نظـريه انفهازه و انتُقرال

تأليف :

هـسين فضلىي
دكتر فريبا بهرامى

> - ابهرأكى، فريبا،
> سرشنـأسه عنوأن و نام ثيديدآّور
مششخصسات ظلهرى
measure theory and integral.: عنوان به i:خيسبى:
شابكي
ياددأثتت
:وأثه نامهd.
ياددأشت
:اندازهئيري ---نظريه

$$
\begin{aligned}
& \text { QAr•q/aبهs irq.: } \\
& \text { D10/FY•VA: } \\
& \text { MYgAQAl: } \\
& \text { عنوأن و نام هيديدآور } \\
& \text { مشخصشات نشر } \\
& \text { موضوع } \\
& \text { موضونوع } \\
& \text { موضون } \\
& \text { شناسه اكزورده }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ردهمبندي ديويـير } \\
& \text { شُماره كتابشَناسي ملى }
\end{aligned}
$$

نظريه الندازه تام كتاب:.
 ناشر
gevrorvr انتشارات قلم يوسف ناشثر هيكار: .
فريبا بهراكمى - حسين تضلى تاليفت
99519090 سن ليتوگرانى

هابچ.

וول/rq.

نوبت چِاپ:

تيراtً

قيمـت:

شحق جابِ براى ناشر مخثوظ است.

فهرست مطالب

rv	توليد أندازه	9.1
pV		1.7
09	كاردينال مجموعههأى لبكا و برل اندازهينير	11.7
40	مسائل حل شده .	Ir.r
1	م	Ir.r
$\wedge \Delta$	انتكّرال لبكّ	نظريه
No	\%	1.5
$\wedge \wedge$	توابع اندازهیڭير	r.r
99	انتكرال توابع ساده	r.r
1.r	النتكرال توابع ثامنفي	4.4
l1\%	انتّكرال توابع إندازهذير	$0 . \%$
ITr	مقايسه انتكّرال ريمان و لبتِ	9.5
Irr	فضضاهأى	V.F
lff	النواع همترإيى و ارتباط مابيين آنها	A.r
lor	- .	9.5
19 V	. .	$1 \cdot .4$
\|V1		p
IVO		كنامه

هييش گَفتار مؤلفان:

 نظريهمأى مدرن انتگرال توسط ريمان معرفى شد. انتگرال ريمان تعريف طبيعى و نسبتاً ساده از انتگرال است و رياضىدانان، فيزيكدانانن، مهندسان و بسيارى ديگر بطور مكرر از اين انتگرال استفاده مى كنند. اما مطالُعه و تحقيق در آناليز بيشرفته، نياز به نظريهاى از انتگرال با خا خواص بيشترى در

 انتگگرال لبگق موثر واقع شود. هدف اصلمى ما در اين كتاب معرفى مقدماتى نظريهى اندالدازه به منظور مطالههى دقيق و پايهأى انتگرال لبگَ است كه در سالدهاى اخير توانسته است امهميت و كاربرد خود را در توسيع آناليز مدرن نشان دهد.

 فصلههاى بعدى مورد استفاده قرار خواهد گرفتّ. در واقع با توجه به نياز مطالب مورد بحث در فصول آتى به تعاريف و قضايايى مقدماتى در نظريهى مجموعهما و آناليز رياضى و تسهيل در امر ارجاع به
 فصل دوم كتاب به نظريهى اندازه اخختصاص دازد. در ابتدا به ارائهى تأريخچجهى مـختصرى از اين

 اندازْ هذذير ها و فضاهاهى حاصلض

 رساندهايمر

 را را مطالله و كامل بودن اين فضاها را ثابت خوانيم L^{p} همگرايیها و بيان ارتباط مابين آنها خاتمه مىيابد.
كتاب حاضر در حدود \%Vo مباحث درس \& واحدى آناليز حتيقى كارشناسى ارشد را دربر مى گيرد و براى دانشجويان سالل آخر كارشناسى و دانشتجويان سال اول كارشناسى ارشد براى تمامى
 با مباحث اصول آناليز رياضى، برخى مقدمات جبر خطىي و توپوولوزى عمومى آشنا
 خواندن متن قبل از چاپ و ارائهى نظراتى ارزششمند، صميمانه تشكر نماييمـ، در نهايت از تمامى عزيزأن خواننده استدعا داريم نظرات و پيشنهادات خود را با آدرس الكترونيكى زير منتقل نمايند تا در جاپیهاى بعدن مورد استفاده قرار گيرد.
با اميد به اينكه اين كتاب در نظر علاقمندان علم بويزه افرادىى كه به رياضيات عشق میورزند،

```
دكتر فريبا بهرامى - حسين فضلى 
```


bahrami.fazli@gmail.com

OQٌ

罒

هدف از اين فصل مقدماتى، بيان برخى نمادها، اصطلاحات و قضايايى است كه در فصلهانى بعدى مورد استفاده قرار خواهد گرفت. در وأقع با تو جه به نياز مطالب مورد بحث در نصول آتي به مقدماتى در نظريهي مجموعهها و اصولى مقدماتى در آناليز رياضيى و تسهيل در امر ارجاع به قضايا و تعاريف

1.1 نظويهى مجِموعهها

 مجموعهى جهانى به معناى محدود آن در نظر گرفت. ميجموعهى تهى را با نماد \ضنشان ميدهيم

 أز E نيست (x\&E) متمم وابسته به X است, الجتماع دو مجموعه را با EUF و اجتماع خانوادمالى از مججموعهها را با به هورت
 مجموعه را با E و ... نشان مىدهيم. قوانين دمور گان، روابط مابين اجتمأو و أشتراكى خانوادماى

$$
\left(\bigcup_{\alpha \in \Gamma} E_{\alpha}\right)^{c}=\bigcap_{\alpha \in \Gamma} E_{\alpha}^{c} \quad, \quad\left(\bigcap_{\alpha \in \Gamma} E_{\alpha}\right)^{c}=\bigcup_{\alpha \in \Gamma} E_{\alpha}^{c}
$$

تفاضل و تنفاضل متقارن دو مـجموعهى $E-F=E \cap F^{c}$ و . $X \times Y$ ريحموعهى $E \triangle F=(E-F) \cup(F-E)$
 اعيداد صحيح نمادى برایى گردإيهى تمام زيرمجهوعههایى X در نظر خواههيم گرفت.

هد دنبالهاي از مجموعهها

در اين بخش، قصهد داريم برأي دنبالهأى از مـجمو عهها حد تُعريف كنيم، تا ياريگر, ما در أرائهى نظريهى

$\left\{E_{n}\right\}_{n=1}^{\infty}$, تعريف ا.|. فرض میكنيم
 دنبالهى دنبالهى

حال به تعريف حد دنباللىأى از مسحوعهها ميبردازيم. به همين خاطر مشابه تعريف حد براى دنبالهالى از اعداد أبتدا حدود بالاييى و پأينى را برإى دنبالهأى از مجموعههها تعريف ميكنيم.

تعريف I. .

$$
\liminf _{n \rightarrow \infty} E_{n}=\bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} E_{k} \quad, \quad \limsup _{n \rightarrow \infty} E_{n}=\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_{k}
$$

تعريف ا.'Y. فرض هيكنيم

$$
\liminf _{n \rightarrow \infty} E_{n}=\limsup _{n \rightarrow \infty} E_{n}
$$

آنگاه گوييم دنبالهى نظر مى گيريم. غر صورتى كه
 از مجموعهها، روشى بسيار مناسبب براي بيدا كردن حدود بالايى و پايينى دنبالهها ارائي دهيم. لم $\liminf _{n \rightarrow \infty} E_{n}=\{$ الف $\limsup _{n \rightarrow \infty} E_{n}=\{$ ب) بنقاطى كه به تعداد نامتناهى از $\}$ ب $\liminf _{n \rightarrow \infty} E_{n} \subseteq \limsup _{n \rightarrow \infty} E_{n}$ اثبات : الف) فرض مىكنيم $x \in X$ باششد. اگر x متعلق به تمامى آنها باشد، آنگاه
$\exists n_{0} \in \mathbb{N}, \forall k \geq n, x \in E_{k}, \Longrightarrow x \in \bigcap_{k=n}^{\infty} E_{k} \subseteq \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} E_{k}=\liminf _{n \rightarrow \infty} E_{n}$.
بالaكس، اگر

$$
\begin{aligned}
x \in \liminf _{n \rightarrow \infty} E_{n} & \Longrightarrow x \in \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} E_{k} \\
& \\
& \Longrightarrow x \in \bigcap_{k=n .}^{\infty} E_{k}, \\
& \exists n_{\bullet} \in \mathbb{N} \\
& \Longrightarrow x \in E_{k},
\end{aligned}
$$

ب) مشابه قسمت قبِلى است.
پ!) با توجه به دو قسمت قبل بديهى است.

مثال ا.ه. فرض كنيد $X=\mathbb{R}$ و $X=\mathbb{R}$ ، تعريف شده به صورت

$$
E_{1}=[0,1], E_{r}=\left[0, \frac{1}{r}\right], E_{\Delta}=\left[0, \frac{1}{\Delta}\right], \cdots, E_{r n+1}=\left[0, \frac{1}{r n+1}\right], \cdots
$$

$$
E_{\curlyvee}=[\cdot, r], E_{\curlyvee}=[0, ヶ], E_{\varphi}=[0,9], \cdots, E_{\Upsilon n}=\left[0, r_{n}\right], \cdots
$$

آزی
$\liminf _{n \rightarrow \infty} E_{n}=\{$ نقاطى كه به همه $\}=\{0\}$
$\lim \sup E_{n}=\{$ نقاطى كه به تعداد نامتناهي از $\}=[0, \infty)$
$n \rightarrow \infty$
تذكر 9.1 أكر اگگ,

$$
\lim _{n \rightarrow \infty} E_{n}=\cap_{n=1}^{\infty} E_{n}
$$

r.1
 باثشد، به جاى استفاده از عبارت، يكـ رابطه از X Xه X X، معمولاً از عبارت، يكـ رابطه

$$
(x, y) \in R
$$

تعريف A. A. يكـ رابطشى هماززى روى X، رابطهاى مانند R روى X اسست كه

$$
\begin{aligned}
& \text { 1- }
\end{aligned}
$$

 را كلاس هممارزى عنصر زيرمجموعههاي X با اجتماعى برابر با X را تثكيل ميدهند. اثبات اين مطلب را مىتوانيد در تمامى كتابهالى مقدماتى نظريدى مججموعهها بيابيد.

تعريف 9.1. يكـ رابطه مانند f از X به Y، را يكـ تابع از X X به Y گوييم، هر گاه به ازاي هر
 $f: X \rightarrow Y$ Y $f: X \rightarrow Y$

میتوان رابطهى ديگرى از Y به X به صورت X به أين رابطه را با $f: X \rightarrow Y$ را f را يكـبهيك گوييم، هر گاه هر گاه $f(X)=Y$ و دوسويى گوييم هر گاه يكبهيك و يوشا باشد. در صورتى كه f يكـ تانع دوسويى باشد، آنگاه رابطهى
 وارون F را تحت f به ترتيب به صورت زير تعريف ميكنيم

$$
f(E):=\{f(x) \in Y: x \in E\}, \quad f^{-1}(F):=\{x \in X: f(x) \in F\} .
$$

به آسانى میتوان نشان داد، در صورتى كه
 كه ff تابعى يكـبهيكى باششد. همصپنين

- $f^{-1}\left(\bigcup_{\alpha \in \Gamma} E_{\alpha}\right)=\bigcup_{\alpha \in \Gamma} f^{-1}\left(E_{\alpha}\right)$,
- $f^{-1}\left(\bigcap_{\alpha \in \Gamma} E_{\alpha}\right)=\bigcap_{\alpha \in \Gamma} f^{-1}\left(E_{\alpha}\right)$.
- $f^{-1}\left(E^{c}\right)=f^{-1}(Y-E)=f^{-1}(Y)-f^{-1}(E)=\left(f^{-1}(E)\right)^{c}$,

$\operatorname{card}(X) \leq \operatorname{card}(Y) \quad, \quad \operatorname{card}(X)=\operatorname{card}(Y) \quad, \quad \operatorname{card}(X) \geq \operatorname{card}(Y)$
به ترتيب (از جپپ به راستت) بدين معنااند كه تابعى مانند $f: X \rightarrow Y$ وجود دارد كه يكـبهيكـ،
دوسويى، بوشا است. همچجنين
 اما هيج تابع بوشا از X به Y بو جود نباثشد.

أكر تابعى بوشا چون $\operatorname{card}(X)>\operatorname{card}(Y)$-r يكبهيك از X به Y موجود نباشد.
$. \operatorname{card}(X)=\operatorname{card}(\{1, r, \ldots, n\}) ،$) - نامتناهى گوييب، هر گاه متناهى نباشد.

$$
\begin{aligned}
& \text { صورت } \\
& \text {.card }(X)>\operatorname{card}(\mathbb{N}) \text { نانشمارا گوييه، هر كاه }
\end{aligned}
$$

قضيه 1.با. حاصلضرب متنامى و اجتماع شمارايي از مجموعهماي شمارا، شماراست.
اثبات : مرجع [ه| را بيينيد.
 نامتناهى از نظر اندازه كوجكترين هستند.

اثبات: مرجع [
 را با حرف اخختصارى c و card(N) رابا .

$$
0<1<Y<\ldots<n<\ldots<\aleph_{0}<Y^{N .}=\mathfrak{c}<Y^{c}<Y^{\prime \prime}<\ldots .
$$

با توجه به روابط فوق طبييعى است چچنين سوالى ييش آيد كه

كوشش كانتور و بسيارى از رياضيدانانز برجستهى آن زمان در حل اين مسئله به به نتيجه نرسيد.

فرضيهى یييوستار: عدد اصلى مانند α كه در $=$ = .

Y سريهاي نامرتب F. 1

ب.l
تعريف ال.|. حد بالايیى و پايينى حنبالهى

$$
\limsup _{n \rightarrow \infty} x_{n}=\inf _{n \geq 1}\left(\sup _{k \geq n} x_{k}\right), \quad \liminf _{n \rightarrow \infty} x_{n}=\sup _{n \geq 1}\left(\inf _{k \geq n} x_{k}\right)
$$

تعريف مى كنيه. گُييم دنبالهى برابر باثشند. در اين صورت مقدار مشتركى آّنها را حد میدهيم. اگر

هر گاه يكى سرى با مولد بأشد و در غير أين صورت سرى را واگرا گوييم. همانطور كه مشاهده مى كنيد، در اين سرى انديسهها لى مولد سرى باترتيب ... مانند X، بدون ترتيب مشخصى قرار دهيم، آيا میىتوأن سرى نامرتب تعريف 19.1. فرض كنيم $u: X \rightarrow \mathbb{R}$ تأبعى دلخواه زوى مـجموعهى u F زيرمصجموعههاي متناهى X باشثد. به ازاى هر F بر

$$
s_{F}=: \sum_{x \in F} u_{x}
$$

 اسست اگر $s \in \mathbb{R}$

$$
\forall \varepsilon>0, \exists F_{\varepsilon} \in \mathcal{F}_{X}, \forall F \in \mathcal{F}_{X}, \quad F_{\varepsilon} \subset F \Longrightarrow\left|s_{F}-s\right|<\varepsilon
$$

آنگاه s را مجموع سرى گوييم. به آسانى مىتوأن نشان داد كه مجموع هر سرى مـجموعيذير يكتاست.
 تنها اگكِ

$$
\begin{equation*}
s=\sum_{x \in X} u_{x}=\sup \left\{s_{F}: F \in \mathcal{F}_{X}\right\} \tag{1.1}
\end{equation*}
$$

 حال اكي $F \in \mathcal{F}_{X} \subset$ زيرمجموعهى دلخواه و متناهى از X باشد، آنگاه نتيجه

 و $F \in \mathcal{F}_{X}$ ر شامل
 $s_{F_{M}}=\sum_{x \in F_{M}} u_{x}>M$ هر گاه به أزاى هر
 مجموعيذير است، آنَّاه $D=\left\{x \in X: u_{x} \neq 0\right.$ شماراست.

اثبات : فرض ميكنيم $S=\sum_{x \in X} u_{x}<\infty$ قرار ميدهيم

$$
D_{n}=\left\{x \in X: u_{x}>1 / n\right\} .
$$

 مىآيد.
 تابعى باشد كه است و سرى نامرتب

$$
\sum_{x \in X} u_{x}=\sum_{n=1}^{\infty}\left(\sum_{x \in X_{n}} u_{x}\right)=\sum_{n=1}^{\infty}\left(\sum_{x \in X_{n}} u_{x}\right) .
$$

در صورتى كه $)$
 توبيولوثى روى X گويبي، هر گاه $\mathfrak{A}, X \in \Im-1$ r- نسبت به الجتماع دلخواه بسته باشد، ץ- نسبت به اشتراك متنامى بسته باشد.

- زيرمجهوعهى E از X را بسته گويبي، هر گاه عE مجموعهاى باز باشد.
E.

- بستار زيرمجموعهى E از X را اشتراك تمام مجموعهماى بسته شامل E گوييب و با مى:دميم.
-
- زيرمحموعهى E از X را فثرده گويبي، هر گاه هر يوشش باز E شامل زيريوشش متنامى باثد.
 روى X ناميم، هرگاه
، $x=y$ y أست اكر و تنها $d(x, y)=0-1$ ، $d(x, y)=d(y, x) ، x, y \in X$ ر r $d(x, y) \leq d(x, z)+d(z, y) ؛ x, y, z \in X$ به ازاى هر

اگ d يكى متر روى X باثشد، آنگاه دوتايى (X,d) را يكـ فضاى متريكـ ناميم. در فضاى متريكى

$$
\text { كوييم و با } B\left(x_{0}, r\right) \text { نشان میدهيم. }
$$

- زيرمجموعهى

$$
\text { باشد كه } B\left(x, r_{x}\right) \subseteq .
$$

 تانان موجود باشد كه $\lim _{n, m \rightarrow \infty} d\left(x_{n}, x_{m}\right)=0$ • گوييم دنبالهى $\lim _{n \rightarrow \infty} d\left(x_{n}, x\right)=0$. - يك مـجهوعه

G - است، آكر به صورت اشتراكى شمارا الز مجموعههاى باز باشد. F -

مثال كه مججموعهالى میتواند هم ${ }^{\text {م }}$ و هم

$d(x, y)=|x-y|=\left\{\sum_{k=1}^{n}\left(x_{k}-y_{k}\right)^{r}\right\}^{1 / r}, x=\left(x_{1}, \ldots, x_{n}\right), y=\left(y_{1}, \ldots, y_{n}\right)$,
يكى متر است. اين متر به متر إقليدسى روى ${ }^{\text {اس }}$ معروف است.
 توبيولوزيك صدق مى كند و در نتيجه يكـ فضضاى تويولوزيكـ است. گردايهى مجموعههانى باز فضائى متريكى ($\mathbb{R}^{n} ; d$ كه d متر أقليدسى است را تويولوزى معمولى روى $f: X_{1} \rightarrow X_{Y}$ تعريف رادر $x \in X_{1}$

إيوسته گوييب، هر كاه در هر نقطهى $E \subseteq X_{1}$ ر

$d(., E): X \rightarrow[0, \infty)$ تعريف 19.1

$$
d(x, E):=\inf \{d(x, y): y \in E\}
$$

را اتابع فاصله روى مجموعهى E مىناميم.
قضيه IV. .Y. در فضاى متريكى (X,d)، تابي فاصله روى زيرمجموعهى E از XX، تابعى يبيوسته است.

$$
\begin{aligned}
& \text { اثبات : فرض كنيم F زيرمجموعهى بستهاى از (X,d) باشد. قرار مىدهيم } \\
& G_{n}=\{x \in X: d(x, F)<1 / n\}
\end{aligned}
$$

 از اينكه متمم هر مجموعهى باز، مجموعهاى بسته است، يس هر مجهوعهى باز، ،
 زيرمجموعهائ شمارا,

$$
\bigcup_{\alpha \in \Gamma} G_{\alpha}=\bigcup_{k=1}^{\infty} G_{\alpha_{k}} .
$$

等
اثبات: مرجع [f] فصل 1 را بيينيد

قضيه ا. ثץ. هر مسجموعهى باز در اثبات : مریتع [F] فصل ارا بيبنيد.

9.18

تعريف ا. هر

$$
\Psi(\alpha x+(1-\alpha) y) \leq \alpha \Psi(x)+(1-\alpha) \Psi(y)
$$

Y قضيه ا. الف) به ازأى هر $u<v<w$ ك u كاريم

$$
\frac{\Psi(v)-\Psi(u)}{v-u} \leq \frac{\Psi(w)-\Psi(u)}{w-u} \leq \frac{\Psi(w)-\Psi(v)}{w-v}
$$

 هدهحنین به ازإى هر,

$$
\Psi_{+}^{\prime}\left(x_{1}\right) \leq \frac{\Psi\left(x_{Y}\right)-\Psi\left(x_{1}\right)}{x_{Y}-x_{1}} \leq \Psi_{-}^{\prime}\left(x_{\curlyvee}\right)
$$

كه در آن لي) به ازایی هر $\Psi(x) \geq m\left(x-x_{0}\right)+\Psi\left(x_{0}\right), \forall x \in I$.

محدب اسست.
 $x<\zeta_{x}<z<\zeta_{y}<y$ آنگاه x با موجودند كه

$$
\frac{\Psi(z)-\Psi(x)}{z-x}=\Psi^{\prime}\left(\zeta_{x}\right), \quad \frac{\Psi(y)-\Psi(z)}{y-z}=\Psi^{\prime}\left(\zeta_{y}\right)
$$

از اينكه 'I تابعى صعودى بر I است، داريم

$$
\frac{\Psi(z)-\Psi(x)}{z-x} \leq \frac{\Psi(y)-\Psi(z)}{y-z}
$$

حالل با تثفيق رابطهى فوق و تساوىهاى زير نتيجهى مورد نظر بدست مى آيد.

$$
z-x=(1-\alpha)(y-x), \quad y-z=\alpha(y-x) .
$$

 I تابعى محدب روى I است. حالل فرض مى كنيم "I روى I مثبت است. بنابه برهان خلف، فرض

$$
\text { مى كنيم } x, y \in I \text { با شرط } x \neq y \text { و } \alpha \in(0,1) \text { جنان موجود باشد كه }
$$

$$
\Psi(\alpha x+(1-\alpha) y)=\alpha \Psi(x)+(1-\alpha) \Psi(y)
$$

قرار میدهيم

$$
\text { شرط } x<\zeta_{x}<z<\zeta_{y}<y \text { موجوْدند كه }
$$

$$
\frac{\Psi(z)-\Psi(x)}{z-x}=\Psi^{\prime}\left(\zeta_{x}\right), \quad \frac{\Psi(y)-\Psi(z)}{y-z}=\Psi^{\prime}\left(\zeta_{y}\right),
$$

با قرار دادن فرض خلف در روأبط فوق، داريم قضيهى مقدار ميانگین روى " ${ }^{\prime \prime}$ در بازیى (

$$
\Psi^{\prime \prime}(\zeta)=\frac{\Psi^{\prime}\left(\zeta_{y}\right)-\Psi^{\prime}\left(\zeta_{x}\right)}{\zeta_{y}-\zeta_{x}}=\circ
$$

و أين يكى تناقض است.
مثال 1 \&

$$
a b \leq \frac{a^{p}}{p}+\frac{b^{q}}{q}
$$

و تساوى رخ میدهد اگر و تنها الگر

$$
\exp \left(\frac{\ln a^{p}}{p}+\frac{\ln b^{q}}{q}\right) \leq \frac{1}{p} \exp \left(\ln a^{p}\right)+\frac{1}{q} \exp \left(\ln b^{q}\right)
$$

و تساوى برقرار است اكگر و تنها إكر
مثال TV.I. فرض كنيم

$$
(a+b)^{p} \leq \gamma^{p-1}\left(a^{p}+b^{p}\right)
$$

 ($0, \infty$) تابعى محلب است. بنابراين

$$
\left(\frac{a+b}{r}\right)^{p} \leq \frac{1}{r}\left(a^{p}+b^{p}\right)
$$

$$
\text { و در نتيجهd }(a+b)^{p} \leq Y^{p-1}\left(a^{p}+b^{p}\right)
$$

V

Ogh Gill

اميل برل' ($19 \Delta 9$ - اليكى الز رياضيدانانز مشهور فرانسوى و از پيشغامان نظريهى أندازه و كاربرد آن در نظريهى الحتمال است است

 نظريهى احتمالات، آناليز فاضله، سرى هاي ناي نامتناهي و نظريهى انداز

 عضويت در مجمع ملى فرانسه، وزير نيروى دريايى و عضو مقاومت فراني

I.Y مقدمه

محاسبهى اندازهى اششكال مختلف هندسي، همواره به عنوان يكى از مسائل مهم و اساسى در علم رياضيات بوده و است. چنبن دغدغهالى ذانشمندان رياضى را بر آن دأشت تا با الرائهى نظريهالى مبتنى

بر اساس واقعيات مورد انتظار پاسخخگّى مسائل مورد نظر باشند. در شكل گيرى هر نظريهالى از اندازه همواره سعى بر أين بوده أست كه اين نظريه دارالى ويزگگىماى زير باثشد: - دو شئ متشابه در يكـ فضضا، اندازمى برابرى داشته باشند. - اندأزهى جز، نسبت به كل، همواره كمتر يا مساوى باشد. - اگر شئأى به قسمتهاى مجزا تقسيم شود، اندازهى كل برابر با مجحمو انداز بهماي اجزاي تقسيم شده باشد.

- اندازمى نقاط در فضاى يكى بعدى، اندازه خطوط در فضاي دوبعدى و اندازه يكى صفحه در فضضاي سه بعدى برابر باصفر باشد.

انتظار بيان شده در بند جهارم توجه ما را به وابستگى إندازه نسبت به فضاى مورد نظر معطوف

 مجموعههاى اندازمهذير نياز داريم. به عنوان مثالل ريمان مستطيلها در
 تابع اندازه روى اين فضا، هر يكى از عناصر اين فضا را الندازهدار نموده و و بدين ترتيب فضاييى مى سازيمي
 اننتگال به صورتى مدرن، ابتدا نظريهي أندازه

[^0]

مبناى انداز
 حر اين فصل مباسحث مربوط به نظلريهى اندلزه را بطور كامل مطرح مى كنيم. روند ارائهى مطالبـ بدين گونه أسـت كه التـا بطور هسرد فضانى اندلازه را روى مجموعهأى دلختواه مانند XX بيان مى كنيهم.

 القليدسى و خواص و ويزگّهالى اساسى أين أندلزه مبذول خواهيم كرد.
K.K

تعريف را يكى

$$
\begin{array}{r}
X X \in \mathcal{A}-1 \\
{ }^{c} \in \mathcal{A} \Delta \mathcal{Z} \mid, E \in \mathcal{A}, \quad-r
\end{array}
$$

\mathcal{A}, \mathcal{K}_{n} تحت إجتهاع شمارا بسته باشد.

نتايح تعريف: فرض كنيم

$$
\emptyset \in \mathcal{A}^{\emptyset} \emptyset=X^{c} \text { الفش) از أينكه }
$$

ب) در شرط (r) از تعريفـ

$$
\cup_{i=1}^{n} E_{i} \in \mathcal{A} \cdot \mathbb{K i n}_{i}, E_{i} \in \mathcal{A}
$$

بی از الينكه

$$
E \backslash F \in \mathcal{A} \text { ت }
$$

 X X
 $\emptyset, X \in S-1$ $E \cap F \in \mathcal{S}$ 解 $\mathrm{i}, ~ E, F \in \mathcal{S}$, r- اگر بحث را با ارائهى لمى بسيار مهم با عنوان لم مجزاسمازى، ادامه ميدهيم كه در تمام بخشههاي اين فصل مورد استفاده قرار خواهد گرفت.
 X الف) $F_{j} \cap F_{k}=\emptyset, j \neq k$ برای $\bigcup_{j=1}^{\infty} F_{j}=\bigcup_{j=1}^{\infty} E_{j}, \bigcup_{j=1}^{n} F_{j}=\bigcup_{j=1}^{n} E_{j}(\psi$ اثبات: محجموعهمالى

$$
F_{1}=E_{1},
$$

$$
F_{Y}=E_{Y}-E_{1},
$$

$$
F_{\Upsilon}=E_{\Upsilon}-\left(E_{\Upsilon} \cup E_{\Upsilon}\right),
$$

$$
F_{n}=E_{n}-\bigcup_{j=1}^{n-1} E_{j},
$$

 شماراي مجزا بسته است،

 بيان شده در صفشحهى ه، به آسانى میتوان ثاببت كرد

$$
\mathcal{A}=\left\{E \subseteq X: \text { شماراست } E^{c} \text { ی } E\right\}
$$

در اين صورت A يكى σ ـجبر روى X است.
حل :بوضوح هر
 مثال魇 بازهها)، كه حر آن

انست.

 ، $1 \leq m \leq n$ حل : بوضوح

$$
\begin{aligned}
\left(\bigcup_{m=1}^{n} A_{m}\right)^{c} & =\bigcap_{m=1}^{n}\left(\bigcup_{j=1}^{J_{m}} B_{m}^{j}\right) \\
& =\bigcup\left\{B_{1}^{\left.j_{1} \cap \cdots \cap B_{n}^{j_{m}} ; \quad\left|\leq j_{m} \leq J_{m},\right| \leq m \leq n\right\}}\right.
\end{aligned}
$$

بنابراين G، تحت متمم گيرى بسته است. حال فرض نماييم G

$$
\left(\bigcup_{i=1}^{n} E_{i}\right) \cup\left(\bigcup_{j=1}^{m} F_{j}\right)=\left(\bigcup_{i=1}^{n} E_{i}\right) \cup\left(\bigcup_{j=1}^{m}\left(F_{j} \backslash \cup_{i=1}^{n}, E_{i}\right)\right) \in \mathcal{G}
$$

 حالت كلى نمىتواند يك σ حجبر باشثد. به عنوان مثال،، با فرض أست ولى $A_{n}=\left(n-\frac{1}{\gamma}, n\right] \in \mathcal{G}$

اين بحث را بالمى ساده در مورد σ-جبر شروع مى كنيم.

اثبات : به خواننده واكذار مىشود.

تعريف ז.
 است. گيريم

$$
\sigma(\mathcal{E})=\bigcap\{\mathcal{A}: \mathcal{A} \in \mathcal{S}\} ;
$$

 توسط $\{E\}$ عبارت است از $\}$
 تكى نقطهاى XX است. در واققع

$$
\left\{E \subseteq X: \text { : شماراست } E^{c} \cup E\right\}=\sigma(\{\{x\}: x \in X\}) .
$$

اثبات : از اينكه

$$
\sigma\left(\mathcal{E}_{1}\right) \subseteq \sigma\left(\mathcal{E}_{\Upsilon}\right)
$$

位 $\cap A$

$$
\sigma_{A}(\mathcal{E} \cap A)=\sigma(\mathcal{E}) \cap A
$$

اثبات : از أينكه به ازاى هر زيرمجموعهى A A
 $\sigma(\mathcal{E}) \cap A \subseteq \sigma_{A}(\mathcal{E} \cap A)$

$$
\mathcal{R}:=\left\{\left(E \cap A^{c}\right) \cup B: E \in \sigma(\mathcal{E}), B \in \sigma_{A}(\mathcal{E} \cap A)\right\}
$$

بوضوح

$$
\begin{equation*}
K=\left(E \cap A^{c}\right) \cup B ; \quad E \in \sigma(\mathcal{E}), \quad B \in \sigma_{A}(\mathcal{E} \cap A), \tag{1.Y}
\end{equation*}
$$

در اين صورت با توجه به اينكه

$$
\begin{aligned}
K^{c} & =X-K=\left[\left(X \cap A^{c}\right) \cup A\right]-\left[\left(E \cap A^{c}\right) \cup B\right] \\
& =\left[\left(X \cap A^{c}\right)-\left(E \cap A^{c}\right)\right] \cup(A-B) .
\end{aligned}
$$

$K^{c} \in \mathcal{R}$ ي. $K^{c}=\left(E^{c} \cap A^{c}\right) \cup(A-B)$) و در نتيجه \mathcal{R} يكى σ (جبر از زيرمجمهوعهاى X X است. فرم (K.r)، (K)

$$
\sigma(\mathcal{E}) \cap A \subseteq \mathcal{R} \cap A \subseteq \sigma_{A}(\mathcal{E} \cap A)
$$

و أين رابطه اثبات را كامل مىكند.

در دنياى رياضيات، هر مفهوم جديد به دنبال ارتباط با مفاميم قبلى مى گُردد، چرا كها كه در سايهى اين ارتباط است كه مىتوانند خود را نشان دهند. قبلاً با مفهوم تويولوزى روى يكـ مجموعه مانند X

 تعريف M.T. مجموعهعهاى باز اين فضا (يعنى توسط §؟)، مىباثنّن.

$$
\text { مجموعههايى به فرم }{ }^{\text {F و }} \text { ס برل انداز مهيذيرند. }
$$

 مسئلهى حل شدهي 9 همين فصل را با بيينيد.

قضيه ب.T.

$$
\begin{aligned}
& \mathcal{E}_{1}=\{(a, b): a<b\} \quad \mathcal{E}_{Y}=\{[a, b]: a<b\} \quad \mathcal{E}_{\boldsymbol{r}}=\{(a, b]: a<b\} \\
& \mathcal{E}_{\boldsymbol{f}}=\{[a, b): a<b\} \quad \mathcal{E}_{\Delta}=\{[a, \infty): a \in \mathbb{R}\} \quad \mathcal{E}_{\boldsymbol{g}}=\{(-\infty, a): a \in \mathbb{R}\} \\
& \mathcal{E}_{\mathrm{V}}=\{(-\infty, a]: a \in \mathbb{R}\} \quad \mathcal{E}_{\wedge}=\{(a, \infty): a \in \mathbb{R}\} \\
& . \sigma\left(\mathcal{E}_{1}\right)=\sigma\left(\mathcal{E}_{\mathfrak{Y}}\right)=\cdots=\sigma\left(\mathcal{E}_{\mathcal{X}}\right)=\mathcal{B}_{\mathbb{R}} . \mathcal{E}_{\boldsymbol{\mathcal { V }}} \boldsymbol{i}
\end{aligned}
$$

اثبات: نرض كنيم .ع كردايهى تمام مجموعهماي باز
 نوشت، قضيبى
ك كه

$$
\begin{aligned}
& \sigma\left(\mathcal{E}_{Y}\right) \subseteq \sigma\left(\mathcal{E}^{Y}\right) \text { (组) }
\end{aligned}
$$

${ }^{\wedge}$ Kuratowski

" مطلب ذك شده بصورت مستقيم ازـ منبي [1A] بيان نشده است و به نقل الز منبع [1] ميبأشد.

$$
(a, b]=\left[\bigcup_{n=N}^{\infty}[a+1 / n, b)\right] \bigcup\left[\bigcap_{n=N}^{\infty}\left[\frac{a+b}{r}, b+1 / n\right)\right]
$$

 .. $\sigma\left(\mathcal{E}^{r}\right) \subseteq \sigma\left(\mathcal{E}_{\boldsymbol{F}}\right)$ باشثدر بنابراين $a+\frac{1}{N}<b$
 .$\sigma\left(\mathcal{E}_{\Delta}\right) \subseteq \sigma\left(\mathcal{E}_{\varphi}\right)$ (.$\sigma\left(\mathcal{E}_{\varphi}\right) \subseteq \sigma\left(\mathcal{E}_{V}\right)$)

$$
\begin{aligned}
& \sigma\left(\mathcal{E}_{\wedge}\right) \subseteq \mathcal{B}_{\mathbb{R}} \text {. }
\end{aligned}
$$

숭 و بدين ترتيب برهان قضيه كامل است.

لم r.r.r. اگر (X, (
 روى Yاسست. به عبارتى

$$
\mathcal{B}_{Y}=\left\{B \cap Y: B \in \mathcal{B}_{X}\right\}
$$

اثبات : مىدانيم

$$
\Im_{Y}=\{G \cap Y: G \in \Im\}=Y \cap \Im
$$

حال با بكار بردن قضيهى IY.T، داريم

$$
\mathcal{B}_{Y}=\sigma(Y \cap \Im)=Y \cap \sigma(\Im)=Y \cap \mathcal{B}_{X}=\left\{B \cap Y: B \in \mathcal{B}_{X}\right\}
$$

붕

كالاسهاي يكنوا

در اين بخش گردايهى جديدى از مجموعهذها را معرفى مى كنيم كه كاربرد فراواني در در مباحث مربو

تعريف Y. الجتماع شماراى صعودى و اشتراك شمماراي نزولى بسته باشند، به عبارتي $\bigcup_{n=1}^{\infty} E_{n} \in \mathcal{M}$ الف) $\cap_{n=1}^{\infty} F_{n} \in \mathcal{M}$ ب) مثال r.r.r. هر - جـبر روى مجموعهى دلخواه X، يكى كلاس يكنوا روى X است. مثال r.r.r. در حالت كلى يكى تويولوزّى رو. X نمىتواند يكى كلاس يكنوا روى X باشد. به آسانى مى ثوان نشان داد هر جبر از زيرمجموعههالى X كه يكى كلاس يكنوا باشده، يكى جبر روى X أست (مسئله Y همين فهل را بِينيد). همحنين اشترأك هر تعداد دلخواه از كلاسهانى يكنوا روى متجموعهى دلخواه X، يكى كلاس يكنوا روى XX است. بنابراين مىتوان كوپكترين كلاس يكنوا شامل گردايهالى حلخواه از زيرمـجموعههانى XX X اتعريف كرد:

 نشان مىدهيم.
 يكنواي توليد شده توسط $\mathcal{M}(\mathcal{G})=\sigma(\mathcal{G})$ باشند، آنگا

 كام ا: به ازاى هر $E \in \mathcal{M}(\mathcal{M})$ تعريف ميكنيم

$$
\mathcal{M}_{E}(\mathcal{G}):=\{F \in \mathcal{M}(\mathcal{G}): E \cup F, E \backslash F, F \backslash E \in \mathcal{M}(\mathcal{G})\}
$$

 باشد، آنگاه $E \in \mathcal{M}_{F}(\mathcal{G})$
 بانشد، آنظاه داريم

$$
\left(\bigcup_{n=1}^{\infty} F_{n}\right) \backslash E=\bigcup_{n=1}^{\infty}\left(F_{n} \backslash E\right) \in \mathcal{M}(\mathcal{G})
$$

$$
\begin{aligned}
& E \backslash\left(\bigcup_{n=1}^{\infty} F_{n}\right)=\bigcup_{n=1}^{\infty}\left(E \backslash F_{n}\right) \in \mathcal{M}(\mathcal{G}) \\
& E \cup\left(\bigcup_{n=1}^{\infty} F_{n}\right)=\bigcup_{n=1}^{\infty}\left(E \cup F_{n}\right) \in \mathcal{M}(\mathcal{G})
\end{aligned}
$$

$\mathcal{M}_{E}(\mathcal{G}), E \in \mathcal{M}(\mathcal{G})$ وروندى مشابه را مىتوان برالى دنباله نزولى أعمال كرد. بنابراين به أزاي هر يكى كلاس يكنواست.

$$
E \cup F, E \backslash F, F \backslash E \in \mathcal{G} \subseteq \mathcal{M}(\mathcal{G})
$$

 كام ه: بالاخره نشان میدهيم (G)

 از طرفى (G)

 كلاس يكنواي توليد شده توسط جبر G 9 , مطالعه كرد. در بسيارى از كاربردها، كار با كالاس يكنوا آسانتر از كار با σ ـجبر مىباشد.
9.Y فضاهاى حاصل

 أندازْيذير (

تعريف Y.Y. فرض فر كنيد X و Y دو مجموعهى ناتهى باشند. حاصلضرب دكارتى X و Y X ا با

نتان داده و به صورت زير تعريف مى كنيهم $X \times Y$

$$
X \times Y=\{(x, y): \quad x \in X, y \in Y\}
$$

 يكـ مستطيل در $X \times Y$ مىناميم.

تعريف r.rی. اگر اندازْهذير در

هال چنين سوالى بيش مىآيد كه اگر يكى فضاى اندازمپذير است؟ جوانب منفى است. مثال زير را ببينيد.
 б-جبر روى X اسست. اما

$$
E^{c} \times E^{c}, E \times E \in \mathcal{A}_{X} \times \mathcal{A}_{X} \quad, \quad\left(E^{c} \times E^{c}\right) \cup(E \times E) \notin \mathcal{A}_{X} \times \mathcal{A}_{X}
$$

قضيه Y.r.r. گيريم

اثبات : بوضوح

$$
\left(\prod_{i=1}^{n} E_{i}\right) \bigcap\left(\prod_{i=1}^{n} F_{i}\right)=\prod_{i=1}^{n}\left(E_{i} \cap F_{i}\right)
$$

的 $\in \mathcal{S}_{i}$ أست كه

$$
\prod_{i=1}^{n} X_{i}=\left(\bigcup_{k_{1}=0}^{p_{1}} E_{1, k_{1}}\right) \times \ldots \times\left(\bigcup_{k_{n}=0}^{p_{n}} E_{n, k_{n}}\right)=\bigcup_{k_{1}=0}^{p_{1}} \ldots \bigcup_{k_{n}=0}^{p_{n}}\left(E_{1, k_{1}} \times \ldots \times E_{n, k_{n}}\right) .
$$

حال | از اينكه در

YY \quad G.

الجتماع مجزا و متناهى از عناصبر
تعريف T1.Y. توليد شده توسط

$$
\prod_{i=1}^{n} \mathcal{A}_{i}=\left\{\prod_{i=1}^{n} E_{i}: E_{i} \in \mathcal{A}_{i}\right\}
$$

حاصلضضربي ميناميهم.
تعريف Y. Y در أين صورت تأي $\pi_{\alpha}^{-1}\left(E_{\alpha}\right)=\prod_{\beta \in A} E_{\beta}$ تذكر Y. كه

$$
\left\{\pi_{\alpha}^{-1}\left(E_{\alpha}\right): E_{\alpha} \subseteq X_{\alpha}\right\} \subseteq\left\{\prod_{\alpha \in A} E_{\alpha}: E_{\alpha} \subseteq X_{\alpha}\right\}
$$

لم

$$
\bigotimes_{i=1}^{n} \mathcal{A}_{i}=\sigma\left(\left\{\pi_{i}^{-1}\left(E_{i}\right): E_{i} \in \mathcal{A}_{i}\right\}\right)
$$

اثبات : بأتوجه به تعريف Y.ات و تذكر ז.
قضيه Y. توسط

$$
.
$$

اثبات : بوضوح

$$
\left\{E \subseteq X_{i}: \pi_{i}^{-1}(E) \in \sigma(\mathcal{F})\right\}
$$

يك

$$
\left\{\pi_{i}^{-1}(E): E \in \mathcal{A}_{i}, \quad i=1, \ldots, n\right\} \subseteq \sigma(\mathcal{F})
$$

$$
\bigotimes_{1}^{n} \mathcal{B}_{\mathbb{R}}=\mathcal{B}_{\mathbb{R}^{n}} .!Y . 广 \text { قضيه }
$$

 مىشود و از اينكه اين مجموعهها در X باز هستند،

$$
\bigotimes_{1}^{n} \mathcal{B}_{\mathbb{R}}=\bigotimes_{i=1}^{n} \mathcal{B}_{X_{i}} \subseteq \mathcal{B}_{X}=\mathcal{B}_{\mathbb{R}^{n}}
$$

حال با توجه به اينكه هر مجموعهى باز $X=\mathbb{R}^{\text {با }}$ میتوان به صورت اجتماع شمارابيى از مجموعههايى به فرم

$$
\mathcal{B}_{\mathbb{R}^{n}}=\mathcal{B}_{X} \subseteq \bigotimes_{i=1}^{n} \mathcal{B}_{X_{i}}=\bigotimes_{1}^{n} \mathcal{B}_{\mathbb{R}}
$$

فضاهأى حاصلضربى با بعد نامتناهى V.Y

 تعريض Y.Y $X=\prod_{\alpha \in A} X_{\alpha}$ و فرض كنيم程 $\pi_{\alpha}: X \rightarrow X_{\alpha}$

$$
\left\{\pi_{\alpha}^{-1}\left(E_{\alpha}\right) ; \quad E_{\alpha} \in \mathcal{A}_{\alpha}, \alpha \in A\right\}
$$

مىباشد كه با نماد $\bigotimes_{\alpha \in A} \mathcal{A}_{\alpha}$ نشان خواهيم داد.

لم Y.Y. Y. با توجه به نمادهاى استفاده شده در تعريف بالا، اگر A شمارا باشد، آنگاه

$$
\sigma\left(\left\{\prod_{\alpha \in A} E_{\alpha}: E_{\alpha} \in \mathcal{A}_{\alpha}\right\}\right)=\bigotimes_{\alpha \in A} \mathcal{A}_{\alpha}
$$

il $E_{\beta}=X_{\beta}, \beta \neq \alpha$ اثبات : آگ طرف ديگ, داريم

$$
\left\{\prod_{\alpha \in A} E_{\alpha}: \quad E_{\alpha} \in \mathcal{A}_{\alpha}\right\} \subseteq \bigotimes_{\alpha \in A} \mathcal{A}_{\alpha}
$$

و بدين ترتيب حكم برقرار است.

قضيه Y.Y فضاهاى اندازمهذير باشد كه به ازای هر

الف) ب) اگگر A شماراو به ازاى هر

$$
\sigma\left(\left\{\prod_{\alpha \in A} E_{\alpha}: E_{\alpha} \in \mathcal{E}_{\alpha}\right\}\right)=\bigotimes_{\alpha \in A} \mathcal{A}_{\alpha}
$$

اثبات : الف) بوضوح
 شامل

$$
\otimes_{\alpha \in A} \mathcal{A}_{\alpha} \subseteq \sigma\left(\mathcal{F}_{1}\right) \text { نتيجه }
$$

ب با ديگر داريم

$$
\sigma\left(\left\{\prod_{\alpha \in A} E_{\alpha}: \quad E_{\alpha} \in \mathcal{E}_{\alpha}\right\}\right)=\sigma\left(\mathcal{F}_{1}\right)=\bigotimes_{\alpha \in A} \mathcal{A}_{\alpha}
$$

 تابعى است مانند $[0, \infty$ [

$$
\mu(\emptyset)=0-1
$$

Y- ب- گر گاه

$$
\mu\left(\bigcup_{n=1}^{\infty} E_{n}\right)=\sum_{n=1}^{\infty} \mu\left(E_{n}\right)
$$

اين خاصيت را خاصيت جمعى شمارايى تابي اندازه گوييم. سهتايى A
 بيش اندازه روى (زير صدق كند:

$$
\mu_{0}(\emptyset)=0-1
$$

دن $\left\{E_{n}\right\}_{n=1}^{\infty}$,

$$
\mu_{0}\left(\bigcup_{n=1}^{\infty} E_{n}\right)=\sum_{n=1}^{\infty} \mu_{0}\left(E_{n}\right)
$$

 (خاصيت جمعى متناهي).

ب) اكُر $E \in \mathcal{A}$ موجود باشد بطوريكه $\mu(E)<\infty$ آنگاه شرط (1) در تعريف أندازه زائد اسست. ي) داريبم (
 زيرجمعى شمارا).
r1 تابي اندازه A.r

اثبات: الفش) قرار میدهيم تُريف تابح اندازه بدست میآيل.

ب) بطور مشابه قرار مىدهيم قسمت (الفس) نتيجهه را بدست مىدههد.

با جمعي متناهي داريم

$$
\begin{equation*}
\mu(F)=\mu(E)+\mu(F-E) \geq \mu(E) \tag{r.r}
\end{equation*}
$$

حال اگر $\mu(F-E)=$ كرد، بلدون إينكه وضعيت تحريف نشدهى

$$
\mu(F)-\mu(E)
$$

ا ت مـجزايند و داريم

تابع اندازه داريـم

$$
\mu\left(\bigcup_{i=1}^{\infty} E_{i}\right)=\mu\left(\bigcup_{i=1}^{\infty} F_{i}\right)=\sum_{i=1}^{\infty} \mu\left(F_{i}\right) \leq \sum_{i=1}^{\infty} \mu\left(E_{i}\right)
$$

تعريف Y.

$$
\text { 1- } \mu(X)<\infty \text { متناهی گ, }
$$

r-

$$
X=\cup_{n=1}^{\infty} X_{n} . X \text { مو جود بأشد بطوريك }
$$

 الندازهزذير مانند $F \subset E$ مو جود باشد بطوريكه $\forall E, \quad E \in \mathcal{A}, \quad \mu(E)=\infty \Longrightarrow \exists F, \quad F \in \mathcal{A}, \quad F \subset E, \quad 0<\mu(F)<\infty$.

$$
\mu(E)= \begin{cases}0 & \text { شماراست E } E \\ 1 & \text { شماراست } E^{c}\end{cases}
$$

در اين صورت μ يكى اندازه روى A است، زيرا 1 أه
 باشد E نيز شماراست و داريم $n \in \mathbb{N}$ هر n هـ E_{k}^{c} ,

$$
\sum_{n=1}^{\infty} \mu\left(E_{n}\right)=\mu\left(E_{k}\right)=1=\mu(E)
$$

بس بر يكـ تانع اندازه أست.
 (1 در نظر مى گيريم. تابع $(X, \mathcal{P}(X))$

$$
\mu_{c}(E)= \begin{cases}|E| & \text { نامتناهى E } E \\ \infty & \text { تناهي }\end{cases}
$$

كه مر آن |E| \mid ا تعداد عناصر E است. به آسانى ديده مى اين اندازه متناهي (\%-متناهى) است، اگر X X متناهى (شمارا) باشثد.
 ثاببت بأشد. تابع

$$
\delta_{x .}(E)= \begin{cases}1 & x_{0} \in E, \\ 0 & x_{0} \notin E .\end{cases}
$$

الف) (إييوستغى از إييين). آكر

$$
\mu\left(\lim _{n \rightarrow \infty} E_{n}\right)=\mu\left(\bigcup_{n=1}^{\infty} E_{n}\right)=\lim _{n \rightarrow \infty} \mu\left(E_{n}\right)
$$

ب) (ییيوستگى ازبالا). اگگر

$$
\mu\left(\lim _{n \rightarrow \infty} E_{n}\right)=\mu\left(\bigcap_{n=1}^{\infty} E_{n}\right)=\lim _{n \rightarrow \infty} \mu\left(E_{n}\right)
$$

اثبات: الف) فرض كنيم

$\mu\left(\lim _{n \rightarrow \infty} E_{n}\right)=\mu\left(\bigcup_{n=1}^{\infty} E_{n}\right)=\mu\left(\bigcup_{n=1}^{\infty} F_{n}\right)=\sum_{n=1}^{\infty} \mu\left(F_{n}\right)$

$$
=\lim _{n \rightarrow \infty} \sum_{m=1}^{n} \mu\left(F_{m}\right)=\lim _{n \rightarrow \infty} \mu\left(\bigcup_{m=1}^{n} F_{m}\right)=\lim _{n \rightarrow \infty} \mu\left(E_{n}\right) .
$$

 دنبالهأى صعودى است و داريمر

$\mu\left(E_{1}\right)=\mu\left(\bigcap_{n=1}^{\infty} E_{n}\right)+\lim _{n \rightarrow \infty} \mu\left(F_{n}\right)=\mu\left(\bigcap_{n=1}^{\infty} E_{n}\right)+\lim _{n \rightarrow \infty}\left(\mu\left(E_{1}\right)-\mu\left(E_{n}\right)\right)$
و از اينكه
مطلوب بدست خواهد آمــ.

لم r.r. اندازهى (

اثبات : با توجه به تعريف فضاي اندازه بمتمناهي، فرض مى كنيم

$$
\mu(E)=\mu\left(E \cap\left(\bigcup_{i=1}^{\infty} X_{i}\right)\right)=\sum_{i=1}^{\infty} \mu\left(E \cap X_{i}\right)=\sum_{i=1}^{\infty} \mu\left(\bigcap_{n=1}^{\infty}\left(E_{n} \cap X_{i}\right)\right) \quad(r .,)
$$

$\mu\left(E_{1} \cap X_{i}\right)<\infty$, از طرفى به ازای هر íى ثابت، دنبالهى

$$
\mu(E)=\sum_{i=1}^{\infty} \lim _{n \rightarrow \infty} \mu\left(E_{n} \cap X_{i}\right),
$$

حال از اينكه جملات سرى مثبت است، مىتوان جاي مجموع و حد را تعويض كرد. بنابراين

$$
\mu\left(\bigcap_{n=1}^{\infty} E_{n}\right)=\lim _{n \rightarrow \infty} \sum_{i=1}^{\infty} \mu\left(E_{n} \cap X_{i}\right)=\lim _{n \rightarrow \infty} \mu\left(E_{n}\right)
$$

 دنباله نخواهد داشت.

تذكر r. r.
 بدست مى آوريم كa

$$
\lim _{n \rightarrow \infty} \mu\left(E_{n}\right)=\infty \text { نتيجه }
$$

تعريف Y. اه. فرض كنيم (X, A, $)$ يكى فضضاى اندازه بانشد.
الف) داشته باشنيد كه خاصيت زير جمعى شمارا نتيجه مىدهد كه أجتماع شمارايى از مجموعههماى يويج، يك مسجموعهى يوج است.
 مجموعه نقاطى از E كه خاصيت p برقرار نباشلده زيرمجموعهى، مجموعهى يو جیى مانند

باشـد
 آنگاه عبارت f> fتهـ روى X، بدين معناست كه

$$
\{x \in X: f(x) \leq g(x)\} \subseteq N \in \mathcal{A}, \quad \mu(N)=\circ
$$

rه A.r
 جوأب منفى است مگر آنكه فضهأى اندازه كامل باشد. تعريف زير رأ بينيد:

تعريف r. مجموعهى بويج A، متعلق به A بأشد، به عبارتى ديگر

$$
\forall E \in \mathcal{A}, \quad \mu(E)=0 \Rightarrow\{F: F \subset E\} \subseteq \mathcal{A}
$$

مثال زير تعريفس مىكنيه:

$$
\mu(X)=\mu\{1\}=1, \mu(\emptyset)=\mu\{r, r\}=0
$$

پر أين صورت (

قو $\mathcal{N}=\{N \in \mathcal{A}: \mu(N)=0\}$ و

$$
\overline{\mathcal{N}}=\{F \subseteq X: \exists N \in \mathcal{N}, F \subseteq N\} \quad, \quad \overline{\mathcal{A}}=\{E \cup F ; E \in \mathcal{A}, F \in \overline{\mathcal{N}}\}
$$

آتنا

الف)
ب)供 $\sigma(\mathcal{A} \cup \overline{\mathcal{N}})=\overline{\mathcal{A}}$

ی) يكى توسيع منحصصر بفزّد اثبات : الف) پیون
 أست كه

$$
(E \cup F)=(E \cup N)-(N-F)=(E \cup N) \cap(N-F)^{c}
$$

$$
(E \cup F)^{c}=(E \cup N)^{c} \cup(N-F)
$$

و از اينكه يس

ب) بوضوح . σ. \mathcal{M}

 F $F \in \overline{\mathcal{N}}$

$$
\bar{\mu}(E \cup F)=\mu(E)
$$

 $\mu\left(E_{\curlyvee}\right) \leq \mu\left(E_{\curlyvee}\right)$) به همين ترتيب میتوان نشان داد

نتيجه

$$
\mu(E \cup N) \leq \mu(E)+\mu(N)=\bullet \Rightarrow \mu(E \cup N)=\circ
$$

 از تسمت (ب)، الم $\bar{\eta}(F-E)=0$. $\bar{\eta} \bar{\eta}(F-E) \leq \bar{\eta}(N)=\mu(N)=0$. $F-E \in \overline{\mathcal{A}}$ حال با توجه به آنهـه كه بيان شد، داريم

$$
\bar{\eta}(E \cup F)=\bar{\eta}(E \cup(F-E))
$$

$$
\begin{aligned}
& =\bar{\eta}(E)+\bar{\eta}(F-E)) \\
& =\mu(E)+\bar{\eta}(F-E) \\
& =\mu(E) \\
& =\bar{\mu}(E \cup F) .
\end{aligned}
$$

9.r توليد اندازه

همانطور كه در ابتداى فصل بيان كرديم، نظريهى اندازه در واقع تعميم مفاهيمى مانند طول يكـ پاره

 انداززاى مانند (

الف) مر زيرمجموعهى $Q=\left\{x \in \mathbb{R}^{n}: \circ \leq x_{j} \leq 1, j=1, \ldots, n\right\}$ \} كه \quad كه $m(Q)=1$ (ب

$$
\text { تبديل كرد، آنگاه (E)=m(F) } m(E)
$$

 ساز گار نسيتند. مثال زير را بيبيني.

مثال

$$
x \sim y \Longleftrightarrow x-y \in \mathbb{Q}
$$

 هم ارزى افراز می كند. با اصل انتخاب از هر كلاسى، يكى عنصر انتخاب مى كنيم و مجموعهى بدست
 شهاراست، میتوان فرض كرد

$$
\mathbb{Q} \cap[-1,1]=\left\{r_{1}, r_{Y}, . ., r_{n}, \ldots\right\}
$$

به أزإى هر n، قرار میدهيم

$$
V_{n}=V+r_{n}=\left\{r_{n}+x, \quad x \in V\right\} .
$$

 $x_{1}-x_{\curlyvee}=r_{m}-r_{n} \in \mathbb{Q}$ هنان موجودند كه بنابراين مى گيريم، به ازای هر خاصيت جمعى شماراى m داريم

$$
m([0,1]) \leq \sum_{n=1}^{\infty} m\left(V_{n}\right) \leq r
$$

اگر يكى تناقض است. بنابراين R شامل زيرمـجموعهأى اندازهناهذير است.

تعريف r. مجموعهى ويتالى را بدست خواميم آورد. در واقع رابطه ~ ~را روى

$$
x \sim y \Longleftrightarrow x-y \in \mathbb{Q}
$$

الز اينكه ~ يكى رابطهى همارزیى روى هر ردهى هممارزى به فرم

$$
V_{x}=\{x+r: r \in \mathbb{Q}\}
$$

است. با اصل انتخاب از هر كلاسى، يكى عنصر انتخاب مى كنيم و مجموعهى بدست آمده را مجموعهى ويتالى مىناميه.

- فقط يكى از اين ردهها شامل تمام اعداد كويا الست. باقى ردمها، زيرمجحموعههالى مـجزايیى از اعداد گنگ است انـ
 اجتماع أين ردهما برابر با
- اين مجموعه، مجهوعهأى أندازنانظير است. مسئلهى حل شدمى 19 همين فصل را بيينيد.

 ابتدا: مفهوم اندازهى خار جـى را بيان مى كنيم.
 يكى اندازیى خارجى ناميم، هر گاه

$$
\mu^{*}(\emptyset)=0-1
$$

با توجه به تعريف أرائه شده برايى اندازیى خارجى مشاهده مى كنيم كه
 براى بدست آوردن گردايهأى از زيرمحجهوعههائى X كه جمعى شمارا باشد، الرائه داد. تعريف زير را با بيينيد.

تعريف هو. ه. فرض میكنيم

$$
\mu^{*}(A)=\mu^{*}(A \cap E)+\mu^{*}\left(A \cap E^{c}\right)
$$

گردائى تمام مجموعههاى

$$
\left.\mu^{*}\right|_{\mathcal{A}^{*}}=\mu
$$

تذكر Y.Y. Y. با توجه به تعريف فوق، بوضوح وضانداز ميذير بوده و A

تذكر r| 9.1 از رابطهى $A=(A \cap E) \cup\left(A \cap E^{c}\right)$ و زيرجمعى بودن اندازیى خارجي، داريم

$$
\begin{equation*}
\mu^{*}(A) \leq \mu^{*}(A \cap E)+\mu^{*}\left(A \cap E^{c}\right) \tag{0.r}
\end{equation*}
$$

بنابراين، براى اثبات اندازْ هِذيرى يكى مجموعهى دلخواه مانند E، كافى است، فقط عكس نامساوى ذكر شده در (Q.r) را بر برسى كنيم.
 با

$$
\mu^{*}(A) \geq \mu^{*}(A \cap E)+\mu^{*}\left(A \cap E^{c}\right)
$$

 اثبات : فرض مى كنيم

$$
\begin{aligned}
& \mu^{*}\left(A \cap E_{\bigvee}\right)=\mu^{*}\left(A \cap E_{1} \cap E_{Y}\right)+\mu^{*}\left(A \cap E_{\bigvee} \cap E_{\mathrm{Y}}^{c}\right) \\
& \mu^{*}\left(A \cap E_{१}^{c}\right)=\mu^{*}\left(A \cap E_{\bigvee}^{c} \cap E_{Y}\right)+\mu^{*}\left(A \cap E_{\curlyvee}^{c} \cap E_{\mathrm{Y}}^{c}\right)
\end{aligned}
$$

$$
\begin{align*}
\mu^{*}(A)= & \mu^{*}\left(A \cap E_{\bigvee} \cap E_{\curlyvee}\right)+\mu^{*}\left(A \cap E_{1} \cap E_{\curlyvee}^{c}\right) \\
& +\mu^{*}\left(A \cap E_{\curlyvee}^{c} \cap E_{\curlyvee}\right)+\mu^{*}\left(A \cap E_{1}^{c} \cap E_{\curlyvee}^{c}\right)
\end{align*}
$$

با جايكُزين كردن $A \cap\left(E_{\Upsilon} \cup E_{Y}\right.$ به جاى A، در تساوى (A.Y)، داريم

$$
\begin{align*}
\mu^{*}\left(A \cap\left(E_{1} \cup E_{\Upsilon}\right)\right)= & \mu^{*}\left(A \cap E_{\Upsilon} \cap E_{\Upsilon}\right)+\mu^{*}\left(A \cap E_{\Upsilon} \cap E_{\curlyvee}^{c}\right) \\
& +\mu^{*}\left(A \cap E_{\curlyvee}^{c} \cap E_{\curlyvee}\right) \quad(\forall A \subseteq X) . \tag{9.r}
\end{align*}
$$

$$
\mu^{*}(A)=\mu^{*}\left(A \cap\left(E_{,} \cup E_{\Upsilon}\right)\right)+\mu^{*}\left(A \cap\left(E_{\curlyvee} \cup E_{\Upsilon}\right)^{c}\right)
$$

FI تو $9 . r$

بنابراين با استفاده از لم فوق و تذكر r. •، نتيجه زير زا داريم

 داليمر

$$
\mu^{*}\left(A \cap\left(\bigcup_{j=1}^{n} E_{j}\right)\right)=\sum_{j=1}^{n} \mu^{*}\left(A \cap E_{j}\right)
$$

اثبات : فرض كنيم هر $A \subseteq X$ ها A هيمر

$$
\mu^{*}\left(A \cap\left(E_{\curlyvee} \cup E_{Y}\right)\right)=\mu^{*}\left(A \cap E_{\curlyvee}\right)+\mu^{*}\left(A \cap E_{Y}\right) .
$$

حالل با استقراء به آسبانى مىتوان رأبطهى فوق را به هر تعداد متناهى تعميم داد.

اثبات : با تو جه به لم مجزااسازى و جبر بوحن شماراى ميجز ا بسته أست. بلدين دنظور فرض می كنيم
 نشأ دهيم

$$
\begin{equation*}
\mu^{*}(A) \geq \mu^{*}\left(A \cap\left(\bigcup_{j=1}^{\infty} E_{j}\right)\right)+\mu^{*}\left(A \cap\left(\bigcup_{j=1}^{\infty} E_{j}\right)^{c}\right) \tag{1,.r}
\end{equation*}
$$

از إينكه $A \subseteq X$

$$
\mu^{*}(A) \geq \mu^{*}\left(A \cap\left(\bigcup_{j=1}^{n} E_{j}\right)\right)+\mu^{*}\left(A \cap\left(\bigcup_{j=1}^{n} E_{j}\right)^{c}\right)
$$

حال از لم قبلى و رابطهى

به ازایى هر A A، داريم

$$
\begin{equation*}
\mu^{*}(A) \geq \sum_{j=1}^{n} \mu^{*}\left(A \cap E_{j}\right)+\mu^{*}\left(A \cap\left(\bigcup_{j=1}^{\infty} E_{j}\right)^{c}\right) \tag{II.r}
\end{equation*}
$$

با حدگيرى از طرفين نامساوى، به ازاي هر $A \subseteq X$ ، داريم

$$
\begin{equation*}
\mu^{*}(A) \geq \sum_{j=1}^{\infty} \mu^{*}\left(A \cap E_{j}\right)+\mu^{*}\left(A \cap\left(\bigcup_{j=1}^{\infty} E_{j}\right)^{c}\right) \tag{Ir.r}
\end{equation*}
$$

از طرفى ديگر با استفاده از خاصيت زير جممى شماراى اندازمى خارجى، به ازاى هر A A؛ داريم

$$
\mu^{*}\left(A \cap\left(\bigcup_{j=1}^{\infty} E_{j}\right)\right)=\mu^{*}\left(\bigcup_{j=1}^{\infty}\left(A \cap E_{j}\right)\right) \leq \sum_{j=1}^{\infty} \mu^{*}\left(A \cap E_{j}\right)
$$

با تر كيب نامساوى فوق با نامساوى (..ז|)، به ازاى هر A A ، خواهيم داشت

$$
\mu^{*}(A) \geq \mu^{*}\left(A \cap\left(\bigcup_{j=1}^{\infty} E_{j}\right)\right)+\mu^{*}\left(A \cap\left(\bigcup_{j=1}^{\infty} E_{j}\right)^{c}\right)
$$

بنابراين لم SV.Y. $\left\{E_{j}\right\}_{j=1}^{\infty}$ اثبات : برايى أثبات كافى است نشان دهيم

$$
\mu^{*}\left(\bigcup_{j=1}^{\infty} E_{j}\right) \geq \sum_{j=1}^{\infty} \mu^{*}\left(E_{j}\right)
$$

حال عكس نامساوى از خاصيث زير جمعى شماراي اندلازیى خارجى بوضوح برقرار است. بنابراين

$$
\mu^{*}\left(\bigcup_{j=1}^{\infty} E_{j}\right)=\sum_{j=1}^{\infty} \mu^{*}\left(E_{j}\right)
$$

و در نتيجه جمعى شمارا بودن μ ثابت میشود.

اثبات : از يكنوايى اندازیى خارجى، به ازايى هر A؟X، داريم $\mu^{*}(A \cap E)+\mu^{*}\left(A \cap E^{c}\right) \leq \mu^{*}(E)+\mu^{*}(A)=\mu^{*}(A)$,

بنابراين با توجه به تذكر r.

نتيجه Y. 9.
| اثبات : با توجه به يكنوايى اندازهى خارجى و لم قبلى، حكم نتيجه مىشود.
قضيه r.r.

$$
\begin{equation*}
\mu^{*}(E)=\inf \left\{\sum_{j=1}^{\infty} \rho\left(E_{j}\right): E_{j} \in \mathcal{E}, \quad E \subseteq \cup_{j=1}^{\infty} E_{j}\right\} \tag{Ir.r}
\end{equation*}
$$

آنگاه * ${ }^{\text {آ يكى اندازیى خارجى روى X است. }}$
$E \subseteq \cup_{j=1}^{\infty} E_{j}$ اثبات : به ازاى هر (به ازاى هر ز، میتوان $\mu^{*}(\emptyset)=0$ (به ازای هرز هر میدميم ${ }^{*}$ زيرجمعى شماراست. فرض ميكنيم به تعريف

$$
\begin{equation*}
\sum_{k=1}^{\infty} \rho\left(E_{j}^{k}\right) \leq \mu^{*}\left(A_{j}\right)+\frac{\varepsilon}{\gamma^{j}} \tag{1+.r}
\end{equation*}
$$

حال با جمع نامساوىهاى بيان شده در (Y.Y (I) از

$$
\begin{equation*}
\sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \rho\left(E_{j}^{k}\right) \leq \sum_{j=1}^{\infty} \mu^{*}\left(A_{j}\right)+\varepsilon \tag{10.5}
\end{equation*}
$$

همچجنين از رابطهى

$$
\begin{align*}
& \mu^{*}\left(\bigcup_{j=1}^{\infty} A_{j}\right) \leq \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \rho\left(E_{j}^{k}\right) \tag{19.r}\\
& \mu^{*}\left(\bigcup_{j=1}^{\infty} A_{j}\right) \leq \sum_{j=1}^{\infty} \mu^{*}\left(A_{j}\right)+\varepsilon
\end{align*}
$$

بالاخره از اينكه ع دلخواه أست، نامساوى مورد نظر حاصل خواهد شد.
 عبارتى اتگر ע يك اندازهى خارجى روى X باشد كه

$$
\nu(E)=\mu^{*}(E)=\rho(E)
$$

$\left\{E_{n}\right\}_{n=1}^{\infty}$ آنگاه به ازايى هر
 اندازْى خارجى

$$
\nu(E) \leq \nu\left(\bigcup_{n=1}^{\infty} E_{n}\right) \leq \sum_{n=1}^{\infty} \nu\left(E_{n}\right)
$$

حالل با اينغيم گيرى از طرفين نامساوى بالا داريم

$$
\nu(E) \leq \mu^{*}(E)
$$

تذكر Y.Y. فرض كنيد (X, A, H) يكى فضاى اندازه باشد. در اين صورت با توجه به قضيهى r.r.،

$$
\begin{equation*}
\mu^{*}(E)=\inf \left\{\sum_{j=1}^{\infty} \mu\left(E_{j}\right): E_{j} \in \mathcal{A}, \quad E \subseteq \cup_{j=1}^{\infty} E_{j}\right\} \tag{iv.r}
\end{equation*}
$$

يكى اندازهى خارجى روى تابع اندازمى μ مىناميم.

الف) به ازاىى هر

ب) هر مجموعهى اندازمهذير A، مجموعهاى *
اثبات : الف) فرض كنيم

برابر با E أست. بنابراين

$$
\mu(E)=\sum_{n=1}^{\infty} \mu\left(F_{n}\right) \leq \sum_{j=1}^{\infty} \mu\left(E_{j}\right)
$$

$\left\{E_{j}\right\}_{j=1}^{\infty}$ و در نتيجه

$$
\sum_{j=1}^{\infty} \mu\left(E_{j}\right) \leq \mu^{*}(A)+\varepsilon
$$

حالل از اينكه $E \in \mathcal{A}$ داريم

$$
\begin{equation*}
\mu\left(\bigcup_{j=1}^{\infty} E_{j}\right)=\mu\left(\bigcup_{j=1}^{\infty} E_{j} \cap E\right)+\mu\left(\bigcup_{j=1}^{\infty} E_{j} \cap E^{c}\right) \tag{19.5}
\end{equation*}
$$

با تلفيق روابط (IN.Y) و (I.Y) به همراه بهره گيرى از خواص زيرجمعى شمارا و يكنوايى بر، داريم
$\mu^{*}(A)+\varepsilon \geq \mu\left(\bigcup_{j=1}^{\infty} E_{j} \cap E\right)+\mu\left(\bigcup_{j=1}^{\infty} E_{j} \cap E^{c}\right) \geq \mu^{*}(A \cap E)+\mu^{*}\left(A \cap E^{c}\right)$.

$$
\mathcal{A}=\left\{E \subseteq \mathbb{R}: \text { شماراست } E^{c} \text { يار E } E\right.
$$

A

$$
\mu(E)= \begin{cases}0 & \text { شمارأست E } E \\ 1 & \text { شماست } \quad\end{cases}
$$

يكى اندازه روى A تعريف مى در واقع به ازاى هر

$$
\mu^{*}(E)=\inf \left\{\sum_{j=1}^{\infty} \mu\left(E_{j}\right): E_{j} \in \mathcal{A}, \quad E \subseteq \cup_{j=1}^{\infty} E_{j}\right\}
$$

آيا *

 حال فرض مى كنيم。

$$
\sum_{j=1}^{\infty} \mu\left(E_{j}\right) \geq \mu\left(E_{j .}\right) \geq 1
$$

پس

$$
1=\mu^{*}(\mathbb{R})<\mu^{*}((-\infty, 0])+\mu^{*}((\cdot, \infty))=r
$$

و أين نشان هيدهد * ${ }^{*}$ جمعى شمارا نيسـت.
 باشد. به ازاى هر

$$
\mu(E):= \begin{cases}\cdot & x \notin E \\ 1 & x \circ \in E\end{cases}
$$

$\mu^{*}(E) . E \subseteq X$ فرض مى كنيم
 $X-\left\{x_{0}\right\}$ بوضوح

$$
\begin{aligned}
& \text { هوششیى براى E بوده و در نتيجه ه } E \subseteq X \text {. } \\
& \mu^{*}(E)= \begin{cases}0 & x_{0} \notin E, \\
1 & x_{0} \in E .\end{cases}
\end{aligned}
$$

 ازإى هر

$$
\mu^{*}(X)=\mu^{*}(E)+\mu^{*}\left(E^{c}\right)
$$

حال با توجه به متناهى بودن (X)

R

 طبيعى، اندازمى يكى بازه برابر با طول بازه باششد. قبل از بيان اين اندازنه، ابتدا نمادهاييى را كه دز
 نمادكَذارى :
 مجموعهى (Ø, باششيم كه若 به ازاي هر بازهى دلخواه I با نقاط ابتدايايى و انتهايمى 1 اني در صورتى كه I بازهاى بيكران در 1 باشد، آنگاه دنبالهى شمارا و مـجزإى

$$
m^{*}(E)=\inf \left\{\sum_{n=1}^{\infty} l\left(I_{n}\right):\left(I_{n}: n \in \mathbb{N}\right) \subseteq \mathcal{I}_{o}, \bigcup_{n=1}^{\infty} I_{n} \supset E\right\}
$$

مجحموعههاى لبگ اندازهيذير ناميده و با نماد \mathbb{R} m میناميم.

تذكر V\&. V\&. همانطور كه ديديد أندازیى خارجى كرديم. مى توان إين بوشش را گردايهى خار جیى بدست آمده به ازاى هر

اثبات : به ازاى هر 0 خارجى
 كه در آن , اطورى بدست آورد كه

در اين صورت

$$
\begin{aligned}
\sum_{k=1}^{\infty}\left|I_{k}\right| & \geq \sum_{k=1}^{n}\left|I_{k}\right|=\left(b_{n}-a_{n}\right)+\left(b_{n-1}-a_{n-1}\right)+\ldots+\left(b_{1}-a_{1}\right) \\
& =b_{n}-\left(a_{n}-b_{n-1}\right)-\left(a_{n-1}-b_{n-\gamma}\right)-\ldots-\left(a_{r}-b_{1}\right)-a_{1} \\
& \geq b_{n}-a_{1} \geq b-a
\end{aligned}
$$

بنابراين، طول آن است.

نتيجه VA.Y. اندازهى خارجيى هر فاصلهى باز (a,b)، برابر با طول آن أست. اثبات : از اينكه

$$
\left[a+\frac{\varepsilon}{r}, b-\frac{\varepsilon}{r}\right] \subseteq(a, b) \subseteq\left[a-\frac{\varepsilon}{r}, b+\frac{\varepsilon}{r}\right]
$$

$$
\begin{aligned}
& \text { بنابر أين أز خاصيت يكنوأيى أندازهى خار خجى و قضيهى VY.T داريم } \\
& b-a-\varepsilon \leq m^{*}((a, b)) \leq b-a+\varepsilon .
\end{aligned}
$$

 از اينكه ازاى هر ه از

 نتيجه هى گيريه اندازه خار جى هر بازهى نيمبازه نيز برأبر با طول آن است.
قضيه YQ.Y. فرض كنيد اندلازهِذير أست اگگر و تنها اگُر به ازایى هر

$$
m^{*}(A)=m^{*}(A \cap E)+m^{*}\left(A \cap E^{c}\right)
$$

 شرط

$$
m^{*}(A) \geq m^{*}(A \cap E)+m^{*}\left(A \cap E^{c}\right)
$$

بدين منظرر :بوشش ازإى هر

$$
\begin{aligned}
\sum_{n=1}^{\infty} m^{*}\left(I_{n}\right) & =\sum_{n=1}^{\infty}\left(m^{*}\left(I_{n} \cap E\right)+m^{*}\left(I_{n} \cap E^{c}\right)\right) \\
& =\sum_{n=1}^{\infty} m^{*}\left(I_{n} \cap E\right)+\sum_{n=1}^{\infty} m^{*}\left(I_{n} \cap E^{c}\right) \\
& \geq m^{*}\left(\bigcup_{n=1}^{\infty}\left(I_{n} \cap E\right)\right)+m^{*}\left(\bigcup_{n=1}^{\infty}\left(I_{n} \cap E^{c}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =m^{*}\left(\left(\bigcup_{n=1}^{\infty} I_{n}\right) \cap E\right)+m^{*}\left(\left(\bigcup_{n=1}^{\infty} I_{n}\right) \cap E^{c}\right) \\
& \geq m^{*}(A \cap E)+m^{*}\left(A \cap E^{c}\right)
\end{aligned}
$$

كه در آن تساوى دوم از إين حقيقت ناشي مىشود كه اگگ, نامنفى باشند، آنزا آما نامساوي داريم

$$
m^{*}(A) \geq m^{*}(A \cap E)+m^{*}\left(A \cap E^{c}\right)
$$

و در نتيجه اثبات قضيه كامل است.

قضيه
 كو چکترين σ-جبر توليد شده توسط گردايهى بودن

$$
m^{*}(I)=m^{*}(I \cap(a, \infty))+m^{*}\left(I \cap(a, \infty)^{c}\right)
$$

به ازالى هر $I \in I_{0}$

$$
I=I \cap \mathbb{R}=I \cap\left\{(a, \infty) \cup(a, \infty)^{c}\right\}=\{I \cap(a, \infty)\} \cup\left\{I \cap(a, \infty)^{c}\right\}
$$

حال از اينكه $I \cap(a, \infty)^{c}, ~ I \cap(a, \infty)$ برابر با I مى باشذد، داريم

$$
l(I)=l(I \cap(a, \infty))+l\left(I \cap(a, \infty)^{c}\right)
$$

بنابراين با استفاده lز قضيهى YY.Y و نتايج آن داليميم

$$
m^{*}(I)=m^{*}(I \cap(a, \infty))+m^{*}\left(I \cap(a, \infty)^{c}\right)
$$

در نتيجه ($)$ () لبگ اندازْپذير است.
 الف) به ازاى هر .

$$
\begin{aligned}
& \left(E+x_{1}\right)+x_{Y}=E+\left(x_{1}+x_{\curlyvee}\right) \\
& (E+x)^{c}=E^{c}+x \\
& E_{1} \subseteq E_{Y} \Rightarrow E_{1}+x \subseteq E_{Y}+x \\
& \left(\cup_{\alpha \in \Gamma} E_{\alpha}\right)+x=\cup_{\alpha \in \Gamma}\left(E_{\alpha}+x\right) \\
& \left(\cap_{\alpha \in \Gamma} E_{\alpha}\right)+x=\cap_{\alpha \in \Gamma}\left(E_{\alpha}+x\right) \\
& \beta(\alpha E)=(\alpha \beta) E \\
& (\alpha E)^{c}=\alpha E^{c}
\end{aligned}
$$

قضيه ז. Aץ. فرض كنيم $x \in \mathbb{R} ، E \subseteq \mathbb{R}$ و عددى حقيقى و محخالف صفر باشد. آنگاه

$$
\begin{aligned}
& m^{*}(E+x)=m^{*}(E) \text { بالف } \\
& m^{*}(\alpha E)=|\alpha| m^{*}(E)
\end{aligned}
$$

اثبات : فقط قسمت (الف) را اثبات مي كنيم. 0 > ع را دلخواه در نظر مى گيريم. يوشش بازى مانند

$$
m^{*}(E)+\varepsilon \geq \sum_{n=1}^{\infty}\left|I_{n}\right|
$$

$$
E+x \subseteq \bigcup_{n=1}^{\infty}\left(I_{n}+x\right) \text { جون }
$$

$$
m^{*}(E+x) \leq \sum_{n=1}^{\infty}\left|I_{n}+x\right|=\sum_{n=1}^{\infty}\left|I_{n}\right| \leq m^{*}(E)+\varepsilon
$$

$$
m^{*}(E+x) \leq m^{*}(E)
$$

مى توانن نوشت $E=E+x-x$ و لذا رابطهى (Y.r) نتيجه میدهد

$$
\begin{equation*}
m^{*}(E)=m^{*}((E+x)-x) \leq m^{*}(E+x) \tag{rr.r}
\end{equation*}
$$

قضيه A4.T. الف) فضاى اندازهى لبگى (هر $m(E+x)=m(E), E+x \in \mathcal{L}$, $\mathcal{L}+x=\mathcal{L}$ L

ب) به ازايى هر

$$
\text { فرض فر } \alpha \mathcal{L}=\mathcal{L} \text { L }
$$

اثبات : الف) فرض مى كنيم A $A \subseteq \mathbb{R}$ دلخواه باشد، با توجه به قضييهى ז.

$$
\begin{aligned}
& m^{*}(A \cap(E+x))+m^{*}\left(A \cap(E+x)^{c}\right) \\
= & m^{*}([A \cap(E+x)]-x)+m^{*}\left(\left[A \cap(E+x)^{c}\right]-x\right) \\
= & m^{*}((A-x) \cap E)+m^{*}\left((A-x) \cap E^{c}\right) \\
= & m^{*}(A-x)=m^{*}(A)
\end{aligned}
$$

 ازاى هر

$$
\mathcal{L} \subseteq \mathcal{L}+x \text {, } \mathcal{L} \text {, } \mathcal{L}=\mathcal{L}-x+x \subseteq \mathcal{L}+x
$$

ب) با توجه به اندازهيذيرى E داريم

$$
\begin{equation*}
m^{*}\left(\frac{1}{\alpha} A\right)=m^{*}\left(\frac{1}{\alpha} A \cap E\right)+m^{*}\left(\frac{1}{\alpha} A \cap E^{c}\right) \tag{rr.r}
\end{equation*}
$$

AY $\quad \mathbb{R}$

حالل با توجه به روأبط زير

$$
\begin{aligned}
& m^{*}\left(\frac{1}{\alpha} A\right)=\frac{1}{|\alpha|} m^{*}(A) \\
& m^{*}\left(\frac{1}{\alpha} A \cap E\right)=m^{*}\left(\frac{1}{\alpha} A \cap \frac{1}{\alpha} \alpha E\right)=\frac{1}{|\alpha|} m^{*}(A \cap \alpha E) \\
& m^{*}\left(\frac{1}{\alpha} A \cap E^{c}\right)=m^{*}\left(\frac{1}{\alpha} A \cap \frac{1}{\alpha} \alpha E^{c}\right)=\frac{1}{|\alpha|} m^{*}\left(A \cap \alpha E^{c}\right)
\end{aligned}
$$

با قرار دادن روابط فوق در معادلهى (r.r.

$$
m^{*}(A)=m^{*}(A \cap \alpha E)+m^{*}\left(A \cap \alpha E^{c}\right)
$$

كه نشان مىدهد αE أندازهپذير استت. بنابراين داريم

$$
m(\alpha E)=m^{*}(\alpha E)=|\alpha| m^{*}(E)=|\alpha| m(E)
$$

$$
\alpha \mathcal{L}=\mathcal{L}
$$

لمر AQ.T. فرض كنيد E زيرمجموعهى دلخواهى لز الف) به ازاى هر ه > ع مجموعهالى باز هوون O جنان مو جود اسست كه

$$
m^{*}(E) \leq m(O) \leq m^{*}(E)+\varepsilon
$$

ب)

اثبات : الف) كافى انست حالتى را بررسى كنيم كه. . $\mathrm{m}^{*}(E)$ با توجه به تعريف اندازهى خارجي، به ازایى هر

$$
\sum_{n=1}^{\infty}\left|I_{n}\right| \leq m^{*}(E)+\varepsilon
$$

قرار میدهم $E \subseteq O=\bigcup_{n=1}^{\infty} I_{n} \subseteq$ و با توجه به خواص يكنوايني و

زيرجمعى شمارايیى اندازمى خارجي داريبم

$$
m^{*}(E) \leq m(O) \leq \sum_{n=1}^{\infty}\left|I_{n}\right| \leq m^{*}(E)+\varepsilon
$$

 E موجود است بطوريكه

$$
m^{*}(E) \leq m\left(G_{n}\right) \leq m^{*}(E)+\frac{1}{n}
$$

حال با قرار دادن ${ }^{\text {قا }}$, $G=\bigcap_{n=1}^{\infty}$ نتيجهى مورد نظر بدست میآيد.

قضيه Y.A.A. به ازاي مر E $E \subset \mathbb{R}$ عبارات زير معادلند:
الف) E اندازمهذير است. ب) به الزای هر ه
 ت) به ازآى هر ه

 موجود است كه
 نتيجه حكم برقرار است.
m(E)= (Y) در اين صورت قرالر مىدهيم

$$
E=\bigcup_{n=1}^{\infty} E_{n} \quad, \quad E_{n}=E \cap[-n, n]
$$

از اينكه

$$
E_{n} \subseteq O_{n} \quad, \quad m\left(O_{n}-E_{n}\right)<\frac{\varepsilon}{\varphi^{n}}
$$

حالل با قرار دادن

$$
m(O-A) \leq \sum_{n=1}^{\infty} \frac{\varepsilon}{r^{n}}=\varepsilon
$$

 مجموعهالى اندلازهپذير است. بنابراين سـه شرط اوزل معادلند. حال براى اثبات (الف) (ت) (ت)، توجه مى كنيم اگر بنابراين از (ب)، مجموعهاى باز چون

 جِنان موجود است كه
 . $m^{*}(E-V)=0$
 برقرار است.

قضيه AY.Y. فرض كنيد
 ك كه

اثبات : ابتدا فرض مى كنيم E اندلازمپذير باشد. از تعريف اندلازمى خارجى، به ازاى هر ه > ع پوشش $W=\bigcup_{n=1}^{N} I_{n}$ اينكه \mid 0أرمـم

$$
m(W \triangle E) \leq m\left(\bigcup_{n=1}^{\infty} I_{n}-E\right)+m\left(\bigcup_{n=N+1}^{\infty} I_{n}\right)<\frac{\varepsilon}{Y}+\frac{\varepsilon}{r}=\varepsilon .
$$

حال شرط كافى را أثبات مىكنيم. از اينكه به ازاى هر ه > ع، مهموعهالى چجون W متشكل از

اجتماع متنامى بازهى باز جنان موجود است كه

$$
\sum_{n=1}^{\infty}\left|J_{n}\right|<m^{*}(E-W)+\varepsilon<\gamma \varepsilon
$$

است كه

در اين صورت مجموعهى $G=W \cup \bigcup_{n=1}^{\infty} J_{n}$ مجموعهای باز شامل E است و

$$
m^{*}(G-E) \leq m^{*}(W-E)+m^{*}\left(\bigcup_{n=1}^{\infty} J_{n}\right)<\varepsilon+ケ \varepsilon=r \varepsilon .
$$

بنابراين از قضيهى A\＆．r، قسمت（ب）، مجمووعهى E اندازهيذير است．

 میآوريم، آنگاه به ازای هر

$$
m\left(I_{i}-J_{i}\right)<\varepsilon / N
$$

$$
m\left(E \triangle \bigcup_{i=1}^{N} J_{i}\right) \leq m\left(E \triangle \bigcup_{i=1}^{N} I_{i}\right)+m\left(\bigcup_{i=1}^{N} I_{i} \triangle \bigcup_{i=1}^{N} J_{i}\right) \leq r \varepsilon .
$$

كه نامساوى هاى بالا از رابطهى آمده أست．

 به صورت مجزا الختيار كرد．در واقتح در اثبات قضيه،
 جاى جا

تذكر r．r．
居 $m(E)=\infty$

جنان موجود است كه $N_{\bullet} \in \mathbb{N}$

$$
E \Delta \bigcup_{n=1}^{N} I_{n} \supseteq E-\bigcup_{n=1}^{N} I_{n} \supseteq E-\left(-N_{\circ}, N_{\circ}\right)=\bigcup_{n=N++1}^{\infty} E_{n}
$$

بنابراين داريـم

$$
m\left(E \Delta \bigcup_{n=1}^{N} I_{n}\right) \geq m\left(\bigcup_{n=N_{\cdot}+1}^{\infty} E_{n}\right)=\sum_{n=N .+1}^{\infty} m\left(E_{n}\right)=\sum_{n=N_{\cdot}+1}^{\infty} \frac{1}{r}=\infty .
$$

از اينكه هر بازهى باز در

 حل شدهى 19 هم همين فصل رجوع نماييد.
 , \mathbb{R}

 پاسخ اين سوال قضيهى زير را بيينيد.
 اندازم⿰氵ذيرهاى m اندازهى لبگگ است و و

$$
\overline{\mathcal{B}_{\mathbb{R}}}=\left\{E \cup F, E \in \mathcal{B}_{\mathbb{R}}, F \subseteq N, \quad N \in \mathcal{B}_{\circ}\right\}
$$

$$
\mathcal{L}=\overline{\mathcal{B}_{\mathbb{R}}} \cdot \overline{\mathrm{I}}
$$

اثبات : از اينكه نضاى اندازیى لبگى، فضاى اندازمى كاملى است، داريم مى كنيم

جخنان موجود است كه ، $F_{\sigma} \subseteq \mathcal{B}_{\mathbb{R}}$. قرار میدميم $m(G-E)=0, E \subseteq G$. $E=(E-F) \cup F$, $E-F \subseteq N \in \mathcal{B}$. F. $N=G-F \in \mathcal{B}_{\mathbb{R}}$

$$
m(G-F)=m(G-E)+m(E-F)=0
$$

و اين اثبات را كامل مىكند.

 روى

براى نيل به اين هدف، گردرايهى

 لبگل و μ يكى اننازه دلخواه روى

$$
\mathcal{B}=\left\{E \in \mathcal{B}_{\mathbb{R}}: \mu(E)=m(E)\right\} \quad \text { اثبات : قرار میدهيم }
$$

نشان میدهيم B يكى كلاس يكنواست. ابتدا فرض مى كنيم آنگاه از بيوستگى از بايين تابع اندازه داريم

$$
m\left(\bigcup_{n=1}^{\infty} E_{n}\right)=\lim _{n \rightarrow \infty} m\left(E_{n}\right)=\lim _{n \rightarrow \infty} \mu\left(E_{n}\right)=\mu\left(\bigcup_{n=1}^{\infty} E_{n}\right)
$$

در نتيجه
 لم +A. +

$$
m\left(\bigcap_{n=1}^{\infty} E_{n}\right)=\lim _{n \rightarrow \infty} m\left(E_{n}\right)=\lim _{n \rightarrow \infty} \mu\left(E_{n}\right)=\mu\left(\bigcap_{n=1}^{\infty} E_{n}\right)
$$

بنابراين گردايهي g $\mathcal{B}=\mathcal{B}_{\mathbb{R}}$ كو $\mathcal{M}(\mathcal{G})$ در نتيجه حكم برقرار اسـت.
(I.Y

همانطور كه مىدانيم هر مسحموعه با اندازه مثبت ناششماراست، ولى عكس هطلب برقرار نيست يعنى
 حداكثر میتوانند شماراى نامتناهى باشند، أما كانتور با ارائهى مثالى از يكى زيرمجحموعهى ناشهارا
 فرض مى كنيم [1 مى أوريم. به عبارت ديگر

$$
C_{1}=C_{0}-\left(\frac{1}{r}, \frac{r}{r}\right)=\left[0, \frac{1}{r}\right] \cup\left[\frac{r}{r}, 1\right] .
$$

بنابراين يكى سوم ميانى از هر دو بازهى [

$$
C_{r}=\left[0, \frac{1}{q}\right] \cup\left[\frac{r}{9}, \frac{r}{9}\right] \cup\left[\frac{9}{9}, \frac{V}{9}\right] \cup\left[\frac{1}{9}, 1\right] .
$$

 طول هر يكى از اين بازهما برابر با با Cn C_{n} مانند

با اين مقدمات مجموعهى كانتور را به صورت زير تعريف مىكنيم:
 باشد. مجموعهى كانتور را با C نشان داده و به صورت زير تع تعريف ميكنيم

$$
C:=\bigcap_{n=1}^{\infty} C_{n} .
$$

$$
\cdot, \frac{1}{r}, \frac{r}{r}, \frac{r}{r}, \frac{1}{q}, \ldots \in C .
$$

C

$$
\begin{align*}
x & \overline{\bar{r}} \tag{1}\\
\overline{\mathrm{r}} & 10 \cdots\left(a_{k} \circ \circ \cdots\right. \tag{Y}\\
& 1) \gamma r ץ \cdots
\end{align*}
$$

كه در آن $a_{k}=p$ است. اگكر هوواره از نمايش (r) الستفاده نماييم، آنگاه

$$
\begin{array}{lll}
a_{1}=1 & \frac{1}{r}<x<\frac{r}{r}, \\
a_{1} \neq 1, a_{r}=1 & \frac{r}{\text { r| }} \text {, } & \frac{1}{9}<x<\frac{r}{9} \quad \frac{r}{9}<x<\frac{1}{9},
\end{array}
$$

و به همين ترتيب تا آخر. همتخنين با فرض x $x y$

91 ا11.Y
 قضيه TY.T. مجموعهى كانتور C در خواص زير صدق مئكند: الف) ب)

اثبات : الف) با توجه به تعريف، C اشتراكـ شمارايى از بازهماي بسته است و و در نتيجه يكى
 حال از اينكه داريم

$$
m(C)=m\left(\bigcap_{n=1}^{\infty} C_{n}\right)=\lim _{n \rightarrow \infty} m\left(C_{n}\right)=\lim _{n \rightarrow \infty}\left(\frac{\boldsymbol{r}}{\boldsymbol{r}}\right)^{n}=0 .
$$

 a $a_{n}=Y$

$$
\phi(x)=\sum_{n=1}^{\infty} b_{n} Y^{-n}, \quad b_{n}=\frac{a_{n}}{r} .
$$

بوضوح ϕ خوشتعريف و يوشاست. در واقع از اينكه هر [بسط دودويىى

$$
\sum_{n=1}^{\infty} \frac{b_{n}}{r^{n}}=\phi\left(\sum_{n=1}^{\infty} \frac{r b_{n}}{r^{n}}\right) .
$$

بنابراين C همارز با \mathbb{R} است. بخش 0.1 را بيينيد.

لمه 9.r. است.
 مجهوعهاى ناشماراست. از طرفى فضضاى اندازمى لبگ

$$
\text { طبيعى است چنين سوالى پيش آيد: آيا })
$$

- ويتالى در 19.0 با استفاده از خاصيت انتقال اندازهى لبگَ و با يارى گرشتن از الهل انتخاب،

- •اج. رادماكر " در 1919، با يارى گرفتن از اصل انتخاب، نشان داد هر مجموعه با اندازهى

با توجه به آنجه گكته شد، نتيجه مى گيريم
 برل انندازهيذير هاى

 تابعى بسيار مهم در آناليز كه در ساختن مثالْماى نقض كاربرد فراوانی دارد، به پايان میرسانيم:

[^1]AT $11 . \%$
به صورت زير تعريف مىكنيم

$$
\phi(x):=\sum_{n=1}^{\infty} \frac{a_{n}}{r} \frac{1}{r^{n}}, \quad x \in C, \quad x=\sum_{n=1}^{\infty} a_{n} r^{-n} a_{n}=\circ\llcorner r .
$$

 نوشتن بسط اعشارى آنما در مبناى "ا، به صورت

$$
x=\sum_{n=1}^{\infty} \frac{a_{n}}{r^{n}}, \quad y=\sum_{n=1}^{\infty} \frac{b_{n}}{r^{n}}, \quad a_{n}, b_{n}=\bullet\llcorner\mathrm{r},
$$

N N

$$
\begin{aligned}
& x \overline{\bar{r}} \circ / a_{1} a_{r} \cdots a_{N-1} \circ a_{N+1} \cdots, \quad a_{n}=\circ\llcorner\mathrm{r}, \\
& y=0 / a_{1} a_{\uparrow} \cdots a_{N-1} \uparrow b_{N+1} \cdots, \quad b_{n}=0 \text { ي } r \text {. }
\end{aligned}
$$

$$
\begin{aligned}
\phi(x) & =\sum_{n=1}^{N-1} \frac{a_{n}}{r^{n+1}}+\frac{0}{r^{n+1}}+\sum_{n=N+1}^{\infty} \frac{a_{n}}{r^{n+1}} \\
& \leq \sum_{n=1}^{N-1} \frac{a_{n}}{r^{n+1}}+\sum_{n=N+1}^{\infty} \frac{r}{r^{n+1}} \\
& =\sum_{n=1}^{N-1} \frac{a_{n}}{r^{n+1}}+\frac{r}{r^{N+1}} \\
& \leq \sum_{n=1}^{N-1} \frac{a_{n}}{r^{n+1}}+\frac{r}{r^{N+1}}+\sum_{n=N+1}^{\infty} \frac{b_{n}}{r^{n+1}} \\
& =\phi(y)
\end{aligned}
$$

 تعريف شده به صورت

$$
\Phi(x)=\sup \{\phi(y): y \in C, y \leq x\}
$$

 باشد، آنگاه ساخت مجدوعهى كانتور است كه (اينكه أول ساخت مجموعهى كانتور است). بنابراين داريم

$$
\begin{aligned}
& \Phi(x)=\frac{1}{r}, \quad x \in\left(\frac{1}{r}, \frac{r}{r}\right) . \\
& \text { هم هحنين از اينكه }
\end{aligned}
$$

$$
\Phi(x)=\frac{1}{r^{r}}, \quad x \in\left(\frac{1}{r^{r}}, \frac{r}{r^{r}}\right), \quad \Phi(x)=\frac{r}{r^{r}}, \quad x \in\left(\frac{V}{r^{r}}, \frac{\lambda}{r^{r}}\right) .
$$

بنابراين با فرض اينكه مرحلهى دوم و باشـد، خواميم داشت

$$
\Phi(x)= \begin{cases}\frac{1}{r}, & x \in I_{1,1} \\ \frac{1}{r^{r}}, \frac{r}{r^{r}}, & x \in I_{r, 1}, I_{r, r} \\ \frac{1}{r^{r}}, \frac{r}{r^{r}}, \frac{\Delta}{r^{r}}, \frac{\gamma}{r^{r}}, & x \in I_{r, 1}, I_{r, r}, I_{r, r}, I_{r, r} \\ \vdots & \\ \frac{1}{r^{k}}, \cdots, \frac{r^{k}-1}{r^{k}}, & x \in I_{k, 1}, \cdots, I_{k, r^{k-1}} \\ \vdots & \end{cases}
$$

قضيه Y.Y. F. تابع كانتور [
 ب) Φ

اثبات : الف) فرض مى كنيم $x<y$ عناصرى در دامنهى Φ باشند. داريم

$$
\begin{aligned}
\Phi(x) & =\sup \{\phi(c): c \in C, c \leq x\} \\
& \leq \sup \{\phi(c): c \in C, c \leq y\} \\
& =\Phi(y)
\end{aligned}
$$

كه در آن نامساوى بيان شده، از اين حقيقت ناشى ميثود كه اكر A A زيرمجموعهاى ناتهى از sup $A \leq \sup B$ بان B

$$
\begin{aligned}
& \text { ب) از اينكه } \Phi \text { تاببى صعودى است، به ازاى هر (1 , } 0 \text { () } \\
& \Phi\left(x_{\circ}^{-}\right) \leq \Phi\left(x_{\mathrm{o}}\right) \leq \Phi\left(x_{\circ}^{+}\right),
\end{aligned}
$$

با توجه به آنیهه گלته شد، تابي كانتور را میتوان به صورت زير رسم كرد.

شكل 1.「: تابع كانتور

مسائل حل شده IY.Y
 باشد. آنگاه A ناشماراست.
 به ازاي هر $I \neq J$ داريم $I \neq I, J \subset \mathbb{N}$.

 تعداد نامتنامى از اعضاي A A است.
جواب : قرار ميددهيم

$$
\mathcal{M}=\{Z \in \mathcal{A}: \quad Z \subseteq F\} \quad, \quad \mathcal{N}=\{Z \in \mathcal{A}: \quad Z \subseteq E-F\}
$$

 را به صورت

$$
f(Z)=(Z \cap F, Z \cap(E-F)),
$$

در نظر می گيريم. به آسانى مىتوان نشان داد f تابعى يكبديكى است و در نتيجه $\operatorname{card}(\{Z \in \mathcal{A}: Z \subseteq E\}) \leq \operatorname{card}(\mathcal{M}) \operatorname{card}(\mathcal{N})<\infty$.
 باشد، آنگاه ناشماراست. از اينكه
 نامتنامى از اعضاى A A است.

 يا يا
 حالل روند وق را روى (مى گيريم كه \mathcal{A} نانشماراست.

9Y Mr.r مسائل حل شده

جواب : قرار مىدهيم

$$
\mathcal{M}:=\left\{A \subseteq X: \exists \mathcal{E}^{\prime} \subseteq \mathcal{E}, \quad \operatorname{card}\left(\mathcal{E}^{\prime}\right) \leq \aleph_{0}, \quad A \in \sigma\left(\mathcal{E}^{\prime}\right)\right\}
$$

 به ازإی هر قرار میدهيم اجتماع شمارا نيز بسته است و در نتيجه

نتيجه: اگك $\mathcal{A}=\sigma(\mathcal{E})$ باشد، آنگاه

$$
\mathcal{A}=\bigcup\left\{\sigma\left(\mathcal{E}^{\prime}\right), \quad \mathcal{E}^{\prime} \subseteq \mathcal{E}, \quad \operatorname{card}\left(\mathcal{E}^{\prime}\right) \leq \aleph_{0}\right\}
$$

مسئله ه. فرض مى كنيم \mathcal{A} و گردايههانى دلخواهى از زيرهجموعههأى X باشند كه در شرايط زير صدق مىى كنند:
 (\mathcal{A} تحت اششترأى شمارا بسته باشده (A -r تحت أجتماع شمارإي مجز! بسته باشد.

در اين صورت
الف) با ارائهى مثالى نشان دهيد، A در حالت كلى يكى σ ججبر روى X نيست.
 تا با صدق ميكند.

جواب :
الف) با فرض r-ا صـدق مى كند ولى نسبت به عمل متمم گيرى بسته نيسـت.
 صدق مى كند. (توجه دأريم كه چحنين گردايهأى وجود دارد، زيرا گردأيهى تمام زيرمجمو عههاى
 جنين گردايهاي است). الز اينكه (

 اثبات $\sigma-ج ب ر ~ ب و د ن ~ \mathcal{F ~} 1$ در سه مرحله انجام مىدهيم: -
فرض میكنيم الست، الست و ($E-F \in \mathcal{F}$ F با توجه به الينكه فرض مى كنيم

$$
\begin{aligned}
& (E \cup F)^{c}=E^{c} \cap F^{c} \in \mathcal{A} \\
& \text { با توجه به مرحلهى اولو و تجزيهى مجزايى EUF به صورت } \\
& (E-F) \cup(E \cap F) \cup(F-E)=E \cup F
\end{aligned}
$$

. $E \cup F \in \mathcal{F}$ - ت ت ت • فرض می كنيم در به شرط r ا، داريم . \mathcal{F}
 تمام مجموعههاى باز و بستّهى اين فضاست كه تحت اشتتراك شمارا و الجتماع شمارانى مجزا ابسته

 مجموعههاى بسته است كه تحت أشترأى شمارا و اجتماع ششمارا بسته أست.

جواب :
الف) مسئلهى حل شدهى ه قسمت (ب) را بيينيد.
ب) با توجه به نتيجهى (M.1، هر مجموعهى بسته در يكـ فضاي متريكى،
 شُامل مجموعههاى بسته نيز است. حال با بكار بردن قسمت (الفـ)، نتيجهى مورد نظر بدست مى آيد.
پ) أثبات دقيقا مشابه قسمت (ب) است. توجه داششته باشيد كه هر مجموعهى بسته در يكى فضاى متريكه، مجموعهأى ${ }^{\text {م }}$ است.

مسئله Y. فرض مى كنيم اكگر به ازأيى هر

$$
\nu(E):=\sup \{\mu(E): \quad \mu \in \mathfrak{M}\}
$$

يكـ اندازه روى
جواب : بوضوح ע تابعى خوشتعريف از مجموعههاكي مجزا در \mathcal{A} باشد. در اين صورت به ازاي هر

$$
\begin{aligned}
& \mu\left(\bigcup_{n=1}^{\infty} E_{n}\right)=\sum_{n=1}^{\infty} \mu\left(E_{n}\right) \leq \sum_{n=1}^{\infty} \nu\left(E_{n}\right) \\
& \quad \nu\left(\bigcup_{n=1}^{\infty} E_{n}\right) \leq \sum_{n=1}^{\infty} \nu\left(E_{n}\right)
\end{aligned}
$$

 فرض ميكنيم

خֶوز秋

$$
\begin{aligned}
\sum_{k=1}^{n} \nu\left(E_{k}\right)-\varepsilon & <\sum_{k=1}^{n} \mu_{k}\left(E_{k}\right) \leq \sum_{k=1}^{n} \mu\left(E_{k}\right) \\
& =\mu\left(\bigcup_{k=1}^{n} E_{k}\right) \leq \nu\left(\bigcup_{k=1}^{n} E_{k}\right) \\
& \leq \nu\left(\bigcup_{k=1}^{\infty} E_{k}\right)
\end{aligned}
$$

از الينكه بينهايت ميل دهيم، داريم. . اندازهپذير (X, $)$ است

نتيجه: أکر باششد آنگاه تأي $\mu(E)=\sup \left\{\mu_{n}(E): E \in \mathcal{A}\right\}$ تعريف شده به صورت $\mu: \mathcal{A} \rightarrow[0, \infty$ يكى اندازه روى A است.
$f: X \rightarrow[0, \infty)$ مسئله 1 . فرض مى
 نشان دهيد

جواب : فرض كنيم قرار هیدهيم به |زاى هر

$$
\mu_{f}(E)=\sup \left\{\mu_{F}(E): F \in \mathcal{F}_{X}\right\}
$$

 $f(x)=1$ اندازههاي شمارشى و ديراكى، حالت خاصهى از اين اندأزه أست. در واقع با قرار دادن با

 $\mu\left(\underset{n \rightarrow \infty}{\limsup } E_{n}\right)=0$ با
$F_{n}=\cup_{k=n}^{\infty} E_{k}$ جواب : با تو جه به تعريفس، آنچkاه دنبالهى

$$
\mu\left(F_{1}\right)=\mu\left(\bigcup_{n=1}^{\infty} E_{n}\right) \leq \sum_{n=1}^{\infty} \mu\left(E_{n}\right)<\infty
$$

مىباشد. بنابراين از خأصيت پيوستگى از بالالى تابع اندأزه دأريم

$$
\begin{aligned}
\mu\left(\limsup _{n \rightarrow \infty} E_{n}\right) & =\mu\left(\lim _{n \rightarrow \infty} F_{n}\right)=\lim _{n \rightarrow \infty} \mu\left(F_{n}\right) \\
& =\lim _{n \rightarrow \infty} \mu\left(\bigcup_{k=n}^{\infty} E_{k}\right)
\end{aligned}
$$

$$
\leq \lim _{n \rightarrow \infty} \sum_{k=n}^{\infty} \mu\left(E_{k}\right)
$$

از أينكه است. (روش حل ديگرى از اين مسئله را ميتوانيد مر مسائلر حل شدهى فصرل بعدى بيبينيد).

مسئله •1. فرض مى كنيم $\mathcal{E}=\left\{E_{\alpha}: \alpha \in \Gamma\right\}$ قردايهاىى دوبدو مجزا در \mathcal{A} باشد كه به ازاى هر $\operatorname{card}(\mathcal{E}) \leq \operatorname{card}(\mathbb{N})$ نشان دهيد $\mu\left(E_{\alpha}\right)>0 ، \alpha \in \Gamma$

جواب : فرض ميكنيه خواص جمعى متناهى و يكنواييى تابع اندأزه، به ازاي هر .

$$
\sum_{\alpha \in F} \mu\left(E_{\alpha}\right)=\mu\left(\bigcup_{\alpha \in F} E_{\alpha}\right) \leq \mu(X)
$$

با سويرممز گيرى أز طرفين نامساوي، داريـم

$$
\sum_{\alpha \in \Gamma} \mu\left(E_{\alpha}\right)=\sup \left\{\sum_{\alpha \in F} \mu\left(E_{\alpha}\right): F \dot{\in} \mathcal{F}_{\Gamma}\right\}<\infty
$$

مسئله II. فرض می كنيم
زيرمجموعهههاى X باشد، آنگا.

$$
\lim _{n \rightarrow \infty} \mu^{*}\left(E_{n}\right) \leq \mu^{*}\left(\lim _{n \rightarrow \infty} E_{n}\right) .
$$

 $\lim _{n \rightarrow \infty} \mu^{*}\left(E_{n}\right)=\mu^{*}\left(\lim _{n \rightarrow \infty} E_{n}\right)$) $\left\{\mu^{*}\left(E_{n}\right)\right\}_{n=1}^{\infty}$ جواب : نيز دنبالهانى صعودى در $\lim _{n \rightarrow \infty} E_{n}=$ يكنوايِي喵 ${ }_{n=1}^{\infty} E_{n}$

$$
\lim _{n \rightarrow \infty} \mu^{*}\left(E_{n}\right) \leq \mu^{*}\left(\bigcup_{n=1}^{\infty} E_{n}\right)=\mu^{*}\left(\lim _{n \rightarrow \infty} E_{n}\right) .
$$

حال اگر هر E $E \subseteq X$ يوشش

 أست داريم

$$
\begin{aligned}
\mu^{*}\left(\lim _{n \rightarrow \infty} E_{n}\right) & \stackrel{\perp}{=} \mu^{*}\left(\liminf _{n \rightarrow \infty} E_{n}\right) \leq \mu^{*}\left(\liminf _{n \rightarrow \infty} F_{n}\right) \\
& \stackrel{r}{=} \mu\left(\liminf _{n \rightarrow \infty} F_{n}\right) \stackrel{r}{\leq} \liminf _{n \rightarrow \infty} \mu\left(F_{n}\right)=\liminf _{n \rightarrow \infty} \mu^{*}\left(F_{n}\right) \\
& =\liminf _{n \rightarrow \infty} \mu^{*}\left(E_{n}\right) \stackrel{\varphi}{=} \lim _{n \rightarrow \infty} \mu^{*}\left(E_{n}\right) .
\end{aligned}
$$

كه در آن تساوىها و نامساوىها به علت:
ا- دنبالaى rr r-r Y- مسئلهى V ار با ببينيد.
 و بالالاخره با توجه به نامساوى (Y.Y)، نتيجهى مورد نظر بدست مىآيد.

$$
\mu^{*}(A) \geq \mu^{*}(A \cap E)+\mu^{*}\left(A \cap E^{c}\right)
$$

$$
\begin{aligned}
& \mu^{*}(F) \geq \mu^{*}(F \cap E)+\mu^{*}\left(F \cap E^{c}\right) .
\end{aligned}
$$

$\left\{A_{n}\right\}_{n=1}^{\infty} \subseteq \mathcal{A}$ فرض مى كنيم براى F جنان موجود است كه
d

$$
\begin{aligned}
\mu^{*}(F)+\varepsilon & \geq \sum_{n=1}^{\infty} \mu\left(A_{n}\right) \\
& \geq \sum_{n=1}^{\infty}\left(\mu^{*}\left(A_{n} \cap E\right)+\mu^{*}\left(A_{n} \cap E^{c}\right)\right) \\
& =\sum_{n=1}^{\infty} \mu^{*}\left(A_{n} \cap E\right)+\sum_{n=1}^{\infty} \mu^{*}\left(A_{n} \cap E^{c}\right) \\
& \geq \mu^{*}(F \cap E)+\mu^{*}\left(F \cap E^{c}\right),
\end{aligned}
$$

كه در آن تساوى بيان شده أز يادآورى صفحهى •ه بدست آمده است. حال از اينكه ه > ع دلخواه است، نتيجهى مورد نظر بدست مىآيد.
 آنظاه

جواب : فرض كنيم E، * ${ }^{*}$ ـ-اندازهيذير باشند، آنگاه به ازاى هر $A \subseteq X ، ~$

$$
\mu^{*}(A)=\mu^{*}(A \cap E)+\mu^{*}\left(A \cap E^{c}\right)
$$

چچنان باششد كه تساوى بالا برقرار باشد. از اينكه هر مجموعهى

$$
\mu^{*}(E)=\mu^{*}(E \cap A)+\mu^{*}\left(E \cap A^{c}\right), \quad \mu^{*}\left(E^{c}\right)=\mu^{*}\left(E^{c} \cap A\right)+\mu^{*}\left(E^{c} \cap A^{c}\right)
$$

با جمع تساوىهاى بالا و با بهره گيرى أز فرض داده شده،

$$
\begin{aligned}
\mu^{*}(X) & =\mu^{*}(E)+\mu^{*}\left(E^{c}\right) \\
& =\left[\mu^{*}(E \cap A)+\mu^{*}\left(E^{c} \cap A\right)\right]+\left[\mu^{*}\left(E \cap A^{c}\right)+\mu^{*}\left(E^{c} \cap A^{c}\right)\right] \\
& \geq \mu^{*}(A)+\mu^{*}\left(A^{c}\right) \geq \mu^{*}(X)
\end{aligned}
$$

كه در آن نامساوىها از خاصيت زير جمعى */ بدست آمده أست. بنابراين

$$
\mu^{*}(A)+\mu^{*}\left(A^{c}\right)=\left[\mu^{*}(E \cap A)+\mu^{*}\left(E^{c} \cap A\right)\right]+\left[\mu^{*}\left(E \cap A^{c}\right)+\mu^{*}\left(E^{c} \cap A^{c}\right)\right]
$$

با توجه به نامساوى دأريم俉

$$
\begin{aligned}
& \mu_{o}^{*}(E)= \inf \left\{\sum_{n=1}^{\infty} l\left(I_{n}\right):\left(I_{n}: n \in \mathbb{N}\right) \subseteq \mathcal{I}_{o}, \bigcup_{n=1}^{\infty} I_{n} \supset E\right\} \\
& \mu_{o c}^{*}(E)= \inf \left\{\sum_{n=1}^{\infty} l\left(I_{n}\right):\left(I_{n}: n \in \mathbb{N}\right) \subseteq \mathcal{I}_{o c}, \bigcup_{n=1}^{\infty} I_{n} \supset E\right\} \\
& \mu_{c o}^{*}(E)=\inf \left\{\sum_{n=1}^{\infty} l\left(I_{n}\right):\left(I_{n}: n \in \mathbb{N}\right) \subseteq \mathcal{I}_{c o}, \bigcup_{n=1}^{\infty} I_{n} \supset E\right\} \\
& \mu_{c}^{*}(E)=\inf \left\{\sum_{n=1}^{\infty} l\left(I_{n}\right):\left(I_{n}: n \in \mathbb{N}\right) \subseteq \mathcal{I}_{c}, \bigcup_{n=1}^{\infty} I_{n} \supset E\right\} \\
& \mu_{o}^{*}(E)=\mu_{o c}^{*}(E)=\mu_{c o}^{*}(E)=\mu_{c}^{*}(E)
\end{aligned}
$$

جواب : نشاز ميدهيم به ازاى هر گرفته و فرض مى كنيم 1

$\mu_{c}^{*}(E) \leq \sum_{n=1}^{\infty} l\left(I_{n}\right)+\varepsilon$ 的 حال با اينغيم گيرى از طرفين نامساوى داريم $\left\{\left[a_{n}, b_{n}\right]\right\}_{n=1}^{\infty}$ است داريم از و با روندى كاملاً مشابه نشان میدهيم (E) (E)
ترتيب میتوان نشان داد (

$$
\left.\begin{array}{rl}
\mu(E) & =\inf \{\mu(G): ~: ~ ب ا ز ~
\end{array}, G \in \mathcal{A}, E \subseteq G\right\},
$$

اندازنى μ ر ر منتظم گوييب، هر كاه تمام عناصر A منتظم باشـ. نشان دهيد اندازْهى لبگى روى فضاى اقليدسى ${ }^{\text {، }}$ ، منتظم است.

$$
\inf \{m(G): ~: ~ G, E \subseteq G\} \leq m\left(G_{0}\right) \leq m(E)+\varepsilon .
$$

 $m(E-K)=m(E)-m(K)$ مارد كه ع

$$
m(E) \leq m(K)+\varepsilon \leq \sup \{\mu(K): \text { : }
$$

$m\left(H_{n}\right) \geq m\left(\cup_{j=-n}^{n} E_{j}\right)-\varepsilon$, E م H_{n}.

$$
\sup _{n} m\left(H_{n}\right)=\lim _{n \rightarrow \infty} m\left(H_{n}\right) \geq m(E)-\varepsilon,
$$

لذا
 . $\alpha m(I)<m(E \cap I)$)

$$
\begin{equation*}
m(E)+\underbrace{\left(\frac{1}{\alpha}-1\right) m(E)}_{\varepsilon}>m(G), \tag{ro.r}
\end{equation*}
$$

از اينكه G مجموعهالى باز در

$$
\begin{aligned}
& \text { باز } \\
& m(E)=m(E \cap G)=m\left(E \cap \bigcup_{n=1}^{\infty} I_{n}\right)=\sum_{n=1}^{\infty} m\left(E \cap I_{n}\right) . \\
& \text { حال با قرار دادن (G) } m \text { و (E) در (rهr r)، داريم } \\
& \sum_{n=1}^{\infty} m\left(I_{n}\right)<\frac{1}{\alpha} \sum_{n=1}^{\infty} m\left(E \cap I_{n}\right) .
\end{aligned}
$$

$I=I_{n .}$. در اين صورت I باززاي باز و متناهي است كه بالاخره فرض مى كنيم

yy مسائل حل شده Ir.r

جواب :
الفض) فرض كنيم موجود است كه $m(E \cap(a, b))>\alpha(b-a)$ و 1 ون متناقض با فرض مسئله است. ب)
 شده در فرض و استفاده از معيار كاراتئودورى روى مجموعهى اندازهيذير Eع، داريم

$$
|(a, b)|=m(E \cap(a, b))+m\left(E^{c} \cap(a, b)\right)>(\alpha+\beta)(b-a)=b-a
$$

و إين يـى تناقض اسـت.

مسئله 1 . به ازإى هر E $E \subset \mathbb{R}$ مجموعهى تفاضلى E, با نماد $E(E)$ نشان داده و به صورت

$$
\Delta(E)=\{x-y: x, y \in E\}
$$

$$
[-\alpha, \alpha] \subseteq \Delta(E)
$$

جواب : اگكر چنان مو جود است كه

$$
\frac{r}{r} m(I)<m(E \cap I)
$$

قرار میدهيم $I \cup(I+x) ، x \in[-\alpha, \alpha]$ يكى بازه بوده و $I \cup \frac{1}{4} m(I)$.

$$
m(I \cup(I+x)) \leq m(I)+|x| \leq m(I)+\alpha=\frac{r}{Y} m(I)
$$

از اينكه به أزإى هر

$$
m((E \cap I) \cup((E \cap I)+x)) \leq m(I \cup(I+x)) \leq \frac{r}{\gamma} m(I)
$$

متناهى و پاياييى انتقال اندازمى لبگگ، داريم

$$
\begin{aligned}
m((E \cap I) \cup((E \cap I)+x)) & =m(E \cap I)+m((E \cap I)+x) \\
& =r m(E \cap I) \\
& >\frac{r}{r} m(I)
\end{aligned}
$$

$g(E \cap I) \cap((E \cap I)+x) \neq \emptyset ، x \in[-\alpha, \alpha]$ كه يك تناقض الست. بنابراين به ازاي هـ . $[-\alpha, \alpha] \subseteq E-E$ ر نتيجه
 جواب : فرض كنيم V مجموعهى ويتالىى باشد. با توجه به ساخت اين مبجموعه،

$$
\Delta(V) \cap \mathbb{Q}=\{x-y: x, y \in V\} \cap \mathbb{Q}=\{0\}
$$

 $m(V)=0$ اندأزهناپذير است يا
 اسست. بنابراين V أندازهنايذير أست.

مسئله •Y. نشان دهيد هر زيرمجموعهى RX با اندازْى خارجى مثبت، شامل يكى مجموعهى لبگِ

 مجز!

$$
E=\bigcup_{r \in \mathbb{Q}}\left(E \cap V_{r}\right) \quad, \quad m^{*}(E) \leq \sum_{r \in \mathbb{Q}} m^{*}\left(E \cap V_{r}\right)
$$

اگ,

$$
\Delta\left(E \cap V_{r}\right) \subset \Delta(V)
$$

پی (V) شامل يكى بازه أست و اين متناقض با سانخت مبجموعهى ويتألى أست. بنابراين از رأبطهى
 و اين همان زيرمـجموعهى اندازهناپيذير E است.

مسئله ا!. فرض كنيد *m أندازهى خارجى لبگَ روى |الف) دنبالهايى مانند

$$
m^{*}\left(\bigcup_{n=1}^{\infty} E_{n}\right)<\sum_{n=1}^{\infty} m^{*}\left(E_{n}\right)
$$

ب) دنبالهأى نزولى مانند

$$
m^{*}\left(\bigcap_{n=1}^{\infty} E_{n}\right)<\lim _{n \rightarrow \infty} m^{*}\left(E_{n}\right)
$$

پ" آيا مىتوان دنبالهأى صعودى مانند ,

$$
m^{*}\left(\bigcup_{n=1}^{\infty} E_{n}\right)>\lim _{n \rightarrow \infty} m^{*}\left(E_{n}\right)
$$

ت) دنبالهأى مانند

جواب :

的 $E_{n}=V_{n}$ $m^{*}\left(E_{n}\right)>0 \quad$ انداز منايذير (اگر لبگ، اندازیى خار جى عناصر اين دنباله، همغى با يكديگر برابر است. بنابراين

$$
1=m([0,1])=m^{*}\left(\bigcup_{n=1}^{\infty} E_{n}\right)<\sum_{n=1}^{\infty} m^{*}\left(E_{n}\right)=\infty
$$

ب) فرض مى كنيم قرار مىدهيم از اينكه的 $m^{*}\left(E_{n}\right) \geq m\left(V_{n}\right)=m^{*}(V)>$ 。

$$
.=m^{*}\left(\bigcap_{n=1}^{\infty} E_{n}\right)<\lim _{n \rightarrow \infty} m^{*}\left(E_{n}\right)
$$

پ) خير. با توجه به قضيهى زيرمجموعهى $\left.m^{*} \bigcup_{n=1}^{\infty} E_{n}\right)=\lim _{n \rightarrow \infty} m^{*}\left(E_{n}\right)$ دنبالهى صعودى از زيرمجموعهمانى
 هر
 $m^{*}\left(\cup_{k=1}^{n} E_{k}\right) \geq m^{*}\left(E_{n}\right)>\circ ، n \in \mathbb{N}$ اندازهنإنير است. است، لذا الگر شامل يكى بازه حول صفر است و اين متناقض با

$$
\Delta\left(\bigcup_{k=1}^{n} E_{k}\right) \cap \mathbb{Q}=\left\{r_{i}-r_{j}, \quad 1 \leq i, j \leq n\right\}
$$

درستى تساوى فوق، از اين حقيقت ناشى مىشود كه دنبالهى زيرمجموعههاي

$$
\Delta\left(\bigcup_{k=1}^{n} E_{k}\right)=\bigcup_{i \leq i, j \leq n}\left\{x-y: x \in E_{i}, y \in E_{j}\right\}
$$

از طرفى به آسانى و با توجه به ساختار اين مجموعهها، مىتوان نشان داد به ازاي هر

$$
\left\{x-y: x \in E_{i}, y \in E_{j}\right\} \cap \mathbb{Q}=\left\{r_{i}-r_{j}\right\}
$$

جواب : تابع $]$

$$
f(x)=m(E \cap(-\infty, x])
$$

به ازأى هر $x, y \in \mathbb{R}$ و با فرض $x>y$ داريم

$$
\begin{aligned}
|f(x)-f(y)| & =|m(E \cap(-\infty, x])-m(E \cap(-\infty, y])| \\
& =m(E \cap(y, x]) \leq|x-y| .
\end{aligned}
$$

بنابراين f F تبعى بيوسته است. (f تابعى ليپشيتز از مرتبهى يكـ و در نتيجه بطور يكنواخت پيوسته است). از طرفى . $A=E \cap\left[-\infty, x_{\beta}\right]$ به ازاى هر $x_{\beta} \in \mathbb{R}$. $f\left(x_{\beta}\right)=\beta \in(0, \alpha)$ بنابرجود است كه

M.Y.Y مسـائل

 اجتماع متناهى و ثفاضل بسته باثد. حلقهى بسته تحت اجتماع شمارا را σ اسحلقه ناميم. نتشان دهيد الف) هر ححلقه ((G-حلقه) تحت اششتراك متناهى (شمارا) بسته أست.
 ب) ت) اگر ای يكـ Y. نشان دهيد جبر G روى X يكى б-جبر روى X است اگر و تنها اگر تحت اجتماع شماراى صهودى بسته باشد.
 روى X است اما در حالت كلى σ هجبر نيست.
F. فرض كنيد f تابعى دلخواه از, X به Y باشد. نشان دهيد

الف) اكر
 است.
ب) اكَ ع گُردايهام از زيرمجموعهماى Y باشد، آنگاه
俍

$$
\left(\sum_{n=1}^{\infty} a_{n} \mu_{n}\right)(E)=\sum_{n=1}^{\infty} a_{n} \mu_{n}(E) .
$$

تعريفـ مى كنيم. نشان دهيد
 در حالت كلى تابع $\mu \vee \nu=\max \{\mu, \nu$ يكى تابع اندازه روى (X, μ) نمكتواند باثند. v. فرض كنيد

$$
\mu\left(\liminf _{n \rightarrow \infty} E_{n}\right) \leq \liminf _{n \rightarrow \infty} \mu\left(E_{n}\right) .
$$

$\mu\left(\lim \sup _{n \rightarrow \infty} E_{n}\right) \geq \lim \sup _{n \rightarrow \infty} \mu\left(E_{n}\right)$) A. فرض كنيد (متناهم مانند E جنان موجود باثشد كه به ازانى هر

$$
E_{n} \subseteq E, \quad \lim _{n \rightarrow \infty} \mu\left(E_{n}\right)=\mu(E) .
$$

$$
\text { نشان دهيد به ازاى هر } \left.\lim _{n \rightarrow \infty} \mu\left(E_{n} \cap F\right)=\mu(E \cap F) ، F \in \mathcal{A}\right)
$$

.1. نشان دميد
 نشان دهيد عكس مطلب در حالت كلى برقرار نيست.
 متناهى نيست. (منظور از زيرفضاى انداز

$$
\text { أست كه }(X, \mu, \mathcal{M})
$$

 تابعى دلخواه است، در نظر بگيريد. نشان دهيد $f: X \rightarrow[0, \infty)$

الف) فضاى ($f(x)<\infty$) ب) فضهاى (كه ه >

$$
C<\mu(F)<\infty
$$

سا. بالرائهى مثالى، نشان دهيد اجتماع هر تعداد دلخواه از مجموعههاى اندازمهذير در يكى فضاى اندلازه، همواره يكى مجموعهى اندازْيذير نيست.

If باشثد. نشان دهيد اگر F مجموعهى E مجموعهاى E E هاه فرض كنيد
 ب) اگ,

$$
\mu^{*}\left(\bigcup_{n=1}^{\infty} E_{n}\right)=\lim _{n \rightarrow \infty} \mu^{*}\left(E_{n}\right)
$$

19. فرض كنيد ${ }^{*}$ اندازمى خارجى لبگى روى $E, F \subseteq \mathbb{R} \mathbb{R}$ باشند. نشان دهيد

$$
m^{*}(E \cup F)=m^{*}(E)+m^{*}(F)
$$

$$
d(E, F)=\inf \{|x-y|: x \in E, y \in F\}>0 .
$$

$$
m^{*}(E \cup F)=m^{*}(E)+m^{*}(F) \text { آ }
$$

m(E) > باشثد. نشان دهيد الف) $x, y \in E$ حنان موجود است كه x - x كوياست. ب)
 1A. فرض كنيد E مجموعهالى لبگى اندازهپذير و $E \subseteq V$ باشثد كه V مجموعهى ويتالى تعريف
 ندارد. نشان دهيد E مجموعهأى لبگَ اندازهيْير با اندازهى صفر است.
.r. نشان دهيد هر گردايهى دلخواه از زيرمجموعههاى لبگَ اندازهيذير دوبدو مجزا الز يكى اندازْى مثبت دارد، شماراست.
I. K. گردايهى *

צT. فرض كنيد E زيرمجحموعهأى كراندار از اعداد حقيقى باشد. نشان دهيد به ازاي هر بازهأى باز با نقطه ميانى x مانند

$$
m^{*}\left(E \cap I_{x}\right)=m^{*}\left(E \cap I_{x}^{c}\right)=\frac{m^{*}(E)}{r}
$$

قصصى

是

 اندازه، نقطهى عطف مهمى در تحول آناليز حقيقى بشمار آمدا

 ديدهاز جهان فرو بست.

 انتگرالگيرى را الرائه دهد كه حوزهى عمل آن، عليرغم توسيح آناليز مدرن، توانست بسيارى از

[^2]
 فرض كنيد ريمان و لبگ باهم وارد اتتاقى شده و با تعدادى كيسه پپ از أسكناس كه روى هر كدأم از كيسهها تعداد اسكناسها نوشته شده است، مواجِه مىشوند. (جپه خخوب....). حال اولين سوالى كه

برايشان بيش مى آيد اين است كه چجقلر پول در اين انتاق وجود دارد؟ ريمان مسئله را بدين گونه حل مى كند. او روى تكى تكى كيسهها را نگاه مى كند ريال، Q ريال، r ريال، r ريال ، r ريال وسبس با جمع تكى تكـ آّنها مقدار پول موجود را بدست میآورد و اما لبگـ... لبگى مسئله را بدين گونه حل مى كند. او ابتدا كيسهها رأ بر حسب تعداد اسكناسها طبقهبندى مي كند. r كيسهى r ريالى، r كيسهى r ب ريالى، مقادير اسكناس موجود در آنها ضربـ و با يكديگر جمع كرده و در نهايت مقدار پول مو جود در اتاق را بدست مىآورد.
همانطور كه ديديد هر دو جواب يكسان هستند، اما روش محاسبهى متفاوتى دارند. حال به نظر
 با اين توصيفات أگر بخواهيم تفاوت روشهماى أنتگرالڭيرى ريمان و لبگ را با به زبان رياضى بيان كنيه، میبينيم كه در انتگ/الڭگيرى از تابع دلخواه f، تفاوت روش آنها در نحوهى أفرأز آنهما است. ريمان دامنهى تأع را افراز و مجموع ريمان را به عنوان تقريبى أز مساحت زير نمودأر در نظر
 مطالب مذكورند:

شكل 「.1: مجموعيابيى به روش ريمان

م: $: f\left(\overline{x_{1}}\right)\left(x_{1}-x_{0}\right)+\cdots+f\left(\overline{x_{i}}\right)\left(x_{i}-x_{i-1}\right)+\cdots+f\left(\overline{x_{n}}\right)\left(x_{n}-x_{n-1}\right)$.

كه در آن

شكل r.r. مججموعيابيى به روش لبثت
: متجموع لبكَ $: f\left(\overline{x_{1}}\right) m\left(E_{1}\right)+\cdots+f\left(\overline{x_{i}}\right) m\left(E_{i}\right)+\cdots+f\left(\overline{x_{n}}\right) m\left(E_{n}\right)$.
كه

${ }^{r}$ C. B. Boyer

${ }^{*}$ Riesz
${ }^{\circ}$ Fischer

انتُگال ريمان فوقالعاده است. بدون شكى كشف ريس-فيشر كه بر پايه انتّگرال زبگى بنا شد، مبناى تحول عظيم و رشد آناليز تابعى در طول قرن بيستم، أمم از تئورى فضاهالى هيلبرت و باناخ، فضايى

سو:وولف و ... گرديد. ${ }^{\text {\% }}$
در أين فصل مباحث مربوط به النتگرال لبگى رال، به شكلى ملموس مطرح خواهيم كرد. بحث را با
 انتگرالگيرى را تشكيل هیدهند، برداخخته و انتگرالگيرى لبگى را روى اين توابع تعريف هى كنيم تا

 فصل را با معرفى همگرايیى در اندازه و ارتباط آن با ديگر همگرايیها، خاتمه خواهيم داد.

ش.ト توابع اندازه یذير

$$
E_{i}=f^{-1}\left(\left[y_{i-1}, y_{i}\right)\right)=\left\{x: y_{i-1} \leq f(x)<y_{i}\right\}
$$

توانستيم تعريف كنيم. مشاهده مىى كنيم كه أندازهپذيرى اين مـجمو عهها الرتباط مستقيمى با تابي f دارد.

 تعريف میكنيم. $f: X \rightarrow Y$ تعريف r.1. اگر (را اندازهپذير در هر $f^{-1}(E) \in \mathcal{A}_{X} ، E \in \mathcal{A}_{Y}$ باشثدرير
أگر

 اگر位 "به نقل از همالن منبع.

مثال ץ．r．تأبع ثابت روى X باشد．

مثال ץ．r．اندازمى خارجـى

$$
\mu^{*}(E)= \begin{cases}|E| & \text { نامتناهى E } E . \\ \infty & \text { نتناهى E. }\end{cases}
$$

隹 میتوان نشان داد، تمام زيرمجموعههاى واى
 الست．بنابراين هر تابع دلخواه هر

لم لم．F．فرض ميكنيم اندازهيذير باشند．آنگاه آن

缺
اثبات ：نتيجهى مستقيم تعريف است．
－ $\left.\mathcal{A}_{X}, \mathcal{A}_{Y}\right)$ لمه

$$
\begin{aligned}
& \text { اثبات : فرض ميكنيم به ازايى هر } \\
& \mathcal{A}=\left\{E \subseteq Y: f^{-1}(E) \in \mathcal{A}_{X}\right\} .
\end{aligned}
$$

از اينكه شامل
 تابعى（B）

اثبات ：مىدانيم f بيوسته است اكِ و تنها اكِر تصوير وأرون هر مجموعهى باز Y، مجموعهالى باز图 در X باشد．حال كافي است لم ه．ه را بكار ببريد．

لم ץ．V．اگر（X，$)$

الف) f تابعى \mathcal{A}-اندازْمپذير است.

$$
\begin{aligned}
& \text { ب) به ازازاي هر } \\
& .^{-1}([\alpha, \infty)) \in \mathcal{A} ، \alpha \in \mathbb{R} \text { با به } \\
& \text { ت) } \\
& f^{-1}((-\infty, \alpha]) \in \mathcal{A} ، \alpha \in \mathbb{R} \text { ث }
\end{aligned}
$$

ج) آگر

 مثال

$$
\chi_{E}(x)= \begin{cases}1 & x \in E \\ 0 & x \in E^{c} .\end{cases}
$$

$$
\left\{x \in X: \chi_{E}(x)>\alpha\right\}= \begin{cases}\emptyset \in \mathcal{A} & \alpha \geq 1 \\ E \in \mathcal{A} & 0 \leq \alpha<1 \\ X \in \mathcal{A} & \alpha<0\end{cases}
$$

عكس مطلب واضح است.

تذكر ץ.9. با توجه به مثال مذكور در بالال،
 عدد اصلى توابِ لبڭ اندازْ
 مجمهوعههاى لبگ انداز مخذير است.

- متناظر با هر مجموعهى لبگُ اندازمناپذير، تابعى لبگً اندازمنايذير وجود دارد.

$$
f(x)= \begin{cases}1 & x \in \mathbb{Q} \\ \bullet & x \in \mathbb{Q}^{c}\end{cases}
$$

 دأشته بأشيد كه f در هيجِ نتطلمأى بيوسته نيست.

تعريف ץ.ا1. فرض كنيم $f^{-1}(F) \cap E \in \mathcal{A} ، F \in \mathcal{B}_{\mathbb{R}} f$ لم r.ז.
 اندازمهذير است.
ب) با گر En باشله، آنگاه f تابعى اندازهیذير روى E است. اثبات : آسان است و به خواننده واگذار میشود. نمادگّذارى : اگر به مجموعهى اعداد ححقيقى حاصل را با نماد [[جمع، تفاضل و ضرب را به صورت زيرتعريف مى كنيم:

$$
\begin{gathered}
x \pm \infty= \pm \infty, \quad \infty+\infty=\infty \quad-\infty-\infty=-\infty \\
x .(\pm \infty)= \pm \infty(x>0), \quad x \cdot(\pm \infty)=\mp \infty(x<0)
\end{gathered}
$$

\mathbb{R}^{*} را ∞ را به صورت

$$
\mathcal{B}_{\mathbb{R}^{*}}=\sigma(\{(a, \infty]: a \in \mathbb{R}\})=\sigma(\{[-\infty, a): a \in \mathbb{R}\})
$$

كافى است ابتدا نشان دهيد دو бـجـبر طرف راست باهم برابرند ستس توجه داشته باشيد كه

$$
\{+\infty\}=\bigcap_{n=1}^{\infty}(n, \infty], \quad\{-\infty\}=\bigcap_{n=1}^{\infty}[-\infty,-n)
$$

تابع قضيه ז. باشد. آنگاه توابع زير هـيُى اندلازهیذيرند.

$$
\begin{gathered}
f+g, \quad f^{\curlyvee}, \quad|f|^{p}(p>0), \quad \frac{1}{g}(X \text {, } g \neq 0), \quad c f, \quad f g, \frac{f}{g}\left(X_{\text {, }}, g \neq 0\right) \\
f^{+}, \quad f^{-} \quad f \vee g=\max \{f(x), g(x)\}, \quad f \wedge g=\min \{f(x), g(x)\},
\end{gathered}
$$

كه در آن + $f^{+} f^{-}$به ترتيب قسمتهالى مثبت و منفى f هستند. در واقع

$$
f^{+}=\max \{f(x), \circ\}, \quad f^{-}=\max \{-f(x), \circ\}
$$

اثبات : به ازاى هر

$$
\{x \in X: f(x)+g(x)>\alpha\}=\bigcup_{q \in Q}\{x \in X: f(x)>q\} \cap\{x \in X: g(x)>\alpha-q\} .
$$

 ایر مر $\alpha \geq$ باشد، آنگاه

$$
\left\{x \in X: f^{\gamma}(x) \leq \alpha\right\}=f^{-1}([-\sqrt{\alpha}, \sqrt{\alpha}]) .
$$

و در نتيجه cf

$$
\left\{x \in X: \frac{1}{g(x)}>\alpha\right\}= \begin{cases}\{x: g(x)>\circ\} & \alpha=0 \\ \{x: g(x)>\circ\} \cap\{x: g(x)<1 / \alpha\} & \alpha>0 \\ \{x: g(x)>\circ\} \cup\{x: g(x)<1 / \alpha\} & \alpha<0\end{cases}
$$

 توجه به اتحادهاى زير

$$
f^{+}=\frac{|f|+f}{r}, \quad f^{-}=\frac{|f|-f}{r}
$$

$$
\begin{gathered}
f \vee g=\frac{f+g+|f+g|}{r}, \quad f \wedge g=\frac{f+g-|f+g|}{r}, \\
f g=\frac{(f+g)^{r}-f^{r}-g^{r}}{r}, \quad \frac{f}{g}=f \cdot \frac{1}{g} .
\end{gathered}
$$

$$
b_{k}=\sup \left\{a_{k}, a_{k+1}, a_{k+5}, \cdots\right\}
$$

رر أين صورت حد دنبالهى

$$
\limsup _{n \rightarrow \infty} a_{n}=\inf \left\{b_{1}, b_{r}, b_{r}, \cdots\right\}
$$

حد پايين ا

$$
b_{k}=\inf \left\{a_{k}, a_{k+1}, a_{k+r}, \cdots\right\}
$$

در اين صورت إست．حد دنبالهى

$$
\liminf _{n \rightarrow \infty} a_{n}=\sup \left\{b_{1}, b_{r}, b_{r}, \cdots\right\}
$$

مى پايينى يک دنباله در
 حال فرض مى كنيم صورت توأبع

$$
\left(\inf _{n} f_{n}\right)(x)=\inf _{n} f_{n}(x), \quad\left(\sup _{n} f_{n}\right)(x)=\sup _{n} f_{n}(x)
$$

$$
\left(\liminf _{n} f_{n}\right)(x)=\liminf _{n \rightarrow \infty} f_{n}(x), \quad\left(\limsup _{n} f_{n}\right)(x)=\limsup _{n \rightarrow \infty} f_{n}(x)
$$

$f_{n}(x) \rightarrow f(x)$ گوييم دنبالهى $x \in X$ يا

$$
\limsup _{n \rightarrow \infty} f_{n}(x)=\liminf _{n \rightarrow \infty} f_{n}(x)=f(x)
$$

دنبالهى .

قضيه Y. 10. اگر , توابِع

$$
\begin{array}{ll}
g_{1}(x)=\sup _{n} f_{n}(x), & g_{\curlyvee}(x)=\limsup _{n \rightarrow \infty} f_{n}(x), \\
g_{\mathrm{r}}(x)=\inf _{n} f_{n}(x), & g_{\curlyvee}(x)=\liminf _{n \rightarrow \infty} f_{n}(x),
\end{array}
$$

اندازْهيذير أست.
اثبات : به ازازى هر

$$
\begin{aligned}
g_{1}^{-1}((\alpha, \infty]) & =\left\{x \in X: \sup _{n} f_{n}(x)>\alpha\right\} \\
& =\bigcup_{n=1}^{\infty}\left\{x \in X: f_{n}(x)>\alpha\right\}
\end{aligned}
$$

$$
\begin{aligned}
g_{r}^{-1}([-\infty, \alpha)) & =\left\{x \in X: \inf _{n} f_{n}(x)<\alpha\right\} \\
& =\bigcup_{n=1}^{\infty}\left\{x \in X: f_{n}(x)<\alpha\right\}
\end{aligned}
$$

 اندازهيذير است. بنابراين است. بالاخرهاگر f موجود باثند، آنگاه تذكر \%.19. توجه داشته باشيد كه در حالت كلى، سويرمم و اينغيمم هر تعداد دلخواه از توابع اندازهيذير، نمىتواند تابعى اندازهيذير باشد. به عنوان مثال، اگر E مجموعهاى لبگ اندازمنائذير

9ه 9 .

باشثد، آنگاه به أزاي هر

$$
\sup _{a \in \mathbb{R}} \chi_{E \cap\{a\}}=\chi_{E}, \quad \inf _{a \in \mathbb{R}}-\chi_{E \cap\{a\}}=-\chi_{E}
$$

در فصل قبل مفهوم خاصيت تقريباً همـهجا را بيان كرديم. به عنوان مثال گفتيم در فضاي اندازنى
 اندازهیذير با اندلزهى صفر باشد. عاقلانه أست، بيرسيم در صورتى كه

$$
\begin{aligned}
& X=\{1, \uparrow, \Gamma, \uparrow\}, \mathcal{A}=\{\{1, \uparrow\},\{r, \uparrow\}, \emptyset, X\} \\
& \mu(\emptyset)=\mu(\{1, \curlyvee\})=0, \quad \mu(X)=\mu(\{\boldsymbol{r}, \uparrow\})=\boldsymbol{\gamma}
\end{aligned}
$$

حال توابع

$$
f(x)=1, \quad g(x)= \begin{cases}1 & x \neq 1 \\ 0 & x=1\end{cases}
$$

الف) اكگر f اندازهِذير و $f=g$ ت.هـ. روى X باشد، آنگًاه g تابـى اندازمهذير اسست. ب) أگر است.

伿 $\mu(E)=0$

$$
\{x \in X: g(x)>\alpha\}=\left\{x \in E^{c}: g(x)>\alpha\right\} \cup\{x \in E: g(x)>\alpha\}
$$

$$
=\underbrace{\left(\{x \in X: f(x)>\alpha\} \cap E^{c}\right)}_{*} \cup \underbrace{\{x \in E: g(x)>\alpha\}}_{* *}
$$

 نيز اندازمْيذير است، زيرا
 از اينكه E ا اندازْمذيرير است، پس
 الست. يس μ انداز

ب) فرض كنيم مجهوعهاى اندازميذير و و
 غكس مطلمب مشابه قسمت (الفـ) أست.

「.

 رادر حالت كلى به كمك انتگرال توابج ساده تعريف ميكنيم.

 اكر و تنها الگر بردش يك مجموعهى متنامي در \mathbb{R} باشثد. در واقح، داريم

$$
\varphi=\sum_{i=1}^{n} \alpha_{i} \chi_{E_{i}},
$$

كه در آن يكديگرند. اين نهايش از تابع ساده را نايش استايناندارد آن مىناميم. در اين فصل برايى نمايش تابع ساده

از نمايش استاندارد آن استفاده خواهيم كرد. در مثال. Y.ه، ديديم كه تابع مشخصهى

 است، برد ب روى E نيز متناهى است.

لم Y.Y. Y. اگر

> اثبات : به عنوان تمرين به خواننده واگڭذار مىشود.

تعريف r.r.r. فرض كنيم

$$
\int_{E} \varphi(x) d \mu(x)=\sum_{i=1}^{n} \alpha_{i} \mu\left(E \cap E_{i}\right)
$$

 شده بانشد (به صورت م
 جايى

مثال

$$
\begin{aligned}
& \varphi_{1}(x)=\left\{\begin{array}{ll}
1 & x \in[0,1] \cap Q^{c}, \\
0 & \text { ه. } .
\end{array} \quad \varphi_{Y}(x)= \begin{cases}1 & x \in Q^{c}, \\
0 & x \in Q .\end{cases} \right. \\
& \text { تعريف مى كنيم. در اين صورت } \\
& \int_{\mathbb{R}} \varphi_{1} d m=1 \cdot 1+\cdots \infty=1, \quad \int_{\mathbb{R}} \varphi_{\dot{r}} d m=1 \cdot \infty+\cdots \cdot=\infty
\end{aligned}
$$

مثلال F.r. M.

$$
\begin{gathered}
\varphi_{r}(x)=\left\{\begin{array}{cl}
1 & x \geq 0 \\
-1 & x<0,
\end{array}\right. \\
\int_{\mathbb{R}} \varphi_{r} d m=(1 \cdot \infty)+(-1 \cdot \infty)=\infty-\infty
\end{gathered}
$$

بنابراين انتگرال

قضيه F.Y.F و F مجمو عههاييى دلخخواه و انندازهپذير. باشند.

$$
\begin{aligned}
\int_{E} c \varphi d \mu=c & \int_{E} \varphi d \mu c \geq 0 \\
& \int_{E} \varphi d \mu=\int_{X} \varphi \chi_{E} d \mu
\end{aligned}
$$

$. \int_{E \cup F} \varphi d \mu=\int_{E} \varphi d \mu+\int_{F} \varphi d \mu$ o
 $\int_{E}(\varphi+\psi) d \mu=\int_{E} \varphi d \mu+\int_{E} \psi d \mu(\tau$ ع اثبات : الف)، (ب) و (ب) نتيجهى مستقيم تعريف هستند. ت) با توجه به تعريف و با فرض اينكه

$$
\begin{aligned}
\int_{E \cup F} \varphi d \mu & =\sum_{i=1}^{n} \alpha_{i} \mu\left(E_{i} \cap(E \cup F)\right) \\
& =\sum_{i=1}^{n} \alpha_{i} \mu\left(E_{i} \cap E\right)+\sum_{i=1}^{n} \alpha_{i} \mu\left(E_{i} \cap F\right) \\
& =\int_{E} \varphi d \mu+\int_{F} \varphi d \mu .
\end{aligned}
$$

$$
\begin{aligned}
\int_{E} \varphi d \mu & =\int_{E-N} \varphi d \mu+\int_{N} \varphi d \mu=\int_{E-N} \varphi d \mu \\
& =\int_{E-N} \psi d \mu=\int_{E-N} \psi d \mu+\int_{N} \psi d \mu=\int_{E} \psi d \mu
\end{aligned}
$$

ج) فرض كنيم گردايهاى از عناصر مجزا در A را به صورت

$$
\left\{G_{i, j}=E_{i} \cap F_{j}: i=1, \ldots, m, j=1, \ldots, n\right\}
$$

در نظر مى گيريم. در اين صورت
$\int_{X} \varphi d \mu=\sum_{i=1}^{m} \alpha_{i} \mu\left(E_{i}\right)=\sum_{i=1}^{m} \alpha_{i}\left[\sum_{j=1}^{n} \mu\left(G_{i, j}\right)\right]=\sum_{i=1}^{m} \sum_{j=1}^{n} \alpha_{i} \mu\left(G_{i, j}\right)$.
و بطور مشابه

$$
\int_{X} \psi d \mu=\sum_{j=1}^{n} \beta_{j} \mu\left(F_{j}\right)=\sum_{j=1}^{n} \beta_{j}\left[\sum_{i=1}^{m} \mu\left(G_{i, j}\right)\right]=\sum_{i=1}^{m} \sum_{j=1}^{n} \beta_{j} \mu\left(G_{i, j}\right)
$$

$$
\int_{X}(\varphi+\psi) d \mu=\sum_{i=1}^{m} \sum_{j=1}^{n}\left(\alpha_{i}+\beta_{j}\right) \mu\left(G_{i, j}\right)
$$

با توجه به روابط بالا داريم
 , $\alpha_{i} \leq \beta_{j} ، G_{i, j} \cap E \neq \emptyset$

$$
\int_{E} \varphi d \mu=\sum_{i=1}^{m} \sum_{j=1}^{n} \alpha_{i} \mu\left(G_{i, j} \cap E\right) \leq \sum_{i=1}^{m} \sum_{j=1}^{n} \beta_{j} \mu\left(G_{i, j} \cap E\right)=\int_{E} \psi d \mu
$$

لم Y. تابع [

$$
\nu(E)=\int_{E} \varphi d \mu
$$

يكـ اندازه روى A انست.

اثبات : بوضوح أز عناصر دوبدو مبزا در $F=\cup_{j=1}^{\infty} F_{j}, \mathcal{A}$.

$$
\begin{aligned}
\int_{F} \varphi d \mu & =\sum_{i=1}^{n} \alpha_{i} \mu\left(E_{i} \cap F\right)=\sum_{i=1}^{n} \alpha_{i}\left[\sum_{j=1}^{\infty} \mu\left(E_{i} \cap F_{j}\right)\right] \\
& =\sum_{j=1}^{\infty}\left[\sum_{i=1}^{n} \alpha_{i} \mu\left(E_{i} \cap F_{j}\right)\right]=\sum_{j=1}^{\infty} \int_{F_{j}} \varphi d \mu
\end{aligned}
$$

قضيه ش.
 جحنان موجود استت كه هدهحنين روى هر مجموغهالى كه f روى آن كراندلار است، اين همگراييى يكنواخخت الست.
 موجود است كه

$$
\begin{aligned}
& \text { و اثبات : } F_{n}=\left\{x: f(x) \geq r^{n}\right\} \text { الف) به ازأى هر } n=1, Y, \cdots \text { تعريف مى } n=1 \\
& E_{n, k}=\left\{x: k r^{-n} \leq f(x)<(k+1) r^{-n}\right\}, \quad k=0,1, \cdots, r^{r n}-1 .
\end{aligned}
$$

n=1, Y, \cdots

$$
\varphi_{n}=\sum_{k=0}^{r^{r n}-1} k r^{-n} \chi_{E_{n, k}}+r^{n} \chi_{F_{n}}
$$

 د $\left\{\varphi_{n}\right\}$

$$
\begin{equation*}
\varphi_{n}(x)=r^{n} \leq r^{n+1}=\varphi_{n+1}(x) d \mathcal{K}^{\boldsymbol{T}}, f(x) \geq r^{n} \tag{1}
\end{equation*}
$$

$$
k r^{-n} \leq f(x)<(k+1) r^{-n} .
$$

بنابراين

$$
\varphi_{n}(x)=k Y^{-n}=(Y k) r^{-n-1} \leq \varphi_{n+1}(x)
$$

 در أين صورت به ازأى هر است كه

$$
\cdot \leq f\left(x_{0}\right)-\varphi_{n}\left(x_{0}\right)<\frac{1}{\gamma^{n}}
$$

$n \in \mathbb{N}$ و در نتيجه $\lim _{n \rightarrow \infty} \varphi_{n}\left(x_{0}\right)=\infty$ پ. $\varphi_{n}\left(x_{0}\right)=\gamma^{n}$
حال فرض كنيهج f روى A $A \subseteq X$ كراندار باشد. در اين صورت به ازاى هر

$$
\leq f(x)-\varphi_{n}(x) \leq \frac{1}{p^{n}}<\varepsilon
$$

و در نتيجه (x) ${ }^{\text {P }}$ روى A بطور يكنواخت به $f(x)$ همـراست.
 بنابراين با توجه به قسمت (الف) دنبالهأى از توأبع سادمى انداز میذير نامنفى و صعودى وجود دارند كه به ترتيب به الست، بطور يكنواخت همگراست. بنابراين با قرار دادن طرفى ديگر

$$
\cdot \leq\left|\varphi_{1}\right| \leq \cdots \leq\left|\varphi_{n}\right| \leq\left|\varphi_{n+1}\right| \leq \cdots \leq|f|=f^{+}+f^{-} .
$$

و در نتيجه حكم برقرار است.
F.Y أنتگَرال توابع نامنفى

نمادگذارى : در اين بخش فضاي اندازهى (تمام توأبع أندازهیذير نامنفى روى $E \in \mathcal{A}$ مانند تعريف س.ז. اگر $f \in L^{+}(E)$ باشد، آنگاه انتگرال لبگ f يا براى سادگى، انتگرال f روى

$$
\int_{E} f d \mu=\sup \left\{\int_{E} \varphi d \mu: 0 \leq \varphi \leq f, \text { سادهو أندأزهذير است } \varphi\right\}
$$

تعريف مى كنيم. توجه دأشته باشيد كه إين مقدأر ممكن است برابر + با باشد. در صورتى كه狽 $f d \mu$

لم TA. $\sup \left\{\int_{E} \varphi d \mu: \bullet \leq \varphi \leq \psi, \quad\right.$ ساده و اندازْهذير الست $\left.\varphi\right\}=\sum_{i=1}^{n} \alpha_{i} \mu\left(E_{i} \cap E\right)$.

به عبارتى تعاريف أرائه شده براي انتگرال ψ در Y.Y و.Y.Y مقادير يكسانى را بدست مىدمند. اثبات : با تو جه به قضيهى YYY قسمت (ح)، به آسانى مىتوان معادل بودن أين تعاريف را بدست آورد.
 تعريف، صرفآ، يكى تعريف رياضى از انتگرال بوده و بيشتر برأى مقاصد تحليلى انتگرال كاربرد دارد.

در لم زير مى خواهيم تعريف سادهترى از انتگرال توأبع نامنفى و اندازهيذير را بيان كنيم كه نه تنها به
 انتشرال لبگ را الرائه میدهد.

لم ז. نقطه به نقطه روى E به f همگراست، آنگاه

$$
\int_{E} f d \mu=\lim _{n \rightarrow \infty} \int_{E} \hat{\varphi}_{n} d \mu
$$

اثبات : فرض كنيم

$$
\lim _{n \rightarrow \infty} \int_{E} \hat{\varphi}_{n} d \mu=\sup \left\{\int_{E} \varphi d \mu: \circ \leq \varphi \leq f, \quad \varphi\right\}
$$

فرض كنيم ب تابعى ساده، اندلازهيذير، نامنفى و $\int_{E} \varphi d \mu \leq \lim _{n \rightarrow \infty} \int_{E} \hat{\varphi}_{n} d \mu$ g $\sup _{n} \hat{\varphi}_{n}=\lim _{n \rightarrow \infty} \hat{\varphi}_{n}=f \geq \varphi, E$ بنابرائين
 از طرفي، به ازلى هر $n \in \mathbb{N}$

$$
\int_{E} \hat{\varphi}_{n} d \mu \in\left\{\int_{E} \varphi d \mu: \bullet \leq \varphi \leq f, \text { ساده است } \varphi\right\}
$$

حـ ال از صaودى بودن دنبالهى

$$
\lim _{n \rightarrow \infty} \int_{E} \hat{\varphi}_{n} d \mu=\sup _{n} \int_{E} \hat{\varphi}_{n} d \mu \leq\left\{\int_{E} \varphi d \mu: \bullet \leq \varphi \leq f, \quad \text { ساده و اندازهٍذير } \varphi\right\} .
$$

بنابراين حكم برقرار است.
مثال 世. +r. فضاى اندازهى لبگ (

دنبالهى صعودى

$$
\begin{aligned}
& \varphi_{1}(x)= \begin{cases}1 & x=1, \\
\frac{1}{r} & 1<x \leq r, \\
0 & r<x .\end{cases} \\
& \int_{[1, \infty)} \varphi_{1} d m=\int_{(1, r)} \varphi_{1} d m=1 \cdot \frac{1}{\gamma^{\gamma}} d \mathcal{K}^{i} \\
& \varphi_{r}(x)= \begin{cases}1 & x=1, \\
1 /\left(\frac{r}{r}\right)^{r} & \frac{r}{r}<x \leq \frac{r}{r}, \\
1 /\left(\frac{\varphi}{r}\right)^{r} & \frac{r}{r}<x \leq \frac{\gamma}{r}, \\
1 /\left(\frac{\varphi}{r}\right)^{r} & \frac{Y}{r}<x \leq \frac{r}{r}, \\
1 /\left(\frac{\varphi}{r}\right)^{r} & \frac{\Delta}{r}<x \leq \frac{\varphi}{r}, \\
0 & r<x .\end{cases} \\
& \text { 京 } \\
& \varphi_{n}(x)= \begin{cases}1 & x=1, \\
1 /\left(1+\frac{k}{\gamma^{n-1}}\right)^{r} & 1+\frac{(k-1)}{\gamma^{n-1}}<x \leq 1+\frac{k}{r^{n-1}}, \quad 1 \leq k \leq n r^{n-1}, \\
0 & n+1<x:\end{cases} \\
& \int_{[1, \infty)} \varphi_{n} d m=r^{n-1}\left[\frac{1}{\left(r^{n-1}+1\right)^{r}}+\cdots+\frac{1}{\left((n+1)^{n-1}\right)^{r}}\right] .
\end{aligned}
$$

مى موان نشان داد

$$
\begin{gathered}
\frac{r^{n-1}}{\left(r^{n-1}+r\right)\left(r^{n-1}+1\right)}+\cdots+\frac{r^{n-1}}{\left((n+1) r^{n-1}+1\right)(n+1) r^{n-1}}<\int_{(1, \infty)} \varphi_{n} d m \\
\quad<\frac{r^{n-1}}{r^{n-1}\left(r^{n-1}+1\right)}+\cdots+\frac{r^{n-1}}{\left((n+1) r^{n-1}-1\right)(n+1) r^{n-1}}
\end{gathered}
$$

و در نتيجه

$$
\int_{(1, \infty)} \frac{1}{x^{\top}} d m=\lim _{n \rightarrow \infty} \int_{(1, m)} \varphi_{n} d m=1
$$

قضيه Y.اץ. فرض كنيد ($f, g \in L^{+}\left(X .{ }^{\text {آناه }}\right.$
 ب)

$$
\int_{E \cup F} f d \mu=\int_{E} f d \mu+\int_{F} f d \mu
$$

اثبات : الفس) و (ب) نتيجهى مستقيم تعريف أست.
 ت) فرض كنيم $E \cup F$ (باثبد. آنگاه

$$
\begin{aligned}
\int_{E \cup F} f d \mu & =\lim _{n \rightarrow \infty} \int_{E \cup F} \varphi_{n} d \mu \\
& =\lim _{n \rightarrow \infty}\left(\int_{E} \varphi_{n} d \mu+\int_{F} \varphi_{n} d \mu\right) \\
& =\lim _{n \rightarrow \infty} \int_{E} \varphi_{n} d \mu+\lim _{n \rightarrow \infty} \int_{F} \varphi_{n} d \mu=\int_{E} f d \mu+\int_{F} f d \mu
\end{aligned}
$$

كه در آن تساوى دوم از قسمت (ت) قضيهى YF.Y بدست آَمده آست. ث) فرض كنيم به ازای هر ه

$$
c \int_{E} f d \mu=c \lim _{n \rightarrow \infty} \int_{E} \varphi_{n} d \mu=\lim _{n \rightarrow \infty} \int_{E} c \varphi_{n}^{\prime} d \mu=\int_{E} c f d \mu
$$

ج) فرض كنيه

$$
\hat{\varphi}_{n}(x)= \begin{cases}\varphi_{n}(x) & x \in E \\ 0 & x \notin E\end{cases}
$$

آنگاه

$$
\int_{E} f d \mu=\lim _{n \rightarrow \infty} \int_{E} \varphi_{n} d \mu=\lim _{n \rightarrow \infty} \int_{X} \hat{\varphi}_{n} d \mu=\int_{X} f \chi_{E} d \mu
$$

قضيه ץ.זץ. اگر

$$
\lim _{n \rightarrow \infty} \int_{E} f_{n} d \mu=\sup _{n} \int_{E} f_{n} d \mu=\int_{E} f d \mu
$$

اثبات : از اينكه دنبالهى و برابر با

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{E} f_{n} d \mu \leq \int_{E} f d \mu \tag{1.r}
\end{equation*}
$$

حال فرض میكنيم ب تابعى ساده و اندازْيذير با كُرفته و تعريف مى كنيم

$$
E_{n}=\left\{x \in E: f_{n}(x) \geq \alpha \varphi(x)\right\} \quad(n=1, \curlyvee, ヶ, \ldots)
$$

الز صمودى و اندازمهذير بودن دنبالهى است. همحنين اتر ه >

است كه $f_{n}(x) \geq \alpha \varphi(x)$ همهجنين

$$
\int_{E} f_{n} d \mu \geq \int_{E_{n}} f_{n} d \mu \geq \alpha \int_{E_{n}} \varphi d \mu \quad(n=1, r, \ldots)
$$

با حدگيرى از طرفين رابطهى فوق و بكاربردن لم r.

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{E} f_{n} d \mu \geq \alpha \int_{E} \varphi d \mu \tag{r.r}
\end{equation*}
$$

از أينكه رابطهى (r.r) به ازاى هر

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{E} f_{n} d \mu \geq \int_{E} \varphi d \mu \tag{r.r}
\end{equation*}
$$

بالاخخره از به اينكه رإبطهى (r.r)، به ازاى هر تابع ساده ب، كه

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{E} f_{n} d \mu \geq \int_{E} f d \mu \tag{-}
\end{equation*}
$$

و در نتيجه، حكم از روأبط (Y. (ا)، و (Y.Y)، بدست میآيد.
 بيان كرديم. محاسبات طولانى و خسته كننده در بدست آوردن توابي سادهى صعودى و همغرا به
 لبگّ تأبع نامنفى و اندازهپذير f را روى E مىتوان به صورت زير تعريف كرد

$$
\int_{E} f d \mu=\lim _{n \rightarrow \infty} \int_{E} f_{n} d \mu
$$

كه در آن، \} $\left\{f_{n}\right.$ دنبالهالى صعودى و دلخواه در
 دنبالهى صمودى صورت، به أزأى هر $n \in \mathbb{N}$

$$
\int_{[\cdot, \infty)} f_{n}(x) d m=\int_{[\cdot, n)} x d m+\int_{[n, \infty)} n d m \geq \int_{[n, \infty)} n d m=\infty
$$

و در نتيجه

$$
f_{n}(x)= \begin{cases}0 & x<n \\ 1 & x \geq n,\end{cases}
$$

 $\lim _{n \rightarrow \infty} \int_{\mathbb{R}} f_{n} d m=\infty$ در هالى كه به ازالى مر
 الف) اگگ

$$
\int_{E} \sum_{n=1}^{N} f_{n} d \mu=\sum_{n=1}^{N} \int_{E} f_{n} d \mu .
$$

ب) اگر

$$
\int_{E} \sum_{n=1}^{\infty} f_{n} d \mu=\sum_{n=1}^{\infty} \int_{E} f_{n} d \mu .
$$

اثبات : الف) فرض كنيم
 به ترتيب به در If.Y

$$
\begin{aligned}
\int_{E}\left(f_{1}+f_{\mathrm{Y}}\right) d \mu & =\lim _{n \rightarrow \infty} \int_{E}\left(\varphi_{n}+\psi_{n}\right) d \mu \\
& =\lim _{n \rightarrow \infty} \int_{E} \varphi_{n} d \mu+\lim _{n \rightarrow \infty} \int_{E} \psi_{n} d \mu \\
& =\int_{E} f_{\curlyvee} d \mu+\int_{E} f_{\mathrm{Y}} d \mu .
\end{aligned}
$$

بنابراين با أستقراه، به ازانى هر N N ، داريم

$$
\int_{E} \sum_{n=1}^{N} f_{n} d \mu=\sum_{n=1}^{N} \int_{E} f_{n} d \mu
$$

ب) از اينكه دنبالهى (الس $L^{+}(E)$

$$
\begin{aligned}
\int_{E} \sum_{n=1}^{\infty} f_{n} d \mu & =\int_{E} \lim _{N \rightarrow \infty} \sum_{n=1}^{N} f_{n} d \mu=\lim _{N \rightarrow \infty} \int_{E} \sum_{n=1}^{N} f_{n} d \mu \\
& =\lim _{N \rightarrow \infty} \sum_{n=1}^{N} \int_{E} f_{n} d \mu=\sum_{n=1}^{\infty} \int_{E} f_{n} d \mu
\end{aligned}
$$

$$
\int_{E}(f-g) d \mu=\int_{E} f d \mu-\int_{E} g d \mu
$$

اثبات : از قضيهى ". 4 قسمت (الفـ)، داريم

$$
\int_{E} f d \mu=\int_{E}(f-g) d \mu+\int_{E} g d \mu .
$$

الز اينكه طرف چچب متناهى است، جملات طرف رأست نيز بايد دتناهى باشد و در نتيجه و ورى انتّعرالیپذير است.

محتموع

$$
\sum_{n=0}^{\infty} \int_{[0,1]} x^{n}(1-x) d m
$$

$\left\{x^{n}(1-x)\right\}_{n=1}^{\infty}$ به صورت مستقيم كار آسانى نيست. در واقع بدست آوردن انتگرال لبگ توان با ابزارهاي قاببل دسترس، محاسبات طولانى و ملالآورى دارد. بدين منظور به ازاى هر n n ، فرض

مى كنيم در (

$$
\sum_{n=0}^{\infty} f_{n}(x)=\lim _{m \rightarrow \infty} \sum_{n=0}^{m}\left(x^{n}-x^{n+1}\right)=\lim _{m \rightarrow \infty}\left(1-x^{m+1}\right)=\chi_{[0,1)}(x)
$$

حال با بهره گيرى زز قضبيهى Wعب، داريم

$$
\sum_{n=0}^{\infty} \int_{[0,1]} x^{n}(1-x) d m=\int_{[0,1]} \sum_{n=0}^{\infty} x^{n}(1-x) d m=\int_{[0,1]} \chi_{[0,1)} d m=1
$$

مثال كه C مجموعهى سهسسهایى كانتور است،
 تابع f را روى بازمى [[, 0 [بيابيد.

حل: با فرض اينكه مرحلهى دوم و $I_{n, 1}, \cdots, I_{n, r^{n-1}}$ بازهأى حذف شده در مر حلهى nام، ساخت مجموعهى كانتور باشثد، خواهيم داشت

$$
f(x)= \begin{cases}0 & x \in C \\ n & x \in I_{n, 1}, \cdots, I_{n, r^{n-1}}\end{cases}
$$

به عبارتى

$$
\begin{aligned}
\int_{[0,1]} f d m & =\int_{[0,1]}\left[\sum_{n=1}^{\infty} n \chi_{\left(\cup_{k=1}^{n} I_{n, r} k-1\right)}\right] d m \\
& =\sum_{n=1}^{\infty}\left[\int_{[0,1]} n \chi_{\left(\cup_{k=1}^{n} I_{n, r},-1\right)}\right] d m \\
& =\sum_{n=1}^{\infty} n r^{n-1} \frac{1}{\mu n} \\
& =\frac{1}{Y} \sum_{k=1}^{\infty}\left(\sum_{n=k}^{\infty}\left(\frac{r}{r}\right)^{n}\right)=\frac{r}{r} \sum_{k=1}^{\infty}\left(\frac{r}{r}\right)^{k}=r
\end{aligned}
$$

盾 $E=\{x: f(x)=\infty\}$
 اثبات : قرار مىدهيم اندازْبذير و $E=\cap_{n=1}^{\infty} E_{n}$ أست. الز طرفى

$$
\mu\left(E_{\uparrow}\right)=\mu(\{x \in X: f(x) \geq 1\})=\int_{E_{1}} 1 d \mu \leq \int_{E_{1}} f d \mu \leq \int_{X} f d \mu<\infty
$$

بنابراين از خاصيت بيوستگى از بالاى تابع اندلزه، داريم

$$
\mu(E)=\lim _{n \rightarrow \infty} \mu\left(E_{n}\right)=\lim _{n \rightarrow \infty} \frac{1}{n} \int_{E_{n}} n d \mu \leq \lim _{n \rightarrow \infty} \frac{1}{n} \int_{E_{n}} f d \mu \leq \lim _{n \rightarrow \infty} \frac{1}{n} \int_{X} f=0
$$

; $F=\cup_{n=1}^{\infty} F_{n}$, طرفى به ازإى هر

$$
\mu\left(F_{n}\right)=n \int_{F_{n}} \frac{1}{n} d \mu \leq n \int_{F_{n}} f d \mu \leq n \int_{X} f d \mu<\infty
$$

بنابراين - كمم برقرار است.
تذكر r. Fl. تابع (x)

 باشد. آنظاه

$$
\forall \varepsilon>\circ, \quad \exists \delta>\circ, \quad \forall E \in \mathcal{A}, \quad \mu(E) \leq \delta \quad \Longrightarrow \quad \int_{E} f d \mu<\varepsilon
$$

$\left\{f_{n}\right\}$ اثبات : دنبالهى

$$
\lim _{n \rightarrow \infty} \int_{X} f_{n} d \mu=\int_{X} f d \mu
$$

بنابراين به ازای هر

$$
\int_{X} f d \mu-\int_{X} f_{n} d \mu=\int_{X}\left(f-f_{n}\right) d \mu \leq \frac{\varepsilon}{Y}
$$

居 $\mu(E)<\delta E \in \mathcal{A}$ باشد، دأريم

$$
\int_{E} f d \mu=\int_{E}\left(f-f_{N}\right) d \mu+\int_{E} f_{N} d \mu \leq \int_{E}\left(f-f_{N}\right) d \mu+N \mu(E)<\frac{\varepsilon}{Y}+\frac{\varepsilon}{Y}=\varepsilon .
$$

 نيست. فرض كنيم كه

$$
\int_{E_{n}} f d m=1+\frac{1}{r^{r}}>\varepsilon
$$

لم $\int_{X} f d \mu=0$ اثبات : اگر f ت.هـ روى X برابر باصفر باشد، آنگاه با توجه به تعريف انتگرال، برای اثبات عكس مطلب، قرار مىدهيم

$$
\{x: f(x)>\circ\}=\bigcup_{n=1}^{\infty} E_{n}
$$

بنابراين آك, f ت.هـ برابر باصفر نباشد، آنگاه $n \in \mathbb{N}$ موجود است كه $\mu\left(E_{n}\right)>$ و در نتيجه

$$
\int_{X} f d \mu \geq \int_{E_{n}} f d \mu \geq \frac{1}{n} \mu\left(E_{n}\right)>
$$

و اين يكـ تناقض است.

$$
\int_{E} f d \mu=\lim _{n \rightarrow \infty} \int_{E} f_{n} d \mu \text { آنغاه }
$$

\bar{F} اثبات：فرض كنيم مجهووعهاى اندازميذير با روى E برقرار است．حالد با بكار بردن ڤضييهى همخرايی يكنوا روى دنبالهى صعودى

$$
\int_{E} f d \mu=\int_{E} f \chi_{\hat{F}^{c}} d \mu=\lim _{n \rightarrow \infty} \int_{E} f_{n} \chi_{\bar{F}^{c}} d \mu=\lim _{n \rightarrow \infty} \int_{E} f_{n} d \mu
$$

関

$$
\begin{aligned}
& \text { قضيه 世\& \$4. (لم فاتو "). اگر } \\
& \int_{E}\left(\liminf _{n \rightarrow \infty} f_{n}\right) d \mu \leq \liminf _{n \rightarrow \infty} \int_{E} f_{n} d \mu .
\end{aligned}
$$

اثبات ：با توجه به تعريف،

$$
\begin{aligned}
\int_{E} \liminf _{n \rightarrow \infty} f_{n} d \mu & =\int_{E} \lim _{n \rightarrow \infty}\left(\inf _{k \geq n} f_{k}\right) d \mu=\lim _{n \rightarrow \infty} \int_{E}\left(\inf _{k \geq n} f_{k}\right) d \mu \\
& =\liminf _{n \rightarrow \infty} \int_{E} \inf _{k \geq n} f_{k} d \mu \leq \liminf _{n \rightarrow \infty} \int_{E} f_{n} d \mu
\end{aligned}
$$

كه در آن تساوى سوم از اين حقيقت ناشى مىشود كه دنبالهى الئى
淮 $\inf _{k \geq n} f_{k} \leq f_{n} 九 n \in \mathbb{N}$

نتيجه Y．Y．
باشد، آنگاه

$$
\int_{E} f \leq \liminf _{n \rightarrow \infty} \int_{E} f_{n}
$$

اثبات：اگگر به ازاي هر
 اثبات لم ra．r است．

[^3] ($\mathbb{R}, \mathcal{L}, m)$

$$
\int_{\mathbb{R}} \liminf _{n \rightarrow \infty} f_{n} d m=\circ<1=\liminf _{n \rightarrow \infty} \int_{\mathbb{R}} f_{n} d m
$$

تذكر 世. 9. با فرض

$$
\int_{\mathbb{R}} \liminf _{n \rightarrow \infty} f_{n} d m=\circ>-1=\liminf _{n \rightarrow \infty} \int_{\mathbb{R}} f_{n} d m
$$

ش.

 اندازهيذير توسيع مىدهيم. در اين بخش نيز فضضاي انداز وهى

يادآورى :اگگر

$$
f^{+}(x)=\max \{f(x), \circ\} \quad, \quad f^{-}(x)=\max \{-f(x), \circ\}
$$

را به ترتيب قسمتهاي مثبت و منفى f گوييم.
$E \in \mathcal{A}$ تعريف ז'. را به صورت زير تعريف مى كنيم

$$
\int_{E} f d \mu=\int_{E} f^{+} d \mu-\int_{E} f^{-} d \mu
$$

در صورتى كه اين مقدار تعريف شده باششد (به صورت م ه
 گردايهى تمام توابع اندازمهذير و إنتگرالیذير

تذكر r.هاه. الف) انتگرال f روى f م $E \in \mathcal{A}$ موجود است اكر و تنها اگكر حدأقل يكى از مقادير . $\int_{E} f^{-} d \mu$ متناهي باشد $\int_{E} f^{+} d \mu$

ب) و متناهى باشثد.

ب) از اينكه |

نتيجه Y.

اثبات : از اينكه نتيجهى مورد نظر حاصل میشود.

$$
\int_{E}(a f+g) d \mu=a \int_{E} f d \mu+\int_{E} g d \mu
$$

$\mathfrak{L}^{\prime}(E)$ اثبات : با توجه به تذكر يكى فضشاى بردارى روى ميدان أعداد حقيقى است. فرض مى كنيم

$$
\begin{aligned}
& \text {. } \\
& \int_{E} a f d \mu=\int_{E} a f^{+} d \mu-\int_{E} a f^{-} d \mu=a \int_{E} f d \mu . \\
& \text { ـال فرض كنيم } \\
& \int_{E}(-f) d \mu=\int_{E} f^{-} d \mu-\int_{E} f^{+} d \mu=-\int_{E} f d \mu .
\end{aligned}
$$

$$
\begin{aligned}
& \int_{E} a f d \mu=-\int_{E}|a| f d \mu=-|a| \int_{E} f d \mu=a \int_{E} f d \mu .
\end{aligned}
$$

$$
h^{+}-h^{-}=f^{+}-f^{-}+g^{+}-g^{-} \Longrightarrow h^{+}+f^{--}+g^{-}=h^{-}+f^{+}+g^{+} .
$$

بنابراين از قضيهى چ. 4 داريم

$$
\int_{E} h^{+} d \mu+\int_{E} f^{-} d \mu+\int_{E} g^{-} d \mu=\int_{E} h^{-} d \mu+\int_{E} f^{+} d \mu+\int_{E} g^{+} d \mu
$$

حال با توجه به متناهى بودن جملات طرفين تساوى، داريم

$$
\begin{aligned}
\int_{E} h d \mu & =\int_{E} h^{+} d \mu-\int_{E} h^{-} d \mu \\
& =\int_{E} f^{+} d \mu-\int_{E} f^{-} d \mu+\int_{E} g^{+} d \mu-\int_{E} g^{-} d \mu \\
& =\int_{E} f d \mu+\int_{E} g d \mu
\end{aligned}
$$

 كه f ت.ه. مثبت يا ت.ه. منفى روى E باشد. اثبات : براى اثبات نابرابرى،

$$
\left|\int_{E} f d \mu\right|=\left|\int_{E} f^{+} d \mu-\int_{E} f^{-} d \mu\right| \leq \int_{E} f^{+} d \mu+\int_{E} f^{-} d \mu=\int_{E}|f| d \mu
$$

فرض كنيم تساوى برقرار باشد و
 تقريباً همهجا روى E برابرند و در نتيجه، f f ت.م. مثبت روى آنغاه مى گيريم fنتيجه ץ.

$$
\int_{E} f d \mu=\int_{E} g d \mu d E \in \mathcal{A}
$$

اثبات : الف) اگر f ت.ه. روى X برابر باصفر باشده آنگاه |f|ت.ه. روى X برابر باصفر أست.
 ب) از إينكه

$$
\int_{X} g d \mu=\int_{X} f d \mu+\int_{X}(g-f)^{+} d \mu-\int_{X}(g-f)^{--} d \mu
$$

با توجه به فرض ت.ه. روى صفر استت. بنابرأين حكم از تساوى بالا و قسمت (الفـ) نتيجه ميشود.
 بنابراين از لم باتوجه به لم

$$
\left|\int_{E} f d \mu-\int_{E} g d \mu\right| \leq \int_{X} \chi_{E}|f-g| d \mu \leq \int_{X}|f-g| d \mu=0
$$

بنابراين
 برابر نباثشند، آنگاه حداقل يكى از توابي مثبت غير صفر خواهد بود. فرض كنيم

$$
E=\left\{x:(f-g)^{+}>0\right\}
$$

از اندازهى مثبت بأشد. در اين صورت -

$$
\int_{E} f d \mu-\int_{E} g d \mu=\int_{E}(f-g)^{+} d \mu>0
$$

و اين يكى تناقض الست.

اندازهيذير از E باشد.

الف) اگگر انتگرال f روى E موجود باشد، آنگاه انتگُرال f روى F موجود است.

隹 $\int_{E} f^{-r} d \mu$ است. الثبات قسمـت بعدى نيز دقيقاً مشابه همين قسست است است

E تا تم موجود باشد.
$\cup_{i=1}^{n} E_{i}^{\prime}=E$ الف) أگر باشده آنگاه

$$
\int_{E} f d \mu=\sum_{i=1}^{n} \int_{E_{i}} f d \mu
$$

$\cup_{n=1}^{\infty} E_{n}=E$ ب) باشد، آنگاه

$$
\int_{E} f d \mu=\sum_{n=1}^{\infty} \int_{E_{n}} f d \mu .
$$

(پ)

$$
\int_{E} f d \mu=\lim _{n \rightarrow \infty} \int_{E_{n}} f d \mu
$$

اثبات : مسئلهى حل شدهى 9 از همين فصل را بينيد.
 به عنوالن حد دنبالهايى صعودى مانند داشته باشيد كه عكس مطلب بيان شده در قسمت (ب) در حالت كلى درست نيستّ. در واقع اكِر

 نتيجه گرفت مثال بأشد. در اين صورت $E_{n}=\left[0, \sum_{k=1}^{n} \frac{1}{k}\right)$

اندازهيذير بوده و n $n \in \mathbb{N}$

$$
f(x)=(-1)^{n}, \quad x \in F_{n}, \quad n \in \mathbb{N}
$$

آنگاه

$$
\int_{E_{n}} f d m=\int_{\bigcup_{k=1}^{n} F_{k}} f d m=\sum_{k=1}^{n} \int_{F_{k}} f d m=\sum_{k=1}^{n}(-1)^{k} \frac{1}{k},
$$

$$
\lim _{n \rightarrow \infty} \int_{E_{n}} f d m=\lim _{n \rightarrow \infty} \sum_{k=1}^{n}(-1)^{k} \frac{1}{k}=\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n} \in \mathbb{R} .
$$

$$
\int_{E} f^{+} d m=\frac{1}{r}+\frac{1}{r}+\frac{1}{\varphi}+\ldots=\infty
$$

$$
\int_{E} f^{-} d m=1+\frac{1}{r}+\frac{1}{\Delta}+\ldots=\infty .
$$

$$
\text { بنابراين } \int_{E} f d m=\int_{E} f^{+} d m-\int_{E} f^{-} d m \text { نوجود نيست. }
$$

قضيه ץ.־. فرض كنيم از مجموعههاى اندازهيذير،

$$
\int_{E} f d \mu=\lim _{n \rightarrow \infty} \int_{E_{n}} f d \mu, f \in \mathfrak{L}^{\prime}(E)
$$

اثبات : به ازای هر

$$
\int_{E}|f| d \mu=\lim _{n \rightarrow \infty} \int_{E} f_{n} d \mu=\lim _{n \rightarrow \infty} \int_{E_{n}}|f| d \mu<\infty
$$

بنابراين $\int_{E} f d \mu=\lim _{n \rightarrow \infty} \int_{E_{n}} f d \mu$ داريم در دنياى علم رياضى، پايدارى يكى مفهوم رياضى در مسائل گذر لز حد، يكى از شاخصههاى

اهمميت و قدرتمندى آن مفهوم رياضى محسوب میشود. به زبانى ساددتر، هر مغهوم رياضى كه با مغروضات ضصيفترى بتواند در مسئلدى گذذر از محد پايا باشثد، به همان قدر مفهومى ارززشمند خواهد

$$
f_{n}(x)= \begin{cases}1 & x=r_{1}, r_{Y}, \cdots, r_{n} \\ 0 & 0 \text { غي }\end{cases}
$$

كه در آن

 به منظور مقايسه و الرزشيابى اين دو نظريه از انتگرال به لحاظ

 يكنواخت به تابعى مانند f f روى [a, $]$ همگرا شود، آنگاه

$$
\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n} d x=\int_{a}^{b} f d x
$$

 نظريهى انتگرال ريمان، از نقطه نظر مسئلهى گذر از از حد به اثبات ميرسائيمر. قضيه ץ.Y.ז. فرض كنيه|

$$
\begin{equation*}
\left|f_{n}(x)\right| \leq g(x) \quad(n=1, r, r, \ldots) \tag{0.r}
\end{equation*}
$$

$$
\lim _{n \rightarrow \infty} \int_{X} f_{n} d \mu=\int_{X} f d \mu
$$

اثبات : با توجه به فرض (. (ه)، داريم كليت مسئله مىتوان فرض كرد، به أزإى هر

$$
\lim _{n \rightarrow \infty} f_{n}(x)=f(x) \quad, \quad\left|f_{n}(x)\right| \leq g(x) \quad(n=1, \curlyvee,\ulcorner, \ldots)
$$

据 $\mid \leq g$

$$
\begin{gathered}
\int_{X} g d \mu+\int_{X} f d \mu \leq \liminf _{n \rightarrow \infty} \int_{X}\left(g+f_{n}\right) d \mu=\int_{X} g d \mu+\liminf _{n \rightarrow \infty} \int_{X} f_{n} d \mu \\
\int_{X} g d \mu-\int_{X} f d \mu \leq \liminf _{n \rightarrow \infty} \int_{X}\left(g-f_{n}\right) d \mu=\int_{X} g d \mu-\limsup _{n \rightarrow \infty} \int_{X} f_{n} d \mu \\
\liminf _{n \rightarrow \infty} \int_{X} f_{n} d \mu \geq \int_{X} f d \mu \geq \limsup _{n \rightarrow \infty} \int_{X} f_{n} d \mu \\
. \quad \text { بنابراين نتيجه حكم برقرار استـي }
\end{gathered}
$$

$$
\lim _{n \rightarrow \infty} \int_{X}\left|f_{n}-f\right| d \mu=0
$$

$$
\lim _{n \rightarrow \infty}\left|f_{n}-f\right|=\circ \quad, \quad\left|f_{n}-f\right| \leq\left|f_{n}\right|+|f| \leq r g \in \mathfrak{L}^{\prime}(X),
$$

.
حالٌ قضيهى تسلطى لبگً حكم را بدست میدهد.

يكنواخت همگرا به تابع f باشد. آنظاه $f \in \mathfrak{L}^{\prime}(X)$

$$
\lim _{n \rightarrow \infty} \int_{X} f_{n} d \mu=\int_{X} f d \mu
$$

 چحنان موجود است كه به ازإى هر فضاى اندازه و اينكه

$$
\left|f_{n}(x)\right|<(|f(x)|+1) \in \mathfrak{L}^{\prime}(X),
$$

حال با بكار بردن قضيهى تسلطى لبگى، نتيجهى مورد نظر حاصل مىشود.

قضيه Y. 9 . فرض كنيم

$$
\begin{equation*}
\sum_{n=1}^{\infty} \int_{X}\left|f_{n}\right| d \mu<\infty \tag{5.r}
\end{equation*}
$$

آنغاه سرى (X)

$$
\int_{X} \sum_{n=1}^{\infty} f_{n} d \mu=\sum_{n=1}^{\infty} \int_{X} f_{n} d \mu
$$

اثبات : با توجه قضبيهى ץ.

$$
\int_{X} \sum_{n=1}^{\infty}\left|f_{n}\right| d \mu=\sum_{n=1}^{\infty} \int_{X}\left|f_{n}\right| d \mu<\infty
$$

بنابراين

$$
\left|\sum_{n=1}^{m} f_{n}(x)\right| \leq \sum_{n=1}^{m}\left|f_{n}(x)\right| \leq \sum_{n=1}^{\infty}\left|f_{n}(x)\right|=g \in \mathfrak{L}^{\prime}(X),
$$

بنابراين

$$
\sum_{n=1}^{\infty} \int_{X} f_{n} d \mu=\int_{X} \sum_{n=1}^{\infty} f_{n} d \mu
$$

$$
\begin{aligned}
& \int_{X} \sum_{n=1}^{\infty} f_{n} d \mu \neq \sum_{n=1}^{\infty} \int_{X} f_{n} d \mu \\
& \qquad \sum_{n=1}^{\infty} \int_{X}\left|f_{n}\right| d \mu=\infty \text { آنآ }
\end{aligned}
$$

ץ. 9 مقايسه انتتَرال ريمان و لبتَ

در اين بخش با يادآورى مفاميم انساسى نظريهى انتگرالل ريمان و نمادهاى مربوطه، به ارتباط دقيق اين دو نظريه مىيردازيم.
 [a,b] گوييم، هر گاه

$$
\begin{aligned}
& a=x_{0}<x_{1}<\cdots<x_{n}=b . \\
& \qquad[a, b] \text { برأى افراز } \mid P=\left\{x_{0}, x_{1}, \cdots, x_{n}\right\} \\
& \|P\|:=\max _{1 \leq i \leq n}\left\{x_{i}-x_{i-1}\right\}
\end{aligned}
$$

را نرم افراز P گوييم. أكر P گوييم
 [$a, b]$ باثـ. قرار مىدهيم

$$
m_{i}:=\inf \left\{f(x): x_{i-1} \leq x \leq x_{i}\right\} \quad, \quad M_{i}:=\sup \left\{f(x): x_{i-1} \leq x \leq x_{i}\right\}
$$

با تو جه به نمادهاى بالا، مسحموع بالايى و پايينى تابع f را به صورت زير در نظر میگيريم

$$
L(P, f):=\sum_{i=1}^{n} m_{i}\left(x_{i}-x_{i-1}\right) \quad, \quad U(P, f):=\sum_{i=1}^{n} M_{i}\left(x_{i}-x_{i-1}\right)
$$

أنتگرالل ثايينى و بالايى ريمان را به صورت زير تعريف مى كنيم:

$$
\int_{a}^{b} f:=\sup \{L(P, f): \text { اسرازیى از } P\}
$$

$$
\overline{\int_{a}^{b}} f:=\inf \{U(P, f): \text { أفرإزى از } P\} \text { أست } P \text {. }
$$

از اينكه f تابعى كراندار فرض شلهه و بازهى

 [a,b]
 منبع [10] فصل اول را بـيند.

قضيه سq. 9. الف) أگر f تابعى بيوسته باشد، آنگاه f ريمان انتگراللجذير است. ب) اكگر دنبالهى

$$
\lim _{n \rightarrow \infty}\left(U\left(P_{n}, f\right)-L\left(P_{n}, f\right)\right)=
$$

آنگاه f ريمان النتگرالیذير بوده و

$$
\lim _{n \rightarrow \infty} L\left(P_{n}, f\right)=\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} U\left(P_{n}, f\right)
$$

 $. \lim _{n \rightarrow \infty}\left(U\left(P_{n}, f\right)-L\left(P_{n}, f\right)\right)=0, \lim _{n \rightarrow \infty}\left\|P_{n}\right\|=0$ و $P_{n-1} P_{n}$

انتگرالبذير بوده و

$$
\int_{a}^{b} f d x=\int_{[a, b]} f d m
$$

اثبات : با توجه به كراندارى تابع f و از اينكه

 , $\lim _{n \rightarrow \infty}\left\|P_{n}\right\|=0$ و و P_{n-1}

$$
\lim _{n \rightarrow \infty} L\left(P_{n}, f\right)=\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} U\left(P_{n}, f\right)
$$

به ازای هر 1 و $n \geq[a, b]$ قرار میدهيم

$$
\Psi_{n}(x):=\sum_{i=1}^{n} m_{i} \chi_{\left[x_{i-1}, x_{i}\right)}(x) \quad, \quad \Phi_{n}(x):=\sum_{i=1}^{n} M_{i} \chi_{\left.\mid x_{i-1}, x_{i}\right)}(x)
$$

در اين صورت به ازاى هر 1 n 1 توابع سادمى

$$
\int_{[a, b]} \Psi_{n} d m=L\left(P_{n}, f\right) \quad, \quad \int_{[a, b]} \Phi_{n} d m=U\left(P_{n}, f\right)
$$

همحْنين به ازاى هر $x \in[a, b]$

$$
\begin{equation*}
\Psi_{n}(x) \leq f(x) \leq \Phi_{n}(x) \tag{v.r}
\end{equation*}
$$

$\left\{\Phi_{n}\right\}_{n=1}^{\infty}$ از اينكه
 لز لم فاتو داريم

$$
\begin{aligned}
\int_{[a, b]} \liminf _{n \rightarrow \infty}\left(\Phi_{n}-\Psi_{n}\right) d m & \leq \liminf _{n \rightarrow \infty}\left(\int_{[a, b]}\left(\Phi_{n}-\Psi_{n}\right) d m\right) \\
& =\liminf _{n \rightarrow \infty} \int_{[a, b]} \Phi_{n} d m-\limsup _{n \rightarrow \infty} \int_{[a, b]} \Psi_{n} d m
\end{aligned}
$$

$$
\begin{aligned}
& =\liminf _{n \rightarrow \infty} U\left(P_{n}, f\right)-\limsup _{n \rightarrow \infty} L\left(P_{n}, f\right) \\
& =0
\end{aligned}
$$

بنابراين از لم \%. FF، نتيجه مى گيريم تساوى

$$
\liminf _{n \rightarrow \infty} \Phi_{n}(x)=\limsup _{n \rightarrow \infty} \Psi_{n}(x) .
$$

 دنبالato انواى

$$
f(x)=\lim _{n \rightarrow \infty} \Phi_{n}(x)=\lim _{n \rightarrow \infty} \Psi_{n}(x),
$$

 از طرفى با استفاده از قضيهى همڭرايهى يكنواى لبگـ داريم

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \int_{[a, b]} \Psi_{n} d m=\int_{[a, b]} f d m . \\
& \int_{a}^{b} f d x=\lim _{n \rightarrow \infty} L\left(P_{n}, f\right)=\lim _{n \rightarrow \infty} \int \Psi_{n} d m=\int_{[a, b]} f . \\
& \text { و اين اثبات قضيه را كامل مى كند. }
\end{aligned}
$$

 كافى است مقدار انتگرالل ريمان تابع را محاسبه كنيم و اين كار با قضيهى الساسى حساب ديفرانسيل و انتگرال، برايى بسيارى از توابع امرى بسيار ساده است. البته توجه به اين نكته ضرورور است است كه از از

 از بيش خواهيد ديد.

مثال YT.Y. با توجه به اينكه تابع

IYY 9.7 مقايسه النتكرال ريمأن ولبكّل

$$
\int_{[1, \infty)} \frac{1}{x^{\gamma}} d m=\lim _{n \rightarrow \infty} \int_{[1, n]} \frac{1}{x^{\gamma}} d m=\lim _{n \rightarrow \infty} \int_{1}^{n} \frac{1}{x^{r}} d x=\lim _{n \rightarrow \infty}\left(1-\frac{1}{n}\right)=1
$$

 اندازهى لبگ، به صورت

$$
f(x)= \begin{cases}1 & x \in \mathbb{Q} \cap[0,1] \\ 0 & x \in \mathbb{Q}^{c} \cap[0,1]\end{cases}
$$

f
 صفر است و در نتيجه f تأبعى ريمان انتتکرالیذير نيست.

 دقيق مشخص كرده و مسحدوديت گردايه توابِ ريمان انتگچالپذير را نيز نشان مىدهد.

قضيه VF.Y. فرض كنيم VR

أبات : به ازاى هر

$$
\begin{equation*}
f(x)=\lim _{n \rightarrow \infty} \Phi_{n}(x)=\lim _{n \rightarrow \infty} \Psi_{n}(x), \quad \forall x \in[a, b]-E \tag{A.r}
\end{equation*}
$$

قرار مىدهيم $F=\left(\cup_{n=1}^{\infty} P_{n}\right) \cup$ بوضوح F ماراى اندازه لبگ صفر أست. ثابت مى كنيم $\left.\varepsilon>0, x_{0} \in[a, b]-F\right]$ ريوسته است. برای اثبات اين الدعا، فرض مى

دلتخواه باشثـ. با توجه به رابطهى (ی. (N)، جنان nأى موجود أست كه

$$
f\left(x_{0}\right)-\Psi_{n}\left(x_{0}\right)<\varepsilon \quad, \quad \Phi_{n}\left(x_{0}\right)-f\left(x_{0}\right)<\varepsilon
$$

فرض مى كنيم زيربازهى اين صورت

$$
-\varepsilon<m_{i}-f\left(x_{0}\right) \leq f(x)-f\left(x_{0}\right) \leq M_{i}-f\left(x_{0}\right)<\varepsilon
$$

حال از اينكه و در نتيجهه f تـ.ه. بيوسته أست. بالدكس فرض مى كنيم f تابعى ت.هـ بيوسته باشد. فرض كنيم f f در آنگاه به أزأى هر

$$
\sup _{x \in\left(x_{0}-\delta, x_{\bullet}+\delta\right)} f(x)-\inf _{x \in\left(x_{\bullet}-\delta_{,} x_{\bullet}+\delta\right)} f(x)<\varepsilon
$$

 ($\left.x_{0}-\delta, x_{0}+\delta\right)$ حال از اينكه ع دلخواه أست، پس ($]$ برقرإر استـ. با توجه به

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \int_{[a, b]} \Phi_{n} d m & =\int_{[a, b]} \lim _{n \rightarrow \infty} \Phi_{n} d m \\
& =\int_{[a, b]} \lim _{n \rightarrow \infty} \Psi_{n} d m \\
& =\lim _{n \rightarrow \infty} \int_{[a, b]} \Psi_{n} d m
\end{aligned}
$$

و در نتيجه f تابعى ريمان أنتگرالذبذير است.

نتيجه VA.Y. هر تابع يكنوا و در نتيجه هر تابع با تغيير كراندار روىى بازمى دلخوأه [انتتُرالیذذير است.
M. 9 معايسه انتكرال ريمان و وبكـ

اثبات : تعدأد نقاط پیيوستى هر تابي يكنوا شماراستت و در نتيجه از اندازهى صفر است. از طرفى هر تابع با تغيير كراندأر را مىتوان به صورت تفاضل دو تابع صعودى نوشت. مثال Y.Y. F9. فرض كنيد

$$
f(x)= \begin{cases}0 & x \in\left\{\frac{1}{n}: n \in \mathbb{N}\right\} \\ 1 & 0\end{cases}
$$

به آسانى مىتوان نشان داد، مجموعه نقاط نابيوستغىى f برابر با
 از طرفى ت.هـ. $f=1$ است و لذا أنتگرال لبگ f برابر با يكـ است. بنابراين إنتگرال ريمان f نيز برابر با يكى است.
 نتيحه لبگى در توسيع نظريهى انتگرال ريمان موفق عمل كرده انست، حال منطقى است، چحنين سوالى

 هو جود است؟ ابتدأ به يادآورى تعاريف مربوط به أنتگرالاهاى ناسره مئردازيمه.
 انتقگراللذذير روى [a,b] باشد و أنتُرالل ريمان ناسرهى نوع أول f ناميده و با نماد ك كa仿 $\left\{\int_{a}^{b_{n}} f\right\}$ استت. انتگرال

$$
\int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{a} f(x) d x+\int_{a}^{\infty} f(x) d x, \quad(a \in(-\infty, \infty))
$$

بديهى است كه مجحموع طرف دوم اين تساوى مستقل از انتخاب a است.
تعريف Y.Y. ترض كنيد تابي f روى بازهى
 اين حد را إنتگرال ريمان ناسرهى نوع حوم f ناميدهو با نماد

غير عادى تابع f گوييم. تعريف انتشرال ريمان ناسرْى نوع دوم غيرعادى f باشتد، نيز بطور مشابه است.

مثال

$$
f(x):=\frac{(-1)^{n-1}}{n}, \quad x \in[n-1, n), n=1, Y, \ldots
$$

 فرض می كنيم به ازاي هر هر در

$$
\int_{I_{m}} f(x) d x=\sum_{n=1}^{m} \frac{(-1)^{n-1}}{n}
$$

و در نتيجه

$$
\lim _{m \rightarrow \infty} \int_{I_{m}} f(x) d x=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}=\ln Y
$$

حال با مـحاسباتى ساده مىتوان نشان داد

$$
\lim _{b \rightarrow \infty} \int_{0}^{b} f(x) d x=\ln Y
$$

لذا انتگگال ريمان ناسرهى

$$
\int_{\mathbb{R}}|f| d m=\sum_{n=1}^{\infty} \int_{[n-1, n)}|f| d m=\sum_{n=1}^{\infty} \frac{1}{n}=\infty
$$

مثال

$$
f(x)= \begin{cases}\frac{(-1)^{n-1}}{n\left|I_{n}\right|} & x \in I_{n} \\ 0 & x=0\end{cases}
$$

كه در آن به ازازي هر بيكران است، الما به ازاى هر 1

$$
\int_{[c, 1]} f(x) d x \leq 1-\frac{1}{Y}+\cdots-\frac{1}{N-1}+\frac{1}{N}
$$

و اگر N زوج باشثد، آنگّاه

$$
\int_{[c, 1]} f(x) d x \leq 1-\frac{1}{r}+\cdots+\frac{1}{N-1}
$$

و در نتيجه به ازاي هر همين ترتيب مىتوان نشان داد، انتگرال ريمان ناسرهى نوع دوم共

$$
\int_{[0,1]}|f| d m=\sum_{n=1}^{\infty} \int_{I_{n}}|f| d m=\sum_{n=1}^{\infty} \frac{1}{n}=\infty
$$

 د $\left\{E_{n}\right\}_{n=1}^{\infty}$

$$
\begin{equation*}
\int_{E} f d \mu=\sum_{n=1}^{\infty} \int_{E_{n}} f d \mu \tag{9.r}
\end{equation*}
$$

در سالى كه انتگگإل ناسر مى ريمان فاقد أين خاصيت است. به عنوان مثال، تابع مثال

$$
\begin{aligned}
& E_{1}=[0,1), \quad E_{\varphi}=[1, \zeta), \quad E_{\mu}=[\mu, \varphi), \\
& E_{\uparrow}=[r, r), \quad E_{\Delta}=[\Delta, \varphi), \quad E_{\varphi}=[\vee, \wedge), \\
& E_{\mathrm{V}}=[\uparrow, \Delta), \quad E_{\Lambda}=[\uparrow, \mid 0), \quad E_{q}=[|1,| \boldsymbol{\gamma}),
\end{aligned}
$$

$$
\text { در اين صورت } 10, \infty)=\cup_{n=1}^{\infty} E_{n}
$$

$$
\begin{aligned}
\ln r=\int_{0}^{\infty} f(x) d x & \neq \sum_{n=1}^{\infty} \int_{E_{n}} f(x) d x \\
& =1-\frac{1}{r}-\frac{1}{\gamma}+\frac{1}{\mu}-\frac{1}{4}-\frac{1}{\Lambda}+\frac{1}{\gamma}-\cdots \\
& =\frac{1}{r} \ln Y .
\end{aligned}
$$

توجه داشته باشيد كه سرى

$$
1-\frac{1}{r}-\frac{1}{r}+\frac{1}{r}-\frac{1}{4}-\frac{1}{\lambda}+\cdots
$$

تجديدآرايشى أز سرى قرار گرفته أست. در حالت كلى، اكر هر α جملهى مثبت، قبل از β جملهى منفى از اين سرى قرار بییيرد، آنگاه

$$
\sum_{n=1}^{\infty} a_{n}=\ln r+\frac{1}{r} \ln \frac{\alpha}{\beta} .
$$

 اين بحش را با بيان و اثبات قضبيهأى كه ارتباط دقيق بين انتگرالنهاى ريمان ناسرمى نوع اول و

قضيه ش. قr. فرض كنيم
程 $\int_{a}^{\infty}|f(x)| d x$

$$
\int_{a}^{\infty} f(x) d x=\int_{[a, \infty)} f(x) d m
$$

 حسيز: فضلى-سيما آغخي ، انتشارات حفيات حفيظ، بيينيد.
 صعودى در ()

$$
\lim _{n \rightarrow \infty} \int_{a}^{a_{n}} f d x=\lim _{n \rightarrow \infty} \int_{\left[a, a_{n}\right]} f d m=\int_{[a, \infty)} f d m<\infty
$$

 .

$$
\lim _{n \rightarrow \infty} \int_{\left[a, a_{n}\right)}|f| d m=\lim _{n \rightarrow \infty} \int_{a}^{a_{n}}|f| d x<\infty
$$

 $\int_{[a, \infty)} f d m=\lim _{n \rightarrow \infty} \int_{\left[a, a_{n}\right)} f d m=\lim _{n \rightarrow \infty} \int_{a}^{a_{n}} f d x=\int_{a}^{\infty} f d x$.

L L^{p} فضاهاى

در اين بخش فضاى توابي انتخرالیذير را توسيع داده و فضالى جديدى بنام فضاى , L^{p} راعرضه كرد، ريس-فيشر كلاس توابع

 تعاريف و قضاياى اسأسى در مباحث مربوط به فضاهالى بردارى نرمدار يهى مى گيريم. تعريف ץ. يكى نرم روى فضاى بردارى V گوييم، هر گا
$\|\alpha v\|=|\alpha|\|v\| . v \in V, \alpha \in \mathbb{R}$, $\|$
r- به أزاى هر $\|v+w\| \leq\|v\|+\|w\| ، v, w \in V$ (نابرابرى مثلثى).

دوتايى (|| V | $)$ را يكى فضاى بردارى نرمدار گوييم.

 ب) گويِيم دنبالهى

$$
\text { ازای هر }\left\|v_{n}-v_{m}\right\|<\varepsilon ، m, n \geq N
$$

 كشى در اين فضضا همخرا باثشد.

تعريف r.AQ. فرض كنيم $\sum_{i=1}^{\infty}\left\|v_{i}\right\|$ كوييم، هر گاه دنبالهى همگرا باشد.
 يكـ سرى همگرا باشد. اثبات : مرجع [TY] فصل ه را بيينيد.
 تعريف مى كنيم

$$
\|f\|_{p}=\left[\int_{X}|f|^{p} d \mu\right]^{1 / p}
$$

$$
\mathfrak{L}^{p}(X, \mathcal{A}, \mu)=\left\{f: X \rightarrow \mathbb{R}^{*}: \text { اندازْپذير } f,\|f\|_{p}<\infty\right\} .
$$

توجه داريم كه برايى راحتى به جاى نماد
 فضاى بردارى روى ميدان \mathbb{R} است.

اثبات : فرض كنيم $\alpha \in \mathbb{R}, f, g \in \mathfrak{L}^{p}$ باشد. آنگاه
$|\alpha f+g|^{p} \leq[\mathcal{Y}|\alpha| \max \{|f|,|g|\}]^{p} \leq(Y|\alpha|)^{p}\left\{|f|^{p}+|g|^{p}\right\}$

ITS L^{p},

بنابراين با انتگگرالگيرى از طرفين نامساوى، داريم حالل مىخواهيم بيينيم، آيا تابع

$$
\|f\|_{p}=\left[\int_{X}|f|^{p} d \mu\right]^{1 / p}
$$

 دز حالت كلى، تابع
 $\mathfrak{L}^{p}(X, \mathcal{A}, \mu)$ است، دأريم تعريف ميكنيم.

تعريف r.
 به آسانى میتوان نشان داد رابطهى ~ ~ يكـ رابططهى همارزى روى (

$$
L^{p}(X, \mathcal{A}, \mu)=\left\{[f]: f \in \mathfrak{L}^{p}(X, \mathcal{A}, \mu)\right\}
$$

از اينكه ~ ~ يكى رابطهى همارزى است،號 صورت زير تعريف مى كنيهم

$$
\alpha[f]=[\alpha f], \quad[f]+[g]=[f+g]
$$

توجه دأشته باشيد كه همأرزى [f]
 قضيه و تابع (

$$
\|[f]\|_{p}=\left[\int_{X}|f|^{p} d \mu\right]^{1 / p}
$$

برايى $p \geq 1$ يكـ نرم روى اين فضاست.

اثبات : با تو جه به تعريف فضايى بردارى، به آسانى مىتوان نشان داد فضانى (p>0 تعريف شده در (*) خوش تعريف است. در واقع اكر م نتيجه
 طرفی اگر

$$
\|[\alpha f]\|_{p}=\left[\int_{X}|\alpha f|^{p} d \mu\right]^{1 / p}=|\alpha|\left[\int_{X}|f|^{p} d \mu\right]^{1 / p}=|\alpha|\|[f]\|_{p}
$$

أز اينكه
 برقرار أست

$$
|f+g|^{p} \leq r^{p-1}\left\{|f|^{p}+|g|^{p}\right\}
$$

حال با انتگرال گيرى أز طرفين نامساوى داريم،

$$
\begin{aligned}
\|[f+g]\|_{p}^{p} & =\int_{X}|f+g|^{p} d \mu \\
& \leq r^{p-1}\left\{\int_{X}|f|^{p} d \mu+\int_{X}|g|^{p} d \mu\right\} \\
& =r^{p-1}\left(\|[f]\|_{p}^{p}+\|[g]\|_{p}^{p}\right)
\end{aligned}
$$

بنابراين با توجه به تعاريف بيوست الفه دوتايیى
فضشاى بردارى p--نرمدار اسست و در نتيجه يكـ فضضاي نرمدار است. فضاي (از توابي هستند. به منظور تسهيل در بيان، معمولاً اين كلاسهاي همارززى را به عنوان يكـ تأبع در نظر مى گيريم و از f به جاى f به نظر خواهيم گرفت. در اين فضضا برای رإحتى از نمادهاى (حال به بيان و اثبات برخي نامساو ؟،هايى مهم در فضاهاى

Iry L^{p} G.r.
نمادكّدارى : اعداد حقيقى (ا

$$
\begin{equation*}
\|f g\|_{1} \leq\|f\|_{p}\|g\|_{q} . \tag{11.5}
\end{equation*}
$$

باشد.
اثبات: اكى أكر |g $\|$ باشد، آنگاه $\|_{q}=$ =

$$
\begin{equation*}
\frac{|f g|}{\|f\|_{p}\|g\|_{q}} \leq \frac{1|f|^{p}}{p}\|f\|_{p}^{p}+\frac{1}{q} \frac{|g|^{q}}{\|g\|_{q}^{q}}, \tag{ir.r}
\end{equation*}
$$

حالل با انتقرالكييى از رابطهى نوق، داريم

$$
\int_{X} \frac{|f g|}{\|f\|_{p}\left\|_{g}\right\|_{q}} d \mu \leq \int_{X}\left(\frac{1}{p} \frac{|f|^{p}}{\|f\|_{p}^{p}}+\frac{1}{q}\left\|\underline{|g|^{q}}\right\| q=\frac{1}{p}+\frac{1}{q}=1, \quad\right. \text { (ir.r) }
$$

 ․

$$
\beta=\|f\|_{p}^{p} \text { بنابراين } \alpha=\|g\|^{q}
$$

در اثبات قضييهى r.r.9، نشان داديم به الزالى هر

$$
\|f+g\|_{p}^{p}=\gamma^{p-1}\left(\|f\|_{p}^{p}+\|g\|_{p}^{p}\right),
$$

برقرأر أست و در نتيجه با توجهه به مطالب بيان شده در پيويست الف نامساوى مثلثى كه در فضاهانى به نامساوى مينكوفسكى معروف است، برقرار أست. حال بدون رجوع به پيوست الف و به صورتى

$$
\begin{equation*}
\|f+g\|_{p} \leq\|f\|_{p}+\|g\|_{p} \tag{1+.5}
\end{equation*}
$$

و به ازايى

اثبات : با توجه به مفروضات، روى X متناهى انن. بنابراين مىتوان از المكان بيمعنى بودن عبارت حتشمبوشى كرد. حال با بكار بردن نابرابرى مثلثي، ت.هـ. روى X Xائنيم

$$
\begin{aligned}
|f(x)+g(x)|^{p} & =|f(x)+g(x)||f(x)+g(x)|^{p-1} \\
& \leq|f(x) \| f(x)+g(x)|^{p-1}+|g(x)||f(x)+g(x)|^{p-1}(1 \Delta . r)
\end{aligned}
$$

 فرض مى كنيم 1 1 و q مزدوج p باششد. آنگاه با انتگرال گيرى از طرفين نابرأبرى (10.r) دأريم

$$
\int_{X}|f+g|^{p} d \mu \leq \int_{X}|f||f+g|^{p-1} d \mu+\int_{X}|g||f+g|^{p-1} d \mu \quad \text { (ıє.r) }
$$

حال با بكار بردن نامساوى هلدر روى هر يكى از عبارات سمت رأست نامساوى فوق، دأريم

$$
\begin{align*}
\int_{X}|f \| f+g|^{p-1} d \mu & \leq\|f\|_{p}\left\|(f+g)^{p-1}\right\|_{q} \\
& =\|f\|_{p} \cdot\left(\int_{X}|f+g|^{p} d \mu\right)^{1 / q} \tag{IV.r}
\end{align*}
$$

و به همين ترتيب

$$
\int_{X}\left|g\left\|f+\left.g\right|^{p-1} d \mu \leq\right\| g \|_{p} \cdot\left(\int_{X}|f+g|^{p} d \mu\right)^{1 / q}\right.
$$

با تلفيق روابط (14.r)، (IV.r) و (IN.r) داريم

$$
\|f+g\|_{p}=\left(\int_{X}|f+g|^{p} d \mu\right)^{1-(1 / q)} \leq\|f\|_{p}+\|g\|_{p}
$$

برأى اثبات قسمت بعدى، بأ توجه به روند اثبات، مشاهده مى كنيم كه تساوى در رابطهى (I (I F.Y) رخ

$$
\alpha|f(x)|^{p}=|f(x)+g(x)|^{q(p-1)}=\beta|g(x)|^{p}
$$

$$
\text { و در نتيجه } \alpha f=\beta g .
$$

تذكر w.

$$
\|f\|_{p}=\left[\int_{X}|f|^{p} d \mu\right]^{1 / p}
$$

يك نرم روى فضاي位 . $\|f+g\|_{p}>\|f\|_{p}+\|g\|_{p} p \in(\circ, 1)$ (1 ازاي هر
 L^{p} همزمان با اثبات كامل بودن فضاي نرمدار را در قالب قضيهى زير بيان و اثبات مى كنيم.
 فضشاى نرمدار كامل است.

اثبات: فرض مى كتيم Y.

$$
G_{n}=\sum_{k=1}^{n}\left|f_{k}\right| \quad, \quad G=\sum_{k=1}^{\infty}\left|f_{k}\right| .
$$

(توجه داريم نامساوى مينكوفسكى به ازای هر $n \in \mathbb{N}$ انر n داريم

$$
\left\|G_{n}\right\|_{p} \leq \sum_{k=1}^{n}\left\|f_{k}\right\|_{p} \leq B
$$

زل طرفى

$$
\int_{X} G^{p} d \mu=\lim _{n \rightarrow \infty} \int_{X} G_{n}^{p} d \mu=\lim _{n \rightarrow \infty}\left\|G_{n}\right\|_{p}^{p} \leq B^{p}<\infty
$$

همگراست و

$$
\sum_{k=1}^{\infty} f_{k} \in L^{p} \quad,\left|\sum_{k=1}^{n} f_{k}-\sum_{k=1}^{\infty} f_{k}\right|^{p} \leq(ケ G)^{p} \in L^{\prime}
$$

بالاخره بالستفاده از قضيشى همڭرايى تسلطى لبُـ داريم

$$
\lim _{n \rightarrow \infty} \int_{X}\left|\sum_{k=1}^{n} f_{k}-\sum_{k=1}^{\infty} f_{k}\right|^{p} d \mu=\int_{X} \lim _{n \rightarrow \infty}\left|\sum_{k=1}^{n} f_{k}-\sum_{k=1}^{\infty} f_{k}\right|^{p} d \mu=\circ
$$

- $\lim \lim _{n \rightarrow \infty}\left\|\sum_{k=1}^{n} f_{k}-\sum_{k=1}^{\infty} f_{k}\right\|_{p}=0$ بنابراين

 فضاى جديد، توأبع ت.ه. كراندارند و روى يكى مجموعه با اندازمى صفر مىتوانند هر رفتارى را دأشته باشند.
 تعريف مىكنيم

$$
\begin{aligned}
\|f\|_{\infty} & =\inf \{M \geq 0: \mu(\{x:|f(x)|>M\})=0\} \\
& =\inf \{M \geq 0: X \text { ی. } \quad \text {. }|f(x)| \leq M\}
\end{aligned}
$$

(f) L^{p} فضاه Y. Y
(قرارداد مىىكنيم كه

$$
\mathfrak{L}^{\infty}(X, \mathcal{A}, \mu)=\left\{f: X \rightarrow \mathbb{R}^{*}: \text { اندازْ } f,\|f\|_{\infty}<\infty\right\}
$$

號 (X, \mathcal{A}, μ)

قضيه

$$
\|f+g\|_{\infty} \leq\|f\|_{\infty}+\|g\|_{\infty}
$$

اثبات : آسان است و به خواننده واگذار میشود. در وأقع كافي أست به أين نكته توجه كنيه كه نابرأبرى X X X برقر ار اسست.
 كلاسهاي همأرزى (جمع و ضرب اسشكالر را در أين فضا مشابه بيانز، عناصر أين فها كه دو وأقع كلاسهأى همازرزى هستند، به صورت تابع نشاز صيدهيم. لم بردارى استت و تابي (

$$
\|f\|_{\infty}=\inf \{M \geq \circ: \mu(\{x:|f(x)|>M\})=0\}
$$

يكـ نرم روى أين فضاسُتِ.
اثبات : أينكه برایى اثبات كمال (، $m, n \geq N$ هر هر

$$
\begin{equation*}
\left\|f_{n}-f_{m}\right\|_{\infty}<\varepsilon \tag{19.r}
\end{equation*}
$$

از طرفى از اينكه به ازاي هر n, $m \in \mathbb{N}$ تهـ. روى X داريم

$$
\left|f_{n}-f_{m}\right| \leq\left\|f_{n}-f_{m}\right\|_{\infty},
$$

مجموعهى

 X - E بطور يكنواخت همغراست. قرار مىدميم

$$
f(x)= \begin{cases}\lim _{n \rightarrow \infty} f_{n}(x) & x \in X-E, \\ \cdot & x \in E .\end{cases}
$$

از رابطهى (r.r.

 - $\quad \lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{\infty}=0$. $\left\|f-f_{n}\right\|_{\infty}<\varepsilon$ اين نشان میدهد كو
 وجود داشته باشد، میيردازيمب. بحث را با مثال زير شروع مىكينيم

مثال $99 . \%$ فرض كنيد

مثال نوقالذكر نشان میدهد كه در حالت كلى، ميج رابططهى شمولى مابين فضاماى

 الزاى هر

$$
\|f\|_{p} \leq\|f\|_{q}(\mu(X))^{\frac{1}{p}-\frac{1}{a}},
$$

IFY $\quad L^{p}$ \% Y.

أبات : اگر $q=\infty$ باشثد، آنغاه

$$
\|f\|_{p}^{p}=\int_{X}|f|^{p} d \mu \leq\|f\|_{\infty}^{p} \int_{X} \mid d \mu=\|f\|_{\infty}^{p} \mu(X)
$$

اگگر q باششد، آنگاه با بكار بردن نامساوى هلدر با أهداد مزدوج

$$
\|f\|_{p}^{p}=\int_{X}|f|^{p} \cdot\left|d \mu \leq\left\||f|^{p}\right\|_{p}^{q}\|\mid\|_{\frac{q}{q-p}}=\|f\|_{q}^{p} \mu(X)^{\frac{q-p}{q}}\right.
$$

و در نتيجه حكم برقرار است.

لم ب.ا•1. فرض كنيم

$$
\lambda=\frac{q^{-1}-r^{-1}}{p^{-1}-r^{-1}} \mathrm{j}^{ا ٓ} \quad\|f\|_{q} \leq\|f\|_{p}^{\lambda}\|f\|_{r}^{1-\lambda}, \mathfrak{L}^{p} \cap \mathfrak{L}^{r} \subseteq \mathfrak{L}^{q}
$$

$\lambda=\underset{q}{p},|f|^{q} \leq\|f\|_{\infty}^{q-p}|f|^{p}$ اثبات : أگر
بنابراين

$$
\|f\|_{q} \leq\|f\|_{p}^{p / q}\|f\|_{\infty}^{1-(p / q)}=\|f\|_{p}^{\lambda}\|f\|_{\infty}^{1-\lambda}
$$

$$
\begin{aligned}
\int_{X}|f|^{q} d \mu & =\int_{X}|f|^{\lambda q}|f|^{(1-\lambda) q} d \mu \leq\left\||f|^{\lambda q}\right\|_{p / \lambda q}\left\||f|^{(1-\lambda) q}\right\|_{r /(1-\lambda) q} \\
& =\left[\int_{X}|f|^{p}\right]^{\lambda q / p}\left[\int_{X}|f|^{r}\right]^{(1-\lambda) q / r}=\|f\|_{p}^{\lambda q}\|f\|_{r}^{(1-\lambda) q}
\end{aligned}
$$

و در نتيجه - حكم برقرار است.
يك نمونهى مهم از فضضاهأى
 را „فضاي $l^{p}(\mathbb{N})$ اندازیى صفر فضانى انداز

$$
\begin{aligned}
& \text { بنابراين } \\
& l^{p}(\mathbb{N})=\left\{f: \mathbb{N} \rightarrow \mathbb{R}^{*}: \sum_{n=1}^{\infty}|f(n)|^{p}<\infty\right\} .
\end{aligned}
$$

 میتوان نشان داد
$\inf \{M \geq \bullet: X$. \quad. $\quad|f(n)| \leq M, n \in \mathbb{N}\}=\sup \{|f(n)|: n \in \mathbb{N}\}$,
بنابراين

$$
l^{\infty}(\mathbb{N})=\left\{f: \mathbb{N} \rightarrow \mathbb{R}^{*}: \sup _{n} \| f(n) \mid<\infty\right\}
$$

فضاهاى (N)
قضيه

$$
\|f\|_{q} \leq\|f\|_{p} g l^{p}\left(\mu_{c}\right) \subseteq l^{q}\left(\mu_{c}\right)
$$

اثبات: داريم اكَر
$\|f\|_{q} \leq\|f\|_{p}^{p / q}\|f\|_{\infty}^{1-(p / q)} \leq\|f\|_{p}^{p / q}\|f\|_{p}^{1-(p / q)}=\|f\|_{p}$.

 اندازمى كلى و متنامى خوامييم چرداخت.

 تابعى اندازمْذير در اين فضيا باششد. گوييم دنباله

$$
\left\{x \in X: \lim _{n \rightarrow \infty} f_{n}(x) \neq f(x)\right\} \subseteq N \in \mathcal{A} \quad, \quad \mu(N)=0
$$

ب) بطور يكنواخت به تانير f هم
 پ

$$
\lim _{n \rightarrow \infty} \mu\left(\left\{x \in X:\left|f_{n}(x)-f(x)\right| \geq \varepsilon\right\}\right)=\circ
$$

به عبازتى، به ازإى هر

$$
\mu\left(\left\{x \in X:\left|f_{n}(x)-f(x)\right| \geq \varepsilon\right\}\right)<\delta . \quad \quad n \geq N_{\varepsilon, \delta}
$$

ت به ازاى هر 0

$$
\mu\left(\left\{x \in X:\left|f_{n}(x)-f(x)\right| \geq \varepsilon\right\}\right)<\varepsilon
$$

$\mu(\{f>0\})>$ لم باشد. آنگاه

اثبات : بوضوح تابي اندازه داريمر

$$
\circ<\mu(\{f>\circ\}) \leq \sum_{n=1}^{\infty} \mu\left\{f \geq \frac{1}{n}\right\}
$$

لذا حداقل يكى از جملات طرف راست نامساوى مخالف صفر بوده و اين اثبات را كامل مى كند.
 و f و g توأبعى اندلازهيذير باشند. آنگاه $a f_{n}+b g_{n} \xrightarrow{\mu} a f+b g a, b \in \mathbb{R}$ الف) ب) اثبات : الف) فرض مى كنيم $a, b \neq 0$ باشند. با توجه به رابطهى زير

$$
\left|a f_{n}(x)+b g_{n}(x)-[a f(x)+b g(x)]\right| \leq|a|\left|f_{n}(x)-f(x)\right|+|b|\left|g_{n}(x)-g(x)\right|
$$

$$
\begin{aligned}
& \left\{x \in X:\left|a f_{n}(x)+b g_{n}(x)-[a f(x)+b g(x)]\right| \geq \varepsilon\right\} \\
\subseteq & \left\{x \in X:\left|f_{n}(x)-f(x)\right| \geq \frac{\varepsilon}{Y|a|}\right\} \cup\left\{x \in X:\left|g_{n}(x)-g(x)\right| \geq \frac{\varepsilon}{Y|b|}\right\}
\end{aligned}
$$

حال حكم مورد نظر ازخاصيت يكنوايی و زيرجمعى شمارايی تابي اندازه بدست مىآيد. ب) به برهان خلف فرض مىكنيم از لم قبلى

$$
\begin{aligned}
& \text { |زإى هر n، } \\
& \{|f-g| \geq \varepsilon\} \subseteq\left\{\left|f-f_{n}\right| \geq \frac{\varepsilon}{Y}\right\} \cup\left\{\left|f_{n}-g\right| \geq \frac{\varepsilon}{Y}\right\} .
\end{aligned}
$$

حال با توجه به خواص يكنوأيى و زير بجمعى تابع اندلازه داريم

$$
\mu(\{|f-g| \leq \varepsilon\}) \leq \mu\left(\left\{\left|f-f_{n}\right| \geq \frac{\varepsilon}{Y}\right\}\right)+\mu\left(\left\{\left|f_{n}-g\right| \geq \frac{\varepsilon}{r}\right\}\right)
$$

بالاشخره با ميل دادن هر دو جمله از طرفين راست نامساوى و استفاده از مفروضات قضيه داريم . $\mu(\{|f-g|>\varepsilon\})=$ 。

نمودار زير روابطط مابين انواع همغراييىهاى مذكور در بالا را بدون فرض شرإيطى روى فضاى
 زيردنباله از دنبالهى مفروض در جهت مشخص شده همخرأست. به عنوان مثالل، وجود بيكانى بر لز

a.e اندازمهينير f باثد، آنگاه
 آنزاه زيردنبالهاى مانند

شكل r.r: ارتباط هابين انواع همگُرايىهـا در حالت كلى

 باشد، آنگاه زيردنبالهالى مانند

اثبات: فرض كنيم
و براى

و به اين ترتيب، به ازالى هر

$$
\mu\left(\left\{x \in X:\left|f_{n_{k}}(x)-f(x)\right| \geq \frac{1}{\gamma^{k}}\right\}\right)<\frac{1}{\gamma^{k}},
$$

به ازاى هر k، قرار میدهيم

$$
\begin{aligned}
& \mu\left(\left\{x \in X:\left|f_{n_{1}}(x)-f(x)\right| \geq \frac{1}{r}\right\}\right)<\frac{1}{r}, \\
& \mu\left(\left\{x \in X:\left|f_{n_{r}}(x)-f(x)\right| \geq \frac{1}{r^{r}}\right\}\right)<\frac{1}{r^{r}},
\end{aligned}
$$

$$
\begin{aligned}
& \text { ، } m \in \mathbb{N} \text { ر } \\
& \mu(E) \leq \mu\left(\bigcup_{n=m}^{\infty} E_{k}\right) \leq \sum_{k=m}^{\infty} \mu\left(E_{k}\right) \leq r^{-m+1} .
\end{aligned}
$$

$x \notin \cup_{k=m}^{\infty} E_{k}$, و در نتيجه به أزاى هر

 أبات : به أزاى هر آنغاه

$$
\begin{aligned}
& \int_{X}\left|f_{n}-f\right|^{p} \geq \int_{E_{n, \varepsilon}}\left|f_{n}-f\right|^{p} \geq \varepsilon^{p} \mu\left(E_{n, \varepsilon}\right) \\
& \quad \lim _{n \rightarrow \infty} \mu\left(E_{n, \varepsilon}\right) \leq \lim _{n \rightarrow \infty} \varepsilon^{-p} \int_{X}\left|f_{n}-f\right|^{p}=\circ \text { بنابراين }
\end{aligned}
$$

نتيجه مدگرابه f است.
 حالل مى خواهيم با ارائه مثاللهايى عدم برقرارى باقى روابط رأ در شكل بالا نشان دهيم. مثال س. 11.

$$
f_{n}(x)= \begin{cases}\frac{1}{n} & \circ \leq x \leq e^{n} \\ \bullet & \odot\end{cases}
$$

$ء p \in(\circ, \infty)$ (آنظا

$$
\lim _{n \rightarrow \infty}\left\|f_{n}\right\|_{p}^{p}=\lim _{n \rightarrow \infty} n^{-p} e^{n}=\infty
$$

مثال

$$
f_{n}(x)= \begin{cases}1 & n \leq x \leq n+\frac{1}{n} \\ 0 & \text { غيره }\end{cases}
$$

آنگاه الست. در واقع مثال r.r|l. فرض كنيم (

$$
[0,1],\left[0, \frac{1}{r}\right],\left[\frac{1}{r}, 1\right],\left[0, \frac{1}{r}\right],\left[\frac{1}{r}, \frac{r}{r}\right],\left[\frac{r}{r}, 1\right],\left[0, \frac{1}{r}\right], \ldots,\left[\frac{r}{r}, 1\right], \ldots
$$

را در نظر مى گيريم. حال فرض مىكنيم مىدهيم

$$
\begin{aligned}
& \left\|f_{1}\right\|_{p}^{p}=1,\left\|f_{\mathrm{Y}}\right\|_{p}^{p}=\frac{1}{Y},\left\|f_{\mathrm{r}}\right\|_{p}^{p}=\frac{1}{ץ},\left\|f_{\mathrm{F}}\right\|_{p}^{p}=\frac{1}{\mu}, \ldots\left\|f_{\mathcal{F}}\right\|_{p}^{p}=\frac{1}{\mu},\left\|f_{\mathrm{Y}}\right\|_{p}^{p}=\frac{1}{\mathrm{~F}}, \ldots \\
& \text { و بدين ترتيب به ازاي هر } n \geq 1+\ldots+m=\frac{m(m+1)}{Y} \\
& \left\|f_{n}-\circ\right\|_{p}^{p}=\int_{[\cdot, 1]} f_{n}^{p} \leq \frac{1}{m},
\end{aligned}
$$

و در نتيجه
 . متشكل از صفر و زيردنبالهى ديگرى فقط متشثكل از يكى دارد و در نتيجه دنبالهى
نقطهاى از [[0] همگرا نيست.

مثال س.ז1ا. فرض كنيم (

$$
f_{n}(x)= \begin{cases}1 & n-1 \leq x \leq n \\ 0 & 0 .\end{cases}
$$

آنگاه يكنواخت و در

${ }^{1 s}$ D. Egoroff

 .$f_{n} \xrightarrow{\text { uni }} f ، E^{c}$ است كه

اثبات: بد بدون كاستن از كليت، فرض مى كنيم nf روى كل X نقطه به نقطه ممگرا به f است. به ازاى هر n, n, k ، قرار میدهيم

$$
E_{n}(k)=\cup_{m=n}^{\infty}\left\{x:\left|f_{m}(x)-f(x)\right| \geq \frac{1}{k}\right\} .
$$

آنگاه به ازاى هر k'ى ثابت و هر و نزولى بودن دنبالهى مر م مى مهيم位

تذكر r.ا11. شرط متنامي بودن فضاى اندازه در تضيهى اگوروف ضرورى است. مسئلهى حل شدهى آ از هم همين فصل را بيينيد.
 $\left\{f_{n}\right\}$ \} امر
 $B(1, \delta) \cap E \neq \emptyset ،$ ز
 ممغكرا به صفر روى هر زيرمجموعهى E با اندازازي برابر با يكى باشد.
 در همخرايى دنبالهى (k)

 موجود باشد كه به ازاي هر

. $E_{n}(k) \subseteq\left\{x \in X:|g(x)|>\frac{1}{r k}\right\}, k, n \in \mathbb{N}$

$$
\mu\left(E_{n}(k)\right) \leq \mu\left(\left\{x \in X: \left\lvert\, g(x)>\frac{1}{Y k}\right.\right\}\right) \leq \int_{X}|g| d \mu<\infty,
$$

نتيجه

اثبات : فرض كنيم 0 >

$$
\mu\left(\left\{x \in X:\left|f_{n}(x)-f(x)\right|>\varepsilon\right\}\right) \leq \mu(E)<\varepsilon,
$$

$$
\text { و در نتيجه } f \text {. } f_{n} \xrightarrow{\mu}
$$

距 مىتوان نمودار مربوط به ارتباط مابين انواع همگراييها را به صورت زير ترسيم كرد:

مثال زير به همراه مثال مىدهند.

مثال Y. Il|. فضاى انداز

$$
f_{n}(x)= \begin{cases}n & \frac{1}{n} \leq x \leq \frac{r}{n} \\ \circ & \text { غ }\end{cases}
$$

مسائل هـل شـه
در اين بخش فضاى اندازمى ($X, \mathcal{A}, \mu)$ را ثابت در نظر ميگيريم.
مسئله ا. نشان دهيد هر تابع يكنواكى $f: \mathbb{R} \rightarrow \mathbb{R}$ تابعى برل اندلزهِذير است.

 f نتيجه برل اندازْ يذذير أست. از طرفیى f f روى

$$
f^{-1}((a, \infty)) \cap E^{c}=G \cap E^{c} \in \mathcal{B}_{\mathbb{R}}
$$

توجه دأشته باشيد كه E شماراست و در نتيجه E و E E برل أندازهیذيرند. يادآورى : اگگ (X,

$$
E=G \cap Y \text { ك }
$$

مسئله Y. فرض كنيم برل اندازْهٍيرير توسط f يكس مجموغهى برل اندازْهٍير است.

جواب : با توجه به مطالب بيان شده در يادآورى صفـحهى ه از اينكه f يكـ به يكـ است
 میدهيم

$$
\mathcal{A}=\left\{E \subseteq \mathbb{R}: f(E) \in \mathcal{B}_{\mathbb{R}}\right\}
$$

 . $f\left(E^{c}\right)=f(\mathbb{R}-E)=\mathbb{R}-f(E)$ A \mathcal{A} فرض اينكه
rar 9 مسائل حل شده

نسبت به اجتماع شمارا بسته أست. در ضمن ثيوستگى و يكى به يكى بودن f، اكيداً يكنوايى آن را نتيجه میدهد و در نتيجه $f\left(\mathcal{B}_{\mathbb{R}}\right)=\mathcal{B}_{\mathbb{R}}$ تمام بازهمالى بسته و در نتيجه شامل تمام مجموعههالى برل است.

مسئله r. مثالي بياوريد كه
 ب)

جواب :
الف) فرض كنيم Φ تابِ كانتور تعريف شده در $9, Y$ باشذ. تابع Φ را روى كل \mathbb{R} كه صورت

$$
\Phi(x)=0, \quad x<0, \quad, \quad \Phi(x)=1, \quad x>1
$$

توسيع داده و قرار هيدهيم بنابراين تابع f اكيداً صعودى و بيوسته از توجه به مسئلهى حل شدهى r، تصوير هر مجمووعه برل اندلدازیئُير توسط f مججموعهأى برل اندازهپْير است. فرض كنيم

$$
C=[0,1]-\bigcup_{n=1}^{\infty}\left(a_{n}, b_{n}\right)
$$

 2 $m(f(C))=1$ ساخت مجموعهي كانتور است. ابتدا نشان ميدهيم

$$
\begin{aligned}
m(f([0,1]-C)) & =m\left(\bigcup_{n=1}^{\infty} f\left(\left(a_{n}, b_{n}\right)\right)\right)=\sum_{n=1}^{\infty} m\left(f\left(\left(a_{n}, b_{n}\right)\right)\right) \\
& =\sum_{n=1}^{\infty} m\left(\left(a_{n}+\Phi\left(a_{n}\right), b_{n}+\Phi\left(b_{n}\right)\right)\right) \\
& =\sum_{n=1}^{\infty} m\left(\left(a_{n}, b_{n}\right)\right)=1
\end{aligned}
$$

از اينكه تصوير بازمى [[10,1 تست تابي f بازهى [[, ,

$$
Y=m([0, Y])=m(f(C))+m(f([\circ, 1]-C))=m(f(C))+1
$$

بنابراين 1 . $m(f(C))=1$ حال با توجه به مسئلهى حل شدمى . $f(C)$ اين صورت
 مصجموعهأى أندازْنابِذير اسـت. ب) كافى قرار دهيد

$$
g=f^{-1} \quad, \quad B=f^{-1}(V)
$$

كه در آن f و V تابع و مـجموغهى تعريف شده در قسمت (الفس) بالاست. بی) قرار دهيد (V) V مجموعه اندازهنايْذير تعريف شده در قسمت (الفـ) است. در اين صورت A أندازْپذير است ولى برل اندازهپذير نيست. در واقع اگر برل اندازه

مسئله
 تصوير هر زيريمجموتهى لبگُ اندازهيذنير جوابب : ابتدا فرض مى كنبِه، تابي بيوستهى f در شرط زير هدق كند

$$
E \subseteq[a, b], \quad m(E)=0 \Longrightarrow m(f(E))=0
$$

 كيإندأر در

جخنان موجود است كه ه >
 موجود است كه (V) V

 برل اندازهيذير مانند و برابر است.

 است

 فرض میكنيم فرضى مמكن است، زيرا

 با f است و در نتيجه حكم برقرار است
مسئله و. فرض كنيه نامنفى اسست، نشان دهيد f f روى X تقريباً همهجا نامنفى استان

 بنابراين .

مسئله y. فرض كنيد (
 تسلطى لبگَ و قضييهى لوى را در اين فضا بيان كنيد.

جواب : ابتدا فرض مى كنيم f تابعى نامنفى روى \mathbb{N} باشد و $\}$ باشد. تعريف مى كنيم

$$
\varphi_{n}(j):= \begin{cases}f(j) & j=1, \ldots, n \\ 0 & \text { غ }\end{cases}
$$

در اين هورت

$$
\int_{\mathbb{N}} f d \mu_{c}=\lim _{n \rightarrow \infty} \int_{\mathbb{N}} \varphi_{n} d \mu_{c}=\lim _{n \rightarrow \infty} \sum_{j=1}^{n} f(j)=\sum_{j=1}^{\infty} f(j)
$$

در حالت كلى، اگر f تابعى حقيقى مقدار روى فضانى اندازهى شمارشى باشد، آنگاه

$$
\begin{aligned}
\int_{\mathbb{N}} f d \mu_{c} & =\int_{\mathbb{N}} f^{+} d \mu_{c}-\int_{\mathbb{N}} f^{-} d \mu_{c} \\
& =\sum_{n=1}^{\infty} \max \{f(n), \circ\}+\sum_{n=1}^{\infty} \min \{f(n), \circ\}
\end{aligned}
$$

$\sum_{n=1}^{\infty} \max \{f(n), 0\}$ و در صورتى كه انتگرال f موجود باششد، به عبارتى حداقل يكى از سريهما يا

$$
\begin{aligned}
\int_{\mathbb{N}} f d \mu_{c} & =\sum_{n=1}^{\infty} \max \{f(n), \circ\}+\sum_{n=1}^{\infty} \min \{f(n), \circ\} \\
& =\sum_{n=1}^{\infty} f(n)
\end{aligned}
$$

كه در آن تساوى دوم از اين حقيقت ناشى مىشود كهـ آك, باشند كه
 با توجه به توضيحات بيان شده و و اينكه مىد باشند، نتيجه مى گيريم تابع . $\int_{\mathbb{N}} f d \mu_{c}=\sum_{n=1}^{\infty} f(n)$ سرى حال به آسانى مىتوان مىتوان قضاياي مورد نظر رادر اين فضا بيان كرد. قبل از بيان اين قضايا، توجه

داريم كه هر تابع در اين فضا در واقع يكى دنباله از اعداد حقيقى است . در نتيجه ميتوان به رسم هميشگى آن را به صورت مىبانشد و مىتوان آن را به صورت $\}$ آ 1- قضيفى همگرايیى يكنوا: اگر ازاى هر

$$
\lim _{n \rightarrow \infty} \sum_{m=1}^{\infty} a_{n, m}=\sum_{m=1}^{\infty} \lim _{n \rightarrow \infty} a_{n, m}
$$

$$
\sum_{m=1}^{\infty} \liminf _{n \rightarrow \infty} a_{n, m} \leq \liminf _{n \rightarrow \infty} \sum_{m=1}^{\infty} a_{n, m}
$$

r- همگرايی تسلطى لبگ: اگر باشند كه به ازاى هر

$$
\begin{aligned}
& 9 \sum_{n=1}^{\infty}\left|a_{m}\right|<\infty \text { o } \lim _{n \rightarrow \infty} a_{n, m}=a_{m} \\
& \lim _{n \rightarrow \infty} \sum_{m=1}^{\infty} a_{n, m}=\sum_{m=1}^{\infty} \lim _{n \rightarrow \infty} a_{n, m}=\sum_{m=1}^{\infty} a_{m}
\end{aligned}
$$

ب- ق-

$$
\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} a_{n m}=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{n m}
$$

 (باشـد. نشان دهيد $\lambda(E)=\int_{E} f d \mu$ روى X داريم

$$
\int_{X} g d \lambda=\int_{X} f g d \mu
$$

جواب : بوضوح 0 ($f \in L^{+}(X)$ الست، دنبالهالى صعودى از توابع ساده و اندازهپذير مانند

$$
\begin{aligned}
\lambda\left(\bigcup_{i=1}^{\infty} E_{i}\right) & =\int_{U_{i=1}^{\infty}, E_{i}} f d \mu=\lim _{n \rightarrow \infty} \int_{U_{i=1}^{\infty}, E_{i}} \varphi_{n} d \mu \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{\infty} \int_{E_{i}} \varphi_{n}=\sum_{i=1}^{\infty} \lim _{n \rightarrow \infty} \int_{E_{i}} \varphi_{n} \\
& =\sum_{i=1}^{\infty} \int_{E_{i}} f d \mu .
\end{aligned}
$$

 براى اثبات قسمت بعدى، ابتدا فرض مىكينيم و تابعى ساده و اندازه $g=\sum_{i=1}^{n} \alpha_{i} \chi_{E_{i}}$

$$
\begin{aligned}
\int_{X} g d \lambda & =\sum_{i=1}^{n} \alpha_{i} \lambda\left(E_{i}\right)=\sum_{i=1}^{n} \alpha_{i} \int_{E_{i}} f d \mu=\sum_{i=1}^{n} \int_{X} \alpha_{i} \chi_{E_{i}} f d \mu \\
& =\int_{X} f \sum_{i=1}^{n} \alpha_{i} \chi_{E_{i}} d \mu=\int_{X} f g d \mu .
\end{aligned}
$$

در حالت كلى، از اينكه حن $\left\{\varphi_{n}\right\}$ و همگرا به fg است. حال با با بكار بردن قضيهى همڭرايى يكنوا،

$$
\int_{X} g d \lambda=\lim _{n \rightarrow \infty} \int_{X} \varphi_{n} d \lambda=\lim _{n \rightarrow \infty} \int_{X} f \varphi_{n} d \mu=\int_{X} f g d \mu
$$

مسئله 9.

جواب : إبتدا فرض مىكنيم f تابعى نامنفى باشد. در اين صورت نتايج مورد نظر با توجه به مسئلهى
 موجود أست. در اين صورت براي قسمت (الف)، داريم

$$
\int_{E} f d \mu=\int_{E} f^{+} d \mu-\int_{E} f^{-} d \mu=\sum_{i=1}^{n} \int_{E_{i}} f^{+} d \mu-\sum_{i=1}^{n} \int_{E_{i}} f^{-} d \mu
$$

rer 9 مسائل حل شده

$$
=\sum_{i=1}^{n}\left(\int_{E_{i}} f^{+} d \mu-\int_{E_{i}} f^{-} d \mu\right)=\sum_{i=1}^{n} \int_{E_{i}} f d \mu
$$

براى اثبات قسمت (ب)، داريم

$$
\begin{aligned}
\int_{E} f d \mu & =\sum_{n=1}^{\infty} \int_{E_{n}} f^{+} d \mu-\sum_{n=1}^{\infty} \int_{E_{n}} f^{-} d \mu \\
& =\sum_{n=1}^{\infty}\left(\int_{E_{n}} f^{+} d \mu-\int_{E_{n}} f^{-} d \mu\right)=\sum_{n=1}^{\infty} \int_{E_{n}} f d \mu
\end{aligned}
$$

$n \geq Y_{\text {, }} F_{n}=E_{n}-E_{n-1}, F_{1}=E_{1}$ و بالاخره برأى اثبات قسمت (بّ)، فرض كنيم $n \in \mathbb{N}$ باشند. آنگال . $\cup_{n=1}^{\infty} F_{n}=\cup_{n=1}^{\infty} E_{n}=\lim _{n \rightarrow \infty} E_{n}=E, \cup_{k=1}^{n} F_{k}=E_{n}$ قسمتههاى قبل داريم

$$
\begin{aligned}
\int_{E} f d \mu & =\sum_{n=1}^{\infty} \int_{F_{n}} f d \mu=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \int_{F_{k}} f d \mu \\
& =\lim _{n \rightarrow \infty} \int_{U_{k=1}^{n} F_{k}} f d \mu=\lim _{n \rightarrow \infty} \int_{E_{n}} f d \mu
\end{aligned}
$$

مسئله •1. (لم برل--كانتلى). فرض كنيد

 كافى است ثابت كنيم

$$
g(x)=\sum_{n=1}^{\infty} \chi_{E_{n}}(x) \quad(x \in X)
$$

به ازای هر $x \in X$ ه هر يك از جملات اين سرى برابر با يك يا صفر است. بنابراين $x \in E$ اس x است اگر و تنها اكر اكر اكِ

$$
\int_{X} g d \mu=\sum_{n=1}^{\infty} \mu\left(E_{n}\right)<\infty
$$

 $E \in \mathcal{L} \cap[0,1]$ مسئله 1 . فرض كنيم $f \in \mathfrak{L}^{\prime}([0,1], \mathcal{L} \cap[0,1], m)$
با

$$
\begin{aligned}
& \left(\frac{1}{m(E)} \int_{E} f d m\right) \in[0,1] \\
& \quad . m(\{x \in[0,1]: f(x) \notin[0,1]\})=0 \text { نشان دهيد }
\end{aligned}
$$

جواب : از اينكه بازْهأى باز و مجزا نوشت. فرض كنيم مركز ${ }^{\text {a }}$ به شعالع

$$
\begin{aligned}
\{x \in[0,1]: f(x) \notin[0,1]\} & =\left\{x \in[0,1]: f(x) \in \bigcup_{n=1}^{\infty} G_{n}\right\} \\
& =f^{-1}\left(\bigcup_{n=1}^{\infty} G_{n}\right)=\bigcup_{n=1}^{\infty} f^{-1}\left(G_{n}\right),(r r . r)
\end{aligned}
$$

از إينكه f تابعىى اندازهپذير است، به ازأى هر

 ، آنگاه بنابه فرض $m\left(E_{n}\right)>$ 。

$$
\begin{aligned}
\left|\frac{1}{m\left(E_{n}\right)} \int_{E_{n}} f d m-a_{n}\right| & =\left|\frac{1}{m\left(E_{n}\right)} \int_{E_{n}}\left(f(x)-a_{n}\right) d m\right| \\
& \leq \frac{1}{m\left(E_{n}\right)} \int_{E_{n}}\left|f(x)-a_{n}\right| d m \\
& \leq r_{n}
\end{aligned}
$$

$$
\left(\frac{1}{m\left(E_{n}\right)} \int_{E_{n}} f d m\right) \in G_{n} \subseteq[0,1]^{c}
$$

به عبارتى

و اين با فرض مسئله در تناقض است. در نتيجه ه m m و حككم ثابت مىشود. مسئله r|. در فضاى اندازهى لبگّ، نشان دهيد

جواب :از اينكه

$$
\int_{[0,1]}\left|f_{n}(x)\right| d m=\int_{0}^{1}\left|f_{n}(x)\right| d m=\frac{1}{(\uparrow n+1)(\uparrow n+1)!}
$$

و با توجه به اينكه،
در نتيجه داريم

$$
\begin{aligned}
\int_{[0,1]} \cos x \ln x d m & =\int_{[0,1]} \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{\curlyvee n}}{(\uparrow n)!} \ln x d m \\
& =\sum_{n=0}^{\infty} \int_{[0,1]} \frac{(-1)^{n} x^{\curlyvee n}}{(\curlyvee n)!} \ln x d m \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{(\uparrow n+1)(\uparrow n+1)!}
\end{aligned}
$$

$$
\lim _{n \rightarrow \infty} \int_{[0, n]}\left(1+\frac{x}{n}\right)^{n} \exp (-\curlyvee x) d m=1
$$

جواب : فرض مى كنيم و هم گرا به

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \int_{[0, n]}\left(1+\frac{x}{n}\right)^{n} \exp (-r x) d m \\
= & \lim _{n \rightarrow \infty} \int_{[0, \infty)} \chi_{[0, n]}(x)\left(1+\frac{x}{n}\right)^{n} \exp (-r x) d m \\
= & \int_{[0, \infty)} \lim _{n \rightarrow \infty} \chi_{[0, n]}(x)\left(1+\frac{x}{n}\right)^{n} \exp (-r x) d m \\
= & \int_{[0, \infty)} \exp (-x) d \mu=1 .
\end{aligned}
$$

竍 ميتوأنيد مسئلهى (M.1.

 كردمأيمr.
 $g:\left(Y, \mathcal{A}_{Y}, \mu f^{-1}\right) \rightarrow \mathbb{R}^{*}$ و تابعى باشثد و در اين حالثت دأريم

$$
\int_{Y} g d \mu f^{-1}=\int_{X} g o f d \mu
$$

تعريف
 مشخصه روى (E)

$$
\int_{Y} g d \mu f^{-1}=\int_{X} g \circ f d \mu=\mu\left(f^{-1}(E)\right)
$$

بنابراين نتيجهى مورد نظر برايى حالثى كهد و تابع مشخصهه باثثد، برقرار أست. حال با توجه به خطى

 \{ $\left\{\varphi_{n}\right.$ of $\}$ با بكار بردن تضيهى همڭاليى يكنوا

$$
\int_{Y} g d \mu f^{-1}=\lim _{n \rightarrow \infty} \int_{Y} \varphi_{n} d \mu f^{-1}=\lim _{n \rightarrow \infty} \int_{X} \varphi_{n} o f d \mu=\int_{X} g \circ f d \mu
$$

 از مطالب قبلى، نتيجهى مورد نظر بدست مىآيد.

مسئلد ها. فرض كنيد

$$
\int_{\mathbb{R}} g(x) d m=\int_{\mathbb{R}} g(-x) d m=\int_{\mathbb{R}} g(x+c) d m
$$

جواب : توأبع حقيقى مقدار و برل اندازهيذير

می گيريم. در اين صورت به ازايى هر $\left.m f_{1}^{-1}(E)=m f_{r}^{-1}(E)=m(E) ، E \in \mathcal{C}\right)$ بنابراين
 توجه به مسئلهى قبل، نتيجهى مورد نظر بدست مىآيد.
 $. \lim _{n \rightarrow \infty} n \mu\left(E_{n}\right)=。$

جواب : به أزإى هر ג يك اندازه روى \mathcal{A} است. از طرفى انتگرالیپيرى

$$
\lim _{n \rightarrow \infty} n \mu\left(E_{n}\right) \leq \lim _{n \rightarrow \infty} \int_{E_{n}}|f| d \mu=\lim _{n \rightarrow \infty} \lambda\left(E_{n}\right)=\circ
$$

كه در آن تساوى آخر، الز يیوستگى از بالاى اندازه بدست آمده آست.

 است، هدغرا باششد.

$$
\infty>\int_{X} f d \mu=\sum_{n=0}^{\infty} \int_{E_{n}} f d \mu \geq \sum_{n=0}^{\infty} \int_{E_{n}} n d \mu=\sum_{n=0}^{\infty} n \mu\left(E_{n}\right),
$$

$\sum_{n=0}^{\infty}(n+1) \mu\left(E_{n}\right)$ حال فرض ميكنيم سرى همغراست^^ بنابراين

$$
\int_{X} f d \mu=\sum_{n=0}^{\infty} \int_{E_{n}} f d \mu \leq \sum_{n=0}^{\infty} \int_{E_{n}}(n+1) d \mu=\sum_{n=0}^{\infty}(n+1) \mu\left(E_{n}\right)<\infty,
$$

و در نتيجه f f ووى X انتگرالاليذير است.
. همگرايهي
 $n \in \mathbb{N}$ روى

$$
\int_{X}\left|f_{n}\right|^{r} d \mu \leq \alpha \in \mathbb{R}
$$

جواب : فرض كنيم كه

نامساوى هلدر داريم

$$
\begin{aligned}
\int_{X}\left|f_{n}\right| d \mu & =\int_{E}\left|f_{n}\right| d \mu+\int_{X-E}\left|f_{n}\right| d \mu \\
& \leq\left(\int_{E}\left|f_{n}\right|^{\gamma} d \mu\right)^{\frac{1}{\gamma}} \mu(E)^{\frac{1}{\gamma}}+\int_{X-E}\left|f_{n}\right| d \mu
\end{aligned}
$$

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty} \int_{X}\left|f_{n}\right| d \mu \leq \alpha^{\frac{1}{\gamma}} \cdot \mu(E)^{\frac{1}{\gamma}}<\sqrt{\alpha \varepsilon} \text {. } \\
& \lim _{n \rightarrow \infty} \int_{X}\left|f_{n}\right| d \mu=0 \text { g }
\end{aligned}
$$

مسئله 19. فرض كنيد تحنان باشد كه

$$
g f_{1} \cdots f_{n} \in \mathfrak{P}^{p}(X)
$$

$$
\begin{equation*}
\left\|f_{1} \cdots f_{n}\right\|_{p} \leq\left\|f_{1}\right\|_{p_{1}} \cdots\left\|f_{n}\right\|_{p_{n}} \tag{Y+.Y}
\end{equation*}
$$

جواب : حكم را با الستقرا،، ثابت ميكنيم. برالى حالت任

هلبر داريم

$$
\left(\int_{X}\left|f_{1}\right|^{p}\left|f_{Y}\right|^{p}\right)^{\frac{1}{p}} \leq\left(\left(\int_{X}\left(\left|f_{1}\right|^{p}\right)^{\frac{p_{1}}{p}}\right)^{\frac{p}{p_{1}}}\left(\int_{X}\left(\left|f_{Y}\right|^{p}\right)^{\frac{p_{Y}}{p}}\right)^{\frac{p}{p_{Y}}}\right)^{\frac{1}{p}}
$$

198

$$
=\left(\int_{X}\left|f_{1}\right|^{p_{1}}\right)^{\frac{1}{p_{Y}}}\left(\int_{X}\left|f_{Y}\right|^{p_{r}}\right)^{\frac{1}{p_{Y}}}
$$

$$
0<\frac{1}{p_{1}}+\cdots+\frac{1}{p_{k}}=\frac{1}{p}-\frac{1}{p_{k+1}}=\frac{1}{\frac{p p_{k+1}}{p_{k+1}-p}}<1
$$

و $f_{1} \cdots f_{k} \in \mathfrak{L}^{\frac{p p_{k+1}}{p_{k+1}-p}}(X)$ نشان مىدهد 1 ، 1 استر

$$
\left(\int_{X}\left(f_{1} \cdots f_{k}\right)^{\frac{p p_{k+1}}{p_{k+1}-p}}\right)^{\frac{p p_{k+1}}{p_{k+1}-p}} \leq\left\|f_{1}\right\|_{p_{1}} \cdots\left\|f_{k}\right\|_{p_{k}}
$$

$$
\begin{aligned}
\left\|\left(f_{1} \cdots f_{k}\right) f_{k+1}\right\|_{p} & \leq\left\|f_{1} \cdots f_{k}\right\|_{\frac{p p_{k+1}}{p_{k+1}-p}}\left\|f_{k+1}\right\|_{p_{k+1}} \\
& \leq\left\|f_{1}\right\|_{p_{1}} \cdots\left\|f_{k}\right\|_{p_{k}}\left\|f_{k+1}\right\|_{p_{k+1}}
\end{aligned}
$$

$f: X \rightarrow \mu(X)=1$ مسئله •X. (نامساوى ينسن

$$
\Psi\left(\int_{X} f d m\right) \leq \int_{X} \Psi o f d m
$$

 هر

$$
\Psi(f(x)) \geq m\left(f(x)-x_{0}\right)+\Psi\left(x_{0}\right)
$$

حال با انتگرالگيرى از طرفين نامساوى، نتيجهى مورد نظر بدست مى آيل.
 جواب : فضاى اندازیى فضبا در نظر بیيريد. اين دنباله نقطه به نقطه به تابع

هر ه和 زيرمتجموعهاي، داريم
 أين متناقض بإهمڭرايى يكنواخت

مسئله זr. (تضيهى لوسين). فرض كنيد
 و تحديد f دوى K تابعى پيوسته است.
 به ازاي هر $n \in \mathbb{N}$ مهجموعه نقاط نإيوس دنبالهى اين مجهوعه نقاط نإيوستغى باشد كه موجود أست). بنابراين روى مجموعهى بستهى $m(E)<\frac{\varepsilon}{F}$ هم موجود است كه

$$
m\left(O_{Y}\right)<m(E)+\frac{\varepsilon}{ץ}<\frac{\varepsilon}{Y} .
$$

بنابراين با قرار دادن $K=[a, b]-\left(O_{1} \cup O_{Y}\right)$ نتيجهى مورد نظر حاصل مىشود.

$$
d(f, g)=\int_{X} \frac{|f-g|}{1+|f-g|} d \mu,
$$

در نظلر بِيَيريد. نشان دهيد
الف) دوتايى (M,d) يك فضاى متريكـ است. (دو تابع را برابر گويييم هر ت.ه. برابر باشند).

ب) مثالى نشان دميد متناهى بودن فضايى انـدأزه ه ضرورى است.
 شرايط إول و دوم برقرار است. از طرفى نامساوى مثلثى را نيز مىتوان از نامساوى زير نتيجه گرفت

$$
\frac{|f(x)-g(x)|}{1+|f(x)-g(x)|} \leq \frac{|f(x)-h(x)|}{1+|f(x)-h(x)|}+\frac{|h(x)-g(x)|}{1+|h(x)-g(x)|} .
$$

حالل به ازاي هر اينكه به ازاي هر نتيجه مىي گيريم
$\frac{\varepsilon}{1+\varepsilon} \mu\left(E_{n}\right) \leq \int_{X} \frac{\left|f_{n}(x)-f(x)\right|}{1+\left|f_{n}(x)-f(x)\right|} d \mu$
$=\int_{E_{n}} \frac{\left|f_{n}(x)-f(x)\right|}{1+\left|f_{n}(x)-f(x)\right|} d \mu+\int_{X-E_{n}} \frac{\left|f_{n}(x)-f(x)\right|}{1+\left|f_{n}(x)-f(x)\right|} d \mu$

$$
\leq \mu\left(E_{n}\right)+\frac{\varepsilon}{1+\varepsilon} \mu\left(X-E_{n}\right) .
$$

و اين رابطة (ب) را ثاببت مى كند. برایى نشان دادن إينكه، متناهى بودن فضاى أندازه ضرورىى أست، $f_{n}(x)=\frac{1}{n}$ فضاى اندازهى لبگ روى

$$
\int_{\mathbb{R}} \frac{\left|f_{n}(x)-f(x)\right|}{1+\left|f_{n}(x)-f(x)\right|} d m=\int_{\mathbb{R}} \frac{1}{n+1} d m=\infty .
$$

مسائل
 ا. فرض كنيد (اندازميذير باثد. تابع

$\{x \in \mathbb{R}: f(x)=a\} ، a \in \mathbb{R}$,

 است اگگ و تنها اكر به أزأى هر
F. با بارائهى مثالى نشان دهيد، اندازْهِذيرى تابع |f|نمىتواند دليلى بر اندازههذيرى تابع f باشد. $f_{n} \leq f n \in \mathbb{N}$ هـ هـ هر كه $\lim _{n \rightarrow \infty} \int_{X} f_{n} d \mu=\int_{X} f d \mu$ باشد. نشان دهيد

و. فرض كنيد
 V. فرض كنيد

俍 $\int_{E} f d \mu=\lim _{n \rightarrow \infty} \int_{E} f_{n} d \mu$ ^. فرض كنيد

$$
g g_{n}(x) \leq f_{n}(x) \leq h_{n}(x) X
$$

$$
\lim _{n \rightarrow \infty} \int_{X} h_{n} d \mu=\int_{X} h d \mu, \quad \lim _{n \rightarrow \infty} \int_{X} g_{n} d \mu=\int_{X} g d \mu .
$$

آنگاه f تابعى انتگرالیذير روى X است و داريم

$$
\lim _{n \rightarrow \infty} \int_{X} f_{n} d \mu=\int_{X} f d \mu
$$

9. در فضاي اندازهى لبگ (R,

$$
\text { الف } \iint_{[0, \infty)} \frac{x}{\exp (x)-1}=\sum_{n=1}^{\infty} \frac{1}{n^{\top}}
$$

$$
\lim _{n \rightarrow \infty} \int_{[0, n]} x^{n}\left(1-\frac{x}{n}\right)^{n} d m=n!
$$

.

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} f_{n}(x)=f(x), \quad \lim _{n \rightarrow \infty} g_{n}(x)=g(x), \quad \lim _{n \rightarrow \infty} h_{n}(x)=h(x) . \\
& \text { نشان دهيد اگر h و g توابعى انتگرالينير روى X و }
\end{aligned}
$$

II. فرض كنيد f تابعى انتگرالیֶذير روى X باششد. مقدار هـد زير را بدست آوريد.

$$
\lim _{n \rightarrow \infty} \int_{X} n \ln \left(1+\left(\frac{|f|}{n}\right)^{r}\right) d \mu
$$

蜃 $E \in \mathcal{A}$

ץr. فرض كنيد اكر مجهوعه نقاط حدى E متناهى باششد، آنیاه
. $1 f$ دهيد ت.هـ. داريم $f(x) \in\{0,1\}$.
 \mathfrak{L}^{p} ر $f \in \mathfrak{L}^{p}$ ها فرض كنيد (1, باشد. نشان دهيد به أزاى هر

$$
\lim _{n \rightarrow \infty} \int_{X} f_{n} g d \mu=\int_{X} f g d \mu
$$

و $\mu(X)=\mu^{\prime}\left(X^{\prime}\right)$ دو فضضاى اندازْى متناهي توانبع اندازهپذير

和 $\alpha \in \mathbb{R}$

$$
\mu\{x \in X: f(x)>\alpha\}=\mu^{\prime}\left\{x \in X^{\prime}: g(x)>\alpha\right\} .
$$

نشان دهيد
الف) بـه ازالى هر مجموعهى برل اندازمپيزير
 $\int_{X} f d \mu=\int_{X^{\prime}} g d \mu^{\prime} g \in \mathfrak{L}^{\prime}\left(X^{\prime}\right) d$ با با

فصل
11. فرض كنيد باشند. نشان دهيد $f \in \mathfrak{L}^{p}(X)$

$$
\|f\|_{p}=\left(\int_{X}|f|^{p} d \mu\right)^{\frac{1}{p}}=\sup \left\{\int_{X} f g d \mu: g \in \mathfrak{L}^{q}(X),\|g\|_{q}=1\right\}
$$

اگكى μ انداززها شبه متناهى باششد، آنظاه حكم برأى
 $\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{p}=0$ نشان دهيد -r.

$$
\lim _{m, n \rightarrow \infty} \mu\left(\left\{x \in X:\left|f_{n}(x)-f_{m}(x)\right| \geq \varepsilon\right\}\right)=\circ
$$

نشان دهيد دنبالهى باشد كه

اr. نقطه به نقطه جايگزين كرده و نشان در اين حالت نيز حكم بر برقرار است.
犃\} باشد.
rr. فرض كنيد (و به ترتيب همغرا به توابِ اندازهيذير f f و g در اندازه باشند. همگراست. همچچنين با ارائهى مثالى نشان دهيد شرط متناهى بودن فضياي اندازه ضرورى أست.

领 $\underbrace{\infty}$

P

در كل اين بيوست، V يك نضاى بردارى روى ميدان اعداد حقيقى و ($ل$ (1, تعريف الفا. تابع (
$،\|\alpha v\|=|\alpha|\|v\| ، v \in V, \alpha \in \mathbb{R}, \quad$, \quad,
rدوتايى (V, || || را يك فضاي بردارى لهم الفr. هر نرم معولى روى V يكى p-نرم روى v است.
 $\left\|\frac{v+w}{r}\right\|^{p} \leq\left(\frac{\|v\|+\|w\|}{r}\right)^{p} \leq \frac{\|v\|^{p}+\|w\|^{p}}{r}$,

و در نتيجه || || اليى p--نرم است.
تعريف الذب. فرض كنيم K؟ K باثد. گوييم K محدب است اگگ و تنها اگر به ازاى هر . $\alpha v+(1-\alpha) v \in K ، \alpha \in[0,1] g v, w \in K$

لمه الفز. فرض كنيم ((r)

اثبات : اگر || •|| يكى نرم باشد، آنظاه بوضوح K مسدب أست. بالعكس، فرض كنيم K مسموعهأى $v^{\prime}=\frac{v}{\|v\|}$ مححدب
 بنابراين با قرار دادن

$$
\begin{array}{r}
\left\|\frac{v}{\|v\|+\|w\|}+\frac{w}{\|v\|+\|w\|}\right\|=\left\|\alpha v^{\prime}+(1-\alpha) w^{\prime}\right\| \leq 1 \\
\qquad\|v+w\| \leq\|v\|+\|w\| \text { در نتيجيه }
\end{array}
$$

قضيه الف. ه. هر p- نرم روى V يكى نرم روى V است.

اثبات : نشان میدهيم $K=\{v \in V:\|v\| \leq 1$ مجموعهأى محدب است. فرض مىكنيم مآنیا

$$
\begin{aligned}
& \|v+w\|^{p} \leq \gamma^{p-1}\left(\|v\|^{p}+\|w\|^{p}\right) \leq \gamma^{p-1}(1+1)=r^{p}, \\
& \|v+w\|^{p}>\gamma^{p} \text { پی } \\
& \text { و أين يكى تناقض است. تعريف مىكنيم } \\
& A=\left\{\frac{k}{r^{n}}: n \in \mathbb{N}, k=0,1, \ldots, n\right\},
\end{aligned}
$$

ادعا مى كنيم به أزاي هر مى كنيم. اگر $n=1$ باشد، حكم ثابت شده است. فرض مى كنيم حمكم برايى حالت n برقرالر است. آنگاه به از! إى هر

$$
\begin{aligned}
\frac{k}{r^{n+1}} v+\left(1-\frac{k}{r^{n+1}}\right) w & =\frac{\frac{r k}{r^{n+1}} v+\left(r-\frac{r k}{r^{n+1}}\right) w}{r} \\
& =\frac{1}{r}\left(\frac{k}{r^{n}} v+\left(1-\frac{k}{r^{n}}\right) w\right)+\frac{1}{r} w \in K
\end{aligned}
$$

اما $k=n+1$ باششد، آنگاه

$$
\frac{n+1}{r^{n+1}} v+\left(1-\frac{n+1}{r^{n+1}}\right) w=\frac{\frac{n+1}{r^{n}} v+\left(r-\frac{n+1}{r^{n}}\right) w}{r}
$$

ivr

$$
=\frac{\frac{n}{r^{n}} v+\left(1-\frac{n}{\gamma^{n}}\right) w}{Y}+\frac{\frac{1}{\gamma^{n}} v+\left(1-\frac{1}{\gamma^{n+1}}\right) w}{Y}
$$

و بدين طريق ادعأى مورد نظر به أثبات مىرسـد.
 إست، مىتوان دنبالث|أى نزولى مانند می:هیم的 $a_{n} \in A, \frac{a_{n}+\beta_{n}-1}{a_{n}} v \in K$

$$
\beta_{n} u=\alpha \beta_{n} v+(1-\alpha) \beta_{n} w=a_{n} \frac{a_{n}+\beta_{n}-1}{a_{n}} v+\left(1-a_{n}\right) w \in K
$$

بالااخره، أز أينكه به ازاى هر

$$
u \in K \text {. } \| \text { و }\|u\| \leq 1
$$

كتابنامه

[1] C. D. Aliprantis, K. C. Border, Infinite Dimensional Analysis; Springer-Verlag Berlin Heidelberg, Inc. 1999.
[2] C.D. Aliprantis, O. Burkinshaw, Principles of Real Analysis; Academic Press. 1998.
[3] R. B. Ash, Measure, Integration and Functional Analysis, Academic Press, Inc 1972.
[4] G. de Barra, Measure Theory and Integration; Ellis Horwood Ltd, 1981.
[5] R. G. Bartle, The Element of Integration; John Wiley and Sons, New York, 1981.
[6] H. Belbachir, M. Mirzavaziri, M. Sal Moslehian, q-Norms Are Rellay Norms, The Australian Journal of Mathematical Analysis and Applications, volume 3, 2006.
[7] V. I. Bogachev, Measure Theory Vol.1; Springer-Verlag Berlin Heidelberg 2007.
[8] C. B. Boyer, A History of Mathematics, Wiley International Edition, John Wiley \& Sons, New York, 1968.
[9] F. Burk, Lebesgue Measure and Integration aAn Introduction, John Wiley \& Sons, Inc. 1998.
[10] G.R. Burton, Variational problems on classes of rearrangements, and multiple configurations for steady vortices. Ann. Inst. H. Poincare-Anal. Nonlineare 6 (1989) 295-319.
[11] N. L. Carothers, Real Analysis; Cambridge Univercity Press, New York, 2000.
[1:2] G. B. Folland, Real Analysis. Modern Techniques and Their Applications; John Wiley and Sons, New York, 1985.
[13] P. Halmos, Measure Theory; Van Nostrand, New York, 1950.
[14] P. Halmos, Naive Set Theory; Van nostrand, Princeton 1960.
[15] K. R. Inder, An Introduction to Measure and Integration. Alpha Science International Ltd. 2005.
[16] F. Jones, Lebesgue Integration on Euclidean Space, Jones and Bartlett Publishers, Inc. 2001.
[17] W.J. Kaczor, M.T. Nowak, Problems in Mathematical Analysis III, Integration, American Mathematical Society. 2003.
[18] K. Kuratowski, Introduction to Set Theory and Topology; revised 2d. English ed. International Series of Monographs in Pure and Applied Mathematics, 101, Warsaw: Pergamon Press, 1972.
[19] H. L. Royden, Real Analysis; 3rd ed., Macmillan, New York, 1988.
[20] H. L. Royden, P. M. Fitzpatrick Real Analysis; 4rd ed., Pearson Education Asia Limited and China Machine Press, 2010.
[21] W. Rudin, Principles of Mathematical Analysis; McGraw-Hill, New York, 1964.
[22] W. Rudin, Real and Complex Analysis; Mc Graw-Hill Book Comp. 1966.
[23] H. Sohrab, Real Analysis; Birkhäuser Boston 2003.
[24] S. M. Srivastava, A Course on Borel Sets; Springer-Verlag New York, Inc. 1998.
[25] S. J. Taylor, Introduction to Measure and Integration; Cambridge Univercity Press, New York, 1966.
[26] J. Yeh, Real Analysis: Theory of Measure and Integration; World Scientific, 2006.

[^0]: ${ }^{r}$ Riemann
 ${ }^{r}$ Measure theory
 ${ }^{\text {'G. Peano }}$
 ${ }^{\circ} \mathrm{C}$. Jordan
 'H. Lebesgue
 ${ }^{\vee}$ C. Carathéodory

[^1]: "F. Bernstein
 ${ }^{*} \mathrm{H}$. Rademacher
 "Ulam

[^2]: 'Beauvais

[^3]: ＂Fatou＇s Lemma

