نختيتين درس در دياضيات

$$
\begin{aligned}
& \text { ثاليف: البان اندرورون }
\end{aligned}
$$

نخستين درس در رياضيات گسسته

عضهو هيئت علمى دانُشكده علوم رياضّى دانشكاه منعتى اصفهان

كروه علوم YY

1. شماره كتاب

نُخستين درس در رياضبات گسسته
مولن :...................................... منرجم مرنج ناسر .

\qquad
\qquad

فيمت Yo. :............................

Anderson, Ian

 كروه علوم؛ ISBN 964-8476-02-0

نهرستنويسبي، بر اساس اطلالاعات فيبا. كتابنامه : ص.

$\mathrm{p}^{\text {Ar-1AY90 }}$
كتابخانه ملى ايراه:
حق דیب براي مركز نـتر دانـشكاه منعنى اصـنهان مسنوظ است.

 دارند. صفحه هفتنقطهاى مئالى جالب در تبيبن رابطر بين طرحِهاى تركيبى، گرافها و كدها است.

 در واقع اين وجه تمايز اساسى كتاب حاضر با ديكر كتابهأى نوشنه شده در رياضبات كسسنه مى يباشد.
 ارارئه دريكى درس دوره كارشناسى بوده و زمينه رياضى خرينى خوبى برایى مطالعه بيشتر در تركبيبات و كاربردهاى آن را فراهم مى سازند.

> مرتضى اسماعيلى
> عضو هبتت علمى دانشكاه صنعىى اصفهان
> |rAr ارديبهشت

بيش كتنار مؤلف

اين جلد از كتاببهاى درسى SUMS مقدمهاى برجنبيههاى متنوعى از رياضيات كسسته

 رياضبات كسسته جايگاه خود را درمقطع كارشناسى در حد نسبناً خوبى ييدا كرده است و قطاًا اين جايگاه در هزاره سوم حفظ خواهد شد شد
 كد مطالعه شمردن انواع مختلف آرايهها است. براى نمونه مىتوانوان به شمردن تعداد
 درختهاى فراگير يک گراف كامل، يا تعداد حاد حالتهاى ممكن براى مرتب نمودن 17 تيم بد جهار گروه جهارتيمى اشاره نمود.

 سومين زمينه از رياضيات كسسته كه دراين كتاب به آن يرداختا

 كاربرد آنها درطاراحى آزمايشها
 خطا وجود دارند به با پايان مىرسد.
براى قادر بودن به درى محنواى كتاب، خوانيانده به مقدار زيادى از دانش فنى نياز

ندارد. يك دانشى از روش اثبات با استقرا، يكى آشنايى با نظريه ماتريس و محاسبات

 در اين رابطه تمرين و تجربه موثر است.

 بدنظر مىرسد كه مباحث مطرحشده درحدّى هستند كه مدرس تادر به يكى انتـخاب

 تدريس رياضيات گسسته در سطوح مختلف، از دبيرستان تا سال آخر دوره كارشناسى، تأليف شده است.
Yooo دانشگاه كلاسكو، زوتُ

4
\%

نهرست مندربات

فصل ! : شمارش و ضرايب دوجملهاى . 1.1 r. 1
 .F.I 0.1. أنتخاب با تكرأر 7.1. 1 يك عملْ معكوسسازى ماتريسى مفبد

فصل r r: بروابط بازگشتى
Y. Y ا. Y Y.Y.Y Y. Y. Y. Y. Y.
O.Y r. Y. Y. اعداد كتانان
 مفهوم يك گراف
 r.r. F.

فصل F: Fشت . I.F S. Y.F ك. F.F
. O.F F. F. F
7. 7 .

ينج

90
9%
100
lor
100

IT
119
119
ir|
irr

Iry
ITI
irr
iry

190
101
lof

109
ly
ivo
IYY
ivy
iv9
191
190
ril
rir
rio

فصل ه: افرازها و رنگّ آميزیهها
ه. ا. ا الفرازهانى يكي مجموعه

ه. ©. ه. شمارش توابع

فصل 7: اصل شمول-حذف .1. 1.1
Y.7. T. شمارش توابع يوشا
 Y. Y. Y. 7 0.7. مستلد زناشويى

> فصل V: مربع هاى لاتين و قضيه هال

 r.Y. Y.

أزمربعهاى لاتين به صفحات آفنىى . F. Y
فصل 1 : برنامdها و ا ا-عاملسازها 1.1. ا. روش دايرهر

 فصل 9 : مقدمهای بر طرحها
 Y. 9

 ضميمه
جواب تمرينها

مطالعه بيشتر كتابنامه
وازْهنامd

شمارش وضرايب دوجملهاى

در این نصل روشُهاى اساسى شمارش، تابع فاكتوريل و ضرايب دوجملشأى را معرفى
 مطلب را Tغاز مىىنيم.
1.1

متفاوت، مسنقل از جگُونگى انجام مراحل ديگر، قابل اجرا باشد، دراينصورت اين كار مورد نظر به

مثال 1.1
 در اين رستوران ميل كردن يكى غذاى سهمرحلهأى به

اـهكانيذير است.
 آنگاه

$$
\left|A_{1} \cup \cdots \cup A_{k}\right|=\left|A_{1}\right|+\cdots+\left|A_{k}\right|=\sum_{i=1}^{k}\left|A_{i}\right|
$$

مشال
در مئال بالا، تعلاد غغاهاى دومرحلهاى (شامل يكـ مرحله اصلى) را مشخص كنيد.

شمارش وضايب دوجملهاى \qquad

جواب

 غذاى اصلى و يك دسر باشد. دراينصورت عدد مطلوب برابر است با

$$
\begin{aligned}
\left|A_{1} \cup A_{Y}\right| & =\left|A_{1}\right|+\left|A_{Y}\right| \\
& =r \times 7+7 \times 0 \\
& =F A .
\end{aligned}
$$

(بنا به اصل جمع)
(بنا به اصل ضرب)

ن.l
به جند طريق مىتوان حروف a، b و c را در يكى سطر ترار داد؟ اين كار به شش طريق بششح زيرامكانيذيراست
$a b c, a c b, b a c, b c a, c a b, c b a$.
توجه كنيد كه سه انتخاب براى مكان اول، دو انتخاب برای موقعيت دوم، و بالآخره تنها يك انتخاب براى مكان سوم وجود دارد! يس بنابر اصل ضرب كردن اين حروف وجود دارد. در حالت كلى، اكگر !n (n فاكتوريل) را با

$$
n!=n(n-Y)(n-Y) \ldots Y .1
$$

تعريف كنيم Tنگاه قضيه زير حاصل مىشود.
تضيه 1.1
تعداد حالتتهاى مسكن براى مرتب كردن n شى برابر !n| است.
مثال
جههار نفر به نامهاى منشى، يك خرانهدار و يك مسنول روابط عمومى. به جه جند طريق مىتوان اين مسنوليتها را به افراد اختصاص دادْ؟

جواب
نكر كنبد كه ابتدا رئيس، سبس منشى، و غيره انتخاب شوند. اين كار به المكانجذير است.
مقدار !n خيلى سريع انزايش مىيابد:

$$
\Delta!=1 \mathrm{ro}_{0}, \quad 10!=\text { YTYANoo, } \quad \Delta 0!\cong Y .0 F \times 10^{7 F}
$$

اين مثالى از آن جيزى است كد انفجار تركيباتى ناميده مىشود: تعلاد ترتببهاى مختلف n شى با افزايش n بسيار بزرگ ميشود. در بس مسئله مرد فروشنده دورْگرد اين اندازه بسيار
\qquad نخستين درس دررياضيات كسسنه

بزرگ !n قرار دارد؛ مسنلد مرد فروشنده دورهكرد در فصل F مـطالعه خوإهد شد. يكى مرد
 مفروض بودن فاصله بين شهرها، حگونه مرد مىتواند كوتاهترين مسير ممكن را بيدا كند؟ ايده ابتدايىى امتحان كردن تمامى !n مسيرهاى ممكن با افزايش n غيرعملى میى باشد، و و بنابراين رويكرد ديگرى لازم است.
در بعضى از مسائل، تنها تعدادى از يكى مجموعه ازاشيا دادهشده بايد ليست شوند.
م.1 مشال
بيعنوان مسابقه، در يشت يك یاكت حاوى حبوبات ده خاصيت يكى نوع اتومبيل درج شده و
 اهميت را بمترتبب اولويت مشخص كنند. تعداد جوابهاى ممكن را مشخص كنيد. جواب
 مكان ششم. يس بنابر اصل ضرب تعداد جوابهاى ممكن برابر است با

$$
10 \times 9 \times 1 \times V \times 7 \times 0=\frac{10!}{f!}=101 \mathrm{Yoo} .
$$

در حالت كلى حكم زير برقرار است.
قضبه 1
تعداد حالتهاى ممكن براى انتخاب r شی از يك مجموعه n عضوى، با درنظر كرفتن ترتبب
ولى بدون تكرار، برابراست با

$$
n(n-1) \cdots(n-r+1)=\frac{n!}{(n-r)!}
$$

0.1 مثال

 ريّيس، منشى، خزانهدار و مسنول روابط عمومى برابر است با

$$
r \circ \times 19 \times 1 A \times 1 V=\frac{r \circ!}{17!}=117 r \wedge \circ .
$$

M.I انتخابها

شمارش و ضرايب دوجمالىالى \qquad F

ممكن براى انتخاب F نمايش داده و انتخاب
 نمود برابر ! ! است، يس بنابر مثال 0.1 داريم

$$
\begin{gathered}
F!\times\binom{ Y_{0}}{f}=\frac{r_{0}!}{17!} . \\
\binom{r_{0}}{f}=\frac{r_{0}!}{r!!7!}=r \wedge F O .
\end{gathered}
$$

بنابراين

اين بحث در در حالت كلى برقرار است، يعنىى كلى زير را داريم.

تضيه
فرض كنيد ($\left.\begin{array}{rl}\text { فضيد } \\ r\end{array}\right)$ معرف تعداد انتخابهاى غيرمرتب r از ، بدون تكرار، باشد. دراينصورت

$$
\begin{equation*}
\binom{n}{r}=\frac{n!}{r!(n-r)!} \tag{1.1}
\end{equation*}
$$

 بدعنوان سردسته درنظر بكيريم. اين عمل را ميتوان با با انتخاب تبم و سبس انتخاب سردي سردسته انجام داد. انتخابهاى ممكن براى تيم برابر امكانيذيراست و بنابراين تعداد جوابهاى مستّله برابر

 است؛ يس اين عمل بد n (n حالت منفاوت مىتواند انجام شود. بنابراين

$$
r\binom{n}{r}=n\binom{n-1}{r-1}
$$

و درنتبجه

$$
\begin{equation*}
\binom{n}{r}=\frac{n}{r}\binom{n-1}{r-1} \tag{r.1}
\end{equation*}
$$

0 \qquad نخسنين درس دررياضيات كسسنه
俍

$$
\binom{n}{r}=\frac{n}{r} \cdot \frac{n-1}{r-1}\binom{n-r}{r-r} .
$$

با ادامه اين روش رابطه زير را بددست مى آوريم

$$
\binom{n}{r}=\frac{n}{r} \cdot \frac{n-1}{r-1} \cdots \frac{n-(r-r)}{r} \cdot\binom{n-(r-1)}{1} .
$$

جون مقدار

$$
\binom{n}{r}=\frac{n(n-1) \cdots(n-r+1)}{r!}=\frac{n!}{r!(n-r)!} .
$$

توجه كنيد كه اين درواتع مثال خوبى براى شمردن يكى جبز به دو روش مختلف است. مثال 7.1
 در آن ترتيب مطرح نيست. از اينرو تعداد حالتهایى ممكن برابراست با

$$
\binom{f q}{q}=\frac{F q \times F \wedge \times F Y \times F q \times F \Delta \times F F}{7!}=1 r q \wedge r \wedge 17 .
$$

پس احتمال برندهشدن تقريباً يك به
م.
 باشند جقدر است؟

جواب
تعداد انتخابهاى ممكن براى هفته آينده برابر
 هم|حنمال هستند عدد مطلوب برابراست با

$$
\binom{F Y}{7} /\binom{q q}{7}=0,4 r q \cdots .
$$

\qquad
مثال 1 A.
 دارد. بهعنوان مثال هشت دنباله دوتايى بهطول سه عبارت هستند از
00000101001110010111011.
(a) جند دنباله دوتايى بهطول

(انتخاب براى اين شش موقعيت وجود دارد. ($\left.\begin{array}{c}\text { IT } \\ \text { T }\end{array}\right)=$ GYF
تعداد
برابرنيسنند. ازاين تعداد در نصف آنها تعداد مها بيشتر از تعداد اها آها است.
ايـن بـخـش را بـا دو خاصـيت ساده اعـداد نتبجه مىشوند كه عدد信. تضيه 1 F.

$$
\begin{align*}
\binom{n}{r} & =\binom{n}{n-r}, \quad \circ \leq r \leq n ; \tag{i}\\
\binom{n+1}{r} & =\binom{n}{r}+\binom{n}{r-1}, \quad \circ<r \leq n . \tag{ii}
\end{align*}
$$

اين حكم بدسادگى از (1.1) نتيجه مى شود؛ معادلاُ مىتوان اين رابطه را ا اينگونه اثبات كرد كه انتخاب r| از n برابر است با النتخاب n- n عضوى كه نبايد انتخاب شوئه.
 است كه حاوى آن نباشد. اكر rشیى اننخابشا ممكن برابراست با
 اننخاب شوند كد اين برابر $)$

براى اثبات اين حكم از فرمول (1.1) نيز مىتوان استفاده كرد:

$$
\begin{aligned}
\binom{n}{r}+\binom{n}{r-1} & =\frac{n!}{r!(n-r)!}+\frac{n!}{(r-1)!(n-r+1)!} \\
& =\frac{n!(n-r+1)}{r!(n-r+1)!}+\frac{n!r}{r!(n-r+1)!} \\
& =\frac{n!}{r!(n-r+1)!}\{n-r+1+r\} \\
& =\frac{(n+1)!}{r!(n+1-r)!}=\binom{n+1}{r}
\end{aligned}
$$

F.I

اعداد خواهيم شد. ملاحظد كنبد كد

$$
\begin{aligned}
& (1+y)^{r}=1 \\
& (1+y)^{\prime}=1+y \\
& (1+y)^{r}=1+r y+y^{r} \\
& (1+y)^{r}=1+r y+r y^{r}+y^{r} \\
& (1+y)^{r}=1+\uparrow y+7 y^{r}+Y^{r} y^{r}+y^{r}
\end{aligned}
$$

: ضرايب

$$
{ }_{1}^{\prime} 1_{1}^{\prime} r_{r}^{1} r_{r}^{\prime} r_{1}^{\prime}
$$

به آرايش مثلثي ضرايب كه به مثلث پاسكال معروف است توجه كنيد. هر سطر متشكل از اعداد انتخاب مىباشُد؛ بهعنوان مـال پايينترين سطر متشكل است از

$$
\binom{f}{0}=1, \quad\binom{F}{1}=F, \quad\binom{F}{r}=7, \quad\binom{F}{r}=F, \quad\binom{F}{f}=1 .
$$

 مثلث را مى شناختنـد
قضبه 0.1 (قضبَه دوجملهاى)

$$
(x+y)^{n}=\binom{n}{0} x^{n}+\binom{n}{1} x^{n-1} y+\binom{n}{r} x^{n-r_{1}} y^{r}+\cdots+\binom{n}{n} y^{n}=\sum_{r=0}^{n}\binom{n}{r} x^{n-r} y^{r}
$$

شمارش وضرايب دوجملهاى \qquad \wedge

$$
(x+y)^{n}=(x+y)(x+y) \cdots(x+y)
$$

بس ضريب جمله
 از ايـنرو جمله باقيمانده x، را انتخاب كرد ظاهر مى ضريب

نتيجه 1.1
مثلث باسكال

درايدهاى سطر 1 ام، n

$$
\begin{aligned}
& (1+y)^{n}=\sum_{r=0}^{n}\binom{n}{r} y^{r} . \\
& 1+\binom{10}{1} r+\binom{10}{r} r^{r}+\cdots+\binom{10}{10} r^{\prime \cdot}=\left(1+r^{10}=r^{\prime \cdot} .\right.
\end{aligned}
$$

معكوس هر سطر، يعنى تطابق هر سطر با معكوس آن ، بيان شده و خاصرت (ii) باين واقعيت
 مى شود. همجنين توجه كنيد كه مجموع درايههای هر سطر توانى از

قضيه 7.1
(i) $\quad\binom{n}{0}+\binom{n}{1}+\binom{n}{r}+\cdots+\binom{n}{n}=r^{n}$;
(ii) $\quad\binom{n}{0}-\binom{n}{1}+\binom{n}{r}-\cdots+(-1)^{n}\binom{n}{n}=0$.
 خط موازی ضاع حي مثلث تساوى
V. 1 تضبه

براى هر o m m و هر 1 n n تساوى زير برقراراست:

$$
\binom{m}{m}+\binom{m+1}{m}+\cdots+\binom{m+n}{m}=\binom{m+n+1}{m+1}
$$

اثبات

$$
\begin{aligned}
& \binom{m+n+1}{m+1}=\binom{m+n}{m}+\binom{m+n}{m+1} \\
& =\binom{m+n}{m}+\binom{m+n-1}{m}+\binom{m+n-1}{m+1} \\
& =\binom{m+n}{m}+\binom{m+n-1}{m}+\cdots+\binom{m+1}{m}+\binom{m+1}{m+1} \\
& =\binom{m+n}{m}+\binom{m+n-1}{m}+\cdots+\binom{m+1}{m}+\binom{m}{m}, \\
& \text { ㄸ. }\binom{m+1}{m+1}=\binom{m}{m}=1 \text { جون }
\end{aligned}
$$

(ii) F. 1 مجددا بنابر

تساوىها
از تضيه دوجملهاى براى بهدست Tوردن تساوىهاى ديگرى كه حاوى ضرايب دوجملaاى باشند استفاده مىشود.

شمارش وضرايب دوجملهاى \qquad

$$
(1+x)^{n}(1+x)^{n}=(1+x)^{\varphi_{n}}
$$

يعنى

$$
\left\{\binom{n}{0}+\binom{n}{1} x+\cdots+\binom{n}{n} x^{n}\right\}\left\{\binom{n}{0}+\binom{n}{1} x+\cdots+\binom{n}{n} x^{n}\right\}=\sum_{r=0}^{r_{n}}\binom{r_{n}}{r} x^{r}
$$

از مساوى ترار دادن ضرايب

$$
\binom{n}{0}\binom{n}{n}+\binom{n}{1}\binom{n}{n-1}+\cdots+\binom{n}{n}\binom{n}{0}=\binom{Y n}{n}
$$

كه بنابر قضيه 1 (i) میتواند بهفرم زيرنوشته شود

$$
\binom{n}{0}^{\gamma}+\binom{n}{1}^{\gamma}+\cdots+\binom{n}{n}^{\gamma}=\binom{r_{n}}{n}
$$

بهعنوان مثال برای F

$$
1^{r}+p^{r}+7^{r}+p^{r}+1^{r}=r_{0}=\binom{1}{r} \text {. }
$$

با بحث مشابهاى بد رابطه متناظر با مجموعهاى تناوبى مىرسيم.
مثال 11.1
از تساوى

$$
\binom{n}{0}^{r}-\binom{n}{1}^{r}+\binom{n}{r}^{r}-\cdots
$$

ضريب x x^{n} را در هر دو طرف تساوى دادهشده درنظر بگيريد. جون سمت راست رابطه برابر عبارت زيراست

$$
\left\{1-\binom{n}{1} x+\binom{n}{r} x^{r}-\cdots+(-1)^{n}\binom{n}{n} x^{n}\right\}\left\{1+\binom{n}{1} x+\cdots+\binom{n}{n} x^{n}\right\}
$$

ضريب

$$
\sum_{r+s=n}(-1)^{r}\binom{n}{r}\binom{n}{s}=\sum_{r=0}^{n}(-1)^{r}\binom{n}{r}\binom{n}{n-r}=\sum_{r=0}^{n}(-1)^{r}\binom{n}{r}^{r}
$$

11 \qquad نخستين درس دررياضيات كسسته

اگر n فرد باشد آنگاه ضريب زوج باشد اين عدد برابر

براى تشريح اين تساوى روابط زير را ملاحظه كنيد:

$$
\begin{aligned}
& \binom{0}{0}^{r}-\binom{0}{1}^{r}+\binom{0}{r}^{r}-\binom{0}{r}^{r}+\binom{0}{r}^{r}-\binom{0}{0}^{r}=0 ; \\
& \binom{r}{0}^{r}-\binom{r}{1}^{r}+\binom{r}{r}^{r}-\binom{r}{r}^{r}+\binom{r}{r}^{r}=1-17+r 7-17+1=7=\binom{r}{r} ; \\
& \binom{7}{0}^{r}-\binom{7}{1}^{r}+\binom{7}{r}^{r}-\binom{7}{r}^{r}+\binom{7}{r}^{r}-\binom{7}{0}^{r}+\binom{7}{7}^{r}=-r_{0}=-\binom{7}{r}
\end{aligned}
$$

انتغناب با تكرار 0.1

مثال IT.|

تعداد زيرمجموعههاى يكى مجموعه m عضوى m برابر mr است. هر زيرمـجموعه متناظر با يك دنباله دوتايى بهطول m میى عضو مـجموعه در زيرمـجموعه قرار داشته باشد. به

. \ddagger ، $\{1, r, r\}]$ [
مثال 1 | 1
فرض كنيد در یايان هر هفته از ماه فوريه امكان رفتن به يكى از سه سبنمانى مفروضى را
 مجاز مى باشد. جواب
برای هريايان هفته سه انتخاب وجود دارد، بنابراين طبق اصل ضرب تعداد ملاقاتهاى ممكن

$$
\text { برابر } 11 \text { = } 1 \text { است. }
$$

برقرارى حكم رّير واضح است.

شمارش و ضرايب دوجماس
قضبه 1.1
تعداد حالتهاى ممكن براى انتخاب r شى از n شى با رعايت ترتيب كه در آن تكرار مجاز مى باشد برابر

اكنون فرض كنبد مى خواهيم r شی از n شى انتخاب كنيم كه در آن تكرار مجاز بوده ولى
ترتيب امميت ندارد.
|F.| 1 .
به ده طريق مى توان دو عضو از مجموعه انتخابها بدشرح زير مىباشند: i, 1 i,r \quad, re l,f r,r r,r r,f r,r r,f f,f.

تضيد 9.1
تعداد انتخابههاى غيرمرتب r شى از n شى با مجازبودن تكرار برابر است با

$$
\binom{n+r-1}{r}
$$

اثبات
هر انتخابـى متشكـل است از مشروط به جوابهاى صحيح نامنفى اين معادله حال يك جواب , \x، ،

$$
0^{x_{1}}, 1,0^{x_{1}}, 1,0^{x_{r}}, 1, \ldots, 1,0^{x_{n}}
$$

 بهعنوان سمبلى معرف اننقال از يكى شى به شى ديگر درنظر

 $n+r-1$ - از مكان موجود مىتوانند قرار گيرند، و بنابراين تعداد جنين دنبالدهايى، يعنى تعداد انتخابهاي

غ غيرمرتب، برابر ازاين اثبات درسنى حكم زير نيز نتبجه مىشود.

قضبه 10.1
تعداد جوابهاى صحيح نامنفى معادله

$$
\binom{n+r-1}{r}
$$

مثال 10.1
تعداد جوابهای صحيح نامنفى معادله $x+y+z=1 \mathrm{C}$ برابراست با

$$
\binom{1 v+r-1}{1 v}=\binom{19}{1 \gamma}=\binom{19}{r}=|v|
$$

مثال 17.1
تعداد جوابهاى صحيح مبُبت معادله $x+y+z=1$ را مشخص كنيد.
جواب
 در اينصورت معادله بالا تبديل به $u+v+w=1$ مى u مشود و تعداد جواببهاى صحيح نامنفى اين معادله را محاسبه مىكنيم. تعداد اين جوابها برابراست با

$$
\binom{1 f+r-1}{1 F}=\binom{17}{r}=1 r_{0} .
$$

مثال IV.I
تعداد دنبالمهاى دوتايى حاوى دقيقاً p عنصر ه و نباشند تعيين كنيد. جواب
تعداد q عنصر 1 را در يك رديف بهصورت درنظر بغيريد. به اين ترتيب q+1 1 بنابراين تعداد حالتهاى ممكن برابر

 . با براردادن ,艮 $y_{1}+\cdots+y_{p+1}=q-(p-1)=q-p+1$ برابر است با

$$
\binom{q-p+1+p+1-1}{q-p+1}=\binom{q+1}{q+1-p}=\binom{q+1}{p} .
$$

شمارش وضرايب دوجمالى
فرمولهاى انتخاب را در جدول 1.1 خلاصه مىكنيم.
جدول 1.1 خلاصه فرمولهاى انتخاب r شى از n شى

يك عمل معكوسسازى ماتريسى مفيد
دراين بخشى بايانى نتيجهاى مفيد و ظريف را كد بعداً الز آن استفاده خواهبـم كرد اراتد میدهدبم. براساس اين نتيجه تادر خواهبم بود تا الز رابطه برحسب براى شروع، ماتريس زيررا كه بدوسيله جهار سطراول مئلث باسكال ساخته شده است درنظر بكيريد:

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & r & 1 & 0 \\
1 & r & r & i
\end{array}\right]
$$

توجه كنبد كه معكوس آن برابر ماتريس زيراست زيرا بهسادكى مىتوان ديد كه حاصلضرب آنها ماتريس واحد است:

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
1 & -r & 1 & 0 \\
-1 & r & -r & 1
\end{array}\right] .
$$

اين نتبجه بهسادگى قابل تعميم است. قبل از ائبات آن، به جند لم نباز داريم.

$$
\begin{aligned}
& 1.1 \\
& \text {. } \\
& \binom{i}{k}\binom{k}{j}=\binom{i}{j}\binom{i-j}{k-j} .
\end{aligned}
$$

\qquad

$$
\begin{aligned}
\binom{i}{k}\binom{k}{j} & =\frac{i!}{k!(i-k)!} \frac{k!}{j!(k-j)!}=\frac{i!}{(i-k)!j!(k-j)!} \\
& =\frac{i!}{j!(i-j)!} \frac{(i-j)!}{(i-k)!(k-j)!} \\
& =\binom{i}{j}\binom{i-j}{k-j} \cdot
\end{aligned}
$$

Y. 1

$$
\cdot \sum_{j \leq k \leq i}\binom{i}{k}\binom{k}{j}(-1)^{k}=0 \text { olk } j<i, \zeta \mid
$$

اثبات

$$
\begin{aligned}
& \sum_{j \leq k \leq i}\binom{i}{k}\binom{k}{j}(-1)^{k}=\sum_{j \leq k \leq i}\binom{i}{j}\binom{i-j}{k-j}(-1)^{k} \quad \text { بنا به لم } \\
& =(-1)^{j}\binom{i}{j} \sum_{\cdot \leq k-j \leq i-j}\binom{i-j}{k-j}(-1)^{k-j} \\
& =(-1)^{j}\binom{i}{j} \sum_{l=0}^{i-j}\binom{i-j}{l}(-1)^{l} \quad l=k-j \text { با } \\
& =(-1)^{j}\binom{i}{j}(1-1)^{i-j}=0 \quad(j<i \text { نو } \quad \text {. } \quad \text {. }
\end{aligned}
$$

تعريف بهنظر مىرسد زيرا به هيـج طريقى نمى توان بلون تكرار j شى از i شى انتخاب كرد كه j > i.

تضيه 11.1
 $(n+1) \times(n+1)$ (n ، . . 1 . تعريفنشده با $B A=I$ باشد $b_{i j}=(-1)^{i+j}\binom{i}{j}$ اثبات
 مى باشفد، وبنابراين برابر دارد كه بـراى آن هر دو مقمار
\qquad
از اينرو مـجموع يادشده برابر قطر برابر 1 هستند.
اكُر $i \neq j$ ، درايه i ، $B A$ از $B A$ برابر مجموع زيراست:

$$
\sum_{k}(-1)^{i+k}\binom{i}{k}\binom{k}{j}=(-1)^{i} \sum_{k}\binom{i}{k}\binom{k}{j}(-1)^{k} .
$$

. برابر o بوده و بنابراين مقدار مجموع برابر o است
 ($\left.b_{\bullet}, b_{1}, \ldots\right)$

$$
a_{n}=\sum_{k=0}^{n}\binom{n}{k} b_{k}, \quad n \geq 0
$$

صدف كنند. دراينصورت تساوى ماتريسى زير را داريم:

$$
\left[\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{n}
\end{array}\right]=A\left[\begin{array}{c}
b_{0} \\
b_{1} \\
\vdots \\
b_{n}
\end{array}\right] .
$$

بنابراين از قضيه 11.1 نتيجه مىشود

$$
\left[\begin{array}{c}
b_{0} \\
b_{1} \\
\vdots \\
b_{n}
\end{array}\right]=B A\left[\begin{array}{c}
b_{0} \\
b_{1} \\
\vdots \\
b_{n}
\end{array}\right]=B\left[\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{n}
\end{array}\right] .
$$

بنابراين از آخرين سطر مقدار

$$
b_{n}=\sum_{k=0}^{n}(-1)^{n+k}\binom{n}{k} a_{k}
$$

يس نتيجه زير حاصل شده است.
نتيجه

$$
b_{n}=\sum_{k=0}^{n}(-1)^{n+k}\binom{n}{k} a_{k}
$$

از اين رابطه معكوسنمودن در بخششهاى Y.Y , Y. Y استفاده خواهيمكرد.

تمرينات
تمرين 1.1
ده وزير كابينه نبولند دور يكى ميز گرد مىنشينند. يك صندلى مرئى براى نخستورير درنظر گرفته شده است . به جند طريق 9 نفر ديگر مىتوانيند دور ميز بنشينند؟

تمرين 1 Y.
يى كميته 1 نفره از بين يك كروه متشكل از 10 ا زن و Y ا مرد انتخاب مىشود. اين كميته به جند طريق قابل تشكيل است اكر

(b) حدّاقل دو مرد بايد در كميته باشد؟ (b)

تعداد زنها بايد بيشتراز مردها باشد؟ (c)
تمرين
مى كويند كه آفاى لوبن شرط بسته بود كد اكر تعدادى كارت را براى مدت كافى بر بر بر برند نهايتاً

 ترتبب مورد نظر دست يافت. Tآا او مونق بوده است؟
F. 1 تمرين

0.1 تمرين

شانس خود را در انتخاب اعداد برنده در بختا آزمايیىهاى زير برآورد كنبد:

تمرين 1.1

 إنگاستان مقايسه كنيد.

تمرين 1
احتمال بهدست آوردن 0 خط در ده پرتاب يك سكه را مشخص كنيد.
A. 1 تمرين

يكى اثبات استقرايى براى تضبه دوجملهاى ارائه دهيد. (به استفاده از قضبه (ii) F. نياز خواهيد داشت :)

شمارش وضرايب دوجملالى \qquad
تمرين 9.1

تمرين 10.1
از تساوى

$$
\sum_{k}\binom{r}{k}\binom{s}{n-k}=\binom{r+s}{n}
$$

استفاده كنيد. نتيجد بگيريد

$$
\sum_{k}\binom{r}{k}\binom{s}{k-1}=\binom{r+s}{r-1}
$$

تمرين 11.1

$$
\begin{equation*}
\cdot\binom{Y}{0}-\binom{Y}{1}+\binom{Y}{r}-\binom{Y}{r}=-r_{0}=-\binom{Y}{r} \text { نشان دهي (a) } \tag{b}
\end{equation*}
$$

با استفادهاز

$$
\binom{n}{0}-\binom{n}{1}+\binom{n}{r}-\cdots+(-1)^{k}\binom{n}{k}=(-1)^{k}\binom{n-1}{k}
$$

تعمبم دهيد.

. اراته دهيد. $1+x)^{n-1}=(1+x)^{n}(1+x)^{-1}$
تمرين 1 1 (I
با استفاده از (Y.1) تساوى
تمرين 1 ت.1
تعداد جوابهاى معادله منبت، و دراعداد صحصيح با شرايط IF. 1 تمرين

تمرين 10.1
 متوالى هسنند .

تمرين 17.1
تعداد حالتهايى را كه مىتوان F مهره را در ده جعبه منمايز قرار داد تعيبن كنبد هرگاه
(a) مهرهها متمايز بوده و هبج جعبهاى نمىتوتواند بيش ازيك مهره مهره را داشته باشد؛

 (d)

تمرين IV.1
با بهكار بردن (Y.1) ثابت كنيد زيرمجموعه از يك مجموعه n عضوى درنظر گرنته مى

تمرين 1 (A. 1
فرمول (ثابت كنبد (a)

عمل جمع انجام دهيد.
تمرين 19.1
(براى Tنها كه قضيه موآوررا مىدانند.)
فرض كنبد دوجملal| قرار دهيد

$$
\binom{n}{0}+\binom{n}{r}+\binom{n}{\eta}+\cdots=\frac{1}{r}\left(r^{n}+r \cos \frac{n \pi}{r}\right)
$$

(راهنمايى:

فصل re

روابط بازگُشتى

 جكونگى وقوع اين روابط و جگُونگى خلّ آنها است.

$$
\text { } 1 . Y \text { چند مثال }
$$

 كمتين تعداد حركت لازم برای انجام اين عمل جقدر است؟

فرض كنبد كه 1
 an a_{n} بنابراين 1-n صفحه ديگر بايد در محور سوم قرار گرنته باشند. براى رسيدن به اين مرحلد
an-1 با a_{n-1} حركت بقيه صفحات روى آن قرار مى گيرند. بنابراين

$$
a_{n}=r a_{n-1}+1
$$

اين رابطط بازكشتى بههـمراه شرط اوليه داريم كه

$$
\begin{aligned}
a_{n} & =1+r a_{n-1}=1+r\left(1+r a_{n-r}\right)=1+r+r^{r} a_{n-r} \\
& =1+r+r^{r}\left(1+r a_{n-r}\right)=1+r+r^{r}+r^{r} a_{n-r} \\
& =1+r+r^{r}+\cdots+r^{n-r}+r^{n-1} a_{1} \\
& =1+r+r^{r}+\cdots+r^{n-1}=r^{n}-1 .
\end{aligned}
$$

در داستان انسانهاى وابسته به اين معما T Tمده است كه n برابر FT 7 بوده و كشيشها بايد

$$
Y^{7 F}-1=1 A F F T Y F F \circ Y Y Y \circ 9001710
$$

 مثال r.r تعداد دنبالدهاى سهتايى n جه تعدادى ازاين دنبالهها حاوى تعداد فردى از ه هستند؟ جواب

 جنين دنبالههايى برابر
保

$$
b_{n}=b_{n-1}+b_{n-1}+r^{n-1}-b_{n-1}
$$

$$
b_{n}=b_{n-1}+r^{n-1}
$$

$$
\begin{aligned}
b_{n}= & r^{n-1}+b_{n-1}=r_{n-1}^{n-1}+\left(r^{n-r}+b_{n-r}\right)=\cdots \\
= & r^{n-1}+r^{n-r}+\cdots+r^{\prime}+b_{1} \\
& b_{n}=1+r+\cdots+r^{n-1}=\frac{1}{r}\left(r^{n}-1\right) .
\end{aligned}
$$

مثال P.r (سنگڭفرش كردن مسيريك باغ)
 متر و عرض ا متر سنگفرش شود. انجام اين عمل به جند طريق امكانیذير است؟

فرض كنيد يك سنگ مسير را مییوشاند. همحنین

داده شده است، و

(a)

(b)

ممكن است تصور شود كه براى هر n مقدار p n برابر n است، ولى ملاحظه كنيد كه راجع به
برای يك مسير Y Y Y r. T. T. Y شاز شود.
\square

شكل M.r

روابط بازكشتى
در حالت اول اين عمل به ا بنابراين، مجدداً بنابر اصل جمع، داريم

$$
p_{n}=p_{n-1}+p_{n-r}
$$

$$
(n \geq r)
$$

اين يكى رابطه بازگشتى مرتبه دوم است زيرا هر مالاحظه مى

$$
1, r, r, \Delta, \wedge,|r, r|, r \not, \Delta \Delta, \wedge q, \ldots
$$

فيبوناتُحى (Yoo اY بعد از مبلاد) اين دنباله را به هنگام بررسى رشد جمعبيت خركوشها معرفى كرد (تمرين O.Y را ببينيد)؛ اين دنباله بهصورت اعجابانگيزى در زمينههاى مختلف
 مثال F.Y (يرجممها)

 غيره (هر نوار بايد از رنگ نوار قبل از خود متمايز باشد)؛ بنابراين تعداد طرحهاى دو مان دمكن برابر

حال فرض كنبد كه بلمنظور جلوكبرى از سردركمى در سروته بودن يرجم بهانـنام افراشتن Tان بايد رنی نوارهاى فوقانى و تحتانى متمايز باشند. فرض كنيد يرجمهاى متشكل از تناظر يكـبهيى بين برجمهاى n نواريى 1 - 1 نوارى با نوارهاى فوقانى و تحتانى متمايز برترار استى الـا از اينرو

بنابراين

$$
\begin{equation*}
a_{n}=r \cdot Y^{n-1}-a_{n-1} . \tag{I.Y}
\end{equation*}
$$

مــتــوان روى ايـن رابـطـنه عــمـل تـكـرار را انـجـام داد (انـجــام دهـبـد!) ولـى روش ديكرى نيزُ وجود دارد. جون

$$
a_{n}+a_{n-1}=r \cdot Y^{n-1}
$$

$$
\begin{aligned}
& a_{n}=r \times r^{n-1}-\text { (تعاد يرحمهاى با نوارهاى نوقانى و تحتانى يكسان }
\end{aligned}
$$

یس رابطه زير نيز برقراراست

$$
a_{n-1}+a_{n-r}=r \cdot r^{n-r}
$$

با توجه به

$$
r\left(a_{n-1}+a_{n-r}\right)=r \cdot r^{n-1}=a_{n}+a_{n-1}
$$

تتيبه ميشود

$$
\begin{equation*}
a_{n}=a_{n-1}+r a_{n-r} \tag{Y.Y}
\end{equation*}
$$

اين مجدداً يكـ رابطه بازكشتى مرتبه دوم است؛ حال به حل آن مىیردازيم•.
Y.Y

دراين بخش روى روابط بازگشتى بهفرم

$$
a_{n}=A a_{n-1}+B a_{n-r} \quad(n \geq r)
$$

تمركز مى كنيم كه A A, B دو عدد ثابت بوده و

 در (Y.Y) صدق كند؟ با قراردادن
 جوابى براى معادله معين

$$
\begin{equation*}
x^{r}=A x+B \tag{F.Y}
\end{equation*}
$$

باشد. بنابرايـن اكر (Y.Y) صدق مى كنند. اگر معادله معين ريشه تكرارى α داشته باشد، TY آنگاه

$$
x^{\curlyvee}-A x-B=(x-\alpha)^{\digamma}=x^{\digamma}-\curlyvee \alpha x+\alpha^{\digamma}
$$

بهطورىكه

$$
\begin{aligned}
A a_{n-1}+B a_{n-Y} & =A(n-1) \alpha^{n-1}+B(n-Y) \alpha^{n-Y} \\
& =Y(n-1) \alpha^{n}-(n-Y) \alpha^{n}=n \alpha^{n}=a_{n}
\end{aligned}
$$

 $n \geq 1$ الگر (i)

$$
\text { رإبطه } a_{n}=K_{1} \alpha^{n}+K_{\curlyvee} \beta^{n}
$$

أكر (ii)

$$
a_{n}=\left(K_{r}+n K_{\uparrow}\right) \alpha^{n} .
$$

$$
\begin{aligned}
& \text { و } a_{1}=K_{1} \alpha+K_{\curlyvee} \beta \text { اعـداد }{ }_{\text {I }} \text { (i) }
\end{aligned}
$$

$$
\begin{equation*}
K_{1}=\frac{a_{1} \beta-a_{Y}}{\alpha(\beta-\alpha)}, \quad K_{Y}=\frac{a_{1} \alpha-a_{Y}}{\beta(\alpha-\beta)} . \tag{0.Y}
\end{equation*}
$$

 بود. حال موضوع را با با اسنقرا ادامه مى مدهيمر. n n برقرار باشد. دراينصورت حكم از رابطه زيرنتيجه مى اشود:

$$
\begin{aligned}
a_{k+1} & =A a_{k}+B a_{k-1}=A\left(K_{\curlyvee} \alpha^{k}+K_{\curlyvee} \beta^{k}\right)+B\left(K_{1} \alpha^{k-1}+K_{\curlyvee} \beta^{k-1}\right) \\
& =K_{1} \alpha^{k-1}(A \alpha+B)+K_{\curlyvee} \beta^{k-1}(A \beta+B) \\
& =K_{\curlyvee} \alpha^{k+1}+K_{\curlyvee} \beta^{k+1} .
\end{aligned}
$$

g $a_{1}=\left(K_{r}+K_{\varphi}\right) \alpha \alpha$ اعـداد (ii) ,

$$
\begin{equation*}
K_{r}=\frac{r_{a_{1} \alpha}-a_{\gamma}}{\alpha^{\gamma}}, \quad K_{\gamma}=\frac{a_{Y}-a_{1} \alpha}{\alpha^{\gamma}} . \tag{7.Y}
\end{equation*}
$$

$$
\begin{aligned}
a_{k+1} & =A a_{k}+B a_{k-1}=A\left(K_{r}+k K_{\uparrow}\right) \alpha^{k}+B\left(K_{r}+(k-1) K_{\uparrow}\right) \alpha^{k-1} \\
& =K_{\gamma} \alpha^{k-1}(A \alpha+B)+K_{\uparrow} \alpha^{k-1}(A k \alpha+B(k-1)) \\
& =K_{r} \alpha^{k+1}+K_{\uparrow} \alpha^{k-1}\left(Y_{k}-\alpha^{\gamma}(k-1)\right) \\
& =K_{r} \alpha^{k+1}+K_{\uparrow}(k+1) \alpha^{k+1} .
\end{aligned}
$$

\qquad نخسنين درس دررياضيات كسسنه

مثال F.r (ادامه)
 معادله معين

$$
\begin{aligned}
& a_{n}=K_{1}(-1)^{n}+K_{Y} Y^{n} \\
& \text { كه } \\
& a_{n}=Y(-1)^{n}+Y^{n} .
\end{aligned}
$$

مثال r.r (ادامهم)
دنباله فيبوناتجى (Fn) بهفرم زير

$$
F_{1}=1, F_{Y}=r, F_{n}=F_{n-1}+F_{n-r} \quad(n \geq r)
$$

معادله معين

$$
F_{n}=K_{1} \alpha^{n}+K_{\curlyvee} \beta^{n}
$$

ك كه

$$
F_{n}=\frac{1}{\sqrt{\Delta}} \alpha^{n+1}-\frac{1}{\sqrt{\Delta}} \beta^{n+1}=\frac{1}{\sqrt{\Delta}}\left(\frac{1+\sqrt{\Delta}}{r}\right)^{n+1}-\frac{1}{\sqrt{\Delta}}\left(\frac{1-\sqrt{\Delta}}{r}\right)^{n+1} \text {. }
$$

 باشد. نشان دهبد كه با استفاده از تضبه دوجملهاى تمامى عبارتهاى حاوى و فرم زير براى ${ }^{\text {F }}$ بددست مى آيد

$$
F_{n}=\frac{1}{r^{n}}\left\{\binom{n+1}{1}+\Delta\binom{n+1}{r}+\Delta^{r}\binom{n+1}{\Delta}+\cdots\right\} .
$$

اين به نوبه خود عجيب است زيرا به هبج وجه واضح نبست كه مـجموع ضرايب دوجملهاى بايد مضربى از n باشد. توجِه كنبد كه چون 1 > | $1 \mid$ چيس دومين عبارت در (Y.Y) با انرايسش n بـه ه مبل مى كند و بنابراين

$$
\frac{F_{n+1}}{F_{n}} \rightarrow \frac{1+\sqrt{\Delta}}{r}
$$

كد كسر طلايى ناميده مىشود.

مثال $0 .{ }^{0}$
رابطه بازگُشتى
جواب
معادله معين برابر

$$
a_{n}=\left(K_{1}+n K_{\curlyvee}\right) Y^{n} .
$$

از مـقـاديـر اولـيـه نـتـبـجــه مـى . $K_{1}=K_{Y}=\frac{1}{Y}$

$$
a_{n}=(n+1) r^{n-r} .
$$

روش معادله معين بهسادگى به روابط بازگشتى از مرتبه بالاتر تعميم داده مىشود.
مثال $7 . Y$
فرض كنيد

$$
a_{n}=7 a_{n-1}-11 a_{n-r}+7 a_{n-r}, \quad(n \geq Y) .
$$

$(x-1)(x-Y)(x-Y)=0$ دراينصورت معادله معين برابر
است. يس

$$
a_{n}=1+r^{n-1}+r^{n-1} .
$$

روابط بازگشتى ناهمگن
 روابط بازكشتى خطى همكن با ضرايب ثابيت هستند است. حال به اختصار روابط بازگشتى ناممكن را درنظر مىگيريم، مئلًا

$$
a_{n}=A a_{n-1}+B a_{n-r}+t_{n},
$$

 اين منظور جواب رابطه همعن حاصل از جمع مى كنبم.
مثال f.r (تكرار)

$$
\text { رابطه } a_{n}=-a_{n-1}+r . r^{n-1} \text { با فرض } a_{1}=0 \text { حى مكنيم. }
$$

\qquad نخستين درس دررياضيات كسسته

ابتدا ا بدسادگى ملاحظه میشود كه را

 بددست مى آيد. يس قبل به
توجه كنيد كه مقاديراوليه تا آخرين مرحله از عمليات بهكار نمىروند.
r.Y توابع مولد

تابع مولد يك دنباله , a ،

$$
f(x)=\sum_{i=1}^{\infty} a_{i} x^{i}
$$

تعريف مى شود. براى مثال، تابع مولد دنباله فيبوناتجى برابر است با

$$
x+\gamma_{x}{ }^{r}+r x^{r}+\Delta x^{\varphi}+\cdots
$$

 مولد دنباله

$$
1+r x+r^{r} x^{r}+\cdots=\frac{1}{1-r x} .
$$

بعضى اوتات براى يك رابطه بازگشتى مفروض اين امكان وجود دارد كـ تانع مولد دنباله را

مثال F.r (باز هم تكرار!)
رابطه بازگشتى . $f(x)=a_{1} x+a_{\curlyvee} x^{\varphi}+\cdots$

$$
\begin{aligned}
f(x) & =a_{1} x+\left(r \cdot r-a_{1}\right) x^{r}+\left(r \cdot r^{r}-a_{r}\right) x^{r}+\cdots \\
& =a_{1} x+r\left(Y x^{r}+r^{r} x^{r}+\cdots\right)-\left(a_{1} x^{r}+a_{r} x^{r}+\cdots\right) \\
& =0+\eta x^{r}\left(1+Y_{x}+r^{r} x^{r}+\cdots\right)-x f(x) .
\end{aligned}
$$

يس

$$
f(x)=\eta x^{r} \frac{1}{(1+x)(1-r x)}=r x^{r}\left(\frac{r}{1-Y x}+\frac{1}{1+x}\right) .
$$

$$
f(x)=\boldsymbol{r}^{r}\left(1+r x+r^{r} x^{r}+\cdots\right)+r x^{r}\left(1-x+x^{r}-\cdots\right) .
$$

با خواندن ضريب ${ }^{n}$ ، همجون قبل مقدار a_{n} بددست مى آيد:

$$
a_{n}=Y \cdot Y^{n-Y}+Y(-1)^{n-Y}=Y^{n}+Y(-1)^{n} .
$$

مثال $0 . r$ (تكرار)
فرض كنيد

بهطورىكد

$$
f(x)=\frac{x-x^{r}}{(1-Y x)^{\gamma}}
$$

با مشتق گيرى از رابطه
پس

$$
\frac{1}{1-x}=1+x+x^{r}+\cdots
$$

$$
\frac{1}{(1-x)^{r}}=1+r x+r x^{\gamma}+\cdots
$$

نتيجه مىشود

$$
\frac{1}{(1-r x)^{r}}=1+r \cdot r x+r \cdot Y^{r} x^{r}+\cdots
$$

و بنابراين

$$
f(x)=\left(x-x^{r}\right)\left(1+Y . Y x+Y . Y^{\curlyvee} x^{r}+Y . Y^{r} x^{r}+\cdots\right)
$$

واز آنجا مقدار a_{n} بددست مى آيد

$$
a_{n}=b_{n}-c_{n}
$$

كه

$$
a_{n}=n \cdot Y^{n-1}-(n-1) Y^{n-r}=(n+1) Y^{n-r} .
$$

$$
\begin{aligned}
& f(x)=a_{1} x+a_{\gamma} x^{\varphi}+a_{\varphi} x^{r}+a_{\varphi} x^{\dagger}+\cdots \\
& =x+r x^{r}+\left(\boldsymbol{f} a_{\varphi}-\boldsymbol{f} a_{1}\right) x^{r}+\left(\boldsymbol{f} a_{r}-\boldsymbol{f} a_{\varphi}\right) x^{\dot{\varphi}}+\cdots
\end{aligned}
$$

$$
\begin{aligned}
& =x+\boldsymbol{r}^{\boldsymbol{\gamma}}+\boldsymbol{\Psi} x\left(f(x)-a_{1} x\right)-\boldsymbol{F}^{\boldsymbol{\gamma}} f(x),
\end{aligned}
$$

\qquad نخستين درس دررياضيات كسسينه

بی F.Y
فرض كنيد در يك مهمانى n نفر كتهاى خود را را دراتاق رخت مهمانى هر كسى بهتصادف يكى كت بر مى دارد. احتمال اينكه هبجّ كسى كت خود را برنداشته باشد جقدر است؟

همواره 0 (i) π. بهعنوان مشال تعداد بينظمى هاى \}

r	F	1	r
r	1	p	r
r	r	F	1
r	1	p	r
r	p	r	1
r	F	1	r
r	1	r	r
p	r	1	r
p	r	r	1

 مـكـان نـبوده، و غبـره. فرض كـنـبد دراينصورت (بررسى كنيد!)

$$
d_{1}=0, \quad d_{r}=1, \quad d_{r}=r, \quad d_{p}=9 .
$$

هدف ما بيداكردن يك رابطه بازكشتى براى di و سبس استفاده از آن براى بهدست آوردن فرمولى براى

 روى مسناله ندارد.

حال توجه كنيد كه در ليست بىنظمى مربوط به (، ... ،6 F در سه جايگشت عدد FYYI و و
\qquad
رخ مىدهد. در بقيه بینظمى ها عدد \& جاى خود را با عدد ديگرى عوض نمى كند. با اين توضيح، خرار مىدهيم

$$
d_{n}=e_{n}+f_{n}
$$

كه عدد ديگرى عوض مى مكند و عوض نمى

$$
e_{n}=(n-1) d_{n-r} .
$$

اگر n جاي خود را با عدد ديگرى عوض نكند، آنگاه عددى جون r در مكان n قرار گرفته تعداد امكانهاى موجود براى r برابر بنابراين بايد اعضاى حالى كه برای هر عددى يكى مكان ممنوعه وجود دارد (اكگر $i \neq r, n$ آنگاه مكان غيرمجاز $i \neq 1$
 است و بنابراين

$$
f_{n}=(n-1) d_{n-1}
$$

يس با توجه به اصل جمع داريم

$$
\begin{equation*}
d_{n}=(n-1)\left(d_{n-1}+d_{n-r}\right) \tag{A.Y}
\end{equation*}
$$

$$
d_{0}=F(q+Y)=F F, \quad d_{Y}=\Delta(F F+q)=Y 7 \Delta .
$$

رابطه بازگشتى (^.Y) اجازه استفاده از روشُ معادله معين را نمىدهد زيرا ضرايب مربوط به اين رابطه را مىتوان بهفرم زير نوشت

$$
d_{n}-n d_{n-1}=-\left(d_{n-1}-(n-1) d_{n-r}\right)
$$

كه در Tن عبارت سمت راست برابراست با قرينه عبارت سمت جب كه در آن n تبديل به n-1 شده است. بنابراين داريم:

$$
\begin{aligned}
d_{n}-n d_{n-1} & =-\left(d_{n-1}-(n-1) d_{n-Y}\right) \\
& =(-1)^{r}\left(d_{n-r}-(n-Y) d_{n-r}\right) \\
& \vdots \\
& =(-1)^{n-r}\left(d_{Y}-Y d_{1}\right)=(-1)^{n}(1-\circ)=(-1)^{n} ;
\end{aligned}
$$

\qquad نخستين درس دررياضيات كسسنه

يعنى

$$
\begin{equation*}
d_{n}-n d_{n-1}=(-1)^{n} \tag{9.Y}
\end{equation*}
$$

بنابراين

$$
\begin{aligned}
& \frac{d_{n}}{n!}-\frac{d_{n-1}}{(n-1)!}=\frac{(-1)^{n}}{n!} \\
& \frac{d_{m}}{m!}-\frac{d_{m-1}}{(m-1)!}=\frac{(-1)^{m}}{m!}
\end{aligned}
$$

حال اگرروى تساوى
 رابطه زير بددست مى آيد

$$
\begin{align*}
& \frac{d_{n}}{n!}-\frac{d_{1}}{1!}=\frac{(-1)^{r}}{r!}+\frac{(-1)^{r}}{r!}+\cdots+\frac{(-1)^{n}}{n!}=\sum_{m=r}^{n} \frac{(-1)^{m}}{m!}=\sum_{m=\cdot}^{n} \frac{(-1)^{m}}{m!} \text {. } \\
& \text { ولى } \\
& d_{n}=n!\sum_{m=0}^{n} \frac{(-1)^{m}}{m!}=n!\left\{1-\frac{1}{1!}+\frac{1}{Y!}-\cdots+\frac{(-1)^{n}}{n!}\right\} . \\
& \text { يكى نتيجه جالب (() اين است كه اگر } \\
& \frac{d_{n}}{n!} \rightarrow \frac{1}{e},
\end{align*}
$$

و بنابراين احتمال اينكه بعد از مهمانى كسى كت خود را برنداشته باشد، با افزايش n، به م $\frac{1}{e}=0$. TVAA

$$
\frac{d_{7}}{7!}=\frac{Y 70}{Y r_{0}}=0 . r 7107
$$

كه تا سه مكان اعشارى برابر با $\frac{1}{e}$ است. مثال
 داشته، و نتبجه بگيريد

$$
n!=\sum_{l=\bullet}^{n}\binom{n}{l} d_{l}
$$

(b) دريى جايگشت تصادفى از (. ... n منوسط تعداد اعدادى كه در محل خود قرار دارند جقدراست؟
\qquad
(a) تعداد اننخابهماى ممكن براى مشخص نمودن k عدد برابر (a)
 جايكشتهاى مورد نظر برابر
ولى در هريكى از ! H جايكشت، تعداد k عدد ثابت است كه : $l=n-k$

$$
n!=\sum_{k=0}^{n}\binom{n}{k} d_{n-k}=\sum_{l=0}^{n}\binom{n}{l} d_{l} .
$$

(b) متوسط تعلاد اعدادى كه براى يكى جايكشت ثابت مىماند برابراست با

$$
\begin{align*}
& \frac{1}{n!} \quad \sum_{k=0}^{n} k\binom{n}{k} d_{n-k}=\frac{1}{n!} \sum_{k=1}^{n} k\binom{n}{k} d_{n-k} \\
& =\frac{1}{n!} \sum_{k=1}^{n} n\binom{n-1}{k-1} d_{n-k} \quad(Y .1) \text { بنابر } \\
& =\frac{1}{(n-1)!} \sum_{k=1}^{n}\binom{n-1}{n-k} d_{n-k} \\
& =\frac{1}{(n-1)!} \sum_{l=0}^{n-1}\binom{n-1}{l} d_{l} \quad(l=n-k) \\
& \left.=\frac{1}{(n-1)!}(n-1)!, \quad \text { (} 11 . Y\right) \tag{II.Y}
\end{align*}
$$

بنابراين مبانگين تعداد اعدادى كه ثابت مىماند برابر 1 است.
اثبات ديكرى براى (10.Y)

 مى آوريم. در (I.Y) العداد ! و و

$$
a_{n}=\sum_{k=0}^{n}\binom{n}{k} b_{k}
$$

وازاينرو بنابر نتبجه 1.؟، داريم

$$
d_{n}=\sum_{k=0}^{n}(-1)^{n+k}\binom{n}{k} k!=\sum_{k=0}^{n}(-1)^{n+k} \frac{n!}{(n-k)!}
$$

$$
\begin{aligned}
& =n!\sum_{l=0}^{n} \frac{(-1)^{r_{n-l}}}{l!} \quad(l=n-k) \\
& =n!\sum_{l=0}^{n} \frac{(-1)^{l}}{l!}
\end{aligned}
$$

O.Y

 وجود دارد؟ با يكى روش ساده ولى ناجندان كارا بحث را شروع مى كنيم.

ترتيب حبابى

 مقايسه كرده و در صورت لزور جاي

تعداد كل مقايسه لازم براى انجام اين عمل برابراست با

$$
(n-1)+(n-r)+\cdots+r+1=\frac{1}{r} n(n-1)=\frac{1}{r} n^{r}-\frac{1}{r} n,
$$

و بنابراين مى گوييم كه پيجيدگى الگورينم ترتيب حبابى برابر (O(n است.
مـال
با دنباله
بعد از بعد از سه مقايسه بعدى به دنبالل با

ترتيب ادغامى
 بعد از مرتبكردن هريكى از آنها، دو دنباله حاصل را ادغام نماييم.

روابط بازكشتى

 كوجكتر را بدعنوان اولين عضو ليست جدين أيد

 اوليد باقى مانده است ديگرنيازى به مقايسه نيست.
 tn معرف تعداد مقايسههاى لازم براى مرتب كردن يكى ليست n عضوى با با اين روش با باشد اكر n را به + + افراز كنيم Tنیاه

$$
t_{n}=t_{l}+t_{k}+l+k-1=t_{l}+t_{k}+n-1 .
$$

 به دو بخش تقسبم شود، خواهيم داشت

$$
\begin{align*}
& t_{\gamma_{m}}=\Gamma_{\gamma_{m-1}}+\left(Y^{m}-1\right) \text {. } \\
& \text { با قراردادن } a_{m}=t_{\gamma m} \text { رابطه بازگشتى بدفرم زير تبديل مىشود. } \\
& a_{m}=r a_{m-1}+\left(r^{m}-1\right) . \tag{IY.Y}
\end{align*}
$$

 جواب بدوضوح برابراست با با از (IY.Y) را یبدا كنبه. مقدارزير الامنحان كنبد

$$
a_{n}=B n Y^{n}+C .
$$

 دراينصورت به تساوى زيرنياز داريم

$$
B n r^{n}+C=r B(n-1) r^{n-1}+r C+r^{n}-1
$$

يعنى اينكه

$$
\circ=-B \cdot Y^{n}+Y^{n}-1+C .
$$

利 $=1$

$$
a_{n}=Y^{n}(n-1)+1 .
$$

\qquad

$$
\begin{aligned}
& \text { بنابراين (n-1 } n=\gamma^{m} \text { نتبجه مى } \\
& t_{n}=1+n\left(\log _{\gamma} n-1\right) ;
\end{aligned}
$$

 بيجيدگى ترتيب حبابى، بهتراست.

7.Y اعداد كثلان

 مثلثى كردن جندضلعىها، آنها را مطالعه كرده بودند.
يكى از موارد ظهور اعدد كتلان را بدتفصيل بررسى خواهيمكردد؛ بحث را با مثال ساده زير
شروع منى كنيم.
مثال $9 . Y$
در شكل Y.Y جند مسير بالا-راست از A به B وجود دارد؟

جواب
منظور ما از يكى مسير بالا--راست مسيرى از A A A B است كه همواره روى اضلاع مريعها

 مسيرهاى ممكن برابر

[^0] بد رأس بالايى ستى راست برابر (بري حال فرض كنبد دريك مربع n \times n n بددنبال عدد

 با كه

 باشد كه $E(n, n-1$ ($)$ مى

\[

$$
\begin{align*}
& p_{n}=\sum_{m=0}^{n-1} p_{m} p_{n-m-1} . \tag{IT.Y}
\end{align*}
$$
\]

A
شكل $0 . r$
اين رابطه بازگشتى متمايزاز روابطى است كه تا كنون ديدهايمه، ولى با استفاده از توابع مولد مىتوان آن را حل كرد. فرض كنبد $f(x)$ تابع مولد باشد:

$$
f(x)=p_{\bullet}+p_{1} x+p_{\curlyvee} x^{r}+\cdots
$$

$$
\begin{aligned}
& f^{\gamma}(x)=\left(p_{1}+p_{1} x+p_{Y} x^{\gamma}+\cdots\right)\left(p_{0}+p_{1} x+p_{Y} x^{\gamma}+\cdots\right) \\
& =\sum_{n=0}^{\infty} x^{n}\left(p_{\bullet} p_{n}+p_{\backslash} p_{n-1}+\cdots+p_{n} p_{\bullet}\right) \\
& =\sum_{n=0}^{\infty} p_{n+1} x^{n} \quad((1 r, r) \text { بنابر) } \\
& \text { بنابراين } \\
& x f^{\varphi}(x)-f(x)+1=0 .
\end{aligned}
$$

از حل اين معادله درجه دو نتيجه مىكيرهم

$$
f(x)=\frac{1 \pm \sqrt{1-Y_{x}}}{Y x}=\frac{1}{Y_{x}}\left\{1-\left(1-Y_{x}\right)^{\frac{1}{Y}}\right\}
$$

بدمنظوريرهيزاز داشتن جملaاى بهفرم

$$
\begin{aligned}
f(x) & =\frac{1}{r x}\left\{1-\left(1-\frac{1}{r} \cdot r^{2}-\frac{1}{r} \cdot \frac{1}{r} \cdot \frac{F^{r} x^{r}}{r!}-\frac{1}{r} \cdot \frac{1}{r} \cdot \frac{r}{r} \cdot \frac{F^{r} x^{r}}{r!}-\cdots\right)\right\} \\
& =\frac{1}{r x}\left\{\frac{1}{r} \cdot F x+\frac{1}{r} \cdot \frac{1}{r} \cdot \frac{F^{r} x^{r}}{r!}+\frac{1}{r} \cdot \frac{1}{r} \cdot \frac{r^{r} x^{r}}{r} \cdot \frac{r!}{r!}+\cdots\right\} \\
& =1+\frac{1}{r} \cdot \frac{F x}{r!}+\frac{1}{r} \cdot \frac{r}{r} \cdot \frac{f^{r} x^{r}}{r!}+\frac{1}{r} \cdot \frac{r}{r} \cdot \frac{0}{r} \cdot \frac{r^{r} x^{r}}{r!}+\cdots .
\end{aligned}
$$

بنابراين براى

$$
\begin{aligned}
p_{n} & =\frac{1 \cdot r_{0} \cdot 0 \ldots\left(Y_{n}-1\right)}{r^{n}(n+1)!} p^{n}=\frac{r^{n}}{(n+1)!} \cdot 1 \cdot r_{0} \ldots\left(Y_{n-1}\right) \\
& =\frac{r^{n}}{(n+1)!} \cdot \frac{\left(Y_{n}\right)!}{Y^{n} \cdot n!}=\frac{1}{n+1}\binom{Y_{n}}{n} .
\end{aligned}
$$

يس، بهعنوان مئال، نيز توافت دارد.
اعداد

$$
\begin{equation*}
C_{n}=\frac{1}{n+1}\binom{Y_{n}}{n} \tag{IF.Y}
\end{equation*}
$$

شروع دنباله . .

$$
\begin{align*}
& 1,1, r, \Delta, I f, f r, 1 Y q, \text { frq, } \ldots \\
& \text { از (IY.Y) نتبجه مىگيريم } \\
& C_{m}=C_{.} C_{m-1}+C_{1} C_{m-r}+\cdots+C_{m-1} C . . \tag{10.Y}
\end{align*}
$$

همجنانكه قبلًّ ياد آور شديم اعداد كتلان در موتعيتهاى زيادى رنَ مىدهند. از از جايكزينى و U بدترتبب با ا و ه، تفسير زير حاصل مى شود:

 علاقه اويلر در مستله زير بود:
$n-r$ - برابر است با تعداد حالتهايى كه مى C_{n-r}
 يك بنجضلعى منظم در شكل $7 . Y$ نشان دادهشده است.
\qquad نخسنبن درس دررياضيات كسسنه

شكل $7 . r$
 را بيان مىكند.

استخراج ديگرى براى فرمول (I F.Y)

 آينه استفاده مى كند.
 كل كل دهبد مسيرهاى قطع كننده $A B$ را مسبرهاى بد بد بناميمـ يكى مسير بد را درنظر بكيريد. اولبن نقطهانى روى اين مسين

$$
\binom{n+1+n-1}{n+1}=\binom{r_{n}}{n+1}
$$

ازاينرو نهايتاً تعداد مسيرهاى خوب از A به B برابراست با

$$
\binom{Y_{n}}{n}-\binom{Y_{n}}{n+1}=\binom{Y_{n}}{n}-\frac{n}{n+1}\binom{Y_{n}}{n}=\frac{1}{n+1}\binom{Y_{n}}{n} .
$$

روابط بازكشتى

شكل Y.r
(a) $a_{n}=\frac{1}{r} a_{n-1}+1, a_{1}=1$;
(b) $a_{n}=\Delta a_{n-1}-7 a_{n-r}, a_{1}=-1, a_{r}=1$;
(c) $a_{n}=7 a_{n-1}-9 a_{n-r}, a_{1}=1, a_{\gamma}=9$;
(d) $a_{n}=f a_{n-1}-r a_{n-r}+r^{n}, a_{1}=1, a_{r}=11$.
r.r تمرين

فرض كنيد نشان دهيد
r.r تمرين

فرض كنبد آنها دو رقم متوالى 1 يا دو رقم منوالى
\qquad نخسنين درس درياضيات كسسنه

رابطه را حل كرده و نشان دهيد

$$
d_{n}=1+r\binom{n+1}{r}+r^{r}\binom{n+1}{p}+r^{r}\binom{n+1}{7}+\cdots .
$$

F.r تمرين

با بدكار بردن توابع مولد، تمرينهاى Y.Y (a) I.Y (b) 1.Y را حل كنيد.
تمرين

تمرين $7 . Y$
رابطه بازگشتى (I.Y) مربوط به چرجمها را با روش تكرار حل كنيد.
V.Y تمرين
|عداد لوكاس،
مىشوند. يك فرمول براى
A.Y تمرين
 توانهاى

تمرين 9.1
نشان دهبد كد اكر يك جواب است.

تمرين
نـشان دهـبد كـه تـابع مولـد دنبـالـه فيبـونـاتـجى برابر را نتبجه بگبريد.

تمرين $11 . Y$
قرار دهيد
(ثابت كنبد (a) . $F_{n} F_{n+r}-F_{n+1}^{r}=(-1)^{n}$ با دترمينان كرفتن نشان دريد با درنظر كرفنن تساوى

$$
\begin{equation*}
F_{m+n}=F_{m} F_{n}+F_{m-1} F_{n-1} \tag{c}
\end{equation*}
$$

تمرين T.Y
. $F_{1}+F_{Y}+\cdots+F_{n}=F_{n+r}-Y$ نشان دهيد
تمرين Tr.Y
 براى حالت كلى آن جوابى را حدس زده، و سیس حدس خود را را با استقرا ثابت كنبد.
(a) $F_{1}+F_{r}+F_{0}+\cdots+F_{Y n-1} ;$
(b) $F_{\mathrm{Y}}+F_{\mathrm{F}}+F_{\urcorner}+\cdots+F_{\Upsilon_{n}}$;
(c) $F_{1}-F_{\mathrm{r}}+F_{\mathrm{r}}-\cdots+(-1)^{n-1} F_{n}$.

تمرين IF.Y

 بهدست آوريد.

تمرين 10.1
(a) عدد منوالى نباشند. ازاينرو، بهع بعنوان مثال،
 (b)
 كرده و نشان دهيد كه تعداد زيرمجموعهماى k عضوى $k=p$
$n-k=q$$\quad$ نباشند برابر (Fn $=\sum_{k \leq \frac{1}{n}}\binom{n-k}{k}$ (c) اين رابطه جكونه در مئلث باسكالل ظاهر میشود؟

تمرين 17.1
فرض كنيد
 برجسبكذارى كنبد، و مئلث حاوى ضلع

\qquad نخسنين درس دررياضبات كسسنه

ميلّى كرد؟ نتّجه بكيريد i $i+j=n-1$

IY.Y تمرين
 حالتهايى بأشد كد بنوان اين نقاط را بهصورت جفتى با وترهاى غيرمنقاطع بهمم وصل نمود،

$$
a_{n}=C_{n} \text { o }
$$

تمرين
فرمول اويلر
تمرين 19.1
نشان دهيد اكر
تمرين Yo.Y
 مرحله 1 ، ليست لبست به صورت صعودى در ليست الي ليست

تمرين Y.Y
در يكى مدل رياضى از جمعيّت روباهها و خركّوشها ونا، اعداد جمعبت روباهها و خركوشها در دبايان n سال مى مباشند، با رابطه زير مرتبط هستند:

$$
\binom{x_{n+1}}{y_{n+1}}=\left(\begin{array}{cc}
0.7 & 0.0 \\
-0.17 & 1.5
\end{array}\right)\binom{x_{n}}{y_{n}} .
$$

نشان دهبد
 رابطه با

تمرين Y.Y

 بازى Tماده نمود؟

فصل

مقدمهاى بر گرافها

مطالعه خواهد شد.

مثال در اوايل "رن نوزدهم هفت پل روى رود فعلى) در پروس شرتى " قرار داشت

 بدهد. اثبات عدم وجود جواب براى اين مسنله توسط اويلر، اغلب بهعنوان نقطه شروع نظريه گراف درنظر گرفته مىشود. آنحه كه اويلر انجام داد اساساً تبديل شكل r. 1 (a) به دياگرام

 توسط يك ضلع ملاقات مىشد براى ترك آن رأس بايد از ضلع ديگرى استفاده مىشد؛ از اينرو هر رأسى بايد با تعداد زوجى ضلع برخورد مىداشت. حون اين خاصيت برقرار نيست، جنين گُشتى وجود ندارد. نمودار شكل جهاررأس و هفت ضلع است.
TPregel river ${ }^{\text {PKönigsberg }}$

(b)

مثال Y.Y (مسئله امكانات) يك مسئله قديمى به اين شرح است كه سه خانه

 نمودار مثالى ديكراز يك كراف ان است.

تعريف 1.1

 كه يك رأس x را به خودش وصل كند يك حلقه ناميده مى شود.

\qquad نخسنين درس درياضيات كسسنه كا 1 (b) دو جفت ازاضلاع مركب دارد. كراف مسئله امكانات ساده است، به اين معنى كه اين گراف حاوى حلقه واضلاع مركب نيست.
در يك كرافـ بدون حلقه، تعداد اضلاعى كه با يكى رأس v برخورد دارند را را درجه يا ظرفيت v نامبده و با d(v) نمايش مى دهند.

 هستند. رنوس از درجه ا را رُوس پايانى يا آويزان مىنامند.

شكل r.r اثان
 اين ترارداد برقرارى نتيجه سودمند زير ارا دربر دارد.

تضيه 1.1
مجموع درجه رنوس يكى كراف دوبرابر تعداد اضلاع آن است.
اثبات
سهم هر ضلع در مجموع درجه رتوس برابر Y است.
 دادهشده دوبرابر تعداد دست دادنها است. ازاين حكم نتيجه زير حاصل مىشود.

نتيجه . 1.
دريك گراف، مجموع درجه رنوس زوج است.
مثال برا

 با تعداد حالتهانى ممكن براى انتخاب دو رأس از $n=\binom{n}{r}=\frac{1}{r} n(n-1)$ (1أس، يعنى
K_{1}

K_{Y}

K_{r}

K_{F}

شكل F.r
گرافهای (رياضى دان لهستانى (1910

تعريف r.r
 زيرمجموعه مجموعه رنوس واضلاع G باشندا

يس، برأي مثال، را به m رأس آن محدود كنيم.

 كراف مىناميم. بنابراين، بدعنوان مثال، ، KF يكى (F,) كراف است.
F.Y مسير در گرافها
 ديگراز طريق اضلاع گراف، دخالت دارد. در رابطه با اين ايده به ارائه جند تعريف مىيريردازيم.

> تعريف r.r.

يك كشت

$$
v_{,} v_{1}, v_{1} v_{r}, v_{r} v_{r}, \cdots, v_{n-1} v_{n}
$$

调 $v_{0} \rightarrow v_{\Upsilon} \rightarrow v_{Y} \rightarrow \cdots \rightarrow v_{n}$
'K. Kuratowski ${ }^{\text {'walk }}$
\qquad نخسنين درس دررياضيات كسسنه

براى گشت درنظر كرفته شده است. رأسهانى .v و v را بیترتبب رتوس آغازين و پایانى كشت و تعداد اضاع، n، را را طول آن مىنامند.

 خاصيت

مشال F.r
در گراف شكل
浣 $z \rightarrow u \rightarrow y \rightarrow v \rightarrow u$ بی $u \rightarrow y \rightarrow w \rightarrow v$. $u \rightarrow y \rightarrow w \rightarrow v \rightarrow u$

طبيعى بهنظر مى بكيريم! از اينرو يكى دور

 F.T تعريف

 Tآن ناميده مىشوند.
K.

تعريف 0.
يكى كراف ساده بدون دوررا درخت مىنامند.
برایى منال گراف اتان، شكل r.r.r، و گراف درخت هستند. توجـه كنيـد كد در گراف اتان $T_{\text {trail }} \quad$ path cycle

信仿 $p-q=1$ هستند. براى اثبات اين موضوع از نتتجه مفيد زير استفاده مىكنيم. تضبه r. T. اكر T يك درخت با اثبات
 بهطول ماكزيمم مانند دو از درجه 1 هسنند. فرض كنيد درجه جون وجود خواهد داشت)، بنابراين مسير

قضبه Y.Y
فرض كنيد T يكى گراف ساده با p رأس باشد. دراينصورت احكام زير معادل هستند:
T (i)

$$
\begin{array}{r}
T \text { (ii) } \\
\text { T (iii) }
\end{array}
$$

اثبات
 آشكارا براى 1 = 1 برتراراست. فرض كنيد حكم برای تما
 T داراى برگى مانند w است. با حذف w س و ضلع متصل

$$
\text { برابر } \text { = + + + } 1 \text {) است. }
$$

T T (iii) متشكل از است. فرض كنيد اضلاع موجود در T برابر ازاينرو T T همبند است.
(i) (ii) بايد حاوى يكى دور باشد. برداشتن بك ضلع ازيك دور خاصبت همبندى را از بين نمى بردد،
\qquad نخستين درس درياضضات گسسته

بنابراين با حفظ خاصيت همبندى مىتوان از دورهاى موجود اضلاعىى را حذف نمود تا سرانجام يكى درخت ايـجاد شود. كراف حاصل بايد يكى درخت با باشد كه اين در دناقض با (ii) است. ازاين تضيه مىتوان براى اثبات درختى بودن بعضى از ملكولهاى شيميايى استفاده كرد.

مثال $0 . r$
نشان دهيد كه ملكولههاى پارافني،
جواب

$$
Y q=Y n+Y n+Y=Y n+Y
$$

واز آنجا
بايد درخت باشد.

متان

اتان

برويان

شكل $7 . r$ پاراففننها
توجه كنيد كه متناظربا . ${ }_{\text {ـ }}^{\text {دو درخت متفاوت وجود دارد. }}$ تعريف 7.7

 مثال 7.7

مقدمشاى بركراف OF

درجه † وجود دارد كه به بقبه رئوس درجه † متصل است ولى اين خاصبت در گراف اول وجود ندارد.

 غيرايزمورف اين كتاب إست.

دراين رابطه يك مسنله عبارت است از يبدا كردن (T(n)، تعداد درختهاى غيرايزمنورف

 شده برابر r-

شكل Y.r درختهاى برجسبكذارى شده

P. P.

 كراف دادهشده بوده و حاوى تمامى رنوس آن باشد.

[^1]يك درخت فراكيراز يكى گراف همبند G درختى است كه زيرگراف G بوده و حاوى تمامى رتوس آن باشبد.

م.r
K K $_{\text {r }}$

 (iii) يى گراف باردار G كراني است كه در آن هر ضلع e داراى برجسبى جون e ناميده شده و معرف مثلاً طول e مى e
 جند الكوريتم مختلف برايى بيداكردن درختهاى فراكيربا وزن مىنيمم وجود دارد.

> الگوريتم حريص'

اين اغلب بدعنوان الكُوريتم كروسكل ${ }^{\text {م معروف است. }}$
روند الكوريتم
يكى ضلع با كمترين وزن انتخاب كنبد.

انتخاب كنيد كه افزودن آن به ضلعها الى انتخابششده قبلى باعث ايجاد دور در دنشود. (iii)
 خاتمد مىيابد.)

مثال
الكوريتم حريص را روى گراف شكل A.r بدكار بريد. جواب

 كنيد. در اينصورت اضلاع

$$
\text { می } r+r+r+7=10
$$ تصديق الكوريتم حريص

 بايد يكى دور C ايـجاد كند، و اين دور بايد隹 $w\left(e^{\prime}\right)<w(e)$

 تكراراين روند، نهايتاً U U را به T تغيبر داده و نتبجه مىيكيريم (V) يكى تناتض است. پس درخت U با خواص يادشده وجود ندارد.

الكوريتم حريص از اين جهت كه بدون توجه به گرفنارى هاى احنمالى بعدى، در هر بر مرحله

 ايجاد دور نمىشود.

[^2](i) يكى رأس انتخاب كرده، و يى ضلع بدوزن مىنيمم متصل بد آن انتخاب كنيد.

را به يكى رأس انتخابشده قبلى وصل كند. (iii) تا انتخاب تمامى رئوس كار را ادامه دهيد.
$$
\text { مثال } 1 . \text { (نگاهى دوباره) }
$$

 روش همان درخت فراگير قبلى بهددت مى آيد

 بهترتيب اضلاع DC، DE ، و AD را حذف نمود. در صورتى كه تعداد اضالاع گراف زيان نباشد، اين روش از روشهاى ديگر سريعتراست.

گ.

تعريف A.Y

 را يك افراز دوقسمنى رئوس مى V ا V رامند.

مثال 9.1
 ضلع يكى B را به يك W وصل مى

شكل 9.r كرافهاى دوتسمتى

 همرنگى مـجاور نباشند. بدين جهـت دو رنگ نيز مىىنامند.

مثال

F.Y قضيه

يكى گراف همبند دوقسمتى است اگگر و نقط اگر حاوى هيجِ دور فردى نباشد.
اثبات

يكى رأس ע را النخاب كرده وافراز V راز V را درنظر بكيريد:

جون ه زوج است يس قرار ندارند.
فرض كنبد ضلعى جون $x y$ وجود دارد كه x كاز طول كوتاهترين مسبراز

دارد، بنابراين

كوتاهترين مسبرهاي از
 رأس مشترك دو مسير

 ■ ضلعى با دو انتهاى واقع در W وجود ندارد

نتيجه Y.T
تمامى درختها دوتسمتى غستند.
\qquad نتخستين درس دررباضيات كسسثن

تعريف ب. 9 (كرافهاى دوقسمنى كامل)

 r.r 7 گراف

واضح است كه درجه n و n رأس از درجه m است.
گرافهاي كامل ${ }^{\text {K }}$, گرافهای كام خصوصا در بحث تسطيحيذيرى دارند كه اكنون به آن مىيردازيم.
7.Y

يك كراف را تسطيحیذير نامند هركاه قابل رسمشدن روى صفحه باشد بهتسمى كد هيج دو

 است؛ دومين ترسيم
از جمله موارد ظهور گرافشهاى تسطبحيذير مسنله جهاررنگ است.

 ده سال بعد، هيوود
 هيكن 「، ثابت شد.

 رأس را مجاور درنظر گرفت اگر و فقط اكر دو ناحيه متناظر با آن دو رأس مرز مشترك داشت داشته

 با جهار رنگ مى شود بدقسمىك هيجچ دو رأس مجاورى همرنگ نباشند. رنگگ آميزى كرافنها

 است؛ اويلراين خاصيت را ابتدا در مبحثث جندوجهىيها مطالعه كرد، كه در بـخش بر بعد به آن مىيردازيم.

شكل 10.1
تضبه

$$
p-q+r=Y \text {. }
$$

اثبات

 بنابراين گراف حاصل داراى

■. مثال 11.1
 ناحيه محدود ويكى ناحبي نامحدود وجود دارد.

اكنون درجه يكت ناحبي را برابر تعداد اضلاعى تعريف مى كنبم كد بدهنگام يبمودن مرز آن ناحيه با آنها مواجه مى مشير.

در شكل 「 از درجه 9 است (توجه كنيد كه يكى از ضلعها دوبار ييموده مىشود).

به موازات لم دست دادن تضيه زير را داريم:
قضيه $7 .{ }^{7}$
دريك گراف مسطح همبند، مجموع درجه نواحى دوبرابر تعداد اضلاع گراف است. V.Y تضبه
.n
اثبات
 بنابراين اگرترسبم مسطحى از
 ■ (قضيه
. اثبات
俍,

■ ناحيه حداقل

> نتيجه ץ. Y

$$
\text { min }(m, n) \leq \uparrow \text { ب }
$$

روش شمارش مجموع درجه نواحى ابزار مفيدى است. مىتوان آنرا در مورد كراف مشهر

[^3]

تمرين QV.0 مراجعه كنيد.)
مثال
كراف يینرسن تسطبحنابذيراست.

فرض كنيد يك ترسبم مسطح وجود داشته باشد. جون باشيم r= است، بنابراين درجِه هر ناحبه حداقل Δ است. ازاينرو يكى تناتض است. قضّيد كوراتسكى

 رأس b از ضلع ac ، ترسبم مسطحى از از ها ضلع را تقسبمكردن آن ضلع مىنامند. كراف حافي اصل ازاع اعمال يكى يا جند عمل تقسبم روى

$$
\text { تضبد } \uparrow \text { (تضبد كوراتسكى) }
$$

يك گراف تسطبحیذير است اگرو نقط اگر حاوى هبج زيرتقسبمى از اثبات اين نتيجه عميق تويولوزيكى خارج از حوصله اين كتاب است است. كارآمدى اين نتبجه را با اسنفاده از آن دراثبات تسطبحنايذيرى گراف پيترسن نشان مىدهيم.

[^4]

شكل Ir.r
منال س.

 مى شُشود، يك زيرتقسبم

شكل ش.r
وترهاى يكى دايره
اين بخش را با كاربردى از فرمول اويلر روبى يك مسئله معروف راجع به وترهاى يكى دايره بهايايان مى بريم.
فرض كنيد n نقطه روى يكى دايره درنظر گرفته شده و دوبهدو با يكى وتر بهاهم وصل
 ناحبه تقسبم مى شود؟ حالتهای است برای n=7 عدد 7 Y بهنظر برسد. ولى اين درست نيست! (بررسى كنيد!)

فرض كنبد تعداد نقاط n بوده و

 (رأس است. هريك از n رأس اولبه از درجه $n+\binom{n}{f}$ (l) $\left.\begin{array}{l}n \\ f\end{array}\right)$ (ا

$$
\begin{aligned}
r q & =n(n-1)+\varphi\binom{n}{\varphi}, \\
q & =\binom{n}{r}+r\binom{n}{\varphi} .
\end{aligned}
$$

و بنابراين

بس

$$
\begin{aligned}
r & =r-p+q \\
& =r-n-\binom{n}{\varphi}+\binom{n}{r}+r\binom{n}{\boldsymbol{Y}} \\
& =r-n+\binom{n}{r}+\binom{n}{\varphi} .
\end{aligned}
$$

 (است. 1 - $-n+\binom{n}{r}+\binom{n}{f}$
\qquad نخستبن درس دررياضيات كسسنه

چشندوجهى
يك جندوجهى عبارت است از يك جسـم محدود به جند وجه كه هريك از آنها يكـ

(a)

(b)

شكل $17 . r$ يكى هرم وگراف مسطح Tن
همجنانكه قبلا بيان شد، فرمول اويُلرابتدا در مطالعه ارتباط تعداد رئوس، وجوه، و اضلاع يكى چندوجهى محدب مطرح شد. (يكى جندوجهى را محدب نامند هركاه هرپارهخط
 قابل نمايش بدوسبله يك كراف مسطح است كد از تصوير كردن جندوجهى روى يك صـر صفحد
 هرم و ناحبه نامحدود (از درجه F) گراف را معرف ثاعده هرم درنظر بكيريد. مكعب مثالى از يك جندوجهى منظم است. يك جندوجهى را منظم نامند هركاه اعداد صحيحى حون $n, m \geq r$ وجود داشته باشند بهاقسمى ضلع) بوده و مرز هر وجه متشكل از n ضلع باشد n= F

 كراف استفاده مىكنيم. قضبه
 اينصورت (m,n) برابر يكى از \quad (بهعلاوه، متناظر با هريكى از اين زوجها اجسام افاطونى وجود دارند.
\qquad

اثبات
داريم

$$
\begin{aligned}
& r_{q}=\text { متمموع درجه رأسه درجه وجها }=m p \\
& r_{q}=m p
\end{aligned}
$$

بنابراين

$$
\begin{equation*}
(Y m+Y n-m n) q=Y m n \tag{1.r}
\end{equation*}
$$

(m-Y)(n-Y) $\in\{1, Y, Y\}$ بنابراين واززاينجا ينج حالت يادشده نتيجه مىشوند.

جدول $1 . r$

براى هر زوج مسكن (m,n)، مىتوانيم از (I.Y) مقدار q را بهدست آورده و سبس مقادير p و r را محاسبه كنيم. مقادير بهدست Tایمه، بههمراه نام اجسام افالاطونى متناظر با آنها، در جدول E. I.r مشخص شدهاند
 بdهمراه كراف مسطح Tآنها در شكل IV.Y نشان داده شدهاند. علاوه بر چندوجهى ماي منظم يادشده، حندوجهى ارشميدسى معروف هستند. اگرحه مسكن است كه اين اجسام براى يونانبان شناختلشده بودهانـاند اولبن لبست موجود معرف آنها مربوط به سال 1719 توسط كبلر است. اين اجسام حاوى بيش از يك نوع وجه مىباشند ولى اين خاصبت را دارند كه در آنها تمامى رنوس از نظر تركيب وجوه جانبى خود يكسان هستند. براى مـال، با تطعكردن هريك از هشت رأس

يك مكعب، يك مكعب ناتص بددست مى آيد كه دارای شش وجه هشتضضلعى و جهار
 هشتضلعى و ا مثلث است.

شت وجهى

دوازده وجهى

شهار وجهى

مكعب

بيست وجهى

شكل M.r
 هم تلاقى دارند. نشان دهيد كه تعداد وجوه ينجضلعى برابر اY ا است. جواب
داريم $r=x+y$ كنيد x وجه ينجضلعى و

حالت الكويى است كه اغلب روى توبهایى نوتبال ديده مى شود. جسم ارشميدسى متناظر با آن
 يك بيستوجهى باشد. با كشف اين ايكه علاوه بر الماس و گرافيت نوع سوم ديغرى از از كربن وجود دارد در دهه 199 19لاقه زيادى نسبت به اين جسم ايجاد شد.
 اتم دررأسهاى يك بيستوجهى نا نا

 مدتها قبل مى مناختند.

 مربع جايخزين مى شوند بيبنيد.
 ششضلعى مىباشند؛ شكل آن بيشترشبيد به توپ راگبى است.
تمرين ז.

نشان دهبد كه در هر كراف تعداد رأسهاى از درجه فرد عددى زوج است.
r.r.r تمرين نشان دهيد كه تمامى الكلهاى $\mathrm{C}_{n} H_{Y n+1} O H$ ملكولهاى درختوار دارند. (ظرفبتهاى C،

تمرين r.r $\frac{1}{p}(p-1)$ نشان دهبد اكر G يك كراف ساده با است، آنگاه G همبند است. (راهنمايى: هرمؤلفه بايد جند راس داشنه باشد؟)
F.r تمرين

كرافهاى شكل 1A.r جند درخت فراگير دارند؟
(a)

(b)

شكل 1A.r

تمرين $0 . r$
براى بـددست آوردن يكى درخت نراگبر از يكى گراف با p رأس و q ضلع، جند ضلع را بايد حذف نمود؟

تمرين $7 . r$

دو عضو B وصل باشد.
(b)

تمرين Y.r
با استـفاده از دو الكـوريتـم حريـص و بريـم يكى درخت فراكير مـىنيـمـم براى كراف شكل $19 . \%$ يیدا كنيد.
A.r تمرين
 اين شهرها را بيدا كنيد.

مقدمشاى بركراف

شكل $19 . r$

Y.r ج					
	G	H	A	M	EK
G	0	10	11	$1 r$	9
H	10	0	1	r	1
A	11	1	0	\wedge	$1 r$
M	$1 r$	r	1	0	1
EK	9	7	$1 r$	\wedge	0

تمرين $9 .{ }^{9}$

 به يك مقباس خاصى عبارت هسنـند از ((امكان برواز بين هر دو شهرى جقدراست؟ (

تمرين 10.1
كداميك از گرافهاى شكل Yo.r تسطبحيذير هسند؟
(a)

(c)

(d)

شكل Mo.r
تمرين $11 .{ }^{1}$ كابي
يك تطابق كامل از يك گراف با با با رأس عبارت است از يكى زيرگراف متشكل از n

Ir.r تمرين گراف (T)

 $a_{n}=\frac{2^{n+2}+(-1)^{n+1}}{3}$

بددست آوريد.
$\underbrace{\substack{j_{j}}}_{\substack{2}}$ ~ 5

شكل ri.r

تمرين IY.Y

(a) . q. 7

 If.r تمرين

 است. مكعب وجه ششضلعى ندارد: مثالى متشكل از 7 مربع و حداقل يكى شش دهيد. (يك هشتوجهى ناتص را امنحان كنيد.) تمرين $10 .{ }^{\text {تر }}$
فرض كنيد يك بيتزا n بار برش داده شده و و

$$
\text { . } P_{n}=\binom{n}{0}+\binom{n}{1}+\binom{n}{r}
$$

تمرين $17 .{ }^{\text {ت }}$
 نشان دهبد ثابت كنبد

شكل M.r

Fصل

گشت كامل دريك گراف

دراين فصل مساتل گوناگونى را كه در رابطه با وجود گشتهاى خاصي ازي از يكى گراف هسنند

F F F

 ندارد كه استفاده ازاين مسلّله بععنوان يك بازيى تجارت بوفقى نبوده است. تعريف 1.F
 هميلتونى كرانى است كه حاوى يكى دور در همبلتونى باشد.
 ديكرانى جون كركـمن" ا اين ايده را تبل از همبلتون مطالعه كرده بودند.

[^5]كشت كامل دريك كراف

 وجود خواهد داشت. ولى، جون كراف دوقسمنى است حاوى دور فردن نيست.

(a)

(b)

شكل 1.F

تضيه 1.4
يكى گراف دوقسمتى كه تعداد رتوس آن فرد باشد هميلتونى نيست.
م.f. F.
(a) براي هر (a)
 (تمرين ا. 1 را ببينيد.)

مثال F.F
گراف يبترسن هميلنونى نيست.

 داخل حركت مى حاوى Y

شكل F.f
برايـن اساس دور YYcebr بـخشى از دور هـمبلتونى خواهـد بود كه نـامـمـكن بودن Tان واضح است.

 دردور باشد. مشابها، جون

 n ≥ 0

 اG هميلتونى است. اثبات روش اثبات در تمرين 7.F بيان شده است.

تسطيحپ. F.F

 و D رنگگ كنيد.

شكل Y. F دوازدموجهى
درابتداى تاريخ حدس جهاررنگ، تايت ' حدس زد كه هر نقشه جندورجهى كه در آن هر هر

 نادرستى اين حدس در 1947 ثابت شد.

الگوريتم تسطيحیذيرى براى گرافهاى هميلنونى

r. اضلاع G را كه در H قرار ندارند ليست كنبد: , , . .، e، er.
 با برجسبهاى مى كنند، يعنى اينكه هر دو قابـل ترسيم در داخـل (يا خارج) H نبستند (جنين ضلعهايى را
 (إكر K داراى افراز دوقسمنى B $B \cup W$ باشد، آنگاه اضلا

F.F F.F مـال

تسطبحيذيرى كراف شكل F.F F. Fامتحان كنيد.
جواب
I. كراف از قبل با دور هميلنونى abcdefa كه درخارج قرار دارد ترسبم شده است.

شكل F.f

 تطع مى كند، بنابراين داريم:

كشت كامل دريك كراف

حال ce را درنظر بگيريد. اين ضلع نبز df را قطع مىكند، يس شكل زير حاصل مىشود:

F. F. تا اينجا گراف K را بهدست آوردمايم. (نشان دهيد كه تعداد اضلاع K برابر است با

منال $0 . F$
نشان دهيد

 r.

ץ. اين دوقسمتى نبست و بنابراين Kr,r تسطبحيذيرنيست.
P.F

 مسير خود را النتخاب كند بدقسمى كد كل مسير طى شده مىنيمم شود؟

 معرف طول مسير متناظر با آن است. مرد فروشنده در بی يبداكردن يكى دور همبلتونى بهطول مىنيمبم است.
يك كراف كآمل يك دورو معكوس آن تمايزى قائل نباشيم) است، بنابراين بررسى يكـبهيك اين دورها وقتى

 از برآوردى از طول مسير استفاده مى شود. كرانهای پايين

TSP جواب > MST

كه MST معرف مىنيمم طول يك درخت فراگيراست. ولى بهتراز اين مىتوان عمل كردر.

 كه فراگير از G - G است، داريم:

رابطه (Y.F) را روى گُراف شكل V.F بدكار ببريد.

شكل V.F

[^6]\qquad نخسنين درس درياضيات كسسنه
 درخت فراكير با مىنيمم وزن در

 V V, f كـران طايـين F F F اطالاعات بيشنرى مىدهد.

كرانهای بالا
نرض كنيد كه وزنها معرف فاصله هستند و در نامساوى مثلث صدف مى كنند

$$
d(x, z) \leq d(x, y)+d(y, z),
$$

كه d(x,y) معرف كوتاهترين فاصله از x به y است. دراين حالت، روش زيركرانهاى بالايى براى TSP در K ارائه ميدهد.
 كشت بهطول

شكل A.F

 بهطول حداكثر دوبرابر MST مىشود، داريم

و جون MST > جواب TSP، بنابر (1.F)، طول دور هميلتونى ساختهشده حداكثر دوبرابر

كدهای گرى F.F

يك كد گرى ' از مرتبه n عبارت است از يكى ترتيب دورى از از

(a)

(b)

$0000-0100-1100-1000-1010-1110-0110-0010-0011-$ - 111-111-1011-1001-|101-0101-0001-0000.

[^7]

گ.F

 تعريف F.F
 يكى مداراويلرى را كراف اويلرى مىنامند.

دربخشّ 1 مالاحظه شد كد يك شرط لازم براى وجود يكى مداراويلرى اين است كه تمامى
 بودن يك گراف همبند است. برای اثبات به لم زيرنياز داريم.

G فرض كنيد در گراف G هر رأس از درجد زوج باشد. در اينصورت مـجـموعه اضلاع اجتماعى از دورهاى جدا از هم ضلعى استى.

اثبات
ازاستقرا روى تعداد اضلاع استفاده كنبد. لم براى q= q درست است، بنابراين يك كراف با

[^8]
 قبلا ملاقاتشده برسيد. اگگر اين رأس مىدهد يكى دور Cاست. با حذف C به يك گُراف H با كمنراز k ض ضلع دست مى يابيم كد هر
 | است، واز اينجا حكم ثابت مى اشود

تضبه F.F

فرض كنبد G يك گراف همبند است. دراينصورت G اويلرى است اگر و نقط اگر هر رأس آن از درجه زورج باشد.

اثبات
لزوم. قبال نشان داده شده است.
 هم قرار مى گيرند. يكى ازاين دورها، مثلًّا

 تمامى اضلاع G نباشد آنگاه يكى رأس ${ }^{\text {أس }}$
 الحالق مى M.F F.

 ageabdhbcdefa

> F.F.F Fضبه

بى گراف همبند G نيمه اويلرى است اگر و نقط اكر ذقيقا حاوى دو رأس از درجه فرد باشد.
مثال A.F
 حاصل داراى دو رأس از درجه فرد خواهد بود و بنابراين يك كذر كـر اويلرى خواهد داشت.

يك كران بالا براى TSP

 روش زير منجر به توليد يكى دور همبلتونى در يكى گران در كراف

 در

 مداراويلرى است.

 دور aecbcda اويلرى است.

 حاصل مىشود.
 خواهد بود. فرض كنبد مداراويلرى، درخت فراكير مىنيمم و تطابق باشند. دراينصورت
\qquad

شكل M.f

$$
\mathrm{EC}=\mathrm{MST}+\mathrm{M}, \quad \mathrm{TSP}>\mathrm{MST} .
$$

در دور همبلتونى بهطول میىنيم، برای هر积

$$
l\left(x_{1}, x_{\curlyvee}\right)+l\left(x_{r}, x_{r}\right)+\ldots+l\left(x_{r_{m}}, x_{1}\right) \leq \operatorname{TSP}
$$

كه

$$
\begin{array}{r}
\left(l\left(x_{1}, x_{\curlyvee}\right)+l\left(x_{\curlyvee}, x_{\uparrow}\right)+\ldots+l\left(x_{r_{m-1}}, x_{r_{m}}\right)\right)+ \\
\left(l\left(x_{\curlyvee}, x_{\curlyvee}\right)+\ldots+l\left(x_{\gamma_{m}}, x_{\curlyvee}\right)\right) \leq \text { TSP. }
\end{array}
$$

$$
\mathrm{M} \leq \frac{1}{\mathrm{r}} \mathrm{TSP}
$$

بنابراين EC=MST+M<TSP+ $+\frac{1}{\gamma} T$ TSP $=\frac{r}{\gamma}$ TSSP. يس، با استفاده از ميانبر در مدار
 بددست مى آوريم.
7.F

 Tdigraph \quad directed graph \quad indegree \quad outdegree

در شكل F.f. آنها برابر مجموع درجههاى خروجى است.

> تضبد

يك دكراف همبند داراى مدار اويلرى است اگر و فقط اگر در هر رأس درجه ورودى برابر درجه خروجى باشد.

جرخهایى حافظه
كُنته مىشود كه كلمه سانسكريت بى معنى

yama'ta'ra'jabha'nasalaga' m

 و غيرتاكبدى را بهترتيب با ا و ه نمايش دهيم دنباله زير حاصل مى شود:

$$
\begin{equation*}
0111010001 . \tag{F.F}
\end{equation*}
$$

ســتـيـى هـاى

نشان داده شده است.

 درحالى كَ جرخ حافظه تنها بـ 1 ر رقم نباز دارد.

M.F.F شكل

 ظاهر مىشوند، مىتوان سهنايىىاى yzw , xyz

دور جهتدار هميلنونى

$$
000-001-011-111-110-101-010-100-000
$$

\qquad نخستين درس دررياضبات كسسنه

با اينحال مسئله در سال 19 F7 در يكى مقاله نظريه اعداد توسط گود' حل شد. در

 دوتايى هاى يكسان انتنخاب شدند. بـنابرايـن براى
.1

شكل 17.F
حال دراين دکراف هررأسى درجه ورودى و درجه خروجى يكسان دارد، و بنابراين يكى ملار

$$
000-001-011-111-110-101-010-100-000
$$

بوده واين همان چرخ حانظه قبلى را توليد مىكند.
درحالت كلى، دنبالههـاى دوتايى 1 - n رقـمى را بهعنوان رأس درنظر بگـيريد واز
 يك ملار اويلرى دارد كه يك جرخ حانظه توليد مىكند. مثال 10.9 يك جرخ حافظد شامل تمامى 7 (دنبالد دوتايى بهطول F 7 بهدست آوريد. جواب يكى دگراف با 1 رأس بسازيد كه در آنرأسها با دنبالههاى دوتايى بهطول
 . حاصل مى IV.F

يك مداراويلرى، برحسب رئوس، عبارت است از

$$
\begin{aligned}
& 000-000-001-011-111-111-110-101 \\
& -011-110-100-001-010-101-010-100-000 \\
& \text { يعنى برحسب اضلاع مدار بدشح زيراست: }
\end{aligned}
$$

$$
\begin{aligned}
& 0000-0001-0011-0111-1111-1110-1101-1011 \\
& -0110-1100-1001-0010-0101-1010-0100-0000 .
\end{aligned}
$$

شكل 1A.F جرخ حانظه متناظر با اين دوررا نشان مىدهد.

شكل 1A.f

 مخابرات واخيرا در بيولوزيى استفاده شده است.
$V=B \cup W$ با حكم زير قضيه 1 . را تقويت كنيد: اكر يك گراف دوقسمتى با الراز (a) هميلتونى باشد آنگاه | آ
 تمرين F.F
 بودن را بررسى كنيد.

(ii)

(iii)

شكل 19.7
تمرين F.F
كداميك از گرافهاى اجسام افلاطونى، هميلتونى و كداميك اويلرى هستند؟
F.f. F.

با بدكار بردن الكورينم تسطيحيذيرى، تسطيحيذير بودن گرافهاى شكل Y Y F را بررسى كنبد.
تمرين $0 . f$
يك كد گرى از مرتبد ه بسازيد.
تمرين $7 . f$
قضيه ديراك. تضيه Y. F. را بدروش زير اثبات كنيد.
(a)

(c)

فرض كنيد G هميلتونى نيست. با الززودن ضلع، مىتوان فرض كرد كه G تقريبا هميلتونى
 بنابراين G حاوى يك مسير نشان دهيد كه رأسى جون $v_{1} \rightarrow \ldots \rightarrow v_{i-1} \rightarrow v_{p} \rightarrow \ldots \rightarrow v_{i+1} \rightarrow v_{i} \rightarrow v_{1}$ است. ازاين خاصيت دور حاصل میشود.
F.P تمرين

 (همبلنونى است
(b) نتبجه بكبريد كه اگر G داراى (b (c) يكت گراف غيرهميلتونى با (
A.F تمرين

 بدست آوريد.

تمرين. $9 .{ }^{\text {ت }}$
با فرضهأى تمرين 「.^،، يكى كران بالا و اياين براى TSP اراثيه دهيد. نتبجه خود را با جواب

يك جرخ حافظه شامل تمامى YY دنباله دوتايى ه رتمى بسازيد.
تمرين $11 . \%$

 دنبالدهاى سهتايیى سدرقمى بسازيد.

تمرين F.T

تمرين T. T.F

 دارد اگر و فقط اگر n فرد باشد. آيا مى توانيد نتيجه مشابهاى را براى اعداد زوج بيان كيان كنيد؟

MI.F شكل

فصل ه

افرازها و رنگتآميزىها

 رئوس واضلاع توسط رنگها افراز مىشوند.

ا. الـرازهایى يك مجموعه

 میى شوند. براي منال، توجه كنيد كه تريبب ظهور بخششها اممبت ندارد.

مثال 1.0
دريك بازیى بل، 1 ها كارت يك دست استاندارد ببن جهار نفر توزيع مییود كه هر نفر
 rir جاب r

[^9]افرازها و رنح/Tميزىها
تعداد حالتهاى ممكن برای افراز اين بسته هY كارتى برابر است با

$$
\binom{\Delta r}{I r}\binom{r q}{1 r}\binom{r q}{1 r}=\frac{\Delta r!}{\mid r!r q!} \cdot \frac{r q!}{\mid r!r 7!} \cdot \frac{r q!}{|r!| r!}=\frac{\Delta r!}{(1 r!)^{r}} .
$$

ولى همه اين افرازها متمايز نيستند، زيرا بسته به اين اينه كداميك از از جهار مجموعه اول ان انتخاب

رـطلوب برابر است با

$$
\frac{\Delta r!}{(1 r!)^{\varphi} r!}
$$

 كروه Ir مكانى تقسبم شده است را در درنظر بكيريد.

$$
(\ldots \ldots)(\ldots \ldots)(\ldots . . .
$$

كارتها به ! مىتوان مجموعه با

 بهسادگى مىتوان اين ترتيب را تعميم داده و نتيجه زير را بهدست آورد. تضبه 1.0 يكى مجموعه mn عضوى قابل افراز به m مجموعه n عضوى به

$$
\frac{(m n)!}{(n!)^{m} m!}
$$

طريق مختلف است.
نتبجه 1.0
يكى مجموعد از Ym شی را مىتوان به
مثال
تعداد حالتهاى جفت نمودن 17 تيم در يكى ترعدكشى جام فوتبال برابر است با

$$
\frac{17!}{r^{\wedge} \lambda!}=r o r v o r \Delta o .
$$

بحث مشابهاى را مِىتوان در مورد افرازهايى كه در آنها بخشها هماندازه نيستند بدكار برد.
\qquad نخستين درس دررياضيات كسسنd

مشال
 نفره و يكـ كُروه 0 نفره افراز نمود؟ يكى گروهبندى از Y Y مكان بهفرم زير است.

$$
(---)(---)(---)(---)(----)(----)(-----)
$$

بيست و ينج شاكُرد به !
 بنابراين يك عمل تقسيم بر ! ! كروهها با يكديگرنيز بايد لحاظ شود كه بر مبناى T T T ا
 عبارت است از

$$
\frac{r \Delta!}{(r!)^{r}(F!)^{r} \Delta!f!r!} \cong r .7 \times 10^{10} .
$$

تعريف 1.0
يكى افراز از يكى مـجموعه n عضوى شامل n .

با تعميم مثال ه. H نتيجه زير حاصل مىشود.
r.

تعداد افرازهاى ازنوع

$$
\frac{n!}{\prod_{i=1}^{n}(i!)^{\alpha_{i} \alpha_{i}!}}
$$

مثال 0 مال

$$
\frac{10!}{(r!)^{r} r!r!}=r 100
$$

Y.ه اعداد استرلينگ

در اين بخش در باره افرازنمودن يك مجموعه به تعداد مفروضى از بخشها بحث مى كنيم.

فرض كنيد $S(n, k)$ معرف تعداد حالتضهاى ممكن براى افراز يكى مجموعه n n عضوى به دتقيقاً

 شدهاند كه بهجهت ارائه تقريبى براى !n نيز معروف است: $n!\sim \sqrt{\Gamma \pi n} n^{n} e^{-n}$.

حال $S(n, k)$ را مطالعه مىكنيم. واضح است كه براى مر 1 ا $n \geq$ داريم:

$$
\begin{equation*}
S(n, 1)=S(n, n)=1 \tag{1.0}
\end{equation*}
$$

مثال 0.0
 عبارت هستند از:

$$
\begin{aligned}
& \{1\} \cup\{r, r, r\},\{r\} \cup\{1, r, r\},\{r\} \cup\{1, r, r\},\{\varphi\} \cup\{1, r, r\}, \\
& \{1, r\} \cup\{r, r\},\{1, r\} \cup\{r, r\},\{1, r\} \cup\{r, r\} .
\end{aligned}
$$

 روشى توسط رابطه بازگشتى زيراراراته مىشود.

تضيد ه.
اكر اك 1 آنگاه

$$
\begin{equation*}
S(n, k)=S(n-1, k-1)+k S(n-1, k) \tag{r.D}
\end{equation*}
$$

اثبات
در هر افرازى از

 درنظر كرفته- اين عمل به

را به هريك از k بخش حاصل درنظر بكيريم - كد انجام اين كار به k روش شدنى است. بنابراين طبق اصول جمع و ضرب داريم:

$$
S(n, k)=S(n-1, k-1)+k S(n-1, k) .
$$

$$
\begin{aligned}
& S(\boldsymbol{Y}, \mathrm{r})=S(r, 1)+\mathrm{r} S(\mathrm{r}, \mathrm{r}) \\
& =1+\mathrm{r}(S(\mathrm{r}, \mathrm{I})+\mathrm{Y} S(\mathrm{r}, \mathrm{r}))
\end{aligned}
$$

$$
=1+r(1+r)=Y . \quad \text { تضبه } 0 .
$$

$$
\text { اكر } . S(n, r)=r^{n-1}-1 .
$$

اثبات
 براى n=k

$$
\begin{aligned}
S(k+1, Y) & =S(k, 1)+Y S(k, Y) \quad(0 . Y \text { بنابر }) \\
& \left.=1+Y\left(Y^{k-1}-1\right) \quad 1\right) \\
& =1+Y^{k}-Y=Y^{(k+1)-1}-1 . ■
\end{aligned}
$$

جدول 1.0 جند مقدار اوليه ازاعداد استرلينگ را ارائه مىدهد. جدول 1.0

$\mathrm{n} \backslash \mathrm{k}$	1	r	r	F	0	7	Y	\wedge	$\mathrm{B}(\mathrm{n})$
1	1								1
r	1	1							r
r	1	r	1						0
F	1	V	7	1					10
0	1	10	ro	1.	1				or
7	1	r	9.	18	10	1			ror
v	1	Ir	rol	roo	1F\%	r1	1		AvV
\wedge	1	Irr	977	\|Yol	1000	977	rA	1	flfo

[^10]\qquad
بهنام رياضى دان اسكاتلندى ديگرى، E. T. Bell مى آباشند كه به آمريكا مهاجرت كرد و وجند
 رياضىدانان مشهوراست، نوشت. براى هر 1 با 1 داريم:
\[

$$
\begin{equation*}
B(n)=\sum_{k=1}^{n} S(n, k) . \tag{ץ.0}
\end{equation*}
$$

\]

اكـر تـعـريـن كـنـــم قرارداد مفيد بذيريد)، يكـ رابطه بازگشتى براى اعداد بل حاصل مىشود.

تضبه 0.0

 عضو به B(n-1-j

$$
\begin{aligned}
B(n) & =\sum_{j=0}^{n-1}\binom{n-1}{j} B(n-1-j) \\
& =\sum_{k=0}^{n-1}\binom{n-1}{k} B(k)
\end{aligned}
$$

$$
n-1-j=R
$$

مثال 7.0

$$
\begin{aligned}
B(9)= & \sum_{k=0}^{\wedge}\binom{\lambda}{k} B(k) \\
= & 1+\Lambda \times I+Y A \times Y+\Delta Y \times \Delta+Y 0 \times 1 \Delta \\
& +\Delta Y \times \Delta Y+Y A \times Y 0 Y+\Lambda \times A Y Y+1 \times F I F 0 \\
= & Y I Y Y .
\end{aligned}
$$

براى يكى فرمول جالب (ولى بىفايده) از B(n به تمرين 9.0 مراجعه كنبد.

\qquad نخستين درس دررياضيات كسسنه هر
 عضوى جون $x \in X$ برابر $f(x)$ هستند:

$$
\operatorname{im} f=\{f(x) \in Y: x \in X\}
$$

هر تابع f : $X \rightarrow Y$ زيرمجموعهاى از Y را بهعنوان تصوير خود دارد. جند تابع اينجنينى

 رئ روند زير ساخت:

مختلف امكانیذير است)؛ بـا انـدازه k را در Yانـتـتخـاب كــــبـد (ايـن بــه مختلف انجام مى شود)؛
 طريق مختلف مىتوان انجام داد). بنابراين تعداد توابع k هر مقدارى بين ا و n را الختبار مى دارد، قضيه زير حاصل مىشود.

تضيه 7.0

$$
\begin{equation*}
n^{m}=\sum_{k=1}^{n} S(m, k)\binom{n}{k} k!. \tag{b}
\end{equation*}
$$

توجه كنيد كه بهعنوان حالت خاص، تعداد توابع يوشا از X به Y برابر X با C با n است. مثمال 0 م.

$$
\begin{aligned}
\sum_{k=1}^{f} S(\Delta, k)\binom{f}{k} k! & =F P(\Delta, I)+I r S(\Delta, Y)+Y F S(\Delta, r)+Y F S(\Delta, F) \\
& =F+1 \wedge 0+700+Y F \circ=1 \circ Y F=F 0
\end{aligned}
$$

\qquad
توجه كنيد كه اگرقرار دهبم مىتوان بدفرم

$$
n^{m}=\sum_{k=0}^{n} S(m, k)\binom{n}{k} k!
$$

بازنوسى كرد. اين تساوى را مىتوان معكوس نمود.
V. 0 Vضبه

$$
\text { براى هر } 1 \text { m } m \geq n \text { داريم } n \geq 0 \text { و } n \geq 0
$$

$$
\begin{equation*}
n!S(m, n)=\sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k} k^{m} . \tag{0.0}
\end{equation*}
$$

اثبات
با قراردادن ازاصل حذف و شمول (بخش Y. 1) استفاده كرد.
A.

$$
S(0, r)=\frac{1}{r!}\left(\sum_{k=0}^{r}(-1)^{r-k}\binom{r}{k} k^{0}\right)=\frac{1}{7}\left(-0+r-r \times r^{0}+r^{0}\right)=r \Delta .
$$

P.0 رنگگردن رئوس گرافها

افراز كنند؛ اين عدد را عدد رنگى G میىناميم.
تعريف ه.
 راسهاى G را بنوان به k زيرمجموعه مستقل افراز كرد.

 آنگاه . $\chi(G) \leq \uparrow$
\qquad نخستين درس دررياضيات كسسنه

تضيد 0.0
$. \chi\left(K_{n}\right)=n(\mathrm{i})$
ا $\chi\left(C_{n}\right)=r\left(C_{n}\right)=Y$ (ii)

هيج دو راسى نمىتوانند رنگهانى يكسانى داشته باشند زيرا مجاور هستندر (i)
n اكر n زوج باشد، مىتوانيم دو رنگـ را بهصورت تناوبى در طول دور بدكار ببريم! اكّر (ii) فرد باشد براى آخرين راس بد يك رنـى سوم نباز داريم.

مثال 9.0

(a)

(b)

شكل 1.0
(c)

توجه كنيد كه مورد

 رنگ نباز دارد (جرا؟) اكرجه حاوى

الگُريتم حريص براى رنگگآميزى راسها
 Y.
 ν_{i+1} نستبت دهيد كد $ز$ كمترين مقدار ممكن را بدكار نرفته است.
|فرازها ورنگـى Tميزىها \qquad
مثال 10.0

 زير نسبت مىدهیيم:

$$
\begin{aligned}
& \nu: 1 r r p o y r \\
& C: 1 r i r p i r
\end{aligned}
$$

 مطابق با (b)، رنگى آميزى بدفرم زيراست:
$\nu: 1$ rryoly
C : 1rririr
از دومين رنگآميزى نتيجه مىشود

(a)

(b)

شكل R.0

 اين راس بايد رنگى جون تضبه 9.0
 حداكثر 1 + 1 رنگ رنگىTميزى مى

مثال 11.0 (يكى مسئلة زمانبندى)
دانشكاه كاليفرنياى مركزى نه معاون دارد، پيرفسور A، B، ...، I،كه در هشت كمينه فعاليت دارند. عضويت در كمينهها بهشر زيراستا

$$
\begin{array}{ll}
\mathrm{I}: A, B, C, D & \Delta: A, H, J \\
\mathrm{r}: A, C, D, E & \urcorner: H, I, J \\
\mathrm{r}: B, D, F, G & \mathrm{r}: G, H, J \\
\mathrm{~F}: C, F, G, H & \wedge: E, I .
\end{array}
$$

 را تعيين كنيد.

هر كميته را با يكى راس نشان داده و دو راس را با يك ضلع بدهم وصر وصل كنيد دقيقاً وقتى كـي

 هاى (رنگ كافى است، مئلًا

$$
\{1, \vee, \Lambda\} \cup\{r, \Delta\} \cup\{r, 7\} \cup\{F\}
$$

يكى افراز $\chi(G)=f$ ¢ است.

ه. ه رنگكردن اضلاع گرافها

 Tedge colouring

اضلاع G را شاخص رنگى' G ناميده و با (G) ' ${ }^{\prime}$ نمايش مى دهبم.

 مثال
(a) با جون $\cdot \chi^{\prime}\left(K_{f}\right)=r$

(a)

(b)
($\chi^{\prime}\left(K_{\Delta}\right)=0$ (b) تطابقى بيش از ه رنگ كافى است.

قضبه 10.0
. $\chi^{\prime}\left(K_{n}\right)=n$ الكر n فرد باشد آنگاه (i)
. $\chi^{\prime}\left(K_{n}\right)=n-1$ اكر n زوج باشد آنگاه (ii)
اثبات
اكر n فرد باشد آناه هر تطابقى حاوى حداكثر (1) يك رنگى را به حداكئر (1
 با n رنگّ رنـگآميزى كرد.
\qquad نخسنين درس درياضيات كسسنه

شدهاند نمايش دهبد. اضالع مرزى را با ل، ...، n رنگ كنيد؛ سبس هر تطرى را با رنگ ض = 0 ضلع موازى با آن رنگ كنيد. با اين روش يكى n ضلعرنگى حاصل مىشود. حالت

 راسهاى الی نشده است. رنگّهاى بهكار نرفته در راسها
 1

ظهور بودن n، هماهنگ با نتيجه زيراست. قضه 11.0 (وايزينگ 197F)

يعنى
مثال ه.

 مطابق شكل ه. ©(b) رنگ مىشوند. ولى اين منجر به وجود دو ضلع داخلى مجاور كه رنگ

(a)

(b)

افرازها ورنگآميزیها
Y
اين بـخش را با نشاندادن اينكه تمامي گرافهاي دوتسمتى در كاس يكى قرار دارند بهايايان مىبريم. إين نتيجه توسط كونيگ ا' اثبات شده است كه مؤلف مجارستانى اولين كتاب اساسى در نظريه گراف است [1F].

براى هر گراف دوقسمتى G رابطه G ($\chi^{\prime}(G)=\triangle$ برقراراست.
اثبات
از استقرا روى q، تعداد اضالاع G، استفاده كنيد. واضـح است كه تضيه برای گرافـهایى با q=1 برقرار بوده، و فرض كنيد G يك گراف وراف دوقسمتى با ماكزيمم درجه

 ميتوان اضلاع H را با حداكثر ه رنگ رنگ آميزى كرد.
اكنون، در H، راسهای ע و ω هر دو از درجه حداكثُر ا - ه هستند، بنابراين در مورد

 ضلع فע نسبت داد. اگگ جنين رنگگى موجود نباشد، آنگاه فرض كنيد

 مسيرى كه به اين طريق حاصل مى شود هرگّز به ω نمى رسد زيرا در صورت رسبدن به س ω بايد

 از اينرو زيرگراف همبند K، متشكل از راس ע و تمامى رئوس و اضلاع H H كه قابل دسترسى بهوسيله يكـ مسير با اضالاع به رنگُ CY در گراف K Kنگّهای

 ايده جابهجا كردن رنگـها در طول يك مسير را ابتدا كمیى در تلاش ناموفق سال IAYף خود

در آن مورد موفق نبود، با اينحال مشخص شده است كه اين ايده يك روش خبلى مفيد در نظريه گراف است.

IF. 0 مئال

 باشرح زيراست:

$$
\begin{aligned}
& S_{1}: B_{1}, B_{\Upsilon}, B_{\gamma} \quad S_{\Upsilon}: B_{\uparrow}, B_{\uparrow}, B_{0}, B_{\uparrow} \quad S_{\uparrow}: B_{\gamma}, B_{\gamma}, B_{0}, B_{\curlyvee} \\
& S_{\uparrow}: B_{\uparrow}, B_{0} \quad S_{0}: B_{1}, B_{\urcorner}, B_{\curlyvee} \quad S_{\uparrow}: B_{\curlyvee}, B_{\uparrow}, B_{\curlyvee} \\
& S_{Y}: B_{\uparrow}, B_{0}, B_{Y} \quad S_{\Lambda}: B_{r}, B_{Y} .
\end{aligned}
$$

كمنرين تعداد هفته لازم براى اينكه تمامى دانشجويان كتابهاى مورد نباز خود را بهامانت بكيرند جقدر است؟
 كد در آن
 جهار رنگُ (هفته) لازم است. بايد قادر به افراز اضلاع G با بد جهار تطابق جدا از هم باشيد.

> تمرينات

$$
\text { تمرين } 1.0
$$

به جند طريق مىتوان 17 تبم فوتبال را به جهار گروه جهارتبمى افراز نمود؟
تمرين Y.

 مى توان انجام داد؟
تمرين r.0

 طريق امكانيذيراست؟

$$
\text { F. F. } 0
$$

هر جايگشتى حاصلضرب جند دوراست. براى مثال جايگشت ROI TFY، يعنى

[^11]افرازها ورنگTمميزیها

$$
\left(\begin{array}{llllll}
1 & r & r & F & 0 & 7 \\
r & 7 & 1 & 0 & r & F
\end{array}\right)
$$

 ا-دور، دو Y-دور و يكى r-

تمرين 0.0

تمرين 7.0

تمرين Y.
نشان دهبد

$$
S(n, k)=\sum_{m=k-1}^{n-1}\binom{n-1}{m} S(m, k-1)
$$

واز آنجا اثبات ديگرى براى قضيد ه. هارائه دهبد.
تمرين 0.0
مقدار $B(10$ را تعيين كنيد.
تمرين 9.0

تمرين 10.0

(

$$
s(n, k)=(n-1) s(n-1, k)+s(n-1, k-1),
$$

تمرين 11.0
براى هريك از گرافهاى تمرين Y.
تمرين 1 T.
 - $\chi(G) \alpha(G) \geq p$ حاوى رتوس مستقل باشد. نشان دهيد
\qquad

تمرين 0 اr.

حاصل مىشود.
IF. 0 تمرين
تمرين قبل را با درنظر گرفتن مرتببودن رئوس بهصورت يكى دنباله صعودى برحسب درجه
 حالت كلى كداميكـ ازاين دو روش رنگّهاى كمترى نياز داشته باشد؟

تمرين 10.0
توضيح دهيد كه جرا هميشه ترتيبى از راسها وجود دارد كه منناظر با آن الگُوريتم حريص منجر بد يك رنگ آميزى با

تمرين 17.0
شاخص رنگى هريك از ينج گراف اجسام افلاطونى را تعيين كنيد.
IV. 0 تمرين

 مكعبى با شاخص رنگى r نيستند، مثلاً گراف پيترسن را درنظر بگيريد.)

تمرين 11.0
فرض كنيد G يك گراف با (a) نشان دهيد G دارای ($k+\frac{1}{Y}$ ($) r$ (b)

 رتوس، يك گراف كلاس Y است. (همجنان كه در قضيه ها ها 10 ديديم، اين شامل مى شود.)

تمرين 19.0
فرض كنيد (G)
ر رنگ باشد.
$. f_{\lambda}\left(K_{n}\right)=\lambda(\lambda-1)(\lambda-r) \ldots(\lambda-n+1)$ نشان دهيد (a)

隹 $f_{\lambda}(G)=f_{\lambda}\left(G^{\prime}\right)-f_{\lambda}\left(G^{\prime \prime}\right)$

位 $f_{r}\left(C_{n}\right)=Y^{n}+(-1)^{n} Y$程 n ．$f_{\lambda}\left(C_{n}\right)=(\lambda-1)^{n}+(-1)^{n}(\lambda-1)$ باشد ازاين رابطه نتيجه مى

فصل 7

اصل شمول-حذف

 زناشويى r اشاره خواهيم كريمرد.

1.7

 مفروض هستند و مى خواهيم تعلاد اعضاى الى موجود دراجنتماع آنها را تعبين كنبيم. اولين تلاش
 شمرده مىشوند! بنابراين برآورد اصلاحشده برابراست با

$$
\begin{equation*}
|A \cup B|=|A|+|B|-|A \cap B| . \tag{1.7}
\end{equation*}
$$

 كنجانيده شدهاند خارج مى كنيم. حتى اين شكل ساده اصل مىتواند مفيد باشد.

$$
\text { مثال } 1.7
$$

دريك كلاس دهيد كه حداقل 10 دختر با موى تيره در كالاس وجود دارد.

[^12]\qquad

فرض كنيد A معرف مجموعه دانش آموزان دختر و B معرف دانشَ آموزان با موى تيره باشد. در اينصورت از 1

$$
\begin{aligned}
|A \cap B| & =|A|+|B|-|A \cup B|=r 0+r \Delta-|A \cup B| \\
& \geq 10-\Delta 0=10
\end{aligned}
$$

كاربرد بعدى (1.7) خيلى بديهىتراست.
مثh
 راس Tن از درجه حداقل m باشد، آنگاه G بأيد حاوى باشد

倍

 راس بزرگتراز درنظر بگيريد. يس تمامى راسهایى مجاوربا

$$
\begin{aligned}
\left|S_{1} \cap S_{\mathrm{Y}}\right| & =\left|S_{1}\right|+\left|S_{\mathrm{Y}}\right|-\left|S_{1} \cup S_{Y}\right| \\
& >F_{0}+F_{0}-\left|S_{1} \cup S_{\mathrm{r}}\right| \geq \wedge_{0}-7_{0}=r_{0}
\end{aligned}
$$

يس ${ }^{\text {ی }}$ مجاوربا

$$
\begin{aligned}
\left|S_{1} \cap S_{\mathrm{r}} \cap S_{\mathrm{r}}\right|=\left|\left(S_{1} \cap S_{\mathrm{Y}}\right) \cap S_{\mathrm{r}}\right| & =\left|S_{1} \cap S_{\mathrm{r}}\right|+\left|S_{\mathrm{r}}\right|-\left|\left(S_{,} \cap S_{\mathrm{Y}}\right) \cup S_{\mathrm{r}}\right| \\
& >\mathrm{Y}_{0}+\mathrm{F}_{0}-7_{0}=0 .
\end{aligned}
$$

ازاينرو راسى جون

 دراين محاسبه اعضاى واقع در بيش از يك مجموعه، بيش از يكـبار لحاظ شدهاند اند، بنابراين

برآورد دوم مىتواند
 بايد يكبار ديكر لحاظ شوند. يس مقدار نهايى برابراست با

$$
\begin{equation*}
|A \cup B \cup C|=|A|+|B|+|C|-|A \cap B|-|B \cap C|-|C \cap A|+|A \cap B \cap C| . \tag{Y.Y}
\end{equation*}
$$

توجه كنبد كه مى كُجانيم، حذف مىكنيم، مجدداً اضافه مىكنيم.

شكل 1.7
فرمول كلى بدشرح زيراست.
تضبد 1.7 (اصل شمول-حذف)

 شرط صدف مى كنند برابراست با

$$
\begin{equation*}
\sum_{i} N(i)-\sum_{i<j} N(i, j)+\sum_{i<j<k} N(i, j, k)-\ldots+(-1)^{r-1} N(1, r, \ldots, r) . \tag{r.7}
\end{equation*}
$$

اثبات
هرعضو S كه هبجيك از خواص را نداشته باشد روى هريك از جمل (Y.T) تاثير ه داشته و بنابراين تأثير آن روى مجموع نيز ه است.

 (r.7) برابر است با

$$
\begin{aligned}
t-\binom{t}{r}+\binom{t}{r}-\ldots+(-1)^{t-1}\binom{t}{t} & =1-\left\{1-t+\binom{t}{r}-\ldots+(-1)^{t}\binom{t}{t}\right\} \\
& =1-(1-1)^{t}=1 .
\end{aligned}
$$

مينال 7.7
تعداد اعداد صحبح كمتراز 101 ا را كه بر Y يا Y بخشيذير هستند تعيين كنيد.
جواب

قرار دهبد

مطلوب برابراست با

 قضبه Y. 7 (شكل دوم اصل شمول-حذف) با نمادهاى قضيه 1.7 ، تعداد اعضاى S كد واجد هيجّيك ازخواص نباشند برابر است با

$$
\begin{equation*}
|S|-\sum_{i} N(i)+\sum_{i<j} N(i, j)-\ldots+(-1)^{r} N(1, r, . ., r) . \tag{F.7}
\end{equation*}
$$

مثال 7 مثدو
 بخشيذير نيستند؟
 مى

يعنى بر Y

$$
\begin{aligned}
100-(00+Y r+Y 0+1 Y) & +(17+10+Y+Y+Y+Y)-(r+Y+1) \\
& =100-11 Y+Y 0-7=Y Y .
\end{aligned}
$$

\qquad نخستين درس دررياضبات كسسنه

اهميت اين نتيجه در جيست ؟ ملاحظه كنبد كه هر عدد كمتراز از ا 1 كه اول نباشد
 كوجیتراز
 نيست و حاوى \است كه اول نبست. پس تعداد اعداد اواد اول كوجكتر يا مساوى 100 برابر
است.
0.7 مثال

 روز منوالى يكسان نبود. با مفروض بود بودن ترتيب گردندهها براى يكى روز، جند انتخاب مرتب مسكن براى روز بعد وجود دارد؟

مى توان فرض كرد كه كردندهها برجسبهاى (، ...، ه داشته و اينكه در يكى روز مشخصى
 سهتايى هاى مرتب از گردندهها باشد؛ در اينصورت

 نكنند. بنابراين عدد مطلوب برابر است با

$$
|S|-\sum N(i)+\sum N(i, j)-N(1, r, r)
$$

حال براى هر

$$
70-r \times(f \times r)+r \times r-1=r r .
$$

(بعدها تعداد گردندههاى بهكار رفته در نيروى دريايى آلمان به هشت افزايش يافت؛ تمرين 9.7 ا 9 بينيد.)

مثال بعدى در رابطه با بىنظمى است كه در فصل r با آن آشنا شديم. مثال 7.7 بهخاطر بياوريد كه يك بى بنظمى از n شى عبارت است از يك جار جايگشتى از آنها بدقسمى

 را نشان ميدهيم.
 كنبد ازاعضاى S أست كه هبـجيك از خـواص
 مشابهاً ! (

$$
\begin{aligned}
d_{n} & =|S|-\sum_{i} N(i)+\sum_{i<j} N(i, j)-\ldots+(-1)^{n} N(1, \ldots, n) \\
& =n!-\binom{n}{1}(n-1)!+\binom{n}{r}(n-Y)!-\ldots+(-1)^{n}\binom{n}{n} 0! \\
& =n!-\frac{n!}{1!}+\frac{n!}{Y!}-\ldots+(-1)^{n} \frac{n!}{n!} \\
& =n!\left\{1-\frac{1}{1!}+\frac{1}{r!}-\ldots+\frac{(-1)^{n}}{n!}\right\} .
\end{aligned}
$$

مثال بعدى ايدمأى را معرفى مى كند كه براى بخشى f. 7 مفيد خواهد بود.
مثال 7 . 7

جواب
فرض كنيد S S

 هبجيك از اين سه خاصبت نباششند. اين عدد برابراست با:

$$
\begin{equation*}
\binom{Y Y}{Y}-\sum_{i} N(i)+\sum_{i<j} N(i, j)-N(1, Y, r) . \tag{0.7}
\end{equation*}
$$

 u+y+z=9 9 مى شود. تعداد جوابهاى صحبح نامنفى اين معادلد $N\left(\begin{array}{l}\text { اي } \\ \hline\end{array}\right.$ $x=\|+u$ ع
俍 $N(1, r)=\binom{0}{r}$

كه مقدار (0.7) برابر است با

$$
\binom{Y r}{r}-\binom{11}{r}-\binom{17}{r}-\binom{7}{r}+\binom{0}{r}=01 .
$$

r.7 شمارش توابع پوشا
 هرگاه تصوير f برابر Y باشد. جند تابع بوشا f با f و وجود دارد؟
 $N(1)=(n-1)^{m}$ فرض كنيد
 مشابهاً، تعداد اعضايى از S كه در هيجيك از n خاصيت يادشده صدق نمى كنند، برابر است با

$$
\begin{aligned}
& |S|-\sum_{i} N(i)+\sum_{i<j} N(i, j)-\ldots+(-1)^{n} N(1, \ldots, n) \\
& =n^{m}-\binom{n}{1}(n-1)^{m}+\binom{n}{r}(n-r)^{m}-\ldots+(-1)^{n}\binom{n}{n}(n-n)^{m} \\
& =\sum_{i=0}^{n-1}(-1)^{i}\binom{n}{i}(n-i)^{m} .
\end{aligned}
$$

 نيست زيرا در X تعداد كافى عضو براى تصويرشدن به n عضو Y وجود ندارد. ازاينرو

$$
\begin{equation*}
\sum_{i=0}^{n-1}(-1)^{i}\binom{n}{i}(n-i)^{m}=0, \quad m<n \tag{7.7}
\end{equation*}
$$

 (قضي (7.0)؛ بنابراين اثبات ديگرى براى (0.0) حاصل مىشود.
F.7

در بخش روى n راس Y Y متعددى براي نتيجه كيلى ارأئه شده است. اكثر اين اثباتها كاملاً ننى هستند؛ مشهورترين
 TPrüfer
\qquad
دنبالههاى Y - n رتمى، كه هر رقم مىتواند هر عددى از مجموعه
 فرض كنيد S معرف مجموعه تمامى درختهاى فراكير با راسهاى برجسبكذارىشده با
 i

 اعضاى S واجد تمامى n خاصيت نيست. يس، براى n n n از از (r.7) نتيجه مى شود

$$
T(n)=\sum_{i} N(i)-\sum_{i<j} N(i, j)+\ldots+(-1)^{n} \sum_{i_{1}<\ldots<i_{n-1}} N\left(i_{1}, \ldots, i_{n-1}\right) .
$$

حال (مىتواند به هريك از 1 - n راس ديگر برود، واين 1 ا -n راس بهوسيله يك درخت بدهم وصل مىشوند.

درخت برچسبكذارى شده روى

$$
N(1, r)=(n-r)^{r} T(n-r) \quad \text { شكل } \quad 7
$$

مشابهاً، هــجنانكه در شكل غيره. بنابراين اگر

$$
\begin{align*}
T(n) & =\binom{n}{1}(n-1) T(n-1)-\binom{n}{Y}(n-Y)^{Y} T(n-Y) \\
& +\ldots+(-1)^{n}\binom{n}{n-1} T(1) \\
& =\sum_{i=1}^{n-1}(-1)^{i-1}\binom{n}{i}(n-i)^{i} T(n-i) \tag{Y.T}
\end{align*}
$$

ولى، با قراردادن

$$
\begin{equation*}
n^{n-r}=\sum_{i=1}^{n-1}(-1)^{i-1}\binom{n}{i}(n-i)^{i}(n-i)^{n-i-r} \tag{А.7}
\end{equation*}
$$

P. 7

 است كه در آن bl معرف كارت سفيد است.

$$
\begin{array}{cccccccccccccc}
A & B & C & D & E & F & G & H & I & J & K & L & M & \\
q & r & r & r & 1 r & r & r & r & q & 1 & 1 & r & r & \\
N & O & P & Q & R & S & T & U & V & W & X & Y & Z & b l \\
7 & \Lambda & r & 1 & \mathcal{Y} & Y & T & Y & r & r & 1 & r & 1 & r
\end{array}
$$

درابنداى بازى هر بازيكن Y كارت انتخاب مى كند. به جند

 صحيح نامنفى معادلد

$$
\begin{equation*}
a+b+\ldots+z+\omega=Y \tag{9.7}
\end{equation*}
$$

 را بهعنوان مجموعه تمامى جوابهاه

 مى شود. روند مثال Y. 7 را ا ا 7 كتبارمىكنيم.

$$
\text { بنابرقضبه }|S|=\binom{Y Y+Y-1}{Y}=\binom{Y Y}{Y} ، 10.1
$$

 است كه اين مقدار ه استر
\qquad
حـال N(b) اكگر قرار دهـيـم

$$
. N(b)=\binom{Y Y+Y-1}{Y}=\binom{Y 0}{Y} \text { می } a+b^{\prime}+\ldots+\omega=F
$$

بهروش مشابه مقادير زير بهدست مى آيند

$$
\begin{aligned}
N(b) & =N(c)=N(f)=N(h)=N(m)=N(p)=N(v)=N(w) \\
& =N(y)=N(\omega)=\binom{Y \circ}{f} \\
N(j) & =N(k)=N(q)=N(x)=N(z)=\binom{Y \backslash}{0} \\
N(g) & =\binom{Y q}{r}, N(d)=N(l)=N(s)=N(u)=\binom{Y \lambda}{Y}, \\
N(n) & =N(r)=N(t)=\binom{Y\urcorner}{ 0}=1,
\end{aligned}
$$

و بقيه برابر o هستند. اكنون بايد جملاتى مانند $N(c, d)$ را بررسى كنيم. تعداد اين جملهها
 شرايط $c=c^{\prime}+r, b=b^{\prime}+r$ تعداد منجر به معادله $a+b^{\prime}+c^{\prime}+d+\ldots+w=1$ میى $\left.a+\begin{array}{c}Y Y \\ 1\end{array}\right)$ جواب دارد. مشابـهأ، © جمله مساوى $N(g, j)$ وجود טارد. قراردادن $j=j^{\prime}+Y g g=g^{\prime}+F$ منجر به معادله $\binom{0}{Y}$ جواب دارد. تعداد $a+\ldots+g^{\prime}+h+i+j^{\prime}+\ldots+\omega=1$ جمله مساوى 0
 سرانجام، $\begin{array}{r}\text { س }\end{array}$ دارد. بنابراين عدد مـطلوب برابر است با:

$$
\begin{aligned}
\binom{r r}{Y} & -\left\{0\binom{r 1}{0}+10\binom{r o}{r}+\binom{r q}{r}+r\binom{r A}{r}+r\binom{r 7}{0}\right\} \\
& +\left\{\binom{0}{r}\binom{r q}{r}+00\binom{r A}{r}+\binom{10}{r}\binom{r V}{1}+\Delta\binom{r V}{1}+r \circ\binom{Y 7}{0}\right\} \\
& -\left\{\binom{0}{r}\binom{r Y}{1}+100\binom{Y 7}{0}\right\} \\
& =\text { Y199VYF. }
\end{aligned}
$$

0.7

مسئله زناشويى ' در 1 | 191 توسط لوكاس "، رياضىدان فرانسوى مطرح شد.
 هستند) بدقسمى كه هر زن بين دو مرد و هر مرد بين دو زن قرار داشته و هيتَ زن و شوهرى كنار هم نباشند؟ جواب
 Wn

 W, قرار دارد.

فرض كنيد S Sمجموعه تمامى حالتهای مای ممكن برایى نشانيدن شوهران در
 خواص بوده و يا فاقد آن باشند:期: P_{i}

$$
\begin{aligned}
& \text { : Q, }
\end{aligned}
$$

شكل

 مثال، ،
 سازگاراز خواص ممكن برای مرتبنمودن شوهران بدقسمى بود. ازاينرو بنابر (F.T)،

$$
g(n)=n!-r_{1}(n-1)!+r_{\mathrm{r}}(n-Y)!-\ldots+(-1)^{n} r_{n} \circ!.
$$

براى تعيين rr ، تصور كنيد كه خواص مطابق شكل 7.7 روى يك دايره قرار گرفته باشند.

 دوبددو غيرمجاوراز l ا، ...

 انتخاب مىشوند. جون تعداد اعد انتخابهاى اينجنينى

شكل 7 ش.

[^13]\qquad نخستين درس درياضيات كسسنه
$$
r_{k}=\binom{r_{n}-k+1}{k}-\binom{r_{n}-k-1}{k-r}=\frac{r_{n}}{r_{n-k}}\binom{r_{n}-k}{k}
$$

\[

$$
\begin{aligned}
& n!-\frac{Y_{n}}{Y_{n-1}}\binom{Y_{n}-1}{1}(n-1)!+\frac{Y_{n}}{Y_{n}-Y}\binom{Y_{n}-Y}{Y}(n-Y)!-\ldots+(-1)^{n} \frac{r_{n}}{n}\binom{n}{n} \circ!. \\
& \text { برای مثال، } M(\Delta)=r \times \Delta!\times 1 r=r \mid Y o
\end{aligned}
$$
\]

با نگاهى به يسى، يكى تعبير جايگزين خوبى برای (n) تعداد حالتهاى ممكن برای إنتخاب سطر سومى از يكى مربع لاتين n n n n كه دو سطر اول آن عبارت هستند از

$$
\begin{array}{cccccc}
1 & r & r & \ldots & n-1 & n \\
r & r & f & \ldots & n & 1 .
\end{array}
$$

تمرينات
تمرين 1.7

تمرين 7 r.
 مى خواند! TY نفررياضى و FF نفر هر دو را مى خوانند. جند نفر محاسبات را مى خوانتد؟

تمرين 7.

 هردو آت سيمى و بادى را مینوازيزند؛

تمرين 7 توئ

0.7 تمرين

 بزرگتراز (1)

- تمرين 7.7

نشان دهيد تعداد جوابهاى صحبح نامنفى معادل $x+y+z=100$ با شرايط $x \leq 00$ ، x ،

اصل شمول-حذف

V. 7 تمرين

تمرين 1.7
در جند جايگشت از (، ... ، 1 هيج عدد زوجى در موقعيت طببى خودش قرار نمىگيرد؟
تمرين 9.1
مثال 0.7 روى ماشين رمزرا با تغيير ه به 1 تكرار كنبد.
تمرين 10.7

تمرين 11.7
$\phi(n)$ تابع فى اويلر. فرض كنبد $n=p_{1}^{\alpha_{1}} \ldots p_{r}^{\alpha_{r}}$ تجزيه n به عوامل اول باشد و فرض معرف تعداد اعداد كوجكـتراز اعداد V 9 و هستند. با استفاده ازاصل شمول-حذف نشان دهيد 9 و . $\phi(100)$

 برای هر دريافت كنند. در اينصورت (ا)
 نتيجه بگيريد

$$
f_{\lambda}(G)=\lambda^{n}+a_{1} \lambda^{n-1}+a_{\upharpoonright} \lambda^{n-r}+\ldots+a_{n-1} \lambda+a_{n}
$$

تمرين تمرين 7 Tr.
 يرتاب شود، الحتمال ظاهرشدن هر 7 عدد جقدر است؟ IF. 7 تمرين با استفاده ازاصل شيمول-حذفتع از العداد افرازهاى $\}$ در آن هبجيكى از گروهها مجموعه يكعضوى نيست.
v
مربعهاى لاتين و قضيه هال

 مجموعههاى كامل از مربعهاى لاثين متعامد منجر به صفحات آفينى مى مشوند.

O مربعهاى لاتين و تعامد
تعريف I.Y
يكى مربع لاتين از مرتبه n يك آرايه n n است كه در آن هر سطر و هر ستون جايگشتى
 . بهفرم زير هستندي $\{1, r, r, Y\}$

$$
L_{1}=\left[\begin{array}{llll}
1 & r & r & r \\
r & p & 1 & r \\
r & r & r & 1 \\
r & 1 & p & r
\end{array}\right], \quad L_{r}=\left[\begin{array}{llll}
1 & r & r & r \\
r & r & r & 1 \\
r & 1 & r & r \\
r & r & 1 & r
\end{array}\right]
$$

علاقه اوليه نسبت به مربعهای لاتين ابتلا در طرح Tآزمايشهاى آمارى ظاهر شا شد و سبس
 است كد جدول تركيبى يك گُروه متناهى يكى مربع لاتين است.

منال $1 . Y$
rn - 1 رض كنيد

 در k A=($\left.a_{i j}\right)$

ا 1 :	Ivr,
Y بايان هفنه:	lvr,
r	Ivf,

$$
\left[\begin{array}{llll}
f & 1 & Y & r \\
1 & f & r & r \\
r & r & f & 1 \\
r & r & i & f
\end{array}\right] .
$$

بسيارى از كاربردهاى مربعهاى لاتين از مفهوم تعامد استفاده مى كنند. اين ايده به اويلر باز

 'آرايشى امكانيذير نيست.

$$
\begin{array}{cccc}
\alpha a & \beta b & \gamma c & \delta d \\
\gamma d & \delta c & \alpha b & \beta a \\
\delta b & \gamma a & \beta d & \alpha c \\
\beta c & \alpha d & \delta a & \gamma b .
\end{array}
$$

 لاتين , ال و و با هسنـند.

> تعريف Y.Y
(i)
 (ii) مربعهاى لاتين A و B متعامد هستند اگرتمامى درايدهاى الحاق (i, 1 (i)
 مثال، ،
 شرط منعامدبودن A و B را مى توان جنين بيان كرد

$$
\begin{equation*}
\text { اگر ا } j=J, i=I \text { و } \tag{I.Y}
\end{equation*}
$$

 در 1900 أابت شد كه جنين مربعهايى وجود ندارند.

$$
\begin{aligned}
& \text { تضبه } 1 . Y
\end{aligned}
$$

 روى شرط تعامد ندارد) عناصر هريكى ازاين مربعها از اين مربعها برابر

[^14]مربعهاى لاتين وتضبه هال
يك مجموعه 1 - 1 عضوى از MOLSهاى از مرتبه n، درصورت وجود، را يك مجموعه كامل از MOLS مى المامن.

مثال م.Y
مربعهاى زيريكى مجموعه كامل از MOLS
$M_{1}=\left[\begin{array}{llll}1 & r & r & r \\ r & 1 & p & r \\ r & r & 1 & r \\ r & r & r & i\end{array}\right], M_{r}=\left[\begin{array}{llll}1 & r & r & r \\ r & r & r & 1 \\ r & 1 & r & r \\ r & r & i & r\end{array}\right], M_{r}=\left[\begin{array}{llll}1 & r & r & f \\ r & p & r & r \\ r & r & r & i \\ r & i & p & r\end{array}\right]$.

تضبه بعد وجود مجموعههاى كامل را براى اعداد اول اثبات مىكند.

$$
\begin{aligned}
& \text { Y.Y تضبد } \\
& \text { اكر pاول باشد آنگاه }
\end{aligned}
$$

اثبات

$$
\text { قرار دهيد } a_{i j}^{(k)}=(k i+j) \bmod p
$$

 ه همكى منفاوت هستند؛ براى اينكه اگر بنابراين $k(i-I)$)

 $k i+j \equiv k I+J(\bmod p)$ هسنند. فرض كنيد . $i=I$ و

مثال r.Y
مربعهاى زير تشكبل يك مجموعد كامل از MOLSهاى مرتبه ه مىدهند:

$$
A_{1}=\left[\begin{array}{lllll}
r & r & p & 0 & 1 \\
r & p & 0 & 1 & r \\
r & 0 & 1 & r & r \\
0 & 1 & r & r & p \\
1 & r & r & r & 0
\end{array}\right], \quad A_{r}=\left[\begin{array}{lllll}
r & p & 0 & 1 & r \\
0 & 1 & r & r & p \\
r & r & p & 0 & 1 \\
r & \Delta & 1 & r & r \\
1 & r & r & r & 0
\end{array}\right],
$$

\qquad

$$
A_{r}=\left[\begin{array}{lllll}
r & 0 & 1 & r & r \\
r & r & f & 0 & i \\
0 & 1 & r & r & f \\
r & r & 0 & 1 & r \\
1 & r & r & r & 0
\end{array}\right], \quad A_{F}=\left[\begin{array}{lllll}
0 & 1 & r & r & f \\
r & 0 & 1 & r & r \\
r & r & 0 & 1 & r \\
r & r & f & 0 & 1 \\
1 & r & r & r & 0
\end{array}\right] .
$$

مربعهاى جادويى Y.Y

F.Y مثال

Tآرايه زير يكى ماتريس جادويى از مرتبه

$$
\left[\begin{array}{lll}
\hat{r} & 1 & \eta \\
r & 0 & r \\
r & q & r
\end{array}\right]
$$

برای هر

 امكان حركت بدسمت شمالشرتى بـرسمت جنوب حركت مثال
براى حالت

$$
\left[\begin{array}{ccccc}
i r & r f & 1 & 1 & 10 \\
r r & 0 & y & i f & 17 \\
4 & 7 & 1 r & r o & r r \\
10 & i r & 19 & r & r \\
11 & 11 & r 0 & r & q
\end{array}\right] .
$$

[^15]مربعهاى لاتين و"ضضيه مال \qquad
روشهایى ساخت مربعهاى جادويى از مرتبه زوج يبجيدهتر هستند. بعضى از اين مربعها، با يك روش كلى كه منتسب به اويلراست با استفاده از MOLSها ساخته مى موند.

مثال 7.7
الحاق دومين و سومين مربع لاتين مثال Y.Y را درنظر بكيريد:

$$
\left[\begin{array}{llll}
11 & r r & r r & f f \\
\Psi r & r f & r 1 & i r \\
r q & i r & f r & r \\
r r & f 1 & i r & r r
\end{array}\right] .
$$

با 1 وإحد كاهش در مختص اول هريك اززوجها مربع

$$
\left[\begin{array}{cccc}
o 1 & i r & r r & r f \tag{Y.Y}\\
r r & r f & H & o r \\
i f & o r & r r & r 1 \\
r r & r 1 & o f & i r
\end{array}\right]
$$

 مبناى f

$$
\left[\begin{array}{cccc}
1 & 7 & 11 & 17 \\
10 & 1 r & 0 & r \\
1 & r & 14 & 9 \\
10 & 1 r & p & y
\end{array}\right]
$$

 در هريك ازاين سطرها، ستونها و قطرها يكا يكسان است.

 باشد كه جرا ازاولبن مربع لاتين مئال Y.Y استفاده نكرديم آريم.
 اضافى را دارد كه در آن مجموعد درايدهاى واقع در تطرهاى شكسنه نيز همان مجموع را دارندند

$$
\left[\begin{array}{cccc}
r & 1 r & 1 & 1 p \tag{r.Y}\\
r & 1 r & 1 & 11 \\
17 & r & 10 & 0 \\
9 & 7 & 10 & f
\end{array}\right]
$$

بـراى مـئـال،

 تطر شكسنه ظاهر شده باشد). اين خاصبت در حالتهاى زيادى قابل دسترسى است.

مثال Y.Y
آرايههاى تعبير زوج (x,y) در الحان

$$
\left[\begin{array}{ccccc}
1 f & r o & r 1 & r & 1 \\
r r & r & 9 & 10 & 17 \\
10 & 11 & i r & r r & f \\
1 \lambda & r f & 0 & 7 & 1 r \\
1 & r & 1 r & 19 & r 0
\end{array}\right]
$$

مى شود.

در حالت كلى، اگُر n فرد بوده و بر倍 الحاق A A و B منجر بد يك مريع لاتين مىشود (تمرين Y.Y).

M.Y

 آيا امكان انتخاب اعضایى متمايزلز مـجموعدهاى آنگاه اين اعضا سطر 1 آ 1 را تشكبل خوالهند داد.

مثال A.Y
فرض كنيد اولين دو سطر را بدشرح زير داشنه باشيم:

$$
\left[\begin{array}{lllll}
1 & r & r & r & 0 \\
r & 1 & r & 0 & r \\
\cdot & & & & \\
\cdot & & & & \\
\cdot & & & &
\end{array}\right]
$$

[^16]مربعهاى لاتين و"قضيه هال irf
$X_{\varphi}=\{1, r, r\} ، X_{r}=\{1, r, \Delta\} ، X_{Y}=\{r, r, \Delta\} ، X_{1}=\{r, F, \Delta\}$, و و و ,

$$
\left[\begin{array}{lllll}
1 & r & r & p & 0 \\
r & 1 & p & 0 & r \\
r & r & 0 & 1 & p \\
\cdot & & & & \cdot \\
\cdot & & & & \cdot
\end{array}\right]
$$

تعريف r.V
 اعضاى متمايز , مثال
 . $\left\{\begin{aligned} \\ \text { می, }\{r, r\}\end{aligned}\right.$
 هستند، زيرا الجنماع جهار مجموعه اول تنها

 براى هر

تضهد Y.Y
 صدق كنند.

اثبات

$$
\text { مىشود: } \mid \text {. }|X \cup Y|=|X|+|Y|-|X \cap Y|
$$

واضح است كد اگر مجموعهدها داراى يكى SDR باشند آنگاه در (F.Y (F.Y) صدف مى

[^17]\qquad نخسنين درس دررياضيات كسسنه

مجموعدهايى جون اين مجموعههاى دهيم كه هر مجموعه يكى SDR براى ${ }^{\text {ه }}$ هستند.
بنابراين فرض كنيد
 دارند بدقسمى كد اگر

$$
\begin{aligned}
& X=\left(B_{1}-\{x\}\right) \cup \bigcup_{i \in P} B_{i}, \quad Y=\left(B_{1}-\{y\}\right) \cup \bigcup_{i \in Q} B_{i} \\
& \text { Tיنگاه | } \\
& X \cup Y=B, \cup \bigcup_{i \in P \cup Q} B_{i}, \quad X \cap Y \supseteq \bigcup_{i \in P \cap Q} B_{i},
\end{aligned}
$$

وازشرط هال نتبجه مى شود

$$
|X \cup Y| \geq 1+|P \cup Q|, \quad|X \cap Y| \geq|P \cap Q| .
$$

بنابراين ازاصل شمول-حذف نتيجه مىشود

$$
\begin{aligned}
|P|+|Q| & \geq|X|+|Y|=|X \cup Y|+|X \cap Y| \\
& \geq 1+|P \cup Q|+|P \cap Q| \\
& =1+|P|+|Q|,
\end{aligned}
$$

F.Y تضيد
 براى هر i (i)

مربعهاى لاتين و قضيه هال
،(ii) را درنظر بغيريد. با احتساب تكرارها، اين اجتماع شامل km عضو است هبج عضوى در اين اجنماع بيش از m بار ظاهر نمى شود؛ بنابراين تعداد اعضاى متمايزاين اجتماع حداقل اولبـن اسـتـفاده از تـضـبـه F.V تايـبـدى بـر ايـن اسـت كه مـربعهـاى لاتــــن را مـىتـوان سطربدسطر ساخت.
F.Y تعريف

آگر
 ظاهر نشده باشد.

تضيه $0 . Y$
هر مربعمسنطبل لاتين
اثبات
 كنيد A_{i} معرف مجموعهایى از اعضاى يس براى هر i داريـم مى شود و بنابراين در r ستون ظاهر شده است؛ بنا
 A درنظر گرفته شود. استفاده دوم ما از تضيه F.Y در واقع يكى فرمولبندى جديد برای اين نتبـجه بر حسب گرافهاى دوقسمتى است.

تعريف
يك مجموعد از اضلاع غيرمجاور در يكى گراف G را يكـ تطابق مىنامند. اگر G دارانى راس باشد، يكى تطابق با n ضلع، يك تطابق كامل ' ناميده مى رشود.
7. 7 تضيه

انگر
G از درجه m باشند، آنگاه G يكـ تطابق كامل دارد.
اثبات
 'perfect matching

همه اعدادى جون j باشد كه
 اراته مىدهد كه در آن
 نتبجه كونيگ, را بددست مى آوريم كه وجود رابطه بيان مىكند. براي اينكه مىتوانيم ابتدا يكى تطابق كامل يبدا كرده و اضلاع آل آن را را با يكى

 ه ضلعرنگى حاصل مى شود.
 كونيگ اثبات شد. البته اين حالت خاصى از تضبه X. Y ا است، زيرا اضلاع همرنـگ تشكيل يك تطابق مىدهند.

از مربعهاى لاتين به صفحات آفينى

$$
N=\left[\begin{array}{cccc}
1 & r & r & f \\
0 & 7 & y & 1 \\
9 & 10 & 11 & 1 r \\
1 r & 1 f & 10 & 17
\end{array}\right] .
$$

ازاين جهار مربع، (a) سطرهاى N جهار مجموعه توليد مى $\{1, r, r, f\},\{\Delta, 7, Y, \lambda\},\{9,10,11, \mid Y\},\{1 r, 1 f, 10,17\}$,

و ستونهاى N منجر به جهار مجموعه ديگرمىشوند: $\{1, \Delta, 9,1 r\},\{r, 7,10, \mid f\},\{r, Y, 11,10\},\{f, \wedge, \mid Y, 17\}$.
 $\{1,7,11,17\},\{r, \Delta, \mid Y, 1 \Delta\},\{r, \lambda, 9,1 F\},\{F, Y, 10,1 r\}$.

دراينجا مجموعه اول منشكل از درايههايى از N است كه در مو متعبتهاى متناظر با ما آنها در

مربوطه در اM (c) بهروش مشابه، M

$$
\{1, \lambda, 10,10\},\{r, Y, q, \mid 7\},\{r, 7,|r,| r\},\{f, \Delta,|1,| f\}
$$

(d) مرانجام، از

$$
\{1, Y,|r,| f\},\{Y, \Lambda, 11, \mid r\},\{r, 0,10,17\},\{f, 7,9,10\} .
$$

حال Yo مجموعه داريم كه همه بلوكها يك خاصيت مهم دارند: هيج دو عضوى از

 كه هيج زوجى در بيش از يكى بلوى ترار بار ندارد.

 است؛ بنابراين هر زوجى بايد در يكى بلوك ظاهر إر شود !

 منوازن مى باشد كد در فصل 9 به آنها خواهيا نيم يرداخت

مى سازيم:
N n (${ }^{\left(\alpha_{1}\right)}$
${ }^{\top}$ block

$$
\text { n n بلوك از ستونهای } n \text { با }
$$

(${ }_{7}$ (n بلوك از

به اين ترتبب عضوى در ببش ازيك بلوك قرار نمى گيرد. ولى اين بلوكها (I

$$
n(n+1)\binom{n}{r}=\frac{1}{r} n^{r}(n+1)(n-1)=\binom{n^{r}}{r}
$$

زوج هستند؛ بنابراين هرزوجى ازاعضاى از اينرو يك گردايه از (n+1 n زيرمـجموعه (بلوك) از يكى مـجموعه
 (i) هر بلوك حاوى n عضو است؛ (ii) هر عضو در (ii) (iii) هر دو عضوى دقيقاً در يكى بلوى قرار دراردند؛ (iiv

 مشترك x و x داشته باشند. در اينضصورت زورج تناتض با (iii) است).

يك جنين سيستمى يك صفتحه آفينى ' از مرتبه n ناميده مىشود. اعضا و و بلوكىها را

 كه هريكى افرازى از $\}$

[^18]مربعهاى لاتين و"ضضيه هال

دو MOLS از مرتبه 「 تعريف شده با

$$
M_{1}=\left[\begin{array}{lll}
1 & r & r \\
r & r & 1 \\
r & 1 & r
\end{array}\right], \quad M_{r}=\left[\begin{array}{lll}
1 & r & r \\
r & 1 & r \\
r & r & 1
\end{array}\right] \text {, }
$$

را بههمراه N درنظر بكيريد

$$
N=\left[\begin{array}{lll}
1 & r & r \\
r & 0 & 7 \\
r & \wedge & q
\end{array}\right] .
$$

دراينصورت 1 I بلوى
N N سطرهاى $\rightarrow\{1, \Gamma, Y\},\{Y, \Delta, 7\},\{Y, \Lambda, \uparrow\}$,

$M_{1} \rightarrow\{1,7, \lambda\},\{Y, Y, q\},\{r, \Delta, Y\}$,
$M_{Y} \rightarrow\{1, \Delta, q\},\{Y, 7, Y\},\{r, f, \Lambda\}$.

 شدهاند. از مربعهاى لاتين به حوزه نظريه طرح وارد شدهايم. اين ارتباط را در فصل آخر ادامه خواهبيم داد.

\qquad
تمرينات
I.Y تمرين

مطابق توصيف تضيه Y.Y، دو مربع منعامد از مرتبه Y بنويسيد.
تمرين Y.V
زمانبندى بازی هاى دادهشده توسط مربع لاتين زير اما (مانتد مثال I.V) بنويسيد.

$$
\left[\begin{array}{llllll}
7 & 1 & r & r & F & 0 \\
1 & 7 & 0 & F & r & r \\
r & 0 & 7 & 1 & r & p \\
r & F & 1 & 7 & 0 & r \\
r & r & r & 0 & 7 & 1 \\
0 & r & p & r & 1 & 7
\end{array}\right]
$$

r.Y تمرين

ثابت كنيد كه مـجموع درايمهاى هر سطر و هر ستون يكى مربع جادويى از مرتبه n بايد . $\frac{1}{\mathrm{r}} n\left(n^{\dagger}+1\right)$
F.V تمرين

با استفاده از روش دلالوبرى يکى مربع جادويى از مرتبه V بسازيد.
تمرين O.Y
با استفاده از روش اويلر يك مربع جادويى ديابوليك از مرتبه Y بسازيد.
تمرين $7 . Y$
ثابـت كنيد اگگـر ضابـطه

تمرين Y.Y
يك مربع لاتبن A A خودمتعامد است اگر عمود بر ترانهاده خود ${ }^{\text {ا}}$ با باشد. (اين ترانهاده معمولى در يك ماتريس است.)
(a) ثوبت كنيد در مثال M.Y ، (a

A.Y تمرين
(a) يكى مربع لاتين متقارن روى نشان دهيد كه n بايد فرد باشد.

مربعهاى لاتين وتضيه هال
$a_{i j}=(i+j)(m+1)$ (b) (mod n)

تمرين $9 . Y$
با باسنفاده از مبدان متناهى ، $1 \leq k \leq q-1 ، A_{k}$ است. فرض كنيد

را بدوسيله
تمرين Y 10.1
 بدكار ببريد. نتيجه حاصل را با با (r.V) مقايسه كنيد.

تمرين I.Y
مستطبل
تمرين Y.Y
يكى SDR برایى مجموعههاى
تهرين Y.Y

IF.Y تمرين
 مرتب مىشوند. ثابت كنيد مىتوان

انتخاب كرد.
تمرين 10.Y
 مى شود: S=A, $\cup \cdots \cup A_{m}=B_{1} \cup \cdots \cup B_{m}$. تجديد شمارْكذارى كرد بدقسمى [راهنمايیى: مجموعدهاى

تمرين 17.Y با درنظر گرفتن جهار MOLS از مرتبه هارائهشده در مئال Y.Y، يكى صفـحه آفبنى از مرتبه ه هسازيد.

تمرين TV.Y يكى ماتريس n $n \times$ را ماتريس جايگشتى نامند اگكر درايدهاى آن ه يا 1 بوده و در هرسطرو

 نصل 9 توضبح دهيد.

فصل
برنامهها و ا-عاملسازها

 ايدههاى تركيبياتى ظاهراً منفاوت است.
1.1

فرض كنيد يكى اتحاديه فوتبال داراى هشت تيم است كه هريكى از آنها بايد يكـباربا هريكى
 بازی، و هرتيمى دارای يكى بازى در هر شنبه. جگونه مىتوان يك برنامه زماني ارائه داد؟ نيز فرض كنيد كه يى محققق بيولوزى مى خواهد هشت نول نوع معالجه را مقايسه كند، كه هربار
 در آن تمامى هشت معالجه شركت دارند؛ سیس در هفته دوم جهار مقايسه ديگُر، و غيره. يكـ برنامه مناسب هفت هفتهاى برای انجام مقايسهها ارانٌ دهيد. واضح است كد اين دو مسئله معادل هستند. در واقع، هر دو مسناله معادل افرازنمودن مجموعه

 ضلعرنگى براى КK با استفاده از هفت رنگى هستند.

برنامدها و ا -عاملسازها
منال 1.1

است با برنامه گروهى زير:

: دور: : دور :	$A \vee B$	$C \vee D$
:	$A \vee C$	$B \vee D$
:	$A \vee D$	$B \vee C$.

برایى
 اندكى متفاوت توضبح مىدهيم.

روش دايره
تبمها را با ه، ا، فواصل مساوى در اطرافن يك دايره و ∞, را در مركز آن قرار دهبد. حالت

(a)

(b)

شكل 1.1
 $i \vee \infty,(i-1) \mathrm{v}(i+1),(i-Y) \vee(i+Y), \ldots,(i=(n-1)) \vee(i+(n-1))$, كه هر عدد، بهمنظور قرار گرفتن در \}

ليست زمانى براي هشت تيم، كه بدروش دايره ساخته شده است، بهشرح زير مى कvi Var 7vr ovf روز कvr lvr Yvf ovr rvf lvo rvi rgar (
 ovi ovr ful rvr روز ∞, 7vY

 G

بنابراين روش دايره نتيجه زير را برقرار مىسازد.
قضبه 1.1
程
توجه كنيد كه همه گرافههاى با تعداد زوج رأس ا-عاملساز ندارند بارند. درواقع، بايد واضح

 زير را داريم.

[^19]برنامهها و ا - عامل سازها \qquad

تضه
يك گراف منظم

گراف
 بايد ضلع ac را داشته باشيه. تنها دو إمكان وجود دارد : $a c, b e, d f \quad$ ي $\quad a c, b f, d e$.

ولى ا-عاملساز شامل
$a b \quad c d \quad e f$
ac be df
ad
$a e$
$a f$
تنـها به يك طريق مىتواند تكميل شود (بررسى كنيد!). مـجموعه اضالاع زير نيزاين خاصيت را دارند:
$a b \quad c d \quad e f$
$a c \quad b f \quad d e$
ad
$a e$
$a f$.

 بسط آن به يک اروش هر ا--عاملساز، بسته به اينكه ابتدا كداميكـ از ينـج ا ا-عامل انتخاب شود، پنـجبار ظاهر میشود. بنابراين تعداد ا ـ-عاملسازهاى متمايز 7 رم 7 است.
\qquad نخسنين درس دررياضيات گكسته

چـس
 .

برنامه برای

 با ضلعرنگى ${ }_{\text {K }}^{\text {Y }}$ با استفاده از از

تمامى بازیهاى شامل ها است.
مثال A.A
فرض كنيد مى خواهيم يك برنامه برایى ينج تيم داشته باشيم. برنامه ارائهشده توسط روش دايره براى شش تبم را درنظر بگيريد :

$\infty v i$	$\Delta v r$	rvf
$\infty v r$	lvr	fvo
$\infty v r$	$r_{v f}$	$\Delta v i$
$\infty v f$	$r_{v \Delta}$	Ivr
$\infty v \Delta$	$f_{v i}$	rvr.

تمامى بازىهاى مربوط به م را حذف كنيد تا برناهد زير حاصل شود:

$\Delta v r$	rvf
lvr	fvo
ruf	$\Delta v i$
rvo	Ivr
fvi	rar.

اين در واقع برنامهاى است كه در سالهاى اخير براى مسابقات تهران
 كليد عبارت بود از: I=1

بود و به بازى هاى مربوط به م جهتهاى مناسب خانگى و خارجى داده شد. برنامه حاصل عبارت بود از

با كليد رقابت ينجتبمى، برنامه بهطور طببعى بهشكلى تنظيم شد
 10.1 ا)؛ در برنامه بالا هرتيمى يك استراحت در اجراى تناوب يادشده دارد.

بهطور خالاصه، قضبه زير را داريم. قضيه .
بـرای هـر
(1, ..., rn\} برای هر 1俍

بوده و هر عضوى دقيقاً در يكى از كالاسها غايب است
 زيـرمـجـموعـه
 سهتايى مىتواند با مكمل خود جفت شود. حالت $n=r$ بهوسيله سيلوستر' حل شد. اثبات ظريفى از مسنّله بهشرح زير است. مثال 0.1

 جواب هفت Tآيه مربعى زير را درنظر بغيريد.
Irr ryr rrf rin orl qir ral
FOT 107 YOT FYT FAT FOT FOQ
yAq fAq inq voq yrq yat var
\qquad نخستين درس دررياضيات كسسته
 ستونها، قطرهاى بهسمت جلو، و تطرهاى بهسمت عقب ساخته ميشوند. نتيجه حاصل از

اولين Tرايه به شرح زيراست:
IYr, F07, YA9 (سطرها)
IFY, YOA, r79 (ستونها)
109, YTY, YFA (تطرهاي به جلو)
171, rfq, ror (تطرهاي به عقب).

 را تشكبل مىدهند.
'تضيه قابل ملاحظهاى منتسب به بارانياى' (19YY) وجود دارد كه ما آن آن را بدون اثبات بيان مىكنيم. اثباتى از آن در [1 [] ارانه شده است.

تضيه P. A.
$\frac{1}{n}\binom{n k}{k}=\binom{n k-1}{k-1}$ تمامى كلاس افراز كرد كه هر كلاس متشكل از n زيرمجموعه k عضوى متمايز است.

K مسابقات دوقسمتى و I Y.A
مثال 7.1
 مدرسه با مسابقات در جهار دور صورت مىگيرد كه در هر دور هر بازيكنى بازیى دارد. برایى اينكاريكـ برنامه ارائه دهيد.
 دهبد. نيزدور i ام را با $R i$ نما

TBaranyai

برنامهما و ا-عامل سازها
توجه كنيد كه اين برنامه را میتوان با يكى مربع لاتين M نمايش داد: در در بتون i أم انديسهاى رقباى ${ }^{\text {ر }}$ را بهترتيب بنويسيد

$$
M=\left[\begin{array}{llll}
1 & r & r & r \\
r & r & r & 1 \\
r & r & 1 & r \\
r & 1 & r & r
\end{array}\right] .
$$

 مى كند) معادل مربعهاى لاتين هستندي

 دورى هستند كه در آنها بازیى ا 1-عاملسازاز ان

شكل R.^
جون براى هر 1 n يكى مربع لاتين از مرتبه n وجود دارد، نتيجه زير برقرار است. قضبد 0.1
 روش ديگرى براى نمايش يك تسابی لاتين

[^20]$$
\text { n اگر } n_{i j}=k
$$
$$
\text { تعريف كنيد. براى برنامه مئال ^. } 1 \text { داريم: }
$$
\[

N=\left[$$
\begin{array}{llll}
l & r & r & f \\
r & 1 & r & r \\
r & r & 1 & r \\
r & r & r & i
\end{array}
$$\right] .
\]

 همنهشت M است:
ا-عاملساز ديگرى از

وجود يكى ا--عاملساز برایى

برای

 حال دو حالت درنظر مى

 تكميل مسابقه مطلوب مىشود. دراين رابطه مثال زير را داريم. Y.A مثال

$x, ~ \vee y$,	$x_{\gamma} \vee y_{\gamma}$	$x_{r} \mathrm{v} y_{r}$	x_{f} v y_{p}
$x_{\Upsilon} \vee y_{\gamma}$	$x_{r} \vee y_{r}$	$x_{r} \vee y_{\varphi}$	$x \neq \vee y$,
$x_{\backslash} \vee y_{r}$	$x_{\gamma} \vee y_{\varphi}$	$x_{\mu} \vee y_{1}$	$x_{\text {¢ }} \vee y_{\gamma}$
$x_{\backslash} \vee y_{F}$	$x_{\Upsilon} \vee y_{1}$	$x_{r} \vee y_{Y}$	$x_{\gamma} \vee y_{r}$
$x_{Y} \mathrm{v}^{x_{r}}$	$x_{r} \vee x_{\gamma}$	$y_{1} \vee y_{\text {Y }}$	$y_{\gamma} \vee y_{\gamma}$
$x_{1},{ }^{\text {d }}$ r	$x_{Y} \mathrm{v} x_{\varphi}$	$y_{\text {, }} \times y_{r}$	$y_{\gamma} \vee y_{\gamma}$
$x_{1} \vee x_{Y}$	$x_{r} \vee{ }^{\prime} \boldsymbol{x}_{\boldsymbol{r}}$	$y_{\} \vee y_{\varphi}$	$y_{r} \vee y_{r}$

 مىتوان اين ايده را تعديل كرد. دو تيم جديد

برنامدها و ا -عامل سازها
دو برنامه كد در آنها $x_{i} \mathrm{v} y_{i}$ بازیى هاي دور
 برنامه مطلوب را الراته مى كنند. مثال A.
يك برنامه برای $n=r$ مى سازيم. n.

$$
\begin{aligned}
& \infty_{x} \vee x_{1}, \quad x_{Y} \vee x_{r} \\
& \infty_{x} \text { v } x_{Y}, \quad x, \vee x_{r} \\
& \infty_{x} \vee x_{r}, \quad x_{1} \mathrm{v}, x_{\mathrm{r}}
\end{aligned}
$$

و يكى مسابقه دوقسمنى بدشكل زيراست

$$
\begin{aligned}
& x_{\backslash} \vee y_{1}, \quad x_{\gamma} \vee y_{\gamma}, \quad x_{r} \vee y_{r} \\
& x_{1} \vee y_{Y}, \quad x_{Y} \vee y_{r}, \quad x_{r} \vee y_{1} \\
& x_{\uparrow} \vee y_{\uparrow}, \quad x_{\gamma} \vee y_{1}, \quad x_{\uparrow} \vee y_{\uparrow} .
\end{aligned}
$$

برنامه نهايى جنين است:

$$
\begin{aligned}
& x_{Y} \vee y_{l}, \quad x_{Y} \vee x_{Y}, \quad y_{Y} \vee y_{Y} \\
& x_{\gamma} \vee y_{\gamma}, \quad x_{1} \vee x_{r}, \quad y_{1} \vee y_{r} \\
& x_{\Gamma} \vee y_{r}, \quad x_{1} \vee x_{Y}, \quad y_{\zeta} \vee y_{Y} \\
& x_{1} \vee y_{\gamma}, \quad x_{Y} \vee y_{r}, \quad x_{r} \vee y_{1} \\
& x_{\backslash} \vee y_{\gamma}, \quad x_{Y} \vee y_{1}, \quad x_{\Upsilon} \vee y_{\Upsilon} .
\end{aligned}
$$

「.^.^ مسابقات حاصل ازم مربعهاى لاتين متعامد

حال فرض كنيد كه، در مسابقه تنيس مثال 7.1، جهار ميدان وجود دارد كارد كه از كيفيت متفاوتى برخوردار هستند و هدف اين اس است كه ند نئنها هر يكـبار در هريكى از جهار ميدان بازى داشته باشد

$$
\left[\begin{array}{llll}
I I & r r & r r & f r \\
r f & 1 r & \mu r & r 1 \\
r r & \mu I & i f & r r \\
\mu r & r f & r 1 & i r
\end{array}\right] .
$$

سطرها و ستونها را بدترتبب متناظر با دورها و مبدانها در درنظر بـيكيريد. خاصِيت لاتبن
 تعامد تضمين مى كند كه هر

زوجهای مخلوط

 جدول 1.1

مخالف است يكـبار شريكى مىشود و براى يكـبار در مر مقابل هريكى از بازيكنان تيم حريف
 يك بازى از هر دور.
اجازه دهيد بسران آلفا را با مشابهاً دختران آلفا و بتا را بمترتبب با با

M,

 بازى مى كتند. جون

[^21]برنامسا و ا -عاملسازها \qquad
به بازی از دور k دور k داشته باشبم. ولى در ايـنصورت درايههاى
 د $M_{\text {M }}$
 بازییها قرار مىدهيم. به اين طريق برنامه زير بهدست مى آيد كه در آن Ri معرف دو دور i است

تمرينات
تمرين 1. 1.
با استفاده از روش دايره يك برنامه جمعى براى 10 تيم بسازيد. از آنجا يك برنامه جمعى براى 9 تيم بهدست آريدري

تمرين Y.
با استفاده از روش مثال ^. يكى برنامه جمعى براى 1 ا تيم بسازيد.
تمرين A.
 آيا هميشه مىتوان اين r دوررا به يك مسابقه دوقسمنى كامل بسط داد؟
F. A. تمرين

تمرين 0.1
اضالاع كراف يك هشتوجهى را به دو دور همبلنونى منمايز افراز كنيد. نتيجه بگُبريد كه
كراف يک ا-هعاملساز دازد.
تمرين 7.1 كداميى از گرافهساى افاططنى ا-عاملساز دارند؟
\qquad نخسنين درس دررياضيات گسسته

تمرين Y.^
ثابت كنيد هر گراف هميلنونى كه در آن همه رأسها از درجه r هستند ا ا-عاملساز دارد.
A.A تمرين
(a) مثال 7.1 , را براى تبمهانى 0 نفره أجرا كنيد.

برنامهاى بددست آوريد كه در آن هربازيكن يكـبار در هريكى از ه ميدان بازى كند.
تمرين 9.1
(a) و ه دخترشركت دارند.
(فرض كنيد ها ميدان وجود دارد. برنامهاى بسازيد كه در آن هر بازيكن دقيقاً يكـباردر (b)
هر ميدان بازی كند.
تمرين 10.1

 دارد و بنابراين ${ }^{\text {F استراحت }}$ داردير
 كه جمعاً بايد حدّاقل

 درنظر بگيريد.

تمرين 11.1
فرض كنيد يى برنامه جمعى براى Yn تيم ساخته شده است ولى محل آن آنها مشخص نشد
 از دو تيم هريك از بازى هاى دور اول در خانه بانه باشد.

فصل 9
مقدمهاى بر طرحها

 جند ايده مربوط به نظريه كدهاى تصحيح كننده خطا را ارائه مىدهبم.
1.9 طرحهاى بلوكى غيركامل متوازن

مثال 1.9

 بوده و وضعيت مشابهأى در مورد گروهها داى جهارنفره نيز برقرار باشد؟

F, T\}	$\{\Delta, Y, 1, r\}$	
, $0, Y$ \}	$\{7,1, Y, r$ \}	
7, 1\}		
\{ $Y, Y, r\}$	\}	
, $1, r\}$	$\{r, r, \Delta$,	

آنجه انجام دادهايم استفاده از تركيبى معروف به صفحه هفتنقطهاي است كـ اسه در شكل 1.9「 「
 خطهاى اين تركيب هستند.

شكل 1.9 صفحد هفتنقطهاى
مثال 9 مثو
زيرمجموعههايى از $\}$ زيرمجموعه Y عضوى بوده و هردو عضوى

$$
\begin{aligned}
& \{1, r, r\},\{1, r, r\},\{1, r, \Delta\},\{1, r, r\},\{1, \Delta, 7\}, \\
& \{r, r, \tau\},\{r, r, \Delta\},\{r, \Delta, r\},\{r, r, \Delta\},\{r, r, 7\} .
\end{aligned}
$$

 از طرحهاى منوازن در ساخت آزمايشها

 رياضىدانان گرديد.

[^22] عضوى S است، كه شوند. يك جنبن طرحى را يك طرح بلوكى غيركامل متوازن' (BIBD) نيز مىناّامند. صفت " منوازن " اشاره به وجود λ و " غيركامل " اشاره به لزوم

مئال 9.9
(Yn, Y, I) برنامههاى گروهى. بازیى (i)

(ii) (iii)
 (${ }^{r}, n, 1$)

 طرحهاى بلوكى با تعريف 9 ت
STS(v) يك (
 ابتدا نتيجه كلى زير را بهدست مى آريم.

تضبه 1.9
فرض كنبد كه يك (v,k,) طرح داراى b بلوك باشد. دراينصورت هرعضو دقبقاً در بلوك ظاهر ميشود، كه

$$
\begin{equation*}
\lambda(v-1)=r(k-1), \quad b k=v r . \tag{1.9}
\end{equation*}
$$

اثبات
عضو دلخواه x را انتخاب كرده و فرض كنيد در r بلوك ترار داشته باشد. در هريك از r بلوك،

[^23]${ }^{\text {'S }}$ Steiner triple system
x با اعضاى ديكر تشكبل 1 -
 زوجهاى حاوى x برابر (1

مرئل 9.
 يس (0.9 مثال 0
届

Yضبه Y.

فرض كنبد يـى (r, بدتسمىא

- . . توجه كنيد كه حالت هاى

, $\{1 r, 1, \varphi\} \ldots \ldots\{10,11,1\}\{\{9,10,1 r\} \ldots \ldots\{r, r, 7\}\{\{1, r, \Delta\}$ \} م م:

[^24]براى يبشرفت بيشتر در طرحها از نمايش آنها بهوسيله مانريسها اسنفاده مىشود.
تعريف 9 ت
 اكر و نقط اگر i أمين بلوك حاوى ز امين عضو باشد.

$$
\left[\begin{array}{lllllll}
1 & 1 & 0 & 1 & 0 & 0 & 0 \tag{Y.9}\\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right]
$$

جـون اولـبن بــوك r
 اينحال، ثابت مى شود كه خواص مهم A بستگى به ترتبب انتخابششده خاصى ندارد.

تضبد 9.9
اكر A ماتريس وتوع يكـ (A (1) طر

$$
\begin{equation*}
A^{T} A=(r-\lambda) I+\lambda J \tag{9.r}
\end{equation*}
$$

 Tآن 1 است).

اثبات

 است كد مقدار آن r است

بناباين تمامى درايههاى قطرى A

[^25]

بددست آمد.
تضريه 9 F. 9
درهر (v,k,) طرّ رابطه $2 \geq 0$ برقراراست.
اثبات

 ماتريس باوسبله |M|، داريم

$$
\left|\begin{array}{ccccc}
r & \lambda & \lambda & \ldots & \lambda \\
\lambda & r & \lambda & \ldots & \lambda \\
\lambda & \lambda & r & \ldots & \lambda \\
\vdots & & & & \\
\lambda & \lambda & \lambda & \ldots & r
\end{array}\right|=\left|\begin{array}{ccccc}
r & \lambda & \lambda & \ldots & \lambda \\
\lambda-r & r-\lambda & \circ & & 0 \\
\lambda-r & 0 & r-\lambda & & 0 \\
\vdots & \vdots & \vdots & & \vdots \\
\lambda-r & 0 & 0 & \ldots & r-\lambda
\end{array}\right|
$$

 ديكر را افزوده، نتججه مىيكيريم

$$
\begin{aligned}
\left|A^{T} A\right| & =\left|\begin{array}{ccccc}
r+(v-1) \lambda & \lambda & \lambda & \cdots & \lambda \\
0 & r-\lambda & 0 & \cdots & 0 \\
0 & 0 & r-\lambda & \cdots & 0 \\
\vdots & & & & \\
0 & 0 & 0 & \cdots & r-\lambda
\end{array}\right| \\
& =\{r+(v-1) \lambda\}(r-\lambda)^{v-1} \\
& =r k(r-\lambda)^{v-1}
\end{aligned}
$$

زيرا، بنابر (1.9) (1)
 رتبه آن (1 - - است؛ بس مثال 9 مال

 ازاين نتيجه مى شود_ \gg
\qquad نخستين درس دررياضبات كسسنه

$$
\begin{equation*}
\lambda(v-1)=k(k-1) . \tag{F.9}
\end{equation*}
$$

همجنين (Ү.9) تبديل مىشود بد

$$
\begin{equation*}
A^{T} A=(k-\lambda) I+\lambda J . \tag{0.9}
\end{equation*}
$$

يكى طرح متقارن به اين دليل كد مأتريس وتوع آن متقارن است جنين نامكذارى نشده است،

 هر بلوك حاوى k عضو است؛
هر عضو در k بلوك قرار دارد.
همجنين داريم:
هر دو عضوى در ג بلوك ترار دارند.
حال مى خواهبم نشان دهيم كه: هر دو بلوكى در λ عضو مشنرك هسنند.
0.9 تضبه

اكر A ماتريس وقوع يك طرح متقارن باشد آنگاه A. $A A^{T}=A^{T}$ مر
اثبات
 مى شود، و بنابراين A با $A A^{T}=A\{(k-\lambda) I+\lambda J\} A^{-1}=\{(k-\lambda) I+\lambda J\} A A^{-1}=(k-\lambda) I+\lambda J=A^{T} A$.

نتيجه 1.9
دريك ($2, k, \lambda)$ طِّح متقارن، هر دو بلوكى در λ عضو مشترى هستند. اثبات

 اين عدد برابر λ اساست. يك نتبجه از اين خواص تقارن اين است كه اكر A ماتريس وتوع يكى طرح متقارن باشد،

آنگاه A ${ }^{\text {T }}$ نيز ماتريس وقوع يكى طرح متقارن خواهد بود كه طرح دوكان ' نامبده مىشود. براى مثال، ترانهاده ماتريس وتوع صفحد هفتنقطهاى شكل 1.9 ابرابر است بار با

$$
\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 1
\end{array}\right]
$$

كه ماتريس وقوع صفـحه هفتنقططها با بلوكه هاى
 شمارْكذارى صفحه قبلى است!

طرحهاى مكمل

 هفتنقطهاى است.
 باشند. دراينصورت مـجموعهماني

اثبات
جون براى هر i داريم

 هيجيكى از اين دو عضو نباشند برابراست با با

$$
\begin{aligned}
& \text { (تعداد بلوكهاى شامل y) - (تعداد بلوكهانى شامل x } \\
& \text { (تعداد بلوكىهاى شامل x و } \\
& =b-Y_{r}+\lambda .
\end{aligned}
$$

مشال 1.9
$\lambda^{\prime}=b-Y r+\lambda=1$ طـرح

V. 9 تضهيه

مكمل يك طرح متقارن نيز متقارن أست.
اثبات

Y. 9

مثال 9.9 (مسثله دختران مدرسهاى كركمن)
 روز در گروههای سهنفوه بـه گردش مىدوند؛ لازم است كه بهصورت روزانه آنـها بهشكلى مرتب شونل كه هيمع دو نفرى دوبار بامم نباشنل".

 برنامه جمعى

تعريف F.
 مرتب كرد بهقسمى كه هر گروه يكـ افراز برای S بسازد. دراينصورت گروهها را تـجزيه كلاس های موازی بینامند.
(توجه كنيد كه جرا بايد r كروه وجوت داشته باشد: هر عضو در r بلوك قرار دارد و بايد دقيقاً
 تجزيهذذيراين است كه v مضربى از l اباشد.)

بـوأى مــالى، يـع جـواب بـرإى مـسـنـله دخـتـران مـدرسـاى كـركمـن بـهشـرح زير اسـت.
 Tresolvable \quad resolution

مقدمشاى برطحها \qquad
هرگروه افرازى از \} \} , 10 است. كروهها را بهصورت افقى بخوانبد.

صفحات آفينى
صفـحات آفبنى در بخش F.Y ساخته شدند. با داشتن يكى مجموعه كامل از MOLS از مطم مرتبد

 بود. حال نشان مىدهيم كه تمامى (آنها، بايد تجزيهإيذر باشند.

تضبي 9.9
هر (n, ${ }^{\text { }}, n, 1$ طرحى تجزيهـذير است.
اثبات
$B=\left\{b_{1}, \ldots, b_{n}\right\}$ بنابر

 مى كّرد كه l را تطع نمى كند (يعنى موازى الست).)
برای هر位 $i \neq j$

 بلوى شامل x وجود داشته باشد كه از B جدا باشد.
سيس توجه مى كنيم كد اگّ هستند. براى اينى فرض كر كنيد B ترار دارد، كه در تناقض با جيزى است كه همبن حالا ثابت كردمايم. بنابراين منـحـصربـفـرد شامل x و جـدا از B وجود دارد.

كا

حال از تجزيهيذيرى براى برگشتن از صفحات آفينى به MOLS استفاده مىكنيم.
تضبه 9.9
MOLS n - 1 يكى صفحه آفينى از مرتبه n وجود دارد اگر و فقط اگر يكى مجموعه كامل از از مرتبه n وجود داشته باشد.

اثبات
 فرض كنبد يك (فرض $r=n+1$ را انتخاب كنبد. جون هر نقطه از صفحه دقيقاً دريكى آن مختصات منحصربدفرد (i, $)$ را را بدهبم.

 مى كنيم كه ابتدا مربع لاتين بودن E را بررسى مى كنبم. اكر در هردو بلوك
 سرانْجام نشان مىدهبم كه اگر
 و (I,) در هر دو بلوك

■ بنابراين
منال 10.9
صفحه Tفينى ساختششده در مثال O.Y ا را درنظر بكيريد. قرار دهيد

$$
\begin{aligned}
& B_{1}=\{1, \Upsilon, \Upsilon\}, \quad B_{\Upsilon}=\{\uparrow, \Delta, \top\}, \quad B_{r}=\{\mathbf{Y}, \boldsymbol{\Lambda}, \mathbf{q}\}, \\
& C_{1}=\{1, r, Y\}, \quad C_{\mathrm{r}}=\{\mathrm{r}, \Delta, \wedge\}, \quad C_{\mathrm{r}}=\{\mathrm{r}, \mathrm{\imath}, \mathrm{q}\}, \\
& E_{1}=\{1, \mathrm{~T}, \mathrm{\lambda}\}, \quad E_{\mathrm{Y}}=\{\mathrm{r}, \mathrm{r}, \mathrm{q}\} ; \quad E_{\mathrm{r}}=\{\mathrm{r}, \Delta, \mathrm{Y}\}, \\
& F_{1}=\{1, \Delta, \uparrow\}, \quad F_{Y}=\{r, \Upsilon, Y\}, \quad F_{r}=\{r, r, \wedge\} .
\end{aligned}
$$

دراينصورت، براى مثال، نقطههاى ($)$ جون روش E و F ${ }^{\text {F }}$ ر بددست مى آوريم

$$
E=\left[\begin{array}{lll}
1 & r & r \\
r & r & 1 \\
r & 1 & r
\end{array}\right], \quad F=\left[\begin{array}{lll}
1 & r & r \\
r & 1 & r \\
r & r & 1
\end{array}\right] .
$$

r.q. 9

 يس اين يك طرح متقارن است. تعريف 0.9
براى هر - $\left.{ }^{\text {ط }}{ }^{r}+n+1, n+1,1\right)$

 است.

منال 11.9
بلوكهاى
$\{1, r, f, 10\},\{r, r, \Delta, M\},\{r, r, Y, I r\},\{r, \Delta, r, 1 r\},\{\Delta, 7, \lambda, 1\}, \ldots$, $\{10,|1| r, 7\},,\{1|| r, 1, r\},,\{|r| r, r, A\},,\{|r|, r, q$,

 دورى (بههنگ (

[^26]حال رابطه بنيادى بين صفحات رات آفينى و تصويرى را نشان مىدهـيم. يكـ طراح دو خط

 استفاده مى

 بهجز اينكه هيج دو نقطه جديد |FPP مرتبه n بهدست مى آوريم. اين خط جديد را الغلب خط در بينهايت مىنامند.

مثال 1Y. 1
صفحه آفنينى از مرتبه كه ما آنها را با ازم بهدست مى آوريم :

$\{1, r, r, 10\}$	$\{\mathrm{f}, \Delta, 7,1 \circ\} \quad\{\mathbf{Y}, \wedge, 9,1 \circ\}$
$\{1, r, r, l \mid\}$	$\{r, \Delta, \wedge, 1]\} \quad\{r, 7, q, 11\}$
$\{1,7, \Lambda, 1 Y\}$	$\{r, Y, q, 1 r\} \quad\{r, \Delta, Y, 1 r\}$
$\{1,0,9,1 r\}$	$\{Y, T, Y, 1 r\} \quad\{r, F, \Lambda, 1 r\}$
$\{10,11,1 r$,	

بنابراين نيمى از قضبه بعد را ثابت كردهايم.
تضيه 10.9
يك FPP از مرتبه n وجود دارد اگر و نقط اگر يكى صفحد آفينى از مرتبه n وجود داشنه باشد.
اثبات
قسمت كفايت در بالا بررسى شد. بـنابراين فرض كنيد يك FPP از مرتبـي باشد. يكى خط دلخواه

 نقاط مىشوند حذف كنيم، به نقطهاى دقيقاً در يكى خط قرار دارند، كه در واقع باتيمانده خطى از FPP است كد دو

مقدمta برطرحها \qquad IVY

نـقـطه مـورد نـظر در آن قرار داشتـنـد. بـنـابرايـن يـى صـفـحـه آنـينـى از مرتبـه n داريـم .

قضيه 11.9
گزارههاى زير معادل هستند.
از مرتبه nOLS $n-1$ وجود دارد.
(ii)

يكى صفحه تصويرى متناهى از مرتبه n وجود دارد.

F. 9
(اين بخش را با معرفى خانوادهاى از ماتريسها شروع مى كنيم كه همه درايههاى آنها هستند. از اين ماتريسها خانواده مهمى از طرحها بان بددست خواهدآمد.
 نيز هر دو ستونى، از ماتريس زير متعامد هس هستند.

$$
\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \tag{7.9}\\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]
$$

تعريف 1.9

 از ديگرى نتيجه ممى H $H^{T} H=n I$ است كه هر دو سطرى از H منعامدند و مشابهاً $H^{T} H=n I$ معادل با أين است كه ستونهارد

\qquad نخستين درس درياضبات كسسته

نشان داد كه دترمينان هر ماتريس حقيقى
 ماتريسهاى هادامارد در بسيارى از زممنهاهاى تركيبيات مطرح شده و درارسال عـار عكس از مريخ به زمين از آنها استفاده شده است. اين در بخش پايانيانى توضيح داده خواهد شد. روش سرراستى براى ساخت ماتريسهاى هادامارد از مرتبه با و وجود دارد.

فرض كنيد

$$
H_{0}=[1], \quad H_{1}=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
$$

و، برای هر

$$
H_{m}=\left[\begin{array}{cc}
H_{m-1} & H_{m-1} \\
H_{m-1} & -H_{m-1}
\end{array}\right]
$$

 ولى آيا براى ديكر مقادير n يك ماتريس هاداداردارداز مرتبه n وجود نشان خواميم داد كه اگك اين موضوع، توجه كنبد كه اكر سطر يا ستونى از يكـ ماتريس هادامـارد در ا ـ ا ضرب شود

 درايدهاى سطراول و ستون اول 1+ هستند.

قضيه 1Y. 1 ان

اثبات
 متعامد هستند، سطر دوم بايد تعداد يكسانى از華 1 - وجود دارد، واز اينرو كرد كه دو سطراول H بدشكل زير هستند

$$
\begin{array}{rrrrrrrr}
1 & 1 & \ldots & 1 & 1 & 1 & \ldots & 1 \\
1 & 1 & \ldots & 1 & -1 & -1 & \ldots & -1
\end{array}
$$

- اكر ا نيمه دوم اين سطر بدترتيب h و k باشنـلد

مقدمایى برطرحها \qquad
درايه ازنبمه دوم آن برابر 1 - هستند. جون سطرهاى اول و سوم منعامد هستند،

$$
h-\left(\frac{n}{r}-h\right)+k-\left(\frac{n}{r}-k\right)=\circ,
$$

يعنى $h+k=\frac{n}{P}$.

$$
h-\left(\frac{n}{r}-h\right)-k+\left(\frac{n}{r}-k\right)=0,
$$

يعنى h=k.
جون بحث مشابهاى را مىتوان روى ستونها بهكار برد، داريم:
نتيجه 9 ن
در هر ماتريس هـادامارد نرمال از مرتبه Fm، هر دو ستونى، غيراز موقعيت هر دو برابر 1+ شستند.

طرح هاى هادامارد

 ستون اول آن، در ماتريس حاصل ا طرح درنظر بگيريم.

اكگريى ماتريس هادامارد از مرتبه طرح وجود دارد.

اثبات

 و سنون اول H را حذف كرده و در ماتريس حاصل ا ا ـ را تبديل به ه ك كنبد. به اين ترتيب يكـ (0)

A را بهعنوان ماتريس وتوع يكى طرح (لزوماً متقارن) تلقّى میى
 rm-1
 اين دو عضو با هم دقيقاً در ا 1 - 1 بلوى تراري درار دارند. بنابراين طرح مفروض متوازن است

$$
\text { . } \lambda=m-1
$$

\qquad
V. 9 تعريف

يك (1)
مثال 1 1 9
 بددست مى آيد. با حذف سطر وستون اول آن، و تبديل ا - به 1 ، مأتريس زير حاصل مى شود:

$$
\left[\begin{array}{lllllll}
0 & 1 & 0 & 1 & 0 & 1 & 0 \tag{Y.9}\\
1 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0
\end{array}\right]
$$

 بلوكىهاى آن عبارت هستند از

$$
\{r, F, 7\},\{1, F, \Delta\},\{r, F, Y\},\{1, r, r\},\{r, \Delta, V\},\{1,7, Y\},\{r, \Delta, 7\}
$$

 به Y ، 7

 حكم زير را داريم.

If. 9 تضيه
 طرح موجود باشد.
 بتوانيم طرح متناظر با آن را بسازيم. روشه انـانى يبدا شده است، ولى ما از ميان اين روشهاه، سادهترين را معرفى مى كنيم.

 به هنگ Y عبارت هستند از

قرار دهيد I 1 = 1 . از اينرو مجموعه
 (11,0, , r) ()

$$
\left[\begin{array}{lllllllllll}
1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \tag{^.9}\\
0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

از اين ماتريس وقوع، ماتريس هادامارد مرتبه

$$
\left[\begin{array}{llllllllllll}
+ & + & + & + & + & + & + & + & + & + & + & + \\
+ & + & - & + & + & + & - & - & - & + & - & - \\
+ & - & + & - & + & + & + & - & - & - & + & - \\
+ & - & - & + & - & + & + & + & - & - & - & + \\
+ & + & - & - & + & - & + & + & + & - & - & - \\
+ & - & + & - & - & + & - & + & + & + & - & - \\
+ & - & - & + & - & - & + & - & + & + & + & - \\
+ & - & - & - & + & - & - & + & - & + & + & + \\
+ & + & - & - & - & + & - & - & + & - & + & + \\
+ & + & + & - & - & - & + & - & - & + & - & + \\
+ & + & + & + & - & - & - & + & - & - & + & - \\
+ & - & + & + & + & - & - & - & + & - & - & +
\end{array}\right]
$$

\qquad نخسنين درس دررياضبات گسسته

روشهاى تفاضلى

 و غبره، است. جه جيز خاصى در انتخاب |مكانجذير مى سازد؟ بهطور مشابه، بلوك طرح هادامارد بدكار رفت! جه جيز خاصى در رابطه با الين انتخاب وجود دارد؟
 از

تعريف 9.9
فرض كنيد ${ }^{\text {فر }}$ (i)

 . $d=d_{i}-d_{j}$ اككر انتقال D ناميده مىشود.
 خاصى از نتيجه كلى زيراست.

قضبه 10.9
اگر ($0 \leq i \leq v-1$

اثبات
واضـع است كه v انتقال وجود دارد و اندازه هريكـ از آنها k است. بنـابراين ما تنها بايد

مقدمهاى برطرحها \qquad

مثال 10.9
 يكى FPPاز مرتبه
 از مرتبه 0 میشود.

(iv) ($11,7, r$)
 مشخص شده است كد براى هر عدد اول

 روش ساخت اشاره شد كه درارتباط با طرحهاى ها هادامارد بود، بنابراين اكنون نشان مىدهيبم كه جرا آن روش كار مى كند.
مقدمات نظريه اعدادى لازم درائبات را مىتوانبد دربخش ضميمه بابيد.
قضبه 17.9
فرض كنيد ($\left.p, \frac{1}{r}(p-1), \frac{1}{p}(p-r)\right)$

اثبات
جون است، دقيقاً نصف اعضأى ناصفر فرض كنبد w مربع ناصفر دلخواهى باشد، مثلًا
 بهغكس، اگر \mathbb{Z}_{p} نمايش
\qquad نخستين درس دررياضيات كسستن

به يك اندازه قابل بيان بر حسب تفاضل دو مربع هستند.
افزون براين، جون قرينه مربعها هستند. بنابراين، متناظر با هر نمايش
 ،، قابل نمايش بهصورت تفاضل دو مربع هسنند. مقدار E. $\lambda=\frac{1}{f}(p-r)$ مى

 جدا از بازى شامل ه، بازىهاى دوراول عبارت بودند از

$$
1 \mathrm{v},(Y n-Y), Y \mathrm{v}(Y n-Y), \ldots,(n-1) \mathrm{v} n .
$$

زوجهای
(
 Tآغازين (

مثال 17.9 در در

7.9 ماتريسهاى هادامارد و كدها

 است متفاوت از كدكلمات ارسالشده باشند. ايده اصلى درا

M. 9 منال

جهار كدوارْ

دو سيماى متضاد در يك كد وجود دارد. براى يكى n مفروض، مطلوب اين است كه مىنيمم

 تفاوت داشنه باشند؟

به حالت خاصى ازاين مسنلa، وتنى
مى گبريم كه n فرد است.
لم 1.9

اثبات
 I، درنظر بكيريد.

[^27]\qquad نخستين درس دررياضيات كسسته

فرض كنيد S معرف مجموع تمامى فاصلههاى $d(\mathbf{x}, \mathbf{y})$ بين وازءها باشد:

$$
S=\sum_{\mathbf{x} \neq \mathbf{y}} d(\mathbf{x}, \mathbf{y})
$$

دراينجا مجموع روى تمامى

$$
\begin{equation*}
S \geq\binom{ N}{r} m \tag{9.9}
\end{equation*}
$$

 درايه \ايجاد مى كند، سهم اين ستون در مقدار S برابر S
 مقدار $x y$ برابر

$$
\begin{align*}
& S \leq n \cdot \frac{N^{\dagger}}{\gamma} . \tag{10.9}\\
& \text { از (9.9) و (10.9) نتيجه مىگيريم } \\
& m \frac{N(N-1)}{Y} \leq \frac{n N^{\gamma}}{\digamma}, \\
& \text { واز آنجا } \\
& (Y m-n) N \leq Y m, \\
& \text { يعنى (} \\
& N \leq n+1 .
\end{align*}
$$

1A. 1 مثال
 مكان متفاوت باشند؟

 هر دو سطرى در
 مـطلوب را بددست مى آوريم.

نتبجه 9.9
فرض كنيد C
 مرتبه n وجود داشته باشد، آنگّاه يك كد اينجنينى با

 شروع مى شوند. بنابراين C حدَّاكثر
الگر كنيد كه يـى ماتريس هادامارد H از مرتبه + ا
 متفاوتاند، و در
 ماتريس حاصل از A با جابدجا در حدّاقل

كدوازّهاى مطلوب ستنـد
مثال 19.9

 ,

 متشكل بود ازانبوهى از نقاط با درجـه تيركى مخنلف (براى IF درجه مختـلف، نبـاز بـه

[^28]\qquad نخستين درس دررياضيات گسسته

دنباله هاى دوتايى بهطول 7 بود، زيرا 7 كد كد Y خطا تصحيح كننده كدگنارى شدند
 فشرده و ديگر وسائل مدرن از اين كدها نظريه كدگذارى به [[T [
 tمی خطا تصحبح كننده داريم،

تضيه 1 V.
اگر C

$$
\begin{equation*}
|\mathcal{C}| \cdot\left\{\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{t}\right\} \leq r^{n} \tag{11.9}
\end{equation*}
$$

اثبات
هردو كدوازه از يكى كدوارّه x حدّاكثر t باشد به x دكد خواهد شد.

حال، برای هر

 يك كد C,

 مساوى توانى از Y باشد. $\left.\begin{array}{l}\text { با } \\ \text { (} \\ 0\end{array}\right)+\cdots+\binom{n}{t}$

$$
\text { ro. } 9 \text { rot }
$$

يك كد كامل 1 خطا تصحيح كننده C بدطول n تنها به شرط

$$
|\mathcal{C}| \cdot(1+n)=r^{n}
$$

مى متواند وجود داشته باشد. حالت $n=Y$ را درنظر بگيريد، بهطورى

 حاصل مى شوند.

مقدمגایى برطرحها \qquad

0	1	0	1	0	1	0	1	0	1	0	1	0	1
1	0	0	1	1	0	0	0	1	1	0	0	1	1
0	0	1	1	0	0	1	1	1	0	0	1	1	0
1	1	1	0	0	0	0	0	0	0	1	1	1	1
0	1	0	0	1	0	1	1	0	1	1	0	1	0
1	0	0	0	0	1	1	0	1	1	1	1	0	0
0	0	1	0	1	1	0	1	1	0	1	0	0	1
0	0	0	0	0	0	0	1	1	1	1	1	1	1

\mathbb{Z}_{Y} روش ديگر بهدست آوردن اين كدوازهها اين است كه از بين آنها جهار وازه را كه روى مستقل خطى هستند انتخاب كرده و سبس تمامى ترينى تركيبات خطى آنها را روى
信 اولين جهار كدوازٌ بالا را التخاب كنيم،

$$
\mathbf{c}_{1}=0101010, \quad \mathbf{c}_{\varphi}=1001100, \quad \mathbf{c}_{\varphi}=0011001, \quad \mathbf{c}_{\varphi}=1110000,
$$

خواهيم داشت

$$
\begin{aligned}
0100101 & =c_{Y}+c_{Y}+c_{F}, \\
1010101 & =c_{Y}+c_{r},
\end{aligned}
$$

و غيره. بنابراين C متشكل از تمامى تركيبات خطى (بههنگ

$$
\mathcal{G}=\left[\begin{array}{lllllll}
0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 & 0
\end{array}\right]
$$

 امتبازهاى ويزهاى نسبت به كدهاى ديگر دارند.

 بنابراين كد 1 خطا تصحبح كننده است. براي هر n خطا تصحبح كننده بهطول n وجود دارد كه ماتريس مولد آن k سطر دارد، كه اين كدهاى همينگ در [[1] توصيف شدهاند.
براى 1 t t كدهاى كامل t خطا t خطا تصحبح كننده ناياب هسنند. ولى يكى نموند ارزشمند منناظر با تساوى زير وجود دارد

$$
\binom{r r}{0}+\binom{r r}{1}+\binom{r r}{r}+\binom{r r}{r}=r^{\prime \prime}=r r--i r
$$

 كاريايانى ما تشريح اين كد است است مثال Yا.

$$
A=\left[\begin{array}{lllllllllll}
0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
\vdots & & & & & & & & & & \vdots
\end{array}\right]
$$

 درنظر گُرفتن ماتريس حاصر

 فرض كنيد V V معرف مجموعه تركيبات خطى سطرهاى B B باشد.
$w(\mathbf{x})+w(\mathbf{y})$ براي هر
 بههنگ Y صفراست واز ازاينرو بايد دوبار كم شود.

(iii)

درستى اين كزاره دراين است كه هر دو سطرى از A د دقيقاً در سه مكان باه اهم درايه ا دارند.

[^29]
اين از (i)، (ii) و (iii) نتّجه مىشود.
(v)

اين با استقرا ثابت مى شود. درنظر بكبريد سطر B است. دراينصورت x. B اين فرض استقرا زوج است و r.y بنابر (iii) زوج است.

 تنها نياز داريم كه نشان دهيم حالت سمت جب و نيمه سمت راست هر راست x را بهترتيب با

(viii)

اكر

$$
\text { است (كه دراينحالت }{ }^{\text {(w) }} \text {). }
$$

 خاصيت

$$
\text { (} w_{R}(\mathbf{x})=0 ، w_{L}(\mathbf{x})=f \text { حالت }
$$

دراينجا x بايد مجموع سطر باشد، فرض كنبد r هر سطر ديگرى از مبان 1 ا سطر اول باشد. دراينصورت، جون

\qquad نخستين درس دررياضيات كسسنه

 . $w_{R}(\mathbf{x})=0$

 كد [r] مراجعه كنيد.

تمرينات
تمرين 1.9
نشان دهيد هيج (IV, Y, Y) با (Y), 7, I) طرحى وجود ندارد.
تمرين 9 rer

تمرين 9 r.
با استفاده از (1.9) نشان دهبد

$$
\begin{array}{r}
v r(k-1) \lambda=r^{r}(k-1)^{r}+r(k-1) \lambda, \\
(k-1) \lambda=(k-1) r-(v-k) \lambda .
\end{array}
$$

تمرين 9.9
نشان دهيد كد دريك $)$
0.9 تمرين
 ماتريس وتوع آن در طرح منقارن وجود داشته باشد كه در آن v v زوج باشد

تمرين 7.9
 (

تمرين 4 تو جكونه يك (10, Y, Y) طرح را مىسازيد؟

مقدمهاى برطرحها \qquad
تمرين 1.9
جكونه يكى ماتريس هادامارد از مرتبه YF را مى سازيد؟
تمرين 9.9
نشان دهبد كد اگر $D=\left\{d_{1}, \ldots, d_{k}\right\}$ يكى D,和

تمرين 10.9
ثابت كنبد
تمرين 11.9
ثابت كنيد
يك FPP از مرتبه

نشان دهيد
تمرين 1 1r.
تصديق كنبد كه انتـقالهـاى
تشك STS(YO) تشكل مىدهند.
تمرين 1 تو 9
تصديق كنيد كه تفاضله هاى حاصل از مجموعههاى \{ $\{1, F, 11\}$

تمرين 10.9
 ط طبيعى مرتب شده اند، را انتخاب كنيد. اع اعداد
 متناظربا آنها در L برابر باشند. فرض كنيد

تمرين 17.9
(a) (a نشان دهبد اكر A يك ماتريس مربعى با درايههاى ه و ا باشد و Bاز A با تبديل ه بد

$$
\text { 1- } 1
$$

$B=Y A-J$ نشان دهيد اكر A ماتريس وقوع يكى (b) يكى ماتريس هادامارد است اكرو فقطاكر ونر

را فراهم مى سازد.
تمرين 1Y. 9
Tا Tا مىتوانيد براى هر
تمرين 10. 9
 دو وازثاى در حدّاتل , الاتكين' 'مىنامند.)

تمرين 19.9
نشان دهيد دريى كد خطى مىنيمم فاصله بين كدوازّها برابر مىنبيمم وزن كدوازهماى ناصفراست.

تمرين 9
نشان دهيد اگر يك كد كامل 1 خطا تصحيح كننده وجود داشنه باشد آنگاه يك STS(n) وجود دارد.

تمرين 1.9

$$
\sum_{i} x_{i}\binom{i}{r}=\binom{k}{r}(\lambda-1), \quad \sum_{i} i x_{i}=k(r-1)
$$

$$
. m(b-1)=\sum_{i} i x_{i}
$$

نشان دهيد

$$
(b-1) k(k-1)(\lambda-1)+(b-1) k(r-1) \geq k^{\gamma}(r-1)^{r}
$$

حال با استفاده از تمرين ايجاب مى كند (تا اينجا از اثبات ماتريسى مستله خوشحال خواهيد بود!)

[^30]محاسبات بdهنگ
نرض كنبد
 بنابراين، براى مثال، ،

$$
\Lambda \equiv r(\bmod \Delta), \quad r \equiv 10(\bmod f), \quad Y 0001 \equiv-99(\bmod \mid 00) .
$$

فرض كنبد n مححاسبه مى شوند. (بعضى اوقات

$$
. \Delta 7 \equiv Y(\bmod q) \quad \text {; } V \times \Lambda=r
$$

جدولهاى جمع و ضرب در هZ باششح زير هستند.

+	0	1	r	r	p
0	0	1	r	r	p
1	i	r	r	p	0
r	r	r	p	0	1
r	r	r	0	1	r
p	p	0	1	r	r

x	0	1	r	r	p
0	0	0	0	0	0
i	0	1	r	r	p
r	0	r	r	1	r
r	0	r	1	r	r
r	0	p	r	r	1

اكر p اول باشد،
 بی
 اگر ارلئ

t باشد بدقسمى نمايش داده مىشود. براى مثالل، جون دومين نتيجه از ممنهشتى زير بر مى آيد

$$
t .\ulcorner t \ldots(p-1) t \equiv 1 . Y \ldots(p-1)(\bmod p)
$$

$$
t^{p-1}(p-1)!\equiv(p-1)!(\bmod p)
$$

با ضرب كردن در معكوس !(1-1 - تضيه فرما بهدست مى آيد: اگر $p \nmid t$ Tنگاه

$$
t^{p-1} \equiv 1(\bmod p)
$$

$$
r^{\Delta-1}=r^{p}=11 \equiv 1(\bmod \Delta) .
$$

از وجود معكوسها يكى نتيجه ديگرى هم حاصل مىشود. ابتدا توجه كنبد كه تنها دو عددى كه با معكوس خود برابرند اعداد 1 و ا - هستند برای اينك

$$
x^{r} \equiv 1 \Leftrightarrow(x-1)(x+1)=\circ \Leftrightarrow x \equiv \pm 1(\bmod p) .
$$

عدد (متشكل از (بايد 1 باشد. درنتيجه

$$
(p-1)!\equiv 1.1 \cdot(p-1) \equiv-1(\bmod p)
$$

بنابراين قضيه ويلسون بهدست مى آيد:

$$
(p-1)!\equiv-1(\bmod p)
$$

مربح ها و غيرمربح ها در
فرض كنيد همگى به بنگى
 جون بههنگِ p، دقيقاً نيمى مربع و نيمتى غيرمربع هستند. توجه كنيد كه:

\qquad نخسنين درس دررياضيات كسسته

 داريم ولى بنا به تضيه فرما 1 (

اينرو $)$

در اينصورت از (A Y) نتبجه مىشود كه:
اكر (AF)

بههنگ p مربع است.
-وجه كنبد كه، اكر

$$
\begin{aligned}
(p-1)! & =1 \cdot r \ldots . r k \cdot(r k+1) \ldots r k \\
& \equiv 1 \cdot r \ldots . r k \cdot(-r k) \ldots(-1)(\bmod p) \\
& \equiv(-1)^{r k}(r k)!(Y k)!\equiv((r k)!)^{r}
\end{aligned}
$$

و بنابراين ! 1- يك مربع است. بنابراين:

أكر (A (A) نقط اكر x- مربع باشد.

مث
 نتايج نظريه اعدادى بيشترى را مى توانيد در كتاب جديد [[1] بيابيد.

جواب تمرينها

فصل 1
.9! 1.1

$$
\begin{aligned}
& \text { (a) }\binom{10}{Y}\binom{1 Y}{Y}, \quad(b)\binom{r y}{A}-\binom{10}{A}-\binom{10}{Y}\binom{1 r}{1}, \quad \text { (c) } \sum_{r=0}^{A}\binom{10}{r}\binom{1 r}{A-r} . Y . I \\
& \text {. } 10^{77}<\Delta Y!\text { بله، جون } 1 \\
& \text { F.I }
\end{aligned}
$$

(a) $\binom{F M}{r}\binom{q}{r} /\binom{F q}{q}=0.1 V 70 \ldots$.
(b) $\binom{p r}{r}\binom{\eta}{p} /\binom{p q}{q}=0.0009 Y \ldots$.
(c) $\binom{[Y}{1}\binom{7}{0} /\binom{p q}{q}=0.0000$ Y....
.frqfir7a (b) ،7Yrforo (a) د2 10.1
7.1 1 IF(1
$\binom{10}{0} /$ rl $\cdot V . I$
9.1 بندهاى (i) و (ii) تضيهى 1 (i) جمع كنيد.
lo. 1 (b) 11.1 در مجموع حاصل، جمل بهصورت جفنى حذف مى شوند. (c) (c) است با ضربب

$$
(1+x)^{n}\left(\sum_{s=0}^{\infty}(-1)^{s} x^{s}\right)=\sum_{r+s=k}\binom{n}{r}(-1)^{s}=(-1)^{k} \sum_{r=0}^{k}(-1)^{r}\binom{n}{r}
$$

جواب تمرينها
.LHS $=n \sum_{k}\binom{m}{k}\binom{n-1}{k-1}=n\binom{m+n-1}{m-1} ، 10.1$ بنابر 1 |r.1
 . $w=-r+d ، z=1+c ، y=-1+b ı x=r+a$

$$
\text { | |F.| معادله } x_{1}+\cdots+x_{\psi}+x_{\Delta}=7 \text { با شرط } x_{i} \geq 0 \text { كنيد: (10). }
$$

$$
\begin{aligned}
& \text { (} \left.(1)^{1 \cdot+p-1}\right)(\mathrm{d}) 610^{p}(c)\binom{1}{p} \\
& \text { (b) } 10 \times 9 \times 1 \times Y \text { (a) } 17.1
\end{aligned}
$$

(Y.1

$$
\text { . } 1 \frac{n}{\gamma}=\frac{1}{\gamma^{n}} \sum_{r} r\binom{n}{r}
$$

(a) الز از جمعزدن نتيجه مىشود

$$
1^{r}+\cdots+n^{r}=\binom{n+r}{r}+\binom{n+1}{r}=\frac{1}{9} n(n+1)(r n+1) .
$$

(b) بنابر تضبه 1 ه. ،از جمعزدن نتبجه مىشود

$$
1^{r}+\cdots+n^{r}=\sum_{r=1}^{n}\binom{r}{r}+\sum_{r=1}^{n}\binom{r+1}{r}=\binom{n+1}{r}+\binom{n+r}{r} .
$$

19.1 فرض كنيد 19

$$
e^{\frac{1}{\eta} n i}=(1+w)^{n}=S+w\left\{\binom{n}{1}+\binom{n}{\varphi}+\cdots\right\}+w^{\curlyvee}\left\{\binom{n}{r}+\binom{n}{0}+\cdots\right\} .
$$

قسمت حقيقى برابراست با

$$
\cos \frac{n \pi}{r}=S-\frac{1}{r}\left\{\binom{n}{1}+\binom{n}{r}+\binom{n}{f}+\binom{n}{0}+\cdots\right\}=S-\frac{1}{r}\left(r^{n}-S\right) .
$$

فصل r

$$
\begin{equation*}
a_{n}=1+\frac{1}{Y}+\cdots+\frac{1}{\gamma n-1}+\frac{1}{\gamma_{n-1}} a_{1}=1+\frac{1}{\gamma}+\cdots+\frac{1}{\gamma_{n}-1}=r\left(1=\frac{1}{\gamma^{n}}\right) \tag{a}
\end{equation*}
$$

$$
\begin{equation*}
r^{n}-r^{n-1} \tag{b}
\end{equation*}
$$

$$
\begin{equation*}
\text { ،(Yn-1) } r^{n-1} \tag{c}
\end{equation*}
$$

را بددست آوريد.

$$
. b_{n}=F_{n+1} Y . Y
$$

$$
\begin{aligned}
& d_{n}=\text { با }
\end{aligned}
$$

(a) F.Y

$$
\begin{aligned}
& f(x)=x+\left(\frac{1}{\gamma} a_{1}+1\right) x^{r}+\left(\frac{1}{r^{\prime}} a_{\gamma}+1\right) x^{r}+\cdots=\frac{1}{r} x f(x)+x\left(1+x+x^{\gamma}+\cdots\right) \text {, } \\
& \text { g } f(x)=\frac{x}{(1-x)\left(1-\frac{1}{9} x\right)}=r\left(\frac{1}{1-x}-\frac{1}{1-\frac{1}{1} x}\right) \text { بنابراين } \\
& \text { از } a_{n}=Y\left(1-\frac{1}{P^{n}}\right) \text { (}
\end{aligned}
$$

$$
\begin{align*}
& a_{n}=7\left(Y^{n-1}-Y^{n-1}\right)-\left(Y^{n}-Y^{n}\right) . \tag{b}\\
& \left.. Y \leq n ، f_{n}=F_{n-1}\right) \quad \text { بنابراين } ، f_{n}=f_{n-1}+f_{n-Y} \text { 0.Y }
\end{align*}
$$

$7 . Y$

$$
\begin{aligned}
a_{n} & =Y\left(Y^{n-1}-Y^{n-Y}+\cdots+(-1)^{n-r} Y\right)=7(-1)^{n}\left(1-Y+\cdots+(-Y)^{n-r}\right) \\
& =Y^{n}+Y(-1)^{n} .
\end{aligned}
$$

$$
. L_{n}=\left(\frac{1+\sqrt{\Delta}}{r}\right)^{n}+\left(\frac{1-\sqrt{0}}{r}\right)^{n} \text { V.r }
$$

$$
\begin{aligned}
f(x)= & F_{1} x+F_{r} x^{r}+\left(F_{1}+F_{\curlyvee}\right) x^{r}+\left(F_{\curlyvee}+F_{r}\right) x^{\varphi}+\cdots=F_{1} x+F_{\gamma} x^{r}+\quad \\
& x^{r}\left(F_{1} x+\cdots\right)+x\left(F_{\gamma} x^{r}+\cdots\right)=x+x^{r}+x^{r} f(x)+x(f(x)-x),
\end{aligned}
$$

واز آنجا

$$
\begin{aligned}
& f(x)=\frac{1}{1-x-x^{\gamma}}-1=\frac{1}{\sqrt{\Delta}}\left(\frac{\alpha}{1-\alpha x}-\frac{\beta}{1-\beta x}\right)-1 \\
& . F_{n}=\frac{1}{\sqrt{\Delta}}\left(\alpha^{n+1}+\beta^{n+1}\right) \text { ورنتبجه }
\end{aligned}
$$

(a) الـ با استقرا.
 ماتريس را همحون در (a) بنويسيد و سبس درايدهاى فوقانى جب را مساوى قرار دهيد.

جواب تمرينها

$$
\begin{aligned}
& . F_{1}+\cdots+F_{k}+F_{k+1}=\left(F_{k+r}-Y\right)+F_{k+1}=F_{k+r}-Y: \text { : } 1 Y . Y \\
& \cdot(-1)^{n-1} F_{n-1} \text { (c) }{ }^{\left(F_{Y n+1}-1\right.} \\
& \text { (b) }{ }^{F_{r_{n}}}-1 \\
& \text { (a) IT.Y }
\end{aligned}
$$

 مى موند! يس
 $p=k$ قرار دهيد

$$
. F_{n+1}=\sum_{k}\left({ }^{n+1-k}\right)(\mathrm{c}) . q=n-k,
$$

 $a_{Y}=Y, a_{1}=1$ ديگرى با را بررسى كنيد.

IA.Y از (IF.Y) استفاده كنبد.

$$
. d_{k+1}=k d_{k}+k d_{k-1}>k d_{k}>k .(k-1)!=k!\text { : } 19 . Y
$$

: است Y0.Y شببه ترتبب حبابى.

و y_{n} Y Y.Y $x .=A+B$.

r. 1 نتيجه $1 . r$ را بهكارببريد.
 . را بهكاربيريد (iii)r.r
r.r هر موّلفه بايد حدّاقل (1 مىتواند وجود داشته باشد.

$$
f \circ(b) \text { f (a) F.r }
$$

$$
. q-(p-1) \Delta . r
$$

 أر از $.100 \times Y^{19}$

به ترتيب AB،AC، $D C$ ، را التخاب كنيد.
(a) V.T
. $A B ، D C ، A C ، A E$
r.
r rس
(b) بله، دو ضلع را دربيرون رسم كنبد.

$.711 . \%$

$$
\text { يس } a_{n}=a_{n-1}+Y a_{n-r}=\frac{1}{r}\left(r^{n+r}-(-1)^{n}\right) \text {. }
$$

(a) IY.Y

$$
\begin{equation*}
\text { . } r p-7=9<10=q ، K_{\Delta} \tag{b}
\end{equation*}
$$

مقدار (c)
 يس 7 =

جواب تمرينها
10.r داخل ايـجاد مى كنند. يس

$$
\text { ناحبه نامحدود داريم r } r=n+\binom{n}{r}+{ }^{\text {ren }}
$$

$$
\text { . } h_{n}=r h_{n-1}-h_{n-r} \text { rس }!g_{n}=h_{n}-h_{n-1},
$$

F فصل
(W, B (a) $1 . F$

$$
\text { داريم n=| } m=|B|=|W|=
$$

(i) (a) Y.F (ii) وميلنونى هستند. (iii) بنابرتمرين (a) 1) هميلنونى نيست.
-هيجركمام (b)
.(iii) (c)
F.F تنها (a) تسطيحيذيراست. F.F
$0 . F$

$$
\begin{aligned}
& 00000-01000-11000-10000-10100-11100-01100- \\
& 00100-00110-01110-11110-10110-10010-11010- \\
& 01010-00010-00011-01011-11011-10011-10111- \\
& 11111-01111-00111-00101-01101-11101-10101- \\
& 10001-11001-01001-00001-00000 .
\end{aligned}
$$

خ.f هايى باشد كه
$|B|=\operatorname{deg}\left(v_{p}\right) ،|A|=\operatorname{deg}\left(v_{1}\right)$.
(a) V.F

جون $A \cap B \neq \emptyset$ جود
(اگر رأسهاى غبرمـجاور u و w با خاصيت l (b)
باشند آنگاه G حدّاكثر

$$
\binom{p-Y}{Y}+(p-1)=\frac{1}{Y}(p-1)(p-Y)+1
$$

\qquad نخستين درس دررياضيات كسسنه

ضلع دارد.
(c)

9. 9 مقدار دقيق rY است.
(i) $11 . F$ بهترتيب دورى دنباله
 يك جواب عبارت است از

 اويلرى مىشود. برایى n زوج، هر ضلع را تكرار كنبد تا ترتيبى بهدست آرد آرريد كد هر زوجى دوبار مجاور باشند.

فصل

$$
\begin{array}{r}
\cdot \frac{17!}{(F!)^{0}} 1 . \Delta \\
\frac{r o!}{(Y!)^{r}(A!)^{r}(Y!)^{r}} r . \Delta \\
\cdot\binom{Y 7}{I r} \frac{1 r!}{r^{Y} 7!} r . \Delta \\
\cdot \frac{A!}{r_{r r!}} \times r \text { Y. } \Delta
\end{array}
$$

(a) 0.0 (a) يكى از بخششها بايد دو عضوى باشد: آن رابه (l) طريق انتخاب كنيد.
(يا يكى مجموعه (b)
جهار عضو انتخاب كنيد و آن را به دو زوج افراز نـمايبد. معادلًا از از استقرا و (Y. () استفاده كنيد.

جواب تمرينها
7.0 مرحله استقرا:

$$
S(k+1, r)=S(k, r)+r S(k, r)>r S(k, r)>r \times r^{k-r}=r^{(k+1)-r} .
$$

n.O

$$
S(n, k)=\sum_{l=0}^{n-k}\binom{n-1}{l} S(n-1-l, k-1) .
$$

$$
\text { قرار دهيد - - - } m=n-
$$

$$
\begin{aligned}
B(n) & =1+\sum_{k=r}^{n} S(n, k)=1+\sum_{k=r}^{n} \sum_{m=k-1}^{n-1}\binom{n-1}{m} S(m, k-1) \\
& =1+\sum_{m=1}^{n-1}\binom{n-1}{m} \sum_{k=r}^{m+1} S(m, k-1) \\
& =1+\sum_{m=1}^{n-1}\binom{n-1}{m} B(m) .
\end{aligned}
$$

. $B(10)=1109 \mathrm{~V} 0.0$

$$
\begin{aligned}
B(k+1) & =\sum_{m=0}^{k}\binom{k}{m} B(m)=\frac{1}{e} \sum_{m=\cdot}^{k}\binom{k}{m} \sum_{j=0}^{\infty} \frac{j^{m}}{j!} \\
& =\frac{1}{e} \sum_{j=\cdot}^{\infty} \frac{1}{j!} \sum_{m=\cdot}^{k}\binom{k}{m} j^{m} \\
& =\frac{1}{e} \sum_{j=\cdot}^{\infty} \frac{1}{j!}(1+j)^{k}=\frac{1}{e} \sum_{j=\cdot}^{\infty} \frac{(j+1)^{k+1}}{(j+1)!} .
\end{aligned}
$$

$$
\cdot x^{\prime}=\mathrm{F}, \Delta, \mathrm{~F} . \chi=\mathrm{r}, \mathrm{r}, \mathrm{r} \| . \Delta
$$

(a) 17.0 رأسهای رأ رأ
 cr بدقسمى كد همه آنهايى كه رنـى

دارند، و غيره.
17.0
 سومى را مىگيرند.
 داشته باشد، يس

$$
\chi^{\prime}(G) \geq \frac{1}{k}\left(k+\frac{1}{r}\right) r>r
$$

(b) 19.0 مى میوان به
 كنيد. براى استنتاج، از اسنقرا روى تعداد اضلاع استفاده كنيد.

$$
\begin{equation*}
\text { از رابطة بازگشتى } a_{n}=\lambda(\lambda-1)^{n-1}-a_{n-1} \text { رابطه } \tag{d}
\end{equation*}
$$

$a_{n}-(\lambda-Y) a_{n-1}-(\lambda-1) a_{n-r}=0$

$$
\text { (است }(x+1)(x-\lambda+1)=0
$$

نصل 7

$$
\begin{equation*}
\left|S_{1}\right|>\vee \Delta,\left|S_{1} \cap S_{Y}\right|>100-100=00 \tag{a}
\end{equation*}
$$

$$
S_{1} \cap S_{r} \cap S_{r} \mid>Y 0+00-100=r 0
$$

$$
\begin{equation*}
\left|S_{1}\right|=m(n-1),\left|S_{1} \cap S_{Y}\right|>Y m(n-1)-m n=m(n-Y), \ldots \tag{b}
\end{equation*}
$$

 را بهدست آوريد.

$$
\begin{aligned}
& |A \cup B \cup C \cup D|=|A|+|B|+|C|+|D|-|A \cap B|-|A \cap C|-|A \cap D| \quad 1.7 \\
& \text { - }|B \cap C|-|B \cap D|-|C \cap D|+|A \cap B \cap C| \\
& +|A \cap B \cap D|+|A \cap C \cap D| \\
& +|B \cap C \cap D|-|A \cap B \cap C \cap D| \text {. } \\
& \text {. } x=\text { YV نتبجه مىشود } 100=7 Y+x-\text { FF ; Y. } 7
\end{aligned}
$$

$$
\begin{aligned}
& 1000-1 \text { Pr-90-Y7+IY+10+7-0=VYo. F.7 }
\end{aligned}
$$

جواب تمرينها
 بددست آوريد．

俗 9.7
 ：P_{i}

$$
\begin{align*}
& \frac{10!}{Y^{0}}-\frac{0.9!}{Y^{T}}+10 \frac{\Lambda!}{Y^{r}}-10 \frac{Y!}{Y^{r}}+0 \frac{7!}{Y}-\Delta!=r q Y \wedge 0 \\
& \text { را بددست آوريد. } \\
& \phi(n)=n-\sum \frac{n}{p_{i}}+\sum \frac{n}{p_{i} p_{j}}-\cdots=n \prod_{p \mid n}\left(1-\frac{1}{p}\right) . \\
& \phi(100)=Y_{0}, \phi(Y \circ 0)=\text { 人 } 0 .
\end{align*}
$$

e_{i}（دو انتهاى ضلع $N(i)=\lambda^{n-1} f_{\lambda}(\mathcal{G})=\lambda^{n}-\sum N(i)+\sum N(i, j)-\cdots$｜Y．7 رنكى يكساني مىگيرند）．نيز（
「آوريد．）نيز، اينصورت اين مقداربرابر
7 يرتابهايى كه در آنها تمامى اعداد ظاهر شوند برابراست با

$$
\begin{aligned}
& |S|-\sum N(i)+\sum N(i, j)-\cdots= \\
& 7^{\prime r}-\binom{7}{1} 0^{\prime r}+\binom{7}{r} \operatorname{Fir}^{\prime r}-\binom{7}{r} \text { rir }^{\prime r}+\binom{7}{r} \text { rir }^{\prime r}\binom{7}{1}=\text { q0rorqffo. }
\end{aligned}
$$

براى بهدست آوردن احتمال، بر ¹77 تقسيم كنيد．
 \} $\}$

 －$\frac{1 \cdot!}{\text { TrT！！}}+\frac{1 \cdot!}{\text { PT！（r！}}$ فصل V

r	r	1	r	1	r
r	i	r	r	r	1
1	r	r	1	r	r.

$$
\cdot \frac{1}{n} \sum_{i=1}^{n^{r}} i=\frac{1}{r} n\left(n^{r}+1\right) \text { Y.V }
$$

$$
\begin{aligned}
& a_{i j}=a_{i J} \Rightarrow Y i+j-Y \equiv Y i+J-Y \Rightarrow j \equiv J \Rightarrow j=J . \\
& a_{i j}=a_{I j} \Rightarrow Y i+j-Y \equiv Y I+j-Y \Rightarrow Y i \equiv Y I(\bmod n)
\end{aligned}
$$

جون n فرد است پس i三I. بنابراين A يك مربع لاتبن است. مشابهاً براى B. : $a_{i j}=a_{I J} \& b_{i j}=b_{I J} \Rightarrow r_{i+j} \equiv r I+J \& r_{i+j} \equiv r I+J \Rightarrow i \equiv I \Rightarrow j \equiv J$.

 درايههاى روى تطر منفاوت هستند.

خ خودمتعامد است. M_{r}
(b) Y.Y
$. Y j+i \equiv Y J+I, r i+j \equiv Y I+J$ يس $. a_{i j}^{T}=a_{I J}^{T}, a_{i j}=a_{I J}$ (c)
، درنتيجه

$$
\text { يعنى } j \equiv J ~ ، i \equiv I \text { }
$$

(a) A.Y مى شود عددى زوج است. بنابرايـن جمعاً تعداد دنعات ظهور آن فرد است، يـس n فرد است.

$$
\begin{align*}
& a_{i j}=a_{i J} \Rightarrow j(m+1) \equiv J(m+1) \Rightarrow Y(m+1) j \equiv Y(m+1) J \tag{b}\\
& \Rightarrow j \equiv J\left(\bmod Y_{m}+1\right) .
\end{align*}
$$

$$
\text { Y(m+1)i=i است. براى } A \text { اس } A \text { خنين است }
$$

1	r	r	0	r
r	r	0	r	1
r	0	r	1	r
0	r	1	p	r
r	1	r	r	0.

$$
\begin{aligned}
& \text { بنابراين } j=J \text { يس }
\end{aligned}
$$

جواب تمرينها
lo.V

(TY.Y
 كارت است كه بايد حدّاقل تضيه هال را بهكار ببريد.
 حدّاتل حدّاقل k عضو است.

$$
\begin{aligned}
& \{\Delta, q,|r, i \gamma, r|\},\{1,10,1 f, \mid \lambda, r r\},\{r, \eta, 1 \Delta, 19, r r\}, \\
& \{r, Y, 11, r o, r f\},\{f, \Lambda, i r, i \tau, r \Delta\}
\end{aligned}
$$

را بدست Tوريد. مشابهاً براى
$. M=\left(m_{i j}\right) \Delta B_{i}=\left\{(j, i): m_{j i}=1\right\}, A_{i}=\left\{(i, j): m_{i j}=1\right\}$ قرار دهيد \quad IY.Y

بكيريد، و غيره.
فصل
 بازیىهاى شامل ∞ را را حذف كنبد.

$x_{1} \vee y_{y_{r}}$	$x_{r} \vee y_{r}$,	$x_{r} \vee y_{\varphi}$,	$x_{p} \mathrm{v} y_{0}$,	$x_{0} \vee y_{1}$	
$x_{1} \vee y_{r}$,	$x_{\gamma} \vee y_{f}$,	$x_{r} \vee y_{\text {d }}$,	$x_{p} \vee y_{1}$,	$x_{0} \vee y_{r}$	
$x_{1} \vee y_{4}$,	$x_{\gamma} \vee y_{0}$,	$x_{r} \mathrm{v} y_{1}$,	$x_{p} \mathrm{v} y_{\mathrm{r}}$,	$x_{0} \vee y_{r}$	
$x_{1} \vee y_{0}$,	$x_{\varphi} \vee y_{1}$,	$x_{r} \vee y_{r}$,	$x_{p} \vee y_{r}$,	$x_{0} \vee y_{\text {F }}$	
$x_{1} \vee y_{1}$,	$x_{\gamma} \vee x_{0}$,	$x_{r} \vee x_{p}$,	$y_{\gamma} \vee y_{0}$,	$y_{\mathrm{r}} \vee y_{\text {F }}$	
$x_{\gamma} \vee y_{r}$,	$x_{r} \vee x_{1}$,	$x_{f} \vee x_{\Delta}$,	$y_{\top} \vee y_{1}$,	$y_{f} \mathrm{v} y_{\Delta}$	
$x_{r} \vee y_{r}$,		$x_{0} \vee x_{1}$,	$y_{\text {¢ }} \times y_{r}$,	$y_{0} \vee y_{1}$	
$x_{f} \vee y_{f}$,	$x_{\Delta} \vee x_{r}$	$x, \vee x_{r}$,	$y_{0} \mathrm{v} y_{\mathrm{r}}$,	$y_{1} \vee y_{\text {r }}$	
$x_{0} \vee y_{0}$,	$x_{1} \vee x_{p}$,	$x_{r} \vee x_{r}$,	$y_{1} \vee y_{\text {f }}$,	$y_{\mathrm{F}} \mathrm{v} y_{\mathrm{r}}$	

\qquad نخستين درس دررِاضيات كسسنه
 عمودى".
 ا-عامل میدهند.
7.^ همه.

دور هميلتونى دو ا-سامل مىدهد؛ بقبه اضلاع ا-عامل ديكرى را مى سازند. (A_{i} v B_{i+k-1}
(a) 1.1
. قرار گبرند $\{1, \ldots, 0\}$
 ميدان . در ميدان ه، و غبره، استفاده كنيد A_{1} v B_{Y}
 كنيد. سبس از ${ }^{\text {F }}$ براى تعيبن مبدان استفاده كنبد. برنامد زير را بددست آوريد كه سطرها و ستونها بهترتيب دورها و ميدانها هستند.

(a) 10.A هيج دو تيمى دنباله بازى خانه و خارج يكسانى ندارند (زيرا در غير اينصورت

نمىتوانند با هم بازى كنند).
 مقابل ∞ دارد.
I.A 1 يكى گراف دو قسمتى رسم كنيد كه n رأس سياه آن بهوسبله زوجهاى دور اول و n

 اين تيمها را در خاند آنها قرار دهريد

جواب تمرينها
$. v>\mid f=b$
b عدد صصحيح نيست. (b)
(a) 1.9
-Q.
(a) $v r(k-1) \lambda-r(k-1) \lambda=\lambda(v-1) r(k-1)=r^{\varphi}(k-1)^{r}$.
(b) $(k-1) \lambda+(v-k) \lambda=\lambda(v-1)+r(k-1)$.
. $v \lambda=k^{r}-k+\lambda j \mid ₹ . q$
($k-1)^{v-1 ~ 0.9 ~}$ - k - λ خو|هند بود.
7.9
(a) $\left(n^{\gamma}+n, n^{r}, n^{r}-1, n^{\gamma}-n, n^{r}-n-1\right)$,
(b) $\left(\vdash_{m}-1, Y m-1, Y m, Y m, m\right)$.

A. 9 9.9 .9-10.9-1 9
 وجود دارند. بـنابراين هر بلوك 10 عضو دارد. برأى هر i و \ddagger هـمسطر در N ، أين دو
 كه

متناظر يكسانى را در L دارند. برأى حالتهاى ديگر وضعيت مشابها؟ برقرار است. (a) 17.9 و برابر 1-است هرگاه درايه متناظر در A صفر باشد.

$$
\begin{align*}
B^{T} B & =\left(Y A^{T}-J\right)(Y A-J)=ץ A^{T} A-Y A^{T} J-Y J A+J^{r} \tag{b}\\
& =ץ(k-\lambda) I+ץ \lambda J-Y(J A)^{T}-Y J A+J^{r} \\
& =ץ(k-\lambda) I+(ץ \lambda-ץ k+v) J=v I \Leftrightarrow \vdash(k-\lambda)=v
\end{align*}
$$

M.9
 توان اعداد اول واستفاده از ميدان YY عضوى.

19.9

90. 9
 به وزن

 به وزن

(a) Yl. 4 اعضاى B است و A بلوكى غيراز B است كه حاوى P مى اسباشد.

B تعداد زوجهاى (b) را به دو روش متفاوت شمارش كنبد كه y عضوى از

الز
عدد
$k(k-1)(\lambda-1)+m^{\dagger}(b-1) \geq(Y m-1) k(r-1)$.

 $(v r-k)(k-1) \lambda+v r(r-k)+k^{\gamma}-r k \geq k^{\gamma}(r-1)^{r}$

را با بددست آوريد. حال تمرين رابطه

$$
\text { يعنى b } \quad .
$$

مطالعه بيشتر

 وجود دارند. همجنين درس كوتاهى در طرحها [T] بهصورت رايگان در دسترس است.

كتابنامه

[1] I. Anderson, Combinatorial Designs and Tournaments, Oxford University Press, 1977.
[2] Anderson and I. Honkala, A Short Course in Combinatorrial Design, http://www.utu.fi/honkala /designs.ps
[3] J. Baylis, Error-Correcting Code: A Mathematical introduction, Chapman and Hall, 1998.
[4] N. L. Biggs, E. K. Loyd and R. J Wilson, Graph Theory 1736-1936, Oxford University Press, 1998.
[5] R. Brualdi, Introductory Combinatorics, 3rd edition, PrenticeHall, 1999.
[6] P. J. Cameron, Combinatorics: Topics, Techniques, Algorithms, Cambridge University Press, 1994.
[7] J. Dénes and A. D. Keedwell, Latin Squares and Their Applications, English University Press,1974.
[8] J. Dénes and A. D. Keedwell, Latin Squares: New Developments in the Theory and Applications, North Holland, 1991.
[9] R. Diestel, Graph Theory, 2nd edition, Springer, 2000.
[10] J. Dutka, On the Problème des Ménages, Mathematical Intelligencer 8 (1986), 18-25.
[11] R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, 2nd edition, Addison-Wesley, 1994.
[12] R. Hill, A First Course in Coding Theory, Oxford University Press, 1996.
[13] G. A. Jones and J. M. Jones, Elementary Number Theory, SpringerVerlag, 1998.
[14] D. Köning, Theorie Der Endlichen und Unendlichen Graphen, Akad. Verlag., Leipzig, 1936.
[15] D. Köning, Theory of Finite and Infinite Graphs (translate by R. McCoart), Birkhauser, 1990.
[16] C. F. Laywine and G. L. Mullen, Discrete Mathematics using Latin Squars, Wiley, 1998.
[17] J. H. van Lint, Introduction to Coding Theory, 2nd edition, SpringerVerlag, 1992.
[18] J. H. van Lint and R. M. Wilson, A course in combinatorics, Cambridge University Press, 1992.
[19] J. W. Moon, Another Proof of Cayley's Formula for Counting Trees, Amber. Math. Monthly 70 (1963), 846-847.
[20] R. J. Wilson, Introduction to Graph Theory, 4th edition, Longman, 1996.
[21] R. J. Wilson and J. J. Watkins, Graphs, an Introductory Approach, Wiley, 1990.

doliojlg

Addition principle
Affine plane
Alkanes
Archimedean solids
Auxiliary equation

Balanced incomplete block design
Bell numbers
Binomial coefficient
Binomial theorem
Bipartite graph
Bipartite tournament
Block design
Bubblesort

V ضريب دوجملفأى
V
كرافـ دوقسمنى $0 \wedge$ ،
مسابقات دوقسمنى 101 مارئى
طرح بلوكى 171
ro ترتب حبابى
Catalan numbers
Chromatic index
Chromatic number
Chromatic polynomial
Circle method
Codeword
Complementary design
Complete graph
Complete bipartite graph
Complete matching
Congruence
Court balance
Cycle

de Bruijn sequence
Derangement
Difference methods

دo 90 دنباله دبرون 	

Difference set
FY
Digraph

Dirac's theorm

Edge colouring
Enigma
Error-correcting code
Eulerian circuit
Eulerian digraph
Eulerian graph
Eulerian trail
Euler's formula
Euler's phi function
Factorials
Fermat's theorm
Fibonacci numbers
Finite projective plane
Fisher's inequality
Four colour theorm
107،100 ضلعرنگ
1r7،11Y،109 رمز 110

كُرافِ اويلرى Ar
كَّرارويلرى
10 70 فرمول اويلزى
تابع فى اويلر 1Y7

Hadamard design
Hadamard matrix
Hall's theorem
Hamiltonian cycle
Hamiltonian graph
Hamming code
Handshaking lemma
Incidence matrix
Inclusion-exclusion principle
Kirkman's schoolgirl problem
Konig's theorem
Konigsberg bridge problem
Kruskal's algorithm
riv
نخسنين درس دررياضيات كسسنه
Kuratowski's theorem
Tr تضبه كوراتسكى
Latin rectangle
Latin square
Line at infinity
Linear code
Lottery
Magic square
Mars mariner
Matching
Memory wheel
Menage problem
Mergesort
Mixed doubles
Multiplication principle
One-factorisation
Ore's theorem
Orthogonal latin squares

Pandiagonal magic square
Partition
Pascal's triangle
Path
Perfect code
Permutation matrix
Petersen's graph
Planarity algorithm
Platonic solid
Plotkin's bound
Polyhedron
Prim's algorithm

Recurrence relation
Resolvable design

Scrabble
Self-orthogonality
Sorting algorithms
Spanning tree
Steiner triple system
Stirling numbers
Surjection

147
مربع مستطيل لاتين 1 irv مربع لاتين خا خط دربينهايت كد خط اAF MA،1V بخت آزمايى ه؛

101،1FY 1-عاملسلماز
تضيه ارى 1 ان
IYV |YQ مربعهاى لاتين متعامد

ifr

V7
الكوريتم تسطيحيذيرى
جسم افالاطونى 70
كران بالاتكين 109
70 الجندوجهر
OY الخورينم بريم

تقا
|الخودريتمامهاى مرتب
درخت فراكير

تابع يوشا 119 ،101

Symmetric design
System of distinct representatives
Towers of Hanoi
Trail
Translate
Travelling Salesman problem
Tree

- labelled
- spanning

Utilities problem
Vandermonde identity
Vertex colouring
Vising's theroem
Wilson's theroem

FA مسئله امكانات

تضيه ويلسون 19

Ian Anderson, MA, PhD
 Department of Mathematics, University of Glasgow, University Gardens, Glasgow G12 8QW, UK

Cover illustration elemsats reproduced by kind pernwission of
Aptech Syrtems, lice, Publishers of the GAUSS Marhematical and Smatistical Sytem, 23604 S.E. Kent-Kangiey Road, Maple Valley, WA se03s,
USA. Tds (206) 432 - 7855 Pax (206) 432 - 7832 emall: infoeaptechcom URLi wwraptechcom
American Statistical Aveciationt Chance Vol 8 No 1, 1995 artickeby ISS and KW Heincr 'Tree Rings of the Northem Showangunka' puge 32 ig 2
Springer-Verloge Mathemation in Education and Research Vol 4 Tauc 31995 article by Plomps B Maeder, Beatrice Amuhein and Oliver Choor 'Thustrated Mathematics Visualization of Machernadical Objectr' pege 9 fig 11 , originally problished as a CD ROM 'Thustrated Mathermatica' by TELOS: ISBN 0-387-14222-3, German edition by Birkhnuser: ISRN 3-7643-5100-4.
Mathematica in Education and Research Yol 4 lasue 31995 ardcle by Richard J Gaybord and Kazume Nishidate Traffac Engineering with Cellular Automata' page 35 fig 2. Mathemation in Education and Research Vol 5 tsue 219% articie by Michee Trod 'The Implicitization of a Trefion Knot' page 14.
 cens' pege 19 fig 3. Mathemmeica in Edscation and Research Vol 5 lame 21996 articie by Richand Gaplord and Fazome Nishichte "Contapions Spreading' page 33 If I. Methematica in Elucution and Revearch Vol 5 leuse $219 \% 6$ article br Joe Buhier and Sian Wiagon "Secrets of the Madeluis Constart pare 50 fis 1.

Springer Undergraduate Mathematics Series ISSN 1615-2085
ISBN 1-85233-236-0 Springer-Verlag London Berlin Heidelberg
British Library Cataloguing in Publication Date
Anderson, Ian, 1942 -
A first course in discrete mathematics. - (Springer
undergradunte methematics series)

1. Computer science - Mathematica 2. Combinatorial analysis
L. Title

510
ISBN 1852332360

Library of Congress Cataloging-ia-Publication Data
Anderson, Ien, 1942-
A first course in diacrete mathematics / Ian Anderton.
p. cm. -- (Spriager undergradutte mathematice series)

Includes bibliogruphical references and index.
ISBN 1-15233-236-0 (alk. paper)

1. Mathematics. 2. Computer Science - Methematics. I. Title. II. Series.

QA39.2.A533 2000
510--dc21 00-063762

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Aet 1988, this publication may oaly be reproduced. stored or transmitted, in any form or by any meens, with the prior permission in writing of the pubishers, or in the case of reprographic reproduction in eccordance with the terms of licences issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers.
e Springer-Verlag London Limited 2001
Printed in Great Britain
The use of registered names, trademarks etc. in this publication does not imply, even in the absence of apecific statement, that such names are exempt from the relevant laws and regulations and therefore free for general use.

The publisher makes no representation, express or inplied, with regard to the eccuracy of the information contained in this book and cannot accept any legal responsibility or liability for any errors or omissions that may be made.

A first course in Discrete Mathematics

by:
Ian Anderson

Translated by:
Morteza Esmaeili
Assistant Professor of mathematics
Department of Mathematical Sciences
Isfahan University of Technology

A First Course in Discrete Mathematics

By:
 Ian Anderson

Translated by:
M. Esmaeili

Professor of Mathematics Isfahan University of Technology

[^0]: 'Catalan numbers

[^1]: TA. Crum Brown

[^2]: TPrim's algorithm

[^3]: TPetersen

[^4]: 'Subdivision

[^5]: TSir William Rowan Hamilton:1805-1865
 ${ }^{7}$ Kirkman

[^6]: ${ }^{7}$ Travelling Salesman Problem

[^7]: TGray Code

[^8]: TEulerian circuit

[^9]: 'Stirling and Bell numbers

[^10]: TBell number

[^11]: Enigma machine

[^12]: TScrabble problem ${ }^{\text {Tménage problem }}$

[^13]: 'Compatible

[^14]: Torthogonal mate
 ${ }^{\dagger}$ mutually orthogonal
 ${ }^{r}$ mutually orthogonal latin square

[^15]: 'de la Loubére

[^16]: pandiagonal

[^17]: Tsystem of distinct representatives
 ${ }^{\top}$ Hall condition
 ${ }^{5}$ R. Rado

[^18]: Taffine plane

[^19]: 1-factorization

[^20]: 'bipartite tournament

[^21]: Tmixed doubles tournaments

[^22]: 'F. Yates

[^23]: Tbalanced incomplete block design

[^24]: 'Kirkman

[^25]: Tincidence matrix

[^26]: 'finite projective plane

[^27]: 'Hamming

[^28]: 'Mars Mariner 9

[^29]: TGolay

[^30]: 'Plotkin's bound

