
) Sldasڤ̆。

تألبية : ثى . م - واسى

تر جمه : هجيد المیى - ايولجآاست بزوك ثيا

19 v

مقدمه ای بر

(برایى مهندسان و محقّقان علوم)

> ش ـ تأليف راس

تر جهمه

فهر ست مطالب

ها بازيدهده

$$
1
$$

$$
\gamma
$$

$$
p
$$

$$
\Delta
$$

$$
\wedge
$$

كمل دوم ـ متغير شاى كماهفى و اميد رياضم

$$
\begin{aligned}
& 1 \text { - متغير ماى تصادنى } \\
& \text { Y Y - انواع متغير هاى تعاديادلم } \\
& \text { r- } \\
& \text { 「r. } \\
& \text { P-ا اميد رياضمى } \\
& \text { ه- - خواص اميد رياضم }
\end{aligned}
$$

$$
\begin{aligned}
& \text { بيشگغتار مترجمين } \\
& \text { بيُغتنار مؤلْف } \\
& \text { بيشگفتار برنامهـا } \\
& \text { فصل اوّل ـ مبانى احتمال } \\
& \text { 1- ا- مقدمه } \\
& \text { Y - Y - Y } \\
& \text { Y }
\end{aligned}
$$

$$
\begin{aligned}
& \text { V - ا- احتال منرطى } \\
& \text { V- } \\
& \text { ^^ - بيشامدهاى مستقل } \\
& \text { مساثل }
\end{aligned}
$$

ir
ra
v.
va

فصل سوم ـ متغير هاى تصادلى خاص
مقدمه
1 - متغير هاى تصادفى برنولى و دوجمفله|ى ا-1 - محاسبئ تابع توزيع دوجمطلهاى Y - متغير تصادفى يواسن

Y- متغير تصادنى نوق هندسى
F - متغير تصادفى بكنواخت
هـ - متغير هاى تصادفى نرمال

هـ أ - مهاسبئ تابع توزيع نرمال استاندارد و و مسكوس آن
ه. - - تضئ هد مركزى

$$
7 \text { - متغيرهاى تصادفى نمايى }
$$

$$
\text { 1. } 1 \text { - فرآيند بواسن }
$$

نَ- توزيع گاما

^. ا - توزيع كىدو
^. ^- توزيع t
^.^. توزيع F

مساثل

فهل جهارم -نمونهكيرى

「-

$$
\begin{aligned}
& 7 \text { - } 7 \text { - } \\
& \text { V } \\
& \text { ^ } \uparrow \text { - توابع مولد گشتاور } \\
& \text { مسائل }
\end{aligned}
$$

177
T.T
IV.

IVF
IVA
IVA
IVV
|A|
(a)

IAV
|AA
19.

197
(F - توابع توزيع تهر.بى ، هيستوترام و نمودار هایى ساته و برتّ
ها - توزيعهاى نمونهانى از جامسه نرمال
(1. ا - توزيع سيانگين نمونه

- 1 - نمونهكيرى يكك مبعهو عه متناهى

مساثل

مقده

-

YI.

YII
(F.F
Y10
Y17
YY
YY
.

برآرود
مساثمل

لمل ششم - آزمون لرض
YYQ
1 - مقلده
YP.
Y Y ا
YPI
YFI
$r \Delta P$
Yas
(T T

T P P
P. ا - - حالت واريانسهاى معلوم

Yロ9
YqY
rip
Y7
Yiv
Y49
ry.
YYr
rys
ryy
rva
 - Y.

 T T - V
 مساثلل فلصل هفتم - ركرسيون
r^9

r- توزيع برآوردگرها

P. ا. - استنباطهايى در مورد ק
م - - استنباطهامى در مورد
$\alpha+\beta x$ x
 ها ه.
هـ - شاخص برازش

 ^ - كـترين مربعات موزون

لصل هشتم ــ آناليز واريانس

「タ1
PタY

rve．	r Y T T T T
rvo	P－آ－اليز واريانس دوطرفه
rer	هـ آناليز واريانس دوطرفه با اثر متقابل
rpr	مساثلي

r44
｜－ا ضميمهها
1 －بر نامهعهاى كامبيو تر
r- ا تابع توزيع دوجملهایى
Y-r تابع توزيع بواسن

A－I－－－ B－I－－－Y A－I－A－r B－ا－A－
${ }^{t}$ تابع توزبع A．Y－A－Y

F تابع توزيع A－r－А－А
（ r－F
P．$\%$
f．V
F．V ناصله اطمينان براى تفاضل دو ميانگين نرمال با واريانس مجهرل برابر B B－Y－Y－ه
p．A
F． 9
PI．
 （ ناصله الطمينان برای تفاضل A－Y－Y－ه

Tار T T T－F－－

FI.
Pll
Fil
fir
fif
P- برای آزمون فيشر
حل رگرسيون خطى ساده Y -V
I - -V
در P P مقآناليز واريانس يكتطرفه Y-A

Fil
fy.
FYI
PYY

FYY

جدول توزيع نرمال جدول توزيع كىدو

جدول توزيع
جدول توزيع
" - جواب بعضى از مسانز

هيشُّفتار متو جممين

 كه مفيد فايده باشد .

 طرزى كها از ابتداى تايب دستوشتكهها با دتت تمام و حوصله زياد ويرايش و مقابله آن را با با نسخه اوليه

 دانشجويان هزيز تقاضا مىشود هرگونه اشتباه يا نارسايى را ياد آرر شوند .

محمد اسلى
ابوالقاسم بزركنيا

هيشكفتار مؤلف

اين كتاب بهعنوان مقدمهاى بر آمار و اتتمال براي دانشجويان مههندسى ، عـلوم كـاميوتر ، ،
 مقدماتى از رياضم دارد .

 داده میشود ـ در فـل ماندهـا و روش كمترين مربعات موزون و رگرسيون هندگّانه است.

هيشكفتاز برنامهها

 LOAD" A: / PROGRAMS 4-3 بتب مىشود و بعد از آن با تايب RUN و نثار كليد enter مى توانيد برنامه را اجراكنيد .

فan اولدل

مبانى احتمال

1-1 مقلده
منهوم احتمالٍ يكت يششامد خـاص زز يكت Tزمـايش ، مـوخوعى است بـا معـانى و تفـاسير مشتلف • براي مثال وتتى زمين شناسى بيان مسىكند كـه ، إشـانس وجـود نـفت در يكت نـاحيه مـعيّن

 ذو تعيير مذكور از احتمال يكت يِشامل ، تعيير فراوانى و تعبير ذهنى (يـا شــخصمى) احتمـال

 بر آمد موردنظر مىشود تعريف خواهل شلد . ايـن تعيير از احتمال بيشتر در ميان دانشـــندان هـتداول

Y - Yای نمونه و يتشاملها

Tآزمايشى رادر نظر بعيريدكه بر آمد آن بطور تطعى از تبل قابل بيشبينى نيست ـ با اين وجود
 را باعنوان اففضاى نمونه آزمايشه در نظر میگيريم و با S نمايش مىدهيم . مثالهاى زير را در نـظر

اـ آگر بر آمد يكت آزمايش عبارت از تعين جنس نوزاد تازه متولد شده باشد ، آزگاه $S=\{g, b\}$

كه در آن gبه معناى دختر و bبه معناى بسر امست.
 $S=\{(1,2,3,4,5,6,7)$) مهس تر تيبهای $\}$

 $S=(0, \infty)$

كه در آز نتيجه xخواهدبود اگربيمار بهازاى xمقدار دارو بهبود يابد و براى مقادير كمتر نه .
 مجموعهاى شامل برآمدهاى مدكن يك آزمايش است . آگر برآمد آزمايش داخل E E بائد آنگاه

در مال 1 اگر

در مثال Y آFر
$F=$ =تمأ برآمدهايى در SS با عدد 3 شروع مىشوند
آنگاه Eاين بششامد است كه اسب شماره 3 در مسابقه اول شود .

 , $E=\{g\}$ يعنى ، يشـامد ؛

 مقام دوم رابهدست آورد آنگاه

 تيشامد باشد كه مقدار داروى مورد نياز

 اسب شماره ها بعد از بقيه برسد و و

 يشامدى است كه شامل هيج برآملى نباشد . اگگر

 ندهد. درمثال ا اگر

$$
\text { و مینويسيم } E=F .
$$

آمار و ا-تتـال مهندسى

همحتين مى توانيـ اجتماع و اشتراكك بيش از دو بيشامد را تعريف كنيم • بخصصوص اجتمـاع
بيشامدهاى بيشامدى كه شامل تهام برTآمدهايى است كه در تعريف مى كنيم • بطور مشابه اشتراكك بيشامدهاى داده و به صورت بيشاملى مركب از برآمدهايى كه در تمام بيشامدها ها تعريف مىكيمه • بهعبارت ديگر اجتماع ع در صورتىكه اشتراكی

F- نموهأز وِن و جبر يشياملها

يكت نمايش نمودارى از يِشامدهاكه براي نشان دادن ارتباط منطقى بـين آنهـا مـفيل است ، نمودار ين مىباشد . نضهاى نمونه Sرابه صورت تمام نقاط واقع در يكك مستطيل بزرگث نمايش داده و و يششامدهاى

قواعد جبرى نِسـت . هند تا از اين تواعد به مورت زير است.
$E F=F \cap E$
$E \cup F=F \cup E$
خاصيت جابّجايى
$(E F) G=E(F G)$
$(E \cup F) \cup G=E \cup(F \cup G)$
خاميت شركت بِيرى يامي
$(E F) \cup G=(E \cup G)(F \cup G) \quad(E \cup F) G=E G \cup F G \quad$ خاميت توزيع يذيرى
صحت اين روابط را بلدين صورت مى توان بررسى كرد كه هربر Tمدى كه در بيمّامد سمت هـب باشـد

 تحقيت كرد

EG.

FG.

$(E \cup F) G=E G \cup F G$

روابط مفيد زيريين اعمال اساسى اجتماع، اشتراكث و متم بر رقار است كك به كوانين دموركان
معروند

$$
\begin{aligned}
& (E \cup F)^{c}=E^{c} F^{c} \\
& (E F)^{c}=E^{\mathrm{c}} \cup F^{c}
\end{aligned}
$$

个 - اصول موضوعهُ احتمال

علدى مانند P(E) مو جود است كه در سه اصل زير صدق مى مكند

$$
\begin{aligned}
& 0 \leq P(E) \leq 1 \\
& P(S)=1
\end{aligned}
$$

اصل 1
اصل
اصلـ

$$
\left(E_{i} \cap E_{j}=\varnothing i \neq \quad j\right.
$$

$P\left(\bigcup_{i=1}^{n} E_{i}\right)=\sum_{i=1}^{n} P\left(E_{t}\right), \quad n=1,2, \ldots, \infty$

بنابراين ؛ اصلل موضوته | بيان مىكند كه احتهال اينكه بر آمد آزهايش در E باشلد علدى بيئ
0و 1 است . اصل Y بيان مىكندكه با احتهال ا بر آمد آزمايش بايل عضوى از نضاى نمونه S باشلد .
 حداتل يكى ازاين بيشاملها زُخ دهد مساوى است با مبحوع احتهالات هريكت از بششامدهاى مربو طه . بايل تو جه دانـت كه اگر
 مشال روشن است كه نسبت (با فراوانى) دنعاتى كه نتيهبة آزمايش در E مىباشل علددى بين صفر و 1 اسست و نسبت دنعاتى كه تتيجه آزمايش در S باشل \mid است (زيرا همه بر آملهـا در S تـرار دارنـد) .

 برای روشنتر شلن عبارت اخير فرض كنيل آزمايش عبارت از انداخخت يكك جفت تاس باشل

$$
11
$$

اكنون اصول موضوعهة بالا را براى اثبات دو سكم سادهٌ مربوط به احتهالات مورد استفاده ترار مىدهيم • ابتّا توجه داريم كه E E و موضوعة
$1=P(S)=P\left(E \cup E^{c}\right)=P(E)+P\left(E^{c}\right)$
يا يسادل آن هكمب زير را داريم :
حكم 1.4 .1
$P\left(E^{c}\right)=1-P(E)$

 سكه 3/8 باشد ، آنگاه احتمال بهدست آوردن خط بايد 5/8 باشد . حكم دوم ارتباط بين استمال اجتماع دو بيشامد را برحسب استم استمالات هريكت از از آنها و استمال اشتراكك Tنها ارائه ميدهد .

حكم 1.4.7
$P(E \cup F)=P(E)+P(F)-P(E F)$
برهان : اين حكم بهسادگى با استفاده از نمودار وِن به صورت زير اثبات مىشود

از Tنججائى كه نواحى I I I I I II متقابلاُ نامازگارند نتيجه ميشود كه
$P(E \cup F)=P(\mathrm{I})+P(\mathrm{II})+P(\mathrm{III})$
$P(E)=P(\mathrm{I})+P(\mathrm{II})$
$P(F)=P(\mathrm{II})+P(\mathrm{III})$

و اين مم نشان ميدهد كه
$P(E \cup F)=P(E)+P(F)-P(E F)$

آمار و اتتبال ههندسى
و برهان كامل است زيرا II =

ه- فضاهاى نمونه با برآمدهاى متساوى الاحتمال

 S $S=\{1,2, \ldots, N)$
$P(\{1\})=P(\{2\})=\ldots=P(\{\mathrm{~N}\})=p\left({ }^{(1)}\right)$
اكنون از اصول موضوع ب و ب نتيجه مى شود
$1=P(S)=P(\{2\})+\ldots+P(\{\mathrm{~N}\})=N p$
و از اين بهدست مى آوريم
$P(\{\mathbf{i}\})=p=1 / N$
از مطلب نوت و امل موضوع سوم نتيجه مىشود كه برای هر يششامد E
$P(E)=\frac{E \text { تعداد نقاط دا } 1 \text { ت }}{N}$

 بنابرايـن غالبـاً براى محاسبـه احتــا
 مىكيـمـم

گامده اساسى شمارش

برهان قاعدئ اساسى : تاعدة اساسى را میاتوان با شمارش تمام برآمدهاى ممكن دو آزمايش بهصورت زير اثباتكرد
$(1,1),(1,2), \ldots,(1, n)$
$(2,1),(2,2), \ldots,(2, n)$
:
$(m, 1),(m, 2), \ldots,(m, n)$

 هرسطر شامل nبر آمد و نتيجه مطلوب بهدست مى آيل .

مشال ـ ا ا الف ـاز طرنى كه شامل مطلوب است احتمال اين كه يكى از تويها سفيد و ديگرى سياه باشد

 " 11×1 = = 11 • سفيد و توب انتخابششه دوم سياه باشل و بطور مشابه • •
 (I . $\frac{30+30}{110}=\frac{6}{11}$

هرگاه بيش از دو آزمايش انجام شود تاعده اساسى را مىتوان به صورت زير تعميم داد :

كعميه قاعده اساسى شمارش

 براي هريكث از اين برآمدماي مسكن دو آزمايش اوّل مجموع
 بطور مرتب در يكت رديف ترار داد تعيين كنيم • براى مثال جند Tرايش مرتب متفاوت براى حرون
a, b, c

 مككن وجود دارد .
اكنون فرض كنيد nشىء داريم استدلال مشابه نشان مىدهد كه
$n(n-1)(n-2) \ldots 3 \times 2 \times 1$
جايگشت متفاوت از n شىء موجود است . براى عبارت الخير مناسب است نماد !nرا (كه n فاكتوريل خوانده مىشود) معرفى كنيم • يعنى $n!=n(n-1)(n-2) \times \cdots \times 3 \times 2 \times 1$

مثلا"

$$
\text { بنابه تعريف } 1 \text { = 0!. }
$$

 بهدست نمى Tوردند
الف - چند ترتيب متفاوت امكانيذير است . ب ـ ـ اكَر تمام تر تيبهاى مغروض داراى احتمال

حل : الف - جون هر ترتيب مانند يكت آرايش مرتب خاص از ميان 10 نغر است يس جواب اين تسمت

$$
\text { 3628800 = } 10 \text { است . }
$$

 امساسى نتيجه مىشود كه دخترها F نمره اوّل را بهدست Tورند . بـنابراين احتمال مطلوب برابر است با

$$
\frac{6!4!}{10!}=\frac{4 \cdot 3 \cdot 2 \cdot 1}{10 \cdot 9 \cdot 8 \cdot 7}=\frac{1}{210}
$$

مثال 0.1 ه ـ اگگر n نفر داخل يكك اتاق باشند احتمال اينكه هيج دونفرى از آنها سالر وز تولدشان يكسان نباشند جقدر است ؟ مقدار n جقلدر باشد تا اين احتمال كمتر از 1/2 شود.

حل : جون روزتولدهرشخصصمىتوانديكىاز

 بنابراين با فرض اينكه احتمال بر آمد يكــان ميباشد مىيينيم كه احتمال مطلوب برابر است با با $\frac{(365)(364)(363) \ldots(365-n+1)}{(365)^{n}}$
يكت واقتيت تا حدى عجيب اين است اسكه وتّى $n=23$ احتمال مذكور كمتر از r Y

 انتخاب دستههاى r تايمى موجود است كه
 ABC, ACB, BAC, BCA, CAB, CBA انتخـاب حـرون مــم بـاشد تــام جـايگشتهـا

$\frac{n(n-1) \ldots(n-r+1)}{r!}=\frac{n!}{(n-r)!r!}$
 تركيبات r تايى از ميان n شیء گوِيم .
 از يكث دسته n تايي مىتواند انتخاب شود ـ براى مثال مى توان از مجموعهاى مُامل ^ نفر انتخاب كرد ، و $45=\binom{10}{2}=\frac{10 \cdot 9}{2 \cdot 1}=$ دسته دو تايى متفاوت را مى توان از يكك مجموعةء . ا نفرى انتخابكرد ـ همحنين با توجه به اينكه 1 = ! 0 داريم $\binom{n}{0}=\binom{n}{n}=1$

 حل : فرض كنيد تمادفي بودن انتخاب بدين معنى است كه هو (5) (15 تركيب ممكن با احتمال مساوى انتخاب مى شوند . بنابراين هون از Y زن وجود دارد احتمال مطلوب برابر است با $\frac{\binom{6}{3}\binom{9}{2}}{\binom{15}{5}}=\frac{240}{1001}$

 حل : تعداد انتخابهاى متفاوتى كه شامل شىء مفروض هستند برابر است با با احتمال اينكه يكى شىء خاص در ميان k شىء انتخابش شلده قرار گِيرد برابر است با $\binom{n-1}{k-1} /\binom{n}{k}=\frac{(n-1)!}{(n-k)!(k-1)!} / \frac{n!}{(n-k)!k!}=\frac{k}{n}$ مثال 0.1 ع - يكت تيم بسكتبال شامل 9 بازيكن سيـاهيوست و 7 بـازيكن سـفيديوست است . ايـن
 شود . أحتمال اين كه هيع يكت از بازيكنان سياهيوست دارایى هماتاتقي سفيديوست نباشند جقدر است حل : ابتدا با نثـان دادن اينكه هند 7 جفت ، يعنى جفت اوّل ، جفت دوم و الى آخـر وجـود دارد

شروع مىكنيم • شون \quad (12 $\left.\begin{array}{c}12 \\ 2\end{array}\right)$
 برای جفت سوم و اللى آخر وجود دارد ـ از تعميم تاعده اساسى شمارش نتيجه مىشود $\binom{12}{2}\binom{10}{2}\binom{8}{2}\binom{6}{2}\binom{4}{2}\binom{2}{2}=\frac{12!}{(2!)^{6}}$

 هيع سياهيوست و سفيدبوستى هـماتاق نيستند . بنابراين اگر تقسيم جفتها بتصـادن انجام كه تمام بر آمدها داراى احتمال مساوى باشند ، آذگاه احتمال مطلوب برابر است با $\left(\frac{6!}{2^{3} 3!}\right)^{2} / \frac{(12)!}{2^{6} 6!}=\frac{5}{231}=.0216$
در نتيجه تقريياً ننها 2\% شانس وجود دارد كه اين عمل تصادفي'، منتج بـه ايـن شـود كـه بـازيكنان سياهيوست و سفيد يوست با يكديگر هماتاق نباشند .

7
در اين بـخ يكى از مهمترين مفاهيم نظرئه احتمال يعنى احتمال شرطى را معرفى مى اهميت اين مفهوم در دو جيز است . اولاً در اغلب موارد هنگامى كه اطلاعات جزيى در باره نتيجه

 آن روى رخذاد يا عدم رخذاد يكث يسامد ديگر است اوت

$S=\{(i, j), \quad i=1,2,3,4,5,6, \quad j=1,2,3,4,5,6\}$
كه در آن كُّيمٌ برTآمل (i,j) است اتگر تاس اوّل از طرن i و تاس ذوم از طرن زظاهر شود ـ اكنون

فرض كنيد كه هر 7 7 برآمد ممكن متساوى الاحتمان هستند ، بنابراين هربر آمد داراى احتمـان 1/36
 ظاهر شده است در اين صورت احتمال اينكه مـجموع دو تاس مــاوى ^ باشد جقلدر است ؟ بـراى

 (شرطى) هريكى از بر آمدهاى (3) احتمال (شرطى) 30 نقطه ديگر از نضاى نمونه 0 مىباشد . بنابراين احتمال مطلوب 1/6 خواهد بود . آگر فرض كنيم E F E

 در نتيجـه F فضـاى نمونه (تقليل يافته) جديد خواهي دهد مساوى با احتمان EF نسبت به احتمال F

$$
\begin{equation*}
P(E \mid F)=\frac{P(E F)}{P(F)} \tag{1.7.1}
\end{equation*}
$$

1.4.1

مثال 7 الف - جععبهاى ثشامل ه ترانزيستور معيوب (بطورى كه وتتى مورد استفاده تـرار مسیگيرند بلاظاصله از كار مىافتد) و • ا ترانزيستور نيمه معيوب (بطورى كه بعد از Y ساعت استفـاده از كـار

مىانتد) و هـ ترانزيستور سالم است . يكث ترانزيستور بتصادف از جعبه انتخـاب مـيشود و و مـورد استفاده ترار میگيرد ـ اگر اين ترانزيستور بلافاصله از كار نيفتد احتمال اينكه سالم باشد جقدر است ؟
 بنابراين احتمال مطلوب برابر است با

$$
\begin{aligned}
& P(\text { معيوب نيست })=\frac{P(\text { مالم باشد) })}{\text { بميوب })} \\
& =\frac{P(\text { معيوب نباشد) })}{P(\text { باشّد) }}
\end{aligned}
$$

 بهدست مى آوريم .
$P($ ميوب نيست | سالم باشد) $)=\frac{25 / 40}{35 / 40}=\frac{5}{7}$
بايد توجه داشت كه همجنين مى توانستيم اين احتمال را مستقيهاً با بدكاربردن نضاي نمونئ تقليليليانته

 S بهاصورت S [بهعنوان مثال (b, ($)$ يعنى فرزند جوانتر يسر و فرزند بزرگتر دختر است] .

حل : مىدانيم كه اين شخصص به مهمانى دعوت شده است و اين معادل است با با اينكه بدانيم وى دارأى
 يشامد كه حداتل يكى از آنها بسر است .استمال مطلوب $P(B \mid A)=\frac{P(B A)}{P(A)}$
$=\frac{P(\{(b, b)\})}{P(\{(b, b),(b, g),(g, b)\})}$
$=\frac{\frac{1}{3}}{\frac{3}{4}}=\frac{1}{3}$

 كه فرض میكيند اين دو امكان دارايى احتمال مساوىاند ـ در در ابتدا
 نيست . بنابراين با ب بر آمد متساوىالاحتمال (

$P(E F)=P(F) P(E \mid F)$

 در محاسبةٔ احتمال اشتراكك بيشامدها خيلى مفيل است . اين مطلب در مثال زير نشان داده شده است .

 خواهد شد . احتمال اينكه وى مدير شعبه جديد شود جفدر است است ؟

حل : فرض كنيد B نشاندهندهٔ اين يشامد است كه اين شركت يكت شعبه در مشهـد داير كند و M اين
 بهصورت زير بهدست مى آيد .

$$
\begin{aligned}
P(B M) & =P(B) P(M \mid B) \\
& =(.3)(.6) \\
& =.18
\end{aligned}
$$

بنابراين اين شخص 18 درصد شانس داردكه مدير اين شعبه شود .

Y -

زرض كنيد Eو F دو يشامد باشند . مىتوانيم E را به صورت
$E=E F \cup E F^{c}$

$$
\begin{align*}
P(E) & =P(E F)+P\left(E F^{c}\right) \\
& =P(E \mid F) P(F)+P\left(E \mid F^{c}\right) P\left(F^{c}\right) \\
& =P(E \mid F) P(F)+P\left(E \mid F^{c}\right)[1-P(F)] .
\end{align*}
$$

1.v.1

 مشكل است المّا وتتى بدانيم يششامد دومى رُخ داده است ـ يا خير ، ، محاسبه اين احتمال ساده مىشود .

 كردهاست دجار حادثه شود جقدر است؟ انـا
 آوريم م فزض كنيد

$$
\begin{aligned}
P\left(A_{1}\right) & =P\left(A_{1} \mid A\right) P(A)+P\left(A_{1} \mid A^{c}\right) P\left(A^{c}\right) \\
& =(.4)(.3)+(.2)(.7)=.26
\end{aligned}
$$

در مثالهاى بعد نشان مىدميم كه جگونه يكت تشخيص احتمالى اوليه را به كمكت اطلاعـات
 تشخيص احتمالى اوليه براى بهدست آوردن يكى احتمال جلديد تركيببكيم .

مثال Y. 1 ب - مجلدداً مثال V. 1 الف رادر نظر بگیريد و فرض كنيد بيمه گذار جليد در يكتسالى كه
 بوده باشد چجقدر است ؟

حل : در ابتدا ، هنگامى كه بيمهگذار برگث بيمه را خريدارى كرده بود ، فرض كرديم شانس ايـنكه در معرض حادثه باشد 30\% است يعنى 30. 3 . علاوه برآن براساس اين واتعيت كه او در طول
 به هورت زير محاسبه مىكنيم

$$
\begin{aligned}
P\left(A \mid A_{1}\right) & =\frac{P\left(A A_{1}\right)}{P\left(A_{1}\right)} \\
& =\frac{P(A) P\left(A_{1} \mid A\right)}{P\left(A_{1}\right)} \\
& =\frac{(.3)(.4)}{.26}=\frac{6}{13}=.4615
\end{aligned}
$$

 مطلوب است احتمال شرطى اينكه دانشجو جواب سؤال را مىدانسته ، با اين فرض كه جوابى راكه داده است درست است .

حل : فرض كنيد C , C بهترتيب نشاندهنده اين ريشامدها باششند كه دانشجو سؤال را درست جواب

$$
P(K \mid C)=\frac{P(K C)}{P(C)}
$$

ابتدا تو جه مىكنيم ك1

$$
\begin{aligned}
P(K C) & =P(K) P(C \mid K) \\
& =p \cdot 1 \\
& =p
\end{aligned}
$$

 يا نمىدانسته . يعنى

$$
\begin{aligned}
P(C) & =P(C \mid K) P(K)+P\left(C \mid K^{c}\right) P\left(K^{c}\right) \\
& =p+(1 / m)(1-p)
\end{aligned}
$$

بنابر اين احتمال مطلوبـ براير است با

$$
P(K \mid C)=\frac{p}{p+(1 / m)(1-p)}=\frac{m p}{1+(m-1) p}
$$

برای مثال اتگر جوابت رادرست داده باشلد 5/6 است .

 مطلو بساستاحتمال اينكه شـصص Tزمايششلده بيهار باشلد با اين فرض كه نتيجه Tزمايش اومشبت است .

نتيجه Tزمايش او مبثت است . احتمال مطلوب $P(D \mid E)$ بهصورت زير بهدست مى Tيد .

$$
\begin{aligned}
P(D \mid E) & =\frac{P(D E)}{P(E)} \\
& =\frac{P(E \mid D) P(D)}{P(E \mid D) P(D)+P\left(E \mid D^{c}\right) P\left(\overline{D^{c}}\right)} \\
& =\frac{(.99)(.005)}{(.99)(.005)+(.01)(.995)} \\
& =.3322
\end{aligned}
$$

بنابراين فقط 33 درصد از افوادى كه نتيجهُ Tزمايش آنها مبت است واقعاً بيمار هستـد . نظر به اين كه

 روشنترشدن مطلب مفيد باشد : جهن 5. درصد از الزاد جامعه واقعاً داراى بيمارى هــتـد نتيجه مىشود كه بـطور مـتوسط از از هر • .

 كه آزمايش بيمارى آنها را درست تششخيص داده اس است (بطور متوسط) 1.99 شخضص سالم وجود دارد كه آزمايش بيمارى آنان را نادرست تشـخيص داده است ـ بنابراني نـسبت دنعاتى كه نـتيجه آزمـايش درست است در حالى كه تشخيص داده است كه شخص بيمار مىباشد برابر است با
$\frac{.99}{.99+1.99}=.3322$
 اطلاعات اضافى است مفيد مىباشلد . مشالهاى زير رادر نظر بگيريد :

مثال Y. 1 ت ـ در يكت مرحلة معين از تسفيقات بنايى متصدى بازرسمى 60. معتقد است كه مـظنون
 مشـخصات آشكار (مانندجب دستى ، طاسى و ...) است . اگگر 20.افرادجامعه دارایىاين مشـخصات باشند و مشخص شودكه ششخص مظنون درميان اينگروه است اكنون مجرمبودن اوجگپونه با يد بررسم شود ؟

حل : فرض كنيد G نشان دهندهُ اين يششامد باشد كه شخص مظنون مبرم است و C اين يشامد كـه جنايتكار داراى اين مشخصـات است. داريم

$$
P(G \mid C)=\frac{P(G C)}{P(C)}
$$

از طرنى

$$
\begin{aligned}
P(G C) & =P(G) P(C \mid G) \\
& =(.6)(1) \\
& =.6
\end{aligned}
$$

براى محاسبه احتمال اينكه شـخص مظنون داراى اين مشخمات است شرط مىكنيم كه او يـا مـجرم است يا مبرم نيست ، يعنى

$$
\begin{aligned}
P(C) & =P(C \mid G) P(G)+P\left(C \mid G^{c}\right) P\left(G^{c}\right) \\
& =(1)(.6)+(.2)(.4) \\
& =68
\end{aligned}
$$

كه در Tن فرض كردهايم اگر شتصص مظنون در واقع بىگناه باشد احتمال اين كه دارایى اين مشخمات باشد مساوى با 2. است. يعنى ؛ نسبتى از جامعه كه داراى اين مشخـعـات هـستند ـ بنابراين $P(G \mid C)=\frac{60}{68}=.882$

■ . مثال I.Y.ت (ادامه) . اكنون فرض كنيم كه مدركث جديد مورد اختلالـ تفسير هاى مدكن ترار گرفنه

 كه او مشخصـات را داراست) .

حل : اين حالت نيز مانند تبل است با اين تفاوت كه احتمال اين كه شـخص مظنون داراى مشخصـات باشد با فرض اين كه او مبرم است 9. مىباشد (كستر از 1) بنابراين

$$
\begin{aligned}
P(G \mid C) & =\frac{P(G C)}{P(C)} \\
& =\frac{P(G) P(C \mid G)}{P(C \mid G) P(G)+P\left(C \mid G^{c}\right) P\left(G^{c}\right)} \\
& =\frac{(.6)(.9)}{(.9)(.6)+(.2)(.4)} \\
& =\frac{54}{62}=.871
\end{aligned}
$$

 متقابلا" ناسازگار باشند بطورى

$$
\bigcup_{i=1}^{n} F_{i}=S
$$

> بـعبارت ديگر بايد دتيقاً يكى از يششامدهاى

$$
E=\bigcup_{i=1}^{n} E F_{i}
$$

$$
\begin{align*}
P(E) & =\sum_{i=1}^{n} P\left(E F_{i}\right) \tag{Y,V,1}\\
& =\sum_{i=1}^{n} P\left(E \mid F_{i}\right) P\left(F_{i}\right)
\end{align*}
$$

بنابراين معادلג Y.Y.

 هر

$$
\begin{align*}
P\left(F_{j} \mid E\right) & =\frac{P\left(E F_{j}\right)}{P(E)} \tag{r.v.ı}\\
& =\frac{P\left(E \mid F_{j}\right) P\left(F_{j}\right)}{\sum_{i=1}^{n} P\left(E \mid F_{i}\right) P\left(F_{i}\right)}
\end{align*}
$$

 فرضها ، يس از آزمايش تعديل مىنوّ

 شده است.

حل : فرض كنيد جستجو در ناحيه ا را با شكست مواجه شده است الز الز فرمول بيز بهدست مى آوريم

$$
\begin{aligned}
P\left(R_{1} \mid E\right) & =\frac{P\left(E R_{1}\right)}{P(E)} \\
& =\frac{P\left(E \mid R_{1}\right) P\left(R_{1}\right)}{\sum_{i-1}^{3} P\left(E \mid R_{i}\right) P\left(R_{i}\right)} \\
& =\frac{\left(\alpha_{1}\right)(1 / 3)}{\left(\alpha_{1}\right)(1 / 3)+(1) 1 / 3+(1)(1 / 3)} \\
& =\frac{\alpha_{1}}{\alpha_{1}+2}
\end{aligned}
$$

$$
\text { براى } 3 \text { ب } 3
$$

$$
\begin{aligned}
P\left(R_{j} \mid E\right) & =\frac{P\left(E \mid R_{j}\right) P\left(R_{j}\right)}{P(E)} \\
& =\frac{(1)(1 / 3)}{\left(\alpha_{1}\right) 1 / 3+1 / 3+1 / 3} \\
& =\frac{1}{\alpha_{1}+2}, \quad j=2,3
\end{aligned}
$$

بنابراين برایى مثال اگر 4 . جستجو در اين ناحيه با شكست مواجه شده برابر است با 1/6.

ـ - ييشامدهاى مستقل

مثالهاى بخشت قبل نُشان داد كه

 هون $P(E \mid F)=P(E F) / P(F)$ مى
$P(E F)=P(E) P(F)$
هون اين تساوى برحسب E و F متقارن است نتيجه مىشود كه هرگاه E مستقل از F باشد ، F نـيز مستقل از Eاست . بنابراين تعريف زير راداريـم •
 مستقل نيستند ، وابسته گويمي .

 $. P(H)=13 / 52$
 جمهوريـخواه و Fاين يشامد كه يكت زلز له در سال بعل رغ مى E

حكم 1.A. 1

البات: فرض كنيد E E مستقل اند . جون

$$
\begin{aligned}
P(E) & =P(E F)+P\left(E F^{c}\right) \\
& =P(E) P(F)+P\left(E F^{c}\right)
\end{aligned}
$$

$$
\text { از استقلال E } F \text { F }
$$

$$
\begin{aligned}
P\left(E F^{c}\right) & =P(E)(1-P(F)) \\
& =P(E) P\left(F^{c}\right)
\end{aligned}
$$

يا معادل آن

و اثبات كامل است .
بنابراين آكر E سستقل از F باشد آذگاه احتمال رخ داد E با اطلاع از اين كه F رخ مىدهد يا
خير تغير نمىكند .
اكنون فرض كنيدكه E مستقل از Fو همجنين مستقل از Gباشد ـ ا Tيا E لزوماً از FG مستقل
 مثال ا.A. بـ - دو تاس سالم ير تاب مىیشوند. فرض كنيد
 دوم با است ـ اكنون مى توان نشان داد كه
 مستقلبودن بيشاز (تعريف: : ب يشامد E، F F G را ستقل گويم اگر

$$
\begin{aligned}
P(E F G) & =P(E) P(F) P(G) \\
P(E F) & =P(E) P(F) \\
P(E G) & =P(E) P(G) \\
P(F G) & =P(F) P(G)
\end{aligned}
$$

بايل توجه داشت كه اتگر بيشـامدهاى

$$
\begin{aligned}
P(E(F \cup G)) & =P(E F \cup E G) \\
& =P(E F)+P(E G)-P(E F G) \\
& =P(E) P(F)+P(E) P(G)-P(E) P(F G) \\
& =P(E)[P(F)+P(G)-P(F G)] \\
& =P(E) P(F \cup G)
\end{aligned}
$$

ثـكل A.1 ا. بيستم مرازى : در صورتى عمل مىكندكه جريان ازAبه Bبرقرار باشد
 را مستقل گويمب اگر برای هر زير مجموع4ٔ
$P\left(E_{1^{\prime}} E_{2^{\prime}} \cdots E_{r^{\prime}}\right)=P\left(E_{1^{\prime}}\right) P\left(E_{2^{\prime}}\right) \cdots P\left(E_{r^{\prime}}\right)$
كامى اوتات اين حالت اتفاق مىانتد كه آزمايش بورد بررسى عبارت از انجام يكت دنباله از

حل : فرض كنيد

$$
\begin{aligned}
& =1-P\{\text { هيج يكن از ابزاء عمل نكند } \\
& =1-P\left(\bigcap_{i} A_{i}^{c}\right) \\
& =1-\prod_{i=1}^{n}\left(1-p_{i}\right)
\end{aligned}
$$

از استقلال

مسائل
 عبارت است از انتخاب يكت مهره از اين جعبه و برگّرداندن آن بهجعبه و انتخاب يك يك مهره
 جايگذارى نمى شود ـ بهد ست آوريد .
T T \quad - r

 هطلوب است
(a) $E F$
(c) $E G^{c}$
(e) $E^{c}(F \cup G)$
(b) $E \cup F G$
(d) $E F^{c} \cup G$
(f) $E G \cup F G$
(P

بطورى كه :
الف) نقط E E رخ دهد
ب) ب) حداتل يكت يشثامد رخ دهد .

ت) حداتل دو يشيثامد رخ دهد.

 を) حـ عاكثر يكى از آنها رخ دهد .
 خ) داتيقاً دو تا رخ دهد .

شكل ساده بيثامدهاى زير را بنويسيد
الف)
EF
$(E \cup F)\left(E \cup F^{c}\right)(-$
$(E \cup F)\left(E^{c} \cup F\right)(E \cup F)(ث$ $(E \cup F)(F \cup G)(\subset$
از نمودار ون يا هر روش ديگگ, استفاده كرده و نشان دهيد كه : -V
$E F \subset F, E \subset E \cup F$ (الف
$F^{c} \subset E^{c}{ }^{c}$
 ت) خأصيت شركت بذيري بر برترار است $F=E F \cup E F^{c}$ (ث
$E \cup F=E \cup E^{c} F(C$
を) توانين دمورگان بر ترار است

- A

. $P(E) \leq P(F)$ - 9 -
راهنمايى : E را برحسب اجتماع دو يـيـامد ناسازگار بنويسيد كه بكى از آ آنها E باشد .
-

$$
P\left(\bigcup_{i=1}^{n} E_{i}\right) \leq \sum_{i=1}^{n} P\left(E_{i}\right)
$$

(اين نامساوى را نا مساوى بول مىنانمند)
 (اين نامساوى را نامساوى بن فرنى مىنامند).

$$
P(E F) \geq P(E)+P(F)-1
$$

- اY

$$
\begin{aligned}
P\left(E F^{c}\right) & =P(E)-P(E F) \\
P\left(E^{c} F^{c}\right) & =1-P(E)-P(F)+P(E F)
\end{aligned}
$$

الف)
با

$$
P(E)+P(F)-2 P(E F)
$$

$\binom{9}{3},\binom{9}{6},\binom{7}{2},\binom{7}{5},\binom{10}{7}$

$$
\binom{n}{r}=\binom{n}{n-r}
$$

 17- نشان دهيدكه:

$$
\binom{n}{r}=\binom{n-1}{r-1}+\binom{n-1}{r}
$$

 'جند مجموعه وجود داردكه اين شمى را در بر ندارد ؟

گرومى شامل ه هـرـر و • ا دختر بتصادن در يك صف قرار مىگيرند - يعنى فرض مىشود
هر !15 جايگثتت داراى احتمال مساوىاند .
 ب) اين احتمال برایى موتعيت دوازدهم جقدر است ؟

فرضهايى يش بيـنى مىكنيد ؟
 كه دقيقاً ز - - -

جقدر است ؟

- Y - تفسهاى شامـل A جفت كفـش است ـ آگر جهار كفش بتصادن انتخاب شود احتمال اين كه

 رختر باشد ؟
 آنها دختر باشند؟
- - YF هر توب بطور مستقل و با احتمال

 طلاين رنگث باشند .

توه ني دهيد.
 .

 Y - -

- نز - - - VV

 مساوى Vاست است است
الف) نشان دهيد كه E Eاز يششامد رتاس اول ب) ن نثان دهيدكه

 جقدر است ؟

 عمـل كند اكَر و تنها اگر حداقل k tا از n مؤلّفه عمل كنند . فرض كنيد كه اجزا مستقل از از
يكدـِگر عمل كتند ؛
 يكت سيستم Y out-of- F عمل كند .

 حالى حه شُخص با جفت زن

الف) اولين والد خود باشد
ب) دومين والد خود باشد
ب) هر دو والد خود باشد

 انزايش مىيابد ـ در مورد دليل زندانبان تصور شـا جيست ؟

pos

متغيّ هاى تصادفى و اميد رياضى

1- متغيّرهاى تصادفى

هنگامى كه يكت آزمايش تصادفى انجام مىشود غالباً به تمام جزئيات نتيجهُ Tز آمايش علاتمند
 معمولاً در ير تاب دو تاس مجموع دو تاس را ميخواهيم و نهمقدار هريكث ازتأتمها را. يـعنى مـمكن.

 مقادير ممكن آن را بهدست Tوريم.

مثئل Y. ا.الف - فرض كنيد X يكت متغيّر تصادفى است كه نشاندهندة مجموع دو تاس مالم بـاشد . دراينصورت،

$$
\begin{align*}
& P\{X=2\}=P\{(1,1)\}=\frac{1}{36} \\
& P\{X=3\}=P\{(1,2),(2,1)\}=\frac{2}{36} \tag{I.1.Y}\\
& P\{X=4\}=P\{(1,3),(2,2),(3,1)\}=\frac{3}{36} \\
& P\{X=5\}=P\{(1,4),(2,3),(3,2),(4,1)\}=\frac{4}{36} \\
& P\{X=6\}=P\{(1,5),(2,4),(3,3),(4,2),(5,1)\}=\frac{3}{36} \\
& P\{X=7\}=P\{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\}=\frac{6}{36} \\
& P\{X=8\}=P\{(2,6),(3,5),(4,4),(5,3),(6,2)\}=\frac{5}{36}
\end{align*}
$$

$$
\begin{aligned}
& P\{X=9\}=P\{(3,6),(4,5),(5,4),(6,3)\}=\frac{4}{36} \\
& P\{X=10\}=P\{(4,6),(5,5),(6,4)\}=\frac{3}{36} \\
& P\{X=11\}=P\{(5,6),(6,5)\}=\frac{2}{36} \\
& P\{X=12\}=P\{(6,6)\}=\frac{1}{36}
\end{aligned}
$$

به عبارت ديگگ, متغيّر تصادفى Xمىتواند هر مقدار صسيع بين Y و Y Y ا را بگيرد و احتمال اين كـه
 مقادير را بِيرد، داريم
$1=P(S)=P\left(\bigcup_{i=2}^{12}\{X=i\}\right)=\sum_{i=2}^{12} P\{X=i\}$

كه بهراحتى مىتوان Tنزا از رابطه Y. Y. ا. تتحقيت كرد .

 مساوى مى $P(Y=i\}=1 / 6, \quad i=1,2,3,4,5,6$

مثال \.1.ب - لزض كنيد شخص دو تطعةٌ الكتريكى خريده كه هريكب از آنها مىتواند معيوب يـا سالم باشد . فرض كنيد جهار نـتيجه مسـكن - (

 بهتر تيب با الحتمالات زير مى

$$
\begin{aligned}
& P(X=0\}=.09 \\
& P\{X=1\}=.42 \\
& P(X=2\}=.49
\end{aligned}
$$

اتگر وجود هداتل يكت تطعة سالم برای ما مهم باشد آنگاه بايل متغيّر تصـادفى ارا بـهحورت زيـر

$$
I=\left\{\begin{array}{lll}
1 & X=1 & \text { L } 2
\end{array}\right.
$$

 ز'خ دهل يا خيو . احتمالات مربوط بهمقادير مهكن I بهشكل زير امت .

$$
\begin{aligned}
& P\{I=1\}=.91 \\
& P\{I=0\}=.09
\end{aligned}
$$

در دومثال نوق مقادير ممكنى كه متغيّر هایى تصـادفى مورد بررسى مىگیرند متناهى يا شما راست • جنین

حقيقى xهـهورت زير تعريف مىشود .

$$
F(x)=P\{X \leq x\}
$$

يعنى F(x) مرابر الست با استمال اين كه متفيّر تصهادفى X مقلارى كهتر يا مساوى xبیگير2 .
 تهام سؤالات الحتمالى يرامون X Xا مىتوان با تابع توزيع آ كنيد مى خواهيم (
 بنابراين با به كار بردن اصل موضوع " احتمال. داريم

$$
\begin{aligned}
& P\{X \leq b\}=P\{X \leq a\}+P\{a<X \leq b\} \\
& P\{a<X \leq b\}=F(b)-F(a)
\end{aligned}
$$

مثال Y. ا.ب - فرض كنيد متغيّ تصهادفى داراى تابع توزيع زير باشمد

$$
F(x)= \begin{cases}0 & x \leq 0 \\ 1-\exp \left\{-x^{2}\right\} & x>0\end{cases}
$$

استمال اينكه Xاز | تعجاوز كتل جقلر است؟ حل : استتمال مطلوب بهصورت زير مسعاسبه مىشود .

$$
\begin{aligned}
P\{X>1\} & =1-P\{X \leq 1\} \\
& =1-F(1) \\
& =e^{-1} \\
& =.368
\end{aligned}
$$

F - انواع متغيّر هاى تصادلى

همانطور كه قلاً' اشاره شد يكك متغير تصـادفى راكه مىتواند حداكــر تـعلادى شمـا را الز
 جرم احتمال
$p(a)=P\{X=a\}$
 يعنى اتگر X يكى از مقادير ...
$p\left(x_{i}\right)>0, \quad i=1,2, \ldots$
$p(x)=0, \quad x$ براى مر مفدار ديگر
جون Xبايد يكى از مقادير Xا بگیيرد ، داريم
$\sum_{i=1}^{\infty} p\left(x_{i}\right)=1$
 $p(1)=\frac{1}{2} \quad, \quad p(2)=\frac{1}{3}$

$$
\text { (جون } 1 \text { = } 1
$$

$p(3)=\frac{1}{6}$

تابع توزيع تجسى Fميتواند برحسب (x) به صورت زير نمايش داده شود
$F(a)=\sum_{x \leq a} p(x)$
 ($x_{1},<x_{2}<x_{3}<\ldots$.

باشد . يعنى
$p(1)=\frac{1}{2}, \quad p(2)=\frac{1}{3}, \quad p(3)=\frac{1}{6}$

در اين صورت تابع توزيع تجسعى F برابر است با
$F(a)= \begin{cases}0, & a<1 \\ \frac{1}{2}, & 1 \leq a<2 \\ \frac{3}{6}, & 2 \leq a<3 \\ 1, & 3 \leq a\end{cases}$
نمودار اين تابع در شكل زير نمايش داده شده امت.

 تصادفى را در نظر بگيريمكه مجموعه مقادير آن ناشمارا باشد . فزض كنيد X X جنين منتيرّ تصـادنى

 اعداد حقيُقى
$P\{X \in B\}=\int_{B} f(x) d x$

 صدق كند
$1=P\{X \in(-\infty, \infty)\}=\int_{-\infty}^{\infty} f(x) d x$
 B=[a,b]

$$
\begin{equation*}
P\{a \leq X \leq b\}=\int_{a}^{b} f(x) d x \tag{Y,Y,Y}
\end{equation*}
$$

$$
\text { اگر در اين تساوى فرض كنيم } a=b=\text { T آنگاه }
$$

$P\{X=a\}=\int_{a}^{a} f(x) d x=0$

$$
f(x)= \begin{cases}e^{-x} & x \geq 0 \\ 0 & x<0\end{cases}
$$

بطور خخلاصه اين تساوى بيان مىكند ، احتمال اين كه يكث متغيّر تصادفى بيوسته مـقدارى خـاص را

ra
فصل دوم - متغغّرماى تعهادنى و اميل رياضى

$$
F(a)=P\{X \in(-\infty, a]\}=\int_{-\infty}^{a} f(x) d x
$$

با مشتقگيرى از طرفين داريم

$$
\frac{d}{d a} F(a)=f(a)
$$

يعنى ، تابع جگالى مشتق تابع توزيع تجمعى است. يكت تعبير شهودى از تابع خگًالى احتمال ميتواند بدينصورت بهدست آيد كه برابى عكوچكت

$$
P\left\{a-\frac{\epsilon}{2} \leq X \leq a+\frac{\epsilon}{2}\right\}=\int_{a-\epsilon / 2}^{a+c / 2} f(x) d x \approx \epsilon f(a)
$$

ع بهعبارت ديگر احتمال اين كه X

$$
f(x)=\left\{\begin{array}{lc}
C\left(4 x-2 x^{2}\right) & 0<x<2 \\
0 & \text { ساير نقاطط }
\end{array}\right.
$$

1- مقدار Cرا بهدست آوريد
P(X>1)
حل : هون f

$$
\begin{aligned}
& C \int_{0}^{2}\left(4 x-2 x^{2}\right) d x=1 \\
& \left.C\left[2 x^{2}-\frac{2 x^{3}}{3}\right]\right|_{x=0} ^{x=2}=1
\end{aligned}
$$

$$
C=\frac{3}{8}
$$

$$
P\{X>1\}=\int_{1}^{\infty} f(x) d x=\frac{3}{8} \int_{1}^{2}\left(4 x-2 x^{2}\right) d x=\frac{1}{2}
$$

T- متغيّ هاى تهادفى با توزيع تؤام
غالباً در يكت Tزمايش نه تنها بهتوزيع احتمال متغيّر هاى تصادفى خاص علاقه منديم بلكه ار تباط بين دو
 است به ار تباط بين متوسط سيگارهايى كه روزانه يكت فود استعمال كرده و سنّى كه فود در آن مبتلا به سرطان شده است 6 علاته مند باشيم . بطور مشابه يكت مهندس ممكا قلرت ماشين بُرش و ضشامت يكك نمونه ورق فولاد رامشخص كند . برای مشخص كردن ار تباط بين دو متغيّر تصادفى تابع توزيع احتمال توأم

زير تعريف ميكنيم

$$
F(x, y)=P\{X \leq x, Y \leq y\}
$$

دانستن توزيع احتمال توأم دو متغير تصادفى ؛ سداتل بطور نظرى ، اين المكان را فراهم ميسازد كه Fr هر عبارت احتهالى در مورد مقادير گَويم ميتوان از تابع توزيع احتمال توأم

$$
\begin{aligned}
F_{X}(x) & =P\{X \leq x\} \\
& =P\{X \leq x, Y \leq \infty\} \\
& =F(x, \infty)
\end{aligned}
$$

بطور مشابه تابع توزيعY برابر است با

$$
F_{r}(y)=F(\infty, y)
$$

در حالتـى كـه X, X, x_{2}, \ldots هر دو متغيّرهاى تصطادفى گكسته و بهتر تيب داراى مقادير
(1) y_{1}, y_{2}, \ldots
$p\left(x_{i}, y_{j}\right)=P\left\{X=x_{i}, Y=y_{j}\right\}$
تابي جزم احتمال هر يكت از متغير هاى X, X بـادگى از تابع جرم احتمال توأم با استدلال زير
 اجتهاع يششامدهاى ناسازگار ($)$

$$
\left\{X=x_{i}\right\}=\bigcup_{j}\left\{X=x_{i}, Y=y_{j}\right\}
$$

و بنابراين بااستفاده از اصل موضوع شماره $\begin{array}{r}\text { احتمال داريم }\end{array}$

$$
\begin{aligned}
P\left\{X=x_{i}\right\} & =P\left(\bigcup_{j}\left\{X=x_{i}, Y=y_{j}\right\}\right) \\
& =\sum_{j} P\left\{X=x_{i}, Y=y_{j}\right\} \\
& =\sum_{j} p\left(x_{i}, y_{j}\right)
\end{aligned}
$$

بطورمشابهمىتوان $P\left\{Y=y_{i}\right\}$ راباجمع بستن $P\left(x_{i}, y_{j}\right)$ روىتمام مقادير ممكن x_{i} سـت Tورد 6 يعنى $P\left\{Y=y_{j}\right\}=\sum_{i} P\left\{X=x_{i}, Y=y_{j}\right\}$

$$
=\sum_{i} p\left(x_{i}, y_{j}\right)
$$

بنابراين با مشخص بودن تابع جرم احتمال توأم مـواره توابع جرم احتمال هريكت از متغير ها را
مى توان بهد ست آورد 6 الما بايد تو جه داشت

 نشاندهنده تعداد باتريهاى سالم و تعداد باتريهاى استفاده شده اما Tانگاه تابع جرم احتمال توأ
$p(0,0)=\binom{5}{3} /\binom{12}{3}=10 / 220$
$p(0,1)=\binom{4}{1}\binom{5}{2} /\binom{12}{3}=40 / 220$
$p(0,2)=\binom{4}{2}\binom{5}{1} /\binom{12}{3}=30 / 220$
$p(0,3)=\binom{4}{3} /\binom{12}{3}=4 / 220$
$p(1,0)=\binom{3}{1}\binom{5}{2} /\binom{12}{3}=30 / 220$
$p(1,1)=\binom{3}{1}\binom{4}{1}\binom{5}{1} /\binom{12}{3}=60 / 220$
$p(1,2)=\binom{3}{1}\binom{4}{2} /\binom{12}{3}=18 / 220$

$$
\begin{aligned}
& p(2,0)=\binom{3}{2}\binom{5}{1} /\binom{12}{3}=15 / 220 \\
& p(2,1)=\binom{3}{2}\binom{4}{1} /\binom{12}{3}=12 / 220 \\
& p(3,0)=\binom{3}{3} /\binom{12}{3}=1 / 220
\end{aligned}
$$

اين احتمالات را ممتوان برایى راحتى در جدولى بهصورت زير قرار داد :

جدول ب.ז.

$P(X=i, Y=j)$					
	0	1	2	3	
0	$\frac{10}{220}$	$\frac{40}{2010}$	$\frac{30}{20}$	$\frac{4}{220}$	$\frac{94}{200}$
1	$\frac{30}{220}$	$\frac{60}{220}$	$\frac{11}{20}$	0	$\frac{108}{20}$
2	$\frac{15}{200}$	$\frac{13}{220}$	0	0	$\frac{37}{20}$
3	$\frac{1}{120}$	0	0	0	$\frac{1}{220}$
مجمبوع ستون $P(Y=j)$	$\frac{36}{220}$	$\frac{112}{20}$	$\frac{48}{20}$	$\frac{4}{200}$	

 كنيمكاينمجموع مساوى الست (جرابايدمجموع عناصرسطر (ياستون) حاشيهايعى مساوى ا باشد ؟) .

 داراى تابع جرم احتمال توأم زيرند .

$P(B=i, G=j)$					
	0	1	2	3	
0	. 15	. 10	. 0875	. 0375	. 3750
1	. 10	. 175	. 1125	0	. 3875
2	. 0875	. 1125	0	0	. 2000
3	. 0375	0	0	0	. 0375
مجموع ستونها $P\{G=j\}$. 3750	. 3875	. 2000	. 0375	

اين احتمالات بهصورت زير بهدست مى آيند

$$
P\{B=0, G=0\}=P\{\text { خانز اده بدون فرزند باثد }\}
$$

$$
=.15
$$

$$
=(.20)\left(\frac{1}{2}\right)=.1
$$

$$
P\{B=0, G=2\}=P\left\{\left\{\begin{array}{l}
\text { r }
\end{array}\right.\right.
$$

$$
=(.35)\left(\frac{1}{2}\right)^{2}=.0875
$$

$$
=(.30)\left(\frac{1}{2}\right)^{3}=.0375
$$

 گويمّ Y X X ، تواماييوستهاند هر گاه تابعى ماند
 نضاى Y بعدى است) ،

$$
\begin{equation*}
P\{(X, Y) \in C\}=\iint_{(x, y) \in C} f(x, y) d x d y \tag{r.r.r}
\end{equation*}
$$

$$
P\{X \in A, Y \in B\}=\int_{B} \int_{A} f(x, y) d x d y
$$

هون

$$
\begin{aligned}
F(a, b) & =P\{X \in(-\infty, a], Y \in(-\infty, b]\} \\
& =\int_{-\infty}^{b} \int_{-\infty}^{a} f(x, y) d x d y
\end{aligned}
$$

با مشتقگيرى از طرفن (در نقاطى كه مشتقات جز ئى تعريف شدهاند) نتيجه مىشود كه

$$
f(a, b)=\frac{\partial^{2}}{\partial a \partial b} F(a, b)
$$

تعبير ديگرى از تابع جگًالى توأم از معادلة F.؟.Y به صورت زير بهدست مى آيل .

$$
\begin{aligned}
P\{a<X<a+d a, b<Y<b+d b\} & =\int_{b}^{d+d b} \int_{a}^{a+d a} f(x, y) d x d y \\
& \approx f(a, b) d a d b
\end{aligned}
$$

 برایى پگپ اگر Y X X هريكت را مىتوان بهصورت زير بهدست Tورد .

$$
\begin{align*}
P\{X \in A\} & =P\{X \in A, Y \in(-\infty, \infty)\} \\
& =\int_{A} \int_{-\infty}^{\infty} f(x, y) d y d x \tag{D.r.Y}\\
& =\int_{A} f_{X}(x) d x
\end{align*}
$$

كه در Tن

$$
f_{X}(x)=\int_{-\infty}^{\infty} f(x, y) d y
$$

تابع 〒گگالى احتـال X|است . بطور مثابه ، تابع 〒־گاللى احتمال Y برابر است با

$$
\begin{equation*}
f_{Y}(y)=\int_{-\infty}^{\infty} f(x, y) d x \tag{Y.r.r}
\end{equation*}
$$

$$
\begin{aligned}
P\{X>1, Y<1\} & =\int_{0}^{1} \int_{1}^{\infty} 2 e^{-x} e^{-2 y} d x d y \\
& =\int_{0}^{1} 2 e^{-2 y}\left(-\left.e^{-x}\right|_{1} ^{\infty}\right) d y \\
& =e^{-1} \int_{0}^{1} 2 e^{-2 y} d y \\
& =e^{-1}\left(1-e^{-2}\right)
\end{aligned}
$$

$$
P\{X<Y\}=\iint_{(x, y): x<y} 2 e^{-x} e^{-2 y} d x d y
$$

$$
=\int_{0}^{\infty} \int_{0}^{y} 2 e^{-x} e^{-2 y} d x d y
$$

$$
=\int_{0}^{\infty} 2 e^{-2 y}\left(1-, e^{-y}\right) d y
$$

$$
=\int_{0}^{\infty} 2 e^{-2 y} d y-\int_{0}^{\infty} 2 e^{-3 y} d y
$$

$$
=1-\frac{2}{3}
$$

$$
=\frac{1}{3}
$$

$$
\begin{aligned}
P\{X<a\} & =\int_{0}^{a} \int_{0}^{\infty} 2 e^{-2 y} e^{-x} d y d x \\
& =\int_{0}^{a} e^{-x} d x \\
& =1-e^{-a}
\end{aligned}
$$

$$
\begin{equation*}
P\{X \in A, Y \in B\}=P\{X \in A\} P\{Y \in B\} \tag{V.Y.Y}
\end{equation*}
$$

. مستقل باشند $F_{B}=\{Y \in B\}$
مئوان با استفاده از سه اصصل موضوع استمال تشان داد كه تساوى Y.Y نتيجه مى شود اكیر و

$$
P\{X \leq a, Y \leq b\}=P\{X \leq a\} P\{Y \leq b\}
$$ b فقط اگر برآبى,هر a

$$
\begin{aligned}
& P(X<a)-Y \text { م } P\{X<Y\}-Y\{P\{X>1, Y<1\}-\mid
\end{aligned}
$$

$F(a, b)=F_{X}(a) F_{Y}(b)$
b

است با

$$
\begin{equation*}
p(x, y)=p_{X}(x) p_{Y}(y) \quad y_{،} x \text { براى هر } \tag{A.r.Y}
\end{equation*}
$$

كه در آن

$$
\begin{aligned}
P\{X \in A, Y \in B\} & =\sum_{y \in B} \sum_{x \in A} p(x, y) \\
& =\sum_{y \in B} \sum_{x \in A} p_{X}(x) p_{Y}(y) \\
& =\sum_{y \in B} p_{Y}(y) \sum_{x \in A} p_{X}(x) \\
& =P\{Y \in B\} P\{X \in A\}
\end{aligned}
$$

و بنابراين تساوى Y.Y.Y بهدست مى آيل . در ـحالت بيوستگى توأم شرط استقلال معادل استـ با

$$
f(x, y)=f_{X}(x) f_{Y}(y) \quad y ، x \text { براى هر }
$$

بهعبارت غيردتيت X Y X مستقلند اگکر دانستن مقدار يکـى تأثـيرى روى تـوزيع ديگـرى نگــنارد . متفيّر هاى تصصادفى راكه مسمّقل نباشند ، وابسته مىنامند . مثال †.

$$
f(x)=\left\{\begin{array}{lc}
e^{-x} & x>0 \\
0 & \text { جاهاى دبحر }
\end{array}\right.
$$

مطلوب اسـت تابّع بگَالى احتتمال متغيّر تصادفى X/Y حل : ابتدا تابع توزين X/X X بهدسـت مى آوريم

$$
F_{X / Y}(a)=P\{X / Y \leq a\}
$$

FV

$$
\begin{aligned}
& =\iint_{x / y \leq a} f(x, y) d x d y \\
& =\iint_{x / y \leq a} e^{-x} e^{-y} d x d y \\
& =\int_{0}^{\infty} \int_{0}^{a y} e^{-x} e^{-y} d x d y \\
& =\int_{0}^{\infty}\left(1-e^{-a y}\right) e^{-y} d y \\
& =\left.\left[-e^{-y}+\frac{e^{-(a+1) y}}{a+1}\right]\right|_{0} ^{\infty} \\
& =1-\frac{1}{a+1}
\end{aligned}
$$

با مشتقگيرى از اين مقدار تابِ پجًالى X/Y بهصورت زير بهدست مى آيد

$$
f_{X / Y}(a)=1 /(a+1)^{2}, \quad 0<a<\infty
$$

 $F\left(a_{1}, a_{2}, \ldots, a_{n}\right) ، x_{1}, x_{2}, \ldots, x_{n}$ برديم تعريفكنيم • براى مثال تابع توزيع احتمال n متغير تصادنى را بهصورت زير تعريف مىكنيم

$$
F\left(a_{1}, a_{2}, \ldots, a_{n}\right)=P\left\{X_{1} \leq a_{1}, X_{2} \leq a_{2}, \ldots, X_{n} \leq a_{n}\right\}
$$

اتگر این متغيرّهای تصادنى تعريف مىشود

$$
p\left(x_{1}, x_{2}, \ldots, x_{n}\right)=P\left\{X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right\}
$$

$$
P\left\{\left(X_{1}, X_{2}, \ldots, X_{n}\right) \in C\right\}=\iiint_{\left(x_{1}, \ldots, x_{n}\right) \in C} f\left(x_{1}, \ldots, x_{n}\right) d x_{1} d x_{2} \cdots d x_{n}
$$

در حاللت خاص 6 براى هر n مجيسوعة

$$
\begin{aligned}
& P\left\{X_{1} \in A_{1}, X_{2} \in A_{2}, \ldots, X_{n} \in A_{n}\right\} \\
& \quad=\int_{A_{n}} \int_{A_{n-1}} \cdots \int_{A_{1}} f\left(x_{1}, \ldots, x_{n}\right) d x_{1} d x_{2} \cdots d x_{n}
\end{aligned}
$$

مفهوم استقلال نيز مى تواند براى بيشتر از دو متغيّر تصادفى تعريف شود ـ بطوركلى n متغير تصطادفى

$$
P\left\{X_{1} \in A_{1}, X_{2} \in A_{2}, \ldots, X_{n} \in A_{n}\right\}=\prod_{i=1}^{n} P\left\{X_{i} \in A_{i}\right\}
$$

مانند قبل مىتوان نشان داد كه اين شرط معادل است با

$$
\begin{aligned}
& P\left\{X_{1} \leq a_{1}, X_{2} \leq a_{2}, \ldots, X_{n} \leq a_{n}\right\} \\
& \\
& \quad=\prod_{i=1}^{n} P\left\{X_{1} \leq a_{i}\right\}
\end{aligned} \quad a_{1}, a_{2}, \ldots, a_{n} \quad \text { براى هr }
$$

در خاتهه ، يك دسته نامتناهى از متغير هاى تصادفى را مستقل گَويـم آكر هر زير دسته متناهى از آنها . سستقل باشند
 مستقل و همتوزيع با تابع جرم احتمال زير باشند .

$$
P\left\{\begin{array}{rrr}
.05 & -3 \\
.10 & -2 \\
.20 & -1 \\
.30 & 0 \\
.20 & 1 \\
.10 & 2 \\
.05 & 3
\end{array}\right.
$$

در اين صورت احتمال اينكه تِيمت كالاها در ז روز آينده داراى تغيبرات متوالى 1، 2 ، 0 باشل برابر

$$
P\left\{X_{1}=1, X_{2}=2, X_{3}=0\right\}=(.20)(.10)(.30)=.006
$$

است با
■ . كه در Tن فرض كردهايم

「. أتوزيعهاى شرطى
ارتباط بين دو متغير تصادنى رااغلب مى توان با در نظرگرذتن توزيع شرطى يكـى بـا فـرض معلوم بودن ديگرى مشخص در مرد د د همانطور كه ديديـم برانى هر دو بيشامل E و F F، احتمال شرطى E با فرض F F، كه در آن ، بهصورت زير تعريف مى $P(F)>0$

$$
P(E \mid F)=\frac{P(E F)}{P(F)}
$$

در اين صورت ، اتگر Y X دو متغيّر تصادفى باشند طبيعى است كه تابع جرم احتمال شرطى X بـا فرض Y بر Y بهصورت زير تعريف شود

$$
\begin{aligned}
p_{X \mid Y}(x \mid y) & =P\{X=x \mid Y=y\} \\
& =\frac{P\{X=x, Y=y\}}{P}\{Y=y\} \\
& =\frac{p(x, y)}{p_{Y}(y)}
\end{aligned}
$$

$. P_{Y}(y)>0$ بهازای هر مقدار yبطورى كه 0
 مسامبةٌ تابع جرم احتمال شرطى تعر تعداد يسرها در اين خانواده . حل : ابتدا با استفاده از جدول Y.Y Y.Y توجَه داريممكه $P\{G=1\}=.3875$

بنابراين
$P\{B=0 \mid G=1\}=\frac{P\{B=0, G=1\}}{P\{G=1\}}=\frac{.10}{.3875}=8 / 31$
$P\{B=1 \mid G=1\}=\frac{P\{B=1, G=1\}}{P\{G=1\}}=\frac{.175}{.3875}=14 / 31$
$P\{B=2 \mid G=1\}=\frac{P\{B=2, G=1\}}{P\{G=1\}}=\frac{.1125}{.3875}=9 / 31$
$P\{B=3 \mid G=1\}=\frac{P\{B=3, G=1\}}{P\{G=1\}}=0$
بنابراين با فرض داشتن 1 دختر ، شانس بr
تيز باشل .

$p(0,0)=.4, \quad p(0,1)=.2, \quad p(1,0)=.1, \quad p(1,1)=.3$.

$$
\text { مطلوب است مساسبة تابع جرم احتمال Xبا فرض } 1 \text { ا } 1 .
$$

حل : ابتدا تو جه داريـمكه

$$
P\{Y=1\}=\sum_{x} p(x, 1)=p(0,1)+p(1,1)=.5
$$

بنابراين

$$
\begin{aligned}
& P\{X=0 \mid Y=1\}=\frac{p(0,1)}{P\{Y=1\}}=2 / 5 \\
& P\{X=1 \mid Y=1\}=\frac{p(1,1)}{P\{Y=1\}}=3 / 5
\end{aligned}
$$

$$
f_{X \mid Y}(x \mid y)=\frac{f(x, y)}{f_{Y}(y)}
$$

 ميكنيم • در اين صورت بهد ست مي آوريـم

$$
\begin{aligned}
f_{X \mid Y}(x \mid y) d x & =\frac{f(x, y) d x d y}{f_{Y}(y) d y} \\
& \approx \frac{P\{x \leq X \leq x+d x, y \leq Y \leq y+d y\}}{P\{y \leq Y \leq y+d y\}} \\
& =P\{x \leq X \leq x+d y \mid y \leq Y \leq y+d y\}
\end{aligned}
$$

 ليو سته باشند آنگگاه برأى هر مجهو عهة

$$
P\{X \in A \mid Y=y\}=\int_{A} f_{X \mid Y}(x \mid y) d x
$$

مثال T.

$$
f(x, y)= \begin{cases}\frac{12}{5} x(2-x-y) & 0<x<1,0<y<1 \\ 0 & \text { درنقاط ديگ, }\end{cases}
$$

$$
\text { حل : برائى } 1 \text { x }<0 \text { 0 } 1 \text { < } 1 \text { < } 0 \text { داريم }
$$

$$
\begin{aligned}
f_{X \mid Y}(x \mid y) & =\frac{f(x, y)}{f_{y}(y)} \\
& =\frac{f(x, y)}{\int_{-\infty}^{\infty} f(x, y) d x} \\
& =\frac{x(2-x-y)}{\int_{0}^{1} x(2-x-y) d x} \\
& =\frac{x(2-x \cdots y)}{3-y / 2} \\
& =\frac{6 x(2-x-y)}{4-3 y}
\end{aligned}
$$

Y- أميد رياضى

 آنزا با
$E[X]=\sum x_{i} P\left\{X=x_{i}\right\}$

 برابر بامد با
$p(0)=\frac{1}{2}=p(1)$
Tنگاه
$E[X]=0\left(\frac{1}{2}\right)+1\left(\frac{1}{2}\right)=\frac{1}{2}$
كه دقيقا" ميانگين معولى دو مقدار 0و 1 است Xكمىتواند بگيرد ـ از طرف ديگر اگر
$p(0)=\frac{1}{3}, \quad p(1)=\frac{3}{3}$

$$
E[X]=0\left(\frac{1}{3}\right)+1\left(\frac{2}{3}\right)=\frac{2}{3}
$$

و اين ميانگين موزون Y مقدار 0 و 1 است كه در آن مقدار \داراى وزنى Y برابر مقدار 0است زيرا $. p(1)=2 p(0)$

 بگيريد كه يكى از مقادير
 مقدار بُرد متوالياً انجام شود آنگاه نسبت دنعاتى كه مقدار بُرد
 $\sum_{i=1}^{n} x_{i} p\left(x_{i}\right)=E[X]$

 در اين N بازى براير است با $\sum_{i=1}^{n} x_{i} N p\left(x_{i}\right)$

و بنابراين متوسط بُرد در اين بازيها با صورت زير محاسبه مىشود
$\left.\sum_{i=1}^{n} \frac{x_{i} N p\left(x_{i}\right)}{N}=\sum_{i=1}^{n} x_{i} p\left(x_{i}\right)=E[X].\right)$
 حل: حون $E[X]=1\left(\frac{1}{6}\right)+2\left(\frac{1}{6}\right)+3\left(\frac{1}{6}\right)+4\left(\frac{1}{6}\right)+5\left(\frac{1}{6}\right)+6\left(\frac{1}{6}\right)=\frac{1}{2}$

تاس نمىتواند داراى بر آمد $7 / 2$ باشد) . بنابراين اگگرجه $E(X)$ را اميلد Xميناميم ، امّا نبايد بـهعنوان مقدارى كه براىى Xانتظار داريم تعبير شود . بلكه در واتع مقدار متوسط Xد در يكت تعداد زياد از تكرار
 متوسط برTمدها تقريباً مساوى 7/2 خواهد بود . (خواننده علاقهمند ميتواند بهعنوان يكت Tزمايش اين موضوع را نشان دهل) .

آنگاه
$E[I]=1 P(A)+0 P\left(A^{c}\right)=P(A)$
بنابراين ؛ اميل رياضى متغيّر تصادفى نشانگربرايى يشامد Aمساوىاست با احتمال اينكه A رخ دشد .
مثال ケ.† هقدر اطلاعات وجود دارد ؟ برای مشخص كردن اين مطلبـ ابتدا توجه داريم كـه مـيزان اطلاعـات

احتمال 1/36 و دومين بيشامد داراى احتمال 1/6 است.

 $P\{X=x, Y=y\}=P\{X=x\} P\{Y=y\}=p q$
 تابع Iبايد در شرط زير صـدق كند

$$
I(p q)=I(p)+I(q)
$$

$$
G(p)=I\left(2^{-p}\right)
$$

تعريف كنيم آذگاه . با توجه به مطالب بالا مىيبنمكه

$$
\begin{aligned}
G(p+q) & =I\left(2^{-(p+q)}\right) \\
& =I\left(2^{-p} 2^{-q}\right) \\
& =I\left(2^{-p}\right)+I\left(2^{-q}\right) \\
& =G(p)+G(q)
\end{aligned}
$$

التا مى تواذ نثان داد كه تنها توابع (يكواى) G كه در روابط تابعى نوق حدق ممكند توابعى بهفرم

$$
G(p)=c p
$$

هستند كه در Tن c يك مقدار ثابت است ـ بنابراين بايد داشنه باشيم

$$
I\left(2^{-p}\right)=c p
$$

$$
\text { يا با فرض q=2 } q \text { و بهازاي ثابت مبت c }
$$

$$
I(q)=-c \log _{2}(q)
$$

معمولاً متداول است كه قرار مىدهند c=1 1 و بهبآن اطلاعات اندازهگيرى شــده در واحـد بـيت

اكنون فرض كنيد X يكك متغير تصادنى است كه بايد يكى از مقادير دي اجتمالات هنگامى كه مقـدارى از X مشخخص مى شودد، متوسط ميزان اطلاعاتى كه بهدست مى آيد برابر است با $H(X)=-\sum_{i=1}^{n} p_{i} \log _{2}\left(p_{i}\right)$

همیخنين مىتوانيم اميد رياخي يكت متغيّ, تصادفى يبوسته را تعريف كنيم . فرض كنيد كه

$$
f(x) d x \approx P\{x<X<x+d x\}
$$

نتيجه مىشود كه يكت ميانگين موزون از تمام مقادير ممكن XX كه در Tن وزن هر X مساوى است با
 منطقى است كه اميد رياخى X را بهصورت

$$
E[X]=\int_{-\infty}^{\infty} x f(x) d x
$$

تعريف كنيم •

 احتمال زير است .

$$
\begin{array}{cc}
f(x)=\frac{1}{1.5} & 0<x<1.5 \\
0 & \text { ساير نقاط }
\end{array}
$$

اميد رياخيى مدت زهان بعداز ه بعداز ظهر تا يِغام دريافت شود برابر است با

$$
E[X]=\int_{0}^{1.5} \frac{x}{1.5} d x=.75
$$

بنابراين بطور متوسط بايد ץ ربع ساعت منتظر باشيل .

شكل 1.6

الف) مفهو اميد رياخى ماند مفهوم مركز ثقل يكت جوم است ، يكت متنيّر تصادفى

تابع جرم احتمال به جرم

 ب) (

ه- خواص اميد رياضى

اكنون فرض كنيد كه متغيّر تصادفى X و توزيع احتمـال آن (يـعنى تـالبع جـرم احتمـال آن

 يك روش بد ين صورت است كه جون

 مثال Y.ه.الف - فرض كنيد Xداراي تابع جرم احتمال زير باشد . $p(0)=.2, \quad p(1)=.5, \quad p(2)=.3$

مطلوب است محاسبه $E\left[X^{2}\right.$.
حل : فرض كنيد Y= به ترتيب با احتمالات

$$
\begin{aligned}
& p_{y}(0)=P\left\{Y=0^{2}\right\}=.2 \\
& p_{1}(1)=P\left\{Y=1^{2}\right\}=.5 \\
& p_{;}(4)=P\left\{Y=2^{2}\right\}=.3
\end{aligned}
$$

مى گیيرد ـ بنابراين

$$
E\left[X^{2}\right]=E[Y]=0(.2)+1(.5)+4(.3)=1.7
$$

 بايد نشان دهمب، 0 .
 معين يكت متغيّر تصادفى است -كه آنرا Xمىناميم -با تابع جیگالى احتمال
$f_{X}(x)= \begin{cases}1 & 0<x<1 \\ 0 & \text { جاهاكى ديK }\end{cases}$
اگگر هـزينغ لازم براى انجام يكت تجزيه در مدت x برابر با جقدر است ؟

حل : فرض كنيد $Y=X^{3}$ نشاندهندهُ هز ينهباشـد . ابتدا تابع توزيع Y را بهصورت زير محاسبه مىكنيم . $0 \leq a \leq 1$ (براى 1)

$$
\begin{aligned}
F_{Y}(a) & =P\{Y \leq a\} \\
& =P\left\{X^{3} \leq a\right\} \\
& =P\left\{X \leq a^{1 / 3}\right\} \\
& =\int_{0}^{a^{1 / 3}} d x \\
& =a^{1 / 3}
\end{aligned}
$$

$$
f_{Y}(a)=\frac{1}{3} a^{2 / 3}, \quad 0 \leq a<1
$$

$$
E\left[X^{3}\right]=E[Y]=\int_{\infty}^{\infty} a f_{Y}(a) d a
$$

$$
=\int_{0}^{l} a \frac{1}{3} a^{-2 / 3} d a
$$

$$
=\frac{1}{3} \int_{0}^{1} a^{1 / 3} d a
$$

$$
=\left.\frac{1}{3} \frac{3}{4} a^{4 / 3}\right|_{0} ^{1}
$$

$$
=\frac{1}{4}
$$

مساوى xشود ـ در واتع مىتوان نشان داد كه عبارت اخير درست است و بنابراين حكم زير را داريم: حكم 「.4. ا اميد رياضى تابعى از متُنير تصادفى الف) آكر X يكت متنيّر تصادنى با تابع جرم احتمال (x)pباشد آنگاه برای هر تابع حقيقى مقدار $E[g(X)]=\sum_{x} g(x) p(x)$
 $E[g(X)]=\int_{-\infty}^{\infty} g(x) f(x) d x$

مقدار

$$
E\left[X^{2}\right]=0^{2}(0.2)+\left(1^{2}\right)(0.5)+\left(2^{2}\right)(0.3)=1.7
$$

كه با نتيجه بهد ست آمده از مثال ه. الفـ، يكسان است. مثال Y.ه.ت -استفاده از حكم Y.ه. آدر مثال Y. ه.ب نتيجه مىدهد

$$
\begin{aligned}
E\left[X^{3}\right] & =\int_{0}^{1} x^{3} d x & & (0 \leq x<1 ، f(x)=1 \mid \text { رير }) \\
& =\frac{1}{4} & &
\end{aligned}
$$

$$
E[a X+b]=a E[X]+b
$$

$$
\begin{aligned}
E[a X+b] & =\sum_{x}(a x+b) p(x) \\
& =a \sum_{x} x p(x)+b \sum_{x} p(x) \\
& =a E[X]+b
\end{aligned}
$$

$$
\begin{aligned}
E[a X+b] & =\int_{-\infty}^{\infty}(a x+b) f(x) d x \\
& =a \int_{-\infty}^{\infty} x f(x) d x+b \int_{-\infty}^{\infty} f(x) d x \\
& =a E[X]+b
\end{aligned}
$$

$$
\text { اگكر در نتيجه Y. ه. Y تُوار دهيم } a=0 \text { ، مى بينيم كه }
$$

$E[b]=b$

يعنى اميد رياضى يكت مقدار ثابت مساوى با مقدار آن است . (آيا اين مطلب شهودى است؟)

$E[a X]=a E[X]$
بهعبارت ديگر اميد رياضى يكت مقدا ثابت ضربدر يكت متغيّر تصادفى مساوى است با مقدار ثـابت
 X X

$$
E\left[X^{n}\right]= \begin{cases}\sum_{x} x^{n} p(x) & \\ \int_{-\infty}^{\infty} x^{n} f(x) d x & \text { گुX } X\end{cases}
$$

$$
\begin{aligned}
& E[g(X, Y)]=\sum_{y} \sum_{x} g(x, y) p(x, y) \\
& E[g(X, Y)]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f(x, y) d x d y \quad \text { در حالت گالت يمستث }
\end{aligned}
$$

برای مثال ، آگر $g(X, Y)=X+Y$ ذناه در حالت ييوسته

$$
E[X+Y]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}(x+y) f(x, y) d x d y
$$

$$
=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f(x, y) d x d y+\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y f(x, y) d x d y
$$

$$
\begin{aligned}
& =\int_{-\infty}^{\infty} x\left(\int_{-\infty}^{\infty} f(x, y) d y\right) d x+\int_{-\infty}^{\infty} y\left(\int_{-\infty}^{\infty} f(x, y) d x\right) d y \\
& =\int_{-\infty}^{\infty} x f_{X}(x) d x+\int_{-\infty}^{\infty} y f_{Y}(y) d y \\
& =E[X]+E[Y]
\end{aligned}
$$

Y تتيجهاى مشابه مى توان براى حالت گگسته بهدست آورد و در واتع براى هر متغيّر تصادفى X X $E[X+Y]=E[X]+E[Y]$

 $E[X+Y+Z]=E[(X+Y)+Z]$

$=E[X]+E[Y]+E[Z] \quad$ مجدداً از معادله و بطور كلى ، به ازایى هر n
$E\left[X_{1}+X_{2} \cdots+X_{n}\right]=E\left[X_{1}\right]+E\left[X_{2}\right]+\cdots+E\left[X_{n}\right]$
معادلهٔ Y. Y. Y يكت فرمول بسيار مفيد است كه اكنون نوايد آن را با جند مثال نشان مىدهيم .

حل : فرض كنيد $2=X_{1}+X_{2}+X_{3}$

و بنابراين

$$
E[\text { [ك }]=E\left[X_{1}\right]+E\left[X_{2}\right]+E\left[X_{3}\right]
$$

$$
E\left[X_{1}\right]=10(.2)+0(.8)=2
$$

$$
E\left[X_{2}\right]=20(.8)+0(.2)=16
$$

$$
E\left[X_{3}\right]=40(.3)+0(.7)=12
$$

■ • در نتيهجه اميلد رياضمى
 زند و سیس نامه ها را بَروش كاملاً تصادنى در آنها توزیع كنل ، (يعنى هرنامه احتمال مساوى برایى قرار گرفنز در هر پاكت داشته باشل) اميد رياضى تعداد نامههايى كهه در پاكت مربوط به خـود قـرار مى
 مى توان X

$$
X=X_{1}+X_{2}+\cdots+X_{N}
$$

كه در Ti

$$
P\left\{X_{i}=1\right\}=P\{\text { |مين نامه در باكت مربو ط بهخود قرارگيرد i } i\}=1 / N
$$

و بنابراين

$$
E\left[X_{i}\right]=1 P\left\{X_{i}=1\right\}+0 P\left\{X_{i}=0\right\}=1 / N
$$

در نتيتجه ، از معادله Y. A.Y بهدست مى Tوريم

$$
E[X]=E\left[X_{1}\right]+\cdots+E\left[X_{N}\right]=\left(\frac{1}{N}\right) N=1
$$

مثال Y.

 چجقلر اسـت ؟

$X=X_{1}+\cdots+X_{20}$
كه در آن

اكنون

كه در آن تساوى الخير بدين دليل نتيجه مى شود كه هر • اكوين (بطور مستقن) با احتمال 19/20 از

بنابراين
$E[X]=E\left[X_{1}\right]+\cdots+E\left[X_{20}\right]=20\left[1-\left(\frac{19}{20}\right)^{10}\right]=8.025$
7- واريانس

 تصادفى Y، W و W, را با توابع جرم آنها بهصورت زير در نظر بغيريد

$$
W=0 \quad 1 \text { باحتـال } W
$$

$$
Y=\left\{\begin{aligned}
-1 & \frac{1}{2} \mathrm{H} \\
1 & \frac{1}{2} \mathrm{H}
\end{aligned}\right.
$$

$$
Z=\left\{\begin{aligned}
-100 & \frac{1}{2} \\
100 & \frac{1}{2} \text { با احتمال } ب ا ل
\end{aligned}\right.
$$

$$
\begin{aligned}
& E\left[X_{i}\right]=P\left\{X_{i}=1\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =1-\left(\frac{19}{20}\right)^{10}
\end{aligned}
$$

 است راحت نباشد و بدين دليل معمولاً كميتى را در نظر ميگيرند
 Var(X) تعريف ـاگر X نمايش مىدهيم بهصورت زير تعريف مىشود.
$\operatorname{Var}(X)=E\left[(X-\mu)^{2}\right]$
يكى فرمول ديگر براى Var(X) را مى توان بهصورت زير بهدست آورد.
$\operatorname{Var}(X)=E\left[(X-\mu)^{2}\right]$

$$
=E\left[X^{2}-2 \mu X+\mu^{2}\right]
$$

$$
=E\left[X^{2}\right]-E[2 \mu X]+E\left[\mu^{-}\right]
$$

$$
=E\left[X^{2}\right]-2 \mu E[X]+\mu^{2}
$$

$$
=E\left[X^{2}\right]-\mu^{2}
$$

$\operatorname{Var}(X)=E\left[X^{2}\right]-(E[X])^{2}$
بطور خذلاصه واريانس X Xساوى است با اميل رياضى تـوان دوم Xمنهـاى توان دوم اميد رياضى X. در عمل غالباً برایى محاسبه Var(X) اين روش سادهتر است .

مثال ץ.1'الف ـ مطلوباست محاسبه: Var(X) هركاه Xبر آمد حامل ازير تاب يكك تاس سالم باشد .

$$
P(X=i)=1 / 6, i=1,2,3,4,5,6,
$$

$$
\begin{aligned}
E\left[X^{2}\right] & =\sum_{i=1}^{6} i^{2} P\{X=i\} \\
& =1^{2}\left(\frac{1}{6}\right)+2^{2}\left(\frac{1}{6}\right)+3^{2}\left(\frac{1}{6}\right)+4^{2}\left(\frac{1}{6}\right)+5^{2}\left(\frac{1}{6}\right)+6^{2}\left(\frac{1}{6}\right) \\
& =\frac{9!}{6}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Var}(X) & =E\left[X^{2}\right]-(E[X])^{2} \\
& =\frac{91}{6}-\left(\frac{1}{2}\right)^{2}=\frac{75}{12}
\end{aligned}
$$

مثال T.Y.Y - وواريانس متنيّير تصادفى نشانتر . اگر برایى ييشامد A تعريف كنيم
يكت ويزگى مهم واريانسها اين است كه برایى هر ثابت a a b بنابراين با استفاده از تعريف واريانس داريم

$$
\begin{aligned}
& \operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X) \\
& \operatorname{Var}(a X+b)=E\left[(a X+b-E[a X+b])^{2}\right] \\
& =E\left[(a X+b-a \mu-b)^{2}\right] \\
& =E\left[(a X-a \mu)^{2}\right] \\
& =E\left[a^{2}(X-\mu)^{2}\right] \\
& =a^{2} E\left[(X-\mu)^{2}\right] \\
& =a^{2} \operatorname{Var}(X)
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Var}(I)=E\left[I^{2}\right]-(E[I])^{2} \\
& =E[I]-(E[I])^{2} \quad I^{2}=I\left(1^{2}=1 \text { and } 0^{2}=0\right. \text { زيرا } \\
& =E[I](1-E[I]) \\
& =P(A)[1-P(A)] \quad E[I]=P(A) \text { ، ب. F.r. }
\end{aligned}
$$

 $a=0$

$$
\operatorname{Var}(b)=0
$$

$a=1$ يعنى بهدست مي Tوريم

$$
\operatorname{Var}(X+b)=\operatorname{Var}(X)
$$

$$
\operatorname{Var}(a X)=a^{2} \operatorname{Var}(X)
$$

اندازهگيرى Xاست .

تبصره
همانند ميانگين كه مركز ثقل جرم مىيـاشد ، واريـانس در اصـطلاح مكـانِك نشـاندهندة! گششتاور اينر سى است.

Y- Y واريانس وكوواريانس مجموع متغيّر هاى تصادفى

 در حالنت كلّي . زيـرا

$$
\begin{aligned}
\operatorname{Var}(X+X) & =\operatorname{Var}(2 X) \\
& =2^{2} \operatorname{Var}(X) \\
& =4 \operatorname{Var}(X) \\
& \neq \operatorname{Var}(X)+\operatorname{Var}(X)
\end{aligned}
$$

 واريانسها ، و آن هنگـامى است كـه متغيّهـا مسـتقل بـاشند . تبل از اثبـات آن لازم است مـفهوم

كوواريانس دو متغيّر تصادفى را تعريف كنيم
تعريف -كوواريانس دو متغيّر تصادنى X و X ، كه، با $\operatorname{Cov}(X, Y)$ نمايش مىدهيم بهصورت
زير تعريف مىشود
$\operatorname{Cov}(X, Y)=E\left[\left(X-\mu_{x}\right)\left(Y-\mu_{y}\right)\right]$
كه در آن
 بهدست مى آيد
$\operatorname{Cov}(X, Y)=E\left[X Y-\mu_{x} Y-\mu_{y} X+\mu_{x} \mu_{y}\right]$

$$
\begin{align*}
& =E[X Y]-\mu_{x} E[Y]-\mu_{y} E[X]+\mu_{x} \mu_{y} \\
& =E[X Y]-\mu_{x} \mu_{y}-\mu_{y} \mu_{x}+\mu_{x} \mu_{y} \tag{I.Y.Y}\\
& =E[X Y]-E[X] E[Y]
\end{align*}
$$

از تعريف در مىيابيم كه كوواريانس در خواص زير صدق مىكند :
$\operatorname{Cov}(X, Y)=\operatorname{Cov}(Y, X)$
$\operatorname{Cov}(X, X)=\operatorname{Var}(X)$
خاصيتى ديگرى از كووارياس كه بلاذاصـله از تعريف آن بدست مى Tيد اين است كه براي هر ثابت a
$\operatorname{Cov}(a X, Y)=a \operatorname{Cov}(X, Y)$
اثبات معادلة F.V.Y بهعنوان تمرين واگگذار مىشود . كوواريانس ماندل اميد رياضى داراى خاصيت جـع بيذيرى است.
1.Y.TA
$\operatorname{Cov}(X+Z, Y)=\operatorname{Cov}(X, Y)+\operatorname{Cov}(Z, Y)$

البات
$\operatorname{Cov}(X+Z, Y)$
$=E[(X+Z) Y]-E[X+Z] E[Y]$

$$
\begin{aligned}
& =E[X Y]+E[Z Y]-(E[X]+E[Z]) E[Y] \\
& =E[X Y]-E[X] E[Y]+E[Z Y]-E[Z] E[Y] \\
& =\operatorname{Cov}(X, Y)+\operatorname{Cov}(Z, Y)
\end{aligned}
$$

لم I.Y.Y را مى توان بهسادگى بر'ي نشان دادن
$\operatorname{Cov}\left(\sum_{i=1}^{n} X_{i}, Y\right)=\sum_{i=1}^{n} \operatorname{Cov}\left(X_{i}, Y\right)$
تعميم داد . (مسألهُ Y Y Y بينيد) . از ايز تعميم حكم زير را مىتوان اثبات كرد :
$\operatorname{Cov}\left(\sum_{i=1}^{n} X_{i}, \sum_{j=1}^{m} Y_{j}\right)=\sum_{i=1}^{n} \sum_{j=1}^{m} \operatorname{Cov}\left(X_{i}, Y_{j}\right)$
البات
$\operatorname{Cov}\left(\sum_{i=1}^{n} X_{i}, \sum_{j=1}^{m} Y_{j}\right)$

$$
\begin{aligned}
& =\sum_{i=1}^{n} \operatorname{Cov}\left(X_{i}, \sum_{j=1}^{m} Y_{j}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i=1}^{n} \sum_{j=1}^{m} \operatorname{Cov}\left(Y_{j}, X_{i}\right) \\
& \text { O.V.Y از معادل } \\
& \text { د.Y.Y دوباره از معادل }
\end{aligned}
$$

نتيجه Y.Y.Y
$\operatorname{Var}\left(\cdot \sum_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)+\sum_{i=1}^{n} \sum_{\substack{j=1 \\ j \neq i}}^{m} \operatorname{Cov}\left(X_{i}, X_{i}\right)$
البات . اثبات مستقيماً از حكم Y.Y.Y با خرار دادن Y Y

در حالت 2 | $n=2$ نتيجه Y.Y.Y بهدست میى Tوريم
 $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)+\operatorname{Cov}(X, Y)+\operatorname{Cov}(Y, X)$

Y.Y.Y قضيهُ

اكر Y X X متغيّر هاى تصادنى مستقل باشند آنگاه
$\operatorname{Cov}(X, Y)=0$
و بنابراين برای متغيّر هاى مستقل
$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)$
البات -بايد ثابتكنيم $E[X Y]=E[X] E[Y]$ بدين منظور در سالثت گسسته داريم

$$
\begin{aligned}
E[X Y] & =\sum_{j} \sum_{i} x_{i} y_{j} P\left\{X=x_{i}, Y=y_{j}\right\} \\
& =\sum_{j} \sum_{i} x_{i} y_{j} P\left\{X=x_{i}\right\} P\left\{Y=y_{j}\right\} \\
& =\sum_{y} y_{j} P\left\{Y=y_{j}\right\} \sum_{i} x_{i} P\left\{X=x_{i}\right\} \\
& =E[Y] E[X]
\end{aligned}
$$

هون استدلال مشابهى برایى حالتت ييوسهه وجود دارد 6 اثبات كامل امت .
مثال Y.Y.Y.الف ـمطلوباست واريانس متجموع بر آمدهاى حاصل از • ا ير تاب مستقل يكتاس, سالم .
حل : فرض كنيل iX نداندهندهُ بر آمل i امين ير تاب باشد ، داريم
$\operatorname{Var}\left(\sum_{1}^{10} X_{i}\right)=\sum_{1}^{10} \operatorname{Var}\left(X_{i}\right)$
از
$=\frac{175}{6}$

مثال Y.Y.Y - مطلوب امت مساسبـه واريـانـس تعـداد شيـرهـاى ساحـل از • ا يرتــاب مسـتقـل يكت سكه سالم .

$$
I_{J}=\left\{\begin{array}{l}
1 \\
0
\end{array}\right.
$$

iأمن برتاب شير باشد
أامين برتاب خط باشد
 $\operatorname{Var}\left(\sum_{j=1}^{10} I_{j}\right)=\sum_{j=1}^{10} \operatorname{Var}\left(I_{j}\right)$
حال ، جون مىشودكه
$\operatorname{Var}\left(I_{j}\right)=\frac{1}{2}\left(1-\frac{1}{2}\right)=\frac{1}{4}$
و بنابراين
$\operatorname{Var}\left(\sum_{j=1}^{10} I_{j}\right)=\frac{10}{4}$

 يشامدهاى A و B، فزض كنيد .

و توجه كنيدكه
$X Y= \begin{cases}1 & X=1, Y=1 \\ 0 & \text { در غير اين صور }\end{cases}$

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =E[X Y]-E[X] E[Y] \\
& =P\{X=1, Y=1\}-P\{X=1\} P\{Y=1\}
\end{aligned}
$$

$\operatorname{Cov}(X, Y)>0 \Leftrightarrow P\{X=1, Y=1\}>P\{X=1\} P\{Y=1\}$

$$
\begin{aligned}
& \Leftrightarrow \frac{P\{X=1, Y=1\}}{P\{X=1\}}>P\{Y=1\} \\
& \Leftrightarrow P\{Y=1 \mid X=1\}>P\{Y=1\}
\end{aligned}
$$

 (با استفاده از تقارن براحتى مى توان عكس آن را تنتيجه گرفت)
در حالت كلى مىتوان نشان داد كه مقدار مبُت
زياد مىشود X نيز زياد مىشود 6 در حالى

 $\operatorname{Corr}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}$

مى توان نشان داد كه اين كميّت همواره داراى مقدارى بين 1-و 1 است . (مسألهٔ ب\& را بينيد) . ג- توابع مولدكشتاور

تابع مولد گثمتاور متغير تصادفى $\phi(t)=E\left[e^{t X}\right]$

تابـع (t)

$$
\begin{aligned}
\phi^{\prime}(t) & =\frac{d}{d t} E\left[e^{t X}\right] \\
& =E\left[\frac{d}{d t}\left(e^{t X}\right)\right] \\
& =E\left[X e^{t X}\right]
\end{aligned}
$$

vi
نصل دوم - متغغرّرماى نصادفى و اميد رياضضى

$$
\phi^{\prime}(0)=E[X]
$$

بطور ميُباب

$$
\begin{aligned}
\phi^{\prime \prime}(t) & =\frac{d}{d t} \phi^{\prime}(t) \\
& =\frac{d}{d t} E\left[X e^{\prime X}\right] \\
& =E\left[\frac{d}{d t}\left(X e^{t X}\right)\right] \\
& =E\left[X^{2} e^{\prime X}\right]
\end{aligned}
$$

$$
\phi^{\prime \prime}(0)=E\left[X^{2}\right]
$$

در هالت كلى ، nامين مشتق (t) $t=0$ در نقطه $t=0$ مساوى است با \quad ، يعنى

$$
\phi^{n}(0)=E\left[X^{n}\right] \quad n \geq 1
$$

يكت خاصيت مهم توابع مولد گثتاورها اين است كـه تابع مولد متـتـاور مـجموع متنيّرهـاى
تصادلم مستّل مساوى است با حاصلضرب تك تك توابع مولدمهتاور اين مثنيّرها ـ برایى ديدن اين مطلب ؛ فرض ككيد كه X X, مستقلند و تابع مولد گثشتاور هريكت بـترتيب صورت اگر $X+Y$ باشد ، آذگًاه

$$
\begin{aligned}
\phi_{X+Y}(t) & =E\left[e^{t(X+Y)}\right] \\
& =E\left[e^{t X^{\prime}} e^{Y}\right] \\
& =E\left[e^{t X}\right] E\left[e^{\prime Y}\right] \\
& =\phi_{X}(t) \phi_{Y}(t)
\end{aligned}
$$

 نيز مستقلند

تناظري يكت به يكت بين تابع مولد گثثتاور و تابع توزيع يكت متغيّر تمهادفى وجود دارد .

9- نامساوى چبيشف و قانون ضعيف اعداد بزرك

 اين بخش رابا اثبات نتيجهاى كه به نامساوى ماركون مشهور است شروع مىكنيم •حكم 1.9. 1. نامساوى ماركوف
 $P\{X \geq a\} \leq \frac{E[X]}{a}$

اثبات ـانبات را در حالى اراثه مىدهيم كه متغيّر تصادنى X يوسته با تابع جگالى است $E[X]=\int_{0}^{\infty} x f(x) d x$

$$
=\int_{0}^{a} x f(x) d x+\int_{a}^{\infty} x f(x) d x
$$

$$
\geq \int_{a}^{\infty} x f(x) d x
$$

$$
\geq \int_{a}^{\infty} a f(x) d x
$$

$$
=a \int_{a}^{\infty} f(x) d x
$$

$$
=a P\{X \geq a\}
$$

■ .

حكه Y.Y. Y ذامساوى جبيشف
اگر X
$P\{|X-\mu| \geq k\} \leq \frac{\sigma^{2}}{k^{2}}$
البـات - جـون بهد $a=k^{2}$

$$
\begin{equation*}
P\left\{(X-\mu)^{2} \geq k^{2}\right\} \leq \frac{E\left[(X-\mu)^{2}\right]}{k^{2}} \tag{1.4.r}
\end{equation*}
$$

Vr
فصل دوم - متغيّرهاى تصـادنى و اميل رياضى

امّا هون

$$
P\{|X-\mu| \geq k\} \leq \frac{E\left[(X-\mu)^{2}\right]}{k^{2}}=\frac{\sigma^{2}}{k^{2}}
$$

و اهبات كامل است .
اههيت نامساويهای ماركف پیيششف در ايدن است كه هرگاه ميانگیين يـا ميانگیين و واريـانس (هردو) از توزيِ ا-حتمال معلو منل 6 با استفاده از آنها مى توان كرانهانع براى احتمالات بهدست آورد . البتـه اگـر توزيـع معلـوم باشد آنگـاه احتمالات مطلوبـ مى تواننل دقيقاً مساسبه شو نلد و نيازى بهاين كرانها نيست .
 متغيرى تمـادفى با ميانگين • ه است .

 بين • P و •

حل : فز خیكنيل X تعداد كالاهايى است كه در يكت هفته توليل مىشود : 1 - با استفاده از نامساوى ماركف

$$
P\{X>75\} \leq \frac{E[X]}{75}=\frac{50}{75}=\frac{2}{3}
$$

- با استفاده از نامساوى هحبيشت -

$$
P\{|X-50| \geq 10\} \leq \frac{\sigma^{2}}{10^{2}}=\frac{1}{4}
$$

بنابراين

$$
P\{|X-50|<10\} \geq 1-\frac{1}{4}=\frac{3}{4}
$$

$$
P\{|X-\mu|>k \sigma\} \leq 1 / k^{2}
$$

معيار اختلان داشته باشد كمتر يا مساوى 1/k است.

 هرگاه ، n بسمت بى بنهايت ميل كند .

كليد Y. Y.
 آزگاه برایى هر ع > 0.
$P\left\{\left|\frac{X_{1}+\cdots+X_{n}}{n}-\mu\right|>\epsilon\right\} \rightarrow 0 \quad, n \rightarrow \infty$
 مىكنيم .اككون ، جون
$E\left[\frac{X_{1}+\cdots+X_{n}}{n}\right]=\mu \quad \operatorname{Var}\left(\frac{X_{1}+\cdots+X_{n}}{n}\right)=\frac{\sigma^{2}}{n}$
از نامساوى جيينف نتيجه مىشودكه
$P\left\{\left|\frac{X_{1}+\cdots+X_{n}}{n}-\mu\right|>\epsilon\right\} \leq \frac{\sigma^{2}}{n \epsilon^{2}}$
و اثبات كامل است.
 فرض كنيد E بكت يـيامد ثابت و P(E) نشاندمندة احتمال رخ دادن در بكث آزمايش مفروض بانـد ترار دميد .

مىدهـد . هوون ع آزمايش از P(E)

مسائل

 $X=2$ كنيد X نثاندهندهُبالاترين رتبة بهدست آمده توسط يكت دختر است آزگاه بالاترين نمـره متعلـق به يكت بسر بـوده و نمـره بعــى متعلـت به يكت دخـتر است

$$
i=1,2,3, \ldots, 8,9,106 P\{X=i\} \text { مطلوب است } i
$$

Y Y Y
 n $n=3$ احتمالات مربوط بـه مقـادير مختلف X Xا بهدست آوريد . -

$$
F(x)= \begin{cases}0 & x<0 \\ \frac{x}{2} & 0 \leq x<1 \\ \frac{2}{3} & 1 \leq x<2 \\ \frac{11}{12} & 2 \leq x<3 \\ 1 & 3 \leq x\end{cases}
$$

$$
\begin{aligned}
& \text { 1- نمودار اين تابع را رسممكنيد } \\
& P \text { جقمدر اسست } P\left\{X>\frac{1}{2}\right\}-Y \\
& P \text { - } P\{2<X \leq 4\}-r \\
& P \text { : } P\{X<3\}-P \\
& \text { P } P\{X=1\}-\Delta
\end{aligned}
$$

. $P\{X=1\}$
راهنمايـ : بايلد از مفهوم سلد استفاده كنيد . - مدت زمانى كه يكى كاميوتر تبل از خرابـشدن كار مىكند 6 برحسب ساعت 6 يكت مـتغيّر تصهادني يِّوسته با تابع پگگالى الحتهال زير است

$$
f(x)= \begin{cases}\lambda e^{-x / 100} & x \geq 0 \\ 0 & x<0\end{cases}
$$

احتهال اين كه كاميوتر بين • ه و • ه ا ا ساعت ، قبل از خخراب شُدن ، كار كند خقلدر است ؟ استمال اين كه سداتِ ، ، ا ساعت كار كند خقدر است ؟ طول عمـر نوعـى لامـيب راديـو 6 برحسب ساعـت 6 يـكت متغيّر تصـادني بـا تـابع بیگـالى استمال زير است .

$$
f(x)= \begin{cases}0 & x \leq 100 \\ \frac{100}{x^{2}} & x>100\end{cases}
$$

 تمويض شونل ؟ فرض كنيد كه بيشامدهاي لا عثها در اين مدت ، مستقلند .

$$
f(x)= \begin{cases}c e^{-2 x}, & 0<x<\infty \\ 0, & x<0\end{cases}
$$

 جعبهاى شامل ه ترانزيستور است كه Y تایى Tنها معيوبند . توانزيستورها يكى يس از ديگگرى -9

 امتـعان شده بعدى براى بهدست Tوردن دومين معيوب باشدل . تابع جوم احتهال تو أم را ـيلداكنيل .

- 1 -

$$
f(x, y)=\frac{6}{7}\left(x^{2}+\frac{x y}{2}\right) \quad 0<x<1,0<y<2
$$

ب) تابع چگگالم احتمال X,
. P. P با بهدست Tر T (

- 11

$$
F_{M}(x)=x^{n} \quad 0 \leq x \leq 1
$$

تابع چگگالى احتهال M ا بهدست Tوريد .

- I F

$$
f(x, y)= \begin{cases}x e^{-(x-v)} & x>0, y>0 \\ 0 & \text { در سابر نقاط }\end{cases}
$$

الف ـ تابع جگالى X
 .
ش

$$
f(x, y)= \begin{cases}2 & 0<x<y, 0<y<1 \\ 0 & \text { از ساير نغاط }\end{cases}
$$

الف - چچگگالى X
ب - شیگالمى
C
ات ا ا 1 P ديگ,

$$
f(x, y)=k(x) l(y), \quad-\infty<x<\infty, \quad-\infty<y<\infty
$$

نشان دهيلدكه X Y مستقلئل .
T - ا 10
18 - 18 و

$$
P\{X+Y \leq a\}=\int_{-\infty}^{\infty} F_{X}(a-y) f_{Y}(y) d y
$$

$P\{X \leq Y\}=\int_{-\infty}^{\infty} F_{X}(y) f_{Y}(y) d y$
-
كه در Tن

 بهتر تيب داراى جگاليهاى

$$
\begin{array}{ll}
f_{I}(x)=6 x(1-x) & 0 \leq x \leq 1 \\
f_{R}(x)=2 x & 0 \leq x \leq 1
\end{array}
$$

تابع جگالى W .را بهدست آوريد .
 دارای Y

$$
\begin{aligned}
& P_{X \mid Y)}^{(x \mid y)}=p_{X}(x) \\
& f_{X \mid Y}^{(x \mid y)}=f_{X}(x)
\end{aligned}
$$

الف) درحالت كـسسته 6
ب) در حالت بيوسته 6

 مىیيرد.

$$
\begin{array}{rr}
1-(1-p)^{2} & \text { باران بيارد } 1-p^{2} \\
1-4
\end{array}
$$

مى تواند متو سـط نمره را ماكزيمـمـ كند ؛

$$
f(x)= \begin{cases}a+b x^{2} & 0 \leq x \leq 1 \\ 0 & \text { سابر نقاط }\end{cases}
$$

$$
\text { اگر } E[X]=\frac{3}{5} \text { مطلوب است تعين } a \text { و. }
$$

آن برابر است با

$$
f(x)=\alpha^{2} x e^{-\alpha x} \quad x \geq 0
$$

اميد رياضى طول عمر اين لامب را بهدست Tوريد .
 زير باشند

$$
f(x)= \begin{cases}1 & 0<x<1 \\ 0 & \text { ساير نقاط }\end{cases}
$$

$E\left[\operatorname{Min}\left(X_{1}, \ldots, X_{n}\right)\right]$ - $E\left[\operatorname{Max}\left(X_{1}, \ldots, X_{n}\right)\right]$ ـ مطلوب است الف - - YV

$$
f(x)=\left\{\begin{array}{cc}
1 & 0<x<1 \\
0 & \text { ساير نقاط }
\end{array}\right.
$$

, را ابتــدا بـا محـاسبـة هيگالـى $E\left[X^{n}\right]$ استفـاده از حكم

- YA تابع جگگالى

$$
f(x)=\left\{\begin{array}{cc}
\frac{1}{2} & 0<x<2 \\
0 & \text { ساير نقاط }
\end{array}\right.
$$

 اميد رياضى هزينه تعمير كاميو تر را بهدست آوريل .

$$
. E\left[X^{2}+(X+1)^{2}\right]
$$

كنيد Xنشاندهندهْ تعداد تويهاى سفيد در اين انتخاب باشد . مطلوب است است الف) با تعريف مناسب متغيرهاى تصادفى نشانغر

$$
X=\sum_{i=1}^{10} X_{i}
$$

ب) با تعريف مناسب متغيّر هاى تصـادنى نشانگر

$$
X=\sum_{i=1}^{17} Y_{i}
$$

 راهنمايع : بهازاى

 محاسبة الف) (Var (C ب)
 جهه مقاديرى از هr - مطلوب است محاسبهُ ميانگين و واريانس تعداد شيرهايى كه در ب برتاب يكت سكـه مسالم بهد X Y -

$$
E\left[X^{2}\right] \geq(E[X])^{2}
$$

احتمال زير مىباشد
$f_{X}(z)= \begin{cases}(z-8) & 8 \leqq z \leqq 9 \\ (10-z) & 9<z \leqq 10 \\ 0 & \text { ساير نقاط }\end{cases}$

 كـتر از

$f_{X Y}(u, v)=\left\{\begin{array}{lc}(u+v) & 0 \leqq u, v \leqq 1 \\ 0 & \text { ساير } u \text { 化 }\end{array}\right.$
الف) چچگالِيهاى حـاشيهاى X, X را بـهدست Tوريـد . بـ) مـطلوب است تـعين . $\operatorname{var}(X)$

- P 9 مىشود . فرض كنيل متغير تصادنى مقادير ممكن 3 (0, 1, 2, 3) و متغيّر تصطادفى X X نشاندهندهُ تعهاد كارخانهعا (و داراي مقادير

X_{2}		
X_{1}	1	2
0	$\frac{1}{9}$	$\frac{1}{16}$
1	$\frac{1}{16}$	$\frac{1}{16}$
2	$\frac{1}{16}$	$\frac{1}{8}$
3	$\frac{1}{8}$	$\frac{1}{4}$

الف ـتوزيعهاى احتمالى كنارى

$$
. \operatorname{Var}\left(X_{2}\right), \operatorname{Var}\left(X_{1}\right), E\left[X_{2}\right]
$$

دستگاهـى مشصولاتـى توليـلد مىكنـد كه تـبل از بـارگيرى بـطور مــد در صـد بـازرسى
 $1 \frac{1}{3}$

 $0 \leq \operatorname{Var}\left(X / \sigma_{x}+Y / \sigma_{y}\right)$

نشان دهيد
$-1 \leq \operatorname{Corr}(X, Y)$
حال با نوجه بهاين كه
$0 \leq \operatorname{Var}\left(X / \sigma_{x}-Y / \sigma_{y}\right)$

> نتيجه بعيريدكه
$-1 \leq \operatorname{Corr}(X, Y) \leq 1$
با استفاده ازاينواتعيتك، $\operatorname{Car}(Z)=0$ نتيجهمىدهد Z تابت است ، استدلال كيد كه اگر 1-

$Y=a+b x$
كه در آن علامت b مبْت است مرگاه همبستگى 1 باشد و منفى است هرگاه 1- 1- باشد . در مثال Cov - FF $\operatorname{Var}(X)=1$ دها اگر
$\operatorname{Cov}\left(X_{1}-X_{2}, X_{1}+X_{2}\right)=0$.

- P9 - P9

$f(x)=e^{-x} \quad x>0$
تابع مولـد گشتـاور X را محاسبه كرده و با استفاده از Tن ميانگين و واريـانس X را بـدست Tاوريد . با مساسبه مستقيم ميانگين ؛ جواب را با با قسمت اولّل مقايسه كنيد .

$f(x)=1 \quad 0<x<1$
باشد $E\left[e^{c x}\right]$ را بهدست آوريد . با مشتقگيرى $E\left[X^{n}\right]$ با بهدست Tورده و جواب را با مساسبة مستقيم م

- FA

$$
\text { مورد } P\{0 \leq X \leq 40\} \text { جه مىتوان گفت } ؟
$$

- PQ تصهادفى با ميانگين Vه است الـا

 شود كه ستوسط كلاس بين ها و Vه خواهد بود ؟

متغيّرهاى تصادفى خاص

0- مقدمه

بعضى از متغيّرهاى تصادفى در عمل كاربر دهاى زيادى دارند ـ در اين بخش تعدادى از آنها را مورد مطالهع قرار مىدهم
| - متغيّر هاى تصادفى بونولى و دوجملهاى
فرض كنيد آزمايشّى كه بر آمل آن را مىتوان بهعنوان بيروزى يا شكست دستهبندى كرد ، انتجام شود .
 تابع جرم احتمال Xبرابر المت با

$$
\begin{align*}
& P\{X=0\}=1-p \\
& P\{X=1\}=p \tag{1.1.r}
\end{align*}
$$

كه در T T
 هرگاه تابع جرم احتمال آن بهازاى $E[X]=1 \cdot P\{X=1\}+0 \cdot P\{X=0\}=p$

تابع جرم احتْال متغير تصادنى دو جملهاى با بارامتر هاى (n, p) بهصورت زير است

$$
\begin{equation*}
P(X=i)=\binom{n}{i} p^{1}(1-p)^{n-1}, \quad i=0,1, \ldots, n \tag{Y.i.r}
\end{equation*}
$$

كه در Ti! شامل n شى انتخاب كرد ـ درستى تساوى Y. Y. Y را ميتوان با تو جه نمودن بهاين كه با فرض استقلال
 بررسى نمود . حال هون منتهى مى شود (و شايل ساده تر باشد كه بگوييم(

(s, s, f, f, f)	(f, s, s, f, f)	(f, f, s, f, s)
(s, f, s, f, f)	(f, s, f, s, f)	
(s, f, f, s, f)	(f, s, f, f, s)	(f, f, f, s, s)
(s, f, f, f, s)	(f, f, s, s, f)	

بهعنوان مثال برآمل (f, s, f, s, f) بدين معنى است چهون هر $\binom{5}{2} p^{2}(1-p)^{3}$ با 1 با توجه به بسط دوجملهاى مجموع احتمالات برابر $\$ است، يعنى $\sum_{i=0}^{n} p(i)=\sum_{i=0}^{n}\binom{n}{i} p^{i}(1-p)^{n-i}=[p+(1-p)]^{n}=1$
تابع جرم احتمال
 به راست و سو مى چولگى بهجب دارد .

 بسته از آنها را پس بدهد هقدر است

Binomial (10, 0.5)

 ثإرامترهاى (/ • و • 1) است . بنابراين احتمال اين كه يك بسته باز بس داده شود برابر است با

$$
\begin{aligned}
P\{X>1\} & =1-P(X=0\}-P\{X=1\} \\
& =1-\binom{10}{0}(.01)^{0}(.99)^{10}-\binom{10}{1}(.01)^{1}(.99)^{9} \approx .005
\end{aligned}
$$

 مثال ז. ا.ب - يكت دستگاه مخابراتى شامل n جزء است كه هريكت بطور مستقل و با احتمال p

 بهتر است ؟
 در نتيجه احتمال اين كه يكك سيستم شامل ه هج هـ كار كند برابر است با
$\binom{5}{3} p^{3}(1-p)^{2}+\binom{5}{4} p^{4}(1-p)+p^{5}$
در هالى كه اين احتمال براي يكت سيستم شامل 「 جزء برابر است با
$\binom{3}{2} p^{2}(1-p)+p^{3}$
بنابراين دستگاه شامل ه جزء بهتر است اگر
$10 p^{3}(1-p)^{2}+5 p^{4}(1-p)+p^{5} \geq 3 p^{2}(1-p)+p^{3}$
يا بطور خلاصه
$3(p-1)^{2}(2 p-1) \geq 0$
 p $p \geq \frac{1}{2}$ اجزايى است كه در 1-2k جزه اوّل كار مىكند ـ ـ در اين صورت : $P_{2 k+1}($ كارك $)=P\{X \geq k+1\}+P\{X=k\}\left(1-(1-p)^{2}\right)$

$$
+P\{X=k-1\} p^{2}
$$

الف
ب ب - $X={ }^{\text {ب }}$
ج -

$$
\begin{aligned}
& P_{2 k-1}(\text { كار كا })=P\{X \geq k\} \\
& =P\{X=k\}+P\{X \geq k+1\}
\end{aligned}
$$

$P_{2 k+1}$ (كاركّ) - $P_{2 k \cdot 1}$ (كار كند)
بنابراين داريم

$$
\begin{aligned}
& =P\{X=k-1\} p^{2}-(1-p)^{2} P(X=k\} \\
& =\binom{2 k-1}{k-1} p^{k-1}(1-p)^{k} p^{2}-(1-p)^{2}\binom{2 k-1}{k} p^{k}(1-p)^{k-1} \\
& =\binom{2 k-1}{k} p^{k}(1-p)^{k}[p-(1-p)] \quad\binom{2 k-1}{k-1}=\binom{2 k-1}{k} \\
& \geq 0 \Leftrightarrow p \geq \frac{1}{2}
\end{aligned}
$$

 مى آوريم ، يكك متغيّر تصادفى دوجملهاى است .

حل : متغيّر تصادفى Xداراى توزيع دوجملهاى با بارامترهاى (1. ,100) خواهد بود اگر هر جیی؟ با

 دوجملهاى نيست . زيرا فرض استفلال حيهاى متوالىمعتبر نيست ـ درواتع دراين حالت خواهيم داشت .

$$
P\{X=100\}=.9
$$

$$
P\{X=0\}=.1
$$

 نمايش دهيم:

$$
\begin{equation*}
X=\sum_{i=1}^{n} X_{i} \tag{r.i.r}
\end{equation*}
$$

كه در آن

الما جونi

$$
E\left[X_{i}\right]=P\left\{X_{i}=1\right\}=p
$$

$$
\operatorname{Var}\left(X_{i}\right)=E\left[X_{i}^{2}\right]-p^{2}
$$

$$
=p(1-p)
$$

ك، در آن تساوى اخير بدين دليل نتيجه مىشود كا،

$E[X]=\sum_{i=1}^{n} E\left[X_{i}\right]$

$$
\text { = }=n p \quad \text { جرن }
$$

$$
\operatorname{Var}(X)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)
$$

$$
=n p(1-p)
$$

 باشند آنگّاه مجموع آنها نيز دوجملهاى با بارامترهاي
 احتهان يمروزى p $n_{1}+n_{2}$ است ديد . در اين صورت $X_{1}+X_{2}$ نشاندهندة تـعلاد بيروزيهـا

$$
\text { پارامترهاى (n, } \left.n_{1}+n_{2}, p\right) \text { خواهد بود. }
$$

1.1 - محاسبئ تابع توزيع دوجملهاى

فزض كنيد Xدوجملهاى با بارامتر هاى (n, $)$ باشد . براي مساسبه تابي توزيع آن، يعنى

$$
P\{X \leq i\}=\sum_{k=0}^{i}\binom{n}{k} p^{k}(1-p)^{n-k}, \quad i=0,1, \ldots, n
$$

از رابطه بين

$$
\begin{equation*}
P\{X=k+1\}=\frac{p}{1-p} \frac{n-k}{k+1} P\{X=k\} \tag{p,1,r}
\end{equation*}
$$

(اثبات اين رابطه به عنوان ترين واگذار مىشود) .

 بهدست میى آوريم،

$$
\begin{aligned}
& P\{X=0\}=(.6)^{6}=.0467 \\
& P\{X=1\}=\frac{4}{6} \frac{1}{1} P\{X=0\}=.1866 \\
& P\{X=2\}=\frac{45}{6} P\{X=1\}=.3110 \\
& P\{X=3\}=\frac{44}{6} P\{X=2\}=.2765 \\
& P\{X=4\}=\frac{4}{6} P P\{X=3\}=.1382 \\
& P\{X=5\}=\frac{4}{6} 3 P\{X=4\}=.0369 \\
& P\{X=6\}=\frac{4}{6} \frac{1}{6} P\{X=5\}=.0041 .
\end{aligned}
$$

برنامـ

أستفاده مىكند المّا اين برنامه فقط برايى مقادير مناسبى از n مفيد خواهد $P\{X=1\}, \ldots, P\{X=i\}$ $P\{X=0\}=(1-p)^{n}$ بود . زيرا در حالتى كه n بزرگَ باشل به واسطه خطاى گرد كردن كاميويو
 نيـز مسـاوى صفـر خواهنــد بـود وبنابـرايـن بـرنـامـه بـاشتبـاه نتيجـه مى $k=1, \ldots, n$; $1-p)^{n}(X \leq i\}=0$
 در آن

$$
J= \begin{cases}i & \text { if } i \leq n p \\ {[n p]} & \text { if } i>n p\end{cases}
$$

 , $P\{X=0\}$... $P\{X=J-2\}$ ، $P\{X=J-1\}$
 $P\{X=J\}=\binom{n}{J} p^{J}(1-p)^{n-J}$ $=\frac{n(n-1) \cdots(n-J+1)}{J(J-1) \cdots 1} p^{J}(\mathrm{I}-p)^{n} J$

ابتدا لگُاريتم آن ، يعنى $\log P\{X=J\}=\sum_{k=1}^{J} \log (n+1-k)$

$$
-\sum_{k=1}^{J} \log (k)+J \log p+(n-J) \log (1-p)
$$

$$
P\{X=J\}=\exp \{\log P\{X=J\}\}
$$

$$
\begin{aligned}
& \text { حل : برنامه r- ا را اجرا مىكنيمه • }
\end{aligned}
$$

Fuld
THIS FFEGFOIA COMFUTES THE FFOEAEILITY THAY A EINOMIALS $n, 0$) FAANDOM VARIAELE IS LE SS THAN OF EQUAL TO 1 ENTER 1
? 100.
ENTER P-
?
750
THE FROGAFILITY IS . 9832359
[.4:

FUN FHIS PFUGKAM LOMFUTES THE FKOEAEILITY THAT A EINOMIAL (I,P) FIAFNDDM VARIAELE IS LE SS THAN OR EQUAL TO I
EINTER in
? SGO
ENTEF P
? $\cdot 7$
ENTEG1
? 325
THE FROEAEILITY IS 9. . EEE: 4 46E-93
(a)

> Y- متنيّر تصادفى يواسن

ג گفته مىشود اگـر برای هر ג 0 تابع جرم ا-تمال آن به حورت زير باشد .
$P(X=i\}=e^{-\lambda} \frac{\lambda^{\prime}}{i!} \quad i=0,1, \ldots$.
نماد e علامتى امت براى يكت مقدار ثابت و ثقريباً مساوى 2.7183امت . e ثابت مشهورى در رياضى
 رابطة ץ.Y.Y يكت تابع جرم احتمال امت زيرا
$\sum_{i=0}^{\infty} p(i)=e^{-\lambda} \sum_{i=0}^{\infty} \lambda^{\prime} / i!=e^{-\lambda} e^{\lambda}=1$
نمودار اين تابع جرم احتمال به ازاى

برای تعيِن ميانگين و واريانس الن متغيّر تصـادنى ابـتدا تـابع مـولد گثشتـاور آن را بـهدست

$$
\begin{aligned}
\psi(t) & =E\left[e^{t x}\right] \\
& =\sum_{i=0}^{\infty} e^{t i} e^{-\lambda} \frac{\lambda^{i}}{i!} \\
& =e^{-\lambda} \sum_{i=0}^{\infty} \frac{\left(\lambda e^{t}\right)^{t}}{i!} \\
& =e^{-\lambda} e^{\lambda e^{\prime}} \\
& =\exp \left\{\lambda\left(e^{t}-1\right)\right\}
\end{aligned}
$$

مى آوريم • بدين منظور داريم

با مشتقگيى از آن نتيجه مىشود .
$\psi^{\prime}(t)=\lambda e^{t} \exp \left\{\lambda\left(e^{t}-1\right)\right\}$
$\psi^{\prime \prime}(t)=\left(\lambda e^{\prime}\right)^{2} \exp \left\{\lambda\left(e^{t}-1\right)\right\}+\lambda e^{t} \exp \left\{\lambda\left(e^{r}-1\right)\right\}$
بنابراين

$$
\begin{aligned}
E[X] & =\psi^{\prime}(0)=\lambda \\
\operatorname{Var}(X) & =\psi^{\prime \prime}(0)-(E[X])^{2} \\
& =\lambda^{2}+\lambda-\lambda^{2}=\lambda
\end{aligned}
$$

يعنى ميانگين و واريانس هر دو مساوى بارامتر ג هستند و
مثغير تصادفى هواسن داراى كاربردهاى وسيعى در سطوح مختلف است . زيرا مى توان آنرا

$$
\begin{aligned}
P\{X=i\} & =\frac{n!}{(n-i)!i!} p^{i}(1-p)^{n-1} \\
& =\frac{n!}{(n-i)!i!}\left(\frac{\lambda}{n}\right)^{i}\left(1-\frac{\lambda}{n}\right)^{n-i} \\
& =\frac{n(n-1) \cdots(n-i+1)}{n^{i}} \frac{\lambda^{i}}{i!} \frac{(1-\lambda / n)^{n}}{(1-\lambda / n)^{i}}
\end{aligned}
$$

اكنون برای n هاى بزرگث و pهای كوچكك

$$
\begin{aligned}
\left(1-\frac{\lambda}{n}\right)^{n} \approx e^{-\lambda} \quad \frac{n(n-1) \cdots(n-i+1)}{n^{i}} \approx & 1 \quad\left(1-\frac{\lambda}{n}\right)^{i} \approx 1 \\
&
\end{aligned}
$$

$$
P\{X=i\} \neq e^{-\lambda} \frac{\lambda^{\prime}}{i!}
$$

r
P - تعداد ترازيستورهايمى كه روز اوّل استفاده هان از از كار مىانتل .
 7 - تعداد ذرأت α كه در يكت مدت زمان ثابت از يكت جسم راديواكتيو صادر مىشو

 هواسن با ميانگين np است كه در آن n تعداد (زياد) انراد جامعه است . استدلال در اين مورد كه هرا
 مثال پ. ז.الف - فر
 حل: فرض كنيد X نشاندهنده تعلاد تصادفاتى باشد كه در طول بزرگَراه مورد بحث در طى اين هفته

$$
\begin{aligned}
P\{X \geq 1\} & =1-P\{X=0\} \\
& =1-e^{-3} \frac{3^{0}}{0!} \\
& =1-e^{-3} \\
& \approx .9502
\end{aligned}
$$

مثال ஈ. F.ب - فزض كنيد احتمال اين كه يكك شىء توليدشده به وسيله يكت ماشين مفروض معيوب
 باشد . فرض كنيدكيفيت اشياء توليدشده مستقل از يكديگر باشند . حل : احتمال مطلوب برابر است با , تقريب يواسن مقدار احتمال برابر است با
$e^{-1} \frac{1^{0}}{0!}+e^{-1} \frac{1^{1}}{1!}=2 e^{-1} \approx .7358$
مثال ז. 「.ب - آزمايشى را در نظر بگيريد كه عبارت است از مساسبه تعداد ذرات آلفايى كه از يكى

ازجنين ذراتى خارج مىشوند، يكت تقريب خوببرای||تمالالينكبيشاز Y ذرهآآلفاخارج شود هيـت ؟

 = 3.2
$P\{X \leq 2\}=e^{-3.2}+3.2 e^{-3.2}+\frac{(3.2)^{2}}{2} e^{-3.2}$

$$
=.382
$$

 كمتر از 「 درخواست مىشود هيقدر است ؟ احتمال اين كه دقيقاً
 مستقل باشند) .

حل : جون اين شركت احتمالأ تعداد زيادى از مشتريان را بيهد كرده است و استما احتمال اين كه در يك

 احتمال اين كه كمتر از 「 درخواست در بكت روز معين وجود داشته باشد برابر است با با با $P\{X<3\}=P\{X=0\}+P\{X=1\}+P\{X=2\}$

$$
=e^{-5}+e^{-5} \frac{5^{1}}{1!}+e^{-5} \frac{5^{2}}{2!}
$$

$$
=\frac{37}{2} e^{-5}
$$

$$
\approx .1247
$$

 خواهد بود ـ از طرفى $P(X=4)$
$P(X=4)=e^{-5} \frac{5^{4}}{4!} \approx .1755$
بس احتمال اين كه در ז روز از ه روز آينده F درخواست وجود داشته باشد برابر است با
$\binom{5}{3}(.1755)^{3}(.8245)^{2} \approx .0367$
 است ـ بهعنوان مثال فرض كيد احتمال

 ضعيف باشد ؛ براى نمونه مثال زير را در نظر بغيريد :

در اين صورت Xرا مىتوان به شكل زير نوشت
$X=X_{1}+\cdots+X_{n}$
بس X X را مىتوان به صورت تعداد مونقيتها در n آزمايش در نظر گـرفت كـه در آن نتيجه i المين
 رابا احتمال مساوى انتخاب مىكند داريم

$$
\begin{equation*}
P\left\{X_{i}=1\right\}=\frac{1}{n} \tag{Y,Y,Y}
\end{equation*}
$$

اكنون فرض كيد كه اينكه زامين شخص كلاهخود را التتخاب كرده است يعنى ،
 احتمال مساوى هريكت از 1 - nكلاه راكى يكى ازآنها متعلق به او است انتخاب مى كند بنابراين داريم $P\left\{X_{i}=1 \mid X_{j}=1\right\}=\frac{1}{n-1}$

 $E\left[X_{t}\right]=P\left\{X_{i}=1\right\}=\frac{1}{n}$

$$
\begin{aligned}
E[X] & =E\left[X_{1}+\cdots+X_{n}\right] \\
& =E\left[X_{1}\right]+\cdots+E\left[X_{n}\right] \\
& =n\left(\frac{1}{n}\right)=1
\end{aligned}
$$

$$
\text { يس } 1 . E(X)=1 . ز ي ر ا
$$

توزيع بواسن داراى اين خاميت است كه مجموع متغيّرهاى تصادفى مستقل هواسن نيز يكت
متغير تصـادفى يوامن است براى اثبات فرض كنيل
 $E\left[e^{t\left(X_{1}+X_{2}\right)}\right]=E\left[e^{t X_{1}} e^{t X_{2}}\right]$

$$
=E\left[e^{i X_{t}}\right] E\left[e^{i X_{3}}\right]
$$

$$
=\exp \left\{\lambda_{1}\left(e^{t}-1\right)\right\} \exp \left\{\lambda_{2}\left(e^{t}-1\right)\right\}
$$

$$
=\exp \left\{\left(\lambda_{1}+\lambda_{2}\right)\left(e^{t}-1\right)\right\}
$$

 . $\lambda_{1}+\lambda_{2} X_{I}+X_{2}$

 تجاوز نكند هقدر است ؟

حل : فرض كنيد روز مستقل از هم بأشند . در اين صورت $P\left\{X_{1}+X_{2} \leq 3\right\}=\sum_{i=0}^{3} e^{-8} \frac{8^{i}}{i!}=.04238$
†. 1 : محاسبهٌ تابع توزيع بواسن

- اتگر X يواسن با ميانگین λ باشد آنگاه
$\frac{P\{X=i+1\}}{P(X=i\}}=\frac{e^{-\lambda} \lambda^{i+1} /(i+1)!}{e^{-\lambda} \lambda^{i} / i!}=\frac{\lambda}{i+1}$
با توجه به اين كه $P\{X=1\}=\lambda P\{X=0\}$
$P\{X=2\}=\frac{\lambda}{2} P\{X=1\}$
$P\{X=i+1\}=\frac{\lambda}{i+1} P\{X=i\}$
 با ميانگين معلوم از i تجاوز نكتد ، محاسبه مىكند . اين برنامه ابتدا
 با
$J= \begin{cases}i & \text { if } i \leq \lambda \\ \operatorname{Int}(\lambda) & \text { if } i>\lambda\end{cases}$
$P(X=J)$ بز $\ln \operatorname{Int}(\lambda)$ و از تمام مقادير اين برنامه P(X=J $)$
$\log P\{X=J\}=-\lambda+J \log (\lambda)-\sum_{k=1}^{J} \log k$

$$
\text { و ترار دادن P\{X=J\}= } \exp \{\log P\{X=j\}\} \text { حساب مىكند. . }
$$

مهس اين بقادير P(X P

مثال Y.Y.Y. - مطلوب است محاسبة الـف ـ ـ

حل : برنامه Y. Y را اجرا مىكنـم

FUN FRIS FROGRAM COMPUTES THE PROBABILITY THAT A FOISSON RANDOM VARIAELE 15 LESS THAN OR EQUAL TO 1 ENTER THE MEAN OF THE RANDOM VARIABLE
$? 100$
ENTER THE DESIRED VALUE OF 1
? 90
THE FROEABILITY THAT A FGISSON RANDOM VARIAELE WITH MEAN 100
IS LESS THAN OR EOUAL TO 90 IS . 1713914
Dk

RUN
THIS FROGRAM COMFUTES THE FROBAEILITY THAT A POISSON RANDOM VARIABLE
IS LESS THAN OR EQUAL TO I
ENTER THE MEAN OF THE RANDOM VARIAELE

- 1000

ENTER THE DESIRED VALUE OF :

- 10 O7

THE FROEABILITY THAT A FOISSON RANDOM UARIAELE WITH MEAN 1000
15 LESS THAN OR EUUAL TO 1097 IS .99525B1
O

「
جعبهاى شامل N+M M باترى است كه N تاى آنها سالم و M تاى ديگ, معيوبند . نمونهاى

 نشاندهِندة تعداد باتريهاى سالم در اين نمونه باشد آنگاه
$P\{X=i\}=\frac{\binom{N}{i}\binom{M}{n-i}}{\binom{N+M}{n}}, \quad i=0,1, \ldots, \min (N, n)$

 شوند و فرض مىكتيم

اكنونجون، $ا$ امينانتخاببراىهر N+ N N باترى N تاى آنهاسالماستمتساوىالاحتمالمىباشد داريم

$$
\begin{align*}
& P\left\{X_{i}=1\right\}=\frac{N}{N+M} \tag{Y.r.r}\\
& \begin{aligned}
P\left\{X_{i}=1, \quad X_{j}=1\right\} & =P\left\{X_{i}=1\right\} P\left\{X_{j}=1 \mid X_{i}=1\right\} \\
& =\frac{N}{N+M} \frac{N-1}{N+M-1}
\end{aligned}
\end{align*}
$$

$i \neq j$ هn
 N - 1

$$
X=\sum_{i=1}^{n} X_{i}
$$

بأتريهاى سالم در نـونهاى به حبجم n، از از رابطه زير استفاده مىكينم

بنابراين
$E[X]=\sum_{i=1}^{n} E\left[X_{i}\right]=\sum_{i=1}^{n} P\left\{X_{i}=1\right\}=\frac{n N}{N+M}$
هعيخنين از نتيجها Y.V.Y فصل (Y) برای واريانس مبحوع متغير هاى تمهادفى نتيجه مىشود

$$
\begin{equation*}
\operatorname{Var}(X)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)+2 \sum_{1 \leq i<j \leq n} \operatorname{Cov}\left(X_{i}, X_{j}\right) \tag{o.r.r}
\end{equation*}
$$ از طرفى

$$
\begin{equation*}
\operatorname{Var}\left(X_{i}\right)=P\left\{X_{i}=1\right\}\left(1-P\left\{X_{i}=1\right\}\right)=\frac{N}{N+M} \frac{M}{N+M} \tag{4.r.r}
\end{equation*}
$$

$\operatorname{Cov}\left(X_{i}, X_{j}\right)=E\left[X_{i} X_{j}\right]-E\left[X_{i}\right] E\left[X_{j}\right]$
الكنون هر دو متغيّر

$$
\begin{aligned}
E\left[X_{i} X_{j}\right] & =P\left\{X_{i} X_{j}=1\right\} \\
& =P\left\{X_{i}=1, \quad X_{j}=1\right\}
\end{aligned}
$$

$$
=\frac{N(N-1)}{(N+M)(N+M-1)} \quad \text { r.r.r. از م معادلr.r. }
$$

$$
\begin{aligned}
\operatorname{Cov}\left(X_{i}, X_{j}\right) & =\frac{N(N-1)}{(N+M)(N+M-1)}-\left(\frac{N}{N+M}\right)^{2} \\
& =\frac{N M}{(N+M} \frac{-N M}{(N+M-1)}
\end{aligned}
$$

$$
\begin{align*}
\operatorname{Var}(X) & =\frac{n N M}{(N+M)^{2}}-\frac{n(n-1) N M}{(N+M)^{2}(N+M-1)} \\
& =\frac{n N M}{(N+M)^{2}}\left(1-\frac{n-1}{N+M-1}\right) \tag{A.r.r}
\end{align*}
$$ بهدست مى Tوريم

 r.r را مىتوانيم به صورت زير بنويسيم :

$$
E(X)=n p
$$

$\operatorname{Var}(X)=n p(1-p)\left[1-\frac{n-1}{N+M-1}\right]$

 بهدست Tوردن اطلاعاتى در مورد تعداد حيوانات غالباً زيستشناسان اين آزمايش را انجام مىدهند

 $P\{X=i\}=\frac{\binom{r}{i}\binom{N-r}{n-i}}{\binom{N}{n}} \equiv P_{i}(N)$ متغيّر تمـادنى نوق هندسى امست بطورى كه
 علامتگذارى مُتده باشند . باگرفتن اين نسبت به عنوان تقريبى برایى نسبت حيواناتى كه در اين اين ناحيه

 ■ .
 Tآمونهایى Tارى مربوط به دو جامعهُ دو جملهاى مفيد واتع مى دشود .

 $P\{X=i \mid X+Y=k\}=\frac{P\{X=i, X+Y=k\}}{P(X+Y=k\}}$

$$
\begin{aligned}
& =\frac{P\{X=i, \quad Y=k-i\}}{P\{X+Y=k\}} \\
& =\frac{P\{X=i\} P\{Y=k-i\}}{P(X+Y=k\}}
\end{aligned}
$$

$$
=\frac{\binom{n}{i} p^{i}(1-p)^{n-i}\binom{m}{k-i} p^{k-i}(1-p)^{m-(k-i)}}{\binom{n+m}{k} p^{k}(1-p)^{n+m-k}}
$$

$$
=\frac{\binom{n}{i}\binom{m}{k-i}}{\binom{n+m}{k}}
$$

 اهميت دارد) .

ب- مثغير كصادذى يكنواخت

گويـم متغيّر تمهادفى Xدر كاصله α, β] بطور يكنواختث توزيع شله است اگکر تابع یگاللى
$f(x)= \begin{cases}\frac{1}{\beta-\alpha} & \alpha \leq x \leq \beta \\ 0 & \text { ساير نقاط }\end{cases}$
نمودار اين تابع در شكل پ. تابع جگالى احتمال صدق ميكند زيرا $\frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} d x=1$

در عمل توزيع يكنواخت هنگامى اتفاق مىالتد كه فرض كنيم يكت متغيّر تصادفى مفرونس با احتمال مساوى در هـسايگى هر نقطه از ناصله [احتمال اين كه Xدر هر زيربازه از [[]

$$
\begin{aligned}
P\{a & <X<b\} \\
& =\frac{1}{\beta-\alpha} \int_{a}^{b} d x \\
& =\frac{b-a}{\beta-\alpha}
\end{aligned}
$$

$$
X>6 \text { ـ } X<\text { ت } X<\text { ـ } 1<x<4 \text { ـ } 1<x<9
$$

حل - جوابها به ترتيب برابرند با الف ـ 7/10 ب ـ 3/10 ب ـ 5/10 ت ـ 4/10

 الف ــكتر از ه د دقيقه براي اتوبوس متتظر بـانـد

حل : فرض كنيد X نشاندهندهُ زمان برحسب دتيقه بعد از V مبح باشد كه شخص به ايستگاه مرامعهع

 احتمال بطلوب در (الف) برابر است با

$$
P\{10<X<15\}+P\{25<X<30\}=\frac{3}{30}+\frac{3}{30}=\frac{1}{3}
$$

بطور مشابه او حداتقل كند پس احتمال بطلوب در (ب) مساوى است با

$$
P\{0<X<3\}+P\{15<X<18\}=\frac{3}{30}+\frac{3}{30}=\frac{1}{5}
$$

ميانگين شتغيّر تصادفى يكنواخت در ذاصلهُ [α] برابر است با

$$
\begin{aligned}
E[X] & =\int_{\alpha}^{\beta} \frac{x}{\beta-\alpha} d x \\
& =\frac{\beta^{2}-\alpha^{2}}{2(\beta-\alpha)} \\
& =\frac{(\beta-\alpha)(\beta+\alpha)}{2(\beta-\alpha)}
\end{aligned}
$$

$$
E[X]=\frac{\alpha+\beta}{2}
$$

به عبارت ديگگ, اميد رياضمى يكت شتغير تصادنى يكنواخت روى زاصله •[[$]$ كه انتظار آن نيز مىرود (جرا ؟).

$$
\begin{aligned}
& E\left[X^{2}\right]=\frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} x^{2} d x \\
& =\frac{\beta^{3}-\alpha^{3}}{3(\beta-\alpha)} \\
& =\frac{\beta^{2}+\alpha \beta+\alpha^{2}}{3} \\
& \begin{array}{llllllllll}
\hline 0.58587 & 0.25848 & 0.85227 & 0.78724 & 0.05102 & 0.70712 & 0.76552 & 0.70326 & 0.80402 & 0.49479 \\
0.71253 & 0.41679 & 0.37913 & 0.00736 & 0.60186 & 0.59048 & 0.59946 & 0.75697 & 0.61849 & 0.90141
\end{array} \\
& \begin{array}{llllllllll}
071253 & 0.41629 & 0.37913 & 0.00236 & 0.60196 & 0.5904 \mathrm{k} & 059946 & 0.75657 & 0.61849 & 0.901 \mathrm{BI} \\
0.84448 & 0.42477 & 094829 & 0.86678 & 0.14070 & 0.04072 & 045580 & 0.36833 & 010783 & 0.33199
\end{array} \\
& \text { 0) } 49564 \quad 0.98590 \quad 0.928600 .69970 \quad 0.838980 .21077 \quad 0.71374 \\
& \begin{array}{lllllllllll}
0.68304 & 0.46922 & 0.14218 & 0.63014 & 050116 & 0.33569 & 0.97793 & 08.8637 & 0.27681 & 0.04354
\end{array} \\
& \begin{array}{lllllllll}
076992 & 070179 & 0.75568 & 0.21792 & 0.50646 & 0.07744 & 0.38064 & 0.06107 & 0.414 \times 1
\end{array} 0.93919 \\
& \begin{array}{llllllllll}
037604 & 0.27772 & 0.75613 & 0.51157 & 0.73821 & 029928 & 0.62603 & 006259 & 021552 & 0.72977 \\
0.43898 & 0.06592 & 0.44474 & 0.07517 & 0.44831 & 0.01337 & 0.04538 & 0.15198 & 050.145 & 0.65288
\end{array} \\
& \begin{array}{lllllllllll}
0.86039 & 0.28645 & 0.49931 & 0.59203 & 0.98254 & 0.56697 & 0.55897 & 0.25109 & 0.47585 & 0.59524
\end{array} \\
& \begin{array}{lllllllllll}
028877 & 0 & \mathbf{S 4 9 6 6} & 0.97319 & 0.66633 & 0.71350 & 02840] & 0.28165 & 061379 & 0.13886 & 078325
\end{array} \\
& \begin{array}{llllllllll}
0.44973 & 012332 & 0.166-19 & 0.88908 & 031019 & 0.33358 & 0.68401 & 0.10177 & 0.92873 & 0.13065
\end{array} \\
& \begin{array}{llllllllll}
0.42529 & 0.37591 & 0.90208 & 0.50331 & 0.37531 & 0.72208 & 0.42884 & 0.07435 & 0.58647 & 0.64972 \\
0.82004 & 074696 & 0.10136 & 0.35971 & 0.72014 & 00.8345 & 0.49366 & 0.68501 & 0.14135 & 0.15718
\end{array}
\end{aligned}
$$

جدول ץ.₹. أ - جدول اعداد تصادفى

$$
\begin{aligned}
\operatorname{Var}(X) & =\frac{\beta^{2}+\alpha \beta+\alpha^{2}}{3}-\left(\frac{\alpha+\beta}{2}\right)^{2} \\
& =\frac{\alpha^{2}+\beta^{2}-2 \alpha \beta}{12} \\
& =\frac{(\beta-\alpha)^{2}}{12}
\end{aligned}
$$

 يكثكاميو ترشخصى IBM توليدشدهاست نمايشمىدهدل ـ اعدادتصادفى درآمارواحتمالبسيار مفيدند زيرابااستفاده ازTنهابطورتجربىمىتواني انواع مختلف احتمالات واميلرياضيها رابر Tوردكرد . مثال زير نشان مى دهدكه خگونهاعدادتصادنى مىتوانندبراى حل يكِمسأله درتركيبات مورداستفادهقرارگيرند .

 ليست را برآورد كنيم . اگك فرض كـي كيم $d=\sum_{i=1}^{n} 1 / m(i)$ ظاهر مىشود T Tنگاه dرا مى توان به صورت ز زير نمايش داد
 $g m(1)=m(9)=2, m(2)=m(4)=2, m(3)=m(6)=m(8)=3, m(5)=1, m(7)=1$ $d=\sum_{i-1}^{9} 1 / m(i)=2\left(\frac{1}{2}\right)+2\left(\frac{1}{2}\right)+3\left(\frac{1}{3}\right)+1+1=5$.
 احتمال مـاوى بگيريد ، يعنى X طورى استى استى $P\{X=i\}=\frac{1}{n} \quad i=1, \ldots, n$

در اين صورت m(X) برابر است با تعلاد دنعاتى كه درايه موتهت X در ليست ظاهر مىشود ـ داريم $E\left[\frac{1}{m(X)}\right]=\sum_{i=1}^{n} \frac{1}{m(i)} P\{X=i\}$

$$
=\frac{1}{n} \sum_{i=1}^{n} \frac{1}{m(i)}=\frac{d}{n}
$$

$$
E(Y)=d \text { بنابراين اگر فرض كنيم } Y=n / m(X)
$$

 $d \approx \frac{n}{k} \sum_{i=1}^{k} 1 / m\left(X_{i}\right)$

 (1, 2, ..., n
 بازه: (0,n) يكنواخت است و

$$
P\{i-1<n U<i\}=\frac{1}{n} \quad i=1, \ldots, n
$$

$$
\begin{equation*}
X=i \quad \text { if } i-1<n U<i \tag{1.f.r}
\end{equation*}
$$

آنگاه X داراي توزيع موردنظر است . با استفاده از نماد [[] ، ميتوانيم X را به صورت خخلاصهتر

$X=[n U]+1$
بنابـرايـن بطـور خـلاصـه مىتـوانيـم d را بـا توليـد kعــد تصادفـى

$d=\frac{n}{k} \sum_{i=1}^{k} 1 / m\left(X_{i}\right)$
بهعنوان توضيحى ديگربرایى استفاده ازاعدادتصادفى ، فرض كنيد كه يكتمركزيزشكى تصد

 واضعاستكه گووهتيماروگروه كنترلبايدتا جايى

 دارای احتمال مساوى برایى تشكيل گَروه كنترل را داشته باشند . جگگونه اين كار را مىتوان انجام داد ؟

 * هر (

توليد شده است . حال براى هر n, ,.. $i=1=1$
$I_{S}=\left\{\begin{array}{l}1 \\ 0\end{array}\right.$ در غير اين صورت

هـال توزيـع شرطى
 $j=1, \ldots, n$ تو n
 است با

$$
\begin{equation*}
P\left\{I_{1}=1\right\}=k / n \tag{Y.母.r}
\end{equation*}
$$

$I_{I}=1$ براى محاسبهٔ احتمال شرطى اينكه عنصر Y در زيرمجموعه باشد بافرض

 احتمال مساوى هستندكه عناصر ديگر زيرمجموعه باشند) بنابراين داريم

$$
\begin{equation*}
P\left\{I_{2}=1 \mid I_{1}=1\right\}=\frac{k-1}{n-1} \tag{r.f.r}
\end{equation*}
$$

بطور مشابه اتر عنصر 1 در زيرمجموعه نباشلد آنگاه k عضو زيرمجموعه بتصادن از 1 - 1 عنصر انتخاب خو|هند شُل و در نتيجه

$$
P\left\{I_{2}=1 \mid I_{1}=0\right\}=\frac{k}{n-1}
$$

از تساويهاى Y.F.F.F و.F.F مى بينيمكه

$P\left\{I_{2}=1 \mid I_{1}\right\}=\frac{k-I_{1}}{n-1}$
و بطوركلي داريم
$P\left\{I_{j}=1 \mid I_{1}, \ldots, I_{j-1}\right\}=\frac{k-\sum_{i-1}^{f-1} I_{i}}{n-j+1}, \quad j=2, \ldots, n$
زيرا ،
 انتخاب مى شوند

 $I_{1}= \begin{cases}1 & U_{1}<\frac{k}{n} \\ 0 & \text { ساير }\end{cases}$

در غير اينمورت
$I_{2}= \begin{cases}1 & U_{2}<\frac{k-I_{1}}{n-1} \\ 0 & \text { ساير نقاط }\end{cases}$
در غير اين مورت
$I_{j}= \begin{cases}1 & U_{j}<\frac{k-I_{1}-\cdots-I_{j-1}}{n-j+1} \\ 0 & \text { طاير }\end{cases}$
اين فرT آيند هنگامى خاتهس يدلا مىكند
 برانى مثال اگر آ تصادفى S مكان انتهايى درخت است

توجه كنيد كه احتمال رسيلن به هر نقطه انتهايى مساوى است با درخت و ضربب احتمالات به اين نتيجه رسيل . به عنوان مثال استمال رسيلن به وضعيت $S=\{2,4\}$ $P\left\{U_{1}>.4\right\} P\left\{U_{2}<.5\right) P\left\{U_{3}>\frac{1}{3}\right\} P\left\{U_{4}>\frac{1}{2}\right\}=(.6)(.5)\left(\frac{2}{3}\right)\left(\frac{1}{2}\right)=.1$ برابر است با $S=\{4,5\}$ همانطور كه از نمودار درختى مشخصص مىشود (شاخه انتهاي سمت راست راكه تتيجه
 زير مجمو عهانتخابى مساوىبا تعلادعناصرباقيماندهباشد يعنى,
 تبصره : برای توليد يكت زير مجموعه تصهادفى روش مذكور احتياج به حافظه ، خيلى كمى دارد . يكـ

 ضميمه آمده است .

RUN THIS FROGRAM GENERATES A RANDOM SUESET OF SJZE F FROM THE SET 1, $2, \ldots N$ ENTEF THE UALUE OF N
725
FNTFF THE VALUE OF k.
FNNTFF THE VALUE OF k.
7%
Finndcim number seed ($-327 b 8$ to 32767)? 4762
THE FFANDOM SUESET CONSISTS OF THE FOLLOWTNG 5 VALUES
nt

ه- متغيّ هاى تصادفى نومالل

يـك متغيّر تصادفى را داراى توزيـي نرمـال بـا ميانگيـن بر و واريانس آگر تابع جگًالى Tان به هورت زير باشد $X \approx N\left(\mu, \sigma^{2}\right)$
$f(x)=\frac{1}{\sqrt{2 \pi} \sigma} \mathrm{e}^{-(x-\mu)^{2} / 2 \sigma^{2}} \quad-\infty<x<\infty^{+}$

$$
\text { بهمقدار ماكزيمم خود } 1 / \sigma \sqrt{2} \pi \approx 0.399 / \sigma \text { مىرسد . (شكل } \approx \text { ه. ا ا را بينيد) }
$$

 آنرا برای تقريب احتمالات مربوط به متنيّر تصادفى دوجـا

 اندازه گيرى يكى كميت فيز يكى نام برد . تابع مولد گثشتاور يكث متنيّر تصهادفى نرمال با بارامتر μ و واريانس

$$
\phi(t)=E\left[e^{t X}\right]
$$

$$
\begin{equation*}
=\frac{1}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{\infty} e^{i x} e^{-(x-\mu)^{2} / 2 \sigma^{2}} d x \tag{1.0.r}
\end{equation*}
$$

$$
=\frac{1}{\sqrt{2 \pi}} e^{\mu+} \int_{-\infty}^{\infty} e^{i \sigma y} e^{-y^{2} / 2} d y \quad y=\frac{x-\mu}{\sigma}
$$

$$
=\frac{e^{\mu r}}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \exp \left\{-\left[\frac{y^{2}-2 t \sigma y}{2}\right]\right\} d y
$$

با ترار دادن

$$
=\frac{e^{\mu t}}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \exp \left\{-\frac{(y-t \sigma)^{2}}{2}+\frac{t^{2} \sigma^{2}}{2}\right\} d y
$$

$$
=\exp \left\{\mu t+\frac{\sigma^{2} t^{2}}{2}\right\} \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-(y-t v)^{2} / 2} d y
$$

$$
=\exp \left\{\mu t+\frac{\sigma^{2} t^{2}}{2}\right\}
$$

1- Abraham Moive
2- Laplace

و تساوى اخير بدين دليل نتيجه مىشود كى
$\frac{1}{\sqrt{2 \pi}} e^{-(y-t o)^{2} / 2}$

 $\phi^{\prime}(t)=\left(\mu+t \sigma^{2}\right) \exp \left\{\mu t+\sigma^{2} \frac{t^{2}}{2}\right\}$
$\phi^{\prime \prime}(t)=\sigma^{2} \exp \left\{\mu t+\sigma^{2} \frac{t^{2}}{2}\right\}+\exp \left\{\mu t+\sigma^{2} \frac{t^{2}}{2}\right\}\left(\mu+t \sigma^{2}\right)^{2}$
در نتيجه

$$
\begin{aligned}
E[X] & =\phi^{\prime}(0)=\mu \\
E\left[X^{2}\right] & =\phi^{\prime \prime}(0)=\sigma^{2}+\mu^{2}
\end{aligned}
$$

و همجنین

$$
E[X]=\mu
$$

$$
\operatorname{Var}(X)=E\left[X^{2}\right]-(E[X])^{2}=\sigma^{2}
$$

يك واقعيت مهم در مورد توزبع نرمال اين است كه ایگر X نرمال با با يارامرهاى آنگاه براحتى با استفاده از تابع مولد گشتاورها به مورت زير

$$
\begin{aligned}
E\left[e^{t(\alpha X+\beta)}\right] & =e^{t \beta} E\left[e^{\alpha t X}\right] \\
& =e^{t \beta} \exp \left\{\mu \alpha t+\sigma^{2}(\alpha t)^{2} / 2\right\} \\
& =\exp \left\{t \beta+\mu \alpha t+\sigma^{2} \frac{\alpha^{2} t^{2}}{2}\right\} \\
& =\exp \left\{(\beta+\alpha \mu) t+\alpha^{2} \sigma^{2} \frac{t^{2}}{2}\right\}
\end{aligned}
$$

جون عبارت اخير تابع مولد گثشتاور در يكن متغير تصادفى نرمال با يارامترهاى الش نتيجه بهدست مى آيل .
 ميانگين 0 و واريانس 1 الست ـ در اين حالت متغيّر تصادفى Z را دارايى لوزيع نرمال استاندارد يا واحد

مىتويند . فرض كنيد (•) Φ ثشاندهندهٌ تابع توزيع نرمال استاندارد باشد ، يعنى $\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-y^{2} / 2} d y \quad-\infty<x<\infty$ اين نتيجه كه وتى X دارایى توزيع نرمال با مانگگين
 مورد X را برحسب Z Z نوشت.
 كمتر از $(X) / \sigma) / \sigma$

$$
\begin{aligned}
P\{X<b\} & =P\left\{\frac{X-\mu}{\sigma}<\frac{b-\mu}{\sigma}\right\} \\
& =\Phi\left(\frac{b-\mu}{\sigma}\right)
\end{aligned}
$$

$$
\text { بطور مشابه براى هر } a<b
$$

$$
\begin{aligned}
P\{a<X<b\} & =P\left\{\frac{a-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{b-\mu}{\sigma}\right\} \\
& =P\left\{\frac{a-\mu}{\sigma}<Z<\frac{b-\mu}{\sigma}\right\} \\
& =P\left\{Z<\frac{b-\mu}{\sigma}\right\}-P\left\{Z<\frac{a-\mu}{\sigma}\right\} \\
& =\Phi\left(\frac{b-\mu}{\sigma}\right)-\Phi\left(\frac{a-\mu}{\sigma}\right)
\end{aligned}
$$

$$
\begin{aligned}
\Phi(-x) & =P\{Z<-x\} \\
& =P\{Z>x\} \\
& =1-\Phi(x)
\end{aligned}
$$

بنابراين براى مثال
$P\{Z<-1\}=\Phi(-1)=1-\Phi(1)=1-.8413=.1587$
 مظلوب است
$P\{X<11\}-1$ $P\{X>-1\}-r$ $P\{2<X<7\}-r$ حل
$P\{X<11\}=P\left\{\frac{X-3}{4}<\frac{11-3}{4}\right\}$

$$
=\Phi(2)
$$

$$
=.9772
$$

$$
P\{X>-1\}=P\left\{\frac{X-3}{4}>\frac{-1-3}{4}\right\}
$$

$$
=P\{Z>-1\}
$$

$$
=P\{Z<1\}
$$

$$
=.8413
$$

$$
P\{2<X<7)=P\left\{\frac{2-3}{4}<\frac{X-3}{4}<\frac{7-3}{4}\right\}
$$

$$
=\Phi(1)-\Phi(-1 / 4)
$$

$$
=\Phi(1)-(1-\Phi(1 / 4))
$$

$$
=.8413+.5987-1=.4400
$$

 إكر برابر است با مىرسد دريافتكننده براساس قاعده زير يِّم رااز رمز خارج مىكند

$$
\begin{aligned}
& \text { اتگر } 5 .
\end{aligned}
$$

خون بارازيتها معمولاً بطور نرمال توزيع مىشوند ، احتهال خطا را هنگامى كه N متغيّر تصـادفى نرمال
استاندارد است تعين مىكينيم

 و خطاى نوع دوم زمانى رخ مىدهد كه بيام 0باشد و 5. 5 بـ

$$
\begin{aligned}
P(\text { ييام } 1 \text { بائد | خطا) } & =P\{N<-1.5\} \\
& =1-\Phi(1.5)=.0668
\end{aligned}
$$

$$
\begin{aligned}
P(\text { يیام 0باثد | خطا) } & =P\{N>2.5\} \\
& =1-\Phi(2.5)=.0062
\end{aligned}
$$

نتيجٌ مهم ديگر در مورد توزيع نرمال اين المت كه مجموع متغيرّهاى تصادنى مستقل نر مـال ، يكت
 نرمالباميانگين

$$
\begin{aligned}
E\left[e^{t \Sigma_{i-1}^{n} x_{i}}\right] & =E\left[e^{t X_{1}} e^{t X_{2}} \ldots e^{t X_{n}}\right] \\
& =\prod_{i=1}^{n} E\left[e^{t X_{1}}\right] \\
& =\prod_{i=1}^{n}\left(e^{\mu_{i} t+o_{i}^{2} t^{2} / 2}\right) \\
& =e^{\mu t+\sigma^{2} t^{2} / 2}
\end{aligned}
$$

$\mu \equiv \sum_{i=1}^{n} \mu_{i}, \quad \sigma^{2} \equiv \sum_{i=1}^{n} \sigma_{i}^{2}$
بنابراين

 به ازاى
$P\left\{Z>z_{\alpha}\right\}=1-\Phi\left(z_{\alpha}\right)=\alpha$

$1-\Phi(1.64)=.05$
$1-\Phi(1.96)=.025$
$1-\Phi(2.33)=.01$

$$
z_{.01}=2.33 ، z_{.025}=1.96 ، z_{.05}=1.64 \text { داريم }
$$

$$
P\left\{Z>z_{a}\right\}=\alpha: \text { : }
$$

ه. ا : محاسبهُ تابع توزيع نرمال استاندارد و معكوس آن

F. برنامة بـ ه ه ا الف انتگرال از 0 تا x تابع

عبارت اوّل بسط تيلور

$$
\dot{e}^{-y^{2} / 2}=\sum_{i=0}^{\infty}\left(-y^{2} / 2\right)^{i} / i!
$$

$\Phi(x)= \begin{cases}\frac{1}{2}+\frac{1}{\sqrt{2 \pi}} \int_{0}^{x} e^{-y^{2} / 2} d y & \text { if } x>0 \\ \frac{1}{2}-\frac{1}{\sqrt{2 \pi}} \int_{0}^{-x} e^{-y^{2} / 2} d y & \text { if } x<0\end{cases}$

مهاسبه مىكند

$$
\begin{aligned}
& \text { مثال ז. } \\
& \text { الف ـ مطلوب است محاسبة } \\
& \text { ب - مطلوب است محاسبة (1.64) (2) } \\
& \text { حل : برنامه Y ـ ه ـ الف را اجراكنيد. }
\end{aligned}
$$

Filitd
 THith צ EHTER TIIE DESIFED VALUE JF x 7 2．12．
THE FKOEFGILITY JS．9829チフ』
O1．

FIJTM
 IHITH，
IGTAEF THE［VECIFED UGALIUE EF X
$:-1 . \operatorname{Sin}_{4}$

引

تبصره：يكك تقريب سريع از تابع توزيع نرمال استانداردكه تا دو رتم اعثار معتبر است به صورت زير
$\frac{1}{\sqrt{2 \pi}} \int_{0}^{x} e^{-y^{2} / 2} d y= \begin{cases}x(4.4-x) / 10 & 0 \leq x \leq 2.2 \\ .49 & 2.2<x<2.6 \\ .50 & 2.6 \leq x\end{cases}$

حل : برنامه Y- - - ا رادو بار مساسبه كنيد

RUN

FOR A GIVEN INFHT A, OくA<.S, THIS PROGRAH COMPUTES THE VALLE Z EUCH THAT THE PROBABILITY THAT A LNIT NDRMAL EXCEEDE I IG ECUAL TO a ENTER THE DESIRED VALLE GF
?. 05
THE VALUE IS 1.645212
OK
RUN
FOR A GIGEN INPUT A, OKGK.S, THIG PROGFAH COHPUTES THE VALUE $: ~ S L C H ~ T H A T ~ T H E ~$ FROBABILITY THAT A UNIT NORMAL EXCEEDS $: 19$ EQUAL TO
ENTER THE DEGIRED VALUE OF
$? .09$
THE VALLEE IS 1.340969
[k

به صورت زير ميباشد .

لِضيه ّا. ا. : ق قضبهُ حد مركزى

فرض كنيد واريانس ${ }^{2}$ باشند . در اين صورت برایى مقادير بزرگى n، توزبع
$\frac{X_{1}+\cdots+X_{n}-n \mu}{\sigma \sqrt{n}}$
تقريباً نرمال استاندارد است ـ يعنى برایى مقادير بزرگّ n
$P\left\{\frac{X_{1}+\cdots+X_{n}-n \mu}{\sigma \sqrt{n}}<x\right\} \approx P\{Z<x\}$

كه در آن Z يكى متغيّر تصادنى نرمال استاندارد است .

 وجـود مىدانــل كه در أتـر تغيــر شـرايطط جـوى و سخطاى نـرمال هـر بــار كــه يكى انـــدازه ثــبـت
 ستـارهشناس تصميـم مـيگیـرد يـكت دنبـالـه از اندازهها را به دست آورده و سهس مقلار هـتـوسط

 مـورد نيـاز است كـه بطـور سعقـول مطمئـن شـود كـه فاصلـه بـر آورد شـــه درست بين 5. 5 ســـال

نـورى است.
n ${ }^{\prime} X_{1}, X_{2}, \ldots, X_{n}$: اندازه باشندل Tنگًاه از قضيةٌ حلـ مركزى نتيّبه مىشود كه

$$
Z_{n}=\frac{\sum_{i=1}^{n} X_{i}-n d}{2 \sqrt{n}}
$$

تقرياً داراى توزيع نرمال استاندارد است . اكتون ستارهشناس تصلد دارد n مشاهلده را طورى انتخابب كند كه بطور معقول مطمثن باشـلـ كه

$$
-0.5<\frac{\sum_{i-1}^{n} X_{i}}{n}-d<0.5
$$

$$
\begin{aligned}
P\{- & \left.0.5<\frac{\sum_{i-1}^{n} X_{4}}{n}-d<0.5\right\} \\
& =P\left\{-0.5<\frac{2}{\sqrt{n}} Z_{n}<0.5\right\} \\
& =P\left\{-0.5 \frac{\sqrt{n}}{2}<Z_{n}<0.5 \frac{\sqrt{n}}{2}\right\} \\
& \approx P\left\{Z<\frac{\sqrt{n}}{4}\right\}-P\left\{Z<-\frac{\sqrt{n}}{4}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =P\left\{Z<\frac{\sqrt{n}}{4}\right\}-P\left\{Z>\frac{\sqrt{n}}{4}\right\} \\
& =2 P\left\{Z<\frac{\sqrt{n}}{4}\right\}-1
\end{aligned}
$$

بنابراين برنى مثال اگگ, ستارهشناس بخواهد هـ ه \% مطمن باشد مقدارى كه برآورد كرده درست بـين 5.5 سال نورى استت بايد "nاندازه اختيار كند كه در آن "nبه تسمى است كه

$$
2 P\left\{Z<\sqrt{n^{*}} / 4\right\}-1=.95
$$

$$
P\left\{Z<\sqrt{n^{*}} / 4\right\}=.975
$$

بنابراين با استفاده از جدول الف †. ا. ا.

$$
\frac{\sqrt{n^{*}}}{4}=1.96
$$

$$
n^{*}=(7.84)^{2}=64.47
$$

 مىشود . فزض كنيد كه وزن يكت ماشين (دوباره برحسب ، . . ا بوند) مـتغيّرى است تصـادفى بـا
 روى بٌّل باشد .
 ِل است ؛ يعنى

$$
\begin{aligned}
P_{n} & =P\left\{X_{1}+\cdots+X_{n} \geq W\right\} \\
& =P\left\{X_{1}+\cdots+X_{n}-W \geq 0\right\}
\end{aligned}
$$

كه
 است

$$
E\left[\sum_{1}^{n} X_{i}-W\right]=3 n-400
$$

$$
\operatorname{Var}\left(\sum_{1}^{n} X_{1}-W\right)=\operatorname{Var}\left(\sum_{1}^{n} X_{1}\right)+\operatorname{Var}(W)=.09 n+1600
$$

بنابراين اگر فرض كنيم
$Z=\frac{\sum_{i=1}^{n} X_{i}-W-(3 n-400)}{\sqrt{.09 n+1600}}$

$$
P_{n}=P\left\{Z \geq \frac{-(3 n-400)}{\sqrt{.09 n+1600}}\right\}
$$

 اگرَ تعداد ماشينها به تسمى باشدكه

$$
\frac{400-3 n}{\sqrt{.09 n+1600}} \leq 1.28
$$

$$
n \geq 117
$$

 احتصال

ثشكل r.r.r : توابع جرم امتمال دوجملهاى به توزبع نرمال متقارباند
pمو فقيت است ـ بنابراين آن را مىتوان به حورت زير نوشت

$$
X=X_{1}+\cdots+X_{n}
$$

$X_{1}=\left\{\begin{array}{l}1 \\ 0\end{array}\right.$
اگر نتيجة i أمين آزمابث بوفقبت باشد
در غير اينصورت

هون
$E^{\prime}\left[X_{i}\right]=p, \quad \operatorname{Var}\left(X_{t}\right)=p(1-p)$
از تضيةُ حد مركزى تتيجه مىشود كه براى n هاىى بزرگّ
$\frac{X-n p}{\sqrt{n p(1-p)}}$

 بزركّ شودا .

 - ها دانشجوى سال اوّل در اين دانشگّاه حضور به هم رساند .
 يكى متغيّر تصادفى دوجملهالى با بارامترهاى X

$$
\begin{aligned}
P\{X>150.5\} & =P\left\{\frac{X-(450)(.3)}{\sqrt{450(.3)(.7)}} \geq \frac{150.5-(450)(.3)}{\sqrt{450(.3)(.7)}}\right\} \\
& \approx P\{Z>1.65\}=.0495
\end{aligned}
$$

 E.

بايد توجه داشت كه اكنون دو تقريب ممكن براي احتمالات دوجـملهالى مسـدانيم : يكـي

竍 $U_{1}, U_{2}, \ldots, U_{12}$ $E\left[U_{\mathrm{i}}\right]=1 / 2, \quad \operatorname{Var}\left(U_{i}\right)=1 / 12$
$Z \equiv \sum_{i=1}^{12} U_{i}-6$

داراى ميانگين 0 و وارياتس 1 است ـ از قضئه حد مركزى ؛ Z بايل به صورت نرمال تـوزيع
 است تصـادفى كه آن را مىتوان براى هر هدن كاربردى بهعنوان يكث متغيّر تصادفى نرمالل در نـظر
 گرفت.
يكت متغيّر تصصادفى نرمال X با ميانگين μ و واريانس

$$
X=\sigma \sum_{i=1}^{12} U_{i}+\mu
$$

تقريباً داراى توزيع نرمال با ميانگين μ و واريانس

7- متغيّر تصادفىىنماييى
 ارائـه ميشود

$$
f(x)= \begin{cases}\lambda e^{-\lambda x} & x \geq 0 \\ 0 & x<0\end{cases}
$$

يكت متغيّر تصادفى نمايع با پارامتر גگويتد . تابع توزيع تجسعى اين متغيّر تصادفى بـه مـورت زيـر مىباشد

$$
\begin{aligned}
F(x) & =P\{X \leq x\} \\
& =\int_{0}^{x} \lambda e^{-\lambda y} d y \\
& =1-e^{-\lambda x}, \quad x \geq 0
\end{aligned}
$$

در عمل توزيعنمايى غالباً بهعنوان توزيع زمان لازم برایى رخ دادن يكت بيشامد خاص مطرح مى

 . . .

تابع مولدگثتاور توزيعنمايعى به صورت زير است

$$
\begin{aligned}
\Psi(t) & =E\left[e^{t x}\right] \\
& =\int_{0}^{\infty} e^{t x} \lambda e^{-\lambda x} d x \\
& =\lambda \int_{0}^{\infty} e^{-(\lambda-t) x} d x \\
& =\frac{\lambda}{\lambda-t} \quad t<\lambda
\end{aligned}
$$

$$
\begin{aligned}
\Psi^{\prime}(t) & =\frac{\lambda}{(\lambda-t)^{2}} \\
\Psi^{\prime \prime}(t) & =\frac{2 \lambda}{(\lambda-t)^{3}} \\
E[X] & =\Psi^{\prime}(0)=\frac{1}{\lambda} \\
\operatorname{Var}(X) & =E\left[X^{2}\right]-E^{2}[X] \\
& =\Psi^{\prime \prime}(0)-\frac{1}{\lambda^{2}}=\frac{1}{\lambda^{2}}
\end{aligned}
$$

لذا لمعكوس ميانگين است.
X خاميت كليدى متغير تصـادنى نمايى خاميت القدان حالظه است يكث متغيّر تصادفى نامنفى
را اناقد حانظه گويمر اگر
$P\{X>s+t \mid X>t\}=P\{X>s\} \quad s, t$, t بر $\mathbf{~} \geq 0$

 حالت مجبوع طول عمر كاركرد دستگاه از است مىبينيمكه
$P($ (طول عcر كاركرد دسنگاه در زمان $)=P\{X>t+s \mid X>t\}$

معادل است با
$\frac{P\{X>s+t, \quad X>t\}}{P(X>t\}}=P(X>s\}$
$P\{X>s+t\}=P\{X>s\} P\{X>t\}$
هرگاه X يكت متغيرّ تصادفى نمايى باثد آنگاه
$P\{X>x\}=e^{-\lambda x}, \quad x>0$

 متغير هاى هستند كه دارابى اين خاصيت مىياشنـد) .

 كيلومتر) باترىنمايىى است با پارامتر 1/10 = גبنابراين احتمال مطلوب برابر است با

$$
\begin{aligned}
& =e^{-5 \lambda} \\
& =e^{-1 / 2} \approx .604
\end{aligned}
$$

حال اگر توزيع طول عمرنمايى نباثد آنگاه احتمال مطلوب برابر است با

 باعنوان توضيحى ديگُر از خاصيت نقدان حانظه مثال زير رادر نظر بر بغيريد .

■. برابر است با 1/2

حكم $1.7 .{ }^{\text {ح }}$

 . $\min \left(X_{l}, \ldots, X_{n}\right)$
 بزر رگتر از xباشند داريم
$P\left\{\min \left(X_{1}, X_{2}, \ldots, X_{n}\right)>x\right\}=P\left\{X_{1}>x, X_{2}>x, \ldots, X_{n}>x\right\}$

$$
=\prod_{i=1}^{n} P\left\{X_{t}>x\right\}
$$

$$
=\prod_{i=1}^{n} e^{-\lambda_{1} x}
$$

$$
=e^{-\sum_{i-1}^{n_{1} \lambda_{1} x}}
$$

 حل : هون عمر سيستـم مساوى است بـا عمـر مولفهاى كه در بين بقيه اجزاكـمترين عــر را دارد از

$$
\begin{aligned}
P(c X \leq x\} & =P\{X \leq x / c\} \\
& =1-e^{-\lambda x / c} .
\end{aligned}
$$

بارامر λ را شاخص توزيع گويِم •

1. 1 : : رآيند يواسن

 باشد و نه به موتعيت آنها
$\lim _{h \rightarrow 0} \frac{P(N(h)=1\}}{h}=\lambda$
$\lim _{h \rightarrow 0} \frac{P(N(h) \geq 2\}}{h}=0$

 در نظر میییيريم و تعلاد بيشامدها راكه در اين بازه رخ میدهد با Tوردن مقدار 1 ج $P\{N(t)=k\}$ بازة (شكل
الف - N(t) مساوى k باشد و حداكتر يكت بيشامد در هر زيربازه باشد

 شامل 1 بيشامد و $n-k$ تایى ديگر شامل 0 بيشامد باشند داريم :

$+P\left[\begin{array}{l}\text { + } \quad \text { [} N(t)=k]\end{array}\right.$
حالا با استفاده از شرط (ث) مىتوانيم نشان دهيم كه وتتى n

همینين از شرط ت و ثت نتيجه مىشود كه

$P\{0$ a
بنابراين جون تسذاد يشامدها در زيربازههاى ميختلف مستقلند (از مُرط ب) نتيجه مىشود كه

$\approx\binom{n}{k}\left(\frac{\lambda t}{n}\right)^{k}\left(1-\frac{\lambda t}{n}\right)^{n-k}$

$$
P\{N(t)=k\}=e^{-\lambda t} \frac{(\lambda t)^{k}}{k!}
$$

بنابراين نشان داديمك4، ،

حكم ז.Y.Y

در يكك فر آيند بواسن با شاخص
$P\{N(t)=k\}=e^{-\lambda t} \frac{(\lambda t)^{k}}{k!}, \quad k=0,1, \ldots$
 در يـك فر فر آينـد يواسن فر ضر كـيد n> 1

 اكنون توزيع
 $P\left\{X_{1}>t\right\}=P\{N(t)=0\}=e^{-\lambda t}$

لذا XI داراى توزيعنمايى با ميانگين 1/ג است ـ براي بهدست آوردن توزيع XX توجه كيد كه

$$
\begin{aligned}
P\left(X_{2}>t \mid X_{1}=s\right\} & =P\left\{\begin{array}{ll}
0 \text { يششامد }(s, & s+t] \mid X_{1}=s
\end{array}\right) \\
& =P\left\{\begin{array}{ll}
0 & s+t
\end{array}\right\} \\
& =e^{-\lambda t}
\end{aligned}
$$

 استدلالى مشابه نتيجه مىشود كهي ،

حكم ז.7.ז:

Y- توزيع تاما

 آن بهصورت زير باشد

$$
f(x)= \begin{cases}\frac{\lambda e^{-\lambda x}(\lambda x)^{\alpha-1}}{\Gamma(\alpha)} & x \geq 0 \\ 0 & x<0\end{cases}
$$

$$
\begin{aligned}
\Gamma(\alpha) & =\int_{0}^{\infty} \lambda e^{-\lambda x}(\lambda x)^{\alpha-1} d x \\
& =\int_{0}^{\infty} e^{-y} y^{\alpha-1} d y
\end{aligned}
$$

$$
\begin{aligned}
\int_{0}^{\infty} e^{-v} y^{\alpha-1} d y & =-\left.e^{-y} y^{\alpha-1}\right|_{y=0} ^{y-\infty}+\int_{0}^{\infty} e^{-y}(\alpha-1) y^{\alpha-2} d y \\
& =(\alpha-1) \int_{0}^{\infty} e^{-y} y^{\alpha-2} d y
\end{aligned}
$$

$$
\begin{equation*}
\Gamma(\alpha)=(\alpha-1) \Gamma(\alpha-1) \tag{1.Y.r}
\end{equation*}
$$

هنگامى كه a يكث عدد مصيح است مثلا" $\alpha=n$ با تكرار فرموز نون مىتوانيم نشان دهيم كه

$$
\begin{aligned}
& \Gamma(n)=(n-1) \Gamma(n-1) \\
& =(n-1)(n-2) \Gamma(n-2) \\
& =(n-1)(n-2)(n-3) \Gamma(n-3)
\end{aligned}
$$

$$
\begin{aligned}
& =(n-1)!\Gamma(1)
\end{aligned}
$$

$$
\Gamma(1)=\int_{0}^{\infty} e^{-y} d y=1
$$

$$
\Gamma(n)=(n-1)!
$$

بايلد توجه داشت كه وتتى $\alpha=1$ توزيع گاما همان توزيعنـايى با ميانگیين $1 / \lambda$ است .

$$
\begin{align*}
\Psi(t) & =E\left[e^{t x}\right] \\
& =\frac{\lambda^{\alpha}}{\Gamma(\alpha)} \int_{0}^{\infty} e^{t x} e^{-\lambda x} x^{a-1} d x \\
& =\frac{\lambda^{\alpha}}{\Gamma(\alpha)} \int_{0}^{\infty} e^{-(\lambda-t) x} x^{a-1} d x \tag{Y.Y.r}\\
& =\left(\frac{\lambda}{\lambda-t}\right)^{a} \frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} e^{-y^{a-1}} d y \quad[y=(\lambda-t) x] \\
& =\left(\frac{\lambda}{\lambda-t}\right)^{\alpha}
\end{align*}
$$

مشتقگيرى از تساوى Y.Y.Y نتيبه مىدهد كه

$$
\begin{aligned}
& \Psi^{\prime}(t)=\frac{\alpha \lambda^{a}}{(\lambda-t)^{a+1}} \\
& \Psi^{\prime \prime}(t)=\frac{\alpha(\alpha+1) \lambda^{a}}{(\lambda-t)^{a+2}}
\end{aligned}
$$

$$
\begin{aligned}
E[X] & =\Psi^{\prime}(0)=\frac{\alpha}{\lambda} \\
\operatorname{Var}(X) & =E\left[X^{2}\right]-(E[X])^{2} \\
& =\Psi^{\prime \prime}(0)-\left(\frac{\alpha}{\lambda}\right)^{2} \\
& =\frac{\alpha(\alpha+1)}{\lambda^{2}}-\frac{\alpha^{2}}{\lambda^{2}}=\frac{\alpha}{\lambda^{2}}
\end{aligned}
$$

 بهتر تيب دارای بـارامتر هـاى (($\left.\alpha_{1}+\alpha_{2}, \lambda\right)$

$$
\begin{align*}
\Psi_{X_{1}+X_{2}}(t) & =E\left[e^{t\left(X_{1}+X_{2}\right)}\right] \\
& =\Psi_{x_{1}}(t) \Psi_{X_{2}}(t) \tag{o.Y.Y}\\
& =\left(\frac{\lambda}{\lambda-t}\right)^{\alpha_{1}}\left(\frac{\lambda}{\lambda-t}\right)^{\alpha_{2}} \\
& =\left(\frac{\lambda}{\lambda-t}\right)^{\alpha_{1}+\alpha_{2}}
\end{align*}
$$

و اين تابع مولد گشتاور يكت متغيّر تصادفى گَاما با يارامتر هاى (
 مىتوان بهصورت حكم زير تعميم داد :

حكم T.Y.
اگـر آنگاه
 زير رابهدست آوريم:

نتيجــ س. آنزگاه

 ■ . \quad.

و X رابه صورت

$$
X=\sum_{i=1}^{[\alpha]} X_{i}+Y
$$

نتيجه، ميدهد كه وتى α بزرگث ميشود توزيم [$X /[$ تقريباً نرمال است .

人- توزيعهاى حاصل از توزيع نومال
A- ا : توزيع كىدو
تعريف : اگر

$$
\begin{equation*}
X=Z_{1}^{2}+Z_{2}^{2}+\cdots+Z_{n}^{2} \tag{1,A.Y}
\end{equation*}
$$

 دارای توزيع كيدو با n nدرجه آزادي است
 منظور هنگامي كه، 1 = 1 داريم

$$
\begin{align*}
E\left[e^{t X}\right] & =E\left[e^{t Z^{2}}\right] \\
& =\int_{-\infty}^{\infty} e^{t x^{2}} f_{Z}(x) d x \tag{Y.A.F}\\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{r x^{2}} e^{-x^{2} / 2} d x \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-x^{2}(1-2 t) / 2} d x \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-x^{2} / 2 \bar{\sigma}^{2}} d x \quad \sigma \text { א- } \bar{\sigma}^{2}=(1-2 t)^{-1} \\
& =(1-2 t)^{-1 / 2} \frac{1}{\sqrt{2} \pi \bar{\sigma}} \int_{-\infty}^{\infty} e^{-x^{2} / 2 \bar{\sigma}^{2}} d x \\
& =(1-2 t)^{-1 / 2}
\end{align*}
$$

 بنابراين در حالت nدرجه آزادى داريم

$$
\begin{aligned}
E\left[e^{t X}\right] & =E\left[e^{t \Sigma_{i-1}^{m} Z_{i}^{2}}\right] \\
& =E\left[\prod_{i=1}^{n} e^{t Z_{1}^{2}}\right] \\
& =\prod_{i=1}^{n} E\left[e^{t Z_{i}^{2}}\right]
\end{aligned}
$$

از استفلال

$$
=(1-2 t)^{-n / 2}
$$

از طرفى مى ينيم كه
 توزيع يعنى كىدو با n درجه آزادى وگًاما با پارامترهاى n با n و $1 / 2$ يكسانند . بنابراين مى توان نتيجه گُرفت كه تابع چگگالى Xبرابر است با
$f(x)=\frac{\frac{1}{2} e^{-x / 2}\left(\frac{x}{2}\right)^{(n / 2)-1}}{\Gamma\left(\frac{n}{2}\right)} \quad x>0$
توزيع كیدو با I ، ب و • (درجه آزادى به ترتيب در شكل A.Y. ا رسم شدهاند. .

توزيع كىدو دارایى اين خاصيت جمع يذيرى است كه اكگر كىدو بهتر تيب با
 به اين واقعيت كه $n_{1}+n_{2}$ متغتير تصادفى مسـتقل نرمـال امتـاندارد و بنابراين دارای توزيع كىدو با ${ }^{\text {با }}$ درجه آزادى است

هون توزيع كیدوبا nدرجه آزادى با توزيع گَاما با پارامترهاى
 توزيع برابر است با
$E[X]=n, \quad \operatorname{Var}(X)=2 n$
اگگر X يكت متغيّ تصادفى كیدو با nدرجه آزادى باشد آذگاه براى هر $\alpha \in(0,1)$ طورى تعريف مى كنيم كه
$P\left\{X \geq X_{\alpha, n}^{2}\right\}=\alpha$

 هـل مسائل و مثالهاى اين كتاب لازم است (

مثال س. آزادى است. حل : برنامة \%. A. الف را اجراككيد .

RHIG PROGRAN COHPUTEE THE PROBABILITY THAT A CHI-GOUARED RAWDOM VARIABLE WITH M DESREEB OF FREEDOH IS LESS THAN x
ENTER THE DEGREE OF FREEDOM PARAMETER
? 27
ENTER THE DEEIRED WALUE OF x
$? 30$
THE PROBAEILITY IB. 77571 II
Ok

$$
\begin{aligned}
& \text { هثال W.'.ب. }
\end{aligned}
$$

```
RUN , GOR A GIVEN INFUT A, O<AC,S, THIE PROBRAH COMPUTEG THE VALUE
    SUCH THAT THE PROEABILITY THAT A CHI GQLARE RANDDA YARIABLE WITH n DESREES OF
        FREEDOM EXCEEDS Chifq(a,m) 19 EOUAL TO a
ENTER THE DEGREE OF FREEDOM PARAHETER IT
? 15
ENTER THE DESIREO VALUE GF a
3.05
THE VALUE IS 24.99751
OK
```


- - توزيع t-

 n n $T_{n}=\frac{Z}{\sqrt{X / n}}$

دارابى توزيع tبا nدرجه آزادى است . مىتوان نشان داد كه تابع جگالى آن به صورت زير است $f_{r_{n}}(x)=\frac{1}{\sqrt{n \pi}} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)}\left(1+\frac{x^{2}}{n}\right)^{-(n+1) / 2} \quad-\infty<x<\infty$

$\frac{X}{n}=\frac{Z_{1}^{2}+\cdots+Z_{n}^{2}}{n}$
كه در آن

$$
E\left[T_{n}\right]=0, \quad n>1
$$

$\operatorname{Var}\left(T_{n}\right)=\frac{n}{n-2}, \quad n>2$

بنابراين هنگامى كه n به سمت بىنهايت ميل مىكند واريانس نرمال استاندلدارد ميل مى براى α ، $\alpha<1$

$$
P\left\{T_{n} \geq t_{\alpha, n}\right\}=\alpha
$$

از تقارن هگًالى tحون صفر نتيجه مىشود كه T د داراى توزيع يكسان با

$$
\alpha=P\left\{-T_{n} \geq t_{\alpha, n}\right\}
$$

$$
=P\left\{T_{n} \leq-t_{a, n}\right\}
$$

آمار و احتـال مهندسى

$$
=1-P\left\{T_{n} \geq-t_{\alpha, n}\right\}
$$

$P\left\{T_{n} \geq-t_{\alpha, n}\right\}=1-\alpha$
و نهايةُ به اين نتيجه مىدسيم كه و $t_{a, n}$ بيسيكت

$$
\begin{aligned}
& \text { مثال } \\
& \text { حل : برنامئ ץ.^.ץ الف را الجراكنيد }
\end{aligned}
$$

KUN
THIS FROGRAM COMPUTES THE FROBABILITY THAT A $T-R A N D O M ~ / A R I A B L E ~ W I T H ~ N ~ D E G R E E G ~ O F ~$ FREEDGM IS LESS THAN X
ENTER THE DEGREES OF FREEDOM

- 12

ENTER THE VALUE DF X
: 1.4
THE PKOBABILITY IS . 9066057

RUN

FOR A GIVEN INFUT a, O<a<. S, THIS PROGRAM COMPUTEE THE VALUE $t\{A, n\}$ SUCH THAT
THE PROEABILITY THAT A t-RANDOM VARIABLE WITH \cap DEGREEG DF FREEDOM EXCEEDS $t(a, n)$ IS EQUAL 10 a
ENTER THE DEGREES OF FREEDOM FARAMETER n
$\rightarrow 9$
ENTER THE DESIRED VALUE DF a
7.025

THE VALUE IS 2.262517
Ok
ג-٪ توزيع F

اگر تصادفى
$F_{n, m}=\frac{\chi_{n}^{2} / n}{\chi_{m}^{2} / m}$

$f(x)=\frac{\Gamma\left(\frac{n+m}{2}\right) n^{n / 2} m^{m / 2}}{\Gamma\left(\frac{n}{2}\right) \Gamma\left(\frac{m}{2}\right)} \frac{x^{(n-2) / 2}}{(m+n x)^{(n+m) / 2}}, \quad x>0$
نمودارى از اين توزيع در شكل ب.^. \uparrow نشان داده شده است :

اميل رياضى ر واريانس .

$$
E\left[F_{n, m}\right]=\frac{m}{m-2} \quad \text { براى } m>2
$$

$$
\operatorname{Var}\left[F_{n, m}\right]=\frac{m^{2}(2 m+2 n-4)}{n(m-2)^{2}(m-4)} \quad \text {. } \quad m>4
$$

به أزاي هر

$$
P\left\{F_{n, m}>F_{a, n, m}\right\}=\alpha
$$

شكل r.^.v را بينيد

 شده است اگكر مقدار $\alpha=P\left\{\frac{\chi_{n}^{2} / n}{\chi_{m}^{2} / m}>F_{\alpha, n, m}\right\}$ بهدست آورد
$=P\left\{\frac{\chi_{m}^{2} / m}{\chi_{n}^{2} / n}<\frac{1}{F_{\alpha, n, m}}\right\}$
$=1-P\left\{\frac{\chi_{m / 2}^{2} / m}{\chi_{n}^{2} / n} \geq \frac{1}{F_{a, n, m}}\right\}$
يا معادل آن

$$
\begin{equation*}
P\left\{\frac{\chi_{m}^{2} / m}{\chi_{n}^{2} / n} \geq \frac{1}{F_{\alpha, n, m}}\right\}=1-\alpha \tag{Y.A.Y}
\end{equation*}
$$

امّا حون

$$
1-\alpha=P\left\{\frac{\chi_{m}^{2} / m}{\chi_{n}^{2} / n} \geq F_{1-a, m, n}\right\}
$$

و با تو جه به معادلة Y. Y. Y داريم

$$
\frac{1}{f_{a, n, m}}=F_{1-a, m, n}
$$

$$
F_{.9,5,7}=1 / F_{.1,7,3}=1 / 3.37=.2967
$$

حل : بر نامه ب.^.r الفـ را اجراكنيد

RUN

THIS PRDGRAM COMPUTES THE PROBABILITY THAT AN F RANDOM VARIABLE WITH DEGREEE OF FREEDOM N AND M IS LEGE THAN X
EMTER THE FIRGT DEGREE OF FREEDOM PARANETER
? 6
ENTER THE SECOND DEGREE OF FREEDOM ARAMETER
? 14
ENTER THE DESIRED VALUE OF X
? 1.5
THE PROBABILITY IS -751R277

مسالل

 اتَ بر حصب آزمايش خام تا تاز

 $P\{X<17\}$ الفـ)
$P\{13 \leq X \leq 17\}$

آمار ر استمال مهندسى

$$
P\{90 \leq X \leq 100\}
$$

$P\{X>105\}$
 باشند تساويهای زير را تحقيت و تفسير كنيد
$P\{X \leq i\}=P\{Y \geq n-i\}$
الف)
$P\{X=k\}=P\{Y=n-k\}$
(ب)
 دهيدكه
$P\{X=k+1\}=\frac{p}{1-p} \frac{n-k}{k+1} P\{X=k\}, k=0,1, \ldots, n-1$.

 (n+1)p

- . واريانس X Xاكه در متن درس بهدست آورديم تيداكنيد .
11 - 11
$p=.1, n=10$ وتقى $P\{X=2\}$
$p=.1, n=10$ وتقى $P\{X=0\}$
$p=.2, n=9$ وتئى $P\{X=4\}$
(?
- IY Y ا ا
 دتيةا يكى ج) حداتزل دو تا برنده شود ؟
- ا هارامتر
 مىدهد . برايى ها

برسد جقدر احتسال دارد كه دارو برايش مفيد بوده باشد ؟ If ماه است؛

 دتيق احتمال بيش از

 مستيع كوجكتح يا مساوى גباشد . اتر X IV
$P\{X>575\}$
(الف)
$P\{590 \leq x \leq 610\}$
- 1^ فرض كنيـد $1 \wedge$

 - 19

 $P(X=i)=\frac{\binom{n}{i}\binom{m}{k-i}}{\binom{n+m}{k}}, \quad i=0,1, \ldots, \min (k, n)$

 ب) با تكرار قسمت الف برنامهالى براى مصحاسبه تابع توزيع نوق متدسى بنويسيد .
 . مساسبه كتبد

 هندسى مىنامند 4 مطلوبـ است
$k=1,2, \ldots \quad{ }_{6} P\{X=k\}$
الما
$E[X]$
غ را متغير تصادفى دو جملهاى منفى مىتامند \ddagger مطلوب اس
$k=r, r+1 \quad$ ($1 \quad$ ($P\{Y=k\} \quad$ (
 برآمد Tزمايش kأم بايد هه باشد ت) نشان دميدكه
$E[y]=\frac{r}{p}$

 بازه (a,b) بطور يكتواخت توزيع مى شود
- - Y
 دارد كه زمانى بيش از 1 ا دتيقه منتظر اتوبوس باشيد

$$
\begin{array}{ll}
P\{4<X<16\} \\
P\{X<20\} & \text { (ب) } P\{X>5\} \\
& \text { (ت) } P\{X<8\} \\
& P(X>16\}
\end{array}
$$

 ,

 معيار Aه ساعت است . يكثكران بايين مشـخص ؛ كه در آن X كاركرد يكث لامبي است

 $I=\int_{-\infty}^{\infty} e^{-x^{2} / 2} d x$ Y
الغ) نشان دميدكا برای هر
$\frac{1}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{\infty} e^{-(x-\mu)^{2} / 2 \sigma^{2}} d x=1$

$$
I=\sqrt{2 \pi} \text { معادل است با اين كه }
$$

ب) نشان دميدكى $I=\sqrt{2}$ بد
$I^{2}=\int_{-\infty}^{\infty} e^{-x^{2} / 2} d x \int_{-\infty}^{\infty} e^{-y^{2} / 2} d y=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\left(x^{2}+y^{2}\right) / 2} d x d y$

. $d x d y=r d r d \theta g y=\pi \sin \theta \iota x=r \cos \theta$
 Var $(\log X)=\sigma^{2}, E[\log X]=\mu$ تابع توزيع X را تعين كنـيـد . X يعنى $P\{X \leq x\}$ جقدر است

 Y Y Y باشيد كه طول عمرشان كمتر از ج

 تقريب نرمال بدون تصسِع يورستگى . - - TF
 با . .

 برایى آنكه تصسيع يوستگیى را مورد الستفاده ترار دهيد احتمال مـطلوب را با بـه صورت

$$
\text { . } P\{X<10.5\}
$$

 تجاوز كرده است جقدر میا

خراب شدن كار مىكند يك متغير تمادفىنمايى با بارامتر

 يكنواخت روى فاصله (0, (0) است . در اين صورت احتمال بطلوب در قـست اوّل هقدر است
 $S_{n}=\sum_{i=1}^{n} X_{i}$.
الف) هه تعيرى برایى
ب) استدلال كنيدكه دو يسنامد
ب) از تـستدت (ب) استفاده كرده و نشان دهيدكه

$$
P\left\{S_{n} \leq t\right\}=1-\sum_{i=0}^{n-1} e^{-\lambda t}(\lambda t)^{\prime} / j!
$$

ت) با مشتق گيرى از تابع توزيع
 (الF|

 ".

- - FY

 باشد اتر X XF

آمار و احتـال مهندسى

$P\{X \leq 6\}$

$P\{3 \leq X \leq 9\}$

الف)
ب1

- P P احتمالل اينكه

$$
\Gamma(1 / 2)=\sqrt{\pi}
$$

نشان دهيدكه - FB

$$
P\{-1<T<1\} \text { وبـ }
$$

 درجهة آزادى است.

- PA نرمال امتانلارد ميل مىكند هوگاه درجهة آزادى nبزرگث شود ـ اكنون اين مـطلب را بـطور تحليلى با استفاده از اين واتعيسث كه

$$
\lim _{n \rightarrow \infty}\left(1+\frac{y}{n}\right)^{n}=e^{y} \quad y \text { برای }
$$

نشان دهيل

$$
f_{T_{n}}(x)=C_{n}\left(1+\frac{x^{2}}{n}\right)^{-(n+1) / 2}
$$

كه در T

$$
f_{\tau_{n}}(x)=\frac{C_{n}\left(1+\frac{x^{2}}{n}\right)^{-1 / 2}}{\left(1+\frac{x^{2} / 2}{n / 2}\right)^{n / 2}}
$$

اكتون وتنى

$$
f_{T_{n}}(x) \rightarrow c e^{-x^{2} / 2}
$$

 ات ات

$$
\begin{gathered}
P\left\{F_{2,4}>3\right\} \\
P\left\{F_{3,6}>6\right\} \\
P\left\{F_{4,5}<8\right\}
\end{gathered}
$$

الف)
ب)
ب)

- هـ - نشان دهيد كه

$$
\lim _{m \rightarrow \infty} F_{a, n, m}=\frac{\chi_{a, n}^{2}}{n}
$$

(2)

نمونهكيرى

1- مقدمه
علم Tمار با استخراج نتايج از دادهماى ششاهده شده سر و كار دارد ـ برايى مثال در يكن مطالعه

 به منظور استفاده از اطلاعاعات نمونه برايى استنباط در مورد

 در جامعه ، متغيّرهاى تصادفى مستقلى از اين توزيع هـتستد .

تعر يف : اگر

 شكل F نمىشود ، مسايل استنباط نإيارامترى مىنامند .

مثال ب.1.الف - فرض كنيد يكك فرآيند جديد برای توليد جيهاى كاميوترى مورد بهرهبردارى قرار

 ■. استنباط نابارامترى است

Y - اندازههاىترايش مركزى

فوض كنيد نتايجى در مورد Fاست و غالباً سعى میكنيم در مـورد خـوا

$\mu=E[X]=\left\{\begin{array}{l}\sum x_{i} P\left\{X=x_{i}\right\} \\ \int x f(x) d x\end{array}\right.$
F

F F F

ميانگين يكت مثياس گرايش مركزى مفيد است زيرا متوسط مـوزون مقـادير مــكن مـتنيّر تعـادفى
 اينكه متغير تعادفى آن مقدار را بتيرد .

 باشيم كه X مساوى c است آنگاه توان دوم خطط متوسط توان دوم خطا هنگامى مىنيمم میمُود كه Xمساوى بر باشد بدين منظور به ازاي شر مـقدار ثابت عداريم

$$
\begin{aligned}
E\left[(X-c)^{2}\right] & =E\left[(X-\mu+\mu-c)^{2}\right] \\
& =E\left[(X-\mu)^{2}+2(\mu-c)(X-\mu)+(\mu-c)^{2}\right] \\
& =E\left[(X-\mu)^{2}\right]+2(\mu-c) E[X-\mu]+(\mu-c)^{2} \\
& =E\left[(X-\mu)^{2}\right]+(\mu-c)^{2} \quad E[X-\mu]=E[X]-\mu=0 \quad ; \quad \\
& \geq E\left[(X-\mu)^{2}\right]
\end{aligned}
$$

بنابراين برحسب مىنيمم ميانگين توان دوم خطا بهترين مقدار يشنيينم شده برای يكك متغير تهادفى ميانگين آن است .

لعريغ :كحيتى راكه تها به نمونه بستگى داشته باشد و نه بارامتر مجهول ديگـر از جـامعه ، Tا Tماره مىناميم
بنابراين هنگامى كه نمونه بهدست مى Tيد يكث Tامارو كاملا" تعين مىشود.
تعرين : Tماره

$$
\bar{X}=\frac{X_{1}+\cdots+X_{n}}{n}
$$

تعريف مىشود ميانگِين نمونه مىناميمَ .
بايد تو جه داشت كه ميانگیين نمونه كه همان ميانگین حسابى مقادير نمونه است ، يكث متغير تصادفى مىباشد و ميانگین و واريانس آن به صورت زير بهدست مى آيد .
$E[\bar{X}]=E\left[\frac{X_{1}+\cdots+X_{n}}{n}\right]$

$$
\begin{aligned}
& =\frac{1}{n}\left(E\left[X_{1}\right]+\cdots+E\left[X_{n}\right]\right) \\
& =\mu
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Var}(\bar{X}) & =\operatorname{Var}\left(\frac{X_{1}+\cdots+X_{n}}{n}\right) \\
& =\frac{1}{n^{2}}\left[\operatorname{Var}\left(X_{1}\right)+\cdots+\operatorname{Var}\left(X_{n}\right)\right] \\
& =\frac{n \sigma^{2}}{n^{2}} \\
& =\frac{\sigma^{2}}{n}
\end{aligned}
$$

 از ديگ, مقايسهاى گرايش مركزى توزيع ميانه آن است : تعريف : برای يك توزيع دلهواه FFويمب ، m ميانه توزيع است اگر
$P\{X \leq m\} \geq \frac{1}{2} \quad, \quad P\{X \geq m\} \geq \frac{1}{2}$

$$
\text { كه در آن } X \approx
$$

پس در حالتى كه تابع توزيع F يوسته است ميانهٔ m يكك مقدار منحصر به فرد است به قسمى كه احتمالْ مساوى است كه بزرگتر ياكوجهكر از m باشدل .

ميانه مشابه با ميانگين هنگامى مهم است كه بخواهيم مقدار متغيرّ تصادفى فرض كنيم مى خواهيم c را بععنوان يك مقدار بيشبينى برايى X Wورى اختيار كنيم كى مفدار متوسط

 بايد ثابت كنيم كه وتتى $E[|X-c|] ، X \approx F$ هنگامى كه $c \mid$ مساوى ميانه F ، يعنى برابر با
mاست مىنيمـ مىشود برای اثبات فرض كنيد F يكت توزيع بيوسته است كه هيگالى آن fمىباشد (يعنى اينمورت

$$
\begin{aligned}
E[|X-c|] & =\int_{-\infty}^{\infty}|x-c| f(x) d x \\
& =\int_{-\infty}^{c}|x-c| f(x) d x+\int_{c}^{\infty}|x-c| f(x) d x \\
& =\int_{-\infty}^{c}(c-x) f(x) d x+\int_{c}^{\infty}(x-c) f(x) d x \\
& =c F(c)-\int_{-\infty}^{c} x f(x) d x+\int_{c}^{\infty} x f(x) d x-c[1-F(c)]
\end{aligned}
$$

با مشتقگيرى بهدست مى 'وريم

$$
\begin{aligned}
\frac{d}{d c} E[|X-c|] & =F(c)+c f(c)-c f(c)-c f(c)-1+F(c)+c f(c) \\
& =2 F(c)-1
\end{aligned}
$$

بنابراين مقدار مىنيمـم هنگامى بهدست مى آيد كه

$$
2 F(c)-1=0
$$

$$
F(c)=\frac{1}{2}
$$

يعنى مقدار مىنيمـم هنگامى بهدست مى Tيد كه c مساوى با ميانه F باشد ـ (براى ديدن اين كه اين مقدار $\left.\left(d^{2} / d c^{2}\right) E[|X-c|]=2 f(c) \geq 0\right)$ مىنيمـ است بايد توجه داشتـ كه مثال ب.Y.الف - تابع توزيع

$$
F(x)=1-e^{-x^{2}}, \quad 0<x<\infty
$$

 تقريب خوبى براى توزيع طول عمر شى، فراهم مىكيكند ． ميانه ، m، توزيع وايبل ، به مورت زير مـر مـاسبه میشود

$$
1 / 2=F(m)=1-e^{-m^{2}}
$$

$$
e^{-m^{2}}=\frac{1}{2}
$$

$$
-m^{2}=\log \left(\frac{1}{2}\right)
$$

$$
m^{2}=\log 2
$$

$$
m=\sqrt{\log 2} \approx .83255
$$

＊－شكلىيرى تابع تونيع واييل به صورت نير است
$F(x)=1-e^{-a x^{A}} \quad 0<x<\infty$
～の日ーn

0<p<1

$$
F\left(\zeta_{p}\right)=p
$$

صدكهاى اگرتابع جگالى ازمساحت بين

مثال Y.Y.ب - توزيعنمايى رابا تابع דگگالى زير در نظر بگيريد

$$
f(x)= \begin{cases}2 e^{-2 x} & x>0 \\ 0 & x<0\end{cases}
$$

هون ثابع توزيع به صورت

$$
F(y)=\int_{0}^{y} f(x) d x=1-e^{-2 y} \quad y>0
$$

است . مىتوانيم جاركها را به صورت زير مساسبه كيم

$$
p=F\left(\zeta_{p}\right)=1-e^{-2 \zeta_{p}}
$$

$$
\begin{gathered}
e^{-2 \zeta_{p}}=1-p \\
-2 \zeta_{p}=\log (1-p) \\
\zeta_{p}=\frac{-\log (1-p)}{2}
\end{gathered}
$$

$$
\zeta_{1 / 4}=\frac{-\log (3 / 4)}{2}=\frac{\log (4 / 3)}{2} \approx .1438
$$

بنابراين هاركها عبارتند از

$$
\zeta_{1 / 2}=\frac{-\log (1 / 2)}{2}=\frac{\log 2}{2} \approx 3466
$$

$$
\zeta_{3 / 4}=\frac{-\log (1 / 4)}{2}=\frac{\log 4}{2} \approx .6931
$$

هاركهای توزيع روى نمودار تابع چجگالى كه در شكل Y.Y.F نمايش داده شده مشخصر شدهانل .

 نمو نهاى تصادفى از توزيع Fباشد و فزض كنيد $X_{1}, X_{2}, \ldots, X_{n}$
$X_{(1)}=X_{1}, \ldots X_{n}$ كو جكترين مقد
$X_{(2)}=X_{1}, \ldots, X_{n} \quad$ دومن مقدأر از لـحاظ كو جكى در بين
$X_{(i)}=X_{1}, \ldots, X_{n}$ امين مقدار از لهـاظ كر هجكى در بين
$X_{(n)}=X_{1}, \ldots, X_{n} \quad$ بزرگترين مقدار

تعريف : مقادير مرتّب شذه اتگر

 مرتب شلهه ميانه است .
ميانه نصونه يكك برآرردكتندةٌ منطقى برایى ميانه جامعه است . سومين اندازهترايش مركزى توزيع F، نما است :

$$
P(a)=\max _{x} P(x)
$$

$P(x)=\left\{\begin{array}{l}P\{X=x\} \\ f(x)\end{array}\right.$
FF
ييوسته باشد با تابع هچگالىى F

شیگالى آن در شكل Y.Y.F

 . بينيـد)

تعريف : اتر
فراوانى است نماكى نمو نه مينامند .

「-

تعريف : Tارارة

$$
S^{2}=\sum_{i=1}^{n} \frac{\left(X_{i}-\bar{X}\right)^{2}}{n-1}
$$

تعريف مىشود و در ان
نونه مى نامند .
يكى فرمول معاسباتى مفيد برایى

$$
\begin{align*}
(n-1) S^{2} & =\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} \tag{1.5.8}\\
& =\sum_{i=1}^{n}\left(X_{i}^{2}-2 X_{i} \bar{X}+\bar{X}^{2}\right) \\
& =\sum_{i=1}^{n} X_{i}^{2}-2 \bar{X} \sum_{i=1}^{n} X_{i}+\sum_{i=1}^{n} \bar{X}^{2} \\
& =\sum_{i=1}^{n} X_{i}^{2}-2 \bar{X}(n \bar{X})+n \bar{X}^{2} \\
& =\sum_{i=1}^{n} X_{i}^{2}-n \bar{X}^{2}
\end{align*}
$$

اگگ, واريانس توزيع F (كه گامه اوقات به آن وايانس جالمعه میگويند)

$$
\begin{align*}
E\left[(n-1) S^{2}\right] & =E\left[\sum_{i=1}^{n} X_{i}^{2}\right]-n E\left[\bar{X}^{2}\right] \tag{Y,Y,F}\\
& =n E\left[X_{1}^{2}\right]-n E\left[\bar{X}^{2}\right]
\end{align*}
$$

$$
\text { هـجنان كه در بخش Y ديديم با } E \text { داريم }
$$

$$
\begin{aligned}
E[\bar{X}] & =\mu \\
\operatorname{Var}(\bar{X}) & =\sigma^{2} / n
\end{aligned}
$$

معادل با T ان $E U^{2}=\operatorname{Var}(U)+(E U)^{2}$
$E\left[\bar{X}^{2}\right]=\frac{\sigma^{2}}{n}+\mu^{2}$

بنابراين هون

$$
\begin{aligned}
E\left[(n-1) S^{2}\right]= & n\left(\mu^{2}+\sigma^{2}\right)-n\left(\frac{\sigma^{2}}{n}+\mu^{2}\right) \\
& =(n-1) \sigma^{2} \\
& E\left[S^{2}\right]=\sigma^{2}
\end{aligned}
$$

تعريف: اگر
كه به صورت
$R=X_{(n)}-X_{(1)}$
تعريف مىكتيم دامنd نمونه مىناميم .

اطلاعاتى در مورد يراكندگّ، توزيع F|راراته مىدهند .

٪. أ - محاسبهُ واريانس نمونه

 نياز داريم •
در صورت داشتن كاميو تر يكث روش مستقيم محاسبه اين است كه ابتدا سيس جیع عبارات
 ［يكت بار برایى مساسبه \bar{X} و آنگاه بجع زدن عبارات رابطة بازگثتتى است كه اكنون آنرا بررسى مییكنيم براي شروع فز
$\bar{X}_{j}=\frac{\sum_{i-1}^{j} X_{i}}{j} \quad j \geq 1$
$S_{j}^{2}=\frac{\sum_{i-1}^{\prime}\left(X_{i}-\bar{X}_{j}\right)^{2}}{j-1} \quad j \geq 2$
يعنى

حكم 1．7．4

$$
\begin{align*}
& \bar{X}_{1+1}=\bar{X}_{j}+\frac{X_{j+1}-\bar{X}_{j}}{j+1} \\
& S_{1+1}^{2}=\left(1-\frac{1}{j}\right) S_{j}^{2}+(j+1)\left(\bar{X}_{j+1}-\bar{X}_{j}\right)^{2} \tag{甲.Y.甲}
\end{align*}
$$

البات ：تحقيق معادلة Y．Y．Fr كه معادل است با
$X_{j+1}-\bar{X}_{j}=(j+1)\left(\bar{X}_{j+1}-\bar{X}_{j}\right)$
كاملا＂سر راست است و آن را به عنوإن تمرين به خخو النده واتگذار مىكيمم ． براى اثبات رابطه F．F．F F．Fوجه كنيد كه ：

$$
j S_{i+1}^{2}=\sum_{i=1}^{j+1}\left(X_{i}-\bar{X}_{j+1}\right)^{2}
$$

$$
\begin{align*}
& =\sum_{i=1}^{j+1}\left[\left(X_{i}-\bar{X}_{j}\right)+\left(\bar{X}_{j}-\bar{X}_{j+1}\right)\right]^{2} \tag{7.r.f}\\
& =\sum_{i=1}^{j+1}\left(X_{i}-\bar{X}_{j}\right)^{2}+\sum_{i=1}^{j+1}\left(\bar{X}_{j}-\bar{X}_{j+1}\right)^{2} \\
& +2 \sum_{i=1}^{j+1}\left(X_{i}-\bar{X}_{j}\right)\left(\bar{X}_{j}-\bar{X}_{j+1}\right) \\
& \text { اككنون } \\
& \sum_{i=1}^{1+1}\left(X_{i}-\bar{X}_{j}\right)^{2}=\sum_{i=1}^{j}\left(X_{i}-\bar{X}_{j}\right)^{2}+\left(X_{j+1}-\bar{X}_{j}\right)^{2} \\
& =(j-1) S_{j}^{2}+\left(X_{j+1}-\bar{X}_{j}\right)^{2} \\
& =(j-1) S_{j}^{2}+(j+1)^{2}\left(\bar{X}_{j+1}-\bar{X}_{j}\right)^{2} \\
& \sum_{i=1}^{1+1}\left(\bar{X}_{j}-\bar{X}_{j+1}\right)^{2}=(j+1)\left(\bar{X}_{j}-\bar{X}_{j+1}\right)^{2} \\
& \sum_{i=1}^{j+1}\left(X_{i}-\bar{X}_{j}\right)\left(\bar{X}_{j}-\bar{X}_{i+1}\right)=\left(\bar{X}_{j}-\bar{X}_{j+1}\right) \sum_{i=1}^{j+1}\left(X_{i}-\bar{X}_{j}\right) \\
& =\left(\bar{X}_{j}-\bar{X}_{j+1}\right)\left[\sum_{i=1}^{j}\left(X_{i}-\bar{X}_{j}\right)+X_{j+1}-\bar{X}_{j}\right] \\
& =\left(\bar{X}_{j}-\bar{X}_{i+1}\right)\left[\sum_{i=1}^{j} X_{i}-j \bar{X}_{j}+X_{j+1}-\bar{X}_{j}\right] \\
& =\left(\bar{X}_{j}-\bar{X}_{j+1}\right)\left(X_{j+1}-\bar{X}_{j}\right) \\
& \sum_{i=1}^{j} X_{i}-j \bar{X}_{j}=0
\end{align*}
$$

$$
\begin{aligned}
& =-(j+1)\left(\bar{X}_{j}-\bar{X}_{j+1}\right)^{2}
\end{aligned}
$$

$j S_{j+1}^{2}=(j-1) S_{j}^{2}+\left[(j+1)^{2}+j+1-2(j+1)\right]\left(\bar{X}_{j}-\bar{X}_{j+1}\right)^{2} \quad$ j $^{\top}$ Ta

$$
j S_{j+1}^{2}=(j-1) S_{j}^{2}+(j+1) j\left(\bar{X}_{j}-\bar{X}_{j+1}\right)^{2}
$$

 معادلات بازگشتى و. $\overline{\text { F. }}$. $\bar{X}_{l}=X_{l}$

مثال
$\bar{X}_{1}=X_{1}=s$
$\bar{X}_{2}=\bar{X}_{1}+\frac{X_{2}-\bar{X}_{1}}{2}=5+\frac{9}{2}=\frac{19}{2}$
$S_{2}^{2}=\left(1-\frac{1}{1}\right) S_{1}^{2}+2\left(\bar{X}_{2}-\bar{X}_{1}\right)^{2}=\frac{81}{2}$
$\dot{X}_{3}^{\prime}=\bar{X}_{2}+\frac{X_{3}-\bar{X}_{2}}{3}=\frac{19}{2}+\frac{9-19 / 2}{3}=\frac{28}{3}$
$S_{3}^{2}=\left(1-\frac{1}{2}\right) S_{2}^{2}+3\left(\bar{X}_{3}-\bar{X}_{2}\right)^{2}=\frac{61}{3}$
$\bar{X}=\bar{X}_{4}=\bar{X}_{3}+\frac{X_{4}-\bar{X}_{3}}{4}=\frac{28}{3}+\frac{6-\frac{28}{3}}{4}=\frac{17}{2}$
$S^{2}=S_{4}^{2}=\left(1-\frac{1}{3}\right) S_{3}^{2}+4\left(\bar{X}_{4}-\bar{X}_{3}\right)^{2}=\frac{49}{3}$
 نصونه استفاده مىكنند .
 .147, 154, 158, 175, 139, 130, 157, .63, 166, 174, 169
حل : برنامه P - ب را اجراكنيد
 ATION OF G DATA SET
ENTER: THE DATA VALLUES DNE iAl A TIML
ERIEF: THE DHTA VARLUES IVNE itl A TIME
-147
-154

- 159
$\therefore 175$
- 139
- 170

157
$\Rightarrow 10$.
-100
$\therefore 174$

Y- توابع توزيع تجربي ، هيستوكرام و نمودارههاى ساته و برك

فرض كنيد علكقَ منديم از دادهها برايى بر آورد F استفاده كنيم • هون
$F(x)=P\left\{X_{i} \leq x\right\}$
يكب بر Tورد منطقى براى F(x) عبارت است از نسبت X هايى در نمونه كه كتتر يا مساوى Xهستند .
تثريف : تابع (x)
$F_{n}(x)=\frac{\text { تع i } i: X_{i} \leq x}{n}$
تابع كوزبع لهربى مى
 Tاگڭاه نمودار تابع توزيع تجربهى به صورت زير است.

بايد توجه داشت كه به ازاى هر x x (x)
$n F_{n}(x)=$ Loi i $i: X_{i} \leq x$
تعداد i هايى كی

يكت متغيّر تصادفى دوجملهاى با پارامترهاى n و F(x) است . زيرا هريكت از ها ها را بطور مستقل با احتمال

$$
E\left[n F_{n}(x)\right]=n F(x)
$$

$$
E\left[F_{n}(x)\right]=F(x)
$$

هنگامى كه F يكت توزيم گسسته معلوم است ـ مثلاً جرم را به اعلاد مصسيع نامنفى نسبت مسىدهد غالباً تابع جرم احتمال Tان را با (j) نمايش مىدهيهم و به صورت زير تعريف مىشود

$$
p_{n}(j)=\frac{\text { Li i } i \text { تعدا } i: X_{i}=j}{n}
$$

يعنى (j) مى میامند

مثال f.f.4.4 - برای دادههاى مثال F.F.الف هيستوگرام به صورت زير است :

 شكل Y.P.F نمايش داده مشده است .

طبقه	زراوانى
501-600	2
601-700	5
701-800	12
801-900	25
901-1000	58
1001-1100	41
1101-1200	43
1201-1300	7
1301-1400	6
1401-1500	1

تكـل

$E\left[p_{\pi}(j)\right]=P(X=j\}$
روش ديگرى از نهايش نمودارى دادهها ، مشابه با هسيتوگرام اما با استفادة بيشترى از تمـام

مثال

92	91	72	56	81
74	67	75	62	77
68	66	74	68	72
81	69	88	80	62
86	70	58	78	59
75	71	57	65	94
66	90	83	81	83
54	87	69	76	81

ساته	بركها
9	0,1,2,4
8	0, 1, 1, 1, 1, 3, 3, 6, 7, 8
7	0, 1, 2, 2, 4, 4, 5, 5, 6, 7, 8
6	2, 2, 5, 6, 6, 7, 8, 8, 9, 9
5	4,6,7,8,9

 مشخص مىكند .
 گَروهها را نيز نثان مىدهد .

ه- توزيعهاى نمونهاى از جامعه نرمال

 يكديگر مستقلند و $\bar{X}=\sum_{i=1}^{n} X_{i} / n$
$S^{2}=\frac{\sum_{i-1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n-1}$
به ترتيب نشاندهندءٔ ميانگين و واريانس نمونه باشند . مى

ه. أ توزيع ميانكين نمونه

جون مجـوع متغيّر هاى تصادنى مستقل نرمال داراى توزيع نرمال است (بختش ها از نمل بَ را بيينيد) بس
$E[\bar{X}]=\sum_{i=1}^{n} \frac{E\left[X_{i}\right]}{n}=\mu$
و واريانس
$\operatorname{Var}(\bar{X})=\frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{Var}\left(X_{t}\right)=\sigma^{2} / n$
يعنى ، كتتر از واريانس جامعه . درنتيجه $\sqrt{n} \frac{(\bar{X}-\mu)}{\sigma} \sim \mathcal{N}(0,1)$

 . داراى توزيع كىدو با (1) (n-1) S^{2} / σ^{2}
 Tنگگاه براى هر ثابت μ داريم

$$
\begin{align*}
\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2} & =\sum_{i=1}^{n}\left(x_{i}-\bar{x}+\bar{x}-\mu\right)^{2} \\
& =\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}+2 \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)(\bar{x}-\mu)+\sum_{i=1}^{n}(\bar{x}-\mu)^{2} \\
& =\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}+2(\bar{x}-\mu) \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)+n(\bar{x}-\mu)^{2} \\
& =\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}+n(\bar{x}-\mu)^{2}
\end{align*}
$$

كه در آن تساوى آخر با استفاده از اين واقيتكه

$$
\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)=\sum_{i=1}^{n} x_{i}-n \bar{x}=0
$$

> نتيجه مىىود .

اكنون فرض كنيل

$$
\text { واريانس }{ }^{2} \text { باشد از تساوى D.F. I. بهدست مى آوريم }
$$

$$
\frac{\sum_{i-1}^{n}\left(X_{i}-\mu\right)^{2}}{\sigma^{2}}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{\sigma^{2}}+\frac{n(\bar{X}-\mu)^{2}}{\sigma^{2}}
$$

يا معادل T
$\sum_{i=1}^{n}\left(\frac{X_{i}-\mu}{\sigma}\right)^{2}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{\sigma^{2}}+\left[\frac{\sqrt{n}(\bar{X}-\mu)}{\sigma}\right]^{2}$

 با مجموع دو متغيّر تصادفى كه يكى از Tنها متغيّر تصادفى كـي
 درجات Tزادى هر يكي از دو متغيرّ است . بنابراين به نظر مىرسد
 با 1 - 1 درجه آزادى است . جون در واتع مىتوان اين نتيجه را اثبات كرد نتيجهُ اساسى زير را داريم :
1.4. 1.4 تضي

اگگ, تصادفى مستقلند و

$$
\text { كىدو با } 1 \text { - nدرجه Tزادى است }
$$

 از يكديگ, مستقلند ثابت مىكند . در واتع اثبات اينكه منحصر به فرد از توزيع نرمال است و اهميت آن در بـخشهاي بعل معلوم مىشود . مثال Y. هالفـ - زمانى راكه يكث فر آيند مركزى واحد برای تعام كردن نوع معينى كار نياز دارد دارايى
 كارهايي مشاهله شود چچقدر احتمال دارد كه واريانس نمونه از Y Y تجاوزكند .

$$
\begin{aligned}
& P\left\{S^{2}>12\right\}=P\left\{\frac{14 S^{2}}{9}>\frac{14}{9} \cdot 12\right\} \\
& =P\left(\chi_{14}^{2}>18.67\right\} \\
& =1-.8221 \\
& =.1779
\end{aligned}
$$

 واكگذار میكنيم
 نثماندهندةً ميانگين نمونه و Sانحران معيار نمونه باشد آنگًاه $\sqrt{n} \frac{(\bar{X}-\mu)}{S} \sim t_{n-1}$

"- نمونهيّيرى يكت مجموعهُ متناهى
مجهوعهاى شامل n شىه را در نظر بگیيريد كه هريكت داراى صفتى قَابل اندازهگيرى است ، و فرض كنيد اين است كه مجموعةٌ مقادير بتصادن انتشاب مىیشود در مورد اين مجموعه نتايجى بهدست آوريم

تعريف : أتشخاب يكت زيرمجهوعه به حجم nاز مجموعهاى بزرگتر به حهجم N را يكت نمونة تصادفى ناميم اگر هريكى از اگر فرض كنيم كه انتخاب بطور متوالم صورت مىيگيرد آنگاه يكى نمونهُ تصادنى خواهيم
 انتخاب شدن داشته باشند كميتى كه داراى امميت مىباشد ميانگين N مقدار يعنى منطقى برای بر Tورد

مجموع مقادير اين nشىם را تعيين كنيم و T/n را به عنوان بر آوردكنندة

 بگيريم آذكاه . برایى برآورد

俍 $i=1,2, \ldots, n$ مى $I_{i}= \begin{cases}1 \\ 0\end{cases}$ در غير اين صورت
اكنون Tرا مى توان به صورت زير نمايش داد

$$
\tau=\sum_{i=1}^{N} v_{i} I_{i}
$$

$$
E[T]=\sum_{i=1}^{N} v_{i} E\left[I_{i}\right]
$$

$$
\operatorname{Var}(T)=\sum_{i=1}^{N} \operatorname{Var}\left(v_{i} I_{i}\right)+2 \sum_{i<j} \operatorname{Cov}\left(v_{i} I_{i}, v_{j} I_{j}\right)
$$

$$
\begin{equation*}
=\sum_{i=1}^{N} v_{i}^{2} \operatorname{Var}\left(I_{i}\right)+2 \sum_{i<j} \sum_{i} v_{j} \operatorname{Cov}\left(I_{i}, I_{j}\right) \tag{Y.1.F}
\end{equation*}
$$

جون شىء |ست با

$$
E\left[I_{i}\right]=\frac{n}{N}
$$

بنابراين از تساوى 甲.7.1 داريم

$$
E[T]=\frac{n}{N} \sum_{i=1}^{N} v_{i}
$$

$E[T / n]=\sum_{i=1}^{N} \frac{v_{i}}{N}=\bar{v}$
 مىشودكه

$$
\operatorname{Var}\left(I_{i}\right)=\frac{n}{N}\left(1-\frac{n}{N}\right)
$$

و خون هر دو شىء íام و زام در نهونه باشند

$$
I_{i} I_{i}=\left\{\begin{array}{l}
1 \\
0
\end{array}\right.
$$

$$
\begin{aligned}
& =\frac{n}{N} \frac{n-1}{N-1}
\end{aligned}
$$

$$
\begin{align*}
\operatorname{Cov}\left(I_{i}, I_{j}\right) & =E\left[I_{i} I_{j}\right]-E\left[I_{i}\right] E\left[I_{j}\right] \\
& =\frac{n(n-1)}{N(N-1)}-\left(\frac{n}{N}\right)^{2} \\
& =\frac{-n(N-n)}{N^{2}(N-1)}
\end{align*}
$$

$\operatorname{Var}(T)=\frac{n}{N}\left(\frac{N-n}{N}\right) \sum_{i=1}^{N} v_{i}^{2}-\frac{2 n(N-n)}{N^{2}(N-1)} \sum_{i<j} v_{i} v_{j}$
اين عبارت را مى توان با استفاده از اتحاد كـى سادهتر نوشت . بس از ساده كردن داريم
$\operatorname{Var}(T / n)=\frac{1}{n^{2}} \operatorname{Var}(T)=\frac{N-n}{n(N-1)}\left(\sum_{i=1}^{N} \frac{v_{i}^{2}}{N}-\bar{v}^{2}\right)$

حالت خاص
 بگگيريد . در اين حالت T (كه يك متغيّ تصادنى نوق هندسى است) دارای ميانگين و واريانس زير

$$
\begin{gathered}
E[T]=n \bar{v}=n p \quad \text { 多 } \quad \bar{v}=\frac{N p}{N}=p \\
\operatorname{Var}(T)=n^{2} \operatorname{Var}(T / n)=\frac{n(N-n)}{(N-1)}\left(\frac{N p}{N}-p^{2}\right) \\
=\frac{n(N-n)}{N-1} p(1-p)
\end{gathered}
$$

كه در آن از اين واقعيت استفاده كرديم كه نسبت تعلاد ا اها در نهونه ـ در اين حالت داريم

$$
E[T / n]=p
$$

$\dot{\operatorname{Var}}(T / n)=\frac{(N-n)}{n(N-1)} p(1-p)$
ب) (بخش Vاز فصل Q ار بينيد) با استفاده از اتحادهاي
$\sum_{i=1}^{N} i=N(N+1) / 2 \quad \sum_{i=1}^{N} i^{2}=N(N+1)(2 N+1) / 6$

$$
E[T]=n(N+1) / 2
$$

$\operatorname{Var}(T)=n(N-n)(N+1) / 12$

مسائل

I - مجموعهای شامل • • ه داده جمع Tورى شده است . هريكت از مقادير اين دادهعــا يكــى از اعلداد 1 فراوانى

> مغدأر

1	84
2	92

3116
4110
$5 \quad 98$
مطلوب است تعيين ميانگين اين نمونه
$\begin{array}{cc}\text { فراوانى } & f_{1} \\ 1 & \\ \vdots & f_{i} \\ \vdots & \\ \vdots & f_{k}\end{array}$
در حالت كلى اگگر دادهها به صورت زير خلاصه شوند ميانگين نعونه جقدر است ؟
 Y \boldsymbol{Y} Y X متغيّرهاى تصهادفى مستقـل نمايى و هريكت دارایى پارامتر
 مطلوب است مساسبه جاركها و نما در توزيع زير

$$
F(x)=1-e^{-x^{2}}, \quad 0<x<\infty
$$

$f(x)= \begin{cases}x e^{-x}, & x>0 \\ 0, & x<0\end{cases}$

(V $\operatorname{Med}(a X+b)=a \operatorname{Med}(X)+b$
 منحصربهرفرد باشلد, مسألهُ V را برایى $\operatorname{Mod}(X)$ ثابت كنيد - الف) توز ب) توزيع يكنواخت روى بازة

در غير اينصوبت است

الف)
ب) تعين نـاى تون توزيع
ب) تعين ميانه
ت ت تعسن ميانگين
 ميانگين و ميانه توزيع مساوى

 - IY

$\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=\sum_{i=1}^{n} x_{i}^{2}-n \bar{x}^{2}$

- If |ستفاده از معادله بازگشتى بخش
$8,12,14,10,11,9,7,13$
. ا ا -
 $112,121,126,108,141,104,136,134$
$121,118,143,116,108,122,127,140$
$113,117,126,130,134,120,131,133$
$118,125,151,147,137,140,132,119$
$110,124,132,152,135,130,136,128$

18.2	21.2	23.1	18.5	15.6
20.8	19.4	15.4	21.2	13.4
16.4	18.7	18.2	19.6	14.3
16.6	24.0	17.6	17.8	20.2
17.4	23.6	17.5	20.3	16.6
19.3	18.5	19.3	21.2	13.9
20.5	19.0	17.6	22.3	18.4
21.2	20.4	21.4	20.3	20.1
19.6	20.6	14.8	19.7	20.5
18.0	20.8	15.8	23.1	17.0

الف) نمودار ماته و برگُ اين دادهها را رسم كنيد
 ب) مطلوب است محاسبةٌ واريانس نـونه . ت) تأب توزيع تهربى رارسم كنيد .

كنيد و سسس نمودار هسيتوگرام آنها را رسم كنبد .

ج) در دادههاى طبقهبندى شده اگر در طبقات هر داده دقيفأ روى نقطه ميانى طبقه ترار گیيرد ميانگیين و واريانس را محاسبه كرده و نتيجه بهدست آمده را با نتيجهٔ بالا مقايسه كنيد ـ خرا آنها با هـم اختالغت دارند P
 مفروض در مسألة 17 . 1 الـ

 تو - Y - FI

 جه نتيجهای میگيريد - Y - Y تصادفى از اين توزيع استخراج و و واريانس نمونه لازم است تا مطمئن شويمك

$$
P\left(S^{2} / \sigma^{2} \leq 1.8\right\} \geq .95
$$

$P\left\{.85 \leq \frac{S^{2}}{\sigma^{2}} \leq 1.15\right\} \geq .99$ ب
 كيند

(راهنمايى : از توزيع F از استفاده كنيد) اولس بيشتر باشد .

- - - مدير يكت بانكت مىخواهد متوسط ميزان پولى راكه در حسابهاى بسانداز اين بانكت وجود

دارد تعين كنيد روشى برأى بر آورد اين كييت بدون بر بـي

 هيأت مديره بسختى مورد مشخالفت ترار مى

 شـا در مورد اين نتيجه گیرى جيـيـت ؟

?

برTورد پارامتر ها

1- مقدمه
فرض كنيد

'Tوريم

متغير تصادفى نمايى بهدست مى آوريم .

 متو سط توان دوم الختلانثان از θ مينيمـم است ، محاسبه كنيم .

1- برآوردكرهاى روشكشتاورى
هر آمارهايى راكه براى برTورد مقدار يكت بارامـتر مـجهول θ مـورد استفـده تـرار گكيرد ؛
 خواهيم ديد برTوردگر منطقى ميانگين جامعه نرمال براساس نمونة ${ }_{6} X_{2}=3 ، X_{1}=2$ نمونه Xنتيجه مى شود برابر ${ }^{\text {X است }}$.

 مى خواهيم آن را بر آورد كنيم . همحنين نرض كرد . يعنى ، م میگيريم و سبس
 نمونه از توزيع بواسن بـا ميانگِن مـجهول λ بـاثشد ، يـا از تـوزيع نرمـال بـا ميـانگين مـجهون در هردو حالت برآوردگر در روش گشتاورها مساوى با ميانگين نمونه است .
 مهكن است نمونه از توزيع نرمال با واريانس مجهول الشا
 توزيع ،

مثال فرض كنيـد θ بـه r گثشتـاور اوّل بستگگى دارد ، بنابرايـن مىتـوانــم آن را بـه هـورت زيـر $\theta=g\left(E[X], E\left[X^{2}\right], \ldots, E\left[X^{\prime}\right]\right)$ بيان كنيم سسس فرض كنيد
$M_{k}=\frac{\sum_{i-1}^{n} X_{1}^{k}}{n}, \quad k=1, \ldots, r$

 $\hat{\boldsymbol{\theta}}=g\left(M_{1}, M_{2}, \ldots, M_{r}\right)$

مثال هـ ألف - فرض كنيد نمونهايى به حجم nاز جالمعه نرمال داريم و بى خخواهيم ميانگين برو واريانس
$\mu=E[X]$
$\sigma^{2}=E\left[X^{2}\right]-E^{2}[X]$
بر آوردگر روش گشتاورها

$$
\hat{\mu}=\frac{\sum_{i=1}^{n} X_{i}}{n}
$$

$$
\hat{\sigma}^{2}=\frac{\sum_{i-1}^{n} X_{i}^{2}}{n}-\left(\frac{\sum_{i-1}^{n} X_{i}}{n}\right)^{2}
$$

$$
\hat{\mu}=\bar{X}
$$

$$
\hat{\boldsymbol{\theta}}^{2}=\frac{\sum_{i-1}^{n} X_{i}^{2}-n \bar{X}^{2}}{n}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n}
$$

كه درآن تساوى آخر با استفاده ازاتحادمفيدزير (كه دربخش ب ازفصل \uparrow اثباتمُده)بهدستآمده است
$\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}=\sum_{i=1}^{n} X_{i}^{2}-n \bar{X}^{2}$

نبايد انتظار داشته بانيم كه يكه برآوردگر همواره برآوردى بددست دهد كه مـاوى يا حتى نزديك

به بارامتر مجهول باشـل ـ در حالت كلى آن هيزى كه بايد از يكت بر آوردگر انتظار داشت اين است كه
 هگپنه مىتوان يكت بر آوردكننده را ارزيايِى كرد در فصل ثهارم آمده است .

Y- بر Tوردكرهاى دوستنما يـي ماكزيمم

فرض كنيل كه متغير هاى تصادفى
 را برآورد كنيم • برای مشال

$$
\begin{array}{rlrl}
f\left(x_{1},\right. & \left.x_{2}, \ldots, x_{n}\right) \\
& =f_{X_{1}}\left(x_{1}\right) f_{X_{2}}\left(x_{2}\right) \cdots f_{X_{n}}\left(x_{,}\right) \\
& =\frac{1}{\theta} e^{-x_{1} / \theta} \frac{1}{\theta} e^{-x_{2} / \theta} \cdots \frac{1}{\theta} e^{-x_{n} / \theta} & 0<x_{i}<\infty, i=1, \ldots, n \\
& =\frac{1}{\theta^{n}} \exp \left\{-\sum_{1}^{n} x_{1} / \theta\right\} & 0<x_{i}<\infty, i=1, \ldots, n
\end{array}
$$

هدن بر آورد θ با استفاده از مقادير مشاهده شـدهٔ نوع خاصى از بر آوردگرهاكه آنها را با نام برآورد آر هر هاى درستنما
 (نشاندهندهٔ تابع جرم احتمال تو أم متغيّر هاى تصادفى $f\left(x_{1}, \ldots, x_{n} \mid \theta\right)$

 نشاندهنده اين درستنمـايـى است كـه وتتـى $f\left(x_{1}, \ldots, x_{n} \mid \theta\right)$ مشاهده شوند ؟ به نظر میرسد كه بر آورد منطقى براى θ مقدارى باشد كه بيشترين درستنهايى را برایى مقادير مشاهلده شده بده
 مشاهدقمىشوتد $f\left(x_{1}, \ldots, x_{n} \mid \theta\right)$ رالغلب تابعدرستنمانى مىنامند .

 طورى تعيين كرد كه

 حل : دادهها عبارتند از $X_{i}=\left\{\begin{array}{l}1 \\ 0\end{array}\right.$

$$
P\left\{X_{i}=1\right\}=p=1-P\left\{X_{i}=0\right\}
$$

كه بىتوان آن را بطور خلاصه به مورت زير نوشت

$$
P\{X,=x\}=p^{x}(1-p)^{1-x} \quad x=0,1
$$

بنابراين با اين فرض كه آزمايشها مستقلند تابع درستنمايى (يعنى تابع جرم احتمال توأم) دادهها بهشكل زير است

$$
f\left(x_{1}, \ldots, x_{n} \mid p\right)=P\left\{X_{1}=x_{1}, \ldots, X_{n}=x_{n} \mid p\right\}
$$

$$
=p^{x_{1}}(1-p)^{1-x_{1}} \cdots p^{x_{n}}(1-p)^{1-x_{n}}
$$

$$
=p^{\Sigma_{1}^{n} x_{1}}(1-p)^{n-\Sigma_{1}^{n} x_{1}} \quad x_{i}=0,1 \quad i=1, \ldots, n
$$

براى تعين مقدارىاز pكه تابع درستنمايى راماكزيمـمكندابتدا ازتابعدرستنمايمىاكزيـملگاريتم مىگيريم $\log f\left(x_{1}, \ldots, x_{n} \mid p\right)=\sum_{1}^{n} x_{i} \log p+\left(n-\sum_{1}^{n} x_{i}\right) \log (1-p)$ با مشتقگيرى بهدست مى آوريم
$\frac{d}{d p} \log f\left(x_{1}, \ldots, x_{n} \mid p\right)=\frac{\sum_{1}^{n} x_{i}}{p}-\frac{\left(n-\sum_{1}^{n} x_{i}\right)}{1-p}$
با مساوى حفف قرار دادن مشتق به اين نتيجه مىرسيم كه بر آورد درستمايى ماكزيمـم ؛ $\frac{\sum_{1}^{n} x_{i}}{\hat{p}}=\frac{n-\sum_{1}^{n} x_{i}}{1-\hat{p}}$

$$
\hat{p}=\frac{\sum_{i=1}^{n} x_{i}}{n}
$$

صدق مىكند . بنابراين بر آوردگر درستنـمايى ماكزيمـم ميانگين مجهول توزيع برنولى به صورت زير خواهلد بو2

$$
d\left(X_{1}, \ldots, X_{n}\right)=\frac{\sum_{i=1}^{n} X_{i}}{n}
$$

بطور خلاصه بر آوردگگ درستنمايی ماكزيمـم pبا برآوردگر زوش گشتاور ها يكسان و مساوى نسبت آزمايثههايى است كه نتيجه آنها مو نقيت است . به عنوان مثال فرض كنيد هريكث از RAM (حافظهاى

 مشال ه. †اب - بر آوردتر درستنمايع ماكزيمهر بـارامـتر هـواسـن : فـرض كـنيد تصادفى مستقل ثواسن و هريكت داراتى ميانگين גرا بهدست آوريل . حل : تابع درستنـايى به صورت زير است

$$
\begin{aligned}
f\left(x_{1}, \ldots, x_{n} \mid \lambda\right) & =\frac{e^{-\lambda} \lambda^{x_{1}}}{x_{1}!} \cdots \frac{e^{-\lambda} \lambda^{x_{n}}}{x_{n}!} \\
& =\frac{e^{-n \lambda} \lambda^{\sum_{1}^{n} x_{1}}}{x_{1}!\cdots x_{n}!}
\end{aligned}
$$

بنابراين

$$
\begin{aligned}
& \log f\left(x_{1}, \ldots, x_{n} \mid \lambda\right)=-n \lambda+\sum_{1}^{n} x_{i} \log \lambda-\log c \\
& \text { كه در آن ! }
\end{aligned}
$$

$$
\frac{d}{d \lambda} \log f\left(x_{1}, \ldots, x_{n} \mid \lambda\right)=-n+\frac{\sum_{1}^{n} x_{2}}{\lambda}
$$

با مساوى صفر قرار دادن مشتت بر آورد درستتمايى ماكزيمـم λ را به صورت زير بهدست مى آوريم .

$$
\lambda=\frac{\sum_{1}^{n} x_{i}}{n}
$$

و بنابراين بر آوردگر درستتـمايى ماكزيهـم براير است با

$$
d\left(X_{1}, \ldots, X_{n}\right)=\frac{\sum_{i-1}^{n} X_{i}}{n}
$$

$$
\begin{aligned}
f\left(x_{1}, \ldots, x_{n} \mid \mu, \sigma\right) & =\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left[\frac{-\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right] \\
& =\left(\frac{1}{2 \pi}\right)^{n / 2} \frac{1}{\sigma^{n}} \exp \left[\frac{-\sum_{1}^{n}\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right]
\end{aligned}
$$

بنابراين لگاريتم تابع درستنمايى به صورت زير خواهد بود
$\log f\left(x_{1}, \ldots, x_{n} \mid \mu, \sigma\right)=-\frac{n}{2} \log (2 \pi)-n \log \sigma-\frac{\sum_{1}^{n}\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}$
 مشتق مميكيريم
$\frac{\partial}{\partial \mu} \log f\left(x_{1}, \ldots, x_{n} \mid \mu, \sigma\right)=\frac{\sum_{i-1}^{n}\left(x_{i}-\mu\right)}{\sigma^{2}}$
$\frac{\partial}{\partial \sigma} \log f\left(x_{1}, \ldots, x_{n} \mid \mu, \sigma\right)=-\frac{n}{\sigma}+\frac{\sum_{1}^{n}\left(x_{i}-\mu\right)^{2}}{\sigma^{3}}$

با سساوى صفر قرار دادن اين تساويها
$\hat{\mu}=\frac{\sum_{i=1}^{n} x_{i}}{n}$
$\hat{\sigma}=\left(\frac{\sum_{i=1}^{n}\left(x_{i}-\hat{\mu}\right)^{2}}{n}\right)^{1 / 2}$

بنابراين برآوردگرشاى درستنمايى ماكزيمم μ ر \quad به تر تيب برابرند با

$$
\begin{equation*}
\left(\frac{\sum_{i-1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n}\right)^{1 / 2} \quad, \quad \bar{X} \tag{1.Y.0}
\end{equation*}
$$

بايلد توجه داشت كه برTوردگر درستنمايى ماكزيمم انحران معيار σ با انحران معيار نمونه

$$
S=\left[\sum_{t=1}^{n}\left(X_{t}-\bar{X}\right)^{2} /(n-1)\right]^{1 / 2}
$$

 ■ . است . با اين وجود برایى در تمام مثالهاى قبل برTوردگر درستتمايى ماكزيمم ميانگين جامعه برابر بود با ميانگين نمونه . برالى نشان دادن اين كه همواره اين طور نيــت مثال زير رادر در نظر بیيريل :

مثال ه. Fت - גآورد ميانعين توزيع يكنواخت : فرض كنيد

در غير اينمورت

$$
\hat{\theta}=\max \left(X_{1}, X_{2}, \ldots, X_{n}\right)
$$

بسادگى از عبارت الخير نتيجه مىشود كه برTوردگر درستنمايى ماكزيمم $\theta / 2$ ، ميانگين توزبع ، برابر با . $\max \left(X_{1}, X_{2}, \ldots, X_{n}\right) / 2$
ازطرن ديگر خون $\theta=2 E[X]$ برTوردگر روش گشثاورشا برابر است با

$$
d_{2}=\frac{2 \sum_{i-1}^{n} X_{i}}{n}
$$

نصـادنى از توزيع يكنواخت (0, (0) شبيهسازى كنيم . آنگاه مى توانيم دو مقلار برآورد شده (يعنى

 جنين روشى در سالات مورد بررسىى به كار میرود .

$$
\text { دميم } i=1, . ., n ، X_{i}=\theta U_{i} \text { سيس دو برTوردگر }
$$

$$
d_{1}=\max \left(X_{1}, \ldots, X_{n}\right)=\theta \max \left(U_{1}, \ldots, U_{n}\right)
$$

$$
d_{2}=\frac{2 \sum_{i-1}^{n} X_{i}}{n}=\frac{\theta 2 \sum_{i=1}^{n} U_{i}}{n}
$$

را با مقدأر واتعى θ مقابسه كنيم . در وأتع در تمام عبارات تبل مى توان از θ فاكتور گَرفت و معايسهُ را بـا都 U_{1}, \ldots, U_{n} كنيم و اين روش را آنقدر تكرار مىكيـم تا بتـوان نتيجـه گرفت كه كداميكت از دو برآوردگگر بهتر عمل مى.كنند .

 مقدار مطلت خطا تعين شده است

```
10 RANDOMIZE
2O FOR J=1 TO 12
30 M=0
40 T=0
BO L|mND
70 IF USM THEN M=U
Co T-T+U
90 NEXT
1OO PRINT *1-MAX = "1-M, "ABS(2#XBAR-1)="ABS(2*T/15-1)
    110 NEXT
    12O END
    OK
    Random number enmod (-32768 to 32767)? 1324
    1-MAX = .1957145 ABS (2*XBAR 1) =
    1-MAX = 1957145 M.121013E-02 ABS(2*XBAR-1)= 153ERE7 
    I-MAX = 5.913019E-03 ABS(2*XEAR-I) = .3164175
    1-MAX = .2225734 A8S(2#XBAR-1)=.2307838
```

1 -MAX $=.1352978$
$1-$ MAX $=1.971906 E-02$
$1-$ MAX $=.0321312$
$1-$ MAX $=1.843359 E-08$
1 MAX $=6.095456 E-93$
$1-$ MAX $=7.542491 E-02$
$1-$ MAX $=3.900433 E-02$
$1-$ MAX $=.0743739$
1

ADS (2*×BAR-1)	2.264479E-02
ARS(2*XRAR-1)	5.976451E-02
ABS(2*xBAR-1)	. 1067939
	. 1424677
ABS(2\#xtari-1)	. 2474407
ABS(2 *XBAR-1)	5.232442E-92
ARE(2 * \times EAR-1)	.0598156
ARS 2 \# X AAR-1)	. 1999304

 ■ . تثورى در بـخش

「- برآوردهاى فاصلهايـ
فزض كنيد . مماذطِّرِ كَ نثان داديم

 باتوجه بهمطالب تبل جون
$P\left\{-1.96<\sqrt{n} \frac{(\bar{X}-\mu)}{\sigma}<1.96\right\}=.95$
يا معادل Tن
$P\left\{\bar{X}-1.96 \frac{\sigma}{\sqrt{n}}<\mu<\bar{X}+1.96 \frac{\sigma}{\sqrt{n}}\right\}=.95$

$$
\bar{x}-1.96 \frac{\sigma}{\sqrt{n}}<\mu<\bar{x}+1.96 \frac{\sigma}{\sqrt{n}}
$$

مشاهده شلده نهونه ورار میگیرد . ناملة ه 4 درمهل برایى

 برایى انبام اين كار با تو جه به اين كه برای يكت‘متغيّر تصهادفى نرمال استاندارد

$$
P\{Z<1.64\}=.95
$$

تتيبهه مىشود كه

$$
\begin{aligned}
& P\left\{\sqrt{n} \frac{(\bar{X}-\mu)}{\sigma}<1.64\right\}=.95 \\
& P\left\{\bar{X}-1.64 \frac{\sigma}{\sqrt{n}}<\mu\right\}=.95
\end{aligned}
$$

$$
\left(\bar{x}-1.64 \frac{\sigma}{\sqrt{n}}, \infty\right)
$$

كه در Tن
 مى توان بازهـاى اطمينان را برايى شر اندازه مشيخص از اطمينان بهدست آورد . بلـين مـنظور زض كنيد

$$
P\left\{Z>z_{\alpha}\right\}=\alpha \quad 0<\alpha<1
$$

ه. ه. ا را بينيلد)

$$
P\left\{-z_{a / 2}<Z<z_{a / 2}\right\}=1-a
$$

$$
P\left\{-z_{a / 2}<\sqrt{n} \frac{(\bar{X}-\mu)}{\sigma}<z_{a / 2}\right\}=1-\alpha
$$

$$
\begin{aligned}
& P\left\{\bar{X}-z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}<\mu<\bar{X}+z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}\right\}=1-\alpha \\
& \text { بنابراين يكت بازة اطمينان دوطرنه (a-1) • . ا درصد براى بر برابر است با } \\
& \left(\bar{x}-z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}, \quad \bar{x}+z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}\right)
\end{aligned}
$$

 ر را در هر اندازه مطلوب از اطمينان بهدست آوريم .

 جون ها 4 درصد برای بربرابر است با
$\left(9-1.96 \frac{\sigma}{3}, 9+1.96 \frac{\sigma}{3}\right)=(7.69,10.31)$

Tذكاه از اين وانميت استفاده ميكنيم كه
$P\left\{\frac{3(\bar{X}-\mu)}{2}<z_{a}\right\}=1-\alpha$

194
نــل بنـعم ـ برآورد هارامترها

$$
P\left\{\mu>\bar{X}-\frac{2}{3} z_{a}\right\}=1-\alpha
$$

$$
\mu \in\left(\bar{x}-\frac{2}{3}(1.64), \infty\right)
$$

ـِا با "ه 9 در حهد اطمينانه

$$
\mu \in(7.91, \infty)
$$

" داشته باشيم و مسأله عبارت از انتُلاب حیحم نهونه n باشل بطورى كه فامله داراى طول معين باشل .

 2.58 زير است

$$
\left(\bar{x}-2.58 \frac{\sigma}{\sqrt{n}}, \quad \bar{x}+2.58 \frac{\sigma}{\sqrt{n}}\right)
$$

بنابراين طول اين ذاصله برابر اسـت با $5.16 \frac{\sigma}{\sqrt{n}}$. يس برای اين كه طول ذاصله مساوى با 1. باشل بايل دانمته باشيم

$$
\begin{aligned}
& 5.16 \frac{\sigma}{\sqrt{n}}=.1 \\
& n=(51.6 \sigma)^{2}
\end{aligned}
$$

تبهو

 اين است كه روش استفاده شله برایى بهستت Tوردن اين فامله جنان است كه نتيبهة ه 9 در صـل دلماتى كه بهكار برده مىشود 6 فاصله اطمينانى است كه بر را در بردارد . بهعبارت ديگر تبل از اينكه دادهما

آمار و احتـال مهندمى

مشاهده شوند مى توانيم ادعاكنيم كه با احتمال 4 / / • فاصلهايى كه بهدست مى آيد شامل
 اطمينان ه 4 درصده شامل

مثال ه. الاب - فرض كنيد مىخواهيمّم ستوسط زمان سرويس CPU (واحد زرآيند مركرى) كاميبوتر را
 در غاصلة
 حل : يكت فاصله ه 4 درصد برای ميانگین مبهول بربرمباى نمونهايى به حجم n عبارت است از

$$
\mu \in\left(\bar{x}-1.96 \frac{\sigma}{\sqrt{n}}, \quad \bar{x}+1.96 \frac{\sigma}{\sqrt{n}}\right)
$$

هون طول اين بازه برابر است با 3.92 6 بايد $/$ به تسـمى اختيار شود كه

$$
3.92 \sqrt{\frac{2.25}{n}}=.5
$$

$$
n=2.25 \times(7.84)^{2}=138.298
$$

". أ كاصلة أطمينان بواى ميانكين جامعةُ نومال هنتامى كه واريانس مجهول است فرض كنيد مى مخواهيم يكت فاصلة اطمينان (
 است استفاده كنيم • معهـذا با توجه به اين كـه
 $a \in\left(0, \frac{1}{2}\right)$ است \mid بنابراين براى $P\left\{t_{1-\alpha / 2, n-1}<\sqrt{n} \frac{(\bar{X}-\mu)}{S}<t_{a / 2, n-1}\right\}=1-\alpha$

$$
t_{1-a / 2, n-1}=-t_{\alpha / 2, n-1} \quad \text { يا با استفاده از ابيزكه }
$$

Y. 1

نهل بنجـم - برآررد بارامترها

$$
P\left\{\bar{X}-t_{\alpha / 2, n-1} \frac{S}{\sqrt{n}}<\mu<\bar{X}+t_{\alpha / 2, n-1} \frac{S}{\sqrt{n}}\right\}=1-\alpha
$$

درنيبیه اگگر مشاهدهشودكه

$$
\mu \in\left(\bar{x}-t_{\alpha / 2, n-1} \frac{s}{\sqrt{n}}, \quad \bar{x}+t_{\alpha / 2, n-1} \frac{s}{\sqrt{n}}\right)
$$

 بنابراين پحون (از برنامه Y Y ه 9 درصلد برایى

$$
\left(9-2.306 \frac{(3.082)}{3} .9+2.306 \frac{(3.082)}{3}\right)=(6.63,11.37)
$$

 ظاصلهايى است كه در شثال ه. ا.الف بهدست آمد دو هيز است : اوّل اين كه يكـ واريانس برآورده
 است

 واريانس بزرگّر و در تتيهه براكندگى بيشتر از توزيع نر هلا استاندارد است (و اين هنگامى بـهـكار مىرود كه $\left(9-2.306 \cdot \frac{2}{3}, 9+2.306 \cdot \frac{2}{3}\right)=(7.46,10.54)$

كه بزرگتر از فاصلهايى است كه در مثال ه. †.الف بهدست Tمد .

Lsogysy
الف) بايل تو جه داشت كه وتتى σ معلوم است فاصلة اطمينان براى ميانگين μ براسـاس ايـن

آمار و احتـال مهندسى

واتعيت كه آن را توسط S بر آوردكرده و سیس از اين واقعيت استفاده مىكنيم كه S توزيع t با 1 - 1 درجهه آزادى است .
ب) بايد توجه داشت كه طول ناصلهٔ اطمينان (با $2 z_{a} \sigma / \sqrt{ } n$ واريانس مجهول است مديثه بزرگتر نيست . وتّى σ معلوم است طول بازه برابر

 مجهول است متو سط طول زاصله بيشتر مىباشد . يعنى مىتوان نشان داد كه

$$
t_{a, n-1} E[S] \geq z_{\mathrm{a}} \sigma
$$

در واتع E(S) در بخش Y فصل | | محاسبه شله و براي مثال نشان داده شده است كه

$$
E[S]= \begin{cases}.94 \sigma & n=5 \\ .97 \sigma & n=9\end{cases}
$$

$$
t_{.02,8}=2.31 \text { و } t_{.02,4}=2.78{ }_{6} z_{.025}=1.96 \text { جون }
$$

 بكت ناصله اطمينان يكثطرنه راست را مىتوان به حورت زير بهدست Tورد

$$
\begin{aligned}
& P\left\{\sqrt{n} \frac{(\bar{X}-\mu)}{S}<t_{\alpha, n-1}\right\}=1-\sim \\
& P\left\{\bar{X}-\mu<\frac{S}{\sqrt{n}} t_{a, n-1}\right\}=1-\alpha \\
& P\left\{\mu>\bar{X}-\frac{S}{\sqrt{n}} t_{a, n-1}\right\}=1-\alpha
\end{aligned}
$$

بنابراين اگر مشاهده شود كه ادعاكنيم كه

> Y.r

$$
\mu \in\left(\bar{x}-\frac{s}{\sqrt{n}} t_{\alpha, n-1}, \infty\right)
$$

$$
\mu \in\left(-\infty, \bar{x}+\frac{s}{\sqrt{n}} t_{\mathrm{a}, n-1}\right)
$$

 محاسبه مقدار صدكي لازم آماره tاستفاده مىكند .

$54,63,58,72,49,92,70,73,69,104,48,66,80,64,77$.

```
THIS PROSRAN COMPUTES A 100(!~a)X CONFIDENCE INTERVAL FDR THE MEAN OF
A NOPHOL PGPLLATION WEN THE VARIMNCE IB LUNOMNM
ENTEA THE EATPIE OIIE
7 15
ENTER THE DATA VALUEB ONE AT A TIME
? }5
?59
72
?
?73
769
?104
?48
? %ob
74
?7
ENTER the valole of a
7.05
is a two-bided interval desiredo enter a if the anmer is yeb ando
IF No
? 1
THE 95 X CONFIDRNCE INTERVAL FOR THE MEAN IE
(40.86499) 77.64835)
```

$$
\begin{aligned}
& \text { همجتني يكت فاصلة اطمينان جب هو درصد برايى اين ميانگين بهدست آوريد . } \\
& \text { حل : برناهـ هـ - }
\end{aligned}
$$

```
IG ANOTHER COAFIDENCE INTERVAL DESIREDS IF YEG ENTER 1.
IF ND ENTER O.
7
ENTER THE VALUE OF a
O.0S
IS A TMG-GIDED INTERVAL DESIRED? ENTER I IF THE ANEMER IG YEB AND O
IF NO
?0
IS THE ONE-GIDED CONFIDEMEE INTERUAL TO BE UPPER OR LONER? ENTER I
FOR LPPER AND O FOR LDNER
70
THE 9S
% LONER CONFIDENCE INTERYAL FOR THE HEAN IS I-INFINITY,
76.16618)
IS ANOTHER CONFIDENCE INTERUAL DEEIRED? IF YEG ENTER 1.
IF ND ENTER O.
? 0
Ok
```


فزض كنيد促 Y_{p}, \ldots, Y_{m} دو نونه از يكديگِ, مستقلند مى $\mu_{2} \mu_{1}{ }_{1}$ هستند بطورى شهودى به نظر میرسد (ولى مىتواند ماكريمـ برای بهدست آوردن يكت بر آورد فاصلهايى استياج به توزيع

$$
\begin{aligned}
& \bar{X} \sim \mathcal{N}\left(\mu_{1}, \sigma_{1}^{2} / n\right) \\
& \bar{Y} \sim \mathcal{N}\left(\mu_{2}, \sigma_{2}^{2} / m\right)
\end{aligned}
$$

با توجه به اين واتقعيت كه مجموع متغيّرهاى تصادفى مستقل نرمال ، نرمال است نتيجه مىشود كه $\bar{X}-\bar{Y}-\mathcal{N}\left(\mu_{1}-\mu_{2}, \frac{\sigma_{1}^{2}}{n}+\frac{\sigma_{2}^{2}}{m}\right)$

بنابراين با نرض اين كه

$$
\frac{\bar{X}-\bar{Y}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{n}+\frac{\sigma_{2}^{2}}{m}}}-\mathcal{N}(0,1)
$$

$P\left\{-z_{a / 2}<\frac{\bar{X}-\bar{Y}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{n}+\frac{\sigma_{2}^{2}}{m}}}<z_{a / 2}\right\}=1-\alpha$
يا معادل T
$P\left\{\bar{X}-\bar{Y}-z_{\alpha / 2} \sqrt{\frac{\sigma_{1}^{2}}{n}+\frac{\sigma_{2}^{2}}{m}}<\mu_{1}-\mu_{2}\right.$

$$
\left.<\bar{X}-\bar{Y}+z_{a / 2} \sqrt{\frac{\sigma_{1}^{2}}{n}+\frac{\sigma_{2}^{2}}{m}}\right\}=1-\alpha
$$

 ($\mu_{1}-\mu_{2}$ برابر است بر با با
$\left(\bar{x}-\bar{y}-z_{\alpha / 2} \sqrt{\frac{\sigma_{1}^{2}}{n}+\frac{\sigma_{2}^{2}}{m}}, \bar{x}-\bar{y}+z_{a / 2} \sqrt{\frac{\sigma_{1}^{2}}{n}+\frac{\sigma_{2}^{2}}{m}}\right)$
بازهماى اطمينان يكتطرنه برایى
 $\mu_{1}-\mu_{2} \in\left(-\infty, \bar{x}-\bar{y}+z_{a} \sqrt{\sigma_{1}^{2} / n+\sigma_{2}^{2} / m}\right)$

مثال ه. ه. آزمون شُدهاند . هيگامى كه از دو نوع كابـل ، نمونهايى در معرض يكث نشـار ولــاز المزايش تـرار

$A_{\varepsilon,}$		B_{ε}	
36	54	52	60
44	52	64	44
41	37	38	48
53	51	68	46
38	44	66	70
36	35	52	62
34	44		

فرض كنيد بدانيم كه ميزان ولتازى كه عايق نوع A مىتواند تحمل كند داراى توزيع نرمال با ميانگين مصجهول
 بـراى . تجاوز مى $\mu_{A}-\mu_{B}$
حل : برنامهُ ه - Y - Y الفـ را الجرا مىكنيم .

اكنون زرض كنيد كه دوباره مىخواهيم يكت برTاوردگر فاصلهايى بـرایى

$S_{1}^{2}=\sum_{i=1}^{n} \frac{\left(X_{i}-\bar{X}\right)^{2}}{n-1}$
$S_{2}^{2}=\sum_{i=1}^{m} \frac{\left(Y_{i}-\bar{Y}\right)^{2}}{m-1}$

جاى گذارى كنيم • يعنى منطقى استكه در برآورد ذاصلهاى اساس كار را روى جزیى شبيه $\frac{\bar{X}-\bar{Y}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{S_{1}^{2} / n+S_{2}^{2} / m}}$

$(n-1) \frac{S_{1}^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2}$
$(m-1) \frac{S_{2}^{2}}{\sigma^{2}} \sim \chi_{m-1}^{2}$

 تصادفى كىدو است كیه درجه Tزادى آن مساوى با مجـوع درجان مىشودكه

$$
(n-1) \frac{S_{1}^{2}}{0^{2}}+(m-1) \frac{S_{2}^{2}}{0^{2}} \sim \chi_{n+m-2}^{2}
$$

هـجخنين جون
$\bar{X}-\bar{Y} \sim \mathscr{N}\left(\mu_{1}-\mu_{2}, \frac{\sigma^{2}}{n}+\frac{\sigma^{2}}{m}\right)$
(r.r.s)

مىينـمكه
$\frac{\bar{X}-\bar{Y}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma^{2}}{n}+\frac{\sigma^{2}}{m}}} \sim \mathscr{N}(0,1)$
竍
(نسبت دو متغير تصـادفى مستقل كه مورت كسر داراى توزيع نرمال استاندارد و مشرج كسر جذا
 نتيجه مى شود كه

$$
\frac{\bar{X}-\bar{Y}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{1}{n}+\frac{1}{m}}}\left(\frac{n+m-2}{(n-1) S_{1}^{2}+(m-1) S_{2}^{2}}\right)^{1 / 2} \sim t_{n+m-2}
$$

يعنى متغيرّ

$$
\frac{\bar{X}-\bar{Y}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{1}{n}+\frac{1}{m}} \sqrt{\frac{(n-1) S_{1}^{2}+(m-1) S_{2}^{2}}{n+m-\overline{2}}}}
$$

$P\left\{-t_{a / 2, n+m-2} \leq \frac{\bar{X}-\bar{Y}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\left(\frac{1}{n}+\frac{1}{m}\right)\left[\frac{(n-1) S_{1}^{2}+(m-1) S_{2}^{2}}{n+m-2}\right]}} \leq t_{\alpha / 2, n+m-2}\right\}$
$=1-\alpha$
در نتيجـه اگـر از دادهمـا بـهدست آوريـم،

$$
\left(\bar{x}-\bar{y}-t_{\alpha / 2, n+m-2} \sqrt{\left(\frac{1}{n}+\frac{1}{m}\right)\left(\frac{(n-1) s_{1}^{2}+(m-1) s_{2}^{2}}{n+m-2}\right)}\right.
$$

$$
\left.\bar{x}-\bar{y}+t_{a / 2, n+m-2} \sqrt{\left(\frac{1}{n}+\frac{1}{m}\right)\left(\frac{(n-1) s_{1}^{2}+(m-1) s_{2}^{2}}{n+}\right)}\right)
$$

فاصلههاى اطمينان يكتطرنه بطور مشابه بهدست مى آيند .

I		II	
140	132	144	134
136	142	132	130
138	150	136	146
150	154	140	128
152	136	128	131
144	142	150	137
		130	135

مطلوب امت تعيين يكت فاصلة اطمينان دوطر زه • 8 درصد براى تفاضل ميـانگينها بـا فرض ايـنـك

حل : بر نامهٔ ه - - - Y - ب را امجرا ميكنيم برايى بهدست آوردن

```
RUN
    THIE PROGRAM COMPUTEG A 100(1-a)% CONFIDENCE INTERVAL FOR THE DIFFERENCE OF
    HEANS IN TWD NDPMAL PDPLLATIDNG HAVING UNKNOWN BUT EGUAL VARIANCES
ENTER THE GIZE OF GAMPLE NUMBER I
    ? }1
    ENTER THE BAHPLE I DATA YALUES ONE AT A TIME
    740
    7 136
    7 138
    7 150
    7. }15
    ? }14
    7 132
    7}14
    ? 150
    7 154
    7 136
    7142
    ENTER THE GI2E OF GAMPLE NUMOER 2
    ? 14
    ENTER THE GAMPLE 2 DATA VALUEG ONE AT A TIME
    ? 144
    ? 132
    7 136
    ? 140
    ? 128
    7 150
    ? }13
    ? 134
    7130
    ? 146
    7212
? 13!
7 137
? 135
ENTER THE UALUE DF a
?.1
IS A TWO-SIDED INTERUAL DESIRED' ENTER I IF THE ANGWER IS YES AND O IF NO
7 1
THE 90 % CONFIDENCE INTERVAL IS (2.497077, 11.93145)
IG ANOTHER CONFIDENCE INTERVAL DEGIRED? IF YEG ENTER i. IF NO ENTER O.
? }
ENTER THE VALUE OF -
?.05
IS A TWD-gIDED INTERVAL DESIRED? ENTER I IF THE ANSWER IG YEG AND O IF ND
70
```

15 THE ONE-GIDED CONFIDENCE INTERUAL TO BE UPPER OR LOWER? ENTER 1 FOR LUPPER AND ? FOR LDNER
THE 95% UPPER CONFIDENCE INTERYAL IS (2.497077 , INFINITY)
IS ANDTHER CONFIDENCE INTERUAL DEAIRED? IF YEG ENTER 1: IF ND ENTEF. O.
${ }^{7} 0$
ok

「\%.F Wاصلةُ اطمينان براى واريانس توزيع نرمال

اكر
از اين واتعيت كه $(n-1) \frac{S^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2}$

يكى فاصلة اطمينان برايى ${ }^{2}$ بدست Tوريم •بدين منظور داريم $P\left\{\chi_{1-a / 2, n-1}^{2} \leq(n-1) \frac{S^{2}}{\sigma^{2}} \leq \chi_{\alpha / 2, n-1}^{2}\right\}=1-\alpha$

يا معادل با آن
$P\left\{\frac{(n-1) S^{2}}{\chi_{\alpha / 2, n-1}^{2}} \leq \sigma^{2} \leq \frac{(n-1) S^{2}}{\chi_{1-\alpha / 2, n-1}^{2}}\right\}=1-\alpha$

$\sigma^{2} \in\left(\frac{(n-1) S^{2}}{\chi_{\alpha / 2, n-1}^{2}}, \frac{(n-1) S^{2}}{\chi_{1-\alpha / 2, n-1}^{2}}\right)$

 واشرها بر هسب اينع به صورت زير باشد بارارتزهـا

0.123	0.133
0.124	0.125
0.126	0.128
0.120	0.124
0.130	0.126

يكت فاصلئ اطميتان • 4 درصد براي انحران معيار ضسظامت واشرهايى توليد شده با اين روش بهدست
Tوريد ـ با اجراى برنامه ¢ ـ ب نتيجه مى گيريم كه

$$
S^{2}=1.366 \times 10^{-5}
$$

$$
x_{.95,9}^{2}=3.334, x_{05,9}^{2}=16.917 \text { جون }
$$

$$
\sigma^{2} \in\left(9 \times 1.366 \times 10^{-5} / 16.917,9 \times 1.366 \times 10^{-5} / 3.334\right) \quad \text { اططينان } 9 \times \text { درمد }
$$

$$
\sigma^{2} \in\left(7.267 \times 10^{-6}, 36.875 \times 10^{-6}\right)
$$

با اطعبنان • 4 درصد يا ، باكَرنتن ريشٌ دوم

با اططينان • 9 درمد

$$
\sigma \in\left(2.696 \times 10^{-3}, 6.072 \times 10^{-3}\right)
$$

جامعهايى از اشياء رادر نظر بگيريد كَ هريكت بطور مستقل و با احتمال مجهول pمطابق با معيار معينى

 برايى دوجملهايى ، X تقريباً داراى توزيع نرمال با ميانگين $\frac{X-n p}{\sqrt{n p(1-p)}} \dot{\sim}(0,1)$
 $\alpha \in(0,1)$ بنابراين برای هر
$P\left\{-z_{a / 2}<\frac{X-n p}{\sqrt{n p(1-p)}}<z_{\alpha / 2}\right\} \approx 1-\alpha$

$\left\{p:-z_{\alpha / 2}<\frac{x-n p}{\sqrt{n p(1-p)}}<z_{\alpha / 2}\right\}$

 $\frac{X-n p}{\sqrt{X\left(1-\frac{X}{n}\right)}} \dot{\sim}(0,1)$
$\alpha \in(0,1)$ هس براي هر
$P\left\{-z_{\alpha / 2}<\frac{X-n p}{\sqrt{X\left(1-\frac{X}{n}\right)}}<z_{\alpha / 2}\right\} \approx 1-\alpha$
يا معادل با
$f^{\prime}\left(\frac{X}{n}-\frac{\sqrt{X\left(1-\frac{X}{n}\right)}}{n} z_{n / 2}<p<\frac{X}{n}+\frac{\sqrt{X\left(1-\frac{X}{n}\right)}}{n} z_{\alpha / 2}\right)=1-a$
و اين ذاصلة اططينان (- 1) . . ا درصد براثى pرا اراثه مىدهد .

 برابر است با

$$
\left(.8-\frac{\sqrt{80(.2)}}{100}(1.96), .8+\frac{\sqrt{80(.2)}}{100}(1.96)\right)
$$

يعنى ه 9 در صد اطمينان داريم كه pبين 7216. و 8784. است .

گًاهى اوتات اتفاقٌ مىافتد كه علاتهمند باشيم كه يكث فاصلئ اطمينان (

 نمونهايى به حجم nمساوى است با

$$
\frac{2}{n} \sqrt{X\left(1-\frac{X}{n}\right)} z_{\alpha / 2}=\frac{2 z_{\alpha / 2}}{\sqrt{n}} \sqrt{\frac{X}{n}\left(1-\frac{X}{n}\right)}
$$

 $\frac{2 z_{a / 2}}{\sqrt{n}} \sqrt{p(1-p)} \approx$

طول فامـل اطمينان (

متأسفانه pاز قبل مجهول است (اگر جنين نبود ، نيازى به سعى برایى بـرآورد آز نـبود) و بنـابرايـن

 .

$$
\frac{2 z_{\alpha / 2}}{\sqrt{n}} \sqrt{\frac{Y}{30}\left(1-\frac{Y}{30}\right)}=l
$$

يا ، با مربع كردن طرفين

$$
\frac{\left(2 z_{\mathrm{a} / 2}\right)^{2}}{n} \frac{Y}{30}\left(1-\frac{Y}{30}\right)=l^{2}
$$

$$
n=\frac{\left(2 z_{\alpha / 2}\right)^{2}}{l^{2}}\left[\frac{Y}{30}\left(1-\frac{Y}{30}\right)\right]
$$

نيازى به گرفتن نمونه مبجدد نيست)

 آنگاه برآورد اوليه pمساوى است با 26/30 ـ بنابراين براى داشتن يكت فاصلهُ اطمينان 9 آ 9 درصد با طول تقريبى 05. بايد تقريباً نمونهايى به حجم

$$
n=\frac{4\left(z_{.05 s}\right)^{2}}{(.05)^{2}} \frac{26}{30}\left(1-\frac{26}{30}\right)=\frac{4(2.58)^{2}}{(.05)^{2}} \frac{26}{30} \frac{4}{30}=1231
$$

$$
\left(\frac{1066}{1231}-\sqrt{1066\left(1-\frac{1066}{1231}\right)} \frac{z_{005}}{1231}, \frac{1066}{1231}+\sqrt{1066\left(1-\frac{1066}{1231}\right)} \frac{z_{.005}^{1231}}{12}\right)
$$

$$
p \in(.84091, .89101)
$$

 حجحم نمونه برابر باشد با
$n=\frac{\left(2 z_{\alpha / 2}\right)^{2}}{l^{2}}-p(1-p)$
اكنون بـادگى مى توان نثان داد كه تابع بهماكريمم مقدار خود ، يعنى $\frac{1}{4}$ ، مى كمد . بنابراين يكث كران بالا براى nبه صورت زير است
$n \leq \frac{\left(z_{\alpha / 2}\right)^{2}}{l^{2}}$
بنابراين با انتخاب نمونهايمى به حجم حداقل مجلد فاصلة اطمينانى بهدست مى آيدكه طول آن از اي $ا$ ايشتر نسـت .

ه-

ایگ,

 در بخش ^. ا از از نصل ب نـشان داده شد)

$$
\frac{2}{\theta} \sum_{i=1}^{n} X_{i}-\chi_{2 n}^{2}
$$

$$
a \in(0,1) \text { بنابراين برايى هر }
$$

$$
P\left\{x_{1-\alpha / 2,2 n}^{2}<\frac{2}{\theta} \sum_{i=1}^{n} X_{i}<\chi_{\alpha / 2,2 n}^{2}\right\}=1-\alpha
$$

يا معادل Tن
$P\left\{\frac{2 \sum_{i-1}^{n} X_{i}}{\chi_{\alpha / 2,2 n}^{2}}<\theta<\frac{2 \sum_{i-1}^{n} X_{i}}{\chi_{1-\alpha / 2,2 n}^{2}}\right\}=1-\alpha$
در نتيجه يكث ذاصلة اطمينان (- 1-9) • ا درمد برايى به صورت زير است
$\theta \in\left(\frac{2 \sum_{i-1}^{n} X_{i}}{\chi_{\alpha / 2,2 n}^{2}}, \frac{2 \sum_{i-1}^{n} X_{i}}{\chi_{1-\alpha / 2,2 n}^{2}}\right)$
مثال ه.آ.د ـ فرض شده است كه اشياء توليد شده متوالى توسط يكت توليدكنده معين داراى عـمر مفيدى هستدكه مستفل از يكديگَر و داراى جیگالى مشترك زيرند
$f(x)=\frac{1}{\theta} e^{-x / \theta} \quad 0<x<\infty$
 براي ميانگين جامعه ، θ بهدست آوريد .

$\chi_{.025,20}^{2}=34.169, \quad \chi_{.975,20}^{2}=9.661$
$\theta \in\left(\frac{2 \times 1740}{34.169}, \frac{2 \times 1740}{9.661}\right)$
يا معادل آن
$\theta \in(101.847,360.211)$
†- ارزيابى يكك برآوردكر نقطهايـي
فرض كنيد مشخص مىشود و هرْ كَيد
 (d(X) - $\theta)^{2}$ r $r(d, \theta)=E\left[(d(\mathbf{X})-\theta)^{2}\right]$

 تعريف مىشود در نظر بگيريد

$$
d^{*}\left(X_{1}, \ldots, X_{n}\right)=4
$$

 باشد . جنين خاميتى نالريبى است.
$b_{\theta}(d)=E[d(\mathbf{X})]-\theta$
 برآوردگر ناريب 1 است . به عبارت ديگر يك مساوى بارامترى باشد كه تصد داريم آن را برآورد كنيم .

مثال ه- ثا الف - فرض كنيد آذگاه

$$
d_{1}\left(X_{1}, X_{2}, \ldots, X_{n}\right)=X_{1}
$$

$d_{2}\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\frac{X_{1}+X_{2}+\cdots+X_{n}}{n}$
هر دو بر آوردگرهاى ناريب θ اند زيرا
$E\left[X_{1}\right]=E\left[\frac{X_{1}+X_{2}+\cdots+X_{n}}{n}\right]=\theta$

$$
\begin{aligned}
E\left[\sum_{i=1}^{n} \lambda_{i} X_{1}\right] & =\sum_{i=1}^{n} E\left[\lambda_{i} X_{i}\right] \\
& =\sum_{i=1}^{n} \lambda_{i} E\left(X_{i}\right) \\
& =\theta \sum_{i=1}^{n} \lambda_{i} \\
& =\theta
\end{aligned}
$$

$$
\begin{aligned}
r(d, \theta) & =E\left[(d(\mathbf{X})-\theta)^{2}\right] \\
& =E\left[(d(\mathbf{X})-E[d(\mathbf{X})])^{2}\right] \\
& =\operatorname{Var}(d(\mathbf{X}))
\end{aligned}
$$

بنابراين ميانگين توان دوم خطاى يكث بر آوردگر ناريب با واريانس آن مساوى است. مثال ه. ا.ب تركيب برآور دكنندههاى ناريب مستق - فرض كنيد $i=1,2$ نالرييى از θ با واريانسهاى
$E\left[d_{i}\right]=\theta \quad \operatorname{Var}\left(d_{i}\right)=\sigma_{i}{ }^{2}$
هر بر'وردگر به شكل
$d=\lambda d_{1}+(1-\lambda) d_{2}$
نيز ناريب است. برای تعين مقدارى از גكه بهازاى آن dدارای كمترين ميانگين توان دوم خط باشد ، توجه كنيد كه
$r(d, \theta)=\operatorname{Var}(d)$

$$
=\lambda^{2} \operatorname{Var}\left(d_{1}\right)+(1-\lambda)^{2} \operatorname{Var}\left(d_{2}\right)
$$

$=\lambda^{2} \sigma_{1}^{2}+(1-\lambda)^{2} \sigma_{2}^{2}$
باگر نتن مشتق داريم
$\frac{d}{d \lambda} r(d, \theta)=2 \lambda \sigma_{1}^{2}-2(1-\lambda) \sigma_{2}^{2}$
برایى تعيين ، مى آوريم
$2 \lambda \sigma_{1}^{2}=2(1-\lambda) \sigma_{2}^{2}$
$\hat{\lambda}=\frac{\sigma_{2}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}=\frac{1 / \sigma_{1}^{2}}{1 / \sigma_{1}^{2}+1 / \sigma_{2}^{2}}$

 يكت درياجهٔ مفروض راتعين كند . برايى تعين اين كميت، آنها مقدارى ازآب اين دريالجه رابر برداشته، ،

 مىيكند . فرض كنيد اسيديته واتعى نمونه آب ، واريانس ساز مان حفاظت منابع طبيعى معلوم باشند . در اين صورت آنها بايد اسيديته آب نمونهاگيرى شده از درياجه رابا

$$
d=\frac{\sum_{i-1}^{n} d_{i} / \sigma_{i}^{2}}{\sum_{i-1}^{n} 1 / \sigma_{i}^{2}}
$$

برآورد كندن . ميانگیين توان دوم خطاى dبه صورت زير است

$$
r(d, \theta)=\operatorname{Var}(d)
$$

$$
\begin{array}{ll}
=\left(\frac{1}{\sum_{i-1}^{n} / \sigma_{i}^{2}}\right)^{2} \sum_{i=1}^{n}\left(\frac{1}{\sigma_{i}^{2}}\right)^{2} \sigma_{i}^{2} & \quad \text { زبرا } 1 \\
=\frac{1}{\sum_{i=1}^{n} 1 / \sigma_{i}^{2}}
\end{array}
$$

 واريانس آن، اين است كه هيانگين توان دوم خطاى هر بر آوردگر مساوى است با واريانـ آن آن بهاخطانه توان دوم اريبىاش كزيرا

$$
\begin{aligned}
r(d, \theta)= & E\left[(d(\mathbf{X})-\theta)^{2}\right] \\
= & E\left[(d-E[d]+E[d]-\theta)^{2}\right] \\
= & E\left[(d-E[d])^{2}+(E[d]-\theta)^{2}+2(E[d]-\theta)(d-E[d])\right] \\
= & E\left[(d-E[d])^{2}\right]+E\left[(E[d]-\theta)^{2}\right] \\
& +2 E[(E[d]-\theta)(d-E[d])] \\
= & E\left[(d-E[d])^{2}\right]+(E[d]-\theta)^{2}+2(E[d]-\theta) E[d-E[d]]
\end{aligned}
$$

زيرا E[d]

$$
=E\left[(d-E[d])^{2}\right]+(E[d]-\theta)^{2}
$$

$$
\text { تساوى اخير بدين دليل تتيجه مىشود كه } 0 \text {. } E \text { بنابراين } 0 \text { ب }
$$

$r(d, \theta)=\operatorname{Var}(d)+b_{\theta}^{2}(d)$
مثال ه. أ.ب - فرض كنيد فرض شده است كه θ مجهول است ـ انيون

$$
E\left[X_{i}\right]=\frac{\theta}{2}
$$

$$
\begin{aligned}
r\left(d_{1}, \theta\right) & =\operatorname{Var}\left(d_{1}\right) \\
& =\frac{4}{n} \operatorname{Var}\left(X_{i}\right) \\
& =\frac{4}{n} \frac{\theta^{2}}{12} \quad \text { زير } \quad \operatorname{Var}\left(X_{i}\right)=\frac{\theta^{2}}{12} \\
& =\frac{\theta^{2}}{3 n}
\end{aligned}
$$

 شد برابر است با
$d_{2}=d_{2}(\mathrm{X})=\max _{i} X_{i}$

$$
\begin{aligned}
F_{2}(x) & \equiv P\left\{d_{2}(\mathbf{X}) \leq x\right\} \\
& =P\left\{\max _{i} X_{i} \leq x\right\} \\
& =P\left\{X_{i} \leq x \quad i=1, \ldots, n\right\} \\
& =\prod_{i=1}^{n} P\left\{X_{i} \leq x\right\} \\
& =\left(\frac{x}{\theta}\right)^{n} \quad x \leq \theta
\end{aligned}
$$

$$
f_{2}(x)=\frac{n x^{n-1}}{\theta^{n}} \quad x \leq \theta
$$

در نتّيجه

$$
\begin{align*}
& E\left[d_{2}\right]=\int_{0}^{\theta} x \frac{n x^{n-1}}{\theta^{n}} d x=\frac{n}{n+1} \theta \\
& E\left[d_{2}^{2}\right]=\int_{0}^{\theta} x^{2} \frac{n x^{n-1}}{\theta^{n}} d x=\frac{n}{n+2} \theta^{2}
\end{align*}
$$

همصنين

و بنابراين

$$
\begin{aligned}
\operatorname{Var}\left(d_{2}\right) & =\frac{n}{n+2} \theta^{2}-\left(\frac{n}{n+1} \theta\right)^{2} \\
& =n \theta^{2}\left[\frac{1}{n+2}-\frac{n}{(n+1)^{2}}\right]=\frac{n \theta^{2}}{(n+2)(n+1)^{2}}
\end{aligned}
$$

(Y.F.A) vu

$$
\begin{align*}
& r\left(d_{2}, \theta\right)=\left(E\left(d_{2}\right)-\theta\right)^{2}+\operatorname{Var}\left(d_{2}\right) \\
&=\frac{\theta^{2}}{(n+1)^{2}}+\frac{n \theta^{2}}{(n+2)(n+1)^{2}} \\
&=\frac{\theta^{2}}{(n+1)^{2}}\left[1+\frac{n}{n+2}\right]=\frac{2 \theta^{2}}{(n+1)(n+2)} \\
& \frac{2 \theta^{2}}{(n+1)(n+2)} \leq \frac{\theta^{2}}{3 n}, n=1,2, \ldots
\end{align*}
$$

هون

در نتيتجه d_{2}

 بگيريم ، فزض كنيل تمام برTوردگرهایى به شكل

$$
d_{c}(\mathbf{X})=c \max _{i} X_{i}=c d_{2}(\mathbf{X})
$$

 برابر است با

$$
\begin{align*}
r\left(d_{c}(\mathbf{X}), \theta\right) & =\operatorname{Var}\left(d_{c}(\mathbf{X})\right)+\left(E\left[d_{c}(\mathbf{X})\right]-\theta\right)^{2} \\
& =c^{2} \operatorname{Var}\left(d_{2}(\mathbf{X})\right)+\left(c E\left[d_{2}(\mathbf{X})\right]-\theta\right)^{2} \\
& =\frac{c^{2} n \theta^{2}}{(n+2)(n+1)^{2}}+\theta^{2}\left(\frac{c n}{n+1}-1\right)^{2} \tag{F,F,D}
\end{align*}
$$

مى
$\frac{d}{d c} r\left(d_{c}(\mathbf{X}), \theta\right)=\frac{2 c n \theta^{2}}{(n+2)(n+1)^{2}}+\frac{2 \theta^{2} n}{n+1}\left(\frac{c n}{n+1}-1\right)$
با مساوى صفر قرار دادن مشتق مىينيم كه بهترين c كه آن را **مىناميم طورى است كه
$\frac{c^{*}}{n+2}+c^{*} n-(n+1)=0$
$c^{*}=\frac{(n+1)(n+2)}{n^{2}+2 n+1}=\frac{n+2}{n+1}$
جایگگذارى اين مقدار از C در تساوى ه. ه.F نتيجه مىدهد :

$$
\begin{aligned}
r\left(\frac{n+2}{n+1} \max _{i} X_{i}, \theta\right) & =\frac{(n+2) n \theta^{2}}{(n+1)^{4}}+\theta^{2}\left(\frac{n(n+2)}{(n+1)^{2}}-1\right)^{2} \\
& =\frac{(n+2) n \theta^{2}}{(n+1)^{4}}+\frac{\theta^{2}}{(n+1)^{4}} \\
& =\frac{\theta^{2}}{(n+1)^{2}}
\end{aligned}
$$

مقايسهايى با تساوى ه. ه. ميانگين توان دوم خطايـى تقريباً نصـف ميانگين توان دوم خطالى بر آوردگر درستنمايى ماكريم n. است max $_{i} X_{i}$

 براساس نمونهاجى به حجم n باشند آنگاء

$$
\lim _{n \rightarrow \infty} \frac{r\left(d_{n}, \theta\right)}{r\left(d_{n}^{*}, \theta\right)} \leq 1
$$

 نمىكند مثال نفضى براى مطلب بالا است ')

 ميانگين مجهول يكث توزيعنمايى است در نظر بیِيريد .

مثال ه.
درستنمايى به صورت زير است
$f\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\frac{1}{\theta^{n}} \exp \left\{-\sum_{i=1}^{n} x_{i} / \theta\right\}$
براى بهدست آوردن برآوردگر درستنمايى ماكزيمم از تابع درستمايى لگاريتم مى گيريم $\log f\left(x_{1}, \ldots, x_{n} \mid \theta\right)=-n \log \theta-\frac{1}{\theta} \sum_{i=1}^{n} x_{i}$

با مشتقگيرى بهدست مى آوريم

$$
\frac{d}{d \theta} \log f\left(x_{1}, \ldots, x_{n} \mid \theta\right)=-\frac{n}{\theta}+\frac{\sum_{i-1}^{n} x_{i}}{\theta^{2}}
$$

بامساوى صفرقراردادنمشتق وحل آن برحسب θ مىينيمّكهبر آورد درستنهايى ماكزيمـم θ برابر است با

$$
\hat{\theta}=\sum_{i=1}^{n} \frac{x_{i}}{n}
$$

مشتقيذير باثد .

بنابراين در اين حالت هر دو بر آوردگر درستمايى ماكزيمّم و روش گشتاور است . جون

$$
\begin{aligned}
r(\bar{X}, \theta) & =\operatorname{Var}(\bar{X}) \\
& =\frac{\operatorname{Var}\left(X_{i}\right)}{n} \\
& =\frac{\theta^{2}}{n}
\end{aligned}
$$

كه در آن دليل تساوى ا-خيرِ اين است كه واريانس توزيع نمايى مساوى است با مربع ميانگين آن . اكنون بر آوردگر

خطاى اين بر آوردگ, مساوى است با

$$
\begin{align*}
r(c \bar{X}, \theta) & =\operatorname{Var}(c \bar{X})+(E[c \bar{X}]-\theta)^{2} \\
& =c^{2} \operatorname{Var}(\bar{X})+(c \theta-\theta)^{2} \\
& =c^{2} \frac{\theta^{2}}{n}+(c-1)^{2} \theta^{2} \tag{D,F,D}\\
& =\theta^{2}\left[\frac{c^{2}}{n}+(c-1)^{2}\right]
\end{align*}
$$

برای انتخاب مقدارى از c كه اين كميت را مينيمم كند با مشتقگيرى بهدست مى آوريم $\frac{d}{d c} r(c \bar{X}, \theta)=\theta^{2}\left[\frac{2 c}{n}+2(c-1)\right]$

با مساوى صـفر ترار دادن مشتق مىتوان نشان داد مقدارى از ككه مينيمـمكنتده است برابر است با $c^{*}=\frac{n}{n+1}$
ازينى برآورد

$r\left(\frac{n}{n+1} \bar{X}, \theta\right)=\theta^{2}\left[\frac{n}{(n+1)^{2}}+\frac{1}{(n+1)^{2}}\right]=\frac{\theta^{2}}{n+1}$
$r(\bar{X}, \theta)=\frac{\theta^{2}}{n}$

 ه 9 درحصد كتر از

بر'وردّامرهاى بيز

در بعضى حالات منطقى بهنظر مىرسلد ، θ راكه يكت بارامتر مجهول است مقدار يكت متغيّر تصادفى

 به T ا هر مقدار رادر ناصله (0, 1) با الحتمال مساوى مى 1 (0)

 باشند آنگاه تابع جگگالى احتمال جديد با شرطى $X_{i}=x_{i} ; i=1, \ldots, n$

$$
\begin{aligned}
f\left(\theta \mid x_{1}, \ldots, x_{n}\right) & =\frac{f\left(\theta, x_{1}, \ldots, x_{n}\right)}{f\left(x_{1}, \ldots, x_{n}\right)} \\
& =\frac{p(\theta) f\left(x_{1}, \ldots, x_{n} \mid \theta\right)}{\int f\left(x_{1}, \ldots, x_{n} \mid \theta\right) p(\theta) d \theta}
\end{aligned}
$$

تابع چگگالى شرطى $f\left(\theta \mid x_{1}, \ldots, x_{n}\right)$ برداشتمان در مورد θ برسسب توزيع يسشين بيان مىشود در حالمى كه وتمى
يششين به شكل جديد يعنى بسين در مى آيد) .
 بـر آورد مقـدار متغير تصادفـ از نظـر مـينيــم مـتـوسط تــوان دوم خطــاى ميسانگيـن آن است .

بنـابـرايـن بـهتريـن بـرآورد θ بـا فرض ايـن كـه مقـادير دادههـا ميانگين توزيع بـينين位 $X_{i}=x_{i} ; i=1, \ldots, n$ مقدار برآوردگر يز $E\left[\theta \mid X_{i}, \ldots, X_{n}\right)$ برابر است با
$E\left[\theta \mid X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right]=\int \theta f\left(\theta \mid x_{1}, \ldots, x_{n}\right) d \theta$
 هر يكت بــاوى است با
$f(x \mid \theta)=\theta^{x}(1-\theta)^{1-x} \quad x=0,1$
كه در آن θ مجهول است . علاوه برآن فرض كنيد كه ازاز توزيع يكنواخت روى (1 (0) انتخـاب
 حل : بايد $E\left[\theta \mid X_{i}, \ldots, X_{n}\right.$ را محاسبه كنيم • جون تابع جگالى بشين θ جگالى يكنواخت $p(\theta)=1 \quad 0<\theta<1$

$$
\begin{aligned}
& f\left(\theta \mid x_{1}, \ldots, x_{n}\right)=\frac{f\left(x_{1}, \ldots, x_{n}, \theta\right)}{f\left(x_{1}, \ldots, x_{n}\right)} \\
& =\frac{f\left(x_{1}, \ldots, x_{n} \mid \theta\right) p(\theta)}{\int_{0}^{1} f\left(x_{1}, \ldots, x_{n} \mid \theta\right) p(\theta) d \theta} \\
& =\frac{\theta^{\sum_{i}^{i} x_{1}}(1-\theta)^{n-\sum_{1}^{n} x_{1}}}{\int_{0}^{1} \theta^{\sum_{i}^{n} x_{1}}(1-\theta)^{n-\Sigma_{i}^{i} x_{1}} d \theta}
\end{aligned}
$$

اكنون مىتوان نشان داد كه به ازای مقادير m و r
$\int_{0}^{1} \theta^{m}(1-\theta)^{r} d \theta=\frac{m!r!}{(m+r+1)!}$

$$
x=\sum_{i=1}^{n} x_{i} x_{i}
$$

$f\left(\theta \mid x_{1}, \ldots, x_{n}\right)=\frac{(n+1)!\theta^{x}(1-\theta)^{n-x}}{x!(n-x)!}$

$$
\begin{aligned}
\left.E|\theta| x_{1}, \ldots, x_{n}\right] & =\frac{(n+1)!}{x!(n-x)!} \int_{0}^{1} \theta^{1+x}(1-\theta)^{n-x} d \theta \\
& =\frac{(n+1)!}{x!(n-x)!} \frac{(1+x)!(n-x)!}{(n+2)!} \\
& =\frac{x+1}{n+2}
\end{aligned}
$$

در نتيجه برTوردگر بيز برابر است با
$E\left[\theta \mid X_{1}, \ldots, X_{n}\right]=\frac{\sum_{i=1}^{n} X_{i}+1}{n+2}$

خ يروزی باشل آزگاه با فرض اين كه مساوى است با 7/11 (در صورتى كه ، بهعنوان مثال بر آورد درستتهامى ماكزيمـم 6/10است) .

تبصر0

توزيع شرطى

$$
\text { است توزيع بتا با بارامترهاى } n=\sum_{i=r}^{n} x_{i}+1, \sum_{i=r}^{n} x_{i}+1 .
$$

 تعين كنيم • داريم

$$
f\left(\theta \mid x_{1}, \ldots, x_{n}\right)=\frac{f\left(x_{1}, \ldots, x_{n} \mid \theta\right) p(\theta)}{f\left(x_{1}, \ldots, x_{n}\right)}
$$

$$
\begin{gathered}
f\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\frac{1}{(2 \pi)^{n / 2} \sigma_{0}^{n}} \exp \left\{-\sum_{i=1}^{n}\left(x_{i}-\theta\right)^{2} / 2 \sigma_{0}^{2}\right\} \\
p(\theta)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-(\theta-\mu)^{2} / 2 \sigma^{2}\right\}
\end{gathered}
$$

$f\left(x_{1}, \ldots, x_{n}\right)=\int_{-\infty}^{\infty} f\left(x_{1}, \ldots, x_{n} \mid \theta\right) p(\theta) d \theta$
به كمكت محاسبات جبرى مى توان نشان داد كه اين جگالى شرطى ، جگالمى نرمال با ميانگين
$E\left[\theta \mid X_{1}, \ldots, X_{n}\right]=\frac{n \sigma^{2}}{n \sigma^{2}+\sigma_{0}^{2}} \bar{X}+\frac{\sigma_{0}^{2}}{n \sigma^{2}+\sigma_{0}^{2}} \mu$

$$
=\frac{\frac{n}{\sigma_{0}^{2}}}{\frac{n}{\sigma_{0}^{2}}+\frac{1}{\sigma^{2}}} \bar{X}+\frac{\frac{1}{\sigma^{2}}}{\frac{n}{\sigma_{0}^{2}}+\frac{1}{\sigma^{2}}} \mu
$$

و واريانس
$\operatorname{Var}\left(\theta \mid X_{1}, \ldots, X_{n}\right)=\frac{\sigma_{0}^{2} \sigma^{2}}{n \sigma^{2}+\sigma_{0}^{2}}$

 ■ . ميانگين نمونه ،

تبصره : انتخاب يك توزيع بيشين نرمال

 قي $\mu+a$

 كمتر) معتقديم كه نرمال θ با ميانگين μ و واريانس

$$
P\left\{-1.64<\frac{\theta-\mu}{\sigma}<1.64\right\}=.90
$$

$$
P\{\mu-1.64 \sigma<\theta<\mu+1.64 \sigma\}=.90
$$

منطقى به نظر مىرسدكه قرار مىدهيم
$1.64 \sigma=a \quad$ 九 $\quad \sigma=\frac{a}{1.64}$
بنابراين اگر برداشت قبلى را واتعاً بتوان بطور منطقى با يكت توزيع نرمال توصيف كرد Tانگاه
اين توزيع بايد دارای ميانگين مورد اين كه آيا اين توزيع برايى برداشت قبلى مناسب است

 مىشُوند

$$
\begin{aligned}
& P\left\{-1.96<\frac{\theta-\mu}{\sigma}<1.96\right\}=.95 \\
& P\left\{-2.58<\frac{\theta-\mu}{\sigma}<2.58\right\}=.99
\end{aligned}
$$

كه در T
مثال ه. ه.ه - تابع درستنمايى (يكنواخت روى فاصله

$$
\begin{aligned}
f\left(\theta \mid x_{1}, \ldots, x_{n}\right) & =\frac{f\left(x_{1}, \ldots, x_{n} \mid \theta\right) p(\theta)}{\int_{a}^{b} f\left(x_{1}, \ldots, x_{n} \mid \theta\right) p(\theta) d \theta} \\
& =\frac{f\left(x_{1}, \ldots, x_{n} \mid \theta\right)}{\int_{a}^{b} f\left(x_{1}, \ldots, x_{n} \mid \theta\right) d \theta}, a<\theta<b
\end{aligned}
$$

اكنون نهاى جگاللى

$$
\int_{a}^{b} f\left(\theta \mid x_{1}, \ldots, x_{n}\right) d \theta=1-a
$$

هاه / ه / شامل مقدار واقعى فرستاده شده باشد .
 مقدار دريافت شده + F باشد ، توزيع نر مال با ميانگين و واريانس زير است

$$
\begin{aligned}
& E[S \mid \text { data }]=\frac{1 / 60}{1 / 60+1 / 100} 40+\frac{1 / 100}{1 / 60+1 / 100} 50=43.75 \\
& \operatorname{Var}(S \mid \text { data })=\frac{1}{1 / 60+1 / 100}=37.5
\end{aligned}
$$

 استاندارد است و در نتيجهه

$$
\begin{aligned}
& P\left\{\left.-1.64<\frac{S-43.75}{\sqrt{37.5}}<1.64 \right\rvert\, \text { data }\right\}=.95 \\
& P\{43.75-1.64 \sqrt{37.5}<S<43.75+1.64 \sqrt{37.5} \mid \text { data }\}=.95
\end{aligned}
$$

Jtmo

- 1

$$
f(x)=\left\{\begin{array}{lc}
e^{-(x-\theta)} & x \geq 0 \\
0 & \text { در غيراين صررت }
\end{array}\right.
$$

الف) برآوردگر روش گشهتاورهأى قرا بهدست آوريل .
بج) بر اوردگر درستنهامى ماكزيمـم θ را بهدست Tوريل . - Y توزيعنهامى با بارامتر \اسـت .
 مسألة \استا .
به) با استفاده از قسمتهاى الف و بـ و مقدار ثابت θ ، مثلا"
 برTوردگر درستهايى ماكزيهم را ابا مقدار 0.5 مقايسه كنيد . با الستفاده از متغيّرهاى تصادنى
 برآوردگ بهترنل ؟ - -

$$
f(x)=\left\{\begin{array}{lc}
\lambda e^{-\lambda(x-1)} & x \geq 1 \\
0 & \text { در غيراينصررت }
\end{array}\right.
$$

نشان دهيل كه بر Tوردگر روش تشتاور

$$
f(x)=\frac{1}{2} e^{-|x-0|} \quad-\infty<x<\infty
$$

بر آوردگر درستّهامى ماكزيمـم θ ا بهدمت Tوريل .
 ماكز يمــ - 7 ، باشمد . دو برT Tرد $\sigma^{2}=1$

 مساوى n است بهدست آيد

- A دهيد كه [IY مقدار مشاهده شده Y Y Y بيلى Y Y

 0.04 - 1.

 σ^{2} تز
 (

 Y Y -

$330^{\circ} \mathrm{C}$	$322^{\circ} \mathrm{C}$	$345^{\circ} \mathrm{C}$
$328.6^{\circ} \mathrm{C}$	$331^{\circ} \mathrm{C}$	$342^{\circ} \mathrm{C}$
$342.4^{\circ} \mathrm{C}$	$340.4^{\circ} \mathrm{C}$	$329.7^{\circ} \mathrm{C}$
$334^{\circ} \mathrm{C}$	$326.5^{\circ} \mathrm{C}$	$325.8^{\circ} \mathrm{C}$
$337.5^{\circ} \mathrm{C}$	$327.3^{\circ} \mathrm{C}$	$322.6^{\circ} \mathrm{C}$
$341^{\circ} \mathrm{C}$	$340^{\circ} \mathrm{C}$	$333^{\circ} \mathrm{C}$
$343.3^{\circ} \mathrm{C}$	$331^{\circ} \mathrm{C}$	$341^{\circ} \mathrm{C}$
$329.5^{\circ} \mathrm{C}$	$332.3^{\circ} \mathrm{C}$	$340^{\circ} \mathrm{C}$

Yャ゙

 19- 19 اين تلولهها برحسب متر به صورت زير است:

2100	1984	2072	1898
1950	1992	2096	2103
2043	2218	2244	2206
2210	2152	1962	2007
2018	2106	1938	1956

 باشد

- در لوس TV

 102.2, 100.4, 98.6, 88.2, 78.8, 83, 84.7, 94.8, 105.1, 106.2, 111.2, 108.3,

منواكسيدكربن بهدست Tوريد .

1^ ا - فرض كنيد آن

 الفـ) مطلوب است تعين هتين فاصلهايى
(راهنمايى : توزيع

 رو Y / Y ب بيلى روزانه تجاوز كند . يك - Y.
 نوع 1
و از يكى نمونهُ ـ ا تايمى از نوع دوم دادههاى زير بهدست آمده است 3094, 3106, 3004, 3066, 2984, 3124, 3316, 3212, 3380, 3018 : نو

 آن .

 توزيـع نرمـال ميـانگين

 - Y - Y

$I_{\text {g }}$		$I I_{\text {g }}$	
481	572	526	537
506	561	511	582
527	501	556	605
661	487	542	558
501	524	491	578

يكك بازة اطمينان هو درصهد براى تفاضل ميانگينهاى زمان سوختن بددست آوريد . فرض كنيد توزيعها نر ال با واريانسهاى مـاوى و و مجهول استا است .

$$
\text { ظ - YF - F فتيهاى ، } 1 \text { باترى (برحسب آمبر ساعت) بهصورت زير ثبت شلدهاند . }
$$

$140,136,150,144,148,152,138,141,143,151$
الف) واريانس جامعه ،

 براساس دادههاى زير

6.68	6.66	6.62	6.72
6.76	6.67	6.70	6.72
6.78	6.66	6.76	6.72
6.76	6.70	6.76	6.76
6.74	6.74	6.81	6.66
6.64	6.79	6.72	6.82
6.81	6.77	6.60	6.72
6.74	6.70	6.64	6.78
6.70	6.70	6.75	6.79

فرض كنيد جامعه نرمال است .
 بهصوت زير ثبت شمدهاند
$50.6 \quad 69.8$
$54.8 \quad 53.6$
$54.4 \quad 66.1$
$44.9 \quad 48$
$42.1 \quad 37.8$

مطلوب است تعين يكك ذاصله اطمينان دوطرنه براى واريانس زمان سوختن (فرض كنيد كه
. جامعه نرمال است) .
-
 بهدست مى آيل . توخيع دهيدكه هرا دانستن μ هبر آوردگر ذاصلهایى را در مقايسه با حالتى كه مجهول استت بهتر مىكند .

σ_{1}^{2} - 9
 واريانس مجهول آوريد
(راهنمايى :از تعريف متغنيّر تصادفى F و اين واتعيت كه متغيّر هاى تصادفى مستقل كىدوواند استفاده كنيد) .
د. - Y.

 زير باشند .

بتخهص 1	متخصص 2
0.46	0.82
0.62	0.61
0.37	0.89
0.40	0.51
0.44	0.33
0.58	0.48
0.48	0.23
0.53	0.25
	0.67
	0.88

ا

 YY

 الف) مطلوب است برآورد احتمال اين كه شـخص دجار سرطان ريه ، در زمان كتمتر از ه سال وت كوتد .
 قسمت الف كمتر از Y • / • است ؟

- Y P

 . PF θ ر مسأله
.
 مجهول است از نتايج مثال ه.F.ب استفاده كنيد براى استدلال هر در مورد اين كه در ميان تمام برT بردگگرهاى نالاريب دوم خطاست به ازاى § σ^{2} را در نظر بگيريد . يعني

 مثال ه. ه.ب و اين واتعيت كه اگر ان $\lambda S_{x}^{2}+1(1-\lambda) S_{y}^{2}$ ($\operatorname{Var}\left(\chi_{k}^{2}\right)=2 k$ برآوردكننده زير داراى مىنيمم ميانگين توان دوم خخطاست .

$$
\frac{(n-1) S_{x}^{2}+(m-1) S_{y}^{2}}{n+m-2}
$$

اين بر آوردگر را برآوردكر روى هم
 كداميكت از اين دو برآوردگر بهتر است - F. مجهول λ است . فرض كنيد كه Tماردان براماس تجريِات قبلى در نـواحـي
 چگَالى يششين برابر است با

$$
p(\lambda)=e^{-\lambda} \quad 0<\lambda<\infty
$$

اگگر مجموعـاً
 | توزيعنمايِى با ميانگين $1 / \lambda$ است . فرض كنيل كهه توزيع بيشين ג، توزيع گاما با تابع جگالىى زير است

$$
g(x)=\frac{e^{-x} x^{2}}{2} \quad 0<x<\infty
$$

آوريد .

- FY (0,1 يكنواخت باشد 6 مطلوب است احتمال بسين اينكه p

الف) از نمونه|يى به حتجم . Y 6 تا معيوب بهدست آمله است .
ب) از نمونهايى به حیجم • ا تعلماد | معيوب بهدست آمله اسـت .
ب) از نمونهايى به ححجم • \mid تعلاد

 همیثنين فرض كنيل كه براساس تجربيات قبلى بدانيم كه ميانگين معهول دارای توزيع يشثين

A

آزمون فرض

| - مقدم4

 .
 است . علت ايز كه آن را يكت فرض مىنامند . اين است كه نمى اسانيم درست اسـت يـا خـا خـير . مسألة
 سازگار است يا خير • مثلاً جامعهايى را در نظر بگيريد كه داراى توزيع نرمال با ميانگين مجهول فر و

گُويمّ فرض "لذذيرفنهه مىشود و در غير اين صورت فرض هردا) مى شود .
 ((1) (1$)$ ($)$
 بهعنوان شاهلى به نفع فرض \# \#

Y- سطوح معنىدارى

جامعهايى را با توزيع را در بارة θ آزمون كنيم . اين فرض را با با توزيع نرمال با ميانگين θ و واريانس 1 باشد آنگاه دو فرض صفر در در بار باره θ عبار تند از
$H_{0}: \theta=1$
$H_{0}: \theta \leq 1$

 ناميده مىشود 1 در غير اين صورت آن آن را الهرض مركب گو

 بيذيريم يا رد كنيم . يكـ آزمون برائى

 ناهيه بحرانى Cبدين صورت تعين مينـينود
$\left(X_{1}, X_{2}, \ldots, X_{n}\right) \notin C$
زرض ${ }^{\prime} H_{0}$ بيذيريم اگر
$\left(X_{1}, \ldots, X_{n}\right) \in C$
فرض
براى مثال يكك آزمون متداول براى اين فرض كه ف، ميانگين جامعه نرمال با واريانس ا ، مساوى 1 است داراراى ناحيه بحرانى زير است
$C=\left\{\left(X_{1}, \ldots, X_{n}\right):\left|\frac{\sum_{i-1}^{n} X_{i}}{n}-1\right|>\frac{1.96}{\sqrt{n}}\right\}$

> تقسـم بر جذر حجمـ نـونه باشد .

توجه به اين نككه مهم است كه در Tآمون يكث فرض صفر يكى را خطاى نوع I مىناسند و هنگامى رخ مى دهد كه فرض است و خطاى ديگر كه خطاى نوع II ناميده مى شود زمانى است كه فرض كه

竍 $\alpha=0.1,0.05,0.005$
 احتمال خطاى نوع I هريتز از α بيستر نشود

 $H_{0}: \theta \in w$
 نقطهايى مائند ${ }^{\text {ن }}$

"

F-

آمار و ا-حتـال مهندسى

باشد مى خواهيم فرض صفر

$$
H_{0}: \mu=\mu_{0}
$$

رادر مقابل نرض

$$
H_{1}: \mu \neq \mu_{0}
$$

Tز آمون كنيم كه در T ${ }^{\top}$
جون كهفض H_{0} رابيذيريماگر $\overline{\text { / }}$

$$
\begin{equation*}
C=\left\{X_{1}, \ldots, X_{n}:\left|\bar{X}-\mu_{0}\right|>c\right\} \tag{1.r.я}
\end{equation*}
$$

كه در T ان cبطور مناسب انتخاب مىشود .

$$
\begin{equation*}
P_{\mu_{0}}\left\{\left|\bar{X}-\mu_{0}\right|>c\right\}=a \tag{ץ.r.ч}
\end{equation*}
$$

كه درT آ داراى توزيع نرمال با ميانگين

$$
Z \equiv \frac{\bar{X}-\mu_{0}}{\sigma / \sqrt{n}}
$$

دارانى توزيع نرمال استاندارد است . حال تساوى Y.Y.Y معادل است با

$$
P\left\{|Z|>\frac{c \sqrt{n}}{\sigma}\right\}=\alpha
$$

يا به عبارت ديگر

$$
2 P\left\{Z>\frac{c \sqrt{n}}{\sigma}\right\}=\alpha
$$

$$
P\left\{Z>z_{\alpha / 2}\right\}=\alpha / 2
$$

$$
\begin{aligned}
& \frac{c \sqrt{n}}{\sigma}=z_{\alpha / 2} \\
& c=\frac{z_{\alpha / 2} \sigma}{\sqrt{n}}
\end{aligned}
$$

 غيراينصورت آن را مى يذيرد \ddagger يا به عبار ت مع اريل

$$
\begin{aligned}
& \frac{\sqrt{n}}{\sigma}\left|\bar{X}-\mu_{0}\right|>z_{a / 2} \\
& \frac{\sqrt{n}}{\sigma}|\bar{X}-\mu| \leq z_{a / 2}
\end{aligned}
$$

(r.Y.Y)

اين مطلب را مى توان به شكل زير نشان داد :

ايـن منـحنـى 6 نمـايـش تـابـع جیگـالـى نـرمـال استاندارد است . [كه همان هجگـالى آمـارة آزمـون
-
مثال Y.

 يمام ه بار بطور مستقل ارسال شود و مقدار متوسط دريافت در ايستگاه B برابر با حل : نرض كنيد آزمون را در سطع معنىدارى ه درصد انجام دهيم . ابتدا مقدار آماره آزمـون را

$$
\frac{\sqrt{n}}{\sigma}\left|\bar{X}-\mu_{0}\right|=\frac{\sqrt{5}}{2}(1.5)=1.68
$$

مساسسبه مىكنيم

جون اين مقدار كمتر از

 بيشترى انتخاب مىشد ـ مثلا" 1 . 1 ـ
 . H_{0}

 كه ${ }_{0}$ درست است بايد شاهل خِلى توى موجود باشد تا

 مشاهده Tشارة T آزمون

 سطع معنىدارى بحرانى را مشتخص مىكند . بدين معنى كه كمتر از "p-value" باشد و و

 بنابراين مى توان بلاذاصله فرض صـر اور را يذيرنت .
 $\frac{\sqrt{n}}{\sigma}\left|\bar{X}-\mu_{0}\right|=\frac{\sqrt{5}}{4}=.559$ در اين حالت

$$
\begin{aligned}
P\{|Z|>.559\} & =2 P\{Z>.559\} \\
& =2 \times .288=.576
\end{aligned}
$$

 دارایى مقـدار ^^است ك در هر سطع معنىدارى 576. هيع وتت فرض مهنر را نمى خواهيم با سطع معنىدارى به بزرگّى 576. آزمون كنيم 6 در نتيجه ■.
تاكنون راجع به احتمال خططاى نوع II ، يعنى الحتمال قبول فرض حهفر وتتى مـقدار واتـعى ميانگين ، μ ، برابر ${ }^{\prime}$ 范

$$
\begin{aligned}
\beta(\mu) & =P_{\mu}\left\{H_{0} y^{3}\right\} \\
& =P_{\mu}\left\{\left|\frac{\bar{X}-\mu_{0}}{\sigma / \sqrt{n}}\right| \leq z_{\alpha / 2}\right\} \\
& =P_{\mu}\left\{-z_{\alpha / 2} \leq \frac{\bar{X}-\mu_{0}}{\sigma / \sqrt{n}} \leq z_{\alpha / 2}\right\}
\end{aligned}
$$

تابع (β را منحنى شاخص عملكرد (يا OC) مىنامند و نشاندهندة: اين احتمال است كه مىشود هرگاه ميانگين واتعى برابر μ است . براى محاسبة اين احتمال از اين واتعيت امتفاده مىكنيم كه

$$
Z \equiv \frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \sim \mathscr{N}(0,1)
$$

$$
\begin{align*}
\beta(\mu) & =P_{\mu}\left\{-z_{\alpha / 2} \leq \frac{\bar{X}-\mu_{0}}{\sigma / \sqrt{n}} \leq z_{\alpha / 2}\right\} \\
& =P_{\mu}\left\{-z_{\alpha / 2}-\frac{\mu}{\sigma / \sqrt{n}} \leq \frac{\bar{X}-\mu_{0}-\mu}{\sigma / \sqrt{n}} \leq z_{\alpha / 2}-\frac{\mu}{\sigma / \sqrt{n}}\right\} \tag{ヶ.r.t}\\
& =P\left\{\frac{\mu_{0}-\mu}{\sigma / \sqrt{n}}-z_{\alpha / 2} \leq Z \leq \frac{\mu_{0}-\mu}{\sigma / \sqrt{n}}+z_{\alpha / 2}\right\} \\
& =\Phi\left(\frac{\mu_{0}-\mu}{\sigma / \sqrt{n}}+z_{\alpha / 2}\right)-\Phi\left(\frac{\mu_{0}-\mu}{\sigma / \sqrt{n}}-z_{\alpha / 2}\right)
\end{align*}
$$

 متقـارن است و در واقع فتط از طريـق . $d=(\sqrt{ } n / \sigma)\left|\mu-\mu_{0}\right|$ در شكل $d=$
 واتعى برابر • 1 است - حــاب كنيم • بدين منظور داريم
$\frac{\sqrt{n}}{\sigma}\left(\mu_{0}-\mu\right)=-\frac{\sqrt{5}}{2} \times 2=-\sqrt{5}$
 $\Phi(-\sqrt{5}+1.96)-\Phi(-\sqrt{5}-1.96)$
$=1-\Phi(\sqrt{5}-1.96)-[1-\Phi(\sqrt{5}+1.96)]$
$=\Phi(4.196)-\Phi(.276)$
$=.392$.
تبصر0
 رد

朔: $\mu=\mu_{0}$

YYV
نـل ششم ـ آزمون فرض

$$
\beta\left(\mu_{1}\right)=\beta
$$

$$
\begin{equation*}
\Phi\left(\frac{\sqrt{n}\left(\mu_{0}-\mu_{1}\right)}{\sigma}+z_{\alpha / 2}\right)-\Phi\left(\frac{\sqrt{n}\left(\mu_{0}-\mu_{1}\right)}{\sigma}-z_{\alpha / 2}\right)=\beta \tag{0.r.7}
\end{equation*}
$$

هر جند اين معادله را نمى توان بطور تحليلى برایى n حل كرد ، جواب آن آن را مى توان از از جدول تور توزيع
 بهصورت زير بهدست آورد ـ ابتدا فرض كـنيد

$$
\frac{\mu_{0}-\mu_{1}}{\sigma / \sqrt{n}}-z_{\alpha / 2} \leq-z_{\alpha / 2}
$$

خون Φ يكت تابع صعودى است نتيجه مىشودكه

$$
\begin{array}{r}
\Phi\left(\frac{\mu_{0}-\mu_{1}}{\sigma / \sqrt{n}}-z_{\alpha / 2}\right) \leq \Phi\left(-z_{\alpha / 2}\right)=P\left\{Z \leq-z_{\alpha / 2}\right\}=P\left\{Z \geq z_{\alpha / 2}\right\}=\alpha / 2 \\
\text { بس ، مى توان نوشت }
\end{array}
$$

$$
\Phi\left(\frac{\mu_{0}-\mu_{1}}{\sigma / \sqrt{n}}-z_{a / 2}\right) \approx 0
$$

در نتيجه از معادله خ.ץ.ه داريم

$$
\begin{equation*}
\beta \approx \Phi\left(\frac{\mu_{0}-\mu_{1}}{\sigma / \sqrt{n}}+z_{\alpha / 2}\right) \tag{1.r.7}
\end{equation*}
$$

يا جون

$$
\beta=P\left\{Z>z_{\beta}\right\}=P\left\{Z<-z_{\beta}\right\}=\Phi\left(-z_{\beta}\right)
$$

از معادلة 7.ب. 7 داريم

$$
\begin{align*}
& -z_{\beta} \approx\left(\mu_{0}-\mu_{1}\right) \frac{\sqrt{n}}{\sigma}+z_{\alpha / 2} \\
& n \approx \frac{\left(z_{\alpha / 2}+z_{\beta}\right)^{2} \sigma^{2}}{\left(\mu_{1}-\mu_{0}\right)^{2}}
\end{align*}
$$

در حالت
 خطاى نوع II در مقدار

 $n=\frac{(1.96+.67)^{2}}{(1.2)^{2}} 4=19.21$

$$
\begin{aligned}
\beta(9.2) & =\Phi\left(-\frac{1.2 \sqrt{20}}{2}+1.96\right)-\Phi\left(-\frac{1.2 \sqrt{20}}{2}-1.96\right) \\
& =\Phi(-.723)-\Phi(-4.643) \\
& =1-\Phi(.723) \\
& =.235 .
\end{aligned}
$$

 باشد هه اتفاتى مىافتد ؟ روشن است كه در اين حالت وتتى
 درست است) . بنابراين براى آزمون
$H_{0}: \mu=\mu_{0} \quad$, $H_{1}: \mu>\mu_{0}$
بايد بهصورت زير باشد
$C=\left\{\left(X_{1}, \ldots, X_{n}\right): \bar{X}-\mu_{0}>c\right\}$

ifq
نصل نُشم - آزمون فرض

در شر ط زير صدق كند .

$$
\begin{equation*}
P_{\mu_{0}}\left\{\bar{X}-\mu_{0}>c\right\}=\alpha \tag{9.r.i}
\end{equation*}
$$

امّا هون ، با فرض درست بودن

$$
Z=\frac{\bar{X}-\mu_{0}}{\sigma / \sqrt{n}}
$$

دارای توزيع نرمال استاندارد است ؛ تساوى چ. ז. 9 معادل است با

$$
P\left\{Z>\frac{c \sqrt{n}}{\sigma}\right\}=\alpha
$$

كه در آن Z نرمال استاندارد است ـ المّا جون

$$
P\left\{Z \geq z_{a}\right\}=\alpha
$$

$$
c=\frac{2 \rho}{\sqrt{n}}
$$

 آن را مى يذيرد . يا به عبارت ديگر
$\frac{\sqrt{n}}{\sigma}\left(\bar{X}-\mu_{0}\right) \leq z_{a}$
$\frac{\sqrt{n}}{a}\left(\bar{X}-\mu_{0}\right)>z_{a}$

و Tان را ناحيه بحرانى يكشطفه مىنامند . (زيرا فرض همينطور Tزمون فرض

$$
\begin{aligned}
& H_{0}: \mu=\mu_{0} \\
& H_{1}: \mu>\mu_{0}
\end{aligned}
$$

يكت مسألهُ آزمون يكتطرهه ناميله مىشود (در مقابل مسألةً دوطرفه كه فرض مقابل آنغعبارث است از

$$
\left(H_{1}: \mu \neq \mu_{0}\right.
$$

برای محاسمبة T T نرمال استاندارد سداتل به بزرگّى اين مقدار باشد .

در اين حالت جه نتيجهايى مىتوان گرفت ؟ برای ديدن اينڭكه Tيا دادهها با اين فرض سازگارند، يعنى ميانگین برابر ^است نرض

$$
H_{0}: \mu:=8
$$

رادر مقابل نرض يكفطرنه زير Tزمون مىكنيم

$$
H_{1}: \mu>8
$$

مقدار Tمارة آزمون برابر است با 1.68 -value است با الحتمال ايزكه متغيّر نرمال استاندارد از 1.68 بيشتر شود 6 يعنى
p-value $=1-\Phi(1.68)=.0465$
هون اين T'زمون فرض وا در تمام سطوح معنى دارى بزرگّتر يا مساوى 0465. رد مىكند ، بس نرض
 سطع معنىدارى 05 = $\alpha=$
 به صورت زير بهدست Tورد

$$
\begin{aligned}
\beta(\mu) & =P_{\mu}\left\{\bar{X} \leq \mu_{0}+z_{a} \frac{\sigma}{\sqrt{n}}\right\} \\
& =P\left\{\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \leq \frac{\mu_{0}-\mu}{\sigma / \sqrt{n}}+z_{a}\right\} \\
& =P\left\{Z \leq \frac{\mu_{0}-\mu}{\sigma / \sqrt{n}}+z_{\alpha}\right\} \quad Z \sim \mathcal{N}(0,1)
\end{aligned}
$$

معادله اخير از نرمال استاندارد بودن $\operatorname{\text {م}}$

$$
\beta(\mu)=\Phi\left(\frac{\mu_{0}-\mu}{\sigma / \sqrt{n}}+z_{\alpha}\right)
$$

هون Φ شهودى نيز جالب است زيرا مسلماً منطتى است كه هر جه ميانگين واقعى بربزرگتر باشمد كمتر احتمال

$$
\beta\left(\mu_{0}\right)=1-\alpha
$$

 به كار برده شود.
$H_{0}: \mu \leq \mu_{0}$
درمقابل
$H_{1}: \mu>\mu_{0}$

$$
\begin{array}{ll}
P_{\mu}\left\{\bar{X}>\mu_{0}+z_{\alpha} \frac{\sigma}{\sqrt{n}}\right\} \leq \alpha \quad, \quad \mu \leq \mu_{0} \\
P_{\mu}\left\{\bar{X} \leq \mu_{0}+z_{\alpha} \frac{\sigma}{\sqrt{n}}\right\} \geq 1-\alpha \quad, \quad \mu \leq \mu_{0}
\end{array}
$$

$$
\beta(\mu) \geq 1-\alpha \quad, \quad \mu \leq \mu_{0}
$$

$\beta(\mu) \geq \beta\left(\mu_{0}\right)=1-\alpha \quad$, $\quad \mu \leq \mu_{0}$
 . .

$$
\begin{aligned}
& \text { رادر سطع a T آمون كرد ، بدين ترتيبكه } \\
& \begin{array}{ll}
\frac{\sqrt{n}}{\sigma}\left(\bar{X}-\mu_{0}\right)>-z_{\alpha} & \text { را } H_{0} \\
\frac{\sqrt{n}}{\sigma}\left(\bar{X}-\mu_{0}\right) \leq-z_{a} &
\end{array}
\end{aligned}
$$

اين آزمون را به مورت ديگَـرى نيـز مىتـوان انجـام داد و آن اين كـه ابتـلـا مقـدار آمـاره آزمـون

 فرض رد مىشود .
 نيكوتِن دارند . يكى كارخانهُ سيگارسازى ادعا مىكند كه روش جـي

 بدانيم انحعراف معيارنيكوتين مو جود درسيگارها جه نتيجهايى مىگيريد وتتى متو سط نيكوتِن موجود در • تدكر - ممكن است اين سؤال مطرح شود كه هِگونه از قبل مىدانيم كه انتحران معيار ^ / • است ـ ـيكت

 حل : ابتدا بايد در مورد فرض صفر مناسب تصميم بگيريم . همانطور كه قبلا" تذكر دادهايم ، روش ما

 مى مكيم 6 يعنى بايد فرضهاى زير را آزمون كنيم
$H_{0}: \mu \geq 1.6 \quad$. $\quad H_{1}: \mu<1.6$
در مقابل
حال مقدار آمارة آزمون برابر است با

$$
\sqrt{n}\left(\bar{X}-\mu_{0}\right) / \sigma=\sqrt{20}(1.54-1.6) / .8=-.336
$$

در نتيجه valuep-pبرابر است با

$$
p \text {-value }=P\{Z<-.336\} \quad Z \sim N(0,1)
$$

$$
=.368
$$

تبصرهاها
الف) يكت تشابه مستقيم ين برآورد ذاصلة اطمينان و آزمون فرض وجود د دارد ـ بهعنوان مثال ،
 اطمينان ($\mu \in\left(\bar{x}-z_{a / 2} \frac{\sigma}{\sqrt{n}}, \bar{x}+z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}\right)$
 $P\left\{\mu \in\left(\bar{X}-z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}, \bar{X}+z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}\right)\right\}=1-\alpha$

بنابراين ، اگر
$\left(\bar{X}-z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}, \bar{X}+z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}\right)$
ترارگيرد مقابل
$\mu_{0} \notin\left(\bar{X}-z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}, \bar{X}+z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}\right)$

$\mu \in\left(\bar{X}-z_{a} \frac{\sigma}{\sqrt{n}}, \infty\right)$
در نتيجه يكث آزمون در سطع منىدارى α برایى α ($\mu_{0}<z_{a} \sigma / \sqrt{n}$ رد مى كند اگر -

ب) اشارهامى در مورد ثايايايى

 نرمال بودن توزيع جامير بار با واريانس معلوم از فرض نرمال بودن توزيع
 با واريانس

 مقدار معينى مانند

$$
H_{0}: \mu=\mu_{0}
$$

رادر مقابل فرض
$H_{1}: \mu \neq \mu_{0}$
بايد توجه داشت كه فرض صفر يكث فرض مساده نيست زيرا مقدار

 وتتى بهعارت معادل

$$
\left|\frac{\bar{X}-\mu_{0}}{\sigma / \sqrt{n}}\right|>z_{\alpha / 2}
$$

حال وتىى σ^{2} معلوم نيست، معقول به نظر مىرسد كه آن را به صورت زير برآورد كيم $S^{2}=\frac{\sum_{i-1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n-1}$
و سیس Ho را رد كنيم اگر

$$
\left|\frac{\bar{X}-\mu_{0}}{S / \sqrt{n}}\right|
$$

بزرتُ باشلد .
براى تعين اين كه آمارة

$$
\left|\frac{\sqrt{n}\left(\bar{X}-\mu_{0}\right)}{S}\right|
$$

به جه بزرگی باشل تا فرض را رد كنيم در صـورتى كه سطع معنىدارى آزمون ג است ، بايلد توزتع
 ديديم Tماره T ك كه به مورت زير تعويف شل

$$
T=\frac{\sqrt{n}\left(\bar{X}-\mu_{0}\right)}{S}
$$

$$
\text { وتتى } n=\mu_{0} \text { - } 1 \text { درارایى توزيع آزادى است } t \text { بس }
$$

$$
\begin{equation*}
P_{\mu,}\left\{-t_{\alpha / 2, n-1} \leq \frac{\sqrt{n}\left(\bar{X}-\mu_{0}\right)}{S} \leq t_{\alpha / 2, n-1}\right\}=1-\alpha \tag{11.4.7}
\end{equation*}
$$

كه در Tان

$$
H_{0}: \mu=\mu_{0} \quad H_{1}: \mu \neq \mu_{0}
$$

وتثى كه ${ }^{2}$ ميجول است به قرار زير مىباشد

$$
\begin{align*}
& \left|\frac{\sqrt{n}\left(\bar{X}-\mu_{0}\right)}{S}\right| \leq t_{\alpha / 2, n-1} \quad H_{0} \\
& \left|\frac{\sqrt{n}\left(\bar{X}-\mu_{0}\right)}{S}\right|>t_{\alpha / 2, n-1} \quad F_{1,2}, H_{0} \tag{1Y.Y.П}
\end{align*}
$$

آمار و استمال مهندسى

آزمون تعريف شلده در معادله چ. تشريت شلده است
 T-value آزمون عبارت است از احتمال اين كه
 در اينصورت T ازمون ، فرض

سطوح معنى دارى كمتر از آن مى ينّيرد . برنامة مى توان براى آزمونهاى دوطرفه و آزمونهاى يكتطرفه بهكار برد . (آزمونهـاى يكتطـرفه بـزودى معرفى خواهند شل) .

 براى كاهش كلسترول خون در نظر گرفته شلدهانل . به يكت گروه • ها نـفرى از داوطلبـان بـه مـلدت يكثماه اين دارو تحويز شل و تغييرات سطوح كلسترول در خون آنها ثـبـت گـرديل . آگر مـتوسط
 ابتلدا اين فرض را آزمون مىكنيـم كه تـغيرات نـقط تمــادنى هــتـد ـ يـعنى 6 • ه تفـاضـل بهدست آمده يكث نمونه تصاد فى نر مل با ميانگين 0 است . جحون مقدار آمـارة TT كـه بـراى آزمـون ميانگين صفر توزيع نرمال بهكار مىرود ب4 صورت زير است $T=\sqrt{n} \bar{X} / S=\sqrt{50} 14.8 / 6.4=16.352$

بليهى است كه بايل فرض تصـادفى بودن تغييرات را ردكرده ولى متأسفانه ، تـا اينـجـا هـنوز نـتيبجه
 مى
 در نظر گُرفته شود ؛ شرايط آب و هو ايی در طول مدت يِكتماه آزمون است . زيرا امكان زيادى دارد كه در سطع كلستر ول خون مؤثر باشل . در واقع نتيجه مىشود كه آزمايش نوت يكى آزهايش خيلى ضعيف است 6 زيرا براى آزمون أين كه يكت تيمار خاص بر بيمار ك كه مسكن است تحت تأثير خخلى عوامل ترار داشته باشلد 6 اثر دارد يا خير 6 بايد آزمايش را به قسـى طرح كنيـم كه تهام عوامل ديگر را بىاثر كنل . برای رسيلدن به اين مقصود 6 داوطلبان را بطور تصهانى به دو گروه تقسيم كرده به يكت

گروه دارو تجويز میشود و به گروه ديگر يكت دارونما (يعنى قرصهايمى كه از نظر طعم و شكل مشابه

 دوگروه مشاهده شود مى توان به دارو نسبت داد .

مثال 7. †. . Tآب مصرفى روزانغ آنها به قرار زير باشد

340	344	362	375
356	386	354	364
332	402	340	355
362	322	372	324
318	360	338	370

آيا دادهما با ادعاى اداره بهداشت تناقض دارد ؟

 برالى آزمون فرض

$$
H_{0}: \mu=\mu_{0} \quad\left(\text { or } H_{0}: \mu \leq \mu_{0}\right)
$$

$$
H_{4}: \mu>\mu_{0}
$$

مى،توانيم از آزمون يكکطرنة tاستفاده كنيم • در سطح معنىدارى a،
$\frac{\sqrt{n}\left(\bar{X}-\mu_{0}\right)}{S} \leq t_{a, n-1} \quad \sigma_{\text {S }} H_{0}$
$\frac{\sqrt{n}\left(\bar{X}-\mu_{0}\right)}{S}>t_{a, n-1} \quad$ ك, H_{0}
 آزادى از اين مقدار tيشتر شود . براى آزمون
$H_{0}: \mu=\mu_{0} \quad\left(\right.$ or $H_{0}: \mu \geq \mu_{0}$)

در مقابل
$H_{1}: \mu<\mu_{0}$

به صورت زير عمل ميكنم

$\frac{\sqrt{n}\left(\bar{X}-\mu_{0}\right)}{S}<-t_{a, n-1} \quad F_{1} H_{0}$
براي اين آزمون برابر است با احتمال اين كه متغيّ تصادفى th 1 با 1 - 1 درجه آزادى كمتر از مقدار مشاهده شده
 با F. . . . بارار زير است
$\begin{array}{lllllllllllll} & \frac{1}{36} .1 & \frac{2}{40.2} & \frac{3}{33.8} & \frac{4}{38.5} & \frac{5}{42} & \frac{6}{35.8} & \frac{7}{37} & \frac{8}{41} & \frac{9}{36.8} & \frac{10}{37.2} & \frac{11}{33} & \frac{12}{36}\end{array}$
(بَ مزار مايل)

ادّعاى سازنده لاستيكت رادر سطع هـ درحد آزمون كنيد .
 سازگار است ، فرضهای زير را آزمون مىكنيم
$H_{0}: \mu \geq 40,000 \quad H_{1}: \mu<40,000$

RLIN
THIS FFOGRAM COMFUTIS THE P value WHEN TESTING THAT A NOIRMAL FOFIMATION WHGGE \because 'H
KIANCE IS UNH NOWN HAS MEAN EQUAL. TO MU-TEFD.
ENTER THE VALIJE OF MU-EERO
740
ENTER THE SAMFLE SIIE
712
ENTEF TIHE DATA VALUES DNE AT A TIME

THE VALLE OF THE t-STATISTIC IS-3.444766
IS THE ALTEFNAIIVE HYFOTHESIS THO-SIDEDT ENTEK I IF YES AND O IF NO
70
IS THE ALTERNATIVE THAT THE MEAN EXCEEDS MU-ZERD DR THAT JT IS LESS? ENTEFi 1 i.
THE FORMEK CASE AND O IN THE LATTEF
$\stackrel{\square}{3}$
THE p-value 15 2.762199E-03
جون

†

وضعيتى كه اغلب در مهندسى با آن مواجههيم اين است كه تـصميم بعيريم آيـا دو روش مـيختلف
 ميانگينهایى دو جامعع نرمال الگُوسازی كرد.
† - ا ا حالت واريانسهاى معلوم
$\mu_{y} g \mu_{x}$ فرض كنيد و واريانسهاى معلوم
$H_{0}: \mu_{x}=\mu_{y}$
در مقابل
$H_{1}: \mu_{x} \neq \mu_{y}$

جـون بـرآورد

$|\bar{X}-\bar{Y}|>c \quad \bar{S} \mid$
$|\bar{X}-\bar{Y}| \leq c \quad$, ${ }^{\prime} H_{0}$
كه

$\bar{X}-\overparen{Y} \sim \mathcal{N}\left(\mu_{x}-\mu_{y}, \frac{\boldsymbol{o}_{x}^{2}}{n}+\frac{\boldsymbol{o}_{y}^{2}}{m}\right)$
در نتيجه
$\frac{\bar{X}-\bar{Y}-\left(\mu_{x}-\mu_{y}\right)}{\sqrt{\frac{\boldsymbol{o}_{x}^{2}}{n}+\frac{\boldsymbol{o}_{y}^{2}}{m}}} \sim \mathcal{N}(0,1)$

$(\bar{X}-\bar{Y}) / \sqrt{\frac{\sigma_{x}^{2}}{n}+\frac{\sigma_{y}^{2}}{l n}}$
داراى توزبي نرمال استاندارد است و بى توان نوشت
$P_{H_{o}}\left\{-z_{a / 2}<\frac{\bar{X}-\bar{Y}}{\sqrt{\frac{\sigma_{x}^{2}}{n}+\frac{\sigma_{y}^{2}}{m}}}<z_{a / 2}\right\}=1-\alpha$
از تساوى بهصورت زير بددست مى آيد
$\frac{|\bar{X}-\bar{Y}|}{\sqrt{\sigma_{x}^{2} / n+\sigma_{y}^{2} / m}}<z_{\alpha / 2}$
Ho را H_{0}

$$
\begin{aligned}
& \frac{|\bar{X}-\bar{Y}|}{\sqrt{\sigma_{x}^{2} / n+\sigma_{y}^{2} / m}}>z_{a / 2} \\
& \text { Ho } \\
& \text { برناهن }
\end{aligned}
$$

 MEANG ARE EQUAL WHEN THE VATIIANCEES ARE KNOWN
ENTER THE BAMPLE BIZEB
710,8
ENTER THE BAMPLE VARIANCES
? 1600,3600
ENTER THE FIRST BAMPLE INE AT A TIME
? 61.1 ? 58. $2762.3764759 .7766 .2757 .8761 .4762 .27 \mathrm{dJ.b}$
ENTER THE BECOND BAMPLE ONE AT A TIHE
? 42.27 56. 67 bb. 4754.2757 .4738 .4757 .4745 .4
THE VALUE DF THE TEST BTATIBTIC IE 6.379402E-02

 مقابل فرض يككطرنه

$$
\begin{aligned}
& \bar{X}-\bar{Y}<z_{a} \sqrt{\frac{\sigma_{x}^{2}}{n}+\frac{\sigma_{y}^{2}}{m}} \\
& \bar{X}-\bar{Y}>z_{a} \sqrt{\frac{\sigma_{x}^{2}}{n}+\frac{\sigma_{y}^{2}}{m}}
\end{aligned}
$$

فرض ${ }^{\text {H }}$ را مىنيريم اتر

فرض

F-Y
فرض كنيد (μ_{y}, σ_{y}^{2}) زير رادر نظر مىگيريم
$H_{0}: \mu_{x}=\mu_{y} \quad H_{1}: \mu_{x} \neq \mu_{y}$
براى تعيّن يكت Tزمون در سطع aلازم است يكث فرض اضافى ديگر كه برابرى واريانسهاى محهول ل

$$
\sigma^{2}=\sigma_{x}^{2}=\sigma_{y}^{2}
$$

مانند تبل فرض

$$
\begin{aligned}
& S_{x}^{2}=\frac{\sum_{i-1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n-1} \\
& S_{y}^{2}=\frac{\sum_{i=1}^{m}\left(Y_{i}-\bar{Y}\right)^{2}}{m-1}
\end{aligned}
$$

سيس همانْطور كه در بخشـ Y.Y از نصل ه نشان داديم

$$
\frac{\bar{X}-\bar{Y}-\left(\mu_{x}-\mu_{y}\right)}{\sqrt{\frac{(n-1) S_{x}^{2}+(m-1) S_{y}^{2}}{n+m-2}} \sqrt{1 / n+1 / m}} \sim t_{n+m-2}
$$

 $T \equiv \frac{\bar{X}-\bar{Y}}{\sqrt{\frac{(n-1) S_{x}^{2}+(m-1) S_{y}^{2}}{n+m-2}} \sqrt{\frac{1}{n}+\frac{1}{m}}}$
 زير آزمون مىشود

$|T|>t_{a / 2, n+m-2} \quad$ فرض H_{0}
كه در T'

 شود 6 يعنى
p-value $=P\left\{\left|T_{n+m-2}\right| \geq|t|\right\}=2 P\left\{T_{n+m-2} \geq|t|\right\}$
در آزمون يكبطرنه 6 يعنى
$H_{0}: \mu_{x} \leq \mu_{y} \quad H_{1}: \mu_{x}>\mu_{y}$

آمار و احتـال بهندسى

$$
T \leq t_{a, n+m-2} \quad \text { زرض } H_{0} \text { را مىينيريم اكر }
$$

$$
\text { نرض }{ }_{0} \text { رد مىكيم اگر }
$$

با فرض
از t بيشتر شود .

RLW
tinis promaram compute the p－value mien tegtine that two normel popllationa havin G ERUAL BUT LHKNONN VARIANCES HAVE A COMMON MEAN
ENTER THE 日IIE DF SAMPLE 1
？ITER gample I one at a time
？ 61.1
$? 59.2$
？ 62.3
$? 59.7$
766.2
？ 57.8
？ 61.4
762.2
763.6

ENTER THE SI2E OF BAMPLE 2
？$日$
ENTER 日
？
？
？ 62.2
？ 54.6
？ 46.4
754
$\begin{array}{ll}7 & 57.4 \\ 7 & 5\end{array}$
757.6
765.4

THE Vollt ם THE t－gTATIBTJC IB i．02002＊
 $? 1$
Tre p－value 18 ． 319170 en
ok
بس فرض صفر در هر سطع معنىدارى كو جكتر از 3191708. بذيرنه مىشود .
†．
حالْ فرض مىكيم كه واريانسهاى در برآورد
$H_{0}: \mu_{x}=\mu_{y} \quad$ 都 $\quad H_{1}: \mu_{x} \neq \mu_{y}$

مى توان از آمارء
$\frac{\bar{X}-\bar{Y}}{\sqrt{\frac{S_{x}^{2}}{n}+\frac{S_{y}^{2}}{m}}}$

 بهرار زير است .
$-z_{\alpha / 2}<\frac{\bar{n}-\bar{Y}}{\sqrt{\frac{S_{x}^{2}}{n}+\frac{S_{y}^{2}}{m}}}<z_{\alpha / 2}$
فزض H $_{0}$ را يذيريم اگر

و در غير اين حورت آن را رد مىكنيم

مسألهُ تعين آزنونى دتيق در سطح a براى آزنون برابرى ميانگينهاى دو جمعيت نرمـال بـا
 براى این مسأله وجود ندارد.

†

فزض كنيد مى خواهيم اثر نصب يكت صافى را روى اتومبيل در طمى مسافت معينى تعيين كنيم • براى

 دادهها را مى توان بهوسيلّ nزوج n مرج

در اين بخش را باك ار بريم .
 است كه دادههاى حاصل از تفاضل مسافت طى شـده بهوسيله هر اتو مبيل را در نظـر بگيريــم . يعنى ، . $W_{i}=X_{i}-Y_{i}, i=1, \ldots, n$ باشد . بنابراين ، مىتوانيم فرض زير را آزمون ككيم
$H_{0}: \mu_{w}=0 \quad H_{1}: \mu_{w} \neq 0$
كه در آن فرض میشو2 مبهول $-t_{a / 2, n-1}<\sqrt{n} \frac{\bar{W}}{S_{w}}<t_{a / 2, n-1} \quad$;رض H_{0}
و در غير اين صورت آن دارد مىكنيم

 در اثر حوادث در • ا طرح مشابه قبل و بعد از اجراى برنامه به ترار زير است .

طر	B	A بت
1	30.5	23
2	18.5	21
3	24.5	22
4	32	28.5
5	16	14.5
6	15	15.5
7	23.5	24.5
8	25.5	21
9	28	23.5
10	18	16.5

تأثير Tاموزش اين برنامه را در سطع ه درصد تعين كنيد .
حل : براى تعين تأثير Tموزش فرضهاى زير را آزمون مىكيم •
$H_{0}: \mu_{A}-\mu_{B} \geq 0 \quad H_{1}: \mu_{A}-\mu_{B}<0$

RUN
THIG PNGGRAM COMPUTEB THE P-VAIUE WEN TEETIMS THAT A NGNAKL PGPULATIGN LNOBE VA RIANCE IE UNKNOIN MAE MEAN EPLAL TG ML-IERD. ENTER THE YALUE GF MU-IERO
70
ENTER THE EAMPLE BIIE
$\rightarrow 10$
ENTER THE DATA YALLEE DNE AT A TIHE
7 $7.57-2.572 .573 .571 .57-.57-174.574 .571 .5$
'HE YALUE DF THE t-ETATIETIC 18 2.265949
IS THE ALTERNATIVE HMPDTHEGIE TND-EIDED? ENTER I IF YEB AND O IF MO
7 0
IS TH䉼 ALTERNATIVE THAT THE MEAN EXCEEDE MU-ZERD DA THAT IT IE LEAE? ENTEA I IN THE FORHER CAEE AND O IN THE LATTER
$\rightarrow 1$
THE p-value IE 2.489293E-0Z
Ok

 2راينجا از n مثاهده استفاده مىشود.

σ^{2} فرض كنيد ${ }^{2} X^{\prime}, \ldots, X_{n}$, بائد . فرض كنيد مى خواهيم فرخهاى زير را آزمون كنيم
$H_{0}: \sigma^{2}=\sigma_{0}^{2}$
در مقابل
$H_{1}: \sigma^{2} \neq \sigma_{0}^{2}$
كه در T ذ ن

$\frac{(n-1) S^{2}}{\sigma_{0}^{2}} \sim \chi_{n-1}^{2}$
وبنابراين
$P_{H_{o}}\left\{\chi_{1-\alpha / 2, n-1}^{2}<\frac{(n-1) S^{2}}{\sigma_{0}^{2}}<\chi_{\alpha / 2, n-1}^{2}\right\}=1-\alpha$

و يكت آزمون در سطع منىدارى α به مورت زير است
$\chi_{1-a / 2, n-1}^{2}<\frac{(n-1) S^{2}}{\sigma_{0}^{2}}<\chi_{a / 2, n-1}^{2} \quad$ رنر
و در غير اين صورت Ho را رد مىكنيم .

آزمون تبل را مىتوان به اين ترتيب انجام داد كه ابتدا مـقدار آزمـون ، يـعني c را محـاسبه

$$
C=(n-1) S^{2} / \sigma_{0}^{2}
$$

ميس مقدار احتمال اين كه يكت مثغيرّ تصادنى كىدو با 1 - n درجه Tزادى الف) كمتر از c باشل ب) بيشتر از c باشد را محاسبه ميكنيم . اتگر يكى از اين احتمالها از هر میشود . به عبارت ديگر P-value برای اين آزمون برابر است با p-value $=2 \min \left(P\left(\chi_{n-1}^{2}<c\right\}, 1-P\left\{\chi_{n-1}^{2}<c\right\}\right)$
 يككطرنه نيز به همين طريق مصاسبه مىشود .

مثال Х.ه.الف ـ يكت ماشين كه بطور خخودكار مقدار نوار تايب راكنترل ميكثد جديداً نـصب شـده

 تتيجه گرفت كه ماشين مؤثر است

حل : اين فرض را T آمون مىكنيم كه ماشين مؤثر است ، زيرا در اين صورت از رد آن مىتوان نتيجه گرفت كه ماشين تأثيرى نداشته الست . هس مىخواهيـم فرضهاى زير را آزمون كنيم $H_{0}: \sigma^{2} \leq .0225 \quad H_{1}: \sigma^{2}>.0225$

يعنى فرض اينكه يكت متغيّ تصادفى كىدو يا 19 درجه آزادى بيشتر از مقدار مشاهده شدهُ زير باشد

$$
p \text {-value }=P\left\{\chi_{19}^{2}>21.111\right\}
$$

$$
=1-.6693=.3307
$$

كه با استفاده از برنامة Y _ ـ ـ ا ـ الفـ داريم

بنابراين بايد نتيجه بگيريم كه هجون مقدار مشاهده شده 025 0
فرض صفر بذ يرنهه مىشود .

的 ا ا

位
$H_{0}: \sigma_{x}^{2}=\sigma_{y}^{2} \quad H_{1}: \sigma_{x}^{2} \neq \sigma_{y}^{2}$
ببتدا واريانس نمونهها را محاسبه مىكنيم

$$
\begin{aligned}
& S_{x}^{2}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n-1} \\
& S_{y}^{2}=\frac{\sum_{i-1}^{m}\left(Y_{i}-\bar{Y}\right)^{2}}{m-1}
\end{aligned}
$$

$$
(m-1) S_{y}^{2} / \sigma_{y}^{2} \quad(n-1) S_{x}^{2} / \sigma_{x}^{2}
$$

متغيز هاى تصادفى مستقل كىدو و به ترتيب داراى 1-n 1 - 1 - mدرجه Tزادى هستند بنابراين

$$
\left(S_{1}^{2} / \sigma_{x}^{2}\right) /\left(S_{y}^{2} / \sigma_{y}^{2}\right)
$$

$$
S_{x}^{2} / S_{y}^{2} \sim F_{n-1, m-1}
$$

و مى توان نوشت

$$
P_{H_{1}}\left\{F_{1-\alpha / 2, n-1, m-1}<S_{x}^{2} / S_{y}^{2}<F_{a / 2, n-1, m-1}\right\}=1-\alpha
$$

در تتيجه يكى Tزمون در سطع α به قرار زير است

$$
F_{1-a / 2, n-1, m-1}<S_{x}^{2} / S_{y}^{2}<F_{a / 2, n-1, m-1}
$$

 در غير اين صورت را رد مـكنبم

براى سل مسألهُ فوق ابتدا آماره

俍 صفر رد مىشود ـ به عبارت ديگ, P-value بربی دادهماى آزمون برابر است با p-value $=2 \min \left(P\left\{F_{n-1, m-1}<v\right\}, 1-P\left\{F_{n-1, m-1}<v\right\}\right)$

در tين صورت آزمون فرض را رد مىكند اگگ سطع معنىدارى هحدا|قل به بزرگى p-value باشد

 حل : با استفاده از برنامه Y- Y- - - الف كه تابي توزيع تجمعى F را مساسبه ميكند داريم $P\left\{F_{9,11} \leq .5\right\}=.1539$

بنابراين value

$$
\begin{aligned}
p \text {-value } & =2 \min \{.1539, .8461\} \\
& =.3074
\end{aligned}
$$

■. بس فرض برابرى واريانسها يذيرفته مىشود

7- آزمونهاى فرض در جامعههاى برنولى

توزيع دوجملهاي اغلب در مسايل مهندسى بيش مى آيد ـ بهعنوان مثال يكٌ فرآيند توليد را را در نظر

 بارامترهاى (n,) خواهد بود ـ ـ حال آزمون فضضهاى زير را در نظر مى
$H_{0}: p \leq p_{0} \quad H_{1}: p>p_{0}$

كه در آن

 رد شود توجه كنيد كه

$$
P(X \geq k\}=\sum_{i=k}^{n} P\{X=i\}=\sum_{i=k}^{n}\binom{n}{i} p^{i}(1-p)^{n-1}
$$

بطـور شهـودى (كه ائبات نيز مىشود) مششخص است كه P(XZk

$$
P(X \geq k\} \leq \sum_{i=k}^{n}\binom{n}{i} p_{0}^{\prime}\left(1-p_{0}\right)^{n-i}
$$

$$
X \geq k^{*}
$$

كه در Tن *kوهككرين مقدار kاست كه به ازاي آن

$$
\begin{aligned}
& \sum_{i-k}^{n}\binom{n}{i} p_{0}^{i}\left(1-p_{0}\right)^{n-i} \leq \alpha \\
& k^{*}=\min \left\{k: \sum_{i=k}^{n}\binom{n}{i} p_{0}^{i}\left(1-p_{0}\right)^{n-i} \leq \alpha\right\}
\end{aligned}
$$

براى انجام اين آزمون بهتر است ابتدا مقدار آماره ، يعنى $X=k=k$ را p-value

$$
\begin{aligned}
p \text {-value } & =P\left(B\left(n, p_{0}\right) \geq x\right\} \\
& =\sum_{i=x}^{n}\binom{n}{i} p_{0}^{\prime}\left(1-p_{0}\right)^{n-i}
\end{aligned}
$$

حل : فرض كنيد اين ادّعا را در سطح
 احتمال كمتر يا مساوى 0.05باشد در آن صورت ادعاى شركت بايد رد شود . $P_{.02}\{X \geq 10\}=1-P_{.02}\{X<10\}$

$$
\begin{align*}
& =1-\sum_{i=0}^{9}\binom{300}{i}(.02)^{i}(.98)^{300-i} \tag{ازبرنائبا-1}\\
& =0.0818
\end{align*}
$$

 مقابل سادهتر مى كند . اين كار بدين صورت انجا نرمال با ميانگين و واريانس زير است
$E[X]=n p, \quad \operatorname{Var}(X)=n p(1-p)$
در نتيجه متغيّر
$\frac{X-n p}{\sqrt{n p(1-p)}}$
تقريباً داراى توزيع نرمال استاندارد است . يس يكت آزمون در سطع a براى رد H ${ }^{\text {ـ عبارت است از }}$ $\frac{X-n p_{0}}{\sqrt{n p_{0}\left(1-\overline{p_{0}}\right)}} \geq z_{\alpha}$

$\left(X-n p_{0}\right) / \sqrt{n p_{0}\left(1-p_{0}\right)}$
$(10-300 \times .02) / \sqrt{300 \times .02 \times .98}=1.6496$.
نابراين با استفاده از تقريب نرمال ${ }^{\text {ا }}$ در هر سطع معنددارى بزرگتر يا مساوى xalue

زير دتاسبه بى شود بايل رد شود

$$
\begin{aligned}
p \text {-value } & =P\left\{Z \geq 1.64^{\circ 6}\right\} \\
& =.0495
\end{aligned}
$$

(از برنامة r. ه. ا الف)

 كلى امن است كه p-value

■ ا \quad. $n p_{0}=6$

خ- ا آزمون برابرى چارامتر ها در دو جامعهُ برنولى

فرض كنيد دو روش براى توليد يكك نوع ترانزيستور وجود دارد ؛ و فـرض كــنيد هـر تـرانـزيستور
 براى Tزمون فرض
 فرض كنيد

 از

 زير است

$$
\begin{equation*}
P_{H_{0}}\left\{X_{1}=i \mid X_{1}+X_{2}=k\right\}=\frac{\binom{n_{1}}{i}\binom{n_{2}}{k-i}}{\binom{n_{1}+n_{2}}{k}} \quad i=0,1, \ldots, k \tag{1.7.1}
\end{equation*}
$$

هال براى Tزمون
$H_{0}: p_{1}=p_{2} \quad H_{1}: p_{1} \neq p_{2}$

 آگگاه
$P\left\{X \leq x_{1}\right\} \leq \alpha / 2 \quad$ برض ور
. در غير اين صورت
كه در Tا X يكت متغيرِ تمادفى فوت هندسى با تابع جرم احتمال زير است.
$P(X=i\}=\frac{\binom{n_{1}}{i}\binom{n_{2}}{k-i}}{\binom{n_{1}+n_{2}}{k}} \quad i=0,1, \ldots, k$
p-value به عبارت ديگر ، اين آزمون فرض صفر رارد مىكند اگیر سطع معنىدارى حداتّل به بزرگى باشد كه به صورت زير محاسبه مىشود .

$$
\begin{equation*}
p \text {-value }=2 \min \left(P\left\{X \leq x_{1}\right\}, P\left\{X \geq x_{1}\right\}\right. \tag{५.૫.ท}
\end{equation*}
$$

اين آزمون را Tآمون ليشر - اروين مىنامند .

$$
\begin{align*}
\frac{P(X=i+1)}{P(X=i)} & =\frac{\binom{n_{1}}{i+1}\binom{n_{2}}{k-i-1}}{\binom{n_{1}}{i}\binom{n_{2}}{k-i}} \tag{F.7.7}\\
& =\frac{\left(n_{1}-i\right)(k-i)}{(i+1)\left(n_{2}-k+i+1\right)} \tag{А.7.7}
\end{align*}
$$

برايى تعين p-value ابتدا احتمال زير را محاسبه مىكنيم
$P\left(X=x_{1}\right\}=\binom{n_{1}}{x_{1}}\binom{n_{2}}{k-x_{1}} /\binom{n_{1}+n_{2}}{k}$
از ايـن رابـطه ابـتـدا بـه كـــكن لگـاريتمّ ، مقــدار سـس مىنـويســم
$P\left\{X=x_{1}\right\}=\exp \left\{\log P\left\{X=x_{i}\right\}\right\}$
 , $P\left\{x=\operatorname{mix}\left(0, k-n_{2}\right)\right\}, \ldots, P\left\{X=x_{1}-2\right\}, \ldots, P\left\{X=x_{1}-1\right\}$ S, $P\left\{X=x_{0}\right\}$ مى مجمـوع احتــالاتكه بـرابـر

 بنابراين از معادله 7 ب. 7 نتيجه مىشود
p-value $=2 \min \left(1-S, S+P\left(X=x_{i}\right\}\right)$

 آبل قبول (سالم) آزمون شوند .

 معادلند

بس از اجراى برنامه 1 ب. 1 داريم

> بنابراين ، ايـن فرض كه دو روش يكـاتند بذير فته مىشود . وتتى تقريب نرمال براى دو جملهايِى بهدست مى آيل . (مسألهُ اب را بيينيل)

آزمون مربوط به ميانكين يك توزيع هواسن -Y

فرض كنيد Xنشاندهندهُ يكت متغير تصادفى يواسن با ميانگين גباشد و بخواهيم فرضهاى
$H_{0}: \lambda=\lambda_{0} \quad$, $H_{1}: \lambda \neq \lambda_{0} \quad$,
را آزمون كنيم . اگر مقدار ششاهده شده Xبرابر xباشد ، آنگاه يك آزمون در سطع ه فرض رد مىكند اگیر

$$
\begin{equation*}
P_{\lambda_{0}}\{X \geq x\} \leq \alpha / 2 \quad \text {, } \quad P_{\lambda_{0}}\{X \leq x\} \leq \alpha / 2 \tag{1.V.प}
\end{equation*}
$$

كه در T مى شود ـ از رابطة TP-value I.Vبه صورت زير محاسبه مى شود p-value $=2 \min \left(P_{\lambda_{0}}\{X \geq x\}, P_{\lambda_{0}}\{X \leq x\}\right)$
محاسبة احتمالات ونت را مى توان با استفاده از بر نامة ب ـ Y انجام داد. .
 مى مود از هY بيشتر نيست و اين مطلب

فرضهاى زير را Tز مون مىكنـيم
$H_{0}: \lambda \leq 25 \quad$ در مقابل $\quad H_{1}: \lambda>25$

IYA حال با توجه به
 l هf

$$
\begin{aligned}
p \text {-value } & =P_{125}\{X \geq 154\} \\
& =1-P_{125}\{X \leq 153\} \\
& =.0066
\end{aligned}
$$

■ بنابراين ، ادّعاى فوق در سطع ه درصد رد مىشود (حتى در سطع 1 درصد)

 توزيع نرمالل با ميانگين و واريانس גخواهد بود .

- | - - ا T

فرض كنيد بخواهيم فرضهاى زير را آزمون كنيم
$H_{0}: \lambda_{2}=c \lambda_{1} \quad$ در مقابل $\quad H_{1}: \lambda_{2} \neq c \lambda_{1}$

حكم 1.Y. 1

$$
P\left(X_{1}=k \mid X_{1}+X_{2}=n\right)=\binom{n}{k}\left[\lambda_{1} /\left(\lambda_{1}+\lambda_{2}\right)\right]^{k}\left[\lambda_{2} /\left(\lambda_{1}+\lambda_{2}\right)\right]^{n-k}
$$

$$
\begin{aligned}
P\left\{X_{1}\right. & \left.=k \mid X_{1}+X_{2}=n\right\} \\
& =\frac{P\left\{X_{1}=k, X_{1}+X_{2}=n\right\}}{P\left\{X_{1}+X_{2}=n\right\}} \\
& =\frac{P\left\{X_{1}=k, X_{2}=n-k\right\}}{P\left\{X_{1}+X_{2}=n\right\}} \\
& =\frac{P\left\{X_{1}=k\right\} P\left\{X_{2}=n-k\right\}}{P\left\{X_{1}+X_{2}=n\right\}} \\
& =\frac{\exp \left\{-\lambda_{1}\right\} \lambda_{1}^{k} / k!\exp \left\{-\lambda_{2}\right\} \lambda_{2}^{n-k} /(n-k)!}{\exp \left\{-\left(\lambda_{1}+\lambda_{2}\right)\right\}\left(\lambda_{1}+\lambda_{2}\right)^{n} / n!} \\
& =\frac{n!}{(n-k)!k!}\left[\lambda_{1} /\left(\lambda_{1}+\lambda_{2}\right)\right]^{k}\left[\lambda_{2} /\left(\lambda_{1}+\lambda_{2}\right)\right]^{n-k}
\end{aligned}
$$

از استقلال
 يـك توزيم دوجملهايـى بـا بارامترهـاي n و ($X_{1}+X_{2}=n$

$$
\begin{aligned}
& P\left(\operatorname{Bin}(n, 1 /(1+c)) \geq x_{1}\right\} \leq \alpha / 2 \\
& P\left(\operatorname{Bin}(n, 1 /(1+c)) \leq x_{1}\right\} \leq \alpha / 2
\end{aligned}
$$

 A هفته Fذشته 1 (گُشثه ، شرإيط مهون بودن در دو طرح متفاوت است
 حوادث هفتگى بايد تقريباً داراى توزيع بواسن باشد . اگگر فرض كـنيم

$$
\lambda_{2}=\frac{3}{4} \lambda_{1}
$$

 فرضهاى
$H_{0}: \lambda_{2}={ }^{\frac{3}{4}} \lambda_{1} \quad H_{1}: \lambda_{2} \neq \frac{3}{4} \lambda_{1}$
به صورت زير محاسبه مىنود
p-value $=2 \min \left(P\left(\operatorname{Bin}\left(282, \frac{4}{7}\right) \geq 133\right\}, P\left(\operatorname{Bin}\left(282, \frac{4}{7}\right) \leq 133\right\}\right)$
$=9.408 \times 10^{-4}$
بس فرض برابرى سوانع در دو طرح رد مىشود.

مسايل

 واتعىوانحرافمعيار 0.02 مىدهد . فرضكنيد • ا اندازة هستقلاز مقادير pH بعترارزيراست

8.18	8.17
8.16	8.15
8.17	8.21
8.22	8.16
8.19	8.18

$$
\begin{aligned}
& \text { ب ـبر سطع } 05 \text { = }
\end{aligned}
$$

 نوع فيبر امتهان شود و داشثت باشيم

210	198
195	202
197.4	196
199	195.5

 جه میىتوانگَفت ؟

20	\|أدازه		20
1	72	70.4	11
2	68.1	76	12
3	69.2	72.5	13
4	72.8	74	14
5	71.2	71.8	15
6	72.2	69.6	16
7	70.8	75.6	17
8	74	70.6	18
9	66	76.2	19
10	70.3	77	20

 - F
 هر سمت) الختلان داشته باشل مى خواهيم استمال جنين جيزى از از 0.95 بيشتر مى ارباشد : الف) براى اين آزمايش هیه روشى به كار مى بريد

 مى.

 به قرار زير باشد

		لا	
است	Yf.	كا	-V
237	242	232	
242	248	230	
244	243	254	
262	234	220	
225	236	232	
218	228	240	
,	ىى تـولي	،	
	ارِ	لولهابـ	-^
زونكنيم	تراش را	با	
5.036	5.031		
5.085	5.064		
4.991	4.942		
4.935	5.051		
4.999	5.011		

فرض درستى ماشين تراش رادر سطع معنىدار ها درصد آزمـون كـيد . جــه فرضهايى را در نظر ممیيريد

نتيجهايى بهدست مى آيد ؟
30.1
32.7
22.5
27.5
27.7 29.8 28.9 31.4
$31.2 \quad 24.3$ 26.4 22.8
$29.1 \quad 33.4$
32.5
21.7
(فوض كنيد جامعه نرمال است)
 اندازهگيرى شده است . نتايج حاصل برحسب يكت درميليون بهقرار زير است :
Lake A: 11.5, 10.8, 11.6, 9.4, 12.4, 11.4, 12.2, 11, 10.6, 10.8
 روشى ديگُ اندازه گيرى شده است . نتايج بهدست آمده عبار تند از
Lake B: $11.8,12.6,12.2,12.5,11.7,12.1,10.4,12.6$
اگر بدانيم كه روش اندازهگيرى از درياحه A دارانى واريانس 0.09 است در حالى كه روش
 يكسانبودن آلودگى دو درياجه را رد كرد ؟
11 - 11

$50.7 \quad 60.3$
54.8 58.8
48.6 56.2
$36.9 \quad 48.6$
52.4 40
51.6 42.8

53
58
38 44.3
42.2 55
503 48.6

تساوى زمانهاى سوخت را آزمون كنيد . هی فرضهايی را لازم است در نظر بگيريد
 مى دهد . تمربيات گذشته نشان مىدهد كه توزيع طول عمر را مىتوان لُگّل نرمال در نـظر

 دو جامعه را آزمون كنيد

!	32, 84, 37, 42, 78, 62, 59, 74
Y	39,111, 55, 106, 90, 87, 85

r 1 -

روغن	10.62, 10.58, 10.33, 10.72, 10.44, 10.74
روغ	10.50.10.52, 10.58, 10.62, 10.55, 10.51, 10.53

فرض برابرى ميانگين حسبندگى دو روغن را آزمون كنيد ، در حالتى كه جامعهها داراى توزيع . نرمال با واريانس يكسانند
 آزمايشهايى براى هريكـ از دو نوع سيـم بسازيل .

A $_{\boldsymbol{\gamma}}$	$\mathbf{B}_{\boldsymbol{\sim}}$
0.140 ohm	0.135 ohm
0.138	0.140
0.143	0.136
0.142	0.142
0.144	0.138
0.137	0.140

 بيشتر باشد ، روش B را بر روش A ترج

 را محدود انتخاب كنيم • برمبناى نمونههاى تصادفى زير در سطع يكـ درد درصد ، هه خواهل بود ـ اعداد درصد توليد از نفت خام را نشان مىدهـد .

A	$23.2 .26 .6,24.4,23.5 .22 .6,25.7 .25 .5$
B	$25.7,27.7 .26 .2 .27 .9,25.0,21.4,26.1$

بیار	بیا	بعل
1	134	140
2	122	130
3	132	135
4	130	126
5	128	134
6	140	138
7	118	124
8	127	126
9	125	132
10	142	144

آيا دادهها تغيرى رادر نشار خون در اثر مصر ذن اين دارو نشان مىدهند ؟ . IV براى آزمون اين فوض 1 داوطلب كه تبلا" نمىدويدنلـ حـاضر شـدند تـا برنـامهُ دويـــن را

 ميزان ضربان ثلب مؤثر است .

شمارن	1	2	3	4	5	6	7	8
نرخ ضربان	74	86	98	102	78	84	79	70
نرخ ضربان بعران	70	85	90	110	71	80	69	74

 در سطع a برایى فرضهاى
$H_{0}=\sigma^{2} \leq \sigma_{0}^{2} \quad H_{1}=\sigma^{2}>\sigma_{0}^{2}$
يِشنهاد كنيد .

 ساخت ؟ فر ض كنيل سطع معنى دارى برابر است با $10 . \alpha=$

 بهدست آمده باشد آيا مىتوان روش جديد رامد را بذيرفت .
$5.728 \quad 5.731$
$5.722 \quad 5.719$
$5.727 \quad 5.724$
$5.718 \quad 5.726$
$5.723 \quad 5.722$

 10

روش	6.2, 5.8, 5.7, 6.3, 5.9,6.1,6.2, 5.7
Y روش	6.3, 5.7, 5.9, 6.4, 5.8,6.2, 6.3, 5.5

. و σ_{x}^{2} آكر -YF

$H_{0}: \sigma_{x}^{2}<\sigma_{y}^{2} \quad H_{1}: \sigma_{x}^{2}>\sigma_{y}^{2}$

 نتايج بهصورت زير بهدست آمده است

$$
\begin{aligned}
& \text { بو بر برهسب بوند در واسد سطح نـونه }
\end{aligned}
$$

$$
\begin{aligned}
& \Sigma x_{i}^{2}=91 \\
& \Sigma y_{i}^{2}=82
\end{aligned}
$$

 تصادفى در نمونهيكيرى يسش آمده است ؟
 مستقل با بارامترهاى $H_{0}: p_{1} \leq p_{2} \quad H_{1}: p_{1}>p_{2}$
ان - نرض كنيد ثابت كنيد وتتى $H_{0}: p_{1}=p_{2} \quad$ در دقابل $\quad H_{1}: p_{1} \neq p_{2}$

به ترار زير است:
$\frac{\left|X_{1} / n_{1}-X_{2} / n_{2}\right|}{\sqrt{\frac{X_{1}+X_{2}}{n_{1}+n_{2}}\left(1-\frac{X_{1}+X_{2}}{n_{1}+n_{2}}\right)\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}>z_{\alpha / 2} \quad$ Sا
راهنما:ئى : الف) ثابت كنيد كه اگر
$\frac{\frac{X_{1}}{n_{1}}-\frac{X_{2}}{n_{2}}-\left(p_{1}-p_{2}\right)}{\sqrt{\frac{p_{1}\left(1-p_{1}\right)}{n_{1}}+\frac{p_{2}\left(1-p_{2}\right)}{n_{2}}}} \dot{\sim}(0,1)$

كه در آن ~ يغنى هبطور تقريب دارايى اين توزيع استي ب) بحال استدلال كنيد كه وتتى مشترك آنها را مى توان بهوسيله

 كنيد در صورتى كه تعداد آنها در ^ سال گذشته به ترار زير باشد :
$46,62,60,58,47,50,59,49$.

 بواسن با ميانگين

Y	$24,32,29,33,40,28,34,36$
Y نمون	$42,36,41$

ค号

ركرسيون

1- مقدمه
دربسيارى ازمسائل علمى و مهندسى لازم است رابطهايى ين مجموعهايى از متنيّر ها تعين كنيم . مبلا" ،

 به مقدار مجموعهايى از وروديها يا متنيّر هاى مستقل ,
 ,

$$
\begin{equation*}
Y=\beta_{0}+\beta_{1} x_{1}+\cdots+\beta_{r} x_{r} \tag{1.1.v}
\end{equation*}
$$

برترار باشد. آگَ اين رابطه بين و و و

 تصادلم برقرار باشد ـ با توجه به اين مطلب رابطء صريع به صورت زير نوشته مى منود
$Y=\beta_{0}+\beta_{1} x_{1}+\cdots+\beta_{r} x_{r}+e$
كه درآن ، e e

$E[Y \mid \mathbf{x}]=\beta_{0}+\beta_{1} x_{1}+\cdots+\beta_{r} x_{r}$

كه در Tن وروديهایى Xاست .
 مستقل

 معادلة رگرسيون جندكانه گويند .
 مستقل فرض مىكند . اين الگُّو را به حورت زير نـير نشان مىدهيم
$Y=\alpha+\beta x+e$
 متغير تصادفى با ميانگين صفر است .

هثــل Y. ا.الف ـ ده زوج از دادههــاى

i	x_{i}	y_{i}	i	x_{i}	y_{i}
1	100	45	6	150	68
2	110	52	7	160	75
3	120	54	8	170	76
4	130	63	9	180	92
5	140	62	10	190	88

يكث عدد y در مقابل

Y- بر'وردكرهاى كمترين مربعات هارامترهاى ركر سيون

فرض كنيد باسخهاى

متاظر با متغير ورودى $A+B x_{i}$ باشد برابر است با
 $S S=\sum_{i=1}^{n}\left(Y_{i}-A-B x_{i}\right)^{2}$

 $\frac{\partial S S}{\partial A}=-2 \sum_{i=1}^{n}\left(Y_{i}-A-B x_{i}\right)$
$\frac{\partial S S}{\partial B}=-2 \sum_{i=1}^{n} x_{i}\left(Y_{i}-A-B x_{i}\right)$
اگگر اين مشتقات نسبى را برابر صفر ترار دهيم معادلات زير براى محاسبة A, B بهدست مى آيد
$\sum_{i=1}^{n} Y_{i}=n A+B \sum_{i=1}^{n} x_{i}$
$\sum_{i=1}^{n} x_{i} Y_{i}=A \sum_{i=1}^{n} x_{i}+B \sum_{i=1}^{n} x_{i}^{2}$

معادلات I.Y.V را معادلات نرمال گويند . با فرض
$\bar{Y}=\sum_{i} Y_{i} / n, \quad \bar{x}=\sum_{i} x_{i} / n$
اولين معادلهّ نرمال به صورت زير نوشته مىشود
$A=\bar{Y}-B \bar{x}$
اگگر اين مقدار را دومين معادلةٌ نرمال ترار دهيم نتيجه مىیود
$\sum_{i} x_{i} Y_{i}=(\bar{Y}-B \bar{x}) n \bar{x}+B \sum_{i} x_{i}^{2}$
$B\left(\sum_{i} x_{i}^{2}-n \bar{x}^{2}\right)=\sum_{i} x_{i} Y_{i}-n \bar{x} \bar{Y}$
$B=\frac{\sum_{i} x_{i} Y_{i}-n \bar{x} \bar{Y}}{\sum_{i} x_{i}^{2}-n \bar{x}^{2}}$

 عبار تند از
$B=\frac{\sum_{i-1}^{n} x_{i} Y_{i}-\bar{x} \sum_{i-1}^{n} Y_{i}}{\sum_{i=1}^{n} x_{i}^{2}-n \bar{x}^{2}}$
$A=\bar{Y}-B \bar{x}$

$$
\text { خط مستقيم A } A \text { خط رگرسيون برآورد شده مىنامند. }
$$

مثال Y-Y-الف - مواد خام مصرن شده در توليد يكث فيبر مصنوعى در محلى نگهدارى مىیشودكى

درجه: حرارت آن كنترل نمىشود ـ اندازهمایى رطوبت نسبى در محل نگهدارى و رطـوبت مـوجود نمونهای از مواد خام در طول ها 1 الن روز (به درصد) به ترار زير است .

	46	53	29	61	36	39	47	49	52	38	55

RUN
THI5 PRDGRAM COMPUTES THE LEAST SQUARES ESTIMATDRS AND RELATED STATISTICS IN SIM PLE LINEAR REGRESSION MODELS
ENTER THE NUMEER OF DATA FAIRS n
? 15
ENTER THE n SUCCESSIVE PAIRS x, y ONE PAIR AT A TIME
? 46,12
? 53,15
?. 29,?
? 61,17
? 36,10
? 37, 11
? 47, 11
? 49,12
? 52,14
? 38,7
? 55, 16
? 32.6
? 57.18
? 54, 14
THE LEAST SQUARES ESTIMATORS ARE AS FOLLOWS
$A=-2.510452$
$E=.3232035$
THE ESTIMATED REGRESSION LINE IS Y - $2.510452+.323 E 035 x$
DO YOU HANT OTHER COMFLITED VALUES? ENTER I IF YES AND O IF ND.
$?$
DV:

「- توزيع برآوردكرها

 ورودى $Y_{i}-\mathscr{N}\left(\alpha+\beta x_{i}, \sigma^{2}\right)$

بايد توجه داشت كه در بالا فرض مىشود كه واريانس خطاى تصادنى به مقدار ورودى وابسته نبوده
 برآورد شود. جون برآورد كمترين مربعات Bاز β را مى توان به صورت زير نوشت

$$
\begin{equation*}
B=\frac{\sum_{i}\left(x_{i}-\bar{x}\right) Y_{i}}{\sum_{i} x_{i}^{2}-n \bar{x}^{2}} \tag{I.r.Y}
\end{equation*}
$$

مى ينيم كه اين رابطه يكك تركيب خطىى از متغيّر هاى تصادفى مستقل نرمال
 صورت زير محاسبه مىشود

$$
\begin{aligned}
E[B] & =\frac{\sum_{i}\left(x_{i}-\bar{x}\right) E\left[Y_{i}\right]}{\sum_{i} x_{i}^{2}-n \bar{x}^{2}} \\
& =\frac{\sum_{i}\left(x_{i}-\bar{x}\right)\left(\alpha+\beta x_{i}\right)}{\sum_{i} x_{i}^{2}-n \bar{x}^{2}} \\
& =\frac{\alpha \sum_{i}\left(x_{i}-\bar{x}\right)+\beta \sum_{i} x_{i}\left(x_{i}-\bar{x}\right)}{\sum_{i} x_{i}^{2}-n \bar{x}^{2}} \\
& \cdot \\
& =\beta \frac{\left[\sum_{i} x_{i}^{2}-\bar{x} \sum_{i} x_{i}\right]}{\sum_{i} x_{i}^{2}-n \bar{x}^{2}} \quad \text { رير } \quad \sum_{i}\left(x_{i}-\bar{x}\right)=0 \\
& =\beta
\end{aligned}
$$

بس

$$
\begin{aligned}
\operatorname{Var}(B) & =\frac{\operatorname{Var}\left(\sum_{i-1}^{n}\left(x_{i}-\bar{x}\right) Y_{i}\right)}{\left(\sum_{i=1}^{n} x_{i}^{2}-n \bar{x}^{2}\right)^{2}} \\
& =\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \operatorname{Var}\left(Y_{i}\right)}{\left(\sum_{i=1}^{n} x_{i}^{2}-n \bar{x}^{2}\right)^{2}} \\
& =\frac{\sigma^{2} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{\left(\sum_{i=1}^{n} x_{i}^{2}-n \bar{x}^{2}\right)^{2}} \\
& =\frac{\sigma^{2}}{\sum_{i=1}^{n} x_{i}^{2}-n \bar{x}^{2}}
\end{aligned}
$$

كه در آن تساوى آخر از اتحاد زير نتيجه مىشود

$$
\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=\sum_{i=1}^{n} x_{i}^{2}-n \bar{x}^{2}
$$

با استفاده از معادل\& V.r. I. و توجه به رابط؛
$A=\sum_{i=1}^{n} \frac{Y_{i}}{n}-B \bar{x}$
معلوم مىشود كه Aرا نيزمىتواذ بهصورت يكت تركيب خطى از متغير هاى تصادنى مستقل نرمال i $i=1, \ldots, n$

$$
E[A]=\sum_{i=1}^{n} \frac{E\left[Y_{i}\right]}{n}-\bar{x} E[B]
$$

$$
=\sum_{i=1}^{n} \frac{\left(\alpha+\beta x_{i}\right)}{n}-\bar{x} \beta
$$

$$
=\alpha+\beta \bar{x}-\bar{x} \beta
$$

$$
=\alpha
$$

 باصورت تركيب خطى از عبارتاستاز
$\operatorname{Var}(A)=\frac{\mathbf{o}^{2} \sum_{i-1}^{n} x_{i}^{2}}{n\left(\sum_{i=1}^{n} x_{i}^{2}-n \bar{x}^{2}\right)}$

كميتهاى برآوردگ, هاىكمترينمربعات(يعنى $\left.A+B x_{i}\right)$ $S S_{R}=\sum_{i=1}^{n}\left(Y_{i}-A-B x_{i}\right)^{2}$

را مىتوان برایى بر آورد واريانس مجهول خطا ، بـه كار برد ـ در واتع مىتوان نشان دادكه $\frac{S S_{R}}{\sigma^{2}} \sim \chi_{n-2}^{2}$

يعنى $S S_{R} / \sigma^{2}$ داراى توزيع كیدو با 2 - 2 درجهُ آزادى است درنتيجه
$E\left[\frac{S S_{R}}{\sigma^{2}}\right]=n-2$
$E\left[\frac{S S_{R}}{(n-2)}\right]=\sigma^{2}$
يعنى SS A

كبصره

يكت استدلال معقول كه خرا مستقل است به صورت زير است : جون $\left(Y_{i}-E\left[Y_{i}\right]\right) / \sqrt{\operatorname{Var}\left(Y_{i}\right)}, i=1, \ldots, n$

مستقل و داراى توزيع نرمال استاندارد هستند . در نتيجه
$\sum_{i=1}^{n} \frac{\left(Y_{i}-E\left[Y_{i}\right]\right)^{2}}{\operatorname{Var}\left(Y_{i}\right)}=\sum_{i=1}^{n} \frac{\left(Y_{i}-\alpha-\beta x_{i}\right)^{2}}{\sigma^{2}}-\chi_{n}^{2}$
 نتهجه جاى تعجب نِيست كه

نرمال ، توزيع نرمال باميانگين μ و واريانس
源 $\sum_{i}\left(Y_{i}-\bar{Y}\right)^{2} / \sigma^{2}$
涫 مجموع مربعات كميت مستقل از A و B باشد ． نماد－با ترار دادن ．

$$
\begin{aligned}
& S_{x Y}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(Y_{i}-\bar{Y}\right)=\sum_{i=1}^{n} x_{i} Y_{i}-n \bar{x} \bar{Y} \\
& S_{X x}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=\sum_{i=1}^{n} x_{i}^{2}-n \bar{x}^{2} \\
& S_{Y Y}=\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}=\sum_{i=1}^{n} Y_{i}^{2}-n \bar{Y}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& B=\frac{S_{x} y}{S_{x x}} \\
& A=\bar{Y}-B \bar{x}
\end{aligned}
$$

اتحاد محاسباتى زير رابرايى SSS، مجموع مربعات ماندهها مىتوان بهدست آورد ．
اتحاد محاسباتى براى

$$
S S_{R}=\frac{S_{X x} S_{Y Y}-S_{x Y}^{2}}{S_{X x}}
$$

（р．ッ．ท）
قضية زير نتايج اين بخش را اخلاصه مىكند ．

تضيد Y．Y．

زخ

آمار و احتـال مهندسى
$B=\frac{S_{x \gamma}}{\bar{S}_{x x}}, \quad A=\bar{Y}-B \bar{x}$
علاوه بر آن توزيعهاى Aو Bبه صورت زيرند
$A \sim \mathcal{N}\left(\alpha, \frac{\sigma^{2} \sum_{i} x_{i}^{2}}{n S_{x x}}\right)$
$B \sim \mathcal{N}\left(\beta, \sigma^{2} / S_{x x}\right)$
$S S_{R}=\sum_{i}\left(Y_{i}-A-B x_{i}\right)^{2}$

$\frac{S S_{R}}{\sigma^{2}} \sim \chi_{n-2}^{2}$
مجموع مربعات ماندهها را نشان دهد آنگاه

و مساسبه كرد
$S S_{R}=\frac{S_{X x} S_{Y Y}-\left(S_{X Y}\right)^{2}}{S_{x X}}$
 مساسبه مىكند .
 مر.بوط مىیسازد .

x_{i}	Y_{i}
5	7.4
6	9.3
7	10.6
10	15.4
12	18.1
15	22.2
18	24.1
20	24.8

$$
\begin{aligned}
& \text { يكت منسنى خطى به اين دادهما برازش دهيل . همپخنين } \\
& \text { برإى حل اين مسأله برنامه Y.V را الجرا مىكيم }
\end{aligned}
$$

Run
THIS PROGRAM COMFUTES THE LEAST SQUARES ESTIMATORS AND RELATED STATISTICS IN SIM PLE LINEAR REGFESSIIIN MOUELS
ENTER THE NUMEEF OF DATA PAIRS II
7 日
ENTER THE \cap SUCCESSIVE FAIRS x, Y ONE FAIR AT A TIME
75.7 .4
76.9 .3
？7，10．6
$710,15.4$
？12．1日．
15．22．を
710.24 .1

7 20．24．8
THE LEAST SQUARES ESTJMATORS ARE AS FOLLOWS
$A=2.453487$
$B=1.206347$
THE ESTIMATED REGRESSIDN LJNE IS $y=2.463487+1.806367 x$
DO YOU HANT OTHER COMPUTED VALUES？ENTER 1 IF YES AND O IF ND．
？ 1
$S(x, Y)=267.6626$
$S(x, y)=221.175$
$S(Y, Y)=332.3692$
SSR 9.46993
THE AVERAGE ：VALUE IS 11.625
THE SUM IF THE SOUARES OF THE $\%$ VALUES IS 1303
OK
نمودار نقاط دادهها و خطط رگرسيون برآورد شده در شكل V．Y．Y نشان داده شده است

† - الستنباط آمارى در مورد هارإمترهاى ركّرسيون

 بهدست مى آيل .
|

$Y=\alpha+\beta x+e$
فرض بهورودى بستگى ندارد يابه عبارت ديگر روى متغيّ ورودى ، رگرسيون وجود ندارد ـ براي آز آمون $H_{0}: \beta=0 \quad H_{1}: \beta \neq 0$

$\frac{B-\beta}{\sqrt{\sigma^{2} / S_{x x}}}=\sqrt{S_{x x}} \frac{(B-\beta)}{\sigma} \sim \mathcal{N}(0,1)$
كه از متغيّر زير مستقل است
$\frac{S S_{R}}{\sigma^{2}} \sim \chi_{n-2}^{2}$
بنابراين با توجه به تعريف متنيّر تصادفى tنتيجه ميشود كه
$\frac{\sqrt{S_{x x}} \frac{(B-\beta)}{\sigma}}{\sqrt{\frac{S S_{R}}{\sigma^{2}(n-2)}}} \sim t_{n-2}$
H_{0} يعنى ، درست باشد (يعنى 0 =0
$\sqrt{\frac{(n-2) S_{x x}}{S S_{R}}} B-t_{n-2}$

و از Tن Tزمون فرض

$$
\begin{aligned}
& \sqrt{\frac{(n-2) S_{x x}}{S S_{R}}}|B|>t_{y / 2, n-2} \\
& \text { را رد بمىكيم اتر } \\
& \text { در غير اين صورت } H_{0} \text { را مى يليريم }
\end{aligned}
$$

اين Tا
 به بزرگى مقدار زير باشد

$$
\begin{aligned}
p \text {-value } & =P\left\{\left|T_{n-2}\right|>v\right\} \\
& =2 P\left\{T_{n-2}>v\right\}
\end{aligned}
$$

كه درآن ${ }^{\text {T }}$ يكت متغيّر تعادفى t با 2 - 2 درجة آزادى است . احتمال اخير را مىتوان با استفاده

 يدرانشان رمس كرد ـ دادههاى نتيجه (برحسب اينع) به قرار زير بودند

إرّ	60	62	64	65	66	67	68	70	72	74
إنازه	63.6	65.2	66	65.5	66.9	67.1	67.4	68.3	70.1	70

لازم به تذكر است گرچهه دادهها نشان مىدهمندكه يدران تد بلند دارایى بسران قد بلند هستيند ، ولى اين

 است و كوحككر از xشود وتتى كه xبزرگث است . در نتيجه شيب خط رگرسيون بايد كتتر از 1 باشد

 آزمون مىكيم . يعنى فرض زير
$H_{0}: \beta \geq 1 \quad$ در هقابل $\quad H_{1}: \beta<1$

برایى آزمون Ho بر نامة Y.V را ا-جرا مىكنيم

RUN FR FRORAM COMPUTES THE LEAST SQUARES ESTIMATORS aND RELATED STATISTILS IN GIM PLE LINEAR REGFESSION mDDELS
ENTER THE NUMRER OF DATA PAIRS n
? 10
ENTEF THE n SUCLESSIVE PAIRS x, y ONE FAIR AT A TIME
7 bci,63.6
, 62,65.2
? 64,66
, 65,65.5
$66,66.9$
7 67,67.1
? 68.67 .4
7 70,68.3
? 72,70.1
> '74.70
the least squares estimators are as follows
A $=35.97757$
$E=.4645573$
IHE ESTIMATED REGRESSION LINE IS $Y=35.97757$ + . $4645 E 73 x$
dO you hant other computed valuest enter 1 If yes and o if no.
$\because 1$
$\mathrm{S}(\mathrm{x}, \mathrm{Y})=79.71975$
$S(\%, i)=171.6(116$
$s(Y, Y)=38.53125$
SSK = 1.497325
the average : Val.UE is 6b,b
THE SUM OF THE SOLARES OF THE $:$ VALUES IS 44794
! !
$\sqrt{8 \times 171.6 / 1.49721}=30.28045$ جون مقدار مشاهده شدة است ، توجه كنيد كه اگگر Ho درست باشد يعنى 1 آنگّاه بايد داشته باشيم

$$
\sqrt{\frac{(n-2) S_{x x}}{S S_{R}}}(B-\beta) \leq(.4645797-1) 30.28045=-16.212721
$$

بنابراين مقدار p دادهها ، به حورت زير است

$$
\begin{aligned}
\text { بنا به برنائ Y.A. }
\end{aligned}
$$

بس فرض 1 ج 1 حتى در سطع معنىدار 4 $\alpha=10^{-4}$ بايد رد شود و دادهها بـــدت يكت بـرگشت

$$
\text { معلوم مى شود كه براى هر a a a } 1 \text { a } 0 \text {. }
$$

$$
P\left\{-t_{a / 2, n-2}<\sqrt{\frac{(n-2) S_{x x}}{S S_{R}}}(B-\beta)<t_{a / 2, n-2}\right\}=1-a
$$

يا معادل آن

$$
P\left\{B-\sqrt{\frac{S S_{R}}{(n-2) S_{x x}}} t_{a / 2, n-2}<\beta<B+\sqrt{\frac{S S_{R}}{(n-2) S_{x x}}} t_{a / 2, n-2}\right\}=1-a
$$

و از آن نتيجه زير بهدست مى آيد .

$$
\left(B-\sqrt{\frac{S S_{R}}{(n-2) S_{x x}}} t_{a / 2, n-2}, \quad B+\sqrt{\frac{S S_{R}}{(n-2) S_{x x}}} t_{a / 2, n-2}\right)
$$

تبصره

$$
\frac{B-\beta}{\sqrt{\sigma^{2} / S_{x x}}}-\mathcal{N}(0,1)
$$

نمى توان بلاذاصله برای انستنباط در بارة β استفاده كرد زيرا شامل بارامتر مجهول

 نتيجه ميشودكه
$\sqrt{\frac{n(n-2) S_{x x}}{\sum_{i} x_{i}^{2} S S_{R}}}(A-\alpha) \sim t_{n-2}$
از اين رابطه برTوردگر فاصطله اطمينان زير براى aبهدست مى آيد
برTوردكر اصله اطمينان براى α. فاصلة اطمينان (- $1-100$ درصد براى α عبارت است از $A \pm \sqrt{\frac{\Sigma_{i} x_{i}^{2} S S_{R}}{n(n-2) S_{x x}}} t_{a / 2, n-2}$

اغلب مى خواهيم از دادهماى جفت يكى مقدار وزودى منطقى عبارت است از
$E\left[A+B x_{0}\right]=E[A]+x_{0} E[B]=\alpha+\beta x_{0}$

 با استفاده از عبارت B در معادل؛ V.Y. آ داريم
$B=c \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) Y_{i}$

$$
c=\frac{1}{\sum_{i=1}^{n} x_{i}^{2}-n \bar{x}^{2}}=\frac{1}{S_{x x}}
$$

جون

$$
A=\bar{Y}-B \bar{X}
$$

$$
\begin{aligned}
A+B x_{0} & =\frac{\sum_{i-1}^{n} Y_{i}}{n}-B\left(\bar{x}-x_{0}\right) \\
& =\sum_{i=1}^{n} Y_{i}\left[\frac{1}{n}-c\left(x_{i}-\bar{x}\right)\left(\bar{x}-x_{0}\right)\right]
\end{aligned}
$$

جون
 توزيع نرمال است ، هون از تبل ميانگين آن را مىدانيم فقط لازم است واريانس آن را مساسبه كنيم

$$
\begin{aligned}
\operatorname{Var} & \left(A+B x_{0}\right) \\
& =\sum_{i=1}^{n}\left[\frac{1}{n}-c\left(x_{i}-\bar{x}\right)\left(\bar{x}-x_{0}\right)\right]^{2} \operatorname{Var}\left(Y_{i}\right) \\
& =\sigma^{2} \sum_{i=1}^{n}\left[\frac{1}{n^{2}}+c^{2}\left(\bar{x}-x_{0}\right)^{2}\left(x_{i}-\bar{x}\right)^{2}-2 c\left(x_{i}-\bar{x}\right) \frac{\left(\bar{x}-x_{0}\right)}{n}\right] \\
& =\sigma^{2}\left[\frac{1}{n}+c^{2}\left(\bar{x}-x_{0}\right)^{2} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}-2 c\left(\bar{x}-x_{0}\right) \sum_{i=1}^{n} \frac{\left(x_{i}-\bar{x}\right)}{n}\right. \\
& =\sigma^{2}\left[\frac{1}{n}+\frac{\left(\bar{x}-x_{0}\right)^{2}}{S_{x x}}\right]
\end{aligned}
$$

كه در Tخرين تساوى به صورت زير بهدست مى آبد $\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=\sum_{i=1}^{n} x_{i}^{2}-n \bar{x}^{2}=1 / c=S_{x x}, \quad \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)=0$

$$
\begin{equation*}
A+B x_{0} \sim \mathcal{N}\left(\alpha+\beta x_{0}, \sigma^{2}\left[\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{S_{x x}}\right]\right) \tag{p,F,V}
\end{equation*}
$$

علاوه بر اين ، هون
$S S_{R} / \sigma^{2} \sim \chi_{n-2}^{2}$
مستقل است نتيجه مىشو2
$\frac{A+B x_{0}-\left(\alpha+\beta x_{0}\right)}{\sqrt{\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{S_{x x}}} \sqrt{\frac{S S_{R}}{(n-2)}}} \sim t_{n-2}$

 ترار سیگيرد

$$
A+B x_{0} \pm \sqrt{\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{S_{x x}}} \sqrt{\frac{S S_{R}}{(n-2)}} t_{a / 2, n-2}
$$

 حل : يهون مقادير مشاهده شلده عبار تند از $n=10, \quad x_{0}=68, \quad \bar{x}=66.8, \quad S_{x x}=171.6, \quad S S_{R}=1.49721$ داريم
$\sqrt{\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{S_{x x}}} \sqrt{\frac{S S_{R}}{(n-2)}}=.1424276$

همهنين 6 جون

$$
t_{.025,8}=2.306 \quad A+B x_{0}=67.56751
$$

r.y

خصل هفتم - رگرسيون

غاصلهُ اطمينان 9 ه در صل زير بهدسـت مى آيد $\alpha+\beta x_{0} \in(67.239,67.896)$.

 كنيـم . شثلأ ، اتكر Tزمايشى در درجهّ حوارت

$$
\text { حاصسل 6 } \alpha+\beta x_{0} \text { را بر آورد كنيـم. }
$$

ابتد| فرض كنيف كه مى خواهِم يكت مقدار تها را بهعنوان بيشّبينى

 $Y \sim \mathscr{N}\left(\alpha+\beta x_{0}, \sigma^{2}\right)$

و ههانمور كه در بـخش F. F نشان داده شمد

$$
A+B x_{0} \sim \mathcal{N}\left(\alpha+\beta x_{0}, \sigma^{2}\left[\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{S_{x x}}\right]\right)
$$

 نتيجه مىشودكا
$Y-A-B x_{0}-\mathcal{N}\left(0, \sigma^{2}\left[1+\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{S_{x x}}\right]\right)$
يا معادل Ti
$\frac{Y-A-B x_{0}}{\sigma \sqrt{\frac{(n+1)}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{S_{x x}}}}-\mathscr{N}(0,1)$
هال با الستفاده مجلد از اين نتيجه كه $\frac{S S_{R}}{\sigma^{2}} \sim \chi_{n-2}^{2}$

$\frac{Y-A-B x_{0}}{\sqrt{\frac{(n+1)}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{S_{x x}}} \sqrt{\frac{\overline{S S_{R}}}{(n-2)}}} \sim t_{n-2}$

$P\left\{-t_{a / 2, n-2}<\frac{Y-A-B x_{0}}{\sqrt{\frac{(n+1)}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{S_{x x}}} \sqrt{\frac{S S_{R}}{(n-2)}}}<t_{a / 2, n-2}\right\}=1-a$
مطالب نوق را مىتوان به مورت زير خلاصه كرد.

 $A+B x_{0} \pm t_{a / 2, n-2} \sqrt{\left[\frac{(n+1)}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{S_{x x}}\right] \frac{S S_{R}}{(n-2)}}$

تبصره

اغلب تفاوت بين فاصلة اطمينان و فامله يشبينى روشن نيست . ذاصلث اطمينان فاملهاعى است كه با
 كه با درجه اطمينان مفروض شامل متغيّ تصادفى مورد نظر باشلد .

 برابر است با $Y(68) \in 67.568 \pm 1.050$

يا با

ه. ${ }^{\dagger}$ خلاصه نتايج كوزيعى

حال نتاِيج توزيعى اين بخش را خلاصه مىكنيم .

$$
Y=\alpha+\beta x+e \quad e \sim \mathscr{N}\left(0, \sigma^{2}\right)
$$

$$
\text { (} \left.x_{i}, Y_{i}\right) \quad i=1,2, \ldots, n \quad \text { : دادهـا }
$$

استنباط در مورد

$$
\begin{array}{ll}
\sqrt{\frac{(n-2) S_{x x}}{S S_{R}}}(B-\beta) \sim t_{n-2} & \beta \\
\sqrt{\frac{n(n-2) S_{x x}}{\sum_{i} x_{i}^{2} S S_{R}}}(A-\alpha) \sim t_{n-2} & \alpha \\
\sqrt{\left(\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{S_{x x}}\right)\left(\frac{S S_{R}}{(n-2)}\right)} & t_{n-2} \\
\sqrt{\left(1+\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{S_{x x}}\right)\left(\frac{S x_{0}}{(n-2)}\right)} & \alpha+\beta x_{0} \\
\sqrt{\left(t_{n-2}\right.} & Y\left(x_{0}\right)
\end{array}
$$

ها شاخص برازش

اگر برازش كدترين مربعات دادههاى جفت

$$
\begin{equation*}
Y=\alpha+e \tag{I.s.v}
\end{equation*}
$$

 برابر
$Y=\alpha+\beta x+e$
 مساوى صفر باشدكميت

$$
\begin{align*}
R^{2} & =1-\frac{S S_{R}}{\sum_{i}\left(Y_{i}-\bar{Y}\right)^{2}} \\
& =1-\frac{S S_{R}}{S_{Y Y}} \\
& =\frac{S_{x Y}^{2}}{S_{x x} S_{Y Y}} \tag{F.Y.V}
\end{align*}
$$

 به ازاى برازش شا كامل و در نتيجه جوابهاى كميت $R=\sqrt{R^{2}}$
 R
 برازش الگوى رگَرسيون $Y=\alpha+\beta x+e$ نسبت به الگوى $Y=\alpha+e$ است $Y=\alpha$ است مثال Y.D.الف ـاز مثال P.V.الف ديده مىشود كه
$S S_{R}=1.497 \quad S_{Y Y}=38.5344$

و در نتيجه

$$
R^{2}=.9612 \quad R=.9804
$$

اين مقدار بزرگث R نشان مىدهد كه الگَوى رگرسيون برازش بهترى به دادهها دارد تا وتتى كی فرض

 م $i=1, \ldots, n$ ، n ، Y_{i}, X_{i} امت . حال فرض كنيد كه بخغواهيم مقدار م، ممبستگیى بين و

$$
\rho=\frac{E[(X-E[X])(Y-E[Y])]}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}
$$

كه در Tن X X X هر يكت از زوجهای مورت زير بهدست مى آيد

مقدار
مقدار
مقدار $\quad \sum_{i=1}^{n} \frac{\left(Y_{i}-\bar{Y}\right)^{2}}{n} \quad \operatorname{Var}(Y)$ برابود میكنيم
در نتيجه يكت بر Tوردگر منطقى ρ عبارت انست از

$$
\begin{aligned}
\hat{\rho} & =\frac{\Sigma\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sqrt{\Sigma\left(X_{i}-\bar{X}\right)^{2} \Sigma\left(Y_{i}-\bar{Y}\right)^{2}}} \\
& =\frac{S_{X Y}}{\sqrt{S_{X X} S_{Y Y}}}=R
\end{aligned}
$$

بهعبارت ديگر شاخحس برازش R ضريب ممبستگى بين ورودى و ياسغ را برآورد ممكند .

7- آناليز ماندهها : اوزيابى التو
مرحلة اوّل براى اثبات اين كه الگَوى رگَرسيون خطى ساده
$Y=\alpha+\beta x+e, \quad e \sim \mathcal{N}\left(0, \sigma^{2}\right)$

 , $i=1, \ldots, n ، Y_{i}-\left(A+B x_{i}\right)$

تقسيم برآورد انحران استاندارد

$$
\frac{Y_{i}-\left(A+B x_{i}\right)}{\sqrt{S S_{R} /(n-2)}} \quad i=1, \ldots, n
$$

را ماندههاى استاندارد شدهگويند

 ثابت نيست و با الزايش سطع ورودى زياد میشود .
rir

- Y تبلديل به مدل خططى

در بسيارى حالات مشخص مىشود كه ميانگین هاسغ تابعى خططى از سطع ورودى نيسـت . در پنين

 از شروع، تقريباً با $ا$ رابطهايى به لفم تابعى زير دارد

$$
W(t) \approx c e^{-d t}
$$

باگَرفن لگَاريتم از طرفين اين رابطه داريم

$$
\log W(t) \approx \log c-d t
$$

اگر ترار دهيم

$$
\begin{aligned}
& Y=\log W(t) \\
& \alpha=\log c \\
& \beta=-d
\end{aligned}
$$

آنگاه عبارت اخير رامْىتوان به شُكل زير به مدل رگرسيونى تبلديلكرد

$$
Y=\alpha+\beta t+e
$$

در اين صورت یارامترهاي α و β را مىتوان از روش معسلى كمترين مربعات برآورد كرد و روابط

$$
W(t) \approx e^{A+B t}
$$

احتـال ابتلا به سرطان ربه

میى رواهيم از اين داده ها استفاده كرده و اين احتمال را كه فردى مبتلا به سرطان ريه شود با اين فرض روزانه هr سيگًار مصرف كند بر Tورد كنيم .

 يكت سلول ريه) • بنابراين اگگر شـخص روزانه i سيگار الستعمال كند آنگاه احتمال اينكه سرطان ريه

 $1-P(i)=P\{\quad$ مبتلا نـدلدن به سرطان ريه آكر روزانه i سيگّار بكثلـ

كه درآن c - 1 احتمالابتلاء بهسرطانريه بهعلل ديگراست. اينرابطهراميتوان بهصورت زير نوشت

$$
1-P \simeq c(1-d)^{x}
$$

$$
\log (1-P)=\log c+x \log (1-d)
$$

یس با فرض

$$
\begin{aligned}
& Y=-\log (1-P) \\
& \alpha=-\log c \\
& \beta=-\log (1-d)
\end{aligned}
$$

معادلّ رگرسيون معمولى زير بهدست مى آيل

$$
Y=\alpha+\beta x+e
$$

$$
\begin{aligned}
& A=.0154 \\
& B=.0099
\end{aligned}
$$

جمدل X.Y.Y

تعلاد سيگاريها	$-\log (I-P)$
5	.063
10	.120
20	.213
30	.300
40	414
50	.512
60	.618
80	.801

اگگر اين مقادير را مجلدآ به متغيّرهاثى اوليه برگردانيم برTورد c و d عبار تند

$$
\begin{aligned}
& \hat{c}=e^{-A} \\
&=.9847 \\
& 1-\hat{d}=e^{-B}
\end{aligned}=.9901
$$

بنابراين برT'ورد رابطة تابعى عبارت است از

$\hat{P}=1-.9847(.9901)^{x}$
و ماندهها، يعنى مقادير P-

تبصر

 در مشال V.V. الفـ مدل زير را مورد استفاده ترار میدهيم •
$-\log (1-P)=a+\beta x+e$

الگُوى ديگَرىكه اغلببهكارمىرود، الُگّوى لجستيكت (يا لجيت) ناميدهى شو دكهبهصورتزيراست .

$$
\log \left(\frac{P}{1-P}\right)=\alpha+\beta x+e
$$

-
در الگَوى رگر ميون

$$
Y=\alpha+\beta x+e
$$

اغلب ديده مىشود كه واريانس يكت باسغ ثابت نيست و به ورودى بستگى دارد ـ اگر اين واريانسها معلوم باشند - حداتل با يكك ضريب - آنگّاه يارامترهاى رگُرسيون α و β را با هينيمـم كردن مجهوع مربعات موزون بهدست مى آرريم ؛ بخصوص اگر اكر

$$
\operatorname{Var}\left(Y_{i}\right)=\frac{\sigma^{2}}{w_{i}}
$$

آنگاه برآوردهاى Aو B بايد به تسمى اختيار شوندكه عبارات زير را مينيمـم سازند .

$$
\sum_{i} \frac{\left[Y_{i}-\left(A+B x_{i}\right)\right]^{2}}{\operatorname{Var}\left(Y_{i}\right)}=\frac{1}{\sigma^{2}} \sum_{i} w_{i}\left(Y_{i}-A-B x_{i}\right)^{2}
$$

اگر نسبت به Aو B مشتق گر نهه و مساوى صفر قرار دهيم معادلات زير بهدست مى آيل

$$
\begin{gather*}
\sum_{i} w_{i} Y_{i}=A \sum_{i} w_{i}+B \sum_{i} w_{i} x_{i} \tag{1,A.V}\\
\sum_{i} w_{i} x_{i} Y_{i}=A \sum_{i} w_{i} x_{i}+B \sum_{i} w_{i} x_{i}^{2}
\end{gather*}
$$

اين معادلات بآسانى حل مىشوند و بر اوردهاى كتترين مربعات بهدست مى آيند .
مثال Y.Y.الف - يرایى روشن شلدن علت اين كه هرا بر آوردگرها بايل از مينيمـمكردن مبهوع ع مربعات

 كنيدكه X مستقيماً تابل مشاهله نيست ، بلكه فقط
$Y_{1}=X_{1}+\cdots+X_{k} \quad Y_{2}=X_{k+1}+\cdots+X_{n} \quad k<n$
مستقيماً كابل مشاهدهاند • بر مبناى
در حالمى كه بهترين برآوردگر μ برابرابر برآوردگر كمترين مربعات سعولى جه خواهد بود 1 هون
$E\left[Y_{1}\right]=k \mu \quad E\left[Y_{2}\right]=(n-k) \mu$
برآوردگر كمترين مربعات μ مقدارى است كه عبارت زير را مينيـم سازد
$\left(Y_{1}-k \mu\right)^{2}+\left(Y_{2}-[n-k] \mu\right)^{2}$
اگگ از اين عبارت مشتق گرمته و مساوى حفر قرار دميم آنگاه برآوردگر كمترين مربعات بكه آن را شَ
$-2 k\left(Y_{1}-k \hat{\mu}\right)-2(n-k)\left[Y_{2}-(n-k) \hat{\mu}\right]=0$
$\left[k^{2}+(n-k)^{2}\right] \hat{\mu}=k Y_{1}+(n-k) Y_{2}$
$\hat{\mu}=\frac{k Y_{1}+(n-k) Y_{2}}{k^{2}+(n-k)^{2}}$
بس مىينيم با اين كه برآوردگر كمترين مربعات معولمى يكت برآوردگر ناريب براى باست -زيرا

$$
E[\hat{\mu}]=\frac{k E\left[Y_{1}\right]+(n-k) E\left[Y_{2}\right]}{k^{2}+(n-k)^{2}}=\frac{k^{2} \mu+(n-k)^{2} \mu}{k^{2}+(n-k)^{2}}=\mu
$$

ــآلّا بهترين برآوردكر يعنى
 ر راكه با ب
$\frac{\left(Y_{1}-k \mu\right)^{2}}{\operatorname{Var}\left(Y_{1}\right)}+\frac{\left[Y_{2}-(n-k) \mu\right]^{2}}{\operatorname{Var}\left(Y_{2}\right)}$

آمار و آحتمال مهندسى

$$
\operatorname{Var}\left(Y_{1}\right)=k \sigma^{2} \quad \operatorname{Var}\left(Y_{2}\right)=(n-k) \sigma^{2}
$$

یس مقدار ر را به تسمى انتخاب مىكنيم كه عبارت زير مينيمب شود

$$
\frac{\left(Y_{1}-k \mu\right)^{2}}{k}+\frac{\left[Y_{2}-(n-k) \mu\right]^{2}}{n-k}
$$

اگك, مشتق اين عبارت را مساوى صفر ترار دهيم ‘ مى بينيم كه

$$
\frac{-2 k\left(Y_{1}-k \mu_{w}\right)}{k}-\frac{2(n-k)\left[Y_{2}-(n-k) \mu_{w}\right]}{n-k}=0
$$

$$
Y_{1}+Y_{2}=n \mu_{w}
$$

$$
\mu_{w}=\frac{Y_{1}+Y_{2}}{n}
$$

يعنى بر آوردگر كمترين مربعات موزون در واقع همان بهترين برآوردگر يعنى

تبصر
الف) مجموع مربعات موزون را مىتوان بهعنوان يكى كميت مناسب براى مينيمم مـاختن ، با ضرب معادلّ رگر سيون

$$
Y=\alpha+\beta x+e
$$

در

$$
Y \sqrt{w}=\alpha \sqrt{w}+\beta x \sqrt{w}+e \sqrt{w}
$$

هال در اين معادله جمله خطا ، يعنى $e \sqrt{w}$ ، داراى ميانگیين صفر و واريانس ثابت است . بنـابرايـن بر آوردگر هاى مجحوع مربعات معهولى α و β ، مقادير A و B هستيند كه عبارت زير را مينيمم مىكنند

$$
\sum\left(Y_{i} \sqrt{w_{i}}-A \sqrt{w_{i}}-B x \sqrt{w_{i}}\right)^{2}=\sum w_{i}\left(Y_{i}-A-B x_{i}\right)^{2}
$$

ب) در روش مجموع مربعات موزون بيشترين تأكيد روى دادرهاى با بيشترين وزن (و بنابراين
باكوپِكّرين واريانس در جمله خطا) است .
در اينجا معلوم مىشود كه روش كمترين مربعات موزون جندان مناسب نيست ، زيـرا بـايد

واريانس پاسخ به ازایى يكت مقدار دلخواه ورودى با تقريب يكت خريب ثابت معلوم باشد . ولى بـا
 مطلب را توضيح مىدهيم .

مثال A.Y.Y ـ دادههاثى زير زمان مسافرت به مركز يكت شهر را نشان مىدهد . متغير ورودى يا متغير مستقل طول مسير مسافرت است

فاصله	. 5	1	1.5	2	3	4	5	6	8	11
زمان رسبدن (دلِقه)	15.0	15.1	16.5	199	27.7	29.7	26.7	35.9	42	49.4

 $y=\alpha+\beta x+e$

پارامترهأى α و β را پـگونه برآورد كنيم ؟ برایى استفاده از روش مسجموع مربعـات مـوزون ، بـايد
 متناسب با xباشد .
x/d فرض كنيد كه d طول يكت بلوكى شهرى باشد . در اين صورت مسافرتى در طول x بلوكت خواهد بود . اگر به صورت زير داده مىشود $Y=Y_{1}+Y_{2}+\cdots+Y_{x / d}$
 فرض كنيم ، بنابراين
$\operatorname{Var}(Y)=\operatorname{Var}\left(Y_{1}\right)+\cdots+\operatorname{Var}\left(Y_{x / d}\right)$

$$
\begin{array}{ll}
=(x / d) \operatorname{Var}\left(Y_{1}\right) & \operatorname{Var}\left(Y_{i}\right)=\operatorname{Var}\left(Y_{1}\right) \\
=x \sigma^{2} & \sigma^{2}=\operatorname{Var}\left(Y_{1}\right) / d \text { نير آن }
\end{array}
$$

بدين ترتيب معلوم مىشود كه برآوردگرهاى A و B بايد به تسمى انتخاب شوند كه عبارت $\sum \frac{\left(Y_{i}-A-B x_{i}\right)^{2}}{x_{i}}$
زير مينيمم شود

با استفاده از دادهمايى با وزن مى شوند
$104.22=5.34 A+10 B$
$277.9=10 A+41 B$
كه داراي جوابهاى زير است
$A=12.561 \quad B=3.714$
نمودار بر آورد خط رگرسيون حاصل Y ولمرل Y مراه نقاط مربوط بـ دادهما

 هـك وروديها متناسب است

$Y=\alpha+\beta x+e$
امتا دلبلى وجود ندارد كه Var(Y به سطع ورودى xبـتگى نداشته بـاشد . لذا نــىتوانـيم روش

 $\sum_{i} \frac{\left(Y_{i}-A-B x_{i}\right)^{2}}{x_{i}}$
منطق ادعاى نوت اين است اسكه مىتوان توزيع Y را بطور تقريب بواسن كرد ـ ـ زيرا مىتوان تصور كري

ميانگین آن است، داريم

$$
\begin{aligned}
\operatorname{Var}(Y) & \simeq E[Y] \\
& =\alpha+\beta x \\
& =\beta x
\end{aligned}
$$

تبصره

 خطى از ورودى بنويــيم ؛ يُنى

$$
\sqrt{Y}=\alpha+\beta x+e
$$

 نويسنده ترجيع مىدهد از روش كـترين مرين مريعات موزون استفاده شود .

بسط سرى تيلور تابع مراتب ب به بعد صرفنظر كنيمه ، داريم

$$
g(y) \approx g(\lambda)+g^{\prime}(\lambda)(y-\lambda)+\frac{g^{\prime \prime}(\lambda)(y-\lambda)^{2}}{2}
$$

$$
g^{\prime}(\lambda)=\frac{1}{2} \lambda^{-1 / 2} \quad g^{\prime \prime}(\lambda)=-\frac{1}{4} \lambda^{-3 / 2}
$$

$$
\begin{aligned}
& \sqrt{Y} \approx \sqrt{\lambda}+\frac{1}{2} \lambda^{-1 / 2}(Y-\lambda)-\frac{1}{8} \lambda^{-3 / 2}(Y-\lambda)^{2} \\
& E[Y-\lambda]=0 \quad E\left[(Y-\lambda)^{2}\right]=\operatorname{Var}(Y) \approx \lambda
\end{aligned}
$$

$$
E[\sqrt{Y}] \approx \sqrt{\lambda}-\frac{1}{8 \sqrt{\lambda}}
$$

$$
(E[\sqrt{Y}])^{2} \approx \lambda+\frac{1}{64 \lambda}-\frac{1}{4}
$$

$$
\approx \lambda-\frac{1}{4}
$$

$$
\begin{aligned}
\operatorname{Var}(\sqrt{Y}) & =E[Y]-(E[\sqrt{Y}])^{2} \\
& \approx \lambda-\left(\lambda-\frac{1}{4}\right) \\
& =\frac{1}{4} .
\end{aligned}
$$

9- ركرسيون جند جملهاى
در مواردى كه رابطه تابعى بوجود بين باسخ Y و متغيّر مستقل xرا نمى توان با يكث رابطةء خططى تقريب
 تابعى به مورت زير برازش داد
$Y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\cdots+\beta_{r} x^{\prime}+e$
كه در Tن
 يعنى
$\sum_{i=1}^{n}\left(Y_{i}-B_{0}-B_{1} x-B_{2} x^{2}-\cdots-B_{r} x^{r}\right)^{2}$

 مربعات
$\sum_{i=1}^{n} Y_{i}=B_{0} n+B_{1} \sum_{i=1}^{n} x_{i}+B_{2} \sum_{i=1}^{n} x_{i}^{2}+\cdots+B_{r} \sum_{i=1}^{n} x_{i}^{r}$
$\sum_{i=1}^{n} x_{i} Y_{i}=B_{0} \sum_{i=1}^{n} x_{i}+B_{1} \sum_{i=1}^{n} x_{i}^{2}+B_{2} \sum_{i=1}^{n} x_{i}^{3}+\cdots+B_{r} \sum_{i=1}^{n} x_{i}^{r+1}$
$\sum_{i=1}^{n} x_{i}^{2} Y_{i}=B_{0} \sum_{i=1}^{n} x_{i}^{2}+B_{1} \sum_{i=1}^{n} x_{i}^{3}+\cdots+B_{r} \sum_{i=1}^{n} x_{i}^{r+2}$
$\sum_{i=1}^{n} x_{i}^{r} Y_{i}=B_{0} \sum_{i=1}^{n} x_{i}^{r}+B_{1} \sum_{i=1}^{n} x_{i}^{r+1}+\cdots+B_{r} \sum_{i=1}^{n} x_{i}^{2 r}$

 كه از تمام n نقطه مشكل خواهد بود .

مثال Y. Y.الف ـ يكت جند جملهاى به دادههاى زير برازش دهيد

\boldsymbol{x}	\boldsymbol{Y}
1	20.6
2	30.8
3	55
4	71.4
5	97.3
6	131.8
7	156.3
8	197.3
9	238.7
10	291.7

$$
Y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+e
$$

ممكن است مناسب باشد 4 جون

$$
\begin{aligned}
& \sum_{i} x_{i}=55, \quad \sum_{i} x_{i}^{2}=385, \quad \sum_{i} x_{i}^{3}=3025, \quad \sum_{i} x_{i}^{4}=25333 \\
& \sum_{i} Y_{i}=1291.1, \quad \sum_{i} x_{i} Y_{i}=9549.3, \quad \sum_{i} x_{i}^{2} Y_{i}=77758.9
\end{aligned}
$$

بر Tوردهاى كمترين مربعات جواب معادلات زير مى．اشند

$$
\begin{align*}
1291.1 & =10 B_{0}+55 B_{1}+385 B_{2} \\
9549.3 & =55 B_{0}+385 B_{1}+3025 B_{2} \tag{i.4.v}\\
77758.9 & =385 B_{0}+3025 B_{1}+25333 B_{2}
\end{align*}
$$

از حل اين معادلات بر آوردهاى كمترين مربعات بهصورت زيربهدست مى آيند（تصرهٔ زير را بينيد）．

$$
B_{0}=12.59326 \quad B_{1}=6.326172 \quad B_{2}=2.122818
$$

بنابرامن معادل丈 رگك سيون درجه Y عبارت است از

$$
Y=12.59+6.33 x+2.12 x^{2}
$$

اين مسادلّ همراه با دادهها در شكل Y．Q．V رسمم شده است ．

تبصر

با نماد ماتريسى معادلة Q. ا. ا را مىتوان بهصورت زير نوشت

$$
\left[\begin{array}{r}
1291.1 \\
9549.3 \\
77758.9
\end{array}\right]=\left[\begin{array}{rrr}
10 & 55 & 385 \\
55 & 385 & 3025 \\
385 & 3025 & 25333
\end{array}\right]\left[\begin{array}{l}
B_{0} \\
B_{1} \\
B_{2}
\end{array}\right]
$$

كه داراى جواب زير است .

$$
\left[\begin{array}{l}
B_{0} \\
B_{1} \\
B_{2}
\end{array}\right]=\left[\begin{array}{rrr}
10 & 55 & 385 \\
55 & 385 & 3025 \\
385 & 3025 & 25333
\end{array}\right]^{-1}\left[\begin{array}{r}
1291.1 \\
9549.3 \\
77758.9
\end{array}\right]
$$

برنامة Inv خميمه را مى توان براى محاسبة معكوس ماتريس به كار برد .

در إغلب كاربردها باسخ يكت آمايش را بطور كاملتر مىتوان بر مبناى مبقوعهاى از متغير هاى مستقل
 متغيّر ورودى با یاسخ Y به صورت زير مرتينـي
$Y=\beta_{0}+\beta_{1} x_{1}+\cdots+\beta_{k} x_{k}+e$
كه در Tن ان توزيع نرمال با ميانگين صفر و واريا
 سطع ورودى یردي $E\left[Y_{i}\right]=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\cdots+\beta_{k} x_{i k}$

اتر اگر مقادير ميانگين Tنها عبارت است از $\sum_{i=1}^{n}\left(Y_{i}-B_{0}-B_{1} x_{i 1}-B_{2} x_{i 2}-\cdots-B_{k} x_{i k}\right)^{2}$

براوردكرهاى كمترين مربعات مقاديرى ازز
 بـ به $\sum_{i=1}^{n}\left(Y_{i}-B_{0}-B_{1} x_{i 1}-B_{2} x_{i 2} \cdots-B_{k} x_{i k}\right)=0$
$\sum_{i=1}^{n} x_{i 1}\left(Y_{i}-B_{0}-B_{1} x_{i 1}-\cdots-B_{k} x_{i k}\right)=0$
$\sum_{i=1}^{n} x_{i 2}\left(Y_{i}-B_{0}-B_{1} x_{i 1}-\cdots-B_{k} x_{i k}\right)=0$

$$
\sum_{i=1}^{n} x_{i k}\left(Y_{i}-B_{0}-B_{1} x_{i 1}-\cdots-B_{i} x_{i k}\right)=0
$$

اگر اين معادلات را به صورت زير مرتب كنيم Tنها را معادلات نرمال مىنامند .

$$
\begin{equation*}
\sum_{i=1}^{n} Y_{i}=n B_{0}+B_{1} \sum_{i=1}^{n} x_{i 1}+B_{2} \sum_{i=1}^{n} x_{i 2}+\cdots+B_{k} \sum_{i=1}^{n} x_{i k} \tag{1.r.v}
\end{equation*}
$$

$\sum_{i=1}^{n} x_{i 1} Y_{i}=B_{0} \sum_{i=1}^{n} x_{i 1}+B_{1} \sum_{i=1}^{n} x_{i 1}^{2}+B_{2} \sum_{i=1}^{n} x_{i 1} x_{i 2}+\cdots+B_{k} \sum_{i=1}^{n} x_{i 1} x_{i k}$
$\sum_{i=1}^{k} x_{i k} Y_{i}=B_{0} \sum_{i=1}^{n} x_{i k}+B_{1} \sum_{i=1}^{n} x_{i k} x_{i 1}+B_{2} \sum_{i=1}^{n} x_{i k} x_{i 2}+\cdots+B_{k} \sum_{i=1}^{n} x_{i k}^{2}$
قبل از حل معادلات نرمال بهتر است نهادهاى زير را معرفى كنيـم
$\mathbf{Y}=\left[\begin{array}{c}Y_{1} \\ Y_{2} \\ \vdots \\ Y_{n}\end{array}\right] \quad \mathbf{X}=\left[\begin{array}{ccccc}1 & x_{11} & x_{12} & \cdots & x_{1 k} \\ 1 & x_{21} & x_{22} & \cdots & x_{2 k} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_{n 1} & x_{n 2} & \cdots & x_{n k}\end{array}\right]$
$\boldsymbol{\beta}=\left[\begin{array}{c}\beta_{0} \\ \beta_{1} \\ \vdots \\ \beta_{k}\end{array}\right] \quad \mathbf{e}=\left[\begin{array}{c}e_{1} \\ e_{2} \\ \vdots \\ e_{n}\end{array}\right]$
 حال الگوى رگگرسيون جندگانه را مى توان بهصورت زير نوشت
$\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\mathbf{e}$
ب4علاور اگر
$\mathbf{B}=\left[\begin{array}{c}B_{0} \\ B_{1} \\ \vdots \\ B_{k}\end{array}\right]$
ماتريس برآوردگرهاى كمترين مربعات باشد آزگاه معادلات نرمال v. • ا. ا را معتوان به صسورت زير نوشت

كه در آن 'X ترانهاده XXاست .

$\mathbf{X}^{\prime} \mathbf{X}=\left[\begin{array}{cccc}1 & 1 & \cdots & 1 \\ x_{11} & x_{21} & \cdots & x_{n 1} \\ x_{12} & x_{22} & \cdots & x_{n 2} \\ \vdots & & & \\ x_{1 k} & x_{2 k} & \cdots & x_{n k}\end{array}\right]\left[\begin{array}{ccccc}1 & x_{11} & x_{12} & \cdots & x_{1 k} \\ 1 & x_{21} & x_{22} & \cdots & x_{2 k} \\ \vdots & \vdots & & & \\ 1 & x_{n 1} & x_{n 2} & \cdots & x_{n k}\end{array}\right]$

$$
=\left[\begin{array}{ccccc}
n & \sum_{i} x_{i 1} & \sum_{i} x_{i 2} & \cdots & \sum_{i} x_{i k} \\
\sum_{i} x_{i 1} & \sum_{i} x_{i 1}^{2} & \sum_{i} x_{i 1} x_{i 2} & \cdots & \sum_{i} x_{i 1} x_{i k} \\
\vdots & & & & \\
\sum_{i} x_{i k} & \sum_{i} x_{i k} x_{i 1} & \sum_{i} x_{i k} x_{i 2} & \cdots & \sum_{i} x_{i k}^{2}
\end{array}\right]
$$

$\mathbf{X}^{\prime} \mathrm{Y}=\left[\begin{array}{c}\sum_{i} Y_{i} \\ \sum_{i} x_{i 1} Y_{i} \\ \vdots \\ \sum_{i} x_{i k} Y_{i}\end{array}\right]$
حال بآسانى ديده مىشود كه معادلهُ ماتريسى
$\mathbf{X}^{\prime} \mathbf{X B}=\mathbf{X}^{\prime} \mathbf{Y}$
 اين جنين است) با ضرب طرفين معادلة نوق در Tن ، برآوردگرهاى كمترين مربعات به مورت زير بهدست مى آيد

$$
\mathbf{B}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Y}
$$

 *

هثال Y. - ا.الف - دادهماى زير نعداد خودكشيها رادر ارتباط با حجم جامعه و تعداد طلاتها در \uparrow ناحيهُ منغتلف را نشان يىدهل

ناحيد	دز هزارٌ	ميزان طلاق در مـد هزار	ميزان هـدو دزكار
Akron, Ohio	679	30.4	11.6
Anaheim, Ca.	1420	34.1	16.1
Bulfalo, N.Y.	1349	17.2	9.3
Austin, Texas	296	26.8	9.1
Chicago, Ill.	6975	29.1	8.4
Columbia, S.C.	323	18.7	7.7
Detroit, Mich.	4200	32.6	11.3
Gary, Indiana	633	32.5	8.4

يكث الگوى رگرسيون خطى بهايندادههابرازشدهيد ، يعنى الگويكبهصورت زيربهدادههابرازس دهيد $Y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+e$

برناهن V.، ، ا رااجرا مىكينم
run
THIS PROGRAM COMPUTES THE LEAST SQUARES ESTIHATES OF THE COEFFICIENTS AND THE SUM OF SOUARES OF 1 HE RESIDUALS IN MULTIFLE LINEAR REGRESSION
IT EEGINS EY COMPUTING THE INVERSE OF THE X-TRANSFOSEEX HATRIX
ENITEF THE NUMEER OF ROWS OF THE X-MATRIX
$? 8$
ENTEF THE NIJMEER OF COLUMNS OF THE X-MATRIX
7 J
ENTEF RDW 1 DNE AT A TIME
? 1 ? 679730.4
ENTER ROW 2 ONE AT A TIHE
? 1? 1420 ? 34.1
ENTEF ROW 3 ONE AT A TIME
? 1 1? 1349717.2
ENTER ROW 4 ONE AT A TIHE
? 1? 296? 26. B
ENTEF ROW 5 ONE AT A TIME
? 17 6775? 29.1
ENTER ROW 6 ONE AT A TIME
$317323 ? 18.7$
ENTER ROW 7 ONE AT A TIME
? 1? 4200? 32.6
ENTER ROW E ONE AT A TIME
7 1? 6J3? 52.5
THE INVERSE MATRIX IS AS FQLLOWS
2.783111 1.707031E-0S -9.727136E-02

```
1．107051E－65 2．49611E－OE－2．5SE－06
\(\cdots\) ． \(21136 \mathrm{E}-02\)－2．55E－06 3．697616E－03
```

－HIER THE RESFONSE VALUES ONE AT A TIME
：1．6716．1？9． 37 9．1？日．47 7．7711．ㄱ？日． 4
\because ESIIMATES OF THE REGRESSIDN COEFFICIENTS ARE AS FOLLOWS
$\cdot \cdot$ S SUM OF SQUARES OF THE FESIDUALS $1 S \mathrm{SS}(R)=34.1192$

> در نتيجه بر آورد خط رگرسيون عبارت است از

$$
Y=3.5073-.0002 x_{1}+.2609 x_{2}
$$

 مجهوعه متغيّ هاى تصطادنى داراى توزيع توأم نرمال جني

$$
E[\mathbf{B}]=E\left[\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Y}\right]
$$

$$
=E\left[\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}(\mathbf{X} \boldsymbol{\beta}+\mathbf{e})\right] \quad \mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\mathbf{e}
$$

$$
=E\left[\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\beta}+\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{e}\right]
$$

$$
=E\left[\boldsymbol{\beta}+\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{e}\right]
$$

$$
=\boldsymbol{\beta}+\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} E[\mathbf{e}]
$$

$$
=\boldsymbol{\beta}
$$

 مقادير اين ماتريس به كوواريانسهاى

براى اثبات مطلب فوق در لارتباط با Cov（ B_{i}, B_{j} مى
rren
$\mathbf{C}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}$
 ماتريس p × p |

$$
\left[\begin{array}{c}
B_{0} \\
\vdots \\
B_{i-1} \\
\vdots \\
B_{k}
\end{array}\right]=\mathbf{B}=\mathbf{C Y}=\left[\begin{array}{ccc}
C_{11} & \cdots & C_{1 n} \\
& & \\
C_{i 1} & \cdots & C_{i n} \\
& & \\
C_{p 1} & \cdots & C_{p n}
\end{array}\right]\left[\begin{array}{c}
Y_{1} \\
\\
\vdots \\
Y_{n}
\end{array}\right]
$$

بنابراين

$$
\begin{aligned}
& B_{i-1}=\sum_{l=1}^{n} C_{i l} Y_{l} \\
& B_{j-1}=\sum_{r=1}^{n} C_{j r} Y_{r}
\end{aligned}
$$

$\operatorname{Cov}\left(B_{i-1}, B_{j-1}\right)=\operatorname{Cov}\left(\sum_{i=1}^{n} C_{i l} Y_{I}, \quad \sum_{r=1}^{n} C_{j r} Y_{r}\right)$

$$
=\sum_{r=1}^{n} \sum_{l=1}^{n} C_{i l} C_{j r} \operatorname{Cov}\left(Y_{l}, Y_{r}\right)
$$

از طرفى
$\operatorname{Cov}\left(Y_{i}, Y_{r}\right)= \begin{cases}0 & \text { if } l \neq r \\ \operatorname{Var}\left(Y_{r}\right) & \text { if } l=r\end{cases}$
$\operatorname{Cov}\left(B_{i-1}, B_{j-1}\right)=\sigma^{2} \sum_{r=1}^{n} C_{i} C_{j r}$

$$
=\sigma^{2}\left(\mathrm{CC}^{\prime}\right)_{i J}
$$

 حال اگر Cov(B) باتريس كوواريانسها باشد ، يعنى$\operatorname{Cov}(\mathbf{B})=\left[\begin{array}{ccc}\operatorname{Cov}\left(B_{0}, B_{0}\right) & \cdots & \operatorname{Cov}\left(B_{0}, B_{k}\right) \\ \vdots & & \\ \operatorname{Cov}\left(B_{k}, B_{0}\right) & \cdots & \operatorname{Cov}\left(B_{k}, B_{k}\right)\end{array}\right]$

$$
\operatorname{Cov}(\mathbf{B})=\sigma^{2} \mathbf{C C}^{\prime}
$$

از طرنى

$$
\begin{aligned}
\mathbf{C}^{\prime} & =\left(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\right)^{\prime} \\
& =\mathbf{X}\left(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right)^{\prime} \\
& =\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
\end{aligned}
$$

تساوى اخير با توجه به تقارن (X'X) بهدست مى آيد (زيرا X'X متقارن است) . يس

$$
\begin{aligned}
\mathbf{C C}^{\prime} & =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{\mathbf { X } ^ { \prime }} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \\
& =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
\end{aligned}
$$

بنابراين از معادلهٔ V. - 1 ه نتيجه ميشود كه
$\operatorname{Cov}(\mathbf{B})=\sigma^{\mathbf{2}}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$
جون عناصر تطرى ماتريس (XX) به
كميت

$$
S S_{k}=\sum_{i=1}^{n}\left(Y_{i}-B_{0}-B_{1} x_{i 1}-B_{2} x_{i 2}-\cdots-B_{k} x_{i k}\right)^{2}
$$

آزگاه مى توان نشان داد كه

$$
\frac{S S_{R}}{\sigma^{2}} \sim \chi_{n-(k+1)}^{2}
$$

$$
E\left[\frac{S S_{R}}{\sigma^{2}}\right]=n-k-1
$$

$$
E\left[S S_{R} /(n-k-1)\right]=\sigma^{2}
$$

يعنى (1) -

كبصره

اگگ

$$
r_{i}=Y_{i}-B_{0}-B_{1} x_{i 1}-\cdots-B_{k} x_{i k}, \quad i=1, \ldots, n
$$

Tزگگاه

$$
\mathbf{r}=\mathbf{Y}-\mathbf{X B}
$$

كه در Tن

$$
\mathrm{r}=\left[\begin{array}{c}
r_{1} \\
r_{2} \\
\vdots \\
r_{n}
\end{array}\right]
$$

$$
\begin{aligned}
S S_{R} & =\sum_{i=1}^{n} r_{i}^{2} \\
& =\mathbf{r}^{\prime} \mathbf{r} \\
& =(\mathbf{Y}-\mathbf{X B})^{\prime}(\mathbf{Y}-\mathbf{X B}) \\
& =\left[\mathbf{Y}^{\prime}-(\mathbf{X B})^{\prime}\right](\mathbf{Y}-\mathbf{X B}) \\
& =\left(\mathbf{Y}^{\prime}-\mathbf{B}^{\prime} \mathbf{X}^{\prime}\right)(\mathbf{Y}-\mathbf{X B}) \\
& =\mathbf{Y}^{\prime} \mathbf{Y}-\mathbf{Y}^{\prime} \mathbf{X B}-\mathbf{B}^{\prime} \mathbf{X}^{\prime} \mathbf{Y}+\mathbf{B}^{\prime} \mathbf{X}^{\prime} \mathbf{X B} \\
& =\mathbf{Y}^{\prime} \mathbf{Y}-\mathbf{Y}^{\prime} \mathbf{X B}
\end{aligned}
$$

كه در آن تساوى آخر از معادلات نرمال زير بدست مى آيد
$\mathbf{X}^{\prime} \mathbf{X B}=\mathbf{X}^{\prime} \mathbf{Y}$
|ز طرف ديگ夫ر هون '
 برابر است و نشان میدهد كه

$$
\begin{aligned}
\mathbf{Y}^{\prime} \mathbf{X B} & =\left(\mathbf{Y}^{\prime} \mathbf{X B}\right)^{\prime} \\
& =\mathbf{B}^{\prime} \mathbf{X}^{\prime} \mathbf{Y}
\end{aligned}
$$

بنابراين با استفاده از معادلهُ V. . . V اتحاد زير ثابت مىشود
$S S_{R}=\mathbf{Y}^{\prime} \mathbf{Y}-\mathbf{B}^{\prime} \mathbf{X}^{\prime} \mathbf{Y}$
 مثال Y. ■. \quad برآورد

 نشان میدهد .

	(س)	(ا..... ارتفاعوت)	(اينجّ)	نيروى ثقل	(در ارتفأع دريكت ترى)
1	44	1.3	250	. 63	18.1
2	33	2.2	115	. 59	19.6
3	33	2.2	75	. 56	16.6
4	32	2.6	85	. 55	16.4
5	34	2.0	100	. 54	16.9
6	31	1.8	75	. 59	17.0
7	33	2.2	85	. 56	20.0
8	30	3.6	75	. 46	16.6
9	34	1.6	225	. 63	16.2
10	34	1.5	250	. 60	18.5
11	33	2.2	255	. 63	18.7
12	36	1.7	175	. 58	19.4
13	33	2.2	75	. 55	17.6
14	34	1.3	85	. 57	18.3
15	37	2.6	90	. 62	18.8

$Y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+\beta_{4} x_{4}+e$
كه در آن

زير را نيز خواهد داد

$$
\left(\mathrm{X}^{\prime} \mathrm{X}\right)_{3,3}^{-1}=.379 \quad S S_{R}=19.262 \quad B_{2}=.075
$$

حال از معادلّ v. • 7.1 ععلوم مىشودكه
$\operatorname{Var}\left(B_{2}\right)=.379 \sigma^{2}$
جون
$E\left[B_{2}\right]=\beta_{2}$
$\frac{B_{2}-\beta_{2}}{.616 \sigma} \sim N(0,1)$
اگر به جاءى درجه آزادى خخاهد بودك ئنى
$\frac{B_{2}-\beta_{2}}{.616 \sqrt{S S_{R} / 10}}-t_{10}$
يس اگر 0 .
$\frac{\sqrt{10 / S S_{R}} B_{2}}{.616} \sim t_{10}$
جون مقدار اين آماره برابر 088.و p-value برای آزمون 0 = 0 برابر است با

$$
\begin{aligned}
p \text {-value } & =P\left(\left|T_{10}\right|>.088\right\} \\
& =2 P\left\{T_{10}>.088\right\} \\
& =.9316
\end{aligned}
$$

فرض صفر يذيرفته مىشود (و در واقع در هر سطع كمتر از 9316. يذيرنهه خواهد شد)

$$
R^{2}=1-\frac{S S_{R}}{\sum_{i}\left(Y_{i}-\bar{Y}\right)^{2}} \quad \text { تبصو } \quad \text { تميت }
$$

كه كامش مجموع مربعات ماندهها را در استفاده از الگُوى

$$
Y=\beta_{0}+\beta_{1} x_{1}+\cdots+\beta_{n} x_{n}+e
$$

در مقابل الگّوى
$Y=\beta_{0}+e$
نشان ميدهد ، ضريب تميين جندكانه ناميله مאشود ـ مقلار
$R=\sqrt{R^{2}}$
را ضريب شمبستعى جندکانه بين Y و مقادير ورودى

حال فرض كنيد يكت سرى آزمايش با استفاده از وروديهاى مربوط به اسسغهای است با $E[Y \mid x]=\beta_{0}+\beta_{1} x_{1}+\cdots+\beta_{k} x_{k}$

يكت برTورد نقطها|
 مىتوان بهمـورت تركيبـ خطــى از متغير مـاى مستقل نـرمـال
 بـهدست مىTيد.

$$
\begin{align*}
E\left[\sum_{i=0}^{k} x_{i} B_{i}\right] & =\sum_{i=0}^{k} x_{i} E\left[B_{i}\right] \\
& =\sum_{i=0}^{k} x_{i} \beta_{i} \quad E\left[B_{i}\right]=\beta_{i}
\end{align*}
$$

يعنى يكت برTوردگر نااريب است . مدهنين با استفاده از اين واتعيت كه واريانس يكت متغيّ تهادفى برابر است باكووازيانس بين متغير تصهادفى و خخودش ، هى بتوان نوشت

$$
\begin{align*}
\operatorname{Var}\left(\sum_{i=0}^{k} x_{i} B_{j}\right) & =\operatorname{Cov}\left(\sum_{i=0}^{k} x_{i} B_{i}, \quad \sum_{j=0}^{k} x_{j} B_{j}\right) \\
& =\sum_{i=0}^{k} \sum_{j=0}^{k} x_{i} x_{j} \operatorname{Cov}\left(B_{i}, B_{j}\right)
\end{align*}
$$

ایَر فرض:كنيم

$$
\begin{aligned}
& \mathbf{x}=\left[\begin{array}{c}
x_{0} \\
x_{1} \\
\vdots \\
x_{k}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Var}\left(\sum_{i=0}^{k} x_{i} B_{i}\right)=x^{\prime}\left(X^{\prime} X\right)^{-1} \mathbf{x} \sigma^{2} \\
& \text { (1-.1•. })
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\sum_{i=0}^{k} x_{i} B_{i}-\sum_{i=0}^{k} x_{i} \beta_{i}}{\sigma \sqrt{x^{\prime}\left(X^{\prime} X\right)^{-1} \mathrm{x}}}-N(0,1) \\
& \text { حال آگر به جاى } \\
& \frac{\sum_{i=0}^{k} x_{i} B_{i}-\sum_{i=0}^{k} x_{i} \beta_{i}}{\sqrt{\frac{S S_{R}}{(n-k-1)}} \sqrt{x^{\prime}\left(\mathbf{X}^{\prime} \mathrm{X}\right)^{-1} \mathrm{x}}} \sim t_{n-k-1}
\end{aligned}
$$

 ($x_{0}=1$) $E[Y \mid \mathrm{x}]=\sum_{i=0}^{k} x_{i} \beta_{i}$ بكت فاصلهُ اطمينان $100\left(1-\alpha\right.$ درصد برایى $E[Y \mid \mathrm{x}]=\sum_{i=0}^{k} x_{i} \beta_{i}$ به صورت زير داده مىشود $\sum_{i=0}^{k} x_{i} b_{i} \pm \sqrt{\frac{s S_{r}}{(n-k-1)}} \sqrt{\mathbf{x}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}} \quad t_{a / 2, n-k-1}$
 مى،

the estimates of the regression coefficients are ab followa

THE SUM OF SQUARES OF THE RESIDUALS IS SS(R) - 67.01172

ازطرفى $\sqrt{x^{\prime}\left(X^{\prime} \cdot X\right)^{-1} \mathbf{X}}=.5607 \quad \sum_{i} x_{i} B_{i}=69.862 \quad \sqrt{\frac{S S_{R}}{7}}=3.094$

 ه 9 درصد برای اين مقدار عبارت است از

$$
69.862 \pm 4.130
$$

هنگامى كه يكت آزمايش در سطوح ورودى
 كميت زير را يـشبينى كنيم $Y(x)=\sum_{i=0}^{k} \beta_{i} x_{i}+e \quad x_{0}=1$
يكت يسشبينى نقطهايى عبـارت است از
 براى تعين يكث ذاصلة براى Y بر هستد از Y(x) مستقل خواهند بود ـ بنابراين Y واراى توزبع نرمال با ميانگين 0 و واريانس زير است .

$$
\begin{aligned}
& \operatorname{Var}\left[Y(\mathbf{x})-\sum_{i=0}^{k} B_{i} x_{i}\right]=\operatorname{Var}[Y(\mathbf{x})]+\operatorname{Var}\left(\sum_{i=0}^{k} B_{i} x_{i}\right) \\
&=\sigma^{2}+\sigma^{2} \mathbf{x}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{x} \\
& \frac{Y(\mathbf{x})-\sum_{i=0}^{k} B_{i} x_{i}}{\sigma \sqrt{1+\mathbf{x}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{x}}} \sim
\end{aligned}
$$

كه اگر به بجى बبرTورد Tن را ترار دهيمّ 6 داريم
$\frac{Y(\mathbf{x})-\sum_{i-0}^{k} B_{i} x_{i}}{\sqrt{\frac{S S_{R}}{(n-k-1)}} \sqrt{1+\mathbf{x}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{x}}} \sim t_{n-k-1}$
كه دران

 كـه تبلا" مساسبه شده ولـى نصف طول فاصله بيشُبينى از نصف طول ذاصلة اطمينان براى ميانگين ؛ در عامل 69.862 ± 8.389

I-

x_{i}	Y_{i}	
5	7.4	
6	9.3	
7	10.6	
10	15.4	
12	18.1	
15	22.2	
18	24.1	
20	24.8	

> الف) نمودلر يراكثش را رسم كنيل .

Y Y Y Y

$$
\begin{aligned}
& \text { يس لاصلا ييشينى براى } 100(1-\alpha(x) \text { با درصد اطهينان عبارت است از } \\
& \sum_{i=0}^{k} x_{i} b_{t} \pm \sqrt{\frac{s s_{r}}{(n-k-1)}} \sqrt{1+\mathbf{x}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}} \quad t_{a / 2, n-k-1}
\end{aligned}
$$

شُّلهه است نشان مىدْمد

تعداد مفارشات	88	112	123	136	158	172
3	50	40	35	30	20	15

	درمد اخـافه وزن
1.0	.02
2.0	.03
2.5	.035
3.0	.042
3.5	.05
4.0	.054

الف) نمودار براكتش را رسمكنيد

ب) وتتى نمونه
بيشيينى مىكنيد .

داد در مقابل فثّار تايم نشان مىدهد

x_{j}	$y_{i}(p s i)$
0.41	1850
0.46	2620
0.44	2340
0.47	2690
0.42	2160
0.39	1760
0.41	2500
0.44	2750
0.43	2730
0.44	3120

الف) نـو دار يراكنش را رسم كنيد .
بـ) ضرايب رگرسيون را محاسبه كنيد .

	بيّرنـو در
تعلاد هغهـ	سرعت خو اندن
2	21
3	42
8	102
11	130
4	52
5	57
9	105
7	85
5	62
7	90

> الف) نمودار يراكنش دادهها را رسم كنيد .
> ب) برا冖وردكمترين مربعات ضرايب رگرسيون را بيدا كنيد . ج) متوسط يشثرفت در سرعت را براي داتشجويى كه تصد دارد از برنامه V لهتهايى استفاده كند متحاسبه كنيد

$$
\operatorname{Var}(A)=\frac{\sigma^{2} \sum_{i-1}^{n} x_{i}^{2}}{n \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

P - در مسأله

الف) واريانس يكت باسخ را برآورد كنيد .
 -

$$
S S_{R}=\frac{S_{x x} S_{Y Y}-S_{x Y}^{2}}{S_{x x}}
$$

 تلفات در اثر تمهادنات اتومبيل در طول سال نشان مىدهد .
تعداد تلفات اتو مبيل (1000s)
اين فوض راكه هتعلاد تلفات اتومبيل با تعلاد لكههاى خخورشيد در ارتباط نيسته آزمون

$$
\sqrt{\frac{n(n-2) S_{x x}}{\sum_{i} x_{i}^{2} S S_{R}}}(A-\alpha) \sim t_{n-2}
$$

Tازمون كنيد . " ا الوايسماى مختلف نثان مىدهل .

$13 \quad 7$7

15
15 7
10 5
22 12
30 15
7 2
25 13
16 911

$$
\begin{aligned}
& \text { الف) يكت نمودار براكتش رمم كنيد . } \\
& \text { ب) ضرايب رگرسيون را محاسبه كنيد . }
\end{aligned}
$$

 ترديلهاند.

> ليكاريها و ميزان مرى و مير بر اثر مرطان

ايالت	تعداد سيگّارها بهازای هر فرد	تعلاد بركّ			
		سرطان	سرطان	سرطان	سرطن
		مبكانه	ريه	كلبه	خون
Mlabama	1,820	2.90	17.05	1.59	6.15
Arizona	2,582	3.52	19.80	2.75	6.61
Arkansas	1,824	2.99	15.98	2.02	6.94
California	2,860	4.46	22.07	2.66	7.06
lionnecticus	3,110	5.11	22.83	3.35	7.20
Delaware	3,360	4.78	24.55	3.36	6.45
District of					
Columbia	4,046	5.60	27.27	3.13	7.08
Honda	2,827	4.46	23.57	2.41	6.07
IJaho	2,010	3.08	13.58	2.46	6.62
Ithnois	2,791	4.75	22.80	2.95	7.27
Indiana	2,618	4.09	20.30	2.81	7.00
liuma	2,212	4.23	16.59	2.90	7.69
hunsas	2,184	2.91	16.84	2.88	7.42
keritucky	2,344	2.86	17.71	2.13	6.41
1 'nupiana	2,158	4.65	25.45	2.30	6.71
Maine	2,892	4.79	20.94	3.22	6.24
Varyland	2,591	5.21	26.48	2.85	6.81
Mavachusetts	2,692	4.69	22.04	3.03	6.89
Vinhigan	2,496	5.27	22.72	2.97	6.91
Qinnemata	2,206	3.72	14.20	3.54	8.28

تعداد مرگّ و ميرها در مال (برحس . . .)					
ایالكت	تعداد سيگارمها بهازاي هر فرد	تعداد			
		سرطان ميانه	سرمان ر	سر كلبه	سرطان نـرن
Mississippi	1,608	3.06	15.60	1.77	6.08
Miscouri	2,756	4.04	20.98	2.55	6.82
Montana	2,375	3.95	19.50	3.43	6.90
Nebraska	2,332	3.72	16.70	2.92	7.80
Nevada	4,240	6.54	23.03	2.85	6.67
New Jersey	2,864	5.98	25.95	3.12	7.12
New Mexico	2,116	2.90	14.59	2.52	5.95
New York	2,914	5.30	25.02	3.10	7.23
North Dakota	1,9\%	2.89	12.12	3.62	6.99
Ohio	2,638	4.47	21.89	2.95	7.38
Oklahoma	2,344	2.93	19.45	2.45	7.46
Pennsylvania	2,378	4.89	22.11	2.75	6.83
Rhode Island	2,918	4.99	23.68	2.84	6.35
South Carolina	1,806	3.25	1745	2.05	5.82
South Dakota	2,094	3.64	14.11	3.11	8.15
Tennessee	2,008	2.94	17.60	2.18	6.59
Texas	2,257	3.21	20.74	2.69	7.02
Utah	1,400	3.31	12.01	2.20	6.71
Vermont	2,589	4.63	21.22	3.17	6.56
Washington	2,117	4.04	20.34	2.78	7.48
West Virgiaia	2,125	3.14	20.55	2.34	6.73
Wisconsin	2,286	4.78	15.53	3.28	7.38
Wyoming	2,804	3.20	15.92	2.66	5.78
Alaska	3,034	3.46	25.88	4.32	4.90

${ }^{\text {a }}$ Estimated from cigarette tax revemues.
. الف - IY ب) T آا اين نمودار امكان وجود ممبستگى خطى را نشان مىدهد .

 در مورد نسبت مرگث و مير در اثر سرطان مثانه هيست

اثر سرطان ريه را نشان دهد رسمـكنيد .

ب) با بارامترهأى رگرسيون ،
ب) فرضبىتأثيربودن سيگار درميزانمرگثوميرسرطان ريه را درسطع هـ • / • آزمون كنيل . برای آزمون در حالّت (ب) جهقدر است P-value

ب) خط رگرسيون را برآورد كيد. .
 ال - الف) نمودار يراكنش سيگارهاى مصرن شده را در مقابل ميزان مرگث و مير در اثر سرطان

$$
\begin{aligned}
& \text {. خون رسم كنيد } \\
& \text { ب) ضرايب رگرسيون را برآورد كنيد . }
\end{aligned}
$$

 آز مون كيد .
ت) يكث بازة اطمينان • 9 درصد براي نرخ مرگث و مير در ايالتى كه اغراد آن بطور متوسط . . .

آزمون میىكيد ؟

ت) Tا آزيا آزون (ب) در سطع هـ • / • معنىدار است
 -IV

 به ترار زيرند

مفار مت برش (psi)	
370	400
780	800
1210	1250
1560	1600
1980	2000
2450	2500
3070	3100
3550	3600
3940	4000
3950	4000

$$
\begin{aligned}
& \text { الف) نمودار يراكنش را رسم كنيد . }
\end{aligned}
$$

ج) ماندههاى استاندارد شده را رمم كنيد .
ع) آيا نمودار (ج) فرضهاى استاندارد شده به الكَو را تأيد مى مكند ؟
 واتعى يِحها بدهل . نتايج زير (برحسب اينحّ) بهدست آمده است

(اندازه x			
$\frac{1}{4}$	0.262	0.262	0.245
$\frac{1}{4}$	0.496	0.512	0.490
$\frac{1}{2}$	0.743	0.744	0.751
$\frac{3}{4}$	0.976	1.010	1.004
1	1.265	1.254	1.252
$1 \frac{1}{4}$	1.498	1.518	1.504
$1 \frac{1}{2}$	1.738	1.759	1.750
$1 \frac{3}{4}$	2.005	1.992	1.992

الف) ضرايب ركرسيون را برآورد كنيد .

 متوسط طول بيدا كنيل .
 ث) ماندههاى استاندارد شده را را رمبم كنيد .
 ع) شاخص برازش را تعين كنيد .
ش - Y.

 ديگرى جگالىى Tن كه خيلى مشكلتر اندازهگيرى مىشود ـ با اين وجود اندازهگيرى دتـيت

ضريب انعكاس		ضريب انعكاس	ج-
1.5139	2.4801	1.5161	2.4843
1.5153	2.4819	1.5165	2.4858
1.5155	2.4791	1.5178	2.4950
1.5155	2.4796	1.5181	2.4922
1.5156	2.4773	1.5191	2.5035
1.5157	2.4811	1.5227	2.5086
1.5158	2.4765	1.5227	2.5117
1.5159	2.4781	1.5232	2.5146
1.5160	2.4909	1.5253	2.5187

 - Yا الگوى رگرسيون
$Y=\beta x+e, \quad e \sim N\left(0, \sigma^{2}\right)$
را رگرسيون گذرنده از مبدأ مىنامند ، زيرا از تَبل فرض مى مشود كه ميانگين ياسخ متاظر با سطع ورودى $x=0$ دادهمای اين الگّو باثمد .
الف) بر آوردگر كمترين مربعات Bاز β را بهدست آوريد ب) توزيع B جهگونه است
ب) ب) ت) فرض
 ريداكنـد
ت تساوى زير را ثابت كنيد.
$R^{2}=\frac{S_{X Y}^{2}}{S_{X X} S_{Y Y}}$
 زير داده شده است

غرد	وزن (يرند)	فثار خون (BP)	فرد	وزن (يوند)	نشار خون (BP)
1	165	130	11	172	153
2	167	133	12	159	128
3	180	150	13	168	132
4	155	128	14	174	149
5	212	151	15	183	158
6	175	146	16	215	150
7	190	150	17	195	163
8	210	140	18	180	156
9	200	148	19	143	124
10	149	125	20	240	170

الف) ضرايب رگرسيون را برآورد كنيد .

 ها 8 درصد برایى ميانگين نشار خون بهدست آوريد .

ت) ماندههاى استاندارد شده را تحليل كنيد .

 داده مىشود
$S=\frac{A}{N^{m}}$
كه در T

سغنى	N
(psi (برهسب هان)	(برهصب مليون هرخه شكست)
55.0	0.223
50.5	0.925
43.5	6.75
42.5	18.1
42.0	29.1
41.0	50.5
35.7	126
34.5	215
33.0	445
32.0	420

مقادير Aو m را برآورد كنيد .

 $T \approx t s^{-n}$

 دادهماى زير برآورد كنيد .

T	22.4	21.3	19.7	15.6	15.2	13.9	13.7
n	0	1	2	3	4	5	6

زمانّ (4 ساعت)	ماندة كلر
2	1.8
4	1.5
6	1.45
8	1.42
10	1.38
12	1.36

يكك منحنى به شككل زير به دادهها برازش دهيد.

$$
Y \approx a e^{-b x}
$$

$$
P=1-e^{-\alpha t}
$$

كه در آن α ثابت مجهول است . با توجه به دادهماى زير

P	0.07	0.21	0.32	0.38	0.40	0.45	0.51
t	0.1	0.2	0.3	0.4	0.5	0.6	0.7

مقدار a را برآوردكنيد . . بقدار tراكه درآن نصف مقدار گرما منتثر شده باشد بر برآورد كنيد .
 مايهكوبى نمان مىدهد .

تصداد باكترب4,	
3	121,000
6	134,000
7	147,000
8	210,000
8	330,000

الف) يكت منحنى به دادهها برازش دهيد
 - در فاملههاى زير (برحسب نوت) از باية قالب خلأن نثان مىدهـد

فاصلد	1	2	3	4	5	6	7	8	9	10
مi<	1.28	1.50	1.12	0.94	0.82	0.75	0.60	0.72	0.95	1.20

الف) نمودار براكتش را رسمكنيد .
ب) يكت منحنى به شكل زير به دادهمها برازش دهيد
$Y=\alpha+\beta x+\gamma x^{2}+e$

 ميشود و سبس نتيجه آن را به صورت كاهث وري وزن غده تعين مىكنتد ـ دادهها به قرار زيرند

كادشَ وزن غده	.50
بيزان دارو (كُدبندى شده)	.90
2	1.20
3	1.35
4	1.50
5	1.60
6	1.53
7	1.38
8	1.21

مقدار كامش ماكزيمـم و مقدار دارو را با برازش معادلة رگرسيون درجه دوم به صورت زير

$$
Y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+e
$$

 نشان مىدهد

تعداد توطيهاى حلدهه ديله	54
3	62
3	65
3	94
5	122
5	84
5	142
6	139
7	184
7	254

الف) اين دادهها را با يكت الكَوى رگَرسيون خطى تحليل كنيل .

 مربوطه را برآورد نمايِد .

$$
\begin{aligned}
& Y=20+4 x+e
\end{aligned}
$$

$$
\begin{aligned}
& x_{i} \quad y_{i} \\
& 1 \quad 23.9 \\
& 2 \quad 27.9 \\
& 3 \quad 31.0 \\
& 4 \quad 36.8 \\
& 5 \quad 41.8 \\
& 6 \quad 43.6 \\
& 7 \quad 48.0 \\
& 849.9 \\
& 9 \quad 56.0 \\
& 10 \quad 59.7
\end{aligned}
$$

$$
\begin{aligned}
& \text { الفـ) نمودار دادهها را رسم كنيل . }
\end{aligned}
$$

تعداد	تعلاد تصادفات
(روزانه)	(ilc)
2000	15
2300	27
2500	20
2600	21
2800	31
3000	16
3100	22
3400	23
3700	40
3800	39
4000	27
4600	43
4800	53

الف) تعداد تصادفات را در يكى ماه وتتى تعداد مـاشينهامى كـه از بـزرگراه عـبور مـىكنـد

$\sqrt{Y}=\alpha+\beta x+e$
قسمت (الف) را دوباره حل كنيد .

امن بارامتر را مىتوان از ارتباط بين آذ و ناحيه تـتحت يـوشس
برآوردكرد ـ اين رابطه را به كيكث دادههاى زير برآوردكنيلد .

سن ملتى كه بيعار زنده مانده (بَ روز)		
624	1.32	51.0
46	0.61	42.5
64	1.89	54.6
1350	0.87	54.1
280	1.12	49.5
10	2.76	55.3
1024	1.13	43.4
39	1.38	42.8
730	0.96	58.4
136	1.62	52.0
836	1.58	45.0
60	0.69	64.5

تناسب و سن برازش دهيد . ب) واريانس جملة خطا را بر آورد كنيد .

x_{1}	x_{2}	x_{3}	y
7.1	.68	4	41.53
9.9	.64	1	63.75
3.6	.58	1	16.38
9.3	.21	3	45.54
2.3	.89	5	15.52
4.6	.00	8	28.55
.2	.37	5	5.65
5.4	.11	3	25.02
8.2	.87	4	52.49
7.1	.00	6	38.05
4.7	.76	0	30.76
5.4	.87	8	39.69
1.7	.52	1	17.59
1.9	.31	3	13.22
9.2	.19	5	50.98

ب) ب) فرض ف ف

 نتايج زير را داده است :

F	درصد	$x_{2}=$ زمان
213	13	2.1
220	15	2.3
216	14	2.2
225	18	2.5
235	19	3.2
218	20	2.4
239	22	3.4
243	17	4.1
233	16	4.0
240	18	4.3

الف) يكت معادلة رگرسيون هندگانه برازش دهيد .

 - FI
 دادههاى زير بهدست Tمده است :

\boldsymbol{y}	$\boldsymbol{x}_{\boldsymbol{l}}$	$\boldsymbol{x}_{\boldsymbol{z}}$	$\boldsymbol{x}_{\boldsymbol{3}}$
2145	110	750	140
2155	110	850	180
2220	110	1000	140
2225	110	1100	180
2260	120	750	140
2266	120	850	180
2334	120	1000	140
2340	130	1000	180
2212	115	840	150
2180.	115	880	150

كه در Tان لوزمان خراب شدن دستگاه برحسب دقيقه است .

ب) واريانس خطا را بر آوردكنيد .

$$
\text { موتور • • } 9 \text { و درجه حرارت • } 17 \text { است يِداكنيد . }
$$

 اطبينان متاظر با ميانگين باسخ است راست

x_{1}	x_{2}	y
5.1	2	55.42
5.4	8	100.21
5.9	-2	27.07
6.6	12	169.95
7.5	-6	-17.93
8.6	16	197.77
9.9	-10	-25.66
11.4	20	264.18
13.1	-14	-53.88
15	24	317.84
17.1	-18	-72.53
19.4	28	385.53

$$
\begin{aligned}
& \text { الف) رابطه خطى بين وو أبرازش دهيد . }
\end{aligned}
$$

 است بيداكنيد .
 در هر ميليون Btu است ـ دادههاى زير از ب ا أكارخانه بهدست آمدهاند .

84	14	4.1
81	16	4.4
73	22	5.6
74	24	5.1
67	20	5.0
87	29	5.3
77	26	5.4
76	15	4.8
69	29	6.1
82	24	5.5
90	25	4.7
88	13	3.9


```
# FS
                                    افراد مشابه از نظر بدن و طرز زندگى نشان مىدهد . . 
\begin{tabular}{ccc} 
فئار خيون & نيوند) & (يون \\
25 & 162 & 112 \\
25 & 184 & 144 \\
42 & 166 & 138 \\
55 & 150 & 145 \\
30 & 192 & 152 \\
40 & 155 & 110 \\
66 & 184 & 118 \\
60 & 202 & 160 \\
38 & 174 & 108
\end{tabular}
```

المف) اين فزض راكه وتتى وزن يكت فرد معلوم است 6 سن هيع اطلاع اخافى برایى بشبينى

 ^.
 در صورتى كه سن او FB سال و داراى وزن • 1 ا يوند است .

آناليز واريانس

| - مقدمه

 است به اين كه تدرت بادگيرى مهندسان گروه 1 بيشتر بوده است آ درست باشد لازم است • 77 ا مهندس به

 بهكارگيرى بسته خاص . بس اگگر نرض كنيم در گروه i نثـان دهد يكت الگُوى مناسب اين خواهي مستقل هستد به قسى كي در اين صورت فرض تعويضيذيري بستهما با معادل است با فا فرض اكنون نتـان مىدهيم كه اين ذرض را جـگونه آزمون كنيم .

Y- 「 آناليز واريانس يك طرفه

 $X_{i j} \sim N\left(\mu_{i}, \sigma^{2}\right), \quad i=1, \ldots, m, \quad j=1, \ldots, n$

حال فرض كيند بخواهيم فرض Ho راكه تمام ميانگَينها برابرند آزمون كنيم، يعنى $H_{0}: \mu_{1}=\mu_{2}=\cdots=\mu_{m}$

 اتل ، هه
 تقريب اضافى برآورد مىكند . سِس اين دوبرآورد را مغايسه ميكتيم و فرض

بر Tوردگر دوم بطور معنىدارى بزرگتر از اولى باشد . برايى بهدست آوردن بر آورد اوليه
$\bar{X}_{i}=\sum_{j=1}^{n} \frac{X_{i j}}{n}, \quad i=1, \ldots, m$
كه ميانگين نمونة i أم را نشان مىدهد ك و
$S_{i}^{2}=\sum_{j=1}^{n} \frac{\left(X_{i j}-\bar{X}_{i}\right)^{2}}{n-1}, \quad i=1, \ldots, m$
كه واريانس نمونه i ام را نشان مىدهد . حال با توجه به نتيجهُ اماسى توزيع تؤام ميانگگين و واريانس

$(n-1) \frac{S_{i}^{2}}{\sigma^{2}}-\chi_{n-1}^{2}, \quad i=1, \ldots, m$
 مجموع درجات آزادى هريكت از متغيرها) نتيجه مى شود كه

$$
\begin{equation*}
\frac{n-1}{\sigma^{2}} \sum_{i=1}^{m} S_{i}^{2}-\chi_{m(n-1)}^{2} \tag{1.Y今}
\end{equation*}
$$

$$
\begin{aligned}
E\left[\frac{n-1}{\sigma^{2}} \sum_{i=1}^{m} S_{i}^{2}\right] & =E\left[\chi_{m(n-1)}^{2}\right] \\
& =m(n-1)
\end{aligned}
$$

$$
E\left[\sum_{i=1}^{m} \frac{S_{i}^{2}}{m}\right]=\sigma^{2}
$$

ָس

آمار و احتصال مهندسى

$$
S S_{w}=(n-1) \sum_{i=1}^{m} S_{i}^{2}=\sum_{i=1}^{m} \sum_{j=1}^{n}\left(X_{i j}-X_{i}\right)^{2}
$$

$$
\begin{equation*}
\frac{S S_{w}}{\sigma^{2}} \sim \chi_{m(n-1)}^{2} \tag{Y,Y,A}
\end{equation*}
$$

 ميانگين

$$
\bar{X}_{i \cdot}=\sum_{j=1}^{n} \frac{X_{i j}}{n} \sim N\left(\mu_{i}, \sigma^{2} / n\right)
$$

 عبارتاست از

$$
\sum_{i=1}^{m} \frac{\left(\bar{X}_{i},-\bar{X}_{. .}\right)^{2}}{m-1}
$$

كه در TJ

$$
\bar{X}_{. .}=\frac{\bar{X}_{1}+\cdots+\bar{X}_{m} \cdot}{m}=\frac{\sum_{i=1}^{m} \sum_{j-1}^{n} X_{i j}}{n m}
$$

برابر با ميانگين كل mn داده است . دوباره با توجه بـه نـتيجهُ اسـاسى نمونهمـاى نرمـال ، بـا نـرض درستبودن ${ }^{\text {داريم }}$

$$
\begin{equation*}
\sum_{i=1}^{m} \frac{\left(\bar{X}_{i}-\bar{X} . .\right)^{2}}{\sigma^{2} / n}-\chi_{m-1}^{2} \tag{Y,Y,A}
\end{equation*}
$$

همحنين چون
ris

$$
S S_{w}=(n-1) \sum_{i-1}^{m} S_{i}^{2}
$$

مستقل خياهد بود .
حالل

$$
S S_{b}=n \sum_{i=1}^{m}\left(\bar{X}_{i}-\bar{X}_{. .}\right)^{2}=\sum_{j=1}^{n} \sum_{i=1}^{m}\left(\bar{X}_{i}-\bar{X}_{. .}\right)^{2}
$$

$$
\frac{S S_{b}}{\sigma^{2}} \sim \chi_{m-1}^{2}
$$

(f.Y.A)

و بنابراين

$$
E\left[\frac{S S_{b}}{\sigma^{2}}\right]=E\left[\chi_{m-1}^{2}\right]=m-1
$$

$$
E\left[\frac{S S_{b}}{m-1}\right]=o^{2}
$$

اكنون نشان مىدهيم كه وتقى H_{0} نادرست است ميانگين ($)$ 1.Y.A قضيهُ با توجه به تعريف فوت

$$
I:\left[\frac{S S_{b}}{m-1}\right]=\sigma^{2}+\frac{n}{m-1} \sum_{i=1}^{m}\left(\mu_{i}-\bar{\mu}\right)^{2}
$$

 اثبات : با استفاده از اتحاد

$$
\begin{equation*}
\sum_{i=1}^{m}\left(y_{i}-\bar{y}\right)^{2}=\sum_{i=1}^{m} y_{i}^{2}-m \bar{y}^{2} \tag{©,Y,A}
\end{equation*}
$$

كه در آن ,

$$
\begin{align*}
\frac{S S_{b}}{n} & =\sum_{i=1}^{m}\left(\bar{X}_{i} .-\bar{X}_{. .}\right)^{2} \\
& =\sum_{i=1}^{m} \bar{X}_{i .}^{2}-m \bar{X}_{. .}^{2} \tag{Y.Y.A}
\end{align*}
$$

$$
\begin{equation*}
E\left[\bar{X}_{i}\right]=\mu_{i}, \quad \operatorname{Var}\left(\bar{X}_{i \cdot}\right)=\frac{\sigma^{2}}{n} \tag{V,Y.A}
\end{equation*}
$$

$$
E\left[\bar{X}_{i}^{2}\right]=E^{2}\left[\bar{X}_{i} \cdot\right]+\operatorname{Var}\left(\bar{X}_{i}\right)=\mu_{i}^{2}+\frac{\sigma^{2}}{n}
$$

$$
\bar{X}_{. .}=\sum_{i=1}^{m} \frac{X_{i} .}{m}
$$

$$
\begin{aligned}
& E\left[\bar{X}_{. .}\right]=\sum_{i=1}^{m} \frac{E\left[X_{i .}\right]}{m}=\frac{\sum_{i-1}^{m} \mu_{1}}{m}=\bar{\mu} \\
& \bar{X}_{l,}, \bar{X}_{2}, \ldots, \bar{X}_{m}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Var}\left(\bar{X}_{. .}\right) & =\frac{\sum_{i-1}^{m} \operatorname{Var}\left(\bar{X}_{i} .\right)}{m^{2}} \\
& =\frac{m \sigma^{2}}{n m^{2}}=\frac{\sigma^{2}}{n m}
\end{aligned}
$$

$$
\begin{equation*}
E\left[\bar{X}_{. .}^{2}\right]=\bar{\mu}^{2}+\frac{\sigma^{2}}{n m} \tag{A.Y.}
\end{equation*}
$$

$$
E\left[\frac{S S_{b}}{n}\right]=\sum_{i=1}^{m} \mu_{i}^{2}+\frac{m \sigma^{2}}{n}-m \bar{\mu}^{2}-\frac{\sigma^{2}}{n}
$$

$$
=(m-1) \frac{\sigma^{2}}{n}+\sum_{i=1}^{m} \mu_{i}^{2}-m \bar{\mu}^{2}
$$

$$
=(m-1) \frac{\sigma^{2}}{n}+\sum_{i=1}^{m}\left(\mu_{i}-\bar{\mu}\right)^{2}
$$

بدين ترتيب ثابت شُد كه SS و SS مستقل هستند و داريم
$\frac{S S_{w}}{\sigma^{2}} \sim \chi_{m(n-1)}^{2}$
و اگگر ${ }^{\text {ا }}$ دست باشد
$\frac{S S_{b}}{\sigma^{2}} \sim \chi_{m-1}^{2}$

بهـخاطر داريدكه اگر T T $\frac{\chi_{k}^{2} / k}{\chi_{l}^{2} / l} \sim F_{k, l}$

بنابراين وتتى ${ }_{0}$ درست است داريم

$$
\frac{\frac{S S_{b}}{\sigma^{2}} /(m-1)}{\frac{S S_{w}}{\sigma^{2}} / m(n-1)} \sim F_{m-1, m(n-1)}
$$

$$
\frac{\frac{S S_{b}}{(m-1)}}{\frac{S S_{w}}{m(n-1)}} \sim F_{m-1, m(n-1)}
$$

$\frac{\frac{S S_{b}}{(m-1)}}{\frac{S S_{w}}{m(n-1)}}>F_{a, m-1, m(n-1)}$
كه در آن $P\left\{F_{m-1, m(n-1)}>F_{\alpha, m-1, m(n-1)}\right\}=\alpha$

و هطالب نوق در جدول ANOVA (آناليز واريانس) بهصورت زير خالاصه مىشود .

اگگر مقدار

در نتيجه
$\sum_{i=1}^{m} \sum_{i=1}^{n} X_{i j}^{2}=\sum_{i=1}^{m} \sum_{i=1}^{n}\left[\bar{X}_{. .}+\left(\bar{X}_{. .}-\bar{X}_{. .}\right)+\left(X_{i j}-\bar{X}_{i} .\right)\right]^{2}$

$$
\begin{aligned}
\sum_{i} \sum_{j} \bar{X}_{. .(}\left(\bar{X}_{i}-\bar{X}_{. .}\right) & =\sum_{j} \bar{X}_{. .} \sum_{i}\left(\bar{X}_{i .}-\bar{X}_{. .}\right) \\
& =0 \quad, \quad \sum_{i}\left(\bar{X}_{i}-\bar{X}_{. .}\right)=0 \\
\sum_{i} \sum_{j} \bar{X}_{. .}\left(X_{i j}-\bar{X}_{i .}\right) & =\sum_{i} \bar{X}_{. .} \sum_{j}\left(x_{i j}-\bar{X}_{i .}\right) \\
& =0 \quad \text { ز } \quad \sum\left(x_{i j}-\bar{X}_{i} .\right)=0
\end{aligned}
$$

$$
\sum_{i} \sum_{j}\left(\bar{X}_{i .}-\bar{X}_{. .}\right)\left(x_{i j}-\bar{X}_{i} .\right)=\sum_{i}\left(\bar{X}_{i}-\bar{X}_{. .}\right) \sum_{j}\left(x_{i j}-\bar{X}_{i} .\right)
$$

$$
=0 \quad, \quad \sum_{j}\left(X_{i j}-\bar{X}_{. .}\right)=0
$$

بنابراين از بسط معادلة Q.Y.A اتحاد زير بهدست مى آيد.

$$
\sum_{i=1}^{m} \sum_{j=1}^{n} X_{i j}^{2}=n m \bar{X}_{. .}^{2}+n \sum_{i=1}^{m}\left(\bar{X}_{i} .-\bar{X}_{. .}\right)^{2}+\sum_{i=1}^{m} \sum_{j=1}^{n}\left(X_{i j}-\bar{X}_{i} .\right)^{2}
$$

اتحاد مجهوع مربعات غالبآ به صورت زير نوشته مىشود

$$
\begin{equation*}
\sum_{i=1}^{m} \sum_{j=1}^{n}\left(X_{i j}-\bar{X}_{. .}\right)^{2}=n \sum_{i=1}^{m}\left(\bar{X}_{i} .-\bar{X}_{. .}\right)^{2}+\sum_{i=1}^{m} \sum_{j=1}^{n}\left(X_{i j}-\bar{X}_{i} .\right)^{2} \tag{1,Y,Y}
\end{equation*}
$$

خرالين تساوى با Y. Y. ، 1 معادل است ؟

$$
\begin{equation*}
s S_{b}=n \sum_{i=1}^{m}\left(\bar{X}_{i} .-\bar{X}_{.} .\right)^{2} \tag{IY.Y.}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{i=1}^{k}\left(y_{i}-\bar{y}\right)^{2}=\sum y_{i}^{2}-k \bar{y}^{2}, \quad, \quad \bar{y}=\sum_{1}^{k} y_{i} / k \tag{Ir.r.A}
\end{equation*}
$$

مقدار 1 SS

$$
\begin{align*}
S S_{w} & \equiv \sum_{i=1}^{m} \sum_{j=1}^{n}\left(X_{i j}-\bar{X}_{i} .\right)^{2} \\
& =\sum_{i=1}^{m} \sum_{j=1}^{n} X_{i j}^{2}-n m \bar{X}_{. .}^{2}-S S_{b} \tag{IF.Y.A}
\end{align*}
$$

فرمولهای

 سرعت ثابت Tزمون مىكند . به هر 1 موتور از 1 ا 1 موتور بنزين
 زير است .

بنز G_{l}	بنزين G_{3}	254
220	244	254
252	236	272
238	258	232
246	242	238
260	221	256
224	230	250

اين فرض راكه طول ميسير ييموده شده به نوع بنزين يستگى ندارد T زمون كنيد .

RUN
THNIS PROGRAM COTPUTEB THE VALUE OF THE F-BTATIBTIC AND ITB p-value IN A ONE WAY ANOVA
ENTER THE NUMBER OF BAMPLEG
? 3
ENTER THE GIZE OF THE SATPLEG
$?$
ENTER SAMPLE 1 QNE AT A TIME
? 220
$? 252$
? 238
7246
7260
7260
$7 \quad 224$
ENTER SAMPLE 2 DNE AT A TIME
? 244
? 236
$? 298$
7242
$\rightarrow 221$
$? 230$
ENTER BAMPLE 3 ONE AT A TIME
? 254
? 272
$? 232$
? 238
$? 256$
$? 250$
$\mathrm{BEm} /(\mathrm{Mt}(\mathrm{N}-1))=203.38 \mathrm{BE}$
SEb/(14-1)=249.0353
THE VALUE OF THE F-gTATISTIC 1g 1.22452θ
THE p-velue IB . 3177825
Ok

$$
\text { يس فرض يكسان بودن بنزينها در مر مطع معنىدارى } 0317 \text { بذـيرفته مىشود . }
$$

سخصوص با استفاده از اينكا ميانگين و واريانس نمونها حاصل از يكت جامعها نرمال مستقل است و و با

درجه آزادى مجهوع مربعات برابر است با مقلار جمـلات آن منهـاى تـعداد روابـط خـطـطي (تيدها) موجود بين Tنها ـ مثلا" تعداد درجات آزادى بربوط به عبارت
$S S_{w}=\sum_{i=1}^{m} \sum_{j=1}^{n}\left(X_{i j}-\bar{X}_{i}\right)^{2}$

$\sum_{j=1}^{n}\left(X_{i j}-\bar{X}_{i}.\right)=0 \quad i=1, \ldots, m$
بنابراين براى هر نـونه يكث خطى داريم و هون m نونهٔ بهكار رفته است ، درجـهُ آزادى مـربوط به $4 S_{\text {برابر است با با }}$
$n m-m=m(n-1)$.

قضيهُ الوراز
فزض كنيد
$\sum_{i=1}^{N} Z_{i}^{2}=T_{1}+\cdots+T_{k}$
كه درTان
 $v_{1}+\cdots+v_{k}=N$
 كنيد

$$
Z_{i j}=\left(X_{i j}-\mu\right) / \sigma \quad i=1, \ldots, m, j=1, \ldots, n
$$

 بهكار بريم تيجه بيشود

$$
\begin{equation*}
\sum_{i=1}^{m} \sum_{j=1}^{n} Z_{i j}^{2}=n m \bar{Z}_{. .}^{2}+n \sum_{i=1}^{m}\left(\bar{Z}_{i}-\bar{Z}_{. .}\right)^{2}+\sum_{i=1}^{m} \sum_{j=1}^{n}\left(Z_{i j}-\bar{Z}_{i} .\right)^{2} \tag{ID.Y.A}
\end{equation*}
$$

$$
\text { ولى جون }\left(Z_{i j}=\left(X_{i j}-\mu / \sigma\right. \text { میوان نوشت }\right.
$$

$\bar{Z}_{. .}=\frac{\bar{X}_{. .}-\mu}{\sigma}, \quad \bar{Z}_{i}=\frac{\bar{X}_{i}-\mu}{\sigma}$
$\bar{Z}_{i .}-\bar{Z}_{.}=\frac{\bar{X}_{i .}-\bar{X} . .}{\sigma}, \quad Z_{t j}-\bar{Z}_{i .}=\frac{X_{i j}-\bar{X}_{i}}{\sigma}$

$\sum_{i=1}^{m} \sum_{j=1}^{n} Z_{i j}^{2}=\frac{n m\left(\bar{X}_{. .}-\mu\right)^{2}}{\sigma^{2}}+\frac{n}{\sigma^{2}} \sum_{i=1}^{m}\left(\bar{X}_{i .}-\bar{X}_{. .}\right)^{2}+\frac{1}{\sigma^{2}} \sum_{i=1}^{m} \sum_{j=1}^{n}\left(X_{i j .}-\bar{X}_{i}\right)^{2}$
سال از تعريف درجه آزادى نتيجه مىشود
$\frac{n m\left(\bar{X}_{. .}-\mu\right)^{2}}{a^{2}}$ دارای يكت درجه آزادى است
$\frac{S S_{b}}{\sigma^{2}}=\frac{n}{\sigma^{2}} \sum_{i=1}^{m}\left(\bar{X}_{i} .-\bar{X}_{.}\right)^{2}$
دارای 1 - m درجه آزادى امت
$\frac{S S_{w}}{\sigma^{2}}=\frac{1}{\sigma^{2}} \sum_{i=1}^{m} \sum_{j=1}^{n}\left(X_{i j}-\bar{X}_{i}\right)^{2}$
داراى nm - m درجه آزادى است

קی
$n m=1+m-1+n m-m$

$\left.\left[S S_{b} /(m-1)\right] / S S_{w} / m(n-1)\right]$

دارنى توزيع Fبا بارامترهاى 1 - 1 و m است

در الگّوى بخش تبل فرض كردبم • در هر نمونه تعداد مشاهدات برابرند ـ اترجهه اين وضعيت مطلوبى است (به تبره هايان اين بخش مراجعه شود) ولى اغلب المكانجذير نيست . با تو جه به اين مطلب فرض

كنيد m نمونه نرمال به حجمهاى m كه

$$
\text { il } i=1, \ldots, m ، j=1, \ldots, n_{i} \measuredangle X_{i j}
$$

$$
X_{i j} \sim \mathcal{N}\left(\mu_{i}, \sigma^{2}\right)
$$

در اينجا نيز مى برايى بهدست Tوردن آزمونى برای

هال اگگر ${ }_{0}$ درسـت باشد و μ ميانگیين مشترك باشد و ترار دهيم

$$
Z_{i j}=\frac{X_{i j}-\mu}{\sigma}
$$

 تشكيل مىدهد . با استفاده از اين اتحاد براي ${ }^{\text {ا }}$ ا ${ }^{\text {ا }}$ مى توان نوشت

حال بنا به تضيةُ افراز وقتى 0 درست است ، نتيجه مىشود

$$
\sum_{i=1 .}^{m} n_{i}\left(\bar{Z}_{i}-\bar{Z}_{. .}\right)^{2}=\frac{1}{\sigma^{2}} \sum_{i=1}^{m} n_{i}\left(\bar{X}_{i}-\bar{X}_{. .}\right)^{2}=\frac{S S_{b}}{\sigma^{2}}
$$

$$
\sum_{i=1}^{m} \sum_{j=1}^{n_{1}}\left(Z_{i j}-\bar{Z}_{i} .\right)^{2}=\frac{1}{\sigma^{2}} \sum_{i=1}^{m} \sum_{j=1}^{n_{i}}\left(X_{i j}-\bar{X}_{i} .\right)^{2}=\frac{S S_{w}}{\sigma^{2}}
$$

، $\sum_{i=1}^{m} n_{i}-m$

$$
\frac{\frac{S S_{b}}{(m-1)}}{\frac{S S_{w}}{\left(\sum_{i} n_{i}-m\right)}} \sim F_{m-1, \sum_{i}^{m} n_{t}-m}
$$

از اين عبارت نتيهه مىشود كه فرض
$\frac{\frac{S S_{b}^{\circ}}{(m-1)}}{\frac{S S_{w}}{\left(\Sigma_{i} n_{i}-m\right)}}>F_{\alpha, m-1, \Sigma_{i}^{m} n_{i}-m}$

 اين است كه براى مقدار ثابت
Y - آناليز واريانس دوطرثه

 آن را بتوان به صورت ماتريس زير نوشت
$L_{\text {Losin }}=\left[\begin{array}{cccc}X_{11} & X_{12} & \cdots & X_{1 n} \\ \vdots & & & \\ X_{i 1} & X_{i 2} & \cdots & X_{i n} \\ \vdots & & & \\ X_{m 1} & X_{m 2} & \cdots & X_{m n}\end{array}\right]$
 خواهيم كردكه
$X_{i j} \sim \mathscr{N}\left(\alpha_{i}+\beta_{j}, \sigma^{2}\right), \quad i=1, \ldots, m, \quad j=1, \ldots, n$
مى مواهيم فرض صفر زير. را آزمونكنيم
$H_{0}: \alpha_{1}=\alpha_{2}=\cdots=\alpha_{m}$
$H_{0}^{\prime}=\beta_{1}=\beta_{2}=\cdots=\beta_{n}$
بنابراين H_{0} بيان مىكند كه اثر سطرى وجود ندارد ـ يعنى توزيع متنيّر داده شــد نـطط بـه سـتون آن

$\bar{X}_{i}=\sum_{j=1}^{n} \frac{X_{i j}}{n}$
فرض كنبد
$\bar{X}_{. j}=\sum_{i=1}^{m} \frac{X_{i j}}{m}$
$\bar{X}_{. .}=\sum_{i=1}^{m} \frac{\bar{X}_{i}}{m}=\sum_{j=1}^{n} \frac{\bar{X}_{. j}}{n}=\sum_{j=1}^{n} \sum_{i=1}^{m} \frac{X_{i j}}{n m}$
به عبارت ديگـر تجزئه هر مقدار داده به صورت زير مفيد خواهد بود.

با استفاده از نمادهاى تبل مىتوان نوشت

$\sum_{i=1}^{m} \sum_{j=1}^{n} X_{i j}^{2}=\sum_{i=1}^{m} \sum_{j=1}^{n}\left[\bar{X}_{. .}+\left(\bar{X}_{i} .-\bar{X}_{. .}\right)+\left(\bar{X}_{. j}-\bar{X}_{. .}\right)\right.$

$$
\left.+\left(X_{i j}-\bar{X}_{i \cdot}-\bar{X}_{\cdot j}+\bar{X}_{. .}\right)\right]^{2}
$$

 برابر ضفُرند و در نتيجه اتحاد زير براى مجموع مربعات بهدست ميا ميد .

اتحاد مجموع مربعات

$\sum_{i=1}^{m} \sum_{j=1}^{n} X_{i j}^{2}=\sum_{i=1}^{m} \sum_{j=1}^{n} \bar{X}_{. .}^{2}+\sum_{i=1}^{m} \sum_{j=1}^{n}\left(\bar{X}_{i}-\bar{X}_{. .}\right)^{2}$

$$
+\sum_{i=1}^{m} \sum_{j=1}^{n}\left(\bar{X}_{. j}-\bar{X}_{. .}\right)^{2}+\sum_{i=1}^{m} \sum_{j=1}^{n}\left(X_{i j}-\bar{X}_{i .}-\bar{X}_{. j}+\bar{X}_{. .}\right)^{2}
$$

براى ياتتن آزمونى براى
 مكنويسيم

$$
\begin{equation*}
Z_{i j}=\frac{X_{i j}-\alpha-\beta_{j}}{\sigma} \tag{Y.F.A}
\end{equation*}
$$

و توجه داريم كه تحت

$$
\begin{align*}
& \bar{Z}_{i .}=\frac{\sum_{j-1}^{n} Z_{i j}}{n}=\frac{\bar{X}_{i .}-\alpha-\beta .}{\sigma} \\
& \bar{Z}_{. j}=\frac{\sum_{i-1}^{m} Z_{i j}}{m}=\frac{\bar{X}_{. j}-\alpha-\beta}{\sigma} \tag{r.,¢.А}\\
& \bar{Z}_{. .}=\frac{\sum_{j-1}^{*} \sum_{i-1}^{m} Z_{i j}}{n m}=\frac{\bar{X}_{. .}-\alpha-\beta .}{\sigma}
\end{align*}
$$

$$
\beta .=\sum_{j=1}^{n} \frac{\beta_{j}}{n}
$$

$$
\begin{aligned}
\bar{Z}_{i .}-\bar{Z}_{. .} & =\frac{\bar{X}_{i \cdot}-\bar{X}_{. .}}{\sigma} \\
\bar{Z}_{. j}-\bar{Z}_{. .}= & \frac{\bar{X}_{. j}-\beta_{j}-\bar{X}_{. .}+\beta .}{\sigma} \\
Z_{i j}-\bar{Z}_{i .}-\bar{Z}_{. j}+\bar{Z}_{. .}= & \frac{X_{i j}-\bar{X}_{i \cdot}-\bar{X}_{. j}+\bar{X}_{. .}}{\sigma}
\end{aligned}
$$

با استفاده از اين روابط و معادلٔ A.F. ا در مورد متغيرّ هاى

$$
\begin{aligned}
\sum_{i=1}^{m} \sum_{j=1}^{n} Z_{i j}^{2}= & \sum_{i=1}^{m} \sum_{j=1}^{n} \frac{\left(\bar{X}_{. .}-\alpha-\beta .\right)^{2}}{\sigma^{2}}+\sum_{i=1}^{m} \sum_{j=1}^{n} \frac{\left(\bar{X}_{i .}-\bar{X}_{. .}\right)^{2}}{\sigma^{2}} \\
& +\sum_{i=1}^{m} \sum_{j=1}^{n} \frac{\left(\bar{X}_{. j}-\beta_{j}-\bar{X}_{. .}+\beta .\right)^{2}}{\sigma^{2}} \\
& +\sum_{i=1}^{m} \sum_{j=1}^{n} \frac{\left(X_{i j}-\bar{X}_{i .}-\bar{X}_{. j}+\bar{X}_{. .}\right)^{2}}{\sigma^{2}}
\end{aligned}
$$

حال مىتوان نشان داد كه
$n m \frac{(\bar{X} . .-\alpha-\beta .)^{2}}{\sigma^{2}}$
$n \sum_{i=1}^{m} \frac{\left(\bar{X}_{i}-\bar{X}_{. .}\right)^{2}}{\sigma^{2}}$
با 1-m درجه آزادى
$m \sum_{j=1}^{n} \frac{\left(\bar{X}_{. j}-\beta_{j}-\bar{X}_{. .}+\beta .\right)^{2}}{\sigma^{2}}$
با 1 - 1 درجه آزادى
$\sum_{i=1}^{m} \sum_{j=1}^{n} \frac{\left(X_{i j}-\bar{X}_{i \cdot}-\bar{X}_{. j}+\bar{X}_{. .}\right)^{2}}{\sigma^{2}} \quad$.
 به تيدهاى خطىى حامل تعين مىشود ، زيرا مجموع تمام سطرها يا ستونها بايد برابر صفر باشد ، يعنى
$\sum_{i}\left(X_{i j}-\bar{X}_{i,}-\bar{X}_{. j}+\bar{X}_{. .}\right)=\sum_{i}\left(x_{i j}-\bar{X}_{.,}\right)-\sum_{i}\left(\bar{X}_{i .}-\bar{X}_{. .}\right)=0-0$
$\sum_{j}\left(X_{i j}-\bar{X}_{i .}-\bar{X}_{. j}+\bar{X}_{. .}\right)=\sum_{j}\left(X_{i j}-\bar{X}_{i .}\right)-\sum_{j}\left(\bar{X}_{. j}-\bar{X}_{. .}\right)=0-0$

 . $m n-(m+n-1)=(m-1)(n-1)$ حال از قضية الفراز نتيجه مىشود كه اگر

$$
\begin{aligned}
& S S_{r}=\sum_{i=1}^{m} \sum_{j=1}^{n}\left(\bar{X}_{i .}-\bar{X}_{. .}\right)^{2}=n \sum_{i=1}^{m}\left(\bar{X}_{i .}-\bar{X}_{. .}\right)^{2} \\
& S S_{e}=\sum_{i=1}^{m} \sum_{j=1}^{n}\left(X_{i j}-\bar{X}_{i .}-\bar{X}_{. j}+\bar{X}_{. .}\right)^{2}
\end{aligned}
$$ (m-1) (1)

$\frac{\frac{S S_{r}}{(m-1)}}{\frac{S S_{e}}{(m-1)(n-1)}} \sim F_{m-1,(m-1 \times(n-1)}$
پس يكک آزمون در سطع גبراى فرض
$H_{0}: \alpha_{1}=\alpha_{2}=\cdots=\alpha_{m}$
عبارت است از اين كه فرض
$\frac{\frac{S S_{r}}{(m-1)}}{\frac{S S_{e}}{(m-1)(n-1)}}>F_{\alpha, m-1,(m-1)(n-1)}$
و در غير اين صورت بِّيريم
كميت , تحليلى مشابه مى توان براى آزمون فرض بیى اثر بودن ستو نها

$$
H_{0}^{\prime}: \beta_{1}=\beta_{2}=\cdots=\beta_{n}
$$

$\frac{\frac{S S_{c}}{(n-1)}}{\frac{S S_{e}}{(m-1)(n-1)}}>F_{a, n-1,(m-1)(n-1)}$
$\cdot S S_{c}=\sum_{i=1}^{m} \sum_{j=1}^{n}\left(\bar{X}_{. j}-\bar{X}_{. .}\right)^{2}=m \sum_{j=1}^{n}\left(\bar{X}_{. j}-\bar{X}_{. .}\right)^{2}$
مطالب نوت را مىتوان در جدول زير خلامه كرد .

تغييرآتع	مربعاتـتـ	درجه آزادى	مقدار آماره
ستون	$S S_{r}=n \sum_{i}^{m}\left(\bar{X}_{t},-\bar{X}_{. .}\right)^{2}$	$m-1$	$\frac{S S_{r} /(m-1)}{S S_{e} /(m-1)(n-1)}$
سطر	$\boldsymbol{S S}=m \sum_{j=1}^{n}(X .,-\bar{X} . .)^{2}$	$n-1$	$\frac{S S_{c} /(n-1)}{S S_{e} /(m-1)(n-1)}$
-	$S S_{e}=\sum_{i=1}^{m} \sum_{j=1}^{n}\left(X_{i j}-\bar{X}_{i} \cdot-\bar{X}_{. j}+\bar{X}_{. .}\right)^{2}$	$(m-1)(n-1)$	

「 نوع بنزين ، بهكار گر فته شده و نتايج زير بهدست T Tمده است :

انومبيل	بنزين		
	1	II	III
1	21.2	23.1	22.1
2	24.8	26.4	23.6
3	28.6	30.2	29
4	32	34.2	31.8
5	18	23.8	22

> () آيا مىتوان سه نوع بنزين رااز نظر مسافت يكسان در نظر گرفت ؟ (آيا اتوميلها تفاوت دارند ؟ (Y

```
    RLN
    THIS PROGRAM COHFUTES THE VALUES DF THE F-BTATIGTICE AND THEIR AEBGCIATED p-Valu
-I IN A TWO WAY ANOVA
ENTER THE NUMBER OF ROWS
? 5
ENTER THE NUMBER OF COLUMNS
73
ENTER ROW 1 ONE AT A TIME
721.12
? 23.1
722.1
ENTER ROW 2 QNE AT A TIME
? 24.8
7 26. 4
? 23.6
ENTER ROW 3 DNE AT A TIME
729.6
? 30.2
? 29
ENTER ROW 4 QNE AT A TIME
? 32
? 34.2
? 31.8
ENTER ROW S ONE AT ATIME
? 15
? 23.6
? 22
THE VALUE OF THE F-STATISTIC FOR TESTING THAT THERE 19 MD RON EFFECT IE
54.96949
THE p-value FDR TESTING THAT THEAE IS NO ROW EFFECT IE LESS THAN . 0001
THE UALUE OF THE F-GTATIGTIC FOR TESTING THAT THERE IG MO COLLHN EFFECT 15
    7.085873
THE p-valu for TESTING THAT THERE 15 NO COLUMN EFFECT IE \(1.625374 E-02\)
Dk
```

بنابراين هر دو فرض -يكسان بودن r نوع بنزين و يكسان بودن اتومبيلها ـ در هر سطح T زمون بالاتر از 016. $\alpha=$

	\|ابسنگا*					
-	1	2	3	4	5	6
1970	53	35	31	37	40	43
1971	36	34	17	21	30	18
1972	47	37	17	31	45	26
1973	55	31	17	23	43	37
1974	40	32	19	26	45	37
1975	52	42	20	27	26	32
1976	39	28	21	21	36	28
1977	40	32	21	21	36	35


```
RLWN
TH&S PRDGRAN COMPUTES THE YALUEG DF THE F-GTATISTICE AND THEIR ABGOCIATED p-ValL
-E IN A TWD WAY ANGVA
ENTER THE MUMBER DF ROWE
7
ENTER THE NUMBER OF COLUHNS
7%
ENTER ROW 1 DNE AT A TIHE
? 53
? 35
l
70
743
ENTER ROW 2 DNE AT A TIME
? 36
? 34
? 17
?21
?30
ENTER ROW 3 ONE AT A TIME
?47
? 37
? 17
?31
745
? 26
ENTER ROW 4 GNE AT A TIME
? 55
? 31
? }1
?23
743
? 37
ENTER ROW S DNE AT A TIME
?40
? 32
7%
746
737
ENTER ROW & ONE AT A TIME
? }5
742
?20
727
726
732
ENTER RON 7 DNE AT A TIME
?39
728
?21
? 21
736
? 20
ENTEN ROM O ONE AT A TITE
740
732
?.21
734
735
THE YALUE OF THE F-GTATIGTIC FOR TEETIMG THAT THERE IS NO ROW EFFECT IS
$.729852
THE p-vIIUE FOR TEOTIMG THAT THERE IE MO ROW EFFECT IS 4,04Z626E-03
THE WALIE OF THE F-BTATISTIC FOR TEGTIMG THAT THERE IS MO COLUTNNEFFE, IS
22.47898
THE p-vElue FOR TE&TING THAT THERE IO NO COLUMN EFFECT 1g LESE THAN .O:OI
Ok
```

بنابراين ه: :و فرض عدم وجود اثر سطر و اثر ستون در هر سطع معنىدارى رد مىشود.

ه- آناليز واريانس دوطرثه با اثر متقابل

در بخش

 فرض كرديمكه
$X_{i j} \sim \mathcal{N}\left(\alpha_{i}+\beta_{j}, \sigma^{2}\right), \quad i=1, \ldots, m, \quad j=1, \ldots, n$ امّا يكك حالت ضعيفتر اين الگُو اين است كه فرض كنيم اثرات سطر و ستون جععى هستند و اثر ستقابل سطر و ستون وجود نـارد .

 براى در نظر گرفتن اثر متفابل مهكن سطر و ستون مىنويسيم
$\mu_{i j}=E\left[X_{i j}\right]$
و
$\bar{\mu}_{i}=\sum_{j=1}^{n} \frac{\mu_{i j}}{n}, \quad \bar{\mu}_{\cdot j}=\sum_{i=1}^{m} \frac{\mu_{i j}}{m}$ $\bar{\mu}=\sum_{i=1}^{m} \sum_{j=1}^{n} \frac{\mu_{i j}}{n m}=\sum_{i=1}^{m} \frac{\mu_{i}}{m}=\sum_{j=1}^{n} \frac{\bar{\mu} \cdot j}{n}$

كميت
$\mu_{i j}-\left(\bar{\mu}+\bar{\mu}_{i .}-\bar{\mu}+\bar{\mu}_{. j}-\bar{\mu}\right)=\mu_{i j}-\bar{\mu}_{i .}-\bar{\mu}_{. j}+\bar{\mu}$
را الثر متقابل بين سطر i i ستون زام گَويم و آن تفاوت كميت مربوط به سطر i ، i است از تبديل حالت جععى به اثرات سطر و ستون .

آمار و إحتمال مهندسى

$$
\begin{aligned}
\alpha_{i} & =\bar{\mu}_{i \cdot}-\bar{\mu} \\
\beta_{j} & =\bar{\mu}_{\cdot j}-\bar{\mu} \\
\gamma_{i j} & =\mu_{i j}-\bar{\mu}_{i \cdot}-\bar{\mu}_{\cdot j}+\bar{\mu}
\end{aligned}
$$

ديله مىشودكه

به عبارت زير كه اثبات آن به عنوان تمرين واگذار مىشود تو جه كنيد

$$
\sum_{i=1}^{m} \alpha_{i}=\sum_{j=1}^{n} \beta_{j}=\sum_{i=1}^{m} \sum_{j=1}^{n} \gamma_{i j}=0
$$

همانطور كه خواهيم ديل برای آنكه بتوانيم فرض نبود اثر متقابل سطر و ستون را آزهون كنيم - يعنى اينكه تمام
 كه در آن $\left\{X_{i j k}, i=1, \ldots, m, j=1, \ldots, n, k=1, \ldots, l\right\}$ j زام است . فرض مىشود كه تمام مشاهدات متغيّر هاى تصادفى مستقل و دارالى توزيع نرمال با واريانس مشتركى ${ }^{2}$ باشند ؛ در اين صورت الگَو به صورت زير نوشته مىشود

$$
X_{i j k} \sim \cdot r\left(\bar{\mu}+\alpha_{i}+\beta_{j}+\gamma_{t j}, \sigma^{2}\right)
$$

كه در T

$$
\sum_{i=1}^{m} \alpha_{i}=\sum_{j=1}^{n} \beta_{j}=\sum_{i=1}^{m} \sum_{i=i}^{n} \gamma_{i j}=0
$$

مى خواهيم فرضهاى زير را Tزهون كنيم

$$
\begin{aligned}
H_{0}^{r}: \alpha_{1} & =\alpha_{2}=\cdots=\alpha_{m}=0 \\
H_{0}^{c}: \beta_{1} & =\beta_{2}=\cdots=\beta_{n}=0 \\
H_{0}^{i n t}: \gamma_{i j} & =0 \quad \text { н ب } i, j
\end{aligned}
$$

يعنى برای بسط آزمونهاى فرضهاى قبل مىنويسيم

$$
\bar{X}_{i . .}=\frac{\sum_{k-1}^{\prime} \Sigma_{j=1}^{n} X_{i j k}}{\ln }={ }^{1 j}{ }^{j} \text { منوس تهام عنامر سطر }
$$

$$
=\text { برآررد } \quad \bar{\mu}_{i}
$$

$$
=\quad \bar{\mu}_{\cdot j}
$$

$$
\bar{X} . .=\frac{\sum_{k=1}^{\prime} \sum_{j=1}^{n} \sum_{i=1}^{m} X_{i j k}}{n m l}=\text { متوسط تام عنامر }
$$

$$
=\bar{\mu}
$$

حال مىنويسيم

$$
X_{i j k}=\bar{X}_{\ldots . .}+\left(\bar{X}_{i . .}-\bar{X}_{\ldots .}\right)+\left(\bar{X}_{. j}-\bar{X}_{\ldots . .}\right)
$$

$$
+\left(\bar{X}_{i j}-\bar{X}_{i . .}-\bar{X}_{. j}+\bar{X}_{. . .}\right)+\left(X_{i j k}-\bar{X}_{i j}\right)
$$

با استفاده از رايطة بالا داريم

$$
\begin{aligned}
& \sum_{k} \sum_{j} \sum_{i} X_{i j k}^{2}=\sum_{k} \sum_{j} \sum_{i}\left[\bar{X}_{\ldots .}+\left(\bar{X}_{i . .}-\bar{X}_{\ldots . .}\right)+\left(\bar{X}_{. j}-\bar{X}_{\ldots .}\right)\right. \\
&\left.+\left(\bar{X}_{i j \cdot}-\bar{X}_{i . .}-\bar{X}_{. j .}+\bar{X}_{\ldots . .}\right)+\left(X_{i j k}-\bar{X}_{i j}\right)\right]^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \bar{X}_{i} . . \bar{X}_{\ldots}=\alpha_{i}
\end{aligned}
$$

$$
\begin{aligned}
& \bar{X}_{i j \cdot}=\frac{\sum_{k-1}^{\prime} X_{i j k}}{l}=\rho^{1 j} \text { متوسط عنامر سطر } \\
& =\quad \mu_{i j}
\end{aligned}
$$

 نتيجه اتحاد مجـوع مربعات به صورت زير نوشته مى شوه :

$$
\sum_{k} \sum_{j} \sum_{i} X_{i j k}^{2}=\sum_{k} \sum_{j} \sum_{i} \bar{X}_{\ldots}^{2}+\sum_{k} \sum_{j} \sum_{i}\left(\bar{X}_{i . .}-\bar{X}_{. . .}\right)^{2}
$$

$$
+\sum_{k} \sum_{j} \sum_{i}\left(\bar{X}_{. j}-\bar{X}_{. . .}\right)^{2}
$$

$$
+\sum_{k} \sum_{j} \sum_{i}\left(\bar{X}_{i j}-\bar{X}_{i . .}-\bar{X}_{. j .}+\bar{X}_{. . .}\right)^{2}
$$

$$
+\sum_{k} \sum_{j} \sum_{i}\left(X_{i j k}-\bar{X}_{i j} .\right)^{2}
$$

آكر قرار دهيم

$$
\begin{aligned}
S S_{r} & =\sum_{k=1}^{1} \sum_{j=1}^{n} \sum_{i=1}^{m}\left(\bar{X}_{i .}-\bar{X}_{\ldots . .}\right)^{2} \\
& =\ln \sum_{i=1}^{m}\left(\bar{X}_{i . .}-\bar{X}_{\ldots . .}\right)^{2}={ }^{2} \\
S S_{\mathrm{c}} & =\sum_{k=1}^{l} \sum_{j=1}^{n} \sum_{i=1}^{m}\left(\bar{X}_{. j .}-\bar{X}_{. . .}\right)^{2} \\
& =m l \sum_{j=1}^{n}\left(\bar{X}_{. j .}-\bar{X}_{. . .}\right)^{2}=\text { مجوع مربات ستون }
\end{aligned}
$$

$$
S S_{i n t}=\sum_{k=1}^{1} \sum_{j=1}^{n} \sum_{i=1}^{m}\left(\bar{X}_{i j .}-\bar{X}_{i . .}-\bar{X}_{. j .}+\bar{X}_{. . .}\right)^{2}
$$

$$
=l \sum_{j=1}^{n} \sum_{i=1}^{m}\left(\bar{X}_{i j .}-\bar{X}_{i . .}-\bar{X}_{. j}+\bar{X}_{. . .}\right)^{2}=\text { مبوع مربعان الثرات منقابل }
$$

$$
S S_{e}=\sum_{k=1}^{1} \sum_{j=1}^{n} \sum_{i=1}^{m}\left(X_{i j k}-\bar{X}_{i j}\right)^{2}=\text { مجـوع مربعات نعا }
$$

$$
S S_{T} \equiv \sum_{k=1}^{1} \sum_{i=1}^{n} \sum_{i=1}^{m}\left(X_{i j k}-\bar{X}_{\ldots} . .\right)^{2}=\text { مجـوع عرباتكل }
$$

$S S_{T}=S S_{r}+S S_{c}+S S_{i n t}+S S_{e}$
درجهٔ آزادى مربوط به جملات سمت راست اتحاد مجموع مربعات در معادلة A.ه. Y بـه تـرار زيـر

$$
\operatorname{lmn} \bar{X}_{. . .}^{2}
$$

$S S_{r}=\ln \sum_{i=1}^{m}\left(\bar{X}_{i} . .-\bar{X}_{\ldots} . .\right)^{2}$
با 1-m درجه آزادى
$S S_{c}=\operatorname{lm} \sum_{j=1}^{n}\left(\bar{X}_{. j .}-\bar{X}_{. . .}\right)^{2}$
با 1 - 1 دربه، آزایى
$S S_{i n t}=!\sum_{j=1}^{n} \sum_{i=1}^{m}\left(\bar{X}_{i j}-\bar{X}_{i}\right.$.

$$
\left.-\overline{\mathbf{X}}_{. \mathrm{j} \cdot}+\overline{\mathbf{X}}_{\ldots} . .\right)^{2}
$$

با (m-1) (n-1) درجه آزادى

$$
S S_{e}=\sum_{k=1}^{1} \sum_{j=1}^{n} \sum_{i=1}^{m}\left(X_{i j k}-\bar{X}_{i j} .\right)^{2}
$$

$$
\text { با } m \text { (} 1 \text { درجه آزادى }
$$

دليل اين كه مى شود . درجه آزادى

$$
\begin{aligned}
\sum_{i}\left(\bar{X}_{i j \cdot}-\bar{X}_{i . .}-\bar{X}_{. j}+\bar{X}_{. . .}\right) & =\sum_{j}\left(X_{i j .}-\bar{X}_{i \cdot .}-\bar{X}_{. j}+\bar{X}_{\ldots . .}\right) \\
& =0
\end{aligned}
$$

بددست مى آيد و همانطور كه در بخش ها
 $n m-(n+m-1)=(n-1)(m-1)$
(تحقيق درستى درجه آزادى مربوط به e
براي آزمون عدم وجود اثرات متقابل سطر و ستون - يعنى برای هر i ا و
$H_{0}^{i n t}: \gamma_{i j}=0$

توجه كنيد كه تحت فرض $H_{o}^{\text {تمtint }}$ هاى تصادفى
$Z_{i j k} \equiv \frac{\left(X_{i j k}-\bar{\mu}-\alpha_{i}-\beta_{j}\right)}{\sigma}$
به ازايى هر i و jو k متغير هاى تصادنى مستقل با توزيع نزمال استاندارد هستند . همبحنين
$\bar{Z}_{i j}=\frac{\bar{X}_{i j}-\bar{\mu}-\alpha_{i}-\beta_{j}}{\sigma}$
$\bar{Z}_{i . .}=\frac{\bar{X}_{i .}-\bar{\mu}-\alpha_{i}}{\sigma} \quad\left(1, j \beta .=\sum_{j=1}^{n} \frac{\beta_{j}}{n}=0\right)$
$\bar{Z}_{. j}=\frac{\bar{X}_{. j}-\bar{\mu}-\beta_{j}}{\sigma} \quad\left(\quad\left(\mathrm{r} ; \alpha .=\sum_{i=1}^{m} \frac{\alpha_{i}}{m}=0\right)\right.$
$\bar{Z}_{\ldots}=\frac{\bar{X}_{\ldots}-\bar{\mu}}{\sigma}$
از اين روابط نتبجه مىشود

$$
\begin{aligned}
\bar{Z}_{i j .}-\bar{Z}_{i \cdot .}-\bar{Z}_{. j}+\bar{Z}_{\ldots} & =\frac{\bar{X}_{i, \cdot}-\bar{X}_{i . .}-\bar{X}_{. j}+\bar{X}_{\ldots .}}{\sigma} \\
Z_{i j k}-\bar{Z}_{i j} & =\frac{X_{i j k}-\bar{X}_{i j}}{\sigma}
\end{aligned}
$$

بنابراين حون
 $S S_{i n t} / \sigma^{2}: 9 \mathrm{~d} S S_{\mathrm{e}} / \sigma^{2}$
 بس اگگر
$\left[S S_{i n t} /(n-1)(m-1)\right] /\left[S S_{e} / n m(l-1)\right]$

 تو جه كنيد كه تمام Tزمونهاى تبل ، فرض صفر را رد مى

 بود ـ جه

$$
\begin{aligned}
E\left[\frac{S S_{r}}{(m-1)}\right] & =\sigma^{2}+\frac{n l}{m-1} \sum_{i=1}^{m} a_{i}^{2} \\
E\left[\frac{S S_{c}}{(n-1)}\right] & =\sigma^{2}+\frac{m l}{n-1} \sum_{j=1}^{n} \beta_{j}^{2} \\
E\left[\frac{S S_{i n t}}{(n-1)(m-1)}\right] & =\sigma^{2}+\frac{1}{(n-1)(m-1)} \sum_{j=1}^{n} \sum_{i=1}^{m} \gamma_{i j}^{2} \\
E\left[\frac{S S_{e}}{n m(l-1)}\right] & =\sigma^{2}
\end{aligned}
$$

 عمر آنها مؤثر است ؟ آيا شاهدى برای وجود اثرات متقابل وجود دارد ؟

	درجه	
ماده	$10^{\circ} \mathrm{C}$	$18^{\circ} \mathrm{C}$
1	135, 150	50,55
	176, 85	64, 38
2	150,162	76,88
	171,120	91,57
3	138,111	68,60
	140,106	74,51

\because


```
RUN
THIS PROGRAM COMFUTES TIAE VALUES OF THE F-STATISTICS AND THEIR ASSOCIATED p-valu
eg IN A TNO WAY ANOVA HITH L OESERVATIONS IN EACH ROH-COLUMN CELL
ENTER THE NUMBER OF ROHS
? 3
ENTER THE: NUMBER OF COLUMNS
7}
ENTER THE MUMEER OF OESERVATIONS IN EACH ROW-COLUMRS CELL
7.4
ENTER THE 4 VALUES IN RON 1 COLUMN 1 ONE AT A TIFE
? 135? 150? 176? ESENJER THE 4 VALUES IN ROH 1 COLUMN I ONE AT A TIHE
? 5y? 5E? 64? 3EENTEF THE 4 VALUES IN ROW 2 COLUMN I ONE AT A TIME
? 1FO% 162? 171? 120ENTER THE 4 VALUES IN ROW 2 COLUMN E ONE AT A TIME
7 76? BG? 91? STENTER THE 4 VALUES IN ROW 9 COLUMN I ONE AT A TIME
? 13E? 111? 140? 10SENTER THE 4 VALUES IN ROW 3 COLLUMN 2 ONE AT A TIME
? 6日? 6O? 74? SITHE VALUE OF THE F-STATISTIC FOR TESTING THAT THERE IS NO FOW
    EFFECT IS 2.4797%2
THE p-value FOF TESTING THAT THERE IS NO ROW EFFECT IS . 1092952
THE VALUE QF THE F-STATISTIC FOR TESTING THAT THERE IS NO COLUMN EFFECT IS
    69.63223
THE p-value FOR TESTING THAT THERE IS MO COLUMN EEFFECT IS LESS THAN ,GOGI
THE VALUE OF THE F-STATISTIC FOR TESTING THAT THERE IS NO INTERACTIOII EFFEGT IS
    .6462455
THE p-value FOR TESTING THAT THERE IS NO INTERACTJON EFFECT IS .S32日q99
Ol
```

$$
\begin{aligned}
& \text { مـانطور كه ديله مىشود مواد مصرفى تفاوتى نمىكنند . ولى واضع است كه درجه حرارت } \\
& \text { مؤ ثر بوده امت و لذا فرض عدم اثر متقابل بذير نته مى شود . }
\end{aligned}
$$

$$
\div
$$

3

مسايل

 هر صمغ را ها بار آزمونكرده و غلظت ناخالصى دادهـا عبار تند از

غلظت ناخالهى		
	صضغ	صمّغ
. 046	. 038	. 031
. 025	. 035	. 042
. 014	. 031	. 020
. 017	. 022	. 018
. 043	. 012	. 039

اين فرض راكه تفاوتى در كار آيى صسغها وجود ندارد، آزمون كنيل .

- Y

 ناظر كاملا" قابل رؤيت باشد شدتى راكه براى اولين بار ناظر علمت كا
 جدول زير متاسب با شدتى است اكه ناظر براى اولين بار هدن را ديلده است.

فيلتر	خ	فيلتر بـاره
90	88	95
87	90	95
93	97	89
96	87	98
94	90	96
88	96	81
90	90	92
84	90	79
101	100	105
96	93	98
90	95	92
82	86	85
93	89	97
90	92	90
96	98	87
87	95	90
99	102	101
101	105	100
79	85	84
98	97	102

در سطح هـ درصد فرض يكسان بودن فيلترها را آز مون كنيد .
t روى (

 اندازه مىگيريم كه دادههاى زير بهدست آمده است .

Tآياكورهها يكسان عمل مىكنند ؟ در سطع معنىدار ها درصد آزمون كنيد . مقدار p جقدر
است

آ يا دادهها نشان میىدهند كه روشها نتايج يكسان دارند ؟
-
نمونهگيرى نر مال بهكار برد ?
 (برحسب درصهد جربى در هر گزم) بهدست Tمده است

 غذايى ترارمىگيرند • يس از • 1 همفته كل وزن كمششده (برحسب بوند) به صورت زير اري است .

كـروزن	
رزيم1	\% رزيم
22.2	24.2
23.4	16.8
24.2	14.6
16.1	13.7
9.4	19.5
12.5	17.6
18.6	11.2
32.2	9.5
8.8	30.1
7.6	21.5

 داشته است . فرض مىشود كه اثز متقابل وجو د نمارد ـ دادهها عبار تند از از : درمد ماده ورد نظر

شرابط نُهدارى	روش			
	A	B	C	D
1	1.35	1.13	1.06	0.98
2	1.40	1.23	1.26	1.22
3	1.49	1.46	1.40	1.35

الف) Tا Tا روشهاى تهيه كردن تفاوت دارند ؟
 انجام دهيد

 عبارتند از

	مسافت طى شـده		
بنزين	ماده اضانى		
	1	Y	r
1	124.1	131.5	127
2	126.4	130.6	128.4
3	127.2	132.7	125.6

$$
\begin{aligned}
& \text { الف) فرض بىاثر بودن بنزين روى مسافت طى شده را آزمون كنيد . }
\end{aligned}
$$

〒) جه فرضهايمى را در نظر گرفنهايد ؟
 ه نفر ديگر زن است ـ دادهها عبار تند از

	رثيم	رُّهم
زن	7.6	19.5
	8.8	17.6
	12.5	16.8
	16.1	13.7
	18.6	21.5
در	22.2	30.1
	23.4	24.2
	24.2	9.5
	32.2	14.6
	9.4	11.2

الف) اثر يكسان بودن رزّيمهاى غذايى راروى مردان و زنان آزمون كنيد .

 شدهاند را مقايسه كند . برايى مقاسِه ه تطعه از هر يكت از 9 تركيب سـاخته شــده انتخـأب میكند و سبس Tآنها را تحت نشار قرار میدهد . جدول زير فثار تابل تحمل هر تطعه را نشان

-	G		G_{2}		G_{3}	
W_{1}	19	208	214	216	258	- 250
	247	216	$\begin{array}{ll}235 & 240 \\ 252 & \end{array}$		264	
	221				272	
H_{2}	216	228	215	217	246	247
	240	224	235	219	261	250
	236		241		255	
$1{ }^{1}$	230	242	212	218	255	251258
	232	244	216	224	261	
	. 228		222		247	

 مى شُود . تجزية خون نسونههاى . (برحسب ميلىگگر در يكت سانتىمتر مكعب)

	\%روه			
	11-40	Y7-F.	F1-78	بيش از
2	52	52.5	53.2	82.4
	56.6	49.6	53.6	86.2
	68.2	48.7	49.8	101.3
	82.5	44.6	50.0	92.4
	85.6	43.4	51.2	78.6
زن	68.6	60.2	58.7	82.2
	80.4	58.4	55.9	79.6
	86.2	56.2	56.0	81.4
	81.3	54.2	57.2	80.6
	77.2	61.1	60.0	82.2

الف) فرض عدم تأثير جنسيت داروى غلظت خون آزمون كنيد .

Iff

بُزين	مواد اضافى		
	1	Y	r
1	126.2	130.4	127
	124.8	131.6	1266
	125.3	1325	129.4
	127.0	128.6	130.1
Y	127.2	142.1	129.5
	126.6	132.6	142.6
	125.8	128.5	140.5
	128.4	131.2	138.7
r	127.1	132.3	125.2
	128.3	134.1	123.3
	125.1	130.6	122.6
	124.9	133.0	120.9

الف) T Tا دادهها اثر متقابل را نشان میدهند ؟
 ه) آيا مواد المانه شده اثر متفاوت دارند يا آثر آنها يكسان است ت) جه نتيجهايى بهدست مى آيل . آي

	تعداد همفتهالى تحت مرالمبت			
	0	1	2	3
20	42	39	38	42
	54	52	50	55
	46	51	47	39
	38	50	45	38
	51	47	43	51
ز	49	48	27	61
	44	51	42	55
	50	52	47	45
	45	54	53	40
	43	40	58	42

الف) فرض عدم تأثير طول معالجه در قلدرت حافظه را آزمون كيند . ب) آيا جنسها اثر متفاوت (آرند ب) بآزمون كنيد كه آيا اثر متقابل وجود داري
 صورت نتى از اين گروه آزمون تدرت حافظه بهعمل آمده است و امتيازات آنها عبارتند از ry ، هr هr هr

$$
\begin{aligned}
& \text { r } \\
& \text { ا } 17 \text { - در الگوى بخش ه نشان دهيلد كه }
\end{aligned}
$$

$\sum_{i=1}^{m} \alpha_{j}=\sum_{j=1}^{m} \beta_{j}=\sum_{j=1}^{n} \sum_{i=1}^{n} \gamma_{i j}=v$

- IV معادلهُ ^. ه. با داده شده است .

$E\left[S S_{e}\right]=n m(l-1) \sigma^{2}$

ضميمهدا

برنامهاها

L 1 ... 7

10 FRINT"THIS FROGRAM CDMFUTES THE FRDBABILITY THAT A BINOMIAL($\cap, P)$ RANDDM VARIA ELE 15 LESS THAN DR EUUAL TO i"
2O FRINT "ENTER $n^{\prime \prime}$
30 INFUT N
AO PRINT "ENTER p"
50 INFUT P
oO FRINT "ENTER 1 "
70 INFUT 1
BO $S=(1-F) N$
90 IF S=O GOTO 1 BO
$100 \mathrm{~A}=\mathrm{P} /(1-\mathrm{F})$
110 Tm
120 FF ImO GOTO ± 90
130 FOR K=O TO I-1
$1405=5 \# A *(N-k) /(k+1)$
150 T=T+S
160 NEXT 1 .
170 GOTD 390°
$180 \mathrm{~J}=$?
190 1F J NN:F THEN JFINT (NZF)
200 FDE Kロ1 TD J
$210 L=L+L O G(N+1-K)-L O E(J+1-K)$
220 NEXT K
$230 L=L+J x \operatorname{LOG}(F)+(N-J): \operatorname{LOG}(1-F)$
240 L $\mathrm{CEXF}(\mathrm{L})$
$250 \mathrm{ED}(\mathrm{t}-\mathrm{F}) / \mathrm{F}$
$260 \mathrm{~F}=1$
270 FOR K=1 TO J
2BO $F=F: E *(J+1-K) /(N-J+K)$
290 T*T+F
300 NEXT K
310 IF J=1 БDTD 3 BO
329 C.1/E
330 F=1
340 FDR K=1 TO I-J
3\#0 F-FEC: $(N+1-J-K) /(J+K)$
$360 \mathrm{~T}=\mathrm{T}+\mathrm{F}$
370 NEXT K
उВの $T=(T+1)$ L
390 FRINT "THE PROBAEILITY IS":T
ACOI END

3-2

تابع توزيع يواسن

IO FRINT "THIS PRDGRAM CDMPUTES THE PRDBABILITY THAT A POIBSON RANDOM UARIABLE IS LESS THAN OR ERUAL TO i"
20 PRINT "ENTER THE MEAN OF THE RANDDM VARIAGLE"
30 INPUT C
4O PRINT "ENTER THE DESIRED VALUE OF 1 "
SO INFUT I
60 SEEXP (-C)
70 1F $5=0$ gota 150
آمار و ا-حتعال ثهنtدنى

```
B0 T=5
70 IF I=0 BOTO 340
100 FOR K=人 TO I-1
1:0 5=5暞(f(K+1)
120 T=T+5
130 NEXT K
140 GOTO 340
150 J=1
160 IF J>C THEN J=INT (C)
170 FOR K=1 TO J
180 FAC=FAC+LOG(K)
190 NEXT K
200 L=-C-FAC+J %LOG(C)
210L=EXP(L)
220 F=1
230 FDR K=1 TO J
240 F-FF*(J+1-K)/C
250 T=T+F
260 NEXT K
270 IF J=I GOTO 330
280 F=1
290 FOR K=1 TO I-J
300 F=F+CC/(K+J)
310 T=T+F
320 NEXT K
330 T={T+1)乹
340 PRINT "THE PROBAEILITY THAT A FOISSON FANDOM VARIABLE WITH MEAN " C "IS LES!
THAN OR EQUAL TQ" & "IS":T
35O END
Uk
```

10 FRINT "THIS FROGRAM GENERATES A FANDOM SUBSET OF SIZE K FROH THE SET $I, 2, . . N$
"
20 PRINT "ENTER THE VALUE OF N"
30 INPUT N
40 PRINT "ENTER THE VALLE DF K"
SO INPUTK
$\triangle O$ RANDOHILE
70 PRINT "THE RANDOM GUESET CONSISTS OF THE FOLLDWING" K "VALUES"
BO 1=1
90 FOR $J=1$ TO N
100 IF RND $<(K-G) /(N-J+1)$ THEN FRINT, $1 \times 5=5+1$
$1101 \oplus 1+1$
120 NEXT
130 END
OK

```
IU PRINT *THIS FROGRAM COMFUTES THE PROEAEILITY THAT A UNIT NORMAL RANDOM YARIAB
LE IS LESS THAN X"
2O PRINT "ENTER THE DESIRED VALUE OF }x\mathrm{ "
30 INPUT X
40 U|ABS (x)
50 IF U>4 GOTO 180
$0 Y=U`Z
70 I -U 
80 FOR J=1 TO 40
90. U0-U&Y*(2*J-1)/(2&J#(2*J+1))
100 I=I +U
I1O NEXT
120 I=IfGGR(243.14159)
1J@ IF X<心 OOTO 1bu
140 PRINT "THE PROBABILITY IS".5+I
150 GOTO 22O
160 PRINT "THE PROEAEILITY IS".5-I
170 EOTO 220
```

```
1日0 IF x<0 GOTO 210
190 PRINT "THE PROBABILITY IS GREATER THAN" I-10`-4
200 GOTD 220
2IO PRINT "THE PROGABILITY IS LESS THAN" 10"-4
220 END
```


3－5－1－B

10 PRINT＂FOR A GIVEN INPUT a，G＜a＜，S，THIS PROGRAM COHPUTES THE VALUE z SUCH
THAT THE PRDBAEILITY THAT A UNIT NORMAL EXCEEDS x IS EUUAL TO a"
20 PRINT "ENTER THE DESIFED VALUE OF a"
301 INPUT A
40 T=SLR(-2*LOG(A))
50 C-2.315517
60 De. 002653
70 E=. 010328
80 F=1.43278日
90́ Ge. 18726?
$100 \mathrm{H}=.00130 \mathrm{~B}$

120 PRINT "THE VALUE 15 " 2
130 END

3－8－1－A

تابع توزيع كمدو

```
1O PRINT "THIS FROGRAM COMFUTES THE FROKAEILITY THAT A CHI-SQUARE RANDQM VARIAEL
E WITH N DEGREES OF FREEDOM IS LESS THAN X"
20 PRINT "ENTER THE DEGREE DF FREEDOM PARAMETER"
3O INFUT N
40 S=(N-1)/2
SO PRINT "ENTER THE DESIRED VALUE DF X"
GO INPUT X
70 M=x/2
GO Dax/2-N/2+1/3
7C1D=D-.04/N
10% IF N=1 GOTO 160
110 IF SMM GOTO 18ü
120 H=5/M
13O X=(1-HEH+2#HELDG(H)//(1-H) 2
14(1 X=D*SQF({1+X)/M)
150 GOTO 190
160 X=D*50R(2/M)
170 GOTO 190
190) X=0/SOR(M)
190 U=ABS(X)
2(II) IF U>4 GOTO ETU
210 Y=U~2
220 1^|
23O FOF J=1 TO 40
240i U=-U#Y年(Z#J-1)/(2&J*(2#J+1))
25(1 1 = 1+U
2GC1 NEXT
27G I=1/SQR(243.14157)
2GG IF K.O GOTO J1O
290 FRINT "THE FROEAEIL17Y IS".5+I
300 GOTO 27%
310 FRINT "THE FROBAEILITY IS".S-1
320 GOTO 370
I3O IF X<O GOTO 360
34O PFINT" THE PROEAEILITY 1S GREATEF THAN" 1-10*-4
350 GDTO 370
36O PRINT "THE PROEAEILITY IS LESS THAN" 10N-4
370 END
O%
```


3－8－1－B

تابع معكوس توزيعكىدو

10 FRINT＂FOR A GIVEN INFUT a，Uく $2<.5$ ，THIS PROGRAM COMPUTES THE VALUE
chisq（a，n）SUCH THAT THE PROEABILITY THAT A CHI SDUARE RANDOM UARIABLE WITH n DEGREES UF FREEDOM EXCEEDS chimq（a，n）IS EQUAL TO a＂
20 FRINT＂ENTER THE DEGREE OF FREEDOM PARAMETER n＂
30 INFUT N
40 PRINT＂ENTER THE DESIRED VALUE OF a＂
50 INFLIT A
$60 \mathrm{~T}=\operatorname{SDR}(-2 \mathrm{LOOG}(\mathrm{A}))$
$70 \mathrm{C}=2.515517$
$60 \mathrm{D}=. \mathrm{BO} 2 \mathrm{BS} 5$
9 0 E＝． 010 ？ 28
（1）$F=1.4327$ 日
$110 \mathrm{G}=.189269$
$120 \mathrm{H}=.00130 \mathrm{O}$

$150 \mathrm{E}=1$
$160 \mathrm{KimN} / 2$
170 1F 1 ＝INT（K）GOTO 230
1日G FOR I＝1 TO K－I／2
$190 \mathrm{~B}=\mathrm{E}=(\mathrm{K}-\mathrm{I})$
200 NEXT
210 日＝EtSDR（3．14159）
220 GOTO 260
230 FDF I＝1 TO Kー1
240 BmBtI
250 NEXT
260 M＝W／2
$270 \mathrm{~S}=(\mathrm{N}-1) / 2$
2E0 $\mathrm{D}=\mathrm{H}-\mathrm{N} / 2+1 / 3$
$290 \mathrm{D}=\mathrm{D}-.04 / \mathrm{N}$
TOO IF N－I GOTG 360
310 IF 5－M GOTO 3BU
$320 \mathrm{HES} / \mathrm{M}$
$330 x=(1-H * H+2 x H * \operatorname{LOG}(H)) /(1-H) 2$
$340 \quad X=D \leqslant \operatorname{SQR}(1 / 4+X) / M H$
350 GOTO 390
360 （ $x=D * \operatorname{Sar}(2 / M)$
370 Gato 390
STO $x=D /$ SQR（M）
390 L＝ABS（X）
400 IF U．4 GOTO 530
410 YFU 2
4201 （ U
430 FOR J＝1 TO 4K

$450 \quad \mathrm{I}=1+\mathrm{U}$
460）NEXT
470 1＝1／SOF（2포．（4159）
4日O 1F Kio goto 510
470 E＝．5＋1
SOM EOTO 57C
$510 \mathrm{E}=.5-1$
520 GOTO 570
530 IF Xes GOTO 560
540 E．． 9999
550 GaTO 570
Sbぐ E＝．©くば1
570 E＝1－A－E
S80 $E=2^{\wedge}(-N / 2) \& B^{*}-1 * E X P(-W / 2) E W(N / 2-1)$
590 W－W＋E／B
600 PRINT＂THE VALLJE IS＂W
610 END

```
10 PRINT "THIG PROGRAM COMPUTES THE PROBABILITY THAT A t-RANDOM VARIABLE WITH N
DEGREEG DF FREEDDM 19 LESS THAN X"
20 PRINT "ENTER THE DEGREES OF FREEDOM"
3 0 ~ I N P U T ~ N
40 PRINT "ENTER THE VALUE OF X"
SO INPUT X
60 A=N-2/3+1/(10:N)
70 B-LOG (t+X^2/N)/(N-5/b)
BO IF X>0 THEN X=A&SOR(G) ELSE X=-A&SOR(B)
90 UmabS(x)
100 IF U>4 GATG }23
110 Y=U゙2
120 I=U
130 FOR J=1 TD 40
```



```
150 I= l+\
160 NEXT
170 I=1/SOR(2%3.14159)
18O IF U>X GOTO 2IO
190 PRINT "THE PRDBABILITY IG".5+1
200 GOTO 270
210 PRINT "THE PROBABILITY IS".S-1
220 GOTO 270
230 IF X<O GOTO 260
240 PRINT "THE PROBABILITY 1S GREATER THAN" 1-IO^-4
230 GOTO 270
260 PRINT "THE PROEABILITY 15 LESS THAN" 10-4
270 END
```

3-8-2-B

10 PRINT "FOR A GIVEN INFUT a, OYa<.S, THIS PROGRAM COMPUTEG THE VALUE $t(a, n)$ SUCH THAT THE PROBABILITY THAT A t-RANDOM VARIABLE WITH \cap DEGREES OF FREEDOM EXCEEDS $t(a, n)$ IS EQUAL TO *"
20 PRINT "ENTER THE DEGREES OF FREEDOM PARAMETER n "
30 INPUT N
40 PRINT. "ENTEF THE DESIRED VALUE OF a"
50 INPUT A
$60 \mathrm{~T}=5 \mathrm{SR}(-2 \operatorname{LOG}(A))$
$70 \quad \mathrm{C}=2.515917$
80 De. 802853
90 E. 010328
$100 \mathrm{~F}=1.4327 \mathrm{BE}$
110 Gm .169267
120 HF .00130 B
$130 \quad X=T-\left(C+D+T+E(T \times 2) /\left(1+F+T+G+T^{\wedge} 2+H\left(T^{\wedge} 3\right)\right.\right.$

/(304 \#N N 3)
150 FRINT "THE YALUE 1S"W
160 END

3-8-3-A
Fتابع توزيع F

10 PRINT "THIS PROGRAM COMFUTES THE PRQBABILITY THAT AN F RANDOM VARIABLE WITH
DEDREEE OF FREEDOM N AND M IS LESS THAN X "
$2 O$ PRINT "ENTER THE FIFGT DEGREE DF FREEDOM PARAMETER"
30 INPUT N
40 PRINT "ENTER THE SECOND DEGREE DF FREEDOM PARAMETER"
So INPLT M
60 PRINT "ENTER THE DESIRED VALUE OF x "
70 INPUT X


```
80 S={M-1}/2
90 T-(N-1)/2
100 K=(N+M)/2-1
110 F=M/(N*X*M)
120 D=1-P
130 D=S+1/6-(K+{/3)*P*.02:(Q/(G+.5)-F/(T+.5)+(0-. S)/(K+1))
140 A=S/(K#F)
150 B=T/(K*O)
160 1F A=O THEN C=1 ELSE C=(1-A|A+2|A&LOE(A))/(1-A)^2
170ं IF B=0 THEN E=1 ELSE E=(1-B#B+2|B&LOG(B))/(1-B)~2
180 X=D|SDR((1+\square#C+F*E)/((K+1/6):P&O))
190 U=ABS (X;
200 IF U>4 GOTO 31%
210 Y=U^2
220 1=U
230 FOR J=1 TO 40
240 U=-U:Y年(2HJ-1)/{2#J:(2#J+1))
2301 1-I+U
260 NEXT
270 I=1/SOR(2#3.24159)
2日0 IF x<O THEN Im.5-1 ELSE I=.5+I
Z90 PRINT "THE PROBAEILITY IG",I
300 BOTO 350
310 IF X%O GQTO 340
T20 FRINT "THE PRGBABILJTY IS GREATER THEN .999%"
30 GOTO 350
340 PRINT "THE PROEABILITY IS LESG THAN .OOO1"
35O END
```

$7 \cdot 7$
4-3
ميانكين ، واريانس ، انحرال معيار نمونه
LIST
dO FRINT "THIS PKOGRAM CGMFUTES THE SAMPLE MEAN, SAMPLE VAFIANCE, AND SAMPLE STA
NDARD DEVIATION OF A DATA SET"
ZO PRINT "ENTER IHE SAMPLE SIZE"
50 INFUT N
4O PRINT "ENTER THE DATA VALUES DNE AT A TIME"
50 INFUT M
to FOR $\quad \mathrm{I}=1$ TO N-1
TO 1 NFUT X
$90 \mathrm{~A}=\mathrm{M}$
$90 M=M+(x-M) /(J+1)$
$10(1 S=(1-1 / J) \omega S+(J+1) *(M-A) \sim 2$
$1: 0$ NEXT J
120 PRINT "SAMFLE MEAN IS":M
t:
140 FRINT "SAMPLE STANDARD DEVIATION IS":SUR(S)
154 END
ak

| كاصل اطمينان براي ميانتين نرمال وتتى واريانس معلوم است 1-3-5

```
10 FFINT "THIS PROGRAM COMFUTES A 100(1-a)% CONFIDENCE INTERVAL FOR THE MEAN DF
            A NOFMAL FOFULATION WHEN THE VARIANCE IS UNKNOWN"
2O FFINT "ENTER THE SAMPLE SIIE"
SO INFUT N
4O FRINT "ENTEF THE DATA VALUES ONE AT A TIME"
SO INFUT M
60 FOK J=1 TO N-1
70 INFUT X
BCO A=M
90 M=M+(X-M)/{J+1)
100 S=(1-1/J)*S+(J+1)*(M-A)\cdots2
110 NEXT J
120 FKINT "ENTER THE VALUE OF a"
```

```
130 INFUT A
14O FRINT "IS A TWD-SIDED INTERVAL DESIREDT ENTER 1 IF THE ANSWER IS YES AND O
                                    IF NO"
1EG 1NFUT I
160 IF I=Ö GOTD 220
170 E*A/2
1B(1)L=N-1
190 GOSUE こ50
20O PKINT "THE"1GO%(I-A)"% CUNFIDENCE INTEFYAL FDF {HE MEAN 15
    ("M-T*SOR(5)/SQF(N)","M+I*SQR(G)/SOR(N)")"
210 GOTO 3.10
220 Bन्A
2 3 0 ~ L - N - 1
24!G GOSUE S3O
250 FFIN1 "IS IHE ONE-SIDED CONFIDENCE INTEFVAL TD LE UFFEF DHK LOWEFR ENTER I
                FQR UFFER AND O FOR LOWEF"
260 INPUT J.
270 1F K*0 GOTO 300
280 PRINT "THE" 1OO% (1-A)"% UFFER LONFIDENCE INTERVAL FOR THE MEAN IS
                            ("M-T*SRF(S)/SRF(N)", INFINITY)"
290 GOTO 310
300 PRINT "THE" 1OO# (1-A)"X LUWEF CONFIDENCE INTERVAL FUR THE MEAN IS
    -INFINJTY, "M+T#SRR(S)/SOR(N)")"
3.U FRINT "IS ANOTHER CONFIDENCE INTERVAL UESIRED': IF YES ENTEF 1.
                IF NO ENTER O."
SZO 1NFUT Y
3N0 IF Y=1 GOTD 120
34(1) GOTO 45%
35G W=SOR(-2*LOG(E))
360 [=7.515517
370 D=.802053
380 E=.010゙28
390 F=1.432748
4001 G=. 149289
410 Ha.0013.u日
420 Z=W-(C+D|W+E#W"2)/(1+F:W+GWW`2+H&W^3)
```



```
4%L^3)
440 RETURN
450 END
0k
```


5－3－2－A \quad كاصلّ اطمينان براى تفاضل دو ميانكين نُرمال با وارياتسهاى معلوم

```
10 PRINT "THIS PROGRAM COMPUTES A 100(1-a)% CONFIDENCE INTERVAL FOR THE
DIFFERENCE OF MEANS IN TWO NORMAL POPLHLATIONS HAVINS KNOWN VARIANCEG"
20 FOR I*1 TO 2
3O PRINT "ENTER THE SIZE DF SAHPLE" I
4O INPUT N(I)
SO PRINT "ENTER THE SAMPLE" I "DATA VALUES ONE AT A TIME"
60 FOR J=1 TO N(I)
70 INPUT IX
日0 V(1)=v(1)+x
9 0 ~ M E X T ~ T
IOO PRINT "ENTER THE PQPULATION VARIANCE OF SAMPLE" I
110 INPUT C(I)
120 NEXT
130 W-SDF(C(1)/N(1)+C(2)/N(2))
140 U-V(1)/N(1)-V(2)/N(2)
15O PRINT "ENTER THE VALUE OF a"
160 INPUT A
170 PRINT "IS A TWO-GIDED INTERUAL DESIREDT ENTER 1 IF THE ANSWER IE YEG AND O
IF NO"
190 INPUT I
190 IF ImO EOTO 240
200 B-A/2
210 G05UB 360
220 PRINT "THE"100&(1-A)"% CONFIDENCE INTERVAL IS ("U-Z年W","U+Z&#")"
230 GOTO 320
240 B=A
250 EO8UB 360
```

```
260 PRINT "IS THE ONE-SIDED CONFIDENCE INTERVAL TO BE UPPER OR LOWERP ENTER 1
FOR LIPPER AND O FOR LONER"
270 INPLT K
2B0 IF K=0 GDTO 310
270 PRINT "THE" 100%(I-A)"% LPPER CONFIDENCE INTERVAL IS ("L-Z#W",INFINITY)"
300 G0TO 320
3IO PRINT "THE" 1OOZ(1-A)"% LOWER CONFIDENCE INTERVAL IS (-INFIN\TY,"U+Z#W")"
320 PRINT "IS ANOTHER CDNFIDENCE INTERVAL DESIRED? IF YEG ENTER 1. IF ND
ENTER O."
33O INPUT Y
340 IF Y*1 GOTO 150
350 GOTG 450
360 T=SGR(-2%LOO(B))
370 C=2.5155:7
380 D=.802853
390 Em.010132B
400 F=1.43278日
410 5=.189269
420 H=,00130B
430 2=T-(C+D*T+E*T^2)/(1+FET+G*T^2+H:T^3)
4 4 0 ~ R E T U R N
450 END
```

5－3－2－B \quad اصلئ اطمينان براى تثاضل دو ميانكين نرمال با واريانسهاى مجهول برابر

```
10 PFINT "THIS PROGRAM COMPLITES A 100(1-a)% CONFIDENCE INTERVAL FOR THE DIFFEREN
CE DF MEANS IN TWD NDRMAL POPULATIONS HAVING UNKMOWN BUT EDLAL VARIANCES"
20 K-k'1
3O PRINT "ENTER THE SIZE OF SAMPLE NUMEER" K
40 INPUT N(K)
50 PRINT "ENTER THE SAMPLE"K"DATA VALUES ONE AT A TIME"
6 0 ~ 1 N P U T ~ M ~ A
70 FGR J=1 TO N(K)-1
GO INNPUT X
90 A=M
100 MmM+ (X-M)/(N+1)
110 S=(1-1/J)*S+(J+1):{M-A)*2
120 NEXT J
130 M(K)=H
140 S(K)=S
150 IF K=1 EDTO 20
160 U=S@R((1/N(1)+1/N(2))*((N(1)-1)*日(i)+(N(2)-1):E(2))/(N(1)+N(2)-2))
170 L=N(1)+N(2)-2
1BO PRINT "ENTER THE VALUE OF 4*
17O INPUT A
200 PRINT "IS A TMO-SIDED INTERVAL DESIREDP ENTER I IF THE ANSWER IS YEB AND O I
F NO"
210 INPUT 1
220 IF I=0 GDTO 270
230 B-A/2
240 GOSUB 370
250 PRINT "THE*1OO*(1-A)n% CCNFIDENCE INTERUAL IS ("M(1)-M(2)-T:U"*"#(1)-H(2)&T
#U")"
260 GOTO 350
270 日-A
280 GOSUB 390
290 PRINT "IS THE DNE-SIDED CONFIDENCE INTERVAL TO BE LPPER OR LOWERT ENTER I FO
R UPPER AND O FDR LOWER"
300 INPLIT K
310 IF K=O BOTD }34
320 PRINT "THE" 100:(1-A)"% UPPER CONFIDENCE INTERVAL IS ("M(1)-H(2)-TGU",INFIN
ITY)"
330 BOTD }35
340 PRINT "THE" IOO:(1-A)=Z LOWER CGNFIDENCE JNTERVAL IS I-IMFINITY,"M(1)-M(2)*
T*U")"
350 PRINT "IS ANOTHER COPFFIOENCE INTERVAL DESIREOT IF YES ENTER 1. IF ND ENTER O
*"
300 INPUT Y
370 IF Y@1 GOTO 180
300 GOTO 4%O
390 W=SGR(-2#LOB(B))
```

```
400 C=2.515517
410 D=.802053
420 E*.01032B
430 F#!.43278B
440 G=.189269
450 H=.00130B
```



```
4&2^す!
4B0 RETURN
4 9 0 ~ E N D
```

6-3-2
مقدار P براي آزمون يكشطرفه

```
10 PRINT "THIS PROGRAM COMPUTEG THE p-Yalu' WPEN TESTING THAT A NORMAL POPURATID
N WHOSE VARIANCE IS LNKKNONN MAB MEAN EGUAL TO HU-2ERD."
20 PRINT "ENTER THE VALUE OF mL-ZERO*
3O INPUT HU
40 PRINT "ENTER THE SAMPLEE SIIE"
5 0 ~ I N P U T ~ N ~ N
40 PRINT "ENTER THE DATA VALUEB ONE AT A TIME"
70 INPUT; M
BO FOR J=1 TO N-1
90 1MPUT; D
10< A=M
110 M=M+(D-M)/(J+1)
120 S=(I-1/J):S+(J+1):(M-A)^2
13O NEXT J
140 X=SPR(N) :(M-MU)/5OR (S)
150 PRINT "THE VALUE OF THE t-STATIETIC 19"X
160 N=N-1
170 A=N-2/3+1/(10*N)
180 E=LOG (1+X~2/N)/(N-5/b)
190 IF x>0 THEN }x=A/BOF{(B) ELBE X=-A:BOR(B
200 U=ABS(x)
2!0 1F U>4 GOTO 430
220 Y=U^2
230 i=U
240 FOR J=1 TO 40
```



```
260 I=1+U
270 NEXT
280 [41/SOR(213.14159)
290 PRINT "IS THE ALTERNATIVE HYPOTHESIG TWO-SIDEDT ENTER I IF YES AND O IF NO"
300 INPUT TWO
310 IF TWO =O OOTO 340
320 PRINT "THE p-value 1S" 1-2t!
330 SOTO $70
340 PRINT "IS THE ALTERNATIVE THAT THE MEAN EYCEEDS HU-ZERO OR THAT IT IB LEEE?
    ENTER 1 IN THE FORMER CASE AND O IN THE LATTER*
350 INPUT AL
360 IF AL OO GOTO 400
370 IF X<O BOTO 410
300 PRINT HTHE p-value 15* .5-I
390 GOTO 570
400 IF X<O GOTO 3GO
4\0 PRINT "THE p-valu( Ig" .5+I
420 GOTO $70
430 PRINT "IG THE ALTERNATIVE HYPOTHESIE TMD-GIDED? ENTER I IF YEE AND O IF NO"
440 INPUT A
450 IF A=O GOTO 480
440 PRINT "THE p-valu* IS LEES THAN".0001
470 BOTO 570
4EO PRINT n 1S THE ALTERNATIVE THAT THE MEAN EXCEEDS HU-IERO OR THAT IT IS LESS?
ENTER 1 IN THE FORMER CASE AND O IN THE LATTER"
40O INFUT E
500 IF B=0 80TO S50
510 IF X<0 GOTO 530
320 GOTO 460
530 PRINT "THE p-valut IE GREATER THAN " 1-10n-4
540 GOTO 570
550 IF X<0 GOTO 460
```

```
آمار و ا-ستّهال عهن\سب
$60 GOTO 530
570 END
```

F1.
آمارة́ آزمون برابرى دو مياتكين نرمال ، واريانسهاى معلوم 1-4-6

```
10 PRINT "THIS PROGRAM COMPUTES THE VALUE OF THE TEST STATISTTE IN TESTING THAT
TWO NORMAL MEANS ARE EDUAL WHEN THE VARIANCES ARE KNOWN"
20 PRINT "ENTER THE SAMPLE SIZES"
3O INFUT N,M
40 PRINT "ENTER THE SAMPLE VARIANCES"
SO INFUT CI,E2
&O PRINT "ENTER THE FIRST SAMPLE DNE AT A TIME"
70 FOR I-1 TO N
BO INPUT IX
90 5x-5x+x
100 NEXT
1IO PRINT "ENTER THE SECOND SAMPLE ONE AT A TIME"
120 FOR I=1 TO M
130 INPUT :Y
140 SY=SY+Y
150 NEXT
16O PRINT "TME VALUE OF THE TEST STATISTIC IS". (SX/N-SY/MY/SQR(CI/NN+C2/M)
170 END
Ok
```

 مقدار Pدر آزمون tبرای دو نمونه
    ```
10 PRINT "THIS PRDGRAM COMPUTES THE p-valug WHEN TESTINB THAT TWO NORMAL PDPULAT
IONS HAVING EQLAL BUT UNKNDWN VARIANCES HAVE A CDHFGN HEAN*
20 FOR J=1 TO 2
30 PRINT "ENTER THE SITE DF GAMPLE" J
40 INPUT N(J)
SO FRINT "ENTER SAMPLE" J "ONE AT A TIHE"
GO INPUT M(J)
70 FOR I*1 TO N(J)-1
日0 INPUT X
90 A=M(J)
100 H(J)=M(J)+(X-H(J))/(I+1)
110 S(J)=(1-1/I):S(J)+(I+1):(M(J)-A)^2
120 NEXT I
130 NEXT J
140 R=(N(1)-1) #S(1)+(N(2)-1)*6(2)
150 R-Rz(1/N(1)+1/N(2))/(N(1)+N(2)-2)
160 X={M(1)-M(2))/S(FR(R)
170 PRINT "THE VALUE OF THE E-STATISTIC IS"X
1BO N=N(1)+N(2)-Z
190 A=N-2/3+1/(10*N)
200 B=LOE (1+X~2/N)/(N-5/6)
210 IF }X>0\mathrm{ THEN }X=A&EQR(B) ELSE X=-A|SOR(B
220 U-ABS (X)
230 IF U>4 GDTD 450
240 Y=U^2
250 I =U
260 FOR J=1 TO 40
270 U&-U*Y*(2*J-1)/{2*J*(2*J+1))
2BO I=I+U
290 NEXT
300 I=1/SQR(2*T.14159)
310 PRINT "IS THE ALTERNATIVE HYPOTHESIS TWO-SIDED? ENTER I IF YES AND O IF NO"
320 INPUT TWO
330 IF TWO mO 50TD 360
340 PRINT +THE p-value IS" 1-2*1
350 GOTA 590
360 PRINT "IS THE ALTERNATIVE THAT THE MEAN OF SAMPLE ONE EXCEEDS THE HEAN OF SA
MPLE TWO OR THAT IT IS LESS? ENTER I IN THE FOAMER CASE AND O IN THE LATTER"
370 INPUT AL
300 IF AL=O BOTO 420
390 IF X<O GOTO 430
```

```
40OO PRINT "THE p-value 15" .5-1
410 GOTO 590
4 2 0 ~ I F ~ X < 0 ~ G O T O ~ 4 0 0 ~
430 FRINT "THE prvalue IS" .5+I
440 GOTO 590
450 FRINT "IS THE ALTERNATIVE HYPOTHESIS TWO-SIDED? ENTER I IF YES AND O IF NO"
460 IMPUT A
470 iF A=0 GOTO 50S1
40O PRINT "THE p-value 15 LESS THAN" , GOOM
490 GOTO 590
SOO PRINT "IS THE ALTERNATIVE THAT THE MEAN OF SAMPLE DNE EXCEEDS THE MEAN DF gA
MFLE TWO OR THAT 1T IS LESS? ENTER I IN THE FORMER CASE AND O IN THE LATTER"
510 INPUT B
520 JF E=0 GOTO 570
530 IF X<O GOTO 550
540 GOTO 4BO
550 PRINT "THE g-value 15 GREATER THAN " 1-10n-4
560 GOTO 570
570 JF X<O GOTO 490
5BO GaTO 550
590 END
```

6-6-1

```
10 PRINT "THIS FROGRAM COMPUTES THE p-VAlue FOR THE TEST DATA IN THE FISHER-IRWI
N TEST"
20 PRINT "ENTER THE SIIE OF THE FIRST SAMPLE*
3O INPUT N1
4GI PRINT "ENTER THE SI2E OF THE SECOND SAMPLE"
SO INPUT NZ
GO PRINT "ENTER THE TOTAL NUMBER OF FAILLIRES"
7O INPUT K
0O PRINT "ENTER THE NUMBER OF FAILURES IM THE FIRGT SAIPLE"
90 INFUT Y1
100 P=1
1:0 FOR J=0 TO XI-1
12(1 PmP:(N1-J)/(N1+N2-J)
13O NEXT J
140 FOR J=O TO K-X1-1
150 PmPs(N2-J)/(N1*N2-X1-J)
100 NEXT J
170 UONI-X:
180 1F K<N: THEN L'@\-xi
190 DEXd
200 IF K>N2 THEN D=\1-K+N2
210 IF L`D GOTO 300
220 F=1
230 FOR J=1 TO D
240 FOF:(XI+1-J):(N2-K+XI+1-J)/((N1-X1+J)!(K-X1+J))
250 T-T+F
255 NEXT J
260 G0TO 350
300 Fal
310 FOR J=i TO U
```



```
330 T-T+F
340 NEXT J
350 [-1
353 FOR J=1 TO X1
356 C-[{(k+1-J)/(x)+1-J)
359 NEXT J
370 V1=(T+1) #fuC
380 V2*1-T*P*C
390 V=U1
400 IF V>V2 THEN V-VV2
410 PRIMT "THE p-value I5*2:V
420 END
```

حل ركّ سيون خطى ساده

```
LIST
10 PRINT "THIS PROGRAM COMPUTES THE LEAST SQUARES ESTIMATORS AND RELATED STATIG
ICS IN SIMPLE LINEAP, REGRESSION MODELS"
20 PRINT "ENTER THE NUTHBER OF DATA PAIRS n"
30 INPUT N
40 PRINT "ENTER THE n SUCCESSIVE PAIRS x,Y ONE PAIR AT A TIME"
so FOR I=1 TO N
6O INPUT }X,
70 TXY=YXY+X#Y
80 TXX=TXX+XGX
90 TYYMTYY+Y&Y
100 MX=HX+X
110 MY-MY+Y
12O NEXT
1JU SXYaTXY-MXBMY/N
140 SXX=TXX-MX:MX/N
150 SYY#TYY-MYAMY/N
160 B=SXY/SXX
170'A=(MY-E&MX)/N
100 SSRm(SXX:SYY-SXY*SXY)/SXX
190 PRINT "THE LEAST SQUARES ESTIMATORS ARE AS FOLLOWS"
200 FRINT "A = " A
Z10 PRINT "E = " G
20 PRINT "THE ESTIMATED REGRESEION LINE IS Y a "A" + "B" x"
2JO PRINT "DO YOU WAN1 OTHER COMFUTED UALUEST ENTER I IF YES AND O} IF ND."
240 INPUT 2
250 IF Z=0 GOTO 320
260 PRINT "S(K,Y) =" SXY
270 PRINT "S(K,x) =" SXX
2日0 PRINT "S(Y.Y) =" SYY
29Q PRINT "SSK =" S5k
ZOO PRINT "THE AVERAGE : VALUE IS" MX/N
3IO FFINT "THE SUM OF THE SOUARES OF THE k VALUES 1S" TXX
320 END
```

7-10
حل ركرسيون خطى چجندكانه

LIST 10 PRINT "THIS PROGRAM COMPUTES THE LEAST SQUARES ESTIMATES QF THE COEFFICIENTS
AND THE SUM OF SDUARES OF THE RESIDUALS IN MULTIPLE LINEAR REGREGSION"
20 PRINT "IT BEGINS BY COHFUTING THE INUERSE OF THE X-TRANSPOSEAX MATRIX"
30 FRINT "ENTER THE NUMGER OF ROWS OF THE x-HATRIX"
40 JNPUT N
EO FRINT "ENTER THE NUMBER OF COLUHNS OF THE X-MATRIX*
6O INPUT P
70 DIM A (N, P)
BOt FOR I*1 TO N
90' FRINT "ENTER ROW" I "ONE AT A TIME"
100 FOR J=1 TO F-l
110 INPUT : A(I.J)
$12 G$ NEXT J
130 INPUT $A(1, P)$
140 NEXT 1
$150 \mathrm{DIM} \times(P, 2 \mathrm{FP})$
160 FOR $I=1$ TO P
170 FOR J=1 TO I
180 FOR $K=1$ TO N
$190 \times(1, J)=x(1, J)+A(K, 1): A(K, J)$
200 NEXT K
210 NEXT
220 NEXT
230 FOR I=I TO P
240 FOR J=1 TO P
$250 \times(1, J)=X(J, 1)$
260 NEXT
270 NEXT
280 FOR K=1 TO P
$290 \times(K, P+K)=1$

```
PIT
```

```
3OO NEXT K
```

3OO NEXT K
310 FOR K|l TO P
310 FOR K|l TO P
320 IF X {K,K)=uे GOTO 510
320 IF X {K,K)=uे GOTO 510
330 C=1/X(K,K)
330 C=1/X(K,K)
340 FOR J=1 TO 2\#F
340 FOR J=1 TO 2\#F
350 x(K,J)=x(K,J):C
350 x(K,J)=x(K,J):C
36O NEXT J
36O NEXT J
370 FOR I=1 TO K-1
370 FOR I=1 TO K-1
3日@ D=X(1,K)
3日@ D=X(1,K)
390 FOR J=1 TO 2*P
390 FOR J=1 TO 2*P
400 x(I,J)=x(I,J)-D\#X(K,J)
400 x(I,J)=x(I,J)-D\#X(K,J)
410 NEXT J
410 NEXT J
4 2 0 ~ N E X T ~ I ~
4 2 0 ~ N E X T ~ I ~
430 FOR I-K+1 TD P
430 FOR I-K+1 TD P
440 D=X(I,K)
440 D=X(I,K)
450 FOR J=1 TO 2tP
450 FOR J=1 TO 2tP
460 X(I,J)=X(I,J)-D$X{K,J)
460 X(I,J)=X(I,J)-D$X{K,J)
470 NEXT J
470 NEXT J
4EO NEXT I
4EO NEXT I
490 NEXT K
490 NEXT K
SOO GOTO 600
SOO GOTO 600
SIO FOR I=K+1 TO P
SIO FOR I=K+1 TO P
520 IF X(I,K)=0 GOTD 570
520 IF X(I,K)=0 GOTD 570
S3O FOR J=1 TO 2EP
S3O FOR J=1 TO 2EP
S40 X(K,J)=x(K,J)+X(I,J)
S40 X(K,J)=x(K,J)+X(I,J)
350 NEXT J
350 NEXT J
360 OQTD 340
360 OQTD 340
570 NEXT I
570 NEXT I
S日O PRINT "THE INVERSE DDES NDT EXIST"
S日O PRINT "THE INVERSE DDES NDT EXIST"
590 GOTD 900
590 GOTD 900
t00 PRINT "THE INVERSE MATRIX IS AS FOLLDWS"
t00 PRINT "THE INVERSE MATRIX IS AS FOLLDWS"
6l0 FOR i=1 TO P
6l0 FOR i=1 TO P
G20 FOR J=1 TO P-I
G20 FOR J=1 TO P-I
GJO PRINT X(I,P+J)I
GJO PRINT X(I,P+J)I
640 NEXT J
640 NEXT J
GSO PRINT X(I,2\#F)
GSO PRINT X(I,2\#F)
66O FRINT
66O FRINT
G7O NEXT I
G7O NEXT I
GEO PRINT "ENTER THE RESPONSE VALUES OME AT A TIME"
GEO PRINT "ENTER THE RESPONSE VALUES OME AT A TIME"
6OO DIM Y(N)
6OO DIM Y(N)
700 FOR 1=1 TO N
700 FOR 1=1 TO N
710 INPUT IY(I)
710 INPUT IY(I)
7 2 0 ~ N E X T ~
7 2 0 ~ N E X T ~
7ZG DIM XTY(P)
7ZG DIM XTY(P)
740 FOR 1=1 TO P
740 FOR 1=1 TO P
75O FOR KE| TC N
75O FOR KE| TC N
760 XTY(1)=XTY(I) +A(K,I):Y(K)
760 XTY(1)=XTY(I) +A(K,I):Y(K)
7 7 0 ~ N E X T ~
7 7 0 ~ N E X T ~
700 NEXT
700 NEXT
790 DIM E(P)
790 DIM E(P)
EOO FOR 1=0 TO P-1
EOO FOR 1=0 TO P-1
BlG FOR J=1 TO F
BlG FOR J=1 TO F
日20 E(I)=日(I)+X(I+I,F+J)\&XTY(J)
日20 E(I)=日(I)+X(I+I,F+J)\&XTY(J)
B3O NEXT
B3O NEXT
G4O NEXT
G4O NEXT
日SO PRINT "THE ESTIMATES DF THE REGRESSIDN CDEFFICIENTS ARE AS FOLLOWS"
日SO PRINT "THE ESTIMATES DF THE REGRESSIDN CDEFFICIENTS ARE AS FOLLOWS"
BGO PRINT
BGO PRINT
070 FDR 1mũ TO P-1
070 FDR 1mũ TO P-1
日B(I FFINT, "E("I")="E(t)
日B(I FFINT, "E("I")="E(t)
gTO NEXT
gTO NEXT
GOG FOR I=1 TD N
GOG FOR I=1 TD N
910 YTY=YTY+(Y(1))"2
910 YTY=YTY+(Y(1))"2
920 NEXT
920 NEXT
930 FOR 1=0 TO P-1
930 FOR 1=0 TO P-1
940 ETXTY\&ETXTY+B(I) EXTY(I+1)
940 ETXTY\&ETXTY+B(I) EXTY(I+1)
95O NEXT
95O NEXT
960 PRINT "THE SUM OF SQUARES OF THE RESIDUALS IS SS{F) =" YTY-BTXTY
960 PRINT "THE SUM OF SQUARES OF THE RESIDUALS IS SS{F) =" YTY-BTXTY
970 END
970 END
OK

```
OK
```

بـرنامهاها

```
10 PRINT "THIS PROGRAM COMPUTES THE VALUE QF THE F-STATISTIC AND ITG p-VGIUE IN
A DNE WAY ANDVA"
2O PRINT "ENTER THE MUMBER OF SAMPLES"
JÓ INFUT :H
4G PRINT "ENTER THE SIZE OF THE SAMPLES"
SO INPUT N
6O DIM M(H)
70 FOK I=| TO M
BO PFINT "ENTER SAMPLE" I "ONE AT A TIME"
OO INFUT A
100' FOR J=1 TO N-1
110
120 E-A
130 A=A+(X-A)/(J+1)
140 S=(1-1/J)*S+(J+1):(A-E)`2
15O NEXT J
160 59-55+5
170 M(1)=A
100 NEXT 1
190 DEN-SS/M
200 PRINT "SS*/(M* (N~1))="IDEN
210 TmM(1)
220 FOR K=1 TO M-1
230 A=T
240 T=T+(M(K+1)-T)/(K+1)
250 V=(1-1/K):V+(K+1):(T-A)~2
26O NEXT K
270 NUM=VIN
2EOO PRINT "SSb/{M-1)=";NUM
290 PRINT "THE VALUE DF THE F-STATISTIL IE";NUMIDEN
300 Y=N
310 N=M-1
320 M-M(Y-1)
330 X=NUM/DEN
340 S=(M-1)/2
350 T=(N-1)/2
360 K=(N+M)/2-1
370 PaM/ (N|X+H)
3EO Q=1-P
390 D=S+1/6-(K+1/3) 1P+.02& (0/{S+.5)-P/(T+.5)+(0-.5)/(K+1))
400 A=S/(K|P)
420 E=T/(K&G)
420 1F A=0 THEN C=1 ELSE C=(1-A|A+2#A:LOQ(A))/(1-A)~2
43(1 1F E=U THEN E-S ELSE Em(1-BAB+2#B#LDO(B))/1&-E)~2
440ं X=DESQR((1+DEC+PGE)/(IK+1/6)EPEQ))
4S() U=ABS(x)
460 JF U>4 GOTO 570
470 y -U^Z
480 1 m
490 FOR J=1 TO 40
500 U=-U&Y&(2&J-1)/(2&J*(2:J+1))
510 1*1+4
520 NEXT
530 1=1/GQR(243.14159)
540 IF X<O THEN Z-.S+1 ELSE Z*.S-1
S5^1 PRINT "THE p-value IS*IZ
S&O GOTO 610
570 IF X<0 GOTO 600
SEO PRIMT "THE p-Value IE LESE THON .O001"
590 GRTD blO
600 PRINT "THE p-VAlug IS GREATER THAN . 9999"
010 END
```

```
F10
30 INPUT M
40 PRINT "ENTER THE NUMBER OF COLUMNG"
50 INFUT N
6O DIM X (M,N)
7() DIM R(M)
OU DIM C(N)
90 FOR I=1 TO M
1OO FRINT "ENTER RDW" I "ONE AT A TIME"
11G FOR J=1 TD N
120 INFUT X(I,J)
130 R(I)=R{I)+X{I,J}
140C(J)=C(J)+X(I,J)
```



```
160 G=G+R{1)
170 NEXT I
180 G=G/(NOM)
190 FOR 1=1 TD M
200R(I)=R(I)/N
210 SSR=SSR+(R(I)-G):2
```



```
230 FOR J=1 TO N
240 C(J)=C(J)/M
250 SEC*SSC*(C(J)-G)^2
260 NEXT J
270 FOR I=1 TD M
2日0 FOR J=1 TO N
290 SSE=SSE + (X(I, J )-R(I)-C(J) +G)/2
3OO NEXT J
310 NEXT I
320 F(1)-N:(N-1) #SSR/SSE
330 F(2)-Mz(M-1) ESSC/SSE
360 N(1)=M-1
370 N(2)=N-1
300 FOR H=1 TD 2
3日2 IF HE1 THEN A*="ROW" ELSE A*="COLUMN"
$9O PRINT "THE VALUE OF THE F~STATISTIC FOR TESTING THAT THERE IS NO " AB " EFFE
CT IS":F(H)
4OO N-N(H)
410 M=N(1):N(2)
420 X F F (H)
430 Sm(M-1)/2
440 T=(N-1)/2
450 K={N+M}/2-1
460 P=M/(NzX+M)
470 0-1-P
480 DaS+1/6-(K+1/3) wF+.02z(0/(5+.5)-P/(T+.5)+(0-.5)/(K+1))
440 H=S/ (K#P)
500 E=T/(K*O)
510 IF A=0 THEN C=1 ELSE C=(1-A&A+2&AHLOQ(A))/(1-A)\cdots2
520 IF B=O THEN E=1 ELGE E=(1-B*E+2&E|LOO(B))/(1-E)^2
S:0 x=DESQR({1+Q:C+PaE)/((K+1/6)|PGOl))
540 U=ABS (X)
550 IF U>4 GOTD bb0
560 Y*U`2
570 l=U
SEO FOR J=1 TO 40
590 U--U4Ya(2*J-1)/(2)J&(2#J+11)
600 I=I+U
610 NEXT
620 1mI/SOR(223.14159)
630 IF X<O THEN 2=.5+I ELSE Z=.S-I
G40 PRINT "THE p-valuF FOR TESTING TMAT THERE IS NO " A& "EFFECT IS"!Z
65O GOTO 7000
660 IF x<0 GOTO 670
G70 FRINT "THE p-value FOR TESTING THAT THERE IG NU " A* " EFFECT IS LE日S THAN.
0001"
6日0 GOTO 700
GYO FRINT "THE p-Value FOR TESTING THAT THERE IS NO " AF " EFFECT IS GREATER THA
N . 7990"
7 0 0 ~ N E X T ~ H
710 END
Ok
```

10 FFINT＂THIS PROGRAM CDMPUTES THE VALUES DF THE F－STATISTICS AND THEIR ASSOCIA
TED g－values IN A TWO WAY ANOVA WITH L OESERVATIONS IN EACH ROW－COLUMN CELL＂
20 FFilNT＂ENTER THE NUMBER DF ROWS＂
30 INFUT M
40 FFINT＂ENTER THE NUMBEF OF COLUMNS＂
SO INPUT N
bO FRINT＂ENTER THE NUMBEF OF ORSEFVATIONS IN EACH ROW－COLUMN CELL＂
70 INPUT L
80 DIM $\times(M, N, L)$
$90 \mathrm{DIM} \mathrm{Y}(\mathrm{M}, \mathrm{N})$
$100 \mathrm{DIM} \mathrm{R}(\mathrm{M})$
110 DIMC（N）
120 FOF I®1 TO M
130 FOF Jal TO N
J40 FRINT＂ENTER THE＂L＂VALUES IN ROW＂〕＂CDLUMN＂J＂ONE AT A TIME＂
150 FRR KOL TOL
160 INFUT；$X(I, J, K)$
$170 \quad Y(1, J) \neq Y(1, J)+X(1, J, K$,
1 BO NEXT K
$170 \mathrm{~K}(\mathrm{I}) \mathrm{DR}(\mathrm{I})+\mathrm{Y}(\mathrm{T}, \mathrm{J})$
$200^{\circ} \mathrm{C}(\mathrm{J})=\mathrm{C}(\mathrm{J})+Y(1, J)$
210 NEXT J
22い G $=G+\mathrm{R}(1)$
230 NEXT I
240 G－G／（MEN：L）
250；$A \approx 1 / L$
260 En $1 /$（N＊L）
270 C （1／（MEL）
2日 0 FOR I＝1 TO M
290 R（I）$=$ 日年R（1）
JuO SSR＝SSF＋（F（I）－G） 2
310 NEXT
320 SSR＝SSKzLHN
330 FOR J＝1 TO N
$340 \mathrm{C}(\mathrm{J})=\left[\begin{array}{c}\text {（J）}\end{array}\right.$
350 SSC＝SSC＋（C（J）－G）＂2
JbO NEXT
270 SSC＝SSC
380 FOR I＝1 TO M
370 FOR Jmi TO N
400 Y（1，J）$=A(Y(I, J)$
410 SSINT＝SSINT＋（Y（I，J）－F（I）－C（J）＋G）＂2
420 NEXT
430 NEXT
440 SSINT＝SSINTEL
450 FDR I＝1 TD M
460 FOR J＊1 TO N
470 FDR K＝1 TO L
4BO SSE＝5SE＋（X（I．J，K）－Y（I，J））へZ
4\％O NEXI
500 NEXT
510 NEXT
520 F（1）＝N＊M\＆（L－1）\＆SGR／（M－1）\＆SSE）

5SG IF H＝1 THEN A\＆＝＂ROW＂ELSE A $=$＂CDLUHN＂
$560 \mathrm{~N}(1)=\mathrm{H}-1$
$570 N(2)=N-1$
$580 N(3)=(N-1):(M-1)$
$590 \mathrm{M}=(\mathrm{N}(1)+1):(\mathrm{N}(2)+1) \div(\mathrm{L}-1)$
600 FOR H＝I TO 3
610 IF $H=1$ THEN Ase＂ROW＂
620 IF $\mathrm{H}=2$ THEN A\＆w＂COLUMN＂
b30 IF H＝3 THEN As？＂INTEFACTION＂
G40 FRINT＂THE VALUE DF THE F－STATISTIC FOF TESTING THAT THERE IS NO＂A＊＂EFFEC
T 1S＂B（H）
$650 \mathrm{~N}=\mathrm{N}(\mathrm{H})$
$660 \mathrm{X}=\mathrm{F}(\mathrm{H})$
$6705=(M-1) / 2$
6白 $T=(N-1) / 2$
$690 \mathrm{~K}=(\mathrm{N}+\mathrm{H}) / 2-1$

```
700 PaM/(NzX+M)
710 0=1-P
72(D-5+1/6-(K+1/3) &P+.02:(Q/(5+.5)-P/(T+.5)+(0-.5)/(K+1))
730 AmS/(K#P)
740 B=T / (K:GQ)
750 1F A=0 THEN C=1 ELSE C=(1-ABA+2&A&LOG(A))/(1-A|`^2
760 IF B=0 THEN E=1 ELGE E=(1-G*E+2*E*LOG(&))/(1-B)^2
770 X=D&SOR((1+Q&C+PAE)/((k+1/6)|P&Q))
7EO U-ABS(X)
790 1F U>4 GJTd 900
B00 Y=U-2
A10 1=U
020 FDR J=1 TD 40
830 U=-U&Y&(2&J-1)/(2&J&(2由J+1))
E40 ImItU
gSO NEXT
860 J-1/50N(262.14159)
870 IF X<C) THEN 20.5+1 ELEE 20.5-1
BaO FRINT "THE p-value FOR TESIING THAT THERE IS ND " A* " EFFECT IS"&Z
B90 GDTD 940
900 IF X<U GOTD 9J0
OIO PRINT "THE p-VIIUE FDR IESTING THAT THEKE IS ND " A* " EFFECT IS LESS THAN
0001"
920 GDTD 940
930 PRINT "THE D-value FDR TESTING THAT THERE 1S NO" A* "EFFECT IS GREATER THA
N .9%88"
940 NEXT H
P5O END
Dk
```

جدولها

| Pr) | | | | | | | | | | جدولها |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | توزبِ نرها | | | | | |
| $\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-y^{3} / 2} d y$ | | | | | | | | | | |
| x | 0.00 | 0.01 | 0.02 | 0.03 | 0.04 | 0.05 | 0.06 | 0.07 | 0.08 | 0.09 |
| 0.0 | 0.5000 | 0.5040 | 0.5080 | 0.5120 | 0.5160 | 0.5199 | 0.5239 | 0.5279 | 0.5319 | 0.5359 |
| 0.1 | 0.5398 | 0.5438 | 0.5478 | 0.5517 | 0.5557 | 0.5596 | 0.5636 | 0.5675 | 0.5714 | 0.5753 |
| 0.2 | 0.5793 | 0.5832 | 0.5871 | 0.5910 | 0.5948 | 0.5987 | 0.6026 | 0.6064 | 0.6103 | 0.6141 |
| 0.3 | 0.6179 | 0.6217 | 0.6255 | 0.6293 | 0.6331 | 0.6368 | 0.6406 | 0.6443 | 0.6480 | 0.6517 |
| 0.4 | 0.6554 | 0.6591 | 0.6628 | 0.6664 | 0.6700 | 0.6736 | 0.6772 | 0.6808 | 0.6844 | 0.6879 |
| 0.5 | 0.6915 | 0.6950 | 0.6985 | 0.7019 | 0.7054 | 0.7088 | 0.7123 | 0.7157 | 0.7190 | 0.7224 |
| 0.6 | 0.7257 | 0.7291 | 0.7324 | 0.7357 | 0.7389 | 0.7422 | 0.7454 | 0.7486 | 0.7517 | 0.7549 |
| 0.7 | 0.7580 | 0.7611 | 0.7642 | 0.7673 | 0.7704 | 0.7734 | 0.7764 | 0.7794 | 0.7823 | 0.7852 |
| 0.8 | 0.7881 | 0.7910 | 0.7939 | 0.7967 | 0.7995 | 0.8023 | 0.8051 | 0.8078 | 0.8106 | 0.8133 |
| 0.9 | 0.8159 | 0.8186 | 0.8212 | 0.8238 | 0.8264 | 0.8289 | 0.8315 | 0.8340 | 0.8365 | 0.8389 |
| 1.0 | 0.8413 | 0.8438 | 0.8461 | 0.8485 | 0.8508 | 0.8531 | 0.8554 | 0.8577 | 0.8599 | 0.8621 |
| 1.1 | 0.8643 | 0.8665 | 0.8686 | 0.8708 | 0.8729 | 0.8749 | 0.8770 | 0.8790 | 0.8810 | 0.8830 |
| 1.2 | 0.8849 | 0.8869 | 0.8888 | 0.8907 | 0.8925 | 0.8944 | 0.8962 | 0.8980 | 0.8997 | 0.9015 |
| 1.3 | 0.9032 | 0.9049 | 0.9066 | 0.9082 | 0.9099 | 0.9115 | 0.9131 | 0.9147 | 0.9162 | 0.9177 |
| 1.4 | 0.9192 | 0.9207 | 0.9222 | 0.9236 | 0.9251 | 0.9265 | 0.9279 | 0.9292 | 0.9306 | 0.9319 |
| 1.5 | 0.9332 | 0.9345 | 0.9357 | 0.9370 | 0.9382 | 0.9394 | 0.9406 | 0.9418 | 0.9429 | 0.9441 |
| 1.6 | 0.9452 | 0.9463 | 0.9474 | 0.9484 | 0.9495 | 0.9505 | 0.9515 | 0.9525 | 0.9535 | 0.9545 |
| 1.7 | 0.9554 | 0.9564 | 0.9573 | 0.9582 | 0.9591 | 0.9599 | 0.9608 | 0.9616 | 0.9625 | 0.9633 |
| 1.8 | 0.9641 | 0.9649 | 0.9656 | 0.9664 | 0.9671 | 0.9678 | 0.9686 | 0.9693 | 0.9699 | 0.9706 |
| 1.9 | 0.9713 | 0.9719 | 0.9726 | 0.9732 | 0.9738 | 0.9744 | 0.9750 | 0.9756 | 0.9761 | 0.9767 |
| 2.0 | 0.9772 | 0.9778 | 0.9783 | 0.9788 | 0.9793 | 0.9798 | 0.9803 | 0.9808 | 0.9812 | 0.9817 |
| 2.1 | 0.9821 | 0.9826 | 0.9830 | 0.9834 | 0.9838 | 0.9842 | 0.9846 | 0.9850 | 0.9854 | 0.9857 |
| 2.2 | 0.9861 | 0.9864 | 0.9868 | 0.9871 | 0.9875 | 0.9878 | 0.9881 | 0.9884 | 0.9887 | 0.9890 |
| 2.3 | 0.9893 | 0.9896 | 0.9898 | 0.9901 | 0.9904 | 0.9906 | 0.9909 | 0.9911 | 0.9913 | 0.9916 |
| 2.4 | 0.9918 | 0.9920 | 0.9922 | 0.9925 | 0.9927 | 0.9929 | 0.9931 | 0.9932 | 0.9934 | 0.9936 |
| 2.5 | 0.9938 | 0.9940 | 0.9941 | 0.9943 | 0.9945 | 0.9946 | 0.9948 | 0.9949 | 0.9951 | 0.9952 |
| 2.6 | 0.9953 | 0.9955 | 9.9956 | 0.9957 | 0.9959 | 0.9960 | 0.9961 | 0.9962 | 0.9963 | 0.9964 |
| 2.7 | 0.9965 | 0.9966 | 0.9967 | 0.9968 | 0.9969 | 0.9970 | 0.9971 | 0.9972 | 0.9973 | 0.9974 |
| 2.8 | 0.9974 | 0.9975 | 0.9976 | 0.9977 | 0.9977 | 0.9978 | 0.9979 | 0.9979 | 0.9980 | 0.9981 |
| 2.9 | 0.9981 | 0.9982 | 0.9982 | 0.9983 | 0.9984 | 0.9984 | 0.9985 | 0.9985 | 0.9986 | 0.9986 |
| 3.0 | 0.9987 | 0.9987 | 0.9987 | 0.9988 | 0.9988 | 0.9989 | 0.9989 | 0.9989 | 0.9990 | 0.9990 |
| 3.1 | 0.9990 | 0.9991 | 0.9991 | 0.9991 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9993 | 0.9993 |
| 3.2 | 0.9993 | 0.9993 | 0.9994 | 0.9994 | 0.9994 | 0.9994 | 0.9994 | 0.9995 | 0.9995 | 0.9995 |
| 3.3 | 0.9995 | 0.9995 | 0.9995 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9997 |
| 3.4 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9998 |

جدول توزيع كىدو

| n | $\alpha=0.995$ | $\alpha=0.99$ | $\alpha=0.975$ | $\alpha=0.95$ | $\alpha=0.05$ | $\alpha=0.025$ | $\alpha=0.01$ | $\alpha=0.005$ |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 0.0000393 | 0.000157 | 0.000982 | 0.00393 | 3.841 | 5.024 | 6.635 | 7.879 |
| 2 | 0.0100 | 0.0201 | 0.0506 | 0.103 | 5.991 | 7.378 | 9.210 | 10.597 |
| 3 | 0.0717 | 0.115 | 0.216 | 0.352 | 7.815 | 9.348 | 11.345 | 12.838 |
| 4 | 0.207 | 0.297 | 0.484 | 0.711 | 9.488 | 11.143 | 13.277 | 14.860 |
| 5 | 0.412 | 0.554 | 0.831 | 1.145 | 11.070 | 12.832 | 13.086 | 16.750 |
| 6 | 0.676 | 0.872 | 1.237 | 1.635 | 12.592 | 14.449 | 16.812 | 18.548 |
| 7 | 0.989 | 1.239 | 1.690 | 2.167 | 14.067 | 16.013 | 18.475 | 20.278 |
| 8 | 1.344 | 1.646 | 2.180 | 2.733 | 15.507 | 17.535 | 20.090 | 21.955 |
| 9 | 1.735 | 2.088 | 2.700 | 3.325 | 16.919 | 19.023 | 21.666 | 23.589 |
| 10 | 2.156 | 2.558 | 3.247 | 3.940 | 18.307 | 20.483 | 23.209 | 25.188 |
| 11 | 2.603 | 3.053 | 3.816 | 4.575 | 19.675 | 21.920 | 24.725 | 26.757 |
| 12 | 3.074 | 3.571 | 4.404 | 5.226 | 21.026 | 23.337 | 26.217 | 28.300 |
| 13 | 3.565 | 4.107 | 5.009 | 5.892 | 22.362 | 24.736 | 27.688 | 29.819 |
| 14 | 4.075 | 4.660 | 5.629 | 6.571 | 23.685 | 26.119 | 29.141 | 31.319 |
| 15 | 4.601 | 5.229 | 6.262 | 7.261 | 24.996 | 27.488 | 30.578 | 32.801 |
| 16 | 5.142 | 5.812 | 6.908 | 7.962 | 26.296 | 28.845 | 32.000 | 34.267 |
| 17 | 5.697 | 6.408 | 7.564 | 8.672 | 27.587 | 30.191 | 33.409 | 35.718 |
| 18 | 6.265 | 7.015 | 8.231 | 9.390 | 28.869 | 31.526 | 34.805 | 37.156 |
| 19 | 6.844 | 7.633 | 8.907 | 10.117 | 30.144 | 32.852 | 36.191 | 38.582 |
| 20 | 7.434 | 8.260 | 9.591 | 10.851 | 31.410 | 34.170 | 37.566 | 39.997 |
| 21 | 8.034 | 8.897 | 10.283 | 11.591 | 32.671 | 35.479 | 38.932 | 41.401 |
| 22 | 8.643 | 9.542 | 10.982 | 12.338 | 33.924 | 36.781 | 40.289 | 42.796 |
| 23 | 9.260 | 10.196 | 11.689 | 13.091 | 35.172 | 38.076 | 41.638 | 44.181 |
| 24 | 9.886 | 10.856 | 12.401 | 13.484 | 36.415 | 39.364 | 42.980 | 45.558 |
| 25 | 10.520 | 11.524 | 13.120 | 14.611 | 37.652 | 40.646 | 44.314 | 46.928 |
| 26 | 11.160 | 12.198 | 13.844 | 15.379 | 38.885 | 41.923 | 45.642 | 48.290 |
| 27 | 11.808 | 12.879 | 14.573 | 16.151 | 40.113 | 43.194 | 46.963 | 49.645 |
| 28 | 12.461 | 13.565 | 15.308 | 16.928 | 41.337 | 44.461 | 48.278 | 50.993 |
| 29 | 13.121 | 14.256 | 16.047 | 17.708 | 42.557 | 45.772 | 49.588 | 52.336 |
| 30 | 13.787 | 14.953 | 16.791 | 18.493 | 43.773 | 46.979 | 50.892 | 53.672 |
| | | | | | | | | |

$x_{0.9,9}^{2}=4.2 \quad P\left(x_{16}^{2}<14.3\right\}=0.425 \quad P\left(x_{11}^{2}<17.1875\right\}=0.8976$.
t جدول توزبع

| n | $\alpha=0.10$ | $\alpha=0.05$ | $\alpha=0.025$ | $\alpha=0.01$ | $\alpha=0.005$ |
| ---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 3.078 | 6.314 | 12.706 | 31.821 | 63.657 |
| 2 | 1.886 | 2.920 | 4.303 | 6.965 | 9.925 |
| 3 | 1.638 | 2.353 | 3.182 | 4.541 | 5.841 |
| 4 | 1.533 | 2.132 | 2.776 | 3.474 | 4.604 |
| 5 | 1.476 | 2.015 | 2.571 | 3.365 | 4.032 |
| 6 | 1.440 | 1.943 | 2.447 | 3.143 | 3.707 |
| 7 | 1.415 | 1.895 | 2.365 | 2.998 | 3.499 |
| 8 | 1.397 | 1.860 | 2.306 | 2.896 | 3.355 |
| 9 | 1.383 | 1.833 | 2.262 | 2.821 | 3.250 |
| 10 | 1.372 | 1.812 | 2.228 | 2.764 | 3.169 |
| 11 | 1.363 | 1.796 | 2.201 | 2.719 | 3.106 |
| 12 | 1.356 | 1.782 | 2.179 | 2.68. | 3.055 |
| 13 | 1.350 | 1.771 | 2.160 | 2.650 | 3.012 |
| 14 | 1.345 | 1.761 | 2.145 | 2.624 | 2.977 |
| 15 | 1.341 | 1.753 | 2.131 | 2.602 | 2.947 |
| 16 | 1.337 | 1.746 | 2.120 | 2.583 | 2.921 |
| 17 | 1.333 | 1.740 | 2.110 | 2.567 | 2.898 |
| 18 | 1.330 | 1.734 | 2.101 | 2.552 | 2.878 |
| 19 | 1.328 | 1.729 | 2.093 | 2.539 | 2.861 |
| 20 | 1.325 | 1.725 | 2.086 | 2.528 | 2.845 |
| 21 | 1.323 | 1.721 | 2.080 | 2.518 | 2.831 |
| 22 | 1.321 | 1.717 | 2.074 | 2.508 | 2.819 |
| 23 | 1.319 | 1.714 | 2.069 | 2.500 | 2.807 |
| 24 | 1.318 | 1.711 | 2.064 | 2.492 | 2.797 |
| 25 | 1.316 | 1.708 | 2.060 | 2.485 | 2.787 |
| 26 | 1.315 | 1.706 | 2.056 | 2.479 | 2.779 |
| 27 | 1.314 | 1.703 | 2.052 | 2.473 | 2.771 |
| 28 | 1.313 | 1.701 | 2.048 | 2.467 | 2.763 |
| 29 | 1.311 | 1.699 | 2.045 | 2.462 | 2.756 |
| ∞ | 1.282 | 1.645 | 1.960 | 2.326 | 2.576 |

$P\left\{T_{8}<2.541\right\}=0.9825 \quad P\left\{T_{8}<2.7\right\}=0.9864 \quad P\left\{T_{11}<\right.$ $0.7635\}=0.77 \quad P\left\{T_{11}<0.934\right\}=0.81 \quad P\left\{T_{11}<1.66\right\}=0.94$ $P\left\{T_{12}<2.8\right\}=0.984$.

Fجدل توزيع

| = $=m$ | n | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | I | 2 | 3 | 4 | 5 |
| 1 | 161 | 200 | 216 | 225 | 230 |
| 2 | 18.50 | 19.00 | 19.20 | 19.20 | 19.30 |
| 3 | 10.10 | 9.55 | 9.28 | 9.12 | 9.01 |
| 4 | 7.71 | 6.94 | 6.59 | 6.39 | 6.26 |
| 5 | 6.61 | 5.79 | 5.41 | 5.19 | 5.05 |
| 6 | 5.99 | 5.14 | 4.76 | 4.53 | 4.39 |
| 7 | 5.59 | 4.74 | 4.35 | 4.12 | 3.97 |
| 8 | 5.32 | 4.46 | 4.07 | 3.84 | 3.69 |
| 9 | 5.12 | 4.26 | 3.86 | 3.63 | 3.48 |
| 10 | 4.96 | 4.10 | 3.71 | 3.48 | 3.33 |
| 11 | 4.84 | 3.98 | 3.59 | 3.36 | 3.20 |
| 12 | 4.75 | 3.89 | 3.49 | 3.26 | 3.11 |
| 13 | 4.67 | 3.81 | 3.41 | 3.18 | 3.03 |
| 14 | 4.60 | 3.74 | 3.34 | 3.11 | 2.96 |
| 15 | 4.54 | 3.68 | 3.29 | 3.06 | 2.90 |
| 16 | 4.49 | 3.63 | 3.24 | 3.01 | 2.85 |
| 17 | 3.45 | 3.59 | 3.20 | 2.96 | 2.81 |
| 18 | 4.41 | 3.55 | 3.16 | 2.93 | 2.77 |
| 19 | 4.38 | 3.52 | 3.13 | 2.90 | 2.74 |
| 20 | 4.35 | 3.49 | 3.10 | 2.87 | 2.71 |
| 21 | 4.32 | 3.47 | 3.07 | 2.84 | 2.68 |
| 22 | 4.30 | 3.44 | 3.05 | 2.82 | 2.66 |
| 23 | 4.28 | 3.42 | 3.03 | 2.80 | 2.64 |
| 24 | 4.26 | 3.40 | 3.01 | 2.78 | 2.62 |
| 25 | 4.24 | 3.39 | 2.99 | 2.76 | 2.60 |
| 30 | 4.17 | 3.32 | 2.92 | 2.69 | 2.53 |
| 40 | 4.08 | 3.23 | 2.84 | 2.61 | 2.45 |
| 60 | 4.00 | 3.15 | 2.76 | 2.53 | 2.37 |
| 120 | 3.92 | 3.07 | 2.68 | 2.45 | 2.29 |
| ∞ | 3.84 | 3.00 | 2.60 | 2.37 | 2.21 |

$F_{0.1,7,5}=0.337 \quad P\left\{F_{7,7}<1.376\right\}=0.316 \quad P\left\{F_{20,14}<2.461\right\}=$ $0.911 P\left\{F_{9,4}<0.5\right\}=0.1782$.

جواب بعضى از مسائل

فصل

$\begin{array}{llllll}\text { 19. } 0.3281 & \text { 21. } 0.6154,0.3692 & \text { 26. } 0.0709 & \text { 27. } 0.825,0.2303\end{array}$
31. $0.0703,0.0703,0.1416,0.8594,0.0313,0.0313,0.0625,0.9375$
$\begin{array}{llllll}1 . & 0.5,0.2778,0.1389,0.0595,0.0198 & \text { 6. } 0.3834,0.6321 & \text { 7. } 0.3292\end{array}$
$\begin{array}{lllllll}\text { 8. } & 0.0183 & 21.1 .833 & \text { 24. } a=0.6, b=1.2 & \text { 28. } 68.284\end{array}$
29. 148, $21 \quad$ 31. $56.156 \quad$ 33. $\operatorname{Var}(X)=1.25 \quad$ 35. $10.5,8.75$
38. $\operatorname{Var}(X)=0.0764 \quad$ 39. $\operatorname{Var}\left(X_{1}\right)=1.234, \operatorname{Var}\left(X_{2}\right)=0.25$
40. $\operatorname{Var}(X)=0.067$

فلمل

| 1. | 0.8208 | 2. | 0.9421 | 3. | 0.2668 | 4. | 0.4219 | S. | $p>2 / 3$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 12. | 0.3935, | 0.3033, | 0.0902 | 13. | 0.8908 | 14. | 0.0511, | 0.1229 | |
| 19. | 0.3630 | 24. | 0.7977, | 0.6827, | 0.3695 | 0.9522, | 0.1587 | 25. | 0.00023 |
| 26. | 0.0956, | <0.00194 | 27. | 2139.4 | 28. | 0.0456 | 31. | 0.9772 | |
| 32. | 0.6076 | 34. | 0.0001 | 37. | 0.3679, | 0.6065 | 38 | 0.2865 | |
| 41. | 0.7127, | 0.0235 | 42. | 0.2531 | | | | | |

4. $0.5364,0.8326, i .1774,1 / g^{2}$
5. median $=0.4126$
6. $0.0152,0.1024$, $\begin{array}{lllll}0.00121 & 21 . & 0.00885 & \text { 24. } & 0.1782\end{array}$

فله
9. $(1.085,1.315)$
10. (1.072, 1.328)
11. 1.3136
13. (331.06, 336.93), (330.01, 337.98) 14. (39.55, 44.45) 16. (2013.9, 2111.6), (1996.0, 2129.5), $2022.4 \quad$ 17. $(93.94,103.40) \quad$ 19. $3.453 \quad 21 .(-11.18,-8.82)$
22. $(-11.12,-8.88) \quad$ 23. $(-74.97,41.97) \quad$ 24. $32.23,112.3,153.81,69.6$
25. $(0.00206,0.00529) \quad$ 26. $(53.2,269.8) \quad 31$. it will be less than 0.108
32. $(0.096,0.244),(0.073,0.267) \quad$ 33. $0.67,2024$ 34. (21.1, 74.2)
40. 7.64, 8.3 43. (182.57, 185.07)

Unless otherwise mentioned, the answer given is the p-value of the relevant test.

| 1. | 0.001 | 2. | 0.31 | 3. | 0.002 | 4. | $n=6$ | 6. | 0.005 | 7. | 0.14 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 8. | 0.38 | 9. | 0.04 | 11. | 0.28 | 12. | 0.103 | 13. | 0.67 | | | |
| 14. | 0.100013 | 15. | 0.122 | | 16. | 0.044 | | 17. | 0.25 | 20. | 0.023 | |
| 21. <0.0001 | 22. | 0.4 | 23. | 0.006 | 25. | 0.0008 | 26. | 0.18 | | | | |
| 27. 0.14 | 28. | 0.16 | 32. | 0.13 | 33. | 0.47 | 34. | 0.06 | | | | |

$\begin{array}{llllllll}\text { 2. } 147.34 & \text { 3. } 0.045 & \text { 4. } 2439.8 & \text { 5. } 85.22 & \text { 7. } 105,659,(54,518 \text {, }\end{array}$ 308,521) 9. p-value $=0.016,(42.93,49.95) \quad$ 11. $\quad p$-value $=0.035,12.6$, $(11.99,13.22) \quad 12.4 .125 \quad 18 . \quad p$-value $=0.026,2459.7,(2186,2237)$
19. 10340, ($0.997,1.005$), ($0.983,1.018$), $0.9998 \quad$ 20. 2.4998, 0.004
23. p-value $<0.0001,144.3 \%, 4.17,0.76 \quad$ 24. $m=0.07, A=50.86$
25. $t=22.5, s=1.1 \quad$ 26. $1.22 \quad$ 27. $0.66 \quad$ 28. 216448.1
32. $85.5 \quad 34 . \quad 31.29,30.35 \quad$ 38. 2.45 \quad 39. $S S_{R}=202, p$-values $=$
$0.46,0.37,0.125 \quad 40.238 .0,3.9 \quad 41.2309 .6,28.8 \quad$ 43. 225.70, 20.07
44. 4.645, $0.615 \quad 45 . \quad p$-value $=0.81,135.41,17.24$ and 51.27
$\begin{array}{llllllll}\text { 1. } 0.954 & \text { 2. } 0.727 & \text { 4. } 0.00245 & \text { 5. } 0.0043 & \text { 7. } & 0.849\end{array}$
8. $0.9998 \quad$ 9. row: 0.0014 column: $0.0170 \quad 10$. row: 0.706 column: 0.0214
11. row: 0.1001 column: 0.9995 interaction: 0.1065 12. row: 0.9867 column:
<0.0001 interaction: 0.0445 13. row: 0.028 column: <0.0001 interaction:
0.0278 14. row: 0.0003 column: 0.0003 interaction: 0.00005 15. row:
0.3815 column: 0.7611 interaction: 0.9497 additional: 0.0065

وازڭهنامه

Yي يشمامدهاى وابسته
$ت$
FFף تابع توان
IV. تابع توزيع تجربى
F Y Y
F. تابع جرم احتمال تو أم

$$
\begin{aligned}
& \text { } 7 \Delta \text { تابع مولد گششتاور }
\end{aligned}
$$

> |F. t توزيع
> IfY F توزيع
> IFY توزيعكى
> توزيع گًاما
> 17. 17 •وزيع وايبل
الف
اثر متقابل rAr
T\&A T T

$$
\begin{aligned}
& \text { استنباط نإيارامترى } \\
& \text { TaV Tارها آما } \\
& \text { DI اميد رياضي } \\
& \text { آنترويى آن } \\
& \text { انحران معيار ها } \\
& \text { برآورد } 1 \text { آ } \\
& \text { بر آورد درستنهايى ماكزيمـم آرد }
\end{aligned}
$$

e
$\underset{-}{*}$
Yيشثأمدنهاي مستقل

TP. فرض مركب
فر مول بينه 17
Irv فقدان ححانظه

E
TYA جگالى يسين
$\dot{\boldsymbol{\tau}}$

تاعده اساسى شمارش VF تانون ضعيف اعداد بز رگّ

تضيه افراز تون توانين دمورگان ها

ك
r|^كترين مربعات موزون كوواريانس 7 كرين

ك
ترايش مركزى 109

ن
نالاريب MiV
MF. ، YYQ ناحيه بحرانی
نامتعادل
VY تامساوى خييشف VY نا ناساوى ماركف

نما با

$$
\begin{aligned}
& \text { نهاى نسبى } 174 \\
& \text { نمودار ون } \\
& \text { نمونه }
\end{aligned}
$$

خA9 خطاى تصادفى |f| I IfY II خطاى نوع
,
ر رگرسيون

 روش گثشتاورى IAV

MPI سطع معنىدار آزمون

ض

ra. .
\leqslant

GFY فامله يِشيني
TY•
TF. فرض صر مفر

FERDOWSI UNIVERSITY OF MASHHAD
Publication No. 197

INTRODUCTION TO Probability and Statistics (For Engineers and Scientists)

by
Sheldon M. Ross

Translated by
M. ASADI - A. BOZORGNIA

