مقلده ای بر نسبيت خاص


انتشارات دانشگًاه بوعلى سينا

$$
\mu \cdot \varepsilon
$$

# مقدمه ايى برنسبيت خاص 

مؤلف :<br>نوراله نظرى يويا<br>عضو هيأت علمى دانشگاه بوعلى سينا

چابٍ اول
1 M M

## فهرست مطالب

فضا و زمان نيو تنىفصل اول
0 ..... مقدمه
v.

1-1 : نظريهٔ ارسطويى حر كت.
if.
Y-1 : نظريئ نيوتنى حر كت..
IV.........................................................................................................
$r$. 1-1 - ب- تبد يلات گاليله.
ry $\qquad$ (-1 ا : اصل نسبيت گاليله و چارجوب مرجع مطلق Yq ..........................................................................

فصل دوم
$\qquad$
ro مقلدمه :
$\qquad$F1........................................................................ آمايش مايكلسون و مورلـ : Y-Y

or. F F of $\qquad$ Y-Y : $\Delta \Delta$ ................................................................ 9 : 9 : نتايج حاصل اصول نسبيت خاص
$\Delta \Delta$ ( $1-9-Y$
$\Delta 9$ Y-Y-Y Y إتساع زمان
49 -Y-Y Y-Y: انقباض طولVIV-Y تـبد
Ar N-Y : أثرهأى نسبيتىAY ..............................................................................................Af: اتساع زمان : Y-A-Y19(
44Y- Y-9 : تبلديل لورنتس سرعت
111 r-- - : شتابب ويزه140Y- | | : ابيراهى نور
ir.

$\qquad$
| ا ا اثر دو
Ify
فضا - زمان نسبيتـىفصل سوم
149 ..... مقلدمه :10.
$\qquad$

$$
10 \mathrm{~V}
$$

r- - - ف : فضا ـ زمان مينكو فسكى.
194 س-r : تغيير چار چوبـ مر جع 194

194
$\qquad$

## Vقدفه V

194. r - -

Y. Y............................. $r+F$ F - F Y. 4 س - 10 : بررسى مجلدد باطلنماى انبار و نردبان.

YII rYYI تمرين :

فصرل تحهارم
YY
PrF 1-
$\qquad$


YF1................................................................................

$r 01$ 9-F

YOV : : V-F
rar. A-F r9A -9 - F
$r 9 q$ 10- - F
rVo : $11-F$
ras : $:$ : $:$ Y
rav



## مقّلمه :

آكاهيها و ييشرفتهالى بشردربارة جهان پيوسته رو به افزايش است. و همان طور كه مى دانـيهى، بخـش اعظطم اين ريشرفت ها در يكـ قرن اخير صورت گرفته است. معمولاً دانشمندان بناى كـار خـود را بـر پايأ يافته ها و گزارشهاى افراد گذشته مى گذارند. و در واقع هرگونـه پيـشرفت در علـمه پرسـشههاى تازه ایى را برمى انگيزد. و اين موضوع نيز باعث مى گردد كه تحقيق و تخيل انسان بــه زمينـه هــايى
 مشاهده و اندازه گيريهاى دقيق و پرزحمت دارد. اينگونه اندازه گيريها و مشاهدات گاهمى النديشه هـاى جديدى را مطرح مى كند وگاه اين ضرورت را آشكار مى كنند كه نظريه هالى موجود را تغييـر داده يـا
 بلكه از ويزگيهاى علم به شمار مى روند.

 قسمتهاى اين سيل آكَهيها را سازمان داده و آنها را معنى ببخشلد. براى آن كه با مـسير ريمـوده شـده در فيزيكـ به طور اجمال آشنا شويهه، لازم است ابتدا يكـ نظريهُ علمى تعريف شود. اما سـاده تــرين تعريفـى




بايلد با توجه به مشاهدات و بررسيهايیى كه در آنَ بخش به عمل مى آيلده تعريف و استخخراج گردند. از طرفْ ديگر، يكى نظرئُ علمى زمانى نظريه أى كامل و خوب الرزيابى مى گَـردد كـه داراراى دو ويزَّى مهمه زير باشد: اولاً أن نظريه بتواند هجموعه وگروه بزرگى از مشاهدات و تحقيقات را درقالــب چچند رابطه و قانون ساده بيان نمايد. ثانياً اينكه بتواند با بهره گيرى از نتـايج مـشاهدات، ييشگوييهایى درست و قاطعى را بـ دست دهد.
به طور كلى يك نظريئ فيزيكى را كه قرار است بخش معينى از جهان را توضيح دهد، نمى توان اثبات كرد. درحقيقت، اين مهم نيست كه نتايج آزمايشات و تحقيقات چند باربا آن نظريه مطابقت مى كند و يا آن را تأييد مى كند. بلكه آنحپه مرمى است، اين است كه نتيجهٔ آزمايش يا تجربه آى آن را نقض نكند. به عبارت ديگّ، حتّى آگرنتيجهُ يك آزمايش يا تحقيق، با پيش بينى هاى آن نظريه توافق نداشته باشده مى توان آن نظريه را كنار گذاشت. و ما هرگز نمى توانيم اطمينان داشته باشيهم كه نتيجئ آزمايش يا تجربه أى ديگر آن را نقض نكند.
از طرف ديگَر، هر باركه نتيجأ يك آزمايش يا مشاهده با ييش بينى هــاى آن نظريــهـ مطابقـت رييدا مى كند، اعتماد ما نسبت به آن نظريه بيشترمى شود. در غير اين صورت، يا بايد بـه طــور كلى آن

 طور كامل كنار كذاشت. و درموارد ديگر، ممكن است نظريهٔ جديل، نظرئه ييشين را اصـلاح و يـا آن را را تكميل نمايد. مانند نظريهٔ نسبيت خاص اينشتين كه نظريه و ايده هاى نيـوتن رادر مـورد حركـت، و همين طور فضا و زمان تكميل و يا اصلاح كرد. مثال ديگرى كه دراين مورد مـى تـوان ذكـر نمـود،



 موارد عملى و كاربردى بسيار نایيز است. ثانياً اينكه كاركردن با نظريئ گرانـشى نيـوتن آسـانتر اسـت.
 رصدهاى بسياردقيق درمورد حركت اين سياره نشان مى دهند كه بين پيش بينى هاي نظريؤ گرانشى



ريحارد فاينمن فيزيكدلأن آمريكايى : هر زمان كه ييش بينى هالى إينشتين با نظرات نيـوتن اخـتالاف پيدا كرده، طبيعت حق را به اينشتين داده است.

 محدوده الى نظريه الى جداكانه ارائه گرديده است. به عنوان مثال، بخشل مربوط بـه فيزيـــ اتمـى و زيـر



حيطه هاى ديگُ.
امروزه، نظريه هاى مختلفى در بخش هاى مختلف علم فيزيكـ ارائه شده است. به عنوان مثـال در ابعاد اتمى و زير اتمى، نظريؤ غالب مكانيكى كوانتمى نسبيتى مى باشد. درمحدودهٔ سرعتهاى بـالا و

 نسبيت عام، نظريؤ غالب محسوب مى شود. اما نكتئ ديگُرى كه مى توان به آن اشاره نمود، اين است كـه بعـضى ازايـن نظريـه هــا كــه در بخش و محدودهٔ معينى ازطبيعت كاربرد داشته اند، براى مدت زمانى محدود، قابل استفاده بوده و بعـد

 اينشتين، دانشمند بزرگ آلمانى ارائه گرديده است اينشتين در اوايل قرن بيستم ميلادى با بيان ديدگاهمهاى خود در مورد مفـاهيم فـضا و زمـان و
 نيوتنى جهان، جاى خود را به نظام اينشتينى مى دهد. درحقيقت مى توان گفت كه ما اكنون در جهان
 بررسى دقيق بسيارى أزنتايج به دست آمده ازتجربيات آزمايشگًاهى در بخـش هـا هـاى مختلـف فيزيــى غيرممكن مى باشد. به عبارت ديگُ، اگراز فيزيكـ نيوتنى در اين بخش ها ها و مباحث از فيزيكـ استفاده شود، با نتايج تجربىى كاملاً متناقضى روبرو مى شويهم.
 بنيادى، ارُنسبيت برأى توضيح دقيق ودرست نتايج آزمايشات أستفاده مى شـود. همچحنـين بـراى فمهـهم

 به طورى كه مى توابن ادعا نمود كه هدف از ازائه نظريئ نسبيت خاص در در واقع بــه دسـت آوردن يــي بينش صحيح و دقيق از نظريهٔ الكترومغناطيس بوده است. به اين ترتيب كه اين نظريـه، مـشكالات و ناسازگاريهايیى كه در نظرئأ الكترومغناطيس و نور شناخت در سالمباى قبل از سال ..19 ميلادى وجود

داشت، به طور كامل توضيح داده و برطرف نمود.

 اثرهاى كاملاً نسبيتى سروكاردارند. اما در مورد اينشتين مى توان گفت كه وى در دوره دانشجويىى با آثار افرادى چون هرتز، در بـاره
 ازآن با انديشه هاى ارنست ماخ در بارة مفاهيم بنيادى فيزيكى، آشنا مى گردد. از طـرف ديگــر، وى بـا بـا

 نسبيت خاص به آنها اذعان داشت و اين موضوع رادر سخنرانى سال IGY| در لندن، مطرح مى كنـــ. وى در واقع، نظريهٔ خود را نتيجئ مستقيم يا به عبارت ديگر، تكامل طبيعى كارهاى فاراده، ماكـسول و

 يعنى نيوتن نيز اذعان كرده است:
نيوتن مرا ببخش، تو تنها راه موجودى را يافتى كه يافتنش در زمـان خـودت، بـراى انـسانى بـا
 راهنماى تفكر ما هستند. هرچند كه وقتى هلف، درك عمیيق تـرروابط بـشود، چـاره ایى جـز جانـشين كردن آن مفاهيم با مفاهيمى بسيار خارج از دايرهٔ تجربهُ خود نداريهم. حال ممكن است روزى برسد كه فيزيكدان جوان و بى پروايّى بنويسد، اينشتين مرا بـبخشى، تــو تنها راه موجودى را يافتى كه يافتنش در زمان خودت، براى انسانى با قدرت انديشهُ و خلاقيّـت والاى تو، ممكن بود. لكن چنين اتغاقى هنوز رخ نداده است.

## 1

## فضا و زمان نيو تنى

## مقلدمه :

مفهوم حر كت را مى توان يكى از اساسى ترين پديله ها درمحيط بيرامون خود به شمار آورد. به طورى كه عمالً مى توانيم در هر فرايند فيزيكى قابل تصور، رد حر كت جیيـيزى را مـشاهلده

 الكترونهاى داخل اتم ، حر كت الكترونها درداخل جسم رسانا و حر كت مولكولهـاى گـاز در
 اتمى بوده وحاصل اين نوع از حر كات، تشكيل مولكولهانى جلديل مى باشد. امواج ايجاد شلده بر برى سطح آبب، وزش باد، حر كت بر گها و... همگى پد يده هاى حر كتى به شمارمى روند.


جسم با محيط اطرافش مى باشُلد. در اين ميان مى توان نقش يكك فيز يكدان را هنگـام مسشاهذأ اين پل يله هاى حر كتى يا فيزيكى، شناسايى و كشف علل تمام اين حر كتهـا دانسست. حر كـت


 كنش هاى گونا گون و همحِخين شناسايى ماهيّت آنها بايد ازمفاهيم اساسى و مهمى مانند نيرو، اندازه حر كت و انرزُى استفاده نمود. درحالى كـه بـدون بهـره گـرفتن از ايـن مفـاهيم، درك كـ دقيق ماهيّت يك پديلهُ فيزيكى ناممكن مى باشد. به طور خلاصه، مكانيكك را مى توان علم حر كت يا به عبارت ديگر، علم نيـرو، تكانسه و انـرزی در نظر گرفـت. ايـن شـاخهـ از علـم فيز يـك را مــى تـوان بـه سـه مبحـث كلـى، يعنـى سينماتيك؛ ديناميكك و استاتيك تقسيم كرد. به گونه أى كه در مبحث سينماتيك؛ همان طور كه مى دانيم، حر كت يكك ذره بدون در نظر گرفتن عامل يـا علل آن توصسيف مسى شـود. در بخش ديناميك؛، حر كت يك ذره يـا سيستمى از ذرات بـا جزئيـات و دقـت بيـشتر، يعنـى بـا نظر گرفتن عامل يا علت آن بررسى مى شود. درمبحـث اسـتاتيكك نيـز تعـادل و شـريط تعـادل الجسام مطالعه مي شود.
ما امروزه، علم مكانيكك را حاصـل تـلاش و نبـوغ سـر ايـزاكك نيـوتن ' (IGYY-IVYV)؛ دانشمنل بزرگّ انگليسى مى دانيم. او نظريات خود را در مورد سه مفهوم اساسى در مكانيك؛، يعنى سكون، حركت يكنواختت و شتتاب، درقالب سه اصل به نام اصول يا قوانين نيوتن، در كتـابى به نام پرينسيييا تدوين كرده است.
نيوتن با ارائٔ اين اصول در مورد حر كت اجسام، نظريئ ارسطويى حر كـت راكـه از قـرن
 است، به طور كامل كنار مىى گذارد. البته، دانشمندان ديگرى نيز درتكامل و ييشرفت اين علـم


## 1- Newton, Sir Isaac


 سير تُحول علم مكانْيكُ به طورفشرده و هختصر T شُنا شويمه، ابتلدا بايلد با نظريـات و أيـلمه هــاى ارسطو و همـحْنين معاضران او در مـورد حر كــتـ اجحسام بـه طـور متختصر آشنا شـلـه و سـيس ديدگاه هاى نيوتن را در مورد حر كت و همين طور فضا و زمان مطرح نماييم.

1-1 : نظر ئة ار سهو يـى حر كت
قبل از گاليله و نيوتن نظريات و ايله هاى مختلفى در مورد حركت اججسام، يا به عبارت ديگر، سه مغهوم اساسى در مكانيك؛؛ يعنى سـكون، حركــت يكنو اخــت و شـتاب ارائـه شـله اسـت. همان طور كه إشاره گرديل، نظرات كنونى در مورد حر كت اجسام بـه زمـان گًاليلـه و نيـوتن،

 متختصرو كو تأه به نظريه وانلـيشه هاى پيش از آنها، يعنى نظريه و عقايل ارسـطو و بيـروانش دو هورد حر كتت داشته باشيم.

طبق نظر ارسطو و پيروانش، تمام مواد و اشياى مو جود در جهـان از پجهـار عنـصر، يعنـى خاكك، آب، هوا وآتش تشكيل شله اند. دراين نظريه، برای هر كدام از ايـن عناصـر نيـز يــك جايگاه ويزّه وطبيعى در نظرگُرفته مى شد. به اين ترتيب كه خاكك در پـايين تـرين و آتـش در بالاترين جايگاه قرارداده مى شد. ازطرف ديگر، عقيلهه بر اين بود كه هنگامى كه هر كدام از ايـن عناصر درمكانى دور از جايگاه طبيعى خود قرار كيرد، آن عنصر سـعى مـى كنـل كـه بـه مكـان اوليه يا جايگاه طبيعى خود بر گگردد. به عنوان مثال، اگر عنصر آتش درمكانى بـايين تـراز جايگـاه
: فيلسوف نامدار يونانى كه بين سالهايى MYY : Aristotle - $3 \longleftarrow$ (plgFy-10GF): Galileo Galilei - 4
( Johannes Kepler - 5 (1099-190.): Descartes - 6
 ↔

طبيعى خود قرار می گرفت، به سمت بالا صعود مى كـرده و همـين طـور اگـر خـاكك در مكـانى بالاتر ازجايگًاه خود واقع مى شد به سمت پإيين، يعنى جايگاه طبيعى خود سقوظُ مى كرد. بنابر اين، براساس نظر ارسطو و پيروانش6، حر كت يكك جسم واقعسى بـه دو عامـل اساسـى بستگى داشت. يكى اينكه جسم نسبت به جايگاه طبيعى خود در چهه هكانى قرار مـى گرفـتـ. عامل ديگر، نوع و همـحنين نسبت تر كيب آن جسم يا شيئ از عناصر حهار گانه يود. بـه عنـوان مثال، تصور براين بود كـه چحـون سـنگك بيـشتر ازخـاكك تـشكيل شـده اسـت تـا عناصـرديگر، بنابراين، هنگامى كه درمكانى بالاتر ز جايگاه طبيعى اش رها شود، از ميان آتش، هـوا و آب مى گذرد تا به مكان طبيعى خود، يعنى زمين برسد. در نتيجه، حر كت سنگَك به سمـت پايين و سقوطى است. همحتنين، عقيده بر اين بود كه حر كت اشـيايى ماننـل بخــار آب و دود، بايـل بـه سمت بالا و صعودى باشــلـ زيـرا بخخـارTب از آتش واTب و دود نيـز از آتش و هـوا تـشكيل شده انل. بنابراين، حر كتشان بايل صعودى باشل. بر اين اساس حر كت عناصسر جهار گانه، و نيـز الجسام واققى كه تر كيبى از اين عناصر بودنله مى بايستى صشودى يا نزولى باشد. از طرف ديگر، آنها حر كـات ديگـرى را نيـز درطبيعـتـ مسشاهله مـى كردنـد. از جملـه حر كت اجرام آسمانى، ستار گان و سيارات كه حر كتشان نه صـعودى بـود ونـه نزولـى. آنها برایى تو جيه حر كت اينگونه اشياء، اظهارمى كردنل كه أين اشـياء از نظـر تر كيسب و رفتـار، بـا اشياى مجاور زمين متفاوت هستنل و تصور آنها اين بود كه اينگونه اشياء از عنـصر ديگـرى بــه نام اثيه يا اتـس"، تشكيل شده اند. بنابراين، حركت آنها نيز بايد با حر كت اشياى روى زمـين يا مسجاورآن فرق داشته باشد. به اين علت حر كـت آنهـا نـه صـعودى اسست ونـه نزولمى، بلكـه گردشى نا مـحدود بر روى دوايرى به گرد مر كز جهان، يعنـى زمـين خواهـد بـود. بـه عبـارت (19Y9 - ا990 (Christian Huygens -7 فيز يكدان هلندى. وى تلسكويى ييشرفته ابداع كرد و با آن يكى
 شتاب جانب مركز، يعنى رابطءُ r
 دانشممند معاصر خوده، يعنى نيوتن نبود اعتبار او بيشتر مى نموود.

ويگگ، تفاوت درتر كيب اشياء، مستلزم بروز رفتاروحر كت متفاوت از طرف آنها بود. خلاصـه
 علت، نياز به صعود يا سقوط براىى رسيدن به جايگًاه طبيعى خود نداشتند. همحخنين، دراين نظريه يكك جسم هنگامى حر كت مى كند كه ازمكان طبيعى خـود دور شود. درنتيجه، علت يا عامل حر كت يكك جـسم، درحقيقـت تمايـل آن جـسم بـه باز گششت بـه

 حر كت طبيعي اجسام، بيشتر ازدو نوع نيروى مؤثر در حر كت اجسام، عامل يا نيروى ديگـرى درى را
 سنگينى براى حر كت نزولى اجسامَ و نيروى سبكى برایى حر كت صصوديى آنها.
 سرعت نهايیى برسد و با آن سرعت تا پايان مسير به حر كت خود ادامه دهد. در اين ميان، وزن جسم و همين طور مقاومت محيط، به عنوان دو عامل مـؤثر در سـرعت نهـايى جــسم درحـال سقوط، مطرح مى شد. وتصور بر اين بود كه جسم سنگين تر، سرعت نهايى بيشترى نسبت بــه
 بيشترى تشكيل شده است، بنابراين، تمايل بيشترى برایى رسيذن به جايگاه طبيعى خـوده، يعنىى زمين دارد. درنتيجه بايد زودتر به زمين برسد. به طور كلى عقيده بر اين بود كه جسم سنگین تر زودتر به زمين مى رسد. ازطرف ديگر، آنها مشاهله مى كردند كه سقوط يكك جـس بم در هـوا
 مى دانستند. همحچنين، ارسطومى پنداشت كه سرعت سقوط يــك جـسمه متناسـب بـا وزن آن

(IVYG-|AIY): Joseph-Louis Lagrange $-8 \leftarrow$
(1NAD) Sir william Hamilton - 9 Ernst Mack-10

سقوط در هرمورده، از تقسيم وزن بر مقاومت محيط به دست مى آمل. در نظريةُ ارسطو علاوه برحر كت طبيعى، يعنى حر كت صعودهى يا نزونى أجسام، به نوع

 نداشت. اما در اين نـوع ازحركتـ، يعنـى حر كــت قَهْرى، جـسم از مكـان طبيعـى خـود دور دور
 آن را بر خلاف ميلش، از مكان يا جايگاه طبيعى اش دور كند. در ايـن نـوع از حر كـتـ، اگـر نيرو قطع مى شد،حر كت قَهْرى نيز متوقف مى تردديد. لازم به ذكر اسـت كـهـ ايـن نظريـه در
 كف اتاق يا همجْنين بالا بردن يكك قطعه سـنگك تـا ارتفـاعى معـين توافقق دارد. امـا در مـورد حر كت اجسامى كه به هوا پرتاب مى شونله، جوردر نمى آيل. زيرا تـــرى كـه در هـوا بر تــاب




 حر كت تير بلافاصله براى بر كردن خلأ ايجاد شده هجـوم مـى آورد و بـه ايـن ترتيـبـ، نيـرو


 ارسطو را در مورد سه مفهوم مهم سدكون، حصكت يكنواخت وشتتاب بيان كرد. همان طور كه اشاره گرديد، دراين نظريـه دو نـوع حر كـت بـرأى اجـسام در نظر گرفتـه

 ارتفاعى معين باللا برده مى شود و نيز تير يا بر تابه الى كه به هوا بر تأب مـى شـود. در نتيجـه در

فْضا ـ زمان نيوتني 11
اين نظريه برأى داشتن حر كت يكنوأخت، مى بايستى به طوز ويو سته به جسم نيـرو وارد شُـود.
 در همةٔ آنهـا وجـود نيـرو بـراى اسـتمرار و تـداو م حركـتـ يكنواخــت ضـروْرى و لازم بـود. بنابراين، مفهوم نيرو در نظريهٔ ارسطويى حر كت نقش اساسى و محورى داشته است. در اين نظريـه در مـورد شـتأب اجـسام در حــال سـقوط، بـه اظهـارات و عقايـل جـالبى بـر مى خوريم كه در اينجا به دو مورد آن مى توان اشاره الى مختصر كـرد. شـتاب يـك جـ جـسم در حال سقوط به سادگى تو جيه مى شد. مثلاً تند شدن سرعت سقو ط يكك جسـم مانند سـنگك را بـه نزديكك شـلدن آن بـه مكـان طبيعىى اش؛ يعنـى زمـين وابـسته مـى كردنــلـ بـه ايـن ترتيـب آنهـا
 سرعتش را زياد و زيادتر مى كند. بر اين اساس، عده إى عقيـلـه داشـتند كـه عامـل شـتاب يـكك جسم درحال سقوط، دروأقع همان تمايل بى صبرانهٔ جسمه، برای رسيدن هرپیه زودتر بـه جايگــاه
 سقوط مى كندل، وزن هواى بالاى آن زياد مى شود. دراين حال مقدأر هـواى زيـر آن بـه تـدريج
 سقوطى جسمه كم و كمتر شده و سرعت آن به تدريج افز ايش مسى يابـلـ و بـالاخره، مفهـوم يـا
 جسم در حال سكون باشد، بايل درجايگاه يا مكان طبيعى خودش قرار گيرد. بنابراين، سنگیى كـهـ سقوط مى كرد و درنهايت در روى زمين به جايگاه طبيعى خود مسى رسـيل، بـه حالـت سـكون دست مى يافت. يا اينكه اگر جسمى حر كت نمى كرد، گفته مى شل كه درجايگاه طبيعى خـود

قرار دارد. درحقيقت، سكون به توضيتحى بيشتراز اين نياز نداشت. نظريهُ ارسطو در مورد ححر كت اشياء، على رغـم داشـتن محـلدوديّتها و نارسـاييهاى زيـاد
 پذيرش وسيع دانشوران درمجامع علمى آن دوران بوده است. اما اينكه چرا تغييرات بنيـادى و اساسسى در عقايه ارسطو دوموزد حر كت أجـسام، در ايـن مـلـت طـولانى أيجـاد نـشده اسـت، مى توانْ به دو دليل عملده و اساسى اشاره نمو ده إول آنكه مطالعهٔ حر كت أجـسامَ، فتّط بـراى

تحגاد كممى از دانشوران آن زمان مورد علاقه و توجه بوده است وحتى مطالعأ حر كت اجـسام
 دليل دوم را مى توان تأكيد بسيار ارسطو برمشاهلهٔ مستقيم وكيفى به عنوان مبنا واساس نظريـه بر دازى دانست. به عبارت ديخر، رياضيات در اين نظريه نقش چچندانى نـارد. درواقع، ارسـطو عقيده داشت كه اصولاً رياضيات براى توصيف پِيلده هاى زمينى ارزشى ناجيز دارد. از ميان دانشوران و دانشمندان مـختلفى كه در قـرن پــنزدههم و شـانزدهم در جههـت تغييـر مسيرعلم تلاش كرده انده سهم گَاليله بيش از همه برجسته تر و موفقيــت آميزتـر بـودهه اسـت.
 بعل از خواندن T Tثار اقليُس ' ، ارشميدس و ارسطو به علوم فيزيكـى روى مـى آورد. او در سالگیى استاد رياضيات در دانشگاه بيزا مى شود. و بعد از كسب اين مقـام، در گيـرى بـين او و



 بزر گَ (IFY) درمورد اخترشناسى و همين طور كتابيى در بـاره مكانيـكك و حر كــتـ موضـعى
 مى دهلد كه البته، همين مسأله منشاء تحوولات عظيمى در مسير علوم فيزيكى مى گردد. همان طور كه قبلاً اشاره شد، مكانيكك ارسـطويّى مـلت زمـان طـولانى، يعنـى تقريبـاً بـه
 نظريه بعد از هفذه قرن، يعنى در قرن سيزدهم ميلادى به ارويا راه مى يابد و در واقع، بـسيارى


:Euclid-1


مورد حر كت اجسام، روش و ههارت تعجربى، و همين طور استعلاد رياضى او از يكك طرف و و

 علوم امروزى گردد.
 داشته اند، ولى بهه تنهايیى درايجاد انقلابِ در علوم كافى نبوده انـلـ. مسثلاً برر سيهايى كاليلـه در
 تمام اجسام با شتابِ يكسان سقوط میى كنند، كل نظريهُ ارسطويىى در مـورد حر كــت سـقوطى الجسام را به يكباره بى اعتبار كرد. همين طور، كارهاى گاليله در باره حر كتهـاى ديگـر، ماننـد حر كت زمين و سيارات به دور خورشيده شكك و ترديل جـلى و اساسـى را درممورد صنست
 عقايـد دانـشمندان قبـل از خــود، مانتـد ارسـطو را الصـلاع يـا بـه طـور كلـى كنـار گذاشـت، اما وى هر گز قادر به توضـيتح يـا تو جيـه شـتاب تحر كـت طبيعـى أجـسام نـشلد. او درايـن بـاره

نوشته است :

طِييعى بانثد."
همحچنين، روش تحقيق گاليله در مورد حر كت اججسام، باعث ايجاد روش جلايل و مهمى
 امروزه نيز اساس كار محققان در شاخخه هاى متختلف علـوم قرارمـى گـيـرد. در ايـن روش كـهـ گاليله با مهارت تمام در انجام ثزوْهشهاى خود از آن استفاده مى كرده است، براى رسيدن بـه يك نظريهٔ رضايتبخش و كامل فيزيكى يا به طور كنى علمى، مراحمل زير هيموده مى شود. مــشاهده: كلـى
 استفاده از تجهبه و آزمون.

بنابراين، برایى رسيلن به يكك نظريةٔ رضايتبخشُ و كامل فيزيكى، ممكـن اســت كـل مراحـل فوق، ازابتدا تا انتها يا هر كدام از مراحل ميانى، بارها ويارها تكرار گرددد تا اينكه بتوان به يـكـ نظريءٔ قابل قبول علمى رسيد.
: Y - 1
دراين بخش، به بررسى نظرات و عقايل نيوتن در مورد حر كت، يا به عبارت ديگر، سه مغهوم مهم و اساسى سكون، حر كت يكنوأخت و شتاب بردانخته مى شود. همان طور كه قبلاً اشاره شذ، نظرات كنونى در مورد حر كـت أجـسام بـه زمـان گًاليلـه و
 حقيقت، تحقيقات كاليله را مى توان زمينه ایى براى مطالعات نيـوتن درمـورد حركـت أجـسام دانست. خود نيوتن نيز به اين نكته اشاره مى كند وگًا ليله را پيشاهنگگ راهى مـى دانـلـ كــهـ او او

آن را پيموده است.
|-| - | - |
براساس قانون اول نيوتن، هر جسم در مقابل تغيير حالت، يعنى سكون يـا حر كـت يكنو اخــت، ازخود متاومت نشان مى دهد. بـه عبـارت ديگـر، اگـر جـسمى درحاللـت سـكون يـا حر كـتـ يكنواختت باشد، تمايل دارد كه اين حالتها، يعنى سكون يا حركـت يكنواخــت خـود را حفـظ كند. ازطرف ديگُ، مقاومتى كه جسم درمقابل تغيير حالت از خود نـشان مـى دهـلد، لختتى يــا اينسسى آن جسم ناميده مى شود. بنابراين، قانون اول نيوتن را مى توان قانون لختى يــا اينرسـى نيزناميد. بيان ديگ, اين قانون به اين صورت است كه اگر نيرويى بـه جـسمى وارد نگگـردد، يـا اينْكه برايند نيروهاى وارد بر آن صغر باشد، در اين حالت، اگر جسم درحال سكون يا يا حر كـت يكنواخخت باشل، به حالث سكون يا حركت يكنواخت خود ادامه مى دهلذ، مگر آنكـهـ نيرويـى بر آن وارد گردد.

1- Philosophiae Naturalis Principia Mathematica : اصول رياضي فلسئd طبيعى (IAV)

همـِّنين؛ بايلد يأد آور شل كه اگر حهُ أين قانون برایى اولين بار به وسيلهُ نيوتن بيـان شـلده است، اما بررسى آثار گاليله نشان مى دهد كـه او تقريبـاً پنـجـاه سـال قبـل از نيـوتن، اظهـارات مشابهى را با ابلداع آزمايشى فككرى بيان كرده است. براساس ايـن قــانون مـى تـوان گفــت كــه حالثهاى سكون و حر كت يكنواخحت هم ارز مى باشند؛ زيرا از تعادل يكك جسم به ايـن نتيجـه مى رسيم كه سرعت جسم ثابت است. البته صفر بودن يا متخالف صضر بودن اين سرعت ثُابت، بستگى به اين دارد كه سرعت جسم را كـام ناظر اندازه مى گیرد. به طور كلى، ازقـانون اول نيوتن مى توان نتايج زير را به دست آورد.
 يكنواخـت باشــده بايـد بـه طـوْور ييوسـته بـه آن نيـسو وارد شـود. بنـابـاين، قـانون

اول نيوتن نظريةٌ ارسطوييى حركت را به طور كامل كنارمى گذارد.
قـانون اول نيـوتن را مـى تـوان قــانونى جهانى دانـست. بـه عبـارث ديگــر، ايـن قـانون را مـى تـوان در ههـه جـاى جهان، دركــ، مـاه، زمـين ودرسـسالسـس كيهان بـد

كارنـ2.
 همهُ اجسـام بساى حفظِ حالثت سكون يا حركت يكنواحتْ. - بساســاس ايــن قــانون حالتهـاى ســكون وحصكـت يكنواختـت هــد يــده هـايى

كاملاً هم ارززند.
همتحنين، مى دانيم كه دو پد يلهُ سكون وحر كت يكنو اخت مفاهيمى نسبى مى باشنل. به عبارت ديگ, يك يك جسم ممكن است نسبت به يكك ناظر يا چار چجوب مر جع ساكن باشد، اما نسبت به چارچوب مرجعى ديگر داراى حركت. بنابراين، مى توان گفت كه قـانون اول نيوتن مفْهوم چارجوبِ مرجِ يا ناظر را در فيزيكك مطرح مى كنل. براين اساس، مى توان از
 معنائي ندارد.

 برداشته شود، تعيين چارپپوب مرجع يا انتخأبِ ناظر مى باشذ. دراين صورتش، با تعيين ناظر يـا جار جوب مر جع، ميى توان حر كت جشسم را نسبت به آن تتجزيه و تحاليل نمـو د. هـمـان طور كـه
 بتواند داده ها ومشاهدات خحود را به راحتى تحزيه و تحليل كند. از طرف ديگـر؛ بـا توجـه بـه اينكه برای بررسى حر كت يكك بجسم ناظرهاى متختلف مى توأنند چارپوبهاى مر جع متفاوتى
 مهختلف، مى بايستى قوانين تبلديلى معينى تعريف و معرفى گردند.
( $\mid$ : $\mid$
 يكك جسم انستغاده كرد كـه نيرويـى بـر آن وارد نـشود، يــا اينكـهـ براينــد نيروهـايى وأرد بـر آن

 هى كنل كه آهنگك تغيير سرعت يكك بجسم؛ به -جـرم جـسم و نيـروى مـؤثرى كـه بـر آن وارد


 نيز نتوانسته بود آن را به درستى ثوضيتِ دهل، نيوتن با ارائه ايـن قـانون، شـتابِ يـكـك جـسمر را ناشى از نيروى مؤثرى مى داند كه به آن وارد مى شود.
-| - |




درفواصل مختلف را نيز توضيح مى دهد. بـه ايـن ترتيـب كه اگَر جـسم $A$ نيـروى
 طورى كه مى توان نوشت: برابر و درخلاف جهت يكت يكديگرند.





 مطرح مى كند. دربخش بعل، با مفهوم چارجوب مرجع درفيزيك كلاسيك آششنا مى شويم.

## 







 ذره و مسألهٔ مربوط به آن در نظر گرفت. به بيان ديگر، عبارت "مكان ذره در فضا"، درصورتى داراى معنى و مفهوم خواهد بود كه جسمى به عنوان مبدأ يا مر جعه، براى تعيين مكان يان يا موضع


مرجع، صحبت كردن ازحر كت يكك ذره كاملاً بى معنى خواهد بود. در واقع، مى توان همين جسم يـا نقطـه ایى را كـه بـرابى مقايـسه انتخـاب شـده السـت، بـه عنـوان جـارچوب مرجـع در نظر گرفت.
با اين توضيحات مى توان گفت كه فضا به خودى خـود و بـدون در نظر گَرفتن اجـسام واقعى نمى تواند مفهومى داشته باشد. اين جسم در يكك بيابان ممكـن اسـت يـك درخــت يـا يكك تكه سنگك باشد. يا در ابعاد بزر گتر، مثلاً درفضاى كيهانى ممكن اسـت سـتاره ایى دردور
 مختصات دكارتى (x,y,z) را به آن وابسته كرد، به نحوى كه مبدأ آن در جسم مرجع، مثلاً
 ترتيب، با اين كارمى توان فضاى جسم مرجمع را قابل اندازه گیرى و محاسبه كرد. در تشريح و بررسى حر كت يكك ذره، معمولاً هدفى كه بيگيرى مى شود، در واقع،
 مى دانيم، هنگامى كه يكك ذره در فضا حر كت مى كند در مسيرحر كت خوده، نقاط فضا را به طور پيوسته يكى پس از ديگرى پشت سرمى گذارد كه از اتصال اين نقاط به يكديگر، مى توان منحنى مسيرحر كت ذره را به دست آورد. اكنون سؤالى كه ممكن است در اينجا مطرح شود؛ اين است كه زمان متناظر با مكان ذره يا به بيان دقيق تر، زمان متناظر با هر نقطه از فضا چگگونه اندازه گرفته مى شود؟ يا به بيان ديگر، ساعت يا يا وسايل اندازه گيرى زی زمان تا چجه اندازه ایى براى بررسى حر كت يكك ذره ضرورى است؟

 مى گردد كه بايد به هرنقطه ازفضا، زمان يا لحظه إى نسبت داده شود. براى اين منظور، يعنـى
 شود. بنابراين، با اين توضيحات مى توان گَفت كه، براى تشريح حر كت يك ذر ذره، به طور كـلى
 جايگزين شده اند. أما نكته ايى كه بايد به آذ توجه شود، اين است كه سـاعتهاى مـستقر شـــه

درنقاط متخلف فخا، بايد همنهان' 'بوده و همیخنين بايد با آهنگك يكسانى كار كنند. همجخنين، بايدتوجه دأشت كه همزمان بودن ساعتهاى مستقر شده در نقاط مختلف فضا،
 ساعتهاى بى شمار، مى توان ازدو روش زيراستفاده نمود.

## - انتقال ساعت مهجع به هده تقاط فضيا.

> - استفاده از يك سيگثال.

در فيزيك كلاسيكك يا نيوتنى، براى همزمان كردن ساعتها مى توان با قبول فرضهايى از دو روش فوق استفاده كرد. بنابراين، براى اسـتفاده از روش اول، بايـد فـرض شـود كــهـ جابــه جايى و حر كت ساعت، اثرى روى آهنگك كـار آن نداشتـه باشـلـ. و دراسـتفاده از روش دومه فرض براين است كه سيگُنالى با سرعت بى نهايت وجود دارد، به طورى كه مـى تـوان دريـك آن، همه ساعتهاى واقع در نقاط مختلف فضا را همزمان كرد.

 مضمون فيز يكك كلاسيكك، يـا بـه عبـارت ديگـر، همسه مغـاهيم و قـوانين آن بـه طور مجــدى و ناگسستنى با فرض مربوط به وجودسيگنالى باسرعت بى نهايت، ارتباطى تنگاتنـگك و نزديـيك
دارد. اين مطلب در اين فصل با جزئيات بيشترى مورد برزسى قرار مى گيرد.

بنابراين، جسم مر جع، همر اه با يكك دستگاه مختصصات مناسب، ماننـد دسـتگاه مـختصصات د كارتى، كروى، استوانه ایى يا ... و مجموعه ایى نامتناهی ازساعتهاى يكسان و همزمان كـه در تكك تكك نقاط فضا مستقر شده اند، چارچوب مرجیع را درفيزيكى كلاسيك تشكيل مى دهند كه براى تعريف منهوم حر كت يكك ذره و توصيف آل ضرورى است.
 ذره، از چار جوبهاى مرجع متفاوتى. استفاده نمايند، درنتيجـه بـراى انطبـاق و بيونــد مسشاهلدات ناظرهاى واقع درچار جوبهاى مرجع مختلف، بايلد قوانين تبديلى معينى تعريف و ارائه گردنــد.

دربتخشش بعل، روأبطل تبليلى در فيزيكك كالاسيكك بررسىى هى شود.

## F-1 : تبد يلات گاليله





 مى كنيم كـه ها هارچوب الم ${ }^{\prime}$ بـا سرعت ثابـت محورمشتر ك x و ' ${ }^{\prime}$ حر كت كند.
S

اكنون، با توجه به اين فرضها و همين طور با در نظر گرفتن شكل(1-1)، مى توان نوشت:

$$
\begin{equation*}
\vec{r}=\vec{r}^{\prime}+\overrightarrow{o o} \tag{1-1}
\end{equation*}
$$

$\overrightarrow{O O}^{\prime}=v t \vec{i}$ كه در آن مى باشل. همحثنين، رابطئ بردارى (1-1) را مى توان برحسب مؤلفه هاى آن به صورت

$$
\begin{equation*}
x=x^{\prime}+v t, y=y^{\prime}, z=z^{\prime}, t=t^{\prime} \tag{Y-1}
\end{equation*}
$$

نوشت. و تبديلات وارون از هارخوب ' ${ }^{\prime}$ به هارحپوب $S$ نيز با روابط

$$
x^{\prime}=x-v t, y^{\prime}=y, z^{\prime}=z, t^{\prime}=t
$$

بيان مى شونلد. در اين صورت، روابط(Y-Y) يا (Y- (Y) را تبديلات گاليلـُّ مخختصات مـى نامنـد. همـحنين، برابى به دست آوردن تبديلات سرعت گاليلـه مـى تـوان از رابطـئ (1-1) نـسبت بـه

زمان مشتق گرفت. دراين صورت، داريم:

$$
\frac{d \vec{r}}{d t}=\frac{d \vec{r}^{\prime}}{d t^{\prime}}+\frac{d}{d t}(v t \vec{i})
$$

و با توجه به ثابت بودن اندازه و جهت سرعت نسبى، خواهيم داشت:

$$
\vec{u}=\vec{u}^{\prime}+v \vec{i}
$$

اين رابطه رامى توان برحسب مؤلفه هاى سرعت دردو چارحچوب، به صورت

$$
\begin{array}{lll}
u_{x}=u_{x}^{\prime}+v & , & u_{x}^{\prime}=u_{x}-v \\
u_{y}=u_{y}^{\prime} & , & u_{y}^{\prime}=u_{y}  \tag{9-1}\\
u_{z}=u_{z}^{\prime} & , & u_{z}^{\prime}=u_{z}
\end{array}
$$

نوشت. اكنون، براى به دست آوردن تبديل شتاب، از يكك چاچجوب مرجع به چارچوبِ مرجع


$$
\begin{equation*}
\vec{a}^{\prime}=\vec{a} \tag{V-1}
\end{equation*}
$$

بنابراين، تححـت تبـديلات گاليلـه، شـتاب يـك ذره در دو چـارچوب يكـسان يـا نـا نـاوردا بـاقى مى مانْ. از طرف ديگر، طبق تعريف، جارحوْبها يا ناظرهايى كه نسبت به يكديگر بـا سـرعت
 گاليله برای مختصات، سرعت و شتاب، ارتباط بين مختصطات، سـرعت و همـين طـور شـتاب
 تبديلات گگاليله ممكن است، درحالت كلى تعدادى از كميّات را تغييردهند و تعدادى را

 مثال، شتاب يكك ذره تحت تبديلات گاليله، يكك كميّت ناورداست. همیخنين اصلى كـه تعيـين مى كند، چهه كميّاتى بر اثر تبليل ازيك چحارچوبب به جارچوب ديگرناوردا باقى مى مانند، به طور كلى اصل نسبيت ْناميده مى شود. اين كميّات از نظرهمـهُ ناظرهـاى واقـع درچارجوبهــاى مختلف يكسان بوده ونقش مهمى در فرمولبندى قوانين فيزُيك ايفا مى كنند.

همحچنين، براساس تبديلات كَاليله، $\overrightarrow{\text { " }}$ كالاسيك ناورداســت، بنـابراين $\overrightarrow{\text { نا }}$
 مى شوند. از طرف ديگگر، به سادگى مى توان نشان داد، ناظرهـاى مختلـفـ علـى رغـم اينـكـه تكانه و انرزيهاى متفاوتى را به يكك ذره نسبت مى دهند، با اين حال قوانين پايستگى تكانـه و انزگى، درهمهٔ چار چجوبهأى مر جع لخت برقرار مى باشند.
 طول، جرم و زمان، يعنى سه كميّت اساسى در مكانيكك ازمحر كت نسبى ناظرهـا يـا چارچوويهـا مستقل باشند. به بيان ديگر، قوانين نيوتن در مورد حر كت يكك ذره يا همين طـور سيستمى از ذرات، در تمام چارچچوبهاى لخت يكسان مى باشنلد. اين موضوع در واقع بدان معنى است كـه به وسيلةٔ هيج آزمايش مكانيكى، نمى توان در مورد حر كت يا سكون يكك چـارچجوب لخـتـ، نسبت به چارچوبهاى مرجع لخت ديگر، اطلاغى كسب نمود. البتـه، ايـن مطلـب در صـورتى
 ارتباطى با محيط بيرون صورت گرفته باشد.

## 1 - - ا ه اصل نسبيت گاليله و چارچو ب مرجع مطلق

اكنون، بعد ازآشنايی با مفهوم چارجوبب مرجع و همين طور تبـلـيالات گاليله، مـى تـوان در
 مرجع اصلى و بنيادى به نام جارجهوب هسجع مطلـق' تعريف كرد. بعلد ازتعريف اين جـارچوبب، مى توان جار جوبهاى مرجع مختلف را دسته بندى نمود. اين دسته بندى به وسـيلةُ اصـل نسبيت گاليلهَ، صورت مى گیرد. اما قبل از بيان اين اصل، لازم است ابتدا هارچچوب مرجع مطلقق را تعريفن نمـاييم. براسـاس اصـول مكانيكك نيـوتنى، ايـن جـارچوب داراى ويز گيهـاى اساسى زيرمى باشد.
 مسجع )، به فضياى كيهانى وابسته است.

بنا بد فضضه، چار چهوب مسجع هطلق سـاكن است.

مى باشُـند:

اقليدسىى

همگن مى باشثد.

هسـتند.
بنابراين، با در نظر گرفتن و پذيرش فرضهايی، مى توان جار جوبى با ويزگیهـاى فـوق چر فيز يكك نيو تنى ايجاد نمود. بعد ازتعريف پارچوبِ مر جع مطلق، أكنون مى توان چارچوبهـاى مرجع ديگررا با مقايسه با اين پارچوب، دسته بندى كرد كه برای اين منظور، ازاصـل نسسبيت
 مر جع مطلق درحال سكون يا داراى حر كـت يكنواخـت باشـلـ، يـك جـارپپوب مرجـع لَخـت محسوب مى شود. همين طور، اگگر چارچوب مرجعى نسبت به چارچوب مرجع مطلق، داراى شتاب باشد، در اين حالت يكك چارچوب مرجع نالخت يا شتابدار خواهل بود. همحچنين، از اصل نسبيت گَاليله، مى توان نتيجه گُرفُت كه همه چار چوبهاى مرجع لخت از نظرمكانيكى هم ارزند و اين ويزگى به معناى آن است كه :


1. Continuous
2. Homogenous

2- Euclidean
4- Isotropic

## به طور جداگانه امتتيار شده باتشد، كاملاً يكسـانند.


يبيسوى مى كنند.

اكنون، با توجه به مطالبى كه بيان شده مى توان نتيجه گرفت كه يكك چحـارچوب مر جـع







 مر جع لخت را مى توان يكى از مهمترين انتزاعها والبته نخستين آنها در فيز يكك كلاسيكك يا به طور كلى در فيزيكك به شمار آورد.

درحالـت خـاص، اگـر دو چــارچوب زلخـت S و 'S، باسـرعت نـسبى يكنواخــت v، مفروض باشند. ازنظرمكانيكى ارزشى كاملاً يكسان خواهند داشــتا بـه عبـارت ديگـر، طبـق

 فوق،آزمايش يا آزمايشهاى مكانيكى يكسانى صورت گیرد، نتيجهٔ اين آزمايش يا آزمايـشها، كاملاً يكسان خواهد بود. بنابراين، با توجهه بـه ايـن توضـيحات مـى تـوان گفـت، كـه ازروى نتيجه يا نتايجى كه ناشى از آزمايشهايى در درون يكك جارجوب لخت باشد، به هـيـيج عنـوان
 هارچوب مرجع لخت ديگر بی برد.


اختصار توضيح داده مى شونل. اين ويزگگيها برای فضاى چــارچوب مرجـع مطلـق بـه صـورت زيردر نظر گرفته مى شونن.

فضاى مطلق : بر اساس نظر نيوتن، فضاى مطلق به خـودى خـو د، بــدون ارتبـاط بـا هـيـِ عامل خارجى، هميشه يكسان وحر كت نايذيرمى باشد.

سه بعدى بودن فضال، به اين معناست كه هر نقطةُ آن را مى توان بـه كمـكك سـه پــارامتر يـا مختصئ مانند (x,y,z)، معين نمود.

بيوستگى فضا، به طور ساده بـه ايـن مفهـوم اسـت كـه بـين اعـداد حقيقى و نتـاط فضضا، مى توان يكك تناظر يكك به يكك بر قـرار كـرد. يعنـى همـان طور كـه متجموعـئ اعـداد حقيقـى پيوسته است، در اين صورت، مجموعءء نقاط فضا نيز پيو سته مى باشنل. يا به بيان ساده تـر، بـين

هردو نقطهُ دلخواه از فضا، مى توان نقطهُ ديگرى را در نظر گرفت.
معيار اقليدسى بودن فضيا، درواقع، عبارت است از امكان ايجاد دستگاه مـختصطات دكـارتى
 به دست آورد. بعداً نشان داده مى شود كه درفضا - زمان چجهار بعدى چحنين امكانى وجود ندارد. هـگنى فضها، نيز به طور ساده به ايـن معناسست كــه همـه نقـاط آن داراي ارزشـى يكـسان هستند و هيجِ نقطه ای از فضا، نسبت به نقطه ایى ديگر ارجحيتى ندارد. وهمسانگّددى فضا ، به اين مفهوم است كه هيج جهتى درفضا، نـسبت بـه جهـات ديگـر، ارجحيّت و مزيتى ندارد. بنابراين، با توجه به اين توضيحات مى توان گفت كـه همگنـى و همـسانگردى فـضا بـه ترتيب، به إين صورت تظاهر مى كنند كه انتقالل جارچوب مرجع مطلق به مـوازات محورهـاى خود، يا همين طور دوران محورهــاى آن بـه انــدازة زاويـه ایى دلخـواهِ هيحچگونـه تغييـرى در ويزُ گيهاى فيزيكى پديله ها دراين چارجوب مر جع ايجاد نمى كند. اما ويز گيهاى عمومى زمان را نيز مى توان به صورت زير بيان نمود. زمان مطلـق ، نيوتن عقيده داشت: زمان كميّتى مطلق، حقيقى و رياضى، كه براساس خواص

Y7 مقدمه أي بر نسبيت نحاص
 يك بعدى بودن زمان؛، به اين معناست كه هر لحظطه از زمان را مى توان تنها با يـكك پـارامتر معين كرد. بنابراين، مـى تـوان مجموعـه ایى از رويـدادها را كـه در يــكك نقطـه از فضضا اتفـاق

مى افتند، با مججموعه أى خطى از اين پارامتر شماره گذارى كرد. بيوستگى زمان، نيزمانند بيوستگگ فضا به اين معناست كه بين متجموعهٔ لحظه هاى مربوط به رويل|دهايى كه در يكك نقطه از فضا روى مى دهند و مجموععٔه اعداد حقيقى مثبت، تناظرى يك به يكك برقراراست. به بيان ساده، مى توان گفت كه هر لحظه از زمان را مى توان با يـك

عدد حقيقى مثبت مشخص كرد.
يك سويد بودن زمان، نيزبه اين مفهوم است كه درمورد دوجهت متقابـل جريـان زمـان، تنهـا يكى از آنها را مى توان درنظر گرفت. به بيان ديگر، مى توان گفت كه زمان بر گشت ناپذير است. وهمگنى زمان رانيز مى توان به اين صورت توضيح داد كه همه لحظه هأى زمان ارزشـى يكـسان دارنـد و درحقيقـت، هـيِّج لحظـه أى از زمـان، نـسبت بـه لحظـه هـاى ديگرمزيــت و ارجححيّتى ندارد.
به اين ترتيب، در بررسى پلديله هاى فيزيك؛ همگنى زمان به اين صورت تظاهرمى كند كه ويز گيهاى فيز يكى پد يله ها به زمأن يا لحظةُ خاصى بستگى ندأرنــد. بـه عبـارت ديگـر، از همگن بودن زمان مى توان به اين نتيجه رسيد كه اگر آزمايش معينى، با شر ايط كاملاً يكـسان و برابر در دو زمان مختلف انجام گيرد، نتيجه هاى به دست آمـله از هـردو آزمـايش نبايــل بـا يكديگر اختلاف داشته باشند.

я - 1
اگرهريكا از شاخه هاى علوم، ازجمله فيزيكك را تجزيه و تحطيل نماييم، مى توان بـه ايـن نتيجهـ رسيد كه هريكك از اين شاخهه ها براساس يـكك سـرى ازاصــول موضـوع، اسـتوأر مـى باشـنـد. ايـن اصول، درواقع ابتلائى ترين حكمهايى هستند كه تجريهُ آدمى آنها را تأييل كرده اسنت و معمـولاً اثبات ندى شونلد بروسى فيز يك كالوسيك نيز نشان مـى دهــد كـه شـالوده و أسـاس آن، أصـول

- اصل نسبيت گاليله

مسعع لخت.

نمى تواند نامتناهى بانثد.



همسانگگ فـى فضا در اين جارجهوب مسجع •

- اصـل يـا فنـضن مسنـوط بـه هـگنـى و ييوسـتگى زمـان ، و همـين طـور يـك

بعدى و يك سويد بودن آن در هارجوب مسجع مطلق.
دو اصل موضوع اول، همراه باشرط مربـوط بـه متنـاهى بـودن سـرعت نـسبى چارچوبهـاى
 درحقيقت، به ويز گيهاى عمومى فضا و زمان در جارچوب مرجع مطلق ارتبـاط بيـدا مـى كنـــد. از طرف ديگر، اصل مربوط به امكان رسيدن به سرعت بى نهايست، حر هـر يـك از اجارچوبهـاى مرجع لخت، به معناى آن است كه وجود سـرعت نـاورداى بـى نهايست را در همسه چارجو:هـای مرجع بيذيريم. اين سرعت برأى فيزيك كلاسيكك بنا به دلايل زير ضرورى مى باشل.



ايْحاد نمود.


YA مقدمه ایى بر نسبيت خاص

اصل سازگار استت.

- آنتى وهمنمـان بـودن بسهم كنـشها در فينزيـك كلوسـيك، تنها بـا يـذيسش اصل وجود اين سهعت در فينيك كلوسيك، امكان پذيـ مى باشد.


 يعنى $u^{\prime}=\infty$ وجود داشته باشل، به طورى كه $u^{\prime} \vec{u}^{\prime}| | \vec{v}$ نظر گرفته شود؛ در اين صـورت بـا


$$
\begin{align*}
u=u^{\prime}+v & =\infty+v \\
& =\infty
\end{align*}
$$

 اگر فرض كنيم كه درفيزيكك كلاسيكك سرعتى ناوردا وجود داشته باشد. در ايـن صسورت بـا 'توجـه بـه تبـليل گَاليلــٔه سـرعت؛ يعنـى رابطــُ $u=u^{\prime}+v$ و شـرط نـاوردايیى سـرعت، يعنى جارجوبهاى مرجع لخت، يعنى به ازالى مقدار متناهى v، معلوم مى شـود كـه نـاوردا بـودن يا $u=u^{\prime}=\infty$ ، تنها درصورتى امكان دارد كه داشته باشيم: $u$ ، همان طور كـه قـبلاُ اشـاره شـد، كميّتى كــه درگــنـر ازيـك چــارچوب مرجـع لخــت بـه جارچوبِ مرجع لخت ديگربدون تغييـر بمانـلف، ناورد ا يـا مطلـقن ناميـلده مـى شـود. بنـابراين،

سرعت ناوردا رادر فيزيكك كلاسيكك مى توان سرعت بى نهايت در نظر گرفت. درفيزيكك كلاسيكك براحتى مى تـوان بـه سـرعت بـى نهايـت دســت يافـت؛ زيـرا بـراى رسيدن به اين سرعت، مى توان نيروى ثابتى را درمدت زمان بسيارطولانى به يـك ذره اعمـال كرد. يعنى بنابر قانون دوم نيوتن، اگر نيروى ثابت F را به ذره ایى به جـرم m اعمـال نمـاييم،
 درملدت زمان بسيارطولانى سرعت ذره را تا بينهايـت افـزايش داد. بـه عبـارت ديگـر، در ايـن

فضا - زمان نيو تني
رابطه اگر سرعت بى نهايت به عنوان يكك سرعت خدى دست يافت. بعداً خواهيم ديد كه نقش سـرعت حدى درفيزيكك نسبيتى را سرعت نور به عهلده مى گيـرد كـه بـه عنـوان يـكك سـرعت نـاوردا درنسبيت مطرح مى شود. ناوردا بودن اين سرعت نتايجى را بـه دنبـال خواهــل داشـت كـه در فصلهاى بعد مورد بررسى قرار مى گیرند.

حال، براى توضيح دليل سوم؛ مـى دانـيم كـهـ قــانون سـوم نيـوتن را مـى تـوان بـه صـورت ( $\vec{F}_{i r}+\vec{F}_{r \mid}=0$ مى شود و همحچنين، مى دانيم كه رابطةء اگر دو جسم در فاصله دورى از يكديگر قرار داشته باشنل. براين اساس، بر هـم كــنش دو جـسمم آنى و درملت زمان صفر صورت مى گیرد. به عنوان مثال، اگر برهم كنش زمـين و خورشـيد را در نظر بگيريمه اين برهم كنش آنى است: يعنى اگگر اختلاللى درخورشيد روى دهل، اين اخـتلال را بلافاصله در روى زمين مى توان مشاهله كرد. درحقيقت، آنى و همزمان بـودن بـرهم كنـشها در فيزيكك كلاسيكى، نتيجهٔ پذيرش اصل وجود سيگّنالى با سرعت بى نهايت مى باشد. درفيزيكك كلاسيكك ويز گيهاى عمومى فضا و زمان كه در اصـول موضـوع جههارم ويـنجم
 كاملاً يكسان خواهند بود. درنتيجه، اين ويزُ گيها را مى توان مطلق يا ناوردا ناميد. به عبارت ديگـر؛ اين ويز گيها به انتخاب چارچوب مرجع لخت معينى بستگى نداشته ومستقل از آن مى باشند.
:ييامد هاى ناشى از چذيرش اصل وجود V - 1
سرعت بى نهايت در فيزيح كلاسيك
همان طور كه قبلا اشاره شد، اصل مربوط به امكان رسيذن به سرعت بى نهايـت درهرحـاریوب؟ مرجع لخت، به معناى آن است كه وجود سـرعت نـاورداى بـى نهايـت را در همـهُ جارجوبهـاي


مهمى را به دنبال دارد كه در إينجا مى توان به اختصار به آنها اشاره نمود. اين بيامدها عبار تنداز: - • - مطلق بودن هدنمانى - ناوردايى اصل عليّت

قبل ازيرداختن به توضيح نتايج فوق، ابتدا رويداد 'را تعريـف مـى كنيم. يـك رويـداد را مى تـوان يـك فراينـد يـا كـنش فيزيكـى متنـاهى درفضا و زمـان، بـا ماهيـت فيزيكـى دلخـواه

 در اين صورت، در دستگاه مختصات دكارتى يكك رويـدا را مـى تـوان بـه شـكل ( $x, y, z, t)$






 متريك را به طور ساده، هنگامى مى توان ايجاد كرد كه بتوان فاصلة́ بين نتطه هاى نزديكك به هم را در آن تعريف كرد. به عنوان مثال، متريكك يـا فاصـله در فضاكى سـه بعـدى اقليدسـى، دريـك دستگاه مختصات دكارتى به صورت بنابراين، در فيزيكك كلاسيك، برايى شـكلهاى مـختلـف جهاربعـلـى رويـدادها، نمـى تـوان

 وضعيت در فيز يكك نسبيتى به گونهُ ديگرى مطرح مى شود. درواقع، در فيزيـكـ نـسبيتى، فـضا و

زمان درهم تلفيق مى شوند و موجودى واحد به نام فضا ـ زمان 'ر را ايجاد مـى كنــد. حـال، بـس

را در فيزيك كلاسيك را مورد بررسى قرار مى دهيم.
 مى توان همه ساعتّهاى واقع در نقاط مختلف فضا را در يك لحظهِ يـا يك آن همزمـان كـرد. درواقع، اين مسأله منجر به ايجاد زمان عامواحده برای همه هارجو


 همان زمان ساعت C راضمن رسيدن به آن نشان خواهد داد.


شُكل (Y-1): همزمانى ساعتها









عبارت ديگر، فاصله يا بازٔه زمانى بين آنها برابر صفر باشل يا $\Delta t^{\prime}=t_{B}^{\prime}-t_{A}^{\prime}=0$. بريـق زير مى توان نشان داد كه اين دو رويداد در هرچار چووب مرجـع ديگـرى ماننـد S نيـز همزمـان خواهند بود. برای أين منظور، با توجه به همزمانى رويدادها درحارجوب 'S ${ }^{\prime}$ مى توانن نوشت:

$$
\begin{equation*}
\frac{\Delta x^{\prime}}{\Delta t^{\prime}}=\frac{\Delta x^{\prime}}{\circ}=c^{\prime} \rightarrow \infty \tag{9-1}
\end{equation*}
$$

از طـرف ديگـر، درجـارچپوب لخـت $S$ نيـز بـا اسـتفاده ازفـرض وجـود سـيخنالى بـا سـرعت بى نهايت، مى توان نتيجه گرفت:

$$
\frac{\Delta x}{\Delta t}=c^{\prime} \rightarrow \infty
$$

درايــن صـورت، داريــم: مى باشند. بنابراين، درفيزيكك نيوتنى اگر دو رويداد در يـكك چـارچوب بسه طـور همزمـان روى دهند، درهمهُ جِارچوبهایى ديگر نيز همزمان خخواهند بـود و نتيجـه اينكـهـ همزمـانى زويـدادها در

فيزيكك نيوتنى ناوردا ست.
و بالاخخره، نتيجه يا پيامد سوم از فرض مريوط به پذيرش اصل وجود سيگنال بـا سـرعت بى نهايت، ناوردايى اصل عليّت' مى باشد. اگر رويدادهایى مختلـف را درنظـر بگگــريمه ممكـن است رويدادى نتيجهٔ رويدادى ديگر باشد. درايـن صـورت، رويـداد اول راعلّـت، و رويـداد دوم را معلول رويداد اول مى نامند. اين ترتيب زمانى وقوع رويدادها را كه بـين رويـدادهاى علّت و معلول برقرار است، معمولاً اصل عليّت مى نامند. و منظور از بناوردايى اضـل عليّـتـ، ايـن است كه اين ترتيب زماني براى وقوع رويدادهاى علّت و معلول در همهُ چارچوبهـایى مرجـع بـه صورت يكسان است. به بيان ديگر، اگگر در يكَ چجارجوب دلخـو اهـ مـثلاً S، ابتـدا رويـداد A و سپس رويداد B رخ داده باشله در اين حالت، در تمامى چارجوبهـاى مرجـع ديگـر نيـز ترتيـب زمانى وقوع رويدادها، به همين صورت خواهل بود. يعنى ابتدا رويداد علّت A ، و سبس رويـداد معلول يا B، اتفاق مى افتد. با كمى دقت مى توان دريافت كه در حقيقت ناوردايى اصل عليّت، ناشى از يذيرفتن وجود سيگنال با سرعت بى نهايت در فيزيكك كلاسيكك مى باشد. با استفاده از تبد يلات گاليله به راحتى مى توان ناوردايى ترتيب زمانى رويـدادها زا نيـز

1- Causality Principle

 ترتيب در زمانهاى ای از رويداد A باشد. اكنون، برای بررسى ترتيـب زمـانى ايـن دو رويـداد در چجـار جوبـ S، مى توان أزتبديلات گاليله استفاده كرد. در اين صورت؛ مى توان نوشت:

$$
\begin{equation*}
x_{A}=x_{A}^{\prime}+v t_{A}^{\prime} \tag{11-1}
\end{equation*}
$$

9

$$
\begin{equation*}
x_{B}=x_{B}^{\prime}+v t_{B}^{\prime} \tag{1Y-1}
\end{equation*}
$$

حال، با درنظر گرفتن ناوردايى زمان ذاريم:

$$
t_{B}-t_{A}=t_{B}^{\prime}-t_{A}^{\prime}
$$


 رويدادها رانيز تعويض كنيم، يعنى اگر



$$
\begin{equation*}
x_{B}-x_{A}=\left(x_{B}^{\prime}-x_{A}^{\prime}\right)+v\left(t_{B}^{\prime}-t_{A}^{\prime}\right) \tag{1r-1}
\end{equation*}
$$

$$
x_{B}-x_{A}=\left(t_{B}^{\prime}-t_{A}^{\prime}\right)\left(v-u^{\prime}\right)
$$

كه در آن سرعت

$$
\begin{equation*}
u^{\prime}=\frac{x_{A}^{\prime}-x_{B}^{\prime}}{t_{B}^{\prime}-t_{A}^{\prime}}=-\frac{x_{B}^{\prime}-x_{A}^{\prime}}{t_{B}^{\prime}-t_{A}^{\prime}} \tag{1f-1}
\end{equation*}
$$






غץ مقدهه إى بر نسبيت خاص
رويداد A و سيس رويداد B رخ خخواهل داد. درنتيجه جابه جا كردن مكـان وقـوع رويـدادها، تأثيرى در. ترتيـب زمـانى وقـوع آنهـا نــدارد. بنــابراين، درحالــت كلـى، ترتيـب زمـانى وقـوع ع

رويدادها يا اصل عليّت در جارجوبهاى مرجع مختلف ناورداست. حاله، با تو جه به مطالبى كه بيان گرديل، نـاوردايى اصـل عليّـت را درحقيقـت مـى تـوان پياملى از وجود سرعت بى نهايت در فيزيكك نيوتنى دانست. أمـا در نـسبيت بـه علـتـ وجـود سرعت حدى نور، وضعيّت به گونه أى ديگر است، يعنى ممكن است ترتيب زمانى رويـدادها در چارچوپهایى ديگ, عوض شود. كه اين مسأله در فصل سوم مورد بر رسى قرارمى گیيرد.
: نالصه
حال، با تو جه به مطالبى كه در اين فصل بيـان گرديـلـ، مـى تـوان نتيجــه گرفـت كـه بـا پذيرفتن اصول موضوعى كه در بخش(1-4) به آنها اشاره شد و همين طور تبديلات گاليلـه، تمامى قوانين فيزيك؛ به اسثتناى نظريهٔ الكترومغناطيس، درهمهٔ چارجوبهاى مرجـع لخـت بـه طور هموردا تبلديل هى شونل. يعنى شكل اين قوانين، دزتمامى چارجوبهاى لخت يكسان باقى مى مانتد.
همـجنين، در فيز يكك كلاسيكك به دليـل ماهيّــت تبـديلات كاليلـه، كميّتهـايى مانـــ، جـرم ذرات، زمان و مكان يا فضضا ناوردا مى باشند. تبـديلات گاليلـه ايجـاب مـى كننـل كـه شـتاب، همزمانى رويدادها و اصل عليّت نيز ناوردا باششند. ازطرف ديگر، براى همزمان كردن سـاعتها،
 فيزيكك كلاسيكك مطرح نماييم. اما در فيزيكك نسبيتى مشاهله خواهيم كـرد كـه ايـن مفـاهيم و كميّتها، به علّت سرعت حدى و ناورداى نورهمگیى نسبى مى باشند.

## 3



مقلدمه :
نظريهٔ نسبيت را مى توان يكى از مهمترين مباحت در فيزيكك به شـمار آورد. دو مبحـت كلـى



 جارجوبهاى مرجع نالخت يا شتابدار مورد مطالعه قرار. داد. اين نظريه نيز به وسـيلهُ اينشتين در

سال 1919 ارائه شده است. بنابراين، نسبيت خاص، گرانش را در بر نمى گيرد و اين مبحث از
 ناظرهاى لخت يكسان است. در صور تى كه درنـي


يوانكاره' (191Y-1ADF-1) و لورنتس 「 (19TA-1AD1) طى كرده بودند.
















: Poincaré, Jules Henri - 1


گذشته، پديله هايىى را كه با جهانبينى و يا نظريات نيوتنى به زحمت قابل توضيح بودند يا به هـيتِ

 طور كه مى دانيم، اصول و قوانين نيوتن هنوز هم با تقريب و دقت كافى در زندگى عادى و حتى در نجوم معمولى، از قبيل فرستادن مـاهواره هـا بـه فضا و قـرار دادن آنهـا در مــدارحول زمـين و سيارات ديگر، همحچنين بررسى حر كات بعضى از سيارات منظومةٔ شمسى به كار مى رود. از طرف ديعر، مى توان مهمترين جنبـئ نظريـهٔ نسبيت اينـشتين را درحقيقـت تكـذيب وجود فضواى مطلقَ و زمان مطلققَّ دانـست. بـه عبـارت ديگـر، بـر اسـاس ايـن نظريـه، انـدازه گيريهـاى فـضا و زمــان بـستگی بــه دسـتگاه يـا چــارچوب مرجـع انتخـاب شـــده دارد. و اين اندازه گيريها نسبى مى باشند. و در واقع به همين دليل نظريه و اظهارات اينشتين در مـورد فضا و زمان، تحت عنوان نظريئ نسبيت بيان مى شوند.

همان طور كه در فصل قبل اشاره شد، درفيزيك نيوتنى يا كلاسيكك، فضا و زمان مطلق يا ناوردا هستند. درواقع، اين ديل از فضا و زمـان، قرنهـاى متمـادى هـورد پـذـيرش دانسشمندان



## از اين يس فضهاى تنها وهمين طورزمان تنها، مطـودد هستند و تنها

نوعى اتحاد از آن دو، وجود مستقلى حواهد داشت.

ازطرف ديگر، درنسبيت خاص با چذيرش دو اصل بـه عنـوان اصـول نـسبيت، مـى تـوان
 علاوه بردو اصل نسبيت خاص، اصول موضوع جهارم و پنجم را كه دربخش(1 - 9) به آنهـا

## 1- Absolate Space

## 2- Absolate time


 هندسى برایى حل بسيارى از مسائل بيجيده در نظرئ اعلداد ؛ مسائلى در رياضى فيزيكُ بيشر فته و نسبيت استفاده كرد.

اشاره شلـ به همان صورتى كه درفيزيكك كالسيكك مطرح مى شوند، پــنـيرفت. همتٍنـين وى در ارتباط با اصل دومَ يعني وجود سرعت بی نهايت در فيزيكك كاوسـيكك، اصسل مربـوط بـه متناهى بودن سرعت نور را مطرح ندود. بالاخره وى در ارتباط با اصصل سوم از اصـول پذيرفتـه شده در فيز يكك كلاسيكك، يعنى متناهى بودن سرعت نسبى چار جوبهاى مرجـع، اضـل زيـر را كه مى توان آن را به عنوان اصل سوم درنظريه نسبيت خاص در نظر گرفت، پذيرفت.
 سـعت هدى نور الست.

همان طور كـه مـى دانسيم، قـوانين فيزيـكـ نيـوتنى درحــد سـرعتهاي معمـولى بـسيار دقيـق مى باشند و در نتيجه مى توان از اين قوانين در بررسى پديله هاى فيزيكك، درمتحدودهُ سـرعتهاى از صفرتا چند صل هزار كيلومتربرسـاعت، بـلدون بـروز خخطـاى قابـل ملاحظـه ایى أسـتفاده نمـود. درصورتى كه اين قوانين درمحاودهُ سرعتهاى بالا، يعنى سرعتهاى قابل هقايسه با سرعت نور، بـا شكسث مواجه مى شوند. به بيان ديگر، نتايج حاصـل از آنهـا درحيطــُ سـرعتهاى بـالا بـا تجربـه ساز گار نيستند. بر اين اساس، اين قوانين بايل به طريقى تعميم داده شـونل يــا اصـلاح گردنــل كـهـ بتوان از آنها در محلودهُ سرعتهای صفر تا سرعت نور استفاده نمود. بنابراين، مى توان گفت كـــ فيزيكك نيو تنى در واقع، حالت خاصى از نظريهٔ نسبيت خاص مى باشل. نكته أى كه مى توان به آن اشاره نموده اين است كه در سال IAY ا جايزهٔ نوبل رانه به خاطر سـهمى كـه إينـشتين در ارائــٔ نظريــئ نـسبيت دإشـته اسـتـ، بالكـه بـه جهــت كارهـا و تحقيقـاتش درخصوص اثر فتوالكتريكك به او انعطلا مى گردد.

F
همان طور كه مى دانيمه، هلف از ارائه نظريؤ نسبيت خاص در واقع به دسـت آوردن يـكك بيـنش
 , رياضيدان و فيريكدان نظرى اسكاتلندى كه در زمينئ الكترومغناطيس كارهاى اساسى : Maxwell, James Clerk -1



ساده به دست آورد كه با استفاده از آنها مى شد دو موضضوع مهم الكتريسيته و مغناطيس را كـه در آن زمان مورد بحث جدى فيزيكذانان بود، توضيح داد. ايـن معـادلات كـه در سـال MAF منتشر شدند، نه تنهـا ارتبـاط ميـان الكتريـسيته و مغنـاطيس را بيـان . مـى كردنـدن، بلكـه نـشان مى دادند كه اين دو پديده نمى توانند مستقل از يكديگر باشند. بـهـ طـورى كـه براسـاس ايـن معادلات، ميدان الكتريكى متغير نسبت بـه زمـان، باعـث ايجـاد ميـدان مغناطيـسى مـى شـود. همهچنين عكس اين مطلب نيز صادق است، يعنى ميـدان الكتريكـى نيـز مـى توانــد از ميـدان

 نظر گرفتن كاربرد معادله هايش، دريافـت كـه تغيير درميـدان الكتريكـى، سـبب تغييردرميـدان مغناطيسى مى شود كه آن نيز به نوبئ خـود سـبب تغيــر درميــدان الكتريكـى مـى گـردد. ايـن معادلات بيش بينى مى كردند كه ميدانهاى ايجاد شله درهمهٔ جهات منتشر مـى شـوند. نتيجـه Tآنكـه ازحـل معـادلات ماكـسول، تابـشى حاصـل مـى شــد كـهـ ذاراى خـواص مـو جـى بـود. درحقيقت، مى توان گفـت كـه ماكـسول وجـود تـابش الكترومغناطيـسى را بـا در نظر گـرفتن
 الكترومغناطيسى به دست آملده نيزامكان پذ ير بـود و نتيجـه ایى كـه بـراى سـرعت انتشار ايـن امواج به دست مى آمل، دقيقاً برابر سرعت نور بود.
الولين ملر كك تجربى و قطعى كـه پـيش بينـى هــاى ماكسول را تأييـد مـى كـردد، يـس از

 آشكار كرد. به طورى كه طول موجهاى اين تابش به مراتب بلندتر از طول مو جهـاى تـابش زيـر
 اولين كسى است كه انتشار|مواج الكترومغناطيسى در خلأ را كه معـادلات ماكسول آن را بـيش بينى كرده بودند، نشان داد.

از طرف ديخر، در اواخحر قرن نوزدهمهَ فيز يكدانان مى كوشيدند تا حر كت امواج نور را

درخلاء توجيه نمايند. آنها بعد از تلاشهاى فراوان، در نهايت به ايـن نتيجـه رسـيدند كه نـور را بايد به صورت نوسان يا اغتشاشى در ماده ای فرضى به نام اتردر نظر گرفت؛ زيرا در آن زمان عقيده بر اين بود كه موج الكترومغناطيسى نيز، مانند ساير امواج مكانيكى براي انتشار، احتياج به يكك محيط مادى دارد. اين مادهُ فرضى يا محمل امواج الكترومغناطيسى، مى بايستى درهمهٔ مواد نفوذ كند، يعنى نه تنها صرفاً بايد فضاى خلاء را پركردهه باشد، بلكه بايد بتواند در گازهــا، آب، شيشه و به طور كلى درهمهٔ مواد شفافى كه نور از آنها مى گذرده، نفوذ كند. علاوه بر اين، براساس معادلات ماكسول، امواج الكترومغناطيسى، امواج غرضى بودند و اين امواج طبق اصـول فيزيـك كلاسسيكك، تنهـا مـى توانستند درمحـيط مــادى منتشر شـوند.

 كند. ثانياً ، اين مادهٔ جامد و فوق العاده صلب و همحچنـين بـسيار شـفاف، مـى بايـستى آنجْنـان كسشان و بدون اصطكاكك باشد كه كمترين مقاومتى درمقابل حر كت اشيا ايجاد نكند. اما علاوه براين مسائل، مشكل جـدى و اساسـيتر ديگـرى كـهـ فيزيكـدانان بـا آن روبـرو بودنل، اين بود كه آنها قادر به. اثبات وجود مادةٔ اتر نبودند و حتى اندازه گيرى خواص آن نيز تقريباً براى آنها ناممكن بود. با ايـن حـال، آنهـا وجـود آن رامفيـد مـى دانستند و مسصرانه از وجودش دفاع مى كردند. اين مشكالات در مورد انتشار امواج الكترومغناطيسى ادامـه داشــت

 مطلق كه درآن زمان يكك مسأله بسيار ييحيـده و مسشكل بـه نظرمـى رسـيد، آزمايـشى ترتيـب
: فيزيكدان آلمانى الاصل، آمريكايى كه به خاطر كارهايش در زمينـة انـدازه : Michelson, Albert Abraham -

 دريافت مى كند. وى اولين دانثمند آمريكايي است كه جايزة نوبل را دريافت مى كند.
 در آزمايش مايكلسون -مورلى مى باشد. همجنين براى كارهايى است كه براى تعيين وزن اتمى هيدروزن و اكسيرّن

ع) سينماتيك نسبيتي
دادند كه نتيجهُ آزمايش آنها وـجود مادؤ فرضى اتر رانفى مى كرد.
(T T T F
وراينجا قبل ازيررسى آزمايش مايكلسون و مورلى، مى توان اصول كار دستگاه به كارگرفتـه شده به وسيلة آنها را با تشبيه و مثال زير روشن نمود. فـرض كنيـد كـه دو شناگرسـريع و هــم قدرت مى خو اهند مسافت بين دو نشانئ ثابت دريكك رودخانه را مسسابقه دهنـلد. مطـابق شــكل (Y- (ا)، فرض مى كنيم كه دو شناگر از يكك نقطه مانند A شروع به حر كت كرده و يكـى از آنها در مسير AB ، يعنـى در راسـتاى جريـان آب رودخانـه( نـسبت بـه زمـين ) و ديگـرى در مسير AC، يعنى درراستاى عمود بر جهت جريان آب رودخانه( نسبت به زمـين) شـنا كنـند و چس از رسيدن به نقاط C و B بـه نقطـهُ شـروع مـسابقه برگردنــلـ بنـابراين، هر كـدام از آنهـا درمسير خود، يكك رفت و يـكك بر گـشت انجـام مـى دهنــن. طـول مسسير مسسابقه را يكـسان و برابر C ب درنظرمى گیريم. دراين صورت، مى خواهيم زمان انتجام مسابقه به وسيله هر كـدام از شناگرها را به دست آوريم. برای اين منظور فرض مى كنيم كه سرعت شناگَ ها نسبت به آب برابر c باشل و همعحنين سرعت رانش .آب را نسبت به زمين برابر V در نظر مى گیريم.


شكل (1-Y) : تشبيه شنا با آزمايش مايكلسون ـ مورلى
همان طور كه می دانيمه سرعت شناگُى كـه در جهــت آب شـنا مـى كنـل بـا سـرعت آب جمـع




درنتيجه زمان كل رفت و بر گشت برایى اين شناگر كه بستگى به سرعت آب دارد، از رابطلة

$$
\begin{align*}
t_{\|} & =\frac{d}{(c+v)}+\frac{d}{(c-v)}  \tag{1-r}\\
& =\frac{r d c}{c^{r}-v^{r}}
\end{align*}
$$

به دست مى آيد. ازطرف ديگر، براى شناگرى كه در راستاى عمود بر جهت جريـان آب شـنا مى كنله، زمان رفت و بر گشت برابر است. اما اين شـناگگر بـراى آنكـه در اثـر جريـان آبه، از مسير خود از A به C و از C به A منحرف نشود ، بايد كمى در خلافض جهـت جريـان آب
 برابر كه بستگى به سرعت آب دارد، از رابطلةٔ

$$
\begin{equation*}
t_{\perp}=\frac{r d}{\sqrt{c^{r}-v^{r}}} \tag{Y-Y}
\end{equation*}
$$

به دست مى Tيل. برای مقايسهٔ زمان مسابقهٔ مربوط به اين دو شناگر، مى تـوان رابطــٔهُ (Y-1) را بر رابطءٔ (Y-Y) تقسيم كرد كه در اين صورت، داريم:

$$
\frac{t_{\|}}{t_{\perp}}=\frac{r d c}{c^{r}-v^{r}} \cdot \frac{\sqrt{c^{r}-v^{r}}}{r d}=\frac{1}{\sqrt{1-v^{r} / c^{r}}}
$$

حال، با تو جه بـه رابطـهُ (Y-Y) مـى تـوان نتيجـه گرفـت كـه اگر آب سـاكن باشـلـ، يعنـى اگر $v=0$ است. درغيراين صورت، اين نـسبت بزر گتر از ا مـى باشـــ در نتيجـه شـناگگى كـه عمـود بـر راستاى جريان آب شنا مى كند، برندهُ مسابقه خواهــد بـود. بـه بيـان ديگـر، اگر ايـن دو شـناگر در آغاز شنا، به طورهم فاز از نقطهُ A حر كت را آغاز نمايند، در پايان مسابقه، هنگـام باز گکشت
 با مشاهدهٔ اين مسابقه مى توان سرعت جريان آب را نسبت به زمين به دست آورد. در آزمايش مايكلسون، با مقايسهُ با مثال فوق، مسابقه بين دو برتو نورى اسـت كــه در دو مسير مشابه، يكى موازى و ديگرى عمود برجهت رانش اترحر كت مى كنند كــه در ادامـهـ بـه بررسى و تشريح آن پرداخحته مى شود.

تا قرن نوزدهم كاملاً آشكار شده بود كه زمين، خورشيد، سـتار گان و همـهُ اششيـا موجـود درجهان درحر كتند. براين اساس، به منظور تعريف حركت مطلق كه قوانين نيوتن مبتنى بر آن




 اتر تعيين نمود.






 دريافت مى شود.









 تداخل سازنده و خْطط روشن به دست مى آيد. اما آگر اختلاف دو مسير مضرب فردى از نصف طول موج باشد، تداخل ويرانگر بوده و خط تاريك ايجاد مى گَردد.


شكل (ץ-ケ) : طرح آزمايش مايكلسون، زمين ساكن


 مى رود. همين طور، ثرتو عبورى از آيينٔ M، مسير ا راطى كرده و پس از برخورد بـا آيينــٔ
 تشابه بين تداخل سنج مايكلسون و هسابقهٔ شناى مطرح شده واضح إست. در اين تشبيه،
 مى باشل. رانش اتر نيز مانند جريان T Tب است كه سرعت آن نسبت به زمين برابر v مـى باشـلـ. همان طور كه از مسابقّٔ شنا در رودخانه مى توانيم به اندازه سـرعت جريـان آب پـى بيـريم در اينجا نيزانتظار داريم كه سرعت رانش اتر را الز اجرإى يكك مسابقءٔ نور درمـسيرهاى مـوازى و





شكل(Y-Y): زمين متحر ك، و اتر ساكن
 فاصلة بين آيينٔ M و آيينه هاى ا وY ب، برابر d در نظر گرفته شود، در اين صورت، داريم

$$
\begin{align*}
d_{r} & =r \sqrt{\left(\frac{v t}{r}\right)^{r}+d^{r}}  \tag{Y-Y}\\
& =c t
\end{align*}
$$

 (Y-Y) به دست آورده و در c ضرب كنيم، خوواهيم داشت:

$$
c t=\frac{r d}{\sqrt{\left(1-v^{r} / c^{r}\right)}}=d_{r}
$$

ᄂ

$$
\begin{align*}
d_{r} & =\frac{r d}{\sqrt{\left(1-v^{r} / c^{r}\right)}} \\
& \simeq r d\left(1+\frac{v^{r}}{r c^{r}}\right)
\end{align*}
$$

حاله، زمان رفــت و بر گـشت چرتـو نـور را درمـسير ا بـا توجـه بـه تبـديلات گاليلـه بـه دسـت



$$
\begin{equation*}
c t_{+}=d+v t_{+} \tag{V-Y}
\end{equation*}
$$

§7 مقلدمه أى بر نسبيت خاص

$$
t_{+}=\frac{d}{c-v}
$$



$$
\begin{equation*}
c t_{-}=d-v t_{-} \tag{9-Y}
\end{equation*}
$$

به دست آورد. در اين صورت، خواهيم داشت:

$$
t_{-}=\frac{d}{c+v}
$$

در نتيجه، مسافت كل طى شده به وسيلةٔ برتو نور در مسير ا، برابر

$$
\begin{align*}
d_{1} & =\left(t_{+}+t_{-}\right) c \\
& =d\left(\frac{c}{c+v}+\frac{c}{c-v}\right)  \tag{11-r}\\
& =r d \frac{1}{\left(1-v^{r} / c^{r}\right)}
\end{align*}
$$

خو| اهد بود. بنابراين، با تقريب مى توان نوشت:

$$
\begin{equation*}
d_{1} \approx r d\left(1+\frac{v^{r}}{c^{r}}\right) \tag{IY-Y}
\end{equation*}
$$

حال، با توجه به روإبط (Y-Y) و (Y-Y) اY، اختلاف مسيرطى شده درمسيرهاى ا وY، برابر

$$
\begin{align*}
\Delta d & =d_{1}-d_{r} \\
& \approx d\left(\frac{v}{c}\right)^{r}
\end{align*}
$$

بـه دسـت مــى آيـــ. حـال، بـا در نظـر گــرفتن
برابر 1 • خواهد بود. همحجنين، مى توان اختلاف زمان بين دو هرتـو نـور را نيـز بـه دسـت آورد. برایى اين منظور، با توجه به اينكه نورمسافت

در اين صورت، داريم: $\Delta d=c \Delta t$. بنابراين، داريم:

$$
\begin{equation*}
\Delta t=\frac{\Delta d}{c} \tag{if-r}
\end{equation*}
$$



$$
\begin{equation*}
\Delta t \approx \frac{d}{c}\left(\frac{v}{c}\right)^{r} \tag{10-Y}
\end{equation*}
$$

همحتنين، با توجه به تشابهى كه بين تداخل سنج مايكلسون و وسابقهُ شنا مطرح شدل، مـى تـوان


سV سينماتيكى نسبيتى
يعنى اما درمورد دقت تدانخل سنج مايكلسون، مسى تـوان بسه ايـن نكتـه اشـاره نمـود كـه ايـن دستگاه دراندازه گيرى فواصل، به اندازه ایى حساس بود كه حتى مى توانست رشد يكى گيـاه را ثانيه به ثانيه اندازه بگگيرد و همچچنين قطر بعضى از ستار گانى را كه در بزر گترين تلسسكويها
 تداخل سنـج به اندازء كافيَ بالالا بود تا بتواند اين انختلافٌ مسير را كه بـين دو يرتـو نـور ايـجـاد مى شلد، با دقت زياد آشكار كند.

درحقيقت، طرح مايكلسون اين بود كه تداخل سنج را در جهت هاى گوناگون، نـسبت به حر كت زمين قراردهلد و با اندازه گیرى اختلافض فاز پرتوهاى نور رسيله به پرده، اثر اتـر را تشَخيص دهل. همـحْنـين، مايكلـسون در سـال MAV بـه كمـكك همكـارش مـورلى، آزمـايش دقيق ترى را كه بائه تجربى نظرئه نسبيت قرار گرفت، مسلداً انجام داد. در اين آزمـايش نيـز، دسته برتو تابش درجهت هاى متفاوت نسبت به هحر كت زمين يا باد اترى تابانده شل. امـاعمـالًا هيِّ انختلاف فازى مشاهلده نگرديد. نوارهاى تداخلمى ايجاد شده روى يـرده همـواره بـه طـور يكسان ايججاد مى شدنل. و درحقيقت، نوارهاى تداخلى بسستگى بـه جهــت دسـتگاه نداشـت. تكرار آزمايش نيز نتيجه أى در بر نداشت و نتيجه براىى هر بار آزمايش منغى بود. اكنون، با به دست آملن نتيجـهُ منفـى از آزمـايش مايكلـسون و مـورلـى، در واقـع مبـانى فيزيكك نيوتنى كه مبتنى بر فضاى مطلق يا حر كت مطلق بود، متز للزل گرديــ؛ زيـرا بـا اثبـات عدم وجود اتر، حر كت مطلق يا فضاى هطلقّ، ديگُرمعنى نداشت. و نتيجه اينكه بـا زيـر سـؤال رفتن مفهوم فضاى مطلق يا حر كت مطلق، پايه هاى فيزيـكك كاسـيكك يـا نيـوتنـى كـه بـراين

مناهيم استوار شله بودند، فرو ريخت. اما با اين حال، فيز يكك نيوتنى بـأز هـم مــى توانـست پلـيـده هـاى معمـولى را در جهـان توصيف نمايلد و حر كت سيارات را باز مى شل بـا قـوانين گگرانش نيـوتن توضـيـح داد. همـين طور، حر كت اجسام روى زمين هنوز هم از قوانين نيوتن بيروى مى كردنـد. درحقيقـت، تنهـا چیزى كه مشخص شله بود، اين بود كه توضيحات كالاسيكك براى توصيف همهٔ بلديله هـاى


 تغيرى نكرده بودند، بلكه نظريه هايى كه براى توصيف آنها وضع شله بودند، كامل نبودند و
 مايكلسون و مورلى را مى توان يكى از مهمترين آزمايشها در طول تاريخ علم دانست.

## Y Y Y Y ت توجيه نتيجهٔ منفى آزمايش مايكلسون و مورلى

بعد از به دست آوردن نتيجهٔ منفى از آزمـايش مايكلـسون و مـورلى، تلاشـهاى زيـادى بـراى تو جيه نتيجهٔ منفى آن صورت گرفت. يكى از ايـن تو جيهـات كـه شُـايد بتـوان آن را يكـى از مهمْ ترين آنها نيز در نظر گرفت، نظريه ایى اسـت كـه در ســل (1AQ1-19.1)، فيزيكدان تجربى ايرلندى ارائه شده است. وى نظر داده بود كه هـس جـسم در
 بنابراين، براساس اين تعبير، تداخل سنج هميشه درجهت حر كـت واقحى زمـين، بـهـ انــاززه ایى
 توضيح فيتز جر الل، مى توان نتيجه گرفت كه :

طبيعت همواره اتُى توليد مى كند كه هـ گونه احتالافى را كد ممكن اسست در تشخيص حسكت هطلق مؤثْ باششد، خنتى كند.

در نتيجه، به اين دليل، انسان هر گز قادر به اندازه گيرى شحر كت مطلق نخواهل بود. اين پديلهُ خنثى كننده، به اتقباضن طول فيتخ جحرالدّ موسوم است. فيتز جر الل، براى اين اثر معادله ایى نيز به دست آورد كه برطبق آن، طول هر جسم در راستاى حر كت كو تاه به نظر مى آيل. از طرفُ ديگّر، بر اساس Tن معادله، اگرجسمى با سر غت نورحر كت كند، طول آن در جهت حر كت،

1-Asimov, Isaac :انشمند روسى - آمريكايى و نويسندئ كتابهاى علمى

## 2-George Francis FitzGerald

3. Fitzgerald contraction in Length

صفر به دست مى آيل. بنابر أين، نتيجهٔ مهم و اساسى ديگرى كه از معادلـــه انقبـاض طـول فيتـز
 بنابراين، سرغت نور درخلأ بايد بالاترين سرعت ممكن در جهان بران باشد. لو رنتس تقريباً اين فرضيه را پذيرفت وآن را نيـز تـا انــدازه ایى تكميـل كـرد. همجنـينـ،


 نظرى تأثير عميقى بر جاى نهاد.
 تأثيرحر كت يا سرعت يكك جسم بر شـكل آن بـود، منتشر نمـود. وى در مقاللـٔه خـوده، نظريــــ


 اتقباض طول لورنتس - فيتن جحسالد نيز مى نامند.

نظريهٔ ديگرى كه برای حفظ مادهٔ فرضى اتر ارائه گرديذ؛ فضضـيؤ كـشش اتسىى بــود. طبق اين فرضيه، اترهمراه اجسامى كه دارایى جرم متناهى هستند، كشيده مى شود. البته بـا ايـن فرضيه نتيجهٔ منفى آزمايش مايكلسون و مورلى قابل تو جيه بود ـ بنابراين، نيازى بــهـ إصـلا


 كشش اترى، على رغم توجيه نتيجهٔ منفى آزمايش مايكلسون و مورلى، تناقضات و مشكلات

## 1- Lorentz - Fitzgerald Contraction

## 2- Aether drag hypothesis

3- Aberration of light or stellar aberration
4- Fizeau, Armand Hippolyte Louis فيز يكدان فرانسوى
جلدى ترى وا به و جود مى آورد.
 انگگليسى مطلرح شلده بود، درواقع، به طريق ديگرى وجود اتر را نفى مى كرد؛ زيرا اگكـر مـادهُ فرضى اترو جود داشت و همـچخنين، اگگر اين ماده، همر اه زمين كشيله مى شله در اين صورت،
 نتيجهٔ منفى آزمايش مايكلسون و مورلى را تو جيه كرد. در بـخش Y - ا اك توضيح بيسشترى در مورد ابيراهیى نور ستاره الى داده مى شود.

علاوه بر اين، فرضيؤ كششش أترى ضريب همرفت فيزو رانيـز نمـى تو انـست بــه درسـتى
 بيان مى كرد كه نوريا به طور كلى امواج الكترومغناطيسى به وسيلهُ محيطهاى مادى متحـر كك، مانند آب تا اندازه إى كشيده مسى شـوند. بـه عبـارت ديگـر؛ سـرعت مـوج الكترومغناطيسى، علاوه بر ضريب شكست محيط به سرعت مسحيط انتشار موج نيـز بـستگی دارد. ايسن اثركــه در
 صورت قانع كننله ایى توضيتح داده نشد ( ــ مثال Y ـ ا 1 ).

جليلدى را در بارهٔ نور مطرح كرد. اين نظريهه، درواقع مبتنى بر بـسط و تعمـيـم تئـورى كـوانتم ماكس بِلانكك ${ }^{r}$ صورت كوانتم با فوتون، درفضا حر كت مـى كنـلـ و بـه ايـن ترتيــب، وى عقيــدهُ مربـوط بـه ذره أى بودن نور را كه نيوتن در قرن هفلههم مطرح كرده بود، دوباره زنده كرد. امـا ايسن بـار ذره ها از نوع ديگكر بودنل؛ زيرا هم خواص موج را داشتندو هـم خواص يكك ذره. بـه عبـارت ديگر، تابش در بعضى از شرايط، خـواص دانـه إى آن ظلاهر مــى شـود و در بعـضى ديگـر از

## 1- Bradley, James

2- Fresnel, Augustin Jean: فيز يكدان فرانسوى كه درزمينهٔ إيتيك نظرى و تجربى كار كرده است
3- Planck, Karl Ernst Ludwig Max : فيز يكدان مشُهور Tآلمانى قرنة بيستم و ابداع كنتلـهُ نظرهئ كوانتمى. وى


01 سينماتيك نسبيتي 0
شرايط؛، خواص موجیى آن آشكار مى گردد.
لازم به ياد آورى است كه همهُ يیروزى هأى قرن نوزدهم در بـارهٔ مبحـث نـور، و از آن جمله در بارهٔ طيف نگارى، به دنبال كشف ماهيّت موجى نور صورت گرفته بود. اما از طـرف ديگر، فيزيكدانان مجبور بودند كه به خاطرماهيّت موجى نور، وجود اتر را نيز بيذيرند. به أيـن
دليل از وجود آن مصرانه دفاع مى كردند. اما اككنون با نظريــه جلديـد اينـشتين دريـارهٔ ماهيّــت موج - ذرها أى نور، همةٔ بيروزى هاى قرن نوزدهم درمورد نـور و همـجنـين معـادلات ماكـسول
 يعنى اينكه تابش مى توانست، همر اه با ذراتى كه حمل مسى كنـد از خـلاء بگـــرده، و بـه ايـن ترتيب به گَفتئ ايزاكك آسيموف:

ايدة مـهوط به اتت كه با نتيجهُ منفى آزمايشت ما يكلسون و مورلى مسده بود، با پذيرفتن ماهيّت موج - ذره ایى نور، به طور كلى دفن گـديد. از طرف ديگُر، لورنتس در سال 19 19 نشان داده بـود كـه شـكل معـادلات ماكـسول يـا نظرئ الكترومغناطيس، تحت تبديلات گاليله، در گذر أزيك چجارچوب مرجـع بـه پـارچوب مر جع ديگرناوردا نيستند. درنتيجه وى برای حل اين مسسأله روابسط تبسليلى جليـلـى را ابــلاع كرد و نشان داد كه نظريهٔ الكترومغناطيس، تححت تبلديلات ابـداعى او همـوردا مسى باشـند. بـه
 در هارجوبهاي مر جع لخت، ناوردا يا بلدون تغيير باقى مى مانند. نكتئ ديگر اينكه، اينشتين اكنون با دو گروه از تبديلات برایى پلديله هاى فيزيكك روبـرو بود. اين تبديلات عبارت بودند ازتبديلات گاليلـه، بـرأى پلـيــده هـاى مكـانيكى يـا نيـوتنـى و تبديلات لورنتس، برای يد يله هاى مغناطيسى يا به طور كلى نظريهٔ الكترومغنـاطيس. بنـابراين، اينشتين كه نمى توانست در آن واحدى اين دو گروه ازتبديلات را بيذيرده. بـر ايـن اسـاس، وى روأبط تبديلى لورنتس رابر روابـط تبــيلى گاليلـه تـر جيح داد وآنهـا را بـه عنـوان فزمولهـا و
 نظريئ نسبيت، پياملدى أز إين پذيرش و أنتخابِ او مى باشد.

## F-Y

 طور عدم تبديل هموردایى معادلات ماكسول تحا تحت تبديلات گاليله، باعث شدند كا كه اينشتين دو راه و نظريه را براى برطرف نمورد
 متصل به اتر نادرست هستند. و راه حل دوم اينكه فضا و زمان نيوتنى يـا كلاسـيكيك، ممكـن است اشتباه باشند.







 يكديگر جدا شدند.






فضا ـ زمان را برايى تبيين و بررسى رويدادها مطرح نمود.


or سينماتيكى نسببيتى
زمان را مى توان به طور وأقعى به عنوان يكى از ابعاد آن در نظر گرفت. تلفيقي اين خجهار بعـلـ، يعنى سه بعل فضا و يكك بعلد زمان را همان طور كه قبلٌا اشاره شل، غاللاً فضا ـ زمان مـى نامنـد. مفهوم يا اصصطلاح فضضا زمان، نتخستين بـار بـه وسـيلهُ يكـى از اسـتادان اينشتين بـه نـام هرهـان مينكوفسكى، رياضيدان روسـى ـ آلمـانى در سـال 19.V يعنـى دو سـال بـس از ارائـه نظريـه نسبيت خاص بيشنهاد گرديلد. اينشتين با تو جه به ديد گاه خود درمورد مفاهيم فضا و زمـان، اصـول نسبيت' خــود را بـه

صورت زير بيان نمود:





در واقع، اينشتين برایى ايـجاد هندسه اى جليد براى فضا ـ زمان، اين دو اصل را بيان كرد. اين هندسه را مى توان نتيجه ایى مستقيم از اهصل دوم نسبيت، يعنى مستقل بودن سرعت نـور از ناظر درنظر گرفت. همتحنين، مى توان گُفت كه هلدف اينشتين از بيان ايـن دو اصـل، ايـن بـود كه نظرئة الكترومغناطيس يا معادلات ماكسول درتمام جارپوبهاى مرجع لخت برقرار باشند. اما نكته إى كه نبايد آن را ناديده گرفت، اين است كه قوانين مكانيكك، در صـورتى در جارجوبهای لخــت برقـرار هـستند كــه فـضا و زمـان، نيـوتنى باشــند. بنـابراين، در فضضا ـ زمـان مينكوفسكى " يا جهان Aينكوفـسكى "، قوانين مكانيكك بايل به صورت ديگرى اصـلاح شـوند. در واقع، اين قوانين بايد به شكلى اصلاح شونلد، يا تعميم يابند كه درحد سـرعتهاى معمـولى، بـه همان قوانين مكانيكك نيوتنى تبديل شونلـ تعميم أين اصـل بـه تمـام قـو انين فيزيـكـ( از جملـهـ نظر ئه الكترومغناطيس) كام مههمى است كه اينشتين با ارائه نظريهٔ نسبيت خود برداشت. به ايـن ترتيب از اصل اول نسبيت خاص مى توان نتيجه گرفت كه:
 , الزيكديگ, عتماين ساهت.

اما در مورد اصل دوم نسبيت خاص، مى توان تنها به اين نكته اكتفا كرد كه تتجربه آن را تأييل مى كند؛ زيرا آزمايشهاى مختلفى با ابزارها و وسايل بسيار دقيق و بيجخيله در دوره هـاى مهختلف انجام گرفته اند كه همه آنها اين اصل، يعنى مسستقل بـودن سـرعت نـور از ناظرهـا را تاييد مى كنند. البته همان طور كه مى دانيمو، اولين اين آزمايشها، T آمايش مايكلسون است كه

در سال |MN1 انتجام گرفته است.

- F

همان طوركه در فصل اول، در مورد چار چووبهاى لخت ونا لخت در فيزيكك كلاسـيك صسحبت شده در اينجا نيز مى تـوان ناظرهـا يـا جارجوبهـا را بـه ناظرهـاىى لخــت و نالخــت تقـسيم نمـود. ناظرهاى لخت مى توانند نسبت به يكديگ, با سرعت يكنواخت حر كت كنند. به عاوه هر نـاظر مى تواند مبدأ مكان و زمان خود رانيز به نحوى دلخواه انتخاب نمايل. از طرف ديگر، مى دانيم كه قوانين فيزيكك نبايل بستگگى بـه انتخـاب مبـدأ زمـان يـا مكـان داشته باشند. اين اسـتقلال را در واقـع مـى تــوان حـاكى ازهمگگـى فـضا و زهـان دانـست كـه از
 محور هاى د كارتى فضاى خود را به دلخواه انتخاب نمايدكه اين استقالل را نيـز مـى تـوان نــشان ازهمسانگردى فضا درنظر گرفت. حال با پـذيرفتن ايـن تقارنهـا بـراى فـضا و زمـان، و همثحنـين، انتخاب دسته خاصى از ناظرها، راه براى ساختن ملـلى از فضا ــ زمان كه درآن قـوانين فيزيـكك را بتوان مستقل از ناظر، و هممين طور متختصات T ان بيان كرد، بازمى شود. همان طور كه قبلاً اشاره شده قوانين نيوتن مستقل از ناظرهاى لخت بيان مى شـوند. بـه بيـان ديگر، صورت قوانين مكانيك دردستگاهها يا جارجوبهاى لخت يكسان مى باشند. اين يكسانى در شكل معادلات را درپارچوبهای گوناگُون، ناوردايى صورت يا هموردايىى ' قوانين مى نامند.

1- Covariance

سينماثيك نسبيتىي00
درفْزيكك نيوتنى، استقلال قوانين از ناظر را كـه بيـانخر تقارنهـاى مهمـى از فـضا و زمـان، يعنـى همگنى فضا و زمان و همسانگُردى فضا است، اصل نسبيت تًاليله تضمين مى كند. البته، بايل توجه داشت كه اصول نسبيت، به صورتى كه بيان شدنل، متضضمن قـرار دادهـايى نيز مى شوند، مثلاً هر ناظرى برایى اندازه گيرى فضا و زمان بايد مجهز بـه مقيـاس فـضا يـا زمـان باشل. براين اساس، هرناظرى مى تواند واحد زمان و واحد طـول خـود را بـه شـيوه أى مسشخص تعريف كرده و نيز روشى دلخخواه و معين براى همزمـان كـردن سـاعتهاى دور ازهـم اخختيار كــــــ بنابراين، انتخاب نامناسب واحد طول يا همين طور واشحد زمان، ممكن است باعـث ايهجـاد نـوعى ناهمخگنى صورى يا ظاهرى در فضا و زمان شود. به اين ترتيب كه مى تـوان بـا انتخـاب واحـلـى نامناسب برایى واحد هاى طول يا زمان، ناظرى را از ناظر ديگَر ممتاز كرد. كه البته، اين موضسوع در واقـع بـا اصــل اول نـسبيت در تنــاقض خواهــد بـود. بــراين اســاس، بايــد همـواره بـه أتتخـاب
 داشــت. ايــن مطلــب را در بخخـش مربـوط بــه نمودارهـاى فـضضا و زمــان و قــرارداد همز مـانى بيى مى گيريّ.

- Y - نتايج حاصل از اصول نسبيت خاص

در اين بخش، مى خواهيم بعضى از نتايج و پيامدهاى مهم حاصل از اصل دوم نـسبيت، يعنـى مستقل بودن سرعت نور از ناظررا بررسى نماييم. اين نتـايج يـا اثرهـاى نـسبيتى عبـارت انـداز نسبيت همزمانى، اتساع زمان و انقباض طول.
-
همان طور كه درفصل اول اشاره شد، اگر دو رويـداد در يـك چچـارچوب مرجـع لخـت همزمان باشند، در تمام چار جوبهاى لخت ديگر نيز همزمان خو اهند بود. اين مطلب در فيزيكك نيوتنى به دليل وجود سيخنالى با سرعت بى نهايت و مطلق بودن فضا و زمان صادق اسـت. امـا در نسبيت، با توجه به ديدگاه اينشتين در مورد مفاهيم فضا و زمان و همين طور، طرح هندسـهُ جد يد از فضا . زمان ، وضعيّت به صورت ديگرى مي باشد.
 مى كنيم كه در وسط واگن فانوسیى قرارگرفته باشد. حال اگَ واگن با سرعت ثابت V درجهـت مثبت محور X ها حر كت كند، دراين صورت از ديد ناظر يا حارجوب مرجع متصل بـه واگـن، يعنى 'S، هنگامى كه فانوس روشن می شود، نور آن به طـور همز مـان بـه ابتـدا و انتهـاى واگـن
 حال، اين دو رويداد را از ديد ناظر يا هارجوب واق ونع بر سطح زمين يا ناظر S بررسى مى كنيم.

 مى كند، نسبت به پرتو نورى كه به سمت عقب حر كت مى كند، مسافت بيشترى را بايــد طـى كند تا به قسمت جلوى واگن برسد. بنابراين، از ديد ناظر S، زمان رسيدن نور فانوس بـه ابتــدا و
 بر تو نور فانوس، به قسمت ابتدا و انتهاى واگن باشند، در اين صورت، مى توان نوشت:

$$
\begin{equation*}
c t_{A}=\frac{L}{r}+v t_{A} \tag{19-Y}
\end{equation*}
$$

$$
\begin{equation*}
c t_{B}=\frac{L}{r}-v t_{B} \tag{IV-Y}
\end{equation*}
$$

حال، با محاسبهٔ

$$
t_{A}=\frac{L}{r}\left(\frac{1}{c-v}\right)
$$

$$
\begin{equation*}
t_{B}=\frac{L}{r}\left(\frac{1}{c+v}\right) \tag{19-Y}
\end{equation*}
$$

OV سينماتيك نسببيتى
 نأظر S يرتو نور ابتدا به B مى رسد و سپس به A. الختلاف زمان بين اين حو رويلاد نيز، برأبر

$$
\begin{align*}
\Delta t=t_{A}-t_{B} & =\frac{L}{r}\left[\left(\frac{1}{c-v}\right)-\left(\frac{1}{c+v}\right)\right] \\
& =\frac{L v}{c^{r}}\left(\frac{1}{1-v^{r} / c^{r}}\right) \tag{Y;-Y}
\end{align*}
$$

 اينـجا دنبال مى كرديم، أين رابطه به خوبى آن را بيان مى كند. مقدار صصحيح بعل از بيان تبديلات لورنتس به دست آورد.

مثال فرض كنيد كه ناظر ساكن S مى خواهل سرعت دور يا نزديـكك شــدن يـكك جـسـم يــا ناظرى را نسبت به خودش اندازه بگيرد. براى اين منظور، اين ناظر مى تواند از اصل مربوط به ناوردا بودن سرعت نور يا امواج الكترومغناطيسى استفاده كند. بـه ايـن ترتيـب كـه ايـن نـاظر مى تواند با ارسال دو سيگنال يا موج الكترومغناطيسى متواللى به سمت جسم يا ناظر متحـركّ ودريافت سيگنالها، پس از بازتابش ازجسم يا ناظر، سرعت دور يا نزديكك شدن آنها را نسبت به خودش به دست آورد.

حال، فرض كنيد كه ناظر ساكن Sك، دو سيگنال يا علامت الكترومغناطيسى متوالى را بــه فاصلكٔ زمانى To به سمت جسم يا ناظرى كه نسبت به خودش در حال دور شدن است، ارسال


 نـخواهل بود؛ زيرا در اين حالت، به خاطر حر كت جسم يا نـاظر كــه بـاسـرعت $U$ از نـاظر S
 نسبت به $u t$, برابير BD است كه نْقطهُ بازتابِ به اندازؤ آن جا به جا مى گرد.2.


 برای باز گشت سيگالل دوم به ناظر ساكن S S، برابر

$$
T=T_{\circ}+\frac{r u}{c} t_{1}
$$



$$
\begin{equation*}
T=T_{0} \cdot \frac{1+\beta}{1-\beta} \tag{YY-Y}
\end{equation*}
$$

كه درTان $\beta$ م مى باشد. اكنون مى توان مقدار $u=u / c$ رالز رابطةٔ (Y-Y) به دست آورد

$$
u=c \frac{1-\alpha}{1+\alpha}
$$

 شدن جسم يا ناظر متحر كك نسبت به ناظر ساكن مى باشد. به همين ترتيـب مـى تـوان سـرعت نزديكك شدن جسم يا ناظر متحر كك را نسبت به ناظر ساكن به صورت

$$
\begin{equation*}
T=T_{\mathrm{o}} \cdot \frac{1-\beta}{1+\beta} \tag{-Y}
\end{equation*}
$$

$$
u=c \frac{1+\alpha}{1-\alpha}
$$

به دست آورد. بنابراين، با اين روش مى توان با ثبت بازه هأى زمـانى بـين دو سـيگنال ارسـال شده، يعنى $T_{0}$ و همين طور، اندازه گيرى بازه́ زمانى بين اين دو سيگنال، هنگًام دريافت آنهـا



مثأ يك جهت به ترتيب با سرعتهاى باشند. حال فرض مى كنيم كه از سفينٔ B كه به دنبال سفينئ A $A$ درحر كت است، دو سسيگنال

 مجهول، نسبت به چارچوب يا ناظر ساكن S، تعيين مى گردند.

جواب : دراينجا مى توان از نتيجه اى كه در مثال Y- (ا، به دست آمل، استفاده كرد. بنابراين،
با توجه به رابطةُ (Y-Y)، بازءٔ زمانى دو سيگنال كه ازسفينٔه A بازتابيده مى شوند. به صورت

$$
T_{r}=T_{1} \cdot \frac{1+\beta_{1}}{1-\beta_{1}}
$$

به دست مى آيد. كه درآن 1 / $\beta_{1}=u_{1}$ مى باشد. اما اين دو سيگنال پس از بازتابش از A ، به اسفينٔ B نزديك مى شوند، يعنى جهت حر كت آنها عوض مى شود كه در اين صـورت بـا توجه به رابطه (YF-Y)، اختلاف زی زمانى بين اين دو سيگنال هنگام رسيدن به سفينئ B از رابطهُ

$$
\begin{equation*}
T=T_{r} \cdot \frac{1-\beta_{r}}{1+\beta_{r}} \tag{YV-Y}
\end{equation*}
$$

 (Yя-Y) در (YY-Y)، فاصلهُ زمانى مورد نظر برابر

$$
T=T_{1} \cdot \frac{1+\beta_{1}}{1-\beta_{1}} \cdot \frac{1-\beta_{r}}{1+\beta_{r}}
$$

به دست مى آيل.

## 

يكى ديگر ازجنبه هالى مهم نظريه نسبيت خاص كــه هنـوز هـم سـبـب بحـث در ميـان فيزيكـدانان مى شود، تصور و ايلدةٔ اينشتين در بارهُ كند شدن آهنگگ كار ساعتهاى متحر كك است كه مربوط به

هندسؤ فضا ـ زملن' مى بأشد. بنا به گغتئ اينشتين، ساعتى كـه حر كـت مـى كـــد، نـسبت بـه سـاعت ساكن آهسته تر كار مى كند. درحقيقت، اين اثر نسبيتى، تنها مخختص ساعتهاى متحر كك نمى باشل، بلكه هملُٔ پديله هايى كه به نوعى تابع زمان هستند، در هنگام حر كت با با آهنگگ آهسته تـرى روى
 ضربان قلب آنها و ... وابسته به سرعت نسبى آنها مى باشند. به بيان ديگر، براى چنين چديله هايى،
 ساعتى كه نسبت به يك ناظر ساكن، با سرعتى برابر Mr/ ناظر ساكن، اين ساعت هر دو ثانيه را يكك ثانيه نشان خواهلد داد و درسـرعت نـور، زمـان متوقـف مى شود. به عبارت ديگر، از ديد ناظر ساكن، عقربهٔ سـاعت متحر كك از حر كـت بـاز مـى ايـستد. به بيان دقيق ترمى توان گفت كه ساعت متحر كك براى نشان دادن يكك ثانيه، به ملت زمـان بـسيار طولاتى يا بى نهايت نياز دارد. كه ما اين مطلـب را مجـدداً درفـعل سـومه در بخخش نمودارهــاى مينكوفسكى يى مى گيريم. دراينجا نيز براى به دسـت آوردن رابطـئ اتساع زمان ' يـا الرتباط بـين زمانى كه ساعتهاى ساكن و متحـر كك نـشان مـى دهنـد، مـي تـوان مانــد شـكل (Y-Y) از واگگـي استفاده كرد كه در كف و سقف آن آيينه هايى موازى هم تعبيه شده است. $S \xrightarrow{\text { ( }}$

به طورى كه برتو نورمى تواند بين كف و سقف واگّ، تابيده و باز تابيله شود. اين ساز و كار را در واقع مى توانْ به عنوان يك ساعت نورى "ّدرنظر گرفت. اكنون، با توجه به شُكل (Y-Y)، اگرواگن با سرعت ثابت V درجهت مثبت محـور X هـا حر كت كند. ازديد. ناطُرهمراه واگن، يعنى 'S زمان لازم برایى رفت و بر گشت پرتو نور، بـين

دو Tينئة A, B كه در سقف و كف واگن قرار گرفته انذه برابر

$$
\begin{equation*}
\Delta t^{\prime}=T_{S^{\prime}}=\frac{r h}{c} \tag{Y9-Y}
\end{equation*}
$$

مى باششد؛ زيرا برتو نور نسبت به ناظر واقع در داخـل واگگن، در راسـتاى قـائم بـه سـمت بـالا
 ارسال و دريافت پرتو نور، به وسيلة آيينٔ B مى باشد. البته اين دو رويداد نسبت بـه نــاظر 'S در يك مكان روى مى دهند. اما از نظر ناظر واقع در كنار ريل، يعنى نـاظر S مـسيرى كـه برتـو نورمى بيمايد، بيشتر از rh خواهد بود.


شكل (Y-Y) : ساعت نورى ــاز نظر ناظر ساكن S
اگر l طول مسير پيموده شله به وسيلهُ پِرتو نور از ديد اين ناظر باشده در اين صورت با توجـه به شكل (V-Y)، خواهيم

$$
l=r \sqrt{h^{r}+\left(\frac{v \Delta t}{r}\right)^{r}}
$$

اكنون، اگر زمان رفت و بر گشت ترتو نور از ديد ناظر S، برابر $\Delta t=l / c$ باشد، داريم

$$
\begin{align*}
\Delta t & =T_{S}=\frac{l}{c} \\
& =\sqrt{(r h / c)^{r}+(v \Delta t / c)^{r}} \\
& =\sqrt{\left(T_{S^{\prime}}\right)^{r}+(v \Delta t / c)^{r}}
\end{align*}
$$

دررابطهٔ (Y-انّ)، $\Delta t=T_{S}$ بازه́ زمانى بين دو رويداد ارسال و دريافت پرتو نـور، بـه وسـيلئ آيينٔ Bاز ديل ناظر ساكن S مى باشلـ. البته بايلد تو جه كرد كه اين دو رويـداد نـسبت بـه ايـن ناظر در يك مكان روى نمى دهند. اكنون، مى توان

$$
\begin{equation*}
T_{S^{\prime}}=T_{S} \sqrt{1-v^{r} / c^{r}}=\frac{T_{S}}{\gamma(v)} \tag{YY-Y}
\end{equation*}
$$

$$
T_{S}=\gamma(v) T_{S^{\prime}}
$$

در روابـطط فـوق، ضـريب (V) $\gamma(v)=1 / \sqrt{1-v^{\zeta} / c^{\gamma}}$ بنابراين، ضريب (V) هميشه بزر گتر يا مساوى يكك مى باشد. بنابراين، رابطـُ (Y-بّش) نـشان مى دهد كه ساكن و متحر كك بيان مى كند. همبچنين، به طور كلى مى توان گفــت كـهـ بـازهُ زمـانى بـين دو

 مى گیيرد كه نسبت به مكان وقوع دو رويداد ساكن است. بنابراين، ' ناميد. اين رابطه را مى توان به همةٔ بديلهه ها يا فرايندهاى فيزيكى كه به طريقى وابسته به زمان مى باشند، تعميم داد.


 يعنى $T_{S}$ برابر ه نانو ثانيه خواهد بود.

اكنون، با تو جه به رابطهُ اتساع زمان، ناظر S مشاهله مـى كنـد كـه سـاعت متحر كك يـا ساعت ساكن در جارجوب 'S كند كار مى كند. بنابراين، او برایى برقرارى إرتباط بـين بـازه $T_{S}=\gamma(v) T_{S^{\prime}}$

 مى تواند رابطئ اتـساع زمـان را بـه صسورت $T_{S^{\prime}}=\gamma(v) T_{S}$ بنويسل. درنتيجـه، او نيـز ادعـا مى كند كه ساعت ناظظر S آهسته كار مى كند. يعنى اينكه، هر كدام ازناظرهاى S يا مى كنند كه ساعت همراه ناظر ديگُر، درمقايـسه بـا سـاعت خـودش كـنـدتر كار مـى كنـد. از

سيئماتيك نسبيتى 7
طرغّ ديگُر، با تو جه به اينكه اندازهٔ كند شدن كار ساعتهاى دو ناظر نيز بايلد يكسان باشلد. بنـابراين، اككنون دراينجـا ممكـن اسـت اين سؤال مطرح شود كه كدام يكك از ناظرها راست مى گويد، ناظر S يا برایى پاسخ به اين تناقض ظاهرى، اگر كمىى دقت شود، مـى تـوان بـه جـواب ايـن سـؤال بيى برد؛ زيرا سؤالى كه در اينجا مطرح شد، دقيقاً مانند آن است كه گفتـه شـود كـهـ دو سـيب مشابه روى ميزّ است و سپس إدعا شود كه سـيب اولـى بزرگتـر از دومـى و سـيب دومـى نيـز بزر گتر از اولى است. براى توضيتح دقيقتر اين تنـاقض ظـاهرى، كـافى اسـت در رابطـهُ اتـساع زمان دقت بيشترى شود. همان طور كه اشـاره شــل، رابطـه أى كـه نـاظر S بـرانى أتسساع زمـان مى نويسد، به صورت ارسال و دريافت پرتو نور است كه در چـاپֶوب 'S در يـكك تقطـه يــا مكـان رخ مـى دهنـد. $T_{S^{\prime}}=\gamma(v) T_{S}$ همين طور، رابطه إى كه ناظر 'S برای اتساع زمان مى نويسل، بـه صسورت خْواهد بود. دراين رابطه نيز نقطه يا مكان رخ مى دهند. بنابراين، رابطةء '
 صادق است كه دو رویلاد در چارپپوب S دريسكك مكـان روى دهنـد. درنتيجـه، دو رويـداد هنگامى كه نسبت به يكك ناظر هم مكان باشند، نسبت به نـاظر ديگـر، نمــى توانــد هـم مكــان باشند. به عبارت ديگـر، روابـط $v=0$ همزمان نسبت به يكك نـاظر برقـرار باشــند. البتـه در حالــت خـاص، يعنـى هنگـامى كـه يا $\gamma(\mathrm{l}$ (o) باشد، دو رويداد نسبت به ناظرهاى S و 'S در يـك مكـان رخ مـى دهنـد كـه

$$
\text { البته در اين صورت } T_{S}=T_{S^{\prime}} \text { خواهل بود. }_{\text {بود }}
$$

در نهايت، نتتيجه اينكه هيحچگونه تناقضى بين ادعاى دو ناظر وجود ندارد؛ زيرا هر كـلدام
 واضتح تر ديگرى كه مى توان در اين مورد مطرح نمـود، ايـن اسـت كـه فـرض كنيـد كـه دو شخصر با سرعت معينى دوامتداد يكى خطط راست، از يكديگر دور مى شوند. در اين صورت، هر كدأم از اين دو شخصص ادعا خواهنــل كـرد كـه شـخصى ديخـرى كو تـاه و كوتـاهتر بـه نظر

مى رسل. روشن است كه در بيان و ادعاى اين دو شخصص هيجپگونه تناقضى وجود ندارد.

 بود؛ زيرا هم ارز بودن چارچوبهاى مرجـع، يكـى از پيامـدهاى اساسـى و ههـم نظريـهٔ نـسبيت خاص مى باشد.
 برابر جرم الكترونها مى باشد. اين ذرات در طبقات بالایى جـو براثـر برخـوزد اشـعؤ كيهـانى بـا مولكولها و يونهاى موجود درجـو زمـين ايجـاد مـى گردنــد. نيمـه عمرمتو سـط ايـن ذرات در

 مى كنيم كه اين ذرات در ارتفاع .ه كيلومترى بالاى سطح زمين توليد شوند و بدون برخورد با ذرهٔ ديگرى، با سرعت $v=\cdot 19999 c$ در راستاى قائم به سمت زمين حر كت كنند. درايـن صورت، ازنظر ناظرواقع بر روى سطع زمين، يعنى S بررسى نماييد كه آيا ايـن ذرات قبـل از
واپاشیى به سطح زمين مى رسند يا خير؟

جواب : اين مثال را در واقع؛ مى توان به عنوان تأييدى تتجربى برايى اثر نسبيتى اتساع زمـان در نظر گرفت؛ زيرا اگگر بــرایى توضـيتح فراينــد توليـد و واپیاشـى ايـن ذرات، از اثرهـاى نـسبيتى
 گرفتن اثر اتساع زمان، حداكثر مسافتى را كه ميونها قبل از واياشى مى توانتد طى كتند، برابر

$$
\begin{align*}
h & =v T_{S^{\prime}}=v \tau \\
& =(\cdot / 9999 \wedge c)\left(r / \cdot \times 1 \cdot{ }^{-9} s\right) \simeq 9 \cdot m \tag{YF-Y}
\end{align*}
$$

خواهد بود. بنابراين، به نظر مـى رسـد كـه از نظـر نـاظر S ايـن ذرات از ارتفـاعى كـه توليـــ



سينماتيكى نُسبيتى 70
واقق بر روى سطع زمين؛ نيمه عمر اين ذرات بايلد به اندلـزه أى باشد يا به طور دقيقترك بايـــ بـه اندازه ایى طولالنى شود تا بتو انند قبل از واپاشى، مسافت مه كيلومترى بين مكان توليد تا سطح

زمين را بيّماينلد. بنابر اين، با استفاده از رابطةُ اتساع زمان؛ میى توان نوشت:

$$
\begin{align*}
T_{S} & =\frac{T_{S^{\prime}}}{\sqrt{1-v^{r} / c^{r}}}=\frac{\tau}{\sqrt{1-v^{r} / c^{r}}} \\
& =\frac{r / \cdot \times 1 \cdot-9}{\sqrt{1-(\cdot / 9999 A)^{r}}}=r / 19 r r \times 1 \cdot^{-r} s
\end{align*}
$$

دراين صورت، مسافتى را كه اين ذرات درملت زمان $T_{S}$ طى مى كننل،؛ مى توان به صورت زير به دست آورد.

$$
\begin{align*}
h=v T_{S} & =(\cdot / 9999 \wedge c)(r / 19 r \mu \times 1 \cdot-r s) \\
& \simeq 9 \mu / \wedge 9 \vee k m
\end{align*}
$$

 قبل از واياشى به سطع زمين برسند.

 يكلـيگر شروع به حركت كنند. دراين صورت، ساعت واقـع درجـارپوبِ سـكون ذرات، در لحظهُ بر خحورد دو ذره با يكديگر، جهه زمانى زا نشان خواهنئل داد؟
 ساكن S، مدت زمانى كه طول مى كشل تا برخورد بين دو ذره روى دهل، از رابطةٔ

$$
\begin{align*}
L_{o} & =\left(v_{A}+v_{B}\right) T \\
& =(v+r v) T \\
& =r v T
\end{align*}
$$




$$
T_{A}=\frac{L_{\mathrm{o}}}{r v} \sqrt{1-\frac{v^{r}}{c^{r}}}
$$

9

$$
\begin{equation*}
T_{B}=\frac{L_{\circ}}{r v} \sqrt{1-r \frac{v^{r}}{c^{r}}} \tag{-}
\end{equation*}
$$



## -

برایى نشان دادن اين اثر نسبيتى نيز مى توان از واگنى به طول L استفاده كرد. براى اين منظور، فرض مى كنيم در ابتدا و انتهاى واگن دو Tيينةٔ موازى A و B تعبيه شُده باشد، به طورى كـه پرتو نور بتواند بين آنها تابيله و باز تابيله شود.


اكنون، با توجه به شـكل (^-Y) ازنظر نـاظر 'S، يعنـى نـاظر واقـع در واگَن، زمـان رفـت و بر گشت برتو نور بين Tيينٔ هاى A $A$ و $B$ بر برابر

$$
T_{S^{\prime}}=\frac{r L_{\mathrm{o}}}{c}
$$

مى باشد. دراينجا، علت افزودن انديس صفر به L، اين است كه ابعاد موازى حر كت نسبى از نظر ناظرهاى مختلف يكسان نمى باشـد. بنـابراين، فـرض مـى كنـيم كـه طـول واگـن از نظـر ناظر 'S برابر $S^{\prime}$ باشد. حال، مى توان زمان رفت و بر گشت برتو نور را از نظرناظر S، يعنـى
 پرتو نوراز آيينٔ B به آيينٔه A باشد. دراين صورت، مى توان نوشت:

$$
c t_{A}=L+v t_{A}
$$

در نُتيجه $t_{4}$ ازرابطةٔ فوق، به صورت زير به دست مى آيد.

$$
\begin{equation*}
t_{A}=\frac{L}{c-v} \tag{YY-Y}
\end{equation*}
$$

همحِنين، اگگ

$$
c t_{B}=L-v t_{B}
$$

كه

$$
\begin{equation*}
t_{B}=\frac{L}{c+v} \tag{4F-r}
\end{equation*}
$$

به دست مى Tيل. درنتيجه، زمان كل رفت و بر گشت پرتونور بين Tيينه ها، ازنظرناظر S' برابر

$$
\begin{align*}
T_{S} & =\left(t_{A}+t_{B}\right) \\
& =L\left(\frac{1}{c-v}+\frac{1}{c+v}\right) \\
& =\frac{r L}{c}\left[\frac{1}{1-(v / c)^{r}}\right]
\end{align*}
$$

خواهلد بود. حالل، با استغاده از ضريب (V) $\gamma$ ، رابطئ فوق را مى توان به صورت

$$
\begin{equation*}
T_{S}=\frac{r L}{c} \gamma^{r}(v) \tag{49-Y}
\end{equation*}
$$




$$
\begin{equation*}
L=\frac{L_{\circ}}{\gamma(v)}=L_{\mathrm{o}} \sqrt{1-\left(v^{r} / c^{r}\right)} \tag{FV-Y}
\end{equation*}
$$

بنابراين، اگر طول واگن از نظر ناظرساكن درواگن، برابر هL باشل، حر اين صـورت، طـول آن


 مى شود. رابطهُ (FV-Y) انقباض طول را نسبت به ناظر ساكن S نشان مى دهد. حال مى تـوان اختلاف بين مL و L را نيز به دست آورد. بنابراين، داريم:

$$
\begin{align*}
\Delta L & =L_{0}-L \\
& =L_{0}-L_{0} \sqrt{1-\left(\frac{v}{c}\right)^{r}} \\
& =L_{0}\left(1-\sqrt{\left.1-\left(\frac{v}{c}\right)^{r}\right)}\right. \\
& \simeq L_{0}\left(\frac{1}{r}\left(\frac{v}{c}\right)^{r}\right)
\end{align*}
$$

اكنون به عنوان مثالل، فرض كنيد كـه هوإييمـيى مـسافت . . . . كيلـومتر را درمــدت زمـان 9 ساعت طى كند. در اين حالت $\Delta L$ برابر ^/ • ميكرون خواهد بود. اما بـرایى پروتونهـاى پرتـو كيهانى كه تقريباً با سرعت 9/• سرعت نور حر كـت مـى كنـــد، اگـراين ذرات دايـره أى بـه
 حال، فرض كنيد كه مطابق شكل ( ( 9 )، هر كدام از ناظرهاى S و 'S ميلـه ايى مـشابه


 مرجع قرار گرفته باشند.

شكل (ץ-१) : دو جاتبه بودن انقباض طول


$$
\begin{equation*}
L_{S}=\frac{L_{\circ}}{\gamma(v)} \tag{49-y}
\end{equation*}
$$




$$
L_{S^{\prime}}=\frac{L_{0}}{\gamma(v)}
$$

به دست مى آورد. اما نكته ایى كه بايل به آن اشاره نمود، اين است كه اين أثرنسبيتى تنها براى
 ديگرى كهه بايد دراندازه گیرى طول يكك جسمم متحر كك درنظر گرفته شود، اين است كه ابتدا و انتهاى آن بايد به طورهدنمان اندازه گيرى شود. ازطرف ديگر، بايل توجه داشت كه دو اثر نسبيتى انقباض طول و اتساع زمان، نمى توانند مـستقل از يكـديگر باشـند؛ زيـرا بـا اسـتفاده از اثرنسبيتى انقباض طول، مى توان اثر اتساع زمان را نتيجه گرفت و برعكس.
 طول نيزمانند اثراتساع زمان، دو جانبه مى باشد. اين موضوع نيز، با توجه به نكاتى كه درمـورد
 و برطرف كردن اين تناقض ظاهرى، مثالى را مطرح مى كنيم. فرض كنيد كـه دو نـاظر دردو

 سرعت نور، نسبت به A از كنارش بگذذرد. و اگردر اين هنگام نـاظر واقـع در سسياره A ، ابعـاد
 درصد كو تاهتر شده است. يعنى از نظر ناظر A، سيارء B بـه جـاى آنكـه يـك سـياره كـروى شكل به نظر آيد، بيضوى مى نمايد. ازطرف ديخر، ناظر واقـع درسـيارة B خـو
 مى كند. درنتيجه ناظر B نيز شكل سيارئ A را بيضوى مـشاهلده مـى كـــد. امــا سـؤالى كـه در اينجا بالافاصله مطرح مى شود، اين است كه كدام يكك از دوسياره، أبعادش كوتاه شده است؟ البته جواب اين سؤال واضح است؛ زيرا با توجه به توضـيحات داده شــده در بـالا، تنهـا پاســخ


مثالز
 ناطر 'S برزسى نماييد.

جواب : همان طور كه درمثال (Y-



$$
\begin{align*}
d & =v T_{S^{\prime}}=v \tau \\
& =(\cdot / 9999 \wedge c)\left(r / \cdot \times 1 \cdot{ }^{-9} s\right) \simeq q \cdot m
\end{align*}
$$

باشد. اما اين مسافت بسيار كوحكتر ازفاصلة بين مكـان توليـد ايـن ذرات تـا سـطع زمـين، يعنـى

 كيلومترى يميوده مى شود. البته، اين مطلب درصورتى خواهل داشت كه مسافت .ه كيلومترى، ازنظر ناظر ’S انقباض بيدا كند. در اين صورت، فاصلةُ هـ كيلومتر ازنظراين ناظر، برابر

$$
\begin{align*}
L_{S^{\prime}}=\frac{L_{0}}{\gamma(v)} & =L_{0} \sqrt{1-(v / c)^{r}} \\
& =0 \cdots m \sqrt{1-(\cdot / 9999 \Lambda)^{r}} \\
& \simeq r 1 \varepsilon / r r m
\end{align*}
$$

مى باشد. درنتيجه، ازديد ناظرى كه همراه ميون حر كت مى كند، اين ذره قبـل از واپاشـى بـه سطح زمين خواهل رسيد.


 جهه مدت زمان، واگن A از واگن B جلومى زند. يعنى زمان بين لحظـهـ أى كــه ابتـداتى A از انتهاى B، وانتهاى A از ابتداى B عبور مى كند، حقددر است؟ جواب : با تو جه به اثر نسبيتى انقباض طول، ازنظرناظر S، طول واگُها برابر
V) سينماتيكـُ نسبيتي

$$
\begin{gather*}
L_{A S}=L_{0} \sqrt{1-\left(v_{A} / c\right)^{r}}=\frac{r L_{0}}{\omega} \\
L_{B S}=L_{o} \sqrt{1-\left(v_{B} / c\right)^{r}}=\frac{r L_{0}}{\omega}
\end{gather*}
$$

مى باشنذ. بنابراين، $L=\vee L_{0} / \Delta L L=L_{A S}+L_{B S}$ مى باشل. بنابراين، سرعت نسبى آنها نيز، نسبت به ناظر S، برابر

$$
\begin{align*}
v & =v_{A}-v_{B} \\
& =\frac{r c}{\Delta}-\frac{r c}{\Delta}=\frac{c}{\Delta}
\end{align*}
$$

خواهد بود. درأين صورت، زمان مورد نظر برابر

$$
T_{S}=\frac{v L_{0} / \Delta}{c / \Delta}=\frac{v L_{0}}{c}
$$

به دست مى آيل.
: V - Y
اكنون، اگگرناظرهاى لخت بخخواهند، مللى |ز فضا - زمان برایى خود ايجـاد نماينـلـ. هريـكك از آنها بايد يكك دستگاه مختصات براى خود انتخاب كنند. بنابراين، فـرض مـى كنـيم كــه أيـن ناظرها مقياس طول يكسانى داشته باشنلـ و همّپنين، بـراى انـدازه گيـرى زمـان، از سـاعتهايى استغاده كنند كه يكسان بوده و از قبل همزمان شـده باشند. همان طور كـه در فـصل قبـل اشـاره شل، مجموعهٔ دستگاه متختصات، همر اه با مقياسهاى طول و زمـان، چــارچوبِ مرجـع يـا نـاظر ناميله مى شود. حال، اگرْناظر لخت S؛ مختصات

$$
\begin{align*}
x^{\mu} & =\left(x^{\circ}, x^{\jmath}, x^{r}, x^{r}\right) \\
& =(t, x, y, z)
\end{align*}
$$

را به يكك رويدأد نسبت دهد. دراين صورت، ناظر 'S نيزمنختصات

$$
\begin{align*}
x^{\prime \mu} & =\left(x^{\prime \circ}, x^{\prime \prime}, x^{\prime r}, x^{\prime r}\right) \\
& =\left(t^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}\right)
\end{align*}
$$

را به آن رويداد نُسبت خواهد داد. 2رحاللت نسبيتى، رواببطى كـه ارتبـاط بـين مختـصات يـك
 واققع ا'ين تبلـيلات جايگُزين تبلديلات گاليله درحالت غيرنسبيتى مى شونل.


 يكد يگ, بوده و چارپچوب لیخت مثبت محورمشتر كك x و 'x ${ }^{\prime}$ مر كت نمايل.


شككل (Y- Y) : تبلديلات لور نتس
 يكديگ, خخواهنل بود. يعنى

$$
x^{\mu}=x^{\mu}\left(x^{1 \circ}, x^{\prime}, x^{\prime r}, x^{\prime r}\right), \mu=0,1, r, r
$$

و روابط وارون نيز به هبورت

$$
\begin{equation*}
x^{\prime \mu}=x^{\prime \mu}\left(x^{\circ}, x^{\prime}, x^{r}, x^{r}\right) \quad, \quad \mu=0,1, r, r \tag{4:-Y}
\end{equation*}
$$

 حر كت هستقيم البخط و يكنواخت يكك ذره نسبتت به ناظر S، بايـل تحــت تبـلـلات يـا روابطىى كه مى خواهيم به دست آوريمه به هحر كتى از همان نوع درچارچون؟ ديگر، اين تبديالات بايلدجهانخطط هاى راستخط را دريكي چحارچوب، به جهانخخط هاى رأستخخط



سينماتيك نسبيتىىV V/
 ازيكديگكر باشند؛ زيرا هرمعادلئ درجـهٔ دوم داراى دوجـواب مسى باشـلد. و معـادلات بـادر جــات


 مى توان نشان داد كه اگر عنوان يكك اصل در فيزيكك نسبيتى و كالاسيك پذيرفته مى شود، نقض مى گردد. اكنون، در إينجا برای ساده سازى و همحتنين، براى در كك بهتر سـاختار ايـن تبـلـيلات و بررسى دقيق تر بيامدهاى اصل نسبيت، تنها بحث را به يكك بعل فضا و يكك بعد زمـان محـلدود مى كنيم. درنهايت،بعـلـ از بـه دسـت آوزدن قــانون تبـديل مـورد نظـر، مـى تـوان بـهـ راحتـى تعميم هاى لازم را برأى بررسى مسأله، درحالت جهار بعد فضا ـ زمان لحاظ كرد. حال، با توجه به شكل ( مر جع، يعني O و $O$ ' بريكديگُر منطبـق باشـند. اكنـون، اتَـر فـرض كنـيم كـه در ايـن لحظـه جرقه الى درمبدأ مشتركك دو چار چوب زده شود، در اين صورت، اين جرقه به صـورت يـك موج كروى همگن در دو جار چچوب منتشرخواهد شد.




 به ترتيبك با روابط زير دأده مى شوند.

$$
\begin{equation*}
x^{r}+y^{r}+z^{r}=(c t)^{r} \tag{Y}
\end{equation*}
$$

$$
x^{\prime r}+y^{\prime r}+z^{\prime r}=\left(c t^{\prime}\right)^{r}
$$

اكنون، با استفاده از تبد يلات گالليله در رابطئ (Y-Y (Y)، خواهيم داشت:

$$
\begin{equation*}
x^{r}+y^{r}+z^{r}-\underbrace{r x v t+v^{r} t^{r}}=(c t)^{r} \tag{gr-Y}
\end{equation*}
$$

 اضافى شوند. به عبارت ديخر، مى توان نتيجه گرفت كه تبديلات گاليله، نمى توانند نتيجهٔ اصـل دوم نسبيت را بر آورده نمايند.
بنابراين، برایى به دست آوردن تبـديلات صـحيح، بايـد جمـلات اضـافى ظـاهر شــده $2 ر$
 تقارن و با توجهه به اينكه سرعت نسبى، اثرى روى طولهاى عمـود بـر راسـتاى حر كـت نـسبى ندارد، مى توان ${ }^{\prime}$ و و ${ }^{\prime}$ را برابر $y$ و z در نظر گرفت.
اما نكتتٔ مهمى كه در اينجا بايل به آن اشاره شوده اين اسـت كــه مـى تـوان ظـاهر شـدن
 , رابطئ
 فضا و يكك بعد زمان در نظر گرفته شود، در اين صورت، با توجه به اينكه همگنى فضا ايجـاب مى كند كه روابط تبديلى خطى باشند، براين اساس، رابطهُ (Y- -Y) را مى توان به شكل

$$
\begin{align*}
x^{\prime} & =a_{1} x+a_{r} t \\
t^{\prime} & =b_{1} x+b_{r} t
\end{align*}
$$


 جارجوب مرجع؛ يعنى v و همين طورسرعت $c$ بستگیى داشته باشند.



V0 سينماتيك نسبيتي
درنتيجه، مكان آن درهرلحظه در چارحووب S، با رابطه́ $x=v t$ تعيين مى گـردد. بنـابراين،
از رابططء اول (YY-Y)، مى توان نتيجه گرفت:

$$
\begin{equation*}
o=a_{1} x+a_{\Upsilon} t \Rightarrow x=-\frac{a_{r}}{a_{1}} t=v t \tag{90-Y}
\end{equation*}
$$

$$
\begin{equation*}
a_{r}=-a_{1} v \tag{99-Y}
\end{equation*}
$$

حال، با تو جه به رابطهٔ(FG-Y)، مى توان رابطه́ اول(FY-Y) را به صورت

$$
\begin{equation*}
x^{\prime}=a_{1}\left(x+\frac{a_{r}}{a_{1}} t\right)=a_{1}(x-v t) \tag{GV-Y}
\end{equation*}
$$


خواهيم داشت:

$$
\left[a_{1}(x-v t)\right]^{r}+y^{r}+z^{r}=c^{r}\left(b_{1} x+b_{r} t\right)^{r}
$$

كه بعد ازمرتب كردن جملات، به دست مى آوريم:

$$
\begin{align*}
\left(a_{1}^{r}-c^{r} b_{1}^{r}\right) x^{r}+y^{r}+z^{r} & =\left(c^{r} b_{r}^{r}-a_{1}^{r} v^{r}\right) t^{r} \\
& +\left(r b_{1} b_{r} c^{r}+r a_{1}^{r} v\right) x t \tag{9q-r}
\end{align*}
$$

حال6 برأى بر آورده شدن اصل دوم نسبيت، يا به عبـارت ديگـر، بـرأى سـاز گار شـلن روابـط (99-Y) و (9) (Y) بايد داشته باشيم:

$$
\begin{align*}
& a_{1}^{r}-c^{r} b_{1}^{r}=1 \\
& c^{r} b_{r}^{r}-a_{1}^{r} v^{r}=c^{r} \\
& b_{1} b_{r} c^{r}+a_{1}^{r} v=0
\end{align*}
$$

 اين منظور، از دو رابطة́ اول و دوم (V-Y)، داريم

$$
\begin{align*}
b_{1}^{r} & =\frac{a_{1}^{r}-1}{c^{r}}  \tag{Y}\\
b_{r}^{r} & =1+\left(\frac{v}{c}\right)^{r} a_{1}^{r}
\end{align*}
$$



آمده از T Tن، مى توان نوشت:

$$
\begin{align*}
b_{1}^{r} b_{r}^{r} c^{\kappa} & =a_{1}^{r} v^{r} \\
& \Rightarrow\left(\frac{a_{1}^{r}-1}{c^{r}}\right)\left[\left(1+(v / c)^{r} a_{1}^{r}\right)\right] c^{\kappa}  \tag{VY-Y}\\
& =a_{1}^{\kappa} v^{r}
\end{align*}
$$

$$
a_{1}^{r} c^{r}-c^{r}-v^{r} a_{1}^{r}=0
$$

كه در اين صورت، با حل معادلئ فوق مى توان به دست آورد

$$
\begin{equation*}
a_{1}= \pm \frac{1}{\sqrt{1-(v / c)^{r}}}= \pm \gamma(v) \tag{Vf-Y}
\end{equation*}
$$

دررابطهُ فوق بايل ${ }^{\text {با }}$

 به دست آورد. درنتيجه، نخواهيم داشت:

$$
\begin{gather*}
b_{1}^{r}=\left(\frac{v}{c}\right)^{r}\left(\frac{1}{c^{r}-v^{r}}\right)=\frac{v^{r}}{c^{r}} \gamma^{r} \\
b_{r}^{r}=\frac{1}{1-(v / c)^{r}}=\gamma^{r} \tag{VG-Y}
\end{gather*}
$$

هـجخنين،

بنابراين،


 انتخابِ نماييم؟ زير ا با در نظر گرفتن رابطة́ سوم در(V-Y)، داريم

$$
\begin{equation*}
b_{1}=-\frac{a_{1}^{r} v}{b_{\uparrow} c^{r}}=-\frac{v}{c^{r}} \gamma(v) \tag{VY-Y}
\end{equation*}
$$

درنهايت، با بـه دستت Tوردن ضـرايب

$$
\begin{align*}
& x^{\prime}=\gamma(v)(x-v t) \\
& y^{\prime}=y \\
& z^{\prime}=z  \tag{VA-Y}\\
& t^{\prime}=\gamma(v)\left(t-\frac{v}{c^{r}} x\right)
\end{align*}
$$

بيان كرد. اين تبديلات را مى توان با استفاده ازتعريف $\beta$ به صورت مناسب

$$
\begin{align*}
& c t^{\prime}=\gamma(v)(c t-\beta x) \\
& x^{\prime}=\gamma(v)(x-\beta c t)  \tag{VQ-Y}\\
& y^{\prime}=y \\
& z^{\prime}=z
\end{align*}
$$

نيز نوشت. حال، براى به دست آوردن تبـديلات وارون لـورنتس، مـى تـوان v را بـه v- يـا معادل آن $\beta$ رابه $\beta$-- تبديل كرده و همين طور، جاى پريمها را تعويض كرد. يعنى

$$
\begin{aligned}
& c t=\gamma(v)\left(c t^{\prime}+\beta x^{\prime}\right) \\
& x=\gamma(v)\left(x^{\prime}+\beta c t^{\prime}\right) \\
& y=y^{\prime} \\
& z=z^{\prime}
\end{aligned}
$$

همحْنين، با استفاده از نماد گذارى ماتريسى، مى توان رابطهُ (VQ-Y) را به صورت زير نوشت:

$$
\left(\begin{array}{l}
c t^{\prime} \\
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
\gamma(v) & -\gamma(v) \beta & \circ & \circ \\
-\gamma(v) \beta & \gamma(v) & \circ & \circ \\
\circ & \circ & 1 & \circ \\
\circ & \circ & \circ & 1
\end{array}\right)\left(\begin{array}{l}
c t \\
x \\
y \\
z
\end{array}\right)
$$

 رياضيدان و فيزيكدان هلندى، براي توضيح برخى پديده هـاى الكترومغناطيسى بـه عنـوان
 ايرلندى قبل از سال . .19 به دست آورده بود. و تعميم كامل اين تبديلات تا زمـان انتـشار
 فيز يكدان Tلْمانى اولين كسى بود كه در MAV در بحثى مربوط به پديله هاى نوسانى، ايـن
تبديلات را به كاربرد.

البته، تبد يلات لورنتس رامى توانستيم از ابتدا براى سه بعل فضا و يـكك بعـل زمـان بـه دست آوريم. برای به دست Tوردن تبـديلات لـورنتس در حالــت كلـى، فـرض كنيـد كـه
 حالت نيز براى اينكه چارچوبها لـخت باشند، بايل محورهاى دو چارچوب درحـين حر كـت نسبى، موازى يكديگر باقى بمانند؛ زير| درحـالتى كـه منحورهـاى دو چـار چوب نـسبت بـه
 اككنون، با ايـن فـرض، مـى تـوان بردارهـاى مكـانى
 صورت، داريم:

$$
\begin{align*}
& \vec{r}=\vec{r}_{\perp}+\vec{r}_{\|} \\
& \vec{r}^{\prime}=\vec{r}_{\perp}^{\prime}+\vec{r}_{\|}^{\prime}
\end{align*}
$$

حالل، براىى مؤلفه هاى موازى مى توان نوشت:

$$
\begin{align*}
\vec{r}_{\|}^{\prime} & =\gamma(v)\left[\vec{r}_{\|}-\vec{v} t\right] \\
& =\gamma(v)\left[\vec{r}_{\|}-\vec{\beta} c t\right]
\end{align*}
$$

در اين صورت، رابطة́ (Ү-

$$
\begin{equation*}
\vec{r}^{\prime}=\gamma(v)\left[\vec{r}_{\|}-\vec{\beta} c t\right]+\vec{r}_{\perp}^{\prime} \tag{-}
\end{equation*}
$$

 در نظر گرفت. درنتيجه، رابطةُ (AD-Y) به صورت

V9 سينداتيكى نسبيتى

$$
\begin{align*}
\vec{r}^{\prime} & =\gamma(v)\left[\vec{r}_{\|}-\vec{\beta} c t\right]+\vec{r}_{\perp} \\
& =\gamma(v)\left[\vec{r}_{\|}-\vec{\beta} c t\right]+\vec{r}-\vec{r}_{\|} \\
& =\vec{r}+[\gamma(v)-1] \vec{r}_{\|}-\gamma(v) \vec{\beta} c t
\end{align*}
$$

 را مى توان به شكل

$$
\vec{r}_{\|}=\frac{\vec{\beta} \cdot \vec{r}}{\beta^{r}} \vec{\beta}
$$

نيز نوشت. اكنون، با جايگذارى مقدار ||

$$
\vec{r}^{\prime}=\vec{r}+[\gamma(v)-1] \frac{\vec{\beta} \cdot \vec{r}}{\beta^{r}} \vec{\beta}-\gamma(v) \vec{\beta} c t
$$

همحچنين، تبديل زمان بين دو جارچوب را نيز مى توان با رابطة

$$
c t^{\prime}=\gamma(v)[c t-\vec{\beta} \cdot \vec{r}]
$$

 و جاي پريمها را نيز تعويض كرد. در اين صورت، تبلديلات وارون مختصات،به صورت

$$
\vec{r}=\vec{r}^{\prime}+[\gamma(v)-1] \frac{\vec{\beta} \cdot \vec{r}^{\prime}}{\beta^{r}} \vec{\beta}+\gamma(v) \vec{\beta} c t^{\prime}
$$



$$
\begin{equation*}
c t=\gamma(v)\left[c t^{\prime}+\vec{\beta} \cdot \vec{r}^{\prime}\right] \tag{q}
\end{equation*}
$$

بيان مى شود. دريايان، مى توان به ايـن نكتـه اشـاره كـرد كـهـ بـا توجـهـ بـه اينكــه در فيز يـكك كلاسيك سرعت حدى، سرعت بينهايت مى باشد، بنابراين، برای بررسـي حالـت حـلى ايـن تبلديلات، كافى است در رابطةٔ (M-Y)، سرعت C را به سمت بى نهايت ميـل دهـيم. در ايـن صورت، خواهيم داشت:

$$
\begin{equation*}
x^{\prime}=x-v t, y^{\prime}=y, z^{\prime}=z, t^{\prime}=t \tag{9Y-Y}
\end{equation*}
$$

كه در واقع، همان تبليلات گاليله مى باشــند كـه فيزيـكك كلاسـيكك يـا نيـوتنى مبتنـى بـر آن


در نظر گرفت. يادآورى مى كنيم كه با وجود سرعت بسيار زياد زمين به دور خورشيديد، يعنىى

 خورشيدى تنها حدود

مثال V V Y : ماتريس تبديل لورنتس را براى حالتهاى زير به دست آوريد.
الف : برایى حـالتى كهه در آن، جـارجوب
جارجوب S'، حر كت مى كند.
ب : بـرای حـالتى كـه درآن، جـارجوب
جارجوب $S$ حر كت مى كند.
ج ج : برای حالتى كه درآن، هارجوب حركت مى كند.

جواب : الف: درايـن حالـتـ، مـى تـوان مـاتريس تبـديل رابـا در نظر گـرفتن رابطـُ ( (1-Y)، به صورت زير نوشت:

$$
\begin{aligned}
& \Lambda_{x}=\left(\begin{array}{cccc}
\gamma_{x} & -\gamma_{x} \beta_{x} & \circ & \circ \\
-\gamma_{x} \beta_{x} & \gamma_{x} & \circ & \circ \\
\circ & \circ & 1 & \circ \\
\circ & \circ & \circ & 1
\end{array}\right) \\
& \text { كa در آن }
\end{aligned}
$$

ب : در اين حالت نيز تبديلات لورنتس به صورت زير نوشت.

$$
\begin{align*}
& c t^{\prime}=\gamma\left(v_{y}\right)\left(c t-\beta_{y} y\right) \\
& x^{\prime}=x \\
& y^{\prime}=\gamma\left(v_{y}\right)\left(y-\beta_{y} c t\right) \\
& z^{\prime}=z
\end{align*}
$$

سينماتيك نسبيتي
درنتيجه، مانريس تبلديل لورنتتس را دراين حالت، مى توان به صورت زير مى باششد.

$$
\Lambda_{y}=\left(\begin{array}{cccc}
\gamma_{y} & \circ & -\gamma_{y} \beta_{y} & \circ  \tag{40-Y}\\
\circ & 1 & \circ & \circ \\
-\gamma_{y} \beta_{y} & \circ & \gamma_{y} & \circ \\
\circ & \circ & \circ & 1
\end{array}\right)
$$

ج : اگگر ماتريس تبديل لورنتس را درجهت مسور x و سبس درجههت متحور $y$ بنويـسبم؟
در اين صورت؛ ازتركيب اين دو تبديل مى توان ماتريس تبديل را براى حالتى نوشـت كـه در آن چارپیوب 'S با سرعت $S^{\prime}$ با

$$
\Lambda_{x} \Lambda_{y}=\left(\begin{array}{cccc}
\gamma_{x} \gamma_{y} & -\gamma_{x} \beta_{x} & -\gamma_{x} \gamma_{y} \beta_{y} & \circ \\
-\gamma_{x} \gamma_{y} \beta_{x} & \gamma_{x} & \gamma_{x} \gamma_{y} \beta_{x} \beta_{y} & \circ \\
-\gamma_{y} \beta_{y} & \circ & \gamma_{y} & \circ \\
\circ & \circ & \circ & 1
\end{array}\right)
$$

مثاول مى كند. در اين حالت، تويهى با سرعت جلوى Tان چرتاب مى شود. حال، ازنظر ناظرى كه روى زمين ايستاده اسـت؛ چــه مــدت طـول
 نظراين ناظر جقدر است؟

جـوابب : بــراى حـــل ايــن مــسأله6 مــى تــوان دو رويــداد تعريــف كــرد. رويـــداد اول ( رسيدن توبپ به ابتلـالى آذ. از نظر تاظر دا-حل واگن، يمنى 'S مى توان نوشت:

$$
\begin{align*}
& \Delta x_{S^{\prime}}=\Delta x^{\prime}=x_{r}^{\prime}-x_{1}^{\prime}=L_{o} \\
& \Delta t_{S^{\prime}}=\Delta t^{\prime}=t_{r}^{\prime}-t_{1}^{\prime}=\frac{L_{o}}{c / r}=\frac{r L_{o}}{c}
\end{align*}
$$

هدجنين، با توجه به اينكه با استفاده ازتبديلات لو رنتس، بازهُ زمانى بين ذو رويداد ازنظر ناظر Sك، برابر

$$
\begin{align*}
\Delta t_{S} & =\gamma(v)\left[\Delta t^{\prime}+\frac{v}{c^{r}} \Delta x^{\prime}\right] \\
& =\frac{1 r}{1 r}\left(\frac{r L_{\circ}}{c}+\frac{(\Delta c / \Delta r)}{c^{r}} L_{\circ}\right)=\frac{11 L_{\circ}}{r c}
\end{align*}
$$

به دست مى آيل. همين طور بازه مكانى يا فضايى بين دو رويداد نيز، برابر

$$
\begin{align*}
\Delta x_{S} & =\gamma\left(\Delta x^{\prime}+v \Delta t^{\prime}\right) \\
& =\frac{1 r}{1 r}\left[L_{\circ}+\left(\frac{\Delta c}{1 r}\right)\left(\frac{r L_{\circ}}{c}\right)\right]=\frac{v L_{\circ}}{r} \tag{9Q-Y}
\end{align*}
$$

خواهلد بود.

A -
در بخش Y Y 9 ، أثرهاى نسبيتى، يعنى نسبى بودن همزمانى، اتساع زمان و انتقباض طول بـلـون استفاده ازتبلديلات لورنتس مورد بررسى قرار گرفتند. اككنون، مـى تـوان بـا در نظر گـرفتن ايـن تبد يلات، اثرهاى نسبيتى فوق را مجدداً بررسى نمود.
. $1-\lambda=F$ بــرای نــشان دادن نــسبى بــودن همز مـــانى، دو رويــداد ( چارچوب 'S نظرمى گيريم. حالل، فرض مى كنيم كه اين دو رويداد درايـن چــارچوب بـه طـور
 برابر $\left(\Delta x^{\prime}, \Delta t^{\prime}\right)=\left(\Delta x^{\prime}, 0\right)$ خواهد بود. اكنون، با استغاده ازتبديلات لورنتس داريم

$$
\begin{align*}
\Delta t & =\gamma(v)\left(\Delta t^{\prime}+\frac{v}{c^{r}} \Delta x^{\prime}\right) \\
& =\gamma(v)\left(0+\frac{v}{c^{r}} \Delta x^{\prime}\right) \\
& =\gamma(v) \frac{v}{c^{r}} \Delta x^{\prime}
\end{align*}
$$



دو رويداد را برابر $\gamma \frac{v}{c^{r}} \Delta x^{\prime}$ اندازه مى گيرد.

مثـال

 شود، از نظر ناظر همراه واگن، نور فانوس به طـور همزمان به ابتداو انتهاى آن مى رسد. اين مطلب را الز ديد ناظر ساكن كنار ريل يا جـارچوبـ بررسى نماييل.

جـواب : چچون از نظر ناظر 'S، دو رويداد رسيدن يرتو نورفانوس به ابتـدا و أنتهاى واگـن همزمان مى باشند. بنابراين، $t_{A}^{\prime}=t_{B}^{\prime}$ ابتدا و انتهاى واگن، ازنظر ناظر S، مى توان ازتبديلات لورنتس استغاده كرد. براى ايـن منظـور، مى توان مبدأ هختصات چارچوب ’S را دروسـط واگَن در نظـر گرفـت كـه در ايـن صـورت مى توان دو رويداد Aو B، يعنى رسيدن پيتو نور به ابتلذا و انتهاى واگـن را ازديـد نـاظر 'S بـه
 برابر Lo/c مى باشد. اكنون، با استفاده از تبديلات لو رنتس، مى توان نوشت:

$$
\begin{align*}
t_{A} & =\gamma(v)\left[t_{A}^{\prime}+v x_{A}^{\prime} / c^{r}\right] \\
& =\gamma(v)\left[T_{\circ}-v L_{\circ} / c^{r}\right] \\
& =T_{\circ} \sqrt{(1-\beta) /(1+\beta)}
\end{align*}
$$

$$
\begin{align*}
t_{B} & =\gamma(v)\left[t_{B}^{\prime}+v x_{B}^{\prime} / c^{r}\right] \\
& =\gamma(v)\left[T_{0}+v L_{\circ} / c^{r}\right] \\
& =T_{\circ} \sqrt{(1+\beta) /(1-\beta)}
\end{align*}
$$

 ابتدا به A و سِّس به B مى رسد.

## : F - 1 - Y

 و
 تبديلات لورنتس استفاده نماييم، خواهيم داشت:

$$
\begin{align*}
\Delta t & =\gamma(v)\left[\Delta t^{\prime}+\frac{v}{c^{r}} \Delta x^{\prime}\right] \\
& =\gamma(v)\left[\Delta t^{\prime}+\frac{v}{c^{r}}(0)\right] \\
& =\gamma(v) \Delta t^{\prime}
\end{align*}
$$

ي

$$
\begin{equation*}
\Delta t=\gamma(v) \Delta t^{\prime} \quad, \quad \Delta x^{\prime}=0 \tag{1,Y-Y}
\end{equation*}
$$

چون $\gamma \geq 1$ است، درنتيجه $\gamma \geq t^{\prime}$

 ساعت متحر كك اندازه گیيرى مى شود.

اكنون، مى توان جاي چارچوبهاى Sو 'S $S^{\prime}$ راعوض كرد. در اين صـورت، اگگر فـرض كنيم كه دو رويداد در چارجوب S در يكك مكان روى دهند، با اين فـرض، بـازهٔ فـضاــزمـان بين اين دو رويداد، برابر

$$
\begin{align*}
\Delta t^{\prime} & =\gamma(v)\left[\Delta t-\left(v / c^{r}\right) \Delta x\right] \\
& =\gamma(v)\left[\Delta t-\left(v / c^{r}\right)(0)\right] \\
& =\gamma(v) \Delta t
\end{align*}
$$

$$
\begin{equation*}
\Delta t^{\prime}=\gamma(v) \Delta t \quad, \quad \Delta x=0 \tag{1.9-Y}
\end{equation*}
$$



بين ※و رويلاد، از نظر ناظر 'S بزر گتر يا طـولانى تـر از بـازه زمـانى بـين اليـن دو رويسلاد در



 به اين نكته اشاره مى شود كه اين تناقضص ظاهرى هنگامى آشكار مى گُردد كه شـرط مربسوط به هر كدام از اين روابط ناديده گرفته شوند. يعنـى رابنطنه (Y-Y (I) زمـانى صــادق اســت كــه
 رادر نظر بگیريم. بنابراين، اين دو رابطه به طور همزمان نمى توانند برقرار باشنل.
 يكك لحظه ( $t=0$ ) با سرعت يكسان v درخلافت جهت يكديگر شروع به حركت كنثن. بعد
 واقع درسفينهُ اول؛ بعد از گذشت چجه ملت زمان (در چارچچوب سكون سفينهُ اول) نـور جرقـه را مشاهلده مى كند.

جــواب : در چاریحوب ساكن S، هنگامى كه جرقه زده مى شود، فاصلهُ دو سـفينه برابـر
 ${ }_{6}$ 6 $\Delta t_{1}=r v \Delta t /(c-v)$ فضانورد واقع در سفينةٔ اول، نورجرقه در لحظةٔ

$$
\begin{align*}
\Delta T & =\Delta t+\frac{r v \Delta t}{c-v} \\
& =\frac{c+v}{c-v} \Delta t
\end{align*}
$$

دريافت مى كند. اكنون، با در نظر گرفتن رابطهُ اتساع زمان؛ مى توان زمان در يافــت نور بجرقـه را درچارچوپ سكون سفينئ اول به دست آورد. دراين صورت، با جايگكنارى مقـنار رابطةٔ (Y-V-Y)، در رابنطءُ اتساع زمانك يعنى '

$$
\begin{align*}
\Delta T^{\prime}=\frac{\Delta T}{\gamma(v)} & =\frac{1}{\gamma(v)} \frac{c+v}{c-v} \Delta t \\
& =\Delta t \frac{c+v}{c-v} \sqrt{1-\frac{v^{r}}{c^{r}}}
\end{align*}
$$

## 

يكى ديگر از اثرات نسبيتى ناشى از اصل دوم نسبيت، اثر انقباض طول مى باشد. برایى محاسبهٔ أنقباض طول يكك جسم نسبت به يكك ناظر، مثّلاً ناظر S فرض مى كنيم كه ميلـه ايى بـه طـول
 مى خواهيم طول آن رادرچارچجوب ساكن SS به دست آوريم. برای اين منظور، مى تـوان دو
 ابتدا و انتهاى هيله باشند. از طرف ديگر، همان طور كه قبلاً نيز اشاره شد، بـراى انـدازه گـيرى طول يكك ميلهُ متحر كك، بايد ابتدا و انتهاى آن به طور ههنمان اندازه گرفته شـوند. يعنـى بـازه زمانى بين دو رويداد از نظرناظر S، بايـد صـفر باشــد. درنتيجـه، ( $\Delta x, \Delta t)=(\Delta x, 0)$ مى باشل. حال، آگر از تبديلات لورنتس استفاده نماييم، خخواهيم داشت

$$
\Delta x^{\prime}=\gamma(v)[\Delta x-v \Delta t]
$$

اين معادله نشان مى دهد كـه فاصـلئ انـدازه گیـرى شــده بـين دو انتهـاى ميلـه در جـارچوب Sـ، مى تواند مقاديرمختلفى داشته باشد كه بستگى به انتخابـ

 همزمان اندازه گيرى كند. بنابراين، بايد

$$
\begin{align*}
\Delta x^{\prime} & =\gamma(v)[\Delta x-v(\circ)] \\
& =\gamma(v) \Delta x
\end{align*}
$$

$$
\begin{equation*}
\Delta x=\frac{\Delta x^{\prime}}{\gamma(v)} \quad, \quad \Delta t=0 \tag{III-Y}
\end{equation*}
$$



 شد، از لحاظ رياضى كاملاً مشابه انقباض طول در نسبيت مى باشد كه با معادلئ (Y-Y ا 11 داده

 سرعت ميله نسبت به اتر است، درحالى كه درمعادلـئ نـسبيتى انقبـاض طـول، $v$ سـرعت ميلـه نسبت به ناظر مى باشد. در اينجا ممكن است اين مسأله مطرح شود كه اگر فرض كنيم كه دقت طيفـى نـاظر بــه اندازء كافى بالا باشد، آيا امكان دارد كه اين ناظر بتواند انقبـاض يـك جـسم متحر كك رادر راستاى حر كت آن تشخيص دهد؟ همچچنين، اگر فـرض كنـيم كـه زاويـئ ديـد ناظر كوتــك باشد، در اين حالت به نظر مى آيد كه ناظر نتواند انقباض جـسم متحر كك را تـشخيص دهــد؛ زيرا دراين حالت، وضعيت دقيقاً مشابه حالتى كه درآن رابطهٔ (Y-Y) (II)، به دست آمل، نيست. اكنون، مى توان درمورد اثر نسبيتى انقباض طول نكته ايى را يادآور شد. همـان طور كـه
 مى گردد كه اين تصوير نتيجهٔ ورود همزمان فوتونهاى نـور از نقـاط متختلـف جـسـم بـر روى شبكيه است. در اين صورت، واضـح اسـت كـه همــه فوتونهـاى نـور، دريـكـ زمـان از نقـاط مـختلف جسم گسيل نمى شوند. بلكه نقاط دورتر جسم مى بايستى زودتر ازنقـاط نزديكتـر بــه ناظر، نور گسيل كرده باشند. براين اسـاس، بـراى بـه دسـت آوردن رابطـُٔ (Y-Y اII) از رابطـُ (l-q- (l)، نمى توان زمانى، گسيل فوتونهاى نور ازنقاط مختلف جسم به حساب آورده شوند، در مى يابيم كه اگر زاويهٔ ديد جسم متحر كك به وسيلهٔ ناظر كوچكك باشد، جسم به جاى انقباض، دوران مى كنـد. اما در صورتى كه زاويـهٔ رؤيـت جـسم متحـر كك بـراى نـاظر، بـزر گك باشـــل، در ايـن حالـت، انقباض طول براى ناظر قابل مشاهده خواهد بود. حـالى، مـى تـوان جـاى چارجوبهـاى S و 'S ${ }^{\prime}$ راعـوض كـرد. در ايـن صـورت، ميلـه در جارحوتب S ساكن بوده وناظر 'S مشاهله مى كنـد كـه ميلـه بـا سـرعت v در خـلاف جهــت

NA مقدمه أى بر نسبيت نحاص
محورمشتر كك x و اx حر كت مى كند. در اين حالت بازهٔ فضا ـ زمـان بـين دو رويـداد تعريـف


برابر $\left(\Delta x^{\prime}, \Delta t^{\prime}\right)=\left(\Delta x^{\prime}, 0\right)$ خواهد بود. اكنون، با استفاده از تبديلات لورنتس، داريم:

$$
\begin{align*}
\Delta x & =\gamma(v)\left[\Delta x^{\prime}+v \Delta t^{\prime}\right] \\
& =\gamma(v)\left[\Delta x^{\prime}+v(\circ)\right] \\
& =\gamma(v) \Delta x^{\prime}
\end{align*}
$$

$$
\Delta x^{\prime}=\frac{\Delta x}{\gamma(v)} \quad, \quad \Delta t^{\prime}=0
$$

بنابراين، در اين حالت ممكن است مانند مورد اثن اتساع زمان، تصور شود كه تناقضى در اندازه گيرى دو نــاظر وجـود دارد؛ زيرا هر كدام از آنها طول ميلهُ ساكن درشارشپوب ديگـرى را كوتـاهتر انـلـازه مـي گيـرد. درواقع، علت أين تناقض ظاهرى را مى توان ناشى از ناديله گرفتن شرطـ مربـوط بـه هر كـــام از روابط (II-Y) و (IIM-Y) در نظر گرفت. بنــابراين، اگَـر شـرط مربـوط بـه هر كـدام از روابـط (IIM-Y) (III-Y) اما ممكن است دو اينعا اين سؤال هطرح شود كه Tايا انقباض طول يا همين طـور اتساع زهان واقعى؟ يعنى زمان واقعاً اتساع مى يابل و ميله درجهت حر كت واقعاً منقبض مى شود؟ براى پاسخ به اين سؤ الها، بايد ابتل| مشخصص نماييم كه منظورما از كلمـهُ واقحـاً چيـست؟ همان طور كه مى دانيمه، درعلوم فيزيكى، آن چجيزى واقعى است كه اندازه گيرى مى شـود. و تنها ازطريق اندازه گيرى است كه مى توان اطلاعات مورد نياز را برایى نـسبت دادن خواصى به يكك ساعت، به يك ميله، به يك اتم و غيره به دست آورد. بنابراين، اتساع زمان و انقبـاض طول به اين مفهومه نمى توانند ظاهرى باشند و اثراتى كاملاً واقعى خواهند بود. درنتيجه زمـان
 كميّتهاى ديگر، همگى رابطه هايى بين جسسم مورد مشاهده و ناظر مى باشند.


كه اگگر ميلهُ متحر ككَ به حالت سكون در آيد، اثرى از انقباض طول در ميله برجاى نممى مانــ. يعنى اگر جسمى بر اثرحر كت به نصف طول خودش برسد و سيس به هحـال سـكون بر گـردد، اثـرى از انقبـاض طـول در آن بـر جــاى نمـى مانــد تــا بتـوان ايـن تغيير مـوقتى طـول جــسم را آشكار كرد. درصورتى كه وضعيت در مورد اثراتساع زمان به گونئ ديگرى است. درحقيقت، اثرمربوط به اتساع زمان بيشترازاثرمربوط به انقباض طول آشفتگى به وجود مى دهى آورد و مـسأله

 آكر اين ساعت از حر كت باز داشته شود از آن پس زمان را به طورعادى نشان خواهد داد، اما نيم ساعت عقب خواهد بود. بنابراين، اثراتساع زمان را مى توان Tشكار سازى كرد. از طـرف


 باطلنماى دوقلوها' را مطرح نمود. كه در اغلب كتابهاى مربوط بـه نسسبيت ايـن يـاراد كس بـه روشهاى مـختلف مورد بررسى قـرار گرفتـه اسـتـ. ايـن باطلنمـا، درفـصل سـوم بـا اسـتفاده از نمودارهاى مينكوفسكى مورد بررسنى قرار مى گییرد.

مثـال Y - 11 : 11 درچارچوب 'S ${ }^{\prime}$ طورى قرارگرفته است كه امتداد


شكل (IF-Y) : سمتخيرى ميله نسبت
 آن با محور 'x اين جارجّوب زاويهٔ '秋 مى سازد. در اين صورت، طول و همين طور، سمتغيرى ميله را نسبت به ناظر يا چارچوبب S به دست آوريد. جـواب : مختـصات ابتــدا و انتهـاى ميلـهكادر
 مى شوند. اككنون، مى توان با استفاده از تبديلات لورنتس(YQ-Y)، مختصشات ابتدا و انتهاى ميلـه

را در چارجوبب $S$ به دست آورد. در اين صورت، خواهيم داشت:

$$
\begin{align*}
& x_{A}^{\prime}=\gamma(v)\left(x_{A}-\beta c t_{A}\right)=0 \\
& y_{A}=y_{A}^{\prime}=0
\end{align*}
$$

و

$$
\begin{align*}
& x_{B}^{\prime}=\gamma(v)\left(x_{B}-\beta c t_{B}\right)=L_{\circ} \cos \theta^{\prime}  \tag{110-Y}\\
& y_{B}^{\prime}=y_{B}=L_{\circ} \sin \theta^{\prime}
\end{align*}
$$

 مختصات رويداد B درجارچوب S نيز، برابر

$$
\begin{align*}
& x_{B}=\frac{L_{0} \cos \theta^{\prime}}{\gamma(v)}+\beta c t_{B}  \tag{119-Y}\\
& y_{B}=L_{\mathrm{o}} \sin \theta^{\prime}
\end{align*}
$$

خواهل بود.درنتيجه داريم:

$$
\begin{align*}
& \Delta x=x_{B}-x_{A}=\frac{L_{0} \cos \theta^{\prime}}{\gamma(v)}+\beta c\left(t_{B}-t_{A}\right) \\
& \Delta y=y_{B}-y_{A}=L_{\mathrm{o}} \sin \theta^{\prime}
\end{align*}
$$

از طرف ديگر، مى دانيم كه ابتدا و انتهاى ميله درچارچوب S S، بايد بـه طـور همز مـان انـدازه
 بود. حال، با توجه به رابطهٔ(IIV-Y)، طول ميله درحارجوبب S، برابر

$$
\begin{align*}
L & =\sqrt{(\Delta x)^{r}+(\Delta y)^{r}} \\
& =L_{0} \sqrt{1-\beta^{r} \cos ^{r} \theta^{\prime}}
\end{align*}
$$

به دست مى آيد. همحنين، زاويهٔ بين امتداد ميله با محور x در چحارچوب S نيز، از رابطهُ

$$
\begin{equation*}
\tan \theta=\frac{\Delta y}{\Delta x}=\frac{L_{\mathrm{o}} \sin \theta^{\prime}}{L_{\mathrm{o}} \cos \theta^{\prime} / \gamma(v)} \tag{119-Y}
\end{equation*}
$$

$$
\begin{align*}
\theta & =\tan ^{-1}\left[\gamma(v) \frac{\sin \theta^{\prime}}{\cos \theta^{\prime}}\right]  \tag{IY:-Y}\\
& =\tan ^{-1}\left[\gamma(v) \tan \theta^{\prime}\right]
\end{align*}
$$

## سينماتيك نسبيتى 91

 جارجوب S،، ميله علاوه بر انقباض، دوران نيز مى كند.

مثال اسـت. حـال، اگگر درابتـداى واگَن جرقـه ایى زده شـود، نورحاصـل از آن را كــدام يـكـ از


 زده مى شود كه ناظر S و مسافر در فاصلهُ يكسان از مبدأ جار جوب S $S$ قرار گرفته باشند. جـواب : مـسأله را ابتـدا درجـارچوب سـكون واگـن يـا ${ }^{\prime}$ بر برسـى مـى كنـيم. درايسن

 زمان ( $\Delta t=L_{\circ} /(c-v)$ نورحاصل از جرقه را دريافت مى كند؛ زيرا درچارچوب سكون واگ̋، ناظر S با سرعت v- حر كت مى كند. بنـابراين، درايـن جـارجوب، مـسافر زودتـر از ناظر S، نورجرقه را مشاهده خواهدكرد. اكنون، وضعيت را ازنظر ناظر ساكن S، بررسى مى كنيم. براي اين منظور، ابتدا فاصلهُ بين ناظر S و مححل زدن جرقه رابه دست مى آوريم. برايى به دسـت آوردن ايـن فاصـله دو رويـداد، تعريف مى كنيم. رويداد اول رازدن جرقه و رويداد دوم را قرارگَفتن پهلو به بهلـوى مـسافر و ناظر S در نظزمى گيريم. حال، با توجه به فرض مـسأله، ايـن دو رويـداد در جـارچوب سـكون


$$
\begin{align*}
\Delta t & =\gamma(v)\left[\Delta t^{\prime}+\frac{v}{c^{r}} \Delta x^{\prime}\right] \\
& =\gamma(v)\left[\circ+\frac{v}{c^{r}} L_{\circ}\right]  \tag{|Y|-Y}\\
& =\gamma(v) \frac{v}{c^{r}} L_{\circ}
\end{align*}
$$

زيرا در چارجوب 'S دو رويداد همزمان بوده و همحخنين، بازهٔ فضضايى يـا فاصـلة بـين مـسافر

 آهن يهلو به پهلو قرار گیرند، روى مى دهد. در اين صورت، درلحظئ زدن جرقه، فاصـلهُ بـين ناظر S و مسافر، برابر vهt مى باشل. بنابراين، فاصلهُ بين ناظر S و مححل زدن جرقه، برابر

$$
\begin{align*}
L & =\frac{L_{\circ}}{\gamma(v)}+v \Delta t \\
& =\frac{L_{\circ}}{\gamma(v)}+v\left[\gamma(v) \frac{v}{c^{r}} L_{\circ}\right]  \tag{IYY-Y}\\
& =L_{\circ} \gamma(v)
\end{align*}
$$

به دست مى Tيد. دررابط؛ (Y-Y (IY) از اثر انقباض طول استفاده شده است. درنتيجه، نـاظر SS،

$$
\begin{align*}
& \text { نورحاصل از جرقه را بعد از مدت زمان } \Delta T_{1}=L / c \text { يا } \\
& \Delta T_{1}=\frac{1}{c} L_{\circ} \gamma(v) \tag{IY-Y-Y}
\end{align*}
$$

دريافت مي كند. مسافر نيز بعد از مدت زمان

$$
\begin{equation*}
\Delta T_{ケ}=\frac{L_{\circ}}{\gamma(v)(c+v)} \tag{1YF-Y}
\end{equation*}
$$

نورجرقهٔ زده شده را مشاهله مى كند. حال با مقايسهٔ زمانهـاى بـه دسـت آمـده در جـار جووب جـارچوب $S$ كهـى تـوان دريافـت كــه
 بستگى به انتخاب چار چوب مرجع لخت ندارد.

مثال
 جراغ اتومبيل به طور همزمان روشن مى شوند. دراين صورت، رانندئ اتومبيل، جـراغ اتومبيـل را قبل از ديدن هراغ سبز راهنما روشن كرده است يا بعد از آن؟
 مسأله را از نظر ناظر 'S يا حارحچوب سكون اتومبيل بررسى نماييم. طبق فرض مسأله، روشَـن
 استفاده از تبديل لورنتس، مى توان نوشت:

$$
\begin{align*}
\Delta t^{\prime} & =\gamma(v)\left[\Delta t-\frac{v}{c^{r}} \Delta x\right] \\
& =\gamma(v)\left[0-\frac{v}{c^{r}} L_{\circ}\right] \\
& =-\gamma(v) \frac{v}{c^{r}} L_{\circ}
\end{align*}
$$

زيرا درچارچوب S دو رويداد روشن شدن چجراغ اتومبيل و خراغ سبز راهنما، همزمان بوده و
 درلحظهٔ حال، با توجه به اينكه زودتر و در لحظهُ

$$
\begin{equation*}
t_{r}^{\prime}=-\gamma(v) \frac{v}{c^{r}} L_{\circ} \tag{1YG-Y}
\end{equation*}
$$



$$
\left|d^{\prime}\right|=\left|t_{r}^{\prime} v\right|=\gamma(v) \frac{v^{r}}{c^{r}} L_{\circ}
$$

S'به $S^{\prime}$ فاصلهُ oL ، براساس اثر انقباض طول، كوتاهتر و برابـر 'L انــدازه گرفتـه مـى شـود. بنــابراين، فاصلهُ كل ناظر 'S يا رانندهٔ اتومبيل تا جراغ راغ راهنما برابر

$$
\begin{align*}
D^{\prime} & =d^{\prime}+L^{\prime} \\
& =\gamma(v) \frac{v^{r}}{c^{r}} L_{\circ}+\frac{L_{\circ}}{\gamma(v)}  \tag{IYN-Y}\\
& =\gamma(v) L_{\circ}
\end{align*}
$$

خواهل بود. در نتيجه، از نظر رانتدهٔ اتومبيل، مدت زمانى كه طول مى كشد تا نور چجـراغ سـبز راهنما به راننده برسله برابر

$$
\begin{equation*}
t^{\prime}=\frac{D^{\prime}}{c}=\frac{1}{c} \gamma(v) L_{\mathrm{o}} \tag{1ra-r}
\end{equation*}
$$

مى باشد. بنابراين، ناظر 'S يا رانندة اتومبيل، نورخجاغ سبز راهنما را درلحظة

$$
\begin{align*}
t_{r}^{\prime} & =t_{r}^{\prime}+t^{\prime} \\
& =-\gamma(v) \frac{v}{c^{r}} L_{\circ}+\frac{1}{c} \gamma(v) L_{\circ} \\
& =\frac{L_{\circ}}{c} \sqrt{\frac{c-v}{c+v}}
\end{align*}
$$

مشاهله مى كند. حال، باتوجه به اينكه زمان به دست آمده در رابطهٔ (Y-.با) مقدارى مثبت است،




- 9 - 9 : تبلديل لورنتس سرعت

دراين بخشش، مى خواهيم سـرعت يـك ذره را از نظر دو نـاظر بررسـى نمـوده و ارتبـاط بـين سرعت ذره را در دو جارچوبب مختلـف بـه دسـت آوريـم. ايـن ارتبـاط بـه وسـيلئ تبـلـيلات
 و
 ذره ای در چارچوب ساكن S، برابر ${ }^{\text {® }}$ باشد. در اين صورت، سـرعت آن، يعنـي نسبت به ناظر ’' ${ }^{\prime}$ به دست آوريم. همان طور كه مى دانيم، مؤلفـه هـاى درجارچووبهاى S و 'S به تر تيب با با روابط

$$
\begin{align*}
& u_{x}=\lim _{\Delta t \rightarrow 0} \frac{\Delta x}{\Delta t}=\frac{d x}{d t} \\
& u_{x}^{\prime}=\lim _{\Delta t^{\prime} \rightarrow 0} \frac{\Delta x^{\prime}}{\Delta t^{\prime}}=\frac{d x^{\prime}}{d t^{\prime}}
\end{align*}
$$

تعريف مى شوند. به همين ترتيب، مى توان روابط مشابهى را براى مؤلفه هاى $y$ و و $z$ سـرعت ذره، دردو حارجوب نوشت. اكنون با استفاده از تبديلات مختصات لورنتس، داريم:

$$
\begin{equation*}
u_{x}^{\prime}=\frac{d x^{\prime}}{d t^{\prime}}=\frac{\gamma(v)(d x-v d t)}{\left.\gamma(v)\left[d t-\left(v / c^{r}\right) d x\right)\right]} \tag{IM-Y}
\end{equation*}
$$

كه با تقسيم صورت و مخرج كسر رابطئ(Y-سسM) بر dt، خواهيم داشت:

$$
\begin{equation*}
u_{x}^{\prime}=\frac{(d x / d t)-v}{1-\left(v / c^{r}\right)(d x / d t)} \tag{ITF-Y}
\end{equation*}
$$

حال، با تو جه به رابطةٔ (Y-اץ|)؛ داريم

$$
\begin{equation*}
u_{x}^{\prime}=\frac{u_{x}-v}{1-v u_{x} / c^{r}} \tag{IYD-Y}
\end{equation*}
$$

همحچنين، برایى به دست آوردن تبديل سرعتهاى عرضى، يعنى

$$
\begin{align*}
u_{y}^{\prime}=\frac{d y^{\prime}}{d t^{\prime}} & =\frac{d y}{\gamma(v)\left[d t-\left(v / c^{r}\right) d x\right]} \\
& =\frac{d y / d t}{\gamma(v)\left[1-\left(v / c^{r}\right)(d x / d t)\right]}
\end{align*}
$$

$$
\begin{equation*}
u_{y}^{\prime}=\frac{u_{y}}{\gamma(v)\left[1-\left(v u_{x} / c^{r}\right)\right]} \tag{IrV-Y}
\end{equation*}
$$

همين طور، برایى مؤلفةٔ z نيز، داريم:

$$
\begin{equation*}
u_{z}^{\prime}=\frac{u_{z}}{\gamma(v)\left[1-\left(v u_{x} / c^{r}\right)\right]} \tag{IFN-Y}
\end{equation*}
$$

بنابراين، با استفاده از تبديلات سرعت به دست Tمله، مى توان ارتباط بين مؤلفه هاى سـرعت يك ذره را در دو چارجوب S و 'S بـه دسـت آورد. اكنـون، اگگر در ايـن روابـط، v را بـهـ v- تبديل نماييم و همحخنين؛ جاى كميّتهاى بريم دار و بدون بريم راعوض كنـيم، در ايـن صورت تبديلات وارون سرعت به دست مى آيند. اين تبديلات به صورت

$$
\begin{equation*}
u_{x}=\frac{u_{x}^{\prime}+v}{1+v u_{x}^{\prime} / c^{r}} \tag{irq-r}
\end{equation*}
$$

$$
\begin{equation*}
u_{y}=\frac{u_{y}^{\prime}}{\gamma(v)\left[1+\left(v u_{x}^{\prime} / c^{r}\right)\right]} \tag{IF:-Y}
\end{equation*}
$$

$$
\begin{equation*}
u_{z}=\frac{u_{z}^{\prime}}{\gamma(v)\left[1+\left(v u_{x}^{\prime} / c^{r}\right)\right]} \tag{|F|-Y}
\end{equation*}
$$

خواهنل بود. ازطرفـ ديگك، مىى توان روابطا فوق را بيه صورت مؤلفه هـايى در راسـتاى مـوازیى و عمود بر سرعت نسبى دو چار چچونب، يعنى

$$
\begin{equation*}
\vec{u}_{\|}=\frac{\vec{u}_{\|}^{\prime}+\vec{v}}{\left[1+\left(\vec{v} \cdot \vec{u}^{\prime}\right) / c^{r}\right]} \tag{IFY-Y}
\end{equation*}
$$

$$
\begin{equation*}
\vec{u}_{\perp}=\frac{\vec{u}_{\perp}^{\prime}}{\gamma(v)\left[1+\left(\vec{v} \cdot \vec{u}^{\prime}\right) / c^{r}\right]} \tag{و}
\end{equation*}
$$

بيان مى شونل. در روابط فوق انلـيسهاى || و لــ نـشان دهنــلـهُ مؤلفـه هـاى مـوازى و عمـودى سرعت ذره در راستاى سرعت نسبى دو پارپجوب مى باشنل.


مثال
 سرعت سـرعت ذره بـا محــور به هارحجوبهای S $S$ زاوئٔ ${ }^{\prime}$ بـسازد، در ايـن صسورت، سـرعت ذره (اندازه وجهت) را در حارجوب $S$ به دست آوريد.


$$
u_{\|}=u \cos \theta \quad, \quad u_{\perp}=u \sin \theta
$$

$$
u_{\|}^{\prime}=u^{\prime} \cos \theta^{\prime} \quad, \quad u_{\perp}^{\prime}=u^{\prime} \sin \theta^{\prime}
$$

نوشته مى شوند. هممحچنين، مى توان اندازهُ سرعت ذرها يعنى

$$
\begin{equation*}
u=\sqrt{u_{\perp}^{r}+u_{\|}^{r}} \tag{1ヶタ-Y}
\end{equation*}
$$

## 9V سينماتيك نسبيتي

بـــه دســـت آورد. اكنـــون، اگگـــر مقــــادير


$$
\begin{equation*}
u=\frac{\left(u^{\prime r}+v^{r}+r u^{\prime} v \cos \theta^{\prime}-\left(v u^{\prime} \sin \theta^{\prime} / c\right)^{r}\right)^{1 / r}}{1+\left(u^{\prime} v \cos \theta^{\prime} / c^{r}\right)} \tag{IFV-Y}
\end{equation*}
$$

 , $u_{\perp}$

$$
\tan \theta=\frac{u_{\perp}}{u_{\|}}
$$

جايگذارى نماييم. دراين صورت، خواهيم داشت:

$$
\begin{equation*}
\tan \theta=\frac{u^{\prime} \sin \theta^{\prime}}{\gamma(v)\left(u^{\prime} \cos \theta^{\prime}+v\right)} \tag{1qq-r}
\end{equation*}
$$

از طرف ديگر، با استفاده از رابطةُ (IFV-Y)، مى توان نتيجه گرفت كة اگر سرعت ذره ایى در
 يعنى اگر

$$
\begin{align*}
u & =\frac{\left(c^{r}+v^{r}+r \operatorname{cv} \cos \theta^{\prime}-v^{r}\left(1-\cos ^{r} \theta^{\prime}\right)\right)^{1 / r}}{1+\left(v \cos \theta^{\prime} / c\right)} \\
& =c \frac{\left[\left(1+v \cos \theta^{\prime} / c\right)^{r}\right]^{/ r}}{1+\left(v \cos \theta^{\prime} / c\right)}=c
\end{align*}
$$

همجحنين، مى توان نشان داد كه اگر سرعت ذره ایى در يك جـارجونب كـو جكتر از c باشـلمه

 مسأله فرض مى كنيم كه سرعت ذره در راستاى y و $z$ مؤلفه ایى نداشته باشلد. دراين صورت،


$$
\begin{align*}
u_{x}^{\prime}-c & =\frac{u_{x}-v}{\left[1-v u_{x} / c^{r}\right]}-c \\
& =\frac{-(c+v)\left(c-u_{x}\right)}{c\left[1-v u_{x} / c^{r}\right]} \tag{101-Y}
\end{align*}
$$

\$1 1 مقدمه إي بر نسبيت خاص
اكنون، با تو جه به اينكه سرعتت نسبى دو چارچوبب، يعنى v، طبق فـرض بايـل كـوچكتر از




$$
\begin{align*}
u_{x}^{\prime}+c & =\frac{u_{x}-v}{\left[1-v u_{x} / c^{r}\right]}+c \\
& =\frac{\left(c+u_{x}\right)(c-v)}{c\left[1-v u_{x} / c^{r}\right]}
\end{align*}
$$

حال، با توجه به فرض $C$ <

اگر

قاعلهه تبديل يا جمع سرعتها را مى توان به راحتى به بّ بعد نيز تعميم داد. براى ايـن منظورك از منى توان از روابط (M-Y) و(イQ-Y) استفاده كرد. بنابراين، با تو جه به رابطة\& (M-Y)، داريم

$$
\begin{equation*}
d \vec{r}^{\prime}=d \vec{r}+[\gamma(v)-1] \frac{\vec{\beta} \cdot d \vec{r}}{\beta^{r}} \vec{\beta}-\gamma(v) \vec{\beta} c d t \tag{IDr-Y}
\end{equation*}
$$

و از رابطهٔ(Ү-

$$
d t^{\prime}=\gamma(v)[d t-\vec{\beta} \cdot d \vec{r} / c]
$$

اكنون، با تقسيم رابطة (Y-Y

$$
\vec{u}^{\prime}=\frac{d \vec{r}^{\prime}}{d t^{\prime}}=\frac{d \vec{r}+[\gamma(v)-1](\vec{\beta} \cdot d \vec{r} / \beta r) \vec{\beta}-\gamma(v) \vec{\beta} c d t}{\gamma(v)[d t-\vec{\beta} \cdot d \vec{r} / c]}
$$

كه با تقسيم صورت و مخرج رابطةُ (Y-Y

$$
\vec{u}^{\prime}=\frac{1}{\gamma(v)[1-\vec{\beta} \cdot \vec{u} / c]}\left(\vec{u}+[\gamma(v)-1] \frac{\vec{\beta} \cdot \vec{u}}{\beta^{r}} \vec{\beta}-\gamma(v) \vec{\beta} c\right)(1 \Delta \varphi-\gamma)
$$

را به دست Tورد. تبديل وارون سرعت ذره نيز بـا تعـويض جـاى كميّتهاى يـريم دار و بــدون هريّم و همين طور با تبديل

سينماتيكى نسبيتى

$$
\vec{u}=\frac{1}{\gamma(v)\left[1+\vec{\beta} \cdot \vec{u}^{\prime} / c\right]}\left(\vec{u}^{\prime}+[\gamma(v)-1] \frac{\vec{\beta} \cdot \vec{u}^{\prime}}{\beta^{r}} \vec{\beta}+\gamma(v) \vec{\beta} c\right)(1 \Delta \vee-r)
$$

حال، با تو جه به رابطهُ (IDV-Y)، مى توان نشان داد كه از طريق جمـع سـرعتها نمـى تـوان بـه
 دست آوريم. كه نتيجهٔ آن برابر

$$
u^{r}=\vec{u} \cdot \vec{u}=c^{r}\left[1-\frac{\left(1-u^{\prime r}\right)\left(1-v^{r}\right)}{\left(1+\vec{v} \cdot \vec{u}^{\prime} / c^{r}\right)^{r}}\right] \leq c^{r}
$$

خواههد شد. اكنون، با توجه به اين رابطه مشاهله مى شود كه از طريق جمع سرعتها نمى تـوان به سـرعتى فراترازسـرعت c دسـت يافـت. از طـرف ديZر، تسساوى در رابطـه (Y-Y (I ا) تنهـا هنگامى برقرار میى شود كه اندازهُ سرعت نكته مهـم ديگرى كه ذر اينجا مى توان به آن اشـاره نمـود، ايـن اســت كـه در تبـديلات لورنتس، سرعت نسبى دو چار جوب؛ يعنى v نمى تواند برابر c باشـلـ. زيـرا ايـن تبــديلات بـه ازایى $v=c$ درنسبيت خاص ياد كرديم. به عبارت ديگر، سرعت نسبى چارچو:ههاى لخت را بايــلـو چوكتر از c در نظر گرفت. كه البته اين يكك فرض است كه در نسبيت وارد مى شود. درحقيقت، اين مطلب را مى توان تأييد دوباره ایى براى نـاوردا بـودن و نيز حــدى بـودن سـرعت c در نـسبيت محسوب نمود.

اكنون، با تو جه به رابطءٔ (VV-Y())، مى توان دو حالت خاصى را مورد بررسى قرار داد. 1- اگگزدررابطهُ (IOV-Y) فرض كنيم كه سرعتهاي

اين حالت به نتيجهُ

$$
\vec{u}=\frac{\vec{v}+\vec{u}^{\prime}}{1+\left(\vec{v} \cdot \vec{u}^{\prime} / c^{r}\right)}=\frac{v+u^{\prime}}{1+\left(v u^{\prime} / c^{r}\right)}
$$

مى رسيم. حال اگُر در رابطةُ فوق $c \rightarrow \infty$ جمع سرعتها، يا تبديل سرعت گاليله، يعنى رابطة́

$$
\vec{u}=\vec{v}+\vec{u}^{\prime}
$$

خو اهيم رسيل.
r
از رابط\&ٔ ( $)$

$$
\begin{align*}
\vec{u} & =\frac{\vec{u}^{\prime}}{\gamma(v)}+\vec{\beta} c  \tag{|q|-Y}\\
& =\vec{\beta} c+\vec{u}^{\prime} \sqrt{\left(1-\beta^{r}\right)}
\end{align*}
$$

مى باشلد. البتّه اين قاعلدهُ جمع، با قاعلده متعاروف جمع بردارى سـرعتها، يعنـى رابططئ (Y- - او) كه به ازاى را مى توان ناشى ازتغييرمفهوم زمان دانست كه تبليل(ی-Y) به همر اه دارد.

به اين ترتيب، مى توان نتيجه گرفت كه اصول نسبيت، همراه با فرض همگُنى فضا و زمـان و همچنین، فرض مربوط به همسسانگردى فضا، وجود يكك سرعت ناوردا وا بيش بينـى مـى كنـد. اللبته، نتّايج تيجربى متعلدد نشان مى دهنل كه أين سرعت ناوردا همـان سـرعت نـوردى باشــلـ ايسن سرعت نه تنها مستقل از ناظر، بلكه مستقل از سرعت چشمه و جهت انتشار آن نيز مى باشل.

 مى آيل. كه در آن $n$ ضريب شكست آب مـى باشسل. حـال،فرضن كنيـل كـه آب بـا سـرعت v جريان داشته باشد. در اين حالتب، اگر سرعت يرتو نور و جريان آب در يكك راستا و هــم جهـت باشنده سرعت پیتو نور را نسبت به ناظر ساكن در چارچوب آزمايشگًاه يا S به دست آوريل.
 پرتـو نـوردر ایـن چچـارچوبِ برابـر $u^{\prime}=c / n$ خواهـل بـود. اكنـون، مـى تـوان بـا اسـتفاده


$$
\begin{equation*}
u=\frac{u^{\prime}+v}{1+v u^{\prime} / c^{r}}=\frac{c}{n}\left(\frac{1+n v / c}{1+v / n c}\right) \tag{19Y-Y}
\end{equation*}
$$

سينمأتيك تُسبيتى 1-1

$$
\begin{align*}
u & =\frac{c}{n}(1+n v / c)(1+v / n c)^{-1} \\
& =\frac{c}{n}\left(1+\frac{n v}{c}\right)\left(1-\frac{v}{n c}+\cdots\right) \\
& =\frac{c}{n}\left(1+\frac{n v}{c}-\frac{v}{n c}-\frac{v^{r}}{c^{r}}+\cdots\right)
\end{align*}
$$

حالة با تو جه به اينكـه
صرف نظر كرد. بنابراين، به دست مى آوريـم:

$$
\begin{equation*}
u=\frac{c}{n}\left(1+\frac{n v}{c}-\frac{v}{n c}\right)=\frac{c}{n}+v\left(1-\frac{1}{n^{r}}\right) \tag{1qY-Y}
\end{equation*}
$$


 كسر آب كشيلنه هى شود. اين أثر اولين باردر سال NIV به وسيله فرنل بيش بينى گرديل و درسـال 1N01 توضيح داده نشل.

مثال


باشد، دراين صورت، با استفاده از رابطة́ ( (ץ-هr|)، خواهيم داشت:

$$
\begin{align*}
u_{x}^{\prime} & =\frac{u_{x}-v}{1-v u_{x} / c^{r}}=\frac{\cdot / 99 c-(-. / 99 c)}{1+(\cdot / 99)^{r}}  \tag{190-Y}\\
& =. / 99990 c
\end{align*}
$$

حال، اگر دو اين مثال از تبليلات گاليلهُ سرعت استفاده شود، به نتيـجةُ

$$
u_{x}^{\prime}=u_{x}-v=\cdot / 99 c-(-, / 99 c)=1 / 9 \wedge c \quad(19 q-Y)
$$

(I + F مقدمه أى بر نسبيت خاص
خواهيم رسيل كه با اصل دوم نسبيت تناقض دارد. زيرا ذرات با جـرم سـكون مخــالف صـفر، نمى توانند با سرعتى بزر گتر از سرعت نورحركت كنند.

 از يكديگر در يكك لحظه برابر r كيلومتر باشد، در اين صورت: الض : از نظرناظر S اين دو ذره بعد ازحه ملت با يكديگر برخورد مى كنند. ب : سرعت هر كدام از ذرات را نسبت به ذره ديخر به دست آوريد. ج : از نظر ناظر واقع در چارچوب سـكون هركـــام از ذرات، ايـن برخـورد بعـلـ از پــه ملت روى خواهد داد.

جواب : الف : برایى به دست آوردن سرعت نزديك شدن ذرات به يكديگر از نظر يكك ناظر ساكن مى توان به صـورت زيـر عمـل نمـود. فـرض كنيـد كـه فاصـلهُ دو ذرة A و B از يكـديگر برابر x $x$ باشل. حال اگگ سـرعت ذرات بـه ترتيـب برابـر
 . $\Delta x=v_{A} \Delta t+v_{B} \Delta t$ ساكن، برابر $u=\Delta x / \Delta t=v_{A}+v_{B}$ خواهل بـود.كـهـ بـا نتيجـهٔ جمـع كلاسـيكك سـرعتها يكسان است. بنابراين، درچارچپوب آزمايشگاه، سرعت نزديكك شدن ذرات به يكديگر، برابر .

$$
\begin{equation*}
u=v_{A}+v_{B}=\cdot / \wedge c+\cdot / \varepsilon c=1 / \uparrow c \tag{19V-Y}
\end{equation*}
$$

به دست مى آيل. زمان برخورد نيز در اين جارجوب، برابر

$$
\begin{align*}
t=\frac{l}{v_{A}+v_{B}} & =\frac{r \times 1 \cdot r m}{(1 / \leftarrow)(r \times 1 \cdot \wedge m / s)} \\
& =v / 1 \uparrow \times 1 .^{-\varepsilon} s
\end{align*}
$$

خواهل بود. درايننجا نكته أى كه بايل به آن أشـاره نمـاييمَ، ايـن اسست كـه اگر جــه سسرعت نزديكك شدن ذرات از نظر ناظر S بزُر گتر از سرعت نور مى باشد، اما اين سرعت هيجحگونه

تناقضى را در نسبيت ايجاد نمى كند؛ زيرا اين سرعت به يكك ذره نسبت داده نمى شود. ب : برای به دست آوردن سـرعت هر كـدام از ذرات دو چجـارحوب سـكون ذره́ ديگــر، مى توان از رابطـةٔ مربـوط بـه جمـع نـسبيتى سـرعتها اسـتفاده كـود. بنـابراين، سـرعت ذرهٔ B درچچار چوب سكون ذرهٔ A، برابر

$$
\begin{align*}
u_{B A}^{\prime}=\frac{u_{B}-u_{A}}{1-u_{A} u_{B} / c^{r}} & =\frac{-\cdot / q c-\cdot / \wedge c}{1-(-\cdot / я c)(\cdot / \wedge c) / c^{r}}  \tag{199-Y}\\
& =-\cdot / 9 \Delta c
\end{align*}
$$

همحچنين، سرعت ذره́ A درجارچوب سكون ذرهٔ B نيز از رابطةٔ زير به دست مى آيل.

$$
\begin{align*}
u_{A B}^{\prime}=\frac{u_{A}-u_{B}}{1-u_{A} u_{B} / c^{r}} & =\frac{\cdot / \wedge c-(-\cdot / q c)}{1-\left(\cdot / \wedge c(-\cdot / q c) / c^{r}\right.} \\
& =\cdot / 9 \Delta c
\end{align*}
$$

ج : برایى به دست آوردن زمان برخورد از نظر ناظر واقع درپـارشوب سـكون هر كـدام از ذرات، مى توانيم از رابطةُ اتساع زمان استفاده نماييـم، مـى دانـيم كـهـ زمـان برخـورد از نظـر ناظر ساكن در چارچوب آزمايشگاه اتساع پيدا مى كند. يعنى

$$
\begin{equation*}
t=\frac{t_{A}^{\prime}}{\sqrt{1-u_{A}^{r} / c^{r}}} \tag{|V|-Y}
\end{equation*}
$$

$$
\begin{equation*}
t_{A}^{\prime}=t \sqrt{1-u_{A}^{r} / c^{r}} \tag{IVY-Y}
\end{equation*}
$$

كه با توجه به قسمت الفّ، مى دانيم كه زمان برخورد از نظرناظر ساكن دز چارچوب آزمايشگاه ،


$$
\begin{align*}
t_{A}^{\prime}=t \sqrt{1-u_{A}^{\prime} / c^{r}} & =\left(\vee / 1 \uparrow \times 1 \cdot^{-q} s\right) \sqrt{1-(\cdot / \wedge c)^{r} / c^{r}}  \tag{IVr-r}\\
& =\uparrow / r \uparrow \times 1 \cdot^{-\xi} s
\end{align*}
$$

بوده و همحنين، زمان برخورد از نظر ناظر واقع در چحارجوبَ سكون ذرهٌ B نيز برابر

$$
\begin{align*}
t_{B}^{\prime}=t \sqrt{1-u_{B}^{\prime} / c^{r}} & =\left(V / \mid \uparrow \times 1^{-q} s\right) \sqrt{1-(\cdot / q c)^{r} / c^{r}}  \tag{IVF-Y}\\
& =0 / \vee \mid r \times 1^{-9} s
\end{align*}
$$

ع ع ا مقدمه أى بر نسبيت خاص

به دست هى آيد.

مثال -
 نيز با همان سرعت، يعنى v نسسبت بـه , راستاى محور ناظر واقع درجارچوبب امتداد محورهای مشتر ك5

جوإب : ابتدا سرعت ذره را نسبت به ناظر ,S به دست مي آوريمه. بنابراين؛ داريم

$$
u_{1}=\frac{u_{r}+v}{1+v u_{r} / c^{r}}
$$

$$
\begin{equation*}
\beta_{1}=\frac{\beta_{r}+\beta}{1+\beta \beta_{r}} \tag{IVG-Y}
\end{equation*}
$$

 سزعت ذره را نسبت به ناظر هS نيز به دست آوريم. در اين صورت؛ مى توان نوشت:

$$
\begin{equation*}
\beta_{\circ}=\frac{\beta_{1}+\beta}{1+\beta \beta_{1}} \tag{IVY-Y}
\end{equation*}
$$

حاله اگر مقدار

$$
\begin{equation*}
\beta_{o}=\frac{\beta_{r}+\beta+\beta\left(1+\beta \beta_{r}\right)}{\left(1+\beta \beta_{r}\right)+\beta\left(\beta_{r}+\beta\right)} \tag{IVA-Y}
\end{equation*}
$$

يا

$$
\begin{equation*}
\beta_{0}=\frac{\beta_{r}\left(1+\beta^{r}\right)+r \beta}{\left(1+\beta^{r}\right)+r \beta \beta_{r}}=\frac{\beta_{r}+r \beta /\left(1+\beta^{r}\right)}{1+r \beta \beta_{r} /\left(1+\beta^{r}\right)} \tag{IVq-r}
\end{equation*}
$$

$$
\text { مثال Y - } 19 \text { : ميجدداً مثال (Y Y Y) را در نظر بگيريد. }
$$

الف : ازنظر ناظرواقع درواگن A؛ چقدر طول مى كشد تا واگن A از واگن B جلو بياقتد ب : از نظرناظرواقع درواگن B، جقدرطول مى كشد تا واگن B از واگن A جلو بيافتد

ج : فــرض كنيـــد كـــهـه
عبور قسمت ابتداى واگن A از قسمت انتهاى واگـن B باشـد. و همــين طـور عبور قسمت انتهاى واگن A از قسمت ابتداى واگن B باشد. حال، مطابق شكل(IV-Y)، فرض كنيد كه ناظر D ازانتهاى واگَن B بـه سـمت جلوى آن شروع به قدم زدن كند. همحِنين، فرض ككنيد كـه رويـدادهاى شـروع و پايـان قـدم

 بازه زمانى بين دو رويداد ${ }_{\text {ب }}^{\text {و ץ }}$, را از نظر ناظر D به دست آوريد. جواب : الف : ابتدا مـسأله را از نظـر نـاظر واقـع درچـارحوب سـكون واگـن A ، بر سسى مى كنيم. ازنظر اين ناظر، سرعت واگن B، برابر

$$
u_{B A}=\frac{u_{B}-v}{1-v u_{B} / c^{r}}
$$

$$
=\frac{(r c / \Delta)-(\digamma c / \Delta)}{1-(r c / \Delta)(\digamma c / \Delta) / c^{r}}=-\frac{\Delta c}{1 r^{r}}
$$

مى باشد. درنتيجه، طول واگن B ازنظر ناظر A، برابر
$L_{B A}=L_{\circ} \sqrt{1-u_{B A}^{r} / c^{r}}$

$$
\begin{equation*}
=L_{\circ} \sqrt{1-(-\Delta c / 1 r)^{r} / c^{r}}=\frac{1 r L_{\mathrm{o}}}{1 r} \tag{INI-Y}
\end{equation*}
$$

 r r r

چارجووب سكون A ، برابر مقدار زير خواهلد بود.

$$
\begin{equation*}
t_{A}=\frac{r \Delta L_{0} / / r}{\Delta c / \backslash r}=\frac{\Delta L_{0}}{c} \tag{IAY-Y}
\end{equation*}
$$

ب : دراينجا نيزسرعت واگَ $A$ را نسبت به ناظر B به دست مى آوريـم. بنابراين، داريم:

$$
\begin{align*}
u_{A B}=\frac{u_{A}-v}{1-v u_{A} / c^{r}} & =\frac{(\digamma c / \Delta)-(\Gamma c / \Delta)}{1-(\digamma c / \Delta)(\mu c / \Delta) / c^{r}} \\
& =\frac{\Delta c}{1 r}
\end{align*}
$$

از طرف ديگر؛ از نظر ناظر B طول واگن A انقباض پيدا مى كند. در نتيجه، خواهيم داشت:

$$
\begin{align*}
L_{A B} & =L_{\circ} \sqrt{1-u_{A B}^{r} / c^{r}} \\
& =L_{\circ} \sqrt{1-(\Delta c / 1 r)^{r} / c^{r}}=\frac{1 r L_{\circ}}{1 r}
\end{align*}
$$

 r جار جوب سكون B6 برابر

$$
t_{B}=\frac{r \Delta L_{0} / \Delta r}{\Delta c / \lambda r}=\frac{\Delta L_{0}}{c}
$$

مى باشد. البته، اين مدت زمان بايد با زمان به دست Tمده در قسمت الف، برابر باشد.
 ج : درايـن حالـتت، ابتـدا بايـد سـرعت
 حال، باتوجـه بـه شـكل (ی-Y (ای)، از نظر ايـن ناظر، دو واگن با سرعتهاى يكسان v، در خلاف جهت يكديگَر حر كت مـى كنـــن. بنـابراين،


$$
u_{A D}=\frac{v-(-v)}{1-v(-v) / c^{r}}=\frac{r v}{1+v^{r} / c^{r}}
$$



$$
\frac{r v}{1+v^{r} / c^{r}}=\frac{\Delta c}{1 r}
$$


ناظر D، طول واگنهایى A و B كوتاهتر به نظر مى رسد. بنابراين، مى توان نوشت:

$$
\begin{align*}
L_{A D} & =L_{\circ} \sqrt{1-v^{r} / c^{r}} \\
& =L_{\circ} \sqrt{1-(c / \Delta)^{r} / c^{r}} \\
& =\frac{r L_{\circ} \sqrt{\varsigma}}{\Delta}=L_{B D}
\end{align*}
$$

دراين حالت، از نظر ناظر D، هر كدام از واگنها بـراى پـشـت سر گذاشـتن واگـن مقابـل، بايــ مسافت يا طول منقبض شدهٔ واگنها، يعنى


$$
t_{D}=\frac{r L_{0} \sqrt{\varepsilon} / \Delta}{c / \Delta}=\frac{r L_{0} \sqrt{\natural}}{c}
$$

خواهد بود. اكنون، مى توان درستى جواب به دست آمده را به روشهاى ديگَر نيز آزمود. سرعت ناظر D نسبت به ناظر واقع بر روى زمين، يعنى S را مـى تـوان بـا جمـع نـسبيتى سرعتهاى حاصل ازهردو روش برابر $\Delta c / V$ خو اهد بود. درواقع، با اين استدلال مى توان سـرعت $0 / \Delta$ را به جاى استفاده از رابطةٔ (1^V-Y)، نيز به دست آورد.

حال، با استفاده از نتيجهٔ مثال (Y-Y) و رابطة́ اتـساع زمـان، مـى تـوان بـازه زمـانى بـين دو
رويداد

$$
\begin{equation*}
t_{S}=\gamma\left(u_{D S}\right) t_{D} \tag{19+-r}
\end{equation*}
$$

$$
\begin{align*}
t_{D} & =\frac{t_{S}}{\gamma\left(u_{D S}\right)}=\frac{v L_{\circ} / c}{\gamma(\Delta c / \vee)} \\
& =\frac{\vee L_{\circ} / c}{\gamma / r \sqrt{\epsilon}}=\frac{r L_{\circ} \sqrt{q}}{c} \tag{191-Y}
\end{align*}
$$

اما نككته ایى كه دو اينْجا بايلد به آن دقت نمود، اين است كه رابطهُ اتساع زمان را مى توان بـين
 مى دهند. درصورتى كه اين رابطه را نمى توان بين جارجوبهاى S و A يـا $B$ نوشـت؛ زيـرا اين دو رويداد در چارجوبهاى A يا B هم مكان نمى باشنل. بنابراين، مى توان از رابطهٔ اتساع

 چارچوب $S$ درحر كت است. طول ميله را نسبت به ناظر يا چارچوبهاى S و 'S به دست آوريد.

 طول ميله نسبت به چارچوب ’S ؛ بايد سرعت ميله را نسبت به اين چارچوب به دست آوريم.


$$
\begin{equation*}
u_{x}^{\prime}=u^{\prime}=\frac{u_{x}-v}{1-v u_{x} / c^{r}}=\frac{u-v}{1-v u / c^{r}} \tag{19Y-Y}
\end{equation*}
$$

طول ميله نيز نسبت به ناظر 'S از رابطهٔ زير به دست مى آيد.

$$
\begin{equation*}
L=L_{\circ} \sqrt{1-\beta^{r r}}=L_{\circ} \sqrt{1-u^{\prime r} / c^{r}} \tag{19r-Y}
\end{equation*}
$$

حال، با جايگذارى مقدار سرعت

$$
\begin{equation*}
L=\frac{L_{\circ}}{\left(c^{r}-u v\right)} \sqrt{\left(c^{r}-v^{r}\right)\left(c^{r}-u^{r}\right)} \tag{19Y-Y}
\end{equation*}
$$



 درشــكل حر كــت نماينــد. حـــاله اگگـر زاويــهُ بـــين راسـتاى حر كــت ذرات برابـر $\theta$ باشــد. درايـن صـورت، شكل (Y-19) : سرعت نسبى ذرات سرعت يكى ازذرات ران نسبت به چحارچوب سكون ذره́ ديگر به دست آوريد.




 (Y) - Y)، مى توان سرعت ذره ب را نسبت بـه ذره يا نسبت به چارچوب

ديگر، سرعت ذرهٔ r، را مى توان نسبت به جارجوب مرجع S، به صورت زير نوشت:

$$
\begin{equation*}
\vec{u}_{Y}=\left(u_{\Upsilon} \cos \theta\right) \vec{i}+\left(u_{\Upsilon} \sin \theta\right) \vec{j} \tag{190-Y}
\end{equation*}
$$

حال، با استفاده ازتبديلات لورنتس و با فرض اينكه $c=1$ باشل، مؤلفةٔ x سرعت ذرهٔ r،برابر

$$
\begin{equation*}
u_{\curlyvee x}^{\prime}=\frac{u_{\curlyvee x}-v}{1-\left(v u_{\curlyvee x}\right)}=\frac{u_{\curlyvee} \cos \theta-v}{\left[1-\left(v u_{\curlyvee} \cos \theta\right)\right]} \tag{199-Y}
\end{equation*}
$$

خواهد بود. همين طور، براى مؤلفهٔ $y$ سرعت ذرهٔ Y نيز مى توان نوشت:

$$
\begin{equation*}
u_{\curlyvee y}^{\prime}=\frac{u_{\curlyvee} \sin \theta \sqrt{1-v^{r}}}{\left[1-\left(v u_{\curlyvee} \cos \theta\right)\right]} \tag{19V-Y}
\end{equation*}
$$

در نتيجه، اندازه سرعت ذره́ 「 برابر

$$
u_{r}^{\prime}=\sqrt{u_{r x}^{\prime r}+u_{r y}^{\prime r}}
$$

$$
\begin{equation*}
u_{r}^{\prime}=\sqrt{1-\frac{\left(1-v^{r}\right)\left(1-u_{r}^{r}\right)}{\left(c^{r}-v u_{r} \cos \theta\right)^{r}}} \tag{199-Y}
\end{equation*}
$$

 سر.عت ذرهٔ Y نسبت به ذره́ ( ، برابر

$$
u_{r}^{\prime}=\sqrt{1-\frac{\left(1-u_{1}^{r}\right)\left(1-u_{r}^{r}\right)}{\left(1-u_{1} u_{r} \cos \theta\right)^{r}}} \quad \text { (Y..-r) }
$$

مثال Y - Y Y : مطابق شكل(Y)-Y)، فرض كنيد كه دریپارحوب S، دو ذره با سـرعتهاى
 يحـسان u، درامتـداد مـسسيرهاى مسشخص شـــده در شـكلى، حر كت مى كنند. حال، اگر زاويهٔ بين راستاى حر كـت ذرات
 شكل (Y) (Y) : سرعت نسبى

نسبت به چارچجوب سكون ذرهُ ديگر به دست آوريد.
جواب : روش اول : فرض كنيد كه چارچوب ’S در راسـتاى نيمسساز مـسيرحر كت ذرات

 حال، مى توان مؤلفه هاى 'x و ${ }^{\prime}$ سرعت ذرات را نسببت بـه چجارچوب

 دست آوريم. اكنون، با توجه به رابطةٔ (IF-Y) داريم:

$$
u_{y}=\frac{u_{y}^{\prime}}{\left.\gamma\left[1+u_{x}^{\prime}(u \cos \theta) / c^{r}\right)\right]}
$$

$$
\begin{equation*}
u_{y}=u \sin \theta=\frac{u_{y}^{\prime}}{\gamma} \tag{يا}
\end{equation*}
$$

بنابراين، در چارچحوب محور 'y حر كت مى كنتـد. در ايـن صـورت، سـرعت يكـى از ذرات، نـسبت بـه جـارجوب سكون ذره ديگر، با استفاده از رابطهٔ جمع نسبيتى سرعتها، برابر

$$
u_{\curlyvee}^{\prime}=\frac{r u_{y}^{\prime}}{1+u_{y}^{\prime r}}
$$

$$
u_{r}^{\prime}=\frac{\frac{r u \sin \theta}{\sqrt{1-u^{r} \cos ^{r} \theta}}}{1+\frac{u^{r} \sin ^{r} \theta}{1-u^{r} \cos ^{r} \theta}}=\frac{r u \sin \theta \sqrt{1-u^{r} \cos r \theta}}{1-u^{r} \cos r \theta}
$$

بنابراين، در نهايت مى توان به دست آورد

$$
\begin{equation*}
u_{r}^{\prime}=\sqrt{1-\frac{\left(1-u^{r}\right)^{r}}{\left(1-u^{r} \cos r \theta\right)^{r}}} \tag{Y+0-Y}
\end{equation*}
$$

اكنون، با توجه به نتيحهُ به دست آمله، مى تـوانيم بعـضى از حالتهـاى خـاص را بررسـى نمـاييم

 $u_{r}^{\prime} \simeq \frac{r u \sin \theta}{\sqrt{1-u^{r}}}$


روش دوم : در ايـن روش مـى تـوان از نتيجــــ مثــال (r) - Y
 برمحور X در نظرگرفت. دراين صورت، با توجه به رابطءٔ (Y-• (Y)، مى توان نوشت:

$$
\begin{align*}
& u_{r}^{\prime}=\sqrt{1-\frac{\left(1-u^{r}\right)\left(1-u^{r}\right)}{(1-u u \cos r \theta)^{r}}} \\
& u_{r}^{\prime}=\sqrt{1-\frac{\left(1-u^{r}\right)^{r}}{\left(1-u^{r} \cos r \theta\right)^{r}}}
\end{align*}
$$

كه همان رابطئ (Y-

مثال F - Fr : جـتاب توب در داخل واگن متحתك
واتگنى با طول ويزه́ روى يكك مسير مستقيم حر كت مى كند. حال، فرض كنيل كه تويى با سرعت واگن، از قسمت عقب واگن به سمت قسمت جلوى آن پرتاب شود. اگر مسسيرحر كت تـوبٌ مستقيم و بر روى كف واگن باشل. دراين صورت، ملت زمـان طـى مسسير بـه وسـيلهُ تـوت و همين طور، مسافت طى شده به وسيلهُ آن را درحالتهاى زير به دست آوريل. المْ : نسبت به نأظر واقع درچارچوب سكون واگن يا

متختصات لورنتس
ج

زمين( S ) برابرضريب $\gamma$ ى بين دو ناظر است.
ح : همين طور، نسبت ملت زمان طـى مسسير، بـه وسـيلةُ تـوب را از نظـر دو نـاظر همـراه

و: نشان دهيد كه نسبت مدت زمان طى مسير، ازنظردو ناظر واقـع در واگَن، يعنـى ' ${ }^{\prime}$ و زمين، يعنى S، برابرضريب $\gamma$ ى بين دو ناظر نيست و علت را توضيح دهيد.

جواب :


$$
\text { برابر } c T_{S^{\prime}}=L_{\circ} /(c / r)=r L_{\circ} \text { باشد. }
$$

ب : 1- سرعت توپ نسبت به زمين يا جارشوب S ${ }^{\text {® برابر }}$

$$
\begin{align*}
u_{S} & =\frac{u_{S^{\prime}}+v}{\left[1+\left(v u_{S^{\prime}}\right) / c^{r}\right]} \\
& =\frac{c / r+c / r}{1+(c / \mu)(c / r) / c^{r}}=\frac{\Delta c}{\gamma}
\end{align*}
$$

است. همحِحني، طول واگن نيز نسبت به چارچوبِ يا ناظر S، از رابطهُ

$$
\begin{equation*}
L_{S}=\frac{L_{\circ}}{\gamma(c / r)}=\frac{L_{\circ} \sqrt{r}}{r} \tag{r,q-r}
\end{equation*}
$$

به دست مى آيل. حاله برایى به دست آوردن زمان طى مسير، نسبت به نـاظر S، مـى تـوان بـه



توجه به اينكه اين دو مقدار بايلد با هم برابر باشنلد، مى توان نوشت:

$$
L_{S}+v T_{S}=u_{S} T_{S}
$$

$$
\left(u_{S}-v\right) T_{S}=L_{S}=\frac{L_{0} \sqrt{r}}{r}
$$

در نتيجه، داريم:

$$
T_{S}=\frac{\left(L_{0} \sqrt{r}\right) / r}{(\omega c / \vee)-(c / r)}=\frac{\vee L_{0} \sqrt{r}}{r c}
$$

همجِنين، مسافت طى شده نسبت به ناظر S از رابطهُ زير به دست مى آيد.

$$
d_{S}=u_{S} T_{S}=\left(\frac{\Delta C}{V}\right)\left(\frac{V L_{\circ} \sqrt{r}}{r c}\right)=\frac{\Delta L_{\mathrm{o}} \sqrt{r}}{\mu}
$$

$x_{A}^{\prime}$
 تبديلات لورنتس می توان نوشت:

$$
\begin{align*}
d_{S}=\Delta x & =\gamma(v)\left(\Delta x^{\prime}+v \Delta t^{\prime}\right) \\
& =\frac{r}{\sqrt{r}}\left[L_{\circ}+\frac{c}{r}\left(\frac{r L_{o}}{c}\right)\right]  \tag{-}\\
& =\frac{\Delta L_{\circ}}{\sqrt{r}}=\frac{\Delta L_{\circ} \sqrt{r}}{r}
\end{align*}
$$

به همين ترتيب، داريم:

$$
\begin{align*}
T_{S}=\Delta t & =\gamma(v)\left[\Delta t^{\prime}+\frac{v}{c^{r}} \Delta x^{\prime}\right] \\
& =\frac{r}{\sqrt{r}}\left[\frac{r L_{\circ}}{c}+\frac{c}{r} \frac{L_{0}}{c^{r}}\right]=\frac{v L_{\circ} \sqrt{r}}{r c}
\end{align*}
$$

كه با نتيجهُ به دست آمده در قسمت ا توافق دارد.

$$
L_{b}=\frac{L_{o}}{\gamma(c / r)}=\frac{L_{o} \sqrt{\lambda}}{\mu}
$$

1 1 مقدمه ای بر نسبيت خاص
مى باشد. درايـن حاللت، نـاظر $S_{b}$ سـاكن بـوده و واگگن بـا سـرعت $c / r$ مـسافت
مى كند. درنتيجه، مى توان نوشت:

$$
T_{b}=\frac{\left(L_{\circ} \sqrt{\lambda}\right) / r}{c / r}=\frac{r L_{\circ} \sqrt{r}}{c}
$$

بوده و فاصلهُ طى شده نيز برابر


$$
\begin{align*}
& \gamma(\Delta c / Y)=V /(Y \sqrt{4}) \\
& T_{S}=\gamma T_{b} \quad \Leftrightarrow \quad \frac{V L_{\circ}}{c \sqrt{r}}=\frac{\gamma}{r \sqrt{\varphi}}\left(\frac{r L_{0} \sqrt{r}}{c}\right)
\end{align*}
$$

كه البته رابطهُ درستى است.
ع : در ايــن حالــت، ســرعت نــسبى چجارچوبهــاى
بنابراين، $\gamma(c / r)$ برابر $\gamma(r \sqrt{r}) /$ بوده و مى توان نوشت:

$$
T_{S^{\prime}}=\gamma T_{b} \quad \Leftrightarrow \quad \frac{r L_{0}}{c}=\frac{r}{r \sqrt{r}}\left(\frac{r L_{0} \sqrt{r}}{c}\right)
$$




$$
\begin{aligned}
& T_{S}=\gamma T_{S^{\prime}} \quad \Leftrightarrow \quad \frac{\gamma L_{0} \sqrt{r}}{r c} \neq \frac{r}{\sqrt{r}}\left(\frac{r L_{0}}{c}\right) \quad(Y,-r)
\end{aligned}
$$

خو|هد بود. دراينجا علت اين نابرابرى را مى توان به اين صورت توضيح داد كه رابطـةُ اتـساع
 باشند. حال، با توجه به اين نكته، در اين مسأله رويداد پرتـاب تـوب از قـسمت عقـب واگـن،
 قسمتهاى(د) و (ح) رابطةٌ اتساع زمان رامى توان نوشت. در صورتى كه اين دو رويداد نـسبت به ناظظرهاى S و 'S، دريكك مكان روى نمى دهند. درنتيحه، رابطةء اتساع زمـان را نمـى تـوان

سينماتيك نسبيتي 110




شكل (Ү-世 ${ }^{\prime}$

 حر كت باشند. ناظرى مانند ' ${ }^{\prime}$ كـه در بـين آنها قرارگرفته است، با جه سرعتى حر كـت كند تا از نظر آن، ذرات با سرعت يكسان به سمت يكديگر حر كت كنند. جواب : روش اول : فرض كنيد كه سـرعت نـاظر 'S نسبت بـه نـاظر سـاكن S ك، برابـر $v$

 دست آوزد. بنابراين، سرعت ذرهٔ A نسبت به ناظر 'SG، برابر

$$
\begin{equation*}
u_{A}^{\prime}=\frac{u_{A}-v}{1-v u_{A} / c^{r}}=\frac{\digamma c / \Delta-v}{1-v(\digamma c / \Delta) / c^{r}} \tag{YY1-Y}
\end{equation*}
$$

مى باشد. همين طور، سرعت ذرهُ B در اين جارجوب از رابطهُ

$$
\begin{equation*}
u_{B}^{\prime}=\frac{u_{B}-v}{1-v u_{B} / c^{r}}=\frac{(r c / \Delta)-v}{1-v(r c / \Delta) / c^{r}} \tag{YYY-Y}
\end{equation*}
$$

به دست مى آيل. ازطرف ديگر، با توجه به اينكه سرعت ذرات درجارجوب 'S 'S، با هـم برابـر


$$
\frac{\digamma c / \Delta-v}{1-v(\digamma c / \Delta) / c^{r}}=\frac{-(r c / \Delta)+v}{1-v(r c / \Delta) / c^{r}}
$$

$$
\begin{equation*}
r \Delta v^{r}-v \mu c v+r \Delta c^{r}=0 \tag{YYF-Y}
\end{equation*}
$$

$$
(\Delta v-\vee c)(\vee v-\Delta c)=0
$$

 مى آيد كه از اين دو جـوابب، سـرعت


 محاسبءٔ اين سرعتها به نتيجهٔ $u_{A}^{\prime}=u_{B}^{\prime}=\dot{c} / \Delta$ خواهيم رسيد.

روش دوم :
با تو جه به صورت مسأله، سرعت ذرات A و B نسبت بـه نـاظر يـا چـارچوب متـصل بـه زمين، يعنى S، به ترتيب برابر $S$ چارپوبی را پيدا كنيمَ به طورى كه اين چارپوب دربين ذرات قرار گرفتـه باششـل و سـرعت ذرات نسبت به اين چارچوب برابر بوده و همحچنـين، ايـن ذرات در ايـن چــارچوب بـه سـمـت



$$
\begin{equation*}
u_{A}=\frac{u_{A}^{\prime}+v}{1+v u_{A}^{\prime} / c^{r}} \tag{YYG-Y}
\end{equation*}
$$

كه با محاسبهٔ سرعت v از رابطهُ فوق به دست مى آوريم

$$
\begin{equation*}
v=\frac{u_{A}-u_{A}^{\prime}}{\left[1-u_{A} u_{A}^{\prime} / c^{r}\right]} \tag{YYV-Y}
\end{equation*}
$$

همحخنين، براى ذره $B$ نيز، داريم

$$
\begin{equation*}
u_{B}=\frac{-u_{B}^{\prime}+v}{1-v u_{B}^{\prime} / c^{r}} \tag{YYA-Y}
\end{equation*}
$$

در رابطـهُ فـوق علامــت منفـى در جلـوى ${ }^{\prime}$ ، بـه خــاطر آن اســت كـه سـرعت ذرهٔ $B$ در چحارچوب 'S در خلاف جهت محور ' ${ }^{\prime}$ بوده و در اين حارحوبِ دو ذره به سمت يكـديگر
 صورت، اين سرعت برابر

$$
\begin{equation*}
v=\frac{u_{B}+u_{B}^{\prime}}{1+u_{B} u_{B}^{\prime} / c^{r}} \tag{YYQ-Y}
\end{equation*}
$$

خواهد بود. اكنون، مى توان روابط (YY-Y) و (YYQ-Y) را مساوى هم قرار داد و به دست آورد

$$
\frac{u_{A}-u_{A}^{\prime}}{1-u_{A} u_{A}^{\prime} / c^{r}}=\frac{u_{B}+u_{B}^{\prime}}{1+u_{B} u_{B}^{\prime} / c^{r}}
$$

 سرعت ${ }^{\prime}$ با سـرعت $u_{B}$ باشـــ؛ زيـرا هـردو نتيجـه سـرعت نـاظر ' ${ }^{\prime}$ را نـسبت بـه نـاظر سـاكن زمينى S'، به دست مى دهند. اما با توجه به اينكه سرعت ذرات در چارحچوب


$$
\frac{\digamma c / \Delta-u^{\prime}}{\left[1-(\uparrow c / \Delta) u^{\prime} / c^{r}\right]}=\frac{r c / \Delta+u^{\prime}}{1+(r c / \Delta) u^{\prime} / c^{r}}
$$

نوشت. دررابطة́ فوق $u^{\prime}=u_{A}^{\prime}=u_{B}^{\prime}$

$$
\begin{equation*}
\Delta u^{\prime r}-r я c u^{\prime}+\Delta c^{r}=0 \tag{YMY-Y}
\end{equation*}
$$

$$
\begin{equation*}
\left(\Delta u^{\prime}-c\right)\left(u^{\prime}-\Delta c\right)=\circ \tag{YMK-Y}
\end{equation*}
$$


 مى توان سرعت چارچوب 'S $S^{\prime}$ نسبت بـه چــارچوب S بـه دسـت آورد. بنـابراين، از رابطــُ (YYQ-Y)، داريم

$$
\begin{equation*}
v=\frac{r c / \Delta+c / \Delta}{1+(r c / \Delta)(c / \Delta) / c^{r}}=\frac{\Delta c}{\gamma} \tag{rMF-Y}
\end{equation*}
$$

روش سوم :
در اين روش، إبتدا مى توان سرعت ذرهٔ A را درجارچوب سكون ذرهٔ Bبه دسـت آورد.
بنابراين، مى توان نوشت:

$$
u_{A B}=\frac{u_{A}-v_{B}}{1-v_{B} u_{A} / c^{r}}
$$

دررابطءّ فوق

$$
\begin{equation*}
u_{A B}=\frac{r c / \Delta-r c / \Delta}{1-(r c / \Delta)(r c / \Delta) / c^{r}}=\frac{\Delta c}{1 r} \tag{ץ-Y}
\end{equation*}
$$

اما مى دانيم كه ازنظر ناظر واقـع درچــارچوب
يكديگر حر كت مى كنند. بنابراين، سرعت نسبى دو ذره در چارچوبب 'S، برابر

$$
\begin{equation*}
u_{A B}^{\prime}=\frac{u^{\prime}-\left(-u^{\prime}\right)}{1-\left(u^{\prime}\right)\left(-u^{\prime}\right) / c^{r}}=\frac{r u^{\prime}}{1+u^{\prime r} / c^{r}} \tag{YYV-Y}
\end{equation*}
$$

 مى باشد. در نتيجه، خواهيم داشت:

$$
\begin{equation*}
\frac{r u^{\prime}}{1+u^{r r} / c^{r}}=\frac{\Delta c}{1 r} \tag{YM-Y}
\end{equation*}
$$

$$
\Delta u^{\prime r}-r \varepsilon u^{\prime} c+\Delta c^{r}=0
$$

كه همان معادلئ (YYY-Y) مى باشد. بنابراين، ادامئ راه حل مشابه روش دوم خواهد بود.

## F - - - : شتاب ويزه

فرض كنيد كه ذره ایى با سرعت v در راستاى مححور X جارچوب S حركت مى كنـد. ثــتاب ويشْ'، طبق تعريف شتابى است كه درهارجوب سكون لحظلِ ایى ذره اندازه گیری مـى شـود. بنابراين، اگر سـرعت لحظـه ایى ذره درجـارجوب $S$ برابـر (t v(t باشــل، درايـن صـورت، ذره
 جارچوب 'S نسبت به S برابر v مى باشد. اكنون، مى توان نشان داد كه ارتبـاط بـين شـتاب


$$
a_{x}=\frac{d v}{d t}=\frac{\alpha}{\gamma^{\tau}(v)}
$$


(IYY-Y) استفاده نمود. دراين صورت، خواهيم داشت:

$$
\begin{align*}
c d t & =\gamma(v)\left(c d t^{\prime}+\beta d x^{\prime}\right) \\
& =\gamma(v) c d t^{\prime}\left(1+\beta u_{x}^{\prime}\right) \tag{YYI-Y}
\end{align*}
$$

همحخْين، مى توان نوشت:

$$
\begin{equation*}
d u_{x}=\frac{d u_{x}}{d u_{x}^{\prime}} d u_{x}^{\prime}=\frac{d u_{x}^{\prime}}{\gamma^{r}(v)\left[1+v u_{x}^{\prime} / c^{r}\right]^{r}} \tag{YYY-Y}
\end{equation*}
$$

$$
a_{x}=\frac{d u_{x}}{d t}=\frac{d u_{x}^{\prime} / d t^{\prime}}{\gamma^{r}(v)\left[1+\beta u_{x}^{\prime} / c\right]\left[1+\beta u_{x}^{\prime} / c\right]^{r}}
$$

$$
\begin{equation*}
a_{x}=\frac{a_{x}^{\prime}}{\gamma^{r}(v)\left[1+\beta u_{x}^{\prime} / c\right]^{r}} \tag{YFF-Y}
\end{equation*}
$$




$$
a_{x}=\frac{\alpha}{\gamma^{r}(v)}
$$

زيرا در اين حالت، سرعت ذره در چـارچوب S برابــر سـرعت نـسبى جـارجوب ســكون ذره يا' ${ }^{\prime}$
 چارچوب S، در لحظةُ $t=0$ شروع به حر كت كند، در اين صورت مسى تـوان سـرعت ذره


$$
\begin{equation*}
a_{x}=\frac{d u_{x}}{d t}=\frac{d v}{d t}=\frac{a_{\circ}}{\gamma^{r}(v)} \tag{Yチצ-Y}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d v}{d t}=a_{o}\left(1-\beta^{r}\right)^{r / r} \tag{YFV-Y}
\end{equation*}
$$

IY.

$$
\begin{equation*}
\frac{d \beta}{\left(1-\beta^{r}\right)^{r / r}}=\frac{a_{\circ}}{c} d t \tag{YFA-Y}
\end{equation*}
$$

حال، با انتگ,
$t=0$

$$
\frac{\beta}{\sqrt{\left(1-\beta^{r}\right)}}=\frac{a_{\circ}}{c} t
$$

بنابراين، سرعت ذره در چارچوب S، برابر

$$
\beta(t)=\frac{\left(a_{\circ} t / c\right)}{\sqrt{1+\left(a_{0} t / c\right)^{r}}}
$$

به دست مى آيذ.
 $\beta_{1}=$ درايــن صــورت، بعــد از گذشـــت چـــه مــلـت زمــان، ســرعت ذره برابــر 199 و و به ناظر واقع درچارچوب سكون ذره محاسبه نماييد. جواب : از رابطهُ (Y\&q-Y)؛ مى توان به دست آورد

$$
\begin{equation*}
t=\frac{c}{a_{\circ}} \frac{\beta}{\sqrt{\left(1-\beta^{r}\right)}} \tag{YOI-Y}
\end{equation*}
$$

درنتيجــه، زمـــان لازم بــرایى رســيدن ســرعت ذره بــه 194 / $=1$ درجارچوب S6، برابر

$$
\begin{align*}
t_{1}=\frac{c}{a_{0}} \frac{\beta_{1}}{\sqrt{\left(1-\beta_{1}^{r}\right)}} & =\frac{r \times 1 . \wedge m / s}{q / \wedge m / s^{r}} \frac{\cdot / 99}{\sqrt{1-(. / q 9)^{r}}} \\
& =r / 1 \Delta \times 1 . \wedge s \simeq q / \wedge 1 \text { years }
\end{align*}
$$

 ( $t_{\Upsilon}=9 \wedge / 9$ اكنون، براي به دست آوردن اين زمانها نسبت بـه نــاظر واقـع درپــارچو بـ سـكون ذره6

يعنى 'S مى توان أز رابطهُ اتساع زمان اسنتفاده نمود. همان طور كه مـى دانـيمه؛ نـاظر واقـع در جارچوبِ سكون ذره، زمان ويزه را اندازه مى گیرد. بنابراين، داريـم:

$$
d t=\gamma(v) d t^{\prime}=\gamma(v) d \tau
$$

درنتيتجه، با استفاده از رابطهٔ(Y- -Yه)، مى توان نوشت

$$
\tau=\int_{0}^{t} d t \sqrt{1-\beta^{r}(t)}=\int_{0}^{t} \frac{d t}{\sqrt{1+\left(a_{0} t / c\right)^{r}}} \quad(ץ \Delta \not-Y)
$$

$$
\tau=\frac{c}{a_{\circ}} \sinh ^{-1}\left(\frac{a_{\circ} t}{c}\right)
$$

اكنون، مى توان
از نظر ناظر 'S به دست آورد.

$$
\begin{aligned}
\tau_{1} & =\frac{c}{a_{0}} \sinh ^{-1}\left(\frac{a_{0} t_{1}}{c}\right) \\
& =\frac{r \times 1 \cdot \wedge \mathrm{~m} / \mathrm{s}}{9 / \wedge m / s^{r}} \sinh ^{-1}\left[\frac{\left(9 / \wedge \mathrm{m} / \mathrm{s}^{r}\right)}{(r \times 1 \cdot \wedge m / s)}(r / 1 \Delta \times 1 \cdot \wedge s)\right] \quad(r \Delta я-r) \\
& =\wedge / 199 \times 1 \cdot{ }^{\gamma} s \simeq r / \varepsilon \text { years }
\end{aligned}
$$

به همين ترتيب، $\tau_{\gamma}=F / \wedge$ سال به دست مى آيل.

تعريف مى كنيم. دراين صورت، ارتباط بين زمان ويزهٔ $\tau$ ، و زمانى كه ناظر ساكن يا $S$ ثبـت مى كند، به صورت

$$
\tau=\frac{c}{a_{o}} \sinh ^{-1}(T)
$$

 حالت، c/ao برابر ${ }^{\text {a }}$ به تعريفى كه براى T در نظر گرفته شد، واحدل آن برحسب سال به دسـت مـى آيـد. بنـابراين، رابطه́ (Y

$$
\tau=\sinh ^{-1}(T)
$$

IYY مقده أى بر نسبيت مْاص

$$
T=\sinh \tau
$$

نوشت. در روابط فوق T و همين طور T $T$ برحسب واحد سال به دست مي آينلـ.

مثال Y - هץ : : اكنون، در مثال قبل فرض كنيد كه به جاى ذره6 يكك مو شكك نـسبيتى در نظر گرفته شود. دراين صـوردت، بـا اسـتغاده از رابطـئ (Y-Y (Y)، مسسافت طـى شــلهه بـه وسـيلة
 در چار چوب سكون لحظه ایى آن برابر شده به وسيلهُ موشك را از رابطء

$$
X(T)=\sqrt{T^{r}+1}-1
$$

به دست آورد كه در T T X T $T$ به ترتيب بر بحسب سال نورى و سال بيان مى شوند. جواب : با تو جه به رابطةٔ $v(t)=d x / d t$ و با استفاده از رابطهُ(Y-Yه)، داريم

$$
d x=\frac{a_{0} t}{\sqrt{1+\left(a_{0} t / c\right)^{r}}} d t
$$

حال، با انتگُرالگیرى از طرفين رابطةٔ (YY|-Y)، مى توان به دست آورد

$$
x\left(t_{\gamma}\right)-x\left(t_{1}\right)=\frac{c^{r}}{a_{0}}\left[\sqrt{1+\left(a_{\circ} / c\right)^{r} t_{r}^{r}}-\sqrt{1+\left(a_{0} / c\right)^{r} t_{1}^{r}}\right] \quad(\zeta ¢ \gamma-Y)
$$

اكنون، اگر ${ }^{\text {ا }}$ برابر درمثـــال قبــل بـــرایى T در نظر گرفتـــه شــــلـ، يعنــىى $T=a_{0} t / c$ و همـــين طـــور بــــا تعريف

$$
\begin{equation*}
X(T)=\left[\sqrt{1+T^{r}}-1\right] \tag{YgY-Y}
\end{equation*}
$$


 نورى به دست مى آيل.

مثال همٌچِنين، فرض كنيد كه موشكك مسيرخود را در دو مرحله طى كند. به اين ترتيب كه درنيمة اول مسير، شتاب مثبت و در نيمهٔ دوم شتاب منفى باشد. دراين صورت، زمان كل مـسافرت را درحالتهاى زير از نظر فضانورد داخل موشكك به دست آوريد وآن را با زمان بـه دسـت آمــه از طريق كلانسيك مقايسه نماييد.

 ج : مسافرت تا ستاره آلفا قنطورس' ' با فاصلئ ش/ W سال نورى از زمين جواب : الفض : با توجه به رابطهٔ (Y-Y

$$
d(t)=\frac{c^{r}}{a_{0}}\left[\sqrt{1+\left(a_{0} / c\right)^{r} t^{r}}-1\right]
$$

بنابراين، زمان t از رابطهُ (Y\&Y-Y) به صورت

$$
\begin{equation*}
t=\sqrt{d\left(\frac{d}{c^{r}}+\frac{r}{a_{\circ}}\right)} \tag{Y90-Y}
\end{equation*}
$$


 مسافرت را از نظر فضانورد همراه موشكك به دست آورد. در نتيجه، داريم:

$$
\tau=\frac{c}{a_{\circ}} \sinh ^{-1}\left(\frac{a_{\circ} t}{c}\right)
$$

حال، با تو جه به روابط (YGY-Y) ، (Y\&D-Y) و (YЯY-Y)، براى قسمت الف، مى توانيم بنويسيم:

$$
\begin{align*}
& d_{1}=\left(\frac{1}{r}\right)(r / \wedge r \times 1 \cdot \wedge) m \\
& t_{1} \simeq 1 / \vee r h r s  \tag{YGV-Y}\\
& \tau_{1} \simeq 1 / \vee r h r s
\end{align*}
$$

 س $\tau_{t o t} \simeq$ r／AF
 مى توان به نتيجه

$$
T_{i c l}=\sqrt{\frac{r d_{1}}{a_{o}}} \simeq 1 / \operatorname{vrhrs}
$$


 همين طور، جارچوب؟ S يكسان است．درواقع، علت عدم اختلاف زمان كل از نظر فضضانورد ر همين طور ناظر روى سطع زمين بـه دليـل سـرعت كـم موشـكـ درمقايـسه بـا سـرعت نـور
 كلاسيك و نسبيتى وجود ندارد．

ب：در اين حالت نيز با تو جه به روابط（YタY－Y）،（Yタロ－Y）و（Yタタ－Y）، داريم：

$$
\begin{align*}
& d_{r}=\left(\frac{1}{r}\right)(\psi / \Delta \times 1 \cdot 1 r) m \\
& t_{r} \simeq \gamma / V \& \Delta d a y s \\
& \tau_{r} \simeq V / V \& \psi d a y s
\end{align*}
$$



 نتيجd يكسان مى باشد．مجدداً همان طور كه ملاحظـه مـى گـرددد، اخختلافـى بـين نتـايج كاسـيكك و نسبيتى در اين مسافرت نيز وجود ندارد．

ج ：درمسافرت سوم، يعنى مسافرت تا ستاره آلفا قنطورس كـه در مقايـسه بـا دو ساللـت قبلى مسافرت نسبتاً طولانى ترى مى باشد．مجدداً با استفاده از روابُسط（Y\＆Y－Y）،（YQ－Y）و

سينماتيحك ئسبيتي 1 1
(Y99-Y)

$$
\begin{align*}
& d_{r}=\left(\frac{1}{r}\right)(\uparrow / r) \text { lyrs } \\
& t_{r} \simeq r / q \Delta y r s \\
& \tau_{r} \simeq 1 / \vee \varepsilon y r s
\end{align*}
$$

را بـه دسـت آورد. در ايـن حالــت، زمـان كـل مـسافرت از نظـر فضضانورد، درمـسافرت سـوم برابـر
 اختلافض بين زمان كل ثبت شده به وسيلهُ فضانورد و ناظر ساكن روى زمين، به دليـل افـزايش سرعت موشكك در نيمــٔ أول مـسير در ايـن مـسافرت طـولانى مـى باشــلـ. حـال، اگـر سـرعت موشكك را درانتهاى نيمهٔ اول مسير با استفاده از رابطــة (Y-Y -Y) بـه دسـت آوريـمه، بـه نتيجـــ

 زمان به دست آمله از نظر همهٔ چارچووبها يكسان مى باشل. اكنون، با توجه به نتايج بـه دسـت آمله، دراين حالت محاسبات كالاسيكك و نسبيتى كاملاً با يكديعر اخـتالاف دارنــد. بنـابراين، در مسافر تهاى طولانى نمى توان از روابط كلاسيكك استفاده نمود.
| - 1 : ابيراهى نور
 مرجع لخت ديگر، ابيراهى يا انحر اف نور ناميله مى شود. براى توضيح بيشتر، فرض كنيد كـ
 جارچوب دريافت شود. اكنون، اگر فرض كنـيـم كـه چـارچوب 'S $S^{\prime}$ بـا سـرعت v درجهـت مثبت محور X جارچوب S حر كت كنلد، در اين صورت، بايد تعيين نماييم كـهـ پرتـو نـوردر اين پارچوب تتحت چچه زاويه ای نسبت به محور 'X دريافت مى گردد؟
 ناظر 'S، می توان از تبديلات لورنتس سرعت استفاده كرد. براى اين منظور، ابتدا مؤلفه هاى

سرعت ذرات نوريا فوتونها وادر جـارچوب $S$ بـه دسـت مـى آوريـم. بنـابراين، بـا توجـه بـه
 برابر $u_{y}=-c \sin \theta, u_{x}=-c \cos$ مى باشند.


شَكل (YF-Y) : ابيراهى نور

حال، با استغاده ازتبديلات سرعت، يعنى روابــط (Y-ه

$$
\begin{align*}
u_{x}^{\prime} & =\frac{-c \cos \theta-v}{1-\left[v\left(-c \cos \theta^{\prime}\right)\right] / c^{r}} \\
& =\frac{-(c \cos \theta+v)}{1+(v \cos \theta) / c} \tag{YV}
\end{align*}
$$

و مؤلفهٔ 'y سرعت، نيز برابر

$$
\begin{align*}
u_{y}^{\prime} & =\frac{-c \sin \theta}{\left.\gamma(v)\left[1-[v(-c \cos \theta)] / c^{r}\right)\right]} \\
& =\frac{-c \sin \theta}{\gamma(v)[1+(v \cos \theta) / c)]} \tag{Y,Y-Y}
\end{align*}
$$

به دست مى آيد. درنتيجـه، زاويـهٔ بـين راسـتاى انتشار يـا دريافـت ترتـو نـور و محـور مى توان با استفاده از روابط(YYI-YY-Y (YY) و (YY)، به صورت

$$
\tan \theta^{\prime}=\frac{u_{y}^{\prime}}{u_{x}^{\prime}}=\frac{\sin \theta}{\gamma(v)[\cos \theta+\beta]}
$$




$$
\begin{equation*}
\cos \theta^{\prime}=\frac{\cos \theta+\beta}{1+\beta \cos \theta} \tag{YVY-Y}
\end{equation*}
$$

نيز بيان كرد. همحخنين، با تو جـه بـه رابطـهُ (YVY-Y) و رابطـهُ ' $u^{\prime}$ ، مـى تـوان رابطةٔ ابير!هى نور را به صورت

$$
\sin \theta^{\prime}=\frac{\sin \theta}{\gamma(v)[1+\beta \cos \theta]}
$$

نيز نوشت. ازطرف ديگر، برای به دست آوردن روابط تبديلى زاويـهٔ $\theta$ برحـسب ' ${ }^{\prime}$ ، مـى تـوان
جاى كميّتهاى بريمدلارو بدون بريم عوض نموده و همين طور، ק را به ק- تبديل كرد.
نكته : اكنون، اگر فرض كنيم كه مطابق شكل (Y-Y)؛ پرتو نور درپارچوب S تحت
زاوئُ $\theta$ نسبت به محور $x$ به جاى دريافت، ازسال گـردد. درايـن صـورت، بـه جـاى روا!بـط

$$
\tan \theta^{\prime}=\frac{\sin \theta}{\gamma(v)[\cos \theta-\beta]} \quad\left(\begin{array}{l}
\text { b } \\
(Y \vee Y-Y)  \tag{YVG-Y}\\
(Y V F-Y)
\end{array}\right.
$$

$$
\begin{equation*}
\cos \theta^{\prime}=\frac{\cos \theta-\beta}{1-\beta \cos \theta} \tag{YVV-Y}
\end{equation*}
$$

$$
\sin \theta^{\prime}=\frac{\sin \theta}{\gamma(v)[1-\beta \cos \theta]}
$$

را خواهيم داشت. پديلهٔ ابيـساهى نورسـتاره ایى 'كه ناشى از حر كت زمين در فضا مـى باشـلد، برأى اولين بار به وسيلة برادلى در سال IVYQ گزارش شده است. و يكى از پلديله هايى اســت كه با فرضيهٔ كشش اترى درتناقض بود. همان طور كه قبلاً اشاره شد، اين فرضيه بـراى توجيـه

نتيجهٔ منغى آزمايش مايكلسون و مورلى ارائه گرديله است.



شكل (Y-Y-Y) : أبيراهى نورستاره أى

1. Stellar aberration

چلديدة ابيراهى نور درهنگام رصد يكك ستاره، به اين صورت آشكار مى گـردد كـه آگـر زمين در فضا حر كت نمى كرد.، سمت گيرى لولهٔ تلسكوب براى رصد يكك سستارهٔ معين، در طول سال تغيير نمى كرد. اما به دليـل حر كـتـ زمـين ( كـه جـارجوب مر جــع متـصل بـه آن را مى توان به عنوان هارجوب طول سال تغيير مى كند. درنتيجه، لوله يا محور تلـسكوب بـراى رصـد دائمـى سستاره درمـلـت يك سال مخروطى را ايججاد مى كند كه آن را مخضوط ابيـ/اهى 'مـى نامنـد. زاويـــ رأس ايـن
 اكنون، مى توان حالتى خاص رادر نظر گرفت. براى اين منظور، مطابق شـكل (Y-Yצ) فـرض كنيـد كـه در جـارجوبـ S نـور سـتاره دقيقـاً در راســتاى محـور $y$ دريافــت گــردد. درايـن صورت، $\theta=r \pi / \Gamma$ خواهد بود. درنتيجه، دراين حالت با توجه به رابطةٔ(YVF-Y)، داريم:

$$
\begin{equation*}
\cos \theta^{\prime}=\frac{\cos (r \pi /\ulcorner )+\beta}{1+\beta \cos (\ulcorner\pi / r)}=\beta \tag{rva-r}
\end{equation*}
$$






شكل (Y-Y) : سمت گيرى محور تلسكوت براى رصد يك ستاره
بنابراين، براى مشاهده يا رصد ستاره در اين وضعيت، بايد محور يا لولئ تلسكوب با نيمهٔ مثبت محور قوسى بسازد. درنتيجه، جهت حر كت يرتو نورستاره نسببت بـه هحـور
 تلسكوب در طول يكك سال طى مى كند، برابر r قوسى به دست مى آيل. البته، بايد توجه داشت كه در اينجـا حـالتى را در نظر گـرفتيم كـه درآن سـتاره دقيقـاً در بالای سر ناظر ساكن S قرارگرفته باشد. به عبـارت ديگـر، پرتوهـاى نـورى كـه از سـتاره بـه سمت زمين مى آيند با صفـحئ مـدار زمـين زاويـهُ $\theta=\pi / \Gamma$ مـى سـازد. امـا اگـر زاويـهُ بـين پرتوهاى نور رسيله از ستاره و صفحئه مدار زمين، برابر $\pi / \pi$ نباشد، در اين صورت، مى تـوان
 رابطةٔ تبلديل $\beta$ به $\beta$ - و تعويض جاى پريمها زاويهٔ $\theta$ را برحسب زاويه́ ${ }^{\prime}$ زه به دست آورد:

$$
\tan \theta=\frac{\sin \theta^{\prime}}{\gamma(v)\left[\cos \theta^{\prime}+\beta\right]}
$$

حالل، در اين رابطه با درنظر گرفتن اينكه $v \ll c$ است، مى توان رابطة

$$
\tan \theta=\tan \theta^{\prime}\left(1-\frac{v}{c} \cos \theta^{\prime}\right)
$$

را به دست آورد. حال، با تعريف

$$
\begin{equation*}
\Delta \theta=\frac{v}{c} \sin \theta^{\prime} \tag{YAY-Y}
\end{equation*}
$$

كه همان فرمول هقدماتى برایى ابيراهى نور مى باشُل.

مثال


 زاويةٔ ’
 تابش و بازتابش را نسبت به ناظر ساكن S به دست آوريد. تابش در هار تو با ساكن


بازتنابش با يكديگ, برابرند. يعنى برابرنيستند. بنابر اين؛ برایى به دست آوردن زواياى تابش و بازتابش در چارپیوب S، مى تـوان از

رابطةء (YV-Y) استفاده كرد. دراين صورت، داريم:

$$
\begin{equation*}
\cos \theta_{1}=\frac{\cos \theta_{1}^{\prime}+\beta}{1+\beta \cos \theta_{1}^{\prime}} \tag{YAr-Y}
\end{equation*}
$$

همصخنين،

$$
\cos \theta_{r}=\frac{\cos \theta_{r}^{\prime}+\beta}{1+\beta \cos \theta_{r}^{\prime}}
$$

به دست مى Tيند. ازطرف ديZرگ، با توجه به شكل (YV-Y)، زاويه́
بنابراين، $\cos \theta_{1}^{\prime}=-\cos \theta_{r}^{\prime}$ (

$$
\cos \theta_{r}=\frac{\beta-\cos \theta_{1}^{\prime}}{1-\beta \cos \theta_{1}^{\prime}}
$$

 جانى پريمها به دست آورده و دررابطةٔ فوق جايگذارى كرد. در اين صورت، خواهيم داشت:

$$
\cos \theta_{r}=\frac{r \beta-\left(1+\beta^{r}\right) \cos \theta_{1}}{1-r \beta \cos \theta_{1}+\beta^{r}}
$$


| P P
شخصى كه در كنار جاده ای ايستاده باشل، بسامل بوق ممتد يكك اتومبيل متحر كك را هنگـام نزد يكك يا دور شدن از خود متفاوت احساس مى كنلد. همچچنين، آگر منبعى كـه بـوق ممتـد ايجاد مى كند، ساكن باشلد و شخصىى با سرعت معينى به منبع، نزديـك يـا ازآن دور شـود، در اين حالت نيز بسامل صوت ايدجاد شُده به وسيلهُ منبـ، متفـاوت خواهـل بـود. ايـن تغييـر

 فيز يكدان اتريشى كشف شده است. پديده دوپيلر، درمورد همةُ امواج، مانند امواج صوتى و الكترومغناطيسى مشاهله مى گردد و اين پلديله رأكـه درمـورد امـواج الكترومغناطيسسى يـا امواج نورانیى نيز روى مى دهل، اثرحوپلرنسبيتى مى نامنلد. در اين بتخش، پلـيلهُ دوپلـر را در سه حالت زير مورد بررسى قرار مى دهيم.
: $1-\mid Y-Y$



 سطوح موج ايججاد شده نسبت به ناظر 'S هى باشل. بنابراين، بازه زممانى بين إرسال يكك سـطع موج و سططح موج بعاى از نظر اين ناظر، برابر $\Delta t_{0}=y / f_{0}$ نواهد بود.

 درامتداد خطى مستقيم به پششمةٔ ساكن، نزديكك يا از آن دور شود، درايـن حالـت انــمد ويلـس
 استفاده از رابطةٔ اتساع زمان، برابر



1- Doppler effect
3-Longitudinal Doppler effect

2- Doppler, Christian Andreas
4. Proper Wavelenght and frequence

$$
c \Delta t=c \gamma \Delta t_{0}
$$

$$
\begin{aligned}
& \text { به دست مى آيلـ. درهمين مدت زمان، يعنى } \Delta t \text { ، خود حشمه نيز به انذازء } \\
& v \Delta t=v \gamma \Delta t_{\circ} \\
& \text { (YMA-Y) }
\end{aligned}
$$

به ناظر S نزديكك مى شود. درنتيجه، درچارچپوب S، فاصلة بـين سـطح مـوج قبلـى و سـطح موج بعدى، درست در لحظةٔ گسيل ازحشمهٔ موج، برابر

$$
\begin{align*}
\lambda & =c \Delta t-v \Delta t \\
& =(c-v) \Delta t \\
& =(c-v) \gamma \Delta t_{0}
\end{align*}
$$


 طرف ديگر، درچارچوبهایى $S$ نيزنوشت. در اين صورت، درچارچوب $S$ داريم:

$$
\begin{align*}
\Delta t & =\frac{1}{f}=\frac{\lambda}{c} \\
& =\frac{1}{c}(c-v) \gamma \Delta t_{0}
\end{align*}
$$

در نتيجه، مى توان نوشت:

$$
\begin{align*}
\Delta t & =\frac{1-(v / c)}{\sqrt{1-(v / c)^{r}}} \Delta t_{0} \\
& =\frac{1-\beta}{\sqrt{1-\beta^{r}}} \Delta t_{0}
\end{align*}
$$

$$
\begin{equation*}
\frac{1}{f}=\frac{1-\beta}{\sqrt{1-\beta^{r}}} \frac{1}{f_{0}} \tag{YQY-Y}
\end{equation*}
$$

بنابراين، با توجه به رابط؛ (YaY-Y) به دست مى آوريم:

$$
\begin{equation*}
f=f_{\circ} \sqrt{\frac{1+\beta}{1-\beta}}=f_{\circ} \sqrt{\frac{c+v}{c-v}} \tag{YqY-Y}
\end{equation*}
$$

سينماتيكى نسبيتى IMT
院 $\beta>0$ زيرا نور آبى درانتهاى بالایى طيف نورمرئى يا درناحئُ بـسامدهاى بـالا قـرار دارد. واگر جششمه

موج از ناظر ساكن دور شود، يعنى اگر $\beta$ م باشد در اين صورت، خواهيم داشت:

$$
\begin{equation*}
f=f_{\circ} \sqrt{\frac{1-\beta}{1+\beta}}=f_{\circ} \sqrt{\frac{c-v}{c+v}} \tag{YQF-Y}
\end{equation*}
$$

در نتيجه، در اين حاللت $f<f_{0}$ مى شود و بديده انتقال به سرخ را داريم؛ زيرا نـور قرمـز در
 موج، ساكن و ناظر S با سرعت ثابت V درامتداد خط مستقيم به چـشمه، نزديـكك و يــا از آن
 اثر دوپلرنسبيتى دراخترشناسى اهميت زيادى دارد؛ زيرا با توجه به بسامد گسيل شده از يكك ستاره، مى توان دريافت كه آن ستاره نسبت به زمين درحال دور شدن اسـت يـا نزديـك شدن. مشاهدات و رصدهاى صورت گُرفته دراخترشناسى، حـاكى از آن اسـت كـه عـالم در حال انبساط است. درواقع، اين مشاهدات نشان مى دهند كه ستار گان دورتر با سرعت بيـشترى از هم دور مى شوند. يا به عبارت ديگر، انتقال به سرخ بيشترى دارند.
همان طور كه مى دانيم، درنظريهٔ كالاسيك اثردوپلردرمورد امواج صوتى، دوحالت :
 با يكديگر متفاوت هستند. اما دراثرنسبيتى دوپلـر، ايـن دو سحالـت كـاملاً بـا يكـديگر يكـسان مى باشند. مثــال موج سرعت سحابى را نسبت به زمين به دست آوريل. جواب : با تو جه به اين كه در اينجا انتقال به سـرخ داريسم، بنـابراين، مسى تـوان از رابطـة (YQチ-Y) استُفاده نْموه. دراين صورت، از اين رابطُه، داريم


$$
v=c \frac{1-\alpha^{r}}{1+\alpha^{r}}
$$

كه دو T

$$
\begin{equation*}
v=c \frac{1-\delta^{r}}{1+\delta^{r}} \tag{Y99-Y}
\end{equation*}
$$




( أثر : $: Y-1 Y-Y$
در اثردوپلرعرضیى 'خطط رؤيت يا راستاى دريافت امواج الكترومغناطيسى به وسيلهُ نـاظر S درامتداد سرعت نسبى چحشمه و ناظر S نمى باشله. در اين حالت، فرض مـى كنـيمر كـه پحـشمه بـا سرعت V درجهت مشــت محـور X



ماليت 1:
در اين حالت، با تو جه به شكل (Y-Yه) الفـ، ناظر S موج يا سطوح موجى رادريافـت



الف



 1- Transverse Doppler Effect


 جارچوبب $S$ را قطع مى كند، چقدر است؟






 استفاده از رابطهُ اتساع زمان مى توان نوشت:

$$
\begin{equation*}
\Delta t_{\circ}=\gamma \Delta t \tag{rqu-r}
\end{equation*}
$$

$$
\begin{equation*}
\Delta t=\frac{\Delta t_{\mathrm{o}}}{\gamma} \tag{rqu-r}
\end{equation*}
$$

از طرف ديگر، داريم:

$$
\begin{equation*}
\Delta t=\frac{1}{f}=\frac{\Delta t_{\mathrm{o}}}{\gamma} \tag{r99-r}
\end{equation*}
$$

اكنون، با جايگذارى مقدار هto دررابطةٔ (Y-Y49)، خواهيم داشت:

$$
\begin{equation*}
\frac{1}{f}=\frac{1}{\gamma f_{0}} \tag{}
\end{equation*}
$$

بنابراين، بسامد موج درچارچوب S، درست در لحظه ایى كه چشمهٔ موج از بالاى سر ناظر عبور مى كند، از رابطة

$$
f=\gamma f_{o}=\frac{f_{o}}{\sqrt{1-\beta^{r}}}
$$



مى شود، بزر گتر ازبسامد ويزه مى باشل. يعنى $f>f^{\text {بی }}$ است. اما نكته أى كه در اينتجا لازم است به آذ اشاره شود، اين است كه علت اينكـه وضـعيت را ازديد ناظر 'S بررسى كرديـم. به اين دليل أسـت كـه اگـر بررسـى در جـارپوبـ $S$ انجـام گيرد، به نتيجه ای نادرست خواهيم رسيد. اكنون، اين موضوع را مورد بررسى قرار مى دهيم.


مى شود. يعنى مى توان نوشت $1 / f=\gamma\left(y f_{0}\right)$ بنابراين،

$$
\begin{equation*}
f=\frac{f_{\circ}}{\gamma}=f_{\circ} \sqrt{1-\beta^{r}} \tag{Y,Y-Y}
\end{equation*}
$$

 (



 رابطةء $\Delta x^{\prime}=0$ برقرار باشـد. يعنـى دو رويداد درچارچچوب 'S بايد دريك مكان روى دهند. ايـن دو رويـداد را مـى تـوان ارسـال دو
 موج درچارچوب ' ${ }^{\prime}$ به حال سكون است، ايـن دو رويـداد در 'S هــم مكـان هـستند. يعنـى مى توان گفت كه شرط نيز بايل درنظر بِيَيمّ. اين دو رويداد را مى توان دريافت اين دو سطح موج به وسيلهُ نـاظر (كــه در چـــارچوب 'S بــا ســرعت v رابطــهُ صورت $\Delta t$ o زمانى بين دو سطح موجى است كه به وسيلهُ ناظر S دريافت مى گـردو، نــه بـازهُ زمـانى بـين ارسال أين سطوح موج به وسيلة چششمه. به طور جخلاصه مى توان علت بروز اين اشتباه را ناشـى

ITV سينمانيك نسبيتى
أز اين مسأله دانسـت كه زمان $\Delta t$ ى مربوط به ايِجاد دو سطع موج به وسيلهُ حشمه( بـه عنـوان دو رويداد) در S با زمان $t$ یى مربوط به دريافـت ايـن دو سـطع مـوج در $S$ (بـه عنـوان دو رويداد ديگر ) فرق مى كنند و بايد بين اين دو زمان تمايز قائل شد.

حالت ب :
اين وضعيت در شكل (Y-Y) بـ، مشخصه شده است. با توجه به شكل، جشُمهُ موج در مسيرحر كت خوده، محور $y$ چارپوب $S$ را قطع مى كنـلـ و بـه مسسيرش بـا سـرعت V ادامــه

 چشمه را

 میى توان نوشت: $\Delta t_{0}=y / f_{0}$

$$
\frac{1}{f}=\gamma \frac{1}{f_{0}}
$$

$$
f=\frac{f_{\circ}}{\gamma}=f_{\circ} \sqrt{1-\beta^{r}}
$$

در اين حالت، مشاهلده مى گردد كه $f<f_{0}$ مى باشل.
معمولاً هنگامى كه صصحبت از پديلدهٔ دوپلرعرضى مى شود، در بعـغى از كتابهـا حاللـت اول و در بعضى ديگر، حالت دوم در نظرگگرفته مى شود. بنابر اين، هنگام بررسى پديدهُ دوپلـر عرضى بايل مشخص شود كه كدام حالت مورد نظر است. دو اينحجا مى توان اين دو وضعيت را به شكل صورى به وسيلهُ شكل هأى (Y- -r) الف و

 بّ، حالت دوم اثر دوپِلرعرضى را نشان مى دهل. به طورى كه در اين حالت، چـشممهُ مـوج بـا

 ب : حششمئ S ساكن و ناظر ' ${ }^{\prime}$ متحر
 ناظر S و هشمةٔ موج شتابداراست. درجواب اين سؤال مى توان گفت كه اين موضوع مشكلى ايجاد نمى كند؛ زيرا در رابطـُ اتساع زمـان، سـرعت لحظـه ایى چـشمه و نـاظر S ك، بـه كـار بـرده


Y - F

در پايان اين بخش مى توان اثر دوپلر نسبيتى را در حالت كلى تر به دست آورد. دراين حالت

 ميانى' را خواهيم داشت. درچخنين حالتى نيز بازه زمانى بين دو سطح موج نسبت بـه نـاظر S بـا استفاده از رابطهُ اتساع زمان، برابر o موج دراين چارچجوب طى مى كند، برابر

$$
c \Delta t=c \gamma \Delta t_{\circ}
$$

مى باشد. درهمين ملت زمان، يعنى $\Delta t$ ، خود چشمهٔ موج نيز به اندازه́

$$
d=(v \cos \theta) \Delta t=(v \cos \theta) \gamma \Delta t_{0}
$$

به ناظر S نزديكك مى شُود.
 گَسيل از چششمه موج، از رابطةُ

$$
\begin{align*}
\lambda & =c \Delta t-d \\
& =c \Delta t-(v \cos \theta) \Delta t \\
& =(c-v \cos \theta) \Delta t \\
& =(c-v \cos \theta) \gamma \Delta t_{\circ}
\end{align*}
$$

به دست مى Tيل. البته، همان طور كه مى دانيم، اين نتيجه براى همهٔ سطوح موج گسيل شده از

 حرجارچجوبهاى S و 'S مى توان به توتيب روابط $S^{\prime}$ درچارحوب S با درنظر گرفتن رابطئ (V-V-Y)، خواهيم داشت:

$$
\begin{aligned}
\Delta t & =\frac{1}{f}=\frac{\lambda}{c} \\
& =\frac{1}{c}(c-v \cos \theta) \gamma \Delta t_{0}
\end{aligned}
$$

$$
\Delta t=\frac{1-\beta \cos \theta}{\sqrt{1-\beta^{r}}} \Delta t_{\circ}
$$

$$
\frac{1}{f}=\frac{1-\beta \cos \theta}{\sqrt{1-\beta^{r}}} \frac{1}{f_{0}}
$$

$$
f=f_{\circ} \frac{\sqrt{1-\beta^{r}}}{(1-\beta \cos \theta)}
$$

اكنون، مى توان با استفاده از رابطةُ فوق، دوحالت اثردوپلر طولى و عرضى را به ازاى



مى رسيم كه لازم به يادآورى أست كه اثر نسبيتى دوپلر از مرتبـهُ
 هيدروزن كه با سرعت زياد حر كت مى كردند، مورد تأييد قرارگگرفته است. درآزمايش ايـوز و استيل ولن برو تونهايى در يكك اختـلاف پتانـسيل • Y كيلـوولتى شــتاب داده مـى شـوند. و از

 مـوج


مثال Y - -
آن، درچارچوبِ سكون Tآينه يا ${ }^{\prime}$ بسامد برتو نور تابيده و باز تابيله شده را درچارچوب ساكن S به دست آوريد.

جواب : براى به دست آوردن بسامل بر تو نور تابيـده شــده بـه آيينـه مـى تـوان از رابطــُ

$$
f_{1}=f_{1}^{\prime} \frac{\sqrt{1-\beta^{r}}}{\left(1-\beta \cos \theta_{1}\right)} \quad(\Gamma \mid Y-Y)
$$

همحنين، براىى بسامل پر تو نور بازتابيده شده نيز مى توان نوشت:

سينماتيح نسبيتى |ع

$$
f_{r}=f_{r}^{\prime} \frac{\sqrt{1-\beta^{r}}}{\left(1-\beta \cos \theta_{r}\right)}
$$


خو اهيم دأشت:

$$
f_{r}=f_{1} \frac{\left(1-\beta \cos \theta_{1}\right)}{\left(1-\beta \cos \theta_{r}\right)}
$$

كه در آن زواياى


$$
f_{r}=f_{1} \frac{\left(1-r \beta \cos \theta_{1}+\beta^{r}\right)}{\left(1-\beta^{r}\right)}
$$

 (YV-Y) درجهت مثبت محور X از جشمهٔ پرتو نور دور شـود. امـا اگـر آيينـه درجههـت منفـى



$$
f_{r}=f_{1} \frac{\left(1+r \beta \cos \theta_{1}+\beta^{r}\right)}{\left(1-\beta^{r}\right)}
$$

به دست آورد. حال، در أينجا مى توان يـك حالــت خــاص را مـورد بررسـى قـرار داد. يعنـى سالتى را در نظر مى گیريم كه درآن پرتو نور بـه طورعمـود بـر سـطح آيينـه تابيـله شـود. بـه
 صورت، مى توان دو حالت را درنظرگرفت. درحاللت اول، فرض مى كنيم كه آيينه ازجـشمه


اينكه

$$
f_{r}=f_{1} \frac{1-\beta}{1+\beta}
$$

 (Y-Y)

$$
f_{r}=f_{1} \frac{1+\beta}{1-\beta}
$$

 براى كنترل سرعت اتومبيلهـا از آنها استفاده كـرد. بـه عنـوان مثـال، اگـر سـرعت اتومبيلى برابـر (1 1 1 km/h سـيگّال خواهد بود. كه ردياب به راحتى مى تواند حنين تغيير بساملى را Tشُكار و ثبت كند.

سيئماتيحك نُسبيتى 1\&

تمرين

1- طول عمر ميانگین يكك نوترون به عنوان يكت ذره́ آزاد درحال سكون برابر 10 دقيقه است. نوترون خود بخود متلاشى شده و از آن يكك الكترون، يكك يروتون و يـكك نوترينـو بـه دست مى آيد. نوترون حداقل بايل با جه سرعت ميانگينى خورشـيد را تـر كك كنـد تـا قبـل از واپٍاشى به زمين برسد. فاصلهُ زمين تا خورشيد برابر •10 ميليون كيلومتر مى باشد. r r يك سفينهُ فضايى كه به سمت ماه درحر كت است، بـا سـرعت زمين مى گذرد.

الف : از نظر يكك ناظر زمينى، مسافرت از زمين تا ماه جقدر طول مى كشد. ب : فاصلهُ زمين تا ماه از نظر مسافرى كه درداخل است، سفينهُ فضايى جقلدر است. ج : اين مسافرت از نظر يكك مسافر داخل سفينة فضايهى جقّدر طول مى كشد. فاصلهٔ زمين تا ماه برابر HAF هزار كيلومتر مى باشد. r- يكك ذره كيهانى با سرعت 1 / / در امتداد محور زمين به طرف قطب شـمال و ذره ديگرى با سرعت c 9 / به طرف قطب جنوب حركــت مـى كنـــلد. سـرعت يكـى از ذرأت را نسبت به ديگرى بيداكنيد.

F راست حر كت مى كند. درهمين هنگام يكك پروتون نيز با سـرعت VC / * نـسبت بـه الكتـرون بـه سمت راست در حر كت است. سرعت بروتون را نسبت به چارچوب آزمايشگاه به دست آوريد.
 در 7 - 7 $S$ مى كند. دراين صورت، سرعت الكترون را نسبت به جارچوب آزمايـشگاه، درحالتهـاى زيـر به دست آوريد.

الف : الكترون در چجارجوب سكون هسته، درجهت حر كت هسته گسيل شود. ب : الكترون درچارچوب سكون هسته، در خلاوف جهت حر كت هسته گسيل شود. ج : الكترون در جارجوب سكون هسته، در امتداد عمود بر حر كت هسته منتشر شود. V V راست از زمين دور مى شود. همچحنين، فرض مـى كنيم كـه در دو انتهـاى موشـكـ آيينـه أى تعبيه شده باشد. حاله اگَريكك علامت نورى به سمت موشكك ارسال گردد، بـه وسسيله هـر دو آيينه منعكس و به زمين بر گشت داده مى شود. به طورى كه علامت اولى در پايـان + . و علامت دوم I/VF ثانيه بعد ازآن، دريافت مى گردد. فاصلةٔ موشكك از زمين و سرعت آن را نسبت به زمين به دست آوريل.
 سرعت

 مشاهله مى كند.
 حر كت نمايل. دراين صورت، نشان دهيل كه ماتريس تبديل لورنتس در اين حالـت بـه صسورت زير مى باشد

$$
\begin{aligned}
& \Lambda=\left(\begin{array}{cccc}
\gamma & -\gamma \beta_{x} & -\gamma \beta_{y} & -\gamma \beta_{z} \\
-\gamma \beta_{x} & 1+\frac{(\gamma-1) \beta_{x}^{r}}{\beta^{r}} & \frac{(\gamma-1) \beta_{x} \beta_{y}}{\beta^{r}} & \frac{(\gamma-1) \beta_{x} \beta_{z}}{\beta^{r}} \\
-\gamma \beta_{y} & \frac{(\gamma-1) \beta_{x} \beta_{y}}{\beta^{r}} & 1+\frac{(\gamma-1) \beta_{y}^{r}}{\beta^{r}} & \frac{(\gamma-1) \beta_{y} \beta_{z}}{\beta^{r}} \\
-\gamma \beta_{z} & \frac{(\gamma-1) \beta_{x} \beta_{z}}{\beta^{r}} & \frac{(\gamma-1) \beta_{y} \beta_{z}}{\beta^{r}} & 1+\frac{(\gamma-1) \beta_{z}^{r}}{\beta^{r}}
\end{array}\right) \\
& \text {, } \beta^{r}=\beta_{x}^{r}+\beta_{y}^{r}+\beta_{z}^{r} \beta_{z}=v_{z} / c \text { ، } \beta_{y}=v_{y} / c \text { ، } \beta_{x}=v_{x} / c \text { نт در } \\
& \text { 和 } \gamma=1 / \sqrt{1-\beta^{r} / c^{r}}
\end{aligned}
$$

سينماتيكـ نسبيتى0180
 سرعت ذرات در اين چــارچوب بـه ترتيـب برابـر DC / / و Ac / • باشـنلد، در ايـن صـورت سرعت ذره́ A در چار جوبِ سكون ذره́ B جقدو است؟ | | | فرض كنيد كه يك ميلهُ شيشه ایى به طول سكون چارچوب آزمايشگًاه يا S درشر كت باشل. حالى، اگر جهت حر كت ميلـه در امتـداد ميلـه باشد، و دو پرتو نورى، يكى در جهت حر كت ميله و ويگـرى در خـلاف جههـت حر كـت ميلــٔ شيـشه ای باشـلـ، درايـن صـورت، اخـتالاف زمـان انتـشار دو پرتـو نـور را نـسبت بــه جارجوب S به دست آوريد و نشان دهيد كه اين اخختلاف زمان از رابطةٌ

$$
\Delta T=\frac{r L_{0} v}{c^{r} \sqrt{1-\beta^{r}}}
$$

به دست مى آيل. ضريب شكست شيشه را برابر n درنظر بگيريد.
(Y ا - فرض كنيد كه يكك ميلُٔ شيشه الى به طول سكون چجارچوب آزمايشگًاه يا S درحر كت باشلـ. همـجنين، فرض كنيد كه جههـت حر كــت ميلـه در امتداد ميله باشد. حال، اگر يكك پرتو نورى، يكك حر كـت رفـت و بر گـشت در أمتـداد
 و 'S ( چارچچوب سكون ميله) به دست آورده و نشان دهيل كه نسبت زمان به دست آملده
 شكست شيشه را
 سكون شيشه، يعنى S، برابر n درنظر بگیيـريم، در ايـن صسورت نـشان دهيـد كـه خـريب شُكست شيشه نسبت به يكك ناظر ديگرمانند 'S ${ }^{\prime}$ از رابطهُ

$$
n^{\prime}=\frac{n+\beta}{1+n \beta}
$$

به دست می آيل. در واقع، اين رابطه نشان مى دهد كه ضريب شكست يـك مسـيط يـك كميًّت ناوردا نيست. براى اثبات رابطهٔ فوق از اين نكته استفاده نماييلد كه سـرعت نـور در

هحيطى با ضريب شكست n برابر c/n مى باشل.
IF - IF
 همحِنين، فرض كنيد كه سطح آيينه بر بردار سرعت جريان آب عمـود باشــد. در ايـن صـورت، نشان دهيد كه زمان انتشار برتو نور رحاصل از چشمه، در يكك مسير رفت و بر گشت بين چـشمه و آيينه در چارچوب آزمايشگاه يا $S$ ( حارچو

$$
T=\frac{r L_{0} n\left(1-\beta^{r}\right)}{c\left(1-n^{r} \beta^{r}\right)}
$$

 چارچوب آزمايشگاه يا S درحر كت باشد. حال، اگرسرعت ميله عمود بر امتداد آن باشد و يكك چرتو نور از يك سمت ميله وارد و از انتهاى ديخر آن خـارج گـردد، سـرعت برتـو نور را نسبت به هارحوب آزمايشگاه به دست آوريل. ضريب شكـست شيشه را برابـر در نظر بگيريد.

$$
u=\sqrt{v^{r}+\frac{c^{r}}{n^{r}}\left(1-\frac{v^{r}}{c^{r}}\right)}: \text { جواب }
$$

¢ا - درجٍارچوب آزمايشگاه يا S، دو ذره با سرعت يكسان، به هـم نزديـك مـى شـوند. اكنون، اگرسرعت نسبى آنها برابر Vc/ / باشده سرعت هر كدام از ذرات را نسبت به جـارچوب آزمايشگاه و همين طور نسبت به چارچوبب سكون ذرات به دست آوريد.

فرض - IV درامتداد محور x و درجهت مثبت اين محورحر كت مـى كنــد. ثابـت كنيـد كـه فاصـلئ انـدازه گیرى شده بين اين دو فوتون در چارچوب 'S، از رابطهٔ زير به دست مى آيد.

$$
d^{\prime}=d \sqrt{\frac{c+v}{c-v}}
$$

1 ا - نشان دهيدكه ارتباط بين سرعت يكك ذره در دو جارچوبب S و 'S، به وسيلَّ رابطهُ

$$
c^{r}-u^{r}=\frac{c^{r}\left(c^{r}-u^{/ r}\right)\left(c^{r}-v^{r}\right)}{\left(c^{r}+u_{x}^{\prime} v\right)^{r}}
$$

سينماتيكـ نسبيتى
 همچچنين، نشان دهيد كه ضريب $\gamma(u)$ به صورت رابطةُ زير بيان مى شود.

$$
\gamma(u)=\gamma\left(u^{\prime}\right) \gamma(v)\left[1+\frac{u_{x}^{\prime} v}{c^{r}}\right]
$$

19- نشان دهيدكه مى توان تبديلات لورنتس سرعت را به صورت بردارى زير نوشت

$$
\vec{u}^{\prime}=\frac{1}{\gamma(v)\left(1-\vec{u} \cdot \vec{v} / c^{r}\right)}\left[\vec{u}+[\gamma(v)-1] \frac{\vec{u} \cdot \vec{v}}{v^{r}} \vec{v}-\gamma(v) \vec{v}\right]
$$


 مؤلفه هاى شتاب، درچارچوب 'S با روابط زير بيان مى شوند.

$$
a_{x}^{\prime}=\left(1-\beta^{r}\right)^{r / r} \frac{a_{x}}{\left(1-\left(v u_{x} / c^{r}\right)\right)^{r}}
$$

الف :

$$
\begin{aligned}
& a_{y}^{\prime}=\left(1-\beta^{r}\right) \frac{a_{y}}{\left(1-\left(v u_{x} / c^{r}\right)\right)^{r}}+\left(1-\beta^{r}\right) \frac{v u_{y}}{\left(1-\left(v u_{x} / c^{r}\right)\right)^{r}} a_{x} \\
& a_{z}^{\prime}=\left(1-\beta^{r}\right) \frac{a_{z}}{\left(1-\left(v u_{x} / c^{r}\right)\right)^{r}}+\left(1-\beta^{r}\right) \frac{v u_{z}}{\left(1-\left(v u_{x} / c^{r}\right)\right)^{r}} a_{x}
\end{aligned}
$$

ب: نشان دهيد كه روابط تبديل شتاب رامى توان به صورت بردارى زير نوشت.

$$
\vec{a}^{\prime}=\frac{1}{\gamma^{r}(v)\left[1-\left(\vec{u} \cdot \vec{v} / c^{r}\right)\right]^{r}}\left[\vec{a}+\left(\frac{1}{\gamma(v)}-1\right) \frac{\vec{a} \cdot \vec{v}}{v^{r}} \vec{v}-\frac{1}{c^{r}}[\vec{v} \times(\vec{a} \times \vec{u})]\right]
$$

ج ازروابط زير به دست مى آيند.

$$
\vec{a}_{\|}=\frac{\left(1-\beta^{r}\right)^{r / r}}{\left(1+\left(\vec{v} \cdot \vec{u}^{\prime}\right) / c^{r}\right)^{r}} \vec{a}_{\|}^{\prime}
$$

$$
\vec{a}_{\perp}=\frac{1-\beta^{r}}{\left(1+\left(\vec{v} \cdot \vec{u}^{\prime}\right) / c^{r}\right)^{r}}\left[\vec{a}_{\perp}^{\prime}+\frac{1}{c^{r}} \vec{v} \times\left(\vec{a}^{\prime} \times \vec{u}^{\prime}\right)\right]
$$

 آن در لحظةٔ $t$ با روابـطط $y=a t^{r} / r, ~ x=v t$ بـه دسـت مسى آيـل. و مسسير آن يـكك سهمى است. حال، ححر كت ذره را نسبت به ناظر متحر كك 'S بررسى نما ييل. به ويزه مسسير و شتاب آن را در اين چارچجوب به دست آوريل.

يك F Y سرخ روشنى با طول موج 909/1 × $11^{-9} m$ است.
 از زمين دور مي شود، چچقدر اسيت؟
ب : طـول مـوج
 اين اختلالف به خاطر دوران خورشيل باشلف، در اين صورت، زمان تناوب خورشـيد، حـول

 و
 راهنمايى را سبز ديله است. در مورد سرعت اتومبيل و ادعاى اين راننده اظهار نظر كنيل. - Y F





## $\mu$

## فضا - زمان نسبيتى

مقلدمه:
ناظرهاى واقع در جارجوبهـاى مرجـع مختلـف، هنگـامى كـه حتـى رويـداد هــاى يكـسان را مشاهده كنند، ازنظر آنها اين رويدادها متفاوت به نظر خواهند رسيد. به عنوان مثـال، وقتى دو رويداد از نظر يكك نـاظر همزمـان باشـند، ممكـن اسـت از نظـر نـاظرى ديگرهمزمــان نباشـند. اگگر چه طبق اصول نسبيت، همهٔ قوانين فيزيكك بايد از نظر همهٔ ناظرها يكسان باشـند. همحنـين، اين اصول ايجـاب مـى كنتـد كـه مـشاهلات و انـدازه گيـرى ناظرهـا در پارچوبهــاى مرجـع مختلف، بايد تابعى از سرعت آنها باشند.
در ايـن فـصل مـى خـواهيم ارتبـاط بـين مـشاهلدات ناظرهـاى مختلـف را بـا اسـتفاده از
 هندسى تبديلات لورنتس بوده و ارتباط بين جهانخط ها و رويدادها را به صورت هندسى بيان

مى كنتن. ازطرف ديگر، با استغاده از اين نمودارها، بسيارى از مسائل مشكل نسبيت خــاص را مى توان به سادگگى حل نمود.
+
نظريهُ نسبيت نحاص را درحقيقت مى توان نظريئ فضا - زمان دانست. همـان طور كـه قـبلاً اشـاره شد، اين نظريه به مطالعه و بررسى پديده هاى فيزيك در پار چوبهای مرجع للخت مى پردازد. از
 نظريهُ جديدى را برایى توضيح آن فرمولبندى كنيمه اولين گامى كه بايد برداشته شود، در واقـع، تعيين ناظر يا ناظرهايى است كه پـديله ها را مشأهده و مختصات زمان و مكـان وقـوع آنهـا را بـا دقت، تعيين و يا اندازه گيرى نمايند. همان طور كه مى دانيم، هر نظرية جلديـد را نيـز در نهايـت بايل برحسب مشاهدات و اندازه گيرى هاى اين ناظرها پايه ريزى و فرمولبندى نمـود. عـلاوه بـر اين، براى آزمون درستى و يا نادرستى نظريه و يا بررسى صحت نتايج حاصل از بيـشگويى هـاى آن، بايد ازمشاهلـات و اندازه گيرى هاى ناظرهای متختلف استفاده نمود. بـر ايـن اسـاس، مغهـوم
 رويداد فيزيكى، در واقع، از ابتدايمى ترين مفاهيم در فيزيكك تلقى مى شونل. همان طور كه در فصل اول اشاره شد، يكك ناظر بـه همـراه وسـايل انـدازه گــرى فـضضا و زمان، درحقيقت همان چارچوب مرجع است كه تعيين آن براى شروع بررسى يـك رويـداد
 نظر گرفت كه مـجهز به وسايل اندازه گیرى فضا و زمان مى باشد. هنگامى كه يكك رويداد ازنظرناظرهاى واقع در چارچچوبهای مرجع مشختلف مورد بررسى قرار مى گيرد. نتيجهُ مشاهلات به دست آملده به وسيلة آنها در حالت كلى با يكديگُر اختلاف خواهنل داشت. بنابراين، هرناظر به كمكك مفـاهيم فـضا و زمـان، يـا بـازه هـاى فـضا و زمـان، مى تواند مللى از طبيعت و رويدادهاى مربوط به آن را براى خود ايـجاد كند. ازطرف ديگر؛ اين ناظرها با تو جه به اصول نسبيت، مى توانتد ارتباط بين مشاهدات يا مدلهاى ساخته شده بـه وسيلٔ ناظرهاى متختلف را به دست آورنذ. در فصل دومه إين كار، يعنى برقرارى ارتبـاط بـين

فضا - زمان نسبيتى 101
اندازه گیرى هاى صورت گرفته به وسـيلهُ ناظرهـا، بـا اسـتفاده از تبـديلات لـورنتس صـورت
گرفت. اكنون، در اين فصل مى توان به نمود هندسى اين تبديلات پرداخت. همان طور كه قبلاً اشاره شد، يك ناظرمى تواند مبدأ زمان و يا مكان خود را بـه دلخـواه انتخاب نمايد؛ زيرا قوانين فيزيكك به انتخاب مبدأ براى زمان و مكان بـستگى ندارنـد كـهـ ايـن موضوع را مى توان ناشى ازهمگگى فضا و زمان دانست كه در وأقع، از تقارنهـاى مهــم فـضـا و

 ازهمسانگردى فضا است. بنابراين، با در نظر گرفتن اين تقارنها براى فضا و زمان، و هممچنين بـا درنظرگّرفتن ناظر هاى لخت، مى توان مدلى از فضا و زمان ايجاد نمود كه بتوان با آن قـو أنين فيزيكك را به طورمستقل از ناظر يا چارچوب مرجع بيان كرد. اكنون، در اينجا براى در كك و تصور صصحيح از يك ناظر درنسبيت، پگگونگی سـاختن فضا - زمان به وسيلهُ يكك ناظر، به طور ساده توضيتح داده مى شـود. بـراى ايـن منظـور، فـرض كنيد كه يك ناظر برای مشاهلده و ثبت مختصات مربوط به فضا و زمان رويدادها، درنقطه أى از فضا قرار گیرد. حال، براى نمايش هندسى اين ناظر مى توان از يكك خط راست جهــت دار
 حالهبرإى توضيح بيشتر اين مطلب مى توان به صورت زير عمل نمو2. فرض كنيد كه ناظر S در نقظه أى از فضا بـه حالـت سـكون قرارگرفتـه باشـلد. اكنـون، اگردرارتفاعى معين قرار گيريمه به طورى كه بتوانيم از او از بالاى سر، درفواصل زمانى معينى به طور بيوسته عكس بگيريمه دراين صورت بعد از تهيـهُ تعـداد معينـى تصوير، مـى تـوان در هر كدام از تصاوير تهيه شده ازناظر، مكان او را با نتطه إى مشخص كنيم. اكنون، مى توان مجموعهٔ تصاوير به دست آمـده از نـاظر S را مطـابق شـكل( (ش-ا)؛ بـه ترتيب زمانى، ازاولين تا Tاخرين آنها روى يكديگر قرار داد. دراين صـورت، مـى تـوان مانــد
 برش داد كه نقاط مسشُخص كنتـدهُ مكـان نـاظر S درعكـسهاى متـواللى در محـل بـرش قابـل مشاهده باشد. اكنون، اكُر مانند شكل نقاط. به دست آمله يا مكان ناطر را درمجموعهء عكـسها


در شكل(ץ-ا)، ترتيب زمانى يا توالى عكسها، در واقع، سترى شدن زمان را براى نـاظر S نـشان

 ساكن است. يعنى بعل فضايیى آن نسبت به خودش تغيير نمى كنـد. و امتــداد خـط نيـز در واقـع، سِيرى شدن زمان را براى او نشان ميدهل و مى توان گفت كه ايـن خـط موقعيـت نـاظر S رادر
 درنظر گرفت. جهانخط يكك ناظر يا به طور كلى هر ذره، تاريخچجهٔ ناظر يا ذره را بيان مى كند. همان طور كه اشاره شد، روى جهانخط نـاظر يــا ذره، تغييـرات فـضاييى يـا مكـانى صـفر مى باشد و تنها بعلد زمان در روى آن تغييرمى كنــد. درحقيقـت، سـاعت همـراه نـاظر يــا ذره، سِرى شدن زمان را براى آنها نشان مى دهد.

حال، با توجه به اين توضيحات، مى توان جهانخط ناظر را به عنوان محور زمان يـا محـور حارچپوبی در نظر گرفت كه ناظر مورد نظربرایى بررسى پديله ها آن را الختيارمى كند.

اكنون، در اينّجا مى توان وضعيت ديگرى را برایى ناظر درنظر گرفت. برایى اين منظور؛ فرض كنيد كه ناظر ديگُرى مانند 'S، روى محور XX ها با سـرعت ثابست بـه سـمت راسـت درحر كت باشد. در اين حالت نيز مى توان مانند قبـل در لحظـه هـاى معـين , تصاويرى را ازارتفاعى معين از ناظر متحر كك 'S تهيه نموده و سيس آنهـا را مطـابق شـكل ( به مجموعئ تصاوير داده و سيس نقاط مربوط به مكـان نـاظر را در لحظـه هـاى متخلــف بـه

$t=t_{1}$

$t=t_{r}$

$t=t_{r}$

$t=t_{\mathrm{F}}$


شكل (ץ- (ץ): تصاوير تهيه شده از ناظر متحر ک

 صورت خطط راستى به دست مى آيد كه ناظر ساكن S مـى توانـد از روى شـيب آن سـرعت



شكل (F- ${ }^{\prime}$ ) : جهانخط ناظر متحر ك
دراينجا نيز هنگامى كه تصاوير به ترتيب زمانى، از اولين تا Tاخرين آنها روى يكـديگ, قـرار داده مى شوند، درواقع با اين كارگّشت زمان از نظر نـاظر S نـشان داده مـى شـود. بنـابراين در ايـن ـحالت نيز محور عمودى را مى توان بـه عنـوان متحوزمهان بـرأى نـاظر S درنظرگرفـتـ. واضـح است كه اگر سرعت ناظرثابت نباشد، جهانخط آن به صورت يك خخط راست نخواهد بود.


ا $10 \varepsilon$
در نظرمى گيريم• برایى رسم جهانتخط اين امواج؛ مـجلداً مى تـوان بـه همـان روش قبـل عمـل كرد. دراينجا فرض كنيد كه امواج ايجاد شده بر روى سطح آب استخر، ناشى از افتـادن تكـه سنگى دروسط T Tب استخر باشل. بنابراين، موج روى سطح Tبى، درلحظـئ برخـورد سـنگك بـه سطع آبس، در ابتد| به صورت يكك نقطه بوده و سيس جبهُ موج به شكل دوايرى خو اهنل بود كه شعاع آنها به تسلدريج بـزرگَ و بزرگتـر شـلـه و درنهايـت بـا كنـاره هـاى اسـتخر برخـورد مى كننل. حال اگگ از ارتغاع معينى ازموج بيش روندهُ روى سطع آب، به طورمتـوالىى تـصوير بردارى شود، دراولـين عكـس، نقطـه ای دروسـط آن مسشاهله خواهــل شـلـ. و درهر كــلام از تصلوير بعلدى نيز دوايرى را نخواهيم داشت كه شعاع آنها به تدريج أفزايش مى يابند. حال، اگُر تصاوير به دست آمله، از اولين تا آخرين آنها روى يكديگر قرار داده شوند و سپس مشیط دايره هاى مربوط به هر تصوير به يكلـيگر وصـل گردنـلد، جهـانخطط مـوج ايجــاد


(
اما نكته ایى كه در ايننجا بايل به آن دقـت نمـود، ايـن اسـت كـه اينگّونـه نمودارهــا را در فضها- زمان، حلاكثر مى توان Y برأى فضا مى توان در نظر گرفت.

اكنون، بعد از آشنايى با جهانتخط يكك ناظر يـا يـكك ذره، مسى تـوان وخنـيّت جههـانخط ذرات يا ناظرهاى مـختلف را نسبت به يكديگر مـورد بررسـى قـرار داو. بنـابراين، اگـر شـكل ( )


فضا = زمان نسبيتى 100



شكل (7-7) : وضعيت ناظر هاى مختلف نسبت به يكديگر
 حين حر كت ملاقات مى كند و سِپس به مسيرش بـه سـمتت S ادامـه مـى دهــلـ همـين طـور؛


همان طور كه ملاحظه مى گردد، تاكنون براى آنكه بتوانيم ايـن ناظرهــا را Tآسـانتر رسـم نماييم، براى آنها تنها يكك بعـل زمـان، يعنـى t، و همـين طوريـكك بعـل فـضا يـا x را درنظـر گرفته ايمه. و درمورد بعد زمان يا محور زمان يكك ناظر توضيح داده شد. اكنون، مى توان بعـل فضا را برایى يكك ناظر با دقت بيشترى بررسى كرد.

براى به دست آوردن بعد فضايى يكك ناظرسـاكن، مـى تـوان بـه هسورت زيـر اسـتدلال نمود. همان طور كه در بالا بررسى شد، اگر فقط بعد زمانى ناظر تغيير كند، جهـانخط نـاظر بـه صورت نمودار (Y-Y) خواهد بود. يعنى ناظر با قرار گرفتن دريكك نقطه از فضضا، مى تواند همـه لحظه هاى مربوط به رويدادهاى مختلفى را كه در آن نقطه روى مى دهند، نسبت بـه خـودش ثبت نما يـلـ. بنـابراين، بـا توجـه بـه ايـن موضـوع، اكنـون مـى تـوان حالــت عكــس را نيـز در نظر گرفت و فرض كرد كه فقط بعد فضايى ناظر تغيير كند و بعد زمـانى آن ثابــت، مسثلاٍ صسفر باشد. درنتيجه در اين حالت، اگر فرض كنيم كه فقط يكك بعد فضايى، يعنى مختـصه x نـاظر تغيير كنـد درايـن صـورت، نـاظر بايـد بتوانــد در يــكـ لحظـه، مـثلاً $t=0$ همـهن نقـاط روى محور x (يكك بعد فضا) را مشاهله نمايد. كه البتهه برایى چنين منظورى سرعت أين ناظر بايــد نامتناهى باشد. به عبارت ديگر، مححور X را مـى تـوان جهـانخط نـاظرى در نظر گرفــت كـه سرعت آن نسبت به ناظر ساكن در مبدأ 6 بى نها يـت مـى باشـلـ. بنـابراين، بـا ايسن اسـتدلال

107 مقدمه أى بر نسبيت خاصر
مى توان بعلد يا محور فْضايى يكك نـاظر سـاكن را ماننـد شـكل (V-Y)، عمـود بـر جهـانخط خودش رسم نمود.
حالل، بعد از تعيين محور هاى فضايى و زمانى براى ناظرى، مانند S يا بـه عبـارت ديگـر، بعل ازهعين شدن ملل فضا و زمان از نظر ناظر S اكنون؛ مى توان فاصلئ ناظرها و همين طـور، سرعت نسبى Tنها را نيز در هرلحظه به دست آورد. به عنوان مثال در شكل (V-Y)، بـه T T ا

 جهانخط اين ناظرها در فضا- زمانى كه ناظر S ايدجاد كرده است، به دست آورد. همين طـور، مى توان سرعت آنها را نيز نسبت به يكديگر محاسبه كرد. كه البته، براى اين منظـور هر كـدام



شكل (V-
 سر عتهاى ثابت و متفاوت، به ترتيب به او نزديكك و يا از او دور مى شوند. همچخنين، ناظر S با
 ناظر ديگر را مورد بررسى و تجزيه و تحليل قراردهد. براين إساس، مى توان محورهاى x و $x$ یى انتخاب شده به وسيله ناظر ساكن S را فـضاى رويلدادها يا ملدلى در نظر گرفت كه S از فضطا- زمان براى خودش ايجاد مى كند. حـال، بعــد
 حراينن صورتك مى توانلد هر نتطه از اين فضا را با دو مختصهُ x و t نمايش دهد. اللبتهء در اين

صورت نقاط اين فضا را كه شُامل دو متختصهٔ x و t مى باشند، رويداد' مىى نامند. همان طور كه مـى دانـيم، درفيزيـكـ نيـوتنى معمـولاً از منحنـى مسسيرحر كت ذره درفضا $y(t)$ ، $x(t)$ ( $x$ ( و z(t) مى باشلد. ازطرف ديگر، منحنى مسير ذره رامى توان از اتصال نقاطى از فضا كـه ذره از آنها عبور مى كند به دست آورد. به اين ترتيب؛ مى توان گفـتـ كـه منحنـى مـسيرحر كت يـك ذره در واقع، تاريخحچهُ كاملى از چپگونگیى حر كت ذره در فضا را دراختيار ما قرار مى دهد. اما درفضاى رويدادها وضعيت به شكل ديگـرى بيـان مـى گـردد. در فضاى رويـدادها، بــه جاى نقطه در فضا از اصطلاح رويداد در فـضا- زمـان اسـتفاده مـى شـود. يـكك رويـداد درححالـت كلى با جهار مختصئ (x,y,z,t) معين مـى شـود. همچخنـين، از بـه هـم بيوسـتن رويـدادها يـا از توالى رويدادهاى مربـوط بـه يـكك ذره در فضضا- زمـان، جهـانخط ذره بـه دسـت مـى آيلـكـه در حقيقت، يكك منحنى يا خط درفضا- زمان جهار بعلى است. درنتيجه جهانخط يـكك ذره يـا نـاظر نيز تاريخچهُ ذره يا ناظر را دردرفضا- زمان جهار بعلدى يا فضاى رويدادها مشخص مى كند.
 زمان چگگونه خواهل بود؟ به عبارت ديگر، آنها براى تعيين فضا و زمـان رويـدادها محورهـایى
 بيشترو دقيق ترى نسبت به ناظرها به دست آوريـم. درادامهٔ اين فصل به اين برسشها پاســخ داده مى شود.

- F- F

همان طور كه مى دانيم، در فضا ى سه بعدى اقليدسى فاصلهُ دو نقطه با مـختصات ( $\left.x_{1}, y_{1}, z_{1}\right)$

$$
\begin{array}{r}
\text { L }=\left[\left(x_{r}-x_{1}\right)^{r}+\left(y_{r}-y_{1}\right)^{r}+\left(z_{r}-z_{1}\right)^{r}\right]^{1 / r} \quad\left(x_{r}, y_{r}, z_{r}\right) \quad \text { (1-r) }
\end{array}
$$

به دست آورد. حال، اگگر اين فاصله رابى نهايت كو جكك در نظر بگيريم؛ خواهيم داشت:

1- Event

$$
\begin{align*}
d l^{r} & =d x^{r}+d y^{r}+d z^{r} \\
& =\delta_{i j} d x^{i} d x^{j} \quad i, j=1, r, r
\end{align*}
$$

 متريكك يا فاصله، مثبت و معين مى باشد. درفضاى سه بعدى اقليدسى، مكان يـكك ذره سـاكن يكك نقطه و مسير يكك ذرهٔ متحر كك با بیك منحنى مشخص مسى شـود. ايـن منتحنى از اتـصال דيوستهُ نقاطى به دست مى آيل كه ذره متحر كك از آنها عبـور كرده اسست. منخنـى مسسير يـكك ذره درحالت كلى، شامل متختصات وابسته به زمان $y(t)$ و $y(t) x(t)$ مى باشل. درواقـع، با داشتن منحنى مسير يكك ذره میى توان مكـان ذره را در هـر لحظـه از زمـان تعيـين نمـود. بـه عبارت ديگّر، با داشتن منحنى مسير برای يکك ذره مى توان چگگونگی حركت ذره در فضا را به طور كامل مشخص كرد. دراين فضا همان طور كـه در فـصل اول اشـاره شـلـ، جـايى بـراى نمايش زمان وجود ندارد. با اين حال مى توان درهر نقطةُ Tن ساعتى را تصور نمود كه همڭـى آنها با روشى معين همزمان شده اند و با آهنگُ يكسانى كار مى كنند.

اكنـون، مـى تـوان فـضاى رويـدادهها را كـه سـاختار هندسـى كــاملاً متفـاوتى بـا فـضاى اقليدسى رويذاد محسوب مى شود. درنتيجه، مى توان گفت كه جهـانخُط يـكك ذره از اتـصطال بيوسـتئ رويدادهاى مر تبط با آن ذره به دست مـى آيـل. بـه عبـارت ديخـر، جهـانخط ذرات در واقـع، منحنى مسير ذرات در اين فضا مى باشند. برایى شناخخت و بررسى دقيت تر اين فضا، مى توان فاصله يا بـازةٌ بـين دو رويـلاد رادر آن تعريف كرد. درفضاى اقليدسى فاصلهُ بين دو نقطه ناورداسـت. يعنـى مستقل از دسـتگاه مختصات بوده و با دوران يا انتقال دستگاه مختصبات بدون تغيير بـاقى مسى مانــد. بـه طـور كلى مى توان گْنت كه فاصلهٔ بين دو نقطه تحت تبديل از يكك دستگاه به دستگاه مختصات ديگـر تغيير نمى كنّل. بنابراين، وجه مشخصهُ هر فاصله رامى توان ناوردا بودن آن درنظرگرفت. اكنون، دراينعجا إيـن سـؤال مطـرح مـى شـود كـه آيـا مـى تـوان در فـضاى رويـلدادها

[^0]نيز كميًّى مشابه فاصلكُ ناوردأى بين دو نقطه تعريف كزد يا به دست آورد. براى پاسخذ بـه ايـن سؤال بايل به اين نكته توجه نماييم كه تبلديل متختصات درفـضاى رويـدادها بـه معنـاى تبـديل لورنتس مى باشد. درنتيجه، با استفاده از اين تبديلات مى توان بازء فضايى يا همين طـور بـازه زمانى ميان دو رويلاد رااز يك چارچحوبِ به چارچوب ديگر تبديل نمود. بـه عبـارت ديگـر، مى توان با استفاده از اين تبديلات بازه فضايى يا زمـانى ميـان دو رويـداد را از ديــد ناظرهـاى
 و
 بنابراين، داريم

$$
\begin{align*}
c^{r} \Delta t^{\prime r} & =[\gamma(c \Delta t-\beta \Delta x)]^{r} \\
& =\gamma^{r}\left[c^{r} \Delta t^{r}+\beta^{r} \Delta x^{r}-r(c \Delta t)(\beta \Delta x)\right]
\end{align*}
$$

$$
\begin{align*}
\Delta x^{\prime r} & =[\gamma(\Delta x-\beta c \Delta t)]^{r} \\
& =\gamma^{r}\left[(\Delta x)^{r}+\beta^{r}(c \Delta t)^{r}-r(\beta c \Delta t)(\Delta x)\right]
\end{align*}
$$

در روابط فوق، ( $c \Delta t \neq c \Delta t^{\prime}$ هـا نـاوردا نتخواهنــن بـو2. بـه عبـارت ديگـر، مى باشند. اما اگرتر كيبى ازاين بازه ها در نظر گرفتـه شـوند، درايـن صسورت، ايـن تر كيـبـ
 مى توان به شكل

$$
c^{r} \Delta t^{\prime r}-\Delta x^{\prime r}=c^{r} \Delta t^{r}-\Delta x^{r}
$$

نوشت. براى اثْبات رابطةٔ (隹 اين صورت، خواهيم داشت:

1-Space - time Interval

$$
\begin{align*}
& c^{r} \Delta t^{\prime r}-\Delta x^{\prime r}=\gamma^{r}\left[c^{r} \Delta t^{r}+\beta^{r} \Delta x^{r}-r(c \Delta t)(\beta \Delta x)\right] \\
& -\gamma^{r}\left[(\Delta x)^{r}+\beta^{r}(c \Delta t)^{r}-r(\beta c \Delta t)(\Delta x)\right] \\
& =\gamma^{r}\left[c^{r} \Delta t^{r}\left(1-\beta^{r}\right)-\Delta x^{r}\left(1-\beta^{r}\right)\right] \\
& =\gamma^{r}\left[\left(1-\beta^{r}\right)\left(c^{r} \Delta t^{r}-\Delta x^{r}\right)\right] \\
& =c^{r} \Delta t^{r}-\Delta x^{r} \\
& \text { در نتيجه، بازهٔ بين دو رويداد را مى توان را به صورت } \\
& \Delta s^{r}=c^{r} \Delta t^{r}-\Delta x^{r}
\end{align*}
$$

تعريف نمود. همجچنين، برایى رويدادهايى كه ازنظر فضايیى و زمـانى بـى نهايـت بـه يكـديگّر


$$
\begin{align*}
d s^{r} & =c^{r} d t^{r}-\left(d x^{r}+d y^{r}+d z^{r}\right) \\
& =c^{r} d t^{r}-d \vec{r} \cdot d \vec{r} \\
& =c^{r} d t^{r}-d r^{r}
\end{align*}
$$

 متريك نقطه درفضاى اقليدسى ناورداست. به عبارت ديگر، هر انتقال فضايىى يا زمانى و همچچنـين، هـر دوران فضايى اين بازه را بدون تغيير يا ناوردا نگه ميى دارد. از طرف ديگر، همان طور كه درفضاى سه بعدى اقليدسى، مكان يك ذره يا يـكـ نقطه به صورت يك رويداد يا جاربسدارمكان آن را به صورت

$$
\begin{align*}
x^{\mu} & =(t, x, y, z) \\
& =\left(x^{\circ}, x^{\prime}, x^{r}, x^{r}\right) \quad(\mu=0,1, r, r) \tag{9-r}
\end{align*}
$$

نهايش داد. دراينجا نيز مى توانيم، اختلاف متختصات دو رويداد بى نهايت نزديـك بـه بـه هـم را (مشابه با فضاى اقليدسى) با $d x^{\mu}$ نشان دهيم. درنتيجه، بازهُ ناورداى فضا - زمان، يعنى رابطـئ ( 1 را برایى دو رويداد در هارجوب $S$ به صورت

$$
d s^{r}=g_{\mu \nu} d x^{\mu} d x^{\nu}
$$



$$
g_{\mu \nu}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

تعريف مى گردد. حال، اگر مانند 'S باشل، در اين صورت بازهٔ ناورداى فضا - زمان در اين چارچوب به صورت

$$
d s^{\prime r}=g_{\mu \nu} d x^{\prime \mu} d x^{\prime \nu}
$$

بيان مى شود. اين رابطه، ناوردايى بازءٔ فضا-زمان بين دو رويداد را نشان مى دهد. دراينجا نيز مانند مورد فضاى اقليدسى، به داشت كه بين متريكك اقليدسى (Y-Y) و متريك (Y (


 هرمان مينكوفسكي فيزيكدان روسى- آلمانى براى اولين بار در سال 19•V، يعنى دو سـال بعـد از ارائه نظريؤ نسبت خاص، اين فضا را با استفاده از تبـديلات لـورنتس تعريـف نـــود. فـضاى مينكوفسكى را مى توان، يك فضاى تخت شبه اقليدسى درنظر گرفت. از طرف ديتَّر؛ نقــاط اين فضا بيانگر رويدادها مى باشند. لازم است اشاره شود كه دراين فضضا مـى تـوان بردارهــا و تانسور ها را مانند مورد اقليدسى تعريف نمود. دربخش هاى بعلى أين فصل به نمود تصويرى خواص ديخر تبديل لورنتس مى بردازيم.

مثال

جواب : با تو جه به مقادير به دست Tملده در مثال Y ـ ـ بY مى توان نوشت:

$$
\Delta t_{s^{\prime}}^{r}-\Delta x_{s^{\prime}}^{r}=c^{r}\left(r L_{\circ} / c\right)^{r}-L_{\circ}^{r}=\wedge L_{\circ}^{r}
$$

و به همين ترتيب، داريم:

$$
\begin{align*}
& c^{r} t_{s}^{r}-\Delta x_{s}^{r}=c^{r}\left(\gamma L_{\circ} / c \sqrt{r}\right)^{r}-\left(\Delta L_{\circ} / \sqrt{r}\right)^{r}=\lambda L_{\circ}^{r} \\
& c^{r} t_{b}^{r}-\Delta x_{b}^{r}=c^{r}\left(r L_{\circ} \sqrt{r} / c\right)^{r}-\circ^{r}=\wedge L_{\circ}^{r} \tag{1F-r}
\end{align*}
$$

## W -

يك روش بسيارمفيد براى نمايش هندسى تبديلات لورنتس، رسم محورهاى فضا و زمـان دو چارپپوب ساكن و متحر كك در يكك نمودار فضا- زمان مى باشد. درخنين نمودارهايى دو نكتهٔ مهم رامى توان درنظر گرفت.
اول اينكه محور فضايى يكك جارچوب معادل خطط همزمانى آن چارچپوب مـى باشـد كه

$$
\text { از رويداد مبدأ، يعنى (c,o) }(c t, x) \text { مى گذرد. }
$$

و نكتئ دوم اينكه محورزمان يكك چارچوب نيز معـادل خـط هـم مكانى آن جـارجوب است كه از رويداد مبدأ،يعنى ( اس ( $c t, x)=(0, o)$ يك چجارچوب معادل جهانتط ناظر واقع در مبدأ آن جارجوب مى باشد. بنابراين اگر رويداد مبـدأ در هـردو چـارچوب، مـثلاً S و 'S مـشتر كك باشـند، درايـن صورت، مى توان بـا اسـتفاده از تبـديلات لـورنتس، محورهـاى فـضايى و زمــنى هر كـدام از چارچوبها را نسبت به محورهاى چارجوبَ ديگر رسم كرد.
 $x=0$ صورت زير عمل كرد. همان طور كه مى دانيم، محورزمان ct درچارچهوب S، معـادل در اين پارجوب است. يا برعكس محور فضايیى x، معادل ct=0 مى باشـد. ازطـرف ديگـر، درجارچوب $x^{\prime} x^{\prime}$ دراين جارچجوب نيز معادل $c t^{\prime}=0$ مى باشد. بنابراين، مى توان از ايـن نكته اسـتفاده نمـود و



$$
c t^{\prime}=\gamma(v)(c t-\beta x)
$$

 دست مى آيد كه درواقع، معادلهُ محور 'x نسبت به محورهاى چارجوبب S مى باشل. همـين طور، برای به دست آوردن معادلة محور زمان cct، بايد درتبديل لورنتس

$$
x^{\prime}=\gamma(v)(x-\beta c t)
$$

x' برابر صفر قرار داده شود. دراين صورت، معادلئ x= $x$ به دست مى آيل. اين معادله نيز معادلهٔ محور زمان 'ct نسبت بـه محورهـاى پــارجوب S خحواهـد بـود. اكنـون، باداشـتن معادلات محورهاى فضا و زمان چارجوبب 'S، مى توان محور هاى ايـن چجـارچوب را نـسبت به محورهاى چارجوب S، مانند شكل(1-Y) رسم كرد. از طرف ديعر، برایى يكسان سازى مقياسهاى انتخـاب شـلـه بـراى محورهـاى فضضايى و زمانى چارچوبها، مى توان محور زمان را در c ضرب كرد. درواقع، با اين كار مى توان فاصله را برحسب واحد زمان و يا برعكس، زمان را بر حسب واحد طول بيان كرد. حال، با توجه به شكل ( چـــارچوب $S$ نيـــز بـــه دســـت آورد. درايـــن صــورت، شــيب ايـــن محــور بــــا رابطة $\tan \theta=\beta=v / c$ بيان مى شود.

 به محورهاهى הحارجوب ساكين

 يعنى


 علاوه با توجه بـه رابطـة

 محورهاى فضاييى و زمانى هارجوب
 چررتو نور، نسبت به هارجوب $S$ می مى باشد.



 جهت منفى محور 'x $x^{\prime}$ هارجوب خوان خودش درحر كت است.


چارجوب 'S ${ }^{\prime}$ ، مى تواند از تبديلات وارون لور نتس، يعنى $c t=\gamma(v)\left(c t^{\prime}+\beta x^{\prime}\right)$

$$
x=\gamma(v)\left(x^{\prime}+\beta c t^{\prime}\right)
$$







الفـ




 هم مكانى را تعريف كنيم. اما اگر فضا-زمان سه بعدى، يعنى دو بعد فضا و يكك بعد زمـان در نظر گرفته شود، در اين حالت، سـطوح همزمـانى و همـين طـور سـطوح هـم مكـانى خـواهيم داشت. و درنهايت، اگر فضا- زمان جهاربعدى فرض شود، دراين صـورت، مـى تـوان فـضاى همزمانى و فضاى هم مكانى براى چارچجوبهاى متخلف تعريف كرد.

$$
\begin{aligned}
& \text { مثال r - r ب: نشان دهيد كه تبديلات لورنتس (VQ-Y) را مى توان به صورت } \\
& x^{\prime}=x \cosh \alpha-c t \sinh \alpha \\
& y^{\prime}=y \quad, \quad z^{\prime}=z \\
& c t^{\prime}=c t c o s h \alpha-x \sinh \alpha \\
& \text { نشان داد. كه درآن } \alpha \text { با رابطئ } \tanh \alpha=\beta=v / c \text { تعريف مى گردد. }
\end{aligned}
$$

جواب : با تو جه به تعريف $\alpha$ مكى توان خـريب تبـديل (V) $\gamma$ را بر حـسب $\alpha$ بـه دسـت
آورد. بنابراين، داريم:

$$
\begin{align*}
\gamma(v)=\frac{1}{\sqrt{1-\beta^{r}}} & =\frac{1}{\sqrt{1-\tanh ^{r} \alpha}} \\
& =\cosh \alpha
\end{align*}
$$

$$
\begin{align*}
\beta \gamma(v)=\frac{\beta}{\sqrt{1-\beta^{r}}} & =\frac{\tanh \alpha}{\sqrt{1-\tanh ^{r} \alpha}} \\
& =\sinh \alpha
\end{align*}
$$


 (19-

$$
\left(\begin{array}{c}
c t^{\prime} \\
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
\cosh \alpha & -\sinh \alpha & \circ & \circ \\
-\sinh \alpha & \cosh \alpha & \circ & \circ \\
\circ & \circ & 1 & \circ \\
\circ & \circ & 0 & 1
\end{array}\right)\left(\begin{array}{l}
c t \\
x \\
y \\
z
\end{array}\right) \quad(Y Y-\mu)
$$

نيز نوشت. اين رابطه، درحالت دو بعدى به صورت ساده

$$
\binom{c t^{\prime}}{x^{\prime}}=\left(\begin{array}{cc}
\cosh \alpha & -\sinh \alpha \\
-\sinh \alpha & \cosh \alpha
\end{array}\right)\binom{c t}{x}
$$

نوشته مى شود كه درواقع، مشابه تبديل معمولى

$$
\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{cc}
\cos \theta & \sin \theta  \tag{YF-Y}\\
-\sin \theta & \cos \theta
\end{array}\right)\binom{x}{y}
$$

مى باشد كه حاصل آن، دوران مححورها درصفحهٔ xy حول محـور z اســت. بنـابراين، نتيجـهٔ تبديلات مختصات لورنتس رادر حالت كلـى، مـى تـوان دوران محورهـاى چچـارچوب S در فضا- زمـان جههار بعـدى و تبـديل آنهـا بـه محورهــاى چحـارچوب 'S در نظر گرفـت. درايـن صورت، زاويهٔ بين محور هاى S و 'S، درحالت خاص، با رابطئ زير بيان مى شود.

$$
\tan \theta=\beta=\tanh \alpha
$$

## F F F

بعد از تعيين وضعيّت محورهاى دو چارچوب S و 'S نسبت به يكديگر، اكنون مى تـوان بـا انتتخاب واحدهأى طول و زمان مناسب، اين محور رها را مقياس، بندى كـرد. بنـابر اين، بـراى بـه

دست آوردن واحـدهاى طـول و زمـان درهر كـدام از ايـن چجارپوبهـا، يـا مقيـاس بنـدى ايـن
 استفاده كرد. برأى اين منظور، مى توان دو رويلاد تعريف كرد، بـه طـورى كـه يكـى از ايـن رويدادها در مبدأ و ديگرى در جايى ديگر از فضاـزمان روى دهلـ دراين صورت، بـازء بـين

اين دو رويداد را با تو جه به رابطه(

$$
c^{r} t^{r}-x^{r}=s^{r}
$$



$$
c^{r} t^{r}-x^{r}=1
$$

رابطةٔ (YV-Y)، همان طور كه مىى دانيمَ معادلهٔ يكك هذلولى است كه معمـولاً آن را هـذلولى
 معادلهٔ مكان هندسى نقاطى از صفحهٔ xy است كه فاصلة آنها از مبـدأ مختـصات برابـر واخحـد است. حال به طور مشابه، رابطةٔ (YV- ( را مى توان مكان هندسى رويدادهايى در فضا-زمـان مينكوفسكى (ct, $)$ دانست كه بازه بين آنها و رويداد واقع در مبدأ برابـر واحـد مـى باشــد. حال، با توجه به رابطهُ (YV-Y) مى توان دو حالت رادر نظرگرفت و درنتيجه، دو نوع هذلولىى به دست آورد. درحالت أول، فرض مى كنيم كه ct $>$ باشل. دراين صورت، هـذلولى رابطــئ (YV-Y) را خواهيم داشت. و درحالت دوم، اگر فرض كنيم، ct ct باشد. در اين حالت، هذلولى

$$
x^{r}-c^{r} t^{r}=1
$$



 خ خواهل بود. و نقطةٔ $c t_{A}=1$
 ترتيب واحلد زمان و طول درچجارجوب S خواهند يود.



 محور زمان 'x= $x$ م $x$ مى باشد. درنتيجه، مى توان نوشت:

$$
c^{r} t_{B}^{r}-\left(\beta c t_{B}\right)^{r}=1
$$

$$
c t_{B}=\frac{1}{\sqrt{1-\beta^{r}}}=\gamma
$$

 است. دراين صورت، داريم:

$$
\begin{align*}
& x_{C}^{r}-\left(\beta x_{C}\right)^{r}=1 \\
& x_{C}=\frac{1}{\sqrt{1-\beta^{r}}}=\gamma
\end{align*}
$$

 مى باشند. برایى اين منظور؛ مى توان از تبديلات لورنتس استفاده كـرد. بنـابراين، بـر ایى اينكــه نشان دهيم OB وأحلد زمان در چارچوب 'S السـت، بايـلـ هـختصات رويـلـاد B , را نـسبت بـه

 برابر

$$
\begin{align*}
c t_{B}^{\prime} & =\gamma\left(c t_{B}-\beta x_{B}\right) \\
& =\gamma[\gamma-\beta(\beta \gamma)] \\
& =\gamma^{r}\left(1-\beta^{r}\right)=1
\end{align*}
$$

بنابراين، OB را مى توان واححد زمان در چارچچوب 'S در نظر گرفت. حـال، نـشان مـى دهـيم كه OC نيز واحد طول يا فضا درجارپپب 'S مى باشل. براى اين منظور، با توجـه بـه رابطـهُ ( (ץ-Y مختصغُ زمانى آن نيز برابر $c t_{C}=\beta \gamma t_{C}=\beta x_{C}$ خواهد بود. اكنون، مانند قبل، بـا استفاده از تبديل لورنتس، مى توان نوشت:

$$
\begin{align*}
x_{C}^{\prime} & =\gamma\left(x_{C}-\beta c t_{C}\right) \\
& =\gamma[\gamma-\beta(\beta \gamma)] \\
& =\gamma^{r}\left(1-\beta^{r}\right)=1
\end{align*}
$$

در نتيجه، با توجه به روابط( (

 مشابه در چار چوب $S$ مى باشند.
-
همان طور كه در فصل گذشته اشاره شد، ذرات با جرم سكون مخالف صفر، نسبت به هرنـاظر يا چارپجوبى مانند S، با سـرعتى كمتـر از سـرعت نـور حر كــت مـى كننـد. از طـرف ديگـر، هى دانيم كه سرعت نسبى چارچويها نيز بايل كو جكتر از سرعت نور باشد. البته، اين موضـوع، به عنوان يكك فرض در نسبيت پذيرفته مى شود. اكنون، مى تـوان جهانخط فوتونهـا يـا ذرات نور را نسبت به يكك چار جوبـ ساكن مورد برزسى قرار داد. براى اين منظور؛ فرض كنيد كـه فوتونى كه داراى سرعت $u=c$ مى باشده ازمبدأ چֶارجپوب $S$ درجهت مثبت محور $x$ ايـن





شكل (ץ-| (1)) : جهانخط فوتون در دو بعد
 فوتونهاى نور از مبدأ مختصات شروع به حر كت كرده و در روى مـحور x هــا در دو راسـتاى مثبت و منفى اين محور حر كت مى كننل. حاله، با توجه به توضيتحاتى كـه در بخـش بــا داده شد، جهانتخط أين ذرات به صورت نيمسازهاى ربع اول و دوم خواهنلد بود. اكنون، هى توان وضعيت ديگرى را درنظر گرفت. براى اين منظور، دو فوتـون را درنظـر مى گيريم؛ به طورى كه يكى از آنها از منفى بى نهايت به سمت مثبت بى نهايت محـور $x$ ، و ديگرى از مثبت بى نهايت به سمت منفى بى نهايت اين متحور حر كت كنــد. در ايـن حالـتـ، جهانتخط اين دو فوتون به صورت شكل (

 محور X Xا در دو سوى مخالف هم حر كت مي كننـ.

|V| فضا ـوز زمالن نسبيتحى

 صورت كامالً متقارن، از نقاط واقع در فواصل بسيار دورِ روى صفتحهٔ Xy، از جههات مختلف بـه

 (
 چارپو صورت دايره مى باشل. درنتيجه، با حر كت موج نور دو بعلى، بده سمت مبلأ، شعاع جبهـهُ دايـره

 درحقيقت، مى توان گُفت كه رسيلن فوتونها بـه مبـلـ أ، بسه معنـاى رؤيست رويـداد ارســال فوتون



شكل (ش-س
 يا نُو تونها

كنتن. درنتيجه در اين مرحله، يعنى مرحلئ دور شدن فوتونها از مبدأ، شعاع جبههٔ موج در مبـدأ صفر بوده و به تدريج بزرگ̋ و بزر گتر شده و در نهايت به سـمت بـى نهايـت ميـل مـى كنـــ
 خواهد آمد. اين حالت، يعنى هنگامى كه فوتونها در همئ جهات به صـورت متقـارن، از مبـدأ دور مى شوند، مشابه حالت موجى است كه درروى سطح آب يكك أستخر، براثر پرتاب تكـه سنگی ايججاد مى گردد.

همان طور كه در شكل( (ץ-r| )، ملاحظه مى گُردد، مخهوطْنور'، فضا- زمان را بـه سـه ناحيه تقسيم مى كند. به اين ترتيب كه همةٔ رويداهاى مربوط به گذشته يا رويدادهايىى كـه بـا
 طور، همهٔ رويدادهايى كه مربوط به Tينده انل، يا رويدادهايى كه هنوز رؤيت نشده اند، يـا بـه بيان ديخر، فوتون گسيل شده از آنها بـه وسـيلهُ نـاظر واقع در مبـدأ دريافـت نـشده اسـت، در
 دارند، با رويداد واقـع در مبـدأ، همزمـان مـى باشـنـ. بنـابراين، ناحيـــ خـارج مخـروط نـور را
 هنگامى كه رؤيت گردند درناحئُ مخروط نور گذشته قرار مى گیرند. در اينجا براي اينكه در كك روشن ترى ازمفاهيم گَشته، حالل و آينده به دست آوريـمه' لازم است توضيتح بيشترى در اين مورد داده شود. همان طور كه قبلاً اشاره شـله، بـرای اينكـهـ بتوانيم محورهاى فضا و زمان را برحسب واحدى يكسان بيان نماييمَ محور زمان را مـى تـوان با ct نشان داد. درواقع، با ضرب مححور زمان t در c c مى توان فواهـل فضايى را بـر حـسب واحد زمان، و همين طور، فاصله هاى زمانى را برحسب واحد فضا يا طول بيان كـرد. معمـولاً در نجوم، رسم بر اين است كه فاصله ها يـا بـازه هـاى فضضايي را بر حـسب واحــد زمـان بيـان مى كنند. همحخنين، مى دانيم كه براى دريافــت يــا ارسـال بيـام بـا مححــوديت سـرعت مواجــه هستيم كه درحقيقت، اين محدوديت را الصل دوم نسبيت ايجاد مى كند. حال، اگرفاصله هاى

1- Light Cone
3 - Future light cone

2 - Past light cone
4 - Present or Elsewhere

كيهانى درنظر گرفته شوند، دراين صورت، تأثير اين اصل به طور بارزترى آشكار مى گـردد. بـه عنوان مثال، هر گاه در علم ستاره شناسى بيان شود كه نزديكـ ترين ستاره، Y/ F/ سال نـورى بـا مـا



 امروزه، ابزارها و وسايل نجومى اين امكان را به بسشر مـى دهنـد تـا بتوانــد كهكـشانها و اختروشهاى بسيار دور دست، حتى تا فاصلةٔ Y ا ميليارد سال يا بيشتر را رصد نمايد. ايـن گفتـه


 گفته مى شود، مثلاً ستاره ای ه يا • ا ميليون سال با ما فاصله دارد. معنى اين گفتـه ايـن اسـت
 خورشيد رصد مى گردد، درحقيقت وضعيت خورشيد را كه مربوط به 1 دقيقه و •ب ثانئه قبل آن است، مشاهده مى شود.

بنابراين، بايد به اين نكته توجه نماييم كه هنگـامى كـهـ سـتار گان يـا كهكـشانها را رصــد

 فاصلهٔ بسيار نزديك؛ در ناحئ مخروط نور گذشتهٔ ما قرارمى گیيرنــ؛ زيـرا بـراى رؤيـت آنهـا بايد فوتونهاى نور از آنها به جشم مـا برسـند كـهـ البتـه، درايـن صـورت، مــدت زمـانى سـرى مى شود تا اينكه فوتونهاى نور گسيل شده از آنها به جشم ما بر سند. به تعبيـر ديگـر، مـى تـوان گفت كه ما در رأس قلهٔ زمان قرار داريم و هـر چجـيزى را كـه مـشاهلده مـى كنـيم مربـوط بــه گذشتهٔ آنهاست. اين قله يا هخشوطز زمان" را در نـسبيت، اصـطلاحاً مخـروط نـور مـى نامنـد.

مقلذمه أى بر نسبيت نحاص IV\&
همحچنين متخروط نور يكك ناظر يا يكك ذره وا مـى تـوان مسموعـةُ تمـام رويـدادهايى در نظر گرفت كه بازه بين آنها و ناظر يا ذره صفر است كـهـ ايسن مطللـب در بخشش بعـلد توضـيح داده

مى شود.
حال با اين توضيحات، مى توان نتيجهه گرفت كه به علت ثابت و مـحـلود بـودن سـرعت نور يا اصل دوم نسبيت، امكان اينككه بتـوانيم وضنعيت عـالم را همزمـان مـشاهلده كنيمَ، يـا از

 بى نهايت منتقل شوند، وضعيت به گونهُ ديگُرى است. يعنى، در فيزيكك نيـوتنى تـصور بــراين است كه در يكك آن مى تـوانْ وضـعيت حـالٍ همـهُ عـالم را مسشاهله نمـود. بنـابراين، مفـاهيم گَشته، حال و آينده در فيزيك نيوتنى با تصوير نسبيتى اين مفاهيم كاملاً اختلاوف نارند. اما نكتئ مهـمى كه در ايننجا مى توان به آن اشاره نمـود، ايـن اسـت كـه اگگر فوتونهـا در فضاى دو بعلى در نظر گگرفته شونلد، جهانخطط آنها به صـورت متخروطـى در فـضا- زمـان سـه بعدى خواهل بود. بنابراين، در اين هحالت، اگر دحور زمان را با صفحاتى موازى صفحهُ xy يا با صفنحات همزمانى قطع دهيم، سطح مقطع حاصل، دوايرى خخواهند بود كه شعاع ايـن دوايـر فاصلةٔ فو تونها يا فاصلئ جهجهٔ موج نور دو بعلى را از مبلأ نـشان مـى دهنـلـ. الهـا حقيقـت ايـن است كه موج نور يا فوتونها در فضاي سه بعلى منتشر مى شوند. و جبهئه مـو جـج نـور، هنگـامى كه محيط انتشار سه بعدى است، به صورت كره خوواهلد بـود. بنـابراين، جهـانخخط نـور در ايـن حالت، يعنى در فضا- زمان جهار بعلى بايد به شكل ديگرى باشد. به عبارت ديگر، جهـانخط نور را در فضا-زمان جههار بعلى بايد به گونه ایى در نظر گرفت شـود كـه سـطح مقطـح آن بـا صفحات همزمانى به صورت كره باشد.

س - F : باز
بعلد أز آشنيى با مخروط نور6 أكنون6 مى توان در مورد بازه هاى فضا- زمال صسحبت كـرد. بــا توجه به رابطه́ (Y-V) مى توان بازه́ ناورداى فضا- زمان رادر سه حالت مورد بر بسى قـرار داد. در اين بخشش، اين حالتها را برزسى مى كنيم.

حالت اول: :
اگگردررابطئ (V-Y)؛ باشد، در اين حالت مى گوييمّ كه جدايّى بين دو رويداد يا بازه فضبا- زمان بين آنها زمانگّونـ'

است. بنابراين، در اين حالت مى توان نوشت:

$$
\Delta s^{r}=c^{r} \Delta t^{r}-\Delta x^{r}>0
$$

يا

 يعنى v را در تبديل مختصhات لورنتس قرار دهيم، خواهيم داشت:

$$
\begin{align*}
\Delta x^{\prime} & =\gamma(v)[\Delta x-v \Delta t] \\
& =\gamma(v)\left[\Delta x-\frac{\Delta x}{\Delta t} \Delta t\right] \\
& =0
\end{align*}
$$



 به شكل(1Fيعنى در مبدأ جارپوب 'S روى مى دهند، امـا در زمانهـاى محْتلـف. حـال، بـرأى بـه دسـت
 يعنى $\Delta S^{\zeta}$ استفاده كرد. دراين صورت، داريـم:

$$
\begin{align*}
\Delta s^{r} & =c^{r} \Delta t^{\prime r}-\Delta x^{\prime r} \\
& =c^{r} \Delta t^{\prime r}-0 \\
& =c^{r} \Delta t^{\prime r}
\end{align*}
$$

در نتيجه، خواهيم داشت:

1-Timelike

$$
\Delta t^{\prime}=\frac{\Delta s}{c}
$$

در واقع، $\Delta t^{\prime}$ بازه زمانى بين دو رويداد، درپارچوب 'S مـى باشل. ايـن زمـان را زمـان ويشهْ
 با استفاده از تبديل زمان لورنتس به دست آورد

$$
\begin{align*}
c \Delta t^{\prime} & =\gamma(v)[c \Delta t-\beta \Delta x] \\
& =\gamma(v)[c \Delta t-\beta v \Delta t]
\end{align*}
$$

در رأبطة)
رابطه مى توان نتيجه گرفت:

$$
c \Delta t^{\prime}=c \Delta t \sqrt{1-\beta^{r}}
$$



$$
c \Delta t^{\prime}=c \Delta t \sqrt{1-\beta^{r}}
$$

$$
=\Delta s
$$

$$
\Delta t=\frac{\Delta s}{c \sqrt{1-\beta^{r}}}=\frac{\Delta t^{\prime}}{\sqrt{1-\beta^{r}}}
$$

كه در واقع، همان رابطةُ اتساع زمان با شرط $\Delta x^{\prime}=0$ مى باشد.
 تو جه به ناوردا بودن بازة فضا- زمان، اين بازه در همهٔ جارجوبهایى ديگر نيز زمانگونه خواهـد بـوند. همـحْنين، رويدادهايى كه بازه بين آنها زمانگونه است، درداخل مـخروط نور واقـع مـى شـونلـ. درنتيجه، بين اينگونه رويدادها مى توان ترتيب زمانى معينى را در نظر گرفت. به عنوان مثال، با توجه به شكل ( مكان، يعنى $x^{\prime}=0$ روى مى دهنـد. و ازنظـر ترتيـب زمـانى، ابتـدا رويـداد 'E ، بعـد از آن رويداد O و درنهايت، رويداد $O$ E رخ خواهل داد. به طور كلـى، بـا توجـه بـه ترتيـب زمـانى معينى كه بين رويدادهاى واقع در داخل مخـروط نـور وجـود دارد، رويـلادههايى كـه قبـل از رويداد O اتفاق افتاده انل در دأخل مخروط نور پايينى يا در ناحية كذشتهٔ مطلق، نسبت بـه $O$
 متخروط نور بالايى يا از نظر زمانى در ناحيةُ Tيندهٔ مطلق، نسبت به O واقع مى شونل.


شكل(If- (I) : بازٔ فضا ـ زمان بين رويداد مبدأ و رويدادهاى واقع درداخل مخروط نور

دراينـجا نكتئ ديعرىى كه مى توان به آن اشاره كرد، اين است كـه رويـدادها يـى كـه در داخل مـخروط نور قرار مى گیرند، مـى توانــد روى يكـديگر ائـر بگذارنـد. بنـابراين، درايسن صورت، اصل عليّت را مى توان درمورد اين گونه از رويدادها به كار بـرد. همـان طـور كـهـ در فصل اول اشاره شل، اين اصل بيـان مـى كنــل كـهـ رويـداد علّــت قبـل از رويـداد معلـول روى
 ترتيب زمانى معينى وجود دارد و ايـن ترتيـب زمـانى در همـهُ چارچوبهـایى ديگـر نيـز حفـظ
 نور بالايىى را آيندة مطلقّ مّى نامند.

حالت دوم :
 دو رويداد موهومى در نظرگرفته شود، در اين حالت، مى گوييم كه جدايى بين دو رويداد يـا

بازه́ فضا- زمان بين آنها فضاگوند' است. دراين حالت، مى توان نشان داد كه دو رويـداد ممكـن است در يـكى زمـان، امامـا در مكانهاى مختلـف روى دهنـد. بنـابراين، اگـر بــازه بـين دو رويـداد فضا گونه باشد، بايد چارچקوبى وجود داشته باشد، به طـورى كـه دو رويـداد در يــك زمـان، امـا درمكانهاى مختلف در آن روى دهند. حال، با در نظر گرفتن بازء ناورداى فضا - زمان، داريم:

$$
\Delta s^{r}=c^{r} \Delta t^{r}-\Delta x^{r}<0
$$

 ديگر، براى برقرارى ارتباط بين چنين رويدادهايى به سرعتى بيش ازسـي


$$
\begin{gather*}
\text { دهند، مى توان از تبديل زمان لورنتس استفاده كرد. بنابراين، خواهيم داشت } 1 \text { (F\&- }) \\
c \Delta t^{\prime}=\gamma[c \Delta t-\beta \Delta x]=0
\end{gather*}
$$



بازءٔ فضايى بين دو رويداد را نيز به دست آورد:

$$
\begin{align*}
\Delta s^{r} & =c^{r} \Delta t^{\prime r}-\Delta x^{\prime r} \\
& =\circ-\Delta x^{\prime r} \\
& =-\Delta x^{/ r}
\end{align*}
$$

بنابراين، بين دو رويداد فضا گونه درنظر گرفت. برایى به دست آوردن اين فاصـله، مجـدداً مـى تـوان از تبديلات لورنتس استفاده كرد. در اين صورت، خواهيم داشت: $\Delta x^{\prime}=\gamma[\Delta x-\beta c \Delta t]$ $=\gamma \Delta x\left[1-\beta \frac{c \Delta t}{\Delta x}\right]$

$$
\begin{equation*}
=\gamma \Delta x\left[1-\beta^{r}\right] \tag{-}
\end{equation*}
$$

$$
=\Delta x \sqrt{1-\beta^{r}}
$$

فضا - زمان نسبيتى 1V9
 نتيجه، براى بازه هاى فضاگونه، فاصلةُ ويزٔه بين دو رويداد برابر

$$
\begin{align*}
\Delta x^{\prime}=\Delta s & =\Delta x \sqrt{1-\beta^{r}} \\
& =\Delta x \sqrt{1-(c \Delta t / \Delta x)^{r}}
\end{align*}
$$



 در چارچوب 'S همزمان با رويداد واقع در مبلأ، يعنى O رخ مى دهند.


شكل (ّ--(1)) : بازهٔ فضا - زمان بين رويداد مبدأ و رويدادهاى واقع در خحارج مخروط نور

در اين حالت، يعنى برایى رويلادهاى فضاگونه به دليل محدوديت سرعت نـور، يـا اصـل دوم نسبيت، ترتيب زمانى معينى بين آنها وجود ندارد. برایى نشان دادن ايـن موضـوع، مسى تـوانٍ از نمودار فضّا - زمان استفاده نمود.
 بگيريم. اين رويداد درجارجوبهاى S و 'S بعد از رويداد O اتفاق مى افثل. اما همين رويداد


، حارحوبها را به ترتيب در نقاط C C A A و B قطع مى كنند.
 دراين صورت، رويداد E همزمان با O خواهد بود. بنابراين، دراين ناحيه ماننـد ناحيـئ داخـلـ

 فضاگونه يا رويدادهاى واقع در ناحئ حال به كار برد.


شكل (I-Y) : عدم وجود ترتيب زمانى معين بين رويدادهاى واقع در خاري
 رويداد O اتفاق مى افتد.

اولاً : اصل عليّت را در مورد رويدادهايى مى توان به كار بـرد كـه در يـك مكــان از يـك





 بايد از علامتى با سرعتى بيش از سرعت نور استفاده نماييم. از طرف ديخر، در در اين ناحيه ممكـن

است دو رويداد به طور همزمان و در دو مكان مختلف اتفاق بيافتـند كـه درايـن صسورت، بـراى برقرارى ارتباط بين آنها بايد از علامت يا سيگنالى با سرعت بى نهايت استفاده شود.


اين منظور، با در نظر گرفتن اين تبديلات مى توان نوشت:

$$
t_{r}^{\prime}-t_{1}^{\prime}=\gamma(v)\left[\left(t_{r}-t_{1}\right)-\frac{v}{c^{r}}\left(x_{r}-x_{1}\right)\right]
$$

حال، با توجه به رابطهٔ فوق، مى دانـيم كــه اگـر دو رويـداد درچـارچوب S هـم مكـان باشـنلد، در ايـن صسورت، بـه رابطـهٔ اتتساع زمـان، يعنـى رابطـــة $\Delta t^{\prime}=\gamma(v) \Delta t$ بـا شـرط ( $\Delta x=0$
 نتيجه گرفت كه درچارچوب ${ }^{\prime}$ نيز دو رويداد همزمان رخ مى دهنـــ، يعنـى ' $\Delta t^{\prime}$ نيـز برابـر صفر است. براين اساس، دو ناظر درصورتى برهمزمان بودن دو رويداد توافق خواهنـل داشـت كه اين دو رويلاد در يكى از دو تارخوبه، در يكك مكان و به طور همزمان رنخ دهند. اكنون، مى خواهيم در مورد رويلادهايى بحث كنيم كه هم مكان نيستند. براى ايـن منظور؛ مى توان از رابطهٔ (F- (F) استفاده كرد. با تو جهه به اين رابطـه، مـشاهلده مـى شـود كــه اگـر مقـدار داخل كروشـه برابـر صـفر باشـلد، در ايـن صـورت، دو رويـداد در چـارچوب 'S همزمـان روى مى دهند. و اگگر مقدأر داخخل كروشه، مقدارى مثبـت باشـلـ، دو رويـداد بـه همـان ترتيبـى كـه در
 يعنى



$$
t_{r}^{\prime}-t_{1}^{\prime}=\gamma(v)\left(t_{r}-t_{1}\right)\left[1-\frac{v}{c} \frac{x_{r}-x_{1}}{c\left(t_{r}-t_{1}\right)}\right]
$$

نوشت. رابطة́ (Fq-

$$
\frac{x_{r}-x_{1}}{c\left(t_{r}-t_{1}\right)}>\frac{c}{v}
$$

$$
\frac{\Delta x}{c \Delta t}>\frac{c}{v}
$$




 به مكان رويداد ץ برسد تا باعث ايجاد آن گردد. درنتيجه، اگر دو رويداد نسبـت بـه دو نـاظر، داراى ترتيب زمانى يكسان نباشند، در اين صورت يكى از رويدادها نمـى توانـــ علـت وقــوع رويداد ديخرى باشلد. در نهايت اينكه دو رويـــاد علّـت و معلـول هـيتِ وقـت نمـى توانـنـد بــ ترتيب مـخالف يكديگر، نسبت به دو ناظر رغ دهند. به عبارت ديگـر اصـل عليّـت بـا نـسبيـت ساز گار است.

حال، بعل از بررسى اصل عليّت در نسبيت، دراينجا ممكن أست اين سؤال مطرح شـود كـه
 طور كه در بخش مربوط به مخروط نور توضيح داده شد، هنگامى مى توان رويـدادهاى فـضنا گونه
 راحتى به وسيلهُ نمودار فضا- زمان توضيح داد. براى اين منظور فرض كنيـد كـه خورشـيد كـه در




شكل (VY-Y) : :ؤيت تاريكـ شدن خورشيد در زمين، سِ از قرارگرفتن زمين در مشخروط نور خورشيد.


متو جه نخواهند شد؛ زيرا زمين در داخل متخروط نور خورشيد قـرار نــدارد. بنـابراين، سـاكنان
 نورخورشيد را قطع كند. به عبارت ديگر، سـاكنان زمـين پـسس از N/D دقيقـه متوجـه تاريبك شذن خورشيل مى گردند. كه البته، در اين حالت، خورشيد در ناحيهُ گَذشتؤ مطللـق محخروط نورى مريوط به زمين قرار مى گيرد.

حالت سوم :
اكنون، اگرفرض كنيم كه كميّت ديگر، اگر بازهٔ بين دو رويداد را برابر صفر درنظربگيريم. دراين حالـت، گفتـه مـى شـود كـهـ

جدايى بين دو رويداد يا بازه́ فضـا - زمان بين آنها نورگونه' است.
همان طور كه مى دانيمه، بازه بـين دو رويــلاد در فضضاــ زمـان بـا فاصسلهُ بـين دو نقطـه در فضاى اقليدسى تفاوت دارد. يعنى اگر فاصلهٔ بين دو نقطه در فضاى اقليدسـى صـفر باشـد، آن دو نقطه برهم منطبق بوده و در واقع، يكك نقطه مى باشنل. درصورتى كه در فضضاى رويــلادها آگر بازه بين دو رويداد برابر صفر باشلد، وضعيت به گونه ای ديگر تعبير مى شود؛ زيرا با توجه

به رابطهٔ (V-Y)، اگگر

$$
\Delta s^{r}=c^{r} \Delta t^{r}-\Delta x^{r}=0
$$

 مى باشد. به بيان ديگر، در اين حالت بازه يا فاصلهُ فضايى بين دو رويـلاد بـا بـازهُ زمـانى بسين آنها برابر است. همعچنين، مى توان گفت كه اگر ناظرى بـخواهد از مكان يكى رويداد به مكان رويداد ديگربرود، او بايـل طـورى بـازه بــين دو رويـداد را طـى كند كـه بـازه فـضايى بـين دو رويداد، با بازهٔ زمانى بين آنها برابــر باشــلـ. و ايـن در صـورتى امكـان دارد كـه سـرعت نـاظر
 كيلو مترى ناظر S روى داده باشد. حاله، اگر اين ناظر دقيقاً يكك ثانيه بعد از انفجار، ثرتو نـور حاصل از انفجار را در يافت كنله، اين وضعيت نشان مـى دهلـكـه بـازه́ بـين رويـداد انفجـار و 1- Lightlike

رويداد دريافت پرتو نور به وسيلهُ ناظر S، برإبر صغر است. نكته ایى كه بايلد در اينجا به آن اشاره نمود، اين است كه براى صـفر شـلدن بـازه بـين دو رويداد، لازم نيست كه عملاً پرتو نورى از يکك رويداد به رويداد ديگر ارسال شود، بلكه تنها
 شرط c c $\quad$ برقرارگردد. بنابراين، با توجه به اين توضيحات مى توان گفت كـه اگَر بازه́ بين دو رویداد برابر صفر باشده نمى توان چارجّوبى را يافت كه دو رويـداد نـسبت بـه آن
 در داخل متخروط نـور يـا درخـارج آن واقـع شـوند. درنتيجـه، جنـين رويـدادهايى بايـلد روى مـخروط نور واقع شوند. درحقيقت ويزگگى اساسى اين رويلادها به گونه ایى است كه مختـصهُ فضايى و زمانى آنها با يكديگر برابرنل. و اين مطلـب بـه ايـن معنـى اسـت كــه نـاظر S بـراى رسيدن به رويدادهاى روى متخروط نورآينده، بايد با سرعت نور حركت نمايد. دقيقاً به همان صورتى كه اين ناظر با رويدادهاى روى محخـروط نـور گَشـشتهُ خـود، بـا سـرعت نـور ارتبـاط برقرار كرده است. به طور خلاصه مى توان گَفت كـه نـاظر S تنهـا در صسورتى مسى توانـلد بـا رويدادهاى روى مخروط نور Tيندهٔ خوح ارتباط برقرار نمايد كه ايسن ارتبـاط بـا سـرعت نـور صورت گيرد.
 ممكن است يكك ناظر با سرعتى نزديكك به سرعت نور؛ مسافت . .9 هزار كيلومتر را در يكك ثانيه طى نمايل.
 فضا- زمان سفر كند. به عنوان مثال، فرض كنيل كه ناظر ما مى خواهــل بـه سـتاره اى مـسافرت
 اين مسافرت را در ملت يكك ثانيه انجام دهل. درابتدا ممكن است، حنين به نظر برسد كه ايـن مسافر ت در اين ملت زمان امكان پذير نباشل؛ زيرا برتو نور در يـك ثانيـه حـداكثرمىى ثوانـد ". .

سرعت نور مسافت . .9 هزار كيلومتر يا يا بيشتر را در ملت يكك ثانيه طـى نمايل. اما بـا توجـه
 خود در نظر بگيرد، دراين صورت، با توجه به مطالبى كه در بخشش Yمحورهاى چار چجوبهاى مرجع بيان شل، واحـد زمـان بـراى چارجوبهـاى مرجـع انتخـابى او بـه




شكل(IA-Y) : مقايسُٔ واحد زمان در جارجوبهاى مرجع مختلف
بنابراين، اگر اين ناظر درامتداد OD مسافرت خود را Tاغاز نمايد، دراين صورت، OD محـور زمان يا به عبارت ديگر، جهانخط او خواهد بود و از نظر او OD برابر واحد زمان يا برابر يك

 بگيريم، دراين صورت، اين ناظرمى تواند در مدت يكك ثانيه . .9 هزار كيلومتر راطىى كند. إكنون، مى توان سرعت اين ناظر را نيز به دست آورد. از نظر نــاظر سـاكن Sك، نـاظر مـا دو واحد فضايی، يعنى به هارجوب $S$ بر برابر $u=x_{b} / t$ خواهد بود. دراين صورت، با داشتن $t$ مى توان نرعت نـاظر


كرد. بنابراين، از اين رابطه داريم:

$$
\begin{align*}
t_{b} & =\sqrt{1+x_{b}^{r} / c^{r}} \\
& =\sqrt{1+\frac{[r(r \times 1 \cdot \wedge m)]^{r}}{(r \times 1 \cdot \wedge m)^{r}}} \\
& =\sqrt{\Delta} s
\end{align*}
$$

كه دراين صورت، سرعت ناظر $u=r c / \sqrt{\Delta} \simeq / 9 c$ يا تقريباً برابر $u \simeq$ به دست مى آيل. همخֶنين، با تو جه به شكل (Кنسبت به جارچوبـ S، شيب محور زمـان يـا بـه عبـارت ديگـر، جهـانخط نـاظر واقــع در ايـن جارچوبها كاهش يافته و بالجكس شيب محور فضايى يا خط همزمانى اين جارپوبها افـز ايش مى يابد. از طرف ديگر، با كـاهش شـيب مححـور زمـان ايسن چار چوبهـا نـسبـت بـه محورهـاى
 هذلولى واحلد نسبت به چارچچوب ساكن S، محور هاى فضايیى و زمانى Tا بن به سمت يكديگر ميل مى كتنـد.

 واحد زمان در چارچوییى كه با سرعت نورحر كت مى كند، از نظـر نـاظر واقـع در چــارپوب؟ ساكن S، بى نهايت مى گردد. در صورتى كه اين واحد زمان، از نظر نـاظرى كـه بـا سـرعت نور حركت مى كند، همان يكك ثانيه است.
همان طور كه مى دانيم فوتونها ذراتى با جرم سكون صسفر مـى باشــنل. همچحنـين، ذرات ديگرى مانند نوترينوها كه در برتوهاى خورشيدى يافت مـى شـونلـ، ذراتـى بـا جـرم سـكون تقريباً صفر هستند. شيب جهانخخط اينگونه ذرات، نسبت بـه مـحورهـاى چـار چووب سـاكن S
 برهم منطبقنل. اين مطلب به آن معنى است كه جهانخط جنين ذراتى منطبـق بـرخط هممزمـانى آنها است. يعنى اگگر فرض نماييم كه (اللبته مى دانيم فرض نادرستى است)، نـاظرى بتوانــد بـا سرعت نور حر كت كند، دراين صورت، حنين ناظرى مى توانل همهٔ رويــدادهايى را كــه بـازه

فضا - زمالن نسبيتى IAV
فضا- زمان آنها برابر صفر است، به طور همز مـان و دز يـكك مكـان مـشاهلده كنــ؛ زيـرا بـراى جنين ناظرى، خخطوط همزمانى و هم مكانى بر يكديگ, منطبق مى شوند. از اين توضيحات مى توان چحنين برداشت كـرد كـه اگكر فوتـونى بخخواهـد، مــالًا فاصـلهُ فضايى به اندازة قطر كهكشان راه شيرى راطى نمايد، از نظر ناظر ساكن S S، مـلـت زمـان طـى اين مسافت برابر . .ا هزار سال مى باشــلـ، در صـورتى كـهـ از نظـر نـاظر همـراه فوتـون، ايـن مسافت تنها در ملت يكك واحلد زمان يا به عبارت ديگر، درمدت يكك ثانيه بيموده مى شود. اما نكته ایى كه در پايان مى توان به آن اشاره نمود، اين است كه بـا توجـه بـه ايـن كـه هـيـِج ذره الى با جرم سكون مـخالف صفر، نمى تواند سرعتى برابر سـرعت نـور يــا بزر گتـر از آن داشـته

 منخروط نور ذره درآن نقطه قرار گيرد.

مثال س- ع: با تو ججه به شكل ( ازجهانتخط هاى نشان داده شدهه براى يكك ناظر يا ذره امكان پذيرمى باشل.
 در امتداد آن حر كت مى كند، در واقع، بايل مسافتى كوتـاه را در مـلـت زمـانى طـولانى طـى كنل. البته، او مى تواند اين مسافرت را با سرعتى كوچچكتر از سرعت نور انجام دهد.


FA حال، اگر جهانخطط CD در نظر گرفته شود، با توجه به اينكه شيب اين جهانخط برابـر درجه است، دراين صورت، اين ناظر يا ذره بايد دقيقاً يـكك واحـــ فـضايى رادر مـلـت يـك

1 1 مقدمه إى بر نسبيت نحاص

واحح زمانى طى نمايل. و اين كار در صورتى اهكان دارد كه سرعت ناظر يا ذره برابر سـرعت نور باشد. بنابراين، اگگر ذره يا ناظر ما بدون جرم سكون باشـد، مـسافرت در امتـدأد مـسير برايش امكان پذير مى باشد؛ زيرا تنها ذراتى مى توانند با سـرعت $C$ حركـت كنـــد كـه جـرم سكون آنها برابر صفر باشد. اين مطلب در فصل بعد بررسى مى گُردد. اكنون، اگر جهانط EF را درنظر بگیريمه يا اگر امتداد EF بخواهل جهانخط يـكك ذره يـا ناظرى باشد، دراين صورت، اين ذره يا ناظر بايد مسافتى طولانى را در مدت زمان كوتاهى طـى نمايل. در اين حالت، شيب جهانخط ذره يا ناظر كوچكتر از FD درجه بوده و سرعت ذره يا نـاظر نيز بايد بزر گتر از سرعت نوز باشد. بنابراين، مسافرت در امتداد EF امكان پذير نخواهد بود.

به طور خلاصه، زمان ويسشه' را مى توان زمـانى درنظر گرفـت كـه در چـارچونب سـكون يسك ساعت اندازه گرفته مى شود. بـه عبـارت ديگـر، بـازه زمـانى بـين دو رويـداد را كـه بـر روى جهانخط يكك ناظر رخ مى دهند، مى توان به عنوان زمان ويـرّه بـراى آن نـاظر درنظرگرفـت. بنابراين، برای هر ناظرمتحر كك مى توان زمان ويـرّه الى را تعريـفن كـرد. خـالل، بـا مراجعـه بـه

 مى شوند كه در مبدأ اين پارچجوبها واقع شــنه انـد. درحقيقـت، نقـاط A A، B، C و ... محـل
 واحل 1 اين هذلولى را در X هاى متختلف قطع مى كننل. درواقع، بازه زمانى بـين محـل تالاقى محـور زمان اين چارچوبها با هذلولى فوق، از مبدأ مشتر كك چارچوبها، برابر زمـان ويـزه در هر كـدام
 (اين جار چֶوبَ با هذلولى $\left.c^{r} t^{r}-x^{r}=0\right)$

1. Proper time


$$
c^{r} t^{r}-x^{r}=1 \Rightarrow c^{r} t_{A}^{r}-(0)^{r}=1
$$

$c \tau_{A} c t_{A}=O A=1$ يى باشد. اين بازه زمانى، معمولاً $c^{r} t_{A}^{r}=1$ كه دراين صورت كه مقدارى ثاببت در S است، نشان داده مى شود. همـحنين، مى تـوان زمـان ويـرُهٔ مربـوط بـه ناظرهاى ديگر را نيز با تو جه به سرعت آنها نسبت به چارچوب S به دسـت آورد. بـراى ايـن منظور؛ مى توان از بازهٔ ناورداى فضا- زمان استفاده نمود. بنابراين، داريم:

$$
d s^{r}=c^{r} d t^{r}-d x^{r}-d y^{r}-d z^{r}
$$

حال، با توجه به تعريف زمان ويزه درچچارجوبهاى محتلف، رابطة(

$$
d s^{r}=c^{r} d t^{r}=c^{r} d \tau^{r}
$$

نوشت؛ زيرا همان طور كه قبلاً بيان شد، زمان ويزه را مى توان بازهُ زمانى بين دو رويداد معـين در نظر گرفت كه در امتدأد جهانخط ناظر واقع درچارجوبهاى مختلف رخ مى دهنــلـ. درايـن صورت، بازءٔ فضايى بين اين دو رويداد برابر صـفر خواهــد بـود. اكنـون، مـى تـوان از روابـط (

$$
\begin{align*}
d \tau^{r} & =d t^{r}-\frac{1}{c^{r}}\left(d x^{r}+d y^{r}+d z^{r}\right) \\
& =d t^{r}\left[1-\frac{1}{c^{r}}\left(\frac{d x^{r}+d y^{r}+d z^{r}}{d t^{r}}\right)\right] \\
& =d t^{r}\left(1-\frac{1}{c^{r}}\left[\left(\frac{d x}{d t}\right)^{r}+\left(\frac{d y}{d t}\right)^{r}+\left(\frac{d z}{d t}\right)^{r}\right]\right)
\end{align*}
$$

بنابراين، مى توان نوشت:

$$
d \tau^{r}=d t^{r}\left[1-\left(v^{r} / c^{r}\right)\right]
$$

در( دیN-

$$
\begin{align*}
& d \tau=d t \sqrt{1-\beta^{r}} \\
& d t=\frac{d \tau}{\sqrt{1-\beta^{r}}}
\end{align*}
$$




ناظر واقع حر جارجوب ساكن S، با رابطءٌ

$$
t_{c}=\frac{\tau_{c}}{\sqrt{1-\beta^{r}}}
$$

داده مى شود كه همان رابطةٔ اتساع زمان مى باشل.

ش
همان طوركه قبلاً اشاره گرديل، جهـانخط يـكك نـاظر يـا يـك ذره درهـر نقطـه يـا رويـداد از جهانخط ناظر يا ذره، بايد در داخل مـخروط نـور مربـوط بـه آن رويـداد قرارداشتته باشــلـ. در نتيجه، در هرلحظه روى جهانخط ناظر يا ذره، مى توان چارپوب لتختى تعيين كرد كه ناظر يــا

 هر لحظهُ معين از جهانتخط ناظر، مماس بر جهانخط ناظرخواهد بود.


رويداد $A$ در امتداد جهانخط ناظر
در نتيجه، دراين حالت با فـرض عدم تأثيرشتاب روى آهنگَ كار ساعت همراه ناظر، مى توان
 شتابدار يكسان در نظرگرفت. حال، اگر فرض كنيم كه 'S، جارچچوب سـكون آنـى نـاظر يـا ذره باشل، دراين صورت، مى توان نوشت:

1- Instantaneous rest frame

فضا ـ زمالن نسبيتى 191

$$
\begin{align*}
d s^{r} & =c^{r} d t^{\prime r}-d x^{\prime r} \\
& =c^{r} d t^{\prime r}-0 \\
& =c^{r} d t^{\prime r}
\end{align*}
$$

$$
d s=c d t^{\prime}=c d \tau^{\prime}
$$

 ناظر شتابدارثبت مى شود. از اين رو مـى تـوان آذ را بـه عنـوان زمـان ويـشّة نـاظل ثـتابدار در نظر گرفت. درنتيجه، در اين حالت رابطهُ(ץ- •צ) را مى توان به صورت

$$
d t=\frac{d \tau}{\sqrt{1-\beta^{r}(t)}}
$$


 مى توان از Tن به عنوان يك پارامتر روى جهانخط ناظر يا ذره استفاده كرد. در نسبيت، ناوردا
 نـسسبيتى، بــراى بــه دســت آوردن سـرعت آن ، ازچــار بــردار مكــان ذره بايــد نـسبت بــه
 روى آهنگك كار ساعت ندارد و تجربه نيز ابن مطلب را تأييد مى كند.
r -
در دو بخش قبل، زمان ويزُه براى يكك ناظر يا ذره ای كه داراى حر كـت يكنواخـت يـا شـتابدار
 هرناظر يا ذره أى با توجه جهانخطى كه در فضا- زمان طى مى كند، زمان را از روى سـاعتى كـهـ

 ساعت متحر كك دارد؛ زيرا با توجه به اينكه هر ناظر يا ذره الى در امتـداد جهـانخط هـاى معينـى



 در شکل (Y- اY)، جهـانتخط دو سـاعت رسـم شـلده اسسـت. بـه طـورى كـه يكـى از آنهـا
 مى كند. حال زمانى كه به وسيلةُ اين دو ساعت ثبت مى شود، درمقايسسه بـا يكــديگر تفـاوت خواهنل داشت؛ زيرا با توجه به مطالبى كه بيان گرديل، هر كدام از ايـن سـاعتها كـه در امتـلداد جهانخطى حر كت مى كننلف، داراى زمان ويزءّ معينى خحواهند بود. بنابراين؛ مى توان ادعا نمود كه آهنگك كار ساعت بستگى به مسيرى دارد كه مى بيمايل.


شكل (Y|-Y) : بستگی T آهنگ كار ساعت به مسير
حال، با الين توضيحات مى توان نتيتجه گرفت كــه اگـر جهـانتخط معلـومى در نظرگَرفتـه شود، دراين صورت، هرناظر يا ذره ایى كه اين جهانتخط راطى كنلد، زمانى كه سـاعت همـراه آنها ثبت مى كند، يكسان خواهل بود. درواقح، زمان ويـزّه بـراى هـر ســاعتى دلخـواه (اتمـىى' مكانيكى يا هر نوع ديگَر) در طى يكك جهانخط معين يكسان خواهد بود. اكنون، با تو جه به شكل (Y-




براى ساعت ساكن مى توان نوشت:

$$
\begin{align*}
\Delta \tau=\int d \tau & =\int_{t_{1}}^{t_{r}} d t \sqrt{1-\beta^{r}} \\
& =\int_{t_{1}}^{t_{r}} d t \sqrt{1-o^{r}} \\
& =\int_{t_{1}}^{t_{r}} d t=\Delta t
\end{align*}
$$

بنابراين، در اين حالت اندازه گيرى مى شود. براى ساعت متحر كك نيز خواهيم داشت:

$$
\Delta \tau^{\prime}=\int_{t_{1}}^{t_{r}} d t \sqrt{1-\beta^{r}(t)}
$$

$\beta(t)$ (9ฯ- (\%) با يكديگر، مى توان نتيجـه گرفــت كــه
رابطه( $ا$ - \&)، مثبت بوده و انتگر الده در اين رابطه هميشه كو جكتر از يكك است. بنـابراين، بـه طور كلى مى توان گفت كه ساعت متحر كك با آهنگك كندترى نسبت بـه سـاعت سـاكن كـار
 ويگر، به ازای هر جههانخط، يكك زمان ويزُه مانْـــد بخش ب-19 در مورد ساعتهاى متحر كك يا باطلنماى دوقلوها مجدداً بحث مى شود
w همان طور كه در فصل اول اشاره گرديد، درفيز يكك كالسيك مى توان به دو روش سـاعتهاى دور از هم را همزهـان كـرد. يكـى از ايـن روشـها اسـتفاده از سـيگنال يـا علامـت بـا سـرعت بى نهايت مى باشد كه در اين روش مى توان همهُ ساعتهاى واقع در نقاط مشختلـف فضا رادر يك آن همزمان كرده درنتيجه، اين كار منجر به مطلق يا ناوردا بودن زمان وايجـاد يـكك زمـان
 براى همزمان كردن ساعتهأى دور از هم از آن إستفاده نمـود، انتقـال سـاعت مـى باشــد. البتـه، استفاده از اين روش در صورتى امكان دارد كه فرض نماييم كه انتقال ساعت إز يكك نقطه بـه

نقطُّ ديگر، تأثيرى در طرز كار آن نداشته باشد. اما با توجه به مطالبى كه در بخـش قبـل بيـان شد، استفاده از روش انتقال ساعت درنـسبيت امكان يـذير نمـى باشــلـ، زيـرا بـازه زمـانى كـهـ ساعتهاى متحر كك ثبت مى كننل، بستگیى به مسير دارد. براى توضيح بيشتر، فرض كنيد كه دو ناظر A و B كه در فاصلهُ دورى از يكديگر قـرار دارند، مى خواهند ساعتهاى همراه خودشان را با يكديگرهمزمان نمايند. برایى ايسن منظـور، بـا تو جه بـه شـكل (Y-Y)، اگَر آنهـا ازسـاعت ديگـرى ماننـد سـاعت C اسـتفاده كنــل. درايـن صورت، ابتدا بايد ساعت C با قرار گرفتن درمجاورت ساعت A، با A همزمان شده و سـجس براى همزمان كردن ساعت، B به مححل ساعت B منتقل شود.


شكل(YY-Y) : بستگى زمان ويزه به مسير
 مى توان جهانخط هاى متختلفى را انتخاب كرد. درنتيجه، ساعت C بعد از طلى هر كدام از اين جهانخط ها در هنگام رسـيدن بـه B، زمانهـاى مختلفـى را نـشان خواهــد داد. بنـابراين، بـراى همزمان كردن ساعتهايىى كـه درفاصـلهُ دورى از يكـديگر قـرار دارنــلـ، اسـتفاده از ايـن روش امكان بذير نمى باشل. براين اساس، دراين گونه مـوارد مـى تـوان از علائسم الكترومغغناطيـسى استفاده كرد. اكنون، دراينجا اين روش را مورد بررسى قرار مى دهيم. در اين روش هر كدام از ناظرهاى همراه ساعتها، بايــد وضـعيت يـا اطالعـات مريـوط بـه ساعتهاى A و Bى خود را با ارسال سيگنال يا علامت به ناظر مقابل اططلاع دهد.
 يك سيگنال الكترومغناطيسى براى ناظر B ارسال كند. و ناظر B نيز پس ازدريافـت سـيگنال و ثبت زمان دريافت آن، بلافاصله Tان را منعكس كند. درهنگام برگشت سسيگنال و دريافـت

آن به وسيلهُ ناظر A، ساعت A زمان $A$ ر را ثبت مى كند.


شكل (ץ-r (Y) : همزمان كردن ساعتهاى A و B كه در فاصلئ دورى از
يكديگر قرار دارند.
 نتيجه مى گيرد كـه نيمـى از زمـان سـير نـور، صـرف رفـتن و نـيم ديگـر صـرف بر گـشتن آن مى شود. به اين ترتيب، او مى تواند براحتى نتيجـه بخيـرد كـه رويـداد باز تـابه، يعنـى وسـيله B، بايــل همزمـان بـا زمــان $T_{R}$ در روى جهـانتخط A $A$ خــودش باشــلـ. در نتيجـه، رويداد $T_{R}$ دقيقاً در وسط راه زمان بين ارسال سيگنال و زمان دريافـت آن بـه وسـيلة A قـرار دارد. بنابراين، ناظر A مى تواند زمان $T_{R}$ را از رابطء

$$
T_{R}=t_{1}+\frac{1}{r}\left(t_{r}-t_{1}\right)=\frac{1}{r}\left(t_{1}+t_{r}\right)
$$

به دسـت آورد. اكنـون، بـا تو جـه بـه ايـن توضـيحات، دو نـاظر A و Bبـراى همزمـان كـردن ساعتهايشان مى توانند به صورت زيرعمل كتند. ابتـدا نـاظر A در زمـان t, ي، يـك سـيگنال بـه سمت ناظر Bارسال مى كند. ناظر Bنيز پس از دريافـت سـيگنال، زمـان مربـوط بـه دريافـت سيگنال، يعنى ناظر B را در زمان مـى توانــد زمـان $T_{R}$ را بـا اسـتفاده از رابطــُ(Y-YV) بـه دسـت آورد. درنتيجـه ايـن نـاظر بــا داشتن $T_{R}$ و همجְنين $T_{R}^{\prime}$ مى تواند ساعت خود رازوى زمان t كه از رابطةٌ

$$
t=\left(T_{R}^{\prime}-T_{R}\right)+t_{r}
$$

اين روش را دروأقع مى توان يكك روش عملى براى همزمـان كـردن سـاعتهايى دانــست كه در فاصلهُ دورى ازيكديگر قرار دارنلد. بنابر اين، ناظرهاى مختلف بـا اسـتفاده از ايـن روش مى توانند تعريف درستى ازهمزمانى در فضا- زمان به دست آورند. البته، بايل توجه داشت كه در اينجا حالتى در نظر گرفته شد كه درآن، ناظرها نسبت به يكـــيگر سـاكن بودنـد. امـا اگـر آنها نسبت به هم ساكن نباشنل، دراين صورت، همان طور كه مـى دانـيم؛ در مـورد همزمـانى توافق نحخواهند داشت. البته، اين موضوع نيز مشكلى ايجاد نمى كند؛ زيــرا هـر نـاظرمى توانــد برای خود يكك تعريف بلون ابهام از همزمانى به دست مىى آورد.

- 11 -
 قرارگزفته باشد. اكنون، مىى خواهيم با استفاده از نمـودار مينكوفـسكى ، طـول ميلـه را از ديـد ناظر S به دست آوريم. همان طور كه مى دانيمَ برایى اندازه گيرى طول ميلة متحـركـ، بايــ ابتدا وانتهاى T T به طورهمزمان اندازه گرفته شود.

 چارچپب سكون ميله اندازه گیرى مـى شـود. اكنـون، بـراى بـه دسـت آوردن طـول ميلـه در چارحوب SS، با استفاده از نمودار فضا- زمان مى توان به صورت زيرعمل كرد.


شكل (YF-Y) : انقباض طول
ابتــدا معادلــٔ جهـانخط انتهـاى ميلـه را از نظـر نـاظر واقـع در چــارچوب S $S$ بـه دسـت مى آوريم. برایى اين منظور، مى توان مؤلفه هاى فضايى و زمانى مربوط بـه انتهـاى ميلـه را بـا

و

$$
\begin{align*}
& x_{A}=\gamma\left(x_{A}^{\prime}+\beta c t_{A}^{\prime}\right)=\gamma L_{\circ} \\
& c t_{A}=\gamma\left(c t_{A}^{\prime}+\beta x_{A}^{\prime}\right)=\gamma \beta L_{\circ}
\end{align*}
$$

حال، با داشتن مختصات مربوط به رويداد اندازه گيـرى انتهـاى ميلـه درچـارچوبـ S، مسى تـوان
معادله خطى راكه از $A$ مى گذبرد و موازى محور ${ }^{\prime}$ است، به دست آورد. درنيتجه، داريم:

$$
c t-c t_{A}=\frac{1}{\beta}\left(x-x_{A}\right)
$$

اكنون، با درنظر گرفتن رابطهٔ ( (ヶq-9)، مى توان نوشت:

$$
\begin{equation*}
c t-\gamma \beta L_{\circ}=\frac{1}{\beta}\left(x-\gamma L_{\circ}\right) \tag{V}
\end{equation*}
$$

$c t=0$ در نتيجه، با توجه به شكل(Y\&-Y)، مححل تلاقى جهانخط انتهاى ميله را با محور X يا به دست مى آوريم. با اين كار درواقع، ابتدا و انتهـاى ميلـه در پـارچوب S $S$ بـه طورهمزمـان اندازه گرفته مى شود. بنابراين،

$$
\begin{equation*}
\circ-\gamma \beta L_{\circ}=\frac{1}{\beta}\left(x_{B}-\gamma L_{\circ}\right) \tag{VY-Y}
\end{equation*}
$$

مى باشد. دراين صورت، از رابطهٔ (VY-Y)، خواهيم داشت:

$$
x_{B}=\frac{L_{\mathrm{o}}}{\gamma}=L_{\circ} \sqrt{1-\beta^{r}}
$$

بنابراين، طول ميله در پارچوب S، از رابطة

$$
\begin{equation*}
L=x_{B}-x_{\circ}=L_{\circ} \sqrt{1-\beta^{r}} \tag{F}
\end{equation*}
$$

به دست مـى آيـلـ. اگرپـهـ انقبـاض طـول واقعيـت دارد، امــا مـشاهلده آن مسشكل اسـت. اگـر بخواهيم از يكك جسم متحر كك عكس بگيريمه بعلت تأخير زمـانى در رسـيدن نورازقـسمتهاى مختلف جسم به دوربين، عكس گرفته شده دارایى اعوجاج خواهلد بود. بدين معنى كه نـور از قسمتهايى از جسم كه دورتر از دوربين هستند، بايد از نـورِ مربـوط بـه قـسمتهاى نزديكتـر بـه دوربين، زودتر گسيل شود. در نتيجه تصوير گُرفته شده از يكك جـسم كـه بـا سـرعت نسبيتى حر كت مى كئد، هميشه دارایى اعو جاج خواهلد بود. يعنى اينكـه جـسم عــلاوه بـر انقبـاض در راستاى حر كت، دوران نيز مىى كند.

مثال زندگى مى كنند. فاصلة بين دو سياره برابر L بوده و هردو سياره در امتداد متحور X واقع شده
 ارسال نمايد. نمودار فضا- زمـان مربـوط بــه ايـن دو نــاظرو همــين طـور رويـدادهاى ارسـال و دريافت تيام راديويى به وسيلة آنها را رسم نماييل.

ب : اكنون، فرض كنيد كه ناظر 'S با سرعت $u$ بين دو سـيارهٔ Aو B، از A بـه سـمت
سيارء B درحر كت باشد. دراين صورت، نمودار فضا- زمان را از ديد 'S نيز رسم نماييد. جواب : الف : فرض كنيدكه
 دراين صورت، نمودار فضا- زمان رويدادها و همين طور جهانخط ها به صورت شكل(Y-Yه) الف خخواهد بو2. اين نمودار نسبت به جآحوب سكون H H رسم شده است.

ب : درجارجوب 'S ${ }^{\prime}$ ناظرهاى H و J با سـرعت U- حر كـت مـى كتنـد. درنتيجـه،



الفـ



فضا ـ زمان نسبيتى 199
رويداد مورد بازهُ زمانى بين رويدادهاى

 يكسان مـى باشـلـ. بنـابراين شـيب جهـانخط نـور يـا شـيب مربـوط بـه پيامهای را ديـويـى در هـر دوحأرجوب 'S و $S^{\prime}$ يكسان بوده و برابر $\pi / 4$ مى باشد. در نتيجه بـا توجـه بـه ايـن توضسيحات، نمودار فضا- زمان در چارچوب 'S به صورت شكل (Y-Y-Y) ب، خواهد بود. ششال ّ - ף : فرض كنيد كه دو ناظر A و B در سياره هاى M و N زندگى مـى كنــلـ. و فاصلةٔ بين دو سياره را برابر l درنظر بگيريل. همـحْنين، فرض كنيد كـه دقيقـاً دروسـط خـط واصل دو سيارهٔ M و N، سيارهٔ ديگـرى بـه نـام P قرارگرفتـه باشـل. حـاله دونـاظر A و $B$ و تصميم مى گيرند كه در زمان معينى درسياره́ P ، با يكديگر ملاقات نمايند. همیچنين، سرعت
 فضا- زمان دو ناظر را رسم نماييد. جـواب : اگر جهت محور X را ازسياره M به سمت سيارهٔ N رسم نماييم، دراين صورت، جهانتخط دو ناظر مطابق شكل (Y-Yצ)، خواهد بود.




مححل زندگى خود مى باشنلد. همـخنين، محور زمان t در c ضرب شده اسست تـا ct برحـسب فاصله بيان شود. از طرف ديخر، چحون محور زمان در c ضرب شـده اسـت، در نتيجـه عكـس شــيب، يعنــى $\Delta x / c \Delta t$ برابرســرعت ذره برحـسب واحـــد $c$ خواهـــل بـود. بــه عبـارت ديگر، حر كت كنده در نتيجه، شيب مماس بر جهانتخط هر ناظر درهـيـِ نقطـه ایى واقـع بـر جهـانخط
 اما سؤالى كه دراينجا مطـرح اســت، ايـن اسـت كـه نـاظر A و B درجــه زمانهـايى بايــ سياره هاى خود را تر كك كنند، تا بتوانند به طورهمزمان به سيارء مقصل، يعنى P برسند؟ براى „اسخ به اين سؤال مى توان از نمودار فضا - زمان (YV-Y) استفاده كـرد. باتوجـه بـه
 لحظه ایى بايد سياره هایى محل سكونت خودشان را تر كك كنند تا بتوانند بـه طـور همزمـان بـه
 چيام راديويى درخلاف جهت جريان زمان به سمت سيارهٔ M رسم نماييم، با اين كار مى تـوان رويداد مدحل تلاقى پيام را با جهانخطط ناظر به دست آورد.


شكل(FV-Y) : ترك همزمان ناظرهاى A $A$ و از سياره هاى M و ساله با توجه به شكل ايـن رويـداد، دقيقـاً منطبـق بـر رويـداد K، يعنـى رويـلـاد تـر كـ ناظر A از سياره M مى شود. بنابراين؛ مى توان به اين نتيجه رسـيد كه بـراى اينكـه دو نـاظر A



 Odotaty


## 促


 همزمان كنيم. ساده ترين روش برایى همزمان كـردن ايـن دو سـاعت ايـن اسـت كـه دقيقـاً در

 .
盾


> شكل(YA-Y) : نسبى بودن همزمانى




دو ساعت به يكديگر، مى توان خطوط همزمانى را نيز به دست آورد. اكنون، فرض كنيل كه حارجپوب محور x أين چارچپب درحر كت باشد. دراين صوزت، درچارچوب 'S جهانخط ساعتها بـه صورت قائم نخواهند بود؛ زير ا آنها با سرعت v- نسبت به جارپّوب 'S حر كت مى كنــد. أز طرف ديگر، با توجه به اصل دوم نـسبيت، جهـانخط نـور درهـر دو چـار جـوب بايـل داراى


 همزمان باشند، در چارچجوبهاى ديگر در حالت كلى همزمان نخخواهند بود.
r- بر الى به دست آوردن جمع نسبيتى سرعتها، ابتدا حالت زير را در نظر مى گيريم. فـرض كنيـد كه چارپپوب
 يعنى صورت زير به دست آورد.
 روابط $u=\Delta x / \Delta t$ و $v_{1}=\Delta x^{\prime} / \Delta t^{\prime} \quad u$ ميان شوند. حال، بـا اسـتفاده ازتبــديلات لـورنتس داريم:

$$
\begin{align*}
& \Delta x=\gamma\left(v_{r}\right)\left[\Delta x^{\prime}+v_{r} \Delta t^{\prime}\right] \\
& \Delta t=\gamma\left(v_{r}\right)\left[\Delta t^{\prime}+v_{\Gamma}\left(\Delta x^{\prime} / c^{r}\right)\right]
\end{align*}
$$

در نتيجه، مى توان نوشت:

$$
\begin{equation*}
u=\frac{\Delta x}{\Delta t}=\frac{\gamma\left(v_{r}\right)\left[\Delta x^{\prime}+v_{\gamma} \Delta t^{\prime}\right]}{\gamma\left(v_{r}\right)\left[\Delta t^{\prime}+v_{r}\left(\Delta x^{\prime} / c^{r}\right)\right]} \tag{VG-r}
\end{equation*}
$$

اكنون، با تقسيم صورت و مشخرج رابطةُ (W9-

$$
u=\frac{v_{1}+v_{r}}{1+\left(v_{1} v_{r} / c^{r}\right)}
$$

به دست مى Tيل. حال، مى خواهيم با استفاده از نمو دار فضا- زمان، رابطةٔ (VV-Y) را بـه دسـت

 جارجحوب 'S، درهمان راستا حر كت مى كند.


شكل (r-r-r) : جيع نسبيتى سرعتها با استقاده از نمو دار فضا ـ زمان
 حال، فرض مى كنيم كه مختصات اين نقطه در S به صورت (x, $S$ ) باشد. درنتيجه، هدف ما

 نظر بگيريم. دراين صورت، با توجه به فرض مـسأله، مسى تـوان نوشـت: $a$
 نقطءٔ B را برحسب a به دست آورد. اما مى دانيم كه متختصات نقطؤ A در S، به شكل

$$
\left(x_{A}, c t_{A}\right)=\left(a \sin \theta_{r}, a \cos \theta_{r}\right)
$$

مى باشد. همحچنين، با توجه به شكل ( (ץ- -

$$
\begin{equation*}
(x, c t)_{B A}=\left(\beta, a \cos \theta_{Y}, \beta_{1} a \sin \theta_{r}\right) \tag{Vq-r}
\end{equation*}
$$

بيان مى شود. بَ اين ترتيب، متختصات نقطءٔ B، درهارجوب S را مى توان با رابطة

$$
\left(x_{B}, c t_{B}\right)=\left(a \sin \theta_{r}+\beta_{,} a \cos \theta_{r}, a \cos \theta_{r}+\beta_{1} a \sin \theta_{r}\right) \quad(\Lambda \cdot-\mu)
$$

بيان كرد. اككنون، مى توان نسبت x به ct را درُ نقطةٌ B به صورت

بي دنـت آو


$$
\begin{gather*}
\beta_{u}=\frac{\tan \theta_{r}+\beta_{1}}{1+\beta_{1} \tan \theta_{r}}=\frac{\beta_{r}+\beta_{1}}{1+\beta_{1} \beta_{r}} \\
\ddots \ddots_{1} \\
u=\frac{\left.v_{1}, v_{r}\right]}{\left[1+\left(v_{1} v_{r}\right)+\pi\right.}
\end{gather*}
$$

 درنتيجه،
r - F : باطلنماى انبار و نردبان
دو كشاورز $A$ و $A$ انبارى به طول L
 انبار جالى دهند. اما طول نودبان خيلى بزر گتر ازطول انباراست. كشاورز B كه قلرى با نـسبـت



 ضريب تبديل


 كه طول نردبان، همحثنان برابر rL است. بنابراين حيشنهاد طرح دويدن براى حل مشخكل، آنها





俍، فرض







 r - r





نا



كرد كه كدام يك از دو كشاورز راست مى گويد.



 نظر كــشاورز B، رويــدادهاى C و D همزمـــان اتفــاق مــى افتنـلد. بــه عبــارت ديگــر، درچأرچوب S، نردبان مى تواند درانبار جاى مى گیـرد. درحـالى كـه در چجـارچوب سـكون نردبان يا 'S ${ }^{\prime}$ اين دو رويداد همزمان نبوده و در واقـ، رويـداد D، مـدتها قبـل از رويـداد اتفاق مى افتد. درنتيجه، مى توان گفت كه در حارجوب 'S ، نردبان درانبار نمى تواند جـاى گیرد. بنابراين، در اين چارجوب نمى توان لحظه أى را يافت كه درآن، دو رويداد C و D بـه طور همزمان روى دهند.



 حال با توجه به اين نتايج، مى توان گَفت كه هر دوى آنهـا راســت مـى گِوينـد. بـه بيـان دقيق تر، قرارگرفتن نردبان در انبار بـستگى بـه همزمـانى دو رويـداد دارد كـه همزمـانى نيـز، همان طور كه مى دانيم يكك اثر نسبى است. خلاصه اينكه قرار گرفتن نردبان در انبار بستگى به. جارچجوب مرجع دارد.

## محاسبات :

اكنون، فـرض كنيـد كـه ابتـدا و انتهاى انباردرجـارچووب سـكون آن يــا S، بـه ترتيـب در $x=0$ ، $x=L_{\circ}$ ، قرارگرفته باشل. بنابراين، درمرحلئ اول، در ورودى انبار بـاز اسـت و درانتهايی آن بسته مى باشد. كشاورز A، نردبان رادر حالىi كه مـوازیى محور x نگگـه داشـته


 مى باشد. همحچنين، فرض كنيل كهه در لحظهُ انبار منطبق شود. اكنون، مى توان زمان و مكـان وقـوع رويـدادهاى C و D را در جـارچوب سكون انبار يا S، معين نمود.
در چاریحوب سكون انبار، ابتداى انبار درهمهُ لحظه هـا در $x_{G}=0$ واقـع اســت. بنـابراين، طبق فرض، ابتداى نردبان درلحظهٔ $t=0$ ؛ برابتداى انبار منطبـق مـى شـود. و در لحظــهُ $t=0$ ؛ ابتلداى نردبان در انتهاى انبار به حر كتش ادامه مى دهد. در نتيجه، انتهاى نردبان در لحظةٔ

$$
t_{C}=\frac{L_{\mathrm{o}}}{u}=\frac{r L_{\mathrm{o}}}{c \sqrt{r}}
$$

به ابتدأى انبار، يعنى نردبان، يعنى K برابتداى انبار، يعنى H مـى باشــد. مختـصهٔ فضضايى رويـدأد C، در جـارجووب
 همـچحنـين، رويـداد D طبـق تعريـف، انطبـاق ابتـداى نردبـان، يعنـى J، بـر انتهـاى انبـار، يعنـى H، مــى باشــد. از طـرف ديخـر، انتهـاى انبـار درچــار جوب S در همـــُ لحظــه هــا
 و در لحظظه $t=0$ شروع به حر كت مى كند و در لحظه

$$
t_{D}=\frac{L_{\circ}}{u}=\frac{r L_{\circ}}{c \sqrt{r}}
$$



$$
\text { و( و } t_{C}=t_{D}{ }^{6} \text { مى باشند. }
$$

اكنون، مى توان اين دو رويداد را در چحـارجوب سـكون نردبـان يـا 'S، مـورد بررسـى قرارداد. برایى اين منظور، مى توان نشان داد كه درانتهايى انبار قبـل از بـسته شـدن در ابتـدايى آن، باز مى شوده به عبارت ديگر، درچحارجوب سكون نردبـان رويـداد D قبـل از رويـلاد رخ مى دهد. در نْتيجه، از نظر ناظر همراه نردبان يا كشاورز A، نردبان درانبار نمى توانل جاى





\& tho whe


$$
\begin{equation*}
=y^{2}+t_{C}^{\prime}=\frac{f L_{0}}{c \sqrt{r}} T_{C}, \tag{AV-r}
\end{equation*}
$$


(4)

$$
x_{C}^{\prime} \underset{\sim}{T}(v)\left[x_{c}=\beta_{c} t_{C}\right]
$$


( $\Lambda \Lambda-\mu)$


$$
=r\left[-\frac{\sqrt{r}}{r} c \frac{1}{c \sqrt{r}}\right]
$$





(4-8A)


$\qquad$

$$
\begin{equation*}
t_{D}^{\prime}=\frac{L_{0}}{c \sqrt{r}} \tag{يا}
\end{equation*}
$$

$\cdots \cos ^{\prime}=\frac{L_{0}}{c \sqrt{r}}$
به دست مى T ايل. مختصئ مكانى اين رويداد نيز، برابر





Y*A M
$t_{C}^{\prime}=r t_{D}^{\prime}$ كـ

央


 متجذ名 موy






 هِ منظور فرض
 جاى النـكه برسيده شو







به آن) و رويداد C، يعنى بسته شدن درورودى انبار( دقيقاً بعـد ازعبـور انتهـاى نردبـان ازآن) همزمان مى باشد. بنابراين، چس از آنكه انتهاى نردبان وارد انبار مى شوده بلافاصـله درورودى انبار بسته مى شود. درنيجه، دراين حالت نيز إگرجه يك ديوارجايگزيزين در انتهايى انبار شـده است، اما باز هم رويداد C اتفاق مى افتد. اكنون، بايد نـشان دهـيم كـه ايـن رويـداد در همـهُ چارچجوبها، ازجمله چارچهوب سكون نردبان يا چارچوب 'S نيز نردبان در انبار جاى مى گيرد.

در جارچوب 'S، همان طور كه قبلاً بررسى شد، ابتداى نردبان قبل از آنكـه انتهـاى Tن وارد انبار شود، با ديوار انتهايى انبار برخورد مى كند. اما اين موضوع به آن معنـى نيست كـه انتهاى نردبان متوقف شود و وارد انبار نشود يا اينكه رويداد C اتفاق نيافتل. به عبـارت ديگـر،
 برخورد بلافاصله T گگاه نمى شود. بنابراين، انتهاى آن تا زمانى كه از برخـورد مطلـ نـشود، بـه حر كت خود با سرعت $u=c \sqrt{\text { ح }}$ ادامه مى دهـد. امـا سـؤالى كـه دراينجـا ممكـن اسـت مطرح شود، اين است كه بعد از چه مدت، انتهاى نردبان از برخورد مطلع مى شود؟ برایى پاسِخ به اين سؤال مى تـوان از نمـودار فـضا- زمـان استفاده كـرد. شـكل (Y-Yب)، نمودار فضا-زمان را درجارچوبهایى S و 'S نشان مى دهد.


شـكل (Y- Y Y): نمـودار فـضا ـ زمـان انبـار و نردبـان : الـف: نـسبت بـه چارچوب سكون انبار يا S ب : نسبت به هارچوب سكون نردبان يا

MII فضا ـ زمان نسبيتى
با تو جه به نمودأر، رويداد برخورد را بـا D نـشان داده ايــم • بنـابراين، بـرايى اينكـه رويـداد برخورد، يعنـى D، بـه انتهـاى نردبـان اطـلاع داده شـود، مـى تـوان از يـك سـيگّال كـهـ داراى سرعت c است، استفاده كرد. حال، اگگر رويداد ارسائ سيگنال را كه همزمان با رويـداد برخـورد است با D نشان دهيم و همحچخنين اگر رويداد دريافت سيگّنال ، درانتهـاى نردبـان بـا E نـشان داده شود. دراين صورت، رويداد هاى D و E به وسيلةٔ جهانخط فوتون از يكديگر جدا مى شوند. حال، با اين توضيحات مى توان نتيجه گرفت كه انتهاى نردبان قبـل از آنكـهـ از برخـورد مطلع شود، وارد انبار شده و در ورودى انبار بـسته مـى شـود؛ زيـرا دز چجـارچوب 'S ، مـدت زمانى كه طول مى كشد تا سيگنال از رويـلاد برخـورد D يـا ابتـلـاى نردبـان، بـه أنتهاى آن برسل، برابر rLo/co


 طور خلاصه اينكه رويداد C در هر دو چارپپوب S و 'S روى مى دهد. درنتيجـه، درهـردو جارجوب؟، نردبان مى تواند در انبار جای مى گیی
w - 7 ا : باطلنماى دو قلو ها
يكى ديگر از پارادو كسها يـا باطلنماهـايیى كـه معمـولاً در مبحــث سـينماتيكك نـسبيتى مطـرح مى شود، باطلنماى دوقلوها' است. همان طور كه قبالًا اشـاره گرديـلد، اثرهـاى نـسبيتى انقبـاض
 دارند. به عبارت ديگ, اين اثرهاى نسبيتى معين نمى كنتد كه كدام چجـارچوب مرجـع سـاكن و كدام يكك متحر كك است. درواقع، اين مطلب، همـان اصـل موضـوع نـسبيت اسـت كــه بيـان
 مرجع لخت قائل شد. اما اين موضوع دو مورد چارچوبهاى نالخت يا شتابدار صدق نمى كنـد 1- Twin paradox
















 $又_{2}$








عبّار كه به م






 مبتنى بر پليدهٔ انتقال دويلر مى باشل كه مى توان اين معحاسبات را در بيسشتر كتابهـاى مربـو ط بـه




 E باز گشت به خحانه است.
 درهنگام رفـتن به سمت سياره دور دست، 'S باشل. درنتيْجه، اين چارچچوب بـا سـرغت v در
 مى كنيم كـه " ${ }^{\prime}$ نيزچـارپجوب سـكون فـضانورد، درهنگـام بازگـشت او بـه خانـه باشـلـ. ايسن چاریوب نيز در امتلاد همين محور بـا سـرعت V شروع مى شود و دوقلوى فضانورد با توجه به ساعت همراه خودش، در مـلدت زمـان $c t^{\prime}$ بـهـ سياره مى رسد. درمرحلهُ اول مسافرت، يعنى مرحالُ رفت، همـزادش N ه در امتـلداد جهـانخط خودش از $O$ به $A$ مى رسله. به عبارت ديگركمى توان گفت كه در ايـن مرحلـه، زمـان سـهرى
 بنابر اين، از نظر دوقلوى فضانورد، اين ملت زمان اتساع يافته و از رابطةٌ

$$
c t_{R}^{\prime}=\frac{c t_{A}}{\sqrt{1-(v / c)^{r}}}
$$



 از
 نظر فضانورد M $c t_{C}-c t_{B}=c \Delta t$ اتساع میى يابل و او مى توانل Tمانى را از رابط؛

$$
c t_{C}^{\prime \prime}=\frac{c \Delta t}{\sqrt{1-(v / c)^{r}}}
$$

محاسبه كند. بنابر اين، با تو جه به نمودار فضا- زمان، زمان كل سترى شلده در اين سفر فـضايى
 خو اهل بود. همخخنين، اگر به نمودار دقت نماييم، بازهُ زمانى از A تا B، روى جهانخط N $N$ نـه به مرحلهٔ رفت مربوط مى شود و نه به مرحلهُ بإزگشت فضانورد. امـا بـا إيـن حـال ايـن مـلـت



 داد كه فضانورد M به طور آنى و در يك لـطظه جهت سرعتش را تنيير مى ذهل. يا به عبارت ديخر در يك لحظه، هارجوب

 امتداد جهانخط N، اين نائيوستغى به وجود آيد.













 اين نظر نيز، Nساكن در زمين، مسن تر از همزادش M، ، خواهد بـد بود.

 مي كنتد. $A$ و $A$ سياره هاي ا











MIV فضا - زمان نسبيتى
 چارچوب
 دراينجا ابتدا مشاهدات A را هنگامى كه در امتداد جهانخط خودش حر كت مى كند، بررسـي مى كنيم. با توجه به نمودار(\%-
 ازگذشت زمان

 مى دهنلـ، $A$ به سياره ${ }_{\text {1 }}$ مى رسل. لازم بـه تــذكر اسسـت كـه سـاعتهاييى كــه هـمـراه دوقلوهـا مــي باشــند و سـاعت واقـع در
 بازگشت به زمين، هنگامى كه بـه رويـداد E در امتـداد ججهـانخط خـود در مو محلــهُ بازگگشت

 $c t_{F} c t_{G}$ بهارپّو

 جارچوب زنمـان ct ${ }^{\prime \prime}$ درچــارچوب سكون A و B ه، درهنگام باز گشت آنها به زمين مى باشند كه بـراى برهيز از شـلوغى نمـودار رسم نشده أنل.)در نهايت A، در رويداد $C$ به زمين برمى گردد. اكنون، با تو جه تقارنى كه در اين دو مسافرت وجود دارد، دو قلـوى B نيـز مسشاهدات مشابهى را درحين مسافرت خود خواههل داشت. بنـابراين؛ پـس از بايـان مسسافرت و باز گـشت آنها به خانه، همسن خْواهند بو2؛ زيرا هر كدام از آنها جهانتخط هايى يكسانى راطى مى كتند

 يكسانى راطى كنند: هحالل، إگز فزضس كنيم كه آنها مسير مسابقه را بـا سسرعت ثابـت و برابـر طـى كنتن، روشن است كه، از نظلر داور مـسابقه كـه نـسبت بـه زمـين سـاكن اسـت، A و B بـه طـور
 فضا- زمان برزسبى نما بيلد.

 خطط پِايان هسانقه رسيلذ النسنت، A در امتلاد جهانخخط خودش، هنوز در C قـرار دارد. از طـرف



مثالز
 جهت هم، مسير يكسان مسابقه را به سمت نقطهُ پايان، يعنى O با سرعت برابر طى كنتـد. در ايـن صورت، واضح أست كه از نظر داور مسابقه كه نسبت به زمـين سـاكن اسـت، هـر دو دونــله بـه طور همزمان به نقطهٔ پايان مسابقه، يتنى O مى رسنلد و نتيجهٔ مسابقه برابر مى باشلد. حالل، بـا رسـم نمودار فضا_زمان مسابقهٔ دو دونله نسبت به چارچووب زمين يا داور مسابقه:
 ب : درجارجوب سكون دوندهٔ B، هنگامى كه جهانخطط دوندهٔ Bبا جهانخط نقطهُ شروع خود، يعنى جهانتخط F تالققى مى كند، دوندهٔ A درچه نقطه ايى از جهانخط خودش قرار دارد. ج : از نظر دونده A ، رويلاد شروع دونلدء B را معين نماييد.

د : از نظر داور مسابقه، هر دو دونلهه به طور همزمـان مـسابقه راشـروع مـى كنتـلـ. اكـــون؛ بررسى نماييد كه آيا درچارپپوب سكون دونله ها نيز مسابقه به طور همزمان شروع مى شـود يـا
 دونده ها چِگَونه خواهد بود؟

هـ : از نظر داور مسابقه، هر دو دونله به طور همزمان بـه خــط پايـان مسسابقه مـى رسـند. حاله، با توجه به نمودار فضاــ زمان، معين نماييد كه Tيا دو دونلده نيز در اين مـورد بـا يكـديگر
توافق دارند يا خير؟

جواب : نمودار فضاـ زمان مسابقهُ دو دونله در شكل ( - - $\Gamma$ ) رسم شلده است. حال، با تو جه به نمودار، ججواب سؤالات مطرح شده به صورت زير خخواهد بود. الف : رويدأد تلاقى جهانخط $B$ با جهانخط نقطهُ شروع خودش، رويداد C مى باشل. ب : درچار چوب سكون دونلدهٔ B، هنگامى كه جهانخط دونلذه B با جهانخط نقطهُ شروع








 موقعيّت رويداد
 $c t^{\prime \prime}$

شكل(YY-Y) : هر كدام از دونده ها مشاهده مى كند كه دوندةٔ ديگر مسابقه
را زودتر شروع مى كند.

هـ : با تو جه به نمودار فضا... زمان (Fپايان مسبابقه توافق دارند؛ زيرا هردو در رويلـأد E E به خطط پايان عسابقه مى رسند.

MYI فضا ـ زمالن نسبيتى

تمر.ين
1- با توجه به شكل (ץu r- فـرض كنيدكـه يـكك سـفينهٔ فـضايى بـا طـول ويـرّة $x=0$ محور X $x=0$ مى گَنرد. همزمان با اين رويداد يكك سـيگنال نـورى از قـسمت جلـوى سـفينه بـه سـمت قـسمت انتهاى Tن ارسال مى شود. در اين صورت:
 نورى يا فوتون را نسبت به جارچوبب S رسم نماييل.
 ج : همحچنين، از نظر حار جوب S، چحـه مـلـت طـول مـى كـشد تـا انتهاى سـفينهُ فـضايى از

$$
\text { نقطةُ } x=0 \text { بگنرد. }
$$

世- فرض كنيد كه واگنى با سرعت نسبيتى ازتونلى عبور مى كند. حال، نمودار فضاـ زمـان واگَ و تونل را در جارچوب سكون تونل رسمّ نموده و با توجه به نمودار رسم شده: الف : رويداد تلاقى جهانخط ابتلـأى واگن را با جهانخط انتهاى تونل را معين كنيد. ب : رويداد تلاقى جهانخط انتهاى واگن را با جهانخطط إبتداى تونل مشخص نماييد.
 واگن در چچه نقطه ایى قرار دارد؟
د : درحارجوبب سكون تونل، هنگامى كه انتهایى واگن داخل تونل مى شـود، ابتـدايى واگـن در چحه نتطه أي قرار دارد؟
هـ : درهارچوب سكون تونل بررسى نماييد كه آيا امكان دارد واگن در تونـل جـایى گيـرد.

 مقايسه نماييد. آيا مى توان گفت كه در اينجا تناقضى وجود دارد؟ f

سريعتر از B باشل و هردو دونده تا انتهاى مسابقه با سرعت ثابت بلونـلـ هدجنين، فرض كنيـلـ كـهـ مسابقه در امتلاد يكك خطط راست بو2ه و طول مسير هسابقُٔ دونلدهٔ A دو برابـر طـول مسسير مسابقعٔ دوندهٔ B باشلد. اكنون، اگكر از نظر داور مسابقه كه نسبت به زمين سـاكن اســت، هـر دو دونــده بـه طور همزمان به خطط پايان مسابقه برسند، در اين صورت؛ نمـودار فضضا_زمـان مـسابقه رأنسبت بـهـ چارجوب سكون زمين رسم نماييل. همحتْين، با توجه به نمودار فضا - زمان رسم شلـه : الف : رويداد تلاقى جهانخط دونلدهٔ A را با جهانخط نقطهُ پايان دونلده A، به دست آوريد. ب : رويداد تلاقى جهانخخط دوندهٔ B را با جهانخط نقطهُ پايان دوندهٔ B، معين كنيد.
 دونلدهٔ B در چه نتطه ایى از مسير مسابقه قرار دارد. د : در چارچوبب سكون دوندهُ B، هنگًامى كه دوندهٔ B بـه خـط پايـان مـسابقه مـى رسـد، دوندهٔ $A$ در چهه نقطه ایى از مسير مسابقه قرار دارد.

هـ : نتيتجهٔ مسابقه را نسبت به هارجوب سكون دونله هاى A و B معين نماييد.

 چارجوب زمين به صورت زير روشن مى شـوند. ابتـدا حر اغهـاى اول و سـوم بـه طـور هـم زمـان روشن شونده يعنى زمـان خ $t_{\gamma}>t_{\mu}>t_{\Delta}>t_{1}=t_{\mu}$
 هحر اغها يا زمين رسم نموده و به سؤالات زير پاسخ دهيد.
الف : ترتيب زمانى دريافت نور چراغهها، توسط ناظر واقع در مبدأ چار حوب زمين چخگونه است ب : آگر ناظرى با سرعت ثابت در امتداد خيابان حر كت كند، در اين صـورت، ترتيـب زمـانى روش شدن هراغها و همهحنـين، ترتيـب زمـانى دريافـت نـور حاصـل از روشـن شـدن آنهـا را در چارجوب سكون ناظر به دست آوريد. ج : هنگامى كه ناظر متحر كك نور جراغ خهارم را دريافت مى كنـد، در كجـا قـرار دارد؟

مقلفمه:
درمبحث سينماتيكك نسبيتى حركَت ذرات را در فضضا- زمـان، بــون در نظر گـرفتن عامـل يــا

 سرعتهاى معمولى با روابط فيزيك كلاسيكـ توافق كامل دارنــد. امـا در سـرعتهاى بـالا، ايـن روابط به طور بارز و T Tشكارِبا زوإبط نيو تنى منشأبه Tنها متفاوت هستند.

در مبحث ديناميك نتّبيتى نيزِ به روابطى برمى خوريم كه با روابـط مـشابه نيوتنى آنها اختلاف دارند. درحقيقـتن، ميـي تـوان گفــت كـه مكانيـك نيوتنى بـا نظريـهٔ نـسبيت خـاص
 لورنتس. براين اساس، قوانين نبيوتن يا بهـ طورككلى قوانين فيز يـك را نمـى تـوان بـــون تغيير و اصلاح آنها وارد نسبيبت كرد، ذرّتتيجه، ذزمينحث ديناميك نسبيتى نيز قوانين فيزيك را را بايد بـ

صورتى اصلاح نمود و يا تعميم داد كه بأ دو اصل نسبيت ساز گار باشنلد. بـه بيـان ديگـر، أيـن قوانين بايل طورى تعميم داده شوند تا بر اساس اصلل تناظل يـا همخـوانى، ، درحيطـهُ سـرعتهاى معمولى به همان روابط آشناى فيزيكك كلاسيكك تبديل شوند. با توجهه به اين موضو ع، قـوانين فيزيكك در شكل كالسيك آن رامى توان حاللت خاصى از اين قـوانين، در حاللـت نـسبيتى بـه شمار آورد. حالل، براى اصلاح يا تعميم اين قوانين، مى توان به دو روش عمل نمود. در روش اوله مى توان ازمفاهيم پاربردارها و ناوردايیى نسبيتى استغاده كـرد. و روش دوم كـه سـاده و قابل در كتر ميباشلد، اين است كه از همان مفاهيم Tاشـناى مكانيـكك نيـوتنى شـروع كـرده و بـا تعميم يا اصلاح آنها به مغاهيم مشابه نسبيتى آنها برسيم. در اين فصل ابتدا با استفاده از روش دوم، مفاهيم اساسى ديناميكك، يعنى جرم، نيـرو، تكانــه و انرزى را اصلاح نموده و سبس حر كت ذرات، يا برهمكنش آنها با يكديگر، بـا بهـره گيـرى از مفاهيم جديل، باجزئيات بيشتر و دقيق تر مورد بررسى قرار مى گيرد.

F بـراى بررسـى حر كـت يـكك ذره در مبنحـث ديناميـك نـسبيتى، مانــــد مكانيـكك كالاسـيكك، مى بايستى از قانون دوم نيوتن استفاده نماييم• براى اين منظور، قبل از بيان و تعميم ايـن قــانون به شكل نسبيتى T'ن، جرم نسبيتى را براى يكك ذره تعريف مى كنيه. حال، بـا توجـه بـه شـكل (

 يكديگرچهسبيه وتشكيل يكك جسم مر كب را مـى دهنــد.
 درشارپپوب 'S، ذره مر كب پس از بر خورد بايل به حال سـكون در آيـلـ اكنـون، هـى تـوان


1. Correspondence principle

 سرعت




$$
\begin{equation*}
m_{1} u_{1}+m_{r} u_{r}=\left(m_{1}+m_{r}\right) v \tag{1-F}
\end{equation*}
$$









 و
 سرعت ذرات را درجارجوب $S$ به دست مى آوريم. در اين هورت، نواهيمريم داشت:

$$
\begin{equation*}
u_{1}=\frac{u^{\prime}+v}{1+u^{\prime} v / c^{r}} \tag{Y-Y}
\end{equation*}
$$

9

$$
u_{r}=\frac{-u^{\prime}+v}{1-u^{\prime} v / c^{r}}
$$

 منظور، مى توان روابط (Y-Y) و (Y-Y) رابه ترتيب به صورت

$$
u_{1}-v=u^{\prime}\left[1-v u_{1} / c^{r}\right]
$$

$$
\begin{equation*}
u_{r}-v=u^{\prime}\left[v u_{r} / c^{r}-1\right] \tag{D-F}
\end{equation*}
$$

نوشت. حال، با تقسيم رابطءٔ (F-F) بر رابطةٔ (

$$
\begin{equation*}
\frac{u_{1}-v}{u_{r}-v}=\frac{c^{r}-v u_{1}}{v u_{r}-c^{r}} \tag{Y-F}
\end{equation*}
$$

درنهايت، اگر سرعت v رااز رابطءٔ (F-() به دست آورده و دررابطهٔ (F-F) جايگذارى نماييم

$$
\frac{m_{।}}{m_{r}}=\frac{\sqrt{1-\left(u_{r} / c\right)^{r}}}{\sqrt{1-\left(u_{\Upsilon} / c\right)^{r}}} \quad(\vee-\uparrow)
$$

در نتيجه، اگر بخواهيم قانون بايستگى تكانه در چارجوب S $S$ نيز برقرار باشل، دراين صـورت،


 برابر mo درنظر گرفت؛ زيرا هنگامى كه ذرات نسبت به ناظر يا جارچوب S، سـاكن باشـند،


$$
m(u)=\frac{m_{\circ}}{\sqrt{1-u^{r} / c^{r}}}
$$

 جرم ذره، نسبت به چارچوبى دانست كه ذره در آن سـاكن اسـت. همحخنـين، مـى تـوان جرم ذره، درچارچوب سكون آن درنظر گرفت. $m(u)$ را كه تابعى از سرعت ذره مى باشد،
 افزايش مى يابل. حال، اگر بخواهيم ازجنبئ تاريخى به مسأله افـزايش جـرم، برحـسب سـرعت آن اشاره نماييمه، بايد به ايـن مطلـب توجـه كنـيم كـه يكـى از نكـات قابـل اسستنتاج از نظريــ

الكترونى لورنتس، افزايش جرم الكترون، با افزايش سرعت آن بر بود. كه صصت اير اين بيش بير بينى









 راديواكتيو بتا، معادلئ تبديل جرم، يعنى رابطُ(


 منظور، فرض كنيد كه هارچوب يا ناظرى ماننـد

 نسبت مى دهل كه مقدار آن را مى تواند از رابطهُ (A- (1) به دست آورد.




2- Bucherer, Alfred Heinrich
 شناغته هى شود.
 نظر, ناظر وافقع در چارخوب S، جقدر خخواهد بود؟ برایى متحاسبهُ جرم ذره نسبت به ناظر S ك مى توان به صورت زير عمـل كـرد. چـون ذره نسبت به چارچوب 'S، با سرعت ' ${ }^{\prime}$ ' ${ }^{\prime}$ حر كت مى كند. بنابراين، جرم آن در اين چجـارجوب، باتو جه به رابطئ (ی-F)، برابر ' ${ }^{\prime}$ بوده و از رابطةٔ

$$
m^{\prime}=\frac{m_{0}}{\sqrt{1-\left(u^{\prime} / c\right)^{r}}}
$$

به دست مى Tيد. همحْنين، اگر سرعت ذره را نسبت به ناظر S، برابـر $u$ در نظر بگيـريم، در
إين حالت، جرم آن در اين چارچوب برابر m خواهد بود كه مقدار آن را مى توان از رابطهُ

$$
m=\frac{m_{\mathrm{o}}}{\sqrt{1-(u / c)^{r}}}
$$

به دست آورد. اكنون، با تقسيم رابطءٔ (F-- • ) بر رابطةٔ (F-q)، خواهيم داشت:

$$
\begin{equation*}
\frac{m}{m^{\prime}}=\frac{\sqrt{1-\left(u^{\prime} / c\right)^{r}}}{\sqrt{1-(u / c)^{r}}} \tag{11-F}
\end{equation*}
$$


 $u^{\prime \zeta}=u_{x}^{\prime \zeta}+u_{y}^{\prime \gamma} u^{\zeta}=u_{x}^{\zeta}+u_{y}^{\zeta}$ لورنتس سرعت استفاده نمـوده و بـه جــاى
 يعنى

$$
\frac{m}{m^{\prime}}=\gamma(v)\left[1+\frac{v u_{x}^{\prime}}{c^{r}}\right]
$$

$$
m=\gamma(v) m^{\prime}\left[1+\frac{v u_{x}^{\prime}}{c^{r}}\right]
$$



YMQ يئاميك نسبيتي

 حالت نيز به راحتى مى توان نشان داد كه رابطة (Y-Y|| باز هم برقرار خحو|هـل بـود. همـحنسين، مى توان با تعويض جاى پريمها و تبديل v به v-

$$
m^{\prime}=\gamma(v) m\left[1-\frac{v u_{x}}{c^{r}}\right]
$$

به دست آورد.

0, 0



دراين صورت:

نخواهد بود.
 درچارچوب ديگر نباشل. به عبارت ديگر، در اين حالت اين قانون در نسبيت نمى توانــلـ يـك قانون ناوردا باشد. كه درواقع، اين موضوع با اصل اول نسبيت تناقض دارد. همان طور كه اشاره شد، اگر ازشكل نيوتنى تكانه درنسبيت استفاده شـوده قـانون پايـستگگى تكانه در نسبيت ناوردا نمــى مانـــ بــراى نـشان دادن ايـن موضـوع مـى تـوان برخـور دو دو ذره را

 برخورد، برابر دراين صورت، بااستفاده از پايستگى تكانه در اين چارچوبس، هى توان نوشت:

$$
m_{1} \vec{u}_{i i}+m_{r} \vec{u}_{r i}=m_{,} \vec{u}_{i f}+m_{r} \vec{u}_{r f}
$$



با استفاده ازتبديلات لورنتس، قبل و بعد از برخورد به دسـت آوريـم. آكـر ايـن محاسـبات را
 چارچجوب 'S برقرار نخخواهل بود. به عبارت ديگر، أيـن قـانون در ايـن چـارچپوب نمـى توانـد
 تعريف كلاسيكك تكانه را كنار گذاشته و تعريف جديدى را براى تكانـئ يـكك ذره در نسبيت
 اساسى زير را برآورده نمايد.

 معمولى به رابطيٌّ نيوتنى تكانه تبديل شود.

اكنون، مى توان با يكك استدلال ساده و نه هحندان دقيقى، تكانه يكك ذره را در نسبيت بـه دسـت آورد. بـراى ايـن منظـور، مـى تـوان برخـورد دو ذرهٔ يكـسان را از نظـر دو نــاظر يــا جارجوب $S$ و ' ${ }^{\prime}$ بررسى كرد. بنابراين، فـرض كنيـد كـه دو ذره يكـسان A و B بـا سـرعت يكسان $\vec{u}$ در صفتحءٔ $x y$ حارچجوب S، مطابق شكل (Y-Y) الف، به سمت يكديگر حر كـت


شكل (Y-F) : تعريف تكانهُ خطى
در اينجا سرعت ذرات را مى توان طورى در نظر گرفت كه مولفهٔ y سرعت ذرات، نـسبت بـه مؤ لفئ x سرعت آنها بسيار بزر گك باشد. مى دانيمه پس از برخورد ذرات با يكديگر، مؤلفـــه


توضيح دقيقتر و مقايسه اندازء مؤلفه هاى سـرعت ذرات، مـى تـوان تعـدادى خطـوط مـوازى محور y، با فاصله هاى يكسان درچارچوب $S$ رسم كرد. از طرف ديگر، فرض مى كنيم كــهـ هر كدام از ذرات همراه خود ساعتى حمل مى كنند، به طورى كه اين ساعتها از قبـل همزمـان
 ساعتهاى همراه ذرات به صورت زير تعريف كرد. مـدت زمـان لازم، بـراى رسـيدن هر كـدام ذرات، از يكك خط عمودى به خط عمودى بعدى را برابر بازه يا واحد زمان برای هر كـدام از ساعتها در نظر مى گيريم. اين بازه يا واحد زمان را مـى تـوانيم بـا
 ساعتهاى همراه ذرات در اين چار جوب كاملاً مشابه خواهد بود بود.

حال، فرض كنيد كه چارچوب 'S درجهت مثبت محـور $y$ چـارچوب S، بـا سـرعت



 كرده وجهت اين مؤلفه ها معكوس شوند. بنابراين، اگگر چچه مؤلفةٔ 'x سـرعت ذرات، در در ايـن
 برخورد با هم برابر و درخلاف جهت هم مى باشند. همححنين، دراين چارحیوب مـى تـوان ذرهٔ را تقريباً ساكن درنظر گرفت. اما اندازء سرعت ذره B $A$
 ، A با آهنگك كندترى كار مى كند. براين اساس، مى توان رابطهُ اتساع زمان را بين سـاعتهاى همراه ذرات به صورت

$$
\begin{equation*}
T_{S A}^{\prime}=\frac{T_{S B}^{\prime}}{\sqrt{1-\left(u_{B}^{\prime} / c\right)^{r}}}=\gamma\left(u_{B}^{\prime}\right) T_{S B}^{\prime} \tag{19-4}
\end{equation*}
$$

 متوالى خطوط موازى براى ذره B، طولانى تر از همين مـدت زمـان بـراى ذره A مـى باشـد.

 كو $A$ ذره نمى تواند درست باشد. در تُتيجه، مى توان نوشت:

$$
\begin{align*}
p_{x B}^{\prime} & =\frac{m_{\circ} u_{x B}^{\prime}}{\sqrt{1-\left(u_{B}^{\prime} / c\right)^{r}}}  \tag{IV-F}\\
& =m_{\circ} \gamma\left(u_{B}^{\prime}\right) u_{x B}^{\prime}
\end{align*}
$$









ذرهٔ B، در سه بعد با راببطٔ

$$
\begin{align*}
\vec{p}_{B}^{\prime} & =\frac{m_{\circ} \vec{u}_{B}^{\prime}}{\sqrt{1-\left(u_{B}^{\prime} / c\right)^{r}}} \\
& =m_{\circ} \gamma\left(u_{B}^{\prime}\right) \vec{u}_{B}^{\prime}
\end{align*}
$$



$$
\begin{equation*}
\vec{p}=m(u) \vec{u}=m_{\circ} \gamma(u) \vec{u} \tag{19-F}
\end{equation*}
$$







ديناميكى نسبيتى شMM

برای يكك ذره به دست مى آوريم.
بيان تكانه يكك ذره با رابطءٔ (F-F (19) باعث مى شود كه: اولاً : هموردايى اين رابطه تحت تبلديلات لورنتس تضمين شود. ثانياً : قانون پايستگى تكانه در نسبيت نيز حغظ شود.

ُالثاً : نتايج تججربى بسه دسـت آمـلـه از بـرهمكنش ذرات، درمـوارد گونـاگون بـا رابطـة (19-F) ساز گار مى باشند. و نكتئ ديگر اينكه اين رابطه برایى تكانه، درحد سرعتهاى معمـولى به رابطهُ مشابه Tن در فيز يك كلاسيكك تبديل مى گردد.

F
همان طور كه مى دانيمه درمكانيكك كلاسيكك برایى بررسى حركـت يـكك ذره يـا سيـستمى از
 مرجع مناسب، نيرو يا نيروهايى را كه به ذره يـا سيـستم ذرات وارد مسى شـود، بسه طـور دقيـق مشخص نموده و سحس با استفاده از قانون دوم نيوتن، معادلات حر كــت ذره يـا سيـستم ذرات به دست مى T يل. همين طور با استفاده از قوانين دوم و سوم نيوتن درغياب نيروهاى خـارجى، قانون بايستگى تكانه خططى به دست مى آيد. در فصلهاى گذشته، پديده هاى فيزيك از نظر ناظرها يا چارچوبهای مختلف، بـدون در نظر گرفتن نيروها يا برهمكنش بين ذرات با يكديگر،مورد بررسى قرار گرفـت. در اينجـا ابتـدا قوانين نيوتن را درنسبيت بررسى نموده و سبس در صورت لزوم، اصلاح يا تعمـيم لازم را در مورد اين قوانين انجام مى دهيم. بعد از آن نيزنيرو را درنسبيت تعريف مى كنيم.
-
در فيزيكك كالاسيكك، براساس اين قانون، اگر جسمى درحال سكون يا در حر كـت يكنواخــت باشده به حالت سكون يا حر كت يكنواختت خود ادامه مى دهد، مغر آنكه نيرويى بـر آن وارد شود. به بيان ديگر، بر طبق اين قانون، جـسم در مقابـل تغيير حالـت، يعنى سـكون يـا حر كـت

يكنواخت از خود مقاومت نشان مى دهل كه أين مقاومت جـسمَ بـه للختـى يـا اينرسـى جـسمـ تعبيرمى گردد. همان طور كه در فـصل اول اشـاره شــه، از قـانون اول نيـوتن يــا قـانون لختـتى، مى توان براى دسته بندى چارْجوبهأى مر جحع استفاده كرد. به اين صورت كـه اگـر قـانون اول
 نالخت يا شتابدار خواهد بود.

از اين قانون بدون تغيير يا اصلاح آن، مى توان درنسبيت استفاده كرد. بـراى نـشان دادن

 مكانى و زمانى ذره را درجارچچوبى ديگر، مانند

چارچوب $S$ حر كت مى كند6 به دست مى آوريم. در اين صورت، خواهيم داشت:

$$
\begin{align*}
c t^{\prime} & =\gamma(v)\left[c t-\beta x_{\circ}\right] \\
x^{\prime} & =\gamma(v)\left[x_{\circ}-\beta c t\right] \tag{Y,-Y}
\end{align*}
$$

اكنون، مقدار ct زا از رابطةٔ اول(Y-Y) به دست مى آوريم، بنابراين داريم

$$
c t=\left[\frac{c t^{\prime}}{\gamma(v)}+\beta x_{\circ}\right]
$$



$$
\begin{align*}
x^{\prime} & =\gamma(v)\left[x_{\circ}-\beta\left(\frac{c t^{\prime}}{\gamma(v)}+\beta x_{\circ}\right)\right] \\
& =\left[\frac{x_{\circ}}{\gamma(v)}-\beta c t^{\prime}\right] \tag{YY-Y}
\end{align*}
$$

$$
c t^{\prime}=-\frac{1}{\beta} x^{\prime}+\frac{x_{\circ}}{\beta \gamma(v)}
$$






## MMO ديناميك نسبيتي

يكنواخت باشد، در جاجْوب ديگر نيز ممكن اسـت درحالـت سـكون يـا حر كـت يكنواخـت


 قوانين دوم و سوم نيوتن، وضعيت متفاوت است.

## - Y - F

دراينجا قبل از بيان شكل صحيح قانون دوم نيوتن در نسبيت، به چـنـد مـو رد از ناز ناسـاز گاريها و تناقض هايى كه ممكن است در به كار بردن شكل كالاسيكى اين قانون در نسبيت بـه ور وجـود آيد، اشاره مى كنيم. اگر از اين قانون، ينىى شود، ناساز گاريهاييى مانند، موارد زير به وجود مى آيـي

 سرعت c دست يافت.

ثانياً : اگر به سرعتى فراتر از سرعت نور دست يابيم، ضريب $\gamma$ در تبديلات لورنتس بـه

 مى كند كه اين نتيجه با اصل اول نسبيت تناقض دارد؛ زيرا براساس ايس اين اصل، در در نسبيت همــهـ هحارجو بهاى لخت هم ارز مى باشند.
 لورنتس هموردا نيست. بلكه اين قـنونة، بـه شـكل كلاسيكى آن تحـت تبديلات كاليله
 درجارچوب ديگر تبديل مى شود.
به طور كلى هموردايى يكك رابطه، به اين معنى است كهـ شــكل ظـاهرى آن در گَـنر از

يكك چارچوب مرجع به چارچوبب مرجع ديگر تغيير نكند. بنابراين، اين قـانون و بـه طـور كلى قوانين ديگرفيزيكك را بايد به طريقى اصلاح نماييم يا تعمـيم دهـيم كـه اولاًا، تحـت تبـديلات
 قوانين مشابه آنها در فيزيك كلاسيكك تبديل شوند.
 نـسبيتى آنهـا، مـى تــوان فــنون دوم نيـوتن زا بـه صـورت زيـر اصــلاح نمـود. بـرایى ايـن
 كلاسيكى اين قضيه به صورت

$$
\begin{align*}
w_{a b}=\int_{a}^{b} \vec{F} \cdot d \vec{l} & =m \int_{a}^{b} \vec{a} \cdot d \vec{l} \\
& =m \int \frac{d \vec{v}}{d t} \cdot d \vec{l} \\
& =m \int d \vec{v} \cdot \frac{d \vec{l}}{d t} \\
& =m \int_{\vec{v}_{a}}^{\vec{v}_{b}} \vec{v} \cdot d \vec{v}
\end{align*}
$$

مى باشد. بنابراين، مى توان نوشت:

$$
\begin{align*}
w_{a b} & =\frac{1}{r} m v_{b}^{r}-\frac{1}{r} m v_{a}^{r} \\
& =K_{b}-K_{a} \\
& =\Delta K
\end{align*}
$$

رابطة(F-Yه)، بيان مى كند كـه مقـدار كار انجـام شــده روى يـكك ذره، درجابـه جـايى آن از نقطهُ a تا b، برابر تغيير انرزى جنبشى ذره بين دو نقطئ a و bمى بأشد. جون كارانجـام شـده روى ذره، باعث افزايش يا كاهش انرزیى جنبشى آن مى گردد، درنتيجه، مى توان كـار انجـام شده روى ذره را برابر مقذار انرزّى جنبشى كسب شده بـه وسـيلهُ ذره درنظـر گرفـت. درايـن صورت، توان انجام كار يا تغيير انرزّى جنبشى جنس به وسيلهُ نيرو برابر

$$
\begin{equation*}
P=\frac{d w}{d t}=\frac{d k}{d t} \tag{Y9-Y}
\end{equation*}
$$

خواهل بود. اكنون، برالى تعميم اين قضيه بـه شـكل نسبيتى آن، فـرض مـى كنيم كـه سـمت

راست رابطة (Y-Y)؛ برابر تغيير انرزّى نسبيتى ذره باشد. در اين صورت، داريم:

$$
\begin{equation*}
w_{a b}=\int_{a}^{b} \vec{F} \cdot d \vec{l}=\Delta E \tag{YV-Y}
\end{equation*}
$$

در نتيجه، در اين حالت توان نيرو نيز، برابر

$$
P=\frac{d E}{d t}
$$

خواهد بود. حال، اگر فرض كنيم كه نيرو با رابطة

$$
\begin{equation*}
\vec{F}=\frac{d \vec{p}}{d t} \tag{Y4-F}
\end{equation*}
$$

تعريف شود، در اين صورت، رابطء (Y-Y) را مى توان به شكل

$$
\begin{align*}
w_{a b} & =\int_{a}^{b} \frac{d \vec{p}}{d t} \cdot d \vec{l} \\
& =\int_{a}^{b}\left(\frac{d \vec{p}}{d t} \cdot \vec{u}\right) d t=\Delta E
\end{align*}
$$

نوشـت. بنـابراين، آگَر رابطـةُ

 (F)

$$
\frac{d \vec{p}}{d t} \cdot \vec{u}=\frac{d E}{d t}
$$

است. درواققع، طـرفين رابطـةٔ (F-F) برابـر تـوان نيـروى اعمـال شــه بـه ذره مـى باشـلـ. در


 تعريف نماييم.
 جداگانـه محاسـبه كــرده و نتـايج حاصـل را بـا يكــديگر مقايـسه نمـود. بــرایى ايـن منظـور، مى توان از رابطةٔ (F-19) استفاده كرد. بنابراين، داريم:

$$
\begin{align*}
\frac{d \vec{p}}{d t} & =\frac{m_{\circ}}{\sqrt{1-\beta^{r}}} \frac{d \vec{u}}{d t}+\frac{1}{r c^{r}} \frac{m_{\circ} \vec{u}}{\left(1-\beta^{r}\right)^{r / r}} \frac{d}{d t} \frac{u^{r}}{c^{r}} \\
& =\frac{m_{\circ}}{\sqrt{1-\beta^{r}}} \frac{d \vec{u}}{d t}+\frac{1}{c^{r}} \frac{m_{\circ} \vec{u}}{\left(1-\beta^{r}\right)^{r / r}}\left(u \frac{d u}{d t}\right) \\
& =\frac{m_{\circ}}{\left(1-\beta^{r}\right)^{r / r}}\left[\left(1-\beta^{r}\right) \frac{d \vec{u}}{d t}+\vec{u}\left(u \frac{d u}{d t}\right) \frac{1}{c^{r}}\right]
\end{align*}
$$

$\frac{d \vec{p}}{d t}=\frac{m_{0}}{\left(1-\beta^{r}\right)^{r / r}} \frac{d \vec{u}}{d t}+\frac{m_{0}}{c^{r}\left(1-\beta^{r}\right)^{r / r}}\left[\vec{u}\left(\vec{u} \cdot \frac{d u}{d t}\right)-u^{r} \frac{d \vec{u}}{d t}\right] \quad(\mu-\digamma)$ اما از طرف ديگر، مى توان نوشت:

$$
\frac{d u}{d t}=\frac{1}{u} \vec{u} \cdot \frac{d \vec{u}}{d t}
$$

در نتيجه، مقدار داخل كروشه را در رابطه( (F-世

$$
\begin{align*}
{\left[\vec{u}\left(u \frac{d u}{d t}\right)-u^{r} \frac{d \vec{u}}{d t}\right] } & =\vec{u}\left(\vec{u} \cdot \frac{d \vec{u}}{d t}\right)-u^{r} \frac{d \vec{u}}{d t} \\
& =\vec{u} \times\left(\vec{u} \times \frac{d \vec{u}}{d t}\right)
\end{align*}
$$

نوشت. در اين صورت، رابطهُ (Y-Y) را مى توان به شكل

$$
\frac{d \vec{p}}{d t}=\frac{m_{\circ}}{\left(1-\beta^{r}\right)^{r / r}}\left(\frac{d \vec{u}}{d t}+\frac{1}{c^{r}}\left[\vec{u} \times\left(\vec{u} \times \frac{d \vec{u}}{d t}\right)\right]\right)
$$

نوشت. حال، اگگر طرفين(F-Y (F) را در بردار سرعت $\vec{u}$ ضرب داخلى نماييم، خواهيم داشت:

$$
\frac{d \vec{p}}{d t} \cdot \vec{u}=\frac{m_{\circ}}{\left(1-\beta^{r}\right)^{r / r}}\left(\frac{d \vec{u}}{d t} \cdot \vec{u}\right)
$$

اكنون، مى توان مقـدار سـمت راسـت رابطـة (F-اץ)؛ يعنـى اץ انسزى كل نسبيتى 'يك ذره با رابطهُ

$$
\begin{align*}
E(u)=\frac{m_{0} c^{r}}{\sqrt{1-u^{r} / c^{r}}} & =m(u) c^{r} \\
& =m_{0} \gamma(u) c^{r}
\end{align*}
$$

تعريفـ شود، در اين صورت، با مشتق گيرى از T ن نسبت به زمان مى توان به دست آورد

$$
\begin{align*}
\frac{d E}{d t} & =\frac{m_{\circ} c^{r}}{r} \frac{1}{\left(1-\beta^{r}\right)^{r / r}} \frac{d}{d t}\left(\frac{u^{r}}{c^{r}}\right)  \tag{rq-p}\\
& =\left[\frac{m_{\circ}}{\left(1-\beta^{r}\right)^{r / r}}\right] u \frac{d u}{d t}
\end{align*}
$$

رابطهٔ فوق نيز در نهايت، با توجه به رابطهٔ (FY-F) به صورت

$$
\begin{equation*}
\frac{d E}{d t}=\left[\frac{m_{\circ}}{\left(1-\beta^{r}\right)^{r} / r}\right] \frac{d \vec{u}}{d t} \cdot \vec{u} \tag{f,-F}
\end{equation*}
$$

نوشته مى شود. اكنون، با با مقايسهٔ روابط(F-F-F) (F.-F) مى توان نوشت:

$$
\frac{d \vec{p}}{d t} \cdot \vec{u}=\frac{d E}{d t}
$$

درنتيجه قانون دوم نيوتن رامى توان با رابطهُ جديل يا تعميم يافتهٔ (Y-Y)بيان كرد. همتخنين، به صورت ديگر نيزمى توان نشان داد كه اگگر قانون دوم نيوتن به شـكل رابطــُ (F) بيان گردد، أين تعميم با نسبيت خاص ساز گار اسـت. بـرا؟ ايـن منظـور، اگـر فـرض كنيم كه نيروى ثابت $F=F_{0}$ برذره ایى به جرم سـكون m وارد شـود، در ايـن صـورت از
 در اين صورت، داريم:

$$
\begin{equation*}
d p=d\left(F_{\circ} \cdot t\right) \tag{FY-F}
\end{equation*}
$$

$$
d\left(p-F_{\circ} t\right)=\circ
$$

بنابراين، كميّــت $p-F_{o} t$ را مـى تــوان برابرمقـدار ثـابتى ماننــد $A$ قـرار داد. حــال، اگــر در
 درنتيجه، $p=F_{0} t$ به دست مى آيل. در اين حالت، داريـم:

$$
\gamma(u) m_{\circ} u=F_{\circ} t
$$

از طرفن ديگر، مى دانيم در لحظات اولئه حركــت، رابطـة كلاسـيكك است؛ زيرادور اين حـالت $a_{0}$ شــتاب ذره در لـحظــات اوليــهُ حركـــت، تتحــت تـــأثير نيــروى ثابـــت F F مــى باشــــل

خ خواهل. حال، با محاسبهُ سرعت ذره از اين رابطه، خواهيم داشت: $\gamma(u) m_{\circ} u=m_{\circ} a_{\circ} t$

$$
u=\frac{a_{\circ} t}{\sqrt{1+\left(a_{\circ} t / c\right)^{r}}}
$$

از رابطة (F-F) (F)، مى توان نتيجه گرفت كه اگر مى كند. درغير اين صورت، سرعت ذره هر گز به سرعت حدى c نمى رسد. بنابراين، مى تـوان گفت كه بيان قانون دوم نيوتن به شكل رابطةُ (F-Y (Y) با نسبيت خاص ساز گار مى باشد. به اين ترتيب، اگگ از شكل تعميم يافتئ قانون دوم نيوتن اسـتفاده شـود، ناسـاز گَاريها يـا تناقض هايى كه درهنگـام اسـتفاده ازشـكل نيـوتنى ايـن قـانون بـه وجـود مـى آيـــ، برطـرف مى گردد. به عبارت ديگر، استفاده از شكل تعميم يافتهٔ اين قانون باعث مى شود كه: اولاً : براساس رابطةٔ جديد، براى قانون دوم نيوتن، نمىى توان برایى ذرات با جرم سـكون مـخالف صفر به سـرعتى بـيش سـرعت نـور دسـت يافـت. درنتيجـه، ضـريب $\gamma$ در ثبـلـيلات لورنتس يكك مقدارحقيقى باقى مى ماند.

ثانياً : قانون دوم نيوتن به شكل جديد آن تحت تبديلات لورنتس هموردا مى باشد.
 معمولى، اين رابطه به شكل كاسيكى آن تبديل مىى گردد. ازطـرف ديگـر، تجربـه معـادلات حر كتى را كه بر اساس رابطه́ (YQ-Y)، برأى ذرات استخراج مى شوند، تأييد مى كنذ.

ت
همان طور كه مى دانيم، قانون سوم نيوتن در فيزيك نيوتنى به دليل آنكـه بـر هــم كـنش بـين ذرات درهمهٔ خارچوبها آنى است، داراي اعتبار مـى باشــلـ بنـابراين، در نـسبيت بـه اسـتشناى موارد خاص، نمى توان از اين قانون استفاده كـرد. بـه عنـوان مثــال، اگــر بــرهم كـنش دو بـار نقطه ایى اگر فرض كنيم كه اين برهم كنش در يكك چارچوب همزمـان صـورت گيـرد، درچـارچوب لخت ديگر به دليل نسبى بودن همزمانى در نسبيت، همزمان نـخواهند بود. بنابراين، در صورتى

مى توان از اين قانونْ هر نُسبيت استفاده كرود كه برهمكتش بين ذرات يا رويــدادهاى كـنش و
 اين قانون، درنسبيت نيستيم. امـا مـوردى كـهـ در آن مـيى تـوان از قـانون سـوم اسـتفاده كــرد، مى تواند برخورد دو ذره ای باشدكه براثر تماس آنها با يكديگر صـورت مـى گيـرد. در ايـن حالت، نيروهاى كنش و واكنش به طور همزمان و دريـكك مكـان ظـاهرسى شـوند. در نتيجـه، درجارجوبهاى ديگر نيز همزمانى رويدادهاى كنش و واكنش تضمين مى گردد. بنـابراين، بـا توجه به اين نكات، مى بايستى نيروهاى كنش أز دور را با مفهوم كلاسيك آن كنار گذاشته و از مفاهيم ميدان و كنش ميدانها روى ذرات استغاده كرد.

بعد ازتعريف نيرو درنسبيت، اكنون مى تـوان انـرزّى جنبـشى نـسبيتى' يـكك ذره را بـه دسـت آورد. براى اين منظور، مقدار كارانجام شده به وسيلةُ نيروى $\vec{F}$ را درجابه جـايى يـكـ ذره بـه


$$
\begin{equation*}
d w=\vec{F} \cdot d \vec{r} \tag{49-f}
\end{equation*}
$$

كه در آن نيرو با رابطةٔ(Y-Y) تعريف مى شود، يعنى

$$
\begin{equation*}
\vec{F}=\frac{d \vec{p}}{d t}=\frac{d}{d t}[m(u) \vec{u}] \tag{FV-F}
\end{equation*}
$$

مى باشد. توان اين نيرو نيز با استفاده از رابطة(F-F\&)، برابر

$$
P=\frac{d w}{d t}=\frac{\vec{F} \cdot d \vec{r}}{d t}=\vec{F} \cdot \vec{u}
$$

 جنبشى ذره به اندازة $d k$ ميگّردد, بنابراين، داريمب:

$$
\begin{align*}
P=\frac{d k}{d t} & =\vec{u} \cdot \vec{F}=\vec{u} \cdot \frac{d \vec{p}}{d t}  \tag{fq-f}\\
& =\vec{u} \cdot \frac{d}{d t}\left[m_{\circ} \gamma(u) \vec{u}\right]
\end{align*}
$$

[^1]\[

$$
\begin{gather*}
P=\vec{u} \cdot\left[m_{\circ} \gamma(u) \frac{d \vec{u}}{d t}+m_{\circ} \vec{u} \frac{\gamma(u)}{d t}\right] \\
P=m_{\circ}\left[\gamma(u) \vec{u} \cdot \frac{d \vec{u}}{d t}\right]+m_{\circ} \gamma^{r}(u)\left[\frac{u^{r}}{c^{r}} u \frac{d u}{d t}\right]
\end{gather*}
$$
\]

اكنون، با فرض هـوازیى بـودن $\vec{u} \vec{u} \cdot d \vec{u} / d t=u d u / d t: d \vec{u} / d t$ كـهـ در ايـن صورت، رابطةُ (Q|-(Q) به صورت

$$
\frac{d k}{d t}=m_{\mathrm{o}}\left[\gamma(u)+\frac{u^{r}}{c^{r}} \gamma^{r}(u)\right] u \frac{d u}{d t}
$$

$$
\frac{d k}{d t}=\left[m_{\circ} \gamma^{r}(u)\right] u \frac{d u}{d t}
$$

نوشته مى شود. درنتيجه، خواهيم داشت:

$$
\frac{d k}{d t}=\frac{d}{d t}\left[m_{\circ} \gamma(u) c^{r}\right]
$$

حال، با انتگرال گیرى از طرفين رابطهُ (هF-F)، داريم:

$$
k=m_{\circ} \gamma(u) c^{r}+\text { const }
$$

براى به دست آوردن ثابت انتگرال گيرى در رابطهٔ فوق بايد از شرط اوليه استفاده نمود. اگر

 گيرى در رابط\& (ץ-

$$
k=m_{\circ} \gamma(u) c^{r}-m_{\circ} c^{r}
$$

$$
k=m_{\circ} c^{r}[\gamma(u)-1]
$$

حال، با تعريف

$$
E=m(u) c^{r}=m_{\circ} \gamma(u) c^{r}
$$

بـه عنـوان انـرزّى نـسسيتى كـل و

$$
k=E-E_{\circ}
$$

بنويسيم. درنتيجه، انرزى كل ذره از رابطهُ

$$
\begin{equation*}
E=k+E_{\circ} \tag{y,-4}
\end{equation*}
$$

به دست مى آيل. دراين رابطه، جملةٔ اول ناشى از كار انجـام شــهه روى ذره اسـت. جملـهُ دوم نيـز

 از اين نكته توجه كرد كه رابطه ایى را كه براى انرزّى كل يك ذره در نظر مى گيريم، بر اساس اصل همتخوانى ، بايد درحد سرعتهاى معمولى به رابطةٔ كلاسيكى انرزّى جنبشى تبّديل گردد. يعنى

$$
\begin{align*}
E=m_{\circ} \gamma(u) c^{r} & =\frac{m_{\circ} c^{r}}{\sqrt{1-(u / c})^{r}} \\
& =m_{\circ} c^{r}\left(1+\frac{u^{r}}{r c^{r}}+\frac{r u^{\digamma}}{\Lambda c^{r}}+\cdots\right) \\
& =m_{\circ} c^{r}+\frac{1}{r} m_{\circ} u^{r}+\cdots
\end{align*}
$$

كه دررابطةٔ فوق حون $u \ll c$ است، مى توان از جمالات بالاتر صرف نظر نمود. مى دانيم، درفيزيكك كلاسيكى، دريكك برخورد كشسان، انرزیى گرمايىى تو ليد نمى شود.



 به رابطةء مشابه كلاسيكى آن تبديل گردد. بنابراين، داريم:

$$
k=m_{\circ} c^{r}[\gamma(u)-1]
$$

$$
\begin{equation*}
=m_{\circ} c^{r}\left[\left(1+\frac{u^{r}}{r c^{r}}+\frac{r u^{\digamma}}{\Lambda c^{r}}+\cdots\right)-1\right] \tag{gr-Y}
\end{equation*}
$$

$$
\simeq \frac{1}{r} m_{\circ} u^{r}
$$

مشال ع - 1 : فرض كنيد كه دريكك شتابدهنده، ذره ايى با دادن انرزّى به آن، تـا سـرعتى
 كلاسيك مححاسبه گرذد، ميزان اشتباه درمحاسبه چحقدرخواهد بود؟ بهاب : باتو جه به رابطةٔ (

ذره درحالت كلاسيكك مى توان نوشت:

$$
A=\frac{k_{r e l}-k_{c l a}}{k_{r e l}}=1-\frac{1}{r} \beta^{r}[\gamma(u)-1]^{-1}
$$

 اكنون، اين بخـش را بـا بـه دسـت آوردن چنــد رابطــٔ مغيـد بـه پايـان مـى بـريـم. همـان


 يــك ذره بـه صــورت $p=m_{\circ} \gamma(u) u$ ، تعريـف مسى شــود. حــال، بــا مجــذورطرفين اين رابطه داريم:

$$
\begin{align*}
p^{r}=\left[m_{\circ} \gamma(u) u\right]^{r} & =m_{\circ}^{r} \gamma^{r}(u) c^{r}\left[\frac{u^{r}}{c^{r}}\right] \\
& =m_{\circ}^{r} \gamma^{r}(u) c^{r} \beta^{r}  \tag{gf-f}\\
& =\gamma^{r}(u) m_{\circ}\left[m_{\circ} c^{r}\right] \beta^{r}
\end{align*}
$$



$$
\begin{align*}
p^{r} & =\gamma^{r}(u) m_{\circ}\left[m_{\circ} c^{r}\right] \beta^{r} \\
& =\gamma^{r}(u) m_{\circ}\left[\frac{k}{\gamma(u)-1}\right] \beta^{r} \tag{90-4}
\end{align*}
$$

از طرف ديگرَ، با مداسبةٔ $\beta$ برحسب $\gamma(u)$ ، خواهيم داشت:

$$
\begin{equation*}
\beta=\frac{1}{\gamma(u)} \sqrt{\gamma^{r}(u)-1} \tag{99-F}
\end{equation*}
$$

اكنون، با جايگذارى مقدار $\beta$ ، از رابطةٔ (F-F) دو رابطة́ (F (90)، داريم:

$$
\begin{align*}
p^{r} & =\gamma^{r}(u) m_{\circ}\left[\frac{k}{\gamma(u)-1}\right] \beta^{r} \\
& =\gamma^{r}(u) m_{\circ}\left[\frac{k}{\gamma(u)-1}\right]\left[\frac{\gamma^{r}(u)-1}{\gamma^{r}(u)}\right] \\
& =k m_{\circ}[\gamma(u)+1]
\end{align*}
$$

$$
k=\frac{p^{r}}{m_{\circ}[\gamma(u)+1]}
$$

رابطئ فوق، ارتباط بين انزرُى جنبشى و تكانهُ يـك ذره زا بيـان مـى كنـد. ايـن رابطـهُ بـه ازاى
 مى گَردد. همحتنين، مى توان نشان داد، اگر 1 ٪ 1 باشلد، در اين صورت

$$
\begin{equation*}
p \simeq\left[1-\frac{1}{\zeta \gamma^{r}(u)}\right] \frac{E}{c} \tag{99-4}
\end{equation*}
$$

مى باشد. برايى به دست آوردن اين رابطه، مى توان (YA-Y) را به شكل

$$
p^{r}=k m_{\circ}[\gamma(u)+1]
$$

نوشت. حال، با جايگذارى مقدار $k$ از رابطة ( $k$ (

$$
\begin{align*}
p^{r} & =m_{0}^{r} c^{r}[\gamma(u)-1][\gamma(u)+1] \\
& =m_{\circ}^{r} c^{r}\left[\gamma^{r}(u)-1\right]
\end{align*}
$$

اكنون، با محاسبئ مقـدار مى توان به دست آورد:

$$
\begin{align*}
p^{r} & =\frac{E^{r} c^{r}}{\gamma^{r}(u) c^{r}}\left[\gamma^{r}(u)-1\right]  \tag{VY-Y}\\
& =\frac{E^{r}}{c^{r}}\left[1-\frac{1}{\gamma^{r}(u)}\right]
\end{align*}
$$

$$
p=\frac{E}{c}\left[1-\frac{1}{\gamma^{\Gamma}(u)}\right]^{y / r}
$$

كه حر نهايت با فرض 1 > $\gamma$ مى توان نوشت:

مقدمه أى بر تُسبيت خاص YZ7

$$
\begin{equation*}
p \simeq\left[1-\frac{1}{r \gamma^{r}(u)}\right] \frac{E}{c} \tag{VF-F}
\end{equation*}
$$

در يايان اينز بخشى، نكته ايى را كه بايلد به آن اشاره نمود، اين است كـه در يــك بـرهم كنش بين ذرات، لزوْمى ندارد انرزُى جنبشّى حايسته بماند؛ زيـرا ممكــن اسـت جـرم ذُرات در حين برهم كنش تغييرنمايند و بخشى از جرم آنها به انرزى تبديل گـردد. بـه عنـوان مثـال، در يك برخورد كاملاً ناكشسان، قبل از بر خورد انرزى جنبشى مخـالف صـنر اسـت در صـورتى كه بعد از برخورده اگگر ذرات به حالت سكون درآيند، انرزّى جنبشى كـل صـفر مـى گـردد.
 چارچوب ذرات برخورد كننده، داراى انرزی جنبشى مى باشنل. درصورتى كه در چـارپوب
 بررسى برهم كنش ذرات، آنچچه مهم است، پا يستگیى انرزیى كل مى باشل.

的
يكى ازنتايج بسيار مهم نظريهُ نسبيت خحاص را مى توان هم ارزى جرم و انرزى دانست. در اينجـا برای تو



شكل(
mor تكانه، ذرات جـيد اينجـاد شــده، هر كـدام بايـلـ بـا
 حر كت كنند. در اينجا مى توان ذرهُ اوليـه را يـكـ هستئ راديواكتيو يا حتى دو ذره در نظر گرفت كــه به وسلهُ يكك فنر فشرده به هم متصل شده اند. حال اگر فرض كنيم كه ذرهٔ اوليه دريكك پحـارحوب هاننـد S، درحـال سـكون باشـلـ و
 صورت، با تو جه به قانون پايستگیى انرزیى كل چر اين چحارچپوب، مى توان نوشت:

$$
\begin{align*}
& E=M_{\circ} c^{r}=E_{1}+E_{r} \\
& =m_{0,} \gamma\left(u_{i}\right) c^{r}+m_{o_{\gamma}} \gamma\left(u_{r}\right) c^{r} \\
& \text { حال، با استفاده از رابطهٔ (F-- F)، داريم: } \\
& E=\left(E_{0,}+k_{\uparrow}\right)+\left(E_{\text {or }}+k_{\Upsilon}\right) \\
& E-\left(E_{0,}+E_{\text {оץ }}\right)=k_{1}+k_{\curlyvee}  \tag{VV-Y}\\
& {\left[M_{\circ}-\left(m_{0,}+m_{\text {०ץ }}\right)\right] c^{r}=k_{1}+k_{\text {个 }}}
\end{align*}
$$

از طرف ديخرَ مى دانيم، انرزيهـاى جنبشى نظر گرفتن رابطه( VA-Y)، مى توان نتيجه گرفت:

$$
M_{\circ}>\left(m_{\circ,}+m_{\circ \gamma}\right)
$$

رابطهٔ (VQ-F) نشان مى دهد كه جرم سكون ذرات ايجاد شده بعلاز واياشـى، كو جـكتر از جـرم سكون ذرهٔ اوليه است. حال، با تعريف

$$
\begin{align*}
& \Delta m=M_{\circ}-\left(m_{0,}+m_{\circ \mathrm{or}}\right) \\
& \text { و با استفاده از رابطهُ (VA-F)، خواهيم داشت: } \\
& \Delta m=\frac{\left(k_{1}+k_{r}\right)}{c^{r}}
\end{align*}
$$

در اين صورت، با توجه به رابطةٔ فوق، مشاهده مى شود كه مقدارى از جرم ذزهْ اوليئ درحـال

 جنبشى، به ذرات توليد شده منتقل مى شود. همچحنين، اگر سرعت ذرات ايجاد شده در مقايسه با سرعت نور كوچجك باششـد، در ايـن

حالت، رابطهٔ (A1-F) را مى توانيم به صورت

$$
\begin{equation*}
\Delta m=\frac{1}{c^{r}}\left[\frac{1}{r} m_{0}, u_{1}^{r}+\frac{1}{r} m_{0 r} u_{r}^{r}\right] \tag{AY-Y}
\end{equation*}
$$

بنويسيم. البته در اين حالت، تنها انرزّى هاى جنبشى نيوتنى ظاهر مى گردند. از طـرف ديگـر،

ممكن است حالت عكس نيز درطبيعت روى دهل. يعنى ايـن امكـان وجـود دارد كـه دريـكـ برهم كنش، بخشى ازانرزّى ذرات به جرم تبلديل شده و ذره يا ذرات جلديـلى درحين بـرهم كنش ذرات ايجاد گردد. به عنوان مثال، مى توان برهم كنش زير را درنظر گرفت

$$
p+p \rightarrow p+p+p+\bar{p}
$$

در اين برهم كنش، بخشى از انرزُى بروتونهايى كه بـا يكـديگر برخـورد مـى كنتـد، بـه دو ذره

 فرايند توليد زوج را مى توان يكى از مهمترين فرايندها بزاى تبـديل انـرزّى بـه هجـرم در نظر گرفت. دراين فرايند، يكك فوتون به يكك الكترون و يكك ذره مثبت جديد به نام بـوزيترون
 كه به كمكك نظريئ مكانيكك موجى نسبيتى خود در بارئ انرزیى الكترون كـار مـى كـرد، پـيش
 به طورتجربى مورد تأييد قرار گرفـت. آندرسـون، پـوزيترون را درجريـان پرُوهسشهاى خـود، درمورد پرتو كيهانى كه در اتاقك ابرانجام مى داد، كشف كردد.

براين اساس مى توان گفت كه اگر به جسمى مقدارى انرزّى، به اندازء آن كم شود، جرم جسم بلدون توجه به نوع انـرزُى، بـه انــدازه
 الكترومنغاطيسى يا هر شكل ديخرى از انرزّى باشد.

در نتيجه، با توجه به توضيحات داده شده، مى توان گفــت كـه در نـسبيت اخـتلاف بـين انرزى مكانيكى و شكلهاى ديگر انززى كاملاً برطرف مى شود و همهٔ اشكال انـرزیى بـه طـور

## 1-Pair production, Electron - positron production

2- Pair annihilation
3- Dirac, Paul Adrien Maurice فيزيكدان نظرى انكليسى و يكى ازينيانكذاران مكانيك كوانتمى . وى در سال




PE9 ديناميك نسبيتى
يكسان مورد بررسى قرار مى گيرند. درحالى كه در فيز يكك كلاسيكك بايد هر كدام از اشـكال
 پايستگى انرزیى كل يكك ذره رادرحقيقت، مى توان نتيجه و بياملى از ساختار ايـن نظريـه در نظر گرفت. رابطهُ اينشتين آن را مطرح كرده اسـت و مـى تـوان آن را يكـى از پيامـلدهاى بـسيارمهم ايـن نظريـه

محسوب نمود.
ازهم ارزى جزم و انرزى مى توان نتيجهٔ مفيد ديعرى نيز بـه دسـت آورد؛ زيـرا اكـــون،
 جرم است. درحقيقت مى توان گفت كه هم ارزى جرم و انرزیى كـهـ بـه يـك مفهـوم واحـــ، يعنى جـم ـ انـزی منتهى مى شود، يكى از عملى ترين نتيجهٔ نظريئ نسبيت محسوب مى شـود. به طورى كه چچگونگیى واكنشها و فرايندهاى مربوط فروپاشى هسته ایى اين واقعيّـت را نـشان

 جرم ــ انرزّى مطرح مى شود. براين اساس، مى توان گفت كه
 واحد جهم در بـ مى گيسد )، قبل و بعد از واكنش بايسته مى ماند. و به طور مشابه:
 بسحسب واحد انشیى است )، قبل و بعد از واكنش هايسته مى هاند. اما مى توان گفت كه بيشترين استفاده اي كه امروزه از هم ارزى جرم و انرزی مى شود، مربوط به خورشيد است. به اين ترتيب كه درآن جرم ــ انرزّى درحال سكون، تبديل به انرزّى حرارتى مى گردد. امروزه بشر مى تواند، ججرم ــانرزّى در حال سـكون را بـه انـرزّى حرارتـى تبلديل نمايد. شكافت و گداخت هسته أى درحقيقت، روشهاى اين تبديل مى باشند. براى توضيح ييشتر، فرض كنيد كه در پار چوب T Tز

گردند، يعنى داشته باشيم:

$$
A_{1}+A_{r} \rightarrow A_{r}+A_{r}
$$

 باشد، دراين صورت مى توان مقدار انرزى حاصل از اين برهمكنش را به شكل زير محاسبه كرد.


ذرات ايجاد شده بعد از واكنش باشد. يعنى بايل داشته باشيم:

$$
E_{1}+E_{r} \rightarrow E_{r}+E_{\gamma}
$$



همصجنين، رابطةُ فوق را مى توان به شكل زير نوشت.
$k_{1}+\left(m_{\circ}+m_{\text {or }}\right) c^{r}=\left(k_{r}+k_{\varphi}\right)+\left(m_{\text {or }}+m_{\text {of }}\right) c^{r} \quad(\lambda \vee-\uparrow)$
اكنون، مى توان اختلاف انترزى جنبشى قبل و بعد از واكتش را به دست آورد. بنابراين، داريم:

$$
\begin{align*}
K_{f}-K_{i} & =\left(k_{r}+k_{\varphi}\right)-k_{\curlyvee} \\
& =\left(m_{\circ,}+m_{\circ r}\right) c^{r}-\left(m_{\circ r}+m_{\circ \varphi}\right) c^{r}
\end{align*}
$$

حال، اگگر مقدار انرزیى جنبشى آزاد شده از واكنش هسته ایى فوق را باQ نشان دهيم، در ايـن

$$
\begin{align*}
& Q=\left(m_{0,}+m_{\circ r}\right) c^{r}-\left(m_{\circ r}+m_{o^{\circ}}\right) c^{r} \\
& =\left[\left(m_{\circ,}+m_{\circ \zeta}\right)-\left(m_{\text {or }}+m_{\text {oץ }}\right)\right] c^{r} \\
& =\left(m_{o_{i r}}-m_{o^{\circ r}}\right) c^{r} \\
& =\Delta m c^{r}
\end{align*}
$$

در نتيتجه، مقدار Q در واقع، برابـر اختلاف انـرزّى سـكون هـسته هـاى قبـل و بعــد از واكــنش


$$
{ }_{r}^{\gamma} L i+{ }_{\zeta}^{\gamma} H \rightarrow{ }_{\varphi}^{\hat{\wedge}} B e+{ }_{0}^{!} n
$$

اشارْ نُمود. با محاسبئ جرم سـكون هـسته هـا، قبـل و بعــد از واكــنش، و بـا اسـتفاده از رابطــُ

Y01 ديناميك نسبيتى
 نتيجهئ اين محاسبه برابر $Q=10 / 1$ Mev خواهل بود.

اكنون، با به دست آوردن روابططى برای انرزى و تكانئ يكك ذره، مى توان اندازه يا مقدار

 انرزیى و تكانه ذره با روابط

$$
\begin{align*}
& E^{\prime}=\gamma\left(u^{\prime}\right) m_{\circ} c^{r}  \tag{91-F}\\
& \vec{p}^{\prime}=\gamma\left(u^{\prime}\right) m_{\circ} \vec{u}^{\prime} \tag{qY-Y}
\end{align*}
$$


 اين شِارچپوب، يُنى،


نماييم. برای أين منظور؛ فى دانيم درضريب

$$
\gamma(u)=\frac{1}{\sqrt{1-u^{r} / c^{r}}}
$$

سرعت $u^{r}=u_{x}^{r}+u_{y}^{r}+u_{z}^{r} u^{r}$ باشد.سالل، با استفاده از روابط مربوط
 وجايگذارى اينن مقادير در رابطةُ (Y-

$$
\begin{equation*}
\gamma(u)=\gamma(v) \gamma\left(u^{\prime}\right)\left[1+\frac{v u_{x}^{\prime}}{c^{r}}\right] \tag{9F-F}
\end{equation*}
$$

كه در Tن

$$
\gamma\left(u^{\prime}\right)=\frac{1}{\sqrt{1-u^{\prime r} / c^{r}}}
$$


 و(9Y-Y) به دست آورد. در نتيجه، داريم:

$$
\begin{align*}
E & =\gamma(u) m_{\circ} c^{r}=\gamma(v) \gamma\left(u^{\prime}\right)\left[1+\frac{v u_{x}^{\prime}}{c^{r}}\right] m_{\circ} c^{r} \\
& =\gamma(v)\left[\gamma\left(u^{\prime}\right) m_{\circ} c^{r}+v \gamma\left(u^{\prime}\right) m_{\circ} u_{x}^{\prime}\right]  \tag{99-Y}\\
& =\gamma(v)\left[E^{\prime}+v p_{x}^{\prime}\right]
\end{align*}
$$

ومؤلفه x تكانئ ذره هر اين جارجوبب نيز، برابر

$$
\begin{align*}
p_{x} & =\gamma(u) m_{\circ} u_{x} \\
& =\gamma(v) \gamma\left(u^{\prime}\right)\left[1+\frac{v u_{x}^{\prime}}{c^{r}}\right] m_{\circ} u_{x}
\end{align*}
$$



$$
\begin{align*}
& \text { گرفتن تعريف 'E و } \\
& p_{x}=\gamma(v)\left[p_{x}{ }^{\prime}+\frac{v}{c^{r}} E^{\prime}\right] \\
& p_{y}=p_{y}^{\prime} \quad, \quad p_{z}=p_{z}^{\prime} \tag{99-4}
\end{align*}
$$

بنابراين، روابط تبديلى انرزّى و تكانه، بين دو جارحوب $S$ و ${ }^{\prime} S^{\prime}$ به صورت

$$
\begin{align*}
& p_{x}=\gamma(v)\left[p_{x}^{\prime}+\frac{v}{c^{r}} E^{\prime}\right] \\
& p_{y}=p_{y}^{\prime} \quad, \quad p_{z}=p_{z}^{\prime} \\
& E=\gamma(v)\left[E^{\prime}+v p_{x}^{\prime}\right]
\end{align*}
$$

به دست مى Tَيند. از طرف ديگُر، مانند قبل با تبديل v به v- و همچچنين، بـا تعـويض جـاى چريمها، مى توان روابط وارون تبديل انرزّى و تكانأ ذره را در ' ${ }^{\prime}$ نيز به دسـت آورده در ايـن

$$
\begin{align*}
& \text { صورت، وارون اين دوابط تبديلى به شكل زيرخواهند بود } \\
p_{x}^{\prime} & =\gamma(v)\left[p_{x}-\frac{v}{c^{r}} E\right] \\
p_{y}^{\prime} & =p_{y} \quad, \quad p_{z}^{\prime}=p_{z}  \tag{1.1-F}\\
E^{\prime} & =\gamma(v)\left[E-v p_{x}\right]
\end{align*}
$$

همجنين، مى توان اين تبديلات را به صورت بردارى

$$
\begin{align*}
E^{\prime} & =\gamma(v)[E-\vec{p} \cdot \vec{v}] \\
\vec{p}^{\prime} & =\vec{p}-\frac{\vec{p} \cdot \vec{v}}{v^{r}} \vec{v}+\gamma(v)\left[\frac{\vec{p} \cdot \vec{v}}{v^{r}} \vec{v}-\frac{\vec{v}}{c^{r}} E\right] \tag{1,Y-Y}
\end{align*}
$$


 دراين صورت، تكانه و انرزّى كل ذرات، برابر مجموع تكانه و انرزّى تك تك ذرات سيستم خواهد بود. يعنى اگر $\overrightarrow{\text { خ }}$

$$
\begin{align*}
P_{x}^{\prime} & =\gamma(v)\left[P_{x}-\frac{v}{c^{r}} E\right] \\
E^{\prime} & =\gamma(v)\left[E-v P_{x}\right]
\end{align*}
$$

و همين طور،

$$
P_{y j}^{\prime}=P_{y j} \quad, \quad P_{z j}^{\prime}=P_{z j}
$$

خواهند بود. اكنون، مى توان با استفاده از اين روابط، قوانين پايستگگى انـرزّى و تكانـه را بـا دقـت بيشترى مورد بررسى قرار داد. دراينجـا مـى تـوان نـشان داد كــه اگگر در يـكـ چــارچوب قـوانين پايستگى تكانه يا انرزّى برقرار باشد، در اين صورت درهمـهُ چارچجوبهـاى ديگـر نيـز ايـن كميّتها پايسته خواهند بود. برای نشان دادن اين موضوع، مى توان گفت كه چجون كميّهاى پريم دار يـيك تر كيب خطى از كميّتهاى بلدون بريم هستند. بنابراين، مى توان روابط (ץ-r • ا) را به صورت

$$
\begin{align*}
& \Delta P_{x}^{\prime}=\gamma(v)\left[\left(\Delta P_{x}\right)-\frac{v}{c^{r}} \Delta E\right] \\
& \Delta P_{y}^{\prime}=\Delta P_{y} \\
& \Delta P_{z}^{\prime}=\Delta P_{z} \\
& \Delta E^{\prime}=\gamma(v)\left[\Delta E-v\left(\Delta P_{x}\right)\right]
\end{align*}
$$

نوشت. حال، با توجه به رابطهٔ (F-ه• (1)، اگر در چارچوب SS، قانون پايستگى تكانه و انـرزى برقرار باشنل، يعنى اگر كا گرفت كه قانون پايستگى انرزّى و تكانه برقر ار مى باشند.

نكتئ ديگرى كه در اينجا مى توان به آن انشاره نمود، ايـن اسـت كـه آگر قـانون بايـيستگى










 مستقل از يكديغر مى باشند.






$$
p_{x}=p_{\backslash x}+p_{\curlyvee x}
$$

مى باشد. حال، با توجه به قانون بايستگى تكانه،
 ديگرى مانند 'S بردسى نماييم، خواهيم داشت:

$$
\begin{align*}
p_{x} & =p_{\backslash x}+p_{\curlyvee x} \\
& =\gamma(v)\left[p_{\nmid x}^{\prime}+\frac{v}{c^{r}} E_{\curlyvee}^{\prime}\right]+\gamma(v)\left[p_{\curlyvee x}^{\prime}+\frac{v}{c^{r}} E_{\curlyvee}^{\prime}\right] \\
& =\gamma(v)\left[p_{\backslash x}^{\prime}+p_{\curlyvee x}^{\prime}\right]+\gamma(v) \frac{v}{c^{r}}\left[E_{\curlyvee}^{\prime}+E_{\curlyvee}^{\prime}\right]
\end{align*}
$$

$$
p_{x}=\gamma(v) p_{x}^{\prime}+\gamma(v) \frac{v}{c^{r}}\left[E_{\imath}^{\prime}+E_{r}^{\prime}\right]
$$

حال، با توجه به اينكه

$$
E^{\prime}=E_{1}^{\prime}+E_{Y}^{\prime} \quad(1 \cdot q-\uparrow)
$$

نيز مقلارى ثابت مى باشد. يعنى اينكه انرزّى كل در چارچوب 'S نيز پايسته است. از طـرف


 متفاوتى باشند.

همان طور كه دربخش قبل اشاره شد، جرم نيز در حالت كلـى ممكـن اسـت بـه انـرزّى تبلـيل شود يا اينكه از انرزى به وجود آيل، يعنى اينكه ممكـن اسـت، ايجـاد يـا نـابود گـر گـردد.


 حائت كلى ثابت باقى نماند.

اكنون، اين بخش را بـا بـه دسـت آوردن چخــد رابطــٔ ديگـر بـه پايـان مـى بـريم. اولـين رابطه ایى كه دراينجا به دست مى آوريم، ارتبـاط بـين انـرزى كـل و تكانـــه يـك ذره اور را بيـان مى كند. برای اين منظور، مى توان مجذور انرگّى كل ذره را به دست آورد. درنتيجه، داريم:

$$
\begin{align*}
E^{r} & =\left[m_{\circ} \gamma(u) c^{r}\right]^{r}=\frac{m_{\circ}^{r} c^{r}}{1-\beta^{r}} \\
& =m_{\circ}^{r} c^{\digamma}\left[\frac{1-\beta^{r}+\beta^{r}}{1-\beta^{r}}\right] \\
& =m_{\circ}^{r} c^{r}+\frac{m_{0}^{r} \phi^{r}}{1-\beta^{r}} \cdot \frac{u^{r}}{\phi^{r}}
\end{align*}
$$

$$
\begin{equation*}
E^{r}=m_{0}^{r} c^{r}+p^{r} c^{r} \tag{111-F}
\end{equation*}
$$

اين رابطه ارتباط بين تكان8ٔ خطى p ذره و انرزُى كل Tن، يعنى E را نشان مى دهد. حـال، بـا


$$
p=\sqrt{ケ m_{0} k+k^{r} / c^{r}}
$$

اين معادله شبيه رابطهُ كلاسيكك براى تكانه مى باشد كه در آن جملئ دوم در زيـر راديكـال را مى توان به عنوان جملئ تصحيع نسبيتى در نظر گرفت.

مnحِنين، كميّت ناوردايى كه دراينجا مى توان به آن اشاره كرد، كميّت مى باشد. اين كميّت در صورتى كه بتوان از برهم كنش بين ذرات در يك چارچچوب، صرف نظر كرد، كميّتى نـاوردا خواهـد بـود. بـراى نـشان دادن نــاوردايى ايـن كميّـتا، مـى تـوان از تبديلات لورنتس انرزّى و تكانه استفاده كرد. در اين صورت، خواهيميم داشت:

$$
\left(E^{\prime} / c\right)^{r}-p^{\prime r}=\gamma(v)^{r}[(E / c)-(v p / c)]^{r}-\gamma(v)^{r}\left[p-\left(v E / c^{r}\right)\right]^{r}
$$

$$
=\gamma(v)^{r}\left(\left[(E / c)^{r}-p^{r}\right]-(v / c)^{r}\left[(E / c)^{r}-p^{r}\right]\right)
$$

$$
=\gamma(v)^{r}\left[(E / c)^{r}-p^{r}\right]\left[1-(v / c)^{r}\right]
$$

$$
=(E / c)^{r}-p^{r}
$$



$$
E^{r}-c^{r} p^{r}=E^{\prime r}-c^{r} p^{\prime r}=m_{0}^{r} c^{r}
$$

$$
\begin{equation*}
\left(\frac{E}{c}\right)^{r}-p^{r}=\left(\frac{E^{\prime}}{c}\right)^{r}-p^{r}=m_{0}^{r} c^{r} \tag{110-F}
\end{equation*}
$$

زيرا مقدار ارتباط بين سرعت، تكانه و انرزى كل يك ذره را بيان مى كند. برای اين منظور، مى توانيم از روابط كنيم، سرعت ذره به صورت

$$
\vec{u}=\frac{\vec{p}}{E} c^{r}
$$

 مى توان به شكل

$$
\begin{align*}
\Delta E^{r}-c^{r} \Delta p^{r} & =\Delta E^{\prime r}-c^{r} \Delta p^{r} \\
& =m_{\circ}^{r} c^{r}
\end{align*}
$$

نيز نوشت كه در واقع، مشابه رابطةُ

$$
\begin{align*}
c^{r} \Delta t^{r}-\Delta x^{r} & =c^{r} \Delta t^{\prime r}-\Delta x^{\prime r} \\
& =\Delta s^{r}
\end{align*}
$$

در مبحث سينماتيكك نسبيتى مى باشد.
اكنون، با توجه به ارتباط نزديكك بين كميّت هاى انرزّى و تكانه، مى توان كميّت واحــدى
را به نام جاربردار انیزى - تكاند' تعريف نمود. اين كميّت داراى جهار مؤلفه به صورت

$$
\begin{equation*}
p^{\mu}=(E / c, \vec{p})=\left(E / c, p_{x}, p_{y}, p_{z}\right) \tag{119-4}
\end{equation*}
$$

مى باشد. درنتيجه، چֶاربردارانرزُى - تكانـه، بـرایى ذره ایى كـه بـا سـرعت حر كت مى كنذ، با رابطةٔ زير بيان مى گردد.

$$
p^{\mu}=\left[m_{\circ} \gamma(u) c, m_{\circ} \gamma(u) u_{x}, m_{\circ} \gamma(u) u_{y}, m_{\circ} \gamma(u) u_{z}\right] \quad(\mid r \cdot-\mathcal{F})
$$



برهم كنش بين ذرات يا درمسائل مربوط به برخورد ذرات، به شكل زير نوشت.

$$
\begin{equation*}
p_{i}^{\mu}=p_{f}^{\mu} \quad \mu=\circ, 1, r, r \tag{|Y|-Y}
\end{equation*}
$$

كـه دران برهم كنش ذرات مى باشند.

ذ : V - F
اگرجرم سكون ذره ایى برابر صفر باشله در اين صورت، با توجه به رابط\&(H-F (IF)، خواهيم داشت:

$$
\begin{equation*}
E=p c=|\vec{p}| c \tag{IYY-F}
\end{equation*}
$$

اين رابطه درواقع، ارتباط بين تكانه و انرزی ذره إى را بيان مـى كنــد كـه دارالى جـرم ســكون

صفر است. حال، براى بـه دسـت آوردن انـدازة سـرعت اينغونـه ذرات، مـى تـوان از روابـط


$$
\begin{equation*}
|\vec{u}|=\frac{|\vec{p}|}{E} c^{r}=\frac{E}{c E} c^{r}=c \tag{IF-F-F}
\end{equation*}
$$

در نتيجه، ذراتى كـه داراى جـرم سـكون صـفر مـى باشــند، بـا سـرعت c حر كـت مـى كنتـد. همحِخنين، مى توان با استفاده از رابطةُ 「 $E=m_{\circ} \gamma(u) c^{\text {با }}$ نيز به همين نتيجه رسـيد. بـراى ايـن منظور، اين رابطه را مى توان به شكل

$$
\begin{equation*}
\frac{E}{\gamma(u)}=m_{\circ} c^{r} \tag{IYF-F}
\end{equation*}
$$

نوشت. اكنون، اگر دررابطهٔ ميل مى كند كه با توجه به تعريف ضريب $\gamma(u) \rightarrow \infty$ كه سرعت ذره بايد برابر c باشد. ازطرف ديگر، با درنظر گرفتن رابطـئ (IFY-F مـى تـوان بـه اينگونه ذرات، تكانهٔ p و همين طور انرزّى E را نسبت داد. همچچنـين، در مكانيـك كـوانتمى انرزّى و تكانئ اين ذرات با روابط

$$
E=\hbar \omega=h f
$$

$$
\begin{equation*}
p=\frac{E}{c}=\frac{\hbar \omega}{c}=\frac{h}{\lambda} \tag{1KY-F}
\end{equation*}
$$

تعريف مى گردنل. به عنوان مثـال، ذراتـى مانتـد فوتونهـا و نوترينوهـا، داراى جـرم سـكون صـفر مى باشند. بنابراين، سرعت فوتونها ونوترينوها بايد برابرسرعت c باشلـ اگرچهه ثابت مى شـود كـهـ نوترينوها كه در برتوهاى خورشيدى يافت مى شوند، دارایى جرم سكون بسيار ناجيز مى باشد. براساس نظريةٔ الكترومغناطيس ماكسول، موج نـور حامـل تكانـه مـى باشــل، بـه عبـارت
 مى شود، تكانهٔ موج به سطح.منتقل مى شود. انتقال تكانهٔ مـوج بـه سـطح، باعـث ايجــاد فـشار تابشى مى شود. محاسبهٔ اين فشار تابشى بر پايهٔ ماهيّت موجى نور قدرى مشكل است. اما ايـن
 يا فوتونها مى توان تكانهٔ تعريف شده در رابطهُ(Y-Y أ) را نسبت داد.

P08 ديناميكي نسبييتى
از طرف ديخر، مىى دانيم فوتون يكك ذرة نسبيتى است. بنابر اين، با در نظر گرفتن فيزيـكـك
 فوتونها، اين است كه بر خلاف ذرات در فيزيكك كلاسيكك، مى توانند توليد يـا نـابود شـونلـ. درواقع، گسيل يا جذب فوتون به وسيلهُ يكك ماده6 معادل توليد يا نابودى فوتونها مى باشد كه اين خاصيّت از فوتونها را نمىى توان با قوانين فيزيكك كلاسيكك به راحتى توضيح داد. اكنون فرض مى كنيم كه جرم سكون فوتون مـخالف صفر باشل، در اين صورت، سرعت آن بايد با سرعت c فرق داشته باشلد. برأى مححاسبئ سرعت فوتون در اين حالت، فـرض كنيـل
 برابر

هـم دارای اعتبار باشد. بنابراين، مى توان نوشت:

$$
\begin{equation*}
E_{p h}=h f=m_{\circ}, p h \gamma(u) c^{r} \tag{IYV-Y}
\end{equation*}
$$

$$
\begin{equation*}
(h f)^{r}=\left[m_{\circ, p h} \gamma(u) c^{r}\right]^{r} \tag{يا}
\end{equation*}
$$

در نتيجه به دست مى آيد:

$$
\begin{equation*}
(h f)^{r}=\left[m_{\mathrm{o}, p h} c^{r}\right]^{r} \frac{1}{1-u^{r} / c^{r}} \tag{1YQ-4}
\end{equation*}
$$



$$
\frac{u^{r}}{c^{r}}=1-\frac{\left[m_{0}, p h^{r} c^{r}\right.}{(h f)^{r}}
$$

حال، با تعريف

$$
\begin{equation*}
\frac{u^{r}}{c^{r}}=1-\frac{\left[h f_{o}\right]^{r}}{(h f)^{r}}=1-\frac{f_{o}^{r}}{f^{r}} \tag{|Y|-Y}
\end{equation*}
$$

بنابر اين، با درنظر گُرفتن جرم سكون مخالفت صفربراى فوتونها، سرعت إينگونه ذرات از رابطهُ

$$
\begin{equation*}
u=c \sqrt{1-f_{0}^{r} / f^{r}} \tag{IYY-F}
\end{equation*}
$$

 در نظر گرفته شود، سرعت اين ذرات كو چچكتر از c به دست مي آيل. بـه عبـارت ديگـر، تنهـا
 مى شود. درغيراين صورت، سرعت آنها به بسامد بستگى خواهل داشت كه چنـين رفتـارى را ما در هنگام عبور نور از محيطهاى انكسارى، مانند شيشه و آب مشاهلده مى كنـيم و بـه چتنـين ويزَ گی نور، پاشندگى نور' اطلاق مى گردد. بررسيها در مورد جرم سكون فوتونها نشان مى دهد كه شايل بتوان يكك حد بالايیى براى جرم سكون فوتون درنظرگرفت. اين بررسيها كه بر روى نور گسيل شده به وسيلهُ تـي الخترهـا صورت گگرفته انل، نشان مى دهند كه مى توان برایى جرم سكون فوتون، حدى را معين نمـود.



مثtال ع - Y : نشان دهيد كه رابطةٔ (Y-Y اY) در صورتى كه انرزی و بسامد فوتون ناوردا نباشند؛ يعنى اگر انرزّى و بسامد فوتون به چارچوب مرجع بستگى داشته باشد، درست است. جواب : ايـن مسسأله را مسى تـوان بـا بررسـى برخـورد يـكك فوتـون بـا يـكك ذره، در دو






شكل (F-F) : برخورد فوتون و ذره ای به جرم سكون
حال، اگر فرض كنيم كه ذره با جذب فوتون به حالت سكون درآيل، در اين صـورت قـوانين پايستگی انرزُى و تكانه درچارچوپ

$$
\begin{align*}
& E^{\prime}+\gamma(v) m_{\circ} c^{r}=M_{\circ} c^{r} \\
& \frac{E^{\prime}}{c}-\gamma(v) m_{\circ} v=\circ \tag{IT-F-F}
\end{align*}
$$

و درچارچوب S نيز به شكل

$$
\begin{align*}
& E+m_{\mathrm{o}} c^{r}=\gamma(v) M_{\circ} c^{r} \\
& \frac{E}{c}=\gamma(v) M_{\circ} v \tag{IHE-F}
\end{align*}
$$

خواهد بود. درروابط فوق mo و mo ، به تر تيب جـرم سـكون ذره قبـل و بعـد از برخـورد يــا
 قانون تبديل انرثى فوتون را از يكك جـارچوب بـه چــارچوب ديگـر بـه دسـت آورد. در ايـن صورت، خواهيم داشت:

$$
E^{\prime}=E \sqrt{\frac{1-\beta}{1+\beta}}
$$


 كـه درچـارچوب چارچوب S، چشمهٔ موج با سرعت v به سمت ذره يا گيرندأ فوتون حر كت مى كند. بنـابراين، براساس چديدهٔ دوپلر، بسامد نور يا فوتون، يعنى f، هنگام رسيدن به ذره، به وسيلة رابطةُ

$$
\begin{equation*}
f_{0}^{\prime}=f \sqrt{\frac{1-\beta}{1+\beta}} \tag{IFG-F}
\end{equation*}
$$

با بسامد

$$
\begin{equation*}
\frac{E^{\prime}}{f_{0}^{\prime}}=\frac{E}{f} \tag{1+V-F}
\end{equation*}
$$

بنابراين، E/f را مى توان يكك كميّت ناوردا درنظر گرفــتـ ايـن مقـدار نـاوردا را كـه ثابـت پالانكك ناميده مى شود با h نشان مى دهند. به اين ترتيب، به رابطهُ مشهورى مى رسـيم كــه بـه وسيلهُ Tن انرزى فوتون به دست مى آيد، يعنى
 دراين صورت، اين ذره شتابدار موج الكترومغناطيسى تابش مى كـــد. در اينجــا مـى خـواهيم شالتى را درنظر بخيريم كه در آن ذره باردار على رغـم داشــتن سـرعت ثابــت يــا يكنواخـتـ، مى تواند موج الكترومغناطيسى از خود گسيل كندا بـد برایى بررسى اين موضوع، فرض كنيد كه ذرهٔ بـاردار q بـا سـرعت ثابـت v درمتحيطى دى الكتر يك با ضريب شكست n حر كت مـى كنــد. حـال، مـى تـوان بـا اسـتفاده از قـوانين





 الالكتريك برابر $p=n h f / c$ به دست مى آيد. حال، فضض میى كنيم كـه هطـابق شـكل( ذره بار q كه بـا سـرعت يكنواخــت v حر كـت مـى كنـد، داراى تـابش فوتـون بـا انـرزى
 انرزیى و تكانه مى توان نوشت:

$$
\begin{equation*}
E_{1}=E_{\zeta}+E=E_{r}+h f \tag{N}
\end{equation*}
$$

و براي ها ايستگى تكانه نيز داريم:

$$
\begin{equation*}
\vec{p}_{Y}=\vec{p}_{Y}+\vec{p} \tag{1+q-4}
\end{equation*}
$$



ديناميك نسبيتى M7

$$
\Delta \vec{p}=\vec{p}_{1}-\vec{p}_{Y}=\vec{p}
$$

از طرف ديگر، با توجه به رابطةء (F|-F)، داريم:

$$
\begin{equation*}
\vec{v} \cdot \Delta \vec{p}=\Delta E \tag{|F|-F}
\end{equation*}
$$

حال، با جِاگذارى مقدار

$$
\begin{equation*}
\vec{v} \cdot \vec{p}=\Delta E \tag{IFY-Y}
\end{equation*}
$$



$$
\vec{v} \cdot \vec{p}=h f
$$

اكنون، با توجه به اينكه زاويهُ بين راستاى گسيل فوتون و راستاى حر كت اولئَ ذرهٔ بادار q برابر است. بنابراين، با در نظر گرفتن اندازء تكانهٔ فوتون، مى توان رابطةٔ(IFY-F) را به صورت

$$
v\left(\frac{n h f}{c}\right) \cos \theta=h f
$$

نوشت. درنتيجه،

$$
\cos \theta=\frac{c}{n v}=\frac{u}{v}
$$

خواهد بود. به اين ترتيب، شرط تابش چچرنكوف به دست مى آيد. رابطهُ (IFD-F ) درصورتى


شكل(F-\&) : تابش جرنكوف

برقـــرار اســـت كـــه $v \geq u$ باشــــن. زيـــرا
$\cos \theta \leq 1$
 سـرعت v در محـيط دیى الكتريـك حر كــت هـى كنــد، ازخـود فوتـون گــسيل كنــلد، بايــد سرعت ذره باردار بزر گَتر از سرعت فوتون در محيط مغروض دى الكتريكك باشـد. همدچنـين،
 اگگر $n=1$ باشله، در اين صورت فوتونى گسيل نمى كند.

A - $\psi$
دراين بخش، روإبط مربوط به انرزى و تكانهٔ نسبيتى يكك ذره6 با درنظر گرفتن قوانين پايستگى و همحتْين، با استفاده از أثردوبلرنسبيتى به دست مي آيل. براى أيـن منظـور، ايـن قـوانين رادر

فرايند وإاشى يك ذره و تبديل آن به دو فوتون به كار مى بريم. حال، ابتدا رابطـة مربوط بـه انرزّى نسبيتى كل يكك ذره را به دست مى آوريم.

## 

در اينجا مى خواهيم رابطةُ 「

 بنابراين، فرض كنيد كه ذره ای با جرم سكون
 فوتونهاى ايجاد شده داراى تكانة يكسان بودهن و و در خلاف


 برابر $/{ }^{\text {/ }}$ باشد
اكنون، اين فرايند وإياشى رامى تـوان از نظر نـا نـا
 جهت محور $x^{\prime}$ هارجوب


 داده مى شود كه در اين صورت، با استفاده از پايستغى انرزّى خواهيم داشت: $E=E_{1}+E_{\gamma}=h f_{1}+h f_{1}$

$$
=\frac{E_{\mathrm{o}}}{r} \sqrt{\frac{1+\beta}{1-\beta}}+\frac{E_{\mathrm{o}}}{r} \sqrt{\frac{1-\beta}{1+\beta}}
$$

$$
=\gamma(u) E_{\mathrm{o}}
$$

ديناميكى نسبيتى M0


$$
\text { برابر o } \gamma(u) E_{\text {خواهد بود. }}^{\text {بو. }}
$$

 آورد. درنتيجه، همان طور كه مى دانيم، براساس اين اصل، روابط نسبيتى درحد سرعتهاى معمولىى
 جارچپوب S، اختلاف انرزّى ذرهٔ درحال سكون و ذره ايى كه با سرعت $u$ حر كت مى كند، برابر

$$
\begin{equation*}
\Delta E=\gamma(u) E_{\circ}-E_{\circ} \tag{IFV-F}
\end{equation*}
$$

مى باشد. اين اختلاف انرزّى در حالت غير نسبيتى؛ يعنى هنگامى كه $u$ اسـت انرزیى جنبشى كلاسيكى ז/ $\mathrm{m}_{\circ} u^{r} u^{r}$ تبديل گردد. بنابراين، داريم

$$
\begin{align*}
\Delta E & =\frac{E_{0}}{\sqrt{1-\beta^{r}}}-E_{\circ} \\
& \simeq E_{\circ}\left(1+\frac{1}{r} \beta^{r}+\cdots\right)-E_{\circ} \\
& \simeq\left(\frac{E_{\circ}}{c^{r}}\right)\left(\frac{u^{r}}{r}\right)
\end{align*}
$$

در نتيجه، طبق اصل همتخوانى، بايد داشته باشيم:

$$
\left(\frac{E_{\circ}}{c^{r}}\right)\left(\frac{u^{r}}{r}\right) \simeq \frac{1}{r} m_{\mathrm{o}} u^{r}
$$

ازطرف ديگر، با توجه به رابطةٔ (F-F) مقدار مقدار

$$
\begin{equation*}
E=\gamma(u) E_{\circ}=\gamma(u) m_{\circ} c^{r} \tag{10+-F}
\end{equation*}
$$

به دست مى Tيلد.

- 1 : 1 - F

اكنون، برای به دسـت آوردن رابطـهٔ روشى مشابه روش قبل أستفاده كرد. دراينجا نيز فرض مى كنيم كه در چارپپوب سكون ذره6


واياشیى ذره و تبديل آن به دو فوتون، بايد تكانئ كل فوتونها برابر صفر گردد. درنتيجـه، تكانــٔهُ فو تونهاى ايجاد شده بايد برابر و درخلاف جهت هم باشند. دراين صـورت، مـى تـوان تكانــٔـ فوتونها را درحارحو واياشى ر| ازديل ناظر S كه با سرعت نسبى u، درخلاف جهت محور 'X حر كت مـى كنـلـ، مورد بررسى قرار مى دهيم. همان طور كه مى دانيم، تكانهٔ يكك فوتون با رابطـة $E=p c$ p=E/c=hf/c


$$
\begin{align*}
p & =\frac{p_{\circ}}{r} \sqrt{\frac{1+\beta}{1-\beta}}-\frac{p_{\circ}}{r} \sqrt{\frac{1-\beta}{1+\beta}} \\
& =\gamma(u) p_{\circ}\left(\frac{u}{c}\right)  \tag{101-4}\\
& =\gamma(u) p_{\circ} \beta
\end{align*}
$$

 پايستگى تكانه، مقدار $\beta$ ( سرعت $u$ حر كت مى كند. دراينجا نيز مى توان با استفاده از اصل همـخوانى، تكانه برحسب $m$ به دست آورد. بر اساس اين إصل، درحد سرعتهاى غير نسبيتى، يعنـي تكانهُ نسبيتى ذره بايد به رابطهٔ مشابه نيـوتنى يـا غيـر نـسبيتى آن تبـديل شـود. درايـن صسورت

$$
\begin{align*}
p & =p_{\circ}\left[\frac{1}{\sqrt{1-\beta^{r}}}\right] \beta \\
& =p_{\circ}\left[1+\frac{1}{r} \beta^{r}+\cdots\right] \beta \\
& =p_{\circ} \beta
\end{align*}
$$

به دست مى Tيد. از طرف ديگر، اين مقدار بـر اسـاس اصـل همخخوانى، بايــد برابرتكانـئ غيـر نسبيتى p=


$$
\begin{align*}
p & =p_{o} \gamma(u) \frac{u}{c} \\
& =\left(m_{\circ} c\right) \gamma(u)\left(\frac{u}{c}\right) \\
& =m_{\circ} \gamma(u) u
\end{align*}
$$

را براى تكانهٔ نسبيتى يكك ذره به دست مى آورد.
 سرعت v به سمت آن در حر كت است، تابيله شوی. حالى، اگر راستاى حر كت فوتون عمـود بر سطح آيينه باشل، دراين صورت، تكانهٔ منتقل شـلده بـه آيينـه را در دو جـارجوب S $S$
( جارچپوب سكون آيينه) به دست آوريد.

مى آوريّم. در اين چارچوبب، تغيير تكانةٔ فوتون، برابر

$$
\Delta \vec{p}=\vec{p}^{\prime}-\left(-\vec{p}^{\prime}\right)=r \vec{p}^{\prime}
$$

بنابراين، اندازهُ تغيير تكانهُ منتقل شده به آيينه برابر

$$
\Delta p^{\prime}=r p^{\prime}=r \frac{E^{\prime}}{c}
$$

كه با استفاده از رابطئ (Y-هس|)، خواهيم داشت:

$$
\begin{equation*}
\Delta p^{\prime}=r h \frac{f^{\prime}}{c}=r \frac{h f_{\circ}}{c} \sqrt{\frac{1+\beta}{1-\beta}} \tag{109-F}
\end{equation*}
$$

 استفاده شده است. درچارچوبب S آيينه با سرعت v حركت مى كند. بنابراين، در اين جارجوب


فرودى بر آيينه برابر $f$ و و بساملد نورى كه باز مى تاببل، برابر f است. در نتيجه، مى توان نوشت:

$$
f=f_{\circ} \frac{1+\beta}{1-\beta}
$$

و تغيير تكانئ آيينه برابر

$$
\Delta p=\left|\vec{p}_{r}-\vec{p}_{1}\right|=\frac{h f}{c}+\frac{h f_{\circ}}{c}
$$



$$
\begin{equation*}
\Delta p=\frac{r h f_{o} / c}{1-\beta} \tag{109-4}
\end{equation*}
$$

## - 9 - F سيستم يكاها در نسبيت

روإبطى كه براى انرزّى و تكانه در نسبيت، براى يكك ذره به دست آمله، ما را بــه يـك سيـستم واحد مناسب هدايت مى كنند. مى دانيم كه ضريب $\gamma$ در تبديلات لورنتس كميتى بدون بعـد و يكك عدد مثبت حقيقى بوده و در بازه تعريـف $u=\beta c$ بــراى سـرعت يـكك ذرهء $\beta$ نيز كـهـ كميّتـى بــدون بعــد مـى باشــلـ، در محلودهٔ صورت ضريبى از c به دست آورد.
 كيلو گرم و زول مورد استفاده قرار مى گيرند. در صورتى كه در فيزيكـ نسبيتى، مـى تـوان بـا استفاده از رابطئ به طور كلى درفيز يك انرزیى هاى بالا ، معمولاً از واحد الكتـرونـ ولـتـ (eV ) بـراى انــدازه گيرى انرزّى يا جرم استفاده مى شود. يكك الكترون-ولتـ، طبق تعريف، انرزّى پثانــسيل يـك الكترون است، هنگامى كه دراختالاف پتانسيل يكك ولت به اندازهُ يكك مترجابـه جـا شـود. بـا اسـتفاده از رابطــٔه همحخنين، با توجه به اينكه $1 V=1 J / C$ است، در نتيجه مى توان نوشت: $1 e V=(1 / \varepsilon \cdot r r \times 1 \cdot-19 C)\left(1 \frac{J}{C}\right)=1 / \varepsilon \cdot r 4 \times 1 \cdot-19 J \quad(19 \cdot-\mu)$ حال، اگگر انرزى سكون پیوتون را برحسب زول محاسبه نماييم، خواهيم داشُت: $E_{p}=m_{\circ} c^{r}=\left(1 / q \vee \times 1 \cdot^{-r v} k g\right)(r \times 1 \cdot \wedge m / s)^{r}$ $=1 / \Delta \times 1 \cdot-1 \cdot J$


$$
\begin{equation*}
E_{p}=9 r \wedge \times 1 .{ }^{9} \mathrm{eV}=9 r \wedge M e V \tag{1gY-Y}
\end{equation*}
$$

به دست مى آيد. به همين ترتيب، انـرزى سـكون ذرات ديگـر مانـــد، الكتـرون و نـوترون بـه
ترتيب برابر

ازطرف ديخر، فيزيكـدانهاى ذرات بنيـادى، معمـولاً جـرم را نيـز برحـسب واحــد انـرزى،






$$
\mid M e V / c^{r}=1 / \vee \wedge r \times 1 \cdot-r \cdot k g
$$





$$
p=\frac{E}{u}=\frac{E}{\beta c}
$$

مى باشد. بنابراين، الكترونى كه با سرعت $u$ (

$$
\begin{equation*}
E=m_{\circ} \gamma(v) c^{r}=1 / \cdot r r M e V \tag{190-4}
\end{equation*}
$$

$$
\begin{equation*}
p=\frac{1 / \cdot r r M e V}{\cdot / \wedge s 9 c}=1 / 1 \wedge \frac{M e V}{c} \tag{1Gq-F}
\end{equation*}
$$

## 

براى تعريف چارحوب مر كز تكانه' يا


$$
\begin{equation*}
\vec{P}=\sum_{i=1}^{N} \vec{p}_{i} \tag{19V-F}
\end{equation*}
$$

$$
\begin{equation*}
E=\sum_{i=1}^{N} e_{i}=\sum_{i=1}^{N} m_{i} c^{r}=M c^{r} \tag{19人-F}
\end{equation*}
$$

تعيـين نمـود. در روابـط فـوق مى باشند. دراينجا از برهم كنش بين ذرات سيستم باصـرف نظـر مـى شـود. از طـرف ديگر، مى دانيم كه تبديلات لورنتس تكانـه و انـرثّى، يعنى روابـط (F-1-1) خطـى مـى باشـنـد. در نتيجه، مى توان از اين روابط، براى تبديل تكانه و انرزى كل ذرات سيستم از جارچوب S ك، به


$$
\begin{align*}
P_{x}^{\prime} & =\gamma(v)\left[P_{x}-v E / c^{r}\right] \\
P_{y}^{\prime} & =P_{y}  \tag{199-4}\\
P_{z}^{\prime} & =P_{z} \\
E^{\prime} & =\gamma(v)[E-v P]
\end{align*}
$$

اكنون، مى توان حالتى را در نظـر گرفـت كــه تكانـهُ كـل سيـستم، در جــارجوب S S، مـوازى سرعت نسبى دو جارچوب باشلد. به عبارت ديخر، فرض مى كنيم
 در آن جارچوب، تكانهُ كل ذرات سيستم برابر صفر گردد. برایى اين منظور، كـافى اسـت كـه
 قرار دهيم. بنابراين ، خواهيم داشت:

$$
\gamma(v)\left[P_{x}-v E / c^{r}\right]=0
$$

كه در اين صورت، سرعت نسبى چارجوب مر كز تكانه به صورت

$$
\begin{equation*}
v=v_{c o m}=\frac{c^{r} P_{x}}{E} \tag{|V|-F}
\end{equation*}
$$

به دست مى آيل. حـال، بـا فـرض اينكـه تكانـئ كـل در جـارجوبـ S، در راسـتاى محـور مى باشد. و با توجه به رابطةُ (19^-Y)، مى توان نوشت:

$$
\begin{equation*}
v_{c o m}=\frac{P_{t o t}}{M} \tag{IVY-Y}
\end{equation*}
$$

كه در آن M ، جرم نسبيتى كل سيستم است.
بنابراين، اگر ناظر يــا چحـارچوبیى دارایى سـرعت نـسبى برابـر Vom فـوق باشــل، در ايـن صورت تكانٔ كل ذرات سيستم نسبت به آن ناظر يا حارخپوب برابـر صففر خواهــد بـود. طبـق
 رابطهٔ(F-| (|) در نظر گرفت كه براى يكك ذره به دست آمده است.
 سيستمى از ذرات مر كز جرم تعريف كرد؛ زيرا جرم ذرات سيـستم بـه سـرعت ذرات آلن بـستگى دارد. بنابراين، سرعت نظر گرفت. از طرف ديغر، در نسبيت خاص، به جاى چارجپوب مر كز جرم كه در در مكانيك نيوتني
 در آن تكانهُ كل ذرات سيستم برابرصفر است. همجِنين، همان طـور كـه مـى دانـيمه در مكانيـك نيوتنى، سرعت تعريف شده دررابطهُ (IVY-Y)، به مر كز جرم سيستم ذرات نسبت داده مى شود. نكتئ دوّم اين است كه در اينجا از برهم كنش بين ذرات سيستم صرف نظر شــنـه اسـت. به دليل Tن كه اگَر برهم كنش بين ذرات كه به مكان نـسبى آنهـا بـستگى دارد، در نظر گرفتـه شود، ناساز گاريهاى جدىى در نسبيت به وجود مى آيد؛ زيـرا همــان طور كـه قـبلاً اشــاره شــد، قانون سوم نيوتن را نمى توان درهمةٔ موارد در نسبيت به كار برد. و ايـن قـانون تنهـا درمـوارد
 اعتبار مى باشد. درغير أين صورت، به دليل نسبى بودن همزمانى، ممكن است بر هـم كنش دو ذره در يك چارچجوب همزمان باشد، اما درچارچوبهاى ديگر اين طور نباشد. بنابراين، مطالعه و بررسى حالتى كه در آن مجبور به در نظر گرفتن برهم كنش بـين ذرات مـى باشـيمه بايـد از
 بررسى سيستم ذرات، متخصوصاً مسائل مربوط بـه برخـورد ذرات بـسيار مفيـد اسـت كـه ايـن موضوع در بخش بحد بررسى مى شود.
دراينجا به عنوان مثال، مى توان سيستمى متشكل از دو ذره را كه در يكـ جهـت حر كـت
 فرض كنيد كـه دو ذره يكـسان بـا جـرم سـكون جارچوب S، دريكك جهت حر كت كننل. بنابراين، تكانٔ كل ذرات در اين چارجوب، برابر

$$
P=p_{1}+p_{\curlyvee}=m_{1} u_{1}+m_{r} u_{r}
$$

خواهد بود كه درآن جارجوب مر كز تكانه، يغنى

$$
\begin{equation*}
P_{c o m}=p_{\text {‘com }}+p_{\text {rcom }} \tag{IVF-F}
\end{equation*}
$$



 تكانٔ يك ذره، يعنى



صورت با استفاده از تبديلات لورنتس سرعت، خواهيم داشت:

$$
u_{1}=\frac{u^{\prime}+v_{c o m}}{1+u^{\prime} v_{c o m} / c^{r}}
$$

9

$$
\begin{align*}
& u_{r}=\frac{-u^{\prime}+v_{c o m}}{1-u^{\prime} v_{\text {com }} / c^{r}} \\
& \text { اكنون، مى توان روابط(|VQ-F) و (IVя-F) را به شكل } \\
& u_{1}=v_{c o m}+\frac{u^{\prime}\left(1-v_{c o m}^{r} / c^{r}\right)}{1+u^{\prime} v_{c o m} / c^{r}} \tag{1V-Y}
\end{align*}
$$

$$
u_{r}=v_{c o m}-\frac{u^{\prime}\left(1-v_{c o m}^{r} / c^{r}\right)}{1-u^{\prime} v_{c o m} / c^{r}}
$$

نوشت. حال، با جايگذارى ذرات را در حارحجوب S به دست آورد. درنتيجه، داريم: $P=m_{\imath} u_{\curlyvee}+m_{\curlyvee} u_{\curlyvee}=\left(m_{\curlyvee}+m_{\curlyvee}\right) v_{c o m}$

$$
+u^{\prime}\left(1-v_{c o m}^{r} / c^{r}\right)\left[\left(\frac{m_{1}}{1+u^{\prime} v_{c o m} / c^{r}}\right)-\left(\frac{m_{r}}{1-u^{\prime} v_{c o m} / c^{r}}\right)\right]^{\text {(1vQ-ヶ) }}
$$



$$
P=\left(m_{1}+m_{r}\right) v_{c o m}+m_{o} u^{\prime}\left(1-v_{c o m}^{r} / c^{r}\right) \times
$$

$$
\left(\frac{\gamma\left(u_{1}\right)}{\left(1+u^{\prime} v_{c o m} / c^{r}\right)}-\frac{\gamma\left(u_{r}\right)}{\left(1-u^{\prime} v_{c o m} / c^{r}\right)}\right)
$$

 مى توان نشان داد كه دو جملهُ داخل كروشه، در رابطئ (F-- (IN) با هم برابـر بـوده و درنتيجـه

تفاضل آنها برابر صفر مى شود. دراين حالت، رابطهٔ(F-+1人) درنهايت به صورت

$$
\begin{equation*}
P=\left(m_{1}+m_{r}\right) v_{c o m} \tag{INI-F}
\end{equation*}
$$

به دست مى آيل. بالاخره سرعت چارجوب مر كز تكانه، براى اين سيستم دو ذره ایى برابر

$$
\begin{equation*}
v_{c o m}=\frac{P}{m_{1}+m_{r}}=\frac{P}{M} \tag{INY-F}
\end{equation*}
$$

خواهلد بود كه درواقق، همان رابطةُ (IVY-Y) مى باشد.
بنابراين، سرعت چارچوب مركز تكانـه و همـين طـور سـرعت چـارچوبـ مر كـز جـرم؛
 مى آ يند. كه البته اين سرعت در نسبيت، به كـل سيـستم نـسبت داده مـى شـود. درحـالى كـه درمكانيكك نيوتنى، اين سرعت را به مر كز جرم سيستم نسبت مى دهند. يكى از مزيتهاى استفاده از چارچوبب مركز تكانه، اين است كه بعضى از مسائل مربـوط به برخورد يا برهم كنش ذرات را كه در حارچوب آز آمايشگاه، بررسى و محاسبهٔ آنها مسشكل است، مى توان به راحتى دراين چجاجوبب بررسى كرده و پس از آن مى توان نتـايج بـه دسـت آمده را از طريق تبديلات لورنتس به چارچوبه آزمايشگاه منتقل كرد.



$$
\left(\frac{E}{c}\right)^{r}-p^{r}=\left(\frac{E_{c o m}}{c}\right)^{r}-p_{c o m}^{r}
$$




$$
\left(E / c+m_{\circ} c\right)^{r}-p^{r}=\left(\frac{E_{c o m}}{c}\right)^{r}
$$

مثال ع－ 0 ：نشان دهيد كه يكك كوانتم يا فوتون $\gamma$ ، تنها در صورتى امكان دارده براثر وایاشى به يكك زوج الكترون و يوزيترون تبديل شود كـه فراينــد واباشـى در كناريـك ذره بـا
 الكترون ـ يوزيترون را به دست آوريد．

جواب ：براى به دست آوردن جواب؛، مى توان از كميّت ناورداى


 ذرات در آستانهٔ واكنش باشند．دراين صورت، خخواهيم داشت：

$$
\left(E+m_{\circ} c^{r}\right)^{r}-p^{r} c^{r}=\left(m_{\circ}+r m_{e}\right)^{r} c^{r}
$$ كه در T



مى توان انرزى فوتون $\gamma$ را به صورت

$$
\begin{equation*}
E=r m_{e}\left(1+\frac{m_{e}}{m_{\mathrm{o}}}\right) c^{r} \tag{INY-F}
\end{equation*}
$$

به دست آورد．بنابراين، براى اينكه فوتون $\gamma$ به يكك زوج الكترون و يـوزيترون تبـديل شـود، بايد فرايند واياشى درحضور ذره ایى با جـرم سـكون مـخـالف صـفر، انجـام بـــيرد．همـحنـين، انرزّى فوتون حداقل بايل برابر مقدار E داده شلده در رابطهُ（1ヘタ－F）باشد．

مثال ؟－ 7 ：اكنون، حالت عكس مثال قبل را در نظر بگيريل．يعنى فرض كنيد كه يك يوزيترون كه دارأى انرزّى جنبشى k است، با الكترون ساكنى برخورد كند و براثر ايـن بـرهم كنش دو فوتون $\gamma$ با آنرزّى هاى يكسان ايجاد شود．دراين صورت، زاويةٔ بين راستأى حر كت

YVO SV SV


شكل(Y-F) : نابودیى زوج الكترون - يوزيترون

دو فوتون $\gamma$ ى إيجاد شلهه چچقدرخوواهل بود؟ جـواب : بــا توجـه بــه شــكا (V-F )، قــانون

بايستگیى انزذى را مى توان بهصور ت
$k+r m_{\circ} c^{r}=r E$
( $\mid \lambda V-Y$ )
نوشت. همحچنين، قانون پايستگى تگانه در راستاى محور x رانيز مى توان با رابطة

$$
p=r \frac{E}{c} \cos \alpha
$$

( $\mid M N-F)$

انرزّى فوتون و E/c تكانهُ آن مى باشلـ. از طرف ديZر، براى پوز يترون مى توان نوشت:

$$
\left(k+m_{0} c^{r}\right)^{r}=p^{r} c^{r}+\left(m_{0} c^{r}\right)^{r}
$$



$$
\begin{equation*}
\left(k+m_{\circ} c^{r}\right)^{r}=\left(r \frac{E}{c} \cos \alpha\right)^{r} c^{r}+\left(m_{\circ} c^{r}\right)^{r} \tag{19+-4}
\end{equation*}
$$



$$
\begin{equation*}
\cos \alpha=\frac{1}{\sqrt{1+\left(r m_{\circ} c^{r} / k\right)}} \tag{|9|-4}
\end{equation*}
$$

اl -
 مى توان مسأله برخورد ذرات يا برهم كنش آنها را در نـسبيت مطـرح نمـود. همـان طور كـه قـبلاً اشاره گرديلّ، به علت آنكه جرم ذرات به سرعت آنها بستگیى دارد، اسـتفاده از چـارچوب مرجـع مر كز جرم در نسبيت، بى مورد مى باشد و بايد به جاى آن از چارچوبب مر كز تكانه استفاده كـرد.

 از تبلديلات لورنتس، روابِط و نتايج به دست آمله را به چارچوب آزمايشگاه Sك، منتقل نمود. در مكانيكك نيوتنى، مغمولاً برخورد ذُرات را به دو دسته تقسيم مـى كنـــلـ برخوردهـاى

كششان و نا كشسان. دربرخوردهاى كشسان، قانون پايستگى تكانه و همين طور پايستگى انـرزّى









 زواياى $\vec{p}_{\text {Icom }}=-\vec{p}_{\text {rcom }}$ مى دانيم، درجارجحوب

 كنيم كه سرعت چارچهوب
 دراين چارجوب با

$$
\begin{equation*}
u_{1 c}=\frac{u_{1}-v_{c o m}}{1-u_{1} v_{c o m} / c^{r}} \tag{19Y-F}
\end{equation*}
$$

$$
\begin{align*}
u_{r c} & =\frac{u_{r}-v_{c o m}}{1-u_{r} v_{c o m} / c^{r}} \\
& =\frac{0-v_{c o m}}{1-0}=-v_{c o m}
\end{align*}
$$

در نتيجه، با توجه به ( (
 خواهل بود. بنابراين، چارحوبب (ذرهٔ فرودى در S ) حر كت مى كند. از طرف ديغر، در ${ }_{\text {د }}^{\text {د }}$ د دازيم:

$$
\begin{equation*}
p_{\text {\com }}=p_{\text {rcom }} \tag{19F-F}
\end{equation*}
$$

$$
\begin{align*}
& m_{o}, c \beta_{1 c} \gamma\left(\beta_{\backslash c}\right)=m_{o r} c \beta_{Y c} \gamma\left(\beta_{Y c}\right) \\
& \text { اكنون با استفاده از تبديلات لورنتس، مى توان به دست آورد: } \\
& p_{\text {पcom }}=\gamma\left(u_{\curlyvee c}\right)\left[p_{1}-\frac{u_{\curlyvee c}}{c^{\zeta}} E_{\uparrow}\right] \tag{199-4}
\end{align*}
$$

همّحنين، با تو جه به اينكه

$$
\begin{equation*}
p_{1 \text { com }}=\gamma\left(v_{c o m}\right)\left[p_{1}-\frac{v_{c o m}}{c^{r}} E_{\uparrow}\right] \tag{19V-F}
\end{equation*}
$$

كه با درنظر گرفتن رابطهُ(Y-Y (19 )، مى توان نوشت:

$$
p_{\text {rcom }}=\gamma\left(v_{c o m}\right)\left[p_{1}-\frac{v_{c o m}}{c^{r}} E_{1}\right]
$$

در روابط فـوق (19V-F) و (19^- (

$$
m_{\circ}, \gamma\left(\beta_{1 c}\right) c \beta_{1 c}=\gamma\left(u_{\curlyvee c}\right)\left[m_{0}, c \beta_{1} \gamma\left(\beta_{1}\right)-u_{ケ c} m_{0}, \gamma\left(\beta_{1}\right)\right]
$$

$$
m_{\circ \uparrow} \gamma\left(\beta_{\Upsilon c}\right) c \beta_{Y c}=\gamma\left(u_{\Upsilon c}\right)\left[m_{o}, c \beta_{1} \gamma\left(\beta_{\uparrow}\right)-u_{\Upsilon c} m_{o}, \gamma\left(\beta_{1}\right)\right](Y \cdots-\uparrow)
$$

نيز نوشت. دراين صورت، با استفاده ازرابطة (

$$
\begin{align*}
m_{o,} c \sqrt{\gamma^{r}\left(\beta_{1 c}\right)-1} & =m_{o}, c\left[\gamma\left(\beta_{\Gamma c}\right) \sqrt{\gamma^{r}\left(\beta_{1}\right)-1}\right. \\
& \left.-\gamma\left(\beta_{1}\right) \sqrt{\gamma^{r}\left(\beta_{\curlyvee c}\right)-1}\right]
\end{align*}
$$

$$
\begin{align*}
m_{\circ} c \sqrt{\gamma^{r}\left(\beta_{\gamma c}\right)-1} & =m_{o}, c\left[\gamma\left(\beta_{\gamma c}\right) \sqrt{\gamma^{r}\left(\beta_{1}\right)-1}\right. \\
& \left.-\gamma\left(\beta_{1}\right) \sqrt{\gamma^{\gamma}\left(\beta_{\gamma c}\right)-1}\right] \tag{Y,Y-Y}
\end{align*}
$$

نوشت. حال، اگُر از روابط (Y-1-Y) و (Y-1-Y)؛
دست آوريم، خواهيم داشت:

$$
\begin{aligned}
& \gamma\left(\beta_{1 c}\right)=\frac{\gamma\left(\beta_{1}\right)+m_{o} / m_{o r}}{\sqrt{1+r \gamma\left(\beta_{1}\right)\left(m_{0,} / m_{\circ r}\right)+\left(m_{0,} / m_{\circ r}\right)^{r}}} \quad(r \cdot \mu-\varphi) \\
& \text { و همحتنين } \\
& \gamma\left(\beta_{r c}\right)=\frac{\gamma\left(\beta_{1}\right)+m_{o r} / m_{01}}{\sqrt{1+r \gamma\left(\beta_{1}\right)\left(m_{01} / m_{o r}\right)+\left(m_{01} / m_{o r}\right)^{r}}} \quad(\zeta \cdot \uparrow-\uparrow)
\end{aligned}
$$





 ترتيب، برابر بود. بنابراين، درجارجوب و در خلاف جهت يكديگر مى باشند.






$$
\begin{align*}
\vec{p}_{1 c}^{\prime}=m_{1} \vec{u}_{1 c}^{\prime} & =m_{1} u_{1 c}^{\prime} \cos \theta \vec{i}+m_{1} u_{1 c}^{\prime} \sin \theta \vec{j} \\
& =p_{1 c}^{\prime} \cos \theta \vec{i}+p_{1 c}^{\prime} \sin \theta \vec{j} \\
& =p_{1 c} \cos \dot{\theta} \vec{i}+p_{1 c} \sin \theta \vec{j}
\end{align*}
$$

$$
\begin{align*}
& \vec{p}_{ケ c}^{\prime}=m_{\curlyvee} \vec{u}_{ケ c}^{\prime}=-m_{\curlyvee} u_{\Upsilon c}^{\prime} \cos \theta \vec{i}-m_{\curlyvee} u_{ケ c}^{\prime} \sin \theta \vec{j} \\
& =-p_{r c}^{\prime} \cos \theta \vec{i}-p_{r c}^{\prime} \sin \theta \vec{j}  \tag{Y.9-Y}\\
& =-p_{\Upsilon c} \cos \theta \vec{i}-p_{\Gamma c} \sin \theta \vec{j}
\end{align*}
$$

 چارچوب به دست آورد．



 داراى مولفهٔ x و y مى باشلد．بنابراين، براى ذرة ا مى توان نوشت：

$$
\begin{align*}
p_{\backslash x} & =\gamma\left(u_{\curlyvee c}\right)\left[p_{\backslash c x}+\frac{u_{\Upsilon c}}{c^{r}} E_{\backslash c}\right] \\
& =\gamma\left(\beta_{\Upsilon c}\right)\left[m_{\circ}, c \beta_{\backslash c} \gamma\left(\beta_{\backslash c}\right) \cos \theta+m_{\circ}, c \beta_{r c} \gamma\left(\beta_{\backslash c}\right)\right] \\
& =m_{\circ}, c \gamma\left(\beta_{\backslash c}\right) \gamma\left(\beta_{r c}\right)\left[\beta_{1 c} \cos \theta+\beta_{r c}\right]
\end{align*}
$$

همَحنين، مؤلفئ $y$ تكانهٔ ذره ا نيز برابر

$$
p_{\backslash y}=p_{\backslash y c}=m_{0,} c \beta_{\backslash c} \gamma\left(\beta_{\backslash c}\right) \sin \theta
$$

 （190－4）از رابطئ

$$
\tan \theta_{1}=\frac{p_{1 y}}{p_{1 x}}=\frac{\sin \theta}{\gamma\left(\beta_{\Upsilon c}\right)\left[\cos \theta+\beta_{r c} / \beta_{1 c}\right]}
$$



$$
\begin{aligned}
& p_{\Upsilon x}=\gamma\left(\beta_{r c}\right)\left[p_{r x c}+\frac{u_{r c}}{c^{r}} E_{r_{c}}\right] \\
& =\gamma\left(\beta_{Y c}\right)\left[-m_{o r} c \beta_{Y c} \gamma\left(\beta_{Y c}\right) \cos \theta+m_{\circ} c \beta_{Y c} \gamma\left(\beta_{Y c}\right)\right](Y \mid \cdot-Y) \\
& =m_{o r} c \beta_{r c} \gamma^{r}\left(\beta_{r c}\right)[1-\cos \theta]
\end{aligned}
$$



$$
p_{\curlyvee y}=p_{r y c}=-m_{\circ} c \beta_{\curlyvee c} \gamma\left(\beta_{\curlyvee c}\right) \sin \theta
$$

 (19へ-F)

$$
\tan \theta_{\curlyvee}=\frac{p_{\curlyvee y}}{p_{\curlyvee x}}=-\frac{\sin \theta}{\gamma\left(\beta_{\curlyvee c}\right)[1-\cos \theta]}
$$

اكنون، در اينجا به عنوان يكك مورد خاص و جالب، مى توان حالتى را درنظر گرفت كـه در آن جرم سكون ذرات با هم برابر باشند. دراين صورت، $)$

$$
\begin{align*}
& \text { روابط (Y-Y-Y) و (Y.Y-Y) به رابطءٔ سادهٔ زير تبديل مى شوند. } \\
& \gamma\left(\beta_{1 c}\right)=\gamma\left(\beta_{r_{c}}\right)=\sqrt{\frac{1}{r}\left[1+\gamma\left(\beta_{1}\right)\right]}
\end{align*}
$$


روإبط (Y-4-Y) و (Y|Y-Y)، و همتچچنين، رابطهٔ (Y-Y (Y) از روابط

$$
\tan \theta_{1}=\sqrt{\frac{r}{1+\gamma\left(\beta_{1}\right)}} \cdot \frac{\sin \theta}{1+\cos \theta}
$$

$$
\tan \theta_{r}=-\sqrt{\frac{r}{1+\gamma\left(\beta_{1}\right)}} \cdot \frac{\sin \theta}{1-\cos \theta}
$$

به دست مى T يند. حاله با ضرب طرفين روابط (Y|F-F) و (Y|0-Y) درهم، مى توان به رابطهُ

$$
\tan \theta_{1} \tan \theta_{r}=-\frac{r}{1+\gamma\left(\beta_{1}\right)}
$$

رسيد. ازطرف ديعـر، همـان طوركـه مـى دانـيم درمكانيـك نيـوتنى، دو ذره يكـسان يـس از

برخورد در دو راستاى عمود بر يكديگكر براكنلده مى شـونل. بـرایى بررسـى ايـن مطلب، كـافى
 (Y|G-F)

$$
\tan \theta_{1} \tan \theta_{r}=-1
$$

بـه دســت مــى آ



مثـال ع - V: فــرض كنيــل كــه در جــارجوب آزمايـشگاه يــا S، ذره ایى بـا جـرم
 اللف : سرعت جارچچوب مركز تكانه دو ذره6 يغنى




مى توان نْوشت:

$$
\begin{gather*}
v_{c o m}=\frac{P}{E} c^{r}=\frac{\gamma\left(u_{1}\right) m_{\circ}, u_{1}}{\gamma\left(u_{1}\right) m_{\circ,} c^{r}+m_{o r} c^{r}} c^{r} \\
v_{c o m}=\frac{u_{1} \gamma\left(u_{1}\right)}{\gamma\left(u_{1}\right)+\left(m_{\circ r} / m_{\circ,}\right)}
\end{gather*}
$$

$$
\begin{equation*}
v_{c o m}=\frac{u_{1}}{1+\left(m_{o r} / m_{o 1}\right) \sqrt{1-\left(u_{1} / c\right)^{r}}} \tag{Y,-Y}
\end{equation*}
$$



يا
 راستا مى باشند.

ب: با استفاده از تبديلات سرعت لورنتس، داريم

$$
\begin{equation*}
u_{1 c o m}=\frac{u_{1}-v_{c o m}}{1-\left(u_{1} v_{c o m}\right) / c^{r}} \tag{YYI-Y}
\end{equation*}
$$



 جرم سكون ذرات برابر باشنلـ، دراين صورت، روابط (YY•-F (Y (Y ) به روابط

$$
\begin{gather*}
v_{c o m}=\frac{u_{1}}{1+\sqrt{1-\left(u_{1} / c\right)^{r}}}  \tag{YYH-F}\\
u_{1, c o m}=\frac{u_{1} \sqrt{1-\left(u_{1} / c\right)^{r}}}{1-\left(\frac{v_{c o m}}{c}\right)^{r}+\sqrt{1-\left(v_{c o m} / c\right)^{r}}} \tag{YYF-F}
\end{gather*}
$$

تبديل مى شونذ.

مثال ع - ^ : درمثال قبل، فرض كنيد كه دو ذره دارای جرم سكون يكسان باشند. سـال، اگرذره́ فرودى داراى انرزّى جنبشى k باشد و پس از برخورد، ذره́ فرودى تحت زاويهٔ
 ذرهٔ ساكن تحت زاويهٔ حر كت اوليـئ ذرهٔ فـرودى منحـرف شـونلد، دراين صورت انرزّى جنبشى ذرات را يـس

شكل ( (l-ا): برخورد ذرات در حارچجوب S دست آوريد.

 برخورد مى باشند. اندازء اين تكانه ها با توجه به رابطهٔ (F-| ( 11 ) ، برابر

$$
p^{r}=\frac{1}{c^{r}}\left(k+m_{\circ} c^{r}\right)^{r}-m_{\circ}^{r} c^{r}
$$

$$
\begin{equation*}
p_{1}^{r}=\frac{1}{c^{r}}\left(k_{1}+m_{\circ} c^{r}\right)^{r}-m_{\circ}^{r} c^{r} \tag{YYQ-F}
\end{equation*}
$$

$$
p_{r}^{r}=\frac{1}{c^{r}}\left(k_{r}+m_{o} c^{r}\right)^{r}-m_{o}^{r} c^{r}
$$

 جايگذارى نموده و سبس اندازهُ قرار داد كه در اين صورت، انرڭّى جنبشى ذرهٔ فرودى بعد از برخورد، برابر

$$
k_{1}=\frac{k \cos ^{r} \theta_{1}}{1+\left(k / r m_{0} c^{r}\right) \sin ^{r} \theta_{1}}
$$

خواهل بود. همحتنين، برایى به دست آوردن اندازء انرزّى جنبشى ذرهٔ دوم، مى توان بـا روشـى مشابه به نتيجئ

$$
\begin{equation*}
k_{r}=\frac{k \cos ^{r} \theta_{r}}{1+\left(k / r m_{0} c^{r}\right) \sin ^{r} \theta_{r}} \tag{YM-Y}
\end{equation*}
$$

 سمت يكديگر حر كت مى كنند. انرزّى كل يكى از ذرات رادر حارحوبِ سـكون ذرهُ ديگـر

$$
\begin{align*}
& \left(k+m_{\circ} c^{r}\right)+m_{\circ} c^{r}=\left(k_{1}+m_{\circ} c^{r}\right)+\left(k_{r}+m_{\circ} c^{r}\right) \quad \text { (Yץロ-r) } \\
& k=k_{1}+k_{r}  \tag{YYG-Y}\\
& \vec{p}=\vec{p}_{i}+\vec{p}_{\curlyvee} \\
& \text { نوشت. در نتيجه، از رابطئ (YY-Y) داريـم: } \\
& p_{r}=p-r p p_{1} \cos \theta_{1}+p_{1}^{r}
\end{align*}
$$

به دست آوريد. همحجنين، اگر $u=c \sqrt{Y} /$ باشل، انرزّى كل ذره چقدر خواهلد بود؟ جواب : براى بـه دسـت آوردن انـرزى كـل يكـى از ذرات، در جــارجوب سـكون ذرهُ ديگر، بايد سرعت آن را درچارچوب سكون ذرهٔ ديگر به دست آوريـم. در ايـن صـورت، بـا توجه به اينكه ذرات تنها در راستاى محور XX حر كت مـى كننــد و مؤلفـه هـاى لy و zسـرعت ذرات صفر است. درنتيجه، با استفاده از تبديل لورنتس سرعت، داريم:

$$
\begin{equation*}
u_{x}^{\prime}=\frac{u_{x}-v}{1-v u_{x} / c^{r}}=\frac{-u-u}{1+u^{r} / c^{r}} \tag{Y}
\end{equation*}
$$

$$
u_{x}^{\prime}=\frac{-\upharpoonright u}{1+\beta^{r}}
$$

در نتيجه، انرزّى كل يكى از ذرات در جارجوب سكون ذرئ ديعر، برابر

$$
E^{\prime}=m_{\circ} \gamma\left(u_{x}^{\prime}\right) c^{r}=\frac{m_{0} c^{r}}{\sqrt{1-\left(u_{x}^{\prime} / c\right)^{r}}}
$$

خواهد بود. اكنون، با جايگذارى مقدار

$$
E^{\prime}=\frac{m_{0} c^{r}\left(1+\beta^{r}\right)}{\sqrt{\left[\left(1+\beta^{r}\right)^{r}-r \beta^{r}\right]}}
$$

$$
\begin{equation*}
E^{\prime}=\frac{m_{0} c^{r}\left(1+\beta^{r}\right)}{1-\beta^{r}} \tag{YM-F}
\end{equation*}
$$

 برابر $E^{\prime}=r m_{0} c^{r}$ دست مى آيد.
مثال ع - •1 : انرزیى آستانه
 سكون om برخورد كند. انرزّى آستانه '، برأى حالتى كه بعد از برخـورد، N جرم سكون mo ايجهاد شود، جقدر است؟

جواب: انرزّى آستانه درحقيقت، حـداقل انـرزى لازم بـراى روى دادن يـك فراينــ يـا برهم كنش فيزيكى مى باشد. در اين مورد براى اينكه حداقل انرزى را برای ايجاد N ذره بـه دست آوريمه بايل وضعيتى را بررسى نماييم كه ذرات ايجاد شـلم، يـس از برخـورد بـه حـال سكون در آينذ. به عبارت ديگر، انزرُى آستانه يا اولئُ ذرهٔ فرودى بايـد بـه انـدازه ای باشـدكه تنها باعث ايجاد ذرات گردد و انززُى اضافى باقى نماند تا به صورت انرزّى جنبشى در اختيـار ذرات به وجود آمله قرار گيرد. حال، براى بـه دسـت آوردن جـواب، مـى تـوان از از بايـستگى چاربردار انرزّى - تكانه استفاده نمود. بنابراين، درچارچچوب آزمايشگاه يا S، حاربر آرار انرزى- تكانهٔ ذرات قبل ازبرخورد برابر

$$
\begin{equation*}
p_{\imath}^{\mu}=\left(\frac{E}{c}, p, \circ, \circ\right) \tag{YYY-Y}
\end{equation*}
$$

$$
\begin{equation*}
p_{\curlyvee}^{\mu}=\left(m_{\circ} c, \circ, \circ, \circ\right) \tag{YMN-Y}
\end{equation*}
$$

مى باشند. اما درچـارچوب مر كـز تكانـه انـرزیى كـل، برابرممجمـوع انـرزى تـكـ تـكك ذرات مى باشد؛ زيرا دراين جارجوب، ذرات ايجاد شده بعد از برخورد به حال سكون در مى آينـد. بنـابراين، (lN4-Y) ()، جايگذارى نماييم، خواهيم داشت:

$$
\begin{equation*}
\left(E / c+m_{\circ} c\right)^{r}-\frac{1}{c^{r}}\left[E^{r}-\left(m_{\circ} c^{r}\right)^{r}\right]=\left(\frac{N m_{\circ} c^{r}}{c}\right)^{r} \tag{q}
\end{equation*}
$$

در نتيجه، با محاسبهٔ مقدار E، از رابطةٔ فوق، انرزى ذره فرودى بايل برابر

$$
\begin{equation*}
E=m_{\circ} c^{r}\left[\frac{N^{r}}{r}-1\right] \tag{YF,-F}
\end{equation*}
$$

باشد. اما نكته ایى كه بايد در اينجا به آن اشاره شود، اين است كه ما انرثى ذرهٔ فرودى رادر



$$
E=\left[\frac{N E_{c o m}}{r}\right]-m_{\circ} c^{r}
$$

نيز نوشت. اين رابطه نشان مى دهد كه با حداقل شدن انرزّى در جارجوب مر كز ثكانه، انرزى




شكل（F－F（F－F）：برخورد دو ذره در هارحوب

مطـابق شـكل（（I－F－）، بـا يكـديغر برخـورد
كـــرده و تـــشكيل يــكـك ذره بـــا جــــرم
سكون oM را مى دهند．حال، فرض كنيد كه

 حاصل از برخورد رادر دو چارچوب $S$ و و ${ }^{\prime}$ به دست آوريد．

جواب：الف：ابتدا سرعت ذرهٔ مر كب را در هارچوب $S$ به دست مى آوريم．بـراى ايـن
منظور، با استفاده از قانون بايستخگى انرزیى و تكانه درجارجوب S S، داريم：
（YヶY－ศ）
 اكنون، مى توان با تقسيم رابطةٔ（YFY－Y）بر（YFY－F）، سرعت ذره مر كب به دست آورد．

$$
u=\frac{m_{0,} \gamma\left(u_{1}\right) u_{1}+m_{o r} \gamma\left(u_{r}\right) u_{r}}{m_{0,} \gamma\left(u_{1}\right)+m_{\circ r} \gamma\left(u_{r}\right)}
$$



$$
\begin{equation*}
M_{0}^{r}=\frac{\left[m_{o}, \gamma\left(u_{1}\right)+m_{o_{r}} \gamma\left(u_{r}\right)\right]^{r}}{\gamma^{r}(u)} \tag{YFD-Y}
\end{equation*}
$$

$$
M_{\circ}^{r}=\left[m_{\circ}, \gamma\left(u_{1}\right)+m_{0 ヶ} \gamma\left(u_{r}\right)\right]^{r}\left(1-\frac{u^{r}}{c^{r}}\right)
$$

حاله، با جايگذارى مقدار $u$ از رابط\｛ٔ（YFY－F）در رابطهُ（YFY－F）، مى توان به دست آورد：

$$
M_{0}^{r}=\left(m_{0}^{r}+m_{0 r}^{r}\right)+r\left(m_{0}, m_{0 r}\right) \gamma\left(u_{1}\right) \gamma\left(u_{\Upsilon}\right)\left[1-\frac{u_{1} u_{r}}{c^{r}}\right] \text { (YศV-ץ) }
$$




شكل (F-F|): برخورد دو ذره در چار هو

$$
\begin{aligned}
u_{1}^{\prime} & =\frac{u_{1}-v}{1-v u_{1} / c^{r}} \\
& =\frac{u_{1}-u_{r}}{1-u_{1} u_{r} / c^{r}}
\end{aligned}
$$


ضريب $\gamma\left(u_{1}^{\prime}\right)$ نيز، برابر

$$
\gamma\left(u_{\imath}^{\prime}\right)=\frac{1}{\sqrt{1-\left(u_{\imath}^{\prime} / c\right)^{r}}}
$$

مى باشد. حال، با جايگذارى مقدار كردن آن، خواهيم داشت:

$$
\gamma\left(u_{1}^{\prime}\right)=\frac{\left(c^{r}-u_{1} u_{r}\right)}{\sqrt{c^{r}+u_{1}^{r} u_{r}^{r}-c^{r} u_{1}^{r}-c^{r} u_{r}^{r}}}
$$



$$
\begin{align*}
\gamma\left(u_{1}^{\prime}\right) & =\frac{\left(c^{r}-u_{1} u_{r}\right)}{c^{r} \sqrt{1-\left(u_{1} / c\right)^{r}} \sqrt{1-\left(u_{r} / c\right)^{r}}} \\
& =\frac{1}{c^{r}}\left(c^{r}-u_{1} u_{r}\right) \gamma\left(u_{1}\right) \gamma\left(u_{r}\right)
\end{align*}
$$

از طرف ديگر، با تو جه به قوانين پايستگى تكانه و انرزی، مى توان نوشت:
浣 : $m_{\circ}, \gamma\left(u_{\uparrow}^{\prime}\right) u_{\uparrow}^{\prime}=M_{\circ}^{\prime} \gamma\left(u^{\prime}\right) u^{\prime}$

的 : $m_{\circ}, \gamma\left(u_{1}^{\prime}\right) c^{r}+m_{\circ \uparrow} c^{r}=M_{\circ}^{\prime} \gamma\left(u^{\prime}\right) c^{r}$
اكنـون، باجايZـذارى مقـدار مى توان به دست آورد

$$
\begin{gather*}
M_{\circ}^{\prime} \gamma\left(u^{\prime}\right) u^{\prime}=m_{\circ}\left(u_{1}-u_{r}\right) \gamma\left(u_{1}\right) \gamma\left(u_{r}\right) \\
M_{\circ}^{\prime} \gamma\left(u^{\prime}\right) c^{r}=m_{\circ r} c^{r}+m_{\circ,}\left(c^{r}-u_{1} u_{r}\right) \gamma\left(u_{1}\right) \gamma\left(u_{\zeta}\right)
\end{gather*}
$$

 (YDF-F)

$$
u^{\prime}=\frac{m_{0,} c^{r}\left(u_{1}-u_{r}\right) \gamma\left(u_{1}\right) \gamma\left(u_{\zeta}\right)}{m_{0 \uparrow} c^{r}+m_{0,}\left(c^{r}-u_{1} u_{r}\right) \gamma\left(u_{1}\right) \gamma\left(u_{r}\right)}
$$

 $M_{o}^{\prime r}=\frac{1}{\gamma^{r}\left(u^{\prime}\right) c^{r}}\left[m_{\circ r} c^{r}+m_{0},\left(c^{r}-u_{1} u_{r}\right) \gamma\left(u_{1}\right) \gamma\left(u_{r}\right)\right]^{r}(\gamma \Delta V-\digamma)$ در نهايت با محاسبهٔ ( $\gamma\left(U^{\prime}\right.$ و جايگذارى آن در رابطءٔ (Y (YV-Y)، مى توان به دست آورد: $M_{o}^{\prime r}=\left(m_{o}^{r}+m_{o r}^{r}\right)+r\left(m_{0}, m_{o r}\right) \gamma\left(u_{1}\right) \gamma\left(u_{r}\right)\left[1-\frac{u_{1} u_{r}}{c^{r}}\right] \quad(\Gamma \Delta \Lambda-Y)$ كه با مقايسه رابطهُ فوق با (YYV-F) به نتيجهٔ
 است، برخورد مى كند. حال اگر فرض كنيم كه پس از برخورد، پروتونهـا داراى انـرزى يكـسان باشند، دراين صورت، زاويه يراكندگى بين دو يروتون را بعد از برخورد به دست آوريد.
 مى گیريم. در اين صورت، قبل از برخورد برایى بروتون فرودى خواهيم داشت:

$$
\begin{align*}
& p_{1}=m_{0} \gamma\left(\beta_{1}\right) u_{1}=m_{0} \gamma\left(\beta_{1}\right) \beta_{1} c \\
& E_{1}=m_{0} \gamma\left(\beta_{1}\right) c^{r}
\end{align*}
$$

از طرف ديخر، بَايستگى تكانه ايجاب مى كند

$$
m_{\circ} \gamma\left(\beta_{1}\right) \beta_{1} c=r m_{\circ} \gamma\left(\beta^{\prime}\right) \beta^{\prime} \cos \alpha
$$

PA9 ديناميك نسبيتى

$$
\gamma\left(\beta_{1}\right) \beta_{1}=r \gamma\left(\beta^{\prime}\right) \beta^{\prime} \cos \alpha
$$

همين طور، قانون پايستگى انرزّى نتيجه مى دهل:

$$
m_{0} c^{r}+m_{0} \gamma\left(\beta_{1}\right) c^{r}=r m_{0} \gamma\left(\beta^{\prime}\right) c^{r} \quad(r \mathcal{Y}-r)
$$

$$
\begin{equation*}
1+\gamma\left(\beta_{1}\right)=r \gamma\left(\beta^{\prime}\right) \tag{YGK-Y}
\end{equation*}
$$

اكنون، با تو جه به ضريب

$$
\begin{equation*}
\beta_{1} \gamma\left(\beta_{1}\right)=\sqrt{\gamma^{r}\left(\beta_{1}\right)-1} \tag{YGY-F}
\end{equation*}
$$

بنابراين، با درنظرگرفتن روابط (Y-Y (YY) و (

$$
\begin{align*}
\beta^{\prime} \gamma\left(\beta^{\prime}\right) & =\sqrt{\gamma^{r}\left(\beta^{\prime}\right)-1} \\
& =\sqrt{\frac{1}{4}\left[1+\gamma\left(\beta_{1}\right)\right]^{r}-1}
\end{align*}
$$

حال، با جايگذارى مقدار (

$$
\gamma\left(\beta_{1}\right) \beta_{1}=(r \cos \alpha) \sqrt{\frac{1}{r}\left[1+\gamma\left(\beta_{1}\right)\right]^{r}-1}
$$

كه با استفادهُ مجدد از رابطءٔ (YGF-F)، داريم:

$$
\begin{equation*}
\sqrt{\gamma\left(\beta_{1}\right)^{r}-1}=(r \cos \alpha) \sqrt{\frac{1}{r}\left[1+\gamma\left(\beta_{1}\right)\right]^{r}-1} \tag{YGV-Y}
\end{equation*}
$$

$$
\begin{align*}
\gamma^{r}\left(\beta_{1}\right)-1 & =\left[\gamma^{r}\left(\beta_{1}\right)+r \gamma\left(\beta_{1}\right)-r\right]\left(\cos ^{r} \alpha\right) \\
& =\left[\gamma\left(\beta_{1}\right)-1\right]\left[\gamma\left(\beta_{1}\right)+r\right]\left(\cos ^{r} \alpha\right)
\end{align*}
$$

اكنون، مى توان از (Y\&N-F)، رابطهُ زير را نتيجه گرفت.

$$
\cos ^{r} \alpha=\frac{\gamma\left(\beta_{1}\right)+1}{\gamma\left(\beta_{1}\right)+r}
$$

درنهايت، با تعريف $\theta=r \alpha$ زاويه پر اكند گی برو تونها را مى توان از رابطهُ زير به دست Tورد.

$$
\cos \theta=r \cos ^{r} \alpha-1=\frac{\gamma\left(\beta_{1}\right)-1}{\gamma\left(\beta_{1}\right)+r} \quad(r v \cdot-r)
$$

مثال ع - سا : بـخورد الكتشون ـالكتتون
فـرض كنيـد كــه درچـارجوب آزمايـششگاه يـا S، الكترونـى كــه دارای انـرزیى كــل
1/F.MeV
الف: انرزیى و تكان8 كل، درچارچوب؟ S چقدر است؟


د: اگر فرض كنيم كه درچارپوب شود. دراين صورت در اين چارچوب، الكترون فرودى تحت چهه زاويه ای پراكنده مى شود؟
 ح" در پــارجوب S، اگرالكتـرون فـرودى درراســاى محـور X برتـاب شـود، درايـن صورت، مؤلفه هاى x و y تكانهُ الكترون هدف را پس از برخورد محاسبه نماييل. جواب: الف: انرزّى كل در چارچوب آزمايشگاه يا S، برابر

$$
\begin{align*}
E=E_{1}+E_{r} & =E_{1}+m_{\circ} c^{r} \\
& =1 / r \cdot M e V+\cdot / \Delta 1 M e V \\
& =1 / 91 M e V
\end{align*}
$$

مى باشد كه در T T ا برابر تكانهٔ الكترون فرودى است. در نتيجه، داريم

$$
\begin{align*}
p_{t o t}=p_{1} & =\sqrt{\left(E_{1} / c\right)^{r}-\left(m_{\circ} c\right)^{r}}  \tag{YVY-F}\\
& =\sqrt{(1 / \uparrow \cdot)^{r}-(\cdot / \Delta 1)^{r}}=1 / r \cdot M e V / c
\end{align*}
$$



$$
\begin{equation*}
\vec{v}=\frac{c^{\curlyvee} \vec{p}}{E} \tag{YVr-Y}
\end{equation*}
$$

داده مى شود. بنابر/اين، ${ }^{\text {P }}$ برابر مقدار زير خواهد بود.

$$
v_{c o m}=\frac{c^{r}(1 / r \cdot M e V / c)}{1 / 9 \backslash M e V}=\cdot / \varepsilon \wedge c
$$

ج: انرزُى كل درجارچوب مركز تكانه، با توجه بـه رابطـئ (MF-F (I) و بـا درنظر گـرفتن اينكه

$$
\begin{align*}
E^{r}-c^{r} p^{r} & =E_{c o m}^{r}-c^{r} p_{c o m}^{r} \\
& =E_{c o m}^{r}-\circ
\end{align*}
$$

$$
\begin{align*}
E_{c o m}=\sqrt{E^{r}-c^{r} p^{r}} & =\sqrt{(1 / q 1)^{r}-(1 / r 1)^{r}} \\
& =1 / r \cdot M e V
\end{align*}
$$

مى باشد. همحْنين، مى تـوان بـا اسستفاده از تبـديلات لـورنتس، انـرزى الكتـرون هــدف رادر

$$
\begin{aligned}
& \text { چارچچوب } \\
& E_{\text {rcom }}=\gamma\left(v_{\text {com }}\right)\left[E_{r}+v p_{\Gamma}\right] \\
& =\gamma\left(v_{c o m}\right) E_{\zeta} \\
& =\gamma\left(v_{c o m}\right) m_{o} c^{r} \\
& =\gamma(\cdot / \& \wedge c)(\cdot / \Delta 1) M e V \\
& =\cdot / \wedge \Delta M e V
\end{aligned}
$$

 مى باشند، درنتيجه انرزى كل E E

$$
E_{c o m}=r E_{r c o m}=r(\cdot / \wedge \Delta M e V)=1 / \uparrow \cdot M e V
$$

د: در جارچوب
بود. همحِنين، زاويهٔ انحر اف يا پراكندگى برایى الكترون فرودى برابر ط



$$
p_{\text {पcom }}=\gamma\left(v_{c o m}\right)\left[p_{1}-\frac{v_{c o m}}{c^{r}} E_{\curlyvee}\right]
$$

مى باشد. حال، با توجه به اينكـهـ نتيجه، خواهيم داشت:

$$
\begin{align*}
p_{\text {\com }} & =\gamma(\cdot / \varepsilon \wedge c)[1 / ヶ \cdot-(\cdot / \varepsilon \wedge)(1 / \leftarrow \cdot)] \\
& =\cdot / \leftarrow \vee \frac{M e V}{c}
\end{align*}
$$

بنابراين دراين برخورد، الكترون فرودى برمى گردد و تكانئ الكترون هدف نيز برابر

$$
\begin{align*}
& \left|\vec{p}_{\text {rcom }}\right|=\left|\vec{p}_{\backslash c o m}\right|=\cdot / \uparrow \vee \frac{M e V}{c} \\
& \text { مى باشد. همحچنين، انرزَى الكترون فرودى را نيز مى توان از رابطه } \\
& E_{1 c o m}=\sqrt{c^{r} p_{1 c o m}^{r}+\left(m_{o} c^{r}\right)^{r}} \\
& =\sqrt{c^{r}(\cdot / 4 \gamma M e V / c)^{r}+(\cdot / \omega 1 M e V)^{r}} \\
& =\cdot / v \cdot M e V
\end{align*}
$$

به دست آورد. البته، همين نتيجه را مى تـوان بـا اسـتفاده از تبـديلات لـورنتس انـرزى بـرایى ذره فرودى نيز به دست آورد.

$$
\begin{align*}
E_{\text {ıcom }} & =\gamma\left(v_{\text {com }}\right)\left[E_{1}-v p_{1}\right] \\
& =\gamma(\cdot / \& \wedge c)[(1 / \leftarrow \cdot)-(\cdot / \& \wedge)(1 / r \cdot)] \\
& =\cdot / \vee \cdot M e V
\end{align*}
$$

ح : درجهت عمود بر راستاى حر كت الكترون فرودى، يعنى محور y، داريم

$$
\begin{align*}
p_{y} & =p_{y}^{\prime}=p_{\text {rcom }} \sin \theta \\
& =\frac{\cdot / \leftarrow \vee}{\sqrt{r}}=\cdot /\left\ulcorner ヶ \frac{M e V}{c}\right. \tag{YAK-F}
\end{align*}
$$

همحچنين، مؤلفةُ x تكانه نيز درچارچوب S، برابر مقدار زير مى باشد.

$$
\begin{align*}
p_{x} & =\gamma\left(v_{c o m}\right)\left[p_{\backslash x, c o m}+\left(\frac{v_{c o m}}{c^{r}}\right) E_{\backslash c o m}\right] \\
& =\gamma(\cdot / \varepsilon \wedge c)[(\cdot / r \uparrow)+(\cdot / \varepsilon \wedge)(\cdot / \vee \cdot)] \\
& =1 / \backslash\left(\frac{M e V}{c}\right)
\end{align*}
$$

مثال ₹ - ع1 : فْ إيند وإياشیى يك ذره
 حال، اگردرحیارچوب آزمايشگاه يا S، ذرات ايجاد شده مطابق شكل (F-F-10 )، در دو راستا كه با



شكل (10-F) : واياششى يك ذره راسـتاى حر كــت ذرهٔ اوليـه زوايـاى و $\pi /$ میى سازند، پراككنده شوند. دراين صورت، انززى هر كـدام از ذرات توليـد شده از اين وإياشى جقدر است؟

جواب: : فرايندواياشى ذرات نيز اساساً مشابه برخورد ذرات مى باشند. ما مى توانيم در ايـن
 انرزی ـ تكانئ ذره، قبل ازوواياشى برابر

$$
\begin{equation*}
p^{\mu}=(E / c, p, \circ, \circ) \tag{r^A-Y}
\end{equation*}
$$

مى باشد.كه درآن p برابر

$$
p=\frac{1}{c} \sqrt{E^{r}-m_{0}^{r} c^{\digamma}}
$$

است. اكنون، فرض مى كنيم كه جرم سـكون ذرات ايجـاد شــده برابـر om باشــلـ درنتيجـه، چاربردارانرزیى ـ تكانئ ذرات توليد شده با روابط

$$
\begin{gather*}
p_{1}^{\mu}=\left(E_{1} / c, \circ, p_{1}, \circ\right) \\
p_{r}^{\mu}=\left(E_{r} / c, p_{\zeta} \cos \theta,-p_{\curlyvee} \sin \theta, \circ\right)
\end{gather*}
$$

 نوشت: $\sin \theta$ مـى تـوان ايـن رابطـه را بــه صورت از وإياشى به شكل

$$
p_{1}^{\mu}=\left(E_{1} / c, \circ, p \tan \theta, \circ\right)
$$

$$
\begin{equation*}
p_{r}^{\mu}=\left(E_{r} / c, p,-p \tan \theta, \circ\right) \tag{Yq1-Y}
\end{equation*}
$$

 را برحسب تكانه و جرم ذرات بنويسيمه خواهيم داشت:

$$
\begin{align*}
E & =c \sqrt{p^{r} \tan ^{r} \theta+m_{o}^{r} c^{r}} \\
& +c \sqrt{p^{r}\left(1+\tan ^{r} \theta\right)+m_{o}^{r} c^{r}} \tag{YqY-Y}
\end{align*}
$$

$$
\begin{align*}
E & =E_{1}+\sqrt{p^{r} c^{r}\left(1+\tan ^{r} \theta\right)+m_{0}^{r} c^{r}} \\
& =E_{1}+\sqrt{E_{1}^{r}+p^{r} c^{r}}
\end{align*}
$$

 مقدار †E را به دست آورد.

$$
\begin{align*}
E_{1} & =\frac{E^{r}-p^{r} c^{r}}{r E}=\frac{M_{0}^{r} c^{r}}{r E}  \tag{YAY-F}\\
E_{r} & =E-E_{1}=\frac{E^{r}+p^{r} c^{r}}{r E} \\
& =\frac{r E^{r} \dot{q}^{r}-M_{0}^{r} c^{r}}{r E}
\end{align*}
$$



 حالت


$$
E=m_{\mathrm{o}} c^{r}+\gamma(u) M_{\circ} c^{r}
$$

$$
\begin{equation*}
p=\gamma(u) M_{\circ} u \tag{YQ४-Y}
\end{equation*}
$$

مى باشد. حال، با تو جه به رابطهُ(Y-Y (II)، خواهيم داشت:

$$
M^{\prime r} c^{\digamma}=E^{r}-(p c)^{r}
$$

كـه در آن 'M، جـرم ذرهُ مر كـب مـى باشــد. حـال، بـا جايگـذارى مقــلار E و p در رابطــُ (ra人-F)

$$
\begin{equation*}
M^{\prime r} c^{\digamma}=\left[m_{\circ} c^{r}+\gamma(u) M_{\circ} c^{r}\right]^{r}-\left[\gamma(u) M_{\circ} u c\right]^{r} \tag{Y99-F}
\end{equation*}
$$

و با مدحاسبٔه مقدار 'M از رابطةٔ فوق، داريم:

$$
M^{\prime}=\sqrt{m_{\circ}^{r}+r \gamma(u) M_{\circ} m_{\circ}+M_{\circ}^{r}}
$$

برایى محاسبهُ سرعت ذرهٔ حاصل از برخورد، مى توان از رابطهٔ (Y-4|(1))، استفاده كرد. درايـن صورت، اگر سرعت ذرهٔ مر كب را با 'u نشان دهيم، در اين صورت، داريم:

$$
u^{\prime}=\frac{M_{\circ} u}{M_{\circ}+m_{\circ} \gamma^{-1}(u)}
$$

اكنون، اگر فرض كنيم كه با دو جملةٔ ديگر در زير راديكال صرف نظر كرد. در نتيجه مى توان نوشت:

$$
\begin{align*}
M^{\prime} & =\sqrt{r \gamma(u) M_{\circ} m_{\circ}+M_{\circ}^{r}} \\
& \simeq M_{\circ} \sqrt{1+\frac{r \gamma(u) m_{\circ}}{M_{\circ}}}
\end{align*}
$$

$$
\simeq M_{\circ}\left(1+\frac{\gamma(u) m_{\circ}}{M_{\circ}}\right)
$$

$$
\simeq\left[M_{\circ}+\gamma(u) m_{\circ}\right]
$$

كه اين مقدار جرم به دست آمله، درمقايسه با اندازهٔ جرم ذره مر كب در حالت غيـر نـسبيتى، يعنى ( $\left.M_{\circ}+m_{\circ}\right)$ بزر گتر است. امـا مقـدارجرم بـه دسـت آمــده بـراى ذرهة مر كـب كـاملاً

 كل كل

نتيجه بعد از برخورد ساكن باقى می مانل. و انرزى كـل ذره فـرودى، يعنـى

 برابر
 پايستگى تكانه، سرعت ذرات پس از برخورد، متناسب با mo/ / التّـه در حالــت نـسبيتى با افزودن يك خريب $\gamma$ ) خواهل بود. بنابراين، انـرزّى جنبششى ذرهُ سـاكن بـا توجـهـ سـرعت بسيار كم Tن، قابل اغماض خواهد بود.

اكنون مى توان مقدار افزايش جرم، در اين برخورد را نيز به صورت

$$
\begin{align*}
\Delta m & =M^{\prime}-\left(M_{\circ}+m_{\circ}\right) \\
& =\left[M_{\circ}+\gamma(u) m_{\circ}\right]-\left(M_{\circ}+m_{\circ}\right) \\
& =\gamma(u) m_{\circ}-m_{\circ} \\
& =m_{\circ}[\gamma(u)-1]
\end{align*}
$$

به دست آورد.اين مقدار افزايش جرم ناشى از تبديل انرزی جنبشى به جرم مى باشد.

## T F - F

در بخش Y-Y-Y Y Y با قانون دوم نيوتن در نسبيت آشنا شديم. اكنون دراين بخش، اين قانون را مجلدداً مورد بررسى قرار مى دهيم. همان طور كه مى دانيم درمكانيكك نيوتنى، با توجـهـ بــه

 راستا نباشنلد و هم جهت نباشنلد. در اينجا، ابتدا حالتى را یر نظر مى گيريم كه در آن نير نيرو تنها داراى يكك مؤلفه يا يكك بعدى مى باشد. سيس حالتى را بررسى مى كنيم كه در آن نيرو بـيش از يكك مؤلفه دارد.

## - I - F F

دربخش F-F F-Y، قانون دوم نيوتن به شكل

$$
F=\frac{d p}{d t}=\frac{d}{d t}\left[m_{\circ} \gamma(u) u\right]
$$

تعميم داده شد. اكنون، مى توان با توجه به رابطءٔ فوق، ارتباط بين شتاب و نيـرو را بـه دسـت


$$
F=m_{\circ}[\gamma(u) \dot{u}+(\dot{\gamma}(u) u]
$$

نوشت. از طرف ديگر،

$$
\dot{\gamma}(u)=\frac{d \gamma(u)}{d t}=\frac{u \dot{u}}{\left(1-u^{r} / c^{r}\right)^{r / r}}
$$

$$
=\frac{1}{c^{r}} \gamma^{r}(u) u a
$$

مى باشد. حال، با جايگذارى مقدار

$$
\begin{align*}
F & =m_{\circ} \dot{u} \gamma(u)\left[\gamma^{r}(u) \frac{u^{r}}{c^{r}}+1\right] \\
& =\gamma^{r}(u) m_{\circ} a
\end{align*}
$$

رسيد. بنابراين، ملاحظه مـى شـود كه درنسبيت رابطـُ (r-Y-Y) بـراى نيـرو در يـكـ بعـلـ، بـا

$$
\text { رابطةٔ F= } m_{0} a \text { درفيز يكك نيوتنى تفاوت دارد. }
$$

اكنون، اگر كميّت $d E / d x$ را نيزمحاسبه نماييم، دراين صورت مى توان به دست آورد:

$$
\frac{d E}{d x}=\frac{d}{d x}\left(m_{\circ} \gamma(u) c^{r}\right)=\gamma^{r}(u) m_{\circ} u \frac{d u}{d x}
$$

$$
u \frac{d u}{d x}=\frac{d x}{d t} \frac{d u}{d x}=a
$$



$$
\frac{d E}{d x}=\gamma^{r}(u) m_{\circ} a
$$

نوشت. حال، با مقايسءٔ روابط (Y-Y-Y) و (F-F)، خواهيم داشت:

$$
\frac{d E}{d x}=F=\frac{d p}{d t}
$$

9A

 $E=m_{\circ} \gamma(u) c^{r}$ رابطة در نظر گرفت. برایى نشان دادن اين موضوع فرض كنيد كه نيروى $F=d E / d x$ بـه ذره أى اعمال شوه. دراين صورت كار انجام شده به وسيلةُ اين نيرو روى ذره، برابر

$$
\begin{align*}
w_{1 \rightarrow r}=\int_{x_{1}}^{x_{r}} F d x & =\int_{x_{1}}^{x_{r}} \gamma^{r}(u) m_{\circ} a d x \\
& =\int_{x_{1}}^{x_{r}} \gamma^{r}(u) m_{\circ}\left[u \frac{d u}{d x}\right] d x \\
& =\int_{u_{1}}^{u_{r}} \gamma^{r}(u) m_{\circ} u d u \\
& =\left.m_{\circ} c^{r} \gamma(u)\right|_{u_{1}} ^{u_{r}}
\end{align*}
$$

خواهد بو2. حالل، مى توان انرزّى پتأنسيل را مشابه حالت كاوسيكك، به صمورت

$$
V(x)=-\int_{x_{0}}^{x} F(x) d x
$$



$$
V\left(x_{1}\right)+\left.m_{0} c^{r} \gamma(u)\right|_{u_{1}}=V\left(x_{r}\right)+\left.m_{0} c^{r} \gamma(u)\right|_{u_{r}} \quad(\mu \mid \Psi-F)
$$





انرزیى پتانسيل و جنبشیى ذره است، در نظر گرفت.

أكنون، فرض كنيد كه نيرو داراى بيش از يكك مؤلفه باشل. در اين صورت، مى توان نشانن داد
 نيرو بيش از يكك مؤلفه داشته باششف، قانون هوم نيوتن رامى توان به مـورت بـردارى نوشـتـ.

YA9 2يناميكى نسبيتي

يعنى اگُر ذره تعحت تأثير نيروى $\overrightarrow{\text { ترار }}$

$$
\begin{align*}
\vec{F}=\frac{d \vec{p}}{d t} & =\frac{d}{d t}\left[\frac{m_{\circ} \vec{u}}{\sqrt{1-(u / c)^{r}}}\right] \\
& =\frac{d}{d t}\left[m_{\circ} \gamma(u) \vec{u}\right]
\end{align*}
$$

بيان هى شود. درنتيجه، اين رابطه را هى توان به شكل

$$
\vec{F}=m_{o}\left[\gamma(u) \frac{d \vec{u}}{d t}+\vec{u} \frac{d \gamma(u)}{d t}\right]
$$

نوشت. اككونف، با جايگذارى مقدار

$$
\begin{align*}
\vec{F} & =m_{\circ}\left[\gamma(u) \frac{d \vec{u}}{d t}+\frac{\vec{u}}{c^{r}} \gamma^{r}(u) u \frac{d u}{d t}\right] \\
& =m_{\circ} \gamma(u)\left[\vec{a}+\frac{u a}{c^{r}} \gamma^{r}(u) \vec{u}\right]
\end{align*}
$$

با هعاسبئ شتاب ذره از رابطةُ (Y|V-F)، میى توان به دسـت آورد:

$$
\vec{a}=\frac{\vec{F}}{m_{\mathrm{c}} \gamma(u)}-\left[\frac{u a}{c^{r}} \gamma^{r}(u)\right] \vec{u}
$$

بنابر اين، با تو جه به رابطةُ (F-F\N)؛ مى توإن دريافت كه درنسبيت، درحالـت كلـى ممكـن اسـت نيرو و شتاب در يكك راستا و هم جهت نباشند؛ زيرا جملهُ دوم دررابطهُ فوق درجهـت سـرعت
 هالثت اول : : راين حالت فرض مى كنيم كه ذره روى يكك مسيرمستقيم سر كت كنــ. دراين صورت سرعت، شتاب و نيروى وارد بر ذره دريكك راستا خواهند بود. بنابراين، با توججه به رابطهُ (MIV-F)، داريدم:

$$
\begin{align*}
F & =m_{\circ} \gamma(u)\left[1+\frac{u^{r}}{c^{r}} \gamma^{r}(u)\right] a \\
& =m_{\circ}\left[\gamma(u)+\frac{u^{r}}{c^{r}} \gamma^{r}(u)\right] a \\
& =\frac{m_{\circ} a}{\left(1-u^{r} / c^{r}\right)^{r / r}}
\end{align*}
$$

در نتيجه6، "خواههيم داشهت:

$$
F=m_{\circ} \gamma^{r}(u) a
$$

حال، مى توان اين رابطه رابه صورت

$$
F_{t}=m_{t} a_{t}
$$

 تعريف مى گردد. مثالى كه مى توان دراين مورد مطـرح كـرد، حر كــت يـك ذرهٔ بـاردار در داخل ميدان الكتريكى يكنواخت مى باشـد. در ايـن حالـت سـرعت، شـتاب و نيرويـى كــه از طرف ميدان الكتريكى به ذرهٔ باردار وارد مى شود، در يك راستا قرار مى گيرند.

حالتّ دوم : اكنون، فرض كنيد كه سرعت ذره عمود بـر شستاب و نيـروى وارد بـرذره
باشلد. به عنوان مثال، مانند حر كـت دايـره الى يكنواخحـت كـه درآذ نيـرو و شـتابب ذره بـا هـم موازى بوده و هردو عمود برسرعت ذره مى باشند. در اين حالت، اگرطـرفين رابطــُ (YاA-F) رادر $\vec{a}$ ضرب داخلى نماييم، در اين صورت، مى توان به دست آورد:

$$
\begin{align*}
F_{n} & =m_{\circ} \gamma(u) a  \tag{YYY-Y}\\
& =m_{n} a_{n}
\end{align*}
$$

 حر كت يكك ذرؤ باردار درداخل ميدان مغناطيسى يكنوخت را مى توان بـه عنـوان يـكك مثـال برای اين حالت در نظرگرفت.

## مثال \& - 17 : نوسانگ هماهنگ نسبيتى

فرض كنيد كه ذره ای با جرم سكون mo در امتداد محور x ، تحـت تـأثير نيـروى بـاز گرداننده́ $F=-m_{0} \omega^{r} x$ قرار دارد. اگر دامنهٔ حركت ذره برابر b باشد، در ايـن صـورت، نشان دهيد كه زمان تناوب اين نوسانگر از رابطه

$$
\begin{equation*}
T=\frac{\varphi}{c} \int_{0}^{b} \frac{\gamma}{\sqrt{\gamma^{\gamma}-1}} d x \tag{rYM-F}
\end{equation*}
$$

ديناميك نسبيتي +بر
به دست مى Tايد كه در $\gamma=1+\left(\omega^{r} / r c^{r}\right)\left(b^{r}-x^{r}\right)$ مى باشد. جواب: با توجه به تعريف نيرو، يعنى رابطهٔ(Y-Y)، معادلهٔ حر كت ذره را مى توان با رابطهُ

$$
\begin{equation*}
\frac{d}{d t}\left[m_{\circ} \gamma(u) u\right]=-m_{\circ} \omega^{r} x \tag{FYF-F}
\end{equation*}
$$

بيان كرد. حال، با درنظر گرفتن رابطهُ (Y-F • (F)، مى توان اين معادله را به صورت

$$
\gamma^{r}(u) \frac{d u}{d t}=-\omega^{r} x
$$

$u=\dot{x}$ نوشت. اكنون، برای حل اين معادلئ ديفرانسيل، مـى تـوان طـرفين ايـن رابطـه را در
ضرب كرد. همتخنين، اگگر از رابطةُ (F-Y• (F) استفاده كنيم، خواهيم داشت:

$$
\begin{equation*}
c^{r} \dot{\gamma}=-\omega^{r} x \dot{x} \tag{rYG-Y}
\end{equation*}
$$

$$
\frac{d}{d t} \gamma(u)=-\frac{\omega^{r}}{c^{r}} x \frac{d x}{d t}
$$

حال، با انتگرال گيرى از طرفين اين رابطه مى توان به دست آورد:

$$
\gamma(u)=-\frac{1}{r c^{r}} \omega^{r} x^{r}+k
$$

اكنون، براى به دسـت آوردن ثابت انتگرال گيرى، مى توان از شرايطط اوليه استفاده كرد. براى اين منظور مى دانيم كه سرعت ذره در انتهاى مسير آن برابرصفر است. در نتيجه، در $x=b$ ، $x$ ،准 $\gamma(0)=1$

$$
\begin{equation*}
k=\frac{1}{r c^{r}} \omega^{r} b^{r}+1 \tag{rYq-F}
\end{equation*}
$$

خواهلد بود. حال، با قراردادن مقدار k در رابطهٔ (YYA-F)، مى توان نوشت:

$$
\gamma(u)=1+\frac{\omega^{r}}{r c^{r}}\left(b^{r}-x^{r}\right)
$$

از طرف ديگر، مى دانيم كه زمان تناوب يكك نوسانگر با رابطة

$$
T=\uparrow \int_{0}^{b} \frac{d x}{u} \quad(\mu \sim 1-\uparrow)
$$


 زمان تناوب اين نوسانگگر را مى توان به صورت:

$$
T=\frac{\varphi}{c} \int_{0}^{b} \frac{\gamma}{\sqrt{\gamma^{r}-1}} d x
$$

## F - F

بعد از تعريف كميّت نيرو درنسبيت، اكنون مى توان تبـديلات لـورنتس آن را نيـز بـه دسـت
 سرعت مى كند. از طرف ديگر، مى دانيم كه نيرو در دو چارجوب S و 'S به ترتيب با روابط

$$
\vec{F}=\frac{d \vec{p}}{d t}=\frac{d}{d t}[m(u) \vec{u}]
$$

$$
\vec{F}^{\prime}=\frac{d \vec{p}^{\prime}}{d t^{\prime}}=\frac{d}{d t^{\prime}}\left[m^{\prime}\left(u^{\prime}\right) \vec{u}^{\prime}\right]
$$

بيان مى شوند. بنابراين، مؤلفه هاى نيرو را در اين دو هارپپوب مى توان به ترتيب به صورت

$$
F_{i}=\frac{d p_{i}}{d t}=\frac{d}{d t}\left[m(u) u_{i}\right] \quad, \quad i=1, r, r
$$

$$
F_{i}^{\prime}=\frac{d p_{i}^{\prime}}{d t^{\prime}}=\frac{d}{d t^{\prime}}\left[m^{\prime}\left(u^{\prime}\right) u_{i}^{\prime}\right], \quad i=1, r, r
$$

بيان كرد. دراينجا ابتدا تبديل لورنتس مؤلفةٔ x نيرو را به دست مى آوريم. بـرأى أيـن منظـور؛


$$
F_{x}^{\prime}=\frac{d p_{x}^{\prime}}{d t^{\prime}}=\frac{d}{d t^{\prime}}\left[m^{\prime}\left(u^{\prime}\right) u_{x}^{\prime}\right]
$$

داده مى شود. ازطرف ديخر، از رابطهُ (F-F|(|) داريم:

$$
m^{\prime}\left(u^{\prime}\right)=\gamma(v) m(u)\left[1-\frac{v}{c^{r}} u_{x}\right]
$$

حال، باضرب طرفين اين رابطه در

$$
m^{\prime} u_{x}^{\prime}=\gamma(v) m(u)\left[1-\frac{v}{c^{r}} u_{x}\right] u_{x}^{\prime}
$$

ديناميك نسبيتى بر r.
 ( )

$$
\begin{aligned}
m^{\prime} u_{x}^{\prime} & =\gamma(v) m(u)\left(1-v u_{x} / c^{r}\right)\left[\frac{u_{x}-v}{1-v u_{x} / c^{r}}\right] \\
& =\gamma(v) m(u)\left(u_{x}-v\right)
\end{aligned}
$$



$$
\begin{align*}
F_{x}^{\prime} & =\frac{d}{d t^{\prime}}\left[m^{\prime}\left(u^{\prime}\right) u_{x}^{\prime}\right] \\
& =\gamma(v) \frac{d}{d t^{\prime}}\left[m(u)\left(u_{x}-v\right)\right] \\
& =\gamma(v) \frac{d}{d t^{\prime}}\left[m(u) u_{x}-m(u) v\right]
\end{align*}
$$



$$
\frac{d}{d t^{\prime}}=\frac{d t}{d t^{\prime}} \frac{d}{d t}
$$

(PFY-P)
استت. بنابر اين،

$$
\begin{aligned}
F_{x}^{\prime} & =\gamma(v) \frac{d t}{d t^{\prime}} \frac{d}{d t}\left[m(u) u_{x}-m(u) v\right] \\
& =\gamma(v) \frac{d t}{d t^{\prime}}\left(\frac{d}{d t}\left[m(u) u_{x}\right]-v \frac{d m(u)}{d t}\right) \\
& =\gamma(v) \frac{d t}{d t^{\prime}}\left[F_{x}-v \frac{d m(u)}{d t}\right]
\end{aligned}
$$

(YFY-F)

اكْونَ بايل مقادير '


$$
d t^{\prime}=\frac{\partial t^{\prime}}{\partial t} d t+\frac{\partial t^{\prime}}{\partial x} d x
$$

الستئاده كروه براى اين، منططور، بـا توجـه بـه تبـلديل لـورنتس $t^{\prime}=\gamma(v)\left[t-v x / c^{r}\right]$
, إبط؛ (F-FFPF)، مي توان نوشت:

$$
\frac{d t^{\prime}}{d t}=\gamma(v)\left[1-\frac{v}{c^{r}} u_{x}\right]
$$



$$
\frac{d t}{d t^{\prime}}=\frac{1}{\gamma(v)\left[1-\frac{v}{c^{r}} u_{x}\right]}
$$

 زمان مشتق گرفت. در اين صورت، خواهيم داشت:

$$
\begin{equation*}
\frac{d E}{d t}=c^{r} \frac{d m}{d t} \tag{MYV-F}
\end{equation*}
$$

حال، مى توان به جاى $d E / d t$ مقدارش را از رابطءٔ(F)-F) جايگذارى كرد. درنتيجه، داريم

$$
\begin{align*}
\frac{d m}{d t} & =\frac{1}{c^{r}} \frac{d \vec{p}}{d t} \cdot \vec{u}=\frac{1}{c^{r}} \vec{F} \cdot \vec{u} \\
& =\frac{1}{c^{r}}\left[F_{x} u_{x}+F_{y} u_{y}+F_{z} u_{z}\right]
\end{align*}
$$

درنهايت، مى توان با جايگذارى مقّدار 'FFA-F) در(F-F

$$
F_{x}^{\prime}=F_{x}-\frac{v u_{y}}{\left(c^{r}-v u_{x}\right)} F_{y}-\frac{v u_{z}}{\left(c^{r}-v u_{x}\right)} F_{z}
$$

به دست آورد. حال، به همين ترتيب، مى توان تبديلات لورنتس را بـرایى مؤلفـه هـاى y و z نيرو نيز به دست آورد كه نتيجهٔ اين محاسبات به صورت زير خواهد بود.

$$
F_{y}^{\prime}=\frac{F_{y}}{\gamma(v)\left[1-v u_{x} / c^{r}\right]}
$$

و

$$
F_{z}^{\prime}=\frac{F_{z}}{\gamma(v)\left[1-v u_{x} / c^{r}\right]}
$$

همحجنين، تبديلات وارون نيرو را نيز مى توان با تعويض جاى بريمها و تبـــيل v بـه v-، بـه

$$
\begin{array}{r}
\text { دست آورد.، تبديلات وارون نيرو با روابط زير بيان مى شوند. } F_{x}=F_{x}^{\prime}+\frac{v u_{y}^{\prime}}{\left(c^{r}+v u_{x}^{\prime}\right)} F_{y}^{\prime}+\frac{v u_{z}^{\prime}}{\left(c^{r}+v u_{x}{ }^{\prime}\right)} F_{z}^{\prime} \quad(r \Delta r-\Psi)
\end{array}
$$

$$
F_{y}=\frac{F_{y}^{\prime}}{\gamma(v)\left[1+v u_{x}^{\prime} / c^{r}\right]}
$$

$$
F_{z}=\frac{F_{z}^{\prime}}{\gamma(v)\left[1+v u_{x}^{\prime} / c^{r}\right]}
$$

## - If - F

بعد ازاستخراج روابط تبديلى برای نيرو بين دو چارچپوب لخـت $S$ و 'S ، اكـنون، مـى تـوان حالتى را در نظر گرفت كه درآن، ذره درجارحوتب ’S درحالت سـكون لحظـه أى باشــد. در اين صورت، به نيرويى كه در اين لحظه بـه ذره́ سـاكن در 'S وارد مـى شـود، نيـسوى ويـشْ'
 يعنى براى مؤلفه هاى نيروى ويزَه با توجه به روابط (F-F-F) تا (r (r

$$
F_{x}=F_{x}^{\prime}
$$

$$
\begin{equation*}
F_{y}=\frac{F_{y}^{\prime}}{\gamma(v)} \quad, \quad F_{z}=\frac{F_{z}^{\prime}}{\gamma(v)} \tag{g}
\end{equation*}
$$

خواهنل بود. اين روابط با قرار دادن $\vec{u}^{\prime}=0$ در روابط (ץ-Y بنابراين، با توجه به اين تبديلات، مؤلفهٔ x نيرو يا مؤلفؤ نيرو در راستاى موازى سـرعت نـسبى دو جارجوبه، بلدون تغيير باقى مى ماند و تنها مؤلفه هاى y و z نيرو يا مؤلفه هاى عمود برسرعت نسبى نيرو تغيير مى كنند كه تبديلات اين مؤلفه ها نيز با روابط (F-Yهاץ) بيان مى گردند.

## 



 دراين بخشى، حالتى در نظر گرفته مى شود كه در آن جرم يك سيستم بـي بـه طور بيوسته تغيير
 طور، بر اثي از خروج ججرم ازآل مى باشد. يكى از موأردى كه معمولاً براى بررسى سيستم هاى با جـرم متغييـر مـوردد هطالثـهـ قورار


 مطرح نمود، عبارت است از واگن رو بازى است كه جرم (مثلاً شن) بـا آهنـُگُ ثـابتى بـهـ آن افزوده مى شود. يا برعكس واگگنى كه دانه هاى شن با آهنگك ثابتى از آلن به بيرون مى ريزد. بنابراين، دراينجا موشكى را كه با سرعت نسبيتى حر كت مى كند، به عنوان يكك سيـــّم با جرم متغير مورد بررسى قرار مى گیيرد. همتحنين، در اين بررسى فرض مى كنيم كـهـ نيرويـى





هى خواهيم نشان دهيم كه رابطه بين سرعت و بجرم لحظه ای موشكك به صورت

$$
\frac{d m}{m}+\frac{1}{u} \frac{d v}{\left(1-v^{r} / c^{r}\right)}=0
$$





$$
m=M_{\circ}\left(\frac{1-\beta}{1+\beta}\right)^{\frac{c}{r u}}
$$

به دست مى T يل. حاله، برایى به دست Tوردن اين روابط، مى توان از قـوانين پايسستگي تكانهـ،
 را با در نظر گُرفتن أين قوانين به دو روش مورد بررسى قرار مي دهيم.

> روش اول :

 مى كنيم.



 اين تبديل، برابر




 آورد. درنتيجه، خواهيم داشت:

$$
\begin{aligned}
p_{S} & =\gamma(v)\left[p_{S^{\prime}}+\frac{v}{c^{r}} E_{S^{\prime}}\right] \\
& =\gamma(v)\left[(d m) u+\frac{v}{c^{r}}\left(-d m c^{r}\right)\right] \\
& =\gamma(v)(u-v) d m
\end{aligned}
$$

كه مقدار به دست آمده براى ${ }^{\text {P }}$ نيز مقدارى منغى است.
 موشك؛، قبل از تبديل مقدار $d m$ ازجرم سوخت به كا گاز، برابر




$$
p_{i}=\gamma(v)(u-v) d m+p_{f}
$$

$$
\left.[m \gamma(v) v]_{i}=\gamma(v)(u-v) d m+[m \gamma(v) v]_{f} \quad \text { (अя) }-\mathcal{F}\right)
$$

از طرف ديگر، رابطةُ (F|-Y) را مى توان به صورت

$$
\gamma(v)(u-v) d m+[m \gamma(v) v]_{f}-[m \gamma(v) v]_{i}=0 \quad(\mu \mathcal{Y} \gamma-\mathcal{F})
$$

يا به شكل

$$
\gamma(v)(u-v) d m+d[m \gamma(v) v]=\circ
$$

 صورت، مى توان به دست آورد

$$
\begin{align*}
d[m \gamma(v) v] & =d m[\gamma(v) v]+d \gamma(v)[m v]+m \gamma(v)[d v] \\
& =d m[\gamma(v) v]+m\left[\frac{1}{c^{r}} \gamma^{r}(v) v(d v)\right] v+m \gamma(v)[d v] \\
& =d m[\gamma(v) v]+m \gamma(v)\left[\frac{1}{c^{r}} \gamma^{r}(v) v^{r}+1\right] d v \\
& =d m[\gamma(v) v]+m \gamma^{r}(v) d v
\end{align*}
$$




$$
\gamma(v)(u-v) d m+d m[\gamma(v) v]+m \gamma^{r}(v) d v=0
$$

كه با ساده كردن آن مى توان رابطءّ

$$
\begin{equation*}
u \gamma(v) d m+m \gamma^{r}(v) d v=0 \tag{499-4}
\end{equation*}
$$

را به دست آورد. بنابراين، مى توان از رابطةٔ فوق به نتيجهٔ

$$
\frac{d m}{m}=-\frac{1}{u} \frac{d v}{\left(1-v^{r} / c^{r}\right)}
$$



$$
\int_{M_{\circ}}^{m} \frac{d m}{m}=-\frac{1}{u} \int_{\circ}^{v} \frac{d v}{\left(1-v^{r} / c^{r}\right)}
$$

$$
\ln \frac{m}{M_{\circ}}=-\frac{1}{u} \int_{\circ}^{v} \frac{d v}{\left(1-v^{r} / c^{r}\right)}
$$



$$
\begin{align*}
\int_{0}^{v} \frac{d v}{\left(1-v^{r} / c^{r}\right)} & =\frac{1}{r} \int_{0}^{v}\left[\frac{1}{1+\beta}+\frac{1}{1-\beta}\right] d v \\
& =\left.\frac{c}{r}[\ln (1+\beta)-\ln (1-\beta)]\right|_{0} ^{v} \\
& =\frac{c}{r} \ln \frac{(1+\beta)}{(1-\beta)}
\end{align*}
$$

كه در آن $\beta$ مى باشــد. اكنـون، مـى تـوان بـا جايخـذارى جـواب انتخـرال از رابطــُ (FV•-F)

$$
\ln \frac{m}{M_{\circ}}=-\frac{c}{r u} \ln \frac{(1+\beta)}{(1-\beta)}
$$

كه در نهايت با محاسبئ جرم موشكك از رابطهٔ (Y)-Y (Y)؛ برحسب سرعت آن به نتيجهٔ

$$
\begin{equation*}
m=M_{\circ}\left(\frac{1-\beta}{1+\beta}\right)^{\frac{c}{r u}} \tag{YVY-Y}
\end{equation*}
$$

مى رسيم كه در واقع، همان رابطةء (FDN-F) مى باشد.
از طـرف ديخَـر، بـا داشـتن جـرم موشـك مـى تـوان انـرزّى كـل موشـك را نـسبت بــه جار جوب $S$ نيز به دست آورد كه نتيجه، برابر

$$
\begin{align*}
E & =m \gamma(v) c^{r} \\
& =M_{\circ} c^{r} \gamma(v)\left(\frac{1-\beta}{1+\beta}\right)^{\frac{c}{r u}}
\end{align*}
$$

 (FY.-F) استفاده كرد. دراين صورت، رابطهُ (FVY-F) را مى توان به صورت

$$
\begin{equation*}
\frac{1-\beta}{1+\beta}=\left(\frac{m}{M_{\circ}}\right)^{\frac{r u}{c}} \tag{FVF-F}
\end{equation*}
$$

نوشت. درنتيجهه، از رابطةُ (TVF-F)، سرعت موشكك به شكل

$$
v=c \frac{\left[1-\left(m / M_{\circ}\right)^{r u / c}\right]}{\left[1+\left(m / M_{\circ}\right)^{r u / c}\right]}
$$

به دست مى آيد.

روش~ دوم:

 كميّت $d m / d t^{\prime}$ بيانگر آهنگ كاهش جرم( سوخت) موشك و تبديل آن به گاز خو اهل بود كه dm مانند قبل مقدارى منفى درنظر گرفته مى شود. در نتيجه، آهنگك تغيير تكانـئ گازهـاى خروجى، برابر ' $d p / d t=u d m / d t^{\prime}$
 برابر '
 جهت آن، يعنى اما نكته أى كه در اينجا لازم است يادآورى شود، اين است كه در اين مسأله همى تـوان از قانون سوم نيوتن استفاده كرد؛ زيرا همان طور كه قبلاً درمورد اين قانون درنسبيـت اشاره شـــد، دو نيروى كنش و واكنش به عنوان دو رويـداد، درچـارپپوب 'S، دريـكك مكـان و همزمـان روى مى دهند. بنابراين، همزمانى اين دو رويداد درچار چوبهای ديگر نيز تضمين مى شود. اكنون، وضعيت را درحارحوبِ متصل به زمين، يعنى S مورد بررسى قـرار مـى دهـيم. از


 موشكك، يعنى 'S، انـدازه گرفتـه مـى شـوه. بنـابراين، نيـروى ' طرف گازهاى خروججى به موشكك ( كه در 'S درحال سكون لحظه ايى اســت) وارد مـى شـوده نيروى ويزٔه خواهد بود. درنهايت اينكه نيروى
 اتساع زمان، يعنى ' $t=\gamma(v) t^{\prime}$ داده مى شود؛ زيرا خروج گازها درجارچوب



$$
F_{g \rightarrow r}=F_{g \rightarrow r}^{\prime}=-u \gamma(v) \frac{d m}{d t}
$$

همتجنين، مى توان از ابتدا نيرويي را كه از طـرف گازهـاى خروجىى بـه موشـك وارد
 مقّدارجرم -dm- از سوخت موشكك را متحاسبه نماييم. در نتيجه، فرض مى كنيم كه جرمـى بـه انــدازه برابــر

 رابطلة (F-Fهاץ) برابر برایى جرم dm - محاسبه كرد. دراين صورت، خواهيم داشت:

$$
\begin{align*}
\Delta p & =p_{f}-p_{i} \\
& =\gamma(v)[u-v] d m-[-d m \gamma(v) v] \\
& =u \gamma(v) d m-v \gamma(v) d m+v \gamma(v) d m  \tag{HV-F}\\
& =u \gamma(v) d m
\end{align*}
$$

بنابراين، نيرويي به اندازة

$$
\begin{equation*}
F_{r \rightarrow g}=\frac{d p}{d t}=u \gamma(v) \frac{d m}{d t} \tag{TVA-F}
\end{equation*}
$$

از طرف موشكك به گازهاى خروجىى وارد مى گردد كه در اين حالـتك، براسـاس قـانون سـوم نيـوتن، نيرويــى برأبــر وـو مى شود. حاله، بادرنظر گُرفتن رابطةُ (rVA-F)، اين نيرو برابر ابر

$$
\begin{equation*}
F_{g \rightarrow r}=-u \gamma(v) \frac{d m}{d t} \tag{FVq-F}
\end{equation*}
$$

خواهلد بود كه درواقع، برابرهمان نيرويى است كه با رابطةُ (FVG-F) داده شده اسـت. اكنـون،
 مى توان آهنگك تغيير تكانه موشكى را نيزمدحاسبه كرد. درنتيجه، داريم:

$$
\begin{align*}
F_{g \rightarrow r} & =\frac{d p}{d t}=\frac{d}{d t}[m \gamma(v) v] \\
& =[m \dot{\gamma}(v) v+m \gamma(v) \dot{v}]+\gamma(v) v \dot{m} \\
& =m\left[\left(\frac{1}{c^{r}} \gamma^{r}(v) v \dot{v}\right) v+\gamma(v) \dot{v}\right] \\
& =m \gamma(v) \dot{v}\left[\left(\frac{1}{c^{r}} \gamma^{r}(v) v^{r}+1\right]\right.
\end{align*}
$$

$$
F_{g \rightarrow r}=m \gamma^{\Gamma}(v) \dot{v}
$$


 (rVQ-Y) و (YN1-F)، داريم:

$$
\begin{equation*}
-u \gamma(v) \frac{d m}{d t}=m \gamma^{r}(v) \frac{d v}{d t} \tag{rır-F}
\end{equation*}
$$

$$
\frac{d m}{m}=-\frac{1}{u} \frac{d v}{1-\left(v^{r} / c^{r}\right)}
$$

كه همان رابطءٔ (FYV-F) مى باشل. حال ادامةٔ راه حل مانند روش قبل خواهد بود.

## مو شك نسبيتى به صورتى ديگر

اكنون مى توان حالتى را درنظر گرفت كه در آن جرم سوخت به جاى تبديل شدن به گـاز،
 سرعت فوتونهاى خروجى از موشكك، يعنى u برابر c خواهلد بود. درنتيجه، رابطةُ (YVY-Y) به

$$
\begin{equation*}
m=M_{0}\left(\frac{1-\beta}{1+\beta}\right)^{\frac{1}{r}} \tag{-}
\end{equation*}
$$

تبديل مى شود. وانرزّى كل موشك نيز در اين حالت، با تو جه به رابطة ( (YVr-Y)، از روابط

$$
\begin{align*}
E & =m \gamma(v) c^{r} \\
& =M_{0} c^{r} \gamma(v)\left(\frac{1-\beta}{1+\beta}\right)^{\frac{1}{r}}
\end{align*}
$$

$$
E=\frac{M_{\mathrm{o}} c^{r}}{1+\beta}
$$

به دست مى آيد. دراين حالت، سرعت موشك نيزبا درنظر گرفتن (FV-F) مى توان از رابط؛

$$
v=c \frac{\left[1-\sqrt{\left(m / M_{\circ}\right)}\right]}{\left[1+\sqrt{\left(m / M_{\circ}\right)}\right]}
$$

به دست آورد.
اما نكته ایى كه در اينجا مى توان به آن اشاره نمود، أين است كه تاكنون ارتباط بين جرم
 يا (FVQ-F) بيان مى شود. حاللبا توجهه به اين دو رابطـه، جـرم يـا سـرعت موشـكك مـستقل از آهنگگ تبديل سوخت به گاز يا انرزى (فوتون) مى باشد.
 ارتباط بين سرعت موشك و زمان را درحارچچوب S به دست آوريم. برایى اين منظور فـرض
 ، $d t=\gamma(v) d t^{\prime}$ برابر
Tهنگُ تبد يل سوخت به فوتون، درچارچهوب S برابر

$$
\eta=-\gamma(v) \frac{d m}{d t}
$$

خواهد بود. اكنون، با مشتقگيرى از رابطئ (YAF-F)، مى توان به دست آورد:

$$
d m=-\frac{1}{c} \frac{M_{\circ} d v}{(1+\beta) \sqrt{1-\beta^{r}}}
$$

همدخنين، اگر

$$
\frac{c \eta d t}{M_{\circ}}=\frac{\gamma(v) d v}{(1+\beta) \sqrt{1-\beta^{r}}}
$$

$$
\frac{c \eta d t}{M_{\mathrm{o}}}=\frac{d v}{(1+\beta)\left(1-\beta^{r}\right)}
$$



$$
\begin{equation*}
\frac{c \eta}{M_{\circ}} \int_{0}^{t} d t=\int_{0}^{v} \frac{d v}{(1+\beta)\left(1-\beta^{r}\right)} \tag{rqr-F}
\end{equation*}
$$

به دست آورد. درنتيجه، داريم:

$$
\frac{c \eta t}{M_{\circ}}=\int_{\circ}^{v} \frac{d v}{(1+\beta)\left(1-\beta^{r}\right)}
$$

اكنون،براى محاسبئ انتگرال سمت راست رابطهُ(F\&F-F)، مى توان به صورت زير عمل كرد.

$$
\begin{align*}
& \int \frac{d v}{(1+\beta)\left(1-\beta^{r}\right)}=\int \frac{d v}{(1+\beta)(1-\beta)(1+\beta)} \\
&=\frac{1}{r} \int\left[\frac{1}{(1+\beta)}+\frac{1}{(1-\beta)}\right] \frac{d v}{(1+\beta)} \\
&=\frac{1}{r} \int \frac{d v}{(1+\beta)^{r}}+\frac{1}{r} \int\left[\frac{1}{(1+\beta)}+\frac{1}{(1-\beta)}\right] d v
\end{align*}
$$

$$
\int \frac{d v}{(1+\beta)\left(1-\beta^{r}\right)}=-\frac{c}{r(1+\beta)}+\frac{c}{f} \ln \frac{(1+\beta)}{(1-\beta)}
$$

حال، با جايگذارى جواب انتگرال از رإبطهُ ( موشكك، درچارچچوب S به زير

$$
\frac{\eta t}{M_{0}}=\frac{1}{r}-\frac{1}{r(1+\beta)}+\frac{1}{r} \ln \frac{(1+\beta)}{(1-\beta)}
$$

 برحسب زمان به دست آوريم.

MO ديناميك نسبيتى

تمرين
ا- اندازه حر كت يكك الكترون •ه\% بيش از اندازه حر كت كلاسيكى آن است.
الف : سرعت اين الكترون جقّدر است؟
ب : اگر ذره را پروتون درنظربگیيريم، سرعت آن جقلدر خواهد بود؟
 و
 جنبشى آن را به دست آوريد.
r-ذرات پيون و ميون هر يكك داراى انرزّى Gev •ا مى باشند. اگر اين ذرات در يك مسابقء دو • • ا متر شر كت كنند، كداميكك برنده́ مسابقه خواهد بود؟


آن چققدرخو اهل بود؟
ه- در يكك شتاب دهنده، به يكك بروتون انرزى جنبشى برابـر F F Gev داده مسى شـود. اندازه حر كت و سرعت آن را به دست آوريد.
 9 9 / 1 ج جقدر انرزی لازم است؟

V

$$
\underset{\wedge \mathcal{M}}{\text { YY }} R a \rightarrow \underset{\wedge я}{\text { rY }} R n+{\underset{r}{r}}_{r} \mathrm{He}
$$

 ترتيـــبـ برابـــر YY F/..Y\&

$$
\operatorname{lamu}=1 / \varepsilon \times 1 \cdot \cdots \vee k g
$$

 حاللت، أنرُّى كل و جنبشى ذره را به دست آوريل.

4- نشأن دهيد كه سرعت يكك ذره را مى توان از رابطء

$$
\beta=\left[1-\left(m_{\circ} c^{r} / E\right)^{r}\right]^{1 / r}
$$

به دست آورد. حاله با استفاده از رابطةٔ فوق سرعت يكك ذره را به ازایى انززیى E برابر
ب : دو برابرانرزیى سكون ان
الف : انرزّى سكون Tن
د : هزار برابرانرزیى سكون Tانر
ج : ده برابر انرزی سكون آري
به دست آوريد.

آزمايشگاه با سرعت 99 / 19 حر كت مى كند، درحالتهاى زير به دست آوريد.
الف : درچارحیوب آزمايشگاه


تعريف مى شود.

الف : سرعت چار چچوب مر كز تكانه چقّدر است؟
ب : تكانه و انرزیى كل را درچارچوبِ آزمايشگّاه به دست آوريد.
ج : انرزیى جنبشى ذرات را درجارجوب مر كز تتكانه محاسبه نما ييلد.

است. در اين صورت،درهر ثانيه چجه مقدار از ججرم خورشيد به انرزى تبديل مى گرددد.
تا متخالفـ حر كت مى كتند با يكديخر برخورد سر به سر انجام مى دهنلـ. اگر إنرزی هر كــدام از

تروتونها برابر Bev • ا باشله در اين صورت
الف : سرعت پֶروتونها ازنظر ناظر ساكن در چارپچوب Tآزمايشگًاه چقّدر است؟ ب : سرعت يكى از پروتونها را نسبت به پروتون ديگر به دست آوريل. ج : :

MIV ديناميك نسبيتى
دادن


أ اf
كه ذره ديگرى با جرم سكون هm 6 ساكن باشد. دراين صورت
الف: أنرزى و تكانهُ ذرات را درپارچپب T آمايشگاه يا S به دست آوريد.
ب : با استفاده از رابطءُ جمع نسبيتى سرعتها، سرعت جارجوب مركز تكانهُ ذزات، يعنى
veom
ج : انرزی و تكانه ذرات در چارچوب Som
د : نشان دهيد كه انتزڭى و تكانهٔ ذرات كه در قسمتهاي الف و ج بـه دسـت آملنـدن، بـه
وسيلة تبد يلات لورنتس با يكديگر مرتبط هستند.
10
پس از برخورد، يكك ذره واحد تشكيل مى شود. جرم و سرعت اين ذره را به دست آوريد.

يا آزمايشگاه، به يكديگر نزديك مى شوند. انرزیى كل يكى از ذرات را درپحارچوب سـكون

$$
\text { ذره ديگربه دست آوريد. (جواب حالت خاص: } \left.\beta^{r}=\frac{1}{r} \Rightarrow E=r m_{0} c^{r}\right)
$$

mo ذ IV برخورد مى كند و به آن مى چحسبد. سرعت نهايى ذره مر كب چقدر است؟
^ا- در چارچچوب آرمايشگًاه يا S، ذره ایى با جرم سكون m و سرعت v، به طـرف ذره درحال سكون ديگرى به جرم mo در حر كت است. سرعت چارچوب لتختـى كـه درآن تكانه كل صفر باشد، چیيست؟
 سكون هm تبديل مى شود. اگگر سـرعت ذره برابـر u باشـلـ، در ايـن هـورت، جـرم mo همحچنين انرزى فوتون را برحسب


شُكل (f-f) : واءاشیى يك ذره به سه فوتون
. سـرعت $u$ حركــت مسى كنـد، يسس از واياشــى، مطابق شكل (19-Y) به سه فوتون تبديل مى شود. !نرزی هر كدام از فو تونها را به دست آوريد.


 زاويهُ معين $\theta$ پراكنده مى گُردد. اگكر فوتـون ايجـاد شده عمود بر راستاى حر كت فوتون فرودى پراكنده
شكل (IV-F) : مسأله



شكل (1A-F) : مسأله برخورد مى كند. پس از برخور بـ، يكك فوتون و يـك
 مطـابق شـكل (IN-F))، در راسـتاى عمـود بـر جهـت حر كت ذره فرودى mo پراكنلده مى شـود. اگـر ذرهُ
 آوريد. همحچنين اندازهٔ E جقدر بايل باشد تا اين برهم كنش روى دهد.
 نسبت به يكديگر حر كت مى كنند. فرض كنـيم كـه سـرعت ذرات يكـسان و برابـر u باشـلد، دراين صورت، اگُر بر خورد دو ذره راناكشسان درنظر بگيريمه، نشان دهيد كه جرم ذرهٔ مركب حاصل از برخورد از رابطة

$$
M=r m_{\circ} \gamma(u) \sqrt{1-\frac{u^{r}}{r c^{r}}}
$$

به دست مى آيد. سرعت ذره́ مركب را نيز به دست آوريد.

ديناميك نسبيتى M9

 ســكون برخورد مى كنلد. پس از برخورد ذره أى بـه جـرم سكون $M_{\text {ايتجاد مى گردد. سـرعت و جـرم ذره }}$ ايججاد شده را به دست آوريد. انرزى فوتون چچقدر است؟



شكل (F-F) : مسأله هr واپاشی به دو فوتون و يكك ذره به جرم سـكون تبديل مى گردد. أگر ذرهٔ توليد شده پس از وایاشـى بـه حـال ســكون در آيـلـ و فوتونهـا مطـابق شـكل (Y--F) براكنده گردند، اندازهٔ زاويهٔ $\theta$ را به دست آوريل.

 حر كت ذرات به ترتيب، به سمت شمالل، شمال شـرقى و شـمال غربـى در نظـر گرفتـه شـوند، سرعت و جرم ذره́ ايجاد شده را به دست آوريل. يـك فوتـون و ذره ایى بـه جـرم سـكون - FV مى كنند. أگرپس از برخورد، ذره جديدى ايجاد گردد و انرزیى كل سيستم برابر E باشله در اين صورت، اين انرزیى به جه صورت بين فوتون و جرم mo تقسيم شود تـا جـرم ذره ايـجـاد شده بيشترين مقدار شود؟
 فوتونهاى به دست آمله به ترتيب برابر راستاى اوليئ حركت ذره؛ زواياى $\alpha$ و $\beta$ ساخته و در دو طرف اين راستا قرار مى گيرند. در اين صورت، ثابت كنيد:

$$
\tan \left(\frac{\alpha}{r}\right) \tan \left(\frac{\beta}{r}\right)=\frac{c-v}{c+v}
$$

مى باشده همحخنين، نتيتجه بگیيريد كه اگر فوتونى به دو فوتون تجزيه شود، در اين صـورت دو

فوتون ايـجاد شله بايل در همان راستأى فوتون اوليه حركــت كنتـد. بـرإى أيـن منظـور، توجـه


 استفاده از چارجپب مر كز تكانه، بيشينٔ تعداد (n) پيونهاى ايـجاد شده را در اين برخــورد بـه دست آوريد. انرزّى سكون يروتون و تيون به ترتيب برابر If. Mev و مى باشل. .

$$
\pi^{-}+p \rightarrow \pi^{-}+\pi^{-}+\pi^{+}+p
$$

جقلد مى تواند باشد. جرم سكون
 سرعت v، درخالاف جهت ذره́ اول درحر كت است، برخورد مـى كنـلـ. اگگـر دو ذره پـس از

 ץץ نوترينو با جرم سكون صفر وا مى پاشد. دراين صورت، نشان دهيد كه انـرزى جنبـشى مزون $\mu$ از رابطهُ زير به دست مى Tايد.

$$
K_{\mu}=\frac{\left(m_{\pi}-m_{\mu}\right)^{r}}{r m_{\pi}} c^{r}
$$

mo


$$
\begin{aligned}
k & =\frac{r E\left(E / E_{\circ}\right) \cos ^{r} \varphi}{1+r\left(E / E_{\circ}\right)+\left(E / E_{\circ}\right) \sin ^{r} \varphi} \\
& =\frac{h \nu\left(r \alpha \cos ^{r} \varphi\right)}{(1+\alpha)^{r}-\alpha^{r} \cos ^{r} \varphi}
\end{aligned}
$$

بيان مى شود كه درT

PYI ديناميكى نسبيتى
و $\alpha$ نيز برابر $h \nu / m_{0} c^{r}$ مى باشل.俍 خال سكون است، برخورد مى كند. اگر فوتون يراكنلـه شـلده، تحـت زاويـهُ $\theta$ خـارج شـود. زاويه پراكند گی ذره ساكن، يعنى ب را محاسبه كنيد و نشان دهيد :

$$
\cot \varphi=\left(1+\frac{h \nu}{m_{0} c^{r}}\right) \tan (\theta / r)
$$

 mor


$$
\begin{aligned}
p_{r} & =p_{1} \frac{\left(m_{o}^{r} c^{r}+m_{o r} E_{1}\right) \cos \theta+\left(E_{1}+m_{o r} c^{r}\right) \sqrt{m_{o r}^{r}-m_{o}^{r}, \sin ^{r} \theta}}{\left(E_{1} / c+m_{o r} c\right)^{r}-p_{1}^{r} \cos ^{r} \theta} \\
E_{r} & =\frac{\left(E_{1}+m_{\circ} c_{r}^{r}\right)\left(m_{\circ}^{r} c^{r}+m_{\circ r} E_{1}\right)+c^{r} p_{1}^{r} \cos \theta \sqrt{m_{o r}^{r}-m_{o}^{r} \sin ^{r} \theta}}{\left(E_{1} / c+m_{\circ r} c\right)^{r}-p_{1}^{r} \cos ^{r} \theta}
\end{aligned}
$$

به دست Tورد.
عץ- در مسأله قبل اگر ذرهٔ ساكن mor، بعد از بر خورد تحت زاويهٔ ب نسبت به راستاى حر كت ذره́ فرودى پس زده شود، در اين صورت، نشان دهيد كـه تكانـهه و انـرزّى آن را مـى توان از روابط زير به دست آورد.

$$
\begin{aligned}
& p_{\uparrow}=p_{1} \frac{r m_{\circ r}\left(E_{1}+m_{\circ r} c^{r}\right) \cos \varphi}{\left(E_{1} / c+m_{\circ r} c\right)^{r}-p_{1}^{r} \cos ^{r} \varphi} \\
& E_{\uparrow}=m_{\circ \zeta} c^{r}\left[1+\frac{r p_{1}^{r} \cos ^{r} \varphi}{\left(E_{1} / c+m_{\circ r} c\right)^{r}-p_{1}^{r} \cos ^{r} \varphi}\right]
\end{aligned}
$$

-     - در دو مسأله قبل فرض كنيد كه جرم سكون ذره هدف و ذره فرودى يكسان باشد.
 نسبت به راستاى حر كت أولئُ خود و ذرهٔ ديگر درجهت مـخالف آن حر كت مى كنـلـ. حـال، نشان دهيد كه زواياى

زير به دست مى آينن.

$$
\begin{aligned}
& \tan \theta_{1}=\sqrt{1-\beta^{r}} \tan \frac{\psi}{r} \\
& \tan \theta_{r}=\sqrt{1-\beta^{r}} \operatorname{cotan} \frac{\psi}{r}
\end{aligned}
$$


mor مى توان از روابط زير به دست آورد. تكانه ذرات را نيز به دست آوريل.

$$
\begin{aligned}
& E_{1, c o m}=\frac{\left(m_{o}^{r}+m_{o,}^{r}-m_{o r}^{r}\right) c^{r}}{r m_{o}} \\
& E_{r, c o m}=\frac{\left(m_{o}^{r}+m_{o r}^{r}-m_{o,}^{r}\right) c^{r}}{r m_{o}}
\end{aligned}
$$

 mor مى گردد. نشان دهيل كه انرزىى آستانه برایى اين واكنش برابر مقلار زير مى باشل.

$$
E_{1}=m_{\circ r}\left[1+\left(\frac{m_{\circ r}}{r m_{\circ r}}\right)\right] c^{r}
$$

-F . حال، يكى از ذرات با اعمال نيروى ثابس F اينكه ذرات با يكليگر برخورد كرده ويكك ذره جلـيـل تـششكيل گـردد. در ايـن صـورت، بعـل از گذشت چچه ملت برخورد صورت مى گیرد. همبچنين، جرم ذرهٔ حاصل از برخورد، چقّلر است؟

 حر كت در مى آيد و پس از طى مسافتىء شتاب منفى مى گیرد و با همان فر اينلد به مكان اوليه

 شـود، $\gamma>1$ خ $\gamma$ اهــل بـود.


## نسبيت و نظرئ الكترومغناطيس

مقلدمd :
اينشتين طى مقاله ایى كه درسال ه•19 درمورد الكتروديناميك اججسام متحـر كك ارائـه داد، بـهـ وحدت كامل بين الكتريسيته و مغناطيس اشاره كرده است. اين مقالله همان طور كه قبلاً اشمـاره شد، سنگک بناى نسبيت خاص محسوب مى شود. درايـن مقالـه اينشتين نـشان داده اسـت كـهـ ميدانهاى الكتريكى و مغناطيسى نمى توانند مستقل از يكديگر باشـند. درحقيقـت، اينكـه چــهـ


 درجارجوب لخت ديگر، هردو ميدان الكتريكى و مغناطيسى مشاهده شود. با توجه به وحدت بين فضا و زمان و همحچنين جملهُ مشهور مينكوفسكى كه گُفته است: از اين پس فضاى تنها و همين طورزمان تنها، مطرود هـستند و تنها نـوعى اتحـاد از آن دو وجـود
\& E F مقدمه ایى بر نسبيت نحاص
مستقلى خواهل داشت. دراينجا نيز با اقتباس از اين گَفته مينكوفسكى، مى توان بيان كرد كه: ازايـن هـس ميـدان الكتتريكـى تنهـاو همـين طـور ميـدان مغناطيـسىى تنهـا، مطـبود هستند و تنها نوعى اتحاد از آن دو، واقعيّت و وجود مستقل خواهد داشتت. اگرجـهـ هنـوزهم دربيـشتر كتابهاى مربـوط بـه الكتروديناميـك؛ ميـدانهاى الكتريكـى و مغناطيسى را به طور جداگانه و به عنوان دو پديدهٔ مستقل بررسى مى كنتد، اما برای بـه دسـت آوردن در كك و بينش عميق ترى از اتحاد بين ايسن ميـدانها، بايــد فرمولبنـلـى چجهاربعـدى ايـن معادلات به دست آيند. به بيان ديگر، بايل نظريـهُ الكترومغنـاطيس را ازديــــاگًاه نـسبيتى مـورد بررسى قرارداد. همان طور كه در فصل دوم اشاره شد، هلف از ارائه نظرئه نسبيت، درحقيقت به دست آوردن يكك بينش صصحيح و عميق از برهم كنش هاى الكترومغناطيسى بوده اسسـت. از طرف ديگر، مى دانيم معادلات ماكسول اساس نظريـة الكترومغنـاطيس محـسوب مـى شـوند. درواقع، مى تـوان گفـت كـه معـادلات ماكـسول همـان اهميتـى را درنظريـهُ الكترومغنـاطيس دارندكه قوانين حر كت نيوتن درمكانيكك. اما بايد اشاره شود كه ميان اين دو موضوع تفـاوت
 اعلام قوانين نيوتن و حدود •\& سال پس از معرفى معادلات ماكسول ارائـه داده اسـت و همـان طور كه مى دانيم، درحالتهايى كه سرعت اجسام به سرعت نور نزديكك مى شوند، بايد قوانين نيوتن به طورجدى تصحيح شوند. درحالى كه معادلات ماكسول را مسى تـوان در ايـن حالتّها بدون احتياج به تغيير يا اصلاحىى به كار برد. درحقيقت، نظريهٔ نسبيت خاص ازتفكـر عميـق و
 خاص كاملاً ساز گار مى باشند.

ه - 1 : نظريهٔ الكترو مغناطيس
همان طور كه مى دانيم، ذرات باردار، مانند الكترونها و يروتونها، به يكديگر نيروى الكتريكى اعمال مى كنند. اين نيرو مانند نيروى گرانش، يـك نيـروى دوربـرد بـوده و بـسته بـه ماهيّـت ذرات باردارممكن است جاذبه يا دافعه باشل. اندازة اين نيرو را نيز مى توان با استفاده از قانون
 درالكترواستاتيكك با آن برخورد مى كنيم، قانون كولن است كه بخشى از برهم كنـشهاى بـين ذرات باردار را مى توان به وسيله آن توضيح داد. افراد زيادى در زمينةٔ برهم كنشهاى مربـوط به الكتريسيته و مغناطيس كار كرده اند كه از جملئ آنها مى توان به فرانكلين '، كولن ، كاؤس
 اشاره كرد. از بين اين افراد، نقش فاراده، آمبر و ماكسول بيش از ديگران بر جسته مـى باشــد و در واقع فارده يكى از بهترين اين إفراد محسوب مى شود. او آزمايشگُرى با استعداد و صاحب نبـوغى سرشـارو داراى در كك فيزيكـى عميقـى بـوده اسـت. بـه طـورى كــه دريادداشتهایى
 يعنى سال كشف قانون القاى فاراده زاده شــه درسـال IAVQ، يعنـى سـالى كـه اينـشتين درآن تولد يافت، به سن \&A سالگى در گذشت. ماكسول بيشتر عمر كوتـاه، امـا هربـار خـود را ادر راه تدوين مبانى نظرى كشفهاى تجربى فاراده صرف كرد و ايده هاى فاراده را به شـكل رياخى در آورد. كشف بزر گَ ماكسول اين بود كه نشان داد، نور يكك موج الكترومخناطيسى اســت و سرعت آن را مى توان با اندازه گيريهاى صـرفاً الكتريكـى و مغناطيسى بـه دسـت آورد و در حقيقت، با اين كشفـ، علم قديمى إتيكك را به الكتريسيته و مغناطيس مربوط كـرد. از طـرف ديگگر، پس ازگَشت تقريباً يكُ ربع قرن از زمـان انتشار معـادلات ماكـسول، يعنـى در سـال (MAVV هرتز نيز با توليد امواج الكترومغناطيسى يا ماكسولى در آزمايشگاه خود، گام مؤثرى را در بيشبرد نظريهٔ الكترومغناطيس برداشت.

ماكسول نظريهُ الكترومغناطيس خخود را در كــابى مفـصل، موسـوم بــه رسـاله ايى در بــاره

1- Coulomb, Charles Augustus: فيزيكدان فرانسوى كه در سال اVAه نيروى الكتريكى بين كره هايى الي


2- Franklin, Benjamin (1706-1790) : فيزيكدان آمريكايى كه آزمايشهايى در زمينئ قانون عكس
 3- Gauss, Karl Friedrich (1717-1855) : رياضيدان، اختر شناس و فيزيكدان آلمانى

الكتريسيته و مغناطيس را كه درسال MAVY، يعنى درست צ سال بيش از مر گش انتشار يافت، ارائه داده است. مطالعهٔ أين كتاب تقريباً مشكل است و واقعيّت اين اسـت كـه در اليـن رسـاله، معادلات ماكسول به شكل كنوني آنها نيستند. و به نظر مـى Tا يـلـ كـه هـوى سـايد، فيزيكـدان انگگليسى نظرئه ماكسول را در قالب جهار معادله ایى كه امروزه مـى شناسـيم، درآورده اسـت. إين معادلات كه دردهdٔ •1N9 به دست آمده اند، با استفاده از آنهـا مـى شـلد دو موضـوع مهـم الكتريسيته و مغناطيس را كه در آن زمان مورد بحث جدى فيزيكدانان بـود، بـا بيـنش و درك كـ عميق تـرى بررسـى كـرد و نـشان مـى دهند كــه ميـدانهاى الكتريكـى و مغناطيسى مـستقل از يكديگر نيستند. به اين ترتيب كه يكك ميدان مغناطيسى متغيـر نـسبت بـه زمـان، باعـث ايـجـاد ميدان الكتريكى مى شود و برعكس. همثجّنين، براساس اين معادلات تنها يـك ميـدان، يعنـى ميدان الكترومغناطيسى و.جود دارد.

اين معادلات در حالت ايستأ، يعنى هنگامى كه چشمهُ ميدان الكتريكى، ( ميدان مغناطيسى، يعنى

$$
\begin{align*}
& \vec{\nabla} \cdot \vec{E}(\vec{r})=\frac{1}{\varepsilon} \rho(\vec{r})  \tag{1}\\
& \vec{\nabla} \cdot \vec{B}(\vec{r})=0  \tag{r}\\
& \vec{\nabla} \times \vec{E}(\vec{r})=0  \tag{r}\\
& \vec{\nabla} \times \vec{B}(\vec{r})=\mu \vec{J}(\vec{r})
\end{align*}
$$

بيان مى شوند. اماكار مهمم و اساسى كه ماكسول انجام داده است، در واقع تعميم اين معادلات براى حالت كلى تر، يعنى حالت غيرايستا مى باشــد. در حالـت غيـر ايـستا بـه دليـل وابـستتگى

## 4 -Oersted, Hans Christian (1777-1851):

ـ فيزيكدان دانمار كى، وى اولين كسى بود كه



 الشاى فاراده را كا كثف كردي فيزيكدانو و رياضيدان فرانيرانسوى

## 7- Ampere, Andre Marie (1775-1836) :



چشمه هاى باروجريان به زمان، ميدانها نيز تابعى از زمان مى باشند. در روابط (ه-ا)، معادلئ اول و دوم، يعنى معادلات ديورزانس، در حالت غير ايستا نيز به همين شكل بيان مى شوند. اما معادلات سوم و جهارمه يعنى معادلات كرل، برایى حالـت غيـر ايستا بايد اصلاح گردند. اصلاح معادلثّ سوم، به قانون القاى فاراده' منجر مى شود. همحتنـين،
 الكتريكى '؛ يعنى رابطهُ

$$
\vec{\nabla} \cdot \vec{J}(\vec{r}, t)+\frac{\partial \rho(\vec{r}, t)}{\partial t}=0
$$

جملهٔ كرد و درنتيجه، معادلات تعميم يافته را براى حالت غير ايستا، به صورت $\vec{\nabla} \cdot \vec{E}(\vec{r}, t)=\frac{1}{\varepsilon} \rho(\vec{r}, t)$

$$
\begin{equation*}
\vec{\nabla} \cdot \vec{B}(\vec{r}, t)=0 \tag{1}
\end{equation*}
$$

$\vec{\nabla} \times \vec{E}(\vec{r}, t)=-\frac{\partial \vec{B}(\vec{r}, t)}{\partial t}$

$$
\begin{equation*}
\vec{\nabla} \times \vec{B}(\vec{r}, t)=\mu \vec{J}(\vec{r}, t)+\mu \frac{\partial \vec{D}(\vec{r}, t)}{\partial t} \tag{r}
\end{equation*}
$$

بيان مى كند. درحقيقت، مى توان گفت كــه كـار اساسـى و مهمـى كـه ماكـسول انجـام داده است، افزودن جملهُ جمله در قانون آمير است كه انتشار اموااج الكترومغناطيسىى را درخـلأ پـيش بينـى مـى كنــــ جملة مى نامنـد. لازم اســت اشــاره شـود كـه در معـادلات فـوق بـراى يـك محـيط مـادى خطـى و همسانگرده، معادلة الول از معادلات ما كسول يا قانون گَاؤس، نشان مى دهد كـه چجگونـه مـى تـوان بـا داشتن يكك توزيع بارمعين، ميدان الكتريكى حاصل از آن را محاسبه كرد. معادلئ سوم از ايـن

معادلات نيز نشان مى دهد كه ميدان الكتريكى را مى توان ازميدان مغناطيسى وابسته به زمان به
 جگالى جريان و ميدان الكتريكى وابسته به زمان، ميدان مغناطيسى ايجاد مى كنند. اين معادلـه را درحالتى كه چگگالى جريان، يعنى مى توان قانون القاى ماكسول نيز ناميد. معادلئ دوم نيز بيان مى كند كه بارمغناطيسى درطبيعـت وجود ندارد تا خطوط ميدان بتوانند از آن شروع يا به آن خـتم شـوند. بـراين اسـاس، خطـوط ميدان مغناطيسى، خطوط بسته ايى را تشكيل مى دهند.

همان طور كه اشاره شد، اين معادلات در ابتدا براساس بررسيها و تحقيقات تجربـى كــه تقريباً به مدت دو قرن طول كشيده است، به طور كاملاً مستقل ازيكديگر به دست آمده أنــ و تقريباً بعد از گذشت جهل سال، اينشتين كشف مـى كنـد كـهـ تمـام ايـن معـادلات، بـا روابـط تبديلى لورنتس به هم مربوط هستنلد. درحقيقت، بايد گَفته شود كه اينـشتين بـا دقــت و تعمـق زياد درمعادلات ماكسول به سوى نظريه نسبيت رهنمون شده است.
بنابراين، معادلات ماكسول از ديد گاه نـسبيت داراى يـك انـستجام منطقـى بـوده و يـك متجموع\&ٔ ساز گار و متقارن را تشكيل مى دهند و در واقع، مى توانند توصيف كـاملى از رابطــُ بين ميدان الكترومغناطيسى و توزيعهاى بار و جريان الكتريكى يا به طـور كلى بـرهم كــــهاهى الكترومغناطيسى را فراهم كنند. به اين ترتيب كه مى توان با استفاده از قانون كـولن يـا شـكل ديگر آن، يحنى قانون گگاؤس (درحالتى كه توزيـع بـارداراى تقـارن باشـد)، ميـدان الكتريكـى حاصل از يكك توزيع بـار معـين را بـه دسـت آورد. همحتنـين، مـى تـوان بـا اسـتفاده از قـانون بيو- ساوار ' يا قانون آمبر (درحالتى كه جگگالى جريان داراى تقـارن باشـدل، ميـدان مغناطيسىى ناشى از يكك جچگالى جريان معين را به دست آورد. از طرف ديخر، ازتر كيب معادلات ماكسول، مى توان معادلات مـوج نـاهمگگى را بـرا'ى


$$
\nabla^{r} \varphi(\vec{r}, t)-\mu \varepsilon \frac{\partial^{r} \varphi(\vec{r}, t)}{\partial t^{r}}=-\frac{1}{\varepsilon} \rho(\vec{r}, t)
$$

$$
\nabla^{r} \vec{A}(\vec{r}, t)-\mu \varepsilon \frac{\partial^{r} \vec{A}(\vec{r}, t)}{\partial t^{r}}=-\mu \vec{J}(\vec{r}, t)
$$

بــه دســت آورد. حـال، مــى تـوان بـا بـه دسـت آوردن جــواب معـادلات نـاهممگن فـوق، يعنى

$$
\vec{E}(\vec{r}, t)=-\vec{\nabla} \varphi(\vec{r}, t)-\frac{\partial \vec{A}(\vec{r}, t)}{\partial t}
$$

$$
\vec{B}(\vec{r}, t)=\vec{\nabla} \times \vec{A}(\vec{r}, t)
$$

 جريان بيوستگى بار الكتريكى يا رابطةٔ (ه-Y)، همراه با نيروى لورنتس '، يعنى رابطةُ

$$
\vec{F}=q(\vec{E}+\vec{u} \times \vec{B})
$$

اساس نظريهٔ الكترومغناطيس را تشكيل مى دهند.
دريايان لازم به تذكر است كه معادلات ماكـسول، بـه صـورتى كـه بيـان شـدند، داراى محدلوديتهايى نيز مى باشند. اين معادلات درمورد پيلده هاى ماكروسكوبى الكترومغغناطيسى

 دقيق عمل مى كنند. اما بايد بدانيم كه برهم كنشهاى الكترومغناطيـسى بـين ذرات بنيـادى، بـه ويزْه درمحدودهٔ انرزيهاى بالا، بايلـ به شيوه ایى متفاوت و براسـاس قـوانين مكانيـك كـوانتمى





اينُ محدوديتهايي كه براى معادلات ماكسول وججود دارد، بازهم مى توان با تقريب مناسـبـ و قابل قبولى از اين معادلات، براى بررسى بـرهم كــشهاى الكترومغناطيسىى بـين ذرات بنيـادى استفاده كرد كه اين روش يا شاخه از فيزيكك را الكتروديناميك كلاسيكي' مى نامند.
 نسبيتى مورد بررسى قرار داد.

## r - D

همان طور كه در فـصل دوم اشـاره شـلـ، قـوانين مكانيـك كلاسـيكك تحـت تبـديلات گًاليلـه هموردا مى باشند. اكنون، سؤالى كه دراينجا ممكن است مطرح شود، اين است كه آيا نظريــٔ الكترومغناطيس نيز تحت اين تبـديلات همورداسـت يـا خيـر؟ بـه عبـارت ديگـر، آيـا شـكل

مر جع لخت ديخر تغيير مى كنند يا خير؟

براى پاستخ به اين سؤال، ابتدا زمينئ علمى قبل از اينشتين را در اين مورد مطرح مى كا كنيم.

 ديگر ناوردا نيستند. براين اساس، وى اقدام به وضم روابط تبـديلى جلـيـــى كـرد و نـشان داد كه نظريهٔ الكترومغناطيس، تحت تبديلات ابــداعى او همـوردا مـى باشـنـد. بــه عبـارت ديعـر،
 ديگرناوردا يا بدون تغيير باقى مى مانند. درحقيقت، مى توان گفت كـه بز رگتـرين كمـكـك بـه
 آورده است.

از طرف ديگر، اينشتين در بررسى چديلده هــاى مربـوط بـه نظر يــه الكترومغنـاطيس بـادو گروه از تبديلات، يعنى تبديلات گاليلـه بـرای پديـده هـاى مكـانيكى يـا نيـوتنى و تبـديلات لورنتس، برایى پديلهه ها يا نظريه الكترومغنـاطيس مواجـهـ بـود. امـا او كـهـ نمـى توانـست در آن

[^2]نسبيت و نظلرئة الكترو هخناطيس اسM
واحلد دو گروه از تبديلات را بیذيرد، درنتيجه وى روابط تبديلى لورنتس را بر روابـط تبـديلى
 فيزيكى پذيرفت. و مى توان گُت كه نظريهٔ نسبيت؛ درواقع پياملىى از اين پذيرش و انتتخـأب او محسوب مى شو2.

در اينجا براي توضيح بيشتر اين مطلبـ، مى توان سرعت امواج الكترومغناطيس يا نور را با در نظر گرفتن تبديلات گّاليلة سرعت، بر رسى كرد. برایى اين منظور، اگَر سرعت نـور، تنهـا
 نسبت به حارپوب مر جع متصل به اتر حر كت كنله، در اين حالت بانو جه به تبديلات گاليلـه؛
 اگرتبديلات گاليلهُ سرعت، درهورد يكك موج الكترومعناطيسى به كار برده شود، به نتيجـه ایى خو اهيم رسيل كه تسربه آن را تأييل نمى كندل. به اين ترتيب كه اكَرسرعت نور درخالأ نـسبت


 الكترومغناطيسى را دنبال كند، سرعت موج نسبت به اين ناظربرابر صسفرنخو اهلد شـل. بنـابراين؛ دراين ححالت مى توان گفت كـه مـوج نسسبت بـه نـاظر بـه صـورت يـكك ميـدان الكتريكـى و


 خواهند داشت. به بيان ديگر، اين نوع ميدانها، يعنى ميدانهاي ساكن يا ايستا درفضايى كـهـ بـار ساكن يا جريان پايايیى وجود نلارد، نمـى توانتـل ايججـاد شـونل. همـان طور كـه خـود اينـشتين

نيزدرأين باره نوشته است:

 كـنم، ايـن نـتـو را بايـد بـه صـورت يــكـ ميـدان الكتنومغناطيـسى سـاكن يـا ايـستا
مشاهده كنم. الا اين مسألثه را نه تجسبه تأييد مى كند و نه معادلات ماكسور"

همحچنين، مى توان عدم هموردايی معادلات ماكسول را دررفتار ظـاهراً متفـاوت بارهـاى ساكن و متحر كك، به طور تجربى نيز مشاهده نمود. برای اين منظور، با توجه بـه شـكل(ه -1) فرض كنيد كه دو بارالكتريكى هر كدام به بزرگیى q درچـارچوب لخـت SS، درفاصـلة d از يكديگّر، درحالت سكون قرار داشته باشند.



شكل (ه-ا (1): نيروى بين دو بار الكتريكى، الف: نسبت به ناظر

 دافعه بوده و اندازه آن نيز از قانون كـولن بـه دسـت مـى آيـد. اكنـون، اگـر فـرض كــيـم كـهـ ناظر 'S با سرعت v، نسبت به چارچحوب S درجهت عمود برخط واصل دو بار و درخـلاف جهت محور X جارچوب $S$ حر كت كند، در اين صورت، از ديد اين ناظر، مـسأله بـه شـكل ديغرى مطرح مى شود؛ زيرا ازنظر اين ناظر نيروى بين دو بار، جاذبئ مغناطيـسى خواهــد بـود. به اين ترتيب كـه مـى تـوان تـصور كـرد كـهـ نــاظر 'S سـاكن اسـت و دو بـار الكتريكـى بـا سرعت v به سمت راست حر كت مى كنند. درنتيجهه، به علت حر كت بارهـاى الكتريكـى بـه سمت راست، از نظر ناظر 'S جريانهاى الكتريكى هم جهت به وجود خواهد آمد كه در ايـن صورت، نيروى بين آنها جاذبءٔ مغناطيسى خواهل بود. حال، با توجه توضـيحات فوق مسشاهله
 نيرو، مغناطيسى است. ازطرف ديگر مى دانيم كه همةُ چار چوبهاى لخت بايـد هـم ارز بأشــند. بنابراين، دراينّجا با اين مسأله يا باطلنما روبرو هستيم كه آيا نيروى بين دو بار، الكتريكى است

نسبيت و نظريةٔ الكترومغناطيس شسM
يإ مغناطيسى؟
اكنون، مثال يا باطلنماى ديگرى را مطرح مى كنيم، به اين صورت كه: فـرض كنيـلـ، در
 بار
 يعنى ا بار با سرعت در جارچوب 'S، نيروى مغناطيـسى بسين دو بـار ظـاهر نمـى شـود؛ زيـرا اگـر سـرعت نـسبى


 نمى شود. بنابراين6 در جار جوب 'S ${ }^{\prime}$ درهردو حالت نيروى مغناطيسى برابر صـفر خواهـلد بـود.
 مغناطيسى وجود دارد، اما درچارچوب لخت ديگر، نيـروى مغناطيسسى برابـر صـفر اسـت. امـا مى دانيم كه همهٔ هارجو:هاى لخت، هم ارزند. حال بايل به سؤال، جـواب داده شـود كـهـ آيـا نيروى مغناطيسى وجود دارد يا ندارد؟

در پايان اين بخش، مى توان معادلات ماكـسول را بـه طورمـستقيم نيـز تحــت تبـديلات گاليله بررسى نمود. براى اين منظور؛ مى دانيم اين معادلات درچارچوب لخت S، به شكل

$$
\begin{gather*}
\vec{\nabla} \cdot \vec{E}=-\frac{\rho}{\varepsilon_{0}} \quad, \quad \vec{\nabla} \cdot \vec{B}=o \\
\vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \quad, \quad \vec{\nabla} \times \vec{B}=\mu \vec{J}+\mu \varepsilon \frac{\partial \vec{E}}{\partial t}
\end{gather*}
$$

بيان مى شونلد. حال مـى تـوان بـا استفاده ازتبـديلات گاليلـه، ايـن معـادلات را درجـارجوب لخت

$$
\begin{align*}
\vec{r}^{\prime}=\vec{r}-\vec{v} t \quad, \quad t^{\prime}=t \\
\frac{\partial}{\partial x_{i}^{\prime}}=\frac{\partial x_{j}}{\partial x_{i}^{\prime}} \frac{\partial}{\partial x_{j}} \quad i, j=1, r, r \quad(1 \mid-\Delta)
\end{align*}
$$

مى توان نشان داد كه در دو چارچوب S و 'S، ارتباط بين مشتقات فضايى و زمانى با روابط

$$
\vec{\nabla}=\vec{\nabla}^{\prime}
$$

$$
\frac{\partial}{\partial t}=\frac{\partial}{\partial t^{\prime}}-\vec{v} \cdot \vec{\nabla}^{\prime}
$$

بيـان مـى شـوند. و درحالـتت خــاص، يعنـى هنگـامى كــه سـرعت نـسبى دو چــارچوب بـهـ صورت

$$
\frac{\partial}{\partial t}=\frac{\partial}{\partial t^{\prime}}-v \frac{\partial}{\partial x^{\prime}}
$$

بيان مى شود. اكنون، با استفاده از روابط (ه-ّاו) و (ه-ا|ا)، مى توان معادلات ماكسول رادر چارجوب 'S، تحت تبديلات گاليله به دست آورد كه نتيجهٔ اين تبديل به صورت

$$
\begin{equation*}
\vec{\nabla}^{\prime} \cdot \vec{E}^{\prime}=\frac{\rho^{\prime}}{\varepsilon_{0}} \quad, \quad \vec{\nabla} \cdot \vec{B}^{\prime}=o \tag{19-Q}
\end{equation*}
$$

$$
\begin{align*}
& \vec{\nabla}^{\prime} \times\left(\vec{E}^{\prime}+\vec{v} \times \vec{B}^{\prime}\right)=-\frac{\partial \vec{B}^{\prime}}{\partial t} \\
& \vec{\nabla}^{\prime} \times\left(\vec{B}^{\prime}-\frac{1}{c^{r}} \vec{v} \times \vec{E}^{\prime}\right)=\mu \vec{J}^{\prime}+\frac{1}{c^{r}} \frac{\partial \vec{E}^{\prime}}{\partial t}
\end{align*}
$$

خواهد بود. در روابط فوق درجارحیوب گاليله درچارچوبب 'S، جريانى ايجاد مى كتند كه درچارچوب S، وجـود نـدارد. درنتيجـه، مى توان گفت كه شكل معادلات ماكسول تحت اين تبديلات، هموردا نبوده وتغييرمى كتند. حال، با توجه به مثالها و باطلنماهايى كه مطرح شدنلـ، مشاهله مى شود كه نمى تـوان از تبديلات گاليله درنظرئُ الكثرومغناطيس استفاده كرد؛ زيرا پيلا كردن جواب جنين مسائلى بـا

نسبيت و نظرئئ الكترومغناطيس,
درنظر گرفتن تبديلات كاليله ممكن نيست، و الزاماً مى بايستى ازتبـديلات جلديـدى بـه جــاى أين تبديلات استفاده كرد. أين تبديلات جديل، درواقع همان تبديلات لورنتس مى باشند.

هـ هـ : : برهم كتش بين دو ذرهٔ باردار با حركت يكنواخت همان طور كه قبلاً اشاره شل، اگگر دو ذره باردار نسبت به يكك ناظر، ساكن باشند، بـرهم كـنش بين آنها نسبت به آن ناظر الكتريكى مى باشد و اگگر اين ذرات نـسبت نـاظرى داراى حر كـت باشنل، در اين صورت برهـم كنش بين بارها الكترومغناطيسى خو|هل بود. دراينجا مى خـواهيم برهم كنش مغناطيسى ' يا تأثير متقابل بين دو بار متحر كك را با دقت بيشترى بررسى نماييم. امـا قبل از بررسى اين نوع از برهم كنش بين ذرات باردار، اشاره أى مختصردرمورد بـرهم كـنش الكتريكى' 'بين آنها مى شود.

همان طور كه مى دانيم، ابتدا تصور براين بود كـه نيـروى بـين ذرات بـاردار، يـكك بـرهم كنش مستقيم و بى واسطه است كه به طور آنى، ذرات به يكديگر وارد مى كنند. امـا امـروزه ميدان الكتريكى يا مغناطيسى، به عنوان يكك واسطه دربين ذرات باردار درنظر گرفته مى شـود.
 ساكن باشله يكك ميدان الكتريكى درفضاى اطراف خود ايمجاد مى كند و اين ميدان روى ذره باردار مى شود. همجنْين، مى توان گفت كه نيروى بين دو ذره باردار درنظرمى گيريم. به طورى كه اگر ذرات باردار نسبت بـه يـك ناظرسـاكن باشنده برهم كنش بين آنها نسبت به آن ناظر،الكتريكى است. و درصـورتى كـه ذرات بـاردار متحر كك باشند، برهم كنش بين آنها، الكتريكى و مغناطيسى خواهد بود.
 باشند. دراين صورت، برهم كنش بين آنها الكتريكى بوده و اين برهم كنش تنها به فاصلةٔ بين

ذرات و همحچنين، به اندازه دو بار بستگى خواههل داشت. درنتيجه، بـرهم كـنش الكتريكـى يـا نيروى بين دو بار

$$
\vec{F}_{1 \rightarrow r}\left(\vec{r}_{r}\right)=q_{r} \vec{E}_{1}\left(\vec{r}_{r}\right)=\frac{q_{1} q_{r}\left(\vec{r}_{r}-\vec{r}_{r}\right)}{r \pi \varepsilon_{0}\left|\vec{r}_{r}-\vec{r}_{1}\right|^{r}}
$$

به دست مى Tيل كه درآن و و
 مى شود، نيز از رابط؛

$$
\vec{F}_{r \rightarrow 1}\left(\vec{r}_{1}\right)=q_{1} \vec{E}_{r}\left(\vec{r}_{1}\right)=\frac{q_{1} q_{r}\left(\vec{r}_{1}-\vec{r}_{r}\right)}{r \pi \varepsilon_{0}\left|\vec{r}_{1}-\vec{r}_{r}\right|^{r}}
$$

$\vec{F}_{1 \rightarrow Y}\left(\vec{r}_{r}\right)$ بـه دســت مـى T و و گفت كه قانون كنش و واكنش يا قانون سوم نيوتن درمـورد ايـن نـوع از بـرهم كنـشها معتبـر است؛ زيرا نيروها در اين حالت ايستا يا تابعى از مكان مى باشند. يا بـه بيـان ديگـر، مـستقل از از زمان هستند.

اما برهم كنش مغناطيسى بين ذرات باردار كه ناشى ازحر كت ذرات باردار مى باشـلد، بـه حر كت Tنها بستگی دارد. درواقع، مى توان گگفت كـه بـرهم كـنش مغناطيـسى، يـكك نيـروى وابسته به سرعت ذرات باردار است، يعنى دريكك نقطــٔ معين از فضضا، ميـدان مغناطيسسى ذره متحر كك نسبت به يكك ناظر، به سرعت ذره و همين طور بـه فاصـلةُ ذُره از نـاظر بـستگى دارد. براين اساس، ميدانهاى مغناطيسى و الكتريكى حاصل از ذرات باردار متحـر كك، دريسك نقطـه معين از فضا، تابعى از زمان خواهند بود.
 سرعت


$$
\vec{B}_{1}(\vec{r})=\frac{\mu_{o}}{\varphi_{\pi}} \frac{q_{1}\left[\vec{u}_{1} \times\left(\vec{r}-\vec{r}_{1}\right)\right]}{\left|\vec{r}-\vec{r}_{1}\right|^{r}}
$$


رابطة

$$
\vec{F}_{1 \rightarrow r}\left(\vec{r}_{r}\right)=q_{Y} \vec{u}_{r} \times \vec{B}_{1}\left(\vec{r}_{Y}\right)
$$

 مكان بار متحر ك جایى بردار نيز در نقطهُ

$$
\vec{B}_{r}(\vec{r})=\frac{\mu_{o}}{\varphi \pi} \frac{q_{r} \vec{u}_{r} \times\left(\vec{r}-\vec{r}_{r}\right)}{\left|\vec{r}-\vec{r}_{r}\right|^{r}}
$$



$$
\vec{F}_{r \rightarrow 1}\left(\vec{r}_{1}\right)=q_{1} \vec{u}_{1} \times \vec{B}_{Y}\left(\vec{r}_{1}\right)
$$

به دست مى T آلد. در رابطةُ (ه- (Y) نيز در مكان بار متحر كت $\vec{r}_{1}$ يا به جاى أين نيروها به سرعت ذرات باردار بستگى دارد. اما نكتهٔ مهـم تر اينكـه نيروهـاى ( ( ${ }^{\left(\vec{F}_{r \rightarrow 1}\right)}\left(\vec{r}_{1}\right)$ نيـروى ( بر سوم نيوتن رانمى توان در مورد برهم كنشهاى مغناطيسى به كار برد.
 نيروى الكترومغناطيسى يا نيروى لورنتس بين ذرات باردار، به شكل

$$
\vec{F}_{1 \rightarrow r}\left(\vec{r}_{r}\right)=q_{r}\left[\vec{E}_{1}\left(\vec{r}_{r}\right)+\vec{u}_{r} \times \vec{B}_{1}\left(\vec{r}_{r}\right)\right]
$$

$$
\vec{F}_{r \rightarrow 1}\left(\vec{r}_{1}\right)=q_{1}\left[\vec{E}_{\gamma}\left(\vec{r}_{1}\right)+\vec{u}_{1} \times \vec{B}_{r}\left(\vec{r}_{1}\right)\right]
$$

بيان مى شوند. حاله، با تو جه به توضيحاتى كه داده شلد، حنين استنباط مى شود كه اگـر ذرات باردار درحال حر كت باشنله، برهم كنش آنها نمى تواند به طور آنىى روى دهد. به ايـن ترتيـب كه اگر بخواهيم برهم كنش از دور را برای ذرات باردار مطرح نماييم، يكك راه حل اين است كه از مفهوم ميدان استفاده كنيم. در اين صورت، بايد سرعتى را به انتشار برهم كنش يا انتشار
 يكديگر قرار دارند، به طور آنى روى دهد، دو حالت رامسى تـوان در نظر گرفـت. حالـت اول اين است كه فـرض كنـيم، سـرعت انتششار بـرهم كــنش يـا سـرعت ميـدان حاصـل از بارهــا، بى نهايت باشدكه البته، اين حالت را با توجه به اصل مربوط به محــدود بـودن سـرعت انتشار علائم الكترومغناطيسى، نمى توان پذيرفت. وحالت دوم اينكه برهم كنشَ بين ذرات بـاردار، نسبت به يكك ناظردريكك مكان روى دهد. بنابراين هم مكان بودن دو رويداد كنش و واكنش الكترو مغناطيسى باعث مى شود كه برهم كنش بين ذرات نسبت به ناظر ديگر، همزمان باشــد. بنابراين، دراين حو حالت مى توان قانون سوم نيوتن را در مورد برهم كنشّ بـين ذرات بـاردار متحر كك به كار برد.

اما نكتهٔ مهمى كه دراينجا بايد به آن اشاره شود، اين اسـت كـه اگگر قـانون سـوم نيـوتن را نتوانيم دربرهم كنشهاى الكترومغناطيسى به كار بريم، دراين صورت، به نظر مـى آيدكـه قـوانين


 كه هنگامى مى توان، قانون پايستگى تكانئ خططى را برایى سيستمى متشكل ازدو ذره، به صورت

$$
\vec{p}_{I}+\vec{p}_{Y}=c t e
$$

نوشت كه الكترومغناطيسى به دليل همزمان نبودن برهم كنش بين ذرات باردار، نمى توان رابطه ای نظير


مى شود، اثر تأخير زمانى ' ايجاب مى كند كه آهنگُ تغيرتكانهُ يكك ذره در يـك ز زمـان معين، مربوط به تغيير تكانةٔ ذره ديخردرهمان لحظه نباشد، بلكه اين تغيير تكانه بـه لحظه إى در گذشــته مربوط باشد و برعكس. براين اساس، اگر تكانئ مربوط به ذرات، به طور همزمـان انــازه گيرى $\vec{p}_{Y}+\vec{p}_{Y}$ نشده باشنل، دراين صورت، نبايد انتظار داشته باشيم كه مجمـوع تكانــٔه ذرات، يعنـي
 كنشهاى الكترومغناطيسى را نتيجه و بيامد تبادل تكانه، بين دو ذره باردار درنظر گرفـت. بنـابراين، براى برقرارى قوانين بايستگى، بايد تكانه ایى كه بين ذرات مبادله مى شود، درنظر بگيريم.


شكل (ه- (†): برهم كنش الكترو عغناطيسى بين دو ذرة باردار
 صورت، اين مسئله ايجاب مى كند كه تكانه ایى را به ميدانها نسبت دهيم. به طورى كه ميدان، اين تكانه را با سرعت محدود c از يكك ذره به ذرهٔ ديگر منتقل مى كنـد. بــا ايـن توخـيـاتات، قانون پايستگى تكانهُ خططى را بايد در برهم كنشهاى الكترومغناطيسى، به صورت

$$
\vec{p}_{1}+\vec{p}_{r}+\vec{p}_{f i e l d}=c t e
$$

 انرزیى را دربرهم كنشهاى الكترومغناطيسى داشته باشيم، مـى بايـستى بـه ميـدان الكترمغناطيسى، تكانهٔ خطى و زاويه إى و همحخنين انرزیى معينى را نسبت دهيم.

## - P - D

همان طور كه مى دانيمَ، براساس اصل نسبيت، همهٔ قـوانين فيز يـكك بايــد درتمـام جار جوبهـاى لخت يكسان باشند. بنابرا اين، درايـن بخـش مـي خـواهيم ارتبـاط بـين ميـدانهاى الكتريكـى و

مغناطيسى زا دردو جار جوب للخت، به شكلى به دست آوريم كه روابط تبديلى اصـل نسسبيت
 درچارچوبِ 'S ساكن باشند. دراين صورت، ايـن دو بـار نـسبت بـه چحـارچوب S متحـركـ خواهند بود. اكنون، مى توان برهم كنش دو بار را از نظر دو نـاظر S و 'S بررسـى كـرد. از نظر ناظر 'S وضعيت ساده تر مى باشد؛ زيرا دراين حارخوب، نيرو يا برهم كنش بـبين بارهـا، الكتريكى إست كه نيروى بين بارها را مى توان از رابطهُ

$$
\vec{F}_{r \rightarrow 1}^{\prime}=q_{1}^{\prime} \vec{E}_{r}^{\prime}
$$

به دست آورد. در رابطةُ فوق و و حاله برهم كنش بين دو بار را از نظر ناظر Sك، بررسى مى كنيم. در ايـن جـارچوبه، هـر دو بار الكتريكى متحر كك هستند. بنـابراين، بـار مغناطيسى بار ${ }_{\text {Y درحر كت است، هم نيروى الكتريكى و هم نيروى مغناطيسى وارد مى شود. ايـن نيـرو }}$ با توجه به رابطهُ (ه- ( )، برابر

$$
\vec{F}_{r \rightarrow 1}=q_{1}\left[\vec{E}_{Y}+\left(\vec{v} \times \vec{B}_{r}\right)\right]
$$

مى باشد. اما مى دانيم، سرعت نسبى دو چارپپوب بـه صسورت براى راحتى در نوشتن، مى توان انديسها را كنار گَذاشت. درنتيجه، داريم

$$
\vec{F}=q_{1}[\vec{E}+(\vec{v} \times \vec{B})]
$$

درنوشتن رابطه́(ه-هQ) از ناوردايیى بار الكتريكى استفاده شـده اسـت. يعنـى در چــارچوب $S$
 نقض مى كند. و نقض اين قانون نيز باعث بـه وجـود آمـلـن تناقضاتى در معـادلات حر كـت ذرات باردار درالكتروديناميكك مى شود. از طرف ديگر، ناوردايى بار الكتريكى را تجريـه نيـز تأييد مى كند. به اين ترتيب كه اگر اندازه بار الكترون به سرعت آن بـستگى داشـته باشـد، در اين صنورت مولكولى كه درحالت سكون ختنى است، بايد درحال حركت، داراى بارخـالص

## نسبيت و نظريئ الكترومغناطيس |

باشد كه اين موضوع را تجربه تأييد نمى كند و در مولكولهاى خنتى با هر سرعتى كه حر كـت

 مى توان به برحسب مؤلفه هايش به شكل

$$
F_{x}=q_{1} E_{x} \quad, \quad F_{y}=q_{1}\left(E_{y}-v B_{z}\right), \quad F_{z}=q_{\uparrow}\left(E_{z}+v B_{y}\right)(\Gamma 1-\Delta)
$$

哣

$$
F_{x}^{\prime}=q_{1} E_{x}^{\prime} \quad, \quad F_{y}^{\prime}=q_{1} E_{y}^{\prime}, \quad F_{z}^{\prime}=q_{1} E_{z}^{\prime}
$$

حال، با استفاده از تبديلات لورنتس نيروى ويزه، يعنى روابط(F-F
 مشتر كک ${ }^{\text {|زطرفين روابط به دست آمله، نوشت: }}$

$$
E_{x}^{\prime}=E_{x}, E_{y}^{\prime}=\gamma(v)\left[E_{y}-v B_{z}\right], E_{z}^{\prime}=\gamma(v)\left[E_{z}+v B_{y}\right](\mu-\Delta)
$$

روابط (ه-شケ) را تبديلات لورنتس ميدان مى نامند. اين تبديلات نشان مى دهند كـه بـا وجـود

 می توان جاى بريمها را تعويض كردهه و سرعت v را نيز به v- تبديل كرد. در اين صورت،
 تبديلات عكس لورنتس، يعنى

$$
E_{x}=E_{x}^{\prime}, E_{y}=\gamma(v)\left[E_{y}^{\prime}+v B_{z}^{\prime}\right], E_{z}=\gamma(v)\left[E_{z}^{\prime}-v B_{y}^{\prime}\right](\mu \mathcal{F}-\Delta)
$$


 وجود داشته باشل، يعنى اگر ديگُرى مانتن S، علاوه بر ميدان مغناطيسى، ميدان الكتريكى هم وجود خواهد داشــت، يعنـى . خوراهند بود $\vec{B} \neq 0, \vec{E} \neq 0$

اكنون، مى خواهيم تبديلات ميدان فرض كرد كه درچارچوب 'S، برخلاف حالت قبل، هم ميدان الكتريكى وجود داشـته باشــد و هم ميدان مغناطيسى. بنابراين، براى داشتن هردو ميدان درچـاریوب 'S ك، فـرض مـى كنـيم

 مشاهده كند، دراين صورت، بايد اين ميدانها را از ديد ناظر S به دست آوريم.

 به دست آمده، مؤلفه هاى

خواهيم داشت:

$$
B_{x}^{\prime}=B_{x}, B_{y}^{\prime}=\gamma(v)\left[B_{y}+\frac{v}{c r} E_{z}\right], B_{z}^{\prime}=\gamma(v)\left[B_{z}-\frac{v}{c^{r}} E_{y}\right](r \Delta-\Delta)
$$

تبديلات عكس نيز برای ايـن روابـط، بـا تعـويض جـاى كميّتهاى بـريم دار و بـدون بـريم و
همجثنين، تـديل سرعت نسبى v به v- به دست مى آيند. بنابراين، داريم

$$
B_{x}=B_{x}^{\prime}, B_{y}=\gamma(v)\left[B_{y}^{\prime}-\frac{v}{c r} E_{z}^{\prime}\right], B_{z}=\gamma(v)\left[B_{z}^{\prime}+\frac{v}{c r} E_{y}^{\prime}\right](r q-\Delta)
$$

روابط تبديلى (ه-ه凶) درحالت خاص، بيان مى كنندكه اگر درجارجوب لختتى مانند S، تنها ميدان الكتريكى خالص داشته باشيم، يعنى اگكر در الم چحارچوب لخت ديخرى، مانند 'S علاوه بر ميـدان الكتر يكـى، ميـدان مغناطيسى هـم و. وجـود خواهل داشت. يعنى مى توان نتيجه گرفت كه
 باشد, به طورى كه اين ميدان شمكن است در يك هارجوب نخت، به شكل ميدان خالص الككتريكى و در هار جوب لخت ديگת به صورت ميدان خالصن مغناطيـسى ظلاهـ شـود. بنابساين؛ مى توان نتيجه گَفت كه ميدان الكتصومغناطيسى ماهيّنى كاملاً نسبيتى دارد.

نسبيت و نظرية الكترو مغناطيس بی٪
روش ديگر برایى به دست آوردن تبديلات لورنتس ميدانهاى الكتريكى و مغناطيسى اين است

 الكتريكى و مغناطيسى $\overrightarrow{\text { و }}$, $\overrightarrow{\text { و }}$ در راستاى حر كت نسبى، بدون تغيير مى مانند، يعنى

$$
E_{x}^{\prime}=E_{x} \quad, \quad B_{x}^{\prime}=B_{x}
$$

 دوران نمى كند. بنابراين، 'دري

$$
\begin{align*}
& \vec{E}_{\perp}=E_{y} \vec{j}+E_{z} \vec{k} \quad, \quad \vec{B}_{\perp}=B_{y} \vec{j}+B_{z} \vec{k} \\
& \text { و در هارجوب } \\
& \vec{E}_{\perp}^{\prime}=E_{y}^{\prime} \vec{j}^{\prime}+E_{z}^{\prime} \vec{k}^{\prime} \quad, \quad \vec{B}_{\perp}^{\prime}=B_{y}^{\prime} \vec{j}^{\prime}+B_{z}^{\prime} \vec{k}^{\prime}
\end{align*}
$$

 ( (

$$
\vec{E}_{\|}^{\prime}=\vec{E}_{\|}, \quad \vec{E}_{\perp}^{\prime}=\gamma(\beta)\left[\vec{E}_{\perp}+c(\vec{\beta} \times \vec{B})\right]
$$

$$
\vec{B}_{\|}^{\prime}=\vec{B}_{\|} \quad, \quad \vec{B}_{\perp}^{\prime}=\gamma(\beta)\left[\vec{B}_{\perp}-\frac{1}{c}(\vec{\beta} \times \vec{E})\right]
$$



1- دراين حالت فرض مى كنيم كه درجـارجوب $S$ ميـدان مغناطيسى صـفر باشـــــ در


$$
\vec{B}_{\perp}^{\prime}=-\gamma(\beta)\left[\frac{1}{c}(\vec{\beta} \times \vec{E})\right]
$$

بنابراين،

$$
\vec{B}^{\prime}=-\gamma(\beta)\left[\frac{1}{c}(\vec{\beta} \times \vec{E})\right]
$$



$$
\begin{equation*}
\vec{B}^{\prime}=-\frac{1}{c}\left(\vec{\beta} \times \vec{E}^{\prime}\right) \tag{k}
\end{equation*}
$$

r باشد. با اين فرض، با استفاده از رابطةُ (ه- • • )، داريم

$$
\vec{E}_{\perp}^{\prime}=c \gamma(\beta)[(\vec{\beta} \times \vec{B})]
$$

بنابراين،

$$
\vec{E}^{\prime}=c \gamma(\beta)[(\vec{\beta} \times \vec{B})]
$$

اكنون، مى توان رابطه (ه- (FD) را با توجه به (ه- (

$$
\left.\vec{E}^{\prime}=c\left(\vec{\beta} \times \vec{B}^{\prime}\right)\right]
$$

نوشت. درنتيجه، اگگر ميدان هر جارچوب ديگرى مانند 'S ميدانها از روابطط سادة (FF- (FF) و (FV-ه) به دست مى Tيند.


际 $=\left(\beta_{x}, \beta_{y}, \beta_{z}\right)$

$$
\vec{E}^{\prime}=\gamma(\beta)[\vec{E}+(c \vec{\beta} \times \vec{B})]-\frac{\gamma^{r}(\beta)}{\gamma(\beta)+1}(\vec{\beta} \cdot \vec{E}) \vec{\beta}
$$

9

$$
\vec{B}^{\prime}=\gamma(\beta)\left[\vec{B}-\left(\frac{1}{c} \vec{\beta} \times \vec{E}\right)\right]-\frac{\gamma^{r}(\beta)}{\gamma(\beta)+1}(\vec{\beta} \cdot \vec{B}) \vec{\beta}
$$

حال، با توجه به روابـط تبـديلى كـه بـراى ميـدانهاى الكتريكـى و مغناطيسىى بـه دسـت آمدند، ملاحظه مى شود كه أين ميدانها نبايد به صورت دو كميّت جـداى از يكـديگر در نظـر
 الكترومغناطيسى مى باشند. نكتئ ديگُر اينكه تجزيئه ميدان الكترومغناطيسى به مؤلفـه هـاى آن، يعنى ميلدان الكتريكى و مغناطيسى، نمى تواند چجيز مطلقـى محـسوب شـود؛ زيـرا باتوجـه بـه


نسبيت و نظرئُ الكترومغناطيس \% \%
دارد. و خلاصه اينككه بررسى برهم كنشهاى الكتريكى و مغناطيسى، به عنوان دو فرايند جلايى از يكديگر نادرست مى باشل و مى بايست اين دو برهم كنش را بـه عنـوان دو جنبـه از بـرهـم كنش كلى الكترومغناطيسى در نظر گرفت.
 لخت، به چֶارچپوب لخت ديگر را به دست آوريد.

جوابي: دراينجا ابتدا حالتى را در نظرمى گيريم كه درآن توزيع بار در 'S ساكن است. بنابراين، دراين چارچوب چگالى جريان الكتريكى؛ يعنى به دست آوردن تبديل لـورنتس چچگـالى بـار، مـى تـوان بـه صـورت زيـر عمــل كـرد. فـرض مى كنيم، $d{ }^{\prime}$ كه برابر $d x^{\prime} d y^{\prime} d z^{\prime}$ باشـلد، عنـصر حجم درچـارچوب 'S باشــد. ايـن عنصر حجم را با dV d نشان داده و T الن را عنصرحجم ويشه مـى نـاميم؛ زيـرا نـاظرى كـه آن را اندازه مى گیيرد، نسبت به آن ساكن است. همحچنين، فرض مى كنيم كه 'dx دراين چارچوب موازی سرعت نسبى دو جارجوبَ باشد. در اين صورت، با توجه به اثر انقباض طول، داريم

$$
d x=d x^{\prime} \sqrt{1-u^{r} / c^{r}}
$$

ازطرف ديگر، ناظر S، ححجم 'dV $d V_{0}^{\prime}$ را برابر dV اندازه مى گيرد. بنابراين،

$$
\begin{align*}
d V=d x d y d z & =\left[d x^{\prime} \sqrt{1-v^{r} / c^{r}}\right] d y^{\prime} d z^{\prime} \\
& =d V^{\prime} \sqrt{1-v^{r} / c^{r}} \\
& =d V_{\circ} \sqrt{1-v^{r} / c^{r}}
\end{align*}
$$

كه درT بار الكتريكى تحت تبديلات لورنتس، مى تـوان نوشـت: $\rho d V=\rho_{0} d V_{0} d q=d q^{\prime}$. در نتيجه، خواهيم داشت:

$$
\rho=\frac{\rho_{0} d V_{0}}{d V}=\frac{\rho_{0}}{\sqrt{1-v^{r} / c^{r}}}
$$





 بيان كرد. دراين صورت، با استفاده از(

$$
\vec{J}=\frac{\rho_{o} \vec{v}}{\sqrt{1-v^{r} / c^{r}}}
$$

به دست مى آيد. در رابطهُ فوق


$$
j_{x}=\rho v_{x} \quad, \quad j_{y}=\rho v_{y} \quad, \quad j_{z}=\rho v_{z}
$$

$$
j_{x}=\gamma(v) \rho_{\circ} v_{x} \quad, \quad j_{y}=\gamma(v) \rho_{\circ} v_{y}, j_{z}=\gamma(v) \rho_{\circ} v_{z}
$$

 وجود داشته باشل، درچارچوبـ ديگر چچگـالى بـار و جريـان خـواهيم داشـتـ. دراينجـا نتيجـهُ


 گفت كه ميدان مغناطيسى يكك پِيدهُ كاملاً نسبيتى مى باشد. اكنون، در اينجا مى توان حالت كلى ترى را بررسى نمود. برایى اين منظور، فرض كنيــد
 اين حالت، براى به دست آوردن روابط تبديلى چچگاليهاى بار و جريان الكتريكى مى تـوان از


$$
\begin{array}{ll}
j_{x}^{\prime}=\gamma\left(u^{\prime}\right) \rho_{\circ} u_{x}^{\prime} & , \quad j_{y}^{\prime}=\gamma\left(u^{\prime}\right) \rho_{\circ} u_{y}^{\prime} \\
j_{z}^{\prime}=\gamma\left(u^{\prime}\right) \rho_{\circ} u_{z}^{\prime} & , \quad \rho^{\prime}=\gamma\left(u^{\prime}\right) \rho_{\circ}
\end{array}
$$

نوشـته مـى شـوند. در ايـن روابـط، ' ${ }^{\prime}$ سـرعت بارهـا در چهـارجوب ${ }^{\prime}$ اسـتت. ايـن ووابسط درچارچوبـ S نيزّ به شكل

$$
\begin{align*}
& j_{x}=\gamma(u) \rho_{\circ} u_{x} \quad, \quad j_{y}=\gamma(u) \rho_{\circ} u_{y} \\
& j_{z}=\gamma(u) \rho_{\circ} u_{z} \quad, \quad \rho=\gamma(u) \rho_{\circ}
\end{align*}
$$

بيان مى شوند. حال، با استفاده از رابطءُ(QY-Y)، رابطئ اول (QV-Q) را مى توان به صورت

$$
\begin{align*}
j_{x}=\gamma(u) \rho_{\circ} u_{x} & =\gamma(v) \gamma\left(u^{\prime}\right)\left[1+\frac{v u_{x}^{\prime}}{c^{r}}\right] \rho_{\circ} u_{x} \\
& =\gamma(v)\left[\gamma\left(u^{\prime}\right)+\frac{v u_{x}^{\prime}}{c^{r}} \gamma\left(u^{\prime}\right)\right] \rho_{\circ} u_{x}
\end{align*}
$$

 روابط ( (

$$
j_{x}=\gamma(v)\left[j_{x}^{\prime}+\rho^{\prime} v\right]
$$

به همين ترتيب، مى توان نشان داد كه

$$
j_{y}=j_{y}^{\prime} \quad, \quad j_{z}=j_{z}^{\prime}
$$

$$
\rho=\gamma(v)\left[\rho^{\prime}+\frac{v}{c^{r}} j_{x}^{\prime}\right]
$$



$$
\begin{align*}
j_{x} & =\gamma(v)\left[j_{x}^{\prime}+\rho^{\prime} v\right] \\
j_{y} & =j_{y}^{\prime} \quad, \quad j_{z}=j_{z}^{\prime} \\
\rho & =\gamma(v)\left[\rho^{\prime}+\frac{v}{c^{r}} j_{x}^{\prime}\right]
\end{align*}
$$

بيان مى شوند. روابط تبديلى عكس نيز با تعويض جاى پريمها و تبديل سرعت v به v- بـه دست مى آيند. بنابراين، داريم:

$$
\begin{align*}
& j_{x}^{\prime}=\gamma(v)\left[j_{x}-\rho v\right] \\
& j_{y}^{\prime}=j_{y} \quad, \quad j_{z}^{\prime}=j_{z} \\
& \rho^{\prime}=\gamma(v)\left[\rho-\frac{v}{c^{r}} j_{x}\right]
\end{align*}
$$

مثال

$$
\square^{r}=\nabla^{r}-\frac{1}{c^{r}} \frac{\partial^{r}}{\partial t^{r}}=\frac{\partial^{r}}{\partial x^{r}}+\frac{\partial^{r}}{\partial y^{r}}+\frac{\partial^{r}}{\partial z^{r}}-\frac{1}{c^{r}} \frac{\partial^{r}}{\partial t^{r}}
$$

تحت تبديلات لورنتس ناورداست.
جواب : بـا توجـه بـه تبـديلات لـورنتس (Y-- ب) ، مـى تـوان مـشتقات جزئـى را بـا در نظـر
 مختلف با روابط

$$
\begin{align*}
\frac{\partial}{\partial x}=\frac{\partial x^{\prime}}{\partial x} \frac{\partial}{\partial x^{\prime}}+\frac{\partial t^{\prime}}{\partial x} \frac{\partial}{\partial t^{\prime}} & =\gamma \frac{\partial}{\partial x^{\prime}}-\frac{\gamma v}{c^{r}} \frac{\partial}{\partial t^{\prime}} \\
& =\gamma\left[\frac{\partial}{\partial x^{\prime}}-\frac{v}{c^{r}} \frac{\partial}{\partial t^{\prime}}\right]
\end{align*}
$$

9

$$
\begin{align*}
\frac{\partial}{\partial t}=\frac{\partial x^{\prime}}{\partial t} \frac{\partial}{\partial x^{\prime}}+\frac{\partial t^{\prime}}{\partial t} \frac{\partial}{\partial t^{\prime}} & =-\gamma v \frac{\partial}{\partial x^{\prime}}+\gamma \frac{\partial}{\partial t^{\prime}} \\
& =\gamma\left[\frac{\partial}{\partial t^{\prime}}-v \frac{\partial}{\partial x^{\prime}}\right]
\end{align*}
$$



$$
\begin{align*}
\frac{\partial^{r}}{\partial x^{r}}=\frac{\partial}{\partial x} \frac{\partial}{\partial x} & =\gamma^{r}\left(\frac{\partial}{\partial x^{\prime}}-\frac{v}{c^{r}} \frac{\partial}{\partial t^{\prime}}\right)\left(\frac{\partial}{\partial x^{\prime}}-\frac{v}{c^{r}} \frac{\partial}{\partial t^{\prime}}\right) \\
& =\gamma^{r}\left(\frac{\partial^{r}}{\partial x^{\prime r}}-\frac{r v}{c^{r}} \frac{\partial^{r}}{\partial x^{\prime} \partial t^{\prime}}+\frac{v^{r}}{c^{r}} \frac{\partial^{r}}{\partial t^{\prime r}}\right)
\end{align*}
$$

به همين ترتيب، داريم:
$\frac{\partial^{r}}{\partial t^{r}}=\frac{\partial}{\partial t} \frac{\partial}{\partial t}=\gamma^{r}\left(v^{r} \frac{\partial^{r}}{\partial x^{\prime r}}-r v \frac{\partial^{r}}{\partial x^{\prime} \partial t^{\prime}}+\frac{\partial^{r}}{\partial t^{\prime r}}\right)$
اكنون، با جايگذارى مشتقات دوم درعملگر موج، مى توان نوشت:
$\frac{\partial^{r}}{\partial x^{r}}+\frac{\partial^{r}}{\partial y^{r}}+\frac{\partial^{r}}{\partial z^{r}}-\frac{1}{c^{r}} \frac{\partial^{r}}{\partial t^{r}}=$

$$
=\left(\gamma^{r}-\frac{\gamma^{r} v^{r}}{c^{r}}\right) \frac{\partial^{r}}{\partial x^{\prime r}}+\frac{\partial^{r}}{\partial y^{\prime r}}+\frac{\partial^{r}}{\partial z^{\prime r}}+\left(\frac{\gamma^{r} v^{r}}{c^{r}}-\frac{\gamma^{r}}{c^{r}}\right) \frac{\partial^{r}}{\partial t^{\prime r}}
$$

$$
\begin{equation*}
=\gamma^{r}\left(1-\frac{v^{r}}{c^{r}}\right) \frac{\partial^{r}}{\partial x^{\prime r}}+\frac{\partial^{r}}{\partial y^{\prime r}}+\frac{\partial^{r}}{\partial z^{\prime r}}-\frac{\gamma^{r}}{c^{r}}\left(1-\frac{v^{r}}{c^{r}}\right) \frac{\partial^{r}}{\partial t^{\prime r}} \tag{99-0}
\end{equation*}
$$

$$
=\frac{\partial^{r}}{\partial x^{\prime r}}+\frac{\partial^{r}}{\partial y^{\prime r}}+\frac{\partial^{r}}{\partial z^{\prime r}}-\frac{1}{c^{r}} \frac{\partial^{r}}{\partial t^{\prime r}}
$$

مشال ه - ب ؟ : نشان دهيد كه براى اينكه قانون بايـستگى بـار الكتريكـى تحـت تبـديلات لورنتس هموردا باشد، بايد چچگاليهاى بار و جريان الكتريكـى، مطـابق روابـط (ه-ب) تبـديل

جواب : مى دانيم، معادله بيوستگى بار الكتريكى درحارحوب SS، به صورت

$$
\vec{\nabla} \cdot \vec{J}(\vec{r}, t)+\frac{\partial \rho(\vec{r}, t)}{\partial t}=0
$$

بيان مى شود .اكنون، بايد ثابت كنيم كه اين معادلئ در صورتى در چارچجوب

$$
\vec{\nabla}^{\prime} \cdot \vec{J}^{\prime}\left(\vec{r}^{\prime}, t^{\prime}\right)+\frac{\partial \rho^{\prime}\left(\vec{r}^{\prime}, t^{\prime}\right)}{\partial t^{\prime}}=0
$$

 كافى است كه مقدار


$$
\frac{\partial j_{x}}{\partial x}+\frac{\partial j_{y}}{\partial y}+\frac{\partial j_{z}}{\partial z}+\frac{\partial \rho}{\partial t}=0
$$


(VY-Q)، خواهيم داشت:

$$
\gamma \frac{\partial}{\partial x}\left(j_{x}^{\prime}+\rho^{\prime} v\right)+\frac{\partial j_{y}^{\prime}}{\partial y}+\frac{\partial j_{z}^{\prime}}{\partial z}+\gamma \frac{\partial}{\partial t}\left(\rho^{\prime}+\frac{v}{c^{r}} j_{x}^{\prime}\right)=0 \quad(\vee r-\Delta)
$$ $\partial / \partial y=\partial / \partial y^{\prime}$ حال، با استفاده از روابط (هو $\partial / \partial z=\partial / \partial z^{\prime}$ مى توان نوشت:

$$
\begin{equation*}
\frac{\partial j_{x}^{\prime}}{\partial x^{\prime}}+\frac{\partial j_{y}^{\prime}}{\partial y^{\prime}}+\frac{\partial j_{z}^{\prime}}{\partial z^{\prime}}+\frac{\partial \rho^{\prime}}{\partial t^{\prime}}=0 \tag{f}
\end{equation*}
$$

$$
\vec{\nabla}^{\prime} \cdot \vec{J}^{\prime}+\frac{\partial \rho^{\prime}}{\partial t^{\prime}}=0
$$

بنابراين، معادلهُ بايستگى بار الكتريكى نيز تحت تبديلات لورنتس هموردا مى باشد.
 تبديلات لورنتس همورداست. به عبارت ديگر، شكل اين قانون تحت اين تبديلات ناورداست. جواب : مى دانيم اين قانون در چارچوب S به صورت زير بيان مى شود.

$$
\vec{\nabla} \times \vec{E}(\vec{r}, t)=-\frac{\partial \vec{B}(\vec{r}, t)}{\partial t}
$$

بنابراين، بايد نشان دهيم كه اين معادله درحارچوب

$$
\begin{equation*}
\vec{\nabla}^{\prime} \times \vec{E}^{\prime}\left(\vec{r}^{\prime}, t^{\prime}\right)=-\frac{\partial \vec{B}^{\prime}\left(\vec{r}^{\prime}, t^{\prime}\right)}{\partial t^{\prime}} \tag{V-৯-৯}
\end{equation*}
$$

مى باشد. برای اين منظور، مى توانيم از رابطةٔ (VЯ-ه) شروع كرده و نـشان دهـــم كـه طـرفين اين رابطه تحت تبـديلات لـورنتس بـه رابطـٔ (VW- (V) تبـديل مـى شـود. بنـابراين، اگـر رابطـة (VG-ه) را برحسب مؤلفه هاى آن بنويسيم، در اين صورت، خواهيم داشت:

$$
\begin{align*}
& \frac{\partial E_{z}}{\partial y}-\frac{\partial E_{y}}{\partial z}=-\frac{\partial B_{x}}{\partial t} \\
& \frac{\partial E_{x}}{\partial z}-\frac{\partial E_{z}}{\partial x}=-\frac{\partial B_{y}}{\partial t} \\
& \frac{\partial E_{y}}{\partial x}-\frac{\partial E_{x}}{\partial y}=-\frac{\partial B_{z}}{\partial t}
\end{align*}
$$

اككون، بايل مؤلفه هاى روابط (VA-ه) جايكـذارى نمـاييم و سـبس ازآنهـا نسبت بـه متغييرهـاى x، y، zو tمـشتق


 و 'كنـون، بـا در نظر گگرفتن ايـن مـشتقات و روابـط (همى توان رابطءُ اول (VA- (V) را به صورت زير نوشت.

$$
\frac{\partial}{\partial y}\left[\gamma\left(E_{z}^{\prime}-v B_{y}^{\prime}\right)\right]-\frac{\partial}{\partial z}\left[\gamma\left(E_{y}^{\prime}+v B_{z}^{\prime}\right)\right]=-\frac{\partial B_{x}^{\prime}}{\partial t}
$$

نسبيت و نظرئً الكترومغناطيس MOI
كه با استفاده از روابط مربوط به مشتقات جزئى خواهيم داشت:

$$
\frac{\partial E_{z}^{\prime}}{\partial y^{\prime}}-\frac{\partial E_{y}^{\prime}}{\partial z^{\prime}}=v\left(\frac{\partial B_{x}^{\prime}}{\partial x^{\prime}}+\frac{\partial B_{y}^{\prime}}{\partial y^{\prime}}+\frac{\partial B_{z}^{\prime}}{\partial z^{\prime}}\right)-\frac{\partial B_{x}^{\prime}}{\partial t^{\prime}}
$$

از طرف ديگر، به سادگى مى توان نشان داد كه در چارچوب 'S ${ }^{\prime}$ نيز

$$
\begin{gather*}
\frac{\partial B_{x}^{\prime}}{\partial x^{\prime}}+\frac{\partial B_{y}^{\prime}}{\partial y^{\prime}}+\frac{\partial B_{z}^{\prime}}{\partial z^{\prime}}=0 \\
\vec{\nabla}^{\prime} \cdot \vec{B}^{\prime}=0
\end{gather*}
$$

است. درنتيجه، رابطهُ اول (VA-ه) به صورت

$$
\frac{\partial E_{z}^{\prime}}{\partial y^{\prime}}-\frac{\partial E_{y}^{\prime}}{\partial z^{\prime}}=-\frac{\partial B_{x}^{\prime}}{\partial t^{\prime}}
$$

در چارجوب 'S به دست مى آيل. به همين ترتيب، مى توان نشان داد كه روابـط دوم و سـوم
(VA-Q)

$$
\frac{\partial E_{x}^{\prime}}{\partial z^{\prime}}-\frac{\partial E_{z}^{\prime}}{\partial x^{\prime}}=-\frac{\partial B_{y}^{\prime}}{\partial t^{\prime}} \quad, \quad \frac{\partial E_{y}^{\prime}}{\partial x^{\prime}}-\frac{\partial E_{x}^{\prime}}{\partial y^{\prime}}=-\frac{\partial B_{z}^{\prime}}{\partial t^{\prime}}
$$

بيان مى شوند. بنابراين، شكل قانون فاراده در گذر از يكك چارچوبِ لخت به چارچوب لهخت ديگر، تححت تبديلات لورنتس بدون تغيير مى مانل.

مثال D - Q : ف فـرض كنيـل كـه بـارالكتريكى q بـا سـرعت يكنواخــت V درجـارچوب آزمايشعاه يا S حركت مـى كنـلـ. ميـدان حاصـل از ايـن بـار رادر چـارچوب سـكون بـار و همّچنين درحارچوب $S$ به دست آوريد. جواب : درجار جوب سكون ذره يا 'S، صرفاً ميدان الكتريكى وجود دارد؛ زيرا در اين
 باشد، دراين صورت، ميدان الكتريكى ' ${ }^{\prime}$ در این پارچوب از رابطهُ

$$
\vec{E}^{\prime}=\frac{1}{₹ \pi \varepsilon_{0}} \frac{q \vec{r}^{\prime}}{\left|\vec{r}^{\prime}\right|^{r}}
$$


 $\vec{E}_{\|}=\vec{E}_{\|}^{\prime}$

$$
\vec{E}_{\perp}=\gamma(\beta)\left[\vec{E}_{\perp}^{\prime}-c\left(\vec{\beta} \times \vec{B}^{\prime}\right)\right]=\gamma(\beta) \vec{E}_{\perp}^{\prime}
$$

و ميدان مغناطيسى نيز برابر

$$
\begin{gather*}
\vec{B}_{\|}^{\prime}=\vec{B}_{\|}=0 \\
\vec{B}_{\perp}=\gamma(\beta)\left[\vec{B}_{\perp}^{\prime}+\frac{1}{c}\left(\vec{\beta} \times \vec{E}^{\prime}\right)\right]=\frac{1}{c} \gamma(\beta)\left(\vec{\beta} \times \vec{E}^{\prime}\right)
\end{gather*}
$$

مى باشد. حال، با توجه به روابط ( ( ميدانها بدون تغيير مى ماند. اما مؤلفئ عمود بـر سـرعت نـسبى آنهـا بـه انـدازه ضــريب افزايش مـى يابــــ ازطـرف ديخـر، ميـدان مغناطيسىى ناشـى از بـار متحـر كك، براسـاس رابطــُ
 دواير بسته الى به مر كز خط يا راستاى حر كت بارالكتريكى تـشكيل مـى دهنـد. ايـن مثـال در بخش ه - ه ، به طور كامل بررسى مى گرددد.

 ميدانهایى الكتريكى و مغناطيسى حاصل از اين خطط بـار را در جـارجوب آزمايسشگاه يـا S و همحِنين 'S به دست آوريد.

جواب : مى دانيمه درجارچوبب سكون خط بـار يـا روى خط بارساكن مى باشند. بنابراين، در اين حارچوبب تنها ميدان الكتريكى قابـل مـشاهده است. اين ميدان در چارجوب 'S، از رابطئ

$$
\vec{E}^{\prime}=\frac{\lambda^{\prime}}{r \pi \varepsilon_{0} r^{\prime}} \hat{\rho}^{\prime}
$$

 استوانه ایى است كه محور آن منطبق بر خطط بار بوده و r نيز فاصـلهٔ عمـودى از خـط بـار در


شُكل (ه- (
 با سرعت $v$ در راستاى محور X اين چارچوب حر كت مى كند. بنابراين، در ايـن جـارچچوب
 ميدان الكتريكى، ميدان مغناطيسى نيز وجود دارد. براى به دست آوردن اين ميدانها مـى تـوان
 الكتريكى را درنقطه إى خاص مانند A كه در صفحهٔ قرار دارد، به دست آورد. در اين صورت، زابطءٔ (ه- (М) را درنقطءٔ A، مى توان به شكل

$$
\begin{equation*}
E_{x}^{\prime}=0 \quad, \quad E_{y}^{\prime}=\frac{\lambda^{\prime}}{r \pi \varepsilon_{0} r^{\prime}}, \quad E_{z}^{\prime}=0 \tag{^৭-ब}
\end{equation*}
$$



$$
E_{x}=\circ \quad, \quad E_{y}=\gamma(v) E_{y}^{\prime}, \quad E_{z}=0
$$

$$
E_{x}=0 \quad, \quad E_{y}=\gamma(v) \frac{\lambda^{\prime}}{r \pi \varepsilon_{0} r^{\prime}}, \quad E_{z}=0
$$



$$
B_{x}=B_{y}=0 \quad, \quad B_{z}=\gamma(v) \frac{v}{c^{r}} E_{y}^{\prime}
$$

بنابراين، با جايگذارى مقدار

$$
B_{x}=B_{y}=0, \quad B_{z}=\gamma(v) \frac{v}{c^{r}} \frac{\lambda^{\prime}}{r \pi \varepsilon_{0} r^{\prime}}
$$

حال، اگر خط بارمنطبق بر محور مشتر كك $x x^{\prime}$ باشد، دراين صورت، فاصلة نقطـة A از خـط باردردو چارحوب برابر خواهلد بود؛ زيرا ايـن فاصـله عمـود بــر سـرعت نـسبى دو جـارجوب
 درجآرچوب S و 'S مى توان از ناوردا بودن بارالكتريكى اسـتفاده كـرد. بـرای ايـن منظور،
 دو چارچوب يكسان باشد، يعنى (هوى

$$
\lambda d x=\lambda^{\prime} d x^{\prime}
$$

كه با در نظر گرفتن اثر انقباض طول، يعنى رابطة́ $\lambda^{\prime}=\frac{\lambda d x}{d x^{\prime}}=\lambda \sqrt{1-\beta^{r}}$
حال، با جايگذارى مقدار ' ${ }^{\prime}$ در روابط (ه-9|) و (ه- (ه (ه)، خواهيم داشت:

$$
\begin{equation*}
E_{x}=0 \quad, \quad E_{y}=\frac{\lambda}{r \pi \varepsilon_{0} r}, \quad E_{z}=0 \tag{99-Q}
\end{equation*}
$$

$$
B_{x}=B_{y}=0 \quad, \quad B_{z}=\frac{v}{c^{r}} \frac{\lambda}{r \pi \varepsilon_{0} r}
$$



 رابطةٔ

$$
B_{x}=B_{y}=\circ \quad, \quad B_{z}=\frac{\mu_{\circ} I}{r \pi r}
$$

 نامحلود مى باشد. بنابراين، مشاهله مى كيم كه قانون آمير با نسبيت ساز گار است.

مثال V - - فرض كنيدكه درجارجوب آزمايشگًاه يا S، يكك ميدان الكترومغناطيسى عمود برهم برقرارشده باشده، به طورى كه
 حارجوب را برابر $v=E / B$ درنظر بغيريد.

جواب : در چارجوب S داريم:

$$
\begin{equation*}
E_{x}=0 \quad, \quad E_{y}=E \quad, \quad E_{z}=0 \tag{99-b}
\end{equation*}
$$

g

$$
B_{x}=0 \quad, \quad B_{y}=0 \quad, \quad B_{z}=B
$$

حال با استفاده از تبديلات لورنتس (ه-rr) و (ه-

$$
E_{x}^{\prime}=0 \quad, \quad E_{y}^{\prime}=\gamma(v)[E-v B] \quad, \quad E_{z}^{\prime}=0
$$

9
$B_{x}^{\prime}=0 \quad, \quad B_{y}^{\prime}=0 \quad, \quad B_{z}^{\prime}=\gamma(v)\left[B-\frac{v}{c^{r}} E\right] \quad(1, \gamma-\Delta)$

$$
\begin{align*}
& E^{\prime}=0 \quad, \quad B^{\prime}=B_{z}^{\prime}=B \sqrt{1-v^{r} / c^{r}}
\end{align*}
$$

بنابراين، مشاهده مى كنيم كـه درچـارجوب 'S $S^{\prime}$ ميـدان الكتريكـى صـفر بـوده و ميـدان مغناطيسى
 چارچوبب هم جهت هستند.

## (D - ه : ميدان حاصل از يك بارنقطه ای با حر كت يكنو اخت

همان طور كه مى دانيم، جريان الكتريكى باعث ايجـاد ميـدان مغناطيـسى مـى شـود. بنـابراين،
 جريان الكتريكى در واقع، ناشى إز جريان يا حر كت بارهاى الكتريكى مى باشد. دراينجا ابتدا ميدان حاصل از يكك بار الكتريكى متحر كك را كـه داراى حر كـت يكنواخـت مـى باشــد، در حالت غير نسبيتى بررسى نموده و سيس مسأله را درحالت نسبيتى بیى مى گيريم.
 و غير نسبيتى قانون، ميدان مغناطيسى بارمتحر كك q را درحالت غير نسبيتى، مى توان از رابطه

$$
\vec{B}=\frac{\mu_{\circ}}{\kappa_{\pi}} \frac{q \vec{u} \times \vec{r}}{r^{r}}
$$

 را نشان مى دهد. اندازءٔ ميدان مغناطيسى نيز از رابطهُ

$$
B=\frac{\mu_{\mathrm{o}}}{\digamma \pi} \frac{q u \sin \theta}{r^{r}}
$$

به دست مى آيد و جهت آن نيز باتوجه به شكل (ه- (f) بر بردارهاى بنابراين، خطوط نيروى مغناطيسى دوايـرى هـستند كـه مر كـز آنهـا منطبـق بـرخط يـا راسـتاى
 راستاى حر كت بار صفرمى باشد و در صفتحه اى كه شامل بار الكتريكـى بـوده و بـر راسـتاى حر كت بارعمود است، بيشينه است.


شكل ( (F-ه) : ميدان الكتريكى و مغناطيسى حاصل از ذرة باردار
در حر كت يكنواخت و غير نسبيتى
ميدان الكتريكى حاصل از بار q نيز از رابطهُ

$$
\vec{E}=\frac{q \vec{r}}{\mu \pi \varepsilon_{\mathrm{o}} r^{r}}
$$

به دست مى آيـل. حـال بـراى بـه دسـت آوردن ارتبـاط بـين ميـدان الكتريكـى و مغناطيسى،

$$
\begin{align*}
& \text { مى توان روابط(ه-ه •1) و (ه-9•1) با هم تر كيب كرده و رابطءٔ } \\
& \vec{B}=\mu_{\circ} \varepsilon_{\circ} \vec{u} \times \vec{E}=\frac{1}{c^{r}} \vec{u} \times \vec{E}
\end{align*}
$$

را به دست آورد. بنــابراين، مـشاهده مـى شـود كـه بـارالكتريكى متحـر كك، عـلاوه بـر ميـدان الكتريكى، ميدان مغناطيسى نيز ايجاد مى كنــد كـه ارتبـاط بـين ايـن ميـدانها بـه وسـيلهُ رابطــُ (l•V-ه) برقرار مى شود. درنتيجه، مى توان گفت كه ايـن ميـدانها دو جنبـه از يـك ماهيّـت اساسى و ذاتى ماده مى باشند. درحقيقت، بـرایى بررسـى چديــده هـايى كـه در آنهـا بـا بارهــاى الكتريكى متحر كك مواجـه هـستيم؛ مـى بايـستى از كميّـت يــا موجـود واحــدى بـه نـام ميـدان

الكترومغناطيـسى اسـتفاده نمـاييم. ازطـرف ديگـر، تجربـه نـشان مـى دهــد، درحـالتى كــه بارالكتريكى q دارأى سرعت يكنواخت و نسبيتى اسـت، روابـط (ه-\& +1) و (ه-9 • - )؛ بـراى ميدانها نمى توانند درست باشند. بنـابراين، بايــد ايـن روابـط بـرايى حالــت نـسبيتى تعمـيم داده شوند. يعنى بايد روابطى را براى ميـدان الكتريكـى و مغناطيسسى بـه دنــت آوريـم كــه شـامل سرعتهاى نسبيتى نيـز بـشود. بـه عبـارت ديگـر، ايـن روابـط بايــد در گـستره سـرعت صـفر تـا سرعتهاى نسبيتى داراى اعتبار باشند. رای اين منظور، فـرض كنيـد كـه مطـابق شـكل (ه - ه)
 باشد. همين طور فرض كنيد كـه چـارچوب 'S، داراى سـرعت نـسبى v (برابـر سـرعت ذرة باردار) درجهت محور مشتر كك $x x^{\prime}$ باشد. در اين صورت، مى تـوان بـا اسـتفاده از تبـديلات لورنتس، ميدان حاصل از بار q را به دست آورد. در چارچوب سكون ذرهٔ باردار، يعنى 'S، اگگ ذرهٔ باردار در مبدأ اين چارچوب باشـلـ، همان طور كه مى دانيم، درايـن خـارچوب ميـدان مغناظيـسى برابـر صـفر بـوده و تنهـا ميـدان الكتريكى مشاهده مى شود. بنابراين، داريم

$$
\vec{E}^{\prime}\left(\vec{r}^{\prime}\right)=\frac{1}{\uparrow \pi \varepsilon_{0}} \frac{q \vec{r}^{\prime}}{r^{\prime r}}=\frac{1}{f \pi \varepsilon_{0}} \frac{q}{r^{\prime r}} \hat{r}^{\prime} \quad, \quad \vec{B}^{\prime}=0
$$

اكنون مى توان با استفاده از وارون تبديلات لورنتس، يعنى روابـط (ه- ( الكتريكى و مغناطيسى را درجارحوب S

$$
\begin{align*}
& E_{x}=E_{x}^{\prime} \\
& E_{y}=\gamma(v)\left(E_{y}^{\prime}+\beta c B_{z}^{\prime}\right) \\
& E_{z}=\gamma(v)\left(E_{z}^{\prime}-\beta c B_{y}^{\prime}\right)
\end{align*}
$$

$$
\begin{align*}
& B_{x}=B_{x}^{\prime} \\
& B_{y}=\gamma(v)\left[B_{y}^{\prime}-\beta E_{z}^{\prime} / c\right] \\
& B_{z}=\gamma(v)\left[B_{z}^{\prime}+\beta E_{y}^{\prime} / c\right]
\end{align*}
$$

مى باشند. اكنون، باتوجه به اينكه درچـارچوب 'S، ميـدان مغناطيسيى برابـر صسفر اسـت، در

نتيجه ميدان
 دست آوريم. در اين صورت، رابطهٔ (ه-1•1) را مى توان به شكل

$$
\vec{E}^{\prime}\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\frac{q}{r \pi \varepsilon_{0}} \frac{\left(x^{\prime} \vec{i}^{\prime}+y^{\prime} \vec{j}^{\prime}+z^{\prime} \vec{k}^{\prime}\right)}{\left(x^{r}+y^{\prime r}+z^{\prime r}\right)^{r / r}}
$$


روابط (ه-|||l) و (ه-ب|l|)، خواهيم داشت:

$$
E_{x}=\frac{q \gamma(v)[x-\beta c t]}{\left.\uparrow \pi \varepsilon_{0}\left(\gamma^{r}(v)[x-\beta c t]^{r}+y^{r}+z^{r}\right)\right)^{r / r}}
$$

$$
E_{y}=\frac{q y}{\left.\uparrow \pi \varepsilon_{0}\left(\gamma^{r}(v)[x-\beta c t]^{r}+y^{r}+z^{r}\right)\right)^{r / r}}
$$

$$
E_{z}=\frac{q z}{\left.\uparrow \pi \varepsilon_{0}\left(\gamma^{r}(v)[x-\beta c t]^{r}+y^{r}+z^{r}\right)\right)^{r / r}}
$$



$$
\begin{align*}
& B_{x}=o \\
& B_{y}=\frac{1}{c} \beta \gamma(v) E_{z}^{\prime}=\frac{-v q \gamma(v) z}{\left.\uparrow \pi \varepsilon_{0} c^{r}\left(\gamma^{r}(v)[x-\beta c t]^{r}+y^{r}+z^{r}\right)\right)^{r / r}} \\
& B_{z}=\frac{1}{c} \beta \gamma(v) E_{y}^{\prime}=\frac{v q \gamma(v) y}{\left.\uparrow \pi \varepsilon_{0} c^{r}\left(\gamma^{r}(v)[x-\beta c t]^{r}+y^{r}+z^{r}\right)\right)^{r / r}}
\end{align*}
$$

به دست مى آيند. ازطرف ديخر، در چارچوب S، با توجه به شكل(ه- (Q)، فاصلهٔ ذرؤ بـاردار از نقطهُ مشاهلدٔ ميدان، يعنى

$$
\begin{align*}
\vec{R}=\vec{r}-\vec{r}_{1} & =(x \vec{i}+y \vec{j}+z \vec{k})-\left(v t \vec{i}+y_{1} \vec{j}+z_{1} \vec{k}\right) \\
& \left.=(x-\beta c t) \vec{i}+\left(y-y_{1}\right) \vec{j}+\left(z-z_{1}\right) \vec{k}\right)
\end{align*}
$$

$E_{x}=E_{x}^{\prime} \quad, \quad E_{y}=\gamma(v) E_{y}^{\prime} \quad, \quad E_{z}=\gamma(v) E_{z}^{\prime}$
به دست مى آيند. ميدان $\vec{B}$ نيز دراين چارچجوب، با تو جه به روابط (ه- (1))، برابر
$B_{x}=0 \quad, B_{y}=-\beta \gamma(v) E_{z}^{\prime} / c \quad, \quad B_{z}=+\beta \gamma(v) E_{y}^{\prime} / c \quad(11 \Upsilon-\Delta)$

نسبيت و نظرئ الكترومغناطيس M09
مى باشد. حالل، برإى ساده سازى ، فرض مى كنيم، $y_{1}=z_{1}=0$ باشد، بنابراين، داريم:

$$
\frac{1}{\left|\vec{r}-\vec{r}_{1}\right|^{r}}=\frac{1}{R^{r}}=\frac{1}{\left[(x-\beta c t)^{r}+y^{r}+z^{r}\right]^{r / r}}
$$

در نتيجه، مـخرج كسر در روابط مربوط به مؤلفه هاى ميدان، برابر

$$
\begin{align*}
& \frac{1}{\left.\left[\gamma^{r}(v)[x-\beta c t]^{r}+y^{r}+z^{r}\right)\right]^{r / r}} \\
& \quad=\frac{1}{\gamma^{r}(v)\left[(x-\beta c t)^{r}+\left(1-\beta^{r}\right)\left(y^{r}+z^{r}\right)\right]^{r / r}} \\
& \quad=\frac{1}{\gamma^{r}(v)\left[R^{r}-\beta^{r}\left(y^{r}+z^{r}\right)\right]^{r / r}}
\end{align*}
$$

به دست مى T Tلد. ازطرف ديگر، چچون

$$
\begin{align*}
\beta^{r}\left(y^{r}+z^{r}\right) & =\beta^{r} R^{r}-(\vec{\beta} \cdot \vec{R})^{r} \\
& =\beta^{r} R^{r}\left[1-(\hat{\beta} \cdot \hat{R})^{r}\right] \tag{119-0}
\end{align*}
$$

كه در آن


$$
\begin{align*}
\frac{1}{\gamma^{r}(v)}\left[\begin{array}{l}
\left.R^{r}-\beta^{r}\left(y^{r}+z^{r}\right)\right]^{r / r} \\
\\
=\frac{1}{\gamma^{r}(v) R^{r}\left[1-\beta^{r}\left(1-(\hat{\beta} \cdot \hat{R})^{r}\right)\right]^{r / r}}
\end{array} .=\frac{1}{}\right.
\end{align*}
$$

اكنون، براى به دست آوردن ميدان الكتريكى درچارچوب؟ S، كافى است كـه مقـدار رابطــُ


$$
\vec{E}(x, y, z)=\frac{q}{\uparrow \pi \varepsilon_{0}} \frac{[(x-\beta c t) \vec{i}+y \vec{j}+z \vec{k}]}{R^{r} \gamma^{r}\left[1-\beta^{r}\left(1-(\hat{\beta} \cdot \hat{R})^{r}\right)\right]^{r / r}}
$$

يا

$$
\begin{align*}
\vec{E}(x, y, z) & =\frac{q \vec{R}}{r \pi \varepsilon_{0} R^{r}} \frac{1}{\gamma^{r}\left[1-\beta^{r}\left(1-(\hat{\beta} \cdot \hat{R})^{r}\right)\right]^{r / r}} \\
& =\frac{q \vec{R}}{\mu \pi \varepsilon_{0} R^{r}} \frac{1-\beta^{r}}{\left[1-\beta^{r}\left(1-(\hat{\beta} \cdot \hat{R})^{r}\right)\right]^{r / r}}
\end{align*}
$$

 (IY-ه) را امى توان به صورت

$$
\vec{E}(x, y, z)=\frac{q \vec{R}}{\digamma \pi \varepsilon_{0} R^{r}} \frac{1-\beta^{r}}{\left(1-\beta^{r} \sin ^{r} \psi\right)^{r / r}}
$$

نوشت. از طرف ديگر، ميدان مغناطيسى نيز با استفاده از روابط (ه- (11ه) يا واروارون رابطـُ دوم (F|- ( $)$

$$
B_{x}=B_{x}^{\prime}=0 \quad, \quad \vec{B}_{\perp}=\gamma(v) \frac{1}{c}\left(\vec{\beta} \times \vec{E}_{\perp}^{\prime}\right)
$$




$$
\vec{B}_{\perp}=\frac{1}{c}\left(\vec{\beta} \times \vec{E}_{\perp}\right)
$$

نوشت. ممحِنين، با توجه به اينكه

$$
\begin{equation*}
\vec{B}=\frac{1}{c}(\vec{\beta} \times \vec{E})=\frac{q}{\uparrow \pi \varepsilon_{0} c R^{r}} \frac{(\vec{\beta} \times \vec{R})}{\gamma^{r}\left[1-\beta^{r}\left(1-(\hat{\beta} \cdot \hat{R})^{r}\right)\right]^{r / r}} \tag{1}
\end{equation*}
$$

$$
\vec{B}=\frac{q}{\kappa \pi \varepsilon_{0} c R^{r}} \frac{(\vec{\beta} \times \vec{R})}{\gamma^{r}\left[1-\beta^{r}\left(1-(\hat{\beta} \cdot \hat{R})^{r}\right)\right]^{r / r}}
$$

در نتيجه:

$$
\vec{B}(x, y, z)=\frac{q}{\kappa^{\uparrow} \pi \varepsilon_{0} c R^{r}} \frac{(\vec{\beta} \times \vec{R})}{\left.\gamma^{\curlyvee}\left[1-\beta^{\curlyvee} \sin ^{\curlyvee} \psi\right)\right]^{\top / \tau}}
$$


 م $\beta \rightarrow 0$




رابطة

$$
\vec{B}=\frac{q}{\kappa \pi \varepsilon_{o} c} \frac{\vec{\beta} \times \vec{R}}{R^{r}}=\frac{\mu_{\circ}}{\kappa \pi} \frac{q(\vec{u} \times \vec{R})}{R^{r}}
$$

به دست مى آيد كه در واقع همان قانون بيو- ساوار است.
اكنون، اگگر انـدازء ميـدان الكتريكمى درحـارحوبب S، برحـسب زاويـهٔ $\psi$ بررسـى شـود، مى توان اثر حر كت ذرهٔ باردار q را روى خطوط ميدان حاصل از آن را مشاهله نمود. با توجه بـه
 صورت، با توجه به رابطهُ (ه- (هY )، اندازه ميدان الكتريكى كوچهكترين مقدار را خواهد داشت.



ب: بار الكتريكى داراى سرعت نسبيتى است.
همحخنين، درحالتى كه $\psi=\pi / r$ باشل، دراين حالت اندازهُ ميدان الكتريكى بيـشترين مقـدار را خواهد داشت. ازطرف ديگر، در صورتى $\psi$ برابر صفر يا $\pi$ خواهد بود كه ناظر S، يا بـه عبارت ديگر، نقطهٔ مشاهدهٔ ميدان در امتداد خط حر كت ذرهٔ باردار قرار گيرد. در اين حالـت، زاويهٔ $\psi$ برابر صفر يا $\pi$ مى باشد. همحِنين، اگر نقطـئ مـشاهلده ميـدان در راسـتاى عمـود بـر مسيرحر كت ذرهٔ باردار $q$ در نظر گرفته شود، در اين حالت، زاويةٔ $\psi$ برابر اندازةٔ ميدان الكتريكى با توجه به رابطءٔ (ه-سY|) به كمترين مقدار كاهش مى يابل.
 يا آزمايشگاه، برای حالتى كه سرعت ذره، نسبيتى و غير نسبيتى باشد، نشان مى دهد.
 يكنواخت در راستاى عمود بر صفتحئ كتاب و به سمت بيرون صفحه درحر كـت اسست، نـشان مى دهل. با توجه به شكل(V-Q)، خطوط ميدان مغناطيسى به شكل دوايرى هـستند كـه مر كـز

آنها روى خخط حر كت ذرهٔ باردار مى باشـلـ. در أينجـا ذرة بـاردار مثبـت مـى باشــلـ، درنتيجـهـ جهـت خطوط ميدان مغناطيسى با استفاده از قــنون دسـت راسـت، درخـلاف جهــت حر كـت عقربه هاى ساعت خواهل بود. در شكل (Q- الالـف، خطـوط ميـدأن مغناطيـسى بـراى حـالتى است كه ذرة باردار در پشت صفتحهٔ كتاب اســت و هنـوز بــه صـفحهٔ كتـاب نرسـيده اسـت. و ميدان در روى خطط خركــت ذره صـفر مـى باشـلـ. و درشـكل(V-Q) ب، ذره́ بـاردار بـر روى صفحهٔ كتاب است و ميدان در مر كز آن نامتناهى است.


شكل (V-ه) : خطوط ميدان مغناطيسى ناشى از ذرهٔ باردار متحر ك كه بـا سـرعت يكنواخــت در راستاى عمود بر صفحئ كتاب و به سمت خارج آلن در حر كــت إسـتّ. الـف : بـار الكتريكـى در پشت صفحةٔ كتاب است. ب : بار الكتريكى در روى صفحئ كتاب مى باشد.
 مى باشد. و در شكل (V-V) الف، زاويهٔ $\psi$ روى خطط حركــت ذره بـاردار، برابـر صـفر اسـت. درنتيجه، ميدان مغناطيسى روى خطط يا راستأى حر كت ذره́ باردار كمترين مقـدار، يعنـى صـفر مى باشل. اين نتيجه را مى توان با در نظر گرفتن رابطـــٔ (Q (IYA) نيـز بـه دســت آورد؛ زيـرا در


مثال ه - ه : فرض كنيدكه درجـارجوب مرجـع S، ميـدانهاى الكتريكـى و مغناطيـسى يكنواخـتـ، $\vec{B}=B_{x} \vec{i}+B_{y} \vec{j}, \vec{E}=E_{\circ} \vec{i}$ برار باشــند. همحچنـين، فـرض كنيـد كـه اندازهُ ميدان كه در Tن ميدانهاى الكتريكى و مغناطيسى موازى يكديگر باشند.


درجهــت محـور z باشـــل، يعنــى اگـر $\overrightarrow{\text { قا }}$部 $\vec{\beta} \cdot \vec{E}=\vec{\beta} \cdot \vec{B}=0$

$$
\vec{E}^{\prime}=\gamma(\beta)[\vec{E}+(c \vec{\beta} \times \vec{B})]
$$ به دست مى آيند. از طرف ديگر، درجارچجوب $S$ نيز، داريم

$$
\begin{equation*}
\vec{E}=E_{\circ} \vec{i} \quad, \quad \vec{B}=\left(r E_{\circ} / c\right)[\cos \theta \vec{i}+\sin \theta \vec{j}] \tag{IFY-Q}
\end{equation*}
$$



$$
\vec{E}^{\prime}=\gamma(\beta)\left[E_{0}(1-r \beta \sin \theta) \vec{i}+\left(r E_{0} \beta \cos \theta\right) \vec{j}\right] \quad(1 \mu \mu-\Delta)
$$

$$
\begin{aligned}
& \left.\vec{B}^{\prime}=\gamma(\beta)\left[\left(r E_{0} / c\right) \cos \theta \vec{i}-\frac{E_{\circ}}{c}(r \sin \theta-\beta) \vec{j}\right)\right] \quad(I r \mathcal{F}-\Delta)
\end{aligned}
$$

$$
\begin{align*}
& \vec{B}^{\prime}=B_{x}^{\prime} \vec{i}^{\prime}+B_{y}^{\prime} \vec{j}^{\prime} \quad, \quad \vec{E}^{\prime}=E_{x}^{\prime} \vec{i}^{\prime}+E_{y}^{\prime} \vec{j}^{\prime}
\end{align*}
$$

حال، بايـلـ

$$
\begin{equation*}
\tan \theta^{\prime}=\frac{(r \sin \theta-\beta)}{r \cos \theta}=\frac{(r \beta \cos \theta)}{(1-r \beta \sin \theta)} \tag{1}
\end{equation*}
$$

$$
r \beta^{r} \sin \theta-\Delta \beta+r \sin \theta=0
$$

$$
\beta=\frac{1}{r \sin \theta}\left[\Delta-\sqrt{r \Delta-19 \sin ^{r} \theta}\right] \quad \text { كه با حل اين .معادله به دست }
$$


 مختلفف، $\beta$ هاى متفاوتى را به دست آورد. به عنوان مثال اگر $\theta=\pi / 4$ باشلـ، دراين صـورتّ
 با سرعت
 خواهد بود.

- 9 حر كت يكك ذره باردار در ميدان الكتريكى يكنواخت را مى توان در دو حالـت مختلـف مـورد بررسى قرار داد. درحالت أول، فرض مى كنيم كه ذره باردار بلون سرعت اوليه در داخل ميـلان يكنواخخت رها شود. درحاللت دومه ذرهٔ بار دار بــا سـرعت اوليـهٔ پرتاب مى شود. دراينجا اين دو حالت را به طور جلاگًانه مورد بررسى قرار مى دهيم.

الف : سحر كت ذره باردار در داخحل ميدان الكتريكى يكنو اخت ـ بدون سرعت اوليه

الگُ اين مسأله را بخواهيم درحالــت غيرنـسبيتى يـا بـا در نظرگـرفتن ملاحظـات مكانيـكـ نيوتنى حل كنيم، به روابط حر كت مستقيم الخطط با شتاب ثابت مـى رسـيم. يعنـى اگـر فـرض كنيم كه ميدان الكتريكى درجهـت محـور X باشـلـ، سـرعت و مكـان ذرهٔ بـاردار؛ بـه ترتيـب
 برابر $a=q E_{0} / m_{0}$ دست مى آيند كه با نتايج حالت كالويكك كـاملاً متفـاوت مـى باشـند. بـراى حـل مـسأله در حالت نسبيتى، فرض كنيد كه ذره́ باردار q بلون سرعت اوليه درمبدأ مختصات جارپپب يا آزهايشگاه قرار داده شود. در اين صورت، اگر ميدان الكتريكى را به شكل نظر بگيريم، در اين حالت معادله حركت ذره، با تو جه به رابطةُ (YQ-Y) به صورت

$$
\begin{equation*}
\frac{d \vec{p}}{d t}=\vec{F}=q E_{\circ} \vec{i} \tag{1rq-ه}
\end{equation*}
$$

نسبيت و نظريئ الكترومغناطيس Mo

$$
m_{\circ} \frac{d}{d t}\left(\frac{\beta c}{\sqrt{1-\beta^{r}}}\right)=q E_{\circ}
$$

بيان مى شود كه درآن $\beta=u / c$ مى باشد. حال، با انتگ, الگیيرى از طـرفين رابطـهُ (Q- (IF)، و با تو جه به اينكه در $t=0$ سرعت اوليهٔ ذره برابر صفر است، مى توان به دست آورد

$$
\frac{m_{\mathrm{o}} \beta c}{\sqrt{1-\beta^{r}}}=q E_{\circ} t
$$

بنابراين، سرعت ذره باردار به صورت

$$
\beta=\left(\frac{q E_{\circ} t}{m_{\circ} c}\right)\left[1+\left(q E_{\circ} t / m_{\circ} c\right)^{r}\right]^{1 / r}
$$

به دست مى Tيل. درشكل ( ( نيو تنى و منحنى نسبيتى مربوط به سرعت ذره را نشان مى دهل. براى به دسـت آوردن تقريـب
 مربوط به شروع حر كت ذره، درمقايسه با ا صرف نظر كـرد. بـه عبـارت ديگر، بـرایى tهـاى بسيار كو چكك، تقريب به رابطهٔ نيوتنى $u=\left(q E_{\circ} / m_{0}\right) t$ تبديل مى شود.


شكل (ه- (1) : الف، تغييرات سرعت ذره باردار در ميدان الكتريكى يكنواخت برحسب زمان ب : تغييرات مكان ذره نسبت به زمان
از طرف ديگر، برای

 بسيار بزر گك نيز به دست آورد كه در اين صورت، خواهيم داشت:

777 7 مقدمه ای بر نسبيت خاص

$$
\begin{align*}
\mathcal{E}=\frac{m_{\circ} c^{r}}{\sqrt{1-\beta^{r}}} & \simeq \frac{m_{\circ} c^{r}}{\sqrt{\left(m_{\circ} c / q E_{\circ} t\right)^{r}}} \\
& \simeq q E_{\circ} c t
\end{align*}
$$

در رابطdٔ فوق از ع به جاى E براى انرزی ذرهٔ باداراستغاده شده است تا بـا ميـدان الكتريكـى
 عبارت ديگر، در tهای بسيار بزر گs، انرزّى نسبيتى ذره به صورت خطـى افـزا ايش يافتـه، امـا


$$
p=\frac{m_{\circ} \beta c}{\sqrt{1-\beta^{r}}} \simeq q E_{\circ} t
$$

 (استفاده كرد. در اين صورت، خواهيم داشت: (IFY-Q)

$$
x(t)=\left(\frac{m_{\circ} c^{r}}{q E_{\circ}}\right)\left[\sqrt{1+\left(q E_{\circ} t / m_{\circ} c\right)^{r}}-1\right]
$$

دراينجا نيزمى توان با بسط راديحـال داخـل كروشـه وحــف جـمــلات بـالاتر بـه ازاى tهـاى

 صورت، مكـان ذره بـاردار از رابطـهُ $x=c t-\left(m_{0} c^{r} / q E_{0}\right)$ بـه دسـت مـى آيـلـ. شـكل ( 1 ( ) بـ، تغييرات $x(t)$ را برحسب زمان نشان مى دهل.

ب : حركت ذره باردار درداخل ميدان الكتريكى يكنوانحت ـ با سرعت اوليه
دراين حالت، فرض مسى كنـيم كـه ذرة بـاردار بـا سـرعت اوليـه بـه داخــل يـكك ميـدان الكتريكى يكنواخت برتاب شود. دراينجا نيز اگر مسأله، درحالت غير نسبيتى حل شود، يـكـ حر كت برتابى ساده خواهيم داشت كه معادله́ مسير ذره به صورت يكك سـهمى خواهــد بـود. اما درحالت نسبيتى، مسأله كمى ييجيلده ترمى باشد. بـرإى حـل مـسأله در ايـن حالــت، فـرض كنيــل كــه ميــدان الكتريكـى يكنواخــت بـا

رابطئ


$$
\frac{d \vec{p}}{d t}=q \vec{E}=q E_{\circ} \vec{j}
$$

خواهل بود. حالى، دراينجا باتوجه به اينكه ميـدا الكتريكـى و سـرعت اوليـــه ذره، مؤلفـه ایى در امتداد محور z ندارند، بنابراين مى تـوان نتيجـه گرفـت كـه حر كـت در صـفحهؤ xy صـورت مى گیرد. دراين صورت، خواهيم داشت:

$$
\frac{d p_{y}}{d t}=q E_{\circ} \quad, \quad \frac{d p_{x}}{d t}=0
$$

در نتيجه،

$$
p_{y}=q E_{\circ} t \quad, \quad p_{x}=p_{\circ} x=c t e
$$

از طرف ديگر، انزڤّى كل ذره بدون در نظر گُفتن انزرّى پتانسيل ناشى از ميدان الكتريكى، برابر

$$
\begin{align*}
\mathcal{E} & =\sqrt{(p c)^{r}+\left(m_{\circ} c^{r}\right)^{r}} \\
& =\sqrt{\left(p_{\circ} c\right)^{r}+\left(q E_{\circ} t c\right)^{r}+\left(m_{\circ} c^{r}\right)^{r}} \\
& =\sqrt{\mathcal{E}_{\circ}^{r}+\left(q E_{\circ} t c\right)^{r}}
\end{align*}
$$

خواهد بود كه در نيز انرزی ذره را به جاى E با E نشان مى دهيم، تا با ميدان الكتريكى در نماد گذارى اشتباه نشود. حال، باتوجه بـه اينكـه از طـرف ميـدان الكتريكـى بــه ذره بـاردار نيـرو وارد مـى شـود. بنـابراين، مقدار كارى كه ميدان الكتريكى روى ذره انجام مى دهله باعث تغيير انرزّى آن مى گردد.

$$
\frac{d \mathcal{E}}{d t}=\vec{F}_{\text {elec }} \cdot \vec{u}=q \vec{E} \cdot \vec{u}
$$

$$
\frac{d \mathcal{E}}{d t}=q E_{\mathrm{o}} u_{y}=q E_{\mathrm{o}} \frac{d y}{d t}
$$

در نُتيجه، مى توان نوشت:

$$
\int_{\varepsilon_{0}}^{\mathcal{E}} d \mathcal{E}=q E_{\circ} \int_{0}^{y} d y
$$

حال، با أنتگُ الگُيرى از رابطءُ فوق، داريم

$$
\mathcal{E}=\varepsilon_{0}+q E_{\mathrm{o}} y
$$



$$
t=\frac{1}{q E_{\mathrm{o}} c} \sqrt{\left(\mathcal{E}_{\mathrm{o}}+q E_{\mathrm{o}} y\right)^{r}-\mathcal{E}_{0}^{r}}
$$

$$
\begin{align*}
y(t) & =\frac{1}{q E_{0}}\left(\varepsilon-\varepsilon_{0}\right) \\
& =\frac{\varepsilon_{0}}{q E_{0}}\left[\sqrt{1+\left(q c E_{0} t\right)^{\top} / \mathcal{E}_{0}^{\top}}-1\right]
\end{align*}
$$

اكنون، براى به دست آوردن معادلهُ مسير مى توان به صورت زير عمل كرد.

$$
\begin{align*}
\frac{p_{y}}{p_{x}} & =\frac{\gamma(u) m_{\mathrm{o}} u_{y}}{\gamma(u) m_{\mathrm{o}} u_{x}}=\frac{u_{y}}{u_{x}} \\
& =\frac{d y / d t}{d x / d t}=\frac{d y}{d x}
\end{align*}
$$

حال، با جايگذارى مقذار

$$
\frac{d y}{d x}=\frac{p_{y}}{p_{x}}=\frac{q E_{\circ} t}{p_{\circ} x}
$$



$$
\frac{d y}{d x}=\frac{1}{p_{\mathrm{o} x} c} \sqrt{\left(\varepsilon_{0}+q E_{0} y\right)^{r}-\varepsilon_{0}^{r}}
$$

$$
\frac{1}{p_{\mathrm{o} x} c} d x=\frac{d y}{\sqrt{\left(\mathcal{E}_{\mathrm{o}}+q E_{\mathrm{o}} y\right)^{r}-\mathcal{E}_{0}^{r}}}
$$

حال، با انتگرالگیيرى ازطرفين رابطةٔ (ه-هQ) (اهq)، مى توان به دست Tورد:

$$
\begin{gather*}
\frac{1}{p_{\circ} c} \int d x=\int \frac{d y}{\sqrt{\left(\varepsilon_{\circ}+q E_{\circ} y\right)^{r}-\mathcal{E}_{0}^{r}}} \\
\frac{x}{p_{\circ} x}=\frac{1}{q E_{\circ}} \cosh ^{-1}\left(\frac{q E_{\circ} y}{\varepsilon_{0}}\right)+C
\end{gather*}
$$

درنتيجه، داريم

نسبيت و نظرئه الكترومغناطيس 74
 يعنى


$$
y=\frac{\delta_{\circ}}{q E_{\circ}}\left[\cosh \left(\frac{q E_{\circ} x}{p_{\circ} x}\right)-1\right]
$$

به دست مى Tيل. شكل (ه- 9 ) ه، منحنى مسيرحر كت ذره نشان مى دهل.


شكل (ه-9): منحنى مسير ذره باردار در ميدأن الكتريكى يكنواخت
إز طرف ديگر، مى توان مـختصهٔ $x(t)$ مسسيرحر كت ذره را نيـز بـه دسست آورد. بـراى ايـن منظور، مي توان از رابطه́ (l|Y-F)، يعنى رابطة

$$
u_{x}=\frac{p_{o x}}{\mathcal{E}} c^{r}
$$

 جايگذارى كرد. در اين صورت، خواهيم داشت:

$$
\begin{gather*}
u_{x}=\frac{p_{\circ x}}{\varepsilon} c^{r}=\frac{p_{\circ x} c^{r}}{\sqrt{\varepsilon_{\circ}^{r}+\left(q E_{\circ} c t\right)^{r}}} \\
\frac{d x}{d t}=\frac{p_{\circ x} c^{r}}{\sqrt{\mathcal{E}_{\circ}^{r}+\left(q E_{\circ} c t\right)^{r}}}
\end{gather*}
$$

حال، با ضرب طرفين رابطهُ (ه-190) در dt و انتگرالگيرى از طرفين آن، داريم

$$
\int_{0}^{x} d x=\int_{0}^{t} \frac{p_{0 x} c^{r}}{\sqrt{\varepsilon_{0}^{r}+\left(q E_{0} c t\right)^{r}}} d t
$$

كه در اين صورت $x(t)$ ذره به صورت:
rV.

$$
x(t)=\left(\frac{p_{\circ x} c}{q E_{\circ}}\right) \sinh ^{-1}\left[\frac{q E_{\circ} c t}{\mathcal{E}_{\circ}}\right]
$$

به دست مى T آيل. به همين ترتيب، مى توان بـرأى بـه دسـت آوردن معادلـهٔ مـسير ذره؛ بـاردار؛

 رابطهٔ (هY-IqY) را به دست آورد. اكنون، بعد از به دست آوردن معادله مسير، مى توان مـسأله را در دو حالت حدى زير بررسى نمود.

الف : حركت ذرهٔ باردار درلحظات اوليةً حركت

 منظور، با استفاده از رابطة́ (IGV-ه)، مى توان نوشت:

$$
\begin{align*}
x(t) & =\left(\frac{p_{\circ x} c}{q E_{\circ}}\right) \sinh ^{-1}\left[\frac{q E_{\circ} c t}{\varepsilon_{\circ}}\right] \\
& \simeq\left(\frac{p_{\circ x} c}{q E_{\circ}}\right)\left(\frac{q E_{\circ} c t}{\varepsilon_{\circ}}\right) \simeq \frac{1}{\varepsilon_{\circ}} p_{\circ x} c^{r} t
\end{align*}
$$



$$
\begin{align*}
y(t) & =\frac{\varepsilon_{0}}{q E_{0}}\left[\sqrt{1+\left(q c E_{0} t\right)^{r} / \mathcal{E}_{0}^{r}}-1\right] \\
& \simeq \frac{\mathcal{E}_{0}}{q E_{0}}\left[1+\frac{1}{r} \frac{\left(q c E_{0} t\right)^{r}}{\varepsilon_{0}^{r}}-1\right] \\
& \simeq \frac{1}{r} \frac{q E_{0}}{\varepsilon_{0}}(c t)^{r}
\end{align*}
$$

 لحظات اولئُ حر كت ذرهٔ باردار درميدان الكتريكى يكنواخت به دست مى Tيل.

$$
y(x) \simeq \frac{1}{r} \frac{q E_{\circ} \varepsilon_{o}}{\left(p_{\circ} x\right)^{r}} x^{r}
$$

كه در واقع معادلهُ يكك سهمى مى باشل.

نسبيت و نظريهٔ الكترومغناطيس YVI

ب : حر كت ذرهٔ باردار بعد از گَذشت زمان طولانى



$$
\begin{align*}
x(t) & =\left(\frac{p_{\circ} x}{q E_{\circ}}\right) \sinh h^{-1}\left[\frac{q E_{\circ} c t}{\varepsilon_{\circ}}\right] \\
& =\left(\frac{p_{\circ} x}{q E_{\circ}}\right) \operatorname{Ln}\left[\frac{q E_{\circ} c t}{\varepsilon_{\circ}}+\sqrt{\left(q E_{\circ} c t / \varepsilon_{\circ}\right)^{r}+1}\right]  \tag{|V|-b}\\
& \simeq\left(\frac{p_{\circ x} c}{q E_{\circ}}\right) \operatorname{Ln}\left[\frac{r q E_{\circ} c t}{\varepsilon_{\circ}}\right]
\end{align*}
$$



$$
\begin{align*}
y(t) & =\frac{\varepsilon_{0}}{q E_{0}}\left[\sqrt{1+\left(q c E_{\circ} t\right)^{r} / \mathcal{E}_{0}^{r}}-1\right] \\
& \simeq \frac{\varepsilon_{0}}{q E_{\circ}} \frac{\left(q c E_{\circ} t\right)}{\varepsilon_{0}} \simeq c t
\end{align*}
$$


روابط (IVI-D) و (IVY-D) حذف كرد كه در اين صورت، خواهيم داشت:

$$
y(x) \simeq\left(\frac{\mathcal{E}_{\circ}}{r q E_{\circ}}\right) \exp \left[\frac{q E_{\circ} x}{p_{\circ x} c}\right]
$$

در نتيجه، در اين حالت، يعنى براى tهاى بزر گك؛ معادلئ مسير ذره باردار در ميـدان الكتركـى يكنواخت به صورت نمايى خواهد بود.

بررسى مى كنيم• برای اين منظور، مى توان از رابطة؛

$$
\begin{equation*}
\varepsilon=\sqrt{\varepsilon_{0}^{r}+(p c)^{r}} \tag{IVE-D}
\end{equation*}
$$

استفاده كرده حال، اگراز رابطة́ (D-DVF)، سرعت ذره را به دست آوريم، خواهيم داشت:

$$
\begin{equation*}
u=c \sqrt{\left[1-\mathcal{E}_{0}^{r} / \mathcal{E}^{r}\right]} \tag{iva-b}
\end{equation*}
$$



$$
L n u=L n c+\frac{1}{r} L n\left[1-\mathcal{E}_{0}^{r} / \mathcal{E}^{r}\right]
$$

و با ديفرانسيل گيرى از اين رابطه، به دست مى آوريم

$$
\frac{d u}{u}=\frac{\mathcal{E}_{0}^{r}}{\varepsilon^{r}-\mathcal{E}_{0}^{r}} \frac{d \mathcal{E}}{\mathcal{E}}
$$

ازطرف ديگرمى دانيم كه اگر سرعت و انرزّى ذره به ترتيب به اندازء $d u$ و $d$ تغ در ايـن صسورت، تغييـرات نسسنبى در سـرعت و انـرزّى ذره، بـا روابـط $d u / u$ و $d \in / \mathcal{C}$ بيـان مى شوند. حال، اگر انرزّى كل ذره، يعنى ع از انرزَى سـكون ذره، يعنـى


بنابراين، دراين حالت، رابطة́ (IVV-Q) را مى توان به صورت

$$
\begin{equation*}
\frac{d u}{u} \simeq \frac{\mathcal{E}_{0}^{r}}{\mathcal{E}^{r}} \frac{d \mathcal{E}}{\mathcal{E}} \tag{IVA-ఎ}
\end{equation*}
$$

نوشت. ازطرف ديگر، به دليل Tن آكـه انرزيهاى باللا تغيير نسبى در سرعت، درمقايسه با تغيير نسبى در انرزُى بسيار كوچك خـك خو اهل بـود. به عبارت ديگر، درانرزيّهاى بالا ممكن است بتوانيم انرزى ذره را به مقدار زيادى افزايش دهيمّ، امااين معذار افزايش در انرزى، اففزايش قابل ملاحظه ايى را درسرعت ذره ايجاد نمى كند. همــان طــور كــه مــى دانـيمه، درحالــت غيــر نـسبيتى، انــرزثى جنبـشى يــكـ ذره بــا

 مى توان رابطة $d k / k=r d u / u$ را برای حالت كلاسيكك به دست آورد. درنتيجه درحالـت غير نسبيتى يا كلاسيك، افزايش نسبى درانرزی جنبشى ذره، باعث افـزايش نـسبى در سـرعت
 كه $d \boldsymbol{\delta} / \mathcal{E} \simeq d p / p$ بی باشد.
 اختلاف پتانسيل $\Delta U$ قرار مى گیرد. سرعت ذره́ باردار دراين اختلاف پتأنسيل چقلر است؟ جـواب : با توجه به اينكه تغيير انرزى كل ذره برابر كار نيروى اعمال شـده بـه ذره اسـت، بنابراين، مى توان نوشت:

نسبيت و نظرية الكترومغناطيس

$$
W=\Delta k=q \Delta U
$$

از طرف ديگر، از رابطهٔ (

$$
\Delta k=\gamma(v) m_{\circ} c^{r}-m_{\circ} c^{r}=q \Delta U
$$

حال، با محاسبهٔ سرعت vى ذره از رابطهُ (ه- • • ال)، خواهيم داشت:

$$
v=\frac{1}{1+q \Delta U / m_{\circ} c^{r}} \sqrt{\left(r q \Delta U / m_{\circ}\right)\left(1+q \Delta U / r m_{\circ} c^{r}\right)}
$$

اكنون، با توجه به رابطهُ فوق، اگر

$$
v=\sqrt{\left\ulcorner q \Delta U / m_{\circ}\right.}\left[1-\left(r q \Delta U / \leftarrow m_{\circ} c^{r}\right)\right] \ll c
$$

و اگر $q \Delta U \gg m_{\circ} c^{r}$ در نظر گرفته شود، دراين حالت

$$
v=c\left[1-\frac{1}{r}\left(\frac{m_{\mathrm{o}} c^{r}}{q \Delta U}\right)^{r}\right] \approx c
$$

خواهد بود.

V - - D
دراين بخش، حر كت يكك ذره باردار را در ميـدان مغناطيسىى يكنواخـت بر برسـى مـى كنـيم.




$$
\frac{d \vec{p}}{d t}=q[\vec{E}+\vec{u} \times \vec{B}]
$$



$$
\frac{d \mathcal{\varepsilon}}{d t}=q \vec{u} \cdot \vec{E}
$$

دراين بخش نيز براى آنكه ميدان الكتريكـى E ع، بـا انـرزى ذره درنماد گـذارى اشـتباه نـشود،



$$
\frac{d \vec{p}}{d t}=q \vec{u} \times \vec{B} \quad, \quad \frac{d \varepsilon}{d t}=0
$$

نوشت كـه در آن
 رابططء ثابت بودن ( $\gamma$ ، مى توان نتيجهه گرفت كه $u$ ، سرعت ذره نيز ثابت است. نتيجه اخخير با ايسن واقعيت كه نيروى مغناطيسى، عمود بـر سـرعت ذره اســت وكـارى انتجـام نمـى دهــد و نهايتـاً اينكه در انرزی ذرءٔ باردار تغييرى به وجود نمى آورد، ساز گار مى باشل. اككنون، بـا تو جـهـ بـه ثابـت بودن خـريب (u) $\gamma$ ، و با در نظلر گرفتن اينكه نيروى ديگرى بـجـز نيـروى مغناطيسسى بـه ذره وارد نمى شود، (أز نيروى وزن ذره صرفن نظـر مـى كنـيمه، زيـرا در مقايـسه بـا اليـن نيـرو بسيار كو چكك است.) در اين صورت، مى تو ان معادله حر كت ذره را به شكل

$$
\frac{d \vec{u}}{d t}=\frac{q \vec{u} \times \vec{B}}{m_{\circ} \gamma(u)}
$$

$$
\begin{equation*}
\frac{d \vec{u}}{d t}=\vec{u} \times \vec{\omega}_{b} \tag{N}
\end{equation*}
$$

نوشت

$$
\vec{\omega}_{b}=\frac{q \vec{B}}{m_{o .} \gamma(u)}=\frac{q_{c^{r} \vec{B}}}{m_{o} \gamma(u) c^{r}}
$$

$$
\vec{\omega}_{b}=\frac{q_{c^{r} \vec{B}}^{\mathcal{E}}}{\varepsilon}
$$


 و ع نْيزانرزّى كل ذره مى باشل. لازم به ياد آورى است كـه مقـلدارى كـه از رابطـهُ (ه- •19)
 سنكروترونّ.... ) تأييد شده استـ.

از طرف ديگر، از رابطةُ (ه- (IMA) مى توان نتيجه گرفت كه ذره́ باردار حول خطـوط ميـدان مغناطيسى، داراى حر كت دايره ایى يكنواخت بوده و درامتداد خطوط ميـدان نيـز داراى يـك حر كت انتقالى يكنواخت مى باشد. به عبارت ديحـر، ذره بـاردار از تر كيـب ايـن دو حر كــت يكنواخت، داراى يك حر كت مارييجىى' در امتداد خطوط ميدان مغناطيسى خواهد بود. اكنون، برایى به دست آوردن معادلئ مسير ذره؛ مى توان از رابطئ (ه- (IAV) استفاده كرد.

در اين صورت، از اين رابطه خواهيم داشت:

$$
\begin{align*}
\frac{d p_{x}}{d t} & =u_{y} B_{z}=u_{y} B_{\circ} \\
\frac{d p_{y}}{d t} & =-u_{x} B_{z}=-u_{x} B_{\circ} \\
\frac{d p_{z}}{d t} & =\circ
\end{align*}
$$

بنابراين، داريم:

$$
\begin{align*}
\frac{d u_{x}}{d t} & =\frac{q_{B_{\circ}}}{m_{\circ} \gamma(u)} u_{y}=\omega_{b} u_{y} \\
\frac{d u_{y}}{d t} & =-\frac{q B_{\circ}}{m_{\circ} \gamma(u)} u_{x}=-\omega_{b} u_{x} \\
\frac{d p_{z}}{d t} & =\circ \Rightarrow m_{\circ} \gamma(u) \frac{d u_{z}}{d t}=\circ
\end{align*}
$$

از معادلهُ سوم رابطهُ فوق مى توان نتيجـه گرفـت كـه $u^{\text {( }}$ مقـدارى ثابـت اسـت. در


$$
\begin{align*}
\dot{u}_{x}-\omega_{b} u_{y} & =0 \\
\dot{u}_{y}+\omega_{b} u_{x} & =0
\end{align*}
$$

حاله، برای به دست آوردن $u_{x}$ و ازمعادلات جفت شدءٔ (ه- بهوا)، مى توان بـه صـورت
 جمع مى كنيم. در اين صورت، به دست مى آيد

$$
\left(\dot{u}_{x}+i \dot{u}_{y}\right)+i \omega_{b}\left(u_{x}+i u_{y}\right)=0
$$

حال، با تعريف $\ddagger$ ، به صورت

$$
\dot{\xi}+i \omega_{b} \xi=0
$$



$$
\xi(t)=A e^{-i \omega_{b} t}=A\left(\cos \omega_{b} t-i \sin \omega_{b} t\right)
$$

مى باشد. اكنون، با در نظر گرفتن تعريف گ، داريم:

$$
u_{x}=A \cos \omega_{b} t \quad, \quad u_{y}=-A \sin \omega_{b} t
$$

بنابر اين، سرعت ذره باردار درجهت عمود بر ميدان مغناطيسى، برابر

$$
\begin{align*}
\vec{u}_{\perp} & =u_{x} \vec{i}+u_{y} \vec{j} \\
& =A\left(\cos \omega_{b} t \vec{i}-\sin \omega_{b} t \vec{j}\right)
\end{align*}
$$

به دست مى آيل.حال، برایى به دست آوردن مقلـارثابت A، بايل از شرط اوليـه اسـتفاده شـود. برای اين منظور، اگر درلحظهُ
 نتيجه، سرعت ذره را مى توان با رابطءٔ

$$
\begin{align*}
\vec{u} & =u_{x} \vec{i}+u_{y} \vec{j}+u_{\circ z} \vec{k} \\
& =u_{\circ \perp}\left(\cos \omega_{b} t \vec{i}-\sin \omega_{b} t \vec{j}\right)+u_{\circ z} \vec{k} \tag{199-0}
\end{align*}
$$

بيان كرد. ازطرف ديگُر، برایى به دسـت آوردن مسسيرحر كت ذرهُ بـاردار، مسى تـوان از رابطـةُ (ه- (199) انتگرال گرفت. بنابراين، خواهيم داشت:

$$
\vec{r}(t)=\frac{u_{\circ} \perp}{\omega_{b}}\left[\sin \omega_{b} t \vec{i}+\left(\cos \omega_{b} t-1\right) \vec{j}\right]+u_{\circ} t \vec{k}+\vec{r}_{\circ} \quad\left(Y_{\cdots-\Delta)}\right.
$$

كه در آن
 مى كنل. در نتيجه؛ هسيرحر كت ذرهٔ باردار به صورت يكك ماريبيج به شعاع a خواهل بود.
 باردارحول خططوط ميدان مغناطيسى داراى يكك حركت دايره ای يكنواخت بوده و در امتـلداد

نسبيت و نظرئ الكترومغناطيس MVV
محور z نيز داراى حر كت انتقالى يكنواخت مى باشد.


شكل(ه- - ا) : مسير حر كت ذرهٔ باردار $q$ در ميدان مغناطيسى يكنواخت

در نتيجه، شعاع مارييتج ‘، يعنى ${ }^{\text {² به صورت }}$

$$
\begin{gather*}
a=\frac{u_{\circ} \perp}{\omega_{b}}=\frac{u \sin \alpha}{q B} m_{\circ} \gamma(u) \\
a=\frac{m_{\circ} u \sin \alpha}{q B \sqrt{1-\beta_{u}^{r}}}
\end{gather*}
$$

به دست مى آيد كه درآن $\alpha$ ، زاويهٔ بين سرعت اولئُ ذره و ميدان مغناطيسى است. بـه عبـارت ديگر، زاويهٔ بين سرعت اولئُ ذره و محور z مى باشد كــه زاويــُ گام ناميــه مـى شـود. گــام ماربيّج "، نيز با رابطة

$$
d=u_{\circ} T=\frac{r \pi m_{\circ}(u \cos \alpha)}{q B} \sqrt{1-\beta_{u}^{r}}
$$

بيان مى شود. اكنون، دراينجا مى توان كميّت ديگُرى به نام تكانهُ عرضى
عمود بر ميدان مغناطيسى است، تعريف نمود. اين تكانه به صورت

$$
B a=\frac{p_{\perp}}{q}
$$

تعريف مى شود. رابطء (Q-Y (Y)، نشان مى دهد كه حاصلضرب B در شعاع دوران a، برابـر


كميّت Ba راستختى مغناطيسى ' ذره مى نامند. از طرف ديگر، مىى توان با تتيين شعاع دايـره الى كه ذرة باردار q در يك ميلان يكنواخحت معين B طى مى كند، تكانئ نسبيتى ذره را به دست
 گيرى شده با استفاده از ردى كه ذره در اتاقكك حباب ايجاد مى كند، درحقيقت كار روزمره و عادى فيز يكدانهايى است كه در بخش فيزيكك انرزيهاى بالا كار مى كنند. درنهايت، مى توان بحث را به صورت زير خلاصه كرد. به اين ترتيب كـه اگـر سـرعت اولئ ذره، عمود بر ميدان مغناطيسى باشلد، در اين حالت ذره باردار روى يكك مـسير دايـره ایى

 مسيرحر كت ذره به شكل يكك منحنــى مـارييهیى حـول خطـوط ميـدان مغناطيـسى مـى باشــلـ. بنابراين، حر كت ذره را مى نوان تر كيبى از دو نوع حر كت درنظر گرفت. يكك حر كت خططى


دربخش بعله حر كت يك ذرهٔ باردار را برایى حـالتى بررسـى مـى كنـيم كــه ذره تتحـت
تأثير همزمان ميدانهاى الكتريكى و مغناطيسى قرار مى گیرد.

## - ه - ه ح حر كت ذرهٔ باردار در ميدان الكترومغناطيسى

دردو بخش قبل، حر كت ذرهٔ باردار رادر ميدانهاى الكتريكى و مغناطيسى بـه طـور جلاگاكانه مورد بررسى قرار داديم. اكنون دراين بخش، وضعيّتى را درنظر مى گيريم كه در در آن ذره تحت تأثير همزمان ميدانهاى الكتريكى و مغناطيسىى قـرار مـى گيـرد. بـراى بررسـى ايـن حالت، مى توان براى ميدانهاى الكتريكـى و مغناطيـسى، حالتهـاى متفـاوتى را در نظر گرفـــتـ. بنابراين، دراينجا براى ساده سازى مسأله فرض مى كي كيم كه ميدانهاى الكتريكـى و مغناطيسىى بر يكديگر عمود بوده و اندازه آنها نيز ثابت باشند.

نسبيت و نظريةٔ الكترومغناطيس PVA
برای اين منظور، مى توان ميدانها را به صورت،



 صفر باشد. برای اين منظور؛ مى تـوان از تبـديلات لـورنتس ميـدانها، يعنـى روابـط (ه- •\&) و

$$
\begin{array}{r}
\quad \vec{E}_{\|}^{\prime}=\vec{E}_{\|} \quad, \quad \vec{E}_{\perp}^{\prime}=\gamma(\beta)\left[\vec{E}_{\perp}+c(\vec{\beta} \times \vec{B})\right] \quad(Y \cdot \Delta-\Delta)
\end{array}
$$

$$
\vec{B}_{\|}^{\prime}=\vec{B}_{\|} \quad, \quad \vec{B}_{\perp}^{\prime}=\gamma(\beta)\left[\vec{B}_{\perp}-\frac{1}{c}(\vec{\beta} \times \vec{E})\right]
$$ حال با توجه به اين روابط مى توان دو حالت زيررا درنظر گرفت. حالت اول : در اين حالت مى توان فـرض كـرد كـه درجـارجوب S 6 ميـدان الكتريكـى

 مى توان ميدان الكتريكى ' ${ }^{\prime}$, را برابر صفردرنظر گرفت.

 را برابر صفر قرار داد.
 چارچوب $S$ و 'S ${ }^{\prime}$ برابر

$$
\vec{\beta}=\frac{\vec{E} \times \vec{B}}{B^{r}}
$$

باشد، دراين صورت، ميدان الكتريكى ' ${ }^{\prime}$ در جارچوب ${ }^{\prime}$ جا برابر صفر مى شـود. امـا قبـل از ادامهٔ بحث بايل بررسى نماييم كه آيا چنـنين چـارجوبى را مـى تـوان معـين كـرد يــا نـه؟ زيـرا سرعت اين چارچوبب بايد كو جكتر از c باشلد. بـرای بررسـى ايـن موضـوع كـافي اسـت كـه

$$
\vec{\beta}=\frac{\vec{E} \times \vec{B}}{c B^{r}}=\frac{E}{B} \vec{j}
$$

بنويسيم. حال، با توجه به اينكه $E<B$ است بنابراين، 1 اس 1 خواهد بـود. درنتيجـه، وجـود جنين سرعتى يا جارجوبى از نظر فيزيكى امكان يـذيرمى باشـد. ازطـرف ديخگر، بـا توجـه بـه
 اين صورت، مؤلفه هاى موازى

$$
\vec{E}_{\|}^{\prime}=\vec{E}_{\|}=\circ
$$

است. بنابراين، مى توان انديس 1 ـ را از رابطهُ دوم (ه-ه•Y) حذف كرد؛ زيـرا ميـدان در أيـن



$$
\begin{align*}
\vec{E}^{\prime} & =\gamma(\beta)\left(\vec{E}+\frac{c}{B^{r}}[(\vec{E} \times \vec{B}) \times \vec{B}]\right) \\
& =\gamma(\beta)[\vec{E}-\vec{E}]=0
\end{align*}
$$

اكنون، برای محاسبئ ميدان


$$
\begin{align*}
\vec{B}^{\prime} & =\gamma(\beta)\left(\vec{B}-\frac{1}{c^{r} B^{r}}[(\vec{E} \times \vec{B}) \times \vec{E}]\right) \\
& =\gamma(\beta)\left[\vec{B}-\frac{\vec{B} E^{r}}{c^{r} B^{r}}\right] \\
& =\gamma(\beta) \vec{B}\left[1-\beta^{r}\right] \\
& =\vec{B} \sqrt{1-\beta^{r}}
\end{align*}
$$

 صرفاً ميدان مغناطيسى ظاهر مى شود. براين اساس، درچـارچوب ${ }^{\prime}$ (S ذره بـاردار تحـتت تـأثير ميدان مغناطيسى خالص' قرار مـى گيرد كـه ايـن مـسأله در بخـش لـ- V- مـوزد بررسى قـرار

نN1 نسبيت و نظرئ الكترومغناطيس


 (ا) الز نظر ناظر واقـع در جـارجوب آزمايـشگاه، حر كـت ذره بـاردار تر كيبـى از دو نـوع







شكل (ه-1 ا): مسير حر كت ذره باردار مثبت و منفى q ور ميدان الكتريكى و مغناطيسى

$$
\text { يكنوانحت و عمود برهم با شرط } E \text { ب }
$$

براى توضيت بيشتر اين مطلنب، مى توان به اين صسورت تـصور كرد: هنگـامى كـه ذره بـاردار

 امتداد ميلان $\overrightarrow{\text { | }}$ نيز شتابِ مى گيرد. درنتيجه، منحنى مسيرحركت ذره به صورت يكك منحنى
 به نسبى بودن همزمانى و همين طور انقباض طول، يكنو اخختى و تقـارن منحنــى سـيكلوئيلى از $\vec{E} \times \vec{B}$ بين مى رود. رانش يـا سـو مى نامنل. ازطرف ديگ,


حر كت دايره ایى ذره، ميدان الكتريكى درجهت حر كت ذره بوده و باعث افز ايش إنرزّى آن شده و نتيجه اينكه حر كت ذره داراى شتاب افزاينده خواهد بود. و نتيجئ اين افـزايش شـتاب، افز ايش شعاع مسير حر كت ذره خواهل بود. أما در نيمهٔ ديگ, مسسير دايـره ای، جهــت حر كـت ذره و جهت ميدان الكتريكى درخلافف جهت هم بوده و اين مسئله باعث كـاهش انـرزى ذره شده و درنتيجه شتاب آن دراين نيمه كاهنده خحواهل بود. بنابراين، دراين نيمه، شـعاع انتحنـاى مسسير حر كت ذره كـاهش مـى يابــد. در نهايــت، اينكــه در يـكك نـيـم تنــاوب، ذره از ميـدان الكتريكى انرزى مى گيرد و در نيم تناوب ديگر، ميـدان الكتريكـى باعـث اتــلاف انـرگّى آن مى گردد. بنابراين، مى توان گֿت كه در يكك نيم تناوب، شــعاع انتحنـاى مـسير حر كـت ذره، افز ايش يافته و در نيم تناوب ديگر كاهش مى يابد كه از تر كيب اين دو حر كت، يك حر كت
 ذرهٔ باردار درحالتي كه ذره داراى بار مثبت يا عنفى باشد در شكل (ه-11) رسم شده است.

## حالت دوم :

برأى حل مسئله در اين حالت، فرض مى كنيم كه سرعت نسبى جـار جوب 'S ${ }^{\prime}$ نسسبت بـه
 بر ميدانهاى بنابراين، در اين حالت نيز بايل سرعت ميدان مغناطيسى ـحذ شده و تنها ميدان الكتريكى ' ${ }^{\prime}$ و وجود داشته باشد.
 مغناطيسى را مساوى صفر قراردهيم. در اين صورت، خواهيم داشت: $\vec{B}^{\prime}=\gamma(\beta)\left[\vec{B}-\frac{1}{c}(\vec{\beta} \times \vec{E})\right]=0$

درنتيجه؛ مى توان به دست آورد.

$$
\vec{B}=\frac{1}{c}(\vec{\beta} \times \vec{E})
$$

اكون، مى توانيم با ضرب خارجى آوريم. دراين صورت، خواهيم داشت:

$$
\vec{E} \times \vec{B}=\frac{1}{c} \vec{E} \times(\vec{\beta} \times \vec{E})
$$

حال، با توجه به اينكه ميدانها برهم عمود هستند، بنابراين، سرعت

$$
\vec{\beta}=c \frac{\vec{E} \times \vec{B}}{E^{r}}
$$


 خواهد بود كه شرط E> $E$ برقرار باشد. اكنون، با درنظر گرفتن سرعت نسبى



$$
\vec{B}_{\|}^{\prime}=0, \quad \vec{B}_{\perp}^{\prime}=0
$$

$$
\vec{E}_{\|}^{\prime}=\vec{E}_{\|}=0 \quad, \quad \vec{E}_{\perp}^{\prime}=\gamma(\beta) \vec{E}\left[1-\frac{c^{r} B^{r}}{E^{r}}\right]
$$

كه درآن

$$
\gamma(\beta)=\frac{1}{\sqrt{1-c^{r} B^{r} / E^{r}}}
$$

مى باشد. در نتيجه، مى توان نوشت:

$$
\vec{E}_{\|}^{\prime}=\vec{E}_{\|}=0 \quad, \quad \vec{E}_{\perp}^{\prime}=\frac{\vec{E}_{\perp}}{\gamma(\beta)}
$$

 الكتريكى بوده و اندازءٔ آن نيز كوچككتر از

$$
\vec{E}^{\prime}=\frac{\vec{E}}{\gamma(\beta)}
$$

"
 نيروى الكتريكى بوده و اين نيرو باعث شتاب ذزه دراين چار جوب میى گردد كـه ايـن حالــت رأ در بخش ه-9 مورد بررسى قرار داديم.

باردار را درچارچوب S $S$ بررسى كرد. برایى اين منظور، مى توان با استفاده ازتبديلات شستاب، شتاب ذره را در جارجوب S يا آزمايشگاه به دست آورد.
دربايان، لازم به ياد آورى است كه در اين بخش، براى سـاده ســزى مسسأله، حـالتى در
 فرض كرديم كه اين ميدانها نيـز يكنواخــت باشـند. بـراى بررسسى مسسأله درحاللت كلـى تـر، مى توان وضعيّتى را در نظر گرفت كه در آن ميدانها بر يكديگر عمود نبـوده و يكنواخــت نيـز


تمريّ:
ا- ثابت كنيد كه كميّت r r الف: نشان دهيل كه $\vec{E} \cdot \vec{B}$ و $E^{r}-c^{r} B^{r}$ تحت تبديلات لورنتس ناوردا هستند. ب: نشان دهيدكه امواج تخت، تحت تبليلات لـورنتس بـه امـواج تخـت در جــارچوب ديگر تبديل مى شونل.

世- فرض كنيد كه ميدان الكتريكى بين صفحات يكك خازن مسطح جرچار جوب سكون آن يا'S برابر ' ${ }^{\prime}$ باشل. بحال، اگر اين خازن با سـرعت v در راسـتاى مـوازى بـا صـفحاتش حر كت كند، در اين صورت با استفاده از تبديلات لورنتس، ميدانهاى الكتريكى و مغناطيسسى
个 صفتحاتش با سرعت v حر كت مى كند.
 ( $E^{\prime}=c B^{\prime}$ بواهلد در هو د. همين طور؛ $E=c B$
 مانند
 چارجوبِ به فاصله 'd از يكديگر به حال سككون قرارگرفته باشـند. در ايـن صـورت، نيـروى بين دو بار را نسبت به ناظر يا حارچوب S و 'S بـه دسـت آوريـلـ. همجچنـين، مـسأله را بـراى حالتى كه بارها روى محور 'y چحارچوب ' ${ }^{\prime}$ ' قرار گرفته باشند، تكرار كنيد.
 آزمايشگاه وجود داشته باشد. حال، اگر ميدانهاى الف : نشان دهيد كه اگر چارچحوبی مانند 'S با سرعت

$$
\vec{\beta}=\frac{\hat{n}}{r c|\vec{E} \times \vec{B}|}\left(E^{r}+c^{r} B^{r}-\sqrt{\left(E^{r}-c^{r} B^{r}\right)^{r}+r c^{r}(\vec{E} \cdot \vec{B})^{r}}\right)
$$

Wへ? مقّده أى بر نسبيت خاص

 راهنمايى: از رابطئ (ه-\&
 دست آوريد.
 استوانه دارایى چگّالى بار يكنواخخت $\lambda$ نيز باشد. حال، اگَر محور استوانه منطبق بر محور z در جارچپوب سكون اسـتوانه، يـا S باشـلـ در ايـن صـورت، ميـدانهاى الكتريكـى و مغناطيسى
 چارجوب ' ${ }^{\prime}$ در راستأى عمود بر مححور استوانه با سرعت v حر كت مى كنـلـ. توجـه نماييـد كه به علت طويل بودن استوانه، ميدانها تابعى از z و ' ${ }^{\prime}$ نيستند.

 الالكتريكى الر ميدانها، نشان دهيل كه در حارجپب S نيروى لورنتس به ذره باردار اعمال مى گردد.
 قرار گرفته است. حال، اگگر بار نقطه ایى q را به فاصلئ d از T آن روى محور x قـرار دهـيمه در
 11 كند، تكرار كنيد. F
 چـــارچوبـ $S$ باشــــد.

منابع:


 الاسلامیى، تهران ، مر كز نشر دانشگاهى، GYY صفتحه

خوارزمى
 تهران، أنتشارات انتجمن فيز يكك ايران، • . . صغفحه


 منصورى، تهران، مركزنشر دانشگًاهى6، • هr صغتهة

V V

^- - ليـن شـيتز م؛ و لانــداؤ ل. د .


تهران، انتشارات سروش
10 - Vaderlinde J, Clasaical Electromagnetic Theory, Wiley \& Sons, New York, 1993

11 - Jackson J D, Clasaical Electrodynamics, Wiley \& Sons, New York, 1975 Chapters 11, 12

12 - Lucas J, R \& Hodgson P.E, Spacetime and Electromagnetism, Clarendon Press, Oxford, 1990

13 - Ridler W, Introduction to Special Relativity, Oxford University Press, 2nd ed. (1991).

14 - Ulrich E. Schroder, Special Relativity, World Scientific, 1990
15 - McComb W.D, Dynamics and Relativity, Oxford Uneversity Press, 1999

16 - Cresser, J D, Special Relativity, Wiley \& Sons, 2005
17 - Marzlin P, Electrodynamics and Special Relativity, University of Calgary, 2006

18 - Hogg D W, Special Relativity, Institute for Advanced Study Olden Lane Princeton, 1997


الثر دويلر عرضى
Transverse Doppler effect
اثر دو يلر نسبيتى

Relativistic Doppler effect
اثردوبلر طولى
Longitudinal Doppler effect Median Doppler effect

اثردووبلر هيانى
Ether ,aether اثير، اتر الحل تناظر يا همـخوانى، تطابق
Correspondence principle
Causality Principle
Relativity principle, اصل نسبيت

Principle of Relativity

آزمائش هايكلسون ـ مورلى
Michelson-Morley experiment
$\alpha$ - Centuri
آلفا قنطورس
Absolute future آيندهٔ مطلق

Aberrration of light
ابيراهی نور
Stellar Aberrration
ابير/همى ستاره الى اتاقكك ابر ويلسون

Wilson cloud chamber Time dilation اتساع زمان

Cerenkov effect
اثرجرنكوف

Doppler effect,

Inelastic collision برخورد ناكثسان
بردار چگگالى جريان جابه جايى

Displacement current density vector
برهم كنش الكتريكىى

Electric interaction
برهم كنش مغناطيسى

Magnetic interaction
Proper frequency
بسامد ويزّ

Dispersion of light
پاشندگى نور

بايستیى انرزیى Conservation of energy بايستگى تكانه
Conservation of momentum
Conservation of mass $\quad$ קإيستگى جرم
يتانسيل بردارى مغناطيسى
Magnetic vector potentials
يتانسيل نرده ایى الكتر يكى

Electric scalar potentials
يديدة انتقال دويلرى
Doppler shift Phenomenon,
Doppler frequency Phenomenon
چديدة فتو الكتريك
photoelectric Phenomenon
Compton scattering,
Compton process
Elastic scattering
يراكند گى كشُسان

Recoil
يس زنى


Classical Electrodynamics
الكتروديناميك كوانتمى

Quattum Electrodynamics (QED) Galileo's relativity principle
انتقال به سرخ گرانشى

Gravitational redshift

> انتقال تكانه

Momentum transport, Momentum transfer
Threshold energy
انرزیى انرزی آستانه نسبيتى

Relativistic kinetic energy
Rest energy
انرزّى سكون
انزرّى كل نسبيتى
Total relativistic energy
Lenght contraction انقباض طول انقباض طول فيتز جر الد
Fitzgerald contraction in Length

Static charges
بارهاى ساكن
Space - time interval بازء فضا- زمان باطلنماى انبار و نردبان

Barn and Ladder paradox
Twin paradox
باطلنماي دوقلوها
برخورد الكترون ــ الكتترون

Electron-Electron collision
برخورد يرو تون - يروتون

Proton -Proton collision
Elastic collision
برخورد كشسان

جدايیى يا فاصلكُ ويرُه
Proper separation, proper distance Rest mass جرم سكون
Longitudinal mass
Transverse mass
Relativistic mass
proper mass
جرم ويزة
Steady currents
جريانهای پايا
جمع نسبيتى سرعتها
Relativistic addition of velocities
Worldline
جهان - خط
Minkowski Universe
جهان مينكوفسكى
چارز - بردار انرزَى ـ تكانه

Energy - Momentum four vector
Velocity four - vector هار - بردار سرعت
Position four - vector جاربردار ،كان
Laboratory frame جارجوب آزمايشگاه
Rest frame
جارجوب سكون
چارجوب سكون آنى يا لحظه ایى ناظر
Instantaneous rest frame,
Instantaneous frame of observer
جارجوب مرجع

Frame of reference, reference frame
پارحوب مرجع لخت

Inertial reference frame
هجارجوب مر جع مطلق

Absolute reference frame
چارجوب مركز تكانه

Center of Momentum frame (COM frame)

Retarded time تأخبر زمانى

Cerenkov radiation تابش هر نكوف

Metric tensor تانسور متريك تبديل نيروهاى ويزه
Transformation of proper forces
Lorentz Transformation تبديل لورنتس
تبديل لورنسس انرڭّى

Lorentz Transformation of energy تبديل لورنتس تكانه

Lorentz Transformation of omentum Galilean Transformation تبديل تاليله

تبديل لورنتس سرعت
Lorentz Transformation of velocity Interference
تداخل سنج مايكلسون

Michelson interfrometer
تبديل لورنتس نيرو

Lorentz Transformation of force

تكانئ تعميم يانته Generalized momentum
Transverse momentum تكانئ غرضى

Wave momentum تكانئ موج

Relativistic momentum تكانئ نسبيتى Pair production, pair creation توليد زوج Electron - positron production
Decay ,Spallation, تلاشى، تلاشى هسته ای Nuclear spallation

جابه جايى خط طيف، انتقال خط طيف Shift of spectral line Wavefront


Euclidean distance, متر يك اقليدسى Euclidean metric
Minkowski metric
متر يك مينكوفسكى

Aberration cone
مخروط ابيراهى

Time cone
مـخروط زمان

Light cone مخروط نور

Future light cone
مخروط نور آينده

Past light cone
مخروط نور گَشتهن

Center of mas
مر كز جرم
معادلة بيوستگى بار

Continuity equation of electric charge Cycloidal curve هنحنى سيكلوئيى منحنى شبه سيكلوئيدى

Quasi cycloidal curve
ميدان مغناطيسى خالص

Pure magnetic field
منظومةٔ جهانى بزر گ؟

Great universal system
Relativistic rocket موشك نسبيتى Gravitational feild ميدان گرانشى Muons
نابودى زوج

ناظر ساكن
Inertial observers ناظرهاى لخت

Noninertial observers ناظرهاى نالخت
Invariant
ناوردا
ناوردا يى بازء فضا - زمان

Invariance of space - time interval

Proper Length
طول ويزُه

Wave operator

$\qquad$
فرايند توليد ميون
Muon Production process
فرايند وإاششى ميون Muon decay process
فرضية كشش اترى Ether drag hypothesis
Radiation pressure
فشار تابشى
Space - time
فضا ـ زمان
فضا_ زمان مينكوفسكى
Minkowski space - time
Space like
فضاگونه
Euclidean Space
نضاى اقليدسى
Metric space
فضاى متريك
Absolate Space فضضى مطلق
Minkowski space
فضاى مينكوفسكى

Law of inertia
قانون اينرسى، قانون لختى
قانون القاى فاراده
Faraday's law of induction
Biot - Savart law
قانون بيوـ ساوار
Work - energy theorem قضئ كار-انرزى

Conserved quantity
كميّت بايسته
Invariant quantity
كميّت ناوردا

Pitch of helical
Absolute past


## وازه نامهٔ

## انگليسى - فارسى

Aberration cone مخروط إيراهى Aberration of light ابيراهى نور ئروا إيراهی نور ستاره ایى Aberrration Stellar Absolate Space فضاى مطلق

Absolute reference frame
هارججب مرجع •طلق

Absolute future
آيندة مطلق

Absolute past
كذشتئه مطلت
Absolute time زمان مطلق

Acceleration
شتاب
Ampe're law
قانون آبهر
Anti - proton
ضد بروتون

Barn and Ladder paradox باطلنماى انبار و نردبان

Biot - Savart law
قانون بيو- ساوار

Causality Principle اصل عليّت

Center of Momentum frame
(COM frame) جارجوب مركز تكانه

Cerenkov effect
Cerenkov radiation تابش خرنكوف

Classical Electrodynamics
الكتروديناميك كلاسيك
Coefficient convection Fizeau
ضريب همرفـت فيزو

Compton process فرايند كامبتون
Compton recoil $\quad$ پس زنی كامپتون
Compton scattering يراكثدگى كامتتون Conservation of energy ثايستگی انرزیى
Conservation of mass $\quad$ پايستگى جرم
Conservation of momentum چايستگی تكانه

Conserved quantity كمّيّت بايسته
Continuity equation of electric charge
معادلهٔ بايستگى بار الكتريكى

Continuity of time بيوستگى زمان
Continuity of space ييوستگى فضا
Corpuscular theory of light
نظريئ ذره إى نور

Correspondence principle
اهل تناظر ، تطابق، هـم خوانى
Covariance
هموردايیى
Crab Nebula
سحابي خر جنگك
Cycloidal curve
منخنى ماريبییى
Cyclotron frequency
بسامد سيكلوترون
$\qquad$
واباشیى

Decay
زمان تأخخيرى
Dispersion of light
پياشندگَى نور
Displacement current density vector بردار چچگالى جريان جابجاییی

Doppler effect
اثر دوپلر
Doppler frequency Phenomenon
چذيدهُ دوپلر

Doppler shift Phenomenon,
ديلةء انقالل دويلر
Drift velocity سرعت سوق يا رانش

Driven motion حر كت قهرى

Elastic collision
برخورد كشسان
Elastic scattering تراكند گی كشسان
Electric interaction برهم كنش الكتريكى Electric scalar potential
چتانسيل نرده ایى الكتريكى

Electron-Electron collision
برخورد الكترون ـ الكترون

Electron - positron production
توليد الكترون - يوزيترون

Energy - Momentum four vector
جاربردار انرزیى ـ تكانه

Equiposition lines
Equiposition surfaces
Ether drag hypothesis
فرخيهُ كشش أتر

Ether, aether اتر، اثير

Euclidean distance, Euclidean metric متريك أقليدسى

Euclidean Space
فخاى اقليدسى
$\qquad$
Falling motion حر كت نزولى، سقوطى
Faraday's law of induction
قانون القاى فاراده
Fitzgerald contraction in Length
انقباض طول فيتز - جرالد

Forced motion
حر كت قهرى، اجبارى
Frame of reference, Reference frame
هارجوب برّجع

Future light cone مخروط نور آينده
$\qquad$
Galilean Transformation
تبديلات گاليله

Galileo's relativity principle اصل نسبيت گاليله

Generalized momentum تكانئ تعميم يافته
Geometry of Space-Time
هندسهٔ فضا ـ زمان

Gravitational feild
انتقال سرخ گرانشى Gravitational redshift Great universal system
منظومةٔ جهانى بزر گك
$\qquad$
Helical motion $\quad$ حركت مارييج

Homogeneity of space همگنى فضا

Homogeneity of time
همگنى زمان
Homogenous همغ.
$\qquad$
Inelastic collision برخورد ناكشسان
Inertial observers ناظر لخت
Inertial reference frame
جارجوب مرجع لخت

Instantaneous rest frame,
جارجوب سكون آنى

Instantaneous frame of observer
چجار جوب لحظه ایى ناظر

Invariance of Causality Principle
ناوردايى اصل عليّت

Invariance of Simultaneity
ناوردايى همزمانى، مطلقى بودن همزمانى

Invariance of space - time interval ناوردايى بازء فضا_زمان

Invariant quantity
Invariants of transformation
ناورداهاى تبديل
Isotropic of space همسانگردى فضا
Isotropy همسانگردى

Laboratory frame جارجوب آزمايشگاه
Law of inertia قانون لختى

Length contraction انقباض طول

Light clock ساءت نورى

Light cone مخروط نورى

Lightlike نور گونـهـ
Lines of simultaneity
خطوط همزمانى

Longitudinal Doppler effect
اثر دوبلر طولى
Longitudinal mass جرم طولى

Lorentz force


Lorentz Transformation
تبديل لورنتس

Lorentz transformation of momentum
تبديل لورنتس تكانه

Lorentz Transformation of energy
تبديل لورنتس انرزُى

Lorentz Transformation of force
تبديل لورنتس نيرو

Lorentz Transformation of velocity
تبديل لورنتس سرعت

ناظر هاى نالتخت، ناظرهانى شتابلدار
Noninertial reference frame
جارحوبهاى مر جِع نالخت، شتابلار
Nuclear spallation وأֶاشى هسته أى
Magnetic vector potentials
يتانسيل بردارى مغناطيسي

Mass variable systems
سيستمهاى با جرم متغيير

Median Doppler effect
اثر دويلر ميانى

Metric space
فضاى متريكك

Metric tensor تانسور متريكك
Michelson interfrometer
تداخل سنج مايكلسون

Michelson- Morley expriment
آزمايش مايكلسون و مورلى

Minkowski diagram نمودار مينكو فسكى

Minkowski metric
متر يكـ مينكوفسكى

Minkowski space
Minkowski space - time

Minkowski Univers
ججهان مينكو فسكى

Momentum transfer, Momentum transport انتقال تكانه

Muon Production process
فرايند توليد ميون

Muon decay process
فرايند واياشى ميون

Natural motion
حر كت طبيعى
Pair annihilation
Pair production pair creation,
توليد زوج
Past light cone مخروط نور گذشته
Photoelectric phenomenon
بِ يدهُ فتوالكتريكك
Position four - vector
چجاربردار پوزيترون
Precessional motion حر كت تقديمى
Present
Principle of Special Relativity

اصل نسبيت خاص
Proper Acceleration شتابـ ويزه

Proper force نيروى ويزُه

Proper frequency بسامل ويزٔه
Proper Length bول ويزٌ
proper mass
Proper separation, proper distance جلايى ويثه ، فاصله ويزّه

Proper time
Proper wavelength
Proton - Proton collision
برخورد پروتون - يروتون

Pure magnetic field
ميدان مغناطيسى خالص
-

Quantum Theory


Quasi cycloidal curve


Quantum Electrodynamics (QED)
الكتروديناميك كوانتمى

Radiation pressure

> فشار تابشى

Radius of gyration شعاع دوران

Radius of curvature شعاع انحنا

Radius of helix
شعاع مارييّج

بس زنى
Recoil
Relativistic addition of velocities جمع نسبيتى سرعتها
Relativistic Doppler effect


Relativistic dynamics


Relativistic harmonic oscillator
نوسانگر هماهنگك نسبيتى

Relativistic kinetic energy
انرزُى جنيشى نسبيتى

Relativistic mass
جرم نسبيتى
Relativistic momentum تكانه نسبيتى
Relativistic rocket موشك نسبيتى

Relativity principle
Rest energy
انرزیى سكون
Rest frame
جارچوب سكون
Rest mass
جرم سكون
Restoring force
نيروى بازدارنده
Retarded time زمان تأخيرى

Rising motion
حر كت صعودى
$\qquad$
Scattering angle
زاوية يراكندگى

Scientific method روش علمى
Simultaneity of Relativity
نسبيت همزمانى

Simultaneity of surfaces سطوح همزمانى هما Smimultaneous surfaces, سطوح همزمانی Simultaneous lines خطوط همزمانى

Space - time
فضا ـ زمان
Space - time interval
بازء فضا ـ زمان
Space like فضا گونه
Space - Time diagram نمودارفضا ـزمان
Spacecraft, Space ship, Space vehicle كشتى فضاى

Spacelike surface


Spallation,
واياشـى
Spontaneous decay
واياششى خود به خودىى

Static charges
Stationary Instantaneous frame
جارچجوب سكون لحظه إى
Stationary observer
ناظر ساكن
Steady currents
جريانهای پايا
Synchronization همزمان سازى

Synchrotron سنكروترون

Theory of General Relativity نظرئه نسبيت عام

Threshold energy

Time cone مخـروط زمـان

Time dilation اتساع زمان

Time like زمان گونه

Total Relativistic energy
انرزُى نسبيتى كل

Transformation of proper force
تبلديل نيروى ويرْه

Transverse Doppler effect
اثثر دوليلر عرضىي

Transverse mass
Twins paradox
باطلنماى دوثلوها

| Uniform motion | هلو كت يكنواختى واحد |
| :--- | ---: |
| Unit hyperbola |  |

Velocity four-vector تأربردار سرعت
Wave momentum تكانـهٔ مـوج

Wilson cloud chamber تاقكك ابر ويلسون
Worldline
جهان خط

راهنماى كتاب

$$
\begin{aligned}
& H T-I F-I \cdot V-I \cdot H-M-A F-A r-
\end{aligned}
$$

$$
\begin{aligned}
& \text { Mir-mil }
\end{aligned}
$$

اثو تأخحير زهانى 4شM

$$
\begin{array}{r}
|H A-|H F-|H| \quad| r q-
\end{array}
$$

$|\Psi|$ ~
ITF 2 دویلر عرضهى ~
~
~
اثير

MYV اختر شناسى راديويى

$$
\begin{aligned}
& 1 r-1 r-11-1 \cdot-9-V-9 \quad 1 \\
& 19- \\
& \text { |r-9 ارشميدس }
\end{aligned}
$$



$$
1 r v-\Delta-4 q-
$$

آسيموف FA - آ

$$
\text { Mr. - YYA - YYD - } H Y M-
$$

THF-IHY TH
TDF - HYA - HYV - HYD Tمبر

Tآينده مطلق IVV

99-90-9Y-9:-

$$
\begin{aligned}
& 1 Y V=1 Y Q-1 Y 0-0 . \\
& \text { ابير|هــــــي نـــــور } \\
& \text { IYQ-IYA- }
\end{aligned}
$$

$$
\begin{aligned}
& \text { T T } \\
& \text { Y4q-9.-04-0r-01-0.-Pq- }
\end{aligned}
$$

| r.q-r.f Yاطلنهاى انبار و نردبان YII-lar دوقلوها ~ |  Y99-r90-Y Y - |
| :---: | :---: |
| Hrv-0. | IA - IVV-MY-MY-r. عليّ $\sim$ |
| Y9. برخورد الكترون ـالكترون | 1AY- |
| Y^9 برو ~ |  |
| YAF - YM - Yr. - YYF ذit |  |
| YQr-rAr-rVG - rVD-rVI-rov- | $\Delta \Delta-Y V-Y$ - $-Y$ ن |
| YV9 كشسان ~ | \|f اصول نيوتن |
|  | \|r إليدس |
| MYV بردارجזا | M10 انتقال به سرخ گرانشى |
| Mrg - Mro برهم كنش الكتريكى | MYY- YAD-YAF - YVF |
| ~ ${ }^{\text {MY }}$ | ~ |
| بسامل ويزه | YGF-YDQ-YFY نسبيتى S |
|  |  |
|  | 9r- $19-10-12-\wedge 9-14-99-91-$ |
|  | HAI - YAF-MFD-YII-199- |
|  | AV-YQ-MA طول |
| MY^ حتانسيل بردارى مغناطيسى | اورستد |
| ~ | 19-10-1f-11-V-9 ايزاكك نيوتن |
|  | SY-D.-PV-YV-YY- |
| D. ~ | بارهاى ساكن |
| پY9 براش | IV-NF-NT بازة فضا - |
| If-V برينسييّا نيوتن |  |
| پوانكاره | ~ |
| بV-Y9 بيوستگى | IVO زمانگونه ~ |

$\mu+$.
YV-YG-YD فض ~

YYQ-YYV-MYG-MFF $\sim$

MY ويزه
جريانهای پايا
Y.Y-11.- 1.r جمـع نـسبيتى سـرعتها

جهجانخخط
-
جV9 جاربردار انرزّى تكانه 19. $\sim$

بار تحوب سكون آنى يا لحظه إى ناظر IV مرجع ~
$Y A-Y Y-Y H-Y I$ مرجی لخت $r m-r r-1 r \Delta-9 r-\Delta \Delta-r a-$
$Y O-Y F-Y H-Y Y$ O $\sim$
YV -

M
YVY-qQ - YV.-YqQ مركز تكانه N
MIG - YAD - YAI - YVQ - YVD - YVF -
MY.-

MFD Mحم ويزه MVY حركت تقليمى MVQ-r... دايــره أى يكنواخـــت PAI - rVA - rVg -
|r-|Y-11-9 سقوطى N
D. تئورى كوانتم ماكس پالانكك

تانسورمتريك $19 \mid$
تبديل نيروهاى ويزُه هـ YOV تبديلات تكانه و انرزیى
$M F$ - $M$ - $Y$ - $Y$ - $Y$,
$Y M D-Y Y Y-V Q-V F-V Y-\Delta I-F D-$

rar تبديل لورنتس انرزّى
VY-VI تبديلات لورنتس مخختصات
YO. $\sim$
IFV-IYD-9F. rV.-
.. $\sim$ تواخحل Mq-pf

F9-FY - FF تــداخل ســنج مايكلنـسون $F A-F V-$ ran تكانهُ موج Y90-YGY - YMY - YY. $\sim$ FVA - YVV - YY9 - YgV - Y99 MVY عرضیى HFA توليد زوج IVA جلأيى يا فاصلئويزه FYG جرم سكون H.. طو $\sim$

IVT ستاره نسر واقع
Yو. سحابى خرجنـگگ
rVA سختى مغناطيسى
rAl سرعت سوق يا رانش
سطوح هم مكانى 190
~
سكون لحظه ایى
rVF سنكروترون
س•ه
rVF سيكلوترون

شتاب موشك ~

شتابدهنده هاى ذرات MF
HAY شعاع انحنا
PVV دوران ~
rVV ماريبج ~
ه.

طول موج ويزه 199-9V ويزه ~
rfA عملگُ موج
عناصر جهار گانه

غيرايستا MY


1. قَهرى ~

MNI-rVD مارييتحی ~
9 نزولى
14-11-1.-v-9 يكنواخت ~

ras-rad-

خطوط هم مكانى 194
Y.Y-1AV-190-194 همزمانى ~

دكارت 9
دوپيلر
YY) ديناميك نسبيتى
روش علمى رو
رويداد
Y YQ - Y
Mr.-
YVV
زمان عام واحد
$\Delta Y-r V-r \Delta$ مطلق $\sim$
~
|MA-|VG-|Y|-ND-AF ويـرُّه $\sim$
194-195-191-119-
9)-9. ساعت نورى

راهنماى كتاب 0•\＆
YYQ－YY
Mq－MM－YM－

If لختى～

YAG－YGY－YDV－YDD－YDF－YAT－
rıq－

YOV－YDF－YAH－YM－YM．－YYQ－ YNG－YVG－YVD－YgD－Ygチ－ KYG－MYY－MYA كولن～

MYA－MYV گاؤس～
قضV قضئ كار－انرزیى


الكتروديناميك كلاسيك
～
كولن rra
rro كاؤس

$$
\text { Fاليله }|\varepsilon-|r-|r-|r-| 1-v-9
$$

FVV كام مارييتج
گذشتهٔ مطلق INY－IVV－IV9

فKg－MYA－F فاراده
فرانكلين
فرايند توليد ميون 94－94
99－44 واياششى ميون～
TVV－0．－Fq فرضيه كشش اترى
TVA فر كانس زاويه ایى
فرنل 1．1－0
فشار تابشى Yه＾
$\Delta r-9 \cdot-\Delta \Delta-\Delta f-\Delta \mu-\mu$ فض
nh－Af－Nr－
10V－1q9－0r مينكوفــــسكى～
r．D－1AF－19V－19．－
فضاى اقليدسـى 19人－191－19．－190 1ベー
r．متريك～ $\Delta T-F V-F T-Y \Delta$ مطلق $\sim$
～ 191 مينكوفسكى
فويخت VA فيتز جرالد AV－4Q－

فيزو 49－1－1－0．4

MYA－MYV－MYЯ قــانون القــاى فــاراده MFA－

$$
\text { Y } \Delta F-Y Y \Lambda-Y Y V \text { Tron }
$$

If اينرسى～


HAl منتحنى سيكلوئيلدى
MAI شـــهـ سيكلوئيلى ~
If منظو مئ جهانى بزرگ́

$$
\begin{aligned}
& \text { |YV-01- }
\end{aligned}
$$

مينكو فسكى -
Mo-V. M10 ميلـان تُانشیى

YVD نابودى زوج
1NF-1N- - IVQ-IVF ناحئ حال

YYV-
YIY-YIY-YII-OF $\underset{\text { HMF }}{\sim}$
HYA - DD ناهمحگنى

$$
\begin{aligned}
& r r-r r-r|-r \cdot-r q-r \wedge-r| 12 \\
& |9 .-| \Delta \Lambda-1 \cdot 1-99-\Delta V-\Delta 1-r v- \\
& r 91-r \Delta q-r r q-r r|-|91-| V \Delta-
\end{aligned}
$$

MYV -
M) ناورداهاى تبديل

IVA - IVD ناوردا يیى بازه فضا - زمان ش شكل يا هموردايي $\sim$ -MMY-
$M F-M Y-H, \quad ا \sim$
N-W.
YYA ~ YYV -

ماهيّت ذره أى نور TOA

$$
\text { Y } \Delta \Lambda-\Delta 1 \text { موجى نور }
$$

$$
F A-F V-F Y-F Y-F I-F . \quad F \cdot \text { Fايكلسون }
$$

$$
M V-\Delta F-\Delta .-F Q-
$$

متريكك فضاى اققليدسى 10^
191 مينكوفسكى 1rq- IrA مشروط ابيراهى IVr j $\sim$

$$
\begin{array}{r}
1 V F-1 V Y-|V Y-|V|-199 \quad \sim \\
1 A V-1 A F-1 A Y-1 A \cdot-1 V Y-1 V 9- \\
19 .-
\end{array}
$$

IVY نور T
iVY نور گذشته FVQ - YVH-YVI مركز جر MIf مسافرت متقارن دوقلوها مطلت بودن زمان هr - اس H. ~ $\Delta r-\Delta r-\Delta 1-F \cdot-r q$ - معادلات ماكسول MY. - MYA - MYV - MYG - MYD - YYF MYF - MYM - MYY ~ HFQ-MYV معادلهٔ ويوستگیى بار



[^0]:    1. Euclidean distance, Euclidean metric

    2 - Euclidean Space
    3 - Interval

[^1]:    1- Relativistic kinetic energy

[^2]:    1. Classical Electrodynamics
