@

ترجمها : دكتّر حسناعلـى آذرنوشى
$r \cdot A$

MoA انتشارات دانشگاه فردوسى مشهد، شمارة
cMbl 4

بان سى. الف. وان در لُوب

ترجمةُ
د كتر حسنملى آذرنوش
IrA。

نظرية́ اطلاع
نونُتْهُ
لوبه، يان واندر
ترجم:

حسنعلي آذرنو

بها : 11000 زبال.

$$
\begin{aligned}
& \text { Lubbe, Jan C. A. Vander لوبه، بان واندر: }
\end{aligned}
$$

(ISBN: 964-5782-35-x)
Information theorie $=$
Information theory.
فهريـتنويسى بر انـاس اطلاعاتات فيبا.

$$
\begin{aligned}
& \text { :مترجم. ب. دانشگاه فردوسى }
\end{aligned}
$$

(مشهد). ج. عنوان.
-or/04
Qrgo/Jais
1r9。
$i^{10-19090}$
كتابخانه ملى ايران

نهرست

r منبع اطلXع گسسته بی-

F9
ar
5.

59
VF
I.Y منبع اطلاع گسسته r.Y r.Y
Y.Y استراتزى كد گذارى
F.Y محتملترين بيامها

تاY
V^

ه منبع اطلاع بيوسته
 ه. هـ ه. ها اندازة اطلاع بيوسته

¢ كانال ارتباطى پيوسته

YYI
YY
YYN
rfo
YO.
rar ع \& \& \& تضيه كدگذارى كانال ه. 8 ظرفيت كانال گاوسي باحافظه
sء تمرينها
جوابها Vs

نظريه نرخ دکرشكلى V I.V تابع نرخ دگرشكلى گسسته
$R(D)$ وي夫 گيهاى تابع \quad r.V
r.V حالت دودويى كد كذارى منبع و تفشاياى ارسال اطلاع f.V ه.V s.V تمرينها جوابها V.V

A نظريه اطلاع شبكهاى 1.1 ا. شقدمه كانال ارتباطى حند-مدخلى Y.A كا ك.A F.^ كانالهاى دوطرف
rro
rrv
0.^ تمرينها
1.1
rrr
rrs

MFI
rfs
MFV
rfq 9.9
-1 رمزشناسى 1.1 رمزشناسى و تحليل رمزى
 ه.1 سيستمهای رمزى f.lo مقدأر اطلغع و اطمينان 0.10 فاصله يِكتايى
9.10 تمرينها

جوا! V.I.

كتابنامه
وازهنامه
راهنماي موضوعى

ييش كفتار

 خود تمايل نشان مىدهند.

 يارى مىدهند.
اين كتاب در نظر دارد تعدادى از مفاهيم اساسى نظريه اطلاع را معرقّى كند و با با نشان

 بيشتر اطلاعات به وسيلهُ شبكهها ارسال مال مى شوند
 مطالعةٔ فردى مناسب مىسازد.

بو كى' و جان بيموند " مىباشد. يرسشها از امتحانهاى اخير گرفته شدهاند.

 من كدكى كرد. تأثير او يك عامل تعيين كننده در حرنة انير انير من بوده است. جان سى. الف. وان دِر لُوب"

رُلف، دسامبر 1998

اطلاع گسسته

 نظر گرفت. به طرر كلى سه نوع اطلاع وجود دارد:

- اططلعع تركيبى، به علاماتى كه يـيامها با آنها ساخته مىئــوند و رابطـ: بيـن آنهـا وابسته است.
 - اطاطع ععلم، وابسته به كار گيرى و اثر بيامهاست.
 حالى كه اطلاع معانى و عملى وابسته به محتراي'اطلاع مى مباشند. جملات زير را در نظر بغيريد:
(الف) شخصى با تاكسى بد راهآهن آمد.
(ب) تاكسى شخصى را به راهآهن آورد.

(ت) ترافيك سنغينى در بزر گراه A3 در آلمان وجود دارد.

جملات (الف) و (ب) به طور تر كيبى متفاو تند. با وجـود ايـن بـه صــور ورت معـانى

 (؟) و (ت) مربوط به فردى است كه در آلمان مى اشباشد و نه كسى كه در امريكاست.

 هينتيكا "مى باشد.

 حدود بسازيم هيزى كه باقى مى ماند يكـ رهيافت نسبتاً تكنيكى براى رسـيـيدن بـه اطــلانع

 استفاده نشده است

1. MacKay
2. Carnap
3. Bar-Hillel
4. Ackoff
5. Hintikka
6. Renyi
7. Gallager
8. Csiszar
9. H.Nyquist

كند. او در اين باره به طريق زير اقدام كرد

گرفتن ييامهاى l نمادى مى توان
 (1.امها با طولl باشند داريم

$$
\begin{equation*}
H_{H}\left(s^{l}\right)=\log \left\{s^{l}\right\}=l \log \{s\} \tag{1.1}
\end{equation*}
$$

براى پيامهای به طول يكـ داريم

$$
H_{H}\left(s^{\prime}\right)=\log \{s\}
$$

در نتيجه مىتوان نوشت

$$
H_{H}\left(s^{l}\right)=l H_{H}\left(s^{\prime}\right)
$$

اين نتيجه با درك ذهنى اين كه اططلاع هر بيـام به طول l، l l برابر اطلاع پيامى به طولم
 مى كند. به ساد گیى مىتوان نشان داد كه تنها تابعى كه در معادلئ

$$
f\left\{s^{l}\right\}=l f\{s\}
$$

صدق مى كند به صورت زير است

$$
\begin{equation*}
f\{s\}=\log \{s\} \tag{Y.I}
\end{equation*}
$$

 عدد

 ساد گی ديده مى شود كه رابطة بين بيت و نَت به صورت درت زير است

در رهيافت هارتلى همانطور كه در بالا ذكر شد هيج فرضى در اين مورد كه امكان
 وجود داشته باشد در نظر گرفته نشده است. دستاورد بزرگ شانون اين است كه او نظريههاى نيكويست و هارتلى را توسعه داد و نظريهُ اطللع امروزى را با مرتبط ساختتن اطلاع با عدمرحتميت با بهرهورى از مفهوم شـــانس

 در حالت كلى شانون اندازة اطلاع را بر مبناى مفهوم احتمال معرفّى كرد كه اندازة هــارتلى
 احتمال توجّه خواهد شل كه در ضمن آن مفاهيم مفيدى معرتى خواهيم كرد.
Y.

نظريه احتمال زمينهامى در علوم است كه با مفهوم احتمال سرو كار دارد. نقطث شـــروع
 برحسب منبع اطلاعاتى كه نمادها را توليد مى كند در نظر گرانــــتـ در ايـن صــورت هـر

 بر آمدها يا يِشامدهاى ممكن را فضاى نمونه مىنامنـد. اكنون ممكن است از احتمالل اين كه

 فرض شده است كه فضاى نمونه داراى تعداد معيّنى بر آمد است.
 به صورت زير را در نظر بگيريد

$$
X=\left\{x_{i}, \ldots, x_{i}, \ldots, x_{n}\right\}
$$

اگر تصورّ كنيم كه يكـ تاس ثرتاب شده است، در اين صـــورت

عنوان پيشاملى كه " " آمده است، در حالت هرتاب تاس واضح است كه $n=8$ مى هر هيشامدى احتمال رخداد معينى خواهد داشت به طور ساده با

$$
\begin{equation*}
P=\left\{p_{1}, \ldots, p_{i}, \ldots, p_{n}\right\} \tag{F.1}
\end{equation*}
$$

و آن راتمززيع /حتمال مىناميم. توزيع احتمال در دو شرط اساسى زير صدق مى كند: (الف) براى همش i ها،

$$
\cdot \sum_{i=1}^{n} p_{i}=1 \text { (ب) }
$$

يعنى هبيج احتمالى نمى تواند ممدار منفى اختيار كند و مجموع همئ احتمالها برابر يكـ است است

 صورت زير تعريف مى كنيم

$$
\begin{equation*}
Y=\left\{y_{1}, \ldots, y_{j}, \ldots, y_{m}\right\} \tag{0.1}
\end{equation*}
$$

با توزيع احتمال

$$
\begin{equation*}
Q=\left\{q_{1}, \ldots, q_{j}, \ldots, q_{m}\right\} \tag{8.1}
\end{equation*}
$$

 آزمـايش احتمـاللى بـا زوج بر آمدهـا احتمال (X,Y) است كه بر آمد (باشد مىتوان أحتمالهاى مىتوان ثابت كرد كه برانى تهام i i ها داريم

$$
\begin{equation*}
p_{i}=\sum_{j=1}^{m} r_{i j} \tag{V.1}
\end{equation*}
$$

$$
\begin{equation*}
q_{j}=\sum_{i=1}^{n} r_{i j} \tag{1.1}
\end{equation*}
$$

جون مجموع تمام احتمالهاى
احتمالهاى ${ }^{\text {(}}$)، نتيجه مى شود كه مجموع احتمالهاى توأم نيز بايد برابر يكى باشد:

$$
\sum_{i=1}^{n} \sum_{j=1}^{m} r_{i j}=1 .
$$

علاوه بر احتمال توأم و احتمال حاشيهاى وابسته به آن، نـــوع ســـومى يعنـى احتمـال

 علاقهمنديم.

 ظاهر شدهاند. براى مثال، خيلى غير محتمل است كه حرف "q" با حرف "ا "t" دنبال شود ولى خيلى بيشتر محتمل است كه با با حرف "u"دنبال شود احتمال شرطى

$$
p\left(x_{i} \mid y_{j}\right)=\frac{r\left(x_{i}, y_{j}\right)}{q\left(y_{j}\right)}, \quad q\left(y_{j}\right)>0 \text { به شرط }
$$

يِ به طور اختصار به صورت

$$
\begin{equation*}
p_{i j}=\frac{r_{i j}}{q_{j}}, \quad q_{j}>0 \text { به شرط } \tag{9.1}
\end{equation*}
$$

احتمال

$$
\begin{gather*}
q\left(y_{j} \mid x_{i}\right)=\frac{r\left(x_{i}, y_{j}\right)}{p\left(x_{i}\right)}, \quad p\left(x_{i}\right)>\circ b \text { به } \\
q_{j i}=\frac{r_{i j}}{p_{i}}, \quad p_{i}>\circ b^{\prime} \text { شه }
\end{gather*}
$$

يا به طور ساده

از تعاريف داده شده نتيجه مىشود كه احتمال توأم را مىتـــوان بـه صـورت حــاصلضرب

احتمالهاى شرطى و حاشيهاى نوشت

$$
\begin{equation*}
r\left(x_{i}, y_{j}\right)=q\left(y_{j}\right) p\left(x_{i} \mid y_{j}\right)=p\left(x_{i}\right) q\left(y_{j} \mid x_{i}\right) \tag{11.1}
\end{equation*}
$$

تعريف احتمال شرطى را به طور ساده مىتوان براى بيش از دو پيشامد گســترش داد. برای مثال

$$
\begin{aligned}
p\left(x_{i}, y_{j}, z_{k}\right) & =r\left(y_{j}, z_{k}\right) p\left(x_{i} \mid y_{j}, z_{k}\right) \\
& =p\left(z_{k}\right) p\left(y_{j} \mid z_{k}\right) p\left(x_{i} \mid y_{j}, z_{k}\right)
\end{aligned}
$$

از اين رو

$$
p\left(x_{i} \mid y_{j}, z_{k}\right)=\frac{p\left(x_{i}, y_{j}, z_{k}\right)}{r\left(y_{j}, z_{k}\right)}
$$

با مراجعه به احتمال شرطى، با جمعبندى روى زيرنويس i به شرط i داريم

$$
\begin{equation*}
\sum_{i=1}^{n} p\left(x_{i} \mid y_{j}\right)=1 \tag{1r.1}
\end{equation*}
$$

يعني هر گاه يكـ پيشامد
 نيست. به طور كلّى درست است كه

$$
\begin{equation*}
\sum_{j=1}^{m} p\left(x_{i} \mid y_{j}\right) \neq 1 \tag{1ヶ.1}
\end{equation*}
$$

قضيهُ مفيدى كه در ذيل، مورد استفاده خواهد بود قضيئ بيز است؛ اغلــبـ بــا معلـوم
 انجام اين كار مىتوان از روابط زير استفاده نمود

$$
\begin{aligned}
& r\left(x_{i}, y_{j}\right)=p\left(x_{i}\right) q\left(y_{j} \mid x_{i}\right)=q\left(y_{j}\right) p\left(x_{i} \mid y_{j}\right) \\
& \quad p\left(x_{i} \mid y_{j}\right)=\frac{p\left(x_{i}\right) q\left(y_{j} \mid x_{i}\right)}{q\left(y_{j}\right)},
\end{aligned}
$$

يا همحتنين داريم

$$
\begin{equation*}
p\left(x_{i} \mid y_{j}\right)=\frac{p\left(x_{i}\right) q\left(y_{j} \mid x_{i}\right)}{\sum_{i=1}^{n} p\left(x_{i}\right) q\left(y_{j} \mid x_{i}\right)} \tag{1f.1}
\end{equation*}
$$

از اين رو مىتوانيم با كمكـ در ها يان تفسيرى در مورد مفهوم استقلال داريم. وضعيت به مورت زير

$$
p\left(x_{i} \mid y_{j}\right)=p\left(x_{i}\right)
$$

يعنى، رخ دادن y_{j} هيج گونه تأثير بر رخداد x_{i} ندارد. هيجنين نتيجه مىشود كه:

$$
r\left(x_{i}, y_{j}\right)=p\left(x_{i}\right) q\left(y_{j}\right)
$$

$$
q\left(y_{j} \mid x_{i}\right)=q\left(y_{j}\right) .
$$

در اين حالت مىتوان گغت كه بيشامدها از مـ مستقلند. عكـــس از
 باشيم

$$
\begin{equation*}
r\left(x_{i}, y_{j}\right)=p\left(x_{i}\right) q\left(y_{j}\right) \tag{10.1}
\end{equation*}
$$

 يكى i منحصر به فردى مانند k وجود داشته باشد به طورى كه

$$
\begin{gather*}
p\left(x_{k} \mid y_{j}\right)=1, \tag{15.1}\\
p\left(x_{k}, y_{j}\right)=p\left(y_{j}\right) \tag{IV.I}
\end{gather*}
$$

 احتمال ييوند داد.

پيششامد با احتمال بالايى رخ ميدهد. اطلاع از طريت عدمرحتميت بــا مفهـوم شــانس ريونـــد
مى خورد.
قبل از اين كه بررسى كنيم كه تا جه حدّى انهازة شانون ويرگيهايیى را كه عموماً از
اندازة اطلاع انتظار داريم داراست، ابتدا تعريف او را بيان مي كنيم
تعريف 1.1
فرض كنيد X يك آزمايش احتمالى با نضاى نمونة X و توزيع احتمال P باشد، كه
در آن صورت زير داده ميشود

$$
\begin{equation*}
H(\mathrm{X})=-\sum_{i=1}^{n} p\left(x_{i}\right) \log p\left(x_{i}\right)=-\sum_{i=1}^{n} p_{i} \log p_{i} \tag{1A.1}
\end{equation*}
$$

 تمام اين نمادها در اين كتاب به طور قابل تعويضى به كار برده خواهد شد، زيرا اين اندازه ار اند
 ا'تتهابى نيز گفته ميشود.

 ,

$$
\begin{equation*}
H(P)=-p \log p-(1-p) \log (1-p) \tag{19.1}
\end{equation*}
$$

شكل (1.1) نشان ميدهد كه דیگونه $H(P)$ بـه عنــوان تـابعى از p عمــل مى كنــــ

 اطلاعیى را فراهم نمى كنند موافق استـ اين مطلب براى حالت بر آمد ديگر داراى احتمال يكى است.
وتتى براى هره
 در ضمن، توجه كنيد كه بنا به تعريف داريم: با بازگشت به حاللت كلى مىتوان فرض كرد كه اندازه اطلاع در جهار شرط بديهــي

تأثيرى ندارد.
H(P) $\begin{array}{r}\text { F- تابع }\end{array}$
 (x_{i}, y_{j})

$$
\begin{align*}
& H\left(p_{1} q_{1}, \ldots, p_{1} q_{m}, \ldots, p_{n} q_{1}, \ldots, p_{n} q_{m}\right) \\
& =H\left(p_{1}, \ldots, p_{n}\right)+H\left(q_{1}, \ldots, q_{m}\right)
\end{align*}
$$

F
 باشد مقدار $H(P)$ مىنيمم مىشود.
تفسير كوتاهى از بعضى از شرايط بالا به صورت زير امست.

 نمونة متفاوت با توزيع احتمالى كه از جايگشت توزيع احتمال مشتر ك به دســـت مى آيـــ يكسانند.

مثال 1.1
آزمايشهاى X X Y با نضاهاى نمونئ زير را در نظر بگيريد:
$\underset{i}{H(P)}$

شـكل $H(P)=H(p, 1-p)-1.1$ به عنوان تابعى از
$X=\{$ فردا باران نمىبارد ، فردا باران مىبارد $\}$

$$
\text { كه در آن } P=\{0, \lambda, 0, r\}
$$

$$
\text { كه در T } Q=\{0, Y, \circ, \lambda\} \text { }
$$

مقدار اطلاع در رابطه با X عبارت است از

$$
H(X)=-0, \lambda \log _{0, \lambda} \lambda-0, Y \log 0, r=0, Y Y \text { بيت }
$$

و در رابطه با Y برابر است با

$$
H(Y)=-0, r \log 0, Y-0, \lambda \log _{0}, \lambda=0, Y Y Y ب ي ~ ب ي ت ~
$$

و از اين رو داريم

$$
H(\mathrm{X})=H(\mathrm{Y})
$$

از اين مثال مىتوان نتيجه گرفت كه اندازء اطللع شانون به محتواى اطلاع بستگى ندارد. احتمال رخ دادن پيشامدها مهم هستند نه خود ييشامدها.

تفسير نوشتن آن برحسب احتمالها نتيجه مى گردد. ويزگى جمع يذيرى با مشـال زيـر بـا بـا بـــترين

 تاسها يِكى پس از ديگرى به دست مىآيّ آيد
اگر H(X) مقدار اطلXع مربوط به هرتاب يك تاس و H(Y) مقدار اطلاع مربـــوط بسه هرتاب تاس ديگر باشد (توجّه كنيد در اين حــالت (H(X) = H(X,Y) اطلХع مربوط به هرتاب دو تاس همزمان باشد آنذاه بايستي نتيجه شود كه

$$
\begin{equation*}
H(\mathrm{X}, \mathrm{Y})=H(\mathrm{X})+H(\mathrm{Y}) \tag{YI.I}
\end{equation*}
$$

اين دقيقاً همان هيزى است كه ويزگى جمعيذيرى بيان مى كند.
تفسير F F واضم است كه مقدار اطلاع در حالت احتمالهاي برابــر ماكسـيمم خواهــــ شد، در اين صورت از نقطه نظر اين حقيقت كه عدمحتميت بيشترين است رخداد يكـــى از

يششامدها ماكسيمم اطلاع را نتيجه خواهد داد. در تضيء زير علاوه بر مقدار ماكسيمم اطلاع مقدار مىنيمم اطلاع نيز تعيين مىشود.

قضيه 1.1

احتمال نظير آن باشد. در اين صورت داريم

$$
\begin{equation*}
H(P) \leq \log n, \tag{الف}
\end{equation*}
$$

تساوى برقرار است اگر و تنها اگر ${ }^{\prime}$ برایى تمام $p_{i}=\frac{1}{n}$....,n

$$
\begin{equation*}
H(P) \geq 0, \tag{ب}
\end{equation*}
$$

تساوى برترار است اگر و تنها اگر kای وجود داشته باشد به تس حالى كه برای تمام برهان

$$
\ln a \leq a-1
$$

اكنون $H(P)-\log (n)$ را در نظر بغيريد. داريم

$$
\begin{aligned}
H(P)-\log n & =-\sum_{i=1}^{n} p_{i} \log p_{i}-\log n=-\sum_{i=1}^{n} p_{i}\left\{\log p_{i}+\log n\right\} \\
& =\sum_{i=1}^{n} p_{i} \log \left\{\frac{1}{p_{i} n}\right\},
\end{aligned}
$$

از نابرابرى $\ln a \leq a-1$ نتيجه مى شود كه

$$
\begin{equation*}
\log a=\frac{\ln a}{\ln \gamma} \leq(a-1) \frac{\ln e}{\ln \gamma}=(a-1) \log e . \tag{Y0.1}
\end{equation*}
$$

با بهرهگيرى از اين نابرابرى داريم

$$
\begin{align*}
H(P)-\log n & \leq \sum_{i=1}^{n} p_{i}\left\{\frac{1}{p_{i} n}-1\right\} \log e=\left\{\sum_{i=1}^{n} \frac{1}{n}-\sum_{i=1}^{n} p_{i}\right\} \log e \\
& =\left\{n \frac{1}{n}-1\right\} \log e=0 . \tag{צ.1}
\end{align*}
$$

$H(P) \leq \log n$,

اين بدين بعنى است كه
(ب) جون
مساوى صفر است. از اين رو داريم

$$
H(P) \geq 0 .
$$

به سهولت ديده مىشود كه H(P) برابر صفر است اگر يكى مؤلفئ P برابـر يــــ و
بقيه احتمالها برابر صفر باشند.
 اطلاع يك سيستم به دست آوريه، بـ مثال زير توجه مى كنيم.

مثال

 هر يكى از اين تصاوير با احتمال مساوى رخ دهل، بقدار اطلاع موجود در يكى تصوير برابر است با

$$
H(P)=\log n=\log \left(10^{+1 f y r}\right) \approx 1,5 \times 10^{8} .
$$

In $a \leq a-1$ شكل F. 1 تنسير نهودارى

در فصلهأى آتى ملاحظه خواهيد كريد كرد.

اكنون دو توزيع احتمال زير را در نظر بغيريد
$P=\left\{0, \Delta_{0}, 0, y \Delta,, \mu \Delta\right\}$

$$
Q=\left\{0,\left\lceil\uparrow, 0, \tau Y, 0, \Psi_{0}\right\} .\right.
$$

وتتى مقدار اطلاع برايى هر دو حالت مربوطه را حساب كنيم؛ به دست مى آوريم

$$
H(P)=H(Q)=1, \Delta \text { بيت. }
$$

مقدار اطلاع يكسان براى سه مقدار احتمال ($n=r$ (n (مى گردرد.
 مى گردند. مقادير احتمالهاى نظير براى هر نقطه روى يكـ منحنى را مى توان بان با تصوير بــــر خطوط
به سادگى مى توان ثابت كرد كه ماكسيمم اطلاع برایى $n=r$ برابر است با

$$
H(P)=\log r=1, \Delta \wedge \text { بيت. }
$$

هحون تنها يک توزيع احتمال وجود دارد كه مىتواند به ماكسيمم مقدار اطلاع منجـــر گردد، يعنى $P=\left\{\frac{1}{\psi}, \frac{1}{\psi}, \frac{1}{\psi}\right.$ در اين حالت به جاى يیى منحنى بسته دتيقاً يـــى نقطـه در شكل () بـ به دست مى آيد.
براى به دست آوردن بصيرت بيشترى از آنحه كه اندازة آطلاع شانون بيـان مى كنــد، دو مثال زير را بررسى مى كنيم.

مثال
فرض كنيد منطقهاى شامل \&1 ناحيه اسـت كه يكى از آنهــا ســايهدار امسـت (شـكـل

 زد؛ ولى در اين صورت بايد اين مخاطره را پذيرفت كه تبل از اين كه سرانجام ناحئ ارئ سايمدار

 ملاحظه كنيد):

ا. آيا ناحية سايهدار يكى از 1 ناحية پايين شكل است؟ و

 f. آيا ناحية سمت چهب است؟

هِاسخ: " خحير "، بنابراين ناحية سايهدار ء استـ.
در نتيجه براى تعيين اين كه كدام يك از \&ا ناحيه مايهدار است، ههـــار ســؤال لازم
است.
 داراى احتمال مساويند، در مىيابيـم كه

$$
H(P)=-\sum_{i=1}^{19} \frac{1}{19} \log \frac{1}{18}=\log (18)=\mathrm{F} \text {. }
$$

مقدار اطلاع ظاهراً با مىنيمم تعداد سؤالاتى كه بايستى براى تعيين اين كه كدام برآمد

 نيستند و تفسير مثال (1.1) نيز برقرار است بررسى مى كنيـَ.
F.I مثال

فضهاى نمونهُ X به صورت $X=\left\{x_{1}, x_{\psi}, x_{\psi}\right\}$ داده شده است. در مورتــى كــه فضـاى احتمال همراه Tآن به صورت $P=\left\{\frac{1}{r}, \frac{1}{f}, \frac{1}{f}\right\}$ داده شده باشـــ، بــازى "بلـى " و " خــير " را
 بيشترين احتمال را دارد.
اگر یاسخ، "بلى "، است، در این صورت بر آمد را در يكـ مرسله هيدا نمودهايم. اگــــر

شكل ه. ه- مثال ساختار درختى براى
بازع یرسش و یاسخ

1	Y	r	F
0	F	Y	1
1	1.	11	$1 Y$
$1 Y$	$1 F$	10	18

شكل F. 1 - بازى برسش و هاسخ: يافتن ناحيء سايهدار

یاسخ " خحير " باشد، در اين صورت به طور وضوح بر Tمد

اگر مقدار اطلاع را طبت اندازء شانون محاسبه كنيم، در اين صورت داريم

$$
H(P)=-\frac{1}{r} \log \frac{1}{r}-\frac{1}{f} \log \frac{1}{f}-\frac{1}{f} \log \frac{1}{f}=1,0 .
$$

در نتيجه تفسير بيان شده قبلى براي احتمالهاى نابرابر نيز برقرار أست.
F. 1 اندازة اطلاع شرطى، توأم و متقابل

آن

 تعداد nm ييشامد توأم n (
位
 اطلاع حاشيهاى داريم

$$
\begin{equation*}
H(Z)=-\sum_{k=1}^{n m} p\left(z_{k}\right) \log p\left(z_{k}\right) . \tag{YV.1}
\end{equation*}
$$

لكن تجون هر

$$
\begin{aligned}
& H(Z)=-\sum_{i=1}^{n} \sum_{j=1}^{m} r\left(x_{i}, y_{j}\right) \log \left[r\left(x_{i}, y_{j}\right)\right] . \\
& \text { اين مطلب تعريف اندازة اطلاع توأم زير را نتيجه مىدهد. } \\
& \text { تعريف Y.I }
\end{aligned}
$$

يكى آزمــايش احتمـالى (X,Y) بـا نضــاى نمونـهُ دو بعـدى (X,Y) كــه در آن يا

صورت زير تعريف مى كنيم:

$$
\begin{equation*}
H(X, Y)=-\sum_{i=1}^{n} \sum_{j=1}^{m} r\left(x_{i}, y_{j}\right) \log \left[r\left(x_{i}, y_{j}\right)\right] \tag{PA.1}
\end{equation*}
$$

نمادهاى ديگرى مانند $H(R)$ و $H\left(r_{1}, \ldots, r_{n m}\right)$ را علاوه بر $H(\mathrm{X}, \mathrm{Y})$ بـه طـور قــابل تعويضى به كار خواهيم برد.

 در اين صورت به جاى احتمالهاى داريم ولى هنوز هم مجموع برابر يكـ است است در اين صورت مقدأر اطللاع نسبت به Y به شرط معلوم بودن الم اندازة اطلاع حاشيهالى به صورت زير تعريف كرد

$$
\begin{equation*}
H\left(Y \mid x_{i}\right)=-\sum_{j=1}^{m} q\left(y_{j} \mid x_{i}\right) \log \left[q\left(y_{j} \mid x_{i}\right)\right] . \tag{r9.1}
\end{equation*}
$$

اكنون با محاسبه متوسط روى تمام مقادير به صورت زير به دست مى آيد:

$$
\begin{aligned}
\sum_{i=1}^{n} p\left(x_{i}\right) H\left(Y \mid x_{i}\right) & =\sum_{i=1}^{n} p\left(x_{i}\right)\left\{-\sum_{j=1}^{m} q\left(y_{j} \mid x_{i}\right) \log \left[q\left(y_{j} \mid x_{i}\right)\right]\right\} \\
& =-\sum_{i=1}^{n} \sum_{j=1}^{m} p\left(x_{i}\right) q\left(y_{j} \mid x_{i}\right) \log \left[q\left(y_{j} \mid x_{i}\right)\right] \\
& =-\sum_{i=1}^{n} \sum_{j=1}^{m} r\left(x_{i}, y_{j}\right) \log \left[q\left(y_{j} \mid x_{i}\right)\right] .
\end{aligned}
$$

اين كميّت با مقدار اطلاع شرطى H(Y|X نشان داده مىشود و تعريف زير حاصل مى گردد.
تعريف I.
اندازة اطللع شرطى نسبت به آزمايش Y به شرط X برابر است با

$$
\begin{equation*}
H(\mathrm{Y} \mid \mathrm{X})=-\sum_{i=1}^{n} \sum_{j=1}^{m} r\left(x_{i}, y_{j}\right) \log \left[q\left(y_{j} \mid x_{i}\right)\right] . \tag{0}
\end{equation*}
$$

با روشى مشابه مىتوان مقذار اطلاعى را كه به طور متوسط برانى X وتتى Y معلوم باشد به دست مى آيد به صورت زير تعريف كرد

$$
H(X \mid Y)=-\sum_{i=1}^{n} \sum_{j=1}^{m} r\left(x_{i}, y_{j}\right) \log \left[p\left(x_{i} \mid y_{j}\right)\right]
$$

را نيز به كار خواهيم برد.
تضيةّ زير مقدار مىنيمم و ماكسيمم $H(Y \mid X)$ را مىدهد.
قضية
فرض كنيد H(Y|X) اندازة اطلXع Y به شرط X باشد. در اين صورت داريم

$$
\begin{gather*}
H(\mathrm{Y} \mid \mathrm{X}) \geq \circ \tag{الفب}\\
H(\mathrm{X} \mid \mathrm{Y}) \leq H(\mathrm{Y})
\end{gather*}
$$

(ب) (ب) (M.1)
اگر X X به طور احتمالى مستقل باشند تساوى برترار است. برهان
据

$$
H(\mathrm{Y} \mid \mathrm{X}) \geq 0 .
$$

$$
\begin{align*}
H(\mathrm{Y} \mid \mathrm{X})-H(\mathrm{Y}) & =-\sum_{i=1}^{n} \sum_{j=1}^{m} r\left(x_{i}, y_{j}\right) \log \left[q\left(y_{j} \mid x_{i}\right)\right]+\sum_{j=1}^{m} q\left(y_{j}\right) \log q\left(y_{j}\right) \tag{ب}\\
& =\sum_{i=1}^{n} \sum_{j=1}^{m} r\left(x_{i}, y_{j}\right) \log \left[\frac{q\left(y_{j}\right)}{q\left(y_{j} \mid x_{i}\right)}\right]
\end{align*}
$$

 نتيجه مى شود كه

$$
H(\mathrm{Y} \mid \mathrm{X})-H(\mathrm{Y}) \leq \sum_{i=1}^{n} \sum_{j=1}^{m} r\left(x_{i}, y_{j}\right)\left[\frac{q\left(y_{j}\right)}{q\left(y_{j} \mid x_{i}\right)}-1\right] \log e .
$$

سمت رامت اين نابرابرى را مىتوان به صورت زير نوشت

اطهع

$$
\begin{aligned}
& \sum_{i=1}^{n} \sum_{j=1}^{m} p\left(x_{i}\right) q\left(y_{j} \mid x_{i}\right) \frac{q\left(y_{j}\right)}{q\left(y_{j} \mid x_{i}\right)} \log e-\sum_{i=1}^{n} \sum_{j=1}^{m} r\left(x_{i}, y_{j}\right) \log e \\
& \quad=\log e-\log e=0
\end{aligned}
$$

بنابراين

$$
H(\mathrm{Y} \mid \mathrm{X}) \leq H(\mathrm{Y})
$$

اگر براى تمام iها و ز هها، $q\left(y_{j}\right)=q\left(y_{j} \mid x_{i}\right)$ حالت استفالال درست است.
نتيجهاى كه مىتوان از اين تضيه گرفت اين است كه مقدار شــرطي اطــلاع همــواره كو چكتر يا مساوى مقدار حاشيهاى اطلاع است. به عبارت ديگر، به طــور كلتـى اطــلاع در
 قبلى است. رابطة Aستقيمى بين اندازة اطللع حاشيهالى، شرطى و توأم وجود دارد كه در قضية زير بيان مىشود. قضية 1 .
براى تمام آزمايشهاى X و Y، داريم:

$$
\begin{align*}
H(\mathrm{X}, \mathrm{Y}) & =H(\mathrm{X})+H(\mathrm{Y} \mid \mathrm{X}) \\
& =H(\mathrm{Y})+H(\mathrm{X} \mid \mathrm{Y}) \tag{HF.l}
\end{align*}
$$

برهان

$$
\begin{aligned}
H(\mathrm{X}, \mathrm{Y}) & =-\sum_{i=1}^{n} \sum_{j=1}^{m} r\left(x_{i}, y_{j}\right) \log \left[p\left(x_{i}\right) q\left(y_{i} \mid\left(x_{i}\right)\right]\right. \\
& =-\sum_{i=1}^{n} \sum_{j=1}^{m} r\left(x_{i}, y_{j}\right) \log p\left(x_{i}\right)-\sum_{i=1}^{n} \sum_{j=1}^{m} r\left(x_{i}, y_{j}\right) \log \left[q\left(y_{j} \mid x_{i}\right)\right] \\
& =H(\mathrm{X})+H(\mathrm{Y} \mid \mathrm{X})
\end{aligned}
$$

اثبات $H(X, Y)=H(Y)+H(X \mid Y)$ به روش مشابه انجام مىشود. آنحه كه قضيه واقعاً بيان مى كند اين است كه مقدار اطلاع توأم برابر مجموع مقسـدار
 بنابر قضية (Y.1) و قضيهُ (Y.1) مىتوان نتيجهُ زير را به دست آورد

$$
H(\mathrm{X}, \mathrm{Y})=H(\mathrm{X})+H(\mathrm{Y} \mid \mathrm{X}) \leq H(\mathrm{X})+H(\mathrm{Y})
$$

و اگر X X و
 احتمال توأم ماكسيمـم و وقتى وابستكي انزايش مى يابد كاهش
 . $H(\mathrm{X}, \mathrm{Y})=H(\mathrm{X})$.لت
اكنون آخرين تعريف را در اين بنشش بيان مى كنيم كه در مورد اندازء اطلاع متقــابل است و نقش مهمى را نسبت بـ ظرفيت كانال ارتباطى بازى مى كند و بعداً بررسى مىشود. تعريف F.I
اندازة اطكع متشابل مربوط به X Y Y به صورت زير تعريف مىشود:

$$
\begin{align*}
I(\mathrm{X} ; \mathrm{Y}) & =H(\mathrm{Y})-H(\mathrm{Y} \mid \mathrm{X}) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{m} r\left(x_{i}, y_{j}\right) \log \left[\frac{r\left(x_{i}, y_{j}\right)}{p\left(x_{i}\right) q\left(y_{j}\right)}\right] \tag{rs.1}
\end{align*}
$$

(را مىتوان به عنوان اندازهاى برای وابستّگى بين X Y Y تفسير نمود. وقتــى $I(X ; Y)$

$$
I(X ; Y)=0
$$

 خودش را به دست مىآورد كه برابر است با

$$
I(\mathrm{X} ; \mathrm{Y})=H(\mathrm{Y})
$$

به خواننده واگذار مىشود كه نشان دهد براى تمام X Y Y

$$
\begin{align*}
I(\mathrm{X} ; \mathrm{Y}) & =H(\mathrm{X})-H(\mathrm{X} \mid \mathrm{Y}) \\
& =H(\mathrm{X})+H(\mathrm{Y})-H(\mathrm{X}, \mathrm{Y}) \tag{rv.1}
\end{align*}
$$

$$
I(\mathrm{X} ; \mathrm{Y})=I(\mathrm{Y} ; \mathrm{X})
$$

در اين بنشش سه اندازة اطلاع، يعنى اندازههاى اطلاع شرطى، توأم و متقابل را تعريف كرديم. توجّهى نيز به روابطط مختلف بين اندازهها شد. ايــن مطــالب توسـطـ نمــودار وِن در

شكل (.15) به بهترين وجهى شرح داده شده و خلاصه شدهاند.

شكل \&. 1 - روابط بين اندازههانى اطلاع: (الف) هالت ككى، (ب) هالت استقلال

$$
\begin{aligned}
& \text { داريم } \\
& I(\mathrm{X} ; \mathrm{Y})=H(\mathrm{X}) \cap H(\mathrm{Y}) \text {, } \\
& H(\mathrm{X}, \mathrm{Y})=H(\mathrm{X}) \cup H(\mathrm{Y}) . \\
& \text { از شكل ((\&-1-الف)، حالت كلى، مىتوان نتيجه گرفت كه } \\
& \text { - } H(\mathrm{X} \mid \mathrm{Y}) \leq H(\mathrm{X}) \quad, \quad H(\mathrm{Y} \mid \mathrm{X}) \leq H(\mathrm{Y}) \text {; } \\
& \text { - } I(\mathrm{X} ; \mathrm{Y}) \leq H(\mathrm{Y}) \quad, \quad I(\mathrm{X} ; \mathrm{Y}) \leq H(\mathrm{X}) \text {; } \\
& \text { - } I(\mathrm{X} ; \mathrm{Y})=H(\mathrm{X})-H(\mathrm{X} \mid \mathrm{Y})=H(\mathrm{Y})-H(\mathrm{Y} \mid \mathrm{X}) \text {; } \\
& \text { - } H(\mathrm{X}, \mathrm{Y})=H(\mathrm{X} \mid \mathrm{Y})+I(\mathrm{X} ; \mathrm{Y})+H(\mathrm{Y} \mid \mathrm{X}) \\
& =H(\mathrm{Y})+H(\mathrm{X} \mid \mathrm{Y})=H(\mathrm{X})+H(\mathrm{Y} \mid \mathrm{X}) ; \\
& \text { - } H(\mathrm{X}, \mathrm{Y}) \leq H(\mathrm{X})+H(\mathrm{Y}) \text {. }
\end{aligned}
$$

> - $I(\mathrm{X} ; \mathrm{Y})=\circ$;
> - $H(\mathrm{X}, \mathrm{Y})=H(\mathrm{X})+H(\mathrm{Y})$;
> - $H(\mathrm{X})=H(\mathrm{X} \mid \mathrm{Y}) \quad, \quad H(\mathrm{Y})=H(\mathrm{Y} \mid \mathrm{X})$.

1. 1 اصول موضوعه

روابطى را كه بين اندازههاى اطلاع گوناگون در اين بخش و بخشههاى قبلى به دســـت آورديم به سادگى مىتوان با نمودارهاى وِن نمايش داء كادي
D. اصول موضوعه

 يكنواخحت و اندازة هارتلى به دست آورد
فرض كنيد كه يك اندازه اطلاع بايستى در سه شرط زير صدق كند. (الف) اگر تمام بر آمدها به گروههايى تقسيم شوند، در اين صورت مقادير H H برای برا همة گروههاى مختلف ضرب در وزن آمارى آنها بايد برابر كل H باشد؛ (ب)

 عدمحتميت با افزايش تعداد احتمالهاى برابر افزايش خواهو اهد يافت. براى n بر آ مد با احتمال برابـــر، H بايسـتى طبـت انــدازة هــارتلى و شــرط (ب) در صدق $H=\log n$ احتمالها برابر براى آن حساب كرد.

 با توجه به انتخاب بين شاخههايعى كه با

$$
H_{-i l}+\frac{r}{s} \log r+\frac{r}{s} \log r+\frac{1}{s} \log \ell=\log \varepsilon
$$

$$
H_{-i \prime}=-\frac{1}{r} \log \frac{1}{r}-\frac{1}{r} \log \frac{1}{r}-\frac{1}{s} \log \frac{1}{s}
$$

به طور كلى نتيجه مىشود كه

$$
H(\mathrm{X})=-\sum_{i=1}^{n} p_{i} \log p_{i}
$$

شكل Y.
 شانون را تعيين مى كند ارائه نمودند.

قضية
تابع (X) در نظر بغيريد:

$$
\text { ، } f(P)=\sum_{i=1}^{n} g\left(p_{i}\right) \text { الف }
$$

(ب) (.) در فاصل؛ [
(ب)

$$
\begin{aligned}
& f\left(p_{1} q_{1}, \ldots, p_{n} q_{m}\right)=f\left(p_{1}, \ldots, p_{n}\right)+f\left(q_{1}, \ldots, q_{m}\right) \\
& \\
& . f\left(\frac{1}{r}, \frac{1}{r}\right)=1(ت)
\end{aligned}
$$

در اين صورت

$$
f(P)=H(P)=-\sum_{i=1}^{n} p_{i} \log p_{i}
$$

از قضيه نتيجه مىشود كه در واقع ويزگى جمع يذيرى است كه اندازه اطلاع شانون را به طور يكتا تعيين مى كند.
گذشته از اين توجّه كنيد كه جون شانون اندازة اطلاعش را در 19FA معرنـــى كــرد،

 است. وتن در لُوب (1911) همة اين اندازه ها را با يكـ قالب متَحدالشكل بيان كرد.
. 1 الگُوى ارتباطى
 دلايل تاريخى، معمول اين است كه از روشى كه در آن اطلاع برحسب الگُوى ارتبـاطى به كار برده مىشود صحبت شود. در حالت الگوى ارتباطى، تأكيد بر انتقال إطلاع همان طـــور
 همحنان داراى اهميت زياد مىباشد و گرچه يكـ مسألة ارسال نمىباشد مى توان ذخـــــــيره را بر حسب آن تشريح كرد. در حين انتقال اطلاع بين منبعى كه اطلاع توليد مى كند كه آن را اغلب ارســــلـ كنـنده

 گیرنده خطاها يا تغيير شكلهايى است كه مىتواند در حين انتقال از طريت كانال ارتا ارتباطى به
 بدون-خطا باشد كه بستگى به شرايط تحميل شده توسط گيرنده دارد. بنابراين بايستى تصيحيع
 نحطاهايى كه درجهٔ اهميت كمترى دارند بتوان صرفنظر كرد

 كانال به فرستنده و گيرنده تحميل مى گردد.

شكل A. ا- الگُوى ارتباطى يتدّماتى
شرح مiصّلترى از الگوى ارتباطى در شكل (1.1) ارائه شده اســـتـت سيسـتم ارتبـاطى

 كانال اثر مى كند نيز معلوم در نظر گرفته مى وشود.

شكل 9.1- الگوى ارتباطى با جزئيات كامل
 فيزيكى موجود يا وسيلة ذخيره (الكتريكى، مغناطيسى، نورى) و روش انتخابى مدولاسيون

 فرم مناسبى براى مقصد تبديل كيل كند.

 را با كمى كدهاى سرى رمزى كنيم.

 كانال مىناميم.
اطلاعى را كه از فرستدهة اين جنين به دست آمده است بعدأ آن را بـ كانــال تحويـل

موجود به طور تصادفى مىتواند همان نتيجهاى را داشته باشد كه نماد معرفّى شده در نمـــــاد
 خطاها و احتمالاً تصحيح شده توسط كاربرد كانال كدكشا يـى بررسى مى اطشود.

 شده است نوفه تصادفى در آن ظاهر مىشود.

 ذخيرة اطلاع اشاره خواهد شد.

تمرينها
 براى ما فراهم مى كند؟ هاسخ نحود را شرح دهر دهيد.
تذكر: بر آمدهايى نظير (£) و (1،\&) متفاوت در نظر گرفته مىشوند. Y. تصادفى يک توب بدون جاى گذارى در گلدان مىباشد. آزمايش Y Y بــيرون آوردن تصادفى توپ دوم مىباشد.
(الف) مقدار اطلاع دريافتى از آزمايش X را تعيين كنيد؛ (ب) مقدار اطلاع نسبت به آزمايش Y اگر رنگ توب انتخاب شده در آزمايش X نباشد را تعيين كنيد؛ (پ) به سؤال (ب) اكنون با اين فرض كه رنگ توپ انتخاب شده در آزمايش X معلــوم است پاسخ دهيد.
r.l است. توزيع بخشها برطبت رنگ عبارتند از:

،
\1 إ قرهز،
11 المياه.
آزمايش عبارت است از هرتاب يكـ توب كوهحى روى چرخ رولت در حال گردش. بيشامد اين كه توب در يكى از پ^ بنشش قرار گیِرد داراى احتمالَ مساوى براى هر بنخش است.
(الف) آيا چه مقدار اطلاع دريافت مى كنيم اگر تنها رنگ مورد توجّه باشد؟
 (ب) (بر اين حورت برای اطلاع شرطى اگر رنگـ معلوم باشد جه نتيجهالى به دست میى آيد؟ F.I آوندى شامل ه توب سياه و ال توب سفيد است. آزمايش X بيرون آوردن تصادفى

توجّه است.
(الف) آيا آزمايش X شامل جهتدر عدمحتميت مىباشد؟
(ب) (ب) (ب)

(ت) آزمايش Y شامل چه مقدار عدمرحتميت است؟
ه. 1

اتومبيل دارند.
(الف) اگر نتيجه امتحان يكى دانشجو گفته شود جه مقدار اطلاع دريافت مى كنيه؟؟ (ب) در اعلان اين كه دانشجويه كه قبول شده داراى اتومبيل هست يا نيست هـ مقــدار اطلاع وجود دارد؟
 باقى مىماند؟
¢. 1 هستند. در هر يكـ از حالات زير جه مقدأر اطلاع كسب میى كنيه؟
(الف) اگر بدانيم كه يک دختر بور است و رنگ (آبى يا غير آبى) جشمش را به ما گفته
باشند؛
(ب) آگر بدانيم كه يك دختر حشم آبى است و رنگ (بور يا غيربور) مويش را بـه بـا
گفته باشند؛
(؟) اگر هر دو رنگ مو و چشمش را به ما گفته باشند.
V. از
 تهام دانشجويان رد شدهاند.
(الف) اگر دانشجويى كه مىداند براى دانشگاه مناسب نيست نتيجة گزينش را بشنود جـه مقدار اطلاع دريافت مى كنيم.
(ب) اگر انتخاب با يرتاب سگه معلوم شود، سؤال مشابه (الف) را پاسخ دهيد.
(ب) (بتايج (الف) و (ب) را مقايسه كنيد و توصيفى براى اختلافها بيان كنيد.
N. 1 مربوط به Y شالل Y م زير داده شده است.

$$
\left[\begin{array}{lll}
r_{H 1} & r_{i r} & r_{i r} \\
r_{r 1} & r_{r r} & r_{r r} \\
r_{r 1} & r_{r r} & r_{r r}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{v}{r f} & \frac{1}{r_{F}} & 0 \\
\frac{1}{r F} & \frac{1}{f} & \frac{1}{r_{F}} \\
0 & \frac{1}{r_{F}} & \frac{v}{r f}
\end{array}\right]
$$

 را مىدانستيد جه مقدار اطلاع دريافت مى كنيد؟
Q. 1 عنوان نتيجهاى از دگرشكلى، گاهى اوقات خطاها در حين ارسال ســاخته مىشــــوند. بيشامدهاى زير را در نظر بگيريد:
ú : يكـ "صفر " فرستاده شده باشد
u: يكى " يحى " نرستاده شده باشد
vo: يكى "
ν_{1} : يكى " يـى " دريافت شده باشد
احتمالهأى زير داده شدهاند:

$$
p\left(u_{0}\right)=\frac{1}{r}, \quad P\left(v_{0} \mid u_{0}\right)=\frac{r}{\gamma}, \quad P\left(v_{0} \mid u_{1}\right)=\frac{1}{r}
$$

(الفّ) وتتى شما مىفهميد كه كدام نـاد دريافت شده در حـــالى كــه شـــما مىدانيــد كــه " (ب) وتحى شها مىفهميد كه كدام نماد دريافت شده در حالى كه شها مى اردانيد كه كسدام نماد ارسال شده است آيا حه مقدار اطلِع كسب مى كـي كنيد؟
 است، مقدار اطلاعى را كه دريافت مى كنيد تعيين كنيد.

كدام نماد دريافت شده است، مقدار اطلاع دريافتى را تعيين كنيد.
A. 1
1.1

كسب نمود. حون مىدانيم كه مجموع وجوه برابر Y است، از و ام امكان تعــداد \&تـا
 بنابراين هنوز عدمحتميت باقىمانده وجود دارد كه مىتوان مقدار اطلاعى برابر با

$$
H^{\prime}(X)=\log \varepsilon=1, Y \& \text { يرتاب / بيت. }
$$

دريافت كرد. جون فرض شده است كه مجموع وجوه Y باشد مقدار اطلاعى كـــه از اين امر به دست مى آيد برابر است با با

$$
H(X)-H^{\prime}(X)=\log r \varepsilon-\log \varepsilon=\log \varepsilon=1, Y \leftarrow \text { خرتاب / بيت. }
$$

Y.I (الف) Yتمال این كه توب سفيد يا سياه استخراج كنيم برابر است با

$$
p(w)=\frac{n-m}{n}, \quad p(b l)=\frac{m}{n}
$$

بنابراين مقدار اطللع دريافتى از آزمايش X برابر است با

$$
\begin{aligned}
H(X) & =-p\left(w_{X}\right) \log p\left(w_{\mathrm{X}}\right)-p\left(b l_{\mathrm{X}}\right) \log p\left(b l_{\mathrm{X}}\right) \\
& =-\frac{n-m}{n} \log \left[\frac{n-m}{n}\right]-\frac{m}{n} \log \frac{m}{n}
\end{aligned}
$$

كه در آن
توب سياه مىباشند.
(ب) يكى توب به تصادف و بدون جاى گذارى بيرون مى آوريم، بنابراين هنوز $n-1$ توب

 احتمالهاى شرطى بايد تعيين شوند. اين احتمالها عبارتند از

$$
\begin{aligned}
& p\left(w_{Y} \mid w_{X}\right)=\frac{n-m-1}{n-1}, \quad p\left(b l_{Y} \mid b l_{X}\right)=\frac{m-1}{n-1} \\
& p\left(w_{Y} \mid b l_{X}\right)=\frac{n-m}{n-1}, \quad p\left(b l_{Y} \mid w_{X}\right)=\frac{m}{n-1}
\end{aligned}
$$

شكل (10.1) را ببينيد.

شكل 1. 1 (- احتمالهاى شرطى نسبت بد آزمايشهاى X Y Y تمرين (Y.1)
blx و معلوم نيست، بنــابراين دو امكــان X منگ توب مربوط به آزمايشـ وجود دارد. از اين مطلب نتيجه مىشود كه

$$
p\left(w_{\mathrm{Y}}\right)=p\left(w_{\mathrm{X}}\right) p\left(w_{\mathrm{Y}} \mid w_{\mathrm{X}}\right)+p\left(b l_{\mathrm{X}}\right) p\left(w_{\mathrm{Y}} \mid b l_{\mathrm{X}}\right)
$$

$$
=\frac{n-m}{n} \frac{n-m-1}{n-1}+\frac{m}{n} \frac{n-m}{n-1}=\frac{n-m}{n}=p\left(w_{\mathrm{X}}\right) .
$$

به طور مشابه نتيجه مىشود كه

 نميدهل، نيز ديله ميشود.
 باشد در اين صورت مقدار اطلاع در آزمايش Y

$$
\begin{aligned}
H\left(Y \mid w_{X}\right) & =-p\left(w_{Y} \mid w_{X}\right) \log p\left(w_{Y} \mid w_{X}\right)-p\left(b l_{Y} \mid w_{X}\right) \log p\left(b l_{Y} \mid w_{X}\right) \\
& =-\frac{n-m-1}{n-1} \log \left[\frac{n-m-1}{n-1}\right]-\frac{m}{n-1} \log \left[\frac{m}{n-1}\right]
\end{aligned}
$$

اگر توب سياه استخراج شده باشد، در اين صورت داريم

$$
\begin{aligned}
H\left(Y \mid b l_{\mathrm{X}}\right) & =-p\left(w_{\mathrm{Y}} \mid b l_{\mathrm{X}}\right) \log p\left(w_{\mathrm{Y}} \mid b l_{\mathrm{X}}\right)-p\left(b l_{\mathrm{Y}} \mid b l_{\mathrm{X}}\right) \log p\left(b l_{\mathrm{Y}} \mid b l_{\mathrm{X}}\right) \\
& =-\frac{n-m}{n-1} \log \left[\frac{n-m}{n-1}\right]-\frac{m-1}{n-1} \log \left[\frac{m-1}{n-1}\right]
\end{aligned}
$$

r.l (الف) اگر رنگ قسمتى را كه توب در آن ترار مى گيرد مــاهده كنيم، آزمــايش ميتواند سه بر آمد ممكن داشته باشد؛ يعنى سبز، قرمز و سياه بـــا احتمالهــا

$$
\cdot p(\text { سياه })=\frac{1 A}{r A}=\frac{9}{19}, p(\text { ترمز })=\frac{1 A}{r A}=\frac{9}{19} \cdot p(\text { سبز })=\frac{r}{r \lambda}=\frac{1}{19}
$$

اگر تنها رنگ مورد توجه باشد مقدار اطلاع برابر است با

$$
\begin{aligned}
H\left(\xi_{j}\right) & =-\sum_{i} p_{i} \log p_{i} \\
& =-\frac{1}{19} \log \frac{1}{19}-r \frac{9}{19} \log \frac{9}{19} \\
& =-\frac{r 8}{19} \log r+\log 19=1, r 75
\end{aligned}
$$

(ب) مقدار اطللع را با توجّ به اين كه هر بخش با شمارة داده شده كاملأ تعيين مي گردد
 هيدهل، بنابراين

اططلغ كسسته

مقدار اطلاع شرطى (شماره|رنخ (H) به طور وضوح برابر صفر است، ايــن مطلـب
 (پ) اطلاع شرطى اگُر رنگگ معلوم باشد برابر است با

$$
\begin{aligned}
& =0, Y \Delta-1, Y F=F, 01 \text {. }
\end{aligned}
$$

F.I (الفـ) الحتمالهای بيرون آوردن يـسك تسوب ســياه و يــا ســفيد برابـر الســت بـا

$$
\cdot p\left(w_{X}\right)=\frac{r}{r}, p\left(b l_{X}\right)=\frac{1}{r}
$$

وقتى توب را به تصادف بيرون مى آوريم مقدار اطلاع يا عدمحتميت دريافتى
برابر است با

$$
H(X)=-\frac{1}{r} \log \frac{1}{r}-\frac{r}{r} \log \frac{r}{r}=0,9 r \text { بيت. }
$$

(ب) برای آزهايش Y، اگر بر آمد X سياه باشد احتمالها عبارتند از

$$
p\left(b l_{Y} \mid b l_{X}\right)=\frac{\mathrm{F}}{\text { If }}=\frac{Y}{Y} \quad, \quad p\left(w_{Y} \mid b l_{X}\right)=\frac{1_{0}}{1 f}=\frac{\Delta}{Y}
$$

بنابراين داريم

$$
H\left(Y \mid b l_{X}\right)=-\frac{Y}{Y} \log \frac{Y}{Y}-\frac{\Delta}{Y} \log \frac{\Delta}{Y}=0, A s \text { بيت. }
$$

$$
\begin{aligned}
& \quad, p\left(w_{Y} \mid w_{X}\right)=\frac{9}{1 f}, p\left(b l_{Y} \mid w_{X}\right)=\frac{\Delta}{1 f} \\
& H\left(Y \mid w_{X}\right)=-\frac{9}{1 f} \log \frac{q}{1 f}-\frac{\Delta}{1 f} \log \frac{\Delta}{1 f}=0,9 f=
\end{aligned}
$$

(ت عدمحتميت در آزمايش Y مجموع موزون نتايج (ب) و (ب) مىباشد، يعنى

$$
\begin{aligned}
H(Y \mid X) & =p\left(b l_{\mathrm{X}}\right) H\left(\mathrm{Y} \mid b l_{\mathrm{X}}\right)+p\left(w_{\mathrm{X}}\right) H\left(\mathrm{Y} \mid w_{\mathrm{X}}\right) \\
& =\frac{1}{r} 0, A s+\frac{Y}{r} 0,9 f=0,91 \mathrm{E} .
\end{aligned}
$$

(الفش) ههار وضعيت ممكن قبول شدن، رد شدن، ماشين داشتن و ماشين نداشتن را به ترتيب با

يك مقدار اطلاع به دست مى آيد.

$$
\begin{aligned}
H(\text { نتيجى }) & =-p(s) \log p(s)-p(\bar{s}) \log p(\bar{s}) \\
& =-\frac{r}{f} \log \frac{r}{f}-\frac{1}{f} \log \frac{1}{f}=0, \lambda \mid \text { بيت. }
\end{aligned}
$$

(ب) اگر يک دانشهو كه قبول شده است اعلان كند كك ماشين دارد يـــا نــدارد، در ايـن
صورت دو امكان c c c با استمالهاى معلوم وجود دارد. بنابراين

$$
\begin{aligned}
& H(\text { قبول شده|ماشين دارد })=-p(c \mid s) \log p(c \mid s)-p(\bar{c} \mid s) \log p(\bar{c} \mid s) \\
& =-\frac{1}{10} \log \frac{1}{10}-\frac{1}{10} \log \frac{9}{10}=0, F V \text { بيت. }
\end{aligned}
$$

(؟)

$$
\begin{aligned}
& p(s, c)=\frac{r}{f} \times \frac{1}{10}=\frac{r}{\varphi_{0}}, \\
& p(s, \bar{c})=\frac{r}{f} \times \frac{1}{10}=\frac{r Y}{f_{0}}, \\
& p(\bar{s}, c)=\frac{1}{f} \times \frac{1}{r}=\frac{1}{\lambda}, \\
& p(\bar{s}, \bar{c})=\frac{1}{f} \times \frac{1}{r}=\frac{1}{\lambda} .
\end{aligned}
$$

مقدار اطلاعى كه به واسطة اعلان نتيجة امتحان بــه دســـت مى آ يــد و امكــان
مالكيت ماشين عبارت است از

$$
\begin{aligned}
& H(\text { (نتيجه })=-\frac{r}{F_{0}} \log \frac{r}{F_{0}}-\frac{r v}{F_{0}} \log \frac{r v}{F_{0}}-r \times \frac{1}{A} \log \frac{1}{A} \\
& =1, f 1 \text { بيت. }
\end{aligned}
$$

عدمحتميت باقىمانده دربارة مالكيت ماشين، اگر نتيجهٔ امتحان، داده شده باشد برابر است با

$$
\begin{aligned}
& H(\text { نتيجه |ماشيندار })=H(\text { نتيجه و مالكيت ماشين }) \\
& =\mid, f 1-0, A 1=0, s_{0} \text { بيت. }
\end{aligned}
$$

همجنين اين نتيجه را مستقيماً با محاسبة مقدار اطلاع شرطى برطبت تعريــف مقـــدار اطلХع شرطى مىتوان به دست آورد.

عاط

$$
\begin{aligned}
H(\text { نتيجه })= & \frac{r}{r}\left(-\frac{1}{10} \log \frac{1}{10}-\frac{9}{10} \log \frac{9}{10}\right) \\
& +\frac{1}{r}\left(-\frac{1}{r} \log \frac{1}{r}-\frac{1}{r} \log \frac{1}{r}\right)=0, \varepsilon_{0} \cdot
\end{aligned}
$$

\&.1 (الف) اگر او بور باشد براى رنگ جشم دو امكان، يعنى آبى و غير آبى به ترتيب با احتمال او بور است برابر است با

$$
H(ب و ر \mid \text { (برنگ })=-\frac{r}{F} \log \frac{r}{4}-\frac{1}{f} \log \frac{1}{4}=0, A 1 \text { بيت. }
$$

 (آبى |غيربور)p را تعيين كنيم. اين احتمالها را با كمكـ فرمول بـــيز مى تـــوان بـه دست آورد؛ داريم

هون يكى دختر بور است يا بور نيست، داريم

$$
\text { } p(\text { (آبى |غيربور (آبى| بور })=1 \text { + }
$$

كه نتيجه هى شود

$$
p(\text { آبى| } \quad \text { (اغيربور })=\frac{\Delta}{\wedge}
$$

در اين صورت مقدار اطللع شرطى كه دريانت ميشود برابر است با
 بر آمـ ممكن صحبت كرد. با بهرهورى از نتايج بخش - فرعى قبـلـ احتمالهــاى ايــن بر آمدها را هيدا هى كنيم كه عبارتنداز:

مقدار اطللع دريافتى برابر است با
V.I

و نشان دهيم، در اين صورت داريم

$$
p(\bar{s})=\frac{1}{f}, \quad p(r \mid \bar{s})=\frac{r}{f}, \quad p(r)=\frac{1}{r} .
$$

از اين رو داريم

$$
\begin{aligned}
& p(s)=1-p(\bar{s})=\frac{r}{\digamma} \\
& p(\bar{r} \mid \bar{s})=1-\frac{r}{\digamma}=\frac{1}{\digamma}, \\
& p(\bar{r})=1-p(r)=\frac{1}{r}
\end{aligned}
$$

به علاوه بنابر فرمول بيز داريم

$$
p(\bar{s} \mid r)=\frac{p(r \mid \bar{s}) p(\bar{s})}{p(r)}=\frac{\frac{r}{\xi} \times \frac{1}{r}}{\frac{1}{r}}=\frac{r}{\wedge} .
$$

چون

$$
p(s \mid r)=1-\frac{r}{\wedge}=\frac{\Delta}{\wedge}
$$

به طور مشابه مىتوان شهاسبه كرد كه

$$
\begin{aligned}
& p(\bar{s} \mid \bar{r})=\frac{p(\bar{r} \mid \bar{s}) p(\bar{s})}{p(\bar{r})}=\frac{\frac{1}{\xi} \times \frac{1}{f}}{\frac{1}{r}}=\frac{1}{\Lambda}, \\
& p(s \mid \bar{r})=1-p(\bar{s} \mid \bar{r})=\frac{\vee}{\Lambda}
\end{aligned}
$$

سرانجام، احتمالهاى تر كيبى هر يك از یهار تر كيبـ را مىتوان از رابطة كلى زيــر به دست آورد

$$
r_{i j}=p_{i} q_{j i}=q_{j} p_{i j}
$$

از اين رو داريم

$$
\begin{aligned}
& p(s, r)=p(r) p(s \mid r)=\frac{1}{r} \times \frac{\Delta}{\Lambda}=\frac{\Delta}{16}, \\
& p(\bar{s}, r)=p(r) p(\bar{s} \mid r)=\frac{1}{r} \times \frac{r}{\Lambda}=\frac{r}{18}, \\
& p(s, \bar{r})=p(s) p(\bar{r} \mid s)=\frac{r}{4} \times \frac{v}{1 r}=\frac{v}{16}, \\
& p(\bar{s}, \bar{r})=p(\bar{s}) p(\bar{r} \mid \bar{s})=\frac{1}{f} \times \frac{1}{f}=\frac{1}{16},
\end{aligned}
$$

 شدهاند (شكل (11.1) را ببينيد).
 دو امكان براى نتايج گزينش وجود دارد. مقدار اطللع برابر است با

$$
\begin{aligned}
H(\text { نامناسب|گزينش }) & =-p(r \mid \bar{s}) \log p(r \mid \bar{s})-p(\bar{r} \mid \bar{s}) \log p(\bar{r} \mid \bar{s}) \\
& =-\frac{r}{r} \log \frac{r}{r}-\frac{1}{r} \log \frac{1}{r}=0, A \mid \quad .
\end{aligned}
$$

 داشت. همهحنين به عنوان نتيجة تمام احتمالهاى

بدون توجَه به شرط s يا

$$
\begin{aligned}
& H(\text { (نامناسب| گزينش })=H(\text { بیش })=-\frac{1}{r} \log \frac{1}{r}-\frac{1}{r} \log \frac{1}{r} \\
&=1 .
\end{aligned}
$$

 معلوماتش استفاده كند؛ يعنى اين كه او نامناسب است. مقدأر اطلاعى كــــــ در در (ب) دريافت مى كند برابر با اطلاعى است كه بعد از یرتاب يک سخه دريافت مى كند و
 اطلاع كمترى دريافت مى كند.

شكل (11.1- أحتمالهاي توأم تهرين (V.1)
A.1 (الفش) با استفاده از ماتريس داده شده مستقيماً نتيجه مىشود كه

$$
\begin{aligned}
H(X, Y) & =-\sum_{i=1}^{r} \sum_{j=1}^{r} r_{i j} \log r_{i j} \\
& =-\left(r \times \frac{V}{Y F} \log \frac{V}{Y F}+F \times \frac{1}{Y F} \log \frac{1}{Y F}+\frac{1}{F} \log \frac{1}{\psi}\right)=r, r \cdot ت .
\end{aligned}
$$

(ب) هون براى تمام زها داريم

$$
q_{j}=\sum_{i=1}^{r} r_{i j}
$$

نتيجه مىشود كه مىشود با

$$
H(Y)=\log r=1, \Delta \wedge \text { بيت. }
$$

 مى آيد. همینين مىتوان احتمالهاى شــرطى رابطة زير قرار داد

$$
\begin{align*}
H(X \mid Y)=- & \sum_{i=1}^{r} \sum_{j=1}^{r} r_{i j} \log \left(p_{i j}\right) \\
& \cdot p\left(v_{1} \mid u_{0}\right)=1-p\left(v_{0} \mid u_{0}\right)=\frac{1}{f}:{ }_{\text {: }} \tag{الف}
\end{align*}
$$

از اين رو براي عدمرحتميت با توجْه به نمــاد دريـانت شـــده بـه فـرض ايـن
كه " صفر " ارسال شده باشد، به دست مى آوريم

$$
\begin{aligned}
H\left(V \mid u_{0}\right) & =-p\left(v_{0} \mid u_{0}\right) \log p\left(v_{0} \mid u_{0}\right)-p\left(v_{1} \mid u_{0}\right) \log p\left(v_{1} \mid u_{0}\right) \\
& =-\frac{r}{r} \log \frac{r}{f}-\frac{1}{f} \log \frac{1}{f}=0, \lambda r \quad .
\end{aligned}
$$

. $p\left(u_{0}, v_{0}\right)=p\left(v_{0} \mid u_{0}\right) p\left(u_{0}\right)=\frac{r}{\Lambda}:(ب)$ به طور مشابه داريم

$$
p\left(u_{0}, v_{1}\right)=\frac{1}{\wedge}, \quad p\left(u_{1}, v_{0}\right)=\frac{1}{f}, \quad p\left(u_{4}, v_{1}\right)=\frac{1}{f}
$$

اكنون مقدار اطللع با توجَه به نماد دريأفتى به شرط نماد ارسال شده به صورت زير

مى باشـد

$$
\begin{aligned}
H(V \mid U) & =-\sum_{i=0}^{1} \sum_{j=0}^{1} p\left(u_{i}, v_{j}\right) \log p\left(v_{j} \mid u_{i}\right) \\
& =-\frac{r}{\Lambda} \log \frac{r}{\psi}-\frac{1}{\Lambda} \log \frac{1}{\psi}-\frac{1}{\psi} \log \frac{1}{\gamma}-\frac{1}{\psi} \log \frac{1}{\psi}=0,91 .
\end{aligned}
$$

(ب) روش I: با قرار دادن احتمالهاى توأم در فرمول برايى اطلاع توأم نتيجه مىشود:

$$
H(U, V)=-\sum_{i=0}^{1} \sum_{j=0}^{1} p\left(u_{i}, v_{j}\right) \log p\left(u_{i}, v_{j}\right)=1,91 \text { بيت. }
$$

روش II : جون است با: بيت =1 H(U). اكنون نتيجه مىشود كه

$$
H(U, V)=H(U)+H(V \mid U)=1+0,91=1,91 \text { بيت. }
$$

در اين حالت، اين روش سريعتر از روش I مىباشد. (ت) (ت (ت به نماد دريافت شده نتيجه مىشود كه

$$
H(V)=-\frac{\Delta}{\Lambda} \log \frac{\Delta}{\Lambda}-\frac{r}{\Lambda} \log \frac{r}{\Lambda}=0, \Lambda \Omega .
$$

از اين رو داريم

$$
H(U \mid V)=H(U, V)-H(V)=1,91-0,45=0,90 \text { بيت. }
$$

منبع اطلحع گسستهٔ بىحافظه

$$
\begin{aligned}
& \text { r.r منبع اطلجع گسسته }
\end{aligned}
$$

با
$U=\left\{u_{i}, \ldots, u_{i}, \ldots, u_{n}\right\}$

نمايش مىدهيم. اين نمادها در نقاط زمانى گسسته توليد مى شوند. به اين دليل همراه با باين
 از نمادها را بيام يا وازيه مىناميمه.
برخى تشابهات با عبارات نوشتنى وجود دارد. در اين صورت منا منع اطاطلاع U را مىتوان

 تعداد يیامهاى ممكن برابر ممكن مىباشد.

منبع اطلجع كســته بى حافظه

$$
P=\left\{p_{1}, \ldots, p_{i}, \ldots, p_{n}\right\}
$$

 زمان بدون تغيير باقى مىمانند. در كاربردهاى بسيارى اين فرض تأييد شده امسـتـت در ايــن

 صورت از حافظة منبع سخن مى گوييم. در اين فصل يكـ منبع بیحافظه را بررسى خواهيـيم كرد؛ يعنى اين كه بگوييم نمادهاى توليد شده به طور آمارى مستقلَّند. با ملاحظة منبع اطلاع در سطع نمادى، مقدار اطلاعى كه توسط منبع گسـسته بیـامظه توليد مىشود برابر است با

$$
\begin{equation*}
H(U)=-\sum_{i=1}^{n} p_{i} \log p_{i} \text { نماد / بيت. } \tag{I.Y}
\end{equation*}
$$

 عبارت است از

$$
\begin{equation*}
\max _{u} H(U)=\log n \text { نماد / بيت. } \tag{Y.Y}
\end{equation*}
$$

همانطور كه در تضية (1.1) نشان داديم اگر احتمال وقوع همهٔ نمادها برابر باشـــند،
 اطلاع H(U) با ماكسيمم ممكن اثرى از حشو منبع به دست مىى آوريم

تعريف 1.Y
حـّو يك منبع اطلاع گسستةٔ بى حانظه را به صورت زير تعريف مى كنيم

$$
r e d=1-\frac{H(U)}{\max _{k} H(U)}=1-\frac{H(U)}{\log n}
$$

كه در آن H(U) مقدار اطلاع (حجم اطلاع) يكى منبع اطلاع با الفباى منبع باحجم n مىباشد. واضح است اگر منبعى نمادهايع با احتمال وقوع برابر توليــد كنــد در ايسن صـورت داريم $H(U)=\max H(U)$ به قسمى كه برای حشو به دست مى آوريم red

 بنابراين مقدار حشو بين o و ا تغيير خواهلد كرد.
منبعى كه مىتواند دو نماد توليد كند منبع دودويى ناميده مىشود. از مطـــــالب تبلـى
 حالت كلى، احتمالهاى نماد به ترتيبب p و (p-1) هستند و مقدار اطلاع توليد شـــده كمــتر خحواهد بود، يعنى

$$
H(U)=-p \log p-(1-p) \log (1-p) \text { نماد / بيت, }
$$

و از اين رو حشو بزر گتر خواهد بود.
R R R
يك منبع دودويى نمادهاى ه و ا را با احتمالهایى عبارت است از $U=\{0,1\}$ و علاوه بر اين داريم

$$
H(U)=-\frac{1}{f} \log \frac{1}{f}-\frac{r}{f} \log \frac{r}{f}=0, \lambda 1 \quad \text { نماد / بيت }
$$

$$
\max _{u} H(U)=\log r=1 \text { نماد / بيت. }
$$

در اين صورت حشو برابر است با

$$
r e d=1-\frac{H(U)}{\max _{u} H(U)}=1-\frac{0, \Lambda 1}{1}=0,19 .
$$

اكنون تعيين خواهيم كرد كه اگر ييامها را به جاى نمادهاى تكــى در نظــر بگــيريم براى مقدار اطلاع جه نتيجه مىشود. نخست مثال زير را بررسى خواهيمي كرد
R.Y مثال

 va
 را بررسى مى كنيم

$$
p(\circ \circ 1)=p(0) p(0) p(1)=\frac{1}{\&} \frac{1}{4} \frac{F}{f}=\frac{F}{s f} .
$$

 بيام حساب كنيم خواهيم داشت
$H(V)=-\frac{1}{S q} \log \frac{1}{S q}-r \times \frac{r}{S q} \log \frac{r}{S q}-r \times \frac{q}{S q} \log \frac{q}{S q}-\frac{r Y}{S q} \log \frac{r Y}{S q}$ =

$$
H(V)=r H(U)
$$

 احتمالهاى I نماد تكى كه بيام را مى سازند برابر است. مقدار اطلغع در سطع يیام به صورت

زير است

$$
\begin{equation*}
H(V)=-\sum_{j=1}^{n^{\prime}} p\left(v_{j}\right) \log p\left(v_{j}\right) \tag{F.Y}
\end{equation*}
$$

با نوشتز احتمالهاى $p\left(v_{j}\right)$ برحسب $p\left(u_{n}\right) ، \ldots$ ، $p\left(u_{1}\right)$ مى

$$
\begin{equation*}
H(V)=l H(U) \tag{Q.Y}
\end{equation*}
$$

 مطلب براى آن درست نخواهد بود.
همجنين مقدار اطلاع يكى منبع اطلاع را مىتوان برحسبب بيت بر واحــد زمــان مـــلا ثانيه / بيت بيان كرد. در اين صورت از توليله منبع سخن مى گُيِيم. اگر همهٔ نمادها دارایى زمان يكسان مثلا t ثانيه باشند در اين صورت توليد $H_{t}(U)$ منبع برابر است با

$$
\begin{equation*}
H_{t}(U)=\frac{1}{t} H(U) \text { ثانيه / بيت. } \tag{E.Y}
\end{equation*}
$$

اگر نمادها داراى مدّت يكسان نباشند مثلا مانند حالت كد مُرس كـــه در آن " "خــط

كد Y. F

 فرض مى كنيم كه منبع اطلاع ثيامهايى كه بيشتر از اين نمىتوان تقليل داد توليد مى كند. به دليل كارامی با حذذ حشو موجود در پيام مى خحواهيم پيامها را در حدّ امكان به طور متراكم بيان كنيم. اين فرايند به عنوان كلدكذارى منبع شناخته مىشود. تنها به چند مثال از

 در نظر بڭيريم. فرض كنيد الفباى كد با $S=\left\{s_{1}, s_{Y} \ldots, s_{r}\right\}$ داده شده باشد. اكنون كدهايـي را جسـتوجو

منبع اطلكع كسسته بى عانظه
 ناميده مىشود، مىدهرهد.

 صورت آن را يك كد فورى مىناميم.

مثال
يك منبع اطلاع داراى يك الفبا با جهار نـاد منبع خروجـى
 متفاوت برطبق جدول زير ساخته شدهاند

	A	B	C	D
u_{1}	0	\circ	0	0
u_{4}	11	0	10	01
u_{r}	0	10	11	011
u_{4}	01	11	110	111

 قبل از اين كه بتوان كدوازه

 از محدوديتهاى گوناگون مشخص شده در بالا نتيجه مىشود كه يكى رابطة يك به يك
 براى سادگى، اين كدوازهها را نِيز با را با تعيين مى گردند.
در قضية زير بررسى مى كنيم كه يكـ كد هـ شرطى بايد داشته باشد تـــا فــوراً تـابل
كدگشايى باشد.
قضية Y ا. (نابرابرى كرافت)
شرط لازم و كانى برایى وجود يكـ كد نورى آن است كه

$$
\begin{equation*}
\sum_{i=1}^{n} r^{-l} \leq 1 \tag{V.Y}
\end{equation*}
$$

 برهان
نرض كنيد تعداد كدوازهها با طول ا برابر ${ }^{\text {ب }}$ باشد. اين تعداد حداً كثر برابر r بود (w,

$$
w_{Y} \leq\left(r-w_{1}\right) r=r^{\varphi}-w_{1} r
$$

. $w_{r} \leq\left\{\left(r-w_{1}\right) r-w_{r}\right\} r=r^{r}-w_{1} r^{\varphi}-w_{r} r$ به طور مشابه و اگر m ماكسيمم طول كدوازهها باشد، در اين صورت داريم

$$
w_{m} \leq r^{m}-w_{1} r^{m-1}-w_{\uparrow} r^{m-\varphi}-\cdots-w_{m-1} r
$$

با تقسيـم آن بر ${ }^{\text {T }}$ نتيجه مى شود

$$
0 \leq 1-w_{1} r^{-1}-w_{r} r^{-r}-\cdots-w_{m-1} r^{-m+1}-w_{m} r^{-m}
$$

$$
\sum_{j=1}^{m} w_{j} r^{-j} \leq 1
$$

$$
\underbrace{\frac{1}{r}+\frac{1}{r}+\cdots+\frac{1}{r}}_{w_{1}}+\underbrace{\frac{1}{r^{r}}+\frac{1}{r^{q}}+\cdots+\frac{1}{r^{\gamma}}}_{w_{r}}+\cdots+\underbrace{\frac{1}{r^{m}}+\frac{1}{r^{m}}+\cdots+\frac{1}{r^{m}}}_{w_{m}} \leq 1
$$

ولى يكى است

$$
\sum_{i=1}^{n} r^{-l_{i}} \leq 1
$$

 نابرابرى صدق كند يكى كد فورى است.

 F.Y مثال

با كد مُرس كه در آن حروف الفبا به كدوارْهايى مر گّب از نقطه و خطط بر گردانــده

شُكل Y.Y- كد مُرس (احتمالها براي زبان انگليسى مىباشند)

مىشود، كدوازه براى حروفى كه مكرُراً ظاهر مىشوند (براى مثالل مانند حرف e e) طـــورى
 ترجيحاً شامل نقاط باشند زيرا نقطه زمان كوتاهترى از خطط دارد. يكـ نقطه دو واحد زهـــانـان
 زمان است. در شكل (Y.Y) كد مُرس ارائه شده است. تضية زير رابطة بين متوسط طول كدوازة L ا و مقدار اطــلاع يــكـ منبــع اطــلاع را بيــان

مى كند.
قضيةُ Y.Y (قضيةُ كد گذارى منبع)
مجموعة در آن تمام كدوازهها تر كيبى از نمادهاى الفباى كد بگگيريد. اگر نابرابرى كرافت برقرار باشد آنگاه

$$
\begin{equation*}
\frac{H(U)}{\log r} \leq L \tag{A.Y}
\end{equation*}
$$

كه در آن L متوسط طول كدوازه است و به صورت زير تعريف مىشود:

$$
\begin{equation*}
L=\sum_{i=1}^{n} p_{i} l_{i} \tag{9.Y}
\end{equation*}
$$

و و
برابرى برقرار مىشود اگر و تنها اگر برانى
برهان دأريم

$$
\begin{align*}
H(U)-L \log r & =-\sum_{i=1}^{n}\left[p_{i} \log p_{i}+p_{i} l_{i} \log r\right] \\
& =\sum_{i=1}^{n} p_{i} \log \left\{\frac{1}{p_{i} r^{l_{i}}}\right\}=\sum_{i=1}^{n} p_{i} \frac{\ln \left\{\frac{1}{p_{i} r^{i}}\right\}}{\ln r} .
\end{align*}
$$

هون برایى a> داريم

$$
\ln a \leq a-1
$$

 میشود كه

منبع اطلجع كسستة بى جانظه

$$
\sum_{i=1}^{n} p_{i} \ln \left(\frac{1}{p_{i} r^{l_{i}}}\right) \leq \sum_{i=1}^{n} p_{i}\left(\frac{1}{p_{i} r^{l_{i}}}-1\right)=\sum_{i=1}^{n} r^{-l_{i}}-1
$$

هون نابرابرى كرافت برترار مىباشد بنابراين نتيجه مىشود كه

$$
H(U)-L \log r \leq 0,
$$

كه دقيقاً فرمول (A.Y) را مىدهد. شرط برابرى را مىتوان مستقيماً از اين به دست آورد.
 كو حكتر از مقدار اطللاع (در مبناى r
 كدوازهها به دست مى آيد.
اين مطلب درست است اگر براى همه i ها

$$
\begin{equation*}
. l_{i}=-\log _{r} p_{i} \quad \text { L } \quad p_{i}=r^{-l_{i}} \tag{II.Y}
\end{equation*}
$$

اين را تنها اگر

 كه عدد صحيحى كه بلافاصله بالاى اين طول طريق زير انتخاب مى كنـيم

$$
\begin{equation*}
-\log _{r} p_{i} \leq l_{i}<-\log _{r} p_{i}+1 \tag{IY.Y}
\end{equation*}
$$

تـ) $\sum_{i} r^{-t_{i}}=1$ توجّه كنيد كه در حالت يك كد بهينه، يعنــى
نابرابرى كرافت مقايسه كنيد) و در حالتهاى ديگر داريم \gg

از نتطه نظر تضية (Y.Y)، اكنون ساختن معيارى براى كيفيــت يــى كــد نــيز كـار
سادها است. با نزديك شدن بيشتر
(^.ヶ)) كد كاراترى داريم.

تعريف \%. F كارايى كد η به صورت زير تعريف مىشود

$$
\eta=\frac{H(U)}{L \log r}
$$

كه در آن $H(U)$ مقدار اطلاع منبع، L طول متوسط كدوازه و r حجم الفباى كد مى باشد.
مثال $0 . Y$
يكـ منبع اطلاع داراى الفباى منبع خروجى بــا خهــار نمــاد
 فرض كنيد كه به صورت زير است:

براى اين كد داريم: بيت برابر امتت با

$$
\eta=\frac{H(U)}{L \log r}=\frac{Y}{\mid \times 1}=1=100 \% .
$$

مثال
براى همان منبع، اكنون احتمالهاى نمادهاى منبع خروجى برابرند با طرفى براى همان كد داريم

$$
H(U)=-\frac{1}{r} \log \frac{1}{r}-\frac{1}{r} \log \frac{1}{f}-r \times \frac{1}{A} \log \frac{1}{A}=\frac{r}{f} r \text { rer } \quad r=r \quad L=r
$$

در نتيجه كارايـ برابر امت با

$$
\eta=\frac{\frac{v}{f}}{\gamma \times 1}=\frac{v}{\lambda}=\lambda V, \Delta \%
$$

R.Y مثال

اكنون همان منبع اطلاع كد نمايش داده شده در جدول زير را به كار مىبرد

$$
\begin{aligned}
& \text { مجدداً داريم: } \\
& L=p_{1} \boldsymbol{r}+p_{r} r+p_{r} r+p_{r} r=\frac{1}{r} \boldsymbol{r}+\frac{1}{r} r+\frac{1}{\Lambda} r+\frac{1}{\Lambda} r=\frac{v}{r} \text {. } \\
& \text { و بنابراين كارايى برابر است با } \\
& \eta=\frac{\frac{V}{f}}{\frac{V}{f} \times 1}=100 \%
\end{aligned}
$$

r.r استراتزى كد گذارى
 به دست آيد. استراتزيهاى گرنا
 احتمال نزولى قرار داده شدهاند.
' كد فانو I

 ممكن باشد تكرار مىشود.

 با
 به صورتهاى متعدّدى ظاهر شود.

مثال $9 . Y$

 حالتى كهr r r نيز قابل استفاده ميباشد.

منبع اطل大ع كسستة بى-انظه
بنابر قضيهُ كد گذارى منبع (قضيه (Y.Y))، به طور كلّى متوسط طول كدوازه با افزايش
 10.1 مثال

كد شانون II
شانون يك سرى از احتمالهاي تجمعى كرد. اينها را بعلاً (براي كد دودويي) به صورت دودويـى مىنويسيم. تعلاد نمادهـــا در هـر كدوازه از نابرابرى زير به دست مى آيد

$$
\log \frac{1}{p_{k}} \leq l_{k}<\log \frac{1}{p_{k}}+1
$$

 مىتوان آن را به صورت $1 \times r^{-1}+1 \times r^{-r}+o \times r^{-r}+1 \times r^{-4}$ حدّآل برابر $\mathrm{log}\left(\frac{1}{p_{k}}\right)=\log 18=4$ باشد، به طورى كه براي اين نماد نيازي نيست هيَّ حفري به كد اضافه كرد.

از مثال (II.Y) ممكن است نتيجهگيرى شود كد در اين حالت روش شانون به همان كدى منجر مىشود كه از روش فانو به دست آمد (با مثال (॥.Y) بقايسه كنيــد)؛ در مـــال زير نشان داده شده است كه همواره اين چنين نيست.

مثال Y.Y

「

در كد هافمن در حالت دودويمى دو نماد منبع خروجي با كمترين احتمال با يكديگر ئري

 نماد با هم پيوند زده شده ه يا ا بـ كدواره اضافه ميشود.

مثال

مشال داده شده نتيجهاى خواهد داد كه با روش فانو قابل مقايسه است؛ روش شار شانون كد

 بايد $r+k(r-1$ نماد منبع خروجى k (k عدد صحيح) وجود داشته باشد منبع خروجى كمترى داشته باشد در اين صورت بايد را برابر صفر قرار دهيم. هثال زير را ملاحظه نماييد.
R.T F.T

براى متوسط طول كدوازه در حالت زير داريم:
كد هافمن به كار برده شود در اين صورت نتيجه خواهد شد

كد زيلبرت'-مور ' (كد الفبايى) IV

 u با u_{i}

$$
\begin{equation*}
r^{r-/ i} \leq p\left(u_{i}\right)<r^{r-1 / i}, i=1, r, \ldots, n . \tag{10.1}
\end{equation*}
$$

سس سرى نا-كاهشى (
$\alpha_{1}=\frac{1}{p} p\left(u_{1}\right)$
$\alpha_{\mathrm{r}}=p\left(u_{\mathrm{T}}\right)+\frac{1}{\mathrm{r}} p\left(u_{\mathrm{r}}\right)$
 دودويى با طول

مثال 10.1
سه حرف اول الفبا (Y.Y) را بينيد) در نظر بخيريد؛ داريم

> V

با اين كد احتمالهاى

 .

شكل r.r.
اگر نماد

منبع نظير نمادهاى منبع در نظر مى گيريم. اكنون مىتوان كد را به صورت فرايند باز گشتى كه به صورت زير عمل مى كنـــد در

 است؛ برطبت رابط؛ زير

$$
\begin{equation*}
C=C_{\text {تديمر }} P_{i} \tag{IV.Y}
\end{equation*}
$$

كه در آن در استمال ${ }^{\text {P }}$ به دست مى آَيدُ از اين رو داريم:

$$
A_{\text {法 }} P_{i}
$$

در مثال شكل (r.Y) در شروع داريم (مرحله مام):

$$
C_{q, ~}^{\text {شر }}=0,0
$$

$$
A_{t, ~}=1,0
$$

یس از

$$
\begin{gathered}
C_{\text {د }}=0,0+1,0 \times 0,0=0,0 \\
A_{\text {A }}=1,0 \times 0, \Delta=0, \Delta
\end{gathered}
$$

بس از نماد دوم،

$$
\begin{gathered}
C_{\text {دبر ب }}=0,0+0, \Delta \times 0, \Delta=0, \gamma \Delta \\
A_{\text {ب }}=0, \Delta \times 0, r=0, \lambda \Delta
\end{gathered}
$$

 نقطة حب C و پهناى A إز فاصلث حاصل به دست مى آوريم. براى اين كه كدوارٔ نهامى را

 كدگذارى شده اسست. در حتيقت، كد گشايى نرايند معكوس را با تعيين كردن مرحلــه بـه

مرحله از طريق نمادى كه ناصلة جارى را بديد آورده دنبال مى كنيه، و ناصلـــه تبلـى را از روى اين ناصله تعيين مى كنيم.

كد كذارى براساس توسعة الفبا VI

 مى مريم. اين روش را كه به عنوان توسعة الفبا شناخته شده است باري با كمك يك مثال بردسى

مثال $18 . \%$
دو نماد روش كد گذارى فانو انجام شده است.

نماد	كد $(r=\gamma)$	
u_{1}	$\Gamma / 4$	0
u_{φ}	$1 / 4$	1

 مى آوريمز

$$
H(V)=1, \text { srr } ، L=r v, 1 s ، r=r \quad \eta=0, \eta s 1 .
$$

از اين رو با اختيار دو نماد منبع با مهديگر كارايع افزايش يافته است. با كد گذارى l نماد منبع با مهديگر منبع جديدى با يك الفباى توسـعه يانتـه يعنـى با حاصلضرب احتمالها نمادى كه پيام را مى سـازند برابر است.

عهتملترين چياهها F.Y
در بخش (I.Y) مجـوعة $V=\left\{v_{1}, v_{\uparrow}, \ldots, v_{j}, \ldots, v_{n^{\prime}}\right\}$ را با پيامهاى v شامل l نماد منبع
 دارأى احتمال رخداد تابل صرنـنظر كردن باشند در حالى كه بقيــ تقريبـا احتمــال برابــر
 ييامهاى مهكن مىباشد
فرض كنيد در اين صورت در حالت منبع بیحافظه احتـال يك هيام دلخواه v با رابطء زير داده مىشود

$$
\begin{equation*}
p(v)=\prod_{i=1}^{k} p\left(u_{i}\right)^{\ell_{i}} \tag{19.Y}
\end{equation*}
$$

كه در آن k تعداد نمادهاى متغاوت در يبام v مىباشد و داريم

$$
\ell=\sum_{i=1}^{k} \ell_{i}
$$

و از اين رو

$$
\begin{equation*}
\log p(v)=\log \left\{\prod_{i=1}^{k} p\left(u_{i}\right)^{\ell}\right\} \tag{YI.Y}
\end{equation*}
$$

$$
\begin{align*}
& \text { اگر بنا به تانون اعداد بزرگ } \\
& \log p(v) \approx \log \left\{\prod_{i=1}^{k} p\left(u_{i}\right)^{\ell p\left(u_{i}\right)}\right\} \\
& =\ell \sum_{i=1}^{k} p\left(u_{i}\right) \log p\left(u_{i}\right) \\
& =-\ell H(U) \text {. } \tag{YY.Y}
\end{align*}
$$

منبع اطلجع كـستة بيسانظه

$$
\begin{equation*}
\frac{1}{\ell} \log p(v) \approx-H(U) . \tag{YY,Y}
\end{equation*}
$$

يعنى H(U) تقريباً برابر است با لگاريتم وارون احتمال يكـ دنباله معمولاً طولانى بخش بر تعداد نمادها در دنباله. اين موضوع براي هر منبعى درست است. به طور دقيقـــتر تضيـن زير را داريم.

قضيه Y.Y (تضيه شانون - مكـميالن)

 طول . $\ell \geq$ در دو دسته قرار گيرند.
(الف) مجموعة 'S كه الحتمالش كمتر از ع است.
 نابرابرى زير صدق مى كنند

$$
\begin{equation*}
\left|\frac{-\log p(v)}{\ell}-H(U)\right| \leq \delta . \tag{YF,Y}
\end{equation*}
$$

برهان
مجموعه S را مىتوان به صورت زير تعريف كرد

$$
\begin{equation*}
S=\{v|-\log p(v)-\ell H(U)|<\ell \delta\} . \tag{YQ.Y}
\end{equation*}
$$

 واريانس

$$
\begin{equation*}
p\{|x-\mu| \geq \varepsilon\} \leq \frac{\sigma^{\gamma}}{\varepsilon^{\eta}} . \tag{Y,Y}
\end{equation*}
$$

با به كار گيرى اين نابرابرى دربارة مجموعة S به دست مىآوريم

$$
\begin{align*}
p\{|-\log p(v)-\ell H(U)| \geq \ell \delta\} & \leq \frac{\operatorname{var}[-\log p(v)]}{\ell^{\top} \delta^{\top}} \\
& \leq \frac{\ell \delta^{\dagger}}{\ell^{\top} \delta^{\top}}=\frac{\delta^{\gamma}}{\ell \delta^{\top}}, \tag{YV.Y}
\end{align*}
$$ كه در آن

$$
\sigma^{\mu}=\sum_{p\left(u_{i}\right)} p\left(u_{i}\right)\left(\log p\left(u_{i}\right)\right)^{r}-\left(\sum_{p\left(u_{i}\right)} p\left(u_{i}\right) \log p\left(u_{i}\right)\right)^{\prime}
$$

ثابتى مستقل از ℓ است.
در نتيجه برایى ℓ به تدر كافى بزرگ متعلّق به مجموعة 'S باشد الـ از ع كمتر است
 مجموعهُ S باشد در نابرابرى زير صدق مى كند

$$
\begin{equation*}
1-\varepsilon<p(S) \leq 1 \tag{YA.Y}
\end{equation*}
$$

 كرانهايى براى تعداد اعضاى S ارائه مى كند كه با $M=\mid S$ نشان داده مىشود. F.Y قضيله

براى M تعداد كدوازههاى منبع در S مجموعة محتملترين وازمهاى منبع، داريم

$$
\begin{equation*}
(1-\varepsilon) \mathrm{r}^{\ell\{H(U)-\delta\}} \leq M \leq r^{\ell\{H(U)+\delta\}} \tag{YQ.Y}
\end{equation*}
$$

برهان
ز

$$
\left|\frac{-\log p(v)}{n}-H(U)\right|<\delta
$$

نتيجه مىشود كه

$$
r^{-\ell\{H(U)+\delta\}} \leq p(v) \leq r^{-\ell\{H(U)-\delta\}}
$$

و از اين رو داريم

$$
\begin{align*}
& \sum_{v \in S} r^{-\ell\{H(U)+\delta\}}<p(S) \leq \sum_{v \in S} r^{-\ell\{H(U)-\delta\}}, \tag{YוY}\\
& M r^{-\ell\{H(U)+\delta\}}<p(S) \leq M r^{-\ell\{H(U)-\delta\}} . \tag{rY.Y}
\end{align*}
$$

همجِنين (معادله (YA.Y) را ببينيد)

منبع اطلجع كسسته بى سافظه

$$
1-\varepsilon \leq p(S) \leq 1 .
$$

بنابراين

$$
\begin{equation*}
M Y^{-\ell\{(H(U)+\delta\}} \leq 1 \tag{rF.Y}
\end{equation*}
$$

كه تضيه را ثابت مى كند.
برایى ع و ס كوچحى نتيجه مىشود كه

$$
\begin{equation*}
M \approx r^{-\ell H(u)} . \tag{ra.r}
\end{equation*}
$$

هجون مقدار اطلاع منبع حدآكثر برابر با $\log n$ است، يعنى اگر همــــة وازْهــاى منبـع احتمال يكسان داشته باشند، نتيجه مىشود كه

$$
M_{\max }=r^{\log n}=n^{\ell},
$$

كه دقيقاً برابر تعداد پيامهاى ممكن است. بنابراين برای منبعى كــــه در آن

 كوجكى قابل صرفنظر كردن مىباشند.
 بيامهاى يكـ منبع اطلاع گسسته M و حجم اطــلاع منبــع وجــود دارد

 بيام منبع نسبت مىدهيم. نمادهاى متبع از يكـ الفبــاى الفباى $S=\left\{s_{1}, s_{\psi}, \ldots, s_{r}\right.$ انتخاب شده|ند. در اين صورت تعداد بيامهاى ممكن منبع برابر

موجود برابر ${ }^{L}$ است. بنابراين مدكن است هر هيام را به يكـ كدوازهاى كدگـذارى كــرد

$$
\frac{L}{\ell} \geq \frac{r^{L} \geq n^{\ell}}{\log n}=\log _{r} n, ~
$$

چحون در اين صورت يكـ كدوازه براى هر بيام منبع وجــود دارد. بــا وجــرد ايسن، نتيجــه مى شود كه تنها بايد M تعداد محتملترين پيامها را مورد توجه ترار داد. اين امر بــــه تضيــة كد گذارى منبع زير منجر مىشود.
تفية
منبع اطللع گسسته بیحافظلى با مقدار اطلاع كدوازههايع به طول L از يك الفباى كد با حبم r كد اگر اين صورت مىتوان

$$
L \log r \geq \ell H(U)
$$

صدت كند و ℓ به قَر كافى بزر گ باشد. برهان
از تضية تبل مىدانيم كه تعداد وازْهاى منبع در S از S
تضيه داريم
$L \log r \geq \ell H(U)$.
(MV.Y)

بنابراين 8اى مىتوان انتخاب كرد به تسمي كه

$$
\begin{gather*}
L \log r \geq \ell\{H(U)+\delta\} \\
r^{L} \geq r^{\ell\{H(U)+\delta\}} \tag{ra,Y}
\end{gather*}
$$

در نتيجه تعداد كدوازهها بلو كى به طول L (=r $)$ از تعداد وازههاى منبع در S بزر گتر است.
 كافى بزرگ داريم، ع >

منبع اطلاع كسسته بى حافظه
اين بدين معنى است كه وقتى يكـ وازة منبع با طول زياد انتخاب شده باشد مىتـــــوان بى-خحطا كد گذارى كرد، حتى اگر تعداد كدوازْهاى ممكن از تعداد بیامهاى ممكن كمتر
 تذكر داده شد مىتواند به كد كاراترى منبر گردد.
D.Y

در تمرينهاى ذيل فرض شده است كه نمادهاى متوالى به طور آمارى مستقلّند.
I.Y احتمالهاى اين نمادها به ترتيب برابر است با ال, ال,
(الف) مقدار اطلاع هر نماد را حساب كنيد.

(ب) مقدار اطلاع را براى هر دو بند (الف) و (ب) براى هر هيام دونمادى حساب كنيد. (ت) (تشو منبع اطلاع را سحساب كنيل.
 مدّت

يك Y.Y

(الف) مقدار اطللاع براى هر نماد هیقد است؟

(ت (ت با كمك روش فانو يا شانون يك كد كد كارا بدهيد.
(ث) كارايعى كدى كه به اين طريت به دست آمده هـهذر است؟

كد خواسته شده را با بهرهورى از روش فانو تعيين كنيد.
(الف)
(ب) كارايى كد به دست آمده را تعيين كنيد.
F.Y بايد با پهار كدنماد a ، a, b ك كدگذارى شوند.

كد مورد نياز را با بهرهورى از روش فانو به دست آوريد.
(ب) كارايى كد به دست آمده را تعيين كنيد.
U.Y نمادها به ترتيب عبارتند از $\frac{1}{18}, \frac{1}{18} \times \frac{1}{A} \leqslant \frac{1}{8} \times \frac{1}{4}$
 (ب) كارايع كد به دست آبده را تعيين كنيد.
S.Y نمادها به ترتيب عبارتند از
(الفش) كد مناسب دودويع براى اين نمادهایى يیام بيابيد.
(ب) كارايع كد حاصل را تعيين كنيد.

مناسب دودويع براى أين كار بيابيد.
كارامی كد به دست آمده در (ب) را تعيين كنيد.
 ترتيب ارتباطى متّصل شده است كه از سه نماد b، a و a استفاده مى كند.

كد و كارايـى كد را بر مبناى روشهاى غانو و هافمن بيابيد.
 توجّ كنيد كد بايستى تابل كدگشايى فورى باشد.
A.Y
 شدهاند، نتايج به صورت زير بوده است.

منبع اطلاع كسستة بيحاذظه

براساس اين دادهها مىخواهيم براى تر كيب دو یاسخ يك كد بـيازيم و بيــن كد دودوعى و سهسهاى مقايسهاى انجام دهيم.
(الف) يكى كد دودويى مناسب برطبت روش فانو تعيين كنيد.
(ب) (ب) يك كد سهسالى مناسب برطبت روش نانو بيابيد.
(پ) تمايل خود را بر مبناى كارایى هر دو كد بيان كنيد.
Q.Y ارائه نماييد.

u_{i}	u_{i}	u_{r}	u_{r}	u_{f}
$p\left(u_{i}\right)$	0,1	$0, r$	$0, \gamma$	$0, f$

اين روش را بر مبناى كارايى با يـــ كدگـذارى بـه روش شــانون و يـــ كدگذارى به روش هافدن مقايسه كنيد.
(lo.r

$$
p(1)=p(\curlyvee)=\frac{1}{r}, p(\curlyvee)=p(\uparrow)=\frac{1}{q}, p(\Delta)=p(\varepsilon)=p(\vee)=\frac{1}{\gamma Y}
$$

مىباشد. مىنواهيم بر آمدهاى آزمايش را با يكـ كانالل دودويع يا سهسهاى ارســــال

(الف) يك كد براى كانال دودوعى برطبت روش هافمن بيابيد و كاراحى آن را تعيين كنيد. (ب) (ب) يك كد براى كانال سهسهأى برطبت روش فانو بيابيد و كارامى آن را را تعيين كنيد.
 هزينهها را مىنيممم كنيم ترجيع مىدهيد؟ در اين صورت مقدأر اين هزينه جه قدر
II.Y

كيام	ry
1	0
01	1
001	r
0001	r
0000	F

(الف) آيا اين كد به طور يكتا قابل كد گشايى و قابل كد گشايى فورى است؟ (ب) (ب) متوسط مقدار اطلاع براى هر كدنماد ابـلماد را تعيين كنيد. (ب) كارایی این كد چه قدر است؟

 (ت) كارايى اين كدها را مقايسه كنيد.
(ث) (ث (ثدار اطلاع برایى هر نماد را برایى كد دودوهى (با گرد كردن احتمالها تا يكـ رقم اعشار) بيابيد.

> Y.Y جوابها
(الف) I.Y نماد به دست مى آوريم

منبع اطاع كـسـته بى مانظه

$$
\begin{aligned}
H(U) & =-\sum_{i=1}^{r} p\left(u_{i}\right) \log p\left(u_{i}\right)=-\frac{V}{10} \log \frac{V}{10}-\frac{Y}{10} \log \frac{Y}{10}-\frac{1}{10} \log \frac{1}{10} \\
& =-\frac{Y}{10} \log v-\frac{Y}{10} \log 10=1,10 \text { نماد } 10 .
\end{aligned}
$$

(ب) (ب) احتمال (توليد شده به طور آشارى مستقَلند، به صورت حاصل ضر نوشت، بنابراين براى احتمالهاى

$$
\begin{aligned}
& p\left(v_{1}\right)=p\left(u_{1}, u_{1}\right)=p\left(u_{1}\right) p\left(u_{1}\right)=0,44, \\
& p\left(v_{\mathrm{r}}\right)=p\left(u_{1}, u_{\mathrm{r}}\right)=p\left(u_{\mathrm{r}}\right) p\left(u_{\mathrm{r}}\right)=0,1 \mathrm{f}, \\
& p\left(v_{r}\right)=p\left(u_{1}, u_{r}\right)=p\left(u_{r}\right) p\left(u_{r}\right)=0, \circ \vee, \\
& p\left(v_{\uparrow}\right)=p\left(u_{\uparrow}, u_{1}\right)=0,1 f, \\
& p\left(v_{\mathrm{s}}\right)=p\left(u_{\mathrm{r}}, u_{\mathrm{r}}\right)=0, \circ \uparrow, \\
& p\left(v_{s}\right)=p\left(u_{\mathrm{r}}, u_{\mathrm{r}}\right)=0, \circ \mathrm{~F}, \\
& p\left(v_{\vee}\right)=p\left(u_{r}, u_{1}\right)=0,0 \vee, \\
& p\left(v_{\mathrm{A}}\right)=p\left(u_{\mathrm{r}}, u_{\mathrm{r}}\right)=0, \circ \mathrm{Y}_{\mathrm{r}}, \\
& p\left(v_{q}\right)=p\left(u_{r}, u_{r}\right)=0, \circ 1 .
\end{aligned}
$$

(ب) با توجه به (الف) داريم

$$
H(V)=l H(U)
$$

 مىشود در صورتى كه نهادهاى متوالى به طور آلارى مستقل باشند. از اين رو

$$
H(V)=\nabla H(U)=\gamma, \Gamma_{0} \text {. }
$$

با توجّه به (ب) داريم

$$
H(V)=-\sum_{j=1}^{1} p\left(v_{j}\right) \log p\left(v_{j}\right)
$$

$$
\begin{aligned}
& =-0, f q \log 0, f q-0,1 f \log 0,1 f-0,0 \vee \log 0,0 V
\end{aligned}
$$

$$
\begin{aligned}
& -0, \circ Y \log _{0, \circ} \times-0, \circ Y \log 0, \circ r-0, \circ 1 \log _{0,01} \\
& \text { = }
\end{aligned}
$$

از ايِن رو هر دو نتيجه برابرند كه موافت با تضيه ميباشد.
(ت) حشو برابر است با

$$
\text { red }=1-\frac{H(U)}{\max _{n} H(U)}=1-\frac{1,10}{\log r}=0, Y Y .
$$

(ث) براى اطلاع در ثانيه داريم

$$
H_{t}(U)=\frac{1}{t} H(U) \text { ثانيه / بيـت, }
$$

كه در آن t متوسط مدتت زمان يك نماد است.

از اين رو

$$
H_{t}(U)=\frac{1}{0,001 f} 1,1 \Delta=\text { ArI,ff } 4 \text { ثانيه / بيـت. }
$$

(الف) مثدار اطل大ع بر نماد عبارت است از

$$
\begin{aligned}
H(U)= & -\sum_{i=1}^{A} p\left(u_{i}\right) \log p\left(u_{i}\right) \\
= & -\frac{1}{r} \log \frac{1}{r}-\frac{1}{r} \log \frac{1}{f}-\frac{1}{A} \log \frac{1}{A}-\frac{1}{18} \log \frac{1}{19}-\frac{1}{r r} \log \frac{1}{r r} \\
& -\frac{1}{s f} \log \frac{1}{s f}-r \times \frac{1}{1 r A} \log \frac{1}{1 r A}=1 \frac{s r}{s q}=1, q A=
\end{aligned}
$$

(ب) احتهال صفر را مىتوان به صورت زير تعيين كرد:

$$
p(\circ)=\frac{\sum_{i} p\left(u_{i}\right) c_{i \circ}}{\sum_{i} p\left(u_{i}\right) l_{i}}
$$

كه در آن
مى سازند. از اين نتيجه مىشود

$$
\begin{aligned}
& \left.p(0)=\left\{\frac{1}{r} r+\frac{1}{\gamma} r+\frac{1}{\lambda} r+\frac{1}{i f} r+\frac{1}{r r} r+\frac{1}{8 q} i+\frac{1}{i r \lambda}\right)\right\} \frac{1}{r}=0, \lambda . \\
& \text { بنابراين }
\end{aligned}
$$

(ب) برای كارايى داريم

$$
\eta=\frac{H(U)}{L \log r}
$$

كه در آن L متوسط طول كدوازهها مىباشد. هون كدگذارى تعينى و يكـ به يك است، هيِّ عدمحتميتى معر"نى نشده است؛ بنابراين H(U) مقـــــدار اطــلاع نمادهــا
 مى شود

$$
\eta=\frac{1,9 \lambda}{r \times 1}=0,88 .
$$

(ت) با احتمالهاى داده شده روش فانو و شانون به يك كد منجر مىشود؛ نتيجه مىشود:

(ث) براى تعيين كارايح ابتدا بايد متوسط مدّت زمان كدوارْهها را محامبه كرد. داريم

$$
L=\frac{1}{r} \varphi+\frac{1}{q} r+\frac{1}{\wedge} r+\frac{1}{i q} q+\frac{1}{r r} \Delta+\frac{1}{s q} \varepsilon+r \times \frac{1}{1 r \lambda} r=1 \frac{s r}{s q}=1,9 \wedge .
$$

در اين صورت كارايى برابر است با

$$
\eta=\frac{1,9 \lambda}{1,9 \lambda \times 1}=1
$$

 گروه با احتمالهاى تقريباً يكسان انجام مىشود. در اين روش كد زير نتيجه مىشود

(ب) مقدار اطلاع برای هر نماد عبارت است از

$$
H(U)=-\frac{r}{A} \log \frac{r}{A}-\frac{1}{s} \log \frac{1}{s}-r \times \frac{1}{A} \log \frac{1}{A}-\frac{1}{1 r} \log \frac{1}{1 r}=r, r a ~ ب ي ت
$$

به علاوه بايد متوسط طول كدوازه را تعيين كرد. اين برابر است با

$$
L=\frac{r}{A} r+\frac{1}{g} r+r \times \frac{1}{A} r+\frac{1}{i r} r=1, \varepsilon r \Delta .
$$

در اين حالت كارايى برابر است با

$$
\eta=\frac{H(U)}{L \log r}=\frac{r, r q}{1,5 r \Delta \log r}=0, \Delta r .
$$

(الف) F.Y مىدهد:

منبع اطلاع كـسـته بى حافظه
يادآورى: كد ديگر، يعنى كد II نتيجة بهترى مىدهد (يعنــى يــى كــد بـا
متوسط طول وازء كمتر).
(ب) مقدار اطلاع برابر است با

$$
H(U)=-\frac{1}{r} \log \frac{1}{r}-\frac{1}{\Delta} \log \frac{1}{\Delta}-r \times \frac{1}{s} \log \frac{1}{s}-r \times \frac{1}{r r} \log \frac{1}{r r}-\frac{1}{r_{0}} \log \frac{1}{r_{0}}
$$

نماد / بيت
متوسط طول كدوازة: كد I برابر است با

$$
L=\left(\frac{1}{r}+\frac{1}{\Delta}\right) r+\left(\frac{r}{s}+\frac{r}{r}+\frac{1}{r_{0}}\right) r=\frac{r 1}{r_{0}}=1, \Delta \Delta .
$$

در اين صورت كارامى اين كد عبارت است از

$$
\eta=\frac{H(U)}{L \log r}=\frac{\gamma, \delta 千}{1, \Delta \Delta \log f}=0, \Delta \Delta .
$$

با كد II كارايى برابر 10 ه است.
D.Y (الف) با به كارگيرى روش فانو بهترين كد به صورت زير است

(ب) مقدار اطلع در اين حالت برابر است با

$$
\begin{aligned}
H(U) & =-\frac{1}{r} \log \frac{1}{r}-\frac{1}{f} \log \frac{1}{f}-\frac{1}{A} \log \frac{1}{A}-r \times \frac{1}{1 s} \log \frac{1}{18} \\
& =\frac{10}{A}=1, A v \Delta \text { / } / \text { /ديت. }
\end{aligned}
$$

متوسط طول كدوازه عبارت است از

$$
L=\left(\frac{1}{r}+\frac{1}{r}\right) r+\left(\frac{1}{A}+r \times \frac{1}{18}\right) r=1, r \Delta .
$$

بنابراين كارايع اين كد برابر است با

$$
\eta=\frac{1, \lambda v \Delta}{1, Y \Delta \log r}=0, q \Delta
$$

(الف)

(ب) مقدار اطلاع برابر است با

$$
H(U)=-\frac{1}{r} \log \frac{1}{r}-\frac{1}{r} \log \frac{1}{r}-\frac{1}{s} \log \frac{1}{s}=1, F s \text { نماد / بيت. }
$$

متوسط طول كدوازه برابر اسـت با

$$
L=\frac{1}{r} 1+\left(\frac{1}{r}+\frac{1}{s}\right) r=1, \Delta
$$

بنابراين كارامى اين كد به صورت زير نتيبه مىشود

$$
\eta=\frac{1, f s}{1, \Delta \log \gamma}=0,9 v
$$

 نزولى مرتّب شوند روش فانو كد زير را مىدهد (جوابهاى بيشترى امكانیذير است):

(ت) مقدار اطلاع يكـ زوج نماد به اندازة دو برابر يكى نماد است زيرا نمادها از يكديگر

اكنون متوسط طول كدوازَهها برابر مىشوند با

$$
L=\left(\frac{1}{r}+\frac{1}{8}\right) r+\left(\frac{1}{s}+\frac{1}{1}\right) r+\left(\frac{1}{1 r}+\frac{1}{1 r}+\frac{1}{1 \lambda}\right) r+\left(\frac{1}{1 \lambda}+\frac{1}{r s}\right) \Delta
$$

كه توسط آن داريم

$$
\eta=\frac{r, Q r}{r, Q Y \log r}=0, Q \lambda .
$$

از اين رو با اختتيار نهادها با يكديكر كارايـ مقدارى بهبود مىيابل.
(الف) V.Y

روش ديخر روش هانمن است؛ اين روش كد زير را مىدهد

مقدالر اطلاع براى هر نماد برابر امت با

$$
\begin{aligned}
& H(U)=-r \times \frac{1}{r} \log \frac{1}{r}-r \times \frac{1}{A} \log \frac{1}{A}-r \times \frac{1}{1 s} \log \frac{1}{1 s}-r \times \frac{1}{r r} \log \frac{1}{r r}
\end{aligned}
$$

متوسط طول كد براى روش ذانو برابر امت با

$$
L=1 \times \frac{1}{r}+r\left(\frac{1}{r}+\frac{1}{A}+\frac{1}{A}\right)+r\left(\frac{1}{1 s}+\frac{1}{1 s}+\frac{1}{1 s}+\frac{1}{r r}+\frac{1}{r r}\right)=r,
$$

و براى روش هانمن عبارت امت از

$$
L=1\left(\frac{1}{f}+\frac{1}{r}\right)+r\left(\frac{1}{A}+\frac{1}{A}\right)+r\left(\frac{1}{18}+\frac{1}{18}\right)+f\left(\frac{1}{18}+\frac{1}{r r}+\frac{1}{r r}\right)=\frac{10}{A}=1, A M
$$

ور نتيجه روش هانمن بد كد كاراترى منجر مىشود.
(لب) اگك كدنهاد c نبايستى با c دنبال شود نمىتوان اجازه داد كـ

- تر كيب cc در يك كدوازه ظاهر شود.
- يك كدوازه با c ختم شود، اگر بيش از يك كدوازه با c شروع شود. يك كد ممكن به صورت زير امت

متوسط طول براى اين كد برابر است با

$$
L=\frac{1}{f}+r \times\left(\frac{1}{f}+\frac{1}{\lambda}\right)+r \times\left(\frac{1}{\lambda}+\frac{r}{18}\right)+f \times\left(\frac{1}{r r}+\frac{1}{r r}\right)=r, \lambda r .
$$

بنابراين كارايع برابر است با

$$
\eta=\frac{Y, \lambda Y}{r, \lambda r \log r}=0, \lambda 1 .
$$

A.Y (الف)، (ب) با تركيب دو ثاسخ 9 امكان به وجود مى آيد. يس از ترتيـبـب مجــدّد به صورت احتمال نزولى كدهاى زير با روش فانو به دست مى آيد:

(ب) مقدار اطلاع بيام با مجموع مقدار اطلغع نسبت به سؤال ا و سؤال ץ برابر است. ايـن نتيجه مىدهد

$$
\begin{aligned}
H(V)= & -0, \Delta \log 0, \Delta-0, f \log 0, f-0,1 \log 0,1 \\
& -0, \varepsilon \log _{0, ~}, ~
\end{aligned}
$$

براى كد دودويم در (الف) متوسط طول برابر است با

$$
L=Y \times 0, \Delta \digamma+Y \times 0, Y 0+\mp \times 0, Y Y+\Delta \times 0,0 \uparrow=Y, Y \xi,
$$

بنابراين كارايع برابر مىشود با:

$$
\eta_{a}=\frac{r, v r}{r, v s \log r}=0,99
$$

براى كد سهسهاى در (ب) متوسط طول برابر است با

$$
L=1 \times 0, r_{0}+r \times 0,4 \xi+r \times 0,4 s=1,4 \varepsilon,
$$

بنابراين در اين جا كارامى برابر است با

$$
\eta_{b}=\frac{r, r r}{1,4 s \log r}=0, \Lambda \Lambda .
$$

بنابراين براساس كارايى كد دودويـ ترجيح داده مىشود.
Q.Y

يك كد برطبت روش زيلبرت -مور با تعيين طول كدوازه براى هر نمـــاد بــه دست آورده و سیس يک سرى صعودى سرى دودويع است مىسازيبَ براى نماد ${ }^{\text {د }}$ داريم

$$
r^{-t}<p\left(u_{1}\right)=\frac{1}{10}<r^{-r},
$$

بنابراين نمادهاى (دودوعى) با طـــول مىشود با هاه ر= شود در اين صورت عدد باقىمانده را به همين روش تعيين مى كنيم. جدول زير نتيجهُ كد را مىدهد:

براى به دست آوردن كارايى اين كد ابتدا بايد محتواى اططلاع منبع را تعييــنـ كرد، كه به صورت زير داده مىشود:

$$
\begin{aligned}
& H(U)=-\sum_{i=1}^{\ddagger} p\left(u_{i}\right) \log p\left(u_{i}\right) \\
& =-0,1 \log 0,1-0, r \log 0, r-0, Y \log \circ, Y-0, f \log _{\circ}, f \\
& \text { =1,A } 1 \text {. نماد / بيت. }
\end{aligned}
$$

متوسط طول كدوازه برابر است با:

$$
L=0, \boldsymbol{l} \times \Delta+0, r \times r+0, Y \times f+0, f \times r=r, F,
$$

بنابراين كارايع برابر است با:

$$
\eta_{G}=\frac{1, \Delta \Delta}{r, f \times 1}=0, \Delta f
$$

یس از ترتيب مجلّد نمادها برطبت احتمال صعودى، يك كــــد برطبـت روش شانون به صورت زير به دست مى آيد:

اكنون متوسط طول كدوازه عبارت است از

$$
L_{S}=0, \mathcal{F} \times Y+0, \Psi \times Y+0, Y \times Y+0, \boldsymbol{j} \times F=Y, F,
$$

كه كارايع زير راميدهد

$$
\eta_{S}=\frac{1, A \Delta}{Y, F \times 1}=0, \mathbf{Y Y}
$$

در یايان، كد برطبت روش هافمن با انتخــاب هيومسته دو نمـاد بـا كمــترين احتمال رخداد با همديگر به دست مى آيد. با اين روش كد زير نتيبه مىشود:

متوسط طول كد برطبت روش هانمن برابر است با
$L_{H}=0, r \times 1+0, r \times r+0, r \times r+0,1 \times r=1,9$,
بنابراين كارايى عبارت است از

$$
\eta_{H}=\frac{1, \Delta \Delta}{1,9 \times 1}=0,9 \times .
$$

 مىشود، يعنى اين كه ترتيب نمادها يكسان باقى مىماند. lo.Y نزولى دخداد مرتب كرد. برای مثال يكـ كد هانمن دوديى دويى به صورت زير است:

براى تعيين كارايه، ابتدا مقدار اطللع دا محاسبه مى كنيم:

$$
H(U)=-r \times \frac{1}{r} \log \frac{1}{r}-r \times \frac{1}{q} \log \frac{1}{q}-r \times \frac{1}{r r} \log \frac{1}{r r}=r, r q \text { نـاد / بيت. }
$$

متوسط طول برابر است با:

$$
L_{H}=\frac{1}{r} \times(1+r)+\frac{1}{q} \times(r+r)+\frac{1}{r v} \times(\Delta+s+s)=s \Delta / r v=r, F 1 .
$$

بنابراين كارايه برابر است با:

$$
\eta_{H}=\frac{r, r q}{r, f 1 \times 1}=0,90 .
$$

(ب) براى تعيين يكـ كد سهسهاى فانو نمادها را همواره به سه گروه تقريبــاً هماحتمـال تقسيم مى كنيم. كدنمادها را با b، a و a نشان می

متوسط طول اين كد برابر است با

$$
L_{F}=\frac{1}{r} \times(1+1)+\frac{1}{9} \times(r+r)+\frac{1}{r r} \times(r+r+r)=\frac{1 r}{9},
$$

كه كارايى آن عبارت است از

$$
\eta_{F}=\frac{r, 59}{1,45 \times 1, \Delta \Lambda}=1,00 .
$$

 مىنيمم متوسط هزينه تبديل مىشوده

$$
\operatorname{Costs}_{H}=\left(s_{\Delta} / \Psi V\right) \times 1, \Lambda_{0}=\uparrow, \pi r(\underset{\sim}{*}) .
$$

هزينه كد فانو عبارت است از

$$
\operatorname{Costs}_{F}=(1 r / q) \times r, v_{0}=r, Q_{0}(\underset{و ن د)}{ }) .
$$

بنابراين در اين سالت نيز كد ذانو از مزيّت برترى بهرهمند مى گردد.
(الف) II.Y

 اگر آنها در دنبالهاى از نمادها رخ دهند.

 به صورت زير تعيين كرد؛ مثلاُ

$$
p(r)=p(0)^{r} p(1)=0, \lambda^{r} \times 0, Y=0,1 \circ r f .
$$

از اين رو احتمالهاى زير به دست مى آيند:

بنابراين محتواى اطلاع براى هر كدنماد برابر است با
$H(U)=-0,1 \log _{0}, r-0,1 \varepsilon \log 0,1 \varepsilon-0,1 \uparrow \wedge \log 0,1 \mid \uparrow$
نماد / بيت (ب) كارایى به صورت زير است

$$
\eta=\frac{H(U)}{L \log r}=\frac{r, j r}{1 \times \log \Delta}=0,9 r .
$$

IY.Y (الف) روش شانون احتمال تجمعى
زير به دست مى آ يند:

منبع اطلجع كـسته بیى حافظه

$$
\log \frac{1}{p_{k}} \leq l_{k} \leq \log \frac{1}{p_{k}}+1
$$

نتيجئ نهايع به صورت زير است

 كنيّ؛ لذا به دست مى آوريم

 احتمالهاى تقريباً برابر براى هر گروه مى

$L \log r$ (ت)
مىتوان آن را انجام داد. از اين رو داريم

ك	L	$\log r$	$L \log r$
I	$r, 09$	1	$r, 09$
II	$1,9 \Delta$	$1, \Delta \Lambda$	$r, 51$
III	$1, r_{0}$	r	r, ρ_{0}

براساس اين بجدول مىتوان نتيجه گرفت كد كد نانو بهترين است، ولــو ايـن كه اخختلاف كمى نسبت به كد هافمن دارد.
(ث) با كد دودويى يافته شده در (الف) براى احتمال حنر نتيّهه میشود كه

$$
p(\circ)=\frac{1}{L} \sum_{i=1}^{A} p\left(u_{i}\right) c_{i}(\circ)
$$

كه در آن (o c_{i} تعدا صفرها در كدوازه برای نماد u_{i} است. نتيجه میشود كه

$$
\begin{aligned}
& p(0)=\frac{1}{r, 09}[0, Y Y \times Y+0, Y 千 \times 1+0, Y 0 \times Y+0,09 \times Y+0,0 \Delta \times 1 \\
& +0,0 f \times 1+0,0 f \times 1+0,0 \gamma \times 0]=0, \Delta, \\
& \text {. } p(1)=1-p(\circ)=0 \text { ر از اين رو }
\end{aligned}
$$

بنابراين محتواى اططلاع براى هر كدنماد دودويى برابر است با

$$
H(U)=-0, \Delta \log \circ \Delta-\Delta, \Delta \log \circ, \Delta=1 \text { = } 1
$$

منبع اطلУع گسسته باحافظه

س.ا فرايندهاى مار كوف

 سيگنال مستقل باشند. نـدست

منبع اطلحع كـستـن بیحافظه
(الف) مقادير متغيّرهاى تصادفى تبل از از (ب) k (ب) منيمم مقدارى است كه براي آن (الف) معتبر است.
در اين صورت احتمال شرطى مقدار تمام مقادير قبلى مقادير مىدهد، مار كوف به حالت جديد

$$
S_{j}=\left(u_{n-(k-1)}, u_{n-(k-r)}, \ldots, u_{n}\right) .
$$

 بودن توزيع احتمال شرطى
 حالت

 حالت

 بايستى بزر گتر از 1 باشد، در متون ريانى رياضى جارى صرنا

 انتقال تعيين ثى گردد. مىتوان حالتهاى اين حنين تعريف شده را با احتمالهـاى انتمالنــان در يــكـ نمـودار حالت رسم كرد. مى توان دنبالهاى از نمادهاى به طور آمارى مستقل را به عنوان ســادهترين

 زنجير را مىتوان همانطور كه در شكل (ا. ا) نـــان داده شده است، نمايش داد. براي يك زنجير مار كوف از مرتبه ا، تعداد حالتها برابر تعداد نمادهاست. اگر اين تع انداد
 بر و الى آخر. هنين ز $b \rightarrow a ، a \rightarrow c$ در اين مثالل حالتهاى حالت

$$
\begin{equation*}
P\left(S_{V} \mid S_{i}\right)+P\left(S_{\mathrm{r}} \mid S_{i}\right)+P\left(S_{\mathrm{r}} \mid S_{i}\right)=1 \tag{1.世}
\end{equation*}
$$

احتمالهای سه حالت

$$
\begin{equation*}
P\left(S_{i}\right)=P\left(S_{\uparrow}\right) \cdot P\left(S_{i} \mid S_{\uparrow}\right)+P\left(S_{\psi}\right) \cdot P\left(S_{i} \mid S_{\psi}\right)+P\left(S_{r}\right) \cdot P\left(S_{i} \mid S_{r}\right) \tag{Y.,}
\end{equation*}
$$

$$
\text { براى } i=1, r, r .
$$

راجع به اين عبارت بايد به مطلب زير توجّه كرد. در بخش (Y.1) (معادله (IF.I) را
 را براساس احتمال شرطى داده شده $q\left(y_{j} \mid x_{i}\right)$ حساب كردن با وجــــود ايـن، ايـن قضيـه را
 واقع قضية بيز فرض مى كند كه براي أ و

$$
p\left(x_{i}, y_{j}\right)=p\left(y_{j}, x_{i}\right) .
$$

منع اطلع كسستة بى حانظه
ولى براى زنجير مار كوف معمولاً جنين موردى وجود ندارد. در عوض داريم

$$
\begin{equation*}
P\left(S_{i}, S_{j}\right) \neq P\left(S_{j}, S_{i}\right) \tag{r.r}
\end{equation*}
$$

 كردن نمادها نقش اساسى بازى مى كند. اگر عبارت نوشت انـها

 احتمال زوج حرف (u,q) نخواهد بود.

 است، به قسمى كه بايد گذشته را براى مميشه ناديده گرفت.

شكل r.ا- نمودار حالت براى يك زنجير ماركوف از مرتبه صفر

شكل Y.Y- نمودار حالت براى يك زنجير مار كوف از مرتبئ 1
 منبع $\}=\{0,1$ است. $U=1$ به علاوه احتمالهاى انتقال زير داده شدهاند

$$
\begin{aligned}
& P(0 \mid 00)=P(| | 11)=0, \Lambda, \\
& P(\mid \cdot 0)=P(0 \mid 11)=0,1, \\
& P(0 \mid 01)=P(0 \mid 0)=P(\mid \cdot 01)=P(| | 00)=0,0 .
\end{aligned}
$$

 رسيد ولى نمىتوان به

 $P\left(S_{\mathrm{l}}\right)=P\left(S_{\mathrm{l}}\right) \cdot P\left(S_{\|} \mid S_{\mathrm{l}}\right)+P\left(S_{\mathrm{r}}\right) \cdot P\left(S_{\mid} \mid S_{\mathrm{r}}\right)+P\left(S_{\mathrm{r}}\right) \cdot P\left(S_{\mathrm{l}} \mid S_{\mathrm{r}}\right)+P\left(S_{\mathrm{r}}\right) \cdot P\left(S_{\mid} \mid S_{\mathrm{q}}\right)$ $=P\left(S_{\mathrm{l}}\right) \times 0, \mathrm{~A}+P\left(S_{\mathrm{F}}\right) \times 0 \quad+P\left(S_{\mathrm{r}}\right) \times 0, \Delta \quad+P\left(S_{\mathrm{F}}\right) \times 0$ $=0, A P\left(S_{1}\right)+0, \Delta P\left(S_{\mathrm{r}}\right)$

ثكل r.r.-نودار حالت براي بثال (1.r)

به همين روش مىتوان به دست آورد كه

$$
\begin{aligned}
& P\left(S_{\gamma}\right)=P\left(S_{1}\right) \times 0, \gamma+P\left(S_{\gamma}\right) \times 0+P\left(S_{r}\right) \times 0, \Delta+P\left(S_{\imath}\right) \times 0 \\
& =0, r P\left(S_{\mathbf{1}}\right)+0, \Delta P\left(S_{r}\right) \\
& P\left(S_{r}\right)=P\left(S_{1}\right) \times 0+P\left(S_{r}\right) \times 0, \Delta+P\left(S_{r}\right) \times 0+P\left(S_{\psi}\right) \times 0, \gamma \\
& =0, \Delta P\left(S_{\psi}\right)+0, \Psi P\left(S_{\psi}\right) \\
& P\left(S_{q}\right)=P\left(S_{q}\right) \times 0+P\left(S_{\gamma}\right) \times 0 \Delta \Delta+P\left(S_{\mathrm{r}}\right) \times 0+P\left(S_{\uparrow}\right) \times 0, \lambda \\
& =0, \Delta P\left(S_{\mathrm{\gamma}}\right)+\circ, \lambda P\left(S_{\mathrm{q}}\right) .
\end{aligned}
$$

با حلّ اين چهار معادله با حهار مجهول به دست مى آوريم

$$
\begin{aligned}
& P\left(S_{1}\right)=P\left(S_{\psi}\right)=\frac{\Delta}{1 \%} \\
& P\left(S_{r}\right)=P\left(S_{r}\right)=\frac{r}{1 \%}
\end{aligned}
$$

براى تكميل بحث در ايِنجا يادآورى مى كنيـم كه گاهي اوتات نمودارهاى حالـت بــا

 از زمان ديد. شكل (F.W- الف و ب) را ما مقايسه كنيد. در اين صورت هر زنجير مار كوف با مسير خاصى در نمودار داربستى متناظر مىباشلد.
 كه كاربردهايى در نظرية اطلاع پيدا مى كنـد بدون نتيجه يادآورى شدهاندا (الف) بخشى از زنجير مار كوف نيز يكى زنجير مار كوف اسدت. (ب) زنجير ماركوفى كه از جهت عكس عبور كند نيز يكـ زنجير مار كوف استـ.

الف
شكل F.r - (الف) نهودار حالتّ؛ (ب) نهودار داربستى

 دارد، سرانجام از هر حالتى مىتواند به هر حالت ديخرى برس برسد.
r. r. اطلحع يك منبع گسسته باحافظه در حالت منابع گسسته با حانظه مقدار معينْى وابستگى بين نـادهـ

 از حوصلةُ اين كتاب است در اينجا اشا

$P(b / b)$
$P(c / c)$

 تعيين مقدار شده است، كه در آن فراوانى نمونه گيرى به طور صـيا صحيح انتخاب نشده اسـي بنابراين سبب استقلال بين نمونهها (تعيين مقدار شده) مى گريدرد.
مقدار اطلاع براى زنجير مار كوف مرتبه-اولّ I
 $u_{i}{ }_{i}^{\prime}$ در لحظه شرطى، احتمال انتقال از متعلّف به يك انتقال دلخواه به صورت زير داده مىشود (با تعريف ((ا.1) مقايسه كنيد)

$$
\begin{equation*}
H\left(U_{\eta} \mid U_{1}\right)=-\sum_{i=1}^{m} \sum_{j=1}^{m} P\left(u_{i j}, u_{r_{j}}\right) \log P\left(u_{v_{j}} \mid u_{i j}\right) \tag{〒.Y}
\end{equation*}
$$

براى مقدار اطلاع توأم دو نماد داريم (با تعريف (Y.1) مقايسه كنيد)

$$
H\left(U_{1}, U_{\mathrm{r}}\right)=-\sum_{i=1}^{m} \sum_{j=1}^{m} P\left(u_{i}, u_{\mathrm{r}}\right) \log P\left(u_{i j}, u_{\mathrm{r}} j\right)
$$

$$
\begin{equation*}
H\left(U_{1}, U_{\mathrm{r}}\right)=H\left(U_{1}\right)+H\left(U_{\mathrm{r}} \mid U_{1}\right) . \tag{ร.Y}
\end{equation*}
$$

 اطلاع شرطى نماد دوم به شرط نماد اولّ برابر است. همانطور كه در تضية (Y.1) به دست آورديم، داريم

$$
\begin{equation*}
H\left(U_{\mathrm{r}} \mid U_{\mathrm{\imath}}\right) \leq H\left(U_{\mathrm{r}}\right), \tag{V.r}
\end{equation*}
$$

و بنابراين از معادلة (Y.ء) نتيجه مى شود كه

$$
H\left(U_{1}, U_{\mathrm{r}}\right) \leq H\left(U_{1}\right)+H\left(U_{\mathrm{r}}\right) .
$$

اگر نمادهاى متوالى به طور آمارى مستقل باشند، بدين معنى كه اگر منـب باشد برابرى برقرار است. چون منبع مانا و ار گوديــــــ اســت، بنابراين مى توان نوشت

$$
\begin{equation*}
H\left(U_{1}, U_{\mathrm{r}}\right) \leq r H(U) . \tag{9.r}
\end{equation*}
$$

يس مقدار اطلاع در يك بيام شامل دو نماد براى يكـ منبع با حافظه كوجكتر از يك منبع بيحافظه است.

مقدار اطلاع برای زنجيرهاى مار كوف مرتبه-بالاتر II

 گسترش دهيم. مقدار اطلاع شرطى برسى خواهيم كرد، يعنى

$$
\begin{equation*}
F_{N}(U)=H\left(U_{N} \mid U_{N-1}, \ldots, U_{r}, U_{1}\right) . \tag{1.r}
\end{equation*}
$$

اين مقدار اطلاع شرطى جند ويز گى دارد. اولّين ويز گى عبارت است از:

$$
\begin{equation*}
H\left(U_{N} \mid U_{N-1}, \ldots, U_{r}, U_{1}\right) \leq H\left(U_{N} \mid U_{N-1}, \ldots, U_{\vee}\right) . \tag{11.r}
\end{equation*}
$$

 كاهش مىدهد يا بدون تنيير باقى مى گذارد. قضيء 1.1
$N-1$ مقدار اطلاع شرطى N م نماد قبلى معلوماند تابع نزولى يكنواغتى از N است، يعنى:

$$
\begin{gather*}
H\left(U_{N} \mid U_{N-1}, \ldots, U_{1}\right) \leq H\left(U_{N-1} \mid U_{N-r}, \ldots, U_{1}\right) \leq \ldots \\
\ldots \leq H\left(U_{\uparrow} \mid U_{1}\right) \leq H\left(U_{1}\right) . \tag{IY.Y}
\end{gather*}
$$

برهان
جون منبع ماناست، مقادير اطلعِ شرطى مستقل از مكان نماد Nام در زنجير مىباشـــد. از اينرو براى مثال داريم

$$
\begin{aligned}
& H\left(U_{N-1} \mid U_{N-+\quad}, \ldots, U_{1}\right)=H\left(U_{N} \mid U_{N-1}, \ldots, U_{+}\right) \text {, } \\
& \text { و بنابر ويز گى اولّ (بعادله (U.Y) را بينيد) مستقيهاً نتيجه مىشود كه: } \\
& H\left(U_{N} \mid U_{N-1}, \ldots, U_{1}\right) \leq H\left(U_{N-1} \mid U_{N-r}, \ldots, U_{1}\right) \text {, }
\end{aligned}
$$

$$
F_{N}(U) \leq F_{N-1}(U) \leq \cdots \leq F_{\mathrm{r}}(U) \leq F_{1}(U) .
$$

 است، نتيجه مىشود كه نمايش مىدهيم

$$
\begin{equation*}
H_{\infty}(U)=\lim _{N \rightarrow \infty} F_{N}(U)=\lim _{N \rightarrow \infty} H\left(U_{N} \mid U_{N-1}, \ldots, U_{1}\right) \text { نماد / بيت. } \tag{Ir.r}
\end{equation*}
$$ بديهى است كه اگر الفباى منبع U شامل m نماد باشد، داريم

$$
\begin{equation*}
\bullet \leq H_{\infty}(U) \leq \log m \tag{1F.r}
\end{equation*}
$$

اكنون مقدار مى كنيم؛ بنابراين حافظه ممكن است است با طول نا مرتبه k توليد كند در اين صورت بدين معناست كه

$$
P\left(u_{N} \mid u_{N-1}, \ldots, u_{1}\right)=P\left(u_{N} \mid u_{N-k}, \ldots, u_{N-1}\right)
$$

در نتيجه برایى مقدار اطلاع شرطى-داريم

$$
\begin{align*}
H\left(U_{N} \mid U_{N-1}, \ldots, U_{1}\right) & =H\left(U_{N} \mid U_{N-k}, \ldots, U_{N-1}\right) \\
& =H\left(U_{k+1} \mid U_{k}, \ldots, U_{1}\right) \tag{1s.r}
\end{align*}
$$

 باقى مى $F_{k+1}(U)$ مىشود كه مقدار حدّ (U) H ${ }^{\text {م }}$ براى زنجير مار كوف از مرتبء k برابر است با

$$
\begin{equation*}
H_{\infty}(U)=F_{k+1}(U)=H\left(U_{k+1} \mid U_{k}, \ldots, U_{\uparrow}, U_{1}\right) \tag{IV.r}
\end{equation*}
$$

اگر منبع بى مافظه باشد در اين صورت

 دست آورد. كميت H(V) به صورت زير تعريف مىشود:

$$
H(V)=H\left(U_{1}, U_{\mathrm{r}}, \ldots, U_{N}\right) \text { بیام / بيت. }
$$

اكنون مقدار اطلِع براى هر نماد به صورت زير تعريف مى شود

$$
\begin{equation*}
H_{N}(U)=\frac{1}{N} H(V)=\frac{1}{N} H\left(U_{1}, U_{\psi}, \ldots, U_{N}\right) \text { نماد / بيت. } \tag{19.r}
\end{equation*}
$$

اگر نمادهاى

$$
H_{N}(U)=\frac{1}{N} \sum_{i=1}^{N} H\left(U_{i}\right)=\frac{1}{N} N H(U)=H(U)
$$

اگر نمادها وابسته باشند، در اين صورت داريم

$$
\begin{align*}
H_{N}(U) & =\frac{1}{N}\left[H\left(U_{1}\right)+H\left(U_{\eta} \mid U_{1}\right)+\cdots+H\left(U_{N} \mid U_{N-1}, \ldots, U_{\eta}, U_{1}\right)\right] \\
& =\frac{1}{N} \sum_{j=1}^{N} F_{j}(U) \tag{r,r}
\end{align*}
$$

همانطور كه برايى $H_{N}(U)$ داشتيه $H_{N}(U)$ نيز كاهشى يكنواخت است و با افزايش N به مقدار حد"

ا.گر H(V) مقدار اطلغع براى يحى پییام به طول N باشد آن گاه مقدار اطلاع براى هــر نماد تعريف شده با $H_{N}(U)=\frac{H(V)}{N}$ كاهشى يكنواخت است. به علاوه داريم

$$
\begin{equation*}
\lim _{N \rightarrow \infty} H_{N}(U)=H_{\infty}(u) \tag{Yו.r}
\end{equation*}
$$

برهان
 $H(V)=N H_{N}(U)=H\left(U_{1}\right)+H\left(U_{1} \mid U_{1}\right)+\cdots+H\left(U_{N} \mid U_{N-1}, \ldots, U_{1}, U_{1}\right)$ $\geq N H\left(U_{N} \mid U_{N-1}, \ldots, U_{\vartheta}, U_{\uparrow}\right)$,

يِا با فرمول (Y.

$$
\begin{equation*}
H_{N}(U) \geq F_{N}(U) \tag{YY.Y}
\end{equation*}
$$

اكنون مىتوان نوشت

$$
H(V)=H\left(U_{1}, \ldots, U_{N}\right)=H\left(U_{1}, \ldots, U_{N-1}\right)+H\left(U_{N} \mid U_{N-1}, \ldots, U_{1}\right)
$$

$$
\begin{aligned}
N H_{N}(U) & =(N-1) H_{N-1}(U)+F_{N}(U) \\
& \leq(N-1) H_{N-1}(U)+H_{N}(U) .
\end{aligned}
$$

$$
(N-1) H_{N}(U) \leq(N-1) H_{N-1}(U)
$$

$$
\begin{equation*}
H_{N}(U) \leq H_{N-1}(U), \tag{r.זץ}
\end{equation*}
$$

اين ثابت مى كند كه $H_{N}(U)$ كاهشى يكنواخت است

$$
H_{N}(U)=\frac{1}{N} \sum_{j=1}^{N} F_{j}(U) .
$$

$$
\text { چحون وقتى } H_{\infty}(U) \text { ميل مى كند نتيجه مىشرد كه } F_{j}(U) \text { به }
$$

$$
\lim _{N \rightarrow \infty} H_{N}(U)=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{j=1}^{N} F_{j}(U)=\frac{1}{N}\left[N H_{\infty}(U)\right]=H_{\infty}(U),
$$

\square
كه با معادلة (Y.r) موافت مىباشد.
F $F_{N}(U)$ همحنان كه از معادلة (Y.
 بنابراين $H_{N}(U)$ يكـ تقريب نادرست از مقدار اطلاع واقعى $H^{\prime}(U)$ است. با وجود ايـــن، يكى مزيت ${ }^{\text {H }}$ ساد گی آن است.

مثال Y.
فرض كنيد مقادير مختلف
به زبان

$$
1.4
$$

r.r بجنبهاى كدكذارى

$$
H_{\infty}(U)=1, \Delta \text { ه نماد / بيـت }
$$

$$
\text { در سالى كه نماد / بيت } \max _{u} H(U)=\log r s=F, v o l
$$

$F_{N}(U) H_{N}(U)$

شكل
\%.

 مى توان ثابت كرد كه اگر بد جاى N تعداد ℓ نماد را با يكديگر انتخــــاب كنيـمه در ايـن صورت با افزايش ℓ ري

تضيه
براى هر هر به ℓ بو دست تقسيم شوند: ℓ بر
(الف) مجموعءٔ 'S كه احتمال كل" آن كمتر از ع است.
(ب) مجموعة باتىمانده S، همةٔ اعضايعى كد احتمال آنها در نابرابرى زير صدق مى كنتد

$$
\begin{equation*}
\left|\frac{-\log \rho(v)}{\ell}-H_{\infty}(U)\right|<\delta \tag{YF.Y}
\end{equation*}
$$

اين گروه، مجموعة محتدلترين بيامهاست.

منبع اطلكع كـسسته بى حافظه

 مى می
 داراى احتمال زير است

$$
\begin{equation*}
P(v) \approx r^{-l \cdot H_{\infty}(U)} . \tag{}
\end{equation*}
$$

تعداد محتهلترين هيامها تقريباً برابر است:

$$
\begin{equation*}
M_{\infty}=\frac{1}{p(v)} \approx \gamma^{l \cdot H_{\infty}(U)} \tag{צ.ए}
\end{equation*}
$$

چون
يا برابر با تعلاد محتملترين يـيامهاى يكـ منبع بى در بنخش (I.Y) حشُو به صورت زير تعريف شد

$$
\text { red }=1-\frac{H(U)}{\max _{u} H(U)}=1-\frac{H(U)}{\log n}
$$

از اين رو اين اثر كيفيت منبع با حافظه را اندازه گيرى مى كند. در اين فصــل، نتيجــ
 اطلاع را با حتُو و/بسته نشان داد

$$
\begin{equation*}
r e d_{\infty}=1-\frac{H_{\infty}(U)}{H(U)} \tag{rA.r}
\end{equation*}
$$

كه در آن $H_{\infty}(U)$ مقدار اطلاع منبع با حافظه و $H(U)$ مقدار اطلاع منبع بىحافظه است كه نمادهاى آن با نمادهاى منبع با حافظه احتمالهاى يكــانى دارند. در خاتمه، تعريف حتشو كار را خواهيم داد

$$
\operatorname{red}_{5}=1-\frac{H_{\infty}(U)}{\max _{u} H(U)}=1-\frac{H_{\infty}(U)}{\log n}
$$

مثال

$$
\mathrm{red}=1-\frac{f, 1 \Delta}{f, V_{0}}=0,1 r,
$$

1.9

$$
\begin{align*}
& \operatorname{red}_{\infty}=1-\frac{1, \Delta_{0}}{4,1 \Delta}=0,54 \\
& \text { red }_{V}=1-\frac{1, \Delta_{0}}{f, V_{0}}=0,5 \Lambda . \tag{و}
\end{align*}
$$

از اين رو نسبت به منابع باحافظه سه اندازه مختلف حشو وجود دارد و هر يكـ بعضى

داريم كل

قضية F.F
براى يكى منبع اطلاع گسسته باحانظه و مقدار اطلاع
 دارد كه براى آن هيج كدوازها كرد، اگر L ($P_{e}<\varepsilon$ در نابرابرى زير صدق كند

$$
L \log r \geq \ell H_{\infty}(U)
$$

و ℓ به قَر كافى بزرگ باشد.
همانطور كه از مثالل (ץ. بزر گ باشد كه در اين صورت مطلوب آن است كه از طريت كدگذارى حذف شود شا براى
 آوردن يك كد مناسب كه متوسط طول كدواثه را مىنيمم كند توسعه داد به طــورى كـه همزمان حشو در كدنمادها را مىنيمم كند. يكـ راه حذف كردن حشو كـو وابسته به منبـــع بـا

 مرتبه زنجير مار كوف انتخاب كرد.
F.Y مثال
 الفباى منبع عبارت است از

منبع اطلحع كــــتا بى حانظه

$$
\begin{array}{lll}
p(A \mid A)=\frac{1}{r}, & p(B \mid A)=\frac{1}{r}, & p(C \mid A)=0, \\
p(A \mid B)=\frac{1}{r}, & p(B \mid B)=0, & p(C \mid B)=\frac{r}{r} \\
p(A \mid C)=\frac{1}{r}, & p(B \mid C)=\frac{1}{r}, & p(C \mid C)=\frac{1}{r},
\end{array}
$$

احتمالهاى حاشيهاى از معادلات زير نتيجه مىشود.

$$
\left\{\begin{array}{l}
p(A)=\frac{1}{r} p(A)+\frac{1}{r} p(B)+\frac{1}{r} p(C) \\
p(B)=\frac{1}{r} p(A)+\quad \frac{1}{r} p(C) \\
p(C)=\quad \frac{r}{f} p(B)+\frac{1}{r} p(C) \\
p(A)+p(B)+p(C)=1
\end{array}\right.
$$

$$
\text { نتايج عبارتند از } p(C)=\frac{1}{\gamma Y}, p(B)=\frac{\Lambda}{Y Y} \backslash p(A)=\frac{10}{Y Y}
$$

فرض كنيد درست دو كدنماد تر كيب شده باشند، براساس احتمالهاى انتقال احتمالهاىى

$$
. \eta=\frac{H\left(U_{1}, U_{Y}\right)}{L}=\frac{Y, V Y}{Y, V \Lambda} \approx 0, q \Lambda
$$

اگر روش فانو را براى نمادهاى مجزاّى منبع به كار بريم متوسط طول كــــواوثه برابـر
 مىتوان نشان داد كارايى بـ $\eta=0$ "
همینين مىتوان منبع اطلاع را به روش ديگرى تنظيم كرده آن را به يك منبع بدون

 توليد مى كند. به طور تقريبى مىتوان فرض كرد كه بستگى بين نمادها را مىتوان با يـــى

 گرفت. در اين صورت احتمال هنين دنبالهاى عبارت است از

$$
P_{k}(0)=P(0 \mid 0)^{k-1} \cdot P(1 \mid 0)
$$

به طور مشابه، احتمال دنبالهاى از k يكى (نقاط سياه) برابر است با

$$
P_{k}(1)=P(1 / 1)^{k-1} \cdot p(0 \mid 1) .
$$

اين را مىتوان به كاربرد و به ترتيب متوسط طول دنبالهاى از سفيد يا سياه را تعيــن كرد. در اين صورت به دست مى آوريم

$$
\begin{align*}
& \overline{k(0)}=\sum_{k=1}^{\infty} k P(0 \mid 0)^{k-1} \cdot P(1 \mid 0)=\frac{1}{P(1 \mid 0)}, \\
& \overline{k(1)}=\sum_{k=1}^{\infty} k P(1 \mid 1)^{k-1} \cdot p(0 \mid 1)=\frac{1}{p(0 \mid 1)} .
\end{align*}
$$

اكنون منيع اطلاع اصلى را به صورت يكى منبع كه كلّ أعداد را توليد مى كند، يعنــي
 يكـ طول ماكسيهم يعنى K را جايز دانسته و دنبالههاى طولانى تر را مضربسى از K K در نظــر

مى گیريم. در پايان، مىتوان برای مثال كد هافمن را براى كدگشايى اين طولهاى گردشى به كار برد.
 را توليد مى كند. احتمالهاى انتقال به صورت زير داديا

$$
\begin{array}{lll}
P\left(u_{l} \mid u_{q}\right)=\frac{1}{r}, & P\left(u_{r} \mid u_{\mathrm{r}}\right)=\frac{1}{r}, & P\left(u_{r} \mid u_{\mathrm{r}}\right)=0, \\
P\left(u_{\mid} \mid u_{\mathrm{r}}\right)=\frac{1}{r}, & P\left(u_{r} \mid u_{\mathrm{r}}\right)=0, & P\left(u_{r} \mid u_{r}\right)=\frac{r}{r}, \\
P\left(u_{\mid} \mid u_{r}\right)=\frac{1}{r}, & P\left(u_{r} \mid u_{r}\right)=\frac{r}{r}, & P\left(u_{r} u_{r}\right)=0 .
\end{array}
$$

 ار گوديك است.
(ب) احتمالهاى نمادهالى اري
 احتصالهاى انتقال زير توصيف شدمانده

$$
\begin{array}{ll}
P(0 \mid 00)=0, \Lambda, & P(|\mid 1)=0, \mu, \\
P(|\mid 00)=0, r, & P(\mid 11)=0, \lambda, \\
P(0 \mid 0)=0, \Delta, & P(0 \mid 00)=0, \Delta, \\
P(|\mid 0)=0, \Delta, & P\left(\left|\left.\right|_{00}\right)=0, \Delta .\right.
\end{array}
$$

(الف) نمودار حالت متعلّق به اين زنجير را رسم كنيد. (ب) احتمالهاى حالتهاى ${ }_{\text {(}}^{\text {(}}$ را بيابيد.

س.r كه با احتصالهاى انتقال زير مشخّص شده است:

$$
\begin{array}{ll}
P(0 \mid \circ 0)=\frac{1}{4}, & P(0 \mid 01)=\frac{1}{4}, \\
P\left(0\left|\left.\right|_{0}\right)=\frac{4}{4},\right. & P(0 \mid 11)=\frac{r}{4} .
\end{array}
$$

(الف) نشان دهيد كه زنجير مار كوف با احتمالهاى انتقال داده شده كاملاً توصيف شده است. (ب) نمودار حالت را رسم كنيد.

(ت) (ت) احتمالهاى نمادهایى منبع خروجى را بيابيد.

غيرار گوديك ساخت.
F.r مار كوف مرتبة اولّ مىسازد توليد مى كنـــد. احتمالهـاى انتقـال بـه صــورت زيـر

مىباشند:

$$
\begin{aligned}
& P\left(u_{1} \mid u_{1}\right)=0, \quad P\left(u_{r} \mid u_{1}\right)=\frac{1}{\Delta}, \quad P\left(u_{r} \mid u_{1}\right)=\frac{f}{\Delta}, \\
& P\left(u_{\mathrm{F}} \mid u_{\mathrm{r}}\right)=\frac{1}{\mathrm{r}}, \quad P\left(u_{\mathrm{r}} \mid u_{\mathrm{r}}\right)=\frac{1}{10}, \quad P\left(u_{\mathrm{r}} \mid u_{\mathrm{r}}\right)=\frac{\mathrm{i}}{\mathrm{i}}, \\
& P\left(u_{1} \mid u_{\mathrm{r}}\right)=\frac{1}{r}, \quad P\left(u_{\mathrm{r}} \mid u_{\mathrm{r}}\right)=0, \quad P\left(u_{\mathrm{r}} \mid u_{\mathrm{r}}\right)=\frac{i}{r} .
\end{aligned}
$$

(الف) نمودار حالت را رسم كنيد.

(؟) مقدار اطلاع يك منبع باحافظه را كه نمادهايش داراى احتمال مســـاوى بــه عنـــوان نمادهايى از منبع در نظر گرفته شدهاند حسار راب كنيد

(ث) (ث) مقدار اطلاع توأم دو نماد را هحاسبه كنيد.
(ج) (حشو، حشو وابسته و حشو كل را محاسبه كنيد.
(؟) (ج) رابطهاى براى حشو كل برحسب تعداد محتملترين هيامها به دست آوريد.
پ. مانا تولِد مى كند. احتمالهاى انتقال از يكى نمــاد برابر
(الف) نمودار حالت اين زنجير ماركوف را رسم كنيد.
(ب) (ب) احتمالهاى نمادهاى (ب)

(ت) تعيين كنيد برای چه مقدار p اين مقدار اطلاع لاكسيمم مى شود. آيا جه مفهومى به مقادير H(U) به دستع آمده براي

مقدار H(U) نسبت ميدهيد؟
s.r زنجير مار كوف مرتبة دوم با احتمالهاى انتقال زير ميسازد:

$$
\begin{aligned}
& P(0 \mid 00)=0, \lambda, \\
& P(0 \mid 01)=0, \Delta, \\
& P(0 \mid 10)=0, \Delta, \\
& P(0 \mid 11)=0, \eta .
\end{aligned}
$$

(الف) مقدار اطللع يك سهتايى ايجاد شده از اين منبع اطلاع چه قدر امست؟ با استفاده از

$$
\begin{aligned}
& p(00)=p(11)=\frac{\Delta}{17} \\
& p(01)=p(10)=\frac{1}{Y}
\end{aligned}
$$

با بهرهورى از اين نتيجه، مقدار اطلاع براي هر نماد را كــه بـا $H^{\text {اي }}$ نــــان داده
مي شود بيدا كنيد.

(ب)

داده ميشود.
ش
(ج) (
(ج)
0.F

「.「

نشان داده شده است.

شكل Y.Y- نمودار حالت تمرين (I.Y)
زنجير ار گوديكى است حون از هر حالت مى توان به حالت ديگر رسيد.

$$
\begin{aligned}
& P\left(u_{\mathrm{k}}\right)=P\left(u_{\mathrm{q}}\right) \cdot P\left(u_{\mathrm{l}} \mid u_{\mathrm{q}}\right)+P\left(u_{\mathrm{r}}\right) \cdot P\left(u_{\mathrm{k}} \mid u_{\mathrm{r}}\right)+P\left(u_{\mathrm{r}}\right) \cdot P\left(u_{\mathrm{l}} \mid u_{\mathrm{r}}\right), \\
& P\left(u_{\mathrm{r}}\right)=P\left(u_{\mathrm{q}}\right) \cdot P\left(u_{\mathrm{r}} \mid u_{\mathrm{k}}\right)+P\left(u_{\mathrm{r}}\right) \cdot P\left(u_{\mathrm{r}} \mid u_{\mathrm{r}}\right)+P\left(u_{\mathrm{r}}\right) \cdot P\left(u_{\mathrm{r}} \mid u_{\mathrm{r}}\right), \\
& P\left(u_{\mathrm{r}}\right)=P\left(u_{\mathrm{r}}\right) \cdot P\left(u_{\mathrm{r}} \mid u_{\mathrm{r}}\right)+P\left(u_{\mathrm{r}}\right) \cdot P\left(u_{\mathrm{r}} \mid u_{\mathrm{r}}\right)+P\left(u_{\mathrm{r}}\right) \cdot P\left(u_{\mathrm{r}} \mid u_{\mathrm{r}}\right) .
\end{aligned}
$$

علاوه براين شرط زير نيز بايد برترار باشد

$$
P\left(u_{1}\right)+P\left(u_{\mathrm{r}}\right)+P\left(u_{\mathrm{r}}\right)=1
$$

با ترار دادن احتمالهاى داده شده در اين معادلات نتيجه مىشود:

$$
\begin{aligned}
P\left(u_{\mathrm{l}}\right) & =\frac{1}{r} P\left(u_{\mathrm{r}}\right)+\frac{1}{r} P\left(u_{\mathrm{r}}\right)+\frac{1}{r} P\left(u_{\mathrm{r}}\right), \\
P\left(u_{\mathrm{r}}\right) & =\frac{1}{r} P\left(u_{\mathrm{u}}\right) \quad+\frac{r}{r} P\left(u_{\mathrm{r}}\right), \\
P\left(u_{r}\right) & =\quad \frac{r}{r} P\left(u_{\mathrm{r}}\right), \\
1 & =P\left(u_{\mathrm{q}}\right)+P\left(u_{\mathrm{r}}\right)+P\left(u_{\mathrm{r}}\right) .
\end{aligned}
$$

با حلّاين جهار معادلة سه مجهرلى به دست مى آوريم

$$
P\left(u_{1}\right)=\frac{10}{r \Delta}
$$

منبع اطلعع كسـستة بى حانفـد

$$
\begin{aligned}
& P\left(u_{r}\right)=\frac{q}{r \Delta}, \\
& P\left(u_{r}\right)=\frac{s}{r \Delta} .
\end{aligned}
$$

ץ. در (دا

$$
\begin{aligned}
& P(00)=P(\circ 0) \cdot P(0 \mid 00)+P(10) \cdot P(0 \mid 10), \\
& P(01)=P(\circ 0) \cdot P(1 \mid 00)+P(10) \cdot P(1 \mid 10), \\
& P(10)=P(01) \cdot P(0 \mid 01)+P(11) \cdot P(0 \mid 11), \\
& P(11)=P(11) \cdot P(1 \mid 11)+P(01) \cdot P(1 \mid 1) . \\
& P(00)+P(01)+P(10)+P(11)=1
\end{aligned}
$$

و

با قرار دادن احتـالهاى مفروض در معادلات بالا نتيجه مىشود

$$
P(\circ 0)=P(00) \times 0, \lambda+P(10) \times 0, \Delta,
$$

$$
\begin{aligned}
& P(\circ 1)=P(\circ 0) \times 0,7+P(10) \times 0, \Delta, \\
& P(10)=P(01) \times 0, \Delta+P(\mid 1) \times 0, Y, \\
& P(11)=P(01) \times 0, \Delta+P(11) \times 0, \wedge, \\
& P(00)+P(01)+P(10)+P(11)=1 \text {. } \\
& \text { با حل" اين خهار معادله سه مجهولي نتيجه مى شود } \\
& P(\circ 0)=P(11)=\frac{\Delta}{1 F}, \\
& P(01)=P(10)=\frac{H}{1 F} .
\end{aligned}
$$

 $m^{\prime \prime+1}=r^{r+1}=A$ در انتقال و بنابراين \wedge احتمال انتقال وجود دارد. از إينها وجود دارند كه بىتوان آزادانــه انتخـاب كــرد. ايـن احتمالهــا مفـروض و بقيـه ثابتند: (ب) نمودار سالت فرهى مانند شكل (†.4) دارد.

شكل
(ی) (حتمال حالتها با رابطههاى زير داده شدهاند

بنابراين داريم

$$
P(00)=P(01)=P(10)=P(11)=\frac{1}{\mathrm{f}} .
$$

(ت) اكنون احتمال صفر را بيدا مى كنيم

$$
\begin{aligned}
P(0) & =P(00) \cdot P(0 \mid 00)+P(01) \cdot P(0 \mid 01)+P(10) \cdot P(0 \mid 10)+P(11) \cdot P(0 \mid 11) \\
& =\frac{1}{\mathrm{f}} \times \frac{1}{\mathrm{f}}+\frac{1}{\mathrm{f}} \times \frac{1}{\mathrm{f}}+\frac{1}{\mathrm{f}} \times \frac{\mathrm{r}}{\mathrm{f}}+\frac{1}{\mathrm{f}} \times \frac{\mathrm{r}}{\mathrm{f}}=\frac{1}{\mathrm{r}},
\end{aligned}
$$

$$
P(1)=\frac{1}{r}
$$

و هـحنين

شكل ب. - ا - نـودار سالت تمرين (Y.Y)
(ث) يك راه ساختن زنجير غيرار گوديكـ اين است كه دو بخش جدا از هم بــه وجــود آوريم. اين كار را مىتوان با انتخاب احتمالهاى زير به ذست آورد

$$
\begin{aligned}
& P(00)=\frac{1}{f} P(00)+\frac{r}{\varphi} P(10) \text {, } \\
& P(01)=\frac{r}{F} P(00)+\frac{1}{F} P(10), \\
& P(10)=\frac{1}{\xi} P(01)+\frac{\psi}{\xi} P(11), \\
& P(11)=\frac{F}{F} P(01)+\frac{1}{F} P(11) . \\
& P(00)+P(10)+P(01)+P(11)=1 .
\end{aligned}
$$

$$
\begin{align*}
& P(0 \mid 00)=1, \\
& P(0 \mid 11)=0 . \tag{يا}
\end{align*}
$$

 غيرار گوديك شكل (ا. ا ا) نتيجه ميشود.
F.世 F.

$$
\begin{aligned}
& P\left(u_{q}\right)=P\left(u_{\eta}\right) \cdot P\left(u_{l} \mid u_{q}\right)+P\left(u_{r}\right) \cdot P\left(u_{k} \mid u_{r}\right)+P\left(u_{r}\right) \cdot P\left(u_{l} \mid u_{r}\right), \\
& P\left(u_{r}\right)=P\left(u_{q}\right) \cdot P\left(u_{r} \mid u_{q}\right)+P\left(u_{r}\right) \cdot P\left(u_{r} \mid u_{r}\right)+P\left(u_{r}\right) \cdot P\left(u_{r} \mid u_{r}\right), \\
& P\left(u_{r}\right)=P\left(u_{q}\right) \cdot P\left(u_{r} \mid u_{q}\right)+P\left(u_{r}\right) \cdot P\left(u_{r} \mid u_{r}\right)+P\left(u_{r}\right) \cdot P\left(u_{r} \mid u_{r}\right) .
\end{aligned}
$$

و شرط

$$
P\left(u_{1}\right)+P\left(u_{p}\right)+P\left(u_{p}\right)=1
$$

با به كار گيرى مقدار داده شده نتيجه مىشود

$$
\begin{aligned}
& P\left(u_{1}\right)={ }^{\circ} P\left(u_{q}\right)+\frac{1}{\gamma} P\left(u_{T}\right)+\frac{1}{\gamma} P\left(u_{T}\right) \text {, } \\
& P\left(u_{r}\right)=\frac{1}{\Delta} P\left(u_{\mathrm{r}}\right)+\frac{1}{1_{0}} P\left(u_{r}\right)+{ }^{\circ} P\left(u_{\mathrm{r}}\right), \\
& P\left(u_{r}\right)=\frac{r}{\Delta} P\left(u_{1}\right)+\frac{r}{\Delta} P\left(u_{r}\right)+\frac{1}{r} P\left(u_{r}\right), \\
& P\left(u_{q}\right)+P\left(u_{r}\right)+P\left(u_{r}\right)=1 .
\end{aligned}
$$

از اين جهار معادلهُ سه مجهولى نتيجه مىشود كه

$$
P\left(u_{1}\right)=\frac{1}{r}, \quad P\left(u_{r}\right)=\frac{r}{r v}, \quad P\left(u_{r}\right)=\frac{1 \varepsilon}{r v} .
$$

(؟) مقدأر اطلاع منبع باحافظه با احتمالهاى بالا براى نمادها به صورت زيــر بـه دسـت مى آيد:

$$
\begin{aligned}
H(U) & =-\sum_{i=1}^{r} P\left(u_{i}\right) \log P\left(u_{i}\right) \\
& =-\frac{1}{Y} \log \frac{1}{Y}-\frac{Y}{Y V} \log \frac{Y}{Y Y}-\frac{1 \varepsilon}{Y Y} \log \frac{1 \varepsilon}{Y Y}=1, Y \Delta \text { نماد / بيت. }
\end{aligned}
$$

(ت) (ت برای مقدار اطلاع منبع باحافظه براي يك انتقال دلخواه بنا بر تعريف داريم:

$$
\begin{aligned}
H\left(U_{\psi} \mid U_{1}\right) & =-\sum_{i=1}^{r} \sum_{j=1}^{r} P\left(u_{i}\right) \cdot P\left(u_{j} \mid u_{i}\right) \log P\left(u_{j} \mid u_{i}\right) \\
& =\sum_{i=1}^{r} P\left(u_{i}\right)\left[-\sum_{j=1}^{r} P\left(u_{j} \mid u_{i}\right) \log P\left(u_{j} \mid u_{i}\right)\right] .
\end{aligned}
$$

با جايِگزين كردن احتمالهاى داده شده به دست مى آوريم

$$
\begin{align*}
H\left(U_{r} \mid U_{1}\right) & =\frac{1}{r}\left[0-\frac{1}{\Delta} \log \frac{1}{\Delta}-\frac{r}{\Delta} \log \frac{r}{-}\right] \\
& +\frac{r}{r Y}\left[-\frac{1}{r} \log \frac{1}{r}-\frac{1}{1} \log \frac{1}{1 \cdot}-\frac{r}{\Delta} \log \frac{r}{\Delta}\right] \\
& +\frac{r}{r V}\left[-\frac{1}{r} \log \frac{1}{r}-0-\frac{1}{r} \log \frac{1}{r}\right] \\
& =0,9 r \frac{1}{r} / \tag{ث}
\end{align*}
$$

از رابطة
كنيم كه منبع ماناست، يعنى

$$
H\left(U_{1}\right)=H\left(U_{\mathrm{r}}\right)=H(U)
$$

در اين صورت نتيجه مىشود

$$
H\left(U_{1}, U_{r}\right)=H\left(U_{1}\right)+H\left(U_{r} \mid U_{1}\right)=1, r \Delta+0,9 r=Y, 1 A \text { بیام / بيت. }
$$

(ج) حسو به صورت زير تعريف مىشود

$$
\operatorname{red}=1-\frac{H(U)}{\max _{u} H(U)}=1-\frac{H(U)}{\log n}
$$

با استفاده از مقادير داده شده داريم

$$
r e d=1-\frac{1, r \Delta}{\log r}=1-\frac{1, r \Delta}{1, \Delta \Lambda}=0, r 1 .
$$

عبارت حشو كل نتيجه مىشود:

$$
\operatorname{red}_{j 5}=1-\frac{H_{\infty}(U)}{\max _{u} H(U)}=1-\frac{\log M_{\infty}}{\log M_{\max }}
$$

(الف) نمودار حالت فرمى مانند شكل (IY.Y) دارد.

$$
\begin{aligned}
& P\left(u_{\mathrm{q}}\right)=P\left(u_{\mathrm{h}}\right) \cdot P\left(u_{l} \mid u_{1}\right)+P\left(u_{\mathrm{r}}\right) \cdot P\left(u_{\mathrm{l}} \mid u_{\mathrm{r}}\right)+P\left(u_{\mathrm{r}}\right) \cdot P\left(u_{\mathrm{l}} \mid u_{\mathrm{r}}\right), \\
& P\left(u_{\mathrm{r}}\right)=P\left(u_{\mathrm{r}}\right) \cdot P\left(u_{\mathrm{r}} \mid u_{\mathrm{k}}\right)+P\left(u_{\mathrm{r}}\right) \cdot P\left(u_{\mathrm{r}} \mid u_{\mathrm{r}}\right)+P\left(u_{\mathrm{r}}\right) \cdot P\left(u_{\mathrm{r}} \mid u_{\mathrm{r}}\right), \\
& P\left(u_{\mathrm{r}}\right)=P\left(u_{\mathrm{r}}\right) \cdot P\left(u_{\mathrm{r}} \mid u_{\mathrm{q}}\right)+P\left(u_{\mathrm{r}}\right) \cdot P\left(u_{\mathrm{r}} \mid u_{\mathrm{r}}\right)+P\left(u_{\mathrm{r}}\right) \cdot P\left(u_{\mathrm{r}} \mid u_{\mathrm{r}}\right) .
\end{aligned}
$$

$$
P\left(u_{1}\right)+P\left(u_{\mathrm{r}}\right)+P\left(u_{\mathrm{r}}\right)=1
$$

$$
\begin{align*}
& \text { براى حشو مستقل داريم } \\
& r^{2} d_{\infty}=1-\frac{H_{\infty}(U)}{H(U)}=1-\frac{H\left(U_{\mathrm{r}} \mid U_{1}\right)}{H(U)}=1-\frac{0,4 r}{1, r \Delta}=0, r s . \\
& \text { حشو كل تر كيبى از هر دو اندازه است و عبارت است از } \\
& r e a_{j}^{\prime}=1-\frac{H_{\infty}(U)}{\max _{u} H(U)}=1-\frac{0,9 r}{1, \Delta \Lambda}=0, F 1 . \\
& \text { | } \tag{؟}\\
& \max _{u} H(U)=\frac{1}{l} \log M_{\text {max }}, \\
& \text {, } \\
& H_{\infty}(U)=\frac{1}{l} \log M_{\infty} .
\end{align*}
$$

منبع اطكع كسستة بى حافظه

$$
\begin{aligned}
& \text { با به كار بردن مقادير داده شده نتيجه مىشود } P\left(u_{i}\right)=P\left(u_{\psi}\right)=P\left(u_{r}\right)=\frac{1}{r}
\end{aligned}
$$

 (؟) برای مقدار اطلاع نسبت به يك انتقالل دلنواه داريم

شكل ب.r| - معدار اطلاع برای انتقال دلخواه به صورت تابعى از p

$$
\begin{aligned}
H\left(U_{\imath} \mid U_{i}\right) & =-\sum_{i=1}^{r} \sum_{j=1}^{r} P\left(u_{i}\right) P\left(u_{j} \mid u_{i}\right) \log P\left(u_{j} \mid u_{i}\right) \\
& =\sum_{i=1}^{r} P\left(u_{i}\right)\left[-\sum_{j=1}^{r} P\left(u_{j} \mid u_{i}\right) \log P\left(u_{j} \mid u_{i}\right)\right]
\end{aligned}
$$

با جايگزين كردن مقادير داده شده نتيجه مىشود

$$
\begin{aligned}
& H\left(U_{r} \mid U_{1}\right)=r \times \frac{1}{r}\left[-r \frac{p}{r} \log \frac{p}{r}-(1-p) \log (1-p)\right] \\
& =p-p \log p-(1-p) \log (1-p) \text { نماد / بيت. } \\
& \text { شكل (r.r|) را ببينيد. } \\
& \text { (ت) } H\left(U_{1} \mid U_{1}\right) \text { ماكسيمّ مىشود اگر } \\
& \frac{d H\left(U_{1} \mid U_{1}\right)}{d p}=\circ . \\
& 1-\frac{1}{\ln \gamma}-\log p+\frac{1}{\ln \gamma}+\log (1-p)=0 \text {. }
\end{aligned}
$$

از اين معادله $\max _{u} H(U)=\log r=1, \Delta \wedge$
اگرp=0 زنجير در همان حالت باقى بماند، ديگر هبِّ عدمحتميتى وجود ندارد؛ از اين رو مقدار اطلِع برابر صفر است. اگر شانس مساوى به يكى از دو حالـت ديگر مىرود؛ از اين رو هر نمـــــاد يــــ بيــت اطلاع میدهد. برای رنداد يكسانى است. بنابراين رنتار زنجير مانند حالتى است كه سـه نمــــاد مسـتقلَنن. اگر نماد قبلى معلوم باشل، عدمستميت كاهش نمىيـيابد. از اين رو

$$
H\left(U_{\mathrm{r}} \mid U_{1}\right)=\log n=\log r \text { نماد / بيت. }
$$

S.r مى كنيم. اينها عبار تند از

$$
P(000)=\frac{\Delta}{15} \times \frac{\lambda}{10}=\frac{5}{15},
$$

منبع اطلاع كسستة بى حافظله

$$
\begin{aligned}
& P(001)=\frac{\Delta}{1 F} \times \frac{r}{10}=\frac{1}{1 F}, \\
& P(010)=\frac{1}{V} \times \frac{1}{r}=\frac{1}{1 f} \text {, } \\
& P(011)=\frac{1}{v} \times \frac{1}{r}=\frac{1}{1 f} \text {, } \\
& P(100)=\frac{1}{V} \times \frac{1}{Y}=\frac{1}{1 f} \text {, } \\
& P(1.1)=\frac{1}{r} \times \frac{1}{r}=\frac{1}{1 F} \text {, } \\
& P\left(11_{0}\right)=\frac{\Delta}{1 f} \times \frac{1}{10}=\frac{1}{1 f} \text {, } \\
& P(\text { III })=\frac{\Delta}{1 F} \times \frac{A}{10}=\frac{F}{1 F} \text {. } \\
& \text { از اين رو براى (سهتايـ)H نتيجه مىشود }
\end{aligned}
$$

$$
\begin{aligned}
& \text { در اين رابطه مقدار اطلاع بر نماد به دست مى Tيد. } \\
& H_{r}(U)=\frac{1}{r} H(\text { سهتايى) = 0, A9 نماد / بيت. }
\end{aligned}
$$

(ب) احتمالهاى دوتايى مساوى با احتمالهاى حالتها هستند به قسمى كه:

$$
H \text { (دوتايى) = }=-r \times \frac{\Delta}{1 f} \log \frac{\Delta}{1 f}-r \times \frac{1}{v} \log \frac{1}{v}=1, A \& \text { دوتايى / بيت, }
$$

$$
H_{\psi}(U)=\frac{1}{r} H(\text { نماد / بيت raرتايى. }
$$

(پ) الهنون مقدار مىتوان از رابطة زير به دست آورد

$$
P(0)=\sum_{i=1} P_{i} \text { (دوتايى) } \frac{n_{\mathrm{e}, j}}{n_{\mathrm{e}, i}+n_{\mathrm{u}, i}},
$$

كه در آن مىباشد.

ِادآورى: اين فرمول تنها براى كدوازههاى با طول مساوى معتبر مىباشد.
بنابراين

$$
\begin{aligned}
& P(0)=\frac{\Delta}{1 f} \times 1+\frac{\Delta}{1 f} \times 0+\frac{1}{r} \times \frac{1}{r}+\frac{1}{r} \times \frac{1}{r}=\frac{1}{r}, \\
& P(1)=\frac{1}{r} .
\end{aligned}
$$

از اين به دسـت مىآيد

$$
\begin{align*}
& H_{1}(U)=-\frac{1}{r} \log \frac{1}{r}-\frac{1}{r} \log \frac{1}{r}=1 \text { نماد / بيت. } \\
& \text { براى (F }{ }_{N}(U \text { مىتوان به دسـت آورد كه (بخش (Y) را بيينيد) } \tag{ت}\\
& N H_{N}(U)=(N-1) H_{N-1}(U)+F_{N}(U) .
\end{align*}
$$

با به كار بردن مقادير معلوم $H_{N}(U)$ اين صورت نتيجه مىشود

$$
\begin{aligned}
& F_{1}(U)=H_{1}(U)=\text { = نماد / بيت, } \\
& F_{Y}(U)=\vee H_{Y}(U)-H_{1}(U)=0, \wedge s \text { نماد / بيت, }
\end{aligned}
$$

با افزايش مقدار N ، N ($F_{N}(U)$ احتمالهاى انتقالى كه مقدار آن بستگي بـه افزايـش تعداد نمادهاى قبلى دارد تعيين خواهد شلد. بنابراين عدم همهنان كه ${ }_{N}(U)$ نيز كاهش خواهد

مقدار دوم مىباشد. اكنون دو نماد قبلى بر احتمالهاى انتقال تأثير دارند، بقية نمادها هيـــِّع اثرى ندارند. اين بدين معناسـت كه مقدار

 مى.باشد:

$$
\lim _{N \rightarrow \infty} H_{N}(U)=F_{Y}(U)
$$

منبع اطلاع كـستهُ بى سافظه
(ج) (

شكل H.T

كانال ارتباطى گسسته

ا.f.f ظرفيت كانالهاى بدون نوفه

 است در نظر خواهيم گرفت.

 عبور كند. در اين صورت اطلاع بايد مناسب با كانال رمز گذارى شود. علاوه بــر ايـن، در

فرايند كد گذارى كاهش حشو، براى اين كه مقدار اطلاعى كه بايد از طريت كانال ارســــال

 كانال كد گشايى مىشود نيست؛ زيرا مهكن است نمادها در نوفـــه تغيـير يافتــه باشــنـد. از ديدگاه نظريةٔ اطلاع روشن است كه به احتمال خططايى كه در حين انتقـــال يـــى نمــاد رخ مىدهد علاقهمند باشيم.

 مقدار اطلاعى است كه مىتواند از طريت كانالل داده شده عبور كند. تعريف 1.f
ظرفيت C يك كانال بدون نون گسسته به صورت زير تعريف مىشود:

$$
\begin{equation*}
C=\lim _{T \rightarrow \infty} \frac{\log N(T)}{T} \text { ثانيه, /بيت, } \tag{1.f}
\end{equation*}
$$

 از طريق كانالل در مدتت زمان T انتقال داد.
 مساوى نيستند ارائه خواهد شد. براى مثال كد مُرس را مقايسه كنيد كه در آن نقطـه داراى مدت كوتاهترى از خطط تيره است.
همانطور كه در فصل سوم ديديم ساختمان كدوازوهها به صورت دنبا

 نماد بعدى را تعيين مى كنند. فرض كنيد مىشود. فرض كنيد
 حالت

$$
\begin{equation*}
N_{j}(T)=\sum_{i} \sum_{s} N_{i}\left(T-t_{i j}^{s}\right) . \tag{Y.F}
\end{equation*}
$$

با جمعبندى روى تمام $S_{j} N(T)$ به دست مى آيد

$$
\begin{equation*}
N(T)=\sum_{j} N_{j}(T) \tag{r.F}
\end{equation*}
$$

با يافتن عبارتى براى
قضيه 1.7
فرض كنيد A ماتريسى با درايههاى زير باشد

$$
\begin{equation*}
a_{i j}=\sum_{s} X^{-t_{i j}^{\pi}}-\delta_{i j} \tag{ヶ.६}
\end{equation*}
$$

كه نماد s است كه به موجب آن فرايند از حالت

مى شود

$$
\begin{equation*}
C=\log X_{0}, \tag{0.5}
\end{equation*}
$$

كه در آن x بزر گترين X مثبت است كه براى آن دترمينان ماتريس A برابر صفر است

$$
|A|=0
$$

برهن
در واقع معادلد زير را حل مى كنيم

$$
\begin{equation*}
N_{j}(T)=\sum_{i}\left\{\sum_{s} N_{i}\left(T-t_{i j}^{s}\right)\right\} \tag{8.f}
\end{equation*}
$$

زيرا در اين صورت مىتوان N(T) و به دنبــال آن ظرفيــت را بـا كمــك تعريـفف (I.f) محاسبه كرد.
در حقيقت، معادلة (5.f) يك معادلة تفاضلى خطَّى است. براى حلّ معادلات تفاضلى خطلى روشهايى به دست آوردهاند كه مشــابه روشـهاى حـلْ معـادلات ديفرانســيل خطـى

مىباشند. فرض كنيد كه رابط؛ بين تابع X(n-1) $X(n(n)$ به صورت زير باشد

$$
X(n)-\alpha X(n-1)=0
$$

در اين صورت يك جواب خاص آن به صورت زير است

$$
X(n)=c \lambda^{n} .
$$

با قرار دادن اين جوابب در معادلة تغاضلى به دست مى آوريم:

$$
c \lambda^{n}-\alpha c \lambda^{n-1}=0
$$

و با حل" اين معادله مشخّص نتيجه مىشود

$$
\lambda=\alpha
$$

$$
X(n)=c \alpha^{n}
$$

براى معادلات تغاخلى خحلّى از مرتبة بالاتر با روشى مشابه به دست مىآوريم

$$
X(n)-\alpha_{1} X(n-1)-\alpha_{1} X(n-r)-\cdots-\alpha_{p} X(n-p)=0 .
$$

اكنون جواب معادلة تغاضلى به دست مى آيد

$$
X(n)=c_{1} \lambda_{1}^{n}+c_{\varphi} \lambda_{\varphi}^{n}+\cdots+c_{p} \lambda_{p}^{n}
$$

با ترار دادن هر جواب خاص در معادله، معادلة مشخخّصى بد دست مى آيد، براى مثال:

$$
c_{k} \lambda_{k}^{n}-\alpha_{1} c_{k} \lambda_{k}^{n-1}-\alpha_{v} c_{k} \lambda_{k}^{n-\varphi}-\cdots-\alpha_{p} c_{k} \lambda_{k}^{n-p}=0
$$

كه مىتوان λ_{k} را تعيين كرد.
اگر $X(n)=c_{1} \lambda_{1}^{n}:$
تذ كر: مسلّاً جملات ديگرى كه داراى خاصيت نوسانى هسـتند بــايد بــراى متناهى اضانه كرد.
اكنون حل معادله (؟.5) به شكل زير امت

$$
\begin{equation*}
N_{j}(T)=\alpha_{j} X^{T} \tag{V.f}
\end{equation*}
$$

با جايگزينى اين جواب به دست مى آوريم

$$
\begin{align*}
& \alpha_{j} X^{T}=\sum_{i} \sum_{s} \alpha_{i} X^{T-t_{i j}^{T}} . \tag{A.f}\\
& \text { با تقسيم بر } \\
& \sum_{i} \sum_{s} \alpha_{i} X^{-t_{i j}^{i t}}-\alpha_{j}=0 . \tag{9.5}\\
& \text {, } a_{j} \\
& \alpha_{j}=\sum_{i} \delta_{i j} \alpha_{i}, \\
& \delta_{i j}=1, i=j, \\
& \delta_{i j}=0, \quad i \neq j \text {. } \\
& \text { a } a_{j} \\
& \text { در اين صورت به دست مىآوريم } \\
& \sum_{i} \alpha_{i}\left\{\sum_{s} X^{-t_{i j}}-\delta_{i j}\right\}=0 . \tag{10.f}
\end{align*}
$$

 در اين صورت تساوى تنها وقتى مىتواند برقرار باشد كه دترمينان رونسكى ' برابــر صفـر باشد. بنابراين

$$
\left[\begin{array}{cccc}
\sum_{s} X^{-t_{11}^{s}-1} & \sum_{s} X^{-r_{11}^{s}} & \cdots & \cdots \\
\sum_{s} X^{-t_{11}^{s}} & \sum_{s} X^{-t_{17}^{s}-1} & \cdots & \cdots \\
\cdots & & & \\
\cdots & & & \\
& & &
\end{array}\right]=0
$$

به شكل مختصر شده داريم:

$$
\begin{align*}
& |A|=0 \quad \text { ب } \quad a_{i j}=\sum_{s} X^{-t_{i j}^{*}}-\delta_{i j} . \tag{11.f}\\
& \text { با بزر گترين ريشهُ مثت، ، X، اين تابع نتيجه مىشود } \\
& N_{j}(T)=\alpha_{j} X^{T}, \tag{IY.f}
\end{align*}
$$

$$
\begin{equation*}
N(T)=\sum_{j} \alpha_{j} X_{t}^{T} \tag{Ir.f}
\end{equation*}
$$

از اين رابطه براى ظرفيت كانال ارتباطى كه از اين سيستم كد گذارى استفاده مى كند نتيجه مىشود كه

$$
\begin{align*}
C & =\lim _{T \rightarrow \infty} \frac{\log N(T)}{T} \\
& =\lim _{T \rightarrow \infty} \frac{\log \left(X_{0}^{T} \sum_{j} \alpha_{j}\right)}{T} \\
& =\lim _{T \rightarrow \infty} \frac{T \log X_{0}}{T}+\lim _{T \rightarrow \infty}\left\{\frac{\log \sum_{s} \alpha_{j}}{T}\right\} \\
& =\log X_{0} . \tag{If.f}
\end{align*}
$$

در مثال زير يكـ كد مرس را در نظر مى گيريم و ظرفيت را محاسبه مىكنيم.
مثال 1.5
كد مرس داراى خهار نماد؛ يك نقطه، يكـ خطط تيره، يكـ فاصلة حرف و يكـ فاصلة

 تشخيص داد: حالت اS بعد از يك فاصله و حالت اين نمودار حالت داده شده در شكل (F.F) را مىدهد. برایى درايههاى ماتريس A A به دسـت مى آوريم
s) نقطه

خ2
كاصلئ حرف

S4 فاحلئ وازه

شكل F.F كد مُرس

$$
\begin{aligned}
& a_{11}=\sum_{s} X_{11}^{-t_{11}^{s}-1}=-1, \\
& a_{1 r}=\sum_{s} X^{-t_{1 r}^{s}}=X^{-t_{1}}+X^{-t_{r}}=X^{-r}+X^{-q}, \\
& a_{r 1}=\sum_{s} X_{r r}^{-t_{r}^{s}}=X^{-t_{r}}+X^{-t_{r}}=X^{-r}+X^{-s} \\
& a_{r r}=\sum_{s} X^{-1} s-1=X^{-t_{1}}+X^{-t_{r}}-1=X^{-r}+X^{-\varphi}-1,
\end{aligned}
$$

و از اين رو دترمينان رونسكى منجر مىشود به

$$
|A|=\left[\begin{array}{cc}
-1 & X^{-r}+X^{-\varsigma} \\
X^{-r}+X^{-s} & X^{-r}+X^{-\uparrow}-1
\end{array}\right]=0,
$$

$$
f(X)=X^{-r}+X^{-4}+X^{-\phi}+X^{-\psi}+X^{-\Lambda}+X^{-1-}-1=0
$$

فاصلة وازه
شكل 〒.ヶ- نـودار حالت نسبت به كد مُرس
تقريبى از بزر گترين ريشه مثبت X را به طور ترسيمي به دست مىآوريم و سیس با
 $X_{0} \approx 1, F \Delta F$.

بنابراين ظرفيت برابر است با

$$
C=\log X_{0}=\log 1, f \Delta F=0, \Delta F f+\text { ثانيه / بيت. }
$$

اگر شر را حذف كنيم، نمادها ممكن است يكديگر را دنبال كنند و سيستم در يكـ حالت باق़ى بماند. اكنون نسودار در شكل (ه.F) داده شده است.

$$
\begin{aligned}
|A| & =a_{11}=\sum_{s} X^{-t_{11}^{5}}-1 \\
& =X^{-t_{1}}+X^{-t_{1}}+X^{-t_{r}}+X^{-t_{1}}-1 \\
& =X^{-4}+X^{-r}+X^{-4}+X^{-s}-1=0 .
\end{aligned}
$$

اكنون به طور ترسيمى همراه با هند شصاسبه $f(X)$ به دست مى آيد:

$$
X_{0} \approx 1, \Delta 1 .
$$

حالل ظرفيت برابر امت با

$$
C=\log |, \Delta|=0, \Delta 9 \text { ثانيه / بيت }
$$

$f(X)=$.

فاملة وازه

شككل ه. F- نـودار حالت بدون شرط

 خواهينخواهي اين سدها به دست مى آيد.

ظ.F Y.F
در كانالهاى نونهدار قبل از اين كه جنبههايى مانند احتمال خططـا و ظرفيــت را مــورد
 فرض كنيد، يس از كد گذارى و از اين رو در ورودى منبع اطلاع (شكل (1.F) را بيينيــد)،

 ر $Y=\left\{y_{1}, y_{t}, \ldots, y_{n}\right\}$

 مىتوان به صورت زير به دست آورد

$$
\begin{equation*}
q\left(\tilde{y}_{j} \mid \tilde{x}_{i}\right)=q\left(y_{j}, y_{j r}, \ldots, y_{j L} \mid x_{i 1}, x_{j r}, \ldots, x_{i L}\right) \tag{10.7}
\end{equation*}
$$

در موارد بسيارى مىتوان نرض كرد كه كدنماد دريافت شده y ${ }^{\text {ت }}$ كها به نماد ارسال شده
 به كدوازة

$$
\begin{equation*}
q\left(\tilde{y}_{j} \mid \widetilde{x}_{i}\right)=\prod_{k=1}^{L} q\left(y_{j k} \mid x_{i k}\right) \tag{15.F}
\end{equation*}
$$

 اختصارى براى احتمالهاى شرطى، يعنى $q\left(y_{j} \mid x_{i}\right)=q_{j i}$ به اصطلاح ماتريس كانـال به شكل

$$
Q=\left[\begin{array}{cccc}
q_{11} & q_{r 1} & \cdots & q_{n 1} \\
q_{V r} & q_{r r} & \cdots & q_{n 4} \tag{IV.f}\\
\vdots & \vdots & \vdots & \vdots \\
q_{v m} & q_{r m} & \cdots & q_{n m}
\end{array}\right] . \quad \text { (IV.f) }
$$

خيون i نماد ورودى را نشان مىدهد و هر نماد ورودى به عنوان نتيجـــه داراى يــي
 خروجى ${ }_{j}$ را مى توان به صورت زير تعيين كرد

$$
q\left(y_{j}\right)=\sum_{i=1}^{m} p\left(x_{i}\right) q_{j i}
$$

در حالى كه احتمالهاى يسين

$$
\begin{equation*}
p\left(x_{i} \mid y_{j}\right)=\frac{p\left(x_{i}\right) \cdot q\left(y_{j} \mid x_{i}\right)}{q\left(y_{j}\right)} . \tag{1^.f}
\end{equation*}
$$

با بهرهورى از اين رابطه مىتوان مقدار اططلاع شرطى H(X|Y) و $H(Y \mid X)$ را بنا بـــ
تعريف (٪.1) بحاسبه كرد

$$
\begin{equation*}
H(X \mid Y)=-\sum_{i=1}^{m} \sum_{j=1}^{n} q\left(y_{j}\right) \cdot p\left(x_{i} \mid y_{j}\right) \log p\left(x_{i} \mid y_{j}\right) \tag{19.5}
\end{equation*}
$$

$$
H(Y \mid X)=-\sum_{i=1}^{m} \sum_{j=1}^{n} p\left(x_{i}\right) \cdot q\left(y_{j} \mid x_{i}\right) \log q\left(y_{j} \mid x_{i}\right)
$$

مقدار اطلاع شرطى H(X|Y)، به عبارت ديگر عدمحتميت دربارة x اگر y دريــافت شده باشد را/يهام مىنامند. مقدار اطلاع شرطى در y اگر x معلوم باشد در نظر گرفت. اين عدمحتميتى است كه با با نوفه معرقّى شده اســـت و بیى/رتباطى ناميده مىشود. اگر علاوه بر H(X|Y) و $H(Y \mid X)$ مقادير اطلاع حاشيهاى H(X) $H(Y)$ نيز معلوم باشند، مقدار اطلاع متقابل را مىتوان براساس معادلة ((Y.1) محاسبه كرد:

$$
\begin{align*}
I(X ; Y) & =H(Y)-H(Y \mid X) \\
& =H(X)-H(X \mid Y) \tag{YI.f}
\end{align*}
$$

 نمودارى با شيوة نشان داده شده در شكل (F. توجه كنيد كه تنها احتمالهاى انتقال
 ور $q(X ; Y)$
 داده شده با تغيير احتمالهاى (x) $p\left(x_{i}\right)$

شكل 5.9-طرح براى انتال اططلغع
 , $X=\left\{x_{1}, x_{r}\right\}$ وتتى مىباشد. جنين كانالى راكانال متقارن دودويس، BSC، مىنالمند. ماتريس كانال براى هنين

كانالى عبارت است از

$$
Q=\left[\begin{array}{cc}
1-p & p \\
p & 1-p
\end{array}\right]
$$

 صورت شكل (V.F) نمايش داد.

شكل Y.F- كانال متقارن دودويـ

مثال
مقدار اطللع ارسال شده $I(X ; Y)$
 داريم $q\left(y_{v}\right)=1-{ }^{\text {د }}$ اين صورت داريم:

$$
\begin{aligned}
\mathrm{R} & =H(Y)-H(Y \mid X) \\
& =-\beta \log \beta-(1-\beta) \log (1-\beta)+p \log p+(1-p) \log (1-p)
\end{aligned}
$$

$$
\beta=\alpha(1-p)+(1-\alpha) p
$$

علاوه بر كانالهاى متقارن دودوعى همحنيـــن مىتــــوان كانالهـاى غـــير - دودويـى و
 در مطالب گذشته ديديم كه از نقطهنظر دريافت كتنده عدمرحتميت قبل از اين كه ريام
 عدمحتميت درباره نماد يا پيام ارسال شده به $H(X \mid Y)$ كاهش مى ايابد.

شده است. اكنون ظرفيت C يكـ كانال نوفهدار به صورت ماكسيمم مقدار اطلاعــى كــه از كانال مى توان انتقال داد تعريف مى شود. برانى ختم اين مبحث همئ منابع اطللع ممكن را بـ به $i=1, \ldots, m$ كانال وصل مى كنيم به قسمى كه از همه توزيعهاى احتمال ممكن استفاده شود.

تعريف Y.f
ظرفيت كانال نوفدار گسسته به صورت زير تعريف مىشود

$$
\begin{align*}
C & =\max _{p(x)} \mathrm{R}=\max _{p(x)} I(X ; Y)=\max _{p(x)}\{H(Y)-H(Y \mid X)\} \\
& =\max _{p(x)}\{H(X)-H(X \mid Y)\} \text { نـاد } / \text { بيت } \tag{YY.F}
\end{align*}
$$

 مى باشد. حون
نـماد / بيت C=

اگر فرض كنيم كه نـادها داراى مدتت مشترك ا ثانيه باشند در اين صورت ظرفيت كانال بر ثانيه به صورت زير است

$$
\begin{equation*}
C=\frac{1}{l} \log m \text { ثانيه / بيت. } \tag{YF.f}
\end{equation*}
$$

كه متناظر با تعريف (ا.f) است و مىتوان آن را به صورت زير ديد. اگر كدوازههاى بـــا
 صورت تعداد كدوازههاى ممكن برابر است با: N ما

است.
ظرفيت كانال نوفهدار به وضوح كمتر از ظرفيت كانال بدون نوفه است. اگــر مقـــار

 كر $H(X \mid Y)=H(X)-C+\varepsilon$ بعدى بيشتر بررسى خواهيم كرد.

محاسبة ظرفيت در مورد كانالهاى نوفهدار عمومـاً كــار ســادهاى نيســت و بـايد بـه
 مذكور قبلى محاسبهُ ظرفيت كاملاً ساده است. مثال F.F
كانال متقارن دودويى را همانند آنجه كه در مثال (Y.f) ارائه شد در نظر بگيريد. براى نرخ ارسال R به دست آورديم كه

$$
\mathrm{R}=-\beta \log \beta-(1-\beta) \log (1-\beta)+p \log p+(1-p) \log (1-p)
$$

با كاكسيمـم است به دست مى آيد. از اين رو

$$
C=\max _{\alpha} R,
$$

 (R R C د كه براساس وير گيهاى اندازههاى اطللع اين عبارت به ازاى $\beta=\beta_{0}=\frac{1}{r}$ ماك β كسيـمـم مىشـــود. اكنون نتيجه مىشود كه

$$
C=\max _{\alpha} R=1+p \log p+(1-p) \log (1-p)
$$

براى p=0

شـكل A.f- ظرفيت براى يك كانال متقارن دودويى
 يك روش نمودارى تعيين كرد. ماتريس كانال هنين كانالى برابر است با با با با با

$$
Q=\left[\begin{array}{ll}
q_{11} & q_{r 1} \\
q_{1 r} & q_{r r}
\end{array}\right]
$$

$$
\text { فرض كنيد } q\left(y_{1}\right)=\beta, p\left(x_{1}\right)=\alpha ، \text { و مطرح مى كنيم }
$$

$$
H_{1}=-q_{11} \log q_{11}-q_{11} \log q_{21}
$$

$$
H_{\mathrm{r}}=-q_{\mathrm{Vr}} \log q_{1 \mathrm{r}}-q_{\mathrm{rr}} \log q_{\mathrm{rr}}
$$

$$
H(Y)=-\beta \log \beta-(1-\beta) \log (1-\beta)
$$

$$
H(Y \mid X)=\alpha H_{1}+(1-\alpha) H_{\mathrm{r}}=H_{\mathrm{r}}+\alpha\left(H_{\mathrm{r}}-H_{\mathrm{r}}\right)
$$

$$
\mathrm{R}=H(Y)-H_{\mathrm{r}}-\alpha\left(H_{1}-H_{\varphi}\right) .
$$

$$
\beta=\alpha q_{11}+(1-\alpha) q_{1 r}=q_{1 r}+\alpha\left(q_{11}-q_{1 r}\right),
$$

$$
\alpha=\frac{\beta-q_{1 r}}{q_{11}-q_{1 r}}
$$

$$
\text { و } K M=H_{1}-H_{\mathrm{Y}} \text { ، از اين } K M=\text {. اكنون نتيجه مىشود }
$$

$$
\frac{B E}{B L}=\frac{\beta-q_{19}}{q_{11}-q_{1 r}}=\alpha,
$$

بنابراين

$$
E F=\alpha\left(H_{1}-H_{\mathrm{r}}\right)
$$

به قسمى كه FG مقدار R را نشان مىدهد. همجنين ظرفيت برابر ماكسيمب مقدار R است،
 از β ر را كه متعلّق به ظرفيت است تعيين مى كند. بنابراين توزيع احتـال بهينة منبع عبــارت

$$
p\left(x_{1}\right)=\frac{\beta_{0}-q_{14}}{q_{11}-q_{14}}=\alpha_{0} .
$$

 خروجى سهسهاى باشد، براى مثال گيرنده تادر نباشد كه ه يِا ا را تشخيص دهد انتخاب مىشود، در اين صورت يــى كانـال بإكـشلدكى دودويـ (BEC) يديد مى آيد. در اين حالت هيج تعويضسى از نمادهــاى ه و ا

 خطاها و بإكسلدكى باشد نمايش ميدهد.

شكل ؟.؟- ظرفيت براى يكى كانال دودويى

$$
Q=\left[\begin{array}{ccc}
1-p & p & \circ \\
\circ & p & 1-p
\end{array}\right]
$$

ظرفيت اين كانال برابر p - است (شكل (II.f) و همجنين تهرين (V.f) را بيـيد).

شكل 11.f- ظرفيت كانال باكشدگى دودويى متقارن
Y.f

ظرفيت هر كانال نونهدار متقارن گسسته به حورت زير مىباشد

$$
\begin{equation*}
C=\sum_{j=1}^{n} q\left(y_{i} \mid x_{i}\right) \log q\left(y_{i} \mid x_{i}\right)+\log n \tag{Y0.f}
\end{equation*}
$$

و با استفاده از توزيع ثماحتمال براى الفباى ورودى به دست مى آيد. برهان

$$
\begin{align*}
C & =\max _{p(x)} I(X ; Y) \\
& =\max _{p(x)}\left[\sum_{i=1}^{m} p\left(x_{i}\right) \sum_{j} q\left(y_{i} \mid x_{i}\right) \log q\left(y_{i} \mid x_{i}\right)-\sum_{j=1}^{n} q\left(y_{i}\right) \log q\left(y_{i}\right)\right] .
\end{align*}
$$

به علكت تقارن انتخابب احتمالهاى ورودى تأثيرى بر اولّلن جمله ندارد؛ بنابراين

$$
\begin{equation*}
C=\sum_{j=1}^{n} q\left(y_{j} \mid x_{i}\right) \log q\left(y_{j} \mid x_{i}\right)-\max _{p(x)}\left[\sum_{j=1}^{n} q\left(y_{j}\right) \log q\left(y_{j}\right)\right] \tag{YV.F}
\end{equation*}
$$

اگر احتمال ورودى طورى باشدكه خروجى ثمتوزيع باشلد بملةُ دوم را مىتـــوان بــ

دست آورد. به واسطةٌ تقارن ماتريس انتقال Q، أگر احتمالهاى ورودى همشانس باشند اين
حالت را خواهيم داشت.
 شده است كه دقيقاً يكى از دو نماد ورودى مثلا"x بد بدون خطا
 شكل (IY.F) نمايش داده شده است. ماتريس كانال عبارت است از

$$
Q=\left[\begin{array}{cc}
1 & 0 \\
p & 1-p
\end{array}\right] .
$$

خون اين كانال متقارن نيست از ايـن يـس نخواهد بود. اكنون ظرفيت را با اين فرض كه كه
 تمرين (A.f) داده شدهاند. ظرفيت كانال-Z عبارت است از

$$
\begin{equation*}
C=\alpha_{0}\left[p \log p-(1-p) \log \alpha_{0}\right]-\left[1-\alpha_{0}(1-p)\right] \log \left[1-\alpha_{0}(1-p)\right], \tag{YA.f}
\end{equation*}
$$

كه در آن

$$
\begin{equation*}
\alpha_{0}=\frac{1}{1-p+p^{-p /(1-p)}} . \tag{YY.f}
\end{equation*}
$$

 طريق عددى تعيين كرد.
F.F
 در كانال ارتباطى به علّت اثر نوفه تغيير كنند كه خطا حاصل ميش

 است. اين احتمال خططا برابر است با

$$
p\left(e \mid y_{j}\right)=\sum_{\substack{i=1 \\ i \neq j}}^{n} p\left(x_{i} \mid y_{j}\right)=1-p\left(x_{j} \mid y_{j}\right)
$$

با ميانگين گرفتن دوى تـام نمادهاى دريافت شله به دست مي آوريم

$$
P_{e}=\sum_{j=1}^{n} q\left(y_{j}\right) \cdot p\left(e \mid y_{j}\right)=\sum_{j=1}^{n} q\left(y_{j}\right)\left[1-p\left(x_{j} \mid y_{j}\right)\right]
$$

 دست آورد

$$
\begin{equation*}
P_{e}=\sum_{i=1}^{n} p\left(x_{i}\right)\left[1-q\left(y_{t} \mid x_{i}\right)\right] \tag{rY.f}
\end{equation*}
$$

اين موخوع كه متوسط احتمالهاى خحطا برابرند در ڤضيه زير نشان داده خواهد شد:
قضية f.f
براى يکى كانال ارتباطى با ماتريس كانال مربــع متوسـط احتمـال خطــا از ديدگـاه گيرنده و از ديدگاه فرستنده با هم برابرند. برهان
 برابرند. با توجه به معادلة (FI.F) داريم

$$
\begin{aligned}
P_{e} & =\sum_{j=1}^{n} p\left(y_{j}\right)\left[1-p\left(x_{j} \mid y_{j}\right)\right]=\sum_{j=1}^{n} q\left(y_{j}\right)\left[1-\frac{r\left(x_{j}, y_{j}\right)}{q\left(y_{j}\right)}\right] \\
& =1-\sum_{j=1}^{n} r\left(x_{j}, y_{j}\right)
\end{aligned}
$$

هجون بنا به تعريف داريم

$$
\begin{aligned}
& \sum_{i=1}^{n} \sum_{j=1}^{n} r\left(x_{i}, y_{j}\right)=1, \\
& P_{e}=\sum_{i=1}^{n} \sum_{j=1}^{n} r\left(x_{i}, y_{j}\right)-\sum_{j=1}^{n} r\left(x_{j}, y_{j}\right)=\sum_{\substack{i=1 \\
j}}^{n} \sum_{\substack{j=1 \\
j \neq i}}^{n} r\left(x_{i}, y_{j}\right) \\
&=\sum_{i=1}^{n} p\left(x_{i}\right) \sum_{\substack{j=1 \\
j \neq i}}^{n} q\left(y_{j} \mid x_{i}\right)
\end{aligned}
$$

نتيجه مىشود كه

و مرانجام داريم

$$
P_{e}=\sum_{i=1}^{n} p\left(x_{i}\right)\left[1-q\left(y_{i} \mid x_{i}\right)\right]
$$

اين همان فرمول (FY.f) مىباشل.
يس همانطور كه در اثبات قضية (F.f) نشان داده شد، متوسط احتمــال خحطــا را نـيز
مىتوان به صورت زير نوشت

$$
\begin{equation*}
p_{e}=\sum_{\substack{i=1 \\ j}}^{n} \sum_{\substack{j=1 \\ j \neq i}}^{n} r\left(x_{i}, y_{j}\right) \tag{MT.F}
\end{equation*}
$$

رابطهاى بين ايهام $H\left(X \mid Y\right.$ و متوسط احتمال خطط ${ }_{\text {ب }}$ و وجود دارد. اين رابطه را نيز به نام نابرابرى فانو مىشناسند. ڤضية f.f (نابرابرى فانو)
فرض كنيد $H\left(P_{e}\right)$ به صورت زير تعريف شده باشد

$$
H\left(P_{e}\right)=-P_{e} \log P_{e}-\left(1-P_{e}\right) \log \left(1-P_{e}\right),
$$

 اكنون نابرابرى زير برقرار است

$$
\begin{equation*}
H(X \mid Y) \leq H\left(P_{e}\right)+P_{e} \log (n-1) \tag{rF.f}
\end{equation*}
$$

برهان
سمت راست نابرابرى فرمول (Ff.f) را مىتوان به كمك معادلة (FT.f) به صسـورت
زير نوشت

$$
\begin{align*}
H\left(P_{e}\right) & +P_{e} \log (n-1)=P_{e} \log \left(\frac{n-1}{P_{e}}\right)+\left(1-P_{e}\right) \log \left(\frac{1}{1-P_{e}}\right) \\
& =\sum_{\substack{i=1}}^{n} \sum_{\substack{j=1 \\
j \neq i}}^{n} r\left(x_{i}, y_{j}\right) \log \left(\frac{n-1}{P_{e}}\right)+\sum_{i=1}^{n} r\left(x_{i}, y_{i}\right) \log \left(\frac{1}{1-P_{e}}\right)
\end{align*}
$$

مىتوان ايْام را به هـهين طريت برحسب مجموعهاى مشابهى نوشت

$$
\begin{align*}
H(X \mid Y) & =-\sum_{i=1}^{n} \sum_{j=1}^{n} r\left(x_{i}, y_{j}\right) \log p\left(x_{i} \mid y_{j}\right) \\
& =\sum_{i=1}^{n} \sum_{\substack{j=1 \\
j \neq i}}^{n} r\left(x_{i}, y_{j}\right) \log \left(\frac{1}{p\left(x_{i} \mid y_{j}\right)}\right)+\sum_{i=1}^{n} r\left(x_{i}, y_{j}\right) \log \left(\frac{1}{p\left(x_{i} \mid y_{i}\right)}\right) \tag{f.f}
\end{align*}
$$

$$
H(X \mid Y)-H\left(P_{e}\right)-P_{e} \log (n-1)
$$

$$
=\sum_{i=1}^{n} \sum_{\substack{j=1 \\ j \neq i}}^{n} r\left(x_{i}, y_{j}\right) \log \left\{\frac{P_{e}}{(n-1) p\left(x_{i} \mid y_{j}\right)}\right\}+\sum_{i=1}^{n} r\left(x_{i}, y_{i}\right) \log \left\{\frac{1-P_{e}}{p\left(x_{i} \mid y_{i}\right)}\right\} . \quad \text { (rV.f) }
$$

با تبديل به لگاريتم طبيعى و به كار گيرى نابرابرى

$$
\ln a \leq a-1
$$

براى سمـت راست معادلة (YV.F) نتيجه مىشود كه

$$
\begin{aligned}
& \sum_{i=1}^{n} \sum_{\substack{j=1 \\
j \neq i}}^{n} r\left(x_{i}, y_{j}\right) \log \left\{\frac{P_{e}}{(n-1) p\left(x_{i} \mid y_{j}\right)}\right\}+\sum_{i=1}^{n} r\left(x_{i}, y_{i}\right) \log \left\{\frac{1-P_{e}}{p\left(x_{i} \mid y_{i}\right)}\right\} \\
& \leq \sum_{i=1}^{n} \sum_{\substack{j=1 \\
j \neq i}}^{n} r\left(x_{i}, y_{j}\right) \frac{1}{\ln \gamma}\left\{\frac{P_{e}}{(n-1) p\left(x_{i} \mid y_{j}\right)}-1\right\}+\sum_{i=1}^{n} r\left(x_{i}, y_{i}\right) \frac{1}{\ln \gamma}\left\{\frac{1-P_{e}}{p\left(x_{i} \mid y_{j}\right)}-1\right\} \\
& =\frac{1}{\ln Y}\left\{\left\{\frac{P_{e}}{n-1} \sum_{\substack{i=1}}^{n} \sum_{\substack{j==\\
j \neq i}}^{n} \frac{r\left(x_{i}, y_{j}\right)}{p\left(x_{i} \mid y_{j}\right)}\right\}-\sum_{i=1}^{n} \sum_{\substack{j=1 \\
j \neq i}}^{n} r\left(x_{i}, y_{j}\right)+\sum_{i=1}^{n}\left\{\left(1-P_{e}\right) \sum_{i=1}^{n} \frac{r\left(x_{i}, y_{i}\right)}{p\left(x_{i} \mid y_{i}\right)}\right\}-\sum_{i=1}^{n} r\left(x_{i}, y_{i}\right)\right\} \\
& =\frac{1}{\ln Y}\left\{\frac{P_{e}}{n-1} \cdot(n-1)-\left[1-\sum_{i=1}^{n} r\left(x_{i}, y_{i}\right)\right]+\left(1-P_{e}\right)-\sum_{i=1}^{n} r\left(x_{i}, y_{i}\right)\right\}=0 .
\end{aligned}
$$

$$
H(X \mid Y)-H\left(P_{e}\right)-P_{e} \log (n-1) \leq o,
$$

اكنون فرمول (FF.f) مستقيماً به دست مى آيد.
براى اين كه بدانيم تحت
 صورت بدون ارائث أبات شرط زير بايد برقرار باشد: $p\left(x_{i} \mid y_{j}\right)=\frac{P_{e}}{n-1} \quad i=j$ براى تمام i \quad (MA.f)
$p\left(x_{i} \mid y_{i}\right)=1-P_{e} \quad$ براى تمام i
حون براى تمام j ها

$$
\sum_{i=1}^{n} p\left(x_{i} \mid y_{j}\right)=1
$$

 استثناى نماد انتخاب شده احتمال رخداد

علاوه بر اثبات رسـى، نابرابرى فانو را مىتوان به صورت زير بررسى كرد. متومسـط

عدمحتميت دربارة X را اگر Y معلوم باشلد مىتوان به عنوان عدم انجام شده يا نشده باشد در نظر گرا گرفت، و اگر خطا

 احتمال كوچك به اين معناست كه ايهام كوحكـ است. نابرابرى به صورت نمودار در شكل (IF.f) رسم شده است.

F.F F F F

 از طريق كانال ارسال كرد.
 كنيم در اين صورت لزوماً ايهامى بزر گتر يا مساوى 'R وجود خواهد داشت.

 و $H(X)-C+\varepsilon$ وجود ندارد كه ايهامى كمتر از H(X)-C ايجاد كند.

برهان
 بلكه تنها دنبال وجود هنين كدهاينى است.
اككون منبعى با مقدار اطلِع $H(X)$ در نظر بغيريد. فرض كنيد توزيع احتمال منع به

تسـي است كه ظرفيت C حاصل مى گردد؛ يعنى C= C. تعداد محتملترين یيامها، به طول

 هر هيام دريافت شده يیامهاي

- $M_{x \mid y}=\gamma^{I H(X \mid Y)}$ ختم مىشوند

در حالت تنظيم مطلوب منبع با كانال تعــداد يـيامهـاى احتمــالى ارســال شـــنه برابـر با

 احتمال آن كه يكـ يـيام متعلّت باشد برابر است، اين احتمال برابر است با

$$
P\left(\widetilde{x}_{i} \in M_{\mathrm{R}}\right)=\frac{\mathrm{r}^{\mathbb{R}}}{\mathrm{r}^{\prime H(X)}}=\mathrm{r}^{I\{\mathrm{R}-H(X)\}},
$$

كه (تقريباً) برای همة بییامهاى دريافت شده مىتوانند به بيام دريافت شده يكسان تصادف، يِام متعلّق به هر دوى يكسان برابر است با

اين احتمال اجتماعى از تعدادى بيشامدهاست و از نظرية احتمال مىدانيـم كه كوچكتر يا مساوى با هجموع احتمالهإي بيشامدهاى تكى است. از اين مطلب نتيجه مى اشود كه

$$
P_{e} \leq \sum_{\substack{j=1 \\ j \neq i}}^{M_{x \mid y}} P\left[\left(\widetilde{x}_{j} \in M_{x \mid y}\right) \cap\left(\tilde{x}_{j} \in M_{\mathrm{R}}\right)\right] .
$$

احتمال اين كه بيامى متعلّت به|y ${ }_{\text {بی }}$ بوده و ارسال نيز شده باشد برابر است با

$$
\begin{align*}
& P\left[\left(\widetilde{x}_{j} \in M_{x \mid y}\right) \cap\left(\tilde{x}_{j} \in M_{\mathrm{R}}\right)\right]=P\left(\tilde{x}_{j} \in M_{x \mid y}\right) \cdot P\left(\widetilde{x}_{j} \in M_{R}\right) \\
& \leq P\left(\tilde{x}_{j} \in M_{R}\right), \tag{FY.F}\\
& \text { حون بنابر تعريف أ } \\
& P_{e} \leq \sum_{\substack{j=1 \\
j \neq 1}}^{M_{x \mid y}} P\left(\tilde{x}_{j} \in M_{\mathrm{R}}\right) . \tag{fr.f}
\end{align*}
$$

با جايگزيني مقدار به دست آمدة تَبل براى $P\left(\tilde{x}_{j} \in M_{R}\right)$ نتيجه مىشود

$$
P_{e} \leq \sum_{\substack{j=1 \\ j \neq i}}^{M_{x \mid y}} \mathrm{r}^{\{\mathrm{R}-H(X)\}},
$$

يعنى:

$$
\begin{equation*}
P_{e} \leq\left\{M_{x \mid y}-1\right\} \mathrm{r}^{\prime\{\mathrm{R}-H(X)\}} \tag{ff.f}
\end{equation*}
$$

هون R < C ، مى توان ثابت كرد كه

$$
\begin{equation*}
\mathrm{R}=C-\theta=H(X)-H(X \mid Y)-\theta \tag{f0.f}
\end{equation*}
$$

كه در آن θ يك ثابت مثبت است. از اين نتيجه مىشود كه

$$
P_{e} \leq\left\{\mathrm{r}^{i H(X \mid Y)}-1\right\} \mathrm{r}^{I(-H(X \mid Y)-\theta\}} \leq \mathrm{r}^{-1 \theta}
$$

يعنى احتمال خطا رامى توان با افزايش معدار l به دلنواه كوهحك كرد، به شرط آن كه R R علاوه بر اين، نابرابرى فانو براى ايهام $H(X \mid Y)$ برقرار است

$$
H(X \mid Y) \leq H\left(P_{e}\right)+P_{e} \log (n-1)
$$

از اين رو اگر
 اغماضى ارسال امكانیذير است. قسمت دوم تضيه را مىتوان به صورت زير ثابت كرد. اگر $H(X)>C$ از باقىمــاندة اطلاع صرفنظر خواهد شد. اين درگيرنده ايهام $H(X \mid Y)>0$ را موجب اين، اين ايهام حدآتل برابر H(X) -
 از اين رو

$$
H(X)-H(X \mid Y)=C+\delta
$$

مى تواند به دلخواه كو

ه.f

 دريافت شده است، در حالى كه $H(Y)$ بين دو بخش عبور مى كند.

شكل IF.F - كانالهاى متوالى
F.f F.f

اگر يك كانال با نرخ ارسال R, توسط كانال دومى دنبال شود در اين صورت بـــراى نرخ كل ارسال R براى هر دو كانال داريم

$$
R \leq R_{1} .
$$

برهان
بايد ثابت كنيم كه

$$
\mathrm{R}=H(X)-H(X \mid Z) \leq \mathrm{R}_{1}=H(X)-H(X \mid Y)
$$

يكـ نماد كه به نوبت خرد نماد تنها از طريت

$$
p\left(z_{k} \mid y_{j}, x_{i}\right)=p\left(z_{k} \mid y_{j}\right)
$$

برای تمام i، i g k. با استفاده از قضبئ بيز داريم

$$
\begin{gathered}
\frac{p\left(x_{i} \mid y_{j}, z_{k}\right) \cdot p\left(z_{k} \mid y_{j}\right)}{p\left(x_{j} \mid y_{i}\right)}=p\left(z_{k} \mid y_{j}\right) \\
p(x \mid y, z)=p(x \mid y)
\end{gathered}
$$

اكنون با استفاده از $\log a \leq(a-1) \log e \ln a \leq a-1$ به دست مى آوريم

$$
\begin{aligned}
& H(X \mid Z)-H(X \mid Y) \\
&=-\sum_{x} \sum_{z} p(x, z) \log p(x \mid z)+\sum_{x} \sum_{y} p(x, y) \log p(x \mid y) \\
&=-\sum_{x} \sum_{y} \sum_{z} p(x, y, z) \log p(x \mid z)+\sum_{x} \sum_{y} \sum_{z} p(x, y, z) \log p(x \mid y) \\
&=-\sum_{x} \sum_{y} \sum_{z} p(x, y, z) \log \frac{p(x \mid z)}{p(x \mid y)}=-\sum_{x} \sum_{y} \sum_{z} p(x, y, z) \log \frac{p(x \mid z)}{p(x \mid y, z)} \\
&=-\sum_{y} \sum_{z} p(y, z) \sum_{x} p(x \mid y, z) \log \frac{p(x \mid z)}{p(x \mid y, z)}
\end{aligned}
$$

كانال ارتباطى كـستـه

$$
\begin{align*}
& \geq-\sum_{y} \sum_{z} p(y, z) \log e \times \sum_{x} p(x \mid y, z)\left\{\frac{p(x \mid z)}{p(x \mid y, z)}-1\right\} \\
& =-\sum_{y} \sum_{z} p(y, z) \log e \times\left\{\sum_{x} p(x \mid z)-\sum_{x} p(x \mid y, z)\right\} \\
& =-\sum_{y} \sum_{z} p(y, z) \log e \times\{1-1\}=0 . \tag{FV.F}
\end{align*}
$$

از اين رو ثابت شد كه

 اگر رابطة يكتايى بين نمادهاى ورودى و خروجي وجود داشته باشد مىتوان همهٔ اطـــلاع را

 بهدست آورد. F.F F F

دو كانال متقارن دودويى متّصلشده بهطور متوالى را در نظر بگيريد (شكل (10.F))، كه در آن كانال اوّل داريم

$$
\begin{aligned}
\mathrm{R}_{1} & =H(Y)-H(Y \mid X) \\
& =1-H(P),
\end{aligned}
$$

كه در آن

$$
H(P)=-p \log p-(1-p) \log (1-p)
$$

نماد

$$
p\left(z_{1} \mid x_{1}\right)=(1-p)^{r}+p^{r}=1-r p(1-p)=1-p^{\prime}
$$

$$
p\left(z_{\mathrm{r}} \mid x_{\mathrm{V}}\right)=\Upsilon p(1-p)=p^{\prime}
$$

بديهى است كه اين نيز درست است كه

$$
\begin{aligned}
\mathrm{R} & =H(Z)-H(Z \mid X) \\
& =1-H\left(P^{\prime}\right)
\end{aligned}
$$

$$
H\left(P^{\prime}\right)=-p^{\prime} \log p^{\prime}-\left(1-p^{\prime}\right) \log \left(1-p^{\prime}\right)
$$

بـراى نتيجه گيرى زير امكانيذير است

$$
0 \leq H(P) \leq H\left(P^{\prime}\right) \leq 1
$$

و از اين رو نتيجه مىشود

$$
R \leq R
$$

همزمان مىتوان مشاهده كرد كه $H(Z \mid X)=H(Z \mid Y)+H(Y \mid X)$ نـى توانــد برتـرار باشد. زيرا
 زيرايهامها به دست آورد، بلكه بايد ماتريس كانال را براى همه كانال تعيين كرد، از ايــيـن

شكل ID.F F.

F.F

تا كنون كانالهاى بیحالظظه را بررسى كردهايم. بدين معنى كه فرض كرديم كه رخداد خطاها، يعنى تغيير نمادها در حين ارسال، مستقل از اشتباهات است. علاوه بر مزيّيت تحليل
 كدها در عمل نيز براساس رخداد خططاهاى مستقل مىباشند. هنوز در عمل تعداد روزافزونى

نمادهاى ورودى تكى داريم

$$
\begin{equation*}
C=\lim _{L \rightarrow \infty} \frac{1}{L} \max I\left(X_{1}, \ldots, X_{L} ; Y_{1}, \ldots, Y_{L}\right) \tag{fA.f}
\end{equation*}
$$

 احتمال p - ا. زنجير مار كوف هر زمان مى آيد. احتمالهاى انتقالل

مى تواند در هر هالت G و B توليد شده باشد. بنابراين براى تعيين احتمال خططا كه در ايـــن

 متناظر با رخداد بدون خطا هستند
 داد به تسمى كه

$$
f(G)=0 \quad, \quad f\left(B_{0}\right)=0 \quad, \quad f\left(B_{1}\right)=1 .
$$

براى زنجير ماركوف شكل (B.f) برای احتمالهاى دو حالت نتيجه میشود كه

$$
P(G)=\frac{P(G \mid B)}{P(B \mid G)+P(G \mid B)}
$$

$$
P(B)=\frac{P(B \mid G)}{P(B \mid G)+P(G \mid B)} .
$$

خططايى با احتمال (p-1) در حالت B رخ ميدهد بنابراين به دست مى آوريم

$$
P(1)=(1-p) P(B)=\frac{(1-p) P(B \mid G)}{P(B \mid G)+P(G \mid B)}
$$

نكل \&.9.4- الگُى زيلبرت

يس سه احتمال (P(B|G)، $P(G \mid B)$ و p الگوى زيلبرت احتمال $P(1)$ رخداد خططاهــا

 آن احتمال خحطا در حالت G صفر نيست ولى مقدار مثبت (كوهچكى) دارد.

تمرينها V.F

I.f نمادهاى انتقال $q\left(y_{j} \mid x_{i}\right)=q_{j i}$ اين كانالل متقارن دودويى (BSC) با ماتريس انتقال زيــر داده

شدهاند:

$$
Q=\left[\begin{array}{ll}
\frac{r}{r} & \frac{1}{r} \\
\frac{1}{r} & \frac{r}{r}
\end{array}\right] .
$$

(الف) عبارتى براى متوسط اطلاع متقابل

 (؟) (؟ (ب) اطدار اطلاع در طرف فرستنده را حساب كنيد. (ت) ايهام را بحاسبه كنيد. (ث) الطلاع متقابل I(X;Y را با به كار گيرى .نتايج (پ) و (ت) محاسبه كنيد. P.千 طرف دريافت كننده انتخابى بين سه نماد

آن احتمالهاى انتقال $q\left(y_{j} \mid x_{i}\right)=q_{j i}$ توسط ماتريس انتقال زير داده شده است:

$$
Q=\left[\begin{array}{lll}
q_{11} & q_{r 1} & q_{r 1} \\
q_{r r} & q_{r r} & q_{r r}
\end{array}\right]=\left[\begin{array}{lll}
\frac{1}{r} & \frac{1}{r} & 0 \\
\frac{1}{r} & \frac{1}{r} & \frac{1}{r}
\end{array}\right] .
$$

$$
\begin{align*}
& \text { (الف) مقدار اطلاع نمادها در طرف گيرنده را محاسب كنيد. } \\
& \text { (ب) (ب) عدمحتميت } H(Y \mid X) \text { مربوط به نونه را اساسبه كنيد. } \\
& \text { ظرفيت اين كانال را محاسب كنيد. } \tag{ب}
\end{align*}
$$

r.f ارسال كرد. سه نماد متفــاوت $)$ احتمالهاى انتقال $q\left(y_{j} \mid x_{i}\right)=q_{i j}$ توسط ماتريس انتقال زير داده شده است:

$$
Q=\left[\begin{array}{lll}
q_{11} & q_{r 1} & q_{r 1} \\
q_{1 r} & q_{\mathrm{rr}} & q_{r r} \\
q_{1 r} & q_{\mathrm{rr}} & q_{r r}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{10}{15} & \frac{1}{15} & \frac{9}{15} \\
\frac{\Delta}{15} & \frac{8}{18} & \frac{\Delta}{18} \\
\frac{8}{18} & \frac{1}{15} & \frac{9}{15}
\end{array}\right] .
$$

(الف) مقدار اطلاع دريافتى بر نماد جه قدر است؟
 (؟) احتمال ارسال

يك F.F متصل است. دريافت كننده سـسه نهـاد
 توصيف مىشود:
$\left[\begin{array}{lll}r_{11} & r_{i r} & r_{i r} \\ r_{r 1} & r_{r r} & r_{r r} \\ r_{r i} & r_{r r} & r_{r r}\end{array}\right]=\left[\begin{array}{ccc}\frac{1}{r g} & \frac{1}{i r} & 0 \\ \frac{1}{q} & \frac{1}{q} & \frac{\Delta}{r g} \\ 0 & \frac{1}{1 \lambda} & \frac{1}{r}\end{array}\right]$.
با كمكى دادههاى مفروض در بالا، مطلوب است:
(الف) مقدار اطللع نمادهايى كه در طرف دريافت كننده ارائه مىشود؛
(ب)
(ب) مقدار اطلاع انتقال داده شده به سوى ديگر اين كانال نونهدار.
(10.f) A.f

كانال ارتباطى كـسته

احتمالهای انتقال
زير داده شده است

$$
Q_{Z \mid X}=\left[\begin{array}{cc}
\frac{r}{F} & \frac{1}{\xi} \\
\frac{1}{F} & \frac{r}{F}
\end{array}\right] .
$$

احتمالهاى انتقال
زير داده شده است

$$
Q_{Y \mid Z}=\left[\begin{array}{cc}
\frac{r}{r} & \frac{1}{r} \\
\frac{1}{r} & \frac{r}{r}
\end{array}\right] .
$$

ارسال شده است.
(الف) H(Z|X) را تعيين كنيد.
 كنيد.
(پ) H(Y|Z) را تعيين كنيد.

\&.F ارائه كرد. نمادهاى نماد احتمالهاى انتقال $q\left(y_{j} \mid x_{i}\right)=q_{j i}$ توسط ماتريس انتقال زير داده شده است:

$$
Q=\left[\begin{array}{ccc}
0, \Delta & 0, \mu & 0, \mu \\
0, \uparrow & 0, \mu & 0, \mu \\
0,1 & 0, \mu & 0
\end{array}\right] .
$$

(الف) مقدار اطلاع H(Y) دريافتي برانى هر نماد در طرف گيرنده جه تدر است؟
(ب)
(ب) (ب) احتمال خطاى ((ت) متوسط احتمال خطا را از نقطهنظر گيرنده محاسبه كنيد. متوسط احتمال خطا را از نتطهنظر فرستنده محاسبه كنيد.
 مقدار اطلاع ارسال شده و ايهام را محاسبه كنيد. آيا اكنون نابرابرى فانو برترار است.
 يك كانال باكشدگى دودويى (BEC) با ماتريس انتقال زير ارسال مى گردد:

$$
Q=\left[\begin{array}{ccc}
1-p & p & 0 \\
0 & p & 1-p
\end{array}\right]
$$

(الف) عدمحتميت H(Y|X) مربوط به اثر نوفه را مهاسبه كنيد. (ب) مقدار اطلاع ارسال شده R Rا تعيين كنيد. (ب) ظرفيت C اين كانال, را محاسب كنيد.
 متصل شده است (ثككلز (IY.f) را بيينيد). (الف) مقدار اطلاع $H(Y)$ را بيابيد. (ب) مقدار اطلاع ارسال شده R R را محاسبه كنيد. (ب) ظرفيت C اين كانال را تعيين كنيد.

$$
\begin{aligned}
I(X ; Y) & =\sum_{i=j j=1}^{r} \sum_{j=1}^{r} r\left(x_{i}, y_{j}\right) \log \frac{r\left(x_{j}, y_{j}\right)}{p\left(x_{j}\right) q\left(y_{j}\right)} \\
& =\sum_{i=j}^{\Gamma} \sum_{j=1}^{\Gamma} p\left(x_{i}\right) q\left(y_{j} \mid x_{i}\right) \log \frac{q\left(y_{j} \mid x_{i}\right)}{q\left(y_{i}\right)}
\end{aligned}
$$

$$
=\sum_{i=j j=1}^{\eta} \sum_{j=1}^{\eta} p\left(x_{i}\right) q\left(y_{j} \mid x_{i}\right) \log \frac{q\left(y_{j} \mid x_{i}\right)}{\sum_{k=1}^{\eta} p\left(x_{k}\right) q\left(y_{j} \mid x_{k}\right)}
$$

(ب) با جانشين كردن مقادير داده شـه در عبارت بالا نتيجه مىشرد

$$
\begin{aligned}
I(X ; Y) & =\frac{1}{r}\left[\frac{r}{r} \log \frac{\frac{r}{r}}{\frac{1}{r} \times \frac{r}{r}+\frac{1}{r} \times \frac{1}{r}}+\frac{1}{r} \log \frac{\frac{1}{r}}{\frac{1}{r} \times \frac{1}{r}+\frac{1}{r} \times \frac{r}{r}}\right] \\
& +\frac{1}{r}\left[\frac{1}{r} \log \frac{\frac{1}{r}}{\frac{1}{r} \times \frac{r}{r}+\frac{1}{r} \times \frac{1}{r}}+\frac{r}{r} \log \frac{\frac{r}{r}}{\frac{1}{r} \times \frac{1}{r}+\frac{1}{r} \times \frac{r}{r}}\right] \\
& =\frac{r}{r} \log \frac{r}{r}+\frac{1}{r} \log \frac{r}{r}=0,0 \wedge \text { A ثانيه } / .
\end{aligned}
$$

(؟) (ب)

$$
H(X)=-\frac{1}{r} \log \frac{1}{r}-\frac{1}{r} \log \frac{1}{r}=1 \text { ثانيه / بيت. }
$$

(ت) برای ايهام $H(X \mid Y)$

$$
H(X \mid Y)=-\sum_{i=1}^{\Gamma} \sum_{j=1}^{Y} q\left(y_{i}\right) p\left(x_{i} \mid y_{j}\right) \log p\left(x_{i} \mid y_{j}\right)
$$

احتمال نماد y_{j} از عبارت زير به دست مىآيد

$$
q\left(y_{i}\right)=\sum_{i=1}^{\Gamma} p\left(x_{i}\right) q\left(y_{j} \mid x_{i}\right)=\sum_{i=1}^{\Gamma} p\left(x_{i}\right) q_{j i}
$$

بنابرابن

$$
\begin{aligned}
& q\left(y_{1}\right)=\frac{1}{r} \times \frac{r}{r}+\frac{1}{r} \times \frac{1}{r}=\frac{1}{r}, \\
& q\left(y_{r}\right)=\frac{1}{r} \times \frac{1}{r}+\frac{1}{r} \times \frac{r}{r}=\frac{1}{r},
\end{aligned}
$$

در حالى كه احتمالهاى پسين

$$
p\left(x_{1} \mid y_{1}\right)=\frac{p\left(x_{1}\right) q_{11}}{q\left(y_{1}\right)}=\frac{\frac{1}{r} \times \frac{r}{r}}{\frac{1}{r}}=\frac{r}{r}
$$

$$
p\left(x_{r} \mid y_{1}\right)=\frac{1}{r} \quad, \quad p\left(x_{1} \mid y_{r}\right)=\frac{1}{r} \quad, \quad p\left(x_{r} \mid y_{r}\right)=\frac{r}{r}
$$

با جانششين كردن اين مقادير در معادلة أيهام نتيجه مىشود

$$
\begin{aligned}
& H(X \mid Y)=-\frac{1}{r}\left[\frac{r}{r} \log \frac{r}{r}+\frac{1}{r} \log \frac{1}{r}\right]-\frac{1}{r}\left[\frac{1}{r} \log \frac{1}{r}+\frac{r}{r} \log \frac{r}{r}\right] \\
& =-\frac{r}{r} \log \frac{r}{r}-\frac{1}{r} \log \frac{1}{r}=0,91 \text { (ثانيه } 9 \text { بيت }
\end{aligned}
$$

(ث) رابطةء زير براى اطلاع متقابل برترار است:

$$
I(X ; Y)=H(X)-H(X \mid Y)
$$

با جایگزينى جو'ابهاى حاصل در (ب) و (ت) در اين عبارت داريم
$I(X ; Y)=1-0,91=0,09$ ثانيه / بيت,
كه با جواب به دست آمده در (ب) مطابت است.
(الف) Y.F F.F

شكل 1A.F - نمايش كانال تـرين (F.F)
$p\left(x_{1}\right)=\alpha$ نماد

$$
q\left(y_{j}\right)=\sum_{i=1}^{r} p\left(x_{i}\right) q\left(y_{j} \mid x_{i}\right)=\sum_{i=1}^{\Gamma} p\left(x_{i}\right) q_{j i} .
$$

از اين نتيجه مىشود

$$
q\left(y_{1}\right)=\frac{1}{p} \alpha+\frac{1}{p}(1-\alpha)=\frac{1}{p}
$$

كانال ارتباطى كسسته

$$
\begin{aligned}
& q\left(y_{r}\right)=\frac{1}{r} \alpha+\frac{1}{f}(1-\alpha)=\frac{1+\alpha}{f} \\
& q\left(y_{r}\right)=o \alpha+\frac{1}{f}(1-\alpha)=\frac{1-\alpha}{f} .
\end{aligned}
$$

بنابراين، براي مقدار اطلاع دريافت شده H(Y داريم

$$
\begin{aligned}
H(Y) & =-\frac{1}{r} \log \frac{1}{r}-\frac{1+\alpha}{f} \log \frac{1+\alpha}{f}-\frac{1-\alpha}{f} \log \frac{1-\alpha}{f} \\
& =\frac{r}{r}-\frac{1+\alpha}{f} \log (1+\alpha)-\frac{1-\alpha}{f} \log (1-\alpha) \text { ثان } / \text { بانيه } .
\end{aligned}
$$

(ب) بنا به تعريف براى $H(Y \mid X)$ داريم

$$
\begin{aligned}
& H(Y \mid X)=-\sum_{i=1}^{r} \sum_{j=1}^{r} p\left(x_{i}\right) q\left(y_{j} \mid x_{i}\right) \log q\left(y_{j} \mid x_{i}\right) \\
& =-\sum_{i=1}^{r} \sum_{j=1}^{p} p\left(x_{i}\right) q_{j i} \log q_{j i} \\
& =-\alpha\left(\frac{1}{r} \log \frac{1}{r}+\frac{1}{r} \log \frac{1}{r}\right)-(1-\alpha)\left(\frac{1}{r} \log \frac{1}{r}+\frac{1}{r} \log \frac{1}{r}+\frac{1}{r} \log \frac{1}{r}\right) \\
& =\alpha+(1-\alpha) \frac{r}{r}=\frac{r}{r}-\frac{\alpha}{r} \text { ثانيه / بيت. }
\end{aligned}
$$

(ب) مقدار اطلاع ارسال شده از رابطة زير به دست مى آيد

$$
\begin{aligned}
\mathrm{R} & =H(Y)-H(Y \mid X)=\frac{r}{r}-\frac{1-\alpha}{f} \log (1+\alpha)-\frac{1-\alpha}{f} \log (1-\alpha)-\frac{r}{r}+\frac{\alpha}{r} \\
& =-\frac{1+\alpha}{f} \log (1+\alpha)-\frac{1-\alpha}{f} \log (1-\alpha)+\frac{\alpha}{r} .
\end{aligned}
$$

ظرفيت با انتخاب مقدارى از $p\left(x_{1}\right)=\alpha$ كه بازاى آن R ماكسيمـ مى شود بــه دست مى/آيد، يعنى

$$
C=\max _{\alpha} R
$$

اين مقدار α از حلز معادلة ه $\frac{d R}{d \alpha}$ به دست مى آيل:

$$
\frac{d R}{d \alpha}=-\frac{1}{r} \log (1+\alpha)-\frac{\log e}{r}+\frac{1}{r} \log (1-\alpha)+\frac{\log e}{r}+\frac{1}{r}=0 .
$$

بنابراين داريم

$$
\log \frac{1+\alpha}{1-\alpha}=r
$$

$$
\alpha=\frac{\mu}{\Delta} .
$$

با جانشين كردن در R حاصل ميشود:

$$
C=\text { ثانيه / بيت sاره. }
$$

$$
p\left(x_{1}\right)=p\left(x_{r}\right)=p\left(x_{r}\right)=\frac{1}{r}
$$

بنابراين احتمالهاى

$$
q\left(y_{j}\right)=\sum_{i=1}^{\Gamma} p\left(x_{i}\right) q\left(y_{j} \mid x_{i}\right)=\sum_{i=1}^{r} p\left(x_{i}\right) q_{j i}
$$

از اين نتيجه ميشود

$$
\begin{aligned}
& q\left(y_{1}\right)=\frac{1}{r}\left(\frac{10}{18}+\frac{\theta}{18}+\frac{5}{18}\right)=\frac{v}{15} . \\
& q\left(y_{r}\right)=\frac{1}{r}\left(\frac{q}{15}+\frac{5}{15}+\frac{1}{15}\right)=\frac{\psi}{18} . \\
& q\left(y_{r}\right)=\frac{1}{r}\left(\frac{f}{18}+\frac{\theta}{15}+\frac{9}{15}\right)=\frac{5}{15} .
\end{aligned}
$$

بنابراين، براى مقدار اطلاع دريافت شده داريم

شكل 19.F- نمايش كانال تمرين (4.5)

كانال ارتباطى كـسـته
(ب) (ب) H(Y|X) دارد. اين مقــدار برابر امست با

$$
\begin{aligned}
H(Y \mid X)= & -\sum_{i=1}^{r} \sum_{j=1}^{r} p\left(x_{i}\right) q\left(y_{j} \mid x_{i}\right) \log q\left(y_{j} \mid x_{i}\right)=-\sum_{i=1}^{r} \sum_{j=1}^{r} p\left(x_{i}\right) q_{j i} \log q_{j i} \\
= & -\frac{1}{r}\left(\frac{10}{18} \log \frac{10}{18}+\frac{r}{18} \log \frac{r}{18}+\frac{f}{18} \log \frac{f}{18}\right)-\frac{1}{r}\left(\frac{\Delta}{18} \log \frac{\Delta}{18}+\frac{s}{18} \log \frac{s}{18}+\frac{\Delta}{18} \log \frac{\Delta}{18}\right) \\
& -\frac{1}{r}\left(\frac{s}{18} \log \frac{s}{18}+\frac{1}{18} \log \frac{1}{18}+\frac{9}{18} \log \frac{9}{18}\right) \\
= & -\frac{1}{r} \times \frac{1}{18}(1 \cdot \log 10+r+\lambda+1 \circ \log \Delta+1 r \log s+9 \log 9-F 1 \log 1 s) .
\end{aligned}
$$

با محاسبة اين عبارت نتيجه مىشود
$H(Y \mid X)=1$, نـاد / بيت
از اين رو مقدار اطلاع ارسال شده برابر امت با

$$
\mathrm{R}=H(Y)-H(Y \mid X)=1, \Delta 1-1, \Psi \wedge=0 \text { نـاد / بيت }
$$

(ب) احتمال اين كه
 بيز نتيجه مىشود كه

$$
p\left(x_{\mathrm{r}} \mid y_{1}\right)=\frac{p\left(x_{\mathrm{r}}\right) \cdot q\left(y_{1} \mid x_{\mathrm{r}}\right)}{q\left(y_{1}\right)}=\frac{\frac{1}{r} \times \frac{\Delta}{1 s}}{\frac{\mathrm{v}}{18}}=\frac{\Delta}{\mathrm{Y} 1}
$$

F.千 محاسبه كرد. اين احتمالها با جمع بندى احتمالهاى توأم روى تـام i i ها به دست مى آيد:

$$
\begin{gathered}
\sum_{i=1}^{r} r\left(r_{i j}\right)=q\left(y_{j}\right) . \\
q\left(y_{i}\right)=\frac{1}{r g}+\frac{1}{r}=\frac{\Delta}{1 \Lambda}, \\
q\left(y_{r}\right)=\frac{1}{i r}+\frac{1}{q}+\frac{1}{1 \Lambda}=\frac{1}{r}, \\
q\left(y_{r}\right)=\frac{\Delta}{r g}+\frac{1}{r}=\frac{i r}{r g} .
\end{gathered}
$$

بنابراين داريم

$$
H(Y)=-\frac{\Delta}{1 \wedge} \log \frac{\Delta}{1 \lambda}-\frac{1}{f} \log \frac{1}{f}-\frac{i v}{r_{\varepsilon}} \log \frac{i v}{r s}=1, \Delta r \text { نماد / بيـت. }
$$

(ب) عدمحتـيت حـــاصـل از نوغـه عبـارت امـــت از $H(Y \mid X)$. دو روش بــراى تعييـن $H(X, Y)$ وجود دارد. روش اولّ اين است كا $H(X \mid X)$ مهامبه كنيم و $H(X)$ را از آن كم كنيم؛ روش دوم ايــن امــت كـه براى

$$
\begin{aligned}
& p\left(x_{1}\right)=\frac{1}{r \varepsilon}+\frac{1}{1 r}=\frac{1}{q}, \\
& p\left(x_{r}\right)=\frac{1}{r}+\frac{1}{q}+\frac{\Delta}{r \varepsilon}=\frac{1}{r}, \\
& p\left(x_{r}\right)=\frac{1}{1 \Lambda}+\frac{1}{r}=\frac{v}{1 \Lambda},
\end{aligned}
$$

به طورىكه

$$
H(X)=-\frac{1}{9} \log \frac{1}{a}-\frac{1}{r} \log \frac{1}{r}-\frac{v}{1 \wedge} \log \frac{v}{1 \wedge}=1, r \wedge \text { نماد / بيت. }
$$

به علاوه،

$$
\begin{aligned}
& H(X, Y)=-\frac{1}{r \varepsilon} \log \frac{1}{r \varepsilon}-\frac{1}{1 r} \log \frac{1}{1 r}-\frac{1}{r} \log \frac{1}{r}-\frac{1}{9} \log \frac{1}{q} \\
& -\frac{\Delta}{r_{\varepsilon}} \log \frac{\Delta}{r_{\varepsilon}}-\frac{1}{1 A} \log \frac{1}{1 \Lambda}-\frac{1}{r} \log \frac{1}{r}=r, F \Delta \text { نماد / } \text { / }
\end{aligned}
$$

بنأبراين داريم

$$
H(Y \mid X)=H(X, Y)-H(X)=r,+\Delta-1, Y \wedge=1, \circ \vee \text { نماد / بيت. }
$$

(ب) مقدار اطلاع ارسال شده R را مىتوان از رابطة زير به دست آورد.

$$
\mathrm{R}=H(Y)-H(Y \mid X)=1, \Delta Y-1,0 v=0, f \Delta \Delta \text { نماد / بيت. }
$$

كانال را مىتوان به صورت شكل (Y (Y) نمايش داد.
(الف) D.F عدمحتميت مربوط به نوفه $H(Z \mid X)$ با عبارت زير محاسبه مى شود

$$
H(Z \mid X)=-\sum_{i=1}^{r} \sum_{j=1}^{r} p\left(x_{i}\right) q\left(z_{j} \mid x_{i}\right) \log q\left(z_{j} \mid x_{i}\right)
$$

$$
\begin{aligned}
& =-\frac{1}{r}\left[\frac{r}{F} \log \frac{r}{F}+\frac{1}{F} \log \frac{1}{F}\right]-\frac{r}{r}\left[\frac{1}{F} \log \frac{1}{F}+\frac{r}{F} \log \frac{r}{F}\right] \\
& =-\frac{r}{F} \log \frac{r}{F}-\frac{1}{F} \log \frac{1}{F}=0, \lambda 1 \text { نماد / بيت. }
\end{aligned}
$$

(ب)

$$
R_{1}=H(Z)-H(Z \mid X)
$$

بنابراين ابتدا بايد $H(Z)$ را محاسبه كنيم. داريم

$$
q\left(z_{1}\right)=p\left(x_{1}\right) q\left(z_{1} \mid x_{1}\right)+p\left(x_{r}\right) q\left(z_{1} \mid x_{r}\right)=\frac{1}{r} \times \frac{r}{r}+\frac{r}{r} \times \frac{1}{r}=\frac{\Delta}{r r},
$$

$$
q\left(z_{\mathrm{r}}\right)=p\left(x_{1}\right) q\left(z_{\mathrm{r}} \mid x_{\mathrm{r}}\right)+p\left(x_{\mathrm{r}}\right) q\left(z_{\mathrm{r}} \mid x_{\mathrm{r}}\right)=\frac{1}{r} \times \frac{1}{\mathrm{r}}+\frac{\mathrm{r}}{r} \times \frac{\mathrm{r}}{\mathrm{r}}=\frac{\mathrm{V}}{\mathrm{Vr}},
$$

بنابراين

$$
H(Z)=-\frac{\Delta}{i r} \log \frac{\Delta}{i r}-\frac{v}{i r} \log \frac{v}{i r}=0,9 v \text { نماد / بيت. }
$$

در نهايت از اين نتيجه مىشود

$$
R_{1}=0,9 V-0, \lambda 1=0 \text { نماد / بيت عاره. }
$$

(ب) $H(Y \mid Z)$ داريم

$$
\begin{aligned}
H(Y \mid Z) & =-\sum_{i=1}^{r} \sum_{j=1}^{r} p\left(z_{1}\right) q\left(y_{j} \mid z_{i}\right) \log p\left(y_{j} \mid z_{i}\right) \\
& =-\frac{\Delta}{i r}\left[\frac{r}{r} \log \frac{r}{r}+\frac{1}{r} \log \frac{1}{r}\right]-\frac{v}{\mid r}\left[\frac{r}{r} \log \frac{r}{r}+\frac{1}{r} \log \frac{1}{r}\right]
\end{aligned}
$$

$$
=-\frac{r}{r} \log \frac{r}{r}-\frac{1}{r} \log \frac{1}{r}=0, A r \text { نماد / بيت. }
$$

(ت) براى أحتمالهاى خرو.بى كانال نتيجه مىشود كى

$$
\begin{aligned}
& q\left(y_{1}\right)=q\left(z_{1}\right) q\left(y_{1} \mid z_{1}\right)+q\left(z_{r}\right) q\left(y_{1} \mid z_{r}\right)=\frac{\Delta}{1 r} \times \frac{r}{r}+\frac{V}{1 r} \times \frac{1}{r}=\frac{i v}{r g}, \\
& q\left(y_{r}\right)=q\left(z_{1}\right) q\left(y_{r} \mid z_{1}\right)+q\left(z_{r}\right) q\left(y_{r} \mid z_{r}\right)=\frac{\Delta}{1 r} \times \frac{1}{r}+\frac{Y}{1 r} \times \frac{r}{r}=\frac{1 q}{r_{\xi}},
\end{aligned}
$$

بنابراين داريم

$$
H(Y)=-\frac{1 V}{r \varepsilon} \log \frac{1 v}{r g}-\frac{19}{r g} \log \frac{19}{r g}=0,99 \text { نماد / بيت. }
$$

براى تعيين $H(Y \mid X)$ مىتوان تصوزر كرد كه دو كانال به طور سرى با كانال

 كردن احتمالهاى نظيرشان با يكديگر، مىتوان ماتريس انتقال را به دســـت آورد. از

اين رو مثلاً داريم

$$
q\left(y_{1} \mid x_{1}\right)=q\left(z_{1} \mid x_{1}\right) q\left(y_{1} \mid z_{1}\right)+q\left(z_{r} \mid x_{1}\right) q\left(y_{1} \mid z_{r}\right)=\frac{r}{f} \times \frac{r}{r}+\frac{1}{f} \times \frac{1}{r}=\frac{v}{i r} .
$$

با اين روش براى حهار حالت ماتريس زير حاصل مى گردد:

$$
\left[\begin{array}{cc}
\frac{v}{i r} & \frac{\Delta}{i r} \\
\frac{\Delta}{i r} & \frac{v}{i r}
\end{array}\right]
$$

در واتع فقط ماتريسها را در هم ضرب كردهايم. اكنون اثر نوذه عبارت است از

$$
H(Y \mid X)=-\frac{v}{i r} \log \frac{v}{i r}-\frac{\Delta}{i r} \log \frac{\Delta}{i r}=0,9 V \text { نماد / بيت. }
$$

بنابراين نتيجه مىشود كه

$$
\text { R = } H(Y)-H(Y \mid X)=0,99-0,9 V=0,0 Y \text { ثانيه / بيت. }
$$

خواه يك نماد ورودى واتعاً منجر بد يك خروجى متناظر بشود يا نشود عدمرحتميت براى دو كانالل متوالى افزايش مىيابد، خون الكنون تغيـيرات بيشـــترى امكـــانـيذير است. اين كار، تعيين اين را كد كدام نماد ورودى موجب نماد خروجـــى مشـــاهده شده مىباشد مشكلتر مى كند. بنابراين $R \leq R$.
8.f (الف) مقدار اطللاع $H(Y$ را از احتمالهاى آورد. داريم

از اين رو

بنابراين
(ب) براى اثر نوفه داريم
(ب) براى اثر نوفه داريم
(ب) اگر نـاد شده است. استمال اين خطا برابر است با

$$
p\left(e \mid y_{\mathrm{r}}\right)=p\left(x_{1} \mid y_{\mathrm{r}}\right)+p\left(x_{\mathrm{r}} \mid y_{\mathrm{r}}\right)=1-p\left(x_{\mathrm{r}} \mid y_{\mathrm{r}}\right)
$$

با كمك فرمول بيز مستقيماً نتيجه مىشود كه

$$
p\left(x_{\psi} \mid y_{\psi}\right)=\frac{q\left(y_{\psi} \mid x_{\psi}\right) \cdot p\left(x_{\psi}\right)}{q\left(y_{\psi}\right)}=\frac{0, r \times \frac{1}{r}}{\frac{1}{r}}=\frac{1}{\Delta},
$$

بنابراين

$$
\begin{aligned}
& H(Y \mid X)=-\sum_{i=1}^{r} \sum_{j=1}^{r} p\left(x_{i}\right) q\left(y_{j} \mid x_{i}\right) \log q\left(y_{j} \mid x_{i}\right) \\
& =-\frac{1}{r}[0, \Delta \log 0, \Delta+0, r \log 0, r+0, r \log 0, r] \\
& -\frac{1}{r}\left[0, f \log _{0, ~} r+0, r \log 0, r+0, r \log 0, r\right] \\
& -\frac{1}{r}\left[0,1 \log _{0}, 1+0,4 \log 0,4\right] \\
& =0, F \Delta \Delta+0, \Delta Y Y+0, \ \Delta A=1,1 A \text {. نماد / }
\end{aligned}
$$

$$
\begin{aligned}
& q\left(y_{j}\right)=\sum_{i=1}^{r} p\left(x_{i}\right) q\left(y_{j} \mid x_{i}\right)=\sum_{i=1}^{r} p\left(x_{i}\right) q_{j i} . \\
& q\left(y_{1}\right)=\frac{1}{r}\left(\frac{\Delta}{10}+\frac{f}{10}+\frac{1}{10}\right)=\frac{1}{r}, \\
& q\left(y_{r}\right)=\frac{1}{r}\left(\frac{r}{1_{0}}+\frac{r}{10}+\frac{9}{10}\right)=\frac{1}{r}, \\
& q\left(y_{r}\right)=\frac{1}{r}\left(\frac{r}{10}+\frac{r}{10}+0\right)=\frac{1}{s} . \\
& H(Y)=-\frac{1}{r} \log \frac{1}{r}-\frac{1}{r} \log \frac{1}{r}-\frac{1}{\varepsilon} \log \frac{1}{\varepsilon}=1, f \varepsilon \text { نـاد / بيت. }
\end{aligned}
$$

$$
p\left(e \mid y_{\psi}\right)=1-\frac{1}{\Delta}=\frac{p}{\Delta} .
$$

(ت) از نقطهنظر گيرنده براى احتمال خططاى نتيجه مىشود كى

$$
p_{e}=\sum_{j=1}^{r} q\left(y_{j}\right)\left[1-p\left(x_{j} \mid y_{j}\right)\right]
$$

با كمك فرمول بيز داريم

$$
\begin{aligned}
& p\left(x_{1} \mid y_{1}\right)=\frac{q\left(y_{1} \mid x_{1}\right) \cdot p\left(x_{1}\right)}{q\left(y_{1}\right)}=\frac{\circ, \Delta \times \frac{1}{r}}{\frac{1}{r}}=\frac{1}{r} \\
& p\left(x_{r} \mid y_{r}\right)=\frac{1}{\Delta} \\
& p\left(x_{r} \mid y_{r}\right)=0
\end{aligned}
$$

$$
P_{e}=\frac{1}{r}\left(1-\frac{1}{r}\right)+\frac{1}{r}\left(1-\frac{1}{\Delta}\right)+\frac{1}{5}(1-0)=\frac{1}{5}+\frac{r}{\Delta}+\frac{1}{5}=\frac{11}{10}
$$

بنابراين داريم
(ث (ث براى متوسط احتمال خطا از نقطه نظر فرستنده نتيجه مىشود كه

$$
\begin{aligned}
P_{e} & =\sum_{i=1}^{r} p\left(x_{i}\right)\left[1-q\left(y_{i} \mid x_{i}\right)\right]=\frac{1}{r}(1-0,0)+\frac{1}{r}(1-0, r)+\frac{1}{r}(1-0) \\
& =\frac{1}{s}+\frac{r}{r}+\frac{1}{r}=\frac{11}{10} .
\end{aligned}
$$

جوابهاى بند (ت) و (ث) يكى هستند. تفية (F.F) را بنينيد.
 شده به نماد صحيح كه نماد x ارسال شده به نماد نادرست (ج (ج

$$
\begin{aligned}
\mathrm{R} & =H(X)-H(X \mid Y)=H(Y)-H(Y \mid X)=1,75-1,14 \\
& =0, Y \wedge \text { نماد / بيت. }
\end{aligned}
$$

ايهام $H(X \mid Y$ را نيز مىتوان با كمك اين رابطه محاسبه كرد، يعنى

$$
H(X \mid Y)=H(X)-\mathrm{R}
$$

كانال أر تباطى كـسته
براى H(X) داريم

$$
H(X)=\log r=1, \Delta \Lambda \text { بيت. }
$$

بنابراين

$$
H(X \mid Y)=1, \Delta \Lambda-0, Y \wedge=1, r \circ \text {. نماد / بيت. }
$$

(ح) نابرابرى فانو بيان مى كند كه

$$
H(X \mid Y) \leq H\left(P_{e}\right)+P_{e} \log (n-1)
$$

با محاسبة́ جملة اوتل سمت راست نتيجه مىشود:

$$
\begin{aligned}
H\left(P_{e}\right) & =-P_{e} \log P_{e}-\left(1-P_{e}\right) \log \left(1-P_{e}\right) \\
& =-\frac{11}{10} \log \frac{11}{10}-\frac{F}{10} \log \frac{F}{10}=0, \text { 人F. }
\end{aligned}
$$

جمله دوم سمت راست برابر است با

$$
P_{e} \log (n-1)=\frac{11}{10} \log (r-1)=\frac{11}{10}=0, \mu r .
$$

مجموع دو جملة اخير نتيجه مىدهد

$$
H\left(P_{e}\right)+P_{e} \log (n-1)=0, \Delta F+0, V r=1, \Delta V>H(X \mid Y)=1, r o .
$$

از اين رو نابرابرى فانو برقرار مىباشد.
V.f

در اين حالت براى $H(Y \mid X)$ به دست مى آوريم

$$
\begin{aligned}
H(Y \mid X) & =-\sum_{i=1}^{r} \sum_{j=1}^{r} p\left(x_{i}\right) q\left(y_{j} \mid x_{i}\right) \log q\left(y_{j} \mid x_{i}\right) \\
& =-\alpha[(1-p) \log (1-p)+p \log p]-(1-\alpha)[p \log p+(1-p) \log (1-p)] \\
& =-p \log p-(1-p) \log (1-p)
\end{aligned}
$$

(ب) (براى اين كه قادر باشيم R را محاسبه كنيم ابتدا بايد H(Y) را تعيين كنيم، با

$$
\begin{aligned}
& q\left(y_{1}\right)=\alpha(1-p) \\
& q\left(y_{r}\right)=\alpha p+(1-\alpha) p=p
\end{aligned}
$$

$$
q\left(y_{r}\right)=(1-\alpha)(1-p)
$$

نتيجه مىشود كه

$$
H(Y)=-\alpha(1-p) \log \alpha(1-p)-p \log p-(1-\alpha)(1-p) \log (1-\alpha)(1-p)
$$

يس از بازنويسى مجذّد اين عبارت نتيجه مىشود

$$
H(Y)=-(1-p) \alpha \log \alpha-(1-p)(1-\alpha) \log (1-\alpha)-p \log p-(1-p) \log (1-p)
$$

بنابراين براى R به دست مى آوريم:

$$
\mathrm{R}=H(Y)-H(Y \mid X)=(1-p)\{-\alpha \log \alpha-(1-\alpha) \log (1-\alpha)\}
$$

(؟) ظرفيت از رابطهُ زير به دست مىآيد:

$$
C=\max _{\alpha} R
$$

اگر هه مىتوان مقدار بهينه α را از
 بنابراين حدآكثر آن الست آن را به دست آورد. از اين رو مستقيماً نتيجه مى شود كه

$$
C=1-p .
$$

A.f (الف) ماتريس انتقال به صورت زير است:

$$
Q=\left[\begin{array}{cc}
1 & 0 \\
p & 1-p
\end{array}\right]
$$

بنابراين براى احتمالهای $q\left(y_{j}\right)$ به دست مى آوريم

$$
q\left(y_{\psi}\right)=\alpha(1-p) \quad \vdots \quad q\left(y_{1}\right)=1-\alpha+\alpha p
$$

در اين صورت H(Y) برابر است با

$$
H(Y)=-(1-\alpha+\alpha p) \log (1-\alpha+\alpha p)-\alpha(1-p) \log \alpha(1-p)
$$

(ب) براى محاسبة R بايد نخستت $H(Y \mid X)$ را بيدا كنيم. داريم

$$
\begin{aligned}
H(Y \mid X) & =-\sum_{i=1}^{r} \sum_{j=1}^{Y} p\left(x_{i}\right) q\left(y_{j} \mid x_{i}\right) \log q\left(y_{j} \mid x_{i}\right) \\
& =-(1-\alpha) \times 1 \log 1-\alpha p \log p+(1-\alpha) \times \circ \log \circ+\alpha(1-p) \log (1-p) \\
& =-\alpha p \log p-\alpha(1-p) \log (1-p)
\end{aligned}
$$

بنابراين داريم

$$
\begin{aligned}
\mathrm{R}= & H(Y)-H(Y \mid X)= \\
& -(1-\alpha+\alpha p) \log (1-\alpha+\alpha p)-\alpha(1-p) \log \alpha(1-p) \\
& +\alpha \log p+\alpha(1-p) \log (1-p) \\
= & -(1-\alpha+\alpha p) \log (1-\alpha+\alpha p)-\alpha(1-p) \log \alpha+\alpha p \log p
\end{aligned}
$$

(ب) برای تعيين ظرفيت از عبارتى كه براى R به دست آوردهايم نســـبت بــهـ α مشــتـت مى گيريه، نتيجه مى شود

$$
\begin{aligned}
\frac{d R}{d \alpha}= & (1-p) \log (1-\alpha+\alpha p)-(1-\alpha+\alpha p) \frac{p-1}{(1-\alpha+\alpha p)} \log e \\
& -(1-p) \log \alpha-\alpha(1-p) \frac{1}{\alpha} \log e+p \log p \\
= & (1-p) \log (1-\alpha+\alpha p)-(1-p) \log \alpha+p \log p
\end{aligned}
$$

با ترار دادن $\frac{d R}{d \alpha}=0=\alpha$ نتيجه میى شرد كی

$$
\log \frac{1-\alpha_{\cdot}+\alpha_{\circ} p}{\alpha_{0}}=-\frac{p}{1-p} \log p
$$

$$
1-\alpha_{0}+\alpha_{.} p=\alpha_{.} p^{p /(p-1)}
$$

$$
\alpha_{0}=\frac{1}{1-p+p^{p /(p-1)}}
$$

از اين دو براى ظرفيت به دست مى آوريم

$$
C=-\left(1-\alpha_{0}+\alpha_{0} p\right) \log \left(1-\alpha_{0}+\alpha_{。} p\right)-\alpha_{0}(1-p) \log \alpha_{0}+\alpha_{。} p \log p
$$

$$
\alpha_{0}=\frac{1}{1-p+p^{p /(p-1)}}
$$

با بازنويسى مجدّد نتيجه مى شود

$$
C=-\log \alpha_{0}-\frac{p}{p-1} \log p=\log \left(1-p+p^{p /(p-1)}\right)-\frac{p}{p-1} \log p
$$

منبع اطلاع هيو سته

ه. 1 توابع جكالى احتمال

 حلّى مورد توجه ترار داد. در حالت گسسته ممكــن اســت بـا نگاشــت برآمدهــاى يــــ

 متغير تصادنى بيوسته به صورت دامنهاى كه يكـ بازه (متنـاهى يــا بىنهـايت) روى خــطّ حقيقى است تعريف مىشود.
 سادگى متغير تصادفى گیسته نيست. هون تعداد بىنهايت مقدار وجود دارد، احتمــــال هــر
 از احتمال اين كه يك مقدار در يكى زيربازه خط حقيتى ترار دارد صصحبت كرد. اين متناظر

 است. بيشامدهاعى به شكل (بل
 تعريف مى كنيه:

$$
\begin{equation*}
F(x)=P(\mathrm{x} \leq x) \quad, \quad-\infty<x<+\infty . \tag{1.0}
\end{equation*}
$$

اين بدين معناست كه F(x) احتمالى را نشان مىدهد كه متغيْر تصادفى يكى مقدار در
مجموعه [[$-\infty, x$ اختيار كند.
يتشامد

$$
\begin{align*}
& ، 0 \leq F(x) \leq 1 \tag{I}\\
& ، \lim _{x \rightarrow \infty} F(x)=1 \tag{II}\\
& ، \lim _{x \rightarrow-\infty} F(x)=0 \tag{III}
\end{align*}
$$

است:
. تابعى ناكاهشى از $x(a) \leq F(b)$ (IV)
در شُكل (1.0) يكى مشال از تابع توزيع تجشمیى داده شده أست.
 تجمیى F(x) تعريف مىشود:

$$
p(x)=\frac{d F(x)}{d x}
$$

 شده است.

$$
p(x) \geq 0 .
$$

$$
\int_{-\infty}^{x} p(u) d u=F(x)-F(-\infty)=F(x)
$$

از اين رو مىبينيم كه مقدار تابع توزيع متناظر با مسـطع هاشــور زده شـــده در شـــلـ ((艹.

شكل اهـ ا- مثالى از تابع توزيع

شكل ه. ヶ- مثالى از تابع چگگالى احتمال.

$$
\int_{-\infty}^{\infty} p(x) d x=F(\infty)-F(-\infty)=1 .
$$

بنابراين سطح زير كل" منحنى بايد برابر يك باشد. اگر a و b را حدود انتگرال اختيار كنيم، در اين صورت (شكل (ه. (ه) را ببينيد)

$$
\int_{a}^{b} p(x) d x=F(b)-F(a)=P(\mathbf{x} \leq b)-P(\mathbf{x} \leq a)=P(a<\mathbf{x} \leq b)
$$

از اين رو مىتوان احتمال اين كه يك متغير تصادنى بيوسته مقــــدارى بيـن a و b را
 مى شود كه $P(\mathbf{x}=a)=0$ كه با بيان ارائه شده قبلى كه در حالت بيوسته احتمال يكـ مقـدار خاص صفر است مطابقت دارد. هچالى احتمال يكى متغير تصهادنى تقريباً همان نتشى را كه احتمالها براى يكى متغير

 همهنين در اين زمينه ممكن است جڭگالى احتمال را به صورت يكـ حســد در نظــر گرفــت

$$
\begin{aligned}
& \text { براى يك مقدار كوییک } \Delta x \text { نتيجه مىشود كه } \\
& P(x<\mathrm{x} \leq x+\Delta x) \approx p(x) \Delta x,
\end{aligned}
$$

هون سطع زير منحنى جڭگالى احتمال روى بـازة (x, $x+\Delta x)$ را مىتسوان بـا مسـتطيلى بـا يهناى

$$
p(x)=\lim _{\Delta x \rightarrow 0} \frac{P(x<x \leq x+\Delta x)}{\Delta x} .
$$

 فاصله اختيار كند بايد كدتر از يك باشد
 ييوسته x داراى توزيع يكنواخحت است، اگر براى چگالى احتمال داشته باشيم:

شُكل ه. ه- رابطة بين جگالى احتمال و تابع توزيع

$$
\left.\begin{array}{rlrl}
p(x) & =\frac{1}{b-a} & & \\
& =0 & & a \leq x \leq b, \\
& & & x<a, x>b . \tag{V.}
\end{array}\right\}
$$

 و F(x) در شكل (ه. اه) رسم شدهاند.

شُكل ه.ه- توابع جگگالى احتمال و توزيع براي توزيع يكنواخت
يك توزيع احتمال بيوسته مشهور ديگر توزيع نرمال يا كاوسى است. اين توزيم مهم

 تصادفى x داراى توزيع نرمال يا گاوسى است اگگ هیگالى احتمال آن به صورت زير باشد:

$$
p(x)=\frac{1}{\sigma \sqrt{r \pi}} \exp \left\{-\frac{(x-\mu)^{r}}{r \sigma^{r}}\right\} \quad, \quad-\infty<x<\infty,
$$

كه در آل تعريف شده با

$$
\begin{equation*}
E(\mathbf{x})=\int_{-\infty}^{\infty} x p(x) d x, \tag{9.0}
\end{equation*}
$$

 به صورت زير تعريف مىشود

$$
\operatorname{var}(\mathbf{x})=E\left[(\mathbf{x}-E(\mathbf{x}))^{\dagger}\right]=\int_{-\infty}^{\infty}(x-E(\mathbf{x}))^{\gamma} p(x) d x .
$$

اگر

$$
\begin{equation*}
E(\mathbf{x})=\mu \tag{11.0}
\end{equation*}
$$

$$
\operatorname{var}(x)=\sigma^{r}
$$

 تكميل مطلب بايد يادآورى كرد كه ريشءٌ دوم واريانس راانعران
 از اين رو توزيــع را نـــيز اغلـب بـا

تابع توزيع متناظر عبارت است از (شكل (V.ه) را بيـينيد)

$$
F(x)=\frac{1}{\sigma \sqrt{\gamma \pi}} \int_{-\infty}^{x} \exp \left\{-\frac{(u-\mu)^{\eta}}{r \sigma^{\gamma}}\right\} d u .
$$

 يك توزيع گاوسى دلنواه تبديل $\mathbf{y}=\frac{\mathbf{x}-\mu}{\sigma}$ براى متغير تصادفى x استاندارد كــرد. توزيـع ($\mathbf{~ ا}$ نرمال استاندارد مىنامند. از تقارن توزيع نتيجه مىشود كه

 ($p(x)$
 مى كنيه. اين توزيع به حورت زير تعريف مىشرد

$$
\begin{equation*}
F(x, y)=P(\mathrm{x} \leq x, \mathrm{y} \leq y) . \tag{1F.0}
\end{equation*}
$$

به x و y تعريف مى كنيم:

$$
p(x, y)=\frac{\partial^{\prime} F(x, y)}{\partial x \partial y} .
$$

يِي مثال از چگگالى احتمال دوبعدى در شكل (A.ه) داده شده است. هنوز هم درست
است كه

$$
\begin{equation*}
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} p(x, y) d x d y=1 \tag{15.0}
\end{equation*}
$$

 ماند رابطة بين احتمال حاشيهاى و توآم كه در حالت گسسته وجود داشت اكنون داريم

$$
\begin{align*}
& p(x)=\int_{-\infty}^{\infty} p(x, y) d y \\
& q(y)=\int_{-\infty}^{\infty} p(x, y) d x \tag{1~A.0}
\end{align*}
$$

منبع اطل大ع پيوسته

شكل ه.ه- مثالى از تابع جگالى احتمال دوبعدى
به عنوان مثالى از تابع چگالى احتمال دوبعدى توزيـــع گاوسـى دوبعــدى را در نظــر بگيريد كه به صورت زير بيان مىشود

$$
\begin{align*}
p\left(x_{1}, x_{\gamma}\right)= & \frac{1}{r \pi \sigma_{1} \sigma_{r} \sqrt{1-\rho^{r}}} \cdot \exp \left\{-\frac{1}{\gamma\left(1-\rho^{r}\right)}\left[\frac{\left(x_{1}-\mu_{1}\right)^{r}}{\sigma_{1}^{r}}\right.\right. \\
& \left.\left.-\frac{r \rho\left(x_{1}-\mu_{1}\right) \cdot\left(x_{r}-\mu_{\gamma}\right)}{\sigma_{1} \sigma_{\gamma}}+\frac{\left(x_{\gamma}-\mu_{\gamma}\right)^{r}}{\sigma_{\gamma}^{r}}\right]\right\}, \tag{19.0}
\end{align*}
$$

با بارامترهایى

هگگالِهاى احتمال حاشيهاى متناظر با
 و و $N\left(\mu_{r}, \sigma_{Y}^{r}\right)$ مىباشند
 /حتمال شرطى را بد كار برد. كاربرد هگاليهاى احتمال شرطى براى منائلى در الكترونيكي
 دامنة بيـوستهاند، و آن بدين سعناست كه مساثلى نظير جدا كردن اطلاع حاصل از ســـيـِنالها و سيگغالهاى نوفه و تفسير اطلاعات آلوده شده با نون طبيعتاً برحسب پیگالى احتمـال (يـا

احتمال) شرطى فرمولبندى شدهاند كه در T ان شرط توسط نتايج اندازه گيرى شــــده سـاخته
 احتمال حاشيهاى و توأ فرمولم فربندى شده است. داريم

$$
p(x \mid y)=\frac{p(x, y)}{q(y)}
$$

رابطة بين تابع حگالى احتمال حاشيهاى صورت زير مىباشد

$$
p(x)=\int_{-\infty}^{\infty} p(x, y) d y=\int_{-\infty}^{\infty} q(\dot{y}) p(x \mid y) d y
$$

فرمول بيز را نيز مىتوان با هِاليهاى احتمال به مورت زير بيان كرد

$$
\begin{align*}
p(x \mid y)= & \frac{p(x) p(y \mid x)}{q(y)} \tag{YY.}\\
p(x \mid y)= & \frac{p(x) p(y \mid x)}{\int_{-\infty}^{\infty} p(x) p(y \mid x) d x} \tag{YY.}
\end{align*}
$$

ِيا همحنين
 يك متغير گكسسته باشد نيز برترارند، كه در اين حالت اين عبارات به شكل زير در مى آيند:

$$
\begin{aligned}
p(x)= & \sum_{i} q\left(y_{i}\right) p\left(x \mid y_{i}\right), \\
p\left(x \mid y_{i}\right)= & \frac{p(x) q\left(y_{i} \mid x\right)}{q\left(y_{i}\right)} \\
p\left(x \mid y_{i}\right)= & \frac{p(x) q\left(y_{i} \mid x\right)}{\int_{-\infty}^{\infty} p(x) q\left(y_{i} \mid x\right) d x}
\end{aligned}
$$

 مى توان به صورت زير تعريف كرد

$$
p(x, y)=p(x) q(y)
$$

در اين حالت روابط زير نيز درست مىباشند:

$$
\begin{aligned}
& q(y \mid x)=q(y) \\
& p(x \mid y)=p(x)
\end{aligned}
$$

 همبستكى نيز به كار برده مىشود. فرض كنيد x و y دو متغير تصادفى بيوسته باشـــــند؛ در اين صورت كموراريانس به صورت زير تعريف ميشود

$$
\operatorname{cov}(\mathbf{x}, \mathbf{y})=E[(\mathbf{x}-E(\mathbf{x})) \cdot(\mathbf{y}-E(\mathbf{y}))]
$$

$$
\begin{equation*}
=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}(x-E(\mathbf{x}))(y-E(\mathbf{y})) p(x, y) d x d y . \tag{Y0.ه}
\end{equation*}
$$

توجنه كنيد كه كوواريانس متغير تصادفى x با خودش، برابر است با

$$
\begin{equation*}
\operatorname{cov}(\mathbf{x}, \mathbf{x})=E\left[(\mathbf{x}-E(\mathbf{x}))^{\psi}\right]=\operatorname{var}(\mathbf{x}) . \tag{ץ.0}
\end{equation*}
$$

اگر كوواريانس را نسبت به واريانســهاى x و $\mathbf{~ ا ~ ا س ـ ت ا ن د ا ر د ~ ك ن ي ـ ـ م ~ د ر ~ ا ي ـ ن ~ ص س و ر ت ~}$
 مواجه شديم. ضريب همبستى هـى به صورت زير مىباشد

$$
\begin{equation*}
\rho=\frac{\operatorname{cov}(\mathbf{x}, \mathbf{y})}{\sqrt{\operatorname{var}(\mathbf{x}) \operatorname{var}(\mathbf{y})}} \tag{YV.©}
\end{equation*}
$$

مى متوان نشان داد كه اء
همبستكـى بين X x و به صورت زير تعريف ميشود

$$
R(\mathbf{x}, \mathbf{y})=E(\mathbf{x} \cdot \mathbf{y})=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y p(x, y) d x d y .
$$

رابطة بين كوواريانس و همبستگى را با كمكـ معادلة (艹.ه) ميتوان به دست آورد:

$$
\begin{align*}
\operatorname{cov}(\mathbf{x}, \mathbf{y}) & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\{x y-x E(\mathbf{y})-y E(\mathbf{x})+E(\mathbf{x}) E(\mathbf{y})\} p(x, y) d x d y \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y p(x, y) d x d y-E(\mathbf{x}) E(\mathbf{y})-E(\mathbf{y}) E(\mathbf{x})+E(\mathbf{x}) E(\mathbf{y}) \\
& =R(\mathbf{x}, \mathbf{y})-E(\mathbf{x}) E(\mathbf{y}) \tag{Ү१.0}
\end{align*}
$$

ه.

 نقاطى از زمان (براى مثال شروع هر ساعت) باشد. منظور ما از (x(t) مقدار سيخنال در نقطه زمانى t است.
در نقطة داده شده

 تصادفى مقادير سيگنال [
داده مىشود.

با سيگنالهاى مشابه، مقدار سيگنال در هر نتطهُ زمان يك كميت پِيوســته اســت، بــه طورى كه فرايند تصادفى تصادنى يیوسته با يكى جیگالى احتمال معين

 سيگنال رخ مىدهد نيز باشد. به طور كلى جهار نوع سيخنال تصادفى وجود دارند كه در شكل (9.0) خلاصه شده شدهاند.

 هحتى بيش از دوبعدى مثلاً تصاوير تلويزيونى يا ثبّاتهاى چند كانالى سيخنالهاى زلزلــهـاى را

 با پارامتر زمان انجام مىدهند.

شكل 9.0- انواع سيخنالهاى تصادنى
اگر جه يكى سيگنال مشابه داراى يكـ ويز گى بيوســته نسـبت بـه هــر دو مقـادير

 معلوم است مهدود مى كنيم.
 بايستى تعيين شود توسط فضية نمونهكيرى داده شده است.

قضيه 1.0 (قضيه نمونه كيرى در دامنئ زمان)

$$
x(t)=\sum_{k=1}^{\vee W T} x\left(\frac{k}{\vee W}\right) \frac{\sin \vee \pi W\left(t-\frac{k}{\vee W}\right)}{\vee \pi W\left(t-\frac{k}{\vee W}\right)}
$$

اثبات تضيه در اين جا اراثث نغواهد شد. تابع

 سيخنال اصلى هر نقطه نمونه ضربدر

 گرفتن سيگنال گسته-زمان آناليز سادتر مىشود بدون اين كه از كليّـتـت نتـايج كاسـته

نمونه گيرى، مىتوان يكى سيگنال را به صورت يكى سرى از نمونههاى (گسسته زمان) كه
 $p(\mathbf{x})=p\left(x\left(t_{1}\right), x\left(t_{\mathrm{r}}\right), \ldots, x\left(t_{N}\right)\right)$ براى تعرين
 در واقـع مســرى از فراينــد تصــادفى . اغلب غيرضرورى يا حتَى غيرممكن است كه هگگالى احتمال توأم همهُ نمونهها را به

است با تعيين كرد. $p\left(x\left(t_{i}\right), x\left(t_{j}\right)\right)$ در اصل سيگناًل را براى چچگالى احتمال تُليل كرد. با وجود اين، اغلب كم"تّهايى نظير ميانگين، همبستگى يا كوواريانس بررسـسى ميشوند نه خود پچگالى احتمال.
تابع خردهمبستئحى به صورت زير تعريف ميشود

$$
R_{x x}\left(t_{i}, t_{j}\right)=E\left\{\mathbf{x}\left(t_{i}\right) \cdot \mathrm{x}\left(t_{j}\right)\right\}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x\left(t_{i}\right) x\left(t_{j}\right) p\left(x\left(t_{i}\right), x\left(t_{j}\right)\right) d x\left(t_{i}\right) d x\left(t_{j}\right)
$$

و از اين دو به t_{i} و بستگى دارد.

$$
\mathbf{R}_{\mathrm{xx}}=\left[\begin{array}{ccc}
R_{11} & \cdots & R_{1 N} \tag{rY.}\\
\vdots & & \vdots \\
R_{N 1} & \cdots & R_{N N}
\end{array}\right],
$$

$$
\text { كه در Tآن } R_{i j}=R_{x x}\left(t_{i}, t_{j}\right)
$$

 مهكن است براى زوج نقاط زمان هُتلف مينامند. با وجود اين، اغلب ميتوان فرض كـــرد ككـه ســيـغنالها مانا هسـتـند ككـه در آن كوواريانس تنها به اختلان زمان بستگى ندارد. در اين صورت آن را سيخنال ماناي ضعيف ميناميـم كه براى آن داريم

$$
R_{x x}\left(t_{i}, t_{j}\right)=R_{x x}\left(t_{i}-t_{j}\right)=R_{x x}(\tau)=E\left\{\mathbf{x}\left(t_{i}\right) \mathbf{x}\left(t_{i}-\tau\right)\right\} .
$$

برای است و هـجنين با
در حالت سيگنال ماناى ضعيف ممكن است هِگـــالى احتمـال سيكثال ماناى ضعيف هنوز هم به نقاط زمان مطلق اكيلاً مانا نيز براى نشان دادن اين كه جڭگالى احتمال (است، يعنى تنها به سيگنال ماناى ضعيف نيز هست ولى عكس آن ذاتًا درست نمىباشد.

علاوه بر خودهمبستگى اغلب از اتوكرواريانس نيز استفاده مىشود. اين به صــورت
زير تعريف مىشود

$$
\begin{align*}
& K_{x x}\left(t_{i}, t_{j}\right) \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(x\left(t_{i}\right)-E\left\{\mathbf{x}\left(t_{i}\right)\right\}\right) \cdot\left(x\left(t_{j}\right)-E\left\{\mathbf{x}\left(t_{j}\right)\right\}\right) p\left(x\left(t_{i}\right), x\left(t_{j}\right)\right) d x\left(t_{i}\right) d x\left(t_{j}\right),
\end{align*}
$$

اختلافش با همبستگى صرفاً در اين اســت كــه اكنـون اميــد
و ($x\left(t_{j}\right)$
 براى N نمونه برابر است با

$$
\mathbf{K}_{x x}=\left[\begin{array}{ccc}
K_{11} & \cdots & K_{1 N} \\
\vdots & & \vdots \\
K_{N 1} & \cdots & K_{N N}
\end{array}\right]
$$

كه در آن

$$
\text { اتو كوواريانس متقارن هستند، يعنى } K_{i j}=K_{j i} g R_{i j}=R_{j i} .
$$

 ضعيف باشد با سيگنالهای تصادفى گاوسى تشكيل مىشوند. برای اين ســـيُخنالها مـاتريس اتو كوواريانس يک توصيف كافى از سيگنال است. سيگنال تصادفى \} N N هگالى احتمال گاوسى براي $N=1$ ، N بد

 اين صورت عبارت برايى

$$
\begin{equation*}
p(\widetilde{\mathbf{x}})=\frac{1}{(\gamma \pi)^{N / \tau}\left|\mathbf{K}_{x x}\right|^{1 / \tau}} \exp \left\{-\frac{1}{\gamma}(\tilde{x}-\tilde{\mu}) \mathbf{K}_{x x}^{-1}(\tilde{x}-\tilde{\mu})^{T}\right\} \tag{}
\end{equation*}
$$

كه در T T سيگنال گاوسى تنها سيگنالى است كه با ميانگينش و واترين اتريس اتو كوواريانس تعييـن مى گردد. اگر فرايند مانا باشد كوواريانس
覑 $=t_{i}-1$

$$
\mathbf{K}_{x x}=\left[\begin{array}{ccccc}
K_{\bullet} & K_{1} & \cdots & \cdots & K_{N-1} \\
K_{1} & K_{c} & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots & K_{1} \\
K_{N-1} & \cdots & \cdots & K_{1} & K_{\bullet}
\end{array}\right]
$$

و بنابراين يك ساغتار بسيار ياصتى را نشان مىدهد. ماتريس بــه ايـن شــكل را مـاتريس تُويولى' مىنامند، رديف اولّ اين ماتريس مقادير نمونه گيرى شــــده تــابع اتو كوواريــانس فرايند كاوسى را مىدهد.
سيگنال گاوسى چندين ويزگى دارد كـــه كــاربرد آن را جــالب مىمــازد. احتهـالاً مهـترين ويزگى آن است كه هر تركيب نحطى كـهـ روى ســيگنال گاوسـى انجــام شــود
 و تحليل سيگنالهاى تصادنى بازى مى كند كه با نقش سيستمهاى نحطى در نظرية سيســـتمها قابل مقايسه است.
توصيف سيخنالهاى تصادفى تا اين جا محدود به دامنث زمان باتىمانده است. با وجــود اين، در اين جا مىتوان از دامنة فر كانس نيز استفاده نمود. بنـــابراين تــوان جكـالمى طيفـي بسيار مهم است؛ از اين رو كه اندازهاى براى مقدار توان در يهناى باند سيگنال تصادفى است.
 آن را از تابع اتو كوواريانس با كمك تبديل نوريه به دست آورد. آن را به صــورت زيـر تعريف مى كنيم

$$
\begin{gather*}
S_{x x}(\omega)=\int_{-\infty}^{\infty} R_{x x}(\tau) e^{-j \omega t} d \tau \\
R_{x x}(\tau)=\frac{1}{\gamma \pi} \int_{-\infty}^{\infty} S_{x x}(\omega) e^{+j \omega \tau} d \omega
\end{gather*}
$$

براى حالت $\tau=$

$$
R_{x x}(\mathrm{o})=\frac{1}{\gamma \pi} \int_{-\infty}^{\infty} S_{x x}(\omega) d \omega=P_{x}
$$

اين بدين معناست كه همانطور كه قبلاً ديدهايم متوسط توان يك سيخنال را مىتوان
 چچالى طيفى دوى كلْ دامنهُ فر كانس مىتوان آن آن را به دست آورد.

ه. ها اندازه اطلِع هيو سته
اندازء اطلاع ييوسته را مىتوان براساس اطلاع گُسسته به صورت زير به دســت آورد.

 $p_{i}=p\left(x_{i}\right) \Delta x$ احتمال كه در آن احتمالل ييوسته $p(x)$ در فاصلكُ i باشد. اكنون سالتى است كه

$$
\begin{align*}
H(X) & =-\sum_{i=1}^{n} p_{i} \log p_{i} \\
& =-\sum_{i=1}^{n} p\left(x_{i}\right) \Delta x \log p\left(x_{i}\right) \Delta x \\
& =-\sum_{i=1}^{n} p\left(x_{i}\right) \Delta x \log p\left(x_{i}\right)-\log \Delta x . \\
\lim _{\Delta x \rightarrow 0} H(X) & =-\int_{-\infty}^{\infty} p(x) \log p(x)-\lim _{\Delta x \rightarrow 0} \log \Delta x \rightarrow 0 \text { باريم } \Delta x
\end{align*}
$$

 تصادفى پيوسته همواره بىنهايت استى. در واقع نتيجه تعجبآور نيست. با تفســـير كــردن اندازء اطللع به صورت متوسط تعداد جوابهاى بلى يا خير داده شده لازم براى تحليل كردن عدمحتميت، اين عدد در حالت رييوسته بیىنهايت نـوا
 وجود خواهلد داشت.
اين همهخين توسط آن جملة دوم برابر صفر مىشود. اين موضوع به تعريف زير منجر مىشود. تعريف ه. 1

$$
H(X)=-\int_{-\infty}^{\infty} p(x) \log p(x) d x
$$

واضح است كه تعريف اندازه اطلاع پيوسته بر مبناى مشابهت با اطلاع گكسته است تـا براساس بيان مشتق رياضى،
به عنوان نتيجه H(X) تعريف شده با اين روش براى يــــى متغـيّر تصــادنى بيوســـه
مى تواند منفى شود، كه در تناتض با حالت گسسته است.
 ماكسيمم مقدار اطلاع منجر مىشمود. با وجود اين، مشتت مغاير است با آنجه كه براى حالى بالت گكسته داده شده است. اين به علّت اين حقيقت است كه بعمولًا بايد محدوديتهاى اضــافـي

 دو سالت يعنى محدود كردن دامنة نوسان و محدود كردن تـــوان (يـا واريـانس) بررسـى
 الحتمالى تعيين خواهد شد كه به ماكسيمم مقدار الطلاع منجر مىشود.

خفيلة ه. Y
براى سيگنالى با دامنة نوسان محدود شده در دامنهُ (A,+A-)، مقـــدار اطــلاع $H(X)$ ماكسيمم است اگر و تنها اگر

$$
p(x)=\frac{1}{Y A}
$$

و ماكسيمـم مقدار برابر است با

$$
H(X)=\log \curlyvee A
$$

برهان
براى سل" ايِن مسأله از روش محاسبةُ تغييرات استفاده خواهد شد. هدف تعيين چچگالى استمال p(x) است كه براى آن

$$
H(X)=-\int_{-\infty}^{\infty} p(x) \log p(x) d x
$$

ماكسيمّ باشد، كه در آن (x) ، با دامنهُ نوسان كراندار، بايد در رابطء زير صدق كند

$$
\int_{-A}^{A} p(x) d x=1
$$

براى چايان دادن به اين مطلب از تابع

$$
G(x)=-p(x) \log p(x)+\alpha p(x)
$$

نسبت به p(x) مشتت گرفته و سپس برابر صفر قرار مىدهيم. نتيجه مىشود

$$
-\log p(x)-\log e+\alpha=0
$$

$$
\ln p(x)=\frac{\alpha}{\log e}-1=k
$$

$$
\text { به تسمى كه } p(x)=e^{k} .
$$

داريم

$$
\int_{-A}^{A} p(x) d x=1
$$

بنابراين با جايگزينى $p(x)$ نتيجه مىشود

$$
\int_{-A}^{A} e^{k} d x=1 \Rightarrow\left[e^{k} x\right]_{-A}^{A}=e^{k} Y A=1
$$

كه نتيجه مىدهد

$$
p(x)=\frac{1}{Y A}
$$

با جايگزينى $H(X)$ به دست مى آوريم

$$
H(X)=-\int_{-A}^{A} \frac{1}{\varphi A} \log \left(\frac{1}{\varphi A}\right) d x=\log \psi A
$$

سرانجام در حالت كراندار بودن دامنة نوسان، جغگالى احتمـــال يكنواخــت ماكسـيميم
 تصادفي گسسته كه داراى ماكسيمم مقدار اطلاع است، اگر داراى توزيع احتمال يكنواخت باشد، مطابقت دارد.
حالت مهم ديگر وتّى است كه توان يك سيخنال كراندار باشد، كه به تثبيت واريانس
نمونهها منجر مى گردد.

$$
\sigma^{r}=\int_{-\infty}^{\infty} x^{r} p(x) d x
$$

كاكسيمـم است اگر و تنها اگر $H(X)$

$$
p(x)=\frac{1}{\sigma \sqrt{r \pi}} \exp \left\{-\frac{x^{\gamma}}{\gamma \sigma^{\gamma}}\right\}
$$

ماكسيمم مقدار اطلاع متناظر برابر است با

$$
H(X)=\log (\sigma \sqrt{\vee \pi e})
$$

اكنون بايد جچگالى احتمال $p(x)$ را به قسـى تعيين كنيم كه

$$
H(X)=-\int_{-\infty}^{\infty} p(x) \log p(x) d x
$$

ماكسيمم شود، كه در آن بايد محدوديتهاى زير منظور گردد

$$
\int_{-\infty}^{\infty} p(x) d x=1
$$

$$
\int_{-\infty}^{\infty} x^{\top} p(x) d x=\sigma^{\top}
$$

كه در آن اين فرض شده است

$$
G(x)=-p(x) \log p(x)+\alpha_{1} p(x)+\alpha_{\gamma} x^{\dagger} p(x)
$$

و مستت $G(x)$ نسبت به $p(x)$ را برابر صفر ترار مىدهيم. اين نتيجه مىدهد

$$
-\log p(x)-\log e+\alpha_{1}+\alpha_{r} x^{\prime}=0
$$

يا يس از تقسيـم بر

$$
\ln p(x)+1-\lambda_{1}-\lambda_{1} \cdot x^{\gamma}=0
$$

$$
\lambda_{1}=\frac{\alpha_{1}}{\log e} \quad, \quad \lambda_{1}=\frac{\alpha_{1}}{\log e}
$$

اين جواب زير را مىدهد:

$$
p(x)=e^{\lambda_{1}-1} e^{\lambda_{T} x^{\top}}
$$

منبع اطلاع ييوسته
پارامترهای

$$
\int_{-\infty}^{\infty} p(x) d x=\int_{-\infty}^{\infty} e^{\lambda_{1}-1} e^{\lambda_{1} x^{\prime}} d x=1
$$

كه نتيجه مىشود

$$
\begin{gathered}
e^{\lambda_{1}-1}=\sqrt{-\frac{\lambda_{r}}{\pi}} \\
\int_{-\infty}^{\infty} x^{r} p(x) d x=\int_{-\infty}^{\infty} x^{r} e^{\lambda_{r} x^{\top}} \sqrt{-\frac{\lambda_{r}}{\pi}} d x=\sigma^{r},
\end{gathered}
$$

به علاوه،

كه از آن نتيجه مىشود

$$
\lambda_{r}=-\frac{1}{r \sigma^{r}}
$$

و بنابراين

كه سرانجام نتيجه مىشود

$$
p(x)=\frac{1}{\sigma \sqrt{r \pi}} \exp \left\{-\frac{x^{\gamma}}{\gamma \sigma^{\gamma}}\right\}
$$

مقدار اطلاع متناظر برابر است با

$$
\begin{aligned}
H(X)= & -\int_{-\infty}^{\infty} \frac{1}{\sigma \sqrt{r \pi}} \exp \left\{-\frac{x^{r}}{r \sigma^{r}}\right\} \log \frac{1}{\sigma \sqrt{r \pi}} \exp \left\{-\frac{x^{r}}{r \sigma^{r}}\right\} d x \\
= & \log \sigma \sqrt{r \pi} \int_{-\infty}^{\infty} \frac{1}{\sigma \sqrt{r \pi}} \exp \left\{-\frac{x^{r}}{r \sigma^{\top}}\right\} d x \\
& +\int_{-\infty}^{\infty} \frac{x^{r} \log e}{r \sigma^{r}} \cdot \frac{1}{\sigma \sqrt{r \pi}} \exp \left\{-\frac{x^{r}}{\gamma \sigma^{r}}\right\} d x \\
= & \log \sigma \sqrt{\gamma \pi}+\frac{\log e}{r \sigma^{r}} \operatorname{var}(x)=\log \sigma \sqrt{r \pi}+\frac{1}{r} \log e \\
= & \log \sigma \sqrt{r \pi e} .
\end{aligned}
$$

از اين رو معلوم مىشود كه توزيع نرمال براى يك توان ثابت
 است جون توان و توزيع نرمال هر دو غالبأ در كاربردهاى تكنيكى به كار برده مىشوند.

©. © اندازههاى اطلدع و منابع باحافظه

 دربارة هالت گـتسته علاوه بر اندازة اططلع حاثيا

 گسسته ساز گارند.
 مقدار اطكاع توأم به صورت زير تعريف مى نود

$$
H(X, Y)=-\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} p(x, y) \log p(x, y) d x d y .
$$

مقدار اطلاع شرطى را مى توتوان به صورت زير تريف كرد. پچگالى احتمال توأم براى

$$
p(x, y)=p(x) \cdot q(y \mid x)=q(y) \cdot p(x \mid y) .
$$

اكنون مقدار اطلاع تُرطى x به شرط y به صورت زير

$$
\begin{equation*}
H(X \mid Y)=-\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} p(x, y) \log p(x \mid y) d x d y . \tag{f^.Ь}
\end{equation*}
$$

به طور مشابه

$$
H(Y \mid X)=-\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} p(x, y) \log q(y \mid x) d x d y,
$$

 درست مانند حالنت گسسته مىتوان نتيجه گرفت كی

$$
\begin{align*}
& H(X \mid Y) \leq H(X), \tag{0}\\
& H(Y \mid X) \leq H(Y),
\end{align*}
$$

اگر x و y به طور آمارى مستقل باشند تساوى برقرار مىباشد. همجنين داريم

منبع اطلكع بيوسته

$$
H(X, Y)=H(X)+H(Y \mid X)=H(Y)+H(X \mid Y)
$$

 انجام مىشوند. براساس مطالب گفته شده قبلى همحنين داريم

$$
\begin{equation*}
H(X, Y) \leq H(X)+H(Y), \tag{}
\end{equation*}
$$

تساوى در حالتى برقرار است كه x و y به طور آمارى مستقل باشند. با وجـــود ايـن نمىتوانيم بگوييم كه

$$
I(X ; Y)=H(X)+H(Y)-H(X, Y)
$$

در اين صورت با كمك تعاريف داده شده قبلى نتيجه مىشود كه I(X;Y) برابر است با

$$
I(X ; Y)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} p(x, y) \log \frac{p(x, y)}{p(x) \cdot q(y)} d x d y .
$$

مثال ه. 1
فرض كنيد تابع جچگالى احتمال توأم

$$
\begin{array}{rlrl}
p(x, y) & =\frac{1}{4} \quad, \quad 0 \leq x \leq r, & 0 \leq y \leq 4-r x \\
& =0 \quad, \quad \text { در ساير نقاط }
\end{array}
$$

براى توابع جگالى احتمال حاشيهاى نتيجه مىشود كه

$$
\begin{aligned}
& p(x)=\int_{0}^{\psi-\gamma x} p(x, y) d y=\int_{0}^{\psi-\gamma x} \frac{1}{\psi} d y=\left.\frac{1}{r} y\right|_{0} ^{+-\psi x}=1-\frac{1}{r} x \quad, \quad 0 \leq x \leq r, \\
& q(y)=\int_{0}^{r-\frac{1}{r} y} p(x, y) d x=\int_{0}^{r-\frac{1}{r} y} \frac{1}{\psi} d x=\left.\frac{1}{\psi} x\right|_{0} ^{r-\frac{1}{r} y}=1-\frac{1}{r} x \quad, \quad 0 \leq y \leq ヶ .
\end{aligned}
$$

اكنون مىتوان معدار اطلاع را مستقيماً محاسبه كرد، به طور كلى با در نظر گرمتن

$$
\int x^{n} \ln x d x=\frac{x^{n+1}}{n+1}\left\{\ln x-\frac{1}{n+1}\right\} .
$$

H(X)

$$
H(X)=-\int_{\cdot}^{r}\left(1-\frac{1}{r} x\right) \log \left(1-\frac{1}{r} x\right) d x
$$

$$
\begin{aligned}
& =\dot{\uparrow} \int_{1} z \log z d z=r \log e \int_{1}^{0} z \ln z d z \\
& =r \log e\left[\frac{1}{r} z^{\mu} \ln z-\frac{1}{r^{r}} z^{r}\right]_{,}^{\cdot}=\log \sqrt{e} \approx 0, \nu \psi \text {. } \\
& \text { به طور مشابه مىتوان ثابت كرد كه } \\
& H(Y)=-\int_{0}^{r}\left(\frac{1}{r}-\frac{1}{\Lambda} y\right) \log \left(\frac{1}{r}-\frac{1}{\Lambda} y\right) d y=\log r \sqrt{e} \approx 1, \nu r
\end{aligned}
$$

مقادير اطلاع شرطى را مىتوان با تعيين كردن توابع خگالى احتمال شــرطى مخاسـبـ

$$
p(x \mid y)=\frac{p(x, y)}{q(y)}=\frac{\frac{1}{f}}{\frac{1}{r}-\frac{1}{\wedge} y}=\frac{\gamma}{q-y} \quad, \quad 0 \leq x \leq \varphi-\frac{1}{r} y,
$$

$$
\begin{aligned}
& p(y \mid x)=\frac{p(x, y)}{p(x)}=\frac{\frac{1}{f}}{1-!x}=\frac{1}{f-r x} \quad, \quad 0 \leq y \leq f-r x . \\
& \text { با جايگزينى در اندازه اطلاع شرطى نتيجه مىشود كه } \\
& H(X \mid Y)=\log \frac{Y}{\sqrt{e}} \approx 0, Y \wedge,
\end{aligned}
$$

$$
H(Y \mid X)=\log \frac{f}{\sqrt{e}} \approx 1,>\lambda .
$$

اين. نتايج را مىتوان غيرمستقيم از طريت H(X,Y) به دست آورد.

$$
\begin{aligned}
& H(X, Y)=-\int_{0}^{Y-\frac{q}{x}} \int_{0}^{x} p(x, y) \log p(x, y) \\
& =-\int_{0}^{Y-Y x} \int_{\beta}^{\varphi} \frac{1}{F} \log \frac{1}{F} d y d x \\
& =\frac{1}{r} \int_{0}^{\eta}(\digamma-\gamma x) d x=\frac{1}{r}\left[\digamma x-x^{\gamma}\right]_{0}^{\gamma}=\gamma . \\
& \text { از } H(Y) \text { تتيجه مىشود كه } H(X, Y) \text { ت } \\
& H(X \mid Y)=H(X, Y)-H(Y)=r-\log r \sqrt{e}=\log \frac{r}{\sqrt{e}}, \\
& H(Y \mid X)=H(X, Y)-H(X)=r-\log \sqrt{e}=\log \frac{f}{\sqrt{e}} .
\end{aligned}
$$

اندازههاى اطللع بيوسته توأم و شرطى در تشريح منابع الطلاع ييوسته باحافظه نقشى را بازى مى كنند.
نمونه هاى حاصل از يكـ سيگنال توليد شده توسط حنين منبعى عموماً وابستهاند. براى منبع اطللع گسسته اين وابستگى با احتمالهاى انتقال با نمادها يا حالتهاى مختلـفـ در يــي زنجير مار كوف بيان شده است. در حالت اطلاع پيوسته اين كار را مىتوان برحسـب توابــعـع
 فرض كنيد برطبت تضية نمونه گيرى $N=\gamma w T$ نمونـــــ علّت اثر حافظه منبع اين نمونهها به طور آمارى مستقل نيستند. به موجب اين امر بايد برامى محاسبء مقدار اطلاع توابع چگالى احتمال توأم را به كار برد. اين نتيجه مىدهد

$$
\begin{align*}
& H(\widetilde{X})=-\int_{-\infty}^{\infty} p(\tilde{x}) \log p(\widetilde{x}) d \bar{x} \\
& =-\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} p\left(x_{1}, \ldots, x_{N}\right) \log p\left(x_{1}, \ldots, x_{N}\right) d x_{1} \ldots d x_{N}
\end{align*}
$$

مقدار تقريبى مقدار اطلاع برای هر نمونه را مىتوان با تقسيم $N=\Psi w T$ بر N بر دست آورد. به طور كلى نتيجه برابر H(X) نيست، بلكه مقدار اطللع تنها يكـ نمونه مىباشد. فقط

براى منابع اطلاع بى مافظه نتيجه مىشود كه

$$
\frac{H(\widetilde{X})}{N}=H(X)
$$

در اين حالت

$$
p\left(x_{1}, x_{1}, \ldots, x_{N}\right)=\prod_{i=1}^{N} p\left(x_{i}\right)
$$

و از اين رو

$$
\begin{aligned}
H(\tilde{X}) & =-\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} p\left(x_{1}, x_{r}, \ldots, x_{N}\right) \log p\left(x_{i}, x_{\varphi}, \ldots, x_{N}\right) d x_{1} d x_{\varphi} \ldots d x_{N} \\
& =\sum_{i=1}^{N}\left\{-\int_{-\infty}^{\infty} p\left(x_{i}\right) \log p\left(x_{i}\right) d x_{i}\right\}=N H(X)
\end{aligned}
$$

به طور واضح، كميّت $H_{N}(U)$ در بخش $\frac{H(\widetilde{X})}{N}$ متناظر ب. در مقايسه با معادلة (FA.Q) مىتوان مقدار اطلكع شرطى يكى نمونه به شرط نمونهُ قبلى را به صورت زير تعريف كرد

$$
H\left(X_{\psi} \mid X_{1}\right)=-\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} p\left(x_{1}, x_{\varphi}\right) \log p\left(x_{\eta} \mid x_{1}\right) d x_{1} d x_{\psi}
$$

اكنون اين مقدار اطلاع شرطى نيز داراي اين ويزگى است كه

$$
H\left(X_{\nabla} \mid X_{1}\right) \leq H\left(X_{\nabla}\right)
$$

و از اين رو

$$
\begin{gather*}
H\left(X_{\imath}, X_{\vartheta}\right)=H\left(X_{\vartheta}\right)+H\left(X_{\vartheta} \mid X_{\imath}\right) \\
=H\left(X_{\uparrow}\right)+H\left(X_{\imath} \mid X_{\vartheta}\right) \leq H\left(X_{\imath}\right)+H\left(X_{\vartheta}\right),
\end{gather*}
$$

برابرى برترار است اگر نـونها به طور آمـــارى مسـتقل باثــند (منبـع مىسانظـهـ). بنابراين آگاهى از از

$$
\begin{gather*}
F_{N}(X)=H\left(X_{N} \mid X_{N-1}, \ldots, X_{1}\right) \text { / بيت } / \text { / نماد }, \\
H_{N}(X)=\frac{1}{N} H\left(X_{1}, \ldots, X_{N}\right)=\frac{1}{N} H(\tilde{X}) \text { / بيت, } \tag{SY.}
\end{gather*}
$$

كه متدار اطلاع در هر نمونه است كه در آن استقلال نمونها مورد توجه ترار گرفته است.

اگر هچگالى احتمال گاوسى باشد، عبارات گوناگون بيشترى مىتوان پیدا كرد. بــرای چگالِهایى احتمال ديگر اغلب اين كار خيلى مشكل است. مقدار اطللع منبع گاوسى مانا به صورت زير مىباشد

$$
H(\widetilde{X})=N \log \{\sigma \sqrt{r \pi e}\}
$$

اگر سيگنال از N نمونة ناهمبسته تشكيل شده باشد (معادله (f. (ff) را ملاحظه كنيد) براى نمونههاى وابسته با هگالى احتمال N- بعدى N الـى

$$
\begin{equation*}
H(\tilde{X})=\log \left\{(r \pi e)^{N / r}\left|\mathbf{K}_{x x}\right|^{\frac{1}{r}}\right\} \tag{5f.0}
\end{equation*}
$$

كه در آن |

 منبع گاوسى باشد از يك منبع اطلاع با ماتريس اتو كوواريانس داده شده ماكســيمم مقــدأر اطلغع به دست مى آيد.

مثال
 (19. 1 ($\rho=\frac{1}{r}, \sigma_{1}=\sigma_{Y}=1$

$$
p\left(x_{1}, x_{Y}\right)=\frac{1}{\pi \sqrt{r}} e^{-\frac{r}{r}\left(x_{1}^{r}-x_{1} x_{r}-x_{r}^{r}\right)}
$$

و تون

$$
p\left(x_{1}\right)=\frac{1}{\sqrt{r \pi}} e^{-\frac{1}{r} x_{1}^{\prime}}
$$

تابع پگالى احتمال شرطى برابر مى شود با

$$
p\left(x_{r} \mid x_{1}\right)=\frac{p\left(x_{1}, x_{r}\right)}{p\left(x_{1}\right)}=\frac{1}{\frac{1}{r} \sqrt{s \pi}} e^{-\frac{r}{r}\left(x_{r}-\frac{1}{r} x_{1}\right)^{r}}
$$

اين مجدّداً يك توزيع گاوسى است؛ به طورى كه $\mu=\frac{1}{r}$

$$
H\left(X_{\mathrm{r}} \mid X_{1}\right)=\log \sigma \sqrt{\gamma \pi e}=\log \frac{1}{\gamma} \sqrt{s \pi e} \approx 1, \wedge \uparrow,
$$

$H(\tilde{X})$

$$
\begin{aligned}
H(\widetilde{X}) & =H\left(X_{1}, X_{\vartheta}\right)=H\left(X_{1}\right)+H\left(X_{r} \mid X_{1}\right)=\log \sqrt{\psi \pi e}+\log \frac{1}{\psi} \sqrt{ء \pi e} \\
& =\log (\pi e \sqrt{r})
\end{aligned}
$$

اگر معادلة (SF.0) را به كار بريم همين نتيجـه مسـتقيماً بـه دسـت مي آيــــ هــون

$$
K_{x x}=\left[\begin{array}{cc}
1 & \frac{1}{\gamma} \\
\frac{1}{y} & 1
\end{array}\right]
$$

بنابراين،

$$
\begin{aligned}
H(\widetilde{X}) & =\log \left\{(r \pi e)^{N / r}\left|\mathbf{K}_{x x}\right|^{\frac{1}{r}}\right\}=\log \left\{r e\left[\begin{array}{cc}
1 & \frac{1}{r} \\
\frac{1}{r} & 1
\end{array}\right]^{r / r}\right\} \\
& =\log (\pi e \sqrt{r}) \approx r, \Delta q .
\end{aligned}
$$

در یايان اين بـخش تذكّراتى نسبت به تبديل متغيرهاى تصادفى اراثه خواهد شـــلـ در
 همحنين مقدار اطلاع تغيير خواهد كرد. در حالت كلى تـــابع خگــالى احتمــال N- بعــدى موردى است كه

$$
\begin{equation*}
q\left(y_{1}, \ldots, y_{N}\right)=p\left(x_{1}, \ldots, x_{N}\right)\left|J\left(\frac{x_{1} \ldots x_{N}}{y_{1} \ldots y_{N}}\right)\right| \tag{50.0}
\end{equation*}
$$

بنابراين

$$
\iint_{x_{1} x_{1}} \ldots \int_{x_{N}} p\left(x_{1}, \ldots, x_{N}\right) d x_{1} d x_{\mathrm{r}} \ldots d x_{N}=1
$$

$$
J\left(\frac{x_{1} \ldots x_{N}}{y_{1} \ldots y_{N}}\right)
$$

را زاكوبى برای $N=r$ زاكوبى به صورت زير تعريف ميشود

$$
\begin{align*}
& J\left(\frac{x_{1}, x_{r}, x_{r}}{y_{1}, y_{r}, y_{r}}\right)=\left[\begin{array}{lll}
\frac{\partial x_{1}}{\partial y_{1}} & \frac{\partial x_{1}}{\partial y_{r}} & \frac{\partial x_{1}}{\partial y_{r}} \\
\frac{\partial x_{r}}{\partial y_{1}} & \frac{\partial x_{r}}{\partial y_{r}} & \frac{\partial x_{r}}{\partial y_{r}} \\
\frac{\partial x_{r}}{\partial y_{1}} & \frac{\partial x_{r}}{\partial y_{r}} & \frac{\partial x_{r}}{\partial y_{r}}
\end{array}\right] \tag{55.0}\\
& \text { توجه كنيد كه } \\
& \left|J\left(\frac{x_{1} \ldots x_{N}}{y_{1} \ldots y_{N}}\right)\right|=\frac{1}{\left|J\left(\frac{y_{1} \ldots y_{N}}{x_{1} \ldots x_{N}}\right)\right|} . \tag{5Y.0}\\
& \text { براى مقدار اطللاع } H(\tilde{Y}) \text { به دست مى آوريم } \\
& H(\widetilde{Y})=-\iint_{y_{1} y_{\mathrm{r}}} \ldots \int_{y_{N}} p\left(x_{1}, \ldots, x_{N}\right)\left|J\left(\frac{x_{1} \ldots x_{N}}{y_{1} \ldots y_{N}}\right)\right| \\
& \times \log \left\{p\left(x_{1}, \ldots, x_{N}\right)\left|J\left(\frac{x_{1} \ldots x_{N}}{y_{1} \ldots y_{N}}\right)\right| d y_{1} \ldots d y_{N}\right\} . \\
& \text { در حالت يكـ -بعدى نتيجه ميشود } \\
& H(Y)=-\int_{y} q(y) \log q(y) d y \\
& =-\int_{x} p(x) J(x \mid y) \log \{p(x) J(x \mid y)\} J(x \mid y) d x \\
& =H(X)-E_{x}\{\log J(x \mid y)\} . \tag{59.0}
\end{align*}
$$

از اين رو مقدار اطلاع H(Y) به استثناى جملة ثابت با $H(X)$ برابر است.
 متغير تصادفى را تعيين كرد؛ براى مثال هنگامى كــهـ متغـيّر تصـادفى مجمــوع دو متغـير تصادفى ديگر است.

 براى تابع توزيع تجمعى داريم

$$
F(z)=P(x+y \leq z)=\int_{-\infty}^{\infty} \int_{-\infty}^{z-x} p(x, y) d x d y
$$

$$
p(z)=\frac{d F(z)}{d z}=\int_{-\infty}^{\infty} \frac{d}{d z}\left\{\int_{-\infty}^{z-x} p(x, y) d y\right\} d x
$$

چوت به طور كلى داريمم

$$
\frac{d}{d u} \int_{-\infty}^{u} f(r) d r=f(u)-f(-\infty)
$$

(H , X

$$
p(z)=\int_{-\infty}^{\infty} p(x, z-x) d x=\int_{-\infty}^{\infty} p(x) p_{y}(z-x) d x
$$

مثال
فرضي كنيلد:

$$
\begin{array}{ll}
p(x)=\frac{1}{Y} & , \quad 0 \leq x \leq Y \\
p(y)=\frac{1}{Y} & , \quad 0 \leq y \leq Y
\end{array}
$$

$$
. z=x+y y
$$

ها
داده میى شود.
z $\leq Y$ (الف

$$
.0 \leq z \leq Y
$$

برای
ملا مى) آوريم

$$
p(z)=\int_{0}^{z} \frac{1}{Y} \times \frac{1}{Y} d x=\left.\frac{1}{f} x\right|_{0} ^{z}=\frac{1}{f} z
$$

$$
p(z)=\int_{z-1}^{\frac{1}{\varphi}} \frac{1}{\varphi} \times \frac{1}{4} d x=\left.\frac{1}{4} x\right|_{z-1} ^{\dagger}=1-\frac{1}{f} z
$$

براى H(Z) به دسـت مى آوريم

$$
\begin{aligned}
& H(Z)=-\int_{-}^{p} \frac{1}{\gamma} z \log \frac{1}{\gamma} z d z-\int_{p}^{f}\left(1-\frac{1}{\gamma} z\right) \log \left(1-\frac{1}{\gamma} z\right) d z
\end{aligned}
$$

$$
\begin{aligned}
& =-\mathrm{A} \int_{\cdot}^{\frac{1}{\gamma}} u \log u d u=-\left.\frac{\mathrm{A}}{\ln \gamma} u^{\top}\left(\frac{1}{\varphi} \ln u-\frac{1}{\varphi}\right)\right|_{\text {. }} ^{\frac{1}{r}} \\
& =1+\frac{1}{r} \log e \text {. }
\end{aligned}
$$

ه.

 الحتمال

 الگُها بيشترين كاربرد را در نظرية اطللاع دارند. از ديد اين حقيقت كه مقـــدار ماكســيمم

اطلاع بستگى به قيود داده شده دارد، مفهوم حشو براى منابع بيوسته را بايد با دقت بيش بيشترى
 در حاللت توانهاى محدود، حشو را مىتوان به صورت زير تعريف كرد

$$
\begin{equation*}
r e d=1-\frac{H(X)}{\log [\sigma \sqrt{r \pi e}]} . \tag{VY.}
\end{equation*}
$$

 داراى يك مقدار اطلاعند بايد هه مقدار توان داشته باشد. اين موضوع به مفهوم توان /طلكع منجر مىشود.
 توان يك سيگنال گاوسى است كه دارأى همان مقدأر اطلاعى است كه ســيگنال تصـادفى دارد.
فرض كنيد H(X) مقدار اطلاع منسوب به سيگنال تصـادفى (x(t) باشد. بنابر تعريــف

$$
\begin{equation*}
H(X)=\log \sigma \sqrt{r \pi e}=\log \sqrt{r \pi e P_{H}} \tag{r}
\end{equation*}
$$

نتيجه مىشود كه

$$
P_{H}=\frac{1}{r \pi e} r^{r H(X)},
$$

كه بيان رياضى توان اطلاع در حالت سيخنالهاى دودويى با مقدار اطلاع H(X) است.
 توان اطلاع يك سيخنال دلخواه همواره از حالت گاوسى كو چحكتر است.

مثال
فرض كنيد تابع चگالى احتمال

$$
p(x)=\frac{x^{r}}{Y \Delta 00} \quad, \quad 0 \leq x \leq 10
$$

ساير نقاط
مقّدار اطلاع H(X) برابر است با

منبع أطلاع ييوسته

$$
\begin{aligned}
& H(X)=-\int_{-\infty}^{\infty} p(x) \log p(x) d x \\
& =-\int_{0}^{10} \frac{x^{r}}{r \Delta 00} \log \frac{x^{r}}{r \Delta 00} d x \\
& =-\frac{r}{r \Delta 00} \int_{0}^{b} x^{r} \log x d x+\frac{\log r \Delta 000}{r \Delta 00} \int_{0}^{r} x^{r} d x \\
& =-\frac{r \log e^{r_{0}}}{r \Delta 00} \int_{0}^{r} \ln x d x+\frac{\log r \Delta 00}{r \Delta 00} \int_{0}^{p_{0}} x^{r} d x \\
& =-\frac{r \log e}{r \Delta 000}\left[\frac{x^{4}}{F}\left(\ln x-\frac{1}{F}\right)_{0}^{10}+\frac{\log r 000}{r 000}\left[\frac{1}{f} x^{4}\right]_{0}^{10}\right. \\
& =\log \frac{\Delta}{r} \sqrt[4]{e^{r}} \approx Y, F_{0} .
\end{aligned}
$$

براى ميانگين و واريانس به ترتيـب نتيجه مىشود كه

$$
\begin{aligned}
& \mu=\int_{r}^{10} \frac{x^{4}}{r \Delta 00} d x=\left[\frac{x^{\Delta}}{1 r \Delta 00}\right]_{0}^{10}=\Lambda, \\
& \sigma^{r}=\int_{0}^{10}(x-\lambda)^{r} \frac{x^{r}}{r \Delta 00} d x=\frac{1}{r \Delta 00} \int_{0}^{10} x^{\Delta} d x-\frac{s Y}{r \Delta 00} \int_{0}^{10} x^{r} d x \\
&=\left[\frac{x^{\beta}}{10000}-\frac{18 x^{4}}{r \Delta 00}\right]_{0}^{10}=\frac{\Lambda}{r}
\end{aligned}
$$

با فرض

$$
\log \sigma \sqrt{r \pi e}=\log \sqrt{r \pi e \frac{\Lambda}{r}} \approx \gamma, v \Delta .
$$

به عنوان يكى نتيجه حشو منبع اطللع برابر مىشود با

$$
r e d=1-\frac{H(X)}{\log \sigma \sqrt{r \pi e}}=1-\frac{Y, F_{0}}{Y_{, V \Delta}} \approx 0,1 r .
$$

براى توان اطلاع به دست مى آوريم

$$
P_{H}=\frac{1}{r \pi e} r^{r H(X)}=\frac{1}{r \pi e}\left\{\frac{\Delta}{r} \sqrt[r]{e^{r}}\right\}^{r}=\frac{r \Delta \sqrt{e}}{\Delta \pi}=1, s F .
$$

$P=\sigma^{\mu}=\frac{\wedge}{r} \approx \Upsilon$ واضَ است كه توان اطلاع واتعاً از توان واتعى كه برابر است بــا

كو چكتر است.
مفهوم توان اطلاع مهم است وتتى يك كانال ارتباطى ييوسته را توصيف مى كنيم كه در آن نونه با چڭگالى احتمال غير گاوسى حضور دارد.
 سرو كار داريم‘ مىتوان نشان داد كه نابرابرى زير برترار است:

$$
P_{H_{x}}+P_{H_{y}} \leq P_{H_{z}} \leq P_{x}+P_{y}
$$

كه در T , برابرى در بالا برترار است زيرا در اين حالت توان اطلاع و توان وان واقعى يكسان هستند.
 مقدار اطلاع افزايش مىيابد يا حدآتل با روى فم ريختن كاهش نمي ايابد. اين مطلب با با بيان توان (اطلاع) برحسب اندازههاى اطلاع نتيجه مىشود. ايـن را كــه مقــدار اطــلاع افزايـس

 است انتظار داشته باشيم كه (t)، مجموع آنها، ميل خحواهد داشت كه مبيخنال نوفه-تصادفى

 مهكن است افزايش مقدار اطلاع را انتظار داشته باشيهم.

مثال
فرض كنيد دو منبع اطلاع بييسته با توابع چگگالى احتمال زير داشته باشيم

$$
\begin{aligned}
p(x) & =\frac{1}{r} & & \\
& =0 & & \\
& , & & 0 \leq x \leq r \\
p(y) & =\frac{1}{r} & & \\
& =0 & &
\end{aligned}
$$

اين متناظر است با 1 ا 1 و $H(X)=H(Y)$

$$
P_{H_{x}}=P_{H_{y}}=\frac{1}{r \pi e} r^{r H(X)}=\frac{r}{\pi e} .
$$

توان واقعى برابر است با

$$
\begin{aligned}
p(z) & =\frac{1}{f} z & & & 0 \leq z \leq r, \\
& =1-\frac{1}{f} z & & & r \leq z \leq 千, \\
& =0 & & &
\end{aligned}
$$

اگر H(Z) را محاسبه كنيم به دست مى آوريم

$$
H(Z)=\log r \sqrt{e},
$$

$$
P_{z}=\sigma_{z}^{r}=\frac{r}{r}
$$

برای اطلاع حنين داريم كى

$$
P_{H_{:}}=\frac{1}{r \pi e} r^{r \log +\sqrt{e}}=\frac{Y}{\pi} \approx 0,5 f .
$$

اگر اين را با نابرابرى فرمول (V.ه) مقايسه كنيم داريم

$$
P_{H_{x}}+P_{H_{y}}=\frac{\mathrm{F}}{\pi e}=0, \mathrm{fV} \leq P_{H_{z}}=\frac{Y}{\pi}=0,5 \mathrm{~F} \leq P_{x}+P_{y}=\frac{Y}{r}=0,5 \mathrm{VV} .
$$

ه.

 مقدار اطلاع H(X) را تعيين كنيد. (ب) مقدار اطلاع $H(X)$ را راگر x بين ه- و ه+ به طور يكنواخــت توزيـع شــده باشــد بيابيد.
(ب) اختلان بين جوابهاى يانته شده در (الف) و (ب) را تفسير كنيد.

شده است.
(الف) بقدار اطلاع H(X) را تعيين كنيد. اگگ امن نتبجه را بــا نتيجــُ تمريـن (ه. ا- الــف) مقايسه كنيد هه نتيجهاى مىتوانيد بگیريد؟

$$
\text { (ب) } \operatorname{le} \text { (x) و } \operatorname{var}(\mathbf{x}) \text { بيابيد. }
$$

 تصادفى y داريه:

$$
\mathbf{y}=\mathbf{x}+\alpha
$$

ثابت كنيد H(X)=H(Y).

(الف) مقدار k را تعيين كنيد؛
(ب) $H(X)$ را تعيين كنيد؛

براى هر اختلافى تفسيرى بيان كنيد.

A>0.0 توزيع شده است.
(الف) (H(X) را به عنوان تابعى از A رسم كنيد؛
(ب) (ب)
(ب)
8.ه متغير تصادنى x دارای توزيع نماهى منفى است:

$$
\begin{array}{rlrl}
p(x) & =\frac{1}{\lambda} \exp \left(-\frac{x}{\lambda}\right) & & \\
& =0 & & x \geq 0 \\
& =0 & x<0
\end{array}
$$

(الف) مقدار اطلاع H(X) را محاسبه كنيد؛

متغيّر تصادفى در نظر بگيريد كه نمىتواند مقادير منفى اختتار كند و ميــانگين آن
 شده در بالا باشد داراى ماكسيمم مقدار اطلاع است. (x(t) داراى جیگالى احتمال زير است:

$$
p(x)=\frac{1}{r \lambda} \exp \left(-\frac{|x|}{\lambda}\right)
$$

براى يكى نمونه y از سيگنال خروجى داريم:

$$
\mathbf{y}=|\mathbf{x}|
$$

(الف) ($H(X)$ را بيابيد؛
(ب)

$$
\begin{equation*}
\text { ثابت كنيده } H(Y \mid X)= \tag{ب}
\end{equation*}
$$

از جوابهاى قبل $H(X \mid Y$ را بيابيد. آيا مىتوانيد توضيحى در مورد مقدار به دسـت
آمده ارائه نماييد؟

 مى كنيم كه در آن براى نمونه z سيگنال خروجى داريم

$$
\begin{array}{ll}
\mathbf{z}=\mathbf{x} & , \quad \mathbf{x} \geq \frac{1}{r} \sqrt{r}, \\
\mathbf{z}=\mathbf{y} & , \quad \mathbf{x}<\frac{1}{r} \sqrt{r} .
\end{array}
$$

شككل 1ه.ه- جگالى احتمال (A)

شكل هاء - تميز دهنده تمرين (^.ه)
(الف) ($H\left(Z \left\lvert\, x<\frac{1}{\gamma} \sqrt{Y}\right.\right)$ را تعيين كنيد؛
(ب) (ب) (ب)
براى بند (ب) بايد در نظر داشته باشيد كه
 (IV.ه) مى باشند.
(الف) H(X) را تعيين كنيد؛ (ب) (ب)
 و جوابها را با اهم مقايسه كنيد.
(ت) براساس جوابها نتيجه بغيريد x و X به طور آهارى مستقلّند.

شكل اV.ها- جچغالى احتمال توأم تمرين (9.0)

هـ ه ال برای متغير تصادفى x و y داده شده است كه

ج $p(x, y)$ -

$$
\begin{aligned}
& \text { ؛ } E(\mathbf{x})=E(\mathbf{y})=0- \\
& !\operatorname{var}(\mathbf{x})=\sigma_{1}^{r}, \operatorname{var}(\mathbf{y})=\sigma_{\psi}^{*}- \\
& \text { - }
\end{aligned}
$$

$$
\begin{align*}
& \text { (الف) H(Y) را به دست آوريد؛ } \\
& \text { (ب) } \\
& \text { (ت) } \tag{ت}
\end{align*}
$$

اگر
11.0 مى كند:

$$
p(x)=e^{-a|x|}
$$

(الف) مقدار اطلاع در يك نمونه از اين سيخنال را محاسبه كنيد؛
(ب) با توان اطلاع جه مىتوان فهميد؟ (ب) توان اطلاع را برای سيخنال بالا محاسبه كنيد.
IY.ه مى كند:

$$
p(x)=a x^{*} \quad, \quad 0 \leq x \leq \lambda
$$

(الف) مقدار اطلغع H(X) را براى يك نمونه محاسبه كنيد و H(X) را به عنـــوان تـابعى

$$
\text { از } \lambda \text { (} \lambda>0) \text { رسم كنيد. }
$$

 (ب) توابع اطلاع اين منبع را محاسبه كنيد.
 مىكند

$$
\begin{array}{rlrl}
p(x) & =\frac{1-\frac{|x|}{a}}{a}, & & |x| \leq a \\
& =\circ \quad, \quad & |x|>a .
\end{array}
$$

(الفس) مقدار اطلاع را در يكـ نمونه از اين سيخنال محاسبه كنيد؛
(ب) توان اطلاع منبع را تعيين كنيد؛
(ب) (ب) (
(ت) H(X) را با مقدار اطللع $H(Y$ يك منبع گاوسى، كه داراى همان توان منبع تحت
بررسى است، مقايسه كنيد.

بحوابها V.ه
ه. ه (الف) به طور كلى، براى متغير تصادنى C كه معــدود بيـن A - و A حالى كه داراى توزيع يكنواخحت بين اين دو حدود است، داريم:

$$
p(x)=\frac{1}{Y A} \quad, \quad-A \leq x \leq A
$$

براساس تضية (Y.0) مقدار اطلاع مربوط برابر است با

$$
H(X)=\log \curlyvee A
$$

در اين حالت $A=r$ ، از اين رو داريم

$$
H(X)=\log g=Y, \Delta \Lambda \text { بيت. }
$$

(ب) با بايگزيني A= در معادلة كلى داده شده نتيجه بيشود

$$
H(X)=\log _{10}=\text { بيت }
$$

 يافت. اين با اين امر كه عدمرتتميت مربوط بـ متغير براى دامنــه بزرگـتر افزايـش مىيابد مطابقت دارد.
 براى

$$
H(X)=-\int_{i}^{v} p(x) \log p(x) d x=-\int_{i}^{v} \frac{1}{s} \log \frac{1}{s} d x=\log s=Y, \Delta A \text { بيت. }
$$

مقايسه با نتيجئ تهرين (ه. ا- الفش) نشان مىدهد كه مقدار الطلاع براى توزيع
يكنواخحت تنها به دامنه متغير وابسته است و به موتعيت دامنه بستگى ندارد.

منبع اطلاع ييوسته

$$
\begin{aligned}
& E(\mathbf{x})=\int_{1}^{v} x p(x) d x=\int_{1}^{v} \frac{x}{s} d x=\left.\frac{1}{i r} x^{r}\right|_{1} ^{v}=F . \\
& \text { براى واريانس داريم } \quad \text {. } \operatorname{var}(\mathbf{x})=E\left[(\mathbf{x}-E(\mathbf{x}))^{\dagger}\right] \\
& \text { خون } E(x)=f \text { ، نتيجه مىشود كـ } \\
& \operatorname{var}(\mathrm{x})=E\left[(\mathrm{x}-\mathrm{F})^{r}\right]=\int_{1}^{v}(x-F)^{\eta} p(x) d x \\
& =\int_{1}^{r} \frac{(x-r)^{r}}{\varepsilon} d x=\int_{-r}^{r} \frac{y^{r}}{\varepsilon} d y=\left.\frac{1}{1 \mathrm{~A}} y^{r}\right|_{-r} ^{r}=r .
\end{aligned}
$$

ه. ث.

اكنون نتيجه مىشود كـ

$$
H(Y)=H(X, \alpha)=H(X)+H(\alpha)=H(X)
$$

(الف (اه

$$
\int_{-\infty}^{\infty} p(x) d x=1
$$

به آسانى ديده مىشود كه k بايستى برابر
(ب) $H(X)$ را براى اين كه قادر باشبه كنيـم، ابتــدا بـايد مى توان ثابت كرد كـ

$$
\begin{array}{ll}
p(x)=\frac{x+r}{q} & , \quad x \leq 0 \\
p(x)=\frac{r-x}{q} & , \quad x>0
\end{array}
$$

براى $H(X)$ نتيجه مىشود كه

$$
H(X)=-\int_{-r}^{0} \frac{x+r}{q} \log \left(\frac{x+r}{9}\right) d x-\int_{0}^{r} \frac{r-x}{9} \log \left(\frac{r-x}{9}\right) d x
$$

$$
=-1 \mathrm{u} \int_{0}^{1 / r} y \log y d y
$$

$$
\begin{aligned}
& \text { جون به طور كلّى داريمَ } \\
& \int y \ln y d y=y^{r}\left[\frac{1}{r} \ln y-\frac{1}{¢}\right] \text {, } \\
& \text { براى } H(X) \text { نتيجه مىشود كه } \\
& H(X)=-\frac{1 A^{1 / r} \ln r}{\int_{0}} y \ln y d y=-\left.\frac{1 A}{\ln Y} y^{\mu}\left(\frac{1}{r} \ln y-\frac{1}{\varphi}\right)\right|_{0} ^{1 / r} \\
& =-\log \frac{1}{\varphi}+\frac{1}{r} \log e=r, r_{0} \quad \text {. }
\end{aligned}
$$

دارد كه موجب مىشود عدمحتميت و همراه با آن مقدار اطلاع كاهش يان ياند
 شكل (1A.ه) داده شده است.
(ب) var(x) را مىتوان به طريق زير محاسب كرد

$$
E(\mathbf{x})=\int_{-A}^{A} x p(x) d x=\int_{-A}^{A} \frac{1}{\gamma A} x d x=\left.\frac{1}{\varphi A} x^{\varphi}\right|_{-A} ^{A}=0 .
$$

در اين صورت با استفاده از اين var(x) برابر است با
$\operatorname{var}(\mathbf{x})=E\left[(\mathbf{x}-E(\mathbf{x}))^{\dagger}\right]=E\left[\mathbf{x}^{\dagger}\right]=\int_{-A}^{A} x^{\dagger} p(x) d x=\left.\frac{1}{s A} x^{r}\right|_{-A} ^{A}=\frac{1}{r} A^{\mu}$.

شكل $H(X)-1$ به صورت تاببى از A (تمرين (ه.ه))

شكل (19.0) را ببينيد.
 مطلب انخير متناظر با افزايش H(X) است همانـر و $H(X)$ به عنوان تابعى از A نشان داده شد.

شكل 19.0- واريانس به عنوان تابعى از A (تمرين (ه.ه))

$$
\begin{aligned}
H(X) & =-\int_{0}^{\infty} p(x) \log p(x) d x=-\log e \int_{0}^{\infty} p(x) \ln p(x) d x \\
& =-\log e \int_{0}^{\infty} \frac{1}{\lambda} \exp \left(-\frac{x}{\lambda}\right) \ln \left[\frac{1}{\lambda} \exp \left(-\frac{x}{\lambda}\right)\right] d x \\
& =\log e \frac{\ln \lambda^{\infty}}{\lambda} \int_{0}^{\infty} \exp \left(-\frac{x}{\lambda}\right) d x+\log e \frac{1}{\lambda^{r}} \int_{0}^{\infty} x \exp \left(-\frac{x}{\lambda}\right) d x \\
& =\log e \ln \lambda \int_{0}^{\infty} e^{-y} d y+\log e \int_{0}^{\infty} y e^{-y} d y \\
& =-\left.\log \lambda e^{-y}\right|_{0} ^{\infty}+\left.\log e \cdot e^{-y}(-y-1)\right|_{0} ^{\infty}=\log \lambda+\log e .
\end{aligned}
$$

ه. 8 (الف)
(ب) تابع جگالى احتمال (x) را بايد طورى تعيين كنيم كه

$$
H(X)=-\int_{0}^{\infty} p(x) \log p(x) d x
$$

ماكسيمم شود، كه در آن، شرايط زير بايد منظور شود:

$$
\int_{0}^{\infty} p(x) d x=1 \quad, \quad \int_{0}^{\infty} x p(x) d x=\lambda
$$

اكنون تابع زير را تشكيل مىدهيم

$$
G(x)=-p(x) \log p(x)+\alpha_{1} p(x)+\alpha_{1} x p(x)
$$

اگر مشتق $G(x)$ نسبت به $p(x)$ را برابر صفر ترار دهيم، داريم

$$
-\log p(x)-\log e+\alpha_{1}+\alpha_{p} x=0
$$

چس از تقسيـم بر loge- اين عبارت به صورت زير در مى آيد

$$
\ln p(x)+1-\lambda_{1}-\lambda_{1} x=0
$$

كه در آن

$$
p(x)=e^{\lambda_{1}-1} e^{\lambda_{1} x}
$$

با جايگزين كردن

$$
\int_{0}^{\infty} p(x) d x=\int_{0}^{\infty} e^{\lambda_{1}-1} e^{\lambda_{r} x} d x=\left.\frac{e^{\lambda_{1}-1} e^{\lambda_{r} x}}{\lambda_{r}}\right|_{0} ^{\infty}=-\frac{e^{\lambda_{1}-1}}{\lambda_{r}}=1
$$

كه در آن فرض شده است كه < >
هسجنين بايد داشته باشيم

$$
\int_{0}^{\infty} x p(x) d x=\int_{0}^{\infty} x e^{\lambda_{1}-1} e^{\lambda_{1} x} d x=-\int_{0}^{\infty} x \lambda_{r} e^{\lambda_{r} x} d x=\lambda
$$

كم از آن نتيجه مىشود كه

$$
\lambda=-\int_{0}^{\infty} x \lambda_{\varphi} e^{\lambda_{1} x} d x=-\left.\lambda_{\varphi} \frac{e^{\lambda_{r} x}}{\left(\lambda_{\varphi}\right)^{\varphi}}\left(\lambda_{\varphi} x-1\right)\right|_{0} ^{\infty}=-\frac{1}{\lambda_{\varphi}} .
$$

بنابراين نتيجه مى شود كه

$$
p(x)=\frac{1}{\lambda} \exp \left(-\frac{x}{\lambda}\right)
$$

كه توزيع نمايى منفى است.

$$
\begin{aligned}
H(X) & =-\int_{-\infty}^{\infty} \frac{1}{r \lambda} \exp \left(-\frac{|x|}{\lambda}\right) \log \left[\frac{1}{\Gamma \lambda} \exp \left(-\frac{|x|}{\lambda}\right)\right] d x \\
& =-\int_{-\infty}^{\infty} \frac{1}{r \lambda} \exp \left(-\frac{|x|}{\lambda}\right) \log \frac{1}{r} d x-\int_{-\infty}^{\infty} \frac{1}{\Gamma \lambda} \exp \left(-\frac{|x|}{\lambda}\right) \log \left[\frac{1}{\lambda} \exp \left(-\frac{|x|}{\lambda}\right)\right] d x \\
& =1-\int_{-\infty}^{\infty} \frac{1}{\lambda} \exp \left(-\frac{x}{\lambda}\right) \log \left[\frac{1}{\lambda} \exp \left(-\frac{x}{\lambda}\right)\right] d x
\end{aligned}
$$

(الف) V.ه

 نظر گرفتهايم براى H(X) داريم $H(X)=1+\log \lambda+\log e$.
$p(x)=p(-x)$ (ب)
احتمال y دو برابر $p(x)$ خواهد بود. به عبارت ديگر،

$$
q(y)=\frac{1}{\lambda} \exp \left(-\frac{y}{\lambda}\right) \quad, \quad y \geq 0
$$

اگر اين نتيجه را با تمرين (ه. \&- الفـ) مقايسه كنيم در اين صورت مســتقيماً
نتيجه بیشود كى

$$
H(Y)=\log \lambda+\log e
$$

 (ت) به طور كلّى، داريم

$$
H(X, Y)=H(X)+H(Y \mid X)=H(Y)+H(X \mid Y)
$$

اگر مقادير به دست آمدة قبل برای $H(Y) ، H(X)$ ور $H(Y)$ و $H(Y)$ را جـــايگزين كنيم در اين صورت نتيجه مىشود كه

$$
H(X \mid Y)=1 .
$$

 أمر اين است حون علامت مجهول است. مقدار x بى تواند مثبت يا منفى باشد.

$$
H\left(Z \left\lvert\, x<\frac{1}{r} \sqrt{r}\right.\right)=H\left(Y \left\lvert\, x<\frac{1}{r} \sqrt{r}\right.\right)=H(Y) .
$$

براى خڭالى احتمال $p(y)$ داريم $p(y)=\sqrt{r}-y$ براى
اطلاع را مىتوان به صورت زير محاسبه كرد

$$
\begin{aligned}
H(Y) & =-\int_{0}^{\sqrt{r}}(\sqrt{r}-y) \log (\sqrt{r}-y) d y \\
& =\int_{\sqrt{r}}^{0} t \log t d t=\left.\frac{1}{\ln r} t^{r}\left(\frac{1}{r} \ln t-\frac{1}{r}\right)\right|_{\sqrt{r}} ^{0}
\end{aligned}
$$

$$
\begin{aligned}
& =-\log \sqrt{\gamma}+\frac{1}{Y \ln \gamma}=\frac{1}{\gamma} \log \frac{e}{\gamma} \quad . \\
& \text { (ب) } \\
& H\left(Z \left\lvert\, x \geq \frac{1}{\gamma} \sqrt{\gamma}\right.\right)=H\left(X \left\lvert\, x \geq \frac{1}{\gamma} \sqrt{\gamma}\right.\right) .
\end{aligned}
$$

از فرمول بيز نتيجه مىشود كه

$$
\begin{aligned}
p\left(x \left\lvert\, x \geq \frac{1}{r} \sqrt{r}\right.\right) & =\frac{p(x) \cdot p\left(\left.x \geq \frac{1}{r} \sqrt{r} \right\rvert\, x\right)}{p\left(x \geq \frac{1}{r} \sqrt{r}\right)} \\
& =\frac{p(x)}{p\left(x \geq \frac{1}{r} \sqrt{r}\right)}=\frac{\digamma}{r} p(x) \quad, \quad \frac{1}{r} \sqrt{r}<x<\sqrt{\gamma}
\end{aligned}
$$

از اين عبارت همراه با $p(x)=x$ ، نتيجه مىشود كه

$$
\begin{aligned}
& H\left(X \left\lvert\, x \geq \frac{1}{r} \sqrt{r}\right.\right)=-\int_{\frac{1}{r}}^{\sqrt{r}} \frac{f}{r} p(x) \log \left\{\frac{\digamma}{r} p(x)\right\} d x=-\int_{\frac{1}{r}}^{\sqrt{r}} \frac{f}{r} x \log \left\{\frac{\xi}{r} x\right\} d x \\
& =-\int_{\frac{r}{r} \sqrt{r}}^{\frac{r}{r} \sqrt{r}} \frac{r}{r} t \log t d t=-\left.\frac{r}{F \ln r} t^{r}\left(\frac{1}{r} \ln t-\frac{1}{F}\right)\right|_{\frac{r}{r} \sqrt{r}} ^{\frac{\varphi}{r} \sqrt{r}} \\
& =-\frac{1}{r}\left[\frac{1}{r} \log (r \sqrt{r})-\frac{1}{r} \log r-\frac{1}{r} \log e\right]+\frac{r}{r}\left[\frac{1}{r} \log (r \sqrt{r})-\frac{1}{r} \log r-\frac{1}{r} \log e\right] \\
& =-\frac{18}{Y}+\log (r \sqrt{e}) \text { بيت. } \\
& H(Z)=p\left(x<\frac{1}{\gamma} \sqrt{r}\right) \cdot H\left(Z \left\lvert\, x<\frac{1}{\gamma} \sqrt{\gamma}\right.\right)+p\left(x \geq \frac{1}{\gamma} \sqrt{r}\right) \cdot H\left(Z \left\lvert\, x>\frac{1}{\gamma} \sqrt{\gamma}\right.\right) . \quad \text { (ب) }
\end{aligned}
$$

هون قبلى در (الف) و (ب) نتيجه ميشود كه

$$
H(Z)=\frac{1}{f} \times \frac{1}{r} \log \frac{e}{r}+\frac{r}{f}\left[-\frac{i v}{f}+\log (r \sqrt{e})\right]=-\frac{1}{r} \log e-\frac{q}{f}+\frac{r}{f} \log r .
$$

ه.ه (الف) براى (x,y

$$
p(x, y)=\frac{1}{r Y} \quad, \quad 0 \leq x \leq \wedge \quad, \quad \circ \leq y \leq \wedge-x
$$

هگالى احتمال $p(x)$ را مىتوان به صورت زير محاسبه كرد

$$
p(x)=\int_{0}^{\Lambda-x} p(x, y) d y=\frac{\Lambda-x}{r Y} .
$$

در اين صورت مقدار اطللع $H(X)$ برابر است با

$$
\begin{aligned}
H(X) & =-\int_{:}^{\lambda} \frac{1-x}{r r} \log \left(\frac{\lambda-x}{r r}\right) d x=\int_{\frac{1}{r}}^{0} r r t \log t d t \\
& =\left.r r \frac{t^{r}}{\ln r}\left(\frac{1}{r} \ln t-\frac{1}{r}\right)\right|_{1 / q} ^{0}=r+\frac{1}{r} \log e .
\end{aligned}
$$

(ب) (بأريم شرطى نتيجه مىشود كه

$$
\begin{aligned}
H(Y \mid X) & =-\int_{0}^{\lambda} \int_{0}^{\lambda-x} p(x, y) \log p(y \mid x) d y d x \\
& =\int_{0}^{A} \int_{0}^{A-x} \frac{1}{r r} \log (\lambda-x) d y d x=\frac{1}{r r} \int_{0}^{A}(\Lambda-x) \log (\lambda-x) d x \\
& =-\frac{1}{r r} \int_{A}^{r} t \log t d t=-\left.\frac{1}{r r} \frac{t^{r}}{\ln r}\left(\frac{1}{r} \ln t-\frac{1}{r}\right)\right|_{A} ^{\circ}=r-\frac{1}{r} \log e .
\end{aligned}
$$

(پ) با كمك جوابهای (الف) و (ب) نتيجه مىشود كه

$$
H(X, Y)=H(X)+H(Y \mid X)=r+\frac{1}{r} \log e+r-\frac{1}{r} \log e=\Delta \quad \text { بيت. }
$$

با محاسبة مستقيم به دست مىآوريم

$$
H(X, Y)=-\int_{0}^{A-x} p(x, y) \cdot \log p(x, y) d x d y=\int_{0}^{A-x} \int_{0}^{A-x} \frac{1}{Y Y} \log \frac{1}{Y Y} d x d y=\Delta ت
$$

 و

$$
q(y)=\frac{1}{\sigma_{\nabla} \sqrt{\gamma \pi}} \exp \left(-\frac{y^{\eta}}{\gamma \sigma_{\varphi}^{\nabla}}\right)
$$

برمبناى تضية (ه.

$$
H(Y)=\log (\sigma, \sqrt{r \pi e})
$$

(ب) چچگالى احتمال (x|y) را مىتوان به صورت زير به دست آورد

$$
\begin{aligned}
p(x \mid y) & =\frac{p(x, y)}{q(y)} \\
& =\frac{1}{\sigma_{1} \sqrt{r \pi} \sqrt{1-\rho^{r}}} \exp \left[-\frac{1}{\gamma\left(1-\rho^{r}\right)}\left\{\frac{x^{\gamma}}{\sigma_{1}^{\gamma}}-\frac{r \rho x y}{\sigma_{1} \sigma_{\psi}}+\frac{y^{r}}{\sigma_{\gamma}^{r}}\right\}+\frac{y^{r}}{r \sigma_{\gamma}^{r}}\right] \\
& =\frac{1}{\sigma_{1} \sqrt{r \pi} \sqrt{1-\rho^{\psi}}} \exp \left[-\frac{\left(x-\frac{\sigma_{1}}{\sigma_{\gamma}} \rho y\right)^{r}}{\gamma \sigma_{1}^{\gamma}\left(1-\rho^{\gamma}\right)}\right]
\end{aligned}
$$

اين نيز يک هچگالى احتمال گاوســـى اســت بـا ميـانگِن شــرطى

$$
\text { واريانس } \sigma_{1}^{*}(1-\rho)^{\dagger}
$$

اكنون براى $H(X \mid Y$ نتيجه مىشود كه

$$
-\int_{-\infty}^{\infty} q(y)\left\{\int_{-\infty}^{\infty} p(x \mid y) \log p(x \mid y) d x\right\} d y
$$

كه در آن $p(x \mid y)$ برابر چحگالى احتمال گاوسى داده شده در بالاست. چیون مقــــدار اطلاع در حالت هگالى احتمال كاوسى تنها به واريانس بستگى دارد و به ميـــانگين

$$
-\int_{-\infty}^{\infty} p(x \mid y) \log p(x \mid y) d y=\log \left[\sigma_{1} \sqrt{1-\rho^{r}} \sqrt{r \pi e}\right]
$$

و همحنين داريم

$$
H(X \mid Y)=\log \left[\sigma_{1} \sqrt{1-\rho^{r}} \sqrt{r \pi e}\right] .
$$

(ب) $H(X, Y)=H(Y)+H(X \mid Y)$ از نتايج (الف) و (ب) نتيجه مى شود كه

$$
\begin{align*}
H(X, Y) & =\log \left[\sigma_{r} \sqrt{\gamma \pi e}\right]+\log \left[\sigma_{1} \sqrt{1-\rho^{\gamma}} \sqrt{\gamma \pi e}\right] \\
& =\log \left[\sigma_{1} \sigma_{r} \sqrt{1-\rho^{r} \gamma \pi e}\right] \tag{ت}
\end{align*}
$$

اگر ه

 مىشود

$$
H(X, Y)=\log \left[\sigma_{,} \sigma_{Y} r \pi e\right]=H(X)+H(Y)
$$

 بیدريى نتيجه مىدهد

شككل ه. . - هحگالى احتمال تهرين (11.ه)

$$
\begin{aligned}
& \int_{-\infty}^{\infty} e^{a x} d x+\int_{0}^{\infty} e^{-\alpha x} d x=1 \\
& \rightarrow \quad r \int_{0}^{\infty} e^{-\alpha x} d x=1 \\
& \rightarrow \quad-\left.\frac{r}{a} e^{-\alpha x}\right|_{0} ^{\infty}=1
\end{aligned}
$$

به تسمي كه
براى H(X) بنابر تعريف داريم

$$
H(X)=-\int_{-\infty}^{\infty} p(x) \log p(x) d x
$$

$$
\begin{aligned}
& \text { جايِززينى } H(X \mid Y \text { نتيجه مىشود } \\
& H(X \mid Y)=\log \left[\sigma_{1} \sqrt{4 \pi e}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { يس از جايگزينى p(x) نتيجه مىشود كى } \\
& H(X)=-\int_{-\infty}^{\infty} e^{r x} \log e^{\psi x} d x-\int_{0}^{\infty} e^{-\eta x} \log e^{-\eta x} d x . \\
& \text { با بهرمورى از تقارن } p(x) \text { نتيجه بى }
\end{aligned}
$$

$$
\begin{aligned}
H(X) & =₹ \log e \int_{0}^{\infty} x e^{-\gamma x} d x \\
& =-r \log e \int_{0}^{\infty} x d e^{-\gamma x}=-\left.\gamma x e^{-\gamma x} \log e\right|_{0} ^{\infty}+\gamma \log e \int_{0}^{\infty} e^{-\gamma x} d x \\
& =-e^{-\gamma x} \log e_{0}^{\infty}=\log e \text { نهاد / بيت. }
\end{aligned}
$$

 (ب) توان اطلاع با عبارت زير داده شده است:

$$
P_{H}=\frac{1}{\psi \pi e} r^{r H(X)} .
$$

با جايگزينى H(X) نتيجه مىشود

$$
P_{H}=\frac{1}{\gamma \pi e} r^{r \log e}=\frac{e^{\gamma}}{\gamma \pi e}=\frac{e}{\gamma \pi} .
$$

نُنست پارامتر a را با محاسبة انتگرال و مساوى يح قرار دادن آن، به دست
می آوريم

$$
\int_{0}^{\lambda} a x^{r} d x=\left.\frac{1}{r} a x^{r}\right|_{0} ^{\lambda}=\frac{1}{r} a \lambda^{r}=1
$$

$$
\cdot p(x)=\frac{r}{\lambda^{r}} x^{r} \quad, \quad a=\frac{r}{\lambda^{r}}
$$

اكنون مقدار اطلخع در يك نمونه برابر است با

$$
\begin{aligned}
& H(X)=-\int_{0}^{\lambda} \frac{r}{\lambda^{r}} x^{r} \log \left(\frac{r}{\lambda^{r}} x^{r}\right) d x=-\frac{s}{\lambda^{r}} \int_{0}^{\lambda} x^{r} \cdot \log x d x-\frac{r}{\lambda^{r}} \int_{0}^{\lambda} x^{\top} \log \frac{r}{\lambda^{r}} d x \\
& =-\frac{r}{\lambda^{r}} \int_{0}^{\lambda} \log x d x^{r}-\frac{r}{\lambda^{r}} \log \frac{r}{\lambda^{r}} \times \frac{1}{r} \lambda^{r} \\
& =-\left.\frac{r}{\lambda^{r}} x^{r} \log x\right|_{0} ^{\lambda}+\frac{r}{\lambda^{r}} \int_{0}^{\lambda} x^{r} d \log x-\log \frac{r}{\lambda^{r}} \\
& =-r \log \lambda+\frac{r}{\lambda^{r}} \log e \times\left.\frac{1}{r} x^{r}\right|_{0} ^{\lambda}-\log \frac{r}{\lambda^{r}}=-r \log \lambda+\frac{r}{r} \log e-\log \frac{r}{\lambda^{r}} \\
& =\log \lambda-\log r+\frac{r}{r} \log e=\log \frac{\lambda e^{\frac{\varphi}{r}}}{r}{ }^{r} \text { / بماد. } \\
& \text { شكل (Y.Q) را ببينيد. }
\end{aligned}
$$

شكل H(X) -YY به عنوان تابعى از λ (تمرين (IY.ه))
(ب) از عبارت به دست آمده در بند (الف) ديله مىشود كه $H(X)=$ برایى λ داريم

$$
\lambda=r e^{-r / r} .
$$

$H(X)$
از اين رو هم برایى كار كردن با دتّت ان ار $\Delta x=1$ معنىدار است.
(ب) توان اطلاع با عبارت زير داده شده است:

$$
P_{H}=\frac{1}{r \pi e} r^{r H(X)} .
$$

با جايگزينى H(X) نتيجه مىشود

$$
P_{H}=\frac{1}{r \pi e} r^{r \log \left(\lambda e^{r / r} / r\right)}=\frac{1}{r \pi e}\left(\frac{\lambda e^{\pi / r}}{r}\right)^{r} .
$$

ها ها (الف) شكل ((YM) را ببينيد.
براى H(X) بنابر تعريف داريم

$$
H(X)=-\int_{-\infty}^{\infty} p(x) \log p(x) d x
$$

يس از جايگزينى p(x) نتيجه مىشود كي

$$
H(X)=-\frac{1}{a} \int_{-a}^{a}\left(1+\frac{x}{a}\right) \log \left\{\frac{1}{a}\left(1+\frac{x}{a}\right)\right\} d x-\frac{1}{a} \int_{a}^{a}\left(1-\frac{x}{a}\right) \log \left\{\frac{1}{a}\left(1-\frac{x}{a}\right)\right\} d x .
$$

با استفاده از تقارن $p(x)$ نتيجه مىشود كه

$$
\begin{aligned}
H(X) & =-\frac{r}{a} \int_{0}^{a}\left(1-\frac{x}{a}\right) \log \left\{\frac{1}{a}\left(1-\frac{x}{a}\right)\right\} d x \\
& =-\frac{r}{a} \int_{a}^{a}\left(1-\frac{x}{a}\right) \log \frac{1}{a} d x-\frac{r}{a} \int_{0}^{a}\left(1-\frac{x}{a}\right) \log \left(1-\frac{x}{a}\right) d x .
\end{aligned}
$$

اكتون برایى اولين انتگرال پس از علامت تساوى نتيبه مىشود

$$
\begin{aligned}
& =-r \log a \int_{0}^{a}\left(1-\frac{x}{a}\right) d\left(1-\frac{x}{a}\right)=-r \log a \times\left.\frac{1}{r}\left(1-\frac{x}{a}\right)^{r}\right|_{0} ^{a} \\
& =-r \log a-\frac{1}{r}=\log a .
\end{aligned}
$$

برای دومين انتگرال بس از علامت تساوى یــسس از جـايگزينى نتيجه مى شود كى

$$
\begin{aligned}
& =r \int_{0}^{a}\left(1-\frac{x}{a}\right) \log \left(1-\frac{x}{a}\right) d\left(1-\frac{x}{a}\right)=r \int_{0}^{a} e^{-z} \log e^{-z} d e^{-z} \\
& =r \log e \int_{0}^{\infty} z \cdot e^{-r z} d z=\frac{1}{r} \log e,
\end{aligned}
$$

بنابراين H(X) برابر است با

$$
H(X)=\log a+\frac{1}{r} \log e=\log a \sqrt{e} \text { نماد / بيت. }
$$

شكل ه.هr- جخگالى احتمال تمرين (ه.ها)
(ب) توان اطلاع منبع به صورت زير تعريف مىشود

$$
P_{H}=\frac{1}{\nabla \pi e} \mathbf{r}^{r H(X)} .
$$

با جايگزينى $H(X)$ نتيجه مىشود كد

$$
P_{H}=\frac{1}{r \pi e \times r^{r \log (a \sqrt{e})}}=\frac{1}{r \pi e} r^{\log \left(a^{\top} e\right)}=\frac{a^{r} e}{r \pi e}=\frac{a^{r}}{r \pi} .
$$

(ب) توان

$$
P_{f}=\operatorname{var}(\mathbf{x})=\int_{-\infty}^{\infty}\{x-E(\mathbf{x})\}^{\varphi} p(x) d x .
$$

حرن ه =

$$
P_{f}=\int_{-\infty}^{\infty} x^{r} p(x) d x=\frac{r^{r}}{a} \int_{0}^{r} x^{r}\left(1-\frac{x}{a}\right) d x=\frac{a^{r}}{s} .
$$

(ت) براى مقدار اطلاع H(Y) يك نمونه از سيخنال گاوسى داريم

$$
H(Y)=\log \sigma \sqrt{\gamma \pi e}
$$

زيرا منبع گاوسى بايد توانى برابر با منبعى كه باشد؛ بنابراين داريم

$$
\begin{aligned}
& H(Y)=\log \sqrt{\frac{\gamma \pi e a^{\top}}{s}} . \\
& \text { هون } H(X)=\log a \sqrt{e} \text { با مقايسه } H(Y), ~ H(X) \text { نتيبه مىشود } \\
& H(Y)-H(X)=\log \sqrt{\frac{\gamma \pi e a^{\eta}}{\text { sea }^{\gamma}}}=\frac{1}{\gamma} \log \frac{\pi}{\gamma}=0, \circ \mu F .
\end{aligned}
$$

$H(Y)$ به عبارت ديگر، محتواى اطلاع $H(X)$ منبع داده شده از مهتواى اطلا منبع گاوسي با توان مساوى برای هر دو منبع كوچكتر استـ.

ε

كانال ارتباطى پيو سته

ع.ا ظرفيت كانالهاى ارتباطى پيوسته

 برای سيخنال ارسال شدة معلوم (x) را ما مىتوان به صورت

$$
q(\tilde{y} \mid \tilde{x})=q\left(y_{1}, \ldots, y_{N} \mid x_{1}, \ldots, x_{N}\right) .
$$

اگر فرض كنيم كه يك نمونه مىتوان از يك كانال بيوستئ بى حانظه صحبت كرد. در اين حالت داريم

$$
\begin{equation*}
q(\tilde{y} \mid \tilde{x})=\prod_{i=1}^{N} q\left(y_{i} \mid x_{i}\right) \tag{1.5}
\end{equation*}
$$

 دربارة y مىدهد يا y حقّدر اطلاع دربارة x می میدهد.

 اطلاع متقابل I(X;Y) به صورت زير تعريف مىشود

$$
\begin{equation*}
I(X ; Y)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} p(x, y) \log \frac{p(x, y)}{p(x) \cdot q(y)} d x d y, \tag{ץ.5}
\end{equation*}
$$

 اكنون رابطههاى زير را براى مقادير گوناگون اططلع به كار كار مى بريم

$$
\begin{align*}
I(X ; Y) & =H(X)+H(Y)-H(X, Y) \\
& =H(X)-H(X \mid Y) \\
& =H(Y)-H(Y \mid X) .
\end{align*}
$$

$$
\begin{equation*}
I(X ; Y) \geq \circ \tag{fs}
\end{equation*}
$$

 يكسانند همجنين مى توان نتيجه گرفت كه $I(X ; Y)$ ($I(X ; X)=H(X)$. با نرخ ارسال R نيز نشان داده مىشود هون مقدار اطلاع ارسال شــــده روى كانــال را نشــان مىدهد.

نامحدود باشد، كه از نظر فيزيكى موقعيت غيرممكنى است.
 آن را با اتصال همه منابي اطلХع ممكن، ساز گار با قيدها، به كانال به دست آورد.

$$
\begin{equation*}
C=\max _{p(x)} I(X ; Y)=\max _{p(x)}\{H(Y)-H(Y \mid X)\} \tag{0.5}
\end{equation*}
$$

به طور كلى، محاسبة ظرفيت يحـ كانال بيوسته كار مشكلى است. تنها براى برخخــى
 ممكن است يک عبارت تحليلى برای ظرنيت به دست آورد. در حالتهاي ديگـــر روشــهاى

 دست آورد، بنابراين بايد داشته باشيم

$$
\begin{equation*}
q(y \mid x)=q(x+n \mid x)=p(n \mid x) \tag{5.5}
\end{equation*}
$$

جون نوفه از سيگنال ورودى مستقل است، نتيجه مىشود كه:

$$
q(y \mid x)=p(n \mid x)=p(n)=p(y-x)
$$

براى كانال جمعى براى اثر نوفه داريم

$$
\begin{align*}
H(Y \mid X) & =-\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} p(x, y) \log q(y \mid x) d x d y \\
& =-\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} p(x) q(y \mid x) \log q(y \mid x) d x d y \\
& =-\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} p(x) p(n) \log p(n) d x d n \\
& =-\int_{-\infty}^{\infty} p(n) \log p(n) d n=H(\mathrm{~N}) \tag{1.s}
\end{align*}
$$

در اين سالت، براى ظرفيت به دست مى آوريم

$$
\begin{equation*}
C=\max _{p(x)}\{H(Y)-H(\mathrm{~N})\}=\max _{p(x)}\{H(Y)\}-H(\mathrm{~N}) \tag{9.5}
\end{equation*}
$$

از اين رو، براي ماكسيمم كردن R لازم اســت $H(Y)$ را ماكسـيمـم كنيــم. امــا ايــن ماكسيمم مقيّد به سيگنالهاى ارسال شدهاى است كه بايد مورد توجّه ترار گیرند.

توابع توزيع احتمال نسبت به x و n عبارتند از:

$$
\begin{aligned}
& p(x)=\frac{1}{\wedge} \quad, \quad-\leftarrow \leq x \leq f, \\
& \text { =o , براى ماير نقاط. } \\
& p(n)=\frac{1}{Y} \quad, \quad-1 \leq n \leq 1, \\
& =0 \quad \text {, براى ماير نقاط. }
\end{aligned}
$$

$$
p(n)=q(y \mid x)=\frac{p(x, y)}{p(x)}
$$

بنابراين، شكل (1.5) را ملاحظه كنيل؛

$$
p(x, y)=\left\{\begin{array}{ccc}
\frac{1}{18}, & -5 \leq x \leq 4, & -1 \leq y-x \leq 1 \\
0, & \text { برای ماير نقاط }
\end{array}\right.
$$

بيبنيد):

$$
\begin{aligned}
& q(y)= \begin{cases}\int_{-\frac{1}{y+1}}^{y+1} \frac{1}{18} d x=\frac{1}{18}(y+\Delta) & ,-\Delta \leq y \leq-\mu, \\
\int_{y-1}^{y+1} \frac{1}{1 s} d x=\frac{1}{1} & ,-r \leq y \leq r, \\
\int_{y-1}^{4} \frac{1}{1 s} d x=\frac{1}{1 s}(\Delta-y) & , \quad r \leq y \leq \Delta,\end{cases} \\
& p(x \mid y)=\frac{p(x, y)}{q(y)}= \begin{cases}\frac{1}{y+\Delta} & ,-\Delta \leq y \leq-r, \\
\frac{1}{r} & ,-r \leq x \leq y+1, \\
\frac{1}{\Delta-y} & , r y \leq r, \\
\frac{1}{y}, & y-1 \leq x \leq y+1,\end{cases}
\end{aligned}
$$

با كهك توزيع احتمال اندازههاى گوناگوني را مىتوان محاسبه كرد.

شكل 1.8 - دامنة تعريف (1.5) $p(x, y)$ مربرط به مثال

$$
\begin{aligned}
& H(X)=r, \\
& H(Y \mid X)=H(\mathrm{~N})=1, \\
& H(X, Y)=\digamma, \\
& H(Y)=r+\frac{1}{A} \log e, \\
& H(X \mid Y)=1-\frac{1}{A} \log e \text {. } \\
& \text { از اين رو نرخ اطلاع برابر است با } \\
& I(X ; Y)=H(Y)-H(\mathrm{~N})=\gamma+\frac{1}{\mathrm{~A}} \log e .
\end{aligned}
$$

ظرفيت را مىتوان با تغيير دادن ورودى به قسـمى كه H(Y) را ماكسيمم كند رحاغبه
كرد.

$$
C=\lim _{p(x)} H(Y)-1 .
$$

اين كار تنها اگر قيدى روى ماكسيمم فبلاً تعيين شده باشد امكانیذير است.

در حالت هيوسته عموهاً مناسب نيست فرض كنيم كه كانال بيحافظظه است. در ايـــن
حالت نرخ ارسالل را به صورت زير تعريف مى كنيم

$$
I(\tilde{X} ; \tilde{Y})=\lim _{N \rightarrow \infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} p(\tilde{x}, \tilde{y}) \log \frac{p(\tilde{x}, \tilde{y})}{p(\tilde{x}) \cdot q(\tilde{y})} d \tilde{x} d \tilde{y}
$$

كه در آن باحافظه برابر است با

$$
\begin{equation*}
C=\lim _{N \rightarrow \infty} \max _{p(\tilde{X})} I(\tilde{X} ; \widetilde{Y}) \tag{11.5}
\end{equation*}
$$

ظرفيت كانالهاى باحافظه در بخش (ه. (ه) بررسى خواهد شد.
 سيگنالى كه بايل منتقل شود و نوفه اضافه شده در كانال اغلب بــا توانشـــان مشــختص

 در طرف دريافت كننده نتيجه مى شود كه

$$
\begin{equation*}
P_{y}=P_{x}+P_{n}, \tag{ir.s}
\end{equation*}
$$

كه در آن

 N(\circ, σ^{*})
 تابع دلتا يا قلّهدار
 مى توان نمونهها را به طور جداگانه بررسى كرا كرد.

 نتيجه مىشود كه مقدار اطلاع سيگنال نوفه برابر است با $H(\mathbb{N})=\log \sigma_{n} \sqrt{\Upsilon \pi e}$ نمونه / بيت

$$
\begin{equation*}
=W \log \left\{\gamma \pi e \sigma_{n}^{\gamma}\right\} \text { ثانيه / بيت. } \tag{irs}
\end{equation*}
$$

براى ظرفيت يكى كانال ارتباطى بيوسته با نوفئ جمعى داريم (معادلة (5 9))

$$
C=\max _{p(x)}\{H(Y)\}-H(N) \text { ثانيه / بيت. }
$$

部 $=\sigma_{y}^{r}$ بايد گاوسى باشد.
اكنون حون

$$
\begin{align*}
\max _{p(x)} H(Y) & =\frac{1}{\gamma} \log \left\{\gamma \pi e\left(\sigma_{x}^{\gamma}+\sigma_{n}^{\gamma}\right)\right\} \text { نمونه / بيت / بيت } / \\
& =W \log \left\{\gamma e\left(\sigma_{x}^{\gamma}+\sigma_{n}^{\gamma}\right)\right\} \tag{1F.s}
\end{align*}
$$

بنابراين ظرفيت كانال در حالتى كه توان متوسط مقيّد است برابر است با

$$
\begin{align*}
C & =W \log \left\{r \pi e\left(\sigma_{x}^{\gamma}+\sigma_{n}^{r}\right)\right\}-W \log \left\{r \pi e \sigma_{n}^{\gamma}\right\} \\
& =W \log \left\{\frac{\sigma_{x}^{r}+\sigma_{n}^{r}}{\sigma_{n}^{r}}\right\}=W \log \left\{\frac{P_{x}+P_{n}}{P_{n}}\right\} \\
& =W \log \left\{1+\frac{P_{x}}{p_{n}}\right\} \text { ثانيه /بي } \tag{10.5}
\end{align*}
$$

همجنان كه ديده مىشود ارسال با نرخى بالاتر از C بـون معرفى خطاها امحــــانيذير از عبارت يافته شده براى ظرفيت كانال برمى آيد كه مىتــــوان تعــّادلى بيـن بهنـاى باند W و نسبت سيگنال به نوفن

 تعيين آنها نسبتاً ساده است. در اين صورت مون مغهوم توان الطلاع

 برابر است با (با مسادلd (ه.ه) مقايسه كنيد)

$$
\begin{align*}
H(N) & =\log \sqrt{V \pi e P_{H_{n}}} \text { نمونه / بانيه / بيت. }
\end{align*}
$$

 وضيتى است كه در آن y داراي ويز گيهاى نوفه گاوسى سفيد است:

$$
\begin{equation*}
H(Y) \leq W \log \left\{\eta \pi e\left(P_{x}+P_{n}\right)\right\} . \tag{1v.s}
\end{equation*}
$$

در اين صورت مقدار اطلاع ارسال شده برابر است با
$I(X ; Y) \leq W \log \left\{\gamma \pi e\left(P_{x}+P_{n}\right)\right\}-W \log \left\{\gamma \pi e P_{H_{n}}\right\}$,
بنابراين كران بالا براى ظرفيت به صورت زير مىباشد

$$
\begin{equation*}
C \leq W \log \left\{\frac{P_{x}+P_{n}}{P_{H_{n}}}\right\} . \tag{19.5}
\end{equation*}
$$

 با كد كذارى مناسب بـ يك نونه سفيد با با توان توان اطلاع مجموع دو سيخنال بزر گتر يا برابر با مجموع توانهاى اطلاع تكى تكى است بـ كار

$$
P_{x}+P_{H_{n}}=P_{H_{x}}+P_{H_{n}} \leq P_{H_{y}} .
$$

با به كار بردن كران بالا براى H(Y) به دست مى آوريم

$$
\begin{equation*}
H(Y)=W \log \left\{r \pi e P_{H_{y}}\right\} \geq W \log \left\{r \pi e\left(P_{x}+P_{H_{n}}\right)\right\} \tag{Y|.5}
\end{equation*}
$$

و از اين رو داريم

$$
I(X ; Y) \geq W \log \left\{r \pi e\left(P_{x}+P_{H_{n}}\right)\right\}-W \log \left\{r \pi e P_{H_{n}}\right\},
$$

بنابراين

$$
\begin{equation*}
C \geq W \log \left\{\frac{P_{x}+P_{H_{H}}}{P_{H_{n}}}\right\} \tag{YY.5}
\end{equation*}
$$

مرانجام، با تركيب اين دو نتيجه ظرفيت كانال را به صورت نابرابرى داده شـــده در زير به دست مىآوريم:

$$
W \log \left\{\frac{P_{x}+P_{H_{n}}}{P_{H_{n}}}\right\} \leq C \leq W \log \left\{\frac{P_{x}+P_{n}}{P_{H_{n}}}\right\}
$$

 به عبارت مذكور قبلى براى ظرفيت كانال تبديل مىشود. مثال

داراى توزيع يكنواخت روى [a,a-

$$
H(\mathrm{~N})=\log \gamma \alpha \text { ثانيه / بيت }
$$

براى توان اطلاع و توان متوسط نونه، داريم

$$
\begin{aligned}
& P_{H_{n}}=\frac{1}{\gamma \pi e} r^{r} H(\mathrm{~N}) \\
&=\frac{\gamma \alpha^{\gamma}}{\pi e} \\
& P_{n}=\int_{-\alpha}^{\alpha} n^{\gamma} \frac{1}{r \alpha} d n=\frac{1}{r} \alpha^{\gamma} .
\end{aligned}
$$

با جانشين كردن توان در معادله (Y SY) نتيجه مىشود

$$
W \log \left(1+\frac{r \pi e}{\alpha^{r}}\right) \leq C \leq W \log \left(\frac{1}{g} \pi e+\frac{r \pi e}{\alpha^{r}}\right)
$$

 امست با (با معادلة (1ه.5) مقايسه كنيد)

كانال ارتباطى پيو سته

$$
C=W \log \left(1+\frac{P_{x}}{P_{n}}\right)=W \log \left(1+\frac{1 \%}{\alpha^{\eta}}\right)
$$

شكل (s) را بينيد.

ثكل و.r- ظرفيت نونه سفيد گاوسى و كرانها براى نونه سفيد غير گاوسى
\&. F. قضية كد كذارى كانال

 در نصل خهارم ارائه شُد.

استفاده را برد ارائه خواهيم كرد.
قضيهُ 1.8 (قضية كد گذارى شانولذ براى كانالهاى پيوسته)

|ست.
برهان
منبع اطلاع ییومته يك سيگنال تصادفى توليد مى كند كه همواره در اين بنحـش آن

را روى يكى مدّت زمان معين T در نظر مى گيريم. با اين فرض كه منبع اطلاع ارگوديكي اسـت، وير گيهاى تصادنى منبع وضع يكسانى در تشـخيص سيخنال تصـــادنى

دارند.
اكنرن M(T) سيخنال مختلف هر يک با مســتت T را در نظـر مى گــيريم و فــرض
 مى شود كه مقدار اطلاع منبعى را كه اين سيخنالها را توليد مى كند مىتوان به مورت

نوشت

$$
\begin{equation*}
H(X)=\lim _{T \rightarrow \infty} \frac{1}{T} \log M(T) \text { ثانيه / بيت. } \tag{Yf.E}
\end{equation*}
$$

همانطور كه قبلا در اين فصل براى ظرفيت كانال در حالت نوفة گاوسى سفيد به دســت آورديم؛ معادلة (10.5) را ببينيد. دأريم

$$
C=W \log \left\{1+\frac{P_{x}}{P_{n}}\right\} \text { ثانيه / بيت. }
$$

اكنون بايد ثابت كنيم كه ع احتمال خططا مى تواند صفر شود اگر عبارت ديگر اگر

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{1}{T} \log M(T)<W \log \left\{1+\frac{P_{x}}{P_{n}}\right\} . \tag{Y0.5}
\end{equation*}
$$

براى اثبات تضيه از روشى كه در آن سيخنالها به صورت بردارهايىى كــه در يـــ

 بردارهايعى كه در آن معادير عناصر متناظر بــا نـوونسهها هســتند و نــو كى آنهــا نتــاطى در نضاى FWT- بعدى را تعريف مى كنند.
از اين رو يكـ سيگنال موزيكى با بهناى بـاند ها كيلوهرتـز و مــدتت هو دقيقـه را
 دريافت شده همحنين سيخنالهاى نوفه را مىتوان به عنوان بردارها يا نقاط به ايــن طريــت نمايش داد.
 نحواهد بود با

$$
d=\left(\sum_{i=1}^{\Gamma W T} x_{i}^{\top}\right)^{\frac{1}{\gamma}} .
$$

اگر سيگنالها داراى متوسط مقدار صفر باشند با توجّه بــه ايسن كــه تــوان متوســط
(واريانس) به صورت زير داده شده است:

$$
\begin{equation*}
P=\frac{1}{V W T} \sum_{i=1}^{V W T} x_{i}^{\psi} \tag{YVS}
\end{equation*}
$$

به دست مى آوريم

$$
\begin{equation*}
d=\sqrt{r W T P} \tag{Y^.s}
\end{equation*}
$$

فضاى
 سنخن مى گوييم. حجم يكى ابر كره

$$
\begin{equation*}
V_{T W T}=\alpha_{Y W T} d^{Y W T} \tag{Y१.5}
\end{equation*}
$$

كه در آن

$$
\alpha_{T W T}=\frac{\pi^{W T}}{\Gamma(W T+1)}
$$

داده شده امست كه در آن (.) تا تابع گاماست.
اكنون فرخ مى كنيم سيخناللي داريم با تـــوان متوســـط متوسط فضاى

 دايرة مايهدار نشان داده شده امـت اري
 سيخنال ارسال شده و دريافت شده نخواهد بود. در اين سالت ارسال اطلِع مىتواند بــدون

 حجم يكى از ابر كرههاى نونه خواهد بود. از اين رو

$$
\begin{gather*}
\left.\alpha_{r W T}\left(\sqrt{r W T\left(P_{x}+P_{n}\right.}\right)\right)^{\Downarrow W T} \geq M(T) \alpha_{\tau W T}\left(\sqrt{W W T P_{n}}\right)^{\gamma W T} \\
M(T) \leq\left(\sqrt{\frac{P_{x}+P_{n}}{P_{n}}}\right)^{r W T}=\left(1+\frac{P_{x}}{P_{n}}\right)^{W T}
\end{gather*}
$$

نسبت

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{\log M(T)}{T} \leq W \log \left(1+\frac{P_{x}}{P_{n}}\right) \tag{YYS}
\end{equation*}
$$

از اين رو مقدار اطلیع كمتر از ظرفيت است.
 ظرفيت با احتـال خططاى ع كه به صـر ميل مى كند به دست آورد به مورت زير مشاهده كرد. تعداد معيزن M(T) نقطه از اين فضا منسوب به سيگُنال را، بدون توجَه به فاصلههاي
 نتطة كد گذارى خاصى را براى ميگُنالهايى كه بايد ارسال شوند به وجود مــى آورد. اگگـر
 الكان دارد به طور نادرست تشخيص داده شود.p احتـال اين كه اين نقطه در داحيل يــــ ابر كره نونه باشد برابر با نسبت حجمس به حبر حجم ابر كرة بيرونى است:

شكل و. F. ابر كره TWT - بعدى با ميگنالهاى (تغيير شكلـيافته)

كانال ارتباطى بيوصته

$$
p=\frac{\alpha_{Y W T}\left\{\sqrt{\Gamma W T P_{n}}\right\}^{r H T}}{\alpha_{\tau W T}\left\{\sqrt{\Gamma W T\left(P_{x}+P_{n}\right)}\right\}^{\gamma W T}}
$$

احتمال اين كه يكـ سيگنال در داخل ابر كره نوفه نباشد برابر p - ا است. برای ايـن كه دريافت اطلاع بدون خطا باشد بايد ا - $M(T)$ سيخنال خارج از اين ابر كره نوفه باشــنـد احتمال اين برابر

$$
(1-p)^{M(T)-1}>1-\varepsilon
$$

كه در آن ع يكى عدد كو جیک دلخواه است.
با بسط سمت هـي به صورت يكـ سرى و قطع آن بعد از بملةٔ دوم، اين نـــابرابرى
يقيناً برقرار خواهد شد اگر نابرابرى زير برقرار باشد:

$$
\begin{gather*}
\begin{aligned}
& 1-(M(T)-1) p>1-\varepsilon \Rightarrow \quad(M(T)-1) p<\varepsilon \\
& \Rightarrow \quad M(T)-1<\frac{\varepsilon}{p} \Rightarrow M(T)-1<\varepsilon\left\{\frac{P_{x}+P_{n}}{P_{n}}\right\}^{W T} \\
& j \\
& M(T)<\varepsilon\left\{\frac{P_{x}+P_{n n}}{P_{n}}\right\}^{W T} . \\
& \lim _{T \rightarrow \infty} \frac{1}{T} \log M(T)<\lim _{T \rightarrow \infty} \frac{1}{T} \log \left[\varepsilon\left\{\frac{P_{x}+P_{n}}{P_{n}}\right\}^{W T}\right] \\
&=W \log \left(1+\frac{P_{x}}{P_{n}}\right)+\lim _{T \rightarrow \infty} \frac{\log \varepsilon}{T} .
\end{aligned}
\end{gather*}
$$

حذ" باقىمانده در سمت راست با افزايش T بـه صفــر نزديـــ مى شـــود. بنــابراين
 و به شرط آن كه مد"ت T سيگنال را بزر گ انتخابب كنيه.

از اين رو، كدهايى وجود دارند كه ارسال با نرخى به دلخواه نزديـــــ بــا ظرفيــت
 كدگذارى كانال شانون را تشكيل مىدهد.
\&. 0 ظرفيت يك كانال گاوسى باحافظه
 حالتى كه داراى طيف جچگالى توان مسطح و جیگالى احتمال كاوسى است.

 محدود و داراى جیگالى گاوسى باشند. بنابراين رابط؛ بين توان و و توان جڭانلى طيف برابـر است با (همحِين با بخش (ه. (ب) بقايسه كنيد)

$$
\begin{align*}
& P_{x}=\frac{1}{\gamma \pi} \int_{-\forall \pi}^{+\pi W} S_{x}(\omega) d \omega, \\
& P_{n}=\frac{1}{\gamma \pi} \int_{-\pi \pi}^{r \pi W} S_{n}(\omega) d \omega .
\end{align*}
$$

يكى مثال از دوتا از حنين طيفى در شكل (0.5) داده شده است.

سِس فرض مى كنيم طيف به ناحيههايى با بهناى
 سيگنالهاى خروجى اين صافيهاى با يهناى باند (خيلـى) كوجـــى تخيّلـى كـم و بيـس

ناهمبستهاند. بنابراين توان متوسط در هر ناحيه $\Delta \omega$ برابر است با

$$
\begin{aligned}
& P_{x}=\frac{1}{\gamma \pi} S_{x}\left(\omega_{i}\right) \Delta \omega \\
& P_{n_{i}}=\frac{1}{\gamma \pi} S_{n}\left(\omega_{i}\right) \Delta \omega
\end{aligned}
$$

فرض كنيد تعداد زيرناحيهها N باشل. در اين صورت $N=\frac{\digamma \pi W}{\Delta \omega}$ برقرار مىباشد و از

را براى ظرفيت كانال در يك زيرناحيه به دست مى آوريم

$$
C_{i}=\omega_{i} \log \left\{1+\frac{P_{x_{i}}}{P_{n_{i}}}\right\}=\frac{\Delta \omega}{\xi \pi} \log \left\{1+\frac{S_{x}\left(\omega_{i}\right)}{S_{n}\left(\omega_{i}\right)}\right\} . \quad \quad(千 \circ . \varepsilon)
$$

ظرفيت براى طيف كامل بين

$$
C=\sum_{i=1}^{N} C_{i}
$$

يعنى

$$
C=\frac{\Delta \omega}{ヶ \pi} \sum_{i=1}^{N} \log \left\{1+\frac{S_{x}\left(\omega_{i}\right)}{S_{n}\left(\omega_{i}\right)}\right\}
$$

سيس با حد كيرى وقتى $\Delta \omega \rightarrow 0$ نتيبه مىشود كه

$$
C=\frac{1}{\psi \pi} \int_{-\forall \pi W}^{\psi \pi W} \log \left\{1+\frac{S_{x}(\omega)}{S_{n}(\omega)}\right\} d \omega \text { ثانيه / بيت. }
$$

(FY.S)

$$
\begin{equation*}
C=\frac{1}{Y \pi} \int_{0}^{\gamma \pi} \log \left\{1+\frac{S_{x}(\omega)}{S_{n}(\omega)}\right\} d \omega \text { ثانيه / بيت. } \tag{FT.8}
\end{equation*}
$$

براى توضيِ حالتى را بررسى مى كنيم كه هر دو طيف ثابت هستند. در اين صورت

$$
\begin{equation*}
P_{x}=\psi W S_{x}(\omega) \tag{FF.8}
\end{equation*}
$$

$$
\begin{equation*}
P_{n}=\gamma W S_{n}(\omega) \tag{f0.8}
\end{equation*}
$$

كه ظرفيت كانال به دست آمده تبديل مىشود به

$$
C=W \log \left\{1+\frac{P_{x}}{P_{n}}\right\} \text { ثانيه / بيت, }
$$

كه دقيقاً عبارتى است كه قبلاً براى ظرفيت كانال با نونهُ سفيد به دست آورديم. از اين رو معلوم مىشود كه ظرنيت كانـي دارد. معمولاً طيف نونه معلوم است، ولى هنوز هم مىتوان طيف سيگنال را انتخاب كـر كـرد. سؤالى كه يیش مى آيد اين است كه بهترين انتخاب براى
 اكنون عبارت ظرفيت كانال به صورت زير نوشته مىشود

$$
\begin{equation*}
C=\frac{1}{Y \pi} \int_{0}^{Y \pi W} \log \left[S_{x}(\omega)+S_{n}(\omega)\right] d \omega-\frac{1}{\gamma \pi} \int_{0}^{\gamma \pi W} \log S_{n}(\omega) d \omega \tag{FV.s}
\end{equation*}
$$

انتگرال دوم براى مقدار معلوم $S_{n}(\omega)$ ثابت اســتـ، بنـابراين تنهـا انتگــرال اولّ را مىتوان ماكسيمم كرد. هحون توان محدود است، يعنى

$$
P_{x}+P_{n}=\frac{1}{\pi} \int_{0}^{n W}\left(S_{x}(\omega)+S_{n}(\omega)\right) d \omega
$$

مسألة ماكسيممى كه بايد حل شود در واقع مسألة زير است. تعيين ماكسيمم

$$
I=\int_{0}^{r \pi W} \log [f(\omega)] d \omega,
$$

ههراه با تيد

$$
\begin{aligned}
& \int_{0}^{\pi W} f(\omega) d \omega=\pi\left(P_{x}+P_{n}\right) \\
& \qquad . f(\omega)=S_{x}(\omega)+S_{n}(\omega) \text { كه در آن }
\end{aligned}
$$

از روش لاگرانز نتيجه مىشود كه

$$
\frac{d \log [f(\omega)]}{d f(\omega)}-\lambda \frac{d f(\omega)}{d f(\omega)}=0
$$

$$
\frac{\log e}{f(\omega)}-\lambda=0
$$

$$
f(\omega)=\frac{\log e}{\lambda}=\text { ثابت. }
$$

جانشينسازى در قيد نشان مىدهد

$$
f(\omega)=\frac{\left(P_{x}+P_{n}\right)}{r W}
$$

بنابراين

$$
I=\Upsilon \pi W \log \left\{\frac{\left(P_{x}+P_{n}\right)}{r \pi W}\right\} .
$$

پِ ظرفيت ماكسيمم است اگر

$$
\begin{equation*}
S_{x}(\omega)+S_{n}(\omega)=\frac{P_{x}+P_{n}}{\nabla W}=\text { ثابـ. } \tag{59.5}
\end{equation*}
$$

در آن حالت ظرفيت كانال برابر است با

$$
C=W \log \left\{\frac{P_{x}+P_{n}}{\nabla W}\right\}-\frac{1}{\nabla \pi} \int_{0}^{r \pi} \log S_{n}(\omega) d \omega
$$

مشالى از اين در ششكل و.ء داده شده امـت. همـانطور كــه ديــه مىشــود ($S_{x}(\omega)=$ كه

 حاللت است، زيرا در اين صورت جملة دوم در عبارت ماكســـيمم مىشــود كــه موجــب مىنيمم شدن C بیشود.

شكل

مثال
طيفهاى سيخنالهاى تهادفى $n(t)$ و(t) به ترتيب عبارتند از:

ظرفيت كانال برابر مىشود با

$$
C=\frac{1}{r \pi} \int_{0}^{\nabla \pi} \log \left\{1+\frac{S_{x}(\omega)}{S_{n}(\omega)}\right\} d \omega
$$

$$
=\frac{1}{r \pi}\left\{\frac{r}{r} \pi W \log \left(1+\frac{r}{1}\right)+\frac{1}{r} \pi W \log \left(1+\frac{\varphi}{r}\right)+\frac{1}{r} \pi W \log \left(1+\frac{\Lambda}{r}\right)+\frac{r}{r} \pi W \log \left(1+\frac{\Lambda}{r}\right)\right\}
$$

$$
=\frac{1}{r} W \log 1 \Delta=1, f \Delta W
$$

توان متوسط برابر است با

ظرفيت ماكسيمم است اگر

$$
S_{x}(\omega)+S_{n}(\omega)=\frac{P_{x}+P_{n}}{r W}=\frac{\frac{1 \varphi}{r}+\frac{r}{r}}{r}=\frac{r \Delta}{r} .
$$

$$
\begin{aligned}
& P_{x}=\frac{1}{\pi} \int_{0}^{\eta W} S_{x}(\omega) d(\omega)=\frac{1}{\pi}(\digamma \pi W+\wedge \pi W)=1 \psi W, \\
& P_{n}=\frac{1}{\pi} \int_{0}^{r \pi} S_{n}(\omega) d \omega=\frac{1}{\pi}\left(\frac{r}{r} \pi W+\frac{\varphi}{r} \pi W+\frac{\Lambda}{r} \pi W\right)=\frac{1 \varphi}{r} W . \\
& \text { از } \frac{1 W W}{\left(\frac{1 世}{r} W\right)}=\frac{1 A}{V} ب \text { اين رو نسبت سيخنال به نوفه برابر است }
\end{aligned}
$$

در اين صورت ماكسيمم ظرفيت كانال برابر است با

$$
C=W \log \left\{\frac{P_{x}+P_{n}}{\psi W}\right\}=W \log \frac{r \Delta}{r}=r, \circ s W .
$$

\&. 8 تمرينها
 داده مىشود. براى اين كانال پڭالمى احتـطال توأم
ناحيــة G داده شُــله بـا

$$
\text { ناحيه o } p(x, y) \cdot
$$

(الفش) مقدار اطلاع اين منبع را محاسبه كنيد.
(ب) مقدار اطلاع را در طرف گِرنده هیدا كنيد.
(پ) ايهام را محاسبه كنيد.
(ت (ت مقدار اطلاع براى رخداد توأم x و x را به دست آوريد.
(ث) مقدار اطلاع ارسال شده را محاسبه كنيد.
(ج) $H(X, Y) \leq H(X)+H(Y)$ رابطای اين كانال ثابـت كنيد.

$$
p(x)=e^{-x} \quad, \quad 0<x<\infty
$$

اين منبع به كانالى متصل شده كه با نوفه جمعى مستقل با پخگـالي احتمسال
 احتـطال نحارج از اين دامنه صفر اسـت؛ مقدار اطلاع توأم را نســـبـت بـه ورودى و خروجى محأمبه كنيد.
\&.F (الفـ) عبارتى براى ظرفيت كانال يك كانال پيوسته كه توسط نو فـــه دلخواهــى تغيير شكل يافته اسـت به دست آوريد. اين نوفه جـعى و مســـتقل از (كه داراى توان كراندار اسـت).
 ثابتى رسم كنيد.

اگر فرض شده باشد كه ميانگين توان نوفه بر واحد يهناى باند ثابت و برابــر
است مهاسبه كنيد.
(ت) ظرفيت كانال را به صورت تابعى از يهنای باند تحت شرط داده شده در (ب) رمـــم

باشد و بتوان براى سيخنالى كه بايد ارسال شود بين دو لهناى باند انتخاب كرد، در اين صورت جه نسبتهايى از سيخنال به نوفه برای هر دو حــــالت به دست مى آيد؟
(ج) آيا مىتوانيد دربارة برترى ممكن يكى سيگنال بر ســيـيگنال ديگـر، مطلبـى بيـان كنيد؟

Fs \&
 نوسان زير تغيير شـكل مىيابد.

$$
\begin{array}{rlrl}
p(n) & =n^{\varphi} \quad, \quad l & |n| \leq a \\
& =0 \quad, \quad|n|>a .
\end{array}
$$

نمونه گيرى به تسمى است كه شروط تضية نمونش گيرى برقرار مىباشند.
(الف) مقدار اطللع در نمونه را مهاسبه كنيد.
(ب) توان اطلڭع در نمونه را پيدا كنيد.
(ب) (ب) مقدار اطلاع نون بر ثانيه را به دست آوريد.

كانال بيابيل.
(ث (ثران بالا را برایى ظرنيت اين كانال به دست آوريد.
.
(الف) عبارتى براى ظرفيت كانال برحسب طيف سيگنال و نرنه بيان كنيد.
 نوثة داده شده (1)
(ب) اگر طيف نوفه به صورت زير باشد

$$
\begin{aligned}
S_{n}(\omega) & =\mathrm{N} & & , \\
& =r \mathrm{~N} & &
\end{aligned}
$$

ماكسيمب ظرفيت كانال را محاسبه كنيد، در حالتى كه در آن نسبت سيخنال به نوفه
 (ت) توان چچگالى طيفى سيگنال (مورد انتخاب
(ألف) شكل (V.5) را ببينيد.
نخست بايد دامنغ نوسان چحگالى احتمال را تعيين كرد. اين كار را مى تــــوان بـا استفاده از رابطة زير انجام داد

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} p(x, y) d x d y=1
$$

شكل צ.

اكنون فرض كنيد كه

$$
\begin{array}{r}
\int_{0}^{1} \int_{0}^{x} k d x d y=k \int_{0}^{1} d x \int_{0}^{x} d y=k \int_{0}^{1} x d x=\frac{1}{\gamma} k=1 ; \\
\quad . p(x, y)=k=\gamma \text { بنابراين }
\end{array}
$$

به علاوه، بايد

$$
p(x)=\int_{0}^{x} p(x, y) d y=\left.\gamma y\right|^{x}=\gamma x .
$$

در اين صورت نتيجه مىشود كه

$$
\begin{aligned}
H(X) & =-\int_{-\infty}^{\infty} p(x) \log p(x) d x \\
& =-\int_{0}^{1} r x \log r x d x \\
& =-\frac{1}{r} \int_{0}^{1} r x \log r x d(\gamma x) \\
& =-\log \gamma+\frac{1}{r} \log e=\log \frac{\sqrt{e}}{\gamma} \quad .
\end{aligned}
$$

(ب) H(Y) به همين روش محاسبه مىشود. داريم

$$
q(y)=\int_{y}^{1} p(x, y) d x=\left.r x\right|_{y} ^{\prime}=r(1-y)
$$

$$
H(Y)=-\int_{0}^{1} r(1-y) \log r(1-y) d y=-\frac{1}{r} \int_{0}^{1} r z \log r z d(r z)
$$

اين مانند عبارتى است كه برای H(X) در (الف) داريم، بنابراين به ســادگى نتيجه مىشود كه

$$
H(Y)=H(X)=\log \frac{\sqrt{e}}{r} \text { بيت. }
$$

(ب) ابتدا بايد $p(x \mid y)$ را بيدا كنيـم. داريم

$$
p(x \mid y)=\frac{p(x, y)}{q(y)}=\frac{r}{r(1-y)}=\frac{1}{1-y} .
$$

كانال ارتباطى ييوسته

$$
\begin{aligned}
H(X \mid Y) & =-\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} p(x, y) \log q(x \mid y) d x d y \\
& =-\int_{0}^{1} \int_{0}^{x} r \log \frac{1}{1-y} d x d y=\gamma \int_{0}^{1} \int_{0}^{x} \log (1-y) d x d y
\end{aligned}
$$

بعد از انتگرال كيرى جزء به جزء و جانشين كردن حدود نتيجه مىشود:

$$
H(X \mid Y)=-\log \sqrt{e}
$$

(ت) اين برابر است با

$$
H(X, Y)=-\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} p(x, y) \log p(x, y) d x d y=-r \int_{0}^{1} \int_{0}^{x} d x d y=-1 \text {. }
$$

(ث) مىتوان از رابطء زير استفاده نـود

$$
\mathrm{R}=H(X)-H(X \mid Y)
$$

اين نتيجه مىدهد

$$
R=\log \frac{\sqrt{e}}{\gamma}+\log \sqrt{e}=\log \frac{e}{\gamma} \text { ثانيه / بيت. }
$$

(ج) رابطه عبارت است از

$$
H(X, Y) \leq H(X)+H(Y)
$$

با قرار دادن مقادير به دست آمده در أين رابطه نتيجه مىشود

$$
-1 \leq \log \frac{\sqrt{e}}{r}+\log \frac{\sqrt{e}}{r} \quad \Rightarrow \quad-1 \leq \log \frac{e}{r}
$$

از اين رو رابطه به درستى برترار مىباشد.

$$
\begin{array}{r}
p(x)=e^{-x}, \quad 0 \leq x<\infty, \\
p(n)=\frac{1}{\alpha}, \quad 0 \leq n \leq \alpha\left(\int_{0}^{a} p(n) d n=1\right. \text { جراى مقدار اطلاع توأم داريم). } \\
H(X, Y)=H(X)+H(Y \mid X)=H(X)+H(\mathrm{~N}),
\end{array}
$$

چون نونه از سيگنال x ارسال شده مستقل است. اكنون مىتوان بحاسبه كرد كه

$$
\begin{aligned}
& H(X)=-\int_{0}^{\infty} e^{-x} \log e^{-x} d x=\log e \text { بيت } \\
& \text { و اين كى } \\
& H(\mathrm{~N})=-\int_{\alpha}^{\alpha} \frac{1}{\alpha} \log \frac{1}{\alpha} d n=\log \alpha, \\
& \text { سرانجام، داريم } \\
& H(X, Y)=\log e+\log \alpha=\log \alpha e \text { بيت. }
\end{aligned}
$$

$$
\begin{align*}
& \text { ع. } C=W \log \left\{1+\frac{P_{x}}{P_{n}}\right\} .
\end{align*}
$$

اين ظرفيت يك تابع لگاريتمى از نسبت سيخنال به نوفــه اســت (شـكل (.^) را
(ب) اكنون توان نوفه برابر است با

$$
P_{n}=W P_{n}^{\cdot}
$$

كه در آن W يهناى باند نونه است. در اين صورت ظرفيت كانال برابر مىشود با

$$
\begin{aligned}
C & =W \log \left\{1+\frac{P_{x}}{W P_{n}^{*}}\right\}=\log e \cdot \ln \left\{1+\frac{P_{x}}{W P_{n}^{*}}\right\}^{W} \\
& =\log e \frac{P_{x}}{P_{n}^{\prime \prime}} \ln \left\{1+\frac{P_{x}}{W P_{n}^{*}}\right\}^{W P_{n}^{0} / P_{x}}
\end{aligned}
$$

ثكل ء.A- ظرفيت به عنوان تابعى از نسبت سيخنال به نوف

$$
\begin{align*}
& \text { به قسـمى كه } \\
& \lim _{W \rightarrow \infty} C=\frac{P_{x}}{P_{n}^{\circ}} \log e . \\
& \text { رسم نهودارى C=f(W) شكل (9.5) را مىدهد. } \tag{ت}\\
& C=W \log \left\{1+\frac{P_{x}}{P_{n}}\right\} \tag{ث}\\
& \text { بنابراين در يک حالت داريم } \\
& \frac{P_{x}}{P_{n}}=\gamma^{C / W}-1=\gamma^{\wedge}-1=\gamma \Delta \Delta, \\
& \text { و در حالت ديگر } \\
& \frac{P_{x}}{P_{n}}=Y^{v}-1=1 Y V .
\end{align*}
$$

هيج برترى يی حالت بر حالت ديگر در زمينههاى نظرى اطلاع وجود ندارد، زيرا

 بهناى باند بزر گتر مشكلتر است.

مهكن است (الف) را با كمكى رابطء زير محاسب كرد

$$
\int_{-a}^{a} p(n) d n=\int_{-a}^{a} n^{\gamma} d n=\left.\frac{1}{r} n^{r}\right|^{a}-a=\frac{r}{r} a^{r}=1 .
$$

$$
\text { از اين نتيجه مىشود } a=\sqrt{\frac{r}{r}}
$$

اكنون H(N) را مىتوان به صورت زير نوشت
$H(N)=H(Y \mid X)=-\int_{-\infty}^{\infty} p(n) \log p(n) d n$
$=-\int_{-a}^{a} n^{\top} \log n^{\top} d n=-\frac{r}{r} \int_{-a}^{a} \log n d n^{r}$
$=-\frac{r}{r} n^{r} \log |n|_{-a}^{a}+\frac{r}{r} \int_{-a}^{a} n^{r} d \log n$
$=\left.\left[-\frac{r}{r} n^{r} \log |n|+\frac{r}{r} \log e \frac{1}{r} n^{r}\right]\right|_{-a} ^{a}$
$=-\frac{r}{r} a^{r} \log a+\frac{r}{q} a^{r} \log e=\frac{r}{r} \log \frac{r e}{r}=0, \Delta v$ نماد $/$
توان اطلاع نونه به صورت زير تعريف مىشود

$$
P_{H_{n}}=\frac{1}{\psi \pi e} r^{\tau H(N)},
$$

بد تسمى كه

$$
P_{H_{n}}=\frac{1}{r \pi e} r^{r \times 0, \Delta v}=\frac{1}{r \pi e} r^{1, j \psi}=0,1 r q .
$$

(ب) مقدار اطلاع نوفه بر ثانيه برابر است با

كانال ارتباطى ييوسته
(ت) مقدار اطلاع سيخنال دريافت شده $y(t)$ داراى مقدار كران بالاى زير الســـت، يعنـى اگر دارايى ويرُ گيهاى نوفه مطلوب باشد:

$$
H(Y)=W \log \upharpoonright \pi e\left(P_{x}+P_{n}\right),
$$

$$
P_{x}=\sigma_{x}^{\gamma}=1
$$

$$
P_{n}=\sigma_{n}^{\top}=E\left(\mathrm{n}^{\top}\right)=\int_{-a}^{a} n^{\dagger} p(n) d n=\int_{-a}^{a} n^{\top} n^{\gamma} d n=\left.\frac{1}{\Delta} n^{\Delta}\right|_{-a} ^{a}=\frac{\gamma}{\Delta} a^{\Delta}
$$

$$
=\frac{r}{\Delta}\left(\frac{r}{r}\right)^{\Delta / r},
$$

به طورى كه

$$
H(Y)=W \log r \pi e\left(1+\frac{r}{\Delta}\left(\frac{r}{r}\right)^{\Delta / r}\right) .
$$

(ث در اين صورت مقدار اطلاع ارسال شذه برابر است با

$$
\begin{aligned}
\mathrm{R} & \leq H(Y)-H(Y \mid X) \leq H(Y)-H(\mathrm{~N}) \\
& \leq W \log \upharpoonright \pi e\left(P_{x}+P_{n}\right)-W \log \upharpoonright \pi e P_{H_{n}},
\end{aligned}
$$

به طررى كه كران بالا براى ظرفيت به صورت زير به دسـت مى آيد

$$
C \leq W \log \left\{\frac{P_{x}+P_{n}}{P_{H_{n}}}\right\}=W \log \left\{\frac{1+\frac{r}{\Delta}\left(\frac{r}{r}\right)^{\Delta / r}}{0,1 r q}\right\} .
$$

0.s (الف) براى ظرفيت كانال باحافظه به دست مى آوريم كه

$$
C=\frac{1}{\uparrow \pi} \int_{-r \pi W}^{r \pi W} \log \left\{1+\frac{S_{x}(\omega)}{S_{n}(\omega)}\right\} d \omega \text { ثانيهـ / بيت. }
$$

طيف سيگنال و نوفه زوج هستند، يعنى نسبت به $\omega=0$ متمـــارن هسـتند، بــ طورى كه مىتوان نوشـت

$$
\begin{aligned}
& H(\mathrm{~N})_{4}=W \log \left(\Gamma \pi e P_{H_{n}}\right)=1,1 \uparrow W \text { ثانيه / بيت }
\end{aligned}
$$

$C=\frac{1}{\gamma \pi} \int_{0}^{r \pi W} \log \left\{1+\frac{S_{x}(\omega)}{S_{n}(\omega)}\right\} d \omega$ ثانيه / بيت.
(ب) (بارت براى ظرنيت كانال را مىتوان به صورت زير نوشت

$$
C=\frac{1}{\gamma \pi} \int_{0}^{r \pi W} \log \left[S_{x}(\omega)+S_{n}(\omega)\right] d \omega-\frac{1}{r \pi} \int_{0}^{r W} \log S_{n}(\omega) d \omega
$$

چون طيف نو نه داده شده اسـت، ماكسيمم C به معنى ماكسيمم انتخـــرالل اولّ
است. اين رابطه بين (1

$$
S_{x}(\omega)+S_{n}(\omega)=\frac{P_{x}+P_{n}}{\psi W}=\text { ثابب. }
$$

(ب) عبارت ماكسيمم ظرفيت كانال با كمى نتيجه (ب) به دسـت مى آيــد (هشخنيـن
شكل (11.5) را ببينيد).

$$
C=W \log \left\{\frac{P_{x}+P_{n}}{r W}\right\}-\frac{1}{r \pi} \int^{r \pi W} \log S_{n}(\omega) d \omega
$$

برایى توان نوفه

$$
\begin{aligned}
P_{n} & =\frac{1}{\pi} \int_{0}^{r \pi W_{1}} N d \omega+\frac{1}{\pi} \int_{\gamma \pi W_{1}}^{r W_{r}} \mathrm{~N} N d \omega=\left.\frac{N}{\pi} \omega\right|_{0} ^{r \pi W_{1}}+\left.\frac{\uparrow N}{\pi} \omega\right|_{r \pi W_{1}} ^{r \pi W_{r}} \\
& =\mathbb{N} W_{1}+\mathrm{F} N\left(W_{Y}-W_{1}\right) .
\end{aligned}
$$

با استفاده از اين امر كه $P_{n} ، W_{r}=\gamma W_{1}$

$$
P_{n}=N W_{Y}+\mathrm{N} N W_{\mathrm{r}}=\mathrm{r} N W_{\mathrm{r}} .
$$

علاوه بر اين نسبت سيگنال به نونه $\frac{P_{x}}{P_{n}}=$ داده شده اسـت، بنابراين داريم

$$
P_{x}=\gamma P_{n}=\varsigma N W_{r}
$$

شكل 11.5-طيف نونه تمرين (1.5)

كانال ارتباطى ثيو سته
با جانشين كردن در فرمول ظرفيت كانال C نتيجه مىشود

$$
\begin{aligned}
& C=W_{r} \log \left\{\frac{\rho N W_{Y}+N N W_{Y}}{r W_{r}}\right\}-\frac{1}{r \pi} \int_{0}^{\Gamma \pi W_{1}} \log N d \omega-\frac{1}{r \pi} \int_{\Gamma \pi W_{1}}^{\varphi \pi W_{r}} \log N d \omega \\
& =W_{Y} \log \uparrow, \Delta \mathrm{~N}-W_{Y} \log \mathrm{~N}-\log \uparrow \mathrm{N} \cdot\left[W_{Y}-W_{1}\right] \\
& =W_{r} \log ז, \Delta N-\frac{1}{r} W_{r} \log N-\frac{1}{r} W_{r} \log r N \\
& =W_{r} \log \frac{r, \Delta N}{\sqrt{\mathrm{~N}} \sqrt{r N}}=W_{r} \log \frac{r \Delta}{\sqrt{r}}=W_{r} \log r, i \Delta \\
& =1, s \& W_{r} \text { / ثانيه / بيت. }
\end{aligned}
$$

(ت) شكل (1
طيف حگالى توان حچگالى توان (

نظرية́ نرخ د گرشكلى
I.V تابع نرخ دكرشكلى كسسته

تراكم (فشردگى) دادهها يكـ دنباله از نمادهاى خروج

 خرو جیى يكسان منتهى مىشود. تراكم دادهها يكـ فر آيند قطعى است. بــا ونـا وجـود ايـنز، در
 يكى به يكى نيست، بلكه متاثر از احتمال انتقال

بلو ك رابطه قطعى است.
از اين فصل ممكن است نتيجه گيرى كرد كه كد دادههاى فشرده بـــهنـخوبى طراحـى

 مقيد به متوسط د گرشكلى را مىنيمبر كند.

 فرض شده است كه نمادهاى منبع از يكـ الفباى متناهى شامل n نمــــــاد مفــروض بـا ($\left\{u_{1}, \ldots, u_{j}, \ldots, u_{n}\right\}$ شامل m نماد
 توليد مجدّد

 دگرشكلى مستقل از وضعيتى (يا زمانى) باشد كه در آن نمادها ظاهر مى شورند. درگرشكلى توسط ماتريس دحرتسكلى نشان داده مىشود كه دگرشكلى بين نمادهــاى منبع و مقصد را تشريع مى كند. برایى سيستمى با دو نماد منبع

$$
\begin{aligned}
\rho\left(u_{j}, \hat{u}_{k}\right) & =0 & & j=k \\
& =1 & , & j \neq k
\end{aligned}
$$

اين نمودار شكل (I.V) را مىدهد.
با اين انتخاب ماتريس د گرشكلى؛ رابطهأى با خططاهايى كه مىتواند بين منبع و توليد

 د درشكلى (r)

 با

$$
p(j, k)=p(j) q(k \mid j)
$$

اكنون متوسط دكرشكلى (Q) d را با ضــرب د گرشـكلى هـر تركيـب احتمال رخدادش به دست مى آوريم

$$
\begin{equation*}
d(Q)=\sum_{j} \sum_{k} p(j) q(k \mid j) \rho(j, k) \tag{I.V}
\end{equation*}
$$

اگر فرض شده باشد كه دگرشكلى مجاز برابر D است، آن گاه بــايد نـابرابرى زيـر برقرار باشد

$$
\begin{equation*}
d(Q) \leq D . \tag{Y.V}
\end{equation*}
$$

شكل I.V- مثالى از دگرشكليها و ماتريس آنها
 معلوماند. احتمالهاى انتقال

$$
\begin{equation*}
Q_{D}=\{Q: d(Q) \leq D\} \tag{r.v}
\end{equation*}
$$

مثال 1.9
 نمادهاى منبع عبار تند از

$$
p\left(u_{\mathrm{r}}\right)=p\left(u_{\mathrm{r}}\right)=\frac{1}{r}
$$

ماتريس دگرشكلى عبارت است از

$$
Q=\left[\begin{array}{lll}
0 & 1 & r \\
r & 1 & 0
\end{array}\right],
$$

كه نشان مىدهد اگر نماد منبع

$$
Q=\left[\begin{array}{lll}
0, v & 0, Y & 0,1 \\
0,1 & 0, Y & 0, v
\end{array}\right] \quad, \quad Q_{r}=\left[\begin{array}{lll}
0, \lambda & 0,1 & 0,1 \\
0,1 & 0,1 & 0, \lambda
\end{array}\right] .
$$

ممكن است برای هر دو ماتريس بررسى شود كه Tيا آنها متوسط دگرشكلى نمادى كه در تيد معلوم صدق مى كند مىدهند يا خير مرا

به دست مىآوريم:

$$
\begin{aligned}
d(Q) & =\sum_{j=1}^{r} \sum_{i=1}^{r} p(j) q(k \mid j) p(j, k) \\
& =\frac{1}{r} \times 0, v \times A+\frac{1}{r} \times 0, r \times 1+\frac{1}{r} \times 0,1 \times r+\frac{1}{r} \times 0,1 \times r+\frac{1}{r} \times 0, r \times 1+\frac{1}{r} \times 0, \gamma \times 0 \\
& =\frac{1}{r} .
\end{aligned}
$$

به طور مشابه به دست مىآوريم

$$
d\left(Q_{r}\right)=\frac{Y}{\Delta} .
$$

$$
d\left(Q_{\imath}\right) \leq D=0, \uparrow \Delta .
$$

ظاهراً يك دگرشكلى كمتر از D با مــاتريس Q امكــانیذير اســت. بنــابراين ايـن ماتريس برخلان ماتريس Q Q به $_{\text {ب }}$ متعلّن است. شكل ماتريس دگرشكلى ممكن مىسازد كه

 خطاى مباز است.
اكنرن د گرشكلى را هنگامى كه نمادهاى توليد مجذد اندازهاى بسـراى كميــت توليــد
 د گرشكلى برسيم اطلاع متقابل بين منبع و مقصد (توليد مهــدّد) را در نظــر مى گــيريم. در وخعيت موجود داريم:

$$
\begin{align*}
I(U ; \hat{U}) & =H(U)-H(U \mid \hat{U}) \\
& =H(\hat{U})-H(\hat{U} \mid U) \\
& =\sum_{j} \sum_{k} p(j) q(k \mid j) \log \frac{p(j, k)}{p(j) \cdot q(k)} \tag{f.V}
\end{align*}
$$

 از جنبة نظرى نرن د گرشكلى منبع، يعنى

نظرية نرخ دکرشكلى

$$
I(Q)=\sum_{j} \sum_{k} p(j) q(k \mid j) \log \frac{q(k \mid j)}{q(k)}
$$

هر ماتريس Q مىتواند مقدار متفاوت $I(Q)$ را بدهــن. اكنــون ماتريسـى كـه بــراى آن I(Q) مینيمم است جستـوجو مى كنيم و نرخ منبع براى دگرشكلى مجاز D يا به طــور ساده تابع نرخ دُرششكلى R(D) را به صورت زير تعريف مى كنيم:

$$
\begin{equation*}
R(D)=\min _{Q \in Q_{D}} I(Q) \text { نماد / بيت. } \tag{£.V}
\end{equation*}
$$

اين تابع مىنيمم مقدار اطللع متقابل است كه با تغيير دادن همـــهُ ماتريسـهاى Q Q بـه

 كه $Q \in Q_{D}$. فرض شده است كه منبع و د گرشكلى معلومند. توجيه اين تعريف در خند قضيه جالب قرار دارد كه در بخش (F.V) ارائه خواهد شلد شد. معلوم مى

 بطالعه خواهد شد. R.V مثال

در مثال (V.V) دو ماتريس انقالل

$$
\begin{aligned}
& \text { براى }
\end{aligned}
$$

$$
I(Q)=\sum_{j=1}^{r} \sum_{k=1}^{r} p(j) q(k \mid j) \log \frac{q(k \mid j)}{q(k)}
$$

جون

$$
\begin{gathered}
q(k)=\sum_{j=1}^{r} p(j) q(k \mid j), \\
q(1)=\frac{r}{\Delta} \quad, \quad q(r)=\frac{1}{\Delta} \quad, \quad q(r)=\frac{1}{\Delta}
\end{gathered}
$$

به سادگی داريم

$$
\begin{aligned}
I\left(Q_{r}\right) & =r\left\{\frac{1}{r} \times \frac{v}{10} \log \frac{v / 10}{r / \Delta}+\frac{1}{r} \times \frac{r}{10} \log \frac{r / 10}{r / \Delta}+\frac{1}{r} \times \frac{1}{10} \log \frac{1 / 1_{0}}{r / \Delta}\right\} \\
& =-\frac{1}{\Delta}+\frac{v}{10} \log v \approx 0, r v .
\end{aligned}
$$

در بررسى ويزگيهاى تابع R(D) يك منبع اطلاع بى انانظه گسسته را در نظر خوراهيم

 دامنئ

$$
\begin{equation*}
\cdot \leq R(D) \leq H(U) \tag{V.V}
\end{equation*}
$$

اين مطلب را مىتوان به صورت زير نشان داد. از $\bullet \leq H(U \mid \hat{U}) \leq H(U)$,

$$
\cdot \leq H(U) \leq \log n
$$

$$
I(U ; \hat{U})=H(U)-H(U \mid \hat{U})
$$

$$
\begin{equation*}
\circ \leq I(U ; \hat{U}) \leq H(U) \leq \log n \tag{A.V}
\end{equation*}
$$

خون دامنئ $R(D)$ به دست مى آيد.
 متوسط دگرشكلى d(Q) به صورت زير تعريف مىشود

$$
\begin{equation*}
d(Q)=\sum_{j} \sum_{k} p(j) q(k \mid j) \rho(j, k) \leq D . \tag{.1.v}
\end{equation*}
$$

نظريه نرخ دكرشُكلى

اگر براى هر نماد منبع
 انتقال را 1 كر $q(k \mid j)$ قرار داده و بقيةٔ احتمالها را برابر صفر قرار مىدهيم. تعريف مى كنيم

$$
\begin{align*}
& \rho(j)=\min _{k} \rho(j, k) . \\
& D_{\text {min }}=\sum_{j=1}^{n} p(j) \rho(j) . \tag{11.8}\\
& \text {. } D_{\text {min }}=0 \text { بدون كاستى در كليّت فرض خواهيم كرم }
\end{align*}
$$

بنابراين

أگر حنين نباشد د گرشكلى صفر شود. اين بدين معناست كه براى هر نماد داشته باشد.
جون براى احتمالهاى انتقال داريم
$q(k \mid j)=1 \quad, \quad(q(j, k)=0)$ ايعنى $)$
=o , براى ساير حالات,
در اين صورت ايهام برابر صفر خواهد شد و $Q \cdot I(Q)=H(U)$ ديخــر در ايـن جـــا ظـــاهر نمى شود بنابراين مستقيهاً نيز نتيجه مىشود

$$
\begin{equation*}
R(0)=I(Q)=H(U) \tag{IY.V}
\end{equation*}
$$

چس براى رسيدن به د گرشكلى صفر بايد همة اطلاعات منبع در مقصد توليد شوند.
 مىتوان نشان داد كه تابع نرخ د گرشكلى با افزايش دگرشكلى D

 را چنان انتخاب كنيم كه براى آن متومط دگرشكلى بين يكى نماد دلنواه منبع و نــــاد

 $q(k \mid j)=q(k)$ اين از تعريف 1 (Q) نتيبه ميشود و از طرف ديگر مى توان توضيح داد

$$
\begin{equation*}
d(Q)=\sum_{k} q(k) \sum_{j} p(j) \rho(j, k) \tag{Ir.V}
\end{equation*}
$$

 كمترين است به دست مي آيد. اين نتيجه مىدهد $\sum_{j} p(j) \rho(j, k)$

$$
D_{\max }=\min _{k} \sum_{j} p(j) \rho(j, k)
$$

R.Y مثال
 متناظر با تابع نرخ د گرشكلى را ییدا كنيم. (الف)

$$
Q=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

كه متناظر است با 1 . $R(0)=I(Q)=H(U)$

$$
\begin{align*}
D_{\max } & =\min _{k} \sum_{j=1}^{r} p(j) \rho(j, k) \tag{ب}\\
& =\frac{1}{r} \min _{k}(\rho(1, k)+\rho(\gamma, k))
\end{align*}
$$

نظربئ نرخ دكرشكلى

$$
=\frac{1}{r} \min \{0+r, 1+1, r+0\}=1 .
$$

مقدار متناظر R(D) در

$$
R\left(D_{\max }\right)=R(1)=0
$$

صدق مى كند. ماتريس انتقال. متناظر عبارت است از

$$
Q=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

 متغيرها در نظر گرفت. اين را به صورت زير فرمولبندى مى كنيم: مىنيمم اطلاع متقابل

$$
\begin{equation*}
I(Q)=\sum_{j} \sum_{k} p(j) q(k \mid j) \log \frac{q(k \mid j)}{q(k)}, \tag{if.V}
\end{equation*}
$$

به عنوان تابعى از $q(k \mid j$ با قيرد زير:

$$
\begin{gather*}
q(k \mid j) \geq 0 \tag{الف}\\
\sum_{k} q(k \mid j)=1 \tag{ب}
\end{gather*}
$$

$$
\begin{equation*}
\sum_{j} \sum_{k} p(j) q(k \mid j) \rho(j, k)=D . \tag{ب}
\end{equation*}
$$

 زير براى احتمالهاى انتقال (روش لاگرانر) به دست مى مى آيد:

$$
\begin{equation*}
q(k \mid j)=\frac{q(k) e^{s \rho(j, k)}}{\sum_{k} q(k) e^{s \rho(j, k)}} . \tag{IV.V}
\end{equation*}
$$

با معرفى

$$
\begin{equation*}
\lambda(j)=\frac{1}{\sum_{k} q(k) e^{s \rho(j, k)}} \tag{IA.V}
\end{equation*}
$$

نتيجه مىشود

$$
\begin{equation*}
q(k \mid j)=\lambda(j) q(k) e^{s \rho(j, k)} \tag{19.8}
\end{equation*}
$$

كه يكـ مجموعهای از معادلات براى هر j و k مىدهد، كه در آن

بيان شده است. بنابراين اكنون تعيين احتمال $q(k)$ باقى مى ماند. به طور كلى،

$$
\begin{equation*}
\sum_{j} \frac{p(j) e^{s \rho(j, k)}}{\sum_{k} q(k) e^{s \rho(\bar{j}, k)}}=1 \tag{rr.V}
\end{equation*}
$$

اگر تيد (الف) برقرار باشد هنوز هم بايد ثابت شود. در اين روش

 است عبارتى براى R(D) و (D) به دست آورد. جانشــين كــردن ($ا$ رن مىدهد

$$
D=\sum_{j} \sum_{k} \lambda(j) p(j) q(k) e^{s \rho(j, k)} \rho(j, k)
$$

حون (Q)I مینيمم شده است
$R(D)=I(Q)$

$$
\begin{equation*}
=\sum_{j} \sum_{k} p(j) q(k \mid j) \log \frac{q(k \mid j)}{q(k)} \tag{YF.V}
\end{equation*}
$$

از

$$
\begin{equation*}
\frac{q(k \mid j)}{q(k)}=\lambda(j) e^{s \rho(j, k)} \tag{ro.v}
\end{equation*}
$$

نتيجه مىشود

$$
\begin{equation*}
R(D)=s D \log e+\sum_{j} p(j) \log \lambda(j) \tag{ץร.V}
\end{equation*}
$$

 آورديم. جواب به صورت ضمنـى برحسب پارِامتر

$$
\begin{aligned}
& q(k)=\sum_{j} p(j) q(k \mid j) . \\
& \text { حنانحه آن را بر } q(k) \text { تقسيم كنيم نتيجه مىدهد } \\
& \sum_{j} \lambda(j) p(j) e^{s \rho(j, k)}=1,
\end{aligned}
$$

مىدهد و از اين رو نقطهاى را روى منحنى R(D) مشخصى مى كند.
 بنابراين به شْيب منحنى R(D) در نقط؛ معينى مربوط مىشونود. داريم

$$
\begin{equation*}
s=\frac{d R(D)}{d D} / \log e . \tag{YV.V}
\end{equation*}
$$

تابع نرخ د گرشكلى يكى تابع يكنواخت كاهشى ييوسته بــراى
بارامتر s براى
F.V مثال

اين مثال تعميمى از مثالهاى قبلى در اين نمل است. مقدار تابع نرخ د گرشكلى را در

$$
\lambda(1)=\frac{1}{\sum_{k} q(k) e^{s s(j, k)}}=\frac{\Delta}{r+e^{s}+r e^{r s}} .
$$

همين مقدار براى $\lambda(Y)$ مانند $\lambda(1)=P(Y)$ به دست مى آيد. همجنيــن از (Y.V) به دست مى آوريم (Y.Y

$$
\begin{aligned}
D & =\sum_{j=1}^{r} \sum_{k=1}^{r} \lambda(j) p(j) q(k) e^{s \rho(j, k)} \rho(j, k) \\
& =\lambda(1) p(1)\left\{\sum_{k=1}^{r} q(k) e^{s \rho(1, k)} \rho(1, k)+\sum_{k=1}^{r} q(k) e^{s \rho(r, k)} \rho(\gamma, k)\right\} \\
& =\frac{s / r}{r+e^{s}+r e^{r s}}\left\{r\left(\frac{1}{\Delta} e^{s}+\frac{s}{\Delta} e^{r s}\right)\right\} \\
& =\frac{e^{s}+r e^{r s}}{r+e^{s}+r e^{r s}} .
\end{aligned}
$$

$$
\begin{aligned}
R(D) & =s D \log e+\sum_{j} p(j) \log \lambda(j) \\
& =s D \log e+\log \lambda(1) \\
& =s D \log e+\log \left\{\frac{\Delta}{r+e^{s}+r e^{r s}}\right\} .
\end{aligned}
$$

و از اين رو

$$
\begin{gathered}
x+r x^{r}=0, \gamma \Delta\left(Y+x+r x^{r}\right), \\
r, \lambda x^{r}+0, \Delta \Delta x-0, q=0 .
\end{gathered}
$$

اكنون مقدار R(0, R(t) را مىتوان به دست آورد.

$$
\begin{aligned}
R(D) & =s D \log e+\log \left\{\frac{\Delta}{\varphi+e^{s}+\varphi e^{r s}}\right\} \\
& =-0, f \Delta \times 0, f \Delta \times \log e+\log \left\{\frac{\Delta}{\varphi+0, \rho \psi+\gamma(0, s \varphi)^{r}}\right\} \\
& =\frac{1}{\ln \varphi}(-0, \varphi 0+0, f s) \\
& =\frac{0, Y s}{\ln \varphi} \approx 0, \varphi \varphi
\end{aligned}
$$

$$
\Rightarrow \quad R(0, f \Delta) \approx 0, \psi \psi .
$$

شكل f.Y- تابع نرخ دگرشكلى مثال (f.V)

 دارد.

$$
\begin{aligned}
& \text { با به كار گيرى } x=e^{s} \text { در عبارت مربوط به D نتيجه مىشود } \\
& D=\frac{x+\mu x^{\eta}}{\varphi+x+\varphi x^{r}},
\end{aligned}
$$

ح.V

 (I.V) داده شده است مىباشد.

فرض اضافى بدون كاستى در كليت عبارت امــــت از ال مىشود كه ه

$$
Q=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] .
$$

انتخاب كنيم. در اين سالت تابع نرخ دگرشكلى R(o) برابر با $H(U)$ است.

$$
\begin{aligned}
R(0) & =\min _{Q \in Q_{D}} I(Q) \\
& =\min _{Q \in Q_{D}}\{H(U)-H(U \mid \hat{U})\} \\
& =H(U)=-p \log p-(1-p) \log (1-p),
\end{aligned}
$$

هون ايهام صفر است.
ماكسيمم دگرشكلى D=p است. اين بهترين انتخابى است كه مىتوان انجام داد اگر
 ماتريس Q احتمالهاى انتقال در اين حالت برابر است با

$$
\left[\begin{array}{cc}
0 & 1 \\
0 & 1
\end{array}\right]
$$

 دست آوريم.

از

$$
\begin{aligned}
& \sum_{j} \lambda(j) p(j) e^{s \rho(j, k)}=1, \\
& \text { و با فرض } \\
& \lambda(0) \cdot p+\lambda(1) \cdot(1-p) \cdot a=1,
\end{aligned}
$$

$$
\lambda(\circ) \cdot p \cdot a+\lambda(1) \cdot(1-p)=1
$$

بنابراين

$$
\begin{aligned}
& \lambda(0)=\frac{1}{p(1+a)} \\
& \lambda(1)=\frac{1}{(1-p)(1+a)}
\end{aligned}
$$

مهس (k) $q(k)$ الز $\lambda(j)$

$$
\lambda(j)=\frac{1}{\sum_{k} q(k) e^{s \rho(j, k)}}
$$

به دست مى آوريم

$$
\begin{aligned}
& q(\circ)+a q(1)=\frac{1}{\lambda(\circ)}=p(1+a) \\
& a q(0)+q(1)=\frac{1}{\lambda(1)}=(1-p)(1+a),
\end{aligned}
$$

از اين نتيجه مىشود

$$
\begin{aligned}
& q(0)=\frac{p-a(1-p)}{1-a} \\
& q(1)=\frac{1-p-a p}{1-a}
\end{aligned}
$$

اگر اين نتيجه را جانشين كنيم؛ براى دگرشكلى مباز به دست مى آوريم

$$
\begin{gathered}
D=\frac{a}{1+a} . \\
R(D)=s D \log e+\sum_{j} p(j) \log \lambda(j) \\
a=\frac{D}{1-D}, \\
s
\end{gathered}=\frac{\log a}{\log e},
$$

براي R(D) داريم

نظريه نرخ دكرشكلى

> اين عبارت را مىتوان به صورت زير تبديل كرد

$$
\begin{align*}
R(D) & =-p \log p-(1-p) \log (1-p)+D \log D+(1-D) \log (1-D) \\
& =H(U)-H(D) . \tag{YA.V}
\end{align*}
$$

بنابراين رابطهاى به دست آورديم كه از آن مىتوان مستقيماً اطلاع متقابل براى مقدار

 تنها با افزايش R(D) مىتوان متوسط دR

 ($R(D)$ منجر مىشود به دست مى آيد. بــراى احتمالهــاى انتقـال $d(Q)=D$

داريم

$$
q(k \mid j)=\lambda(j) q(k) e^{s \rho(j, k)},
$$

$$
Q=\left[\begin{array}{cc}
\frac{a(p-1)+p}{p\left(1-a^{\top}\right)} & \frac{-a(p-1)-a^{\top} p}{p\left(1-a^{\gamma}\right)} \tag{Y৭.V}\\
\frac{a p-a^{\top}(1-p)}{(1-p)\left(1-a^{\top}\right)} & \frac{(1-p)-a p}{(1-p)\left(1-a^{\gamma}\right)}
\end{array}\right] .
$$

كد گذارى منبع و قضاياى انتقال اطلاع F.V

 كامل به دست آورديم كه

 وازء́ منبع u و وازه مقصد (مثلاٌ كدوازه)

 قسمى انتخاب مى كنيم كه براى آن د گرشكلى
 منبع u داده شده عبارت است از

$$
\rho\left(u, \hat{u}_{B}\right)=\min _{\hat{u} \in B} \rho(u, \hat{u})
$$

اين دگرشكلى نيز به گروه B بستگي دارد، گروه ديگرى ممكن است مقدار ديگرى
 عبارت است از

$$
\rho_{B}=E\left[\rho\left(u, \hat{u}_{B}\right)\right]=\sum_{u} p(u) \min _{\hat{u} \in B} \rho(u, \hat{u}) .
$$

نرغ كلد R به صورت زير تعريف مىشود

$$
\begin{align*}
R & =\log N \text { نماد / وازه / بيت } .
\end{align*}
$$

در واقع اين ماكسيمم مقدار اطللع بر نماد نسبت به يك كد منبع با اندازة N و طــول بلوكى L است، وقتى احتمالهاى همة كد وازهها يكى با باشند.
 يكـ گروه كد وازهها، D-مجاز است اگر D
 نيز به متوسط د گرشكلى D مجاز بستگي دارد. اكنون بــه تضيـهأى كـه بـه عنــوان تفيـهـ كدكذل/رى منبع شناخته شده است، مىرسيم.

قضية V.V (قضية كد كذارى منبع)
براى هر
 به عبارت ديگر، نابرابرى

$$
\frac{1}{L} \log N(L, D+\varepsilon)<R(D)+\varepsilon
$$

(M.V)

كدكذارى منبع و تضاياى انتقال اطلاع F.V
براى L به تدر كافى بزر گ برترار است.
 تنها وارون قضئ كد گذارى منبع را ثاببت خحواهيم كرد كه اين قضية بيان مى كند هيح منبع D - مجازى با نرخ كمتر از $R(D)$ وجود ندارد. قضية Y.V (وارون قضية كد كذارى منبع) هيج كد D -مجاز نرغى كمتر از R(D) ندارد. يعنى، براى همة nها داريم

$$
\frac{1}{L} \log N(L, D) \geq R(D)
$$

برهان
اگر $B=\left(\hat{u}_{1}, \hat{u}_{4}, \ldots, \hat{u}_{N}\right)$ يك كد $I(\hat{U} ; U)$ متوســط اطلاع متقابل حاصل را نشان مىدهد وتّى هر u بــه u ر مىنيمم شده است، يعنى نر آيند تطعى است نتيجه مىشود كه

$$
I(\hat{U} ; U)=H(\hat{U}) \leq \log N
$$

همجنين حالتى است كه

$$
I(\hat{U} ; U)=H(U)-H\left(U_{1}, \ldots, U_{L} \mid \hat{U}_{1}, \ldots, \hat{U}_{L}\right)
$$

$$
\begin{align*}
H\left(U_{1}, \ldots, U_{L} \mid \hat{U}_{1}, \ldots, \hat{U}_{L}\right) & \leq \sum_{i=1}^{L} H\left(U_{i} \mid \hat{U}_{1}, \ldots, \hat{U}_{L}\right) \\
& \leq \sum_{i=1}^{L} H\left(U_{i} \mid \hat{U}_{i}\right) \tag{YV.V}
\end{align*}
$$

حون منبع بىحافظه است، در اين حالت داريم

$$
H\left(U_{1}, \ldots, U_{L}\right)=\sum_{i=1}^{L} H\left(U_{i}\right)
$$

و از اين رو با معادله (rه.V) به دست مى آوريم

$$
\frac{1}{L}\left\{\sum_{i=1}^{L} H\left(U_{i}\right)-H\left(U_{i} \mid \hat{U}_{i}\right)\right\} \leq \frac{1}{L} \log N
$$

اگر Di متوسط د گرشكلى باشد كه با Ti i امين نماد توليد شجذّد شده اســـت در ايـن

نظريهُ نرخ دكرثـكلى
YА.

$$
\begin{align*}
& R\left(D_{i}\right) \leq I\left(U_{i} ; \hat{U}_{i}\right)=H\left(U_{i}\right)-H\left(U_{i} \mid \hat{U}_{i}\right) . \\
& \\
& \frac{1}{L} \sum_{i=1}^{L} R\left(D_{i}\right) \leq \frac{1}{L} \log N . \tag{FI.V}
\end{align*}
$$

هجون B گروهى D -مجاز است
موجب مىشود

$$
\begin{equation*}
R(D) \leq R\left(\frac{1}{L} \sum_{i=1}^{L} D_{i}\right) \leq \frac{1}{L} \sum_{i=1}^{L} R\left(D_{i}\right) \tag{FY.V}
\end{equation*}
$$

با تر كيب فرمولهاى (FI.V) و (FY.V) تضيه ثابت مىشود.

 كه از قضية (Y.V) بيداست.
براساس اين تضيه، مىتوان گفت كه ممكن است كد براى متوسط دگرشكلى D -مجاز در نظر گرفت. يعنى ايــن نشـــنـانى از مىنيمــم تعــداد كدوازهها را مىدهدلـ

 آن

 ماكسيمم مقدار اطلاع منتقل شده برابر است با

$$
\begin{align*}
R^{*}(D) & =H(U)-H(U \mid \hat{U}) \\
& =\log \mathrm{r}^{L}-1=L-1 \text { يـام / بيت } \text { / } 1 \text { / بيت } \\
& =\frac{L-1}{L} .
\end{align*}
$$

برايى دگرشكلى داريم

$$
D=\frac{1}{L}\left(\frac{1}{r} \times 0+\frac{1}{r} \times 1\right)=\frac{1}{r L},
$$

و از اين رو

$$
\begin{equation*}
R^{*}(D)=1-r D . \tag{Ff,V}
\end{equation*}
$$

تابع نرخ دگرشكلى براى يکى منبع دودويى با نمادهاى هم/احتمال برابر است بـا (بـا
معادله (YA.V) مقايسه كنيد)

$$
R(D)=H(U)-H(D)=1-H(D)
$$

نتايج در شكل (£.V) نشان داده شدهاند. به سادگى ديده مى شود كه توليد مجدّد بدون
 در عمل معمولأ روشهاى ماهرانهترى به كار برده مى شود.

 برابر است با

$$
R=\frac{1}{L} \log N(L, D+\varepsilon)
$$

براساس همين تضيه مىدانيم كه ممكن است R با دتّت دلخوامى بـه

 ظرنيت $C>R(D)+\varepsilon$ باشد كشف كرد. اين مطلب به تضية زير منجر مىشود.

قضية Y. Y (قضيةُ ارسال اطلحع)
برای هر

خروجى هر كانال بیاحظظه گـسته با ظرفيت C دوباره توليد كرد، به شرط آن كه

$$
C>R(D)+\varepsilon .
$$

 مى باشد.
بنابراين يك كران بايينى براى متوسط د گرشكلي به دست آوردهايم كه به نام كران نرخ دُرشنكلى شناخته شده است.

 طرف دريافت كننده هر كانالى با ظرفيت C كانيت C غيرممكن است.

شكل ע.\&- بقايسا: يك روش كد گذارى منع با تابع نرخ دگرشكلى

 مىتواند موفق شود.
©.V

 منبع گسسته به دست آورد، در حالى كه اين كار بنابر تعريف براى منبع ييوسته غيرممكن

 تعداد بيتهاى ضرورى را پايین نگه دارد.
 تشابه روشنى با حالت گكسسته وجود دارد. يك منبع بى رافظة هيوسته با هگــالى احتمـال ورد $q(\hat{x})$ احتمال شرطي مىناميم.

 زير تعريف كنيم

$$
d(q)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} p(x) q(\hat{x} \mid x) \rho(x, \hat{x}) d x d \hat{x}
$$

براى متوسط اطللع متقابل نيز داريم

$$
I(q)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} p(x) q(\hat{x} \mid x) \log \frac{q(\hat{x} \mid x)}{q(\hat{x})} d x d \hat{x} .
$$

تابع نرخ دگرشكلى R(D) مىنيمم I(q) است كه براى آن د گرشكلى d(q) حدأ كـــر برابر دگرشكلى مجاز D است. براى ميستم جيوسته اين به تعريف زير منجر مى شود

$$
\begin{equation*}
R(D)=\inf _{q \in q_{D}} I(q) \tag{F9.V}
\end{equation*}
$$

 صدق مى كند. مداسبه تابع نرخ دگرشكلى، به طور مشابه با حالت گسسته انبـــام مىشــود. در ايـن صورت داريم

$$
q(\hat{x} \mid x)=\lambda(x) q(\hat{x}) e^{s p(x, \hat{x})}
$$

$$
\lambda(x)=\frac{1}{\int_{-\infty}^{\infty} q(\hat{x}) e^{s \rho(x, \hat{x})} d \hat{x}}
$$

كه از آن نتيجه مىشود

$$
\int_{-\infty}^{\infty} \lambda(x) p(x) e^{s p(x, \hat{x})} d x=1
$$

سرانجام نتايج زير را داريم

$$
D=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \lambda(x) p(x) q(\hat{x}) e^{s \rho(x, \hat{x})} \rho(x, \hat{x}) d x d \hat{x}
$$

$$
R(D)=s D \log e+\int_{-\infty}^{\infty} p(x) \log \lambda(x) d x
$$

بنابراين رابطة بين R(D) و D به دست آمهه در اين جا بـه صـورت هـارامتر اســت. هارامتر s با مشتق R(D) و بنابراين با شيبب منحنى $R(D)$ متناسب است تعدادى از وير گيهاى به دست آمده برای منبع گـسسته معتبر بــاقى مىمــانـند. ممكــن است بيان كنيم كه

$$
\begin{gather*}
D_{\min }=0 \\
D_{\max }=\inf _{\hat{x}} \hat{x} \int_{-\infty}^{\infty} p(x) \rho(x, \hat{x}) d x
\end{gather*}
$$

به علاوه، $R(D)$ براى

 البته اين يكـ عدم امكان فيز يكى است.
 در منبع و بازسازى شده در مقصد مىباشد. اغلب يكـ اندازء د گرشكا معيار مربع خطاست، كه هنين نشان داده مى شود

Y AQ

$$
\rho(x, \hat{x})=(x-\hat{x})^{\eta} .
$$

 خطا نيز به عنوان اندازه دگرشكلى به كار برده مىشود، يعنى

$$
\rho(x, \hat{x})=|x-\hat{x}| .
$$

 - با به صورت زير داده مىشود

$$
\left.\begin{array}{rlrl}
R(D) & =\frac{1}{r} \log \frac{\sigma^{r}}{D} / ن^{*} / & & 0 \leq D \leq \sigma^{r}, \tag{09.v}\\
& =0 & & D>\sigma^{r} .
\end{array}\right\}
$$

كه در آن
ماكسيمـم دگرشكلى مجاز
 انتخاب مقدار متوسط (در اين جا برابر صفر) است زيرا اين بزر گترين هـگـالى احتمــال را
 است با اين صورت از اين نتيجه مىشود كه برابر با علاوه بر اين ديده مىشود كه R(D) اگر D كوهحكتر و كوحكتر شود به بىنهـــايت

 اگر منبع اطلاع مقيّد به هِناى باند W باشد، ممكن است منبع را با با WW نمونه مسـستقل در ثانيه تعيين كرد. از اين رو داريم

$$
\left.\begin{array}{rlrl}
R(D) & =W \log \frac{\sigma^{\dagger}}{D} / \psi^{*} / & & 0 \leq D \leq \sigma^{\dagger} \\
& =\circ & & D>\sigma^{\dagger} .
\end{array}\right\}
$$

گذشته مفهوم كران دگرشكلى را معرفى كرديم، متوسط دگرشـــكلى اسـت كـــ

نظرية نرخ دگرشكلى
برای آن R(D)=C. كوجكترين متوسط دگرشكلى است كه امكانْذير مىباشد.
 اطلاع گاوسى با يهناى باند توسط نوفه گاوسي سفيد جمعى با توان براى منبع داريم

$$
R(D)=W_{x} \log \frac{\sigma_{x}^{*}}{D} / ث^{\prime} / \quad, \quad 0 \leq D \leq \sigma_{x}^{\prime}
$$

ظرفيت كانال به صورت زير است $C=W_{c} \log \left(1+\frac{P_{x}}{P_{n}}\right)$,
كه در آن دادن (C (C به دست مى آيد. اين نتيجه مىدهد

$$
\begin{equation*}
D=\sigma_{x}^{r}\left\{1+\frac{P_{x}}{\forall W_{c} \sigma_{x}^{r}}\right\}^{-\frac{W_{c}}{W_{x}^{\prime}}} \quad, \quad 0 \leq D \leq \sigma_{x}^{\gamma} \tag{sr.v}
\end{equation*}
$$

شُكل Y.Y- تابع نزخ د گرشكلى براى حالت گاوسى

در نتيجه اين كوهچكترين دگرشكلى ممكن است كه مىتوان به دست آورد. اگگــر حــالت
 مىشود كه

$$
D^{\prime}=\frac{\sigma_{x}^{\psi}}{1+\frac{\sigma_{x}^{\psi}}{\sigma_{n}^{\psi}}}
$$

اگر " $\sigma_{x}^{\gamma} \gg \sigma_{n}^{\gamma}$ " آن گاه دقَت بيشترى از نونةّ مجاز در كانال هـ ببرد زيرا است. اگر منبع مستقيماً به كانال مرتبط شود، متوسط د گرشكلى برابر با ايــن كوجـكــرين توان هحسوس براى به دست آوردن تابع نرخ دگرشكلى همواره فرض مى كنيم كــهـ
 مىشود به قسمى كه بدون يكـ منبع مىتوان به عنوان امرى واقعى همان نتيجه را در طرف گيرنده انتظار داشت. برأى مى ماند. براى اين كه قادر باشيـ يكـ متوسط دگرشكلى
 پهناى باند منبع اطل>ع است، از اين رو باند معينى را دنبال كرد. براى

 مىتوان دريافت كه چگُونه مىتوان يكـ سيستم ارتباطى را الصلاح كرد.
S.V
 نمادهاى منبع بـا احتمالهـاى

كانال - Z همانند شكل (A.V) داده شده است.
识 $\left.q\left(v_{j} \mid u_{i}\right)\right\}$
صورت زير داده شده است

$$
q\left(v_{0} \mid u_{0}\right)=1 \quad, \quad q\left(v_{1} \mid u_{1}\right)=1-q .
$$

د گرشكلى بين نمادهاى منبع و توليد مجذد

$$
\begin{aligned}
& \rho\left(u_{0}, v_{0}\right)=\rho\left(u_{1}, v_{1}\right)=\mathrm{o}, \\
& \rho\left(u_{1}, v_{0}\right)=\rho\left(u_{0}, v_{1}\right)=1 .
\end{aligned}
$$

شتكل A.Y- كانال - Z تمرين (I.V)
(الف) متوسط دگرشكلى
 هـ مقدار q اين مقدار به دست مى آيد؟ متوسط دگرشكلى (Q) d در اين حالت جـهـ تدر است؟
(ب) (بَ متوسط دگرشكلى $d(Q)$ در اين حالت جه تدر است؟ (ت) (D) را به عنوان تابعى از D رسم كنيد.

كانالى را با الفباى ورودى (()، الفباى خروج种 $q\left(y_{j} \mid x_{i}\right)$

نماد داريم

$$
\begin{aligned}
& \rho\left(x_{1}, y_{r}\right)=0 \quad \rho\left(x_{1}, y_{r}\right)=\alpha \quad, \quad \rho\left(x_{r}, y_{r}\right)=\Delta-\alpha \quad, \quad \rho\left(x_{r}, y_{r}\right)=0, \\
& \text {. } 0 \leq \alpha \leq \Delta \\
& \text { در (الف) و (ب) فرض شده است كه } q\left(y_{1} \mid x_{r}\right)=\frac{r}{10}, q\left(y_{1} \mid x_{1}\right)=\frac{r}{\Delta}
\end{aligned}
$$

(الف) مقدار اطلاع در خروجي كانال را محاسبه كنيد.
(ب) متوسط دگرشكلي را به عنوان تــابعى از α محاسـبـه كنيــد. كو جكــترين متوســط د گرشكلي قابل حصول جه قدر است؟
اكنون تابع نرخ دگرشكلي r(D) سيستم داده شده را در نظر بگيريد. (پ) (٪) را محاسبه كنيد و ماتريس كانال متناظر را به دست آوريد.

$$
\begin{aligned}
& p\left(u_{0}, v_{0}\right)=p\left(v_{0} \mid u_{0}\right) p\left(u_{0}\right)=p \\
& p\left(u_{0}, v_{1}\right)=p\left(v_{1} \mid u_{0}\right) p\left(u_{0}\right)=0 \\
& p\left(u_{1}, v_{0}\right)=p\left(v_{0} \mid u_{1}\right) p\left(u_{1}\right)=q(1-p) \\
& p\left(u_{1}, v_{1}\right)=p\left(v_{1} \mid u_{1}\right) p\left(u_{1}\right)=(1-q)(1-p)
\end{aligned}
$$

بنابراين متوسط د گرشكلى مىشود

$$
\begin{aligned}
d(Q) & =\sum_{i=\circ}^{1} \sum_{j=0}^{1} p\left(u_{i}, v_{j}\right) \rho\left(u_{i}, v_{j}\right) \\
& =q(1-p)
\end{aligned}
$$

(ب) برای تابع نرخ دگرشكلى در اين حالت داريم

$$
\begin{aligned}
& R(D)=\min _{Q \in Q_{D}} l(Q) \text { نماد / بيت, } \\
& \text { كه در آن } I(Q \text { اطل>ع متقابل است و } \\
& Q_{D}=\{Q \mid d(Q) \leq D\}
\end{aligned}
$$

تابع نرخ دگرشكلى به طور ماكسيمم برابر است با

$$
\max R(D)=H(U)
$$

اين ماكسيمم رخ مىدهد، اگر يکى رابطة يکى به يک بين نمادهـاى منبــ و توليد مجدّد وجود داشته باشد. با توجّه به احتمالهاى انتقال نتيجه مىشود

$$
q\left(v_{0} \mid u_{0}\right)=q\left(v_{1} \mid u_{1}\right)=1
$$

و از اين رو
(ب) مقدار مينيمال اطللع متقابل I(Q) برابر صفر است و از اين رو مقدار مينيمال تــــابع

 (ت) شكل (I.V) را ببينيد.

شككل Q.V-تابع نرخ دگرشكلى تمرين (I.V)

تو جّه: دگرشكلِهاى دو به دو در داخل پرانتزها داده شدهاند.
(الف) براى احتمالهاى حاشيهاى $q\left(y_{v}\right)$ و به دست مى آوريم

$$
q\left(y_{1}\right)=\sum_{i=1}^{r} p\left(x_{i}\right) q\left(y_{j} \mid x_{i}\right)=\frac{1}{F} \times \frac{r}{\Delta}+\frac{r}{f} \times \frac{r}{10}=\frac{r}{\wedge},
$$

$$
q\left(y_{\mathrm{r}}\right)=1-\frac{\mathrm{r}}{\Lambda}=\frac{\theta}{\Lambda} .
$$

اكنون مقدار اطلخع H(Y) برابر مىشود با

$$
H(Y)=-\frac{r}{\Lambda} \log \frac{r}{\Lambda}-\frac{\theta}{\Lambda} \log \frac{\Delta}{\Lambda}=0,9 \Delta f \quad \text { بيت. }
$$

(ب) متوسط دگرشكلى را به سادگى مىتوان به دست آورد

$$
\begin{aligned}
d(Q) & =\sum_{i=1}^{Y} p\left(x_{i}\right) p\left(y_{j} \mid x_{i}\right) \rho\left(x_{i}, y_{j}\right) \\
& =\frac{1}{F} \times \frac{Y}{\Delta} \times \alpha+\frac{F}{F} \times \frac{r}{10}(\Delta-\alpha)=-\frac{1}{A} \alpha+\frac{1}{A} .
\end{aligned}
$$

متوسط دگرشكلى براى $\alpha=\Delta$ داراى يكى مىنيمم امست:

$$
\min _{a} d(Q)=\frac{1}{r}
$$

 است،

$$
H(X)=-\frac{1}{f} \log \frac{1}{f}-\frac{r}{f} \log \frac{r}{f}=0, \lambda 11 .
$$

ماتريس متناظر كانال برابر است با

$$
Q=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

نظريג نرخ دكرشكلى
به اين معنى كه يكـ تناظر يكـ به يكـ بين نمادهــاى ورودى و خروجـى وجــود
(ت) براساس نظريه داريم

$$
\begin{aligned}
& D_{\max }=\min _{j} \sum_{i=1}^{r} p\left(x_{i}\right) \rho\left(x_{i}, y_{j}\right) . \\
& \\
& D_{\max }=\min \left(\frac{1}{\dagger} \alpha, \frac{r}{\dagger}(\Delta-\alpha)\right)
\end{aligned}
$$

و بنابراين

$$
\begin{aligned}
D_{\max } & =\frac{1}{f} \alpha & , \quad 0 \leq \alpha \leq \frac{1 \Delta}{f}, \\
& =\frac{\gamma}{\gamma}(\Delta-\alpha) & , \quad \frac{10}{\gamma} \leq \alpha \leq \Delta .
\end{aligned}
$$

به ازاى مى آورد.

نظريهُ اطلاع شبكهاى
1.1 مقّدمه

ناكارامی از كانال مىشود. روش بهترى را با جند عضوى كردن مىتوان يافت كـــه در آن اطلاعات چندين منبع به يك گروه دادههاى تكى ری به هم بيوستهاند.

 ارتباطيكانال دو-طرفه است. اين كانال دو ثايانه است كه مى تواند به طور همزمان نقــش فرستنده و گيرنده را بازى كند. اين بدين معناست كه گروه اطلاع در يك جـه گروه اطلاع در جهت ديگر خواهد بود.
مسألئ محاسبهُ ظرفيت شبكهها به طور سربسته هنوز يكـ مسألة حل نشده است. ايـــن

 هنوز به دست نيامده است.

هند-مدخلى كانال يخش و كانال دو -طرنه را بررسى خواهيم كرد.

كانال ارتباطى چحند-مدخلى Y A

 دادن هر كانال فرعى به يكى از فرستندهها مىباشد. تقسيم كانــال بـه كانالهــاى فرعـى را را
 انجام داد.
 تعريفى از باند فر كانس مو جود براى فرستادن اطلاع به گیيرنده اختصاص

 در اين صورت

$$
\begin{equation*}
C=W \log \left\{\imath+\frac{P_{x}}{P_{n}}\right\} \tag{1.1}
\end{equation*}
$$

اگر W كل" باند فر كانس به k بخش برابر تقسيم شود، در اين صورت هــر نرســتنده "مى تواند يكـ يهناى باند

$$
C^{\prime}=\frac{W}{k} \log \left\{1+\frac{k P_{x}}{P_{n}}\right\}
$$

 دقيقاً براى توان kPx و بنابراين كانالى با ظرفيت C همانند آنهه كه در عبارت (Y.^) داده شده اســــت مى ميند.
همهنين ممكن است ظرفيت كانال را به هر يكـ از k كاربر بر طبت نرخ اطالاعـــــات

 كند. به عبارت ديگر

$$
\mathrm{R}_{i} \leq W \log \left\{1+\frac{P_{x_{i}}}{P_{n}}\right\}
$$

اگر k كاربر باشند، در اين صورت نرغ مجموع هرگز نمىتواند بزرگـتر از مجمـوع اطلع گروهها با توان كلّ

باشد. بنابراين نتيجه مىشود كه

$$
\sum_{i=1}^{k} R_{i} \leq W \log \left\{1+\left(\sum_{i=1}^{k} P_{x_{i}} / P_{n}\right)\right\}
$$

اگر كاربران همكارى نكنند، در اين صورت از نقطه نظر فرستنده تكى فرسـتندهها
 گاوسى در نظر گرفت، كل" توان نوفه برابر خواهد شد شد با

$$
P_{n}+\sum_{j=1, j \neq i}^{k} P_{x_{j}}
$$

ظرفيت كانال برابر است با:

$$
C_{i}=W \log \left\{1+\left[P_{x_{i}} /\left(P_{n}+\sum_{j=1, j \neq i}^{k} P_{x_{j}}\right)\right]\right\}
$$

اين عبارت برابر نرخ قابل دسترسى براى اين حالت است.
 دست مى آوريم

$$
C=W \log \left\{1+\frac{P_{x}}{P_{n}+(k-1) P_{x}}\right\}
$$

هون داريم

$$
\log (a+1) \leq a \log e, \ln (a+1) \leq a \text { بنابراين } \ln a \leq a-1
$$

نرخ هر كاربر محدود مىشود به

$$
\mathrm{R} \leq C=W \log \left\{1+\frac{P_{x}}{P_{n}+(k-1) P_{x}}\right\} \leq W \frac{P_{x}}{P_{n}+(k-1) P_{x}} \log e .
$$

كاربرها افزايش يابد، نرخ هر كاربر كاهش مى يابيد.

$$
\mathrm{R} \leq \frac{W}{k} \log e
$$

بنابراين نرخ هر يكى از k كاربر بايد در اين عبارت صدق كند. در بحث قبل حالت گاوسى را در نظر گرفتيه. اكنون با يكى حالت كـلى فرض منبع گاوسى منظور نشده است اقدام مى كنيم و مى كوشيم عبارتى براى ظرفيت كانى هند-مدخلى يا به طور دقيقتر، نواحى ظرفيت را را بيابيـ.
 مى كنيم. اين تضيه، نقش مهمى را در به دست آوردن شرايط لازم بـــراى انتفــال اطــلاع از از

قضية 1. 1 .
مراحل پردازش متوالى را كه در آن ورودى هر مرحلة هردازش برابر خروجى مر محلة

$$
\begin{equation*}
I(U ; V) \leq I(X ; Y) \tag{9.^}
\end{equation*}
$$

برهان
فرض كنيد
 گرفت. فرض كنيد هيشامد توأم را نشان مىدهد، كه با أحتمالهاى توأم اطلاع متقابل بين Y و ${ }^{\text {و }}$ (X,U) برابر خواهد شد با

$$
\begin{gather*}
I(Y ;(X, U))=\sum_{i, j, l} p\left(u_{l}, x_{i}, y_{j}\right) \log \left\{\frac{p\left(y_{j} \mid x_{i}, u_{l}\right)}{p\left(y_{j}\right)}\right\} \\
=\sum_{i, j, l} p\left(u_{i}, x_{i}, y_{j}\right) \log \left\{\frac{p\left(y_{j} \mid x_{i}, u_{l}\right)}{p\left(y_{j} \mid x_{i}\right)}\right\}+\sum_{i, j, l} p\left(u_{l}, x_{i}, y_{j}\right) \log \left\{\frac{p\left(y_{j} \mid x_{i}\right)}{p\left(y_{j}\right)}\right\} .
\end{gather*}
$$

شكل ب.^. مراحل بردازش متوالى
به شرط X، تفسير كرد. در واقع جملة دوم اطلاع متقابل بين X X و X مىاشد.

$$
I(Y ;(X, U))=I(U ; Y \mid X)+I(X ; Y)
$$

با تعويض X X و، همجنين نتيجه مىشود كه

$$
\begin{align*}
I(Y ;(X, U)) & =I(U ; Y \mid X)+I(X ; Y) \\
& =I(X ; Y \mid U)+I(U ; Y) . \tag{11.1}
\end{align*}
$$

چون خروجى Y تنها به X وابسته است و به U بستگى ندارد، در اين صورت داريم

$$
\forall i, j, l \quad, \quad p\left(y_{j} \mid x_{i}, u_{j}\right)=p\left(y_{j} \mid x_{i}\right)
$$

با جايگزين كردن اين عبارت در $I(U ; Y \mid X)$ نتيجه مىشود

$$
\begin{equation*}
I(U ; Y \mid X)=0 . \tag{lr.A}
\end{equation*}
$$

بنابراين:

$$
\begin{equation*}
I(Y ;(X, U))=I(X ; Y)=I(X ; Y \mid U)+I(U ; Y) \tag{Ir.^}
\end{equation*}
$$

$$
I(X ; Y) \geq I(U ; Y)
$$

به همين طريق مىتوان نشان داد كه

$$
\begin{equation*}
I(U ; Y) \geq I(U ; V) \tag{10.1}
\end{equation*}
$$

سرانجام، با تر كيب كردن اين دو نابرابرى نتيجه مىشود

$$
\begin{equation*}
I(X ; Y) \geq I(U ; Y) \geq I(U ; V) \tag{19.1}
\end{equation*}
$$

كه با آن درستى قضيه نشان داده مىشود .

 مستقلتر شوند.
اكنون وضعيت شكل (r.^) را در نظر بگيريد.

ورودى رمز گذار ا يكى سرى از بلو كهاى الفبا عى با اندازه J مىباشد. خروجى رمز گشا همين روش براى رمز گذار r ورودى و خرو جرو و, X X X V^{N} سرى از كدوازههاى ${ }^{\prime}$

 اگر (براى تمام مقادير [
 دسترسى خحواهد داشت و كاربر r ممكن است بــرا دسترسى بيدا كند، روشن ميشود. يعنى، نقاط زير خحطى كه نتــاط (
 دلخواهى ميتوان به دسـت آورد.
تغيهّ زير ما را قادر مىسازد كه به طور روشن كرانهاى ناحيهُ ظرفيت را تعريف كنيه.

 در اين حالت براى هر توزيع توأم داريم

$$
\begin{equation*}
\mathrm{R}_{1}>I\left(X ; Y \mid X^{\prime}\right) \tag{IV.^}
\end{equation*}
$$

$$
\mathrm{R}_{\mathrm{Y}}>I\left(X^{\prime} ; Y \mid X\right)
$$

$$
\begin{equation*}
\mathrm{R}_{1}+\mathrm{R}_{\varphi}>I\left(\left(X ; X^{\prime}\right) ; Y\right) \tag{19.1}
\end{equation*}
$$

 برهان
اثبات براساس نابرابرى فانو مىباشد.
اطلاعات را در سطع نماد در نظر مى گيريم، رابطة بين اطلاع شرطى نسبت به lاميـــنـ نماد خروجى خطا از طرف ديگر به صورت زير داده مىشود:

$$
P_{e_{1}} \log (J-1)+H\left(P_{e_{1}}\right) \geq H\left(v_{l} \mid u_{l}\right)
$$

كه در آن زيرنويس رمز گذار 1 را نشان مىدهد. اين موضــوع مسـتقيماً از نـابرابرى فــانو
 به ساد گى كران يكسانى براى $H(Y \mid X)$ به دست مى آ يلد، نتيجه مى
 اندازههاى اطلاع و احتمال خطا توابعى مقعر هستند نتيجه مى

$$
P_{e_{1}} \log (J-1)+H\left(P_{e_{1}}\right) \geq \frac{1}{N} \sum_{l=1}^{N} H\left(v_{l} \mid u_{l}\right) .
$$

به همين روش، نسبت به رمز گذار r، به دست مى آوريم

$$
\begin{equation*}
P_{e_{\mathrm{r}}} \log \left(J^{\prime}-1\right)+H\left(P_{e_{\mathrm{r}}}\right) \geq \frac{1}{N^{\prime}} \sum_{l=1}^{N^{\prime}} H\left(v_{l}^{\prime} \mid u_{l}^{\prime}\right) \tag{YY.A}
\end{equation*}
$$

وأضح است براى بلو كهاى

$$
H\left(V^{N} \mid U^{N}\right) \leq \sum_{l=1}^{N} H\left(v_{l} \mid u_{l}\right)
$$

گرچه از طرف ديگر با بهرهورى از تعريف احتمال متقابل مىتوان نوشت

$$
H\left(V^{N} \mid U^{N}\right)=H\left(V^{N}\right)-I\left(U^{N} ; V^{N}\right)
$$

با به كار گيرى قضية (1. (1)، اكنون به دست مى آوريم

$$
\begin{align*}
H\left(V^{N} \mid U^{N}\right) & =H\left(V^{N}\right)-I\left(U^{N} ; V^{N}\right) \\
& \geq H\left(X^{n}\right)-I\left(X^{n} ; Y^{n}\right) \\
& \geq H\left(X^{n}\right)-I\left(X^{n} ;\left(Y^{n} \mid X^{\prime n}\right)\right)
\end{align*}
$$

در نابرابرى اخير، عبارت ($I\left(X^{n} ;\left(Y^{n} \mid X^{\prime \prime}\right)\right.$ اطلاع متقابل بين خروجى رمز گذار ا و
 نابرابرى براساس اين حقيقت است كه

$$
I\left(X^{n} ; Y^{n}\right) \leq I\left(X^{n} ;\left(Y^{n} \mid X^{\prime n}\right)\right)
$$

اين را مىتوان به حورت زير شرح داد
فرض كنيد
اين صورت نتيجه خحواهد شد

$$
\begin{aligned}
& I\left(X^{n} ; Y^{n} \mid X^{\prime n}\right)=\sum_{x^{\prime \prime}, x^{\prime \prime \prime}, y^{\prime \prime}} p\left(x^{n}, x^{\prime n}, y^{n}\right) \log \left\{\frac{p\left(y^{n} \mid x^{\prime n}, x^{n}\right)}{p\left(y^{n} \mid x^{\prime n}\right)}\right\} \\
& =\sum_{x^{\prime \prime}, x^{\prime \prime}, y^{\prime \prime}} p\left(x^{n}, x^{\prime n}, y^{n}\right) \log \left\{\frac{p\left(y^{n} \mid x^{n}\right)}{p\left(y^{n}\right)}\right\} \\
& +\sum_{x^{n}, x^{\prime \prime}, y^{\prime \prime}} p\left(x^{n}, x^{\prime n}, y^{n}\right) \log \left\{\frac{p\left(y^{n}\right) p\left(y^{n} \mid x^{\prime n}, x^{n}\right)}{p\left(y^{n} \mid x^{n}\right) p\left(y^{n} \mid x^{\prime n}\right)}\right\} \\
& =I\left(X^{n} ; Y^{n}\right)+\sum_{x^{\prime \prime}, x^{\prime \prime \prime}, y^{\prime \prime}} p\left(x^{n}, x^{\prime n}, y^{n}\right) \log \left\{\frac{p\left(y_{n}\right) p\left(x^{n} \mid x^{\prime n}, y^{n}\right) p\left(x^{\prime n}, y^{n}\right)}{p\left(x^{\prime n}, x^{n}\right)}\right. \\
& \left.\frac{p\left(y^{n} \mid x^{n}\right) p\left(x^{\prime \prime}, y^{n}\right)}{p\left(x^{\prime n}\right)}\right\}
\end{aligned}
$$

نظريه اطلاع شُبكهاى

$$
\begin{aligned}
& =I\left(X^{n} ; Y^{n}\right)+\sum_{x^{n}, x^{\prime \prime}, y^{\prime \prime}} p\left(x^{n}, x^{\prime n}, y^{n}\right) \log \left\{\frac{\frac{p\left(y^{n}\right) p\left(x^{n} \mid x^{\prime n}, y^{n}\right)}{p\left(x^{\prime \prime}, x^{n}\right)}}{\frac{p\left(y^{n}, x^{n}\right)}{p\left(x^{\prime n}\right) p\left(x^{n}\right)}}\right\} \\
& =I\left(X^{n} ; Y^{n}\right)+\sum_{x^{n}, x^{\prime \prime \prime}, y^{\prime \prime}} p\left(x^{n}, x^{\prime n}, y^{n}\right) \log \left\{\frac{p\left(x^{n} \mid x^{\prime n}, y^{n}\right)}{p\left(x^{n} \mid y^{n}\right)}\right\} \\
& =I\left(X^{n} ; Y^{n}\right)+I\left(X^{\prime n} ; X^{n} \mid Y^{n}\right) .
\end{aligned}
$$

بنابراين

$$
I\left(X^{n} ; Y^{n} \mid X^{\prime n}\right) \geq I\left(X^{\prime n} ; Y^{n}\right)
$$

 R $R_{1}=\frac{H\left(X^{n}\right)}{n}$

$$
\begin{align*}
H\left(V^{N} \mid U^{N}\right) & \geq H\left(X^{n}\right)-I\left(X^{n} ; Y^{n} \mid x^{\prime n}\right) \\
& =\sum_{i=1}^{N} H\left(V_{l}, U_{l}\right) \geq n \mathrm{R}_{1}-I\left(X^{n} ; Y^{n} \mid X^{\prime n}\right) \\
& \geq n \mathrm{R}_{1}-\sum_{l=1}^{n} I\left(X_{l} ; Y_{l} \mid X_{l}^{\prime}\right) \\
& =\sum_{l=1}^{n}\left[\mathrm{R}_{1}-I\left(X_{l} ; Y_{l} \mid X_{l}^{\prime}\right)\right] . \tag{ү८.^}
\end{align*}
$$

با تكرار اين مراحل براى رمز گذار r به نابرابرى زير خواهيم رسيد

$$
\begin{equation*}
\sum_{l=1}^{N} H\left(V_{l}^{\prime}, U_{l}^{\prime}\right) \geq \sum_{l=1}^{n}\left[R_{\mathrm{r}}-I\left(X_{i}^{\prime} ; Y_{l} \mid X_{l}\right)\right] . \tag{YV.^}
\end{equation*}
$$

مجهوع اين دو عبارت به صورت زير امت

$$
\sum_{i=1}^{N} H\left(V_{l}, U_{l}\right)+\sum_{i=1}^{N} H\left(V_{l}^{\prime}, U_{l}^{\prime}\right) \geq \sum_{l=1}^{n}\left[\mathrm{R}_{\mathrm{l}}+\mathrm{R}_{\mathrm{r}}-I\left(\left(X_{l}, X_{l}^{\prime}\right) ; Y_{l}\right)\right] .
$$

(YА.^)

بنابراين، با كمكى نابرابرى فانو، اكنون سه نابرابرى زير را داريم

$$
\begin{gather*}
N\left\{P_{e_{\mathrm{l}}} \log (J-1)+H\left(P_{e_{\mathrm{l}}}\right)\right\} \geq \sum_{l=1}^{n}\left[\mathrm{R}_{\mathrm{l}}-I\left(X_{l} ; Y_{l} \mid X_{l}^{\prime}\right)\right], \tag{Ү৭.^}\\
N^{\prime}\left\{P_{e_{\mathrm{r}}} \log \left(J^{\prime}-1\right)+H\left(P_{e_{\mathrm{r}}}\right)\right\} \geq \sum_{l=1}^{n}\left[\mathrm{R}_{\mathrm{r}}-I\left(X_{l} ; Y_{l} \mid X_{l}\right)\right], \\
N\left\{P_{e_{\mathrm{l}}} \log (J-1)+H\left(P_{e_{\mathrm{l}}}\right)\right\}+N^{\prime}\left\{P_{e_{\mathrm{r}}} \log \left(J^{\prime}-1\right)+H\left(P_{e_{\mathrm{r}}}\right)\right\} \\
\geq \sum_{l=1}^{n}\left[\mathrm{R}_{\mathrm{l}}+\mathrm{R}_{\mathrm{r}}-I\left(\left(X_{l}, X_{l}^{\prime}\right) ; Y_{l}\right)\right] .
\end{gather*}
$$

اگر يكى از عبارتهاى سمت راست علامت بزر گتر يا برابر برای هر مقدار I مثبـــت

 قضية وارون را مىتوان بدون مشكل خحيلى زيادي نهميد و بنابراين اثبات كالمل آن را حذف مى كنيـم.

قضية ^.

 و

$$
\begin{gather*}
\mathrm{R}_{1} \leq I\left(X ; Y \mid X^{\prime}\right) \\
\mathrm{R}_{\mathrm{Y}} \leq I\left(X^{\prime} ; Y \mid X\right) \\
\mathrm{R}_{\uparrow}+\mathrm{R}_{\mathrm{Y}} \leq I\left(\left(X, X^{\prime}\right) ; Y\right)
\end{gather*}
$$

با در نظر گرفتن تضاياى (Y.^) و (Y.^) مى توان نتيجه گرفت كـــه ناحيـــ ظرفيــت

 ورودى ($\left.X, X^{\prime}\right)$ مى يوشاند. براى توزيع الحتمال ساصل (X (

شكل F.A- ناحيئ ظرفيت قابل دسترسى يک كانال جند-مدخلى
نقطة a متناظر با وضعيتى است كه فرستنده ا هيجَ اطلاعى را به گيرنده نمىفرسـتد و فرستنده Y اطلاع را با ماكسيهم نرخ هيفرستد. اين ايجابب مي كند كه:

$$
\max _{\mathrm{r}}=\max _{X, X^{\prime}} I\left(X^{\prime} ; Y \mid X\right)
$$

براى هر توزيع حاصلضرب در محدوده (

$$
\begin{aligned}
I\left(X^{\prime} ; Y \mid X\right) & =\sum_{x} p(x) I\left(X^{\prime} ; Y \mid X=x\right) \\
& \leq \max _{x} I\left(X^{\prime} ; Y \mid X=x\right)
\end{aligned}
$$

اين ماكسيمـم را با جستوجوى توزيع 'Xاى كه براى آن اطــلاع متقــابل ماكســيمـم خودش را اخختيار مى كند مىتوان به دست آورد. بنابراين:

$$
\max \mathrm{R}_{Y} \leq \max _{X^{\prime}} \max _{x} I\left(X^{\prime} ; Y \mid X=x\right)
$$

نقطة b متناظر با نرخ ماكسيهم است كه در آن فرستندة ا مىتواند اطللع خــــودش را
 فرستندة ا را مىتوان به عنوان اطلاعى كه نوفه توسط فرستنده در نظر گرفت. بحث قبلى ما نشان ميدهد كه در اين حالت فرستندة ا نرخ ماكسيمـيمي كه

مى
 تعويض شوند. همانطور كه قبلاُ اشاره شد توصيف حالت گاوسى از قضايايى كه براى حالت كلُّى
 كه بم گيرندهها مى

نشان مىدهد. در نتيجه جملة (I $I\left(X ;\left(Y \mid X^{\prime}\right)\right.$ تضية (r.^) را مىتوان به صورت زير نوشت:

$$
\begin{align*}
I\left(X ; Y \mid X^{\prime}\right) & =H\left(Y \mid X^{\prime}\right)-H\left(Y \mid X, X^{\prime}\right) \\
& =H\left(X+X^{\prime}+\mathrm{N} \mid X^{\prime}\right)-H\left(X+X^{\prime}+\mathrm{N} \mid X, X^{\prime}\right) \\
& =H\left(X+\mathrm{N} \mid X^{\prime}\right)-H\left(\mathrm{~N} \mid X, X^{\prime}\right) \tag{ז.^.^}
\end{align*}
$$

حون نوفه كنًا از X و X مستقل است، بايستى نتيجه شود كه:

$$
H\left(\mathrm{~N} \mid X, X^{\prime}\right)=H(\mathrm{~N})
$$

به علاوه، استقلال متقابل X و X' ايجاب مى كند كه:

$$
\begin{equation*}
H\left(X+\mathrm{N} \mid X^{\prime}\right)=H(X+\mathrm{N}) \tag{r^.N}
\end{equation*}
$$

اين نتيجه مىدهد

$$
\begin{align*}
I\left(X ; Y \mid X^{\prime}\right) & =H(X+\mathrm{N})-H(\mathrm{~N}) \\
& =H(X+\mathrm{N})-\log \sqrt{r \pi e P_{n}} \\
& \leq \log \sqrt{r \pi e\left(P+P_{n}\right)}-\log \sqrt{r \pi e P_{n}},
\end{align*}
$$

كه در آن P توان قيد بر فرستندة ا است.
آخرين مطلب اين امر را منعكس مى كند كه اندازة اطلاع توزيع گاوسى همواره برابر ماكسيمّ مقدار ممكن است. با بازنويسى جملة سمت راست به إتصصار

$$
I\left(X ; Y \mid X^{\prime}\right) \leq \frac{1}{r} \log \left(1+\frac{P}{P_{n}}\right)
$$

و نهايتاً به

$$
\mathrm{R}_{1} \leq \frac{1}{r} \log \left(1+\frac{P}{P_{n}}\right) .
$$

منجر مىشود.
با همين روش عباراتى براى قيود باتىماندة تضية (^.^) مىتوان به دست آورد:

$$
R_{\mathrm{r}} \leq \frac{1}{r} \log \left(1+\frac{P^{\prime}}{P_{n}}\right)
$$

نظرية اطهع شبكهاى

$$
R_{1}+R_{r} \leq \frac{1}{r} \log \left(1+\frac{P+P^{\prime}}{P_{n}}\right)
$$

محاسبات بالا مـمگى برحسب بيت بر ارسال بيان مىشوند. با وجود اين، ســــِينالهاى

 شده باثـند برابرى برةرار مىباشد. اين سه عبارت تعريف ناسيهُ ظرفيت شكرا
 صورت نرخ ماكسيمّ فرمتتدة C برابر C بر مرابعه كنيد. برعكس برای نتطة d شكل. نرخها لى مربوط به b و c را مىتوان به مـــورت زير يافت. نخسست، گيرندهُ بِام ارسـالى توسط فرستندة r
 كوجك دلغواه را مجاز مىداند برابر است با

$$
R_{r} \leq \frac{1}{r} \log \left\{1+\frac{P^{\prime}}{P+P_{n}}\right\}
$$

 پس از آن بیيام فرمتندة ا را مىتوان كد گشايع كرد.

اين، روش معقولى است، به شرطى كه

$$
R_{1} \leq \frac{1}{p}\left\{1+\frac{P}{P_{n}}\right\}
$$

اين دقيقاً برابر با مختعـات گوش\& c أست. مختعات نتطدُ b را به طريت مشابه مىتوان
به دست آورد.

 با k گيرنده را توصيف مى كند.

 دريافت مى كند.
يس از اين كه اين پيام كدگشايى شد گيرنده شكل يانته كد گشايع مى كند. V_{V}^{N}

نكل A.A- كانال بخش

در واقع، يكـ توصيف كلّى از كانـــال بــا احتمالهـاى انتقـال رمز گذار خروجى به كانال ورودى دأده كاد مى كانود. يك كانال بخشش تضعيف سُلده كانال يخشى است كه براى آن داريم

$$
p\left(y_{1}, y_{r} \mid x\right)=p\left(y_{1} \mid x\right) p\left(y_{r} \mid x\right)
$$

 اين عبارت را مىتوان به صورت زير نوشت

$$
\mathbf{y}_{\boldsymbol{r}}=\mathbf{x}+\mathbf{n}_{\boldsymbol{r}}=\mathbf{y}_{1}+\mathbf{n}_{r},
$$

كه در آن

 متصل شدهاند و ييامها را به يكديگر منتقل مى كنتد در نظر گرفت. بيامهاى ارسال شـــده در هر مرحله كمى ضعيف مى شوده
 صورت حالت گاوسى معادلات زير را براى ظرفيتهاى تكى خواه

$$
C_{1}=W \log \left\{1+\frac{P_{x}}{P_{n_{1}}}\right\}
$$

$$
C_{\mathrm{r}}=W \log \left\{1+\frac{P_{x}}{P_{n_{\mathrm{r}}}}\right\},
$$

كه در آن در بحث بعدى فرض مى كنيم كه كـ

شكل Y.A- كانال بخش ضميف شده
 ترتيب ابتدا كانال را برای ارسال هيامها به رمز گذار

 تطبيت مى كنند، كه در آن گيرندههاى ا و شكل (4.1) را بينيد.

شكل A.A- ناسيه ظرفيت براى حالت تقسيم زمان

شكل 9.^

گيرندة

كوحچى فرستاد به شرط آن كه نرخ ارسال از مقدار زير كوجكتر باشد

$$
C_{r}(\alpha)=W \log \left\{1+\frac{(1-\alpha) P_{x}}{\alpha P_{x}+P_{n_{r}}}\right\} .
$$

جون
كافى كو جك است دريانت كند.

$$
y_{1}-x_{1}=x_{1}+n_{1} .
$$

$\boldsymbol{\alpha} P_{x}$ اكنون گيرندة 1 بايد از طريق كانالى با نونـء گاوسـى جمعـى و تــوان ورود مرتبط شود. ظرفيت اين كانال برابر است با

$$
C_{1}(\alpha)=W \log \left(1+\frac{\alpha P_{x}}{P_{n_{1}}}\right) .
$$

 اين ايجاب مى كند كه نرخهاى

$$
\begin{gather*}
R_{1}=W \log \left\{1+\frac{\left(1-\alpha P_{x}\right)}{\alpha P_{x}+P_{n_{t}}}\right\}+W \log \left(1+\frac{\alpha P_{x}}{P_{m_{1}}}\right), \tag{0.,1}\\
R_{T}=W \log \left\{1+\frac{(1-\alpha) P_{x}}{\alpha P_{x}+P_{m_{H}}}\right\} . \tag{01.1}
\end{gather*}
$$

را بتوان به دست آورد.
اين نرخها بهتر از آنهايى هستند كه با تا تقسيم زمان به دست مى آوريم، همانطرر كـه در شكل (^. ه ا) شرح داده شده است است

 به كار بردن اصطلاح يكسانى همانند بحث بالا، مىتوانيم بغرييم كه دستگاههاى تلويزيــون
 دستگاههاى HDTV علاره بر x تصويرى بالاترى به دست مىآورند.

شكل A. ه ا - ناسئ ظرفيت براى كانال بخش گاوسى با دو گيرنده

 خواهيم كرد. تضيه حاصل نقش مهمى را در تجزيه و تحليل كانال بخش ضعيف شده بازي مى كن.

تضهية A.
فرض مى كنيم يكى رمز گذارى داده شده كه مىتواند هيامهـاى
 خروجى كانال با دست مى آيد.
براى احتمال نحطا در خروجى كانال داريم

$$
P_{e} \log (J-1)+H\left(P_{e}\right) \geq \frac{1}{N} H\left(X^{n} \mid Y^{n}\right)
$$

كه در آن J اندازة الفباى ورودى دا نشان مىدهد. برهان
با به كار گيرى نابرابرى فانو (به تضية (F.F) مراجعه كنيد)، براى نماد iام رمزى شده ورودى و نماد رمز گشايى شدة خرو

$$
P_{e} \log (J-1)+H\left(P_{e}\right) \geq H\left(U_{l} \mid V_{l}\right)
$$

شكل 11.1-طرح ارتباطى با كد گذارى

 مى آوريم:

$$
P_{e} \log (J-1)+H\left(P_{e}\right) \geq \frac{1}{N} \sum_{l=1}^{N} H\left(U_{l} \mid V_{l}\right) .
$$

همحنين داريم

$$
\begin{align*}
H\left(U^{N} \mid V^{N}\right) & =H\left(U_{1} \mid V^{N}\right)+H\left(U_{\mathbf{r}} \mid V^{N}, U_{1}\right)+\cdots \\
& +H\left(U_{n} \mid V^{N}, U_{1}, \ldots, U_{N-1}\right) \\
& \leq \sum_{l=1}^{N} H\left(U_{l} \mid V_{l}\right)
\end{align*}
$$

بنابراين، با كمكى معادلة (DF. $)$ به دست مى آوريم

$$
P_{e} \log (J-1)+H\left(P_{e}\right) \geq \frac{1}{N} H\left(U^{N} \mid V^{N}\right) .
$$

سرانجام، جون يكـ رابطة يكى به يک بين را به كار برد و نوشت

$$
\begin{align*}
P_{e} \log (j-1)+H\left(P_{e}\right) & \geq \frac{1}{N} H\left(U^{N} \mid V^{N}\right) \\
& =\frac{1}{N}\left\{H\left(U^{N}\right)-I\left(U^{N} ; V^{N}\right)\right\} \\
& \geq \frac{1}{N}\left\{H\left(X^{n}\right)-I\left(X^{n} ; Y^{n}\right)\right\} \\
& =\frac{1}{N} H\left(X^{n} \mid Y^{n}\right),
\end{align*}
$$

به عبارتى كه مى خواستيم ثابت كنيم رسيديم.
 به كار برده شده است.

در اين جا فرض خواهيم كرد كه سيخنالى كه بايل ارسال شـــود شــامل وضعيــت دو

 كد گشايىشده را نشان مىدهد؛ مىدهند مى باشد.

 اين نتيجه در شكل (1 (1) نشان داده شده المت.

قضية
يكـ كانال پخش تضعيف شده را در نظر مى گیريم. در صورتى كه براى هـــر متغـير تصادفى كمكى W و ورودى كانالل X داريم

$$
\begin{align*}
& \mathrm{R}_{\mathrm{r}}>I(X ; Y \mid W) \\
& \mathrm{R}_{\mathrm{r}}>I(W ; Z)
\end{align*}
$$

 اجازه دهد بدون اين كه هيَج خططايى رخ دهد. برهان
براى نرخ R

$$
\begin{equation*}
R_{Y}=\frac{1}{n} H\left(U^{\prime N}\right)=\frac{1}{n}\left\{I\left(U^{\prime N} ; Z^{n}\right)+H\left(U^{\prime N} \mid Z^{n}\right)\right\} \tag{0}
\end{equation*}
$$

$$
\begin{align*}
I\left(U^{\prime N} ; Z^{n}\right) & =H\left(Z^{n}\right)-H\left(Z^{n} \mid U^{\prime N}\right) \\
& \leq \sum_{l=1}^{n} H\left(Z_{l}\right)-\sum_{l=1}^{n} H\left(Z_{l} \mid U^{, N}, Z_{l-1}, \ldots, Z_{l}\right) .
\end{align*}
$$

واضع است كه براى تهام /ها داريم

$$
\begin{gather*}
H\left(Z_{l} \mid U^{\prime N}, Z_{l-1}, \ldots, Z_{i}\right) \geq H\left(Z_{l} \mid U^{N}, Z_{l-1}, \ldots, Z_{1}, Y_{l-1}, \ldots, Y_{l}\right) \\
I\left(U^{\prime N} ; Z^{n}\right) \leq \sum_{l=1}^{n}\left\{H\left(Z_{l}\right)-H\left(Z_{l} \mid U^{\prime N}, Z_{l-1}, \ldots, Z_{1}, Y_{l-1}, \ldots, Y_{1}\right)\right\} .
\end{gather*}
$$

اگر از

$$
H\left(Z_{l} \mid U^{\prime N}, Z_{l-1}, \ldots, Z_{l}, Y_{l-1}, \ldots, Y_{1}\right)=H\left(Z_{l} \mid U^{\prime N}, Y_{l-1}, \ldots, Y_{1}\right)
$$

$$
\begin{equation*}
I\left(U^{N} ; Z^{n}\right) \leq \sum_{l=1}^{n} I\left(Z_{l} ;\left(U^{\prime N}, Y_{l-1}, \ldots, Y_{1}\right)\right) . \tag{ءّ.^}
\end{equation*}
$$

عبارت را مىتوان دوباره به فرم خيلى سادهتر زير نوشت

$$
\frac{1}{n} I\left(U^{\prime N} ; Z^{n}\right) \leq \frac{1}{n} \sum_{l=1}^{n} I\left(Z_{l} ; W_{l}\right)
$$

سمت راست اين عبارت را مىتوان به صورت بسط اطلاع متقابل I(Z;W) بر نماد در نظر گرفت.

بنابراين، معادله (5F.人) نتيبه مىدهد

$$
\frac{1}{n} I\left(U^{N} ; Z^{n}\right) \leq I(Z ; W)
$$

$$
\begin{align*}
R_{\mathrm{r}} & =\frac{1}{n}\left\{I\left(U^{\prime N} ; Z^{n}\right)+H\left(U^{\prime N} \mid Z^{n}\right)\right\} \\
& \leq I(Z ; W)+\frac{1}{n} H\left(U^{\prime N} \mid Z^{n}\right)
\end{align*}
$$

با معر"فى نابرابرى فانو در اين نقطه، مانند آنجه در تضية (F.^) داده شـــد، بـه دسـت مي آوريم

$$
\begin{gather*}
P_{e} \log \left(J^{\prime}-1\right)+H\left(P_{e}\right) \geq \frac{1}{N} H\left(U^{\prime N} \mid Z^{n}\right) \\
\geq \frac{n}{N}\left(\mathrm{R}_{\mathrm{r}}-I(Z ; W)\right)
\end{gather*}
$$

كه در آن 'J اندازء رمز گذار ورودى است.
تا زمانى كه
 تسمت اوّل تضيه را به همين منوال مىتوان ثان ثابت

$$
\begin{align*}
R_{1}=\frac{1}{n} H\left(U^{N} \mid U^{\prime N}\right) & =\frac{1}{n}\left\{I\left(U^{N} ; Y^{n} \mid U^{\prime N}\right)+H\left(U^{N} \mid Y^{n}, U^{, N}\right)\right\} \\
& \leq \frac{1}{n}\left\{I\left(X^{n} ; Y^{n} \mid U^{, N}\right)+H\left(U^{N} \mid Y^{n}\right)\right\}
\end{align*}
$$

بنابر تعريف داريم

$$
\begin{align*}
I\left(X^{n} ; Y^{n} \mid U^{\prime N}\right)= & H\left(Y^{n} \mid U^{N}\right)-H\left(Y^{n} \mid U^{\prime N}, X^{n}\right) \\
= & \sum_{l=1}^{n} H\left(Y_{l} \mid U^{N}, Y_{l-1}, \ldots, Y_{1}\right) \\
& -\sum_{l=1}^{n} H\left(Y_{l} \mid U^{\prime N}, X^{n}, Y_{l-1}, \ldots, Y_{l}\right)
\end{align*}
$$

هحون كانال بى

$$
H\left(Y_{l} \mid U^{\prime n}, X^{n}, Y_{l-1}, \ldots, Y_{1}\right)=H\left(Y_{l} \mid U^{\prime N}, X_{l}, Y_{l-1}, \ldots, Y_{1}\right)
$$

علاوه بر اين، با معادله (8A.A) نتيجه مىشود

$$
\begin{align*}
\frac{1}{n} I\left(X^{n} ; Y^{n} \mid U^{\prime N}\right)= & \frac{1}{n} \sum_{l=1}^{n} H\left(Y_{l} \mid U^{\prime N}, Y_{l-1}, \ldots, Y_{l}\right) \\
& -\frac{1}{n} \sum_{l=1}^{n} H\left(Y_{l} \mid U^{\prime N}, X_{l}, Y_{l-1}, \ldots, Y_{l}\right) \\
= & \frac{1}{n} \sum_{l=1}^{n} I\left(X_{l} ; Y_{l} \mid U^{\prime N}, Y_{l-1}, \ldots, Y_{l}\right) \\
= & I(X ; Y \mid W)
\end{align*}
$$

 جمع بندى كه مىتوان به عنوان يكـ بسط در نظر گر كرفت نتيجه مىشود. با تر كيب كردن اين مشاهدات آخر، به دست مى آوريم

$$
\begin{align*}
H\left(U^{N} \mid Y^{n}\right) & \geq n \mathrm{R}_{1}-I\left(X^{n} ; Y^{n} \mid U^{\prime N}\right) \\
& =n\left\{\mathrm{R}_{1}-I(X ; Y \mid W)\right\}
\end{align*}
$$

 بر تسـب $H\left(U^{N} \mid Y^{n}\right)$ داده شده است.

$$
\text { هر گز نبايد }{ }^{\text {R1 }} \text { > }>I(X ; Y \mid W)
$$

 خططای كو حک دلخواهیى ارسال شود، اگر هر دو شرط بيان شده توسط قضيه برقرار باشد.
 كرد، چون قضيه با توجّه به قضية (ه.^) بديهى مىشود.

وَضئه
اگر توزيع احتمال توأم ورودى X و متغيّر تصادفى كمكى W به قسمى باشد كه

$$
\mathrm{R}_{1} \leq I(X ; Y \mid W)
$$

$$
\mathrm{R}_{\mathrm{r}} \leq I(W ; Z)
$$

 كوپی دلخواهي مجاز باشد.

 توأم W و X ای برقرار مى كنن.

شكل IF.A - كانال بخش با دو گيرنده
اكنون مثالى براى ظرفيت كانالهاى دودويى متقارن فراهم مى كنيم.

 گرفت.
بدون هيجّ مشكلى مىتوان تأييد كرد كه أحتمالهاى انتقــال ايـن توالـى بــه ترتيــبـ
برابر q و q-1 مىباشند.

 احتمالهاى مربوط به W به تر تيب با α و α - 1 نشان داده مىشود. وقتى تقارن اتصال داخلى

نغرية اطلیع شبكهاى
را در نظر بگيريم روشن مى شود كه نرخها با $\alpha=\frac{1}{\gamma}$ ماكسيمم مىشوند. بنابراين بــا كمـى شكل (18.^ا- ب) به دست مى آوريم

$$
\begin{align*}
I(W ; Z) & =H(Z)-H(Z \mid W) \\
& =1+t \log t+(1-t) \log (1-t),
\end{align*}
$$

$$
. t=s q+(1-q)(1-s) u
$$

شكل 10.A

(الغ)

$s q+(1-q)(1-s)$
(ب)

(4)

براى (I(X;Y|W با به كار بردن شكل (\$.A- ب) مىتوان نوشت

$$
\begin{align*}
I(X ; Y \mid W)= & H(Y \mid W)-H(Y \mid W, X) \\
= & H(Y \mid W)-H(Y \mid X) \\
= & -v \log v-(1-v) \log (1-v)+p \log p \\
& +(1-p) \log (1-p)
\end{align*}
$$

$$
\text { با } v=s p+(1-p)(1-s) .
$$

با تغيير مقدار s مىتوان مقاديرى كه كرانهاى ناحيــ، ظرفيــت را تعريــف مى كننـــد

$$
\mathrm{R}_{Y}=1+q \log q+(1-q) \log (1-q)=1-H(Q)
$$

وتتى

$$
R_{\mathrm{T}}=1+p \log p+(1-p) \log (1-p)=1-H(P)
$$

ناحية ظرفيت در شكل (IV.A) داده شده است.

شُكل V.A A- ناحيه ظرفيت كانال بيخش متقارن دودويمى

ك.A
يكـ كانال دو -طرفه همواره شامل حدآقل دو بخش خوراهد بود كـــ هــر دوى آنهـا

نظريه اطلكع شبكهاىى
rr.
شكل (1^.^) يكى نمودار كلى از كانال دو -طرفه را نشان مىدهد. يكى از مشهورترين مثالهاى كانال دو الـي

 با وجود اين، اگر بيت دريافت

مى تواند راه حلى براى اين مسأله بيشنهاد كند (شكل (19.^) را ببينيد).

شكل 19.1- كد ها ایلبر گر

باشد. در نتيجه، يك رمز گذار تنها مىتواند داخلل وضعيت برابر 1 باشد و رمز گذار تبلأ در وضعيت

 هر دوى كاربرها دارد و برابر ' يا Y مىباشد. اگر احتمال بيت ارسال شـده توسّط كاربرها با با (1)=p

$$
\begin{align*}
L & =1 \times p^{\gamma}+r p(1-p)+\gamma(1-p)^{\gamma} \\
& =r-p^{\gamma} . \tag{Va.A}
\end{align*}
$$

بنابراين، نرخ كد در هر جهت برابر خواهد شد با

$$
\begin{align*}
& \mathrm{R}=\frac{H(P)}{r-p^{\prime \prime}}, \tag{Vء.^}\\
& \text {. } H(P)=-p \log p-(1-p) \log (1-p) \text { ن در Tآ } \\
& \text { ار } \\
& R=\frac{1}{Y / \varphi} \approx 0, \Delta V 1 .
\end{align*}
$$

با وجود اين، نرخ لاكسيمم به ازای

 در اين صورت، گيرنده كد هانمن را به كار خواهد برد. علاوه بر كد هاگلبر گر، كد
 دو جهت خواهد داد.

نكرية أطلاع شبكهانى

$$
\begin{aligned}
& \text { كاربر }
\end{aligned}
$$

امكانجذير نيست كه يك عبارت كلى براى ظرفيت كانال دوطرنه بـى
 كرد.
 متفيرهاى تهادفى روى الغباى خروجى كانى

و و

كه براى آن

$$
\begin{equation*}
\left(R_{1}, R_{p}\right): R_{1} \leq I\left(X ; Y^{\prime} \mid X^{\prime}\right), R_{p} \leq I\left(X^{\prime} ; Y \mid X\right) \tag{W.A}
\end{equation*}
$$

 است كه داريم

$$
\begin{equation*}
H\left(U^{N}\right)=I\left(U^{N} ; Y^{\prime \prime}\right)+H\left(U^{N} \mid Y^{\prime \prime}\right) \tag{VA.^}
\end{equation*}
$$

$$
\begin{equation*}
H\left(U^{N} \mid U^{\prime N}\right)=I\left(U^{N} ; Y^{\prime \prime} \mid U^{\prime N}\right)+H\left(U^{N} \mid Y^{\prime \prime}, U^{\prime N}\right) \tag{V৭.1}
\end{equation*}
$$

هرن يكى تناظر يكـ به يــك از يـك طـرن بيـن

بين

$$
H\left(U^{N} \mid U^{\prime N}\right)=I\left(X^{n} ; Y^{\prime n} \mid X^{\prime n}\right)+H\left(X^{n} \mid Y^{\prime n}, X^{\prime n}\right)
$$

علاوه بر اين، داريم

$$
\begin{align*}
& I\left(X^{n} ; Y^{\prime n} \mid X^{\prime n}\right) \leq \sum_{l=1}^{n} I\left(x_{l} ; y_{l}^{\prime} \mid X^{\prime n}\right) \\
& =\sum_{l=1}^{n}\left\{\sum_{x_{i}, X^{\prime \prime}, y_{l}^{\prime}} p\left(x_{l}, X^{\prime n}, y_{l}^{\prime}\right) \log \left\{\frac{p\left(x_{l} \mid N^{\prime n}, y_{l}^{\prime}\right)}{p\left(x_{l} \mid X^{\prime n}\right)}\right\}\right\} \\
& =\sum_{l=1}^{n}\left\{\sum_{x_{i}, x^{\prime \prime \prime}, y_{l}} p\left(x_{l}, X^{\prime n}, y_{l}^{\prime}\right) \log \left\{\frac{\frac{p\left(x_{l}, X^{\prime n}, y_{l}^{\prime}\right)}{p\left(X^{\prime n}, y_{l}^{\prime}\right)}}{\frac{p\left(x_{l}, X^{\prime n}\right)}{p\left(X^{\prime n}\right)}}\right\}\right\} \\
& =\sum_{l=1}^{n}\left\{\sum_{x_{i}, X^{\prime \prime}, y_{l}^{\prime}} p\left(x_{i}, X^{\prime n}, y_{l}^{\prime}\right) \log \left\{\frac{p\left(y_{l}^{\prime} \mid x_{l}, X^{\prime n}\right) p\left(x_{l}, X^{\prime n}\right)}{\frac{p\left(y_{i}^{\prime} \mid X^{\prime n}\right) p\left(X^{\prime n}\right) p\left(x_{l}, X^{\prime n}\right)}{p\left(X^{\prime n}\right)}}\right\}\right\} \\
& =\sum_{l=1}^{n}\left\{H\left(Y_{l}^{\prime} \mid X^{\prime n}\right)-H\left(Y_{i} \mid X_{l}, X^{\prime n}\right)\right\} \\
& \leq \sum_{l=1}^{n} H\left(Y_{l} \mid X_{i}^{\prime}\right)-\sum_{i=1}^{n} H\left(Y_{i}^{\prime} \mid\left(X_{i}, X_{i}^{\prime}, X_{i-1}^{\prime}, X_{i}^{\prime},\right)\right) \text {; }
\end{align*}
$$

هون يكـ كانال بى-انظه داريم:

شكل PI.A- كانال دو-طرنه

نظرية اطلاع شبكهاى

$$
H\left(Y_{l}^{\prime} \mid\left(X_{l}, X_{l}^{\prime}, X_{i-1}^{\prime}, \ldots, X_{l}^{\prime}\right)\right)=H\left(Y_{l}^{\prime} \mid X_{l}, X_{j}^{\prime}\right)
$$

و بنابراين، از معادلة ((

$$
\begin{align*}
I\left(X^{n} ; Y^{\prime n} \mid X^{\prime n}\right) & \leq \sum_{l=1}^{n} H\left(Y_{l}^{\prime} \mid X_{l}^{\prime}\right)-\sum_{l=1}^{n} H\left(Y_{l}^{\prime} \mid X_{l}, X_{l}^{\prime}\right) \\
& =\sum_{l=1}^{n} I\left(X_{l} ; Y_{l}^{\prime} \mid X^{\prime n}\right) \\
& =n I\left(X ; Y^{\prime} \mid X^{\prime}\right)
\end{align*}
$$

براى نرخ هر نماد R، داريم:

$$
\begin{align*}
\mathrm{R}_{1}=\frac{1}{n} H\left(U^{N} \mid U^{\prime N}\right) & =\frac{1}{n}\left\{I\left(X^{N} ; Y^{\prime n} \mid X^{\prime n}\right)+H\left(X^{n} \mid Y^{\prime n}, X^{\prime n}\right)\right\} \\
& \leq I\left(X \mid Y^{\prime}, X^{\prime}\right)+\frac{1}{n} H\left(X^{n} \mid Y^{\prime n}, X^{\prime n}\right) \tag{AY.}
\end{align*}
$$

و بنابراين

$$
H\left(X^{n} \mid Y^{\prime n}, X^{\prime \prime}\right) \geq n\left\{R_{1}-I\left(X ; Y^{\prime} \mid X^{\prime}\right)\right\}
$$

با كمكـ نابرابرى نانو بايد داشته باشيم
$n\left\{P_{e} \log (J-1)+H\left(P_{e}\right)\right\} \geq H\left(X^{n} \mid Y^{\prime \prime}, X^{\prime n}\right) \geq n\left\{\mathrm{R}_{1}-I\left(X ; Y^{\prime} \mid X^{\prime}\right)\right\}$. (^千.^)
اگر احتمال خطا به صفر ميل كند، در اين صورت داريم

$$
\mathrm{R}_{1} \leq I\left(X ; Y^{\prime} \mid X^{\prime}\right)
$$

 داشته باشيـم

$$
\mathrm{R}_{\mathrm{p}} \leq I\left(X^{\prime} ; Y \mid X\right)
$$

اين همان عبارتى است كه مى خواستيم ثابت كنيم.

 ($p\left(x_{l}, x_{l}^{\prime}\right)$

 آورد:隹 $p\left(x_{i}\right) p\left(x_{i}^{\prime}\right) p\left(y_{l}^{\prime}, y_{i}^{\prime} \mid x_{i}, x_{i}^{\prime}\right)$ $\left\{\left(\mathrm{R}_{1}, \mathrm{R}_{\mathrm{r}}\right) \mid \mathrm{R}_{\mathrm{r}} \leq I\left(\left(X \mid X^{\prime}\right) ; Y\right), \mathrm{R}_{\mathrm{r}} \leq I\left(\left(X \mid X^{\prime}\right) ; Y\right)\right\}$

در ناحئ ظرفيت كانال دوطرفه محصور شده است معتبر مىباشد. اين كرانهأى درونى و بيرونى در شككل (Y.^) داده شده است.

شكل Yr.A- كرانهاى درونى و بيرونى برالى كانال دو-طرنه
A.^
 خروجى به صورت زير داده شده است $Y=X_{1}{ }^{*} X_{\gamma}$ كه در آن " عمل تعريف نشدهاى را نشان مىدهد.
(الف) اگر عمل * يكـ ضرب را نشان دهد، يكي كانال ضربى دودويى (BMC) خواهيـــم داشت. ناحيءٔ ظرفيت را براى اين كانالل تعيين كنيد.

نثريه الطكع شبكهاى
در آن عمل * بمع را نشان دهد. خروجى فرض شده است كــــه سـســهاى باشثـــ. ناحية ظرفيت را براى كانال ضربى دودويى به دست آوريد.

 مى باشد.

ظرفيت كانال را براى حالتي كه در آن تقسيم فر كانس به كار برده شده و به هــــر
يك از k كاربر يك پهنای باند مساوى w نسبت داده شده است مساسبه كنيد. (ب) ظرنيت را در واحد بهناى باند براى حالت شرع داده شده در (الف) به عنوان تابعى از k رسم كنيد.
(〒) عبارتى برای ظرفيت موجود براى مر كاربر به دست آوريد، اگر تقسيم زمــان بــ جاى تقسيم فر كانس به كار برده شود، فرض كنيد كه هر كاربر ممكن اسر است برایى يك مدّت زمان يكسان به كانال دسترسى داشته باشد.
Y.A
 ظرفيت برحسب بيت بر ارمال فرستندة 1 را با اين فــرض كــه فرســتنده ا داراى دسترسى خاصى به كانال است مهاسب كنيد. اين مهاسبه را براى فرستنده $ا$ تكـــرار كنيد. (ب) ناحية ظرنيت كانال چند-مدنحلى كاوسى را براى ـالتى كه در آن هر دو فرســـتنده همزمان از كانال استناده مى كنند به دست آوريد. F.A مىتوانيد به عنوان يك كانال متمارن دودومى در نظر بگيريد كه براى آن اعتمـــال ارسال نادرست برابر است با الره ارسال نادرست برابر است با
(الف) ظرفيت كانال يين فرستنده و گيرندة 1 را محاسبه كنيد. مسهنين ظرفيت كانال بين فرستنده و گیرندة $ا$ را به دست آوريد.
(ب) (بو عبارت برسسب اطلاع متتابل كه با يكديگر ناحية ظرفيت را براى كانال يخــشـ شرح داده شده در اين با تعريف مى اكينتد بيابيد. (ب) ناسيه ظرفيت اين كانال بيش را را رسم كنيد.

A
(الغ) 1.A
 مىباشد. وتتي
 ميسر ميمازد كه شر تركيبى از نرنها كه براى ظرفيت متناظر در شكل (Y.^) داده شده امتر

(ب) اگر خروجى Y متدار ه يا Y را انختيار كند، در اين مورت هيج گونه عدمحتميت با
 برابر ا است عدمحتميت وجود دارد. اگر ارمال بغرمتد:

 خواهيم آورد.
يعنى وقتى فرستنده: 1 در حالل ارسال اطلاع با نــرخ ا اســـت، فرسـتـنده هنوز هم قادر خواهد بود فرستنده

(الفش) در حالت تقسيم فر كانس حند-مدخلى داريم

$$
C^{*}=\frac{W}{k} \log \left\{1+\frac{k P_{x}}{P_{n}}\right\}=\frac{W}{k} \log \{1+1 \circ k\}
$$

(ب) جلول $\frac{C}{W}$ متناظر با جندين مقدار k را مىدهد

k	$\frac{C}{W}$
1	$r, 4 s$
r	r, r_{0}
r	$1, s 0$
q	$1, q_{0}$
0	$1,1 r$
r_{0}	$0, s \&$
r_{0}	$0,4 \Lambda$
r_{0}	$0, r v$
r_{0}	$0, r r$
$\Delta 0$	$0,1 \Lambda$
100	$0,1 r$

$\frac{C}{W}$ براى مقادير بزر در شكل (YF.A) رسم شده است. (پ) چون تقسيم زمان به طور مؤترى نتيجهُ ظرفيت يكســـانى مـانند تقسـيم فر كــانس

مىدهد، نتايج يكسانى براي (الف) و (ب) به دست خواهيم آورد.

شـكل Y.A- شـرفيت كانال هند-مدخلى تمرين (Y.A)

「.^

$$
C=W \log \left(1+\frac{P_{x}}{P_{n}}\right) \text { ثانيه /بيت }
$$

$$
C=\frac{1}{r} \log \left(1+\frac{P_{x}}{P_{n}}\right) \text { ارسال / بيت. }
$$

بنابراين، براى فرستندة ا و Y به ترتيب نتيجه مىشود كه

$$
C_{1}=\frac{1}{r} \log \left(1+\frac{P_{1}}{P_{n}}\right)=\frac{1}{r} \log r i=r, r o
$$

$$
C_{\varphi}=\frac{1}{r} \log \left(1+\frac{P_{r}}{P_{n}}\right)=\frac{1}{r} \log 11=1, v_{r},
$$

(ب) دو مقدار محاسبه شده براى جواب قبلي (الف) متناظر با دو كران ناحيـــه ظرفيــت مى.
نظريه بيان مى كند كه وقتى فرستندهُ Yاطلاع را با نرخ ماكسيمـم ارسال كند،
نرغ ماكسيمم براى فرستنده 1 برابر است بــا سيگنال ارسالشده توسّط فرستنده r را ممكن است توسّط فرستندة ا به عنوان يـع

منّب نونة اضافى در نظر گرفت. , $\frac{P_{1}}{P_{\gamma}+P_{n}}=\frac{\gamma_{0} P_{n}}{\| P_{n}}=\frac{\gamma_{0}}{\|}$

بنابراين

$$
\frac{1}{r} \log \left(1+\frac{P_{1}}{P_{r}+P_{n}}\right)=\frac{1}{r} \log \left(1+\frac{r_{0}}{11}\right)=\frac{1}{r} \log \frac{r 1}{11}=0, v \Delta .
$$

به همين روش مىتوان نتيجه گرفت كه وتتـى فرسـتـنده 1 الطـلاع بـا نـر

$$
\frac{1}{r} \log \left(1+\frac{P_{r}}{P_{1}+P_{n}}\right)=\frac{1}{r} \log \left(1+\frac{10}{r 1}\right)=\frac{1}{r} \log \frac{r 1}{r 1}=0, r A .
$$

بنابراين، تمام ناسية ظرفيت كامل با شكل (Y (Y.A) داده شده است.

F.A
 براى گيرندة ا داريم

$$
C_{1}=1-H(P)=1+0,1 \log _{0}, 1+0,9 \log _{0}, 4=0, \Delta r l .
$$

ظرفيت براى گيرندة Y به صورت زير است

استمالهاى انتتال يكسانى به صورت كانال اصلى است. ناسية ظرفيت به طور ضمنى با $I(X ;(Y \mid W)$) $I(W ; Z)$ داده شده امبت كــه
Z و Y ور خرو جيهاى كانال به ترتيب برای نرستنده 1 و نرستنده متغير كمكى است. عبارت براى (W;Z)

$$
I(W ; Z)=H(Z)-H(Z \mid W)=1+t \log t+(1-t) \log (1-t)
$$

كه براى آن

$$
t=s q+(1-q)(1-s)=0,5 s+0, f(1-s)=0, \psi s+0, F
$$

و s برابر احتمال انتال است كه متدارش تغيير مى كند، با فرض ايــن كــه كانـال بين X X متقارن دودويـ است. براى (l $1(X ;(Y \mid W)$ مىتوان نوشت

$$
\begin{aligned}
I(X ;(Y \mid W))= & -v \log v-(1-v) \log (1-v) \\
& +p \log p+(1-p) \log (1-p) \\
= & -v \log v-(1-v) \log (1-v) \\
& +0,1 \log 0,1+0,9 \log 0,9 \\
= & -v \log v-(1-v) \log (1-v)-0, \$ 59
\end{aligned}
$$

$$
v=s p+(1-p)(1-s)=0,1 s+0,9(1-s)=0,9-0, \lambda s .
$$

(؟) هيج عبارت صريحى براى ناحيه ظرفيت وجود ندارد. با وجود اين، نقاط ناحيه را با
 اگر ه $s=$

$$
\begin{aligned}
& I(W ; Z)=1+0,5 \log 0,5+0,5 \log 0,5=0, \circ \vee 4, \\
& I(X ;(Y \mid W))=-0, \uparrow \log 0,9-0,1 \log _{0}, 1-0, \uparrow V=0 . \\
& \text { اگگر } \\
& I(W ; Z)=1+{ }_{0} \Delta \log _{\rho} \Delta+{ }^{\circ} \Delta \log _{\circ} \Delta \Delta=0,
\end{aligned}
$$

نظريه اطجلع شبكهاى

$$
\begin{aligned}
I(X ;(Y \mid W)) & =-0, \Delta \log \rho \Delta-0, \Delta \log \circ, \Delta-0, F Y=1-0, F Y \\
& =0, \Delta r l .
\end{aligned}
$$

برای

$I(W ; Z)$	$I(X ;(Y \mid W))$
0,019	$0, Y 10$
0,010	$0, Y 0 Y$
0,000	$0,4 \Delta \Delta$
0,001	$0,01 Y$

شكل (^.^Y) را بيـينيد.

كدهاى تصحيح كنندهُ خطا

1.9 مقدّهد

 واقع تنها به وجود هنين كدى تاكير تاكيد مى كند.

 داريم $p\left(u_{i}=0\right)=p\left(u_{t}=1\right)=\frac{1}{4}$
 همحنين اين توزيع احتمال منبع ايتيمال است كه دستيابيى به ظرفيت كانال را مطمين مى مسازد.

rrif

بنابراين تعداد ييامهاى ممكن u برابر $M=\gamma^{k}$ امـت، و هر هيام داراى احتمال برابــر
م $p(u)=r^{-k}$
وقتي يكـ كد كانال طرع مى كنـيم يكـ يا بيشتر از يكـ بررس توازن در يــــ روش
 نشان مىدهـيم. اكنون نرخ كد برابر امـت با

$$
\begin{align*}
R & =\frac{\log M}{n} \\
& =\frac{\log \gamma^{k}}{n}=\frac{k}{n} \text { نماد / بيت , } \tag{1.9}
\end{align*}
$$

و مىتوان آن را به عنوان اندازهاى براى حشوى كه اضافه شده امـت براى اين كه تشــنيص ـِا تصحيح خططاها را ميمر سازد تغسير نهود.

 كدام وازٔة x كانال براساس دريافت وازء y (استمالأ دگرشكلى شده) ارسال شده اسـت

 مقدار اطلاع ارسال شده به ازاى هر نماد منبع، R، مىباشد.

 كدوازه 111 را به \mid ((مر نماد توليد شده منبع سـه مرتبه تكرار مىشود) نسبت دهد، در ايسن صورت نرخ از R=1 به $R=\frac{1}{P}$ تنزل بيدا مى كند. با وجود اين، احتمـــال دريـافت مسيــع
 كدوازه تغيير كند دريافت صهحيح رن مىدهد. در سالت اخير براساس اكــــريّت آرا نـــــاد ورودى صسيع به دسـت خوامد آمد.

 اكنون اعتمال خطا،

$$
P_{e}=1-\left\{(0,99)^{r}+r \times 0,01(0,99)^{r}\right\} \approx r \times 10^{-4} .
$$

 $R=\frac{1}{n}$ مغر اگر اين عدد بزر گتر از می نشان داده شُده است.

كدهاى تصحتيع كننده خططا
اين جدول نشان مىدهد كه هنين كدى ورئى تصشيت-خطاى خوبى دارد، ولى نرخ
 بىنهايت ميل كتند، احتمال خططا واقعاً به صفر ميل مى كند، ولى مقدار اطلاع انتقال يافته نيز اين كد را در عمل نامطلوب مى كند.
يك رهيافت صحيح را با ساختن كدهاى (n,k) هى توان به دست آورد كه در آن هر
 استت. از اين طريت مىتوان يك عامل توازن بين تعلداد خطاهايى كه بايد تصحيـــع شــودد و نرغ كد مطلوب به دست آورد.
S.9 هصانطور كه تبلاٌ ذكر شد در اين جا خــود را بــه كدهــاى بلوكـى نحطـى مســدود مى كنيهم وزن $w(a, b)$ (بين دو كدوازٔة a و a تعـــداد وضعيتههـامى اسسـت كـه در آن كدوازههــا داراى نمادهـاى متفاو تند. براى كدوازههاى

$$
\begin{aligned}
& a=1.10101 \\
& b=1110011
\end{aligned}
$$

$d(a, b)={ }^{*}$ وزنها به ترتيب عبارتند از:
 فاصلة همينگ بين هر زوج كدواڭْ داراى يح مقدار مىنيمم معيّن باشد. اين فاصلة مىنيهم راناصلة ممينكـك كله مىناميم و با d نشان مىدهيم.

 حالت دودويع به دست مى آيد. اكنون اگگر كد نقط شامل اين هشت كدوازه باشل در ايـــن

 1. Hamming

 بنابراين تصحيح امكان ندارد. تصحيح خطا تنها برايى

 كه اين بايستى كدوازءُ ارسال شده باشده

شكل أـ نمايش سه بعدى كدوازوها به طول سس
 كانال و همحنين تعداد بررسى (n-k) برابرى به اجراى تشخيص خحطا يا تصحيـــــ خطــاى

 trit

خون فاصلة همينگ برابر $d=r$ است، اين كد مىتواند دو خطا را تشــخيص و فقـط يــــ خطا را تصحيع كند. كد بلو كى (دودويى) خخطى C را داريم اگر جمع به بيمانــه

 كوحكترين وزن كدوازهها غير از يكى به بردار صفر نسبت داده مىشود:

$$
\begin{equation*}
d=\min \{w(x) \mid x \in C, x \neq \circ\} \tag{Y.१}
\end{equation*}
$$

كه در آن x يك كدوازه را نــان مىدهد.

$$
\begin{aligned}
d & =\min \{d(a, b) \mid a, b \in C, a \neq b\} \\
& \left.=\min \left\{d()^{\circ}, a+b\right) \mid a, b \in C, a \neq b\right\} .
\end{aligned}
$$

 مستقيماً به دست نى آيد.

 از اين رو بررسى n-k=r برابرى وجود دارد

 تشكيل شدهاند، نــان داد. اكنون يك كدوازة x بر طبت رابطه زير به دست بى آيد

$$
\begin{equation*}
x=u \cdot G \tag{r.i}
\end{equation*}
$$

 مولّد k×n را نشان میىدهد, مثالى از ماتريس مولّد G براى كد (V, (V) ماتريس زير است:

$$
G=\left[\begin{array}{cc}
1000 & 011 \\
0100 & 101 \\
0010 & 110 \\
0001 & 111
\end{array}\right]
$$

يِّم $u=(0111)$

$$
\begin{aligned}
x & =([0 \times 1+1 \times 0+1 \times 0+1 \times 0],[0 \times 0+1 \times 1+1 \times 0+1 \times 0], \ldots) \\
& =(0,1,1,1,1,0,0)=(0111100) .
\end{aligned}
$$

 در زمينة كد كذارى معمولأ كدوازهها را با بردار سطرى نشان مىدهند نه به صورت بـسردار ستونى همهنان كه عموماً در پردازش سيگنالها و جبرخطى انجام مىشود. اين مفهــوم را در

اين جا هم دنبال خواهيم كرد.
 و يك ماتريس مولّ $k \times n ، G$ در نظر گرغت. اين ماتريس بايد شامل رديفهايىى بـــه طـور خطلى مستقل باشد و براى كانالهاى بىحافظة كسسته همواره مىتوان آن را به فرم طبيعى به صورت زير نوشت

$$
\begin{equation*}
G=\left[I_{k}, A\right] \tag{F.9}
\end{equation*}
$$

كه در آن داده شده تبلى برای كد (४,ヶ) انجام شده است. كدى را كـــه در آن مــاتريس مولَــد داراى
 اولك كدوازه با پيام يكى هستند. $n-k$ نماد باقىمـــــانده بررسـى تـــوازن زيرماتريس A نتيجه مىشوند

$$
\begin{gather*}
{\left[x_{1}, \ldots, x_{k}\right]=\left[u_{1}, \ldots, u_{k}\right]} \\
{\left[x_{k+1}, \ldots, x_{n}\right]=\left[u_{1}, \ldots, u_{k}\right] \cdot A} \tag{0.9}
\end{gather*}
$$

بنابراين توليد كدوازهها با كد سيستماتيك سادهتر است تا با كد غيرسيستماتيك. با ماتريس مولّد موجود براى بررسى توازن به دست مى آوريم

$$
c_{1}=u_{r}+u_{r}+u_{\psi}
$$

$$
\begin{aligned}
& c_{v}=u_{\psi}+u_{\varphi}+u_{\varphi}, \\
& c_{r}=u_{1}+u_{v}+u_{v} . \\
& \text { از اين رو براى كدوازة x نتيهه ميشود كه } \\
& x=\left(u_{1}, u_{\eta}, u_{\varphi}, u_{\psi}, u_{\eta}+u_{\varphi}+u_{\psi}, u_{1}+u_{\varphi}+u_{\psi}, u_{1}+u_{\psi}+u_{\psi}\right) .
\end{aligned}
$$

 ماتريس كد (

$$
H=\left[\begin{array}{lllllll}
0 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

$$
\begin{aligned}
& . c_{\mathrm{r}}=u_{\mathrm{T}}+u_{\mathrm{r}}+u_{\mathrm{H}}, \\
& \text { با بازنويسى آنها نتيجه مىشود } \\
& u_{\varphi}+u_{r}+u_{\varphi}+c_{1}=0, \\
& u_{1}+u_{r}+u_{q}+c_{v}=0, \\
& u_{1}+u_{\mathrm{q}}+u_{\mathrm{q}}+c_{\mathrm{r}}=0 .
\end{aligned}
$$

 كدوازه در يکى كدوارٔة x نتيجه ميدهد:

$$
\begin{equation*}
x H^{T}=0 \tag{8.9}
\end{equation*}
$$

 حاصلضرب اسكالر (دأخلى) آنها برابر صفر باشد.
 ماتريس كدوازة: توليد شده توسط G متعامد نسبت بــه همــة مسطرهاى H اســت، يــا بـه عبـارت

ديگر گسترش يافته توسط G بر زيرفْهاي گـترش يانته توسط H متعامد است. برای يـك كـــــد بيستماتيك با ماتريس مولّد [

$$
\begin{equation*}
H=\left[A^{T}, I_{n-k}\right] \tag{Y.1}
\end{equation*}
$$

با به كار بردن رابطة ه $x \cdot H^{T}$ مستقيهاً نتيبه مىشود كه مجمــوع دو كـدوازه نــيز يك كدوازه است.

$$
\begin{aligned}
\left(x+x^{\prime}\right) \cdot H^{T} & =x \cdot H^{T}+x^{\prime} \cdot H^{T} \\
& =\circ+\circ=\circ
\end{aligned}
$$

ه.

 بردسى مى كنيم (شكل (Y.Q) را بينيد).
 در زمان ارسال رغ داده است. بــراي كدگثـــا

 بلكه تنها به z بستگى دارد هون:

$$
\begin{align*}
S & =y \cdot H^{T} \\
& =(x+z) \cdot H^{T} \\
& =x \cdot H^{T}+z \cdot H^{T} \\
& =z \cdot H^{T} .
\end{align*}
$$

بنابراين اكر $S=0$ به سادگى مىتوان بــا بـازبينى كــردن خطــا را مشـختص كــرد. اكر

كه به عنوان نتيجه $S=0$ را مىدهــد و از ايـن رو يــى خطــاى غـير قــابل تشــخيص را مىدهد.

شكل Y. 4 كانال جمعى

 در اين صورت هشت نمونه خططاى z ممكن وجود دارد؛ يعنى هيــِّ خطـــا (ه

 اكنون مىتوان يس از تعيين S با يافتن بردار خطاى متناظر در جدول و اضافه كردن آن آن به وازُٔ دريافت شده y (به هيمانه يكى از نمونههاى خططا، z، به كدوازء (در اين روش جدول دأده شدهُ زير را به دست مى آوريم

S	z
000	000000
001	0000001
010	0000010
100	0000100
111	0001000
101	0010000
011	1000000

F 9.9
فرض كنيد (0) $y=(001 \circ 0)$ دريافت شده است. در اين صورت عارضه عبارت است از

$$
S=(0010010)\left[\begin{array}{c}
011 \\
101 \\
110 \\
111 \\
100 \\
010 \\
001
\end{array}\right]=(100)
$$

از اين رو، نتيجه مىشود كه y يكى وازه نيسـت. از جدول داده شـيــده در بـالا نتيجسه مى شود كه كدوازه كد گشايع شده صسيح نتيجه مىشود

$$
x=(0010110) .
$$

در مثال داده شده در اين جا تعداد مقادير غارضه برابر با تعداد بردارهاى خطا با وزن حدآكثر يك مىباشد.
 يكـ وازء́ دلنواه a به طول n مجموعة $a+C$ به صورت زير

$$
\begin{equation*}
a+C=\{a+x \mid x \in C\} \tag{9.9}
\end{equation*}
$$

را يكي هم مجموعةء C مىنامند. همة اعضاى هممجموعه داراى عارضة يكسانى هستند چون

$$
(a+x) \cdot H^{T}=a \cdot H^{T}+x \cdot H^{T}=a \cdot H^{T}
$$

 مىشود. مار دارد. هر هم مجموعه شامل r عض

 از
براى تعيين بردار خطـــاى مناســــب از ايــن
 در اين جا، احتمال يكى بردار خططاى معين برابر است با

كدهاى تصصيح كنندة خحطا

$$
p(z)=\prod_{i=1}^{n} p\left(z_{i}\right)
$$

كه در آن

$$
\begin{gathered}
p\left(z_{i}=0\right)=1-p \\
p\left(z_{i}=1\right)=p
\end{gathered}
$$

اگر بردار خطا شامل t خططا باشد در اين صورت احتمال حنين بــردار خطــــى برابـر
است با

$$
p(z)=p^{t}(1-p)^{n-1}
$$

هِ
بردارى با كمترين مقدار t است، يعنى با ككترين وزن مىباشد. از ايـــن رو بــه الگوريتــم كد گشايى زير ميرسيم:

- عارضi
- بردار مينيمب وزن z را در هر مجموعهُ متناظر با S به دست مى آوريم. - فرض ميكنيم

$$
G=\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1
\end{array}\right],
$$

در حالى كه ماتريس بررسى توازن به صورت زير مىباشد

$$
H=\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 1
\end{array}\right]
$$

جهار عارضه يعنى
 براى عارضهُ معينّى صدق هى كند. ماتريس با جلول زير داده شده اســــت و آن را ماتريس استانلارد ميناميم

S	00000						
00	00101	01001	01100	10011	10110	11010	11111
0	01	00001	00100	01000	01101	10010	10111
10	11011	11110					
10	00010	00111	01011	0110	10001	10100	11000
111101							
11	10000	10101	11001	1100	00011	00110	01010

سطرهاى اين ماتريس هممجموعة C هستند. سـطر اوّل خــود كــد اسـتـ. بـردار بــا

 $y=$ = صورت يـام فرض شده به (01100) واضع است كه نصحيح خططا تنها اگر الگوى خطــا وااقـــا هممجموعـه راهنمــا باشـد درست است.

 موضوع خارج از بحث اين كتاب است و در اين جا بيشتر توضيح داده نخواهد شد.
F. 9

 است. يكى كد همينگ شامل باتريس بردسى توازن (\times ×r) يك كد (از اين رو براى r=r به r بست مى آوريم

$$
H_{\mathrm{r}}=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

ماتريس مولّد براى اين كد عبارت است از:

$$
G_{\mathrm{Y}}=\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right],
$$

كه همجنين نشان مىدهد كه با يحى كد تكرارى نيز سرو كار داريــــم. بنــابراين، مسـتقيماً
 برای r r r ، به همين طريق به دست مى آوريم

$$
H_{r}=\left[\begin{array}{lllllll}
0 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1
\end{array}\right],
$$

كه در آن ستونها طررى تنظيم شدهاند كه يک كد سيسـتماتيكى بـه دسـت آمــده اسـت. ماتريس مولّد متناظر آن عبارت است از

$$
G_{\mathrm{r}}=\left[\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

اين كد-همينگ (v,f) قبلا" در اين فصل به عنوان يكى مثال به كار برده شده است و

病 مىتواند تصحيع كند.

با مرتب كردن ستونهاى H ماتريس بررسى توازن به ترتيب صعودى مقدار دودويى، الگوريتم كد گشايى سادة زير به دست مى آيد
عارضة ا ا 1 r(الف).
Y(ب).
كه دقيقاً يك اشتباه انجام شده باشد).

$$
\hat{x}=y+z \quad r
$$

مثال
ماتريس

$$
H_{r}=\left[\begin{array}{lllllll}
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right]
$$

Q.9 تمرينها
1.9 بررسى توازن ()

$$
G=\left[\begin{array}{lllll}
1 & 0 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 1
\end{array}\right]
$$

(الف) كدوازهها، وزن آنها و فاصلة همينگ آنها را تعيين كنيد.
(ب) (ب) ماتريس بررسى توازن را تعيين كنيد.
(؟)

$$
\begin{equation*}
(01000),(00101),(10010),(11111), \tag{ت}
\end{equation*}
$$

كدوازة (11010) توليد شده است، با نمونة خططاى زير د گرشكلى كدام است: (10010). كدوازء دريافت شده را تعيين كنيد و حه تصحيحى بد كار خواهيد برد. تصميم را
Y.Q

داده شده با دو

$$
\begin{aligned}
& x_{1}=b_{1}, \\
& x_{\mathrm{r}}=b_{r}, \\
& x_{r}=b_{r}, \\
& x_{\mathrm{r}}=b_{\mathrm{r}}+b_{\mathrm{r}}, \\
& x_{2}=b_{1}+b_{r}, \\
& x_{s}=b_{1}+b_{r},
\end{aligned}
$$

(الف) كدوازهماى اين كد را تعيين كنيد.
(ب) H ماتريس بررسى توازن يا كنترل را تعيين كنيد.
(ب) G
(ت) ذاصلة همينگ كد را به دست آوريد.

※.q

(الف) H ماتريس كنترل كد را بدهيد.
(ب) G ماتريس مولّد كد را به دست آوريد
(ب) (ب) فاصلة همينگ كد را تعيين كنيد.
(ت (ت) جند خطا مىتواند تشنيص دهل و جند خطا مىتواند تصحيع كند؟ جوابتان را شـــرح دهيد.
 عارضه بازى مى كند به دست آوريد.

يكى كد بلوكى خطى داراى ماتريس بررسى توازن زير است 9

$$
H=\left[\begin{array}{lllllll}
1 & 1 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

(الغ) اين كد شامل جند كدوازه است؟ (ب) (باتريس مولّد سيستماتيك كد را به دست آوريد.
 بردارهاى (100000)
-
 تعيين كنيد.

8.1
1.4 زير منجر مىشود

x	$\omega(x)$
10111	f
01101	r
11010	r
00000	0

فاصلة ثمينگ بين كدوازهها در ماتريس متقارن زير نشان داده شده است

$$
\left[\begin{array}{llll}
0 & r & r & \psi \\
r & 0 & \psi & r \\
r & \varphi & 0 & r \\
\psi & r & r & 0
\end{array}\right]
$$

(ب) (باتريس بررسى توازن را برای هر x x مى توان باه x بــه دمـــت آورد. فـرم كلى H عبارت است از

$$
H=\left[\begin{array}{lllll}
a & b & 1 & 0 & 0 \\
c & d & 0 & 1 & 0 \\
e & f & 0 & 0 & 1
\end{array}\right]
$$

كدهاى تصـصيع كنندة خا
با كمك ج $x \cdot H^{T}=0$ به دست مى آوريم

$$
\begin{aligned}
& a=1 \quad: 1 \quad \text { كدواز } \\
& c=1 \\
& e=1
\end{aligned}
$$

$$
\text { كدوازءة } b=1 \quad: \quad
$$

$$
d=\circ
$$

$$
f=1
$$

ماتريس H حاصل برابر است با

$$
H=\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

 خطاى ذكر شده به دست مى آيد [10] 101.
 از اين رو كدوازء́ دريــافت شــلـه (0) (0) مىباشد.
 ايـن بــردار را بسه عنــوان بــردار خخطـا در نظــر مى مفروض ($\hat{x}=y-z(s)=(000000$ مى Y. 9

$$
\begin{aligned}
& a+b=1 \quad \text { كدواءة } \\
& c+d=1 \\
& e+f=\text { 。 } \\
& \text { كدوازء: }
\end{aligned}
$$

(ب) ماتريس كنترل H برانى هر كدوازة x x بايد در $x \cdot H^{T}$ صدق كند، نتيجه مىشود ك

$$
H=\left[\begin{array}{llllll}
0 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 1
\end{array}\right]
$$

$$
G=\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 0
\end{array}\right]
$$

$H=\left[A^{T}, I_{n-k}\right]=\left[A^{T}, I_{r}\right]$ اين نتيجه نيز هى تواند با نوشتن H به

كه S را راز $x=u . G$ نتيجه بغيريّم.
(ت (ت (ت برابر

$t=[(d-1) / r]=1$
P. اين رو ماتريس كنترل به صورت زير دأده شده است

$$
H=[1111]
$$

صورت زير مىباشد

$$
G=\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

(ی) كدوازّهها به صورت جدول زير داده شدهاند

uplo	$x 0 j 1 g$
000	0000
001	0011
010	0101
011	0110
100	1001
101	11010
111	1111

براى این ناصله همينخگ $d=Y$ نتيجه مى شود.
(ت (ت هون (

$$
\text { كرد خونه } t=[(d-1) / r]=0
$$

 " آوريم

H (الف) در اين جا مدكن است يادآورى كرد كه با در نظـــر گرفتـن مــتريس

 نتيجه مىشود
(ب) ماتريس مولّد G به دست آمده از H عبارت اسـت از

$$
G=\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 1
\end{array}\right]
$$

(ب) (ب) براى كدوازة
 دريافتشده بايد تصحيع گردد. بنابراين كدوازءة مفروض (1100001) و ويام ارســــال

شله (1100) ميباششل.
كدوازة
 است. يِيام ارسال شده (1001) مىباشد.

ها.1. رمزنگارى و تحليل رمز

 رمزكدارى و رمزكثـا بي بيامها می يريردازد.

 كك موجب شده تقاضا براى روشهاى رمزى كردن بيامها خارج از ارتش يا يا محيط سياسى نيز گسترش يابد. براى ارائئ يك مثال، كابل تلويزيون را كه در اصل تنها مشترى مشترك با بايد تادر به

قبوليهاى بانكى و غيره است كه همة آنها ابزارهاى رمزنگارى را به كار مىبرند. به مسائلى كه مربوط به محانظت شخصى است فكر كنيد. به علَت گكـــــترش شـا

 محانظت شوند. مهكن است همچنين بخواهيم در زمان انتقال دادهها (متن، گنتار، ويديو) از طريق شبكههاى ارتباطى، مانع استراق سمع شويم.

 آنها به كاربرد مفاهيم يافته شده درمنظرية اطللاع تأكيد مىشود.

 بخشهاى بعدى ارائه خواوهيم كردر
 مجموعه كليدهاى مسكن توليد مىشود بنابراين داريم

$$
C=T_{K}(M)
$$

 يعنى داريم $M=T_{K}^{-1}(C$. معمولاً فرض مىشود كه تبديل خودش معلوم اسـت، ولــى كليــد معلوم نيست
هدف تحليلگر كشفف كليد متن رمزى يا كشف مستقيم متن ساده اســــت. در آينــده

 سه نوع اقدام تحليلخرانه روى ميستم رمزى متناظر با طبيعت اطلِع كه تحليلگر بــــايد به آن دسترسى یيدا كند مىتوان صورت داد. اين سه نوع اقدام عبارتند از

- اتدام فقط با متن رمزى
- أدام با متن ساده -معلوم - اقدام با متن ساده -انتخابى

در رويدادى كه تحليلحُر نتط متن رمزى را دارد (ييام رمزى شده)، بايد ســـمى كنــد

 فقط با متن رمزى است.
در وضعيتى كه در آن علاوه بر داشتن متن رمزى تحليلگُر دربارةٌ متن سادة نظير نيز اطلاعى دارد خيلى رضايتبنششتر از وضعيت تبلى است. تحليلگر اكنون از طريت آگاهى از در در دا

تركيباتي از قطعاتي از متن رمزى و متن ساده مىتواند سعى كند تسمتـى از متـن رمــزى را كه براى آن متن ساده نظير معلوم نيست كد گشايع كند (اقدام با متن ساده -معلوم). وتتـى تحليلخر موفت به نفوذ در سيستم رمزى يا كاربر سيستم شده باشد وضعيتهـــايـى كــه در آن

 تحليلگر بداند در كجا اطلاعات راجع به بانكى، شماره حساب و غيره در متن رمزى مخفـــي شدهاند، در اين صورت مىتواند بكوشد بقية متن رمزى را براساس اين آكاهى رمز گشـــايع كند.
رضايتبخشترين وضعيت براى تحليلگر وتّى اتفاق مىانتد كه تحليلڭر مىتواند متن ساده را خودش انتخاب كند و مىتواند اين متن را با متن رمزى حاصل مقايسه كند (اتـــدام
 وازه در بين وضعيتهاى ديگر رخ دهد.
وتتى روشهاى رمزنگارى به كار برده مىشوند طبيعتــا اصــلاع سيســتم ترجيــع داده
 مىباشد. سيستمى كه به نظر میرسد در مقابل اقدام متط با متن رمزى در امان المت لزومـــى
 اقدامى را براساس متن ساده -انتخابى باقي نگهدارد در سطلح بالاترى از سيستمى كه مى میواند اقدامى را نقط براساس متن رمزى باقى نگدوارد مورد توجّه ترار مى گيرد.

 ذخيرهسازى و كاربرد راجع به ارسال تقسيـم كرده درد
 نوار مغناطيسى انديشيد. در اين حاللت اغلب روشى كه از طريـــت آن دادههــا يــا نرم|فــزار ذخيره مىشود، شناخته شدهاند، ولى كليد شنأخته شده نيست. در اين جا اما اقدام تحلِيلگر جالب الست زيرا اغلب دادهها براى مدتت زمان طولانى ذخيره شدهاند. از ايــن رو تحليلگــر بـراى يانتن كليد نمونه زمانى دارد.
در حالت ارسال (تلفن، تلويزيون، از طريت كابل يا ارتباط ماهوارهاى) شعمــولاً تنهــا

اين، تعويض كليد خيلى سادهتر از حالت ذخيره رغ مىدهد. به علاوه، در ارتبـــاط كــابلى،

 رمز گشايى لازم دارد خيلى كالهش يانته باشد.
P.1.

دو روش اساسى رمزى كردن مىتوان تشخيص داد

- رمزىكردن كرومى - رمزعكردن بلوكى

 مى شود.

 رمزى كردن بلو كى در سطع بسيار وسيعى بـ كار برده مىشود.

$$
\text { حدود 510 } 10^{18}
$$

 صورت سرى از انتقالها و بايگزينين، در نظر بارينر گرفت.

 ديگرى جايگزين مىشوند.

رمزهاى انتقالى

the invasion will begin متن ساده:
thein vasio nwill begin
تقسيم به بلو كها:
ehnti saovi iwlnl genbi

 rralf

the invasion will begin
متن ساده:

thein ehnti
vasio saovi
nwill iwlnl
begin genbi
ehnti saovi iwlnl genbi
متن رمزى:

روشن است كه بيام رمزى را مىتوان با تعويض ستونها بر طبت كليدوازه بــه دسـت

اكنون مىتوان انتقال رمز را به صورت كلىىتر به طريت زير شــرع داد. بـراى يـــي

متن رمزى خواهد داد كه با متن ساده يكى است.
در مثالى كه در اين بخش ارائه شد طول مدّت برابر ه است بدين معنا كـه

به طرر كلى تحليلگر در رمزهاى انتقالى با طول دوره بزر بز

 حروف ساختگى به متن ساده انزوده شدهاند مستثنا نشده باشد، هنوز هم بايستى تر كيبهـا بيشترى از n و T را امتحان كند. مسألذ دوم اين است كه وتتى طول دوره معلوم است كليد را به روشى كه ساخته شده بيابد، بدون اين كه مجبور باشد همه جايگشتهایى ممكن را به طرر كامل آزمايش كند.
 مساله استفاده كند. اگر فراوانيهاى حروف يكى زبان را بررسى كنيم درمىيابيـم كه بعضــى از حروف بيشتر از حروف ديخر ظاهر مىشوند (شكل ((Y.lه) را ببينيد).

 مى كنيم حرون صدادار اغلب توسط حرون بیصراور مصا مهاط شدهاند و بــالمكس. ايسن بديسن معناست كه حروذ صدادار به طور مساوى در سرتاسر متن گسترده خواهند بـــود. منظــور

رمزشناسى
اين است كه وقتى طول دوره را تعيين مى كنيم مىتوانيم Tایى را جستوريو آن ستونهاى حاصل منظمترين توزيع حروف صدادار را را روى ستونها نشان ميدهد. در اين

صورت بعداً در اثناى رمز گشـایى با پهلوى هم قـــرار دادن آن ســـونها تعــداد زيــادى زوج
 كه متن ساده زبان باشد. در غير اين صورت، مشكلتر است.

رمزهاى جايكزينى
 مى شوند. فرض كنيد كه الفبايع شامل غ جايگزين را مىتوان به طور كلى به صورت زير شرح داد

$$
\begin{array}{r}
A=\left[a_{1}, \ldots, a_{\mathrm{rs}}\right] \\
B=\left[b_{1}, \ldots, b_{\mathrm{rs}}\right] \\
a_{\mathrm{r}}, a_{\mathrm{rr}}, a_{4}, a_{1 \mathrm{rv}}, a_{\mathrm{Y}} \\
b_{\mathrm{r}}, b_{\mathrm{rr}}, b_{4}, b_{1 \mathrm{r}}, b_{\mathrm{r}}
\end{array}
$$

الفبا با توجّه به متن ساده:
الفبا با توجّه به متن رمزى:
متن ساده:
متن رمزى:
سادهترين جايگزينى عبارت از جايگزينى ســـزارى' اســـت كـه نــامش بر گرفتــه از
 مثال زير يك انتقال r مكانى به كار برده شده است. الفباى اصلى A:
abcdefghijklmnopqrstuvwxyz
الفباى جايگزين B:
defghijklmoopqrstuvexyzabc
the invasion will begin
مسن ساده:
wkh lqydvlrq zloo ehjlq
متن رمزى:
مشخصّات جايگزينى سزارى آن است كه الفبا يكسان باقى مىماند. تعداد كليدها تنها بالغ بر \&

متناظر با حرف e در متن ساده است.
اكنون اگر به جاى الفبا يا جابهجايـي حروف، الفبايـ اختيار كنيم كه در آن حــرورف به ترتيب دلخواهى ترار داده شدهاند، در اين صورت تعـــداد كليدهـا إع (ع
 مشكلتر مى سازد. به يك مشال تو جن كنيد

الفباى اصلى A :
abcdefghijklmnopqrstuvwxyz
الفباى جايگزين B:
estvfuzgyxbhkweirjalmpdqon
the invasion will begin
هتن ساده:
lgf ywpeaycw dyhh sfzyw
"تّ رمزى:
با وجود إءץ كليد مهكن، هنوز هم حلّ اين گونه جايگزينيها نسبتاً سادهاند. همــانطور

 حروف در متن رمزى به ساد گی به دست آورد.

 استخراج كنيم. بنابراين اغلب بيش از يكـ جايگزينى به كار برده مىشود. در ايــن حــالـت
 است. از اين نتيجه مىشود كه نه يك بلكه تعدادى جايگزين سزار به كار بــــرده مىشـــودو.
 جا شده است و الى آخر.
 انتخابى استفاده مىشود. در جدول ويحنر حروف الفباى متن ساده در رديف بالا تـــرار داده
 انجام مىشود. كليدوازه در زير متن ساده چنان كه در مثال زير نشان داده شده است قرار مى گيرد.
 bedefghijklm nopqrstuvexyza cdefghijklmnopqrstuvexyzab

 f ghijkim nopqretuvexyzabcde ghijklm nopqrstuvexyzabcdef

 l m n o p q r stuvex y zabcdefghijk m nopqretuvexyzabcdefghijkl nopqretuvexyzabcdefghijklm
 p q r stuvex y zabcdefghijkimeo q retuvex y zabcdefghijklmnop retuvex y zabcdefghijklmonop stuvex y zabcdefghijklmnopqr

 w x y zabcdefghijklm nopqrituv
 y zabcdefghijklm no pqrstuvex zabcdefghijklmnopqretuvex y

اكنون حروف ييام رمزى با انتخاب حرفى از جلدول كه در تقاطع ستون با حرف متن ســاد و سطر با حرف كليدوازه ترار دارد به دست مى آيد.

نتيجه اين است كه يك حرف در متن ساده مىتواند بــا حـروف متفـــاوتى در متــن رمزى در ارتباط با حرف كليدوازه نشان داده شود. به اين علت، مشخْصـات زبــــان بهــتر از

 كليدوازه همانطور كه در زير شرح داده شده استفاده شود the invasion will begin متن ساده:
rad iotheinv asio nwill
khh qbohwqbi watz oaoty
متن رمزى:
يس از به كار بردن كليد " radio " متن ساده خود نيز باعنوان كليد امــــتفاده ثـــده

 كدنمادها داراى احتمال رخداد يكسان باشند يكى كد گذارى منبع بهينه حاصل خواهد شد.

F.10 مقدار اطلغع و اطمينان

 واقعاً سيستم رمزى مطمثن جيست شناختى بيدا كنيم.

 را بيان كرد.
متدار اطلاع در متن ساده به صورت زير فرمولبندى مىشود

$$
\begin{equation*}
H(M)=-\sum_{i=1}^{n} p\left(M_{i}\right) \log p\left(M_{i}\right) \tag{1.10}
\end{equation*}
$$

كه در آن مقلدار اطلاع متن رمزى كه با $H(C)$ نشان داده مىشود و مقدار اطـــلاع $H(K)$ مربــوط بـه كليدها را به ممين روش بيان كرد ري
در روشى مشابه، مىتوان مقدار اطلاع شرطى را نيز بيــــان كـردد. اگــر دربـارة متــن رمزى C آگاهى داشته باشيم، كه به /يهام كليل نيز مشهور امت، در اين صورت معدار اطلاع يا عدمحتميت با توجْه به كليد است. آن را مىتوان به صــورت زيـر تعريـفـ
 ممكن باشند، در اين صورت داريم

$$
H(K \mid C)=-\sum_{h=1}^{l} \sum_{j=1}^{m} p\left(K_{h}, C_{j}\right) \log p\left(K_{h} \mid C_{j}\right)
$$

به طور مشابه، H(M|C) مقدار اطلاع يا عدمحتميت مربوط به متـن مــاده M بـراى
 به طور مشابه معدار اطلاع متن ماده وتتى هر دو متن رمزى و كليد معلومند در نظر گرفت. حون متن ساده توسط متن رمزى و كليد، بدون ابهام تعيين مىشود، داريم

$$
H(M \mid C, K)=0
$$

اگر دسترسى به متن رمزى و كليد داشته باشيم، ممكن امنت متن ساده را نـــيز تعيـــن كرد. در اين صورت عدمحتميت دربارة M برابر صفر است.
 هعلوم بودن متن ماده و متن رمزى مىباشد. 1.1. برابرى زير براى ايهام حضور كليد برترار مىباشد:

$$
\begin{equation*}
H(K \mid M, C)=H(K \mid C)-H(M \mid C) \tag{F.1.}
\end{equation*}
$$

براساس رابطههاى داده شدهُ قبلى براى مقدار اطللع توأم، مقدار اطللع در متن مـــــاده، متن رمزى و كليد را به دست مى آوريم كه برابر است با

$$
\begin{align*}
H(M, C, K) & =H(M \mid C, K)+H(C, K) \\
& =H(K \mid M, C)+H(M, C)
\end{align*}
$$

به خاطر بياوريد كه همجنين داريم

$$
H(C, K)=H(K \mid C)+H(C)
$$

$$
H(M, C)=H(M \mid C)+H(C)
$$

در اين صورت از معادله (0.10) نتيجه مىشود كه

$$
\begin{equation*}
H(M \mid C, K)+H(K \mid C)=H(K \mid M, C)+H(M \mid C) \tag{5.10}
\end{equation*}
$$

تبلا در بالا ديديم كه
 قضيه (1.l) به برخى تفاسير جالبى منجر مىشود. از نقطهنظر كـــاربر بـراى مقــدار بزر گی از H(K|M,C) تلاش مىشود. اگر تحليلگــر هـر دو متـن ســاده و رمــزى رادر دسترس داشته باشل، در اين صورت در هر حالتى بايد مطمئن شود كه عدمرحتميت دربـــــارة
 نتيجه گرنتـ مقدار بزر گى براى H(K|M,C) را مىتوان به دست آورد بــا اطمينــان ايسن
 اين معناست كه عدمستميت كوچكکى درباره: متن ساده M وجود دارد اگر تنهــــا بـه متـن
 در واقع به اين علّت با تنگگنايى مواجه مىشويم. عدمرحتميت زياد در ارتباط با كليد به بهـا عدمحتميت دربارة متن سادة ارسال شده روى مىدهد. بالعكس، يكـ عدمرحتميت بزرگ در ارتباط با متن ساده با عدمرتميت كو جكى در ارتباط با كليد همراه است. با كمك بررسى اين اطلاعات نظرى نتايج مهم ديگرى مىتوان به دست آورد. فرض
 مىشود

$$
\begin{align*}
I(M ; C) & =H(M)-H(M \mid C) \\
& =H(C)-H(C \mid M) \tag{V.1。}
\end{align*}
$$

از نقطهنظر كاربر سيستم رمزى تلاش خواهد شد كه
 اگـر متـن رمــزى مطلقــأ هيـع اطلاعـى دربـارة متـن ســاده ندهــد، در ايـن صـــــورت (V.lo) نتيجه مىشود كه اطلاع متقــابل بيـن متـن ساده و متن رمزى برابر صفر خواهد شد. يك سيستم رمزعى عطلةاً مطمُن داريم اگر

$$
I(M ; C)=0 .
$$

رابطةٔ مهمى براى سيستمهاى رمز گذارى در قضية زير اراثه شده است.
قضيd
فرض كنيد I(M;C) اطلاع متقابل بين متن ساده و متن رمزى باشل، در اين صــورت
داريم:

$$
\begin{equation*}
I(M ; C) \geq H(M)-H(K) \tag{9.1.}
\end{equation*}
$$

برهان

از معادلة (٪.lo) مىتوان به دسـت آورد كه

$$
\begin{equation*}
H(K \mid C) \geq H(M \mid C) \tag{10.10}
\end{equation*}
$$

و بنابر تعريف

$$
\begin{align*}
& H(K) \geq H(K \mid C), \\
& \text { از نرمول ((10.1.) نتيجه مىشود كه } \\
& H(K) \geq H(M \mid C) \text {. } \tag{11.10}
\end{align*}
$$

اگر اين معادله را با معادلة (V.lo) تر كيب كنيم در ايـــن قــورت فرمـول ((\$.10)
بىدرنگ نتيجه مىشود .
رابطة فرمول (1.1.) واتعاً بيان مى كند كه مجموعهاى از كليدها كـــه شــامل اطــلاع

كتي (به طور متوسط) است يك اطلغع متعابل بزرگ ممكن بين متز ساده و متن رمـــزى
مىسازد.
اطمينان مطلق، يعني $1(M ; C)=0 ،$ تنها در حالتى به دست مى آيد كه

$$
\begin{equation*}
H(K) \geq H(M) \tag{IY.I。}
\end{equation*}
$$

بنابراين اطللع در كليد حدآتل بايستى به اندازة اطللع در متن ساده باشد.
0.1.

در بخش قبل طول متن رمزى جدا شده توسط تحليلگر منظور نشده است. با اين حال از اهميت خاصى برخوردار است. فرض كنيد كه متن ساده مربوط به زبان است. ممانطور

 را رمز گشايى كند.
به طور كلى درست است كه هر هیه متن رمزى بزر گترى در اختيار تحليلگر باشد، او با استشال بيشترى تادر خواهد بود كه كليد را به دست آورد. اگر متن رمزى به طول L ر ا

با كليد استفاده شده عدمرحتهيت داريم.

 اگر L انزايش يابد تعداد بيامهاى ممكن سريعاً انزايش خواهد يام يانت و بنابراين ايهـام هيـام

 محتملترين ريامها بشود. اندكى يس از اين نتطه حتى ايهام هيام منطبت بر ايهام كليد خواهـــد
 شده با ممان اطمينان مىباشد و بالعكس.

شكل • F.I- كليد، بيام و ايهام حغور كليد به عنوان تابعى از L
مسير ايهام حضور كليد $H\left(K \mid C^{L}, M^{L}\right)$ نيز در يك شكل رسم شده است. به طـــــــور

 معلوم براى كليد است، در حالى كه ايهام كليد و بيام اندازها

 بزر گتر مىشود، احتمال اين كه تحليلگر تادر باشد كليد يــا متـن ســاده را بيــابد افزايـش مى يابد.

فرض كنيدع تعداد نمادهاى مختلغ در يك بيام يا متن رمزى به طول L باشد. براى
ايهام كليد داريم

$$
\begin{equation*}
H\left(K \mid C^{L}\right) \geq H(K)-D_{L} \tag{Ir.10}
\end{equation*}
$$

كه در آن DL حشو مطللت ناميده مىشود كه به صورت زير تعريف مىشود

رمزثُنامى
ryr

$$
\begin{equation*}
D_{L}=L \log (\varepsilon)-H\left(M^{L}\right) \tag{1F.10}
\end{equation*}
$$

برهان
ثون يكى رابطة بلون ابهــام بيـن متـن سـاده و متـن رمـزى وجــود دارد همـواره خواهيم داشت كه

$$
H\left(K, C^{L}\right)=H\left(K, M^{L}\right)
$$

تحت اين شرط كه كليد از چيام منبع مستقل است، بنابراين براى ايهام كليد داريم

$$
\begin{align*}
H\left(K \mid C^{L}\right) & =H\left(K, C^{L}\right)-H\left(C^{L}\right) \\
& =H\left(K, M^{L}\right)-H\left(C^{L}\right) \\
& =H(K)+H\left(M^{L}\right)-H\left(C^{L}\right) \tag{10.10}
\end{align*}
$$

هون ε تعداد نمادهاى مختلف يِك پِيام يا متن رمزى است، رمزى به طول L وجود دارند. براساس وير گِهاى اندازة اطللع مىتوان ثابت كرد كه

$$
H\left(C^{L}\right) \leq L \log (\varepsilon)
$$

با اين رابطه و با كـك معادلة (0.10) نتيجه مىشود

$$
\begin{equation*}
H\left(K \mid C^{L}\right) \geq H(K)+H\left(M^{L}\right)-L \log (\varepsilon) \tag{19.10}
\end{equation*}
$$

 در آن هر پیام با احتمال برابر رخ میدهده، دارد، در نظر گرفت. این دقيقاً وابسته به تعريف حشو در معادلة (Y.Y) مىباشلد كه در واتع اندازة حشر حشر نسبى است.

 كرد. اگر طول بيام رمزى كوچڭى باشد اين مطلب رخ مىدهد، اين مطلب با فرض این كه

منبع بيام بى حانظه است و در رابطه زير صدق مى كند مشخص مىشود

$$
\begin{equation*}
H\left(M^{L}\right)=L H(M) \tag{IV.10}
\end{equation*}
$$

يعنى، معدار اطلاع در هر بيام L برابر مقدار اطلاع در هر نماد ماد مىباشد

$$
\begin{equation*}
H\left(K \mid C^{L}\right) \geq H(K)+L[H(M)-\log (\varepsilon)] \tag{11.1०}
\end{equation*}
$$

از اين رو ايهام كليد مىتواند روىهمرفته صفر شود اگر

$$
\begin{equation*}
L \geq \frac{H(K)}{\{\log (\varepsilon)-H(M)\}} . \tag{19.10}
\end{equation*}
$$

 كاربرد مفاهيم در نظرية اطلاع توجّه به متوسط مقدار اطلاع، امرى ذاتى است.
.
 آن بيامهاى به متن رمزى C انتقال داده مىشوند
فرض كنيد كه منبع بى حانظه باشد و نمادها از الفباى احتمال رخداد زير توليد مىشوند:

$$
P=\left(\frac{1}{r}, \frac{1}{4}, \frac{1}{A}, \frac{1}{1 s}, \frac{1}{\mu Y}, \frac{1}{s F}, \frac{1}{1 r A}, \frac{1}{\mid r A}\right)
$$

(الف) مقدار اطلاع در متن ساده را تعيين كنيد. همحنين مقدار اطــلاع در متـن رمـزى را

رمزشُناسى

بيابيد.
(ب) متدار اطلاع در كليد را به دست آوريد.
(ب) (ڭاصلة يكتايع را بيابيد.
(ت) (تاصلة يكتايى را وقتى جايگزين سزار به جاى جايگزين كلى به كــــار بـرده شـــده
است تعيين كنيد.
Y.l。

تبديل T، كه وابسته به كليد K است، به متن رمزى C ارسال شده است.
فرض كنيد كه منبع اطلاع بى مافظهالى كه متنهاى سادهالى شامل نمادهايى از
الفباى $V=\left(v_{1}, v_{v}, v_{r}, v_{4}\right)$ را توليد مى كند به كار برده است. احتمالهاى نمادها بـسه
صورت زير داده شدهاند

$$
p_{1}=\frac{V}{15}, \quad p_{r}=\frac{r}{15}, \quad p_{r}=\frac{Y}{15}, \quad p_{4}=\frac{F}{15}
$$

براى رمز گذارى يك جايگزين تكالغبايى به كار برده شــده اســت. فـرض
شده است كه هر الغباى جايگزين داراى احتمال رخداد يكسان است.
(الف) معدار حشو مطلت در متن ساده و متدار اطلاع را در كليد محاسبه كنيد. (ب) (باصلة يكتايى براى اين حالت را مهاسبه كنيد و تغسيرى از نتيجه ارائه نماييد. اكنون فرض كنيد براى رمز گذارى متن ساده دو نماد متوالى متن ســـــاده بـــ

$$
. U=\left(u_{1}, u_{r}, u_{r}, \ldots\right) j
$$

(پ) ارزيابى اندازهٔ اين الفباى جايگزين را بايد داشته باشيم. هر معدار اطلاع در كليــد و حشو متن ساده را محاسبه كنيل.
فاصلة يكتايى را در اين حالت مهاسبه كنيد و اختلاذ با ناصلــه يكتـايى مهاســبه شده در (ب) را شرع دهيد.

Ys F.lo
 آنترويه
 شده است.
(الف) مقدار اطلاع در كليد را از نقطه نظر تعليلگر در حالتى كه او مىداند كه كليــدوارّه شامل V حرف است ولى نمىداند كدام حرو نيند محاسبه كنيد.
 (ب) (باملث يكتايى را در حالت (الف) محاسبه كنيد. (ت) هـحنين فاصلة يكتايى را در حالت (ب) محاسبه كنيد. اختلاف را شرح دهيد.

، $H\left(M^{L}\right)=L H(M)=L H(U)$ (الف) 1.10 كانى است مقدار اطلاع را در سطع نماد بررسى كنيم. برایى متن ســـاده بــه دســت مى آوريم

$$
\begin{aligned}
& H(M)=H(U)=-\sum_{i=1}^{\hat{1}} p\left(u_{i}\right) \log p\left(u_{i}\right) \text { نماد / بيت. } \\
& =-\frac{1}{r} \log \frac{1}{\varphi}-\frac{1}{f} \log \frac{1}{\gamma}-\frac{1}{A} \log \frac{1}{A}-\frac{1}{1 s} \log \frac{1}{1 s}-\frac{1}{\mu r} \log \frac{1}{p r} \\
& -\frac{1}{S F} \log \frac{1}{S F}-Y \times \frac{1}{1 Y A} \log \frac{1}{1 Y \Lambda}=1,9 \Lambda \text {. }
\end{aligned}
$$

 نمادهاى متن رمزى وجود دارد براى مقدار اطلاع در متن رمزى داريم كـي كـ

$$
H(C)=H(M)=1, \uparrow \wedge \text { نماد / بيت. }
$$

(ب) تعداد كليدها إه است (به طور دقيقتر ا-إه، به استيناى كليدى كه منجر به برابـرى متن رمزى با متن ساده مىشود). اطلاع كليد نتيجه مىدهـ $H(K)=\log \Lambda!=1 \Delta$, ra بيت.
(ب)

$$
U D=\frac{H(K)}{\log (\varepsilon)-H(M)}
$$

كه در آن ع سجم الفباى منبع است.

رمزشناسى

$$
U D=\frac{1 \Delta, 74}{\log \Lambda-1,4 \wedge} \approx 1 \Delta .
$$

اين متوسط مىنيمم تعداد نمادهاى متن رمزى لازم براى يافتن كليد از متن رمــزى
اسـت.
(ت) تعداد كليدها براى جايگزين سزارى برابر ^ است. اكنون، ناصلة يكتـــــى كــاهش
مى يابد به

$$
U D=\frac{\log \Lambda}{\log \wedge-1,9 \wedge} \approx r .
$$

Y.l (الف) براى اطلاع از متن ساده داريم كه

$$
\begin{aligned}
H(M)=H(V) & =-\frac{V}{18} \log \frac{V}{18}-\frac{r}{18} \log \frac{r}{18}-\frac{r}{18} \log \frac{Y}{18}-\frac{f}{18} \log \frac{f}{18} \\
& \approx 1, \lambda \Delta \text { نماد / بيت. }
\end{aligned}
$$

حشو مطلت برابر اسـت با

$$
D=\log (\varepsilon)-H(M)=\log f-1, \lambda \Delta \approx \text { نماد / بيت }
$$

تعداد كليدها !٪ (يا ا- F!) اسـت و از اين رو جون آنها هماحتمالند داريم

$$
H(K)=\log \uparrow!=\log \gamma 千 \approx f, \Delta \wedge \text { بيت. }
$$

(ب) ناصلة يكتايع برابر است با

$$
U D=\frac{H(K)}{\log (\varepsilon)-H(M)}=\frac{f, \Delta \wedge}{0,1 \Delta} \approx r 1 .
$$

(ب) جهون الفباى اصلى از جهار نماد وجود دارد، با تركيب دو نماد منجــر بــه ءا نــــاد تر كيب شده جديد مىشود.
اكنون، حجم الفباى جايگزين بايد ءا باشد و از اين رو براى مقدار اطــلاع در كليد به دست مى آوريم

$$
H(K)=\log \mid s!=f f, r \text { بيت. }
$$

به طور كلّى، حشو مطلت براى پيامها به طول L در حالت منبع بىحافظه برابر
است با

$$
D_{L}=L \log (\varepsilon)-H\left(M^{L}\right)
$$

در حالت موجود به دست مى آوريم

$$
D_{Y}=r\{\log -H(M)\}=r D=0,{ }_{0} \text {. }
$$

با تركيب زوج بيامها منجر به فاصلة يكتايى مىشود

$$
U D=\frac{H(K)}{D_{L}}=\frac{F F_{0}, \psi_{0}}{0, \psi_{0}}=1 \not+\lambda .
$$

براى اين كه اين ر! با نتيجهُ تسمت (ب) مقايسه كنيم بايد اين فاصلة يكتايـى
 برابر طول در حالت (ب) مىباشد. روشن امست كه حشو در هر نماد تغيير نمى كنـــد

تعداد كليدها افزايش يافته است.
P.l.

$$
Y \varepsilon \times Y \Delta \times Y F \times Y Y \times Y Y \times Y I \times Y_{0}=\frac{Y Y!}{14!}
$$

و بنابراين متدار اطللاع كليد برابر است با

$$
H(K)=\log \frac{r \varepsilon!}{19!} \approx r 1, r w \text { بيت. }
$$

(ب) در حالت كلى به دست مىآوريم

$$
H(K)=\log r s^{V}=r r, q_{0} \text { بيت }
$$

(ب) براى ناصلة يكتايى به دست مى آوديم

$$
U D=\frac{H(k)}{\log (\varepsilon)-H(M)}=\frac{H(K)}{\log r \varepsilon-1, \Delta}=\frac{H(K)}{r, r} .
$$

 است، به طــور كلـى نمــاد كمــترى بـراى يــافتن كليــد لازم امـــت. از ايـن رو . $U D_{a} \leq U D_{b}$

كتابنامه

Abramson, N. (1963), Information theory and coding, McGraw-hill Book Company, New York.
Aczel, J. and Z. Daroczy (1975), On measure of information and their characterization, Academic Press, New York.
Ash, R.B. (1965), Information theory, Interscience, New York.
Azimoto, S. (1971), Information theoretical considerations on estimation problems, Inform. contr. Vol. 19, pp. 181-194.
Bell, D.A. (1962), Information theory and its engineering applications, I. Pitman Ltd, London.
Berger, T. (1971), Rate distortion theory: a mathematical basis for data compression, Prentice-Hall, Englewood Cliffs, NJ.
Blahut, R.E. (1987), Principles and practice of information theory, AddisonWesley, Reading, Mass.
Blahut, R.E. (1990), Digital transmission of information, Addison-Wesley, Reading, Mass.
Boekee, D.E. and J.C.A van der Lubble (1988), Informatiethrorie, Delftse Uitgevers Maatschappij, Delft.
Chaundy, T.W. and McLeod, J.B. (1960), On a functional equation, proc. Edinburgh Math. Soc. Notes, 43, pp. 7-8.
Cover, Th. M., and J.A. Thomas (1991), Elements of information theory, Wiley, New York.
Csiszár, I., Kömer, J. (1981), Information theory, Academic Press, New York.
Daroczy, Z. (1970), Generalized information functions, Inform. Contr., Vol. 16, pp. 36-51.
Fano, R.M. (1961), Transmission of information: a statistical theory of communication, Wiley, New York.
Feinstein, A. (1958), Foundations of information theory, McGraw-Hill, New York.

Feller, W. (1957), An introduction to probability theory and its applications, Wiley, New York.
Gallager, R.G (1968), Information theory and reliable communication, Wiley, New York.

Goldman, S. (1953), Information theory, Perntice-Hall, Englewood Cliffs, NJ.
Guiasu, S. (1976), Information theory with applications, McGraw-Hill, New York.
Hartley, R.V.L. (1928), Transmission of information, Bell Syst. Tech. J., Vol. 7, pp. 535-563.
Jelinek, F. (1968), probabilistic information theory, McGraw-Hill, New York.
Lubbe J.C.A. van der (1981), A generalized probabilistic theory of the measurement of certainty and information (PhD thesis), Delft University of Technology, Dept. E.E., Information Theory Group.
McEliece, R.J. (1977), The theory of information and coding, Addison-Wesley, Reading, Mass.
McMillan, B. (1953), The basic theorems of information theory, Ann. Math. Statist., pp. 196-219.
Nyquist, H. (1924), Certainty factors affecting telegraph speed, Bell Syst. Tech. J., Vol. 3, pp. 324-346.

Renyi, A. (1960), On measures of entropy and information, Proc. Fourth Berkeley Symp. Math. Statist. and Prob., no. 1, pp. 547-561.
Shannon, C.E. (1948), The mathematical theory of communication, Bell Syst. Tech. J., Vol. 27, pp. 379-423 and pp. 623-656.

وازءهنامه

absolute security
Ackoff
additive channels
additivity

- information measure
alphabet extension
alphabetic code
American traditions
amount of information
- maximum
- minimum
arithmetic code
autocorrelation function
autocorrelation matrix
autocovariance
autocovariance matrix
average code word length
average distortion
axiomatic foundations
Azimoto

Bar - Hillel
Bayes' theorem
BEC, see binary erasure channel
binary channel
binary erasure channel
binary informatin source

اطمينان مطلق
آكوف
كانالهاى جمعى
جمع خذيرى

- اندازة اطلاع

توسعه الفبا
كد الفبايى
سُنت امريكايى مقدار اطلغع
 - مىنيمم (كمينه) كد حسابي
 اتو كوواريانس ماتريس اتو كوواريانس متوسط طول كدوازه متوسط دگرشكلى اصول موضوعه آزيموتو بار -هيلل تضية بيز BEC كانال دودوهى
 منبع اططلاع دودويى
binary memoryless information source binary multiplying channel binary symmetric channel
bit
block code, linear
block enciphering
British traditions
broadcast channel

- gaussian
burst errors

Caesar substitution
capacity
منبع اطلاع بى حانظة دودويى كانال هند گانه دودويى كانالل متقارن دودويى بيت

كد بلو كى، نحطى رمزى كردن بلوكى سنتهاى انگليسى كانال بخش ـ نطاهاى ناگهانى جايگزيني سزار ظرفيت
-C of a discrete noiseless channel

- of a continuous channel
- of noiseless channels
- of noisy channels
- region
capacity bounds
carnap
cascading
cascading of channels
channel
- ظرفيت كانال بدون نوف گـريسته - كانال بيوسته - كانال بدون نون كانالهأى نوفهدار - ناحيه كرانهاى ظرفيت كارنَب متوالى
كانالهالى متوالى كانال
- additive
- binary multiplying
- broadcast
- capacity of noiseless
- cascading
- gaussian with memory

- يخش
- ظرفيت بدون نونه
- متوالى

ـ

- model of Gilbert
- two - way
- with memory
channel coding
channel coding theroem
channel decoding
channel matrix
Chaundy
chosen - plaintext attack
cipher
- Caesar
- substitution
- transposition
cipher system
ciphertext
ciphertext - only attack
code
- arithmetic
- block
-Gilbert - Moore
- Hamming distance
- Huffmann
- instantaneous
- Morse
- non-singular
-Shannon
- Hamming
- repetition
code efficiency

- دوطرف
- باحافظه

كد گذارى كانال
نظريه كد گذارى كانال
كد گشايع كانال
ماتريس كانال هاندى
اقدأم با متن ساده -انتخابى رمزى

- سزار
- جانشين - انتقال

سيستم رمزى
متن رمزى
اقدام تنها با متن رمزى كد

- حسابى
- بلوكى
- زيلبرت- مور
- ناصلك هامينگ

- لحظذاى (فورى)

- ناويرهه
- شانون

- تكرار

كارايع كد (كد كارا)
code rate
code word
code word alphbet
coding

- alphabetical extension
- source
coding channel
coding strategies
coding theorem, Shannon's
comma code
communication channel, multi - access
communication model
conditional amount of information
conditional information measure
conditional probability
conditional probability densities
countinuous communication channel
countinuous information measure
converse source coding theorem
correlation
correlation coefficient
covariance
cryptanalysis
cryptography
cryptology

Csiszár

cumulative distribution

D-admissibility
D-مجاز :بون
Daroczy
داروهیىdata compression
تراكم دادههاdata processing theorem
تضية يردازش دادهها
data reconstruction
بازسازى دادهها
data reduction
كاهش دادهها
decipherment
decoding channel
decryption
degraded broadcast channel
dependence redundancy
discrete channel
discrete communication channel
discrete information source- with memory
discrete memoryless (information) source
distortion, averagedistortion matrixdistortion measuredistribution, normal
effective information
efficiency of code كارايع كدكانال يخش تضعيف شده
 رمز كشبايع

كانال كدگشاعـى رمز گشايعى حشُ وابسته كانال گسسته

اطالع كارا
efficient كارارمزى كردن-block

- بلوكى- streamencipherment- گروهى -رمز گذارى
encryptionرمزى
ensemble دامته
ergodic Markov chain
error probability
error - correcting codes
errors - and - erasure channel
expectation

Fano code
Fano's inequality
first coding theorem, Shannon's
frequency-divisison multi-access

زنجير مار كوف ارگوديع
احتمال خحطا
كدهاى تصسحيِ - خطلا
 اميد (ميانگِين)

$$
\begin{aligned}
& \text { كد فانو } \\
& \text { نابرابرى فانو } \\
& \text { قخية: اولّ كدكخارى، شانون } \\
& \text { تقسيم فر كانس خند-مدنحلى }
\end{aligned}
$$

Gallager
gaussian broadcast channel
gaussian channel with memory
gaussian distribution
gaussian signal
gaussian white noise
generator matrix
Gilbert - Moore code

Hagelberger code
Hamming codes
Hamming distance of a code
Hartley
Hartley's measure
High Definition TV
Hintikka
homogeneous Markov chain
Huffman code

كد زيلبرت - مور

كدهاى هامينگگ
فاصله هامينگ يك هـ
هارتلى
اندازه هار تلي
وضوع عالى تلويزيون
هينتيكا
زنجير مار كوف هـغن كد هافهن
inequality of Fano
information

- effective
- selective
- syntactic
information measure
- axiomatic foundation
- conditional
- continuous
- joint
- marginal
- mutual
- of Shamnon
information power
information pragmatic
information semantic
information source, memoryless
information transmission
information transmission theorem
instantaneous code

Jacobian
joint amount of information
joint cumulative distribution
joint information measure
joint probability
joint probability density

نابرابرى فانو
اطلاع

- حاشيهاى
- متقابل
- شانون

توان اطلاع
اطلاع عملى

ارسال اطلاع تضية ارسال اطلاع
كد لحظهاى (فورى)
key appearance equivocation key equivocation known - plaintext attack
Kraft's inequality

Lagrange's method
linear block code

- binary

MacKay
marginal probability
Markov
Markov chain

- amount of information

Markov processes
maximum amount of information
McLeod
mean
measure of information
memoryless channel
memoryless source
message

- most probable
message equivocation
minimum amount of information
model of Gilbert
modulation
Morse code
most probable messages

كليد حضور ايهام
كليد ايهام
اقدام با متن ساده -معلوم
نابرابرى كرافت

روش لاگرانز
كد بلوكى خحطى

- دوتاتى

مكى
احتمال حاشيهاىى
ماركوف
زنجير مار كوف

- اندازه اطلاع

فرايند مار كوف
مقدار ماكسيمم اطلاع
ماكىلود
ميانگين
اندازة اطلال
كانال بىحافظه
منبع بى حافظد

- يحتملترين

ايهام ييام
مقدار مىنيـم اطلاع
الخوى زيلبرت
مدولاسيون
كد مُرس
محتملترين بيام
multi - access communication channel multi - access communication network multiterminal communication networks mutual information measure

كانال ارتباطى، چحند-مدخلى

شبكة ارتباطى جند هِايانهایى اندازة اطلغع متقابل
 نَت

noisy channels
non - gaussian white noise
non- singular code
normal distribution
number of most probable messages
Nyquist
كانالهاى نونددار
نونة سفيد غير گاوسى
كد ناويرْ
توزيع نرمال
تعداد محتملترين بيام
ناى كويست
parity check matrix
period length
plaintext
polyalphabetic substitution
power density spectrum
pragmatic information
prefix code
probabilistic experiment
probability

- conditional
- joint
- marginal

ماتريس بررسى توازن
طول دوره
متن ساده
جايگزينى چندالفبايى
توان جگالى طيفى
اطلاع عملي
كد هيشوند
آزمايش احتمالى
احتمال

probability density functions
probability distribution
probability theory
production
properties of the $\mathrm{R}(\mathrm{D})$ function
rate distortion function

- continuous
- properties
rate distortion theory
rate of transmission
realization
redundancy
Renyi
repetition codes
requirements on information measures
sampling theorem
security
selective information
semantic information
Shannon
Shannon code
Shannon's coding theorem
Shannon's first coding theorem
Shannon's information measure
Shannon's second coding theorem
Shannon - McMillan theorem
sinc - function
source alphabet

تابع چگالى احتمال
توزيع احتمال
نظرية احتمال
محصول
R(D) ويز گِهاى تابع

تابع نرخ دگرشكلى - ييوسته

- وير گِهائى

نظرية نرخ دذرشكلى
نرخ ارسال
مسير
حسُو
رنى
كَدهاى تكرارى
شرايط بر اندازههاى اطلاع

اطهينان
اطلاع انتخابى
اططلاع مفهومى (معانى)
شانون
كد شانون
تضية كدگذارى شانون
تضية اول كد گذارى شانون
اندازة اطلاع شانون
تضيئ دوم كدگذارى شانون
تضيئ شانون مكـميلان
تابع - سينوسوار
الغباى منبع
source coding
source coding theorem
standard deviation
state diagram
state of a Markov chain
stationary
stationary signals
stationary transition probabilities
statistically independent
stochastic signals
stream enciphering
strictly státionary signal
substitution cipher
substitution cipher systems
symbol distortion measure
syndrome
syndrome coding
syntactic information
theorem of Bayes
time - division multi - access
Toeplitz matrix
total redundancy
transition
transposition cipher
transposition cipher systems
trellis diagrams
two - way channels

منبع كد گذارى
تفيّ كد كذاري منع
انتعراف سعيار
نمودار حاللت
حالت زنجير مار كوف كانا (ايستا)
ميگنالهاى مانا
التتمالهاى تغيير حالت مانا
امتعلال آمارى
ميخنالهاى تصادفى
رمزى كردن گروهي
ميگنال اكيداً مانا
رمز جايكزين
صيستمهای رمز جايكزيز
اندازة د گرشكلى نماد
عارضه
كد گذارى عارخه
اللجع تر كيبى

اتريس-تثوهولى سشو كل
تغيير حالت
رمز انتقالى
صيستـهاى رمز انتقالى
دياكرامهاى داربستى رينى
كانال دوطرفه

وازءنامه
MaY
unicity distance
uniform distribution
uniform probability density
uniquely decodable

Van der Lubbe
variance
Venn diagram
Vigenere - tableau
وان-در-لوب

دياگرام ون
جلول ويگنر
weak stationary signal
weight
white noise

- gaussian
- non - gaussian

Z-channel
Z كانال-

راهنماى موضوعى

رامنـاى موضوعى
IVA يكنوانحت -
توليد
C
جايگزينى جندالفبايعى
جايگزينى سِزار rوهr جدول ويگنر هیري 11 جمعيذيرى (جمعى)
ξ
rr

- احتمال توأم

- احتمال يكنواخحت 19F

C
حالت زنجير ماركون
ه. حشو
-

- وابسته 1 1.

2
داروषى دسته دارد
 دياگرام ون ون وه نوردارهای داربستى

بازمازى دادهها عץ
بيت 11
ㅂ
0. بيام

ت

IVA جیگالى احتمال -

- in9 نودهمبستگى

IM، IAV سينوسوار -

- نرخ دگرشكلي

تحليل رمزى
تراكم دادهها هr
sq تعداد محتملترين يـام
تنيير حالت (انتقال) 9 ه

YGF زمان -
Y4F فر كانس -
r.Y توان اطلاع

توسعه الفبا
توزيع:
ir احتمال

- تجمى توأم

IV9 تاوسى -
19. IV9 نرمال

- رمزی مطلقاً مطمئن

سيگنال:
19.

- 1 ماناى فـعيف

سيگنالهاى:

- اكيداً مانا
- تصادفى 1A0
- 1.1 مانا

ش
V شانون
شبكه ارتباطي:
YAF KAY -

ض
|AF AAY ضريب همبستگى
b
طول دوره .
5
IYA ظرفتـت
IYV كانال بلون نوف -

- كانال كيوسته Y Y كانال كاوسي بامحانظه
_ كانالهاى نوفدار - ناحيه - نونه سفيد گاوسى جـمعى ع

$$
\underline{2}
$$

rV. ،19ه ، روش لاگرانز رمز:

- انتقالى -
- جايگزين رمز FDQ رمز ریذارى ros
 رمزنگارى رهز رمزی كردن بلوكى رهع raq رمزی كردن گروهى ra9 رنى
j
زنجير ماركون 1Δ - اركوديك - 1.1 1.1 -
-

1.

سنت:

1. امريكايـ 1. انگليسى -
2. سيسابب سيستم:

- رمز انتقالى ra9،
 ro9 رمزى -
rr. جند گانه دودويِ -
IfY خطا و باكشدگگ -

IfY دودويى

- دوطرفه دوه

YFD كاوسى باحانظه
-
ITV متقارن دودويـ -

- متوالي
- نونهدار

Iff Z -
كاهش دادهها كرانهاى ظرفيت

كد:

- الفباعى
- بلوكى خططى ع
- بلو كى خطى دودي
- تكرارى تر تو
- حسابى عواري
- زيلبرت-مور

$$
\begin{aligned}
& \text { Y4f ارتباطى جند-مدنحلى - } \\
& \text { IYV ارتباطى گسسته ات ارت }
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } \\
& \text { - بى-اكظه } \\
& \text { IfY بی - }
\end{aligned}
$$

$$
\begin{aligned}
& \text { - بخـش گاوسى - } \\
& \text { - جمعى }
\end{aligned}
$$

ε
عارضه
i
فرايند مار كوف 10
فاصله:
PVr.rV. يكتايـ -- هامينگ عباگ

- هامينگ يك كد عبץ

ق
of قابل رمز گشايى به طور يكتا
تضيه:
-ارسال اطللاع أ
Vr اول كد گذارى شانون -

- بيز iه ،

10f يردازش دادهوا -
Ifa دوم كدكذارى شانون V. شانون -مك ميلان -

YF. كد كذارى شانون YVA،rF. ، SV كدگذارى منبع IAV نمونه گيرى ك

$$
\begin{aligned}
& \text { كارا } \\
& \text { كارايى كد } \\
& \text { 1. كارنَب } \\
& \text { كانال: }
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } \\
& \text { نابرابرى فانو } \\
& \text { نابرابرى كرافت } \\
& \text { 1. ناى كويست } \\
& \text { نَت } \\
& \text { نرخ: } \\
& \text { ITV ارسال } \\
& \text { YVA كد - } \\
& \text { نظريه: } \\
& \text { Ir احتمال - } \\
& \text { - اطلاع شبكه } \\
& \text { r\&1 نرخ دغرشكلى - } \\
& \text { نمودار حالت } \\
& \text { نونه: }
\end{aligned}
$$

Tr^ سفيد غير گاوسى -- سفيد گاوسى
-
هارتلى 11

1. هينتيكا

> 9
> YVQ وارون تضية كد گذارى
> إ 1 • واريانس
> واندرلوب
> وزن غته

Publication No. 308

INFORMATION THEORY

Jan C. A. Van Der Lubbe

Translated by DR. H.A. Azarnoosh

