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Foreword

Computer simulation is an effective and popular universal tool. It can be
applied to almost all disciplines. Typically, simulation involves two key steps:
modeling and implementation, which are highlighted in this book. Modeling
can performed using event graphs, which are revived by this book. As for
implementation, complete Python programs are given, which is considered a
new effort. This is an interesting combination as the translation process from
models to programs is straightforward.

The book also dedicates a complete chapter on the popular Monte Carlo
simulation method. This chapter covers several variance-reduction techniques
along with their implementation in Python. Three interesting case studies are
discussed in detail. The book features good examples and exercises for readers
and students.

This book is highly recommended for a graduate course in modeling and
simulation. It is also recommended for an introductory course in modeling and
simulation for a senior undergraduate course. In addition, it can be a good
reference for researchers and working engineers and scientists who work on
modeling and simulation and optimization. This book is a good addition to
the field of modeling and simulation. I hope you will enjoy the book as much
as I have enjoyed reviewing it.

Mohammad S. Obaidat, Fellow of IEEE and Fellow of SCS
Past President of the Society for Modeling and Simulation International,

SCS
Founding Editor in Chief, Security and Privacy Journal, Wiley

Editor-in-Chief, International Journal of Communication Systems
June 2017
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Preface

This book is not just another book on discrete-event simulation. It empha-
sizes modeling and programming without sacrificing mathematical rigor. The
book will be of great interest to senior undergraduate and starting graduate
students in the fields of computer science and engineering and industrial engi-
neering. The book is designed for a one-semester graduate course on computer
simulation. Each chapter can be covered in about one week. The instructor is
also encouraged to dedicate one week for learning the Python programming
language. Appendix A can be used for this purpose. A basic knowledge of
programming, mathematics, statistics, and probability theory is required to
understand this book.

The book has the following features. First, a simulation program is clearly
divided into two parts: simulator and model. In this way, implementation
details based on a specific programming language will not coexist with the
modeling techniques in the same chapter. As a result, student confusion is
minimized. The second feature of the book is the use of the Python pro-
gramming language. Python is becoming the tool of choice for scientists and
engineers due to its short learning curve and many open-source libraries. In
addition, Python has a REPL1 which makes experimentation much faster.
The third feature is the use of event graphs for building simulation models.
This formalism will aid students in mastering the important skill of simulation
modeling. A complete chapter is dedicated to it. The book also features a com-
plete chapter on the Monte Carlo method and variance-reduction techniques.
Several examples are given along with complete programs.

The book is divided into four parts. The first part represents a complete
course on the fundamentals of discrete-event simulation. It is comprised of
chapters 1 to 6. This first part is appropriate for an undergraduate course
on discrete-event simulation. Materials from other chapters can be added to
this course. For example, chapter 10 and 11 should be covered in full if time
permits. For an advanced course on computer simulation, the second and third
part should be fully covered. The case studies in the fourth part can be covered
if time permits. In such a course, the emphasis should be on model building
and programming.

1REPL = Read-Evaluate-Print Loop
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To the Reader
While writing this book, I had assumed that nothing is obvious. Hence, all
the necessary details that you may need are included in the book. However,
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C H A P T E R 1

Introduction

“The purpose of computing is insight, not numbers.”
−Richard Hamming

The purpose of this chapter is to motivate the importance of simulation as
a scientific tool. The chapter also introduces some essential concepts which are
needed in the rest of the book. The lifecycle of a simulation study is described
here along with an example. In addition, the advantages and limitations of
simulation are discussed. The reader is urged to carefully read this chapter
before moving on to the next ones.

1.1 THE PILLARS OF SCIENCE AND ENGINEERING
Science and engineering are based on three pillars: observation, experimenta-
tion, and computation. Figure 1.1 uses the analogy of a table with three legs
to show the relationship between these three tools and science and engineer-
ing. Historically, humans have been using observation and experimentation
to acquire new knowledge (i.e., science) and then apply the newly acquired
knowledge to solve problems (i.e., engineering). This approach is very effective
because the actual phenomenon (system) is observed (utilized). However, as
the complexity increases, observation and experimentation become very costly
and cumbersome. This is when computation becomes the only tool that can
be used.

The outcome of an observational study is a set of facts. For example, if
a burning candle is covered with a glass cup, it will eventually go out on its
own. This is the observation. Scientists had to do research before they could
realize the reason for this phenomenon. The reason is that there is still oxygen
inside the glass cup which will eventually be used up by the flame. Once all
the oxygen is consumed, the candle goes out.

On the other hand, experimentation is the act of making an experiment.

3
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Science & Engineering

O C
E

Figure 1.1
The three pillars of science and engineering: Observation (O), Experimenta-
tion (E), and Computation (C). By analogy, the table needs the three legs to
stay up.

An experiment is a physical setup. It is performed to make measurements.
Measurements are raw data. Experimentation is popular among scientists.

The output of the system is recorded as it occurs in an observational
study. Furthermore, the response of the system is not influenced in any way
and the environment in which the system operates cannot be manipulated. In
experimentation, however, we can manipulate the environment in which the
system operates and influence the response of the system.

A computation is a representation of the phenomenon or system under
study in the form of a computer program. This representation can be as sim-
ple as a single mathematical equation or as complex as a program with a
million lines of code. For mathematical equations, there are tools like calculus
and queueing theory that can be used to obtain closed-form solutions. If a
closed-form solution, on the other hand, cannot be obtained, approximation
techniques can be used. If even an approximate solution cannot be obtained
analytically, then computation has to be used.

In this book, we are interested in the use of computation as a tool for
understanding the behavior of systems under different conditions. This goal
is achieved by generating time-stamped data which is then statistically ana-
lyzed to produce performance summaries, like means and variances. The type
of computation performed by the program which generates this type of data
is referred to as event-oriented simulation. Developing such simulation pro-
grams is an art. The good news is that you can acquire this skill by practice.
Therefore, it is recommended that you carefully study the examples in the
book.

1.2 STUDYING THE QUEUEING PHENOMENON
Consider the situation in Figure 1.2 where five people have to wait in a queue
at the checkout counter in a supermarket. This situation arises because there
is only one cashier and more than one person wants to have access to him.
This phenomenon is referred to as queueing. Let us see how observation, ex-
perimentation, and computation can be used to study this phenomenon.
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Figure 1.2
A queue at a checkout counter in a supermarket. A phenomenon arising when-
ever there is a shared resource (i.e., the cashier) and multiple users (i.e., the
shoppers).

If we want, for example, to estimate the average time a customer spends
at the checkout counter, we should manually record the time each customer
spends waiting to be served plus the service time. Therefore, for each customer,
we have to keep track of two times: (1) time customer joins the queue (arrival
time) and (2) time customer leaves the system (departure time) . As shown in
Figure 1.2, the system is made up of the waiting line and checkout counter.
Clearly, performing this observational study is costly and cumbersome.

For example, we can control the maximum number of people who should
wait in the queue to shorten the time of the experiment. We can also introduce
a policy that only customers with no more than seven items can join the
queue. We can also ask customers to help us in collecting the necessary data.
For example, each customer can be asked to record the times at which he joins
and leaves the queue. This will surely reduce the cost of the experiment.

A study based solely on computation (i.e., simulation) is significantly less
costly. It requires only developing a computer program based on a sound
model of the situation under study. A computational approach is also the
most flexible one since it gives us a full control over both the environment and
system.

1.3 WHAT IS SIMULATION?
Simulation is the process of representing a system1 by a model and then
executing this model to generate raw data. The raw data is not useful by itself.
It must be statistically processed to produce insights about the performance
of the system. These four activities are represented by four gray boxes in
Figure 1.4. They are part of a larger framework of activities that constitute

1From now on, we are going to use the word “system” as a synonym for the words “phe-
nomenon” and “situation.”

Waiting Line (Queue) Checkout Counter (Server) 
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Types of models and the data generated from them.
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Figure 1.4
Phases of a simulation study.

the elements of a simulation study. More about this will be said in the next
section.

The model is a conceptual representation of the system. It represents a
modeler’s understanding of the system and how it works. A computer is used
to execute the model. Therefore, the model must first be translated into a
computer program using a programming language like Python.2 The execution
of the computer program results in the raw data.

The raw data is also referred to as simulation data. It is synthetic because it
is not actual data. Actual data is collected from a physical model of the system.
There is another type of data called theoretical data which is generated from
a mathematical model of the system. Figure 1.3 shows these types of models
and the types of data generated from them.

1.4 LIFECYCLE OF A SIMULATION STUDY
Simulation is just a tool. When you study a system using simulation, you
conduct a simulation study. As Figure 1.4 shows, there are six phases in a
simulation study. In the first phase, a detailed description of the problem you

2https://www.python.org.

https://www.python.org
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want to solve using simulation is developed. A good problem description helps
in defining the boundaries of the system, scope of the study, and guide the
model development. The problem description should include a set of questions
and objectives. Also, it should include a description of the assumptions and
performance metrics which will be used in making decisions in the last phase of
the study. The raw data which is needed to compute the performance metrics
must also be clearly defined. A more formal name for the outcome of this
phase is problem statement.

The system and environment in which it operates should be described in
the second phase. Only the details which are relevant to the simulation study
should be captured. The skill of abstraction, which is discussed in Chapter
2, becomes very handy in this stage. The outcome of this phase is a mental
image of the system and its operation. A mental image of a system represents
one’s understanding of how the system works.

The third phase is about developing a conceptual model of the system.
Using elementary concepts, which is covered in Chapter 2 and the formal
language of event graphs covered in Chapter 6, a model of the system can be
developed. Modeling is still an art and not a science. Thus, it is recommended
that you carry out this phase iteratively. That is, you start with a simple
model and you keep improving it until you are confident that your model
captures the actual system you intend to study. The outcome of this phase is
a formal description of the system.

In the fourth phase, the model is encoded in a computer language. In this
book, we use the Python programming language for this purpose. Translating
a model into a computer program is not an easy task. You also need to write
your code in a certain way to ease collection of the data necessary for the next
phase. In order to succeed in this phase, you need to familiarize yourself with
the programming language and its capabilities. In this book, we cover Python
in sufficient depth. Many implementation examples are given throughout the
book. The outcome of this phase is a Python implementation of the model.

The result of executing the model is a set of raw data which should be
statistically analyzed. Statistics like the mean, variance, and confidence inter-
vals should be derived in this phase. These statistics are only approximations
of the values of the performance metrics stated in the problem statement.
Their reliability depends on quality and size of the raw data collected in the
previous phase. You may need to execute the model several times and/or for
a longer time to get a good data set. You will also have to make sure your
data set is IID. These details will be discussed further in Chapter 11. The
outcome of this phase is a set of statistics which summarize the performance
of the system.

Finally, in the last phase, a summary in the form of a report must be
prepared. This report should include answers for the questions stated in the
problem statement. The simulation study is a failure if the report does not
achieve the intended objectives declared in the problem statement. The report
should also include a set of conclusions and recommendations based on the
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Table 1.1
Description of the phases of a simulation study of the system in Figure 1.2.

No. Phase Description

1 Problem Customers experience delays longer
than 5 minutes. The checkout process
has to be speeded up. Potential solu-
tions include changing the cashier and
installing a new software system. The
raw data to be collected include the de-
lay experienced by each customer i (Di)
which is defined as the difference be-
tween his departure time (Di) and ar-
rival time (Ai).

2 System Customers, waiting line, and cashier.

3 Model A customer arrives at the system. If the
cashier is free, he will be served immedi-
ately. Otherwise, he has to wait. Service
time of each customer is random.

4 Computer Program Model is expressed in Python code.

5 Statistical Analysis Response time of the system (i.e., the

average delay). Tavg =
∑N
i Di
N , where

N is the number of participating cus-
tomers.

6 Performance Summary Response time for each possible solu-
tion. Pick the one that gives the best
response time as the optimal solution.

statistical analysis of the simulation data. A conclusion which sums up the
evidence for the decision maker must be given. The summary report is the
outcome of this phase and the overall study.

Table 1.1 contains the details of a simulation study of the situation in
Figure 1.2. The goal of the study is to find the best solution from a set of
suggested solutions for speeding up the checkout process. The system has been
defined and a conceptual model has been developed as explained in the table.
Only one performance metric is used in this study, which is the average delay
through the system. The raw data needed to compute this metric has been
decided in the problem statement. The performance summary will include the
delay introduced by each possible solution. The management will pick the one
that causes the least delay if it can be afforded, of course.
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1.5 ADVANTAGES AND LIMITATIONS OF SIMULATION
As the complexity of the system under study increases, analytical tools may
fail to capture the details that are of interest to the modeler. Even for simple
systems, simulation can sometimes provide very insightful information. The
following are some of the reasons why we need simulation.

1. There is no need to build the physical system under study and then
observe it. Thus, knowledge about the behavior of the system can be
acquired with a minimum cost.

2. Critical scenarios can be investigated through simulation with less cost
and no risk.

3. Using a simulation model, the effect of changing values of system vari-
ables can be studied with no interruption to the physical system.

4. Simulation is more flexible and convenient than mathematical analysis.
Also, the modeler can avoid the hassle of dealing with mathematical
equations.

5. In simulation, there is no need for simplifying assumptions like in math-
ematical models where such assumptions are needed to make the models
tractable.

6. Simulation allows us to compress and expand the behavior of the sys-
tem under study. For example, several years’ worth of system evolution
can be studied in a few minutes of computer time. Also, one second of
simulation time can be expanded to several hours of computer time.

Like any other tool, simulation has limitations. The following are some of
them:

1. The outcome of a simulation study is an estimate subject to a statistical
error. For example, different simulation runs typically produce different
numbers although the same simulation model is used.

2. Simulation can become costly and time consuming. For example, very
powerful computers and skillful people are required.

3. Simulation models are not easy to develop. Existing methodologies are
not universal. This is why development of simulation models is still an
art, not a science.

4. Existing programming languages are not designed to support simulation.
Thus, a lot of programming is involved.
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1.6 OVERVIEW OF THE BOOK
The rest of the book is structured as follows:

Chapter 2 is about building conceptual models. These conceptual mod-
els are what we call simulation models. Also, in this chapter, state di-
agrams are introduced as a tool for describing the dynamic behavior
of systems. The main example used in this chapter is the single-server
queueing system, which also serves as our running example throughout
the book.

Chapter 3 is a review of probability using a computational approach.
In this chapter, the reader is exposed to the Python programming lan-
guage for the first time in the book. Therefore, the reader is strongly
encouraged to go through Appendix A thoroughly.

Chapter 4 is a review of random variables and stochastic processes
using also a computational approach. In this chapter, the queueing phe-
nomenon is discussed again. Also, the notion of a state space of a dy-
namic system is explained.

Chapter 5 discusses the simplest queueing system which is the single-
server, single-queue system. In this chapter, some basic performance laws
are introduced. Manual simulation is also covered in this chapter.

Chapter 6 is about the collection and statistical analysis of data that
results from executing the simulation model. The notion of an output
variable as a mechanism for collecting data is introduced in this chapter.
In addition, all the necessary statistical concepts such as point estimates
and confidence intervals are discussed in sufficient detail. The method
of independent replications and how to deal with the bias due to the
warm-up period are also discussed.

Chapter 7 is about modeling using event graphs. This is a very im-
portant intermediate step that helps the reader to develop his modeling
skills. An event graph shows how events interact inside a simulation
model.

Chapter 8 explains the difference between time-driven and event-driven
simulation. It also describes in detail how an event-driven simulation
program is constructed. All the necessary concepts and language features
are covered. Complete programs are shown and discussed in depth.

Chapter 9 covers the Monte Carlo method. This method is used for
solving problems that do not require a full-blown simulation model. Di-
verse examples are used to demonstrate the practicality of the method.
Further, the notion of variance reduction is introduced and several tech-
niques are discussed.
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Chapter 10 is about generating random numbers from non-uniform
probability distributions. Such numbers are referred to as random vari-
ates. These numbers are used to represent the lifetimes of random phe-
nomena that occur inside the simulation model. Examples of such ran-
dom phenomena are the time until the next failure or departure.

Chapter 11 is about generating random numbers from a uniform prob-
ability distribution over the interval (0, 1). This procedure is the source
of randomness in the simulation program. It drives the process of gen-
erating random variates. Several tests for randomness are covered to
ensure the quality of the generated random numbers.

Chapter 12 contains several case studies. The purpose of these case
studies is to show how the concepts and skills explained throughout the
book can be applied. Each case study represents a complete simulation
study.

Four appendices are added to complement the core material of the
book. Appendix A serves as an introduction to the Python program-
ming language. Appendix B describes an object-oriented framework
for discrete-event simulation. The object-oriented paradigm is very pop-
ular among software developers. This is because it enables code reuse
and easy code maintenance. Finally, appendices C and D both contain
standard statistical tables.

1.7 SUMMARY
Simulation is a tool that can be used for performing scientific studies. It may
not be the first choice. But, it is definitely the last resort if a physical or
mathematical model of the system under study cannot be constructed. The
main challenge in simulation is developing a sound model of the system and
translating this model to an efficient computer program. In this book, you will
learn the skills that will help you to overcome this challenge.
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C H A P T E R 2

Building Conceptual
Models

“Modeling means the process of organizing knowledge about a given system.”
−Bernard Zeigler

This chapter is about building conceptual models. It describes the transi-
tion from a mental image of the system to a conceptual model that captures
the structure of the system and its behavior. The single-server queueing system
is formally introduced in this chapter. It serves as our main example through-
out the book. State diagrams are also introduced in this chapter. They are
used to show how the behavior of a system which is expressed as changes in
the values of state variables evolves as a result of the occurrence of events.

2.1 WHAT IS A CONCEPTUAL MODEL?
A conceptual model is a representation of a system using specialized concepts
and terms. For example, a mathematical model of a system can be thought
of as a conceptual model that is constructed using specialized concepts such
as constants, variables, and functions and specialized terms such as derivative
and integral. However, before a conceptual model can be built, a mental image
of the system under study must be developed in the mind of the modeler. As
shown in Figure 2.1, having a good mental image of the system is the first step
towards a good conceptual model. A mental image reflects how the modeler
perceives the system and its operation. The mental image should include only
those aspects of the system that are necessary for the simulation study.

Figure 2.2 tells us that different mental images can be developed for the
same system. They differ only in their amount of details. Typically, the first
mental image (i.e., level 1) is the simplest one. As you add more details, they

13
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System Mental 
Image

Conceptual 
Model

Computer 
Program

Figure 2.1
A mental image of the system and its behavior must be developed before a
conceptual model can be constructed.

Level n Mental 
Image n

Level n-1 Mental 
Image n-1

Level 1 Mental 
Image 1

Behavioral 
Details

Complexity

Figure 2.2
Different mental images can be developed for the same system. They include
different levels of details. Complexity increases as you add more details.

become more complex. Eventually, the mental image cannot fit in the head of
the modeler. So, he needs other tools to manage them.

The type of systems we deal with in this book is called Discrete-Event
Systems (DESs). A DES is made up of elements referred to as entities. For
example, in the supermarket example in Chapter 1 (see Figure 1.2), the en-
tities are the customers, cashier, and queue. Entities participate in activities
which are initiated and terminated by the occurrence of events. Events are
a fundamental concept in simulation. They occur at discrete points of time.
The occurrence of an event may cause other events to occur. Entities change
their state upon occurrence of events. For example, the cashier becomes busy
when a customer starts the checkout process. More will be said about these
concepts in the next section. For now, you just need to become aware of them.

What is in a Name?

The meaning of the name “discrete-event simulation” is not clear for many
people. The word “event” indicates that the simulation is advanced by the
occurrence of events. This is why the name “event-driven simulation” is
also used. The word “discrete” means that events occur at discrete points
of time. So, when an event occurs, the simulation time is advanced to
the time at which the event occurs. Hence, although time is a continuous
quantity in reality, simulation time is discrete.
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2.2 ELEMENTS OF A CONCEPTUAL MODEL
A conceptual model can be constructed using five elements:

1. Entity,

2. Attribute,

3. State Variable,

4. Event, and

5. Activity.

Next, each one of these elements is discussed in detail. They will be used in
the next section to build a conceptual model for the single-server queueing
system.

2.2.1 Entities
An entity represents a physical (or logical) object in your system that must
be explicitly captured in the model in order to be able to describe the overall
operation of the system. For example, in Figure 2.6, in order to describe the
depicted situation, an entity whose name is coffee machine must be explicitly
defined. The time the coffee machine takes to dispense coffee contributes to
the overall delay experienced by people. The coffee machine is a static entity
because it does not move in the system and its purpose is to provide service
only for other entities.

A person is another type of entity that must be defined in the model.
A person is a dynamic entity because it moves through the system. A person
enters the system, waits for its turn, and finally leaves the system after getting
his coffee.

A static entity maintains a state that can change during the lifetime of
the system. On the other hand, dynamic entities do not maintain any state.
A dynamic entity typically has attributes which are used for storing data.

2.2.2 Attributes
An entity is characterized using attributes, which are local variables defined
inside the entity. For example, a person can have an attribute for storing the
time of his arrival into the system (i.e., arrival time). Another attribute can be
defined to store the time at which the person leaves the system (i.e., departure
time). In this way, the time a person spends in the system is the difference
between the values stored in these two attributes.
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Figure 2.3
A continuous state variable takes values from a continuous set (e.g., [0, 5] in
(a)). A discrete state variable, on the other hand, takes values from a discrete
set (e.g., {0, 1, 2, 3, 4, 5} in (b)).

2.2.3 State Variables
The state of the system under study is represented by a set of state variables.
A state variable is used to track a property of a static entity over time. For
example, for a memory module in a system, its state could be the number of
data units it currently stores. Another example is the state of a cashier in the
supermarket example. It is either free or busy.

A state variable is said to be continuous if it takes values that change con-
tinuously over time. However, if the value of a state variable is from a discrete
set, then it is referred to as a discrete state variable. Figure 2.3 illustrates the
difference between these two types of state variables. Note that the value of a
continuous state variable changes with every change in time. The value of the
discrete state variable, however, changes at discrete points of time.

A state variable changes its value when an event occurs inside the system.
An event acts as a stimulus for the system to change its state. For example,
when you start your car, you actually generate an event that stimulates the
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Departure
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Arrival
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Figure 2.4
Events are used to move dynamic entities through a system. A packet is moved
from a source to a destination through two routers using eight events.

car and causes it to turn itself on. Because of this startup event, the state of
the car has changed from OFF to ON. Hence, an event triggers a change in
one or more state variables in a conceptual model.

2.2.4 Events
An event represents the occurrence of something interesting inside the system.
It is a stimulus that causes the system to change its state. For instance, in
the supermarket example, the arrival of a new customer represents an event
which will cause the state variable representing the number of people waiting
in line to increase by one. The departure of a customer will cause the cashier
to become free.

Events can also be used to delimit activities and move active entities in
the system. For example, in Figure 2.4, a packet is moved from a source to
a destination using eight events. The first event generates the packet. After
that, a sequence of departure and arrival events moves the packets through the
different static entities along the path between the source and destination. For
instance, for router 1, its arrival event indicates that the packet has arrived
at the router and it is ready for processing. After some delay, the same packet
leaves the router as a result of a departure event.

2.2.5 Activities
An activity is an action which is performed by the system for a finite (but
random) duration of time. As shown in Figure 2.5, an activity is delimited
by two distinct events. The initiating event starts the activity. The end of
the activity is scheduled at the time of occurrence of the terminating event.
The difference in time between the two events represents the duration of the
activity.

In the supermarket example, an important activity is the time a customer
spends at the checkout counter. The duration of this activity depends on how
many items the customer has. Durations of activities are modeled as random
variables. Random variables are covered in Chapter 4.
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Figure 2.5
An activity is delimited by two events and lasts for a random duration of time.

2.3 THE SINGLE-SERVER QUEUEING SYSTEM
Consider the situation depicted in Figure 2.6 where there is one coffee machine
and multiple users. Only one user can use the machine at a time. Thus, the
others have to wait in a queue. This phenomenon is referred to as queueing.
It is very common in places like supermarkets and airports. It also arises in

computer systems and networks. For example, inside a router, packets destined
to the same output port have to wait for their turns.

Before we can develop a conceptual model for the queueing situation in
Figure 2.6, we have to first develop a mental image of it. A simple mental
image could be the following:

Every day at 8 am, after check-in, each person goes directly to the kitchen to
get his coffee. There is only one coffee machine in the kitchen. As a result,
if someone already is using the machine, others have to wait. People use the
machine in the order in which they arrive. On average, a person waits for a
non-zero amount of time before he can use the machine. This amount of time
is referred to as the delay.

Table 2.1 shows the details of the conceptual model which results from the
above mental image. The same information is presented pictorially in Figure
2.7. There are three entities. The queue and server are static entities. A person
is a dynamic entity since he can move through the system. Three events can
be defined: (1) arrival of a person into the system, (2) start of service for a
person, and (3) departure of a person from the system. Remember that these
events are used to move the person entity through the system.

Two state variables need to be defined to keep track of the number of
persons in the queue and the state of the server. Everytime a person arrives
into the system, the state variable of the server, S, is checked. If its value is
Free, it means the server can serve the arriving person. On the other hand,
if the value is Busy, the arriving person has to join the queue and wait for his
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Figure 2.6
A queueing phenomenon emerges whenever there is a shared resource and
multiple users.

Table 2.1
Details of the conceptual model of the queueing situation in Figure 2.6.

Element Details

Entity Queue, Server, Person
State Variables Q = Number of Persons in Queue

Q ∈ {0, 1, 2, ...}
S = Status of Server
S ∈ {Free, Busy}

Events Arrival, Start_Service,
End_Service (or Departure)

Activities Generation, Waiting,
Service, Delay

turn. Whenever the server becomes free, it will check the queue state variable,
Q. If its value is greater than zero, the server will pick the next person from
the queue and serve it. On the other hand, if the value of the queue state
variable is zero, the server becomes idle because the queue is empty.

State variables are functions of time. Their evolution over time is referred
to as a sample path. It can also be called a realization or trajectory of the state
variable. Figure 2.8 shows one possible sample path of the state variable Q.
Sample paths of DESs have a special shape which can be represented by a
piecewise constant function. This function can also be referred to as a step
function. In this kind of function, each piece represents a constant value that
extends over a interval of time. The function changes its value when an event
occurs. The time intervals are not uniform. They can be of different lengths.
These observations are illustrated in Figure 2.8.

Four possible activities take place inside the single-server queueing system.
They are shown in Figure 2.9. In the first activity, arrivals are generated into
the system. This activity is bounded between two consecutive arrival events.
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Figure 2.7
Conceptual model of the queueing situation in Figure 2.6.

1

2

3

4

e1 e2 e3 e4 e5 e6 e7
A1 A2 A3 D1 D2 A4

2 4 8 10.5 14 18 20

IAT1
IAT2

IAT3
IAT4

tt

QQ

Figure 2.8
A sample path of the state variable Q which represents the number of persons
in the single-server queueing system. Note the difference in the time between
every two consecutive arrival events.

The time between two such arrivals is random and it is referred to as the
Inter-Arrival Time (IAT). This information is also shown in Figure 2.9.

The next activity involves waiting. This activity is initiated when an ar-
riving person finds the server busy (i.e., S = Busy). The waiting activity is
terminatd when the server becomes free. Everytime the server becomes free,
a Start_Service event is generated to indicate the start of service for the
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Figure 2.9
Four activities occur inside the single-server queueing system: (a) Generation,
(b) Waiting, (c) Service, and (d) Delay. The length of each activity is a random
variable of time.

next person in the queue. The difference between the time of the arrival of a
person and his start of service is referred to as the Waiting Time (WT).

The third activity is about the time spent at the server. It is referred to as
the Service Time (ST). This activity is initiated by a Start_Service event
and terminated by an End_Service (or Departure) event, provided the
two events are for the same person.

The length of the last activity is the total time a person spends in the
system. It includes the waiting time and service time. This quantity represents
the delay through the system or how long the system takes to respond to
(i.e., fully serve) an arrival. This is the reason this quantity is also called the
Response Time (RT). The events that start and terminate this activity are
the Arrival and Departure events, respectively.

Modeling with Randomness

As you will learn in Chapter 4, the four activities in Figure 2.8 (IAT,
WT, ST, and RT) can be modeled as random variables with probability
distributions. Typically, the IAT and ST are modeled using exponential
random variables. As for the other two activities (i.e., WT and RT), their
probability distributions are not known in advance. They can be computed
using simulation.
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Figure 2.10
A simple electrical circuit and its state diagram. Only the switch and lamp
are modeled. Events are generated by the switch to change the state of the
lamp.

2.4 STATE DIAGRAMS
A state diagram is a graph which is made up of circles representing states,
arrows representing transitions between states, and a special (zigzag) arrow
pointing to the initial state. The initial state is the state of the system at time
zero. A transition between two states is caused by an event. The name of the
event is typically placed above the arrow. The name of the state is placed
inside the circle.

Figure 2.10 shows the state diagram for an electrical circuit consisting of a
battery, switch, and lamp. Only the switch and lamp are modeled. The switch
has two states: Open and Closed. Since we are interested in the lamp, the
two states of the switch become the events that cause the lamp to change its
state. The lamp has two states: On and Off. When the switch is closed, the
lamp is on. When the switch is open, however, the lamp is off. As shown in
Figure 2.10, this behavior can easily be captured by a state diagram.

Finally, it should be pointed out that each circle in a state diagram repre-
sents one possible realization of a state variable (or a group of state variables).
That is, a state represents one possible value from the set of values the state
variable can take. For example, in the case of the single-server queueing system
in Figure 2.7, there are two state variables representing the states of the queue
and server (see Table 2.1). The queue state variable is an integer variable that
takes only positive values. The server state variable is a binary variable that
takes two values only.

The state diagram for the queue shown in Figure 2.11(a) contains a circle
for each positive integer number. Similarly, the state diagram for the server
shown in Figure 2.11(b) contains only two circles. The initial states of the
queue and server are 0 and Free, respectively. The queue state variable is
incremented whenever an arrival event occurs. It is decremented whenever a
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Figure 2.11
State diagrams of the state variables associated with the queue and server in
the single-server queueing system in Figure 2.7. A portion of the state space
of the system is shown in (c).

server event occurs. The server, on the other hand, becomes busy whenever a
service starts. Then, at the end of the service, it becomes free again.

Figure 2.11(c) shows a portion of the state space of the system. The state
diagram of the system combines the two state diagrams in Figures 2.11(a)
and 2.11(b). In this new state diagram, each state is composed of two state
variables (i.e., a state vector). Further, the state of the system is driven by
three events: Arrival, Start_Service, and End_Service.

2.5 ACTUAL TIME VERSUS SIMULATED TIME
In simulation, we need to distinguish between two kinds of time. The first
one is called the actual time. You are more familiar with this kind of time
from your computer programming courses. It is the time a computer takes to
fully execute a program. It is also referred to as the runtime of the program.
The runtime is a function of the complexity of the conceptual model. For
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example, the execution time of your program will be large if you have many
state variables, events, and activities in your model.

On the other hand, the simulated time is the time inside your conceptual
model. It is not the time of the computer program that executes your model.
Another name for this kind of time is simulation time. Simulation time does
not pass at the same speed as actual time. That is, one second of simulated
time is not necessarily equal to one second of actual time. In fact, they will
be equal only in real-time simulation.

Because of this distinction between runtime and simulation time, you may
simulate a phenomenon that lasts for a few years of actual time in one hour
of simulation time. Similarly, you may simulate a phenomenon that lasts for
a few seconds of simulated time in one hour of actual time.

2.6 SUMMARY
Five essential concepts used in building conceptual models have been covered
in this chapter. Also, the famous single-server queueing system and its concep-
tual model have been introduced. The relationship between events and state
variables has been shown using state diagrams. Finally, the difference between
actual time and simulated time has been discussed. Clearly, this has been an
important chapter, providing you with essential terms and tools in simulation.

2.7 EXERCISES
2.1 Consider a vending machine that accepts one, two, five, and ten dollar

bills only. When a user inserts the money into a slot and pushes a button,
the machine dispenses one bottle of water, which costs one dollar. The
vending machine computes the change and releases it through another
slot. If the vending machine is empty, a red light will go on.

a. Identify the entities, state variables, events, and activities in this
system, and

b. Draw a state diagram which captures the behavior of the system.

2.2 Consider an Automated Teller Machine (ATM). A user of the ATM
machine has to insert an ATM card and enter a Personal Identification
Number (PIN). Both pieces of information must be validated before the
main menu is displayed. If they are not valid, the card will be rejected.
The ATM machine offers the following services:

- Check balance,

- Withdraw cash,

- Deposit cash, and
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- Pay bills.

Answer the following questions:

a. Identify state variables, events, and activities in this system, and

b. Draw a state diagram that captures the behavior of the system.
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C H A P T E R 3

Simulating Probabilities

“Probability does not exist.”
−Bruno de Finetti

Probability is the science of uncertainty. It is used to study situations
whose outcomes are unpredictable. In this chapter, first, the notion of prob-
ability is described. Then, it is shown how probability can be computed as a
relative frequency using simulation. Finally, the sample mean is introduced as
an estimate of probability.

3.1 RANDOM EXPERIMENTS AND EVENTS
Probability begins with the notion of a random experiment. A random exper-
iment is an activity whose outcome is not known in advance. For example, as
shown in Figure 3.1, the random experiment is about tossing a coin to observe
what face turns up. This experiment has two possible outcomes: Head and
Tail.

The set of all possible outcomes is referred to as the sample space of the
random experiment. For the experiment of tossing a coin, the sample space,
denoted by Ω, is the following:

Ω = {Head,Tail}.

As another example, the sample space for the random experiment of throwing
a die, which is shown in Figure 3.2, is as follows:

Ω = {1,2,3,4,5,6}.

The individual outcomes of a random experiment are not interesting by
themselves. When one or more outcomes are combined, they form an event.
In fact, any subset of the sample space is called an event. The following are
some events that can be defined for the random experiment of throwing a die:

27
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Tossing a Coin

{Head, Tail}{Head, Tail}

Figure 3.1
A random experiment of tossing a coin. There are two possible outcomes.

Throwing a Die

{1, 2, 3, 4, 5, 6}{1, 2, 3, 4, 5, 6}

Figure 3.2
A random experiment of throwing a die. There are six possible outcomes.

• E1 = {One is observed} = {1},

• E2 = {A number less than four is observed} = {1, 2, 3}, and

• E3 = {A number greater than or equal to five is observed} = {5, 6}.

An event occurs whenever any of its outcomes are observed. For example,
consider event E1 above. This event occurs whenever we observe the out-
come 1. Similarly, the event E3 occurs if the outcome 5 or 6 is observed. Of
course, both outcomes cannot be observed at the same time since the random
experiment of throwing a die has only one outcome.

3.2 WHAT IS PROBABILITY?
A probability is a number between 0 and 1, inclusive. It is assigned to each
possible outcome in the sample space of a random experiment. Probabilities
must be assigned to outcomes in such a way that they add up to one. Once
we have a valid assignment of probabilities to outcomes, the probability of an
event is simply the sum of the probabilities of the individual outcomes making
up the event.

For a discrete sample space, such as in the random experiments in Figures
3.1 and 3.2, a valid probability assignment can be achieved by assuming that
all the outcomes are equiprobable. Therefore, the probability of each outcome
can be computed as follows:

P (ωi) =
1

|Ω| , ωi ∈ Ω, (3.1)
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where |Ω| is the size of the sample space.
For a continuous sample space, we cannot assign probabilities to the indi-

vidual elements in the sample space because they are not countable. Instead,
we assign probabilities to regions of the sample space. For example, consider
the one-dimensional region (or interval) [a, b]. The probability of any subregion
[j, k] ⊆ [a, b] can be defined as follows:

P ([j, k]) =
Length of [j, k]

Length of [a, b]

=
|k − j|
|b− a| .

(3.2)

Hence, the probability of any one-dimensional region is proportional to its
length. For a two-dimensional region, we use the area of the region to find its
probability.

It should be pointed out that the above two rules for probability assign-
ment cannot be used in simulation. As you will see in the next section, you
will have to write a program that simulates the random experiment. In ad-
dition, your program should contain code for detecting the occurrence of the
outcome or event of interest.1 This is another difference between simulation
and mathematical modeling. The probability is computed programmatically
in simulation.

The next side note states four conditions that must be met in order to
have a valid probability assignment. These conditions were developed by the
Russian mathematician Andrey Kolmogorov in 1933. They are also called the
axioms of probability.

1From now on, we are going to use the words “outcome” and “event” interchangeably.
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Assigning Probabilities to Outcomes and Events

The following conditions must be satisfied in order to have a valid proba-
bility assignment.

1. For each outcome ωi ∈ Ω, P (ωi) ∈ [0, 1],

2. For all outcomes ωi ∈ Ω,
∑
i P (ωi) = 1,

3. For each event Ej ⊆ Ω, P (Ej) =
∑
i P (ωi), where ωi ∈ Ej , and

4. For all possible disjoint events Ej ⊆ Ω,

P
({⋃

j

Ej
})

=
∑

j

P (Ej).

3.3 COMPUTING PROBABILITIES
In this section, you will learn how to compute probabilities programmatically.
That is, you write a program which includes a model of your random exper-
iment. Then, you run the program a sufficiently large number of times. The
number of times the event of interest occurs is recorded. Then, this number
is divided by the total number of times the random experiment is performed.
The result is a probability that represents the Relative Frequency (RF) of the
event of interest. The relative frequency of an event Ei is defined as follows.

P (Ei) = RF (Ei)

=
No. of times Ei occurs

No. of times the random experiment is performed
.

(3.3)

As an example, consider again the random experiment of throwing a die.
We want to approximate the probability of an outcome by means of a computer
program. First, we need to learn how we can simulate this random experiment.
Listing 3.1 shows how this random experiment can be simulated in Python.
On line 1, the function randint is imported from the library random. That
means the imported function becomes part of your program. The random
experiment is represented by the function call randint(1, 6) on lines 3-5. Each
one of these function calls return a random integer between 1 and 6, inclusive.
The result of each function call is shown as a comment on the same line.

Now, after we know how to simulate the random experiment of throwing
a die, we need to write a complete simulation program that contains the
necessary code for checking for the occurrence of the event of interest and
maintaining a counter of the number of times the event is observed. Also, the
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Listing 3.1
Simulating the experiment of throwing a die. The output is shown as a com-
ment on each line.

1 from random import randint

2

3 print( randint(1,6) ) # outcome = 1

4 print( randint(1,6) ) # outcome = 3

5 print( randint(1,6) ) # outcome = 5

Listing 3.2
Approximating the probability of an outcome in the experiment of throwing
a die.

1 from random import randint

2

3 n = 1000000 # No. of times experiment is performed

4 ne = 0 # Count the occurrences of event

5

6 for i in range(n):

7 outcome = randint(1, 6)

8 if(outcome == 3): # Check for event of interest

9 ne += 1 # ne = ne + 1

10

11 print("Prob = ", round(ne / n, 4)) # = 0.1667
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program should compute the probability of the event using Eqn. (3.3). This
program is shown as Listing 3.2.

The program has four parts. In the first part (line 1), the function randint
is included into the program. This function is used to simulate the random
experiment of throwing a die. Next, in the second part (lines 3-4), two variables
are defined. The first one is a parameter whose value is selected by you before
you run the program. It represents the number of times the random experiment
is performed. The second variable is an event counter used while the program is
running to keep track of the number of times the event of interest is observed.
The third part of the program contains the simulation loop (line 6). Inside this
loop, the random experiment is performed and its outcome is recorded (line
7). Then, a condition is used to check if the generated outcome is equal to
the event of interest (line 8). If it is indeed equal to the event of interest, the
event counter is incremented by one. The experiment is repeated n number of
times. Finally, in the last part of the program, the probability of the event of
interest is computed as a relative frequency (line 11). The function round is
used to round the probability to four digits after the decimal point.

The function round is not explicitly included into the program. This is
because it is a built-in function. Python has a group of functions referred to
as the built-in functions which are always available. Some of these functions
are min, max, and len. You are encouraged to check the Python documentation
for more information.2

3.4 PROBABILITY AS A SAMPLE MEAN
Let us say that you want to estimate the probability of seeing a head in the
random experiment of tossing a coin (see Figure 3.1). The theoretical (also
called true) value of this probability is 1

2 . We are going to use the relative
frequency as our estimator (see Eqn. (3.3)) and the event of interest is Head.
The first part of Listing 3.3 shows how this probability can be estimated
using simulation. In each iteration of the simulation loop (8-13), if a head
is observed, a one is added to the list observed. At the end of the simulation
loop, the mean (also called the average) of this list is computed using the mean
function from the statistics library. The mean obtained in this way is called
the sample mean. This is because if this part of the program is run again, a
different mean will result. Note that the outcomes Head and Tail have to be
encoded using integer numbers; otherwise, the function mean cannot be used.
Also, note that in each run of the program, the list observed will contain one
sample.

The above description is illustrated in Figure 3.3. In this case, the ex-
periment is performed 10 times only. The axis at the top keeps track of the
iteration number. The figure shows three samples where each is of size 10. The
three samples result in three different means. The sample mean can mathe-

2https://docs.python.org/3/library/functions.html.

https://docs.python.org/3/library/functions.html
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x̄2 = 0.3x̄2 = 0.3

x̄3 = 0.5x̄3 = 0.5

(nn)

Figure 3.3
Three different samples for the random experiment of tossing a coin 10 times.
The running mean is computed for the third sample using cumulative sums.
The last value at position 10 of the list of running means is equal to the sample
mean. The sample mean is the probability of seeing a head.

matically be defined as follows:

x̄ =

∑n
i xi
n

, (3.4)

where n is the size of the sample. Each entry in the sample represents the
outcome of a single iteration of the random experiment.

Clearly, each sample has to be long enough (i.e., large n) in order to obtain
a good estimate of the probability of seeing a head. This fact is shown in Figure
3.4. For 100 iterations, the probability curve is still very far away from the
true value. However, for 1000 iterations, the probability curve converges to
the true value.

In order to show the behavior of the sample mean over the different itera-
tions of the random experiment (like in Figures 3.4(a) and (b)), we record the
running mean at the end of each iteration. Figure 3.3 shows how the running
mean is calculated by first calculating the cumulative sums, which are then
divided by the number of samples used in each sum. The running mean can
be defined as follows:

x̄j =

∑j
i xi
j

, (3.5)

where j is the iteration number, xi is the integer value corresponding to the
outcome of the random experiment at the end of the jth iteration (i ≤ j), and∑j
i xi is the jth cumulative sum. The second part of Listing 3.3 shows how

the running mean is computed. Then, in the third part, it is shown how the
plots in Figure 3.4 are produced.
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(a) 100 iterations. (b) 1000 iterations.

Figure 3.4
Running mean for the random experiment of tossing a coin. The mean even-
tually converges to the true value as more samples are generated.

Population Versus Sample

In statistics, the term “population” refers to a set of all possible realizations
of your random experiment. If you are going to toss a coin only once, there
are two possibilities: Head or Tail. However, if you are going to perform the
same experiment 10 times (see Figure 3.3), then the size of the population
is 210 = 1024. This number represents the number of all possible realiza-
tions of the experiment of tossing a coin 10 times. Three samples from this
population are shown in Figure 3.3.

Note that as the number of iteration increases, the sample mean converges
to a specific value, which is the true mean. Before this convergence happens,
the sample mean will fluctuate. A large number of samples will be needed
before the mean stabilizes and hits the true mean. The true mean is referred
to also as the population mean. The the difference between the population
and sample means is explained in the above side note. The use of the sample
mean as a probability is supported by the law of large numbers stated in the
next side note.
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The Law of Large Numbers

Let x1, x2, ..., xn be a set of samples (realizations / outcomes of a random
experiment), then with probability 1

lim
n→∞

x1 + x2 + ...+ xn
n

converges to the population mean. That is, the running mean will eventu-
ally converge to the population mean.

Listing 3.3
Simulation program for studying the running mean of the random experiment
of tossing a coin. This program is also used to generate Figure 3.4.

1 ### Part 1: Performing the simulation experiment

2 from random import choice

3 from statistics import mean

4

5 n = 1000

6 observed = []

7

8 for i in range(n):

9 outcome = choice([’Head’, ’Tail’])

10 if outcome == ’Head’:

11 observed.append(1)

12 else:

13 observed.append(0)

14

15 print("Prob = ", round(mean(observed), 2))

16

17 ### Part 2: Computing the moving average

18 from numpy import cumsum

19

20 cum_observed = cumsum(observed)

21

22 moving_avg = []
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23 for i in range(len(cum_observed)):

24 moving_avg.append( cum_observed[i] / (i+1) )

25

26 ### Part 3: Making the plot

27 from matplotlib.pyplot import *

28 from numpy import arange

29

30 x = arange(0, len(moving_avg), 1) # x-axis

31 p = [0.5 for i in range(len(moving_avg))] # Line

32

33 xlabel(’Iterations’, size=20)

34 ylabel(’Probability’, size=20)

35

36 plot(x, moving_avg)

37 plot(x, p, linewidth=2, color=’black’)

38

39 show()

3.5 SUMMARY
In this chapter, you have learned how to build simulation models for simple
random experiments. You have also learned how to write a complete simulation
program that includes your simulation model in the Python programming
language. Further, you have been exposed to the essence of simulation, which
is estimation. As has been shown in Figure 3.4, the length of a simulation run
(i.e., the value of n) plays a significant role in the accuracy of the estimator.

3.6 EXERCISES
3.1 Consider the random experiment of throwing two dice. What is the

probability of the event that three spots or less are observed? Show how
you can compute the probability of this event both mathematically and
programmatically.

3.2 Write a Python program to simulate the random experiment of tossing
a fair coin five times. Your goal is to estimate the probability of seeing
four heads in five tosses.
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a. What is the size of the population?

b. List all the possible realizations of the experiment which contain four
heads.

c. Use the information obtained in (b) to mathematically compute the
probability of the event of interest.

d. Write a Python program to estimate the same probability. How many
times do you need to repeat the experiment to get a good estimate
of the probability (i.e., what should be the size of n)?

3.3 Consider a class of 20 students. Show how you can programmatically
compute the probability that at least two students have the same birth-
day. (Answer = 0.41)

3.4 A box contains two white balls, two red balls, and a black ball. Two balls
are randomly chosen from the box. What is the probability of the event
that the second ball is white given that the first ball chosen is white?
Use simulation to approximate this probability. (Answer = 0.25)

3.5 You are playing a game with a friend. Your friend flips a coin 7 times
and you flip a coin 8 times. The person who gets the largest number
of tails wins. Your friend also wins if you both get the same number
of tails. Write a simulation program that estimates the probability that
you win this game. (Answer = 0.5)

3.6 Write a Python program to simulate the following game. Three people
take turns at throwing a die. The number of dots on each face of the die
represents a number of points. The first person who accumulates 100
points win the game.

3.7 Consider a password generator which generates a string of size N . The
generated string should contain letters and numbers. One of the letter
has to be in uppercase. The following are sample passwords produced by
this password generator: “90MJK” and “OLM15ndg”. Write a Python
program for this password generator.
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C H A P T E R 4

Simulating Random
Variables and Stochastic
Processes

“Mathematics is written for mathematicians.”
−Nicolaus Copernicus

A dynamic system can be viewed as either a sequence of random variables
or a stochastic process. In the former, the system evolves in discrete steps and
its state changes at discrete instants of time. In the latter, however, the system
evolves continuously over time and the times at which events occur cannot be
predicted. In both cases, activities inside a simulation model can be thought of
as random variables. Random variables are mathematical abstractions which
are defined on the sample space of a random experiment. Another important
mathematical abstraction is stochastic (or random) processes, which extend
random variables by introducing time as another source of variability. A sim-
ulation model evolves as a stochastic process. This chapter discusses random
variables and stochastic processes in the context of discrete-event simulation.

4.1 WHAT ARE RANDOM VARIABLES?
A random variable is a function which associates a probability with each
possible outcome of a random experiment. The domain of a random variable
is a set of numerical values which correspond to events defined on the sample
space of the random experiment. For example, in the experiment of throwing
two fair dice, one possible event is that the two dice show up {1, 1}. This
event is represented as {X = 2}. The range of a random variable, on the
other hand, is a probability (e.g., P [X = 2] = 1

36 ). Figure 4.1 illustrates the

39
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{1,1}
{1,2}
{2,1}

{1,3}
{3,1}
{2,2}

2 3 4 10 11 12

Sample Space

Event: {X = 4}

X

Figure 4.1
Sample space for the random experiment of throwing two dice. The outcome
of the experiment is a random variable X ∈ {2, 3, ..., 12}.

previous example. Events are encoded as integer numbers. In this way, we
abstract away the details of the sample space.

For convenience, a random variable is denoted by a capital letter (e.g., X).
Its value, however, is denoted by a small letter (e.g., x). A random variable
is either discrete or continuous. A discrete random variable has a finite set
of values. For example, the number of customers in a waiting line is discrete.
By contrast, a continuous random variable has an infinite set of values, which
cannot be mapped onto the integers. The time a customer spends in a waiting
line is an example of a continuous random variable.

A simple rule to decide whether you should use a discrete or continuous
random variable is as follows. If the quantity you want to include in your model
can be counted like the number of cars and number of servers, then you should
use a discrete random variable. On the other hand, if the quantity cannot be
counted (i.e., you need a measuring device to tell the exact value), then you
should use a continuous random variable. For example, to tell the temperature
of a patient, you need a thermometer. So, temperature is a continuous quantity
and should be represented by a continuous random variable.

Next, probability functions are discussed. Probability functions are used to
characterize random variables. In Chapter 10, they will be used for the purpose
of simulating random variables. For now, however, you are going to use the
pre-built functions from the random1 and scipy.stats2 libraries whenever you
want to simulate a random variable.

4.1.1 Probability Mass Functions
For a discrete random variable, the probability function is referred to as the
Probability Mass Function (PMF). For each possible value of the random

1https://docs.python.org/library/random.html.
2http://docs.scipy.org/doc/scipy/reference/stats.html.

http://docs.scipy.org/doc/scipy/reference/stats.html
https://docs.python.org/library/random.html
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Figure 4.2
The PMF of a discrete random variable representing the outcome of the ran-
dom experiment of throwing two dice.

variable, the PMF associates a probability with it. The PMF is denoted by
pX(x) and it is defined as follows:

pX(x) = P [X = x]. (4.1)

The PMF satisfies the following two properties:

1. pX(x) ≥ 0, and

2.
∑
x pX(x) = 1.

Hence, because of the above two properties, the PMF is a probability function.
Figure 4.2 shows the PMF of a random variable representing the outcome of
the random experiment of throwing two dice. The length of each bar repre-
sents a probability. There are gaps between the bars since they correspond to
discrete values.

4.1.2 Cumulative Distribution Functions
The Cumulative Distribution Function (CDF) of a discrete random variable
X, denoted by FX(x), is mathematically defined as follows for −∞ < X <
+∞:

FX(x) = P (X ≤ x)

=
∑

i≤x
pX(i). (4.2)

Basically, the CDF gives the probability that the value of the random variable
X is less than or equal to x. Thus, it is a monotonically non-decreasing function
of X. That is, as the value of X increases, FX(x) increases or stays the same.
Figure 4.3 shows the CDF of the random variable representing the experiment
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Figure 4.3
The cumulative distribution function of a discrete random variable represent-
ing the outcome of the random experiment of throwing two dice.

of throwing two dice. As an example, the probability of the event {X ≤ 5} is
computed as follows:

P [X ≤ 5] = FX(5)

=
∑

i≤5
pX(i)

= pX(2) + pX(3) + pX(4) + pX(5)

=
1

36
+

2

36
+

3

36
+

4

36

=
10

36
.

(4.3)

As Figure 4.3 shows, the CDF of a discrete random variable is not contin-
uous. It is rather a staircase function. This kind of function is drawn as shown
in Figure 4.3. Each line segment corresponds to a probability and a range of
values for X. Since X is discrete, each segment corresponds to one value only.
Also, each segment has two endpoints: Closed and Open. The closed endpoint
which is represented by a black dot indicates that the corresponding value
on the x-axis is part of the line segment. On the other hand, the open end-
point which is represented by an open circle indicates that the corresponding
value on the x-axis is not part of the line segment. For example, consider the
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Figure 4.4
Probability density function of a continuous random variable.

probability of the event {X = 2}:
P [{X = 2}] = P [ X ∈ [2, 3) ]

= P [X = 2]

= pX(2)

=
1

36
.

(4.4)

4.1.3 Probability Density Functions
A continuous random variable has a special function referred to as the Proba-
bility Density Function (PDF). The PDF is a non-negative, continuous func-
tion denoted by fX(x). It is not a probability function because it can be
greater than one. Therefore, the following is wrong:

fX(x) = P [ X = x ]

=

x∫

x

fX(x)dx

= 0.

(4.5)

Instead, the CDF is used whenever a probability of a continuous random
variable is required.

Consider the PDF in Figure 4.4. When integrated, the PDF gives the
probability of X belonging to a finite interval. This can be mathematically
expressed as follows:

P [{a ≤ X ≤ b}] = P [ X ∈ [a, b] ]

=

b∫

a

fX(x)dx

= FX(b)− FX(a).

(4.6)



44 � Computer Simulation: A Foundational Approach Using Python

As will be shown in Chapter 9, the probability in Eqn. (4.6) can be approxi-
mately computed using the Monte Carlo method.

The CDF for a specific value is computed as follows:

P [{X ≤ i}] = FX(i)

=

i∫

−∞

fX(x)dx.
(4.7)

The following are the relationships between the CDF and its PDF:

fX(x) =
d

dx
FX(x) (4.8)

FX(x) =

+∞∫

−∞

fX(x)dx. (4.9)

The reader is encouraged to refer to his college textbooks on calculus to remind
himself of the basics of differentiation and integration.

4.1.4 Histograms
A histogram is a graph that shows the distribution of data in a data set. By
distribution, we mean the frequency (or relative frequency) of each possible
value in the data set. A histogram can be used to approximate the PDF of a
continuous random variable. It can also be used to construct the PMF of a
discrete random variable.

The range of values in a data set represents an interval. This interval can
be divided into subintervals. In a histogram, each subinterval is represented
by a bin on the x-axis. On each bin, a bar is drawn. The length of the bar
is relative to the number of samples (i.e., data values) in the corresponding
bin. The area of the bar is thus the product of its length and the width of
the bin. This quantity is equal to the probability that a sample falls in the
subinterval represented by the bin. Figure 4.5 illustrates the common elements
of a histogram.

Listing 4.1
Python program for generating the histogram from an exponential data set
(see Figure 4.6).

1 from random import expovariate

2 from matplotlib.pyplot import hist, xlabel, ylabel, title,

show, savefig

3
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Range of ValuesMinimum Maximum

bin 2 Boundary between bins 2 and 3

Length of bin 2

0.5

0.7

fX(x)

X

Figure 4.5
Elements of a histogram. Bins can be of different widths. Length of a bar
could represent frequency or relative frequency.

4 # Generate the data set

5 N = 10000

6 data = [expovariate(1.5) for i in range(N)]

7

8 # Decide number of bins

9 num_bins = 50

10

11 # Construct the histogram of the data

12 # To generate PDF, use normed=True

13 n, bins, patches = hist(data, num_bins, normed=True,

facecolor=’black’, alpha=0.6)

14

15

16 xlabel(’$X$’, size=18)

17 ylabel(’$f_X(x)$’, size=18)

18 title(’Histogram of exponential data: $\mu$ = 1.5’, size=15)

19

20 # Show the figure or save it
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Figure 4.6
Histogram for an exponential data set. This figure is generated using Listing
4.1.

21 #show()

22 savefig(’hist_expov.pdf’, format=’pdf’, bbox_inches=’tight’)

Listing 4.1 shows how a histogram can be constructed and plotted in
Python. First, a random data set is generated on line 6. Then, the number
of bins in the histogram is decided on line 9. After that, the function hist is
called to construct and plot the histogram (see line 13). The argument normed
is set to True to generate relative frequency. This is important if you want to
approximate the PDF of a random variable. The rest of the program is clear
from the previous examples. Figure 4.6 shows the histogram generated using
this example.

4.2 SOME USEFUL RANDOM VARIABLES
4.2.1 Bernoulli
A Bernoulli random variable is a discrete random variable that can be used
for modeling random experiments with two outcomes only. The outcome of
interest is typically referred to as a success and it is represented by the integer
number 1. As an example, the outcome of the random experiment of tossing
a coin can be modeled as a Bernoulli random variable. In this experiment, the
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Indicator Functions

An indicator function is denoted by the symbol 1 with a subscript E
describing the event of interest. If the event is observed, the function returns
1; otherwise, it returns 0.

1E =





1, if E occurs,

0, otherwise.

Indicator functions are used in transforming probability functions defined
over two lines to one which is defined only on one line. The following ex-
ample shows how the PMF of the Bernoulli random variable in Eqn. (4.10)
can be written on one line.

pX(x) = p · 1{x=1}.

event of interest is Head and it is observed with a success probability of p.
The following is the PMF of the Bernoulli random variable:

pX(x) =





p, if x = 1,

1− p, if x = 0.

(4.10)

The following are the mean and variance, respectively:

µ = p (4.11)

σ2 = p(1− p). (4.12)

The above side note explains how the PMF of the Bernoulli random variable
(i.e., Eqn (4.10)) can be written on one line using an indicator function.

4.2.2 Binomial
The binomial random variable is an extension of the Bernoulli random vari-
able, where the number of trials n is another parameter of the new random
experiment. Basically, the Bernoulli experiment (or trial) is repeated n times.
Then, the number of successes X in n trials is given by the following PMF:

pX(x) =

(
n

x

)
px(1− p)n−x, (4.13)
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Figure 4.7
The situation of observing four successes in a sequence of seven Bernoulli trials
can be modeled as a binomial random variable.

where p is the probability of success in a single trial. The following are the
mean and variance, respectively:

µ = np (4.14)

σ2 = np(1− p). (4.15)

Figure 4.7 shows one sample in the sequential random experiment of seven
Bernoulli trials. This figure also illustrates how the probability associated with
each sample is calculated. Further, notice how the total number of samples
is calculated. Clearly, the number of samples exponentially increases with n.
This is why enumerating (i.e., listing) is a hard problem.3 Instead, techniques
such as the Monte Carlo method in Chapter 9 are used to generate samples
intelligently.

4.2.3 Geometric
The random experiment of repeating a Bernoulli trial until the first success
is observed is modeled by a geometric random variable. This random variable
can also be defined as the number of failures until the first success occurs. The
PMF for a geometric random variable is the following:

pX(x) = p(1− p)x, (4.16)

where p is the probability of success in a single Bernoulli trial and x ∈
{0, 1, 2, ...}. The following are the mean and variance, respectively:

µ =
1− p
p

(4.17)

3In computer science, a problem is referred to as NP-hard if the runtime of any algorithm
that solves it is exponential (i.e., O(2n)).
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Figure 4.8
The PMF of the Poisson random variable for λ = 10. Notice that P (x) ap-
proaches zero as x increases.

σ2 =
1− p
p2

. (4.18)

4.2.4 Poisson
A Poisson random variable X is a discrete random variable which has the
following probability mass function.

P (X = x) =
λx · e−λ
x!

, (4.19)

where P (X = x) is the probability of x events occurring in an interval of
preset length, λ is the expected number of events (i.e., mean) occurring in the
same interval, x ∈ {0, 1, 2, ...}, and e is a constant equal to 2.72. Figure 4.8
shows the PMF of the Poisson random variable for λ = 10.

The Poisson random variable can be used to model the number of frames4

that arrive at the input of a communication system. The length of the ob-
servation interval must be specified when giving λ (e.g., five frames per 10
milliseconds which is equal to 0.5 frame per one millisecond). The next side
note elaborates more.
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Using the Poisson Random Variable for Modeling

The Poisson random variable is used to represent the number of events
that occur in an interval of time of fixed duration throughout the random
experiment. For instance, if frames arrive at a switch at an average rate
of 15 per 50 minutes, then the probability of x arrivals in 50 minutes is
calculated as follows:

P (X = x) =
15x · e−15

x!
.

(a) CDF (b) PDF

Figure 4.9
Probability distribution functions for the uniform random variable where a =
3 and b = 10.

4.2.5 Uniform
A uniform random variable X is a continuous random variable that has the
following cumulative distribution function.

F (x) =
x− a
b− a , (4.20)

where x ∈ [a, b]. The probability density function is

fX(x) =





1
b−a , for x ∈ [a, b],

0, otherwise.

(4.21)

4Do you know that packets cannot travel through the wire? Actually, frames are the data
units that travel through wires and they carry packets. This is why we use frames as our
data unit.
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Figures 4.9(a) and 4.9(b) shows the CDF and PDF of uniform random variable
with a = 3 and b = 10. Listing 4.2 is the program used to generate these two
figures.

Listing 4.2
Python program for plotting the CDF and PDF of a uniform random variable
(see Figures 4.9(a) and 4.9(b)).

1 from numpy import *

2 from matplotlib.pyplot import *

3

4 # Parameters

5 a = 3

6 b = 10

7

8 # Plotting the PDF

9 def pdf(x):

10 if x >= a and x <= b:

11 return 1 / (b - a)

12 else:

13 return 0

14

15 X = arange(0, b+3, 0.1)

16 Y = []

17

18 for x in X:

19 Y.append(pdf(x))

20

21 matplotlib.rc(’xtick’, labelsize=18)

22 matplotlib.rc(’ytick’, labelsize=18)

23 plot(X, Y, Linewidth=2, color=’black’)

24 xlabel(’$X$’, size=22)

25 ylabel(’$f_X(x)$’, size=22)

26 #show()
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27 savefig(’uniform_pdf.pdf’, format=’pdf’, bbox_inches=’tight’

)

28

29 # Clear the current figure

30 clf()

31

32 # Plotting the CDF

33 def cdf(x):

34 if x < a:

35 return 0

36 elif x >= a and x < b:

37 return (x - a) / (b - a)

38 elif x >= b:

39 return 1

40

41 X = arange(0, b+3, 0.1)

42 Y = []

43

44 for x in X:

45 Y.append(cdf(x))

46

47 matplotlib.rc(’xtick’, labelsize=18)

48 matplotlib.rc(’ytick’, labelsize=18)

49 plot(X, Y, Linewidth=2, color=’black’)

50 xlabel(’$X$’, size=22)

51 ylabel(’$F_X(x)$’, size=22)

52 #show()

53 savefig(’uniform_cdf.pdf’, format=’pdf’, bbox_inches=’tight’

)

The mean and variance of the uniform random variable are the following,
respectively:

µ =
1

2
(a+ b) (4.22)
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(a) CDF (b) PDF

Figure 4.10
Probability distribution functions of the exponential random variable where
µ = 1.5.

σ2 =
1

12
(b− a)2. (4.23)

This random variable is typically used to model equally likely events, such
as the random selection of one item from a list of candidate items. The events
can be modeled as equally likely because the PDF is constant for all the
possible values of the random variable. This is why it is called a uniform
random variable.

4.2.6 Exponential
An exponential random variable X is a continuous random variable which has
the following cumulative distribution function.

FX (x) = 1− e−µx, (4.24)

where µ is the rate parameter and x ∈ [0,∞). On the other hand, the proba-
bility density function is given by the following expression:

fX (x) = µe−µx. (4.25)

Figures 4.10(a) and 4.10(b) show the shapes of these two functions. Notice
the initial value of the PDF. It is greater than one. This is normal since the
PDF is not a probability function.

The exponential random variable can be used to model the time between
the occurrences of two consecutive events. For example, it is used to model
the time between two consecutive arrivals or departures in the single-server
queueing system. The next side note explains the relationship between the
Poisson and exponential random variables.
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The Relationship between the Poisson and Exponential Random
Variables

The time between two consecutive events occurring in an interval of fixed
duration is modeled as an exponential random variable and it has the fol-
lowing PDF:

fX (x) = λe−λx,

where λ is the average number of events occurring during the fixed interval
of observation.

4.2.7 Erlang
The Erlang random variable is continuous. It can be expressed as a sum of
exponential random variables. This property will be used in Section 10.4 to
generate samples from the Erlang distribution. The Erlang random variable
has two parameters:

1. Scale or rate (θ), and

2. Shape (k).

k is an integer and it represents the number of independent exponential ran-
dom variables that are summed up to form the Erlang random variable. Hence,
the Erlang distribution with k equal to 1 simplifies to the exponential distri-
bution.

The following are the probability density and cumulative distribution func-
tions of the Erlang random variable X:

f(x) =
xk−1θke−θx

(k − 1)!
, x ≥ 0 (4.26)

F (x) = 1− e−θx
k−1∑

j=0

(θx)j

j!
, x ≥ 0. (4.27)

4.2.8 Normal
A normal (or Gaussian) random variable is a continuous random variable that
has the following probability density function.

f (x) =
1

σ
√

2π
· e−

(x−µ)2

2σ2 (4.28)

where µ is the mean, σ is the standard deviation, and x ∈ (−∞,∞). Figure
4.11 shows the shape of the PDF of the normal random variable. If µ = 0 and σ
= 1, the resulting PDF is referred to as the standard normal distribution and
the resulting random variable is called the standard normal random variable.
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Figure 4.11
The PDF of the normal random variable with µ = 30 and σ = 10.

4.2.9 Triangular
A triangular random variable has three parameters: a, b, and c. The last
parameter is referred to as the mode. At this point, the PDF has the highest
density. The following is the CDF:

FX(x) =





0, if x ≤ a,

(x−a)2
(b−a)(c−a) , if a < x ≤ c,

1− (b−x)2
(b−a)(b−c) , if c < x < b,

1, if x ≥ b.

(4.29)

The PDF is defined as follows:

fX(x) =





0, if x < a,

2(x−a)
(b−a)(c−a) , if a ≤ x < c,

2
b−a , if x = c,

2(b−x)
(b−a)(b−c) , if c < x ≤ b,

0, if x > b.

(4.30)
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(a) CDF (b) PDF

Figure 4.12
Probability distribution functions of the triangular random variable with a =
1, b = 10, and c = 7.

Figures 4.12(a) and 4.12(b) show the shapes of the CDF and PDF, respec-
tively. The expected value of a triangular random variable X is

µ =
a+ b+ c

3
(4.31)

and the variance is

σ2 =
a2 + b2 + c2 − ab− ac− bc

18
. (4.32)

4.3 STOCHASTIC PROCESSES
A random variable cannot be used to describe the behavior of a dynamic sys-
tem since it does not involve time. How do you think time should be handled?
Enter the world of stochastic processes. Figure 4.13 shows that a stochastic
process is a collection of random variables whose indexes are discrete points in
time. At every instant of time, the state of the process is random. And, since
time is fixed, we can think of the state of the process as a random variable
at that specific instant. At time ti, the state of the process is determined by
performing a random experiment whose outcome is from the set Ω. At time
tj , the same experiment is performed again to determine the next state of the
process. That is the essence of stochastic processes.

A stochastic process can evolve in many different directions. Each direction
is referred to as a realization, trajectory, or sample path of the process. Two
sample paths are shown in Figure 4.13. They are g1(t) and g2(t). They are
different from the time functions fi. Multiple time functions are combined to
construct one sample path.

A stochastic process can have two means: vertical and horizontal. The
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Time Functions

Sample Space
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g2 
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t 

Sample Paths

✲

Figure 4.13
A stochastic process maps each outcome in the sample space to a time func-
tion. Time functions are combined (convoluted) to produce two sample paths:
g1 and g2. Two kinds of means can be defined for a stochastic process.

What Do You Get When You Fix One Source of Variability?

In a stochastic process, when you fix time, you get a random variable.
For example, in Figure 4.13, at time ti, a random variable Xi(ti, ·) can
be defined. Similarly, if you fix the outcome, you get a sample path, e.g.,
f1(·, ω1).

vertical mean is called the ensemble mean. It is calculated over all the possible
sample paths. The horizontal mean, however, is calculated using one sample
path. This is why it is referred to as a time average. Fortunately, as you will
learn in the next section, the horizontal mean can be used as an approximation
of the vertical mean.

The Bernoulli random process is illustrated in Figure 4.14. This process is
composed of two time functions, which are both constant (see Figure 4.14(c)).
Figure 4.14(c) shows the result of running the fundamental Bernoulli random
experiment in each trial (i.e., time slot). The function f(t) in Figure 4.14(d)
does not represent the real behavior of the Bernoulli random process. However,
it is used to construct this behavior in Figure 4.14(e). The Bernoulli random
process is a counting process. It counts the number of ones observed so far.
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Figure 4.14
The Bernoulli random process: (a) sample space, (b) random variable, (c) time
functions, (d) result of running the random experiment in each slot, and (e)
final sample path.

4.4 DYNAMIC SYSTEM EVOLUTION
Since a dynamic system can be viewed as a stochastic process, it can have
many sample paths. Figure 4.15 shows an example of the state evolution of
a system. In this figure, each circle represents a possible state of the system.
The state of the system can be thought of as a vector of state variables. For
example, as we will see in the next chapter, the single-server queueing system
has two state variables: (1) number of customers present in the queue and (2)
Status of the server (either busy or idle). These two variables represent all the
information we need to study this system. Finally, it should be pointed out
that the diagram in Figure 4.15 is referred to as the state space because it
contains all the possible states of the system.

When a system is simulated, each simulation run represents an evolution
of the system along one path in the state space. That is, a sample path gi(t),
where i is the index of the simulation run. Figure 4.16 shows an example
wherein six events have been simulated in the order shown in the figure. This
sample path represents one possible behavior of the system.

As you will see in Chapter 11, the data generated and collected along one
trajectory in the state space is used in the estimation of the performance
measure of interest. Of course, an estimate will be more accurate if more
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Initial 
State

Terminal 
State

Figure 4.15
A sample path through the state space of a dynamic system. Entry and exit
points are random. Data is generated along this sample path and a time
average is computed as an estimate of the performance metric of interest.

(Q = 0, S = ‘F’) (Q = 0, S = ‘B’)
Arrival

(Q = 1, S = ‘B’)
Arrival

DepartureDeparture

(Q = 2, S = ‘B’)Arrival

Departure

1 2 3

6 5 4

Figure 4.16
A sample path through the state space of the single-server queueing system.
The initial state does not have to be (0, ‘F’).

simulation runs are performed and their average is used instead. Hopefully,
each simulation run will exercise a different trajectory in the state space. The
next side note is very important in this regard.

Ergodic Systems

If a dynamic system is run for a long period of time, then each possi-
ble system state would be visited. Then, the mean over the state space
(i.e., ensemble mean ) can be approximated by the mean of a sample path
through the state space (i.e., temporal mean. ) Such dynamic systems are
referred to as ergodic systems wherein the temporal mean converges to the
ensemble mean.
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4.5 SIMULATING QUEUEING PROCESSES
Queueing is a natural phenomenon that arises whenever there is a competition
for a single resource. For example, when a patient arrives and the doctor is
busy, he has to wait. This situation can be modeled using a server and a buffer.
The server represents the doctor and the buffer represents the waiting area
where patients sit. In this example, patients compete for a single doctor.

The total number of patients in the clinic (i.e., the ones waiting and the one
being checked by the doctor) is a random variable. Since this random variable
varies with time, a stochastic process emerges. This process is referred to as
a queueing process. The state of this process is the total number of patients
in the clinic. The queueing process changes its state whenever a new patient
arrives or an existing patient leaves the clinic. The first situation is referred
to as the arrival event. The second situation, however, is called the departure
event.

If we let N(t) be the total number of patients in the clinic at time t,
then N(t) is a discrete-state stochastic process. Besides, if N(t) is observed at
integer times (i.e., t ∈ {0, 1, 2, 3, ...}), then the resulting queueing process is a
discrete-time process. On the other hand, if N(t) is observed at random times
(i.e., t ∈ [0,∞)), then the resulting queueing process is a continuous-time
process.

If N(t) is a discrete-time, discrete-state process, it is referred to as a
discrete-time Markov chain. A discrete-time Markov chain stays in any state
for an amount of time which is geometrically distributed. In some models,
the assumption is relaxed and the amount of time spent in every state is as-
sumed to be fixed. Thus, the x-axis (i.e., time) is divided into intervals of equal
lengths (also called slots). Figure 4.17 shows the behavior of a discrete-time
Markov chain over nine time slots. It is assumed that events occur only at the
beginning of each time slot.

On the contrary, if N(t) is a continuous-time, discrete-state process, it
will be referred to as a continuous-time Markov chain. When a continuous-
time Markov chain enters a state, it remains in the state for an amount of
time which is exponentially distributed. Figure 4.18 shows the behavior of a
continuous-time Markov chain over a continuous interval of time. Events can
occur at random instants of time.

Finally, it should be emphasized that whether the time is continuous or
discrete, the state of a Markov chain is always discrete. Also, it should be
understood that a Markov chain representing a queueing process is driven by
two events: arrival and departure. When an arrival occurs, N(t) is incremented
by one. On the other hand, when a departure occurs, N(t) is decremented by
one. For the rest of this section, we are going to learn how to simulate these
two stochastic processes.
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Figure 4.17
A sample path of a discrete-time Markov chain over nine time units. Events
occur at integer times only. N(1) is the number of entities in the system during
the first time slot.
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Figure 4.18
A sample path of a continuous-time Markov chain. Events occur at random
times. The time spent in a state has an exponential distribution.
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Figure 4.19
A graphical representation of a two-state, discrete-time Markov chain.

4.5.1 Discrete-Time Markov Chains
A Markov chain is said to be fully characterized if its probability transition
matrix is known. An entry Pij in this matrix represents the probability that
the process will make a transition from state i to state j, where i is the present
state and j is the next state.

Consider a Discrete-Time Markov chain (DTMC) with two states: Good
(G) and Bad (B). Let the probability transition matrix of this DTMC be the
following:

P (i, j) =

( G B

G 0.5 0.5
B 0.7 0.3

)
.

Notice that every row and column is labeled. This matrix is an example of
the classical Gilbert-Elliot two-state wireless channel model. Figure 4.19 is a
graphical representation of the Markov chain, which is more understandable.

In simulating this DTMC, our objective is to generate a sequence {Xn, n =
1, 2, 3, ...} which follows the above probability transition matrix. The subscript
n is used instead of t because the time is discrete. This is just a convention.
The initial state X0 must be given before the start of the simulation.

Given that the present state is Xn = G, the next state Xn+1 has the
following PMF.

P (Xn+1 = G) = 0.5, P (Xn+1 = B) = 0.5.

Similarly, if the present state is Xn = B, then the next state Xn+1 has the
following PMF.

P (Xn+1 = G) = 0.7, P (Xn+1 = B) = 0.3.

Since we know the PMF for the next state given any present state, we
can now simulate the DTMC. In fact, the task of simulating the DTMC boils
down to simulating the random variable Xn+1 as follows.

If Xn = G, Xn+1 =

{
G, if u ∈ (0, 0.5)

B, if u ∈ [0.5, 1.0).
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If Xn = B, Xn+1 =

{
G, if u ∈ (0, 0.7)

B, if u ∈ [0.7, 1.0).

where u is a uniform random number between 0 and 1.
Listing 4.3 shows a program that generates a possible trajectory of the

above DTMC given that the initial state is X0 = G. The output of the program
could be the following.

X0 = G, X1 = G, X2 = B, X3 = G, ....

Listing 4.3
Simulating a two-state discrete-time Markov chain given its probability tran-
sition matrix and an initial state.

1 from random import random

2

3 n = 10

4 S = []

5

6 S.append(’G’) # Initial state

7

8 for i in range(n):

9 u = random()

10 if S[i] == ’G’:

11 if u < 0.5:

12 S.append(’G’)

13 else:

14 S.append(’B’)

15 elif S[i] == ’B’:

16 if u < 0.7:

17 S.append(’G’)

18 else:

19 S.append(’B’)

20

21 print(’Sample Path: ’, S)
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Sample path of a Poisson process. Only arrival events occur inside a Poisson
process.

4.5.2 Continuous-Time Markov Chains
A Poisson process is an example of a Continuous-Time Markov Chain
(CTMC). You can think of it as a counter which counts the events which
have occurred so far. The time between two consecutive events is called the
Inter-Arrival Time (IAT). The random variable IAT has an exponential dis-
tribution. Only one kind of event triggers a transition inside a Poisson process.
This event is the arrival event. Figure 4.20 shows one possible sample path of
a Poisson process. Listing 4.4 shows how a Poisson process can be simulated
in Python. Notice the variable defined on line 6. It is used to keep track of the
simulation time. Also, notice how the simulation time is advanced on line 11.
Basically, the time of the next arrival event is equal to the current simulation
time plus the IAT. The simulation loop (lines 8-11) is terminated once the
current simulation time exceeds preset total simulation time.

Listing 4.4
Simulating a Poisson process.

1 from random import expovariate

2

3 Avg_IAT = 2.0 # Average IAT

4 Sim_Time = 100 # Total simulation time

5 N = 0 # Count number of arrivals

6 clock = 0 # Simulation time

7
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Figure 4.21
Sample path of a birth-death process.

8 while clock <= Sim_Time:

9 N = N + 1

10 # Advance simulation clock

11 clock = clock + expovariate(1/Avg_IAT)

12

13 print(’Total Number of Arrivals = ’, N)

The Poisson process is a special case of another type of random processes
called Birth-Death (BD) processes. In BD process, two events occur: birth
and death. The Poisson process is a pure birth process since the birth (i.e.,
arrival) event occurs only. The state of a BD process changes at random points
of time. The state variable is incremented by one when a birth event occurs.
It is decremented by one, on the other hand, when a death occurs. The time
until the next birth is exponentially distributed with rate λ. Similarly, the
time until the next death is exponentially distributed with rate µ.

A BD process is used to model the number of customers in the single-
server queueing system.5 It can be simulated as shown in Listing 4.5. In each

5In the terminology of queueing theory, this system is referred to as an M/M/1 queueing
system.
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iteration of the simulation loop (lines 12-25), two exponentially distributed
random variates (i.e., numbers) are generated. These two numbers represent
the inter-arrival times for the next birth and death events. The smaller of the
two numbers is the time at which the next event occurs. Figure 4.21 shows a
possible sample path of a birth-death process. This figure is generated using
lines 27-32 in Listing 4.5. Pay attention to how data is collected on lines 18-19
and 24-25. The lists used for data collection are defined as empty lists on lines
9-10.

Listing 4.5
Simulating a birth-death process and plotting its sample path (see Figure
4.21).

1 from random import expovariate

2 from matplotlib.pyplot import *

3

4 Avg_IAT = 2.0

5 Avg_ST = 1.0 # Avg service time

6 Sim_Time = 100 # Total simulation time

7 N = 0

8 clock = 0 # Simulation time

9 X = [] # Times of events

10 Y = [] # Values of N

11

12 while clock <= Sim_Time:

13 IAT = expovariate(1 / Avg_IAT)

14 ST = expovariate(1 / Avg_ST)

15 if IAT <= ST:

16 N += 1

17 clock = clock + IAT

18 X.append(clock)

19 Y.append(N)

20 else:

21 if N > 0:

22 N -= 1

23 clock = clock + ST

24 X.append(clock)
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25 Y.append(N)

26

27 step(X, Y, Linewidth=1.2, color=’black’)

28 xlabel(’Time’, size=16)

29 ylabel(’N’, size=16)

30 xlim(0, 101)

31 #show()

32 savefig(’sim_birth_death_process.pdf’, format=’pdf’,

bbox_inches=’tight’)

4.6 SUMMARY
In this chapter, you have learned about several important random variables
and their probability distribution functions. You have also learned about
stochastic processes and their fundamental role in system modeling. In ad-
dition, you have learned new conventions when writing simulation programs
in Python. For example, you should be comfortable now with the following
programming concepts:

1. Simulation loop,

2. Keeping track of simulation time using the clock variable,

3. Advancing the simulation time using randomly generated numbers, and

4. Using lists for collecting simulated data.

You will need all these concepts and techniques in the next chapters.

4.7 EXERCISES
4.1 Write a Python program to plot the PDF and CDF of the Erlang random

variable.

4.2 A Bernoulli random process X(n) counts the number of successes at
the end of the nth time slot. Let the initial state be X(0) = 0. Write
a Python program which simulates this process over 15 time slots. Plot
one sample path.

4.3 A manufacturer distributes a coupon in every box he makes. The coupon
put in each box is chosen randomly from a set of N distinct coupons.
Your goal is to collect all the N distinct coupons. Write a Python pro-
gram to estimate the expected number of boxes that you must buy.
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4.4 Random walk is a discrete-time, discrete-state stochastic process. Let
the state of the process represent the direction of movement: North,
South, East, and West. Write a Python program which simulates this
process. Assume that the probabilities of moving North, South, East,
and West are 0.1, 0.5, 0.3, and 0.1, respectively. Assume a simulation
time of 15 time units. Plot one sample path of the process.



C H A P T E R 5

Simulating the
Single-Server Queueing
System

“Learning by doing and computer simulation are all part of the same equa-
tion.”
−Nicholas Negroponte

The single-server queueing system is very fundamental. A complex system
such as the Internet can be decomposed into a set of interacting single-server
queueing systems. In this chapter, we are going to study in detail how to
simulate the single-server queueing system. In addition, we are going to learn
about several performance laws which can be used to assess the performance
of computer and network systems. Further, the process of collecting simulated
data to be used in computing performance measures is described. Performance
measures are computed as averages of multiple simulation runs. This is why
the method of independent replications is also discussed in this chapter. After
that, two methods are described for determining the length of the transient
phase in a simulation run. Finally, manual simulation is discussed to reinforce
the above topics.

5.1 SIMULATION MODEL
Before a simulation model of a system can be constructed, we need to un-
derstand the physical structure of the system. Figure 5.1 shows the physical
structure of the single-server queueing system. This system has four com-
ponents: source, buffer, server, and sink. The figure also shows how these
components are connected. Basically, the source generates packets which go

69
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Source
Sink

ServerBuffer

Figure 5.1
Physical structure of the single-server queueing system.

into a buffer. The server fetches the packets from the buffer and then delivers
them to the sink after they are processed.

Packets are transferred to the server in the same order in which they enter
the buffer. This buffering mechanism is referred to as the First-In First-Out
(FIFO) mechanism. This observation is very helpful when collecting simulated
data. That is, since the order of packets is maintained by a FIFO policy, there
is no need to assign indexes (or identifiers) to packets. The first packet which
enters the system is going to be the first packet which leaves the system. The
same observation applies to all the subsequent packets.

Since the individual inter-arrival times and service times are unpredictable,
they are modeled as random variables. Thus, we need to specify the probability
distributions of these two random variables. The choice of a specific probability
distribution has to be supported by an evidence that it is appropriate. The
exponential probability distribution is a reasonable model of the inter-arrival
and service times.

Listing 5.1 shows a Python implementation of the simulation model of the
single-server queueing system. It is based on the C-language implementation
provided in [8]. In this simulation model, there are two fundamental events:
arrival and departure. The state variable N represents the number of packets
inside the system. It is the state of the random process we are going to observe.
Remember that this process is a BD process. The birth and death events are
the arrival and departure events of a packet, respectively.

The arrival process is a Poisson process with an average inter-arrival time
of 2.0 (line 4). The departure process is also a Poisson process with an average
service time of 1.0 (line 5). The system will be simulated for 100.0 time units
(line 6). The simulation clock is initialized to zero and it is used to keep track
of the simulation time (line 7).

For every event, a variable is needed to keep track of its time of occurrence.
For the arrival event, the variable Arr_Time is used. After an arrival occurs,
this variable is updated with the time of the next arrival. Similarly, the variable
Dep_Time keeps track of the time of next departure (i.e., service completion).
The variable clock represents the current simulation time. It acts like an
internal clock for the simulation model.

If the system becomes empty (i.e., N = 0) due to a departure event, the
variable Dep_Time is set to∞ to ensure that the next event will be an arrival.
This is also done in the initialization phase to ensure that the first event will
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Listing 5.1
Simulation program of the single-server queueing system.

1 from random import expovariate

2 from math import inf as Infinity

3

4 Avg_IAT = 2.0 # Average Inter-Arrival Time

5 Avg_ST = 1.0 # Average Service Time

6 Tot_Sim_Time = 100.0 # Total Simulation Time

7 clock = 0.0 # Current Simulation Time

8

9 N = 0 # State variable; number of customers in the system

10

11 # Time of the next arrival event

12 Arr_Time = expovariate(1.0/Avg_IAT)

13 # Time of the next departure event

14 Dep_Time = Infinity

15

16 while clock <= Tot_Sim_Time:

17 if Arr_Time < Dep_Time: # Arrival Event

18 clock = Arr_Time

19 N = N + 1.0

20 Arr_Time = clock + expovariate(1.0/Avg_IAT)

21 if N == 1:

22 Dep_Time = clock + expovariate(1.0/Avg_ST)

23 else: # Departure Event

24 clock = Dep_Time

25 N = N - 1.0

26 if N > 0:

27 Dep_Time = clock + expovariate(1.0/Avg_ST)

28 else:

29 Dep_Time = Infinity
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Figure 5.2
Graphical representation of the relationship between random variables and
simulation events.
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Figure 5.3
A sample path of the random process N(t).

be an arrival. In short, you cannot have a departure while N = 0. Note that
multiple arrival events may occur before a departure event.

Figure 5.3 illustrates the behavior of the simulated system. The first de-
parture occurs at time 0.878. This is why there is a line segment extending
from time 0.0 to time 0.878. The graph of N(t) is a series of line segments.
The length of every line segment represents the time until the next event.

Figure 5.4(a) shows that three random processes can be defined in
the single-server queueing system: arrival, departure, and queueing. Figures
5.4(b), (c), and (d) show sample paths of these three random processes. No-
tice that the departure process is a shifted version of the arrival process. Also,
notice how the behavior of the queueing process is defined as the result of the
interaction between the arrival and departure processes.
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Figure 5.4
Random processes present in the single-server queueing system. Both the ar-
rival and departure processes are Poisson processes. (a) Places where the ran-
dom processes are defined. (b) Total number of arrivals which have occurred
up to time t1 is three. (c) The sample path of the departure process is a
shifted version of the sample path of the arrival process. (d) Sample path of
the queueing (birth-death) process which tracks the number of packets in the
system.
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What Causes Delay?

When multiple packets contend for one server, some packets will be queued
and system performance suffers. If the service time is always less than or
equal to the inter-arrival time, no packet is queued. In reality, however, the
service times and inter-arrival times are not constant. Also, packets may
require different service times. This variability in service times and inter-
arrival times causes the delay through the single-server queueing system.

Table 5.1
Manual simulation of the single-server queueing system using a simulation
table.

Pkt IAT ST Arrival Service Departure Time Time
No. Time Starts Time in in

At Queue System

1 2 12 2 2 14 0 12
2 5 10 7 14 24 7 17
3 1 16
4 4 9
5 1 10
6 3 13

7 3 17
8 2 10
9 4 8
10 5 12

Manual Simulation

Table 5.1 shows how a manual simulation of the single-server queueing
system shown in Figure 5.1 can be performed. The simulation table has
eight columns, which are divided into two groups. The first three columns
represent the information needed before starting the simulation. The fourth
column is used to record the absolute arrival time which is clock + IAT. The
fifth column is the time at which the service of a packet starts. The service
of packet number i starts at the time of departure of packet number i− 1.
Of course, the service of the first packet starts immediately. The departure
time is recorded in the sixth column. The waiting time in the queue is the
difference between the departure time and arrival time. It is captured in
the seventh column. The last column is used for recording the total time a
packet spends in the system (i.e., system response time).
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5.2 COLLECTING SIMULATED DATA
The program in Listing 5.1 is not of much use until we add output variables to
it. Output variables are lists and dictionaries used for collecting simulated data
which is then used in computing performance measures. In this section, the
notion of output variables is motivated. Several examples will be given in the
next section to show how output variables are used in simulation programs.

As shown in Figure 5.5(a), a simulation experiment is composed of a set
of input variables, parameters, output variables, and simulation model. The
simulation model is not shown explicitly. The model transforms the values of
the input variables into new values constituting the output variables. Values of
the input variables can be generated while the simulation program is running.
They can also be specified at the beginning of a simulation run. A simulation
run may mean fixing the parameters and changing the values of the input
variables. The opposite is also possible.

As an example, consider a simulation experiment for estimating the average
response time of the single-server queueing system. The response time is the
delay a packet experiences while traveling through the sytem. Figure 5.5(b)
shows the setup necessary to perform this experiment. In this setup, there are
two input variables: IAT and ST. Each input variable represents a sequence
of random numbers. These random numbers are generated using appropriate
probability distributions, which are parametrized by λ and µ. There is only one
output variable, which is Delay. The third parameter Num_Pkts represents
the length of each simulation run (i.e., number of packets to be simulated).

Each entry in the output variable Delay corresponds to the delay of one
simulated packet. It is the result of subtracting the arrival time from the
departure time for each packet upon leaving the system. At the end of the
simulation run, Delay will contain n observations (or samples).

Delay = [d1, d2, d3, ..., dn],

where di is the delay experienced by the ith simulated packet. It should be
pointed out that each sample di is a random variable. This is because if the
same simulation experiment is repeated again, the value of di will be different.
As a result, Delay is also a random variable with an unknown probability
distribution.

Why Output Variables?

A simulation run results in an output variable whose expected value is
an estimate of the performance measure of interest. For example, for the
output variable Delay, statistics.mean(Delay) gives the estimate
of the performance measure. The values in the list referred to by Delay
represent a sample path of the single-server queueing system.
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(a) Elements of a simulation experiment. Simulation
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(b) Single-server queueing system.

Figure 5.5
A simulation experiment represents an execution of a simulation model with
a specific set of parameters, inputs, and outputs.

5.3 PERFORMANCE LAWS
Let the variable Tot_Sim_Time in Listing 5.1 be represented by T . So, T
becomes the length of the period of time over which the system is simulated.
Also, let D denote the number of departures that occur during a simulation
run of length T . The following fundamental laws can be used to measure the
performance of the single-server queueing system.

5.3.1 Throughput
Throughput measures how many packets the system can process in one time
unit. It is defined as the ratio of the number of departures divided by the total
simulation time. Mathematically, this law can be written as follows.

τ =
D

T
. (5.1)

The unit of throughput is packets per a time unit (pkt/time unit).

5.3.2 Utilization
Server utilization is the proportion of simulation time during which the server
is busy. It is the product of its throughput and the average service time per
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customer. This can mathematically be expressed as follows.

U = τ · Ts (5.2)

where Ts is the average service time per customer and it is defined as follows.

Ts =
B

D
(5.3)

where B is the total server busy time which can be computed as follows.

B =
D∑

i=1

Ti (5.4)

where Ti is the service time for customer i.

5.3.3 Response Time
The response time is the total time a customer spends in the system. That
includes waiting time (or queueing time) and service time. Another name for
the response time is delay.

Define Wi as the time spent in the system by the ith simulated packet.
Then, the average response time of the system can be computed as follows.

W =

∑D
i=1Wi

D
. (5.5)

As a consequence, the average number of packets in the system can be com-
puted as follows.

L = τ ·W. (5.6)

Listing 5.2
Estimating the average response time of the system.

1 from random import expovariate

2 from statistics import mean

3 from math import inf as Infinity

4

5 # Parameters

6 lamda = 1.3 # Arrival rate (Lambda)

7 mu = 2.0 # Departure rate (Mu)

8 Num_Pkts = 100000 # Number of Packets to be simulated

9 count = 0 # Count number of simulated packets
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10 clock = 0

11 N = 0 # State Variable; number of packets in system

12

13 Arr_Time = expovariate(lamda)

14 Dep_Time = Infinity

15

16 # Output Variables

17 Arr_Time_Data = [] # Collect arrival times

18 Dep_Time_Data = [] # Collect departure times

19 Delay_Data = [] # Collect delays of individual packets

20

21 while count < Num_Pkts:

22 if Arr_Time < Dep_Time: # Arrival Event

23 clock = Arr_Time

24 Arr_Time_Data.append(clock)

25 N = N + 1.0

26 Arr_Time = clock + expovariate(lamda)

27 if N == 1:

28 Dep_Time = clock + expovariate(mu)

29 else: # Departure Event

30 clock = Dep_Time

31 Dep_Time_Data.append(clock)

32 N = N - 1.0

33 count = count + 1 # Packet Simulated

34 if N > 0:

35 Dep_Time = clock + expovariate(mu)

36 else:

37 Dep_Time = Infinity

38

39 for i in range(Num_Pkts):

40 d = Dep_Time_Data[i] - Arr_Time_Data[i]

41 Delay_Data.append(d)

42

43 print( "Average Delay = ", round( mean(Delay_Data), 4) )
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Little’s Law

L = λ ·W
This law asserts that the time average number of packets in the system
is the product of the arrival rate and the response time. This law is due
to Little who proved it in 1961 [7]. Remember that λ is a parameter of
the arrival Poisson process. In simulation, it is the argument passed to the
function random.expovariate.

Listing 5.2 shows the Python code necessary to perform the experiment
in Figure 5.5(b). In this program, the values of the input variables are gen-
erated whenever they are needed. On the other hand, for the output variable
Delay, a list is explicitly defined to hold its values. These values are the
results of subtracting the values in two intermediate output variables (i.e.,
Arr_Time_Data and Dep_Time_Data). At the end of the program, the
mean function in the statistics module is applied on the Delay output
variable to get the average of the individual packet delays.

5.3.4 E[N(t)]
The state variable N(t) represents the number of packets in the system at
time t. In the previous section, the Little’s law is used to compute the average
number of customers in the system; i.e., E[N(t)]. This quantity can be directly
computed by using one sample path of N(t) as follows:

E[N(t)] =
1

T
·
∫ T

0

N(t), (5.7)

where T is the total simulation time.
The integral in Eqn. (5.7) is the sum of the areas of the individual rect-

angles under the curve of N(t). For example, in Figure 5.6, there are eight
rectangles. The length of each rectangle is equal to the number of packets in
the system while the width is the time interval between the events causing
the change in N . Hence, the areas of the eight rectangles are 0, 2, 2, 3, 6, 1,
0, and 1. Since the total simulation time is 12, then the average number of
packets in the system can be computed as follows.
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Figure 5.6
A sample path of the number of packets in the single-server queueing system.
There are eight rectangles under the curve of the sample path.

E[N(t)] =
0 + 2 + 2 + 3 + 6 + 1 + 0 + 1

12

=
15

12
= 1.25.

Listing 5.3 shows how the above technique can be implemented in Python.
The new code is on lines 16, 17, 22-24, 31-33, and 41. A new variable is defined
on line 16 and it is used to record the time of occurrence of the last simulated
event. Inside the simulation loop, after updating the simulation clock, the
area of the current rectangle delimited by the current and previous events is
calculated on lines 23 and 32. After this operation, the value of the variable
Prev_Event_Time is changed to the current simulation time. At the end of
the simulation run, the total area under the curve is computed as shown on
line 41. The variable clock stores the total simulation time.

Listing 5.3
Estimating the average number of customers in the sytem (E[N(t)]).

1 from random import expovariate

2 from statistics import mean

3 from math import inf as Infinity

4

5 # Parameters
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6 lamda = 1.3

7 mu = 2.0

8 Num_Pkts = 1000000

9 count = 0

10 clock = 0

11 N = 0

12

13 Arr_Time = expovariate(lamda)

14 Dep_Time = Infinity

15

16 Prev_Event_Time = 0.0 # Time of last event

17 Area = [] # Output variable

18

19 while count < Num_Pkts:

20 if Arr_Time < Dep_Time:

21 clock = Arr_Time

22 # Area of rectangle

23 Area.append((clock - Prev_Event_Time) * N)

24 Prev_Event_Time = clock

25 N = N + 1.0

26 Arr_Time = clock + expovariate(lamda)

27 if N == 1:

28 Dep_Time = clock + expovariate(mu)

29 else:

30 clock = Dep_Time

31 # Area of rectangle

32 Area.append((clock - Prev_Event_Time) * N)

33 Prev_Event_Time = clock

34 N = N - 1.0

35 count = count + 1

36 if N > 0:

37 Dep_Time = clock + expovariate(mu)

38 else:

39 Dep_Time = Infinity



82 � Computer Simulation: A Foundational Approach Using Python

40

41 print( "E[ N(t) ] = ", round(sum(Area) / clock, 4) )

5.3.5 P[N]

P[N = k] is the probability that there are exactly k packets in the system. In
order to estimate this probability, we sum up all time intervals during which
there are exactly k packets in the system. Then, the sum is divided by the
total simulation time. For instance, in Figure 5.6, the system contains one
packet only during the following intervals: [1, 3], [8, 9], and [11, 12]. Thus, the
probability that there is exactly one packet in the system can be estimated as
follows.

P[N = 1] =
(3− 1) + (9− 8) + (12− 11)

12

=
2 + 1 + 1

12
= 0.33.

Listing 5.4 shows how P[N = k] can be estimated using simulation. The
new code is on lines 15, 17, 22-26, 33-37, 45-47, and 49-50. In this program,
a new data structure called dictionary is used. In a dictionary, keys are used
for storing and fetching items. A dictionary is defined using two curly braces
as shown on line 17. This defines an empty dictionary. The dictionary is pop-
ulated on lines 24-25 and 35-36. Basically, if the key N is already used, the
value which corresponds to this key is updated. Otherwise, a new key is in-
serted into the dictionary and its value is initialized. The value of the key is
updated using the length of the current time interval on lines 23 and 34. As in
the previous example, the time of the current event is saved to be used in the
next iteration of the simulation loop. Also, the state variable N is updated
after computing the time interval and updating the dictionary.

In order to verify the simulation program, two checks are performed. First,
on lines 49-50, the sum of probabilities is checked to be equal to one. Second, on
lines 52-55, the mean is computed and compared against the theoretical value.
If the two checks evaluate to true, then the simulation program is correct.

Listing 5.4
Estimating the steady-state probability distribution (P[N = k]).

1 from random import expovariate

2 from statistics import mean
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3 from math import inf as Infinity

4

5 # Parameters

6 lamda = 1.3

7 mu = 2.0

8 Num_Pkts = 1000000

9 count = 0

10 clock = 0

11 N = 0

12

13 Arr_Time = expovariate(lamda)

14 Dep_Time = Infinity

15 Prev_Event_Time = 0.0

16

17 Data = {} # Dictionary

18

19 while count < Num_Pkts:

20 if Arr_Time < Dep_Time:

21 clock = Arr_Time

22 # Length of time interval

23 delta = clock - Prev_Event_Time

24 if N in Data: Data[N] += delta

25 else: Data[N] = delta

26 Prev_Event_Time = clock

27 N = N + 1.0

28 Arr_Time = clock + expovariate(lamda)

29 if N == 1:

30 Dep_Time = clock + expovariate(mu)

31 else:

32 clock = Dep_Time

33 # Length of time interval

34 delta = clock - Prev_Event_Time

35 if N in Data: Data[N] += delta

36 else: Data[N] = delta
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37 Prev_Event_Time = clock

38 N = N - 1.0

39 count = count + 1

40 if N > 0:

41 Dep_Time = clock + expovariate(mu)

42 else:

43 Dep_Time = Infinity

44

45 # Compute probabilities

46 for (key, value) in Data.items():

47 Data[key] = value / clock

48

49 # Check total probability is 1.0

50 print("Sum of Prob’s = ", sum( Data.values() ) )

51

52 # Check expectation

53 mean = 0.0

54 for (key, value) in Data.items():

55 mean = mean + key * value

56

57 print("E[N] = ", mean)

5.4 INDEPENDENT SIMULATION RUNS
Figure 5.7 shows the raw data which is generated as a result of running a
simulation program. Each simulation run results in an instance of the output
variable. Each realization of the output variable is a vector containing n ob-
servations. Each instance of the output variable accounts for one sample of
the performance measure. The first k observations in the output variable are
dropped because they are part of the transient phase. In this phase, data is
highly variable due to the initial conditions. In the single-server example, for
instance, the initial conditions are that the system is empty and the server is
idle.

In an introductory statistics course, we always assume that samples in a
data set are IID. In fact, you should know that classical statistical techniques
can be applied only on data sets with IID samples. Unfortunately, in a simu-
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Figure 5.7
Raw data generated when running a simulation program.

lation run, values of an output variable are not independent. Thus, the value
of a performance metric resulting from a single simulation run cannot be used
as an estimate.

For example, in order to compute an estimate of the response time (W ) of
the single-server queueing system, we need to define an output variable (say)
Z = [Wi], where Z is a list of the times each simulated packet spends in the
system. The response time for each packet is computed as Wi = Tqi + Tsi ,
where Tqi is the time spent in the queue and Tsi is the time spent at the
server. Note that Wi = Wi−1 +Wi−2 + ...+W1. Hence, we can conclude that
Wi’s are not independent. This serial dependence exists in both the transient
and steady phase. So, what should we do?

The simplest remedy to the above problem is to construct your sample set
by making multiple independent simulation runs. In this case, each simulation
run will generate one sample in your sample set. In this way, you will have
a sample set with IID samples and thus can apply the classical statistical
techniques. Listing 5.5 shows how you generate multiple independent samples
of the delay performance measure using the simulation model of the single-
server queueing system defined in the external library simLib.

The number of independent simulation runs to be performed is stored in
the variable Num_Repl. In each simulation run, n packets are simulated. The
former is necessary to ensure IID samples. Also, the latter is necessary to
ensure that the transient phase is eliminated.

Finally, to make sure that every simulation run is independent from all the
other simulation runs, you have to reseed the random number generator (see
line 17). That is, for every simulation run, you must assign a unique seed to
the function random(). This way the sequence of generated random numbers
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will be different. This approach should result in independent samples of your
performance measure. This requirement will become clear in Chapter 9 when
we discuss random number generators.

Listing 5.5
Performing multiple independent simulation runs of the simulation model of
the single-server queueing system.

1 # simLib is your simulation library, which you will reuse

2 # in your homework and projects.

3 # It is available in the github repository

4

5 from simLib import mm1

6 from random import seed

7 from statistics import mean

8

9 lamda = 1.3

10 mu = 2

11 n = 100000 # Number of packets to be simulated

12

13 Num_Repl = 50 # Number of replications (repetitions)

14 Delay = [] # Data set

15

16 for i in range(Num_Repl):

17 seed() # Reseed RNG

18 d = mm1(lamda, mu, n)

19 Delay.append(d)

20

21 # Estimate of performance measure

22 print("Average Delay = " , round( mean(Delay), 4) )

5.5 TRANSIENT AND STEADY PHASES
Figures 5.8(a) and 5.8(b) show that a simulation run goes through two phases:
transient and steady. In the transient phase , the values of the output variable
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Figure 5.8
Cumulative average versus number of simulated packets. The theoretical value
is Wavg = 10. After the transient phase is over, the cumulative average starts
approaching the theoretical value.
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Wcum vary dramatically. They are significantly different from the theoretical
value (Wavg = 10) computed using standard queueing theory formulas. Wcum

can be computed using Eqn. (5.8), where n is the number of simulated packets.
Finally, in this specific simulation run, the transient phase extends from one
to approximately n = 40000 simulated packets. That means the first 40000
samples are dropped from the output variable. At the end of the simulation
run, the output variable will contain only 60000 samples.

Wcum =

∑n
i=1Wi

n
. (5.8)

In the transient phase, output variables fluctuate due to the effect of the
initial state of the simulation model. Thus, no simulation data should be
collected during this phase. Instead, the simulation program should be allowed
to run until it exits this phase. Interestingly, this phase is also referred to as
the warm-up phase. Figure 5.8(b) shows a detailed view of the transient phase.

Several techniques exist for estimating the length of the transient phase .
In this book, we are going to use a simple but effective technique based on the
Welch’s method introduced in [11]. This technique uses the running average of
the output variable. Several realizations of the output variable are generated.
Then, they are combined into one sequence in which each entry represents
the average of the corresponding entries in the generated realizations. This
final sequence is then visually inspected to identify an appropriate truncation
point. Figure 5.9 shows the final sequence (Z) resulting from five realizations.
The entries before the truncation point will be discarded. This is because they
will introduce a bias in the point estimate of the performance measure.

The first two steps in the Welch’s method are shown in Figure 5.10. The
following is a description of these two steps.

1. For each output variable Y , run the simulation at least five times. Each
simulation run i generates a realization Y [i] of size m.

2. Calculate the mean across all the generated realizations, i.e.,

Z[i] =

∑R
i=1 Y [i]

R
, (5.9)

where R is the number of simulation runs performed in step 1.

3. Plot the sequence Z.

4. The warm-up period ends at a point k when the curve of Z becomes
flat. Choose this point as your truncation point.

Listing 5.6 gives a Python implementation of the above two-step technique
for determining truncation points. It also gives the code used for generating
Figure 5.9. As you can tell from this figure, using the average of multiple
realizations is more effective than using a single realization of the output
variable to determine the length of the transient phase.
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Figure 5.9
Z is the average of the five output sequences Y[0]-Y[4]. A truncation point
can visually be determined by using the curve of Z. In this example, a good
truncation point is n = 3000.
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Run 1:

Run 2:

Run 3:

Average:

Step 1

Step 2

Figure 5.10
The first two steps in the Welch’s method. In step 1, multiple realizations of
the output variable are generated. These realizations are combined into one
sequence in step 2.
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Listing 5.6
Determining a good trunction point using the average of several realizations
of an output variable.

1 from simLib import out_var_cum_mm1

2 from random import seed

3 from matplotlib.pyplot import *

4 import numpy as np

5

6 lamda = 1.3

7 mu = 2

8

9 n = 10000 # Number of packets to be simulated

10 R = 5 # Number of replications (repetitions)

11

12 Y = np.zeros( shape = (R, n) ) # Output variable Delay

13

14 # 1. Generate sample paths

15 for i in range(R):

16 seed()

17 Y[i] = out_var_cum_mm1(lamda, mu, n)

18

19 # 2. Compute the mean

20 Z = []

21 for i in range(n):

22 Z.append( sum(Y[:, i]) / R )

23

24 # Plot Y and Z

25 plot(Y[0], "k--", label="Y[0]")

26 plot(Y[1], "k--", label="Y[1]")

27 plot(Y[2], "k--", label="Y[2]")

28 plot(Y[3], "k--", label="Y[3]")

29 plot(Y[4], "k--", label="Y[4]")

30 plot(Z, "k", linewidth=2, label="Z")

31
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1

2

Packets

Figure 5.11
A two-server queueing system with a finite buffer of size three.

Table 5.2
IATs and STs for Exercise 5.1.

Pkt 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IAT 2 5 1 3 1 3 3 2 4 5 3 1 1 1 2
ST 12 10 16 9 10 13 17 10 8 12 6 5 4 3 3

32 xlabel("$n$", size=16)

33 ylabel("$W_{cum}$", size=16)

34 legend(loc=’upper right’, shadow=True)

35 show()

5.6 SUMMARY
The selection of the next event by direct comparison of event occurrence times
becomes cumbersome as the number of servers increases. In Chapter 7, you will
learn about the event list, which is the preferred way for next event selection.
This data structure is natively supported by Python and leads to concise and
more manageable simulation programs. You will just need to learn how to
include it in your simulation program and use it.

5.7 EXERCISES
5.1 Consider the two-server queuing system shown in Figure 5.11. The two

servers are indexed from 1 to 2 and the buffer has a finite buffer of size
three. That is, at most three packets can be stored inside the system at
any instant of time. The Inter-Arrival Times (IATs) and Service Times
(STs) for 15 packets are given in Table 5.2. A packet goes to the server
with the lowest index. If all the two servers are occupied, the packet
waits in the queue. Perform a manual simulation of the system and then
answer the following questions:



92 � Computer Simulation: A Foundational Approach Using Python

a. How many customers have to wait in the queue?

b. What is the average waiting time for a packet that has to join the
queue?

c. What is the average time a packet spends in the system?

d. What is the total utilization (i.e., busy) time for each server?

e. What is the probability that an arriving packet is lost?

5.2 Extend the simulation program in 5.1 to simulate the system in Fig-
ure 5.11. Verify the simulation program by applying the workload (i.e.,
15 packets) in Exercise 5.1 and then comparing the results with those
obtained manually.



C H A P T E R 6

Statistical Analysis of
Simulated Data

“The population mean is an unknown constant and no probability statement
concerning its value may be made.”
−Jerzy Neyman, inventor of confidence intervals.

Simulation is performed in order to generate sample paths of the system
under study. Then, these sample paths are used for computing time averages of
several performance measures. For each performance measure, two estimates
are generally of interest: the point estimate (i.e., mean) and the interval esti-
mate (i.e., confidence interval). It is important that a confidence interval for
each mean is reported since simulation generates a finite sample path, which
is also one of many possible sample paths. In this chapter, you will learn how
to construct and interpret confidence intervals. You will also learn about one
method for comparing two system designs using simulation.

6.1 POPULATIONS AND SAMPLES
In this section, you will be introduced to the notion of a population and the
idea of sampling from that population. These two concepts are very important
because statistics is the science of making inferences about the population us-
ing facts derived from random samples. To illustrate this point, consider the
problem of estimating the average delay through the single-server queueing
system by using simulation. In this case, we can consider a population of
packets that will travel through the system. However, it would be more inter-
esting if we consider the set of all possible delays as our population (see Figure
6.1). This will lead to a population of numbers rather than a population of
individual packets.

It should be pointed out that in some applications, populations of scalars
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{3.1, 2.3, 7.5, 10.1, 17.4}

0 R+R+∞
Population:

Sample 1:

{1.4, 3.6, 4.5, 3.1, 9.4}Sample 2:

Figure 6.1
Population and samples for the simulation experiment of estimating the delay
through the single-server queueing system by simulating five packets. The
population is (0,∞).

(i.e., single numbers) are not sufficient. We need to consider populations of
vectors. For instance, if you want to estimate the delay and throughput of the
single-server queueing system, you will end up with a population of ordered-
pairs (W, τ), where W ∈ (0,∞) and τ ∈ (0,∞).

Random Samples

Each observation (or sample) of a performance metric is a random variable.
Hence, a random sample of size n consists of n random variables such
that the random variables are independent and have the same probability
distribution. For example, in Figure 6.1, each random sample contains five
observations. The first observation is different in both sample sets. This is
because the first observation is a random variable and we cannot predict
its value in each sample set.

Statistics, such as the sample mean and variance, are computed as func-
tions of the elements of a random sample. Statistics are functions of random
variables. The following are some of the most commonly used statistics.

1. Sample mean

X =
1

n

n∑

i=1

Xi,

2. Sample variance

S2 =
1

n− 1

n∑

i=1

(Xi −X)2,

3. Sample standard deviation

S =
√
S2.
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Table 6.1
Notation for the sample and population statistics.

Mean Variance Standard
Deviation

Sample X S2 S - Random variables
- Obtained from simulation

Population µ σ2 σ - Constants
- Obtained from queueing theory

Run 1

Run 2

Run n

Multiple 
Simulation 

Runs

S1

S2

Sn
Set of 

Independent 
Samples

S1 S2

Sn

Set of Sample 
Means

Figure 6.2
Probability distribution of the sample mean is normal.

6.2 PROBABILITY DISTRIBUTION OF THE SAMPLE MEAN
Suppose that n independent simulation runs of a simulation model are per-
formed. As shown in Figure 6.2, at the end of every simulation run, a sample
(Si) of the performance measure of interest is generated. After all the n simu-
lation runs are finished, we have a set of n samples. These samples constitute
a sample set. If the above process is repeated m times, we end up with a
set of sample means of size m. The frequency histogram of this set will have
the shape of the normal distribution. This is the essence of the central limit
theorem (see the next side note).
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Figure 6.3
Frequency distribution of the average delay D through the single-server queue-
ing system with λ = 1 and µ = 1.25. The population mean is 4.

Figure 6.3 shows the frequency distribution of the average delay (D) for the
single-server queueing system. For this specific example, the population mean
is 4. The population mean is equivalent to the theoretical mean which can be
calculated using queueing theory. The standard deviation of this probability
distribution is the standard error.

Now, since we know the probability distribution for D, we can study how
far the sample mean might be from the population mean. According to the
empirical rule, approximately 68% of the samples fall within one standard de-
viation of the population mean. In addition, approximately 95% of the samples
fall within two standard deviations of the population mean and approximately
99% fall within three standard deviations. Figure 6.4 illustrates the empirical
rule. In the next section, we are going to use the fact that 95% of the samples
lie within two standard deviations (i.e., t = 1.96) of the mean to establish a
95% confidence interval.

The Central Limit Theorem

Regardless of the probability distribution of the population mean, the
probability distribution of the sample mean is always normal. The mean of
this normal distribution is the theoretical mean and the standard deviation
is the standard error.
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m 1sd 2sd 3sd-1sd-2sd-3sd

68 %

95 %

99 %

Figure 6.4
The empirical rule for the distribution of samples around the population mean.
95% of the area under the curve of the normal distribution lies within two
standard deviations (equal to 1.96) of the mean.

6.3 CONFIDENCE INTERVALS
A ((1− α)× 100)% confidence interval for a population mean µ is given by

x̄± t× s√
n
, (6.1)

where:

t is a random variable that has a student-t distribution with (n − 1)
degrees of freedom,

x̄ is the sample mean,

s is the sample standard deviation,

n is the sample size,

α is the significance level, and

1− α is the confidence level.

From the above definition, it is clear that there are two factors that impact
the width of the confidence interval:
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1. Confidence level (1− α)

As the confidence level increases, the value of t increases. Accordingly,
the width of the confidence interval increases.

2. Sample size (n)

As the number of samples increases, the width of the confidence interval
decreases.

Example 6.1 shows how different confidence intervals can be computed.
Python has a statistics module that provides two methods for calculating the
sample mean and standard deviation. Listing 6.1 shows how these two methods
are used in the calculation of the confidence interval of a given sample set.
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Example 6.1: Calculating the confidence interval.

Consider the following samples for estimating the average delay. Calculate
the 80%, 90%, 95%, 98%, and 99% confidence intervals.

{3.33, 3.15, 2.91, 3.05, 2.75}

Solution

1. Calculate the sample mean and sample standard deviation.

x̄ = 3.038
s = 0.222

2. Compute the values of t for the different confidence levels.
Using the t-distribution table in Appendix D and the fact that n−1 = 4,
the values of t are as follows.

CL t
0.80 1.533

0.90 2.132
0.95 2.776
0.98 3.747
0.99 4.604

Notice that as the confidence level increases, the value of t also increases.

3. Use Eqn. (6.1) to get the confidence intervals.

CL t Confidence Interval
0.80 1.533 (2.886, 3.190)
0.90 2.132 (2.826, 3.250)
0.95 2.776 (2.762, 3.314)
0.98 3.747 (2.666, 3.410)

0.99 4.604 (2.580, 3.495)

Notice that as the confidence level increases, the confidence interval gets
wider.
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Listing 6.1
Calculating the confidence interval using Python.

1 import statistics as stat

2 import math

3

4 sample_set = [3.2, 3, 2.8, 2.9, 3.1]

5 n = len(sample_set)

6

7 mean = stat.mean(sample_set)

8 std_dev = stat.stdev(sample_set)

9

10 t = 2.776

11 ci1 = mean - t * (std_dev/math.sqrt(n))

12 ci2 = mean + t * (std_dev/math.sqrt(n))

13

14 print("Confidence Interval: ", round(ci1, 2), round(ci2, 2))

15

16 # Output

17 # Confidence Interval: 2.8 3.2

Note that when the number of samples is large (i.e., n > 30), the t-
distribution approaches the normal distribution. As a result, the values of
t become fixed. This is clearly shown in the last row of the table given in
Appendix D.

6.3.1 Interpretations
The confidence interval is a random interval which may contain the population
mean. The following is the mathematical expression for the probability that
a confidence interval contains the population mean.

P [x̄− t× s√
n
< µ < x̄+ t× s√

n
] = 1− α,

where x̄ is a random variable, µ is a constant, and 1−α is a probability. This
expression says that the probability that the interval (x̄− t× s√

n
, x̄+ t× s√

n
)

contains µ is 1 − α. Therefore, we are ((1 − α) × 100)% confident that the
population mean is between x̄ − t × s√

n
and x̄ + t × s√

n
. However, there is
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Figure 6.5
Two of the calculated confidence intervals do not include the population mean.
The population mean is 15.

a (α × 100)% chance that the population mean lies outside the confidence
interval.

Another interpretation is the following. If a simulation is performed n times
with different seed values, then in ((1−α)×100)% of the cases, the population
mean lies within the confidence interval. In (α× 100)% of the cases, however,
the population mean lies outside the interval. Figure 6.5 shows an example in
which the confidence interval can miss the population mean. Listing 6.2 shows
how this figure is generated.

Listing 6.2
Plotting confidence intervals and population mean.

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 x = [1, 2, 3, 4, 5, 6, 7]

5 y = [17, 7, 14, 18, 12, 22, 13]

6

7 plt.figure()
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8 plt.plot([0, 7], [15, 15], ’k-’, lw=2) # Population Mean =

15

9 plt.errorbar(x, y, yerr=4, fmt=’.’)

10 plt.xlabel("Confidence Intervals")

11 plt.ylabel("Sample Means")

12 plt.show()

The following are false interpretations of the confidence interval.

- The probability that the population mean belongs to the confidence
interval is (1− α).

– This is wrong because the population mean is a constant that either
belongs to the confidence interval or not.

- The percentage of the samples whose values are between x̄ − t × s√
n

and x̄+ t× s√
n

is ((1− α)× 100)%.

– This is wrong because the confidence interval is about the popula-
tion, not the sample.

6.3.2 Why Not Always Use a 99% Confidence Interval?
First of all, we cannot have a 100% confidence interval. This is impossible
because the population mean is unknown and we cannot generate all the
members of a population. However, we can get the confidence level as high as
0.99. Unfortunately, as the confidence level increases, the confidence interval
becomes wider and thus useless. For example, if you are 99% confident that
the average delay is in the interval (5, 90), then you cannot make any useful
conclusion because the interval is simply too wide.
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Example 6.2: Interpreting the confidence interval.

You have been asked to evaluate the performance of five machines. The
95% confidence interval for the average performance of one machine is
(10.3, 13.1). Evaluate the following statements:

1. You are 95% confident that the performance for all the five machines is
between 10.3 and 13.1.

2. 95% of all the samples generated as a result of running one machine will
give an average performance between 10.3 and 13.1.

3. There is a 95% chance that the true average is between 10.3 and 13.1.

Solution

1. This is not correct: a confidence interval is for the population parameter,
and in this case the mean, not for individuals.

2. This is not correct: each sample will give rise to a different confidence
interval and 95% of these intervals will contain the true mean (i.e., the
population mean).

3. This is not correct: µ is not random. The probability that it is between
10.3 and 13.1 is 0 or 1.

Example 6.3: Making a decision using the confidence interval.

A sales person working for a big manufacturer of networking devices claims
that their new home router has an average delay of 54 msec. You decided
to test the device in the lab. Based on a sample set of size 100, you have
found that the average delay is 57 msec with a standard deviation of 1.2
msec. Would you buy this device?

Solution

1. Construct the 95% confidence interval for the mean delay.

( 57 − 0.2352, 57 + 0.2352 )

2. The confidence interval does not support the claim of the sales person
because it does not contain the claimed population mean. Therefore, do
not buy.
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6.4 COMPARING TWO SYSTEM DESIGNS
Design means deciding the values of the system parameters (e.g., service rate)
before the system is put into operation. Two system designs can be compared
on the basis of a performance measure such as response time. However, you
do not simply compare the mean values resulting from simulating the two
designs and pick the best one. You need to first confirm whether the difference
is caused by a difference in the design or by the random fluctuation inherent
in the simulation model of the design. In this section, you are going to learn
about how you select between two system designs using simulation.

Let the performance measure value obtained from simulating design i (i ∈
{1, 2}) be denoted by θi. Also, let the difference between the two performance
measures be denoted by θ = θ1 − θ2. We compute the confidence interval for
θ to check if there is a significant difference between the two system designs.
There will be three possible cases as follows.

1. If the confidence interval for θ contains zero, then the difference θ1 − θ2
is not statistically significant. Hence, there is no strong evidence that
the observed difference is due to anything other than random variation
in the output variables.

2. If the confidence interval for θ is to the left of zero, then there is a strong
statistical evidence that θ1 − θ2 < 0. This means that the performance
measure value for design 1 is smaller than that for design 2. Hence,
design 1 is better.

3. If the confidence interval for θ is to the right of zero, then there is a strong
statistical evidence that θ1 − θ2 > 0. This means that the performance
measure value for design 2 is smaller than that for design 1. Hence,
design 2 is better.
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Example 6.4: Which design reduces the response time?

The table below shows five samples of the response time for two designs. In
each simulation run, the same set of random numbers is used in simulating
the two designs. The last column gives the difference in the response time
of the two designs.

Replication Design 1 (θ1) Design 2 (θ2) Difference (θ1 − θ2)

1 24 21 3

2 23 20 3

3 23 21 2
4 22 21 1

5 22 20 2

Mean 2.2

Variance 0.7

Standard Deviation 0.84

The 95% confidence interval for θ1− θ2 is 2.2± 1.04, which is equivalent to
(1.16, 3.24). This implies that θ1 − θ2 > 0 and thus θ1 > θ2. Hence, design
2 is better and it will result in a smaller response time.

6.5 SUMMARY
Statistical analysis of the data resulting from running a simulation model is a
very important step in a simulation study. This step will enable you to gain
insights about the performance of the system you study. As a rule of thumb,
for each performance measure you want to compute, you should report its
mean and confidence interval. The confidence interval gives a range of values
which may include the population mean. It enables you to assess how far your
estimate (i.e., the sample mean) is from the true value (i.e., the population
mean) of the performance measure.

6.6 EXERCISES
6.1 Simulate the single-server queueing system using 100 packets. Use λ = 1

and µ = 1.25. Construct a 95% confidence interval for the average delay
using a sample set of size 10. Answer the following questions:

a. Does the confidence interval include the theoretical mean?

b. If your answer in part (a) is NO, what do you think is the reason for
missing the population mean? Suggest a solution.
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Event Graphs

“All models are wrong, but some are useful.”
−George Box

Event graphs are a formal modeling tool which can be used for building
discrete-event simulation models. They were introduced in [6] as a graphical
representation of the relationships between events in a system. Event graphs
can be used to model almost any discrete-event system. This chapter is an
introduction to event graphs. It is also going to show you how you can syn-
thesize simulation programs from simulation models constructed using event
graphs.

7.1 WHAT IS AN EVENT GRAPH?
An event graph is a visual representation of a discrete-event system. It shows
the scheduling relationships between events which occur inside the system. An
event graph is constructed using vertices and directed edges with attributes
and conditions. In Figure 7.1(a), there are two events which are represented by
two vertices A and B. Events A and B are referred to as the source and target
events, respectively. When event A occurs, it will result in the scheduling of
event B if the condition is true. Event B will occur after t time units.

On the other hand, in Figure 7.1(f), a dashed arrow is used to indicate that
event A cancels event B. This type of edge is referred to as a canceling edge.
A condition and time can be associated with a canceling edge. Similarly, for a
normal edge, the condition and/or time can be eliminated. If both eliminated,
that means the transition to the next event happens immediately (see Figure
7.1(d)).

Note that in Figure 7.1(b), event B is immediately scheduled if the con-
dition on the scheduling edge evaluates to true. By contrast, in Figure 7.1(c),
the scheduling edge is unconditional and event B will occur after t time units

109
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A B
( Condition )

t
Source Target

(a) Event B (target) is scheduled by event A
(source) to occur after t time units if condition
is true.

A B
( Condition )

(b) Event B is going to occur immediately if
condition is true.

A B
t

(c) Event B is going to occur after t time units.

A B

(d) Event B is going to occur immediately.

A

( Condition )

t

(e) Event A reschedules
itself.

A B
( Condition )

t

(f) A dashed arrow indicates that event B is
cancelled after the occurrence of event A by t
time units if the condition is true.

Figure 7.1
Types of edges in event graphs.
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of the occurrence of event A. Finally, an event can schedule itself as shown in
Figure 7.1(e).

Event graphs also include state variables which are written between curly
brackets. For example, in Figure 7.2(b), state variables are written below the
vertices. The values the state variables should take are also shown. In this way,
as we will see, we have a graph that describes the operation of the discrete-
event system to be simulated. Once we are confident that the constructed
event graph precisely captures the behavior of the system under study, we
can call it a simulation model. Then, we translate the model into code and
execute the simulation program.

Once the modeler has a good mental image of how the system under study
works, he can proceed to construct a simulation model using event graphs.
An event graph can be constructed as follows:

1. Identify all the event types in the system under study,

2. For each event type, identify the events it is going to schedule,

3. For each scheduling relationship between two events,

(a) Identify the condition that must be satisfied in order for the target
event to occur, and

(b) Identify the time delay after which the target event occurs,

4. Each event type is represented by a vertex (i.e. node) in the event graph,

5. Vertices are connected by directed edges (either scheduling or canceling
edges) that can have two attributes: delay and condition, and

6. Below each vertex, indicate the state variables which will be affected by
the occurrence of the event and how they are updated.

7.2 EXAMPLES
In this section, several examples will be given to illustrate the modeling power
of event graphs. These examples can be used as a basis for modeling more
complex systems.

7.2.1 The Arrival Process
The arrival process is a very fundamental building block in event graphs of
queueing systems. Its role is to generate packets and maintain a single state
variable, A, which represents the cumulative number of packets. There is one
random varaible, tA, which is an exponential random variable with mean 1

λ .
It models the inter-arrival time between two consecutive arrivals.

Figures 7.2(a) and 7.2(b) show the state diagram and event graph of the
Poisson arrival process, respectively. The event graph can be interpreted as
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0 1 2 3

Arrival Arrival Arrival Arrival

(a)

Start Arr

ta

{ A = 0 } { A = A + 1 }
(b)

Figure 7.2
State diagram (a) and event graph (b) for the Poisson arrival process.

follows. First, when the Start event occurs at time t = 0, it sets the value
of the state variable A to zero and schedules the first Arrival event to occur
immediately at time t = 0. Then, whenever an arrival event occurs, the state
variable A is incremented by one and the next arrival event is scheduled to
occur after ta time units.

7.2.2 Single-Server Queueing System
Figure 7.3 shows how the operation of the single-server queueing system is
modeled as an event graph. There are four events:

1. Start,

2. Arrival (Arr),

3. Beginning of Service (Beg), and

4. End of Service or Departure (Dep).

There are two state variables: S and Q. The former represents the state of
the server where S = 0 indicates that the server is free and S = 1 indicates
that the server is busy. Once the state variables are initialized, the first arrival
event is generated and the simulation is started. Whenever an arrival event
occurs, the state of the server is checked. If the server is available, which is
indicated by the condition S == 0, the service of the arriving packet is started
immediately. Otherwise, the queue size is incremented by 1 (i.e., Q = Q +
1) to indicate that an arriving packet has been inserted into the queue. In
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Start Arr Beg Dep

{ S = 0 , Q = 0 } { Q = Q + 1 } { S = 1 , Q = Q - 1 } { S = 0 }

( Q > 0 )

( S == 0 )

ta

ts

Figure 7.3
Event graph for the single-server queueing system.
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Figure 7.4
Reduced event graph for the single-server queueing system.

addition, the next arrival event is scheduled to occur after ta time units. This
is very important to keep the simulation running.

Next, whenever the service of a packet begins, the Beg event schedules a
Dep event to occur after ts time units. It also changes the state of the server
to busy and decrements the size of the queue by one. Similarly, when the Dep
event occurs, the state of the server is changed back to free and a new Beg
event is scheduled if the queue is not empty.

The complexity of event graphs is measured by the number of vertices and
edges present in the graph. Fortunately, an event graph can be reduced to a
smaller graph, which is equivalent as far as the behavior of the system under
study is concerned. However, it may be necessary to eliminate (and/or intro-
duce new) state variables, attributes, and conditions in order to accommodate
the new changes. In this specific example, the reduced event graph contains
only one state variable, N , which represents the total number of packets inside
the system.

Figure 7.4 shows a reduced event graph for the single-server queueing sys-
tem. With this new event graph, the number of vertices and edges is reduced
from four to three and five to four, respectively. Of course, for larger systems,
the reduction will be significant.
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Figure 7.5
Event graph for the K-server queueing system.
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Figure 7.6
Event graph for the single-server queueing system with a limited queue ca-
pacity.

7.2.3 Multiple-Server Queueing System
A multiple-server queueing system is an extension of the single-server queueing
system. It contains more than one server. Figure 7.5 shows the event graph
for a multiple-server queueing system with K servers. The initial value of the
state variable S is equal to the number of servers (K). An arriving packet will
be scheduled for service as long as there is at least one available server. This
is indicated by the condition S > 0. The value of S is decremented by one
whenever the Beg event occurs. This is to indicate that a server has just been
occupied. The value of S is incremented by one when a Dep event occurs to
indicate that a server has just been released.

7.2.4 Single-Server Queueing System with a Limited Queue Capacity
The event graph in Figure 7.6 is for the single-server queueing system when
the size of the queue is finite. In this kind of system, an arriving packet cannot
be stored in the queue if it is full. As a result, the packet is lost. This requires
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Figure 7.7
Event graph for the single-server queueing system with a server that fails.

the introduction of a new event type to capture this situation. This new event
is referred to as the Loss event.

The Loss event occurs whenever there is an Arrival event and the number of
packets in the buffer is N , which is the maximum queue size. When the arrival
event occurs, the state variable Q is incremented by one and the next events
are scheduled. If Q > N , a loss event is scheduled to occur immediately. When
the loss event occurs, the state variable L is incremented by one to indicate
a loss of a packet. On the other hand, the state variable Q is decremented by
one since it has been incremented by one when the arrival event occurred.

7.2.5 Single-Server Queuing System with Failure
Consider a machine which fails periodically. When the machine fails, the part
being manufactured is put back in the queue until the machine is repaired.
Figure 7.7 shows the event graph for such a system. There are two initial
events: Arrival and Fail. The failure event has the highest priority. That is, it
will be executed before all events occurring at the same time.

When a fail event occurs, the current Departure event is canceled and a
Repair event is scheduled instead. When the server becomes alive again, a Beg
event for the part at the head of the queue is scheduled immediately. Also,
the next failure event is scheduled to occur after tf time units.
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Event graph for the single-server queueing system with balking.

7.2.6 Single-Server Queuing System with Reneging
Impatient customers may leave the system after joining it. This can happen
if a customer is not willing to wait for more than T time units. A customer
reneges if he leaves the system without receiving service. Figure 7.8 shows the
event graph for the single-server queueing system with reneging.

In this model, the renege time (i.e., T ) is the same for all customers. This
implies that the order of reneges is the same as the order of arrivals into the
system. Hence, the canceling edge cancels the Renege event with the earliest
simulation time. The result of a renege event is that the customer at the head
of the queue is removed from the system.

7.2.7 Single-Server Queuing System with Balking
If the server in the single-server queueing system fails, customers may become
unwilling to join the system. This is because their delay times will be severely
affected. When a customer decides not to join the system, we say that the
customer balks. That is, he refuses to enter the system and thus he leaves. So,
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balking means that the customer leaves the system upon arrival. A customer
may balk with probability Pb or enter the system with probability 1 − Pb.
After he enters the system, a customer is either scheduled for service or he
waits in the queue if the server is busy. Figure 7.9 shows the event graph for
the single-server queueing system with balking. The state variable B is used
to keep track of the customers who balk.

7.3 TRANSLATING EVENT GRAPHS INTO CODE
In this section, we are going to propose a set of high-level concepts which
are expanded into code during the process of translating event graphs into
idiomatic Python code. A piece of code is referred to as idiomatic if it repre-
sents what an experienced programmer would write. The proposed high-level
concepts will help in mechanizing the translation process and enhancing the
maintainability of the resulting code. These high-level concepts are the fol-
lowing:

1. Event type,

2. Event generator,

3. Event handler,

4. Initial event, and

5. Simulation loop.

An event type is a base concept and it includes two subconcepts: event
generator and event handler. The event generator is an abstraction of a block
of code which returns a realization (or instance) of an event type. This instance
contains the time of occurrence of the event and the name of the event handler.
An event type can be realized as a tuple in Python.

On the other hand, the event handler is an abstraction of a block of code
which updates the state of the simulation model in response to an event. Two
tasks are performed inside an event handler: (1) updating state variables and
(2) scheduling next events. After an event handler is fully executed, control is
returned to the main simulation loop.

Inside the simulation loop, the next event is always the one with the earliest
occurrence time. If such an event exists, the simulation clock is updated by
setting its value to the current simulation time, which is the time of occurrence
of the current event. After that, the event handler of the event is called. This
process is repeated until there are no more events to execute.

The notion of initial events is very crucial. These are the events which are
placed inside the event list before the simulation loop is executed. They have
to be explicitly identified in the event graph. In our case, we use a special
event type called Start which points to the initial events. The start event
always occurs at simulation time zero. When it occurs, it schedules the initial
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Table 7.1
Event table for the event graph in Figure 7.4.

Event Type Event Generator Event Handler State Variables

Start NA Handle_Start_Ev N = 0
Arrival Gen_Arr_Ev Handle_Arr_Ev N = N + 1

Departure Gen_Dep_Ev Handle_Dep_Ev N = N − 1

events and starts the simulation. A block of code must exist in the simulation
program before the simulation loop to explicitly place the initial events pointed
to by the start event into the event list.

Listing 7.1
Python implementation of the event graph in Figure 7.4.

1 from random import *

2 from bisect import *

3

4 # Parameters

5 lamda = 0.5

6 mu = 0.7

7 n = 100 # Number of packets to be simulated

8

9 # Initialization

10 clock = 0.0 # Simulation clock

11 evList = [] # Event list

12 count = 0 # Count number of packets simulated so far

13

14 # Insert an event into the event list

15 def insert(ev):

16 insort_right(evList, ev)

17

18 # Event generator for the arrival event

19 def Gen_Arr_Ev (clock):

20 global count

21 count += 1
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22 if count <= n:

23 ev = ( clock + expovariate(lamda) , Handle_Arr_Ev )

24 insert(ev)

25

26 # Event generator for the departure event

27 def Gen_Dep_Ev (clock):

28 ev = ( clock + expovariate(mu) , Handle_Dep_Ev )

29 insert(ev)

30

31 # Event handler for the arrival event

32 def Handle_Arr_Ev(clock):

33 global N

34 N = N + 1 # Update state variable

35 Gen_Arr_Ev(clock) # Generate next arrival event

36 if N == 1:

37 Gen_Dep_Ev(clock)

38

39 # Event handler for the departure event

40 def Handle_Dep_Ev(clock):

41 global N

42 N = N - 1

43 if N > 0:

44 Gen_Dep_Ev (clock)

45

46 # Initialize state variables and generate initial events

47 N = 0 # State variable

48 Gen_Arr_Ev(0.0) # Initial event

49

50 # Simulation loop

51 while evList:

52 ev = evList.pop(0)

53 clock = ev[0]

54 ev[1](clock) # Handle event
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Table 7.1 is the event table for the event graph in Figure 7.4. Listing 7.1
shows how the information in Table 7.1 is translated into Python code. As
you can tell, the code is very structured. Thus, this process can be automated
very easily. Next, this translation process is described.

In the the first part of the program (lines 1-2), standard Python libraries
(random and bisect) are imported into the program. The first one contains
functions which can be used for random number generation. The second one,
however, contains functions for manipulating the event list. Then, parameters
of the simulation models are defined on lines 5-7. There are only three param-
eters: arrival rate (lamda), service rate (mu), and number of packets to be
simulated (n).

In the third part of the program (lines 10-13), the simulator is initialized.
First, the simulation clock is set to zero. This variable is used to keep track of
the simulation time. After that, an empty list is created to keep the simulation
events. In this list, events are kept in order using the predefined function in-
sort˙right from the bisect library (see line 16). There is only one state variable,
N , in this simulation model. It is initialized on line 47. The variable count
defined on line 13 is used for counting the number of packets which have been
simulated. This is necessary to make sure that no more than n packets are
simulated. The value of this variable is incremented and checked inside the
event generator of the arrival event (see lines 20-24).

In the fourth part of the program (lines 15-16), a convenience function
is defined. This abstraction hides the unconventional name used for the pre-
defined function used for sorting events in the event list. This part is not
necessary. However, we believe it helps in enhancing the readability of the
code.

Figure 7.10 shows a template which can be used as an aid when performing
a manual translation of an event graph into a Python simulation program. The
match between program in Listing 7.1 and the proposed template is almost
perfect. Each block in the template corresponds to a modeling concept. This
concept is expanded into code in the final simulation program.

7.4 SUMMARY
A visual simulation model of any discrete-event system can be constructed
using event graphs. Although an event graph gives a very high-level represen-
tation of the system, it still helps in capturing and understanding the complex
relationships between events inside the simulation model. In addition, event
graphs can be translated into Python code in a systematic way using the ab-
stractions discussed in this chapter. The resulting code is easy to understand
and maintain. Of course, as the size of the system grows, its event graphs
become very complicated.

7.5 EXERCISES
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Figure 7.10
A template for synthesizing simulation programs from event graphs.

7.1 Consider the system in Figure 7.11. There are two independent single-
server queueing systems. There is one traffic source which feeds the two
systems. Traffic is randomly split between the two systems. That is, an
arriving packet joins the system i with probability λi

λ , where λ1+λ2 = λ.

a. Draw the event graph for the traffic generator.

b. Now, draw the event graph for the whole system.

7.2 Consider the setup in Figure 7.12 where a user communicates with an
online service hosted in a data center. The channel connecting the user
to the service has two characteristics: (1) propagation delay (Pd) and
(2) rate (R). The propagation delay is the time required for an electrical
signal to travel from the input of the channel to its output. Hence, if a
packet is injected into the channel, it will arrive at the other end after
Pd time units. The rate, however, is the speed of the channel. It gives
the number of bits which can be injected into the channel in one second.
Thus, 1

R is the time required to inject (i.e., transmit) one bit. The user
communicates with the server using a simple protocol. Basically, the user
transmits a message. Then, it waits until it receives an acknowledgment
from the server that the message has been received successfully. If the
user does not receive an acknowledgment within a preset time period,
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Figure 7.11
Two parallel single-server queueing systems with one shared traffic source.

Data CenterUser

Channel

Pd = 10 nsecPd = 10 nsec

R = 10 MbpsR = 10 Mbps

Figure 7.12
A simple network setup where a user communicates with a server in a data
center over a communication channel created inside a network. Propagation
delay (Pd) and rate (R) are two important characteristics of a channel.

it retransmits the same message again. Otherwise, it transmits the next
message.

a. Identify all the possible events which can occur in this system.

b. Draw an event graph which describes the operation of this system.

7.3 Consider the event graph for the single-server queuing system with
reneging (see Figure 7.8). Assume that the renege time of each packet
is different. In this case, the order of reneges is not necessarily the same
as the order of arrivals to the system. Modify the event graph in Figure
7.8 to reflect this new situation.
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Building Simulation
Programs

“Messy code often hides bugs.”
−Bjarne Stroustrup

Simulation programs are either time-driven or event-driven. In both cases,
the state of the simulation model is updated at discrete points in time. In this
chapter, you will learn the difference between the two types of programs. The
emphasis, however, will be on event-driven simulation. The general structure of
any discrete-event simulation program will be discussed. A complete program
will be shown and several programming issues will be pointed out.

8.1 TIME-DRIVEN SIMULATION
This approach to simulation is also referred to as discrete-time simulation.
This is because time evolves in discrete steps as shown in Figure 8.1. In this
case, the time axis is divided into equal intervals called slots. The size of each
slot is ∆t. Events occur at the boundaries of each slot (either at the beginning
or end of the slot). For example, the arrival of a packet can occur at the
beginning of a slot while the departure occurs at the end of the slot. State
variables, on the other hand, are updated at the end of the slot after all events
have occurred.

Slots are sequentially numbered using non-negative integers. Slot n is lo-
cated in time [n−1, n), where n = 1, 2, 3, .... Hence, in a time-driven simulation
program, the simulation loop has the following form:

for n in range(1, Total_Number_Of_Slots):
clock = clock + Delta_T

123
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Figure 8.1
In time-driven simulation, simulated time evolves in increments of size ∆t.

The variable clock represents the current simulated time, which advances in
increments of size Delta_T.

Listing 8.1 shows a time-driven simulation program for a discrete-
time model of the single-server queueing system. In this case, the arrival
and departure processes are Bernoulli random processes (see Figure 4.14).
In each time slot, an arrival and departure can occur with probabilities
Pa and Pd, respectively. The system will be simulated for a period of
Total_Number_Of_Slots slots. There is only one state variable which is
Q.

The simulation loop starts on line 15. In each iteration, the simulated time
is updated by Delta_T. Then, a random number is generated to check if an
arrival has occurred (see line 17). The auxiliary variable A is set to one if there
is an arrival. Similarly, on lines 21 and 22, a random number is generated and
the auxiliary variable D is set to one if there is a departure. Finally, the state
variable Q is updated at the end of the simulation loop.

Listing 8.1
A time-driven simulation program for the discrete-time single-server queueing
system.

1 from random import *

2 from statistics import *

3

4 Pa = 0.2 # Probability of an arrival

5 Pd = 0.6 # Probability of a departure

6

Slot No. 1 2 3 4 5 
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7 clock = 0

8 Delta_T = 1

9

10 Total_Number_Of_Slots = 10000

11

12 Q = 0 # Number of packets in queue

13

14 # Simulation loop

15 for n in range(1, Total_Number_Of_Slots):

16 A = 0 # Auxiliary variable for indicating an arrival

17 D = 0 # Departure

18 clock = clock + Delta_T

19 if random() <= Pa:

20 A = 1

21 if random() <= Pd and Q > 0:

22 D = 1

23 # Update state variable

24 Q = Q + (A - D)
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Continuous-Time Versus Discrete-Time Queues

The single-server queueing system can be modeled in two ways: discrete-
time and continuous-time. In discrete-time queues, time evolves in discrete
steps of the same size (see Figure 8.1). On the other hand, in continuous-
time queues, events can occur at any point on the time line. Hence, the time
between two consecutive events is random (see Figure 8.3). In addition,
the arrival and departure processes along with their underlying random
variables are different (see Figure 8.2) .

The Single-Server Queueing System

Continuous Time Discrete Time

Poisson

Exponential

Bernoulli

Geometric

Arrival & Departure Processes

Inter-Arrival and Service Times

Figure 8.2
Arrival and departure processes and their random variables in continuous-
and discrete-time queues.

8.2 EVENT-DRIVEN SIMULATION
This approach to simulation is also called discrete-event simulation. In this
type of simulation, time evolves in discrete steps of random sizes. Hence, as
shown in Figure 8.3, events occur at random points along the time line. Also,
the time between two consecutive events is random. The state variables must
be updated after the occurrence of every event.

In an event-driven simulation program, the simulation loop has the follow-
ing form:

while Event_List NOT Empty:
ev = EventList.next()
clock = ev.time

Clearly, the simulated time will advance in steps of unpredictable (i.e., ran-
dom) sizes. Also note that a WHILE loop is used instead of a FOR loop. This
loop is terminated when the list of events become empty.

Every event-driven simulation program must contain an event list. This list
maintains the temporal order of events. The first event in the list is always the
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Figure 8.3
In event-driven simulation, simulated time evolves in steps of random sizes
(∆t1 6= ∆t2).

one with the earliest event time. Fortunately, in Python, this list is already
implemented for us. For more details, see section A.7 in Appendix A.

8.3 WRITING EVENT-DRIVEN SIMULATION PROGRAMS
Now, we formally define the structure of an event-driven simulation program.
As shown in Figure 8.4, an event-driven simulation program consists of two
components: simulator and model. Events are generated by the model. They
are applied back to the model by the simulator. The simulator is responsible
for maintaining the temporal order of events using the event list. It is also
responsible for keeping the current simulated time (also called simulation time)
uptodate. At the beginning, the event list will contain a set of initial events
which will be used to start up the simulation.

The simulator contains a Random Number Generator (RNG), which is
the main source of randomness in the simulation program. The role of the
RNG is to generate random numbers from the interval (0, 1). These random
numbers are then used to drive the Random Variate Generators (RVG) in the
simulation model. RVGs and RNGs will be discussed in Chapters 10 and 11,
respectively. Figure 8.5 illustrates the relationships between RNG, RVG, and
Random Event Generator (REG). REGs are responsible for generating events
in the simulation program. For each event type, there will be a separate REG.

The model is the conceptual representation of the system being simulated.
Its elements are specific to the system and they must capture its behavior.
The model is executed by applying events to it. This will result in changing
the values of the state variables in the model. State variables are updated
inside blocks of code referred to as event handlers. There will be one event
handler for each event type.
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Simulator

{Event list, clock, seed, random number generator, 
initial events, output variables, auxiliary variables}

Events New
Events

Model

{Random variate generators, state variables, event 
generators, event handlers}

Performance 
Estimates

Figure 8.4
An event-driven simulation program has two independent components: simu-
lator and model.

RNG RVG REGseed u v event

Figure 8.5
How a random number u is used to generate an event.

Executing the simulation model results in new events which are passed to
the simulator. After sorting them, the simulator applies them back to the sim-
ulation model. Whenever an event is applied, the current values of some state
variables are recorded in predefined output variables. These values (or sam-
ples) will eventually be used for computing statistics about the performance
of the system under study.

Figure 8.6 shows the general structure of any event-driven simulation pro-
gram. The two components mentioned above are explicitly identified. There
are mainly four steps. Step 1 and 2 are part of the simulator. In Step 1, the
program is initialized. Parameters are read from the user and variables are de-
clared. The event list is created and initial events are inserted into it. Finally,
the simulation clock is set to zero. After that, in Step 2, the simulation loop
is executed. In each iteration of this loop, the next event is fetched from the
event list. It is the event with the earliest event time. The clock is updated
and the event handler of the event is called.

In Step 3, the model is executed as a result of calling event handlers. Inside



Building Simulation Programs � 129

Start

1. Initialization

    Simulation parameters
    State variables
    Output variables
    Event list
    clock = 0

2. Simulation loop

    ev = EventList.Next_Event( )
    clock = ev.Time
    ev.Event_Handler( clock )

Stop

4. Output

    Compute performance estimates using output variables

3. Event handler for event type 1

    Update state and output variables
    Generate and schedule new events

3. Event handler for event type N

    Update state and output variables
    Generate and schedule new events

Simulator

Model

Figure 8.6
A flowchart of the event-driven simulation program.

each event handler, state variables are first updated. Then, they are sampled
and their current values are stored in the corresponding output variables.
Finally, new events are generated and they are passed to the simulator. Steps
2 and 3 are executed repetitively until the condition of the simulation loop
becomes true. For instance, the simulation loop should be terminated when
the event list becomes empty. In the final step of the program (i.e., Step
4), statistical estimates of the performance measures are computed using the
values of state variables stored in the output variables.
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Table 8.1
Mapping concepts to code in Listing 8.2.

Operations Lines

Initialization 6 - 23
REG for the arrival event 25 - 29
REG for the departure event 31 - 35
Event handler for the arrival event 37 - 47
Event handler for the departure event 49 - 58
Insert initial events into the event list 61 - 63
Simulation loop 80 - 83

Statistical summaries 96 - 104

Listing 8.2
An event-driven simulation program for the single-server queueing system.

1 from random import *

2 from queue import *

3 from statistics import *

4 from math import *

5

6 # Simulation parameters

7 lamda = 0.2

8 mu = 0.3

9 n = 10000 # Number of simulated packets

10

11 # Unique ID for each event

12 evID = 0

13

14 # Count number of simulated packets

15 count = 0

16

17 # State variables

18 Q = 0

19 S = False # Server is free

20

21 # Output variables

22 arrs = []
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23 deps = []

24

25 # Event list

26 evList = None

27

28 # REG for the arrival event

29 def get_next_arrival_event (clock):

30 global evID

31 iat = expovariate(lamda)

32 ev = ( clock + iat , evID, arrival_event_handler )

33 evID += 1

34 return ev

35

36 # REG for the departure event

37 def get_next_departure_event (clock):

38 global evID

39 st = expovariate(mu)

40 ev = ( clock + st , evID, departure_event_handler )

41 evID += 1

42 return ev

43

44 # Event handler for the arrival event

45 def arrival_event_handler (clock):

46 global n, count, Q, S, arrs

47 Q += 1

48 arrs.append(clock) # Record arrival time

49 if S == False:

50 S = True

51 schedule_event( get_next_departure_event(clock) )

52 count += 1

53 if count < n:

54 schedule_event( get_next_arrival_event(clock) )

55

56 # Event handler for the departure event
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57 def departure_event_handler (clock):

58 global Q, S, deps

59 Q -= 1

60 deps.append(clock) # Record departure time

61 if Q == 0:

62 S = False

63 else:

64 S = True

65 schedule_event( get_next_departure_event(clock) )

66

67 # Insert an event into the event list

68 def schedule_event(ev):

69 global evList

70 evList.put(ev)

71

72 # Main simulation function

73 def sim():

74 global Q, S, arrs, deps, count, evList

75 clock = 0

76 evList = PriorityQueue()

77 # Reset state and output variables

78 Q = 0

79 S = False

80 arrs = []

81 deps = []

82 count = 0

83 # Insert initial events

84 ev = get_next_arrival_event(clock)

85 schedule_event(ev)

86 # Start simulation

87 while not evList.empty():

88 ev = evList.get()

89 clock = ev[0]

90 ev[2](clock)
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91

92 def main():

93 global arrs, deps

94 m = 50 # Number of replications

95 Samples = []

96 for i in range(m):

97 d = []

98 seed() # Reseed RNG

99 sim()

100 d = list( map(lambda x,y: x-y, deps, arrs) )

101 Samples.append( mean(d) )

102

103 sample_mean = mean(Samples)

104 sample_std_dev = stdev(Samples)

105 t = 1.96

106 ci1 = sample_mean - t * (sample_std_dev / sqrt(m))

107 ci2 = sample_mean + t * (sample_std_dev / sqrt(m))

108

109 print( "Average Delay = ", round(sample_mean, 2) )

110 print( "Confidence Interval: ", "( ", round(ci1, 2), ",

", round(ci2, 2), " )" )

111 print( "Population Mean = ", round(1 / (mu-lamda), 2) )

112

113 if __name__ == ’__main__’:

114 main()

115

116 ### Example output

117 # Average Delay = 10.09

118 # Confidence Interval: ( 9.96 , 10.21 )

119 # Population Mean = 10.0
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8.4 PROGRAMMING ISSUES
Several programming issues arise when writing event-driven simulation pro-
grams. The following are three critical issues that must be handled appropri-
ately. Mishandling them may cause the simulation program to produce wrong
statistical results.

8.4.1 Event Collision
An event is represented by a tuple inside each event generator (e.g., see lines
28 and 34). When inserted into the event list, the first field in the tuple is used
as a key for sorting the event. When two events have the same key, an event
collision is said to have occurred. Thus, the next field in the tuple is used as
a key. By convention, the first field in the tuple representing an event is the
time of the event. The second field is an event identifier. This is a unique key
which maintains the order in which events are generated. In this way, it is
guaranteed that no event collision will occur.

8.4.2 Identifiers for Packets
When recording data in output variables, the order of packets must be main-
tained. That is, the ith entry in any output variable must correspond to the ith

simulated packet. If this order is not maintained, the final statistical results
will be wrong. In the case of the single-server queueing system, maintaining
the order is easy. This is because packets leave in the same order in which
they enter the system. Hence, on lines 42 and 53 in Listing 8.2, event times
are appended to the end of output variables. The index of each entry in each
list corresponding to an output variable represents the identifier of the packet.

8.4.3 Stopping Conditions for the Simulation Loop
There are several options to terminate a simulation loop. A simulation loop
can be terminated when the

1. Event list becomes empty,

2. Number of simulated packet reaches a preset value, and

3. Maximum allowed simulation time is reached.

In Listing 8.2, the simulation loop is terminated when the event list becomes
empty (see line 80). In order to allow this, there should be a limit on the
number of packets to be simulated (i.e., n). The variable count is used to
keep track of the number of arrivals. This variable is incremented inside the
event handler of the arrival event (see lines 52-53). No more arrivals will be
generated if the number of arrivals of n is exceeded. This will guarantee that
the simulation program will terminate once the event list becomes empty. In
addition, it is guaranteed that all the generated n packets will be simulated.
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If there is a limit on the number of simulated packets, the condition of the
simulation loop will become as follows:

Total_Num_Pkts = 1000
while Num_Simulated_Pkts <= Total_Num_Pkts:

...

The variable Num_Simulated_Pkts must be incremented inside the event
handler of the departure event (i.e., the function departure_event_handler).
This is because this function represents the exit point for each packet from the
system. For each packet, when the part of the simulation program is reached,
it means that the life cycle of the packet has been fully simulated.

On the other hand, if the limit is on the total simulation time, the condition
of the simulation loop will become as follows:

Total_Sim_Time = 1000
while clock <= Total_Sim_Time:

clock = clock + ev.time

Note that there might be some packets pending in the event list. Therefore,
you will have to keep track of the number of packets which have left the
system. This number represents the number of entries in the output variables
which you can use in computing the statistical results.

8.5 SUMMARY
There are two approaches to writing simulation programs: time-driven and
event-driven. The second approach is the most common one. A template for
discrete-event simulation programs was proposed in this chapter. In addi-
tion, several programming issues were mentioned and their solutions were
suggested.

8.6 EXERCISES
8.1 Write a time-driven simulation program for the single-server queueing

system where the arrival process is Poisson. Assume that in each time
slot, one departure will occur if the queue is not empty. Compute the
average delay through this system.

8.2 Consider the system configuration in Figure 8.7. Write a discrete-event
simulation program that simulates this system and computes the average
delay through it.

8.3 Consider the single-server queueing system with reneging (see Figure
7.8). After waiting for five minutes in the queue, a customer reneges.
Write a discrete-event simulation program to estimate the average time
between customers who renege.
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Figure 8.7
Two single-server queueing systems in series with external arrivals.
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C H A P T E R 9

The Monte Carlo
Method

“There is no such thing as luck. It is all mathematics.”
−Nico Zographos

The Monte Carlo (MC) method was born during the second world war.
It was used in the simulation of atomic collisions which then resulted in the
first atomic bomb. Nowadays, the MC method is used in different fields such
as mathematics, physics, biology, and engineering. In its simplest form, a MC
method is an algorithm that use random variates to compute its output. In this
chapter, we are going to explore through concrete applications the usefulness
of the MC method. In addition, several enhanced versions of the original MC
method are discussed.

9.1 ESTIMATING THE VALUE OF π

The MC method can be used to estimate the value of a parameter or constant.
In this section, you are going to learn how the setup shown in Figure 9.1 can
be used to estimate the value of π, which is the ratio of the circumference of
a circle to its diameter. π is approximately equal to 3.14.

Consider a circle with radius r and centered at the origin as shown in
Figure 9.1. This circle is also enclosed inside a square with an edge length of
2r. A point (x, y) falls inside the circle if the following inequality is satisfied:

x2 + y2 ≤ r2 (9.1)

Both x and y take values from the interval [−1,+1]. r has a fixed value of 1.
In Figure 9.1, there are two regions: Circle (C) and Square (S). S contains

C. From measure theory, the probability that a point (x, y) lies inside C is

139
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y

(0,-1)

(0,1)

(-1,0)

(1,0)

(0,0)

r =
 1

x

(x,y)

2r

Figure 9.1
Setup used for performing MC simulation to estimate π.

given by:

P [(x, y) ∈ C] =
measure of C

measure of S

=
area of C

area of S

=
πr2

4r2

=
π

4
.

(9.2)

Hence, the following equation for π can be deduced.

π = 4 · P. (9.3)

Now, we have an expression for π. However, we still need to estimate the
value of P . Since P is the probability of an event, a binary (i.e., Bernoulli)
random variable should be used in the simulation. This variable is defined as
follows:

Z =

{
1, if (x, y) ∈ C,
0, otherwise.

(9.4)

The expected (i.e., average) value of Z represents the value of P . It is the
proportion of times the event of interest (i.e., {(x, y) ∈ C}) occurs in a long
series of trials. It can mathematically be expressed as follows:

E[Z] = 1 · P [{(x, y) ∈ C}] + 0 · P [{(x, y) 6∈ C}]
= P [{(x, y) ∈ C}]
=
π

4
.

(9.5)
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Listing 9.1
Python procedure for estimating π using MC simulation.

1 from random import *

2 from statistics import *

3

4 N = 100000

5

6 Z = []

7 for i in range(N):

8 x = uniform(-1, 1)

9 y = uniform(-1, 1)

10 if x**2 + y**2 <= 1:

11 Z.append(1)

12 else:

13 Z.append(0)

14

15 print ("Pi = ", 4.0 * round(mean(Z), 4)) # = 3.1452

16 print ("Variance = ", round(variance(Z), 4)) # = 0.1681

Hence, π can be estimated using the following estimator:

π = 4 · E[Z]. (9.6)

E[Z] can be approximated using Monte Carlo simulation as follows:

E[Z] ≈ 1

N

N∑

i=1

Zi (9.7)

where Zi is a Bernoulli random variate generated using Eqn. (9.4).
Listing 9.1 shows a Python procedure that approximates the value of π

using Monte Carlo simulation. This version of Monte Carlo simulation is re-
ferred to as the Crude Monte Carlo (CMC) simulation. It is crude because it
typically results in a high variance (see line 16).
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a b
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Figure 9.2
Setup used for performing MC simulation to estimate a one-dimensional inte-
gral.

9.2 NUMERICAL INTEGRATION
Figure 9.2 shows a function f(x) defined over the interval [a, b]. The function
f(x) is also enclosed inside a rectangle with width b − a and height c. The
curve of f(x) divides the rectangle into two regions I and J . Region I is the
one under the curve. We want to find the area of this region. This area is
mathematically defined as follows:

AI =

∫ b

a

f(x) dx. (9.8)

The probability that a randomly generated point falls inside region I can
be computed as follows:

P [(x, y) ∈ I] =
measure of region I

measure of region J

=
area of region I

area of region J

P =
AI
AJ

,

(9.9)

where the area of region J is equal to AJ = c · (b− a).
Hence, the integral can be estimated using the following estimator:

AI = P · [(b− a) · c] (9.10)
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P = E[Z]

≈ 1

N

N∑

i=1

Zi
(9.11)

where Zi is a Bernoulli random variate that can be generated using the fol-
lowing equation:

Z =

{
1, if (x, y) ∈ I,
0, otherwise.

(9.12)

Listing 9.2 shows how a one-dimensional integral can be estimated using the
CMC method.

Listing 9.2
Python procedure for estimating a one-dimensional integral.

1 from random import *

2 from statistics import *

3

4 # Specify parameters

5 a = 1

6 b = 8

7 N = 100000

8

9 # Integrand

10 def f(x):

11 return x**2

12

13 # Find value of c

14 c = f(b)

15

16 # Area of rectangle

17 A_J = (b-a) * c

18

19 Z = [0]*N

20 for i in range(N):

21 x = uniform(a, b)

22 y = uniform(0, c)
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Figure 9.3
The goal of the Buffon’s needle experiment is to compute the probability that
a needle of length l will intersect a horizontal line in a set of horizontal lines
separated by a distance equal to d.

23 if y <= f(x):

24 Z[i] = 1

25

26 A_I = mean(Z) * A_J

27

28 print("A_I = ", round(A_I, 2)) # = 169.57 (170.33)

29 print("Variance = ", round(variance(Z), 4)) # = 0.2352

9.3 ESTIMATING A PROBABILITY
The CMC method can also be used for estimating probabilities of events.
These events should occur with high frequency. An event that occurs with a
low frequency is referred to as a rare event. The CMC method usually fails
in estimating probabilities of rare events. Advanced MC techniques are used
instead, as will be shown in the next section.

9.3.1 Buffon’s Needle Problem
In this problem, a needle of length l is dropped onto a floor with equally spaced
horizontal lines. That is, the distance between every two consecutive lines is d.
The length of the needle is constrained such that l ≤ d. The goal is to estimate
the probability that the needle touches or intersects a line. Figure 9.3 shows
the setup of the problem along with some needles at random locations.

The simulation model for this experiment makes use of two random vari-
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Figure 9.4
Two random variables (a and φ) are used in the simulation. The needle will
intersect with the closest horizontal line if b ≥ a.

ables. These two random variables uniquely identify the location of the needle
on the floor. The two random variables are the following:

a: Distance from the midpoint of the needle to the closest horizontal line
(a ∈ [0, d2 ])

θ: Angle the needle makes with the closest horizontal line (θ ∈ [0, π])

Figure 9.4 shows a portion of the floor with one needle and two horizontal
lines. It also shows how the two random variables defined above are used
to characterize the location of the needle. Clearly, the needle will intersect
a horizontal line if a ≤ b. Figure 9.5 is a reminder of how the value of b
can be computed by using basic trigonometry. The exact expression for the
probability is the following [5]:

P =
2l

πd
. (9.13)

Listing 9.3
Python procedure for the Buffon’s needle experiment.

1 from random import *

2 from math import *

3 l = 1

4 d = 1

5 n = 1000000

6 count = 0

7 for i in range(n):

8 a = uniform(0, d/2)
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Figure 9.5
According to trigonometry, the length of the line segment b is equal to the
value of the y-coordinate of the upper tip of the needle.

9 phi = uniform(0, pi)

10 b = (l/2)*sin(phi)

11 if a <= b:

12 count = count + 1

13 print(’P = ’, round(count/n, 3))

14 print(’Exact = ’, round((2*l)/(pi*d), 3))

9.3.2 Reliability
Consider the block in Figure 9.6(a) where the input is connected to the output
if the switch is closed. The probability of this event (i.e., switch is closed)
corresponds to the portion of time the block is working. Let R be the reliability
of a block. Then, the reliability of the system (i.e., Relsys) in Figure 9.6(b) is
R3. It is the product of the reliability of the three blocks in series. Next, we
develop a simulation model to computationally estimate this number. Since we
know the exact answer in advance, we can easily tell if the proposed Python
procedure is correct.

First, let us define the sample space of the problem. The state of the system
(denoted by si) is a set of three random variables (denoted by b1, b2, and b3),
where each random variable corresponds to the state of an individual block in
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Input Output

(a)

(b)

Input Output

Figure 9.6
Reliability is the probability that the input is connected to the output. (a)
The input is connected to the output if the swtich is closed. (b) Reliability of
the overall system is a function of the reliabilities of the individual blocks. In
this case, Relsys = R3, where R is the reliability of a block.

the system. Each bi is a binary random variable defined as follows:

bi =

{
1, with prob. p

0, with prob. q = 1− p. (9.14)

Table 9.1 shows the individual points in the sample space, which is of size
23. It also shows the probability of each possible systems state.

Now, let us define a new random variable φ over the sample space of system
states. This random variable is defined as follows:

φ(si) =

{
1, if input is connected to output

0, otherwise.
(9.15)

Next, the system reliability can be calculated as follows:

Relsys = E[φ]

=

23∑

i=1

φ(si)P [si].
(9.16)

The random variable φ will be one for s8 only. This event occurs with a
probability of p3 = 0.343. Hence, the reliability of the system is calculated as
follows:
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Table 9.1
Sample space of the system in Figure 9.6(b) with probability of each sample
point.

System State b1 b2 b3 P [si]

s1 0 0 0 q3

s2 0 0 1 q2p
s3 0 1 0 q2p
s4 0 1 1 qp2

s5 1 0 0 pq2

s6 1 0 1 p2q
s7 1 1 0 p2q

s8 1 1 1 p3∑
P [si] = 1.0

Relsys = 0.343

Relsys = E[φ]

=
7∑

i=1

φ(si) · P [si] + φ(s8) · P [s8]

=
7∑

i=1

0 · P [si] + 1 · P [s8]

= 1× 0.343.

= 0.343.

Listing 9.4 shows how this reliability can be estimated using the CMC
method. A realization of the system is generated on lines 15-17. Then, the
realization is checked if it represents a connected system, which is the event
of interest.

Listing 9.4
Estimating the reliability of the system in Figure 9.6(b).

1 from random import *

2

3 Num_Trials = 100000

4 count = 0

5 p = 0.3 #Probability a block is working

6

7 def Phi(X):
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8 if sum(X) == 3:

9 return 1

10 else:

11 return 0

12

13 for i in range(Num_Trials):

14 X = []

15 for j in range(3):

16 if random() <= p: X.append(1)

17 else: X.append(0)

18 count = count + Phi(X)

19

20 print(’Rel_sys = ’, round(count / Num_Trials, 3))

9.4 VARIANCE REDUCTION TECHNIQUES
The CMC method may require a very large number of samples in order to
generate an acceptable result. In other cases, it may fail if the event of interest
is rare. This is why advanced MC methods are needed. The advanced versions
of the CMC method can achieve the same level of accuracy using a smaller
number of samples. They can also be used for estimating probabilities of rare
events by changing the probability distribution of the event of interest.

9.4.1 Control Variates
Consider a random variable X whose expected value E[X] is to be estimated.
Assume there is another random variable Y whose expected value E[Y ] is
known. Then, the following is an estimator of E[X]:

E[X] =
1

n

n∑

i=1

Xi − c
(

1

n

n∑

i=1

Yi − E[Y ]

)
, (9.17)

where c is a constant which can be estimated using the samples (Xi, Yi) as
follows:

c =

∑n
i=1(Xi − X̄)(Yi − Ȳ )∑n

i=1(Yi − Ȳ )2
, (9.18)

where X̄ and Ȳ are the sample mean.
The cautious reader should note that as n → ∞, 1

n

∑n
i=1 Yi → E[Y ].
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Hence, the second term in Eqn. (9.17) evaluates to zero. However, since the
number of samples is finite, the samples of Y are going to reduce the variance
in the estimator of E[X]. The result is an estimator that is better than using
only CMC.

As an example, consider the following integral which is to be estimated
using control variates:

I =

∫ 1

0

exdx. (9.19)

This integral is the expected value of the function f(x) = ex, where x is a
uniform random variable defined over the interval (0, 1).

Let Y be a uniform random variable over the interval (0, 1). The mean of
Y is 1

2 (i.e., E[Y ] = 1
2 ). Y will be used as the control variate. Listing 9.5 shows

the Python implementation of the control variates method for estimating the
integral in Eqn. (9.19).

Listing 9.5
Estimating an integral in Eqn. (9.19) using the method of control variates.

1 from random import *

2 from math import *

3 from statistics import *

4

5 n = 10000

6

7 Y_mean = 1/2

8

9 X = []

10 Y = []

11

12 for i in range(n):

13 u = random()

14 X.append( exp(u) )

15 Y.append(u)

16

17 X_bar = mean(X)

18 Y_bar = mean(Y)

19
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20 # Auxiliary lists for computing c

21 A = []

22 B = []

23

24 for i in range(n):

25 A.append( (X[i] - X_bar) * (Y[i] - Y_bar) )

26 B.append( (Y[i] - Y_bar)**2 )

27

28 c = sum(A) / sum(B)

29

30 # Samples of CV-based estimator

31 Z = []

32 for i in range(n):

33 Z.append( X[i] - c * ( Y[i] - Y_mean) )

34

35 # Answer using CMC

36 print("I(CMC) = ", round(mean(X), 4), ", Variance = ", round

(variance(X), 4))

37 # Answer using Control Variates (CV)

38 print("I(CV) = ", round(mean(Z), 4), ", Variance = ", round(

variance(Z), 4))

39

40 # Output

41 # I(CMC) = 1.7299 , Variance = 0.2445

42 # I(CV) = 1.7185 , Variance = 0.0039

9.4.2 Stratified Sampling
The word stratify means to arrange and classify. In this sampling technique,
the goal is to stratify samples into groups and then a sample is randomly
generated from each group. In this way, samples are spread appropriately
across the state space.

Hence, in order to estimate the expected value of a function f(x), the
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sample space of the random variable X is partitioned into K subsets (i.e.,
strata) as follows:

E[f(x)] =

K∑

i=1

E[f(x)|x ∈ Si] · P [x ∈ Si] (9.20)

E[f(x)|x ∈ Si] =
1

Ni
·
Ni∑

j=1

f(xij), (9.21)

where xij is a sample drawn from the conditional probability distribution
P [x|x ∈ Si]. Hence, the estimator of E[f(x)] using stratified sampling is the
following:

E[f(x)] =

K∑

i=1

1

Ni
·
Ni∑

j=1

f(xij) · pi, (9.22)

where pi = P [x ∈ Si], Ni = pi · N , N is the size of the state space S, and

S =
⋃K
i Si.

Listing 12.2 shows the implementation of the stratified sampling method
in Python. The first part of the program gives the CMC implementation for
the purpose of comparing the quality of the two estimators.

Listing 9.6

Estimating the integral
∫ 1

0
e−xdx using the crude Monte Carlo and stratified

methods.

1 from random import *

2 from math import *

3 from statistics import *

4

5 n = 10000

6

7 X = []

8

9 for i in range(n):

10 u = random()

11 X.append( exp(-u) )

12

13 print("I(CMC) = ", round(mean(X), 4), ", Variance = ", round

(variance(X), 4))



The Monte Carlo Method � 153

14

15 Y = []

16

17 K = 4 # Number of strata

18 N_i = int(n / K) # Number of samples from each stratum

19

20 for i in range(K):

21 for j in range(N_i):

22 a = i * 1/K

23 b = a + 1/K

24 u = uniform(a,b)

25 Y.append( exp(-u) )

26

27 print("I(Stratified) = ", round(mean(Y), 4), ", Variance = "

, round(variance(Y), 4))

28

29 # Output

30 # I(CMC) = 0.6323 , Variance = 0.0325

31 # I(Stratified) = 0.6309 , Variance = 0.0323

9.4.3 Antithetic Sampling
This technique was introduced in [4]. The word antithetic means opposite. A
random variate v has an antithetic value (or variate) that is represented by
v′. If v is a random variate uniformly distributed on [a, b], then its antithetic
variate is given by

v′ = a+ b− v. (9.23)

The essence of the antithetic sampling technique is to replace each sample
s by another one which can be calculated as follows:

s∗ =
v + v′

2
. (9.24)

where s′ is the antithetic variate of s. Figure 9.7 illustrates how the antithetic
value is calculated for each point in the sample space of the random experiment
of throwing two dice. Surprisingly, this simple technique leads to a significant
reduction in the variance for the same number of samples.
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P[x]
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Variate Its 
Antithetic 

Value

1/36
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4/36

5/36
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Figure 9.7
Sample space of the random experiment of throwing two dice. For the random
variate 4, 4+10

2 = 7 is generated instead if antithetic sampling is used.

Listing 9.7
Estimating the mean of a uniform random variable using antithetic sampling.

1 from random import *

2 from statistics import *

3

4 n = 1000

5

6 # Parameters of the uniform distribution

7 a = 2

8 b = 48

9

10 # Samples generated using the crude Monte Carlo method

11 S_cmc = []

12

13 # Samples generated using the antithetic method

14 S_ant = []

15

16 for i in range(n):
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17 v = uniform(a, b)

18 S_cmc.append( v )

19 v_ = a + b - v

20 S_ant.append( (v + v_) / 2 )

21

22 print(’Mean(S_cmc) = ’, round(mean(S_cmc), 4), ", Variance =

", round(variance(S_cmc), 4))

23 print(’Mean(S_ant) = ’, round(mean(S_ant), 4), ", Variance =

", round(variance(S_ant), 4))

24

25 # Output

26 # Mean(S_cmc) = 25.6361 , Variance = 178.0452

27 # Mean(S_ant) = 25.0 , Variance = 0.0

Listing 9.8 shows how the value of the following integral can be estimated
using antithetic sampling. ∫ 1

0

ex
2

dx. (9.25)

Although both the crude Monte Carlo and antithetic sampling methods
achieve a good accuracy, they significantly differ in the variance. Antithetic
sampling achieves a very low variance for the same number of samples.

Listing 9.8
Estimating the value of the integral in Eqn. (9.25) using CMC and antithetic
sampling. The reduction in variance is about 12%.

1 from random import *

2 from statistics import *

3 from math import *

4

5 n = 10000

6

7 S_cmc = []

8 S_ant = []

9
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10 for i in range(n):

11 u = random()

12 u_ = 1 - u

13 S_cmc.append( exp(u**2) )

14 S_ant.append( ( exp(u**2) + exp(u_**2) ) / 2)

15

16 print("Mean(S_cmc) = ", round(mean(S_cmc), 4), ", Variance =

", round(variance(S_cmc), 4))

17 print("Mean(S_ant) = ", round(mean(S_ant), 4), ", Variance =

", round(variance(S_ant), 4))

18

19 # Output

20 # Mean(S_cmc) = 1.4693 , Variance = 0.2296

21 # Mean(S_ant) = 1.4639 , Variance = 0.0287

9.4.4 Dagger Sampling
In dagger sampling, multiple samples can be generated using a single random
number. As shown in Figure 9.8, three samples of the random variable X are
generated using a single random number u. X has to be a Bernoulli random
variable. This is required in order to use this sampling procedure. The number
of trials (i.e., samples) is equal to S = b 1pc, where p is the success probability
of the Bernoulli random variable.

Dagger sampling works as follows. The interval [0, 1] is divided into S
subintervals. The length of each subinterval is equal to p. The remaining part
beyond all the subintervals is not considered. In the example shown in Figure
9.8, there are three subintervals. The random value u = 0.4 falls in the second
subinterval, which corresponds to the second trial. Hence, the second sample
is ‘H’ and the other samples are all ‘T’.

Listing 9.9 shows how dagger sampling is used for estimating the reliability
of the system in Figure 9.6(b). In each trial, three samples are initialized on
lines 21-23. These three samples are generated as shown on lines 24-31. At
the end of each trial, the three samples are checked if they correspond to a
connected system.
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0 1

u = 0.4

X₁ = ‘T’
X₂ = ‘H’
X₃ = ‘T’

Sensitive segment 
of sample 3

This segment 
is not considered 

0.3 0.6 0.9

X = 
‘H’  if  u ≤ 0.3

‘T’  if  u > 0.3

Trial 1

Trial 2

Trial 3

Figure 9.8
With dagger sampling, three trials are performed using a single random num-
ber. Hence, three samples are generated.

Listing 9.9
Estimating the reliability of the system in Figure 9.6(b) using dagger sampling.

1 from random import *

2 from math import *

3

4 Num_Trials = 10000

5 count = 0

6 p = 0.3 # Probability a block is working

7

8 S = floor(1 / p) # No. of subintervals (samples)

9

10 def Phi(X):

11 if sum(X) == 3:

12 return 1

13 else:

14 return 0

15
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16 # Three samples are generated in each iteration

17 # Total number of samples is S * Num_Trial

18 Total_Num_Samples = S * Num_Trials

19

20 for i in range(Num_Trials):

21 s1 = [0] * 3

22 s2 = [0] * 3

23 s3 = [0] * 3

24 for j in range(3):

25 u = random()

26 if u <= p:

27 s1[j] = 1

28 elif p < u <= 2*p:

29 s2[j] = 1

30 elif 2*p < u <= 3*p:

31 s3[j] = 1

32

33 count = count + Phi(s1)

34 count = count + Phi(s2)

35 count = count + Phi(s3)

36

37 print(’Rel_sys = ’, round(count / Total_Num_Samples, 3))

38

39 # Output

40 # Exact = 0.027

41 # Rel_sys = 0.028

9.4.5 Importance Sampling
In importance sampling, samples are generated using a new probability distri-
bution q that is more appropriate than the original probability distribution p.
However, since the new probability distribution q is different from the correct
probability distribution p, a correction step is necessary.

Consider the function g(x) in Figure 9.9(a) which is a function of the
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g(x)

(b)

q(x)

Figure 9.9
Values of g(x) are very close to zero over region 1. Probability distribution of
x is very close to zero over region 1. Another probability distribution has to
be used in order to generate samples from region 1 where the values of the
function g(x) are more interesting.

random variable x whose probability distribution is given by p(x). Values of
the function in region 2 will be generated more frequently because of the large
probabilities over this region. However, the values of the function in region 1
are more important. How can we sample more frequently from this region?
This is the reason why this method is referred to as importance sampling.

Clearly, values of the function g(x) in region 1 have a greater impact on
the output (i.e., computed average). Hence, these values should be sampled
more frequently. It is, however, very hard to generate samples from region 1
because the p(x) is very small over this region. Thus, we have to use another
probability distribution like the one in Figure 9.9(b). This new probability
distribution emphasizes the region where the values of the function are more
interesting. As a result, a correction step is needed.

It turns out that this correction step is very simple. Basically, every sample

generated using q(x) is multiplied by a weight w(x) = p(x)
q(x) to account for the

bias that was intentionally introduced. w(x) is referred to as the importance
weight.
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Next, we mathematically show how the new probability distribution q(x)
is introduced into the equation used for computing the average of g(x). The
final expression is different because it includes a new term which is w(x).

E[g(x)] =
m∑

i=1

g(xi) · p(xi)

=
m∑

i=1

g(xi) ·
p(xi)

q(xi)
· q(xi)

=
m∑

i=1

g(xi) · w(xi) · q(xi)

=
m∑

i=1

g(xi) · q(xi) · w(xi).

Computationally speaking, the new notation for the average of g(x) com-
puted using importance sampling is the following:

E[g(x)] ≈ 1

N

N∑

i=1

g(xi) · w(xi), where xi ∼ q. (9.26)

Listing 9.10 shows how this sampling procedure is used in estimating the
expected value of a function of a random variable.

Listing 9.10
Estimating the average of a function using importance sampling.

1 from random import *

2

3 N = 100000

4 E_g = 0

5

6 def g(x):

7 return 8*x

8

9 for i in range(N):

10 x = random() # Sample from p(x)

11 y = normalvariate(0, 10) # Sample from q(x)

12 w = x/y # Importance weight for current sample

13 E_g = E_g + g(y) * w
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14

15 print("E[g(x)] = ", round(E_g / N, 2)) # Answer = 4.0

9.5 SUMMARY
Monte Carlo is a powerful tool for estimating probabilities and expected
values. The reader is reminded that the design of MC algorithms is not as
straightforward as one might think. This is specially true in applications con-
taining events with small probabilities (i.e., rare events).

9.6 EXERCISES
9.1 Using the CMC method, write a program for estimating the probability

P [X > 5], where X is a Poisson random variable with parameter λ = 2.
Compare the estimated probability with the exact value.

9.2 Consider the network in Figure 9.10 where the length of each edge is a
random variable normally distributed over [1, 5]. The random variables
are IID. Write a program for estimating the expected length of the
shortest path between nodes A and D.

9.3 Using the method of control variates, estimate the integral I =∫ 2

0
e−x

2

dx using an appropriate Y .

9.4 Using importance sampling, write a program for estimating the prob-
ability P [X ∈ [10,∞)], where X has an exponential distribution with
parameter λ = 1.

A D

B

C

X₁

X₂

X₃

X₄

X₅

Figure 9.10
Estimating the shortest path between nodes A and D (see Exercise 9.2).
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C H A P T E R 10

Random Variate
Generation

“It would have been unscientific not to guess.”
−Richard Feynman

In a simulation program, an activity typically lasts for an amount of time
that is greater than zero. An activity such as the service time is represented
by a random variable. Since a random variable is characterized by a probabil-
ity distribution function, it is this function that is used to generate random
variates. A random variate is just a random number generated according to
a specific probability distribution. It can also be referred to as a sample or
observation. In this chapter, you are going to learn about generating random
variates from probability distributions. Some specialized methods are also cov-
ered.

10.1 THE INVERSION METHOD
Before delving into the details of the inversion method, let us first describe
it at a high level. Remember that a random variable is a function that takes
as an input a numerical value and returns a probability. If this function is
inversed, what do you think we would get? We will get a new function that
takes as an input a probability and returns a numerical value.

Figure 10.1(a) shows the Cumulative Distribution Function (CDF) of an
exponential random variable. For every number on the x-axis, there must be
exactly one number on the y-axis. Similarly, for every number on the y-axis,
there must be exactly one number on the x-axis. Clearly, there is a one-to-
one (u-to-v) relationship which can be reversed. The result is the inverse CDF
(iCDF) for generating random variates from the exponential distribution. The
same reasoning applies to all continuous random variables.

165
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v=8

u=0.5

(a) A continuous CDF where u = 0.5 corresponds to v = 8 (u =
1− e−v).
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(b) Multiple random numbers are mapped onto one random vari-
ate in a discrete CDF.

Figure 10.1
Generating random variates from cumulative distribution functions.

On the other hand, the inversion method works differently on discrete ran-
dom variables. Figure 10.1(b) shows the CDF of a discrete random variable. In
this case, the relationship is many-to-one. That is, multiple random numbers
can be mapped onto one random variate. This only applies to the iCDF of
discrete random variables.
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Finally, it should be emphasized that only CDFs of continuous random
variables and Probability Mass Functions (PMFs) of discrete random variables
can be inversed. This is because these two functions are actual probability
functions. The Probability Density Function (PDF) of a continuous random
variable is not a probability function since it can take values greater than one.
However, PDFs can be used in the rejection method.

10.1.1 Continuous Random Variables
The process of finding the Random Variate Generator (RVG) of a continuous
random variable is systematic. Next, three examples will be discussed in detail
to demonstrate this process.

Example 10.1: The Uniform RVG

1. Start with the CDF of the uniform random variable.

F (x) =
x− a
b− a .

2. Replace F (x) with y.

y =
x− a
b− a .

3. Swap x and y.

x =
y − a
b− a .

4. Solve for y.
x(b− a) = (y − a)

xb− xa = y − a

xb− xa+ a = y

y = x(b− a) + a.

5. Replace y with v and x with u.

v = u · (b− a) + a.

6. The following expression is used as the uniform RVG:

v = u · (b− a) + a
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Example 10.2: The Exponential RVG

1. Start with the CDF of the exponential random variable.

F (x) = 1− e−µx.

2. Replace F (x) with y.
y = 1− e−µx.

3. Swap x and y.
x = 1− e−µy.

4. Solve for y.
e−µy = 1− x.

ln(e−µy) = ln(1− x).

−µy = ln(1− x).

y =
−1

µ
· ln(1− x).

5. Replace y with v and x with u.

v =
−1

µ
· ln(1− u).

1− u can be replaced with u only.

6. The following expression is used as the exponential RVG:

v =
−1

µ
· ln(u)

Example 10.3

1. Start with the CDF of the random variable.

F (x) =
x

x+ 1
;x > 0.

2. Replace F (x) with y.

y =
x

x+ 1
.



Random Variate Generation � 169

3. Swap x and y.

x =
y

y + 1
.

4. Solve for y.
x(y + 1) = y

xy + x = y.

x = y − xy

x = y(1− x).

y =
x

1− x.

5. Replace y with v and x with u to get the RVG:

v =
u

1− u

10.1.2 Discrete Random Variables
Consider a PMF that models a random experiment having n outcomes. The
following is the definition of this PMF.

P (X = i) = pi, i = 0, 1, 2, ..., (n− 1), n ∈ N+. (10.1)

The CDF for the above PMF can be expressed as the following:

F (i) = P (X ≤ i) =

i∑

j=0

pj . (10.2)

Hence, the RVG for a discrete random variable can be described as follows:

v =





0 if 0 ≤ u < p0,

1 if p0 ≤ u < p0 + p1 (=
∑1
j=0 pj),

2 if
∑1
j=0 pj ≤ u <

∑2
j=0 pj ,

...

...

(n− 1) if
∑n−2
j=0 pj ≤ u <

∑n−1
j=0 pj ,

(10.3)
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(a) Probability mass function.
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(b) Distribution of mass along a string of one unit of length.

Figure 10.2
Generating random variates using the PMF of a discrete random variable.

where v is the random variate and u is a random number in (0,1).
It should be pointed out that when translating Eqn. (10.3) into code, every

condition should be translated to one comparison statement as shown on lines
7, 9, 11, and 13 in Listing 10.1. Notice that the probabilities used on line 3
are the individual probabilities for each possible value of the random variable.
However, the probabilities used in the conditions of the if-statement are the
cumulative probabilities, which are computed as shown in Figure 10.2(b). In
this figure, the width of each interval is still equal to the raw probability of
the random variate it represents. However, the five intervals are placed along
the x-axis between zero and one to cover the range of possible values of the
random number u.

Listing 10.1
Generating random variates using the information in Figure 10.2(a).

1 import random as rnd
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2

3 p = [0.1, 0.2, 0.4, 0.1, 0.2]

4

5 u = rnd.random()

6

7 if (0 <= u < p[0]):

8 v = 0

9 elif (p[0] <= u < sum(p[0:2])):

10 v = 1

11 elif (sum(p[0:2]) <= u < sum(p[0:3])):

12 v = 2

13 elif (sum(p[0:3]) <= u < sum(p[0:4])):

14 v = 3

15 else:

16 v = 4

17

18 print (’u = ’ , u , ’ , v = ’ , v)

10.1.2.1 Generating a Bernoulli Variate

A Bernoulli random variable is a discrete random variable that represents an
experiment having two outcomes only. The outcome is either a success with
probability p or a failure with probability 1 − p. Listing 10.2 shows how to
generate random variates from Bernoulli probability distribution.

Listing 10.2
Generating Bernoulli random variates.

1 import random as rnd

2

3 p = 0.5 # Probability of success

4

5 u = rnd.random()

6
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7 if 0 <= u <= p:

8 print( ’1’ ) # Success

9 else:

10 print( ’0’ ) # Failure

10.1.2.2 Generating a Binomial Variate

A binomial random variable is a discrete random variable that represents the
number of successes in a sequence of n independent Bernoulli experiments.
When n = 1, the binomial random variable becomes a Bernoulli random
variable. Listing 10.3 shows how a binomial random variate can be generated
using Python.

Listing 10.3
Generating binomial random variates.

1 import random as rnd

2

3 p = 0.3 # Probability of success

4 n = 10 # Number of trials

5 count = 0 # Count number of successes

6

7 def Bernoulli(p): # Bernoulli RVG Function

8 u = rnd.random()

9 if 0 <= u < p:

10 return 1

11 else:

12 return 0

13

14 for i in range(n):

15 count = count + Bernoulli(p)

16

17 print( ’v = ’ , count )
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10.1.2.3 Generating a Geometric Variate

A geometric random variable is a discrete random variable that represents
the number of Bernoulli trails needed before getting a success. That is, it
represents the number of failures before the first success. For example, you can
use this random variable to model a situation where you want to know how
many transmission attempts are to be performed before a packet is successfully
delivered to the destination. Listing 10.4 shows how to simulate the geometric
random variable in Python.

Listing 10.4
Generating geometric random variates.

1 import random as rnd

2

3 p = 0.6 # Probability of success

4 # Number of Bernoulli trials Needed Before the First Success

5 count = 0

6

7 def Bernoulli(p):

8 u = rnd.random()

9 if 0 <= u < p:

10 return 1

11 else:

12 return 0

13

14 while(Bernoulli(p) == 0):

15 count = count + 1

16

17 print( ’v = ’ , count )

10.2 THE REJECTION METHOD
The inversion method fails if you do not have a closed-form expression for the
CDF. You can still approximate the CDF using some numerical techniques.
However, such techniques often require a significant amount of computational
time. Because of these two reasons, the rejection method was invented.



174 � Computer Simulation: A Foundational Approach Using Python

x

y

1 2 3 4 5 6

1

2

3

4

5

6

g(x)

(2,1)

f(x)

f(x = 3)

g(x = 3)

Figure 10.3
Generating a random variate from the PDF f(x) using the auxiliary PDF g(x).

x = 3 is accepted if u ≤ f(3)
g(3) .

In this method, the PDF of the random variable (i.e., f(x)) is used in-
stead of its CDF. In addition, another auxiliary PDF g(x) is used. Only one
assumption is made about g(x). That is, we know how to generate a random
variate using g(x). Thus, g(x) can be as simple as the uniform PDF which has
a rectangular shape.

Figure 10.3 shows how g(x) can be used to enclose f(x). In fact, any PDF
with a very complicated shape can always be enclosed within a uniform PDF.
In this way, two regions are created. The first one is enclosed by the curve
of f(x). The second one is above the curve of f(x) and below that of g(x).
Now, when a point (x, y) is randomly generated such that 1 ≤ x ≤ 5 and
0 ≤ y ≤ 5, we can visually tell if it lies below the curve of f(x) or above it. If
it lies below the curve, then the x-coordinate of the point is reported as the
random variate generated according to f(x), which is what we are after. But,
how do we generate the random point (x, y)?

The coordinates are generated as uniform random variates. x is uniformly
distributed between 1 and 5. Also, y is uniformly distributed between 0 and
5. x is accepted if y ≤ f(x), where y = u · g(x). It is this condition that will
make sure that the generated random variates will follow the distribution of
f(x).
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(a) Computing random variates using g(x) ∼ U(0, 1) and
X ∼ U(0, 4).
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(b) The histogram of one million random variates gen-
erated using the rejection method. The shape of the his-
togram matches that of f(x).

Figure 10.4
Random variates generated using the rejection method.

The following example further illustrates the rejection method. Consider
the following PDF:

f(x) = 0.2× e−(x−0.2)2 + 0.8× e−(x−2)2

0.2 .

We want to generate random variates such that they follow f(x). Figure
10.4(a) shows the shape of f(x). It also shows g(x) which encloses f(x). In
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this example, since the maximum value of f(x) is 0.8, we choose g(x) = 1 for
all x ∈ [0, 4]. g(x) is always a constant and it can be greater than one.

Listing 10.5 shows a procedure for computing random variates from f(x).
The functions f(x) and g(x) are declared on lines four and eight, respectively.
Then, on line 12, the random variate generation process starts. First, x is
randomly assigned a value from its set of values. Then, a uniform number is
generated and then used in the comparison on line 15. Notice that u × g(x)
represents a value on the y-axis. If this value is less than or equal to the value
of f(x) at the same x, then the point (x, y) lies below the curve of f(x) and
x can be accepted as a random variate. Otherwise, the process is repeated. In

fact, f(x)
g(x) is a probability (i.e., 0 ≤ f(x)

g(x) ≤ 1).

In order to check the validity of the procedure in Listing 10.5, one million
random variates are generated and then a histogram is constructed. Figure
10.4(b) shows the histogram. Clearly, the distribution of the generated random
variates follows that of f(x).

Listing 10.5
Generating random variates based on the rejection method.

1 import random as rnd

2 import math as M

3

4 def f(x):

5 return 0.2 * M.exp(-(x - 0.2)**2.0) +

6 0.8 * M.exp(-(x - 2.0)**2.0 / 0.2)

7

8 def g(x):

9 return 1 # Uniform PDF

10

11 Stop = False

12 while not Stop:

13 x = rnd.uniform(0, 4) # Generate x

14 u = rnd.random() # y = u * g(x)

15 if u <= f(x) / g(x): # y <= f(x)

16 print x

17 Stop = True
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Figure 10.5
Triangular distribution. f(x) is composed of two functions each of which is
defined over half the interval over which f(x) exists.

10.3 THE COMPOSITION METHOD
An interesting fact is that a linear combination of CDFs, PDFs, or PMFs is
also a CDF, PDF, or PMF, respectively. The only requirement is that the
weights used in the combinations should add up to one. Hence, a probability
distribution can be represented as a mixture (i.e., weighted sum) of simpler
probability distribution functions.

The composition method works as follows. First, the probability function
is decomposed into a weighted sum of K simpler probability functions.

f(x) =

K∑

i=1

pifi(x)

= p1f1(x) + p2f2(x) + ...+ pKfK(x).

(10.4)

The condition
∑K
i=1 pifi(x) = 1 must be satisfied.

Secondly, one of the probability distributions that appear in the composi-
tion is randomly selected selected. fi is selected with probability pi. Finally, a
sample is generated using the selected probability distribution function by us-
ing either the inversion or rejection method. Clearly, two random numbers are
needed. The first one is for choosing the probability distribution function and
the second one is for generating a random variate from the selected function.

Example 10.4 illustrates the composition method by showing how a sam-
ple can be generated from a triangular distribution shown in Figure 10.5.
Clearly, the probability function f(x) can be decomposed into two functions
as follows:1

1A line has an equation of the form y = m · x + b, where m = 4y
4x (slope) and b is the

y-intercept.
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f(x) =





−1
3 · x+ 1 if 0 ≤ x ≤ 3,
1
3 · x+ 1 if − 3 ≤ x < 0,

0 otherwise.

(10.5)

Example 10.4: Sampling from a triangular distribution.

1. Write f(x) as a composition of two functions:

f(x) = p1 · f1(x) + p2 · f2(x)

where

f1(x) =
−1

3
· x+ 1,

and

f2(x) =
1

3
· x+ 1.

2. Determine p1 and p2. From Figure 10.5, the size of the interval over
which each function is defined is 3. The size of the interval over which
the original function f is defined is 6. Hence, each function is defined
over an interval that represents 50% of the domain of the original func-
tion.

p1 = p2 = 0.5.

3. Integrate each function to obtain its CDF. The constant of integration
can be calculated using one of the following two points: (−3, 0) or (3,
1). In this example, the latter is used.

F1(x) =
−1

6
· x2 + x− 1

2
.

F2(x) =
1

6
· x2 + x− 7

2
.

4. Apply the inversion method.

F−11 (u) = 3−
√

6− 6u

F−12 (u) =
√

6u+ 30− 3

5. Now, given a random number u, a sample v is generated as follows:

v =

{
3−
√

6− 6u if u ≤ 0.5,√
6u+ 30− 3 if u > 0.5.



Random Variate Generation � 179

10.4 THE CONVOLUTION METHOD
Consider a random variable Y whose probability distribution is complex and
thus we cannot sample from it. However, this random variable can be ex-
pressed as a sum of K random variables (X1, X2, ..., XK) whose probability
distributions can be different but they are easy to sample from. In this case,
the convolution method can be used to generate samples from Y as follows:

Y = X1 +X2 + ...+XK . (10.6)

Hence, a sample of Y is the sum of the samples x1, x2, ..., xK .

y = x1 + x2 + ...+ xK .

Listing 10.6 shows how an Erlang variate can be generated using the con-
volution method. Remember that an Erlang random variable is a sum of k
independent exponential random variables. For more details, see Section 4.2.7.
Figures 10.6(a) and 10.6(b), respectively, show the PDF of the Erlang random
variable and histogram constructed from the Elrang random variates gener-
ated using the convolution method. Clearly, the two graphs match.

Listing 10.6
Generating an Erlang random variate using the convolution method.

1 from random import *

2 from math import *

3

4 k = 10

5 theta = 1.5

6

7 y = 0

8

9 for i in range(k):

10 u = random()

11 x = (-1 / theta) * log(1-u) # Exponential variate

12 y = y + x

13

14 print("Y", y)

A sample from a standard normal random variable with a mean of zero
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(a) PDF.

(b) Histogram.

Figure 10.6
The shape of the histogram constructed using the random variates generated
using the convolution method resembles that of the PDF of the Erlang random
variable.

and variance of 1 can also be generated using the convolution method. The
reader should be reminded of the following properties of the uniform random
variable defined on (0, 1):

1. From Eqn. (4.22) and for a = 0 and b = 1,

µ =
1

2
,

2. From Eqn. (4.23),

σ2 =
1

12
.

30 40 50 
y 

25 30 35 



Random Variate Generation � 181

Figure 10.7
Histogram constructed from standard normal variates generated using the
convolution method in Listing 10.7.

Therefore, in order to have a variance of one, 12 uniform random variables
should be used. Further, in order to have a mean of zero, six must be sub-
tracted from the sum of the 12 uniform random variables. The detail of this
procedure is given in Listing 10.7. Figure 10.7 shows the histogram constructed
from the standard normal variates generated using the convolution method.
Clearly, the bell-shaped graph centered at zero confirms that the random vari-
ates are generated from a standard normal probability distribution.

Listing 10.7
Generating a standard normal random variate using the convolution method.

1 from random import *

2

3 z = -6

4 for i in range(12):

5 u = random()

6 z = z + u

7

8 print("Z = ", z)
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10.5 SPECIALIZED METHODS
10.5.1 The Poisson Distribution
The Poisson distribution is typically used to model the arrivals in a commu-
nication system. Figure 10.8 shows five arrivals during the first time slot in
a time-slotted system. Assume that the length of the time slot is one time
unit. We know that the inter-arrival time follows the exponential distribution.
Thus, every Ti is an exponential random variable with a mean equal to λ.
Since the size of the slot is one time unit, the following condition must be
met.

T1 + T2 + T3 + T4 + T5 ≤ 1. (10.7)

Basically, this condition states that the sum of the five random inter-arrival
times must not exceed the length of the time slot. Now, from Example 10.2,
the following equation can be used as the random variate generator for Ti.

Ti =
−1

λ
· ln(ui).

Hence, Eqn. (10.7) can be re-written as follows.

5∑

i=1

−1

λ
· ln(ui) ≤ 1. (10.8)

After some algebraic manipulation,2 the following expression can be obtained.

5∏

i=1

ui ≥ e−λ. (10.9)

Inequality (10.9) states that five arrivals can be reported to have occurred if
we can sequentially generate five random numbers whose product is greater
than or equal to e−λ. As shown in Figure 10.8, the sixth arrival cannot be
considered to have arrived during the first time slot because the sum of the
six inter-arrival times would be greater than 1. This is the stopping condition
that should be used in the random variate generation scheme for the Poisson
distribution.

Listing 10.8 shows how a Poisson random variate can be generated in
Python. The left-hand side of inequality (10.9) is implemented by line number
12. The right-hand side, however, is the stopping condition of the while loop
(line number 10). So, as long as the product of the generated random numbers
does not exceed the threshold set on line number 7, the variable count is
incremented in every iteration of the while loop. Once the product of the
generated random numbers exceeds the threshold, the while loop is exited and
the content of the variable count is reported as the Poisson random variate.

2Use the following rules ln(a · b) = ln(a) + ln(b) and eln(x) = x.
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0 1
Time Slot # 1

A1 A2 A3 A4 A5 A6

T1 T2 T3 T4 T5 T6

Figure 10.8
Arrivals during a time slot can be modeled as a Poisson random variable.

Listing 10.8
Generating a Poisson random variate.

1 import random as rnd

2 import math

3

4 lmda = 10 # Arrival Rate

5 count = 0 # Number of Arrivals

6

7 b = math.exp(-lmda)

8 u = rnd.random()

9

10 while u >= b:

11 count = count + 1

12 u = u * rnd.random()

13

14 print (’v = ’ , count)

Figure 10.9(a) shows the graph of the Poisson distribution using its PMF
with λ = 10. On the other hand, Figure 10.9(b) shows a histogram of one
million Poisson random variates generated using the program in Listing 10.8.
In this figure, the y − axis represents the number of variates in every bin of
the histogram. To obtain the probability of the Poisson variate corresponding
to every bin, the size of the bin is divided by the total number of generated
variates. But, clearly, the shape of the histogram resembles that of the PMF
of the Poisson random variable with λ = 10.
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10.5.2 The Normal Distribution
Listing 10.9 shows the Python implementation of the Box-Muller method for
generating normally distributed random variates from uniformly distributed
random numbers as shown in Figure 10.10. The details of this method can be
found in [1]. Basically, given two independent random numbers u1 and u2, the
following equations can be used to generate two independent random variates
with a standard normal distribution.

z1 =
√
−2 · ln(u1) · cos(2π · u2)

z2 =
√
−2 · ln(u1) · sin(2π · u2).

Figure 10.10 shows in the second row the histograms of u1 and u2 before
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(a) The PMF of the Poisson random variable
with λ = 10.
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(b) The histogram of one million Poisson ran-
dom variates generated using the procedure in
Listing 10.8 with λ = 10.

Figure 10.9
The shape of the histogram constructed using simulated Poisson random vari-
ates resembles that of the PMF of a Poisson random variable.
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Figure 10.10
Using the procedure in Listing 10.9, the uniform random numbers are trans-
formed into random standard normal variates.

the transformation. The first row, however, shows the resulting histograms of
z1 and z2 after applying the Box-Muller transformation. Clearly, the shape of
the new histograms follows that of the standard normal distribution.

In order to generate a random variate from a non-standard normal dis-
tribution with µ 6= 0 and σ 6= 1, the following equation can be used. In this
equation, z is a random variate from a standard normal distribution:

v = µ+ σ × z.

Listing 10.9
Generating a random variate from a standard normal distribution.

1 from math import sqrt, log, sin, cos, pi

2 from random import random

3

4 def normal(u1,u2):

5 z1 = sqrt( -2 * log(u1) ) * cos ( 2 * pi * u2 )
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6 z2 = sqrt( -2 * log(u1) ) * sin (2 * pi * u2 )

7 return z1 , z2

8

9 u1 = random()

10 u2 = random()

11 z = normal(u1,u2)

12

13 print (’z1 = ’ , z[0] , ’z2 = ’, z[1])

10.6 SUMMARY
Techniques for generating random variates from many important continuous
and discrete probability distributions have been introduced and illustrated by
examples. The correctness of these techniques have been proved by comparing
the shapes of the histograms constructed from the generated random variates
with the shapes of the theoretical probability distribution functions.

10.7 EXERCISES
10.1 Consider the following triangular density function defined on [−1, 1]:

bi =





1 + x, if − 1 ≤ x ≤ 0

1− x, if 0 < x ≤ 1

0, otherwise.

a. Draw f(x).

b. Develop a Python program to generate samples from this distribution
using the inversion, rejection, composition, and convolution methods.

c. For each method, generate 10000 random variates and plot the his-
togram. Does the shape of the histogram match that of the given
PDF?

10.2 Write a Python program for generating random variates from the log-
normal probability distribution. Use the fact that the natural logarithm
of a log-normal random variable has a normal distribution.
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Random Number
Generation

“You can recognize truth by its beauty and simplicity.”
−Richard Feynman

Random numbers are used in the generation of random variates. A random
number u is uniformly distributed between 0 and 1 (denoted by u ∼ U(0, 1)).
In this chapter, we are going to describe some popular methods used in the
generation of random numbers. Also, we are going to briefly discuss how the
performance of these methods can be assessed. Several statistical tests for
determining if the generated random numbers really follow the theoretical
uniform distribution are covered.

11.1 PSEUDO-RANDOM NUMBERS
The word pseudo means not authentic (i.e., false). It is used with the word
random to mean that a number has a close resemblance to a true random
number. This resemblance is confirmed using standard statistical tests.

The program (or device) used to generate pseudo-random numbers is re-
ferred to as a Random Number Generator (RNG). The behavior of any RNG
is deterministic and predictable. The random numbers generated by an RNG
must form a uniform distribution when their histogram is constructed.

A true random number u is a random variable with the following proba-
bility distribution:

f(u) =

{
1 if 0 < u < 1,

0 otherwise.
(11.1)

Figure 11.1 shows the graphical representation of the uniform probability dis-
tribution. The following are three important statistics of u:

187
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u

f(u)

0 1.0

1.0

Figure 11.1
Probability distribution of u.

1. Mean

E(u) =
1

2
. (11.2)

2. Variance

V (u) =
1

12
. (11.3)

3. Expectation of the autocorrelation

E(uiui+1) = E(ui)E(ui+1)

=
1

N

N−1∑

i=1

uiui+1 (11.4)

=
1

4
. (11.5)

As will be seen later, for a large set of random numbers, the above three
statistics can be used as a quick (and first) test for uniform randomness (see
Listing 11.1). If the computed values match the above theoretical values, then
the generated random numbers could be uniformly distributed. Of course,
further testing needs to be done.

Listing 11.1
Testing a set of random numbers if they are uniformly distributed.

1 from random import *

2 from statistics import *

3

4 N = 10000
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5 data = [random() for i in range(N)]

6

7 corr = 0

8 for i in range(N-1):

9 corr = corr + data[i]*data[i+1]

10 corr = corr / N

11

12 print("Mean = ", round(mean(data), 2))

13 print("Variance = ", round(variance(data), 2))

14 print("Autocorrelation = ", round(corr, 2))

15

16 # Output

17 # Mean = 0.5

18 # Variance = 0.08

19 # Autocorrelation = 0.25

11.2 CHARACTERISTICS OF A GOOD GENERATOR
RNGs are the main source of randomness in simulation programs. They are
actually programs whose behavior is deterministic. Once its initial state (also
called the seed ) is set, a RNG produces a deterministic and periodic sequence
of numbers. This is why we refer to a RNG as a pseudo1 RNG.

A RNG should produce the same sequence of random numbers for the
same seed. Only one seed is used in every simulation run. Therefore, the RNG
is required to have a long period since the sequence can repeat. Table 11.1
shows two sequences of random numbers generated by two different RNGs.
Both RNGs have a cycle of size 3. Because of this, only three values of the
random variables IAT and ST are simulated. For example, the effect of having
short service times cannot be captured since random variates less than 10 will
never occur.

Other desired characteristics of a good RNG are uniformity and indepen-
dence. Uniformity means that if the interval (0, 1) is divided into k subintervals
of equal length, there will be N

k random numbers in each subinterval, where
N is the size of the set of generated random numbers. Independence, on the
other hand, means that there is no clear pattern in (or no relationship be-
tween) the generated random numbers (e.g., small numbers followed by larger

1Pseudo means false.
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Table 11.1
Random variates are repeated after a cycle of size 3. This is due to the repe-
tition in the generated sequence of the random numbers.

u1 0.3297 0.6321 0.1813 0.3297 0.6321 0.1813 0.3297 0.6321
IAT 2 5 1 2 5 1 2 5
u2 0.9093 0.8647 0.9592 0.9093 0.8647 0.9592 0.9093 0.8647
ST 12 10 16 12 10 16 12 10

numbers). To guarantee that all these desirable characteristics are achieved,
standard statistical tests are performed (see Section 11.7).

11.3 JUST ENOUGH NUMBER THEORY
11.3.1 Prime Numbers
A prime number is a positive integer that is greater than one and has two
divisors only: one and itself. The following numbers are all prime numbers:

3, 5, 7, 11, 13, 17, 19, 23, ....

Prime numbers are crucial in random number generation. Parameters of RNG
algorithms are often recommended to be large prime numbers.

11.3.2 The Modulo Operation
The modulo operation finds the remainder of the division of one integer num-
ber by another. Given two positive integers a and b, the modulo (also, abbre-
viated as a mod b) is computed as follows.

m = a−
⌊a
b

⌋
· b (11.6)

where b > 0 and bxc denotes the floor function which gives the greatest
integer less than or equal to the argument x. This is definition equivalent to
the definition of the integer division operation where the fractional part is
discarded.

Let us consider an example. If a = 7 and b = 5, the value of r (i.e., the
remainder) can be computed as shown in Example 11.1.
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Example 11.1: Calculating 7 mod 5

r = 7−
⌊
7
5

⌋
· 5

= 7− b1.4c · 5
= 7− (1) · 5
= 7− 5
= 2.

11.3.3 Primitive Roots for a Prime Number
For a prime number p, the number b is one of its primitive roots if the set of
powers of b; i.e., {b0, b1, b2, ...}, include all the numbers in the set {1, 2, 3, ..., p−
1}, which is the set of all possible remainders (except zero). Example 11.2
shows that three is a primitive root for seven. All the possible remainders will
occur. By contrast, Example 11.3 shows that two is not a root primitive for
seven. This is because the numbers {3, 5, 6} will never occur as remainders.
Two, however, is a root primitive for 13.

Example 11.2: b = 3 is a primitive root for p = 7.

i bi bi (mod 7)

0 1 1
1 3 3
2 9 2
3 27 6
4 81 4
5 243 5
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Example 11.3: b = 2 is not a primitive root for p = 7 but it is for
p = 13.

i bi bi (mod 7)
0 1 1
1 2 2
2 4 4
3 8 1
4 16 2
5 32 4

i bi bi (mod 13)
0 1 1
1 2 2
2 4 4
3 8 8
4 16 3
5 32 6
6 64 12
7 128 11
8 256 9
9 512 5
10 1024 10
11 2048 7
12 4096 1

11.4 THE LINEAR CONGRUENTIAL METHOD
This method is one of the most popular ones. Consider the following relation:

Xn+1 = (a ·Xn + c) mod m, n ≥ 0 (11.7)

where a, c, and m are called the multiplier, increment, and modulus, respec-
tively. The initial number X0 is referred to as the seed. The random number
un is obtained as follows.

un =
Xn

m
, n ≥ 0. (11.8)

Clearly, if a, c, and m are fixed, then different seeds would give different
sequences of random numbers. For every simulation run, the seed must be
recorded. This is necessary if the simulation run is to be exactly reproduced
(i.e., replicated). Changing the seed is referred to as reseeding the random
number generator (or the simulator). A new seed will give a new sequence of
random numbers. This way another path in the system state space is explored
(see Figure 11.2).

As an example, consider a linear congruential random number generator
with the following paramters: a = 2, c = 3, m = 10, X0 = 0.

n 0 1 2 3 4 5 6 7 8
Xn 0 3 9 1 5 3 9 1 5
un 0.0 0.3 0.9 0.1 0.5 0.3 0.9 0.1 0.5
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N !
!

Simulation Runs

Seed   1

Seed   2

Seed   N

Delay = 13

Delay = 9

Delay = 11

Average Delay = !
!

(D1 + D2 + ... + DN) / N

Figure 11.2
Multiple seeds are used to make different simulation runs. Different paths in
the system state space are explored and the average is computed using the
values resulting from these different paths.

u0 is not considered as part of the sequence. Thus, the sequence will repeat
itself after four steps. That is, the same random number will re-appear after
four steps.

11.5 THE MULTIPLICATIVE CONGRUENTIAL METHOD
Another method for generating random numbers is based on the following
relation.

Xn+1 = a ·Xn mod m, n ≥ 0 (11.9)

where a, m, and X0 are the multiplier, modulus, and seed, respectively. The
random number is then obtained using Eqn. (11.8).

11.5.1 2k Modulus
In order to produce a long sequence of unique random numbers, the values of
the parameters can be set as follows.

X0 is an odd integer,

a = 8t ± 3, where t is a positive integer, and

m = 2k, where k is equal to the word size of the computer (e.g., 64 bits).

For a, choose the value which is closest to 2
b
2 . If the above recipe is followed,

it is guaranteed that we will get a sequence of 2(b−2) random numbers before
the sequence is repeated.

Consider a multiplicative congruential random number generator with the
following paramters: t = 1, b = 4, and X0 = 1. The resulting sequence will
have a period of size four, a = 11, and m = 16.
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n 0 1 2 3 4 5 6 7 8
Xn 1 11 9 3 1 11 9 3 1
un 0.062 0.688 0.562 0.188 0.062 0.688 0.562 0.188 0.062

u0 is not considered as part of the sequence. Thus, the sequence will repeat
itself after four steps. That is, the same random number will re-appear after
four steps.

11.5.2 Prime Modulus
A multiplicative RNG with a prime modulus will achieve the maximum period;
i.e., M−1, if the multiplier a is a primitive root for M . Example 11.4 illustrates
this relationship.

Example 11.4: a = 3, M = 7, and Xn+1 = 3Xn (mod 7).

n 0 1 2 3 4 5 6 7

Xn 3 2 6 4 5 1 3 2
un 0.43 0.29 0.86 0.57 0.71 0.14 0.43 0.29

u0 is not considered. Notice that the period of the generated sequence is
M − 1 = 6, which is the maximum period. Unfortunately, although this
generator has a full period, it is a bad one. This is because the period is
very short.

A minimal standard generator is proposed in [10]. It has a very long period,
which is 231−2 = 2, 147, 483, 646. This generator has the following parameters:
a = 75 = 16807 and M = 231 − 1.

11.6 LINEAR FEEDBACK SHIFT REGISTERS
A Linear Feedback Shift Register (LFSR) is a digital device that consists of
memory cells and exclusive-OR (XOR) gates. It can generate a sequence of
random binary numbers. Figure 11.3 shows a four-bit LFSR that contains only
one XOR gate. In LFSRs, XOR gates are inserted between adjacent memory
cells using characteristic polynomials of the LFSRs. In order to generate the
maximum-length sequence of random numbers, an n-bit LFSR must be con-
structed using its characteristic polynomial. These are standard polynomials
which can be found in standard books on cryptography (e.g., see [9]).

For the four-bit LFSR in Figure 11.3, its characteristic polynomial is c(x) =
1 + x3 + x4 and it is constructed as follows:
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b3 b2 b1 b0+

x0x0 x1x1 x2x2 x3x3 x4x4

Figure 11.3
A four-bit linear feedback shift register with characteristic polynomial c(x) =
1 + x3 + x4.

1. Since the characteristic polynomial is of degree n = 4, then four memory
cells are required,

2. Each term present in the characteristic polynomial (except x0 and xn)
corresponds to an XOR gate. In this case, an XOR gate is inserted
between memory cell one and zero since this place corresponds to x3,
and

3. An initial binary number is loaded into the memory cells (i.e., seed).

Now, the LFSR is ready and random binary numbers can be generated as
shown in Table 11.2. The seed is chosen to be 0001. The sequence will repeat
when this number occurs again. This LFSR has a period of size 15 (24 − 1).
This is the number of all possible unique random numbers. Clearly, the next
random number is predictable if the characteristic polynomial is known.

Listing 11.2 shows how the LFSR in Figure 11.3 can be implemented in
Python. Three masks are defined on lines 4-6. The first mask is for extracting
the value of the memory cell whose input is the output of the XOR gate (i.e.,
b0 = b0 ⊕ b1). A mask is needed for each XOR gate in the LFSR. The second
mask is for extracting the values of b1 and b2. Finally, the third mask is for
extracting b0.

The next random number is the result of the logical OR operation of
three intermediate numbers (see line 16). For instance, the second random
number which is 9 is the result of the logical OR operation of temp1 = 0001,
temp2 = 0000, and temp3 = 1000 (computed on lines 13-15, respectively). In
order to compute the value of temp1, two shifted copies of the current random
number (i.e., num) are created. The value of b1 is shifted to the right so that
it is aligned with the value of b0. Then, these two binary strings are combined
using an XOR operation. Finally, the new value of b0 is extracted using its
mask (i.e., mask1). This process is illustrated in Figure 11.4.

As another example, Listing 11.3 shows the Python implementation of an
eight-bit LFSR with characteristic polynomial c(x) = 1 + x4 + x5 + x6 + x8

(see Figure 11.5). Three XOR gates must be inserted before memory cells 3,
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Table 11.2
Maximum-length sequence of random numbers generated by the LFSR in
Figure 11.3.

b3 b2 b1 b0 Number

0 0 0 1 1
1 0 0 1 9
0 0 0 1 13
0 0 0 1 15
0 0 0 1 14
0 0 0 1 7
0 0 0 1 10

0 0 0 1 5
0 0 0 1 11
0 0 0 1 12

0 0 0 1 6
0 0 0 1 3
0 0 0 1 8

0 0 0 1 4
0 0 0 1 2
0 0 0 1 1∗

operation b3 b2 b1 b0

0 0 0 1
0 0 0 0
0 0 0 1
0 0 0 1
0 0 0 1

0 0 0 1

num

temp1

num >> 1
num << 0

XOR
AND

b0

b1
aligned

Figure 11.4
Computing the first intermediate binary number on line 13 in Listing 11.2.

2, and 1. Also, this will be translated to three bit-shift-left operations
by 1, 2, and 3 bits, respectively (see lines 13-15).
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b7 b6 b5 b4 b3 b2 b1 b0+++
x0x0 x1x1 x2x2 x3x3 x4x4 x5x5 x6x6 x7x7 x8x8

Figure 11.5
An eight-bit linear feedback shift register with characteristic polynomial
c(x) = 1 + x4 + x5 + x6 + x8.

Listing 11.2
Generating the maximum-length random sequence from the four-bit LFSR
shown in Figure 11.3.

1 seed = 0b_0001

2 num = seed

3

4 # Define masks

5 mask1 = 0b_0001

6 mask2 = 0b_0110

7 mask3 = 0b_0001

8

9 # Counter

10 period = 0

11

12 while True:

13 print(num)

14

15 temp1 = ( (num >> 1) ˆ (num << 0) ) & mask1

16 temp2 = ( num >> 1 ) & mask2

17 temp3 = (num & mask3) << 3

18 num = temp1 | temp2 | temp3

19

20 period += 1

21

22 if num == seed:

23 break

24
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25 print("Period = ", period)

26

27 # Period: 2ˆ4 - 1 = 15

28 # Numbers: 1 9 13 15 14 7 10 5 11 12 6 3 8 4 2

Listing 11.3
Generating the maximum-length random sequence from an eight-bit LFSR.

1 seed = 0b_00111000

2 num = seed

3

4 # Define masks

5 mask1 = 0b_00000010

6 mask2 = 0b_00000100

7 mask3 = 0b_00001000

8 mask4 = 0b_01110001

9 mask5 = 0b_00000001

10

11 period = 0

12

13 while True:

14 temp1 = ( (num >> 1) ˆ (num << 1) ) & mask1

15 temp2 = ( (num >> 1) ˆ (num << 2) ) & mask2

16 temp3 = ( (num >> 1) ˆ (num << 3) ) & mask3

17 temp4 = ( num >> 1 ) & mask4

18 temp5 = (num & mask5) << 7

19 num = temp1 | temp2 | temp3 | temp4 | temp5

20

21 print(num)

22

23 period += 1

24
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25 if num == seed:

26 break

27

28 print("Period = ", period)

29

30 # Period: 2ˆ8 - 1 = 255

11.7 STATISTICAL TESTING OF RNGs
As you can tell by now, the sequence of random numbers generated by any
RNG is not truly random! This is because the entire sequence is predictable.
Also, since m in equations (11.7) and (11.9) is finite, the sequence will even-
tually repeat. Fortunately, however, what we require is that the generated
sequence has some of the characteristics of a real random sequence. Statistical
tests are used to confirm these characteristics.

Typically, a sequence of random numbers is accepted if it satisfies two
conditions: uniformity and independence. Two standard statisitical tests are
used for checking these two conditions. The first test is referred to as the chi-
squared test (χ2 test). This test ensures that no number occurs more often
than the other numbers. This way the numbers are uniformly distributed.
The second test which is referred to as the poker test ensures that there is no
correlation between the successive random numbers. This way the numbers
are independent from each other. A RNG is accepted if it passes these two
tests. Next, the two tests are described.

11.7.1 The Chi-Squared Test
This test is mainly used for determining how well the observed data (i.e.,
generated random numbers) fit the theoretically expected data (i.e., uniformly
distributed). The test is performed as follows.

1. Divide the interval [0,1) into K non-overlapping subintervals of equal
length,

2. Determine Oi for each subinterval i, where Oi is the number of random
numbers that fall in subinterval i and 1 ≤ i ≤ K,

3. Determine Ei for each subinterval i, where Ei is the expected number
of random numbers that should fall in subinterval i, and
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4. Compute the chi-squared statistic χ2 given by the equation

χ2 =

K∑

i=1

(Oi − Ei)2
Ei

.

5. For a level of significance α, if χ2 ≤ χ2
K−1,1−α, then it is concluded that

the random numbers in the given sequence are uniformly distributed
with ((1− α)× 100)% level of confidence.

The recommended value for K is at least 10 and n
K should be at least five,

where n is the size of the sequence of random numbers. For instance, if n = 100
and K = 10, we expect that Ei = 10, where 1 ≤ i ≤ 10. That is what we
mean by uniform distribution.

Consider a sequence of random numbers of size 100. If K = 10, we expect
each subinterval to contain ten random numbers. Assume that the information
in column four is obtained after analyzing the given sequence. Then, χ2 can
be calculated as follows:

i Range Ei Oi (Oi − Ei)2 (Oi−Ei)2
Ei

1 [0, 0.1) 10 9 1 0.1

2 [0.1, 0.2) 10 5 25 2.5
3 [0.2, 0.3) 10 12 4 0.4

4 [0.3, 0.4) 10 11 1 0.1
5 [0.4, 0.5) 10 9 1 0.1

6 [0.5, 0.6) 10 8 4 0.4

7 [0.6, 0.7) 10 11 1 0.1

8 [0.7, 0.8) 10 9 1 0.1

9 [0.8, 0.9) 10 10 0 0

10 [0.9, 1.0) 10 16 36 3.6

χ2 = 7.4

Next, we compute the degree of freedom (df) for the χ2 statistic. By definition,
the degree of freedom is always K− 1. After obtaining df , we need to find the
row in the chi-squared table corresponding to df = 9:

0.995 0.99 0.95 0.90 0.75 0.50 0.25 0.10 0.05 0.01 0.005

1.73 2.09 3.33 4.17 5.90 8.34 11.4 14.7 16.9 21.7 23.6

Assuming a significance level α = 0.05, the critical value from the above table
is χ2

9,0.95 = 16.9. Now, since the obtained value (χ2 = 7.4) is less than the
critical value, it is concluded that the random numbers in the given sequence
are uniformly distributed with a 95% level of confidence.
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Table 11.3
Types of five-digit numbers according to the poker rules.

Combination Type
AAAAA Five of a Kind
AAAAB Four of a Kind
AAABB Full House
AAABC Three of a Kind
AABBC Two Pairs

AABCD One Pair
ABCDE Five Different Digits

11.7.2 The Poker Test
A sequence of random numbers might be uniformly distributed and yet not
random. This is because the random numbers may be related. The poker test is
used to detect any such relationship. However, before applying the poker test,
the sequence of random numbers must be pre-processed using the following
two steps.

1. Remove the decimal point in every random number.

2. Choose the first five digits in every random number. You may need to
round the numbers.

Following the above procedure, we will end up with a sequence of five-digit
numbers. Now, we are ready to apply the poker test to the random sequence.

In this test, every random number is treated as a poker hand. Thus, each
random number can be classified using the same poker rules. Table 11.3 shows
the possible combinations of five-digit numbers that are considered in the
poker test. It also shows the type of each combination according to the game
of poker.

Consider a sequence of random numbers of size 100. The following table
gives the distribution of the random numbers in the seven possible categories
in the poker test.

Category Ei Oi (Oi − Ei)2 (Oi−Ei)2
Ei

Five Different Digits 30 35 25 0.83
One Pair 50 51 1 0.02
Two Pairs 10 9 1 0.1

Three of a Kind 7 3 16 2.29
Full House 1 0 1 1

Four of a Kind 1 1 0 0
Five of a Kind 1 1 0 0

χ2 = 4.24
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Figure 11.6
104 triplets of successive random numbers generated using Listing 11.4. Planes
can be seen when the figure is viewed from the right angle.

Notice that the numbers in the second column Ei are based on empirical
observations. In fact, they represent percentages and thus can be applied to a
random sequence of any length.

The degree of freedom is six since there are seven categories. The critical value
of chi2 for df = 6 at α = 0.05 is χ2

6,0.95 = 12.6. Since the obtained value (χ2 =
4.24) is less than the critical value, it is concluded that the random numbers
in the given sequence are independent with a 95% level of confidence.

11.7.3 The Spectral Test
This test is used for detecting correlations among random numbers. Basically,
the random numbers are grouped into triplets. These triplets are plotted in
a 3D space. Planes will emerge if the random numbers are correlated. Figure
11.6 shows an example using a random number generator with a = 65539 and
M = 231. Listing 11.4 is used to produce the figure. You still have to rotate
the figure to see the planes. The recommended values for the azimuth and
elevation are shown in the figure.

Listing 11.4
Python program for generating a 3D scatter plot for the spectral test.

1 import math

azimuth = -66 deg, elevation = -83 deg 
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2 import matplotlib.pyplot as plt

3 from mpl_toolkits.mplot3d import Axes3D

4

5 a = 65539

6 M = math.pow(2, 31)

7 seed = 123456

8

9 X = []

10 Y = []

11 Z = []

12

13 for i in range(10000):

14 num1 = math.fmod(a * seed, M)

15 num2 = math.fmod(a * num1, M)

16 num3 = math.fmod(a * num2, M)

17 seed = num2

18 X.append(num1)

19 Y.append(num2)

20 Z.append(num3)

21

22 fig = plt.figure()

23 ax = fig.add_subplot(111, projection=’3d’)

24 ax.scatter(X, Y, Z, c=’b’, marker=’o’)

25 # Remove axis ticks for readability

26 ax.set_xticks([])

27 ax.set_yticks([])

28 ax.set_zticks([])

29 ax.set_xlabel(’X’)

30 ax.set_ylabel(’Y’)

31 ax.set_zlabel(’Z’)

32 plt.show()
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Figure 11.7
The lag plot for a sequence of sinusoidal values. An elliptical pattern can be
clearly identified.

11.7.4 The Lag Plot
Given a sequence of random numbers, a lag plot can be used to test if the
numbers are really random. Basically, if the lag plot exhibits no patterns, then
the numbers are random. On the other hand, if the numbers are not random,
the lag plot will show an identifiable pattern, like linear and circular patterns.
Figure 11.7 shows an example of the lag plot of a non-random sequence.

The lag plot can be produced using Listing 11.5. The result of running
the code is in Figure 11.8. Clearly, in this figure, there is no identifiable pat-
tern. Besides, the random numbers are uniformly distributed in the 2D space.
Therefore, the generated sequence is random.

Listing 11.5
Python procedure for generating a lag plot for a random sequence.

1 import random as rnd

2 import pandas

3 from pandas.tools.plotting import lag_plot

4 import matplotlib.pyplot as plt

5

6 s = pandas.Series([rnd.random() for i in range(10000)])

7

8 plt.figure()

9 lag_plot(s, marker=’o’, color=’grey’)

10 plt.xlabel(’Random Number - s[i]’)

1.5 

1.0 

-0.5 0.0 0.5 1.0 1.5 
s[ i] 
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Figure 11.8
The lag plot generated by the code in Listing 11.5. The sequence uniformly
fills the 2D space.

11 plt.ylabel(’Lag1(Random Number) - s[i+1]’)

12 plt.show()

11.8 SUMMARY
This chapter has discussed several methods for the generation of pseudo-
random numbers. These pseudo-random numbers are used in the computation
of pseudo-random variates and pseudo-random processes. According to [3], a
RNG should not produce a zero or one. In addition, the generated random
numbers should look random although they are generated using deterministic
procedures.

11.9 EXERCISES
11.1 Show that the multiplicative RNG does indeed pass both the chi-squared

and poker tests.

11.2 Consider the 16-bit LFSR with characteristic polynomial c(x) = 1+x4+
x13 + x15 + x16. Draw the structure of this LFSR and write a Python
program that implements it.

1.2 
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" 0.6 

1 

I 
0.4 
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0.0 

-0.2 
-0.2 0.0 

Random Number - s[i] 
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Case Studies

“Discovery is seeing what everybody else has seen and thinking what nobody
else has thought.”
−Albert Szent-Györgyi

The main purpose of this chapter is to show the reader how the transition
from a system description to a simulation model is made. The first case study is
about estimating the reliability of a network using the Monte Carlo methods
and several variance-reduction techniques. The second case study is about
modeling a point-to-point wireless transmission system where packets may be
lost either due to a full queue or bad channel state. There is also an upper
limit on the number of transmission attempts before the packet is dropped.
Both packet delay and system throughput are analyzed. The final case study
is about modeling a simple error-control protocol and studying the impact of
error probability on system throughput.

12.1 NETWORK RELIABILITY
This case study discusses the reliability evaluation of static networks. A net-
work is referred to as static if time plays no role in its model. A network can be
modeled as a graph which consists of vertices (nodes) and edges (links). The
nodes are perfect but the links can fail. When links fail, the network becomes
disconnected. This is an interesting situation where we can ask the following
questions:

1. Is the source still connected to the destination?

2. Is every node reachable from every other node?

3. Are the nodes in a given subset connected?

Figure 12.1 shows a graph G(V,E) of a network that has eight vertices
and 11 edges. The set of vertices is V = {v1, v2, v3, v4, v5, v6, v7, v8}. And, the

209
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Figure 12.1
A graph consisting of eight vertices and 11 edges.
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e4e1
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Figure 12.2
Network fails if nodes v1 and v4 become disconnected. The event will occur if
any of the following groups of links fail: {(e1, e2), (e1, e3), (e2, e4), (e3, e4)}.

set of edges is E = {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11}. A path in a graph
is a sequence of edges that start and terminate at two distinct vertices. For
example, one path that connects vertex v1 to v8 is {e1, e3, e7, e11}. We say that
node v1 is connected to node v8 because there is at least one path between
them.

Network reliability is defined as the probability that a specific set of nodes
in a given graph stay connected while each link can fail independently with
probability q. On the other hand, network unreliability is the probability of
network failure which occurs when the nodes under consideration are not
connected. Exact computation of these two metrics is not possible since the
runtime grows exponentially with the number of links. Thus, approximate
techniques based on Monte Carlo simulation are recommended.

Clearly, from Table 12.1, the unreliability can be calculated using the fol-
lowing expression:

UnRel = P [s1]+P [s2]+P [s3]+P [s4]+P [s5]+P [s6]+P [s9]+P [s11]+P [s13].
(12.1)
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Table 12.1
Sample space of the system in Figure 12.2 along with the status of the network
for each possible system state.

System State Status e1 e2 e3 e4 P [si]

s1 Down 0 0 0 0 q4

s2 Down 0 0 0 1 (1− q)q3
s3 Down 0 0 1 0 (1− q)q3
s4 Down 0 0 1 1 (1− q)2q2
s5 Down 0 1 0 0 (1− q)q3
s6 Down 0 1 0 1 (1− q)2q2
s7 Up 0 1 1 0 (1− q)2q2
s8 Up 0 1 1 1 (1− q)3q
s9 Down 1 0 0 0 (1− q)q3
s10 Up 1 0 0 1 (1− q)2q2
s11 Down 1 0 1 0 (1− q)2q2
s12 Up 1 0 1 1 (1− q)3q
s13 Down 1 1 0 0 (1− q)2q2
s14 Up 1 1 0 1 (1− q)3q
s15 Up 1 1 1 0 (1− q)3q
s16 Up 1 1 1 1 (1− q)4

Similarly, the reliability can be calculated using the following expression:

Rel = 1−UnRel = P [s7] +P [s8] +P [s10] +P [s12] +P [s14] +P [s15] +P [s16].
(12.2)

As shown in Listing 12.2, the crude Monte Carlo method generates N
realizations of the network and estimates unreliability as the proportion of
those realizations in which nodes v1 and v4 are disconnected. This can be
expressed mathematically as follows:

UnRel =
1

N

N∑

i=1

Φ(si),

where Φ(si) evaluates to one if the given network realization (i.e., sample) si
represents a connected network. The alert reader should realize that Φ(si) is
a Bernoulli random variable whose expectation is equal to the unreliability of
the network.

The crude Monte Carlo method suffers from a fundamental problem. Con-
sider the expression for the expected relative half width confidence interval of
u:

CIhw =
t× s√

n

E[Φ]
. (12.3)

Clearly, this expression grows to infinity as u approaches zero for the same
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Listing 12.1
Computing unreliability for the graph in Figure 12.2 using the exact expression
in Eqn. (12.1).

1 q = 0.3

2 Unreliability = q**4 + 4 * (1-q) * q**3 \

3 + 4 * (1-q)**2 * q**2

4 print("Unreliability = ", round(Unreliability, 10)) # 0.2601

Table 12.2
Restructuring the sample space of the system in Figure 12.2 along with the
probability of each stratum. The first row indicates the number of UP links.

0 1 2 3 4

0000 0001 0011 0111 1111
0010 0101 1110
0100 1001 1101
1000 1010 1011

1100
0110

P0 = 0.0625 P1 = 0.25 P2 = 0.375 P3 = 0.25 P4 = 0.0625

number of samples (i.e., N). This means a considerably large number of sam-
ples will be needed in order to approximate unreliability if the network is
highly reliable. In this case, the system failure event is referred to as a rare
event. It is rare because it occurs once in large number of samples (say once
every 106 samples!).

Several variance-reduction techniques are used to remedy the situation.
Stratified sampling is used in Listing 12.3. Antithetic sampling is used in
Listing 12.4. The new code is on lines 22-27. Finally, dagger sampling is used
in Listing 12.5.
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Listing 12.2
Computing unreliability for the graph in Figure 12.2 using crude Monte Carlo
simulation.

1 from random import *

2 from statistics import *

3

4 q = 0.3 # Prob. of link failure

5 N = 100000 # Number of trials

6 L = 4 # Number of links

7

8 # Check if network is connected

9 def Phi(s):

10 if s[0] == s[1] == 0 or s[0] == s[2] == 0 or \

11 s[1] == s[3] == 0 or s[2] == s[3] == 0:

12 return 1

13 else:

14 return 0

15

16 # Crude Monte Carlo simulation

17 rv = [] # Realization of a Bernoulli random variable

18 for i in range(N):

19 s = [0]*L

20 for j in range(L):

21 if random() > q:

22 s[j] = 1

23 rv.append(Phi(s))

24

25 # Result

26 print("Unreliability = ", round(mean(rv), 4)) # 0.2593

27 print("Variance = ", round(variance(rv), 4)) # 0.1921
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Listing 12.3
Computing unreliability for the graph in Figure 12.2 using stratified sampling.

1 from random import *

2 from math import *

3 from statistics import *

4

5 q = 0.5 # Prob. of link failure

6 N = 100000 # Number of trials

7 L = 4 # Number of links

8

9 K = L # Number of strata

10 P = [0.0625, 0.25, 0.375, 0.25, 0.0625] # Pi for each

stratum i

11

12 # Number of samples from each stratum

13 N_i = [int(p * N) for p in P]

14

15 # Generate a sample

16 # n = Number of UP links

17 def samp(n):

18 if n == 0:

19 return [0, 0, 0, 0]

20 elif n == 4:

21 return [1, 1, 1, 1]

22 elif n == 1:

23 i = randint(0, 3)

24 s = [0] * L

25 s[i] = 1

26 return s

27 elif n == 2:

28 idx = sample([0, 1, 2, 3], 2) # Unique indexes

29 s = [0] * L

30 s[ idx[0] ] = 1

31 s[ idx[1] ] = 1
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32 return s

33 elif n == 3:

34 idx = sample([0, 1, 2, 3], 3)

35 s = [0] * L

36 s[ idx[0] ] = 1

37 s[ idx[1] ] = 1

38 s[ idx[2] ] = 1

39 return s

40

41 # Check if network is connected

42 def Phi(s):

43 if s[0] == s[1] == 0 or s[0] == s[2] == 0 or \

44 s[1] == s[3] == 0 or s[2] == s[3] == 0:

45 return 1

46 else:

47 return 0

48

49 rv = []

50 for i in range(K+1):

51 m = N_i[i]

52 for j in range(m):

53 s = samp(i)

54 rv.append( Phi(s) )

55

56 # Result

57 print("Unreliability = ", round(mean(rv), 4)) # 0.5636

58 print("Variance = ", round(variance(rv), 4)) # 0.246

Listing 12.4
Computing unreliability for the graph in Figure 12.2 using antithetic sampling.

1 from random import *
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2 from statistics import *

3

4 q = 0.3 # Prob. of link failure

5 N = 100000 # Number of trials

6 L = 4 # Number of links

7

8 # Check if network is connected

9 def Phi(s):

10 if s[0] == s[1] == 0 or s[0] == 0 and s[2] == 0 or \

11 s[1] == s[3] == 0 or s[2] == s[3] == 0:

12 return 1

13 else:

14 return 0

15

16 # Antithetic Monte Carlo simulation

17 rv = []

18 for i in range(N):

19 s1 = [0]*L

20 s2 = [0]*L

21 for j in range(L):

22 u = random()

23 if u > q: s1[j] = 1

24 if (1 - u) > q: s2[j] = 1

25

26 val = (Phi(s1) + Phi(s2) ) / 2

27 rv.append(val)

28

29 # Result

30 print("Unreliability = ", round(mean(rv), 4)) # 0.2597

31 print("Variance = ", round(variance(rv), 4)) # 0.0784
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Listing 12.5
Computing unreliability for the graph in Figure 12.2 using dagger sampling.
The number of samples is significantly less.

1 from random import *

2 from statistics import *

3 from math import *

4

5 q = 0.3 # Prob. of link failure

6 N = 30000 # Number of trials

7 L = 4 # Number of links

8

9 # Check if network is connected

10 def Phi(s):

11 if s[0] == s[1] == 0 or s[0] == 0 and s[2] == 0 or \

12 s[1] == s[3] == 0 or s[2] == s[3] == 0:

13 return 1

14 else:

15 return 0

16

17 # Antithetic Monte Carlo simulation

18 rv = []

19 for i in range(N):

20 s1 = [1]*L

21 s2 = [1]*L

22 s3 = [1]*L

23 for j in range(L):

24 u = random()

25 if 0 < u <= q:

26 s1[j] = 0

27 elif q < u <= 2*q:

28 s2[j] = 0

29 elif 2*q < u <= 3*q:

30 s3[j] = 0

31
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32 rv.append(Phi(s1))

33 rv.append(Phi(s2))

34 rv.append(Phi(s3))

35

36 # Result

37 print("Unreliability = ", round(mean(rv), 4)) # 0.2617

38 print("Variance = ", round(variance(rv), 4)) # 0.1932

12.2 PACKET DELIVERY OVER A WIRELESS CHANNEL
Consider a transmitter that sends packets to a receiver over a point-to-point
wireless channel as shown in Figure 12.3. The transmitter has a buffer which
can hold up to B packets. For each packet, the transmitter has T transmission
attempts. If they all fail, the packet is dropped. A transmission may fail be-
cause of the time-varying nature of the wireless channel. The probability that a
packet transmission is unsuccessful is denoted by Perr. Hence, the probability
of a successful transmission is 1− Perr.

Upon its arrival, a packet will be lost if the queue is full. This situation is
captured by the Loss event and the condition on the edge connecting it with
the Arrival event. If the packet, however, enters the queue, it will be sched-
uled for transmission once it is at the head of the queue. For each Transmit
event, two events are scheduled: Receive and Timeout. If a packet is suc-
cessfully received, its corresponding Timeout event is removed from the event
list and the next packet in the queue is scheduled for transmission.

On the other hand, if a packet is not delivered to the receiver, its Timeout
event will eventually fire and cause a re-transmission if the number of trans-

Transmitter ReceiverWireless
Channel

PerrPerrBB

Figure 12.3
A point-to-point wireless system. The transmitter has a buffer which can store
up to B packets. The probability that a transmission attempt is successful is
1− Perr.
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Table 12.3
State variables of the event graph in Figure 12.4.

State Variable Description

Q Number of packets in the queue
C State of the wireless channel (“0”: Available;

“1”: Occupied)
L Number of lost packets
D Number of dropped packets
T Number of transmission attempts

mission attempts is still below the preset threshold (i.e., T < τ). Otherwise,
a Drop event is scheduled. After the current packet is discarded, the next
packet in the queue is scheduled for transmission. Table 12.3 shows the state
variables used in the construction of the event graph for this system. The
event graph is shown in Figure 12.4. There are two system parameters which
are the maximum allowed number of transmission attempts for every packet
(τ) and the packet error rate of the wireless channel (Perr).
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Figure 12.4
Event graph for the system in Figure 12.3.

Listing 12.6
Python implementation of the event graph in Figure 12.4

1 from random import *

2 from bisect import *

3 from statistics import *

4

5 # Simulation parameters

6 n = 1000 # Number of packets to be simulated

7 lamda = 0.7

8 P_err = 0.99

9 tau = 3

10 Tout = 1 # Length of timeout period

11 B = 10 # Size of transmitter buffer

12

13 # Initialization
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14 clock = 0.0

15 evList = []

16 count = 0 # Used for counting simulated packets and as

Pkt_ID

17 evID = 0 # Unique ID for each event

18 Timeout_Event = None # Reference to currently pending

timeout event

19

20 # Insert an event into the event list

21 def insert(ev):

22 insort_right(evList, ev)

23

24 # Remove an event from the event list

25 def cancel(ev):

26 evList.remove(ev)

27

28 # Initialize state variables

29 Q = 0

30 C = 0

31 L = 0

32 D = 0

33 T = 0

34

35 # Output variables

36 Num_Received_Pkts = 0 # Pkts received successfully

37 Arr_Time = [0] * n

38 Rec_Time = [0] * n

39

40 # Event generators

41 def Gen_Arr_Evt(clock):

42 global count, n, lamda, evID

43 if count < n:

44 insert( (clock + expovariate(lamda), evID, count,

Handle_Arr_Evt) )



222 � Computer Simulation: A Foundational Approach Using Python

45 count += 1

46 evID += 1

47

48 def Gen_Loss_Evt(clock, Pkt_ID):

49 global evID

50 evID += 1

51 insert( (clock, evID, Pkt_ID, Handle_Loss_Evt) )

52

53 def Gen_Transmit_Evt(clock, Pkt_ID):

54 global evID

55 evID += 1

56 insert( (clock, evID, Pkt_ID, Handle_Transmit_Evt) )

57

58 def Gen_Receive_Evt(clock, Pkt_ID):

59 global evID

60 evID += 1

61 insert( (clock, evID, Pkt_ID, Handle_Receive_Evt) )

62

63 def Gen_Drop_Evt(clock, Pkt_ID):

64 global evID

65 evID += 1

66 insert( (clock, evID, Pkt_ID, Handle_Drop_Evt) )

67

68 def Gen_Timeout_Evt(clock, Pkt_ID):

69 global Timeout_Event, evID

70 evID += 1

71 Timeout_Event = (clock + Tout, evID, Pkt_ID,

Handle_Timeout_Evt)

72 insert( Timeout_Event )

73

74 # Event handlers

75

76 def Handle_Arr_Evt(clock, Pkt_ID):

77 global Q, lamda
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78 Q += 1

79 Gen_Arr_Evt(clock + expovariate(lamda))

80 if C == 0:

81 Gen_Transmit_Evt(clock, Pkt_ID)

82 if Q > B:

83 Gen_Loss_Evt(clock, Pkt_ID)

84 # Output variable

85 Arr_Time[Pkt_ID] = clock

86

87 def Handle_Loss_Evt(clock, Pkt_ID):

88 global Q, L

89 L += 1

90 Q -= 1

91

92 def Handle_Transmit_Evt(clock, Pkt_ID):

93 global C, Q, T, P_err

94 C = 1

95 Q -= 1

96 T += 1

97 Gen_Timeout_Evt(clock, Pkt_ID)

98 if random() <= (1 - P_err):

99 Gen_Receive_Evt(clock, Pkt_ID)

100

101 def Handle_Receive_Evt(clock, Pkt_ID):

102 global C, T, Q, Num_Received_Pkts

103 C = 0

104 T = 0

105 cancel(Timeout_Event)

106 if Q > 0:

107 Gen_Transmit_Evt(clock, Pkt_ID + 1) # Next packet

in queue

108 # Output variable

109 Num_Received_Pkts += 1

110 Rec_Time[Pkt_ID] = clock
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111

112 def Handle_Drop_Evt(clock, Pkt_ID):

113 global D, T, C, Q

114 C = 0

115 T = 0

116 D += 1

117 Q -= 1

118 if Q > 0:

119 Gen_Transmit_Evt(clock, Pkt_ID + 1)

120

121 def Handle_Timeout_Evt(clock, Pkt_ID):

122 global T, C, Q

123 C = 0

124 Q += 1

125 if T == tau:

126 Gen_Drop_Evt(clock, Pkt_ID)

127 elif T < tau:

128 Gen_Transmit_Evt(clock, Pkt_ID) # Re-transmit same

packet

129

130 # Generate initial events

131 Gen_Arr_Evt(0.0)

132

133 # Simulation loop

134 while evList:

135 ev = evList.pop(0)

136 clock = ev[0]

137 Pkt_ID = ev[2]

138 ev[3](clock, Pkt_ID) # call event handler

139

140 # Statistical summary

141 Delay = []

142 for i in range(n):

143 if Rec_Time[i] > 0:
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Figure 12.5
Average packet delay increases as the quality of the wireless channel degrades.

144 Delay.append( Rec_Time[i] - Arr_Time[i] )

145 print("Average delay through the system = ", round(mean(

Delay), 2))

146 print("Percentage of received packets = ", round((

Num_Received_Pkts / n) * 100, 1))

Two measures of performance are considered: average delay and percent-
age of successfully received packets. They both depend on the quality of the
wireless channel. Figure 12.5 shows that the average delay increases as the
quality of the wireless channel degrades. Similarly, as shown in Figure 12.6,
the percentage of received packets significantly decreases as the error rate of
the wireless channel increases.
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Figure 12.6
Percentage of delivered packets drops as the quality of the wireless channel
degrades.

12.3 SIMPLE ARQ PROTOCOL
Automatic Repeat Request (ARQ) is an error-control technique used in com-
puter networks. It is based on the use of acknowledgment messages and timeout
interrupts. Basically, when a message is transmitted through a communication
channel, it may not arrive to the receiver because it is either lost or it is in
error. The receiver cannot interpret an erroneous packet. In this case, there
are two scenarios (see Figure 12.7):

1. The receiver receives the packet and the packet is not in error. In this
case, the receiver has to notify the sender; i.e., it acknowledges the re-
ception of the packet.

2. The receiver does not receive the packet. As a result, it cannot send back
an acknowledgment since it has not received the packet. Hence, it is the
responsibility of the sender to detect this event by using timeout. A
timeout is a pre-defined period of time during which an acknowledgment
message is expected. If this timer expires, then the packet must be re-
transmitted.

The event graph in Figure 12.8 is for a simple stop-and-wait ARQ protocol
between a sender and receiver connected by a wireless channel. The wireless
channel is fully characterized by its Packet Error Rate PER, which is the
probability that a packet is lost or corrupted while in transit through the
channel. The probability of a successful reception is thus 1− PER.
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Figure 12.7
Behavior of the simple stop-and-wait ARQ protocol with two possibilities:
acknowledgment and frame loss.

Assuming there is at least one packet in the transmission buffer of the
sender, the initial event is a transmission event. This is just a convention to
simplify the example. A transmission event (Transmit) schedules two events:
Receive and Timeout. The successful reception of a packet is simulated by
generating a uniform random number and comparing it against the probability
1−PER. If the condition is satisfied, the Receive event occurs after a period
of time equal to the total reception time trec. This time accounts for both the
packet transmission time and propagation delay through the channel.

Upon the reception of a packet, the Receive event schedules an ACK
event, which immediately schedules the next transmission event. Of course,
the pending Timeout event for the just received packet must be cancelled by
the ACK event. The Timeout event, however, occurs if there is no Receive
event scheduled for the current packet. The main purpose of this event is to
trigger a re-transmission of the current packet after a period of time equal to
tout.

Listing 12.7 gives the code for implementing the event graph in Figure
12.8. Note that simulation parameters are contained in a Python dictionary,
which is passed to every event handler. This is just another way to access
global parameters in your simulation program.
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Figure 12.8
Event graph for the simple stop-and-wait ARQ protocol.

Listing 12.7
Python implementation of the event graph of the simple stop-and-wait ARQ
protocol in Figure 12.8.

1 import random as rnd

2 import queue

3 import statistics as stat

4

5 # Define a dictionary to hold the simulation parameters

6 param = {’Timeout_Duration’: 1,

7 ’P’ : 0.2, # Packet Error Rate (PER)

8 ’Frame_Trans_Time’: 1, # Frame transmission time

9 ’Num_Frames’: 10000

10 }

11

12 #-------------- Global Variables --------------

13 Frames_Received = 0.0

14 Count_Frames = 0.0

15 clock = 0.0

16 evList = queue.PriorityQueue()
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17

18 # Unique ID for each event

19 evID = 0

20

21 #-------------- Event Generators --------------

22 # REG for the sender start event

23 def sender_start_event (clock, param):

24 global evID

25 ev = (clock, evID, sender_start_event_handler)

26 evID += 1

27 return ev

28

29 # REG for the receiver start event

30 def receiver_start_event (clock, param):

31 global evID

32 ev = (clock, evID, receiver_start_event_handler)

33 evID += 1

34 return ev

35

36 # REG for the frame transmission event

37 def frame_trans_event (clock, param):

38 global evID, Count_Frames

39 if(Count_Frames < param[’Num_Frames’]):

40 Count_Frames += 1

41 ev = (clock, evID, frame_trans_event_handler)

42 evID += 1

43 return ev

44

45 # REG for the timeout event

46 def timeout_event (clock, param):

47 global evID

48 t = param[’Timeout_Duration’]

49 ev = (clock+t, evID, timeout_event_handler)

50 evID += 1
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51 return ev

52

53 # REG for the frame reception event

54 def frame_reception_event (clock, param):

55 global evID

56 t = param[’Frame_Trans_Time’]

57 ev = (clock+t, evID, frame_reception_event_handler)

58 evID += 1

59 return ev

60

61 # REG for the acknowledgment event

62 def ack_event (clock, param):

63 global evID

64 ev = (clock, evID, ack_reception_event_handler)

65 evID += 1

66 return ev

67

68 #-------------- Event Handlers --------------

69 # Event handler for the sender start event

70 def sender_start_event_handler (clock, param):

71 global Count_Frames

72 Count_Frames = 0.0

73 # Schedule the first frame transmission event

74 schedule_event( frame_trans_event (clock, param) )

75

76 # Event handler for the receiver start event

77 def receiver_start_event_handler (clock, param):

78 global Frames_Received

79 Frames_Received = 0.0

80

81 # Event handler for the frame transmission event

82 def frame_trans_event_handler (clock, param):

83 # Generate a frame reception event if frame is going

84 # to be successfully received



Case Studies � 231

85 if rnd.random() <= param[’P’]:

86 # Frame is damaged. Generate a timeout event

87 schedule_event( timeout_event (clock, param) )

88 else:

89 # Frame is successfully delivered

90 schedule_event(

91 frame_reception_event (clock, param) )

92

93 # Event handler for the frame reception event

94 def frame_reception_event_handler (clock, param):

95 global Frames_Received

96 Frames_Received += 1

97 schedule_event( ack_event (clock, param) )

98

99 # Event handler for the ack event

100 def ack_reception_event_handler (clock, param):

101 schedule_event( frame_trans_event (clock, param) )

102

103 # Event handler for the timeout event

104 def timeout_event_handler (clock, param):

105 global Count_Frames

106 # Re-transmit the frame again

107 Count_Frames = Count_Frames - 1

108 schedule_event( frame_trans_event (clock, param) )

109

110 # Insert an event into the event list

111 def schedule_event(ev):

112 global evList

113 if ev != None:

114 evList.put(ev)

115

116 #----- Start Simulation -----

117

118 # 1. Initialize sender and receiver
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Figure 12.9
Throughput deteriorates as the packet error rate increases.

119 schedule_event( sender_start_event (clock, param) )

120 schedule_event( receiver_start_event (clock, param) )

121

122 # 2. Run the simulation loop

123 while not evList.empty():

124 ev = evList.get()

125 clock = ev[0]

126 ev[2](clock, param)

An interesting measure of performance is how throughput changes with
the change in packet error rate (PER). Figure 12.9 shows that throughput
deteriorates as PER increases. This is expected since a bad wireless channel
will significantly reduce the number of successfully received packets. The code
is self-explanatory and the reader is encouraged to identify the event generator
and handler for each event type in the event graph.
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12.4 SUMMARY
Moving from a system description to a simulation program is not a trivial
task. A simulation model must be constructed using event graphs before any
code can be written. Then, the simulation model can be translated into code
using the concepts and conventions discussed in Chapter 7. The purpose of
this chapter was to reinforce this skill.

12.5 EXERCISES
12.1 Study the relationship between the average packet delay and transmis-

sion attempt threshold by extending the program in Listing 12.6.

12.2 Identify a redundant event in the event graph in Figure 12.8.

a. Re-draw the event graph after removing the redundant event.

b. Is the new event graph equivalent to the original one?
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A P P E N D I X A

Overview of Python

“I was looking for a hobby. So, I decided to develop a new computer language.”
−Guido van Rossum

This appendix serves as an introduction to the Python programming lan-
guage. It covers all the language features used in developing the examples in
the book. For more information about Python, you should consult one of the
many books on the Python programming language.

A.1 BASICS
Python is an interpreted language. When you type python at the command
prompt, the Python prompt (>>>) appears where you can start typing
Python statements. Listing A.1.1 shows how a new Python interactive ses-
sion cab be started.

Listing A.1.1
Starting a new Python interactive session.

1 C:/> python

2 Python 3.6.2 .... more information will be shown

3 >>> 1 + 1

4 2

5 >>>

You can store your code in a file and call the Python interpreter on the file
from the command prompt. The command prompt of the operating system

235
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will appear after the execution of the file finishes. Listing A.1.2 is an example
of running a Python file containing a program that adds two numbers.

Listing A.1.2
Running a Python program from the command line.

1 C:/> python my_prog.py

2 Enter the two numbers to add: 1 3

3 Result = 4

4 C:/>

In Python, variables are not explicitly created. A variable is created when
its name is used for the first time on the left-hand side of an assignment
statement. The logical operators are and, or, and not.

Listing A.1.3 shows a simple Python program (or script). There is no main
function. When the Python interpreter is called on this file, execution starts
from the top of the file. The program is executed line by line. The execution
of the file stops when its end is reached.

Not like C and Java, a semi-colon is not used to indicate the end of a
statement. Instead, Python relies heavily on the use of white spaces to indi-
cate where a statement starts and ends. For example, the new-line character
signifies the end of a statement.

A block of code starts after a line ending with a colon. For example, see
the for-loop block in Listing A.1.3. A statement belongs to the body of the
for-loop as long as it is indented to the right. The statements making up the
body of the for-loop must also be aligned. This is how the Python interpreter
can find the start and end of the for-loop.

There are two levels in the source file in Listing A.1.3. The first level is
for every statement in the file. The second level is only for the statements in
the body of the for-loop. If an if-statement is to be used inside the for-loop, a
third level will be introduced to indicate the body of the if-statement. A new
level can be introduced by simply pressing on the Tab key on the keyboard.

Listing A.1.3
A Python source file. It can also be referred to as a Python script.

1 from random import choice

2

3 lower = input("Enter smallest number: ")

4 upper = input("Enter largest number: ")
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5 n = input("How many numbers do you want to generate? ")

6

7 # Parse strings into integers

8 lower = int(lower)

9 upper = int(upper)

10 n = int(n)

11

12 # Construct a list from a range object

13 numbers = list(range(lower, upper + 1))

14

15 selection = []

16

17 for i in range(n):

18 r = choice(numbers)

19 selection.append(r)

20 numbers.remove(r)

21

22 print( "Your numbers: ", selection )

A.2 INPUT AND OUTPUT
Listing A.2.1 shows two functions for reading input from the user and printing
output to the console.

Listing A.2.1
Input and output functions.

1 >>> m = input("Enter the mean service time: ")

2 Enter the mean service time: 5 # Enter number 5

3 >>> m

4 5

5 >>> print( "You entered: ", m )

6 You entered: 5
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A.3 BITWISE OPERATORS

Listing A.3.1
Binary operations on integer numbers.

1 a = 10 # 0000 1010

2 b = 25 # 0001 1001

3

4 # AND

5 c = a & b

6 print(c) # 0000 1000 (8)

7

8 # OR

9 c = a | b

10 print(c) # 0001 1011 (27)

11

12 # XOR

13 c = a ˆ b

14 print(c) # 0001 0011 (19)

15

16 # Ones Complement

17 # Numbers are in 2’s complement representation

18 c = a

19 print(c) # 1111 0101 (-11)

20

21 # Right Shift

22 c = a >> 2

23 print(c) # 0000 0010 (2)

24

25 # Left Shift

26 c = a << 2

27 print(c) # 0010 1000 (40)
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Listing A.3.2
Handling unsigned binary numbers.

1 # Convert an integer to a binary string

2 b = bin(5)

3 print(b) # 0b_101

4

5 # Convert a binary string to an integer

6 a = int(0b_101)

7 print(a) # 5

8

9 # Unsigned binary numbers

10 a = 0b_0000_0011 # (3)

11 b = 0b_1000_0011 # (131)

12

13 print( a+b ) # 134

14 print( a & b ) # 3

15 print( a | b ) # 131

16 print( a ˆ b ) # 128

17 print( a ) # -4

18 print( a >> 2 ) # 0

19 print( a << 2 ) # 12

20

21 # Print result in binary format

22 print( bin( a >> 2 ) ) # 0b0

23 print( bin( a << 2 ) ) # 0b1100

A.4 LISTS
A list is a collection of zero or more elements. Elements of a list are
enclosed between two square brackets and they are separated by com-
mas. Elements of a list do not have to be of the same type. Listing
A.4.1 gives different examples of lists and some of the operations that
can be performed on them. More information on lists can be found at
http://docs.python.org/3/tutorial/datastructures.html.

http://docs.python.org/3/tutorial/datastructures.html


240 � Computer Simulation: A Foundational Approach Using Python

Listing A.4.1
Lists and some of their operations.

1 >>> a = [] # The empty list

2 >>> a

3 []

4 >>> b = [1, 2.3, "Arrival", False] # Elements of different

types

5 >>> b[0] # Accessing the fist element in

6 1 # the list

7 >>> b[2] # Accessing the third element

8 "Arrival"

9 >>> b[0:2] # Extract a part of the list

10 [1, 2.3] # Two is the size of the new list

11 >>> c = [0] * 6 # Creating and initializing

12 >>> c # a list of size 6

13 [0, 0, 0, 0, 0, 0]

14 >>> len(c) # Returns the size of a list

15 6

16 >>> "Arrival" in b # Check if an element is in the list

17 True

18 >>> d = b + b # Combining two lists into one list

19 >>> d

20 [1, 2.3, "Arrival", False, 1, 2.3, "Arrival", False]

A.5 LIST FUNCTIONS
Python has a number of built-in functions that are always available. More
information can be found at http://docs.python.org/3/library/functions.html.
For example, the function zip() can be used to zip multiple lists into one list
of tuples. A tuple is an ordered pair. Listing A.5.1 shows an example where
the matrix is first unpacked into two lists using the start (*) operator. Then,
the zip function generates a list of two tuples where the ith tuple contains the
ith element from each of the individual lists.

http://docs.python.org/3/library/functions.html
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Listing A.5.1
Transposing a matrix using the zip function. Matrix is first unpacked using
the start (*) operator.

1 matrix = [ [1, 2], [3, 4] ]

2 matrix_transposed = list(zip( *matrix ))

3 # *matrix => [1, 2] [3, 4]

4 print(matrix_transposed) # [(1, 3), (2, 4)]

A.6 GENERATING RANDOM NUMBERS AND RANDOM VARI-
ATES

The random module provides RNGs and RVGs for various probability dis-
tributions. You need to first include the module in your Python script by
importing it. Listing A.6.1 shows the procedure.

Listing A.6.1
Importing the random module and calling some of the functions inside it.

1 >>> import random

2 >>> random.random() # Returns a floating-point number in

3 0.8545672259166788 # the range (0,1)

4

5 >>> random.randrange(1,6) # Returns an integer in the

6 4 # range [1, 6)

7

8 >>> random.uniform(1, 3) # Returns a floating-point number

9 1.290486289287417 # in the range [1, 3)

10

11 >>> random.normalvariate(1,0) # Returns a normal variate

where

12 1.0 # mean = 1 and stdDev = 0

13

14 >>> random.expovariate(3) # Returns an exponential

variate

15 0.06953873605855697 # with mean 1/3
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16

17 >>> random.choice([1,2,3,4,5,6]) # Returns a random element

from

18 5 # the input sequence

19

20 >>> random.sample([1,2,3,4,5,6], 3) # Randomly choose three

21 [6, 1, 2] # elements from the

given

22 # sequence

A.7 IMPLEMENTING THE EVENT LIST
A.7.1 Priority Queue

Listing A.7.1
Implementing the event list using the queue module.

1 import queue

2 from queue import Queue

3

4

5 Event_List = queue.PriorityQueue()

6

7 for item in ((10, "Arrival"), (5, "Departure"), (2, "

Fully_Charged")):

8 Event_List.put(item)

9

10 while not Event_List.empty():

11 print(Event_List.get())

A.7.2 Heap Queue
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Listing A.7.2
Implementing the event list using the hqueue module.

1 import heapq

2 from heapq import *

3

4 Event_List =[]

5

6 heappush(Event_List, (10, "Arrival"))

7 heappush(Event_List, (5, "Departure"))

8 heappush(Event_List, (2, "Fully_Charged"))

9

10 # Print the first item in the heap

11 print ( heappop(Event_List) )

A.7.3 Sorting a List

Listing A.7.3
Implementing the event list by sorting a list.

1 # The first field is always the time

2 e1 = (10, "Arrival")

3 e2 = (5, "Departure")

4 e3 = (2, "Fully_Charged")

5

6 Event_List = []

7

8 Event_List += [e1]

9 Event_List += [e2]

10 Event_List += [e3]

11 Event_List.sort()

12

13 print(Event_List)
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A.8 PASSING A FUNCTION NAME AS AN ARGUMENT

Listing A.8.1
The name of the function can be stored in a list and then used to call the
function.

1 def add():

2 print ( "Add" )

3

4 def sub():

5 print ( "Sub" )

6

7 a = [add, sub]

8

9 for i in range(len(a)):

10 a [i] ( ) # Add two parentheses and include arguments

,

11 # if any

Listing A.8.2
The name of the function can be passed as an argument to another function.

1 def doIt (func, x, y):

2 z = func (x, y)

3 return z

4

5 def add (arg1, arg2):

6 return arg1 + arg2

7

8 def sub (arg1, arg2):

9 return arg1 - arg2

10

11 print ("Addition:")
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12 print ( doIt (add, 2, 3) ) # Passing the name of the

function

13 # and its arguments

14

15 print ("Subtraction:")

16 print ( doIt (sub, 2, 3) )

A.9 TUPLES AS RECORDS

Listing A.9.1
A tuple can be used as a record that represents an item in the event list.

1 def Handle_Event_1():

2 print ( "Event_1" )

3

4 def Handle_Event_2():

5 print ( "Event_2" )

6

7 Event_List = [(1.3, Handle_Event_1), (3.3, Handle_Event_2),

8 (4.5, Handle_Event_1)]

9

10 for ev in Event_List:

11 (time , event_handler) = ev

12 event_handler ( ) # Add two parentheses and include

13 # arguments, if any

A.10 PLOTTING

Listing A.10.1
Code for generating Figure 4.12(b).

1 from random import *

2 from math import *
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3 from matplotlib.pyplot import *

4 from numpy import *

5

6 def pdf(x, a, b, c):

7 if x < a:

8 return 0

9 elif x >= a and x < c:

10 return (2 * (x-a)) / ((b-a)*(c-a))

11 elif x == c:

12 return 2 / (b-a)

13 elif x > c and x <= b:

14 return (2 * (b-x)) / ((b-a)*(b-c))

15 elif x > b:

16 return 0

17 else:

18 print("Error")

19

20

21 a = 1

22 b = 10

23 c = 7

24

25 X = arange(0, b+1, 0.1)

26 Y = []

27

28 xlabel("X", fontsize=15)

29 ylabel("f(x)", fontsize=15)

30

31 gca().axes.get_xaxis().set_ticks( np.arange(0, b+1, 1.0) )

32

33 for x in X:

34 Y.append( pdf(x, a, b, c) )

35

36 plot(X, Y, linewidth=2)
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37

38 # Show figure on screen

39 show()

40

41 # Save figure to hard disk

42 savefig("triangular_pdf.pdf", format="pdf", bbox_inches="

tight")

Listing A.10.2
Code for generating Figure 10.6(a).

1 from random import *

2 from math import *

3 from matplotlib.pyplot import *

4 from numpy import *

5

6 def pdf(x):

7 k = 10

8 theta = 1.0

9 return (x**(k-1) * theta**k * exp(-1 * theta * x)) /

factorial(k-1)

10

11 X = arange(0, 50, 0.1)

12 Y = []

13 for x in X:

14 Y.append( pdf(x) )

15

16 xlabel("Y")

17 ylabel("P(y)")

18

19 # Hide numbers along y-axis

20 gca().axes.get_yaxis().set_ticklabels([])
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21 # Remove ticks along y-axis

22 gca().axes.yaxis.set_tick_params(width=0)

23

24 plot(X, Y, linewidth=2)

25 savefig("erlang_plot_pdf.pdf", format="pdf", bbox_inches="

tight")

26

27 # Compute the mean

28 mean = 0

29 for i in range( len(X) ):

30 mean = mean + X[i] * Y[i]

31

32 print("Mean = ", mean)

Listing A.10.3
Code for generating Figure 10.6(b).

1 from random import *

2 from math import *

3 from matplotlib.pyplot import *

4 from statistics import *

5

6 def Erlang():

7 k = 10

8 theta = 1.0

9 y = 0

10 for i in range(k):

11 u = random()

12 x = (-1 / theta) * log(u) # Exponential variate

13 y = y + x

14

15 return y
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16

17 N = 100000

18 v = []

19 for i in range(N):

20 v.append( Erlang() )

21

22 bins = 100

23

24 w = [1 / len(v)] * len(v)

25

26 hist(v, bins, weights = w)

27

28 xlabel("Y")

29 ylabel("P(y)")

30

31 # Hide numbers along y-axis

32 gca().axes.get_yaxis().set_ticklabels([])

33 # Remove ticks along y-axis

34 gca().axes.yaxis.set_tick_params(width=0)

35

36 savefig("erlang_plot_hist.pdf", format="pdf", bbox_inches="

tight")

37

38 print("Mean = ", mean(v))
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A P P E N D I X B

An Object-Oriented
Simulation Framework

“Object-oriented programming is an exceptionally bad idea.”
−Edsger Dijkstra

The object-oriented paradigm is one of the most widely used programming
paradigms. This is because of its many benefits like code organization and
reuse. This appendix contains the details of a simulation framework that use
the object-oriented features of Python. This framework is inspired by the
Java-based framework described in [2].

Listing B.1
Event.

1 class Event:

2 def __init__(self, _src, _target, _type, _time):

3 self.src = _src

4 self.target = _target

5 self.type = _type

6 self.time = _time

7

8 def __eq__(self, other):

9 return self.__dict__ == other.__dict__

251
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Listing B.2
Simulation Entity.

1 from event import Event

2

3 class SimEntity:

4

5 def __init__(self, _scheduler, _id):

6 self.scheduler = _scheduler

7 self.id = _id

8

9 def schedule(self, target, type, time):

10 ev = Event(self, target, type, time)

11 self.scheduler.insert(ev)

12

13 def cancel(self, ev):

14 self.scheduler.remove(ev)

15

16 def evHandler(self, ev):

17 pass

Listing B.3
Event list and scheduler.

1 # The variable self.count_events counts events generated.

The number of events executed will also be equal to this

2 # number.

3 #

4 # You insert event based on its time. If there are two

events occurring at the same time, the second sorting

5 # criterion is to use the id of the target. The third

sorting criterion is to use the id of the source.

6

7 from queue import PriorityQueue
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8

9 class Scheduler:

10

11 def __init__(self, _Max_Num_Events):

12 self.evList = PriorityQueue()

13 self.time = 0.0

14 self.count_events = 0

15 self.Max_Num_Events = _Max_Num_Events

16

17 def insert(self, ev):

18 if ( self.count_events < self.Max_Num_Events ):

19 self.count_events = self.count_events + 1

20 self.evList.put( (ev.time, self.count_events, ev

) )

21

22 def remove(self, ev):

23 _evList = PriorityQueue()

24 for i in range(self.evList.qsize()):

25 tmp = self.evList.get()

26 _ev = tmp[2]

27 if not _ev == ev:

28 _evList.put(tmp)

29 self.evList = _evList

30

31 def head(self):

32 ev = self.evList.get()

33 self.time = ev[2].time

34 return ev[2]

35

36 def run(self):

37 count = 0

38 while( not self.empty() ):

39 ev = self.head()

40 self.time = ev.time
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41 count += 1

42 ev.target.evHandler(ev)

43

44 def empty(self):

45 return self.evList.empty()

46

47 def reset(self):

48 self.evList = None

49 self.time = 0.0

50 self.count_events = 0

Listing B.4
Example 1.

1 from scheduler import Scheduler

2 from simEntity import SimEntity

3

4

5 class Node(SimEntity):

6 def __init__(self, _scheduler, _id):

7 super(Node, self).__init__(_scheduler, _id)

8 self.schedule(self, "Self_Message", self.scheduler.

time + 2.0)

9

10 def evHandler(self, ev):

11 print( ev.type + " From " + str(ev.src.id) + " To "

+ str(ev.target.id) + " @ " + str(ev.time) )

12 self.schedule(self, "Hi", self.scheduler.time + 2.0)

13

14

15 scheduler = Scheduler(3)

16
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17 Node(scheduler, 1)

18

19 scheduler.run()

Listing B.5
Example 2.

1 from scheduler import Scheduler

2 from simEntity import SimEntity

3

4 class Node(SimEntity):

5

6 def __init__(self, _scheduler, _id):

7 super(Node, self).__init__(_scheduler)

8 self.id = _id

9 self.schedule(self, "Initialize", self.scheduler.

time + 2.0)

10

11 def setNeighbor(self, n):

12 self.neighbor = n

13

14 def evHandler(self, ev):

15 print( ev.type + " From " + str(ev.src.id) + " To "

+ str(ev.target.id) + " @ " + str(ev.time) )

16 self.schedule(self.neighbor, "Hi", self.scheduler.

time + 3.0)

17

18

19

20

21 scheduler = Scheduler(4)

22



256 � Computer Simulation: A Foundational Approach Using Python

23 n1 = Node(scheduler, 1)

24 n2 = Node(scheduler, 2)

25

26 n1.setNeighbor(n2)

27 n2.setNeighbor(n1)

28

29 scheduler.run()

Listing B.6
Example 3.

1 # Remove n1.setNeighbor(n2) && n2.setNeighbor(n1)

2 # Use a link to connect the two nodes

3 # A link has two ends: a & b

4

5 from scheduler import Scheduler

6 from simEntity import SimEntity

7

8 class Node(SimEntity):

9

10 def __init__(self, _scheduler, _id):

11 super(Node, self).__init__(_scheduler, _id)

12 self.schedule( self, "Initialize", self.scheduler.

time + 2.0 )

13

14 def setNeighbor(self, n):

15 self.neighbor = n

16

17 def evHandler(self, ev):

18 print( ev.type + " From " + str(ev.src.id) + " To "

+ str(ev.target.id) + " @ " + str(ev.time) )
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19 self.schedule( self.neighbor, "Hi", self.scheduler.

time + 3.0 )

20

21

22 class Link(SimEntity):

23

24 def __init__(self, _scheduler, _id):

25 super(Link, self).__init__(_scheduler, _id)

26

27 def setNeighbors(self, _a, _b):

28 self.a = _a

29 self.b = _b

30

31 def evHandler(self, ev):

32 print( ev.type + " From " + str(ev.src.id) + " To "

+ str(ev.target.id) + " @ " + str(ev.time) )

33 if( ev.src.id == self.a.id ):

34 self.schedule( self.b, "Hi", self.scheduler.time

+ 3.0 )

35 else:

36 self.schedule( self.a, "Hi", self.scheduler.time

+ 3.0 )

37

38

39

40 scheduler = Scheduler(6)

41

42 n1 = Node(scheduler, 1)

43 n2 = Node(scheduler, 2)

44 l = Link(scheduler, 3)

45

46 n1.setNeighbor(l)

47 n2.setNeighbor(l)

48 l.setNeighbors(n1, n2)
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49

50 scheduler.run()

Listing B.7
Example 4.

1 from scheduler import Scheduler

2 from simEntity import SimEntity

3 from event import Event

4

5 class Node(SimEntity):

6 def __init__(self, _scheduler, _id):

7 super(Node, self).__init__(_scheduler, _id)

8 self.schedule(self, "Self_Message", self.scheduler.

time + 5.0)

9 self.schedule(self, "Self_Message", self.scheduler.

time + 3.0)

10 self.schedule(self, "Self_Message", self.scheduler.

time + 4.0)

11 self.schedule(self, "Self_Message", self.scheduler.

time + 1.0)

12 self.schedule(self, "Self_Message", self.scheduler.

time + 2.0)

13 ev = Event(self, self, "Self_Message", self.

scheduler.time + 1.0)

14 self.cancel(ev)

15

16 def evHandler(self, ev):

17 print( ev.type + " From " + str(ev.src.id) + " To "

+ str(ev.target.id) + " @ " + str(ev.time) )

18

19
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20

21 scheduler = Scheduler(5)

22

23 Node(scheduler, 1)

24

25 scheduler.run()

Listing B.8
M/M/1.

1 # IAT = Average Inter-Arrival Time

2 # ST = Average Service Time

3 # Size of packet is its service time (in time units not bits

)

4 # Station contains a queue (Q) and server (S)

5

6 from scheduler import Scheduler

7 from simEntity import SimEntity

8 import random as rnd

9 import queue

10

11 class TrafficGen(SimEntity):

12

13 def __init__(self, _scheduler, _station, _id, _IAT =

1.0, _ST = 1.0):

14 super(TrafficGen, self).__init__(_scheduler, _id)

15 self.station = _station

16 self.IAT = _IAT

17 self.ST = _ST

18 self.schedule( self, "Packet_Arrival", self.

scheduler.time + rnd.expovariate(1.0/self.IAT) )

19
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20 def evHandler(self, ev):

21 # Handle arrival event

22 pkt = Packet( rnd.expovariate(1.0/self.ST) )

23 pkt.Arrival_Time = self.scheduler.time

24 self.schedule(self.station, pkt, self.scheduler.time

)

25 # Schedule next packet arrival

26 self.schedule( self, "Packet_Arrival", self.

scheduler.time + rnd.expovariate(1.0/self.IAT) )

27

28

29 class Packet:

30 def __init__(self, _size):

31 self.size = _size

32 self.Arrival_Time = 0.0

33 self.Service_At = 0.0

34 self.Departure_Time = 0.0

35

36 # Total time spent in system

37 def delay(self):

38 return self.Departure_Time - self.Arrival_Time

39

40 def info(self):

41 print("Arrival_Time = %.2f, Service_At = %.2f,

Service_Time = %.2f, Departure_Time = %.2f" % (self.

Arrival_Time, self.Service_At, self.size, self.

Departure_Time))

42

43

44 class Server(SimEntity):

45 busy = False

46

47 def __init__(self, _scheduler, _station, _id):

48 super(Server, self).__init__(_scheduler, _id)
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49 self.station = _station

50

51 def evHandler(self, ev):

52 global Num_Pkts, Total_Delay

53

54 if isinstance(ev.type, Packet):

55 pkt = ev.type

56 self.busy = True

57 pkt.Service_At = self.scheduler.time

58 pkt.Departure_Time = self.scheduler.time + pkt.

size

59 #pkt.info()

60 Num_Pkts = Num_Pkts + 1

61 Total_Delay = Total_Delay + pkt.delay()

62 self.schedule(self, "End_of_Service", self.

scheduler.time + pkt.size)

63 elif ev.type == "End_of_Service":

64 self.busy = False

65 self.schedule(self.station, "Server_Available",

self.scheduler.time)

66 else:

67 print("Server is supposed to receive packets!")

68

69 def isBusy(self):

70 return self.busy

71

72

73 class Station(SimEntity):

74

75 def __init__(self, _scheduler, _id):

76 super(Station, self).__init__(_scheduler, _id)

77 self.Q = queue.Queue()

78 self.S = Server(_scheduler, self, _id)

79
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80 def evHandler(self, ev):

81 # Handle arriving packet

82 if isinstance(ev.type, Packet):

83 pkt = ev.type

84 if not self.S.isBusy():

85 self.schedule(self.S, pkt, self.scheduler.

time)

86 else:

87 self.Q.put(pkt)

88 elif ev.type == "Server_Available":

89 if not self.Q.empty():

90 pkt = self.Q.get()

91 self.schedule(self.S, pkt, self.scheduler.

time)

92 else:

93 print("Station is supposed to receive packets

only!")

94

95 Num_Pkts = 0.0

96 Total_Delay = 0.0

97

98 scheduler = Scheduler(100000)

99 station = Station(scheduler, 1)

100 src = TrafficGen(scheduler, station, 2, 3.33, 2.5)

101 scheduler.run()

102

103 print("Avg Delay = %.2f" % (Total_Delay / Num_Pkts))

Listing B.9
State.

1 class State:
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2 def action(self):

3 pass

4

5 def next(self, event):

6 pass

Listing B.10
State Machine.

1 # http://python-3-patterns-idioms-test.readthedocs.org/en/

latest/StateMachine.html#the-table

2

3

4 class StateMachine:

5 def __init__(self, initialState):

6 self.currentState = initialState

7 self.currentState.action()

8

9 # Make transition

10 def applyEvent(self, event):

11 self.currentState = self.currentState.next(event)

12 self.currentState.action()

Listing B.11
Simple Protocol.

1 from state import State

2 from stateMachine import StateMachine

3 from event import Event

4

5
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6 class Bad(State):

7 def __init__(self):

8 super(Bad, self).__init__()

9

10 def action(self):

11 print("Bad State")

12

13 def next(self, event):

14 if event.type == "B":

15 return self

16 else:

17 return Good()

18

19

20 class Good(State):

21 def __init__(self):

22 super(Good, self).__init__()

23

24 def action(self):

25 print("Good State")

26

27 def next(self, event):

28 if event.type == "G":

29 return self

30 else:

31 return Bad()

32

33

34 class Protocol(StateMachine):

35 def __init__(self, _initialState):

36 super(Protocol, self).__init__(_initialState)

37

38

39 p = Protocol(Bad())
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40 p.applyEvent(Event(None, None, "G", None))

41 p.applyEvent(Event(None, None, "G", None))

42 p.applyEvent(Event(None, None, "B", None))
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A P P E N D I X C

The Chi-Squared Table

k − 1 χ2
0.005 χ2

0.010 χ2
0.025 χ2

0.050 χ2
0.100 χ2

0.900 χ2
0.950 χ2

0.975 χ2
0.990 χ2

0.995

1 0.000 0.000 0.001 0.004 0.016 2.706 3.841 5.024 6.635 7.879
2 0.010 0.020 0.051 0.103 0.211 4.605 5.991 7.378 9.210 10.597
3 0.072 0.115 0.216 0.352 0.584 6.251 7.815 9.348 11.345 12.838
4 0.207 0.297 0.484 0.711 1.064 7.779 9.488 11.143 13.277 14.860
5 0.412 0.554 0.831 1.145 1.610 9.236 11.070 12.833 15.086 16.750
6 0.676 0.872 1.237 1.635 2.204 10.645 12.592 14.449 16.812 18.548
7 0.989 1.239 1.690 2.167 2.833 12.017 14.067 16.013 18.475 20.278
8 1.344 1.646 2.180 2.733 3.490 13.362 15.507 17.535 20.090 21.955
9 1.735 2.088 2.700 3.325 4.168 14.684 16.919 19.023 21.666 23.589
10 2.156 2.558 3.247 3.940 4.865 15.987 18.307 20.483 23.209 25.188
11 2.603 3.053 3.816 4.575 5.578 17.275 19.675 21.920 24.725 26.757
12 3.074 3.571 4.404 5.226 6.304 18.549 21.026 23.337 26.217 28.300
13 3.565 4.107 5.009 5.892 7.042 19.812 22.362 24.736 27.688 29.819
14 4.075 4.660 5.629 6.571 7.790 21.064 23.685 26.119 29.141 31.319
15 4.601 5.229 6.262 7.261 8.547 22.307 24.996 27.488 30.578 32.801
16 5.142 5.812 6.908 7.962 9.312 23.542 26.296 28.845 32.000 34.267
17 5.697 6.408 7.564 8.672 10.085 24.769 27.587 30.191 33.409 35.718
18 6.265 7.015 8.231 9.390 10.865 25.989 28.869 31.526 34.805 37.156
19 6.844 7.633 8.907 10.117 11.651 27.204 30.144 32.852 36.191 38.582
20 7.434 8.260 9.591 10.851 12.443 28.412 31.410 34.170 37.566 39.997
21 8.034 8.897 10.283 11.591 13.240 29.615 32.671 35.479 38.932 41.401
22 8.643 9.542 10.982 12.338 14.041 30.813 33.924 36.781 40.289 42.796
23 9.260 10.196 11.689 13.091 14.848 32.007 35.172 38.076 41.638 44.181
24 9.886 10.856 12.401 13.848 15.659 33.196 36.415 39.364 42.980 45.559
25 10.520 11.524 13.120 14.611 16.473 34.382 37.652 40.646 44.314 46.928
26 11.160 12.198 13.844 15.379 17.292 35.563 38.885 41.923 45.642 48.290
27 11.808 12.879 14.573 16.151 18.114 36.741 40.113 43.195 46.963 49.645
28 12.461 13.565 15.308 16.928 18.939 37.916 41.337 44.461 48.278 50.993
29 13.121 14.256 16.047 17.708 19.768 39.087 42.557 45.722 49.588 52.336
30 13.787 14.953 16.791 18.493 20.599 40.256 43.773 46.979 50.892 53.672
40 20.707 22.164 24.433 26.509 29.051 51.805 55.758 59.342 63.691 66.766
50 27.991 29.707 32.357 34.764 37.689 63.167 67.505 71.420 76.154 79.490
60 35.534 37.485 40.482 43.188 46.459 74.397 79.082 83.298 88.379 91.952
70 43.275 45.442 48.758 51.739 55.329 85.527 90.531 95.023 100.425 104.215
80 51.172 53.540 57.153 60.391 64.278 96.578 101.879 106.629 112.329 116.321
90 59.196 61.754 65.647 69.126 73.291 107.565 113.145 118.136 124.116 128.299
100 67.328 70.065 74.222 77.929 82.358 118.498 124.342 129.561 135.807 140.169
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A P P E N D I X D

The t-Distribution Table

1− α = 0.80 1− α = 0.90 1− α = 0.95 1− α = 0.98 1− α = 0.99
n− 1 α

2
= 0.10 α

2
= 0.05 α

2
= 0.025 α

2
= 0.01 α

2
= 0.005

1 3.078 6.314 12.706 31.821 63.657

2 1.886 2.920 4.303 6.965 9.925
3 1.638 2.353 3.182 4.541 5.841
4 1.533 2.132 2.776 3.747 4.604

5 1.476 2.015 2.571 3.365 4.032
6 1.440 1.943 2.447 3.143 3.707
7 1.415 1 .895 2.365 2.998 3.500

8 1.397 1.860 2.306 2.896 3.355
9 1.383 1.833 2.262 2.821 3.250
10 1.372 1.812 2.228 2.764 3.169

11 1.363 1.796 2.201 2.718 3.106
12 1.356 1.782 2.179 2.681 3.054
13 1.350 1.771 2.160 2.650 3.012

14 1.345 1.761 2.145 2.625 2.977
15 1.341 1.753 2.132 2.602 2.947
16 1.337 1.746 2.120 2.584 2.921
17 1.333 1.740 2.110 2.567 2.898

18 1.330 1.734 2.101 2.552 2.878
19 1.328 1.729 2.093 2.540 2.861
20 1.325 1.725 2.086 2.528 2.845

21 1.323 1.721 2.080 2.518 2.831

22 1.321 1 .717 2.074 2.508 2.819
23 1.320 1.714 2.069 2.500 2.807

24 1.318 1.711 2.064 2.492 2.797
25 1.316 1.708 2.060 2.485 2.878

26 1.315 1.706 2.056 2.479 2.779
27 1.314 1.703 2.052 2.473 2.771
28 1.313 1.701 2.048 2.467 2.763

29 1.311 1.699 2.045 2.462 2.756
≥ 30 1.282 1.645 1.960 2.327 2.575
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Activity, 17
Attribute, 15
Automatic repeat request, 226

Buffon’s needle problem, 144

Central limit theorem, 96
Characteristic polynomial, 194, 195,

205
Computation, 4
Confidence interval, 97

interpretations, 100
making decisions, 103, 104

Delay, 135, 209, 225, 233

Entity, 15
Event, 17

collision, 134
generator, 117, 134
graph, 109

arrival process, 111
balking, 116
canceling edge, 109
failure, 115
limited capacity, 114
multiple-server system, 114
reneging, 116
scheduling edge, 109
single-server system, 112
translation, 117, 120

handler, 117, 127
initial, 117
list, 91, 117, 118, 120, 126–129,

134, 135, 218
table, 120
type, 117, 127

Exclusive-OR, 194
Experimentation, 3

Histogram, 44, 95, 176, 179, 181,
183–187

plotting, 46

Importance sampling, 158
Indicator function, 47

Law of large numbers, 35
Little’s law, 79

Mental image, 7, 13, 14, 18, 111
Model, 6

conceptual model, 15
single-server system, 69

Monte Carlo, 44, 139
crude, 141
estimating π, 139
estimating probability, 144
integration, 142
variance reduction (see Variance

reduction), 149

Number theory, 190
modulo operation, 190
prime modulus, 193, 194
prime number, 190
primitive roots, 191

Observation, 3, 165

Packet
identifier, 134

Performance, 74, 76, 79, 82, 225, 232
laws, 76
response time, 21, 77, 105
throughput, 76
utilization, 76

Pillars of science and engineering, 3
Probability, 28
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assignment, 28
computing, 30
measure, 139, 142
sample mean, 32

Propagation delay, 121, 227
Python

dictionary, 82, 227
tuple, 117, 134, 240, 245

Queueing, 18
phenomenon, 18
single-server system, 18
supermarket, 4

Queues, 126

Random
experiment, 27, 169

outcome, 27
samples, 94
variable, 39

Bernoulli, 46, 171
binomial, 47
cumulative distribution

function, 41
density function, 43
Erlang, 53
exponential, 52, 126, 168
geometric, 48, 126, 173
mass function, 40
normal, 54, 184
Poisson, 49, 182
rejection method, 173
triangular, 54, 178
uniform, 49, 167, 187

variate, 165
binomial, 172
composition, 177
convolution, 179

Random number generation
pseudo, 187

Random number generator, 187
linear congruential, 192
linear feedback shift register, 194
multiplicative congruential, 193

Random variate generator, 167
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