهاى تك
 ارتعاشات از طريت بسط سرى تيلور مرتبه اول بر ایى آنها و تعريف مححلوده'حركت براى متغير هاى طراحى ، مسآله را به شكل تثريب حل كند. اين جنبه از كد آنها را از نظر محاسباتى كارآ و برایى طراححى اوليه بسبار ارزشمند مى سازد و به طراح اين امكان را مي دهد كه مفاهيم طراحي مشختلف را بـا روش كـم هـزينـهاي مقايسه كند .

شكل r.r. 1 I ا شكانهاى مختلف طراحى

اين مـال كه توسط سوانسون و كُوردال' [43] ارابئه شده، مقايسـهأى است از راندمان سازهالى ششكل بهينه صفصد كنارى بال كه از مواد مركب ساخته شده الست، كه نمونهای از بال مركزى مربوط به مـخزن سوخت يك هوايمماى بارى بزر گ است. ابعاد رينگّ عبارت اسـت از 28 اينج ارتفاع و 80 اينج عرض . ساختار صفحه به كونه أى انتخاب شده كه عملى و از نظر توليد مقرون به صر نه باشـل . اين شـكلها در شككل ll . F F Y F
 صفحه موجدار از نظر توليدنسبتاً ساده است، زيرا لايه هاى بيوسته الى دار د كه در سرتاسر آن قرار دارد 1) Swanson and Gurdal

AAA باعث ايحجاد سختى مى شود و نيازى به بستن آنها نيست . آنها همـهنين براى فرايند شكل دهى حرارتى در مواد ترمويلاستيكى كه از نظر توليدى امـاسآكم هزينه تر است مناسبند . در شكل همیهنين صفـحاتى كه با بره ستخت شده اند وجود دارند كه از اين مفهو مبيتّر در رينگّ بالها استفاده مى شود و در انتها يكى صفخه ستخت نشله صافـ كه برابى مبناى مقايسه امتفاده مى شود. قيدهايى كه در اين مثال در نظر كرفته شئه اندعبارتند از : محدوديتهاى مقاومت، كمانش وهندسى. هعيار شكست مصاللح، هعيار شـكست كرنش ماكزيمـم انتخاب شده است . معيار كمانش بر مبناى طراحى مـازه هایى بال است كه اججازه نمى دهد در بارهاى حدى طراحى، كمانش رن دهلـ . بـــابـرايـن، طـراحىى رينگى بال هيج گونه توانايى تحمل بار يس از كمانش را براكى صفحه در نظر نمى كيرد. متغير هاى طراحى ضخامت تكى لايه هاى با جهنهاى مختلفـ در سطوح مختلفـ صفحه اند . زوايـاى
 در نظر كرفته شده اند تابهنمين هندسه سطع مشطع بهدست آيد . هركولس ' AS4/3502 كه بانوار كرافيت-

 سرتاسر عرض سطع مقطع ترار دارند. هحنين تكى لايه هاى بيوسته هزينه هـاى سـاخـت را كاهـش داده و تهركز تنت را كه مى تواند در نقاط انتهايى نى لايه 45 كه كلاهكها را مى مـازند، تكى لايه هاى 0درجـه بين لايه هاى اليافـ 45 \pm درجه قرار دارند ـ بنابر اين، ماده
 تعريف مى شود . مشخصصات ساير سطع مقطعها را مى توان از مرجع [43] به دست آورد.

 بارى بزر كَ وجود دارد. در اين مثال يكى نماد بار L/ L استفاده مى شود كه Lطول صفنحه است و مقادير

بنش 11.7 : كاربردمایى طراحى 84

اين نماد بين 0.3 تا 1000 است $100 / \mathrm{lb}^{2}$ اين هحدوده شـامل بار هاى پايِن تر و بالاتر از بارهاى رينگٌ نمونه مى شود، در نتيجه طر احى صفخهه مـاير اجز| مانتد يوسته بال را نيز در بر هى كيرد. II. F. انث شدت بار فنـارى مسورى روى رانندمان سازه و هندسه صفتحه مورد دطالعه در شـكـل نشـان داده شُده امت. مفهوم صفحه موجذار با لايه هاي مـتلفـ در تاج موجلار و جان، از نظر مـازهاى بهترين راندمان را دارد . مفهوم صفـحه موجذار با لايه هاى يّوسته از نظر راندمان سازه ای درمرتبه دوم و مفهوم صفخه سخت شده تومسط بره ها، مفهوم صفشه سخت شده كلاه مانند و صفتحه تخت سخت نشدده
 مدلسازى لايه ها كه هندسه صفنحه را تعريف مى كنتد بستگى دارد. هر شكل به كونهاى مـلسازى مى شود
 شدت بار محورى كمه در تمام شكلها، به جز صفحه تختت سخت نشّده ، قيل حداقل ضخامت 0.005اينج در تمامى لا يه ها در نظر كُرفته شلده امت. بنابراين، وزن يكى صفتحه تقريباً با نعداد لابه هاى سطع معطع متنامبب امست و از شدت بار مـستقل است . • •

يكى عيب PASCOعدم دقت احتمالى در مدلسازی شرايط مرزى بار هاى برشیى است ـ شرايط مرزى انتهايّى صفخه أى عمود بر سخت كنتده ها فرض مى شتود كه تكيه كاه ساده است و نمى توائن تغير يابذ .

 صفحه منطبقند. هنگامى كه برش به صفحه اعمال شوود، شبكه كمانسى از يكى سرى از خططوط كرها الى انحر اف يانته تشكيل شـده و بار كمانش محاسبه شُده براي اين حالت بار ممكن است از بار كـمـانــش يكـ صفحه با تكيه كاه ساده متفاوت باششد. به ويزه، أكر يكى نـبم موج كمانش تنها بـه طول خدر امتداد طول PASCO ممكن است بار كمانش را كمتر بيش بينى نمايد. در PASCO صفحه، L ا، تشكيل شود، تحليل براى حالت $\lambda=L=L$ ، بیى كزينه جواب سختى خسبى [38] وجود دارد تا هنگامى كه بار برشى وجود دارد جوابى دقيقتر بدهد. در مرجـع[44] نشان داده شُده كه روش سختى چسبى يكى جواب بهبود بافته اسـت
 سخت شده بهينه، جزينات سطح مقطع بايد براى كمانش سخت كنتده محلى در نظر كـرنتـه شـود و در همان حال در لبه هاى بار كذارى شُرايط مرزى تكيه كاه ساده است. حل سخت كندهُ جسبي در PASCO
 [46رجود دارد كه تحلبل كمانت VIPASA رابرای شرايط تكيه كاهدر جاى دلخواه در امتداد طول صفحه با استفاده از ضربكر هاى لا كرانز بهبود مي بخشـد. با مشتخص كردن تكيه كاهها در بازه هاييى كه مربوط به

دو انتهاى طول صفخه دلخواه مى شود، براى هنكامى كه برش اعمال مى شود، مى توان در لبه هاى صفسه شر ايط مرزى تكبه كاه ساده رادر نظر كرفت. تحليل VICON اخيرآنتومط بوتلر و ويليامز ' [47]در كد طراحى VICONOPT كنجانده شده است.

 ارائه شده است[51] . بااين وجود، به دليل ليحيدكى و هزينه هاى محامباتى بالا در تحليل بس كمانـش سازه هاى صفحها ایى سخت شده، طراحى بهين جنين صفحاتى از مطع يك كار معمولى فراتر است.

11 . r. r r

يكى ديكر از زمينه هاى اصلى كاربردهاى بهينه سازى طراحى متناسب سازى آترو الاستيكى سازه ها هاى بال هوابيماست كه در آن تيدهاى آثروالاستيك وجود دارد . متناسب سازى آثروالا ستيكى عبـارت اســيـت از استفاده از تغير شُكلهاى سازه ای، جهت بهبود بخشيدن به خواص سازه ای و آتروديناميكى يكى صفــه در حال صعود. يك تعريف استاندارداراثه شده عبارت الست از[52]: متناسب سازى آثروالا ستبك عبارت/ستاز بدكاركيرى سخت كتنده هاى جهتم درطراحى سازه هاى
 وآبروديناميكم آن موايـيا به شُكل مفيدى تغيير يابد. خواص رفتارى مفيد، خواصمى ماندينجش آتروالاستيك، خميدكى اتثروالاستيك، لرزش توسعه يانته و سرعتهاى واكرا، افت كنترل غلطش آتروالاستيك، و مماومت انزايش يانته را كويند[53].
4) Bushnell
 موضوع متناسب سـازى آتروالانستيكى در دهـهُ كذثته نهر ت فزاينده إى يانته زيرا رشتته بهينه سـازى سـازه ها بيشرفت كرده و استفاده از مواد مركب در سـازه هاى هوايِما نيز انزايش يانته استـ. طراحى بالها از جنس مواد مركب اغلب از نوع نلزى آَن، انعطان بذيرتر است و باعث مـــامسب بـودن آنهـا در اثـرات آتروالاستيكى مى شود ـ بيشتر مواد مركب براى طراح اين موتعيت را فرامث مى كنتد كه با متناسب سازى باسِخ مواد، با استفاده از متغير هاى طراحى ضشخامت و جهت تك لايه ها، الثرات آتروالا ستيكـ دلخوراه را را به وجود آورند و رفتار آثروديناميكى را بههود بخخشند. هر جند با متناسب سـازى طراحى انعطاف بِذيرى |اززايش مى يابد، افزايشن تعداد متغيرهاى طراحى و بيجيد طراحي بال را مشكلتر مى سـازد[55 ,54]. اين حقيقت لزوم استفاده از فنون بهينه سـازى بيسر فته را روشن مى سـازد . استفاده از الكُوريتمهاى بهينه سـازى در مدلهاى سـازه الى سطوح در حال صعبود رسيدن به بها بهبود هورد نظر در عملكرد آن ر الامكان بذير مى سـازد، هر جند اين كار هزينه بر است. بيشتر مطـالــات اوليـ
 حالتها ملـلهاى تير براى سـازه بوده است. مرورى بر كاربرد ننون بهينه سازى سـازه ها در مــائل طراحى با تيدهاى آثروالاستيك توسط هفتكه[56] ارائه شده است. يكى از تلانـهاى اوليه در كاربرد بهينه سازى سـازه ها در متناسب سازى آثروالاستيك برنامه TSOاست
 آثروالاستيك بال)[58] بود و از روش برنامهريزى رياضى مبتنى بر رويكرد جريمه (بخش V . . ه را بيينيد) برای تبديل مساله مقيد به تعدادى مسالك نامقيد استفاده مى كند. هينيمـم سـازى نـامــيـد از راه الـكـوريـتـم
 صفحه با فن حل ريتن" "انجام مى شود. تابع هدف مى تواند هر تركيبى از وزن، ثيبب منحنى صعود، مؤر بودن سطح كترل، مرعت لرزش، ، بسامد طبيعى اصلى ياتغيير •كانها بانثد. متغيرهاى طراحى ضرايب جند جملهاى كه جهت تك لايه هاى مختلف و ضيخامتها را كترل مى كند است. استفاده از شكـل جـنـد جمله أى براى بارامترهاى طراحى و روس ريتز كاربرد روش برنامهريزى رياضى را برایى بهينه سـازى مناسب

1) McCullers and Lynch
2) Wing Aeroelastic Synthesis Procedure
3) Davidon-Fletcher-powell
4) Ritz

بثش FOF F 11.7 :كاريردشاى طراسی
هواجيماهاى موجود به كار رفته است[54, 58, 59] .
برنامه مشهور ديگر برایى طراحى سطوح در حال صعود كه داراى تَيدهاى مقاومت و آتروالا ستيـكــــ برنامه اجز إى محدود FASTOP است كه توسط كرومن ' [60] ارائه شد . برنامه روشهاى معيار بهينگى (نصل 4 را ببينبل) را به كار مى كيرد و قادر است قيودلرزش را هم در بر بگيرد. روشهاى معيار بهينگى برايى طراحيهايى كه تنها يكى قيد دارند، بسبيار كارايند. بنابراين، با وجود تحليل اجزایى محدود كه هزينه بر است، هزينه بهينه مازى با استفاده از روش دنباله أى براى قيود، در سطع قابل قبولى نگاه داثتهه مى شود . ابتدا با يكى طراحى تمام تنيده (FSD، بخخش 1 . 9 را ببينبل) غير بهينه قيود تنش در نظر كرفته مى شوند، و به دنبال آن برالى هر يكى از تيدهاى آتروالاستيكى يك معيار بهينگى لمؤثر بودن هزينه الى يكنواختها (بحخت
 شود . متنيرهاى طراحى ضنامت و مساحت سطع مقطع هايند و جهت تكى لايه ها در طول طراحى بايد بدون تغيير بماننـ.

 كروه فراکير و محلى تقسيم مى كند يِاده سازى و اجرا مى شود. يكي متغير طراحى تراكير عبارت است از جمع وزنى تعدادى از متغيرهاى طراحى محلى . مـشــابـه TSO، براى تعريف شكل ها، مانند يك تغيـير ضُـنامت هـوار (ملايـم) در امتداد جهت دهانه، بيوند تابع شـكل كونه مى توانـد استــفـاده شــود . بـخـش بهينه سازى طراحى كه در ASTROS استفاده مى شود برتامه ADS (سينت طراحى خودكار) [62] المت. تمامى حساسيتهاى تابع هلن و قيدها بر محسب مـتّقات تحليلى محاسبه مى شودد ـ هر دو روش مستقيم و متغير مجاورتى (به ذصل V مر أجعه كنيد) در دسترس المت.

ها 1 أ علم اطمينان هاي طرامي

كر جه مواد مركب آزادى و اخختيار وميعي، كه شايد تاكنون از همه آنها استفاده نشده، در متناسب سازى پاسخ سازه براى نياز طراح فراهم مى كنند، اما از طرف ديكر، مسائل خاصى را نيز به وجود مى آورند كه در مصالح معمولى اتفاق نمى افتد . سازه هاى بهينه نسبت به تغييرات شُرايط باركذارى و هر كونه نتـص حساسند. . به دليل تعداد زياد متغير ها كه طراحَ را قادر مى سازد طرح رأ متناسب و نزديكتر به ويزكيـهـاى مورد نظر طراحى كند، الين حسـاسيت برابى سازه هاى مواد بركب شُـديدتر است. ساده ترين مثال حساسيت به تغييرات شُ ايط بار گذارى، ماده مركب لايه ایى اسـت كـه بـرای بـارهـاى تـكـ مــــورى طـراحـى شــده است[63] . برایى اين كاربرد، به راحتى مى توان نشان دأد كه بهترين طراحى عبارت است از طراحى كـه تمامى لايه ها در أمتداد جهت بار باشد . همحنين بليهى است كه اين طراحتى براى تحمل بارهاى عرضى عمود بر جهت الياف در امتداد جهت بار بائـلـ همحچنين بليهى است كه اين طراحى براى تحمل بارهاى عرضي عمود بر جهت الليانـ به شـدت خعيف اسـت . بنابراين هر تغيـرى در جـهــت بار اعـمـال شـــده بـه احتمالل زياد باعث شكست خحواهل شده، در صورتى كه يكي طرح مشابه كه از مصاللع ايزوترايشي ساختـه شـده باشدل، قادر است بار عرضى را به اندازه بار طراحى اصلى تحمل كند.

يبحيدكى ديكر در طر اححى سازه هاى مواد مركب بهينه اين است كه كاهى شناساهى و اعمال قيود معاومتى مناسب دشوار است. نه تنها بار و توزيع تنشها توابعى از متغير هاى خـخامت تكى لايه ها و جهـت اليـان است، بلكه خواص مقاومتى نيز به اين متغير ها وابسته أند. از بين رفتن مواد مركب بيشتر به سبب تنتُهاى محلى بالاست . تعداد مودهاى شُـــت محلى ممكن بالاست واين مودهاى شكــت معمولا ريز مكانيكى

[^15]

وبيجيده اند. شُكست اليان، ترلُّبرداشمتن زمينه، جدا شدن اليانـاز زمينه، ، وجدا شدن لايه هاى مختلف مى تواند باعث تركُ در سطط و در عمق ضهخامت، تكه شـدن ، و جدا شُدن لايه ها كردد. تحت بارمـاى فشارى، حتى نابايدارى اليانها در مقياس ميكرومـكيمى (كه اغلب به عنوان ريز كمانس الـيـان خـوانــده مى شود) به عنوان يك شنكست ساز و كار مطرح شُده، اكر جه بنابر مطاللات جديدتر ، شنكـتهاى فشارى برای مواد مركب باعملكرد بالا يكى شنكست مفاومتى شناخته شدهاست. ـ انزون بر اين، مودهاى شنكست مى توانند بر يكديكر تأثير كذارده و يس بينى مقاومت را دشوارتر سازند. بعضى از فرخهاى اساسى كه برای ساده سازى تحليل تنشهایى مواد مركب به كار مى رود و طبيعت سه بعدى مواد مركب رابه دو بعد كاهش مى دهد، نيز ممكن است سبب از دست رفتن اطلاعـاتى نــود كـه برایى يسن بينى شُكست مهمند. روشن است كه صفحات مواد مركب لا يه ایى در هر نتطه يك حالت تنس سه بعدى دارند. بيشتر مثالهاى اين اثرات سه بعدى، تنشهاى لبه ماى آزاداد، و تنشهاى بين لايه ایى در فصل
 از اين اثرات موضعى آكاه باثند و تيدهاى مناسبى را برایى در نظر كرفتن اين اثرات در نظر بكيرند . اكر ادعا شود كه بعضى از مسائل مربوط به طراحى در شيكست مواد مركب به خربي شناخته نشده اند، سخنى كزان نيست. كاهى كميتهاى مقاومتى كه براى در نظر كرمنت قيود تنش خاصى مورد نياز اسست، در دسترس نيستند. به عنوان مثال، بر اساس تجربهاز مصالح فلزى، طراحانان اغلب به دنبال يكى حد براى مقاومت فنـارى موادند كه بتوانتد در مسـاله بهينه سازى آذ را در نظر بكيرند . مى توان كفت كه مـــاومـت
 بعضى از كاربردها، عدم اطلاع و يا در دسترس نبودن مدلهاى يسّ بينى براى يك طراحى خاص ، ممكن است كار طراحى رابا منككل مواجه كثد. به عنوان مثال، بر خلانت مصالح فلزى، مواد مركب در مقابل
 برای طراحى مواد مركب تحت تأثير شرايط خرابى ضربهایى استفاده شـود وجـود نـدارد. بـعضى از اين موضوعها هنوز در دست مطالعه اند و تلان زيادى را در زمينه مكانيك مواد مركب مى طلبند. با اين مشكلات، طراحان اغلب به سوى توصيه هاى عملى سوق داده مى شوند . بـ جاى استفـاده از زاويه تك لايه به عنوان متغير طراحى، طراحان اغلب آنها رادر زواياى معمول0، 45 45 و 90ثابت در نظر مى گيرند. حتى اكر بار وارد شده بيشتر در يكى جهت خاص بائدن، مانتد صفحهن تحت بار كذارى محورى، وجود تكى لايه هايى در غير امتداد بار، باعث افز ايش ايمنى براى شرايط بارى غير طراحىى، ماند بارهاى
 ضــخامت مربوط به تك لايه هايى كه بر اساس توصيه هاى شهودى ترار داده شـده انذ، يا كران بايسنى برأى آن ضـخامتها امستفاده مى شود و يا بار هاى اخانى تعريف مى شوند . به عنوان مثال، كاربرد درصد معينى از بار محورى به عنوان بار برشى به خـخامت غير صفر لايه هاى 45 لايه ها صفر باشد.

انتخاب حيدمان در ماده مركب نيز از تجربيات شهودى تعيين مى شود. به عنوان مثال، المتفاده از تكى لايه هـاى 45 \pm درجه به عنوان لا يه هاى خارجى يكى ماده مركب لايه الى به خاطر تحمل حـدمات مـفيـد
 سبب مى شود تنشهاى بين تكى لايه ها با جهتهاى مشتلفـ كاهش بيدا كند. به منظور برآورده سازى خنين
 الكوريتم شـاشخه و كران با متغير شناسايع تكى لايه امستفاده شود، اين خصوصيت را مى توان به سادكى بـا

ا1.7 تمرينها

ا . برای يكى ماده مركب لايه الى تك جهت كه تحت اثر تنشهای يكنواخخت
نتـان دهيد كه مقادير ايستاى تابع تثاى- هيل'

$$
\begin{equation*}
f=\left(\frac{\sigma_{1}}{X}\right)^{2}-\left(\frac{\sigma_{1} \sigma_{2}}{X^{2}}\right)+\left(\frac{\sigma_{2}}{Y}\right)^{2}+\left(\frac{\tau_{12}}{S}\right)^{2} \tag{11.9.1}
\end{equation*}
$$

$$
\begin{gathered}
a \cos 2 \theta+\sin 2 \theta=0 \\
a \sin 2 \theta-\cos 2 \theta=b, \\
a=\frac{2 \tau_{x y}}{\sigma_{y}}-1, \quad, \quad b=\frac{\sigma_{y}+\sigma_{x}}{\sigma_{y}-\sigma_{x}} \frac{1-\alpha^{2}}{\beta^{2}-a^{2}-}
\end{gathered}
$$

for بنش

$$
\alpha=X / Y, \quad, \quad \beta=X / S
$$

كه X X X مقاومتهاى عمودى موازى با جهتهاى اليافها و عمود بر آن است و S مقاومت برنـى است.

 آوريد. ماده مركب بايد شرابط ستختى هاى زير رانيز دارا باشد:

$$
E_{x} \geq 17.510^{6} p s i, \quad E_{y} \geq 5.810^{6} p s i, \quad, \quad 0.1 \geq \nu_{x y} \geq 0.3
$$

خواص مهندسى مصالح T300-500 كرافيت ايركسى و جهتهاى احلى مصالح آن عبارتند از :

$$
E_{1}=26.2510^{6} p s i, E_{2}=1.4910^{6} p s i, G_{12}=1.0410^{6} p s i, \quad, \quad \nu_{12}=0.28
$$

 .

شكل 11.9 يكى صفهه سنت شده توسط يرهك تحت تأثير فنشارهاى محورى است

F•A الف) شُكل رابا قرار دادن جيدمان لايه ها در نزديكترين نقطه طراحى كسسته مناسبدر شكل كامل كنيد. ب) أكر ماده هركب بخوامد ضريـب بـواسـان عرضى
 EI كه ساختارى ,

 N $N_{z}=10000 \mathrm{lb} / \mathrm{in}$
[1] Jones, R. M., Mechanics of Composite Materials, McGraw-Hill Book Co., New York, pp. 45-57, 1975.
[2] Tsai, S. W., and Pagano N. J., "Invariant Properties of Composite Materials," in Composite Materials Workshop, (Eds. Tsai, S.W., Halpin, J.C., Pagano, N.J.) Technomic Publishing Co., Westport, pp. 233-253, 1968.
[3] Caprino, G., and Crivelli-Visconti, 1., "A Note on Specially Orthotropic Laminates," J. Comp. Matls.. 16, pp. 395-399, 1982.
[4] Gunnink. J. W., "Comment on A Note on Specially Orthotropic Laminates," J. Comp. Matls., 17. pp. 508-510, 1983.
[5] Kandil, N., and Verchery, G., "New Methods of Design for Stacking Sequences of Laminates ," Proceedings of the International Conference on "Computer Aided Design in Composite Material Technology," Eds. Brebbia, C. A., de Wilde, W. P., and Blain, W. R., pp. 243-257, 1988.
[6] Schmit, L. A., and Farshi, B., "Optimum Laminate Design for Strength and Stiffness," Int. J. Num. Meth. Engng., 7, pp. 519-536, 1973.
[7] Park, W. J., "An Optimal Design of Simple Symmetric Laminates Under the First Ply Failure Criterion," J. Comp. Matls.. 16. pp. 341-355. 1982.
[8] Massard, T. N., "Computer Sizing of Composite Laminates for Strenght," J. Reinf. Plastics and Composites, 3, pp. 300-345, 1984.
[9] Tsai, S. W., and Hahn, H. T., Introduction to Composite Materials, Technor ic Publishing Co.. Inc., Lancaster, Pa., pp. 315-325, 1980.
[10] Tsai, S. W., "Strength Theories of Filamentary Structures." it R. T. Scheartz and H. S. Schwartz (eds.), Fundamental Aspects of Fiber Eonforect Plastie, Wiley Interscience, New York, pp. 3-11. 1968.

[11] Brandmaier, H. E.. "Optimum Filament Orientation Criteria," J. Composite Materials, 4. pp. 422-425, 1970.
[12] Miki, M., "Material Design of Composite Laminates with Required In-Plane Elastic Properties," Progress in Science and Engineering of Composites. Eds., T. Hayashi, K. Kawata, and S. Umekrwa, ICCM-IV, Tokyo, Vol. 2, pp. 1725-1731, 1982.
[13] Miki, M., "A Graphical Method for Designing Fibrous Laminated Composites with Required In-plane Stiffness," Thans. JSCM, 9, 2, pp. 51-55, 1983.
[14] Schmit, L. A., and Farshi, B., "Optimum Design of Laminated Fibre Composite Plates," Int. J. Num. Meth. Engng., 11, pp. 623-640, 1977.
[15] Miki, M., "Optimum Design of Laminated Composite Plates Subject to Axial Compression," Composites' 86: Recent Advances in Japan and the United States, Eds., Kawata, K., Umekawa, S., and Kobayashi, A., Proc. Japan-U.S. CCM-III, Tokyo, pp. 673-680, 1986.
[16] Bert, C. W., "Optimal Design of a Composite-Material Plate to Maximize its Fundamental Frequency," J. Sound and Vibration, 50 (2), pp. 229-237, 1977.
[17] Rao, S. S., and Singh K., "Optimum Design of Laminates with Natural Frequency Constraints," J. Sound and Vibration, 67 (1) pp. 101-112, 1979.
[18] Mesquita, L., and Kamat, M. P., "Optimization of Stiffened Laminated Composite Plates with Frequency Constraints," Eng. Opt., 11, pp. 77-88, 1987.
[19] Cheng Kengtung, "Sensitivity Analysis and a Mixed Approach to the Optimization of Symmetric Layered Composite Plates," Eng. Opt., 9, pp. 233-248, 1986.
[20] Pedersen, P., "On Sensitivity Analysis and Optimal Design of Specially Orthotropic Laminates," Eng. Opt., 11, pp. 305-316, 1987.
[21] Muc, A., "Optimal Fiber Orientation for Simply-Supported, Angle-Ply Plates Under Biaxial Compression," Comp. Struc., 9, pp. 161-172, 1988.
[22] Shin, Y. S., Haftka, R. T., Watson, L. T., and Plaut, R. H., "Design of Laminated Plates for Maximum Buckling Load ${ }^{n}$, J. Composite Materials, 23, pp. 348-369, 1989
[23] Miki, M., and Sugiyama, Y., "Optimum Design of Laminated Composite Plates Using Lamination Parameters," Proceedings of the AIAA/ASME/ASCE/AHS/ ASC 32nd Structures, Structural Dynamics, and Materials Conference, Baltimore, MA., Part I, pp. 275-283, April, 1991.
[24] Gürdal, Z. and Haftka, R. T., "Optimization of Composite Laminates," presented at the NATO Advanced Study Intitute on Optimization of Large Structural Systems, Berchtesgaden, Germany, Sept. 23 - Oct. 4, 1991.
[25] Haftka, R.T., and Walsh, J.L., "Stacking-Sequence Optimization for Buckling of Laminated Plates by Integer Programming, AIAA Journal (in Press).
[26] Schrage, L., Linear, Integer and Quadratic Programming with LINDO, 4th Edition, The Scientific Press, Redwood City CA., 1989.

[27] Nagendra, S., Haftka, R. T., and Gürdal, Z., "Optimization of Laminate Stacking sequence with Stability and Strain Constraints," submitted for presentation at the AIAA/ASME/ASCE/AHS/ASC 33rd Structures, Structural Dynamics, and Materials Conference, Dallas, TX., April, 1992.
[28] Lombardi, M., "Ottimizzazione di Lastre in Materiale Composito con l'uso di un Metodo di Annealing Simulato," Tesi di Laurea, Department of Structural Mechanics, University of Pavia, 1990.
[29] Le Riche, R., and Haftka, R.T., "Optimization of Laminate Stacking-Sequence for Buckling Load Maximization by Genetic Algorithm," submitted for presentation at the AI.AA/ASME/ASCE/AHS/ASC 33rd Structures, Structural Dynamics, and Materials Conference, Dallas, TX.. April, 1992.
[30] Stroud, W. J., and Agranoff, N., "Minimum-mass Design of Filamentary Composite Panels Under Combined Loadings: Design Procedure Based on Simplified Buckling Equations," NASA TN D-8257, 1976.
[31] Timoshenko, S., Theory of Elastic Stability, McGraw-Hill, New York, 1936.
[32] Stein, M., and Mayers, J., "Compressive Buckling of Simply Supported Curved Plates and Cylinders of Sandwich Construction," NACA TN 2601, 1952.
[33] Advanced Composites Design Guide. Vols. I-V, Third Edition, U.S. Air Force, Jan. 1973.
[34] Lekhnitskii, S. G., Anisotropic Plates. Translated by Tsai, S. W., and Cheron, T., Gordon and Breach Sci. Publ., Inc., New York, 1968.
[35] Hague, D. S., and Glatt, C. R., "A Guide to the Automated Engineering and Scientific Optimization Program, AESOP, " NASA CR-73201, April 1968.
[36] Stroud, W. J., Agranoff, N., and Anderson, M. S., "Minimum-Mass Design of Filamentary Composite Panels Under Combined Loads: Design Procedure Based on a Rigorous Buckling Analysis, " NASA TN D-8417, July 1977.
[37] Wittrick, W. H., and Williams, F. W.. "Buckling and V'ibration of Anisotropic or Isotropic Plate Assemblies L'nder Combined Loadings, " Int. J. Mech. Sci., 16, 4, pp. 209-239, April 1974.
[38] Plank, R. J., and Williams, F. W., "Critical Buckling of Some Stiffened Panels in Compression, Shear and Bending, " Aeronautical Q., XXV, Part 3, pp. 165-179, August 1974.
[39] Vanderplaats, G. N., "CO.MMIN - A Fortran Program for Constrained Function Minimization, User's Manual," NASA TM X-62, 282, 1973.
[40] Stroud, W. J., and Anderson, M. S., "PASCO: Structural Panel Analysis and Sizing Code, Capability and Analytical Foundations," NASA TM 80181, November 1981.
[41] Anderson, M. S., Stroud, W. J., Durling, B. J., and Hennessy, K. W., "PASCO: Structural Panel Analysis and Sizing Code, User's Manual, " NASA TM 80182, November 1981.

بتش
[42] Giles, G. L., and Anderson, M. S., "Effects of Eccentricities and Lateral Pressure on the Design of Stiffened Compression Panels," NASA TN D-6784, June 1972.
[43] Swanson, G. D., and Gürdal, Z., "Structural Efficiency Study of Graphite-Epoxy Aircraft Rib Structures," J. Aircraft, 27 (12), pp. 1011-1020, 1990.
[44] Stroud, W.J., Greene, W.H., and Anderson, M.S., "Buckling Loads of Stiffened Panels Subjected to Combined Longitudinal Compression and Shear: Results Obtained With PASCO, EAL, and STAGS Computer Programs," NASA TP 2215, January 1984.
[45] Williams, F.W., and Kennedy, D., "User's Guide to VICON, VIPASA with Constraints," Department of Civil Engineering and Building Technology, University of Wales Institute of Science and Technology, August, 1984.
[46] Williams, F.W., and Anderson, M.S., "Incorporation of Lagrangian Multipliers into an Algorithm for Finding Exact Natural Frequencies or Critical Buckling Loads," Int. J. Mech. Sci., 25, 8, pp. 579-584, 1983.
[47] Butler, R., and Williams, F.W., "Optimum Design Features of VICONOPT, an Exact Buckling Program for Prismatic Assemblies of Anisotropic Plates," Proceedings of the AIAA/ASME/ASCE/AHS/ASC 31st Structures, Structural Dynamics, and Materials Conference, Long Beach, CA, Part 2, pp. 1289-1299, 1990.
[48] Dickson, J. N., Cole, R. T., and Wang, J. T. S., "Design of Stiffened Composite Panels in the Postbuckling Range, " In Fibrous Composites in Structural Design, Eds. Lenoc, E. M., Oplinger, D. W., and Burke, J. J., Plenum Press, New York, pp. 313-327, 1980.
[49] Dickson, J. N., and Biggers, S. B., "Design and Analysis of a Stiffened Composite Fuselage Panel, " NASA CR-159302, August 1980.
[50] Shin, D.K., Gürdal, Z., and Griffin, O. H. Jr., "Minimum-Weight Design of Laminated Composite Plates for Postbuckling Performance, Proceedings of the AIAA/ASME/ASCE/AHS/ASC 32nd Structures, Structural Dynamics, and Materials Conference, Baltimore, Maryland, Part I, pp. 257-266, 1991.
[51] Bushnell, D., "PANDA2 - Program for Minimum Weight Design of Stiffened, Composite, Locally Buckled Panels," Comput. Struct., 25 (4), pp. 469-605, 1987.
[52] Shirk, M. H., Hertz, T. J., and Weisshaar, T. A., "Aeroelastic Tailoring - Theory, Practice, and Promise, " J. Aircraft, 23 (1), pp. 6-18, 1986.
[53] Lynch, R. W., and Rogers, W. A., "Aeroelastic Tailoring of Composite Materials to Improve Performance," Proceedings of the AIAA/ASME/SAE, 17th Structures Structural Dynamics and Materials Conference, King of Prussia, PA., May 5-7, pp. 61-68, 1976.
[54] McCullers, L. A., "Automated Design of Advanced Composite Structures, "Proceedings of the ASME Structural Optimization Symposium, AMD-7, pp. 119133, 1974.
[55] McCullers, L. A., and Lynch, R. W., "Dynamic Characteristics of Advanced Filamentary Composite Structures, " AFFDL-TR-73-111, vol. II, Sept. 1974.
[56] Haftka, R. T., "Structural Optimization with Aeroelastic Constraints: A Survey of US Applications, " Int. J. of Vehicle Design, 7 (3/4), pp. 381-392, 1986.
[57] McCullers, L. A., and Lynch, R. W., "Composite Wing Design for Aeroelastic Tailoring Requirements," Air Force Conference on Fibrous Composites in Flight Vehicle Design, Sept. 1972.
[58] Fant, J. A., "An Advanced Composite Wing for the F-16," paper presented at the 22nd National SAMPE Symposium and Exhibition, San Diego, pp. 773-783, April 1977.
[59] Gimmestad, D., "Aeroelastic Tailoring of a Composite Winglet for KC-135," AIAA Paper No. 81-0607, presented at the AIAA/ASME/ASCE/AHS 22nd Structures, Structural Dynamics and Materials Conference, Atlanta, GA., Part 2, pp. 373-376, April 1981.
[60] Wilkinson, K., Markowitz, J., Lerner, E., George, D., and Batill, S. M., "FASTOP: A Flutter and Strength Optimization Program for Lifting Surface Structures, " J. Aircraft, 14 (6), pp. 581-587, 1977.
[61] Neill, D.J., Johnson, E.H., and Canfield, R., "ASTROS-A Multidisciplinary Automated Structural Design Tool," J. Aircraft, 27, 12, pp. 1021-1027, 1990.
[62] Vanderplaats, G. N., "ADS - A Fortran Program for Automated Design Synthesis, " NASA-CR-177985, Sept. 1985.
[63] Stroud, W. J., "Optimization of Composite Structures," NASA TM 84544, August 1982.
[64] Nagendra, S., Haftka, R. T., Gürdal, Z., and Starnes, J. H., Jr., "Design of a Blade-Stiffened Composite Panel with a Hole," Composite Structures, Vol. 18 (3), pp. 195-219, 1991.

وازو نامه فارسى - انگكليسى

وأزدنام انارسى-انكليـى 10

amplitude	دامنه	kinematics	جنشي- سينماتيك
quadratic	درجه' دوم	exact solution	جواب دتيت
interpolation	درونيابى	occasional mutation	جهش كاه به كاه
cubic interpolation	درونيانِى درجه مـه		
exact	دقيق		E
bisection	درينشي	roulette wheel	هرخ رولت
binary	دوتاعى	ductile	جكنخور
perimeter	دور و دسیط	multidisciplinary	جندمنظر
dual	دو كان		
bay	دهانه' ساختمان		c
		steady-state	حاللت
	2	bound	入
rank	رتبه	safeguarded	حفاظت شـده
chromosom strings	رشته هالى كروموزوم	domain	حوزه
	رونّ تغيرمكان مودى		

mode displacement method
i
substitution method
ر رش جإبكدارى crush

خرد شـدن- له شــدن خطا(تلرانس)، نحمل (روادارى) tolerance رون شتـاب مودى
mode acceleration method
fixed mode approach
رويكرد مود ثابت
truncation error خطاى برش camber

خميدكى microstructure ريز سـاختار rib
self canceling
acute angle
زاويه' حاده
obtuse angle
زاويهُ منفرجه
redundancy زايد
 orthotropic

اورتوترايبك

mode shape		مبانى بهيكه سازى سازه ما		P18
	**كل مو2	scheduling		زمانبندى
intuitive	شهودى	cooling schedule	دلدن	زمالن بندى مرح
		surplus		زيادى
	$ص$	subordinate		زير جهت ده
	صفهات مركب لايهى			
laminated composite plates				
closed from	صررت كا	hemstitching		زوردوزى

fully stressed desing
practical design
move distance
مـرازها امككلتى تمامتنيده سـرازه زير مجتموعه كاربردهى سول سر كت b

dummy
ذاهرى
simulated annealing
series
E push-off سوق دمنده
generic
عأم
عامل جلوبرنده
factorization
عامل كيرى
undamped system
صيستم نامير|
thrust
load scaling factor

niche شبيه سـازى شـده)
generic
thrust
factorization
load scaling factor

عامل مقياس بندى بار	niche
علد مُرطى	lattice

condition number
lattice
شُبكه

FiV وازرنامه فارسم-انكليسس

bifurcation point		مبانى بهينه هـازى سازه ما	
	نقطه نـاخد	artificial	هصنوعى
stationary point	نتطه؛ ايستا	cutting value	مقدار برش
saddle point	نقطّ	facet	مقفّ (برشّ
regular point	نقطه' مـنظم	large- scale	مقياس بزرك
increment	نمو	complementarily	هكملى
flow chart	نمودار جريانى	singular	منغرد
		ad-hoc	موضمي- ار
	9	كان تابل تبول	ميدان تغيرهـ
inversion	واز5 كونك--1/,	legitimate displacement field	
		illegitimate field	ميدان غيرتابر
	-		
analogy	هماندىى		-
isotropic	**مسانكرد	spatial discontinuities	نإيبر وتكى فنى
smooth	همولر	inconsistent	ناساز كار
		nonsingular	نامنفرد
	s	Euclidean norm	نرم اقليدسى
flat	يكدست	aspect ratio	نـبت ابعاد-
monotonic	يكنواخت	tunneling	نقبزنى

A		bifurcation point		نقطه شاخه
absurdity	بيهوده	binary		دوتايى
acute angle	زاويه' حاده	bisection		دوبخشى
ad-hoc	موضعى- ارتجالى	bit string		بيت رمّه
adjoint	الحاتى- مجارנتى	bound		حد
adjoint vector	بردار الحاتى	branch and bound al	ithm	
aeroelastic	آثروالاستيك			الكوريتم شا
aileron				
amplitude	دامنه	C		
analogy	همانندى	camber		خميـ
artificial	هصنوعى	chord		توس-زه
aspect ratio	نسبت إبعاد - نسبت ظامر	chromosom strings		رشُته هاى
auxiliary	كمكى	closed form		صورت كامر
		collapse load		بار نروريـ
B		complementarily		هكملى
back-substitution	جايكذارى يـسين	compliance	1اداد5	قبول، موافة
backtracking	جابيكارى بـيني	condition number		عدد شرطى
bay	دهانه؛ ساختمان	configuration		ساختار

conservative	بالتى بهينه مـازى مازه		
	هايـــار	ductile	جكشخغرار
constraint qualification	بذيرس تِّ	dummy	ظاهرى
contraction			
colling schedule	زمانبندى سرد شدن	E	
coordination process	فرايند جهت	eigen pairs	جفتهاى ويزه
coupling vector	بردار جفت كتنده	elastic-perfectly plastic	
cross product	ضرب بردارى	خميرى	كاملأرتجاء
crossover	تقاطع	envelope	برش
crush	خرد شُلدن- له شـل	envelope constrain	تيد برش
crystalline	بلورى	Euclidean norm	نرم اقليدسى
cubic interpolation	درونيابيى درجه مـ	exact	دتيق
cumulative	تجمعى	exact solution	جوابـ دتّق
cutting value	مقدلار برش	expansion	انـباط
	exploiting sparsity		
D		لاغرى ماتريسها	بهرهبردارى از
decision making	تصهمبم سازى	extermization	اكــترمـم سا
decomposition	تجزيها	extermum	اكــرمبم
deflation	كاهش	extrema Lor $_{\text {cor }}$	نرين ها- اكـ
directional derivative	مشتّ مويى	extreme	فرين
discretized	تقسيمبندى		
dislocation	جابجايى	F	
distortion	اعوجاج	facet	مقطى (بر ثـم
domain	حرزه	factorization	عامل كيرى
dominance	غلبه يانتكى	fathom	به انتها رسيده
double-dogleg	پاسكى دو برابر	fiber	الياف
dual	دو كان	first order	مرتبه' اول

971
راز،نامد انكليسس-لارسى

I

illegitimate field	ميدان غيرتابل تبول	magnitude	بزركى
inconsistent	نامسازكار	mechanism	ساز و كار
increment	نمو	microstructure	ريز مانتار
interpolation	درونيابى	minor	كهاد
intervening variable	متغيرهاى مانع	mode acceleration method روم مُتابر مودى	
intuitive	*هودى	mode displacement method	
inversion	وازكرنكى- وارونكى		روشّ تغيره
isotropic	همسانكرد	mode shape	شكل مود
iterative	تكرارى	monotonic	يكنواخت

FFF FF

orthotropic

$$
\begin{aligned}
& \text { دارای خـواص يـكـــان در مـه جـهـت متـعـالمــــ } \quad \mathbf{Q} \\
& \text { اورتوتراييكى Q-conjucate } \\
& \text { Q مزدوج } \\
& \text { quadratic }
\end{aligned}
$$

R

\mathbf{P}

دور و محيط تناوبى ايجاد اخنتلال كردن- تغييرات كرجیى
ايجاد انختالل كردن- تغييرات كوجى
random
314 رت

4هُ redundancy زلأيد
reflection
regular point
perturb

SHP

truncation error	خطاي برنٌ	univariate	تكى تغيرى
tunneling	نقبزنى	univariate search	جست وجوى يكى تغيري
		update	بهنكام
\mathbf{U}			
ultimate load	بارنهاي	V	
undamped system	سيستم ناميرا	variable metric	متغير متريك
unimodal	تك		

d10ㅇ

|AA الكرريتمهاى شبه نيوتن يا متغير متريكـ
iv. انبساط

انداز. كام
vv انرزى يتانسـيل بينـمـم
V9 انرزُى داخلمل ذخيره هـدي VVهانرزّى كرنشى ارتجاعى ويزّه iv• انعكاس |V• انقباض
DAY ، OFA اورترترأيشك F-I ، اولر - برنولم
or اولر _لاكرانز
P • F ايزرترابيك
ايمنى 1 1

YA• آكروالآستيكي
FFO اجزاى ايزويارامتريكى
OVI آراميد إركسى
YVY ارتعاشـات ناميرا
FYY ارتعامات هارمونيك آزاد
، از نـظر ايستايى معين
YGF, r.V. YAY
اصل بقاى انرزیى Vو
اكسترومم 01 ، 01 ،
اكسترومم سازى I•
الكوريتم دى افـهـ IVr

الكرريتم مرد ثمـدن تدريجى منبيه مازى شـده 199 ، ، 09.

الكوريتم سيمبلكس 4 1r

Ir9 الكوريتم كارماركار
الكوريتم كراديان مزدوج فلتهر-נيرز
الكوريتم مترويليس •
Y Y Y الكوريتمهاى جسـت وجوى جند متغير

FAF Fr

برنامهُ بارس (PARS) •
برنامه' براس (PROSSS) • •
 برنامه' دات (DOT) ال برنامة' داك (DOC) I YY برنامه' دى ساب (SESAP • Y

برنامه‘ زنسيس (GENESIS) بr برنامُ شُيب (SHAPE (SHE

برنامهُ فستاب (FASSTOP) بr YY. ، YYv (CONMIN) برنامه' كان مين برنامه' اويتيمـم(OPTIMUM) (OPTM برنامهُ نسترن (NASTRAN) برنامه' نيسا ايت (NISAOPT) برنامه' نيساي دو (NISAII)

 برنامه ريزى خططى عدد صحتيح برنامهر ريزى خطط عدد صتحيح مخلوط 140 برنامه ريزى درجه دوم دنبالهالى Y\& برنامه ليندو
 برنامهريزى خطط صسحيح دنباله الى • 09 برتامه ريزى رياضى OVI برون ايو كــي

برون يابي خططى YYY بزركّى مشتق MYM FMY بسامد ارتعاشیى

بارهاى حلى
Y\&1 بارهالى حر ارتي
بارهاى فرو ريختيكى IIFPبارهاى مرده و زنده

باز توزيع مصمالح
19A، |90 بازه' عدم اطمينان
or 4 هال هوايما
بتن بيش تنيده 11%

YF بردار كراديان
بردار ويزه
برنامه' إتيمم (OPTIMUM) • • برنامهx اجزاجى محطود

برنامه' اس يو 'ام تى جليد (NEWSUMT)
 برنامهُ امتارز (STARS) بr برنامهُ آستراس (ASTROS (AST)
 برنامג' اكــس (ACCESS • • ry. برنامهُ اوب استت(OPTSTAT) برنامُ' اويت (OPT (OY برنامه' اويت سيس (OPTSYS) أ برنامه' اويت كوعبش (OPTCOMP) •
 برنامهُ الى امس اوب (ASOP • PY
 برنامه' آى دياس (I DEAS) بY (I برنامد الى ديزاين (IDESIGN) بYY

SFY نمايه

FYA باسغ بـش كمانش
rar
+9 4
¢ايدارى أرتجاعى هو
بايستار
-OVY
901
1-0
ArF
FrıA

ت
تابع بوش تابع تك هالتي 191 تابع جريمـ ovy Orl تابع جريمه بردارى

 rov تابع جريمه داخلى كـسترش يانته درجه دوم تابع جريمه داخلى لكاريتمى

تابع جريمه وارون
ray
rav، ra. ، ، rAA تابم كرين تابع كثـتاور ماند تير تابع لاكرانزي

تابع لاكرانزين انزايش يانته

بسامد طبيعى 98
بسامدهانى اصلى AA ، AA PMY بسامدماى طبيعى

بسته هاى نرم افزارى بهينه سازى بسط بينم بهنكام برويدن 1^9 بهنكام ماى رتبهُ دو 1A9 بهنكام هالى رتبه يك 149
 بهين مسلي 09 • ، 10 ، V بهينه سازى ادج ورث بارتو بهينه سازى أندازه 9 I 1 ، بهينه سازى بارامتر 19 بهينه سازى متداخحل F9Q

YYY بهينه سازی تقريبى دنباله الى بهينه سازى تقرييى غير خططى دنباله ایى YF ، YY بهينه سازى جند معيارى بهينه سازى دو سطححى بهينه سازى ساختار
 OFA بهينه سازى كمانتش ترسيمى Y بهينه سازى مقيد بهينه سازى نامقيد IQV

Nr بارامتر بار بهرانی FY.

FFO ، FFI لارامترسازى دامنه

	Leford
Y. F تقاطع	Y Y
Y•V تقاطع دو نقطه	FY Fابع هدن
Y•V تقاطعهاى جند	FGY تابع هدف انزايش يانه
	9. 9 ، 0 0ابعى
YYA ، YFI تقريب خحطى	هr
YAV تقريب درجه دو	
Ar ${ }^{\text {F }}$	
Y4Y تقريب دو نقطها	IFr تبديل دريار.
	I F Y تبليل مختمات
YAr تقريب محانظه كارانه	Dir ، Dll
r^^A تقريب مودال	
IA^ تقريب هـسيان	vo تحدبت تابع
FAl ، FVA ، YYA ، rIO ، YAr	تrara
YVA تقريهای صريع	F19 19
YA - تقريها	F.r rer
YQ. ، YA * تقريبهاى فراكير	تحليل حد
rA^ تقريبها كاهـنى	تrليل و طراحى عهزمان ،
HIF ، YA * YVA	\|Y ترازهاى تابع هدف
FVA تقريبها	DAY ترتبب جيدمان برأى طراحّ كمانـ
rar rar	
FQ تهام تنيد	OFV ترتيب جيدمان لإيه هاى مواد مركب
IV9 تندترين كامش	Y- '
F90 تنش غثـاهى	- تغيرات كو جكى
توابع جريمه كـس	FOV (OFD) تفاضل مسدود كلى
توأبع هدف جـد	
Fr ${ }^{\text {F }}$	
Y.F توليد	DFY
تير اولر - برنولى	تفاضل بركزى

JYF رتب'	
Y.0	
	Mra
رعيانت تودرتر هro	ا17
ره.	خطاى برش
رr • رميانت كـترين مربعات	خطاى تقريب
MF. ، M. 9 ، Ygr ، Yor \%	rrv
	199 199 خطاى تطع كرد
rFVV روش بار ظاهري	rrv ، 199 خطاى
هV روس بار مجازى	خQA ، rFO
IVF روش	
روش	0
روش تحليل و طراحى همزمان	IFA درخت تصهيم شـاخه و كران
FAA ، YVF ، Yr¢ ، rr \%	درخت شمهارش 149
rar rar	درون ياليى جند
YF. روش تندترين كاهـ冂	ISV ، 109 درون يابي درجه دو
	دو كان فالك
IVA ، IV¢ ، IVr روش جهئها	\% 7094 \%
روش 4 Fو	Pal
FFI Jوش	j
روش حذف متغير	
روش 190 (19	رأبطه'
190	رابطه'
Fq.	
	rV
	r.V.
	راهبرد
روش	راهبرد

> رويه فيد |F|
> MV ريز ساختار
> ريز كمانش ه•
> A. 4 ريز مكانيكى
j
زمان بندى سرد شدن Y زنجير
j

زاكربين اولرى FFY
v
DIY
ساختار درخت
ساز و كار تركيى 114 ساز و كار تير 114 ساز و كار مرو رينتكى $10 r$ ، $11 r$ ساز و كار مايل 117
 FY. مازهُ تانزانتى

FYY مازه مجاورتى
سازه هاى اسكلتى
سازه مایى تلفيقى .
SF، VA ستونهاى اولر - برنولي

10^10 روش نن جـــت و جوى يكى تغييرى
روش كاهش مودال rar روش گلركين هو\&

روش گوس- نيوتن •Y
YV. روش لاكرانثى تصوير شدهُ لاول
FHA ، FYY ، FYY ، FI • روش مجاورتى روش مسصور كردن 104
 روش مرنبه دوم 14Y روش مقيد مودال بوヶr روش مودال بهبود يانت rq٪

روش نيمه تحليلي ror ، YAY ، YA• ، YOQ، YG• ، INY روش نيوتن OF. ، OTE \& OYK روشهاى تابع جريمه . YQ روشهای تحليل تقرييب r•r rer روشهاى تغييراتى Fr ry. روشهاى تكرارى روشهاى جسـت و جوى مستقيم 404 FgV ، YAF رو شهاى دو كان YVO ، Yوشهای خرايب Y Y
 IVA، 190، 10A روشهاى مرتبء' اول

روشهای مرتبهُ دوم
19^، 10^ روشهای مرتبه صفر روشهاى معيار بهينكى 49

FF. روشهای معيار بهينگى شُهودى
رويكرد مود بهنكام

مrrr
سغتى جسبى $\Delta 9 r$ سختيهاى كامش يانته • 00 OrF سرعت مـكرايّ

9. 9 سطع بال1111 011 سطع زير 011

سبستم جرم- فنر 90 orv سيستم فرعى

سيستههاي كسسته MrO ش
 شرايط بينكى FOQ ، YVQ
 fiv

طراححى ترتيب جيدمان طV
 g.r

هrر طراحى جند منظورهایى طراحى حد هr هr

طراحى خرياما 119 طرح حذنف كوس 199 هول توس كابل or

شرايط لازم كان - تاكر vه شرايط لازم و كافى بهينكى هُ هرايط مرزى سينماتبكى

شرايط مرزى طييعى هr هr شرط كانى بهينكى MY شر ط مكملي 99

شرط نرمال سازى

شكل مود
OVI تيشه ابوكسـن
شرايط لازمبا

PMF نـايه

$$
\begin{aligned}
& \text { تيد بحرانى } 0 \text { rer } \\
& \text { تيد يوش بRA }
\end{aligned}
$$

> TMY تيدهانى تغيير مكان
> عدد شرطى يكى ماتريس *AVY عدد موج 8 هry |v| عمل كامشش FI 19 عملكر خطى دو سويه

IYV تيمت هانى فيرد
ت"
تيود تساوى
TV تيرد جانیى
قيردلرزش ب•
تيود معادل rar
FV تيود نامساوى
s
كار خارجي IT
كار مجازی 111
كار سجازى مكهل ها ها

FiA كرنش شبجازى
كـانش اولرى 0.9
كهاد
FF كهادهاى اصلى
$\dot{\boldsymbol{\varepsilon}}$ غ غ \boldsymbol{j}

FVF ناصله تهى دوكان IFF ناصله حركت نرو ريختكى لاستيكى 9 | DFI نن كاهشت نن كراديان مزدوج OrF فن كراديان مزدوج دوباره شروع شمده بيل AF DIF ، FQV ، F9F فن نسبت تنش نون

Vه ننون يرنامهريزى رباضى OHF نون حذنى كومى

FFQ ، FYQ ، FYY ، F.FF
ترار دادن جيلمان لايهـها
تخيه كران پايِن ه• -
تُطهه به تطعه خحطى 119

Yبراديان كامش يانه F.V ، OVI ، OFF كرافيت - ايوكسى

كرههای زندهو 149
كــسته مازى نفـايـ
YYA ، YA كA كـتارو ماند

WMهP
FII متغيرهایى مجاورتى
G.F ، OYY ، DIV ، DID متغير YY9، IY1 ، IYF متغيرهاى مصنوعى متناسب سازى آتروالالمتيكي

PAA مجموعه غير نعال Fr Prond MI مجموعه تيدهاى نعال MYY محدب

مدل أجزای مسدود FYI مدول حساسيت بار 19r Q مزدوج

مسائلILP دو تائ IF9 If0 صفر يا يكا ILP مسائل مسائل ابتدائع 19

MYV مسائل برنامه ريزى درجه دوم
 PV, مسائل جلائى یذبر هسائل جند سطـي درخت باريكى F\&A مسائل غير خطى PAF ، YYF مسائل محدب PA ' مسائل مقدار ويزّه غير خطى PVI مساثل مقلار ريثره غير هرمينى مسائل مقيد غير خططى Y 1مسأله ابتدايع IYF FYO مسأله بهينه سازى مسدب مسأله جعبهإى زاريهاى 010 مسأله جعبهاى تطرى DIf مسأله جفت شده

FY (VMA) موسـهـ مهندسى وى ام الى PVA ماتريس أستهلالك ماتريس جرم PYY ، YOA ماتريس متغتى تانزرانت ماتريس مسختى جز\& ماتريس مسختى كلى PFQ F.F. ماتريس مستت مصالح 1A• ، FFY ماتريس هـيـان FFY متغير شبه زمان

F F F متغير طراحى مسحلى
متغيرهاى جهت لايه 0 DQ
IYM متغيرهالى زيادتى

r. متغيرهاى طراحى r متغيرهاى طراحى يبوسته PVY ، Y. متغيرهاى طراحى كسـسته PA\& متغيرهـاى طراحى نرمال شده متغيرهاى طراحى هندسي 9. P ، OYY متغير هاى فراكير متغيرهاى كمبود rA1 متغير هاى مانع

FFV مودهاى شُكسـ	OTV مساكه دو سطح	
F. F F مودهاى شـكست مصلى	AA	
OF. ميان يابى		
Fll ميدان تنش مجاور	HVV ، MFY M	
FIV ميلان كرنش مجاورتى	HOY ، FYI	
FrAA ميدانهاكى	مصالع جكش	
AA AR	مصالح كاملا ارتجاعى -	
10V ${ }^{\text {D/ }}$	91 91	
هينيم-	معادله حساسيت فراكير	
مينيمبر	ه\& ${ }^{\text {a }}$	
	معيار شكست اولين لايه	
-	معيار همكراهع	
V	HYA ، HY معين مثبت	
نامتغير	AF He	
F0 نامعين	مقادير ويزه هقيقى	
MYY	مقلار ويزه ras	
UYA ناهـــانكرد	0.Y ، Y ، ${ }^{\text {a }}$	
1VA نرخ همكرايع خطى	مVA	
	1AY مقياس بندى	
	مقياس بندى كلى	
Yا¢	مقيان بندى وارون	
نسبت ريلى	OFV	
F.F F نظريه' بقاى لايقترين داروين	مواد مركب لايهاى	
	rVr	
\|Y	نقاط رأس	Hro

9	MYY نقاط نرين
\| 1 وارون هسيان	MIA نقطه منظم
وازكونكى Y+F	FF نقطه ايستا
	نقطه دو شاخه .
-	F0 0 \%
ه0مبـتكى	ن- Y+r
$18 \wedge$ 19	ivr
	TVI نيروهاى آتو ديناميك
\checkmark	
يكتايع جواب	YYA ، FO نيهس معين مبنت
KOQ، HF.	F0 نيمه معين منفى

[^0]: 1) Douglas Wilde
[^1]: 1) Broyden
[^2]: 1) Jacobian
 2) Denis and Schnabel
[^3]: 1) Metropolis
 2) Boltzmann
[^4]: 1) Kreisselmeier-Steinhauser
[^5]: 1) Fiacco and McCormick
[^6]: 1) Bdrtsekas
[^7]: 1) Euler-Bernoulli
[^8]: 1) Berke and Khot
[^9]: 1) Von-Mises
[^10]: 1) Miki and Sugiyama
[^11]: 1) Gurdal and Haftka
[^12]: 1) Haftka and Walsh
[^13]: 1) Lombardi
[^14]: 1) Le Riche and Haftka
[^15]: 1) Automated design synthesis
