نخستيى درس اهتمال

4t
 010

MYY انتشاراتت دانشگّاه فردوسى مشهد، شماره

نخستين درس احتمال

اس - رأليف
ترجمهُ

دكر حسنعلى آرزنوش ـ دمكر ابوالقاسم بزرك نيا
 دكر على مشكانى ـ دكر حسينعلى نيرومند

Ross, Sheldon M.
راس . شلدون

ISBN: 964-6335-07-1
فهر ستنو يسى بر امـاس اطلاعاث فيبّ (فهرستنوبسى يـش از انتــار) .

A First Course in Probability.

تأليف : راس ، شلدون
ترجمهٔ : دكتر حسنعلى آذرنوش ـ دكتر ابوالقاسم بزرگكنيا
دكتر على مشكاني ـ دكتر حـينعلى نيرومند
ناشر : انتشارات دانشـگاه فردوسى مشهد

ITVY تاريخ انتشار : زمستان تعداد :
 تيمت : . . 9 ه ريال

فهرست مطالب

> بیشیگُفتار مترجمار مولف

لهل اوّل ـ آناليز تركيبى 1-1 مقدمه

Y - اصل الساسى شــمارش
اصل اساسىى ثـمـارش
اصل الساسى تعميم يافتهُ تُمارش
r- جايگشتها
Y
ه- ضر أيب جند جملهأى
قضبه جند جملهاى
¢- توزيع كَلوله در كيسه ها
تمرينهایى نظرى
مسائل

لصل دوّم - امول احتمالى
m

$$
1 \text { - مقدمه }
$$

نتـ-	\%
ri	Y- نضاى نمرنه و بيشامدها
rv	r- اصول احتمال
F.	Y -
fy	ه- هضاهاى نمرنه با برآّمهاى همشانس
Of	¢- ا-حتمال يكى تابع مجموعه إى بيوسته إست
09	ا-V -V
91	تمرينهى نظى
90	مسائل
Vi	لهل سوم - التمال شرطى و استفلّل
VI	1 - - مقدمه
V1	Y - إ-
vg	r- فرمول بيز
AV	Y- بيّهامدهاى مسترل
1. Y	ه- تابع P(+ \| ${ }^{\text {P }}$
111	تمرينات نظى
118	مساثل
171	فلصل جهارم ـ متغيرهاى تصاذلى
1\%1	1 - مقدمه
149	Y-
1r9	ץ- متغيرهاى تهادفى كـ
Ify	¢ - - متغيرهاى تهادفى برنولى
10.	(
lor	- - متغير تهادنى بواسن

19.

194
194
18Y
190
19v
19^
ivr تمرينهاى نظرى

مسـاثل

لمصل ينجهـ ـ متثيرهاى تصلانل ليوسته 1- مقدمه
Y -
r-
r-
تضيئ حدى دوموار ـ لابلاس
ץ- متغير هاى تصادفى نمايع
٪-1 تابع نرخ خرابى
ه- توزيعهاى بيوسته ديكر
ه-ا توزيع كاما
ه- r توزيع واييل
ه-r توزيع كوشّى
ه- ¢ توزيع بتا

4- توزبع تابعى از يك متغير تصادنى
تضبئ 9-1

تمرينات نظرى

$$
\begin{aligned}
& \text { ه- ا- محاسبه تابع توزيع بواسن } \\
& \text { 9- ساير توزيعهاى احتمال كسسته } \\
& \text { 1-9 مثغير تصادنى مندسى } \\
& \text { Y-Я متغير تصادفى دوجمله أى منغى } \\
& \text { r-q متغير تصادفى نوت مندير (} \\
& \text { (4-9 توزيع زتا (زيب) }
\end{aligned}
$$

نحستين درس احتمال	هــت
YY.	مسـائل
YYV	لهل شثهم - توزيع توام متيرهاى تصادفى
riv	1- تابع توزيع توأم
MrV	Y- هتغير هاى تصادفى مستل
rya	Y- مجموع هتغير هاى تصادفى مستّل
YO1	قضيهٔ
ror	F-Y
Yot	+ - توزيعهاى ثرطي - حالت كسسته
rov	ه- توزيعهاى ثـرطّ ـ - حالـت بيوسته
ygy	Vــ توزيم احتمال توام توابعى از متغير هاى تصادنى
YVr	تمرينات نظرى
YVA	مسـائل
ras	فصل هفتّم - ميانين
YAO	1- مقدمه و تعاريف
yqu	
Y90	حكـم Y - ا تانون نا أكاهـ
r.l	r-
mit	Y- واريانس
m10	تعريف
M1A	- ه- كر واريانس ، واريانس محموع و هـبـستگى
	9- ميانگين شر طي
rrv	¢-1 تعاريف
rro	¢ ¢-¢ محاسبه احتمالا

نُـ
rry
rrq
r4s
ros
rgy
ryr
r.19

409
f.r
4.0
4.9
F. 1

تمرينهاى نظرى
مسساثل

المل هشتم ـ ـ لضاياى حلى

1- مقدمه

Y- نامساوى جحبيشف و تانون خععيف اعداد بُر رگ
حكم Y
حكـم Y-Y نا مسـاوى جتبيشف حكـم Y-Y حـحم تضيةُ Y - ا تانون ضعيف اعداد بز ر گ
تضيةء Y - ا تانون ضعيف اعداد بز رگ

حكـم ا- لم كرونكر
نهريـت مطالب
حكـم r-r
٪- تانون قرى أعداد بزرگ

تضية ثا - أ تانون ترى اعداد بزر
تضية Y-Y نامسـاوى كلمو كروف
تض - تضيه حد مركزى
.
تضيه ץ - r تانون توى اعداد بزرگ براى متغير هاى تصـادنى مستقل
0- نا مسـاويهاى ديگر
حكـم Q-1 نامسـاوى چخبيـنف يكـ طرنه
نتيجئ

$$
\begin{aligned}
& \text { 4-4 واريانس شُر طى } \\
& \text { - V } \\
& \text { ^- } \\
& \text { 9- تعريف كلى ميانگُين }
\end{aligned}
$$

F1.
F1.
FII
FIf

$$
\begin{aligned}
& \text { تعريف } \\
& \text { حكـم Y Y } \\
& \text { تمرينهاى نظُرى } \\
& \text { مسـائل }
\end{aligned}
$$

419
419
FYI
FYY
FYY
FYO
FYV
prq
Fr.
Fr.
Fr.
fr.
Fr.
Frr
fry
fry
FrV
FFI
FYY

لصل نهم- هند موضوع ديكر احتمال

$$
\begin{aligned}
& \text { 1- فرايند بواسن } \\
& \text { حكم 1-1 1-1 } \\
& \text { قضية 1-1 } \\
& \text { Y- ز- زنجيرهاى ماركف } \\
& \text { حكم ب- } 1 \text { - معادلات جیمن _ كلموكروف } \\
& \text { قضيه́ } 1 \text { ت }
\end{aligned}
$$

اصل
اصل r
اصل
| اصل
تضي44-1-1
حكم
r-r تضئ rer
Y-

تضيه Y-Y تضيهُ كُد كذارى با اغتشاش
مسـائل و تمرينهاى نظرى

يازده
فهر"مت مطاللب

FFO
\$

- 1 - مقدهـ

Y- Y- تكنيكهاى كلى براى شبيه سازى متغيرهاى تصادفى بيوسته

499

> Y-
> حكم 1-Y
> Y-Y روش عدم بذيرش روش عدم بذيرش
> حكم r-r
> r- تُبيه سازى توزيعهاى گـسته

> - -
> ك Y Y F F

$$
\begin{aligned}
& \text { مسانل }
\end{aligned}
$$

پيشكفتار مترجمان

 و فرما آن را بايه كذارى كري رده اند . اهمميت علم احتمال در سـالهاى انيرير يعنى از زمانى كه مغهو ما آن با دانش آمار توأم كرديد
 در اين زمينه خرورى بهنظر مى رسـد

 را قابل دركُ و دلجـــبـتر جلوه مى دهد.
در تر جمهُ اين كتاب تلاش بر بر آن بوده است كه تا تا حد امكا امكان امانت در تر جمه و رو روانى متن
 انتخاب شـده اند .

 كرديده بر سـاير كتابهاى مشابه تبلى ارجح استـ.

يششكتار مؤف

 بلكه با توجه به مثالهاى بى شـمار كارير دهاى ممكن اين موضوع را رانيز أراثه مى كند. در نصل () اصول اساسى آتاليز تركيبى كه در محـاسبهة احتمالها فايدهُ زيادى دارند اراثه

شدهاست .

منطقى " امستفاده نمى شـود.
فصل (ץ) با موضوعات بسيار مهم احتمال شـرطى و استقلال بيسُامدها سرو كار دأرد . با

 رياضى استفاده مى كنيم .

 داراى توزيع مشترلث هستند مى هردازيم •
فصل (V) مفـهوم مهـم امـيـد رياضى را مـعرفى مى كند . بعــد از ايـن كـه امـيــن رياضى

 دربر مى كيرد.

در صورتى كه اثبات تضيهُ سحد مركزى تضيهُ يِوستگى لوى را فرضى مى كيرد . در نصـل (9) جـند مـوضـوع اضـانى مـانـند زنجـيـرهاى مـاركـفـ، ، فرآيند بواســون ،

واتع مى شود.

در مر تاسـر اين كتابـ مــالهاى زيادى سحل شــده و مقدار زبادى مـسآله نيز وجـود دارد كه

 دانششغاهأستانفورد .

اس.

Sgi

זناليز تركيبى

1
ابتدا يك مثال جالب در ارتباط با احتمال اراثه مى دهيم . يك سيستم مخابراتى مركب از

 m = r

\varnothing	0	0	\varnothing
\varnothing	0	\varnothing	0
0	\varnothing	0	\varnothing
\varnothing	\varnothing	0	0
0	\varnothing	\varnothing	0
0	0	\varnothing	\varnothing

 مقدار

كه سيستم كـارا باشـد به طريقى مشابه مى توان محاسبه كرد؛ يعـنى مى توان تعداد آرايشهايّى، كه

 . نــمارش را Tالاليز تركيبى مى نامند

اصل اساسى شمارش

 آزمايش (Y) وجود داشته باشُد، آن كاه براى دو آزمابش جمعاً mn برآمد ممكن وجو د دارد. اثبــت المل اسـلسى : اين اصل الــا دو آزمايش به صورت زير ثابت كرد :
$(m, 1),(m, 2), \ldots,(m, n)$

 شامل 1 عنصر است كه در نتيجه حكـم ثابثت مى شود. مثال rالف. كروه كو جكى متثـكل از ده مرد است كه هريك از آنها سـه فرزند بسر دارد .

اكر ترار باشـد يك مـرد و يكى از يسرانتُ را عنوان يلدر و يسـر سـال انتـخاب كنند، هند انتـخاب مختلف امكان دارد؟

مل : اكتر انتخخاب اين مـرد را بهعنوان برآمـد آزمـايش نـخـــت و انتخـاب بعـلى يكى از
 * هنگّامى كـه بيش از دو آزمايش بابد انتجـام شودد، اصل المـاسـى را مى تـوان به صورت زير تعميم داد :

اصل اماسـى تعميم يانتُ ُنـمارشُ
اگر r آزمايش كه قرار است انجام شُوند طورى باثثند كه اولى بتواند به هريك از

 آزمايش وجود دارد.

مثال F ب ـ كميته طرحريزى دانْنكدهاى مركب از Y دانتشجوى سال اول، F دانشـجرى

 مى توان تشكيل داد؟

صل : انتـخاب يكى زير كـميته را مى توان بهعـنوان تركيب برآمــد جهار آزمـايش جـداگـانه

اصل الماسـى نتيجه مى شود كه •
مثال F ب . جند
جاى در نظر كرفته شده، ‘ ج جاى اول با حروف و جهار جائى بعدى با اعداد بر مى شود. صل : بنا به شـكل تعميم يافتهٔ الحل السـاسى یاسـخ عبارت است از

مثال F ت ـ تعداد توابعى كه بر n نتطه تعريف مى شود جندتاست، اكر مقادير تابع برابر - ا ا باندـ؟

 وجوددارد ؟
مل : در اين حـالت به تعــداد بلالك نمرهوجود دارد.

r- جايكشتها

جند آرايش مرتب يُـدهُ ميختلف از حروفـ a ، b c امكان دارد؟

 در جايكشت را مى توان هريك از
 مى شود.
اكنون فرض كنيد كه n شئ داريم. الستدلالى مـــابه آنجه كه براى 「 نشان مي دهد كه
$n(n-1)(n-2) \cdots 3 \cdot 2 \cdot 1=n!$
جايكنـت مختلف از n شئ داريم.
مثال r الف. جند ترتيب مختلف برایى بك تيم بيسبال مركب از 9 بازيكن امكان دارد؟ مل : تمداد ترتيهاي مدكن • 91 = 9 است.

 دو دانشتجويى نمره هُ برابر نكرفته بانسند. (الف) جند رتبه بندى مختلف امكان دارد؟
 دارد؟
مل : (الف) جون هر رتبه بندى متـناظر با آرايش مرتب شُـده خـاصى از • 1 نفر است،

 . رتبه بندى در اين حالت موجود است (Y) (Y!) =(VY•) (YY)= IVYA.

مئل
 كتابهايش راطورى مرتب كند كه كتابهاى مربوط به يكى موضـوع در تفسـه كنار هم باششند ـ جند آرايش مختلف امكان دارد؟

 مثال r ت ت با استفاده ازحرون PEPPER جندآرايش حر فـى مختلف مى توان تشكيل داد؟
 جـايكـــتالزحـرونـ P1 جايكثتها، ميلّا جابه جا كنيم، آرايش حاصل بازهم به شـكل P P P E P E R خواهدبود ـ يعنى كليه ! 2 با 3 جايكشت
$P_{1} P_{2} E_{1} P_{3} E_{2} R \quad P_{1} P_{2} E_{2} P_{3} E_{1} R$
$P_{1} P_{3} E_{1} P_{2} E_{2} R \quad P_{1} P_{3} E_{2} P_{2} E_{1} R$
$P_{2} P_{1} E_{1} P_{3} E_{2} R \quad P_{2} P_{1} E_{2} P_{3} E_{1} R$
$P_{2} P_{3} E_{1} P_{1} E_{2} R \quad P_{2} P_{3} E_{2} P_{1} E_{1} R$
$P_{3} P_{1} E_{1} P_{2} E_{2} R \quad P_{3} P_{1} E_{2} P_{2} E_{1} R$
$P_{3} P_{2} E_{1} P_{1} E_{2} R \quad P_{3} P_{2} E_{2} P_{1} E_{1} R$
 مسكن مك توانبا دبجو آردرد. بطور كلى، با استدلالى مشابه با مثال ب ت مى توان نتنان داد كه
$\frac{n!}{n_{1}!n_{2}!\cdots n_{r}!}$
جايكُشت مـختلف از n شــيـى وجود دارد كـه يكديگرند.

مثال

 در صورتى كه ير جمهاى همرنگ يكسان است. صل : $1260=$

ب- تركييها

 تشمرده مى شوند) در نتيجه تعداد كل كـروههايع كه مى توان تشكيل داد برابر است با
$\frac{5 \cdot 4 \cdot 3}{3 \cdot 2 \cdot 1}=10$

 مجموعه n تلم مى توان تثـكيل داد عبارت است از
$\frac{n(n-1) \cdots(n-r+1)}{r!}=\frac{n!}{(n-r)!r!}$

نماد كذارى و اصطلاحات برارى
$\binom{n}{r}=\frac{n!}{(n-r)!r!}$
تعـريف كـرده و مـى كــويــم كـــه
 درنظر كرفنن ترتيب انتخاب شده است.
 جند كمتئ مختلف مى توان نتُكيل داد؟

$$
\text { حل : } 1140 \text { كميتهٔ مختلف مى توان تشكيل داد. }
$$

خوددارى كنتل، تیند كميته مسكن السـت .
厄ق : چخون دارد ، از اصـل اســاسى نتـــيجـه مى شــود كـه $350=\left(\frac{5 \cdot 4}{2 \cdot 1}\right) \frac{7 \cdot 6 \cdot 5}{3 \cdot 2 \cdot 1}\binom{5}{2}\binom{7}{3}=(2)$

مركب از Y مرد و
از طرظى اكـر دو نفر از زنـان از همكارى در يكـ كــيـته خحـوددارى كنتلـ در اين صـررت
كُ $\mathrm{S}^{2}\binom{2}{0}\binom{5}{3}$
و بنابراين نتيـيجه مى شــود كـه 30 . دو زني را كه بامـم تُهر نل شامسل نيست. هچون به در اين سحالتت نتيجه مى شود كه $30\binom{5}{2}=300$ كميتة́ مـكن و ججود دارد .

 معيوب انتـخابـ كرد ، بنابراين هردو آنتن معيوب ثر ار دارد وجود دارد .

$$
\begin{aligned}
& \text {.0.0.0...0.0. } \\
& 0=\text { = } \\
& \text { مسل سداكثر يك آنتن سعيوب' = . }
\end{aligned}
$$

شكل 1-1
$\binom{n}{r}=\binom{n-1}{r-1}+\binom{n-1}{r} \quad 1 \leq r \leq n$

 اكنون
 وجـود دارد كه شـامل شیى' 1 نيست . هحرن در كل (1 ($-Y$) مـــادير در تضيه دوجمله أى اسـت.

تضيُُ دوجهلهاهى
$(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}$
دو أبـات از تضهـيه دوجـمله أى ارائه مى دهيم. الولى اثبـاتى با اسـتغـراء دباضى و ديكرى برامـاس ملاحظات تركيبى اسـت .
اثبات لمنيل دوجمله اي با الستغاء : و تتى n=1 ، 1 ، معادلئ (Y-Y) به صورت $x+y=\binom{1}{0} x^{0} y^{1}+\binom{1}{1} x^{1} y^{0}=x+y$

مـادهُ مى شـود .
فرض كنيد معادلئ (Y-Y ب

$$
\begin{aligned}
(x+y)^{n} & =(x+y)(x+y)^{n-1} \\
& =(x+y) \sum_{k=0}^{n-1}\binom{n-1}{k} x^{k} y^{n-1-k} \\
& =\sum_{k=0}^{n-1}\binom{n-1}{k} x^{k+1} y^{n-1-k}+\sum_{k=0}^{n-1}\binom{n-1}{k} x^{k} y^{n-k}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
& 2 \\
&(x+y)^{n}= \sum_{i=1}^{n}\binom{n-1}{i-1} x^{i} y^{n \cdot 2}+\sum_{i=1}^{n-1}\binom{n-1}{i} x^{\prime} y^{n-1} \\
&= x^{n}+\sum_{i=1}^{n-1}\left[\left(\begin{array}{c}
n-1 \\
i \\
i-1
\end{array}\right)+\binom{n-1}{i}\right] x^{\prime} y^{n-1}+y^{n} \\
&= x^{n}+\sum_{i=1}^{n-1}\binom{n}{i} x^{1} y^{n-i}+y^{n}=\sum_{i=1}^{n}\binom{n}{i} x^{i} y^{n-1}
\end{aligned}
\end{aligned}
$$

تساوى آخخر طبت معادلهُ (Y-1) نتيجه مى شـود . يس تضيه به الستقراء ثابت شلده است . اثبات تركيبى كخيه دو جملهاي : حاصل ضرب
$\left(x_{1}+y_{1}\right)\left(x_{2}+y_{2}\right) \cdots\left(x_{1}+y_{n}\right)$

را در نظر بگـيريد ـ كستـرش آن عبـارت از مجـموع "2 جمله است كـه هر جمله حـاصل ضربب" ع عامل است . بـه علاوه هريكـ از مى باشند . براى مثال، ،
$\left(x_{1}+y_{1}\right)\left(x_{2}+y_{2}\right)=x_{1} x_{2}+x_{1} y_{2}+y_{1} x_{2}+y_{1} y_{2}$
 از
 i = $1, \ldots, n ، y_{i}=y$, $(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}$

مثال بات .

$$
\begin{aligned}
(x+y)^{3} & =\binom{3}{0} x^{11} y^{3}+\binom{3}{1} x^{1} y^{2}+\binom{3}{2} x^{2} y+\binom{3}{3} x^{3} y^{0} \\
& =y^{3}+3 x y^{2}+3 x^{2} y+x^{3}
\end{aligned}
$$

حل : هیون $\sum_{k=0}^{n}\binom{n}{k}=(1+1)^{n}=2^{n}$

اين نتيجه را مى توان با نــبت دادن علدد ، يا 1 به هريكى از اعضاى مجموعه نيز به دست

دارد، نتيجه حاصل مى شود.

 است با 1-2 ${ }^{\text {1 }}$.

ه - ضرايب جند جملهاى
در اين بخش مسآله زير را در نظر مى گيريم: مى خواهيـم مجمـوعهأى مركب از n عضو

 گروه اول ممكن برایى گـروه دوم رجـود دأرد، براى هر انتـخـاب دو گـروه اول، $)$
 شـمارش تعميم يافته، به تعداد

$$
\begin{aligned}
\binom{n}{n_{1}} & \binom{n-n_{1}}{n_{2}} \cdots\binom{n-n_{1}-n_{2}-\cdots-n_{r-1}}{n_{r}} \\
& =\frac{n!}{\left(n-n_{1}\right)!n_{1}!} \frac{\left(n-n_{1}\right)!}{\left(n-n_{1}-n_{2}\right)!n_{2}!} \cdots \frac{\left(n-n_{1}-n_{2}-\cdots-n_{r-1}\right)!}{0!n_{r}!} \\
& =\frac{n!}{n_{1}!n_{2}!\cdots n!}
\end{aligned}
$$

نمادكذارى
ا

$$
\binom{n}{n_{1}, n_{2}, \ldots, n_{r}}=\frac{n!}{n_{1}!n_{2}!\cdots n_{r}!}
$$

تعريف مى كنيم • بس $)$

$$
\text { حل : } 2520 \text { = }=10!\text { تقـيـم ممكن وجود دارد. }
$$

 وجود دارد؟

 مى شوند. هند تقـيم مختلف ممكن است؟

 مورد نظر است. بنابراين باسخ مطلوب عبارت است از
$\frac{10!/ 5!5!}{2!}=126$
انبات تضيةٔ زير كه تعميم تضيةٔ دو جمله أى است به عنوان تمرين واكذار مى نود .

كضيه جند جملهوى

$\left(x_{1}+x_{2}+\cdots+x_{r}\right)^{n}=\sum_{\substack{n_{1} 1 \\ n_{1}+\cdots+n_{n}, n_{n} ; n}}\binom{n}{n_{1}, n_{2}, \ldots, n_{r}} x_{1}^{n_{1}} x_{2}^{n_{2}} \cdots x_{r}^{n_{r}}$
 بطورى كه

$$
\begin{aligned}
\left(x_{1}+x_{2}+x_{3}\right)^{2}= & \binom{2}{2,0,0} x_{1}^{2} x_{2}^{0} x_{3}^{0}+\binom{2}{0,2,0} x_{1}^{0} x_{2}^{2} x_{3}^{0} \\
& +\binom{2}{0,0,2} x_{1}^{0} x_{2}^{0} x_{3}^{2}+\binom{2}{1,1,0} x_{1}^{1} x_{2}^{1} x_{3}^{0} \\
& +\binom{2}{1,0,1} x_{1}^{1} x_{2}^{0} x_{3}^{1}+\binom{2}{0,1,1} x_{1}^{0} x_{2}^{1} x_{3}^{1} \\
= & x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+2 x_{1} x_{2}+2 x_{1} x_{3}+2 x_{2} x_{3}
\end{aligned}
$$

¢- توزلع كلوله در كيسهها

 بابردار (x
 آن مقادير صحيح نا منفى هـتند كامش مي يابد بطورى كه

$$
x_{1}+x_{2}+\cdots+x_{r}=n
$$

 انتخاب كنيم (شكل كنـم

0001000100

بردار حاصل برابر زير حاصل مى شود

> حكم \&-1

تعدادر
مُبت اند وجو د دارد كه در نساوبهاى
$x_{1}+x_{2}+\cdots+x_{r}=n, \quad x_{t}>0, i=1, \ldots, r$

صدق مى كند.
 توجه داثشته بانيـد كه تعداد جوابهاى نا منفى ($y_{1}+y_{2}+\ldots+y_{r}=n+r$ از حكم 9-1
حكـم Y-4

تعداد

نامنفى هستند وجود دارد كه در تسارى
$x_{1}+x_{2}+\cdots+x_{n}=n$

 سرمايه كذارى موردنظر نباثدل چه مى توان كفت؟

قل : انكر i
 $x_{1}+x_{2}+x_{3}+x_{4}=20, \quad x_{1} \geq 0$

 $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=20$

$$
\begin{aligned}
& \text { صدت مي كند . }
\end{aligned}
$$

مثال \& ب . در بسط عبارت هيند جملهاى

$$
\left(x_{1}+x_{2}+\cdots+x_{r}\right)^{\prime \prime}
$$

هند جمله وجود دارد؟
$\left(x_{1}+x_{2}+\cdots+x_{r}\right)^{n}=\sum\binom{n}{n_{1}, \ldots, n} x_{1}^{n_{1}} \cdots x_{r}^{n_{r}}$
和 $n_{1}+n_{2}+\ldots+n_{1}=n$ وجوددارد.

 است . هلف ما تعيين تعداد ترتيبهاى خططى است بطورى كه هيج دو تلم معيوب بهلوى مـ قر مرار

 بطور نمادى، داريم
$x_{1} \varnothing x_{2} \varnothing \cdots x_{m} \varnothing x_{m+1}$

 است كه در
$x_{1}+\cdots+x_{m+1}=n-m \quad x_{1} \geq 0, x_{m+1} \geq 0, x_{1}>0, i=2, \ldots, m$ صدق مى كند. با تراردادن $y_{1}=x_{1}+1, y_{i}=x_{i i} i=2, \ldots, m, y_{m+1}=x_{m+1}+1$

مشـاهده مى كنيم كه اين تعلاد برابر تعداد بردارهاى منبت (y 1 (y است كه در $y_{1}+y_{2}+\cdots+y_{m+1}=n-m+2$
صدق مى كند. بس بنا به حكم مطابفت دارد .

 تعداد بردارهاعى است كی در

$$
x_{1}+\cdots+x_{n+1}=n-m \quad x_{1} \geq 0, x_{m+1} \geqq 0, x_{1} \geq 2, i=2, \ldots, m
$$

صدتى مى كند، با تزاردادن

$$
y_{1}=x_{1}+1, y_{i}=x_{i}-1, i=2, \ldots, m_{1} y_{m+1}=x_{m+1}+1
$$

در مى يابيم كه اين مقلدار همان تعداد جوابهاى ميبت

$$
y_{1}+\cdots+y_{m+1}=n-2 m+3
$$

اسمت، بس از سحكم 9-1 ،

تهرئهـ

- - صـورت تعميـم يافتهُ اصل المـامبى، شُمارش را ثابت كنيل .

 در نظر كر فته نـود؟ (
 بر اي اين ححقيقتـ ارائه دهيل.
 V

$$
\begin{align*}
& \binom{n+m}{r}=\binom{n}{0}\binom{m}{r}+\binom{n}{1}\binom{m}{r-1}+\cdots+\binom{n}{r}\binom{m}{0} \\
& r \leq n, \quad r \leq m
\end{align*}
$$

ممكن اسست؟
n> 4 -

$$
\binom{n+1}{4}=\frac{\binom{\binom{1}{2}}{2}}{3}
$$

اكنون دليلى تركيبى براى تساوى بالا اراثه دهيد .

q- توضيحى تركيبى برايى

$$
\begin{aligned}
\binom{n}{n_{1}, n_{2}, \ldots, n_{r}}= & \binom{n-1}{n_{1}-1, n_{2}, \ldots, n_{r}} \\
& +\binom{n-1}{n_{1}, n_{2}-1, \ldots, n_{r}}+\cdots \\
& +\binom{n-1}{n_{1}, n_{2}, \ldots, n_{r}-1}
\end{aligned}
$$

11- قضيهئ جند جمله أى را ثابـت كنيد .
$n>0$ Y
$\sum_{(=1)}^{n}(-1)^{n-i}\binom{n}{i}=0$
ب| - (الفس) اتحاد تركيبى زير را به استقر اء ثّابـت كنيد

$$
\sum_{k=1}^{n} k\binom{n}{k}=n 2^{n-1}
$$

(ب) با در نظر كرفنن مـجموعهالى مركب از n فردو تعيين تعداد انتخابهاى ممكن يكى كميته
و يكى رئيس كميته، به دو راه ، دليلى تركيبى برابى رابطه بالا ار ائه دهيد.
(ب) درستي اتحاد زير را برای n = 1,2,3,4 تحتيق كنيد :
$\sum_{k=1}^{n}\binom{n}{k} k^{2}=2^{n-2} n(n+1)$
براى اثبات تركيبى رابطه بالا مـجموعه ايى مركب از m فرد را در نظر كرنته و نشان دهيد كه هر دو طرف اتحاد بالاتـعلاد انتخـابهاى مـختلف يكى كميته ، رئيس و منتــى (كه احتـمالآبا ريس يكى است) آن را نـشان مى دهد .
 منتهى شـود ؟

Y Y جند انتـخالب مـختلفت مهكن كـه در آنها رئيس و متثــى يكــان امـت، وجـود
دارد؟ (ياسـن : n2) .

ץ- بحند انتتخاب مـنتلف ممكئ به رئيس و منشّي متفاوت منتهى مى شود ؟
(ت) اكنون ثاببت كنيل

$$
\sum_{k=1}^{n}\binom{n}{k} k^{3}=2^{n-3} n^{2}(n+3)
$$

 باشد، توزيع مى شـود؟ فرض كنيد

$$
\begin{aligned}
& n \geq \sum_{i=1}^{r} m_{i} \\
& \binom{n-\sum m_{i}+r-1}{n-\sum m_{i}} \\
& \binom{n+r-1}{n}=\sum_{i=0}^{n}\binom{n-i+r-2}{n-i}
\end{aligned}
$$

راهنمايع : از حكـم Y-Y استفلاده كنيد.
و بر ایى آنها دتيفآk تا از x ها بر ابر 0 است .
IV وجود دارد؟
1 ا - با استفاده از تهرين نظرى V ثابيت كنيل

$$
\binom{2 n}{n}=\sum_{k=0}^{n}\binom{n}{k}^{2}
$$

19 - (انفب) با استفاده از استقراى رباضى و اتحاد تركيبى

$$
\binom{m}{k}=\binom{m-1}{k-1}+\binom{m-1}{k}
$$

اتحاد زبر را ثاببت كنيل

$$
\binom{n+r}{n}=\sum_{j=0}^{n}\binom{j+r-1}{j}
$$

(ب) با اين استدلال كه هردو طرف تسماوى بالا تعداد جوابهاى صهـيـع نا منفي متمايز

$$
x_{1}+x_{2}+\cdots+x_{r} \leq n
$$

است، أبات دومى اراثاث دميد.

- •

ححجـم i<j 6 ، انتهناب كنيم .
(الفُ) با مداسبةُ تعداد انتهابهاي ممكن اين كميته و زذر كميته ، به دو راه ، اتـحادى تركيبى

(ب) با امستفاده از (الفّ) ، اتعاد تركيبى زبر را ثابت كنيد :

$$
\sum_{i=1}^{n}\binom{n}{j}\binom{j}{i}=\binom{n}{i} 2^{n-1}, \quad i \leq n
$$

(ب) با أستفاده از (اللف) و نمرين نظرى Y 1 ، نشان دميد

$$
\sum_{i=1}^{n}\binom{n}{j}\binom{i}{i}(-1)^{n-j}=0, \quad i \leq n
$$

مساثلك
1 حروفـ و ه علامت ديكر از اعداد تر كيب شـه باشد .

تكرار كنيد .

 آنها هر جهار آلت مـوسيتى ولى دو نفـر ديكر شريكى تنهـا بـانـو و طبل بنوازند ، جند آرايش nختلفـ امكان دارد؟
 برایى اين نشـتت ممكن امـت الكـر تَـرار باثـــد كـه انـراد با مليـت يـكـــان در بهلوى هـم تـرار كـرند.

جسر ان باهـم و دختر ان هـم با هـم ، باشـندو

- - جند آرايشُ مـختلف مى توان از حروف زير ساخحت؟
! ARRANGE (ت) ، MISSISSIPPI (ت) ، PROPOSE (الفّ) * FLUKE

V- V يشـت نفر به هحند راه مى توانند در يكى رديف بشثينند اكر
(الفن) هيـي تيلدى در ترتيبـ نشستن وجود نداشُته باشد،
(بس) دو فرد A B B ملزم به نشـستن بهلوى ثـم باشـند.

(ث)

(الفـ) كتابها را با هر ترتيب دلتو اهي بتوان هيلد .

كنيـم • هند اتتـخالبى مـتتلفـ از اين افر اد مهكن المست اكر
(الفى) هيـي قيلدى وجود نداشته بامشلد .
(ب) A

(ت) عضو E عتماً بزو اين سه نفر باشد
(ش) عضهو F رئيس باثـــ .

يك كلاس •r نفرى اعطا شود. هند برآمد مختلف ممكن استا اتر (الف) يك دانسّجو بتواند هر تعدادي از جايزه هها را دريافت كند؟ (ب) هر دانشّجو بتواند حداكثرّر يك جايزه دريافت كيند؟

Y -
 جند كميته امكان دارد؟؟

 ممكن است؟

باشند، جند انتخاب ممكن است؟

$$
\text { (3x } 3 \text {) را بسط دهيد. }
$$

IV - بازیى بريج با |مكان بذير است

$$
\text { (x) } \left.\mathrm{x}_{1}+2 \mathrm{x}_{2}+3 \mathrm{x}_{3}\right)^{4}-1 \wedge \text { دهيد. }
$$

 كنيم، جند تقسيم مختلف امكان داردو

هر مدرسه بايد حداقل يكى تشته سياه دريافت كند، جند حالت مـككن است؟
 هر مدرسه دو معلم را بِذيرد، جـند حالت امكان دارد

 به تميز مرد از ز زن باشد به جند طريت امكان دان دارد ؟
 شده المـت. در اين حراج ها عتيـةه دار حاضرند. گزارشكُر صـفسه اجتمـاعى تنها تعداد آثار هنري هريكى از سه هنر مند را كه توسط عتيقه دار خريدارى شد، مشـاهده كرد . اكر همهئ آن آثّار به فروش رنته باشد، اين كزارشكّر جند نتيجه مختلف همكـن السـت ثبـت كرده باشد؟

 رديفـ بنـــينند . اكر ترار باشد هيأتهاى نـرانسوى و انگليـسى در يهلوى يكديگر بنــــينتد و
 (Y - Y - Y V هر سر هايه گـذارى بايد با تقريب يكـ واحد گرد شـود (يكـ هز ار دلار) ، و در سـر مايه گذاري

 مختلف موجود اسـت اكر
(الفـ) در هر موقعيت يكـ سرمايه كذارى صورت كيرد .

Pge Non

اصول احتمال

- 1

 ريشامدهاى يكى آزمايشّ مى بردازيم

Y- بَّاى نمونه و يِيشلمدها

 مطلب به جند مثال زير توجه كنيد : 1- أكر برآمذ يكى آزمايش تعيين جنس يك نوزاد باشد، آن كاه.

$$
S=\{g, b\}
$$

كه در آن g بم معناى نوزاد دخترو b به معناى نوزاد بِسر اسـت. Y- إكر برآمد يكى آزمايش ترتيب برنده شدن Vاسب در يك مسابقه باشد كه در محلهاى

1, 2, 3, 4, 5. 6, 7 قرار كرفنهاند، آن گاه

 شماره ז و سیس المب شمـارها ا و الى آخر .
r- آكر آزمايش ، برتاب دو سكه باشد ، ،آن كاه فضاى نمونه عبارت است از از
$S=\{(H, H),(H, T),(T, H),(T, T)\}$

 خواهد بود.千 $S=\{(i, j) \quad i, j=1,2,3,4,5,6\}$

كه در آن ((i i) وتمى رخ مى دهد كه تاس أول i و و ديگرى ز آمده باشد .
 تمام اعداد حقيقى نا منفى المت؛ يعنى $S=\{x: 0 \leq x<\infty\}$

 $E=\{$ تمام برآمدهاى S Sه با ب شروع مى شوند $\}$

 0
 بر آملهايى است كه در E يا در F يا در هر دو باشمند .
 ,
$E \cup F=\{g, b\}$
 F=\{(T,H)\}
$E \cup F=\{(H, H),(H, T),(T, H)\}$

بس E بیشامد E همين طور از هردو يـيشامد E و يك يششـامد جديد EF تعريفـ مى شود به نام اشترالا

 بيشامد حداتَ يكى خحط باشده، آن گاه $E F=\{(H, T),(T, H)\}$

بيشّامد يك شير و يك خطط خواهد بود. در مثال 4 أكر
$E=\{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\}$

> بيشامد مجموع V و
$F=\{(1,5),(2,4),(3,3),(4,2),(5,1)\}$

بيشامد مجموع 9 باشد، آن كاه يِشامد EF شامل هيج برآمدى نخخواهد بود و در نتيجه نمى تواند
 بيـنـامـدى اسـت كـه شـامـل هيَج برآمـدى نبـاشـد) . اكر ناسازكار نامند .

الجتــماع و استترالك بيش از دو هيثـامد را نيـز مى توان به صورتى مـــابه تعريفـ كـرد . اكر

 بيشاملهایى n=1,2,...

 آزمايش بايد به بك برآمد منتهى شمود بس داريم
 كويــم و مى نويسبم E (يا بطور معادل E

مى نويسيمم E = F .

يك نمايش تصويرى كه برایى روشّن شـدن روابط منطقى بين بيشامدها بسيار مفيد اسـت،

 , E \cap F ، EUF
 اعمال تتشكيل اجتماع انتر الث، و مكمل بيشُامدها از قواعدى يـروى مى كنند كه با قواعد جبرى تفاوت زيادى ندارند . بعضى از اين تواعد را در زير فهرست مى كنيم .

$$
E \cup F=F \cup E \quad, \quad E F=F E
$$

$$
(E \cup F) \cup G=E \cup(F \cup G),(E F) G=E(F G)
$$

$$
(E \cup F) G=E G \cup F G, E F \cup G=(E \cup G)(F \cup G)
$$

قانون جابجايع
قانون شركت يذيرى
قانون بـخّى

EF (ب) ناحبه سايه دار)

E (الف) ناحهي سايه دار

E' (ي) ناحيه سـايه دار)
ــكل צ-1

 r-r تحقيق كرد.

(ب) ناحيه سايه دار FG

EG ناحيه سايه دار)

(E \cup F) G ناحيه سايه دار)
$(E \cup F) G=E G \cup F G$
r-r شـكل

$\left(\bigcup_{i=1}^{n} E_{i}\right)^{c}=\bigcap_{i=1}^{n} E_{i}^{c}$
$\left(\bigcap_{i=1}^{n} E_{i}\right)^{c}=\bigcup_{i=1}^{n} E_{i}^{c}$
براى اتبــات تــوانين دمــور كــان، ابـتـدا نــرض كنيــد x يك نقطه

 قانون دمور كان ثابت مى شود . براى انبات قانون دوم از قانون اول استون استفاده مى كنيم .
$\left(\bigcup_{i=1}^{n} E_{i}^{c}\right)^{c}=\bigcap_{i=1}^{n}\left(E_{i}^{c}\right)^{c}$
و چجون
$\left(\bigcup_{1}^{n} E_{i}^{c}\right)^{c}=\bigcap_{1}^{n} E_{t}$
اكر از طرفين مكمل بگيريم نتيجه ساصل مى شُود، يعنى
$\bigcup_{1}^{n} E_{i}^{c}=\left(\bigcap_{i}^{n} E_{i}\right)^{c}$

F- اصول اهتمال

يكى راه مـكن تعريف احتتمال يكـ بيشامـد، المتفاده از فراوانى نسـبى اسـت . اين تعريف

 به حورت زير تعريف مى نـود
$P(E)=\lim _{n \rightarrow \infty} \frac{n(E)}{n}$
بعنى ، P(E) به Pهـورت درصــد (حـدى) دفـعـاتى كـه بيـيـــامـل E رخ مى دهد تعـريف مى شود . در اين تعريف ، احتمال حد فراوانى نسبى بيساملد E الست .
هرجند تعريف فوت از نظر مُهودى رضـايت بـخش اسـت و بايد خو اننـده همواره به خاطر

بســارد، ولى دارايى يكى الشـكال جدى است : جكيونه بـدانيم كه

 كه همكرايهى هم ايرايه

 احتمال است.

 اصل
$0 \leq P(E) \leq 1$

> اصل r

$$
P(S)=1
$$

اصل r

برای هــر دنباله از بيئـا ملمهاى دو به دو ناسازكار

$$
E_{\mathrm{i}} E_{\mathrm{i}}=\phi, i \neq j \text { بهازای }
$$

$$
P\left(\bigcup_{i=1}^{\infty} E_{i}\right)=\sum_{i=1}^{\infty} P\left(E_{i}\right)
$$

بنا به تعريف ، P(E) را احتمال يـيــامد E كوييهم.

لس اصل (I) بيان مى كند كه احتمال اين كه برآمد آزمايش نقطه الى از E باشمد عددى بين

 أكر دنبـالة آن كاه جحون بيشـاملمها دو به دو نا ساز كارند و داريم $P(S)=\sum_{i=1}^{\infty} P\left(E_{i}\right)=P(S)+\sum_{i=2}^{\infty} P(\varnothing)$
$P(\varnothing)=0$
يعنى احتمال رخ دادن يـيشامد تهى برابر 0 است.

$E_{n}, \ldots . E_{2} 6 E_{1}$
$P\left(\bigcup_{1}^{n} E_{i}\right)=\sum_{i=1}^{n} P\left(E_{i}\right)$
 با معـادلهُ ((اصل (r) وتتى لازم مى شود كه نضاى نمونه داراى بیى نهايت نقطه باشـد .
 بائد، در اين صورت داريم

$$
P(\{H\})=P(\{T\})=\frac{1}{2}
$$

از طرف ديگر، اكگر سكه اريب باشُـد و احـساس كتيم كه احتمال آمــن شير دو برابر آمدن خط است، آن كاه

$$
P(\{H\})=\frac{2}{3} \quad P(\{T\})=\frac{1}{3}
$$

مثــل
آن كاه دأريم
$P(\{1\})=P(\{2\})=P(\{3\})=P(\{4\})=P(\{5\})=P(\{6\})={ }_{6}^{1}$.

از اصل (
$P(\{2,4,6\})=P(\{2\})+P(\{4\})+P(\{6\})=\frac{1}{2}$

 را مى سازد ـ انتظار مى رود كه خواتنده با اين اصـول طبيـعى و با مفهـوم شـهودى احتمـال كه با شانس و تـصادف در ارتباط است مـوانق باشد . عـلاوه بر اين با استـفاده از اين اصـول مى توانيم

 داريم در بخش (V) اين فصل ارائه خحواهيم داد .

 يِثـامدهاى به اصطلاح اندازه یذير تـعريف مى شود . ولى اين مسحدوديت مـورد تو جه مـا نيست زير! تمام بيشأمدهاى مورد تو جه اندازه هذيرند .

P - جند هكم سلده

در اين بخش جند حكم ساده را در ارتباط با احتمال ثابت خواهيم كرد ـ ابتـلدا توجه كنيد كه هون هميشه E و E ناساز كارند و E $1=P(S)=P\left(E \cup E^{c}\right)=P(E)+P\left(E^{c}\right)$
$P\left(E^{c}\right)=1-P(E)$

 $\frac{r}{A}$
 نمى تواند بزر گتر از احتمال F باشد.
$P(E) \leq P(F)$
اكر
برهان : جون E

$$
F=E \cup E^{c} F
$$

$P(F)=P(E)+P\left(E^{c} F\right)$
$P\left(E^{c} F\right) \geq 0$
كه حكـم را ثابت مي كند زيرا
 احتمال آملن عدد قرد است .

حكم بعدى رابطةُ بين احتمال اجتتماع دو يسشامل و هريك از آنها و احتمال اشٌتراك آنها را بهد دست هى دهد.
$P(E \cup F)=P(E)+P(F)-P(E F)$
برهان : برای يافتن رابطه ایى براى P(E

$$
\begin{aligned}
P(E \cup F) & =\dot{P}\left(E \cup E^{c} F\right) \\
& =P(E)+P\left(E^{c} F\right)
\end{aligned}
$$

علاوه بر اين، هحون EF \cup E ، ، از احل بَ دأريم
$P(F)=P(E F)+P\left(E^{c} F\right)$
يا بطور معادل
$P\left(E^{c} F\right)=P(F)-P(E F)$
و در نتبجه حكـم ثابت مى شود .
 به سه مـجموعه جدا از مـم هـمان طور كه در شُكل بـ با اين تصوير ، مجهوععء I تمام نقاطى از E , نشان مى دهد كه در F نيستند (يعنى EF
 نتهان مى دهد كه در E نيستند (يعني، E E F) .

شكل

$$
\begin{aligned}
E \cup F & =I \cup I I \cup I I I \\
E & =I \cup I I \\
F & =I I \cup I I I
\end{aligned}
$$

جون III و II ، جدا الز متم هستند، بنا بع اصل ب داريم

$$
\begin{aligned}
P(E \cup F) & =P(\mathrm{I})+P(\mathrm{II})+P(\mathrm{III}) \\
P(E) & =P(\mathrm{I})+P(\mathrm{II}) \\
P(F) & =P(\mathrm{II})+P(\mathrm{III})
\end{aligned}
$$

$P(E \cup F)=P(E)+P(F)-P(\mathrm{II})$
در نتيتجه حكم Y-r ثـابت مى شُسود زيرا II = EF .

مثال + اللـ.دو سكه را مى اندازيم فرض كنبد هريكى از حهار نقطه نضاى نمونه $S=\{(H, H),(H, T),(T, H),(T, T)\}$
يعنى E ييشامد سكهُ اول شير وF يسشامد سكهُ دوم شـير است.

$$
\begin{aligned}
P(E \cup F) & =P(E)+P(F)-P(E F) \\
& =\frac{1}{2}+\frac{1}{2}-P(\{(H, H)\}) \\
& =1-\frac{1}{4} \\
& =\frac{3}{4}
\end{aligned}
$$

البته اين احتمال را مستقيمأنيز مى توان محاسبه كرد، زيرا
$P(E \cup F)=P(\{(H, H),(H, T),(T, H)\})=\frac{3}{4}$

$$
\begin{aligned}
& \text { هـمنانس و در نتيجه بِا احتهـال } \\
& E=\{(H, H),(H, T)\} \quad, \quad F=\{(H, H),(T, H)\}
\end{aligned}
$$

$$
P(E \cup F \cup G)=P[(E \cup F) \cup G]
$$

$P(E \cup F)+P(G)-P[(E \cup F) G]$

$$
\begin{aligned}
P(E & \cup F \cup G) \\
& =P(E)+P(F)-P(E F)+P(G)-P(E G \cup F G) \\
& =P(E)+P(F)-P(E F)+P(G)-P(E G)-P(F G)+P(E G F G) \\
& =P(E)+P(F)+P(G)-P(E F)-P(E G)-P(F G)+P(E F G)
\end{aligned}
$$

در واتع حكم زير را مى نوان به استقر ا'ابت كرد .

$$
P\left(E_{1} \cup E_{2} \cup \cdots \cup E_{n}\right)
$$

$$
=\sum_{i=1}^{n} P\left(E_{i}\right)-\sum_{i_{1}<i_{2}} P\left(E_{i_{1}} E_{i_{2}}\right)+\cdots
$$

$$
+(-1)^{r+1} \sum_{i_{1}<i_{2}<\cdots<i_{r}} P\left(E_{i_{1}} E_{i_{2}} \cdots E_{i_{r}}\right)
$$

$$
+\cdots+(-1)^{n+1} P\left(E_{1} E_{2} \cdots E_{n}\right)
$$

مجموع ع

- - ثضاهاى نمونه با برTمدهاى همشانس

 مانتد $S=\{1,2, \ldots . N\}$ را در نظر بگيريم ، آن كاه اغلب طبيعى اسـت كه فوض كنيم
$P(\{1\})=P(\{2\})=\cdots=P(\{N\})$

> كه بنا به إصول (Y) و (Y) (جرا ؟) داريم
$P(\{i\})=\frac{1}{N} \quad i=1,2, \ldots, N$
و با توجه به اصل (Y) براى هر بيسـامد E داريم

به E متعلق است.

> مثال ه الد. در ريختن دو تاس احتمال مجمرع ع جقدر است؟

 خحارج كنيم، احتمال اين كه يكى از مهره هاى خارج شـده سـفيد و ديگرى سباه باشد جقدر است؟

 سياه است. همـين طور P
 الحتمال هستند، احتمال مطلوب بهصورت زير است
$\frac{r+r}{11}=\frac{9}{11}$
اين مسـأله را مى توان با در نظر گرفتن برآمـــآزمايش بهصـورت مـجمـوعه (نامرتب) از

جون بنا به نرض تمام برآمدهاى ممكن هم احتمال هستند احتمال مطلوب عبارت است از $\frac{\binom{6}{1}\binom{5}{1}}{\binom{11}{2}}=\frac{6}{11}$

كه البته با جواب تبلى برابر امست .
 انتخاب بتصادف صورت كيرد، احتمال اين كه كميته از † مرد و ب ز زن تشكيل شود
 احتمال انتخاب شدن يكسان دارند . يس احتمال مطلوب عبارت امست از $\frac{\binom{6}{3}\binom{9}{2}}{\binom{15}{5}}=\frac{240}{1001}$

مثال ه تـ. يكى دست بوكر شامل ه ورق امست، اكر ورتها متمايز با مقـادير متوالي ولى
 ^ يسك و 9 دل باشد يكى امستريت امست. احتمال داشتن يك استريت جقلدر امست؟ قل : فرض مى كنيم تمام

 سه، جهار ، بنج ، نتيـجه مى شود كه

 $\frac{10\left(4^{5}-4\right)}{\binom{52}{5}}=.0039$

تشكيل شلده بـأـد. (يعنى نول عبارت است از نول جفدر است؟
حـل : فرض می كنيم تمام نولهاى ممكن، توجه كنيد كه كـ r| $\frac{13 \cdot 12 \cdot\binom{4}{2}\binom{4}{3}}{\binom{52}{5}} \approx .0014$ بس احتمال آوردن يك نول برابر است با

مثال ه \& .در بازى بريج تمام هr ورق بين F بازيكن توزيع مى شُود . احتمال آن كه يكى

 ($\left.\begin{array}{c}39 \\ 13,13,13\end{array}\right)$ مطلوب عبارت است از
$\frac{4\binom{39}{13,13,13}}{\binom{52}{13,13,13,13}} \approx 6.3 \times 10^{-12}$
مـال بعد نشان مى دهد كه نتايج احتمال كاهى در اولين برخورد تعجب آور هستند.

$$
\text { 1 } 1 \text { شود؟ }
$$

 $\frac{365(364) \ldots(365-n+1)}{(365)^{\mathrm{n}}}$

 اين كه هيج سفيد با مياه هم اتاقى نباشُد جقدر اسـت؟ احتمال آن كه i و مياه هم اتاقى باثُسند جقدر است؟

حل : تقسيم • • بازيكن به • ز زوج مرتب به حالتهاى زير امكان بذذير است
$\binom{40}{2,2, \ldots, 2}=\frac{(40)!}{(2!)^{20}}$

 ترتيب) امكان هذير استت. علاوه بر اين، جـون تقسيم بازيكنها به تسمى كه هيَى زوجى سـفيل و

 به صورت زير محاسبه مى شود.
$P_{0}=\frac{\left(\frac{(20)!}{2^{10}(10)!}\right)^{2}}{\frac{(40)!}{2^{20}(20)!}}=\frac{[(20)!]^{3}}{[(10)!]^{2}(40)!}$
 ($\left.\begin{array}{l}20 \\ 2 i\end{array}\right)^{2}$

(سياه) باقتيمانده بايد بين خودشان تقسبم شوند، تعداد حالات مطلوب عبارت است از

$$
\binom{20}{2 i}^{2}(2 i)!\left[\frac{(20-2 i)!}{2^{10-i}(10-i)!}\right]^{2}
$$

بنابر اين
$P_{21}=\frac{\binom{20}{2 i}^{2}(2 i)!\left[\frac{(20-2 i)!}{2^{10-i}(10-i)!}\right]^{2}}{\frac{(40)!}{2^{20}(20)!}} \quad i=0,1, \ldots, 10$
حـال مفـدار $i=0,1, \ldots, 10, P_{2 i}$ را مى توان مـحاسبـه كرديا مقـلار تقريبى آن رابا
 آورد. به عنوان نمونه داريم

$$
\begin{aligned}
P_{0} & =1.3403 \times 10^{-6} \\
P_{10} & =.345861 \times 10^{-6} \\
P_{20} & =7.6068 \times 10^{-6}
\end{aligned}
$$

مـــال بعـدى در اين بخشُ نه تنها جـوابى تعـجب آور دارد بـلكه از جنبه نظرى نينز حــائز
 به و سط اتاتق برتأب مى كنند . ابتدا كلاهها خورب مـخلوط مى شُوند سبس هر مرد بطور تصادفى كلاهى انتخاب مى كند.

1- احتمال اين كه هيج كدام كلاه خود ر ا انتخاب نكرده باشد جهقدر است

 كرده باشثد مـانسبه مى كنيم. فرض كنيد
 محاسببهمى شود

$$
\begin{aligned}
P\left(\bigcup_{i=1}^{N} E_{i}\right)= & \sum_{i=1}^{N} P\left(E_{i}\right)-\sum_{i_{1}<i_{2}} P\left(E_{i_{3}} E_{i_{2}}\right)+\cdots \\
& +(-1)^{n+1} \sum_{i_{1}<i_{2} \cdots<i_{m}} P\left(E_{i_{1}} E_{i_{2}} \cdots E_{i_{n}}\right) \\
& +\cdots+(-1)^{N+1} P\left(E_{1} E_{2} \cdots E_{N}\right)
\end{aligned}
$$

 است] . علاره براين ،

 ممكن هم احتمال هستند، داريم

$$
P\left(E_{1}, E_{i} \cdots E_{i_{n}}\right)=\frac{(N-n)!}{N!}
$$

همجنين جون

$$
\sum_{i_{1} \ll_{1}, \cdots<i_{n}} P\left(E_{1,} E_{l_{2}} \cdots E_{i_{n}}\right)=\frac{N!(N-n)!}{(N-n)!n!N!}=\frac{1}{n!}
$$

$$
P\left(\bigcup_{i=1}^{N} E_{i}\right)=1-\frac{1}{2!}+\frac{1}{3!}-\cdots+(-1)^{N+1} \frac{1}{N!}
$$

, احتمال اين كه هيج كدام كلاه خود را انتخاب نكرده باثـند برابر است با $1-1+\frac{1}{2!}-\frac{1}{3!}+\cdots+\frac{(-1)^{N}}{N!}$

كه برای مقادير بزرك N تقريباً برابر است با احتمال اين كه هيج مردي كلاه خورد

مردمشخص توجه مى كنيم . تعلادحالاتى كه نقط اين k مرد كلاههاى خحودشان را انتخابب كنتد برابراستت با تعداد حالاتى كه N-k مرد بافيمانده كلاههاى خودشان را انتخابب نكنتد . ولى چون $1-1+\frac{1}{2!}-\frac{1}{3!}+\cdots+\frac{(-1)^{N-k}}{(N-k)!}$
الحتمال اين است كه هيج يك از N-k مرد كلاه نخود را انتخاب نكنتد، نتيجه مى كيريم كه تعلاد حالاتى كه k مرد مشُـتص كلاههاى نوود را انتخاب كنند برابر است با :
$(N-k)!\left[1-1+\frac{1}{2!}-\frac{1}{3!}+\cdots+\frac{(-1)^{N-k}}{(N-k)!}\right]$

بنابراين، هون k مرد را مى توان بم $\binom{N}{k}(N-k)!\left[1-1+\frac{1}{2!}-\frac{1}{3!}+\cdots+\frac{(-1)^{N-k}}{(N-k)!}\right]$

هس احتمال مطلوب عبارت امست از
$\frac{\binom{N}{k}(N-k)!\left[1-1+\frac{1}{2!}-\frac{1}{3!}+\cdots+\frac{(-1)^{N-k}}{(N-k)!}\right]}{N!}$

$$
=\frac{1-1+\frac{1}{2!}-\frac{1}{3!}+\cdots+\frac{(-1)^{N-k}}{(N-k)!}}{k!}
$$

 نظرى بسيار مهم اسـت، زيرا اين مقدار با توزيع بواسون در ارتباط اسـت. اين مطلب را در نمل
FF بررسـى خواهيبم كرد' .

برایى تشريح بيـّتر كاربرد حكم F-F F به مثال زير تو جه كنيد.
مثال ه د. اكر • ا زوج متأهل بتصادن دور يك ميز كرد بنشينند، اين احتمال را احساب
كنيد كه ميج مردى بهلوى زنش ترار نكيرد.

 حكمب|-4 ، داريم

$$
\begin{aligned}
P\left(\bigcup_{1}^{10} E_{1}\right)= & \sum_{i}^{10} P\left(E_{i}\right)-\cdots+(-1)^{n+1} \sum_{i_{1}<i_{2}<\cdots<1_{n}} P\left(E_{i_{1}} E_{12} \cdots E_{i_{n}}\right) \\
& +\cdots-P\left(E_{1} E_{2} \cdots E_{10}\right)
\end{aligned}
$$

 بآسانى مـحاسـبه مى شود لازم اسـت -

$P\left(E_{i_{1}} E_{12} \cdots E_{i_{n}}\right)=\frac{2^{n}(19-n)!}{(19)!}$
حال با توجه به حكم ₹-\$ ا احتمال اين كه حـداقل يكى زوج بهلوى هم ترار بكيرند به صورت زير محاسبه مى شود

$$
\binom{10}{1} 2^{2} \frac{(18)!}{(19)!}-\binom{10}{2} 2^{2} \frac{(17)!}{(19)!}+\binom{10}{3} 2^{3} \frac{(16)!}{(19)!}-\cdots-\binom{10}{10} 2^{10} \frac{9!}{(19)!} \approx .6605
$$

 الست وتى تمام

حال فرض كنيد تيم داراى n برد و m باخت امست. و فرض كنيد تمام ترتيبها $(n+m)!/(n!m!)=\binom{n+m}{n}$
 اعـلداد صعحيح منبت

 باشد، آن كاه y_{i} در شرايط زير صدق مي كند $y_{1}+y_{2}+\cdots+y_{r+1}=m \quad y_{1} \geq 0, y_{r+1} \geq 0, y_{i}>0, i=2, \ldots, r$ و برآمد را به صورت زير مى توان نشان داد.
$\underbrace{L L \ldots L}_{y_{1}} \underbrace{W W \ldots W}_{x_{1}} \underbrace{L \ldots L}_{y_{2}} \underbrace{W W \ldots W}_{x_{2}} \cdots \underbrace{W W}_{x_{r}} \underbrace{L \ldots L}_{y_{r+1}}$
 إست ، برابر تعـداد اعداد صـحيح ا ب به عبارت معادل برابر با تعداد اعداد صصيع مبت
$\bar{y}_{1}=y_{1}+1, \quad \bar{y}_{i}=y_{i}, i=2, \ldots, r_{1} \bar{y}_{r+1}=y_{r+1}+1$
است كه در شرط زير صدق كتند
$\bar{y}_{1}+\bar{y}_{2}+\cdots+\bar{y}_{r+1}=m+2$
 كل برآمدهاى دارای r كـتـت بـرد برابـبر ($x_{1}+\ldots+x_{r}=n$ برابر
$\mathrm{P}(\{0,-\operatorname{c}-\underset{\sim}{ } \mathrm{r}\})=\frac{\binom{m+1}{r}\binom{n-1}{r-1}}{\binom{m+n}{n}}, \quad r \geq 1$
ميلاً اكر n=8 ، m=6 ، ، آن كاه احتمال r كثـت برابر أست با

$$
\binom{7}{7}\binom{7}{6} /\binom{14}{8}=1 / 429
$$

در صوردتى كه تمام
WLWLWLWLWWLWLW
باثد بايد مظنون باشيم كه احتـمال برد تيم به مرور زمان تغيير كرده باشـد . (بخخصوص ا احتمال اين كه تيم بـبرد بسيـار زياد امست وتتى آخرين بـازى را باخته باشـد و خحبلى كم اسـت وتـتـى آخرين بازى را برده باشد .) از طرن ديگر اڭر برآمد به حورت زير بانير باشد .

WWWWWWWWLLLLLL
يعنى نفط يك كنـت وجرد داثـتـه باشد، جرن
$P\left([]\left[\begin{array}{l}{\left[\begin{array}{l}7 \\ 1\end{array}\right)\binom{7}{0} /\binom{14}{8}=1 / 429 .}\end{array}\right.\right.$
بازهم به نظر هى رسد كه احتمال برد تيم در ٪ أ بازى بدون تغيير باتى مى ماند .

دنبالهُ يسشامدهاى
$E_{1} \subset E_{2} \subset \cdots \subset E_{n} \subset E_{n+1} \subset \cdots$
وآن را نزولى كوييما اكر
$E_{1} \supset E_{2} \supset \cdots \supset E_{n} \supset E_{n+1} \supset \cdots$
 به حورت زير تعريف مى كنيم
$\lim _{n \rightarrow \infty} E_{n}=\bigcup_{i=1}^{\infty} E_{i}$
كه در آن به ازای هر يسامدها باشد بسشامد

$$
\lim _{n \rightarrow \infty} E_{n}=\bigcap_{=1}^{\infty} E_{i}
$$

كه در آن بهازازای هر n ،

سال حكم 9-1 ار انابت مى كنيم.
حكمب8-1-1

اكري
$\lim _{n \rightarrow \infty} P\left(E_{n}\right)=P\left(\lim _{n \rightarrow \infty} E_{n}\right)$
، برهان : اببـدا نرض مى كنيم
n $\mathrm{n} \geq 1$

$$
F_{t}=E_{1}
$$

$$
F_{n}=E_{n}\left(\bigcup_{1}^{n-1} E_{1}\right)^{c}=E_{n} E_{n-1}^{c} \quad n>1
$$

كه در آن از تــاوى $\quad \bigcup_{1}^{n-1} E_{i}=E_{n-1}$ هستند. به عبارت ديكر F ما بِيسامدهاى ناساز كارند، به قسمى كه

$$
\begin{aligned}
& \bigcup_{i=1}^{\infty} F_{1}=\bigcup_{i=1}^{\infty} E_{i} \quad, \quad \bigcup_{i=1}^{n} F_{i}=\bigcup_{i=1}^{n} E_{i} \\
& P\left(\bigcup_{i}^{\infty} E_{i}\right)=P\left(\bigcup_{i}^{\infty} F_{i}\right) \\
&=\sum_{1}^{\infty} P\left(F_{i}\right) \\
&=\lim _{n \rightarrow \infty} \sum_{1}^{n} P\left(F_{i}\right) \\
&=\lim _{n \rightarrow \infty} P\left(\bigcup_{i}^{n} F_{i}\right) \\
&=\lim _{n \rightarrow \infty} P\left(\bigcup_{i}^{n} E_{i}\right) \\
&=\lim _{n \rightarrow \infty} P\left(E_{n}\right)
\end{aligned}
$$

كه حكم را برايى دنباله صعودی اكر (است، بنابراين با توجه به معادلات قبلى داريم

$$
P\left(\bigcup_{1}^{\infty} E_{1}^{c}\right)=\lim _{n \rightarrow \infty} P\left(E_{n}^{c}\right)
$$

اما جون

$$
P\left(\left(\bigcap_{1}^{\infty} E_{i}\right)^{c}\right)=\lim _{n \rightarrow \infty} P\left(E_{n}^{c}\right)
$$

يا به عبارت معادل،

$$
1-P\left(\bigcap_{1}^{\infty} E_{1}\right)=\lim _{n \rightarrow \infty}\left[1-P\left(E_{n}\right)\right]=1-\lim _{n \rightarrow \infty} P\left(E_{n}\right)
$$

$P\left(\bigcap_{1}^{\infty} E_{i}\right)=\lim _{n \rightarrow \infty} P\left(E_{n}\right)$
كه حكم را ثابت مى كند.

 در سؤال مورد نظر اين است كه در ساعت

 الى آخر . برای اين آزمايش جديد در ساعت

از بححث فـوت ديده مى شود كـه طرز خارج كـردن مهره هاى انتـخابيى مـتفـاوت امــت زيرا
 در حـاللت دوم تمام مـهرها بالاخحـره خـارج مى شــوند. . حال فرضى كنيـد وتـتى يكـ مـهره خـارج

 در ساعت Y ا جیند مهره در جعبه خحواهد بود؟

 هنوز در جعبه باشدل . بديهى اسـت كه
$P\left(E_{n}\right)=\frac{9 \cdot 18 \cdot 27 \cdots(9 n)}{10 \cdot 19 \cdot 28 \cdots(9 n+1)}$
[برایى روشن شـدن اين مطلب، توجه كنيد كه أكر مهره شـماره́ ! بعد از n استخراج هنوز
 ^1 مهره (در موقع استخرأ) دوم در جعبه 19 مهره وجود دارد كه يكى از آنها بايد مهره شـمارها باشـد) . و الى آخر . دخرج نيز به همين صورت به دسـت مى آيد] .

$$
\begin{aligned}
& \text { عبـارتاسـت از n } \\
& \text { مى شّود كه : } \\
& \text { (مهرهُ شُماره ا در ساعت Y| داخل جحبه است) } \\
& =P\left(\bigcap_{n=1}^{\infty} E_{n}\right) \\
& =\lim _{n \rightarrow \infty} P\left(E_{n}\right) \\
& =\prod_{n=1}^{\infty}\left(\frac{9 n}{9 n+1}\right)
\end{aligned}
$$

حال نـدان مي دهيم كه

$$
\prod_{n=1}^{\infty} \frac{9 n}{9 n+1}=0
$$

$$
\prod_{n=1}^{\infty}\left(\frac{9 n}{9 n+1}\right)=\left[\prod_{n=1}^{\infty}\left(\frac{9 n+1}{9 n}\right)\right]^{-1}
$$

بس كافى اسـت نتـان دهيـم كه

$$
\prod_{n=1}^{\infty}\left(1+\frac{1}{9 n}\right)=\infty
$$

از طر فى برايى هر m¹ ، داريم

$$
\begin{aligned}
\prod_{n=1}^{\infty}\left(1+\frac{1}{9 n}\right) & \geq \prod_{n=1}^{m}\left(1+\frac{1}{9 n}\right) \\
& =\left(1+\frac{1}{9}\right)\left(1+\frac{1}{18}\right)\left(1+\frac{1}{27}\right) \cdots\left(1+\frac{1}{9 m}\right) \\
& >\frac{1}{9}+\frac{1}{18}+\frac{1}{27}+\cdots+\frac{1}{9 m} \\
& =\frac{1}{9} \sum_{i=1}^{m} \frac{1}{i}
\end{aligned}
$$

$$
\text { بنابراين إكر m } m \rightarrow \infty \text { با توجه به } \sum_{i=1}^{\infty} 1 / i=\infty
$$

$$
\prod_{n=1}^{\infty}\left(1+\frac{1}{9 n}\right)=\infty
$$

$$
\text { نـُان مى دهدكه براي } \prod^{\infty}[9 n /(9 n+1)] \text { ، } i=11,12, \ldots, 20 \text { (9n }
$$

$$
\mathrm{n}=2
$$

برل در شّر ط زير صدنت مى كند.

$$
P\left(\bigcup_{1}^{\infty} F_{i}\right) \leq \sum_{1}^{\infty} P\left(F_{i}\right)=0
$$

 | ا تخالمى خحواهد بو2.
d - V

 جڭوته مى تران تعبير كرد! ساده ترين و طبـيعى ترين تعـبير اين اسـت كـه استمـالهها در اين كزاره هـا به مـقدار اعتـقاد و

 ثـخصى يا ذهنى مى نامند.

باشيم كـه كار مارلو اسـت آن كاه منطقى است كـه فرض كتيم با • 1 در مـد كـار شـكسبـر يا مارلو
 در درازملدت تعبير كنيم، خو اص رياضى آن بدون تغيير باتى مى هاند .

هثال Y الثـ . فرض كنيـد در يكى مسابقـهُ أسب دوانى كه در آن V السـب شركت دارند شــما الحساس مى كنيد دو اسب اول • • درصد شانس بردن و اسب Y و Y هريك باقيمانده > 1 درصد شانس بردن دارند .
آيا براى شـها بهتر اسـت كه بطور مساوى شـرط بندى كنيد، كه برنده يكمى از سه اسبب اول

مل : بر مبناى احتمألهاى شـخـصى در مورد برآمدهاى مـسابقه، احتمـال برد اولين شرط
عبارت اسـت از
اسست از 0, " = 0
بايد تو جه كـرد و قتى احتمالـهأى ذهنى يكى فرد همواره با اصــول إحتمال ســاز كارند كه او

الفـ ـامروز ببارد
ب ـ فردا بـبارد
بـ اـ اصروز و فردا ببارد
تـــــا امروز يا فردا ببارد
كامـلاً امكان دارد كه بعـد از مقــدارى بررسى جوابِ اين شـخص به صبررت •\& درصد ،

- •
 را تغيير دهد .
 - أ درصد و "ף درصد)

تمرينهاى نلطرى

بثشهاى 1-1
روابط زير را 'ابات كنيد

$$
E F \subset E \subset E \cup F
$$

$$
E \subset F, \longrightarrow F^{c} \subset E^{c} .
$$

$$
-Y
$$

$F=F E \cup F E^{c}, \quad, \quad E \cup F=E \cup E^{c} F$.
$\left(\bigcup_{i}^{\infty} E_{i}\right) F=\bigcup_{1}^{\infty} E_{i} F, \quad\left(\bigcap_{1}^{\infty} E_{i}\right) \cup F=\bigcap_{i}^{\infty}\left(E_{1} \cup F\right)$.
 ناسـاز n $\bigcup_{1}^{n} F_{1}=\bigcup_{1}^{n} E_{1}$

(الف) نقط E رخ دهد.
(ب)
(ب) حداقل يكى از آنها رخ دهلـ
(ت) حداتل دونا (تاز آنها رخ دهند.
(ث) هر سه رخ ده دهند
(ج) هيج كدامر رخندهد
(ح) (حداكثر يكى از آنها رن دهد.

(د) حداكثر سه تا تالز آنها رخ دهد دهد

$(E \cup F)\left(E \cup F^{c}\right)$;
$(E \cup F)\left(E^{c} \cup F\right)\left(E \cup F^{c}\right)$;
$(E \cup F)(F \cup G)$.

 باشد، در اين صورت (\{1\},\{2\}),(\{1,2\})

(ب) ثابت كنيد كه
$T_{n+1}=1+\sum_{k=1}^{n}\binom{n}{k} T_{k}$
با امتفاده از اين مقدار T10 را محاسبه كنيد.

بعثهاى

r- ثابت كنيد
$P(E \cup F \cup G)=P(E)+P(F)+P(G)-P\left(E^{c} F G\right)-P\left(E F^{c} G\right)-P\left(E F G^{c}\right)-2 P(E F G)$. r- نامساوى بول را انابت كنيد
$P\left(\bigcup_{i}^{n} E_{i}\right) \leq \sum_{1}^{n} P\left(E_{i}\right)$
ץ
ثابت كنيد، يعنى
$P(E F) \geq P(E)+P(F)-1$

ه- نشان دهيد احتمال اين كه دتيقاً يكى از دو ريّنامد F يا رخ دمد برابر است با $P(E)+P(F)-2 P(E F)$
\&- نابت كنيد
$P\left(E F^{c}\right)=P(E)-P(E F)$
V- تابت كنيد
$P\left(E^{c} F^{c}\right)=1-P(E)-P(F)+P(E F)$
人- حكـم
r

جقدر است؟

- - - نا مسساوى بن فرونى را باستڤرا براى n بيشّامد نابت كنيد يعنى نشان دهيد كه
$P\left(E_{1} E_{2} \cdots E_{n}\right) \geq P\left(E_{1}\right)+\cdots+P\left(E_{n}\right)-(n-1)$

 تعريف مى كنيم . نابت كنيد
$A_{N}=(N-1)\left(A_{N-1}+A_{N-2}\right)$
اين رابطه را با شرايط مرزى A
هيج كدام جور نشود برابر

 IY استت. تحقين كنيدكه

نتخـتين درس استمال

$$
f_{n}=f_{n-1}+f_{n-2} \quad n \geq 2, \quad, \quad f_{0} \equiv 1, f_{1} \equiv 2
$$

 1 P_{111}. بر حسب مساسبه كنيد:
$P_{10}=144 / 2^{10}=.141$.
جواب :
 تمام نتـاط نفـــاى نمونه نمى توانند هـم إحـتـمـال باششند . آيا آحتــمـال رخ دادن تمام نتـاط هي تواند مثبت باشد؟
أ

$$
P\{\ldots \xi+k\}=2 \frac{\binom{m-1}{k-1}\binom{n-1}{k-1}}{\binom{m+n}{n}}
$$

$P[\because \xi k+1]=\frac{\binom{m-1}{k-1}\binom{n-1}{k}+\binom{m-1}{k}\binom{n-1}{k-1}}{\binom{m+n}{n}}$
10 - با الستفاده از نا مساوى بول برايى تعداد متناهى پيشُامل، نشـان دهيد براي هر دنبالهُ نا متناهى

$P\left(\bigcup_{1}^{\infty} E_{i}\right) \leq \sum_{1}^{\infty} P\left(E_{i}\right)$

$$
P\left(\bigcap_{1}^{\infty} E_{1}\right)=1 \text { \& }
$$

liv مجموعه تمام برآمدهايى كه در بينهايت نتشان دهيد كه
$\lim \sup E_{i}=\bigcap_{n=1}^{\infty} \bigcup_{i=n}^{\infty} E_{i}$
^ 1 - نتـــان دهيد كـه اگر است و بيان می كند كـه اكر دهد برابر 0 الست .

راهنمايى : از نامساوى زير استفاده كنيل
$\limsup E_{i} \equiv \bigcap_{n=1}^{\infty} \bigcup_{i=n}^{\infty} E_{i} \subset \bigcup_{i=n}^{\infty} E_{i}$

مسانٌل

Yخشهاى 1

 يك مهره از جعبه و سبس قراردادن آن در جعبه و الستخراج مهره دوم از آن ، فضاى نمونه را

 (C, B B A - Y
 $S=\left\{\begin{array}{l}1,01,001,0001, \ldots, \\ 0000 \cdots\end{array}\right.$

فرض كنيدابتدا A سكه را يرتابس مى كندسِس B وازآخر C وبه ممين ترتيب الى آخر .

بغشهای

 اين روزنامه ها را مى خوانند به ترار زير امـت :

I و III : III : درصد

- • • درصرصد ، I: II I I
(اين فهرسـت به عنوان مثال فرض مى كند كه ه A • نفر روزنامه I و II زا مى خورانند) (الف) تعداد افر ادى را يِدا كنبد كه فتط يك روزنامه را مى خو انند

 و يك روزنامه عصر را مى خوانند؟
(ت) جند نفر نقط يك روزنامه مبـع و يك روزنامه عصر را مى خو انند ؟
Y- داده هاى زير از مطالعهُ يك گروه " • " ا نفرى از مـشتركين يك مجله بـه دست آمدهامست :

 نشان دهيد كه تعداد گزارش داده شـده بايد اهتباه باشد .

$$
\begin{aligned}
& \text { (الف) نضاى نمونه را تعبير كنيد . } \\
& \text { (ب) بيشاملهاى زير را بر حسب S تعريف كنيد . } \\
& \text { A = برنده شوو A (i) } \\
& \text { B = برنده تُـود B (ii) } \\
& (\mathrm{AUB})^{\mathrm{C}} \text { (iii) }
\end{aligned}
$$

 F- ا اكر فرض كنبم است:

 و d هم متمايز باشنـند (ب) دو جفت ؟ (يعنى ورنها به صورت a و a و b و bو c باشُد به تسمتى كه a و b و c متمايز باشند) . (ت) سه ورن از يكى خال ؟ (يعنى ورتها بهصورت a و a و و b و c ب باشُد به تــــتى كه
متمازى باشند) .

$$
\begin{aligned}
& \text { (الف) } \\
& \text { P (يك جفت) = •, Fgr (ب) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { P(سه تا مساوى)=• } 10 \text { OY (ت) }
\end{aligned}
$$

 باشد

^- اكر دو تـاس ريختـه شونــد، احتمال آن كه مجموع آنها برابر i ن شود جقدر است؟ آن را برايى . i = 2, 3, . ., 12

 - ا- يكى بازى با تاس بهصورت زير است:

 برد بازيكن را در اين بازى محاسببر كيد .

راهنماعى : فرض كنبد $E_{i, n}$ است

$$
P\left(E_{1}\right)=\sum_{n=1}^{\infty} P\left(E_{,, i}\right) \text { كنيد. ثابث كنيد }
$$

IY

 كرده و آن را اتبل از استخراج مـهرا جايگذارى كويـم
ז

سياه است. اكر مهرهأى بتصـادف از هر جعبه انتخاب شود، الحتمال آن كه مهرهها همرنگ بائـند جقدر است ؟

 (b+g)! جقدر است؟

 كنبد . جه فرخهايه را در نظر مى كيريد .

 جقدر است؟

 YY ز

كليدهايی كه در را باز نـى كنند كنار بكذارد، احتمال اين كه در رأ با كليلـ k ام باز كند جقدر
اسـ؟ اكر كلبدها را كنار نگذارد اين احتمال جقدر خخراهد بود؟

F F Y Y • - Y F ماه ديگر شامل ץ
 اين كه تعداد مردان هر دو كروه يكسـان باشند جقدر امـت؟

باشد پقدر امـت؟
 مهره در محل اول قرار كيرد . فرض كنيد تمام N N ترتيب هم احتمال
 سه كفثّ آن (الف) جفت نباشد ر (ب؟) دقيقا يك جفت باشمل جقدر است؟

سفيد هـم اتاقى باشـند .
 يهلوى ڤمسرش ترار نيگيرد .
 جوابب به صورت زير نيست
$\frac{\binom{4}{1}\binom{39}{13}}{\binom{52}{13}}$

PGm

احتمال شرطى و استقلال

4030-1

در اين نصل يكى از مـهـمنـرين مفـاهيم نظريئ أحتـمـال يعنى احتـمـال شرطـى را معرنى

 مى دهد، احتمالهاى مورد نظر را ساده تر محاسبه كنبم.

Y - إتمالهاى شرطى

 موردنظر

 كهر رخ داده استه مى نامند و با
$P(E \mid F)$
نشان داده مى نـود.

 اين كه بيســامد EIF رخ دهد برابر است با احتـمال EF نسـبت به احتمال F . ـيعنى تعريف زير راداريم

تعريف

اكثر
$P(E \mid F)=\frac{P(E F)}{P(F)}$
 نمونئ در هر دو يرتاب شُبر ظاهر شود، در صورتى كه مى دانيم برتاب اول ثـير بوده است جقدر است؟
 اول شُير باشند، در اين صورت احتمال مطلوب عبارت است از

$$
\begin{aligned}
P(E \mid F) & =\frac{P(E F)}{P(F)} \\
& =\frac{P(\{(H, H)\})}{P(\{(H, H),(H, T)\})} \\
& =\frac{1}{4} \frac{1}{4}=\frac{1}{2}
\end{aligned}
$$

مهره الى بتصادف از كيـسه انتخاب سُده و مشاهله مي شود كه اين مهره سـياه نيسـت . احتمال اين كه مهره زرد باشد هقدر اسـت.

معادلئ (Y- ا داريمـ
$P\left(Y \mid B^{c}\right)=\frac{P\left(Y B^{c}\right)}{P\left(B^{c}\right)}$
با وجـود اين، YB بنابراين، با اين فرض كه انتخاب هريك از $P\left(Y \mid B^{c}\right)=\frac{\frac{5}{25}}{\frac{15}{25}}=\frac{1}{3}$

بايد تو جه داشتـت كه اين احتمال را مى توانستيهم با در نظر كُرفتن نضـاى نمونه كاهش يافته

وتتى كه كليه بيثـامدهاى ساده را هم احتمال فرض مي كنيم، غالبآ محـاسبهُ يكـ احتمال
 مثال Y ب ـ در بازى بريج ، Y Y كارت بطور مـسـاوى بين F بازيكن مـرمـوم به شـرت،

قل : سساده ترين راه براى حـل اين مســاله احتمـالاً امستفـاده از فخـاى نمونهُ كـاهس يافتـ

 داشته باشد برابر است با $\frac{\binom{5}{3}\binom{21}{10}}{\binom{26}{13}}=.339$

مثال Y ت :مؤسسه الى كه آقاى حامد در آن كار مى كند يك مهمانى شام بدر - يسر ، برأى كـارمندانى كـه حداقل يكي فـرزند ســر دارند ترتيب داده است. هريك از اين كـارهندان به هـمـراه

 بزر كتر يسر و فرزند كو جكتر دختر است] .

קل : دانستن اين كـه حامل بـه مهمـانى شُام دعـوت شده اسـت هـم ارز با اين اســت كه وى

 مى آيد

$$
\begin{aligned}
P(E \mid F) & =\frac{P(E F)}{P(F)} \\
& =\frac{P(\{(b, b)\})}{P(\{(b, b),(b, g),(g, b)\})}=\frac{\frac{1}{4}}{\frac{3}{4}}=\frac{1}{3}
\end{aligned}
$$

 آقاى حامد كه در مهمانى شركت نكرده است با احتـمال مسـاوى يسر يا دختر است . زيرا در ابتدا
 الستبا دانستن اين كه اين برآمد (g, g) نيست هـم ارز است . بنابراين برأى ماسه برآمد هـم احتمال باتى مى مـاند كـه نشـان مى دهد اين نـرزند حــامـلـ كـه در مهـــانى شــركت (g, b), (b, g), (b, b)

نهى كند احتمال دختر بودنن دو برابر بسر بودن است.

$$
\begin{equation*}
P(E F)=P(F) P(E \mid F) \tag{Y-Y}
\end{equation*}
$$

معادلd (Y-Y) بيانكر آن است كه احتمال رويداد F F برابر احتمال رويداد F F خربب در احتمال
 احتمال الشترالك بيشّامدها بسسيار ميدي استى

 (آ) در درس فرانــه را
 جقدر است؟

 (Y-Y) به صورت زير محاسبه مى شمود.

$$
\begin{aligned}
P(C A) & =P(C) P(A \mid C) \\
& =\left(\frac{1}{2}\right)(1)=\frac{1}{6}
\end{aligned}
$$

مثال

 كلوله هاى باتيهـانده در كيـــه واضح است كه

$$
\begin{aligned}
P\left(R_{1} R_{2}\right) & =P\left(R_{1}\right) P\left(R_{2} \mid R_{1}\right) \\
& =\left(\frac{2}{3}\right)\left(\frac{7}{11}\right)=\frac{14}{33}
\end{aligned}
$$

واضح است كه اين احتمال را مى توانستهم از

$P\left(R_{1} R_{2}\right)=\frac{\binom{8}{2}}{\binom{12}{2}}$
مهاسبه كنيم

r- كرمول بيز

نرض كنيذ E E دو يبشامد باشند، E را مى توان به عورت زير نوشت
$E=E F \cup E F^{c}$

لس براي اين كه نقطهاى در E باشـد، اين نقطه يا بايد هـم در E و هـم در F باشـد يا در E توده ولى
 (r)

$$
\begin{align*}
P(E) & =P(E F)+P\left(E F^{c}\right) \\
& =P(E \mid F) P(F)+P\left(E \mid F^{c}\right) P\left(F^{c}\right) \\
& =P(E \mid F) P(F)+P\left(E \mid F^{c}\right)[1-P(F)] \tag{1-r}
\end{align*}
$$

مهادله (شتر طى E در صورتى كه مى دانيم F رخ داده انست و احتمال شـرطى E با فرض اين كه F رخ نداده
 است. أين نرمول بسيارسودمند المت زيرا با المتفاده از آن مى توانيمماحتمال يكي بيشـامد را ابتدا با

مسُروط كردن آن بررن دادن يا رخندادن يك يسنامدتعبين كنيم • يعنى موارد زيادى وجود دارد كه
 داده يانداده است محاسبه آن ساده است ، باحجندمثال آن راتوضيع مي دهيمم . مثــلا به دو كروه تقـيمي كرد: گروهي كه مستعد تصادف انل و كروهي كه نيستند . آمارهاى اين شر كت

 اسـت، الحتـمال اين كه بيـمه كذار جــيدى درظرف ملـت بكـ سـال از ترار داد بيــه ، يكى تصـادف داشته باشد جقدر است؟

قل : احتمـال مطلوب را ابتدا با شرط اين كه آيا بيمـه كذار مستعد تصــادف اسـت يا نحير،

 در اين صورت احتمال مطلوب P(A) عبارت است از

$$
\begin{aligned}
P\left(A_{1}\right) & =P\left(A_{\mid} \mid A\right) P(A)+P\left(A_{1} \mid A^{c}\right) P\left(A^{c}\right) \\
& =(.4)(.3)+(.2)(.7)=.26
\end{aligned}
$$

 يكى تصادف دارد. الحتمال اين كه اين فرد مستعد تصادف باشد جقدر است؟

$$
\begin{aligned}
P\left(A \mid A_{1}\right) & =\frac{P\left(A A_{1}\right)}{P\left(A_{1}\right)} \\
& =\frac{P(A) P\left(A_{1} \mid A\right)}{P\left(A_{1}\right)} \\
& =\frac{(.3)(.4)}{.26}=\frac{6}{13} .
\end{aligned}
$$

 الحتمالى كه باسـخ را حدس مى زند . فرض كنيد دانــشجويع كه باسـخ را حدس مي زند با الحتمال

سؤال را بداند در صورتى كه مى دانيم بهآن بامسخ درست داده است هحقدر است؟ حل : فرض كنيد C C, به ترتيب يسشامدى را كه اين دانشـجو به سؤال بامـخ درست دهد و مِشامدى را كه وى واتعاً باستخ را مى داند است نمايش دهند . اكنون

$$
\begin{aligned}
P(K \mid C) & =\frac{P(K C)}{P(C)} \\
& =\frac{P(C \mid K) P(K)}{P(C \mid K) P(K)+P\left(C \mid K^{c}\right) P\left(K^{c}\right)} \\
& =\frac{p}{p+(1 / m)(1-p)} \\
& =\frac{m p}{1+(m-1) p}
\end{aligned}
$$

 بامس درست داده مى دانسته است برابر $\frac{\Delta}{9}$ است.

 شود، با احتمال (" • نتـيجـه اين آزمون او را بيـمار تشــخيص مى دهد) . اكـر ه, " درصد اين جامعه واتعأ مهنلا به أين بيمارى باتُند، احتمال اين كه فردى مبنلا به بيمارى بانـد در صورتى كه مى دانيـم نتيجهُ آزمون مثبت است، جقدر اسـت؟ مل : فرض كنيد D يـشامدى را كه فرد مورد آزمون مبتلا است و E يسشامدى را كه نتيجهُ آزمون مشبت است نمايش دهند . احتمال مطلوب P(D | E از رابطهُ زير به دست مى آيد . $P(D \mid E)=\frac{P(D E)}{P(E)}$

$$
=\frac{P(E \mid D) P(D)}{P(E \mid D) P(D)+P\left(E \mid D^{c}\right) P\left(D^{c}\right)}
$$

$$
=\frac{(.95)(.005)}{(.95)(.005)+(.01)(.995)}=\frac{95}{294} \approx .323
$$

بنابراين تنها Y Y درصد از افرادى كـه نتيجه آزمـون آنها مثبت مى شود واتـعـآ مبتـلا به بيمارى اند .

 الحتمالا ارزش اين را دارد كه استدلال ديكرى را هر جند ضعيف تر الز اولى، كه ملموستر استر است، در زير ارائه دهيم.

 مى كند كه فردى بيمار است برابر است باربا

$$
\frac{.95}{.95+(199)(.01)}=\frac{95}{294} \approx .323
$$

 ارزيابى كنيم نبز سودمند واتع مى شود، منالهاى زير را در نظر بگيريد . مثـل

جراحى فورى؟

 بهد دستمى آيد.

$$
\begin{aligned}
P(D \mid E) & =\frac{P(D E)}{P(E)} \\
& =\frac{P(D) P(E \mid D)}{P(E \mid D) P(D)+P\left(E \mid D^{c}\right) P\left(D^{c}\right)} \\
& =\frac{(.6) 1}{1(.6)+(.3)(.4)} \\
& =.833
\end{aligned}
$$

توجه داشته باششبد كـه احتمال نتيجه آزمون مبّبت با شر ط اين كه آيا شــخص مبتلا به بيمارى است
 يك نتيجهُ مبتـ، در حالى كه مى دانيم فرد مبتلا نيست يعنى
 بايد عمل جراحى را تجويز كند .

 مشتخصه|ست؟

قل : فرض كنيد G بيشّشاملى را كه متهم كَناهكار است و C يـيّشامدى را كه وى داراى

$$
\begin{aligned}
P(G \mid C) & =\frac{P(G C)}{P(C)} \\
& =\frac{P(C \mid G) P(G)}{P(C \mid G) P(G)+P\left(C \mid G^{c}\right) P\left(G^{c}\right)} \\
& =\frac{1(.6)}{1(.6)+(.2)(.4)} \\
& =.882
\end{aligned}
$$

 استت برابر Y / ، بینیى نــبتى از بجامعه كه دارالى اين مشغخصه است .

 استـفاده از عـلامات انگگشـتان ثــلـ كه مى تـوانست تعداد تلبـها در دست بازيكنان را نشـان دهـد .
 تشكيل شلد . اين بحلسـه بـه شـكل فرآينلدى رسمىى با يك دادستان و تيم دنـاع بود، كه هو دو تدرت احضار و باز هرسي و روبروسازى از شاهدان را داشُتند. در طى اين فرآينلها، داديار هحنل دست بازی خـاصى را كـه توسط ريس و پـآيـر و بازی ثــلـ، بررسي و اعـلام كرد كـه بازى آتهـا در اين
 استت . در اين مـرحله، وكـيل ملانع، خـاطرنشـان مى سـازد كـه بازى آنهـا در اين دسـتهـا با بازى
 فرض گ:اهكارى ساز گار امست، اين امر بايستى ملركي مؤيل اين فرض مسحسوبت ثمود ـ نظر شـما در بارهُ اين استل لال شُاكيان حيسـت؟

 جـيل را، آن گاه

$$
\begin{align*}
P(H \mid E) & =\frac{P(H E)}{P(E)} \tag{Y-Y}\\
& =\frac{P(E \mid H) P(H)}{P(E \mid H) P(H)+P\left(E \mid H^{c}\right)[1-P(H)]}
\end{align*}
$$

كه در آن P(H) ارزيابى مـا از درستي فرض قبل از دخـالت اين مــرك جـديد امـت . اين مــركـ
 . $\mathrm{P}(\mathrm{H} \mid \mathrm{E}) \geq \mathrm{P}(\mathrm{H})$
$P(E \mid H) \geq P(E \mid H) P(H)+P\left(E \mid H^{c}\right)[1-P(H)]$
يا هـم ارز با آن، هر كاه.
$P(E \mid H) \geq P\left(E \mid H^{c}\right)$
 وتوع آن وتتى اين فرض درست المت بيـتّر از وتتى باشد كه فرض نادر مـت امست. در حقيقت، احتمال جديد اين فرض به احتمال اوليه آن و نسبت اين احتمـالهانى شمرطى بستگّى دارد، زيرا از $P(H \mid E)=\frac{P(H)}{P(H)+[1-P(H)] \frac{P\left(E \mid H^{c}\right)}{P(E \mid H)}}$

معادلئ (Y-Y)

جون در مـــأله مورد بحتث، إيـن بازتى ورتهـا را تنهـا در حـورتى مى توان تقـويت كنتله

 اظهاراتت مبنى بر اين كه أين ملرك فرض كناهكارىى را تقويت مى كند معتبر نيــت .
 بيشاملدهاى دو به دو ناساز گار بامــند، بطورى كه
$\bigcup_{i=1}^{n} F_{i}=S$
به بيان ديگُر، دتيقآ يكى از بيّثامدهاىى F $E=\bigcup_{i=1}^{n} E F_{i}$

$$
\begin{align*}
P(E) & =\sum_{i=1}^{n} P\left(E F_{i}\right) \\
& =\sum_{i=1}^{n} P\left(E \mid F_{i}\right) P\left(F_{i}\right)
\end{align*}
$$

بنابراين معادلُ (r-r) نشان مى دهد كه برای يسـنامدماى مفروض

 داده است. بنابر معادلهُ (r-r) حكم زير را داريـم .

$$
\begin{align*}
P\left(F_{i} \mid E\right) & =\frac{P\left(E F_{j}\right)}{P(E)} \\
& =\frac{P\left(E \mid F_{j}\right) P\left(F_{j}\right)}{\sum_{i=1}^{n} P\left(E \mid F_{i}\right) P\left(F_{i}\right)} \tag{F-r}
\end{align*}
$$

 است . الكر يششامدماى F
 آزمايش حكمفر ماست (يعنى

 بيـدا ثــود در صورنى كـه مواييمـا در حفـيفت در اين منطفـه است، i = 1, 2,3 ، نشان مى دهد

 در صورنى كه مى دانيم جـستجبوى منطقه \mid بدون نتيجه بوده است ؟
 بيشامدى را كه جستجوى منطقه ا نا مونق بوده است نـنان مى دمد . از فرمول بيز داريم

$$
\begin{aligned}
P\left(R_{1} \mid E\right) & =\frac{P\left(E R_{1}\right)}{P(E)} \\
& =\frac{P\left(E \mid R_{1}\right) P\left(R_{1}\right)}{\sum_{i=1}^{3} P\left(E \mid R_{i}\right) P\left(R_{i}\right)} \\
& =\frac{\left(\alpha_{1}\right)^{\frac{1}{3}}}{\left(\alpha_{1}\right)^{\frac{1}{3}}+(1)^{\frac{1}{3}}+(1)^{\frac{1}{3}}} \\
& =\frac{\alpha_{1}}{\alpha_{1}+2}
\end{aligned}
$$

برای j=2,3

$$
\begin{aligned}
P\left(R_{j} \mid E\right) & =\frac{P\left(E \mid R_{i}\right) P\left(R_{i}\right)}{P(E)} \\
& =\frac{(1)^{\frac{1}{3}}}{\left(\alpha_{i}\right)^{\frac{1}{3}+\frac{1}{3}}+\frac{1}{3}} \\
& =\frac{1}{\alpha_{1}+2}, \quad j=2,3
\end{aligned}
$$

مــال بعدى، غالبآ توسط داننـجريان آكاه به احتمال | برايى بردن بول از دوستـان نا آكاه خود مورد استفاده ترار مى كيرد.

 باشد، احتمال اين كه طرف ديگُش به رنگ مشُكى باشد جیفدر است؟

 بهدست مى آيد.

$$
\begin{aligned}
P(R B \mid R) & =\frac{P(R B \cap R)}{P(R)} \\
& =\frac{P(R \mid R B) P(R B)}{P(R \mid R R) P(R R)+P(R \mid R B) P(R B)+P(R \mid B B) P(B B)} \\
& =\frac{\left(\frac{1}{2}\right)\left(\frac{1}{3}\right)}{(1)\left(\frac{1}{3}\right)+\left(\frac{1}{2}\right)\left(\frac{1}{3}\right)+0\left(\frac{1}{3}\right)}=\frac{1}{3}
\end{aligned}
$$

بنابراين بامخخ برابر

 رو شـود و به همــين ترتيب اللى آخحر : جون طرن

مثال

 تلفن خود را بدهند . حلود Vه درصد موارد را يكى ملدكار اجتماعى در همان روز تلفنى پاسـخ
 كيـرنده الى از كلينيكـ به منظور مـــــاوره ديدن كسند برابر ^, * است اگــر وى بلافـاصله مــونق

ديدن مى كتند ؟

دريافت نكرده اند .

$$
\begin{aligned}
& \text {. تماس كيرنده از كلينيكي براي مشناوره ديلن مى كـد }
\end{aligned}
$$

. تماس كيرنده بلافاصله با يكى مددكار اجتماعى مكالمه مى كند :
: S
伿 : F
در اين صورت

$$
\begin{aligned}
P(V) & =P(V \mid I) P(I)+P(V \mid S) P(S)+P(V \mid F) P(F) \\
& =(.8)(.6)+(.6)(.4)(.75)+(.4)(.4)(.25) \\
& =.70
\end{aligned}
$$

 باسـخ داديم و برايى باستخ دادن به (Y) تو جه داريم
$P(I \mid V)=\frac{P(V \mid I) P(I)}{P(V)}$

$$
=\frac{(.8)(.6)}{.7}=.686
$$

 يكى مددكار اجتتاعى دريافت كرده اند.

Y- يـيملمدهاى مستئل

 عمـومآ با الحتمال غيـر شرطى E يعنى P(E) برابر نيست . به بيان ديكر، اكر بدانيم كه F ر ر د داده

 وتوع F ، احتمال ر خدوادن E را تغيير ندهد. . خون P(E|F) $=\frac{P(E F)}{P(F)}$ ، مشاهده مى كنيبم E مستقل از F أست اكر
$P(E F)=P(E) P(F)$
 بائـد، F نيز مستقل از E الست. بنابراين تعريف زير را داريـم .
دو يـشـامد E F F كه مستتل نباشُند نامستقل ناميده مى شوند.

 - $P(F)=\frac{13}{52}, P(E)=\frac{4}{52}$ در حالى $P(E F)=\frac{1}{52}$

 $\cdot \mathrm{P}(\mathrm{F})=\mathrm{P}(\{(\mathrm{H}, \mathrm{T}),(\mathrm{T}, \mathrm{T})\})=\frac{1}{2}, \mathrm{P}(\mathrm{E})=\mathrm{P}(\{(\mathrm{H}, \mathrm{H}),(\mathrm{H}, \mathrm{T})\})=\frac{1}{2} \mathrm{~S}$

$$
P\left(E_{1} F\right)=P(\{(4,2)\})=\frac{1}{36}
$$

$P\left(E_{1}\right) P(F)=\left(\frac{5}{36}\right)\left(\frac{1}{6}\right)=\frac{5}{216}$

 را ظاهر كند باعث نحر سـندى اسـت زيرا در اين صورت امكان بهد انسـت آوردن مجموع كل برابر 9 هنوز برایى مـا وجـود دارد ـ از سـوى ديحر اكـر تاس اول 9 بيـايد مـوجب نا نا

 اكنون فرض كنيد كه
مى دهد . آبا E2 مستقل از F أسـت؟ باسِ مثبت اسـت، زيرا
$P\left(E_{2} F\right)=P(\{(4,3)\})=\frac{1}{36}$
در حالى كه
$P\left(E_{2}\right) P(F)=\left(\frac{1}{6}\right)\left(\frac{1}{6}\right)=\frac{1}{36}$

تاس اول اسـت به خو اننده واگذار مى شود .

مثال Y ت. اكر E يُشـامدى را كـه "رئيس جمهور آينده از حزبب جـمهورى خواه اسـت" و F

 مى گريد در ظرف دو سـال بعد از انتخابات جنگ بز

حكـم 4-1
اكر E F E مستقل بانـند، E F F F نيز مستقلند
 دو بهدو ناسـاز كارند، داريم

$$
\begin{aligned}
P(E) & =P(E F)+P\left(E F^{c}\right) \\
& =P(E) P(F)+P\left(E F^{c}\right)
\end{aligned}
$$

> يا هم ارز آن

$$
\begin{aligned}
P\left(E F^{c}\right) & =P(E)[1-P(F)] \\
& =P(E) P\left(F^{c}\right)
\end{aligned}
$$

 باسخ بطور غيرمتظر

 مستقلند ـ بنابراين به تعريف زير رهنمون مى نمويم:

تعريف
سه يسشامد G F ، E مستنل كفته مى شوند هر كاه

$$
\begin{aligned}
P(E F G) & =P(E) P(F) P(G) \\
P(E F) & =P(E) P(F) \\
P(E G) & =P(E) P(G) \\
P(F G) & =P(F) P(G)
\end{aligned}
$$

 بينّامدها داشتّه باثشبم
$P\left(E_{1} \cdot E_{2} \cdots E_{r}^{\prime}\right)=P\left(E_{1}\right) P\left(E_{2}\right) \cdots P\left(E_{r}^{\prime}\right)$
 متتامى از اين يــنامدها مستقل باثـد.

 آزمايشها ناميله مى شـرند.

 ا- لااقل

 بيشنامـديك شكست در آزمايش أ ام را نـنـان دهد، الحتمال هيج بيروزى ، بنا بر المستقلال، برابر

$$
P\left(E_{1} E_{2} \cdots E_{n}\right)=P\left(E_{1}\right) P\left(E_{2}\right) \cdots P\left(E_{n}\right)=(1-p)^{\prime \prime}
$$

بنابر اين باسخ (1) برابر أمت با "p - 1) -- . .
 شكست الست درنظر مى كيريم ـ هريك از اين دنباله ها ، بنا بر فرض استقلال آزمايشها ، با الحتمال

$$
P(\text { (دقيقآ } k \text { يروزى) })=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

براى باسخ دادن به (Y) ، بنابر (() توجـه داريـم احتـمــال ايـن كـه تمام n بيـنــامـد اول به يروزى منجر شـود با رابطه زير داده مى شـود

$$
P\left(E_{1}^{c} E_{2}^{c} \cdots E_{n}^{c}\right)=p^{n}
$$

$$
\text { P(} \left.\bigcap_{1}^{\infty} E_{i}^{c}\right) \text { با رابط؛ زير داده مى شود }
$$

$$
\begin{aligned}
P\left(\bigcap_{i-1}^{\infty} E_{i}^{c}\right) & =P\left(\lim _{n \rightarrow \infty} \bigcap_{-1}^{n} E_{i}^{c}\right) \\
& =\lim _{n \rightarrow \infty} P\left(\bigcap_{i-1}^{n} E_{i}^{c}\right) \\
& =\lim _{n} p^{n}= \begin{cases}0 & \text { if } p<1 \\
1 & \text { if } p=1\end{cases}
\end{aligned}
$$

مـــل

حل : فرض كنيد A يسنامدى را كه تطعه i كار مى كند نمايش دهد. در اين مورت

P $\{$ [سيستم كار كند $\}=1$ - P $\{$ [سيستم كار نكند

$$
\begin{aligned}
& =1-P[\text { كليه تطعات كار نكند }\} \\
& =1-P\left(\bigcap_{i} A_{i}^{c}\right) \\
& =1-\prod_{i=1}^{n}\left(1-p_{i}\right) \quad
\end{aligned}
$$

مثال
 يك برتاب، مجموع خالهاى تاسهاستـ؟ حل : الكر En ييشامـدى را كه هيج اn ام هاهر شود را نمايش دهد، احتمال مطلوب برابر است با

$$
P\left(\bigcup_{n=1}^{\infty} E_{n}\right)=\sum_{n=1}^{\infty} P\left(E_{n}\right)
$$

اكنون، جون آزماينـها داريم

$$
P\left(E_{n}\right)=\left(1-\frac{16}{3 n}\right)^{--1} \cdot \frac{4}{36}
$$

و بنابراين

$$
\begin{aligned}
P\left(\bigcup_{n=1}^{\infty} E_{n}\right) & =\left(\frac{1}{9}\right) \sum_{n=1}^{\infty}\left(\frac{13}{18}\right)^{n-1} \\
& =\frac{1}{9} \frac{1}{1-\frac{13}{18}} \\
& =\frac{2}{5}
\end{aligned}
$$

E اين نتيجهـ را مى توانـــتيم با المتـفاده از احتـمالهـاى شرطى نيز به دسـت آوريم، اكـر

بيشّاملى را كه يك ه تبل از V رخ دهد نمايش دهد، مى توان استمال مطلوب P(E) را با شُرطلى كردن بر برآمد آزمايش اول به صورت زير بهدست آّررد : نرض كنيد F بيشـاملـى كه آزمايش اول
 يا V نباشُد را نشان مى دهد و حون EF \cup EG \cup EH ، داريم

$$
P(E)=P(E F)+P(E G)+P(E H)
$$

$$
=P(E \mid F) P(F)+P(E \mid G) P(G)+P(E \mid H) P(H)
$$

با وجرد اين
$P(E \mid F)=1$
$P(E \mid G)=0$
$P(E \mid H)=P(E)$

 , $\mathrm{p}(\mathrm{H})=\frac{26}{36}, \mathrm{PG}=\frac{6}{36}, \mathrm{P}(\mathrm{F})=\frac{4}{36}$ $P(E)=\frac{1}{4}+P(E)_{1 \frac{13}{14}}$
$P(E)=\frac{2}{5}$
 -

 ييشامد F رخ دمد برابر است با $\frac{P(E)}{P(E)+P(F)}$

مثال بعدى مسأله الى را كه جايكاه والايى در تاريخ نظريئ احتمال دارد ارائه مى كند ـ أين

 (امتياز جزئى؟ مستند، جايزه را جكونه بايد تقسيبم كرد؟

 دامُتهبابـد

بالسكال بعضى حالات خاص راح راحل كرد و مهـتر آن كه مكاتبه با فرانسوى مـنهور فرما

روبهر رـد نهاد.

 ديكر نياز دارد برنده شُود ادامه يِدا كند.

حل :دو راه حل اراياثه مى دهيم كه اولى از فرما و دومى از باسـكال است.
 شرطى كردن برآمد آزمايش اول داريم (جرا؟ دلبل بياوريد)
$P_{n, m}=p P_{n-1, m}+(1-p) P_{n, m-1} \quad n \geq 1, m \geq 1$
بـا استفـاده از مرايـط مـرزى آتثكـار به مى كيريم

 n يروزى قبل از m شـكـست برابر است با $P_{n, m}=\sum_{k=n}^{m+n-1}\binom{m+n-1}{k} p^{k}(1-p)^{m+n-1-k}$

راه حل ديكرى از مسالهُ امتبازها در مساله نظرى ي

 امتياز و دومى هيج امتيازى ندايثته باثـد ، در اين صورت بازيكن اول سز اوار

$$
2 A P_{n-1, n}=2 A \sum_{k=n-1}^{2 n-2}\binom{2 n-2}{k}\left(\frac{1}{2}\right)^{2 n-2}
$$

$$
\begin{aligned}
& \text { اكنون } \\
& \sum_{k=n-1}^{2 n-2}\binom{2 n-2}{k}=\sum_{k=n-1}^{2 n-2}\binom{2 n-2}{2 n-2-k} \\
& =\sum_{i=n-1}^{0}\binom{2 n-2}{i} \\
& \text { كه در آن تساوى اخحير از جانـتينح } \\
& 2 \sum_{k=n-1}^{2 n-2}\binom{2 n-2}{k}=\sum_{k=0}^{2 n-2}\binom{2 n-2}{k}+\binom{2 n-2}{n-1} \\
& =(1+1)^{2 n-2}+\binom{2 n-2}{n-1}
\end{aligned}
$$

و به اين ترتيب بازيكن اول سزاوار
$A\left[I+\left(\frac{1}{2}\right)^{2 n-2}\binom{2 n-2}{n-1}\right]$
مى باشد .
مثال بعدى با مسأله مشهورى به نام مسآلّك ورشكستگى تمارباز سرو كار دارد. مثال ९ د: مسـأنه ورشكستگي تمارباز ـدو تـمار باز A A B بر روى برآمدهاي برتابهاى

 N - i ا C B

$$
\begin{aligned}
P_{i}=P(E) & =P(E \mid H) P(H)+P\left(E \mid H^{c}\right) P\left(H^{c}\right) \\
& =p P(E \mid H)+(1-p) P\left(E \mid H^{c}\right)
\end{aligned}
$$

اكنون با فرض اين كـه برتاب ارل شير آمده بـاشد، وضعيت بعـد از اولين شرط اين اسـت

الحتمال مشترلك p براي شير فرض شده اند، نتيجه مى شُود كه از اين نتطه به بعد، احتمال اين كه

 $P(E \mid H)=P_{i+1}$

و بطور مشابه
$P\left(E \mid H^{c}\right)=P_{t-1}$
بنابراين با قرار دادن q q = 1 - حاصل مى شـود
$P_{i}=p P_{1+1}+q P_{1-1} \quad i=1,2, \ldots, N-1$
با استتفـاده از مــرايط مـرزى واضح PN جون p+q=1 ، اين معادلات با
$p P_{i}+q P_{i}=p P_{i+1}+q P_{i-a}$
$P_{1+1}-P_{1}=\frac{q}{p}\left(P_{i}-P_{1-1}\right) \quad i=1,2, \ldots, N-1$
هم ارزند . حون

$$
\begin{align*}
& P_{2}-P_{1}=\frac{q}{p}\left(P_{1}-P_{0}\right)=\frac{q}{p} P_{1} \\
& P_{3}-P_{2}=\frac{q}{p}\left(P_{2}-P_{1}\right)=\left(\frac{q}{p}\right)^{2} P_{1} \\
& \vdots \\
& P_{1}-P_{1-1}=\frac{q}{p}\left(P_{1-1}-P_{1-2}\right)=\left(\frac{q}{p}\right)^{i-1} P_{1} \\
& \vdots \\
& P_{N}-P_{N-1}=\frac{q}{p}\left(P_{N-1}-P_{N-2}\right)=\left(\frac{q}{p}\right)^{N-1} P_{1}
\end{align*}
$$

نتخستين درم ا-حتمال

$$
\begin{aligned}
& \text { با جمع كردن i i معادله اول (f-Y) نتيجه مي شود } \\
& P_{1}-P_{1}=P_{1}\left[\left(\frac{q}{p}\right)+\left(\frac{q}{p}\right)^{2}+\cdots+\left(\frac{q}{p}\right)^{1-1}\right] \\
& P_{i}= \begin{cases}\frac{1-(q / p)^{i}}{1-(q / p)} P_{1} & , \frac{q}{p} \neq 1 \\
i P_{1} & , \frac{q}{p}=1\end{cases} \\
& \text { اكنون، با استفاده از اين واقعيت كه } 1 \text { P } 1 \text { ، داريم } \\
& P_{1}= \begin{cases}\frac{1-(q / p)}{1-(q / p)^{N}} & , p \neq \frac{1}{2} \\
\frac{1}{N} & , p=\frac{1}{2}\end{cases}
\end{aligned}
$$

و بنابر اين

$$
P_{i}= \begin{cases}\frac{1-(q / p)^{i}}{1-(q / p)^{N}} & , p \neq \frac{1}{2} \\ \frac{i}{N} & , p=\frac{1}{2}\end{cases}
$$

 N -i

$$
Q_{1}= \begin{cases}\frac{1-(p / q)^{N-i}}{1-(p / q)^{N}} & \text { if } q \neq \frac{1}{2} \\ \frac{N-i}{N} & \text { if } q=\frac{1}{2}\end{cases}
$$

$$
\begin{aligned}
P_{i}+Q_{i} & =\frac{1-(q / p)^{i}}{1-(q / p)^{N}}+\frac{1-(p / q)^{N-i}}{1-(p / q)^{N}} \\
& =\frac{p^{N}-p^{N}(q / p)^{i}}{p^{N}-q^{N}}+\frac{q^{N}-q^{N}(p / q)^{N-i}}{q^{N}-p^{N}} \\
& =\frac{p^{N}-p^{N-i} q^{i}-q^{N}+q^{i} p^{N-i}}{p^{N}-q^{N}} \\
& =1
\end{aligned}
$$

هون اين نتيجه با p=q= $\frac{1}{2}$ نيز بر ترار است، مشاهده مى كنيم $P_{i}+Q_{i}=1$

به عبارتى اين معـادله بيانكر آن است كه بول A يا B با احتمال ا، تمام مى شود، به بيان
 باشـد صفر است. (خواننده بايل دتت كند زيرا سمه برآمد ممكن برایى اين بازى وجرد دارد دارد و نهدو
 بيشامد الخير صفر است).

$\frac{1-\left(\frac{2}{3}\right)^{5}}{1-\left(\frac{2}{3}\right)^{15}} \approx .87$

حالت خحاصي أز مسآلهُ ورشكـيتكى بازيكن كه به مسآله مكت زمان بازیى نيز مشهور است، توسط فرماى فرانسوى در IGOV به رياضيدان أكمانى كريستيان هريگنس بيشنهاد شـده بود ـ در روايتى كه وى بــثـنهاد كرد و توسـط هويگنس حل شـد

 برنده́ بازی بود . هون

. $N=Y$ Y ، $\quad \mathrm{i}=1$ Y ، $P=\frac{10}{Y Y}$
شُد و A سال يس از دركذشت وى در سال IVIY أنتشار يانت.

 بهبود مى يابد . با وجود اين نرخهاى بهبودى معلوم نيستند، و به روشى علاتـه منديم كه تصميم بكيـريم آيا
 داروى ا و به عضـو ديگر داروى Y تجــويز مى شـود . تتـايج براى هر زوج تعـيمن ثـــده و آزمـون متوتف مى شـوده هر كاه مجموع معـالجه ها از يكى دارو از مججمع دـعالجه ها از داروى ديكر از عددى كه از قبل تعين شده است تـجاوز كند . بطور دقيت، فرض كنيد .

براي علد از تُبل تعيين مُدهُ M، اين آزمون يس از زوج N متوقف مـى شُود كه در آن N
اولين مقدار n السـت، بطر ریى كه يا

$$
\begin{aligned}
& X_{1}+\cdots+X_{n}-\left(Y_{1}+\cdots+Y_{n}\right)=M \\
& X_{1}+\cdots+X_{n}-\left(Y_{1}+\cdots+Y_{n}\right)=-M
\end{aligned}
$$

در حالت اول فرض به منظـور اين كـه مـعلوم شـود آيـا اين آزمون خــوي است يانه، هيـزى كـه بايـل بدانيم الحتمالى الست كه اين آزمون منتهى به تصميم نادرسـت می شـود . يعنى، برالى

 مده هانى كه از داروى (I استغاده كردهاند در متابل كسانى كه داروى (Y) را مورد استغاده ترار

 اكر تنها آنز

الحتمال

$$
\begin{aligned}
& =\frac{P_{1}\left(1-P_{2}\right)}{P_{1}\left(1-P_{2}\right)+\left(1-P_{1}\right) P_{2}}
\end{aligned}
$$

ا واحد افز ايش مى يابد و با احتـمال

$$
1-P=\frac{P_{2}\left(1-P_{1}\right)}{P_{1}\left(1-P_{2}\right)+\left(1-P_{1}\right) P_{2}}
$$

ا واحد كاهش مى يابد .
 هر (يك واحد) شرط را كـه با احتمال P مى برد M واحد بايين شواهد آمد تبل از آن كه M واحـد
 داده شده است.

$$
\begin{aligned}
& P\left(\text { آزمون } P_{2}>P_{2}>P^{2}\right) \\
&=1-\frac{1-\left(\frac{1-P}{P}\right)^{M}}{1-\left(\frac{1-P}{P}\right)^{2 M}} \\
&=1-\frac{1}{1+\left(\frac{1-P}{P}\right)^{M}} \\
&=\frac{1}{1+\gamma^{M}}
\end{aligned}
$$

$$
\begin{aligned}
\gamma & =\frac{P}{1-P} \\
& =\frac{P_{1}\left(1-P_{2}\right)}{P_{2}\left(1-P_{1}\right)}
\end{aligned}
$$

بنابراين، برای مـال، اكـر P1

$$
\begin{equation*}
0 \leq P(E \mid F) \leq 1 . \tag{الفـ}
\end{equation*}
$$

$P(S \mid F)=1$.
(ب)
(ب)
$P\left(\bigcup_{1}^{\infty} E_{i} \mid F\right)=\sum_{1}^{\infty} P\left(E_{i} \mid F\right)$.

 . $\mathrm{P}(\mathrm{EF}) \leq \mathrm{P}(\mathrm{F})$ نتيجه مى دهد قســت (ب) از رابطهُ زير نتيجه مى شود، زيرا

$$
P(S \mid F)=\frac{P(S F)}{P(F)}=\frac{P(F)}{P(F)}=1
$$

قسـمت (ب) نتيجه مى شود زيرا

$$
\begin{aligned}
P\left(\bigcup_{i=1}^{\infty} E_{i} \mid F\right) & =\frac{P\left(\left(\bigcup_{i=1}^{\infty} E_{i}\right) F\right)}{P(F)} \\
& =\frac{P\left(\bigcup_{1}^{\infty} E_{i} F\right)}{P(F)} \quad\left(\bigcup_{1}^{\infty} E_{i}\right) F=\bigcup_{1}^{\infty} E_{i} F \\
& =\frac{\sum_{1}^{\infty} P\left(E_{i} F\right)}{P(F)} \\
& =\sum_{1}^{\infty} P\left(E_{i} \mid F\right)
\end{aligned}
$$

. $\mathrm{E}_{\mathrm{i}} \mathrm{FE}_{\mathrm{j}} \mathrm{F}=\varnothing$ كه در آن تساوى ما قبل آنحر نتيجه مى تُود زيرا مى بهد اكر Q
 شده امدت بر اين تابع اعمال مى نـود، براى مثال داريم
$Q\left(E_{1} \cup E_{2}\right)=Q\left(E_{1}\right)+Q\left(E_{2}\right)-Q\left(E_{1} E_{2}\right)$
يا هم ارز آن
$P\left(E_{1} \cup E_{2} \mid F\right)=P\left(E_{1} \mid F\right)+P\left(E_{2} \mid F\right)-P\left(E_{1} E_{2} \mid F\right)$
 از معادلُ (r-1) مششاهده مى كنيم كه

$$
\begin{equation*}
Q\left(E_{1}\right)=Q\left(E_{1} \mid E_{2}\right) Q\left(E_{2}\right)+Q\left(E_{1} \mid E_{2}^{c}\right) Q\left(E_{2}^{c}\right) \tag{1-0}
\end{equation*}
$$

$$
\begin{aligned}
Q\left(E_{1} \mid E_{2}\right) & =\frac{Q\left(E_{1} E_{2}\right)}{Q\left(E_{2}\right)} \\
& =\frac{P\left(E_{1} E_{2} \mid F\right)}{P\left(E_{2} \mid F\right)} \\
& =\frac{\frac{P\left(E_{1} E_{2} F\right)}{P(F)}}{\frac{P\left(E_{2} F\right)}{P(F)}} \\
& =P\left(E_{1} \mid E_{2} F\right)
\end{aligned}
$$

ديده مى شود كه معادلd (ه-1) با
$P\left(E_{1} \mid F\right)=P\left(E_{1} \mid E_{2} F\right) P\left(E_{2} \mid F\right)+P\left(E_{1} \mid E_{2}^{c} F\right) P\left(E_{2}^{c} \mid \Gamma\right)$
مم ارز اسـت.

 داشته است.

 بهدستآرود:
$P\left(A_{2} \mid A_{1}\right)=P\left(A_{2} \mid A A_{1}\right) P\left(A \mid A_{1}\right)+P\left(A_{2} \mid A^{c} A_{1}\right) P\left(A^{c} \mid A_{1}\right)$
$P\left(A \mid A_{1}\right)=\frac{P\left(A_{1} A\right)}{P\left(A_{1}\right)}=\frac{P\left(A_{1} \mid A\right) P(A)}{P\left(A_{1}\right)}$
 بنابراين $P\left(A_{1}\right)=0.26$

$$
P\left(A \mid A_{1}\right)=\frac{(.4)(.3)}{.26}=\frac{6}{13}
$$

$P\left(A^{c} \mid A_{1}\right)=1-P\left(A \mid A_{1}\right)=\frac{7}{13}$
$P\left(A_{2} \mid A_{1}\right)=(.4)_{13} \frac{6}{13}+(.2) \frac{7}{13}=.29$
مشال بعدى با مسـاله أى در نظريه كـثتها سروكار دارد .

 كشتى مركب از m شيكست متوالى رخ دهد، علاتم منديم.

 نمايش دهد، حاصل مى نود.
$P(E)=p P(E \mid H)+q P\left(E \mid H^{c}\right)$

$P(E \mid H)=P(E \mid F H) P(F \mid H)+P\left(E \mid F^{c} H\right) P\left(F^{c} \mid H\right)$

 دقيقاً مثل اين الست كه با بكى ثـكست آغاز كرده بانيّم . بنابراين
$P\left(E \mid F^{c} H\right)=P\left(E \mid H^{c}\right)$
 از از
$P(E \mid H)=p^{n-1}+\left(1-p^{n-1}\right) P\left(E \mid H^{c}\right)$
 ريشامدى كه آزمايشهاى Y $P\left(E \mid H^{c}\right)=P\left(E \mid G H^{c}\right) P\left(G \mid H^{c}\right)+P\left(E \mid G^{c} H^{c}\right) P\left(G^{c} \mid H^{c}\right)$

 رااز بين مي بردد، ملاحظه مي كنـيم كه
$P\left(E \mid G^{c} H^{c}\right)=P(E \mid H)$
بنابراين ، جون
$P\left(E \mid H^{c}\right)=\left(\mathrm{I}-q^{m-1}\right) P(E \mid H)$
از حل معادلات (臬) و (
$P(E \mid H)=\frac{p^{n-1}}{p^{n-1}+q^{m-1}-p^{n-1} q^{m-1}}$
$P\left(E \mid H^{c}\right)=\frac{\left(1-q^{m-1}\right) p^{n-1}}{p^{n-1}+q^{m-1}-p^{n-1} q^{m-1}}$
و بنابراين

$$
\begin{align*}
P(E) & =p P(E \mid H)+q P\left(E \mid H^{c}\right) \\
& =\frac{p^{n}+q p^{n-1}\left(1-q^{m-1}\right)}{p^{n-1}+q^{m-1}-p^{n-1} q^{m-1}} \\
& =\frac{p^{n-1}\left(1-q^{m}\right)}{p^{n-1}+q^{m-1}-p^{n-1} q^{m-1}}
\end{align*}
$$

جالب است توجه داشتـ باثيم كه، بنابر تقارن مسأله، احتمال بددست آروردن كشتنى از
 مراباm تعويض كردهايم, بنابراين احتمال برابر است با

$$
=\frac{q^{m-1}\left(1-p^{n}\right)}{q^{m-1}+p^{n-1}-q^{m-1} p^{n-1}}
$$

جون مجـمرع مسعادلات (V- (V) و (A) برابر ا المت، از آن نتيجه مى شـود كه با احتـمال 1

به عنوان منالى از معادله (V-ه)، مشـامده مى كنيم كه در يرتاب سكه انى منظم احتـمال اين كه كثتى از Y شير تبل از كـتنى از

 راه حلى ارائه مم دميم.

 يكى جوربودن رخ داده المت.
1-ا احتمال اين كه هيج جور بودنى وجود نداثتته باشده، جقدر امست؟

 نـــان دادن بسـنكى به n، مى نويسـيم
 دراين صورت
$P_{n}=P(E)=P(E \mid M) P(M)+P\left(E \mid M^{c}\right) P\left(M^{c}\right)$
واضح امست كه ، P (E | M) و بلدين ترتيب
$P_{n}=P\left(E \mid M^{c}\right) \frac{n-1}{n}$
اكتون،

 استمال

$$
P\left(E \mid M^{c}\right)=P_{n-1}+\frac{1}{n-1} P_{n-2}
$$

و بنابراين، از معادلئ (0 - 9)

$$
P_{n}=\frac{n-1}{n} P_{n-1}+\frac{1}{n} P_{n-2}
$$

با هم ارز آن

$$
P_{n}-P_{n-1}=-\frac{1}{n}\left(P_{n-1}-P_{n-2}\right)
$$

با وجود اين، جحون P برأبر احـتمـالى أست كه هيَ ججوربودنى، وتتى n مرد از بين كـلامهاى خودشان انتخابِ مى كنتد، وجود نداثته باشد، داريم

$$
P_{1}=0 \quad P_{2}=\frac{1}{2}
$$

و بدين ترتيب، از معادلهُ (0-1)

$$
\begin{aligned}
& P_{3}-P_{2}=-\frac{\left(P_{2}-P_{1}\right)}{3}=-\frac{1}{3!} \quad L \quad P_{3}=\frac{1}{2!}-\frac{1}{3!} \\
& P_{4}-P_{3}=-\frac{\left(P_{3}-P_{2}\right)}{4}=\frac{1}{4!} \quad\left\llcorner\quad P_{4}=\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}\right.
\end{aligned}
$$

و بطور كلى، ملا-حظه مى كنيم كه

$$
P_{n}=\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-\cdots+\frac{(-1)^{n}}{n!}
$$

به منظر بهد بست آوردن دتيـتآk جورشـدكى، كروء ثابتى ازk مردرا درنظر مى كـيريم . احتمال اين كه اين كروه و تنها اين كروه، كلامهاى خودشيان را انتخاب كنتدبرابر است با

$$
\frac{1}{n} \frac{1}{n-1} \cdots \frac{1}{n-(k-1)} P_{n-k}=\frac{(n-k)!}{n!} P_{n-k}
$$

 خـودشان، مـيج جورشـشدنى نداثـتـه باثشند جون احتمال مطلوب دقيفاً k جورشدكى برابر امــت با

$$
\frac{P_{n-k}}{k!}=\frac{\frac{1}{2!}-\frac{1}{3!}+\cdots+\frac{(-1)^{n-k}}{(n-k)!}}{k!}
$$

 بيسامدماى

$$
P\left(E_{1} \mid E_{2} F\right)=P\left(E_{1} \mid F\right)
$$

$$
P\left(E_{1} E_{2} \mid F\right)=P\left(E_{1} \mid F\right) P\left(E_{2} \mid F\right)
$$

به عنوان تمرين واكذار مى شود .

 تصادف بانـد با خير . [اين امر برايى محاسبه
 شرطى را بيشتر روشن مى كند.

 شر طى اين كه برتاب (n+1) ام نيز شير بيايد جقدر امست؟
 مى دهد F
 مى

$$
P\left(F \mid F_{n}\right)=\sum_{i=0}^{k} P\left(F \mid F_{n} E_{i}\right) P\left(E_{i} \mid F_{n}\right)
$$

$$
P\left(F \mid F_{n} E_{i}\right)=P\left(F \mid E_{i}\right)=\frac{i}{k}
$$

مسحنين

$$
\begin{aligned}
P\left(E_{i} \mid F_{n}\right) & =\frac{P\left(E_{i} F_{n}\right)}{P\left(F_{n}\right)} \\
& =\frac{P\left(F_{n} \mid E_{i}\right) P\left(E_{i}\right)}{\sum_{i=0}^{k} P\left(F_{n} \mid E_{j}\right) P\left(E_{j}\right)} \\
& =\frac{(i / k)^{n}[1 /(k+1)]}{\sum_{i=0}^{k}(j / k)^{n}[1 /(k+1)]}
\end{aligned}
$$

بنابر ابن

$$
P\left(F \mid F_{n}\right)=\frac{\sum_{i=0}^{k}(i / k)^{n+1}}{\sum_{j=0}^{k}(j / k)^{n}}
$$

اما اكرk بزرك باشـد، مى توان تقريبهاى انتكُرال زير رابه كار برد

$$
\begin{aligned}
\frac{1}{k} \sum_{i=0}^{k}\left(\frac{i}{k}\right)^{n+1} & \approx \int_{0}^{1} x^{n+1} d x=\frac{1}{n+2} \\
\frac{1}{k} \sum_{j=0}^{k}\left(\frac{j}{k}\right)^{n} & \approx \int_{0}^{1} x^{n} d x=\frac{1}{n+1}
\end{aligned}
$$

و بدين ترتيب برای k بزركى

$$
P\left(F \mid F_{n}\right) \approx \frac{n+1}{n+2}
$$

تمرينات لظرى

 در E نيز هست، با الحتمال ا ، برابر با r $P\left(E_{1} E_{2} \cdots E_{n}\right)=P\left(E_{1}\right) P\left(E_{2} \mid E_{1}\right) P\left(E_{3} \mid E_{1} E_{2}\right) \cdots$

$$
P\left(E_{n} \mid E_{1} E_{2} \cdots E_{n-1}\right)
$$

 شرطى اين كه كلوله در جعبه برابر امت با

$$
\begin{aligned}
& \frac{P_{j}}{1-\alpha_{i} P_{i}} \quad, j \neq i \\
& \frac{\left(1-\alpha_{i}\right) P_{i}}{1-\alpha_{i} P_{i}} \quad, j=i
\end{aligned}
$$

F- F- Fزاره هاى زير را ثابت كنيد يا مثالهاى نقض اراته دميد:

 . F \cup است (ب) اكر E مستقل از F وF مستقل از Gباشدو E مستقل از FG باشد، آن كاه G مستقل از . است EF

$$
P(E \mid F) \leq P(E)
$$

كزاره هاى شُرطى را نابتت كنبد با مثالهاى نقض اراثه دميد:

- E $>$ F F الف) اكر
 . FG
(الف)، (ب) و (ب) راهر كاه

$$
P(E \mid F) \geq P(E)
$$

я- فرض كنيد
 E
V V
$P\left(E_{1} \cup E_{2} \cup \cdots \cup E_{n}\right)=1-\left[1-P\left(E_{1}\right)\right]\left[1-P\left(E_{2}\right)\right] \cdots\left[1-P\left(E_{n}\right)\right]$
^- (الف) كيـسهالى محتـوى n كلولهُ سـفيد و m كلوله سـيـاه است. هر بار يك كلوله بيرون
 همء آنها سفيداست. رامنمايى : تصور كنيد اين آزمايش تا وتمى همـه كلوره ها بيرون آّررده شوند ادامه مى يابد و آٓخرين كلوله بيرون آَورده شده را در نظر بكيريد .
(ب) در امستخرى سـه نوع ماهى قرمز ، آبى و سبز و و به ترتيب

 تمام مى شود جقّدر الست
راهنــايع : بنويسـيد ابتدا با شُرطى كردن بر آنرين كونهأى كه بايد بير ون كشيده شون .
$\sum_{i=1}^{\infty}\left[a_{i} \prod_{j=1}^{i-1}\left(1-a_{j}\right)\right]+\prod_{i=1}^{\infty}\left(1-a_{j}\right)=1$

*
بهر برتابِ اين سكه كرده و آن تلدر ادامه مى دهد تا خحط بيايل و از اين لـهظه به بعل نفر B شـروع

$$
P_{n, m}=p P_{n-1, m}+(1-p)\left(1-P_{n, n}\right)
$$

 دميذ الحتمال اين كه شـخصى در آخر كار ورشكست شـود عبارت أمـت از

$$
\begin{array}{cl}
1 & , p \leq \frac{1}{2} \\
(q / p)^{i} & , p>\frac{1}{2} \text { L } q=1-p
\end{array}
$$

كه در آن i سـرمايهُ اولئُ إين شـختصى امــت .
 بيووزى حاصل ثـود . نشان دميل احتمالل اين كه دتمعاً n آزمايش لازم باشـل برابر اسمت با

$$
\binom{n-1}{r-1} p^{\prime}(1-p)^{n-r}
$$

با استفاده از اين نتيتجه، مسـألمُ امتيازها را سل كنيل (منال F د) .

 به تعلاد زوجى از مونـقيتها متـتهى ثـود نمايش مى دهد (0 1 علد زوج در نظر ثى كيريم) . نشـان دهيل

$$
P_{n}=p\left(1-P_{n-1}\right)+(1-p) P_{n-1} \quad n \geq 1
$$

و با استفاده از اين مطلب (با امستقرا) ثابت كثيد كه
$P_{n}=\frac{1+(1-2 p)^{n}}{2}$
أ 1 - فرض كنيد متوالى ظاهر نشود نمايش مى دهد . نشان دهيد

$$
\begin{aligned}
& Q_{n}=\frac{1}{2} Q_{n-1}+\frac{1}{4} O_{n-2}+\frac{1}{8} Q_{n-3} \\
& Q_{n}=Q_{1}=Q_{2}=1
\end{aligned}
$$

Q را بیدا كثيد .

$$
\text { احتمال اين كه A شير هاى بيـتُرى از B بع دست آورد برابر } \frac{1}{2} \text { است. }
$$

راهنمايى : براين كه كدام بازيكن بعـداز آن كه n س سكه را يرناب مى كند شـير ها باى بيـشترى
دارد شرطى كنيد (سه حالت ميكن است).

 دهيدكه

$$
\alpha_{n+1}=\alpha_{n}\left(p+p^{\prime}-1\right)+1-p^{\prime} \quad n \geq 1
$$

و با الستفاده از اين مطلب ثُابت كنيد كه

$$
\alpha_{n}=\frac{1-p^{\prime}}{2-p-p^{\prime}}+\left(\alpha-\frac{1-p^{\prime}}{2-p-p^{\prime}}\right)\left(p+p^{\prime}-1\right)^{n-1}
$$

فرض بيدا كنيد . مصحنين

 استمال را كه A در شـمارش آرا ممواره جلو باششد نشان دهد. (الف) (ل)
(ب) بر امـاس نتايب (الف) ، مقدار
 رأى . . . مى آورد (جاى خحالى را ير كنيد) به دسـت آوريد .
 كنيد
 يا بارانى) با أحتمال P با وخع آن در امروز يكسان خواهد بود. اكـر وخـع موا اول رُانويه آفتأبى باششد، نشان دهيد

$$
\begin{aligned}
& P_{n}=(2 p-1) P_{n-1}+(1-p) \quad n \geq 1 \\
& P_{0}=1
\end{aligned}
$$

صدق ليى كند ثابت كنيد
$P_{n}=\frac{1}{2}+\frac{1}{2}(2 p-1)^{n} \quad n \geq 0$

- • - كيسه ای مستوى a كلولةُ سفيد و b كلولهُ سياه امـت. جند كلوله از اين كيسه طبت روش زير بيرون مى آوريم:
(الف) كلوله اى بتصادف انتهغاب كرده و كنار مى كذاريم

 را كنار مى كذاريم و از (ب) شـروع ميكنيم .

$$
P_{a, b}=\frac{1}{2}
$$

رامنمايى : از الستغراء بر k=a+b استفاده كنيد.
Y -

$$
P(E \mid F)=P(E \mid F G) P(G \mid F)+P\left(E \mid F G^{c}\right) P\left(G^{c} \mid F\right)
$$

YY - هم ارزى معادلات (0 - ا
Y - تعريف استقلVل شرطى را به بيش از Y يششامد تعميم دميد.
 مستتل مشُروطند.
YQ - در دستور توالى لابلاس(مثال ه ت) نشان دميدكه اكر n برتاب اول همه شير بيايند، احتمال
نرطى كه m برتاب بعدى نيزهمد شيرباشندبرابرامست با (n+1)/(n+m+1) .

 انبات آن بايد اتحاد زير را تابت كرد و به كار برد

$$
\int_{0}^{1} y^{n}(1-y)^{m} d y=\frac{n!m!}{(n+m+1)!}
$$

 انتكرال كيرى جزء به جزء داريم

$$
C(n, m)=\frac{m}{n+1} C(n+1, m-1)
$$

با شروع از C(n, 0)=1/n+1 ، اين اتحاد رابا استقرا برm ثابت كنيد.

فرض - ن - YV
 شود. برای مثال ، وى اظهار مى كند (اكر يسرى • ا الـاله بانـدن، طبت اين دستور و با توجه

برایى دوسـت خود داريد؟

مسانلّ

جقدر است؟ در صورتى كه مى دانيم اين تاسها با خالهاى متفاوت ظالهر مى شوند .

 محاسبه كنبد.

بكى مى باشند.

$$
\text { مى دانيم مجموع خالها برابر i ، } 2 \text { (i) 2, 3, ... }
$$

 بعدى سياه باثند جقدر اسـت؟

9- كيسه أى را در نظر بكيـريد كه محـتوى Y

نتغستين درس ا-تمنال

V- V تامى از يكى خـانوادهاى با دو غرزند است. احتـمال اين كه نرزند ديكر خانواده دختر باشد جقلر است؟
 باشـد، چقدر است؟

 دقيقاً Y كلولئ سفيد انتخاب شـده است، جقدر است؟

 مقدارى خواهند داشت اثر غرب دقيقاً داراى يكى آس باشـد .

11- سه كار تـ بازى بتـصادف ، بدون جايكذارى ، از يكى دست ورق بازى معــولـي مركب از
 باشد، در صورتى كه مى دانيـم كارت دوم و سوم بيكـ هستند ، محاسبه كنيد .

 كردانده مى شود .
 محاسبه كنيد
(ب) استمالى را كه از \& كلوله اول متتخب، دقيقآ Y كلوله سياه باشدل بيابيد

سبس كلوله ای به تصادن از كيسه II بيرون مى آوريـم .
(الف) الحتمال اين كه كلولةُ منتخب از كيسه II سمفيد باثمد شقدر است؟
(ب) احـتمـال مشـروط اين كـه كلوله جـا به جا ثــده سـفيـد باشـد، در صـورتى كـه مى دانيـم
كلوله سفيدى از كيسه II بيرون آورده شده است، جقدر است؟

Y Y
 بيرون آوردن بك كلوله سفيد بيسينه شود
 كلوله با احتمال $\frac{1}{2}$ مياهرنى

 طلاهي رنكـ شده باثنـد محالسبد كنيد

 است؟ (توضيح دهيد) .

كنيد تا برآورد بهد دست آيده اين روش را تعيير كنيد.

فرض - IV

 جعبه منتخب بانشل، در صورتى كه مى دانيم اين مهره سفيد است، جندر است؟

 شـده سفيد باشتد هـندر است؟

 نمى دانيد مربوط بد كدام كـلاس است . اكر از دانتنجويع كه بتصـادف از هر هر كلاس انتخاب
 داننــجـوى كـلاس B خـعـبف است، احتـمـل ايـن كـه كـلاس A كـلاسى تــوى تر بانـــد جتدراست؟

 دارارى احتمال برابر است. كارهي

منظم بائــد جفدر امت؟
(ب) نرض كنيـد كـه وى ممـان سكه را براي بار دوم يرتـاب مى كند و بازمم يُـير مى آبد.

اكنون ا-حتمال اين كه اين سكه منظم باشمد هقلدر است؟ (ب) نرض كنيـل وى ممان مكه را برای بار سـوم هرتاب مى كند و مـكه خط مى آيل . اكنون
احتمال اين كه سكهُ منظمَ بانمُد حقـلـر اسـت؟

 انتخابس شده امست أحتمال اين كه اين سكه خحط آمله باشد هحقدر است؟ צ Y- در مثال Y الف، احتتمال اين كه كسـى در مـال دوم تصهادنى داشته بـاشد، در صورتى كه مى دانيم در سـال اول هيع تمـادنى نداثشته است ، جحفلر است؟
 كه مـتـوى ه كلولةُ سـغيد و V ترمـز است آغاز مي كنيم . در شو مرسله يكى كلوله بـيرون

 (ب) ا كلولئ سـفيد (ب)
 مى شـود، به هنگام بازكرداندن اين كلوله بـه كيـسءُ C كلوله ديكر مـرنـل با آن را در داخل كيـسه فـرار مى دهيمم. اكنون نرض كنيـد كلولهُ ديكرى بيرون مى آوريم نشان دهيـد احتـمال اين كه كلوله اول سيـاه باشُد، در صورتى كه مى دانيم كلولهُ دومى كه امتتخـراج مُده است ترمز است، برابر اسـت با (b/b+r+c) .

 كارت يكى آمس باشد ، محاسبه كنيل .

راهنمايى : بر اين كه آيا كارت تعويض شـده انتخاب شده اسـت يا خخير شـرطى كنبد . - •

باعث مى شودء

 ثير مى آيد . احتمالمى را كه اين ممان سـكة دو رويه شير باثشد مـحاسبه كنيد.

 بل شـها در مورد استدلال زندانبان خيست

 تعـداد خالهـاى رو شـده، كلوله از كـيــه بيرون مى آوريـم. احتـمـالل اين كه همـه كلوله هاى
 اكر هـه كلوله هاى متتخـب سميد باشمد؟
 كتُـوها دارایى يك سكئ نقـره إمت و در جععبه B در يكى از كسـو ها مـكه نقره و در ديكرى سـكه طلاست. جـعـبهأى بتصـادن انتـخـاب مى نـود، يـكى از كشــوهاى آن را باز كـرده و سـكه أى نقره در آن مى يابيم . احتمال اين كه در كشو ديكر سـكئ نقره باشـد جقلدر است؟ \& \&- غرض كنيد كـه كه آزمونى براى تششخيـس سرطان وجـود دارد كه هـم در مورد مـبتلايان و هـم

(rv - فرض كنبد شركت بيمه أى مردم را در يكى از طبفات سه كانهُ مشاطره كم ، متوسط و زياد
 زياد كه در ظرف سال معيني در تصادن دخالت دامثته اند به ترتبب عبارت امست از ه " " ، ،

با مخاطره كم (متوسط) باثمد هقدر اسـت؟
 شُرح دأده شُده امست، بسازيد، آيا فرض مى كرديد كه اين بيشاملمها مـستعلندا دليل خود را

حشـهمان آبى دارد .

تلفن موجود امست.
(ي
بيش از ، ه كيلوكرم اسـت .

غربی زندكى مى كند .

 لِسر سـال دوم وجـود دارد ـأكـر قٌ دانشجو بتصادف انتخاب ثُود، هند دانتشجوى دختر سال دوم بايد ساضر باشنـد. (F.

 زيرا الحتمال \mid ا جرخشّ متوالى منجر به شُماره سـياه بسبار اندلك امست. نظر مُـما در مورد

نخـتين درس احتمال

اين دستگاه جيست؟

مربوطه، برقرار شود جفدر است؟

ry
 مستقل از يكديگر كار مى كتند .

Y - از - † كار كند محاسبه كنيد.
(ب) (الفـ) را برانى دسنگاه ץ- از -ه تكر ار كنـد.

$$
\begin{aligned}
& \text { مسأله را تكرار كنيد. }
\end{aligned}
$$

 مشـخصصه ظاهرى يك ار كانيسم فنوتيب آن ناميده مى شُود، در صورنى
 ، ee، DD،CC ، BB ، AA و eee ، dD

$$
\begin{aligned}
& \text { (الف) اركانيسم اول } \\
& \text { (ب) الركانيسم دوم } \\
& \text { (ب) هردوى آنها، باشثد جفلدر المت؟ }
\end{aligned}
$$

FF

 باشد جقدر است؟

تهرمانى بهصورت زير بود:

ت	ب-1	باخت
شاهين	87	72
بيروزى	86	73
آزاد15	86	73

 ¢ 9 - انجمن شُهرى با

هريكا از يبـيـامدهاى زير :

(ب) (بقيقاً سه فرزند بسر باثشند.

 احتمال P2 برنده مى شُود تكرار كنيد
 با اححتمال

 شده باشد جقدر اسـت؟

 ماهرترى باشثد كه • 9 درصد هوارد برنده مي شودد، اين احتمال هقدر السـت؟
 زوج حقدر اسـت

 ، در دقيقآ مسسابقك بازى مي كند A : A A
هر B A A : E i=1, .., n ، P (A $)$ (الف)
. P(E) (ب)

$P_{n}=\frac{1}{2^{n}-1}+\frac{2^{n}-2}{2^{n}-1}\left(\frac{1}{2}\right)^{2} P_{n-1}$
از اين فرمول براى تحقيق درستى جواب حاصل در (ب) استفاده كنيد .
 هاامتياز امست. اين شخص تصميبم دارد كه سهام خود را در صورتى كه • 1 امنياز پايين يا

 سرمايه كذار به صورت برنده كنار برود هـي

 (الف) Y شير متوالمى بياورد .
(ب) جمعاً Y شير بياورد
(ب) شير متوالي بياورد
(ت) جمعاً بَ ثير بياورد

است وجود دأثته باشُمل .

هى دانيـم همه n آز مايش أول شير آمله إست .

. دهيل

 -كنيد، در صورتى كههي دانيم
(الفـ) قاضمى شماره l و Y رأى بر كناهمكارى وى می دهنـ. .

(ب) قاضي شهاره ا و Y هر دو رأى بر بی كّناهى وى يى دهند .

شـرح دهيل .

PTR

متثيرهاى تصادفى

- 1

 به عبارت دقيتتر اين توابع حقيقى، را كه بر نضاى نمونه تعريف شده اند اند متيرهايلى تصاذلى نامند.
 ممكن متغير تصادفى احتمالهايى نسبت دهيم.

 احتمالهاى زير اختيار مى كند.

$$
\begin{aligned}
& P\{Y=0\}=P\{(T, T, T)\}=\frac{1}{4} \\
& P\{Y=1\}=P((T, T, H),(T, H, T),(H, T, T)\}={ }_{H}^{T} \\
& P\{Y=2\}=P\{(T, H, H),(H, T, H),(H, H, T)\}={ }_{k}^{\prime} \\
& P\{Y=3\}=P\{(H, H, H)\}=\frac{1}{*}
\end{aligned}
$$

 $1=P\left(\bigcup_{r=1}^{3}\{Y=i\}\right)=\sum_{i=0}^{3} P\{Y=i\}$

كه با توجه به أحتمالهاى نوق تـساوى بر قرار اسـت.

هقَلـر أسـت؟

 هريك از
$P\{X=i\}=\frac{\binom{i-1}{2}}{\binom{20}{3}} \quad i=3, \ldots .20$
برای بهد دسـب آوردن معادلهُ ((-) توجه كنيد كه بيثـامد X X = i ثهره شُمارهٔ i و دو ثهره از بين شمهاره هاى ا ا تا تعداد حالات مساعد عبارتت است از
$P\{X=20\}=\frac{\binom{19}{2}}{\binom{20}{3}}=\frac{3}{20}=.150$
$P\{X=19\}=\frac{\binom{18}{2}}{\binom{20}{3}}=\frac{51}{380}=.134$
$P\{X=18\}=\frac{\binom{17}{2}}{\binom{20}{3}}=\frac{34}{285}=.119$
$P\{X=17\}=\frac{\binom{16}{2}}{\binom{20}{3}}=\frac{2}{19}=.105$
 (i = = 17, 18, 19, 20
$P\{X \geq 17\}=.105+.119+.134+.150=.508$

 است كه مقادير 1 ، Y ، . . . ، n را با الحتمالهايى زير اختيار مى كند

$$
\begin{aligned}
& P\{X=1\}=P\{H\}=p \\
& P\{X=2\}=P\{(T, H)\}=(1-p) p \\
& P\{X=3\}=P\{(T, T, H)\}=(1-p)^{2} p
\end{aligned}
$$

$$
P\{X=n-1\}=P\{(\underbrace{T, T, \ldots T}_{n-2}, H)\}=(1-p)^{n-2} p
$$

$$
P\{X=n\}=P\{(\underbrace{T, T, \ldots, T}_{n-1}, T),(\underbrace{T, T, \ldots, T}_{n-1}, H)\}=(1-p)^{n-1}
$$

براى كنترل مقادير به دست آمله مى توان نوشـت

$$
\begin{aligned}
P\left(\bigcup_{i=1}^{n}\{X=i\}\right) & =\sum_{i=1}^{n} P\{X=i\} \\
& =\sum_{i=1}^{n-1} p(1-p)^{i-1}+\left(1-p i^{\prime i}\right. \\
& =p\left[\frac{1-(1-p)^{n-1}}{1-(1-p)}\right]+(1-p)^{n} \quad \\
& =1-(1-p)^{n-1}+(1-p)^{n-1} \\
& =1
\end{aligned}
$$

مثال 1 ت . سه مهره از جعبهاى كه دارالى
بتمشادف خحارج مى شود . فرض كنيـد به ازالى هر مهره سفيد ا ريال برنده و به ازالى هر مهر سياه

$$
\begin{aligned}
& P\{X=0\}=\frac{\binom{5}{3}+\binom{3}{1}\binom{3}{1}\binom{5}{1}}{\binom{11}{3}}=\frac{55}{165} \\
& P\{X=1\}=P\{X=-1\}=\frac{\binom{3}{1}\binom{5}{2}+\binom{3}{2}\binom{3}{1}}{\binom{11}{3}}=\frac{39}{165} \\
& P\{X=2\}=P\{X=-2\}=\frac{\binom{3}{2}\binom{5}{1}}{\binom{11}{3}}=\frac{15}{165} \\
& P\{X=3\}=P\{X=-3\}=\frac{\binom{3}{3}}{\binom{11}{3}}=\frac{1}{165}
\end{aligned}
$$

 انتخاب شده باشد ـ ـبرای كتترل اعداد بد دست آمده مى توان نوشت
$\sum_{i=0}^{3} P\{X=i\}+\sum_{i=1}^{3} P(X=-i\}=\frac{55+39+15+1+39+15+1}{165}=1$
بنابراين احتمال برنده شدن عبارت المت از
$\sum_{i=1}^{3} P\{X=i\}=\frac{5 s}{105}=1$
مثال ا ث. فرض كنيد N كوبن از انواع متـمايز داريم و هر بار يكى از آنهـا مـستقل از
 عبارت از تعداد كوينهاى لازم امست تا مجمرعـ انتخالي

 مى كنبم :

$$
\begin{aligned}
P(T>n\}= & P\left(\bigcup_{j=1}^{N} A_{l}\right) \\
= & \sum_{j} P\left(A_{l}\right)-\sum_{j_{1}<h_{2}} P\left(A_{h_{1}} A_{2}\right)+\cdots \\
& +(-1)^{k+1} \sum_{j_{1}<j_{2}<\cdots<j_{k}} \sum_{k_{2}} P\left(A_{j_{2}} A_{b_{h}} \cdots A_{j_{k}}\right) \cdots \\
& +(-1)^{N+1} P\left(A_{1} A_{2} \cdots A_{N}\right)
\end{aligned}
$$

 ان نوعز نخراهد بود، با توجه به فرض استفالال نوع كويتهاى متوالى داريـم

$$
P\left(A_{j}\right)=\left(\frac{N-1}{N}\right)^{n}
$$

 هس، با استفادهُ مجلد از استقلال داريـم

$$
P\left(A_{i_{1}} A_{i_{2}}\right)=\left(\frac{N-2}{N}\right)^{\prime \prime}
$$

به همين دليل مى نوان نوشّت :

$$
P\left(A_{j_{1}} A_{j_{2}} \cdots A_{j_{k}}\right)=\left(\frac{N-k}{N}\right)^{n}
$$

n \gg ديله مى شود كه براي

$$
\begin{aligned}
P(T>n\}= & N\left(\frac{N-1}{N}\right)^{n}-\binom{N}{2}\left(\frac{N-2}{N}\right)^{n}+\binom{N}{3}\left(\frac{N-3}{N}\right)^{n}-\cdots \\
& +(-1)^{N}\binom{N}{N-1}\left(\frac{1}{N}\right)^{n} \\
= & \sum_{i=1}^{N-1}\binom{N}{i}\left(\frac{N-i}{N}\right)^{n}(-1)^{i+1}
\end{aligned}
$$

با توجه به مطالب فرق احتتمال T = C با بهصـورت نير محاسبه مى كنيم

$$
P\{T>n-1\}=P\{T=n\}+P\{T>n\}
$$

در نتيجه

$$
P\{T=n\}=P\{T>n-1\}-P\{T>n\}
$$

متغير تصلادفى بجالب ديگُر عبارت است از انواع مختلف كوينهايى كه در n انتخاب اول

 الحتـمال A برابر
 احتمال B به شر ط A برابر اسـت با احتسمال اين كه مجهـوعه ایى از n كوين كه هريكى با احتمال مساوى مـى تواند يكى از نوعهای ممكن باثُمد، ثــامل بكي مـجموعـه كامل از تمام k نوع استـ . ولى اين احتـمال دقيفا برابر اسـت با

$$
P(A)=\left(\frac{k}{N}\right)^{n}
$$

$$
P(B \mid A)=1-\sum_{i=1}^{k-1}\binom{k}{i}\left(\frac{k-i}{k}\right)^{n}(-1)^{1+1}
$$

بالانخره جون $P\left\{D_{n}=k\right\}=\binom{N}{k} P(A B)$

$$
=\binom{N}{k}\left(\frac{k}{N}\right)^{n}\left[1-\sum_{i=1}^{k-1}\binom{k}{i}\left(\frac{k-i}{k}\right)^{n}(-1)^{i+1}\right]
$$

Y - توابع توزيع

تابع توزيِ تجمعى (c. d. f.) ، يا به عبارت ساده تر تابع توزيع متغير تصادنى X كه آن را با F نشان مى دهنذ ، براى تمام اعداد حقيقى

$$
F(b)=P\{X \leq b\}
$$

به عبارت ديگر ، F(b) احتسمال اين يـثـامد الست كه متغغير تصادنى X مقدارى كـمتر يا مساوى b اختيار كند . بعضىى از خواص تابع F به ترأر زير اسـت :

$$
\begin{aligned}
& \text { وضص پیث آيد لازم و كافى اسـت كه از n كوبن اوليه } \\
& \text {. A } \\
& \text { لش ه : B }
\end{aligned}
$$

$$
\begin{aligned}
& \text { • F } 1 \\
& \lim _{b \rightarrow \infty} F(b)=1 .-Y \\
& \lim _{b \rightarrow-\infty} F(b)=0 .-r
\end{aligned}
$$

$$
\lim _{n \rightarrow \infty} F\left(b_{n}\right)=F(b) \text { ممگراست داريم }
$$

خاميت 1 برترار است زيرا برای
 احتمـالها (بخش به مس مسعود كند آن كـاه يـيــامـدهاى بيشـامل
$\lim _{n \rightarrow \infty} P\left\{X \leq b_{n}\right\}=P\{X<\infty\}=1$
اثبـات خـاحـيت بَ نيـز به همـين طريت امست و آن را به عنوان تمريـن مى كــذاريم . براى

 بيوستگى مىتوان نوشت
$\lim _{n} P\left\{X \leq b_{n}\right\}=P\{X \leq b\}$
تمام مسائل احتمال در مورد X Xا مى توان بر حسب تابع F باسـغ داد . مشلخ به ازاى تمام
a a<b b

$$
\begin{equation*}
P\{a<X \leq b\}=F(b)-F(a) \text { بـراى } a<b \tag{1-Y}
\end{equation*}
$$

برای روشـنتر شــدن مطلب مى توان يِشـامل جذا از هم

$$
\{X \leq b\}=\{X \leq a\} \cup\{a<X \leq b\}
$$

$$
P\{X \leq b\}=P\{X \leq a\}+P\{a<X \leq b\}
$$

كه بآسانى معادله (Y-1) از آن به دست مي آيد. أكربـخواهيم|احتمـال بيسـامد يبوستگى بنويسيم

$$
\begin{aligned}
P\{X<b\} & =P\left(\lim _{n \rightarrow \infty}\left\{X \leq b-\frac{1}{n}\right\}\right) \\
& =\lim _{n \rightarrow \infty} P\left(X \leq b-\frac{1}{n}\right) \\
& =\lim _{n \rightarrow \infty} F\left(b-\frac{1}{n}\right)
\end{aligned}
$$

توجه كنيدكه P مثال ץ الد. تابع توزيع متغير تصادنى X عبارت المت از

$$
F(x)= \begin{cases}0 & x<0 \\ \frac{x}{2} & 0 \leq x<1 \\ \frac{2}{3} & 1 \leq x<2 \\ \frac{11}{12} & 2 \leq x<3 \\ 1 & 3 \leq x\end{cases}
$$

نمودأر تابع F(x) در شـكل F - ا رسمم شده امت .

$$
\begin{gathered}
P\{X<3\}=\lim _{n} P\left\{X \leq 3-\frac{1}{n}\right\}=\lim _{n} F\left(3-\frac{1}{n}\right)=\frac{11}{12} \\
P\{X=1\}=P\{X \leq 1\}-P\{X<1\} \\
=F(1)-\lim _{n} F\left(1-\frac{1}{n}\right)=\frac{2}{3}-\frac{1}{2}=\frac{1}{6} \\
P\left\{X>\frac{1}{2}\right\}=1-P\left\{X \leq \frac{1}{2}\right\} \\
= \\
P\{2<X \leq 4\}=F\left(\frac{1}{2}\right)=\frac{3}{4} \\
=\frac{1}{12}
\end{gathered}
$$

 تعريف مى كنيم

$$
p(a)=P\{X=a\}
$$

$$
\begin{array}{rl}
p\left(x_{i}\right) \geq 0 & i=1,2, \ldots \\
p(x)=0 & \text { x سـابـر مــادير }
\end{array}
$$

خون X بايد بكى از مقادير x را الختبار كند، داريم

$$
\sum_{i=1}^{\infty} p\left(x_{i}\right)=1
$$

 به صورت زير باشد

$$
p(0)=\frac{1}{4} \quad p(1)=\frac{1}{2} \quad p(2)=\frac{1}{4}
$$

 شكل F-r بمى باشد.

شكل F-r

مثال

$$
p(i)=c \lambda^{i} / i!, i=0,1,2, \ldots
$$

$$
\begin{aligned}
& \text { كه در آن } \lambda \text { يك مفدار منبت است }
\end{aligned}
$$

Y- مقدار P\{X > 2 را محاسبه كنيد.
مل : جون

$$
c \sum_{i=0}^{\infty} \frac{\lambda^{i}}{i!}=1
$$

$$
c e^{\lambda}=1 \quad L \quad c=e^{-\lambda}
$$

$$
\begin{aligned}
& P\{X=0\}=e^{-\lambda} \lambda^{\prime \prime} / 0!=e^{-\lambda} \\
& P\{X>2\}=1-P\{X \leq 2\}=1-P\{X=0\}-P\{X=1\}-P\{X=2\} \\
& =1-e^{-\lambda}-\lambda e^{-\lambda}-\frac{\lambda^{2} e^{-\lambda}}{2}
\end{aligned}
$$

$$
F(a)=\sum_{, \ldots} p(x)
$$

 [x
 جرم احتمال زير باشد

$$
p(1)=\vdots \quad p(2)=\frac{1}{2} \quad p(3)=\frac{1}{x} \quad p(4)=\frac{1}{4}
$$

نتخستين درس احتمال
$F(a)= \begin{cases}0 & a<1 \\ \frac{1}{2} & 1 \leq a<2 \\ \frac{1}{4} & 2 \leq a<3 \\ \frac{7}{8} & 3 \leq a<4 \\ 1 & 4 \leq a\end{cases}$

احتمال اين كه X آن مقدار خاص را انختيار كند .
متغير هاى تصادنى كـسـته اغلب بر حسب مقادير تابع جرم دسته بندى مى شُود . در هند
بنخّ بعدى بعضى از آنها را بررسي ختو اهيمـ كرد .

ب-

تجـربه يـا آزمـايشّى را در نظر بحـيريد كـه برآمــد آن را بتـوان به دو دسـتـه لامـونقـيـتا يا

$$
\begin{align*}
& p(0)=P\{X=0\}=1-p \tag{1-F}\\
& p(1)=P\{X=1\}=p
\end{align*}
$$

كه در آن $0 \leq$ p متغير تصهادنى X X يكى متغير تصادنى برنولى كـويند (به نام برنولى رياضيدان موئيسىى)

 شتـغيـر دوجملهای با هارامترهاى (تصهادفى دو جمله أى با بارامتر هاكى (1, p) اسمت .

امـتاز

$$
\begin{equation*}
p(i)=\binom{n}{i} p^{\prime}(1-p)^{n-1} \quad i=0,1, \ldots, n \tag{Y-Y}
\end{equation*}
$$

 مو فـقيت و n-i شـكــتـ با تو
 به $(s, s, f, f),(s, f, s, f),(s, f, f, s),(f, s, s, f),(f, s, f, s)$, or (f, f, s, s)

كه در آن (s, s, f, f) يعنى دو آزمايش اول مو خفيـت و دو آز مايش آخخر شكـــت بوده المدت.

مو فقيت در ث آزمايش عبارت المـت از

تو جه كنيل بنا به تضيئُ دو جمله أى مجموع احتتمالها برابر يك مى شود 6 يعنى

$$
\sum_{i=1}^{\alpha} p(i)=\sum_{i=1}^{n}\binom{n}{i} p^{i}(1-p)^{n-i}=[p+(1-p)]^{n}=1
$$

 احتمال تعداو شير ها را هيذا كنيل. .

هِ : اكر X تعلاد شيـرها (مو فقيتهـا) باشد، آن كاه X يك متغيـر تصهادنى دو جمله أى با

بارامترهاى (n=5, p=

$$
\begin{aligned}
& P\{X=0\}=\binom{5}{0}\left(\frac{1}{2}\right)^{11}\left(\frac{1}{2}\right)^{5}=\frac{1}{32} \\
& P\{X=1\}=\binom{5}{1}\left(\frac{1}{2}\right)^{1}\left(\frac{1}{2}\right)^{4}=\frac{5}{32} \\
& P\{X=2\}=\binom{5}{2}\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)^{3}=\frac{10}{32} \\
& P\{X=3\}=\binom{5}{3}\left(\frac{1}{2}\right)^{3}\left(\frac{1}{2}\right)^{2}=\frac{10}{32} \\
& P\{X=4\}=\binom{5}{4}\left(\frac{1}{2}\right)^{4}\left(\frac{1}{2}\right)^{1}=\frac{5}{32} \\
& P\{X=5\}=\binom{5}{5}\left(\frac{1}{2}\right)^{5}\left(\frac{1}{2}\right)^{0}=\frac{1}{32}
\end{aligned}
$$

 معيوبند. اين كارخانه يِخها را در بسته هاى • ا تايعى به فروش مى رساند و يول خريدار را يس
 كارخانه بايد تعويض كند؟

حل : اگر X تعـلداد بيـجهـاى مـعيـوب در يكى بسـته باشد، در آن صـورت X يكى متغير تصادفى دوجملهأى با يارامترهاى (1 • • •و •) أست. در نتهجه احتمال اين كه بسته تعويض شود عبارت است از

$$
\begin{aligned}
1-P\{X=0\}-P\{X=1\} & =1-\binom{10}{0}(.01)^{6}(.99)^{10}-\binom{10}{1}(.01)^{1}(.99)^{9} \\
& \approx .004
\end{aligned}
$$

i

 بنابراين اكر X مقدار برد بازيكن باثـد ، داريم

$$
\begin{array}{r}
P\{X=-1\}=\binom{3}{0}\left(\frac{1}{6}\right)^{11}\left(\frac{5}{6}\right)^{3}=\frac{125}{216} \\
P\{X=1\}=\binom{3}{1}\left(\frac{1}{6}\right)^{\prime}\left(\frac{5}{6}\right)^{2}=\frac{75}{216} \\
P\{X=2\}=\binom{3}{2}\left(\frac{1}{6}\right)^{2}\left(\frac{5}{6}\right)^{1}=\frac{15}{216} \\
P\{X=3\}=\binom{3}{3}\left(\frac{1}{6}\right)^{\prime}\left(\frac{5}{6}\right)^{\prime \prime}=\frac{1}{216}
\end{array}
$$

Vها لار مقدار برد او برابر
ا0 بار مقدار برد او او برابر
r بار مقدار برد او بر برابر
بس در دراز مدت از هر Y Y باز بازى مقدار برد او عبارت است از
$-1(125)+1(75)+2(15)+3(1)=-17$
يعنى بطور متوسط IV واحد در هر Y Y بازیى خواهد باخت.

خواهدبود.

در مثال بعد سـاده ترين صورت نظريهُ وراتث كه توسط مندل بسط داده شده است بررسى .
ملــل

 حل : اكر فرض كنيم كه هريك از بجهه ها با احتمال مسـاوى هريكى از دو دو زن را را الز والدين

 احتمال مطلوب برابر اسـت با $\binom{4}{3}\left(\frac{3}{4}\right)^{3}\left(\frac{1}{4}\right)^{1}=\frac{27}{64}$

مثال P ث. هيأتى از داوران را در نظر مى گيريم كه در آن برای اثبـات جرم بايد، 1 داور از اץ

 بدهند جقلدر است؟
 مسـاله در دست نيست. مــلاّ، اكر مـدافع بى كناه باشد، احتمـال اين كه هيأت داوران تصمـيم

صحيـح بكيرند برابر است با

$$
\sum_{i=5}^{12}\binom{12}{i} \theta^{i}(1-\theta)^{12-i}
$$

سال آن كه اكر مقصر باشُـد، الـتمال تصميم درست برابر است با

$$
\sum_{i=k}^{12}\binom{12}{i} \theta^{i}(1-\theta)^{12-i}
$$

بنابراين اكر α أحتـال مقـصمربودن باشـد، با شـرطى كردن بر مقصـر بودن يا نبودن معلوم مي شود كه أستهال تصهيمم صحيـع داوران به مسورت زير است

$$
\alpha \sum_{i=x}^{12}\binom{12}{i} \theta^{i}(1-\theta)^{12-1}+(1-\alpha) \sum_{i=5}^{12}\binom{12}{i} \theta^{i}(1-\theta)^{12-i}
$$

 مؤلفه ها ، درست عمل كنتد.
 عمل مي كند .

مؤلفه عمل مي كند .

 |است با

$$
\binom{5}{3} p^{3}(1-p)^{2}+\binom{5}{4} p^{4}(1-p)+p^{5}
$$

در صورتى كه استمال فوتى براى سيستمي باثّ مؤلفه برابر است با

$$
\binom{3}{2} p^{2}(1-p)+p^{3}
$$

بنابراين ، مسيستم ه مولفه الى بهتر است اكر

$$
10 p^{3}(1-p)^{2}+5 p^{4}(1-p)+p^{5} \geq 3 p^{2}(1-p)+p^{3}
$$

كه بهصورت زير خالاصه مى شود

$$
3(p-1)^{2}(2 p-1) \geq 0
$$

$$
p \geq 1 / 2
$$

(ب) بطور كلى سـبـستـمى با 2k+1 مـؤلفه بهـتر از 2k - 1 مـولفـه عـمل مى كند اڭـر
(و و نقطاكر) فرض مى كنيم X تعداد 2k - 1 مولففه اول آن بامـد كه نعال هستند . در اين صورت

$$
\begin{aligned}
P_{2 k+1}(J ـ ـ ن)= & P\{X \geq k+1\}+P\{X=k\}\left(1-(1-p)^{2}\right) \\
& +P\{X=k-1\} p^{2}
\end{aligned}
$$

زيرا 2k+1 مؤلفه سيستم معال مستند اكر
X
(X $\mathrm{X}=\mathrm{k}$ (بداتل يكى از دو مولفه باتيمانده عمل كند.
(ب) X=k-1 و هردو مزلفه بعدى عمل كنتد
קون

$$
\begin{aligned}
P_{2 k-1}\left(\mathrm{~J} _\right. \text {_نـ) } & =P\{X \geq k\} \\
& =P\{X=k\}+P\{X \geq k+1\}
\end{aligned}
$$

نتيجه مى شود

$$
\begin{aligned}
& =P\{X=k-1\} P^{2}-(1-p)^{2} P\{X=k\} \\
& =\binom{2 k-1}{k-1} p^{k-1}(1-p)^{k} p^{2}-(1-p)^{2}\binom{2 k-1}{k} p^{k}(1-p)^{k-1} \\
& =\binom{2 k-1}{k} p^{k}(1-p)^{k}[p-(1-p)], \quad\binom{2 k-1}{k-1}=\binom{2 k-1}{k} \\
& \geq 0 \Leftrightarrow P \geq \frac{1}{2} \text {. }
\end{aligned}
$$

 حكـم زُير را ثابت مى كنيهم

 مساوى

برهـان : حكـم را با توجـه به مـــدار P\{X=k عى كنيهم كه به ازاي جه مقادير k بزر كتر يا كوجكتر از ا خواهد بود .
$\frac{P\{X=k\}}{P\{X=k-1\}}=\frac{\frac{n!}{(n-k)!k!} p^{\lambda}(1-p)^{n-k}}{\frac{n!}{(n-k+1)!(k-1)!} p^{k}(1-p)^{n-k 1 ;}}$

$$
=\frac{(11-k+1) p}{k(1-p)}
$$

بنابر اين P\{X=k

$$
(n-k+1) p=k(I-p)
$$

به عبارت معادل اكر و نقط اكر
$k \leq(\prime+1) p$
به اين ترتيب حكمم ثُابت مى شودد .
به عنوان توخـيح بيشتر حكم F - ا به شكل F F-0 تو جـه كنيد . أين شكل مـربوط به تابع
جرم احتمال يكى متغير تصادفى با بارامتر شاى (10, 1) است

甲-1 أ معاسبه تابع توزيع دو جملهاى
فرض كنيل X داراى توزيع دو جنمله ایى با پارامسترهاى (n, p) باشد . كليـد مـحاسـبه تابع
توزيع
$P\{X \leq i\}=\sum_{k=0}^{i}\binom{n}{k} p^{k}(1-p)^{n-k}, \quad i=0,1, \ldots, n$
 آهد :
$P\{X=k+1\}=\frac{p}{1-p} \frac{n-k}{k+1} P\{X=k\}$
مثال در اين صورت با در نظر كرنتن $P\{X=0\}=(.6)^{6}=.0467$

$$
P\{X=1\}=\text { 喽 } P\{X=0\}=.1866
$$

$$
P\{X=2\}=\frac{15}{6} \frac{5}{2} P\{X=1\}=.3110
$$

$$
\left.P\{X=3\}=\frac{4}{5}\right\} P\{X=2\}=.2765
$$

$$
P\{X=4\}=\frac{13}{6} P\{X=3\}=.1382
$$

$$
P\{X=5\}=\frac{12}{6} P\{X=4\}=.0369
$$

$$
P\{X=6\}=\frac{1}{6} \frac{1}{6} P\{X=5\}=.0041
$$

 برابر صـفر به دست مى آيد. در اين صـورت تمام جمـلات بعـدى k برابر صفر خواهد شد .
 مقدار
$J= \begin{cases}i & i \leq(n+1) p \\ {[(n+1) p]} & i>(n+1) p\end{cases}$
 الست. (از تمام احتـمالهـاى $P(X=j)$ ك

$$
\begin{aligned}
P\{X=J\} & =\binom{n}{J} p^{J}(1-p)^{n-s} \\
& =\frac{n(n-1) \cdots(n-J+1)}{J(J-1) \cdots 1} p^{s}(1-p)^{n-s}
\end{aligned}
$$

ابتد!از طرفين لكُاريتم مى گيريم
$\log P\{X=J\}=\sum_{k=1}^{j} \log (n+1-k)$

$$
-\sum_{k=1}^{\prime} \log (k)+J \log p+(n-J) \log (1-p)
$$

و سنس می نويسبـم
$P\{X=J\}=\exp \{\log P\{X=J\}\}$

مثـل مقدار P\{X 145$\}$ را محاسبب كنيد.

$$
\text { P\{X } \leq 90\} \text { را محاسبب كنيد. }
$$

حل : از برنامه كامبيوترى زير براى توزيع دو جملهاى استفاده كنيد:

RUN
THE DISTRIBUTION FUNCTION OF A EINOMIAL($n, p)$ RANDOM VARIABLE ENTER n
? 250
ENTER p
? 5
ENTER i
? 145
THE PROBABILITY IS . 995255
OK

RUN
THE DISTRIBUTION FUNCTION OF A BINOMIAL(n,p) RANDOM VARIABLE ENTER π
? 1000
ENTER p
? . 1
ENTER i
? 90
THE PROBABILITY IS . 1582189
OK

هـ - متثير تصادلف بواسن
متغير تصادفى X با مقادير كويبم اككر براى $\lambda>0$ دأشته باشيم

$$
p(i)=P\{X=i\}=e^{-\lambda} \frac{\lambda^{\prime}}{i!} \quad i=0,1,2, \ldots
$$

معادلُ ((1-1) يكى تابع جرم احتمال است، زيرا

$$
\sum_{i=1}^{\infty} p(i)=e^{-\lambda} \sum_{i=1}^{\lambda} \frac{\lambda^{\prime}}{i!}=e^{-\lambda} e^{\lambda}=1
$$

توزيع احتمال بواسن توسط بواسن در يكى ازكتـابهايسش در مبحـث احتمال (IAYV) معرفى
شـده است .
متـغنيـر تصـادفى بواسن در زمينه هاى مـخـتلف كـاربـرد زيادى دارد زيرا آن را مى توان

در ايسن صورت

$$
\begin{aligned}
P\{X=i\} & =\frac{n!}{(n-i)!i!} p^{i}(1-p)^{n-i} \\
& =\frac{n!}{(n-i)!i!}\left(\frac{\lambda}{n}\right)^{\prime}\left(1-\frac{\lambda}{n}\right)^{n-i} \\
& =\frac{n(n-1) \cdots(n-i+1)}{n^{4}} \frac{\lambda^{i}}{i!} \frac{(1-\lambda / n)^{n}}{(1-\lambda / n)^{i}}
\end{aligned}
$$

سال برای n بزرگ و مقدار متوسط

$$
\left(1-\frac{\lambda}{n}\right)^{n}=e^{-\lambda} \quad \frac{n(n-1) \cdots(n-i+1)}{n^{\prime}} \approx 1 \quad\left(1-\frac{\lambda}{n}\right)^{i} \approx 1
$$

بس در اين صورت داريـم

$$
P\{X=i\}=e^{-\lambda} \frac{\lambda^{4}}{i!}
$$

به عبـارت ديگُر، أكر n آزمـايش مسـتقل با احتـمال مـونقـيت p انتجام ثــود، وتتى n بزركا و
 تقريباً يكى متـغيـر تصادنى يواسن با هارامـتر $\lambda=n p$ امـت . اين مقـلـار (كه معـلوم مي شود برابر ميانتًين تعداد مونقيتهاست) بطور تيجربى به دست مي آيل .
 تبعيت مي كند به ترار زير أمـت :

Y Y ث ثهداد افراد يكـ فرقه كه " " ا سال عـمر مي كنند.
r - تعداد تلفنهاى الـُتباه كه در يكـ روز انتجام مي شود .
†
Q - تعداد مشتريان ادارهُ يسـت در يكى روز متعين.
¢ - تعداد هستهاي خاللى در يكى دادكاه عاللى در طول يكسال .
(V تعداد ذرات

 معينى يك بستهن فلفل مى خرد و الى آخر .

بواسن بابارامتر
مل : مرض كند X تعداد اشتباهات در اين صنحه باثد، داريم
$P\{X \geq 1\}=1-P\{X=0\}=1-e^{-1 / 2} \approx .395$

معيوبباثـد .
عل : احتمال مطلوب برابر است با
$\binom{10}{0}(.1)^{11}(.9)^{11}+\binom{10}{1}(.1)^{\prime}(.9)^{19}=7361$

$$
\text { در صورتى كه با تقريب يوا'سن داربـم } 7358 \text {. } \approx \mathrm{e}^{-1}+\mathrm{e}^{-1}
$$

مثال ه پ. آزمايـش مربوط به ثــمردن ذرات

احتمال $\lambda=\frac{3.2}{n}$ تجزيه شـده و ذرات α در طول يك ثانيه مورد مطالعـه حادر مى كند آن كاه با يك تقريب نحوب تعــاد α هاي صـادر شـده يك مـتغـير بواسسن ، پارامـتـر الحتمال مطلوب عبارت أمت از

$$
\begin{aligned}
P\{X \leq 2\} & =e^{-3.2}+3.2 e^{-3.2}+\frac{(3.2)^{2}}{2} e^{-3.2} \\
& \approx .382
\end{aligned}
$$

نشان داده ايم كـه توزيع بواسن با بارامتر np به شُرط آن كه ח بزر
 احتمال مونقيت هريك از آزماينها p باشديا

 بيشامد
Ei = [آزمايشن أم مونقيت است

در اين صورت بآسانى ديله مى شوود كه
$P\left\{E_{1}\right\}=1 / n \quad, \quad P\left\{E_{1} \mid E_{\}}\right\}=1 /(n-1), j \neq i$
بس اكر

 ثابت شُد.

 مختلف باشند. با استفاده از آناليز تركيبى بها ازاى n=23 اين احتمال كمتر از
 برایى هريك از

 هستنده يعنى هر دو يششاملم
 بارامتر زير است $\binom{n}{2} / 365=n(n-1) / 730$.

بنابراين

$$
\begin{aligned}
& \approx \exp \{-n(n-1) / 730\}
\end{aligned}
$$

براي تعيين كوجكترين مقدار n كه به ازاي آن اين احتمال كمتر از $\frac{1}{2}$ بامدند توجه كنيد كه $\exp \{-n(n-1) / 730\} \leq \frac{1}{2}$

به عبارت ديكر
$\exp \{n(n-1) / 730\} \geq 2$
اكر از طرفين لگُاريتم بكيريمبـماريم

$$
\begin{aligned}
n(n-1) & \geq 730 \log 2 \\
& \approx 505.997
\end{aligned}
$$

 يك متغير تصادفى امـت با بارامتر

$$
\begin{aligned}
\binom{n}{3} P\{i, j, k \text { in } k \mid & =\binom{n}{3}\left(\frac{1}{365}\right)^{2} \\
& =\frac{n(n-1)(n-2)}{6 \times(365)^{2}}
\end{aligned}
$$

بنابر اين
$P(ت ا ر ي خ$ تولد مبع سه نفرى يكسان نبامُـد $) \approx \exp \{-n(n-1)(n-2) / 799350)\}$
اين احتمال رتتى n در نا مسـارى زير صدن كند كهتر از
$n(n-1)(n-2) \geq 799350 \log 2=554067.1$
 تاريخ تولد يكسان باشند بيشتر از

 است. فرض كنيد ميشامدها در لحظات (تصـادفى) معينى از زمان رخ دهند، و براتى مقدار ثابـت λ

Y ا Y

 مستقل هستند.

به عبـارت ساده تر، (1) و (Y) بيـان مى كنند كه برالى مـتادير كـوهكـ h احتـمال ايـن كه

 اسـت . فرض (r) بيان مى كند كه هرجه در يكـ ناصله رخ دهد اثوى در روبدادهاى نواصل ديكر

نتخو|هد داشثـت.

(
 رامست معادله برابر امست . اكُر اين دو بيثامد را A و B بناميم داريم

$$
=\sum_{i=1}^{n} o\left(\frac{l}{n}\right)
$$

$$
=n o\left(\frac{t}{n}\right)
$$

$$
=t\left[\frac{o(t / n)}{t / n}\right]
$$

 آن

$$
P(B) \rightarrow 0 \text { as } n \rightarrow \infty
$$

P[0 (0]

$$
=1-[\lambda h+o(h)+o(h)]=1-\lambda h-o(h)^{\prime}
$$

با تو جهه به نرض استقلال (Y) هعلوم میى شود كه

$$
=\binom{n}{k}\left[\frac{\lambda}{n}+o\left(\frac{1}{n}\right)\right]^{k}\left[1-\left(\frac{\lambda 1}{n}\right)-o\left(\frac{1}{n}\right)\right]^{n}
$$

$$
n\left[\frac{\lambda t}{n}+o\left(\frac{l}{n}\right)\right]=\lambda t+t\left[\frac{o(t / n)}{t / n}\right] \rightarrow \lambda t, n \rightarrow \infty
$$

با وجود اين خحون

مانتد استدلالى كه براكى نقر يكـ دو جـهلهاى با بوامن داثتتهم مى توان نوشت

$$
\begin{align*}
& P(A) \rightarrow e^{\cdot \lambda 1} \frac{(\lambda t)^{k}}{k!} \quad, n \rightarrow \infty \tag{F-0}\\
& \text { بس }
\end{align*}
$$

$$
P(N(t)=k)=e^{-\lambda t} \frac{(\lambda t)^{k}}{k!} \quad k=0,1, \ldots
$$

 ثابست كه بايل بطور تجربى به دست آيلد .
 بلديله هالى كوناكونى به حسرت زير استـ:

1- تعداد زمين لرزه هـا در يكـ ناصله زمانى تُابـت .

Y - تعداد جنگڭها در سال

r- تعداد الكترونهاى آزادشده ، از كاتد در يكى فاصله زمانى ثابت. F F تعداد مر F و مير بيمه كذاران يك شـركت بيمه عمر در يكى فاصله زمانى مفروض .

 Y
 (Y) توزيع احتمال زمان , (Y)

קل : ا- أز معادلة $P\{N(2) \geq 3\}=1-P\{N(2)=0\}-P\{N(2)=1\}-P\{N(2)=2\}$

$$
\begin{aligned}
& =1-e^{-4}-4 e^{-4}-\frac{4^{2}}{2} e^{-4} \\
& =1-13 e^{-4}
\end{aligned}
$$

 نتيجه مى شود كى

$$
P\{X>t\}=P\{N(t)=0\}=e^{-\lambda t}
$$

و بنابراين تابع توزيع احتمال F متغير تصادفى X به صورت زير است

$$
\begin{aligned}
F(t)=P\{X \leq t\}=1-P\{X>t\} & =1-e^{-\lambda t} \\
& =1-e^{-2 t}
\end{aligned}
$$

ه- أ محاسبه تابي توزيع پواسن
إكر X بك متغير یواسن با پارامتر ג باشدد، آن گّاه

$$
\begin{equation*}
\frac{P\{X=i+1\}}{P\{X=i\}}=\frac{e^{-\lambda} \lambda^{\prime+1} /(i+1)!}{e^{-\lambda} \lambda^{\prime} / i!}=\frac{\lambda}{i+1} . \tag{9-0}
\end{equation*}
$$

اكر با

$$
\begin{aligned}
& P\{X=1\}=\lambda P\{X=0\} \\
& P\{X=2\}=\frac{\lambda}{2} P\{X=1\}
\end{aligned}
$$

$$
P\{X=i+1\}=\frac{\lambda}{i+1} P\{X=i\} .
$$

يكـ برنامـه بيـــيكى كـه مـــادلهُ ه-9 را برای مـحـاسـبه تابـع توزيع بواسن به كـار مى برد
در آخر اين نصل ارانه شـد ها استت. در اين برنامه محـاسبه با
 ش~روع نى شود كه در آن P (X=j)
$J= \begin{cases}\mathrm{i} & i \leq \lambda \\ \operatorname{Int}(\lambda) & i>\lambda\end{cases}$
(بزركترين عدد صسحع كمتر يا مساوى الست. دليل اين انتخاب اين است كه از تمام مقـادير
 $\log P\{X=J\}=-\lambda+J \log (\lambda)-\sum_{k=1}^{J} \log k$

$$
\text { و سبس نوشتن P }\{X=j\}=\exp [\log \{X=j\} \text { بهدست مى آورد . }
$$

(الف) مـــــدار مداسبه كنيل
(ب) مســـدار P(X<1075) را وتـتى X دارایى توزيع بـواسن با مـيـانـئين " ، ، ا است

" : برنامه توزيـع براسن ر!أجرا عى كنيـم

```
RUN
THIS PROGRAM COMPUTES THE PROBABILITY THAT A POISSON RANDOM VARIABLE
IS LESS THAN OR EQUAL TO i
ENTER THE MEAN OF THE RANDOM VARIABLE
? 100
ENTER THE DESIRED VALUE OF i
? }9
THE PROBABILITY THAT A POISSON RANDOM VARIABLE WITH MEAN }10
IS LESS THAN OR EQUAL TO 90 IS .171J914
Ok
HUN
THIS PROGRAM COMPUTES THE PROBABILITY THAT A POISSON RANDOM VARIABLE
IS LESS THAN OR EQUAL TO i
ENTER THE MEAN OF THE RANDOM VARIABLE
? }100
ENTER THE DESIRED VALUE OF i
? }107
THE PROBABILITY THAT A POISSON RANDON VARIABLE WITH MEAN }100
IS LESS THAN OR EQUAL TO }2075\mathrm{ IS . }98935
Ok
```


¢-1 متثير تهاهلي هنلدسى
فرض كنيد آزمايشهاى مستقلى با أحتمال موفقيت p , p <
يكى موفقيت بهدست آيد . اكر X تعداد آز مايشهاى لاز بم باشد، آن كاه

$$
\begin{equation*}
P\{X=n\}=(1-p)^{n-1} p \quad n=1,2, \ldots \tag{1-9}
\end{equation*}
$$

بر ای بهد سست آّوردن مـعادلئ (1-1) مى دانيـم شــرط لازم و كافى براى X X آن است كه ابتدا،
 مى آيد زيرا بر آمدهاى متوالى آزمايشها بنا به فرض مستقل هستند . جون
$\sum_{n=1}^{\infty} P\{X=n\}=p \sum_{n=1}^{\infty}(1-p)^{n-1}=\frac{p}{1-(1-p)}=1$

در نتيـجه با احتـمال I يكـ مونتقيت بالاغـره اتفاق مى افتـد . هر متغغـر تصادفى X كه تابع جرم p احتـمال آن از مـعادلهُ (
ناميله مى شـود. .

هر انتخاب قبل از انتخاب بعدى جابكذارى مى شود، ،مطلوب است استمال المال آن كه (1) دتقياً nاسنخراج لازم باشد و (Y) حداتلّ k استخرابج لازم باشد؟
 باشد، در اين صورت X در معادلة (1-1) با بارامتر C بار

1. $P\{X=n\}=\left(\frac{N}{M+N}\right)^{n-1} \frac{M}{M+N}=\frac{M N^{n-1}}{(M+N)^{n}}$
2. $\quad P\{X \geq k\}=\frac{M}{M+N} \sum_{n=k}^{\infty}\left(\frac{N}{M+N}\right)^{n-1}$

$$
\begin{aligned}
& =\left(\frac{M}{M+N}\right)\left(\frac{N}{M+N}\right)^{k-1} /\left[1-\frac{N}{M+N}\right] \\
& =\left(\frac{N}{M+N}\right)^{k-1}
\end{aligned}
$$

 شـكست باششند. يعنى برایى يك متغير تصادنى شندسى

$$
P(X \geq k\}=(1-p)^{k-1}
$$

فرض كنيد آزمايشّهاى مستثل با احتمـال مونفيت
تا ז مونقيت به دست آيد. ا اكر X تعداد آزمايشهاى لازم باشد، آن كاه

$$
\begin{equation*}
P\{X=n\}=\binom{n-1}{r-1} p^{r}(1-p)^{n-r} \quad n=r, r+1, \ldots \tag{Y-9}
\end{equation*}
$$

 باشد . احتمال الولين بيشامد برابر است با

$$
\binom{n-1}{r-1} p^{r-1}(1-p)^{n-r}
$$

 مى آيد • برایى تحقيت اين كه بالاخره r مونقيت بايد رخ دهد مى توان بطور تـليلى ثابت كرد كه
$\sum_{n=r}^{x} P\{X=n\}=\sum_{n=r}^{x:}\binom{n-1}{r-1} p^{\prime}(1-p)^{n-r}=1$
يا بطور احتمالمى استدلال كرد : تعداد آزمايشهاى لازم برابي به دست آوردن r موفقيت را مى توان به صـورلت مـو فقيت ، Y تعـداد آزمايشُـهـاى ديكر لازم برایى به دست آوردن دومبن مـوغقيت و Y 3 تعداد

 همـه مـتـنـر هاى تـصادفى هندسى و بنابراين هر يكى با اهحتــــال ا مـتناهى ثسـتند و در نتـيـجـه

مـتغـير تصـادنى X كـه تابع جرم احتــــال آن با معـادلهُ (Y-Y) داده مى شــود يكـ متـغيـر
 مندسى يكى متغير تصـِّدنى دو جملماى منفى با بارامتر (I, p) ا است . در مثال بعد با استهاده از دو جممله ایى منغى يكـ حل ديكر براى مساله نقاط بيدا مى كنيم .
 مونقيت فبل از m شنكست بهد دست آيد جقدر است

 نتيجهُ مى شـود كه إحتمال مطلوبس برابر است با با

$$
\sum_{n=r}^{++n-1}\binom{n-1}{r-1} p^{\prime}(1-p)^{n-r}
$$

مثال و كبريت دارد، يكى در جيب خـب و يكى در جيبب راستت . هر بار كه به كبريت نياز داشته باشـد با

 است، احتمال آن كه در جعبئ ديكر k كبريت k مل : فرض كنبد E بيشامدى بانشد كه رياضيدان متـوجه شـده امست كه توطى كبريت جيب راست خالى است و k سـين كبـريت در توطى جيـب جـب وجود دارد . حـال اين بيـنـامـد رخ
 حورت كيرد. بس ازمعادلة ($P(E)=\binom{2 N-k}{N}\left(\frac{1}{2}\right)^{2 N-k+1}$
چون احتمال اين كه ابتدا كبريت راست يا هحب خالمى شود برابر است ز k كبريت در جعبه سمت راست وجود دارد مقدار مطلوب عبارت است از

$$
2 P(E)=\binom{2 N-k}{N}\left(\frac{1}{2}\right)^{2 N-k}
$$

\%
فرض كنيد نمونه أى به حجـم n از جعبهاى كه داراى N مهره است كه Np مهره آن مفيد و N - Np مـهـره آن سـيـاه است بتـصـادن (و بدون جـايكـنارى) خــارج مى كنيم . اكـر X تعداد مهره ماى سفيد انتخاب شده باند آن كاه

$$
P\{X=k\}=\frac{\binom{N p}{k}\binom{N-N p}{n-k}}{\binom{N}{n}} \quad k=0,1, \ldots, \min (n, N p)
$$

هر متغير تصادفى X با تابي جرم احتمال (Y-Y) را متلير تهادلى هلمسى كويند . مثال 9 ت. تعـداد نامـعينى از حـيـوانات مـنـلآN تا در ناحيـه أى زندكى مى كنند . براى بهدست آوردن إطلاعاتى در بارهُ حجـم جامـعه ، دانتــمندان مسيط زيست اغـلب آزمايش زير را

 بائد. اكر فرض كنيدكه جمعيت حيوانات در اين ناحيه در زمان بين دو نمونه كيرى ثابـت بـي بماند و احتمـال كرفتن هريكى از حيوانات بكسان بانسـد، نتيجه مى شود كـ X X داراى يكى نوزيع فون هندسى است به قسمى كه
$P(X=i\}=\frac{\binom{r}{i}\binom{N-r}{n-i}}{\binom{N}{n}}=P_{i}(N)$

 r| ماكزيمم $\frac{P_{i}(N)}{P_{i}(N-1)}=\frac{(N-r)(N-n)}{N(N-r-n+i)}$

كه اين نـبـت بزركتر از ا الست اكر و فنط اكر $(N-r)(N-n) \geq N(N-r-n+i)$

با به عبارت ديكر ، اكر و نتط اكر
$N \leq \frac{m}{i}$
بس (P_{i} (N)

 برآورد N برابر • O 0 حيوان خـوراهد بود . نــبت حـيوانات عـلامت دار در جـمعيت ، يعنى علامت دار نمرنه ، يعنى مثال 9 ث. يكى مـتترى تطعـات الكتريكى رابه صـورت بـتـه هاى • ا تايى خريدارى

بسته ها رارد هى كند .
مل : نرض كنيد A يِشامل بذيرفتن يك بسته باشلد . در اين صورت

$$
=\frac{\binom{4}{0}\binom{6}{3}}{\binom{10}{3}}\left(\frac{3}{10}\right)+\frac{\binom{1}{0}\binom{9}{3}}{\binom{10}{3}}\left(\frac{7}{10}\right)=\frac{54}{100}
$$

بنابراين 9 ¢ در صـد بسته ها رد می شـوند.

يك متغيرتصادني را داراى توزيع زتا كويـم اكرتابع جرم احتمال آن بهصورت زير باشلد

$$
P\{X=k\}=\frac{C}{k^{a+i}}, \quad k=1,2, \ldots
$$

خون مـجموع احتمالهاى فوت بايد برابر \mid باشد، داريم

$$
C=\left[\sum_{k=1}^{\infty}\left(\frac{1}{k}\right)^{a+1}\right]^{-1}
$$

توزيع زتا با توجه به تابع زير نام كذارى شُده أست

$$
\zeta(s)=1+\left(\frac{1}{2}\right)^{s}+\left(\frac{1}{3}\right)^{s}+\cdots+\left(\frac{1}{k}\right)^{s}+\cdots
$$

كه آن را در رياضيات، تابع زتاى ريمان كويند.
توزيع زتا توسط اقتصاد دان ايتاللبايى هارتو براى توصيف تـوزيع درآمد خانواده ها در يك كشور به كار برده شـلده اسـت. ولى، زيب اين توزيع را در زمـينه هاى وسيعى از علو م به كار برد و استفاده از آن را عام مـاخت .

تمرينهاى تنظرى

ا- مقدار N كوبن متمايز وجود دارد، و هربار كه يكى از آنها مــتقلا انتخاب مى شود با الحتمال

> r-
> r- بمقدار P\{X

$P\{X<b\}=\lim _{b_{n} \rightarrow b} P\left\{X<b_{n}\right\}$
ه - اكر X داراى تابع توزبع Fباشد تـابع توزيع متغير تصـادنى نابت و $\alpha \neq 0$ جيست

 ممكن k مو نقيت و k - k ش شكست همشانس هستيند.
 احتمال مالم

درسـتنمايى ماكزيمم كريند.
q-

خانواده ها دارانى k بــر (و هر تعداد دختر) خو اهند بود؟
 ثنير p اسـت . ثابت كنيد احتمالل اين كه نعداد نيرها زوج باشُد برابر است با

كه در آن q = 1 -

$$
\sum_{i=0}^{[n / 2]}\binom{n}{2 i} p^{21} q^{n-2 i}=\frac{1}{2}\left[(p+q)^{n}+(q-p)^{n}\right]
$$

نظرى

برابر بزر كترين علد صسحيح كو جكتر يا مساوى ג بائـد .

Y

$$
P[\text { زתج X }]=\frac{1}{2}\left[1+e^{-2 \lambda}\right]
$$

(الف) با استفاده از مسألهُ • ا و رابطه بين متغير ماى تصادنى دو جمله اى و پواسن •

 k $\mathrm{k} \geq 0, \mathrm{P}\{\mathrm{X}=\mathrm{k}\}$
 دو فرد i و j دارانى يكى تاريخ تولد باشُند . فزض كنيـد احتمال اين كـه تولد هر فزد در يكى از

$$
\begin{align*}
& P\left(E_{3,4} \mid E_{1,2}\right) \tag{الفـ}\\
& P\left(E_{1,3} \mid E_{1,2}\right) \tag{ب}\\
& P\left(E_{2,3} \mid E_{1,2} \cap E_{1,3}\right) \tag{ب}
\end{align*}
$$

از مطالب فوت در مورد استقلال
 Y Y Y 6 و

ثابـت كنيد

$$
\lim _{n} P\{T>\alpha n\}=e^{-\alpha / 2}
$$

$$
\mathrm{k}=1, \ldots \mathrm{n}
$$

آزمايس (تشريبا) مستقل در نظر كرنت.

(T>
(ت) استهال سلـى توت را ثاببت كنيد .

 شـهودى نشان دهيل كه أين شطلب صسيـع امـت .

 ذره در آن زمان كشفـ شود . - IV

$$
\sum_{i=0}^{n} e^{-\lambda} \frac{\lambda^{i}}{i!}=\frac{1}{n!} \int_{\lambda}^{\infty} e^{-x} x^{n} d x
$$

[رالمنهايـ : از انتكرال جزء به جزع استفاده كنيد] .
X X ا 1 - الكى متغير تصـادنى هندسى باشد، بطر تحليلمى ثابـت كنيد

$$
P\{X=n+k\{X>n\}=P\{X=k\}
$$

يكى استدلال شُهودى براى اثبات فوت با تغير متغير تصهادنى هندسى بِدا كنيد . 19- بر ایى يك متغير تمهادنى توت هندسى با تابع جوم ا-حتمهال (F-F) مقدار
$|v|$
نــل هجارم -متغير عایى تصادنى

$$
P(X=k+1\} / P\{X=k\}
$$

را به دسـت آزريد .
-
 استمال Y
| ا

X را بيلدا كنيد .

Y Y Y Y Y مـهـرهُ ديكر را اخــارج مى كنـيـم. اين عسمـل را ادامـه مى دهيـم تا مـهـرهاى به دسـت آيد كـــ
 مـقاسبه كنيد.

$$
\frac{\binom{N p}{k}\binom{N-N p}{n-k}}{\binom{N}{n}} \rightarrow\binom{n}{k} p^{k}(1-p)^{n-k}
$$

 تُهودى براى درستنى معادلهُ ارانه دهيل .

مسالٌ

 احتمال هريكاز مقادير آن هقدر امـت؟
 $P\{X=i\}, i=1,2, \ldots$

مطلوب أست محاسب؛

- ه فرض كنيد X تفاوت بين تعداد شيرها و خطها در برتاب n باريكى سكه بانمد، مقادير ممكن . را ما محاسبه كنيد X

Y- درمسالئ ها اكر سكه سالم باشد به ازاى
V- تاسى را دو بار مى ريزيم. معادير ممكن متغير هاى تصادنى زير را نعيبن كنيد :
(الف) ماكزيمم مقدار حاصل در در دو برتاتبا
(ب) (ب) مينيمم مقدار حأصل در دو برتابر
(ب) مجموع دو برتاب.
(ت) مقدار برتاب اول منهاى مقدار بريرتاب دوم

شدها يـم. مقدار آن را بهازازاى i=1,2,3 محاسبه كنيد.

 بزركتر شود

 به صورت زير تعريـف مي شود : ابتدا ח را به عوامل ال اول تج

 شود كه در آن k يك عددبز
 $\prod_{i=1}^{\infty} \frac{P_{i}^{2}-1}{P_{i}^{2}}=\left(\frac{3}{4}\right)\left(\frac{8}{9}\right)\left(\frac{24}{25}\right)\left(\frac{48}{49}\right) \cdots=\frac{6}{\pi^{2}}$

كهدر آن P كـوجكتـرين عـدد اول i امامت. (عـددارابهعنوان عــدد اول درنظر
نمى كيريم).

 در يك بازى دو انكشتى باشدل

مساوى با آنجه سدس مى زنند نتـان دهند و احتمال نــان دادن ا يا Y انكشت يكسان باشثد، معادير ممكن X و احتمالهاى متناظر آنها را محاسبه كنبل . |
$F(b)= \begin{cases}0 & b<0 \\ \frac{b}{4} & 0 \leq b<1 \\ \frac{1}{2}+\frac{b-1}{4} & 1 \leq b<2 \\ \frac{11}{12} & 2 \leq b<3 \\ 1 & 3 \leq b\end{cases}$
ار P به دست آوريد .
أ احتمال متغير تصادفى X X ا ا ا أكر تابع توزيع X به صورت زير باتشد
$F(b)= \begin{cases}0 & b<0 \\ \frac{1}{2} & 0 \leq b<1 \\ \frac{3}{5} & 1 \leq b<2 \\ \frac{4}{3} & 2 \leq b<3 \\ \frac{9}{10} & 3 \leq b<3.5 \\ 1 & b \geq 3.5\end{cases}$

تابع جرم احتتمال X Xا مححاسبه كنيد
91 - مهرهأى از يكى جـعبه كه داراى جايكذارى مـهره ديكرى خارج مى شُود و اين عــل را تا بی نهايت ادامه بى دهيـم . احـتمال اين كه در حهار مهره اول دتيقاً Y مهره سفيد باشثلد جقدر است
IV بيشتر بطرر سدسى جواب درست بدهد جقدر است؟

 درست نبانُد جقدر است؟

 استقلال در نظر مى كيريد.

 عمل كند جیقدر است؟

بطور مستقل عمل كتند و اكر 90 درصد مدافعان كناهكار باشند، مطلوبست استمال اين كه
هيأت منصفه تصميم درمـت بگيرند. هند در صد مدانعان مجرم شناخته مى شـوند؟
 استـ. اين كمـبانى ديسكتها را در بسـتّه هاى • ا تاهى مى فروشد و تفـميـن مى كتد كه يول

 السـت. اكر از آنها • • ا عدد سـفـارش دهيم آيا تعـداد دعـيوبهاي خـريدارى شـده يكى مـتغير

تصادفى دو جـدله إى المـت؟
$\lambda=\uparrow$ Y
(الفّ) احتمال اين كه أمروز " تصادف يا بيشتر رغ دهد جقلدر اسـت؟
(ب) تسمت الفـ را تكرار كنيد با اين فرض كه حداتل امروز يك تصهادف رخ مى دهد. . تقريب بوامسن را با احتمال دوجمله أي براي موارد زير مقايسه كنبد

$P\{X=2\}$	$n=8, p=.1 ;$	به ازاي	(الفـ)
$P\{X=9\}$	$n=10, p=.95 ;$	بهازاى	(ب)
$P\{X=0\}$	$n=10, p=.1$;	به ازاى	(ب)
$P\{X=4\}$	$n=9, p=.2$.	به ازاى	(ت)

 بارامتر توزيع يواسن را براى VO درصلد جمعيت به
 سرمانحورده باشـد آبا دارو برايى او مفيد بوده است .

 حاصل در مثال ه د در نصل ب بمقايسه كنيد .

 جقلراست
 ماه خود كتشى كنند جفلدر است؟
(ب) احتمال آن كه حداتل

 كند تا معلوم موود از ميان n بيمار كدام

$$
؟ n=1 \cdot(\text { iv }), n=9(\text { iii }) n=f(i i)
$$

$$
. n=1
$$

هr- هريكى از • . ه نفرى كـه در يك مؤسـسه نظامى كـار مى كنتد مـستقل از يكــيكر با الحتـمال (1. ${ }^{\text {r }}$

 باشند) جقدر است؟
 (ب) با شرايط فوف احتمال اين كه بيش از يكى نفر مبتلا باشــد هقدر اسـت حامد يكى از . . 0 نفر الست كه مى داند مبتلاسـت
(؟) از نظر حامد احتمال اين كه بيش از يكى نفر مبنلا باشثد جفدر اسـت؟

 (ت) اتكر مطلب فوث را بهصورت تابعى از i در نظر بگيريم، احتـمال اين كه هريكى از افراد باقيمانده مبتلا باثـند هقدر است؟

 جقدر است؟ احتمال اين كه اولين برد او در شـر بـندى هـهارم باشـد جقدر است؟ -rV

 احتمال اين كه فهرسـت أو براى هصاسحبه كافى باشـد هقدر است درد دصورتى كه اين نهرست :
 كر دفيـقاً : (؟) با

. جرم احتـمال X
N
كبريت و جعبه جيب راسـت N2 كبريت داشثته باشّل .

دبگر دارای k كبريت باثُد هجقلر امـت؟

- FY

 داشتـه باشّبـم جقدر امست؟
 بتصـادف به وسبلهُ تمار بحـانه از بين اعداد | تا * A انتهخـا بـ مى شود . يك بازبكن مى توانذ

 اكر بازيكن ثقط يك عدد انتغابِ كند وتثى برنده مى شود كه اين علد در ميان •Y علد فوت

 (الفن) مبلغ بردانخت عادلانه در اين حاللت جقلدر امـت؟
 ميان • Y علد انتـغابِ شُـده توسعل تمارخحانه باشُل .

 تمارخانه طبن بجلول زير اسـت.

ستون آخر اين جدرل را كامل كنيد .

FF

جقَدر است؟

 مى شوند؟

مسلمبه كابع لوزله (و بملداى

```
10 PRINT^THE DISTRIBUTION FUNCTION OF A BINOMIAL(n,p) RANDOM VARIABLE"
20 PRINT "ENTER n"
30 IMPUT N
40 PRINT "ENTER p"
5 0 ~ I N P U T ~ P ~
60 PRINT "ENTER i"
70 INPUT I
80 S=(1-P)^N
90 IF S=0 GOTO 180
100 A=P/(1-P)
110 T=S
120 IF I=0 GOTO 390
130 FOR K=0 TO I-1
140 S=S*A* (N-K)/(K+1)
150 T=T+S
160 NEXT K
170 GOTO 390
180 J=I
190 IF J>N*P THEN J=INT(N*P)
200 FOR K=1 TO J
210 L=L+LOG (N+1-K)-LOG(J+1-K)
220 NEXT K
230 L~L+J*LOG(P)+(N-J)*LOG(1-P)
240 L=EXP(L)
250 B=(1-P)/P
260 F=1
2 7 0 ~ F O R ~ K = 1 ~ T O ~ J ~
280 F=F*B*(J+1-K)/(N-J+K)
290 T=T+F
300 NEXT K
310 IF J=I GOTO 380
320 C=1/B
330 F=1
340 FOR K-1 TO I-J
350 F=F*C*(N+1-J-K)/(J+K)
360 T=T+F
370 NEXT K
380 T= (T+1) & L
390 PRINT "THE PROBABILITY IS":T
400 END
```

```
نتهستين درس استهال 
|AY
```


محاسبه تابي توزلع يواسن

```
10 PRINT "THE PROBABILITY THAT A POISSON VARIABLE IS LESS THAN OR EQUAL TO i"
20 PRINT "ENTER THE MEAN OF THE RANDOM VARIABLE"
30 INPUT C
40 PRINT "ENTER THE DESIRED VALUE OF i"
50 INPUT I
60 S=EXP(-C)
70 IF S=0 GOTO 150
80 T=S
90 IF I=0 GOTO 340
100 FOR K=0 TO I-1
110 SmS*C/(K+1)
120 T=T+S
130 NEXT K
140 GOTO 340
150 J=I
160 IF J>C THEN J=INT(C)
170 FOR K=1 TO J
180 FAC=FAC+LOG(K)
190 NEXT K
200 L=-C-FAC+J*LOG (C)
210 L=EXP(L)
220 F=1
230 FOR K=1 TO J
240 F=F*(J+1-K)/C
250 T=T+F
250 NEXT K
270 IF J=I GOTO JJO
280 F=1
290 FOR K=1 TO I-J
300 F=F*C/(K+J)
310 T=T+F
320 NEXT K
300 T=(T+1)*L
340 PRINT "THE PROBABILITY IS";T
350 END
```


متڭيرهاى تصاذفى بيوسته

$$
1 \text { - مقدمه }
$$

 اعداد حقيقى داشته باثيبم

$$
\begin{equation*}
P\{X \in B\}=\int_{B} f(x) d x \tag{1-1}
\end{equation*}
$$

تابع f، لابي هكلال اتمتالل متغير تصادنى X ناميده مى شود．

 ا－كامهى آنَ را مطلقَآيوست مى نامند．

$$
1=P\{X \in(-\infty, \infty)\}=\int_{-\infty}^{\infty} f(x) d x
$$

$$
\begin{align*}
& \boldsymbol{P}\{a \leq X \leq b\}=\int_{a}^{b} f(x) d x \tag{Y-1}\\
& \text { | }
\end{align*}
$$

$$
P\{X=a\}=\int_{a}^{a} f(x) d x=0
$$

اين معادله بـيان مي كند كه امتتهـال اين كه متغير تصهادني خبوسـته مقدار ثابتى را اختتهار كند برابر صفر الستت . بنابر اين براى يك متغير تصـادنى بيوستته داريـم

$$
P\{X<a\}=P\{X \leq a\}=F(a)=\int_{-\infty}^{a} f(x) d x
$$

صورتتزير اسـت

$$
f(x)=\left\{\begin{array}{lc}
C\left(4 x-2 x^{2}\right) & 0<x<2 \\
0 & \text { غر غير اين مورت }
\end{array}\right.
$$

1- شتدار C, اتعين كتيل
. را بيابيلد P\{X > 1$\}-Y$
 نتبجه مى شـود

$$
\begin{aligned}
& C \int_{0}^{2}\left(4 x-2 x^{2}\right) d x=1 \\
& \left.C\left[2 x^{2}-\frac{2 x^{3}}{3}\right]\right|_{x=0} ^{x=2}=1
\end{aligned}
$$

$C=\frac{3}{8}$
ا

بنابر اين
$P\{X>1\}=\int_{1}^{\infty} f(x) d x=\frac{3}{4} \int_{1}^{2}\left(4 x-2 x^{2}\right) d x=\frac{1}{2}$

مثال 1 بـ .مدت زمـانى كه يكى كـامبيوتر (به سـاعت) تبل از خـراب شـدن كـار مى كند،
يك متغير تصادفى يوسته با تابع جكالى احتمال زير است
$f(x)= \begin{cases}\lambda e^{-x / 14 x)} & x \geq 0 \\ 0 & x<0\end{cases}$
 احتمالى كه اين كاميبوتر كمتر از • " ا ساعت كار كند جقدر است؟ مل : جون

$$
1=\int_{-\infty}^{\infty} f(x) d x=\lambda \int_{0}^{\infty} e^{-x / 001)} d x
$$

$$
1=-\left.\lambda(100) e^{-x / 1010}\right|_{0} ^{\infty}=100 \lambda
$$

$\lambda=\frac{1}{100}$
بس احتـمالـــــــهـ يـك كـامبـيوتر، قبل از خـراب شـدن بين •0 و • 10 سـاعت كـار كندبرابر استبا

$$
\begin{aligned}
P\{50<X<150\} & =\int_{50}^{1.50} \frac{1}{100} e^{-x / 1000} d x=-\left.e^{-x / 100 \mid}\right|_{50} ^{150} \\
& =e^{-1 / 2}-e^{-3 / 2}=.384
\end{aligned}
$$

نخستين درس احتمالل
$P\{X<100\}=\int_{0}^{1001} \frac{1}{100} e^{-x / 100 \mid} d x=-\left.e^{-x / / 60 x}\right|_{0} ^{1000}=1-e^{-1}=.633$
به بيان ديكر در ז/ זوء درصـد موارد، يك كامبيوتر تبل از رسبـدن به + " ا ساعت كـار خراب خواهد شد.

مثال 1 ب. عــر يكى نوع لامب راديوبى (به ساعت) يكى متـغير تصــادفى با تابع جكُلى احتمال زير است
$f(x)= \begin{cases}0 & x \leq 100 \\ \frac{100}{x^{2}} & x>100\end{cases}$

 اين كه لامبا أم در ظر أ اين مدت تعويض شود، مستقلند حل : اكنون

$$
\begin{aligned}
P\left(E_{i}\right) & =\int_{0}^{150} f(x) d x \\
& =100 \int_{100}^{150} x^{-2} d x \\
& =\frac{1}{3}
\end{aligned}
$$

بنابراين، از الستقلال حِيُّامدهاى E ، نتيجه مى شود كه احتمال مطلوب برابر است با $\binom{5}{2}\left(\frac{1}{3}\right)^{2}\left(\frac{2}{3}\right)^{3}=\frac{80}{243}$

رابطهُ بين توزيع تراكمي F و چڭكالى احتمالf باعبارت زير بيان مى شود
$F(a)=P\{X \in(-\infty, a)\}=\int_{-x}^{a} f(x) d x$
با مستتق كيرى از دو طرنـ رابطءّ فوتى داريم

$$
\frac{d}{d a} F(a)=f(a)
$$

 به صورت زير بهد دستآورد :
$P\left\{a-\frac{\varepsilon}{2} \leq X \leq a+\frac{\varepsilon}{2}\right\}=\int_{a-f / 2}^{u+r / 2} f(x) d x \approx \varepsilon f(a)$

 برخورد مى كنبم، در جند بخشـ بعدى بعضى از آنها را مورد مطالعه قرار میى دهيم.

F -

احتمال آن به ثنكل زير باثـد.
$f(x)= \begin{cases}1 & 0<x<1 \\ 0 & \text { در غير اينصور }\end{cases}$
 ($f(x)$ تنهـا وتتى كـه $f(0,1)$. $\int_{-\infty}^{\infty} f(x) d x=\int_{0}^{1} d x=1$

$$
P\{a \leq X \leq b\}=\int_{a}^{b} f(x) d x=b-a
$$

به بيان ديكر ، احتمالى كـه X دريك زير ناصله خاصى از (0, 0) باثـد با طول اين ناصله برابر است
 جكالى احتمال آن بهصورت زير باشد
$f(x)=\left\{\begin{array}{lc}\frac{1}{\beta-\alpha} & \alpha<x<\beta \\ 0 & \text { عر غير اين صورت }\end{array}\right.$

هون تصادنى يكنوانحت بر ناصله (α, β) با رابطه زير داده مى شود:
$F(a)= \begin{cases}0 & a \leq \alpha \\ \frac{a-\alpha}{\beta-\alpha} & \alpha<a<\beta \\ 1 & a \geq \beta\end{cases}$

> شككل - - ا نمودار F f (a) و F (a) را نمايش مى دهد .

(

صل

$$
\begin{aligned}
P(X<3\} & =\int_{0}^{3} \frac{1}{10} d x=\frac{3}{10} \\
P\{X>6\} & =\int_{0}^{10} \frac{1}{10} d x=\frac{1}{10} \\
P\{3<X<8\} & =\int_{3}^{8} 11 d x=\frac{1}{2}
\end{aligned}
$$

 - • دققيه متتظر اتوبوس بماند.

 $P\{10<X<15\}+P\{25<X<30\}=\int_{10}^{15} \frac{1}{30} d x+\int_{25}^{30} \frac{1}{30} d x=\frac{1}{3}$

$$
P\{0<X<5\}+P(15<X<20\}=\frac{1}{3}
$$

 فرمول بندى مى كنيم.
 تعيين نمود، اين فاصله بين 0 و ت تُعاع دايره تغيير مى كند . اكنون، طول اين اين وتر از از ضلع مثلث
 بأشد

و r بطور يكنواخت توزيع نُـده است، احتمالى كه طول اين وتر از ضلع مثلث متساوى الاضلاع محاطى بز ركتر باشـد برابر است با
$P\left\{D<\frac{r}{2}\right\}=\frac{r / 2}{r}=\frac{1}{2}$

 متساوى الاضلاع محاطى بز ركتر است اكر

 فرمولبندى عبارتاست از
$P\{60<\theta<120\}=\frac{120-60}{180}=\frac{1}{3}$
بايد توجه داشت كه اين آزمايشهاى تصادنى بايد طورى انجام موري موند

كويـم X يكى متغير تصـادفى نرمال است، يا X بطور نرمال با بار امـترهاى
شده است اكر هكالى Xبه صورت زير باشد
$f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-(x-\mu)^{2} / 2 \sigma^{2}} \quad-\infty<x<\infty$

 در نصل

.

 در نصل 1 مورد بحث ترار خـواهد كرفت) . تضيه حد مركزى، يكى از دو مهــترين نتيجهـ

$$
\frac{1}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{\infty} e^{-(x-\mu)^{2} / 2, x^{2}} d x=1
$$

با تغير متغير $y=\frac{x-\mu}{\sigma}$ ، داريم
$\frac{1}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{\infty} e^{-(x-\mu)^{2} / 2 \sigma^{2}} d x=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-y^{2} / 2} d y$
و بنابراين بايد ننـان دهيم كه
$\int_{-\infty}^{\infty} e^{-y^{2} / 2} d y=\sqrt{2 \pi}$
برای اين منظور قرار مى دهيم I =
$I^{2}=\int_{-\infty}^{\infty} e^{-y^{2} / 2} d y \int_{-\infty}^{\infty} e^{-x^{2} / 2} d x$
$=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\left(y^{2}+x^{2}\right) / 2} d y d x$
 (يعنى قرار مى دهيم x = x ($\mathrm{x} \cos \theta, y=r \sin \theta, d y d x=r d \theta d$. بنابر اين

$$
\begin{aligned}
I^{2} & =\int_{01}^{\infty} \int_{0}^{2 \pi} e^{-r^{2} / 2} r d \theta d r \\
& =2 \pi \int_{0}^{\infty} r e^{-r^{2} / 2} d r \\
& =-\left.2 \pi e^{-r^{2} / 2}\right|_{0} ^{\infty} \\
& =2 \pi
\end{aligned}
$$

 وتتى $\alpha>0$ از رابطهُ زير بد دست مى آيد.

$$
\begin{align*}
F_{Y}(a) & =P\{Y \leq a\} \\
& =P\{\alpha X+\beta \leq a\} \\
& =P\left\{X \leq \frac{a-\beta}{\alpha}\right\} \\
& =F_{X}\left(\frac{a-\beta}{\alpha}\right) \\
& =\int_{-\infty}^{[(a-\beta) / \mu]} \frac{1}{\sqrt{2 \pi} \sigma} e^{-(x-\mu)^{2} / 2, \mu^{2}} d x \\
& =\int_{-\infty}^{a} \frac{1}{\sqrt{2 \pi} \alpha \sigma} \exp \left\{-\frac{[y-(\alpha \mu+\beta)]^{2}}{2 \alpha^{2} \sigma^{2}}\right\} d y \tag{i-r}
\end{align*}
$$

 عبارتاست از

$$
f_{Y}(y)=\frac{1}{\sqrt{2 \pi} \alpha \sigma} \exp \left\{-\frac{[y-(\alpha \mu+\beta)]^{2}}{2(\alpha \sigma)^{2}}\right\}
$$

بنابراين Y داراى توزيع نرمال با بارامترماى
 باشـد، آن كاه Z تصادفى Z دارايى توزيع نرمال استلثاردديا والهد است.
 (X) نشان دمند . يعنى
$\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{1} e^{-y^{2} / 2} d y$
, , F F

$$
\begin{equation*}
\Phi(-x)=1-\Phi(x) \quad-\infty<x<\infty \tag{Y-r}
\end{equation*}
$$

انبات مـعادلئ (Y-Y) را كه از تقارن جكالى نرمـال المتاندارد نتيجـه مى شـوده، به عنوان تمرين
 $P(Z \leq-x)=P\{Z>x\} \quad-\infty<x<\infty$

هر كاه X داراى توزيع نرمال با بارامترهانى نرمال استاندارد اسـت، نتبجه هي شود كه تابع توزيع X را مى توان به صورت زير بيان كرد

$$
\begin{aligned}
F_{X}(a) & =P\{X \leq a\} \\
& =P\left(\frac{X-\mu}{\sigma} \leq \frac{a-\mu}{\sigma}\right) \\
& =\Phi\left(\frac{a-\mu}{\sigma}\right)
\end{aligned}
$$

مثال

$$
\begin{aligned}
P\{2<X<5\} & =P\left\{\frac{2-3}{3}<\frac{X-3}{3}<\frac{5-3}{3}\right\}=P\left\{-\frac{1}{3}<Z<\frac{2}{3}\right\} \\
& =\Phi\left(\frac{2}{3}\right)-\Phi\left(-\frac{1}{3}\right) \\
& =\Phi\left(\frac{2}{3}\right)-\left[1-\Phi\left(\frac{1}{3}\right)\right]=.3779
\end{aligned}
$$

$$
-1
$$

$$
P\{X>0\}=P\left\{\frac{X-3}{3}>\frac{0-3}{3}\right\}=P\{Z>-1\}
$$

$$
\begin{aligned}
& =1-\Phi(-1) \\
& =\Phi(1) \\
& =8413
\end{aligned}
$$

$$
\begin{aligned}
P\{|X-3|>6\} & =P\{X>9\}+P\{X<-3\} \\
& =P\left\{\frac{X-3}{3}>\frac{9-3}{3}\right\}+P\left\{\frac{X-3}{3}<\frac{-3-3}{3}\right\} \\
& =P\{Z>2\}+P\{Z<-2\} \\
& =1-\Phi(2)+\Phi(-2) \\
& =2[1-\Phi(2)] \\
& =.0456
\end{aligned}
$$

 نمره ثـان بين
 منحنى" مى نامند).

$$
\begin{aligned}
P\{X>\mu+\sigma\} & =P\left\{\frac{X-\mu}{\sigma}>1\right\}=1-\Phi(1)=.1587 \\
P\{\mu<X<\mu+\sigma\} & =P\left\{0<\frac{X-\mu}{\sigma}<1\right\}=\Phi(1)-\Phi(0)=.3413 \\
P\{\mu-\sigma<X<\mu\} & =P\left\{-1<\frac{X-\mu}{\sigma}<0\right\} \\
& =\Phi(0)-\Phi(-1)=.3413
\end{aligned}
$$

$$
P\{\mu-2 \sigma<X<\mu-\sigma\}=P\left\{-2<\frac{X-\mu}{\sigma}<-1\right\}
$$

$$
=\Phi(2)-\Phi(1)=.1359
$$

$$
P\{X<\mu-2 \sigma\}=P\left\{\frac{X-\mu}{\sigma}<-2\right\}=\Phi(-2)=.0228
$$

جدول 0-1										
x	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
. 0	. 5000	. 5040	. 5080	. 5120	. 5160	. 5199	. 5239	. 5279	. 5319	. 5359
. 1	. 5398	. 5438	. 5478	. 5517	. 55.57	. 5596	. 5636	. 5675	. 5714	. 5753
. 2	. 5793	. 5832	. 5871	. 5910	. 5948	. 5987	. 6026	. 6064	. 6103	. 6141
. 3	. 6179	. 6217	. 6255	. 6293	. 6331	. 6368	. 6406	. 6443	. 6480	. 6517
. 4	. 6554	. 6.591	. 6628	. 6664	. 6700	. 6736	. 6772	. 6808	. 6844	. 6879
. 5	. 6915	. 6950	. 6985	. 7019	. 7054	. 7088	. 7123	. 7157	. 7190	. 7224
. 6	. 7257	. 7291	. 7324	. 7357	. 7389	. 7422	. 7454	. 7486	. 7517	. 7549
. 7	. 7580	.7611	. 7642	. 7673	. 7704	. 7734	. 7764	. 7794	. 7823	. 7852
. 8	. 7881	. 7910	. 7939	. 7967	. 7995	. 8023	. 8051	. 8078	. 8106	. 8133
. 9	. 8159	. 8186	. 8212	. 8238	. 8264	. 8289	. 8315	. 8340	. 8365	. 8389
1.0	. 8413	. 8438	.8461	. $8+85$. 8508	. 8531	. 8554	. 8577	. 8599	. 8621
1.1	. 8643	. 8665	. 8686	. 8708	. 8729	. 8749	. 8770	. 8790	. 8810	. 8830
1.2	. 8849	. 8869	. 8888	. 8907	. 8925	. 8944	. 8962	. 8980	. 8997	9015
1.3	. 9032	. 9049	. 9066	. 9082	. 9099	. 9115	. 91.31	. 9147	. 9162	. 9177
1.4	. 9192	. 9207	. 9222	. 9236	. 9251	. 9265	. 9279	. 9292	. 9306	9319
1.5	. 9332	. 9345	. 9357	. 9370	.9382	. 9394	. 9406	. 9418	. 9429	. 9441
1.6	. 9452	. 9463	. 9474	. 9488	. 9495	. 9505	. 9515	. 9525	. 9535	. 9545
1.7	. 9554	. 9564	. 9573	. 9582	. 9591	. 9599	. 9608	. 9616	. 9625	. 9633
1.8	. 9641	. 96449	. 9656	. 9664	. 9671	. 9678	. 9686	. 9693	. 9699	. 9706
1.9	. 9713	. 9719	. 9726	. 9732	. 9738	. 9744	. 9750	. 9756	. 9761	. 9767
2.0	. 9772	. 9778	. 9783	. 9788	. 9793	. 9798	. 9803	. 9808	. 9812	. 9817
2.1	. 9821	. 9826	. 9830	. 9834	. 9838	. 98.42	. 98.46	. 9850	. 9854	. 9857
2.2	. 9861	. 9864	. 9868	. 9871	. 9875	. 9878	. 9881	. 9884	. 9887	. 9890
2.3	. 9893	. 9896	. 9898	. 9901	. 9904	. 9906	. 9909	. 9911	. 9913	. 9916
2.4	. 9918	. 9920	. 9922	. 9925	. 9927	. 9929	. 9931	. 9932	. 9934	. 9936
2.5	. 9938	. 9940	. 9941	. 9943	. 9945	. 9946	.9948	. 9949	. 9951	. 9952
2.6	. 9953	. 9955	. 9956	. 9957	. 9959	. 9960	. 9961	. 9962	. 9963	. 9964
2.7	. 9965	. 9966	. 9967	. 9968	. 9969	. 9970	. 9971	. 9972	. 9973	. 9974
2.8	. 9974	. 9975	. 9976	. 9977	. 9977	. 9978	. 9979	. 9979	. 9980	. 9981
2.9	. 9981	. 9982	. 9982	. 9983	. 9984	. 9984	. 9985	. 9985	. 9986	. 9986
3.0	. 9987	. 9987	. 9987	. 9988	. 9988	. 9989	. 9989	. 9989	. 9990	. 9990
3.1	. 9990	. 9991	. 9991	. 9991	. 9992	.9992	. 9992	. 9992	. 9993	. 9993
3.2	. 9993	. 9993	. 9994	. 9994	. 9994	. 9994	. 9994	. 9995	. 9995	. 9995
3.3	. 9995	. 9995	. 9995	. 9996	. 9996	. 9996	. 9996	. 9996	. 9996	. 9997
3.4	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9998

 متـل

 باشد جقدر است؟
 بنابراين احتمالى كه اين تولد در ناصله زمانى خاطر نــانـان شده رخ دهد دهد برابر است با

$$
P\{X>290 \text { or } X<240\}=P\{X>290\}+P\{X<240\}
$$

$$
\begin{aligned}
& =P\left\{\frac{X-270}{10}>2\right\}+P\left\{\frac{X-270}{10}<-3\right\} \\
& =1-\Phi(2)+1-\Phi(3) \\
& =.0241
\end{aligned}
$$

مثال

 مـنـدارى كـه در مكان B دريافت مى شـود با R=x + N داده مى نــود كـه در آن N انختـلال و
 كثنف رمز مى كند.

اكر R R

$$
\text { اكر R \ll } 0.5 \text { ، آن كاه 0را نتيجه مى كيريم }
$$

يك متغير تصادفى نرمال واحد باشد تعيين مي كنيم .

 بنابراين

$$
\begin{aligned}
& =1-\Phi(1.5)=.0668
\end{aligned}
$$

$$
\begin{aligned}
& =1-\Phi(2.5)=.0062
\end{aligned}
$$

نامساوى زير براى (x) Φ

$$
\begin{equation*}
\frac{1}{\sqrt{2 \pi}}\left(\frac{1}{x}-\frac{1}{x^{3}}\right) e^{-x^{2} / 2}<1-\Phi(x)<\frac{1}{\sqrt{2 \pi}} \frac{1}{x} e^{-x^{2} / 2} \quad \text { x } \rightarrow \text {, }>0 \tag{r-r}
\end{equation*}
$$

برایى اثبات نا مساوى (ץ-Y)، ابتدنا نا مساوى واضح زير را در نظر مى كيريم

$$
\left(1-3 y^{-4}\right) e^{-y^{2} / 2}<e^{-y^{2} / 2}<\left(1+y^{-2}\right) e^{-y^{2} / 2}
$$

كه از آن نتيجه مي شـود

$$
\begin{equation*}
\int_{x}^{\infty}\left(1-3 y^{-4}\right) e^{-y^{2} / 2} d y<\int_{x}^{\infty} e^{-y^{2} / 2} d y<\int_{x}^{\infty}\left(1+y^{-2}\right) e^{-y^{2} / 2} d y \tag{F-r}
\end{equation*}
$$

با وجود اين

$$
\begin{aligned}
\frac{d}{d y}\left[\left(y^{-1}-y^{-3}\right) e^{-y^{2} / 2}\right] & =-\left(1-3 y^{-4}\right) e^{-y^{2} / 2} \\
\frac{d}{d y}\left[y^{-1} e^{-y^{2} / 2}\right] & =-\left(1+y^{-2}\right) e^{-y^{2} / 2}
\end{aligned}
$$

$$
-\left.\left(y^{-1}-y^{-3}\right) e^{-y^{2} / 2}\right|_{x} ^{\infty}<\int_{x}^{\infty} e^{-y^{2} / 2} d y<-\left.y^{-1} e^{-y^{2} / 2}\right|_{x} ^{\infty}
$$

$$
\left(x^{-1}-x^{-3}\right) e^{-x^{2} / 2}<\int_{x}^{\infty} e^{-y^{2} / 2} d y<x^{-1} e^{-x^{2} / 2}
$$

$$
1-\Phi(x) \sim \frac{1}{x \sqrt{2 \pi}} e^{-x^{2} / 2}
$$

$$
\text { [نماد } a(x) \sim b(x) \text { براى } \mathrm{X} \text { بزرك بدين معناست كه } a(x) / b(x)=1 \text {] } \lim _{x \rightarrow x} a(x) \text {. }
$$

F- أ تقيهب نرمال براى توزيع دوجملهاى

تضيءُ زير به تضيه حدى دوموار ـ لآلاس مشهور است . اين تضبيه ابتدا در حالت خاص
 هر p تعميم داده شـد .

لفين حدى دوموار - لايلّس

اكر S تعـداد موتـتيتهـا را كه در n آزمايـش مستـقل هريك با احتتهـال مونقيت p انجام
مى شوند نمايش دهد، آن كاه براى هر a b b ، وتتي n

$$
p\left\{a \leq \frac{S_{n}-n p}{\sqrt{n p(1-p)}} \leq b\right\} \rightarrow \Phi(b)-\Phi(a)
$$

جون تضيهُ بالا تنها حالت خاصى از تضيهُ حد مـركزى است كه در فصل ^ |رائه خواهد ثـد، از إبات آن خوددارى يمى كنيم •
 يواسن، كه اكر n بزر كـ و np مقدار متوسطى باشـد تقريب خونى مى دهد و ديكرى تقريب نرمال

$$
\begin{aligned}
& \text { كه معادلئ (ץ-ب) را برقرار می كند . }
\end{aligned}
$$

 تقريب نرماله، براي مقادير n كه در np (1-p) 10 صدت كتند كاملاً رضايت بخش است| .

شكل

قل : جون دو جمله الى يكى متغيـر تصادفى گسسته و نرمال متغيـر تصادفى بيوسته أست، بهترين تقريب با نوثستن احتمال مطلوب به صورت نـير ساصل مى شود.

$$
\begin{aligned}
P\{X=20\} & =P\{19.5<X<20.5\} \\
& =P\left\{\frac{19.5-20}{\sqrt{10}}<\frac{X-20}{\sqrt{10}}<\frac{20.5-20}{\sqrt{10}}\right\} \\
& =P\left\{-.16<\frac{X-20}{\sqrt{10}}<.16\right\} \\
& =\Phi(.16)-\Phi(-.16)=.1272
\end{aligned}
$$

$P\{X=20\}=\binom{40}{20}\left(\frac{1}{2}\right)^{40}$
 - 10 دانشـجـو اسـت . مـديريت آمـوزشعاه بـنابر تجـاربـ قـبلى مـى داند كـه بطور مـتوسـط تنهـا
 پذيرفتن • 40 تقـاضـا است . اين احــتـمـال را كـه بيش از • 10 دانشــجـوى سـال اول در كـلاس شُركت كنند محاسبه كنيد .

 از تقريب نرمال حاصل مي شود.

$$
\begin{aligned}
P\{X \geq 150.5\} & =P\left\{\frac{X-(450)(.3)}{\sqrt{450(.3)(.7)}} \geq \frac{150.5-(450)(.3)}{\sqrt{450(.3)(.7)}}\right\} \approx 1-\Phi(1.59) \\
& =.0559
\end{aligned}
$$

مي كنند (جه فرضهاى امسنقلالى رادر نظر كرفته ايم) ؟

 غذاهى جديد را مـورد تأكيد ترار دهند، در حـالى كه واتعاً اثرى بر سطع كلـــترول ندارد، هحقدر اسـت؟

 در حالى كه واتعاً اثرى در كاهش كلسترول نداردعبارت است ان

$$
\begin{aligned}
\sum_{i=65}^{100}\binom{100}{i}\left(\frac{1}{2}\right)^{100} & =P\{X \geq 64.5\} \\
& =P\left\{\frac{X-(100)\left(\frac{1}{2}\right)}{\sqrt{100\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)}} \geq 2.9\right\} \\
& \approx 1-\Phi(2.9) \\
& =.0019
\end{aligned}
$$

†- مت متيرهاى تصادلى نمايى

$$
f(x)= \begin{cases}\lambda e^{-\lambda x} & , x \geq 0 \\ 0 & , x<0\end{cases}
$$

$$
\begin{aligned}
F(a) & =P\{X \leq a\} \\
& =\int_{11}^{a} \lambda e^{-\lambda x} d x \\
& =-\left.e^{-\lambda \Lambda}\right|_{11} ^{a} \\
& =1-e^{-\lambda a} \quad a \geq 0
\end{aligned}
$$

 خراهيم داد كه اين بارامتر λ برابر با عكس اهمقدار متو مسطه اين متغير تصادنى است .ست
 معينى است . برایى مـال مــتت زمان لازم (شروع از همين لـحظهُ) تا رخ دادن يكـ زمين لرزه يا تا آغاز يكى جنگـ يا تا يكى تلفن كه به شـما زده مى شود ومعلوم مى شـو دكه شـهماره اثتباه بو ده انست، همه متغير هاى تصادنى هستـند كه در عمل كرايش به توزيعهاى نمايعى دارند (براى تو

مثال r الـ . فرض كنيد طول مدت زمـان يكى مكالمئ تلفنى به دقيفه متغير تصادنى نمايم

 احتمالهاى مطلوب عبارتند از :

$$
\begin{aligned}
& P\{X>10\}=\int_{10}^{\infty} \frac{1}{116} e^{-x / 10} d x=-\left.e^{-x / 10}\right|_{10} ^{\infty}=e^{-1} \approx .368 \\
& \begin{aligned}
P\{10<X<20\} & =\int_{10}^{20} \frac{1}{10} e^{-x / 10} d x=-\left.e^{-x / 10}\right|_{10} ^{20} \\
& =e^{-1}-e^{-2} \approx .233
\end{aligned}
\end{aligned}
$$

$$
\begin{equation*}
P\{X>s+t \mid X>t\}=P\{X>s\} \tag{1-F}
\end{equation*}
$$

$$
s, t \geq 0
$$

 ساعت مورد استفاده ترار كرنته است) . شرط (1-Y) با

$$
\frac{P\{X>s+t, X>t\}}{P(X>t\}}=P\{X>s\}
$$

$$
\begin{equation*}
P\{X>s+t\}=P\{X>s\} P\{X>t\} \tag{Y-Y}
\end{equation*}
$$

 (زيرا ($e^{-\lambda(s+1)}=e^{-\lambda s-\lambda t}$)
 اسـمـيت وارد باجه مى شـود متو جه مى شـود كه خانم جـونز را يكى از كارمنـدان و آقاى بر اون را

 كه يك كارمندبر ایى يك متقاضي صرف مى كندداراى توزيع نمايه با بارامتر λ باشمد ، استمال اين كه از اين سه متقاضي، آقاى اسميت آَخرين نفرى باشد كه باجه را ترلٌ مى كند، هقّدر است؟ قل : باسخ با استدلال زير به دست مى آيد : زمانى را در نظر بگيريد كه آقاى أسـميت ابتدا

 لحظه شروع شده باشّد. بنابراين ، طبق تقارن، احتمالّى كه غرد باقيمانده قبل از اسـميت باجه را ترك كند، بايد برابر
هعلوم مى شود كه نه تنها توزيع نمايهى بدون حــافظه است ، بلكه تنها توزيعى نيز مى باشد كه داراى اين خاصيت است . براى درلٌ اين مطلب، فرخ كنيد X بدون حافظه است و بشذاريد

$$
\bar{F}(s+f)=\bar{F}(s) \bar{F}(t)
$$

يعنى، (.

$$
\begin{aligned}
& \text { (} \\
& g\left(\frac{2}{n}\right)=g\left(\frac{1}{n}+\frac{1}{n}\right)=g^{2}\left(\frac{1}{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
& g(n)=g\left(\frac{1}{n}+\frac{1}{n}+\cdots+\frac{1}{n}\right)=g^{n}\left(\frac{1}{n}\right) \quad \text { or } \quad g\left(\frac{1}{n}\right)=(g(1))^{1 / n} \\
& \text { بنابراين ، }
\end{aligned}
$$

$$
g(s+t)=g(s) g(t)
$$

 عبارت انست از

$$
\begin{equation*}
g(x)=e^{-\lambda x} \tag{Y-F}
\end{equation*}
$$

$$
\bar{F}(x)=e^{-\lambda x} \quad L^{-\lambda} \quad F(x)=P\{X \leq x\}=1-e^{-\lambda x}
$$

كه نشان مى دمد X بطور نمايع توزيع شُده است .

 هل : بنابر ويرّكى بلون ححافظه بودن توزيـ نمـايع نتيهجه مى شـود كه عمر باتيـمانده باترى (به هزار مايل) نمايع با بارامتر $\lambda=\frac{1}{10}$ الست . بنابر اين استهال مطلوب برابر است با

$$
P[\text { [} P 5]=1-F(5)=e^{-5 \lambda}=e^{-1 / 2}=.604
$$

با وجو د اين، اكر F توزيع عمر باترى نمايع نبامُد، آن كاه استهال مناسب عبارت أست از

$$
P[\text { عمر باترى > }>\mathrm{t}+5 \mid \text { عمر باترى >t }]=\frac{1-F(t+5)}{1-\bar{F}(t)}
$$

كه در آن t تعـداد مـابلهـايع است كـه بـاترى تَبل از آغـاز مــــانـرت مـورد امستـفـاده بو ده الست . بنابراين، اكر توزيع نمايى نبامُد، تبل از آن كه احتمـال مطلوب را بتوان محاسـبه كرد به اطلاعات اضبافى (مثالوا) نياز استت .
كونـهأى از توزيع نهايع، توزيـع يكى متـنير تصادنى است كـه متُبت يا منفى بودن آن هـم اسـتـمال استت و مـفـدار تـلد مطلت آن داراى توزيع نمايع با بارامـتر $\lambda \geq 0$ اسـت . گوييـم اين
 1- كاهى نيز متغير تصادنى نماهى دو كانه ناميله مى شُود .

$$
\begin{aligned}
f(x) & =\frac{1}{2} \lambda e^{-\lambda x}, & & x>0 \\
& \frac{1}{2} \lambda e^{\lambda x}, & & x<0 \\
& =\frac{1}{2} \lambda e^{-\lambda|x|}, & & -\infty<x<\infty
\end{aligned}
$$

تابع توزبع آن با رابط؛ّ زير داده شدهاست.

$$
\begin{aligned}
F(x) & = \begin{cases}\frac{1}{2} \int_{-\infty}^{x} \lambda e^{\lambda x} d x, & x<0 \\
\frac{1}{2} \int_{-\infty}^{0} \lambda e^{\lambda x} d x+\frac{1}{2} \int_{0}^{x} \lambda e^{-\lambda x} d x, & x>0\end{cases} \\
& = \begin{cases}\frac{1}{2} e^{\lambda x}, & x<0 \\
1-\frac{1}{2} e^{-\lambda x}, & x>0\end{cases}
\end{aligned}
$$

مثال Y ت. مثال
(كه وتى بِام 1 است

 اك, R
 احتمالهاى زيرند:

بنابراين، با مـقايسه اين مقادير با جـوابهاى مثـال r r

$$
\begin{aligned}
& \begin{array}{l}
=\frac{1}{2} e^{-1.5} \\
=1116
\end{array}
\end{aligned}
$$

$$
\lambda(t)=\frac{f(t)}{\bar{F}(t)}, \quad \bar{F}=1-F
$$

تعريف مى شود . به منظر تعبير و تفـير

$$
\text { يعنى P\{X } \in(t, t+d t) \mid X>t\} \text { را در نظر مى كيريم. اكنون }
$$

$$
\begin{aligned}
P\{X \in(t, t+d t) \mid X>t\} & =\frac{P\{X \in(t, t+d t), X>t\}}{P\{X>t\}} \\
& =\frac{P\{X \in(t, t+d t)\}}{P\{X>t\}} \\
& \approx \frac{f(t)}{\bar{F}(t)} d t
\end{aligned}
$$

يعنى (t) نرخ احتمال شرطى تطعهالى را كها واحد زمان از عمر آن كذشته ، نتُان مى دهد .

$$
\begin{aligned}
\lambda(t) & =\frac{f(t)}{\bar{F}(t)} \\
& =\frac{\lambda e^{-\lambda t}}{e^{-\lambda t}} \\
& =\lambda
\end{aligned}
$$

 اثبات آن توجه داشثنه باثيد كه بنابه تعريف

$$
\lambda(t)=\frac{\frac{d}{d t} F(t)}{1-F(t)}
$$

با انتگرال كيري از طرفين حاصل مى شود

$$
\log (1-F(t))=-\int_{0}^{t} \lambda(t) d t+k
$$

$$
1-F(t)=e^{k} \exp \left\{-\int_{0}^{t} \lambda(t) d t\right\}
$$

با ترار دادن t t ، نتيجه مى شود k=0 و بنابراين

$$
F(t)=1-\exp \left\{-\int_{0}^{t} \lambda(t) d t\right\}
$$

 مشخص كرد. براى مثال ، الكُ متغيرى تصادنى داراي تابع نرخ خرابى خططى بانشد. يعنى اگر $\lambda(t)=a+b t$

آن كاه تابع توزيع آن با رابطكُ زير داده مى شود

$$
F(t)=1-e^{-a t-b_{1}^{2} / 2}
$$

و با مشتق كيرى از آن معلوم مى شود كه جگالى آن عبارت است از

$$
f(t)=(a+b t) e^{-\left(a t+b r^{2} / 2\right)}, \quad t \geq 0
$$

 زنده ماندن يك فرد غير سيگّارى به تعداد سـالهاى معينى دوبرابر يكى نردسيگّارى مـم سن اوست؟ حل : ا
t

$$
\lambda_{s}(t)=2 \lambda_{r}(t)
$$

الحتماللى كه يك فرد غير سيگُارى A ساله تا سس B زنلده بماند، A < B ، عبارت اسـت از

$$
\begin{aligned}
&= \frac{1-F_{\text {non }}(B)}{1-F_{\text {non }}(A)} \\
&= \frac{\exp \left\{-\int_{0}^{B} \lambda_{n}(t) d t\right\}}{} \begin{array}{l}
\exp \left\{-\int_{0}^{A} \lambda_{n}(t) d t\right\} \\
=
\end{array} \\
& \exp \left\{-\int_{A}^{B} \lambda_{n}(r) d t\right\}
\end{aligned}
$$

$$
(F-F) j
$$

در حاللى كه احتمال بتناظر برالى يك فرد سيگارى، با استللالى نظير آنّ، برابر اسـت با
 كه ايـن نرد سييگارى تا مسن معـينى زنله بمانل برابر با تواث نوم (و نه نصفف) الحـتمال مـتناظر برأى

-

 مي باشـد، اثكر تابـع هگگالى آن به حورت زير باشـد

$$
\begin{aligned}
& =\exp \left\{-2 \int_{A}^{D} \lambda_{n}(t) d t\right\} \\
& =\left[\exp \left\{-\int_{A}^{B} \lambda_{n}(t) d t\right\}\right]^{2}
\end{aligned}
$$

$f(x)= \begin{cases}\frac{\lambda e^{-\lambda x}(\lambda x)^{1-1}}{\Gamma(t)} & x \geq 0 \\ 0 & x<0\end{cases}$
كه در آن

$$
\Gamma(t)=\int_{0}^{\infty} e^{-y} y^{t-1} d y
$$

با انتكرال كيرى با روش جزهـبه جز• باز (t) باريم

$$
\begin{align*}
\Gamma(t) & =-\left.e^{-y} y^{t-1}\right|_{0} ^{\infty}+\int_{0}^{\infty} e^{-y}(t-1) y^{t-2} d y \\
& =(t-1) \int_{0}^{\infty} e^{-y} y^{t-2} d y \\
& =(t-1) \Gamma(t-1)
\end{align*}
$$

$$
\begin{aligned}
\Gamma(n) & =(n-1) \Gamma(n-1) \\
& =(n-1)(n-2) \Gamma(n-2) \\
& =\cdots \\
& =(n-1)(n-2) \cdots 3 \cdot 2 \Gamma(1)
\end{aligned}
$$

هون

$$
\Gamma(n)=(n-1)!
$$

$$
\begin{aligned}
P\left\{T_{n} \leq t\right\} & =P\{N(t) \geq n\} \\
& =\sum_{i=n}^{\infty} P(N(t)=j\} \\
& =\sum_{i=n}^{\infty} \frac{e^{-\lambda t}(\lambda t)^{i}}{j!}
\end{aligned}
$$

$$
\begin{aligned}
f(t) & =\sum_{j=n}^{\infty} \frac{e^{-\lambda t} j(\lambda t)^{j-1} \lambda}{j!}-\sum_{j=n}^{\infty} \frac{\lambda e^{-\lambda t}(\lambda t)^{j}}{j!} \\
& =\sum_{j=n}^{\infty} \frac{\lambda e^{-\lambda t}(\lambda t)^{j-1}}{(j-1)!}-\sum_{j=n}^{\infty} \frac{\lambda e^{-\lambda t}(\lambda t)^{\prime}}{j!} \\
& =\frac{\lambda e^{-\lambda t}(\lambda t)^{n-1}}{(n-1)!}
\end{aligned}
$$

 تبديل مى شود. توزيع كاها با خی دو يا كى دو) با n در جــهُ أزادى خـوانده مـى شـود . توزيع

ه-

 تطعات است در نظر بكيريد و نرض كنيد كه اين دستكاه وتى هريكى از تطعاتش خردراب شوده،

 تابع توزيع وايبل بهـنـكل نير است
$F(x)= \begin{cases}0 & x \leq v \\ 1-\exp \left\{-\left(\frac{x-v}{\alpha}\right)^{\beta}\right\} & x>v\end{cases}$

 $f(x)= \begin{cases}0 & x \leq 0 \\ \left.\frac{\beta}{\alpha}\right)\left(\frac{x-v}{\alpha}\right)^{\beta-1} \exp \left\{-\left(\frac{x-v}{\alpha}\right)^{\beta}\right\} & x>v\end{cases}$

ه-
كوييم يك متغير تصادفى داراى توزيع كوشى با بارامتر θ ، ، θ \gg تابع جكالى آنذ بهصورت زير بانشد.

$$
f(x)=\frac{1}{\pi} \frac{1}{\left[1+(x-\theta)^{2}\right]} \quad-\infty<x<\infty
$$

 محور x هانبود، آزمابش را تكرار كنيد).

 است. بنابر اين تابع توزيع X با رابطءّ زير داده مى شود.

$$
\begin{aligned}
F(x) & =P\{X \leq x\} \\
& =P\{\tan \theta \leq x\} \\
& =P\left\{\theta \leq \tan ^{-1} x\right\} \\
& =\frac{1}{2}+\frac{1}{\pi} \tan ^{-1} x
\end{aligned}
$$

كه در آن تساوى اخير از
$P\{\theta \leq a\}=\frac{a-(-\pi / 2)}{\pi}=\frac{1}{2}+\frac{a}{\pi}, \quad-\frac{\pi}{2}<a<\frac{\pi}{2}$
 بنابراين تابع چكالى X با رابط؛

$$
f(x)=\frac{d}{d x} F(x)=\frac{1}{\pi\left(1+x^{2}\right)} \quad-\infty<x<\infty
$$

داده مى شود و مى بينيم كه X دارای توزيع كوشى است'.

$$
\begin{aligned}
1=\frac{d}{d x}(\tan y) & =\frac{d}{d y}(\tan y) \frac{d y}{d x}=\frac{d}{d y}\left(\frac{\sin y}{\cos y}\right) \frac{d y}{d x} \\
& =\left(\frac{\cos ^{2} y+\sin ^{2} y}{\cos ^{2} y}\right) \frac{d y}{d x}
\end{aligned}
$$

$$
\frac{d y}{d x}=\cos ^{2} y=\frac{\cos ^{2} y}{\sin ^{2} y+\cos ^{2} y}=\frac{1}{\tan ^{2} y+1}=\frac{1}{x^{2}+1}
$$

-

كويـم متغير تصادنى X دارایى توزيع بتاست اكر تابع جكالى آن به صورت زير باشد

$$
f(x)= \begin{cases}\frac{1}{B(a, b)} x^{a-1}(1-x)^{n-1} & 0<x<1 \\ 0 & \text { ر غير اين حبرت }\end{cases}
$$

كه در آن

$$
B(a, b)=\int_{0}^{1} x^{a-1}(1-x)^{h-1} d x
$$

 به ناصله [[0, 0] تبديل مى شـود.

a = b
 مى كند ، وزنهُ بيشتر و بيشترى به نواحى اطراف

$\frac{a}{a+b}=\frac{1}{20}$ شتكل
\&- توزيع تابعى از يل متلير تصلالى

 . در مجموعهُ معينى بانـد بيان كنيم . مطلب را با مثالهاى زير شرح مي دهيم مثال

$$
\begin{aligned}
F_{Y}(y) & =P\{Y \leq y\} \\
& =P\left(X^{n} \leq y\right\} \\
& =P\left\{X \leq y^{1 / n}\right\} \\
& =F_{X}\left(y^{1 / n}\right) \\
& =y^{1 / n}
\end{aligned}
$$

جس تابع جكالى Y با رابطهُ زير داده مى شود

$$
f_{Y}(y)=\left\{\begin{array}{lc}
\frac{1}{n} y^{-[(n-1) / n]} & 0 \leq y \leq 1 \\
0 & \text { خر غير اين صورت }
\end{array}\right.
$$

، y ≥ 0 به حورت زير ساصل مى شود : برانى 0

$$
\begin{aligned}
F_{Y}(y) & =P\{Y \leq y\} \\
& =P\left\{X^{2} \leq y\right\} \\
& =P\{-\sqrt{y} \leq X \leq \sqrt{y}\} \\
& =F_{X}(\sqrt{y})-F_{X}(-\sqrt{y})
\end{aligned}
$$

كه با مشتق كيرى ساحل مى شود

$$
f_{Y}(y)=\frac{1}{2 \sqrt{y}}\left[f_{X}(\sqrt{y})+f_{X}(-\sqrt{y})\right]
$$

 ، y ≥ 0 امت كه به صورت زير ساصل ميى شود :برای

$$
\begin{aligned}
F_{Y}(y) & =P\{Y \leq y\} \\
& =P\{|X| \leq y\} \\
& =P\{-y \leq X \leq y\} \\
& =F_{X}(y)-F_{X}(-y)
\end{aligned}
$$

بنابراين ، با مشتت كيرى سحاصل مى شود

$$
f_{Y}(y)=f_{X}(y)+f_{X}(-y) \quad y \geq 0
$$

روشهایى به كاررفته درمثالهاى 9 الفـ تأو بـ رامى توان براثى اثبات تضيه 9-1 به كار برد .

 $f_{Y}(y)=\left\{\begin{array}{l}f_{X}\left[g^{-1}(y)\right]\left|\frac{d}{d y} g^{-1}(y)\right| \\ 0\end{array}\right.$

$$
\begin{aligned}
& \text { اكر برانى هر } y \neq g(x) \text { ، }
\end{aligned}
$$

 انبات تضبئ 9-1 رابه عنوان تمرين رها مى كنيم.

تمرينّت نظرى

$$
\text { P } \mathrm{P}\left(\underset{a}{\left(\cap E_{a}\right)=1} \text { در آن اشتراك بر روى كليه } a \in(0,1)\right. \text { است. }
$$

تعريف كنيد.
 جكالى احتمال آن به صورت زير است
$f(x)= \begin{cases}a x^{2} e^{-b x^{2}} & x \geq 0 \\ 0 & x<0\end{cases}$
كه در آن m, T, k g b= m/2kT بترتبب تابت بالتزمن ، درجه حرارت مطلق و جرم ملكول
 r- r- معادلة (r-r) را ثابت كنيد.
 $\lim _{x \rightarrow \infty} \frac{P\{Z \geq x+a / x\}}{P\{Z \geq x\}}=e^{-a}$

 برسد. نمايى x رادر حالتهاى (الف) (ب) و (ب) تمرين نظرى ه، محاسبه كنيد.
 . $\frac{\lambda}{c}$

ثابت و مبـت اسـت.
-

$$
\text { } \Gamma \text { رابرایى } \Gamma\left(n+\frac{1}{2}\right)-11,2, \ldots \text { محاسبه كنيد. }
$$

「

$$
\text { صعودى و براى } 1 \text { ؛ } 1 \text { نزولى اسـت. }
$$

(lf

$$
10 \text { - ترار مى دهيم }
$$

$$
Y=\left(\frac{X-v}{\alpha}\right)^{\alpha}
$$

نتـان دهيد كه اكر X متغير تصادفى وايبل با بارامترهاى تصادفى نمايى با بارامتر $\lambda=1$ استر 19- نتان دهيد

$$
B(a, b)=\frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)}
$$

 $\frac{a-1}{a+b-2}$
(ب) هركاه

(ب) هر كاه a = b = ، كلبه نتاط در [0,1] نما هستند.

 ثـدهـاست.

با Y = aX + نعربف شـده است بيابيد.

(10) ، ، ... ،

$$
\text { عليه مشترك } 1 \text { باثند). }
$$

(ب) با استفاده از (الف) نشان دميد كه

$$
Q_{1}=P[\text { [} \mathrm{Y}, \mathrm{X}]=\frac{1}{\sum_{k=1}^{\infty} 1 / k^{2}}
$$

مى دانيم كـهـ مى نامند) .

$$
\begin{aligned}
& \text { log Y } \\
& \text {. }
\end{aligned}
$$

$$
Q_{1}=\prod_{i=1}^{\infty}\left(\frac{P_{i}^{2}-1}{P_{i}^{2}}\right),
$$

> كه در آن Pi ، كوجكترين عدد اول i ام بزر كتر از ا ا است.

رامنـايى : X Y Y نسبت به هم اولند اكر داراى ميج عاملهاى اول مشترك نباثشند. Yبنابراين ، از (ب)، ديده مى شـود كه

(الف) مفلار c كدام است؟
 (ب) تابع توزيع تراكمى X كدام است؟

كار X X كند. اكر جگالى X (به ماه) به صورت زير باشذ

$$
f(x)= \begin{cases}C x e^{-x / 2} & x>0 \\ 0 & x \leq 0\end{cases}
$$

احتمالى كه اين دستّكاه حدإتل به مدت ه ماه كار كند جقدر است؟
ץ- تابع

$$
f(x)= \begin{cases}C\left(2 x-x^{3}\right) & 0<x<\frac{5}{2} \\ 0 & \text { در غرين صورت }\end{cases}
$$

ليإمخ،

$$
f(x)=\left\{\begin{array}{lc}
C\left(2 x-x^{2}\right) & 0<x<\frac{5}{2} \\
0 & \text { در غير اينورت }
\end{array}\right.
$$

F- تابع یگالىي استـمال X عهـر وسيله الكتـرونيكى از نوع معين (به مـاعت) با تابع زير
داده شُـده المــت

$$
f(x)= \begin{cases}\frac{10}{x^{2}} & x>10 \\ 0 & x \leq 10\end{cases}
$$

$$
\begin{aligned}
& \text {. P\{ X> } 20\} \text { (الفـ بابيل) } \\
& \text { (يب) تابع توزيع تراكـي X }
\end{aligned}
$$

(ج) ا-حتّمالّي كه از و وميله از اين نوع حداتل بسه وسيله به ملـت ححاتل 10 مـاعت كار كند

 برسسب هزار كالن متغيرى تصهادفي با تابع هحكالي الحتمال زير باشد

$$
f(x)=\left\{\begin{array}{lc}
5(1-x)^{4} & 0<x<1 \\
0 & \text { در غير اين مورت }
\end{array}\right.
$$

شـود برابر | " / باثهد .

 مى باشد. آيا با اين امر موافقيد؟ جرا؟

 باشد، احتمال اين كه حداتلل • ا دققئُ ديكر متظظر شويد جقدر است؟
 $P\{X>5\}$
$P\{4<X<16\}$
$P\{X<8\}$
$P\{X<20\}$
$P(X>16\}$

 كرمتهايد؟
相
 هاينج هستند9
$\mu=0.9000$ I و $0.0030=$ تطعات معيوب خواهد بود؟

وتى عرض شـكانها دأراي توزيع نرمال با ميانكين 9000. $\mu=1$ و σ مى بانشد. مقدار ماكزيمـم
 جقلراست؟

 است، بائد، جقلدر است؟
 دو جمله ایى با بارامتر (الف) تقريب بواسن آن (ب) با تقريب نرمال آن معايسـ كنيد. در استفاده لز تقريب نرمال، احتمال مطلوب را بهحورت كرده باثشيد . (برالى محامبه تقريب بواسنز به برنامهُ بايان نصل - IV

 كنيم كه اين سكه بـالم نيست ؟ شـر د دهيد .

 (F, (F) امست، در حالثى كه اندازئ حأصل از نقطه أى كه بتصادن از بخش سياه انتخاب شُمده

است داراى توزيع نرمال با بارامترهاى (9 و 9)است . نقطهاى از تصوير بتصادف انتخاب

سفيد بوده است؟
(Y . $\lambda=\frac{1}{2}$
(الف) احتمال اين كه زمان تعميرى از Y ساعت تجاوز كند جمدر است؟
 مدت آن از 9 ساءت بيستر است جفـدر است

(بر حسببهز ار مايل)، باشد تكرار كنيد .

$$
\lambda(t)=.027+.00025(t-40)^{2}, \quad t \geq 40
$$

اكر نرض كنيم يك مرد سيكارى • F سالد كلبه مخاطرات را بـشت سر بكذارد، احتمال اين
 بماند جقدر است؟
(Yヶ- نرض كنيد توزيع عمر يكى فلم كالا داراى تابع نرخ مخاطرةٔزير است: $\lambda(t)=t^{3}, t>0$.
(الف) احتمال اين كه اين فلم كالا دو سال عمر كند جقدر است؟

(ي) الحتمال اين كه يكـ تلم كالاى يكي ماله تادو سال دوام بياورد جقدر است؟

 $P\left\{|X|>\frac{1}{2}\right\}$$$
P\left\{\sin (\pi X / 2)>\frac{1}{3}\right\}
$$

(ب) تابع چحكالى متغير تصادفى IXI .

$$
\text { 4x² + 4xY +Y + } 2=0 \text { حقيقى باششند جقدر است؟ }
$$

 . تعريف شلده است محاسبه كتيد Y= $\log X X$, را Yه Y
 Q 9 - مطـلوب اسـت توزيـع R=ASin بر
مـتغير تصـادفي R در نظريه باليـستيكـ مطرح مى شـود. اكـر كلولهاى از مبــأ با زاويكُ α نسبت

 ه 9 .

توزيع توأم متثيرهاى تصادفى

I - كابع توزيع توأم
در باره توزيعـهـاى احتــــالل متـغنيرهاى تصـادنى يك مـتـنـرى بهحث شـد . ولى اغلب با الحتـمال مربوط بهدومتغبر يا بيـشتر سـروكار داريـم • برالى بحث در بارهُ اين نوع احتـمـالها براى
 مى شود.

$$
F(a, b)=P(X \leq a, Y \leq b\} \quad-\infty<a, b<\infty
$$

حال توزيع X رامى توان از توزيم توأ X X به صمررت زير محامبه كرد:

$$
\begin{aligned}
F_{X}(a) & =P\{X \leq a\} \\
& =P\{X \leq a, Y<\infty\} \\
& =P\left(\lim _{b \rightarrow \infty}\{X \leq a, Y \leq b\}\right) \\
& =\lim _{b \rightarrow \infty} P\{X \leq a, Y \leq b\} \\
& =\lim _{b \rightarrow \infty} F(a, b) \\
& \equiv F(a, \infty)
\end{aligned}
$$

 استغاده كرده ايـم. همين طور تابع توزيع تجمعى Y عبارت أست از :

$$
\begin{aligned}
F_{Y}(b) & =P\{Y \leq b\} \\
& =\lim _{a \rightarrow \infty} F(a, b) \\
& \equiv F(\infty, b)
\end{aligned}
$$

 از

$$
\begin{align*}
P\{X>a, Y>b\} & =1-P\left(\{X>a, Y>b\}^{c}\right) \\
& =1-P\left(\{X>a\}^{c} \cup\{Y>b\}^{c}\right) \\
& =1-P(\{X \leq a\} \cup\{\leq \leq\}) \\
& =1-[P\{X \leq a\}+P\{Y \leq b\}-P\{X \leq a, Y \leq b\}] \tag{1-1}\\
& =1-F_{X}(a)-F_{Y}(b)+F(a, b)
\end{align*}
$$

مـعـادله (1-1) حـالت خـاصـى از مـعـادله' (1-Y) اسـت كـه بررسى درمـتى آن بـهعنوان تمرين واكذار مى نـود :

$$
\begin{align*}
P\left(a_{1}\right. & \left.<X \leq a_{2}, b_{1}<Y \leq b_{2}\right\} \\
& =F\left(a_{2}, b_{2}\right)+F\left(a_{1}, b_{1}\right)-F\left(a_{1}, b_{2}\right)-F\left(a_{2}, b_{1}\right) \tag{Y-1}
\end{align*}
$$

كه در آن

در حالتى كه X X X X دو متغير هاي تصهادفى كسسته اند، بهتر اسـت تاله جرم المتمال توام و X X

$$
p(x, y)=P\{X=x, Y=y\}
$$

تابع جوم احتمال X را مى نوان از روى p(x, y) به صـورت زير محاسبه كرد.

$$
\begin{aligned}
p_{X}(x) & =P\{X=x\} \\
& =\sum_{y: p(x, y)>0} p(x, y)
\end{aligned}
$$

عمين طور

$$
p_{Y}(y)=\sum_{x: p(x, y)>0} p(x, y)
$$

 عبارتاستاز :

$$
p(0,0)=\binom{5}{3} /\binom{12}{3}=\frac{10}{220}
$$

$$
p(0,1)=\binom{4}{1}\binom{5}{2} /\binom{12}{3}=\frac{40}{220}
$$

$$
p(0,2)=\binom{4}{2}\binom{5}{1} /\binom{12}{3}=\frac{30}{220}
$$

$$
p(0,3)=\binom{4}{3} /\binom{12}{3} \fallingdotseq \frac{4}{220}
$$

$$
p(1,0)=\binom{3}{1}\binom{5}{2} /\binom{12}{3}=\frac{30}{220}
$$

$$
p(1,1)=\binom{3}{1}\binom{4}{1}\binom{5}{1} /\binom{12}{3}=\frac{60}{220}
$$

$$
p(1,2)=\binom{3}{1}\binom{4}{2} /\binom{12}{3}=\frac{18}{220}
$$

$$
p(2,0)=\binom{3}{2}\binom{5}{1} /\binom{12}{3}=\frac{15}{220}
$$

$$
p(2,1)=\binom{3}{2}\binom{4}{1} /\binom{12}{3}=\frac{12}{220}
$$

$$
p(3,0)=\binom{3}{3} /\binom{12}{3}=\frac{1}{220}
$$

اين احتمالها را مى توان بآسانى به صورت جدول צ-ا نوشت :
 احتمال Y از جمع ستونها بهد دست مى آيد. جون اين توابع در كنارجدول ظالهر مى شُوند آنها را تابع جرم احتمال كنارى X Y Y كويند.

 جلورل Y-Y مى باشثل. .

$$
\text { جدول P\{B=i, G = i\} }\} \text { ج }
$$

مل : اين احتمالها به صورت زير محاسبه مى شوند:

$$
\begin{aligned}
& P\{B=0, G=0\}=P\left\{\begin{array}{l}
\text { ميج كــودك }
\end{array}\right\}=.15
\end{aligned}
$$

تحقيت درسنى بقيهُ احتتمالها به خواننده واكذار مى شتود .

 مختصات است) داشته باشبيم

$$
P\{(X, Y) \in C\}=\iint_{(x, y) \in C} f(x, y) d x d y
$$

 C=\{(x,y):x ع A , y є B $\}$ از معادلكُ (1-ケ) نتيجه مى شود :
$P\{X \in A, Y \in B\}=\int_{a} \int_{A} f(x, y) d x d y$

$$
\begin{aligned}
F(a, b) & =P\{X \in(-\infty, a], Y \in(-\infty, b]\} \\
& =\int_{-\infty}^{b} \int_{-\infty}^{a} f(x, y) d x d y
\end{aligned}
$$

با مـُتنت كيرى داريـم
$f(a, b)=\frac{\lambda^{2}}{\partial a \partial b} F(a, b)$
به شر ط آن كه مشتقات نسبى تعريف شده باشدويكـ تعبيرديكر تابع چكالى توأم از معادلد (Y-1)

$$
\begin{aligned}
P\{a<X<a+d a, b<Y<b+d b\} & =\int_{b}^{d+d b} \int_{a}^{a+d a} f(x, y) d x d y \\
& \approx f(a, b) d a d b
\end{aligned}
$$

 احتمال آنها به صورت زير به دست مي آيد .

$$
\begin{aligned}
P\{X \in A\} & =P\{X \in A, Y \in(-\infty, \infty)\} \\
& =\int_{A} \int_{-\infty}^{\infty} f(x, y) d y d x \\
& =\int_{A} f_{X}(x) d x
\end{aligned}
$$

كه در آن

$$
f_{X}(x)=\int_{-\infty}^{\infty} f(x, y) d y
$$

تابع جگالى احتمال X انست. هـين طور تابع چگالى اشتمال Y برابر اسـت با :

$$
f_{Y}(y)=\int_{-\infty}^{\infty} f(x, y) d x
$$

مثال I ه . تابع هكالى احتمال X Y Y به صورت زير اسـت .
(1) : مطلوب است مدحاسبه

$$
\begin{aligned}
P\{X>1, Y<1\} & =\int_{0}^{1} \int_{1}^{\infty} 2 e^{-x} e^{-2 y} d x d y \\
& =\int_{0}^{1} 2 e^{-2 y}\left(-\left.e^{-x}\right|_{1} ^{\infty}\right) d y \\
& =e^{-1} \int_{0}^{1} 2 e^{-2 y} d y \\
& =e^{-1}\left(1-e^{-2}\right)
\end{aligned}
$$

$$
\begin{aligned}
P\{X<Y\} & \iint_{(x, y) . x<y} 2 e^{-x} e^{-2 y} d x d y \\
& =\int_{0}^{\infty} \int_{0}^{y} 2 e^{-x} e^{-2 y} d x d y \\
& =\int_{0}^{\infty} 2 e^{-2 y}\left(1-e^{-y}\right) d y \\
& =\int_{0}^{\infty} 2 e^{-2 y} d y-\int_{0}^{\infty} 2 e^{-3 y} d y \\
& =1-\frac{2}{3} \\
& =\frac{1}{3}
\end{aligned}
$$

$$
\begin{aligned}
P(X<a) & =\int_{0}^{a} \int_{0}^{\infty} 2 e^{-2 y} e^{-x} d y d x \\
& =\int_{0}^{a} e^{-x} d x \\
& =1-e^{-a}
\end{aligned}
$$

مثال 1 تـ. دايرهاى به ثـعاعR در نظر بكيـريد و فرض كنيـد نقطه ايى بتصـادف در داخحل

 بهصورت زير امت:

$$
f(x, y)= \begin{cases}c & x^{2}+y^{2} \leq R^{2} \\ 0 & x^{2}+y^{2}>R^{2}\end{cases}
$$

زير| (X, Y) با احتمال مساوى نزديك هر نقطه در داير هامت.
ا- مقدار c را معين كنيد.

ץ- ا- احتمال اين كه ناصلهُ نقطهُ انتخاب شـد

شكل ب- ا توزبع احتمال توأم

$$
\begin{aligned}
& \text { : } \\
& \text { 1-جون }
\end{aligned}
$$

$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d y d x=1$
نتيجه مى مُود .

$$
c \iint_{x^{2}+y^{2} s R^{2}} d y d x=1
$$

مقـار $x^{2}+y^{2} \leq R^{2}$ ساده ترى باتو جه به اين كهاين انتكرال مساحت دايره رانشان مى دهدبرابربا π م كر فت . بنابراين $c=\frac{1}{\pi R^{2}}$

$$
\begin{aligned}
f_{X}(x) & =\int_{-\infty}^{\infty} f(x, y) d y \\
& =\frac{1}{\pi R^{2}} \int_{x^{2}+y^{2} \leq R^{2}} d y \\
& =\frac{1}{\pi R^{2}} \int_{-\sqrt{R^{2}-x^{2}}}^{+\sqrt{R^{2}-x^{2}}} d y \quad x^{2} \leq R^{2} \\
& =\frac{2}{\pi R^{2}} \sqrt{R^{2}-x^{2}} \quad x^{2} \leq R^{2}
\end{aligned}
$$

بهدست مى آيد :

$$
\begin{aligned}
f_{Y}(y) & =\frac{2}{\pi R^{2}} \sqrt{R^{2}-y^{2}} & & y^{2} \leq R^{2} \\
& =0 & & y^{2}>R^{2}
\end{aligned}
$$

r- تابع توزيع Z
مى شود:

$$
\begin{aligned}
F_{Z}(a) & =P\left\{\sqrt{X^{2}+Y^{2}} \leq a\right\} \\
& =P\left\{X^{2}+Y^{2} \leq a^{2}\right\} \\
& =\iint_{x^{2}+y^{2} \leq a^{2}} f(x, y) d y d x \\
& =\frac{1}{\pi R^{2}} \iint_{x^{2}+y^{2} \leq a^{2}} d y d x \\
& =\frac{\pi a^{2}}{\pi R^{2}} \\
& =\frac{a^{2}}{R^{2}}
\end{aligned}
$$

يعنى $\pi \mathrm{a}^{2}$ اسمت.
مكال I ث . چكالمى توأم X و Y به صورت زير اسـت:

$$
f(x, y)=\left\{\begin{array}{lc}
e^{-(x+y)} & 0<x<\infty, 0<y<\infty \\
0 & \quad \text { غر غير أينصررت }
\end{array}\right.
$$

مطلوب أمت تابع جكالى متغير تصهادنى

$$
\begin{aligned}
F_{X / Y}(a) & =P\left\{\frac{X}{Y} \leq a\right\} \\
& =\iint_{x / y \leq a} e^{-(x+y)} d x d y \\
& =\int_{0}^{\infty} \int_{0}^{a y} e^{-(x+y)} d x d y \\
& =\int_{0}^{\infty}\left(1-e^{-a y}\right) e^{-y} d y \\
& =\left.\left[-e^{-y}+\frac{e^{-(a+1) y}}{a+1}\right]\right|_{0} ^{\infty} \\
& =1-\frac{1}{a+1}
\end{aligned}
$$

با مشنق كيرى تابع جكالى $f_{X / Y}(a)=1 /(a+1)^{2}, 0<a<\infty$.

توزيعهايى احتـمال توأم n متغير تصـادفى را نيـز مى توان دقيقـاً مانند n= 2 تعريف كرد .

به صورت زير تعريف مى شود:
$F\left(a_{1}, a_{2}, \ldots, a_{n}\right)=P\left\{X_{1} \leq a_{1}, X_{2} \leq a_{2}, \ldots, X_{n} \leq a_{n}\right\}$

بعدى داشته باشيمهم:
$P\left\{\left(X_{1}, X_{2}, \ldots, X\right) \in C\right\}=\iint_{\left\{x_{1} \ldots, \tau_{n}\right\} \in C} \cdots \int_{C} f\left(x_{1}, \ldots, x_{n}\right) d x_{1} d x_{2} \cdots d x_{n}$
بخصوص برالى هر n مجموعه از اعداد حقيقي مانند

$$
\begin{aligned}
P\left\{X_{1}\right. & \left.\in A_{1}, X_{2} \in A_{2}, \ldots, X_{n} \in A_{n}\right\} \\
& =\int_{A_{n}} \int_{A_{n-}} \cdots \int_{A_{1}} f\left(x_{1} \ldots, x_{n}\right) d x_{1} d x_{2} \cdots d x_{n}
\end{aligned}
$$

مثال أ \&. توزبع جند جملهاى . يكى از مهمترين توزيعهاى توام ، نوزيع جندجمله ایى است، كه از يك دنباله n آزمايش يكسان و مستقل ناثمى مى شمود، فرض كنيد هر آزمايش بهيكى از تعلاد آزمايشها با برآمد i باشدل آن كا

$$
\begin{equation*}
P\left\{X_{1}=n_{1}, X_{2}=n_{2}, \ldots, X,=n_{r}\right\}=\frac{n!}{n_{1}!n_{2}!\ldots n_{r}!} p_{1}^{n} p_{2}^{n_{2}} \cdots p_{r}^{n_{1}} \tag{0-1}
\end{equation*}
$$

$$
\sum_{i=1}^{r} n_{i}=n \text { كهر آن }
$$

i أ مي دهـد و جون تعــداد اين دنبــاله ها برابر n! $\frac{n!}{n_{1}!+n_{r}!}$

 دو جملهاى تبديل مي شود.

$$
\frac{9!}{3!2!2!1!1!0!}\left(\frac{1}{6}\right)^{3}\left(\frac{1}{6}\right)^{2}\left(\frac{1}{6}\right)^{2}\left(\frac{1}{6}\right)^{1}\left(\frac{1}{6}\right)^{1}\left(\frac{1}{6}\right)^{0}=\frac{9!}{3!2!2!}\left(\frac{1}{6}\right)^{9}
$$

Y -

متغير هاى تصادنى X X Xا مستقل كويميم اكر برای هر دو مجموعهاز اعداد حقيقى A
B

$$
\begin{align*}
& P\{X \in A, Y \in B\}=P\{X \in A\} P\{Y \in B\} \tag{1-Y}
\end{align*}
$$

F مستقل باشند

با اسـتفـاده از سـه احـل احتـمال مى توان نــــان داد كـه معـادلهُ (Y - ا) نتط و فـقط وتتى برترار است كه براى هر a و b
$P\{X \leq a, Y \leq b\}=P\{X \leq a\} P\{Y \leq b\}$
 $F(a, b)=F_{X}(a) F_{Y}(b) \quad$ بر a, b

وتتى X و X متغـير هاى تصادنى كـسسته هستند، شرط اسـتقلال (Y Y Y Y ا معادل است با اين كه به ازای هر X و y ،

$$
\begin{equation*}
p(x, y)=p_{X}(x) p_{Y}(y) \quad \text { براى تمام } x, y \tag{r-Y}
\end{equation*}
$$

 بهد دست مى آيد.
از طرف ديگر اكُر معادله (Y-Y) برترار باشد، در آن صورت برایى هر دو مجموعئ A B B A

$$
\begin{aligned}
P\{X \in A, Y \in B\} & =\sum_{y \in B} \sum_{x \in A} p(x, y) \\
& =\sum_{v i} \sum_{v i n} p_{\mathrm{Y}}(x) p_{Y}(y) \\
& =\sum_{y \cdot B} p_{Y}(y) \sum_{x \in A} p_{X}(x) \\
& =P\{Y \in B) P\{X \in A\}
\end{aligned}
$$

يعنى معادلهُ ((- برترار است.
در دالْت بيوستكي توأم شـرط امتقلال معادل است با اين كه به ازايى هر x
$f(x, y)=f_{X}(x) f_{Y}(y) \quad$ براى تمأم x, y

 اعداد صحيح x و داريم:

$$
\begin{aligned}
P\{X=x, Y=y\} & =\binom{n}{x} p^{x}(1-p)^{n-x}\binom{m}{y} p^{y}(1-p)^{m-y}, & & 0 \leq x \leq n \\
& =P\{X=x\} P\{Y=y\} & & 0 \leq y \leq m
\end{aligned}
$$

 باشـد (جرا؟)

 و و λ ا ارست.

$$
\begin{aligned}
P\{X=i, Y=j\}= & P(X=i, Y=j \mid X+Y=i+j\} P\{X+Y=i+j\} \\
& +P\{X=i, Y=j \mid X+Y \neq i+j\} P\{X+Y \neq i+j\}
\end{aligned}
$$

خواننده بايد توجه داشته باشدل كه اين معادله نقط حالت خاصى از فر مول زير است: $P(E)=P(E \mid F) P(F)+P\left(E \mid F^{*}\right) P\left(F^{\prime}\right)$

بديهى است كه :
$P\{X=i, Y=j \mid X+Y \neq i+j\}=0$

$$
\begin{equation*}
P\{X=i, Y=j\}=P\{X=i, Y=j \mid X+Y=i+j\} P\{X+Y=i+j\} \tag{Y-r}
\end{equation*}
$$

حال جون X + تعداد كل افرادى است كه به اداره بـست وارد مى شوند، بنا به فرض داريم:

$$
\begin{equation*}
P\{X+Y=i+j\}=e^{-\lambda} \frac{\lambda^{\prime+1}}{(i+j)!} \tag{Y-Y}
\end{equation*}
$$

 يعنى

$$
P\{X=i, Y=j \mid X+Y=i+j\}=\binom{i+j}{i} p^{\prime}(1-p)^{\prime}
$$

با جانُشين كردن معادلات (Y-Y) و (Y-Y) در معادلهُ (Y-Y) داريم:

$$
\begin{align*}
P\{X=i, Y=j\} & =\binom{i+j}{i} p^{i}(1-p)^{\prime} e^{-\lambda} \frac{\lambda^{\prime+1}}{(i+j)!} \\
& =e^{-\lambda} \frac{(\lambda p)^{i}}{i!j!}[\lambda(1-p)]^{i} \\
& =\frac{e^{-\lambda n}(\lambda p)^{i}}{i!} e^{-\lambda(1-p))} \frac{[\lambda(1-p)]^{i}}{j!}
\end{align*}
$$

بنابر اين

$$
\begin{equation*}
P\{X=i\}=e^{-\lambda p} \frac{(\lambda p))^{i}}{i!} \sum_{j} e^{-\lambda(1-p)} \frac{[\lambda(1-p)]^{\prime}}{j!}=e^{-\lambda p} \frac{(\lambda p)^{i}}{i!} \tag{V-Y}
\end{equation*}
$$

و بطور مــابه

$$
P\{Y=j\}=e^{-\lambda(1-p) \frac{[\lambda(1-p)]^{i}}{j!}}
$$

$$
\text { از معادلات (Y-Y)، (Y-Y) و (}) \text {) (}) \text { حكم نتيجه مى شود. }
$$

قل : اگــر Y X به ترتيب زهــان رســيـدن مــرد و زن بعــد از بــاعت Y باشــد، در اين صورت Y X X Xتغير هاي تصادفى مسستقلند كه هر كلـام دارالى توزيع يكنوانحت در ناصله

كه با تو جه به تقارن برابر اسصت با 2P\{ X + $10<Y$ و بهصورت زير محاسبه مى شود : $2 P\{X+10<Y\}=2 \cdot \iint_{x+10<y} f(x, y) d x d y$

$$
=2 \iint f_{X}(x) f_{Y}(y) d x d y
$$

$$
=2 \int_{10}^{x+10<y} \int_{0}^{40}\left(\frac{1}{60}\right)^{2} d x d y
$$

$$
=\frac{2}{(60)^{2}} \int_{10}^{80}(y-10) d y
$$

$$
=\frac{25}{36}
$$

مشال بعدى تديمى ترين مسـاله أى است كه در بار؛ احتمالهاى هندسى بحت مى كند . اين مسـاله ابتدا تو سـط بوفن طبيعى دان فرانسـوى در ترن هيجـدهمم طرح و حل شـد، و معــو لآ بها آن مساله سوزن بونن اطلات مى شود.

مثال F ت. (مسآله سـوزن بوغن) ميزى با خططهاى موازى هم فاصله به ناصلهُ D خحط كشى شُده است. سوزنى به طول L S D ، L بططور تصادفى روى ميز انداختـه مى شود؛ آحتمال اين كه سـوزن يكى از خطهـا را تطع كند هقدر امـت (حـالت ممكن ديگر اين امـت كه سـوزن بين دو نحط موازى ترار كيرد) ?

קل : وخع سوزن را با مشـخخص كردن X ناصلة وسط سوزن تا نزديكترين خطط موازیى و زاويهٔ θ بين سوزن و اين خحط عمود معين مى كنهم . (شكل ؟-Y) سوزن يك خحط را تمطع مى كند

> اكر وتر مثلث قائم الزاويه شـكل Y-9 كمتر از L L بائدن، بعنى اكر :
$\frac{X}{\cos \theta}<\frac{L}{2} \quad$ ᄂ $\quad X<\frac{L}{2} \cos \theta$

شـده اند. بنابراين
$P\left\{X<\frac{L}{2} \cos \theta\right\}=\iint_{x<L / 2 \cos y} f_{X}(x) f_{\theta}(y) d x d y$

$$
=\frac{4}{\pi D} \int_{0}^{\pi / 2} \int_{0}^{L / 2 \cos y} d x d y
$$

$$
=\frac{4}{\pi D} \int_{0}^{\pi / 2} \frac{L}{2} \cos y d y
$$

$$
=\frac{2 L}{\pi D}
$$

(Y X X X

 نرمال هستند. براى اثبات اين مطلب با توجه به فرضها مى توان نوينـت :

$$
\begin{equation*}
f(x, y)=f_{X}(x) f_{Y}(y)=g\left(x^{2}+y^{2}\right) \tag{9-Y}
\end{equation*}
$$

كه در آن g تابعى مناسبب الست. اكر از معادل (Y-q) نسبت به x مشتق بكيريم داريم:

$$
f_{Y}^{\prime}(x) f_{Y}(y)=2 x g^{\prime}\left(x^{2}+y^{2}\right)
$$

|ز تتسيم معادلُ (Y- - ا) بر معادلئ (Y- + ا) داريم:

$$
\begin{align*}
& \frac{f_{X}^{\prime}(x)}{f_{X}(x)}=\frac{2 x g^{\prime}\left(x^{2}+y^{2}\right)}{g\left(x^{2}+y^{2}\right)} \\
& \frac{f_{X}^{\prime}(x)}{2 x f_{X}(x)}=\frac{g^{\prime}\left(x^{2}+y^{2}\right)}{g\left(x^{2}+y^{2}\right)} \tag{11-Y}
\end{align*}
$$

$$
\text { x } x_{1}^{2}+y_{1}^{2}=x_{2}^{2}+y_{2}^{2}
$$

$$
\frac{f_{X}^{\prime}\left(x_{1}\right)}{2 x_{1} f_{X}\left(x_{2}\right)}=\frac{g^{\prime}\left(x_{1}^{2}+y_{1}^{2}\right)}{g\left(x_{1}^{2}+y_{1}^{2}\right)}=\frac{g^{\prime}\left(x_{2}^{2}+y_{2}^{2}\right)}{\dot{g}\left(x_{2}^{2}+y_{2}^{2}\right)}=\frac{f_{X}^{\prime}\left(x_{2}\right)}{2 x_{2} f_{X}\left(x_{2}\right)}
$$

بنابراين
$\frac{f_{X}^{\prime}(x)}{x f_{X}(x)}=c \quad$ L $\quad \frac{d}{d x}\left(\log f_{X}(x)\right)=c x$ كه بس از انتگرال كيرى از دو طرن بهصورت زير در مى آيد:

$$
\log f_{X}(x)=a+\frac{c x^{2}}{2} \quad \longleftrightarrow \quad f_{X}(x)=k e^{c \mathrm{x}^{2} / 2}
$$

باتـوجــه به

$$
\text { نوشّت. بنابراين c=- } \frac{1}{\sigma^{2}}
$$

$$
f_{X}(x)=k e^{-x^{2} / 2 \sigma^{2}}
$$

 $f_{Y}(y)=\frac{1}{\sqrt{2 \pi} \bar{\sigma}} e^{-y^{2} / 2 \sigma^{2}}$
علاوه بر ايـن از فرض (Y) نتيجه مى نـود هم توزيع مستقل با بارامترهای ها

 اعدادحقيفى

$$
P\left\{X_{1} \in A_{1}, X_{2} \in A_{2}, \ldots, X_{n} \in A_{n}\right\}=\prod_{i=1}^{n} P\left\{X_{i} \in A_{1}\right\}
$$

$$
a_{n} ، \ldots
$$

$$
\begin{aligned}
P\left\{X_{1}\right. & \left.\leq a_{i}, X_{2} \leq a_{2}, \ldots, X_{n} \leq a_{n}\right\} \\
& =\prod_{i=1}^{n} P\left\{X_{i} \leq a_{i}\right\} \quad \text { براى } a_{1}, a_{2}, \ldots, a_{n}
\end{aligned}
$$

بالاخره، يك مجـمـوعةُ نامتناهى از متغغير هاى تصادفى را مسـتقل كـويـم اكـر هر زير مجموعهُ متناهى از آنها مستقل باتُند.

 $P\{I=1\}=p=1-P\{I=0\}$
 I رابه صورت زير ترار مى دهد:
$I= \begin{cases}1 & U<p \\ 0 & U>p\end{cases}$
 انتخاب كنيم به قسمى كه هريك از

 ش شبيه سازى مى كنيــ

 $I_{1}=\left\{\begin{array}{lc}1 & U_{1}<\frac{k}{n} \\ 0 & -\quad \text { gر }\end{array}\right.$

حال به روش بر كُشتى بس از تعيين

 I, I I I بهصورت زير تعيين مى شُود:

$$
P\left\{I_{1}=1\right\}=\frac{k}{n}
$$

$P\left(I_{i+1}=1 \mid I_{1}, \ldots, I_{i}\right\}=\frac{k-\sum_{i=1}^{i} I_{j}}{n-i} \quad 1<i<n$

مى كنيم. درنظر مى كيريم و دو حالت زير را بررسىى مى كنيم •

$$
\begin{aligned}
& P\left\{I_{1}=I_{1_{2}}=\cdots=I_{I_{k}}=1, I_{i}=0\right. \text { در غير اين صورت \} } \\
& =P\left\{I_{1}=1\right\} P\left\{I_{i_{2}}=\cdots=I_{i_{k}}=1, I_{t}=0 \text { در غير اين صورت| } \mid I_{1}=1\right\}
\end{aligned}
$$

 مى گيريم . بنابر اين، باتو جـه به فرض أستقر1، أحتـمال شـرطى اين نتيجهه در يكى زير مـجموعه به حجم k-1 برابر با

$$
\begin{aligned}
P\left\{I_{1}\right. & \left.=I_{i 2}=\cdots=I_{i_{k}}=1, I_{1}=0 \text { در غير اين صورت }\right\} \\
& =\frac{k}{n} \frac{1}{\binom{n-1}{k-1}}=\frac{1}{\binom{n}{k}}
\end{aligned}
$$

$i_{1}=1 \quad 1 \quad$ حَالت
$i_{1} \neq 1 \quad$ حالت

$$
\begin{aligned}
& P\left\{I_{i_{1}}=I_{15}=\cdots=I_{\mathrm{L}_{\mathrm{k}}}=1, I_{1}=0 \text { در غير أين صورت }\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{\binom{n-1}{k}}\left(1-\frac{k}{n}\right)=\frac{1}{\binom{n}{k}}
\end{aligned}
$$

در اين جا فرض استقر اع برایى محاسبه احتمال شـرطى به كار برده شده امست. بنابراين در تمام حـالات احتـمال اين كـه يكى زير مجـموعه مفروض به حـجم k انتخاب
شـود برابر أست با

$$
f_{X, Y, Z}(x, y, z)=f_{X}(x) f_{Y}(y) f_{Z}(z)=1 \quad 0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1
$$

$$
\begin{aligned}
P\{X \geq Y Z\} & =\iint_{x \geq y z} \int_{X, Y, Z}(x, y, z) d x d y d z \\
& =\int_{0}^{1} \int_{0}^{1} \int_{y z}^{1} d x d y d z \\
& =\int_{0}^{1} \int_{0}^{1}(1-y z) d y d z \\
& =\int_{0}^{1}\left(1-\frac{z}{2}\right) d z \\
& =\frac{3}{4}
\end{aligned}
$$

مثال راديو اكتيو در زمان 1 باشدلد م مفهو مقدارى است مانتد h به تـسمى كه

$$
N(t)=2^{-t / h} N(0), \quad t>0 .
$$

(توجه كنيد كه ($\left.\mathrm{N}(\mathrm{h})=\frac{\mathrm{N}(0)}{2}\right)$. .
نامنفى s و t

$$
N(t+s)=2^{-(s+\mathrm{t}) / h} N(0)=2^{-t / h} N(s)
$$

 هي يابند.

در هر فاصله زمـانى به تعداد كل ذرات در شـروع نـاصله بستگى دارد نه به عـمل اين فاصله (زيـرا

 مي شود، الكوى احتمالى زير را براى نابودى اجسام راديو اكتيو بششنهاد مى كنيهـ . تعيير احتـمالمى نصف عمر h :عمـر هر ذره يكى متـغير تصـادفى مستقل با توزيع عـمر نمايعى با ميانگّين h است، يعنى اگر L عمر يكى ذره باشد داريم
$P\{L<t\}=1-2^{-t / h}$

$$
\begin{aligned}
& P\{L<t\}=1-\exp \left\{-t \frac{\log 2}{h}\right\}
\end{aligned}
$$

ديله مي شود كه L داراى توزيع نمايى با ميانه h است) .

 ساز گار اسـت وقتى نسبت زيادى از ذرات در يكى زمان معين متلاشتى مى شـوند . با وجود اين، تفاوت بين تعبير شهودى و احتمـالى وتتى ظاهر مى شود كه تعداد واقعى ذرات مـتلاشـى شده را درنظر بغيريم . اين مطلب را با توجه به سؤال مربوط به متلاضتى شدن بروتونها نشان نخواهيم داد . در بارهُ مـتـلانى شـلـن يروتونهـا نظرات مـختلـف است . در واقع يك نظريه هيش بينى

 زير است

$$
\begin{aligned}
& N(0)-N(c)=h\left(1-2^{-c / h}\right) \\
& =\frac{1-2^{-c / h}}{1 / h} \\
& \approx \lim _{x \rightarrow 0}\left(1-2^{-c x}\right) / x \quad 1, \ldots ; 1 / h=10^{-30} \approx 0 \\
& =\lim _{x \rightarrow 0}\left(c 2^{-c x} \log 2\right) \quad \text { بنا به تاعدهُ هوبتيال } \\
& =c \log 2 \approx .6931 \mathrm{c}
\end{aligned}
$$

 در با سال هيجكرنه تلاشى صورت كيرد

 بارامتر 2 h h الست

$$
\begin{aligned}
& =e^{-\log \left[2^{c}\right)}=1 / 2^{c}
\end{aligned}
$$

و بطور كلى

 تلاشى رخ ندهد، و نشان مى دهد كه نمى توان فرض اوليه تلاشى بروتونها را بي اعتبار خواند.

r - مبجؤ متثيرهاى تصادلى مستقل

 به

$$
\begin{align*}
F_{X+Y}(a) & =P\{X+Y \leq a\} \\
& =\iint_{x+y=0} f_{X}(x) f_{Y}(y) d x d y \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{a-y} f_{X}(x) f_{Y}(y) d x d y \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{a-y} f_{X}(x) d x f_{Y}(y) d y \\
& =\int_{-\infty}^{\infty} F_{X}(a-y) f_{Y}(y) d y \tag{1-r}
\end{align*}
$$

$$
\begin{align*}
f_{X+Y}(a) & =\frac{d}{d a} \int_{-\infty}^{\infty} F_{X}(a-y) f_{Y}(y) d y \\
& =\int_{-\infty}^{\infty} \frac{d}{d a} F_{X}(a-y) f_{Y}(y) d y \\
& =\int_{-\infty}^{\infty} f_{X}(a-y) f_{Y}(y) d y
\end{align*}
$$

 حل : از معادلَّ (Y-Y) با تو جه به توابع جڭالى زير نتيجه مى نشود.

$$
f_{X}(a)=f_{Y}(a)= \begin{cases}1 & 0<a<1 \\ 0 & \text { در غر }\end{cases}
$$

بهازازى 1 a 1 د 0 داريم
$f_{X+Y}(a)=\int_{a}^{1} f_{X}(a-y) d y$
به ازاى 2>a> 1 > داريم
$f_{X+\gamma}(a)=\int_{0}^{a} d y=a$
بنابراين
$f_{X+Y}(a)=\int_{a-1}^{1} d y=2-a$
 به خاطر داشته باشيد كه متغير تصادفى كاما داراى جكالى زير است
$f(y)=\frac{\lambda e^{-\lambda y}(\lambda y)^{1-1}}{\Gamma(t)} \quad 0<y<\infty$
بلكه خـاصيت مـهم اين خـانواده از توزيعهـا اين است كه براى يكمــــدار ثابت ג نــبت بـه عمل بيجش بسته المت.

Her rer
(s, λ (
, (t (λ (λ, اثبات : با استفاده از معادل (Y-Y) داريم

$$
\begin{aligned}
f_{X+Y}(a) & =\frac{1}{\Gamma(s) \Gamma(t)} \int_{0}^{a} \lambda e^{-\lambda(a-y)}[\lambda(a-y)]^{J^{-1} \lambda e^{-\lambda y}(\lambda y)^{1-1} d y} \\
& =K e^{-\lambda a} \int_{0}^{a}(a-y)^{s-1} y^{t-1} d y \\
& =K e^{-\lambda a} a^{s+1-1} \int_{0}^{1}(1-x)^{s-1} x^{\prime-1} d x \quad \text { ض } \quad \text { ب } x=\frac{y}{a} \\
& =C e^{-\lambda a} a^{s+t-1}
\end{aligned}
$$

 است انتگرال آن بايد برابر 1 باشده، بس از تعيين مقدار C داريم
$f_{X+Y}(a)=\frac{\lambda e^{-\lambda a}(\lambda a)^{s+1-1}}{\Gamma(s+t)}$
و نتيجه حاصل است.

 يك متـغير تصـادفى با توزــع كامـابا بارامـتـر ($\sum_{i=1}^{n} X_{i}^{n}$

به
مثـل

 كاما با بارامترهاي (
 , Y, $Y=\sum_{i=1}^{n} Z_{i}^{2}$
 تابع جگالى احتمال بهصورت زير امت

$$
f_{z^{2}}(y)=\frac{1}{2 \sqrt{y}}\left[f_{z}(\sqrt{y})+f_{z}(-\sqrt{y})\right]
$$

$$
\begin{aligned}
& =\frac{1}{2 \sqrt{y}} 2\left(\frac{1}{\sqrt{2 \pi}} e^{-y / 2}\right) \\
& =\frac{\frac{1}{2} e^{-(12) y\left(\frac{1}{2} y\right)^{1 / 2-1}}}{\sqrt{\pi}}
\end{aligned}
$$

ولى اين تابع را توزيع گـامـابا بارامترهاى $)$

 (n $\left.\frac{n}{2}, \frac{1}{2}\right)$

$$
\begin{aligned}
f_{x^{2}(y)} & =\frac{\frac{1}{2} e^{-y / 2}\left(\frac{y}{2}\right)^{n / 2-1}}{\Gamma\left(\frac{n}{2}\right)} \\
= & y>0 \\
=\frac{e^{-y / 2} y^{n / 2-1}}{2^{n / 2} \Gamma\left(\frac{n}{2}\right)} & y>0
\end{aligned}
$$

ror

$$
\cdot\left[\Gamma\left(\frac{5}{2}\right)=\frac{3}{2} \Gamma\left(\frac{3}{2}\right)=\frac{3}{2}-\frac{1}{2} \Gamma\left(\frac{1}{2}\right)=\frac{3}{4} \sqrt{\pi} \quad ب \quad \Gamma\left(\frac{5}{2}\right)\right.
$$

اين توزيع در آمار رياضم نيز امميت دارد.

استفاده كرد.

r-r rer

, μ_{i} i

أكر بخو|هيد يك عبارت كلى براى توزيع X X Y Y
مثال زير توجه كنيد.

$$
\text { بارامترماي X }{ }^{\text {P }} \text { باشنـد مطلوباست توزيع X + . }
$$

حل : جون يسنـامد - $0 \leq k \leq n$ ، ، $\{X=k, Y=n-k\}$

$$
\begin{aligned}
P\{X+Y=n\} & =\sum_{k=0}^{n} P\{X=k . Y=n-k\} \\
& =\sum_{k=0}^{n} P\{X=k\} P\{Y=n-k\} \\
& =\sum_{k=0}^{n} e^{-\lambda_{1}} \frac{\lambda_{1}^{k}}{k!} e^{-\lambda_{2}} \frac{\lambda_{2}^{n-k}}{(n-k)!} \\
& =e^{-\left(\lambda_{1}+\lambda_{2}\right)} \sum_{k=0}^{n} \frac{\lambda_{1}^{k} \lambda_{2}^{n-k}}{k!(n-k)!} \\
& =\frac{e^{-\left(\lambda_{1}+\lambda_{2}\right)}}{n!} \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} \lambda_{1}^{k} \lambda_{2}^{n-k} \\
& =\frac{e^{-\left(\lambda_{1}+\lambda_{2}\right)}}{n!}\left(\lambda_{1}+\lambda_{2}\right)^{n}
\end{aligned}
$$

به عبارت ديگر X X X X

محاسبه كنيد

 مو فقيت در هريك از آنها برابر p اسـت، همين طور Y تعدأد مـوفقيتـها در m آزمايش مـستّتل با

 تصادفى دو جملهاى با پارامتر هاى (n + m, p) خواهلد بود . براى كتترل اين نتيجه بطور تتحليلي توجه كنيد كه :

$$
\begin{aligned}
P\{X+Y=k\} & =\sum_{i=0}^{n} P\{X=i, Y=k-i\} \\
& =\sum_{i=0}^{n} P\{X=i\} P\{Y=, k-i\} \\
& =\sum_{i=0}^{n}\binom{n}{i} p^{i} q^{n-i}\binom{m}{k-i} p^{k-i} q^{m-k+i}
\end{aligned}
$$

كه در آن -

$$
P\{X+Y=k\}=p^{k} q^{n+m-k} \sum_{i=1}^{n}\binom{n}{i}\binom{m}{k-i}
$$

و نتيجه با امستغاده از اتحاد زير بهد دست مي آيل .

$$
\binom{n+m}{k}=\sum_{i=0}^{n}\binom{n}{i}\binom{m}{k-i}
$$

P - توزنعهاى شرطى- عالت "سسته

$P(E \mid F)=\frac{P(E F)}{P(F)}$
بنابراين ا S Y X X X X X X X X

$$
\begin{aligned}
p_{X \mid Y}(x \mid y) & =P\{X=x \mid Y=y\} \\
& =\frac{P\{X=x, Y=y\}}{P\{Y=y\}} \\
& =\frac{p(x, y)}{p_{Y}(y)}
\end{aligned}
$$

Y = y همرای تمام y

$$
\begin{aligned}
F_{X \mid Y}(x \mid y) & =P\{X \leq x \mid Y=y\} \\
& =\sum_{a<x} p_{X \mid Y}(a \mid y)
\end{aligned}
$$

$$
p_{X \mid Y}(x \mid y)=P\{X=x \mid Y=y\}
$$

$$
\begin{aligned}
& =\frac{P\{X=x, Y=y\}}{P\{Y=y\}} \\
& =\frac{P\{X=x\} P\{Y=y\}}{P\{Y=y\}} \\
& =P\{X=x\}
\end{aligned}
$$

مثـل
داده شود.

$$
p(0,0)=.4 \quad p(0,1)=.2 \quad p(1,0)=.1 \quad p(1,1)=.3
$$

مل : توجه كنبد كه
$p_{Y}(1)=\sum_{x} p(x, 1)=p(0,1)+p(1,1)=.5$
بنابراين
$p_{X \mid Y}(0 \mid 1)=\frac{p(0,1)}{p_{Y}(1)}=\frac{2}{5}$
,
$p_{X \mid Y}(1 \mid 1)=\frac{p(1,1)}{p_{Y}(1)}=\frac{3}{5}$
مثال Y ب. اگر Y X X توزيع شرطى X Xابا فرض X X

حل : تابع جرم احتمال X با فرض X X Y Y = به صورت زير محاسبه مى شوود:

$$
\begin{aligned}
P\{X=k \mid X+Y=n\} & =\frac{P\{X=k, X+Y=n\}}{P\{X+Y=n\}} \\
& =\frac{P\{X=k, Y=n-k\}}{P\{X+Y=n\}} \\
& =\frac{P\{X=k\} P\{Y=n-k\}}{P\{X+Y=n\}}
\end{aligned}
$$

 توزيع بواسن با بارامتر

$$
\begin{aligned}
P\{X=k \mid X+Y=n\} & =\frac{e^{-\lambda_{1}} \lambda_{1}^{k}}{k!} \frac{e^{-\lambda_{2}} \lambda_{2}^{n-k}}{(n-k)!}\left[\frac{e^{-\left(\lambda_{1}+\lambda_{2}\right)}\left(\lambda_{1}+\lambda_{2}\right)^{n}}{n!}\right]^{-1} \\
& =\frac{n!}{(n-k)!k!} \frac{\lambda_{1}^{k} \lambda_{2}^{n-k}}{\left(\lambda_{1}+\lambda_{2}\right)^{n}} \\
& =\binom{n}{k}\left(\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}\right)^{k}\left(\frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}}\right)^{n-k}
\end{aligned}
$$

ه - توزيدهاى شرطى - حالت بيوسته
أكر X X X X X

$$
f_{X \mid Y}(x \mid y)=\frac{f(x, y)}{f_{Y}(y)}
$$

 ضربمي كنيم، ، در اين صورت داريم

$$
\begin{aligned}
f_{X \mid Y}(x \mid y) d x & =\frac{f(x, y) d x d y}{f_{Y}(y) d y} \\
& \approx \frac{P\{x \leq X \leq x+d x, y \leq Y \leq y+d y\}}{P\{y \leq Y \leq y+d y\}} \\
& =P\{x \leq X \leq x+d x \mid y \leq Y \leq y+d y\}
\end{aligned}
$$

 با شرط Y بين y و y + dy مي دهد.

$$
P\{X \in A \mid Y=y\}=\int_{\Lambda} f_{X \mid Y}(x \mid y) d x
$$

 تعريف كنيم

$$
F_{X \mid Y}(a \mid y) \equiv P\{X \leq a \mid Y=y\}=\int_{-\infty}^{a} f_{X \mid Y}(x \mid y) d x
$$

تو جـه داريد كه با امستـنـاده از اين ايده مي توالذ عبـارات قابل المـتـناده براى احتـمالهـاى
 مثال ه الت. . شگالى توأم X Y Y بهصورت زير داده شده امت.

$f_{X \mid Y}(x \mid y)=\frac{f(x, y)}{f_{Y}(y)}$

$$
\begin{aligned}
& =\frac{f(x, y)}{\int_{-\infty}^{\infty} f(x, y) d x} \\
& =\frac{x(2-x-y)}{\int_{0}^{1} x(2-x-y) d x} \\
& =\frac{x(2-x-y)}{\frac{2}{3}-y / 2} \\
& =\frac{6 x(2-x-y)}{4-3 y}
\end{aligned}
$$

مثال ه ب . فرض كنيد چگالى توأم X Y Y به صورت زير است.

$$
f(x, y)=\left\{\begin{array}{lc}
\frac{e^{-x / y} e^{-y}}{y} & 0<x<\infty, 0<y<\infty \\
0 & \text { ر } 2 \text { غير اينصورت }
\end{array}\right.
$$

$$
\text { مطلوب است محاسيبئ P\{ X > } 1 \mid Y=y\}
$$

$$
\begin{aligned}
f_{X \mid Y}(x \mid y) & =\frac{f(x, y)}{f_{Y}(y)} \\
& =\frac{e^{-x / y} e^{-y} / y}{e^{-y} \int_{0}^{\infty}(1 / y) e^{-x / y} d x} \\
& =\frac{1}{y} e^{-x / y}
\end{aligned}
$$

r09

$$
\begin{aligned}
P\{X>1 \mid Y=y\} & =\int_{1}^{\infty} \frac{1}{y} e^{-x / y} d x \\
& =-\left.e^{-x / y}\right|_{1} ^{\infty} \\
& =e^{-1 / y}
\end{aligned}
$$

 دنيقآ برابر امـت با چشكالى X . زيرا در سالت امـتقلال متغير ها داريم

$$
f_{X \mid Y}(x \mid y)=\frac{f(x, y)}{f_{Y}(y)}=\frac{f_{X}(x) f_{Y}(y)}{f_{Y}(y)}=f_{X}(x)
$$

 كـسته باشثل. . سال توزيع X رابا نرض N =

$$
\begin{aligned}
& \frac{P\{x<X<x+d x \mid N=n\}}{d x} \\
& \quad=\frac{P\{N=n \mid x<X<x+d x\}}{P\{N=n\}} \frac{P\{x<X<x+d x\}}{d x}
\end{aligned}
$$

اكر dx به 0 ثيل كند داريم

$$
\lim _{d x \rightarrow 0} \frac{P\{x<X<x+d x \mid N=n\}}{d x}=\frac{P\{N=n \mid X=x\}}{P\{N=n\}} f(x)
$$

$$
f_{X \mid N}(x \mid n)=\frac{P\{N=n \mid X=x\}}{P\{N=n\}} f(x)
$$

مثال ه بـ . تعلداد n + آزمايش را در نظل بخيريد كـه استمال مو فقـيت برایى آنها يكسان المت، ححـال نرض كـيـل اين اححتمـال موفـتـيت از تبل ثابيت فرض مُـلده امعت كه هـا مى دانيــم از

夫ل ؛ اكر X اهـتـمال مـونقـيت آزمايش بامــد در آن حـورت X داراي توزيع يكنو اشحـت

 بهصورت زير است:

$$
\begin{aligned}
f_{X \mid N}(x \mid n) & =\frac{P\{N=n \mid X=x\} f_{X}(x)}{P\{N=n\}} \\
& =\frac{\binom{n+m}{n} x^{n}(1-x)^{m}}{P\{N=n\}} \quad 0<x<1 \\
& =c x^{n}(1-x)^{m}
\end{aligned}
$$

 زيادتر مى كند.
f- آماره هاى تريبيى
 مـتر ك f و تابع توزيع Fمى باثشند . تعريف مى كيـيم

$$
\begin{aligned}
& X_{(1)}=\text { ك. } X_{1}, X_{2}, \ldots, X_{n} \\
& X_{(2)}=\text { درمـــن میدار كتر } X_{1}, X_{2}, \ldots, X_{n} \\
& X_{(1)}==\text { المين مقدار كهتر } j X_{1}, X_{2}, \ldots, X_{n} \\
& X_{(n)}=1
\end{aligned}
$$

مـــادير مرتب شـده
 . هستند X_{n} ، ... ، X_{2} ، X_{1}

X مقادير (1,2,..., n) دانتـه بانيم $X_{1}=x_{12}, X_{2}=x_{12}, \ldots, X_{n}=x_{i n}$

خون براى هر جايكتـت

$$
\begin{aligned}
& P\left\{x_{i_{1}}-\frac{\varepsilon}{2}<X_{1}<x_{i_{1}}+\frac{\varepsilon}{2}, \ldots, x_{i_{n}}-\frac{\varepsilon}{2}<X_{n}<x_{i_{n}}+\frac{\varepsilon}{2}\right\} \\
& \approx \varepsilon^{n} f_{x_{1}, \ldots, x_{n}}\left(x_{1}, \ldots, x_{1, n}\right) \\
& =\varepsilon^{n} f\left(x_{i_{1}}\right) \cdots f\left(x_{i_{i}}\right) \\
& =\varepsilon^{n} f\left(x_{1}\right) \cdot \cdots f\left(x_{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { ديله مى شود كه براكى } \\
& P\left\{x_{1}-\frac{\varepsilon}{2}<X_{(1)}<x_{1}+\frac{\varepsilon}{2}, \ldots, x_{n}-\frac{\varepsilon}{2}<X_{(n)}<x_{n}+\frac{\varepsilon}{2}\right\} \\
& \approx n!\varepsilon^{n} f\left(x_{1}\right) \cdots f\left(x_{n}\right)
\end{aligned}
$$

اكر طرفين را بر "ع نتــيم كنيم و 0 ب ع ، آن كاه.

$$
\begin{equation*}
f_{x_{11}, \ldots, x_{1 n},}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=n!f\left(x_{1}\right) \cdots f\left(x_{n}\right) \quad x_{1}<x_{2}<\cdots<x_{n} \tag{1-9}
\end{equation*}
$$

 بـرالى آن كـه بـردار > با اين كه معادله (1-1) نتيجه مى شود.

 ．d

 احتمال مطلوب برابر است با $f_{x_{11}, X_{12}, X_{(3)}}\left(x_{1}, x_{2}, x_{3}\right)=3!\quad 0<x_{1}<x_{2}<x_{3}<1$

در نتيجه

$$
\begin{aligned}
P\left\{X_{(1)}>X_{(i-1)}+d, i=2,3\right\} & =\iiint_{\substack{r_{1,2}, x_{1}+d \\
1,2, t}} f_{x_{1} 1,, x_{12}, x_{12}, 1}\left(x_{1}, x_{2}, x_{3}\right) d x_{1} d x_{2} d x_{3} \\
& =3!\int_{0}^{1-2 d} \int_{x_{1}+d}^{1-d} \int_{x_{2}+d}^{1} d x_{3} d x_{2} d x_{1} \\
& =6 \int_{0}^{1-2 d} \int_{x_{1}+d}^{1-d}\left(1-d-x_{2}\right) d x_{2} d x_{1} \\
& =6 \int_{0}^{1-2 d} \int_{0}^{1-2 d-x_{1}} y_{2} d y_{2} d x_{1}
\end{aligned}
$$

 $=6 \int_{0}^{1-2 d} \frac{\left(1-2 d-x_{1}\right)^{2}}{2} d x_{1}$
$=6 \int_{0}^{1-2 d} \frac{y_{1}^{2}}{2} d y_{1}$
$=(1-2 d)^{3}$

 است با（تمرين）
$[1-(n-1) d]^{n} \quad d \leq \frac{1}{n-1}$

 حال جگالى احتمال اين بيشاملها برابر استبا $[F(x)]^{j^{-1}}[1-F(x)]^{n-1} f(x)$

بنابراين جون تعداد
$\binom{n}{j-1, n-j, 1}=\frac{n!}{(n-j)!(j-1)!}$
افراز متفاوتn متغير تصادنى X X زير خواهد بود.
$f_{x_{1}, 1}(x)=\frac{n!}{(n-j)!(j-1)!}[F(x)]^{i-1}[1-F(x)]^{n-1} f(x)$

 به حجم ${ }^{\text {از }}$ ر توزيع يكنواخت苼

$$
f_{X_{21}(x)}(x)=\frac{3!}{1!1!} x(1-x) \quad 0<x<1
$$

بنابر اين

$$
\begin{aligned}
P_{\left\{\frac{1}{0}\right.}^{\left.\ll X_{(2)}<\frac{3}{4}\right\}} & =6 \int_{1 / 4}^{\sqrt[3]{4}} x(1-x) d x \\
& =\left.6\left\{\frac{x^{2}}{2}-\frac{x^{3}}{3}\right\}\right|_{x=1 / 4} ^{x=3 / 4}=\frac{11}{16}
\end{aligned}
$$

نتخستين درم احتمالل

$$
F_{\left.X_{(}\right)}(y)=\frac{n!}{(n-j)!(j-1)!} \int_{-\infty}^{y}[F(x)]^{-1}[1-F(x)]^{n-i} f(x) d x
$$

با وجود اين (y)

 المـت، نتيجه مى شورد [n, p=F(y)]

$$
\begin{align*}
& =\sum_{k=1}^{n}\binom{n}{k}[F(y)]^{k}[1-F(y)]^{n-k}
\end{align*}
$$

 [$[F(x)=x, 0<x<1$

$$
\sum_{k=j}^{n}\binom{n}{k} y^{k}(1-y)^{n-k}=\frac{n!}{(n-j)!(j-1)!} \int_{0}^{y} x^{i-1}(1-x)^{n-j} d x \quad 0 \leq y \leq 1 \quad \text { (0-9) }
$$

ترتيبى i عبارت امست ان

$$
\begin{aligned}
f_{X_{(i)}, X_{(j)}}\left(x_{i}, x_{i}\right)= & \frac{n!}{(i-1)!(j-i-1)!(n-j)!} \\
& \times\left[F\left(x_{i}\right)\right]^{i-1}\left[F\left(x_{j}\right)-F\left(x_{i}\right)\right]^{j-i-1}\left[1-F\left(x_{i}\right)\right]^{n-j} f\left(x_{i}\right) f\left(x_{j}\right)
\end{aligned}
$$

. $x_{i}<x_{j}$ در صورتى

$$
\begin{aligned}
P\{R \leq a\} & =P\left\{X_{(n)}-X_{(1)} \leq a\right\} \\
& =\int_{x_{n}-x_{1} \leq a} \int_{x_{(11}, x_{(n)}}\left(x_{1}, x_{n}\right) d x_{1} d x_{n} \\
& =\int_{-\infty}^{\infty} \int_{x_{1}}^{x_{1}+a} \frac{n!}{(n-2)!}\left[F\left(x_{n}\right)-F\left(x_{1}\right)\right]^{n-2} f\left(x_{1}\right) f\left(x_{n}\right) d x_{n} d x_{1}
\end{aligned}
$$

$$
\begin{aligned}
\int_{x_{1}}^{x_{1}+a}\left[F\left(x_{n}\right)-F\left(x_{1}\right)\right]^{n-2} f\left(x_{n}\right) d x_{n} & =\int_{0}^{F\left(x_{1}+a\right)-F\left(x_{1}\right)} y^{n-2} d y \\
& =\frac{1}{n-1}\left[F\left(x_{1}+a\right)-F\left(x_{1}\right)\right]^{n-1}
\end{aligned}
$$

$$
\begin{equation*}
P\{R \leq a\}=n \int_{-\infty}^{\infty}\left[F\left(x_{1}+a\right)-F\left(x_{1}\right)\right]^{n-1} f\left(x_{1}\right) d x_{1} \tag{V-9}
\end{equation*}
$$

هعادلّ (V-Y) را مى توان مستقيمأ در هند سحالت خاصى به دسيت آورد . بكي از اين سحالتها وتتى الهـت كه X ها دأراى توزيع يكتواخت در ناصله (0, 1 (المتت.

$$
\begin{aligned}
P\{R<a\} & =n \int_{0}^{1}\left[F\left(x_{1}+a\right)-F\left(x_{1}\right)\right]^{n-1} f\left(x_{1}\right) d x_{1} \\
& =n \int_{0}^{1-a} a^{n-1} d x_{1}+n \int_{1-a}^{1}\left(1-x_{1}\right)^{n-1} d x_{1} \\
& =n(1-a) a^{n-1}+a^{n}
\end{aligned}
$$

اكر از طرنين مستت بكيريـم تابع بـكالى دامنه به دهتت مى آيد :

$$
f_{R}(a)=\left\{\begin{array}{lc}
n(n-1) a^{n-2}(1-a) & 0 \leq a \leq 1 \\
0 & \text { در غير اين حورت }
\end{array}\right.
$$

V V توزيع الهمال توام توابعى از متليرهاى تصلخلي

فرض كنيد,

ا- از معادلات 1

$$
\text { . } \left.x_{2}=h_{2}\left(y_{1}, y_{2}\right) ، x_{1}=h_{1}\left(y_{1}, y_{2}\right): y_{2}, y_{1}\right) \text { راماسبه كر حسر } x_{2}, x_{1}
$$

Y - توابع
دترمينان Y Y \times زير در تمام نقاط
$J\left(x_{2}, x_{2}\right)=\left|\begin{array}{ll}\frac{\partial g_{1}}{\partial x_{1}} & \frac{\partial g_{1}}{\partial x_{2}} \\ \frac{\partial g_{2}}{\partial x_{1}} & \frac{\partial g_{2}}{\partial x_{2}}\end{array}\right|=\frac{\partial g_{1}}{\partial x_{1}} \frac{\partial g_{2}}{\partial x_{2}}-\frac{\partial g_{1}}{\partial x_{2}} \frac{\partial g_{2}}{\partial x_{1}} \neq 0$
با اين دو شر طمى توان نتــان داد كه متغير هالى تصادفى Y Y و بيوسته داراى جگكالى توأم زير

$$
\begin{equation*}
f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)=f_{x_{1}, x_{2}}\left(x_{1}, x_{2}\right)\left|J\left(x_{1}, x_{2}\right)\right|^{-1} \tag{1-v}
\end{equation*}
$$

$$
\text { . } x_{2}=h_{2}\left(y_{1}, y_{2}\right) ، x_{1}=h_{1}\left(y_{1}, y_{2}\right) \text { كهر آن }
$$

يكي روس اثبات معادلُّ (1-v) به ترار زير است:

 بيّر نته است كه در اين جا الز آن هـر مثال V الهـ. فرض كتيد

$$
\begin{aligned}
& \text { فرض كنبد توابع g g g } g_{1} \text { در شُرايط زير صدق مى كنتد: }
\end{aligned}
$$

YGY

قل : غرض كنيد

$$
J\left(x_{1}, x_{2}\right)=\left|\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right|=-2
$$

$$
f_{\gamma_{1}, \gamma_{2}}\left(y_{1}, y_{2}\right)=\frac{1}{2} f_{x_{1}, x_{2}}\left(\frac{y_{1}+y_{2}}{2}, \frac{y_{1}-y_{2}}{2}\right)
$$

مشلاً اكر X X X X X X

$$
f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)=\left\{\begin{array}{cc}
\frac{1}{2} & 0 \leq y_{1}+y_{2} \leq 2,0 \leq y_{1}-y_{2} \leq 2 \\
0 & \text { غر غر أين صر } \mathrm{H}
\end{array}\right.
$$

يا اگر X X X X X X

$$
\begin{aligned}
& f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right) \\
& =\left\{\begin{array}{lc}
\frac{\lambda_{1} \lambda_{2}}{2} \exp \left\{-\lambda_{1}\left(\frac{y_{1}+y_{2}}{2}\right)-\lambda_{2}\left(\frac{y_{1}-y_{2}}{2}\right)\right\} & y_{1}+y_{2} \geq 0, y_{1}-y_{2} \\
0 &
\end{array}\right.
\end{aligned}
$$

بالاخحره اگر X X X X

$$
\begin{aligned}
f_{Y_{1}, Y_{2}}\left(y_{t}, y_{2}\right) & =\frac{1}{4 \pi} e^{-\left[\left(y_{1}+y_{2}\right) / 8+\left(y_{1}-y_{2}\right)^{2} / 8\right]} \\
& =\frac{1}{4 \pi} e^{-\left(y_{1}^{2}+y_{2}^{2}\right) / 4} \\
& =\frac{1}{\sqrt{4 \pi}} e^{-y_{i}^{2} / 4} \frac{1}{\sqrt{4 \pi}} e^{-y_{2}^{2} / 4}
\end{aligned}
$$

يعنى در اين سالت X X X X X اتكر F تابع توزيع نرمال باشـل .

(X, Y) = R, θ, نتطه تصـدونى

$$
\begin{aligned}
& \text { با فرض } \theta=g_{2}(x, y)=\tan ^{-1} y / x \quad, \quad r=g_{1}(x, y)=\sqrt{x^{2}+y^{2}} \text { ديذه مى شود كه } \\
& \frac{\partial g_{1}}{\partial x}=\frac{x}{\sqrt{x^{2}+y^{2}}} \quad \frac{\partial g_{1}}{\partial y}=\frac{y}{\sqrt{x^{2}+y^{2}}} \\
& \frac{\partial g_{2}}{\partial x}=\frac{1}{1+(y / x)^{2}}\left(\frac{-y}{x^{2}}\right)=\frac{-y}{x^{2}+y^{2}} \quad \frac{\partial g_{2}}{\partial y}=\frac{1}{x\left[1+(y / x)^{2}\right]}=\frac{x}{x^{2}+y^{2}}
\end{aligned}
$$

$$
J(x, y)=\frac{x^{2}}{\left(x^{2}+y^{2}\right)^{3 / 2}}+\frac{y^{2}}{\left(x^{2}+y^{2}\right)^{3 / 2}}=\frac{1}{\sqrt{x^{2}+y^{2}}}=\frac{1}{r}
$$

جون تابع جحًالى توام X و X برابر است با

$$
f(x, y)=\frac{1}{2 \pi} e^{-\left(x^{2}+y^{2}\right) / 2}
$$

تابع جگًالى توام R و θ بهصورت زير خواهد بود

$$
f(r, \theta)=\frac{1}{2 \pi} r e^{-r^{2} / 2} \quad 0<\theta<2 \pi \quad 0<r<\infty
$$

$$
f(r)=r e^{-r / 2} \quad 0<r<\infty
$$

بس وتتى به سمت هدفى در يك صـفـحه شـليك مى شـود اكر نـاصله افتقى و قائم نقطه برخورد
 ريلى نوق است.

据 $\theta=g_{2}(x, y)=\tan ^{-1} y / x$

$$
J=\left|\begin{array}{cc}
2 x & 2 y \\
\frac{-y}{x^{2}+y^{2}} & \frac{x}{x^{2}+y^{2}}
\end{array}\right|=2
$$

مى بينيم كه

$$
f_{R^{2}, \theta(d, \theta)}=\frac{1}{2} e^{-d / 2} \frac{1}{2 \pi} \quad 0<d<\infty, 0<\theta<2 \pi
$$

 n> است . ولى

$$
\begin{aligned}
P\left\{-2 \log U_{1}<x\right\} & =P\left\{\log U_{1}>-\frac{x}{2}\right\} \\
& =P\left\{U_{1}>e^{-x / 2}\right\} \\
& =1-e^{-x / 2}
\end{aligned}
$$

جون $2 \pi \mathrm{U}_{2}$ در فاصله (0, 2π داراى توزيع يكنواخت است مى توانيم آنن را براى توليد Θ به كار بريم • يعنى اكر بنويسيم

$$
\begin{aligned}
R^{2} & =-2 \log U_{1} \\
\Theta & =2 \pi U_{2}
\end{aligned}
$$

 ، $X_{2}=R \sin \Theta, X_{1}=R \cos \Theta$

$$
\begin{aligned}
& X_{1}=\sqrt{-2 \log U_{1}} \cos \left(2 \pi U_{2}\right) \\
& X_{2}=\sqrt{-2 \log U_{1}} \sin \left(2 \pi U_{2}\right)
\end{aligned}
$$

كه متغيرهاى مستقل نرمال استاندارد هستند .
مثال Y هـ. . $V=\frac{X}{X+Y}, U=X+Y$ مطلوب است جگالى توام حل : حگاللى توام Y X X بهصورت زير داده مى شود

$$
f_{X, Y}(x, y)=\frac{\lambda e^{-\lambda x}(\lambda x)^{\alpha-1}}{\Gamma(\alpha)} \frac{\lambda e^{-\lambda y}(\lambda y)^{\beta-1}}{\Gamma(\beta)}
$$

$$
=\frac{\lambda^{\alpha+\beta}}{\Gamma(\alpha) \Gamma(\beta)} e^{-\lambda(x+y)} x^{\alpha-1} y^{\beta-1}
$$

حال با فرض

$$
\frac{\partial g_{1}}{\partial x}=\frac{\partial g_{1}}{\partial y}=1 \quad \frac{\partial g_{2}}{\partial x}=\frac{y}{(x+y)^{2}} \quad \frac{\partial g_{2}}{\partial y}=-\frac{x}{(x+y)^{2}}
$$

$$
J(x, y)=\left|\begin{array}{cc}
1 & 1 \\
\frac{y}{(x+y)^{2}} & -\frac{x}{(x+y)^{2}}
\end{array}\right|=-\frac{1}{x+y}
$$

 هستند ديده مى شود كه
$f_{U, V}(u, v)=f_{X, Y}[u v, u(1-v)] u$

$$
=\frac{\lambda e^{-\lambda u}(\lambda u)^{\alpha+\beta-1}}{\Gamma(\alpha+\beta)} \frac{v^{\alpha-1}(1-v)^{\beta-1} \Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)}
$$

 ضريب چچگالىى به قسمى است كه در شر ط نير صدتى مى كند $B(\alpha, \beta) \equiv \int_{0}^{1} v^{\alpha-1}(1-v)^{\beta-1} d v$

$$
=\frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha+\beta)}
$$

نتيجه فوق كامـلاً جالب توجه اسـت . زيرا نرض كنيد m n n آزمايش بايد انجام شود كي
هريك از زمانى با توزيع نمايى و پارامتر خ بيروى مى كند و نرض كنبد دو نفر بايد اين آزمايشها را
 اكر XY X X Yان كل صرن شده به وسيله نفراول و دوم باشد آن كاه (از نتيجه نوت يا ازمثال
 نسبتى از اين كاركه به وسيله نفراول انتجام مى شود داراى توزيع بتا با بارامترهاى (n, m) الست . وتتى تابع هچغالمى توام n متغير تصادنى X چحگالى توأم متغيرهاى
$Y_{1}=g_{1}\left(X_{1}, \ldots, X_{n}\right) \quad Y_{2}=g_{2}\left(X_{1}, \ldots, X_{n}\right), \ldots$
$Y_{n}=g_{n}\left(X_{1}, \ldots, X_{n}\right)$
 تمام نقاط
$\left.J\left(x_{1}, \ldots, x_{n}\right)=\left\lvert\, \begin{array}{lll}\frac{\partial g_{1}}{\partial x_{1}} & \frac{\partial g_{1}}{\partial x_{2}} & \cdots \\ \frac{\partial g_{1}}{\partial x_{n}} \\ \frac{\partial g_{2}}{\partial x_{1}} & \frac{\partial g_{2}}{\partial x_{2}} & \cdots \\ \frac{\partial g_{2}}{\partial x_{n}} \\ \frac{\partial g_{n}}{\partial x_{1}} & \frac{\partial g_{n}}{\partial x_{2}} & \ldots\end{array}\right.\right]$
$y_{1}=g_{1}\left(x_{1}, \ldots, x_{n}\right), y_{2}=g_{2}\left(x_{1}, \ldots, x_{n}\right), \ldots, y_{n}=g_{n}\left(x_{1}, \ldots, x_{n}\right)$

دأراى جواب منحصر به فرد زير باثمد
$x_{1}=h_{1}\left(y_{1}, \ldots, y_{n}\right), \ldots, x_{n}=h_{n}\left(y_{1}, \ldots, y_{n}\right)$.

با اين فرضها تابع چگگالى متغيرهاى تصادفى Yi عبارتثد از
$f_{Y_{1}, \ldots, Y_{n}}\left(y_{1}, \ldots, y_{n}\right)=f_{X_{1}, \ldots, x_{n}}\left(x_{1}, \ldots, x_{n}\right)\left|J\left(x_{1}, \ldots, x_{n}\right)\right|^{-1}$

$$
i=1,2, \ldots, n<x_{i}=h_{i}\left(y_{1}, \ldots, y_{n}\right) \text { كه در آن }
$$

مثال Y ت • فرض كنيد X X X X X X X X X $Y_{1}=X_{1}+X_{2}+X_{3}, \quad Y_{2}=X_{1}-X_{2}, \quad Y_{3}=X_{1}-X_{3}$,
 قل : زاكوبى تبديل فوق برابر امـت با
$J=\left|\begin{array}{rrr}1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & -1\end{array}\right|=3$
حال با تو جه به تبديلات فوت داريم
$X_{1}=\frac{Y_{1}+Y_{2}+Y_{3}}{3} \quad X_{2}=\frac{Y_{1}-2 Y_{2}+Y_{3}}{3} \quad X_{3}=\frac{Y_{1}+Y_{2}-2 Y_{3}}{3}$
و از مسادله (Y-V) معلوم مي شود كه

$$
f_{Y_{1}, r_{2}, Y_{3}}\left(y_{1}, y_{2}, y_{3}\right)
$$

$$
=\frac{1}{3} f_{x_{1}, x_{2}, x_{3}}\left(\frac{y_{1}+y_{2}+y_{3}}{3}, \frac{y_{1}-2 y_{2}+y_{3}}{3}, \frac{y_{1}+y_{2}-2 y_{3}}{3}\right)
$$

بنابراين ، جون

$$
f_{x_{1}, x_{2}, x_{3}}\left(x_{1}, x_{2}, x_{3}\right)=\frac{1}{(2 \pi)^{3 / 2}} e^{-\sum_{1-1}^{3} x_{1}^{2} / 2}
$$

$$
f_{Y_{1}, Y_{2}, Y_{3}}\left(y_{1}, y_{2}, y_{3}\right)=\frac{1}{3(2 \pi)^{3 / 2}} e^{-O\left(y_{1}, y_{2}, y_{3}\right) / 2}
$$

كه در آن

$$
\begin{aligned}
Q\left(y_{1}, y_{2}, y_{3}\right) & =\left(\frac{y_{1}+y_{2}+y_{3}}{3}\right)^{2}+\left(\frac{y_{1}-2 y_{2}+y_{3}}{3}\right)^{2}+\left(\frac{y_{1}+y_{2}-2 y_{3}}{3}\right)^{2} \\
& =\frac{y_{1}^{2}}{3}+\frac{2}{3} y_{2}^{2}+\frac{2}{3} y_{3}^{2} \cdot-\frac{2}{3} y_{2} y_{3} .
\end{aligned}
$$

تمريثلت لشرى

- 1

Y - ترض كنيد كـه تعلاد بـينـامدماى رخ داده در يكى ناصله زمـانى معـينى يك مـتغـير تصـادفى

 . يواسن با يارامترهایى r- روشیى را يـيـنهـاد كنيد كه با استـفاده از مسأله سوزن بـوفن مقدار ח را برآورد كنيه . تعجب نكنيد كه روز گارى اين روش معمولى ترين روش مدحاسبه ח بوده اسـت . F - F مسأله سوزن بوفن را در حالت L > حل كنيد . . $\cos \theta=\frac{D}{L}$ كهواب : $\frac{2 \mathrm{~L}}{\pi \mathrm{D}}(1-\sin \theta)+\frac{2 \theta}{\pi}$ ه- اكر X Y X X (الفش Z=X/

 همجنين يك روش استدلال ديگُى را الرائه دهيذكه احتياج به هيحع مداسبه إى نداشته باشد .
 $\frac{1}{2 \lambda} \chi_{2 n}^{2}$
(ب) ثنابت كنيد اكر n يكى عدد صشيـح منبت و
آزادى باندل آن كاه
A - فرض كنيد Y X X
فرض كنيد W = Min (X, Y . .
(الف) تابع توزيع W رابر حسبب توابع X Y ممعن كنيد .

$$
\text { (ب) ثابت كنبد(t }{ }^{\text {ت تابع نرخ W } W \text { بهورت زير امت }}
$$

$\lambda_{W}(t)=\lambda_{X}(t)+\lambda_{Y}(t)$
9- فرض كنيد X X ، 9 ، . . X X

 نورافكن مى تواند كار كند جـكّونه الست ؟
 ترار مى دهيم

$$
I=P\left\{X_{1}<X_{2}>X_{3}<X_{4}>X_{5}\right\}
$$

راهنمايى : ابتدا آن را براى n=2 ثابت كنيد سبس از استقرا الستفاده كيد

كرد الكر مشتخص كنيّم نتيجهُ كدام يكى از n آزمايشن مونقيت بوده است ؟

$$
\begin{aligned}
& \text {. بنويسيد و از تغيير متغير } \\
& \text {. } \\
& \text { Y Y - تضيه r-Y را ثابت كنيد . }
\end{aligned}
$$

ا 10 - اكر X X X X

 انتخاب شُده در انتخاب نمونه أي به حجمب m از n مهره سفيد و n مهره سياه اسـت .

شـرطى X با فرض X X = X
 مطلوباست مداسبه

$$
\begin{equation*}
P\left\{X_{1}>X_{2} \mid X_{1}>X_{3}\right\} ; \tag{الفـ}
\end{equation*}
$$

$P\left\{X_{1}>X_{2} \mid X_{1}<X_{3}\right\} ;$
$P\left\{X_{1}>X_{2} \mid X_{2}>X_{3}\right\} ;$
$P\left\{X_{1}>X_{2} \mid X_{2}<X_{3}\right\}$.
^1^ - فرض كنيد U متغـيرى با توزيع يكنواخت بر (1 ، +) باشُد . مطلوب است توزيع شرطى U با فرض

$$
\begin{equation*}
U>a \tag{الفـ}
\end{equation*}
$$

$U<a ;$

$$
\begin{equation*}
\text { كه در آن < } 1 \tag{ب}
\end{equation*}
$$

14 - فرض كنيد W ، مقدار رطوبت موا در يكى روز معين يكى متغير تصـادنى گاما با بارامترهاى

باشد . يعنى جگالي آن به صورت زير باشد
$f(w)=\beta e^{-\beta w}(\beta w)^{t-1} / \Gamma(t), w>0$.
همـجنين نرض كنيـد اكـر W=w ، تعداد حـوادث در طول روز (N) دارایى توزيع بوامسن
 لارامترهاى (t+n,

$$
\text { يارامنرهاى (t+n, } \left.\beta+\sum_{i=1}^{n} x_{j}\right) \text { امت . }
$$

 عددى وجود داشـته باشثد كه براى مى نيمـم سـطر و مـاكزيمم ستون متناظرش باثــد . مئلا" ، در آرايأ زير

$$
\begin{array}{rrr}
1 & 3 & 2 \\
0 & -2 & 6 \\
.5 & 12 & 3
\end{array}
$$

عـدد 1 در سـطر اول و سـتـرن اول يكى نتـطه زينى است . وجـود يكـ نقطه زينـى در نظريه

 اعـداد

 ماكزيمـم ستون k امست) . بنابراين منطقى بهنظر مى رسد كه اين دو استراتؤى را بهينه بناميم و نــان دهـيم كه مقدار بازى بر ايى بازيكن A برابر

 به صورت زير باشد

$$
\begin{aligned}
& f(x, y)=\frac{1}{2 \pi \sigma_{x} \sigma_{y} \sqrt{1-\rho^{2}}} \\
& \quad \times \exp \left\{-\frac{1}{2\left(1-\rho^{2}\right)}\left[\left(\frac{x-\mu_{x}}{\sigma_{x}}\right)^{2}+\left(\frac{y-\mu_{y}}{\sigma_{y}}\right)^{2}-2 \rho \frac{\left(x-\mu_{x}\right)\left(y-\mu_{y}\right)}{\sigma_{x} \sigma_{y}}\right]\right\}
\end{aligned}
$$

(الف) نشان دهيد كه جتكالى شُرطى Xبا فرض Y =
$\mu_{x}+\rho \frac{\sigma_{x}}{\sigma_{y}}\left(y-\mu_{y}\right) \quad, \quad \sigma_{x}^{2}\left(1-\rho^{2}\right)$

$$
\text { (ب) نشـان دهيد اككر } 0 \text { ، م متغير هاكى Y X X مستقل مى شهوند . }
$$

 (1 - $[1-F(x)]^{n}$

رامنمايم : فرض كنيد

Y Y

 بتا با بارامترهاى (
位 YA

بر (1 ، ، • باشد . ثابت كنيد بهازایى 1

$$
P\left\{X_{(k)}-X_{(k-1)}>t\right\}=(1-t)^{n}
$$

$$
X_{(n+1)} \equiv 1 ، X_{(())}=0 \text { در در آن }
$$

 مطلوب است محاسبه

$$
\begin{equation*}
P\left\{X>X_{(n n}\right\} \tag{الفـ}
\end{equation*}
$$

$P\left\{X>X_{(1)}\right\}$
$P\left\{X_{(i)}<X<X_{(0)}\right\}, 1 \leq i<j \leq n$.

 بهصورت زير است
$F_{M}(m)=n \int_{-\infty}^{m}[F(2 m-x)-F(x)]^{n-1} f(x) d x$

 محاسبه كنيد

1- دو تأس رامي اندازيم . تابع جرم احتمال X X Y Yا در حالات زير به دست آوريد .

.
 امتحـان مى شوند تا خرابها مشـتخص شوند
 . خراب باشد . تابع جرم احتمال توأم
 كنبد X X نعداد شكسنها قبل از اولين موفقيت و و X باشُد . تابع جرم احتمال Y- تابع جگالى احتمال X X Y به صور وت زير داده مى شود

$$
f(x, y)=c\left(y^{2}-x^{2}\right) e^{-y} \quad-y \leq x \leq y, 0<y<\infty
$$

$$
f(x, y)=\frac{6}{7}\left(x^{2}+\frac{x y}{2}\right) \quad 0<x<1,0<y<2
$$

(الف) ثابت كنيد اين بك تابع تچگالى توأم است .
(ب) تابع جگالى X X را محاسبه كنيد (ب) مقدار P . را 1 يمدا كنيد $P\left(\left.Y>\frac{1}{2} \right\rvert\, X<\frac{1}{2}\right)$ (ت)
Y- نابع چگالى احتمال توأم X و Y به صورت ز

$$
f(x, y)=e^{-(x+y)} \quad 0 \leq x<\infty, 0 \leq y<\infty
$$

 است به شرط آن كه • ا زن در آن ساعت وارد دارو خـانه شـده باششند ، جه فرضهـهایى را بايد

 برسد جقدر است؟

 جواب مساله جگونه خواهد بود $؟$

(ب) آيا X Y و مستقل هستـد ؟

اين كه X2 بين X و و X ترار كيرد ؟
r

 مطلوبا است احتمال اين كه ناصله بين دو نقطه ، بز

 10-جگالى توام X X
$f(x, y)= \begin{cases}x e^{-|x+y|} & x>0, y>0 \\ 0 & \text { در } \quad \text { صر }\end{cases}$

19- فرض كنيد "• 19 نفر به يكى ايستكاه در زمانهايى كه متغغر هاى تصادفى مستتقل اندمى رسند
 . ساعت اول می رسند . مقدار تقريبى P P [

(ب) احتمال اين كه تمام ريشه هاى معادله Ax
 مطلوب است توزيع (الف) Z=X X هستند
 را بيدا كنيد . همحتنين احتمال
r -
 متغير هاى تصادفى مستقل با جڭالى هاى زير بانشند

$$
\begin{array}{ll}
f_{1}(x)=6 x(1-x) & 0 \leq x \leq 1 \\
f_{k}(x)=2 x & 0 \leq x \leq 1
\end{array}
$$

 بتصادف از بين زير مجموعه (الف) تابع جرم توأم X X را بيدا كنيد .

(ب) آيا X Y Y مستقل هستند چحر ؟

 و
ץ - تابع جزم احتمال توأم X Y Y به صورت زير داده مى شود

$$
\begin{array}{ll}
p(1,1)=\frac{1}{8} & p(1,2)=\frac{1}{4} \\
p(2,1)=\frac{1}{6} & p(2,2)=\frac{1}{2}
\end{array}
$$

$$
\text { (ب) مقادير P(} \left.\frac{X}{Y}>1\right) ، P(X+Y>Y) ، P(X Y \leq Y \text {, محاسبه كنيد . }
$$

Y Y- تابع جگالى توام X و Y به صورت زير داده شُـده امـت .

$$
f(x, y)=x e^{-x(y+1)} \quad x>0, y>0
$$

$$
f(x, y)=c\left(x^{2}-y^{2}\right) e^{-x} \quad 0 \leq x<\infty,-x \leq y \leq x
$$

توزيع شرطى Y را با فرض X=x يبدا كنيد .

و

 - $\mathrm{d} \leq \frac{\mathrm{L}}{2}$

$$
\begin{aligned}
& \text { (ب) تابع جگانلى Z } \\
& \text { Y Y جگالى توا }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (ب) آيا X Y X مستقل هستند ؟ }
\end{aligned}
$$

 در فاصله (

$$
\begin{align*}
& P\left\{\min \left(X_{1}, \ldots, X_{s}\right) \leq a\right\} \tag{الفـ}\\
& P\left\{\max \left(X_{1}, \ldots, X_{s}\right) \leq a\right\} \tag{ب}
\end{align*}
$$

$$
f(x)=2 x, 0<x<1
$$

Y Y Y , X X X Y و

$$
f(x, y)=\frac{1}{\pi} \quad x^{2}+y^{2} \leq 1
$$

 rr- اكّر X X X Y . $\Theta=\tan ^{-1} \frac{Y}{X}, R=\sqrt{X^{2}+Y^{2}}$

 به صورتزير

$$
\begin{aligned}
& X=\sqrt{2 Z} \cos U \\
& Y=\sqrt{2 Z} \sin U
\end{aligned}
$$

هتغيرهاى مستفل نر مال استاندارد هـستتد .

$$
f(x, y)=\frac{1}{x^{2} y^{2}} \quad x \geq 1, y \geq 1
$$

جگالى توأم

$$
\begin{align*}
& U=X+Y, V=X / Y \tag{الف}\\
& U=X, V=X / Y \\
& U=X+Y, V=X /(X+Y)
\end{align*}
$$

(ب)
rv ك كنيد

$$
Y_{2}=e^{X_{1}}, Y_{1}=X_{1}+X_{2}{ }^{l}
$$

مطلوبب است حگگالى توأم W = Y + Z , V = X + Z ، U = X + .
.
، $\mu_{r}=Y A, Y$ - M - F

 مطلوبي است محاسبه ،
(الف) نسبت زنان حامله الى كه سن آنها بيشتر از • ب بـال است . (ب) نسبت بدران با سن بيش از هr كه زنانى مسن تر از • ب بـال دارند .

ميانكين

1- مقدمه و تعاريف
 اميد رياضى X X X
و به صور ت زير تعريف مى كنيم •
$E[X]=\sum_{(. p 11) \cdots 0} x p(x)$
به عبارتى امـيد رياضى X متوسط موزون مقـادير ممكنى است كه X می تواند اختـار كند، وزن

$$
p(0)=\frac{1}{2}=p(1)
$$

$E[X]=0\left(\frac{1}{2}\right)+1\left(\frac{1}{2}\right)=\frac{1}{2}$
كه همان ميانگّبن معمولى دو مقدار ممكن 1, أست كه X مى تواند بگير د. از طرف ديگر ، اكگر

$$
p(0)=\frac{1}{3} \quad p(1)=\frac{3}{3}
$$

در اين صورت

$$
E[X]=0\left(\frac{1}{3}\right)+1\left(\frac{2}{3}\right)=\frac{2}{3}
$$

ميانگّين موزون دو مقدأر مهكن 0 , 1 مى باشـلد كه در آن وزن داده شـده به ا دو برابر هقدار وزنهى

 مى بريـم • اينكـ با تعهيـر تـراوانى نتيـجه مى شــو كـ كه أكـر اين بازي سـاده را متـو الياً انـجـام دهيم

 امـت با

$$
\sum_{i=1}^{n} x_{i} p\left(x_{1}\right)=E[X]
$$

مل :

$$
E[X]=1\left(\frac{1}{6}\right)+2\left(\frac{1}{6}\right)+3\left(\frac{1}{6}\right)+4\left(\frac{1}{6}\right)+5\left(\frac{1}{6}\right)+6\left(\frac{1}{6}\right)=\frac{7}{2}
$$

p يكى هتغير تصادفى برنولى با بار امتر X إمست، E [X] , 1 حسساب كنيد .
مل : حونوp p p(

$$
E[X]=O(1-p)+1(p)=p
$$

 ثابت مى كنبم . مثال ا بـ. ميانگين متغير تصادفى دو جملهاى : وتتى X يك متغير تصادفى دو جمله ایى

$$
\begin{aligned}
E[X] & =\sum_{i=0}^{n} i p(i) \\
& =\sum_{i=0}^{n} i\binom{n}{i} p^{i}(1-p)^{n-i} \\
& =\sum_{i=1}^{n} \frac{i n!}{(n-i)!!!} p^{i}(1-p)^{n-i} \\
& =n p \sum_{i=1}^{n} \frac{(n-1)!}{(n-i)!(i-1)!} p^{1-1}(1-p)^{n-i} \\
& =n p \sum_{k=0}^{n-1}\binom{n-1}{k} p^{k}(1-p)^{n-i-k} \\
& =n p[p+(1-p)]^{n-1} \\
& =n p
\end{aligned}
$$

كه در آن تــاوى دوم از آخر با نرض k i - i ت تيجه مى گردد.

 اكنون اين مطلب را ثابت مى كنيم.
 استت. E EX را محاسبه كنبد.

$$
\begin{aligned}
E[X] & =\sum_{i=0}^{\infty} i p(i) \\
& =\sum_{i=0}^{\infty} i e^{-\lambda} \frac{\lambda^{\prime}}{i!} \\
& =\sum_{i=1}^{\infty} i e^{-\lambda} \frac{\lambda^{i}}{i!} \\
& =\sum_{i=1}^{\infty} e^{-\lambda} \frac{\lambda^{i}}{(i-1)!} \\
& =\lambda e^{-\lambda} \sum_{i=1}^{\alpha} \frac{\lambda^{i-1}}{(i-1)!} \\
& =\lambda e^{-\lambda} e^{\lambda} \\
& =\lambda
\end{aligned}
$$

$$
\sum_{i=1}^{\infty} \frac{\lambda^{1-1}}{(i-1)!}=\sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!}=e^{\lambda}
$$

مثال ا ث ـ ميانگين متغير تصادفى هندسى • ميانگين يك متغير تصادنى هندسى با بارامتر . را حسشاب كنيد p حل : برأى متغير تصادفى هندسى داريـم

$$
P\{X=n\}=p(1-p)^{n-1} \quad n \geqslant 1
$$

بنابراين

$$
\begin{aligned}
E[X] & =\sum_{n=1}^{\infty} n p(1-p)^{n-1} \\
& =p \sum_{n=1}^{x} n q^{n-1}
\end{aligned}
$$

كه در آن

$$
\begin{aligned}
E[X] & =p \sum_{n=1}^{\infty} \frac{d}{d q}\left(q^{\prime \prime}\right) \\
& =p \frac{d}{d q}\left(\sum_{n=1}^{\infty} q^{n}\right) \\
& =p \frac{d}{d q}\left(\frac{q}{1-q}\right) \\
& =\frac{p}{(1-q)^{2}} \\
& =\frac{1}{p}
\end{aligned}
$$

 در اين صورت ميانگين تعداد آزماينـهاى لازم برابر مثال 1 ع ع به يكـ شركت كننده در يكى نمايش تغريحى دو سـؤال الرائه مى شـود ـ سؤأل

 بر د خود را ماكزيمـم كند بايد با كدام سؤال شـرو شع كند . حل :اكر نتست با سؤال يكى شروع كند در اين صورت
 خواهد برد. بنابر اين ميانگين برد او در اين حالت برابر است با $V_{1} P_{1}\left(1-P_{2}\right)+\left(V_{1}+V_{2}\right) P_{1} P_{2}$

از طرف ديگُ، اكگر ابتدا با سؤال r شُروع كند ميانگين بردش برابر است با
$V_{2} P_{2}\left(1-P_{1}\right)+\left(V_{1}+V_{2}\right) P_{1} P_{2}$
بنابراين، بهتر المـت كه نخـــت با سؤال ا شروعع كند اكر

$$
V_{1} P_{1}\left(1-P_{2}\right) \geq V_{2} P_{2}\left(1-P_{1}\right)
$$

يا بطور معادل اكر

$$
\frac{V_{1} P_{1}}{1-P_{1}} \geq \frac{V_{2} P_{2}}{1-P_{2}}
$$

 در اين صوررت نخـست با سؤال Y شروع می كند، زيرا

$$
400=\frac{(100)(.8)}{(.2)}>\frac{(200)(.6)}{(.4)}=300
$$

كرجه تـا كنون تنها مـيانگگين رأ برایى مـتغيرهاى تصـادنى گُتـه تعريفـ كـرديم، مى توان اميد رياضى يكى متـنير تصادفى ليوستـه را نيز تعريف نمود ـ أكر X يكـ متغير تصـادفى بيو سته با تابع جگالى احتدال f(x) باشـد، در اين صورت جـت جون

$$
f(x) d x \approx P_{\{ }\{x \leq X \leq x+d x\}
$$

مناسـب اسـت اميلد رياضى X , X به حورت زير تعريف كنيم
$E[X]=\int_{-x}^{x} x f(x) d x$
مثال 1 \& .ميـانگين متغير تصـادفى يكنواختـ. ميانگين بكى متغـير تصـادفى را كه داراى توزيع يكنواختت روى (a b b) مى باثـد حـساب كنيد .

$$
\begin{aligned}
E[X] & =\int_{a}^{b} \frac{x}{b-a} d x \\
& =\left(\frac{1}{b-a}\right)\left(\frac{b^{2}-a^{2}}{2}\right) \\
& =\frac{(b-a)(b+a)}{(b-a) 2} \\
& =\frac{b+a}{2}
\end{aligned}
$$

بنابراين

يعنى، ميانگين يك متغير تصادنى كه بطور يكنواخت روى فاصله ایى توزيع شـده باشـد برابر نتطه مياني ناصله است .

مثال أ ع. ميانگين متغير تصادفى نمایى . ميانگّين يكى متغير تصادفى داراى توزيع نمایى با بارامتر λ را به دست آوريد.

حل : جون تابع جگًالى به صورت زير است

$$
f(x)= \begin{cases}\lambda e^{+1} & x \geq 0 \\ 0 & x<0\end{cases}
$$

$$
\begin{aligned}
& E[X]=\int_{0}^{x} x \lambda e^{-\lambda x} d x \\
& \text { با انتظر الل گیيرى جزء به جزء } \\
& E[X]=-\left.x e^{x x}\right|_{11} ^{x}+\int_{0}^{x} e^{-\lambda x} d x \\
& =0-\left.\frac{e^{-\lambda}}{\lambda}\right|_{0} ^{x} \\
& =\frac{1}{\lambda}
\end{aligned}
$$

$$
\begin{aligned}
& \text { مى باثشد. E [X] را احساب كنيد. }
\end{aligned}
$$

$$
E[X]=\frac{1}{\sqrt{2 \pi} \sigma} \int_{-x}^{x} x e^{-(x-\mu)^{2} / 2 \sigma^{2}} d x
$$

x را به صـورت x

$$
E[X]=\frac{1}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{\infty}(x-\mu) e^{-(x-\mu)^{2} / 2 \sigma^{2}} d x+\mu \frac{1}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{\infty} e^{-(x-\mu)^{2} / 2 \sigma^{2}} d x
$$

با قرار دادن y y د

$$
E[X]=\frac{1}{\sqrt{2 \pi} \sigma} \int_{-x}^{\alpha} y e^{-y^{2} / 2 \sigma^{2}} d y+\mu \int_{-\alpha}^{x} f(x) d x
$$

بنابراين

$$
E[X]=\mu \int_{-x}^{x} f(x) d x=\mu
$$

تبصره : مـنهوم ميـانگين شــبـيه مـفهوم مركز ثقل توزيع يكـ جـرم در فيزيكـ مـى باشـل .
 تصور كنيم كه اوزانى با جرم داده شـدهاند، (شكل V-ا ارا ببيْنــد) در اين صـورت نقطه ای را كـه در آن مـيله در حـال تعـادل

$$
P(-1)=.10, \quad P(0)=.25, \quad P(11=.30 . \quad r(2)=.35
$$

1-V ئل 1-

تبصره : ميانگين يكى متغير تصادفى را در حالت گســته بر سسبب يكى مجموع و در حالت

بيو سته به حورت يك انتگرال تعريف كرديم . بنابراين ميانكين فقط وتتي تعريف شده است كه

 $\int_{-\infty}^{\infty} g(x) d x=\int_{x: g(x) \geq 0} g(x) d x-\int_{x: g(x)<0}[-g(x)] d x$

يعنى ، كه در آن

$$
g^{+}(x)=\left\{\begin{array}{ll}
g(x) & g(x) \geq 0 \\
0 & g(x)<0
\end{array} \quad g^{-}(x)= \begin{cases}0 & g(x) \geq 0 \\
-g(x) & g(x)<0\end{cases}\right.
$$

 (باشـد و ديگري مـقلدار مـعينى داثــنه باشــد در اين مـورت ه - می شـود بر حسسب اين كه كدام يكـ از انتظر الها مسـاوى بنابراين، در حاللت بيوسته
$E[X]=\int_{x=0} x f(x) d x-\int_{1-0}(-x) f(x) d x$
و بنابر اين E [X] به شُرط آن كـه هردو انتگرال م + نبـاثـند تعـريف مى كردد . مـتغيـر تصـادفى
 به حررت زير مى باشد .

$$
f(x)=\frac{1}{\pi\left(1+x^{2}\right)} \quad-\infty<x<\infty
$$

مى توان نشان داد كه
$\frac{1}{\pi} \int_{0}^{x} \frac{x}{1+x^{2}} d x=\frac{1}{\pi} \int_{-x}^{0} \frac{(-x)}{1+x^{2}} d x=\infty$

> و لذا E [X] براى متغير تصادفى كوشى تعريفـ نشُده است. بطور مشابه ، در حالت كـسـته

$$
E[X]=\sum_{x=0} x p(x)-\sum_{x=0}(-x) p(x)
$$

. به شر ط آن كه هر دو مجمبع + نباشند تعريفـ مى گردد.

Y - ميانكين تابعى الز يلك متغير تصادفى

 E [e e ${ }^{X}$ [
 جون (X (X يك متغغير تصـادنى اسبت بس بايد داراى تابع توزيع احتـمال بانسد كه با الستفاده از تـناخت توزيع X قابل مـحاسبه است. بس از مـحاسبه تونيع استفاده از تعريف ميانگين حسـاب كنيم .
 سالم باشد. . قل : تابع جرم احتمال X به صورت زير است $P\{X=0\}=\frac{1}{3} \quad P\{X=1\}=\frac{1}{2} \quad P\{X=2\}=\frac{1}{4}$

بنابراين با قرار دادن Y=XZ ، ، جرم احتمال Y به حورت زير نتيجه مى شود. $P\{Y=0\}=P\{X=0\}=\frac{1}{4}$
$P\{Y=1\}=P\{X=1\}=\frac{1}{2}$
$P\{Y=4\}=P\{X=2\}=\frac{1}{4}$

بنابراين

$$
E\left[X^{2}\right]=E[Y]=0\left(\frac{1}{4}\right)+1\left(\frac{1}{2}\right)+4\left(\frac{1}{4}\right)=\frac{3}{3}
$$

$$
\begin{aligned}
& \frac{3}{2}=E\left(X^{2}\right) \neq(E[X])^{2}=1
\end{aligned}
$$

حل : فرض كنـبد Y =
$1 \leq a \leq e$

$$
\begin{aligned}
F_{Y}(a) & =P\{Y \leq a\} \\
& =P\left\{e^{*} \leq a\right\} \\
& =P\{X \leq \log a\} \\
& =\log a
\end{aligned}
$$

 جڭ大الى

$$
f_{Y}(a)=\frac{1}{a} \quad 1 \leq a \leq e
$$

بنابراين

$$
\begin{aligned}
E\left[e^{x}\right]=E[Y] & =\int_{-x}^{x} a f_{Y}(a) d a \\
& =\int_{1}^{e} d a \\
& =e-1
\end{aligned}
$$

 آن نشان مى دهد.

حكم

بر'ى هر تابع حقيقى

$$
E[g(X)]=\sum_{x, p w 1,0} g(x) p(x)
$$

(ب) الگر X متغير تصادفى بيوسته با تابع جگالى احتمال f(x) باشد در اين صورت براى
g هر تابع حقيقى
$E[g(X)]=\int_{-x}^{x} g(x) f(x) d x$
 r ب بمطابقت دارد ـ حكم را برايى مثال Y ألف به كار مى بريم، داريم $E\left[X^{2}\right]=0^{2}(1)+1^{2}\left(\frac{1}{2}\right)+2^{2}\left(\frac{1}{3}\right)=\frac{2}{2}$

در حالى ك، با به كاربردن آن براى مثال Y ب نتيجه مى شود

$$
\begin{aligned}
E\left[e^{x}\right] & =\int_{0}^{1} e^{x} d x \quad f(x)=1,0<x<1 \\
& =e-1
\end{aligned}
$$

بنابراين نتايج قبلى را تائيد مى كند.

برایى هر متغير تصادنى

$E[Y]=\int_{0}^{\infty} P\{Y>y\} d y-\int_{0}^{\infty} P\{Y<-y\} d y$
 مى دهيم. با توجه با تساوى P\{Y>y\}=
$\int_{0}^{\infty} P\{Y>y\} d y=\int_{0}^{\infty} \int_{y}^{\infty} f_{\gamma}(x) d x d y$
با تعويض ترتيب انتگرال گيرى در معادله (Y - ا) داريم

$$
\begin{align*}
\int_{0}^{\infty} P\left\{Y^{\prime}>y\right\} d y & =\int_{0}^{\infty}\left(\int_{0}^{x} d y\right) f_{y}(x) d x \\
& =\int_{0}^{\infty} x f_{y}(x) d x \\
\int_{0}^{\infty} P\{Y<-y\} d y & =\int_{0}^{\infty} \int_{-\infty}^{-y} f_{y}(x) d x d y \\
& =\int_{-x}^{0}\left(\int_{0}^{-x} d y\right) f_{y}(x) d x \\
& =-\int_{--x}^{0} x f_{y}(x) d x
\end{align*}
$$

اينك از معادلات (Y-Y) و (Y-Y) نتيجه مى شود

$$
\int_{0}^{x} P\{Y>y\} d y-\int_{0}^{x} P\{Y<-y\} d y=\int_{0}^{x} x f_{Y}(x) d x+\int_{\ldots x}^{1} x f_{Y}(x) d x
$$

$$
=\int_{-x}^{x} x f_{y}(x) d x
$$

$$
=E[Y]
$$

در اكثـر اوتات اين لم كه در حد خـود تـابل توجه است، در متـون درسى براي متـغير تصـادنى نامنفى Y بيان مى شود.

$$
E[Y]=\int_{0}^{\infty} P\{Y>y\} d y \quad . \quad-\quad P\{Y \geq 0\}=1
$$

اكنون زمان آلن است كه حكم، ، r-1 (ب) را ثابت كنيم.
برهان حكم r-1 (ب) : براى هر تابع g بنا بر لم r-1 داريم

$$
E[g(X)]=\int_{0}^{\infty} P\{g(X)>y\} d y-\int_{0}^{\infty} P\{g(X)<-y\} d y
$$

$$
=\int_{0}^{x} \int_{v: x(x), x} f(x) d x d y-\int_{11}^{x} \int_{x q(x+\ldots)} f(x) d x d y
$$

$$
=\int_{x(i n)+1} \int_{10}^{8+11} d y f(x) d x-\int_{x, x(1) \cdot 0} \int_{11}^{-8(1)} d y f(x) d x
$$

$$
=\int_{x(x)<01} g(x) f(x) d x+\int_{x \times<1,1<1)} g(x) f(x) d x
$$

$$
=\int_{-x}^{x} g(x) f(x) d x
$$

و انبّات كامل ثى گُردد.
مثال Y بی : كالامى كه بطور فصلي فروخته بى شود، سود خالص h تومان بر أى هر وأحد

 ماكز يمـم شود .
 در اين صورت سود آن را كه با P (s) نشان تى دهيم به صورت نـير مححاسبه مى شود

$$
\begin{aligned}
P(s) & =b X-(s-X) \ell & & X \leq s \\
& =s b & & X>s
\end{aligned}
$$

$$
\begin{aligned}
E[P(s)] & =\sum_{i=1}^{s}[b i-(s-i) \ell] p(i)+\sum_{i=s+1}^{\infty} s b p(i) \\
& =(b+\ell) \sum_{i=0}^{s} i p(i)-s \ell \sum_{i=0}^{s} p(i)+s b\left[1-\sum_{i=0}^{s} p(i)\right] \\
& =(b+\ell) \sum_{i=0}^{s} i p(i)-(b+\ell) s \sum_{i=0}^{s} p(i)+s b \\
& =s b+(b+\ell) \sum_{i=0}^{s}(i-s) p(i)
\end{aligned}
$$

بنابراين ميانگين سود برابر است با

 در دىى آيد .
$E[P(s+1)]=b(s+1)+(b+\ell) \sum_{i=0}^{1+1}(i-s-1) p(i)$

$$
=b(s+1)+(b+\ell) \sum_{i=0}^{n}(i-s-1) p(i)
$$

بنابراين
$E[P(s+1)]-E[P(s)]=b-(b+\varrho) \sum_{i=0}^{s} p(i)$

از اين رو ذخيرهُ 1 + s كالا بهتر از ذخيرهُ s كالا خواهد بود در صورتى كه داشتـه باشيم

$$
\sum_{i=0}^{3} p(i)<\frac{b}{b+\ell}
$$

هون سمـت هـب نا مـعادلهُ (Y-Y) با افزايش s اضافـه مى شـود در حـالى كه سـهـت راست ثابـت
 بزر گُترين هقدار s اسست كه نا معادله (Y-Y) درست بأُـد، زيرا $E[P(0)]<\cdots<E\left[P\left(s^{*}\right)\right]<E\left[P\left(s^{*}+1\right)\right]>E\left[P\left(s^{*}+2\right)\right]>\cdots$

نتيجه مى شود كه ذخيره s* 1 كالا ميانگِين سود ماكزيمـ خو اهد داشت . حالت تيوسته منال Y ب جحل مـُـابهى دارد .

 تعيين كنيذ .

به صورت زير استـ.

$$
\begin{aligned}
P(s) & =b X-(s-X) \ell & & X \leq s \\
& =s b & & X>s
\end{aligned}
$$

بنابر اين

$$
\begin{align*}
E[P(s)] & =\int_{0}^{s}(b x-(s-x) \ell) f(x) d x+\int_{0}^{\infty} s b f(x) d x \\
& =(b+\ell) \int_{0}^{s} x f(x) d x-s \ell \int_{0}^{s} f(x) d x+s b\left[1-\int_{0}^{s} f(x) d x\right] \\
& =s b+(b+\ell) \int_{0}^{s}(x-s) f(x) d x
\end{align*}
$$

 آورد . با مشتق گيرى نتيحه مى شود

$$
\begin{aligned}
\frac{d}{d s} E[P(s)] & =b+(b+\ell) \frac{d}{d s}\left[\int_{0}^{b} x f(x) d x-s \int_{0}^{0} f(x) d x\right] \\
& =b+(b+\ell)\left[s f(s)-s f(s)-\int_{0} f(x) d x\right] \\
& =b-(b+\ell) \int_{0}^{1} f(x) d x
\end{aligned}
$$

ميانگين سـود ماكزيمـم با مسـاوى صفر قرار دادن غبارت فوق بهدست مى آيد، اگر S در معادله زير صلـت كند
$F(s)=\frac{b}{b+\ell}$

$$
\text { در اين معادله F(s) }=\int_{0}^{s} f(x) d x \text { تابع توزيع تقاضاست }
$$

نتيجـه
اگر a

$$
E[a X+b]=a E[X]+b
$$

برهان : در حاللت گسـسته ، داريم

$$
\begin{aligned}
E[a X+b] & =\sum_{x(1)) \cdots 0}(a x+b) p(x) \\
& =a \sum_{x: p(\pi) \geqslant 0}^{\sum} x p(x)+b \sum_{x: p(x) \cdots 0}^{\sum} p(x) \\
& =a E[X]+b
\end{aligned}
$$

در حالت بيوسته، داريم

$$
\begin{aligned}
E[a X+b] & =\int_{-x}^{x}(a x+b) f(x) d x \\
& =a \int_{-x}^{x} x f(x) d x+b \int_{-x}^{x} f(x) d x \\
& =a E[X]+b
\end{aligned}
$$

-

 تصادنى و g يك تابع دو متغيـره باشلد، در اين صورت اگُ تابع جرم احتمـال مشترل X X Y Y و برابر باشد، داريم
$E\left[g\left(X, Y^{\prime}\right)\right]=\sum_{y} \sum_{r} g(x, y) p(x, y)$
و اگگ تابع جرم احتمال مشترل X Y Y برابر f(x,y H باشد، داريم
$=\int_{-x}^{\infty} \int_{-x}^{x} g(x, y) f(x, y) d x d y$
 ك $E[X+Y]=\int_{-x}^{x} \int_{-x}^{x}(x+y) f(x, y) d x d y$
$=\int_{-\infty}^{x} \int_{-x}^{x} x f(x, y) d y d x+\int_{-x}^{x} \int_{-\infty}^{\infty} y f(x, y) d x d y$
$=\int_{-\infty}^{\infty} x f_{X}(x) d x+\int_{-x}^{x} y f_{Y}(y) d y$
$=E[X]+E[Y]$
اين نتيجه در حالت كلى برقرار مى باشد؛ از اين رو وقتى 1 E [X
$E[X+Y]=E[X]+E[Y]$
 باشد، در اين صورت

نخـتين درس احتمال

$$
\begin{equation*}
E\left[X_{1}+X_{2}+\cdots+X_{n}\right]=E\left[X_{1}\right]+E\left[X_{2}\right]+\cdots+E\left[X_{n}\right] \tag{1-r}
\end{equation*}
$$

 تعيين كنيد.
 را تعييس كنـيم در اين صورت بـر الى حل هسـاله زمـان نسبتـاً زيادى لازم است . ليكن با تو جـه به اين كه $X=X_{1}+X_{2}+\cdots+X_{10}$

$E[X]=E\left[X_{1}\right]+\cdots+E\left[X_{11}\right]=10\left(\frac{7}{2}\right)=35$

 است و قتى احتمال مونقيت در هر آزمايش p باشُد، در اين صورت $X=X_{1}+X_{2}+\cdots+X_{n}$

كه در آن

بنابراين X X
$E\left[X^{\prime}\right]=E\left[X_{1}\right]+E\left[X_{2}\right]+\cdots+E\left[X_{n}\right]=n p$
اين نتيجه را با نتيجهُ حاصل در مثال ا بـ مقايسه نماييـد .
مثال r ب . ميانيي تعداد جوربودنها ـ يك كروه N تائى از مردان كلاهـهأى خود را در وسط اتاق مى كـذارند . كـلاههـا باهم مـخلوط مى شــوند و هر مرد يكى از آنها را بـه تصـادف انتـخـاب

مى كند. ميانگيّن تعلاد مردانى را كه كلاه نحودشان را انتخاب مى كتند بيابيد. مل : فرض كيد X نمايش تعداد جور بودن ها باشد، E [X] را بسادكى مى توان حساب كرد وتتى
$X=X_{1}+X_{2}+\cdots+X_{N}$
 جون براي هر أ، ، مرد i أم با احتمال مساوى هريك از N كلاهر را انتخاب مى كند $E\left[X_{i}\right]=P\left\{X_{i}=1\right\}=\frac{1}{N}$

ديده مى شود كه
$E[X]=E\left[X_{1}\right]+\cdots+E\left[X_{N}\right]=\left(\frac{1}{N}\right) N=1$
بنابر اين بطور متوسط دقيقاً يكى از مردان كلاءخودر را انتخاب مى كند.

 دراين صورت X يكـ متغير تصادنى دو جملهاي منفى است كه تابع جر مآن عبارت است از $P\{X=n\}=\binom{n-1}{r-1} p^{\prime}(1-p)^{n^{-r}}, \quad n=r_{1} r+1, \ldots$

بنابراين نتيجه مى شود كه
$E[X]=\sum_{n=r}^{\infty} n\binom{n-1}{r-1} p^{\prime}(1-p)^{n-}$,

ليكن با توجه به مجموع زير عبارت ساده ترى براي E [X] به دسـت مى آيد.
$X=X_{1}+X_{2}+\cdots+X$,

 داريمr

$$
E[X]=E\left[X_{1}\right]+\cdots+E\left[X_{r}\right]=\frac{r}{p}
$$

مثال 「 ث . ميانكين متنير تصادلى لوق هنلسى. از ظر فى كه شامل N توب سـفيد و M توب سياه است بطور تصادفى n توب انتخاب مى كنيم . ميانگين تعلاد تويهاى سـفيد انتـخاب شـلـه رابيابيد .

$P\{X=k\}=\frac{\binom{N}{k}\binom{M}{n-k}}{\binom{N+M}{n}}$
$E[\mathrm{X}]=\frac{\sum_{k=1}^{n} k\binom{N}{k}\binom{M}{n-k}}{\binom{N+M}{n}}$
ولى مى توان عبارت ساده ترى براى E[X] با تو جه به مسموع زير نوشت

$$
X=X_{1}+\cdots+X_{N}
$$

$$
\begin{aligned}
E\left[X_{1}\right] & =P\left\{X_{t}=1\right\} \\
& =P\left\{2,-\operatorname{con}_{2}\right\} \\
& =\frac{\binom{1}{1}\binom{M+N-1}{n-1}}{\binom{M+N}{n}} \\
& =\frac{n}{M+N}
\end{aligned}
$$

بنابراين

$$
E[X]=E\left[X_{1}\right]+\cdots+E\left[X_{*}\right]=\frac{N n}{M+N}
$$

البته، مى توان اين نتيجه را با نمايش X به صورت زير نيز به دست آورد $X=Y_{1}+\cdots+Y_{n}$

كه در آن

جون توب i الم انتخاب شده با شانس مساوى يك از M + N توب است، داريم
$E\left[Y_{i}\right]=\frac{N}{M+N}$
و از اين رو
$E[X]=E\left[Y_{1}\right]+\cdots+E\left[Y_{n}\right]=\frac{n N}{M+N}$
مثال

 كنتد در نظر كرفت) .
اكنون ،

$$
E\left[X_{i}\right]=P\left\{X_{i}=1\right\}
$$

$$
=\frac{\binom{2 N-2}{m}}{\binom{2 N}{m}}
$$

$$
=\frac{\frac{(2 N-2)!}{m!(2 N-2-m)!}}{\frac{(2 N)!}{m!(2 N-m)!}}
$$

$$
=\frac{(2 N-m)(2 N-m-1)}{(2 N)(2 N-1)}
$$

بنابراين نتيجه مطلوب برابر است با

$$
\begin{aligned}
E\left[X_{1}+X_{2}+\cdots+X_{N}\right] & =E\left[X_{1}\right]+\cdots+E\left[X_{N}\right] \\
& =\frac{(2 N-m)(2 N-m-1)}{2(2 N-1)}
\end{aligned}
$$

مثال

مجموعهُ كاملى شـامل حداقل يكى از هر نوع دائته باثـد ـ حسابَ كنيد.
حل : ا- فرض كنيـد X X نمايش. نعـداد انواع مختلف كوينهـا در مجموعهُ n كوين باثـد. , را با استفاده رابطه زير حسابب مى كنبم E [X]

$$
x=X_{1}+\cdots+X_{n}
$$

$$
\begin{aligned}
& \text { قل : براى N , . . . } i=1,2 \text { تعريف مى كنيم }
\end{aligned}
$$

اكنون

$$
\begin{aligned}
& E\left[X_{i}^{\prime}\right]=P\{X,=1\}
\end{aligned}
$$

$$
\begin{aligned}
& =1-\left(\frac{N-1}{N}\right)^{\prime \prime}
\end{aligned}
$$

بنابراين

$$
E[X]=E\left[X_{1}\right]+\cdots+E\left[X_{n}\right]=N\left[1-\left(\frac{N-1}{N}\right)^{n}\right]
$$

 آن كه i ن نوع كوين متمـايز جمع آورى كـرديم آ
 $Y=Y_{0}+Y_{1}+\cdots+Y_{N-1}$

لذا نتيجه مى شود كه كوين جديد به دست آمده با با احتمال $)$ نوع كوين متمايز فبلاَ جمع آورى كرده باشـيم • بنابراين ، $P\left\{Y_{1}=k\right\}=\frac{N-i}{N}\left(\frac{i}{N}\right)^{k-1} \quad k \geq 1$

يا به عبارت ديكر $E\left[Y_{1}\right]=\frac{N}{N-i}$

لذا نتيجه بى شود كه
$E[Y]=1+\frac{N}{N-1}+\frac{N}{N-2}+\cdots+\frac{N}{1}=N\left[1+\cdots+\frac{1}{N-1}+\frac{1}{N}\right]$

 احتمال p بزند، در صورتى كه يكى دسته ده تايى در حالُ يرواز باشُند ميانگين تعداد مرغابيهايى را كه صـدمه نديده فرار مى كنتن بيدا كنيد ـ

و در غير اين صـورت صفر باشد. مـيانگگين مرغابيـهاهع را كه صـدمـه ندينه فرار مى كتند مى توان به صورت زير بيان كرد

$$
E\left[X_{1}+\cdots+X_{10}\right]=E\left[X_{1}\right]+\cdots+E\left[X_{10}\right]
$$

براى مــحـاسبـهُ E E X $\mid=P\left\{X_{1}=1\right.$ توجـه كنيـد كه هر شكـار جحى مـستقلاً مـرغـابى i ام رابا احتمالل
$P\left\{X_{i}=1\right\}=\left(1-\frac{p}{10}\right)^{10}$
بنابر اين
$E[X]=10\left(1-\frac{p}{10}\right)^{10}$
مثال
جابه جا مى شوند بـه قسمى كه هريك از (n! (n+m) (n) ترتيب ممكن شـانس مساوى دارند .

 مى خحواهيم ميانگين تعلاد اين گشتها را محاسبه كنيم • برایى محاسبه اين كميت فرض كتيد
 بنابراين R(I) ، تعداد گشتهاى ا رأ مى توان به صورت زير بيان كرد $R(1)=\sum_{i=1}^{n+m} I_{i}$
$E[R(1)]=\sum_{i=1}^{n+m \prime \prime} E\left[I_{i}\right]$

$$
=\frac{n}{n+m}
$$

$$
\begin{aligned}
& E\left[I_{i}\right]=P\{\text { 人 } \\
& =\frac{m}{n+m} \frac{n}{n+m-1}
\end{aligned}
$$

بنابراين
$E[R(1)]=\frac{n}{n+m}+(n+m-1) \frac{n m}{(n+m)(n+m-1)}$

$E[R(0)]=\frac{m}{n+m}+\frac{n m}{n+m}$
و ميانگگين گُشت هردوى آنها برابر است با
$E[R(1)+R(0)]=1+\frac{2 n m}{n+m}$

 جقلدر است؟

كه شـامل n توب سفيد و m توب سياه اسـت تويها را يك به يك از كيسه خارج كينيم تا اولين توب سفيد به دست آيد . اكر X نمايش تعداد توبهالى خارج شمده باشمد، E [X] , بابيد. برالى حل اين مسنآله فرض كنيد توبهـاي سياه در كيسه با

بنابراين بسادكى ديده مي شود
$X=1+\sum_{i=1}^{m} X_{i}$
بنابراين
$E[X]=1+\sum_{i=1}^{m} P\left\{X_{1}=1\right\}$

 به دست آمده از اين مجموعه باشند، بنابراين داريم
$E\left[X_{i}\right]=P\left\{X_{i}=1\right\}=\frac{1}{n+1}$
بنابر اين
$E[\lambda]=1+\frac{m}{n+1}$

 گام بيابيلد .

در مختصات دكارتى باششد. داريم
$X_{1}=\cos \theta_{i}$
$Y_{1}=\sin \theta_{1}$

(0) = مكان نتخـسـت
(1) = .
(2) = مكان بس از گا
شكل r-y

وتتـى بــا به فرضi

 $D^{2}=\left(\sum_{i=1}^{n} X_{i}\right)^{2}+\left(\sum_{i=1}^{n} Y_{i}\right)^{2}$
$=\sum_{i=1}^{n}\left(X_{i}^{2}+Y_{i}^{2}\right)+\sum_{i=1}\left(X_{i} X_{i}+Y_{i} Y_{i}\right)$
$=n+\sum_{1 \times j} \sum_{j}\left(\cos \theta_{1} \cos \theta_{1}+\sin \theta_{1} \sin \theta_{l}\right)$
كه در آن از رابط4 $\cos ^{2} \theta_{i}+\sin ^{2} \theta_{i}=1$ استفاده مى شـود . با گُرفتن مبانگين و به كار بردن الستقال

$$
\begin{aligned}
& E\left[\cos \theta_{t}\right]=\int_{0}^{2 \pi} \cos u d u=\sin 2 \pi-\sin 0=0 \\
& E\left[\sin \theta_{t}\right]=\int_{0}^{2 \pi} \sin u d u=\cos 0-\cos 2 \pi=0
\end{aligned}
$$

نتيجهه مى شـود كه
$E\left[D^{2}\right]=n$

متناهى اند مواججهيم ، لزوبى نذارد كه داشته باشيم

$$
E\left[\sum_{i=1}^{\infty} X_{i}\right]=\sum_{i=1}^{\infty} E\left[X_{i}\right]
$$

$$
\sum_{i=1}^{\infty} X_{i}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} X_{i}
$$

$$
\begin{align*}
E\left[\sum_{i=1}^{\infty} X_{i}\right] & =E\left[\lim _{n \rightarrow x} \sum_{i=1}^{n} X_{i}\right] \\
& =\lim _{n-x} E\left[\sum_{i=1}^{n} X_{i}\right] \tag{0-r}\\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} E\left[X_{i}\right] \\
& =\sum_{i=1}^{\infty} E\left[X_{i}\right]
\end{align*}
$$

 مهم زير درست است :
 $\sum_{i=1}^{\infty} E\left[\mid X_{i}\right]<\infty$.
مثال r
تعريف كنيم

$$
X_{1}= \begin{cases}1 & X \geq i \\ 0 & X<i\end{cases}
$$

در اين صورت

$$
\begin{aligned}
\sum_{i=1}^{\infty} X_{i} & =\sum_{i=1}^{x} X_{i}+\sum_{i=X+1}^{x} X_{i} \\
& =\sum_{i=1}^{x} 1+\sum_{i=X+1}^{\infty} 0 \\
& =X
\end{aligned}
$$

$$
\begin{align*}
E[X] & =\sum_{i=1}^{\infty} E\left(X_{i}\right) \\
& =\sum_{i=1}^{\infty} P\{X \geq i\}
\end{align*}
$$

 مى شود، شيئ أم را مستقل از كذذشته با احتمال
 فراخوانده شـده مينيمم گردد .

 فراخوانده شده باشد . اكنون تحت هر ترتيبى ، به عنوان مثال $P_{o}\{X \geq k\}=\sum_{j=k}^{n} P\left(i_{j}\right)$

$$
\geq \sum_{i=k}^{n} P(j)
$$

$$
=P_{1,2 \ldots n}\{X \geq k\}
$$

با جمع بندى روى k و بنابرمعادلة (Y-9) ، داريم
$E_{0}[X] \geq E_{1,2 \ldots m}[X]$
 ميانگين مكان اششياء فرا خوانده شـده را مينيمم مى كند .
 متغير هاي نشانگر i=1, . . n ، X ، رابه صورت زير تعر يف كنيد
$X_{1}=1 \begin{array}{ll}1 & 1 \\ 0 & \text { در غير إين صرون }\end{array}$

حالّ، توجه كنيد كه

$$
\begin{gather*}
P\left(\bigcup_{i=1}^{n} A_{i}\right)=E\left[\sum_{i=1}^{n} X_{i}-\sum_{i<j} \sum_{i} X_{i} X_{j}+\sum_{i<j<k} \sum_{i} X_{i} X_{j} X_{i}\right. \\
\left.-\cdots+(-1)^{n+1} X_{1} \cdots X_{n}\right]
\end{gather*}
$$

ديده مى شـود

$$
E\left[X_{i_{1}} \cdots X_{\iota_{k}}\right]=P\left(A_{i_{1}} \cdots A_{t_{k}}\right)
$$

و بنابراين (V-r) دقيقاً فرمول مشُهور مربو ط به اجتماع بيشاملهـا را بيان مى كتد. .

$$
\begin{aligned}
P\left(\cup A_{i}\right)= & \sum P\left(A_{i}\right)-\sum_{i-j} \sum_{i} P\left(A_{i} A_{j}\right)+\sum \sum_{i=k} \sum P\left(A_{i} A_{j} A_{i}\right) \\
& -\cdots+(-1)^{n+1} P\left(A_{i} \cdots A_{n}\right)
\end{aligned}
$$

个 - ولريانس
متغير تصادفى X و تابع توزيع آن، F، را در نظر مى كيريم، الگُ بتوان خو!اص لازم F را

متغير هاى تصادفى Z, Y, W با توابع جرم احتمال به صوردت زير

$W^{\prime}=0$	1	باحاحتمالل
$Y=\left\{\begin{array}{l} -1 \\ +1 \end{array}\right.$	$\frac{1}{2}$ $\frac{1}{2}$	باحت باحمال با باحتـمـل ل
$Z=\left\{\begin{array}{l} -100 \\ +100 \end{array}\right.$		با $\frac{1}{2}$

همگى داراى مـيانگـين مسـاوى، يعنى 0 ، هستـند يراكندگى بيشـترى در مقـادير ممكن Y نسبت به مقاديرW (كه ثاببتاست) وبر اكندكى بيـنترى درمقاديرممكنZZ نسبت به مقادير Y وجود Z وارد .

 كمـيت
 تفاصل بين X و ميانگچين آن ، وا معمولا در نظر مى گيرند. . بنابر اين تعريف زير را داريمم .

اكر X يكى متتغير تصـادفى با ميـانگـين H باثشـد در ايـن حـورت واريانس X كه بـا نمـاد
نُنـان مى دهيم به صوردت زير تعريف مى شود
$\operatorname{Var}(X)=E\left[(X-\mu)^{2}\right]$
 اسـت، Var (X) را بيابيد .

حل : خاطرنشـان مى سازيمم (مثال
$\operatorname{Var}(X)=E\left[(X-\mu)^{2}\right]$

$$
\begin{equation*}
=\frac{1}{\sqrt{2 \pi} \sigma} \int_{-x}^{x}(x-\mu)^{2} e^{-\left(x-\mu x^{2} / 2 x^{x} x\right.} d x \tag{1-Y}
\end{equation*}
$$

از معادلهُ (
$\operatorname{Var}(X)=\frac{\sigma^{2}}{\sqrt{2 \pi}} \int_{-x}^{x} y^{2} e^{-y^{2 / 2}} d y$
با انتگران گّيرى جزء به جزء

$$
\begin{aligned}
& =\frac{\sigma^{2}}{\sqrt{2 \pi}}\left[-\left.y e^{2 / 2}\right|_{-x} ^{x}+\int_{-x}^{x} e^{2 / 2} d y\right] \\
& =\sigma^{2} \frac{1}{\sqrt{2 \pi}} \int_{-x}^{x} e^{y^{2 / 2}} d y \\
& =\sigma^{2}
\end{aligned}
$$

مى توان فرمون ديگُرى برای Var (X) به حور ت زير به دست آورد .

$$
\begin{aligned}
\operatorname{Var}(X) & =E\left[(X-\mu)^{2}\right] \\
& =E\left[X^{2}-2 \mu X+\mu^{2}\right] \\
& =E\left[X^{2}\right]-E[2 \mu X]+E\left[\mu^{2}\right] \\
& =E\left[X^{2}\right]-2 \mu E[X]+\mu^{2} \\
& =E\left[X^{2}\right]-\mu^{2}
\end{aligned}
$$

 عمل اين سـاده ترين روش محاسبه Var (X) استـ .
مثال ب ب. اكگر X نمايش برآمد برتاب يك تاس سالم باثشد، Var (X) , ا حسساب كنيد .
حل : در مثال 1 الف نشان داده شـد كه E[X] = $\frac{7}{2}$ ، همحنين

$$
\begin{aligned}
E\left[X^{2}\right\} & =1^{2}\left(\frac{1}{6}\right)+2^{2}\left(\frac{1}{6}\right)+3^{2}\left(\frac{1}{6}\right)+4^{2}\left(\frac{1}{6}\right)+5^{2}\left(\frac{1}{6}\right)+6^{2}\left(\frac{1}{6}\right) \\
& =\left(\frac{1}{6}\right)(91)
\end{aligned}
$$

بنابر اين
$\operatorname{Var}(X)=\frac{91}{6}-\left(\frac{7}{2}\right)^{2}=\frac{35}{12}$

مثال

$$
E\left[X^{2}\right]=\sum_{i=0}^{n} i^{2}\binom{n}{i} p^{\prime}(1-p)^{n-i}
$$

براى محاسبهُ مقدار فوق با استفاده از تساوى i

$$
E\left[X^{2}\right]=\sum_{i=1}^{n} i(i-1) \frac{n!}{(n-i)!i!} p^{i}(1-p)^{n-i}+\sum_{i=1}^{n} i\binom{n}{i} p^{\prime}(1-p)^{n-i}
$$

$$
=\sum_{i=2}^{n} \frac{n!}{(n-i)!(i-2)!} p^{\prime}(1-p)^{n-t}+E[X]
$$

$$
=n(n-1) p^{2} \sum_{i=2}^{n}\binom{n-2}{i-2} p^{\prime-2}(1-p)^{n-1}+E[X]
$$

$$
=n(n-1) p^{2}[p+(1-p)]^{n^{-2}}+E[X]
$$

$$
=n(n-1) p^{2}+E[X]
$$

جون E E X X (أز مثال (ب) ، نتيجه مى شود

$$
\begin{aligned}
\operatorname{Var}(X) & =n(n-1) p^{2}+n p-n^{2} p^{2} \\
& =n p(1-p)
\end{aligned}
$$

براى هر ثابت b a a a

$$
\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)
$$

 بنابراين

$$
\begin{aligned}
\operatorname{Var}(a X+b) & =E\left[(a X+b-(a E[X]+b))^{2}\right] \\
& =E\left[(a X-a E[X])^{2}\right] \\
& =E\left[a^{2}(X-E[X])^{2}\right) \\
& =a^{2} E\left[(X-E[X])^{2}\right] \\
& =a^{2} \operatorname{Var}(X)
\end{aligned}
$$

 كثنتاور ايستا (ممان اينربى) را نـــان مي دهد

نـخـتين درس احتمال

ه- كو واريانس ، واريانس مجموع و همبستلّى

با حكم زير كه نشـان مى دهد ميانگين حاصلضـربـ متغير هاى مستقل برابر حـاصلضربـ ميانگينهاست ، شروع مى كنيـم

اكر Y X X مستقل باشند در اين صورت برایى هر تابع f و واريم
$E[g(X) h(Y)]=E[g(X)] E[h(Y)]$
 $E[g(X) h(Y)]=\int_{-x}^{+} \int_{-x}^{x} g(x) h(y) f(x, y) d x d y$
$=\int_{-x}^{x} \int_{-x}^{x} g(x) h(y) f_{x}(x) f_{y}(y) d x d y$
$=\int_{-x}^{x} h(y) f_{y}(y) d y \int_{x}^{x} g(x) f_{x}(x) d x$

$$
=E[h(Y)] E[g(X)] \quad \text { حالت گُسسثه اثبات مششابهى دارد . }
$$

 تعريف مى شود
$\operatorname{Cov}\left(X, Y^{\prime}\right)=E\left[(X-E[X])\left(Y^{\prime}-E\left[Y^{\prime}\right]\right)\right]$
با بسـط ســت راسست معادله قبل نتيجه مى شود، ،
$\operatorname{Cov}(X, Y)=E[X Y-E[X] Y-X E[Y]+E[Y] E[X]]$
$=E[X Y]-E[X] E[Y]-E[X] E[Y]+E[X] E[Y]$
$=E\left[X Y^{\prime}\right]-E[X] E[Y]$
 عكس آن درست نيست. يكى مثال ساده از دو متغير تصادفى وابسته X و Y كه داراى كروأريانس صفرند به طريت زير به دست مى آيد : فرض كنيد X متغير تصادنى باشد به قـسمى كه $P\{X=0\}=P\{X=1\}=P\{X=-1\}=\frac{1}{3}$
$Y= \begin{cases}0 & X \neq 0 \\ 1 & X=0\end{cases}$

$\operatorname{Cov}(X, Y)=E[X Y]-E[X] E[Y]=0$
در حالى كه Y , X بطور واضح مستقل نيستند .
 بهدست آورد

$$
\begin{aligned}
\operatorname{Var}(X+Y)= & E\left[(X+Y-E[X+Y])^{2}\right] \\
= & E\left[(X+Y-E X-E Y)^{2}\right] \\
= & E\left[((X-E X)+(Y-E Y))^{2}\right] \\
= & E\left[(X-E X)^{2}+(Y-E Y)^{2}+2(X-E X)(Y-E Y)\right] \\
= & E\left[(X-E X)^{2}\right]+E\left[(Y-E Y)^{2}\right] \\
& +2 E[(X-E X)(Y-E Y)] \\
= & \operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y)
\end{aligned}
$$

در حقيقت ، با استهاده از بحث مشابهى مى توان ثابتت كرد
$\operatorname{Var}\left(\sum_{i=1}^{n} X_{t}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)+2 \sum_{i<j} \operatorname{Cov}\left(X_{i}, X_{i}\right)$

$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)$
 .

قل : هون هنين متـغير تصادفى نمايش تعــداد موفقيتها در n آزمايش مستقل السـت وقتى هر آزمايش با أحتمال مشترك p يكى مونقيت باشدن مى توان نوثـت
$X=X_{1}+\cdots+X_{n}$

كه در آن X ها هتغير هاى تصادفى برنولى مستقلند، به قسمى كه
بنابر اين، از معادلهُ (Q-Y) نتيجه مى شود
$\operatorname{Var}(X)=\operatorname{Var}\left(X_{1}\right)+\cdots+\operatorname{Var}\left(X_{n}\right)$

$$
\begin{aligned}
\operatorname{Var}\left(X_{i}\right) & =E\left[X_{i}^{2}\right]-\left(E\left[X_{i}\right]\right)^{2} \\
& =E\left[X_{i}\right]-\left(E\left[X_{i}\right]\right)^{2} \quad X_{i}^{2}=X_{i} \\
& =p-p^{2}
\end{aligned}
$$

و بنابراين
$\operatorname{Var}(X)=n p(1-p)$

مثال ها ب ـ واريانس تعداد جور بودن • وأريأنس X ، تعداد مردانى كه كاه خخودشـان را در مثان「 ب ب أنتخاب مى كنثل، را بيابيد حل :X را همانند مـان بَ بی در نظر مى گيريم، يعنى $X=X_{1}+\cdots+X_{N}$

از معادلهُ (0 - 1) نتيجه مى شود
$\operatorname{Var}(X)=\sum_{i=1}^{\hat{E}} \operatorname{Var}\left(X_{i}\right)+2 \sum_{i=1} \operatorname{Cov}\left(X_{i}, X_{l}\right)$
جون
$\operatorname{Var}\left(X_{i}\right)=\frac{1}{N}\left(1-\frac{1}{N}\right)=\frac{N-1}{N^{2}}$
$\operatorname{Cov}\left(X_{1}, X_{l}\right)=E\left[X_{1} X_{1}\right]-E\left[X_{1}\right] E\left[X_{l}\right]$
اكنون

و بنابر اين

$$
\begin{aligned}
E\left[X_{i} X_{1}\right] & =P\left(X_{i}=1, X,=1\right\} \\
& =P\left\{X_{i}=1\right\} P\left\{X_{i}=1 \mid X_{i}=1\right\} \\
& =\frac{1}{N} \frac{1}{N-1}
\end{aligned}
$$

پ!

$$
\operatorname{Cov}\left(X_{1}, X_{j}\right)=\frac{1}{N(N-1)}-\left(\frac{1}{N}\right)^{2}=\frac{1}{N^{2}(N-1)}
$$

و از معادلهُ (艹 -

$$
\begin{aligned}
\operatorname{Var}(X) & =\frac{N-1}{N}+2\binom{N}{2} \frac{1}{N^{2}(N-1)} \\
& =\frac{N-1}{N}+\frac{1}{N} \\
& =1
\end{aligned}
$$

 برأبرند . (تمرين نظرى • ا را بينيد) ، نتيجهُ حاصل در اين مثال تعجب انگُيز نيست .

 با
 تمام (1 مقدار نمونه كيرى شلده باشـد، ميانگیِن و واريانسـ آن را بيابيل. . كاربرد مهـم مطلب فوف در أتتخابات است كه تُبل از انتخابات هر فرد در جامعه مو أفت يا
 مخالفس باشُشف در نظر مى كيريم. بنابراين

 بر آورد
 در نمونه هسـت يا خبر ، تعريف مى كنيمه. يعنى

اكنون S , المى توان بهه صورت زير بيان كرد

$$
S=\sum_{i=1}^{\grave{j}} i_{i} h
$$

و بنابراين

$$
\begin{aligned}
\operatorname{Var}(S) & =\sum_{i=1}^{N} \operatorname{Var}\left(c_{i} I_{1}\right)+2 \sum_{i=1} \operatorname{Cov}\left(c_{i} I_{n}, v_{l} I_{3}\right) \\
& =\sum_{i=1}^{N} v_{i}^{2} \operatorname{Var}\left(I_{i}\right)+2 \sum_{i=1} v_{i} v_{i} v_{j} \operatorname{Cov}\left(I_{1}, I_{l}\right)
\end{aligned}
$$

$$
I\left[I_{t}\right]=\frac{n}{N}
$$

$$
E[I, I,]=\frac{n}{N} \frac{n-1}{N-1}
$$

$$
\operatorname{Var}\left(I_{1}\right)=\frac{n}{N}\left(1-\frac{n}{N}\right)
$$

$\operatorname{Cov}\left(I_{4} I_{1}\right)=\frac{n(n-1)}{N(N-1)}-\left(\frac{n}{N}\right)^{2}$

$$
=\frac{-n(N-n)}{N^{2}(N-1)}
$$

بنابراين

$$
\begin{aligned}
E[S] & =n \sum_{i=1}^{N} \frac{v_{i}}{N}=n \bar{v} \\
\operatorname{Var}(S) & =\frac{n}{N}\left(\frac{N-n}{N}\right) \sum_{i=1}^{N} v_{i}^{2}-\frac{2 n(N-n)}{N^{2}(N-1)} \sum_{i=1} \sum_{i} v_{i} v_{j}
\end{aligned}
$$

 حلى خلاصه نمود . جس از ساده كردن داريـم
$\operatorname{Var}(S)=\frac{n(N-n)}{N-1}\left(\frac{\sum_{i=1}^{N} v_{i}^{2}}{N}-\bar{v}^{2}\right)$
اكنون حالتت خاصى را كه در آن Np تا از 0 ها برابر ا و بقيه برابر o اند در نظر مى گيريمم . آن گاه در اين حالنت S متغير تصادفى فرق هندسىى است و ميانگين و واريانسى آن عبارت اسست از $E[S]=n \bar{c}=n p \quad \bar{i}=\frac{N p}{N}=p$
$\operatorname{Var}(S)=\frac{n(N-n)}{(N-1)}\left(\frac{N p}{N}-p^{2}\right)=\frac{n(N-n)}{N-1} p(1-p)$
 $E\left[\frac{S}{n}\right]=p$
$\operatorname{Var}\left(\frac{S}{n}\right)=\frac{(N-n)}{n(N-1)} p(1-p)$
 (Var (X) Var (Y)

$$
\rho(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}
$$

مى توان نشان داد

$$
-1 \leq \rho(X, Y) \leq 1
$$

برأى اثبـات مـعـادلهُ (Q در اين صورت

$$
\begin{aligned}
0 & \leq \operatorname{Var}\left(\frac{X}{\sigma_{x}}+\frac{Y}{\sigma_{y}}\right) \\
& =\frac{\operatorname{Var}(X)}{\sigma_{x}^{2}}+\frac{\operatorname{Var}(Y)}{\sigma_{y}^{2}}+\frac{2 \operatorname{Cov}(X, Y)}{\sigma_{x} \sigma_{y}} \\
& =2[1+\rho(X, Y)]
\end{aligned}
$$

$$
-1 \leq \rho(X, Y)
$$

$$
\begin{aligned}
0 & \leq \operatorname{Var}\left(\frac{X}{\sigma_{x}}-\frac{Y}{\sigma_{y}}\right) \\
& =\frac{\operatorname{Var}(X)}{\sigma_{x}^{2}}+\frac{\operatorname{Var} Y}{\left(-\sigma_{y}\right)^{2}}-\frac{2 \operatorname{Cov}(X, Y)}{\sigma_{x} \sigma_{3}} \\
& =2[1-\rho(X, Y)]
\end{aligned}
$$

$$
\rho(X, Y) \leq 1
$$

و اثبات معادلهُ (ه -

در حقيقت، جوون Var (Z)=0 ايجاب مى كند كه Z با احتمال I ث أبت باشبد(اين حقيقت
 ايجـــاب مى كنـــ
 در اين صورت(X, Y) م بر جحسب عـلامت b برابر 1+ يا ا- مى باثــد. (به عنوان تمرين آن را . ثابت كنيد)
ضريب همـبستگى اندازه مرتبه حالـت خططى بين Y X X است . معدار (X, Y) م

 مثال ه ت. فزض كنيد I

بنابر اين

$$
\begin{aligned}
E\left[I_{A}\right] & =P(A) \\
E\left[I_{B B}\right] & =P(B) \\
E\left[I_{A} I_{B}\right] & =P(A B)
\end{aligned}
$$

و بنابراين

$$
\begin{aligned}
\operatorname{Cov}\left(I_{A}, I_{B}\right) & =P(A B)-P(A) P(B) \\
& =P(B)[P(A \mid B)-P(A)]
\end{aligned}
$$

 دارند، نا بـسته اند، و يا وابستگّى منفى دارند . با تو جه به كوراريانسهها يكى نتيجه مفيد عبارت انـيا واست :
$\operatorname{Cov}\left(\sum_{i=1}^{n} X_{i}, \sum_{i=1}^{m} Y_{i}\right)=\sum_{i=1}^{m} \sum_{i=1}^{n} \operatorname{Cov}\left(X_{i}, Y_{i}\right)$
عبارت فوق را بهعنوان تمرين ثابت كنيد. كاربرد آن را با مثال زير سُرح مى دهيم.

 توزيع جند جمله ای است.

$$
\begin{aligned}
P\left\{N_{1}\right. & \left.=n_{1}, N_{2}=n_{2}, \ldots, N_{r}=n_{r}\right\} \\
& =\frac{m!}{n_{1}!n_{2}!\ldots n_{r}!} P_{1}^{1,} P_{Z}^{n} ; \ldots P_{r}^{n_{r}^{\prime}} \quad \sum_{i=1}^{\prime} n_{r}=m
\end{aligned}
$$

براى
 كوواريانس آنها را حسـاب مى كنيم

$$
N_{1}=\sum_{i=1}^{m} I_{i}(k) \quad, \quad N_{j}=\sum_{k=1}^{m} I_{(}(k)
$$

از معادلهُ (ه- ه) داريم
$\operatorname{Cov}\left(N_{n}, N_{j}\right)=\sum_{i=1}^{m} \sum_{i=1}^{m} \operatorname{Cov}\left(I_{i}(k), I_{l}(\epsilon)\right)$
اكنون وقتى k
$\operatorname{Cov}\left(I_{1}(k), I_{;}(f)\right)=0$

جون نتيجهُ آز مايش k ام مستفل از نتيجه آز مايش / ام است. از طرف ديگر
$\operatorname{Cov}\left(I_{i}(\ell), I_{j}(\ell)\right)=E\left[I_{i}(\ell) I_{j}(\ell)\right]-E\left[I_{i}(\ell)\right] E\left[I_{i}(\ell)\right]$

$$
=0-P_{i} P_{s}=-P_{i} P_{j}
$$

كه در آن از تساوى منجر شود، لنذا
$\operatorname{Cov}\left(N_{n} N_{j}\right)=-m P_{i} P_{j}$

\&- مـيانكين شرطى

¢-1 تعاريض

به صورت زير تعريف مى شود

$$
p_{\mathrm{XY}}(x \mid y)=P\{X=x \mid Y=y\}=\frac{p(x, y)}{p_{,}(y)}
$$

 به قسمى كه

$$
\begin{aligned}
E[X \mid Y=y] & =\sum_{x} x P\{X=x \mid Y=y\} \\
& =\sum_{x} x p_{\mathrm{XI}}\{(x \mid y)
\end{aligned}
$$

 حسابكنيد.
 مى كنيس. براى

$$
P\{X=k \mid X+Y=m\}=\frac{P\{X=k, X+Y=m\}}{P\{X+Y=m\}}
$$

$$
\begin{aligned}
& =\frac{P\{X=k, Y=m-k\}}{P\{X+Y=m\}} \\
& =\frac{P\{X=k\} P\{Y=m-k\}}{P\{X+Y=m\}} \\
& =\frac{\binom{n}{k} p^{k}(1-p)^{n \cdot k}\binom{n}{m-k} p^{m-k}(1-p)^{n-m+k}}{\binom{2 n}{m} p^{m}(1-p)^{2 n-m}} \\
& =\frac{\binom{n}{k}\binom{n}{m-k}}{\binom{2 n}{m}}
\end{aligned}
$$

 استفـاده نموذهايـم (مثال ب ت از نصل 4 را ملا حظه نمايِد) . از اين رو توزيع شرطى X X به شرط
 $E[X \mid X+Y=m]=\frac{m}{2}$

 به صورت زير تعريف مى شود
$f_{\mathrm{X}:}(x \mid y)=\frac{f(x, y)}{f_{Y}(y)}$
 $E[X \mid Y=y]=\int_{-\infty}^{x} x f_{X \mid Y}(x \mid y) d x$

$$
\text { به شُرط آن كه } 0 \text {. } f_{Y}(y)>0
$$

$f(x, y)=\frac{e^{-x / y} e^{-y}}{y} \quad 0<x<\infty, 0<y<\infty$
, را حسـاب كنبد .

$$
\begin{aligned}
f_{X Y}(x \mid y) & =\frac{f(x, y)}{f_{Y}(y)} \\
& =\frac{f(x, y)}{\int_{-x}^{x} f(x, y) d x} \\
& =\frac{(1 / y) e^{-x / y} e^{-y}}{\int_{0}^{x}(1 / y) e^{-x_{1}^{\prime}} e^{-y} d x} \\
& =\frac{(1 / y) e^{-x^{-x} y}}{\int_{0}^{x}(1 / y) e^{-x / y} d x} \\
& =\frac{(1 / y) e^{-x / y}}{-e^{-x / y} \mid x=0} \\
& =\left(\frac{1}{y}\right) e^{-x / y}
\end{aligned}
$$

از اين رو توزيع شُطى X به شرط آلن Sه Y = Y ، ممان توزيع نمايى با ميانگين y است. بنابراين $E[X \mid Y=y]=\int_{0}^{x} \frac{x}{y} e^{-x / v} d x=y$

 $E[g(X) \mid Y=y]=\left\{\begin{array}{l}\sum g(x) p_{X \mid Y}(x \mid y) \\ \int_{-}^{x} g(x) f_{X| |}(x \mid y) d x\end{array}\right.$

$$
E\left[\sum_{i=1}^{n} X_{i} \mid Y=y\right]=\sum_{i=1}^{n} E\left[X_{i} \mid Y=y\right]
$$

 برآمدى است كه برای آنها Y =

F-F
تابعى از مـتـغـير تصـادفى Y را كـه مـقدار آن در Y Y برابر
 يكى خاصيت بسيار مهم ميانگّين شرطى را در حكم زير بيان مى كنيم.

$$
E[X]=E[E[X \mid Y]]
$$

اكر Y يكى متغير تصـادفى كـسسته بانــد معادلهُ (Y-1) بيان مى كند كه

$$
E[X]=\sum_{y} E[X \mid Y=y] P\{Y=y\}
$$

$$
\begin{equation*}
E[X]=\int_{--x}^{\infty} E[X \mid \boldsymbol{Y}=y] f_{Y}(y) d y \tag{-1-1ب}
\end{equation*}
$$

اكنو أبات معادله (Y - () ,

$$
\begin{equation*}
E[X]=\sum_{冫} E[X \mid Y=y] P\{Y=y\} \tag{Y-F}
\end{equation*}
$$

اكنون سممت راست معادلهُ (؟ - Y) را مى توان بهصورت زير نوشت

$$
\begin{aligned}
\sum_{V} E\left[X \mid Y=y j P\left\{Y^{\prime}=y\right\}\right. & =\sum_{V} \sum_{x} x P\{X=x \mid Y=y\} P\{Y=y\} \\
& =\sum_{v} \sum_{i} x \frac{P\{X=x, Y=y\}}{P\{Y=y\}} P\{Y=y\} \\
& =\sum_{V} \sum_{x} x P\{X=x, Y=y\} \\
& =\sum_{x} x \sum_{y} P\{X=x, Y=y\} \\
& =\sum_{x} x P\{X=x\} \\
& =E[X]
\end{aligned}
$$

 به تسمى كه وزنى كه به جملهُ

 تصادفى مناسب بسادگى حسـاب نمود .

 فرض كنيم كه معدنحجي در تمام حالات با الحتمـال مساوى يكى از اين خروجيها را انتخاب كند، ، ميانگين طول زمان تا وتتى كه نجات يابد جقدر است؟

قل : فرض كنـيد X نمايش مـلت زمـان (بر حسـب سـاعت) باشـد تا زمـانى كه هـعـدنجي

$$
\begin{aligned}
E[X]= & E[X \mid Y=1] P\{Y=1\}+E[X \mid Y=2] P\{Y=2\} \\
& +E[X \mid Y=3] P\{Y=3\} \\
= & \frac{1}{3}(E[X \mid Y=1]+E[X \mid Y=2]+E[X \mid Y=3])
\end{aligned}
$$

در صوزتى كه

$$
\begin{align*}
& E[X \mid Y=1]=3 \\
& E[X \mid Y=2]=5+E[X] \tag{r-9}\\
& E[X \mid Y=3]=7+E[X]
\end{align*}
$$

برای درلٌ اين كـه جرا معـادلهُ (Y-Y) درست استث، مـثلاّ

 زمانى كه نجـات يابد درست همان E

$$
E[X]=\frac{1}{3}(3+5+E[X]+7+E[X])
$$

$E[X]=15$

 كه در يك روز معين در فروشگاه هزينه مى شـود جقدر است؟

 مى توان بهصورت
$E\left[\sum_{i}^{N} X_{i}\right]=E\left[E\left[\sum_{1}^{N} X_{i} \mid N\right]\right]$
$E\left[\sum_{1}^{N} X_{i} \mid N=n\right]=E\left[\sum_{1}^{n} X_{i} \mid N=n\right]$

$$
\begin{aligned}
& =E\left[\sum_{1}^{n} X_{i}\right] \quad N, X, \text { بنابر امستـتال } \\
& =n E[X] \quad \text { وقتـى } E[X]=E\left[X_{i}\right]
\end{aligned}
$$

و اين ايجاب مى كند كه
$E\left[\sum_{1}^{N} X \mid N\right]=N E[X]$
نذا
$E\left[\sum_{i=1}^{N} X_{i}\right]=E[N E[X]]=E[N] E[X]$

بنابراين در اين مثال ميانگين مقدار بول هزينه شـده در نروشگاه برابر . .

 بيرون آمده را بيابيد

حل : اين مساله قبلاّ در مثال r د د بر بسى نـده است . در اين جا حل آن را با با شرطى كرد دن

 آمده عبارتى برايى M ${ }_{\text {آلn }}^{\text {به }}$ دست مي آوريم . يعنى، تعريف مى كنيم

با شرطى كردن روى Y ، داريم
$M_{a, b}=E[X]=E[X \mid Y=1] P\{Y=1\}+E[X \mid Y=0] P\{Y=0\}$
در حالى كه

$$
\begin{align*}
& E[X \mid Y=1]=0 \\
& E[X \mid Y=0]=1+M_{a . b-1} \tag{0-9}
\end{align*}
$$

 ثابت مي كند.
جون P/ ج

$$
M_{a, b}=\frac{b}{a+b}\left[1+M_{a, b-1}\right]
$$

$M_{a, 1}=\frac{1}{a+1}\left[1+M_{a .0)}\right]=\frac{1}{a+1}$
$M_{a, 2}=\frac{2}{a+2}\left[1+M_{a, 1}\right]=\frac{2}{a+2}\left[1+\frac{1}{a+1}\right]=\frac{2}{a+1}$
$M_{a, 7}=\frac{3}{a+3}\left[1+M_{a, 2}\right]=\frac{3}{a+3}\left[1+\frac{2}{a+1}\right]=\frac{3}{a+1}$
با استفاده از استقر اء بسادكى ثاببت مى شود كه
$M_{a, b}=\frac{b}{a+1}$
كوراريانس يكى متـغير تصـادفى رانيز با شـرطى كردن مى توان به دست آورد. اين مطلب را با مشال زير شرح مى دهـم.

 را بيابيد .

. Y=0

$$
\operatorname{Var}(N)=E\left[N^{2}\right]-(E[N])^{2}
$$

$$
E\left[N^{2}\right]=E\left[E\left[N^{2} \mid Y\right]\right]
$$

$$
\begin{aligned}
& E\left[N^{2} \mid Y=1\right]=1 \\
& E\left[N^{2} \mid Y=0\right]=E\left[(1+N)^{2}\right]
\end{aligned}
$$

اين دو معادله نتيـجه مسـي شوند، زير آكر آزمايش نخخــت منجر بهمونـقيت شود در اين مبررت

توزيـعى همـــاتنـند استث، E مى شـود

$$
\begin{aligned}
E\left[N^{2}\right] & =E\left[N^{2} \mid Y=1\right] P\{Y=1\}+E\left[N^{2} \mid Y=0\right] P\{Y=0\} \\
& =p+(1-p) E\left[(1+N)^{2}\right] \\
& =1+(1-p) E\left[2 N+N^{2}\right]
\end{aligned}
$$

ليكن همان طور كه در مثال الش نــان داديم، E[N] = $E\left[N^{2}\right]=1+\frac{2(1-p)}{p}+(1-p) E\left[N^{2}\right]$

$$
E\left[N^{\prime}\right]=\frac{2-p}{p^{2}}
$$

$$
\begin{aligned}
\operatorname{Var}(N) & =E\left[N^{2}\right]-(E[N])^{2} \\
& =\frac{2-p}{p^{2}}-\left(\frac{1}{p}\right)^{2} \\
& =\frac{1-p}{p^{2}}
\end{aligned}
$$

(F-F

 بهصورت زير تعريف مى كنيم

$$
\begin{aligned}
E[X] & =P(E) \\
E[X \mid Y=y] & =P(E \mid Y=y)
\end{aligned}
$$

بنابراين، از معادلات (ه-ا الفـ) و (ه-1 ب) نتيجه مى شود

$$
\begin{align*}
P(E) & =\sum_{y} P(E \mid Y=y) P(Y=y) & \\
& =\int_{-x}^{x} P(E \mid Y=y) f_{y}(y) d y &
\end{align*}
$$

 در اين صورت بيشامل به معادلهُ مشهور نير تبديل مى كردد.

$$
P(E)=\sum_{i=1}^{n} P\left(E \mid F_{i}\right) P\left(F_{i}\right)
$$

 نمونهامـت .

مثال ¢

$$
\begin{aligned}
& \text { بهترتيب f f } \\
& \text { حل : با شرطى كردن روى مقادير Y داريم }
\end{aligned}
$$

$$
\begin{aligned}
& P\{X<Y\}=\int_{\alpha}^{\infty} P\{X<Y \mid Y=y\} f_{Y}(y) d y \\
& =\int_{x}^{x} P\{X<y \mid Y=y\} f_{Y}(y) d y
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{-2}^{x} F_{X}(y) f_{1}(y) d y
\end{aligned}
$$

كه در آن

$$
F_{X}(y)=\int_{-x}^{y} f_{Y}(x) d x
$$

$$
\begin{aligned}
P(X+Y<a\} & =\int_{-\infty}^{\infty} P\{X+Y<a \mid Y=y\} f_{Y}(y) d y \\
& =\int_{-\infty}^{\infty} P\{X+y<a \mid Y=y) f_{Y}(y) d y \\
& =\int_{-\infty}^{\infty} P\{X<a-y\} f_{Y}(y) d y \\
& =\int_{-\infty}^{\infty} F_{X}(a-y) f_{Y}(y) d y
\end{aligned}
$$

¢-4-4 واريانس شرطى

 شرطى X با فرض Y = Y را نيز بهصورت زير تعريف كنبم:
$\operatorname{Var}(X \mid Y) \equiv E\left[[X-E(X \mid Y)]^{2} \mid Y\right]$
يعنى ، $\operatorname{\text {ي}}$

نتيجه مى شود. .
$\operatorname{Var}(X \mid Y)=E\left[X^{2} \mid Y\right]-(E[X \mid Y])^{2}$
و بنابر اين

$$
\begin{aligned}
E[\operatorname{Var}(X \mid Y)] & =E\left[E\left[X^{2} \mid Y\right]\right]-E\left[(E[X \mid Y])^{2}\right] \\
& =E\left[X^{2}\right]-E\left[(E[X \mid Y])^{2}\right]
\end{aligned}
$$

هون

$$
\operatorname{Var}(E[X \mid Y])=E\left[\left(E\left[X^{\prime} \mid Y\right]\right)^{2}\right]-(E[X])^{\prime}
$$

بنابر اين با جهع كردن معادلات (V-9) و (A-9) حكـم زير بهدست مى آيد .

حكم §-Y فرمول واريانس شرطي

$$
\operatorname{Var}(X)=E[\operatorname{Var}(X ; Y)]+\operatorname{Var}(E[X \mid Y])
$$

 واريانس تعداد مسانرانیى كه سوار تطار مى شوند جقدر أست؟
 N (Y) نمايش زمـانى كـه تطار وارد مى شــود باثـــل . در اين صـورت متغنير تصـادنى مـوزد نظر انست . با شـرطى كردن روى Y داريم

$$
\begin{aligned}
& E[N(Y) \mid Y=1]=E[N(t) \mid Y=t]
\end{aligned}
$$

$$
\begin{aligned}
& \text { بوامبون با ميانكيّن / } 1 \text { است }
\end{aligned}
$$

$F\left[N^{\prime}\left(Y^{\prime}\right), Y\right]=\lambda Y$
و لذذ با محاسبه ميانگين داريم

$$
E[N(Y)]=\lambda F[Y]=\frac{\lambda]}{2}
$$

براي بهدست آور2ن Var(N (Y)

$$
\begin{aligned}
\left.\operatorname{Var}\left(N^{\prime} Y^{\prime}\right)^{\prime} Y^{\prime}=1\right) & =\operatorname{Var}\left(N(1) \mid Y^{\prime}=1\right) \\
& =\operatorname{Var}(N(t)) \quad \\
& =\lambda 1
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Var}(N(Y) \mid Y & =\lambda Y^{\prime} \\
E[N(Y) \mid Y] & =\lambda Y^{\prime}
\end{aligned}
$$

لذا، از فرمول واريانس شرطى نتيجه مى شود

$$
\operatorname{Var}(N(Y))=E[\lambda Y]+\operatorname{Var}(\lambda Y)
$$

$$
=\lambda \frac{T}{2}+\lambda^{2} \frac{T^{2}}{12}
$$

كهدر آن

 شر طى كردن روى N دأريم .

$$
\begin{aligned}
E\left[\sum_{i=1}^{N} X_{i} \mid N\right] & =N E[X] \\
\operatorname{Var}\left(\sum_{i=1}^{N} X_{i} \mid N\right) & =N \operatorname{Var}(X)
\end{aligned}
$$

هون برای N معلوم N
 حاصل مى گردد . بنابر اين، با استفاده از فرمول واريانس شرطى داريم

$$
\operatorname{Var}\left(\sum_{i=1}^{N} X_{i}\right)=E[N] \operatorname{Var}(X)+(E[X])^{2} \operatorname{Var}(N)
$$

Y-
كاهى حالتى بهوجـود مى آيل كه بر مبناى مقدار مـشاهلده شده متغـير تصادفى X مبادرت

 براى Y مى باشد .

$$
E\left[(Y-g(X))^{2}\right] \geqq E\left[(Y-E[Y \mid X])^{2}\right]
$$

$$
\begin{align*}
E\left[(Y-g(X))^{2} \mid X\right]= & E\left[(Y-E[Y \mid X]+E[Y \mid X]-g(X))^{2} \mid X\right] \\
= & E\left[\left.(Y-E[Y \mid X])\right|^{2} \mid X\right] \\
& +E\left[(E[Y \mid X]-g(X))^{2} \mid X\right] \\
& +2 E[(Y-E[Y \mid X])(E[Y \mid X]-g(X)) \mid X] \tag{1-v}
\end{align*}
$$

ولى با مـعلوم بودن E[Y|X] - g(X) ، تابعى از X مى باشـد كـه مى توان آن را به عنوان يكـ ثابت در نظر كرفت، بنابر اين

$$
\begin{align*}
E[(Y & -E[Y \mid X])(E[Y \mid X]-g(X)) \mid X] \\
& =(E[Y \mid X]-g(X)) E[Y-E[Y \mid X] \mid X] \\
& =(E[Y \mid X]-g(X))(E[Y \mid X]-E[Y \mid X]) \\
& =0 \tag{Y-V}
\end{align*}
$$

از اين رو از معادله (- -) و (Y - V) ، داريم
$E\left[(Y-g(X))^{2} \mid X\right] \geq E\left[(Y-E[Y \mid X])^{2} \mid X\right]$
و با محاسبهُ ميانگين از هردو طرن نا مساوى فوق نتيجه به دسـت مى آيد.

 حالت عبارت اسـت از اين كه Y برابر ميانكين شُ برطى خود به شـرط X = X باشد، از اين رو حكم V- - أثابت مى گردد.

 حل : اين الكُو را رسماً مى توان بهصورت زير نوشت.

$$
Y=X+1+e
$$

 به ترتيـب طول تـــدمــرد و بـــــرش ارابر است با E[Y|X=72]

$$
\begin{aligned}
E[Y \mid X=72] & =E[X+1+e \mid X=72] \\
& =73+E[e \mid X=72] \\
& =73+E(e) \quad J y_{i}- \\
& =73
\end{aligned}
$$

 مل : نحخـت جتكالى شرطى S به شرط R را به مورت زير محاسبه مى كنيم

$$
f_{S / R}(s \mid r)=\frac{f_{S, R}(s, r)}{f_{R}(r)}
$$

$$
=\frac{f_{s}(s) f_{R \mid s}(r \mid s)}{f_{R}(r)}
$$

$$
=K e^{-(s-\mu)^{2} / 2 \sigma^{2}} e^{-(r-s)^{2} / 2}
$$

وتتي K بستگى به s ندارد ـ اكنون

$$
\begin{aligned}
\frac{(s-\mu)^{2}}{2 \sigma^{2}}+\frac{(r-s)^{2}}{2} & =s^{2}\left(\frac{1}{2 \sigma^{2}}+\frac{1}{2}\right)-\left(\frac{\mu}{\sigma^{2}}+r\right) s+C_{1} \\
& =\frac{1+\sigma^{2}}{2 \sigma^{2}}\left[s^{2}-2\left(\frac{\mu+r \sigma^{2}}{1+\sigma^{2}}\right) s\right]+C_{1} \\
& =\frac{1+\sigma^{2}}{2 \sigma^{2}}\left(s-\frac{\left(\mu+r \sigma^{2}\right)}{1+\sigma^{2}}\right)^{2}+C_{2}
\end{aligned}
$$

كه در آن C ${ }^{\text {C }}$ بستپ

$$
f_{S \mid R}(s \mid r)=C \exp \left\{\frac{-\left[s-\frac{\left(\mu+r \sigma^{2}\right)}{1+\sigma^{2}}\right]^{2}}{2\left(\frac{\sigma^{2}}{1+\sigma^{2}}\right)}\right\}
$$

$$
E[S \mid R=r]=\frac{\mu+r \sigma^{2}}{1+\sigma^{2}}
$$

$\operatorname{Var}(S \mid R=r)=\frac{\sigma^{2}}{1+\sigma^{2}}$
 به فرض آن كه مقدار دريافت شده ז باشده، بنابر حكـم V - ا عبارت امست از

$$
E[S \mid R=r]=\frac{1}{1+\sigma^{2}} \mu+\frac{\sigma^{2}}{1+\sigma^{2}} r
$$

 به يكديگر مـانـد نسـبت 1 (واريانس شـرطى عـلامت دريافتـى وقتـى s الزسـال شــده باشــد) به (واريانس علامتى كه بايد أرمـال شود) مى باشد .

 كـرفتـه و داده هاى خـام را برحـسـب فـاصله هاى (a,

$$
Y=y_{i} \quad \text { if } a_{1}<X \leq a_{i+1}
$$

توزيع Y به صورت زير استت

$$
P\left\{Y=y_{1}\right\}=F_{X}\left(a_{1+1}\right)-F_{X}\left(a_{1}\right)
$$

اكنو ن فرض كنيد بخـواهيم $E\left[(X-Y)^{2}\right]$ ، ميانگيـن مربع تفـاضل بين داده هاى خـام و
حالت كميت دار شـدهُ آنها را با انتخاب مقادير (الف) مقادير بهينه

براى كميت سنج بهينهُ Y نشان دهيد كه
(ب) E حفظ مي كند، و

$$
\operatorname{Var}(\mathrm{Y})=\operatorname{Var}(\mathrm{X})-\mathrm{E}\left[(\mathrm{X}-\mathrm{Y})^{2}\right](\underset{ }{(})
$$

حل :(الف) براى هر كميت سنج Y ، با شُرطى كردن روى مفدار Y داريم

$$
E\left[(X-Y)^{2}\right]=\sum_{1} E\left[\left(X-y_{1}\right)^{2} \mid a_{1}<X \leq a_{t+1}\right] P\left\{a_{1}<X \leq a_{1+1}\right\}
$$

اكنون اكر فرض كنيم كه

$$
I=i \quad \text { if } a_{1}<X \leq a_{1+1}
$$

$$
E\left[\left(X-y_{i}\right)^{2} \mid a_{1}<X \leq a_{t+1}\right]=E\left[\left(X-y_{i}\right)^{2} \mid I=i\right]
$$

و أين كميت بنابر حكـم V-V وفتى مينيمـم مي شـود كه

$$
\begin{aligned}
y_{1} & =E[X \mid I=i] \\
& =E\left[X \mid a_{1}<X \leq a_{1+1}\right] \\
& =\int_{a_{1}}^{a_{1+1}} \frac{x f_{X}(x) d \boldsymbol{x}}{F_{X}\left(a_{1+1}\right)-F_{X}\left(a_{i}\right)}
\end{aligned}
$$

اينك، جحون كميت سنج بهينه به صورت Y = E [X|1 أست، نتيجه مى شود كه

$$
E[Y]=E[X]
$$

$\begin{aligned} \operatorname{Var}(X) & =E[\operatorname{Var}(X \mid I)]+\operatorname{Var}(E[X \mid I]) \\ & =E\left[E\left[(X-Y)^{2} \mid I\right]\right]+\operatorname{Var}(Y)\end{aligned}$

$$
\begin{aligned}
& =E\left[E\left[(X-Y)^{2} \mid I\right]\right]+\operatorname{Var}(Y) \\
& =E\left[(X-Y)^{2}\right]+\operatorname{Var}(Y)
\end{aligned}
$$

 به تسمي است كه محاسبه E[Y|X = X
 برآوردكر خططى Y نـبـت به X را تع و

براكى تعيين بهـترين برآوردگر خططى Y نسبت به X لازم است a , b , bا هنان انتخاب كنيم تا

$$
\begin{aligned}
E\left[(Y-(a+b X))^{2}\right]= & E\left[Y^{2}-2 a Y-2 b X Y+a^{2}+2 a b X+b^{2} X^{2}\right] \\
= & E\left[Y^{2}\right]-2 a E[Y]-2 b E[X Y]+a^{2} \\
& +2 a b E[X]+b^{2} E\left[X^{2}\right]
\end{aligned}
$$

با مشتق كيرى جزيى دأريم

$$
\begin{aligned}
& \frac{\partial}{\partial a} E\left[(Y-a-b X)^{2}\right]=-2 E[Y]+2 a+2 b E[X] \\
& \frac{\partial}{\partial b} E\left[(Y-a-b X)^{2}\right]=-2 E[X Y]+2 a E[X]+2 b E\left[X^{2}\right]
\end{aligned}
$$

$$
\text { بـا مــــــوى } 0 \text { تــرار دادن مــعــادلات (V-ץ) و حل آن نــــــت به a و b جـــــابهــاى زير }
$$

$$
\begin{align*}
& b=\frac{E[X Y]-E[X] E[Y]}{E\left[X^{2}\right]-(E[X])^{2}}=\frac{\operatorname{Cov}(X, Y)}{\sigma_{x}^{2}}=\rho \frac{\sigma_{y}}{\sigma_{x}} \\
& a=E[Y]-b E[X]=E[Y]-\frac{\rho \sigma_{y} E[X]}{\sigma_{x}} \tag{f-V}
\end{align*}
$$

 مى كند ، و بـنابراين به مـفـهـوم مـيـانگين مـربع خطـا بهـتـرين برآوردگــر خطـى Y نسـبت به X

$$
\mu_{y}+\frac{\rho \sigma_{y}}{\sigma_{x}}\left(X-\mu_{x}\right)
$$

. $\mu_{x}=E[X], \mu_{y}=E[Y]$ كه در آن ميانگين مربع خططاى اين جيثـغويع كنتنه عبارت المت از

$$
\begin{aligned}
& E\left[\left(Y-\mu_{y}-\rho \frac{\sigma_{y}}{\sigma_{x}}\left(X-\mu_{x}\right)\right)^{2}\right] \\
& \quad=E\left[\left(Y-\mu_{y}\right)^{2}\right]+\rho^{2} \frac{\sigma_{y}^{2}}{\sigma_{x}^{2}} E\left[\left(X-\mu_{x}\right)^{2}\right]-2 \rho \frac{\sigma_{y}}{\sigma_{x}} E\left[\left(Y-\mu_{y}\right)\left(X-\mu_{x}\right)\right] \\
& \quad=\sigma_{y}^{2}+\rho^{2} \sigma_{y}^{2}-2 \rho^{2} \sigma_{y}^{2} \\
& \quad=\sigma_{y}^{2}\left(1-\rho^{2}\right)
\end{aligned}
$$

توجه كنيد كه بنابر معادلكُ (Q-V) اكر مقدأر ρ نزديكى به أ با ا - باشد ، دراين صوربت ميانگين

مثال Y ت . يكـ مـثال كه در آن مـيانگين شـرطي Y به شرط X نسبت به X خطى باشّه و و

 به صورت زير اسـت

$$
\begin{aligned}
f(x, y)= & \frac{1}{2 \pi \sigma_{r} \sigma_{v} \sqrt{1-\rho^{2}}} \exp \left\{-\frac{1}{2\left(1-\rho^{2}\right)}\left[\left(\frac{x-\mu_{x}}{\sigma_{x}}\right)^{2}\right.\right. \\
& \left.\left.-\frac{2 \rho\left(x-\mu_{x}\right)\left(y-\mu_{2}\right)}{\sigma_{x} \sigma_{y}}+\left(\frac{y-\mu_{1}}{\sigma_{v}}\right)^{2}\right]\right\}
\end{aligned}
$$

اثبــات اين مطلب , واكذار مى كنيم

$$
f_{y^{\prime} \mid x}(y \mid x)=\frac{1}{\sqrt{2 \pi} \sigma_{y^{\prime}} \sqrt{1-\rho^{2}}} \exp \left\{-\frac{1}{2 \sigma_{3}^{2}\left(1-\rho^{2}\right)}\left(y-\mu_{y}-\frac{\rho \sigma_{x}}{\sigma_{x}}\left(x-\mu_{1}\right)\right)^{2}\right\}
$$

$E[Y ; X=x]=\mu_{3}+\rho \frac{\sigma_{2}}{\sigma_{2}}\left(x-\mu_{4}\right)$

و واريانـس

A- تابع مولل ثـشتاور

 تعريف مى شودد
$\phi(f)=E\left[e^{1 X}\right]$
 مى توان تمام گُشتاورهاي X را به دست آورد ـ بر براي مثال

$$
\begin{align*}
\phi^{\prime}(t) & =\frac{d}{d t} E\left[e^{\prime X}\right] \\
& =E\left[\frac{d}{d t}\left(e^{\prime X}\right)\right] \\
& =E\left[X e^{t, x}\right]
\end{align*}
$$

 كـسـته فرض كرده ايـم كه
$\frac{d}{d l}\left[\sum_{x} e^{\prime k} p(x)\right]=\sum_{1} \frac{d}{d l}\left[e^{r x} p(x)\right]$
و در حالتت بيوسته فرض كردهايـم كه
$\frac{d}{d t}\left[\int e^{\prime \prime} f(x) d x\right]=\int \frac{d}{d t}\left[e^{t x} f(x)\right] d x$

$$
\begin{aligned}
\phi^{\prime}(0) & =E[X] \\
\phi^{\prime \prime}(\mathrm{t}) & =\frac{d}{d t} \phi^{\prime}(t) \\
& =\frac{d}{d t} E\left[X e^{t X}\right] \\
& =E\left[\frac{d}{d t}\left(X e^{t X}\right)\right] \\
& =E\left[X^{2} e^{t X}\right]
\end{aligned}
$$

$$
\phi^{\prime \prime}(0)=E\left[X^{2}\right]
$$

بطور كلى مشتق n ام، (t (t عبارت است از

$$
\phi^{n}(t)=E\left[X^{n} e^{t x}\right] \quad n \geq 1
$$

$$
\phi^{n}(0)=E\left[X^{n}\right] \quad n \geq 1
$$

اينكي (1)

بارامترهاى n و p باشد، در اين صورت

$$
\begin{aligned}
\phi(t) & =E\left[e^{i x}\right] \\
& =\sum_{k=0}^{n} e^{i k}\binom{n}{k} p^{k}(1-p)^{n-k} \\
& =\sum_{k=0}^{n}\binom{n}{k}\left(p e^{\prime}\right)^{k}(1-p)^{n-k} \\
& =\left(p e^{2}+1-p\right)^{n}
\end{aligned}
$$

كه در آن آخرين تــاوى از تضيهُ دو جمله ای حاصل مى گرّرد.
$\phi^{\prime}(t)=n\left(p e^{2}+1-p\right)^{n-1} p e^{\prime}$

و بنابر اين

$$
E[X]=\phi^{\prime}(0)=n p
$$

كه با نتهجه الى كه نتخـت در مثال ابث حاصل شد مطببت مى نمايد. با مشــتق كيرى مرتبهُ دوم حاصل مى شُود

$$
\phi^{\prime \prime}(t)=n(n-1)\left(p e^{\prime}+1-p\right)^{n-2}\left(p e^{\prime}\right)^{2}+n\left(p e^{2}+1-p\right)^{n-1} p e^{\prime}
$$

و بنابراين
$E\left[X^{2}\right]=\phi^{\prime \prime}(0)=n(n-1) p^{2}+n p$
واريانس X بهصورت زير بهدست مى آيد

$$
\begin{aligned}
\operatorname{Var}(X) & =E\left[X^{2}\right]-(E[X])^{2} \\
& =n(n-1) p^{2}+n p-n^{2} p^{2} \\
& =n p(1-p)
\end{aligned}
$$

كه نتهجه مثال ه الف را ثابت مى كند.

$$
\begin{aligned}
\phi(t) & =E\left[e^{i x}\right\}^{n} \\
& =\sum_{n=0}^{\infty} \frac{e^{2 i} e^{-\lambda} \lambda^{n}}{n!} \\
& =e^{-\lambda} \sum_{n=0}^{\infty} \frac{\left(\lambda e^{t}\right)^{n}}{n!} \\
& =e^{-\lambda} e^{\lambda e^{\prime}} \\
& =\exp \left\{\lambda\left(e^{t}-1\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \phi^{\prime}(t)=\lambda e^{\prime} \exp \left\{\lambda\left(e^{t}-1\right)\right\} \\
& \phi^{\prime}(t)=\left(\lambda e^{\prime}\right)^{2} \exp \left\{\lambda\left(e^{\prime}-1\right)\right\}+\lambda e^{\prime} \exp \left\{\lambda\left(e^{\prime}-1\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
E[X] & =\phi^{\prime}(0)=\lambda \\
E\left[X^{2}\right] & =\phi^{\prime \prime}(0)=\lambda^{2}+\lambda \\
\operatorname{Var}(X) & =E\left[X^{2}\right]-(E[X])^{2} \\
& =\lambda
\end{aligned}
$$

بنابراين ميانگين و واريانس متغير تصادنى بواسن هر دو برابر λ مى باشند. مثال A بـ . توزيعه نمايي با مارامتر λ.

$$
\begin{aligned}
\phi(t) & =E\left[e^{t x}\right] \\
& =\int_{0}^{\infty} e^{t x} \lambda e^{-\lambda x} d x \\
& =\lambda \int_{0}^{\infty} e^{-(\lambda-1) x} d x \\
& =\frac{\lambda}{\lambda-t} \quad \text { for } t<\lambda
\end{aligned}
$$

از أين نتيجـه مـتوجه مى شـويم كـه برايى توزيع نمايى ، (t) تعريف مى شود . با مـشتق كيرى از (t) نتيجه مى شـود

$$
\phi^{\prime}(t)=\frac{\lambda}{(\lambda-t)^{2}} \quad \phi^{\prime \prime}(t)=\frac{2 \lambda}{(\lambda-t)^{3}}
$$

بنابراين

$$
E[X]=\phi^{\prime}(0)=\frac{1}{\lambda} \quad E\left[X^{2}\right]=\phi^{\prime \prime}(0)=\frac{2}{\lambda^{2}}
$$

و واريانس X به صورت زير مـحاسبه مى شود

$$
\begin{aligned}
\operatorname{Var}(X) & =E\left[X^{2}\right]-(E[X])^{2} \\
& =\frac{1}{\lambda^{2}}
\end{aligned}
$$

مـنـال A ت . توزيع نرمـال. ابتــدا تابع مــولد كــــــتــاور مـتـغــيـر تصــادفى نرمــال

$$
\begin{aligned}
\phi_{/}(t) & =E\left[e^{t z}\right] \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-x}^{x} e^{t x} e^{-x^{2} / 2} d x \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-x}^{-x} \exp \left\{-\frac{\left(x^{2}-2 t x\right)}{2}\right\} d x \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-x}^{x} \exp \left\{-\frac{(x-t)^{2}}{2}+\frac{t^{2}}{2}\right\} d x \\
& =e^{t^{2 / 2}} \frac{1}{\sqrt{2 \pi}} \int_{-x}^{x} e^{-t x-t^{2 / 2} / 2} d x \\
& =e^{t^{2 / 2}} \frac{1}{\sqrt{2 \pi}} \int_{-x}^{x} e^{-y^{2} / 2} d y \quad \dot{2} \quad y=x-t \\
& =e^{t^{2 / 2}}
\end{aligned}
$$

 نصل Q توزيع نرمال با بإرامترهاى

$$
\begin{aligned}
& \begin{array}{l}
=E\left[e^{r(1 u+a z)}\right] \\
=E\left[e^{i \mu} e^{i v z}\right]
\end{array} \\
& =e^{t u} E\left[e^{t r z}\right] \\
& =e^{i \mu} \phi_{Z}(t o) \\
& =e^{1 \mu} e^{(\mid \sigma)^{z / 2}} \\
& =\exp \left\{\frac{\sigma^{2} t^{2}}{2}+\mu t\right\}
\end{aligned}
$$

با مشتق گيرى، داريـم
$\phi_{X}^{\prime}(t)=\left(\mu+t \sigma^{2}\right) \exp \left\{\frac{\sigma^{2} t^{2}}{2}+\mu t\right\}$
$\phi_{X}^{\prime \prime}(t)=\left(\mu+\sigma^{2}\right)^{2} \exp \left\{\frac{\sigma^{2} t^{2}}{2}+\mu t\right\}+\sigma^{2} \exp \left\{\frac{\sigma^{2} t^{2}}{2}+\mu t\right\}$

و بنابراين

$$
\begin{gathered}
E[X]=\phi^{\prime}(0)=\mu \\
E\left[X^{2}\right]=\phi^{\prime}(0)=\mu^{2}+\sigma^{2}
\end{gathered}
$$

و لذا داريم
$\begin{aligned} \operatorname{Var}(X) & =E\left[X^{2}\right]-E([X])^{2} \\ & =\sigma^{2}\end{aligned}$
 مي دهند.

 صورت ، (

$$
\begin{aligned}
& \phi_{\lambda+\mathrm{Y}}(t)=E\left[e^{(X+\gamma)}\right] \\
& =E\left[e^{\prime x} e^{\prime 3}\right] \\
& =E\left[e^{\prime X}\right] E\left[e^{\prime Y}\right] \\
& =\phi_{X}(t) \phi_{Y}(t)
\end{aligned}
$$

كه در آن تساوى ما قبل آخر از حكم ه-1 نتيجه مى شُود، چجون Y X X مستقلند.

 . $\frac{1}{r}$

$$
\text { جقدر است؟ } P\{X=0\} \cdot \phi(t)=e^{3\left(e^{t}-1\right)}
$$

حل : از جدول

 از اينرو

$\frac{z^{d}}{(d-\underline{1})^{1}}$	$\frac{d}{d}$	$\left[\frac{\partial(d-1)-1}{, d^{d}}\right]$	$\begin{array}{r} \cdots \cdot 1+1 d^{1}=u \\ \cdots(d-1), d\binom{1-1}{1-u} \end{array}$	
$\frac{z^{d}}{d-1}$			$\cdots{ }^{\prime}{ }^{\prime} \mathrm{l}=x$	$15 d>0$
	$\frac{d}{1}$	$\frac{\partial(d-v)-1}{, \partial d}$	${ }^{-1}{ }^{(d-1)}{ }^{\text {d }}$	-4mintior
			' 7 ' $10=x$	$0<\gamma$
γ	γ	$\{(1-, 21 \times\} \mathrm{dx}$	$\frac{i x}{y^{r}}{ }^{r-2}$	*rminiorimer
			$4 \cdots{ }^{\prime}{ }_{1}{ }^{1} 0=x$	$1>d>0$
	du	${ }^{(d-1-1+, ~ d d)}$	$\ldots\left(\begin{array}{c}(d-1)\end{array} d^{(}\binom{x}{u}\right.$	riompinitiosasurd
	ตัง	(f) ϕ		
	M,	sبorr,	$2^{2}-r d$	R
		niorrm		

-rars $A-1$
orra-d

$$
\begin{aligned}
\phi_{X+Y}(t)=\phi_{X}(t) \phi_{Y}(t) & =\left(p c^{\prime}+1-p\right)^{n}\left(p e^{\prime}+1-p\right)^{m} \\
& =\left(p e^{\prime}+1-p\right)^{m+n}
\end{aligned}
$$

 مى باشُـد . از اين رو X + بايد دأراى اين توزيع باشد. .
 متغير هاى تصادفى بواسن مستقل به ترتيب با ميانگچين , صل :

$$
\begin{aligned}
\phi_{X+Y}(t) & =\phi_{X}(t) \phi_{Y}(t) \\
& =\exp \left\{\lambda_{1}\left(e^{\prime}-1\right)\right\} \exp \left\{\lambda_{2}\left(e^{\prime}-1\right)\right\} \\
& =\exp \left\{\left(\lambda_{1}+\lambda_{2}\right)\left\{\left(e^{\prime}-1\right)\right\}\right.
\end{aligned}
$$

 نصل و 1 اثابت مى كند .

مثال A ع ع مجموع متنيرهاى تصادلى نرمال مستقل. نشان دهيد اكر X و Y متغير هاى تصـادفى X + Y Y بـال مسـتقل و باراممـرهاى آنها به ترتيب نرمال با ميانگِين

$$
\phi_{x+y}(t)=\phi_{X}(t) \phi_{Y}(t)
$$

$$
=\exp \left\{\frac{\sigma_{1}^{2} t^{2}}{2}+\mu_{1} t\right\} \exp \left\{\frac{\sigma_{2}^{2} t^{2}}{2}+\mu_{2} t\right\}
$$

$$
=\exp \left\{\frac{\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right) t^{2}}{2}+\left(\mu_{1}+\mu_{2}\right) t\right\}
$$

كه تابع مولد گئـتاور متغير تصادفى نـرمال با ميانگين

$$
\begin{aligned}
& \text { حل :تابع مولد گثشتاور X + برابر استبا }
\end{aligned}
$$

دنباله ایى از مـتغيرهایى تمـادفى همتوزيع و مـستقل باشدل، و فرض كنيد N يكى متغير تصادفى با مـقادير مسحيح و نا منفى باثـــد كه از دنبـالة كشتاور مجموع زير را حساب كنيم $Y=\sum_{i=1}^{N} X_{i}$
(در مثال 9 ت Y نهايش مبلن بول هزينه شـه در يك فروشگاه در يكـ روز معين بود، وقتى مبلغ هزينه شـده توسط يكى مشترى و تعدأد اين مشتريها هردو متغير تصادفى اند) .
 مي كنيم

$$
\begin{aligned}
E\left[e^{\prime \Sigma_{i}^{i} x_{i}} \mid N=n\right] & =E\left[e^{i \Sigma_{i}^{n} x_{i}} \mid N=n\right] \\
& =E\left[e^{i \Sigma_{i}^{n} x_{i}}\right] \\
& =\left(\phi_{\mathcal{X}}(t)\right)^{n}
\end{aligned}
$$

كه درآن

$$
\phi_{X}(t)=E\left[e^{i X_{i}}\right]
$$

$$
E\left[\rho^{\prime N} \mid N\right]=\left(\phi_{X}(t)\right)^{N}
$$

و از اينرو

$$
\phi_{Y}(t)=E\left[\left(\phi_{X}(t)\right)^{N}\right]
$$

اكنون كشتاورهاى Y را با مـتـتت كيرى به صورت زير مى توان به دست آورد :

$$
\phi_{y}^{\prime}(t)=E\left[N\left(\phi_{X}(t)\right)^{N-1} \phi_{X}^{\prime}(t)\right]
$$

$$
\begin{align*}
E[Y] & =\phi_{Y}^{\prime}(0) \\
& =E\left[N\left(\phi_{X}(0)\right)^{N-1} \phi_{X}^{\prime}(0)\right] \\
& =E[N E X] \\
& =E[N] E[X]
\end{align*}
$$

كه نتيـجه مثنال و ت را ثابت مى كند. (در اين مـجـموعه مـعـادلات انخير از اين حـــيقت كـ ، استفاده نمردهايم.) همجنينين $\phi_{x}(0)=E\left[e^{0 x}\right]=1$

$$
\phi_{Y}^{\prime \prime}(t)=E\left[N(N-1)\left(\phi_{X}(t)\right)^{N-2}\left(\phi_{X}^{\prime}(t)\right)^{2}+N\left(\phi_{X}(t)\right)^{N-1} \phi_{X}^{\mu}(t)\right]
$$

و بنابر أين

$$
\begin{aligned}
E\left[Y^{2}\right] & =\phi_{Y}^{\prime \prime}(0) \\
& =E\left[N(N-1)(E[X])^{2}+N E\left[X^{2}\right]\right] \\
& =(E[X])^{2}\left(E\left[N^{2}\right]-E[N]\right)+E[N] E\left[X^{2}\right] \\
& =E[N]\left(E\left[X^{2}\right]-(E[X])^{2}\right)+(E[X])^{2} E\left[N^{2}\right] \\
& =E[N] \operatorname{Var}(X)+(E[X])^{2} E\left[N^{2}\right]
\end{aligned}
$$

بنابراين از معادلات (Y-人) و (Y-) ديده مى شود كه

$$
\begin{aligned}
\operatorname{Var}(Y) & =E[N] \operatorname{Var}(X)+(E[X])^{2}\left(E\left[N^{2}\right]-(E[N])^{2}\right) \\
& =E[N] \operatorname{Var}(X)+(E[X])^{2} \operatorname{Var}(N)
\end{aligned}
$$

همحنين ممكن است تابع مولد كـــتاور توأم دو متغير تصادفي يا بيسـتر را تعريف نمرد . اين كار
 توأم

$$
\phi\left(t_{1}, \ldots, t_{n}\right)=E\left[e^{t_{1} x_{1}+\cdots+t_{n} x_{n}}\right]
$$

 تمام

$$
\phi_{X_{i}}(t)=E\left[e^{\prime X_{i}}\right]=\phi(0, \ldots, 0, t, 0, \ldots, 0)
$$

كه درآن t در محل i أم مرار دارد.

نتيجه مى توان ثابت كرد كه n متغير تصادفى X X X X ، ... مستقلند اكُر و تنها اكرك

$$
\phi\left(t_{1}, \ldots, t_{n}\right)=\phi_{x_{1}}\left(t_{1}\right) \cdots \phi_{x_{n}}\left(t_{n}\right)
$$

اكُر n متغير تصادفى مستقل باشند، آلن كاه نتيجه بهصورت زير بهدست مى آيد

$$
\begin{aligned}
& \phi\left(t_{1}, \ldots, t_{n}\right)=E\left[e^{t_{1} x_{1}+\cdots+t_{n} x_{n}}\right] \\
& =E\left[e^{\prime_{1} x_{1}} \ldots e^{\prime_{n} x_{n}}\right] \\
& =E\left[e^{t_{1} x_{1}}\right] \cdots E\left[e^{e_{n} x_{n}}\right] \quad \text { بـنابر استـتق } \\
& =\phi_{X_{1}}\left(t_{1}\right) \cdots \phi_{X_{n}}\left(t_{n}\right)
\end{aligned}
$$

 مستقلند.

 داشتهباشيم

$$
\begin{aligned}
X_{1} & =a_{11} Z_{1}+\cdots+a_{1 n} Z_{n}+\mu_{1} \\
X_{2} & =a_{21} Z_{1}+\cdots+a_{2 n} Z_{n}+\mu_{2} \\
\vdots & a_{i 1} Z_{1}+\cdots+a_{i n} Z_{n}+\mu_{i} \\
X_{i} & \vdots \\
X_{m} & =a_{m 1} Z_{1}+\cdots+a_{m n} Z_{n}+\mu_{m}
\end{aligned}
$$

$$
\begin{aligned}
E\left[X_{t}\right] & =\mu_{i} \\
\operatorname{Var}\left(X_{i}\right) & =\sum_{i=1}^{n} a_{i i}^{2}
\end{aligned}
$$

كو واريانس X, و X

$$
\begin{aligned}
\operatorname{Cov}\left(X_{k}, X_{j}\right) & =\operatorname{Cov}\left(\mu_{1}+\sum_{k=1}^{n} a_{i k} Z_{k}, \mu_{1}+\sum_{k=1}^{n} a_{l,} Z_{l}\right) \\
& =\operatorname{Cov}\left(\sum_{k=1}^{n} a_{i k} Z_{k}, \sum_{k=1}^{n} a_{l c} Z_{k}\right) \\
& =\sum_{h, r} a_{i k} a_{j r} \operatorname{Cov}\left(Z_{k}, Z_{l}\right) \\
& =\sum_{k=1}^{n} a_{t h} a_{j k}
\end{aligned}
$$

چون
$\operatorname{Cov}\left(Z_{i}, Z_{f}\right)= \begin{cases}1 & k=\ell \\ 0 & k \neq \ell\end{cases}$

تابع مواد كشّتاور توأمٍ عبارت است از

$\phi\left(t_{1}, \ldots, t_{n}\right)=E\left[e^{\left[r_{1} \mathrm{~K}_{1}+\cdots+t_{m} \lambda_{m+\prime}\right.}\right]$
اكنون

$$
\begin{aligned}
t_{1} X_{1}+\cdots+t_{m} X_{m}= & \left(a_{11} t_{1}+a_{21} t_{2}+\cdots+a_{m(} t_{m}\right) Z_{1} \\
& +\left(a_{12} t_{1}+a_{22} t_{2}+\cdots+a_{m 12} t_{m}\right) Z_{2} \\
& \vdots \\
& \vdots \\
& +\left(a_{11} t_{1}+a_{2 n} t_{2}+\cdots+a_{m n} t_{m}\right) Z_{n} \\
& +\mu_{1} t_{1}+\mu_{2} t_{2}+\cdots+\mu_{m} t_{m 1}
\end{aligned}
$$

و از اين رو
$\sum_{i=1}^{m} t_{i} X_{i}$
دارایى توزيع نرهال است با ميانگين
$E\left[\sum_{i=1}^{m} t_{i} X_{i}\right]=\sum_{i=1}^{m} t_{i} \mu_{i}$
و واريانس

$$
\operatorname{Var}\left(\sum_{i=1}^{m} t_{1} X_{i}\right)=\sum_{k=1}^{n}\left(\sum_{i=1}^{m} a_{1 k^{j_{i}}}\right)^{2}
$$

بنابراين، با امستفـاده از اين مطلب كه اكـر Y متغـير نصـادنى نرمـال با ميـانگين ب و واريانس باشد آن كاه

$$
E\left[e^{Y}\right]=\left.\phi_{Y}(t)\right|_{1=1}=e^{\mu+\sigma^{2} / 2}
$$

$$
\begin{aligned}
\phi\left(t_{1}, \ldots, t_{m \prime}\right) & =E\left[\exp \left\{\sum_{1}^{m} t_{i} X_{i}\right\}\right] \\
& =\exp \left\{\sum_{i=1}^{m} t_{1} \mu_{i}+\frac{1}{2} \sum_{k=1}^{n}\left(\sum_{i=1}^{m} a_{i k} t_{t}\right)^{2}\right\}
\end{aligned}
$$

$$
\begin{aligned}
\sum_{k=1}^{n}\left(\sum_{i=1}^{m} a_{i k} l_{i}\right)^{2} & =\sum_{k=1}^{n} \sum_{i=1}^{m} a_{i k} t_{i} \sum_{j=1}^{m} a_{j k} l_{j} \\
& =\sum_{j=1}^{m} \sum_{i=1}^{m} t_{i} t_{j} \sum_{k=1}^{n} a_{i k} a_{j k} \\
& =\sum_{j=1}^{m} \sum_{i=1}^{m} t_{i} t_{j} \operatorname{Cov}\left(X_{i}, X_{i}\right)
\end{aligned}
$$

$$
\phi\left(t_{1}, \ldots, t_{m}\right)=\exp \left\{\sum_{i=1}^{m} t_{i} \mu_{i}+\frac{1}{2} \sum_{i=1}^{m} \sum_{i=1}^{m} t_{i} t_{j} \operatorname{Cov}\left(X_{t}, X_{j}\right)\right\}
$$

 كامالزا مـنسخص مي گردد. $i, j=1, \ldots, m$

4- تعريف كلى ميانكين

 ليكن، مـتغيرهـاى تصـادفى كـه كـــــتـه و بيـوستـه نباشـند نيز وجـود دارند و ممكن الست داراى

 مسستقلند و متغير تصادفى جديد W را به صورت زير تعريف كنيد .

$$
W= \begin{cases}X & X=1 \\ Y & X \neq 1\end{cases}
$$

$$
\text { است) و بيوسته نيست (زيرا (P (} \text {) } \text {) . . }
$$

 . $\int_{a}^{b} g(x) d x, g$
$\int_{a}^{b} g(x) d x=\lim \sum_{i=1}^{n} g\left(x_{i}\right)\left(x_{i}-x_{i-1}\right)$
كــــــه در آن هـ

$$
\text { max } \operatorname{man}_{i=1, \ldots, n}\left(x_{i}-x_{i-1}\right) \rightarrow 0
$$

برای هر تابع توزيع F انتگرال استيلجس تابعى نامنفى g وا روى فاصله زير تعريف مى كنبم
$\int_{a}^{b} g(x) d F(x)=\lim \sum_{i=1}^{n} g\left(x_{i}\right)\left[F\left(x_{i}\right)-F\left(x_{i-1}\right)\right]$

 خط حقيقى بهصورت زير تعريف مى كنيم
$\int_{-a}^{x} g(x) d F(x)=\lim _{\substack{a \rightarrow-\infty \\ b \rightarrow+\infty}} \int_{a}^{b} g(x) d F(x)$
بالاخره، اكر g تابع نا منفى نباشـد، g و و و را جنين تعريف مى كنيم
$g^{+}(x)= \begin{cases}g(x) & g(x) \geq 0 \\ 0 & g(x)<0\end{cases}$
$g^{-}(x)=\left\{\begin{array}{cc}0 & g(x) \geq 0 \\ -g(x) & g(x)<0\end{array}\right.$
بـه قســى كـه
$\int_{-\infty}^{\infty} g(x) d F(x)=\int_{-\infty}^{\infty} g^{+}(x) d F(x)-\int_{-\infty}^{\infty} g^{-}(x) d F(x)$
, $\int_{-\infty}^{+\infty} g^{+}(x) d F(x)$,和 ${ }_{-\infty}^{+\infty} g^{-}(x) d F(x)$
اكر X متغغير نصادفى دلخواه با توزيع تجمعي F باشد، اميد رياضى X را به اصورت زير
تعريف مى كنيم
$E[X]=\int_{-x}^{\infty} x d F(x)$
 $\int_{-\infty}^{\infty} x d F(x)=\sum_{x p \mid(x) \geq 1} x p(x)$ در حالى كه X متغير تصـادنى بيوسته با تابع جگّالى f(x) باشد، داريم
$\int_{-x}^{\infty} x d F(x)=\int_{-x}^{x} x f(x) d x$
توجه كنيد كه معادلئ (9 - 1) بادر نظر كرفتن مجموع تقريبى
$\sum_{i=1}^{n} x_{i}\left[F\left(x_{i}\right)-F\left(x_{i-1}\right)\right]$
X X احتمال آن اسـت كه F

 اثباتهاى ارائه شُهه در اين نصل را بها ئبات در حالت كلى تبديل كرد .

تمرينهاى نظرى

- 1

Y

 براين كه لازم است اين دو عبارت براى E E [g(x) يكى باشند وجود ندارد . البتهه اين كه اين

 $S[g(X)]=\int_{-x}^{\infty} g(x)\left(f_{X}(x)\right)^{2} d x$

 به تناتض منجر مى شود) .
世- برا'ى يكى متغير تصادفى با مقادير صسحِح نا منفى N نشان دهيد كه
$\sum_{1=0}^{x} i P\left\{N^{\prime}>i\right\}=\frac{1}{2}\left(E\left[N^{2}\right]-E[N]\right)$
راهنماعى : Y - براى متغير تصادفى نا منفى X ثابـت كنيد
$E\left[X^{n}\right]=\int_{0}^{x} 12 \mathrm{x}^{n-1}(1-F(x)) d x$

ه - نشان دهيد
 وقتى a برابر ميانهF باشد مينيمـم مى شود . راهنماعى : بنويسيد

$$
E[|X-a|]=\int|x-a| f(x) d x
$$

rar

 تابع (•) g دو مرتيه مشتّت بذير باشد. نتــان دهيد
$E[g(X)] \approx g(\mu)+\frac{g^{\prime \prime}(\mu)}{2} \sigma^{2}$
(راهنماهى : (•) و را بر حسب سـرى تيلور حول ب بسط دهيـد . از سه جـمله اول استـفاده نموده و از بقيه جمملات صرف نظر كنيد) .

 برای
$E\left[\frac{\sum_{i=1}^{k} X_{i}}{\sum_{i=1}^{n} X_{i}}\right]$
را بيابيد

 الحتمال ץ
 بود؟ اين موضوع را بطور تحليلي ثابت كنيد .
W If 1 - - واريانس متغير تصادفى نمايعى با ميانگين

IV

 نمايش تعداد أعضـاي زير مجحوعهُ انتـخابي است . با الستفاده از تسـاوى مفروض در تمرين نظرى †ا فصل ! نشـان دهيد كه

$$
E[X]=\frac{n}{2-\left(\frac{1}{2}\right)^{n-1}}
$$

$\operatorname{Var}(X)=\frac{n 2^{2 n-2}-n(n+1) 2^{n-2}}{\left(2^{n}-1\right)^{2}}$
همهجنين براي n هاي بزر
$\operatorname{Var}(X) \sim \frac{n}{4}$
با علم به اين كـه نسـبت نـوت وتتى

$$
\text { حدى Var (Y) وتتى } \operatorname{Va} \text { ، } \text { ، مقايسه كنيد. }
$$

 نـخست رخ مى دهد . آيا استقالل در بند (الف) و بند (ب) تأثيرى دارد؟
 نتُان دهيد كه : $\bar{X}=\sum_{i=1}^{n} X_{i} / n$ باشُند، و فرض كنير
(a) $E[\bar{X}]=\mu ; \quad$ (b) $\operatorname{Var}(\bar{X})=\frac{\sigma^{2}}{n}$;
(c) $E\left[\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}\right]=(n-1) \sigma^{2}$.

ا Y- نرض كنيل X

(a) $E[$ تـعـداد مقـاديـر حـدنـصطاب $]=\sum_{i=1}^{n} 1 / j$.
(b) $\operatorname{Var}($ تـعـداد مفـاديـر حـدنـصاب) $)=\sum_{j=1}^{n}(j-1) / j^{2}$

YY- برایى مـثال مجموعه كامل براير است با
$\sum_{i=1}^{N-1} \frac{i N}{(N-i)} 2$
 كه وقتى Y آY آن كاه
(الف) ميانگين تعداد مونقيتها در חآزمايش را بيدا كنيد و آن را را بر بناميد .
(ب) براى مقدار ثابت بر ، جه انتخابى از مى كند
 در مثال
E
(الف) Var (X) را بيابيد .

(راهنماعـ: فرض كنيد i

n+1 هدتوزبعند

YY Y - واريانس متغير تصادنى دو جملهأى منفى را بيابيد .
 كنيد كه

$$
\begin{aligned}
& \text { (ج) جه انتخابى واريانس را مينيمم مى كند؟ } \\
& \text { Y Y - بمعادلّ (}
\end{aligned}
$$

ممكن را مى دهد؟ ثـرح دهيد خر 1 استفاده از اين مقدار λ مطلوب است.
Y^
(a) $\operatorname{Cov}(a+b X, c+d Y)=b d \operatorname{Cov}(X, Y)$;
(b) $\operatorname{Cov}(X+Y, Z)=\operatorname{Cov}(X, Z)+\operatorname{Cov}(Y, Z)$;
(c) $\operatorname{Cov}\left(\sum_{1}^{n} X_{i}, \sum_{1}^{\prime \prime} Y_{i}\right)=\sum_{i=1}^{m_{1}} \sum_{i=1}^{n} \operatorname{Cov}\left(X_{1}, Y_{t}\right)$.

 با الستفاده از فرمول زير نيز مى توان به دست آورد .
$\operatorname{Var}\left(N_{i}+N_{j}\right)=\operatorname{Var}\left(N_{1}\right)+\operatorname{Var}\left(N_{j}\right)+2 \operatorname{Cov}\left(N_{i}, N_{j}\right)$
$\operatorname{Cov}\left(N_{i}, N_{1}\right)=-m P_{i} P_{i}$ (ب) با المتفاده از تساوى بالا نشان دهيد
-
$\operatorname{Cov}(X+Y, X-Y)=0$
I - ا فرمول كو واريانس شرطى . كو واريانس شـرطى X و Y با فُرض Z عبارت استاز
$\operatorname{Cov}(X, Y \mid Z) \equiv E[(X-E[X \mid Z])(Y-E[Y \mid Z]) \mid Z]$
(الف) نشـان دهيد
$\operatorname{Cov}(X, Y \mid Z)=E[X Y \mid Z]-E[X \mid Z] E[Y \mid Z]$
(ب) فرمول كو واريانس شرطى زير را ثابت كنيد
$\operatorname{Cov}(X, Y)=E \mid \operatorname{Cov}(X, Y \mid Z)]+\operatorname{Cov}(E|X| Z], E\{Y \mid Z])$
(ب) در بند (ب) با قرار دادن X= = فرمول واريانس شرطى را بهدست آوريد .

Y Y -

$$
f(x)=\frac{n!}{(i-1)!(n-i)!} x^{1-1}(1-x)^{n-1} \cdot 0<x<1
$$

(الف) (i, i = 1, ..., n ، Var (X

Y

$$
\rho(X, Y)= \begin{cases}+1 & b=0 \\ -1 & b<0\end{cases}
$$

$$
\rho\left(Y^{\prime}, Z\right)=\frac{b}{\sqrt{b^{2}+2 c^{2}}}
$$

هr- نا مسارى كوشـي ـ شوارتز را ثاببت كنيد ؛ يعنى ثابت كنيد
$(E[X Y])^{2} \leq E\left[X^{2}\right] E\left[Y^{2}\right]$
(راهنمانعى : بجز Y=-tX
تبديل مى شود، نتيجه مى شـود كه براى تمام مقادير ا
$0<E\left[(t X+Y)^{2}\right]=E\left[X^{2}\right] t^{2}+2 E[X Y] t+E\left[Y^{2}\right]$
بنابر اين ريشنه هاى معادله درجه دوم

$$
E\left[X^{2}\right] t^{2}+2 E[X Y] t+E\left[Y^{2}\right]=0
$$

بايد موهومى باشند و اين موجب مى گر دد كه مبين معادله درجه دوم بايد هنفى باثـد) . צז- نشان دهيد كه أگر Y, X هستقل باشند، آن كاه

$$
E[X \mid Y=y]=E[X] \quad y \text { آن كاه برأى هر }
$$

(الف) در حالت گسسته، و (بـ) در حالت بيوسته
VV- ثابت كنيد كه
 يكى مثال نقص نشان دهيد كه وارون آن درست نيست الـي
(راهنمأع: اين ححيقت را كه E[XY] = E [XE[Y| X نابت نموده و به كار بريذ)
$\operatorname{Cov}(X, E[Y \mid X])=\operatorname{Cov}(X, Y)$.
. $E\left[X_{1} \mid X_{1}+\cdots+X_{n}=x\right]$

را بيابيد

 اراثنه نـده در مثال ه ه ثرا ثابثت كنيد

 FFr -

مي دهيم.
(راهنمايى : برحسب زمان اولين رويدادخط ، نُرطى كنيدو معادله زيررا به دست آوريد :

$$
E[X]=(1-p) \sum_{i=1}^{r} p^{i-1}(i+E[X])+(1-p) \sum_{i=1}^{\infty} p^{i-1} r
$$

و آن را برایى E T X ساده و حل نماييد.

 از تكرار n بار عمل فوقالذير الذير باشد :

$$
M_{n+1}=\left(1-\frac{1}{a+b}\right) M_{n}+1
$$

(ب) با استفاده از بند (الف) ثابت كند

$$
M_{n}=a+b-b\left(1-\frac{1}{a+b}\right)^{n}
$$

(ب) الحتمال آن كه (n+1) امين توب انتخابى سفيد باشد هفدر است؟
 c به تسمي انتخاب مى شوند كه

$$
E\left[\left(Y-\left(a+b X_{1}+c X_{2}\right)\right)^{2}\right] .
$$

بيابيد

$$
\begin{aligned}
f(x, y)= & \frac{1}{2 \pi \sigma_{x} \sigma_{y} \sqrt{1-\rho^{2}}} \\
& \times \exp \left\{-\frac{1}{2\left(1-\rho^{2}\right)}\left[\left(\frac{x-\mu_{x}}{\sigma_{x}}\right)^{2}+\left(\frac{y-\mu_{y}}{\sigma_{y}}\right)^{2}\right.\right. \\
& \left.\left.-2 \rho \frac{\left(x-\mu_{x}\right)\left(y-\mu_{y}\right)}{\sigma_{x} \sigma_{y}}\right]\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \text {. } \mu_{y}+\rho \frac{\sigma_{y}}{\sigma_{x}}\left(x-\mu_{x}\right) \\
& \text { (ب) نشان دهيد كه (}
\end{aligned}
$$

.

(ث) آيا (الف)، (ب) و (ت) با نتيجه تمرين نظرى (YY، كه، بيان مى كند متغيرهاي تصادفى نرمالل توأ نا همبسته مستقلند، تناقض دارده

$$
\text { 根 } \mu_{y}+\rho \frac{\sigma_{y}}{\sigma_{x}}\left(X-\mu_{x}\right)
$$

$$
E[Y \mid X]=a+b X
$$

در اين صورت

$$
a=\mu_{y}-\rho \frac{\sigma_{y}}{\sigma_{y}} \mu_{x} \quad b=\rho \frac{\sigma_{y}}{\sigma_{x}}
$$

(جرا) ؟ اين مطلب را مستقيمآ ثابت كيد .
Zr- براي متغيرهاي تصادفى X X X نشان دهيد كه
$E\left[\left(X-Y^{\prime}\right)^{2}\right]=E\left[X^{2}\right]-E\left[Y^{2}\right]$
كه در آن

$$
Y=E[X \mid Z]
$$

 فرض كنيد كـه هر فرد تا بايان عمـرش ز زنوزاد جـديد باد با احتمال

$$
\begin{aligned}
& \text { يعنى Y با احتمالل مسـاوى برابر XX Xا X - است . } \\
& \text { (الف) آيا X X Y مستقلند؟ } \\
& \text { (ب) (ب (} \\
& \text { (ب) نشان دهيد كه Y ن نرمال با مبانگين o و و واريانس ا الست } \\
& \operatorname{Cov}(X, Y)=0 \text {) } 0 \text { (ت نـان دهيد (ت) }
\end{aligned}
$$

 فرض كنيد نوزادان حاصل يك فرد منفرد باشـد .
 (الف) نشان دهيد
$E\left[X_{n}\right]=\mu E\left[X_{n-1}\right]$

> (ب) با استفاده از تسمت (الف) نتيجه بڭيريد كه
$E\left[X_{n}\right]=\mu^{n}$
(ب) نشان دهيد كه
$\operatorname{Var}\left(X_{n}\right)=\sigma^{2} \mu^{n-1}+\mu^{2} \operatorname{Var}\left(X_{n-1}\right)$
(ت) با استفاده از (ب) نتيجه بگيريدكه
$\operatorname{Var}\left(X_{n}\right)= \begin{cases}\sigma^{2} \mu^{n-1}\left(\frac{\mu^{n}-1}{\mu-1}\right) & , \mu \neq 1 \\ n \sigma^{2} & , \mu=1\end{cases}$

 فرض كنبد و قتى جامعه با يك فرد تنها شروع مى شو π هـ جنين احتمالى باشد
$\pi=P\left(2\right.$ (2) $\left.\mid X_{0}=1\right)$
(ث) ثابت كنيد كه π در رابطه زير صدق مى كند
$\pi=\sum_{,=0}^{\infty} P_{r} \pi^{\prime}$
(راهنمايى : روى تعداد نوزاد نخـتين عضر جامعه شرطى كنيد)
 همجنين ، با مشتق كيرى فر مولهاى ميانگين و واريانس را ثابت كنيد.
 مولد كتشتاور X بيان كنيد .
 نشان دهيد كه $\psi(t)=\log \phi(t)$

$$
\Psi^{\prime \prime}(t)_{i=0}^{!}=\operatorname{Var}(X)
$$

متغيـرهاى تصادنى همتوزيع و مستـقل، هريكـ با ميانگين X ، ... ، $\frac{1}{\lambda}$ باشـند . با استفاده از جدولY-V توزيع Cor (X, Y) الز تابع مولد كششتاور توأم محاسبه مى شود .

$\operatorname{Cov}\left(X_{i}, X_{j}\right)=0 \quad j \neq j$

- Cov (Z, Z²)

مسائل

 كند • ا امتياز مى گيرد، اكر بين اتا بث سانتى مترى هدف اصصابت كند 10 امتباز مى گيرد، و اكر به Y تاه سانتى مترى هذف بخورد شده را بيابيد اكر
(الفـ) تير اندازى ششخص در درون داير أى به شـعاع A سانتى متر به مركز هدن داراى توزيع يكنوانخت باشد .
 نرمال همتوزيع مستقل با بارامترهاى

 بيابيد
 برایى يانتن قطهه هايى معيوبب بايد هربار بتصادف يكى از تطمه، ها را آزموده، در اين صورت ميانگين آزمونهاى لاز مر را بيابيد .

 يادداشتت كند، و (ب) A عدد Y با را ياد داشت كند.

 انجام مى دهد نيز بستگى دارد .)

 مقدار بازى شر طى براى بازيكن B مى نامند.

می شُوند

مى بانشـد . يرداخحت شاناخص برالى يكى واحـد شُرط بندى بر طبق جلدول زير اسـت :

ميانگين برد بازيكن با ماثين شكافـ دار را در يك بار بازى بيابيد .

 در هريكاز دو حالتت زير بيرسيد حساب كنيد:

 مشتريان بايد جقدر دريافت كند.
 تعداد معيوبها در نمونه را بيابيد

 به حالت كار مينيم كردد .

 فرض كنيد

$$
X_{1} \geq X_{2} \geq \cdots \geq X_{N-1}<X_{N}
$$

نختين درس احتمال
 . $\mathrm{E}[\mathrm{N}]=\mathrm{e}$

(c) $f(x)= \begin{cases}\frac{5}{x^{2}} & x>5 \\ 0 & x \leq 5\end{cases}$
r| - تابع جگالى X عبارت است از
$f(x)= \begin{cases}a+b x^{2} & 0 \leq x \leq 1 \\ 0 & \text { در }\end{cases}$
اكر
If زير

$$
f(x)=\alpha^{2} x e^{-\alpha x} \quad x \geq 0
$$

ميانگين زمان عمر جنين لامبى را بيابيد.
 بانشند . مطلوب است:
(a) $E\left[\max \left(X_{1}, \ldots, X_{n}\right)\right]$.
(b) $E\left[\min \left(X_{1}, \ldots, X_{n}\right)\right]$.

 در اين صورت امتياز زير را كــب مى كند :

$$
\begin{array}{rr}
1-(1-p)^{2} & 1-p^{2} \\
\text { اكر باران نبانرد بارد } 1 \text { بار }
\end{array}
$$

 ماكزيمم شود هه هعدار برايى P بايد اعلام كنتد.

(ب) اكنون فرض كنيد كه طول جاده بى نهايت اسـت و از نقطه 0به سممت مه امتلداد دارد،

كنيم وتتى X نمايع با بارامترخ الست.
(ب) m را ميانه توزيع دلخونا Fol كويـم اكر

$$
F(m) \geq \frac{1}{2} \quad, \quad 1-F(m) \geq \frac{1}{2}
$$

 مينيمم مي كند جه مي توان كفت؟

19- روزناهد فروشى روزنامه رابه • 1 ريال خريده و به 10 ريال مي فروشد و ا اجازه بازگرداندن

 ماكزيمم كردد.

نرخ c مـواجـه مى شـود. (اين هزينه اغلب به عنوان هزينة رخـايت مـنظور مى كـرديد . زيرا

 ميانگين سود را ماكزيمبم مى كند تعيين كنيد.
 است تكرار كنيد.
 A 0 تا 1 ران نــان مي دهد بازي

 لِيداكنـد
 ماكزيمم كند به صورت زير است.
$f(x)= \begin{cases}0(B+5) & x<\frac{1}{2} \\ 1 & 1 \leq x<\frac{1}{2} \\ M & 1 \leq x<1\end{cases}$

ارسال شــده بانشد در اين صورت R=x + N مفدار دريافتى است وقتى N نمايش خطاى
 كشف بيام به كار مى رود به صورت زير استـ. R > C C

فرض كنيـد اگر بيام 0 ارسـال شود و به غلط يــام 1 دريافت كردد هزينهاى برابر 10 واحد

 (ارسـال شــود،

 كار برده شده عبارت اسـت

$$
\begin{aligned}
& \text { | اكر R> } 0 \text { تتجهب مى كيربم } \\
& \text { الكر R }
\end{aligned}
$$

 -عباشد. وقتى بيام ارسالى با احتمال مساوى 0 يا 1 الست جه مقدار x ميانگين كل هزينه رامينيمم مى كند.

 مى نـوند و روى هم در اين كروه 1 آزّزون انجام مى شودد . فرض كيند آحتمال آن كه فردى

مبتلا باشد براى تمام افراد مستقل از يكديگر ٪ , • باثـد :

$X= \begin{cases}z & z>x \\ 0 & \text { z } \\ \text { 2 غير اين } & \end{cases}$
$E[X]=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}$ نـنان دهيد كه

 نمايش تعداد هدسهاي درست باشـد
(الفـ) اكر شــما هيج اطلاعى در باره حـدسهاى قبلى خود ندائتـه بانــد نشان دهيـد كه براى
هر استراتزّى E E [N].
(ب) فرض كنيد بس از هر حدس كارتى كه در هر موقعيت سئوال بوده به شــما نشان دهند. فكر

$$
\begin{aligned}
E[M] & =1 / n+1 /(n-1)+\cdots+1 \\
& \approx \int_{1}^{n} \frac{1}{x} d x=\log n
\end{aligned}
$$

$$
\begin{aligned}
E[N] & =1+1 / 2!+1 / 3!+\cdots+1 / n! \\
& \approx e-1
\end{aligned}
$$

بيان كنيد) .

بانٌـد . ميانگكين تعلاد تطابتهايى را كهر

استمال كرنتّ هر سششر از نوع i مستقل از انواع كرفته ثـده تبلى برابر خحو اهد بو دبا

$$
P_{1}, i=1, \ldots, r \quad \sum_{1}^{r} P_{1}=1
$$

(الفي) مـيانگّين تـعلاد ححشرانت را كـه كـرفتـه شـــده اند قبل از اين كـه يكى از نوع اول كـر فتـه
تُود، حسمابـ كنيل .
(ب) ميانگين تعلاد انـواع سحشراتى كـه كرفته شــلـه اند تبل از اين كـه يكي از نوغ اول كرفته
شود را سحساب كنيل .

 ($\mathrm{j}=1,2, \ldots, r_{6} \mathrm{~W}\left(\mathrm{i}_{\mathrm{j}}\right) / \sum_{k=1}^{\mathrm{F}} \mathrm{W}\left(\mathrm{i}_{\mathrm{k}}\right)$ ثبل از توب شُسماره ا را حسساب كنيل .

(الفى) ميانگكين تعداد روزهاي سال كه روز تولد دتيقاً r نفر بانـد .
(ب) ميانگين تعلاد روزهاي تولل متمايز
 تـود

 توبهاى سفيد بين اين سهـ توب را حـساب كنيد .

. انتخابى بانـد، و درغير اين صورت فرض مى كنيم

فرض مى كنيم Yi=0 . اكنون تعداد توبهاى سفـيد بين اين سه توب را می توان به صورت زير نوشتـ.
$\sum_{i}^{5} X_{i}+\sum_{i}^{8} Y_{n}$

$E\left[(2+X)^{2}\right]$
$\operatorname{Var}(4+3 X)$
(ب)

(الف)

 به كاربريد
 بر ابر نتيجهُ اول منهاى نتيجهٔ دوم بانــد . . .

$$
f(x, y)=\left\{\begin{array}{lc}
2 e^{22} / x & 0 \leq x<\infty, 0 \leq y \leq x \\
0 & \text { غ } \quad \text { غ } ر \text { ر اين صور }
\end{array}\right.
$$

. . $\operatorname{Cov}(X, Y)$
| ترار دادن
YY- تابع جگالى توأم X و Y عبارت است از

$$
f(x, y)=\frac{1}{y} e^{-(y+1 / 1)}, x>0, y>0
$$

. $\operatorname{Cov}(X, Y)=1$ را بيابيد و نشان دهيد كه E [Y], E [X]

 مي كنيد؟
(Yץ مي كنيهم مـيـانگين و واريانس تعـناد زرجهـايى را حـسـاب كنيـد كـه شامل يكى مـرد و يكى زن باشند . اكنون فرض كنيـد كه • Y فرد عبارت از • ا زوج متـاهل باشند ميـانگين و وأريانس

 بانتـند، و فرض كنيد كه Y نامعلوم G باثــند . اكنون اين n+m متغير را مرتب كنيد و نرض كنيد

متتغيـر تصـادفى R= استأندارد به نام آزمون مجمـوع رتبه هاى ويلككسن برإى اين آزمون كه G, F همترزيعند،

رابيابيد
(راهنمايى : ننايج مئال ه بر رابه كار بريد).

 ونرض كنيد

براى بردار
 در اين صورت
ميانگين و واريانس R جيست؟

واريانـ ’ باشند، مطلوب است همبستگى

$$
\text { . } X_{3}+X_{4}, X_{1}+X_{2} \text { (الفـ) و ، و ، } X_{2}+X_{4}, X_{1}+X_{2}
$$

 $I_{t}= \begin{cases}1 & 2 \\ 0 & \text { در غير اين صور: } i\end{cases}$
و نشان دهيد كه

جـايگذارى به ترتيب با حـجم تويهاى سفيد در دو نمونه باشند. . - عبارت است از : Y , X , X

$$
f(x, y)=\frac{e^{-x / y} e^{-}}{y} \quad 0<x<\infty ; 0<y<\infty
$$

$$
\begin{aligned}
& \text {.ر ارحساب كنيد } \mathrm{E}\left[\mathrm{X}^{2} \mid Y=\mathrm{y}\right]
\end{aligned}
$$

$$
f(x, y)=\frac{e^{\cdots}}{y} \quad 0<x<y, 0<y<\infty
$$

r- يك زندانى در سلولى كه داراراى

 احتمالات ه, ، ، r, • و r • • انتخابب مى كند، ميانگِين روزها تا زمانى كه زندانى فرار كند
جیدر است؟

 متغير تصادفى بواسن با ميانگين 9 بانـد.

 - هV كنيد
((A

 كردن يِيدا كنيد .

كه در يكـ سال. .
(الف) 0 هحادثه، و و (ب) دقيقاً

نداثتـه باثشل جقدر است؟
 مى باشد تكرار كنيد .
Y Y

 صـورت مقـدار P رامى توان به عنوان مـــدار متـغير تصـادنى كـه روى (0, 0) دارانى توزيع يكنواخت اسست در نظر گرفت . اگر يك سكه بتصادف از كيسه انتخاب نموده و آن را دوبار

يرتاب كنيم، مطلوب است اشتحمال آن كه :
(الف) ثرتاب اول شير بيايد و (ب) هردو برتاب شير بيايند.

Y Y - در مثـال V ب فرض كنيد S عـلامتى باشــد كه ارسال مى شــود و R علامت دريـفت شده باشد.
(الف) E [R] راحساب كنيد.
. ار ار (ب) (ب) آيا R دارای توزيع نرمال است؟
. را بابيد
SF

تعيين كنيد و E [(X - Y)

90- فرض كنيد X متغير تصادفى نرمال با ميانگين

$$
\text { (الفش) E [(X - } \left.-\mu)^{3}\right] \text { را تعيين كنيد. }
$$

(ب) با استفاده از تــمت (الفـ) E E X
(ج) جواب تــمت (ب) را با مشتق گيرى از تابع مولد گشتاور بررسى كنيد. .

$$
\text { : است } \phi_{Y}(t)=\left(\frac{1}{4}\right)^{10}\left[3 e^{t}+1\right]^{10} \text { مستقل باشند. مطلوب است }
$$

-9V دو تاس برتاب مى كنيم، فرض كنيد X مقدار تاس اول و Y مجموع مقادير دو تاس باشد .

$$
f(x, y)=\frac{e^{-x} e^{-y / 2}}{x} \quad 0<x<\infty, 0<y<\infty
$$

(الف) تابع مولد گشتاور توأمY, X را با بيابيد.
(ب) توابع مولد گثتاورهاى منفرد را يِيدا كنيد.

$$
\begin{aligned}
& \text { تابع مولد گُتّاور توأم Y. }
\end{aligned}
$$

كضاياى حلى

$$
1 \text { - مقدمه }
$$

r- نا مساوى جييشف و كانوت ضعيف اعداد بزركت
اين بخشت رابا ا'باتت نتيجه اى كه نا مساوى ماركف ناميده مى شود شـروع مى كنيم

حكه Y-
 براى هر مقدار a> 0 داريم
$P\{X \geq a\} \leq \frac{E[X]}{a}$

برهان : اثبات رابرای حالتي كه X بيوسته با جگاليىf است اراثه مى كنيم.

$$
\begin{aligned}
E[X] & =\int_{0}^{\infty} x f(x) d x \\
& =\int_{0}^{a} x f(x) d x+\int_{a}^{x} x f(x) d x \\
& \geq \int_{a}^{x} x f(x) d x \\
& \geq \int_{a}^{x} a f(x) d x \\
& =a \int_{a}^{x} f(x) d x \\
& =a P\{X \geq a\}
\end{aligned}
$$

(در حالت كلى ائبات دقيقاً با جايكزينى dF(x) بجاى f(x) dx انجام مى شود) . حكم

مكم Y-Y نا مساوى جييشـ

أكر X Xتغيرى تصـادفى با ميانگين متناهي H و واريانس
2 داريم k>0

$$
P\{|X-\mu| \geq k\} \leq \frac{\sigma^{2}}{k^{2}}
$$

برهاى : جون (X - $)$ يكى متغير تصادفى نـا منفى است لذ! براى حصول نا مساوى زير مى توانيم از نا مساوى ماركف با (a=k²) استفاده كنيم

$$
\begin{equation*}
P\left\{(X-\mu)^{2} \geq k^{2}\right\} \leq \frac{E\left[(X-\mu)^{2}\right]}{k^{2}} \tag{1-Y}
\end{equation*}
$$

$$
P\{|X-\mu| \geq k\} \leq \frac{E\left[(X-\mu)^{2}\right]}{k^{2}}=\frac{\sigma^{2}}{k^{2}}
$$

معادل بوده و اثبات كامل است.
اهمميت نا مسـاويهالى ماركف و جيبيـفـف در اين است كهه ما را در به دست آوردن كـران

احتمالها وتتى نقط ميانگين با مـيانگين و واريانس توزيع احتمال معلوم هسـتند كمك مى كند
 و نيازى به كرانهاءى فوق نيست.
 يكى هفته متغير تصادفى با ميانگين • ه است است

Y- اگر واريانس توليد يك هفته مساوى

קل : فرض كنيد X تعداد اقلامى بانـد كه در يكى هغته توليد مى شوود . 1- طبق نامساوى ماركف داريم

$$
P\{X>75\} \leq \frac{E[X]}{75}=\frac{50}{75}=\frac{2}{3}
$$

Y- طبت نامساوى جبيشف داريم

$$
P\{|X-50| \geq 10\} \leq \frac{\sigma^{2}}{100^{2}}=\frac{1}{4}
$$

$$
P\{|X-50|<10\} \geq 1-\frac{1}{1}=\frac{3}{1}
$$

$$
\text { در نتيجه احتمال توليد هفتگى بين • Y و • } 9 \text { دست كم VQ/ • است . }
$$

جون نامساوى خبيشف براى تمام توزيعهـاى متغير تصادنى X معتبر المـت ، در بيشـتر
 روشن شـدن مطلب به مثال Y ب ب توجه كنيد .
 Vilr = $\frac{25}{3}$

$$
P\{|X-5|>4\} \leq \frac{25}{3(16)} \approx .52
$$

در صو دتى كه نتيجهُ درست عبارت المـت از
$P\{|X-5|>4\}=.20$

بنابر اين گُرجه نامسـاوى جبيـشف در دـت اسـت ولى كران بالايى كه حاصل مى شـود بهاحتـمال واقتى نزديك نيست .

نامساوى خبيشف نتيجه مى شُود

$$
P\{|X-\mu|>2 \sigma\} \leq \frac{1}{1}
$$

در صور تى كه احتمال واقتى به صورت زير داده مى شود

$$
P\{|X-\mu|>2 \sigma\}=P\left\{\left|\frac{X-\mu}{\sigma}\right|>2\right\}=2[1-\Phi(2)]=.0456
$$

نامساوى خبيشف اغلب به عنوان يك وسيلهُ نظرى در اثبات نتايج مورداستفاده ترارمى كيرد . اين
 تشريح مى شود.

إكر

$$
P\{X=E[X]\}=1
$$

به بيان ديگُر تنها متغير هاى تصادفى كه واريانـ صفر دار ند آتهايى هستد كه با احتمال ا ثابتند . برهان : بنا به نا مساوى جبيشف براى هر 1 n 1 داريـم $P\left\{|X-\mu|>\frac{1}{n}\right\}=0$

با فرض n n n و استفاده از خاصيت بيوستگى احتمالن داريم
$0=\lim _{n \rightarrow \lambda} P\left\{|X-\mu|>\frac{1}{n}\right\}=P\left\{\lim _{n \rightarrow x}\left\{|X-\mu|>\frac{1}{n}\right\}\right\}$

$$
=P\{X \neq \mu\}
$$

و نتيجه أثبات مى شود.
تضيف
 هريكى دارای ميانگين متناهى
$P\left\{\left|\frac{X_{1}+\cdots+X_{n}}{n}-\mu\right|>\varepsilon\right\} \rightarrow 0 \quad, n \rightarrow \infty$

برهان : نتــجه را نـقط با تو جه به نرض اضافى كـه متـغيـرهاى تصادفى داراى واريانس مـتناهى هستند أبّات مي كنيم . اكنون جون
$E\left[\frac{X_{1}+\cdots+X_{n}}{n}\right]=\mu \quad, \quad \operatorname{Var}\left(\frac{X_{1}+\cdots+X_{n}}{n}\right)=\frac{\sigma^{2}}{n}$
از نامساوى خييشـف نتيهج مي شُود
$P\left\{\left|\frac{X_{1}+\cdots+X_{n}}{n}-\mu\right|>\varepsilon\right\} \leq \frac{\sigma^{2}}{n \varepsilon^{2}}$
حال اگر $n \rightarrow \infty$ حكـم ثابت مى شود.
 متغير هاى تصادفى 1-0 (يعنى برنولى) هستند اثبات شـد . اظهار نظر و اثبات اين تضيه دركتاب

 بزر گ كه در تضيه Y - ا ارائه شد تو سط خحين هین رياضمى دان روسى اثبات شـده است .
"r - هضيه حل مركزى
قضـئه حـد مركزى يكى از بـر جستـهترين نتايج در نظريه أحـتمـال است . اين قضـيه بطور نادقيت بيان مى كند كـه توزيع مجـموع تعـداد زيادى از متـغيرهـاى تصادفى مستتقل تـقريباً نـرمال
 تصادفى هـستقل فراهم مى كنـد بلكه در بيان اين حقيـتـت بارز كه فراوانيـهاى تجر بى جامـعه هایى بسيا ر زيادى منحنيهاى زنگى شكل (يعنى نر مال) هستند نيز به دا كمكى مى كند . ساده ترين شكل تضيهُ حد مركزى به صورت زير اسـت :

لضيه F- أ لضيهُ حل مركزى
فرض كنيد X X دنبـاله إى از متـغــرهاى تصادفى مـستـقل همتـوزيع با

ميانگين ${ }^{\mu}$ و واريانس ${ }^{2}$ باشثد، در اين صورت توزيع
$\frac{X_{1}+\cdots+X_{n}-n \mu}{\sigma \sqrt{n}}$
وتتى n $n \rightarrow \infty$ به نرمال استانذارد ميل مى كند . يعنى $P\left\{\frac{X_{1}+\cdots+X_{n}-n \mu}{\sigma \sqrt{n}} \leq a\right\} \rightarrow \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{a} e^{-x^{2} / 2} d x \quad, \quad n \rightarrow \infty$

كليد اثبات تضيهُ حد مركزى لـم زير أست كه آن را بدون أبّات بيان مى كنيـم .
$1-r n$
فرض كنيد مولد كــشتارر مولد گُشتاور

$$
\text { باشـد (} \mathrm{F}_{7_{1:}}^{\prime \prime \prime} \rightarrow \mathrm{F}_{2}(\mathrm{t})
$$

ا

 كثتاور $\frac{X_{i}}{\sqrt{n}}$

$$
\left.\begin{array}{rl}
\phi_{X_{i}, ~} / 2 \\
& (1)
\end{array}=E\left[\exp \left\{\frac{1 X_{2}}{\sqrt{n}}\right\}\right]\right]=\left(\frac{1}{\sqrt{n}}\right)
$$

$$
\text { بنابر اين تابع مولد گشتاور } \sum_{i=1}^{n} X_{i} / \sqrt{n} \text { است از }
$$

$$
\phi_{\sum_{r-1}^{n}, x_{i}, \bar{n}}(t)=\left[\phi\left(\frac{1}{\sqrt{n}}\right)\right]^{n}
$$

$$
\begin{aligned}
& \text {. } \mathrm{F}_{z_{n}}(t) \rightarrow \phi(t) ، n \rightarrow \infty \text {, } n \\
& \text { سال مى خراهيم تخيهُ حد مركزى را انبات كنيم • }
\end{aligned}
$$

فرض كنيد

$$
L(t)=\log \phi(t)
$$

و توجه داشته باثـيد كه

$$
\begin{aligned}
L(0) & =0 \\
L^{\prime}(0) & =\frac{\phi^{\prime}(0)}{\phi(0)} \\
& =\mu \\
& =0 \\
L^{\prime \prime}(0) & =\frac{\phi(0) \phi^{\prime \prime}(0)-\left[\phi^{\prime}(0)\right]^{2}}{[\phi(0)]^{2}} \\
& =E\left[X^{2}\right] \\
& =1
\end{aligned}
$$

اكنون برابي اثبـات تـفـيـه بايـد نشـان دهيم كـه وتـت بطور معادن نتـان دهيم كهي وتّى nL توجه مى كنيم كه

$$
\begin{aligned}
\lim _{n \rightarrow x} \frac{L(t / \sqrt{n})}{n^{-1}} & =\lim _{n \rightarrow x} \frac{-L^{\prime}(t / \sqrt{n}) n^{-3 / 2}}{-2 n^{-2}} \\
& =\lim _{n \rightarrow x}\left[\frac{L^{\prime}(t / \sqrt{n}) t}{2 n^{-1 / 2}}\right] \\
& =\lim _{n \rightarrow x}\left[\frac{-L^{\prime \prime}(t / \sqrt{n}) n^{-3 / 2} t^{2}}{-2 n^{-3 / 2}}\right] \\
& =\lim _{n \rightarrow x}\left[L^{\prime \prime}\left(\frac{t}{\sqrt{n}}\right) \frac{t^{2}}{2}\right] \\
& =\frac{t^{2}}{2}
\end{aligned}
$$

بنابر اين در حالت اسـتاندارد مسـده

تيصره : تضيه r- ا كر جه نتط بيان مى كند كه برای هر a

$$
P\left\{\frac{X_{1}+\cdots+X_{n}-n \mu}{\sigma \sqrt{n}} \leq a\right\} \rightarrow \Phi(a)
$$

 براى هر a داشتته باشيهم

 براى ساللت دلهواه p اثبات كرديد. (جون يكى دتغير تصادفى دوجلمه اهى را مى توان بهصورت مجموع n متـغير تصسادنى برنولمى مستقل همتـوزيع در نظر كرخت لذا اين مطلـب تقريب نمودن

 نبودو در واتع آن را بسهولت نمـى توان دقيق نمود . ابتـدا لياپانف رياضـبدان روسى در سـالهاى

 سال نورى اندازه كـيرى كند كر جه هنسـم يكى روش اندازه كيرى دارد و مى داند كه به علت تغيـير

 واقعى استفاده مى كند. اكُ منجم باور كند كه مقادير اندازه گيريها متغيرهاي مستقل همتوزيع با

 نِياز دارد؟

$$
Z_{n}=\frac{\sum_{i=1}^{n} X_{i}-n d}{2 \sqrt{n}}
$$

توزيع آن تقريباً يكى نرمال استاندارد اسست . بنابراين

$$
\begin{aligned}
P\left\{-.5 \leq \frac{\sum_{i=1}^{n} X_{1}}{n}-d \leq .5\right\} & =P\left\{-.5 \frac{\sqrt{n}}{2} \leq Z_{n} \leq .5 \frac{\sqrt{n}}{n}\right\} \\
& \approx \Phi\left(\frac{\sqrt{n}}{4}\right)-\Phi\left(-\frac{\sqrt{n}}{4}\right)=2 \Phi\left(\frac{\sqrt{n}}{4}\right)-1
\end{aligned}
$$

 سال نورى دتت دانته باتــد بايد "n اندازه كيرى انجام دهد ، بطورى كه

$$
z \Phi\left(\frac{\sqrt{n^{*}}}{4}\right)-1=.95 \quad \longrightarrow \quad \Phi\left(\frac{\sqrt{n^{*}}}{4}\right)=.975
$$

و بنابر اين از جدول ه-1 نصل ه داريم

$$
\frac{\sqrt{n^{*}}}{4}=1.96 \quad \longleftarrow \quad n^{*}=(7.84)^{2}=61.47
$$

نا مساوى جبيشيف حل كند ؛ جون
$E\left[\sum_{i=1}^{n} \frac{X_{i}}{n}\right]=d \quad \operatorname{Var}\left(\sum_{i=1}^{n} \frac{X_{i}}{n}\right)=\frac{4}{n}$
از نا مسـاوى جبيينف نتيجه مى شود كه
$P\left\{\left|\sum_{1 \times 1}^{n} \frac{X_{1}}{n}-d\right|>.5\right\} \leqslant \frac{4}{n(.5)^{2}}=\frac{16}{n}$

مثال

 نمود. احتمال اين كه اين استاد مجبور به تدريس دو كروه بائـد جقدر استـ؟ حل : جواب دقيت ${ }^{\text {قا }}$

 دهددأريم

$$
\begin{aligned}
P\{X \geq 120\} & =P\left(\frac{X-100}{\sqrt{100}} \geq \frac{120-100}{\sqrt{100}}\right\} \\
& \approx 1-\Phi(2) \\
& =.0228
\end{aligned}
$$

در اين جا از اين حقيفت استفاده نمودهايم كه واريانس يكى منغير تصادفى يواسن برابر با ميانگين آن است.

$P\left\{30 \leq \sum_{i=1}^{10} X_{i} \leq 40\right\}=P\left\{\frac{30-35}{\sqrt{\frac{5010}{12}}} \leq \frac{\sum_{i=1}^{10} X_{i}-35}{\sqrt{\frac{50}{12}}} \leq \frac{40-35}{\sqrt{\frac{5 \pi}{12}}}\right\}$

$$
\begin{aligned}
& \approx 2 \Phi(\sqrt{6 / 7})-1 \\
& \approx .65
\end{aligned}
$$

مثال r ت : فرض كنيد i
 حل : هورن Var (Xi)=

$$
\begin{aligned}
P\left\{\stackrel{10}{1}_{10} X_{1}>6\right\} & =P\left\{\frac{\sum_{1}^{10} X_{t}-5}{\sqrt{10\left(\frac{1}{12}\right)}}>\frac{6-5}{\sqrt{10(12)}}\right\} \\
& \approx 1-\Phi(\sqrt{1.2}) \\
& \approx .16
\end{aligned}
$$

بنابر اين تنها در 9 درصصد موارد
هنگامى كه X ها متغنير هاى تصادفى مستقل ولى لزوماً همتوزيع نيستند تضييهُ حلدمركزى هـمجنين وجود دارد . جنبهأى از اين تضيه كه به هيج وجه كلى ترين آن نيسـت به شـرح زير اسـت .

فرض كنيل واريانسـهأى آنها به ترتيب $]$

داششته باشيم
$P\left\{\frac{\sum_{i=1}^{n}\left(X_{i}-\mu_{i}\right)}{\sqrt{\sum_{i=1}^{n} \sigma_{i}^{\prime}}} \leq a\right\} \rightarrow \Phi(a)$
وتْـى n n n

甲- النون لوى اعداد بزرك
 مى كند كه متوسط دنبالهالى ازمتغيرهاى تصـادفى مستقل همتوزيع با احتمال ا به مبانگين توزيع

فرض كنيد , دنباله ای از متغير هاى تصادفى مستقل همتوزيع باثد كه هريك

نتخستين درس أتمنمال

ميانگّين متناهى]

$$
\frac{X_{1}+X_{2}+\cdots+X_{n}}{n} \rightarrow \mu \quad, \quad n \rightarrow \infty^{\prime}
$$

به عنوان كاربردى از تـانون توى اعدلاد بزر گـ فرض كنيـد دنبالنه أى از آزمـايشهاى مسـتقل
 رخ دادن E در هر آزمايش ويرّه باششد. با فر فـ

طبت قانون قوى اعداد بزرگ با احتمال ا داريم

$$
\begin{equation*}
\frac{X_{1}+\cdots+X_{n}}{n} \rightarrow E[X]=P(E) \tag{1-Y}
\end{equation*}
$$

هون
 مى دهد برابر P(E) است .
 دارایى اهمميت ويزّهاى أسـت.

ف i=1....,n، $\operatorname{Var}\left(X_{i}\right)=\sigma_{i}^{2}<\infty$ $P\left\{\max _{i=1, n} \mid X_{1}+\cdots+X_{i}^{\prime}>a\right\} \leq \sum_{i=1}^{n} \frac{\sigma_{i}^{2}}{a^{2}}$

$$
\left.P\left\{\lim _{n \rightarrow x} \mid X_{1}+\cdots+X_{n}\right)^{\prime} n=\mu\right\}=1
$$

1 - يعنى قانون توى اعداداد بزركـ بيان مى كند كه
 $\left(X_{i}+\ldots+X_{i}\right)^{2} \leq a^{2} ، i=1,2, \ldots, n$ آن را مساوى n تعريف مى كنيم . يعنى تعريف مى كنيم.
$N=1 \quad X_{1}>a^{2}$
$N=2 \quad X_{1}^{2} \leq a^{2},\left(X_{1}+X_{2}\right)^{2}>a^{2}$
$N \stackrel{=}{=} \quad X_{i}^{2} \leq a^{2}, \ldots,\left(X_{1}+\cdots+X_{i-1}\right)^{2} \leq a^{2},\left(X_{1}+\cdots+X_{i}\right)^{2}>a^{2}$
$N \stackrel{\vdots}{=} n \quad\left(X_{1}+\cdots+X_{1}\right)^{2} \leq a^{2}, i=1,2, \ldots, n-1$
اكنون هيون دو بيشـامد
$\left\{\max _{i=1 \ldots n}\left(X_{1}+\cdots+X_{i}\right)^{2}>a^{2}\right\} \quad, \quad\left\{\left(X_{1}+\cdots+X_{N}\right)^{2}>a^{2}\right\}$

معادلند از نا مساوى ماركف نتيجه مى شود كه

$$
\begin{aligned}
P\left\{\max _{i=1 . \ldots}\left(X_{1}+\cdots+X_{1}\right)^{2}>a^{2}\right\} & =P\left\{\left(X_{1}+\cdots+X_{N}\right)^{2}>a^{2}\right\} \\
& \leqslant \frac{E\left[\left(X_{1}+\cdots+X_{N}\right)^{2}\right]}{a^{2}}
\end{aligned}
$$

اكُر بتو انيبم نشـان دهيـم كه

$$
E\left[\left(X_{1}+\cdots+X_{v}\right)^{2}\right] \leq E\left[\left(X_{1}+\cdots+X_{n}\right)^{2}\right]
$$

آن كاه نتيهج از معادلهُ (Y-Y) ساصل مى شـود زيرا

$$
\begin{aligned}
E\left[\left(X_{1}+\cdots+X_{n}\right)^{2}\right] & =\operatorname{Var}\left(X_{1}+\cdots+X_{n}\right) \\
& =\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right) \\
& =\sum_{i=1}^{n} \sigma_{i}^{2}
\end{aligned}
$$

براي اثبات أين نا مساوى روى N شرط مى گذاريم و ابتدا تو جه مى كنيم كه

$$
E\left[\left(X_{1}+\cdots+X_{n}\right)^{2} \mid N=n\right]=E\left[\left(X_{1}+\cdots+X_{N}\right)^{2} \mid N=n\right]
$$

$$
\begin{align*}
& E\left[\left(X_{1}+\cdots+X_{n}\right)^{2} \mid N=i\right] \\
&= E\left[\left(\left(X_{1}+\cdots+X_{i}\right)+\left(X_{+1}+\cdots+X_{n}\right)\right)^{2} \mid N=i\right] \\
&= E\left[\left(X_{1}+\cdots+X_{1}\right)^{2} \mid N=i\right] \\
&+2 E\left[\left(X_{1}+\cdots+X_{1}\right)\left(X_{i+1}+\cdots+X_{n}\right) \mid N=i\right] \tag{r-Y}\\
&+E\left[\left(X_{1+1}+\cdots+X_{n}\right)^{2} \mid N=i\right]
\end{align*}
$$

 , $\left(X_{1}+\ldots+X_{1}\right)^{2}>a^{2} ،\left(X_{1}+\ldots+X_{i-1}\right)^{2} \leq a^{2}, \ldots$

$$
\begin{aligned}
& E\left[\left(X_{1}+\cdots+X_{i}\right)\left(X_{i+1}+\cdots+X_{n}\right) \mid N=i\right] \\
& \quad=E\left[X_{1}+\cdots+X_{i} \mid N=i\right] E\left[X_{+1}+\cdots+X_{n} \mid N=i\right] \\
& \quad=E\left[X_{1}+\cdots+X_{i} \mid N=i\right] E\left[X_{1+1}+\cdots+X_{n}\right] \\
& \quad=0
\end{aligned}
$$

$$
\begin{aligned}
E\left[\left(X_{1}+\cdots+X_{n}\right)^{2} \mid N=i\right] & \geq E\left[\left(X_{1}+\cdots+X_{1}\right)^{2} \mid N=i\right] \\
& =E\left[\left(X_{1}+\cdots+X_{N}\right)^{2} \mid N=i\right]
\end{aligned}
$$

لذا مشاهده مى كنـم كه براى تمام مقادير N

$$
E\left[\left(X_{1}+\cdots+X_{n}\right)^{2} \mid N\right] \geq E\left[\left(X_{1}+\cdots+X_{N}\right)^{2} \mid N\right]
$$

اكر امين رياضى بگيريم عبارت زير نتيجه مى نُود

$$
E\left[\left(X_{1}+\cdots+X_{n}\right)^{2}\right] \geq E\left[\left(X_{1}+\cdots+X_{N}\right)^{2}\right]
$$

و نتيجه از معادلكُ (Y-Y) حاصل مى كرددد.

 به دست مى آوريـم

$$
P\left\{_{1} X-\mu \mid>a\right\} \leq \frac{a^{2}}{a^{2}}
$$

 $P\left\{\left|X_{1}+\cdots+X_{n}\right|>a\right\} \leq \sum_{i=1}^{n} \frac{\sigma_{i}^{2}}{a^{2}}$

در صور رتى كه نا مساوى كلمو كرن همان كران را برایى احتمال مجموعهاى بز ركتر، مثلا" $\bigcup_{i=1}^{n}\left\{\left|X_{1}+\cdots+X_{i}\right|>a\right\}$

اكنون ازز نامسـاوى كلمو كـرونـ بـ عنوان مبناى البات تانون قوى اعـداد بزر كَى در حالتى

بيانمى كنـم

هكم P-1 لم كروتكر
أكر . . . ، ، ، a a_{2} ، a_{1}

$$
\lim _{n \rightarrow x} \sum_{i=1}^{n} \frac{a_{1}}{n}=0
$$

لفيه P - + النون لوى اعداد يزرك برالى متيرهالى لمادلى مستقل

باشد. اكر

$$
\frac{X_{1}+\cdots+X_{n}}{n} \rightarrow 0 \quad, n \rightarrow \infty
$$

برهان :بنابر نا مساوى كلمو كرون برای هر n و هر a>0 نتيجه مى شود كه

$$
\begin{equation*}
P\left\{\max _{, 11, n}\left|\sum_{i=1}^{1} \frac{X_{i}}{i}\right|>a\right\} \leq \frac{\sum_{i=1}^{n} \operatorname{Var}\left(X_{i} / i\right)}{a^{2}} \leq \frac{\sum_{i=1}^{\infty} \sigma_{i}^{2} / i^{2}}{a^{2}} \tag{F-F}
\end{equation*}
$$

با, $n \geq 1$, E_{n}, ζ

نتخـين درس امتمالل

$$
E_{n}=\left\{\max _{i=1, \ldots, n}\left|\sum_{i=1}^{j} \frac{X_{i}}{i}\right|>a\right\}
$$

 نتيجه مى شود كـ

$$
\lim _{n \rightarrow x} P\left(E_{n}\right)=P\left(\lim _{n \rightarrow \infty} E_{n}\right)=P\left(\bigcup_{1}^{\infty} E_{n}\right)=P\left\{\max _{i=1,2 . .}\left|\sum_{i=1}^{1} \frac{X_{i}}{i}\right|>a\right\}
$$

بنابر اين |ز معادلة (Y-Y) ملاحظه مى كنيم

$$
P\left\{\max _{i=1.2 \ldots}\left|\sum_{i=1}^{j} \frac{X_{i}}{i}\right|>a\right\} \leq \frac{\sum_{i=1}^{\infty} \sigma_{i}^{2} / i^{2}}{a^{2}}
$$

يا معادل با آن

$$
\begin{equation*}
P\left\{\max _{i \geq 1}\left|\sum_{i=1}^{j} \frac{X_{i}}{i}\right| \leq a\right\} \geq 1-\frac{\sum_{i=1}^{\infty} \sigma_{i}^{2} / i^{2}}{a^{2}} \tag{0-Y}
\end{equation*}
$$

بنابراين حون عبارت زير حاصل هى گردد

$$
P\left\{\sum_{i=1}^{\infty} \frac{X_{i}}{i}<\infty\right\} \geq 1-\frac{\sum_{i=1}^{\infty} \sigma_{1}^{2} / i^{2}}{a^{2}}
$$

اكر

$$
P\left\{\sum_{i=1}^{\infty} \frac{x_{i}}{i}<\infty\right\}=1
$$

بنابراين با به كاربردن لم كر ونكر عبارت زير ساصل شـده و اثبات كامل هى گُردد.

$$
P\left\{\lim _{n \rightarrow \infty} \sum_{-1}^{n} x_{i} / n=0\right\}=1
$$

اكر متغير هاى تصادفى نه تنها مستتقل بلكه هـمتوزيع با ميانگين μ و و واريانس متتاهى كنــم آن كاه جون

$$
\lim _{n} \sum_{i=1}^{n} \frac{\left(X_{1}-\mu\right)}{n}=0
$$

يا بطور معادل
$\lim _{n} \sum_{i=1}^{n} \frac{X_{i}}{n}=\mu$
بنابر اين تضيهُ Y-Y يكى اثبات تـانون توى اعـداد بزر گى را در حالـت متـغيرهاى تصسادفى مسـتقل همتوزيع (i . i . i) با واريانسهاى متناهى فراهم هى كند . در واتع با استفادهُ از آن مى توان قانون
 نمود و بنابراين تضيئ Y - ا أبّات مى شُود .

 بماند . بـنابراين امكـان اين كـه مـــــادير بزركا

 مثبت $\left|{\underset{j}{n}}_{n}^{n} \frac{X_{i}}{n}-\mu\right|$

تنها تعداد متناهى از دنعات بزركتر از ع غخواهد بود .

 ان. كلمو كُروف رياضى دان روسى به البُات رسيد .

ه - نا مسلوبهاى ديكر
كاهى اوتات با وضـيتهانع مواجحه مى شويم كه علاته منديـم يك كران بالا براكى احتمالى

به ثـكل
 نتيجه مى دهد لذا از نا مساوى هجبيشف وتتى a> 0 است عبارت زير حاصل مى گردد $P\{X-\mu>a\} \leqslant P\{|X-\mu|>a\} \leq \frac{\sigma^{2}}{a^{2}} \quad$ ols, $\quad a>0$
با وجود اين بطـورى كه حكم زير نـشان مي دهـد به أين نتيجـه مى رسيم كـه مى توأنيم كار را بهـتر انجام دهيم •

ككم ه- ا نامساوى جيششل يك طرفه

أگر X $P\{X>a\} \leq \frac{\sigma^{2}}{\sigma^{2}+a^{2}}$

$$
\text { برهان : هون } 0=E[X]=\int_{-\infty}^{\infty} x d(x) \text { نتيجه می كيريم كه }
$$

$-a=\int_{-\infty}^{\infty}(x-a) d F(x)$

$$
\geq \int_{-x}^{a}(x-a) d F(x)
$$

$$
a \leq \int_{\ldots x}^{a}(a-x) d F(x)
$$

$$
\begin{equation*}
=\int_{-\ldots x}^{x}(a-x) I_{a}(x) d F(x) \tag{1-0}
\end{equation*}
$$

$$
I_{u}(x)= \begin{cases}1 & \text { if } x \leq a \\ 0 & \text { if } x>a\end{cases}
$$

$a^{2} \leq\left(\int_{-x}^{x}(a-x) I_{a}(x) d F(x)\right)^{2}$

يا معادل با آن

$$
a^{2} \leq\left(E\left[(a-X) I_{a}(X)\right]\right)^{2}
$$

حال از نامسـاوى مـشهور كوشى - شـوارتز استفاده مى كنيم كـه بيان مى كند براى هر دومتنغير تصادنى Y و Z داريم $(E[Y Z])^{2} \leq E\left[Y^{2}\right] E\left[Z^{2}\right]$

مشـروط بهاين كه طرف راست متتناهى باثـد (اثبات نا مساوى كوشى ـ شـو اردتز در تمرين نظرى
 معادلهُ (Y -

$$
\begin{aligned}
a^{2} & \leq E\left[(a-X)^{2}\right] E\left[I_{a}^{2}(X)\right] \\
& =\int_{-x}^{\infty}(a-x)^{2} d F(x) \int_{-\infty}^{a} d F(x) \\
& =F(a) \int_{-\infty}^{\infty}(a-x)^{2} d F(x) \\
& =F(a)\left[\int_{-\infty}^{\infty} a^{2} d F(x)-2 a \int_{-\infty}^{\infty} x d F(x)+\int_{-\infty}^{\infty} x^{2} d F(x)\right] \\
& =F(a)\left(a^{2}+\sigma^{2}\right)
\end{aligned}
$$

$$
P\{X>a\}=1-F(a) \leq 1-\frac{a^{2}}{a^{2}+\sigma^{2}}=\frac{\sigma^{2}}{a^{2}+\sigma^{2}}
$$

و نتيجه اثبات مى شود .

 تجاوز كند به دست آوريد.

مل : از نا مساوى يك طرفهُ جييشف نتيجه مى شود

$$
P\{X>120\}=P\{X-100>20\} \leq \frac{400}{400+(20)^{2}}=\frac{1}{2}
$$

$$
P\{X>120\} \leq \frac{E(X)}{120}=\frac{5}{6}
$$

كه نسبت به كران قبلى كراني ضعيفتر است حاصل مي شود. اكنون فرض كنيد X داراي ميانگين
 $P\{X-\mu>a\} \leq \frac{\sigma^{2}}{\sigma^{2}+a^{2}}$

$$
P\{\mu-X>a\} \leq \frac{\sigma^{2}}{\sigma^{2}+a^{2}}
$$

بنابراين نتيجهُ زير حاصل هي شود

نتيبه ه-

$P\{X>\mu+a\} \leq \frac{\sigma^{2}}{\sigma^{2}+a^{2}}$
$P\{X<\mu-a\} \leq \frac{\sigma^{2}}{\sigma^{2}+a^{2}}$

 يك زن است بيدا كنيد .
 . $i=1,2, \ldots, 100$

در اين صورتX Xعنى تعداد زوجهاى مرد ـزن را به صورت زير مى توان بيان كرد $X=\sum_{i=1}^{10 \pi i} X_{i}$

هون مـرد i با احـتــــال مسسـاوى زوج هريكى از 199 نفــر ديگر كـه . . ا نفــر آن زن اسـت مى بانشد داريم

$$
E\left[X_{i}\right]=P\left\{X_{t}=1\right\}=\frac{100}{199}
$$

، $\mathrm{i}=\mathrm{j}$ بطور مشابه براي

$$
\begin{aligned}
E\left[X_{1} X_{i}\right] & =P\left\{X_{1}=1, X_{i}=1\right\} \\
& =P\left\{X_{i}=1\right\} P\left\{X_{i}=1 \mid X_{i}=1\right\}=\frac{100}{199} \frac{99}{197}
\end{aligned}
$$

كـه

$$
\begin{aligned}
E\left[X^{\prime}\right] & =\sum_{i=1}^{100} E\left[X_{i}\right] \\
& =(100) \frac{100}{199} \\
& =50.25 \\
\operatorname{Var}(X) & =\sum_{i=1}^{100} \operatorname{Var}\left(X_{i}\right)+2 \sum_{i=j} \operatorname{Cov}\left(X_{i}, X_{i}\right) \\
& =100 \frac{100}{199} \frac{99}{199}+2\binom{100}{2}\left[\frac{100}{199} \frac{99}{197}-\left(\frac{100}{199}\right)^{2}\right] \\
& =25.126
\end{aligned}
$$

$$
P\{X<30\} \leq P\{|X-50.25|>20.25\} \leq \frac{25.126}{(20.25)^{2}}=.06 p
$$

و بنابراين در • • ا تا كمتر از 9 شانس وجود دأرد كه كمتر از •ب مرد با زن زوج شوند، مع هذا با استفاده از نا مساوى يكطرفةُ هبيشفـ كه نتيجهُ زير را عايد مى كند مى توانيم آن را بهتر كنيم، $P(X<30)=P\{X<50.25-20.25\}$

$$
\begin{aligned}
& \leq \frac{25.126}{25.126+(20.25)^{2}} \\
& =.058
\end{aligned}
$$

نا مـــاوى بعلد بـه جاى أحتـمالات با امـيلد رياضمى انجـام مى شود. قبل از اين كه آن را بيـان كنيم تعريف زير لازم است.

تعريل

 براى

 اكر f(x) تابعى محدلب باشـد آن كاه$E[f(X)] \geq f(E[X])$
به شرطى كه اميد رياضى وجود داثتته و متناهى باشــد .

$f(x)=f(\mu)+f^{\prime}(\mu)(x-\mu)+\frac{f^{\prime \prime}(\xi)(x-\xi)^{2}}{2}$
كه در آن مقدارى بين x و
$f(x) \geq f(\mu)+f^{\prime}(\mu)(x-\mu)$

$$
f(X) \geq f(\mu)+f^{\prime}(\mu)(X-\mu)
$$

$$
E[f(X)] \geq f(\mu)+f^{\prime}(\mu) E[X-\mu]=f(\mu)
$$

و نا مساوى ثابت مى شود.

 خطر ترجيح داده مى شود.

تمرينهاى نظرى

1-1 اكر دأراي ميانگين μ و انحر ان معيار σ باشد نشان دهيد
$P\{|X-\mu| \geq k \sigma\} \leq \frac{1}{k^{2}}$

$$
\text { كنيم نشان دهيد برانى } 0 \text { م }
$$

$$
P(D \leq \alpha) \geq 1-\frac{1}{r^{2} \alpha^{2}}
$$

r- اندازهُ نسـبت عـلامت به اغتــــاش يعنى

$$
\begin{aligned}
& \text { تصادنى زير را محاساسبه كنيد . } \\
& \text { (الف) يواسن با ميانگين } \\
& \text { (ب) } \\
& \frac{1}{\text { p }} \\
& \text { (a b) } \\
& \frac{1}{\lambda} \text { (ث) نمائى با ميانگين } \\
& \text {. } \sigma^{2} \text {, }
\end{aligned}
$$

E>0

وتتى n

$$
E\left[g\left(Z_{n}\right)\right] \rightarrow g(c), n \rightarrow \infty
$$

 $B_{n}(x)=\sum_{k=0}^{n} f\left(\frac{k}{n}\right)\binom{n}{k} x^{k}(1-x)^{n k}$ (كه هند جمله ايهاى برنتـاين ناميده مى يُود) را در نظر بگُيريد و ثاببت كنيد
$\lim _{n \rightarrow x} B_{n}(x)=f(x)$

باشد . نــان دهيد

$$
B_{n}(x)=E\left[f\left(\frac{X_{1}+\cdots+X_{n}}{n}\right)\right]
$$

و سسس (با استفاده از نتيجهُ تمرين نظرى Y) از واقعيت زير استفاده كنيد

 دريكى فاصلةُ بسته را مى توان با يكى جند جمله الى با دقت دلخو اه تقريب نمود ـ
 ,
$\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{\sigma_{1}^{2}}{n^{2}}=0$
ثابت كنيد براى هر
$P\left\{\left|\frac{X_{1}+\cdots+X_{n}}{n}\right|>\varepsilon\right\} \rightarrow 0$
 . $n \rightarrow \infty$ وتـي
$P\left\{\left|\frac{Y_{1}+\cdots+Y_{n}}{n}-P(n)\right| \leq \varepsilon\right\} \rightarrow 1$

$$
\text { . } P(n)=\sum_{i=1}^{n} \frac{P_{i}}{n}, E\left[Y_{i}\right]=P_{i} \text { در آن }
$$

 , $\mathrm{j}=1, \ldots, n ، \operatorname{Var}\left(X_{j}\right)=\sigma_{j}^{2} ، E\left[X_{j}\right]=\mu_{j}$ $P\left\{\left|\frac{X_{j}-\mu}{\sigma_{j}}\right| \leq \sqrt{n} t \quad j=1, \ldots, n\right\} \geq 1-\frac{1}{t^{2}}$

$P(X=k) \leq 2 \frac{E[X]}{k^{2}}$
(ب) نرض كنيد مـتغير تصادفى بيـوستهُ نا منفى X داراى يكى تابع پگُالى نا انزايشثى است.
نشان دهيد
$f(x) \leq \frac{2 E[X]}{x^{2}}$
براى هر

Q- فرض كنيد يك تاس متععادل را • • مرتبه انداخته ايم. . نرض كنيد XX مقدار به دست آمده
در برتابi ام باشد. . يك تقريب براي

$$
P\left\{\prod_{1}^{100} X_{i} \leq a^{100}\right\} \quad 1<a<6
$$

 دارایى توزيع نرمال است.
 رامنمايى : براى M معلوم تعريف كنيد
$X_{i}^{\prime}= \begin{cases}X_{i} & X_{i} \leq M \\ M & X_{i}>M\end{cases}$

$$
\begin{aligned}
& \text { از (الف) قانون قوى اعداد بزر رگ روى دنباله : } \\
& \text { (ب) اين حقيقت كه، } \\
& \text { M } \rightarrow \text { (ب) فرض (ب) } \\
& \text { استفاده كنيد. }
\end{aligned}
$$

$$
\text { P\{0 } 0 \text { X } \leq 40\} \text { مى توان كفت؟ }
$$

 است تصادنى با ميانكين VQ.
(الف) يك كران بالا براى احتمال اين كه نمرئ أزمون دانستجو از از

 r- برای حل بخشت (ب) مسالى ب از تضيه حلد مركزى استفاده كنيد.
Y- ز Y غرض كنيد (الف) با استفاده از نا مساوى ماركف يكى كران برایى

$$
\text { (ب) با استغاده از تضيئ حدمركزى P P\{ }\left\{\begin{array}{l}
10 \\
1
\end{array} \sum_{1}^{10} x_{i}>15\right. \text { تقريب كنيد . }
$$

 حداتل • • برتاب لازم باشد جقدر است است؟ -V

جقدراست؟

 $P\{|X / n-1|>.01\}<.01$

 اين كه احتمال زيان سـاختمانى از ا 1 • تجاوز نمايد جند اتومبيل بايد روى دهانئه بل باشنـد؟

$$
Y_{n}=Y_{n-1}+X_{n} \quad n \geq 1
$$

 به دست آوريد.

IF

 هرنوع بانثد .

تا دست كم • 9 در
 $E\left[X^{3}\right]$: $E[\sqrt{X}]$;
$E[\log X] ;$ (ب)
$E\left[e^{-x}\right]$?
(ت)

IV - فرض كنبد X متغير تصادفى نامنفى است؛ ثابت كنـد
$E[X] \leq\left(E\left[X^{2}\right]\right)^{1 / 2} \leq\left(E\left[X^{3}\right]\right)^{1 / 3} \leq \cdots$
1^ ا آيا نتايج مثال ه هب وتتى سرمايه كذار الجازه داشته باشد كه سرمايهاش را تا تقسبم كند و كسر相
 عبارتاستاز
$R=\alpha X+(1-\alpha) m$

چند موضوع ديگِّ احتمال

1 - فرايند يواسن

 يِى نرايند يواسن ناميله مى شود هر كاه

$$
\begin{equation*}
\mathrm{N}(0)=0 \tag{i}
\end{equation*}
$$

(ii) تعداد يششامدهاهى كه در فواحـل زمانى جدا اتفات مى افتند مستقل باشند
(iii) توزيع تعـداد بيثـامدهايـى كه در نـاصلهُ معلومى رخ مى دهد تنها به طول آن فـامله بسنگیى دانُتـه بانثـد نه به مدحل آن

$$
\mathrm{P}\{\mathrm{~N}(\mathrm{~h})=1\}=\lambda h+\mathrm{o}(\mathrm{~h})(\mathrm{iv})
$$

$$
\mathrm{P}\{\mathrm{~N}(\mathrm{~h}) \geq 2\}=\mathrm{o}(\mathrm{~h})(\mathrm{v})
$$

بنابراين شـرط (i) بيـان مى كنـد كـه فـرآيند در زمـان 0 شــروع مى شـود. شــرط (ii) يعنى

 است . از شُ ط بالا نتيجه مى شود كه نتيجه را با روشى ديگر بهدست مى آوريم .

$$
\text { برايى يك نرايند بواسن با نرخ } \lambda \text { داريم }
$$

$$
P\{N(t)=0\}=e^{-\lambda 1}
$$

برهان : فرض كنبذ Po بهدست مى آوريـم:

$$
\begin{aligned}
P_{11}(t+h) & =P\{N(t+h)=0\} \\
& =P\{N(t)=0, N(t+h)-N(t)=0\} \\
& =P\{N(t)=0\} P\{N(t+h)-N(t)=0\} \\
& =P_{(1}(t)[1-\lambda h+o(h)]
\end{aligned}
$$

 نتيجه مى شود بهدست مى آيند. بـنابراين

$$
\frac{P_{0}(t+h)-P_{0}(t)}{h}=-\lambda P_{0}(t)+\frac{o(h)}{h}
$$

h

$$
P_{0}^{\prime}(t)=-\lambda P_{0}(t)
$$

يا معادل آن

$$
\frac{P_{n}^{\prime}(t)}{P_{0}(t)}=-\lambda
$$

$$
P_{0}(t)=K e^{-\lambda t}
$$

نتيجه مي شود . جون

$$
P_{0}(t)=e^{-\lambda t}
$$

 اولين ييشّامد فرايند يواسن در زمان حالن توزيع

$$
P\left\{T_{1}>t\right\}=P\{N(t)=0\}=e^{-\lambda t}
$$

بنابر اين T1 داراىى توزيع نمايع با ميانگين $1 \frac{1}{\lambda}$ است. اكنون

$$
P\left\{T_{2}>t\right\}=E\left[P\left\{T_{2}>t \mid T_{1}\right\}\right]
$$

با وجود اين

$$
\begin{aligned}
P\left\{T_{2}>t \mid T_{1}=s\right\} & =P\left\{0 \text { يُششامد در }(s, s+t] \mid T_{1}=s\right\} \\
& =P\{0, s+1]\} \\
& =e^{-\lambda 1}
\end{aligned}
$$

T T
كميت مورد توجه ديگر S نيز ناميده مي شود . بسهولت دي.ه مى شود كه

$$
S_{n}=\sum_{i=1}^{n} T_{1} \quad n \geq 1
$$

و بنابر اين از حكـم

$$
f_{S_{n}}(x)=\lambda e^{-\lambda x} \frac{(\lambda x)^{n-1}}{(n-1)!} \quad x \geq 0
$$

برهان : تو جه داريم كـه يسشـامل n ام فرآيند بواسن تبل يا در زمان t اتفـاق مى افتد أكـر و تنهـا اكر تعداد بيشـاملهـايى كه تا زمان t رغ مى دهند دست كم n بالشـد . يعنى

$$
N(t) \geq n \Leftrightarrow S_{n} \leq t
$$

و بنابر اين

$$
\begin{aligned}
P(N(t)=n\} & =P\{N(t) \geq n\}-P(N(t) \geq n+1\} \\
& =P\left\{S_{n} \leq t\right\}-P\left\{S_{n+1} \leq t\right\} \\
& =\int_{0}^{1} \lambda e^{-\lambda x} \frac{(\lambda x)^{n-1}}{(n-1)!} d x-\int_{0}^{1} \lambda e^{-\lambda x} \frac{(\lambda x)^{n}}{n!} d x
\end{aligned}
$$

 نتيجهُ زير عايد مى شود كه اثبات را كامل مى كند $d v=\lambda\left[(\lambda x)^{n-1} /(n-1)!\right] d x$ $\int_{0}^{1} \lambda e^{-\lambda x} \frac{(\lambda x)^{n-1}}{(n-1)!} d x=e^{-\lambda:} \frac{(\lambda t)^{n}}{n!}+\int_{0}^{1} \lambda e^{-\lambda \tau} \frac{(\lambda x)^{n}}{n!} d x$

F- زنجيرهاى ماركِ
دنباله أى از متغيرهاى تصادفى

 را در زمان n هر حالتا كُريند.

 بانشد . يعنى برای تمام

$$
P\left\{X_{n+1}=j \mid X_{n}=i, X_{n-1}=i_{n-1}, \ldots, X_{1}=i_{1}, X_{0}=i_{0}\right\}=P_{i}
$$

مقادير $P_{i j} \geq 0 \quad \sum_{i=0}^{M} P_{i j}=1 \quad i=0,1, \ldots, M$
صدف مى كند (جرا؟؟).

بهتر اسست كهـ احتمالهـاى انتقال P را را در آرايشى به شـكل زير كه آن را ماتريس مى نامند

$$
\left\|\begin{array}{llll}
P_{001} & P_{01} \cdots & P_{D M} \\
P_{10} & P_{11} & \cdots & P_{1 M} \\
\vdots & & & P_{1 M} \\
P_{M 0} & P_{M 1} & \cdots & P_{M M}
\end{array}\right\|
$$

دانش مربوط به مـاتريس احتمال انتعالل و توزيع X ، ، بطور نظرى ما را در محاسبئ تمائمام
 به صورت زير داده مى شود

$$
\begin{aligned}
P\left\{X_{n}\right. & \left.=i_{n}, X_{n-1}=i_{n-1}, \ldots, X_{1}=i_{1}, X_{0}=i_{0}\right\} \\
& =P\left\{X_{n}=i_{n} \mid X_{n-1}=i_{n-1}, \ldots, X_{0}=i_{0}\right\} P\left\{X_{n-1}=i_{n-1}, \ldots, X_{0}=i_{0}\right\} \\
& \left.=P_{l_{n-1}, i, i_{n}} P X_{n-1}=i_{n-1}, \ldots, X_{0}=i_{0}\right\}
\end{aligned}
$$

و اكر اين امـتدلال را بطور يبوسته تكرار كنيم عبارت بالا برابر مى شُود با

$$
=P_{i_{n-1}, i_{2}, i_{2}} P_{i_{0,2}, i_{2}-1} \cdots P_{i_{1}, i_{2}} P_{i_{\text {in, }}^{2}} P\left\{X_{0}=i_{0}\right\}
$$

مثال r الط. فرض كنيد باريدن باران در فردا تنها از طريق اين كه آيا امروز بار باران مى باري بارد

ببارد آن گاه فردا با احتمال α باران خواهد باريد و اگر امروز بارانى نباشُد آن كاه فردا با احتمال β باران خراهد آمل .
اكر وتتى بارانى اسـت سيستم در حالت 0، و وتتى بارانى نيست در حالت 1 باشُد در اين
صـورت مورد بالا يكى زنجـير مـاركف دو حـالتیى الست و ماتريس احتـتمال انتقال آن به صـورت زير است

$$
\left\|\begin{array}{ll}
\alpha & 1-\alpha \\
\beta & 1-\beta
\end{array}\right\|
$$

$$
\text { . } P_{11}=\beta=1-P_{11} \text { ، } P_{(n)}=\alpha=1-P_{t \mid 1}
$$

 صورت دنباله سرمايه هأي قمارباز يك زنجير ماركف با احتمالهاي انتقال زير اسـت

$$
\begin{aligned}
P_{i, i+1} & =p=1-P_{i, 4-1} \quad i=1, \ldots, M-1 \\
P_{00} & =P_{M M M}=1
\end{aligned}
$$

 مولكولهـاي اولين ظرف بلافاصله بعـد از تعويض n ام باشد آن كاه آ . . . مار كف با احتمالهاى انتقال زير است

$$
\begin{aligned}
P_{1 . i+1} & =\frac{M-i}{M} & & 0 \leq i \leq M \\
P_{t, i-1} & =\frac{i}{M} & & 0 \leq i \leq M \\
P_{t j} & =0 & & \text { if }|j-i|>1
\end{aligned}
$$

 بود؛ يعنى

$$
P_{1}^{\prime 21}=P\left\{X_{m+2}=j \mid X_{m}=i\right\}
$$

$$
P_{t!}^{(2)}=P\left(X_{2}=j i X_{0}=i\right\}
$$

$$
=\sum_{k=10}^{M} P\left\{X_{2}=j, X_{1}=k \mid X_{0}=i\right\}
$$

$$
=\sum_{k=0}^{M} P\left\{X_{2}=j \mid X_{1}=k, X_{0}=i\right\} P\left\{X_{1}=k \mid X_{0}=i\right\}
$$

$$
=\sum_{k=0}^{M \cdot} P_{k j} P_{i k}
$$

بطور كلى احتمالهاى انتقالل n مر سله الى را كه به
تعريف مى كنيم

$$
P_{y}^{(n)}=P\left\{X_{n+m}=j \mid X_{m}=i\right\}
$$

$$
\begin{aligned}
P_{i j}^{(n)} & =P\left\{X_{n}=j \mid X_{1}=i\right\} \\
& =\sum_{k} P\left\{X_{n}=j, X_{r}=k \mid X_{0}=i\right\} \\
& =\sum_{k} P\left\{X_{n}=j \mid X_{r}=k, X_{0}=i\right\} P\left\{X_{r}=k \mid X_{0}=i\right\} \\
& =\sum_{k} P_{k j}^{(n-r)} P_{t i}^{(r)}
\end{aligned}
$$

$$
\begin{aligned}
& \text { حكم Y - } 1 \text { معادلات جيمن - كلمو گروف } \\
& P_{i j}^{(n)}=\sum_{k=0}^{M} P_{t k}^{(r)} P_{k j}^{(n-r)} \quad, \quad 0<r<n
\end{aligned}
$$

نامتناهي شــمـار اسـت كـام بردارى تمـادنى نام دارد كـه حـر كـت يكـ ذره را در طول يكـ مـحـور

 احتمالهاي انتقال زير بيروي كنند

$$
P_{\mathrm{t}, \mathrm{t}+1}=p=1-P_{\mathrm{i}, 1-1} \quad i=0, \pm 1, \ldots
$$

 احتمالى كه
 انحتمال دو جملهأى زير است

$$
P_{\ell}^{\prime \prime}=\left\{\left.\begin{array}{c}
n \\
\frac{n-i+j}{2}
\end{array} \right\rvert\, p^{(n-i+j / 2}(1-p)^{(n+i-j) / 2}\right.
$$

كه در آن احتمال بالا را به حورت زير مى توان نوشت

$$
\begin{aligned}
& P_{i, 1+2 k}^{2, n}=\binom{2 n}{n+k} p^{n+k}(1-p)^{n-k} \quad k=0, \pm 1, \ldots \pm n \\
& P_{i, 1+2 k-1}^{2 n+1}=\binom{2 n+1}{n+k+1} p^{n+k+1}(1-p)^{n-k} \\
& k=0, \pm 1, \ldots,=n,-(n+1)
\end{aligned}
$$

مى توانيم عباراتى برالى احتمالهأى غير شرطى به دست آوريم • برايى مثال

$$
\begin{aligned}
P\left\{X_{n}=j\right) & =\sum_{i} P\left\{X_{n}=j \mid X_{0}=i\right\} P\left\{X_{0}=i\right\} \\
& =\sum_{i} P_{i j}^{(n)} P\left(X_{0}=i\right\}
\end{aligned}
$$

برايى تعذاد زيادى از زنجيرهانى ماركف وقتى

كانى يراى هر زنجير ماركف كه دارای اين خاميت الست آن اسست كه برأى n>0 C دأشته باشيم.

$$
P_{i j}^{\prime \prime \prime}>0 \quad i, j=0,1, \ldots, M
$$

 حكمبץ 1-1

$$
P_{n}^{(n+1)}=\sum_{k=0}^{M} P_{t k}^{(n)} P_{k_{1}}
$$

حاصل مى شود لذابا فرض مه $n \rightarrow$ ، ، برایى زنجير هالى ارگوديكى داريم

$$
\begin{equation*}
1_{1}=\sum_{k=1}^{M} \Pi_{k} p_{k,} \tag{Y-Y}
\end{equation*}
$$

$$
\sum_{i=0}^{M} \Pi l,=1
$$

$$
\Pi_{j}=\lim _{n \rightarrow \infty} P_{i j}^{(n)}
$$

وجود دارد و

$$
\begin{gathered}
\Pi_{j}=\sum_{k=0}^{M} \Pi_{k} P_{k j} \\
\sum_{j=0}^{M} \Pi_{j}=1
\end{gathered}
$$

 باران ببـارد در آن صورت فـردا با احتـمال α خواهلد بـاريد و اگر امروز بـاران نيايد آن كَاه فردا با
 يعنى

$$
\begin{aligned}
\Pi_{0} & =\alpha \Pi_{0}+\beta \Pi_{1} \\
\Pi_{1} & =(1-\alpha) \mathrm{I}_{0}+(1-\beta) \Pi_{1} \\
\mathrm{I}_{6}+\mathrm{II}_{1} & =1
\end{aligned}
$$

كه عبارات زير را نتيجه مى دهد

$$
\Pi_{0}=\frac{\beta}{1+\beta-\alpha} \quad \Pi_{1}=\frac{1-\alpha}{1+\beta-\alpha}
$$

برایى مــال اگر . $\Pi_{0}=\frac{r}{v}$

j = 0, . . , M، M j

 $P_{j}=\sum_{k} P_{k} P_{k j}$
$j=0, \ldots, M, \Pi_{j}$, ، \quad خون درستى جوابهاى يكتاى بالا هستند لن! $P_{j}=\Pi_{j}, j=0, \ldots, M$
 درظرف ا (j=0, . . , M) الست. بنا به تضئُ

$$
\begin{aligned}
\Pi_{0} & =\Pi_{1} \times \frac{1}{M} \\
\Pi_{j} & =\Pi_{j-1} \times \frac{M-j+1}{M}+\Pi_{j+1} \times \frac{j+1}{M}, \quad j=1, \ldots, M \\
\Pi_{M} & =\Pi_{M-1} \times \frac{1}{M} \\
\sum_{j=0}^{M} \Pi_{j} & =1
\end{aligned}
$$

الست. . با وجود اين تون بسهولت مى توان بررسي نمود كه

$$
\Pi_{j}=\binom{M}{j}\left(\frac{1}{2}\right)^{M}, \quad j=0, \ldots, M
$$

در معادلات بالا صـدق مى كند لذا ايـنها نسبت دنعات در دراز مدت هستند كـه زنجير ماركف در هريكى از حالات السـت . (برایى توضيح اين كه جوابهاى بالا را جیگّونه مى توان حدس زد مسالد 11 , 11 ملاحظه كنيد).
r - شكفتى ، عدم اطمينان و آنترويى
 واقع رخ مى دهل جقدر تعجب مى كنيم ؟ معقول به نظر مى رسـد فرض كنيم كه ميزان شثغُتى كه با اطلاع از روى دادن E به وجود مـى آيد بايد به احتـمال E بستگى داشته باشـد . برالى مـثال اتكر

 *مجموع دو عدد تاس Y Y (با احتمال

$S(1)=0$
شرط دوم بيان مى كند كه هرجه احتـمال وقوَ يك بيشامد ضعيفتر باشـد، وتوع آن ما را
بيشتر متعجب مى كند. .

اصل

 كوجك در Pبه يكى تنيير كوجك در S (P) S مربوط شود.

اصل
.

$S(p q)=S(p)+S(q) \quad 0<p \leq 1,0<q \leq 1$
حال برايى تضية،

أگر S (
$S(p)=-C \log _{2} p$

$$
S\left(p^{2}\right)=S(p)+S(p)=2 S(p)
$$

و با استقرا داريم

$$
\begin{equation*}
S\left(p^{\prime \prime \prime}\right)=m S(p) \tag{1-r}
\end{equation*}
$$

$$
\text { همحنين یون برایى هر عدد صحيح } 1
$$

$$
\begin{equation*}
S\left(p^{1 / n}\right)=\frac{1}{n} S(p) \tag{Y-r}
\end{equation*}
$$

بنابراين از معادلات (Y- 1) و (Y-Y) به دست مى آوريم

$$
\begin{aligned}
S\left(p^{m "}\right) & =m S\left(p^{1 / n}\right) \\
& =\frac{m}{n} S(p)
\end{aligned}
$$

كه وتتى x يك عدد كوياى مثبت است معادل است با

$$
S\left(p^{\prime}\right)=\lambda S(p)
$$

امـا اين طبت بيوسـتگي S (اصل ب) نتـيـجه مى دهـد كه مـعـادلهُ (ب-Y) بر ابى تمام x هـاى نا منفى معتبر است. (ثابت كنيد) .
اكنون برایى هر از معادلك (Y-Y) نتيجه مى شـود كـ
$S(p)=S\left(\left(_{2}^{1}\right)^{2}\right)=x S\left(\frac{1}{2}\right)=-C \log _{2} p$

$$
\text { كه بنا به اصول } C=S\left(\frac{1}{2}\right)>S(1)=0 ، Y, ~ Y \text {, }
$$

مطابت هـعمـول C , امسـاوى ا در نظر مى گـيـريم . در اين سـالت تعـجـب را بر حـــب وا-حدهانى رقم دو دويع بيان مى كتند .
اكنون

 مى كنيم به حررت زير داده مى شـود $H(X)=-\sum_{i=1}^{n} p_{i} \log p_{t}$
در نظريـهُ اطلاع، H (X) به عنوان آنترويى متـغير تصادفى X در نظر گرفته مى شود . (در حالتّ
 كه وتتى تمام P ها مساوى باثــند H (X) ماكزيمم مى شود . (آيا أين مطلب واضتح است ؟) .

 حلى منفاوت مورد بررسى ترار مى گيرند.

حال متغـيرهاى تصادفى X Y Y Y Y به ترتيب مقادير مى گيرند با تابع جگالى احتمال توأم زير در نظر مى گيريم

$$
p\left(x_{i}, y_{i}\right)=P\left\{X=x_{i}, Y=y\right\}
$$

 داده مى شود عبارت است از $H(X, Y)=-\sum_{1} \sum_{j} p\left(x_{i}, y_{j}\right) \log p\left(x_{i}, y_{j}!\right.$
 در X با
$H_{Y=,},(X)=-\sum_{i} p\left(x_{i} \mid y_{i}\right) \log p\left(x_{i} \mid y_{j}\right)$
داده مى شود كه
 استفاده مى كنـهم.

$$
p\left(x_{1} \mid y_{i}\right)=P\left\{X=x_{i} \mid Y=y_{j}\right\}
$$

بنابراين متوسط ميزان عدم اطميناني كه بعد از مـــاهده Y درX باتى مى مأند عبارت استاز

$$
H_{Y}(X)=\sum_{1} H_{Y=y_{j}}(X) p_{Y}\left(y_{j}\right)
$$

كه در آن

$$
p_{Y}\left(y_{j}\right)=P\left\{Y=y_{j}\right\}
$$

 باقيمانده در X وقتى Y مشـاهلده مى شـود .

קكم

$$
H(X, Y)=H(Y)+H_{Y}(X)
$$

برهاي : با اسستفاده از تساوى
$H(X, Y)=-\sum_{i} \sum_{j} p\left(x_{i}, y_{j}\right) \log p\left(x_{1}, y_{j}\right)$

$$
\begin{aligned}
= & -\sum_{i} \sum_{i} p_{r}\left(y_{j}\right) p\left(x_{i} \mid y_{j}\right)\left[\log p_{r}\left(y_{j}\right)+\log p\left(x_{i} \mid y_{j}\right)\right] \\
= & -\sum_{i} p_{r}\left(y_{j}\right) \log p_{y}\left(y_{j}\right) \sum p\left(x_{i} \mid y_{j}\right) \\
& -\sum_{i} p_{r}\left(y_{j}\right) \sum p\left(x_{i} \mid y_{j}\right) \log p\left(x_{i} \mid y_{j}\right) \\
= & H(Y)+H_{r}(X)
\end{aligned}
$$

يك نتيجهُ الساسى در نظرئ اطلاع اين است كه ميزان عدم اطمينانى كه در متغير تصادفى X است
 هطلب به لمب زير نياز داريـم كه أبات آن به عنوان تهرين در نظر كـرفته شده اسـت .

$$
\ln x \leq x-1 \quad x>0
$$

$$
H_{y}(X) \leq H(X)
$$

و اكتر و تنها اگر Y, X مستقل. باشـند نساوى برترار اسـت.

$$
\begin{aligned}
H_{Y}(X)-H(X)= & -\sum_{i} \sum_{i} p\left(x_{i} \mid y_{i}\right) \log \left[p\left(x_{i} \mid y_{j}\right)\right] p\left(y_{i}\right) \\
& +\sum_{i} \sum_{i} p\left(x_{i}, y_{i}\right) \log p\left(x_{i}\right) \\
= & \sum_{i} \sum_{i} p\left(x_{i}, y_{j}\right) \log \left[\frac{p\left(x_{i}\right)}{p\left(x_{i} \mid y_{j}\right)}\right] \\
& \leqslant \log e \sum_{i} \sum_{i} p\left(x_{i}, y_{j}\right)\left[\frac{p\left(x_{i}\right)}{p\left(x_{i} \mid y_{j}\right)}-1\right] \\
= & \log e\left[\sum_{i} \sum_{i} r\left(x_{i}\right) p\left(y_{j}\right)-\sum_{i} \sum_{i} p\left(x_{i}, y_{j}\right)\right] \\
= & \log e[1-1] \\
= & 0
\end{aligned}
$$

ب- نظلطية كدكذارى و آنترويى

بهدستآورد.

به عنوان مـثـال اگــر X جهـار مـفــدار ممكن يكى كدگذارى ممكن عبارت انست از

$$
\begin{align*}
& x_{1} \leftrightarrow 00 \\
& x_{2} \leftrightarrow 01 \\
& x_{3} \leftrightarrow 10 \tag{1-f}\\
& x_{4} \leftrightarrow 11
\end{align*}
$$

 به همين ترتيب الى آخر . يك كد كذارى ديگر بهصر رت انير است

$$
\begin{align*}
x_{1} & \leftrightarrow 0 \\
x_{2} & \leftrightarrow 10 \\
x_{3} & \leftrightarrow 110 \\
x_{3} & \leftrightarrow 111
\end{align*}
$$

با وجود اين كدكذارى زير

$$
\begin{aligned}
& x_{1} \leftrightarrow 0 \\
& x_{2} \leftrightarrow 1 \\
& x_{3} \leftrightarrow 00 \\
& x_{4} \leftrightarrow 01
\end{aligned}
$$

 (يعنى رتمهاى دوتايى) را كه لازم است از محسل A به محسل B فرستاده شوند مينيمم كيمّ، براى مثال اكـر

$$
\begin{aligned}
& P\left\{X=x_{1}\right\}=\frac{1}{2} \\
& P\left\{X=x_{\}}\right\}=\frac{1}{1} \\
& P\left\{X=x_{3}\right\}= \\
& P\left\{X=x_{3}\right\}=\frac{1}{8}
\end{aligned}
$$

 به كدى كه با معادله (Y (-) داده مى شود انتظار مى رود به
 كاراتراست.

موخـوع بالا سـؤال زير را موجب مى شـود :برايى يكى بردار تصـادنى مـعلوم X ماكزيم

 است، لم F - ا رالازم داريم.

فرض كنيد X مقادير ممكن
 طولهاى

$$
\sum_{i=1}^{N}\left(\frac{1}{2}\right)^{n_{i}} \leq 1
$$

 هاى مـسـاوى j دو دويعى را به مقدأر 1

 برأى $n=1,2$

$$
\begin{equation*}
w_{n} \leq 2^{n}-w_{1} 2^{n-1}-w_{2} 2^{n \cdot 2}-\cdots-w_{n \cdot 1} 2 \tag{Y-Y}
\end{equation*}
$$

در حـقــــــت تــدرى تفكر بايد خــوانتــه را فـانـع كند كـه اين شــرايط نه تنهـا لازمـست بـلكه براى وجـوديكـ كــن كـذارى كـه ח رقتم دو دويع را به نيز هسـت . اگر نامساوى (Y-Y) رادوباره به صورت

$$
w_{n}+w_{n-1} 2+w_{n-2} 2^{2}+\cdots+w_{1} 2^{n-1} \leq 2^{n} \quad n=1 \ldots
$$

نوشّتُٔ وبر "ץ بخشش كنيم شُرطهاى لازم و كافى را به صورت زير حاصل مى كند

$$
\begin{equation*}
\sum_{i=1}^{n} w_{j}\left(\frac{1}{2}\right)^{j} \leq 1 \tag{Y-Y}
\end{equation*}
$$

با وجو اين جون درست نحو اهلد بود كه

$$
\sum_{i=1}^{\infty} w_{j}\left(\frac{1}{2}\right)^{j} \leq 1
$$

هال نتيجه ئابت مى شود، زيرا بنا به تعريف خون w مقدار

$$
\sum_{j=1}^{2} w_{i}\left(\frac{1}{2}\right)^{\prime}=\sum_{i=1}^{N}\left(\frac{1}{2}\right)^{n}
$$

اكنون آمادهُ اثبات تضيهُ Y - ا مى بانيّيم.

لهيه P-1 الخيه كُدوزارى بلوى الغتشاش

دهلد داريمم

$$
\begin{aligned}
& \sum_{i=1}^{N} n_{i} p\left(x_{i}\right) \geq H(X)=-\sum_{i=1}^{N} p\left(x_{i}\right) \log p\left(x_{i}\right) \\
& \text { برهان : فرضن كنيـ } i=1, \ldots, N ، q_{i}=\frac{2^{-n_{i}}}{\sum_{j=1}^{N} n_{i} n_{i}}, P_{i}=p\left(x_{i}\right) \\
& -\sum_{i=1}^{N} P_{1} \log \left(\frac{P_{i}}{q_{i}}\right)=-\log e \sum_{i=1}^{N} P_{i} \ln \left(\frac{P_{i}}{q_{i}}\right) \\
& =\log e \sum_{1=1}^{N} P_{1} \ln \left(\frac{q_{1}}{P_{1}}\right) \\
& \leq \log e \sum_{t=1}^{n} P_{t}\left(\frac{q_{i}}{P_{i}}-1\right) \\
& =0 \quad \sum_{i=1}^{N} P_{i}=\sum_{i=1}^{N} q_{i}=1
\end{aligned}
$$

$$
-\sum_{i=1}^{N} P_{i} \log P_{i} \leq-\sum_{i=1}^{N} P_{i} \log q_{i}
$$

$$
\begin{aligned}
& =\sum_{i=1}^{N} n_{i} P_{i}+\log \left(\sum_{i=1}^{N} 2^{-n_{i}}\right) \\
& \leq \sum_{i=1}^{N} n_{i} P_{i}
\end{aligned}
$$

مثال Y الهـ ـ يك متغير تصادفى X با تابع جرم احتمال زير رادر نظر مي گيريمم

$$
p\left(x_{1}\right)=\frac{1}{2} \quad p\left(x_{2}\right)=\frac{1}{4} \quad p\left(x_{3}\right)=p\left(x_{4}\right)=\frac{1}{8}
$$

جون

$$
\begin{aligned}
H(X) & =-\left[\frac{1}{2} \log \frac{1}{2}+\frac{1}{4} \log \frac{1}{4}+\frac{1}{4} \log \frac{1}{8}\right] \\
& =\frac{1}{2}+\frac{2}{4}+\frac{3}{4} \\
& =1.75
\end{aligned}
$$

از قضبةُ Y - ا نتيجه مي شود كه طرح كدُذذارى كاراترى از طرح زير وجود ندارد

$$
\begin{aligned}
& x_{1} \leftrightarrow 0 \\
& x_{2} \leftrightarrow 10 \\
& x_{3} \leftrightarrow 110 \\
& x_{\lrcorner} \leftrightarrow 111
\end{aligned}
$$

 مى كنيم كه در نا مسـاوى زير صدق كند
$-\log p\left(x_{i}\right) \leq n_{i} \leq-\log p\left(x_{t}\right)+1$
اكنون

$$
\sum_{i=1}^{N} 2^{-n_{i}} \leq \sum_{i=1}^{N} 2^{\ln \left(v_{i}\left(x_{i}\right)\right.}=\sum_{i=1}^{N} p\left(x_{i}\right)=1
$$

و و بنابر اين بنا به لم F مى توان مرتبط ساخت . متو سـط طول يك جنين دنبالها

$$
L=\sum_{i=1}^{N} n, p\left(x_{i}\right)
$$

$-\sum_{i=1}^{N} p\left(x_{i}\right) \log p\left(x_{i}\right) \leq L \leq-\sum_{i=1}^{N} p\left(x_{i}\right) \log p\left(x_{i}\right)+1$

$$
H(X) \leq L \leq H(X)+1
$$

صدذت مى كنل .
مثال P ب ب نرض كتيد سكك اى را كه احتمال آمدن شير براى آن برابر P آمت بطور مسنقل
 آزمايش بردار تصـادنى
 رقمهاى دو دويمي كه با هر كد منتقل مى شود در

$$
H(X) \leq L
$$

$$
L \leq H(X)+1
$$

 نتيجه مى شود

$$
\begin{aligned}
H(X)=H\left(X_{1}, \ldots, X_{n}\right) & =\sum_{i=1}^{n} H\left(X_{t}\right) \\
& =-10[p \log p+(1-p) \log (1-p)]
\end{aligned}
$$

اكر
 باششد در اين صوزتت بِام " 11111 . . . به مححل B منتقل مى كردد. با وجو2 اين أكر $p \neq \frac{1}{2}$ باشمد با استفاده از طرحهاى كد مى كنيـم • براى مـال اكر p م p آن كّاه

$$
H(X)=-10\left(\frac{1}{4} \log \frac{1}{4}+\frac{3}{4} \log \frac{3}{4}\right)=8.11
$$

 در اين سالت يكـ كـد كذارى سادهُ مـؤثرت تر از كد همـانى اين است كه 1

به كد در آوريـم: $i=1,3,5,7,9$

$$
\begin{aligned}
& X_{i}=0, X_{i+1}=0 \leftrightarrow 0 \\
& X_{1}=0, X_{i+1}=1 \leftrightarrow 10 \\
& X_{i}^{\prime}=1, X_{i+1}=0 \leftrightarrow 110 \\
& X_{i}=1, X_{i+1}=1 \leftrightarrow 111
\end{aligned}
$$

بنابراين كل بيام منتقل شده كدهاى يليا بي زوجهاى بالاست.

 عبارت أست از

$$
\begin{aligned}
5\left[1\left(\frac{1}{4}\right)^{2}+2\left(\frac{1}{4}\right)\binom{3}{4}+3\binom{1}{4}\binom{3}{4}+3\left(\frac{1}{4}\right)^{2}\right] & =119 \\
& =8.4 .4
\end{aligned}
$$

 كد را بر داريم. يعنى از طرح زير مى توانتيم استفاده كنيم:

كدگّـذارى	
$0 \rightarrow 000$	000
	001
	010
	100)
$1 \rightarrow 111$	111)
	110
	$101 \rightarrow$
	011

 بطور صشحيحى برداشته مى شود . بنابر اين احتمال خططاى رقم دو دويى به
$(.2)^{3}+3(.2)^{2}(.8)=.104$
كاهثـ ييـدا مى كند كه بطور تـابل ملاحظهاىى بهتر شده است. در حـقيقت واضـع است كـه اكر
 احتمال خططاى رقـم دو دويع را به انْلازهاى كه مى خواهبيم كو جكي كنيم . به عنوان مشال طرح زير

در حقيقت دراين جابرالى خوراننده مسلم است كه كم كردن احتمال خططاى رقـم دودوى به 0

عـددى مـانند C وجـود دارد كـه برانى هر مسقـدار R

 ناميذه و آن را ظرفيت كانال ميىنامند. و بر ایى كانال متقارن دودوعى داريم
 دو مـتـنرى وارد باتكى شوند ؛ احتمال اين كه (الفّ) هردو در طول بيست دقيقه اول وارد شوند (ب) دست كم يكى در طول بيــت دقيقهُ اول وارد شود

جقدر است ؟

 در آن نقطه S تانيه طول بكشـد احتمال اين كه صد.مـه نبيند جحتدر است؟ (فرض كنيد وتتى كه يكى اتو هبيل عبور مى كند او در بزركراه بانـد در اين صورت صـد

† ¢ فرض كنيد كه سـه توبـ سفيد و سه توب سيـاه را در دو ظرف خنان توزيع كرده ايمب كه هريك
 (i=0, 1,2,3) ظرف اول خارج مى شود در ظرف دوم و توبي كه از ظرف دوم خارج مى شود در ظزف اول

ماركف
 احتمال را كه از حالا به بعد سه روز باران ببارد (

9- الحتمالهاى حدى را براى الكُوى مسآلهٔ 4 محاسبه كنيد .
V- V مـاتـريس احتمالهــاى انتقال را تصادنـــي مضـاعـفـ گويـــم هـر گـاه بـرأى تمـام حـالات j = 0, 1, . ., M

$$
\sum_{i=0}^{M} P_{i j}=1
$$

اكر اين زنجير ماركف اركوديكـ باشد نشان دهيد

$$
\Pi 1_{j}=1 /(M+1), j=0,1, \ldots, M
$$

 سههى از دنعات ربكا خوشحال است؟
Q- فرض كنيد باريدن يا نباريدن باران در فردا تنها به شـرايط هوا در دو روز كزشته بستگى داشته

 فردا با الحتمال
 فردا با انحتمال Y ,

 هنگام بر كـشـت به منزل با احتـمال يكسـان از در جلو يا عقب وارد مي شـود ـ دونده ه ه جفت كفش مسخصـوص دويدن دارد كه يس از دويدن از درى كـه بطور اتفاتى وارد شــــه است انـ از با

(الف) اين را بهصورت يكـزنتجير ماركف منظم كنيد . حالات واحتمالهاى انتقال را بدهيد . (ب) نسبت روزهايُى را كه أو با بایى برهنه مي دود تعيسن كنيد .
 (الف) ثابـت كنيد كه مقدار بسنهادى ח در معادلاتى كه لازم است صدو مى كند .

نكر مى كنيد؟
 در ظرف ا است (در حد اس مستقلند؟
(ت) بيان كنيد كه خر الحتمالهاى حدى هما همان احتمالها IY- در برتاب دو تاس آتتروبيى مجموع دو تاس را تعيين كنيد.

 برابر هـه مقدارى است؟
اF F يك جفت تاس متعادل يرتاب مى شود؛ فرض كنيد

(

 اين آزمايش را محاسبه كنيد .
، 19 - يك متغير تصادنى هريك از n مقدار ممكن

 V ا ا - براى هر متغير تصادنى گـسسته X و تابع f نشان دهيد كه
$H(f(X)) \therefore H\left(X^{\prime}\right)$

 ($=1-P(X=0\}$ با

شبيه سازى

- 1

 ممكن يكدست ورق با احتمال يكسانى اتفاق مى إنتد شروع كنيم و سبس تعيين كنيم كه جند تا تا تا

 اين روش كار نمى كند.

 رياضى بلكه در قلمرو علوم كاربردى نيز قرار مى كير دو و مانند تمام علوم كاريبردى آزمايش در در آي آن

 بازى كردن اگر فرض كنيم

آن كاه i=1, . . ., n ، Xi متغيرهانى تصادنى برنولي مستمل خوأهند بود كه براى آن $E\left[X_{i}\right]=P\{$ \{ بر. $\}$

بنابراين بنا به تانون قوى اعداد بزر گّ مى دانيـم كه

با احتمال 1 به

 تصادنى يكنواخت (0, 1) كه اين متـغيرها را اعداد تصادفى مى نامند توليـد كنيم • براى توليد اين اعداد بيستر كامسـيوترها دمتور العمل فرعى آماده دارند كه مولد اعـداد تصادنى ناميده مى شُود و خروجى آن دنباله ایى از اعداد شـبـه تصادنى إست ـ بـراى تمام اهلـافـ عملى ايـن دنباله از اعـداد غير تابل تشخيص از يك نمونه از توزيع يكنواخحت (0,1) است .
بيشتر مولدهاى اعداد تصادنى با يك مقدار اوليه X X كه هسته ناميده مى شود شروع شـده
 $X_{n+1}=\left(a X_{n}+c\right) m$ بُ بيمانهُ $\quad n \geq 0$
 باتيـمانده را بهعنوان مـقدار X X بود و كـيت مى توان نشان داد كه با تو جه به انتهابهاي مناسب است كه چنين مى نمايد كه از متغير هانى تصادنى يكنواخحت مستقل (0, 0) توليد شده اند . به غنوان نقطهُ شـروع در شـبـيه ســازى فرض براين است كـه مىتوانيـم از توزيع يكنواخت
 توزيع به كار مى بريم.

 نهر ست بتصـادف انتخاب مى كند) .

 عددى فـلى در موتـعيت i را نـنان مى دهـد از تبذيل الستفاده مى كنيم. الكُوريتـم به صورت زير عمل مى كند :

. Y- يك متغير تصادفى N

مى كند توليد مى كنيم
س- مـتـادير X(
مى ماند. [برایى مثال نرض كنيد n=

9-4
مى كـينم

 ريض تعويض بعدى تبديل نتيجه شـده آخرين تبديل است است
 متادير
 (0, k)

$$
P\{i-1<k U<i\}=\frac{1}{k} \quad i=1, \ldots k
$$

بنابراين

يس با فرض كو جكتر يا مساوى x) آن گّاه N

حال الكُوريتم را باختصار به صورت زير مير مى نويسيم:

N = [IU] + را توليد و ترار دهيدا U U ملهُ : يك عدد تصادفى

 حجـهـای

$$
\begin{aligned}
& \text { مى توان تُرار داد } \\
& \text { I=nمرحلئ }
\end{aligned}
$$

تقسيم كند . براي حذف اريبى در تخصيص موضوعات به تيمارها (برايى مثال اكر تمام "ابهترين" مـوضـوعـات را در يكى كـروه تّرار دههم مـفـهـوم نتـايـج آزمـايش رخـايت بـخش نـخــواهد بود)
 انتجام داد'؟

در اين بـخت برالى به كاربردن اعـلـاد تصلادفى در شبـبيه سازى متتغيرههاى تصهادنى بيوسته دو روس كلى را اارائه مى تمأيمبم

Y - أ روش تبديل معكوس
يكـ روش كلى براى شبـبه سـازى يكـ متغـير تصادنى كـه توزيعى بيوسته دارد روش تبديل معكوس نام دارد و بر انساس حكم زير بنا شمده استـ.
حكم Y-1

اكر متغير تصـادنى Y را با

$$
Y=F^{-1}(U)
$$

نخـتين درس احتمال

برهان

$$
\begin{align*}
F_{\mathrm{r}}(a) & =P\{Y \leq a\} \tag{1-Y}\\
& =P\left\{F^{-1}\left(U^{\prime}\right) \leq a\right\}
\end{align*}
$$

 ثعادلة́ (

$$
\begin{aligned}
F_{Y}(a) & =P\{U \leq F(a)\} \\
& =F(a)
\end{aligned}
$$

از X X = F
يكى متغير تصادفى X را كه دارأى تابع توزيع بيو ستهء F است مى توان شُبيه سازى نمود .
 مقد'ر x أست كه در هعادله زير صدت مى كند

$$
1-e^{-x}=u
$$

$$
x=-\log (1-11)
$$

بنابر اين اكّر U يك متغير يكنواخت (0, 1) باشـد آن گاه

$$
F^{-!}(U)=-\log (1-U)
$$

 الست لذا c log U - نمايى با ميانگين c c خواهد برد.

از نتايج مثال Y الف نيز بر الى شبيه سازى يكي متغير تصادفى گاها مى توان استفاده كرد .

مثال Y ب .
 اين واقعيت استفـاده مى كنيم كه مجـموع n متـغير تصـادفى نمايمى مستـقل هريكـ با نرن

آن كاه

$$
X=-\sum_{i=1}^{n} \frac{1}{\lambda} \log U_{i}=-\frac{1}{\lambda} \log \left(\prod_{i=1}^{n} U_{i}\right)
$$

داراى توزبي هطلوب است.

روش

مى توان بهره كرفت. بويرُه فرض كنيد c ثـابتى امـت كه

لذا به روش زير براي شبيه سـازي يك متغير تصادنى كه داراي جشالى f أــت نياز داريـم .

روش عدم بانيرش
مرحلك مرسحل

ا بر كرديد . روشّ عدم هذيرش بطور تصيويرى در شكل • ا - ا بيان شده اسـت. ترار دهيد.

شكل . ا-1 ردش عدم بذيرش براى يلن متغير تصادنى X كه تابع جكالم آن f است

حال عملكرد روش عدم بذيرش را ثابت مى كنيم.

متغير تصهادفى X كه با روش عدم يذيرش توليد مى شود داراى تابع جگڭالى f استـ. برهان : ثرض كنيد X مفدار به دسـت آمده و N تعداد تكرارهاى لازم باشد . سِس

$$
\begin{aligned}
P\{X \leq x\} & =P\left\{Y_{N} \leq x\right\} \\
& =P\left\{Y \leq x \left\lvert\, U \leq \frac{f(Y)}{\operatorname{cg}(Y)}\right.\right\} \\
& =\frac{P\left\{Y \leq x, U \leq \frac{f(Y)}{c g(Y)}\right\}}{K}
\end{aligned}
$$

كه در آن است از

$$
f(y, u)=g(y) \quad 0<u<1
$$

و بنابر اين با استفاده از آنهج كُشـت داريـم

$$
\begin{aligned}
P\{X \leq x\} & =\frac{1}{K} \quad \iint_{\substack{y \leq x \\
0 \leq u \leq f y / c g(y)}} g(y) d u d y \\
& =\frac{1}{K} \int_{0}^{x} \int_{0}^{f(y) / c \mathrm{~g}(\beta)} d u g(y) d y \\
& =\frac{1}{c K} \int_{0}^{x} f(y) d y
\end{aligned}
$$

$$
1=\frac{1}{c K} \int_{0}^{x} f(y) d y=\frac{1}{c K}
$$

بنابر اين از معادلُ (Y - Y) به دست مى آوريم

$$
P\{X \leq x\}=\int_{0}^{x} f(y) d y
$$

كه اثبات را كامل مى كند .

 مقدار یذيرنّ شده است لذا تعداد تكرارها داراى توزيع هندسى با ميانگين c است .
 استاندارد Z (يمنى متغيرى با ميانگين 0 و واريانس () ابتدا توجه مى كنيم كه تدر مطلتن Z دارايى تابع چگالى احتمال زير است

$$
\begin{equation*}
f(x)=\frac{2}{\sqrt{2 \pi}} e^{-x^{2} / 2} \quad 0<x<\infty \tag{r-Y}
\end{equation*}
$$

با استفاده از روش عدم ثذيرش و اين كه و تابع هحالى نماعى با ميانگين يك است مُبيه سازی را از تابع جڭالى يـش شروع مى كنيم، يعنى

$$
g(x)=e^{-x} \quad 0<x<\infty
$$

اكنون توجه مى كنيـم كه

$$
\begin{aligned}
\frac{f(x)}{g(x)} & =\sqrt{2 / \pi} \exp \left\{\frac{-\left(x^{2}-2 x\right)}{2}\right\} \\
& =\sqrt{2 / \pi} \exp \left\{\frac{-\left(x^{2}-2 x+1\right)}{2}+\frac{1}{2}\right\} \\
& =\sqrt{2 e / \pi} \exp \left\{\frac{-(x-1)^{2}}{2}\right\} \\
& \leq \sqrt{2 e / \pi}
\end{aligned}
$$

بنابراين مى توانيـم $C=\sqrt{2 e / \pi}$ فرض كنيـم و لذا از معادلئ (Y-Y) داريم

$$
\frac{f(x)}{c g(x)}=\exp \left\{\frac{-(x-1)^{2}}{2}\right\}
$$

بس با اسـنفـاده از روش ععدم بذيرش مى توانيم مـقدار مطلت يكى متغغير تصـأدفى نرمـال واحد را به شُرح زير شبيه سازى كنيم .
(الفب) متـغـير, (ا
يكنواخت اسـت توليلـ مي كنيـم .

 آن كاه يك متخيرتصادنى نرمال وا-حد Z كه با احتتمال مساوى X يا X - انست مى توان تو ليلد نمود .

آن
ا و كذا مراحل (الف) و (ب؟) معادلثن با
Yالفّ) نماييهاى
(ب) آك
 Y بزر Y به أين سؤال شخاطر نشان مي كتيم كه Y نمايعى با نرخ ا اسـت و بنابراين أكر بدانيهم از مقدار معينى بيشّتر اسـت ، آن مقدار كه2 زمان

يك متغير تصهادني نمايم (مستقل از X $Y_{2}-\left(Y_{1}-1\right)^{2} / 2$
 مستقل نرمال وأحد را توليلِ مي كند.

مو حلَّ Y مرشحلّ' س : اكر Y برويد ، در غير اين صورت به مر-حلة́ ' برويذ . مرسحلّ F : يكى متغير تصادنى U را توليلد نموده و ترار دهيل

$$
Z= \begin{cases}Y_{1} & U \leq 1 / 2 \\ -Y_{1} & U>1 / 2\end{cases}
$$

 تصادفى نرمال داراى ميانگين μ و وارياتس جند نبصره : (الف) جيون c= $\sqrt{2 \mathrm{e} / \pi} \approx 1 / 32$ است لذا نمـداد تكرارهای مـرسلهُ ب داراى توزيع هندسي با ميانگين Yץ, 1 است.
(بس) اتكر بخواهيم دنبـاله ایى از متتغيرهـاى تصادفى نرمـال واحـد را توليد كنيم، آن كـاه

 - شبيه سـازى كنيم

كه اكگر Y X X X X Y Y
 ه دارای توزيع يكنواخت در (0, 2π است . بنابراين اگر

$$
\begin{aligned}
& R=\left(-2 \log U_{1}\right)^{1 / 2} \\
& \oplus=2 \pi U_{2}
\end{aligned}
$$

كه نتيجه مى شود

$$
\begin{align*}
& X=R \cos \ominus=\left(-2 \log U_{1}\right)^{1 / 2} \cos \left(2 \pi U_{2}\right) \\
& Y=R \sin \oplus=\left(-2 \log U_{1}\right)^{1 / 2} \sin \left(2 \pi U_{2}\right)
\end{align*}
$$

تتغير هاى تصادفى نرمال واحد مستقلند .
روش بالا براى توليد مـتغيـرهاى تصادفى نرمـال واحد را روش باكس - مولر مى نامند .

$$
\begin{aligned}
& V_{1}=2 U_{1}-1 \\
& V_{2}=2 U_{2}-1
\end{aligned}
$$

آن كاه (است (شّكل • ب Y بر ما ملاحظه كنبد).

r-1. شكل

 حـال نتيجه مى شـود كه توزيع اين جفت تطبى اين جفت رابه
 جون

$$
\begin{aligned}
& \sin \oplus=V_{2} / \bar{R}=-\frac{V_{2}}{\sqrt{V_{1}^{2}+V_{2}^{2}}} \\
& \cos \oplus=V_{1} / \bar{R}=\frac{V_{1}}{\sqrt{V_{1}^{2}+V_{2}^{2}}}
\end{aligned}
$$

> از معادلُ (Y $X=(-2 \log U)^{1 / 2} V_{1} / \vec{R}$ $Y=(-2 \log U)^{1 / 2} V_{2} / \bar{R}$
فرض 1
تصادنى جديد U از آن مى توان استفاده نمود بنابراين نشان مى دهيم

$$
\begin{aligned}
& x=\left(-2 \log \bar{R}^{2}\right)^{1 / 2} V_{1} / \vec{R}=\sqrt{\frac{-2 \log S}{S}} V_{1} \\
& Y=\left(-2 \log \bar{R}^{2}\right)^{1 / 2} V_{2} / \bar{R}=\sqrt{\frac{-2 \log S}{S}} V_{2}
\end{aligned}
$$

نرمالهاى واحد مستقلند هر كاه

$$
S=\bar{R}^{2}=V_{1}^{2}+V_{2}^{2}
$$

$$
\begin{aligned}
& \text { بنابراين بطور خلااصه برايى توليد يك جفت نرمال واحد مستمل روش زير را را داريم : }
\end{aligned}
$$

$$
\begin{aligned}
& \text { مر حلةُ }
\end{aligned}
$$

$$
X=\sqrt{\frac{-2 \log S}{S}} v_{1}, Y=\sqrt{\frac{-2 \log S}{S}} v_{2}
$$

بر مى كرديم.
روش بالا روش تطبى ناميده مى شـود. جون احتمـال اين كه يك نقطهُ از مـريع در داخل دايره ترار كيرد $\frac{\pi}{4}$ است (مساحت دايره تقسيم بر مسـاحت مربع) لذا روش تطبى بطور متوسط

 لازم دارد. i =
n نر مانهـاى واحد مسـتقلند توزيع كى دو با n درجهُ آزادى امست. در بتخث r فصل و نشان داده شـد كـه
 كى دو با Y
 يعنى

$$
x_{2 k+1}^{2}=Z^{2}-2 \log \left(\prod_{i=1}^{k} U_{i}\right)
$$

ك يكنو اخت در (0, 1) مي باشند.

F- ش- شبيه سازى توزيتهاي ك"سسته
تهام روشهاى عمومى برایى شبيه سازى متغير هاى تصادفى از توزيعهاى بيو سته در حالت
 شگگالى احتمال

$$
P\{X=x\}=P_{j}, \quad j=0,1, \ldots, \quad \sum_{j} P_{j}=1
$$

مى باثُـد شــبـيـه سـازى كنـم از مــــابه روش تبـديل مـعـكوس براى حـالت كـسـسـتـه مى توان استـفاده نمـود . برإى شبـيـه سـازى X توزيع يكنواخحت بوده و ترار مي دهيم

$$
X= \begin{cases}x_{1} & U<P_{1} \\ x_{2} & P_{1}<U<P_{1}+P_{2} \\ \vdots & \\ x_{j} & \sum_{i}^{j-1} P_{i}<U<\sum_{i}^{j} P_{1} \\ \vdots & \end{cases}
$$

$$
P\left\{X=x_{j}\right\}=P\left\{\sum_{1}^{1-1} P_{i}<U<\sum_{1}^{1} P_{i}\right\}=P_{j}
$$

مى بينيم كه X داراى توزيع مورد نظر است .
مثال r الم توزيع هندسى. نرض كنيد آزمايشـهاى مستقلى كه هريكى نتيجـه اش " مونقيت، با احتتمـال J با تعناد آزمايشهاى لاز
كه با تو جه بـه اين كه اكر i ا آزمايشث اول ثـكــت و آزمايشت i ام مونـقيت است داريم X = i .

لذا اين متغير تصادنى را با توليد يك عدد تمـادفى U و سبس مساوى تراردادنX با آن مقدار ز كه $1-(1-p)^{j-1}<U<1-(1-p)^{j}$

يا معادل آن مقدار ز كه
$(1-p)^{\prime}<1-U<(1-p)^{j-1}$

$$
\begin{aligned}
X & =\min \left\{j:(1-p)^{j}<U\right\} \\
& =\min \{j: j \log (1-p)<\log U\} \\
& =\min \left\{j: j>\frac{\log U}{\log (1-p)}\right\}
\end{aligned}
$$

مى توان تعريف نمود كه با توجه به اين كه (\log منفى است علامت نا مساوى تغيير مى كند
 حسحيح كمتر يا مساوى x است) استفاده كنيم مى توان نوشت

$$
\begin{aligned}
& P\{X=i\}=(1-p)^{1-1} p \quad i \geq 1 \\
& \sum_{i=1}^{j-1} P\{X=i\}=1-P\{X>j-1\}
\end{aligned}
$$

$$
\begin{aligned}
& =1-(1-p)^{j-1} \quad j \geq 1
\end{aligned}
$$

$$
x=1+\left[\frac{\log U}{\log (1-p)}\right]
$$

الختصاص داده شده امست . حال برخحى از اينها را الرائه مى كنيـم .
مثال 「
با توجـه به اين كـه آن را به حـورت مجـمـوع ח مـتـغير تصـادفى برنولمى مـسـتـقل مى توان نوشـت
 يكنو اخخت (0.1) بانُـند آن كاه با فرض

$$
X_{t}= \begin{cases}1 & U_{i}<p \\ 0 & ت \text { در غير اين مور }\end{cases}
$$

p,n يـك مـتغـيـر تصــادنى دو جــمله أى با بارامـترهای X=
اسـت
مثال
 و ستس با تو جه به هقدار زير تو تف كنيد .

$$
N=\min \left\{n: \prod_{i=1}^{n} U_{i}<e^{-\lambda}\right\}
$$

متغير تصـادفي X X 1 دارايى توزيع مطلوب امست. يعنى اكُر به توليد اعداد تصـادفى تا اين كه
 ميانگين λ امـت، كه 1 X 1 در واتع يكـ متـغير تصـادفى يواسن با مـيانگين גأست كه آن را بسهولت با توجه به اين كه

$$
\begin{aligned}
& x+1=\min \left\{n: \prod_{i=1}^{n} U_{i}<e^{-\lambda}\right\} \\
& X=\max \left\{n: \prod_{i-1}^{n} U_{1} \geq e^{-\lambda}\right\} \quad, \quad \prod_{i=1}^{0} U_{1} \equiv 1
\end{aligned}
$$

$$
\begin{aligned}
& x=\max \left\{n: \sum_{i=1}^{n} \log U_{i} \geq-\lambda\right\} \\
& x=\max \left\{n: \sum_{i=1}^{n}-\log U_{i} \leq \lambda\right\}
\end{aligned}
$$

مى توان ديد.

 يواسن با ميانگين λ است.

甲- روشهاى كاهش واريالس

$$
\begin{aligned}
& \text { فرض كنيد X X ، . . . X داراي توزيع توأم معلوم بوده و فرض كنيد } \\
& \theta \cong E\left[g\left(X_{1}, \ldots, X_{n}\right)\right]
\end{aligned}
$$

باشد كه در آن و تابع مشـخصى است. كـامى اوقات محـاسبهُ تحليلي مورد نوق بسـيار
 برآورد نمايم. اين كار رابه صورت زير انـي همتوزيعند توليد كرده و ترار مى دهبم

$$
Y_{1}=g\left(X_{1}^{(1)}, \ldots, X_{n}^{(1)}\right)
$$

أكنون مجموعةٔ دومى از متغيرهاى تصادنى (مستقل از مجـموعه اول) ، داراى توزيع

$$
Y_{2}=g\left(X_{1}^{(2)}, \ldots, X_{n}^{(2)}\right)
$$

Y

 كنـم، يعنى

$$
\bar{Y}=\sum_{i=1}^{1} \frac{Y_{i}}{k}
$$

$$
\begin{aligned}
E[\bar{Y}] & =\theta \\
E\left[(\bar{Y}-\theta)^{2}\right] & =\operatorname{Var}(\bar{Y})
\end{aligned}
$$

بنابراين واريانس
 برآورد شود] . حالل سه روش عمومى كاهش واريانس يك برآورد كر را ارايأثه می كنيم

 مى بائند را توليد كرده باثيهم. حال داريم
$\operatorname{Var}\left(\frac{Y_{1}+Y_{2}}{2}\right)=\frac{1}{4}\left[\operatorname{Var}\left(Y_{1}\right)+\operatorname{Var}\left(Y_{2}\right)+2 \operatorname{Cov}\left(Y_{1}, Y_{2}\right)\right]$

$$
=\frac{\operatorname{Var}\left(Y_{1}\right)}{2}+\frac{\operatorname{Cov}\left(Y_{1}, Y_{2}\right)}{2}
$$

بنابراين اكر Y, Y Y ب

 باشد . بنابر اين Y را به صورت زير مى توان بيان كرد

$$
Y_{1}=g\left(F_{1}^{-1}\left(U_{1}\right), \ldots, F_{n}^{-1}\left(U_{n}\right)\right)
$$

 $Y_{2}=g\left(F_{1}^{-1}\left(1-U_{1}\right), \ldots, F_{n}^{-1}\left(1-U_{n}\right)\right)$

بنابر اين اكُر Y Y Y Y Y Y Y به أين كه اكُر Y Y و خو اهد داشتـ. (عـلاوه براين از نظر مححامـباتت صرفـه جوبى مى شرد زير ا به جـالى تولبد n عدد

 كه اكر g يك تابع يكنوا باشـد آن كاه Y و و Y

F F-p

 آغاز مى كنيم .

$$
\operatorname{Var}(Y)=E[\operatorname{Var}(Y \mid Z)]+\operatorname{Var}(E[Y|Z|)
$$

،
 كنيم آن كاه حون Var (YIZ) 0 اسست بنا به نرمول واريانس شرطى بالУ $\operatorname{Var}(E\{Y \mid Z]) \leq \operatorname{Var}(Y)$

نتيـجـه مي شود و هون E [E[Y| Z] $]=$ E[Y] بنابر اين E [Y | Z برآورد كنتدهُ بهـترى از . اسـت تا E [Y]

مثال
 (0,0) تـرار دارد داراى توزيع يكنواخت انست . احتــــــال قـرار كـرفتن اين نـقطه در دأخل دايره
 به مربي) اسست. بنابراين اكر تعداد زيادى از اين جفتها را نُبيه سازى نموده و ترار دهيم
 (است . بنابراين بنا به تانون قوى اعداد بزر گ داريم $E\left[I_{j}\right]=\frac{\pi}{4}$

$$
\frac{I_{1}+\cdots+I_{n}}{n} \longrightarrow \pi / 4 \quad n \rightarrow \infty
$$

بنابراين به اين نتيجه مى رسمبم كه اكر تعداد زيادي از جفتهاي (V) , V
 تقريب كنمب.

 استفاده كنيم

$$
\begin{aligned}
E\left\{\left|\mid V_{1}\right]\right. & =P\left\{V_{1}^{2}+V_{2}^{2} \leq 1 \mid V_{1}\right\} \\
& =P\left\{V_{2}^{2} \leq 1-V_{1}^{2} \mid V_{1}\right\}
\end{aligned}
$$

حال داريم،

$$
\begin{aligned}
P\left\{V_{1}^{2} \leq 1-V_{i}^{2} \mid V_{1}=v\right\} & =P\left\{V_{2}^{2} \leq 1-r^{2}\right\} \\
& =P\left\{-\sqrt{1-v^{2}} \leq V_{2} \leq \sqrt{T-r^{2}}\right\} \\
& =\sqrt{1-v^{2}}
\end{aligned}
$$

و بنابراين

$$
E\left[I_{1} V_{1}\right]=E\left[\sqrt{1-V_{1}^{2}} \mid\right.
$$

بنابراين يك اصـلاح در به كـاربردن مـعدار مـتوسط ا برآّورد $\frac{\pi}{4}$ اين است كـه از مـقدار متـوسط (استفاده كنيم • در واتع جون $\sqrt{1-v_{1}^{2}}$

$$
E\left[\sqrt{1-v_{i}^{2}} \left\lvert\,=\int_{-1}^{1} \frac{1}{2} \sqrt{1-v^{2}} d v^{\prime}=\int_{0}^{1} \sqrt{1-u^{2}} d u=E\left\{\sqrt{1-u^{2}}\right]\right.\right.
$$

كه با به عنوان برآورد $\frac{\pi}{4} \sqrt{1-\mathrm{U}^{2}}$ متوسط n مقدار

 معدار متوسط الستـنـاده از نصن مستوسط برآوردكنندهُ بهتر بهدست آَورد .

$$
\text { استفادة از • . . . } n=1 \text { مى دهد. }
$$

روش	برآرّر
	r/jgir
استفاده از مقدار مترسط	r, itafta
	r, iraova

حاصل مى شود.

ب-

 يعنى E E[f (X) $W=g(\mathbf{X})+a[f(\mathbf{X})-\mu]$

به عنوان يك برآورد كر 1 E [g (X) استفاده كنيم. حال

$$
\begin{equation*}
\operatorname{Var}(W)=\operatorname{Var}[g(\mathbf{X})]+a^{2} \operatorname{Var}[f(\mathbf{X})]+2 a \operatorname{Cov}[g(\mathbf{X}) \cdot f(\mathbf{X})] \tag{1-f}
\end{equation*}
$$

به مهولتت مى توان ثُابت كرد كه وتتى

$$
\begin{equation*}
a=\frac{-\operatorname{Cov}[f(\mathbf{X}), g(\mathbf{X})]}{\operatorname{Var}[f(\mathbf{X})]} \tag{Y-Y}
\end{equation*}
$$

باشد مقدار فوق مينيمم مي شود و براى اين مقدار a داريم

$$
\operatorname{Var}(W)=\operatorname{Var}[g(\mathbf{X})]-\frac{[\operatorname{Cov}[f(\mathbf{X}), g(\mathbf{X})]]^{2}}{\operatorname{Var}[f(\mathbf{X})]}
$$

متأسفانه جحون مـعمو لا هيحِ كدام از $\operatorname{Cov}[f(X), g(X)]$, Var [f(X) معلوم نيستند بنابراين معــمو لا كـاهش واريـانس بالا رانمى تران بهد دست آورد . در عـمل يـكا روش اين است كـه اين

 كميتها استناده كنيـم.

مسائل

 ندارد . در اين الگُوريتم (i) با به عنوان عنصر در وضـعيت أ مى توان تفسير نمود .

$$
\text { k = مرحلهُ ا : قرار دهيد } 1
$$

P (1) = مرحلهُ Y : قرار دهيد

$$
\text { مرحلهُ } \uparrow \text { : يك علدد تصادفى U را تولبد نموده و فرض كنيد }
$$

$$
\begin{aligned}
& P(k)=P([k U]+1) \\
& P([k U]+1)=k \\
& \text { به مرحالهُ برويد }
\end{aligned}
$$

(الف) عملكرد الكُوريتم را بيان كيند.
 (1) $1,2, \ldots, k(2), \ldots, P(k)$

رامنـايى : با استفاده از استقرا به صورت زير امستلال كنيد

$$
\begin{aligned}
& P_{k}\left\{i_{1}, i_{2}, \ldots, i_{j-1}, k, i_{j}, \ldots, i_{k-2}, i\right\} \\
& =P_{k-1}\left\{i_{1}, i_{2}, \ldots, i_{j-1}, i, i, \ldots, i_{k-2}\right\} \frac{1}{k} \\
& =\frac{1}{k!} \quad \text { بنابه }
\end{aligned}
$$

Y- روشى را برایى هبيه سازى يكى متغير تصادنى كه دأراى جكالى زير است بسازيد.
$f(x)= \begin{cases}e^{2 x} & -\infty<x<0 \\ e^{-2 x} & 0<x<\infty\end{cases}$
 $f(x)= \begin{cases}\frac{1}{2}(x-2) & 2 \leq x \leq 3 \\ \frac{1}{2}\left(2-\frac{x}{3}\right) & 3<x \leq 6 \\ 0 & \end{cases}$

$F(x)= \begin{cases}0 & x \leq-3 \\ \frac{1}{2}+\frac{x}{6} & -3<x<0 \\ \frac{1}{2}+\frac{x^{2}}{32} & 0<x \leq 4 \\ 1 & x>4\end{cases}$
ه- با استفاده از روش تبديل مـككوس رونى براى توليديكى متغير تصـادنى از توزيع وايبل ارائه نماييد.

$$
F(t)=1-e^{-a t^{B}} \quad t \geq 0
$$

9- روشى بـراى شبيه سازى يكى متغير تصادفى كه دارالى تابع نرخ شـكست زير است ارالثهنمايند

$$
\begin{equation*}
\lambda(t)=c \tag{الف}
\end{equation*}
$$

نتـستين درم الحتمالل

$$
\begin{aligned}
& \lambda(t)=c t \\
& \lambda(t)=, c t^{2} \\
& \lambda(t)=c t^{3}
\end{aligned}
$$

(بس)

$$
F(x)=x^{n} \quad 0<x<x
$$

(الف) روشى رابرایى شُبيه سـازى يكى متـغير تصـادنى كه داراى توزيع F اسـت و تنها از يى عدد تصادنى الستفاده مى كند ارائه نماييد.

$P\left\{\max \left(U_{1}, \ldots U_{n}\right) \leq x\right\}=x^{n}$
(ب) با استفاده از بخشُ (ب) روشى دومى را براى نبيه ســازى يكى متغير تصادنى كه داراى توزيع F است ارائه نمائيد.
^- فرض كنيد شـبيـه سازى از 1 برای هر مى توان شبيه سازى نمود.

$$
\begin{equation*}
F(x)=\prod_{!=1}^{n} F_{i}(x) \tag{الف}
\end{equation*}
$$

$\left.F(x)=1-\prod_{i=1}^{i} 11-F_{i}(x)\right]$
Q- فرض كنيد روشى براى شبيه سازى متنغير هاى تصادنى از توزيعهاى F F دهيد كه از توزيع زير جگُونه شبيبه سازى مى كنبد
$F(x)=p F_{1}(x)+(1-p) F_{2}(x) \quad 0<p<1$ روشى را براى نبيه سازى از تابع زير ارائه كنيد
$F(x)= \begin{cases}\frac{1}{3}\left(1-e^{-3 x}\right)+\frac{2}{5} x & 0<x \leq 1 \\ \frac{1}{3}\left(1-e^{-3 x}\right)+\frac{2}{3} & x>1\end{cases}$

هيگالى تكرارهاى لازم در طرح عدم بذيرش مينيمم مى شود .
 بكى متغير تصادفى با تابع یچگالى زير تعيين كنيد .

Y Y - توضيح دهيد كه از اعداد تصادفى جهت تقريب k (x) جگونه استفاده مى كنيد .

رامنمايع : اكر U در (0, 1) يكنوانخت باشـد [E [k (U) جقدر اسـت؟
ץا - نرض كنيـد (X,Y) در دايرهای به شـعـاع ا و مـركز مـبـدأ داراى توزيع يكنواخت باثــد. هچالى توأم آن عبارت المـت از

$$
f(x, y)=1 / \pi, \quad 0 \leq x^{2}+y^{2} \leq 1
$$

فرض كنيل

 $E\left[\left(1-V^{2}\right)^{1 / 2}\right]=E\left[\left(1-U^{2}\right)^{1 / 2}\right]=\pi / 4$

نشان دهيل .
$\operatorname{Var}\left[\left(1-V^{2}\right)^{12}\right]=\operatorname{Var}\left[\left(1-U^{2}\right)^{1 / 2}\right]$
و مقدار مشتركـ آنها را بيدا كنيد .

(ب) ثاببت كنيد كه مينيمم (
 شهيه سـازى X و سمس منظلور نمودن X(X)

فهرست راهنما

$$
\begin{aligned}
& \text { TYA تأبع جرم |حتمال }
\end{aligned}
$$

$$
\begin{aligned}
& \text { تأبع קگالى توأم } \\
& \text { TFq تأب مولد گثشتاور } \\
& \text { تابع مولد مجموع هار } \\
& \text { تأبع مولد نمايى } \\
& \text { IAr-1Ar-HFA تأبع مولد بواس } \\
& \text { تأبع مولد نرمال • • } \\
& \text { تابع نرخ خرابي Y-Y } \\
& \text { تركيب } \\
& \text { تقريب نرمال } 199 \\
& \text { توأمأ بيوسنه الت } \\
& \text { rlf توزيع بتا } \\
& \text { rry توزيع جندجملهأى } \\
& \text { ITV توزيع زتا } \\
& \text { توزيع دامنه } \\
& \text { توزيع دامنه - } \\
& \text { تعبير احتمالى نصف غمر rAA } \\
& \text { rof توزيعهای شرطى } \\
& \text { الف } \\
& \text { اجتماع سr } \\
& \text { VI احتمال شرطى } \\
& \text { fry ارگوديك } \\
& \text { آشفتگى لا بلاس } \\
& \text { اشتراكك با } \\
& \text { اصل اساسى شــارش } \\
& \text { TV-r| اصول احتمال } \\
& \text { T T } \\
& \text { الميد رياضى PAA } \\
& \text { Tآناليز تركيبى } \\
& \text { آنتروبي } 99 \\
& \text { ب } \\
& \text { بيشامد }
\end{aligned}
$$

ض |V ضرايب جندجهلهایى

」

كوواريانس هندسى KYF
كوواريانس شرطى جوا 7 r

*	روش تبديل معكوس
	F71 روش كاهش واريانس
	FDI روش عدم بـ
\rfloor	
	;
f.r	FM.-FYM زنجير
	frı زمان انتظار

IFY متغيّر تصادنى برنونى
 متغيّر تصادنى ينيوسته

Fq0 منغيّر تصادفى كتنتر

を

1. جايگثتـها

0
درستنهايى ماكزيمم 177 IV دوجملهأى منـى
,
روش تبد يل معكوس ffq F71 روش كاهش واريانس fol روش عدم بذيرش ;

FY--fyr زنجير ماركوف fyI زمان انتظار

FFD شبيهسازی F7. تشبيهسازى دوجسلهاي

ش ش

FDD-FDr شبيهس Fq. شثبيهسازی يواس شه

F09 Fهبيه سازى هندسى
| فضاى نمونه
ق

F. F. تانون نوى اعداد بز

تانون نآ گآهي
 قانون جندجمكلهايى 19-10

توانين دومورگان

ناسازگار
FI. نامساوى جنس
f.7-ra - نامساوى خبيشف F. Y-F. . نامساوى كلموگروف

نامناوى
r^9 نامساوى ماركف
F19 نـو هاى مستقل

9

> rif واريانس
> واريانس بواسن req
> rr. واريانس جور ها
> M19 واريانس دوجمفلهاى

$$
\begin{aligned}
& \text { واريانس نرمال الهـي } \\
& \text { واريانس نمايی req } \\
& \text { واريانس TIF } \\
& \text { واريانس بواسن req } \\
& \text { rr. واريانس جور ها با با } \\
& \text { واريانس سـرطى MFV-PY } \\
& \text { واريانس نرمال الهـ } \\
& \text { ورارانـ نـايى }
\end{aligned}
$$

RYV متغيّر تصادنى مستقل |AV متغيرّ تصادفى يكنواخت FFV متغيّر تصادفى تبديل تصادفى تئى

 مrه معادلات קیمن كلموگروف

 ميانگين بواسن

 مـانگين نرمال ميانگين نمايى مـبانگين هندسى F.F

FERDOWSI UNIVERSITY OF MASHHAD

Publication No. 223

A First Course In Probability

by
Sheldon Ross

Translated by
H. Azarnoush - A. Bozorgnia
A. Meshkani - H. Niroomand

Ferdowsi University Press

