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Preface

The need for an English edition of these lectures has provided the original
author, Michel Bruneau, with the opportunity to complete the text with the
contribution of the translator, Thomas Scelo.

This book is intended for researchers, engineers, and, more generally,
postgraduate readers in any subject pertaining to “physics” in the wider sense of the
term. It aims to provide the basic knodde necessary to study scientific and
technical literature in the field of acoustics, while at the same time presenting the
wider applications of interest in acoustic engineering. The design of the book is such
that it should be reasonably easy to understand without the need to refer to other
works. On the whole, the contents arernetgtd to acoustics in fluid media, and the
methods presented are mainly of an analytical nature. Nevertheless, some other
topics are developed succinctly, one example being that whereas numerical methods
for resolution of integral equationsé propagation in condensed matter are not
covered, integral equations (and soresagiated complex but limiting expressions),
notions of stress and strain, and propiagain thick solid walls are discussed
briefly, which should prove to be a considerable help for the study of those fields
not covered extensively in this book.

The main theme of the 11 chapters of the book is acoustic propagation in fluid
media, dissipative or non-dissipative, homogeneous or non-homogeneous, infinite
or limited, etc., the emphasis being on the “theoretical” formulation of problems
treated, rather than on theiragtical aspects. From therydirst chapter, the basic
equations are presented in a general manner as they take into account the non-
linearities related to amplitudes and media, the mean-flow effects of the fluid and its
inhomogeneities. However, the presentatiorstish that the faots that translate
these effects are not developed in detail at the beginning of the book, thus allowing
the reader to continue without being hindered by the need for in-depth
understanding of all these factors from the outset. Thus, with the exception of
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Chapter 10 which is given over to this problem and a few specific sections
(diffusion on inhomogeneities,asbly varying media) tde found elsewhere in the
book, developments are mainly concerned with linear problems, in homogeneous
media which are initially at rest and most often dissipative.

These dissipative effects of the fluihdamore generally the effects related to
viscosity, thermal conduction and molecular relaxation, are introduced in the
fundamental equations of movement, dwgiations of propagation and the boundary
conditions, starting in the second chapter, which is addressed entirely to this question.
The richness and complexity of the phenomena resulting from the taking into account
of these factors are illustrated in Chapter 3, in the form of 13 related “exercises”, all of
which are concerned with the fundamental problems of acoustics. The text goes into
greater depth than merely discussing the dissipative effects on acoustic pressure; it
continues on to shear and entropic waves coupled with acoustic movement by
viscosity and thermal conduction, and, mpeaeticularly, on the use that can be made
of phenomena that develop in the associated boundary layers in the fields of thermo-
acoustics, acoustic gyrometry, guided waves and acoustic cavities, etc.

Following these three chapters there is coverage (Chapters 4 and 5) of
fundamental solutions for differential equation systems for linear acoustics in
homogenous dissipative fluid at rest: classic problems are both presented and solved
in the three basic coordinate systems {€&an, cylindrical ad spherical). At the
end of Chapter 4, there is a digression on boundary-value problems, which are
widely used in solving problems of acoustics in closed or unlimited domain.

The presentation continues (Chapter 6) with the integral formulation of problems
of linear acoustics, a major part of which is devoted to the Green’s function
(previously introduced in Chapters 3 and 5). Thus, Chapter 6 constitutes a turning
point in the book insofar as the end of this chapter and through Chapters 7 to 9, this
formulation is extensively used to present several important classic acoustics
problems, namely: radiation, resonators, diffusion, diffraction, geometrical
approximation (rays theory), transmission loss and structural/acoustic coupling, and
closed domains (cavities and rooms).

Chapter 10 aims to provide the reader with a greater understanding of notions
that are included in the basic equations presented in Chapters 1 and 2, those which
concern non-linear acoustics, fluid with mean flow and aero-acoustics, and can
therefore be studied directifter the first two chapters.

Finally, the last chapter is given over to modeling of the strong coupling in
acoustics, emphasizing the coupling betwetattro-acoustic transducers and the
acoustic field in their vicinity, as an application of part of the results presented
earlier in the book.



Chapter 1

Equations of Motion in Non-dissipative Fluid

The objective of the two first chapters of this book is to present the fundamental
equations of acoustics in fluids resulting from the thermodynamics of continuous
media, stressing the fact that thermal and mechanical effects in compressible fluids
are absolutely indissociable.

This chapter presents the fundamental phenomena and the partial differential
equations of motion in non-dissipative fluids (viscosity and thermal conduction are
introduced in Chapter 2). These equations are widely applicable as they can deal
with non-linear motions and media, non-homogeneities, flows and various types of
acoustic sources. Phenomena such as cavitation and chemical reactions induced by
acoustic waves are not considered.

Chapter 2 completes the presentation by introducing the basic phenomenon of
dissipation associated to viscosity, thermal conduction and even molecular relaxation.
1.1. Introduction

The first paragraph presents, in no particular order, some fundamental notions of
thermodynamics.
1.1.1.Basic elements

The domain of physics acoustics is simply part of the fast science of

thermomechanics of continuous media. To ensure acoustic transmission, three
fundamental elements are required: one or several emitters or sources, one receiver
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and a propagation medium. The principle of transmission is based on the existence
of “particles” whose position at equilibrium can be modified. All displacements
related to any types of excitation other than those related to the transmitted quantity
are generally not considered (i.e. the motion associated to Brownian noise in gases).

1.1.2.Mechanisms of transmission

The waves can either be transverse or longitudinal (the displacement of the
particle is respectively perpendicular or parallel to the direction of propagation). The
fundamental mechanisms of wave transmission can be qualitatively simplified as
follows. A particle B, adjacent to a particle A set in a time-dependent motion, is
driven, with little delay, via the bonding forces; the particle A is then acting as a
source for the particle B, which acts as a source for the adjacent particle C and so on
(Figure 1.1).

Direction of Direction of
T T propagation propagation
[
R bt
A B
Figure 1.1. Transverse wave Figure 1.2.Longitudinal wave

The double bolt arrows represent the displacement of the particles.

In solids, acoustic waves are always composed of a longitudinal and a transverse
component, for any given type of excitation. These phenomena depend on the type
of bonds existing between the particles.

In liquids, the two types of wave always coexist even though the longitudinal
vibrations are dominant.

In gases, the transverse vibrations are practically negligible even though their
effects can still be observed when viscosity is considered, and particularly near
walls limiting the considered space.
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1.1.3.Acoustic motion and driving motion

The motion of a particle is not necessarily induced by an acoustic motion
(audible sound or not). Generally, two motions are superposed: one is qualified as
acoustic (A) and the other one is “anacoustic” and qualified as “driving” (E);
therefore, if g defines an entity associated to the propagation phenomenon (pressure,
displacement, velocity, temperature, entropy, density, etc.), it can be written as

g(x,t) = ga) (X, 1) + gy (X, 1) .

This field characteristic is also applicable to all sources. A fluid is said to be at
rest if its driving velocity is null for all particles.

1.1.4.Notion of frequency

The notion of frequency is essential in acoustics; it is related to the repetition of
a motion which is not necessarily sinusoidal (even if sinusoidal dependence is very
important given its numerous characteristics). The sound-wave characteristics
related to the frequency (in air) are given in Figure 1.3. According to the sound
level, given on the dB scale (see definition in the forthcoming paragraph), the
“areas” covered by music and voice are contained within the audible area.

dB

140

120 Audible

100 Ultrasound

Music
80 —

60 —
40

’
v

/’ . .
,»~ Brownian noise

s

Infrasound
20

T T T 7T £
1Hz 20Hz 1kHz ~ 20kHz

Figure 1.3.The sounds
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1.1.5.Acoustic amplitude and intensity

The magnitude of an acoustic wave is usually expressed in decibels, which are
unit based on the assumption that the ear approximately satisfies Weber-Fechner
law, according to which the sense of audition is proportional to the logarithm of the
intensity (I) (the notion of intensity is described in detail at the end of this chapter).
The level in decibel (dB) is then defined as follows:

LdB = lOloglO I/Ir

where I, = 10712 w/m? represents the intensity corresponding to the threshold of
perception in the frequency domain where the ear sensitivity is maximum
(approximately 1 kHz).

Assuming the intensity I is proportional to the square of the acoustic pressure
(this point is discussed several times here), the level in dB can also be written as

LdB:2010g10p/pr,

where p defines the magnitude of the pressure variation (called acoustic pressure)
with respect to the static pressure (without acoustic perturbation) and where
pr=2 10> Pa defines the value of this magnitude at the threshold of audibility
around 1,000 Hz.

The origin 0 dB corresponds to the threshold of audibility; the threshold of pain,
reached at about 120—140 dB, corresponds to an acoustic pressure equal to 20—200
Pa. The atmospheric pressure (static) in normal conditions is equal to 1.013.10° Pa
and is often written 1013 mbar or 1.013.10° pbar (or baryes or dyne/cm?) or even
760 mm Hg.

The magnitude of an acoustic wave can also be given using other quantities,
such as the particle displacement £ or the particle velocity v . A harmonic plane
wave propagating in the air along an axis x under normal conditions of temperature
(22°C) and of pressure can indifferently be represented by one of the following
three variations of particle quantities

& =& sin(ot —kx),
v=0f sin((ot —kx),
p = pg sin(ot —kx),
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where py =pgco®Ey, po defining the density of the fluid and ¢ the speed of
sound (these relations are demonstrated later on). For the air, in normal conditions
of pressure and temperature,

co =3448ms,
po=1.2 kgm_3,

Po-Co =400 kgm 357!

At the threshold of audibility (0 dB), for a given frequency (N) close to 1 kHz,
the magnitudes are

po =2.107° Pa,
Vo =P =510 ms™,
PoCo
Vo -11
=—2 ~10"" m.
0= 2N

It is worth noting that the magnitude &, is 10 times smaller than the atomic
radius of Bohr and only 10 times greater than the magnitude of the Brownian
motion (which associated sound level is therefore equal to -20 dB, inaudible).

The magnitudes at the threshold of pain (at about 120 dB at 1 kHz) are

po =20 Pa,
vo=5.1072 ms™,

o =107 m.

These values are relevant as they justify the equations’ linerarization processes
and therefore allow a first order expansion of the magnitude associated to acoustic
motions.

1.1.6.Viscous and thermal phenomena

The mechanism of damping of a sound wave in “simple” media, homogeneous
fluids that are not under any particular conditions (such as cavitation), results
generally from two, sometimes three, processes related to viscosity, thermal
conduction and molecular relaxation. These processes are introduced very briefly in
this paragraph; they are not considered in this chapter, but are detailed in the next
one.
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When two adjacent layers of fluid are animated with different speeds, the
viscosity generates reaction forces between these two layers that tend to oppose the
displacements and are responsible for the damping of the waves. If case dissipation
is negligible, these viscous phenomena are not considered.

When the pressure of a gas is modified, by forced variation of volume, the
temperature of the gas varies in the same direction and sign as the pressure
(Lechatelier’s law). For an acoustic wave, regions of compression and depression
are spatially adjacent; heat transfer from the “hot” region to the “cold” region is
induced by the temperature difference between the two regions. The difference of
temperature over half a wavelength and the phenomenon of diffusion of the heat
wave are very slow and will therefore be neglected (even though they do occur); the
phenomena will then be considered adiabatic as long as the dissipation of acoustic
energy is not considered.

Finally, another damping phenomenon occurs in fluids: the delay of return to
equilibrium due to the fact that the effect of the input excitation is not instantaneous.
This phenomenon, called relaxation, occurs for physical, thermal and chemical
equilibriums. The relaxation effect can be important, particularly in the air. As for
viscosity and thermal conduction, this effect can also be neglected when dissipation
is not important.

1.2. Fundamental laws of propagabn in non-dissipative fluids
1.2.1.Basis of thermodynamics

“Sound” occurs when the medium presents dynamic perturbations that modify,
at a given point and time, the pressure P, the density p,, the temperature T, the
entropy S, and the speed v of the particles (only to mention the essentials).
Relationships between those variables are obtained using the laws of
thermomechanics in continuous media. These laws are presented in the following
paragraphs for non-dissipative fluids and in the next chapter for dissipative fluids.
Preliminarily, a reminder of the fundamental laws of thermodynamics is given;
useful relationships in acoustics are numbered from (1.19) to (1.23).
Complementary information on thermodynamics, believed to be useful, is given in
the Appendix to this chapter.

A state of equilibrium of n moles of a pure fluid element is characterized by the
relationship between its pressure P, its volume V (volume per unit of mass in
acoustics), and its temperature T, in the form f (P,T,V):O (the law of perfect
gases, PV—nRT =0, for example, where n defines the number of moles and
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R =8.32 the constant of perfect gases). This thermodynamic state depends only on
two, independent, thermodynamic variables.

The quantity of heat per unit of mass received by a fluid element dQ =TdS
(where S represents the entropy) can then be expressed in various forms as a
function of the pressure P and the volume per unit of mass V — reciprocal of the
density py (V=1/pg)

TdS=C,dT +hdP, (1.1)
TdS=CydT+/(dV, (1.2)

where Cp and Cy are the heat capacities per unit of mass at respectively constant
pressure and constant volume and where h and ¢ represent the calorimetric
coefficients defined by those two relations.

The entropy is a function of state; consequently, dS is an exact total differential,

thus
Cr_(88) h_(8 (1.3)
T \oT)p’ T \éP); '
Cv_(o8) £_(&8 (1.4)
T \oT)y' T \oV); '

Applying Cauchy’s conditions to the differential of the free energy F
(dF =—SdT - PdV) gives

oP oS
& (&) a9
oT )y, \oV)r
which, defining the increase of pressure per unit of temperature at constant density
as BP= (6P / 6T)V and considering equation (1.4), gives

PR=//T. (1.6)

Similarly, Cauchy’s conditions applied to the exact total differential of the
enthalpy G (dG = -SdT + V dP) gives

(&), 15) a7
ar )p  \oP); '
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which, defining the increase of volume per unit of temperature at constant pressure
as aV= (8\/ / 8T)P and considering equation (1.3), gives

Vo =-h/T. (1.8)
Reporting the relation

dV =(8V/0T)p dT +(0V / 8P)y dP

Into

dS=(0S/0T)y dT +(8S/8V)y dV

leads to

dS=[(0S/0T)y +(8S/aV ) (6V/8T)p1dT +(8S/ oV ) (6V / oP)y dP
= (0S/0T)p =(8S/0T )y +(6S/8V )y (OV/0T)p . (1.9)

Finally, combining equations (1.3) to (1.8) yields
Cp—-Cy =PVTap. (1.10)

In the particular case where n moles of a perfect gas are contained in a volume
V per unit of mass,

nR V n.R
Vo=—=—and PB=—— so Cp -Cy =nR. 1.11
P T B v p—Cv (L.11)

Adopting the same approach as above and considering that

dT =(0T/V)pdV +(T/6P)y, dP,
the quantity of heat per unit of mass dQ = TdS can be expressed in the forms

dQ=Cy dT+/dV =Cy (0T /aP)y dP+[¢+Cy (8T /6V)p | dV (1.12)
ordQ=CpdT+hdV,

= Cp(aT/0V)pdV +[h+Cp(aT/0P)y ] dP,
ordQ =AdP+udV . (1.14)

(1.13)
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Comparing equation (1.14) with equation (1.12) (considering, for example, an
isochoric transformation followed by an isobaric transformation) directly gives

xz(jva_T :C_Vanducha_T :C_P:&_ (1.15)
oP)y PP ovV)p Va o

Considering the fact that (OV /P );(0T/0V)p(8P/0T)y =—1 (directly obtained

by eliminating the exact total differential of T(P,V) and also written as o =By P)
the ratio A/ is defined by

&:_l(lj _Var _xr (1.16)
poo oy\oP)p v pY

where the coefficient of isothermal compressibility y is

1(oV 1(0
xT=——[—) =—[—pj : (117)
V0P ) pl\oP )t
and the ratio of specific heats is

'YZCP/C\/.

For an adiabatic transformation dQ =AdP +udV =0, the coefficient of adiabatic
compressibility yg defined by ygV = —(6V/ 6P)S can also be written as

sV =(0V/oP) = A Var _
o Y
Finally,
xs =x1 /Y (Reech’s formula). (1.18)

The variation of entropy per unit of mass is obtained from equations (1.14) and
(1.15) as:

dS:C—VdP—C—Pdp. (1.19)
TP Tpa

Considering that o =By P andyg =1 /7,

ds

_ Sy {dP— Y dp} Cv {dP— ! dp} (1.20)
TPp PXT TPp PXS
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Moreover, equations (1.12) and (1.13) give

h+Cp(8T/6P)y =Cy (0T/P)y and thush =—(Cp —Cy )/(PB).

Consequently, substituting the latter result into equation (1.13) yields

as=Spgr_Cr=Cv 4p (1.21)
T TPB

Substituting equation (1.10) and y =Py P into equation (1.21) leads to

C
dS=—PdT—P—BdeP. (1.22)
T p

Lechatelier’s law, according to which a gas temperature evolves linearly with its
pressure, is there demonstrated, in particular for adiabatic transformations: writing
dS=0 in equation (1.22) brings proportionality between dT anddP, the
proportionality coefficient TPBy 1 / (p CP) being positive.

The differential of the density dp=(dp/ GP)TdP+(6p/ dT)pdT can be

expressed as a function of the coefficients of isothermal compressibility yt and of
thermal pressure variation 3 by writing that

vier )p plop)p P\ aT )p

Thus,
dp = py[dP—-PBdT]. (1.23)

Note: according to equation (1.20), for an isotropic transformation (dS = 0):

pXT PXs

which, for a perfect gas, is

RT P dP  dv
dP=y—dp=y—dp, where —+y—=0,
Y M p Yy p P Y v

leading, by integrating, to PVY =cte=PyV,’ the law for a reversible adiabatic
transformation.
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Similarly, according to equation (1.23), for an  isothermal
transformation (dT = 0)

aP=—1 dp. (1.24)

pPXT

1.2.2.Lagrangian and Eulerian descriptions of fluid motion

The parameters normally used to describe the nature and state of a fluid are those
in the previous paragraph: «, 5,Cp,Cy ,7,etc. for the nature of the fluid and P, V
or p, T, S, etc. for its state. However, the variables used to describe the dynamic
perturbation of the gas are the variations of state functions, the differentials dP, dV
or dp, dT, dS, etc. and the displacement (or velocity) of any point in the medium.
The study of this motion, depending on time and location, requires the introduction
of the notion of “particle” (or “elementary particle”): the set of all molecules
contained in a volume chosen which is small enough to be associated to a given
physical quantity (i.e. the velocity of a particle at the vicinity of a given point), but
which is large enough for the hypothesis of continuous media to be valid (great
number of molecules in the particle).

Finding the equations of motion requires the attention to be focused on a given
particle. Therefore, two different, but equivalent, descriptions are possible: the
Lagrangian description, in which the observer follows the evolution of a fluid
element, differentiated from the others by its location X at a given time t, (for
example, its location can be defined as y(X,t) with X(X,to)z X and its velocity
X = ax(X,t)/ ot), and the Eulerian description, in which the observer is not
interested in following the evolution of an individual fluid element over a period of
time, but at a given location, defined by t and considered fixed or at least with
infinitesimal displacements (for the differential calculus). The Lagrangian
description has the advantage of identifying the particles and giving their
trajectories directly; however, it is not straightforward when studying the dynamic
of a continuous fluid in motion. Therefore, Euler’s description, which uses variables
that have an immediate meaning in the actual configuration, is most often used in
acoustics. It is this description that will be used herein. It implies that the differential
of an ordinary quantity q is written either as

dq = q(f +dr,t+ dt)—q(f, t),
or dq = q(f +df, t+ dt)— q(r, t+ dt)+ q(7, t+dt)—q(7,t),

or dq = grad q(F, t + dt)dr +%q(f, t)dt.
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The differential dq represents the material derivative (noted Dq in some
works) if the observer follows the particle in infinitesimal motion with instantaneous
velocity v, that is dr = vdt. Then, considering the fact that q(t+dt)dt ~ q(t)dt by
neglecting the 2™ order term (6q/ 8’()0 dtdt,

dq = grad q(?,t)?/dt +%q(¥,t)dt,
or, using the operator formalism,
d . _. 0
—=vgrad+—. 1.25
5 verad+— (1.25)

The following brief comparison between those two descriptions highlights their
respective practical implications. The superscripts (E) and (L) distinguish Euler’s
from the Lagrangian approaches.

The instantaneous location T of a particle is a function of 1, andt, where 1 is
the location of the considered particle at t =t (1, is often representing the initial
position).

Using Lagrangian variables, any quantity is expressed as a function of two
variables T, andt. For example, the acceleration is represented by the function

(5, 1)

Using Eulerian variables, any quantity (the acceleration is used here as an
example) is expressed as a function of the actual location T and t, noted f‘(E)(f, t).
This function can be expressed in such form that the expression of T as a function

of T, and t appears; it is then written asT’ (E)(f(fo,t), t), but still represents the

same function T (E)(F,t).

These definitions result in the following relationships

2
#(L) :%(L)(;o,t): %X(?o,t),

r(E) - %\”/(E)(f(fo,t), t)= %v(E) +9E)grad 9,
:ﬁ{,(E) ﬁx. T i{,(E)
ot +§a Amo&j ’
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where V(E)(f, t)= %f(fo ,t)

The physical quantity “acceleration” can either be expressed by f(L)(FO,t) or
by FE)(E, 1).

1.2.3.Expression of the fluid compressibility: mass conservation law

A certain compressibility of the fluid is necessary to the propagation of an
acoustic perturbation. It implies that the density p, being a function of the location

T and the timet, depends on spatial variations of the velocity field (which can
intuitively be conceived), and eventually on the volume velocity of a local source
acting on the fluid. This must be expressed by writing that a relation, easily obtained
by using the mass conservation law, exists between the density p(7,t) and the

variations of the velocity field

9D = [ palFs kD, (126

The integral is calculated over a domain D(t) in motion, consequently
containing the same particles, and the fluid input from a source q(f, t) is expressed

per unit of volume per unit of time ([q]z s_l). In the right hand side of equation
(1.26), the factor pq denotes the mass of fluid introduced in D(t) per unit of

volume and of time (p.q] = kg.m'3 s ) Without any source or outside its influence,

the second term is null (q =0).

This mass conservation law can be equivalently expressed by considering a
domain D fixed in space (the domain D, can, for example, represent the

previously defined domain D(t) at the initial timet =t ). The sum of the mass of

fluid entering the domain D, through the fixed surface S, per unit of time,
_-USO pvdS, = _-mDO div(p?/)dDo,

(where v defines the particle velocity, d§0 being parallel to the outward normal to
the domain), and the mass of fluid introduced by an eventual source represented by
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the factorpq, is equal to the increase of mass of fluid within the domain D, per
unit of time,

2 ({fy, pao = [Jf, 2y,

Thus,
J H {(z—p+div(p\7)}dD0 =, padDy . (1.27)
p, Lot !

This equation must be valid for any domain Dy , implying that
% +div(pv) = pq. (1.28)

Substituting equation (1.25) and the general relation:
div(p\7) =pdiv v+ vgrad p,

leads to the following form of equation (1.27)
%+pdiv§=pq. (1.29)

One can show that equation (1.26) can also be written as

JUD(J%+ pdiv V}dD = H J D(t)pqu, vD(t). (1.30)

Equation (1.30) is equivalent to equation (1.29) since it is verified for any
considered domain D(t). Equations (1.26) to (1.30) are all equivalent and express

the mass conservation law for a compressible fluid (incompressibility being defined
by dp/dt = 0).
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1.2.4.Expression of the fundamental law of dynamics: Euler’'s equation

The fundamental equation of dynamics is the equation of equilibrium between
forces applied to the particle, inertial forces, forces due to the pressure difference
between one side of the particle and the other side, and viscosity-related forces,
shear viscosity as well as volume viscosity (for polyatomic molecules). Neglecting
in this chapter the effect related to the viscosity (non-dissipative fluid), the equation
of equilibrium of the forces is obtained by writing that, projected onto the x-axis
(for example) the resultant of all external forces applied to the fluid element
dx dydz (the particle), sum of all the forces due to pressure difference (Figure 1.4)

[P(x)— (x —dx )]dydz =- Z—P dxdydz
X

and of those introduced by some eventual acoustic sources (characterized by the
external force per unit of mass F) pF, dxdydz, is equal to the inertial force of the
considered mass of fluid

dv,

dxdydz .
paxay at

dz

iy
dx dy

Figure 1.4.Fluid particle

Similar equations can be obtained by projection onto the y- and z-axes. A
vectorial expression of the equilibrium of the forces is then obtained and is called
Euler’s equation

p%:—grédP+pF, (1.31)

or p[%+ vgrad f/j = —grad P+ pF, (1.32)
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where the function F is replaced by zero outside the zones of influence of the
eventual sources.

The generalization to a finite domain (D), limited by a surface (S), is obtained by

integration, according to the relation [f grad PdD = [f¢ PdS

jijpi—de=—JLPd§ +JHDdeD : (1.33)

1.2.5.Law of fluid behavior: law of consrvation of thermomechanic energy

The laws governing the state of a particle are based on the thermomechanics in
continuous media and must include not only the purely mechanical and macroscopic
energy (kinetic, potential and dissipative), but also the thermal energy since it is
assumed that the considered “system” (particle) contains a large number of
molecules. Part of the mechanical energy (acoustic energy) is dissipated into heat by
viscous damping and will therefore not be considered in this chapter as viscosity is
only introduced in Chapter 2.

To the variation of pressure (considered in Euler’s equation) is associated a
variation of temperature (see comments following equation (1.22)) between the
considered particle and the surrounding particles. This difference generates a heat
transfer expressed in terms of the heat quantity dQ received by the considered
particle. The variation dQ, depending on the path used between the initial state and
the final state, does not have the same properties as the total exact differential. This
is not the case for the variation of entropy dS associated to the heat dQ by
dQ=TdS where T represents the particle temperature. (This relationship presents
an analogy with the expression of the elementary work received by the particle
dW = (~P)dV in which the pressure variation is the cause and the variation of
volume is the effect.) The effects of the heat flow established within the fluid under
the acoustic motion appear to be dissipative and of similar order of magnitude as the
viscosity effects (thermal or purely acoustic). They are consequently ignored in this
chapter. With only heat input from an eventual exterior heat source being
considered, the source is then characterized by the heat quantity h, introduced per
unit of mass and time. If S is the entropy per unit of mass, the relation governing
the above statements is then

TdS=hdt (1.34)
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Without any thermal source h(F,t) at the location T and time t considered, this
equation expresses the adiabatic property of the transformations (dS=0). This
adiabatic can be expressed by taking dS =0 null in equations (1.20), as

ap=—"dp-—1dp. (1.35)
pXT  PXS

In acoustics, equation (1.35) is more often written in the form

dP=c?dp (1.36)

with ¢?2 =+ =~
PXT PXs

From a mechanical point of view, this constitutes a behavior law relating the
variation of volume to a stress called pressure.

Note: the thermodynamic quantity c is defined as a velocity; it is the velocity of
homogeneous acoustic plane waves.

1.2.6.Summary of the fundamental laws

In addition to the particle velocity v (kinetic variable), four thermodynamic
variables (P,porV,T,S) and their associated variations (dP,dpordV,dT,dS) have
been mentioned in the previous paragraphs, but according to the assumption made
previously, only three of them ( P,p,S ) are required to describe the acoustic motion
since the variation of temperature dT intervenes only in the thermal conduction
factor, which has not been covered in this chapter. Besides, there are only three
fundamental equations available to describe the mass conservation law (expressing
the compressibility of the fluid, section 1.2.3), the fundamental law of dynamic
(vectorial form, section 1.2.4) and the conservation of thermomechanic energy (in
analogy with a behavior law, section 1.2.5). Within the hypothesis of adiabatic
motion, the variable dS (and dT) disappears and the problem presents the same
number of equations and variables. However, in the presence of a heat source, the
quantity dS (equation (1.34)) and, when dissipation is considered, the variation of
temperature dT appears in the conduction coefficient, then introduced in the
equation (1.34).

It is then necessary to introduce the notion of bivariance of the considered fluid,
according to which the thermodynamic state of the fluid is a function of only two
variables of state, chosen from among the four already introduced (P,p,Tand S).
Thus, the differentials of those variables, related to the acoustic motion, can be
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expressed as functions of the two others, reducing the number of unknowns to three,
including a vectorial one (the particle velocity). For example, to eliminate the
elementary variables dp and dS and therefore conserving dP and dT, all that is
necessary is to combine equations (1.22) and (1.23).
1.2.7.Equation of equilibrium of moments

According to the fundamental principles of mechanics, it is necessary to write
the equations of equilibrium of forces and moments. The object of this paragraph is
to show that these equations imply the fundamental principles of mechanics, which

consequently does not offer additional information.

The moment (which must be null) of all the forces with respect to one point is

JIJ 3% ol G- loo || s - (137)

or, by projection onto Ox,

X dﬁ—F j—x (dV—Z_F HdD JJPxn —x3n,dS =0, (1.38)
JJJDp|:2[dt e R | S[z3 o JdS =0,

where n;, n,, ny denote the cosines directing dS, and (D) is a closed domain
limited by the surface (S).

Defining the vector A of components (0, 0,px, ), the quantity px,n3dS can be

written as A.dS and the theorem of divergence gives

[lsA.dS = [[],, div AdD,

o [ <[ & -] s 2

Consequently, the integration of equation (1.38) over the surfaces becomes

oP oP
IISP[X2H3 —X31’12]dS=J.J.J.D(X2 ox —X3 a—]dD
X3 X2
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It is the projection of the volume integral _[”D OM A grad PdD onto the x-axis.
Equation (1.37) can finally be written as

J H OM A Hd—v—i}u grad P}dD =0, (1.39)
o dt

which is satisfied since Euler’s equation sets the term in brackets equal to zero.

1.3. Equation of acoustic propagation
1.3.1.Equation of propagation

The general solution to the system of equations of motion in non-dissipative
fluid is generally obtained by solving this system for the pressure, the other
parameters being obtained by substitution of the pressure into the considered
system. This method is presented here.

Substituting equation (1.20) into (1.34) and, considering the relations o =y P
and Cp =yCy , leads to

ldp _xrdP o (1.40)

Applying the operator “div ” to Euler’s equation (1.31) and “d/dt” to the mass
conservation law (1.29), after having divided both by the factorp, leads to the two
following equations

div{iwlgrad P—IE}:O, (1.41)
dt p

d iHl£]+div \"/—q} =0. (1.42)
dt|{ p dt

Substituting equation (1.40) into (1.42), then subtracting equation (1.42) from
equation (1.41), eliminates the variables p and v, and finally leads to the equation
of propagation for the pressure

div| Loraap |- 42 9P _ g p_da_dfoeh ] (1.43)
p del vy dt

of grad| L |grad p+Ltap— [T 9P g p_da_dfoh ) (1.44)
p p dt{ vy dt
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Within the often-used hypothesis of a (quasi-) homogeneous fluid which
dynamic characteristics are (quasi-) independent of the time, and where the

factors grad (1/ p),i rau , and dfah are small enough to neglect the terms
dt Y dt CP
where they appear; equation (1.44) becomes
2
ap— L9 Jgiypoda_ o dh (1.45)
c? dtz dt Cp dt

where (equation (1.36)) ¢ = Y /(pr ) =1 /(pxs )

It is an equation of the kind P =-f, (1.46)

¢ dt?

applied to the pressure field, and where the second term (— f ), representing the

. . . 2
where the D’Alembertian operator is the operator of propagation [A_ld]

effects of the source (described by the force F applied to the media, the volume
velocity source q, the heat source h), is assumed to be known.

1.3.2.Linear acoustic approximation

The previous equations are all non-linear since all terms contain products of
differential elements. This can be verified, for example in the case of equation
(1.14) of the differential of the mass entropy TdS=AdP+pudV, whose integral is
simple when applied to perfect gases (PV =nRT). Indeed, equations (1.15) lead to

ar T

= | = il 1.47
A CV[@PJV Cy 5 (1.47)

oT T
¢ || =c,—, 1.48
M p[&\/jp Py (1.48)

&P . dv P dv P dp

thus dS=Cy —+Cp —=Cy| —+y— |=Cy| ——y— 1.49
vV Py V[ ~ Y - J V( ~ Y pj (1.49)

or, integrating between the “current” state and the initial state of index zero (the
parameters Cy and y being considered constant within this interval), to

=Y
5750 1y i(iJ , (1.50)
Cv Py {po
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Y
S-S
or LZ(LJ exp( OJ (L.51)
Py \po Cv

which is obviously not linear.

By replacing the equation (1.36) by c02 =y/(poyT) (or c% =yPy/pgy for a
perfect gas), equation (1.51) can be expanded into Taylor’s series, estimated at the
initial state

-1
P—Py =C%(P—Po)+;TOC%(P—Po)2 o) yPCo (S=Sp)+.... (1.52)
v

If the parameters Py,p(, S, represent the state of the fluid at rest, meaning
here the state of the fluid without acoustic perturbation, the quantities
(P-Py).(p—po), (S —Sy) represent the variations, due to the acoustic
perturbation, at any given point and time from the state at rest. According to the first
comments in this chapter, these variations are generally small, so that the Taylor’s
expansion can be, in most situations, limited to the first order, transforming a non-
linear law into a linear one. Denoting

p=P-Py, p'=p—pg ands=S-S, (1.53)

the linerarized equation (1.52) is

pzc%{p# Po s}. (1.54)
YCv

This is equivalent to replacing equation (1.52), written as

ap="aps L ds= c{dp+LdS}
p CV YCV

by the approximated equation

P P
AP~ 0 4o 20 gs— c%{dp+p—0d8}
Po Cy YCv
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where c% =vPy /pg (which is very often used) which, integrated between the state
at rest (referential state) Py, pg, S, and the current state P, p, S, leads directly
to equation (1.54).

It is convenient at this stage to note that the two elementary independent
variables p' and s are both considered as infinitesimal and of the first order, but in
practice are such that

Po

s << p', and hereinafter p = c% p', (1.55)
YCv

which is equivalent to writing s~ 0. This result translates the adiabaticity of the
considered phenomena without sources and when thermal conduction is neglected
according to the conclusion of section 1.2.5.

The linear versions of the fundamental equations of motion are very convenient
since their solutions are easier to find. Moreover, the approximation of linear
acoustics  holds in many cases. Thus, using the notations
p=P—-Py,p'=p—pg,s=S—S, and writing the particular velocity as a sum of a
“driving” velocity vy and a velocity related to an acoustic perturbation
Va (V=9 +V, ), Euler’s equation (1.31), pdv/dt = —grad P+ pF, becomes

a . - ~ . - - ~
<po+p->[a+<vE +va>grad}<vE +7,)=—grid (Py + )+ (po +p)F

That is, admitting the often verified hypothesis that the functions gradP and
po OVE /0t are negligible, and conserving only the 1% order terms of small
quantities p, p' andv,,

po VE grad Vg +po [§+VE grﬁdj Va ®—gradp+pg F.

which finally, if the fluid without perturbation is at rest (Vg = 0, Va =V), leads to

po% ~ —gradp +poF. (1.56)

Under the same hypotheses, the mass conservation law (1.28) or (1.29)
immediately becomes

68—‘:+p0div?/:p0q. (1.57)



Equations of Motion in Non-dissipative Fluid 37

Finally, equation (1.40), which expresses the adiabatic character of the
transformation without source,

o _XT gp_ % gy (1.58)
Py Cp
d dP
can be approximated, writing that o _ d_tO =0,to
o
Ldpv ~ X—po—ihdt Ora_Pz_Z@_ﬂh , (1.59)
Po Y Cp o g ot Cp

This is, by integrating from the state at rest (pO,pO) at the time t to the actual
state (Py +p, po +p', at the time ), and by ignoring the eventual variations of the
parameters xr,Y,0,Cp within the interval of integration

t
Lp':X_Tp_iJ hdt
po v Crly

t
or p:c% p'+M hdt Wherecgz Y (1.60)

P Jt, PoXT '

This result can also be obtained by directly integrating equation (1.58)

t
In(p/pg)=2L(P—Py)-——| hd,
Y CplJy,

and then expanding this equation to the first order.

The set of equations (1.56), (1.57) and (1.60) constitutes the system governing
the acoustic propagation in non-dissipative homogeneous fluid initially at rest and
within the linear acoustics approximation. The substitution of equation (1.60) into
(1.57), then the sum (considering a change of sign) of the time derivative of the
latter and of the divergence of equation (1.56), leads to the linear form of the
equation of acoustic propagation (1.45)

2
Ap——j—zpzpo{divF—%—i@}, (1.61)
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where p represents the acoustic pressure, the variation of pressure with respect to
the average static pressure P, .

The particle velocity v (more precisely, its derivative with respect to the time)
can be derived from the general solution by simply using Euler’s equation (1.56),
differentiating (without source) and taking p'=p/c(. The acoustic field is then
defined by the set of variables (p,v).

1.3.3.Velocity potential
Assuming the conditions of regularity are fulfilled, any vector field can be uniquely
decomposed into the sum of an irrotational field v,(rot v, =0, divv, #0) and a

non-divergent (or vortical) field v, (div v, =0, rot v, # 0):

V=V vy, (1.62)

It has been shown that according to these operators’ properties (1ot grad =0
and div rot =0 ), there exists a scalar function (p(f,t) called “velocity potential”
such that:

vy=grad ¢ (1.63)
and a vectorial function j(%,t) called “vortical potential” such that:
Vy=I0t . (1.64)
The particle velocity can finally be written as
v =grad ¢+rot . (1.65)

The choice of the function  is partly arbitrary since the set of functions
(vx,Vy,v,) is related to the set (¢, ¥,V y,y,). Therefore, a constraint can be
imposed on the vectorial function y without modifying the expression of v . This
choice, called the choice of gauge, is usually in the form divy=0 in order to
simplify the search for solutions to problems where the vortical component vy is
not null.

Here V, = 0 since the rotational of Euler’s equation, outside the influence of
any source, gives
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rot & =0, ‘v’(f, t)or rot v=0,
dt
Consequently
v=gradp=V,. (1.66)

Substituting this result into the linerarized Euler’s equation (without source)
yields the relationship between p and o :

o . -
—gradp=—gradp,
Po at grad ¢ = —grad p
that is, for py independent of the point (Y,t)

grﬁd{p +Po %(P} 0, V1),

from which p=—p %p (1.67)

Omitting the simple operator (—p(0/0t) leads to the observation that pressure
variation and velocity potential satisfy the same equation of propagation, within the
approximation of linear acoustic, in homogeneous and non-dissipative fluids. For
this reason, some authors prefer to use the velocity potential.

It is relatively easy to obtain the equation of propagation satisfied by the particle
velocity by eliminating the variables P and p, respectively p and p', in the system
of non-linear equations (1.29), (1.31), (1.40), respectively in the system of linear
equations (1.56), (1.57) and (1.60). It is then necessary to apply the gradient
operator to the equation of conservation of mass and d/dt (ord/ot) to Euler’s
equation and process as in the case of the equation of propagation of the pressure.
The resulting equation is

2. -
grad div v — 12d2v =- lzdF+gradq+igradh. (1.68)
¢ dt ¢4 dt Cp
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The linear approximation of equation (1.68) is obtained by replacing ¢ by c
and d/dt byd/ot.

Given the vector equality grad div = A+ rot rot and the result (1.66) v=grad ¢,
the operator (grad div) can, in equation (1.68), be replaced by the Laplacian
operator A (since here rot v =rot grad ¢ =0). However, it is recommended that
one uses the “notation” A carefully since its expression, when applied to a vector
v, cannot be directly transposed from its expression when it operates on a scalar as
here A = grad div—rot rot and not (div grad ).

1.3.4.Problems at the boundaries

The equations in the previous sections must be satisfied for any values of the
variables T and t in the considered space and time domains. For the sake of
conciseness in this book, this point is not constantly stated, but it must not be
forgotten. Therefore, since the equations of propagation involve second-order
spatial and time operators, the general solutions depend on two arbitrary functions.
The following example shows a relatively general case that is constrained only by
the condition of linear acoustics in a fluid at rest (Vg =0) (Figure 1.5).

plate material
N fluid
(0)

A \%

7/

Figure 1.5.Plane wall with local reaction

A wall constituted of a curved surface, the curvature of which is small enough to
approximate the plate by its tangent plane z =—¢, is animated with a velocity V,
along the normal z axis. It is assembled in the space (—¢,0) with an elastic and
resistive material characterized by its “impedance” Z defined, in the Fourier
domain, in the ration of the pressure p(O) applied on its face at z=0 (with z>0)
to the speed of variation of thickness [VO - V(O)] where v(0) represents the
velocity at the interface material/fluid at (z=10):

~ o)
2= (1.69)

Using the Fourier transform of Euler’s equation (1.56) and not considering any
source, v(0)can be expressed as
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o) "R/ 22 _dp/en
iopg  i®pg

where 0 represents the normal vector outward the considered domain (D), here
z > 0. Impedance (1.69) becomes, for z =0 (at the boundary):

.
@ +1k =U,, 1.70
5 oBp=Uyg (1.70)

where P=pgcy/Z is the normalized admittance (dimensionless) of the material
(different from the coefficient of augmentation of isochoric pressuref ), kg=w/c
is the wavenumber, the ratio of the angular frequency imposed by a sinusoidal

source and to wave velocity [COZ«/Y/(POXT)] , and Uy =iwpyVy, V, being the

vibration velocity imposed to the wall atz = —¢ .

This equation, only valid at z =0, is a boundary condition on the pressure field
p and its first derivative (this is expected as the equation of propagation involves
spatial second-order derivatives), and a function U representing the effect of a
“source” of boundary acoustic energy.

In the case where Vo =0,Z =p(0)/(—v(0)), and taking equation (1.70) in the
form of a homogeneous and hybrid boundary condition:

@Hkoﬁp:o. (1.71)
on

If, in addition, the material is perfectly rigid, V(O) =0 then Z—> o and B=0;
the condition is called Neumann’s condition:

P _
Py (1.72)

Conversely, if the wave propagates in a dense medium (a solid for example), the
reaction force of the gas is, at the interface with a gas, in most cases negligible,

resulting in Dirichlet’s conditions:

p=0,atz=0. (1.73)

In the time domain, equation (1.70) introduces a product of convolution noted “*”*:
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op 1 dp
—+———"Txp=U 1.74
on cpdt PO (1.74)
where the notationsp, 3 and U are functions in the time domain and not their
Fourier transforms (as in equation (1.70)).

Thus, modeling a real situation within a domain (D) limited by a surface (S) —a
typical problem — becomes (within the hypothesis of linear acoustics in non-
dissipative fluid at rest):

2
1 0 -
A-—— p=—f, Vie(D), Vte(ty,»), (1.75)
Co ot
op 1 B, -
+— —*p=Uy, Vre(S), Vte(ty,»o),
on o P U (S) (to,0)
p and dp/ ot are known VT € (D) at the initial moment t = t;. (1.76)

The spatial and time boundary conditions involve derivatives, the order of which
is lower than the order of the differential operators in the equation of propagation by
at least one unit (as mathematics state it); the acoustic field can be fully
characterized only if one knows its value at (S) and at t=t, as well as its first
derivatives (in time and spatial domains).

The condition (1.71) is a local condition (the reaction of the wall depends on the
considered location). However, this approximation is not always acceptable, for
example in the case when coupling occurs between the vibrational state of the wall
and the acoustic field, if the wall is a medium of vibration propagation. The acoustic
problem in fluid is then coupled with another problem: the vibration field of the
partition, etc. (see Chapter 8).

1.4. Density of energy and energy flow, energy conservation law
1.4.1.Complex representation in the Fourier domain
It is convenient to define, in harmonic regime, the complex magnitudes p(r) and

v(f,t) associated to the real pressure variation and particle velocity noted p(F,t)
and V(F,t) in sections 1.4.1 and 1.4.3: -
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B(f,t):Re[p(f)eiwt} :%[p(?)eiwt +p*(f)e—iwt] : (1.77)
Q(f,t)zRe[V(f)ei“)t} =%[V(f)ei°)t ¥ V*(F)e_i(’)t} . (1.78)

These complex quantities contain information on the magnitudes and phases
(¢, and ¢, ) of the wave:

p(Ep(Fle P and v, (£)f7;(F)e O . (1.79)

where |§/i(ﬂ is the i component of the vector whose length is equal to the modulus
of the complex velocity which is, from now on, improperly noted |\7(f)| for
conciseness.

The forthcoming calculation of the energy density and energy flow is carried out
using the complex notation and the density p, for a homogeneous non-dissipative
fluid at rest, within the linear acoustic approximation.

1.4.2.Energy density in an “ideal” fluid

The total energy density is the sum of the kinetic and potential energy densities.
The variation of kinetic energy density E., kinetic energy per unit volume, is

related to the instantaneous particle velocity V by

E. =

C

pov?. (1.80)

N | —

PoV.Y =

| —

The potential energy, or internal energy of the fluid, is the energy that is stored
by the fluid when evolving from a state of rest to an acoustic state characterized by
the variables p andp . It is then defined by an integral calculated between those two
states:

[dE,=[(dQ+dW )=[dW .

The Ilatter equation illustrates the adiabatic property of the phenomena. In
writing that p =pg +Jp , the efficient elementary work received by a particle, when
normalized to a unit volume, becomes (Figure 1.6)
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dW=—BEdV=%d(8_p).

Ignoring the terms of higher orders and according to the law p = c(z) dp yields

2
aw =% dlop)= 50 dlo).
p1p

dp

d(p) o'
Figure 1.6.Clapeyron’s diagram

The potential energy density can be written, at a given time, as

2 (B 2 12 2
E, =<0 | spdlsp)=02 - L - (1.81)
PoJ, ™~ Po 2 2pch

Thus, the local total energy density is given by

2 2
Ei:EC+EpzpoL+972, (1.82)
2 2pgch
It is important to note that p and v represent in equation (1.82), the real parts of
the pressure and the velocity. Thus, using the complex notation (the exponent “*”
referring to the complex conjugate quantity) and considering equation (1.77):
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B2=%[p2 2iot (p )2 21°)t+2pp }

1 |p|2 21((0t+(pp) 2 e—Zi((DH-(pp) +2|p|2 ’

+[p
2
—l [cos 2(0)t +¢p )+ 1],

and the time average value (over the periodT), given by _ 2 so1 szdt’ can be

written as
<B2 >:|p|2/2 .

Finally, the local average value of the total energy density is

E=<E; >=<E, >+<Ej >=i{p0|v|2 + 2] : (1.83)

1.4.3.Energy flow and acoustic intensity

The acoustics intensity is, by definition, the energy that travels through a unit
area per unit of time; it is an energy flow. The instantaneous flow of energy I; is the
product of the pressure variation (force per unit of area) and the particle velocity
(displacement per unit of time):

1'oot+cpp ot+ (x)+V Ot+Qy,
%lpl{e( ) e i ‘PpwH[ t+o (tw)}

— ol

i

B [ei(Zcot-i—(ppﬂij . e_i (2cot+(pp+(pvj . ei((pp—(pv) s e—i((pp—(pv)]

= % |p| |f/| [cos (th +op, +0y )+ cos ((pp - (pv)].



46  Fundamentals of Acoustics

N S . .
The quantity 3 |p| |V| cos (20)t+(pp +(pv) varies in time with the pulsation 2m

. . . N ST
and is called the fluctuating power, while the quantity 5|p||v| cos((pp —(pv)

represents the mean power transmitted.

The acoustic intensity is the average of the instantaneous intensity over a period.
Since the average of the fluctuating power is null, it can be written as

= | T 1 - 1 -
I=<I; >:E|p||v| cos ((pp —(pV):ERe[pv*]:ERe [p* vl

(1.84)
=%(pf/* )

. . . o= 1 x| .
To the mean value of the intensity, called active intensity, I :5 Re [p v ], is

. o L= 1 - .
associated the reactive intensity J =EIm [pv*] to form the complex acoustic

intensity vector:

ﬁ:hi]:%pv*, (1.85)
where

T=%|p”\7| cos (o, — 0y ) (1.86)
and

T lisin (o~ ). (187)

These two vector quantities are often measured with intensity probes, which are
made of pressure and velocity sensors and an analyzer.

The active intensity 1 is a vectorial description of the acoustic energy transfer;
it is the time average energy flow (of null divergence). The reactive intensity J
expresses the non-propagative local energy transfers (of null rotational).

The acoustic power of a source is the total energy flow (active intensity) that
travels through a surface S surrounding the source:
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Py = Hsi.dé (1.88)

The rotational of the intensity I is
ot T = rot| L pv* | =L (aradp) A ¥+~ prot
> p > gradp > p :

Considering that, by hypothesis, rot V' =0 and using Euler’s equation to
eliminate the variable p, and separating the real and imaginary parts of the particle
velocity v, one obtains:

e = po. [ ] o IAl
rot[T=rot [=—Im|VAV |=— R (1.89)
2 cd <Ep>

ot =0. (1.90)

The divergence of the intensity IT can be written as
. = . 1 T
divIl= dlvz(pv ): Ep divv +v .gradp.
Substituting Euler’s equation and the mass conservation law yields

diviT=idivi=i20(<Ep >-<Ec >), (1.91)
divIi=0. (1.92)

This property is in agreement with the previous interpretation of the active
intensity: a conservative field representing the transfer of acoustic energy. The
divergence of the reactive intensity is proportional to the difference between the
potential and kinetic energy densities; it highlights the stationary characteristic of a
wavefield.

The rotational of the active intensity is null if 1 and J are parallel and is
maximum when orthogonal; it can then be interpreted as an indicator of near field

(T and J are perpendicular at the vicinity of a very directive source) or far field
(where I and J are parallel).
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1.4.4.Energy conservation law

The quantities considered in this paragraph are instantaneous and real quantities
(the underline notation is therefore suppressed).

In one limits the analysis to “ideal” fluids and within the approximation of linear
acoustics, substituting into the general relation

div (p V) =pdivv+vgradp,

the mass conservation law

and Euler’s equation

- ov =
radp=—py—+poF,
gradp=-pg ot Po

leads immediately to

div(p?/):— P @—po V.@+pq+iph+p0 V.F,

2
pocy Ot ot Cp
2 2
:—;ap;—p— +pq+—ph+pyV.F
2pcy O 2 ot P

This is called the law of energy conservation and is written as

ﬁEi +div(pv)=pg VE+pq+—ph. (1.93)

This equation gives the law of energy conservation at any given time (all the
more so for an average over a period of time).

The interpretation can be easily understood by integrating this relation over a
fixed domain D delimited by a surface S in the considered domain of fluid. By
applying the divergence theorem, one obtains
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%”J E;dD +” pvds =J” [Po?.f?-’-pq-ﬁ-%pthD. (1.94)
D, S D,

0

The sum of the energy variation in the domain D and the outward energy flow,
per unit of time, is equal to the energy input from the sources. Note that the
conditions of Dirichlet or Neumann (respectively p=0 or V = 0 over the domain
boundary S)) are conservative since there is no energy dissipation at the boundaries

of the domain Dy, .



Chapter 1: Appendix

Some General Comments on Thermodynamics

A.1. Thermodynamic equilibrium and equation of state

If one or several variables (also called coordinates) defining a thermodynamic
system vary, spontaneously or under the action of exterior systems, the considered
system is subjected to a change of state. If these coordinates are invariant, the
system is in thermodynamic equilibrium (mechanical, chemical, thermal
equilibriums etc. all at once).

Experience has shown that the variables used to define the equilibrium of a
homogeneous fluid are the pressure P, volume V and temperature T, and that only
two of these variables are necessary to define the state of the homogeneous fluid at
equilibrium. In other words, P, V and T do not constitute a set of three independent
coordinates; there exists a relationship of the type F(P,V,T)z 0, referred to as the
equation of the state of the system (constituted of the mass of considered fluid). The
equations

PV-nRT =0 and (P+izj(v-b)—nRT =0
\Y%
are two examples of equations of states that are satisfied by two types of gases
(more or less idealized): perfect gases and Van der Waals gases (the equation of
perfect gases is a convenient approximation for propagation in homogeneous
fluids). Generally, the equation of state is unknown or partly unknown; it is then
useful to develop further the thermodynamic formalism by admitting nothing else
than the existence of these functions, and correlatively postulating that all the
functions describing the variations of the system are dependent on only two
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variables. More generally, for systems that are more complicated than homogeneous
fluids, the number of independent variables is greater than two (note: systems that
are described by multi-variables are not the prerogative of thermodynamics!). It is
therefore useful to underline a few points concerning the functions of several
variables.

A.2. Digression on functions of multiple variables (study case of two variables)

A.2.1.Implicit functions

The following equation of state shows the implicit function F of variables P, V
and T. Often one needs to give up trying to transform this equation into one of the
form P=P(V,T), V=V(P,T) or T= T(P,V); first, because most of the time the
function F is unknown, and, secondly, even when known, it can be too complex to
be reduced to one of these forms. Nevertheless, it is always possible to write these
expressions showing that two variables are enough to define the state of a system at
equilibrium.

Considering an infinitesimal transformation from the state P, V, T to the state
P+dP,V+dV,T+dT, the equation of state F(P,V,T) =0 leads to the equality

(0F/aV)dV +(8F/8P)dP + (0F/aT)dT = 0 (1.95)

and the following equations, derived from equation (1.95):

ap =P ar P gy,
T oV

av=ar+ N gp,
aT oP

ar=Lap T gy, (1.96)
P oV

In case of infinitesimal change of state during which one of the coordinates does
not vary, V for example (dV =0), the others variables vary of quantities denoted

dP)V and dT)V. The resulting quotient, dP)y, /dT)y, for example, is the partial
differential OP /0T that is also noted OP/ 6T)V or dP/ dT)V . If there are more than

two independent variables (noted X, y, z, t, u, etc.) and during the infinitesimal
transformation only two variations are non-null (say x and y), the corresponding
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partial derivative is written ox/ ay) . Accordingly, equations (1.95) and (1.96)

z,tu...
lead to

oP)  @F/oT 1
Ejv " GF/6P  0T/P)y
oTY _ oF/ev 1
WJP "~ OF/AT  oV/aT)p
ov) _ eF/oP 1
EJT " OF/OV  0P/oV)p

Multiplying term by term the previous three equations yield

5‘/) 51’] iTj L. (1.97)
P ) 3T )y oV )y

Among the previous differential coefficients, many depend on the considered
mass of fluid. It is preferable to substitute these coefficients with mass independent
quantities. This observation leads to the wide use of three easily-measurable
quantities:

— the thermal expansion coefficient o = % ov/ GT)P ;

. - 1
— the coefficient of thermal pressure variation f§ = 7 oP/ 6T)V ;

— the coefficient of isothermal compressibility 1 = —%GV/ 6P)T .

Equation (1.97) can finally be written as

o=PBytP. (1.98)
For a perfect gas, it is very simple to express these coefficients as

a=B=1/T andyr =1/P.

Note: the differential ratio of a certain function (for example Q(T,V)
representing the quantity of heat Q as a function of temperature T and volume V)
to the variation of one of its variables (i.e. the temperature T), written (dQ/ dT)V , 18
called the heat capacity at constant volume. However, this ratio is not the partial
derivative of a state function Q with respect to the temperature that could be
described as the “heat content” of the system. This notion of “heat content” of a
system is nonsense.
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A.2.2. Total exact differential form

Let f(x,y,z) be a function of three independent variables (x,y,z). The variation
df of f is a function of the variables (x,y,z,dx,dy, dz) when (x,y,z) vary with
the quantities (dx,dy, dz) and is given by

df =@dx +ﬁdy+ﬁdz.

ox oy 0z

The “inverse” problem can be presented as follows: let P; (x, y,z), P, (x, y,z)
and Pj (x, Y, z) be three functions and the differential form

dg=P; (x, y)dx +P, (x, y)dy +Ps (x, y)dz.
For the function g(x, y,z) to exist, it must satisfy the conditions

%) 0 0
£ =P (x, y,z) ,gg =P, (x,y,z), 6_§ =P; (x, y,z),

thus

oyox oy ox0y  0x oy o
2 2

g P 4078 P OP_ 0P
0z0x 0z o0x0z  Ox 0z Ox
2 2

g by 0% By Py Oy

0z0y oz dyoz oy oz oy

o’g _oP 0%g _ P _ P 0P

E

>

These three conditions, called Cauchy’s conditions, are necessary and sufficient
for the function g to exist. If dg is not the differential of a function, then the
function g does not exist. The variation dg of the physical quantity g exists of
course, but this variation depends on the way the variations are set. The quantity g
is then not a “potential” function or a state function, in which case the variation
during a transformation does not only depend on the initial and final state, but on the
path taken between these two states. The heat quantity Q mentioned above is an
example.

To a same quantity q can be associated, if it exists, a function q (x,y) of two
state variables (x,y) or a function q,(z,y) of the two state variables (z,y). It is
common, in physics, to give the same name to these two functions as they describe
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the same physical quantity and any ambiguity is avoided by always specifying the
variables. It is then possible to write the variation of the quantity q as

dq=(0q/x), dx +(q/dy), dy =(6q/ z), dz+(0q/ &), dy .

The quantities in the right-hand side terms are all different from each other (with
the exception of dy), and the variation dq is of course the same whatever
expression is used.



Chapter 2

Equations of Motion in Dissipative Fluid

2.1. Introduction

Even though acoustic dissipation can, in many situations, be ignored (in closed
spaces with absorbing walls for example), there are still some cases where one
needs to take it into account. Long-distance propagation, even submitted to various
perturbations, such as reflection, refraction, diffusion, diffraction etc., and acoustic
fields in guides and rigid walled cavities (thus very reflective) are among the
examples that generally require consideration of dissipation.

Attenuation of sound waves can result from various processes related to the
characteristics of the propagation fluid. For example, the phenomenon of cavitation
in liquids (creation and destruction of bubbles by the propagation of an acoustic
wave) is a cause of significant attenuation. It is not the purpose of this chapter to
present in detail the processes of dissipation in “complex” fluids, but to describe the
processes of dissipation that most often occur in “complex” fluids and “simple”
fluids (and in gases in particular) where its importance in many real situations is
well established. The three considered phenomena are those related to viscosity
(shear and volume viscosity), thermal conduction and molecular relaxation (in
polyatomic molecules). These processes are introduced in the equations of motions
as additional factors. For example, Euler’s equation (1.31) is modified by the
introduction of a factor expressing the viscosity stresses. This factor is presented as
an operator 0, applied to the particle velocity v (which formula is demonstrated
and given in section 2.2),

p%+grﬁdP+0h(V)=pF. 2.1)
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However, the mass conservation law (1.29) is not modified
%+pdivf/:pq. 2.2)

The equation of continuity of entropy (1.34) is completed by a factor introducing
the heat flow due to thermal conduction, and a higher-order factor for the heat
supplied by viscous friction. These phenomena are represented by an operator noted
0, applied to the temperature and the particle velocity (whose formula is
demonstrated and given in section 2.3),

T %wh (T,v)=h. (2.3)

Two laws of thermodynamics are necessary to reduce this four-variables
problem (P,p,T,S) to a two-variables problem (bivariant media). Equations (1.22)
and (1.23) can be used to eliminate the variables p and S. If molecular relaxation is
taken into account, equation (1.22) alone is modified so that the isobaric heat
capacity Cp is replaced by a time-dependent operator C; (whose formula is
demonstrated and given in section 2.4),

%
C p

ds=—L gp - PPAT 4p 2.4)
T p

dp = py 1 (dP - PRdT). (2.5)

For the sake of generality, equations (2.1) to (2.5) are those including the effects
of non-linearity, mean flow, non-homogeneity, etc. The dissipative effects
considered above are presented, one by one, in the following three sections.

2.2. Propagation in viscous fluid: Navier-Stokes equation

Taking viscosity into account requires the definition of the deformation of and
stresses on the considered continuous media and relating the two associated tensors
(Hooke’s law) to obtain a new expression of the fundamental law of dynamics:
Navier-Stokes equation (generalized Euler’s equation). The considered fluids are
assumed lightly viscous, which results in a Reynold’s number far greater than one,

2
R, =M>>1, (2.6)
Nu
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where N denotes the frequency of the frequency-dependent component of the wave
and p is the coefficient of shear viscosity of the fluid. In acoustics, the effects due
to these phenomena are always “weak”, resulting in the use of simple linear laws to
describe them.

2.2.1.Deformation and strain tensor

The analysis of the deformation of a particle of fluid is necessary to evaluate the
forces applied on this particle by the surrounding ones. The notions of deformation
and rotation considered in solids are replaced, for fluids, by the notions of
deformation rate and rotation rate (meaning that the considered variations are
expressed per unit of time).

2.2.1.1. Field of velocity gradient near a point

At a given timet, a particle located at the point T has a velocity \"/(f,t) and

another particle located at t+dr has the velocity v+dv. Each component
dv; (i=1t03) of the spatial variation of velocity dV is written, at the first order of

the displacement components dx ; (i =1to 3), as

dvi= Y %dxj. 2.7)
=13 OXj

It is important to note that the translational movement of the whole system is not
included in the present description as it does not induce deformation. The quantities

Gl] :aVl/aXJ (283)

are the components of a second-order tensor, the deformation rate tensor or velocity
gradient tensor. For the following developments, the elements of the 3x3
associated matrix are decomposed into a symmetric and an anti-symmetric part

G + (Dij , (28b)

ij = €jj
with e = (1/2)ov; /ax; +av; / ox; ), (2.80)

and ;= (1/2)(ov; /ox; —av; /ox; ). (2.84)
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2.2.1.2. Pure deformation, associated to the symmetric tensorej;: the diagonal
terms

The tensor, the components of which ej;, is symmetrical and consists of
diagonal and non-diagonal terms. In the case of a velocity gradient field that
consists only of diagonal terms (8v;/dx; ), if at the time t the components of the
velocity \"/(f,t) of the point T are v;,v,,v3 then, according to equation (2.7),
those of the velocity V(f +df,t) of the point T +df are

A4l +(8V1 /6X1)dX1 , Vo +(8V2 /6x2)dx2 , V3 +(6V3 /6X3)dX3 .

X2 X2

ov
dx2(1+—2dtj
6X2

X1 X1

A dx A ov
: dx1(1+—1dt]

X1

@ (b)

Figure 2.1.Deformation of a rectangular surface in a flow in which the velocity gradient
field consists only of diagonal terms of the type (6V1 / 0xq ) : (a) not deformed rectangle at the
time t ; (b) state of the rectangle at the time (t+ dt)

The increase in length (i.e. d(dxl)) of a side (of lengthdx;) of the volume
element dx;dx ,dx 3, during the period dt, can be written as

d(dx;)=[vy +(8v, /6x; )dx; ]| dt—vydt = (6v, /0x;) dx,dt.

Similar expressions can be obtained for d(dx,) andd(dxs). The relative
increase of length of a side (i.e.dx; ), during the interval of timedt, can then be
written as

d(dx, )/ dx; = (0v, /0x, )dt . (2.9)

Consequently, the diagonal terms of the tensor of components (dv;/ox;)
represent the speed of elongation of the fluid element in the corresponding direction



Equations of Motion in Dissipative Fluids 59

(xq -direction for the sidex;). During such deformation, opposite sides of a
parallelepipedic volume (elementary or not) remain parallel to one another. The
volume expands (respectively contracts itself), and the relative variation of volume
is

dV/V =[(0vy /0x) )+ (0vy 1 0x5 )+ (0v5 / 0x5)]dt = div (v )dt. (2.10)

Clearly, the function div (V), equal to the trace of the matrix dv; /dx j (sum of
the diagonal terms), represents the volume extension rate (it is null for an
incompressible fluid: Figure 2.1).

2.2.1.3. Pure deformation associated to the symmetric tensor ¢;; : the non-diagonal
terms

In the case of a field of velocity gradient consisting only of the non-diagonal
terms of the tensor Gj; (0v;/0x; terms withi# j), if at the time t the components
of the velocity V(f,tg of the point T arevy,v,,vs, then those of the velocity
\7(? +drf,t) of the point T +dr are, according to equation (2.7),

\41 +(aV1 /6x2)dX2 +(aV1 /6X3)dX3,
Vo +(8v, /0y )dx; +(0v, /6x5 )dxs,
vy +(0v3 /8%, )dx; +(8v3 /6%, )dx,.

Consequently, the angle da;, of which the side dx; rotates in the (x 1,X 2)-
plane during the period dt , is given by
doyy /dt ~ tg(doy )/ dt = [v,(x; +dxq,x5,%3) - va(x1,x5,%x3)]/dx
doy /dt = 0v, /0% . (2.11a)

Similarly, the angle da, , of which the side dx, rotates in the (x;,x, )-plane,
during the period dt , is given by

da, /dt = tg(docz)/dt :—[vl(xl,xz +dX2,X3)—VI(XI,Xz,X3)]/dX2,
daz/dtzavl/ﬁxz. (leb)

The negative sign in equation (2.11b) is introduced to take into account the fact
that the angle do, is of opposite sign to the elementary displacement dvdt
(fordx, > 0). Consequently, the variation (dy/dt) of the angle (right angle at rest)
between the sides dx; and dx,, per unit of time (Figure 2.2) is given by

dy/dt = —[do; —daty |/ dt = —[6v, /dx; +6v, /dx, | = —2e,. (2.12)
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Similar arguments can be made to deal with the two other planes ((x;,x3) and
(x5,x3)) still assuming “small deformations”. Consequently, the non-diagonal
terms ej; (i#j) of the symmetric part of the tensor Gyj;, represent the speed of
local angular deformation.

X2 X2
dx 2 D 5
C D
C
dx 2
do 2
Y
B’
X do X
B 1 1 1
A Xm A Xm
(a) (b)

Figure 2.2.Deformation of a rectangular surface in a flow which velocity gradient field
consists only of non-diagonal symmetric terms: (a) not deformed rectangle at the instant t ;
(b) state of the rectangle at the time (t+dt)

The symmetric tensor e;j;, called the deformation tensor due to the properties
presented above, can also be written as a sum of a diagonal term and a term, of
which the trace is null (the sum of the diagonal terms is null) as

1 1
ejj = 5511'%6/,4 J{eij _ESijézeN}

= %aij div (v)+ [eij —%% div (V)} (2.13)
= tij + dlj

The diagonal term t;; is associated with the volume expansion of fluid elements
(see equation (2.10)) while the tensor dij is called “deviator” and is associated with
all the deformations at constant volume (since its trace is null).

2.2.1.4. Pure rotation associated with the anti-symmetric tensor ;;

No elongation is  associated with the anti-symmetric  tensor
o;; = (1/2)(0v; /0x ;= 0v;/0x;) (equation (2.8d)) since all diagonal terms are null
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(the trace is null). Moreover, considering any movements described by the matrix
o;; alone is equivalent to considering that the tensore;;, inGj; = ej; + @j;, is null
and therefore that ov; / 0x i= —0v j /0x;. Consequently, the variation (dy/dt) of the
angle between the sides dx; and dx, per unit of time, described previously by

dy/dt = —[doy —day |/ dt = —[ov, /dx; +6v /dx, | =—2¢;,

is null (as well as its equivalent for the other couple of sides of the elementary
parallelepiped).

Thus, in the hypothesis that its motion is described only by the anti-symmetric
tensor ;j, the considered elementary parallelepiped does not exhibit any
deformation (neither linear nor angular), but only a global rotation. The angle da
associated with this rotation (Figure 2.3), previously defined, is written

dou = (Bv4/0x, ) dt = (1/2)[0v,/0x, -8V, /dx5 ]dt = @y, dt . (2.14)
X3 o do \XZ
o P
c dXz
B
B X1 ‘Ydotl X1
A

Xm A’ Xm
(a) (b)
Figure 2.3.Effect of the anti-symmetric part of the velocity gradient field on a rectangle. The
velocity gradient tensor consists only of non-diagonal terms of the type Ov; / 0x i withi# j,
such as avi/ﬁxj = -ij/ﬁxi ; (a) rectangle at the time t ;
(b) state of the rectangle at the time (t + dt)

The pseudo-vorticity vector of the flow @, whose components are

O = —Z &ijk Ojj » (2.15)
ij

where g;5, =+1 for a direct permutation of the indexes i, j and k, & =—1 for an
inverse permutation and &;; =0 if at least two of its indexes are equal, can be
written (according to equations (2.14) and (2.15)) as

®=T10tV. (2.16)
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The pseudo-vector
Q=(1/2)rotv, (2.17)

whose third component is equal toda,, called the vortical vector, represents the
local angular velocity of a fluid element.

To summarize, the velocity gradient tensor Gj; = 0v;/0x; can be written as the
sum of three terms

Gij = tij +dij +(J)ij .

where:

— t;; is a diagonal tensor accounting for the variation of volume of the fluid

ij
elements;

— djj is a symmetric tensor of null trace accounting for the deformations of the

fluid elements at constant volume;

—oj; Is an anti-symmetric tensor accounting for the overall rotation of the fluid

elements.

Considering that a simple, shear motion is nothing more than the superposition
of a deformation without rotation (with or without volume variations) and of a
rotation, it can be represented by the tensor G;;. However, the above approach does
not apply on a translation motion of all particles of the fluid.

2.2.2.Stress tensor

The action of the exterior medium on an element of volume (contact between the
particles within the volume) results in forces applied to the surface of the considered
element of volume. These forces per unit of area are called stresses. In general,
stresses depend on the location on the surface of the volume element and of its

normal vector which accounts for five parameters. It is noted T(M,ﬁ) and often

simply T(ii) (Figure 2.4).
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=2

Figure 2.4.Representation of a stress T applied on the point M
of an interface between two media

The quantity o,, =Ti leads to the expression of its normal o,,f and
tangential (stress associated to the shear or sliding motions) T- G,n T components.

The more general stress tensor o of components oj; can be defined, for a given

value of j and, in the particular case of T(ﬁ) where n is collinear positive to the

unit axis X j-as

X2

Figure 2.5.Components of the stress tensor applied on an elementary volume OA ;AA;

In other words, o, represents the stress applied along the direction X on the

face normal to the direction X (Figure 2.5). To verify that the stress T(ﬁ) (Vn) is
perfectly described by the nine componentscy;, it is necessary to find the

relationship between the vector T(ﬁ) and the tensor o . For that, one can apply the
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fundamental law of dynamics to the volume element dV defined by OA;A,A3 and
take the limit when OM — 0 with the point M belonging to the face AjA,A5. The

external stresses applied on the elementary domain dV are noted T(ﬁ) on the face,

AjA,A5 and T(-X Xj)=-— Zc X; on each face with unitary normal outwardly

directed (—X i) - This equatlon, projected onto the axis X; can be written as

]
p'YJ dv = TJ dSA1A2A3 —( Gjl dSZ3 +Gj2 dSl3 +Gj3 dslz ) (219)
since the quantities dS;; are arithmetic,
p’YJdV = [T_] —(1’11 Gjl +n, sz +1n3 Gj3 )] dSA1A2A3 ,

where the factors n; denote the components of the vector I normal to the face
A1ALA5.

Since the acceleration of the component y has an upper bound, that the

elementary volume dV is proportlonal to OM? and that the elementary surface
dS A,A, Is proportional to oM?,

Iim |T: =) n:o;:; |=0
OM»O( ! 21: 1 JIJ

The relationship between T and o is therefore

J

2.2.3.Expression of the fundamental law of dynamics

2.2.3.1. Equation of equilibrium of the forces

When projected onto the X; axis and applied to a domain (D) delimited by a
surface (S), the equation of equilibrium of the forces is written as

1T (PF; —pvi ) dD + [ Ti (7)) dS=0 21)

where pF is a force per unit of volume in the bulk of the domain (D) and v
denotes the acceleration (y = dv/dt).
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When considering equation (2.20), the application of the theorem of divergence

gives
H ii)ds zUc n;ds :%JU 531, dD, (2.22)

aGij

where, by definition, & =—.
’ ox k

Considering the domain (D) to be arbitrarily chosen and assuming the integrand
continuous, the equation of equilibrium can be expressed locally as

pvi =pF +oj,; where j is the index of summation. (2.23)

In the particular case where only pressure forces are considered, o;; = —P3;; and
equation (2.23) takes the form of Euler’s equation.

2.2.3.2. Equation of equilibrium of the momentums: symmetry of the stress tensor

The resulting moment on any given point O within the continuous medium is
null. Thus

JH OM A (pF—py)dD +” OMAT(M,7i)dS =0.
D S

This equality holds if T =—Pii , i.e. if o;;=— P;;
considered (see section 1.2.7).

ij» When only pressure forces are

Herein, the tensor oj; is not diagonal. Projected on the X, axis, this equation
becomes

jJJDp [x2(Fy —3)-x3(F> =2 )JdD

> J L[Xz(njc3j)_x3<njczj)]ds o,

thus, applying the theorem of divergence,

0
JJ’J {sz(Fz —v3)—-x3p(Fy —72)+ Zg(xzﬁzj —X302j) dD=0,
D ] ]
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Or, according to equation (2.23),

fjj[) [xz(—03j,j)— X3(_52j,j)+ X2(03j,j)— X3(C$2j>j)+0'32 —023] dv=0.

This equality must be verified for any given domain (D), therefore 3 =035,
or more generally

O::

IJ:G..

Ji- (2.24)
The stress tensor (similarly to the tensor of deformation) is symmetric. This
property yields the following form for the equation of equilibrium

o7 =pE+divo. (2.25)

2.2.3.3. Behavioral law (Hookes’s law) for the viscous media, Navier-Stokes equation

As the relation between stresses and deformations (Hookes’s law) is generally
assumed for small deformations of elastic solids,

cij=2 Cijkeexs » (2.26)
ke

(where the component of the tensor Cj;, denotes the rigidity coefficients), there
exists a linear law between the deformations of a viscous fluid and their cause that is
considered a good approximation for the problem of acoustic propagation.

Consequently, in a viscous fluid submitted to small deformations, presenting
then small velocity gradients, the stresses are assumed to be linearly dependent on
the first spatial derivatives of the velocity. The independent terms of these spatial
derivatives must not appear since, in fluids, internal frictions only occur if different
regions present different velocities. Therefore, the stresses are null when the
velocity is independent of the point considered. Moreover, for a uniform rotation of
the fluid, the stresses canceling each other, only the symmetric terms of the velocity
gradient tensor are non-null.

Thus, for a homogeneous and isotropic fluid, only two coefficients are
considered, those corresponding to the two types of deformation presented in
section 2.2.1. These coefficients are the diagonal tensor t;; (accounting for the
volume variation) and the tensor of null trace d;; (accounting for the deformations
at constant volume). Consequently, the stress tensor can be written, without loss of
generality and considering the case of pressure stresses, as

Gij: _P8ij +Sij9 (227)
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where, according to the definitions of t;; and dj; (equation 2.13), the viscous stress

3,

tensor I, which components are denoted Jj;, 1
i, X 6 jdi 8 di (2.28)
3= - iVV |+ ivVv. .
ij=H ox 6X1 n

The coefficients p and m, generally small, are respectively called the shear
viscosity coefficient and the bulk viscosity coefficient. The coefficient p measures
the “intensity” of the attenuation by shear, due to the energy transfers induced by
the translation of the molecules between adjacent layers with different velocities and
to these induced between the uniform motion (considered herein) and the disordered
motion related to the entropy of the system (the Brownian motion, on a microscopic
scale, induces energy exchanges). The coefficient 1 measures the “intensity” of the
attenuation due to the interaction between the rotational and vibrational motions of
the molecules (perturbed by shocks at the microscopic scale) and the “component”
of acoustic translation, responsible for the volume variations of the particles. Stokes
law stipulates that n is null for a monoatomic gas.

The substitutions of equations (2.27) and (2.28) of the stresses tensor oj; into

the equation of motion (2.25) yields the Navier-Stokes equation in the equivalent
form

dVi 6P
=———+3; i +pF; (sum over 2.29
Py = o i PR ( i, (2.29)

1

or, within the hypothesis that p and 1 depend insignificantly on the field variables,

pi::—gradP+pAV+(n+Sjgraddlvv+pF (2.30)

or, considering the identity A=graddiv—rotrot (which should be understood as
the Laplacian of a vector),

p%z—gridP+[n+%ij§+(n+%) 1ot 1ot v+ pF , (2.31)

p % = —gradP + [n + %uj grad div v — prot rot v+ pF. (2.32)
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Equation (2.32) is of the same form as equation (2.1) and is the first equation of
motion. The second equation, the mass conservation law (equation 2.2), is
unchanged by the addition of dissipative processes and therefore remains, as in the
first chapter,

%+pdiv?/:pq . (2.33)

The interpretation of the form of the stress tensor I following equation (2.28)
can be carried out by considering the energy associated to viscosity. If ¢ is the
internal energy per unit of mass (potential energy) associated to the acoustic
perturbation, the instantaneous energy accumulated by the fluid, exs)ressed by unit
of volume, is the sum of its kinetic and potential energies (1/2)pv” +oc¢. From a
thermodynamic point of view, it is a macroscopic, ordered energy.

The variation per unit of time of the kinetic energy, expanded to a low order

(which is sufficient for the perturbation factors related to dissipative processes), can
be written as

2 2 —
ﬁ(p V_J _V o, p;%, (2.34)

ot 2 2 ot

leading to the expression of the factors Op/dt and 6v/ot, using respectively the
mass conservation law and Navier-Stokes equation:

TRARE

ot 2 2

= 2
+ V.[pF—grﬁdP +div3—pv.grad \7} + pV?q.

Therefore, the contribution of the stresses described by the tensor 3 to the

variation of kinetic energy per unit of time is vdiv 3, or

2 Vi

03jj d v = v
= | —\v; 35 )-3;— | =di (Q.S)— Jp—-. 2.35
i 0x; %[ﬁx-(vl U) Y ox Y % Y ox (2.35)

i i J

There are only two possible causes of the variation of kinetic energy related to
viscosity: variation by kinetic energy transfer between adjacent elementary volumes
(impulse transfer) and variation by conversion of macroscopic kinetic energy
(ordered energy) into heat energy (disordered energy) due to viscous friction
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(Brownian shocks between molecules). These processes correspond respectively to
the two terms associated with the viscosity in equation (2.35). The demonstration is
not presented herein, but convincing points can be made to defend this argument:

— the sum of the transfers of kinetic energy over the spatial domain is obviously
null and for a close surface S of infinite extend,

Il div %3 ) ap~{J, (75 ) a5 -0, (236)

since the velocity field V vanishes at infinity;

— the sum over the spatial domain of the kinetic energy variation due to the
conversion of the latter into heat (which is an internal energy as well) is not null.
This holds for the factor

> [ff, S5 (0vi /ax;) b= o0. 2.37)
i

The conversion of kinetic energy into heat energy must therefore be introduced
in the variation per unit of time of potential energy per unit of volume B(ps)/ ot.
More precisely, by writing the following consecutive relationships:

d(ps)zsdp+pds:sdp+p{TdS—Pd(lﬂ
P (2.38)
=pTdS+(£+8jdp=pTdS+Hdp,

p

P . . . . .
where H=—+¢ is the enthalpy per unit of mass, it appears that the irreversible
p

variation of heat Zsij (0vi/0x;) per unit of volume and time contributes to the
ij
variation of entropy involved in equation (2.38),

ds
pT—¢ | 2.39
% L ax dt (2.39)

ds . . .
where Td_te represents the incoming heat due to other potential processes (factor

Tddith +h in the following section).

Note: a detailed interpretation of the energy equations is presented in the
Appendix to this chapter.
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2.3. Heat propagation: Fourier equation

The heat transfer between adjacent particles can occur by thermal conduction,
convection or radiation. The temperature difference between adjacent particles, due
to spatial- and time-dependent pressure variations in the fluid, is so small and so fast
that the effects of radiation are not accessible to any experimental set-up and are
therefore non-existent to the eye of an observer. The heat transfers (entropy
transfers) by convection are introduced by the term v.grad of the operator d/dt
(equation (1.25)). The heat flow through the interface between adjacent particles,
induced by the temperature gradients associated with the pressure gradients,
resulting in a decrease of the amplitudes of these pressure gradients compared to
that which they would be according to the hypothesis of adiabaticity, remains to be
introduced. This dissipative effect is of the same order of magnitude as the effect
related to viscosity. This observation is expressed by the non-dimensional number
(Prandtl number) Pr=u.Cp /A (where A is the coefficient of thermal conduction)
that is always finite.

The elementary heat transfer to a fluid domain of unit mass is written as the sum
of three terms:

— the heat energy from the conversion, by viscosity effect, of kinetic ordered
energy (acoustic or not) into heat (disordered energy) ZJ iOv;i /0x; (according to
equation (2.39)); i

— the heat energy due to a heat flow through the boundary of the domain by
conduction, denoted TdS, ;

— the heat energy from an external source, defined by the heat quantity
introduced per unit of mass and time, denoted “h ”, as

ds,
=>3 + T—h 4ph. 2.40
% 1_] 5 [ dt P ( )

The factor J;; Ov; / 0x j introduces the product of a stress by a velocity gradient.
Therefore, its magmtude is defined by the product of an acoustic quantity
(0vi/0x;) by a tensor 3 that represents a small perturbation compared to the other

acoustic quantities. It is an infinitesimal factor, the magnitude of which is strictly
greater than two. It is therefore negligible compared to the other factors that are, a
priori, of order of magnitude equal to two in the energy equation (2.40).

The expression of the factor T dSy, /dt is obtained by taking the following steps.
The heat flow J (heat quantity per unit of time traveling through the unit surface
perpendicular to the direction of this flow) is a function of the temperature gradient



Equations of Motion in Dissipative Fluids 71

and can therefore be expanded into power series limited to the first order since the
gradients in acoustics are small (the term of order zero is null as the flow vanishes
when the gradient is null). The Fourier’s law illustrates this fact simply, writing

J=— gradT, (2.41)

where the coefficient A is called the coefficient of thermal conductivity.

Moreover, the outgoing total heat flow through a surface (S) limiting a closed
domain (D) can be written, using Green’s theorem, as

[l J.dS=[[f, dividD . (2.42)
The incoming heat flow per unit of volume is then written in the form
pTdS;, /dt=—divJ=div(L grad T),
and for homogenous and isotropic fluids (with respect to thermal conduction),

pTdS;, /dt=1AT. (2.43)

Finally, the elementary heat transfer per unit of volume to the fluid can be
approximated by

pTdS/dt=A AT +ph . (2.44)

The latter equation is in agreement with equation (2.3). It is the third equation of
motion recalled in this chapter.

The heat conduction associated with the temperature gradient between adjacent
particles is partly responsible for the dissipation of acoustic energy into heat. A
simple physical interpretation can be obtained by examining qualitatively the
“trajectory” of the acoustic motion during a cycle in the Clapeyron’s diagram
(pressure as a function of the volume) in Figure 2.6.
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Figure 2.6. “Acoustic” cycle in dissipative fluid on Clapeyron’s diagram

Without dissipation, the trajectory is given by the dotted line: there is only one
trajectory taken during the compression and the depression phases. The work
(— I PdV)§ received by the particle during the compression phase is equal to the work
released during the depression phase. However, if by thermal conduction, the
considered particle exchanges heat with its adjacent particles during the cycle, the
work released (2™ curve on Clapeyron’s diagram) is lesser than the work received
during the compression phase (1% curve): part of the mechanical energy (acoustic) is
dissipated into heat.

This effect is due to the thermal conduction: when the pressure increases, the
temperature in the elementary volume considered increases as well (Lechatelier’s
law, equation (1.22)), but the outward heat transfer from this volume occurs with
delay. The average temperature (and consequently the product PV) is then greater in
the first curve than in the 2" curve: the energy provided to the volume during the
compression phase is not released entirely during the decompression. This delay in
“going back” to equilibrium is called a relaxation phenomenon. (The phenomena
related to viscosity can also be interpreted as relaxation phenomena with delays in
impulse transfers.) There are other relaxation phenomena occurring during
propagation that are related to physical and chemical equilibrium. One is
particularly important since it is responsible for most of the acoustic dissipation in
specific conditions in air: the molecular thermal relaxation. It is presented in the
forthcoming section.

2.4. Molecular thermal relaxation
2.4.1.Nature of the phenomenon
The processes of acoustic dissipation related to viscosity and thermal conduction

occur in all fluids. In monoatomic gases, they are the only processes of dissipation
to consider and are responsible for what is commonly called the “classical
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absorption”. However, in polyatomic gases, an additional phenomenon is to be
considered as its importance is such that, within certain frequency ranges, it
overwhelms the precedent phenomena (at least for the problems of propagation in
infinite domains). It is the phenomenon of molecular thermal relaxation that is
presented here for diatomic gases (i.e. oxygen and nitrogen in air). The
generalization of the following description to polyatomic gases is straightforward.

When a gas is compressed, its temperature increases (Lechatelier’s law, equation
(1.22)). In other words, the motion of translation of the molecules is accelerated.
The natural vibrational and rotational motions of diatomic molecules are then
accelerated. At ambient temperature, the natural rotation can vary almost
instantaneously (with respect to the period of the wave) when submitted to an
exterior excitation. On the other hand, vibrational motion does not occur fully at
ambient temperature (only at several thousand degrees) and varies only with delay
when solicited (a very short delay in fact, but not always negligible for the common
periods encountered in acoustics). This delay, called relaxation time, is proportional
to the period of time between two consecutive molecular impacts and inversely
proportional to the probability of energy transfer between translational and
vibrational motions of the molecules. The relaxation time is significantly longer for
a vibration than for a rotation since the number of inter-molecular shocks required
for a translation/rotation energy transfer is inferior to the number of shocks required
for a translation/vibration energy transfer. Therefore, when the pressure P in the
considered volume increases under the excitation from adjacent volumes, the motion
of translation of the molecules (solely responsible for the pressure P) accelerates
instantaneously, part of the translational energy is then converted with delay into
vibrational energy. When the pressure starts to decrease, the vibrational energy
keeps increasing before initiating a decrease by conversion into translation energy.
Consequently, the pressure (due to the translational motion) happens to be greater
during compression than during depression, resulting in an apparent loss of the
wave’s mechanical energy by relaxation, similar to the loss presented in the
previous chapter. The consequence is an attenuation of the wave (Figure 2.6).

It is clear that if the relaxation time t, (vibration reaction time to the excitation)
is significantly smaller than the period 1/f, the gas reaches its vibrational
equilibrium instantaneously at any time; there is then no attenuation by relaxation.
On the other hand, if t. >>1/f, the vibrational motion is not excited, and
consequently the gas behaves like a monoatomic gas (apart from the heat capacities
Cy and Cp). There is therefore no attenuation. The phenomenon then occurs
within a domain where t, and 1/f are relatively close (Figure 2.7).
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Figure 2.7.Representation of the principle of dissipation by molecular relaxation
as a function of the period of the wave

2.4.2 Internal energy, energy of translation, of rotation and of vibration of molecules

The sum of the kinetic energies of translation U (for n.N molecules, where N
is the number of Avogadro) of a perfect gas (molecular gas with no interaction and
negligible molecular volume), in equilibrium at the temperature T, can be written as
a function of the mean quadratic velocity C? of the molecules as

U=YmC?/2=nNmC?/2=nN3kT/2=n(3R/2)T, (2.45)
where m is the mass of one molecule.

Equations (2.45) convey a property of perfect gases: their internal energy
depends only on the temperature. This can be verified by substituting the second
equation (1.11) into equation (1.6) leading to the equality ¢/ =P and then to

dU =nMCydT +£dV —PdV = nMCydT. (2.46)

By comparison of equation (2.46) with (2.45), the heat capacity of a mole of gas
at constant volume is

MCy=3R/2, (2.47)

where Cy is the isochoric heat capacity.

For polyatomic gases, eventually introducing other forms of energy (energies of
rotation and vibration of the molecules), the thermodynamic laws lead to the
expression of a principle of energy equipartition: “The same quantity of energy
kT /2 is uniformly distributed, in average per molecule, over all degrees of freedom
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and all forms of energy (kinetic and potential) once equilibrium is reached at the
temperature T.” When generalizing the law dU =nMCydT to polyatomic gases,
the principle of equipartition conveys, for monoatomic gases, the following (3
degrees of freedom in translation):

MCy =3R /2 (2.48)

and for polyatomic gases without vibrations (3 degrees of freedom in translation of
the center of gravity and 2 degrees of freedom in rotation),

MCy =5R /2. (2.49)

The specific isochoric heat capacity will now be noted C&t,) for monoatomic

gases and C(\t,r) for polyatomic gases.

Note: the vibrational motion of the molecules has been ignored so far since, at
ambient temperature, in the case of oxygen O, and nitrogen N,, the magnitude of
such motion is very small. It only occurs significantly at temperatures above 1,000K
since the level of energy required to induce it, generated by the other types of
motion, is reached above this temperature value (as statistical quantum mechanics
teaches us). Moreover, three degrees of freedom are generally introduced when
dealing with rotational motion. Only two degrees of freedom are considered here:
those of rotation along the two axes perpendicular to each other and in the plane
normal to the molecule axis. The rotation about the molecule’s axis contributes only
a very small amount of energy.

2.4.3.Molecular relaxation: delay of molecular vibrations

With respect to the periods of acoustic motions in the audible and lower
ultrasound ranges, the time required for the energy transfers between translational
and rotational motion is negligible. This observation is not valid in the case of
vibrational motion since the probability of energy conversion into energy of
vibration is smaller than its equivalent for any other types of motion. Therefore,
under external excitation (here, acoustic), the variation of internal energy per unit of
mass of the fluid can be written as

LMdU:c(V“)HSEV, (2.50)
n

where t~dT denotes the temperature variation and SEy, the variation of energy
per unit of mass accumulated in the form of molecular vibrational energy.
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Even though vibrational motion is relatively weakly excited, it still occurs in the
air in normal conditions, and the associated relaxation phenomenon is, in certain
conditions, responsible for most of the acoustic dissipation. Consequently, the
simple following model is of practical importance.

Since there is delay in establishing a motion of vibration, the gas, at any given
time, is not at equilibrium (energy C(\y)r ) and the rate of variation of the energy of
vibration SE v, written 6(8EV )/ ot , is proportional (in a first approximation) to the
difference between the instantaneous value SEy and the value at the equilibrium

Cg}l)‘t . This property is expressed as

O\8E 1 v
AEw)_ L (5 ) 251)

where the factor of proportionality is inversely proportional to a time constant noted
0 . This equation can also be written as

(1+60/2t)sEy=C{V)r, (2.52)

and its solution, obtained by the method of variation of the constant, is:

—t/0
6EV=6—J 0l zdr, (2.53)
®
1 (v)
SEy=—— Wz, 2.54
VT 0asa V" (2-59)

Therefore, the variation of internal energy (equation (2.50)) can be written in the
form

dU=nMCy T, (2.55)

. t
where, denoting Cv, =C g/r) + Cg] ) :

. (:(v)
Cy =Cy 1__VM , (2.56)
Cy 1+00/at

where the operators 60/0t and 1/(1+60/0t) commute.
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The “heat capacity” at constant pressure C;=£+C*V (from equation (1.11))
takes the following operator form M

. C(V)
C,=C, _Sv _6o/at , (2.57)
C, 1+60/dt

and the ratio " = C; / Cq{/ is expanded to the first order of Cg‘,’) /Cp, thus

C(V)
Foa1—( —1)Lm. (2.58)
¥ C, 1+00/0t

To summarize, the real factors Cp, Cy and y must be replaced in the Fourier
domain by the complex factors C: , C#{/ and y* . In practice, this conveys changes of
phase between the quantities (p,p',s,V, 1), which are the consequences of delays
in reaching equilibrium states.

2.5. Problems of linear acoustics in dissipative fluid at rest

The situation defined in the above heading generates systems of equations that
can be applied to numerous problems and underlines several properties of acoustic
waves in dissipative fluids. The second chapter aims to present these problems and
properties.
2.5.1.Propagation equations in linear acoustics

Navier-Stokes equation (2.32) can be written as

I ov + gradp=/, graddiv v — (', rot rot \7+i , (2.59)
o Ot PoCo €0

where /, and [V are characteristic lengths defined by

by = : (iu+nj,gvvz E > (2.60)
Poco \3 PoCo

and whereL: PoXT .

Co Y
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The equation of mass conservation (2.33), where the density variation p' is
linerarized using equation (2.5), becomes

- 1 0 ~
PocoleV+Y——(p—l3T):Pocoq> (2.61)
Co ot

where B:POB andt=T-T,.
Considering the expression of the variation of entropy per unit of mass and the

relationships a=Pqfy 1 (equation (1.98)) and C, -Cy= (y —1) Cy =a ﬁ To /po
(equation (1.10)), the equation of heat conduction (Fourier equation (2.44)) becomes

{18—6A} 1%, h (2.62)
Co By co ot CoCP

where

0y _ (2.63)

PocoCp

denotes the characteristic length of thermal diffusion. In the case of air, in normal
conditions, 7~ 4108 m and N ~6.10%m.

According to section 1.3.3, the particle velocity field v is written as the
superposition of a vortical velocity field v, (associated to the viscosity effects) and
of a laminar velocity field v, (associated to the acoustic effects and thermal
conduction effects called entropic effects) as

<!
Il
<
~
+

Vy
ot v, =0 nddlvv,; #0,
%0

anddivv, =0. (2.64)

In numerous acoustic problems, apart from at the boundaries, the coupling
between these two motions can be neglected. In such cases, equation (2.59) can be
decomposed into two equations ((2.67) and (2.68)) and the system of three
equations ((2.59), (2.61) and (2.62)) becomes

_— — diVQZZT——__A q, (265)
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- o
LO yale=2zt e, b (2.66)
Co ot B’y Co ot Cocp
1 . .. E
0 LA |V,)=— gradp+—-, (2.67)
¢ Ot " PoCo <o
Lo —Z’VAJVV:FV/CO, (2.68)
Co ot
where divv, =0 and rotv, =0. (2.69)

In equations (2.67) and (2.68), the external force field F has been written as an
irrotational force field F/ and a non divergent force field F

When associated with the boundary conditions considered, this set of equations
constitutes the base for the description of acoustic fields in many problems. To find
the solutions, it is convenient to find the equations of propagation associated with
the variables p, © andv,. The mathematics is, in principle, simple, even though
writing down the equations might be a lengthy task. Fortunately, in most situations,
it is unnecessary to consider any source.

For example, the equation of propagation of the temperature variation t can be
obtained by adopting the following method. The factor divv, can be eliminated

from the previous system of equations by first applying the operator div to equation

(2.67) and the operator ( !
o

results. The factors dp/ot and Ap are eliminated from the resulting equation using

gt —(VA] to equation (2.65), and then combining the

equation (2.66) and its Laplacian. After following such procedure, one obtains

3
0 [1+y£ —SJAM{H(@ +y€h)Lg}L£Ar+La—r

) co dtjeo ot ¢} ot

= _Alp—oﬁ{—divﬁé+[£—coﬂ\,qu} (2.70)
’YB CO at at

2
- ! 62—[l+£VaJA h.
Cocp 005'( Y ©€o ot
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The right-hand side term conveys the effect of the sources and can be simplified
or, in most cases, eliminated as it is often sufficient to write this equation away from
the sources. It is easy to verify that taken away from the sources, this equation
becomes

-1 2
1o r-R(1 aj N {1 0 _r+RA}:0’ e
C

cp Ot 2 kcoét 2 ot? 2
. 1 o
with =1+ (0, +v0, ) — —, (2.72)
CO 5‘t
and
1 0 2]
R=(1+2[0y -@=v)n]——+(, —vh ) 5=
co Ot c(z) at?
(2.73)
1 0 1 82
=14ty -Q=v) ] — = 260Dl Ly~ )55
Co ot Co ot

The superior orders of the characteristic length make no physical sense since
only the first orders of small deformations in the fundamental law of dynamics and
of temperature gradients in the equation of thermal conduction are considered.
Consequently, it is sensible to write

F+Rz1+év l3+0(62),with 0, =0, +(y=1)1y (2.74)
h CO at h
r-r(1aY" 10
and —— ~ O T+ (y =)0y =) ——+0(2) |, 2.75
2(CO&J_{ (=Dt =) =5 +0) 2.75)

as the order of magnitude of (I—R) (/y ~6.10m for the air in normal
conditions) is much smaller than the order of magnitude of (F + R) (unit). O/ 2 )
denotes the infinitesimal second orders of the characteristic lengths /v, and ¢}, .

Equation (2.71) leads to the expression of the temperature variation t as a sum
of an acoustic temperature t, and an entropic temperature T, that are respectively
the solutions to the homogeneous equations (away from the sources)

1 o? 10
5 2—(1+£Vh ——)A |, =0, (2.76)
Cco ot Co ot
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10 10

—— Ay 1+ (y-D(l, — ) —— |A =0,

Loat h( (y=D(ey h)CO atJ :lfh

or{l 0 —th:|‘Ch ~0. (277)
Coat

Equation (2.76) is an equation of acoustic propagation in which the first factor
conveys the inertia of the particle, the second its compressibility and the third the
dissipation associated with viscosity and thermal conduction. Equation (2.77) is an
equation of diffusion that is, when limited to the first order of ¢}, , the homogenous
equation (2.66) (without the right-hand side term). The entropic temperature t, is
therefore associated to thermal conduction (responsible for the heat transfer). The
effects of molecular relaxation, when considered, are to be introduced in the factor
Lz Lzz of equation (2.76) by substituting the operator y with y* in c% =vPy /pg
Co ot
(equation (2.58)).

The pressure variation (acoustic and entropic) and the laminar particle velocity
(acoustic and entropic) satisfy the same equations (2.71), (2.76) and (2.77) as the
temperature variation. The proof of this property (for the pressure p ) can be carried

out by eliminating the factor divv, in combining equation (2.65) and the
divergence of equation (2.67), then by eliminating the temperature t, applying the

operator ( ! st —th] to equation (2.66) and reporting it into the previous result.

o
The equation of propagation of the particle velocity v, is obtained by first applying

the operator grad (l—gt—KhA] to equation (2.65) and eliminating t, combining
o

the result with equation (2.66). The factor gradp is eliminated in the resulting
equation by using equation (2.67).

2.5.2.Approach to determine the solutions

Preliminary note: until the end of this chapter, some basic notions concerning the
solutions (particularly the plane wave solutions) of the classical equations of
propagation are assumed as known by the reader. They are nevertheless set out in
Chapter 4.
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Finding the general solutions to the system of equations (2.65) to (2.69) is a
simple task as long as the problem is taken away from the sources, a region where
the solutions are known. Equation (2.68) for the vortical velocity field vy, and the
equations (2.76) and (2.77) for, respectively, the acoustic temperature t, and
entropic temperature Ty, , are classical equations of diffusion for v, and 7t , and of
propagation for t,. The solutions to such equations are known in the usual
coordinate systems. The equations for the laminar acoustic and entropic velocity
fields, V s, and V gy, , for the acoustic and entropic pressures p, and py,, satisfy the
same equations (2.76) and (2.77) as t, and ty, . Therefore, obtaining the solutions
for the variables p=p, +py, Vy =V +Vpp, T=T, + T and Vv, is reduced to
solving classical equations of propagation and diffusion. However, for the acoustic
and entropic variables (p,V ,4,1:), the solutions for two of them (i.e. v, and p) can
be derived from the solution for the third (i.e. t). Reporting the solution
T=1, + 7, into equation (2.66), given equations (2.76) and (2.77), leads to

P=DPa+Dh> (2.78)
where
VP 10 vB

1 faz s Tas 2.78a
Pa = _1[ h co 6‘[] a_y_1 a ( )

. 10
ph =Y By —0p)——Th<<p,. (2.78b)

CO 6t

The report of these results into equation (2.67), given that equations (2.76) and
(2.77) are satisfied by the particle velocities v, and v, , yields

Ve=Vy 4V (2.79)
. -1
where v, ~ -l vP [ ! 6] +(0y —0y)|erad T, ,
* Tpoco v—1{{co Ot
1 yp(1a)"
or v, ~ v [ J grad t,, (2.79a)
* T poco Y—1{cq ot
. yB q
and v, ~ ly, grad Ty, (2.790)

PoCo
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with (6/8t)_1 being the indefinite primitive with respect to the time. It must be
1

emphasized that if the second-order factor ¢y (y—D(Z, —fh)—% had been
o

ignored in equation (2.75), the second terms of equation (2.78b) and (2.79b) would
be null.

To summarize, solving equation (2.68) for v, (given equation (2.69a) and that
divv, =0), then solving equation (2.76) and (2.77) for t, and Ty, , and reporting
the resulting solutions into equations (2.78) and (2.79) for p and v, (given
equation (2.69b) and rot v, = 0) leads to the complete general solution to the basic
linearized equations in dissipative fluids (2.65) to (2.69), away from the sources
(q,h,l:]; +15V ), in the time domain, as long as the conditions for Navier-Stokes
equation to be divided into two equations (2.67) and (2.68) are fulfilled.

In the frequency domain, or in other words here for a harmonic motion of the
form ' (i.e. 6/0t=iw where ® is the angular frequency of the wave), the
previous argument is expressed as

(A+k$)vv=o, with divv, =0, (2.80)

(A+k2)e, =0 and (a+k2)ry =0, with t=1, 41y, (2.81)

P=Pa+Ph (2.82)
with

pa~ B ik, ~ P (2.82a)

y—1 y-1

and

ph =iy Bo(Ly =) T << Py (2.82b)

Vo=V, 4V, 1otV =0, (2.83)
with

Vo = P [k (1 -ty Jerd v, |

* “kopoco v-1

v o B Gde, (2.83a)

7 kopoeg v-1
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and
vy~ "B, eradry, (2.83b)
" PoCo
where ky = m/c (2.84)

is characteristic of the source (® ) and the medium (¢ ),

k2 =—iky /0, =—-ipoo/p (2.85)
is the square of the viscous diffusion wavenumber,

ky ~kg(—ikgl, ) with £, =0, +(y=Dy, (2.86)
is the square of the acoustic wavenumber and

kp :—if—;[l—iko(v—wv—éh)] :—f—}? (2.87)

is the square of the thermal diffusion wavenumber, with

4
+3H

l :n 3~ and Iy = A
PoCo PocoCp

Note: the imaginary part of k, = ko(l—%koé v, ) conveys the acoustic

dissipation associated to viscosity and thermal conduction. It is convenient in many
situations to consider the “classical” process of acoustic dissipation, proportional to
the characteristic lengths ¢, and ¢, , therefore proportional to the viscosity

coefficients p and n, as well as to the coefficient of thermal conductivity A .

Moreover, the quantities &, :£: 2ty and dp :£: 20 , denoting
kvl V ko Jknl VKo

the penetration depths (thickness of the viscous and thermal boundary layers,
respectively), are in common use.

2.5.3.Approach of the solutions in presence of acoustic sources
The systems of equations obtained in the previous section are valid in the entire

domain of propagation considered (finite or not), but only away from the sources.
The derivation of the equations in presence of sources is rather lengthy, at least in
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their exact form (which is less and less relevant as the experimental data do not
contain any information on such small quantities). An example is given in the
following paragraph.

In presence of acoustic sources of volume velocity (q) and heat (h), but away
from any force source, equation (2.71), given the relationships (2.74) and (2.75),
written for v, = grade (where ¢ is the velocity potential) can be expressed at the
first order of the characteristic lengths as

1 0 1 82 10 y-11 0
—Z Al —1+¢. —= Alo=-ql|="——"—""H. 2.88
Lo 5 b H > ( v &J }p q} F——— (2.88)

Co €o
This expression underlines the respective roles of the sources of volume velocity
and heat. Away from any source of heat (h), this equation is reduced to a classical
equation of propagation

1 02 ( 1 a)
—|1+/, —|Alo=q. (2.89)
L%ﬁtz g ot }

The comparison of equation (2.88) with (2.89) shows that the former, satisfied
by the velocity potential in presence of sources of volume velocity and heat, can be
decomposed into two equations, one for the heat diffusion,

Coat 2

[ 10 —thth _r 11 oy (2.90)
Co Co ot

and one equation of acoustic propagation,

1 62 10
T+, —at)A ©=q+Qy, (2.91)
Co ot Co

where ¢ results from the superposition of an acoustic field ¢, and an entropic field
¢, (o=@, +¢y). These equations are part of the domain of equations of
“classical” diffusion (2.90) and “classical” propagation (2.91).

2.5.4.Boundary conditions

In the time domain, boundary conditions include the initial conditions, related to
the scalar fields (pressure or temperature) and vectorial fields (particle velocities)
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and to the first derivative with respect to time of the acoustic quantities (the time
operators are of second order in the propagation equations); also included are the
boundary conditions that one must consider in the frequency domain which more
often depend on the considered frequency.

Figure 2.8.Coordinate system used at the frontiers of the considered domain

To express these boundary conditions, the following notations are adopted: a
point of the interface (the boundary) between the domain of propagation considered
and the exterior domain is localized in a system of coordinates such that the outward
normal coordinate is noted u and the tangential coordinates are noted w; and w,
(Figure 2.8). For example, for a cylindrical boundary the set (u, w1, w2) represents
the set (r,0,z). The intersection of the axis i with the wall is noted “s” (for a
cylinder, u =s is written u =R, where R is the radius of the cylinder). There are
three boundary conditions related to the temperature variation t, the normal
component of the total particle velocity at the boundary and on its tangential
component (the wall is assumed motionless). The law of continuity of the stresses at
the interface fluid/wall is not yet introduced as it does not provide any useful
information in this context; it only introduces the wall reaction, which is of no
interest since the coupling fluid/wall is not considered here (rigid wall).

2.5.4.1. Thermal boundary conditions (frequency domain)

The acoustic perturbation is associated with a temperature variation t in the
fluid that is responsible for a heat transfer from the fluid to the boundary (often a
solid). The heat flow is positive along the u axis (outwardly directed) if t is
positive and is an inverse heat flow if t is negative. The resulting perturbation of
the acoustic wave takes the form of attenuation due to dissipation of the thermal
energy. This heat transfer is governed by three laws presented in the following three
paragraphs.
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1) The law of continuity of the heat flow at the interface u ='s,

ot ot
A—=Ap——, 2.92
0os " as ( )

where Ay and T4 represent respectively the coefficient of thermal conduction of

T
the wall and the temperature difference in the wall and where 8_ is actually

S
o
ou u=s

Note: the notation “s ” does not refer to the acoustic entropy in section 2.5.4.

i) The classical equation of diffusion of heat in the wall,
[A —iopeC /g ] T (w) =0, (2.93)

where the quantity of heat per unit of mass dQ¢ received by the wall is expressed
as a function of the density p¢ and of the specific heat capacity C¢ of the wall by

2
. . . 1 .
dQ¢ =psCy¢dTy, and where A :d— in Cartesian coordinates, 10 r? 9 in
dX2 rz T or
. . * 1o . o :
spherical coordinates and —-+—— in cylindrical coordinates.
or? ror

This equation assumes the generally verified hypothesis that the heat flow
parallel to the interface is negligible due to a relatively small temperature gradient in
this direction (the acoustic wavelength is great compared to the thickness of the
boundary layers).

In practice, and most often in the case of capillary tubes, the radius of curvature
of the boundary satisfies the inequality

Ae
opsCy

R >>

so that equation (2.93) can be approximated, regardless of the coordinate system, to

2
{d—z—im&}f(u) ~0. (2.94)
du Mg
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The harmonic solution to equation (2.94) for diffusion along the u axis,

_ e_m ugiot (2.95)

Tf

precisely satisfies the differential equation
d :
—+1[1(Dprf/}\.f Tf =0. (296)
du

iii) The temperatures of the fluid t(u, w) and of the wall t¢(u, w) are equal at
the interface u =s , for any point \X/(wl,w P ),

Tr(s, W) =1(s,W). (2.97)

Reporting equation (2.96) into equation (2.92) and considering equation (2.97)
leads to the boundary condition on the temperature variation of the fluid

{1+Lh§}r(s,v—v):o, VW = (W, Wo)s (2.98)
S

with Ly =A/,iopsCrrs . This condition is of the mixed homogeneous type
associated with an equivalent “impedance” of a wall Z;, =ikgpocoLy, -

Assuming a solution with separated variables for t=1, + 1},

To (U, W)= %a (kguww, (f(aw W)

and Ty, (U, W) = & (Kpy WY (K pyy W) (2.99)

additionally, given that the boundary condition must be verified for all points
\7V(W1 , Wz) on the boundary, one obtains

Wa Koy W) =y (Kpyy W), V7. (2.100)

The functions y, and y will now be referred to as \;/(f(aw .w) . The boundary
condition (2.98) can then be written as

(1+Lh3j%(kaus): —(1+Lh iJ%h(khus), (2.101)
0s 0s

with kiu = ka2 —kiw and kﬁu = kﬁ —kiw where the square of the wavenumbers

ki and k}21 are given by the equations (2.86) and (2.87).
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For most applications, the product of the heat capacity C; of the wall by its
thermal conductivity A is significantly greater than its equivalent product for the
fluid. Consequently, the factor L;,0/0s can be ignored and equations (2.98) and
(2.101) become:

T(S, ‘X/) =0 > Ta (S,\X’) =—Tp (S, \TV) 5 V\TV,
or %a (Kqus) = _%h (Kpys) - (2.102)

Equation (2.102) is a commonly-used form of boundary condition. It leads to the
following note: while the entropic temperature Tt (associated with the heat
diffusion) is negligible compared to the acoustic temperature t, within the fluid —
meaning at a closest distance from the wall greater than the length of thermal
diffusion, that is, away from the thermal boundary layers of thickness
8p =+/20h /ko , between 500um and 10pum for the air in normal conditions
between 20Hz and 20kHz — these two temperature differences have equal absolute
values (T, = —1}, ) at the immediate vicinity of the boundary.

The dissipative phenomena are therefore more important at the boundary of the
domain than in the bulk of the fluid (a similar note can be formulated regarding the
phenomena associated to viscosity). Actually, a non-negligible heat wave is
generated on the wall by heat transfer between the incident acoustic wave and the
wall that penetrates the medium via a diffusion process (very small velocity ¢}, and
very high attenuation I';, =1/6y,). It is easy to verify the above statement by writing
that

o .
kh :——1Fh .
Ch

with, according to equation (2.87),

ko

1-i . .
ky, :fl 7. C =+/20/, ¢ <<c( (in the audible range)
h
and Fh Iﬁko /(2£h)>>k0 .

2.5.4.2. Boundary conditions on the particle velocity

The boundary conditions on the particle velocity v=v ‘ +v ‘ +V, assume a
very small tangential motion, proportional to the normal derivative of the tangential
component given by

(1+g® %)VW(S,W):E), vw, (2.103)
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and a motion normal to the wall, written in terms of specific wall impedance

(1 +C, %jvu(s,v‘v) =0, VW, (2.104)

. L , . 0 0
where, assuming as a first approximation Euler’s equation p avu =—Ep, the
latter can be written

ikoPoCoCy =Vl, (@/t=im). (2.105)

u
In most applications, the walls are smooth and rigid, consequently the

parameters ¢, and ¢y are very close to zero and the conditions (2.103) and
(2.104) become

Va8, W) =0, Vs (s,Ww)=0, Vw.
When one is considering equations (2.83),

M gdr, vy ~ B eradry, (2.106)

0=
*“kopoeg -1 Poco

and writing the solution for the particle velocity as a function of the separable
variables (s and w ), equations (2.106) become

1 ﬂ{g%a(kaus)_i(y_l)kogh%%h(khus)}w(EaW'\?v)

kOPOCO Y—l 0s (2107)

= _\A’vu(kvus)\Vvu(f(vw-‘X’)a

i yf& . . A = =
— 11, (k,,S)—1(y =D kol Th (ki S) Ve Wk, o W
KoPoCo y—l[ a(kays)—i(y =Dkol T (Kpy )] wW(Kayw W) (2.108)

= V5 (K 8) @y (K W),
where the right-hand side terms represent respectively, apart from the sign, the

normal and tangential components of the vortical velocity. Since these equations
must be satisfied for any point w on the boundary

Wu Ky ) = W(K gy W) and Dy (K W) = V5 9 (K gy W) (2.109)
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implying that Vg (k,,s) is independent of W, thus

Vw, (Kyys) =V, (Kyys) s (2.110)

(velocity component noted v, (k,,s) below),

and that k%,u = k% ~k2, , where k% is given by equation (2.85).

aw >

By substituting the boundary equations (2.107) and (2.108) into one another and
given equations (2.102), (2.109) and (2.110), this leads to the boundary equation

[1+i(y=Dkoty ] Yvu(kvus) ! i%a(kaus
VVW(kVuS) Ta (kaus) as

)
(2.111)

1 0 .
+i(y =Dkl ———————71, (K S).-
(v —Dkg h%h(khus) B Th (Kpy$)

v and V are dimensionally different, given equations (2.109), (2.107) and (2.108).

Note 1: since each type of motion (acoustic, entropic and vortical) depends
similarly on W via the function wy(k,, .W), the acoustic, entropic and vortical
wavenumbers (respectively k, ,k;, and k. ) satisfy the relationships

k2 =k2,+k2, . ki =kE, +K2,, K2 =Kk2, +K2,, (2.112)

where kg, k}zl and k%, are given by equations (2.85) to (2.87) and where k,, and
k. are given by the considered wave front (examples are given in the following
chapter).

Note 2: similarly to heat waves, the vortical waves obey a diffusion process in

the boundary layers of thickness &, = 1}21/'\, /kq at the vicinity of the wall. They

are generated by viscous friction of the incident acoustic wave on the wall and
penetrate the medium following a diffusion process (very small velocity ¢, and

very high attenuation I'y, =1/8, ). It is easy to verify the above statement by
writing that
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with, according to the equation (2.85),
—1 k 1 '
ky =i/_—1 20 ¢, =200 cg<<cy and T, =+ko /(20},)>>kg .
2\ 7,

The vortical velocity is actually a shear velocity. A schematic representation is
given in Figure 1.1; it corresponds to a transverse wave.



Chapter 2: Appendix

Equations of Continuity and Equations
at the Thermomechanic Discontinuities
in Continuous Media

The equations presented in the two previous chapters are here derived in the
wider context of fluid mechanics. The objective of this appendix is to familiarize the
reader with a broader approach, which completes the previous presentations.

A.1. Introduction

A.1.1. Material derivative of volume integrals

Let I(t) be the function defined by an integral over a regular domain D(t)
delimited by the surface 0D along the motion of the considered fluid,

(1) = [ffy K (E. 0D

where K(f,t) is a continuous function (vectorial or not) derivable in the domain
(D). By denoting v the fluid velocity field, the material derivative of this integral is
given by
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1= dtH Kb,
=” D[atK+aj(va)]dD,

L (2.113)
- J' j [diK +K.div VKD,

=J'HDathD+J'jan<(v.di)

where 8D denotes the surface delimiting the domain (D) and d¥ is a surface
element orientated outward from the considered domain. The derivation of these
results can be detailed as follows.

If Mo(fo) is, at the initial time t,, the equivalent to the point M(F) at the

instant t, there exists only one way to express the corresponding coordinates Xx; as
functions of the coordinates x;

Xi :Gi(x?,xg,xg,t), (2.114a)
that is generally written as
_ (o 0.0

X; =Xi{X; ,xz,x3,t). (2.114b)

If J denotes the determinant of the matrix of coefficients (6pri) , called the
functional determinant (or Jacobian) and noted !

D
szet(@xoxi):M (2.115)

' D (x? s xg R xg)
then it is possible to write

d¢I =d,[[[,KdD =d,[[f, KIdD, =a,[[f, KIdD,, (2.116a)

where D is the considered domain at the time t,; and where J and K are

functions of x? and t. When t varies, the domain D remains unchanged and

equation (2.116a) becomes

d,1 = [[f, 2[Rk = [T}, (Ra,3+36,KjD, . (2.116b)
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However, according to the rule of determinant differentiation (resulting from the
corresponding rule for composed functions) and considering the following
definition of the velocity

6ti(x?,t):\7, (2.117)
one obtains

g_é D X1,X2,X3
ot ot plx?,x9,x9 ’

D(v},x2,X3

D(x,v,X3) N D(x,X5,v3)

D(x?,xz,xg) D(xl,xz,xg) D(x?,xg,xg)

>

that is

a1 _ D(x1,x5,x3)| D(vy,x2,x3) N

ot D(x?,xg,xg) D(xl,xz,x3)

or, using the relationship,

{—D(Vl’xz’%)}m, (2.118)
D(x1,x2,x3)] 0%
0vs
A _ v, v, = Jdivv. (2.119)
ot 6X1 6X2 8X3
Reporting equation (2.119) into equation (2.116b) yields
a,1= [, (0,K +Rdiv¥)1dD, where K =R(x?.t). (2.120)

or, using the variables (x, t) and reporting equation (2.115) written as JdDy =dD,

4T = [flo (A K+ K dive)dD, with K =K (x;. ). @.121)

Equations (2.113) can be obtained from equation (2.121) by noting that

dK=06,K+vgradK ,
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thus
d,K +Rdivy = ,K +8;(Kv;),
and, by applying Ostrogradsky’s formula

J1ly2 (v j)ap = [[ ) R(7.05).

A.1.2. Generalization

One can generalize the previous discussion. Let (AD) be a closed surface
delimiting a domain (D) in motion and w(M, t) the velocity of a point M of (&D)
at the time t. The velocity field w(M,t) is assumed different from the fluid
velocity field v(M,t) such that (6D) is not a surface followed by any particular
motion.

Note: in this appendix, the notations U and W do not represent the same
quantities as the ones denoted similarly in Chapter 2.

From a mathematical point of view, calculating this derivative is equivalent to
calculating the material derivative. Indeed, replacing in the previous results the
terms d; (respectively v) by 8, (respectively w ) where &; denotes the derivative
with respect to the time obtained by following a point along its respective path
defined by W, one obtains, for example,

8 =0, +w.grad, (2.122)
and for a volume integral

8, [[], KdD = [[[, 0, KdD + [[,, K(¥.Z). (2.123)

The introduction of the relative velocity u of the media with respect to the
proper motion w

u=v-w, (2.124)
leads to the explicit relationship between the two operators d; and 3§,

d, =8, +ii.grad, (2.125)
d, JIf, KdD = 3, ][}, KdD + [[p K (.5, (2.126)
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where D denotes then the domain following the fluid in motion v and d,, the
material derivative that follows the same motion.

In the particular case where w =0, the operator O, is nothing more than the
partial derivative 0O; corresponding to a motionless point in the associated
coordinate system. Then v =1 and equations (2.125) and (2.126) can be written (as
was previously established) as

d; =0 +v.grad, (2.127)
d, [[}, KdD = [ff, &,KdD + [, K(v.dE). (2.128)

A.2. Equations of continuity
A.2.1.Mass conservation equation

According to equations (2.113), the expression of the mass conservation law
(1.26), taken away from any sources,

d¢JffypdD =0
can also be written as
[[fy[o¢p+div(pv)]dD =0,

[If,[dp+p divi]dD =0, (2.129)
[[fy0:pdD + [[;,pv.dZ =0,

or, if §; defines the derivative with respect to the time calculated at a moving point
W, as

8¢ [[f,pdD + [[;pp(v—W)dZ = 0. (2.130)

The velocity field (v—w) defines the relative velocity of the media (fluid
velocity) with respect to the proper motion used for the calculation of the time
derivative.

The presence of sources, characterized by their volume velocity in the domain
D(t) does not affect the previous results, thus verifying equations (1.27) to (1.30)
of the mass conservation law obtained in Chapter 1.
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A.2.2.Equation of impulse continuity

According to equations (2.21) and (2.22), the fundamental equation of dynamics
for an arbitrary domain (D) can be written as

jﬂDpdtVquﬂD[mewq dD, (2.131)

the action of external sources inside the domain (D) being characterized here by the
force pF per unit of volume.

By adding the null quantity [ff ¥(d(p +pdivv)dD to the left-hand side term of
this equation (of mass conservation away from any volume velocity sources), one
obtains

1T lpd ¥ +¥d p+ pvdiv]dD = [ff [pF + divz} dD,
thus,
{15, [, (p%)+ pvdive]dD = [[f [pﬁ N divc=s} dD.

According to equations (2.113), the above result can be written in the following
forms

1 JflpPdD = [f j‘])(t)[ple-kdiv;}dD, (2.132a)

I} jD(t)[at (p9)+ 0y (pov; )|ap =[] ID(t)[pF+ divq dD. (2.132b)

Equation (2.132b) includes a summation over all values of j and can also be
written as

0,(p7)+ 0, (p¥v ;)= pF + divo, (2.132¢)
M2 (o7 D + [T, (p9)705 ) = | IID(t)[pF + diquD : (2.132d)
8¢ [Jfp)P¥dD + [ (P - #)az] - HID(t)[pF T diquD . (2.132¢)
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These are the equations of conservation of the impulse pV : the total variation of

impulse in D(t) is equal to the contribution of the bulk sources pF and the surfaces

reactions (diV;) .
A.2.3.Equation of entropy continuity
The equation of heat propagation is written (equations (2.40) and (2.43)) as
pTd,S = div(rgradT)+ 3i0x, Vi + ph (sum over j),
or
pT(3,S + v.gradS) = div(hgradT) + 0y, Vi +ph.

If one multiplies the equation of mass conservation (away from any sources) by
the entropy function S and adds the result to the above equations, one obtains
respectively

p0(S + pv.gradS + S, p + Sdiv(pv) = %[div(kgrﬁdTH 3,05 Vi +ph

§j%x;

or

§jYx;

3¢ (pS)+div(pSVv) = %[div(kgrédT)Jr T304 Vi + ph]. (2.133)

This constitutes the local form of the equation of entropy conservation per unit
of volume (pS). The various integral equivalents can be derived following a similar
approach.

A.2.4.Equation of energy continuity

This equation is not a complement, but the consequence of the previous results.
It is seldom used because of its difficult implementation.

The variation per unit of time of the total energy per unit of volume is the sum of
the variation of kinetic energy (pv2 /2) and of internal (potential) energy (pe)

2
6tE:8t[%+paj. (2.134)
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Given that 2\7.(\7.gr5d\7) = \”/.grﬁdv2 , the set of equations (2.34) to (2.35) leads to

2 2 2
0¢ [%J = {— V?div(p?/)— p V.grﬁd% —v.grad p}
(2.135)

— 2
(= L= v
+ ‘:le(V.Sj - sijaxj \& } +Vv.pF+ qu.
This equation can be interpreted as follows: the variation per unit of time of the
kinetic energy per unit of volume 6t(pv2 /2) 1is the sum of three terms; one term
associated with the phenomena independent of the viscosity and external sources;

one associated with the variations of kinetic energy due to the viscosity; and finally
one that introduces the effects of external sources.

Also, reporting the quantities pToS derived from the expressions of mass and
entropy conservation into equation (2.38), which is written as

ﬁt(p8)=(£+8]6tp+pT6tS, (2.136)
p

yields

o (pe)= —(% + SJ div(pv)-pTv.grad S

+div(h grad T)+ 3;:0 v; +ph.

§jYx;

(2.137)

Given that

dH =TdS+ ldP and therefore that Tgrad S = grad (B + sj 1 gradp,
p p p

equation (2.137) becomes

o, (pe)= {— (% + sjdiv(p?/)+ v.grad p—pv.grad (% + SH

+div(h grad T)+ 3;:04 vi +ph.

jYx;

(2.138)

Equation (2.138) can be interpreted as follows: the variation per unit of time of
the potential energy per unit of volume 8t(pa) is the sum of three terms; one term

associated with the phenomena independent of the viscosity and thermal conduction;
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one associated with the variations of internal energy due to thermal conduction
(factor A); and finally one term introducing the conversion of kinetic energy into

heat (internal energy) due to the viscosity (factor containing the tensor ).

The variation per unit of time of the total energy per unit of volume of fluid is
thus given by equations (2.135) to (2.138) as

2 2 2
0(E=0, (pv— + ps] = [—(B +e+ V—]div(p?/)— p\?grﬁd[B +e+ V—H
2 P 2 P 2 (2.139)

- - 2
+ [div(xgradTﬁ div(V.Sﬂ +VpE+pq VT +ph,

2 2

v \'% -
O0¢| p—+pe |+di —+
tLP 5 ps} lvl[p 5 ps]v]

= . 2
= div(— PV +AgradT + V.S) + p{F.V +q V? + h:l.

or

(2.140)

It is the local form of the equation of conservation of total energy
pl(v2 /2)+pe] .

Among the many possible equivalent integrals over the domain D(t), one leads
directly to the variation of total energy due to the contributions from the external
sources contained in the domain and from the energy transfers with the exterior at
the boundaries, due to pressure forces, thermal conduction and viscosity related
forces

2

d il [p—+ps}ﬂ) b |:F.V+qv7+h dD

+ ”aD (‘ PV +AgradT + §.v).di.

(2.141)

Note: the considered motions in this appendix involve both the “acoustic” and
“non-acoustic” components and are not in any way linearized.
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A.3. Equations at disontinuities in mechanics
A.3.1.Introduction

The velocity field V and the quantity K (2.113), involved in this equation of
conservation, can be considered continuous within a surface of discontinuity X .
This discontinuity can be induced, for example, by an interface between two media
of different nature.

The domain (D) is then divided into two sub-domains D; and D, by the
surface of discontinuity X, each domain D; being delimited by the surface
oD; = Z +S;, with i=1,2 (Figure 2.9).

Si

S,

Figure 2.9.Surface of discontinuity dividing a domain D
into two sub-domains D; and D,

By denoting \TV(M,t) the velocity of a point M of the previously defined
surfaces and assuming w #v for any point M e X, and w=v for M €8S; where
(M, t) is the fluid velocity, it is then possible to write

d,Jff, KdD =5, Jffj, KdD +8[f;, KdD, (2.142)

where the derivatives with respect to the time are estimated along the path of the
point M of motion W that coincides with the motion of the surfaces delimiting each
of the considered volumes.

_ By denoting K(i), respectively \7_(1) , the value taken at M € £ by the quantity
K € D;, respectively veD;, and dZ) the outward element of surface X of the
domain D;, equation (2.123) becomes

8.1l KdD = []], 8, RdD + [[; Ry #.dZ))- (2.143)
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Adding and subtracting the same term in the right-hand site of equation (2.143)
yields

8 [[[, Kb = [[f, oKdD- [ s Ryl -7 5]
+ .”.si+z IZ(I) [;’(l)di(l)]

Noting that (\7(1) -W) =0 on S;, by hypothesis, and applying the theorem of
divergence, equation (2.144) becomes

8], KdD = [[[;, 2KdD
~JRoFe - % 5]
+{Jfy ox [Ry; D,

(2.144)

The sum over all values of i (i=12) leads to the following relationship that
includes a sum over j

d Jif, RdD = [ff [0,R +0;(&v;)] ap+ [f, [[Ku Jaz;, (2.145)

where, denoting dX = d¥; —dZ, , and [[]] = ()2 - ()1 ,

K[ - whas - K7 - )
=Kl - 905 R[5 - w).az]
=[Rv;-wplls;.

= [[Kuj ]]de.

The comparison of this result with equation (2.113) shows that the presence of
the discontinuity surface introduces an additional surface integral in the expression
of the particle derivative of a volume integral.

A.3.2. Application to the equation of impulse conservation

If one starts from equation (2.132b) of the equation of impulse continuity

d [[J, pvdD =[f, pFdD + [[ o.dE.,



104  Fundamentals of Acoustics

and replaces the left-hand side term by its expression given by equation (2.145)
where K is replaced by pv, one obtains

i1 o9)+ 0 (7, )-pFlap+ [ [pvu oz, - [ 008 =5, @140
Given the following relationships

Jlpods =l ods+ jjs E.di,

Ty odS = [f; 50045 + [, s o)dE+ ﬂz[[c:sﬂ.di,

Jlyp @4 = [Jf, divodD+ [Jf, divodD-+ [, [Fﬂ.ai ,

where by definition (equation 2.145),

{Fﬂdi = —F(z).di ) +z(1).di (1)} = F(z) —C=Y(1):|.di (1)

equation (2.146) yields, decomposing the integral over D into two integrals over
Dy and D,

1] [ 07)+0, (pVVj)—div;—plﬂdDﬂ-”E[[pV@ﬁ—c=sﬂ.di =0, (2.147)

where the notation pv ® i.dX is simply the product of the scalar G.dS by the vector
pV , otherwise written pvu; dZ; with a summation over j.

The term in brackets in the volume integral is null (local law (2.132c) of impulse
continuity in each domain D; and D, ), thus

[ Hpv ®i —§ﬂ.di 0. (2.148)
Therefore, denoting
i =dZ/dz,

o@) = [p%) ®u() o) } i,
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equation (2.148) becomes
[[fedz=0, vz,

where @ is a continuous function. One can show that this result implies ¢ =0 by
letting M, be a point on ¥ and ¢;(M) the positive component of the vectorial
function (M) . The function @;(M) being continuous, there exist a set of points
close to M such that

GiM) > 0i(Mo), M e(s). =123
and such that

area(s) 0, (Mg) # G

) j(s)cpi(M)dz >

This statement contradicts the initial equation verified in particular for (2)
coinciding with (s). Thus, $=0.

Finally, the condition (2.148) at the discontinuity surface can be written as
p(l)v(l) [ﬁ(l)ﬁ]— G(]) ﬁ = p(z){/(z) ﬁ(z) ﬁ]— 6(2) ﬁ 5 (2 149)

where u is the fluid velocity relative to the discontinuity surface (u=v-w).

By denoting u;), = u).n, the normal fluid velocity relative to the discontinuity
surface (the normal n being orientated from medium 1 toward medium 2) and by

writing that o.n = T(ﬁ) (equation 2.20), the condition at the discontinuity becomes

PV mUumn T @ =Py V) u@n ~ T (@),
or
[pvu, -] =0. (2.150)

Note: if =0, ojj =pd;; and T(f) = —p1i , equation (2.150) can be written

[pvu, +pi]]=0. (2.151)
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A.3.3. Other conditions at discontinuities
One can obtain, by analogy, the equations of mass, entropy and energy conservation.

The mass conservation law leads to
[pu,] =0; (2.152)
the entropy conservation law (for an adiabatic motion) leads to
[pTSu,] =0; (2.153)

the energy conservation law (for an adiabatic motion) leads to

”:{p%-i— ngun - (3.6).13” -0, (2.154)

with 6.v=3v-pv and c.vi=T.v.

all

Note 1: by denoting m = pu, , these equations can be written

— for the mass conservation, [[m]] =0,(m; =m, =m); (2.155a)

— for the moment, m[[v]]= HTH, (2.155b)
2

— for the energy, mHVT+ s“ = [[T.V]]; (2.155¢)

— for the entropy, m [[TS]] =0. (2.155d)

Note 2: all the above equations contain information required when applying the
equations of conservation to a given domain with a discontinuity surface. They are
necessary, but not always sufficient, particularly in the case of viscous fluids (see
the following section).

A.4. Examples of application of the quations at discontinuities in mechanics:
interface conditions

The number of available equations is such that one can find the solutions, the
equations of impulse, mass and entropy conservation, and the equations
demonstrating that mass density and entropy are state-functions. These equations are
all partial differential equations and the solutions depend on arbitrarily chosen
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functions. Obtaining the solutions for these types of problems lies on the boundary
conditions they must satisfy. The conditions at discontinuities can be taken as
boundary conditions to obtain the solution to a problem of continuous motion within
one of the media. To these boundary conditions, one can add the initial conditions,
in the time domain, that can be written at each point M of the domain (including its
boundary) as

p(M,t=0)=a(M), ¥(M.,0)=b(M), p(M,0)=c(M). (2.156)

The following section derives these boundary conditions.

A.4.1.Interface solid — viscous fluid

The surface of the solid is assumed to be animated by a motion of local normal
velocity w(M,t). At the discontinuity between medium (1) and medium (2),
equation (2.152) gives

PV =WI=p@) [V — Wl (2.157)

Since fluid and solid are not mixing together, one can write that the flow of mass
at the interface between the two media is equal to zero. Thus

Pylvayn —wWI=p)[v)n —w]=0,
implying continuity of the normal velocity at the interface
Viyn =V =W (2.158)
Moreover, equation (2.150) suggests that
PV [Vn —WI-Tay =PV ) [V —W1-T) .

which, combined with equation (2.158), leads to the expression of strain continuity
at the interface

T(l) = :l;(z) N (2159)
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and therefore to the continuity of the tangential velocities
Vit = V)t

The conditions at this interface are actually given by two equations (2.158) and
(2.159) expressing the continuity of normal and tangential velocities.

In the case of a solid at rest, these equations become
Vi =V =W =0 and T =Ty). (2.160)
In the case of a non-viscous fluid, they are
V(yn = V(2 =W and Ty =—pii. (2.161)
The laws that were accepted in the previous chapter (because they seemed
obvious) are not fundamentally justified.
A.4.2.Interface between perfect fluids
Equation (2.152) yields

PMUmn =P2)U(2)n » (2.162)

with u, =(V-w)n.

If the relative fluid velocity u,,, about the direction n normal to the interface, is
non-null — meaning that the particles are free to go from one side of the interface to
the other (a shock wave, for example) — then, substituting expression (1.161) of T
into equation [[pVvu, —T]]=0 leads to

[pfi +pvu, ]]=0,
or payi+pmyVayUmn =P2)i+P2)V(2)U2)n -

Subtracting the equal quantities pyuqyW and p)u)W in, respectively, the
left- and right-hand side terms leads to

[phi+piiu,]]=0. (2.163)

About the normal direction, equation (2.163) becomes

[p+puill=0,
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and, about the tangential direction, is
[[puju¢l]=0.
In the particular case where u (), =u(y), =0, [[p]]= 0, but [[u]] is assumed

non-null. The surface of discontinuity is, in such a case, called the surface of
contact.

A.4.3.Interface between two non-miscible fluids in motion

The equation at discontinuity can be written, making use of the same
argumentation as in section A.4, as

W =V(n =V and Ty =Tpy).
and, for a perfect fluid, as
P =P)-

Note: further developments are required in order to completely express the
conditions of transfer at the interface related to purely acoustic perturbations.
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Chapter 3

Problems of Acoustics in Dissipative Fluids

3.1. Introduction

The methods presented in Chapter 2 are of great importance. It is important to
complete the discussion by applying these methods in few examples of acoustic
propagation in dissipative fluids. This chapter is entirely dedicated to this.

In addition, this chapter offers the opportunity to study few “classical” problems
of acoustics and to introduce important notions and results commonly referred to in
practice and throughout this book. The discussions and situations analyzed in all the
following chapters will therefore consider the dissipation due to the visco-thermal
effects, and sometimes due to the molecular relaxation. Specific conditions on the
homogeneity of the fluids, the linearity of the motion, etc. will be considered
according to the problem at hand.

The study of acoustic fields in three different domains is presented herein: in a
semi-infinite space (or in a very large closed space when compared to the
wavelengths considered), in small closed spaces and finally in infinite spaces.

3.2. Reflection of a harmonic wave from a rigid plane

3.2.1.Reflection of an incident harmonic plane wave

Let a semi-infinite fluid medium be limited by an infinite rigid plane of equation
y =0 (Figure 3.1), the y-axis being orientated positive in the fluid direction.
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K| X

boundary layers

)

Figure 3.1.4n incident harmonic plane wave is reflected by a rigid plane on'y = 0,
entropic and vortical waves are generated within the boundary layers

The plane defined by the direction of the incident harmonic plane wave and the
axis Oy normal to the rigid plane coincides, by convention, with the xOy plane so
that the considered problem can be treated in two dimensions. The interaction
between the incident wave and the rigid wall generates in a diffused entropic wave,
a diffused vortical wave (shear motion) and a reflected acoustic wave. The diffused
waves remain within the very thin boundary layers of the wall.

The objective of this study is to show that the thermal and viscosity effects at the
boundary y=0 can be modeled using the concept of specific admittance
(poco/Z,), which is a function of the coefficient of shear viscosity and thermal
conductivity, defined as such that the reflection of an acoustic wave from a rigid
wall in a visco-thermal fluid presents the same characteristics as that from a wall of
impedance Z, in a non-dissipative fluid.

The problem considered is defined by the system of differential equations (2.80)
to (2.87) in the domain y > 0, with which are associated the boundary conditions:

1=0 (2.102) and Vv =0 (2.106) at y = 0, Vx . The function y (2.100) is chosen in

the form e_lkxx, so that the temperature difference is written (the time factor el®t

being suppressed throughout) as
‘E=‘E++T_=(‘Ea++‘th+)+(‘ta_+‘th_j, (3.1

+ . .
where 1" represents the incident wave,

>

: ~ . i v ik x
r+:[elkayy +Aﬂelkhyy}e_lkxx ~elkayye *
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and t represents the reflected wave,
_ —ik,oy  _ —ikpey | —ik o x
tT=|Rge ¥ +Aye hy? e T HRXX
All amplitudes considered in the problem are normalized to the amplitude of the
incident acoustic temperature and subsequently set equal to the unit. The amplitude
of the incident thermal wave A; is ignored when compared with the incident
acoustic wave. However, this assumption cannot be made for the reflected wave
since, at the interface, t, = -1y}, , the factor R, denotes the reflection coefficient
for the acoustic wave which absolute value for which remains inferior to one. The
wavenumbers satisfy the following equations (2.112):

22,2 212,42
kg =k +kgy and ki =ky +kiry . (3.2)

where the quantities are projected onto the x- and y-directions, the vectors k, and
k;, being given by equations (2.86) and (2.87).

The solution for the laminar particle velocity is the superposition of an incident
(+) and a reflected (-) wave,

w{v;ﬁd +v;h)+(v;a w;hj, (3.3)
with v =ik, | B = VB, e (3.3a)
kopoco v=1 © poco
+ : i B s vB +
and vy, = +| ik, ——— -1 +ik}, (i | (3.3b)
Y |: Y kopoco Y11 Y poco

A similar form of solution is considered for the vortical velocity,

V,=VE4vy, (3.4)
Koy sk v
with vi =+ AT W gty ik (3.42)
X
and vi, = AT MY with k2 =12 4k, (3.4b)

The incident vortical wave V:,r is negligible compared with the reflected vortical
wave Vy, generated at the wall.

The boundary conditions at y =0 on the temperature variation and on the
components of the particle velocity (parallel and normal to the y =0 plane) are

1+R, +A}, =0, 3.5
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5 5 k
(ar e 1B p - By AT ) (3.6)
ko poco v-1 PoCo ky
. . A
Sy LB g )—iap 2P Ky +A5 =0. (3.7)
ko poco 71 PoCo

These three conditions lead, by elimination of the parameters A, and Aj , to

—i(y =D kol (1+R,)(k3 +kpykyy) =

) (3.8)
(k2 +ky ko )R, — (K

2
vy ay kx)a

or, considering equations (3.2) and (3.4b) where k, <<k, and k, <<k
ik ik — —
khy:\/ -k z\/ o kyy = lvko —kj = _lvko and,
Iy Cp (h ly

Ky —Mko 1——x/_+v W | (3.9)

vy>

where x/I =(1+1)/ \/5 since the real part of (1-R,) is positive.

The equivalent specific admittance (mentioned at the beginning of the chapter),
defined as

1 YB S (1_R,)

Poc poco Y—1 k
0% _ 5 ico Vay _ PoCo 0 ,

a Pa VB (1+R )

can be written, considering equation (3.9), as

Oco 1+1M{ k J\/’+(y_1 o | (3.10)

The factor (l—kgy/kg) is nothing more than the square of the sine of the
incidence angle; it is equal to zero in normal incidence and to one in grazing
incidence. It translates the effect of shear viscosity at the boundary (/¢ ), null
when the particle velocity is normal to the wall and maximum when parallel to the
wall, whereas the entropic coefficient (y— 1)@ related to the scalar pressure and
temperature, is independent of the incidence.
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Note that equation (3.8), and consequently (3.10), can be directly obtained by
substituting the forms of equation (3.1) to (3.4) into equation (2.111), leading to

. k2 kg, (1-R,)
[1+z(7—1)k0€h]27);:aer—Raa+(y—1)k0€hkhy etc. (.11

3.2.2.Reflection of a harmonic acoustic wave

Equation (3.10), obtained for the reflection of a plane harmonic wave, can be
applied in a much wider context, as will be demonstrated here. The following
derivations are based on the relationships imposed by the equation of propagation of
T, (2.81) that are

62 2

0 2
a—z\v(kxx,kzz)= —k3y and 2V e AT
X Z

with ky =kg, +k3 +k; .

Ignoring k, and k, (k,,ky, <k, <<ky,), equation (2.81), (A+k}21)th =0,
leads to
o 2 12 2 o> s
—2+(kh—kx—kz) T, =0 then to —2+kh T, ~0. (3.12)
y ay

Equation (3.12), written in the form

(%—ikhI%+ikthh =0, (3.13)

and the fact that the thermal incident wave is negligible compared to the wave
generated at the boundary, leads to the conclusion that only the t, wave is to be
considered. It is the solution to

(%Hkh}h ~o. (3.14

Equation (3.14) leads directly, considering equation (2.99), to the expression of
the thermal wave generated at the boundary z = 0

(3.15)
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Similarly, the shear wave (vortical motion V) “entering” the fluid from the
boundary is the solution to equation (2.80)

2
{a—+(k5—ki—k§)}vvy:0, (3.16)
ayz
and presents, similarly to the thermal wave, the following property:
—ik
—Livvy = k2 k2 k2 ik, RO (3.17)
Vyy Oy 0y

According to equations (2.107) to (2.110), equation (2.80) can be written as

.- 0 . 0| A 0
divv, :gvvy(kvyy) \y(kxx,kzz)+§[vvx(kvyy)g\y(kxx,kzz)}
915 k 0 k. x,k =0
+§ Vg va)g\V( xX,k,2) | =0,
O G (kouy) = K2 0y (K k20, (k 3.18
or ayvvy( va)_ x Vx( vy}')"" z Vvzl( va)~ (3.18)

The substitution of equation (3.17) into equation (3.18) and combining the result

with equation (2.110), equivalent to v, )y:O =V )y:O =V, leads to

() ' k2

AL()A\/E Lyl ta | (3.192)

Vvw (0) - 0 kg
k2 k2

since ky +k7 =kj —kgy =kz| 1-—5- |~ kg| I-—>-|. (3.19b)
ka ka

Finally, equations (2.82) and (2.83) yield
. Vi ) ik
Lira ~ —ikgpoco—2 = XoPoC (3.20)
Ta a Za

Combining equations (3.17), (3.19), (3.20) and (2.111) leads to the same
equation (3.10) derived at an order of half a characteristic length without making
any assumption as to the nature of the incident wave profile.

Note: the equivalent specific admittance of the wall is proportional to the square

root of the characteristics lengths WMVV and /{} , whereas the visco-thermal
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effects are linearly dependent on the characteristic lengths in the dissipation factor

during the propagation k, =k 0[1_11( of th (2.86). This highlights the importance
2

of the vortical and entropic phenomena at the vicinity of the wall

(,/ g'v ALy >> [V L ), due to much higher particle velocity and acoustic
temperature gradients at the vicinity of the wall than in the bulk of the fluid.

As noted at the end of section 2.5.2, these phenomena occur within thin layers of
fluid near the boundary; the layers are called the viscous boundary layer (of

thickness g z‘/E: NV) and thermal boundary layer (of thickness
¥ kV k0

5, ~ Y2 _ \/ﬂ ).
fkn| Y ko
It is the localization of the viscous and thermal phenomena at the immediate
vicinity of the wall that leads to the introduction of equivalent wall impedance in
domains the dimensions of which are much greater than the thickness of the
boundary layers. Outside these boundary layers, the vortical and entropic velocities
are negligible compared to the total acoustic velocity. Moreover, within the viscous

boundary layers, the shear effects overwhelm the effects of the bulk viscosity,
justifying there the absence of a second viscosity coefficient in equation (3.10).

Note: the solutions to equations (2.80) to (2.87), in a space limited by a rigid
spherical surface of radius R, take the forms

1 = jn(kar), 3 = jnlknr), w=Yn(0,0), (3.21)

where j, is the n" order spherical Bessel’s function and where the functions Yy,
are harmonic spherical functions (see Chapter 4), and

A 1. N N B or .
Vyr = B;Jn(kvr)’ Vve = Ve = n(n+1)5[rjn (kvr)]7 (3.22)

i 9B [1-ily—1ke’p]in(kaR)
kopoco v—1 0 1y '
oo T [ )

with B=-n(n+1)

The substitution of equation (3.22) into equation (2.111) gives the wavenumber
k, and the resonance frequencies of the spherical rigid resonator.
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In the particular case of a cylindrical resonator of main axis Oz, the solutions
can be written as

ta =Jm( ki—kizr), t, =Jm[x/k%—k§zrj, y=etKutetime - (303)

where J, is the m™-order cylindrical Bessel’s function, where the signs (+) and (-)
depend on the direction of propagation of the wave (see Chapter 4), and

- ChlR
Vyy, =0 Zg )Jm(\/k‘z,—kgzrj,

v

- o o k2
Vvo :—{r——ﬁcm(R)]Jm(Jk% ~k2, r), (3.24)

2 2 2
kV_kaz ar kv
2 2
~ a m k 0 2 2
Vyr = 5 5 |:__ azz m(R)a]Jm[ kv_kazrja
kV_kaz kV
2 2
P Jm( kv kazR)
with C,,(R)=R
R ( K2 k2 R)
m v az
2 [ 2 2
i Yﬁ kam( ka_kaZR)
and o0 = ——— ——[I—i(y=1) ko /]

Kopoco v~ R;Jm[w/k% k2, Rj

The solution to the equation obtained by substituting these results into equation
(2.111) is the complex axial wavenumber k,, (propagation constant) that represents
the speed of propagation and attenuation of the waves along the Oz axis.

These problems can often be approximated by introducing the equivalent
impedance previously presented. On the other hand, curved surfaces can be
represented locally by their associated tangent planes as long as the radius of
curvature is significantly greater than the thickness of the visco-thermal boundary
layers.

3.3. Spherical wave in infinite space: Green'’s function

3.3.1.Impulse spherical source

Let a sphere of radius a, centered on 1, and immersed in a fluid, be in radial
vibrational motion independent of the point considered on the surface (Figure 3.2)
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and generating an acoustic wave at a point T beyond the surface of the sphere. The
visco-thermal dissipation is here considered in the wave propagation, whereas the
effects of boundary layers at the surface of the sphere are ignored so that the source
is characterized by its volume velocity QO(t), product of the area 4ma? by the
vibration velocity (Q, being the volume of matter introduced in the exterior
medium by unit of time).

-

(<))

Figure 3.2.Spherical source of radius a and centered on T

When considering the velocity potential ¢ defined in first approximation by
Vo =grade (1.63) (V, being the acoustic particle velocity) leading to
p=-po0p/0ot (1.67), and the acoustic propagation operator (2.76)

@h:(“rfvh CIO—SJ _(:1%—68:2’ (3.25)
the considered problem can be written as

2 ©(F,t)=0, VI such that |f—f0|>a,

%: 37‘122) for T=t,+a, (3.26)

Sommerfeld's conditions at infinity (no back-propagating wave),

Null initial conditions.

A spherical source, the radius of which is small compared to the shortest
wavelengths considered, is called a quasi-point source and sometimes a point source
and is qualified as a monopolar source or monopole. It is this type of source that is
considered in this section, assuming constant total volume velocity Q.
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The considered problem can be written as
“ o(T,t)=0, VT # T,
a(p(f,t) li QO (t)

(3.27)

Sommerfeld's conditions at infinity (no back-propagating wave),

Null initial conditions.

Rather than writing the effect of the source as a boundary condition (at T =T1),
one can introduce a volume velocity term q (see equation (1.61)) in the non-
homogeneous term of the equation of propagation, that is a volume of matter
introduced in the medium by unit of volume and time. The function q, describing
the effect of the point source at T, must satisfy the following equation:

[T, adf = Qg = J[f, Qo8(F — 1 Mt , (3.28)
where the domain (D) represents the infinite space and & the Dirac function.

This function q can then be written as

a=Qpd(r ~1y), (3.29)

and the considered problem is fully described by

2 n=0(1.1)=Q)(1)3(F-5),
Sommerfeld's conditions at infinity (no back-propagating wave), (3.30)
Null initial conditions.

Clearly, the point source can be introduced in either the boundary conditions or
the non-homogeneous term of the equation of propagation since it is not distributed
within the considered domain.

In the particular case where the source is not only punctual, but generates an
impulse of unit volume velocity at the time t, characterized by Qq(t)=35(t—t,)

(“click” sound, very brief), defining a function G =—¢, called conventionally the
Green’s function (or elementary solution), the elementary problem becomes

10 1 or | . . .
1+fVhCOat A- 2 G(F, Ty, ty )= —0(t—to )8(F =Ty ). (3.31)
€o
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Equation (3.31) is valid at any point of the domain considered and at any time t
where Sommerfeld’s condition and null initial conditions can be applied (null field
until t=tg).

3.3.2.Green’s function in three-dimensional space

The four-dimensional Fourier transform of equation (3.31) is

2 ~
Kmﬂzvh}(z —“’—2} G(7,0)=1, (3.32)
Co Co
where (N}()Z, ) is the Fourier transform of the function G defined by
G(F. 7 to ) = ——[[[d37e B L 4oG(z,o)i(tt) (3.33)
T 2t

The integration with respect to the variable ®
0

i eim(t—to)dw
2n
o’ - 1+igévh c%xz
—» ¢

can quite simply be estimated by the method of residues in the complex angular
frequency domain since the poles are not on the real axis, but in the superior half-
plane, closing the contour of integration with the superior half-plane for t >t and
by the inferior half-plane for t <t (Figure 3.3).

: (3.34)

Im(m)

t>t0

Re(m)

t<t0

Figure 3.3.Contour integration and position of the poles (x) in the complex plane of @
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Note that if dissipation were ignored, the poles would be on the real angular
frequency axis, giving four different paths of integration when only one corresponds
with a real physical situation (where the poles are bypassed by negative imaginary
values, because of their position in the complex plane when dissipation is
considered). Also, any additional dissipation considered will result in a translation
of the poles toward positive imaginary parts.

The poles are given by

col 2 col
o=+ C(z)xz_( 02vhxzj +i 02vh Xz’

or, in first approximation, by
.ol
wzicox+1cOTth2, (3.35)
and the integral (3.34) is

e U(t_to)eXp[—%CofthZ(t_to)}%(;_tO)] , (3.36)
0

where U(t -t ) , function of Heaviside, accounts for the causality.

The integration of equation (3.33) with respect to the variable Y, considering

equation (3.36), is carried out by choosing the Oz axis (from the coordinate system

for %) collinear to the vector R = T — T, so that, in spherical coordinates,
%R =yR cos0
d*y = 2dysin 0 do de,

and since the integrand does not depend on the angle ¢ and denoting t=t—t
(not to understand as a temperature variation), the Green’s function is in the form

T

.2
N —icy U(t
G(R,r)zo—()(Zn) 5in6.do
3

e 0 (3.37a)

D/a
© ic Xt —icy
dexe_lchose o ¢ lypx /2 - _
CoX
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The integration with respect to 0 is immediate; it leads to an integrand that is
the sum of four exponential functions, reduced to two by replacing the inferior
boundary (0) by (— oo)

G(f{ T)_LU(T) +ooe_cﬂﬁVhXZT/Z[eiX(RJrCnT)_eiX(R*CoT)] d (3.37b)
T 20n)PR ), eow

These integrals happen to be the Fourier transforms of non-centered Gauss
functions, thus

Gl o)~ U1 [CXP[—(R_COT)ZJ—eXI{—M ﬂ (3.38)

4nR \/ZKZVhCO’C nghco'f ZZVhCOT

At the limit of non-dissipative fluid (K wh = 0), equation (3.37) becomes

5 coUlr +Ooi —c,T ix(R+c,T
G(R,r)=ﬁJ' [eX(R 0t) _git(R 0)] dy . (3.39)

—00

which, changing the variable to x =c % , becomes

G[R.7)= %H%— rj - 6(%+ rﬂ - MLRS[%— rJ (3.40)
since U(t) 6(3+ r] =0.

Co

The impulse spherical wave generated at (ro,to) is distributed over the surface
of a sphere of radius R = |r - r0| at the time t=t, +R/c(, attenuated with the
distance R traveled.

In the frequency domain, the Green’s function (still denoted G) satisfies the
equation

[(l+ikoévh)A+k(2)] G(f-Ty,0)=-8(F—Ty ), where kg = w/cy,  (3.41)

and is given by

1 efi’z‘li
GR,0)=— %3 .
Iikofun (2 ) 1 =k [1+ikol )

(3.42)
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Im(a))

Re(co)

Figure 3.4.Poles of the integrand in equation (3.42) in the
complex wavenumber (7 ) plane

Where the poles of the integrand being located as in Figure 3.4, the integration
by the method of residues gives

—i K

— R
G(R,0) 1 1 . Skl

T ltikglyy 4R

‘ (3.43)

1 —iko(l—lk[,(vth kR

~——=¢ 2 ~ s
4nR 4nR
and, for non-dissipative fluid (¢, —0),
e KR ik

G(R,0)= =——=hylkoR), 3.44
R,0) AR an o (koR) (3.44)

where hy is the 0™-order spherical Hankel’s function of the first kind.

Note that equation (3.44) can be obtained directly from equation (3.40) by
noting that

o (3.45)
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3.4. Digression on two- and one-dimensial Green’s functions in non-dissipative
fluids

3.4.1. Two-dimensional Green’s function

3.4.1.1. Time domain

The two-dimensional Green’s function represents the displacement field of a
membrane (for example) under the action of an impulse-point source. Intuitively, it
also represents the velocity potential generated in a three-dimensional space by an
infinite cylinder of radius close to zero, the surface of which is in impulse radial
motion. This implies that a line source can be considered as a superposition of
monopoles along an axis (chosen here as the z(-axis) and that the corresponding
Green’s function can be found in the form of an integral with respect to the variable
z . This derivation is detailed here using a cylindrical coordinate system for the
variables F(\Tv,z) and 1, (WO,ZO).

Since the D’Alembertian operator = (here non-dissipative) is independent of
z(, the integral of the three-dimensional Green’s function (in the time domain) over
z can be written as

} v S(lm —T]

2 2
1 c
|:AW +aa_2__2§_2 0 > > dZO
©osed) 4’ + (220 (3.46)
+00
|t -l et
—00
with p:|\7v—\7v0| and t=t—tg.
By using a new variable defined by R? = (Z—ZO )2 +p2 , so that dzo = drR
R zy-z
or
dr ,1if zg 2z,
dZO _ Rz Y
R - dr ,1if zg <z,
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with R - 0 when zy — o0, and R =p when z; =z, leads to

A

dz0

_ , (3.47)
47 R2_ pz R2 _pz
—oo P
+o0 N [R 3 ‘[J
c
L A g
21 R2 _pz
p

Equation (3.47) is independent of the variable z. Consequently, the operator
0% /0z% of equation (3.46), when applied to the function given by equation (3.47),
vanishes and equation (3.46) becomes

1 02 .
[AW_ 2 ]G(p,r)?a(w_wo)s(t_to), (3.48)

CO atz
S(R —‘EJ
- c
R0 /
[R2 _p?

Green’s function sought, which can also be written, denoting X =R /c, as

showing that the function G(p, ’C)=2Ljp
n

is the two-dimensional

Glp, )=~ [ S B
SRGVY I X2 —p? /G2 ’

U(r—p/co)
or G(p, 1) =— =20, (3.49)
2mlr2 —p2 /c%

where U is the unit Heaviside function introducing the causality.

The two-dimensional Green’s function in the time domain reveals a fundamental
characteristic of elementary propagation in two-dimensional spaces; after a certain
period of time 1 =t —t, the effect of an impulse generated by a point source at the
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time t, induces a pulse train signal over the entire domain p < ¢yt (centered on the
source at W) ).

Note: the proposed approach is valid in both dissipative and non-dissipative fluids.

3.4.1.2. Frequency domain

Similarly, integrating the three-dimensional Green’s function in the frequency
domain over the variable z, (for example) gives the corresponding two-
dimensional Green’s function (independent of the variable z),

e-ilq/p%r(z—zo)2

2 2
. 4n\/p +(z-2¢p)

Glp,w)= dzg = —ng(k|v“v—®0|), (3.50)

where H, is the 0™-order cylindrical Hankel’s function of the first kind (one of its
definition is given by equation (3.50)).

This result can also be obtained as follows: since the three-dimensional Green’s
fungt(ipr; (section 3.3.2) can be considered as a superposition of all solutions
e "X\""hJ to the propagation operator in the frequency domain in an infinite domain
(Helmholtz operator) that constitute, when normalized to the unit, a basis of the
infinite space,

J J J L expli(7-7)RJaR? = 5(7-7).

2n)?

The two-dimensional Green’s function can be expanded, in polar coordinates in
the basis of the eigenfunctions of Laplace operator, as

. 1 _
Wm(Xm’W):Ee me é—:Jm(XmW)’ (3.51)
where [ wdw 2™y i, (s W)W (s )9 = 8(1m s m )
and where
|10 0 1 82 .
A\X/Wm(Xm’W):{__[W_j"'_z%:l“jm()(mﬂw)’

wowl ow) w (3.52)

= _sznWm(Xm’ ‘K/)

The basis of functions y, is restricted to the set of functions that are finite at
the origin (see Chapter 5). Thus, by introducing a small, additional, dissipative
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factor in Green’s equation (Ag + kz) G= —6(\7v -Wo ), and following the procedure
presented in section 3.3.2, the two-dimensional Green’s function can be written as

[N 1 < 7im((pf(p) +me(XmWO)Jm(XmW)
G(W,Wos0)=— e ' S A - (3.53)
41" m=-o —o0 (1+18)Xm kO

The location of the poles in the y ,, -plane is given in Figure 3.5(a). By limiting
the analysis to non-dissipative fluids (¢ =0), the poles on the real axis must be
excluded from the integration contour of equation (3.53) (Figure 3.5(b)).

2 m0em) o M)
X
> " £\ >
< Re(tm) Re(tm )
(€)) (b)

Figure 3.5.(a) Location of the poles of equation (3.53) in the complex wavenumber plane,
(b) Integration path on the real wavenumbers axis for non-dissipative fluids

By following the contour given in Figure 3.5, equation (3.53) constitutes another

expression of the function [— iHOJ and is therefore the Green’s function G(p, co)

(equation (3.50)).

3.4.2.0ne-dimensional Green'’s function

3.4.2.1. Time domain
A uniform plane source in a three-dimensional space extending in a plane
perpendicular to the considered axis (x-axis here) and intercepting the axis at x is

associated to a point source in a one-dimensional domain. The one-dimensional
Green’s function can be obtained using a similar approach as in section 3.4.1.1 by
integrating the two-dimensional Green’s function (equation (3.49)) over the variable

yo. When denoting ¢=x-Xxp, N=y—-yo and v= \lc(z)rz —g2 , this Green’s
function can be written as
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+v d +v
o L B i{Arcsinﬂ} , if |C| <coT,
G(C,T): 2n 2 2 2n Y

-V

thus G(¢, r)z%{l—u{%_rﬂ 020 U( |CCO|J (3.54)

This function is independent of the variable y and consequently is the solution
to

o> 127
—_— G=-3x—x¢)0lt—ty).
L e na o)

Note that the effect of impulse emitted at t, and x is not localized at the point
x defined by x —xg =%cq(t—ty) but within an extended domain 2c(t—t,)
centered on X, as is the case for an elastic string, for example.

3.4.2.2. Frequency domain

The Fourier transform of equation (3.54) gives the one-dimensional Green’s
function in the frequency domain as

e—iko‘x—xo‘

G(x—xo,m):T. (3.55)

This is verified by finding the solution to

62
[&(—2+ko]G ~8(x —x¢) (3.56)

as an expansion in the basis of orthonormal one-dimensional plane waves

L e G (£ =x-xy), eigenfunctions of the operator d? /dx? ,

V27

2 i

_26—1)(@ _ _XZG—IXC , (3.57)
dx

leading to

Gle.0)=5 [, dxGlrok . (3.58)
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The substitution of equation (3.58) into equation (3.56) gives

Go—1 (3.59)

Assuming once more that considering dissipation is equivalent to replacing kg
by a complex wavenumber k(I —ig), the locations of the poles of the integrand
(3.59) are given in Figure 3.6(a). Therefore, the integral (3.58) can be calculated by
using the method of residues along the contour shown in Figure 3.6(b). Finally,

oikis  gmikid

G:—LZin—: - for >0,
2n 21(0 211(0
k& ik,
Go-toin® 2 28" g <o,
27 Zko 21k0
e—iko‘x—xo‘
thus G(x,X¢;0)= ———. (3.60)
211(0
Tm(y )
A Im(y) A
c<0
X
> g » Re(x)
« Reln)
¢>0

Figure 3.6.(a) Location of the poles of equation (3.59) in the complex wavenumber plane;
(b) Integration path on the real wavenumber axis for non-dissipative fluids

Note: this function illustrates the fact that the point source radiates an acoustic
wave on both sides, one propagating toward the x <x( and the other toward the
X > X . This type of solution, a one-dimensional plane wave, is discussed in detail
at the beginning of Chapter 4.
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3.5. Acoustic field in “small cavities” in harmonic regime

The objective of this section is to express the pressure field generated (or
perturbed) in a “small cavity” by vibrating walls and/or by the presence of a hole
(with a fluid displacement & ) and by the supply of time-dependent uniform heat h,
expressed per unit of time and mass (obtained by transformation of light or electric
energy into heat, for example). The term “small cavity” describes a cavity the
dimensions of which are significantly smaller than the wavelength A, but remain
much greater than the thickness 3, j, of the boundary layers

Ao >>W, Sy h <<W,

where V denotes the volume of the cavity. This type of cavity is widely used, and
particularly in electro-acoustic transducers.

There are four variables in the problem, (p, V,p',r), and the equations are
Navier-Stokes, mass conservation, heat conduction, and an equation stating that p',
for example, is a total exact differential (see section 1.2.6). Given the particular
property of the problem, it is necessary to choose the most appropriate form of the
aforementioned equations. The boundary conditions (no temperature gradient,
vanishing tangential particle velocity and normal particle velocity related to the
displacement & and the wall impedance Z (equation (1.69)) are introduced one
after the other when needed.

Navier-Stokes equation

Since the dimensions of the cavity are significantly smaller than the wavelength
considered and that the pressure field does not present spatial variations at the
vicinity of the wall, this pressure field can be assumed uniformly distributed in the
cavity (only time dependent, and hypothetically harmonic). Therefore, gradp =0,
the particle velocity is null (quasi-null) at any point in the cavity (which does not
necessarily mean that the surface velocity is negligible) and the viscosity effects do
not intervene. These are the conclusions drawn from the analysis of the Navier-
Stokes equation, the quantitative description of which is given in section 6.3.2.2.

Mass conservation law

The mass conservation law can be written in a linearized form (1.27) as
op' . -
—+divipgVv)|dV =0,
| 2 +ai(po )

thus m\/%dv+poﬂs\7d§=0. (3.61)
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According to the accepted assumptions that some walls of the cavity are
vibrating with a displacement & and others are simply characterized by their
impedance Z, this equation can also be written, in the frequency domain, as

mvimp'dv+imp0jjsé.d§+p0jjS%ds=o. (3.62)
Since the pressure field is uniform in the cavity,
p 1 -
[ ISZdS:p”deS=pS/Z, (3.63)

where 1/Z denotes the average value of the wall admittance, equation (3.62)
becomes

pimvp dV+8V+(D—SZ:O, (3.64)
0

where 6V = _” Edé denotes the variation of the cavity volume due to the vibrations
of the wall.

Expression of the bivariance of the media

The linearized form of equation (1.23) is

p'=poxr(p—Po) .

Substituting the above equation into equation (3.64) gives

TP N A VA L A 3.65
phmw} fyav=--2 669

The triple integral of the temperature variation (both acoustic and entropic) is yet
to be estimated.

Equation of heat conduction

The equation of heat conduction can be derived in the frequency domain from its
form (2.66), as

_l'
[lﬁ_fh J _ylio b (3.66)

CO B'Y CO Cocp
col

or r= 0t Ao ¥l B (3.67)
10 By 10)Cp
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The combination of equation (3.67) and the uniformly distributed pressure field
p and source function h (by hypothesis) yields

Vh
1coC

f av =

(3.68)

Also, the solution to equation (3.66) satisfying t=0 at the boundaries can be
written (the time factor ¢'®" being suppressed) as

r:{yﬁ—ylp—i—lmc }[1 “k“] (3.69)

where u represents the position in the cavity projected onto the outward normal to
the wall (u =0 on the wall). This form of solution is acceptable only if:

1) the thickness of the thermal layers is s1gn1ﬁcantly smaller than the dimensions
of the cavity, meaning that the function e Tkl decreases very fast as u increases;

ii) the condition

—iom —1+i [0
k. = = 3.70
" coln 2 Veoln 370

is imposed so that the function represents a wave of thermal diffusion that penetrates
the cavity from the walls.

If all these conditions are assumed, equation (3.69) taken at the boundary u =0
leads to

0 y—1p+ h ) 1+ [ o
du By = ioCp V2 Veoln |

and [[ gradr.dS = jjs—ds= i/_“ CO"zh S(yﬂ;lpﬁ(,ﬁ; ] (3.71)
P

and finally to

_ _I_—i Cofh ’y—l h
m\,rdv{v ﬁs,/ - }{ » p+iwCJ. (3.72)
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The substitution of equation (3.72) into equation (3.65) gives the following
expression of the pressure amplitude in the cavity:

YSV 1= -iS Co(h 'YB h
XTV J‘ vV o ioC,

p= - . (3.73)
1+ 'YS/V +1—1(y_1)s\/00éh
KDZXT V2 Vi o
. (13 Eal _y SV
The numerator introduces two ‘“source” terms. The first one, —V, source
XT

term (due to the forced vibrations of the wall) or passive term (vibration of the wall
induced by the pressure) is proportional to the variation of volume &V and
contributes to the pressure variation resulting from the adiabatic process represented
by the coefficient of adiabatic compressibility xr/y. The second term, %,
10Cp

contributes to the pressure variation associated with the heat supply at constant
volume; this “transformation” is moderated by the thermal conduction of the wall

absorbing part of the thermal energy generated by the source ((S/V),/¢}, factor).

The denominator accounts for the dissipative effect related to the average
admittance 1/Z of the wall and to the thermal conduction.

Note that all the dissipative factors are proportional to the ratio of the surface to
the volume of the cavity (S/ V); the sphere is therefore the least absorbing cavity at
constant volume.

Note: the particular case of the spherical cavity.

If the cavity is spherical, the average value of the temperature variation t is
given by

1
<7 >=vardV

and can be explicitly derived from the solution to equation (3.66) in spherical
coordinates by assuming spherical symmetry and not necessarily assuming that the
radius of the sphere is greater than the thickness of the thermal boundary layers.

This solution for T, sum of the particular solution

y-1 h
P+
By I(DCp
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and the general solution to the associated homogeneous equation

eikhr e—ikhr
+B—
T T

A

that remains finite at the origin (B =—A) and vanishes for r=R (R being the
radius of the sphere) can be written as

_ ink
rz[( L. J[1—R5_m hr) (3.74)
By ioC, r sink, R
Thus
<T>{Vj1p+, h ](1_@), (3.75)
B’Y l(DCp
with @ = 3 Seot g(th) , where the wavenumber k;, is given by equation (3.70).
kiR? kyR

Consequently, the equation

<p>=L(p-p<r>)

Co
becomes
<p>=L-p, (3.76)
C
with pg :V—B(1—®)_ h
c% ioC,

and %z%[l—i—(y—l)@].
C Co

The last relationship translates a phase difference between p and <p'>,
represented by the complex coefficient of compressibility interpreted as a thermal
relaxation phenomenon.

Consequently, equation (3.61), written as a function of the flow U at the wall in
the form

iw<p'>V=—pyU
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is written from equation (3.76) of < p'> as

_ﬂ+(l_@)ﬂ

2 \Y% ioC
p=iPo¢ U+c?p, = I S/Vp , (3.77)
10ZY

poci Uo_ Y3V yS/V

where i —
oV xtV  10Zyr

This equation is, at the first order of the asymptotic expansion of the function of
argument kR , identical to equation (3.73).

3.6. Harmonic motion of a fluid layer between a vibrating membrane and a
rigid plate, application to the capillary slit

A layer of dissipative and compressible fluid of thickness € and surface S is set
in a motion under the action of a harmonically vibrating membrane (or plate) with
the same surface S set at its boundaries. This layer is bounded at z=¢ by the
membrane and at z=0 by a rigid wall. It can also be delimited at its in-plane
boundaries w =w (polar coordinates in the z =0 plane) by “expansion volumes”

for example (Figure 3.7). The thickness € can be considered very small and equal to
the thickness of the viscous and thermal boundary layers &, ~+/2¢,/k, and
Op ~+J20ky , respectively. This condition is not a requirement; several

hypotheses on the magnitude of € are presented in the following paragraphs.

A Vibrating membrane

/ ©
Expansion v/olume /

Thin layer of fluid Rigid walls

Figure 3.7.Thin layer of fluid between a vibrating membrane,
a rigid wall and expansion volume
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The objective of this section is to provide the reader with the coupled equations
of motion of the membrane and fluid layer and to highlight some characteristics of
the motions. The considered problem includes the basic equations for the fluid layer:
Navier-Stokes (equation (2.30) or equations (2.67) and (2.68)), heat conduction,
mass conservation and bivariance of the medium, and one equation for the motion
of the membrane. To this system of equations, one needs to add the boundary
conditions on the temperature variation and the normal and tangential components
of the particle velocity at z=0, z=¢ and w = w for the fluid and on the flexural
motion of the membrane at w =w.

The considered configuration and frequency are assumed such that several
simplifying hypotheses can be made; they are presented below.

The pressure variation p is quasi-uniform in the z-direction perpendicular to the
plates, so that it depends only on the tangential components w. The normal
gradient Op/0z is therefore negligible compared to the tangential gradient V ;p .
Consequently, consideration the z component of the Navier-Stokes equation leads to
the conclusion that the z-component of the particle velocity is negligible compared
with its W -components, thus

Vavg(W,z). (3.78)

Also, since the shear viscosity effects when the fluid is oscillating between the
two walls at z=0 and z=¢ are significant, the spatial variation of the particle
velocity v (W,z) in the z-direction is much greater than the spatial variation in the
w direction,

‘VW ng(W, 21 << .

ng (cv,z)1 . (3.79)

Consequently, the volume viscosity factor is negligible when compared to the
shear viscosity factor. All remarks considered, the Navier-Stokes equation can be
reduced to a relationship between the two w -components, the time factor el
being suppressed, which is

PoCo

N L o L -
— = Vg (W,z)=— V‘X,p(w), vz 6(0,8), Vw e(O,wS).(3.80)

This differential equation in the z-direction satisfied by the particle velocity is
completed by two boundary conditions,

Vi (W,0)= V4 (W,e)=0 and VW €(0,%). (3.81)
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The solution to this problem (3.80) and (3.81) is
- cosk g
g =5 pl) 1 e8] (3.82)
ipo® cosk /

The average value of this solution over the thickness of the fluid layer can be
written as

<vg(W,z)> ——jov — %p(w)[l—m} (3.83)

ipow kv%

(All z-dependent quantities can be, in first approximation, replaced by their
average value over the thickness ¢ of the fluid layer.)

The mass conservation law (second equation introduced here) takes the
following form
io&S
€S

i0p+poV Vi (W,2)=—pg ,
where the right-hand side term represents the volume of matter introduced per unit
of time (—1®wE&S) and per unit of volume (factor €S), and acts as a condition at the
interface membrane/fluid on the normal component of the particle displacement. Its
average value over the thickness € is

§W'<VW(W,Z)>+%=—E<p’>. (3.84)
€ Po
The third equation introduced here expresses p' as an exact total differential

(linearized equation (1.23)); the average value over ¢ is
<p‘>:L2[p—[3<r>]. (3.85)
€0

The fourth and last equation required to solve this four-variables problem
(p,p'sT, vy ) is the equation of heat conduction. Unlike the amplitude of the
pressure variation p(\?V), the temperature variation t vanishes at the boundaries
z=0 and z=¢, and is proportional to the pressure p(\Tv) away from these
boundaries. Therefore, it depends on the variables w and z satisfying, like the
particle velocity, the condition (3.79). Consequently, the equation of heat
conduction (2.66) can be approximated to

2 —

19,9 T(W,Z):_YA*L_GP(W), (3.86)
cp Ot aZZ By <o ot

vze(0,e), VYW e(0,wy).
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The solution to equation (3.86), satisfying the boundary conditions
o(%,0)=1(%,e)=0, (3.87)

can be written as

©o(w,z) =

[ coz::k(h /Aq (3.88)

and its average value over the thickness € of the fluid layer is given by

-1 tgkh%}
<=L o@li- . (3.89)
By { ky %

Before writing the equation of motion of the membrane, equations (3.83), (3.84),
(3.85) and (3.89) are combined to eliminate three of the four variables. Combining
equation (3.89) with equation (3.85) yields

p=c’<p'>, (3.90)

) K
where —— = POXT |y (,_1)°8 ko | (3.91)
c? Y kh/

The factor 1/¢? introduces a complex factor of compressibility (since kyj is
complex), as the intermediary between the adiabatic behavior (represented by
poxT /v ) and the isothermal behavior, the difference between those two behaviors
being represented by the factor (y —1). In the particular case where the fluid is not
heat conducting (k;, > ), 1/ ¢ = =poxT /Y =pPoxs (the motion is adiabatic) and
in the case of high heat conductivity (or at very low frequencies)
(kp, > 0),1/ 2= =py (the motion is isothermal).

_ The substitution of equation (3.90) into (3.84), and the result into the divergence
V; of equation (3.83), leads directly to

{(I—QV)AV-V +%} p()= P2 (), (3.92)

c €

where ¢ is given by equation (3.91), and where

3o
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Equation (3.93) is now coupled with the equation of motion of the membrane:
[0+K2] g(W)=p(w), (3.94)
where O denotes the operator of the membrane (or plate) and K the wavenumber.

The constants of integration in the solution to the system of equations (3.92) and
(3.94) are determined by imposing the boundary conditions that have not yet been
used. These are the boundary conditions of the membrane and the acoustic condition
at the interface w =w on the temperature (more precisely its relationship with the
pressure) and the particle velocity v (V—VS , z) normal to the interface (mixed
condition relating the velocity to the pressure). These conditions are introduced by
the nature of the peripheral expansion volume. A complete study of this is not given
here.

In the following paragraph, the study is limited to the case where the membrane
is replaced by a rigid wall. Equation (3.94) is not needed anymore and the
propagation equation (3.92) for the pressure amplitude p can be written,
considering & =0, as

(Mg +1)p(W) =0, (3.95)

tg ky, &
+(y-1) ¥

k g
with 32 =k} h %) where kg = —. (3.96)
1_tg kv% co

ky %

Particular case of a capillary slit

In the particular case of one-dimensional wave propagation when the thickness
¢ is small enough so that the argument (khs/ 2) is significantly inferior to one (as
capillary tubes are defined by very small rectangular cross-sections), the expansion
of the first term at the origin leads to the expression of the square of the propagation
constant

(3.97)
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2

The factor vy k% = = pOmez highlights the isothermal nature of the

c%/y

propagation through the slit and dissipation by heat transfer with the wall that
reaches its maximum value. Nevertheless, it is the shear viscosity effect that
dominates.

Writing the propagation constant in a form that introduces the speed of
propagation c. and the attenuation factor I

y==_ir, (3.98)
CS

one obtains the (commonly-used) following results:

2
¢, == | P0P <, (3.99)
2\ 3yp
K
LR =2 thus Thg >> 1, (3.100)
8/2 2p0C0 CO

where Ay =2n/k( denotes the adiabatic wavelength associated to the frequency
®/27 in infinite space.

The propagation in a capillary slit is characterized by a propagation speed c,
much lower than the adiabatic speed c( in infinite space, and by a great attenuation
(T') during the propagation. This isothermal process is more like a diffusion process
than a propagation one.

Note: equation (3.80) can be replaced by equations (2.67) and (2.68), the
solutions for which correspond respectively to the two terms of the solution (3.82),
the total particle velocity v then being writtenas Vg =V 5 + V5 -

3.7. Harmonic plane wave propagation in cylindrical tubes: propagation
constants in “large” and “capillary” tubes

A plane wave is propagating in an infinite cylindrical tube with circular cross-
section. The shell of the tube is assumed first axis-symmetrically vibrating
(Figure 3.8).
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R /I\ 13
plane

0 z
wave ";

Figure 3.8.Propagation of a plane wave in a tube of circular cross-section

Once again, the objective of this analysis is to provide the reader with the
coupled equations of motion of the shell and the column of fluid. The motion of the
fluid in presence of thermo-viscous phenomena is emphasized. The basic equations
used are the same as those previously used (the Navier-Stokes equation, mass
conservation, heat conduction and bivariance of the fluid). The boundary conditions
impose continuity at the interface shell/fluid (r = R) of the temperature variation
©R,z)=0 and particle velocity v,(R,z)=0 (the boundary condition on the
normal velocity being reported in the form of source terms in the equation of mass
conservation since the approximations considered herein cancel it out in the Navier-
Stokes equation).

Several simplifying hypothesis can be made and will be presented when needed.
First, the pressure variation, being (quasi-) uniform over a tube section, is
considered independent of the radial coordinate r. Consequently, the radial
component of the pressure gradient is, unlike the radial component of the particle
velocity, ignored (resulting from the projection of the Navier-Stokes equation onto
the radial axis).

Moreover, since the shear viscosity effects are important, the variation of

particle velocity v=v, along the variable r is much greater than its equivalent in
the z-direction:

Z

gvz(r,z* << %VZ(I‘,Z* . (3.101)

This implies, in particular, that the factor relating to the bulk viscosity can be
ignored. Finally, only the axial component of the Navier-Stokes equation (equation
(2.30) for instance, or equations (2.67) and (2.68)) needs to be considered. Its takes
the following approximated form:

{Lﬁ_,jvlﬁrﬁ} v, (52)=—— L (), vre(O,R), vz.  (3.102)
cy Ot ror or
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To this differential equation (on the variable z) are associated the two
conditions on the z component of the particle velocity

v, (0,2) remains finite and v,(R,z)=0, Vz. (3.103)

The solution to the set of equations (3.102) and (3.103) can be written, in the
frequency domain, as

SRV RS Jolkyr)
vz(r,z)_—kopoco aZp( ){1 —JO(kvR):| (3.104)

(where J is the 0™ —order cylindrical Bessel’s function of the first kind) and its
average value over the section of the tube is

<v, >:Lj§2nrvzdr = i 8p(z)|:1_ 2 Jl(kVR):| , (3.105)
R 2 kopoco 0z kR Jo(kyR)

where J; is the 1¥-order cylindrical Bessel’s function of the first kind.

The second equation, equation of mass conservation, takes the following form:
. 0 . 2
iwp'+po— v, (r.z)=—poing(z)=, (3.106)
0z R

where the right-hand side term represents the volume of matter introduced per unit
of time and volume (the factor 2/R is the ratio of the area of the surface of the
shell to the corresponding volume for any given length of tube). The expression of
the right-hand side term fulfils the condition on the displacement normal to the
r=R interface.

The average value of this equation over a section of the tube is written, as

Sy, >+i%“)<:=—1—‘”<p'>. (3.107)

0z Po

The average value over the section of tube that expresses the total differential of
p' (the third equation) is

<p>=L(p-p<r>). (3.108)
€o

The fourth and last equation to introduce is the equation of heat conduction.
Since the temperature variation T vanishes at r=R, it only depends on the
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variables r and z so that, as the particle velocity does, it satisfies equation (3.101).
Consequently, the equation of heat conduction (2.66) can be approximated as

{Lﬁ_ ghlﬁ(rﬁﬂt(r, =YL L 900 Vo). (3.109)
r or

c06t or ﬁy Coat

The solution to such equation that satisfies the following boundary conditions
1(0,2) remains finite and ©(R,z)=0, Vz, is

- Tolk
=X 1p(z){l— ol hr)] (3.110)
By Jo(knR)
Its average value over the section of the tube is then
- JikyR
<T>=yA—1p(Z{I—LM} (3.111)
By kyR Jo(kyR)

With this set of equations governing the motion of the fluid, one needs to
associate the equation of axis-symmetrical motion of the shell and its boundary
conditions (not specified herein). The equation for the shell is

(0+K*)&2) =p(2), (3.112)
where O denotes the operator of the shell and K is the wavenumber.

The set of equations (3.105), (3.107), (3.108) and (3.111) is used to find the
solution in terms of pressure field coupled to the shell equation (3.112). The
substitution of equation (3.111) into equation (3.108) yields

p=c’<p'>, (3.113)

.1 poxr 2 Jl(th):|
with — = 14 (y—1)—= J1%h ) ) (3.114)
c? Y { ( )th To(kyR)

This complex speed “c” introduces the phenomenon of relaxation associated
with the fluid compressibility. It is associated with the adiabatic speed (poxT /y)l/ 2
if the thermal conduction of the fluid is ignored (¢}, »0) and with the isothermal
speed (pox T )1/2 if the thermal conduction is important (¢}, —0).

Finally, the substitution of equation (3.111) into equation (3.107) and the
resulting expression into the derivative of equation (3.105) with respect to z leads to

62 (02 ~ pOwZ
|:(1—Kv)az—2+c—2}p(2)—_ R/2 E_»,, (3115)
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Ji(k, R
where ¢ is given by equation (3.114) and where K, = 2 I(—V) )

The object of the following derivation is limited to the study of the propagation
constant (propagation speed and attenuation) for plane waves in a tube the walls of
which are assumed now to be perfectly rigid.

Equation (3.115) for the amplitude of the pressure p becomes (knowing that & = 0)

%

——+k? p(z)=0, (3.116)
0z

1+(y-1)K
with k2 =k%M, (3.117)
_KV
Jy(ky o R

where Kyy = 2 1( b, )

kpyR JO(kh,v R)

The ratio 2/R represents the ratio of the perimeter to the area of the cross-
section of the tube.

Particular case of the “large” tube

In waveguides where the radius R is much greater than the thickness of the
boundary layers, the asymptotic expansion to the 1/2"-order of the characteristic
lengths ¢, and ¢}, gives

1-12

2 2l 1=t2 U _ -9
kz~k0{1+ﬁRm(\/Z+(y 1)@)],1(0 o (3.118)

This relation is very often used. It is to be compared to equation (2.86)

k2 ~k3(1-iko[ty +(y=1)y, ). (3.119)
that represents the square of the wavenumber of the plane wave in an infinite space.

The factor [E (. l)éh] is of magnitude 10~ for air in normal conditions while
the factor {ﬂf '\, + (y -1 lh } is of magnitude 3.107 , and consequently far

greater.

By introducing the propagation speed c; and the attenuation factor I' in the
propagation constant,
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k=2, (3.120)
Ct

one obtains the (commonly used) results:

ct:coll— ! {\/Z+(y—l)\/aﬂzco, (3.121)
Ry2k,

1 (ko [ [
IF=—.— ¢, +ly—=1L/7V; |. 3.122
- 2[ v+ h} (3.122)

This attenuation factor is significantly greater than that for a plane wave in an
infinite space, denoted I', (equation (3.119))

k2
FwZTO[KV—i—(y—I)fh]. (3.123)

Particular case of the “capillary” tube

For the tubes for which radii are small compared to the thickness of the visco-
thermal boundary layers (capillary tubes), the expansion at the vicinity of the origin
of the functions K j, gives

) /f’ N2 [
kzz\/?ko(l—l)i k_vz(l_l)i Ykoﬁv ) (3124)

0

where \/?ko = translates the isothermal property of the propagation.

Co/Y

Therefore, for capillary tubes,

k
¢ <R =0 ¢p<<cq, (3.125)
2\ vty

Fz—,f{ /ykoﬁy\, >>kg = ® thus Io>>1, (3.126)

Co

where Ly =2n/k represents the wavelength of the adiabatic wave associated to
the frequency (0)/ 2n) in an infinite space.



Problems of Acoustics in Dissipative Fluids 147

Propagation in capillary tubes is characterized by a propagation speed ¢, much
lower than the adiabative speed c( in infinite space, and by a very important
attenuation I' during the propagation. The isothermal process is more like a
diffusion process than a propagation one.

Note: Hagen-Poiseuille equation

The approximated Navier-Stokes equation used in this chapter (equations (3.80)
and (3.102)) is nothing more than the Hagen-Poiseuille equation. To verify this in a
cylindrical case, one only needs to consider the portion of fluid between two
cylinders of respective radii r and r+dr, and of length dz (Figure 3.9).

dz

Figure 3.9.Layer of fluid of thickness dr

The viscous shear force along the z-axis applied to the fluid element at the
interface r can be written as

—u2nrdzﬁvz(r), (3.127)
or
and the force applied at r+dr on the same fluid element is
u2n(r+dr)dz§vz(r+dr). (3.128)

The fundamental equation of dynamics introduces the sum of both forces and
relates it to the difference of pressures at both ends of the fluid element; therefore

ov, op unof ov,

Ny _ O pOf OV 3.129
PO = rar(r or (3.129)
thus iﬁ—f'vli[rij v L P (3.130)

cp Ot ror\ or pPoco 0z

This is nothing more than equation (3.102).
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3.8. Guided plane wave in dissipative fluid

This section, similar to section 3.2 (reflection of plane harmonic waves on an
infinite rigid wall) and section 3.7 (propagation of plane harmonic waves in
cylindrical tube), enunciates differently and completes the previous problems to
summarize the conclusions drawn in these sections.

An acoustic harmonic wave propagates in a dissipative gas (viscous and heat
conducting) contained in a cylindrical tube with a circular cross-section of radius R.
The walls of the waveguide are considered rigid. The frequency f of the propagating
wave is smaller than the first cut-off frequency f of the tube (this notion is
explained in Chapter 4); there is consequently an upper limit to the value of R for
which one can, a posteriori, justify the hypothesis that the dissipation within the
fluid remains negligible compared to the dissipation due to the boundary layers.
However, the radius of the tube remains significantly greater than the thickness of
the viscous and thermal boundary layers, so that the acoustic pressure can be
considered quasi-plane (quasi-uniform over any given section of the tube, very
slowly dependent on the radial coordinate r, for example) and independent, by
symmetry, of the azimuth 0, and propagating along the Oz axis.

There are two objectives to this section: first to show that the propagation occurs
as if the dissipation due to the boundary layers was related to a non-null admittance
of the walls, function of the viscosity and thermal conduction coefficients (equation
(3.10)), and then to give the expression of the propagation constant k, (equation
(3.118)) and verify that it includes most of the dissipation.

Note: the notations have all been presented in the second chapter and will
therefore not be detailed in this section. The time factor e'® is suppressed
throughout.

The hypotheses made and the relative magnitudes of the considered constants
lead to

ki =kp +k7, (3.131a)
with: [k, | <<[kp], (3.131b)
thus: k&, ~k% =—iko//}, (3.131c)
k2 =k2, +k2, (3.132a)
with: [k, |<<[k], (3.132b)

thus: k2, ~k2 =—ikg//+, (3.132c)
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k2 =k2 +k2, (3.133a)
with: [k, | <<[k,|, (3.133b)
R >> 20y , 20 , (3.134a)
ko ko
1.84¢, :
f<fy= R (equations (5.50b) and (5.47b)). (3.134b)
T

The solutions considered are solutions to equations (2.80) and (2.81) and can be
written as

P=D, ZPOMGXP(—H%Z), (3.135)

ey
o
~—

~
o
=

]
~—

exp(-ik,z), (3.136a)

T, & Apexp[-ikp, (R = 1)lexp(- ik ,z), (3.136b)

where the function exp[— ik, (R - r)] is an approximation of the Bessel’s function
Jo[khr (R —r)] assuming that the cylinder can, on a scale of magnitude similar to
that of the thicknesses of the boundary layers, be approximated by its tangent plane,
as far as the motions of entropic diffusion (t},, above) and vortical diffusion (v, ,
below) are concerned:

iyf Be
iyB . +YB b,

vy, =—ik : (3.137a)
’ “| (y=1kopoco * Poco
iyp Be
vy =B O, Pl (3.137b)
(v—1kopoco or PoCo
k
Vi, = A, ka exp|- ik (R —r)fexp(~ ik ,z), (3.138a)
z
Vyr =—Ay exp[- ik, (R — r)kxp(-ik,z). (3.138b)
The boundary conditions (r = R ) can be written as
_ v-1l o _
‘C(R,Z)— 0, thus Ay, +——py =0, (3.139a)

Be k
po+ PhA (1AL ER0, (3.139)

kopoco PoCo z

i

v,(R,z)=0, thus —ik,
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v;(R,2)=0, thus v, (ko R)+ikp, i A +A, =0, (3.139¢)
PoCo
where
. 02
VOr(karR)= lkar Jl(karR) -~ lkarR

0~ 0
pocoko JolkaR) 2pocoko
(expansion at the origin) (3.140)

denotes the radial component of the acoustic particle velocity at the vicinity of the
wall.

At an order of half the characteristic lengths ¢', and ¢}, , these three equations
(3.139) lead directly to the expression of the equivalent specific acoustic
“admittance” of the wall, in clear analogy with that given by equation (3.10):

Poco _ PocoVorlkaR)exp(-ik,z)
Z, Pa ’

2
z\/ﬂlb—i—a;]\/Zﬂy—l)\/K} (3.141)
0

Equation (3.141) shows that the properties of the viscous and thermal boundary
layers can be taken into account in terms of an equivalent impedance of the wall.
This observation is particularly useful in modal theory in dissipative fluids for
propagating or evanescent modes (see Chapters 4 and 5).

Note that
2 2
1_k_a2r - k_é (3.142)
kg kp

remains close to the unit (grazing incidence).

Moreover, the substitution of the expression (3.140) of v, into equation
(3.141) and consideration of equation (3.142) leads to

k2 NECENE
Xz 14 (1- O+ (=17 |, 3.143
k% +( I)MR[\/T-’_(Y h:| ( )

that is, equation (3.118) as expected.
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By recalling the propagation constant of a plane wave in infinite space
(equation 2.86)

kg =k (1-ikolp).

it appears that the dissipation factor associated with the wavenumber k, in infinite
space remains smaller than the one associated with the constant k, (above) as long
as the radius of the tube is small,

1
Re<<————. (3.144)
3/2
ko gv,h

This equation is compatible with the inequalities (3.134a) and (3.134b) stating
that the radius of the tube is assumed to be considerably greater than the thickness
of the boundary layers since, often in practice,

0
vh __p.l84co 184 1

<< .
kO 2nf ko kg/z Mv,h

(3.145)

3.9. Cylindrical waveguide, system of distributed constants

The problem of plane wave propagation in cylindrical tubes with circular cross-
sections considered in sections 3.7 and 3.8 can be treated as an analogy with the
theory of (electric) lines with distributed constants. Indeed, by considering equation
(3.105) associated with the set of equations (3.107), (3.108) and (3.111) which are
combined to eliminate the variables <p'> and <1 >, one can reduce the set of
equations and the boundary conditions to the following couple of equations:

oplz) __ikopoco i -2 BlR) (3.146)
oz 1-K, kyR Jo(k R)
o<v> kg ‘ 2 J(kyR)
=— I+(y-1)K th Ky =————"—%. 3.147
oz Poco [ +(Y ) h]p(Z) w1 h KR JO(th) ( )
By denoting u=S < v > (S being the cross-sectional area of the tube),
L =LikoPoco gy, —s KO [y (oK, ], (3.148)

S 1-K, PoCo
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equations (3.146) and (3.147) become

ip+ZVu=0, (3.149)
0z
0
—u+Y,p=0, (3.150)
0z
or
dp+Z,dzu=0, (3.151)
du+Y,dzp=0. (3.152)
The associated equations of propagation are then
2 2
a—f+k§p=o and a—;+k§u20, (3.153)
0z 0z
where
k:=-7,Y, = ké% (equation (3.117)). (3.154)
s

The impedance (qualified as “iterative”) Z; =p/u and the corresponding
admittance Y; =u/p of the line are directly obtained from equations (3.146) and
(3.147) by writing 0/ 0z = £ik, (from equation (3.153)). Thus

PoCo

S JA-K )+ (- DKy ]

and Yi Zl/Zi . (3155)

i

By adopting the often-made hypotheses that |Yh ZV| <<1, the electrical diagram
associated with equations (3.149) and (3.150), can be as in Figure 11.33 (section
11.4.2).

The asymptotic expansion of K, and K, for large tubes (|k h,v R| >10) leads to

20 20
zszi 1 V20 (3.156)
S | Ryk, Rk,
2 2
Yy ~ 0 ((v—l) Ty 1+(y-1) -l (3.157)
POCOL Rykg Rykg

where S =R ?.
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The real parts of these expressions reveal the resistive factors due to the
viscosity and thermal conduction (within the boundary layers) and the imaginary
parts reveal the reactive factor: an inertia factor iwp( /S, corrected by an additional
factor due to the viscosity, and an elastic factor i®S /(poc%), corrected by a factor
due to the thermal conduction.

To emphasize the importance of these results, one can consider for a very small
element ¢ of a tube such that the pressure difference dp =p.—p, between the
entrance and the exit of the tube is written as

S %
/ oz

where the axis Oz is directed towards the end of the tube. If the radius of the tube
is not particularly small, so that the resistance can be ignored, the fluid element
considered presents an inertia given by

=+Z,u, (3.158)

4
P _ Pl (3.159)
u S
or, in the time domain, by
Pof du
op=———. 3.160
P="3"7 ( )

. l. . . .
The quantity m, :% is called the acoustic mass of the fluid column in the

tube and similarly presents an elastic behavior described by

u_ My pai®S (3.161)

14 52 POC%

or p= P00 g, o ¥ OV _VE (3.162)
ITONY4 xt V.  xrV

where = denotes the product of the fluid displacement by the cross-sectional area S .

. \AR . S .
The expression (—L%j is obtained by considering the behavior of small
XT
1 . S
=s, =— 1S an acoustic stiffness,
XTV ca

cavities (equation (3.73)). The ratio

reciprocal of the compliance C, .
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In the case of capillary tubes, the developments of equation (3.149) close to the
origin leads to the following results:
% S“i +id pol; o~ B”i . (3.163a)
u 7R 3 nR nR

The behavior is dominantly resistive (Ra = Sui j , but presents a small inertial
R
. L
component with m, =4&.
3 7R

Similarly, for capillary tubes, equation (3.150) leads to

_ 0
p 87\./CP pOCO
~i ynRz!f
= 2
PoCo

4 2
6u~(y—1)k2 nR™/ _HynR 4

1

(3.163b)

o=1i0SlyT.

The behavior described does not present much interest for a short capillary tube
since it is proportional to the ratio of the length ¢ of the tube over the wavelength,
which is often very small.

Note: from equations (3.83), (3.84), (3.95) and (3.89) in section 3.6, and by
following the above approach, equations (3.146) to (3.163) can be written in the
case of parallel walls (but will not be not given here). These results concerning
capillary slits of thickness h and width b (b >>h) are frequently used and are
given by:

dp -7, 12ue .6 pof

e~ 4i——0. 3.164
u bh3 5 bh ( )

12
—M] , but also presents

The behavior is once more dominantly resistive (Ra =—
bh

I . 6 pol
a small inertial component with m, = 5 ?

3.10. Introduction to the thermoacoustic engines (on the use of phenomena
occurring in thermal boundary layers)

A half-wave tube (working in plane waves mode) is equipped with thin and
short parallel plates (stack) that are approximately halfway between a loudspeaker
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and the center of the tube where the pressure gradient (in terms of amplitude) is
negative @p(x)/dx<0) (Figure 3.10). The stationary wave (in terms of particle
velocity) presents nodes at each end efttibe (first approxnation). The distance

“L” between the plates is about 3 times the thickness of the boundary layers
(L=38yp)- A mean temperature gradient over the length of the pldfgg (dx ),
independent of the positior, varying slowing with time and assumed negative
here by hypothesis, is maintained betwélea ends of the plates. The heat flux
established by pure convection between the high temperalyneapd the lowest
temperature T_) zones is negligible within théme frame considered (one acoustic
period).

T, T

p(x) z

=",

VO~<

Figure 3.10.Half-wave tube equipped of “short” parallel plates (stack) in the region
where the gradient of amplitude of the pressure p(x) is negative

T, L ‘ T
AN v
0 <> ]
\ N
o) X X +0X X

Figure 3.11.Interval between two short parallel plates;
particle motion (<) and heat transfer (1) )

The object of this section is to studye particle motion within one cell of
thickness “L" (Figure 3.11), in the (x,y)-pla considering that the amplitudes of
pressurep(x) and particle velocityv, (x,y) are approximately in quadrature (in
the following, the pressure phasg(x,t) is chosen as the phase reference).
Qualitatively, the instantaneopsessure of a particle and its temperature are greater
at a given point(x) than they are at a poir{x + 8x, 6x > Q), so that the particle
“drains” heat from the plates (located at 0,L ) at the coordinatgx +6x) and
(partially) “restitutes it at(x) if the magnitude of the “static” gradient of
temperature(oT,, / ©x) remains inferior to a limit vaki(called critical gradient) in
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order to avoid inversion of the heat transfers. Consequently, a continuous heat flux
occurs in the direction opposite to the x-axis following a non-linear process and that
makes the stack likely to work as a thermo-acoustic heat refrigerator, a heat pump or
a thermo-acoustic engine.

To demonstrate the above interpretation, one needs to follow the procedure
adopted in section 3.6 by introducing additional factors associated with the mean
temperature gradient. A simplified version of this approach is presented here.

The non-linear equation of heat conduction (equation (2.44)) is, here, in the form
S -
PmTm E+V.VS ~ VAT, (3.165)

where the index m indicates that the associated quantity is a mean value over the
time period. Thus, by denoting S=S,, +s where s represents the entropy variation
associated to the particle motion (s <<S,,) and considering only the first order of
the acoustic quantities and limiting the analysis to harmonic motions:

oS 2
mem(icos+VX szxQ. (3.166)
ox 072

According the hypotheses made, in equation (3.166), the z- and y-components of
the particle velocity and the temperature variation along the x-axis are ignored in the
left-hand side term.

By considering equation (1.22)

ds=SPgr— % gp.

m pm

that by integration and at first approximation gives

C
s=—P % p at the 1* order (linear approximation), (3.167)
Tm  Pm
Cp
and dS, = . dT,, atthe order 0, (3.168)

m

equation (3.166) becomes

2
{1—°9€h a_jl 1x,z)= T p(x)- T VX,(X’Z), (3.169)
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l
Cofn __* 1o 1 (3.169a)
i  iop,Cp 2i k}21

where

where 8}, denotes the thickness of the boundary layers, and where

(X,Tm _ Cp —CV _ 'Y—l
CpPm CPB [3“{

(3.169b)

With equation (3.169), one needs to associate the following boundary conditions
x,0)=1(x,L)=0. (3.170)

Within the assumed approximations used in section 3.6, the mean value of
Navier-Stokes’s solution over a section of the system can be written as

- tgk,L/2
cv st ) k2] (3.171)
iop, Ox k,L/2

This mean value is substituted for the function v, in equation (3.169) to obtain
an approximate solution. This solution, satisfying the boundary conditions (3.170),
can be written as

T:{ aTy p_@Tm <Vy >}{1_coskh(z—L/2)}’ (3.172)

CprPm ox 1o cosk,L/2

and its mean value over the section of the system takes the following form:

T oT tgkyL/2
crs=| Zm o Clm SVx 7y 8 Kh . (3.173)
CPpm aX 10 khL/2

By hypothesis L =38, and |khL / 2| ~2.5. Therefore, one can limit the
asymptotic expansion of the right-hand side term of equation (3.171) and (3.173) to
the lowest order, leading to

_ S _
SOl S O L POt S 0 (3.174)
iop,, 0X L iop, 0x
T T
<r>{ 0T O <Vy >}{1—(1—')8—11}, (3.175)
CrPm 0x 1o L

<vy >

10

where, by hypothesis, p and

are real quantities.
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N . . .
It must be noted that the factor {(1—1)%‘} is associated with the factor

2
{k a—;:l of equation (3.169), meaning that it is related to the heat transfer between
0z

the fluid and the plates. In the case where no plates are considered, this factor
vanishes (3.175).

At this point, it is possible to express the heat flux in the x-direction. The
instantaneous heat flux (associated with the particles motion) that propagates
through the unit of area per unit of time in the x-direction can be written in terms of
specific particle entropy s,

q=PmTmsvx, (3.176)

and its time average (compare with equivalent proof at the beginning of section
1.4.3.) can be written as

- 1 * 1 C o *
q= memERe(SVx) = EmemRe I:[T_PT__pJVx:|:
m Pm

(3.177)
1 * 1
= Emep Re(vy1) = Epmcp Im(v, ) Im(7),
since Re(pvi) =0 because of the phase quadrature between p and v, . This is the

mean heat flux induced by acoustic process. The total energy flux between the two
plates of width ¢ can be written as

Q= g PmCop Ié‘ Im(vx )Im(r) dz.

By replacing v, and t with their respective mean value (as previously done),
one obtains

az%meP Im(< vy >)Im(<7>), (3.178)

where substituting the expression (3.175) for the mean value of 1,

6=—§6haTmpIm(<Vx >)(r-1), (3.179)
with T = Mm% g aij _oTwp _i© (3.180)
CIE X )i PmCp <Vy >

(the meaning of the index crit. is explained below).
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ap

The substitution of the expression (3.174) of v, , in which p and v are real

(stationary waves) finally leads to an expression of the heat flux

=4 )
Q:—EShaTmme%(l—ij(F—l), (318D
m

S
where 1-—->0 and P <0 (by hypothesis).
L ox
For now, the sign of Q is the same as the sign of the function (I'—1).

Ty, j
ox crit.

positive x-direction, from the “hot” zone to the “cold” zone. Equation (3.175)

<r>z$[[m—mj —[m—mj}[l—(l—i)s—h} (3.182)
i® OX )it ox L

shows that the temperature variation corresponding to the adiabatic motion,

T,

X

If T-1>0, and 6 >0, then the heat flux occurs in the

>

ox

recorded by the particle during its displacement. The system then works as a
thermo-acoustic engine: part of the energy of the heat flux between the hot source
and the cold source is transformed into acoustic energy.

ot J

oT _
( mj , does not compensate for the variation of mean temperature T,
crit.

or,

If T'-1<0, < and 6< 0, then the heat flux occurs in the

crit.
negative x-direction, from the cold zone to the hot zone. The system works as an
acoustic refrigerator (or heat pump).

The heat flux is, in particular, proportional to the thickness &;, of the thermal

boundary layers close to the plates. It is necessary and its role is therefore important.
It is proportional to the acoustic energy flux of the stationary wave represented by

p

m

the function

» (product of the particle velocity and the pressure) and is

- . 5 .
limited by the viscosity effects represented by the factor [l—T"j (obtained by

assuming that &, <L).
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Finding the complete solution to the problem requires the calculation of the
amplitude of the pressure p using the equations that have not yet been introduced in

the process (including the mass conservation law) and the associated interface
conditions. This calculation is not detailed here. However, the acoustic energies
involved are calculated below to complete the discussion on the functioning of a
refrigerator or engine, particularly by calculating their efficiency and output.

After one cycle of heat transfer between the fluid and the plates, the work
received by a particle of fluid results from the variation of total pressure P and
specific volume V that occurs due to the heat transfers. In other words, the
elementary work received by a particle and considered here per unit of volume can
be written as

dw =p {— Pd(lﬂ P (3.183)
p)| P

It is worth noting that the processes followed in section 1.4.2 are not applicable
here since they assumed the fluid to be non-dissipative and the mean gradient of
temperature was not considered. Moreover, they can only be applied on the acoustic
energy involved within the limitation of linear acoustics.

The instantaneous power per unit of volume received by the fluid can be written
as follows

d_W:P_deB(@_’_VX @jzz[a—p+<vx >@], (3.184)
dt pdt plot ox ) plot ox

thus, to the first order of the infinitesimal quantities and considering that the mean
density p,, is (by hypothesis) slowly varying with time,

aw _Pyepfop, | pn],
dt p_+p ot X

zL[Pm[l—L}pMa—p«vx > a"m] (3.185)
P Pm ot ox

m

Equation (1.23) of the density p', namely p'= meT[p—fSt], is substituted into
equation (3.185). The time averaged of the resulting expression cancels out all the

.= 1 . . .
terms but one. Indeed, by denoting f = ?J'OT fdt where T is the period, one obtains:

%

ot =0, <vx >=0, p<vy >=0 since p and <v, > are in quadrature;
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op' . o . .
— p’EP =0 and p% =0 since the two quantities involved in each relation are

in quadrature:

3
<V, ><V, > 1 *
and R{VX,—V"]:——Im(< Vi ><Vy > )zO.
i® ®

Consequently, the time average dW/dt of equation (3.185), mean power per

unit of volume received by the fluid, can be written as

dw ~ ot 1 . 1
?——XTBpE——EwaRe(lpr)——Ecoaplm(r), (3.186)

and the total mean power received by the fluid between the two plates of length Ax,
[ —
P=t¢ AXJ d—Wdz
o dt

can be written as

Bz—mecoapLIm(<r>),
T T
- L axoap Hmp Tm <vx > |5 (3.187)
2 CpPm ox io
2
—Lyaxs, @ 20y
2 nCp

The mean total acoustic power received by the fluid is of the same sign as the
factor (I —1). Therefore:

— if (C=1)>0, the system works as a thermo-acoustic engine, like a
loudspeaker. Part of the heat that flows from the hot source T, to the cold source
T_ is transformed into acoustic energy;

—if (F - l) < 0, the system works as a refrigerator (or a heat pump).

These conclusions are in accordance with those previously stated following the
expression of the heat flux Q (3.181).
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oT,

According to equation (3.169b), the factor is proportional to (y —l), a
m-P

quantity that measures the difference between isothermal compressibility and

adiabatic compressibility. One analysis of these results shows that setting this factor

to be as large as possible is of interest. This observation motivates the use of helium

(y = 1.65) in some systems.

One can approximate the output mn of the engine by considering equations
(3.187), (3.180), (3.181) and (3.174):

P Axoo’p  pyAxo<v, >(8ij

n R—=r - . s
Q CP(ap/aX) le (8p/ax) ox crit
thus n:&[aTﬂlj _ (0T /0x)Ax ATy lNH_C’ (3.188)
T\ 0% )iy Tl T, I T

where 1. denotes the classic Carnot efficiency (theoretical maximum efficiency).
Therefore, as a first approximation, the output of a thermo-acoustic engine is the

product of the factor %<1 by the theoretical Carnot efficiency. These systems,

engine or heat pump, appear in industrial systems.

3.11. Introduction to acoustic gyrometry (on the use of the phenomena
occurring in viscous boundary layers)

The gyrometer is a device that measures angular rates with respect to an inertial
frame, the primary use of which is inertial navigation (maritime and air). The
acoustic gyrometer is a gas-filled cavity (Figure 3.12) with a resonant acoustic field
(generated by a loudspeaker) that induces (by Coriolis effect due to the assumed
constant rotational velocity) another resonant acoustic field (detected by a
microphone). Dissipation in the cavity is of great importance as it defines the quality
factor of each of the resonances. Thus, thermal conduction and viscosity (mainly
shear viscosity) are among the key parameters of the device. Shear viscosity, in
particular, plays an important role as it is the cause of the conversion of part of the
acoustic energy into vortical motion in the thin boundary layers of the cavity. This
motion, in permanent regime, is the only motion responsible for the acoustic
pressure of inertial origin (by Coriolis effect).
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loudspeaker

microphone

Figure 3.12.Simplified representation of a classical,
cylindrical acoustic gyrometer

The principle of acoustic gyrometry is based on the fact that, in the frequency
domain, under the action of a constant angular velocity Q , a Coriolis acceleration
(yc) is induced when a particle is animated by a constant velocity (V) relative to
the system in rotation (yc = 2Q0A7V ). This vectorial product appears in the
fundamental equation of dynamics (here it is the Navier-Stokes equation written in
the inertial reference frame); the acceleration is then expressed as a function of the
quantities “seen” by the observer standing in the spinning system associated to the
gyrometer itself. The acoustic particle motion v can then be the origin of this
Coriolis effect. However, the acceleration of Coriolis can only trigger an acoustic
perturbation if it presents a non-null divergence since it appears in the equation of
propagation for the acoustic pressure as

2 p=-div f,. (3.189)

__ The divergence term is nothing more than the divergence of the Coriolis force
(f. =po7¥c) - One could easily demonstrate that the other inertial factors do not
contribute to the acoustic field in permanent rotation and that, consequently, the
latter term is the only one to consider. This observation can be intuitively
understood since 9Q/dt =0 (by hypothesis) and because the centrifugal
acceleration only generates a positive density gradient toward the walls that remains
inefficient in terms of acoustic perturbations for lower rotation rates.

Since rotQ =0 by hypothesis and the particle velocity v is the sum of two
components — (\7:\7 0+ \7V) with the former (v, ) being irrotational (since it is
laminar) whereas the latter is not (vortical motion), the inertial effects are
consequently expressed by a factor defined by

div (2QAV) =2[ V.10t Q- Q. 16t V]= -2 Q.rot v=—2Q.rot v,.  (3.190)
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Thus, for an acoustic field in a cavity, only the vortical component of the particle
velocity (that is triggered within the viscous boundary layers) contributes to the
source term

div(f, )= —2p o6t (3.191)

Consequently, this “source” of Coriolis, which is induced by the background
acoustic field (vector v in QAV ), is localized on the walls of the cavity. Finally, a
primary resonant acoustic field is generated by the loudspeaker within the closed
cavity while a second resonant acoustic field is generated by Coriolis effect. By
energy transfer between two resonance fields, a modal coupling occurs which is
maintained by Coriolis effect on the vortical motion within the boundary layers.

In practice, both the primary and secondary acoustic fields are resonant, and
sensitivity of the device is improved accordingly. Then the sensitivity of some
gyrometers can reach 102 o/s and their dynamic range can be 107 with an
excellent linear response.

Solving the problem completely requires the use of integral equations and their
estimation by using the modal theory (method presented in the Chapter 9). In this
section, the aim is to describe the phenomenon by finding the expression of div f..

The considered phenomenon occurs significantly only at the immediate vicinity
of the walls of the cavity, within the viscous boundary layers. One only needs to
solve the problem at these points. The notations used for the local coordinates are
presented in Figure 3.13, the axis u being directed outward of the cavity.

/ "
W)

u

Figure 3.13.Local coordinates used at the vicinity of the walls of the gyrometer
(U is a unit vector, normal to the wall, outward the cavity)
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By assuming the following approximations:

A

b~ y—BlTa , (equation (2.82a))
-

<< , (3.192)

0 . 0 .
kogharh(khuu) Eta(kauu)

|k0 gh %h(khuu)|<<| %a(kauu)
k2 =k2, +k§wl +kjw2 ~ k2 (see equations (2.85) and (2.112)),

B

and writing
pa(uawl 7W2 ) = ﬁa(kauu)w(kawl Wl’kaWZWZ ),

the boundary conditions (2.107) and (2.108) can be written as

—i

a R .
Vv ® Kopocq Epa(u - O)W(kawlwl’kaWZWZ)elkvu’
o+ =01l kw2 cam
VW kOpOCO a aWI aw, " 1>®aw, >
-1 . 0 ik u
~ = O —_— k k v
kopocq pa(u )8w2 W( W awzw2)e ,

Vyw2

where the solution along the axis u has been chosen as a diffusion process and is a
solution to equation (2.80).

One can obtain, after all calculations have been done, the three components of
the vortical velocity v, :

(rtv,), =0,
(rot v, ) S T (0,wy,w,) (3.194)
viw, © Po® 6w2paa1s 2)» .
L Ky 4iku O
(rOt Vv)wz :_po_vmeﬂkvumlpa(()’wl’WZ)’
thus 1ot v, LS e+ikvu[ﬁ/\§gvpa(0,w1,w2)], (3.195)

pPo®

where u denotes the unit vector, directed outward of the cavity and normal to its
wall, and Vg, is the gradient in the plane tangent to the wall.
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The acoustic source associated with the Coriolis effect is therefore described by
the following function (which appears in the right-hand side term of the equation of
propagation):

div(ta"c )= —2% etk ﬁ.[ﬁ/\%w pa(0,wi,w, )] , (3.196)

where p, (O,wl,wz) denotes the acoustic field generated by the loudspeaker (as a
first approximation, called Born’s approximation) and where the rapid decrease of
the factor e X" reveals that the “secondary source” induced by the Coriolis effect
occurs only at the vicinity of the wall (within the viscous boundary layers).

z q\
Q ‘
i ;nlcrophone

loudspeaker /

Figure 3.14.Gyrometric cavity with a square base (x,y): the loudspeaker is located at the
center of the (Ox,0z) face, the microphone at the center of the (Oy,0z) face and the rotation
vector € is collinear with the Oz -axis

By way of example, let a gyrometric cavity with a square base (Figure 3.14)
contain an acoustic pressure field p,, generated by a loudspeaker located at the
center of the (Ox Oz) face, in the form of a resonant mode cos(my/L). Also, the
factor Vg p, —Vypa is assumed along the Oy -axis. The other resonant mode
(along the x-axis) is not generated since the loudspeaker is located at its node. The
unit vector u of equation (3.196) being normal to the considered face, only the
faces that are perpendicular to the Ox-axis present a non-null factor
Q. [unA Vypa ] for an angular velocity Q that is collinear with the Oz -axis.

Therefore, the sources described by the factor div fc exist only on the two faces
that are perpendicular to the Ox -axis and are out of phase. Their amplitude, in
terms of Op, /0y ~sin(my/L), are in phase at any given point on each face and
present a symmetry with respect to the axis y=L/2 of each face. Therefore, the
resonant mode cos(nx/L) is generated and detected by the microphone that,
located at the center of the (Oy,Oz) face, coincides with a node of the mode
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generated by the loudspeaker and can only measure the Coriolis mode. Moreover,
since this mode only exists in presence of the primary field p, , the process is an
energy transfer from the primary mode cos(my/L) to the Coriolis mode
cos(nx /L), in other words a coupling. The analytical expression of this coupling is
given in section 9.2.4.1.2 (equations (9.36) to (9.39)).
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Chapter 4

Basic Solutions to the Equations of Linear
Propagation in Cartesian Coordinates

4.1. Introduction

The objective of this chapter and the following ones (with the exception of
Chapters 10 and 11) is to introduce the methods used to solve the fundamental
equations of linear acoustics in dissipative and homogeneous fluids, and the
solutions for the acoustic motion that are most widely used in solving acoustic
problems. The term ‘“acoustic motion” implies that the entropic and vortical
variables are not among those considered here. However, this does not mean that
dissipation is ignored completely as it plays an important and fundamental role in
practice (for many reasons detailed in this chapter) and simplifies, to some extent,
the modeling process.

The bivariance of the medium (first hypothesis) implies the use of only two
independent variables to describe the thermodynamic state of the fluid in motion.
However, to limit the problem to two scalar variables among the many involved
(pressure, density, temperature, entropy, etc.) would be to overlook the vectorial
nature of an acoustic field: the particle velocity. The knowledge of this vectorial
quantity leads directly to the knowledge of one of the scalar quantity (i.e. the density
variation p' via the mass conservation law) so that one can substitute the scalar
quantity for the particle velocity. Moreover, the “pressure variation” plays a major
and unique role in acoustic problems simply because most acoustic sensors are only
sensitive to this quantity. It is therefore clear that the most convenient couple of
variables to represent an acoustic field are the pressure variation and the particle
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velocity. Also, for the sake of simplicity, most equations of propagation and
boundary conditions will be expressed in terms of those variables.

Since the entropic pressure is much less than the acoustic pressure, especially
outside the viscous and thermal boundary layers, it will systematically be ignored.
The pressure variation will consequently be identified with the acoustic pressure p,
and be denoted p . Similarly, since outside the viscous and thermal boundary layers
the entropic and vortical velocities are negligible, the acoustic particle velocity v,
is identified with the particle velocity v. This approximation implies that the
phenomena occurring within the boundary layers, where the acoustic particle
velocities are of similar magnitude to the sum of the two other forms of particle
velocity, are not considered. The concept of “equivalent” acoustic impedance
(presented in section 3.2, equation (3.10)) comes in useful; at the vicinity of the
rigid walls, the admittance expressing the boundary conditions is not null (partial
reflection), but equal to 1/Z, . This facilitates the treatment of the boundary layers’
effects on the reflection of acoustic waves in dissipative fluids (in Fourier domain of
course). It is, however, useful to remind the reader that this impedance presents the
particular characteristics that it depends on (l—kg L/ ki) where k, denotes the
wavenumber associated with the acoustic propagation and k, | , its projection onto
the direction normal to the tangent plane at the boundary. The impedance
subsequently depends on the angle of incidence of the wave. Therefore, one needs
to pay particular attention when estimating this factor at the vicinity of the walls.

In accordance with the previous statements, it is often enough to consider the
problem within the approximation of linear acoustics, in homogeneous and
dissipative fluids at rest (including initial and boundary conditions), beginning with
the system of equations governing the acoustic pressure (p ~Pa ); the particle
velocity can be deduced using the simple and linear Euler’s equation. Therefore, the
fundamental equation of acoustic propagation in a dissipative fluid, in the conditions
given above, can be written as (equations (2.76) and (1.61))

1 o° 10 _ - 8q o oh
2 (14l gy —)A (T, 1)~ —pg| divF - = - — |, 4.1
AP0 = 5 C o @)
with, if a relaxation process is to be considered (equation (2.58)),
1 1 o oY
Lt t _Lhiope2(inel] |, (42)
<o L A ot ot
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where D, =(y-1) Cg}/) /C, in the relaxation case considered in section 2.4.3. This
operator would generally be written as

- =L2{1—DV2 ! dt’e(t’_t)/e] 4.3)
co. € ot =

This equation in the time domain presents all the characteristics of an equation
that does not have an analytical solution; moreover, it is pointless to express the
boundary conditions in the time domain as the condition associated to a non-null
admittance introduces a convolution product in this domain (equation (1.75)).
Therefore, whenever possible (null initial conditions), problems are treated in the
Fourier domain. The only problems solved here in the time domain are those where
dissipation is ignored.

In the Fourier domain, equation (4.1) becomes

00
{(l+1k fvh)A+k0[1 3D, 1+01)(09 Hp(r)

=po [divf? —iog—io— h] , (4.4)
Cp

where the same notations are used for the functions p, F, q, and h, and their Fourier
transforms, and where the sum indicates that if several relaxation processes are to be
considered, they would also appear in the equation as a sum.

Equation (4.4) can also be written, ignoring the factor (— ikl vh) in the second
term (which in practice does not affect in any way the source functions), as

®,
{AH(%(l—ikoﬁvh XDy Hp po[dlvF—lwq—lwc—hJ (4.5)
A%

Equation (4.5) will be written in the following form (Helmholtz equation):

(A+k%)p= po[divf:—imq —imcih], (4.6)
p
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with
00

k2 =k3| 1-ikgl\, ~ 3 D, —2v |, (4.7a)
v 1+i00,,
2n2
0 0

k2 ~k3[1-3 Dy ——— i kol y, + 3 Dy ——— ||, (4.7b)

v l+® e\, v 1+ OV

where kg =wm/cg, ® being the angular frequency of the source and c( the
adiabatic speed of sound in the considered medium.

Writing the complex wavenumber as

k=2-ir,
ca

one can deduce the wave speed

v 1+ o® 92

62
c, ~co(n YD, 2 J~c0, 4.8)

and the attenuation factor

v 1+(0293

k 0
FzTOLkOKVh+ZDV ‘”—VJ (4.9)

or, in the absence of molecular relaxation,

c, =c( and
= %k(z) £ (attenuation factor called “classical attenuation”). (4.10)

A generalized complex speed of sound can be defined as

i 0
+2 kol + XDy —2— |, @.11)
2 \Y 1+ E)V

202
0
cxcy 1+lZDV )
2 v 1+ ® 9\,
with k=w/c,

or, in the absence of any molecular relaxation,

c:co{1+%k0£vh} (4.12)
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The real part of the expression of the speed of sound (as shown above)
represents the “true” speed of sound while the imaginary part represents the
attenuation factor.

Note: the objective of this chapter (where the problems are solved in a Cartesian
coordinate system) and of the following one (where the problems are solved in a
cylindrical coordinate system) is to present the forms of the basic solutions to the
wave equation associated with typical fundamental problems. These problems are
treated outside the action of sources for the sake of simplicity, but also because
considering the coupling between acoustic fields and source functions requires
(most of the time) the use of the integral formalism at the limits of linear acoustics.
This formalism is not discussed until Chapter 6.

4.2. General solutions to the wave equation

4.2.1.Solutions for propagative waves

Outside the action of any source, the wave equation in Cartesian coordinates for
a dissipative fluid is given by

2 2 2 2
9 >+ 9 >+ 9 5 p(f,t)z%a—zp(f,t), (4.13a)
ox~ oy~ o0z c” ot

where the factor ¢ is given by equation (4.1) and defined by

c? =c%{l+fvh—l—fz}. (4.13b)
CO ot

If the molecular relaxation is considered, the term c( shall be replaced by cz
(equation (4.2)).

If one ignores the dissipation processes, c=c, and any function of the

dimensionless argument {o{tiﬂﬂz[wtif(o.?] (where ® and k, are
o

quantities of dimensions s™! and m_l, respectively) is solution to equations (4.13)
on the condition that the following dispersion relation is satisfied:
602

kg =k; +kj +k; = (4.14)

6
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Thus, considering the negative sign in the argument (u)t—f(o.f ), this form of

solution represents a wave propagating in the same direction as 1;0 with a
propagation speed given by the ratio of the distance traveled by a point of the wave
ko : . - .
‘_—O.dr to the time dt requires to travel this distance. These two quantities are
Ko|

related by the relation ‘1;0 .df‘ = wdt (constant phase). The wave speed is therefore
Cop=T7F—=—"1. (4.15)

The plane harmonic wave solution to equation (4.13a),
Aeikrgiot (4.16)

A being a constant, presents the advantage that when k is real (k=Xkg), it
constitutes a continuous basis of eigenfunctions of the considered operator
I N e N
A s St Tt T T
Co ot ox ay 0z Co ot

uniquely expanded as

in which any solution can be

1
@2n)?

p(f,t)= f”ﬁo d’k, o ko %fi} dwe®p(ky, ). 4.17)

These expansions can be partial, such as

© dk, EOOO dkOy e—l(kOxX+k0yy) itow do eiwtp(kox,koy,z,(l)).

—00

. I
H=—s
p(T, 1) (ZR)ZI
(4.18a)

The factor 1/(27:)4 in equation (4.17) normalizes the basis of eigenfunctions
since

I (o et _—io't '
— | e™e dt=08(v—® 4.18b
L (- (4.18b)

(and so on for all integrals).
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The surface of equal phase associated with the wave represented by the function

Aet KTl gre planes perpendicular to the k -axis and propagating in the positive

r -direction, respectively in the negative r -direction, according to whether the sign
in the exponential is “+” or “—”. The phase velocity is then equal to «/Re(k). If

one of the axes (the x-axis for example) is chosen so that it coincides with the

direction of propagation k, the plane wave solution can be written simply (note the
exponential decreases) as

A et ikxgiot _ p (FImk)x  EiRe(k)x it (4.19)

This result can be applied to a very practical case. At the entrance of a
cylindrical tube along the x-axis, a loudspeaker generates a system of harmonic
plane waves that are reflected at the other end of the tube (x =L ). The description
of the energy transfer from the loudspeaker to the column of gas and the conditions
fulfilled for the conservation of the plane geometry of the waves are detailed latter
in this book. One only needs to assume that a plane wave is propagating all the way
to the end of the tube, is then reflected and travels all the way back with an
attenuated amplitude. It is then reflected (and therefore attenuated) again and so on.
Considering the situation at a given time t (the loudspeaker is emitting since the
time t; — —oo) and at a given point x € [O, L] , the pressure field is the sum of:

— the direct wave (from the loudspeaker) agexp[—ikx] (the time factor is
omitted);

— the first reflected wave (1st reflection at x = L) propagating in the negative x-
direction, that has traveled the distance (2L—-x), Ry ag exp[ik(x - 2L)] where Ry
denotes the amplitude reflection coefficient at x =L

— the second reflected wave (1st reflection at x = 0) propagating in the positive
x-direction, that has traveled the distance (2L +x), RORLaOexp[— ik(x + 2L)]
where R denotes the amplitude reflection coefficient at x =0;

— etc.

Finally, the pressure field at the abscissa x and at the time t results from the
superposition of an infinite number of waves propagating in the positive x-direction

ao[e_ikx +RRp e KOF2D) L (RgR )M ik(x+2D) +] e (4.20a)
and of an infinite number of waves propagating in the negative x-direction

RLao[eik<X-2L> +RoRp M) 4y (RRy ) elk(x-2L-200) +] ¢l (4.20b)
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Equation (4.20a) and (4.20b) give, respectively:

age & [1+R0RLe_2ikL +..4+(RgR )"e ik2nL +] ¢! = Bage KXt
and:
R age* 2D [1+R0RLe_2ikL +..+(RR )"e ik2nL +] et
_BR age 2KLeikxgiot,

where the geometric series B is equal to

1
1-RoR e 2KL (4.21)
1-— RORLe—ZlkL
The pressure field can then be written as
p(Xa t) = BaO [Ciikx + RLefzikLeikX ] ei(ot ,
(4.22)

_ Bage KL [k (L) L g o k(LX) poiot

showing that the field can be represented as two plane waves (one traveling toward
the extremity x = L, the other one traveling toward the extremity x =0).

In the particular case where the reflection coefficient Ry 1is equal to one,
equation (4.22) becomes

p(x, 1) = 2Bage KL cos[k(L —x)] e . (4.23)

This solution is called “stationary” since the real associated function is the
product of a function of the variable x by a sinusoidal function of the variable t .

Note: in the argument ot + k. of the solutions, the chosen sign in front of the
factor ot is the positive sign rather than the negative one. This is an arbitrary
choice. The factor exp(+imt) used here is the one in accordance with the usual
definition of the Fourier transform.

4.2.2.Solutions with separable variables

When the spatial domain considered is not infinite in all directions (closed space
or space closed in some directions only) the progressive wave solution presented in
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the previous paragraph is still a solution to the problem, but is not well suited to the
calculation and interpretation of the phenomena. It is generally more appropriate to
look for a solution with separated variables of the form:

p=XX)Y(y)Z(2)T(t). (4.24)

The wave equation, away from any source, can then be written (dividing each
term by the solution p of equation 4.24) as

2 2 2 2
1’x 1%y 12°2_11 9T 4.25)
Xox? Yoyr Zoaz?2 Te? at?

For a time-dependent function to be equal to a function depending on field
variables V(X,y,z,t) in the domain considered, each side of equation (4.25) must
be equal to the same constant denoted here (—kz) . Thus, when writing k2c? = o ,
one obtains:

o°T

: +02T=0, Vt (4.26)
ot

The solution to equation (4.26) can be written either as sin(o)t+(p1t) or as
cos((nt+(p2t) where @y, and ¢,; are phases depending on the initial time

considered. Thus, in the complex domain, the solution can be written as
expli(ot+ @, )] or exp[—i(cot+(p_t )] The functions sin(g) and cos(&), as the

functions exp(i&) and exp(—i&), constitute a basis of eigenfunctions of the operator
0% /0% to which corresponds a continuous spectrum of @ values. The solution to
equation (4.26) being known, equation (4.25) becomes
1°X 1Y 19’2
X ox2 Y oy?  Z o2

k2 =—k2. (4.27)

The application of a similar approach to equation (4.27) leads one to write that a
function of x alone cannot be equal to a function of the couple (y,z) (for any value
taken by these three variables) unless these two functions are equal to an arbitrary
constant, noted here (—ki) . Thus

2
a_>2<+ k2X=0, vx. (4.28)
ox
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By iterative manipulation, one obtains

2
‘Zy_‘2f+ K2y =0, Wy, (4.29)

and finally

2
a—zz+k§zzo, vz, (4.30)

0z

where the factor k% is not arbitrarily chosen, but defined by the relation of
dispersion:

k? =k; +k3 +k3. (4.31)
The solutions to equations (4.28), (4.29) and (4.30) are, respectively,
A4 cos(kixi )+A2 sin(kixi), o cos(kixi +(p1i), oy sin(kixi +(P2i)
or, in the complex domain,
Bie'k%i 4 Bye ki (4.32)

The constants A;j, o;, ¢; and B; are the couples of integration constants,
“couples” since the differential equations are of the second order. Each of these
solutions constitutes a basis of the considered domain and all solutions of any
problem described by these types of equations can be expanded in the corresponding
basis. An example is given in section 4.2.1; other examples are presented in the
following section while general remarks on the matter are given in the Appendix to
this chapter.

4.3. Reflection of acoustic waves on a locally reacting surface
4.3.1.Reflection of a harmonic plane wave

A harmonic plane wave of acoustic pressure p; is propagating, in oblique
incidence, toward a (x = 0) plane made of a locally reacting material (see section
1.3.4). The material is characterized by its acoustic impedance Z that is spatially
independent (similar to the impedance Z, associated to a rigid wall; section 3.2,
equation (3.10)) and associated with a reflection coefficient R. The angle of
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incidence and the angle of reflection are denoted, respectively, 6 and 0' (Figure
4.1). The xOz plane is defined by two intersecting lines that are the direction of
incidence and the x-axis.

X
N o LY/
pi o
® Oy
(@] - z
n

Figure 4.1.Reflection of a plane harmonic acoustic wave of amplitude p; on the plane
X =0 characterized by its acoustic impedance
iot

Suppressing the time factor e, the problem can be written as

(32 82 (32
ol oy +a_2+k2 p(x.y.2)=0, Vx20, Vlyz)
Z
P ikgpp=0atx=0, ¥ly.z) 433
ox oPp=0atx=0, Vliyz), (4.33)
p; =P eik(xcos@—zsin@)
17 11 s

where p; denotes the complex amplitude of the incident plane wave generated by a
source set at infinity, and where

B=1/g=pgco/Z
denotes the acoustic admittance of the wall.

The solution is assumed to be the sum of the incident acoustic pressure and the
reflected acoustic pressure:

P=Di +D;> (4.34)
where

ik(—x cos 9'+nzz+nyy)

pr =RP;e , (4.35)
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where ny and n, are the projections of the normal vectors parallel to the direction
of propagation of the reflected wave onto the y- and z-axes. According to the
hypothesis previously made, the solution does not depend (a priori) on the variable
y. This would lead to an incompatibility between the proposed solution and the
equations it must satisfy, as shown below. The substitution of the solution into the
equation of propagation leads to the following relation of dispersion:

cos® 04+n +n2 =1, (4.36)
while the boundary condition at x =0 gives
P ik [cos e ikzsind _p cosprel (nzzmyy)}

ikgpoc —ik zsi ik
_ 0;0 0 Pil:e lkzsme_i_Re1 (nzz+nyy):|, V(y,z). (4.37)

In the first instance, the equality of the functions of y on both sides of equation
(4.37) is impossible since:

~Rcos@e™™Y % P00 g KN 4g  cos0r2 M,
Z Z
implying that ny =0.
Consequently, considering equation (4.36), one obtains:
n% —1-cos?0'=sin” 0', or n, = ssin(e') where & =+1.
The condition (4.37) then becomes (k ~ kg ):

—ik zsin© ik €zsin 0'
cosfe™ —RcosO'e c
_ Po% . (4.38)

e—lk zsin 0 +R€1k €zsin 0 7

Since the right-hand side term does not depend, by hypothesis, on the variable
z , one needs to impose the following conditions:

—sin(0) = esin(6"),
cos(0)= 005(9').
Finally, e=-1 and 6 =6". (4.39)
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Consequently,
o2 1 DR s rose0s0=l (4.40)
pocg cosO1-R gcosO+1

The planes of incidence and reflection are the same, the angle of incidence and
the angle of reflection are identical and the reflection coefficient (in terms of
pressure amplitude) is related to the specific impedance ¢ by the relation (4.40).
The reflected wave can then be written as

_ op. ik(~xcos0-zsin@")
pr =RP;e ) (4.41)

The component along the direction n of the particle velocity can be obtained by
using Euler’s equation:

v -i op _ k P, cos 0 eik(xcose—zsine) _Re—ik(xcose+zsin9)

o po® 3x  pokoco

E

or, since k can be different, but close to, k, (equation (4.7)):

~ Picos 6 eik(xcose—zsin 0) _Re—ik(xcose+zsin 0) ' (4.42)
PoCo

The acoustic power absorbed by the material is the difference between the
incident energy flux and the reflected energy flux per unit of area of the material
(1.84):

Pi2 cos 0

2
1-R ), 4.43
2p000 ( | | ( )

1 % 1 * %
P, =L -1, :Z(pivi +ini)_Z(prVr +PrVy) =

and the coefficient of absorption (of energy) of the material is given by

a(@)—P—a— 2pocoPy 11— R|2 4Re(g)cosO
I Pizcose

= . (4.44)
(]g| cos 6)2 +2Re(g)cosO+1
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The energy density of the incident wave (1.83) is

1 2 1 2
EiZz[Po|Vi| +m|pi| ]

Pi2 e—2 Im(k)[x cos 0-zsin 6] Im(k) <0

N 2
2pocp

and the energy density of the reflected wave is

252
E, = |R| P e—ZIm(k)[—xcose-#zsinO].

(4.45)

(4.46)

Note: by considering the simplified case where the plane is perfectly reflecting
(here it would be perfectly rigid) and by ignoring the visco-thermal boundary layers
effects, the reflection coefficient is equal to 1 and the impedance Z — . The

above results still hold and the acoustic pressure field:

p=P. [eik(xcose—zsin 0) n e—ik(x cosB+zsin )
=

can be written as

p = 2P, cos(kx cos 0) ¢ ~kzsin®

The above expression describes a system of stationary waves in the x-direction
where the nodal planes, parallel to the x = 0 plane, are separated by a distance

n __
Re(k)cos® 2cosO

This system of waves propagates in the z-direction with a speed equal to

c. = () _ Co
* Re(kkin® sin®
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4.3.2.Reflection from a locally reacting surface in random incidence

By definition, an acoustic field the incidence of which is qualified as random is a
field that, at the boundaries, can be considered as a set of incoherent plane waves of
equal intensity I, the directions of incidence being randomly distributed. The
elementary intensity dI of the wave coming from the direction (6,(1)) defined with
respect to a point on the surface is equal to the product of this intensity I (energy
flux per unit of solid angle) and the area of the elementary solid angle:

dI = Isin 0d0 do

Consequently, the energy flux through the element of surface S of the interface
(yOz plane in Figure 4.2) located at the origin of the coordinate system, can be
written as

d¢; =16ScosOsin0dOdd

X 0 Incident wave
O
oS N
< z

Figure 4.2.Coordinate system

By hypothesis, the total incident acoustic intensity is the sum of the intensities of
all waves described above. Therefore, the total incident energy flux through 8S is

di =188 ;" doJ5'* cosBsin0d0 =18 . (4.47)
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The expression of the energy flux ¢, absorbed by the wall is obtained by
writing that:

b, =188 [37 dof7" a(0) cosOsin 6 do. (4.48)

Thus, the absorption coefficient in random incidence is given by

oy = j’)—a = [7'? a(6)sin(26)de, (4.49)

or, replacing oc(@) by its expression (4.44):

2 sin
ocmzﬁcosn[1+l cos (2n) Atan[ |<;| n ]

|<;| |<;| sinm 1+ |<;| cos M
_%log(l+2|g| cosn+|g|2):| , (4.50)
S
Im(g) z

with n = Arctg and ¢ = .
Re(c) POCO

If the wall is poorly absorbing, (|g| is great), this expression can be
approximated by

Oy :8Re[lj. 4.51)
S

4.3.3.Reflection of a harmonic spherical wave from a locally reacting plane surface

In such case one needs to express the incident spherical wave as the
superposition of plane waves (equations (3.42) and (3.43)):

1 1 (4.52)
4R (2n) K2

and apply to each wave

%kzexp[—i[ e=xo)+ 2y (=y0)+ 1,20 )] |. 4.53)
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the law of reflection of a plane wave (equations (4.40) and (4.41)) to obtain the
corresponding reflected wave:

¢n,—1 1
cn, +142_x2

exp[—i[—xx (x—X0)+Xy(y—Y0)+Xz(Z_ZO)] ] :

Finally, the total field can be written as

*i[ y( - o}‘L Z(Z*Zo)] . .
1)3 J'J'J’e 1, (3o {e_lxx(x_xo)+L—161xx(x—xo)}d3%’(4.54)

(2n Xz—kz c¢n, +1

where n, =y, /y is the cosine of the angle of incidence associated with the plane
wave considered. This process is not detailed here.

4.3.4. Acoustic field before a plane surface of impedance Z under the load of a
harmonic plane wave in normal incidence
The acoustic field before a plane surface (perpendicular to an Ox axis) of

impedance Z, and under the load of a harmonic plane wave in normal incidence,
can be written, according to the results of section 4.3.1, as

p=P [eik" +Re*ik"] =P, [2R cos(kx)+ (I—R)eikx]

, (4.55)
and, since k/kg =1:
Pi | ik e I T PP ikx
v=v,~——|e  —Re =— 12Rsm(kx)+(1—R)e . (4.56)
PoCo PoCo

Generally, these results are used over relatively short distances from the wall
(few wavelengths) and in tubes (where the dissipation during propagation is due to
the boundary layers), and consequently the complex wavenumber k (according to
equation (4.7b)) does not come in useful. In a tube, equation (3.118) is more
suitable. However, in most cases, the use of the real wavenumber k, remains
satisfactory.

Equations (4.55) and (4.56), for k =k, highlight the existence of a system of
stationary waves of amplitudes 2RP; cos(kgx) on which is superposed a
progressive wave traveling toward the wall of amplitude P, (1 - R).
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The intensity associated to this wave is

1
I=—Re[pv¥],
3 [pv*]

2 . i .
ZZR R{DRC%&0@+O—ka“]PﬁRsm&0w+a—Rﬂeﬂhq}
PoCo

(4.57)

2
__h R{—ﬂﬂ%m&wﬁm&wﬂﬁ—mz
2pco

+2R(1-R¥)cos(kox) e 0% - 2R (1-R)sin(kgx) ™" ]

The two first terms correspond respectively to the individual intensities of the
stationary and progressive waves. The intensity associated with the stationary wave
alone is null. The two other factors reveal the interaction between the two waves.
When all calculation is done, one obtains:

p2
2pgco

1= [|1—R|2+R(1—R*)+R*(1—R)}:i[l—|R|2] (4.58)

2poco

The latter result is the same as equation (4.43). The energy flux is null when the
waves are perfectly stationary (R =1).

If the complex reflection coefficient is written as
R =Rye'™,

the pressure amplitude can be written as

i
pMm =P (1+R§/I +2R\jcos {2k0(x —GTXJD . (4.59)

In practice, it is the mean quadratic pressure that is measured. It is proportional
to the amplitude Py;. The ratio of the maximum to the minimum of this amplitude
depends on the amplitude Ry of the reflection coefficient:

A
pM)maX :{HR%A +2RM] ’ 3 1+Ry

PM)min | 1+R% —2Ry | 1-Rn’

N
mRszM%“mM%m . (4.60)
Pm )max /pM )min +1
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The minima are localized at the points x (< 0) defined by
A
Xm =(21’1+1+6)Z, (4.61)

where n = 0, 1, etc. denotes the order of the zeros of the pressure amplitude as
numbered from the wall.

Thus, the measure of py; )maX , pM) and x,, leads to the estimation of the

min
complex reflection coefficient R in normal incidence, and subsequently of the
impedance Z of the material given by Z=pgco(1+R)/(1-R).

P can here be written as
poco Vv

The specific impedance Z =

Z =—icotg (k0x+\|1)=—c0th[—i(k0x+\|/)] , (4.62)

denoting

R =¢ Hel™
p=P (eikox +ReKoX ): Beos(k gx — )

where B=2P, eV with y = nc;—m :

4.4. Reflection and transmission at th interface between two different fluids
4.4.1.Governing equations

A plane wave of pressure p; reaches, in oblique incidence, the interface x =0
between two different fluids media, which are denoted (1) and (2) and characterized
by their respective elastic (compressibility), inertial (density) and dissipative
characteristics (Figure 4.3).



188  Fundamentals of Acoustics

n n
N 0 6’1

P1 ! !

P01-C015--- (002 >c01)

P02-C025--
p2

62 ~n

Figure 4.3.Reflection and transmission of a plane wave of amplitude |
at the interface between two different fluid media

The x-axis, which is perpendicular to the (y, z) interface, is directed inward the
incident medium. For the sake of simplicity, the media are considered non-
dissipative.

The problem can then be written as

2 2 2 2
{8 0 0 I o po(x,y,z,t):O, vVx20,y,z.t,

_+_ —_—— e
ox2 oyr oz oy at?

2 2 2 2
8—2-1-6—2 6—2—%6—2 pz(x,y,z,t):O, Vx<0,y,z,t,
8x 6y 62 002 at

po(0,y,2,t)=ps(0,y,2,t)  Vy,zt,

0 0
_pO(O’y’Z7t): _pZ(O’y’Z’t)’ Vy,z,t,
Po1Co1 OX P02C02 OX

where py =p; +p'; denotes the total acoustic field in the incident medium, and

p;=f (t —EJ denotes the incident plane wave generated by a source located at

€o1
infinity (x >0).
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4.4.2.The solutions

The acoustic pressure fields can be written as in section 4.2.1:

P = f[t—ﬂ] , (4.63a)
€o1

P = f(t —H] , (4.63b)
Co1

py = f{t -HJ, (4.63c)
€02

where the unit vectors {n,n',n"} denote respectively the directions of propagation
of the incident wave p;, the reflected wave p'; and the transmitted wave p,. At
the boundary x =0, the instantaneous fields (p;+p;') and p, must be equal at
any point and time. Thus, the argument of the functions f are equal V(0,y,z,t):
- B B vy, zt), (4.64a)
Co1 Co1 Co2

n n

Nyy+n,z nyy+n,z nyy+n,z

X ‘v’(y,z)’ (464b)
€o1 Co1 €02
implying that:
Oy Oy M gl _Pz_Dy (4.64¢)
Cor €01 Co2 Co1 €01 Co2

The plane defined by the direction of the incident wave n and the normal (6x)
to the interface is called the plane of incidence. Equations (4.64c) show that n' and
n'" are also in this plane. By choosing this plane as the plane (sz), and using the
notations of Figure 4.3:

n, =—cosf, n'x =c056'1, n; =-cos0, (4.65)

and n, =sin 0y, n; :sine'l , n; =sin0,. (4.606)



190 Fundamentals of Acoustics

By considering the system of equations (4.64b), one obtains the following
relations:

sin 0; =sin 9'1,

or 0; =0 since 0,,0] <m/2, (4.67)

and 5091 _sin0s (4.68)
Co1 Co2

These are the refraction laws of Snell-Descartes.

If the speed of sound in the second medium is greater than that in the first
medium, there exists a limit value 0; of the angle of incidence given by

C . C e .
292 §in 0; =1. Above this limit, the angle 0, is not real anymore and the

Co1
reflection is “total”.
4.4.3.Solutions in harmonic regime
The discussion is furthered by considering harmonic incident fields and
generalizing the argument to any type of signal by means of Fourier transforms (the

dissipation is ignored).
The amplitudes of the pressure fields are written as
Do =p1+p) = Pi[eikm(xcosefzsinel) R e—kalxcos0]+zsin e;)} ’ (4.69)
py =P T eikoz(xcos 0,—zsin ez)' (4.70)
The two equations of continuity at the interface on the acoustic pressure:
P0)x=0 =P2)x0. (21, (4.71)
satisfied assuming the Snell-Descartes law if

14R=T, (4.72)

and on acoustic particle velocity:

Vodeeo = V2 )dyoor  V(B1),
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lead to
! (1-R)cos6; = cos0,, 4.73)
Po1€o1 P02€02
or, dividing by equation (4.72), to
1+R:p02C02 COSOl (474)

1-R Po1€01 COSGZ '
Equation (4.74) leads to the expression of the reflection coefficient (amplitude):

0; —cosO
Mwhere G= —p02C02 . (475)
gcos B +cos 6, Po1Co1

R =

The substitution of the Snell-Descartes law into equation (4.75) yields:

2
ccos By —,|1- [ 02 sm@}
c

R = ot (4.76)

2
cecos Oy +,[1— [ smGIJ
Co1

and the transmission coefficient (amplitude):

2¢cos 0

.
gcosO; +,/1— [ s1n91J
Co1

If the speed of sound in the medium (2) is greater than that in the medium (1),
there exists a limit value O; for the angle of incidence above which 8, given by

T=1+R =

4.77)

02 gin 0, >1 is not real anymore. In such condition, the modulus of the
Co1

reflection coefficient is equal to one:

2
gcosB; —1i [C()zsinelJ -1
Co1
2
ccosB; +1 ( 02 smGJ -1
Co1

sin92 =

IR|= =1. (4.78)
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This result shows that there is total reflection of the incident wave. In grazing
incidence (0; =n/2), R =—1. This indicates that there is a change of phase during
the reflection. However, the transmission coefficient T =1+ R is not necessarily
equal to zero (except in grazing incidence). There is an apparent ambiguity here that
does not really exist. In a stationary regime, there is no real energy flux that
propagates along the Ox direction in the medium (2). Actually, since

. C .
sinf, =% §in 0,

Co1
then cos6, = =i (4.79)
the amplitude of the pressure p, takes the following form:
c 2 c
p> =P Texp| ¥k, (ﬂJ sin261 -1x exp{ikoz 92 7sin 91} . (4.80)
Co1 Co1

This is the expression of a wave that propagates at the interface between the two
fluids, on the side of medium (2), in the positive z-direction and that decreases
exponentially with the depth x. The negative sign before the square root does not
correspond to any physical situation, describing a wave of amplitude tending to
infinity with the distance (Sommerfeld’s condition, assumed herein).

4.4.4.The energy flux

The energy conservation law (equation (1.84)) is written, for 6; <0y as

Pizcosel 3 Pisz cos 0, . Pisz cos 0,

(4.81)
2pg1co1 2pp1c01 2ppaco2
5, cos0, T?
or1=R2 45720 (4.82)
cosf; ¢

where the second term (i.e., the fraction which depends on 0; and 6,) denotes the
sum of the reflection coefficient and the transmission coefficient (in terms of

energy).
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However, for 0; >0y , the intensity transmitted to the medium (2) in the Ox
direction, calculated from the corresponding expression of p, (4.80), is written as:

1 i * 0 0 =
- — Dy =Py — 4.83
X, )el>eL pE— {Pz P2 P2 Pz} (4.83)
and, since (';pi is of the form (o p, ) with o real:
X
Iy, )61>6L ) (4.84)

This supports the concept of total reflection.

. . -1 2 . .
Note: in normal incidence, R = s , T= =5 and the transmission coefficient

g+1 c+1
(in energy) is ot =72 /€.

If g<<1, R~-1 and T = 0, there is quasi-total reflection with a phase shift at
the reflection (water—air interface for example).

If ¢>>1, R~1 and T =2, the pressure at the interface is twice the incident
pressure (air—water interface for example).

For the air—water interface (g~ 3.6 10° ), the transmission coefficient (in terms
of energy) is equal to

N ST
p=—= ~—
S 3.610° 900

Only a small fraction of the incident power is transmitted (due to the strong
impedance discontinuity pgcg ).

4.5. Harmonic waves propagation in annfinite waveguide with rectangular
cross-section
4.5.1.The governing equations

The column of fluid contained in a tube (waveguide) with rectangular cross-
section, of dimensions L, and L, and of infinite length, is submitted to a
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harmonic acoustic field generated upstream from the tube and propagating along the
Oz axis of the tube. The walls of the guide are assumed perfectly rigid so that the
energy dissipation is due to the visco-thermal effects within the boundary layers; the
dissipation within the fluid and expressed by the wavenumber

k, =ko(l—iko .y, /2) (equation (2.86))

remains negligible compared to the boundary layers’ dissipation that is taken into
account by when considering the equivalent impedance Z, (equation (3.10)). A
priori, the wave propagates by means of multiple reflections on the walls (in oblique
incidences) so that in each transverse direction, it behaves as the superposition of
two interfering acoustic waves propagating in opposite directions and resulting in a
stationary state. However, the propagation is assumed (by hypothesis) unidirectional
along the Oz axis (since there is no reflection at the ends of an infinite tube) and

toward the positive z. The origin of the coordinate system is taken on the edge of the
tube (Figure 4.4).

The objective of this exercise is to express the acoustic field and to describe its
principal characteristics. The problem can be written, assuming k, ~k, and

suppressing the factor elot throughout, as

+—+—+k0}p(x,y,z):0, Vxe(0,Ly), Vye(O,Ly), Vz>z,
Z

8_p =ikg BaxD x=0, vy,z,

Ox

% - _ikO Baxpa X = LX ’ vy, z,

op _. 4.85
g = lkO Baypa y= 07 VX,Z, ( )
@ = —ikg PayP, y=Ly, VX, Z,

Harmonic wave ¢ generated upstream from the considered domain
(source located at z < 0 ) and propagating in the positive

z-direction.




where (equation (3.10)):

1+1

2
1+1\/§

LKLl

Pax =

e
[ ké‘}/fw(v NI
2
Oy !
2 Oy + =1ty
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Figure 4.4.Waveguide with rectangular cross-section

4.5.2.The solutions

195

One can, after a lengthy, but not difficult, derivation, verify that, at the first order
of the quantities B, and P, , the solutions can be approximated by

—-ik_z iot

Wmn(x Y)e mee

koL
co{kmx—i 0—x
Ymn = mrn

, with:

BameCOS[kny_l

I, myn=0,
k3 =k2 +k2 +k§mn
2
2k
K2 =(EJ i(2—8,y) 20Pam

L

X

koL,
Bayn , m,n =0,

, (4.86)

(4.87)

(4.88a)

(4.88b)
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where the quantum numbers n and m are integers (m n=0,1,2 etc) and where
the specific admittances B,,, and B,, correspond respectively to the quantities 3,
and B,y , in which the parameters k%x and kOy are replaced by their respective
approximated expressions (mm/L ) and (nm/Ly )

The general solution is obtained by superposing all the particular solutions as
follows:

Ay (x,y) e KamZ gt (4.89)
mn mn

m,n=0
where the coefficients A, denote the integration constants, the values of which
can be determined by the conditions at the source (this is, however, not developed

herein).

If a reflected wave is present, the solution could then be written as

> Wi (X, ¥) [Amne“kmz + B e [l (4.90)

m,n=0
introducing a double set of integration constants A, and B, .

In case dissipation is ignored, the solutions can be written as

WY n = COS| Ty | cos n_ny (4.91a)
L, L,
2-9% 2-98
Vin = mo 10 cos x| cos| -y |. (4.91b)
L, L, L, L,

The latter form is more widely used as the corresponding admissible orthogonal
functions y ,,, are normalized:

or as

L L
J.O ’ dXJ.o Yy W Vv = Sm},LSnv . (4.92)

A set of eigenvalues k,, = ﬁkrzn +kﬁ are associated with these
eigenfunctions. A more general development on the problem of eigenvalues is given
in the Appendix.
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4.5.3.Propagating and evanescent waves
The factor e Kam” does not necessarily describe a propagating wave. In other
words, in the solution (4.89), only certain modes — those for which quantum
numbers are the smallest — contribute to the propagation. The others, which are
evanescent, present exponentially decreasing amplitudes. To emphasize this
statement, the mode m =n =0 is treated on its own as if it was a particular case.

453.1.Modem=n=0

In the following, k, always denotes the ratio w/c, where c(, is the adiabatic
speed of sound and ® the angular frequency of the source (forced motion). The

square of the propagation constant k%mn = k% - kﬁl - 1{12l from equation (4.88) can
be written, when m=n =0, as

141 2(Ly+Ly)
k2o =k3 i ET {\/7 - 1%} (4.93)

or, denoting

1 2(Lk+Ly) 1
no_ﬁTﬁ[r Y- 1%} (4.94)

as
k2o =ko [1+1-D)mp]. (4.95)

where the imaginary part represents an exponentially decreasing wave. The latter
result is to be compared to that for the plane wave propagating in a cylindrical tube:

k2 ~k3[1+(1—i)n], (equation (3.118))
with n = \/_R\/k_[\/i Y- 1%}
0

These expressions of the propagation constant along the (62) are equivalent
since the factors (2/R) and 2(L, + Ly)/(LXLy) denote, in both cases, the ratio of

the perimeter to the cross-sectional area of the tube.
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The mode m =n =0 depends very little, and if dissipation is completely ignored
does not depend at all, on the x and y variables. It is called “quasi-plane” mode. The
associated constant of propagation is

1-i
kZOO z1(0|:1+TT]0:I (496)

The real part of the above equation is always close to kg, the phase velocity of
the wave (speed of propagation of the wave along the Oz -axis) is equal to the
adiabatic speed c( and its attenuation follows the same law as the attenuation of a
classical, guided plane wave (equation (3.122)):

r= ﬂ\/g [\/7 v 1%} (4.97)
L,L, V2

This mode is qualified as propagative.

4.5.3.2. Modes m and/or n #0
The set of equations (4.87) and (4.88) leads to

2 2
mm—ko—ij —{Hq +(1=1) vy +vy), (4.98)

L, L,

with

2
1 22-8m0), #||, [ mm T
vm-—zér——zf———ko 1 (k 3 ] O+ =1\ | (4.99a)

X 0tx

2
1 2(2-%40), ¥ nm [
=——" k.2 1- / =1L/ | 4.99b
Vn /—2 L 0 KaL v +(Y h ( )

y 0y

The factors (2—6,,0) and (2—-8,0) denote the number of reflections on the
walls per cycle. This expression of the constant of propagation for the (m,n)th
mode is to be examined in three different situations.

If Re[kgmn] ~ 0, the frequency of the wave, called cut-off frequency, is such
that k% ~ (mm/ LX)2 +(nm/ Ly)2 . The real and imaginary parts of k,,, are very

small (of similar magnitude as v, and v,) and the phase velocity associated to the

(m,n)th mode is great (it tends to infinity when dissipation is neglected). The wave
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associated to this mode oscillates between the walls under normal incidence, the
planes of equal phase are parallel to the main axis of the tube and consequently the
phase does not depend on the z variable, resulting in a phase velocity tending to
infinity. The attenuation remains small. The energy flux in the z-direction associated
to this mode tends to zero.

The two other situations correspond to the (m,n) modes that are such that:
‘k% _(mn/L,)> —(nn/Ly)z‘ >V + Vil

where the frequency of the wave is not near the cut-off frequency of the (m,n)th
mode considered. Equation (4.98) can then be written as

K2, = [k% —(mn/L,)? —(nn/Ly)z] [+(1=i)nm +na)l (4.100)

Vm

kg —(mn/Ly)* —(nn/L,)>

with n, =

n (4.101)

and n, = .
"k —(mr/Ly)? ~(an/Ly)?

Two types of modes are introduced depending of the sign of the Re[kgmn] .

The modes where Re[kﬁmn] >0 have an eigenfrequency smaller than the
frequency of the wave (mn/ LX)2 +(nm/ Ly)2 < k%. These modes for which the
real part of k,,, is finite have an associated wave, of which the phase velocity in
the z-direction is

() (O]

Kamn i3 ~(mm/ L)%~ (nm/ Ly )2

(4.102)

Comn =

The modes where Re[k%mn]< 0 have an eigenfrequency greater than the
frequency of the wave (mm/ LX)2 +(nm/ Ly)2 > k% . These modes, for which the

real part of k,,,, is almost null and the imaginary part is finite (the visco-thermal
terms M, and m, are not worth considering), have an associated wave that is

exponentially decreasing and exists only at the vicinity of its source (any
discontinuity in the tube). This mode is qualified as evanescent.
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It is clear that all modes, but (m = 0, n = 0), can be either propagative or
evanescent. The (0,0)th can only be propagative. Consequently, any tube where the
dimension and cut-off frequency are such that all modes that have at least a non-null
quantum number are evanescent can only carry plane waves. In these conditions and
outside the zone of perturbation (source, discontinuities, etc.), these tubes are seen
as plane wave generators.

Note: the eigenvalues of a rectangular cavity are obtained by replacing kﬁmn in
equation (4.98) with [(/r/ LZ)2 —(1-1)v,], k(o then representing the eigenvalues
is denoted k,,,,. The associated eigenfunctions are a simple extension of equations
(4.91) including the 3rd dimension z (see Chapter 6).

4.5.4.Guided propagation in non-dissipative fluid

This section summarizes and details the previous developments where, for the
sake of simplicity, dissipation is ignored (Ba = 0).
4.5.4.1. Modes with one null quantum number

Considering first the modes with one null quantum number (n, =0 for
example) leads to

Omo = cos(?x} (4.103)
X
2
mr7
kZmo =k —[L—J : (4.104)
X
P=> Ao COS(%X] e Kamo? g0t (4.105)
m X

Each term of this series can yet be written in the following form:

L a0l exp i(ﬂx - kzmozﬂ + expl:— i(ﬂx + kzmozj:l e (4.106)
2 L, L,

Equation (4.105) highlights the behavior of the modal wave (assuming the mode
is propagative) as the sum of two propagative oblique waves the directions of which
propagation are given by

mm
koL

sin® =+

(4.107)

X
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Zp

Figure 4.5.Decomposition of the propagating mode into two plane waves,
the double line represents the surface of equal phase

The speed of each wave front (phase velocity for each wave front) is equal to
¢y = ®/kg. The phase velocity of the wave planes, along the Oz axis, velocity at
the intersection z,, (Figure 4.5) of the considered wave plane with the walls is given
by

® o kj Co
m0 T ko ko cosO (4.108)

It tends toward infinity if 6 =n/2 or, in other words, when k,,, =0 and
ko~mn/L, (the frequency is equal to the cut-off frequency, i.e.
fo=(cy/2)(m/L),)).

The projection cg)mn of the wave speed ¢, associated with the (m,0) mode

onto the Oz axis (Figure 4.6) can be written as

ksz

ko

cg)mo =cqgcosO=cg (4.109)
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wave V¥ -
planes n=kq/kg

Co

C¢ z

C

g
Figure 4.6.Characteristics of propagation of an oblique wave plane

A simple derivation shows that this quantity is equal to the group velocity along
the Oz axis defined by

1
o0 _ [akz_moj (4.110)

zm0

o = ok o0

since

@.111)

This group velocity is equal, for any given mode, to the ratio of the mean energy
flux to the mean density of energy through a section of the guide. It represents the
speed of propagation of the energy along the main axis of the tube (to compare with
the equivalent result of the previous section). It vanishes at the cut-off frequency.

4.5.4.2. Modes with general quantum numbers

In the “general” case where m and n are non-null for non-dissipative fluids, the
various factors considered can be written as:

— the square of the constant of propagation
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2, 2 2. 2
Ky = k§ - = (4.112)
L L
X y
— the speed of sound
®
Co=—01, 4.113
U, (4.113)
— the phase velocity in the Oz direction
22 2 2 e
) kg 1| m“n® n°rm
C¢mn K =Co =Cop ——2 3 —2 , (4114)
zmn kZI'I'll'l kO LX Ly
— the group velocity in the Oz direction
i
1 2_2 2,2
g =g =g o1 T D (4.115)
akzmn kO kO Lx Ly

— the cut-off frequency of the (m,n)™ mode

2 2
Co m n
foo=—2 = +|—| , 4.116
m,n ) [LXJ {Ly] ( )

— the general solution in the form of a double Fourier series for propagation in
both directions ( B,,, =0 without reflected wave)

0

D= 5V (5 YA e 4 By om0t 4.117)

m,n=0

. mn nn
with vy, =cos| —x |cos| —y|.
L, Ly

4.5.4.3. Modal energy flux

The previous developments on the nature of the waves associated with the
modes of a guide can be summarized by calculating the intensity of a wave along
the Oz axis of the guide. The projection onto this axis of the particle velocity is
written as

1 0 1 _ ;
z = _p: E:Amn\lfmnkzmne Ko ot (4.118)
kopoco 0z koPoCo mn
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The intensity of the wave in the same direction then becomes

l( ok )
IZ:Zsz+p vVz)s

1 ik, oz ik
=—Re|: > \an\VqrA Amnkzmn T gl :|,

2kgpoco

mnqr

and the energy flux through the section of the guide can be written as

¢, = > Re{A ALK e (kzqr‘k;mn)z}

2kOpOCO mnqr
Ly LY

X J cos[r;m}cos [1&] dx _[ cos[?] cos [rg_y} dy;
0 X X 0 y y

or, denoting

1
(2-8m0)(2-8n0)

€mn =

and considering the orthogonality of the modes

2-98
=~ "mb ~%q0 IO [mnxj cos (qﬂj dx =8, s
LX LX LX LX

as:

Ly L
2Im|k
b, = Z|Amn| Re zmn] m[ Zm"] €mn -
21(OPOCOmn

Equation (4.123) is of the form ¢, = > ¢,,),

(4.119)

(4.120)

(4.121)

(4.122)

(4.123)

If the (m,n ™ mode is evanescent (f< fmn), then k,,, is a pure imaginary

number and ¢, ) =0.

If the (m,n)th mode is propagative (f > fmn), then k., is a real number and

L,L

_ X Ykzmn

2
Z)mn _ZPOCO ko |Amn| €mn -
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Thus, by denoting (mo,no) the couple of quantum numbers such that the
frequency fy, , s as close as possible (yet always inferior) to the excitation
frequency f , the energy flux can be written as

L L mO’"O 2
0, =2 > |Amal ce) Ems (4.124)
2900(2) m,n=0 o

k . . .
where cg>mn = im" co is the group velocity associated to the (m,n)™ mode.
0

This result highlights the fact that only propagative modes contribute to the energy
flux.

Moreover, the energy E contained in the tube per unit length, defined by

E= _fLX dx_[Ly dy p—O(VxVi +V VY +VZV2)+Lpp* , (4.125)
v 4 o 4pocs

can be written, considering the expressions of the particle velocity components

1 . n s .
Vy :—k; > I A sin T gos Y g mKamz ot (4.126a)
0P0Co m,an Lx Ly
i nn mnx . Nmy _ik iot
vy =1 > L—Amn cos——sin——e HamZgl®t (4.126b)
0P0€0 m,n Ly X y

and, by virtue of the orthogonality of the modes (4.122), as

L,L
y 2
E= > Z|Amn| Em - (4.127)
2pgcy m,n

For each propagative mode, the ratio of the mean energy flux through the section
of the guide (4.124) to the mean density of energy (4.127) is equal to the group
velocity ¢, )mn that can be interpreted as the speed of propagation of the energy

associated with the mode considered.

Note: if f< min(fOl,flo), then only the mode (0,0) is propagative; only one
wave (i.e. the plane wave) is propagating along the main axis of the guide.
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4.6. Problems of discontinuity in waveguides
4.6.1.Modal theory

By definition, a discontinuity in a waveguide is an abrupt change of the guide’s
characteristics along its main axis Oz . Changes of cross-section (considered
herein), of wall impedance, angle of curvature, etc. are all examples of discontinuity
in a waveguide.

The considered problem focuses on the discontinuity of section (Figure 4.7). The
origin of the z-axis is chosen in the plane of discontinuity, the index ¢ =1 identifies
the quantities relating to the guide upstream from the discontinuity ,(z < 0) and
¢ =2 those relating to the guide downstream from the discontinuity (z > 0).

The notations u, and w, denote the transverse coordinates of each part of the
guide (z<0 and z>0). For example, (u,,w,) denote the coordinates (x, y) fora
guide of rectangular cross-section and (r, 6) for a cylindrical guide (in relation to a
cylindrical guide, the solution \y(r, 6) is given in section 5.1.4).

Each part of the guide is characterized by its geometry that is assumed to be
compatible with a separation of the variables in Helmholtz’s equation
(A+k2)p =0. Each wall is characterized by its uniform acoustic impedance. For
each section of the guide, the problem presents an analogy with the problem (4.85),
and consequently the acoustic field in the guide (¢ =1,2) can be written as

2 (0) ()
P([)(uz:wzaz)= Z[Agr)le_lkzm“z +B%Lelkzm“z}wgﬁg(uz»w4)~ (4.128)

mn

The solutions \vgﬁl (uy,w,) are assumed to be ortho-normal (orthogonal and
normalized):

[fds, w%ﬁ(uz,w)wﬁf)(ueaw% O my Ony - (4.129)

The solutions constitute an orthogonal basis (or quasi-orthogonal) for the section
S, (see Appendix).

The integration constants Agﬁl)1 and Bgﬁ% can be obtained by writing:

— the equation of continuity on the pressure and particle velocity at the
discontinuity:

p(uy.w1.0)= p®(uy,w5.0), (4.130)
VW0, w1.0)= 7 (uy,w,.0), “.131)
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— the equation of continuity at the end of each tube, which are of various forms
depending of the system constituting the receiving ends of the guides. It is not the
objective of this section to exploit of these conditions.

The equation of continuity on the pressure (4.130) can be written, substituting
the appropriate form of solutions, as

z[A +an]\|1mnu1 wy) z[A +Bw]\|1 (uy,wy). (4.132)
nv

Multiplying the left-hand side term by \4/( ) (ul,wl) and integrating over the
section of the tube (1) (S; is assumed belonglng %0 S, at z = 0) and considering the
orthogonal characteristics of the solutions leads, for any mode (mg,ng ), to

AW +Bg)0n0 =2[AEV)+B&2V)] Hsl\vffv) v gs;. (4.133)

myn, men,
uv

The equation of continuity applied to the z-component of the particle velocity at
z=0:

1 .
V(2)(u W 0): Vg)(ul,WI,O) lnsls (4 134)
AT inS,—S '
2 71>

leads to the following system of equations:
2 2 2 1 1 1 2) . (1
L - s s s s s
mn

The only purpose of the above developments is to show the approach adopted to
solve the problems of guided propagation in the context of modal theory. These
methods, very often used at low frequencies, become cost inefficient at high
frequencies. The following section is a study case at very low frequencies of a
situation that does not require great accuracy.

4.6.2.Plane wave fields in waveguide with section discontinuities
As for the tube of rectangular section presented in section 4.5, cut-off

frequencies are associated with each tube and with all modes (m,n). For all
frequencies lower than the first cut-off frequency, only the 0,0) mode is
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propagative, all the others being evanescent and therefore considered negligible as
soon as the observation point is away from their sources.

In this context, as a first approximation, all waves, but the one associated with
the (0,0) mode, are non-existent. The results of the previous section then lead to

w1748, kY kg = o/ ¢, (4.136)
and
- [A%)e_ikOZ +Bgéo)eikOZ wg%), for each guide ¢ =1,2. (4.137)

The equations of continuity applied at the discontinuity z=0, given by
equations (4.133) and (4.135), lead, respectively, to the laws of continuity on
pressure and on velocity flow:

o\:‘/
UJ
8’:
o
OJL’
I
S

0 + thus p(z=0)=p?(z=0), (4.138)

NSRNCRIN Y

—_

1) g
Ao0 _ Buo (4.139)

{@rsrr

Equation (4.139) expresses, in this particular case, a continuity of the velocity
flow at z=0 (this is how this equation is usually introduced):

[slv ] [Szv ] - (4.140)

Thus, equation (4.140) implies that the particle velocity presents a discontinuity
similar to that of the section of the guide. In practice, perturbations are generated at
the surface of the discontinuity (generation of modes of superior order m=#0,
n # 0), but this domain can be considered localized (these modes are evanescent)
and therefore, the wave conserves its plane characteristics at any point away from
the discontinuity (zone which extend is denoted & in Figure 4.7) and at these
points, the acoustic fields can be estimated using the equations of continuity (4.138)
and (4.140).



Basic Solutions to the Equations of Linear Propagation 209

Figure 4.7. Perturbation of the acoustic field at a discontinuity

If there is no reflected wave in the medium (2) (infinite tube), Bg20) =0 and the

coefficients of reflection and transmission at the discontinuity z = 0 are written as

B0 Al
RoB00 o=l g po [t 2 4.141
() g+1 S, A U g+1 ( )

with Q—SI/SZ.
The law of conservation of energy then becomes

2
1=r2+ 1 (4.142)
S

where the three factors represent, respectively, the 1nc1dent energy flux (1), the
reflected energy flux ( ) and the transmitted energy flux (T /g).

T2_ 4¢

S (g+D)?

transmitted, but reflected. This important result shows that the energy flux
transmitted outside the open tube is very small compared to the energy flux reflected
at the extremity.

If S; >>§;, then ¢ >0, — 0 and R — —1. The energy is not
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Note: at a “Y” joint (for example), considering the sign conventions of Figure
4.8. the previous results lead to

P1 =DP2 =D3, and SIVI +SzV2 +S3V3 ZO,
thus

Yl +Y2 +Y3 =0, (4143)

Sivi

Pi

where Y; = denotes the admittances presented at the junction of each guide.

Vi

Si,p1

Figure 4.8. “Y” junction between three waveguides

4.7. Propagation in horns in non-dissipative fluids
4.7.1.Equation of horns

Seldom are the cases where a simple coordinate system can be adapted to a real
horn so that the Helmholtz’s equation is separated into as many equations as
separable variables. The few cases where this is possible are well known: the tubes
with rectangular sections leading to simple equations in Cartesian coordinates
(section 4.5), the tubes with circular sections leading to equations in cylindrical
coordinates (see Chapter 5), the conical horns that can be treated in spherical
coordinates (see Chapter 5), and the hyperbolic horns (not considered herein).

For the horns with more complex shapes (such as the exponential horn), there
are no exact solutions, but only approximated ones, the most commonly used forms
of which are presented here.
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The shape of the horn influences the form of the solution. In the case of the
conical horn with spherically symmetrical waves, it is clear that the surfaces of
equal phase are spheres (no transverse modes). The coordinate r (Figure 4.9) is
well suited to the description of such problem.

i

wave planes

i

Figure 4.9.Conical and general horn shapes with wave planes

By extending this principle to any shape of horn, a theory with one parameter
can lead to a satisfactory approximate solution while considering the equiphase
surfaces plane. Actually, one can determine the degree of accuracy of such method,
or the degree of approximation, due to these hypotheses. However, one should note
that the above hypotheses imply that the variation of radius of the horn with respect
to the coordinate x is not too steep and that the theory is only applicable at low

frequencies. Therefore, the particle velocity is assumed along the Ox axis and the
acoustic quantities depend only on x and t.

The substitution of equation (1.55) (reversible adiabatic transformation) into the
equations of mass conservation (1.27) gives, away from the source,

1 o=
L1, %dDo +poffs, VS0 =0,
Co

where S is the surface delimiting the close space D(. The expression of the
fundamental laws in their integral form leads to an expression of one variable by
considering the mean values of the transverse dimensions of the waveguide.
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The integration over the volume and the surface of a section dx of horn yields:

1
> Sdx % +Po [(Sv)x+dx - (SV)X ]: 0,

o

or

L op 0

Lg% 9 (g)=0. 4.144
2 Po 5, V) (4.144)

where v is the Ox component of the particle velocity and where S depends only
on the variable x.

Moreover, Euler’s equation (1.33) taken away from any source:
pofll, Zvdv+[]. pd§=0
Dy ot So ’
gives after a similar integration:

Sdxpy 5+ ). ~ () 8) =0

the force (p), +dx [(S)x dx —(S)X] , noted f in Figure 4.10, is not exerted onto the

section of fluid considered (reaction force from the walls of the horn).

Figure 4.10.Element of fluid near the wall of the horn

The above equation yields finally the local Euler’s equation:

ov  Op
N Dy, 4.145
Po5 T 5 ( )
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By applying the operators 0/0t to equation (4.144) and 0/0x to equation
(4.145), and taking the difference between the resulting expressions, leads to:

2 2
1
or O _ 107 oSk _ (4.146)
ox? ¢} a? ox Ox

The particle velocity can be calculated from the solution p into Euler’s
equation. The result is known as Webster’s propagation equation (suggested first by
Lagrange and Bernoulli).

The same result can also be obtained by considering the horn as a series of
elementary cylindrical waveguides and applying the conditions presented in the
previous paragraph at the interfaces between consecutive elementary tubes (Figure
4.11). Each elementary guide of length dx presents a discontinuity and a cylindrical
tube in series. This combination of two well-known systems makes it possible to
express the acoustic field at x + dx as a function of the field at x, in other words the
variation of the field over a distance dx.

-
1
'—II 1
— ! |
— ! | ! |
] |
| : | ! |
] | 1 | 1
S S S S
©odx

Figure 4.11.Series of discrete elementary cylindrical waveguide

The condition of continuity on the velocity flow (4.140) at the discontinuity can

. dv ds .
be written as vS = constant or — = g Consequently, the elementary variation
v

of particle velocity in the Ox axis due to the discontinuity of cross-sectional area is

dv=—-——dx,
S dx

or, denoting ¢ the velocity potential (v =¢'= g_d)j :
X

do'), = —% o'dx, (4.147)
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where the subscript “1” indicates that the elementary variation of ¢' is due to the
discontinuity of cross-sectional area. The discontinuity is considered small so that
d¢' can be taken as an infinitely small number of first order and that consequently
the value of ¢' in the right-hand side term is both its value before and after the
discontinuity.

When considering a single elementary cylindrical waveguide of length dx, the
equation of propagation within that guide given by

1%
0(2) at?

q)ll —
can be written, introducing the elementary variation of ¢' noted d¢')2 , as
d¢'), = ———dx . (4.148)

Thus the total variation d¢' over the length dx is

S 1 0%
do'=d¢'); +dd'), = ——¢+—— |dx,
¢'= d¢')y +dd'), { S¢+C332]X

s 9%
or ¢"+—¢'-cyp”—==0. 4.149
P d—co %! (4.149)
. . 00
This equation is the same as (4.146) for the horn | p=—p o)

4.7.2.Solutions for infinite exponential horns

By definition, an exponential horn is a horn, the cross-sectional area of which at
the coordinate x is given by

S=8ge?%*.

Given the hypotheses made in the previous section, the solutions are of the form
et el The substitution of these forms into the equation of propagation leads to
the following equation of dispersion:
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2
k2¢2iak—‘”—2=0,
€o
0)2 2
or k=*iat — o, (4.150)
€0

the two F signs not necessarily being the same.

Consequently, the physical solutions to the problem, the converging ones, can be
written as

(1)2
—i —zfazx )
e e V%0 e, (4.151a)

e e 1% elot 4.151b
( )

The factor e”** accounts for the variation of the wave amplitude due to the
variation of the tube cross-section. These waves propagate in opposite directions
with a phase velocity defined by

Cp = - o (4.152)
2 2
@42 1- fe
c% f
where f. = % is the cut-off frequency of the guide, and with a group velocity
T
equal to
2
om f
c. =L oo 1=l = . 4.153
g ok 0 [ £ j ( )

These velocities depend on the frequency, meaning that infinite horns are
dispersive for sound waves. When the frequency coincides with the cut-off
frequency f., the phase velocity tends to infinity. In other words, the fluid behaves
with a unique phase across the entire length of the tube. However, no energy flux is
associated with this type of phenomenon since the group velocity is null (equation
(4.157)).
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Below this limit, evanescent waves appear in the horn. Consequently, in order to
transmit low frequencies, a horn requires a small value of a (“slow aperture”) and a
great length. The expressions of intensity and energy density verify the latter
condition. The acoustic intensity (energy flux) is given by

*

* 2 2
I:.Jﬂl__ 1_[££j .+i££ + 1_[££} _ifg ,
4p000 f f f f

* £)° £
D S O -2 [ I VN - B (4.154)
4p000 f f

Therefore:
for f<f.,1=0,
e—2(xx f 2
for f>f,, I= -5 . (4.155)
Zpoco f
The energy density is given by
* —2ax
g=Po * PP ~= ¢ - (4.156)
4 4pocy  2p0Co

and for f > f, the ratio of the intensity over the energy density is equal to the group
velocity:

—=coy1-(6 S =cp, (4.157)

interpreted as the speed of propagation of the energy in harmonic regime.



Chapter 4: Appendix

Eigenvalue Problems, Hilbert Space

In the two previous chapters, the notions of orthogonal functions, the basis of
functions in which any solution of a given problem can be expanded, have been
used several times and are extensively used in the following chapters. The objective
of this Appendix is to present the associated formalities in order to simplify the
developments to come. The mathematical notions introduced herein are simplified
for the sake of clarity even though the rigorous reader would be advised to examine
more detailed versions.

A.l. Eigenvalue problems
A.1.1.Properties of eigenfunctions and associated eigenvalues

The governing equations, apart from the boundary conditions, are the equations
of propagation of the waves and the Helmholtz equation. The latter can be deduced
from the former when the objective is the analysis of the propagation of
predetermined waves at given frequencies using harmonic solutions or, in case of
unknown waves form, Fourier analysis. The homogeneous Helmholtz equation
(equation of propagation in the frequency domain, without any source), in non-
dissipative fluids, with which are associated certain boundary layers’ conditions,
constitute an eigenvalue problem. This problem has a solution |, for each given
value of the wavenumber k, identified by the same subscript “p” that can take,
depending on the problem at hand, a set of real, discrete or continuous values.

Let y be a class of continuous functions y, with pe N with continuous first
and second derivatives in the regular domain (D), then y, and oy, /on = ﬁ.pr
(n being the direction outward normal to the frontier of D) are continuous across
the surface (6D) and satisfy the following system of equations:
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(A-2p)w, =0 in (D), (4.158a)

(z;o _%jwp _ 0 over (aD). (4.158b)

The complex parameter ¢ is, in acoustics, related to the impedance of the wall
by the relation {o = —ikgpocq/Z. This problem has a non-trivial solution vy, #0
only if the factors (L) take certain well-defined values called eigenvalues (the
functions y, are then called eigenfunctions). Similarly, another class ® of
functions @, is defined to satisfy, in the same domain (D), a system of equations
where the operators are the complex conjugates of those in equations (4.158a) and
(4.158b):

(A=) @y, =0 in (D), (4.159a)

[QB —%}Dm =0 over (D). (4.159b)
The expression
”I(D)[‘D;A‘Vp _‘Vp(Aq)m)*] db,
= m(D)div [cpfngrad vp — W, erad (D;]dD,
x Oy oD,
“feo| 2 e o
gives, taking into consideration the boundary conditions (4.158b) and (4.159b):
Mo [q»*mAwp —\VP(ACDm)*] dD = [ [cpfngowp ~ypGo®m |dS=0.(4.160)

The substitution of equations (4.158a) and (4.159a) into the triple integral of
equation (4.160) yields:

* >k * *
m(D)[CDmAwp —y,(ad,,) ] dD = (A )ﬂ(aD)CDm y,dD. (4.161)
Equations (4.160) and (4.161) combined lead to the following result:
(xp—p;)jj(D)Q”;wpdDzo. (4.162)

Two situations can then occur, depending on the nature of the parameter (
(real or complex).
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A.1.1.1. The parameter  is a real number

The eigenvalue problems (4.158) and (4.159) are identical so that ®, =y, and
Hp =L, and, according to (4.160):

ﬂf(p)[‘VTnA‘Vp ‘Wp-A\vfn] dD=0, VYy,,y, (4.163)

The Laplacian operator A is said to be a Hermitian operator to the class of
eigenfunctions in the domain (D) and the system:

(A-2, v, =0 in (D), (4.1642)

[Co —%]wp =0 over (4D), (4.164b)
is an auto-adjoint. Equation (4.162) then becomes:

0= (7‘13 _XE)III(D)W;WPdD’ vm,p,
implying that:

ifm=p, A, = X; and the eigenvalues are real, (4.165)

ifm=#p, III(D)\V;‘VpdD =0 and the eigenfunctions are orthogonal. (4.166)

The fact that the eigenvalues are real implies that the eigenfunctions are also real
(see equation (4.164a/b)). Therefore, by setting the norm of the eigenfunctions equal
to the unit, equations (4.165) and (4.166) gives

ﬂj(D)wm\vpdD = Bpmp> (4.167)
A €R, (4.168)

which implies, when writing (—km):kfn, that the wavenumber k, associated
with the eigenvalue A, is either real or pure imaginary.

A.1.1.2. The parameter Cyy is a complex number

In this case, the conjugate of the eigenvalue problem (4.159a/b) is:
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AD, — @y =0 in (D), (4.169a)
(go —aijcpfn =0 over (éD), (4.169b)
n

leading, when compared to (4.158a/b), to:
CD;FD =y, and },l; =Ly

The operator is not a Hermitian operator and the system is not auto-adjoint
anymore. Equation (4.162) then becomes:

(kp—Km)Iﬂ(D)wm v, =0, Vm,p, (4.170)

implying that:
— if m=p, the equality is satisfied without conditions (the eigenvalues are
generally complex),

—if m#p, j'.”(D) vy, dD =0 and the eigenfunctions are orthogonal.  (4.171)

A more complete analysis of the problem shows that qualifying the
eigenfunctions as orthogonal is not correct from a rigorous mathematical point of
view and that equation (4.171) is not satisfied exactly in the domain (D).

A.1.2.Eigenvalue problems in acoustics

One can almost never overcome the above difficulties in acoustics since any
wall, even perfectly rigid, is represented by a mixed boundary condition and that in
many situations this condition cannot be replaced by Dirichlet’s (\V:O) or
Neumann’s conditions (6\41/ on :0). In practice, however, the parameter (,
proportional to the admittance 1/Z of the wall, is often a complex number with
very small real and imaginary parts. Therefore, the properties of orthogonality
(4.167) or (4.171) remain acceptable within the approximations made and the
property (4.168) holds as a first approximation. The results (4.86) to (4.88b)
obtained for waveguides, or those in equations (4.14) to (4.18), are all examples.
The first presents a spectrum of discrete eigenvalues (mm/ LX)2 +(nm/ Ly)2 while
the second presents a continuous spectrum of k( values.

A.1.3.Degeneracy

There is a “n™ order degeneracy” if there are n eigenfunctions associated with

the same eigenvalue. If these eigenfunctions are not orthogonal once the problem is
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solved, one can make them so by using appropriate linear combinations called the
Schmidt’s orthogonality process.

A simple example of degeneracy is the solution of the angular part of Helmholtz
equation in generalized cylindrical coordinates (see Chapter 5). The equation

2
6_\2|1+sz=0

oo

has two linearly independent solutions associated with the same value of the
positive (or null) quantum integer m, either ¢ "™ and ¢™™® or sin(mg) and
cos(mgo) .

A.2. Hilbert space
A.2.1.Hilbert functions and - 2 space

The previously defined functions vy, belong to the class of Hilbert functions, as
shown by (4.167). Some remarks in the two previous chapters lead to the conclusion
that these functions form a basis of functions in which the solution of “real”
problems can be expanded. This sections aims to detail this approach, using the
results of section A.1 in the simplest way possible.

Since the functions ,, and solutions to acoustic problems belong to the 2
space, it seems important to systematically study the mathematical properties of this
space. The 2 space is a space of infinite dimensions: a function @ (i.e. the
velocity potential in acoustics for example) is defined by an infinity of
“coordinates” that are the values taken by this function for various values of the
variable (f) It happens that many well-known properties of a space of finite
dimensions (i.e. 3-dimensional space) can easily be generalized to the 2 space
(such as the scalar product, the projection of a vector onto vector, the decomposition
of a vector into an ortho-normal basis, etc.).

In geometry, it is often simpler to work with vectors rather than coordinates in a
particular basis: it is the principle of vectorial calculus. A similar idea motivates the
study of & 2 space. Each function of this space is considered as a vector of 2,
The vector associated with a function @ is noted |CD> (rather than CT)) using
Dirac’s notation.

In acoustics, the complex conjugate an of the function y,, in equation (4.166)
does not appear in the final relation (4.167) as a complex conjugate as it is always a
real function. This situation is not common in physics and to keep the following
remarks as general as possible, the complex conjugate notation will be conserved
throughout.



222  Fundamentals of Acoustics

The function @ is said to be of “summable square” if the integral
(I |o(F) dF is finite, (4.172)

and, since any linear combination of such function presents the same characteristics,
the 2 space is a vectorial space.

A.2.2.Properties of Hilbert functions and complete discrete ortho-normal basis

The scalar product of a function ®; by another function @, is defined by:
* —
(D] ®y) = [[[ D Dydr . (4.173)
It is called scalar product as it presents the usual characteristics of an “ordinary”
scalar product (including the linearity), and particularly since (I>|CD> is a positive
real and two functions @, and @, are said to be orthogonal if (D |(I>2> =0.
Considering a finite set of such functions identified by a subscript (i, j, etc.):

W19W29-"3\Uiaetc'

one can qualify the set as ortho-normal if it satisfies equations (4.166) and (4.167),
that is:
<\Vi

where 8;; is the Kronecker 8 .

wj) = Jlfwivdf =5, (4.174)

In addition, the set of functions is said to be complete if any function @ of the
considered /2 space can be written as the unique expansion in the basis of the
functions y; :

O()= 3 ¢iwi(r). (4.175)

The functions w; form an ortho-normal, complete and discrete basis. The
calculation of the coefficients c; can be carried out by multiplying the two terms of
equation (4.175) by y; and by integrating over the whole domain (scalar product).
When considering equation (4.174), the following is obtained:

cj=(w;j|®)=[lfv]@dF. (4.176)
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[73%L)

The substitution of equation (4.176) (replacing the subscript “j” by
equation (4.175) gives, successively:

1) into

()= (v o)vi( z[mwl o a7 i (5),
. m{;w:‘&wi(f)} off)ar:
This result, compared with the definition of the Dirac distribution
@(f)= [[[3(F - ') (') dr",
leads immediately to (for any @ ):
gwi‘(f')wi(?)ﬁ(f 7). (4.177)

This relation is known as “relation of closure” and expresses the completeness of
the basis of y; (as is the case for the sinuses functions used in section 4.5).

The scalar product of the function ®; =3 b;y; by the function @, =3 ¢y
is given by: i j

(0)]|@,)= Zb}‘cjmwfwjdf = becjsij = Zb}‘cj, (4.178)
] 1 1

and:

(@]@3) =3 [oi]* (4.179)
1

The Fourier series is a well-known example.

A.2.3.Continuous complete ortho-normal basis

A continuous set of functions identified by a subscript taking the continuous
values (oc, B,.. ) , which satisfies the orthogonality condition:

(o |wp)=[Tvewpdi =8(a-p), (4.180)
(where & is the Dirac distribution) as well as the relation of closure:

[ o)y (F)da =8(F—), (4.181)
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constitutes a basis of /2 in which each function @ can be uniquely written in the
form:

@ =[docyy,(7) (4.182)
where ¢, = <\;/0L |CD> = .[”\y;(f)(b(?)df . (4.183)

The Fourier integral is a well-known example of expansion in such basis; in this
case equations (4.180) to (4.183) can be written, respectively, as:

[ (GRS [ ello-okgt = §(o-o) (4.184)
= V2 o 2 ’ '

i * eTOt it gy = i 2 ellttho e = 5(t-t), (4.185)
@(t)= \/;_n [* ®(o)e™ do, (4.186)
D(w)= ﬁ [© @(t)e ™ dt. (4.187)

Note 1: the function e'® is of course not a vector of 2! However, the
previous properties can still be applied to it. This is not much of a problem as in
practice these functions are always truncated (integrating in the time domain
between —co and +oo does not come in useful since the dissipation is not negligible
in practice) and therefore satisfy all the properties of a vector of 2

Note 2: the use of the Dirac notation makes possible the use of a condensed and
lighter presentation. The following are illustrations of its benefits. The scalar
product of ortho-normal functions (equations (4.174) and (4.180)) is written:

<\Vi

The expansion in a basis of ortho-normal functions (4.175) and (4.182) can be
written as:

)= cifw),

1

vi)=0;. (4.188)

or, according to (4.176) and (4.183):
|@) =X {wi[ @) wi) or [©)=X]wiKvi[ @), (4.189)

which leads directly to the relation of closure (4.177) and (4.181):

1= |wi)wil, (4.190)
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where, according to the statement in section A.2.1 that |(D> is as a vector of /2 ,
the projection <f|CD> of which onto the direction |f> represents the function ®(r),

(1) = X |wi lwi [ 1). (4.191)

1

P * (= =
or S(r—r):Z\yi(r)\ui(r). (4.192)
1
Note 3: the equality between two expansions in the same basis,

Yai|vi)=Xbjli) (4.193)
i j

is equivalent to the equality of the coefficients of equal subscripts, and subsequently
to the equality, term by term, of the expansion coefficients:

an=bn,.

Proof of this is given by projecting each term of equation (4.193), using the
scalar product (4.173) and (4.180), onto the eigenvectors of the basis:

(¥ |Zi:ai|\l’i>=<\lfm I;bi|\vj>,

and applying the relation of orthogonality (\ym |\|/n> =8y - Thus:

1

ZaiSim :ijg_]m or a, me.
J
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Chapter 5

Basic Solutions to the Equations of Linear
Propagation in Cylindrical and
Spherical Coordinates

This chapter complements the previous one by providing a comprehensive
description of the acoustic motion in fluids initially at rest in the assumption of
linear acoustics. The problems and general solutions are presented in curvilinear,
cylindrical and spherical coordinate systems. Dissipation is considered, where
appropriate, in a similar fashion to that in Chapter 4.

5.1. Basic solutions to the equations of linear propagation in cylindrical
coordinates

5.1.1.General solution to the wave equation

The polar coordinatesﬁr,cp) and the coordinate constitute the coordinate
system. The corresponding unit vectors are respectively deepteg], ande, .
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z/\
o B

<. € ~

r —e'r
e, .

e(P

& o y
A .

Figure 5.1.Cylindrical coordinate system

The usual operators take the following forms:

dr =dré, +rdpe, +dze,,
ou. 1oU. oU._

radU=—¢ +-—¢,+—8&,,
g o " rop ® oz ¢

- oA
divAzlﬁ(rAr)+}—‘p+aA—Z,
ror r oo 0z

. oA,
oA | LAz _Po g [OA 0A1e 10, ) 1
r oo az 0z or ror
a u_ 10y 1 6%U a%U

—t e,
o ror g2 002 072
AA = grad divA — rot rotA.

AU =divgradU =

Away from any source, the acoustic pressure satisfies the following equation of

propagation:

vp= 12(r2j+ii+3_2__15_2 =0
ror\ o) r20p% 0z2 c?at? .

(5.1)

(5.2)

(5.3)

106A, |
r} €, (5.4)
o

(5.5)

(5.6)

(5.7)

The solutions to this equation are assumed to be separable and in the form

R(N®(9)Z()T(t) .

(5.8)
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By using the same approach as in sectd.2.2, equations (4.24) to (4.31) and,
applying the same logic, the substitution of solution (5.8) into equation (5.7) leads
consecutively to

1d°R 1dR 1 d’0 1d’Z 1 d°T

——— += = = k2,
Rdr2 rRdr 20 dp? Zdz2 c2T di?
2
or d—ImZT:o with @2 = k2c?, (5.9)
dt
2 2 2
ag LER, 1R 1 A0, 107 \p
Rdr? rRdr (2@ dg? Z d7?
2
thus tod—z+ k2z=0 (5.10)
d2 -
A
2 2 2
and [ 97 19 o 2ok LA
Rlgr2 rdr ® dop?
and finally to
2 2
28D k20 =0 with k(1) =" or &% %0 0, (5.11)
re de r do
and
2
(d—2+}d£]R+kr2(r)R -0, (5.12)
dr r ar
where
k?(r)=k? —kZ —k3(r) (5.13)

is the associated equation of dispersidn= k7 (r)+ k3 (r)+ k5.

The in-plane “wavenumber componemt&fined by the polar coordinates and
denoted here ak,, is independent of the variabteand is given by

kg =kZ-kZ =kZ(r)+k3(r) (5.14)
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where the three “component&;, k, and k, of the wavenumbek are always
functions of the quantum number (unhke the wavenumbek itself).

By adopting this notation, the radial equation (5.12) takes the form called
“cylindrical Bessel's equation”;

[d_22+E£JR(r)+(ka, —m—zz] R(I’)ZO. (5.15)

The general solutions to equations (5(8)10), (5.11) and (5.12) (or 5.15) are
respectively

T =g (see the note on equation (4.26)),
Z = Ajcodk,z)+ Bysin(k,z),
or Z=A,codk,z+9,), (5.16)

or Z=Bysin(k,z+¢,),

or finally Z = (xle 2 4By e (5.17)

@ presents the same form @flution as Z, except that, @ is replaced by ()
where the indexm is an integer so that the functidnis periodic of period2x.

R= Alm‘]m(kwr)“‘AZmNm(kWr)-

or R =By Hi(kyr)+ BomHm(kyr) (5.18)

The general solution to equation (5.7) is a linear combination (sum over the
index m and integration over the coefficiekt, ) of the solutions (5.8) that depend
on these factors and constitute a basthefconsidered space (see the Appendix to
Chapter 4). An example of such expansion, called Fourier-Bessel, is given by
equation (3.53) or (5.37).

The solutions (5.18) are respectively Bessel's functions ofttkindl expanded
to the ' order (Jm), of the 29 kind (also called cylindrical Neumann’s functions)
and finally cylindrical Hankel'sfunctions, qualified as converger{HTn) or

divergent (Hr‘n) depending on the choice ', Since Neumann’s functions

diverge at the origin, they cannot appear in the solutions if the considered domain
includes the origin of the coordinate system.
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Even though they are only approximations, the asymptotic expressions of Bessel
and Hankel’s functions reveal the gealébehavior of these functions. Far>m>1
(and forx >>1 if m=0), these asymptotic expressions can be written as

In(x)= \/n—éco{x—(Zm+l)%}, (5.19)

Ny (x)= \/nzxsin{x—(Zm+l)ﬂ, (5.20)

2 ei{x7(2m+l)%} (5.21)

2 e—i[x—(2m+l)ﬂ |

Hin (%)= =

(5.22)

These forms highlight the stationary characteristics of the waves described by
Bessel's functions and the propagative characteristics of the those described by

Hankel's functions (diverging foH,, and converging forH,). All present an

asymptotic “geometricaldecrease in the form/ Jr that is typical of cylindrical
waves.

5.1.2.Progressive cylindrical waves: radiation from an infinitely long cylinder in
harmonic regime

5.1.2.1 A general case

A vibrating infinite cylinder of radiusR and of main axisOz radiates in an
infinite domain of fluid atrest. Its motion is destrd by the harmonic radial
vibration velocity of its surface as

v, (r=R)=vgcogk,z)co{mge)e't. (5.23)
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The problem can then be written as

2 2
lg(rg}ri 0 4.8_+k2 p=0, r> R, (5.24a)
roror) 2 0p° 0z°
i op igt
=vgcos(k, 2 co e £ R,

kocopg or 0 (k2 cog rge)
Sommerfeld's condition at infinity (5.24b)
(no back-propagation wave).

The solution is unique and written as

- —I_kOCOpOVo Hom, (kwr)codk,z)cogmop)e™, (5.25)
oHm (kyR)/ R

5.1.2.2 First order oscillator: oscillating cylinder and vibrating string

The oscillating cylinder is generally characterized by a vibration velocity
(equation (5.23) withmg =1) in the form

v, (r=R)=vgcodk,z)cospe'!. (5.26)
The solution is given by equation (5.25) wheng =1.

In the particular case where the radiBs is significantly smaller than the
wavelength consideretk,, R <<1), as is the case of a “vibrating string”:

2i
nky R

’

Hf(kw R) ~
and the solution can be approximated by

=2 poco Vo Kokw R Hi (kur)codk,z)cod o), (5.27)

which asymptotic expression, obtained considering the farﬂie,lﬁ - oo), is

p= pocovokon/—k R\/7 cos(k z)coqp)e' (5.28)
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Koy/K
The amplitude of the acoustic field is proportional VW B2 and s

\/F

extremely small. Consequently, the acoustiergy radiated by a vibrating string is
usually negligible.

5.1.2.3.Pulsating oscillator: cylindrical monopole — elementary solution

As a vibrator of order zer(mo = O), the pulsating cylindeis characterized by
the vibration velocity

v, (r=R)=vgcodk,z)e'". (5.29)
The solution (5.25) can be used in this case by takigg= 0. In the particular
case where the radius of the cylinder small compared to the wavelength

(kR <<1):

oHokwR) - =
P kal(ka)~nR, (5.30)

and consequently the solution takes the following form:
p~~K0poco Qo Holkur)codk,2)e'™, (5:31)

where the factorQqy denotes the amplitude dhe lineic surface velocity
(Qo =27Rvy).

The near-field solutiorfk ,, r <<1) can be written as

1 .2 2
~—kppoC 1+i—=In
27°0P0 oQo{ - [ek

w

fﬂ codk,z)e'!, (5.32)

where € =178 denotes Euler's constant. THar field from the cylindrical
monopole can be written in the following form:

i kwrij _
p:%kopocoQo e [ 4/ codk,z)e'". (5.33)

K\ I

The emitted sound powe?P at the coordinate z, penit of length, is obtained
by calculating the energy flux through alingler of unit height undefined radius
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and centered on the ax®z (conservation of the energy flux). For the sake of
simplicity and choosing the radius r temglito infinity, the asymptotic solution
(5.33) becomes

polim 21 p(i@j +p [ apj (5.34)
r—o kOPOCO 4 or or
and finally
P= %ko poCo Q% cos?(k,z). (5.35)

Note: according to the relation=—pgde /ot (1.67) and to the definition of the
Green’s functionG = —¢ associated with the unit wohe velocity of the source,
independent of z(cos(kzz):l k, =O) and with a very small radius, the two-
dimensional Green'’s function in the frequency domain must be written as

_ p , (5.36a)
KopoCoQo
thus, according to (5.31):
G= —l4H5(kWr), (5.36b)

or, sincek, =0 (k =k, ),
i
G =——Hqglkr)
4 olkr)

This result is in accoehce with equation (3.50).

It is important to note that other developmentsHy than the one given by
equation (3.53) are used in otlveorks and among which one will find

Ho (7 —To)= 5 3 (2-3no)codmlo—eo]]

TEZ
(5.37a)
J Jm er (erO)

2 dexm’

00
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Hg (K[ —To|) = T MO0 3 () Hpp (K ), (5.37b)

M=—c0

Ho (k|7 ~To|) = > (2-8m0) cos| M- )| sh( kr) Ha( kr) . (5.37c)

m=0
wherer_ = min(r,ry) andr, = maxr,rg).

5.1.2.4.Two out of phase pulsating cylinders: the cylindrical dipole

Two out of phase pulsating cylinders of same radius (very skglR <<1), of
principal axes parallel t@®z and intercepting th®x axis at respectively, and

Xg +dXg, radiate in an infinite domain with the same amplitude of volume velocity
Qo (Figure 5.2).

O y
Figure 5.2.Cylindrical dipole
The amplitude of the acoustic pressure at the point P,
1 _ + _ _
p:ZkO poCo Qo codk,z)Holkwr™ J-Holkwr (5.38a)

can be written, if the point P is significantly far from the dipole, as

1 AHg(k
p= Zko PoCo Qo Coikzz)g#wr)dxo

(5.38b)
X0

Sincer = \/(x ~xo)+(y-yo)
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X—=Xp

S —Hg=— 0 [—kWHﬂkWr)]{— }:kai(kwr)COS@a

and the expression of the amplitude becomes

kok _
P=poCo Qo dxp 04W Hi (ky r)cogk,z)coso. (5.39)

The comparison of this expression with (equation (5.28)) of the oscillating
cylinder shows that the dipole and the oscillating cylinder present the same
behavior. A lineic underwater source, for example, presents dipolar characteristics
since the image source withspect to the water surfacedst of phase (phase shift
of n at the reflection water-air; see section 4.4.4).

5.1.3.Diffraction of a plane wave by a cylinder characterized by a surface impedance
An infinite cylinder of axisOz is characterized by its acoustic wall impedance

Z, . A harmonic plane wave traveling in the negative x-direction is diffracted by the
cylinder (Figure 5.3).

— k OF:

Figure 5.3.Diffraction of an incident plane wave by an infinite cylinder

The problem can be written as follows:

2 2
}é(r£)+ia—+a—+k2 p=0, r>R,
ror\ or) r?0p% 022
L » -1y =R, (5.40)

kopaCo Or  Za
Sommerfeld's condition at infinity,

harmonic incident plane wave p o PXE°S(®) iotg
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In order to treat the problem in the cylindrical coordinate sys(em,z)
centered on the axis of the cylinder, the incident plane wave is assumed to be the
superposition of cylindrical waves (the solutions of the Helmholtz operator
constitute a base of the considered space):

gl krcose ot

pi =Py e,

=P, io“ (2= 8 m0)iMcogmep) I, (kr) €'t

m=0

(5.41)

wherek,, =k since the incident wave is independent of the varialfle, z 0).

The diffracted wave is sought as a divergent cylindrical wave, independent of z
(as p; is), expanded on the basis of admissible functions that satisfy the same
criteria as the solution

b, =P 3 A, Hx (kr)codne) €t (5.42)
n=0

ThecoefficientsA,, are obtained using the boundagnditions of the problem
(5.40):

[ 0 -1
e F = — H y = R,
KopoCo o (pi +pr) Z., (pi+pr) T

thus identifying the terms of the series of each equation,

i dH;, (KR)

o G (KR
kopoCo n d(kR)

d(kR)

+(2_6n0)

:;[An Ha (kR)+(2-870) " Jn(KR) |

a

Consequentlysincek = kg and denotind3; = poCq/Z3,,

R ) L Ay
A”_iH;'(kR)+BaH;(kR)[ Jn(kR) BaJn(kR)]. (5.43)

This result shows that the amplitude of the diffracted wave tends to zero at low
frequencies (where the incident wavelengghfar greater than the radius of the
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cylinder). Inversely, the energy diffracted at high frequencies is of similar
magnitude to the incident wave, and the directivity factor presents important angular
variations.

5.1.4.Propagation of harmonic waves in cylindrical waveguides

5.1.4.1.Governing equation and general solution

A column of fluid contained in an infinite tube with a circular section of radius R
is the medium of propagation of a hamic acoustic field generated upstream and
propagating along the axis of the tube. Tdwal reaction of the walls of the guide
(assumed perfectly rigid) is modeled by the acoustic specific admittigce
(equation (3.10)) introducing the boundary layers effects. The dissipation introduced
by the wavenumbek, in equation (2.86) remains negligible when compared to the
dissipation due to the boundary layers.

The problem can be written as follows:

2 2
{1ﬁ(raj+ia—+a—2+kg}pzo, r<R, z>z,g,

ror\ or r2 6p° oz
op .

P kap, r=R,
or OBap

p remains finite at+ O, (5.44)

the harmonic wave'®& generated upstream+4atz z )
propagates in the positive z-direction (no refldatave),

. k2 .
Ba:% /o [1_%}[6\,+(y—1)w/€h (3.10).
0

The condition onp (finite at r =0) is a boundary conddn over a cylinder the
radius of which tends to zero. It implies than Neumann’s function cannot appear in
the solution as it diverges at the origin. The general solution to the problem can be
written (the time factor is suppressed throughout) as

p=2 2 [A mvCOE{m(P)"‘ BmvSin(m(P)]Jm(kwmv r)e—ikmz’ (5.45)
m=0v=0

where the presence of the quantum numb& explained in the following section.
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In presence of a reflected wave, the facet<=»? would be replaced by
e km? L R eKmZ \where R,, denotes the reflection coefficient for the
(m,v)™ mode.

The boundary condition at= R leads, by identification term by term, to

kwmv\]‘m(kwva)z ~ik 0Badm (KwmvR) (5.46a)

Solving this equation results in complex eigenvalkgg,, . The integration
constantsA ,, and B, are imposed by the properties of the guide at aryg
and particularly those of the source. This type of problem is considered in Chapter 6
on integral formalism).

5.1.4.2 Approximated eigenvalues (Neumann’s boundary conditions, 34 ~0)

In the (common) cases where the wadimittance of the tube can be ignored
(B4 = 0), the condition (5.46a) becomes

K (0)

wmv="Ymv /R,

(5.46b)

where v, (v=0,1,2,etd denotes thelv+1)" root of the first derivative of the
Bessel's functionJ,, :

Im(ymy)=0. (5.47a)

The first values ofy,, for v= 0123 are

Yoo = {000, 383 702 1017},

vy = {184, 533 854 1171},
= {305 671 997, 1317 (5470)
= {

420, 802 1135 1459

Yov
V3v

The substitution of the approximated eigenvaltle\(gr)nv (5.46b) into the
equation of dispersion (5.14) give®ttadial wavenumber componeky,, (r)

2 2
Y m
i ()= 5= (5.48)
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where the value for =R leads to the estimation of the fact{r— k%r /k%) in the
expression of B, (5.44) for which the radial componerity, of the real
wavenumberk is nothing else other than the componkpt, (R) of (5.48),

2

m
K2 2 2 27 5 tKomy
K2 - K2 - K2| R2 R2 T2 ’ )
0 0 0 T mv +k2
Rz zmv

the factor (1- kSr /k%) denoting the sinus of the angle of incident of {hgv)™
mode on the wall for a propagative mode.

5.1.4.3 Approximated propagation constant (Neumann’s boundary conditions)

By following the approach taken irecion 4.5.4 relative to the nature of
propagative and evanescent modes in guigied beginning with the relation of
dispersion (5.14)

2 2 2
kzmv = k0 - kwmvv

and then applying this relationship the case where the visco-thermal wall
admittance B, is ignored (Neumann’'s condition) while considering equation
(5.46Db) leads to

2

k2. =k32 -(%J . (5.50a)

The (m,v) modes, of which frequencryl—cgy”F;V is smaller than the frequency
T
k
C; 9 of the acoustic wave generated by the source such that

T

Ko>Yme / R, (5.50)

are propagativel{,, is real) with a phase velocity along the z-axis given by

Comy = - : (5.51)




Basic Solutions to the Equations of Linear Propagation 241

This phase velocity tends to inifiy for the modes for which eigenfrequency is
equal to the frequency of the wave (cutfodiquency of the considered mode) since,
in these conditions, the surfaces of equal phase are parallel ©zthexis. The
propagation is purely radial and along #mmuth. The associated group velocity,
speed of propagation of the energy, can then be written, f(ﬁm,héth mode, as

1

C = =
9™ Ok ymy | B0

(5.52)

This group velocity is null for a mode for which eigenfrequency is equal to the
frequency of excitation (cut-offequency of the considered mode) meaning that the
energy is not convected by the considered mode.

The (m,v) modes, of which frequencggy% is greater than the frequency
T

cok .
% of the acoustic wave generated by the source such that
T

ko <ymV/R,

are evanescentk(,, is a pure imaginary). This is represented by an exponential

decrease of the mode in the forgn<? =e7‘km‘z. Consequently, these modes
exist only at the immediate vicinity of thint where they are created. They do not
contribute to the downstream transfer of energy in the guide.

These conclusions can be verifieddalculating the energy flux at any point, a
calculation that is equivalent to the one @airout in section 4.5.4.3, by replacing in
equations (4.118) to (4.127) the factor

L, Ly
J dx co{ M7 ] co{ﬂ]‘[ dyco{ﬂ] co{ﬂ]
0 Ly Ly 0 Ly Ly
_ LxLySmgOnr
(2_ 5mo)(2—5no)
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by

R 2n
cos cos c
j rdr J d(PLin}(m@)Jm(kwmvr)Lin}(q(P)Jq(kwqu: nRzggﬁ)r@quVp )
0 0

c . .
where g&%,?q are the normalization constants.

Equation (4.124) expressingetienergy flux becomes

2 myn
R oro 2 2
D, = > > [|Amn| Cgc%n €£1C1)r1+|an| Cgsr)nn Q(rﬁ)n} (5.53)
ZPOCO m,n=0

The conclusions drawn froequation (4.124) still hold here.

Note: for a given frequency of the souaed a given radius of the tube, such
that all the modes with non-null indexes and v are evanescent, only t§80)th
mode is propagative. The characteristicthesf mode do not depend on the variables
(r,p). It is the plane mode of wavenumbds,q, =ko. The tube, in low
frequencies, is a system that transformsimaefined wave into a plane wave within
a very short distance from wheretimcident wave is generated.

5.1.4.4.Constant of propagation (mixed boundary condition)

In practice, the wall admittandg&, is never null and, consequently, the constant
of propagation is neither real nor pureagmary. For the modes that were
previously identified as propagativihe constant of propagation has a non-null
imaginary part that accounts for the mdaz and dissipative effects of the boundary
layers. The imaginary part is smaller ththe real part, yet contributes and accounts
for the attenuation of the modal amplitutdiering propagation in the tube. Similarly,
the real part of the propagation ctarg of evanescent modes is non-null.

The propagation constant must then be written as
KZm =K5 =Ky (5.54)

where k,,,, IS the solution of equation 8ba) and translates the boundary
condition atr = R:

I(Wmv Jlm(kwva): _ikO BaJm(kwva)- (5.55)
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By writing that the admittancel, remains small, the eigenvaluds,y,,

(solutions to equation (5.55)) remeclose to the eigenvalu (Or)nv =ymv /R Of

equation (5.46a) that correspond touNmnn’'s boundary conditions. Thus, an
approximated solution of equation (5.55) ¢encalculated by writing that

KwnvR =Ymy +€mvs (5.56)
whereegp,, <<y, for m and/orv=0.

Since by definitiond (v, )=0 andygo = 0, the expansion at the lowest order
of equation (5.55) leads,

—form=v=0,to %800\]'0(800)= - ikoBaJo(aoo), (5.57)
— for m and/orv =0, to %va'Ymv IV )==KoBadm(my)  (5.58)
Solving equation (5.57) is sightforward. By writing that
' €
Jo(e00) = ~du(e00)~ —% and Jo(epo)~ 1,
one obtains
2 .
€00 ® 2IR kO Ba,

and, according to (5.54) and to the expressiopof

2 .
2 2 & 2 L+ 2 g0 [
kzoozko—gzko—l——ko [1/€V+(y—l fh]

J2 R
or, for a wave propagating in the positive z-direction,

k250 =kgi+@-i)noo) (5.59)

. 12 1 '
with ngg :———[,/z + y—l,/ﬂh}
\/E R /—ko \ ( )
This result is identical to those obtained from equations (4.94), (4.95) and
subsequent equations.



244  Fundamentals of Acoustics

The solution of equation (5.58) requires the use of the differential equation
(5.15) satisfied by the Bessel's functiod,,. Writing this equation for
kw #=Ymv /R atr=R yields

2 2 2
" /IR . m
L_mvam(Ymv):_mvTJm(Ymv)_[yRmzv _QJJm(Ymv)'
or, since
Inlrme) _ 0 n2p2 5 (5.60)
Jm(Ymv)

The substitution ofe,,, from equation (5.58) into equation (5.56) gives the
following eigenvalues:

1

Kwmy = T ik Ba——————
R Ymv 1-m /'Ymv

Consequently, the propagation constant is given by

2
.2 1
KZmy = k(z)— szv —i=kopa———— (5.61)
R R 1-m= /vy

or:

1-i 2 k? | [~ 1
K2 —Kk2_ Ymv Lk 1= ey + (- | (5.62)
zmv 0 /_ R kO \" ( m2/ 2

1- Ymv

where the factorl/(l—mzlyﬁw) accounts for the successive reflections of
helicoidal waves (see the following sectian) the walls, at each cycle, and where
the imaginary part translates the attenuation of the acoustic field in the initial
direction of propagation.

Note: the comment at the end of section 4.5.3.2 is valid for the modes of a
cylindrical close cavity.
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5.1.4.5.Helicoidal modes in cylindrical tubes with circular sections

The form of the solution (5.45) of the problem (5.44) can also be written as

o0

p= Y ocmveim‘"+[3mve_im“’].Jm(k\,\,m\,r)e_"‘zmvZ elot, (5.63)

The surfaces of equal phase are given by

+me -k, Z+ ot = constant (5.64)

The corresponding wave propagates ia fhdirection with a phase velocity
(5.64)

0z
Cq)Z = E

j S (5.65)
¢

kva

while spinning around the axis of the tube with an angular velocity (5.64)

6(;)) ®
Q =—T| =+—, (5.66)
¢0 ot , m

The + signs denote the two types of modes: rotational and anti-rotational
(Figure 5.4).

Figure 5.4.Ray tracing of a helicoidal mode

5.2. Basic solutions to the equations of linear propagation in spherical coordinates
5.2.1.General solution of the wave equation

The unit vectors in the spherical coordinate systems are degote) and €,
(Figure 5.5).
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y
Figure 5.5.Spherical coordinates system
The usual operators are then
dr =dré, +rdoéy +rsinddepé,, (5.67)
=g L0y 1 Wy 5.69)
or r oo rsin® oo
- 2 i OA
divi = L O0°AL) 1 a(smeAe)I 1 0 (5.69)
2 o rsind a0 rsind op
— o(sinbA
oth =L | CEINOAe) 0Ag |
rsin® 00 o
o(rA
11 CAYIATY) & (5.70)
r{ sin@ oo or
J[20Ag) oA
rp or 00
2 2
AU = div grédU:a—2+Za—+ 21 i(sinea—uj+%a—g, (5.71)
or or  résing 00 00 ) r¢sin<e d¢
AA = grad divA — rot rotA. (5.72)

The equation of propagation for the acoustic pressure, away from any source,
becomes

19(2 aj 1 9 [ a} 1 8% 10°
vp=| 29[22, Ofgnol )t 0 10"\, 0. (573)
[ 2 or [ or) r2sing 00 ) r’sifoog? ot




Basic Solutions to the Equations of Linear Propagation 247

The solutions are functions of independent variables:

R(r)©(0)®(p)T(t) . (5.74)

By following a similar process as in section 4.2.2 from equation (4.24) to (4.31),
the substitution of equation (5.74) into (5.73) yields, consecutively

1d’R 2 drR 1 d{. d@} 1 d%®
—|sin0— [+ ————5———

R dr? Rrdr @r?singdo d6 | @r?sin?0 de?
2
14 ;—__kz'
Tc dt
or
2
d—;—+m2T =0, wherew? =k?c? (5.75)
dt
and
1 d [ . d@) 1 do
- —|sin— |- —————
Osind do do ) ®sin?0 de?
2
 d R+2r drR k2r2—n(n+1)
R2 dr R dr
thus
2
9 k2()|(R)= 0, with K2(r)=Kk2 - ”(n;l), (5.76)
dr? r
and finally
2
sind d [ |n6i )+ n(n+1)sin26 _id_cD m?2.
0 do do D do?
By denotingu = cos6,
1 d%0 2udo
(1—u2)—2d—2——§‘—+ k2(r,0)© =0 (5.77a)

2
with k2(r,0) = {n(n+1) m—zl (5.77b)
r 1-p
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and
2
LI (ne)o-o, (5.78a)
r<sin“e de
2(1,0)= ™
with k2 (r,0)= . (5.78b)
¢ r2sin®0

The sum k§(r,0)+k3(r,0)=n(n+1)/r> does not depend on the coordindte
and its substitution into equation (5.76) leads to the following equation of
dispersion:

k? =kZ(r)+k§(r,0)+k3(r,0). (5.79)

The general solutions to equations (5.75), (5.76), (5.77) and (5.78) are,
respectively

T =€ (see equation (4.26)),

R=Agpin(kr)+Ay,n,(kr), or R =By, hy(kr)+ By, hih(kr), (5.80)
© = Py (cosd), (5.81)
® = gy, COS(MQ) + 6t oy SIN(MG), OF atpycodme + g

or Bmsin(me +yg) or agn€™® +ayy,e M9, (5.82)

The general solution of equation (5.78)a linear combination (sum over all n
and m) of the solutions (5.74) thatrfo a basis of the considered space (see
Appendix to Chapter 4).

The functions {,,) are ' order spherical Bessel’s functions of the first kind
(n,) n" order spherical Bessel's functions of the second kind (or spherical
Neumann’s functions), () divergent i order spherical Hankel’s functions and
(h{) convergent H order spherical Hankel’s functions.

Thefunctions an(cose) are Legendre’s functions that can be expressed using
Legendre’s 1 order polynomial functions as follows:

0 d™ B, (co9)

P (sO)=dn™
i ) d(coﬁ)m

, hhm=123ec n>m, (5.83)
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where the Legendre’s polynomial functions are given by

PO =1 Pl =C0s0,

5.84
P2=%(3cos?e—1)..., (M+1)Py.q = (2m+1)cosd Py, - mBy_;. (584)

Neumann’s functions are divergent at the origin, consequently they cannot
appear in the solutions to a problem in a domiﬁ)'h that contains the origin.

The functionsYr(lln)q and Y,(f% called “spherical harmonics”, are respectively
defined by the productsogme)Ppym(cosd) and sin(me) Py, (cosd). The spherical
Bessel's functions are related to their cylindrical equivalents by

, ~ [m Insarakr)
in(kr)= 2 e (5.85a)
np(kr)= %N”%f(kr) (5.85b)

1d\"(sinz
N S
and Np,1/2(2)= (-2)"3__1/.

The function sin(kr), which generates all these functions, shows that these
solutions are well suited to the description of stationary waves.

The spherical Hankel's functions are then defined by

ha(2)=in(2)£ inn(2)=/ 2 Hiv2(2) (5.86)

where Hi,1/,(z) are the cylindrical Hankel’s functions.

Hankel's functions can also be written in a form that reveals their suitability to
the problems of wave propagation:

+ikr

hﬁ(kr):i“+1el_(—fn(¢ikr), (5.87)
r

(n+s)
(n-s)s!

n S
wheref(z)= 3 (iJ are the Stokes functions.
s=0 2z
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: : (2n)( 1)\"
For kr>>1 (far field), f,, =1 and forkr <<1 (near field)f,, = 2 )
n!

According to equation (5.87), it appears thgj represents a diverging wave
while h;, represents a converging wave.

5.2.2.Progressive spherical waves

5.2.2.1.Radiation from a vibrating sphere with axial symmetry

The wall of a spherical source of raslia, centered at the origin of the
coordinate system, vibrates with an angular frequencits radial velocity is given
by Figure 5.6a:

vy =v(0)e®t. (5.88)

The effects due to the tangential velocity component are ignored.

z

>,
&

Figure 5.6a.Spherical source centered at the origin
of the coordinate system

The pulsating sphere radiates in an infinite domain of dissipative fluid, initially
at rest. Since the resulting field is independent of the varigh{as is the motion of
the source), the problem can be written as

ig(r22)+ 1 i( 'neij+k2 p=0, r-a,

r2or" or) r2sinp 00 o0

Py, r=a, (5.89)
kopoCo or

Sommerfield's condition at infinity
(no back-propagating wave).




Basic Solutions to the Equations of Linear Propagation 251

Over the intervald € [0,7], the Legendre’s function is a basis with respect to
which the amplitude of the source vibration veloo'r(ﬁ) can be expanded:

v(0)= ivnpn (cosh). (5.90)
n=0

The expansion coefficienty/,, are obtained by applying the orthogonality
relationship to Legendre’s polynomial functions
T -1
. 1
J Pm(cose)Pn(cose)smede=(n+EJ Srmn » (5.91)
0
that is, by multiplying each te of equation (5.90) b)Pm(cose) and integrating

over the interval0, ],

Vp = [n +%j Jnv(e)Pn(cose)sine do. (5.92)
0

The pressure field is independent@fand propagates to infinity. It can then be
written as

p= 3 A, P,(coso) hy, (kr) e, (5.93)
n=0

the associated raalivelocity being

i op i & = iot
vV, = —= A, P,(cosO )k hy (kr)e®", 5.94
" kopoCo o KopoCo ng'o n Fn(cosb)ky (k) 599

where hg' denotes the derivative df, with respect tokr .
The boundary condition at=  €5.89) leads, identifying term-by-term (same

method as used to obtain equation 5.92htoexpansion coefficients of equation
(5.93)

A =—ipocoVn /hy (ka), (5.95)

where the approximatiok/kg ~1 is assumed.
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Various vibro-acoustic indicators of interest are now expressed using the
dimensionless notation

1 2V, P,y(cosd) i[(n+)n/2+¢,(ka)]
MO 5o Btk © o9
with B, (kr)e &) Zin'(kr).

The components of the particle velocity in the far field are

v, =aVg w(e)%(u %} g krglot, (5.97)

f —ikr .
Vo, = ——1P= ;80 ) ot (5.98)
kopoCo r 0o kO r2

Thecomponentvgy,, decreases rapidly far— co.

The components of the acoustic intensity in the far field are

PoCo [ aVy
I, =2 0( OJ v, (5.99)
1o =O. (5.100)

The total radiated power is obtained by integrating over a sphere the
diameter of which tends to infinity:

P =|[1,,, r?sin6dodo, (5.101)
or, by substituting (5.99) and coneithg the orthogonality relation (5.91),

21PpoCo < Ve

P= .
k3 n-o (2n+1)B?(ka)

(5.102)

5.2.2.2 Radiation from a vibrating section of sphere

This problem (Figure 5.6b) is a particular case of the problem (5.89), where the
function v(6) (equation (5.88)) is

{V(G)zvo, 0<0<0y, (5.103)

v(0)=0, 0p<O<m
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Figure 5.6b. Pulsating section of sphere (on a spherical baffle)
Consequently, the expansion coefficients are

1 1 v
Vp = (n +_j VOJ P (H)du =2 [Pn—l (Coseo)— ] (Coseo)] (5.104)
2 Cos0, 2

whereP_; =Py =1.

The calculation and interpretation of the various indicators (particle velocity,
acoustic intensity) tends to verify that the total radiated power, and consequently the
real part of the radiation impedan@e(Z):P/(v%/Z), tend to zero when the
radius a; does so. The radiated energgches a maximum when the prodiet,
is greater than a few units and, correlatively, the directivity pattern (magnitude of
the acoustic pressure as a function of the afigldbecomes more complex as the
productska. andka increase, similarly as the frequency increases.

Note: the radiation impedance of the radiating surfjce nag,

Z:P/(v%/Z):%”SCp(r:a)dSt, (5.105)

tends to the product of the radiating surfa&keby the characteristic impedance of
the medium of propagation when the dimensions of the suackecome much
greater than the considered wavelength, thus

lim Z=naZpoco. (5.106)
ka,—o

The latter result is very general by nature.
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5.2.2.3.Radiation from an oscillating sphere and acoustic field from a dipole
5.2.2.3.1. The oscillating sphere

Once again, this problem is a partautase of the problem (5.89), where the
function v(6) (equation (5.88)) is

v(6) = V; cosb. (5.107)

Figure 5.7.Oscillating sphere

Consequently, the expansions coefficients are
Vi, =V18n, (5.108)

and the pressure field is

p= —|p_9—co\/1 h (kr)coso e't. (5.109)
hi (ka)

The substitution of the expression (5.87)gf(kr) leads to the expression of the
acoustic pressure

_ ipoCon e_ikr ( 1
ikr

) 1+,—jcos@ gt (5.110)
hy (ka) K
The interpretation of this result requires the calculation of the acoustic field of a
dipole.

5.2.2.3.2. The acoustic field from a dipole

The acoustic field created at a poigt by a harmonic monopole source located
at 1y is written (section 3.3.1, section 3.3.2, and equation (3.44)) as

e—ik\fp—fo\

Ay ~To|
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The object of this paragraph is to show that the acoustic field generated by a

dipole, two neighboring monopoles out of pagFigure 5.8), can be expressed by
using the vectorial function

—ik[T, | ke
grady ———
°4n‘rp—r0‘

The first component of this function,

P lk\/ yp yo (Z —20)2

%o 4n\/(xp‘xo) +(Yp‘y0) +(Zp‘20)2

can be written as

Xo a(xp—xo)z ol 4nr | 4n v ikr ) r '

while similar expressions can be found for the two other components. Finally,

: —ikr =
£ =£(1+_i)e—i. (5.111)
4T[|Fp_FO| An\" ikr) r o

—|k‘rp—ro‘

grady

Equation (5.111) is nothing other than the gradient of the vectorial vanigble
of the Green'’s functionG(Fp,Fo) (equation (3.43)) that represents the velocity
potential (D(Fp) (G =—d>) generated afy, in the infinite domain by a monopole
located atfy for a punctual source of unit volume velocity. The pressure field is
p=iopgG. The scalar productgrajfoG(?p,Fo).dFO is equal to the difference
G(fp,F0+d?0)—G(?p,Fo) that represents the acoustic field generated by two close

monopoles, one affy) and the other aff, +dry) radiating out of phase. This

particular system is called a dipole, ttes@ciated field being tad a dipolar field,
and the equation of propagation satisfied by the dipolar field introduces the operator
grad; 8(f —Tp) in its right-hand side term.
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The general expression of the acoustic dipolar field is therefore given by
(k ~ko)

p= k2 pgcg| 14— e_ler o - (5.112)
0P0%0 ikor | 4nr 070 '

where Qg denotes the volume velocity adach monopole (volume of fluid
introduced in the medium per unit of timelf; denotes the orientation of the dipole
(Figure 5.8),7 denotes the vector dating the receiving point, from the dipole
location (F =T, - Tp) , (dfFy /|dfo|)(F/r)= cosd (0 being the angle of the direction
Ty —To with the axis of the dipole), and finally whe@, drg represents the dipolar
moment.

+

dF,
Figure 5.8.Acoustic dipole

5.2.2.3.3. The dipolar field from an oscillating sphere

Comparing the acoustic field of thecdkting sphere (equation 5.110) with the
dipolar field (equation (5.112)) shows that the pressure fields depend similarly on
and 0. These two fields present, therefotiee same characteristics. This dipolar
characteristic constitutes the “exclusive” characteristics of oscillating spheres and,
more generally, of any oscillating finite source. Precisely, by writing in equation
(5.112) that

dfo.% = CcosH |d_fo| y

and in equation (5.110) (considering the expression (5.87) of the Hankel's function
hp, ) that

- 2
limhy (ka)= .
ano 't (k) ik8a3
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It is straightforward to verify that equations (5.110) and (5.112) are rigorously
equal if

Qodrp =2nV; a°. (5.113)

Consequently, an oscillating sphere of radaussignificantly smaller than the
wavelength, of normal vibration velocity/; cos® (where V; is a constant)
generates a dipolar field. The equivalatipolar moment is given by equation
(5.113).

5.2.2.4 Radiation from a pulsating sphere: the monopolar field

Again, this problem is a particul@xample of the problem (5.89), where the
function v(6) (equation (5.88)) is constant:

v(0)=Qq / (4ra®), (5.114)
where Qy denotes the total volume velocity of the source and its radius.

Consequently, equations (5.90), (5.93) and (5.95) lead to
Vo = Qq /(4na?), (5.115)

and

P =—ipoCo QO2 hQ(kr) glot ' (5.116)

4a® hg(ka)

where T denotes the location of the point where the pressure field is expressed, the
origin being taken at the centre of the pulsating sphere.

The monopolar field is the limit, whea — 0, of the field generated by a
pulsating sphere. When considering the expression (5.8f) pfone immediately
obtains

—ikr

Py =impoQo ot (5.117)
4nr

Since p=iwpgG, equation (5.117) result is in accordance with expression
(4.54) of the Green’s function.
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5.2.3.Diffraction of a plane wave by a rigid sphere

A plane wave propagating in a dissipative fluid initially at rest, in the increasing
z-directions, is incident on a rigid sphere centered at the origin of the coordinate
system (Figure 5.9). Since the symmetry of the problem is axial, the solution is
independent of the variable.

wave plane

l direction of
propagation

=l

Figure 5.9.Diffraction of a plane wave by a rigid sphere
The amplitude of the acoustic pressure is solution to the following problem:

i2(r2£J+ 1 i( 'neij+k2 p=0, r>a,
r2 or or rzsine 00 00

L ®_ 15 r—a, (5.118)
KopoCo OF  Z4

harmonic incident wave, p= (P'é = o B€s0

Sommerfeld's condition at infinity,

where the impedanc&, introduces the reaction and dissipation in the boundary
layers.

Thefunction p; can be expressed in the basis of admissible functions associated
with the Helmholtz operator:

pi =Py i(i )" (2n+1)j,, (kr) Py (cosd). (5.119)
n=0
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The expression of the diffracted wave can also be expanded on the basis of
Legendre’s functions as a divergent wave of axial symmetry:

P, = io: aphy (kr)P, (cose). (5.120)
n=0

The expansion coefficients,, are obtained by writig the boundary conditions
at r = a (equation (5.118)). By using the following notations:

6 . 6 + . —j .
—jn(kr)=k ——Réehy(kr)|=k Rg~iB,e"'% [= —kB,sine,,
arJn( ) a(kn) e[ n )] e[ n ] nSINGn
substituting the expressions of the particle velocity

Vi)a = il T "*1(2n+1)P,(cos0)B,, (ka)sinp, (ka)] (5.121)
PoCon=0

and

Vr)r:a -1 2 an Pn(cose)i {%hﬁ(kr)}

PoCo n kr)

= i z an Pn (COS@)Bn(ka)e7i¢n(ka),
PoCo n

(5.122)

and substituting equations (5.119) andlP®) into the boundary conditions at
r=a, one immediately obtains the coefficierstg by identifying the results term-
by-term. In the particular case where the dissipation due to the boundary layers is
ignored (Z, — «), these coefficients can be written as

a, = Py i™(2n +1)sinfo, (ka)Je* (@), (5.123)

and the resulting expression of the pressure magnitude is
P =Py 3 i™L(2n+1)sinfp, (ka)le'* “¥hy (kr )P, (cosh). (5.124)
n=0

The corresponding acoustic intensity, in the radial direction can be
approximately expressed as

2
a“ | & : ;
== —— Y (2m+1)2n+Dsineysing
rT2 kéaz mo m n (5.125)

% CodQm —@n JPm (COSO)Pn (coS0),
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where | denotes the intensity of the incident wave Pg 1(2pocg) and where
om =9m(ka) and ¢, = ¢, (ka). Consequently,

B k*a®l

Iy ==———(1-3cos0)’, if ka<<1 (5.126)
or

=1 a—2+a—200tg2 9 R(kasine)|, if ka>>1 (5.127)

T a2 a2 2™ ’ ' '

The total diffracted power can then be written as

o0

P, =2na’l > (2m+1)sin® oy, .
k“a® m=0
that is
7 z%k“aﬁ'l, ka<<], (5.128)
P ~2ra’l, ka>>1. (5.129)

Whatever expression is used for the acoustic intensity, the first term corresponds
to a diffraction of sphericaBymmetry, whereas the othé-dependent terms
account for the angular phenomena relatetthéodiffraction. The greater the orders
n and m, the more rapid the variations of the diffraction pattern with respect to
variations of 0. In practice, since sensors are of finite size, they only provide the
mean value of the field within a region space. It is therefore not necessary to
conserve high orders in the expression of the diffracted pressure field.

Figure 5.10 illustrates the directivity cerof the diffracted intensity and Figure
5.11 gives the profile of the diffracted total power with respec(ka), normalized
as follows:

0

Figure 5.10.Example of acoustic intensity directivity pattern
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T T | | | |
o 1 2 3 4 5 6

Figure 5.11.Profile of the total diffracted power

To quantify the error in measurenhedue to the presence of a spherical
microphone in an acoustic field (plane wave), one can calculate theDratibthe
acoustic pressurg; when the sphere is present over the acoustics preggure
when the sphere is not

D=p/p;- (5.130)

Figure 5.12 gives the magnitude of this ratio with respedk&) at the point
0 =0 (facing the incident wave).

This result shows that a spherical microphone (for example) gives the correct
acoustic pressure at the condition where its dimensions are inferior to the
wavelengthi (ka=2ra/1). This result holds for any other type of microphone.
For short wavelengthé&a > 4) , the error can be as high as a factor of 2 (6 dB!), but
is actually compensated for in practice.

Figure 5.12.Module of the error (equation (5.130))
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5.2.4.The spherical cavity
The objective of this paragraph is to find the eigenfunctions and associated

eigenvalues of a spherical cavity with perfectly rigid walls, in other words, to find
the solutions to the following problem:

[iﬁ(r2£j+Li(sine%j+ kﬁv}\vmnv (r0,0)=0, r<a,

r2 or or rzsine 00
0 ik
Vv | KnP o, g g, (5.131)
or Zy

Ymny (1,0,¢) is finite at r= 0,

where pgcq/Z, denotes the equivalent specific admittance due to visco-thermal
effects at the boundaries.

The problem is first solveth the particular case wherpgcg/Z, =0. The

eigenfunctionSqf(nﬁ'rc,v are

. sin
‘Vrﬁr?\)/ = Nmann(knvr) an(cose){cos}(m@)v (5.132)

where N, is a constant arbitrarily choseso that the eigenfunctions are
normalized to the unit:

a . 2n 2
Jo rar fgsino cd [0 dp [wiie | = 1 (5.133)
and the associated eigenvaluég) are given by

kKO —y  /a (5.134)

where they,, factors represent the roots of the first derivative of the spherical
Bessel's functions (conforming the boundary conditions at= )ai.e.

Inlrnv)=0. (5.135)
Considering equations (5.7®) (5.79), according to which

n(n+1)

r2

k2 —kZ(r)=k§(r,0)+k3(r,0)= (5.136)
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m2

r2sinZe

with kZ(r,0)=

and where the wavenumbdr in the function j,(kr) takes here the eigenvalue
associated to the considdreigenfunctions, leads to

2
nin+1
krz(f:l):ya”zV - (a; ) (5.137)

Consequently, the facto(tl—krzlkz) in the expression of the wall admittance
(equation (3.10))

poCo _ 1+i —K2 /K20 -
= _ﬁ&[(l K21k2) 7, +(y 1)@}

becomes
(1—kr2/k2):@. (5.138)
Ynv
Therefore,

poCo 1+|\/— znk+21 v +(r=D0n | (5.139)

a
with kp, ~ knv = an/a'
By considering thathe boundary condition at= a&f problem (5.131) is
completely defined by the substitution efuation (5.139), one mdictly obtains the

solution. The expressions of the eigentioms are still as in equation (5.132), but
the eigenvalues are solutions to

knvj'n(knva) _lk( )pg OJ (knva)' (5-140)

a

By solving the above equation for=v =0 must be done separately from the
other cases sincgyg =0:

. (0
smkgv)r

J'o[kgi)f]= Noov (5.141)

r
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and

9 iokOr |-
arJO[O\/ r2

] Noo, [ kgov) coskg%)r ~ sin kgov)r} '
r
Theequationmmediately above must be null for= , thus
tgkip)r = kg1 (5.142)
the first solution of which |sk(g

For n=v =0, equation (5.140) becomes

0
6—10("003) %0 k goio(kood)
a
with jo(kooa) = NOOOM-

An approximated form of equation (5.140) is

koo =i>P0% _; 1&‘2@( AN/ (5.143)

a Z,

leading to

M——— x/_-koo——'\/_( N

indicating that the modal dissipation at the wall occurs only in the thermal boundary
layers and is proportional to the fact@/a) that represents ¢hratio of the surface
of the sphere to its volume.

For n and/or v=0, the expansion of equation (5.140) at the lowest
approximating order of the correction ters, added toy,, to find the new
eigenvalues is

€ R C
~ Yo in(Yny )~ - y;V pgaojn( ") (5.144)

with K,a=vn, +€nys
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thus

eny _ i P0C0 inlvny) (5.145)

~ —_— 7

~

a a Za j:l('an).

Theratio ju(yny )/ jn(vny ) is obtained by writing equation (5.76) satisfied by
the Bessel's functionj, for r=a and k=yp, /a. Since y,, is defined by

j (yny)=0, one obtains

2

2
Nl
Ynzv Jn(an)“Ll:_Ynzv _n(n; ):|Jn(an)=O- (5.146)
a a a

Consequently, equation (5.145) becomes

Env 1 P0CO 1 (5.147)
a a Zz 1-n(n+1)/vy3,
leading to
knvzyﬂ—i-l PoCo 1 5
a aZy 1-n(n+1/yh,
or

Lo )~
an~an +I_a1% y_,;{n(m )\/ZJr(y_l)ﬂ};z_ (5.148)

a Yay 1-n(n+ 3 hyp,

. . . . o] sink(©r
Note: the field defined by equation (5.141)0k0Vr=N00Vf,

represents the spherically symmetric pressure field (independéntaoid ¢ ) in a

spherical cavity with perfectly reflecting walls. This pressure field is the sum of a
divergent and a convergent spherical/adt can be written in the form
ik Oy —ikr
€ {RS—. (5.149)
r r
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The radial particle velocity associated to this field is

ik(®) 1| ke 1| ik
-— (_Hik(o)r e +Rg 1+We

Ov Ov r

and must be null at=0, thusRg =-1.
nk O

) . si
Consequently, the results confirm that the presguigin the form——v
r

5.2.5.Digression on monopolar, dipolaand 2n-polar acoustic fields

The main objective of this section is to complete the previous descriptions of
monopolar and dipolar fields (the importance of which is revealed in Chapter 6) and
to complete the interpretation of the solutions (5.93) expanded on the basis of the
considered space.

5.2.5.1.The monopolar field

According to sections 3.3.1 and 3.3.2, the monopolar acoustic field, presenting
spherical surfaces of constant phasethis solution to the problem (3.26) for a
distance between the receiving pol(ii) and the center of the sour€)) greater
than the radius a of the sour(jé :|F—F0| > a) or of the problem (3.27) in the
case where the spherical source is punctual Rfor0). It is appropriate, however,
to stress the fact that the variableis not the same as in section 5.2.2.4 and can
only be taken as such if the center of the source is at the origin of the coordinate
system. Moreover, the variabR used herein cannot be equated to the fundon
introduced in equation (5.74).

The problem (3.27), satisfied by theonopolar acoustic field, can be written
using the velocity potentiab as follows:

2 2

6—2— 1—£Vhi£ ia—[R(D(R,t)]:O, R>0,

R Co Ot ) & ot?

90(R,1) _ lim QO(t), R=a— 0, (5.150)
OR a—>0 4 &

Sommerfeld condition at infinity,

(no back-propagating wave),
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where Qq(t) denotes the volume of fluid introduced in the medium per unit of time
by the spherical source which radiastends to zero.

Ignoring in a first approximation the dissipation fac(m,h ~ 0), the general
solution to the equation of propagation is a functiB® =f of the variable
[w(t+ R /cq)] where the parametan, of dimensions™, is introduced to ensure
that the argument is dimensionless. Sommerfeld’s condition at infinity imposes the
absence of a back-propagating wave, therefore only the argda{entR /cq)| is
considered. The condition at the oridR — 0) imposes the functioRd

6(D(R,t)=i f[@(t_R/CO)] — lim QL('[)
R R R R—047R2
thus
. o f' f Qo
i (et _o 5.151
R0 LO R+R2+4nR2} ( )

wheref' is the first derivative of the functioh with respect to its argument.

By making the hypothesis that

lim (ﬁf—j«lim o, (5.152)
R-0\ C R R—0| R2
leads to

im floft-R/co)]- _a‘;(t),

and subsequently th= ;—1Q0 .
U

Finally, the solution to the problem {50) is written, ignong dissipation and if
the validity of the condition (5.152) is established, as

q>(R,t)=4;—; Qolo(t-R/cq)} (5.153)
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This solution is described as “delaygotential”’. For example, with an impulse
source Qq(t)=wd[w(t—tg)] =5(t—tg), the solution can be written, denoting
(t-tg)=rt, as

a[m(r—R/co)]zw, (5.154)

—®

*RY=77

that is identical to the solution found in section 3.3.2 (equation (3.40)).

In the case of a harmonic sourQ@(t)= Qo ei‘”(t_tO), the problem (5.150) can
be solved by considering the dissipation. In other words, by writing that the general
solution is a function of the variable(t+R/c) with c=cg/1-io/,, . Thus,
using the relation (5.153), the solution is immediately given by

—-ikR

o(R,t)=-Qq elor, (5.155)

4nR

with k=w/c and t=t—-tg. This is the same solution as the one found in section
3.3.2 (equations (3.43) and (3.44)).

The associated acoustic pressure is

—-ikR

p=ik opocoQo o, (5.156)

4R

By considering equations (3.2@nd (3.30), expression (5.155) @ is a
solution to the following problem:

1( 0® 5 ) ot
E[ﬁ?-}_k J(RCD)=Q06(R)G ,

Sommerfeld's condition at infinity.

(5.157)

This can be verified noting, fdR = 0, that

1 82 s
EaR_Z(RCD): k“®,
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and for R — 0, integrating equation (5.15@yer a sphere of radius— 0 leads to

~tim ) (a5 +Kk?) @ - Qo 8(R)e™" |dR

e—ikR
4nR

=Qp Iimo_m(g) (Ag + kz) +6(§)} dR,

e—lk

o kR
= Qg lim | [[grad
QOS' O_HQV R

R
dS+k2 (¢
nR '[0 47

4nR2dR+1:|,

=Q lim _4nsziﬂ+k2jge_ikRRdR+l
00 Ot 4me 0 '

= QO(—1+_0+1) =0.

This result shows that the singularif;(lfz) in the right-hand side term of
equation (5.157) is introduced by the factab in the left-hand side and not by the
factor k%® .

To complete the discussion on the monopolar acoustic field given by equation
(5.156), some of its properties are now given. The particle velocity associated to the
pressurep is

Vv :I—@ - iQOk(l“'.iJ e—ikR eimt 1
kopoCo OR ikR

V= P + - P .
poco ikopocoR

(5.158)

The velocity field is the sum of two terms. The first term, called “far field”, is
predominant for large values & and it is in phase with the pressure. The second
term, called “near field”, is predominant for small valuesRofand is out of phase
with the pressure (it does not contribute to the energy flow).

That only the far field contributes to the energy flow is observed in the
expression of the wave intensity

| = i(pv* +p V)= P (1—#] + (1+ ij - PP
4 4poCo ikr ikr 2p0Co

_ PoCo k(Z) Q%
24nfPR?

(5.159)
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The power generated by the pulsating sphere is

2 42
pocoky Qg _

Po = 4nR?| =
8n

(5.160)

The amplitude of the displacementju&ed to obtain a gen acoustic power,
is

v

_M__Qo _[C % (5.161)
® 2 2n 2p2’ '
w4nR Po ®“R

Equation (5.161) highlights a very gergyeoperty of sources: small sources are
not suitable sources at low frequencidse surface displacements being always
limited.

Note: the approach to verifying that the solution (5.156) satisfies equation
(5.157) can also be applied for equivalent one- and two-dimensional problems. For a
two-dimensional problem, one needs to verify that (suppressing the time factor)

— - €
0= lm [[[(a+k?)® (R dR =L+ im 2x lﬁ(Ra‘DJRdR
e—0 e—0 oR R OoR

To eliminate the singularity at the origin, the integral must be understood as a
“principal value” (see Note 1 in section 6.2.3.4). On the condition that the first
derivative of @ is an odd function (verified posteriori), the latter result can be
expressed as

e—0 e—0

+&
0=—1+lim = [° [|x|—)dx——1+ lim n|x|—} ,

—&

orl=Iim 2x saﬂ,
e—0 Os

or, replacinge by R, as

6@] . ( 1 J
— = lim | —|,

. 1 . [
thus®p_g = lim | —Ilog(kR) |= lim |—HglkR)|. 5.162
R-0 = lIm (zn g( )] dm L o )} ( )
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For a problem in one dimension, denotikg= X — X,

2 €
im [ 22 4x = fim {dﬁ} 1 (5.163)
e—0 "7 gx2 e-0 | dX |_,
efik\xfxo\
The gap at the origin of the first derivative &= -G = (equation
i

(3.55)), given by

P e ik| X=X
Ilm - N ’
e-0| d(x—-xg) 2k
—&
is, as expected, equal to one.

5.2.5.2.The dipolar field

The amplitude of the dipolar acoustic field is given by equation (5.112). By
denotingM g = Qg dfy the dipolar momenM =| Mg |, the pressure is given by

2 1 e—|kR
=—poCo kMg | 1+ —— CcOsH. 5.164
P=-poCo Ko o( ikoRJ R ( )

The components of the particle velocity are

. —ikR
VR :'—ap:_kSMO 1+ )e cod e, (5.165)
kopoCo R |k0R K2R 2J4TrR
. ikR .
R = ! @:_k%Mo 1+- 2 22 € o0 et (5.166)
kopoCO OR ik d? k R 4R

* * 1
pe=—\V Vv, +VgVvg ]+ pp (5.167)
2 2p0Ch 4 ( o ) 4poch
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can then be written as

k&Mo ’ (1) 1f 1)
w=P0| "0 cof 0+ += 1+3co0)|. (5.168)
2| 4n 2(koR ) 2| koR

The components of the intensity are given by

2
2 *
IRzl(pv’Hp*vr):m kgMo coszezﬂ;, (5.169)
4 2 4R 2p0C0 1+ 1
22
0
lg=1,=0.
Finally, the total power radiated by the dipole is given by
co [ k3M 2
Py = 2gj —onr2 P00 | KoMo | 511
0 = [fl4z) \RR?sin0d0 g = 27R*=C 220 | 205’0 d(cosd)
1 )
=——poCokgMyp. 5.170
22, PocoKoMo ( )

5.2.5.3.The quadripolar field

Two examples of quadripole are presented in Figure 5.13: the lateral quadripole
(a) and the longitudinal quadripole (b). The main axes are taken so that some are
parallel to the dipolar moments.

!

y

@
©

(@)

Figure 5.13.(a) Lateral quadripole, (b) Longitudinal quadripole
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The dipolar pressure field is the gradient of the monopolar pressure field (section
5.2.2.3.3), i.e.

9Pmonop dx
— TP dixg .

5171
e (5.171)

Pdip =~

Similarly, the quadripolar pressure field in the gradient of the dipolar pressure
field, namely,

— for the lateral quadripole:

OPdip 62pmonop
p4p:_ ay 0: ax ay dXO dyo
0 Yo (5.172)
. - - 3 3 JekR
:—k3 dxn~d (X XOXy yO) 1 _ ILU'[,
ik poCo Qo dxodyg R2 +ik0R KZRZ | 4nR e
— for the longitudinal quadripole:
2
OPi 0" Pmono >
Pap =— P dxg = > IO(dxo) ,
8x0 oX§
. 2
Pap = —ik§ paco Qo (dxo) (5.173)
) .
. (x=xo) L3 3] 1 1 e kR ot
R2 ikoR  kZR? ) ikoR Kk3R? | 4nR ’
where X=X0 _ cosp.

5.2.5.4 Field with axial symmetry

The diverging field with axial symmetry introduced in section 3.2.2, pressure
field in the form of equation (5.93)

p= 3 A,P,(cos)hy (kR)e, (5.174)

n=0
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can be written, considering equation (5.87), as
AR, (5.175)

e—ikR
with R,,= Pn(cose)ﬁfn(ikR).
TU

Thefactors
o kR

T 4R

Ro

—ikR
Ry =|1+- coso , (5.176)
ikgR ) 4nR

and:

—ikR —ikR
Ry=38 11, 3 3 oot .1 | 18 (5177
2 41R ikoR  k3R? ikoR ik3R?| 2 4R

represent, respectively, a monopolar, dipalad the superposition of a quadripolar
and monopolar “component” of the acoustic pressure field, the next factor
representing an “octupolar” component and so on.

This “interpretation” shows the model of Legendre’s polynomial series where
the 2i-pole is simply derived from thé"mpole

2%2(2) =hn_1(2)-hpa(2) (5.178)

where the functiorh,, denotes the'horder Hankel’s functionff;, or ht).

Note: frequently, the origin of the coordinates in the expressidh of

o = 2

I r

R=|f—r0|=rJ1—2—r 2 +[—0j , (5.179)
rr r
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is taken at the vicinity of #helementary sources locatedrgtand the observation
point is considered at a distance->ry (far field). Consequently, an asymptotic
approximation of (5.179) can be made and is, at ther@ler of the small quantity

(rof1),

P 1 (Fh)
R=|F-To|=r|1-—2+2| 2| =2 || 5.180
7o rro2)y? (r r] 5150
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Chapter 6

Integral Formalism in Linear Acoustics

This chapter is a turning point in this book as it introduces the integral formalism
for problems in linear acoustics. The integral formalism is equivalent to the
differential formalism used in the previous five chapters. The remaining
development in this book uses the integral approach extensively and applies it to
common situations in acoustics. Integral formalism is based on the decomposition of
the acoustic field generated by extended primary sources (real) or secondary sources
(reflections) into a sum of elementary fields (Green’s functions) generated by
(quasi-punctual) source elements. Green’s functions therefore play an important role
and, even though they have already been briefly introduced in sections 3.3, 3.4 and
5.2.5, the first part of this chapter is dedicated to their properties.

6.1. Considered problems
6.1.1.Problems

The general problem considered, consisting of modeling a real situation in a
domain (D) delimited by a surface (S) (eventually extended to infinity), is limited
by the hypothesis of linear acoustics in weakly dissipative media initially at rest.
The problem can be written, in the time domain, as:
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2
i o e
D I Beprgavy,  veed, V(o) (6.1
€0
pand%areknown‘v’fe(S), att=t;. (6.1c)

The equation of propagation (6.1a) is the equation (4.1), written in the form

(4.13a). By making the hypothesis of null initial conditions, p(?, ti) = % =0,

the same problem in the frequency domain (obtained by Fourier transform) ils
[A+k21p(¥)=—f, Vvie(D), (6.22)
{%ﬁkoﬁ(?,m)} p(f)=Ug, Vie(S). (6.2b)

For the sake of simplicity, one notation (p for example) denotes the quantities in
both the time domain p(f,t) and the frequency domain p(?,o)). Also, the factor
(in equations (6.1) and (6.2)) denotes the specific admittance of the walls (S), the
value of ¢ remaining close to the adiabatic speed of sound c( and the wavenumber
k being given by equation (4.7). The factor Ug/ (ikopoco) represents a vibration
velocity imposed to part of (or to the entire) the wall of admittance 3. The factor f
is first approximated as the usual source term (1.61)

f= —po{divﬁ ————— } . (6.3)

Finally, the hypotheses made and presented in the introduction of Chapter 4 are
adopted in the rest of the book.

6.1.2.Associated eigenvalues problem
In many cases, with a problem of the type (6.2) is associated an eigenvalue problem:
[A+k2 ()] y,(f0)=0, Vie(D), (6.4a)

{% +ikC(F, m)}\um(f,o)) = 0,7 €(S), (6.4b)
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where £ denotes a small admittance (null or equal to ). The solutions to this
problem form a basis in respect of which the solutions of equation (6.2) can be
expanded.

The notions introduced in the following sections are to be interpreted as
distributions. However, for the sake of simplicity, the forthcoming developments are
presented in such manner that these functions can be interpreted as distributions or
ordinary functions.

6.1.3.Elementary problem: Green'’s function in infinite space

In accordance with the linearity of the equation of propagation, the acoustic
pressure field solution to the problems (6.1) and (6.2) can be written as the
superposition of elementary fields generated by each source element. The resulting
field is then defined by an integral of the elementary field, for example:

0
p(i:,t): dfo J dtoG(f,?o;t,to)f(i:O,to) .
t

(D) !

Each element is represented by a Green’s function (monopolar field) of the
variables (f—1,) and (t—ty). The integral is nothing more than a convolution
expressing the acoustic field generated by the sources f , but also the field from the
image sources if one considers, to a certain degree, the presence of reflective
boundaries.

In most cases, the boundary effect is treated by considering that each boundary
element reacts under an incident wave and radiates back into the fluid medium,
behaving just as a source which energy is extracted from the incident wave. Its
characteristics depend on the active vibratory state of the wall (Uj) and on the
material characteristics of the wall (). Again, the contribution of this reaction is
introduced as a convolution integral, but here the “boundary source” is presented as
a double layer of “sources”, a monopolar one and a dipolar one.

These qualitative descriptions are demonstrated in the following sections. They
stress the importance given to monopolar and dipolar acoustic fields when solving
the aforementioned problems. Also, the above discussion underlines the fact that
one’s choice is limited to that of the boundary conditions imposed on the Green’s
function that satisfies the governing equation (6.5).

It is therefore important to introduce the principal properties of Green’s
functions before presenting the integral formalism of problems at boundaries.
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The Green’s function is a solution to the following non-homogenous equation of
propagation in the time domain:

1 0% ) ... o
{A‘—Cz atzJG(fﬂro;tatoF—S(r—ro)ﬁ(t—to), (6.5)

and a solution to the Helmholtz equation in the frequency domain:
[A+Kk2]G(F, )= —5(F — Ty )e . (6.6)

The solutions to these equations in an infinite space (Sommerfeld’s condition)
are given by equations (3.38), (3.43) and (3.44) for three-dimensional fields, by
equations (3.49) and (3.50) for two-dimensional fields, and by equations (3.54) and
(3.55) for fields in one dimension.

The Green’s function is invariant with respect to the permutation of the variables
T and 1y, and presents a singularity at T =r1,. This singularity is of the form

l/|f—?0| in a 3D-space, log |_f—fo| in a 2D-space (5.162), and as in equation
(5.163) for a 1D-space.

6.1.4.Green’s function in finite space

The Green’s function is chosen such that it satisfies some boundary conditions
adapted to the considered problem. A few examples are given in this section.

6.1.4.1. Green’s function in semi-infinite space (method of the image source)

The considered domain (D) is a semi-infinite space z > 0, delimited by a plane
assumed perfectly rigid at z= 0 (Figure 6.1).

A Green’s function in the time domain is given by

and in the frequency domain by

e—ikR

4rR ’
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where R = |f - f0| denotes the distance between the punctual source at fye (D) and
the receiving point at 1 € (D)

95
~—

image source source

Wil oo

0 z

Figure 6.1Green’s function in the domain (D) (Z > O) ; source Ty and image source 1;'
with respect to the reflecting plane z =0

However, the sum of this Green’s function in the time domain, particularly in the
. . . R' .
frequency domain, with the function 8(——1}/47IR‘, and particularly
o
e KR/ 4R (R'=‘f—f(;‘ where f(; represents the position of the image source

with respect to the reflective plane at z=0), constitutes a new Green’s function in

the domain (D):
S[R_TJ S(R'_Tj
°0 co (6.72)

G(F.Tost.to )= R AR

(6.7b)

—ikR e—ikR'
—t .
47R 4nR'

G(i:, f() ) _ e—i())to l:e
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Since R' is never null in the domain (D), the functions (6.7) have a unique
singularity at R =0 in (D) and therefore satisfy, respectively, equations (6.5) and
(6.6) (see, in section 5.2.5.1, the comment on the singularity at 8(r)) . Moreover,
these functions satisfy Neumann’s condition 0G/0zy =0 at zy =0 as the
derivatives of these two functions (the sum of which is the Green’s function) are of
opposite sign at z, = 0. This can be verified denoting

R =y(x—xq) +(y—yo ) +(z-20 . (6.8)

R':\/(x—xo)z+(y—y0)2+(z+zo)2. (6.8b)

At the boundary z( = 0, the Green’s functions (6.7) become respectively

R
8{0 - TJ
€0

G(,Tpst,tg )= R (6.9a)
0
. omikR,

G(_r', To ) =e m, (6.9b)

where R =\/(X—X0)2 +(y-yo) +2%.

Note: the Green’s functions that satisfy Dirichlet’s condition at z; =0 can be

written as
c c
G(F,T:t,tg)= 4‘;R - 4‘7’TR, : (6.10a)
G(_’ ~ )_ i, e—ikR e—ikR'
r,ip)==¢ AR —m . (610b)

A similar note could be made about Green’s functions in a 2D- or 1D-space.

6.1.4.2. Harmonic Green’s function in finite one-dimensional spaces

A harmonic perturbation generated at the abscissa z propagates in a one-
dimensional limited space in the interval [z=a,z=a+ (] with z, € [a,a + E]. The
Green’s function that satisfies the mixed boundary conditions represents the
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amplitude of the considered field at any given point z € [a,a + !f] . It is a solution to
the following problem:

2
[%*kZJG(ZaZO)=—5(Z,Zo)» ze(a,a+r), (6.11a)
Z

o

5, KoGa |G =0, z=a, (6.11b)
(§+ikoCsz=0, z="(+a, (6.11c)

. . -2i
where the reflection coefficients R, , = "t

admittances C, , by

are associated with the specific

1_Ra ’ 1_6—210{”

= = - =itg(a . 6.12
Ca,( 1+Ra’g 1+e_210“a,/: g( a,() ( )

Following the method presented in section 4.2.1, the Green’s function satisfying
the system of equations (6.11) represents the amplitude of the acoustics field at z
resulting from the superposition of the field generated by the real source at z; and
the fields generated by all the image sources associated with the multiple reflections
on the “walls” (at a and a+ ¢ ). The attenuation and phase differences due to the
reflections are considered herein. All these sources are marked in Figure 6.2 by
Crosses.

Figure 6.2.Real source at z( and image sources in the [a,a + (] space

These image sources can be separated into two categories: those located on the
right-hand side of the image walls, and those located on the left-hand side of the
image walls. The former are located at

zg +2v{, v being an integer v € ]—oo,+oo[, (6.13)

and the ratio of their intensity to the intensity of the real source is

(RaRZ)M-



284  Fundamentals of Acoustics

The latter are located at

-z +2a+2v/,

and their relative amplitude is

v

R, M (Ra R, )M :
The Green’s function G can then be written, according to equation (3.55), as

A%
+00

=3 (RaRz)M e—ik\z—zo—2vf\ +R7M e—ik\z+zo—2a—2vf\
. a s

_ 6.14
2ik ( )

V=—00

where only the factor v =0 is responsible for the —1 step of the first derivative in
the considered domain [a,a +/0 ] and where k remains close to k.

By using the properties of geometric series, one can easily show that equation
(6.14) can also be written as

-1
~ ksin(kf+a, +o)

cos[k(z< —a)+aa]cos [k(z> —a—()—océ], (6.15)

where z, =z and z_ =z if z> z( and the inverse if z<z(.

This result can be verified as follows:

Znte
1) lim—j =—1 (step of the first derivative of G) and G is a solution to

e—0 0z zy-¢

equation (6.11a) for z#2z,; consequently it is a solution to this equation
Vze [a,a + f] ;
. oG .
ii) for z=a+(>zy or zy=a+l2>z, a—z—ktg(aZ)Gz—lkOQG, and for
Z

z=a<z; or zy =a < z, the boundary conditions (6.11b) is also verified;

iii) finally, G(z,z¢ )= G(z¢,z) (reciprocity of the Green’s function).

One can obtain the same expression as in equation (6.15) of the Green’s function
by directly solving the system of equation (6.11) as follows:
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— let gl(z) and gz(z) be two independent solutions (with non-null Wronskian
Wy (z)), to the homogeneous equation associated with equation (6.11a) satisfying
the boundary conditions (6.11b) and (6.11c); the Green’s function solution to the
problem (6.11) is then

g1(c)3(s~20) are 82(6)3(s—20)
Glz,29)=-g,(z) [[Z22=-"dc-g(z ———————=dg, (6.16)
( O) 2( )Ia Wg(g) 1( ),[Z Wg(g)
where Wy (z) =g, (2)22(2)- 82 (2)g1 (2) with g;(z)=dg;/0z, i=12.
This solution leads directly to the same result (6.15).
Note: in the particular case where o, =o, =0 (Neumann’s condition at z=a
and z=a+ (), the function g(z,z) in the domain [a,a + ¢], which is extended to
ensure even parity of the function over a domain 2/ can be developed in Fourier

series as:

2-8,0 €oOs (mnzo /0)cos(mmz/ /)

Glz.z9)=%

6.17
m L (mn/d)? —k? ©1D

6.1.4.3. Green’s function in closed spaces (same boundary conditions for the
eigenfunctions as for the Green’s function)

In a closed domain (D), delimited by a surface (S), it is useful to find a Green’s
function that satisfies some boundary conditions governed by a small specific
admittance C(f,m) in the frequency domain. The associated eigenvalue problem
given by equations (6.4), where the Green’s functions and the eigenfunctions satisfy
the same boundary conditions, has a set of solutions \um(f,w) (m being a triple
index) constituting a basis of the considered space with respect to which the Green’s
function can be expanded

G(F, %)= A wm(F) (6.18)

This Green’s function satisfies the same boundary condition as the one imposed
on the eigenfunctions vy

%HkOQG:O over (S).
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One needs to express the expansion coefficients A, so that the Green’s
function satisfies Helmholtz equation (6.6)

[A+k* 1Y Ay (F)=-8(F-1) (6.19)

where e’®'0 is temporarily suppressed and where m denotes a set of three quantic
numbers.

By multiplying each term of equation (6.19) by the eigenfunction \uq(?) and
integrating over the whole domain, one obtains (considering that Ay, = -k W)

507 ) Aoy (F)vn(F)eF = v (o)

The orthogonality of the eigenfunctions
J.J‘,QD)\V q (F)“/m (i;) dr = 6qm >
leads directly to

i)

and finally to
G(F. %)= z"’m—_(rl‘zz Won (7). (6.20)

A three-dimensional analysis of this expression (as in section 6.1.4.2) reveals
that this Green’s function represents the velocity potential generated in the domain
(D) by a punctual source of this domain and by all the image sources associated
with the multiple reflections in the cavity.

The corresponding Green’s function in the time domain is obtained by the
inverse Fourier transform and integrating by the method of residues. It is therefore
necessary to know the functions ké(m) and kz(o)) that are complex functions
depending, respectively, on the boundary conditions and the dissipative effects
during the propagation between two reflections.
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Since the imaginary parts of kgq ((o) and k2 ((o) (weak dissipation) remain much
smaller then the real parts, the roots of the denominator of equation (6.20) are
obtained by writing that

. 2 . 2
0=k —k? = [kop (1+ &1 +igom )] = ko (1+my +iny )P,
or
kg, (14281 +2ig 0y -k (1+2m; +2in,), (6.21)
where the factors ¢, and &,, denote the real and imaginary parts of the
corrections terms to add to the eigenvalues kg, of Neumann’s problem ((6.4)
where £ =0), leading to the eigenvalues of the problem (6.4) with {#0. The
factors m; and mn, denote the real and imaginary parts of the correction terms to
add to the wavenumber k( in non-dissipative fluids accounting for the dissipation
effect and leading to the associated wavenumber k (k =k, in equation (2.86)).

The solution to equation (6.21) is given, as a first approximation, by

k3(1+2n; )= k3 (14281, ) or kg = *k gy (6.22)
and k(2)n2 :k%mSZm or My ®&op. (6.23)

Thus the poles of the right-hand side term of equation (6.20) of the Green’s
function G(f, fo) are, for a given pulsation o,

o5 xto, Fiyy, (6.24)

where o, ~ Re [k,,] (equation (6.22)),

and where the expression of vy, is such that equation (6.23) is satisfied given
equation (6.22). An example of this derivation is given in the forthcoming section.
Examples of the expressions of wavenumbers and eigenfunctions are given in
Chapters 4 and 5. A complete study in such realistic situations would show that v
is a positive number (compare section 9.2.3, equations (9.27) to (9.29)).

Finally, the Green’s function in the time domain is

2 e io(t-t,)
GF57.t0)= 2 Swmliounl) | — . (629)
Tm Oo—(w—o)n)((o—w;)
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The poles are located above the real axis and the integration contour is chosen as
shown in Figure 6.3 depending on the sign of (t - to) so that the integral in
equation (6.25) becomes

o0 io(t-t,)
J © g [Res(mg)Jr Res (m;)]U(t ~t9), (6.26)
o~ (@=0p) (0-0y)

where Res(o;) and Res(o,) are the residues associated to the poles,

. iof (t-t,)
Res(o,) == " (6.27)
Oy — C‘);
t< to
Figure 6.3.Poles and integration contour to calculate the
Fourier transform of the Green’s function
The Green’s function can finally be written as
S 2 S (= o (ity) Sin O (t=to)
G(F, 61, t0) =g Ult—to) T wm(fo)wp (F)e ™) =020 (6.28)

m=0 Om

where the Heaviside function U(t—to) accounts for the “causality principle”
according to which the recorded field at the instant t cannot precede the cause
(impulse signal emitted at t( ). The imaginary part vy, of the poles is responsible
for the complete attenuation in time of the field.

Note 1: the source radiates an impulse signal with a continuous and “flat”
frequency spectrum and the receiver “sees” a discontinuous spectrum that is the
superposition of the direct and reflected pulses.
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Note 2: the Green’s function, which is the solution to the following problem in
the frequency domain:

(A+k*)G(F,5y)=-8(t 1), in (D), (6.292)

{%ﬁkog} G(F,7y)=0, over (S), (6.29b)

where (D) represents here a cylindrical domain limited by the surface (S) of main
axis z with z € [a,a+ ¢] (Figure 6.4), can also be written in the form as in equation
(6.20) where m denotes the triple quantum index: couple (up,v) as in equation
(5.46) and m,, .

<l

Figure 6.4.Cylindrical closed space

However, the Green’s function can be expanded on the basis of the
eigenfunctions v, (\TV) of the cylinder that satisfy the boundary condition (6.29b)

and can be written as ¢*1H?J " (kwMV \X/) if the cross-section of the tube is circular.

The expansion coefficients then depend on the variable z:

(r rO) zguv(z ZO)‘VMV(WO)WMV( ) (6.30)

p,v=0

where the coefficients are denoted g, y,,, for the sake of simplicity.

The substitution of the solution (6.30) into equations (6.29) gives

2
S50 85 +-Z 0| ety ()= 5w ble- s} (631

TRY
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By using the orthogonality between the eigenfunctions v, and since

AGV oy (W)=-k %Vuv Vi (W) where Ky, denotes the eigenvalues associated to

the eigenfunctions vy, (as for equations (6.19) and (6.20)), one obtains

82
|:az_2 + k%pv :lguv (Z’ZO ) = _S(Z —Z0 )’ zZe [a’a + (], (6.322)
with k7,, =k* -k},

The solution must satisfy the following boundary conditions:
o .
——ikoC, |8y =0 at z=a, (6.32b)
0z
o .
—+ikoC/ gy =0 at z=a+ /(. (6.32¢)
0z

The problem (6.32) is nothing other than the problem (6.11) with

_2i
kzuv I_Ra/ kzuv 1—e 1% kzuv

= = =i e 6.33
Car =T 1+Ry, k(4 2% koo (6.33)

where the ratio k,,, /k is the angle of incidence of the propagative modes. The
solution to such problem is written as (6.15)

—cos[kZMV (z< —a)+a,]cos[k,, (z, —a—0l)—o,]

gu(z20)= . (639

kZuv sin (kzuvf+oca +0oy)
where z, =z and z_. =z( if z> z; and inversely if z < z.

Another alternative form of the solution (6.30) can be obtained by presenting the
solution as an expansion on the basis of eigenfunctions that do not depend on the
variable z , the expansion coefficients depending then on the variable w .

6.1.4.4. Green’s function in closed spaces (different boundary conditions for the
eigenfunctions and Green’s function)

In many cases, it is advantageous to express, in the frequency domain, the
Green’s function satisfying mixed boundary conditions, in the form

{% +ikg C}G(f, %y )=0, over (S) (6.35)
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The Green’s function is then expanded on the basis of functions that satisfy
Neumann’s condition at the limits of the domain

%cpm =0 over () (6.36)

The Green’s function can then be written as

G(r, %)= ng(ro)<b (F) . (6.37)

It is not possible to write, a priori, that

over (S),

G o,
on —%gm on

since this equality does not hold as the conditions that are satisfied by, respectively,
the Green’s function G (6.35) and the eigenfunction @, (6.36) are not necessarily
the same. One barely needs any mathematical formalism to verify that the derivative
of the series is not equal to the sum of the derivative of each term of the series. This
is also true, a fortiori, for the second-order derivatives. Therefore, it is more
appropriate to associate another expansion to the Laplacian of the Green’s function:

AG = oy (5o ) (). (6.38)

However, all these choices are, in some respect, arbitrary and during the analysis
of the velocity field associated with the Green’s function at the vicinity of the walls,
one still needs to use equation (6.35) to replace the operator 0/0n by the factor

(—ikot).
According to Appendix A2 to Chapter 4, and assuming that the eigenfunctions

®, are real, the expansion coefficients in equations (6.37) and (6.38) are given by
the following scalar products

Hf (7,7 ) (F)dr' (6.39a)

and o, = f jf(D)A;. G(t', 5y )@, (F)dr' . (6.39b)
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The expression of o, can then be modified by writing that

o = [[] div [grad G(F', Ty )] @, (') i

=[] div[®, (') grad G(F', Ty )] dr"
—[[] grad G(F', %) ) grad @, (F')dF"

= [[] div[®, (") grad G(¥', 5 )]dF"
—[I] div [G(F', Ty ) grad @, ()] dF"
+[[] G, %) div [erdd @ ,, (7)]dF

{1} [0 (7) 218 G (. )~ G(F" Ty ) erid b, (¥
1l G Fo) A @ ()
or, considering equations (6.35), (6.36), and (6.39a) and that A+ @, (F')=—k2 &, (),
o (1) = =ik [fig) &(F) G(F'. T ) @ o (F) Ak, g (10)- (6.40)

The substitution of equations (6.37) and (6.38) into equation (6.6), and
multiplying each term by any eigenfunction of the basis and integrating over the
whole domain, gives

[l @ () % [—iko [fig)6 G @y di+(k? —kﬁ)gu(fo)] @, ()
== [ffip)3E =To) @, (F)dr.
The orthogonality properties of the (assumed) ortho-normal eigenfunctions lead to
—ikoﬂ(s)CG‘Dm i+ (k% — k) gm () =~ @ () ).

or, substituting equation (6.37), to

gm(i:O) = ﬁ{‘bm(fo)—iko %:gv (?0) I.&s)C(?')Qv(?’)Qm(F’)dF' (6.41)
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By separating the terms in the sum for which v # m and the term where v=m,
one obtains

{tl)m(fo)—iko 506l £ O cpmdf}

()= hialll . 6.42
2m(f) krz'xl_k2+ik0j.,[(s)cq)ildf' (6.42)

This expression reveals an inter-modal coupling between the m™ mode and the
modes (v #m) associated with attenuation and reaction due to the complex nature
of €. Also, for (=0, g, (fo) takes the form of equation (6.20).

Frequently, the inter-modal coupling factors

fj(s)g(l)v(l)m dr', V#m

are negligible in equation (6.42). In such cases, the expansion coefficients g,
become

i)~ (i) 6.43
e () k3 —k2 ik [fig L0 4

Consequently, the approximate expression of the Green’s function is

f,T))= Pm(f) (7 6.44
a7, 1) an: 2 K +ik, ”(S)C‘Drzndf' r (6.44)

If necessary, the comment following equation (6.38) could be considered.

Example

In the particular case where { denotes the specific admittance associated with
the effects of viscothermal boundary layers (3.10),

%
ikoﬂ(s)qcbﬁqdf = iﬁ{%} € i

where &y =H(s)H —%“JJZ +ly -1, ]@idf'

2
kp
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and considering the visco-thermal dissipation during propagation

2

2 () . @

k =—2(1—1—zvhj,
oy €0

the denominators of the series contained in equation (6.44) become

2 %
k2 —%[l—i%ZVh]+iﬁ(%J € vhm- (6.45)
C
0

The roots of this function are given by

0=t0, +iYy, (6.46)
where o, = tcpk, (6.47a)

2
Co®
~ NZ0Tm Om, (6.47b)

and Ym #® 2\/5 €vhm + 2CO

The latter solution expressed by equations (6.46) and (6.57) can be verified by
ignoring the term in y, in the real part of the solution and the terms in Yy,
Ym€vhm and Yy, ¢y, in the imaginary part of the solution. Since the factor &,
introduces a surface integral of the square of the eigenfunction d)rzn, it is
approximated by the surface to volume ratio S/V of the cavity and is therefore
predominant against the dissipation of volume (£, factor) in small cavities.

There are many other forms of Green’s functions suitable for specific problems
of acoustics, but it is not the objective of this chapter to be exhaustive on this point.

6.1.5.Reciprocity of the Green’s function

Equation (6.5) can also be written as

2 (7 13
AG(f,t;FO,tO)—%M=—6(f—f0)5(t—t0), (6.48)
c ot
1 0%G(r.~t5,~t;)
c? at?

and AG(f,~t;f,~t,)— =-3(F—1)d(t—t; ). (6.49)
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The multiplication of equation (6.48) by G(f,~t;T,—t;) and equation (6.49) by
G(7,t1y,to) and the integration of the difference between the two results over the
considered space and time leads to

[7 dif jj(D)dfo G(T, t:5y, to ) AG(T,~t;T ,—t; ) - G(F,~t;T ,—t; )AG(F, ;T t)

—LG(?, t;fo,to)iG(f,—t;fl —t )JFLG(f,—t;fl,—t1 )iG(F,t;fo,to)
2 o> c? ot?

ZG(FO ,—to;fl 9_tl)_G(Fl’tl;i:Oﬂt0)' (650)

The principle of causality implies that the left-hand side vanishes if t does not
satisfy the condition ty <t<t;. However, it also vanishes if this condition is
satisfied. This can be demonstrated using Green’s theorem and writing down the
following identity:

0 S 0 . .- SO 0 fa -
E{G(r,t;ro,to)aG(r,—t;rl,—tl)—G(r,—t;rl,—tl)aG(r,t;ro,to)}

2 2
= G(T,t5), to )a—zG(f,—t;fl,—tl )-G(F,~t:5,-t, )% G(T, %), tg),
ot

leading, for the left-hand side of equation (6.50), to
[Z dt] j(s)dﬁ [G(F, t:5), to ) grad G(F,~ ;5 ,—t; ) — G(F, ;5 ,—t; ) grad G(T, Ty, to )]

) 8G(17, t;?o . tO ):|t:OO

) aG(fa_t:fl 5_t1 )
ot

1 P o — -
_c_2 .[”(D)dr {G(r, 19, to I E— G(f,~t;f, ,—t,

t=—00

The first term of equation (6.50) vanishes as both forms of Green’s function
satisfy the same boundary conditions and the second term vanishes by virtue of the
principle of causality. Consequently, equation (6.50) becomes

G(5y,~to:t,—t)= G(F, t:y, to ) (6.51)

This constitutes the reciprocity property of the Green’s function. It can be
interpreted as follows: the effect at the point T and time t of a pulse emitted at T
at an earlier time t, (t>t,) is equal to the effects at the point T, and time (- tog
of a pulse emitted at T at the time (— t) with (—tg > —t).
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6.2. Integral formalism of boundary problems in linear acoustics
6.2.1.Introduction

6.2.1.1. In general

As indicated at the beginning of section 6.1.3, one can use Green’s functions
(elementary solutions) to obtain, by superposition of elementary fields, the solution
to boundary problems written as integral equations (equations (6.1) and (6.2)). This
integral formalism does not assume, a priori, any boundary conditions on the
Green’s functions, so that they only need to satisfy the following equation of
propagation:

2
{A‘ 12__62} G(F, 5T, to) = —8(F ~To JB(t —to ) (6.52)
c” ot

in the domain (D) considered. The boundary conditions satisfied by these
elementary solutions result from an a posteriori choice depending on the problem
considered and on the method used to obtain the solution.

This integral formalism offers a more comprehensive interpretation of the
phenomena at hand, and a wider range of problems can be analytically solved by
this method. It is, however, the increasing power and speed of computers which
have generalized its use.

These integral representations, leading to an integral equation or a system of
integral equations, are equivalent to the differential equations. The conditions of
uniqueness and existence of the solutions are the same in both cases.

Once again, the objective of this section is to present a “tool” directly available
to any physicist. Consequently, many of these ‘“demonstrations” are not
mathematically rigorous. All the notions used hereinafter are to be taken in the
context of the theory of distributions even though everything is presented so that
one does not need to be familiar with the theory to understand the following
developments.

6.2.1.2. Green’s theorem

Let ® and ¥ be two functions defined in an opened domain (D) delimited by
a close surface (S) and which first derivatives are also defined in the same domain.
Then

grad® grady = div ((I) grad \y)— ® Ay =div (\y grad CD)—\V AD (6.53)
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leads to
jﬂ(D)grad ®grad y dD = | j(s)wﬁﬁcp ds—|f I(D)\v A®D dD, (6.54a)
and _”j'(D)grﬁd ® grad y dD = ”(S)(D AVy dS—j'”(D)CD Ay dD. (6.54b)

Consequently, subtracting (6.54a) from (6.54b) gives

[{fip) (v A® - @ A¥)dD = [[ (v iV -0 ivw)ds, (6.55)

where i is a unit vector, normal to (S) outgoing from (D).

Equation (6.55) is the expression of Green’s theorem in a three-dimensional
domain. In a two-dimensional domain, it is

Jls) (v A® - @ AW)dS = . (v ivo-oivw)ds, (6.56)

where (S) is the opened 2D domain delimited by the close curve (C), 1 being the
unit vector normal to (C). And in a 1D domain restricted to an interval [a,b],
Green’s theorem is written as

o d? do dyT
J [\V—ZCD—CD—\VJdX ={\y——¢)—\u} (6.57)
X

6.2.2.Integral formalism

6.2.2.1. Time domain

In a three-dimensional domain, let the function ® denote the Green’s function
G(f,t;fo,to) , which satisfies the equation of propagation (6.52), and ¥ the
solution p(f,t) of the problem (6.1). By integrating the resulting Green’s theorem
over the period [to,t+] (to being the initial time t;, and t* the current time by
greater value), and since the Green’s function vanishes for t; >t, one obtains

ftt dto[f 15,dDy [p(f. t0) A0 G, Ty, to )~ G(F, Ty, to ) Agpliy » to )] =

f: dtom(so)dgo [p(. to ) erad o G(F, t: Ty, to)— G(F. t: Ty, to ) eradp(iy. to )] (6.58)

i
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or, considering the equations of propagation (6.52) and (6.1a),

t+

2
dto | || dDo| pliysto)| <25 GF.t 7y, to)~8(F — i Bt to)
. (D) C 8t0

? ot}

0

t+
- 0 S . 0 [
ZJ dt0|:p(r0,t0)an—G(r,t;ro,t())—G(r,t;ro,to)an—p(ro,to):|, (659)

‘ 0 0

where 0/0n( denotes the derivative with respect to the outgoing normal to the
surface

o dSy . .
——=——gradg =ng.grad, |.
(ano ds, grad 0-8 OJ

However, since
2 2
pa_zG_Ga_zpzi{pﬁG_Gip}
ot 0 ot 0 ot 0 ot 0 ot 0
equation (6.59) finally becomes

re(D), p(f,t)}

re (D),

0
= J dtojjj dDO G(F, t;fo,to)f(?o,to)
t; (D)

t
SR 0 .. = 0 SR
+ dtojj dso{G(r,t;ro,to)—P(ro,to)—P(roJo)—G(rat;ro,to)}
¢ (S) (3n0 al'lo

1

- 0 = - P o
+_2J'J'J' dDO{G(r’t;ro’tO)at_p(rO’tO)—p(ro,to)at_G(r,t;ro,to)} .
¢ (D) 0 o .

0 i

(6.60)

The first integral denotes the contribution of the real sources distributed in the
domain (D) to the acoustic pressure field, and eventually the contribution of image
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sources, depending on the choice of Green’s function. The second integral (over the
boundary of the domain) denotes the contribution of the wall reflections if they are
not already taken into consideration in the Green’s function. The third and last
integral introduces the initial conditions p(fo,ti) and 8p(f0,ti )/ ét; .

These integrals are actually convolutions since the Green’s function depends on
the variables (f—T,) and (t—tg). Convolution integrals over the period of time
highlight the fact that the contribution of the sources to the acoustic field in the
domain (D) includes radiation from the sources since the time tg > t;.

Equation (6.60) is an integral equation since its solution p, for any point T € D,
depends on the values taken by the different terms of the equations and that its first
normal derivative is defined at the boundary (S) of the domain.

Note 1: the domain (D) can denote an open domain (D) delimited by a closed
surface (S) or an open domain (D) exterior to the surface surface. The same domain
(D) can also denote any domain (D" U D) excluding the surface (S) apart from the
sources that remain included in (D).

Note 2: in the case of a two- or one-dimensional domain, one needs to replace
the volume integrals in equation (6.60) with double or single integrals, respectively,
and substitute the integrals

8n0 5n0

by respectively
§ d/@o(Gﬁ—pﬁ} (6.61)
c 6n0 8n0
oG b
or {G&—p—} . (6.62)
ong  Ong |,

6.2.2.2. Frequency domain

Under null initial conditions (a situation one can often reduce the problem to),
the integral equation in the frequency domain can be obtained by simple Fourier
transform of equation (6.60) since the time integrals are actually convolution
integrals. It can also be obtained from equations (6.55) or (6.56), and (6.57)
integrating over the domain (D) and by writing that the functions p and G satisfy,
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respectively, the Helmholtz equations associated with (6.1) and (6.55). The integral
equation in the frequency domain is then

] e

f (S)ds{c](f, o) 2ol ol ) 22— GlE. o) |

0 0

(6.63)

where the functions p, f and G are the Fourier transforms of previously defined
functions. The comments made in the previous section hold in the frequency
domain.

The suggested interpretation of equation (6.60) can, apart from the time-related
remarks, be applied to equation (6.63). The contribution of the boundary reaction to
the acoustic field results from the radiation from a monopolar layer (factor G(7,1;) )
of “intensity” proportional to the particle velocity at the wall (factor dp/ong) and
from a dipolar layer of “intensity” proportional to the structure-borne pressure. This
reaction depends on the vibratory characteristics of the boundary, but also on the
pressure and particle velocity field that contributes to the vibration motion of the
wall. Generally, the vibrations of the wall can be described by non-homogeneous
mixed boundary conditions such as (1.70), including the material reaction described
by the specific admittance B and the forced dynamic response of the wall surface
described by the vibration velocity Vy = U /iop .

6.2.3.0n solving integral equations

6.2.3.1. General method

For the sake of simplicity, only the integral equation (6.63) in the frequency
domain will be analyzed in this section. However, a similar analysis could be made
in the time domain.

The Green’s function G(f,fo) being known, equation (6.63) leads to the
solution in the three-dimensional domain (D) as long as it is defined and known
over the delimiting surface (S). In many simple cases, the given physical conditions
of the considered problem are a source of information on the solution at the
boundaries and, if the Green’s function is appropriately chosen, lead directly to the
solution of the problem in the entire domain by calculating the integrals in the
second term of equation (6.63).
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In the case of more complex problems, the solution at the boundary must be
calculated. The mathematical projection of the point T from the domain (D) onto a
point T on the boundary (S) leads, for an unknown p(%), % €(S), to the
following integral equation:

@ B JJJ(D)f(fO Il )40

j j (S){Gcs,fo%p(fo)—p(fo)@nioc}(fsxo)}

(6.64)

If, for example, the normal derivative dp/dn( is known at the boundary, this
equation is a singular Fredholm’s integral equation of the 2™ kind (which integrand
can be integrated despite the singularities). Obtaining the solutions then requires
mathematical or numerical methods that are not considered in this book. More
generally, since this book does not treat the mathematical and numerical methods
for solving integral equations, this section will only focus on the problems where the
integral equations can be transformed into integral “solutions” or, in other words,
into the problems for which solutions can be derived directly from the known
solution at the boundaries of the considered domain. Nevertheless, a demonstration
of equation (6.64) will be presented, followed by an introduction to the derivation of
the solutions for two particular boundary problems: the non-homogeneous exterior
Neumann’s problem and the non-homogeneous interior Dirichlet’s problem.

6.2.3.2. Limits of the integral equations at the frontier

According to the first comment in section 6.2.2.1, the domain (D) can
indifferently represent an interior opened domain (D7), an exterior open domain
(D") or the union of both (D" L D) that represents the entire space, but the surface
(S). In the last case, since the Green’s function and its first derivative do not present
any singularity over (S), equation (6.63) becomes, for ¥ € (D" U D"),

)= [, oD,

6.1 (6.65)
| iR o )otes o
® 0
with ps(f0)=(%j —(%j : (6.662)

and pq(f)=ps —p-, (6.66b)



302 Fundamentals of Acoustics

ns and py denote, respectively, the potential densities of single and double layers,
representing the discontinuities at (S) of the normal derivative of the pressure (4 )
and of the pressure itself (pq ).

As shown in the previous sections, finding solutions to these problems generally
requires the limit of this equation when t tends to an arbitrary point 1&g of the
surface (S). Indeed, the solution p(f) (and/or its first derivative apffs )/ én)
substituted into equation (6.65) leads to the solution p(f for any given T inside
(D") or (D7). However, precaution must be taken when calculating the limits of
p(ts) and p(ts)/on at the boundary because of the discontinuities of the single
and double potential densities. When considering equation (6.65), the solution is
given by

P=Pf +Ps +P4d-

The expressions of py, pg and py are given by the three terms in the right-
hand side of equation (6.65):

pe ()= Iflp- L) O T ) £(5 )iy (6.67a)
ps(F)=~[fg) ns(i)G(F, 1y )dy , (6.67b)
8G(r %)

d, . (6.67¢)

( ) .U(s) Hd(fo)

The factor py denotes the acoustic field generated by the active sources within
(D* UD™) and is called the direct field. The factors py and pg4 introduce the
effect of the discontinuities of the field and its derivative on the acoustic field p(?).
The Green’s function G(f,%) introduced in the surface integrals must satisfy
Sommerfeld’s condition at infinity (to guarantee that no reflected wave is traveling
in the opposite direction) and takes the spherical wave form
exp(— ik|r - r0|) (4Tt|r - r0|) in a three-dimensional domain.

When T tends to T €(S), the limit of the integral

pe ()= Jim [{fip: )G 10 )Mo Wity (6.68)

is given by

Pr ()= Mip+ up- G- To JE (R Jao. (6.69)
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For the potentials py and py things are unfortunately not that simple. In the
case of the single layer potential p,, the normal derivative presents, by hypothesis,
a discontinuity pg at (S):

on on

)| | Zne)| i) (670)

even though py itself does not. The pressure field is indeed continuous in space:
[ps )], —Ips ()L =0. 6.71)

Consequently, if the limit for r — rg of the potential p is given by
s (i) = =Ifis 15 (F0 JG s, 7o o, (6.72)

the expression of the limit of its normal derivative, given by
2,6 H 1y (o) G (.5 ) diy. 6.73)
is only valid in (DJr uD* ), but not in (S), when T =T%;. For T — Ty the sum

2|+ -Zpy(is)
o] )]

) (S)usﬁo%[G(a,fo»G(F_,foﬂdfo,

LT

(6.74)

where the operator 6/0n is applied to T, and T, and where T, and T_ are
symmetrical with one another with respect to T, is continuous through (S) and,
according to the condition of continuity of the derivative of a Green’s function,
given by

)] @) <[ w) ot @9
ng . ong

where the operator 0/dn is applied to 15 .
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The sum and difference of equations (6.75) and (6.70) lead, respectively, to the
following results:

{ai pS(FS)l :@_JJ(S)MS(}‘O )anisG(fsio )z (6.76)

{a:s ps(fs )}_ - _@‘JLS)“S (5 )aniSG(fs T )Ty - (6.77)

Finally, when only the single layer potential is superposed to the direct field p¢,

P=Pr *+Ds> (6.78)
equation (6.72)
ps (%)= _.”(S)p's(i:o G55, T iy, (6.79)

and equation (6.76) when the problem is internal (or 6.77 when the problem is
external) lead to the unknown “s(?S) for a Dirichlet’s problem where
ps(ts)=p(ts)-pe(%) is know or, if the problem is external to a Neumann’s
problem where Jpg (st)/ﬁns =dp(s )/ dng —dp¢ (T )/ dng is known.

The solution is then

III(D+UD (%, % )e (i Jdip — ﬂ Ms(ro JG(F. o M. (6.80)

Considering now the double layer potential p4, the method adopted below is in
perfect analogy with the previous one for pg. By hypothesis, the double layer
potential presents a discontinuity pq at the surface (S) defined by

[pa (%)), —[paEs)] =nq(i) (6.81)

but its normal derivative is continuous through the surface (S) (because continuous
in the entire domain):

{&i pd(?s)lr {ai pd(fs)} = 0. (6.82)

Consequently, if the limit for T — 15 of the derivative of the potential is given by

2 palis)= [fs ud(ro)—G(rs ) Jdro, (6.83)

ong
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the expression of the limit of the potential itself, given by
- -\ O = = \y
pa(F)= [figyalio )5 —G(F. % b, (6.84)
no
is only valid in (DJr uD* ), but not in (S), when T =T%;. For T — Ty the sum
- - . -\ O S SR P
[paGs)l, +[pa(s)l. = lim H(S)Md(ro )a—[G(r+ 1)+ G(E. T )Ty, (6.85)
LI ()

where T, and T are symmetrical with one another with respect to Ig, is
continuous through (S) and, according to the condition of continuity of the
derivative of a Green’s function, given by

Pl ), +lpa (i) =20fgynal )60, 7o i (6.86)

The sum and the difference of equations (6.86) and (6.81) lead, respectively, to
the following results:

[pa (%)), +[pa ()l ‘ZJJ mal fo)iG (s, To Jdp - (6.87)

ano

- * 0 ~ V=
[pa(is)] =-F45 rs Jj wa (f ) =—— GFs, T Wi (6.88)

ony

Finally, when only the double layer potential is superposed to the direct field p,
P=Pf +Pd> (6.89)

equation (6.83)

()= JLS)H a (% )ai—afo G(Fs., Ty )y, (6.90)

and equation (6.87) leads to an unknown Hd(?s) for a Dirichlet’s problem (where
pa()=p(%)-ps(%) is known), while equation (6.88) leads to a Neumann’s
problem (where dpy (% )/ &ng = dp(%s )/ ong —dpy (% )/ ng is known).

The solution is then

jjf G(%, % ) (¥, )df, +JJ g ro)iG (F, Ty )iy, (6.91)
D UD

8n0
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6.2.3.3. Example of solution: non-homogeneous exterior Neumann’s problem

The differential formalism of such problem is

(a+2) p(E)= 1) FeD’,
oplis) _ v(Ts ), is €S, (6.92)
on

Sommerfeld's condition at infinity.

The integral formalism can, if the normal derivative is there defined inward of
the domain (D), be written as

] 66 MG e

3l (Je(a ol ={p<f>n

0, reD™.

- pr (693)

The’ factor 6p(f0)/ ong = V(FO) is, by hypothesis, known (boundary condition)
and the function p(FO), denoted indifferently p(fg), is given by the respective
substitutions of equations (6.69), (6.72) and (6.87) into the three terms of equation
(6.93) for T — T,. By noting that pg(ts)=dp(ts)/ong and pgy(ig)=p(fs) (since the
field is extended with zeros in D), the solution is

p(%s)

_ rlﬂ[ffkn+) Ol 1)1 e _Ij(s){G(F’fO)aniop(fo)—P(fo)anioG(f,fo)}dfoj

= ol )l ) ~ ) O )8nio p(F )iy +%¥S)
+.” (ro)—OG(rS,rO)drO’

and finally

D) _ 516657 My~ (g G )l
0 (6.94)
‘” (ro)—oG(fs,fo)dfo
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The substitution of the solution p(FS) of equation (6.94) into equation (6.93)
leads to the solution to problem (6.92).

6.2.3.4. Example of solution: non-homogeneous interior Dirichlet’s problem

To find the solution to the Dirichlet’s problem in which the boundary condition
p(fs)= W(% ), one requires the solution to the following integral equation at the
boundary rather than the solution to equation (6.94):

ais p(is)/2= JJJ(W)G(?S’?O)f(fO)d?O .

—JLS){LG(fs,fo)anﬁop(fo)—p@o) 0 ic(fs,fo)}dfo.

ong Ong Ong

Note 1: the surface integrals, the integrands of which contain the Green’s
function G(fs, ), or its normal derivative, unbounded function at %, = i, are to be
taken as Cauchy’s principle value (P.V.), defined as

P.V.[ f(x)dx = glig%(j:‘% e, )f(x)dx. (6.96)

The principal value of the surface integrals, the integrands of which contain the
second derivative of the Green’s function, is not defined. However, these integrals
exist and are called finite parts (FP).

Note 2: the derivation of the solution to an exterior problem using the single
layer potential leads to the integral equations whose real eigenvalues are those of the
interior Dirichlet’s. If one uses the double layer potential, then one will obtain the
integral equations with which the real eigenvalues of the Neumann’s problem are
associated. To these eigenvalues correspond an infinity of solutions, and outside the
set of eigenvalues, the solution is unique.

Note 3: the integral equation (6.80), for example, can also be written, by
definition of the Dirac &g, as

p(F)= [[fip)G(F. 7 (o )-8, b (1 iy, (6.97)

or, since the integral represents a convolution product, as

p=G*(f-uds) (6.98)
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Presented as such, the problem is expressed as a non-homogeneous Helmholtz
equation:

(A+k?)p=—(f —,3g), (6.99)
or {Ap}+k?p=—f, (6.100)

where

{Ap}zAp—K%}+ -(%j}ss (6.101)

denotes the Laplacian of the function p outside of the domain (S)

Note 4: if the Green’s function is chosen as ¢ X' /(4nr), Sommerfeld’s
condition is implicitly considered by the limit of the integral of (6.60) over the
surface of a sphere when R — o0

—ikR —ikR
o [ [ o (e
R—w® () 47R OR =~ OR| 4nR
= lim JJ —(—+1kp+ ] “kR 40,
R—o (4n) R

The last integral is equal to zero if

R2dQ

. op .
lim R| —+ikp |=0. 6.102
im KaR ikp ( )

R—x

This is Sommerfeld’s condition. In a two-dimensional space, it becomes

lim VR (a—+ 1ka (6.103)

R—x
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6.3. Examples of application
6.3.1.Examples of application in the time domain

6.3.1.1. Field generated in a three-dimensional infinite space

The problem can be written as:

2
A- 12 a2
Coat

Sommerfeld's condition at infinity,

p(f,t):—f(f,t), er(D), ‘v’te(ti,co),

(6.104)

null initial conditions.

The equivalent integral equation is, according to equation (6.60)

t* -
p(f,t)=4ij dtom dnoés{'f‘“'—(r—to)}fﬁo,to),
T ti |r—r0| CO (6 105)

_ dD, 1 ff0,|r_?°|—t .
475|r—r0 Co

This solution is called “delayed potential” and its interpretation is straightforward.

Specific example: the punctual source is moving at the constant velocity
V(V < co). In accordance with equation (3.29), it is a source of volume velocity
equal to q=Q 6(?0 —Vtg ) The solution for the pressure field p =—pgpde/ot can
then be written, according to equation (6.105), as

t* = =
p:poQoJdt ! SPf‘WOL(t_tO)} (6.106)

47 ( 0 |f—\7’[0| o

The change of variable u:(lf—\*/t0|/co)+ to leads directly to the following
result (Figure 6.5):

_PoQo €0 i R—F -, (6.107)

p _.
4n Rcp-V.R
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source V(t — tO)

<!
—

Figure 6.5.Moving punctual source (constant velocity V)

6.3.1.2. Initial values problems

At any given point in an infinite medium, without any source, the values of the
field y( and its derivative with respect to the time v =dy( /0ty are assumed
known at t =t;. The integral equation (6.60) becomes

(i, t)= szjdio G(it;fo,ti)Vo(fo)-%G(it;foati)\lfo(fo )} . (6.108)
CO i

This result is applied to three different problems: one-, two- and three-
dimensions.

6.3.1.2.1. One dimensional initial values problems: infinite string in vacuo

The solution (6.108) then becomes

l 4o 0
\|I(X,t): _2.[:1) dX0|:G(X,t;X0,ti)Vo(Xo)—ét—G(X,t;Xo,ti)qlo(Xo):| . (6109)
Co i

1

The substitution of the Green’s function (3.54) and its derivative (since
1-U(-u)=U(u))

G(x,t;xo,ti)z%[l—UQx—XO|—CO(t—ti))]

2
P c
and &—G(x,t;xo,ti): _TOS(IX —x0| —co(t —ti)),

i
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into equation (6.109) and writing t; =0 leads to

11 X+c,t
vir)=1 C_J vo(xo)dxg +wolx+cotltwolx—cot) |. (6.110)
0 Jx—c,t

It is the well-known D’ Alembertian solution of the initial value problem at one-
dimension. One can easily verify that it satisfies the considered problem. Indeed, by
substituting, in the initial conditions, the general solution

Fi(x+cqt)+Fy (x —cot) (6.111)

to the vibrating string equation

o> 102
a ot |0
0

where c% =T/m, is the ratio of the tension of the string to the mass per unit
length, leads to the following equations:

Fi(x)+F>(x)=wo(x).

Fi(x)-Fa(x) = —vo(x).
o

After integration with respect to x, the second equation becomes

m@)—%):i j vo(xg) dxo.

and combined with the first equation leads to

X

()= 3 vl voGasg |

—00

X

1 1
and Fz(x)=5 WO(X)_EI vo(xg)dxg

—00
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The solution is therefore
\V(X, t) = Fl (X + Cot)+ F2 (X — Cot)

1 1 (Xtct (6.112)
=3 Wo(x+cot)+\llo(x—00t)+—j OVO(XO)dXO }
Co v x—cyt

1) Case of the plucked string

The tensioned string is released with a null initial velocity from an initial
position defined by wo(xo) so that solution (6.112) is reduced to

wlx,t) = wo bx et +wo (x ot (6.113)

This result is illustrated by Figure 6.6: the continuous line represents the shape
of the string while the dotted line represents the shapes of the partial waves in
equation (6.113).

X t>0 X
t2>t1 X t3>t2 X

Figure 6.6.The plucked string: deformed shape \V(X, ti)

i) Case of the hammered string

The string is set into vibration with an initial velocity Vo(xo)by an initial
impact. The initial displacement is assumed null (string at rest). In the case where
the impulse is uniformly distributed across a section (— a,+a) of string (Figure 6.7)
and assuming a simple model for the hammer, the initial velocity is given by

( )= vg if xoe(—a,a),
YOOI i xpe(—a,a).
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A VO(XO)

>
—a +a X0

Figure 6.7.Initial velocity of the hammered string

The calculus of the solution at a few points and times is straightforward; some
results are illustrated in Figure 6.8.

—— > Cocf--
a0 +a —a 0 +a
t=0 cot=a
S//S N eepeeepee e
-a 0 +a 2 0 +a
cot=2a cot =3a

Figure 6.8.The hammered string: deformed shape \V(X, t)

6.3.1.2.2. Two-dimensional initial values problems: infinite membrane in vacuo

The origin O of the coordinates is located at the observation point and the
origin of the time scale is t; =0. The substitution of the expression (3.49) of the
two-dimensional Green’s function into the solution (6.108) leads, since
0G /oty =—0G/at, to

I (o)
w(o)= 5o J dbo J wodwy ==t
0 0 0 Cot —WO
2n Cot _
+§J’ dd)o 4[ W dwom

2.2 2
0 0 Cot™ —wy

(6.114)
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In the particular case of a membrane submitted to a tension T, of mass per unit
1 0°
c% at?

area M, satisfying the equation of propagation {A— ]w:O with

c% =T/Mg, that is released with null initial velocity from a position given by
yo(Wg)=8(W¢ —W,), the solution (6.114) can be written as

2n cot - =

" 2ney ot
TCO 0

0 cgt? —w
1 o 1 .
— if we<cqt 1 0| Ulcgt—w
=14 2mc Ot \/Cztz ~ 2 T (cot—we)
ot =We 2meq Ot 22 —w?
. C
0 if w.>cqt

thus \V(O,t):L 3cot—w,) < tU(cot—w,)

2n 2

(6.115)
22 w2 (cftt-wg)”

The signal w(O,t) is equal to zero until w. =cqt. At this time an impulse
signal reaches the observation point (the origin). This “impulse” is followed by a
“trail” described by the second term which decreases as 1/t> for Cot >> wy
(Figure 6.9). The original signal is therefore deformed during propagation.

(0] W 0] w

C

tZWC/CO

Figure 6.9.Propagation of an impulse signal in a membrane
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6.3.1.2.3. Three-dimensional initial value problems

Once again, the origin of the coordinates coincides with the observation point.
By using expression (3.40) of the Green’s function, the solution is then written as

o oo oo-eo{a-pv]

with dQg =sinByd6gdog,

w(0,1)=

consequently
1 0
\V(O, t) = EJJ dgo(tVo (Cot, 90, ¢0 )"r a[t \V()(C()t, 90 , ¢0 )]j . (6 1 16)

There is no “trail”, the shape of the signal is conserved.

6.3.1.3. Huygens’s principle
6.3.1.3.1. The principle

Huygens’s principle postulates that a given point of a wavefront acts as a point
source radiating a spherical wave. The field at a given point and at a later time is
then the sum of the fields radiated by each point source of the wavefront. The
envelope created by these “wavelets” from elementary sources constitutes the new
wavefront. This so called “principle” is solely a consequence of the equations of
propagation. By assuming that in a domain (D) delimited by a surface (SO) there is
no source and that the initial values of v and Oy /0t are null, the integral equation
(6.60) becomes

)
p(ao:ﬂ dtoﬂ
t (So

-, 1 JR
—pgrad ESL—— (t- to)Da

0

€o

ds, (%{ﬁ— (t-t )} grady p(5). to)
) (6.117)

where R =T — .

The integral with respect to t( in the first term is rather simple:

t+

1 | R — ~ 1 . ~

J —SL——(t—to)}gfadop(fo,to)dto Zngadop(fost—R/Co)-
0
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The integration with respect to t(, is estimated as follows:
: 1 |R
pgrﬁdo —d ——(t—to) dto
: R Co
a1 R
—| =8| ——(t—t radg R dtg,
Jt. paR(R LO ( O)Dg 0 0

S RERE A R

t*

R - R| 0 .~
— P(TOJ—R/Co)+—{at—p(r03to)} :
R ¢ 0 t,=t-R/c,

0

The field within the surface (S ) is then written as

(6.118)

R {% I’(T'<)»t0)JFL —P(fo»to)D :
R |R coR ato t=t-R/cq

Consequently, if a propagating field exists on the surface (SO) (coinciding or not

with a wavefront) while the rest of the surface is projected to infinity or at least
where the field is null, then the value of the field p at the point (F, t) depends solely

on the characteristics of the field “wavefront” at the time (t—R/cg). In other

words, the effect of a wavefront on the field downstream and at a later time is
equivalent to the effect of a source distribution on the surface of the “wavefront”.
The characteristics of this distribution are (following the order of appearance of the
terms in the above equation): those of a monopolar source the intensity of which is
proportional to the gradient of p normal to the surface (SO) considered, and those

of a dipolar source of directivity factor depending on (li.dgo) and the intensity of
which depends on p and its derivative with respect to the time Op/ot taken at a
point of the surface (S ).
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6.3.1.3.2. Application to noise reduction

In principle, to reduce the field p(f, t) (basis of noise reduction) one needs to set
elementary sources on the surface (S, ) which generate at (?,t) a pressure p, (T,t)
such that the sum of the existing field p(7,t) and p, (7,t) is equal to zero:

p(F,t)+pa(F,t)=0. (6.119)

Thus, at a given point 1y of the surface (SO), the elementary “anti-noise” source
must generate, at (f,t), the elementary pressure

dp, (7, ) =—dp(F. 1)

daSo (1 -, .
= 4_13[E gradg p(ro,to) (6.120)
Rl 1 .. o .
—E{Fp(foa 0)+_at_0p(r0’tO)Dt B .
=t
Co

Such a noise control device must therefore contain a layer of monopoles (omni-
directional loudspeakers) at the surface (SO) emitting a field that is proportional to

the incident normal particle velocity (factor dgo.grédop ) and that can be detected
by a bi-directional microphone of cosine directivity, and must also contain a layer of

ds
dipoles (bi-directional loudspeaker in cos 0=
dSpR
omni-directional microphone) over the same surface (SO) emitting a field

that can be detected by an

proportional to the incident pressure and its time derivative. Also, it is the pressure
field and its partial derivatives (time and space) over the “frontier” (SO) that

“govern” the acoustic field considered. This is in accordance with the fundamental
laws imposed on fields governed by second-order partial differential equations.

As regards of the complexity of the problem, the efficiency of such device in
practice can only be partial and localized, the device itself being elementary with
respect to the requirements of the theory (ignoring, in particular, its bulk, retro-
diffusion and many imperfections). The description given above of a noise control
device is far from being exhaustive and better-suited approaches exist regarding the
local attenuation of the sound levels in real situations.
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6.3.2.Examples of application in the frequency domain

6.3.2.1. Harmonic motion of a membrane stretched in a rigid frame

The normal displacement field W of a membrane of surface S, stretched in a
rigid frame of perimeter C satisfies the following problem:

2
[TA ~Mg a—zjw =—f(F,t), overS, (6.121a)
ot
W =0 over C, (6.121b)

where T denotes the tension of the membrane, M its mass per unit of area and
f(7,t) the force per unit area exerted onto the membrane.

For a harmonic excitation f(?,t):fo(?)ei‘”t, the solution takes the form

W (r) et (with 0% /ot? = —o? ). The associated eigenvalue problem is then

(A+k2) ¥y =0 over (8), (6.122a)
Y, =0,over C, (6.122b)

where m is actually a double index.
The eigenfrequencies are

_ COkm

m })
21

where ¢ =4/T/Mg denotes the speed of the waves.

The associated solution to the Green’s problem

(A+k3)G(F, %)= -8(F, Ty ), over (S)
G(?,fo) =0,over C,

can then be written as an expansion in the basis of eigenfunctions ,, assumed
normalized to the unit (equation (6.20)),

Gt %)= z“;m—(rozwm(f), ko = /co, (6.123)
m k2 —k2
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and the solution (6.121), in the Fourier domain, is (equation (6.63) in two dimensions)

wo(f)=% [ j(S)G(f,fo)fO(fO)dso : (6.124)

The integral at the boundary (over the contour C) vanishes since the admitted
Green’s function satisfies the same boundary conditions as the present solution.

Finally, the substitution of equation (6.123) of the Green’s function into
equation (6.124), gives

Wo(F)== % —— [l o) o (5 )dS0 (7). (6.125)

)

2
ki = 0

that is an expansion in the basis of the eigenfunctions v, , the coefficient of which
introduces the condition of resonance (ko =k,,) as well as the energy transfer
from the source (of intensity f;) to the m™ mode (scalar product

”(s)‘i’m(fo)fo (f))dS ).

Note: a solution in the form of a modal expansion, by substitution in equation
(6.121a), of eigenfunctions satisfying the Dirichlet’s boundary conditions (6.121b),
can be estimated by writing that

Jfisy v ) (TA+ M%) 3 Ay ()dS = ~[fig vy (F) fo (F)dF

or Z(_krzn + k(2))Am ”(S)\Vv (i:)\Vm(i:) dS= _%”(S)\Vv (i:) f0 (i:) dr >
thus

”(S)\Vv (r) fo(r)dr

1
1 , 6.126
Vo k% —k% ( )

leading directly to the solution (6.125).
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For a rectangular membrane of dimensions (a,b), the origin being taken at a
corner, one can easily verify that

sin ——, 6.127a
> ( )

2 2
co |(m n
S0 jfmyfn 6.127b
Vi = (aj [bj ( )

6.3.2.2. Acoustic field in a “small” cavity (Fourier domain)

The objective of this section is to justify, in cavities the dimensions of which are
small compared to the considered wavelength A, the hypothesis of uniformity of
the pressure field made in section 3.5. This condition can also be written as
Ao >> W where V denotes the volume of the cavity. The effects of viscosity and
thermal conduction are herein ignored. The hypotheses are the same as those made
in section 3.5 according to which the acoustic field in the cavity is generated
simultaneously by the vibration velocity of the walls v, outward the cavity (that
eventually vanishes locally) and by a source of thermal energy generating the heat
quantity h per units of mass and time. The wall material is characterized by its
acoustic impedance Z =pgcq /B so that the boundary condition takes the general
following form (1.70):

%+ik0[3p:—io)povn, (6.128)

where k( =w/cq (hereinafter k,, is denoted k_o for m=0).

The solution to the problem is obtained from the integral equation (6.63). The
Green’s function is chosen satisfying Neumann’s conditions and expanded in the
basis of eigenfunctions y,, (using a compatible geometry) which also satisfy
Neumann’s conditions. Consequently

)= 22 SR oo

(6.129)
—ikopoco ”(S)Vn(Fo)\l/m(fo)dso —ikg ,U(S)B(fo)\Ifm(fo)P(Fo)dsol

For m>1, the expansion coefficients are proportional to the reciprocal of
(krzn —k%) so that, for ko <<k; (“small” cavity), the first coefficient (m =0) is
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predominant. Also, for m=0, y—g =1/ N is independent of the point T

considered and k,_y = 0, the solution becomes

.2 A
p(F)= f—;{—%m(v)h(fo )diy +poco ”(S)Vn(fo)dso

(6.130)
+ [P ol )asg }

The right-hand side term does not depend on the variable T and, consequently,
the pressure p(?) is independent of the point considered in the cavity. The
hypothesis of uniformity of the pressure field in the cavity is hereby justified. If one
considers a uniform heat quantity h (or by simply considering its mean value),
equation (6.130) becomes

)
1y 1 R —_
p=—k° R poconTVh+pocoUn+ppocoS/Z} (6.131)
0 p

where Uy, = [ v, (fy S denotes the total flow from the wall, and

S - . .
where % = _”(S)B(ro MS introduces the global effect of the wall impedance.

By denoting poc(z) = v/%1, w% =1/Vand U, =i0wdV , the result (6.131) becomes

1V yph
p:M. (6.132)
vS/V
1+

imxTZ

Solution (6.132) is nothing more than the solution given by equation (3.73) in
which the effects of thermal dissipation are ignored. In the present context these
effects could only be introduced as thermal thermal impedance as in equation (3.10)

0% _ iy -1,

Zy
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The factor depending on Z in equation (6.132) would then be replaced by the
term of “impedance”

y(S/V)x/;\/E(Y—l)\/Ezl_—i(y_l)s c0fh (6.133)
w

07T PoCo V2 v
which is in accordance with result (3.73).

6.3.2.3. Radiation from an oscillating plane surface in an infinite space
6.3.2.3.1. The problem and its solution

A plane circular surface of radius a, assumed infinitely thin, set in the (x,y)-
plane and centered at the origin of the coordinate system (Figure 6.10) is in
harmonic motion and to which is consequently applied a force on the surrounding
fluid to which the acoustic pressure generated on both sides is related to by

dF =(p, —p_)dS=2p,ds, (6.134)

where dF =dF, represents the elementary normal force exerted by the disk on the
fluid, dS represents an element of surface of the source, and p, and p_ the
acoustic pressures at the surface of the disk at respectively, z<0 and z >0, and
such that

P =-Dp_. (6.135)

Figure 6.10.0scillating plane surface into an infinite space and
associated coordinate system (case of the disk)
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The velocity of the oscillating surface, equal to the particle velocity at the surface of
the disk (normal to the disk), is given by
i —i
L i i

+

+
-v,, z=07,

S B 6.136a
"0 powony  pow Oz ( :
U S B N (6.136b)
0 po® ony, PO® Oz

where n§ and nj denote the normal unit vectors orientated respectively in the
negative and positive z-directions.

Assuming Sommerfeld’s condition at infinity and using the integral formalism,
the problem becomes (equation (6.63) with a null triple integral)

o - o), apli)
p(r)_J J (5)[G(r’r0){ ong  ong }

(6.137)
_ 1 OG(1, T _\OGl(T, T
- {m(ro )#ﬂL P—(%)MD dSg
61’10 61’10
where the Green’s function chosen satisfies Sommerfeld’s condition:
e—ik\f—fo\
G(f, %)= ———. (6.138)
4n|r - r0|

The sum of the positive and negative indexes makes possible, by simple
integration over the oscillating surface S, the integration of both sides of the disk
at once. According to equations (6.135) and (6.136), takenat z=0" or z=0",

ap(vy) _ oplFp)

——t+——=v,—-v, =0,

ong  ong

p, 868G (406, G _dF G
Tonf  ong o ozg Tozg dSozy’

and equation (6.137) becomes

—ik[f-%|
o= || £ s, (6.139)
dSy oz 47t|r—r0|
S)
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where |? - f0| = \/(x - X0)2 + (y - y0)2 +2z% . Since the operator (6/820) is acting
on the Green’s function, the field presents the characteristics of a dipolar field.

6.3.2.3.2. Far field: particular case of the oscillating disk

The oscillating surface is a disk of radius a (Figure 6.10).

For rp =wg <a<<r,

S - I
|r—r0|=\lr2+rg—2r.r0 rr——L,
r

or, in cylindrical coordinates (w 0-90-Z0 ) ,
|?—?0|zr—w0sinecos (pg —9)—z( cosB, (6.140)

and finally, ignoring the term in 1/ 2

3G 1 ifwsinbeos o)
0z 47
0/2,=0

><_
820

>

P eikz0 cos6
r—wy sin@cos((po —@)—2zcosO ;

_ ikcos® o—ik[r—wqsinOcos(p,—o)]
4nr

At infinity, assuming that dF/dS is independent of the location on the disk
(dF/dS~F/ na’ ), the acoustic field becomes

F e—ikr 5 " _
Pw (f) =— ik cos 64_.[8W0dwojond(Po o ik w,sin ecos(q)o—q)),
ma r
(6.141)
—ikr .
—ikpS 2J1(kasm6)cose,

47r kasin©

where F denotes the total force exerted on the fluid.

If the wavelength is greater than the diameter of the disk (approximately):
2J,(kasin 0)
 kasin®
generated by a dipole of dipolar moment M = F/(ikopoco) (i.e. equation (5.164)).

kasin® <1 and ~1; expression (6.141) then represents the far field
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The pressure field is null in the plane defined by 6 =mn/2 (plane of the disk).
Finally, when the dimensions of the disk are small compared to the wavelength
(ka - 0) , the pressure field tends to zero; to guarantee radiation from a surface, the

dimensions of the disk must not be small compared to the wavelength.

6.3.2.3.3. Radiation impedance of the disk

The radiation impedance is the ratio of the force exerted by a face of the disk
onto the fluid to the mean velocity of the disk

z=-12 (6.142)

Vo

where % = %JJ vow dw do.
ma

The substitution of expression (6.139) of the pressure p into the expression of
the particle velocity

\%

__ ap)
0= e
kOQOCO 62 7=0
leads to the mean vibration velocity of the disk

F o o e ™l

—_— 2i a 21 a
O wdw |17 doqg |, wodwg ———— . (6.143)
aszPOCO '[0 J.O J.O a2 0z 0z 4rr|r—r0|
By using the double expansion (discrete and continuous)
o ik -5 o i
m= )y E(z—SmO)COS[m((P—(Po)]
0l m=0 (6.144)
+00 .
[ oo

—0
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with G:\Ikz—xz if y<k or (—iwxz—kz if ¢ >k, the estimation of the

integrals in equations (6.143) leads to the expression of the radiation impedance Z
(6.142):

2
7-— T Pc% (6.145)
2 (o
S Si(a)dy
ko Jo x

The profile of the real and imaginary parts of this impedance is presented in
Figure 6.11 as a function of the dimensionless parameter (ka). The real part tends to
zero (horizontal tangent) when (ka) tends to zero. This shows that the radiated
energy vanishes when the wavelength considered becomes great in relation to the
dimensions of the radiating surface.

Re(Z)

Im(Z)

| | AN

I I I [ I 7/
1 2 3 4 5

ka

Figure 6.11.Radiation impedance of a vibrating disk in an infinite space

6.3.2.4. Radiation impedance of a vibrating surface in an infinite rigid screen
6.3.2.4.1. Problem and solution

A plane circular surface of radius a, centered at the origin of the cylindrical
coordinate system (w,,z) is at the immediate vicinity of an infinite rigid screen in
the plane perpendicular to the Oz axis. It is harmonically vibrating with a velocity
v, function of the point considered. The domain considered occupied by the acoustic
field is the half-space z >0 (Figure 6.12).
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Figure 6.12.Vibrating plane surface in an infinite rigid screen

By assuming Sommerfeld’s condition at infinity (z — ) and using the Green’s
function described by equation (6.7b) satisfying Neumann’s conditions at z = 0,

I

G(t,7p)=

4nff — 1| 4n‘f—f(;‘ ’

where 1,' is the image of 1, by symmetry with respect to the screen (planez = 0) ,
the integral equation is reduced to the following surface integral:

JJ (¥, ro)—)""o’iiwod@o

Since the vibration velocity at the boundary (S) is null outside of the vibrating
surface (SO ), the solution can then be written, since 1y'=1y at z=0, as

ik kIR
p(F) = =0P0% dSg S———v(f) for z>0. (6.146)
2n Sy) |T—1|

Equation (6.146) is the well-known Rayleigh equation or Huygens-Rayleigh
equation representing a monopolar field.

Note: this result is widely used; it is a model of systems radiating from one face
(including loudspeakers), the “back” wave being isolated from the “face” wave by a
screen or an opaque enclosure.

6.3.2.4.2. Far field of an oscillating piston: the disk

In the case where the vibration velocity is independent of the point considered
on the disk (oscillating piston), the expression (6.146) of the acoustic pressure in the
far-field (equation (6.140)) is



328 Fundamentals of Acoustics

—ikr
21 a ik w, sin O cos (¢, —
IO dgg Iowodwoe 0 (9, <P)’

. e
p=ikgpoco v
2mr

thus

¢ 27, (kasin 6)
4nr kasin®

p=i2ra’ vkypoco (6.147)

The corresponding radial intensity (1.84) is

_ |p|2 poco| |2 koa |2J kas1n6)|
2pgco | kasin® '

The field presents the characteristics of a monopolar field; however, it is
influenced by the directivity factor the variability of which, with respect to 0,
increases as ka increases.

6.3.2.4.3. Radiation impedance

By assuming once again that the vibration velocity is independent of the point
considered on the disk, the substitution of equation (6.144) into equation (6.146)
gives

o0
d
p=KkopoCo aVJO Jo(XW)Jl(Xa)FXs (6.148)

since

2n a
j cos[m(@ - o )Jdog = 218y and J wodwg JO(XWO):%JI(X3)~
0 0

Consequently, the mean force exerted onto the fluid by the disk is written

N 2 dy
FZZTEJ p(w)wdw =2nppco kg a VJ I (Xa)
0 0 10’
K ® (6.149)
2 2
_2mapycq ko v J 11 (xa) dy +iJ 11 (a) dy _
X
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Finally, the expression of the radiation impedance Z =F/v can be written in the
common form

J1 2k Sp (2k

Z=ma2pyeo|1- 1(2ka) S (2ka) , (6.150)
ka ka

where the function S;(2ka) denotes Struve’s function.

Close to the origin (ka—)O), expression (6.150) of the impedance can be
written, at the lowest orders, as

. 8k . 8k
Z znazpoco l(koa)2+1 02 zlnazpoco Oa, (6.151)
2 3n 3n
and, for small wavelengths (ka — o),
2 2 2
Z, =ma poco{lﬂ } rma“pycy, (6.152)
T[koa

with ma? = Sp where a=,/Sy/m, Sy denoting the area of the radiating surface.

The comment at the end of the previous section (6.3.2.4.2) is valid for these two
results. The profiles of the real and imaginary parts of the radiation impedance
present the same characteristics as those given by Figure 6.11 (even though the
curves are different). When the dimensions of the disk are considerably smaller than
the wavelength (ka << 1), the radiated energy flow tends to zero (the impedance
becomes a pure imaginary, a quadratic relationship exists then between the force F
and the velocity v) and the acoustic pressure p (6.147) is the pressure of a
monopole since

m 2J,(kasin 0)

: =1. (6.153)
ka—0 kasin©

6.3.2.5. Radiation from a loudspeaker

6.3.2.5.1. Radiation from a loudspeaker in two half-spaces separated by a finite
plane screen

A small loudspeaker, modeled as a point at the origin of the coordinate system,
is located at the centre of a circular plane screen of radius (a ) at z=0 (Figure 6.12
with a circular screen). According to the conclusions of two of the previous sections
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6.3.2.3 and 6.3.2.4), the field generated by a loudspeaker is approximated by the
field of a monopole at the vicinity of the screen and by a dipole in the z=0 plane
outside the screen (r > a). These approximations make possible, by separating the
domain considered into two sub-domains z>0 and z <0, a simple expression of
the field at the interface between the two sub-domains and an explicit form of the
boundary integral in the integral equation.

The calculation of the field in the sub-domain z >0 is reduced to the integral
over the surface S of the screen

p(F)= U(so)p(?o)%’:o)dso , (6.154)

since the field is assumed to present dipolar characteristics outside of the screen, but
in the same plane, resulting in a null pressure for z=0 and r>a, and since the
Green’s function vanishes at z=0 (Dirichlet’s condition):

—ik[f—1| —ik[f-|
G(F.5)=——— ———, (6.155)
An|t—1p| 4n|T-T |
where 1" is the image of 1, with respect to the plane z=0,
According to equation (5.111), at z( =0,

—ik|f—5|

a—G] =-2cos(ng,r —1y)ikg | L +- } - —, (6.156)

0z 24=0 1k0|r—r0| 4rr|r—r0|

and, in the far field region (r>>a) at the vicinity of the Oz axis
(cos(fig, T —T) = 1),

oG J ko -ikfi-g| 6.157)
Zy=

—_ : — — e
0z : 2n|r - r0|
Finally, writing that at the screen the field is similar to that from a monopole,

ikgpocoQ e kb
plrg) == == — (6.158)
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where Q. denotes the strength of a pulsing half-sphere (monopolar) z > 0, the far
field on the axis of the system is given by the approximated expression

tinuo e

21 |f—f0|

Po drg (6.159)

or, since [f —Ty|~r, by

Pwo

. a . a

k2 —ikr . —k —1k(r+fj k

KopocoQ. e e 1kr0dr0 =Me 2 SinLa.(6_160)
2r r 0 r 2

k
Apart from the effect of the factor sin[%a} equation (6.160) expresses the

monopolar property (the loudspeaker is modeled as a point source from the
beginning). When the wavelength A is such that a=nA (n being an integer),

sin(koa/ 2)=0. In such case, the “back” and “front” waves, then out of phase,
interfere in the far field region on the axis of the system.

To avoid these destructive interferences during the experimental characterization
of loudspeakers, and to obtain smoother and significant response curves of the
behavior of loudspeakers, the standards on measuring these characteristics specify
that the screen (required to avoid an acoustic short circuit) cannot be symmetrical
and that the loudspeaker cannot located at the center of the screen.

6.3.2.5.2. Radiation from vibrating plane piston in an infinite plane screen: far field
i) Problem

A radiating plane surface, with a vibration velocity independent of the point of
observation, is framed in a perfectly rigid infinite screen. The radiated pressure field
is given by Rayleigh’s integral (6.146) as

— ikOpOCO eiik ‘f*fo‘ —
p(r)= ; —— (% )dS, - (6.161)
T T

The coordinate system is given in Figure 6.13.
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f0 )(p\i y

X

Figure 6.13.Coordinate system and notations

Here, the analysis is limited to the far field, consequently the following
approximation (see equation (5.180)) holds

1| ( 1 2 2
[F-7|=r[1-22+ [—OJ —(p—o) : (6.162)
r 2|\r r

with
Po =XX0 +¥Yo,
X =x/r=sin0cos ¢,

y=y/r=sin0sin ¢,

since, at the second order of ry /1,

2 2
S [ - XX + Xg +
|r—r0|: r2+rg—2r.r0 :r\/1—2 0 2yy0 +-0 2y0 .

T T

it) Expression “po ” of " p ” at the order zero of 1y /'t

The integral (6.161) gives the pressure field p, generated at a point T by the
plane surface S (the location of a point of the vibrating surface is denoted 1). At
the 0™ order, the pressure field is

k —ikr
_KopocoQe ™ (6.163)

PO 2n r
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where Q = ‘”(So) vdSy = vS; denotes the strength of the source (spherical source).

iii) Fraunhofer’s approximation: integral expression of “p” at the first order of 1y / t

At the first order of 1y /r, and considering equation (6.162), integral (6.161)
becomes

e—ikr ik(x % +y,¥)
=1 - 0XtYoY
p =ikgpoco = ”(So)e vdS, .

For a vibrating surface (only one side) of length ¢ and elementary width dy,
(i.e. column of loudspeakers), the solution becomes

- e e ik(x,%)
p=ikgpoco Py vy e dxg ,

2 (6.164)

. kOPOCO e_ikr sm(kfd/Z)
=i Q n
2 r (kke/2)

b}

where Q =v /38y, denotes the strength of the source.

In the plane perpendicular to the “column” and passing through its center
(p=#m/20r06=0),

sin(kx//2)
|
(kx//2)

>

the radiated field exhibits then a “spherical behavior” (at the first order). The
“correction” to the spherical field, for a more accurate solution of the real field, is
therefore a second-order quantity.

For a disk of radius “a”, the far field is given by equation (6.147):

—ikr .
poi kopocoQ ¢ 2J1(ka.sm 6) (6.165)
2n r kasin 6
where Q = na’ v denotes the strength of the source. Once again, the field presents a
spherical symmetry for 6 =0. The “correction” on the axis of the disk is a second-
order quantity.
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iv) Fresnel’s approximation: integral expression of “p” at the second order of 1/t

Along the Oz axis, the expression of p, and py of the pressure at the second
order of each system (respectively “column” and disk) are given by the general
expression

2
Kk —ikr _ikfo
p=i-of e e 2rdS,, (6.166)
21 r ( 0
D,)

where |? —Ty|, for x =y =0, is replaced by (r+rg /2r).

For the “column”, equation (6.166) yields

: 2k
. k0p0C0 e_lkr 1 i _12*7(3
pZITT(VMyO)_ e ' dxg,

2k 2 2 o ?
or, denoting t° =—xj~—x{ and u=—,
nr Ar r
. kopoc e ™ e
p=i Q e 2 dt. (6.167)
21 T A2u _m

By definition, this integral is expressed as a combination of Fresnel’s integrals,
and the acoustic pressure field is

)

where p, denotes the associated spherical field (6.163).

For the disk, equation (6.166) yields

—ikr 2n

a LT

. e 1 ik

p=ikopoco Q 5 —ZJ ddg Jrodroe 2, (6.169)
T ma 0 0

or, denoting t = rg s
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a’? —ik
t

—ikr -
e 21J Ea

=ikgpgc
p=ikopgco Q o 222

0
2

and, writing u=——,
™A

i
Sln(8 uj
P=Po— , (6.170)
—u
8
where p denotes the associated spherical field (6.163).
v) Appendix on Fresnel’s integrals
These integrals are defined by
v I v T
C(w)= J cos(—tzjdr and S (w)= J sin(—r2 jdr : (6.171)
0 2 0o \2
(6.172)

Some of their properties are

C(0)=8(0)=0, C(=w)=-€(w) and S (~w)=—8 (w)

Moreover, in the (S,G) plane, the square of the length of an element is written

2 2
a2 —ae? +as? =|[9€| (98 (dw)?
dw dw ) )
or d/“ =dw”, (6.173)
:{cosz££w2]+sinz[ngﬂ(dw)z

and the slope of the curve at the point w is equal to
48 i T w2

t £ dw 2 sz

dé d€ (n zj 2 ’
— s| —w
dw
2, (6.174)
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These properties are used to draw the curve, point by point, in Figure 6.14,
which is called “Cornu’s spiral”, and to calculate Fresnel’s integrals.

S

/2(
/i w=0.5
L 0.5 cC

)

Figure 6.14.Cornu’s spiral

The spiral highlights the following properties of Fresnel’s integrals:

C(ioo)z S(ioo)z +1/2,
e(w>4)=€(w),  €(w<—4)=e(-x), (6.175)
S(w>4)~S(),  S(w<—4)~ S(~o0).

6.3.2.6. Modal approach for the acoustic field in a cavity with non-separable geometry

The acoustics field in a cavity (domain D) with a non-separable geometry
cannot be directly derived using the modal theory (the eigenfunctions can only be
evaluated numerically). By defining a domain (D), containing (D) and as close to
(D) as possible, in which the eigenfunctions satisfying Neumann’s conditions (for
example) are known, it is possible to find the solution to the problem in (D) as an
expansion in the basis of eigenfunctions of (D). The domain (D) is such that it
is compatible with the coordinate system used.
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(So)
(s)
(D)

(Do

Figure 6.15.Considered domains

In the frequency domain, the problem can be written as

(A+k?)p(F)=—£(F), feD, (6.176a)
(i + ikBj p(f)=0, res, (6.176b)
on
where the factor f(f) denotes the effect of the sources and where  denotes the
specific admittance of the walls (S) of the domain (D)

The acoustics pressure field is a solution to the following system of integral
equations (6.63), for any T € (S):

teD,

oy b= otk
+[Is [( 7). (‘)—p(?’)%G(f,f')}df'. (6.177)

The Green’s function satisfies Neumann’s boundary conditions over the surface
(Sp) - It is written as an expansion in the basis of eigenfunctions ¢, (6.20):

GET)=3 %(F)

2 2
b k2-k

o, (), (6.178)

the eigenfunctions being solutions to the following eigenvalue problem:

(A+kp) 9, (F)=0, te(Dg), (6.179)

0 ~ _
a(pp(r)=0, re(Sy). (6.180)
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The matrix equation, the solutions to which give the expansion coefficients of
the sought solution p in the basis Pp:

p(f)=X a,04(F), (6.181)
q

is obtained by substituting equations (6.181) and (6.178) into equation (6.177):

2 .2 2
k2-k? Tki-k

re(D), >a T a

p q(Pq( )}:Z{ Fq p 5 (Eqp+qu) (pq(f)’ (6182)
fe(Dy-D), 0 q

where F, = ”J'(D)(pq(?’)f(f')df’ » Egp = ”(S)(pq(f')ik[}(pp (?')df‘ ,

and Agp = -”(S)(PP (f‘)%(pq (f')df'.

The matrix equation, by projection over an element of the basis ¢, and by
considering the property of orthogonality of the eigenfunctions ¢, on (DO),
becomes

F 1
= Yay, (Epp+Amp)s (6.183)

> agNpg = -
ShaTma T T e £

with Ny = ”.[(D)(pm (f)(pq (t)dr .

Equation (6.183) can be written as
Z(qu"'qu"'Amq) ag="Fy, (6.184)
q
_ 2 2
where Dy,q = Nyq (ki —k7),
or in a matrix form as

[(D)+(E)+(A)] (@)=(F). (6.185)
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Note: the solution to the eigenvalue problem associated with the problem
(6.176),

(A+x2 ) w(E)=0, te(D), (6.186a)

(%ﬁkﬁjwm(?)zo, re(S), (6.186b)

can similarly be obtained, replacing p(f) by \um(f) in equation (6.177) before
proceeding as above. In the particular case where =0 (Neumann’s eigenvalue
problem), the expansion coefficients (Cm )q of v, on the basis of eigenfunctions

Pq>

Vm(f)=3 (Ci)y 94(F). (6.187)
q

and the associated eigenvalues 7, are solutions to the following matrix
eigenvalues problem:

M](Crm)=xmIN](Cr). (6.188)

where [M ] is the matrix of components M, = kfl Ngp +Agp » the matrices N and
A being defined by equations (6.182) and (6.183).

6.3.2.7. Radiation from a cylindrical waveguide: length correction

An incident harmonic plane wave is propagating (wave created in the positive z-
direction) in a semi-infinite cylindrical cavity with a circular cross-section and rigid
walls along the axis Oz . At the position z =0, the cavity ends in a rigid infinite
screen (Figure 6.16). The propagating wave generates, at z=0, a reflected wave
and a radiated wave in the semi-infinite plane z> 0.

7

Figure 6.16.Wave guide ending as an infinite rigid plane
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According to the results of section 4.3.1, the acoustics field in a guide can be written
as

p_ = A(e_ikz +Re'k? jei‘”t , (6.189)

where R denotes the reflection coefficient, and the field radiated p, is assumed
close to that from a plane piston in a rigid infinite screen, taken as Rayleigh’s
solution (6.146). Since the radiated field in a tube, radiating source at z=0, is a
field of plane waves, the particle velocity is independent of the coordinates (x,y) of
the section of the guide considered. Consequently, in Rayleigh’s integral, the
velocity V)ZZO is a constant equal (according to equation (6.189)) to

1-R
PoCo

V),.0=A (6.190)

This result guarantees the continuity of the velocity at the interface z=0. One still
needs to consider the continuity of the pressure (p_ =p, at z=0) or the
continuity of the impedances (Z_ =Z, at z=0). Both expressions are equivalent
since the particle velocity is also continuous. Considering equations (6.189) and
(6.190) on one hand, and considering the equation giving the (mechanical) radiation
impedance of Rayleigh at low frequencies (koa << 1) on the other hand,

k
R and Z, —ipgeyoRod (6.191)
R 3n

1
Z-=PoCo

one obtains:

1+R ~i8k0a

~ 5 6.192
1-R 3n ( )

or, more generally, replacing the factor (Tca2 ) by the surface S for a cylindrical
tube which section is not necessarily circular,

1+R . 8kov/S
S Rt (6.193)
1-R 3n

Since the second term of equation (6.192) is assumed smaller than one, one can
expand the expression of R to the first order:

16k
R ~—1+4i10K0d . (6.194)
3n
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it is a complex number of the form
R =R y[cos(no)+isin(no)], (6.195)

161{03

where 6 =—-1- >
3n

and Ry, =1.

The coordinate of the first minimum of the stationary wave is given, according
to equation (4.61), by

Zm =—(+0)h/4, (6.196)
=8a/(3n). (6.197)

If the radiation impedance is ignored (Z + = O), meaning if p, =0 at z=0,
then the position of the first minimum would be given by z,, =0 . Equation (6.197)
shows that the system of stationary waves is translated of a length

_8a_8/S

= 3n—%,with S=ma?, (6.198)

AL

in the direction of the increasing coordinate z (Figure 6.16) when the radiation
impedance is considered. In other words, when the reaction due to the radiation is
not neglected, the system of stationary waves is the one obtained for a longer tube
(by Ar) at the extremity of which the radiation impedance would be assumed equal
to zero (p=0 at z=Al). The length A¢ is therefore called the “length correction”.

The substitution of equation (6.198) into the expression of Z, (6.191) gives
Z+ = ipoCO ko Al . (6199)

This result holds as long as kAl <<1 and is acceptable as a first approximation
even in absence of rigid screen. It is applicable to cases of “strong” geometrical
discontinuities in the tube.

Note: the inequality kga <<1 used to obtain the approximations of the radiation
impedance implies plane wave geometry for the acoustic perturbation in the tube.
The cut-off of the first mode after the plane mode occurs for kya =y, =1.84.

Moreover, the length correction A¢, within the domain of validity of the present
calculation, is, at most, equal to 5% of the wavelength since (very approximately):

%_ Afko _ 8k0a

y P . <0.05.
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6.3.2.8. Helmholtz resonator
6.3.2.8.1. Preliminary: acoustics field in opened cavity with parallel walls

A cylindrical cavity of volume V, with perfectly reflecting walls, has two parallel
walls perpendicular to the Oz axis. One of these walls has an aperture of surface
S which is small compared to the surface S; of the wall. Also, the dimensions remain
very small compared to the considered wavelength, thus JE << W <<A\.

S

L L+b z

Figure 6.17.Cavity with small aperture of surface S

In harmonic regimes, the complex amplitude of the acoustics pressure in the
cavity can be expanded in the basis of transverse normal modes (coordinates w ) as
follows:

_ ik, (z—L) ik, (z—L) ~
P=pocolame ™ +bye ™ o (K ymW), (6.200)
m
where m denotes a couple of indexes,

with kgm =k% —kzwm, kym denoting the eigenvalues associated to the ortho-
normal eigenfunctions (K ym W).

The particle velocity in the Oz direction takes the following form:

i op_ykum

“ Kopoco 0z o ko

v [ame‘“‘zm(z‘L) - bmeikzm(Z_L)]wm(kwm\Tv) (6.201)

and the orthogonality property of the eigenfunctions ¥, leads to

JJ Yq(kyqW)v,dS = zkkLm[amefikzm(Z*L) - bmeikzm(sz)]qu .
S, m *0
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Thus, at z=L considering that the velocity v, (L) is null outside the surface S,

k - —
m=bm = O voy,S, (6.202)

zm

where the velocity v, has been replaced by its mean value v, calculated over the
surface of the aperture S and where vy = jjswmds is the mean value of ¥,

over the same surface.

Moreover, the z component of the particle velocity being null at z=L+b,
equation (6.201) leads to

a, o iKmb — by, elkmb
or ap, +by, =—icotg (kmb) (@, —bm). (6.203)

Thus, the substitution of equation (6.202) into the above equation gives

0 cotg(k b)VZ\Vm (6.204)

zm

a,+b, =-1

The mean value of the acoustic pressure in the aperture, denoted

= é J Lp(x =L)dS

takes, according to equations (6.200) and (6.204), the following form:

p(L)=—ipocoS vz Y Ko otg (kD) Vo (6.205a)

m “zm

Therefore, by isolating the first term of the series (m =0) from the others, the
acoustic impedance of the aperture is written as (ko =k o since k0 =0)

LoplL)_ 7,
PoCo vz PoCo

—2
= —iScotg (kgb)wy +ik(3, (6.205b)

or, since yo =1/4/S;, and k,,, =ik, for m=0, as
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2L _ —iicotg (kob)+ikys, (6.206)
PoCo SL
—2
with §=—iSY ! cotg (~ik ymb)yr, - (6.207)
m wm

The first term of equation (6.206) can successively be written, since kgb <<1,

as
—iicotg (kgb)= s 1.5t (6.208)
SL SL lkob \% lko
and in the expression of &, since kb >>1,
—icotg (~ikymb)~1.
Consequently, equation (6.505b) gives
2 S ;Z - .
p(L):poco ——+pocoVzikyd, (6.209)
Vio
or p(L)z—poc%67v+p0c0;Ziko , (6.210)
—2
with 5=8Y ~Ym_
m wm

The first term on the right-hand side of equation (6.210) denotes the uniform
field of a cavity in absence of dissipation (compare with section 3.73). The more
delicate interpretation of the second term is presented here in the case where the
section of the cavity and the aperture are squares of respective width a and a(, the
aperture being at the centre of the wall z=L. Thus

—X
a a

\2-0 [o—
Yy = J_“O zgvo cos[mE )cos(%y), (6.211)

p and v being integers,

w2 vl

s
az az

2
Kym =
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and & becomes

) (a+a0)/2 (a+a0)/2 2
2-3 2-%
5=20 ( “0)2( - vo) Lz cos| P | dx cos| ¥ dy | ,
a , a a a
:tM(O\i())) ﬂ:\/u v (a—a,)/2 (a—a,)/2

thus

2 , . 2
5220 3 (2-8,0)(2-8y9) |:(_)(H+V)/2 sin(una /2a) sin(vra, /2a)} or
a (].l,V);t(0,0) . ’Mz + V2 pmag /2a vTa /2a

even
5 _ﬁ (2-8,0)(2=8y0) |:sin (mma, /a)ﬂsm (nma, /a)T 6212)
 (mn)=(0.0) 2mVm2 +n2

mna,/a nmag/a

By denoting x =mmnag/a and y=nnag/a:

azﬁ 5 (nao/a)2 (sinxsinyJ +§: (ﬁao/a) (ﬂjz , (6.213)

7'l',2 m=l1,00 X2 + y Xy X X
n=1,00

m=1

and since the slope in may/a of x and y in the sums remains small, these sums can
be transformed into integrals. Consequently, the factor & becomes

Of OJ? dxdy ( sinx siny ? D) Of sinzxdX
n’ \/X2 + Xy : ’
y

and the calculation of the integrals (using polar coordinates for the first integral)
leads to the following result:

§~048 /S 1—1.253—0%@. (6.214)
a

a 0 X
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The expression (6.214) of d is very close to 8 SS
3t

that is nothing other than the

factor z_a of equation (6.151). In other words, the factor (ipgcoko8) of equation
T

(6.210) is, as a first approximation, Rayleigh’s radiation impedance Z (6.151):
. V4
ipgcokod = ?0 . (6.215)

In conclusion, the expression (6.210) of the pressure p(L) at the aperture is the
sum of the pressure associated with the variation of volume 8V of the cavity

OOV’

to which one needs to superpose the effect of the discontinuity at the aperture that,
as a first approximation, can be introduced by Rayleigh’s pressure factor

— Z —
ipocoko 8 vy z?ovz. (6.216)

Henceforth, the dissipation is introduced by completing each of these factors
using the results obtained in the sections on small cavities (equation (3.73)) and
those concerning the radiation from a disk in a screen (equation (6.151)).

6.3.2.8.2. Helmholtz resonator: basic model

The Helmbholtz resonator (Figure 6.18) is a system composed of a volume linked
to the exterior medium by a relatively thin and short tube opening on a finite or
infinite screen, set in oscillation under the effect of an exterior source, and
eventually reacting on the radiation of this source (possible amplification),
absorbing the sound energy and redistributing it continuously in all directions
(diffusion), dissipating part of the energy especially if an absorbing materials
perturbs the oscillation within the resonator (dissipation) and, finally, releases the
stored energy after extinction of the source until the end of the reverberation. All
these effects are optimums at the vicinity of the resonance frequency of the
resonator.
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Figure 6.18.Helmholtz resonator
(the coordinate of the aperture of the resonator is denoted Ty )

The device is such that the following hypotheses can be made: the section S of
the tube is very small compared to the surface of the walls of the cavity (of volume
V) and the dimensions of the resonator (among which is the length of the tube L) are
very small compared to the wavelength A considered (that corresponds to the
resonance frequency of the whole system). This can be written as

VS<<A/V<<h and L<< 1 (6.217)

(the length of the tube can be equal to zero). Also, the geometry of the surface S, as
that of the volume V , is not relevant if it remains reasonably regular.

The considered space is divided into three regions: the semi-infinite space z <0,
the tube ze[O, L], and the volume V of the resonator. The properties of the
acoustic field are expressed, one after the other in each domain and at the
boundaries. The acoustic source located at r, is assumed monopolar and harmonic
with total source strength Q.

1) The acoustic field in the semi-infinite domain (z < 0)

The complex amplitude of the acoustic field in the semi-infinite domain (z < 0)
is given by the integral equation (6.63)

p(f)= Jffiko PocoQs 8(f — 1 )G(F, T )dVy
+U G(f,?o)ap(?())dso
(s) dng

(6.218)
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as long as the chosen Green’s function satisfies Neumann’s condition at the surface
z=0 (6.8):

e

G(1, %)= (6.219)

— — + 1 2
Ant ~ 1| 47:‘?—?0‘
where fd is the symmetrical image of 1, with respect to the plane z=0.

Considering the hypotheses made (punctual source and very small aperture S ),
equation (6.218) becomes

p(F)=p; (F)+p, (F)+p, (F) (6.220)
with p;(F)+p.(F)=iko poco Qs G(F. %), (6.221)
and p;(f)z ik pOCOVSG(f,FO) , (6.222)

where v=-v, is the mean velocity at the aperture and where T, denotes the
position of the aperture.

Equations (6.220), (6.221) and (6.222) show that the field is the sum of a direct
field emitted by the real source, a field emitted by the image source (with respect to
the plane z=0) and a field radiated by the motion of the aperture (assumed
uniform) that, at great distance (great values of r ), is of the form (equation (6.147))

*iko‘F*fO‘ [ i

‘ ' e 2] |kovVS/m s1n6]
~ik S ’

pr(oo) 1Ko PoCo V 2T[|f_f0| ko IS/msin®

(6.223)

Considering the expression (6.151) of Rayleigh’s radiation impedance, the
pressure field at the aperture (1; = 1) , denoted p(O), becomes

p(0)=2Py +Z. v, (6.224)
with Py =p; (i) =p: (5 ). (6.225)

ks _8yS

and Z, =poco(Ry +ik06) where Ry = >
T

(6.226)

i) Expression of the acoustic field at the aperture (Z = L)

According to the previous paragraph, the acoustic pressure p(L) is the sum of
the pressure in the cavity (which has small dimensions compared to the wavelength
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considered) and the “Rayleigh’s pressure” at the vicinity of a small vibrating surface
in a screen (equation (6.151)):

2 2
—poc (S/V k3S . 8/S
plL) - 200 STV K9S ey S iz e
1+ Y c’ 2n 3n/2
ioyrZp

where & denotes the displacement at the aperture (im& = V) and where S_ denotes
here the surface of the cavity wall.

In this expression Zp denotes the mean impedance of the wall that, if the walls

are perfectly rigid, includes the effects of the thermal boundary layers leading,
according to the arguments given after equation (6.132), to

Se/V 1-i, S, [eof
A5V 17t p)Se [colh (6.228)
ioxrZp V2 Vi o

Equation (6.227) can be written after a Taylor’s development at the first order of
the quantity given by equation (6.228) that is assumed much smaller than the unit, as

p(L)= —pocov{s,li v, Ry +ik05} , (6.229)
1Ko
k2
with Ry =L re Y8V |, koS (6.230)
\Y% kO i(QXTZp 21

iii) Expression of the acoustics field in the tube of length L

The substitution of equation (3.156) into equation (3.158) leads to

p(L)-p(0)=pg L (-07&) +pgeoL % (i0f), (6.231)

or p(L)-p(0)=xpocq v (T L+ikoL), (6.232)

with T = W/2“1‘TOKV . (6.233)
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iv) Helmholtz resonator equations

The set of three equations (6.224), (6.229), and (6.232) define the problem being
considered. This formalism is presented in three different, but equivalent, forms
(6.234a), (6.235a) and (6.235b).

The substitution of equation (6.229) into (6.232) leads to

p(0)=—pocov]| iko(L+8)+(Ry +T'L)+ Sli Vi, (6.234a)
1Ko

that, associated with (6.224) and (6.226),

p(0)= 2Py +poco(Rg +ikod)v (6.234b)
gives

, S/V
Poco | iko(L+28)+(Ry+R +T'L)+ | ="2Ro (6.235a)
1Ko

or

po(L+ 28) (-0%)+puco(Ro + Ry +T'L)(08) + pocd < & =~2Py, (6.2350)

where
&JS .
o= { denotes the “length correction”,
3754
0S
Ry = % denotes the radiation resistance at z = 0,
T
koS S, /V
L =L+§ 1 Re Yc—_ is the sum of
21 A\ ko lkOCOXT Zp

the radiation resistance at the discontinuity,

z =L and the factor of resistance associated with the wall impedance

of the cavity,

2mkg £, . o
= % is the dissipation factor at the walls of the tube.
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6.3.2.8.3. Properties of the resonator
1) Resonance frequency of the resonator

By ignoring the dissipative factor, and after extinction of the source, the inverse
Fourier transform of equation (6.235b) is reduced to

P (L+28)a—2&+p czigzo (6.236)
0 o2 Pty . :

The oscillator is described by an equation in the form

2
M6—§+K§:O.
ot

Its eigenfrequency is written as

ch_OS/V

N , 6.237
o2V M o 2nVL+28 ( )
andif L—>0:
CO S/V
=——. 6.238
" oon\ 28 ( )

This result corresponds to a value of wavenumber k. equal to

/S/v
K, =/ ———, 6.239
" VL+28 ( )

that will be taken, for the sake of simplicity, as the expression of k expressing the
dissipative factor (R + Ry +TL). This approximation holds since the resonator is
only used at the vicinity of this resonance frequency. Therefore, the dissipative
factor (Rg+Rp +I'L) is assumed independent of the frequency and will be
denoted R.

i) The reverberation role of the resonator

After extinction of the source, the Fourier transform of equation (6.235b)
becomes
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0%¢

o
M—=+R—=+KE=0, 6.240
S ROHKE (6.240)

for which the solution, at the first order of the small factor R, is

—(L—QnNr]t
g=gge M . (6.241)

The motion of the fluid at the aperture (z=0) generates a sound at the
resonance frequency of the resonator with exponentially decreasing amplitude: the
resonator acts as a reverberator.

The amplitude & at the extinction of the source is directly given by equation
(6.235):

o = 2112)0 ! < (6.242)
Poc0Ko iky(L+28)+(Ry+Ry +rL)+T
1K

thus, at the resonance ky =k, = SIV. (6.239),
L+25

2iP, 1
pociky (Rog+Rp +T'L)’

Eo=&p), = (6.243)

iii) Diffusion role of the resonator

The energy radiation which is induced by the acoustic oscillation at the aperture
of the resonator exhibits a behavior that can be described by equation (6.223) of the
asymptotic field due to the flow (VS) at z=0. This shows that part of the energy is
radiated back in all directions following the asymptotic law

2J1[k0 S/nsine]

kovS/msin®

that constitutes a diffusion law.
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iv) Absorption of the resonator

According to equation (6.234a), the acoustic power P, absorbed by the
resonator is

P, =%[p(())v* +p*(o)v]=§p0c0 R +TL), (6.244)
or, if substituting the expression (6.235a) of v,
2
4P, 1
P, ==poco (R +T'L) FLZL 2
0¢0 S/V
(Rg+R +I'L)? +k%(L+28—k(2)]

The power propagated by the incident acoustic wave for a same surface S, in
the case of normal incidence, can be written as

_s ol

P; R
2 poco

and the ratio of absorbed power to incident power is

Py _ 4Ry +IL) _ (6.245)

2
(Rg+Ry +T'L)* +k3 [L+26—S/2VJ
kp

This absorption coefficient is maximum at the resonance frequency (ko =k,)
and is then

P—ﬁ‘] _ 4R +TL) (6.246)
P ) (Rg+Rp+IL)

The factor u=(R +I'L) is governing the absorption of the resonator. The
maximum of absorption, at the resonance frequency, can theoretically be obtained
by acting on the constitution of the walls of the resonator to maximize the function
of the variable u

P_a]_ 4u
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which implies u=R, meaning Ry +I'L=R,. However, such condition is
difficult to implement.

iv) Amplification of the resonator

The presence of a resonator in a domain modifies the characteristics of the
domain, particularly the radiation impedance of the sources by reaction of the
acoustic field on their surface and therefore modifies the acoustic energy emitted by
these sources in the domain.

This can be verified by considering equations (6.220), (6.221) and (6.222) and
introducing the effect of a unique source, quasi-punctual, of radius (a) and located at
a short distance r = |?S - f0| from the aperture of the resonator. Written at any given
point on the surface of the source, these equations lead to the expression of the
pressure p at the surface of the source:

. e—ikoa e—iko(Zr) e—ikor
=p:+p.+Dn. =1k C + s 6.247
Ps =Pi TPr T Pr 0P0C0 Qs dma 47(2r) omr ( )
or, at the first order of the small quantities (a) and (1),
. 1-ikga 1-iko(2r) 1—-ikyr
=ikypgc + +vS ———|. 6.248
Ps 0P00 [QS( 4rma 47(2r) 27r ( )

From here, the resonator is assumed without the screen at z=0 (Figure 6.19).
In this case, the chosen Green’s function is that which satisfied Sommerfeld’s
condition at infinity, which implies no image sources (and therefore no reflected
field p; ).

Figure 6.19.Helmholtz resonator without screen,
punctual source at proximity
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In such conditions, equation (6.248) becomes

. 1-ik 1-ik
p, =ikopoco| Qg ——02 1 yg-—00 | (6.249)
4ma 4mr

The unknown v can be expressed using equation (6.235a) at the resonance
frequency

22 SV

0: r:—’

L+26

and replacing (2P0) in the right-hand side term by P, since there is no screen,
leading to

poco (Rg+R +TL)Sv=—-PyS, (6.250)

where, applying Born’s approximation, the amplitude P, is assumed close to the
incident field at the aperture, thus

. 1—ikyr
Py ~ikpoco Qs 4m° : (6.251)

The substitution of equations (6.251) and (6.250) into equation (6.249) leads to
the following expression of the pressure p, at the source:

. . . 2
. 1-ikga iky S 1—-ikgr
pszlkopoco{Qs 02 ___ o5, ( 0 ] } (6.252)

4ma  Ry+Rp +I'L\ 4nur

The total reaction force F; exerted by the acoustic wave onto the surface of the
source is written as
F, = 47ta2pS ,

S
(Rg+R +TLpnr?

= poco Qs k3 a2 [1+ (1—2ik0r)+ik0a},
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and the power emitted by the quasi punctual source is given by

P, = 47a’ %Re[pS V:],

1

S
=EVS Re[FS]z 27’ PoCo Vs k%a2 {1+

(Rg+Ry +TL)4nr?

(6.253)

In the absence of resonator (S—0), the same source would radiate the
following power (its vibration velocity is assumed not affected by the “acoustic
load”):

P, =2ma’ poco vo k3 a’. (6.254)
The gain in power is then written

P
g=—L =1+ S . (6.255)
2
Py (Ro+Rp +TL)4nr

A quasi-punctual source with a constant strength, radiating at the resonance
frequency of an empty bottle of wine and located at 1.5 cm from the opening of the
bottle, can have a radiated power amplified by a factor g =40 with respect to its
power in an infinite space. This corresponds to an increase of the acoustic field by
approximately 15 dB.



Chapter 7

Diffusion, Diffraction and
Geometrical Approximation

Following the example of Chapter 3, the objective of this chapter is to illustrate
the integral formalism of linear problems of acoustics by considering situations the
importance of which is recognized in acoustics and more generally in physics.
Through these examples, some general laws are presented as well as few specific,
but not unique, applications.

7.1. Acoustic diffusion: examples

The word diffusion comes from the Latityfusio (onis), meaning the action of
spreading. This “spreading” concerns here the spatial distribution of acoustic energy
from localized “sources”.

7.1.1.Propagation in non-homogeneous media

In a finite space occupied by a perfécid initially at rest, a limited domain
(D) is considered non-homogeneous. Non-homogeneity is introduced as a small
deviation of the characteristics of thisasp (density and compressibility coefficient)
from those of the surroundings. Acoustics sources exterior to the ddBrpiare
assumed to generate an incident harmonic wave (incident to the dbrjaind the
Sommerfeld’s condition at infinity is assumed to be satisfied.

The expression of the non-homogeneity of the fluid is introduced with the
following notations:
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pe denotes the static density in the non-homogeneous ddajn
po denotes the static density outside the donfij

dp=pg—pg Is assumed relatively small and it is function of the point
considered,
xe denotes the coefficient of adiabatic compressibilityf,

%o denotes the coefficient of adiabatic compressibility outside the ddidain

dy=ye—xo 1S assumed relatively small and it is function of the point
considered.

The notation ¢y which refers to the velocity is only used when related to the
homogeneous region, outside the dom{@h).

In such conditions, the problem considerec(m) is described by the equation
of propagation (1.43) (Pékéris equation) that, within the approximation of linear
acoustics, takes the form

(1 0%
div| —gradp |=xg —5 P, in (D), (7.1)
PE ot

or, writing thatca2 =poXo:

102 (8p 1 8y 0°
Ap——2—2p=dlv(—pgradpj+—2—x—2p,
Co ot PO Cp X0 ot

and, for a harmonic wave,

(A+k2)p0J :—kzﬂpoﬁdiv(@gr‘ad pwJ, in (D). (7.2)
X0 PO

The dissipation during the propagation is introduced in the expression of the
wavenumberk .

Both terms on the right-hand side represent the effects of the nhon-homogeneous
domain. They are null ibp =35y =0. As a first approximation, the pressupein
these two terms is replaced by the presspregenerated by the sources in the
medium outside(D) (Born’s approximation). A mor@ccurate approach can be
carried out replacing the pressypein the second term by the result obtained using
Born’s approximation before solving equation (7.2) again.
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Within Born’s approximation, the solution can be obtained using the integral
equation (6.63), the chosen Green’s fiort satisfying Sommerfeld’s condition at
infinity (equations (3.43) and (3.44)). Wisich an elementaryefid, the presence of
the sources, far from the doma(lﬁ)), is introduced by writing that the energy
received by the diffusing medium ibrought by an incident wavepl)(F)
(correspondmg to the volume integral in equation (6.63)). This function is a solution
to (A+k )p =0 and therefore can be used to obtain the general solution to
equation (7.2) when associated with a corresponding particular solution.

Therefore, the integral solution for the diffusion of an incident vwaﬁ)é?) by a
non-homogeneous doma(D) within Born’s approximation is written as

pw(?)=p$>(?)+J” [kZSXp(') dlvagrad p(')D G(7,)dDg . (7.3)
(D) X0 p

Since

div (@ grad pg)j G= div{GS—pgréd pg))} —S—pgréd pg)).gréd G
PO PO PO

andthatJJJ divH gradp J }dDO JJ S 0 S)GdSO 0,
(D) s, PO an0

where, by definition, the closed surfa&g contains the domai> (3p =3y =0
over ), the integral equation (7.3) becomes

pw(?)=pﬂ))(f)+UJ {kzs—xpﬁ)w@grédopg)-grédoG}dDo, (7.4)
(D) X0 PO

an integral over the domai(‘D) where &y =0 and dp #0. This integral quantifies,

at the first order of Born’s approximation, the wave diffused by the non-
homogeneous domag)). It is presented as the superposition of a monopolar term
(G) and a dipolar onégrady G

In the case where the observation pirit great distance from the domé4i),
equation (5.180) leads to
e—ikl’ |k ro

Gx e |
4nr
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and to the solution in the form

—ikr

po(7)= p)(F)+ R E—a(0), (7.5)

Anr
where R denotes the amplitude of the incident wave and wiigf8 denotes the

following directivity factor(with cost = ﬂj :
I

ver J J J {k2%$+%%'grmo pgo)}ﬁkr% dDo (7.6)
(D) | 1

This directivity factor for the far field is nothing other than the three-dimensional
Fourier transform of the term in brackets. In other words, it is the Fourier transform
of the distribution of the factors that account for the absence of homogeneity in the
domain(D) by the incident weighted wavp(o')) and its gradient. This is typical of
this kind of diffusion processes in physics (optics, nuclear physics, etc.).

7.1.2.Diffusion on surface irregularities

Let a pIane(S) be infinite and perpendicular to thez axis where the local
impedanceZ = poco/Bo is uniform except in a regiofA) where the specific
acoustic admittance is denotelx,y)#=By. A harmonic incident wavep;) is
reflected and diffused by this plane that limits the domain of propagation to the half-
spacez>0. The expression of the resulting acoustic field is obtained from the
integral equation (6.63) written as

)=o) || oo BE oo G s

ano

pg?)(F) denoting the sum of the incident wave and the reflected wave (by the plane
of impedanceZ, ; see forthcoming section).

The Green’s function is chosen satisfy the boundary condition of a semi-
infinite space delimited by plane of specific admittandg, , implying that

©

=ikBG), _g-
620]20 -0 0
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The immediately above equation is satisfied, in first approximation, by the
following Green'’s function:

o k[T e—ik‘?—ﬁ;‘

=———+R —
47T,|I’ - rl0| 0 4TE‘F —Fo‘

(7.8)

where Ry denotes the plane wave reflection coefficient of the surface S
characterized at any given point by its specific admittghce

The choice implies that the functiqn{f))(F) represents the sum of the incident

wave and the reflected wave (fro8, with which is associated the uniform
reflection coefficientRg ). The boundary conditions are

;Z—F;—ikﬁop -0, outside the domaifA ),

;—p— ikB(x,y)p =0, at the frontier o A),

20

or :Tp_ ikBop = ik(3—PBo)p, at the frontier of A).
0

The solution is then in the form:
polf)=p10)-ik [ | Bixo.vo)-Bolp i GlF oo 7.9
A

In the particular case where the mgicontaining the surface irregularities is
limited and where the observation is carried out “far” from this domain, the solution
(7.9) can be simplified by using equation (5.180):

. g ikr eik{.?o k7,
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Finally, assuming Born’s approximaticgguation (7.9) becomes, in the far-field
region,

po(f)=pOF)+RE—0, (7.10)
4mr
O] s ik F
with & = —ik (B—Bo)p% e T L Rge T |dSy

A

where pg?)(F) denotes the sum of the incident wave (of amplitBdeand the wave
reflected by an obstacle of uniformly distributed admittafige and where ®
denotes the directivity factor characterizing the angular distribution of the diffused
wave that is the two-dimensional Fourier transform of the perturbéftiefy) on

the surface(A) (this property is general in physics).

7.2. Acoustic diffraction by a screen

The word diffraction comes from the Lati§ffractus meaning “decomposed into
pieces”; it translates the deviation of wea when they meet an obstacle or an
aperture.

7.2.1.Kirchhoff-Fresnel diffraction theory

A punctual source is radiating in a spaedimited by a screen with an aperture.
The notations used hereinafter are as follows:

S denotes the surface of thereen facing the source,

S denotes the surface of the screen not facing the source,
A denotes a fictive surface covering the aperture,

P; denotes a punctual source of source streh

P, denotes the observation point,
O denotes an origin (Figure 7.1).
The position of the receiver is notdd= OP,., the source is located &t= OP,

and the vecton = OQ is the position vector of a point on the surfake(at first,
o denotes also a point &).
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Figure 7.1.Aperture in a screen — notations

The field emitted by the punctual sourBg is assumed harmonic. The acoustic
field is given by Helmholtintegral equation (6.63). lthe receiving domain (noted
1), half-space with no source and delimited by the surfakeand S, Helmholtz
equation (6.63) becomes

op oG

pw(f)=H(A+s)(G%—p%]dSo, (7.12)

the field being assumed to satisfy Sommerfeld’'s condition at infinity.

Solving this equation is greatly silifigd by adopting Kichhoff's hypotheses.
Often used in optics, these hypotheses are more difficult to introduce in acoustics.
However, they lead to an interesting and simple first approach.

Kirchhoff's first hypothesis tipulates that the fieldg and op/ong vanish at
the surfaceS. This is an acceptable assumptioncsi the “stain” of diffraction is
not spread (the wavelengths are small carmag to the dimensions of the aperture
A). The second hypothesis assumes thatffisld emitted by the punctual source at
P; in the domain(l) delimited by the surfacé\ and S is not perturbed by the
presence of the screen. The spherical geonoétitye field is then conserved, which
implies thatA and S are perfectly absorbing surfacéss a consequence of these
two hypotheses, the surface integral o$ers null and the fieldp at the surface of
A is nothing more than the incident spherical field. Hence:

pw(f)=H(A)(G£—p£J dSp, (7.12)

ano 6n0
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-ik[s-T,| .
with p= Poe_—# and Py = kpcQo ,
5—To| 4n

where Qg denotes the source strengthRyf.

Similarly to all the other relations presentedhis chapter, the above result is an
expression of Huygens’ principle accorditg which the resulting field is the
superposition of the elementary fieldeated by each elementary source of the
surface(A).

Note: Babinet's principle introades the figures of diffraction of two
complementary screens dghat the aperture(A) of the first screen coincides
perfectly with the opaque regio(S) of the other screen. Consequently, if one
denotesp, the field at the poin®, when a first screen is placed betweRnand
P;, po the field at the same poi, when the first screen is replaced by its
complementary angv the field atP, when there is no screen betwenand P,
then equation (7.12) leads to

m:jj(Al)(Ganop— Pon, G) Bo .
P2 =_U(A2)(Gano P—Pon, G) &

p= .”(A1+A 2)(G OngP= POng G) &
and finally to Babinet’s principle:

P=P1+P2.

7.2.2.Fraunhofer’'s approximation

This approximation leads to an estimaf the solution to equation (7.12) when
the point source and the observation paird significantly far from the screen’s
aperture. Fraunhofer’s approximationaisierivation at the first order of /r and
ro /s of the functionsp, G and their normal derivatives, bothand G denoting a
monopolar field. In the following calculationthe screen is assumed plane and the
shape of the aperture is undefined (Figure 7.2).
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V)

(I

Figure 7.2.Diffraction by an aperture in a plane screen

Theorigin O is located at the aperture and e axis is chosen perpendicular
to the plane. At the first order af /r' (equation 5.180):
S
F'—To|~r'———,
[F=To|=r——

(where ' denotesr or s), thus

—ik‘f'—fo‘ ke i ?-,fo

e e I ,
——~ e r , (7 13)

4nff'—To| = 4mr'

and considering expression (6.140)\?0#?0

0| e KMl 0 e K"l ~cos{ﬁo,F'—Fo)ik 1| kP
ono| Anfi'—To| | dzg| Anfi-Tg| |~ 4nfiip| K[F-To| (7.14)

e—ikr' ik@
e

~ik codfig, T'-Tp) o
TU

where, forr'=r,

cos(fig, T —Tg)~cos(fig,F) = cos(n— 0, )= —cosd,,
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and forr'=s,
cos(fig,$—Tg)~cos(fig,$) = coso; .
Consequently, the expression (eipa (7.12)) of the diffracted acoustic
pressure in the regiofil ) becomes
ik[—+§jf0
po(f)~B|| e \" % dg , (7.15)

(»)
-ik(r+s)

kPO e
with B=——=(c0s0, +cos0
4n ( 1 2) rs

(7.16)

Using the following notations for the componentsraf $ and 1y in the plane
of the screen (Dx and Oy)

()1 (1 3, 8 s

(fo)y =n. (7.17)

the solution (equation (7.15)) becomes
o (F)~ BU e[t )& m-m nge g (7.18)
(A)

The figure of diffraction isrothing more, once again, than the two-dimensional
(spatial) Fourier transform of a chamistic domain of the problem, here the
aperturdA ).

Note: as the reciprocity law applies, thés complete symmetry with respect to
the permutation of the source and obseovapoints. Moreover, if the dimensions
of the aperture are great (as is the @isemi-infinite screen) these approximations
do not hold and Fraunhofer’s stibn is not acceptable anymore.

7.2.3.Fresnel's approximation
When the figure of diffraction is analyzé&u the fixed plane (of the space) that

contains the axis perpendicular to the scrém and the point sourc® (Figure
7.3), it is convenient to chose ti@x axis along the projection of the vect@gP
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onto the (x,y)-plane of the screen. Moreovdny choosing the origin of the
coordinate system at the intersection between theRi#e with the plane of the
screen (depending therefore on the |larabf these two points) and by denotiig
the angle between the lifgP, and theOz axis (Figure 7.4), one obtains

i =¢=sind andm; =m=0.

Consequently, the argument of the expiia term in equation (7.18) vanishes;
this double integral is then simpgqual to the area of the apertL(v@). In these
conditions, the observed non-forin figure of diffractioncan only be described
using a second-order approximatioalled Fresnel’'s approximation.

At the second order afy /1" (equation (5.180))

R 2 )2
o PRy T ()
[F—Tp| ~ - o 3

- 2o’ _(iemf
th —Tg|~r—\¢ - ,
us|[f—To|~r—(/g+mm)+ o o

. - g2+n®  (1ig+mn)?
d[5—Tol~s+(£iE+m, - .
and|s r0|_s+( &+ min)+ = =

So that for/; = ¢ =sind andm; = m=0, one obtains

|F—F0|+|§—Fo|:r+s+f(§,n), (7.19)

with f(g,@:%[%%) (gzcos?amz). (7.20)
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Figure 7.3Coordinate system Figure 7.4.0rigin of the axis system on PP,

of Fresnel’s approximation

The solution to equation (7.18) then becomes
Po ZBH e Hemgea
(»)

the amplitude factoB being
: —ik(r+s)
5_Poe

Loors co),

where ) is the wavelength.
This result can also be written as

p=B(C-iS),

with C= J J cogkf (¢,n)|dedn  andS= U
(A) (A)

The following change of variables

2 r

u2:5(2+£j§200526 and Zv2= £(1+}jn2,
S A S

r
2 AT

sinkf (&, n)]dedn

(7.21)

(7.22)

(7.23)

(7.24)
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dudv

(1+1jcos€>
r s

C= bjj 003{£(u2 +v2)}dudv
(n) L2
and S= bJJ sir{ﬁ(u2+v2)}dudv , (7.25)
(n) L2

with b=—— (7.26)

2[1 + 1} CO0Sd
r s

implies thatd&dn :% and consequently:

The functions C and S are simple linear combinations of Fresnel’s integrals
(equation (6.171)), the expressions of which are given in the following section.

7.2.4.Fresnel’'s diffraction by a straight edge

A perfectly reflecting and infinitely thin screen (E), in the (xOy)-plane, is
bounded by the Iine(dd') parallel to theOy axis and located at the abscissa
(Figure 7.5). The originO is chosen belonging to the lin@P;. Thus, if X is
positive, the receiving poing, belongs to the “lighted” region and X is negative,
it belongs to the “shadowed” region.

X
screen
dl
X
P, P
S O 6 r
z

Figure 7.5.Plane screen with a straight edge (notations)
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The domain of variation of the variablésandn are
—0o<f<Xx and—-o<n<ow, (7.27)
and consequently, those of the variableand v are

—0<U<W and—-o<V<o, (7.28)

with w = {E[}Jrljxcosé‘).
Alr s
The integrals (equation (7.25)) then become
C=b[" du[” dv co:{ﬁuzjco{zvzj—sir{zuzjsir(ﬁvzj , (7.29)
e 2 2 2 2
S=b[" du[""dv sir{ﬁuz)co{ﬁsz+co{£u2)sir(£v2J . (7.30)
o 2 2 2 2

Considering the definitions (6.171) tfe above functions and their properties
(6.175), these functions can be expressed, using the Fresnel’s integrals, as follows

c- b{E+ e(w)}_Ew(w)} _ble(w)-S(w)]. (7.31)

5= b{E+C(W)} +E+ s(w)}} i+ Cw)+ S(w)]. (7.32)
Finally, the relative amplitude dfie diffracted pressure field
pg =B(C-iS), (7.33)
is given by
pal 1 M2 2 r 2
P :E\/{E+e(w)} {TS(W)} , (7.34)

P . L - .
Where|pi| =—9_ denotes the amplitude of the ident wave at th receiving point
r+s

P, derived as if there was no screen.
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The profile of the function described by equation (7.34) is represented in Figure 7.6.

Pg

Pi

1 L\
A4

1/2

Figure 7.6.Normalized amplitude of the pressure field diffracted by a straight edge (W > 0
corresponds to the “lighted” region while W < O corresponds to the “shadowed” region)

Note: the lower bound of integration tending te0 in equations (7.29) and
(7.30) leads to the factord&/2 of equations (7.31) and (7.32). According to
equation (6.175), limiting these limits down @, rather than-« , has little effect
on the result. In other words, the contribution to the diffracted pressure field of the
points located at a distance from the etluygt is greater than a given minimum
(related to—4 here) is negligible. This justifies the use of Fresnel’'s approximation
(r>>ry) for apertures of infinite extent.

7.2.5.Diffraction of a plane wave by a semi-infinite rigid plane: introduction to
Sommerfeld’s theory

The objective of this section is to find a solution to the problem of diffraction of
a plane wave incident to a parallel gtdi edge (of a perfectly reflecting plane).
More precisely, a harmonic plane wave is propagating in the dirextio® and is
incident to a semi-infinite plane the edge of which coincides with the line

x=y=0, —o<z<ow and the angle of which with th®x axis is set to be equal
to (3—27‘—\4;} with —%<\v<% (in the case of Figure 7.7y is positive). This

problem can be solved by adopting a different method to those already introduced,
particularly since Kirchhoff's hypbeses are often too restrictive.
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The considered space is divided into three regions:

region (1), -2y <@ <, (7.35a)
region (1), —g—\y<(p<—2\y, (7.35D)
region (IIl), Tc<(p<3—2n—\4/. (7.35¢)

In the first region, the incident wave can be describedhBy™ = Ag' K" c0s¢
wherew denotes the distance segiing the observation poiR to the edge of the
screen (the origin of the vector 8 chosen as the origin of the coordinate system).

y
incident wave ) = (I)
/
]
X
2y

(1)

£
VAN A

reflected wave

Figure 7.7.Diffraction of a plane wave by a straight edge

Using cylindrical coordinateﬁw,(p,z) seems more appropriate with respect to
the symmetry of the problem. The incid@ine wave can then be expanded on the
basis associated with tieensidered space as follows:

AekWe0s0 _ A S (25 0)(i) cos(ng)d (kw). (7.36)
n=0
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The solution to the problem built from the function

Ulw.g)= 2 §O<z—smo)<i>m’2co{%pjam,z(kw), (7.37)
as follows:
p(w, )= A[U(w, )+ U(w,3n—p—2y]]. (7.38)

The choice of expansion (equation (7.37)astly motivated byhe fact that the
acoustic pressure on one side of the scigdifferent from the acoustic pressure on

the other side. This implies that for= Sg—w, the solution cannot be equal to the

one obtained for(pz—g—\v+27't; the functionU , periodic with a period ofir,

satisfies this condition in the intervale (0, 2rx). Moreover, without the screen or
when the screen (assumed mitely thin) is located aty ==n/2, the solution
(equation (7.38)) must be identical tbe expression (equation (7.36)) of the
incident wave. It is straigfdrward to verify the equivalence of the solution (7.38)
with the expression (7.36) since all the terms with oddin equation (7.38) are
then null. Finally, the solution (7.38) is indeed the solution to the problem written as

(A+ k2)p = Qin theentirespace, (7.39a)
@= Oon the;creen‘or(p:3£—wandcp:—E—\y, (7.39b)
1/0) 2 2

incident harmonic plane wave in the negativalirection. (7.39c¢)

The solution (7.38) can also be writteeparating the terms corresponding to the
incident, reflected and dificted waves (this derivation is not detailed herein),
leading to

U(W,(p): oi kw coso |:1+ F[ 2kwcos(%jﬂ , (7.40a)

and implying that

U(W,Sn— - 2\41) e kWCoS‘PI:l-{- F(\/kacos(%n—g—wn:l , (7.40b)
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where F(z):%{e[\/%z}s{\/%z}uiH\EZJ—S[ %ZJD (7.400)

The asymptotic approximation of FreBaantegrals leads, for each region in
Figure 7.7, to the following results:

i) In region (), in the geometrical “skdaw”, the diffracted wave presents the
characteristics of a cylindrical wa and takes the following form:

1+i eikw{ Gly+¢/2)  Gle/2) }, (7.41)

pIII(Wv(P):Am -

sin(y+¢/2) cos(e/2)
where the function G is equal to one, excaipthe vicinity of the values of and
y for which the denominators are null, ia.the vicinity of the boundary between
the geometrical shadows of the incident wdye= ) and of the reflected wave
((p = —2\4/), where it expresses the configwf the pressure field.

i) In region (1), the acoustic field is the sum of the incident and diffracted fields
pi (W, 0)=Ae W 4 by (w,0). (7.42)

iii) In region (I1), the acoustic field ithe sum of the incident, reflected and
diffracted fields:

pi(w.0)=Ae™ kwcoslg+2y) | (W, ). (7.43)
Note: the profile of the solution isnsilar to the one shown in Figure 7.6.

Digression on the theories of Sommerfeld and MacDonald

The theories of Sommerfeld and MacDondldefly presented in this digression,
can be considered as generalizationthefabove theory. Apart from the problem of
a semi-infinite plane screethese theories lead to tiselution to the problem of
diffraction by a prism. Sommerfeld’'s theoapplies to the incident plane waves,
while MacDonald’s theory applies to incidespherical waves. The principle of the
method applied to an incident plane waredl a semi-infinite plane screen is here
presented. The screen is a surface whfe analytical function describing the
acoustic field takes two different valuesoffr a mathematical point of view, these
particular analytical functions can bensidered as taking a unique value in the
complex space of Riemann’s functiordogble layered when a plane screen is
considered). If the direction afbservation is taken along tl@x axis, the incident
plane wave is described by

oikr cos(e-y) , (7.44)
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wherey and ¢ denote respectively the positiontbe screen and the direction of
observation.

.
N .

.+ frontier between
N _~ ‘lighted” and
“shadowed”
Y X
incident plane observation

wave screen

Figure 7.8.Notations for the diffraction by a screen with a straight edge

By applying Cauchy’s theorem, thepeession of the incident wave becomes

e—ikrcos{cp—y)zi .eiB . e_ikrcos(cp—ﬁ)dﬁ (7.45)
2n (C)e'B—e'y

where (c) denotes a closed contourinfegration including the poirfi =1 .

The chosen auxiliary function, of periotit, from which the solution can be
built (following the example of the previous section) can be written as

1 eP/2 —ikrcos(B-9)

and finally (the details are not presented herein), the solution is

p=U(p—7)+U(p+y). (7.47)
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7.2.6.Integral formalism for the problem of diffraction by a semi-infinite plane
screen with a straight edge

A perfectly rigid and infinitely thirplane screen, perpendicular to 1@y axis,
is bounded by a line of equation=y =0. It is responsible for the reflection and
diffraction of a harmonic plane wavey ¢ 0) assumed depending on the x and y
coordinates (pulsating line source parallel to tBe axis). The problem can
therefore be written in two dimensions.

incident wave

screen

0y

Figure 7.9.Notations for the diffraction of a harmonic plane wave
by a screen with a straight edge

The considered space is divided into two regiéhsand (II) corresponding,
respectively, with they>0 and y<0 domains. The integral equation of the
problem (6.63) is expressed in each of these domains, choosing for each case a
Green, function the normal derivative of which vanishes in bz plane (the
surface of equatioly =0 is denoted “S").

This Green'’s function can be writtefo/lowing the same method presented in
section (6.1.4.1) and considegiequation (3.50), in the form

6(f. 7o) = i (. io)+ i, F. 7o), (7.48)
with g;(7,7)= _IZ Ho (k[F o) (7.49a)

and gr(?,“o)z—izH()(k‘F—FéD, (7.49b)
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wherelF — | = (x=xq)? +(y— Yo )?

_ 2 2
and‘r—ro‘z\/(x—xo) +(y+yo)* .
This Green’s function represents thelocity potential created by a pulsating
line source and its image source, wfit linear strength, parallel to th®z, of

coordinates(xq,Yq) .

If the point ¥, belongs to the surfadS) (yo =0), Green’s function is, for any
given point in the half-space considergd0 or y < 0), in the form

[6(7 o)l = 2o}, -0 ~ oy, 0 = o Kfbx—xo P +y? | (750)

The integral equations of problems a tioundaries considered here can then be
written, according to Sommerfeldt®ndition at infinity, in they <0 domain, as

p_ =j G(x,¥X0.0)=—p_(x0.0)dxg (7.51)
Yo

and, in they > 0 domain, as

. =17 [5 G(x.¥:x0.y0) F(xa,Yo)dxg dyg

7.52
~[*°G(x,y: X0.0) = p, (X0 0) dxo, (752
o

where

[7, [5 GFdxgdyo=[" |’ (gi +9r)Fdxodyg = p; +p , (7.53)

is the sum of the incident pressupg (assumed known and independent of the
coordinatez) from the real sources and the presspfecreated by their image
sources (with respect to the plape-0).

These solutions satisfy Neumann’snditions at the surface of the screen.
However, for the problem to be properly pdsone needs to write the conditions of
continuity between the two regions consgteof the acoustic pressure and particle
velocity aty =0, x>0:

p, =p_ andVp, =Vp_ for y=0,x>0. (7.54)
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By noting that on the surfad®), the normal derivative ofp; +p, ) is null, the
condition of continuity othe particle velocity aiy =0 for x >0 and the condition
of null normal velocity on the screen far< 0 give

{im] =(ip_] , VX, (7.55)
6y0 Yo=0 ayo Yo=0
and [ier] =0, for x<0. (7.56)
0 Yo=0
Consequently,

0

® 0 0
j e<x,y;xO,o>—p+<xO,o>de=—j B(x,yix0.0)=2p. (x0.0)dxg
—© ayO 0 ayO

” 0 ” 0
= —J G(x,y;Xg ,O)%p_ (x0.0)dxg = _Jo G(x,y;Xg ,O)ay—op_ (x.0)dxg.

—00

In the domainy <0, the integral equations for the problems at the boundaries
considered are

L 2.2 9
p_ = ZJO Ho(k (x=xg)*+y )ayop_(xo,o)dxo, (7.57)

and in the domairy > 0

0

i (0 P
p+=pi+pr+§j Ho(k (X—Xo)2+y2)—p_(><o,0)d><o- (7.58)
0 o

One still needs to write the condition of continuity of the pressures aty = 0, x >0
P, (x>0,y=0)=p_(x>Qy=0).

Substituted into the integral equationss{) and (7.58) and considering that by
definition p,(x,0)= p;(x,0), this condition leads to

2pi(x,o)=—irHo(k|x—xo|) (x0,0)dxg , for x> 0. (7.59)

2 0
0 o
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By solving the integral equath (7.59), one obtains the functicﬁi,0 p,(xo,o)
which, substituted into equations%7) and (7.58), gives the solutiops (x,y) and
p_(x,y). In the case of a harmonic plane wave, this procedure is lengthy and leads
to the solutions already preged in the previous section.

7.2.7.Geometric theory of Diffraction of Keller (GTD)

The geometric theory of diffraction isggneralization of the classical geometric
theory that associates a fictive ray to avefeont. It is used herein to explain the
phenomena associated to diffraction. Theisayefined as a trajectory perpendicular
to the wavefront. To each point of th@jectory are associated the corresponding
amplitude and phase of the perturbatiorrnia’s principle is a particular example
of this theory, and it is presented in section 7.3.

The basic principle of the classical thpassumes that the propagation is a local
phenomenon, meaning that it only dependsthe properties of the medium and
structure of the field at the vicinity t¢fie considered point. F@any given point of
the considered space, the acoustic fiekllts from the contributions of all rays
passing through that point. Furthermore, direction of the rays diffracted by an
edge is determined by rules resulting diserom Fermat’s principle. The laws of
geometric optics can then be applieal acoustics on the condition that the
amplitudes and phases associated with diffracted rays are derived from the
asymptotic approximations of the “rigordusolutions. A “ray” provides a picture of
a line drawn by an infinitely thin pencil.

7.2.7.1.Tracing diffracted rays

An incident plane wave is diffracted laythin and perfectly reflecting screen
(semi-infinite with a straight edge)nd the resulting diffracted wave presents
cylindrical characteristics. This suggeshe following hypothesis: the diffracted
rays make with the tangent to the edge of the screen at the point of diffraction the
same angle as that made by the incidagt but in the opposite side of the plane
normal to the edge of the screen atdiféaction point. The rays are consequently
distributed over the surfacd a cone (Figure 7.10).

This hypothesis is in reality aasequence of Fermat’s principle.
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edge of the screen

diffraction point ;7\
\x

screen

incident ry

incident ray

Figure 7.10.Diffraction of a ray by the edge of a screen (side views)

When considering a ray from a point S diffracbgdthe edge of a screen at the point
O and passing through a point Rgtiie 7.11), and defining the ax@®y coinciding
with the tangent to the edge of the screen at the point O, Fermat’s principle can be
written as
d(SO+OR):O or ds ):_d(OR)’ (7.60)
dy dys dyr

since the distanceSO and OR vary similarly if the variationdy is replaced by

—dyg or —-dyr (whereys and yg denote, respectively, the second coordinate of
the point source and the observation point).

z R

S

Figure 7.11.Diffraction of a ray by the edge of a screen
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By writing
SO= \Ix§+y§+z§ andOR = \/x% +y2R +23
equation (7.60) becomes

2 Y52 2 |2 sz 2 (7.61)
\/Xs+ys+zs \/XR+yR+ZR

thus, if o5 and or denote the angles between tég axis and, respectively, the
incident and diffracted ray:

Sin(pSZ—Sin(pR . (762)
The rays are therefore distriledt over the surface of a cone.

7.2.7.2 Notions of critical points and caustics, energy flow conservation

Two incident rays(1) and (2), are associated with two cones of diffraction. It
can happen that the diffracted rays amersecting over certain curves (called
caustics). These curves are limited by the critical poisg, Ol,Pl and Pl in
Figure 7.12).

/N

Figure 7.12.Critical points and caustics

The law of conservation of the enerfigw can be graphically expressed by
considering an elementary tube delimitedskyeral rays (which are extremely close
to each other). The most general representaf this approach is given in Figure
7.13.
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critical
points in the

P1

Figure 7.13.Elementary tubes of energy (notations): O4 and Oy are the critical points
on the edge of the screen, P| and Py are those in the space of diffraction

The radii of curvature dhe elementary straight g@ns whose wavefronts are
separated by a distance are respectivelyp;, po and p;+S, pp+s. As the
acoustic intensity at each point is prapmral to the square of the amplitude of
the wave at the same point, the endtgy conservation can be written as

Aldo = Ajdoyg, (7.63)

(Ag and Ay denote, respectively, tlanplitudes at the surfacels and dog)

%
thus, Ac = A L} , (7.64)
° 0{(91+S)(pz+5)
%
orAOM:AS{M} . (7.65)
P1

The quantity p; will now denote the distance beten the first caustic formed
by the diffracting edge and the second tiausf the diffracted rays. The distance
po tends to zero and, since the right-hae term of equation (7.65) does not
vanish, the limit of the first term @ifferent of zero. This leads to

1/2
Ag = lim Agyp, {M} As, (7.66)
p.—0 p1
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and consequently, the amplitude, of the field at the poinP is

0 1/2
_ A 1
Ag= Ao{—(p1 . S)J : (7.67)

Note: if the considered point iscated on one of the causticg;fs=0 or
s=0), the amplitudeA4 tends to infinity. The geometric theory of Keller is not
appropriate when calculating the acoustield on the caustics and in their
immediate vicinity.

7.2.7.3.Expression of the field associated to a ray
The diffracted acoustic field can be written as

@ =Age i kstvo), (7.68)

where the complex amplitude factotkloe""’0 remains to be determined. The
method proposed by Keller is based okKirtg the origin of the field on the
diffracting element and writing the diffracted field as proportional to the incident
field A;e™'Vi. The coefficient of proportionalitycélled diffraction coefficient) can

be a complex number;

Age Vo =DA e, (7.69)

where the diffraction coefficient is denot&l. Thus, according to equations (7.67),
(7.68), and (7.69), the expressiortloé diffracted acoustic field becomes

e—|ks

J@+sipy)s

The expression (7.70) introduces a prddofcthe following four factors: the
diffraction coefficientD, the incident field athe diffracting elemeniA;e™V' , the
phase factore"ks, and the amplitude term depending on the distgnceetween
the caustic induced by the diffracting edged the second caustic created by the
diffracted rays. Note that the analysi§ the wavefronts properties leads to the
estimation ofp; when the profile of the edge andture of the incident wave are
known.

®(s)=DA;e 'V (7.70)

The diffraction coefficientD is yet an unknown. This coefficient can only be
obtained from the known solutions to the@lplems of diffraction. For example, the
comparison of the above result for the diffrac of a plane wavby a straight edge
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(p1 = o, cylindrical field) with the asymptiz result obtained using the theory of
Sommerfeld (equation (7.41) for a far figld the region lll), gives directly (with
A=Ae')

_ L+i [ Gly+e/2)  Glo/2)
D_4\/n_kLSin(w+cp/2) coo/2) | (7.71)

The asymptotic field corresnding to finite values ofp; exhibits spherical
characteristics.

Keller's diffraction theory is of interesince it allows one to treat the problems
of diffraction by a screen on a reflecting plane (i.e. floor) while considering the
presence of walls (vertical walls, ceilinggc.), all based on the notions of sources
and receiving images.

Note 1: Rubinowicz dividedhe integral expression op(?) in Kirchhoff's
theory into two terms. The first term presents the direct wave (null in the
“shadowed” region) and the second term espnts the wave diffracted by the edge
of the screen. The second term is exprssea curvilinear integral over the contour
made by the edge of the apertukein the screen.

Note 2: Huygens’ principle easily expiaithat the diffraction by an object with
a curved surface is described by a phesoon of “sliding” of the waves along the
surface (“creeping” waves) and which propageontinuously into the rest of the
considered space (diffracted waves: Figure 7.14).

>
A

Figure 7.14.“Creeping” waves at the surface of an object and diffracted wave

Note 3: when the rays converge irparticular region of space (Figure 7.15),
there is focalization of the acoustic fieldaracterized by very high amplitudes. The
surface delimiting the volume containing all these rays is called “caustic”. This
region appears as a “boundary” layer witkwhich the energy transfers occur not
only in the direction of the rays, followirthe classical quasi-adiabatic process, but
also in a plane perpendicular to the rdystransverse diffusion, proportional to the
transverse gradients of the prassiield (great at these points).
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Figure 7.15.Creation of a caustic

7.3. Acoustic propagation in non-homogeneous and non-dissipative media in
motion, varying “slowly” in time and space: geometric approximation

7.3.1.Introduction

A plane wave is characterized by itenstant directin of propagation and
amplitude in the entire sge. In practice, sound waves do not present such
properties. However, a non-plane wave dansome conditions, be considered as
plane within small regions of the considd space. For such approximation to be
made, the variation of the amplitudend direction propagian over a distance
roughly equal to the wavelength must be very small.

These conditions are fulfilled in medjaialified as “slowly varying in time and
space” and defined by a scale of characteristic length~ pg /WpE | and
characteristic timel; = pg /(0pg / 6t) of the medium, which are much greater than
the wavelength. and periodT of the wave:

A<<L. and T<<Tg,

pe denoting the density of the medium in the absence of acoustic perturbation.

The domain of application of this apaich, called “geometric method”, is vast.
It includes the problems of radiatioriffraction, and nae propagation in
atmosphere and buildings, as well as phaeblems of flows in tubes and diffusers,
jet engines, air conditioning systems, €fbe strength of this method is based on
simple integrations of ordary differential equations.

The objective of the following section is ¢ive examples of the application of
this method while keeping a sense of gelitgréor the sake of completeness of the
discussion.

Finding a geometric solution is done ind@rsteps. First, one needs to determine
the dispersion relation of the medium govreg the trajectory of the rays. The
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equation can then be solved — here #olution is given for two simple, but
important, cases. Finally, the amplitudetloé acoustic field is calculated using an
equation that generally takes the formaof equation of consedtion (the problem
of spatial distribution of the engy is not discussed here).

7.3.2.Fundamental equations

When outside the region @ffluence of any source, the mass conservation law
(1.28), the impulse conservation law (&t$ equation (1.32)) and the entropy
conservation law (1.34) for a non-disdiga, hon-homogeneouand flowing fluid
(fluid not at rest) can be written as follows:

%m +div(prV7)=0, (7.72a)
0. - . 1 . -

—VT +Vy.gradvy +—gradpt =0, (7.72b)
ot PT

E6 —EG +Vy.gradot =0 (7.72c)
Gt CT otV T=0, :

where 61 =S; /Cy is the “dimensionless” empy per unit mass and where the
parameterspr, pt and vy denote the pressure, density and velocity. The
subscript “T " marks the quantities describing the complete motion of the fluid.

If the fluid is assumed bivariant (its state is determined by two thermodynamic
variables), its state equation is

pr =f(pr.07). (7.73)

The phenomenon is described as tiygesposition of a flow phenomenon to an
acoustic phenomenon which are functions of the point considered at any given time:

Pt =Pe+R
= +p,
PT =PETP (7.74)
VT =VEg+YV,
GT =0 +G,

where the subscript E” marks the non-stationary mean quantities of the non-
acoustic motion and the quantities p, v and c are associated with the acoustic
perturbation (and therefore are small). The notafioreplaces here the notatign
used elsewhere in this book.
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At the order zero of the quantities (7.74), equations (7.72) and (7.73) become

%pE +div(pgVg)=0, (7.75a)
0. . - 1 . =

—VEg +VggradVg +—gradpg =0, (7.75b)
ot PE

0 _ -

EGE +VE.gra'jc5E =0, (775C)
pe =f(pe.og). (7.75d)

For the equations governing the acougtésturbation, the quantities must be
taken at the first order, thus

§p+\7E.grédp+\7.grédpE +pgdivv+pdivvg =0, (7.76a)

o_ - .. - ... 1 P = =

—V+vgradVg +Vg.gradv+—grad p——zgrad pe =0, (7.76b)

§c+\7.gréch+\7E.grédc:0, (7.76c)

pz{ap—E} p+{ap—E} c:C%p+nEc. (7.76d)
PE | 0ok |,

The substitution of equation (1.23)

1
(dTe),, = IO_EB(dpE o

into equation (1.21)

C, 1 C,-C
G 1 GGy
Culdoc),, _|:TE PP  Tepep }(dpE)pE

leads immediately, for a perfect gis=1/Tg ), to

mg = PE- (777&)
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Also, the adiabatic speed of sound for a perfect gas is given by

cE =vPe/pE. (7.77b)

The variable p is first replaced in equation§’.76a) and (7.76b) by its
expression obtained frongeation (7.76d); the acoustic quantities on which are
applied differential operators are then mgred in the right-hand side terms. Thus,
equations (7.76) become:

[%+\7E.grédjp+pE c% divV:OlE, (7.78a)

with OF = — (p—ngo) {c% (%WE.grédjcizmiv \"/E:l
E

—ng vgradog —c% vgradpg

[£+VE.grédj\7+igr‘adp=f)E, (7.78b)
ot PE

with 05 = —V.grad Vg +(p—ngo)pg cg2 grad pe

(%H?E.grédjc:—\?.grédclz. (7.78c)

7.3.3.Modes of perturbation

According to the hypothesis made in the introduction (media with characteristics
varying in time and space), the solutionth® system of equations (7.78) can,
priori, be sought in the form

p| [pa(.t) o
V|=|va(F,t) VD, (7.79)
(e}
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The real amplitude, noted by subscrigt *, are functions which slowly vary in
space and time, and the phagés a real function of andt, given by

Y= \|/0+rgrajw+fj;tv (7.80)

where grady and oy /ot are also slowly varying functions of the space and time
coordinates and where is defined by the phase initial condition. Assuming that
within small spaces (relativio the wavelength) and within small periods of time
(relative to the period) the wave can be com®d as a, it is then possible to define
a local propagation vector and a local frequency:

k(F,t)=—grady and oF,t)=0ay/at. (7.81)
Thequantity y is called “eikonal” or “iconal”.

By considering that
2 dv _fio+it Lo-it. Ok |dv
ot ot ot

andgrade'V = ( ik —ix ; jgradk; +|tgradm) v (sum over all valuesf j), equations
(7.78) can be written regroupmg the termsdrand k in the left-hand side, and the
spatial and time partial derivatives aimplitudes, propagation vector and
frequencies in the right-hand side (includiﬁﬁ):

i (- RvE) —ipgcZk 0 pal [A
—ipgtk  i(0—KkVg) 0 Va |=|B]. (7.82)
0 0 +i(w-kVg)|loa| |C
Written as a matrix equation, this system becomes
[HI[Qal=I[F]. (7.83)

Since the medium is assumed to be §lovarying in space and time, the spatial
and time derivative of the quantiti€g, Vg, pg, k ando are small and the order
of magnitude of these variations awharacterized by annfinitely small
=O(rL/L¢,T/T,). Consequently, expanding at the order zero the system (7.83)
gives

[H]{Qg\)) }:0, (7.84)
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and at the first order:

et )
and at the Rorder:

[H]{QS{‘) }z [F(n—l) } , (7.85)

where {F(“‘l) } denotes the non-homogeneous terbtained by substituting the

squtions{ng) } obtained at thén—1)"" order.

This “hierarchy” of system only has solutions if the system at the order zero
(7.84) has itself a non-trivial solution, in other words if the determinant of the
matrix [H] is null. This condition is satisfied by setting the following dispersion
relation to the acoustic perturbations:

(0—kVg) [(w—kVg)?—k2cE]1=0. (7.86)

Equation (7.86) has two kinds of solutions with which are associated two
particular kinds of motions: vortical and entropic modes on the one hand, and
acoustic modes on the other hand:

i) The vortical and entropic modase characterized by the eigenvalue R.\‘/E
of the dispersion relation (7.86). These #ne modes convected by the flow. The
substitution of this equation into equation (7.84), and dengiijpgvy and og the
corresponding solutions lead to

0 -ipecgk 0|[pg
—ipgk 0 0||vg |=0. (7.87)
0 0 0||og

The solutions to the matrix equation lead to the definition of the following
modes:

— the vortical mode characterized by:
— kVg =0, or Vo perpendicular tc, (7.88a)
—andkpg =0=>pg =0, (7.88b)
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— the entropic mode corresponding to either
—007&0 or GOZO. (789)
These motions are not presented in section 7.3.

i) The acoustic modes are characterized by the double solution to the following
dispersion relation:

(0—kVg)2 =k2c2. (7.90)

Substituted into equations (7.74), equation (7.90) leads, on the one hand, to
oo =0 (isentropic modes) and, on the other hand, to:

kpg = pe(o—kVg) Vg. (7.91)
The dispersion relatiofw — kv ) has two solutions:
i[ﬂ— k IQ.V—EJ =k wherek = R/‘R‘ ,
Ce
thusk @+ kM) =+ ork, = —>-E_ (7.92)

where M = Vg /cg is the Mach's vector(M <1) and k; =k, /
vector associated with the propagation vedtor

ki| is the unit

The solution kJr , for example, must verify the dispersion relation for any given
relative orientation ok and M . For each of these relative orientations, a solution
k_ :—k exists, CO|nC|d|ng with the solutlok the orientation of which is at
180° Wlth the initial orientation (regardless of the 0r|entat|onqu and M).
Consequently, conserving only one solution does not affect the generality of the
problem. By considering the solutidn, , the dispersion relation that will be used
here is

—kVg = keg. (7.93)

The solution to this equation that &gcording to (7.81), nothing other than a
non-linear partial differential equation of the first order appliec{(z(@,t) leads to
the variation of the phase in space andetiihe equations of acoustic rays are
obtained following this approach in the next section.
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7.3.4.Equations of rays

The equations of rays are obtained by solving equation (7.93) written as
o =kecg +kVg, (7.94)
that can also be written, in a more general form, as
7,0)=0(k7t), (7.95)
where the function depends on three variables: the variakl@ssociated with
the acoustic wave, and the variablesand t on which depend the characteristic

quantities of the medium in motiocy and vg.

By virtue of definition (equation (7.81)), the quantities

oy
== 7.96
o= (7.96)

and k = —grad y (7.97)
are closely related to the evolution of the field along a ray.
In order to generalize the approate following equations are derived from
equation (7.95) and only then will the particular caseCofdefined by equation

(7.94) be explicitly presented.

7.3.4.1.Preliminary calculus

For the sake of simplicity, the operatévot, grad over the variabler and
grad over the variablé, will be denoted ag;, d; and o respectively.

7.3.4.1.1. Derivation ob;o

040 =0 Q+0; QK , (7.98)
= 010 = 0;Q+ G0tk (7.99)

where by definitioncy = 8;Q with, for Q = keg +kVg,
01Q = kd,Cg + K Vg, (7.100)

6RQ=EQ =CEE+\7E (Figure 7.16). (7.101)
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7.3.4.1.2. Derivation 0b;®

grad; o = 00 = 0;Q+9; Q07K , (7.102)
where BRQafR = Zaleﬁki y
|

with, for Q = kcg + kg,

Q=K dCg + KOVE . (7.103)

7.3.4.2.Equation of rays
Equations (7.96) and .@7) immediately give

®=0, (7.104)
(7.105)

ok
cirl

gr

018_1

+
k=

The substitution of equation (7.95) leads to tHecomponent of equation
(7.104):

0tk +6kJQ Ox Kj+0xQ=0,
or, considering thady k;j = axj ki since aurl k=0
atR+akaaXiR =—0:Q.
Finally, according to (7.99):
(01 +Cq.grao) k =—grad & . (7.106)
By defining the operator “material derivative”
dy® =0y +Cq.grad , (7.107)
equation (7.106) becomes
diek =—grad Q, (7.108)

and, forQ = kcg + kg,
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dytk =—kgradcg —k; grad v (7.109)

This is the equation of rays.

7.3.4.3.Interpretation of the operator de and speed Eg

The operatordfE applied to the phasay of a wave gives, according to
equations (7.99) and (7.81):

dyEy =0y +Cgorady = Q-0 (Q)k (7.110)

thus, forQ = kcg + R.\?E and considering equation (7.94),

dtCE\V:(o—(CEE—i-VEJ.R:m—(CE k+R.\7E)=o. (7.111)

Consequently, along the trajectory defined by the spgedhe phasey of the
wave is invariant. Moreover, the relation

di®F =0T +Cq.0¢T =y (7.112)

determines the speed of propagation ofwhge. This speed of propagation is given
by the expression (7.101) @ showing that it is the geometric projection of the
speed c on the direction &f and velocityvg of the fluid flow (Figure 7.16).

constant phase
surface

_~y =constant

ray

Figure 7.16.Speed of propagation (from equation (7.101))
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Therefore, the speeg; represents the speed of propagatlon of the waves along
the characteristic trajectpr(ray), and the operatod represents the material
derivative taken along this acoustic trajectory.

7.3.4.4 Wave frequency

Since the speed of the wave and theesjpof the non-acoustic flow are functions
of the time (the medium depending on tivae) in general, the frequency of the
wave is also a function of the observatfint and time. The equation satisfied by
this function is obtained by \ting (according to (7.107)) that

d% o = (0, +¢4.9rad)o
or, according to (7.99) and (7.102), that
deo):(atQ+6RQ.6tE)+8RQ.[6FQ+6RQ.6FE }
or, according to (7.107), that
difo= 6tQ+6RQ.[an+ drek } :

According to (7.108), the term in brackets is null, thus
diEw =0,Q. (7.113)

In the particular case whefe = kcg + R.\‘/E , the substitution of equation (7.100)
into (7.113) gives:

dfE® = kdCg + ko Vg . (7.114)

Note: if the “mean medium” is independent of the tingcg =0 and
O{VE = 0, the wave remains at the same freguyealong a ray. Similarly, equation
(7.109) shows that ifyradcg and gradvg are null, the wavenumbek is constant
along the ray.
7.3.4.5.Summary of the results

By solving the iconal equation (7.94)

W= kCE + RVE
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written in its general form
o= Q(T,R,t),
or, according to (7.96) and (7.97), as
oy —Q (F,grady,t)=0, (7.115)

is reduced to the integration of théléwving characteristic system of equations:

def =0 Q=¢y according to (7.101) and (7.112), (7.116a)
dfek =—6;Q according to (7.108), (7.116b)
dff o = 0,Q according to (7.113), (7.116¢)
dify =Q-0;Qk according to (7.110). (7.116d)

One can note here that@ is considered as a Hamiltonian operator, equations
(7.116a) and (7.116b) are then Hamilton’s equations.

In case the dispersion relatiortligt given by equation (7.94% = kcg + R.\?E) ,
this system can be written, according équations (7.101), (7.109), (7.114) and
(7.111), as:

dtcE?:ECEWE ~¢,, (7.117a)

dyek = —k grad cg —kj grad vg; = —k gréd cg— (kgréd) Vg —k , cirl Vg, (7.117b)

dfEw = kdcg + ko Vg, (7.117c)

dfey =0. (7.117d)

The two first equations lead to thracing of the ray. Knowing the vectér at a
given pointt (at the source for example), eqoas (7.117a) and (7.117b) gives the

position of the point of theay located at the distan¢df| and the variatiordk of
the vectork during the period of time dt. Thusy iteration, the ray can be traced.

Note: these equations are often written using Mach’s vedterVg /cg and
the subscriptv =cq /cg .
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7.3.5.Applications to simple cases

7.3.5.1.Motionless mean medium quasi-homogeneous and time invariant
7.3.5.1.1. Frequency
Equation (7.117c) gives

dtCO(D = ﬁtQ = katCO + R.@tVE =0

where the speedg(F,t) is herecy(F).
The frequency is a constant to anasr following the trajectory along a ray.

7.3.5.1.2. Equation of rays

According to the previous result and sin¢g =0, the first equation (7.117b)
can be written as

dpe (2 ﬁJ =-kgradcy
Co

wheref =k/k , thus

Ldgom-yﬁg)dfo[i]—i-gd?o ﬁ:—kgr?;dco. (7118)
Co Co) Co

The left-hand side terms of thigjuation satisfy the following conditions (see
next section):

dtc"(o =0,
Co Co Co Co

since at[i] =0 (time invariant medium) andy = con (VE = 5),
Co
Comt =
L) -— LN g
Co cg dt dl

where d/ denotes the length of a trajectoryereent of the trajctory of a ray,
k=w/cq (sincevg =0).
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Since hrfi=1 and d, (") =2hd,f = 0, equation (7.119) becomes
. [ n 1
d,n=| —.gradcy n——gradco (7.119)
Co Co

This shows thatd,n and i are orthogonal vectors. Consequently, a direction
perpendicular to the trajecto(j)?l) and a radius of curvaturd) can be defined by
o] _ d
W=— (Figure 7.17) or by

d,A=N/R. (7.120)

trajectoryof aray

di =N |dn|
Figure 7.17.Radius of curvature of a ray

Equation (7.119) can also be written as

N n . 1 .
—=| —.gradcy |n——qgradcg.
R [Co g oJ Cog 0

The above equation shows that the @ecepresented by a double line in Figure
7.18 isN/R . From this result, one can concludattthe curvature of a ray is in the
same direction as the decreasing dicettof the speed of sound. Moreover, the
scalar product of this equation with the unit vedibrieads to:

N -
— =——.gradcg,. 7.121
R~ ¢ gradcy ( )
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trajectoryof aray llgréd Co J{l grad Co] n
«.Co Co

1 .
—gradcg
Co
Figure 7.18.Curvature of a ray

Equation (7.121) can be alited directly by applyingrermat’s principle, proof
of which is given in section 7.3.6.

Note: the orientation of the curvaturetbé ray shows that the trajectory tends to
pass through the layers of “high” speedofind, to join the two points belonging to
the regions of lower speed of sound. Tisisn accordance with Fermat's principle
(minimizing the propagation time). In thease of propagation in the air at the
vicinity of the ground during seasons witigh temperatures, a temperature gradient
(thus a gradient of speed of soundttls proportional to the latter bt;é =yRT/M
with R being the constant of perfects gasiéis,the molar mass and the absolute
temperature) occurs above the ground. e then present the profiles given in
Figure 7.19.

z z \ f %
| T | CO 7
(b)

(a)

Figure 7.19.Ray traces (b) for a given profile of temperature and
associated profile of celerity (a)
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7.3.5.2.Quasi-homogeneous mean media in stationary motion

The considered medium is independehtthe observation point and is time
invariant (og and cg are constants). The medium is in stationary motion with the
velocity Vg which is a function of the pointonsidered but time invariant. The
variations of this velocity are consigtd significant only over distances much
greater than the wavelengthe associated Mach numb(efrE /cE) remaining much
smaller than one.

The substitution of the equatidﬁ: kn (definition of n) into equation (7.177b)
leads to the following equation:

fd%k+kden = —(kgrad) Ve — K , ciirl Ve . 7.122
t t g E KA E

The scalar product of equation (7.122) Iny, considering the fact that
dfe(RA)=dfe () = 0= 2nd{=h gives

dgek = —n. (k.grad) Ve . (7.123)

Equation (7.123) highlights the fact thdfek and, consequentlykd{=i (see
equation (7.122)) are of the same ordernmgnitude as the spatial variations
Vg /Cg . Thus, the approximation (7.101) wherg << cg,

is valid and can be used in the operatfyr, then written as

d?E zC_Ed?E =cg d ' (7.1244a)
Cq ds

where, by definition,d? denotes the length of a trajectory element. Moreover,
according to equation (7.94),

% (k) & (Lj ,

Ceg + ﬁVE

or, since by hypothesidtCEw= 0 (7.117c) and the mediubeing assumed (quasi-)
homogeneous

dek :mde(%szde(iJ:o. (7.124b)
Ce+NnVg Ce
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This result implies, according to edqa (7.123) and to the fact that the
orientations ofi and Vg are independent, that

(kgrad) Vg ~0. (7.124c)
The substitution of the three equatigrsl24) into equation (7.122) gives

d, i~ cirl Ve 5 71 (7.125)

Ce

Note: the equatiordtCan:O implies thato is a constant from an observation
point following the tragctory at the speedg .

Example of application: wind above the ground (Figure 7.20)

The effect of the wind on the acouspoopagation is considered here in the
particular case where the velocity dfe air is parallel to the ground, mono-
directional (along theOx axis) and is monotonous increasing in the positive
direction, in other words equal to zerozt 0 (ground level):

\7E = V(Z)HX ,
where i, denotes the unit vector of th@x axis.

Equation (7.125) takes the following form:

an _n; oV (7.1263)
ds Ce 0z '

dn

—Y -0, (7.126b)
dv

dn, _ M V. (7.126¢)
d¢ Cg 0z

The directing cosines governing theediion of radiéion at ground Ieve(z = O)
are denotechy , ny andn, (Figure 7.20a). Equation (7.126b) gives

ny = nyo = constant
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Consequently, by choosing théx,z) -plane perpendicular to théy axis,
dz/d¢=n, /n=n, and equation (7.126a) becomes

dn, _1ovdz_1ov
d¢ cg oz dl cg or’

Finally, when considering the conditions at x = 0,

Vi)

ny =Ny, + 7.127
X Xo Ce ( )
Sincen is a unit vector,
2
n§=1—n§:1—{nxo+fdfq . (7.128)
Ce

The derivative with respect t6 of equation (7.128) leads successively to:

2nzdﬁ:_2 nX +i 1 d_V%,
d/ ® Cg Jcg dz df
Vv
Ny +—
or an:— ° Ce d_Vn :_n_Xd_V
dv cen, dz °  cg dz’

This is nothing other than equatidii.126¢) that is, according to (7.128),
satisfied by the solution (7.127). This sdtequations (7.127) and (7.128) is then
the solution to the system of equations (7.126a, b and c).

The rays can only reach a limited finite heidlat,,) for n, =0. In other
words when (equation (9.128))

V(Zmax) =Ce@—ny, ) - (7.129)

The sign used for the solution is mccordance with the hypothesis that
V(z)>0.
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z z wind
>
—
—_— > .

Ox
— _
—>
Ny Ny X
0 (a) 0 (b) V(Z)

Figure 7.20.Effect of a vertical gradient of wind (b) on the trajectory of rays (a)

7.3.6.Fermat’s principle

Equation (7.121) can also be obtainapplying Fermat's principle. This
principle postulates that the time takendyave to travel between two points (A
and B) is minimal. Ifv denotes the index of the medium which is the ration of the
minimal speedc,, to the speed, of the medium(v =cn,,cq) as the only quantity
responsible for the perturbation, this piple can be expressed by writing that the
variation 8l of the optic path (integral of thedementary optic path between the two
points A andB) is equal to zero:

8l =8[pvdr =0, (7.130)
where the operator 3" represents the infinitesimal geometric variation of the

admissible path andl/ denotes the element of lehgof the trajectory (Figure
7.21).

d’ m
A B

Figure 7.21.Real trajectory AOB and neighboring trajectory (operator “3 ”)

Equation (7.130) can also be written as

81 = [ v8(dr)+ [ gradv.50M d
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The first integral can be modified, noting that

5(cl)= 5, (@OM)? = dOM.3(dOM) S(dOM)dO_M

V ([dOM)?2

= §(dOM) fi = hd(dOM),

wheren denotes the unit vector tangenthe ray (admissible path). Thus

B B B =
j va(dr) :J VRd(50M) =J vir. 4OOM)
A

A A d?

- [vnsom ;s - f dovi) o, 5wy = f dvi) 5 amyar,

since the facto vﬁ.é‘)@ME is null asdA =8B =0 (by hypothesis).

Therefore, equation (7.130) becomes:

A
thu M:gr“adv:—lgr?adco. (7.131)
de Co

so that the scalar product of tiisw form with the unit vectoN , perpendicular to
the trajectory, is

A0 g v v
d¢ R R
The substitution of this resulttmequation (7.131) finally gives

1__§.g&co (7.132)
R Co

This equation is nothing leér than equation (7.121).
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7.3.7.Equation of parabolic waves

The equation of propagation in a non-taganeous medium of which properties
are time invariant, but remain spatiatigpendent functions (varying “slowly” in
space) for a harmonic wave, takesfibren of Helmholtz equation (1.45):

[A+(D—2] p(F)=0 (7.133)
> , .

c

where the speed ¢ depends on the cootelinaf the considered point. Making the
hypothesis that the medium is quasi-honmagris (with a small gradient), the speed
of sound can be written as

c= co[l—%a(f)} : (7.134)

where cg is here a constant, saatrequation (7.133) becomes
0)2 . .
A+¥[1+s(r)] p(F)=0. (7.135)

The absence of an analytical methodstdve such an equation has motivated
numerous works, especially in ionosphared sub-marine ppagation aimed at a
parabolic reduced form of equation (7.135):

— assuming an additional hypothesis adotw to which the propagation is
limited to waves traveling within a “channeif a given direction, chosen as the axis
of reference Oz in the following), leadingo a solution of the form

p(F)=P(F)eko?  with kg =w/cg,
— assuming that the variations in tkzedirection of the amplitude®(w,z) are
significantly slower than those of the functiefo? , consequently that
%P

. oP
<< 2ik g—1 7.136
72 <{ 05, ( )

and finally equation (7.135) takes tfalowing parabolic approximate form

AW+2iko§+g(F)kS}P(?)=O, (7.137)
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which is a typical Schrodinger’s equation
2
i —Ay +|h6—U y=0 (7.138)
2m ot

wherem=1, 7=1/kg andU =-¢/2.

An analogous approach to the one adopteithe beginning of section 7.3, valid
outside the points of energpncentration (causticsgdds to an eikonal equation on
the phase of the amplituddf) from which the equations of the trajectories can be
obtained as Hamilton’s equations, amgus to (7.116a) and (7.116b). At the
vicinity of the caustic regions, otherrfos of solutions must be considered.

In cylindrical geometry,for a symmetrical propagation with respect to a given
axis, the Helmholtz equation (7.135) becomes

[Ei[r£j+i+w—2[l+s(r z)]]p(r 2)=0 (7.139)

ror\C or) pz2 CO

In numerous real situations, the variablés chosen as thworizontal coordinate
while z is chosen as the vertical coordmgheight and dehj, the propagation
being often considered along the variablend the medium characteristics varying
generally with respect to the varial#e Thus, the solution is

1 ik of
rz)=—~Hr,z)je"o . (7.140)
plr2)=—-Hn2)
The substitution of equation (A0) into equation (7.139) gives
1 02 o, 0% o
— +2|ko —+kg5¢elz)|Pr,z)=0. (7.141)
er or? 622 0 ()})( )

The far field propagation (great value fis the most often considered case
while the spatial variation oP (alongr ) is often assumed to be slow

2
<<

— 2ik 0—‘ (7.142)
or



Diffusion, Diffraction and Geoetric Approximation 407

Thus, equation (7.141) is simplified and becomes
2ik03+i+ k2¢(z)|A(r,z)=0. (7.143)
or 622 0
The solution sought can be takerthe form of a Fourier transform

P(r,z):JA(r,z,qz,ko)e”‘o["f”"ﬂq’("z)] dq. (7.144)

leading, at the lowest order (only tHactor without derivative of A), to the
following iconal equation:

g5 +2q, —&=0. (7.145)
It can be deduced from equation (7.14the characteristic equations that are
analogous to (7.116a) and (7.116b) as wethashighest order acoustic solutions as

it was done for the solutions of the smstof equations (7.84) and (7.85).

The objective of this section is to Htiepresent an area of study that is still
under investigation.
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Chapter 8

Introduction to Sound Radiation and
Transparency of Walls

This chapter deals with the transmission of sound energy through walls and with
the various types of coupling associated with it. The hypothesis of harmonic waves,
even plane waves, will often be adopted ttte sake of simplicity and clarity. For
similar reasons, the medium surrourglithe structure will be assumed non-
dissipative (the index “0” used in the previous chapter on the quaptitieand k is
not used in this chapter). The object of this chapter is to apply the methods
introduced in the previous chapters to the problem of sound transmission through
walls.

8.1. Waves in membranes and plates

The focus here is on the problem thnsparencies of elastic walls and
subsequently on the problem of vibrationsptdtes and membranes, thin or thick,
under acoustic load. The vibration motion of such structures is predominantly in the
direction perpendicular to the mid-plaré the structure considered. To fully
understand the process of sound transmission through walls, it is important to first
introduce the various mechanical waves t&tl in elastic structures by incident
sound fields. The bulk of this chapter then introduces the methods to treat a wide
range of situations. The chapter starts with a brief introduction to the principal types
of waves encountered in membranes aategland the associated wave equations.
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8.1.1.Longitudinal and quasi-longitudinal waves

The direction of propagation of longitudinal waves coincides with the direction
of the particle displacement (Figure2)l. The phenomenon dbngitudinal wave
propagation in a solid is similar in many aspects to that of plane waves in fluids, in
essence because the phenomenon ltsesiiom compression type motions.
Longitudinal waves are encountered in many vibrating structures such as junctions
(“T” for example) and are widely used &t measuring material characteristics. For
the sake of simplicity, the equation gfropagation of a longitudinal wave
propagating in one direction will be derived.

In a “one-dimensional” plate (beam), the propagation of a longitudinal wave
results in translations of the planes perpendicular to the main axis of the structure.
Figure 8.1 shows the respective translations of two parallel planes initially at rest
and located respectively atand z+dz.

ow
W +a—dz
dz i : z5 i
w : '
o) | | z
| | ow
dz+w+—dz
dz oz

Figure 8.1.Longitudinal waves in a one-dimensional solid

As the translations are not necessagiyial for both planes, the propagation of a

longitudinal wave induces a straip, equal toﬁ. The associated stress, is
z

given by Hooke’s law as proportional tg, (assuming the magnitude of the
displacement is small). Complete analysishis proportionality shows that the ratio
of longitudinal stress to longitudinal strain is given by

ow  E@l-v) ow
=B —=——"~2 8.1
7= Pl T v)-2y) az 6.1)

where v denotes the Poisson’s ratio and E the Young's modulus of the material
considered. The resulting equation of propagation is obtained writing the equality
between the force acting on the element with the mass of the element multiplied by
its acceleration. If one denotes thess-sectional area S and the density
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2
(dez)sz: {czﬁ agzzz dz—czz}S:%sz. (8.2)

The substitution of equation (8.1) into (8.2) gives

-—— = —-o. (8.3)

The longitudinal phase velocity is then given by

CL= B—L (84)
\ p

The phase velocity is independenf the frequency of the wave and,
consequently, longitudinal waves are non-dispersive.

It is qualitatively simple to see thaptire longitudinal waves can only occur in
solids, the dimensions of which are far greater than the considered wavelengths.
However, longitudinal waves still occur in most structures, regardless of their
dimensions, as compression waves resulting in a motion in the axis of the beam as
well as in a contraction of the crossetional area. These are called “quasi-
longitudinal waves”.

In the particular case of longitudinal waves in a thin plate, according to the
theory of elasticity (not presented herein), a relationship between the tension and the
longitudinal distortion of a plate element is well established

_Ew
1-v2 oz’

Gzz (8.5)

leading to a corresponding equation afgagation equivalent to equation (8.3)

2 2y A2
o'w p(-v9)o W:O, (8.6)
x> E  at?

and to the phase velocity of quasi-longitudinal wave

. _[E
= |[——. 8.7
CL p(l—\)z) ( )
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Longitudinal waves do nohduce displacements in tlirection normal to the
direction of propagation and are therefar# considered as the predominant waves
in radiation problems. In practice, structures are often more complex than simple
plates, and beams are often used as connectors between other components.
Longitudinal waves can play a vital role in the vibration transmission through
discontinuities in the structes, such as junctions, bgroversion of the longitudinal
displacements into ansverse displacements that avere radiation efficient, and
vice versa. This aspect of vibration transmission is beyond the scope of this book.

8.1.2.Transverse shear waves

Unlike fluids and gases, solids tend to resist static and dynamic shear
deformations. Transverse waves are abi@rized by a vibration displacement
perpendicular to the direction of proptiga of the wave, pure shear waves being a
perfect example of transverse waves (Figure 1.1).

When a rectangular solid element is under pure shear forces (Figure 8.2), the
shear stresses generated tend to oppose the deformation in the direction of the shear
forces. In static equilibrium, the shear stressgs and ty, on both sides of the

solid element considered are equal and opposite. The solid tends to limit the
deformation efficiently. In dynamic sitions, however, when a shear wave is
traveling through the same solid element in thelirection, the difference of shear

stresses is not necessarily zero, ltegyin a difference of dlsplacemenaindx in
X

the direction of the stresses (similar to that seen for longitudinal waves).

\
[

dy =

TXVJ L

Pt Tandx
=" ox
OlL= X

dx

Figure 8.2.Transverse shear stresses and displacement
in pure shear deformation
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The assumption of small displacements is madeafadtiori, justified since the
domain of application implies a necessasipall displacement within the limits of
linear acoustics. The shear stresses are proportional to the shear strain and the
coefficient of proportionalityG is

E

20+ ®8)

The equation of motion in thg -direction of the solid element of unit thickness
and cross-sectional areixdy is

621’xy
2

2
pa_ndxdy:
ot

> dxdy . (8.9)

OX

The substitution of equation (8.8) into (8.9) gives the equation of propagation of
transverse shear waves,

2 2
om_pom_g, (8.10)
ox? G at?

and the phase velocity of shear waves,

C = (8.11)

G
p
Once again the phase velocity isdependent of the frequency and,
consequently, shear waves are non-disper3ikie effects of shear deformation can
contribute significantly to the vibrational state of a structure, particularly for
laminated plates made of dynamically different laminae. Also, as for longitudinal

waves, the energy propagated by shear waves is partly converted into flexural wave
energy (and vice versa) at junctions in complex structures.

8.1.3.Flexural waves

8.1.3.1.Generally

Flexural waves (also called bending waves) in beams and plates are
characterized by a motion perpendicular to the direction of propagation and to the
surface of the structure. While longitudinedves are associated with a local change
of volume and transverse waves with a lodahnge of shape, flexural waves are
associated with both. They are therefore predominant in sound radiation from
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structure since this type of motion is highly compatible with typical fluid particle
motions, but also because acoustic loading (of any incidence) generates easily
flexural waves.

Unlike the two other types of waves previously presented, bending waves are
represented by four variables: the transverse velocity of a solid element; the angular
velocity about the axis perpendicular to the plane of the structure; the bending
moment acting at a cross-section of the solid about the same axis; and the shear
forces transmitted to thadjacent solid element.

The well-known representation of bendidgplacements and deformation is
given in Figure 8.3.

equilibrium shape and position

Figure 8.3.Displacement and deformation of a beam element in bending

8.1.3.2. Flexural waves in membranes

Membranes are assumed thin and uniform with negligible thickness, and
perfectly elastic so that the rigidity is governed by the tension of the membrane T
(per unit of length). The tension applied at the edges of the membrane (by a rim for
example) is defined so that an element of lerdithis under the tensile force Tdx.
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Y,
Tdx
dy
Tdy& .
Y
O
Tdx dx X

Figure 8.4.Membrane with null thickness under tension

The total force acting on a surface elemdft of the membrane is the sum of
the transverse forces acting on the edges parallel to the x- and y-directions, which
are respectively:

2

Tdy (Ej _(ﬁJ _ Ta—zdxdy, (8.12a)
OX Jypdx  \OXJx 2
2

Tdx [Q] _[QJ :Ta_sdxdy. (8.12b)
N Jyray \OY)y oy

Applying Newton'’s second law on a membrane elendxdy of mass per unit
areaMg and of acceleration’z/ét? gives

2 2 2
T a_:+a_§ dxdy—Msa—zzdxdy:O, (8.13)
ox2 oy at
and finally

2 2 2
_2 ;%_%%:o. (8.14)
X t

Cr=[— . (8.15)
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8.1.3.3.Flexural waves in plates

In the following section, the plate is assumed isotropic. The notation convention
for moments of pure flexural waves in thin plates are given in Figure 8.5.

M ' M
T v
Mo < T
yX > Z f dMyx
/ e v+ IMx dM yx * dy dy
~| - + X
X Vg X ux My + dyy dy
dMy
Myy + dx

Figure 8.5.Moments acting on a plate element

The directions and notations for the stres applied to a thin plate element are
given in Figure 8.6 where the notatienis used for the shear stresses antbr the
normal stresses.

Figure 8.6.Notations and positive directions of stresses in a thin plate element

According to Figure 8.6, the bending moments acting on the plate element are:

h/2
My = },/25xx 2dz,
h/2
My =]} /,0yy2dz, (8.16)
h/2
Myy =Myx = [Ty /50y 2d2
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The in-plane strains and shear straires retated to the plate displacement field

[éx =—zﬂ,§y :—z%,wj:

OX oy
o
2
ayy=a—)z/, (8.17)
aéy 0Ex
=—L 42X,
YT Ty

The associated stresses for an isotropic plate are related to the strains by Hooke’s
law where the coefficientsf proportionality are obvious

E
GXX =—2 (SXX +V8yy)1

1-v
Sy =3 (Egy +Vexe) (8.18)
Oyy =Geyy.

By replacing the in-plane displacemegtamponents with their expressions as
functions of the transverse component iatpation (8.17) gives the expressions of
the stresses in the plate as functionshef transverse disptement. The resulting
equations can then be substituted into equations (8.16), leading to

ox>? ay2
2 2
My =-B|vI W, IW| (8.19)
My =M —B(1—v)62W
o oxay'

3
where B denotes the bending stiffness of the plate and is eqaa(lﬁg—z) where
121-v

h denotes the thickness of the plate.
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The total forces applied onto the plalement resulting from these moments are
then given by

ox3 6x6y2
(8.20)
o%w  o%w
Qy=-B st
oxcoy oy
In the z-direction, Newton’s second law gives
D 2
Qx , Ny —m I (8.21)
ox  oX ot2

The substitution of equation (8.20) into (8.21) gives the equation of propagation
of flexural waves in a thin plate

2
BaZw+M W o, (8.22)
atZ

2 2
where A% denotes the double Laplaci H6_2+_2 .
oX< oy

The associated frequency dependent flakwaves phase velocity is directly
obtained from equation (8.22) as

B 1/4
cf:(—] Vo . (8.23)

Flexural waves are therefore dispersa® the flexural waves phase velocity
depends on the frequency.
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8.2. Governing equation for thin, plane, homogeneous and isotropic plate in
transverse motion

The following section presents the equations of motion for thin, plane,
homogeneous and isotropic plates, and briefly introduces a few important notions. It
is a reminder of the laws governing the motion of membranes and plates.

8.2.1.Equation of motion of membranes

Under the action of a transverse forppléed on the surface by, for example, an
acoustic pressur®f,t) exerted onto the plate, the transverse displacement w of a
membrane (S), of negligible thickness, is a solution to the non-homogeneous
equation of propagation (8.14)

2
TAW—MSa—ZW =—P(F,t) over(S), (8.24)
ot

where Mg denotes the mass per unit area of the membran@ atgltension.

With this equation is associatéditial and boundary conditions. The most
commonly-used boundary conditions are Somfiebd’'s for an infinite membrane
and Dirichlet’'s (applied to the perimetér) for finite membranes (i.e. membrane
stretched by a rigid frame).

The “structural” damping of the membrane due to friction forces within the
material can be introduced adriction force per unit areRow /dt in the equation
of propagation.

In the case of a harmonically-excited membrane in a rigid frame, assuming
separable geometry, the solution canelspanded in the basis of eigenfunctions.
The resulting eigenvalue problem is

(A+KZn)Wmn =0 over (), (8.25a)
Ymn =0 on (@), (8.25b)
with k2, = 02, (Mg/T). (8.25c)

For a rectangular membrane of length a and width b, the most suitable origin of
the coordinate system is in one of the corners of the membrane. If Dirichlet's
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conditions are fulfiled (no displacenmeron the perimeter) the ortho-normal
eigenfunctions and associated eigenvalues are respectively given by

2 [ mnx | . ( nmy
-_Z — 1, 8.26a
Ymn FabSI 3 jsw( b ) ( )

2 5 1/2
kmn:ﬁ%j +(”—b"” . (8.26D)

For a circular membrane of radius a in the same conditions (the origin is at the
centre of the membrane), the eigenfunctions are

T 1 {cos} mo J2
" \/(:I-“‘SmO)7T sin a-Jlrn(kmna-)

and the eigenvalues are solutions to

In(Kmnr), (8.27a)

Im(Kmn@)=0. (8.27b)

In both cases, the orthogonality oéthigenfunctions is expressed by

,[L\I/mn‘lfqrds =S mgdnr - (8.28)

8.2.2.Thin, homogeneous and isotropic plates in pure bending

8.2.2.1.Governing equation

Under a pressure Ioa@(?,t), the displacemenw of an elastic thin plate
(homogeneous and isotropic) is a $ioln to the non-homogeneous equation of
propagation (8.22):

BA?wW+M aZ—W—P(? t), over(S) (8.29)
Satz = Y ) .

where B = Eh3/12(1—v2) and A? denote, respectively, the bending stiffness of the
material and the double Laplacian.

Sommerfeld’s boundary conditions are oftafopted for infinite plates. In the
case of plates of finite dimensions, slmmand analytical solutions are readily
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available only for simple supports boundapnditions which are therefore the most
suitable to this presentation.

The structural damping of the plate corresponds to an energy dissipation
associated with various types of frictions within the material. In harmonic regime,
the dissipative force is proportional to the elastic force aifgktiori, to the relative
displacement. Consequently, this tyjpé damping can be introduced in the
governing equations replacing the bending stiffnBsby a complexB = B(1+in)
or directly introducing in the governing equation the téRéw /ot (as was done
for membranes). The first choice is equivalent to considering a complex Young's
modulus (Voigt's model). In both cases, the frictional term is only an approximation
of the reality.

8.2.2.2.General solution to the governing homogeneous equation

By adopting the hypothesis that the vibrations are free (harmonic motion and no
external load), the eigenvalues problem associated with the equation of propagation
(8.29) is

(42-p*)w =0, (8.30)
where g4 = mZMS /B

and can also be written as
(a+p2)(a-p2)w=o0. (8.31)
The general solution to equation (8.31) is given by
W=W_+W_, (8.32)
where the functionsv, satisfy the following equations:
(a+p2)w, 0. (8.33)
The solutions to this type of equations are the exponential functions:

w, =etlX gty (8.34a)
w_ =et et (8.34b)

with, in both casesq? +y2 = [32. (8.34c)
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The general solution can then be wrttas the sum of eight products of
exponential functions (real or complex) or as eight products of hyperbolic or
trigonometric functions:

w(x,y)=Assin(ax)sin(yy)+ A sin(ax)cogyy)
+Agcodax)sin(yy)+ A scodax)codyy)
+ Agsinh(ox)sinHyy )+ A gsinh(ax) cosHyy)
+A;cosHax)sinHyy)+ AgcosHax)costyy).

(8.35)

In the particular case where a harmonic wave is traveling alon@yhaxis, the
solution can be reduced to

w(y,t)=wpg ex;{— i ng} exdiot]. (8.36)
f

The substitution of equation (8.36) into equation (8.30) leads to the same
expression of the bending wave phasbcity given by equation (8.23).

8.2.2.3 Acoustic radiation from an infinite plate in an infinite medium

An “infinite” plate is a plate where therdensions of which are far greater than
the wavelength considered and where @tatiy waves do not occur (the edges are
completely absorbent). Thesgiacement field of the pkatis described by equation
(8.36). The law of continuity of the flexalrand acoustic velocities at the surface of
the plate, and in the direction perpendicutathe plate, must be verified for any
given point y of t