$u_{0} \mathrm{v}_{0}$

$$
y<5) \times \operatorname{la}
$$

و نظريه اعلـاد

مولف: سوكمار داس آدهى كارى

$1=p_{1} \varphi_{r} \cdots \varphi_{n}$

$4=8,8<\cdots \operatorname{con}$
$A=8,8) \cdots \cdot 8$
$A=0 \cdot m+\cdots+m$
مترجم: دكتر منصور معتمدى

دالشكاه شـهيل جمر ان ههورالز

 آنچچه خواهد بود يا مىتواند باشد.
سرىنيسا گادادت مهاراجه

 شهودى به عنوان تجربهاى بى واسطه، قبل از استدلال وجود دارد. داوود هيلبرت

مقدمهاى بر

مؤلف:
سوكمار داس آدهى كارى
مترجم:

دكتر منصور معتمدى
بهار Irkr
پيشگفتار مترجم

 ناميده مىشوند مطرح كرد و به آنها پرداخت

 به صورت عناصرى كه ريشه هاى يکى چندجملهایى تكين با ضرايب صـحيح هستند تعريف كرد. وى نشان داد كه اين عناصر رفتارى شبيه اعداد صحـي
 همان است كه توسط ددكنيد تعريف شده است.

 گيرد.

نمادها و اصطاح ها

در سراسر اين كتاب، نمادهاى
 و مـجموعهٔ اعداد مـختلط دلالت دارد. منظور از حلقه، همواره حلقئ تعويضپپ عنصر واحد است، تابع كند كه داشته باشد كه b = $=$ ($f(a)$.

 نشان دادن پايان اثبات استفاده مى كنيم.

فهرست مندرجات
o فصل

مقلمd:گروهها

حلقdها و هياتها

گروهها
 تابع

 ناميله مى شود، هر كاه سه شرطزير بر بر قرار بار باشد: يك) برای هر قانون تركيب، شركتّنذير است.

فصل ه. مقدمه:گرومها
شود. بنابر قانون شركتپذيرى، براى هر a، چنين عنصرى يكتاست و وارون a ناميده مى
تعريف. اگرزوج (G, (G) در تعريف فوق، در شرط اضافي زير نيز صدق كند آن را كروه آبلى مى ناميم.
 تويضضّير است.
مثالها. مجموعهٔ اعداد صحيح، Z \mathbb{Z} با جمع معمولى، به عنوان قانون
 نيز يـى گروه آبلى است.
 G
利 $a_{\uparrow} \cdots a_{n}$的 همحچنين جمع استفاده شود به جاى
تعريف. فرض كنيم H يكى زير مجموعهٔ G G باشد، در اين صورت H H را يكى زير
كروه G مى ناميم، هر كاه سه شرطزير بر برقرار باشد. يك) برای هر دو) عنصر همانى e به H ت تعلق داشته باشد H با سه) اگر
 كروه است.
مثال. براى هر عدد صحيح a، زير مجموعdٔ $a \mathbb{C}$ ، $a \mathbb{Z}:=\{a r \mid r \in \mathbb{Z}$ يك زير گروه

 كه زير گروه دورى توليد شده

مرتبهٔ گروه G تعداد عناصر G الست و مرتبه شده با آن است. چنانحچه مرتبهُ گروه G G متناهى باشد غير اين صورت G نامتناهى خورانده مرن مى شود.
 كنند.
$\phi: G \longrightarrow G^{\prime \prime}$ تعريف. يى همريختى از گروه G به توى گروه ${ }^{\prime}$ تا تابعى مان است به قسمى كه براى هر
 موجود باشد، كروه G و ${ }^{\text {G }}$ را را يكريخت مى خوانيم.
 باشند. اكر كا بـاضـرب طرفيـن در و ال) $. f\left(a^{-1}\right)=(f(a))^{-1} ا$, $f\left(a a^{-1}\right)=f(e)=e^{\prime}$
مثالها. فرض كنيم
 گروه G باششد، آن كاه است.
فرض كنيم
 يكريختى است.

 ($f(a)=e^{\prime}$ شود كه e به هسته f f تعلق دارد. به به ساد

 است كه در سه شرط زير صدق كند

 اگر

 اكر $a \sim b$ ، آن گاه

در قسمت باقى ماندهٔ اين بخشت، ، تنها گَروههاى آبلى مورد نظر هستند.
 يكى زير مجموعهٔ سادگى ديده مى شود كه R R يى رابطهُ هم ارزي
 توسط G خوانده مى شود و آن را با G / H نشان مى دهى دهند. به سهولت مى توان تحقيق كرد كه ردهٔهم ارزیى a برابر است با به صورت G / H به خارج قسمتى G توسط H مى نامند.
俍

 زير گروه يی گروه متناهى مرتبه گروه
 اكر تابع پوشا با هسته H است.

位 $\bar{f}(a H)=f(a)$ G/H

ح.个
تعريف. يکحلقةٔ تعويضپذير R با عضو واحد مجموعهُ أى است با دو قانون تركيب با
 اين دو قانون تركيب، در چهار شرط زير صدق مى كنند:

 داده مى شود.

$$
.(y+z) x=y x+z x, x(y+z)=x y+x z,(x y) z=x(y z)
$$

سه) عنصر يكتاست عنصر همانى R R ناميده مى شود.
 تذكر ه. واحددار است. يعنى آن حلقه هايى كه علاوه بر شرطهای الِيتانـانده (يى) و (دو)، در

 داد.
 در است. آن راحلقّهٔ صفر مى ناميم. مثال ها. مـجموعهٔ اعداد صـحيح، \mathbb{Z} ، تحت عمل جمل جمع و ضرب يك حلقه است.
 برقرار است.
تعريف. يكرير حلقهُ S

$$
\text { و براى هر xy } x \text {. } x, y \in S .
$$

 طور ساده يک همريختنى ناميده مى شود (زمْانى كه زمينه مشخص

$$
\begin{aligned}
& \text { شرط زير برقرار باشد. } \\
& f(x+y)=f(x)+f(y)(\text { ي } \\
& f(x y)=f(x) f(y)\left(\begin{array}{c}
\text { د }
\end{array}\right. \\
& f(1)=1(1)
\end{aligned}
$$

تذكر ه. 0 در اين جا نماد ا را براى هر دو عنصر واحد R R و و به كار برده ايم. به

 و ضرب به كار برده شده اند. تعريف. همانندِ حالت گروه
 يكريختى از حلقّه R R به حلقته S S وجود داشته باشد، آن كاه اين دو دو حلقه، يكريخت خوانده مى شوند.
 بوده و علاوه بر آن اگر آل

 در آن برای هر طبيعى تغيير مى كند.

 تعريف. هر ايد آل R به جز شود.
 R

 مى دهيم. به سادگى ديده می شـو

صفر y در R وجود داشته باشد بطورى كهه

شود، هر كاه شامل مقسوم عليه صفرى به جز صفر نباشد.

 شده با u، برابر با R باشد
يكهيأت، حورزه صحيحى است، يكى زير حلقهٔ K
 ناميده مى شود.
 آبلي (V,+ $R \times V \longrightarrow V$ همراه با ضربِ اسكالرى R R است به قسمى كه برایى تمام

$$
\begin{aligned}
& \text { r ها و وها در } R \text { و } \\
& 1 v=v(\uparrow \\
& (r s) v=r(s v) \text { (ب } \\
& (r+s) v=r v+s v(\text { (} \\
& r\left(v+v^{\prime}\right)=r v+r v^{\prime}(ت
\end{aligned}
$$

مثالها.

 F F آشناست. مطالعdٔ مدولها را در فصل ^^ادامه خواهيم داد.
 ايد آل سره نداشته باشد، آن گاه يك هيأت است.

 . $y \in R$ ا $x \in R$ R R
 كه در شرط $M<A<R$ صدق كند وجود نداشته باشد. تذكر V.0 به سادگى مى توان ملاحظه كرد كه ايد آل

 آن، در حالت كلى درست نيست.
 ماكسيمال است.
باطرح كلى اثباتى از يكى قضيه مهم، اين بخخن را به پايان مى بريم.

اثبات. فرض كنيم مى كنيم (

 جمع و ضرب كه با

 a/b هيأت است. با مشاهده اين نگاشت كه

شود يک همريختى يک به يك از D ا به توى F الست، اثبات كامل مى شود. تمرين F.0 كيريم D ي
 آن K يكى هيأت است مى تواند به يك طريق، به يك يك يكريختى از F F به K بـ بسط داده

شود.
تعريف. هيأت F در اثبات قضيه ه. ا، هيأت خارج قسمت هانى D D ناميده مى

فصل 1
اعداد صحيح

در اين فصل، به اختصار درباره بـخشپذيرى و نتايججى كه به همنهشتى ها در مجموعهُ
اعداد صحيح Z ارتباط دارد بحث خواهيم كرد. ساختِ اصل موضوعى اعداد صحيح،

 است. ملاحظه كرديم كه Z تحت اعمال جمع و ضرب معمولى اعداد، يك حلته است.
1.1

تعريف. فرض كنيم a يك عدد صـحيح ناصفر است. گوييم عدد صـحيح b بر a

 . $a^{k+1} \nmid b$

قضيه 1.1 (الكوريتم تقسيم)
با فرض اين كه a و b اعدادى صحيح باشند و $a>0$ ، a اعداد صـحيح يكتاى q و r

$$
b=q a+r \quad \circ \leq r<a
$$

(در اين حالت كويند q خارج قسمت و r باقى ماندهئبه دست آمد
 اثبات. از آنجا كه隹 $S:=\{b-x a \mid b-x a \geq 0, \quad x \in \mathbb{Z}\}$
 $r-a=b-(q+1) a$ عضو S است. به شكل

 ديغر همحنین آنجا كه q و ${ }^{\prime}$ اعدادیى صحيح اند، يادداشت. فرض كرده ايـم كه
 $. \circ \leq r<|a|$

تمرين 1.1

الف) زير گروههانى، گروه جمعى (+, (Z)، يعنى گروه اعداد اعداد صحيح را بيابيد.
 قسمتى پ) ثابت كنيد كه هر ايد آل حلقهُ چZ، يكى ايد آل اصلى است.

يادداشت. ياد آورى مى كنيم كه يك ايد آل، اصلى ناميده مى شود، هركاه با با يـى
 ايد آلهاى اصلى (ح اص) ناميده مى شود. بنابراين قسمت (ب) تمرين اصلي فوق مى اصى گويد كه \mathbb{Z} يك ح اص است.
 عليه مشترى d عى a, b به شكل به گونه ایى كه، هركاه عدد صحيحى مانـند

$$
S=\{a x+b y \mid a x+b y>\circ, x, y \in \mathbb{Z}\}
$$

را در نظر مى گيريم.

$$
. d=a r+b s \iota r, s \in S
$$

 كا d d $d=m-q d=a\left(r_{1}-q_{\urcorner}\right)+b\left(s_{\Upsilon}-q s\right)$

كرد و اثبات كامل آست.ه
 مشترك، (ب م م) a و b میىنامند، آن را با كويند و و b نسبت به هم هم اولند.

 عدد صحيح 1 ا 1 يك عدد اول (يا

 همنهشت مى نامند و مى نويسند

$$
a \equiv b \quad(\bmod n)
$$

هركاه با آن است كه

 همنهشتى عدد صحيح a با نشانه a نشان داده خار خاهد شد.

مجموعهاى، متشكل از n n نماينده كه هر كدام از يك ردهئمانده به بيمانه n انتخاب

مجموعه كاهش يافته به ييمانه n مجموعهالى متشكل الي از از رده هاى مانده الى متمايز انتخاب شده و هر كدام نسبت به n اول هستند.

تذكر \mathbb{Z} ا. به سادكى ديده مى شود كه شاخص [
برابر با n است. اكنون مى دانيم كه تابع مى نگارد، با جمع و ضرب سازگگار است.

با $1=a x+b y$

$$
\begin{aligned}
c & =a c x+b c y \\
& =a c x+a r y \\
& =a(c x+r y)
\end{aligned}
$$

$\square . a \mid b c c$ كه در آن
 عدد اول خواهد كرد.
اثبات. فرض كنيم p|ab و p b|b| قسمت دوم به سادگى از استقرا نتيجه مى شود.

1.个 قضيه بنيادى حساب

$$
a=c p^{\prime}, \cdots p_{k}
$$

 اين بيان با تقريب ترتيب اعداد اول اول يكتاست.

اول باشد چیيزى براى اثبات وجود ندارد. اگر a اول b, b¹> 1 توان آنها را به اعداد اول تجزيه كرد. با قرار دادن دو تجزيه در كنار يكديگر، تجريه

حاصل مى شود.
در ادامه بايد نشان دهيم كه تجزيه يكتاست
فرض كنيم

نيز اول است،
 تعريف مى شود و بَهَ طور برخه ريخت در در صفححه مختلط كسترده شده است، با توجه به اتحاد

$$
\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\prod_{p}\left(1-\frac{1}{p^{n}}\right)^{-1}, \sigma>1
$$

قضضيه 7.1 (اقليدس) بى نهايت عدد اول وجود دارد. اثـبــات.فـرض كـنــيــم

 داشته باشيم
 همd آنها وجود خواهد داشت. اين امر قضيه را ثابت مى كند.

تمرين Y. Y با تقليد از قضيه فوق نشان مى دهيد كه بى نهايت عدد اول به شكل
ץ

تذكر 1 ا 1 * قضيه ديريكله در مورد اعداد اول درتصاعدهاى حسابى مى گويد كه اگر

 ديريكله به كار برد.
 نامتناهى بودن اعداد اول دارد. استدلال اويلر چالينين است اكر

$$
\prod_{p \leq x}\left(1-\frac{1}{p}\right)^{-1}>\prod\left(1+\frac{1}{p}+\cdots+\frac{1}{p^{m}}\right) \geq \sum_{n=1}^{[x]} \frac{1}{n}
$$

كه از آن نتيجه مى شود

تمرين

和 $a^{\prime} m+a m^{\prime}$

ϕ ف ضربى است.
پ جا فـا

$$
\phi(n)=n \prod_{i=1}^{k}\left(1-\frac{1}{p_{i}}\right)
$$

تمرين يكى جواب به ييمانه m است.
 در آن ϕ تابع اويلر است.

تمرين 7.1 فرض كنيد p يیى عدد اول فرد است. اگر عدد طبيعى n چچنان باشد كه نيز صحيح است قضيه شكل 1 + + 1 وجود دارد.

$$
\text { x } x^{〔}+1=r y^{\wedge}
$$

ץ.

 ذيلاً ترانه اصلى چینى رابان ترجمهُ آن مى آوريم.
"Sun ren tong xing qi shi xi, wu shu mei hua nian yi zhi,
qi zhi tuan yuan zheng ban yue,
chu bai lhng wu bian de zhi."
سه نفر، همغام، بعيد است كه يكى هفتاد باشد ينج درخت با شكوفه هاى كيلاس بيست و يـك شاخه ير از از ميوه هفت مريد براى نيمه ماه متحد شدند صدوينج از آن برداريد و خواهيد دانست

به حل همرمان x از همنهشتى هاى زير دلات مى كند.

$$
\begin{array}{lll}
x & \equiv b_{1} & (\bmod \Upsilon) \\
x & \equiv b_{r} & (\bmod \Delta) \\
x & \equiv b_{r} & (\bmod)
\end{array}
$$

قضيه V. 1 (قضيه باقى مانده چֶينى) فرض كنيم
 ($\left.m_{i}, m_{k}\right)=1$

x	\equiv	b_{1}	$\left(\bmod m_{1}\right)$
x	\equiv	b_{r}	$\left(\bmod m_{r}\right)$
\cdots	\cdots	\cdots	\cdots
x	\equiv	b_{r}	$\left(\bmod m_{r}\right)$

به بيمانه اثبات. فرض كنيم
 فرض كنيم وراريّ x x $x \equiv b_{k} M_{k} M_{k}^{\prime} \equiv b_{k} \quad\left(\bmod m_{k}\right) \quad$ بنابراين در هر يک ازز معادلد هالى همنهشتى صدق مى كند. اكَر x و y دو جو جواب دستكاه باشد، $\square . x \equiv y \quad(\bmod M)$

تمرين 1.1 دستگاه معادله هاى همنهشتى زير را حل كنيد.

x	$\equiv r$	$(\bmod \boldsymbol{r})$
x	$\equiv r$	$(\bmod \Delta)$
x	$\equiv r$	$(\bmod \vee)$

تذكر 0.1 در اين جا مناسب است كه ترانه چیينى را مـجدداً بَخوانيم. در هنگام

 مقادير به ترتيب عبارتند از
 معطوف است.) اين اعداد به ترتيب بايد در بـاقى ما ماند

 به دست آيد.

 (در $m_{r}, \cdots, m_{r}, m_{\text {I }}$

仿 $i=1, r, \cdots, r$

تمرين 10.1

$$
a^{r}+b^{r}+1 \equiv \circ \quad(\bmod p) \text { bورى كه }
$$

 صحيح a و b وجود دارد به طورى كه

فصل rer
حلقههاى چند جملهاى

 خواهيم آورد. اين تنايج نتشى مهمى در مطالعؤ توسيع هيأت ها دارند.
ح.l جلقهُ چند جمله ايها

تعريف. يكچند جمله ایى با يكى متغير و باضرايب در حلقةُ R عبارتى است به شكل

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{\circ}
$$

$$
\text { كه در آن براى هر i، } i
$$

 يك چند جمله ایى ناصفرِ صحيح k است به قسمى كه ضريب
 تكين ، چند جمله الى است كه ضريبپيشرو آن برابر با ا ، يعنى عضو همانى حلقّهُ R باشد.

 نشان دهد و جمع رابا

$$
\left(a_{\circ}, a_{1}, \cdots\right) .\left(b_{\circ}, b_{1}, \cdots\right)=\left(p_{\circ}, p_{\curlyvee}, \cdots\right)
$$

تعريف مى شود، كه در آن
 عنوان عنصر همانى اين حلقه عمل مى كنـد
 كه دو حلقةُ اين دو حلقه و نوشتن R و R براى هر در دوى آنها، حلقّه
 n متغير تعريف كرد. براى عنصر

$$
f=f\left(x_{\curlyvee}, x_{\curlyvee}, \cdots, x_{n}\right)=\sum_{a_{i}, \cdots i_{n}} x_{\curlyvee}^{i_{1}} \cdots x_{n}^{i_{n}} \in F\left[x_{\curlyvee}, \cdots x_{n}\right]
$$

درجهٔ f، ماكسيمم مجموع شود.
 صحيح است.
تمرين Y.Y فرض كنيم اين كه ' ك α ، نشان دهيد
 فرض كنيم R يك زير حلقّك همريختى يكتايِ مذكور در تمرين قبل، كه i ا را به ناميده و آن را ابا I I نشان مى دهيمر درين

$$
\begin{aligned}
& \left(a_{\circ}, a_{1}, \cdots\right)+\left(b_{\circ}, b_{1}, \cdots\right)=\left(a_{\circ}+b_{\circ}, a_{1}+b_{\uparrow}, \cdots\right) \\
& \text { تعريف كنيم، آن كاه (+, } \\
& \text { باضربى كه در [} R \text { با }
\end{aligned}
$$

يكتاى كه با $Z[\alpha$ نشان داده مى شود، كوچك مجموعهٔ $\mathbb{C}[\alpha]$ شامل تمام عناصرى به شك كه

 كاه نگارد.

F.Y F.Y

تقسيم با باقيمانده براى چند جملهاى ها عبارت است از:
قضيه

 $f(x)$ كه شرط مورد نظر را دارد. حاصل شود $g(x)=o f(x)+g(x)$
بنابراين فرض مى كنيم درجه هاى علاوه بر آن $m \geq n$. $. g(x)=b_{m} a^{m}+b_{m-1} x^{m-1}+\cdots+b_{\circ} g f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{n}$ به موجب فرض جنـد جـمـله ایى . $k \leq m-1$ - 1

 $\square . r(x)=g_{\circ}(x) g(x)=\left(b_{m} a_{n}^{-1} x^{m-1}+c_{k} a_{n}^{-1} x^{k-n}+\cdots\right) f(x)+r(x)$
 ایى در $. g(x)=(x-\alpha) q(x)$
مى توان اثبات اين كه هر ايد آل حلقةٔ اعداد صحيح، اصلى است را التّباس كرده و و تمرين زير را الثات كرد. (تمرين \. 1 قسمت پ را بيبيني.)

تمرين Y. Y فرض كنيد F يكى هيأت باشد. نشان جملمای هاى [F[x]، اصلى است.
تمرين F.Y فرض كنيد F يك هيأت است و و صفر نيستند، در اين صورت چپن

 ب)
 ت) تخندجمله ايهاى

 مانندِ حالت اعداد صحيح، مى توان نتيجه زير را بـه دست آوردن
 در R باششد. در اين صورت هر چچندجمله ایى ناصفر

 جملهاىیها يكناست.

 اثبات. اكر f از درجه 1 اباشد، اثبات بديهى است. فرض كر كينيم

n-1 است. اكر 1
پی

 در [R[x داراى چهار ريشه است.

مجموعه تمرين الف

آ. ا ا براى هر عدد صحيح صحيح نيست.
آ . صحيح m و n وجود دارند به طورى كه

$$
\cdot \sum_{d \mid n} \varphi(d)=n
$$

 $a^{d}=1$ فرض كنيد براى هر مقسوم عليه d
 آ
良 $\beta=\sqrt{Y}$

$$
\begin{aligned}
& \mathbb{Q}[\alpha, \beta]=\mathbb{Q}[\gamma] \text {. } \\
& \text { آ }
\end{aligned}
$$

$$
\mathbb{Z}[i]=\{a+b i: a, b \in \mathbb{Z}\}
$$

تعريف مى شود. نشان دهيد كه (
 ناصفر است.

 را مرور خواهيم كرد. برخى نتايج مهم نظرئ خواهيم آورد.
P.l مشخصؤ يك حلقه

تعريف. فرض كنيم R يكى حلقه است. اكر عدد صحيح و مثبت n وجود داشته باشد به قسمى كه

 صفر است.

تمرين ץ. ال مشخصهٔ هر حوزه́ صحيح، يا صفر يا اين كه يك عدد اول است.
 ax $a x$ (modm) اكر p عددى اول باشد، آن كاه مى شود).

مشخصهٔ است.
 تعريف شده از مى گيريم كه R شامل يكى زير حلقه يكريخت با با
 يكريخت با هيأت يكريخت با Q Q يا يك رير هيأت هي تعريف. هيأت هاى Q Q
 تذكر r.r هم اكت اكنون هيأتهاى اختيار ما قرار مى دهند هيأت متناهى قطعاً مشخصهُ متناهِ

 صفرِ يك هيات متناهى، دورى است است.
 مرتبه آن كوچكترين مضرب مشترك مرتِ
 است.
 است. ثابت كنيد تابعى كه از R ا به R R با با حلقه ها است. (اين همريختى، همريختى فروبنيوس ناميده می شی شود).

ق.r.r قضيه ويلسون

قضيه 1.1
يى) (فضيه ويلسون) براى هر عدد اول
$(p-1)!\equiv-\(\bmod p)$.
 1

 كه تنها ريشه هاى معادله
 مى اثبات قسمت (يك) را كامل مى كند

 (1 نمى كند، بنابراين n يك عدد اول اول است. اكنون فرض كنيم p يك عدد اول به شك

$$
\overline{(-1)}=\bar{T} \cdot \bar{r} \cdot \cdots \overline{(p-1)}
$$

$$
=\overline{(\overline{1} \cdot \bar{r} \cdots \overline{(p-I) / r}) \overline{(-(p-I) / \Gamma)} \cdots \overline{(-\Gamma)(-I)}}
$$

بنابراين ロ.
 چچند جمله اي 1 + 1 (است. بدين ترتيب ملاحظه كنيد كه اثبات ديخرى از قضيه ويلسون به دست مى آيد.

اين فصل را با نتيجه قابل توجهاى براى فضاهاناى بردارى روى هيأت هاى نای نامتناهى به

نتيجه بديهى است. فرض كنيم نتيجه براى n m n درست باشد.
 وجود دارد كه برایى ا 1 نمى ماند. فرض كنيم
 ادعامى كنيم كه
 دارند كه位

فصل

تجزيه به عاملها

در اين فصل تجزيه به عاملههاى اول را در يـى حوزه صحيح مورد توجه قرار مى

 خواهيم كرد.

اين بخشى رابا تعميمِ بخشنپذيرى، مطرح شده در حالت اعداد صحيح در فصل يك، شروع مى كنيم. $a \in R$ تعريف . فرض كنيم R يكى حوره صحيح است. كويند عنصرِ نا عنصر b راعاد مى كند، هر كاه به ازالى يك نويسيم b|b.a
 كه a و q يكه بناشند.

عنصر ناصفر a در R تحويل ناپپير ناميده مى شود هر گاه يكه نبوده و مقسوم عليه سره نداشته باشد.

 كزارارههاى زير بديهى اند اند
(u) =

سه)

> صا
 هم ارزند.
 متناهى مرحله پايان مى پذيرد و به تجربهُ انجامد. ب) بامل رنجبير نامتناهي افزايشى ايد آه هاى اصلى

$$
:(ب) \Longleftarrow(\widetilde{\top})
$$

 هيج يح از مقسوم عليه سره

$$
a_{1}=a_{\curlyvee} b_{r}=a_{\curlyvee} b_{r} b_{r}=\cdots=a_{n} b_{n} b_{n-1} \cdots b_{r}=\cdots
$$

كه يك تناقض است.
$:($ (T) $\Longleftarrow(ب)$

افرزايشى از ايد آلهاى اصلى را موجب مى شود.ه

تعريف . حوزهُصـحيح R يـى حوزنَّتجزيه ناميده مى شود، هرگاه هر عنصر reR مثال. فرض كنيم

فرض كنيم [

تذكرٍ ا. 1. بايد متذكر شد كه غالباً با حالتى مانند حالت فوق مواجه نمى شويم. معمولاً تجزيه يك عنصر نا صفر به عناصر تحويل ناپیییر ممكن است، ليكن يکتا

نيست.
براى مثال، حورزء

 اين حلقه عبارتند از 1 + و ا - و عنصر R 1 ع 7 لزوماً داراى دو تجزيه اساساً متفاوت در R است، يعنى

$$
7=r \times r=(1+\sqrt{-\Delta})(1-\sqrt{-\Delta})
$$

 شود، هرگاه p صفر و يكه نبوده و اگر آنها راعاد كند.

خواص زير باشد:
 و تجزيهُ دهد،
دو) اگر a به دو طريق به عناصر تحويل ناپذير تجزيه شود، مثاًٍ

$$
a=p_{\backslash} p_{\curlyvee} \cdots p_{m}=q_{\wedge} q_{\Upsilon} \cdots q_{n}
$$

آن گاه $m=n$ و m و كرد، به طورى كه براى تمام زها
 به كار برده مى شود.

 تحويل نإذير ينست.
 تحويل نإذير.
تمرين Y. F مثالى از يـى حوزنأصحيح D ارائه دهيد كه شامل عنصر تحويل نإنير a باشد كه اول نيست
 عنصرى است اول.

 خواص زير وجود دارد: d (i) (ii) اكر عنصر (i) قضيه \ddagger ڤ.

 صعودى ايد آل هاى اصلى نيست نيست.
در صورت امـكان، فرض كنيم إِيم

 است. به ازالى يك كه ايجاب مى كند (b) از طرف ديگر متناقض باواقعيت (a)

 $R /(p)$

 و لذا (b/) / يك هيات نمى باشد.

F.Y

تعريف. يك تابع اندازه بر حوزهٔصحيحِ R تابعى است مانندِ

$$
\sigma: R \backslash\{\circ\} \longrightarrow \mathbb{N}
$$

كه در آن $\mathbb{~}$ مجموعه اعداد صحيح نا منفى است. مثالها. توابع قدرمطلق و درجه كه به ترتيب بر بر روى حلقـ آله

 تعريف شده باشد كه در الكوريتم تقسيم صدق ور كند
$b=a q+r$ اكر

$$
\text { كه در آن } r=0 \text { يا اين كه }
$$

 حلقه هاى اقليدسى اند. اثبات. در قضيهُ ا. التيجهه را براى
 هم به اثبات مى رسد.
از اين قرار، حلقدُ
$\omega=x+i y$ كيريم. فرض كنيم ω يـى عدد مـختلط است. اكنون عدد گاوسى m+in وجود دارد بـه طورى كه

$$
|b-(m+i n) a|^{\Upsilon}=\left|\left(x_{\circ}+i y_{\circ}\right) a\right|^{\Upsilon}<1 / \Upsilon|a|^{\Upsilon}
$$

كه اثبات را تمام مى كند.
اينكى اثبات قضيه زير سر راست است.

 اصلى اند.

تذكر Y. F در اثبات قضيه Y.\،، دربارةٔوجود بزركترين مقسوم عليه مشترك، خاصيت حلقه اعداد صحيح كه نقشى اساسى داري داشت تانـ
 تعميم اين مطلب است.
تمرين V.F
 عناصرى مانند $d=\lambda a+\mu b ، \lambda, \mu \in R$.

فصل

 اين بخشش را با تعريف زير شروع مى كنيم.
تعريف. فرض كنيم $f(x)$ ($f(x)=a_{n} x^{n}+\cdots+a_{\circ} \in \mathbb{Z}[x$. در اين صورئ اوليه ناميده مى شود، هر كاه ضريب پی يسشرو مشتركى به جز او و ا - نداشتهه باشند.

 علاوه بر آن اين طرز بيان يكنا است.
 عدد صحيح باشد. در آن حالت
f(x) است و علامت c، علامت ضريب بيشروِ $f(x)$ خواهد بورد.

فصل ه. لم گاوس ومعيار/يزنشتاين
تعريف. عدد گوياى c كه در تمرين ه. ال ذكر شد، محتواى (x) $f(x)$ ناميده مى شود. اكر ضرايب $f(x)$ صحيح باشند، آن كاه ماه محتواى (x) أوليه است اگر و تنها اگر محتواى آن برابر با \ا باشند.
 تجندجمله الى اوليه است.

倍 ضرايب $h(x)$ را عاد نمى كند. همريختى

$$
f(x)=a_{m} x^{m}+\cdots+a_{\circ} \longrightarrow \bar{f}(x)=\overline{a_{m}} x^{m}+\cdots+\overline{a_{\circ}}
$$

تعريف شده و در آن ضرايب به بيمانةٔ و (
 است.ه
 اوليه است.
 .$q(x) \in \mathbb{Z}[x]$.

 اوليه وابسته به g است. از آنجا كه $\square . q \in \mathbb{Z}[x]$ ديحر

號
 عاد كند.

فرض كنيـم ■. q و و اثبات تمام است q (x) $\mathbb{Z}[x]$
 ثابتِ مشترك غير ثابت در اثبات. اگر ر (x)
 . $\mathbb{Z}[x]$

 اين صورت $f(x)$ در [Z \mathbb{Z} تحويل ناپذير است اگر و تنها اكر يكى از دو شرط زير برقرار باشد ($f(x)$ ($)$

 بديهى است.

 . $g(x), h(x) \in \mathbb{Z}[x]$ ك حالت (يك). ($f(x)=p$ يك عدد صحيح اول است)
فرض كنيم

 موجب مى شود مو (ما
 همان طور كه ملاحظه كرديم [بنابراين $f(x)$ يكى عنصر تحويل نايذير

فصل ه. لم گاوس ومعيار/يزنشتاين
قضيه ه. 0 حلقّهُ چֶند جملهاى هاى
اثبات. با فرض اين كه $f(x)$ در f ر

Q.Y معيارايزنشتاين

 چتندجملهاى با ضرايب صحيح باشا قسمى كه در [اثبات. فرض كنيم شود، مثالً $f(x)=g(x) h(x)$. $. \bar{a}_{n} \neq \circ$ اينک

 ■. $\mathbb{Q}[x]$ تحويل نإذير است $\mathbb{Z}[x]$ و لذا در

in in

تويتماك هيأت

در اين فصل، به اختصار، بعضى ردهئهاى توس توسيع هيأت ها را بر برسى كرده و و نتيجه

 جمله ايهاى روى يک هيأت متناهى مربوط مى شوند، ارائه خواهد شد.

$$
7.1 \text { توسيع هاى جبرى }
$$

 نشان داده و كوييم K K با

$$
. K=F(\alpha)
$$

俍 $I(x)=g(\alpha)$ F ما F متعالى ناميده مى شود. در غير اين صورت جبرى ناميده مى شود.

فصل 7. توسيعهاى هيأت

 پيسشرو، مى توان فرض كرد كه جمله الى مى نيمال α روى F ناميده مى

 مىنامند. اگر هر عنصر K روى F ${ }^{\text {F }}$ جبرى باشد، K توسيع جبرى F ناميده مى شود. تمرين 1.7 نشان دهيد كه هر توسيع متناهى K باششد

 ($K(\alpha): K[$ = $=n$
 متناهى K باششد. نشان دهيد كه [[

تذكر 1.7 فرض كنيد K يك توسيع جبرى F و L ي يك توسيع جبرى K K باشد.
 براى اثبـات اين ادعا فرض كنيـيم α يـى عـنـي چند جمله ایى ناصفر $\left\{a_{n}, \cdots, a_{1}\right\}$ \} فرض كنيم $f(\alpha)=0$ روى F باشند. اينک به علت

 است.
تعريف. فرض كنيم K يك توسيع هيأت F F باشد. مـجموعهُ تمام عناصر K كـ
 اگر α
 توسيع جبرى F است. از آنجا كه اند. اكى

يك زير هيأت K است. اكر اين بستار جبرى برابر با F باشد، گوييم F به طور جبرى
در K بسته است.
تذكر
 ازایى هر عدد صحيح مثبت n، چند جمله الى © $\mathbb{Q}[x]$ هی $\mathbb{Q}(\alpha) \subset \overline{\mathbb{Q}}$
7.Y توسيع هاى نرمال

 به طورى كه شامل يك ريشه

 تابع طبيعى

 ㅁ. به عهذهُ خواننده مى كذارين $f(x) \in F[x]$ تعريف. توسيع متناهى K ناميده مى شود، هركاه شود، ليكن به ازاى هر زيرهيأت سره K K مانند ,
 دهيد كه هيأت شكافنده $f(x)$ وجود دارد و درجه
 به نوى ناميم و هيأتهاى F

فصل 7. توسيعهاى هيأت

 داشته باشثد به طورى كه

 جملهایىهاى مى نيمالِ يكسان داشته فرض كنيـم $f(x) \longrightarrow \sigma\left(a_{n}\right) x^{n}+\cdots+\sigma\left(a_{\circ}\right)$ براى همريختتى يكتاى ببينيد) با به كار گيرى نابه جاى نما نماد، اين توسيع را نيز با σ نشان خواهيم داد.

 روى

 فرض K تعريف. فرض كنيد F يك هيأت F است. KK

 مكر هيأت شكافنده يك چند جماى

٪. \quad توسيع هاى تفكيك پذير

تعريف. فرض كنيم F يـى هيأت و [F رو $f(x) \in F[$. f(x)

صحيح n است، به قسمى كه

 مشتق صورى كنيد كه اين مشتق صورى در خواص زيرِ مشتق كه در رياضيات عمومي دير ديده شده است، صدق مى كند
 دو اگر اگر

$$
. F^{\prime}(x)=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
$$

$d \in K$ تمرين 10.7 فرض كنيد K توسيع جبرى F باشد. نشان دهيد كه عنصر روى F تفكيكى ناهذير نيست، اكَ اكَ و تنها اگر

 $. f(x)=g\left(x^{p}\right) \iota g(x) \in F[x]$

است. در اين صورت دقيقاً n، F-يكريختى از K به توى N وجود دارد.

اثبات. از استقراى روى n استفاده مى كنيم. اگر

فصل 7 . توسيعهاى هيأت

روى F د داراى ريشه هاى متمايز است، لذا بـه موجب تمرين 0.7 دقيقاً بـه اندازه

به دليل اين كه N يكى هيأت شكافند
به خود ريختتى هاى N كه ته تحديدشيان بر
 اكنون تركيب هاى $\tau_{j}(a)=\tau_{u}(a)$ ($)$ اريم كه ايجاب مى كند

 نيست. آن را به عنوان تمرين باقى مى كـى متمايز K به توى N برابر است با

$$
s t=[K: F(\alpha)] \cdot[F(\alpha): F]=[K: F]=n \square .
$$

تذكر F.7 عكس قضيه فوق نيز درست است. بدين معنى كه اكر K K توسيع متناهى

 تفكيك پذير F است.

 مثل α است. به وضوح (د) حالت (دو) (F يكى هيأت نامتناهى است)

 $\prod_{i=1}^{n} f_{i}(x)$

N اين صورت كه
 به طورى كه برایى ازا اين رو

(7.1 7

 p p، شامل هيأت

 آنجا كه عناصر ناصفر در شرط عناصر K در معادله

 اينكى ادعا مى كنيم كه برایى هر عدد اول اول مفروض
 گيريم. بنابر تمرين 1.7 تعداد ريشه ها هاى تحقيق كنيم، اين ريشه ها تشكيل يكى رير هيأت K ر را مى دهند. K باشد.

صحيح چندجمله الى با درجهُ كمتر از n n باشد. در اين .

فصل 7 . توسيعهاى هيأت
اثبـات. فرض كنيـم

بـــابـرايـن تـعـداد جـوابـهـایاى积
ادعا مى كنيم كه اين مـجموع برابر با
 مجموِع برابر است با (مثـلًا اكنون،

$$
\cdot\left(\sum_{\alpha_{1} \in \mathbb{F}_{q}}\right) \alpha_{1}^{i_{1}} \cdots\left(\sum_{\alpha_{n} \in \mathbb{F}_{q}} q_{1}^{i_{n}}\right)=0
$$

حالت كلى به طور بديهى به دست مى آيد، زيرا آن حالت مجموع مضارب ثابت اين مجموعها است. الـا

 وجود دارد كه همة
اثبات. از آنجا كه ه

و حداقل

 دنباله p عضوى وجود دارد كه مجموع آنها مضربى از م است.
تذكر 7.7 تمرين فوق حتى اكر به جاى عدي اند اول

فصل

قانون تقابل درجهٔ دوم

فرض كنيم $f(x)$ يكى چندجمله ایى باضرايب صحيح باشد. مساله تعين جوابههاى

 نابديهى ، همنهشتى درجهٔ دوٍِ

$$
a x^{\Upsilon}+b x+c \equiv \circ \quad(\bmod p)
$$

است، كه $a \neq 0(\bmod p)$ و $a, b, c, \in \mathbb{Z}$ با تبديل به مربعِ كامل، حل معادله فوق به حلِ معادله ایى از نوعِع

$$
\begin{equation*}
x^{\Gamma} \equiv d \quad(\bmod p) \tag{I.V}
\end{equation*}
$$

كه $d \in \mathbb{Z}$ و p ي

ق. 1
 نتايج در تمامى نظريهٔ اعداد است مى پردازيم. اين قانون به مسئلهُ وجود جوابهاى إى

فصل V. قانون تقابل درجهُ دوم
همنهشتى (I.V) را در نظر دارد. يك طرح كلى از اثثاتى مقدمانى به عنوان تمرين در انتهاى فصل آمده است.
فرض كنيم $q=p^{n}$ و ${ }^{\text {F }}$ هيأت اعداد با q عضو بـاشد. اگر
 اكر

\mathbb{F}_{q} در اين صورت

 آشكارا اين تابع يک همريخختى است و
 براى عنصر $a \in \mathbb{F}_{q}^{*}$ هر دو عنصر a و a (اين دو عنصر متمايرند، زيرا مشخصه برابر با \است) داراى يك مربع هستند و آن كاه استدلالى شمارشى به كار كار بريم. مى توان مشاهده كرد كه كه شاخص تعريف. براى هر عدد اول غير از

با قرار دادن
طريقى بديهى يک تابع بر

 ترتيب گويند x ماندهٔ درجهٔ دوم يان يانمانده برای عدد اول p، غيراز
 مى دانيم كه
 يك مشخصهُ گروه ناميده مى شود.)

قضيه I.V (قانون تقابل درجئ دوم) اگر p و l دو عددٍ اول فرد باشند، آن كاه

$$
\begin{aligned}
\left(\frac{-1}{p}\right) & =(-1)^{\frac{p-i}{r}}\left(\begin{array}{l}
\text { ي }
\end{array}\right. \\
\left(\frac{r}{p}\right) & =(-1)^{\frac{p^{r}-1}{\Lambda}}\left(\begin{array}{l}
\text { د }
\end{array}\right.
\end{aligned}
$$

سه(
 آنجا كه

$$
\begin{equation*}
\alpha^{\varphi}=-1 \tag{Y.V}
\end{equation*}
$$

بنابراين $\left(\alpha^{r}+\alpha^{-r}\right)^{r}=0$ كه نتيجه مى دهد
$\alpha^{r}+\alpha^{-r}=\circ$
(r.V)

اگر قرار دهيم،

$$
\begin{equation*}
y=\alpha+\alpha^{-1} \tag{f.V}
\end{equation*}
$$

به موجب (ץ.V) داريم

$$
\begin{equation*}
y^{r}=r \tag{0.V}
\end{equation*}
$$

از (F.V) نتيجهd مى شود كه

بنابراين در حالت (

$$
\text { دهد } 1 \text { = } y^{p-1 ~ و ~ ل ذ ا ~ ب ن ا ب ر ~(0 . V) ، ~}
$$

$$
\left(\frac{r}{p}\right)=r^{\frac{p-1}{r}}=y^{p-1}=1
$$

 دهد 1 (1 (1 ($)$) كه بدين ترتيب (دو) ثابت شده است.

براى اثبات (سه) فرض كنيم ω يك ريشه l ام واحد در Ω باشد.
مجموع كاوسى $S=\sum_{x \in \mathbb{F}_{l}^{*}}\left(\frac{x}{l}\right) \omega^{x}$ را تشكيل مى دهيم. توجه كنيد كه هر $x \in \mathbb{F}_{l}$ خوشتعريف است.

فصل V. قانون تقابل درجهٔ دوم

$$
\begin{aligned}
\boldsymbol{S}^{2} & =\sum_{x, y \in \mathbb{F}_{l}^{*}}\left(\frac{x y}{l}\right) \boldsymbol{\omega}^{x+y} \\
& =\sum_{y, z \in \mathbb{F}_{l}^{*}}\left(\frac{y^{2} x}{l}\right) \boldsymbol{\omega}^{y(z+1)}
\end{aligned}
$$

$$
\text { (قرار داده ايم } x=y z \text {) }
$$

$$
=\sum_{y, z \in \mathbb{F}_{i}^{*}}\left(\frac{z}{l}\right) \omega^{y(z+1)}
$$

$$
=\left(\frac{-1}{l}(l-\mathbf{1})+(-\mathbf{1}) \sum_{z \neq-1}\left(\frac{z}{l}\right)\right.
$$

$$
،\left(\sum_{y \in \mathbb{F}_{i}^{*}} \omega^{y(z+1)}+1=1+\omega+\cdots+\omega^{l-1}=0 \text { (j}\right)
$$

$$
S^{\top}=l\left(\frac{-1}{l}\right)-\sum_{x \in \mathbb{P}_{i}^{\mathbb{F}}}\left(\frac{z}{l}\right)
$$

اينك همان تعداد مربع در

$$
\begin{equation*}
S^{\top}=l\left(\frac{-1}{l}\right) . \tag{7.Y}
\end{equation*}
$$

$$
\begin{aligned}
\boldsymbol{S}^{p} & =\sum_{x \in \mathbb{F}_{l}^{*}}\left(\frac{x}{l}\right) \boldsymbol{\omega}^{x p} \\
& \left.=\sum_{x \in \mathbb{F}_{l}^{*}} \frac{\left(z p^{-1}\right.}{l}\right) \boldsymbol{\omega}^{x} \\
& \quad\left(x p=z \quad\left(\frac{p^{-1}}{l}\right) S\right. \\
& =\left(\frac{p}{l}\right) S .
\end{aligned}
$$

$$
\left(\frac{p}{l}\right)=S^{p-1}=\left(l\left(\frac{-1}{l}\right)\right)^{\frac{p-1}{\tau}}=\left(\frac{l}{p}\right)\left(\frac{-1}{l}\right)^{\frac{p-1}{\tau}}=\left(\frac{l}{p}\right)(-1)^{\frac{p-1}{\tau} \cdot \frac{l-1}{\tau}}
$$

كه برابرى (سه) را به ييمانهٔ p نشان مىدهد. از آنجا كه p فرد است، نتيجه حاصل

تذكر V.Y در قضيه Y. Y درواقع (سه) قانون تقابل است، حال آن كه (يك) و (دو) به ترتيب اولين و دومين قانونِ مكمل است. نتيجه I.V هر توسيع درجهٔ دوم © . $\mathbb{C}(\xi)$

 به ازانى يك ريشه ξ واحد در

تذكر Y.Y * نتيـجه فوق، حالت خاصى است از قضيه الى كه توسط كرونكر
 هر توسيع آبلى

هنگامى كه به جاى هيات پِايد
d d قرار كيرد. در اين صورت نقتش ξ توسط مختصات نقاط با مرتبه متناهى ، روى يك خم بيضوي مشخص، التا مى شود.

تمرين I.Y معين كنيد كه آيا 40 ماندهٔدرجه دوم به ييمانه 1009 است؟ تمرين Y.Y

 است چخنين معادله ایى دارای تعدادى متناهى جواب است.

نماد زاكوبى V.Y
تعريف. اكر a عددى صحيح و b عدد صحيح مثبت و فردى باشد، نماد زُاكوبى (a) را چحنان تعريف مى كنيم كه تعميم دهندهئنماد لرّاندر باشند.

فصل V. قانون تقابل درجهٔ دوم
فرض كنيم
صورت نماد زَاكوبى با

$$
\left(\frac{a}{b}\right)=\prod_{i=1}^{r}\left(\frac{a}{p_{i}}\right)^{n_{i}}
$$

تعريف مى شود.

 درست نيست.

ك

$$
\left(\frac{a}{b}\right)\left(\frac{a^{\prime}}{b}\right)=\left(\frac{a a^{\prime}}{b}\right)(\text { يك }
$$

$$
\left.\left(\frac{a}{b}\right)\left(\frac{a}{b^{\prime}}\right)=\left(\frac{a}{b b^{\prime}}\right)\right)
$$

تمرين \quad V. فرض كنيد a و b اعداد صحيح و مثبت اند. نشان دهيد كه

$$
\left(\frac{-1}{b}\right)=(-1)^{\frac{b-1}{\tau}}(\Omega
$$

$$
\left(\frac{r}{b}\right)=(-1)^{\frac{b^{r}-1}{\Lambda}}(\text { دو }
$$

$$
\left(\frac{a}{b}\right)\left(\frac{b}{a}\right)=(-1)^{\frac{a-1}{\tau} \cdot \frac{b-1}{\tau}}(0)
$$

V.M

نخست، كاربرد جالب توجه ایى از قسمت (يك) قضيهٔ V. ا در نظريهٔ جمعى اعداد را ملاحظه مى كنيم با در نظر گرفتن ييمانه †، به سادگى ديده مى شود كه عدد صحيح
 صورت مجموع دو مربع در \mathbb{Z} نوشت.

$$
\begin{aligned}
& n \equiv \boldsymbol{\mu}(\bmod \boldsymbol{\Psi}) \\
& \text { را نمى توان به صورت مجموع دو مربع در } \\
& \text { از طرفى ، اينك ثابت مى كنيم: }
\end{aligned}
$$

اثبات. فرض كنيم p ي

$$
\begin{aligned}
& .1 \leq K_{1}<k \\
& \text { اعداد صحيح } \\
& x_{\circ} \equiv x \quad(\bmod k), y_{\circ} \equiv y \quad(\bmod k)
\end{aligned}
$$

$$
-\frac{k}{\Gamma} \leq x_{\mathrm{o}}, y_{\circ}<\frac{k}{\Gamma}
$$

از اين رو

$$
\left(x_{\circ} x+y_{\circ} y\right)^{\curlyvee}+\left(x_{\circ} y-y_{\circ} x\right)^{\curlyvee} \equiv\left(x_{\circ}^{\curlyvee}+y_{\circ}^{\curlyvee}\right)\left(x^{\curlyvee}+y^{\curlyvee}\right)=k_{\backslash} k^{\curlyvee} p
$$

$$
x_{\circ} x+y_{\circ} y \equiv x^{\Upsilon}+y^{\curlyvee} \equiv \circ \quad(\bmod k)
$$

$$
x_{\circ} y-y_{\circ} x \equiv x y_{\circ}-y_{\circ} x \equiv \circ \quad(\bmod k)
$$

ولذا از (X.V) داريم

$$
\left(\frac{x_{\circ} x+y_{\circ} y}{k}\right)^{r}+\left(\frac{x_{\circ} y-y_{\circ} k}{k}\right)^{r}=k_{\backslash} p .
$$

كه دو عدد صحيح \} دهد.
از آنجا كه
دهد
إ آن $.1 \leq k_{1}<k$

وجود دارد به طورى كه
 اين صورت، به موجب ن برای $\square . r^{r}+s^{r}=p \Delta$
 اول (mod F) نداشته باشد.
اثبات. ابتدا فرض كنيم راعاد مى كند. كيريم در صورت امكان، فرض كنيم r r فرد است. اكي

$$
\begin{equation*}
n_{1}=x_{\Upsilon}^{\Upsilon}+y_{\uparrow}^{\zeta} \tag{9.v}
\end{equation*}
$$

كه در آن ، حداكثر يكى از اعداد صحـي , يك معادله روى

$$
\left(\frac{-1}{p}\right)=1
$$

به علت اين كه (mod Y)

$$
\left(\frac{-1}{p}\right)=(-1)^{\frac{p-1}{\tau}}=-1 .
$$

بنابراين r نمى تواند فرد باشد.
 توانههاى اعداد اولِ متمايزز وجود نداشته باشلشد، آن كا كاه ازاى الى
 است.ه

 ماندهٔ درجه دوم باشد آيا، n مربع كامل است؟

قضئه بعد، بيانى قوى تر دارد. اثبات، همان است كه در [IR] آمده است.
قضيه F.V اگر عدد صـحيحى برایى تمام اعداد اول مـگر تعداد متناهى، ماندهُ
درجه دوم باشد، آن كاه مربع اسِت.
 نامتناهى عدد اول از آنجا كه براى عدد اول و فرد p، داريم آمد.
از آنجا كه عدد صحيح مثبت و نامربع a را مى توان به شك بكل فرض كا 1
 في $s=1$ و

$$
\text { حالت اول (1 } r=0, s=1)
$$

در اينجا

فرض كنيم
 Y با هيحچكدام از اعداد اول
 حالت دوم
فرض كنيم
هيحییى از
 همنهشتيهاى زير صدق مى كند

$$
\begin{aligned}
& x \equiv 1\left(\bmod q_{i}\right) \quad i=1,\lceil, \cdots, m \text { براى } \\
& x \equiv 1(\bmod \wedge) \\
& x \equiv 1\left(\bmod p_{i}\right) \quad i=1, r, \cdots, r-1 \text { برای } \\
& x \equiv t\left(\bmod p_{r}\right)
\end{aligned}
$$

فصل V. قانون تقابل درجهٔ دوم
از آنـجـا كـه $.\left(\frac{p_{i}}{N}\right)=\left(\frac{N}{p_{i}}\right), i=1, r, \cdots, r$

$$
\begin{aligned}
\left(\frac{a}{N}\right) & =\left(\frac{r}{N}\right)\left(\frac{p_{1}}{N}\right) \cdots\left(\frac{p_{r-1}}{N}\right)\left(\frac{p_{r}}{N}\right) \\
& =\left(\frac{r}{N}\right)\left(\frac{N}{p_{l}}\right) \cdots\left(\frac{N}{p_{r-1}}\right)\left(\frac{N}{p_{r}}\right) \\
& =-1 .
\end{aligned}
$$

 .$p \in\left\{q_{1}, q_{\Upsilon}, \cdots, q_{m}\right\}$

V.F

در تمرين زير، طرح كلي يكى اثبات مقدماتي قانون تقابل درجهٔ دوم ارائه مى شود.
تمرين 7.Y فرض كنـيـد p يــك عـدد اول فرد و a يـك عـدد صـحـيـح اسـت،
بـه قسمى كه (i=1, $\uparrow, \cdots(p-1) / 「$

$$
\begin{equation*}
a,\left\ulcorner a, \cdots, \frac{p-1}{r} a\right. \tag{lo.V}
\end{equation*}
$$

يك) مالاحظه كنيد كه اعداد (
دو) فرض كنيد كوچكتر از آنند و و ا

$$
\begin{aligned}
& r_{\uparrow}, r_{\uparrow}, \cdots, r_{m}, p-s_{\uparrow}, \cdots, p-s_{n} \\
& \text { متمايرند. اكنون لم كاوس را نتيجه بكيريد: } \\
& \left(\frac{a}{p}\right)=(-1)^{n} \text {. } \\
& \text { سه) تتيجه گاوس رابه كاربرده، ثابت كنيد } \\
& \left(\frac{r}{p}\right)=(-1)^{\frac{p^{r}-1}{\lambda}} \text {. }
\end{aligned}
$$

جهار) اگر صحيح (ka/p) است. مجموعهاى زير را در نظر بگيريد

$$
\sum_{k=1}^{(p-1) / r} k a
$$

$$
\sum_{k=1}^{\frac{p-1}{\tau}} k=\sum_{k=1}^{m} r_{k}+\sum_{k=1}^{n}\left(p-s_{k}\right)
$$

مجموع دوم را از مجموع اول تفريق كيد. ثابت كنيد اگر a فرد باشد، آن كاه

$$
\left(\frac{a}{p}\right)=(-1)^{M}
$$

$$
. M=\sum_{k=1}^{(p-1) / \tau}\left[\frac{k a}{p}\right] \text { ك }
$$

 راسهاى (كه به تعداد [[kr/p] نقطه با مـختصات مشبكهاءى بالآى

داخلِ مستطيل به اثبات (سه) قضيه V.ا مىىانجامد.

$$
. u \mid(\alpha-r)
$$

ب ب . $R=\mathbb{Z}+\mathbb{Z} \frac{1+\sqrt{-1 r}}{r}$ ي $f(x)=x^{p-1}+x^{p-r}+\cdots+1$ ب ب ب براى عدد اول p در [
 نإيذير

 گروه دوري مرتبه n است. مولد اين گروه، خود ريختى فروبينيوس ب . دارد به طورى كه برای هر
 بيان شود، آن كاه R هيانى متناهى است.

فصل 1
مدولها

 آينده مورد نياز است، محدود خواهيم كرد.
A. 1

اسكالرى تعريف شده با

 همريختى ناميده مى شود، هر كاه در شرايط زير صد
 حالت گروهها و حلقه ها، اكر كا

 شود. برای ايد آل

 دهيم. در حالتِ ويرّه، هنگامى كه
 باشد، آن كاه 'N صادق خوانده می شود
فرض كنيم مستقيم $a_{i} \in M_{i}$
 تعريف مى شود كه شامل تمام متناهى اننيسي حاصلضرب مستقيم يكى هستند.
 شود. از نماد

 يكى زير مدول M كه با يكى مجموعهُ متناهى توليد مى شود متناهى -توليد شده

اگر خانواده́

جاىى

 براى هر زير مججموعdٔ متنامى براى هر it i، i

 شامل يك پايه نيست.

 تعريف. در تمرين \.

A.Y

قضيه ا. 1 فرض كنيم M يك R R-مدول متناهى -توليد شده با n عنصر است. فرض كنيم فرض

$$
\phi^{n}+a_{1} \phi^{n-1}+\cdots+a_{n}=0
$$

اثبات. فرض كنيم
竍

$$
\sum_{j=1}\left(\phi \delta_{i j}-a_{i j}\right) w_{j}=\circ
$$

كه

 نتيجه به دست مى آيد.ه نتيجهُ زير بـه كرول -آّومايا و ناكامايا منسوب است و در متون، به عنوان لم ناكامايا شناخته مى شود.
 R R

 اثبات. تابع مى شود كه اكنون فرض كنيم I مشمول در راديكال جيكوبسن باشد
 ■. $M=r^{-1} r M=0$ خواهد داشت كه ممتنع است. بنابراين

N.

تعريف. فرض كنيم M يکى R-مدول باشد، گويند M نويترى است هر اگر اگر رنجير فزايندهٔ داشته باشد كه حلقةٔ R يى حلقه نويترى خوانده مى شود، هر كاه به عنوان R-مدول نويترى باشد.
مثالها. اكر M يک R R-مدول با تعدادى متناهى عنصر باشد، آن كاه، آشكارا، نويترى است. به ويرّه يكى گروه آبلى متناهى مى شود، نويترى است. از آنجا كه ايد آل هاى

 متغير نويترى نيست.

اررند.
يك)

سه) هر زير مدولِ M، متناهى توليد شده است.

$$
\text { اثبات. (يك) ع }(د و)
$$

 كه دارای عضو ماكسيمال نيست. فرض كنيد نيست، زير مدول مدول به دست مى آيد كه ايستا نيست، تناقض با اين فرض كه كه M ${ }^{\text {ايس }}$ نويترى است. (دو)
فرض كنيم N يحى زير مدول دلخواه M است. فرض كنيم S مـجموعهُ تمام زير مدولهاي متناهى توليد شده است. از آنجا كه
 باشد، زير مدول شده است. از اينـجا نتيـجه مى كيريم كه
 (سه)
فرض كنيم فرض $\cup_{i=1}^{\infty} M_{i}$ فرض كـنيـم . $a_{i} \in M_{t_{1}}$

$$
\square . M_{T}=M_{T+1}=M_{T+r}=\cdots \text { و ونابراين } \cup_{i=1}^{\infty} M_{i}=\cup_{i=1}^{T} M_{i}=M_{T}
$$

 است.
اثبات. يكى دنبالة́

$$
\cdots-M_{r-1} \xrightarrow{f_{r}} M_{r} \xrightarrow{f_{r+1}} M_{r+1} \longrightarrow \cdots
$$

از رير مدولهاي $\}$

هر گاه كامل باشد.
دنبالدُ كامل به شكل خاصِ

$$
\{\circ\} \longrightarrow M^{\prime} \longrightarrow M \longrightarrow M^{\prime \prime} \longrightarrow\{\circ\}
$$

دنبالهُ كامل كوتاه ناميده مى شود. اين بدان معنى است كه f يكى به يك، و يوشا

$$
\text { است و (Im }(f)=k e r(g) .
$$

 ا" ${ }^{\prime \prime}$
اثبات. فرض كنيم M نويترى است و ${ }^{\text {اس }}$ مدولهالى
اينكى .
 به يك است. دنبالهُ اصلي في

$$
. g\left(M_{r}\right)=g\left(M_{N}\right) g
$$

بـراى يــ
عـنصـرِ $b \in M_{N}$ وجـود دارد كـه كـي
$، c \in f^{-1}\left(M_{r}\right)=f^{-1}\left(M_{N}\right)$ فرض كنيم به ازا

M M. $M_{r}=M_{N} 九 r \geq N$ بنابراين $a \in b+M_{N}=M_{N}$ نويترى است.

نتيجه صورت

اثبات. از دنبالدُ كوتاهِ كامل

$$
\{\circ\} \longrightarrow M_{\curlyvee} \longrightarrow M_{1} \oplus M_{\curlyvee} \longrightarrow M_{1} \longrightarrow\{\circ\}
$$

، به موجب قضيه فوق،

$$
\{\circ\} \longrightarrow M_{1} \longrightarrow \oplus_{i=1}^{t} M \longrightarrow \oplus_{i=1}^{t-1} M_{i} \longrightarrow\{\circ\}
$$

شده باشد. در اين صورت M نويترى است

㜔 $R\left[x_{\uparrow}, x_{\uparrow}, \cdots, x_{n}\right]$

شده است. نشان دهيد كه R نويترى است. (اين قضيه منسوب است به كاهن ' ا ').
 R، R $^{\prime}$ همريختى h ازْ R به توى M و وجود دارد كه
 دهيد كه اگر دنبالة́

$$
\begin{aligned}
& \{0\} \longrightarrow M_{1} \xrightarrow{f} M \xrightarrow{g} P \longrightarrow\{0\} \\
& M_{1} \oplus P=M \text { مفروض باشد، كه در آن } P \text { آزاد است، آن كاه }
\end{aligned}
$$

مدولهای روى ح اص

اينك نتيجه مهمى را راجع به مدولهاى روى حورْهاى ايد آلهاى اصلى ثابت مى

$1 \leq r \leq m$ اثبات. فرض كنيم 1 ، زير مدولِ M را كه با 1 با

$$
\text { كنيم } N_{r}=N \cap T_{r} .
$$

اكنـون $\}$
 عضوى مانند (است كه با مجموعه تهى توليد شده است. اگر

فرض كنيم $\operatorname{rank}_{R}\left(N_{t}\right)$ آزاد و از رتبهٔ $\operatorname{rank}{ }^{2}\left(N_{i}\right) \leq i$ است. ثابت مى كنيم كه مى باشد.
. $I=\left\{r \in R: r a_{t}+\sum_{j=1}^{t-1} r_{j} a_{i} \in N_{t} ، R\right.$ ر دراى بعضى
 است. بديهى است كه
 فرض كنيمـ در در ايـن صورت بـه ازاى

A. برخى تنتايج ويزه

 مى كنيم. پس از آن نتيجه ایى راجح به مشبكه ها در
. . . برخیى نتايج ويثه

تعريف. فرض كنيم V يك فضاى بردارى روى هيأت K K باشد. يكى فـي فرم دو خطي B بر V، يكى تابع

伍
 a $a, b \in V$

 $. ~ \ \leq i, j \leq n ، B\left(w_{i j} w_{j}^{\prime}\right)=\delta_{i j}$ تعريف. يك زير گروه H از H از فشرده مثال.
 عنوان يك Z اثبات. فرض كنيم باشد كه روى \mathbb{R} مستقل خطى اند. فرض كنيم
هستند. كنيم

$$
P=\left\{x \in \mathbb{R}^{n} \mid x=\sum_{i=1}^{r} \alpha_{i} e_{i}, \circ \leq \alpha_{i} \leq 1\right\}
$$

متوازیالسطوح گونه الى باشد كه با استفاده از مبدأ و شود. به علت اين كه P فشرده است، P P متناهى است. فرض كنيم

ماكسيمال بودن براى هر عدد صحيح l قرار مى دهيم،

$$
x_{l}=l x-\sum_{i=1}^{r}\left[l \lambda_{i}\right] e_{i}=\sum_{i=1}^{r}\left(l \lambda_{i}-\left[l \lambda_{i}\right]\right) e_{i} \in P \cap H
$$

$$
\text { از آنجا كه P } \text { متناهى است، }
$$

از ايـن رو بـراى .$\lambda_{i} \in \mathbb{Q}$ ($1 \leq i \leq r$
 كويا نوشت. همحرنين به علت عنوان يك Z-مدول با P با P توليد مى شود.
اكنون، هرعنصر
فرض كنيم $d \in \mathbb{Z}-\{0\}$ مـخرج مشتترك اين ضرايب بـاشد (بيـاد آوريد كه
 يـ گروه آبلى آزاد با رتبه كوچكتر يا مساوى r است

يک

 Z چֶايه براى مشبكه مفروض است توليد مى شود.
فاعداد صحيح گاوسى و حلقئ
 اول اين فصل مى كوشيم تا دركِ بيشترى ازا اين حلقه به دست آوريّ آوريم. در قسمتِ بعد، دربارئ حلقهُ حلقه ها مى تواند، به عنوان ييش در آمدى برایى مطالعهُ هيأت اعداد، كه در فصلهاى بعدى ادامه بيدا مى كند، مفيد باشد.

$$
\text { ا } 9.1
$$

اين بخشى را با ملاحظاتى كه خواهد آمد، شروع مى كنيم. اكر يكى عدد صحـيح

 كاوسى با تابع اندازه كه با
供 اعداد مختلط است و به سادگى ثابت مى شود. VI

فصل 9 . اعداد صحيح گاوسى وحلقة

($\alpha^{\prime} \in \mathbb{Z}[i]$ مسى كنـد كه 1 (
 $a=0$ تنها جوابهاى معادله ديو فانتى

 ناميده مى شود.

 علئُ اول كاوس مانند $\Pi=a+b i$ است. از آن جا Π آ كه برابر است. بنابراين位 عليه اين كه ח وابستهٔ p م مى باشد. در در حالت دوم اول
 مربع يك عدد اول است. اثبات. فرض كنيم Π يك عدد اول كار كاوس باشد
 عليه صحيح
 يى) دو) سه (اثبات. (يى)

فرض كنيم $\Pi=a+b i$ عدد اول گاوس است نتيجه مى گيريم كه $p=a^{\curlyvee}+b^{r}$
(دو)

اگر كَ
 است.
بنابراين نشان داده شده كه (يحى) و (دو) هم اررزند، از آن جا كه بنابر قضيه Y.Y،
(دو) و (سه) هم اررند. اثبات تمام است.ه

 همنهشت اند.
مى توان ملاحظه كرد كه اعداد صحيح كاوسى نقاط يـى مربع مشبكه ایلى در صفـحهٔ مـختلط اند. به طور مشابه حلقـهُ شكل $a+b \sqrt{-Q}$ هستند، $a, b \in \mathbb{Z}$ ، نيرز مثالى از يكى مشبكه در صفـحه مختلط آشكار است كه ايد آل هاى ناصفرِ اين حلقه هر كدام يكـ رير مشبكه است.

$$
\mathbb{Z}[\sqrt{-\alpha}] \quad \text { q.r }
$$

همان طور كه پيشتر متذكر شديم، حلقهُ بحث دربارهٔ اين حلقه ادامه مى دهيم، با با استدلالمى مشابه حالتِ
 كرد كه يكه هاى

 $\mathbb{Z}[\sqrt{-Q}]$. $\mathbb{Z}[\sqrt{-\Delta}]$
اكنون در موقعيتى هستيم كه مى توانيم نظرى به تذ كه عنصر $\mathbb{Z}[\sqrt{-Q}$ را به دست مى دهد. بـنابراين حلقهd位 هاى غير اصلي
طرز عمل (Ar\99F) را به كار مى بريم.

قضيه 4.9 فرض كنيم r، مى نيمم مقدادِ به دست آمدهٔقدر مطلق عناصر نا ايد آل A در حلقةُ 1 رض مركز

 ارز r است. از اين جا لا لاز مى آيد كه ثابت شده است. ارض اكنون فرض كنيم A يكى ايد آل ناصفر مى نيمال r باشد، ايد آل اصلى A اص

 كرد كه در مستطيل با رئوس م
 كدام با شعاعهای

 و و

 كا خلاصه اين كه

 ($\alpha, \alpha \sqrt{-Q})$ ($)$ ($\alpha,(\alpha+\alpha \sqrt{-\Omega}) /$ است.حالت دوم تنها در زمانى كه
نيست رخ مى دهد.

تا $\mathbb{Z}[\sqrt{-\Delta}]$

فصل 10
هيأت هاى اعداد جبرى (يک)

در اين فصل ملاحظه خواهيم كرد كه حلقه اعداد كاوسى و حلقةُ

 وجود دارد.
وابستگى صحيح

اين بـخش را با بعضى تعريفها و نتايج، كه تا اندازه الى، موقعيتِ كلى ترى را موجب مى شود، شروع مى كنيم.
 $\alpha \in B$

 در حالت كلى اگر A يـى ت یى بـاشد، نشـان دهيد كه عنـاصرى كه در هيأت

كسرهاى A روي A صحيح اند، دقيقاً عناصر A هستند.
 كه

بيانهای زير هم اررند.
يك) عنصر $\alpha \in B$ روى A روند صحيح است.
دو) حلقةُ [$A[\alpha$ يك A A-مدول متناهى -توليد شده است.

A-مدول متناهى -توليد شده است.
چهار) يک [$A[\alpha$ مدول صادقِ M وجود دارد به قسمى كه به عنوان يک A A ـمدول
متناهى -توليد شده است.
اثبات.

 (دو)
مى توانيم [$A[\alpha$ را به عنوان C اختيار كنيم. (سه)
 . $M=C$. 1 . 1 =
(
A
تـعريـن
 a a_{i}

$$
\square \cdot \alpha^{n}+a_{\curlywedge} \alpha^{n-1}+\cdots a_{n}=\circ
$$

 يک A-مدول متناهى -توليد شده با مولدهاى

B-مدول متناهى توليد شده باشد، به قسمى كه B
، $1 \leq j \leq s _\beta_{i} m_{j}$ توليد كند، آن كاه به سادگى ملاحظه مى شود كه حا

 يكى زير حلقه B مى باشد.
اثبات. اكر
 -
 صحيح باشد، آن كاه C روى A صحيح است. اثبات. فرض كنيم

 صورت فقط گويند A به طور صحيح بسته است.
 طور صحيح بسته است.

r اع اعداد صحيح در هيأتهاى اعداد

 حالتهاى خاص هيأت اعداد را ادامه مى دهيم. اين كار را با بعضى ييش نيازها براي هيأت اعداد شروع مى كنيم.
 قسمى كه K توسيع متناهي Q باشد. عدد صحيح [مى شود. تذكر

تذكر。 مى نيمال $\mathbb{Q}\left(\theta_{i}\right) \subset C *$ براى هر وجود دارد كه با با متمايرند و تنها يكريختيهايلى K به تو توى C (K هستند. تعريف. هيأتهایى K ناميده مى شوند. اكر K K
 وجود دارند. دهد. همحخنين (
 K روى Q باشذ. با نماد كذارى فوق اكر ناتكين است.

 دترمينان واندرموند است و و برابر است با با
 به علت آن كه B ماتريسى است كه داراى وارون با در آيه ها در Q مى باشد، نتي حاصل مى شود. آن آن

 O O_{K}
 يك عدد صحيح جبرى است زيرا اكیر

در دهد $a_{n} \alpha$ يك عدد صحيح جبرى است. تعريف. فرض كنيم K

 Tr ${ }_{K / Q}(\alpha)$ نشان داده مى شود اثر اين تابع خطى است وض

 $\left(\alpha w_{j}\right)^{(k)}=\alpha^{(k)} w_{j}^{(k)}=\sum_{i=1}^{n} a_{i j} w_{i}^{(k)}$

 بـه طـور مـشــابـهـ $N_{K}(\alpha)=\operatorname{det} A=\operatorname{det}\left(\Omega A \Omega^{-1}\right)=\operatorname{det} A \circ=\alpha^{(1)} \cdots \alpha^{(n)}$. $\operatorname{Tr}_{K}(\alpha)=\operatorname{Tr}_{K}(\alpha)=\operatorname{Tr}\left(\Omega A \Omega^{-1}=\operatorname{Tr} A_{\circ}=\alpha^{(}\right)+\cdots+\alpha^{n}$

 Qه هستند. بنابراين

 همیچنين نرم حاصلضرب دو عنصر K، حاصلضرب نرم آن عناصر است. تذكر V.lo فرض كنيـم K

 برارى؛) بردارى روى $n=l m$ و n است. در اين صورت $\beta_{\urcorner}, \beta_{1} \alpha, \cdots, \beta_{1} \alpha^{m-1}, \beta_{\uparrow}, \beta_{\uparrow} \alpha, \cdots, \beta_{\uparrow} \alpha^{m-1}, \cdots, \beta_{l}, \beta_{l} \alpha, \cdots, \beta_{l} \alpha^{m-1}$

فصل 10 ．هيأت هاى اعداد جبرى（يى）
يك پايه برای K روى هيأت Q تشكيل مى دهند．فرض كني متناظر با α در نمايش منظم K K نسبت به اين پايه است．در اين صورت

$$
A_{1}=\left|\begin{array}{cccc}
A & \circ & \cdots & 0 \\
0 & A & \cdots & 0 \\
0 & \circ & \cdots & A
\end{array}\right|
$$

 هستند، اگگ گيريم كه $\operatorname{Tr}(A)$ و $\operatorname{Tr}\left(A_{1}\right)=l \operatorname{Tr}(A)=-l-a_{m-1}$ اعدادى صحيح اند．به طور ．$N_{K}(\alpha)=\operatorname{det} A^{\prime}=(\operatorname{det} A)^{l} \in \mathbb{Z}$ مشابه

اثبات．فرض كنيم $. \operatorname{Tr}_{K}(x y)=\operatorname{Tr}_{K}(1)=n ، y=x^{-1}$ متحراً $\operatorname{Tr}_{K}(x y)$ به طور مشابه براى

نتيجه ． $1 \leq i, j \leq n ، \operatorname{Tr}_{K}\left(w_{i} w_{j}^{\prime}\right)=\delta_{i j}$ وجود دارد به قسمى

$$
\text { در }{ }^{\text {O}} \mathbf{O}_{K}=Z w_{1}+Z w_{\Upsilon}+\cdots+Z w_{n} \text { و }
$$

اثبات．از آنجا كه برای هر عنصر α در號 كنيم ，

$$
\begin{equation*}
\operatorname{Tr}_{K}\left(v_{i} v_{j}^{\prime}\right)=\delta_{i j} \quad, \quad \mid \leq i, j<n \tag{1.1०}
\end{equation*}
$$

برایى هر
 لذا طورى كه شده يا，شاری،
 باشند و اثبات تمام است．

تعريف. عناصر \}
 شامل يك عدد صحيح ناصفر است. تذكر زير، بيان كلي اين نتيجه است.
تذكر ه
 A a $a_{\circ} \neq 0$ تذكر © از آنجا كه A داراي عنصر 1 آ . $l \alpha \in A$ A $l \neq \circ ، \alpha \in K$
 هايى باشند كه در قضئُ بنابراين به لحاظ اين كه حلقدُّ A
 داشته باشيم m=n m توييم . $p_{i j} \in \mathbb{Z}$ ، $v_{i}=\sum_{j \geq i} p_{i j} w_{j}$ آن مى توان
 وجود دارد كه a^{K} برابر $\mathbf{O}_{K} / a \mathbf{O}_{k}$ بري
 . $N(A)=0$ نمايش داده مى شود. اگر $N(A)$

 اول متمايز در \wp باشنـد، مى توانيم اعديّ號 $x p+y q=1$ دقيقاً يك عدد اول عدد اول $p \in \mathbb{Z}$ ، عدد اولِ كويا ناميده مى شود.
قضيه ه 0.1 حلقهٔ اعداد صحيحِ

مجموعه تمرينهاى پ

 نيستند و و
 شود، زوج است.

ب. پ. مشترك نيستند ياييد.
ب. باشد.

پ . . نشان دهيد:
 است
(ب) عنصر عبارنت از از

($\bmod \boldsymbol{\Gamma}$) آن كاه

فصل 11

حوزه هاى ددكنيد

> حورْه هاى ددكيد را فراهم مى آورد.
11.1

فرض كنيم R يى حوزه صحيح و K هيأت خارج قسمتهاى آن باشد.

$$
\text { را با }{ }^{\prime} \text { نمايش مى دهيم. }
$$

$$
\begin{aligned}
& \text { تذكر 1.11 هر ايد آل R به طور بديهى يى ايد آل كسرى است. آن رايى ايد آل }
\end{aligned}
$$

$$
\begin{aligned}
& \text { در آن } \\
& \text { تعريف. برای ايد آل كسرى RA R } R \text { مجموعهٔ } \\
& \{x \in K: x A \subset R\}
\end{aligned}
$$

تمرين (1.1 نشان دهيد كه براى ايد آل كسرى RA RA، مجموعه́ 'A تعريف شده در فوق نيز يك ايد آل كسرى است. الـي

 مـجموعdٔ تمام مـجموعهاى متناهي琽 $\in B$
 A . $A^{\prime}=A^{-1}$
برایى $a R ، ~ \circ \neq a \in R$ به وضوح يكى ايد آل كسرى است. چنين ايد آل كسرى را ايد آل كسرى اصلى مى ناميم.
تذكر Y. 11 مى توان مـلاحظه كرد كه هر ايـد آل كسرى اصلى، يـى ايـد آل وارونپّذير است.
 عمل ضرب تشكيل يكى گروه مى دهـ دهند.
 وارونپّير باشد، آن رايى حورزه ددكنيد مى نامند.
 اصلى يك حوره ددكنيد است.

خواص حوزه هاى دد كنيد

در سه قضيه الى كه خواهد آمد، برخى خواص با اهميت حوزه هاى ددكنيد را ثابت خواهيم كرد.

قضيه 1.1 .1 هر حوره ددكنيد، نويترى است.
 A كه
 توليد مى كند. بنابراين R نويترى است.

 يكى ايد آل اول است، داريم PM كاه لذا مى رساند.ه
 يكى حورْء ددكنيد و K هيأت خارج

 R-مدولِ R R برایى

$$
R[\alpha]=R R[\alpha]=R[\alpha]^{-1} R[\alpha] R[\alpha]=R[\alpha]^{-\curlywedge} R[\alpha]=R .
$$

$$
\text { بنابراين } \alpha \in R \text { و اثبات تمام است.ם }
$$

 ددكنيد هستند.(تذكر (11 11 رابييند).

 يافت به طورى كه

$$
P_{\curlyvee} P_{r} \cdots P_{m} \subset A \subset P_{\curlyvee} \cap P_{r} \cdots P_{m}
$$

 ماكيمال باشد. به وضوح I نمى تواند اول باشدد، بنابراين عناصر a و b وجود دارند كه
$A B \subset I$ C A
 b $b I$ A A
 قضيه 11 . 1 فرض كنيم حوزهُصحيح R 1 در شرطهاى زير صدق كند يک) R نويترى است. دو) R به طور صحيح

 بدون از دست دادن كليت، فرض كنيـ \P

 $y \in P^{\prime} \backslash R$ فرض كنيم x يكى عنصرِ ناصفرِ P است. با با توجه به بند قبل، وجود دارد. ايـنـى P (P. بـنابر شرط (سه) يـكى از دو برابري
 مثبت n، n و
 است. فرض كنيم و إِ اين صورت
 انتخاب y است. بنابراين
 و (سه) مذكور در قضيه قبل صدق مى كند
 كه صرف نظر از ترتيب، به طور يكتا مشخا مشص مى شو شوند نوشت.

 ايد آكهاى اول است. ميتوانيم عنصرير حاصلضرب (سه)، طورى كه A A כ م. در اين صورت موجب قضيه قبل يى ايد آل كسرى م

 كه متناقض با فرض انتخاب A A است.
اكنون به اثبات: يكتايى تجزيه مى پردازيم. اكر ممكن باشدي، فرض كنيم ايد آل سرهٔ $A \subset R$ داراى دو تجزيةٔ

$$
\begin{equation*}
A=P_{\backslash} P_{r} \cdots P_{r}=\wp_{1} \wp_{r} \cdots \wp_{n} \tag{1.11}
\end{equation*}
$$

باشد، كه شامل يكى از ايد آهایى است،
 چجنين نتيجه مى شود كه $r=s$ و و تجزيه با تقريب مرتبه يكتاست.
 .
اثبات. عنصرِ كه ك و و را مى توان به صورت حاصلضرب ايد آكهاى R كه به طور يكتا مشخص مى شوند نوشت، نتيجه حاصل مى شـو

 صحيح در يك هيأت اعداد جبرى يكى حورزء دودكنيد است.

ددكنيد R برابر با
(A A A A=BC به ازای يك ايد آل C آ
 ايد آل همان $A+B$ + A است.

 كند، گويند A و B و نسبت به هي هم اولند.

$$
. a-b \in I
$$

تمرين اول R باشد. در اين صورت نشان دهيد كـن كه براى هر هر
 تمرين بعد تعميم طبيعى قضيهٔ باقيمانده چیينى براى حوره هالى دد كنيد است. تمرين ددكنيد بوده و همنهشتهالى

 است.

تمرين 7.11 نشان دهيد كه يك حوره ددكنيد يکح ت ى است اگر و تنها اگر
يك ح اص باشد.
تذكر 7.11 حلقه $\mathbb{Z}[\sqrt{-0}$ كه حلقـةُ اعداد صـحيح در هيأت اعداد جبري (فصل (فصل $\mathbb{Q}[\sqrt{-\infty}]$

 بودن اعداد اول گويا به دست مى آيد.

مجموعه تمرين ت

$$
\text { وجود دارد به طورى كه } \left.A \text { (} A B,(\omega))_{s}\right) .
$$

ت.
كه جبرى توليد شود.
ت. صحيح $K=\mathbf{Q}\left[\xi_{p}\right]$ بانشد نشان دهيد كه $.\left(1-\xi_{p}\right) \mathbf{O}_{K} \cap \mathbb{Z}=p \mathbb{Z}(\checkmark ی$
دو برایى هر

 جپند جملهاى تحويلنإنذير يک) براى عدد اول كوياى

$$
f(x)=\prod_{\substack{(a, m)=1 \\ 1 \leq a<m}}\left(x-\xi_{m}^{a}\right)
$$

$a \in \mathbb{Z}, p \nmid m$ سه) برای عدد كوياى اول俍
جهار) برای عدد گوياى اول

فصل IT

هيأت هاى درجه دوم

 اين هيأت توجه بيشترى كرده، بعضى اطالاعات واضح تر در در باره عناصر آن به دست خواهيم آورد.

پ اY.1

تعريف. اكري K يك هيأت اعداد باشد، به كونه الى كه
 شكل عدد صحيح ثابت، مثبت يا منفى است كه مربع كامل نيست يك هيأت اعداد درجه دوم K، حقيقى يايك هيائت اين ائداد موهومى است بر حسب اين كه $K \subset \mathbb{R}$ كيا اين كه حينين نباشد.

 هيأت درجه دوم موهومى باشد، آن كاه

تذكر هيأت درجه دوم باشد. در اين صورت، به ازايى

$$
\text { و } \alpha=「 p \text { و }
$$

$$
a^{\boldsymbol{r}}-\boldsymbol{\digamma}^{\boldsymbol{r}} m \equiv \circ \quad(\bmod \boldsymbol{\Psi})
$$

اينـكى از رابـطه هـاى $s, l \in \mathbb{Z}$ 隹 آر
 . $f \in \mathbb{Z}$ ديگر

$$
\alpha=\frac{a}{r}+\frac{f}{r} \sqrt{m} \quad a, f \in \mathbb{Z}
$$

در اين حالت از (و f هر دو زوج يا هر دو فرددند. در هر الت الت

$$
a=u+v \frac{1+\sqrt{m}}{r}, u, v \in \mathbb{Z}
$$

$$
a=u^{\prime}+v^{\prime} \sqrt{m} \quad u^{\prime}, v^{\prime} \in \mathbb{Z}
$$

خلاصه كنيم

$$
O_{K}=\left\{\begin{array}{lll}
\mathbb{Z}+\mathbb{Z} \frac{1+\sqrt{m}}{\sqrt[r]{n}} & m \equiv 1 & (\bmod \boldsymbol{\Psi}) \\
\mathbb{Z}+\mathbb{Z} \sqrt{m} & m \equiv \boldsymbol{\Gamma}, r & (\bmod \boldsymbol{\Psi})
\end{array}\right.
$$

ملاحظه مى كنيم كه به علتِ بدون مربع بودن m، حالت (mod f) نمىتواند رخ بدهد.

تذكر Y.Ir فرض كنيم $K=\mathbb{Q}(\sqrt{m})$ يك هيأت درجه دوم باشند، كه در آن m m Z

$$
\begin{aligned}
& \text { مى خواهيم پايه الى براى O } \\
& \text { حالت يك (}
\end{aligned}
$$

$$
d=d\left(\mathbb{Q}(\sqrt{m})=\left|\begin{array}{ll}
1 & \frac{1+\sqrt{m}}{r} \\
1 & \frac{1-\sqrt{m}}{r}
\end{array}\right|^{r}=m\right.
$$

اكر

$$
\mathbf{O}_{K}=\mathbb{Z}+\mathbb{Z} \frac{d+\sqrt{d}}{r}
$$

بنابراين قضيه زير را خواهيم داشت.
قضيه I. IT مبين به طور يكتا يك هيأت درجه دوم را مشخص مى كند.

M.Y.Y شكافيدن اعداد اولِ گويا

تـعـريـف. فـرض كـنـيـم K يــى هـيـأت درجـه دوم و ه يـــى ايـد آل دلـخـواه در $p>0$ o \mathbf{O}_{K} هـــچنيـن的 ${ }^{r}=N_{K}(P)=N\left(p \mathbf{O}_{K}\right)=N(\wp,) \cdots N\left(p_{r}\right)$

$$
\text { . N((}(\wp)=p^{\top} \text { يا اين ك } N(\wp)=p
$$

$$
\begin{aligned}
& \text { زير برقرار خواهد بود. }
\end{aligned}
$$

$$
\begin{aligned}
& P \mathbf{O}_{K}=\wp=\wp^{\prime} \text { (و } \\
& \wp=\wp^{\prime}, P \mathbf{O}_{K}=P^{\dagger}\left({ }^{\gamma}\right.
\end{aligned}
$$

در حالت (يک) گوييم باقى مى ماند. سرانجام اكر (سه) برقرار شود گوييم p در K منشعب مر مى شود.
 باشند آن كاه براى عدد اول فرد ($\frac{d}{p}$) =

يى) اگر ا

$$
y^{\curlyvee} \equiv d \quad(\bmod p) \quad(\Upsilon . \backslash Y)
$$

فرض كنيم هو إيدآل توليد شده با p و و y باشند، در اين صورت

$\wp \wp^{\prime} \subset p \mathbf{O}_{K}$
اينى از اين واقعيت كه مى شود كه 'ropy \&
 همحْين (

 كه نتيجه مى دهد بر به عكس فرض كنيم در اين صورت از اين جا معلوم مى شود كه

$$
\alpha=k+l \frac{d+\sqrt{d}}{\Gamma}
$$

$$
(7.1 ז)
$$

كه در آن

شود كه

$$
\left(\ulcorner k+d l)^{\Upsilon} \equiv l^{\curlyvee} d(\bmod p)\right.
$$

 است، داريم $s^{「} \equiv d$ ،ZZ . $\left(\frac{d}{p}\right)=1$) 1 ($\bmod p$)
دو) فرض كنيم در اين صورت

> يك ايد آل اول است.

θ 有 $\theta=k+l \frac{d+\sqrt{d}}{r} \in \wp$
كه $\theta^{r} \in p \mathbf{O}_{K}$

$$
\begin{aligned}
& \theta^{r}=\frac{1}{\mu}\left((r k+l d)(r k-l d)+l^{r} d\right)+l(r k+l d) \frac{d+\sqrt{d}}{r} \\
& \text { چجنين بدست مى آوريم كه } \\
& \left.p \mid((\uparrow k+l d))(\uparrow k-l d)+l^{r} d \quad \text { (} 1 . \backslash ケ\right)
\end{aligned}
$$

9

$$
p \mid l(\ulcorner k+l d)
$$

اگر مى كند．از آنجا كه p فرد است، k｜ يك تناقض است．

 سه）درستى（سه）نتيجه（يكى）و（دو）است．
 بدون اثبات آن را بيان مى كيم

قضيه Y Y．ا فرض كنيم K يك هيأت درجه دوم با مبين d باشد．آن كاه
يك）
 سه）

K．Y．K

اككون كار خود رابا مطالعهُ كروه يكه ها در هيأت هالى درجه دوم ادامه مى دهيم．ابتدا حالت هيأت هاى موهومى رادر نظر مى كيريم．

قضيه F．IY فرض كنيم $K=\mathbb{Q}[\sqrt{-m}$ يك هيأت درجه دوم موهومى باشد．در اين صورت گروه يكه ها، در K K به شرح زير است．

فصل ז1 . هيأت هاى درجه دوم
يک) اكر اك ا چهارز واحد است.
دو) اكر سه) اكَ m هر عد
 بنابراين كروه يكه هاى K ريشه هالى واحد در K است است

$$
O_{K}=\left\{\begin{array}{lr}
\mathbb{Z}+\mathbb{Z} \frac{1+\sqrt{m}}{\sqrt[r]{r}} & -m \equiv 1 \\
\mathbb{Z}+\mathbb{Z} \sqrt{m} & (\bmod \boldsymbol{\varphi}) \\
\hline \boldsymbol{r}, r & (\bmod \boldsymbol{\varphi})
\end{array}\right.
$$

براى (

$$
\text { از } a= \pm 1 \text { و } b=0, b= \pm 1 ، a=0 \text {, } a=
$$

به طريقى مشابه، در حالت (
 در حالت (دو) قضيه بيان شدهاند.
俍 $+r_{Y}-1=1$
 يكريخت است.

 شود. اما در بين \} اكنون معادله ديو فانتى موسوم به معادله پِ’’ را در نظر مى گیريم

$$
a^{r}-m b^{r}={ }_{-}^{+}
$$

كه در آن $m \neq 0$ ي
 (1 .$(0, \pm \mathbf{1})$
در حالتى كه 1 (m ي

 فرض كنيم باز هم تجزيه و تحليل خود را به دو حالت تق الت حالت يك (در اين حالت

$$
Q_{K}=\mathbb{Z}+\mathbb{Z} \sqrt{m}
$$

از آنجا كه يكه هاى K اعداد صحيح با نرم +هستند، يكه ها هاى K $a, b>0 ، a, b \in \mathbb{Z}$ هستند، اعدادى به شكل

$$
N(\alpha)=(a+b \sqrt{m})(a-b \sqrt{m})=a^{ケ}-m b^{ケ}= \pm 1
$$

بنابراين اكر يكةٔ بنيادى

$$
a_{n}+b_{n} \sqrt{m}=\left(a_{1}+b_{1} \sqrt{m}\right)^{n} \quad n \geq 1
$$

آن كاه دنبالهٔ
 خواهد داد. در اين حالت معادله
 دنبالهٔ (

$$
\begin{aligned}
& \text { براى } m=\text { ر } \quad \text { ر مى دهد. } \\
& m \equiv 1(\bmod \boldsymbol{Y}) \text { حالت }
\end{aligned}
$$

در اين حالت هستند. اكر

فصل ז1 . . هيأت هاى درجه دوم
اين حالت نيز جوابها مانند حالت قبل به دست مى آيند. همـحنّنين در اين حالت

هيأت هاى اقليدسى نرم

تعريف. هيأت درجه دوم K ر الاقليدسى -نرز مى ناميم هر كاه حلقه اعداد صحيح آن با تابع اندازه | (آQ/Q

$$
\left|N_{K / \mathbb{Q}}(a-b)\right|<1
$$

 وتنها اگر m برابر با Y ا
تذكر
 رااختيار كند، آن كاه

 ارائه شده بود.

 است.
تذ اقليدسى -نرم است اكر و تنها اكَ . 19

 (حوزئ اليد آلاى اصلى است اما حوزه اقليدسى نيستند، فراهم مى آيد.
 نشان داده است كه هر كاه هيأت اعديا

 مقالدهاى [GMM 19АV] و [Ge1900] مراجعه كرد.

در اين جا، كاربردى از دانشِي خود دربارئهيائت اعداد داد را در آرّمون اوّل بودن

$$
\begin{aligned}
& \text { قضيه } \\
& \text { اكر و تنها اكر } \\
& \text { ت } S_{n}=S_{n-1} \text { - } \\
& \text { يِيش از اثبات، به اثبات دو لم مى پردازيم. } \\
& \text { فرض } \\
& \text { توجه مى كنيم كه } \\
& \text { براى اعداد صحيح كا }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (آيد } \\
& \tau^{M} \Gamma^{\frac{M-1}{\gamma}} \equiv 1_{+} r^{\frac{M-1}{\gamma}} \sqrt{\Gamma}(\bmod M)
\end{aligned}
$$

 Z $Z \subset O$

$$
\begin{aligned}
& r^{\frac{M-1}{r}} \equiv\left(\frac{r}{M}=\backslash(\bmod M)\right. \\
& \mu^{\frac{M-1}{\Gamma}} \equiv\left(\frac{\Gamma}{M}=-\backslash(\bmod M)\right. \\
& \text { اكنون از(Y./)، (ז./) و (ץ./) داريم } \\
& \tau^{M} \sqrt{\Gamma} \equiv 1-\sqrt{\Gamma}(\bmod M) \\
& \text { به عبارت ديگگ، به ازاى يكى } \theta \in O ، ~ . \\
& \sqrt{\Gamma}\left(\tau^{M}-\bar{\tau}=M \theta\right. \\
& \text { از آنجا كه } \\
& \tau^{M} \equiv \bar{\tau}(\bmod M) .
\end{aligned}
$$

ولذا

$$
\tau^{M+1} \equiv \tau \bar{\tau} \equiv-\(\bmod M
$$

بنابر لم آ.r، همنهشتى زير را در o داريم

$$
\tau^{\tau^{p}}+1 \equiv \circ\left(\bmod M_{p}\right)
$$

كه ازر آن نتيجه مى شود

$$
\left.\left.\left.\omega^{\varphi^{p}-1}+1 \equiv\right)\right) \bmod M_{p}\right)
$$

ولذا بنابر (1/)،

$$
\omega^{r^{p}-r}+\bar{\omega}^{r^{p-r}} \equiv \circ\left(\bmod M_{p}\right)
$$

بنابر اين به موجب لم T.1،، داريمريم . $\delta \in \mathbb{Z}$ هي

$$
\begin{aligned}
& \text { برعكس فرض كنيم p يـى عدد اوّل فرد است و }
\end{aligned}
$$

$$
\begin{aligned}
& K=\mathbb{Q}(\sqrt{Y}) \text { (} Q_{k} \text { كه } \\
& \text { عاد مى كند داريم : } \\
& \omega^{r^{p-1}+1} \equiv \circ(\bmod q)
\end{aligned}
$$

$$
\begin{aligned}
& \text { آنجا كه مرتبه كروه } \\
& r^{p} \leq q^{r}-1 \leq M_{p}-1=r^{p}-r \\
& \text { كه غير ممكن است. بنابراين M اوّل است. }
\end{aligned}
$$

فصل H1

حل مسائل برگزيله

ا. آنجا كه در يكى هيأت تمام عناصر ناصفر يكه هستند، بيان اول

 عنصر ناصفر r يكه و R ي يك هيأت است است.

 بنابراين،
 عنصر ناصفر R داراى وارون است و اثبات تمام مى شود.〒.0 از آنجا كه ايد آل صفر به S S تعلق دارد S Sتهى نيست.

 باشد. به موجب لم تسورن S دارالى عضو ماكسيمال M م مى باشد.

فصل r 1 . حل مسائل برگزيده
 $n \mathbb{Z}=\{n r \mid r \in \mathbb{Z}\}$

 $r \neq 0$ تقسيم،
 H = mZ n n ه (ب) فرض كنيـم G يـى گروه دورى و a يـى مولد آن بـاشد.隹 $f: \mathbb{Z} \longrightarrow G$
 m
 (پ) از قسمت (آ) نتيجه مى شود.
Y. افرايشى باشد، آن گاه عدد كه عدد فرد m را عاد مى كنـد، نمى تو توان m بايد مقسوم عليه الى به شكل شل تواند هيج يكى از

 $a^{\prime} m \equiv b^{\prime} m\left(\bmod m^{\prime}\right)$ آگر $a^{\prime} \equiv b^{\prime}$, $\quad . a m^{\prime} \equiv b m^{\prime}(\bmod m)$ و .$a \equiv b(\bmod m) g\left(\bmod m^{\prime}\right)$

تحويل يافته به ييمانه 'm تغيير كند، نشان می دي دهيم كهي تحويل يافته مانده ها به بيمانه $m m$ تا تغيير مى كند.

در قسمت (آ) نشان داديم كه اعداد اولى باشد كه (مى كند، اگر

$$
\text { است، بنابراين } \left.1 \text { = (} 1 \text {). } m m^{\prime}, a^{\prime} m+a m^{\prime}\right)
$$

 $\left(a^{\prime}, m^{\prime}\right)=\mid$ 'به طور مشابه \mid ، $\mid=(d, m)=\left(a^{\prime} m+a m^{\prime}, m\right)=\left(a m^{\prime}, m\right)=(a, m)$
بدين ترتيب اثبات (ب) كامل مى شود.

$$
\phi\left(p^{a}\right)=p^{a}-p^{a-1}=p^{a}\left(1-\frac{1}{p}\right)
$$

(I.f m است در نظر مى كيريم. ملاحظه مى كنيم كه مـجموعهٔ

 0.1 يـافتـه مـاندههـاى، $\}$. بنابراين
 7.1
(p, n) = 1

$$
\begin{align*}
& n^{p-1} \equiv 1 \quad(\bmod p) \tag{1.1F}\\
& n^{r} \equiv-1 \quad(\bmod p) \tag{Y.IF}
\end{align*}
$$

در صورت امكان، فرض كنيم است فرد و لذا از (Y.I (Y) تتيجه مى شود كه

فصل ٪ ا . حل مسائل برگزيده

$$
n^{p-1} \equiv-1 \quad(\bmod p)
$$

 زيرا كند به شكل به شكل

$$
p_{\backslash}=\Delta, p_{\Gamma}=\mid r, \cdots, p_{r}
$$

اكنون عدد عليه d فرد است. بنابِ

 Y. 1

 داراى جواب صحيح نيست. و $\left\{a^{r}, \circ \leq a \leq \frac{p-1}{r}\right\}$ همحچنين عناصر مجموعه

 مانند داريم به سادگى مشاهده مى شو شود كه (
 اعداد اول به شكل
 $b \equiv b_{i}$ و بنا بر قضيه باقى ماندهٔ $. a^{r}+b^{r}+1 \equiv 0(\bmod n)\left(\bmod p_{i}^{r_{i}}\right)$
 يك عدد صحيح باشد و و آ

$$
\sum_{r \leq i \leq n} \frac{1}{i}=m-\frac{1}{d}
$$

 توان كه بزركترين توان كا اعداد صحيح استر

 . $(\bmod a b)$
(آ.ب) كسرهاى)

$$
\frac{1}{n}, \frac{r}{n}, \cdots, \frac{n-1}{n}, \frac{n}{n}
$$

را در نظر مى گيريم. اگر اين كسرها را ساده كنيم فقط

 مخرج خود دارند، آنها عبارتند از

$$
\frac{d^{\prime}}{n}, \frac{r d^{\prime}}{n}, \cdots, \frac{d d^{\prime}}{n}
$$

و تعداد آنها برابر باd است و مى توان آنها را به شكل

$$
\frac{1}{n} \frac{Y}{n}, \cdots, \frac{d}{d}
$$

نوشت. بنابراين در بين كسرهاى ساده شده، دقيقاً (d) كسر وجر وجود دارد كه مـخرج آنها برابر با d است، از آنجا كا كه n كسر وجود دارد، داريم

 مشاهده مى كنيم كه تعداد مولدهاى H برابـ

细 $n=\sum_{d \mid n} \phi(d)$

 وجود دارد. اينك مرتبه ($\left.n / p^{j}\right) p^{i}>n$ مى باشند كه با ماكسيمال بودن
 يك هيأت متناهى باشد، فرض كنيم α يك عنصر

 كيريم كه مرتبه اين
 تعداد جواب هاى معادلئ (
($F_{p}=\frac{\mathbb{Z}}{p \mathbb{Z}}$
 هـاى (أَ $\frac{\mathbb{Z}}{p Z}$, $(x-\overline{1})(x-\bar{Y}) \cdots(x-(\overline{p-1}))=\bar{\circ}$

اول تمرين نتيجه مى كيريم كه اين عبارت بر p بخششّذير است. اين واقعيت همان بيان
($1 . 千$ سادگى ديده ميشود كه و نه تحويلنإپذير نيست
(Y.Y فرض كنيم R R در آن مانند
 به طور مشابه اكر
 دهيم كه اگر α حاصلضرب دو

 به ازایى
 ازاى مى كيريم كه اينكى ($)=$

1.7

位 $a_{i} \in F ؛ a_{\circ}+a_{\wedge} \alpha+\cdots+a_{n} \alpha^{n}$
 است. 11.7

فصل ٪ ا. . حل مسائل برگزيده

$$
\begin{aligned}
& f\left(x_{1}, x_{\curlyvee}, \cdots, x_{\left.\Upsilon_{p-1}\right)} \sum_{i=1}^{\Upsilon_{p-1}} x_{i}^{p-1}\right.
\end{aligned}
$$

$$
g\left(x_{1}, x_{\curlyvee}, \cdots, x_{\curlyvee_{p-1}}\right)=\sum_{i=1}^{ケ_{p-1}} a_{i} x_{i}^{p-1}
$$

 ايـن كـه , $\left.\alpha_{1}, \cdots, \alpha_{n}\right) \in F_{p}^{n}$

$$
\begin{equation*}
\sum_{i=1}^{r p-1} \alpha_{i}^{p-1}=0 \tag{7.1F}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{i=1}^{r_{p-1}} a_{i} \alpha_{i}^{p-1}=0 \tag{V.If}
\end{equation*}
$$

براى هر نتيجه مى شود كه دقيقاً
I.V

$$
\begin{aligned}
\left(\frac{r \Delta}{1009}\right) & =\left(\frac{r r}{109}\right)\left(\frac{\Delta}{1009}\right) \\
& =\left(\frac{D}{109}\right) \\
& =\left(\frac{1009}{\Delta 09}\right)(-1)^{\frac{1009-1}{r} \frac{\Delta-1}{r}} \\
& =\left(\frac{1009}{\Delta}\right) \\
& =\left(\frac{9}{\Delta}\right)^{-1}=1 .
\end{aligned}
$$

 پیيمانه

 اين عدد اول (mod $)$ ($)$ (

 شده داراى جواب نيست.
 باشد. عدد صحيح

 باشد. از آنجا كه q نمى تواند در بين اعداد اولِ است.

ب 1 فرض كنيد σ تابع اندازه باشد كه R R را به يكى حوزءٔأقليدسى تبديل مى كند.
 يعنى براى هر عنصر ناصفر و نايكه
 دهد كه r نمى تواند يكى عنصر نايكه R R باشد.

 وجود دارد كه (

竍 $u v=r$ r $r \in R$ موضوع براى هاى

 (ب 7) فرض كنيم α مولد گروه دورى (

فصل r ا . حل مسائل برگزيده
مى كنيم اين واقعيت را ثابت كرده ايم كه روى F ${ }^{\text {F }}$ و بـه طور مشابـه روى

 است و اين به علت آن است كه ريشه براى معادلهٔ (ب) دو چوند جمله الى متمايزر با ضرايب در يكسان را نمايش نخواهن اند داد

 كند. اينك فرض كنيم R حلقه الى است كه هر تابع

 و مجموعهٔ دوم دارای عدداصلى متناهى باشد مى توانند برابر باشند. ادعا ما مى كي تابع

$$
g_{r, y}(x)=\left\{\begin{array}{cc}
y & x=r \\
\circ & x \neq r
\end{array}\right.
$$

$g_{r, y}$

$$
a_{n} x^{n}+\cdots+a_{\circ}=\circ \quad, x \neq r \quad \text { (入.If) }
$$

$$
a_{n} r^{n}+\cdots+a_{\wedge} r+a_{\circ}=0 \quad\left(19.1 \varphi^{9}\right.
$$

داريم كه R متناهى است، نتيجه مى گيريم كه rx $x=0$

است.(بنابر تمرين
 اين پرسش است كه آيا معادله́ طرفين معادله را در F $\overline{\text { F }}$ كه وارون
 كه در معادله صدق مى كنند.

 (mod ^)

 (يكى از اعداد
 اينى ملاحظه مى كنيم كه (mod \wedge (اولى به شكل (
 زيرا
 شكل ($)$ شده داراى جواب نيست.

1. 1 حلقّهٔ
仿\}
 ملاحظه مى كنيم كه مـجموع\&ٔ مى كند. اما q مستقل خطى ني

 زير مدول هاى , $i \neq s$ فرض $s \in S$

فصل r ا . حل مسائل برگزيده
re 1 . . است
 فضاى بردارى روى هيأت $F=R / A$ است. اگر S يكى پايه برایى M باشند، آن كاه

^.^.

 f $f_{i}(x)$ باضرايب پيشرو

 لذا A A نيز متناهى توليد شده مى بـن باشد

 عنصر ماكسيمال T T S S به دست مى آيد
 $T+b R$ به موجب ماكسيمال بودن T T T م T متناهى توليد شده است با در آن

 , را توليد كند و قرار دهيم T ر T (T : $b R$)، $\left\{c_{1}, c_{Y}, \cdots, c_{l}\right\}$ مـجموعةٔ

 باشد. بـه سادگى مى توان مشاهده كرد كه الـا روى K است. در واقع اگر

IIV

فضاى دوگان پايه

 پايه برای V باششد، فرض كنيم

$$
\text { وجود دارد كه } B\left(w_{i}, w_{j}^{\prime}\right)=f_{j}\left(w_{i}\right)=\delta_{i j} \phi\left(w_{j}^{\prime}\right)=f_{j} .
$$

(\uparrow (.) فرض كنيم قسمتهاى حلتهُ مفروض است. داريم

$$
\alpha^{r}=\frac{1+r \sqrt{n}+n}{\varphi}=\frac{r \sqrt{n}+\boldsymbol{\varphi} k+r}{r^{r}}=k+\alpha
$$

لذا ه $R=\mathbb{Z}+\mathbb{Z} \sqrt{n}$

 ازأى اعداد صححيحى مانند n برابر با m با m با
 كاوسى است تناقض دارد.

 شكل $t z, t y, t x$ هستند كه $t \in \mathbb{Z}$ در t هـ
 يكى يكه در (1i.i، -

$$
x=+\left(c^{\zeta}-d^{\curlyvee}\right), \quad y=+ケ c d, \quad z= \pm\left(c^{\zeta}+d^{\zeta}\right)
$$

شرط هاى موجود بر z, y, x ايـجاب مى كند كه d, c نسبت به هم اول
 (lo. () به دست مى آيند.

فصل ז1 . . حل مسائل برگزيده
 $\alpha, \beta \in$ كنيم كه برای دو عنصر
 كه در آن信
$N(\beta / \alpha-k)=\left(r_{\Upsilon}-m_{\curlyvee}\right)^{r}-\left(r_{\Upsilon}-m_{\curlyvee}\right)\left(r_{\Upsilon}-m_{\Upsilon}\right)+\left(r_{\Upsilon}-m_{\Upsilon}\right)^{r}<1$.
بنابر اين با نوشتن

$$
N(\rho)=N(\alpha \cdot(\beta / \alpha-k))=N(\alpha) N(\beta / \alpha-k)<N(\alpha)
$$

(ت) قسمت دوم را انجام مى دهيم، فرض كنيم q عدد اول گويايى باشد به طورى

$$
\text { كه (mod } \Gamma \text {) } q \text { د داريم }
$$

$$
(-\Gamma / q)=(-1)^{\frac{q-1}{r}}(q / r)(-1)^{\frac{q-1}{\Gamma} \frac{r-1}{r}}=1
$$

 ك آنجا كه

 اكر
 (ث) در اتـحاد (اول است.

 rxy $\in R$ ايد آل كسرى است.
 مشمول نيست و بايد برابر با R باشند
 عنصر \} چچينى برایى

$$
y_{j} \equiv x_{j}\left(\bmod _{\wp_{j}}^{\mathfrak{j}}\right)
$$

و براى

$$
y_{j} \equiv \backslash\left(\bmod _{\wp_{i}}\right), i \neq j .
$$

پی برایى هر

 فرض كنيم I وجود دارد بـه طورى كه , 1 عنصر ماكسيمال مانند M است. فرض كنيم P كاريم

 MR=PJ ס يكه است. به طور مشابه اكر كا ادعادرا ثابت مى كند. عناصر اين صورت اما اي , عنصر تحويل نإنذير بايد اول باشد.

فصل ٪ ا. . حل مسائل برگزيده
نشان مى دهيم. داريم

$$
\left|\mathbf{O}_{K} / A P\right|=\left|\mathbf{O}_{K} / A\right| \cdot|A / A P|
$$

اينى A/AP يى O O روي ${ }^{\text {O}}$ / است.

 وجود ندارد. بنابراين A/AP يك فضاي نتيججه مى دهد كه

$$
.\left|\mathbf{O}_{K} / A P\right|=\left|\mathbf{O}_{K} / A\right| \cdot\left|\mathbf{O}_{K} / P\right|
$$

 كنيم آنجا كه A $A_{\text {ا }}$
 اول شامل عدد اول كوياى p، به ازالى يـى درجهٔ ندارد. بنابراين با شرط

كه در آن
از آنجا كه صحيح اينـك \mathcal{B} يـى جسم مـحـدب متـق
 ناصفر، مانند
اكنـون

111
D. IY

$$
\begin{aligned}
& \text { K. Y } \\
& \left(\frac{\boldsymbol{F}}{n}\right)^{r_{\curlyvee}} \frac{n!}{n^{n}}|d(K)|^{\Upsilon / \Upsilon}=\frac{\boldsymbol{F} \sqrt{\Delta}}{\pi}<\mu_{\circ}
\end{aligned}
$$

 مستقيماً نير مى توان اين ادعا را ثابت كرد. اگر (

$$
\text { (} \mathbb{Q}(\sqrt{-Q}) \text { برابر با ז است. }
$$

تا فرض كنيـم ، $1 \leq i \leq r$ ايد آل هاى اول و

$$
\alpha_{i} \in\left(\rho_{1}^{m_{1}+1} \cdots \rho_{i-1}^{m_{i-1}+1} \rho_{i}^{m_{i}+1} \rho_{i+1}^{m_{i+1}+1} \cdots \rho_{r}^{m_{r}+1}\right)
$$

را چنان اتنخاب مى كنيم كه

$$
\begin{aligned}
& \alpha_{i} \notin\left(\rho_{1}^{m_{1}+1} \cdots \rho_{i-1}^{m_{i-1}+1} \rho_{i}^{m_{i}+1} \rho_{i+1}^{m_{i+1}+1} \cdots \rho_{r}^{m_{r}+1}\right) \\
& \text { اگر قرار دهيم }
\end{aligned}
$$

ت

$$
. A=A B+w \mathbf{O}_{K}=\alpha \mathbf{O}_{K}+w \mathbf{O}_{K}
$$

 است، بنابراين براي بنابراين $\operatorname{Tr}(1)=p-1$
$\operatorname{Tr}\left(1-\xi_{p}\right)=\operatorname{Tr}\left(1-\xi_{p}^{\curlyvee}\right)=\cdots=\operatorname{Tr}\left(1-\xi_{p}^{p-\}\right)=p$

$$
\frac{x^{p-1}}{x-1}=\frac{(y+1)^{p}-1}{y}=y^{p-1}+p y^{p-r}+\cdots+p
$$

$$
N\left(\xi_{p}-1\right)=(-1)^{p-1} p
$$

فصل r ا . حل مسائل برگزيده

$$
N\left(1-\xi_{p}\right)=p
$$

$$
\left(1-\xi_{p}\right)\left(1-\xi_{p}^{r}\right) \cdots\left(1-\xi_{p}^{p-1}\right)=p
$$

$$
p \mathbb{Z} \subset\left(1-\xi_{p}\right) \mathbf{O}_{K} \cap \mathbb{Z}
$$

\mathbb{Z} است، داريم

$$
\mathbb{Z}=\left(1-\xi_{p}\right) \mathbf{O}_{K} \cap \mathbb{Z}
$$

$$
\mathbf{I} \in\left(\mathbf{I}-\xi_{p}\right) \mathbf{O}_{K}
$$

بنابراين (If.lf)

$$
\begin{equation*}
p \mathbb{Z}=\left(1-\xi_{p}\right) \mathbf{O}_{K} \cap \mathbb{Z} \tag{10.14}
\end{equation*}
$$ اين برابرى، قسمت (آ) را ثابت مى كند.

فرض كنيـم y يـى عنـصر秋 $\left(1-\xi_{p}^{j}\right)$ است كه در آن $1 \leq j \leq p-1$
كه ك

$$
\begin{equation*}
\operatorname{Tr}\left(y\left(1-\xi_{p}\right)\right) \in p \mathbb{Z} \tag{17.1F}
\end{equation*}
$$

اكنون به اثبات قسمت (پ)

$$
\alpha\left(\-\xi_{p}\right)=a_{\circ}\left(\-\xi_{p}\right)+a_{\curlywedge}\left(\xi_{p}-\xi_{p}^{\curlyvee}\right)+\cdots+a_{p-\curlyvee}\left(\xi_{p}^{p-\Upsilon}-\xi_{p}^{p-1}\right)
$$

بنابراين به موجب (

 كه تكرار اين استدلال نتيجه مى گيريم كه برای هر i، i

ت F فقطط به حل قسمت (چهار) مى پردازیم. فرض كنيم (

 به عكس، اگگ (mod mo عنصرa كه مرتبهُ ضربى آن قسمت (سه) قر
اينـك فرض كنيم كه يكى مـجموعهٔ (احتمالاً تهىى) از تعدادى متناهیى عدد اولِ

 $f(s t)= \pm 1, f(s)= \pm 1 \quad(\bmod p)_{i} \iota i=1, \Gamma, \cdots, r$ نتيجه مى دهد كه برای هر ($\bmod m$). اگر كه در اين صورت بنابر قسمت اول، (mod m) هيتج يك از .$P \equiv 1(\bmod m)$
 وجود داشته باشد كه

$$
\left|N_{K / Q}(a-q p)\right|<\left|N_{K / Q}(b)\right|
$$

از آنجا كه نرم ضربى است شرط فوق را مى توان به شكل زير نوشت

$$
\left|N_{K / Q}\left(a b^{-1}-q\right)\right|<1
$$

كنابنامه

AM 1969. M F. Atiyah and I. G. Macdonald, Introduction ton Commutatiiv Algebra, Addison-Wesley.

Ar 1994. Michael Artin, Algebra, Preintic Hall.
Br 1993.J. W. Bruce, A Really Trivial proof of the Lucas-Lehmer Test, Amer. Math. Monthly, Vol. 100, 370-371.

Cl 1994. D. A Clark, A quadratic field which is Educlidean but not norm-Euclidean, Manuscripta math., Vol. 83, 327-330.

DPS 1996. C. Ding, D.Pei, A. Salomaa, Chinese Reminder TheoremApplications In Computing, Coding, Cryptography,World Scientific.

Du 1969. U. Dudley, Elementry Number Thery, W. H. Freeman and Comapny, San Francisco.

EM 1999. Jody Esmonde and M. Ram Murty, Problems in Algebaric Number theory, Springer-Verlage.

GMM 1987. R. Gupta, M. Murty, V. Murty,, The Euclidean Algorithm for S-integers, canada. Math. Soc. Conference Proce., Vol. 7, 189-201.

HW 1981. g.H Hadly \& E. M. wright, An introduction to the theory of numbers, 5th edition, Oxford University Press.

He 1975. I. N. Herstein, Topics in Algebra, 2nd edition, Wiley,New York.

Hu 1982. L. K. Hua, Introduction to Number Theory, Springer-Verlage.
IR 1982. Kenneth Ireland and Michael Rosen, An Introduction to Modern Number Theory, Springer-Verlage.

La 1993. Serge Lange, Algebra, 3rd edition, Addison-Wesley.
Le 1995. Franz Lemmermeyer, The Euclidean algorithm in algebraic number field, Expo. Math. Vol. 13, 385-416.

LN 1983. R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia of mathematics and its aoolications, Vol. 20., Addison-Wesley.

Ma 1977. Daniel A. Marcus, Number Fieldes Springer-Verlage.
Na 1990. W. narkiewicz, elementary and Analytic theory of Algebraic Numbers, 2ed edition, Springer-Verlage.

NRRL 1966. raghavan narasimhan, S. Raghavan, S.S. rangachari and Sunder Lal, Algebraic Number Theory, Tata Institute.

Ro 1988. M ¿ I. rosen, A Proof of the Lucas-Lehmer Test, Amer. Math. Monthly, Vol. 95, 855-856.

Sa 1967. P. Samuel, theorie Algebraique des Nombers, Hermann \& Cie.
Sa 1968. P. Samuel, Unique Factorization, amer. Math. Monthly, Vol. 75, 947-952.

Sp 1994. Karlheinz Spindler, abstract Algebra with applications, Vol. II,Marcel Dekker.

Wa 1982. Lawrence C.Washington, Introduction to Cyclotomic Fields, Springer-Verlage.

We 1973. P. J. Weinberger, on Eucliden rings of algebraic integers, Proc. Symp. Pure Math., Vol. 24, 321-332.

Wy 1972. B. F. Wyman, What is a reciprocity law?, Amer. Math. Monthly, Vol. 79, 571-587.

نمايه

إنا

چند جملهاى تكين چند جمللهاى تحويل ناپپير

درجه يى عضو جبرى
درجه يكى توسيع
دستگاه كامل ماندهها
دنباله دقيق
ر
رابطه هم ارزى
راديكال جيكوبسن
ردة مانده
رده همنهشتى
ريشه تكرارى

زير حلقه
زير هيأت
ش
شاخص اويلر
شاخص
ض
ضربى
ε
عدد اول
عدد گويا

عدد صحيح
ق
قانون تقابل درجه دوم
قضيه باقى مانده چیينى
قضيه بنيادى حساب
قضيه پايه هيلبرت
قضيه ديريكله
قضيه كاهن
قضيه وارنيگى
قضيه ويلسون
گ
گروه
گروه آبلى
گروه رده
گروه دورى
كروه خارج قسمتى
لم كاوس
لم ناكاياما
阝
مبين
مدول
مدول نويترى
مدول وفادار
مشبكه
مشخصه
معادله ديوفانتى
معيار ايزنشتاين
منشعب شده
ن
نامانده درجه دوم

نرم يك ايدآل
نشانه زاكوبـ
نشانه تراندار
نمايش نظم
هس
همريختى حلقهها
همريختى
همريختى فروبنيوس
حجم يكى مشبكه
هيأت اول
هيأت اعداد جانرى
\checkmark
يكه
يكههاى بنيادى
يكريختى حلقهوها
يكريختى كروهاها

وازْهنامُّ انگليسى به فارسى

trace اثر
Gaussian primes اعداد اول گاو
ideal ايد آلي
integral ideal ايد آل صحيح
fractional ideal ايد آل كسرى
quadratic residue باقى مانده درجه دوم
algebraic clouser بستار جبرى
integral clouser بستار صحيح
Riemann zeta function تابع زتاى ريمان
irreduable تحويلنايذير
algebraic extention توسيع جبرى
monic polynomial چچند جمله ای تكين
Noetherian ring حلقه نوترى
Dedekind domainm حوزه ددكيند
exact sequenc دنباله دقيق
Jacobson radical راديكال جيكوبسن
Euler totient شاخص اويلر .
muliplicative ضربى
quadratic reciproaty low قانون تقابل درجه دوم
Chaines remainder theorem قضيه باقى مانده چیينى
Hilbert's theorem قضيه چایه هيلبرت
class group گروه رده
discriminant مبين
faithful modul مدول وفادار
lattic مشبكه .
eisenstin criterion معيارايزنشتاين
ramified منشعب شده
quadratic nonresidues نامانده درجه دوم

