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“The time lias come,” the Walrus said,
“To talk of many things”. . .
L e w is  C a r r o l l ,  Through the Looking-Glass

Preface

. . .  of atoms, stars, and nebulae, of entropy and genes; and whether 
one can bend space, and why the rocket shrinks. And indeed, in 
the course of this book we are going to discuss all these topics, 
and also many others of equal interest.

The book originated as an attempt to collect the most inter
esting facts and theories of modern science in such a way as to 
give the reader a general picture of the universe in its micro
scopic and macroscopic manifestations, as it presents itself to the 
eye of the scientist of today. In carrying out this broad plan, I 
have made no attempt to tell the whole story, knowing that any 
such attempt would inevitably result in an encyclopedia of many 
volumes. At the same time the subjects to be discussed have been 
selected so as to survey briefly the entire field of basic scientific 
knowledge, leaving no corner untouched.

Selection of subjects according to their importance and degree 
of interest, rather than according to their simplicity, necessarily 
has resulted in a certain unevenness of presentation. Some chap
ters of the book are simple enough to be understood by a child, 
whereas others will require some little concentration and study 
to be completely understood. It is hoped, however, that the lay
man reader will not encounter too serious difficulties in reading 
the book.

It will be noticed that the last part of the book, which discusses 
the “Macrocosmos,” is considerably shorter than the part on 
“Microcosmos.” This is primarily because I have already dis
cussed in detail so many problems pertaining to the macrocosmos 
in The Birth and Death of the Sun, and Biography of the Earth,1 
and further detailed discussion here would be a tedious repeti-

1 The Viking Press, New York, 1940 and 1941, respectively.



vi Preface

tion. Therefore in this part I have restricted myself to a general 
account of physical facts and events in the world of planets, stars, 
and nebulae and the laws that govern them, going into greater 
detail only in discussing problems upon which new light has been 
shed by the advance of scientific knowledge during the last few 
years. Following this principle I  have given especial attention 
to the recent views according to which vast stellar explosions, 
known as “supernovae,” are caused by the so-called “neutrinos,” 
the smallest particles known in physics, and the new planetary 
theory, which abolishes the currently accepted views that planets 
originated as the result of collisions between the sun and some 
other stars, and re-establishes the old half-forgotten views of 
Kant and Laplace.

I want to express my thanks to numerous artists and illustrators 
whose work, topologically transformed (see Section II, Ch. I l l ) ,  
has served as the basis for many illustrations adorning the book. 
Above all my thanks are due to my young friend Marina von 
Neumann, who claims that she knows everything better than her 
famous father does, except, of course, mathematics, which she 
says she knows only equally well. After she had read in 
manuscript some of the chapters of the book, and told me about 
numerous things in it which she could not understand, I finally 
decided that this book is not for children as I had originally 
intended it to be.

G . G a m o w

December 1, 1946

Preface to the 1961 Edition

All books on science are apt to become out of date a few years 
after publication, especially in the case of those branches of 
science which undergo rapid development. In this sense, my book 
One Two Three . . . Infinity, first published thirteen years ago, 
is a lucky one. It was written just after a number of important 
scientific advances, which were included in the text, and in order 
to bring it up to date relatively few changes and additions were 
necessary.



Preface to the 1961 Edition vii

One of the important advances was the successful release of 
atomic energy by means of thermonuclear reactions in the form 
of H-bomb explosions, and the slow but steady progress toward 
the controlled release of energy through thermonuclear processes. 
Since the principle of thermonuclear reactions and their applica
tion in astrophysics were described in Chapter XI of the first 
edition of this book, man’s progress toward the same goal could 
be taken care of simply by adding new material at the end of 
Chapter VII.

Other changes involved the increase in the estimated age of our 
universe from two or three billion years to five or more billion 
years, and the revised astronomical distance scale resulting from 
explorations with the new 200-inch Hale telescope on Mount 
Palomar in California.

Recent progress in biochemistry necessitated re-drawing Fig
ure 101 and changing the text pertaining to it, as well as adding 
new material at the end of Chapter IX  concerning synthetic pro
duction of simple living organisms. In the first edition I wrote 
(p. 266): “Yes, we certainly have a transitional step between 
living and non-living matter, and when—perhaps in no far- 
distant future—some talented biochemist is able to synthesize a 
virus molecule from ordinary chemical elements, he will be jus
tified in exclaiming: ‘I have just put the breath of life into a 
piece of dead matter!’ ” Well, a few years ago this was actually 
done, or almost done, in California, and the reader will find a 
short account of this work at the end of Chapter IX.

And one more change: The first printing of my book was dedi
cated “To my son Igor, who wants to be a cowboy.” Many of 
my readers wrote me asking if he actually became a cowboy. 
The answer is no; he is graduating this summer, having majored 
in biology, and plans to work in genetics.

G . G a m o w

University of Colorado 
November 1960
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C H A P T E R  I

Big Numbers

I. HOW HIGH CAN YOU COUNT?

THERE is a story about two Hungarian aristocrats who 
decided to play a game in which the one who calls the 

largest number wins.
“Well,” said one of them, “you name your number first.”
After a few minutes of hard mental work the second aristocrat 

finally named the largest number he could think of.
“Three,” he said.
Now it was the turn of the first one to do the thinking, but 

after a quarter of an hour he finally gave up.
“You’ve won,” he agreed.
Of course these two Hungarian aristocrats do not represent a 

very high degree of intelligence1 and this story is probably just a 
malicious slander, but such a conversation might actually have 
taken place if the two men had been, not Hungarians, but Hotten
tots. We have it indeed on the authority of African explorers that 
many Hottentot tribes do not have in their vocabulary the names 
for numbers larger than three. Ask a native down there how many 
sons he has or how many enemies he has slain, and if the number 
is more than three he will answer “many.” Thus in the Hottentot 
country in the art of counting fierce warriors would be beaten 
by an American child of kindergarten age who could boast the 
ability to count up to ten!

Nowadays we are quite accustomed to the idea that we can 
write as big a number as we please—whether it is to represent 
war expenditures in cents, or stellar distances in inches—by

1 This statement can be supported by another story of the same collection 
in which a group of Hungarian aristocrats lost their way hiking in the Alps. 
One of them, it is said, took out a map, and after studying it for a long 
time, exclaimed: “Now I know where we are!” “Where?” asked the others. 
“See that big mountain over there? We are right on top of it.”

3



simply setting down a sufficient number of zeros on the right side 
of some figure. You can put in zeros until your hand gets tired, 
and before you know it you will have a number larger than even 
the total number of atoms in the universe,2 which, incidentally, is
300,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,- 
000,000,000,000,000,000,000,000,000.

Or you may write it in this shorter form: 3• 1074.
Here the little number 74 above and to the right of 10 indicates 

that there must be that many zeros written out, or, in other words, 
3 must be multiplied by 10 seventy-four times.

But this “arithmetic-made-easy” system was not known in 
ancient times. In fact it was invented less than two thousand years 
ago by some unknown Indian mathematician. Before his great 
discovery— and it was a great discovery, although we usually do 
not realize it—numbers were written by using a special symbol 
for each of what we now call decimal units, and repeating this 
symbol as many times as there were units. For example the 
number 8732 was written by ancient Egyptians: 

% % % % % % % %  

whereas a clerk in Caesar’s office would have represented it in 
this form:

MMMMMMMMDCCXXXII

The latter notations must be familiar to you, since Roman 
numerals are still used sometimes—to indicate the volumes or 
chapters of a book, or to give the date of a historical event on a 
pompous memorial tablet. Since, however, the needs of ancient 
accounting did not exceed the numbers of a few thousands, the 
symbols for higher decimal units were nonexistent, and an ancient 
Roman, no matter how well trained in arithmetic, would have 
been extremely embarrassed if he had been asked to write “one 
million.” The best he could have done to comply with the request, 
would have been to write one thousand M’s in succession, which 
would have taken many hours of hard work (Figure 1).

For the ancients, very large numbers such as those of the stars
2 Measured as far as the largest telescope can penetrate.
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in the sky, the fish in the sea, or grains of sand on the beach were 
“incalculable,” just as for a Hottentot “five” is incalculable, and 
becomes simply “many”!

It took the great brain of Archimedes, a celebrated scientist of 
the third century B .C ., to show that it is possible to write really

Big Numbers 5

F ig u r e  1

An ancient Roman, resembling Augustus Caesar, tries to write “one 
million” in Roman numerals. All available space on the wall-board 

hardly suffices to write “a hundred thousand.’'

big numbers. In his treatise The Psammites, or Sand Reckoner, 
Archimedes says:

“There are some who think that the number of sand grains is 
infinite in multitude; and I mean by sand not only that which 
exists about Syracuse and the rest of Sicily, but all the grains of 
sand which may be found in all the regions of the Earth, whether 
inhabited or uninhabited. Again there are some who, without 
regarding the number as infinite, yet think that no number can be  
named which is great enough to exceed that which would des



ignate the number of the Earth’s grains of sand. And it is clear 
that those who hold this view, if they imagined a mass made up 
of sand in other respects as large as the mass of the Earth, in
cluding in it all the seas and all the hollows of the Earth filled up 
to the height of the highest mountains, would be still more certain 
that no number could be expressed which would be larger than 
that needed to represent the grains of sand thus accumulated. 
But I will try to show that of the numbers named by me some 
exceed not only the number of grains of sand which would make 
a mass equal in size to the Earth filled up in the way described, 
but even equal to a mass the size of the Universe.”

The way to write very large numbers proposed by Archimedes 
in this famous work is similar to the way large numbers are written 
in modern science. He begins with the largest number that existed 
in ancient Greek arithmetic: a “myriad,” or ten thousand. Then 
he introduced a new number, “a myriad myriad” (a hundred 
million), which he called “an octade” or a “unit of the second 
class.” “Octade octades” (or ten million billions) is called a “unit 
of the third class,” “octade, octade, octades” a “unit of the fourth 
class,” etc.

The writing of large numbers may seem too trivial a matter to 
which to devote several pages of a book, but in the time of 
Archimedes the finding of a way to write big numbers was a 
great discovery and an important step forward in the science of 
mathematics.

To calculate the number representing the grains of sand neces
sary to fill up the entire universe, Archimedes had to know how 
big the universe was. In his time it was believed that the universe 
was enclosed by a crystal sphere to which the fixed stars were 
attached, and his famous contemporary Aristarchus of Samos, 
who was an astronomer, estimated the distance from the earth to 
the periphery of that celestial sphere as 10,000,000,000 stadia or 
about 1,000,000,000 miles.3

Comparing the size of that sphere with the size of a grain of 
sand, Archimedes completed a series of calculations that would 
give a highschool boy nightmares, and finally arrived at this 
conclusion:

s One Greek “stadium” is 606 ft. 6 in., or 188 meters (m).
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“It is evident that the number of grains of sand that could be 
contained in a space as large as that bounded by the stellar sphere 
as estimated by Aristarchus, is not greater than one thousand 
myriads of units of the eighth class.”4

It may be noticed here that Archimedes’ estimate of the radius 
of the universe was rather less than that of modern scientists. The 
distance of one billion miles reaches only slightly beyond the 
planet Saturn of our solar system. As we shall see later the uni
verse has now been explored with telescopes to the distance of
5,000,000,000,000,000,000,000 miles, so that the number of sand 
grains necessary to fill up all the visible universe would be over: 

10100 (that is, 1 and 100 zeros)
This is of course much larger than the total number of atoms 

in the universe, 3 • 1074, as stated at the beginning of this chapter, 
but we must not forget that the universe is not packed  with 
atoms; in fact there is on the average only about 1 atom per cubic 
meter of space.

But it isn’t at all necessary to do such drastic things as packing 
the entire universe with sand in order to get really large numbers. 
In fact they very often pop up in what may seem at first sight a 
very simple problem, in which you would never expect to find 
any number larger than a few thousands.

One victim of overwhelming numbers was King Shirham of 
India, who, according to an old legend, wanted to reward his 
grand vizier Sissa Ben Dahir for inventing and presenting to him 
the game of chess. The desires of the clever vizier seemed very 
modest. “Majesty,” he said kneeling in front of the king, “give 
me a grain of wheat to put on the first square of this chessboard, 
and two grains to put on the second square, and four grains to 
put on the third, and eight grains to put on the fourth. And so, 
oh King, doubling the number for each succeeding square, give 
me enough grains to cover all 64 squares of the board.”

4 In our notation it would be-- 
thousand myriads 2nd class 3rd class 4th class

(10,000,000) X (100,000,000) X (100,000,000) x (100,000,000) X 
5th class 6th class 7th class 8th class

(100,000,000) X (100,000,000) X (100,000,000) X (100,000,000) 
or simply:

1063 (i.e., 1 and 63 zeros)

Big Numbers 7



“You do not ask for much, oh my faithful servant,” exclaimed 
the king, silently enjoying the thought that his liberal proposal 
of a gift to the inventor of the miraculous game would not cost 
him much of his treasure. “Your wish will certainly be granted.” 
And he ordered a bag of wheat to be brought to the throne.

But when the counting began, with 1 grain for the first square, 
2 for the second, 4 for the third and so forth, the bag was emptied

8 Playing With Numbers

Grand Vizier Sissa Ben Dahir, a skilled mathematician, asks his reward 
from King Shirham of India.

before the twentieth square was accounted for. More bags of 
wheat were brought before the king but the number of grains 
needed for each succeeding square increased so rapidly that it 
soon became clear that with all the crop of India the king could 
not fulfill his promise to Sissa Ben. To do so would have required 
18,446,744,073,709,551,615 grains!5

8 The number of wheat grains that the clever vizier had demanded may 
be represented as follows:

l+ 2  + 22 + 23 + 24+ . . . +262+263.
In arithmetic a sequence of numbers each of which is progressively in

creased by the same factor (in this case by a factor of 2 ) is known as 
geometrical progression. It can be shown that the sum of all the terms in 
such a progression may be found by raising the constant factor (in this 
case 2 ) to the power represented by the number of steps in the progression



That’s not so large a number as the total number of atoms in 
the universe, but it is pretty big anyway. Assuming that a bushel 
of wheat contains about 5,000,000 grains, one would need some 
4000 billion bushels to satisfy the demand of Sissa Ben. Since the 
world production of wheat averages about 2,000,000,000 bushels 
a year, the amount requested by the grand vizier was that of the 
worlds wheat production for the period of some two thousand 
yearsl

Thus King Shirham found himself deep in debt to his vizier 
and had either to face the incessant flow of the latter’s demands, 
or to cut his head off. We suspect that he chose the latter alter
native.

Another story in which a large number plays the chief role 
also comes from India and pertains to the problem of the “End of 
the World.” W. W. R. Ball, the historian of mathematical fancy, 
tells the story in the following words:8

In the great temple at Benares beneath the dome which marks 
the center of the world, rests a brass plate in which are fixed three 
diamond needles, each a cubit high ( a cubit is about 20 inches) 
and as thick as the body of a bee. On one of these needles, at the 
creation, God placed sixty-four discs of pure gold, the largest disc 
resting on the brass plate and the others getting smaller and 
smaller up to the top one. This is the tower of Brahma. Day and 
night unceasingly, the priest on duty transfers the discs from one 
diamond needle to another, according to the fixed and immutable 
laws of Brahma, which require that the priest must move only 
one disc at a time, and he must place these discs on needles so 
that there never is a smaller disc below a larger one. When all 
the sixty-four discs shall have been thus transferred from the

(in this case, 64) ,  subtracting the first term (in this case, 1 ), and dividing 
the result by the above-mentioned constant factor minus 1. It may be 
stated thus:

203X2—1
----------- =2G1—1

2-1

and writing it as an explicit number:
18,448,744,073,709,551,615.

e W. W. R. Ball, Mathematical Recreations and Essays (The Macmillan 
Co., New York, 1939).
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needle on which, at the creation, God placed them, to one of the 
other needles, tower, temple, and Brahmans alike will crumble 
into dust, and with a thunderclap the world will vanish.

Figure 3 is a picture of the arrangement described in the story, 
except that it shows a smaller number of discs. You can make this 
puzzle toy yourself by using ordinary cardboard discs instead of 
golden ones, and long iron nails instead of the diamond needles

10 Playing With Numbers

A priest working on the “End of the Woild” problem in front of a 
giant statue of Brahma. The number of golden discs is shown here 

smaller than 64 because it was difficult to draw so many.

of the Indian legend. It is not difficult to find the general rule 
according to which the discs have to be moved, and when you 
find it you will see that the transfer of each disc requires twice as 
many moves as that of the previous one. The first disc requires 
just one move, but the number of moves required for each suc
ceeding disc increases geometrically, so that when the 64th disc



is reached it must be moved as many times as there were grains 
in the amount of wheat Sissa Ben Dahir requested!7

How long would it take to transfer all sixty-four discs in the 
tower of Brahma from one needle to the other? Suppose that 
priests worked day and night without holidays or vacation, mak
ing one move every second. Since a year contains about 31,558,000 
seconds it would take slightly more than fifty-eight thousand bil
lion years to accomplish the job.

It is interesting to compare this purely legendary prophecy of 
the duration of the universe with the prediction of modern science. 
According to the present theory concerning the evolution of the 
universe, the stars, the sun, and the planets, including our Earth, 
were formed about 3,000,000,000 years ago from shapeless masses. 
We also know that the “atomic fuel” that energizes the stars, and 
in particular our sun, can last for another 10,000,000,000 or
15,000,000,000 years. (See the chapter on “The Days of Crea
tion.”) Thus the total life period of our universe is definitely 
shorter than 20,000,000,000 years, rather than as long as the 58,000 
billion years estimated by Indian legend! But, after all, it is only 
a legend!

Probably the largest number ever mentioned in literature per
tains to the famous “Problem of a Printed Line.” Suppose we 
built a printing press that would continuously print one line after 
another, automatically selecting for each line a different com
bination of the letters of the alphabet and other typographical 
signs. Such a machine would consist of a number of separate 
discs with the letters and signs all along the rim. The discs would 
be geared to one another in the same way as the number discs in

7 If we have only seven discs the number of necessary moves is:

l + 2'l + 22 + 23 + etc., or 
27- l  =  2-2-2-2-2-2-2 —1 =  127.

If you moved the discs rapidly without making any mistakes it would 
take you about an hour to complete the task. With 64 disks the total num
ber of moves necessary is:

264— 1 =  18,446,744,073,709,551,615

this is the same as the number of grains of wheat required by Sissa Ben 
Dahir.
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the mileage indicator of your car, so that a full rotation of each 
disc would move the next one forward one place. The paper as it 
comes from a roll would automatically be pressed to the cylinder 
after each move. Such an automatic printing press could be built 
without much difficulty, and what it would look like is repre
sented schematically in Figure 4.
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An automatic printing press that has just printed correctly a line from

Shakespeare.

Let us set the machine in action and inspect the endless 
sequence of different printed lines that come from the press. Most 
of the lines make no sense at all. They look like this:

“aaaaaaaaaaa . . .”
or

“boobooboobooboo . .
or again:

“zawkporpkossscilm . . .”

But since the machine prints all possible combinations of letters 
and signs, we find among the senseless trash various sentences



that have meaning. There are, of course, a lot of useless sentences 
such as:

“horse has six legs and . . .”
or

“I like apples cooked in terpentin. . . .”

But a search will reveal also every line written by Shakespeare, 
even those from the sheets that he himself threw into the waste- 
paper basket!

In fact such an automatic press would print everything that 
was ever written from the time people learned to write: every 
line of prose and poetry, every editorial and advertisement from 
newspapers, every ponderous volume of scientific treatises, every 
love letter, every note to a milkman. . . .

Moreover the machine would print everything that is to be 
printed in centuries to come. On the paper coming from the 
rotating cylinder we should find the poetry of the thirtieth cen
tury, scientific discoveries of the future, speeches to be made in 
the 500th Congress of the United States, and accounts of intra- 
planetary traffic accidents of the year 2344. There would be pages 
and pages of short stories and long novels, never yet written by 
human hand, and publishers having such machines in their base
ments would have only to select and edit good pieces from a lot 
of trash—which they are doing now anyway.

Why cannot this be done?
Well, let us count the number of lines that would be printed 

by the machine in order to present all possible combinations of 
letters and other typographical signs.

There are 26 letters in the English alphabet, ten figures (0, 1,
2 . . .  9) and 14 common signs (blank space, period, comma, 
colon, semicolon, question mark, exclamation mark, dash, hyphen, 
quotation mark, apostrophe, brackets, parentheses, braces); al
together 50 symbols. Let us also assume that the machine has 
65 wheels corresponding to 65 places in an average printed line. 
The printed line can begin with any of these signs so that we 
have here 50 possibilities. For each  of these 50 possibilities there 
are 50 possibilities for the second place in the line; that is, alto
gether 50x50  = 2500 possibilities. But for each given combina
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tion of the first two letters we have the choice between 50 pos
sible signs in the third place, and so forth. Altogether the number 
of possible arrangements in the entire line may be expressed as:

65 times
__________A__________
50 x 50 x 50 x . . .  x 50 

or 5065

which is equal to 10110
To feel the immensity of that number assume that each atom 

in the universe represents a separate printing press, so that we 
have 3 • 1074 machines working simultaneously. Assume further 
that all these machines have been working continuously since the 
creation of the universe, that is for the period of 3 billion years 
or 1017 seconds, printing at the rate of atomic vibrations, that is, 
1015 lines per second. By now they would have printed about

3 • 1074 X1017 X 1015 = 3 ■ 10100
lines—which is only about one thirtieth of 1 per cent of the total 
number required.

Yes, it would take a very long time indeed to make any kind of 
selection among all this automatically printed material!

2. HOW TO COUNT INFINITIES

In the preceding section we discussed numbers, many of them 
fairly large ones. But although such numerical giants as the num
ber of grains of wheat demanded by Sissa Ben are almost un
believably large, they are still finite and, given enough time, one 
could write them down to the last decimal.

But there are some really infinite numbers, which are larger 
than any number we can possibly write no matter how long we 
work. Thus “the number of all numbers” is clearly infinite, and 
so is “the number of all geometrical points on a line.” Is there 
anything to be said about such numbers except that they are 
infinite, or is it possible, for example, to compare two different 
infinities and to see which one is “larger”?
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Is there any sense in asking: “Is the number of all numbers 
larger or smaller than the number of all points on a line?” Such 
questions as this, which at first sight seem fantastic, were first 
considered by the famous mathematician Georg Cantor, who 
can be truly named the founder of the “arithmetics of infinity.” 

If we want to speak about larger and smaller infinities we face 
a problem of comparing the numbers that we can neither name
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An African native and Prof. G. Cantor comparing the numbers beyond 
their counting ability.

nor write down, and are more or less in the position of a Hotten
tot inspecting his treasure chest and wanting to know whether he 
has more glass beads or more copper coins in his possession. But, 
as you will remember, the Hottentot is unable to count beyond 
three. Then shall he give up all attempts to compare the number 
of beads and the number of coins because he cannot count them? 
Not at all. If he is clever enough he will get his answer by com
paring the beads and the coins piece by piece. He will place one



bead near one coin, another bead near another coin, and so on, 
and so on . . .  If he runs out of beads while there are still some 
coins, he knows that he has more coins than beads; if he runs 
out of coins with some beads left he knows that he has more 
beads than coins, and if he comes out even he knows that he has 
the same number of beads as coins.

Exactly the same method was proposed by Cantor for com
paring two infinities: if we can pair the objects of two infinite 
groups so that each object of one infinite collection pairs with 
each object of another infinite collection, and no objects in either 
group are left alone, the two infinities are equal. If, however, 
such arrangement is impossible and in one of the collections some 
unpaired objects are left, we say that the infinity of objects in 
this collection is larger, or we can say stronger, than the infinity 
of objects in the other collection.

This is evidently the most reasonable, and as a matter of fact 
the only possible, rule that one can use to compare infinite quan
tities, but we must be prepared for some surprises when we 
actually begin to apply it. Take for example, the infinity of all 
even and the infinity of all odd numbers. You feel, of course, 
intuitively that there are as many even numbers as there are odd, 
and this is in complete agreement with the above rule, since a 
one-to-one correspondence of these numbers can be arranged:

1 3 5 7 9 11 13 15 17 19 etc.

1 1 1 1  i i i : i i
2 4 6 8 10 12 14 16 18 20 etc.

There is an even number to correspond with each odd number 
in this table, and vice versa; hence the infinity of even numbers 
is equal to the infinity of odd numbers. Seems quite simple and 
natural indeed!

But wait a moment. Which do you think is larger: the number 
of all numbers, both even and odd, or the number of even num
bers only? Of course you would say the number of all numbers is 
larger because it contains in itself all even numbers and in addi
tion all odd ones. But that is just your impression, and in order 
to get the exact answer you must use the above rule for comparing
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two infinities. And if you use it you will find to your surprise that 
your impression was wrong. In fact here is the table of one-to-one 
correspondence of all numbers on one side, and even numbers 
only on the other:

1 2 3 4 5  6 7 8 etc.
T T T T T T T T
1 i 1 1 1 I i 1
2 4 6 8 10 12 14 16 etc.

According to our rule of comparing infinities we must say that 
the infinity of even numbers is exactly as large as the infinity of 
all numbers. This sounds, of course, paradoxical, since even num
bers represent only a part of all numbers, but we must remember 
that we operate here with infinite numbers, and must be pre
pared to encounter different properties.

In fact in the world of infinity a part may be equal to the 
whole! This is probably best illustrated by an example taken from 
one of the stories about the famous German mathematician David 
Hilbert. They say that in his lectures on infinity he put this 
paradoxical property of infinite numbers in the following words:8

“Let us imagine a hotel with a finite number of rooms, and 
assume that all the rooms are occupied. A new guest arrives and 
asks for a room. ‘Sorry—says the proprietor—but all the rooms 
are occupied.’ Now let us imagine a hotel with an infinite number 
of rooms, and all the rooms are occupied. To this hotel, too, comes 
a new guest and asks for a room.

“ ‘But of course!’—exclaims the proprietor, and he moves the 
person previously occupying room N1 into room N2, the person 
from room N2 into room N3, the person from room N3 into room 
N4, and so on. . . . And the new customer receives room Nl, 
which became free as the result of these transpositions.

“Let us imagine now a hotel with an infinite number of rooms, 
all taken up, and an infinite number of new guests who come in 
and ask for rooms.

“ ‘Certainly, gentlemen,’ says the proprietor, ‘just wait a minute.’
“He moves the occupant of Nl into N2, the occupant of N2 

into N4, the occupant of N3 into N6, and so on, and so on . . .
8 From the unpublished, and even never written, but widely circulating 

volume: “The Complete Collection of Hilbert Stories” by R. Courant.
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“Now all odd-numbered rooms become free and the infinity or 
new guests can easily be accommodated in them.”

Well, it is not easy to imagine the conditions described by 
Hilbert even in Washington as it was during the war, but this 
example certainly drives home the point that in operating with 
infinite numbers we encounter properties rather different from 
those to which we are accustomed in ordinary arithmetic.

Following Cantor’s rule for comparing two infinities, we can 
also prove now that the number of all ordinary arithmetical frac-

3 735tions like — or -g -  is the same as the number of all integers. In

fact we can arrange all ordinary fractions in a row according to 
the following rule: Write first the fractions for which the sum 
of the numerator and denominator is equal to 2; there is only one

such fraction namely: j .  Then write fractions with sums equal

2 1 3 2 1
to 3: -  and - .  Then those with sums equal to 4: And so

1 2  1 1 2  3
on. In following this procedure we shall get an infinite sequence
of fractions, containing every single fraction one can think of
(Figure 5). Now write above this sequence, the sequence of
integers and you have the one-to-one correspondence between
the infinity of fractions and the infinity of integers. Thus their
number is the same!

“Well, it is all very nice,” you may say, “but doesn’t it mean 
simply that all infinities are equal to one another? And if that’s 
the case, what’s the use of comparing them anyway?”

No, that is not the case, and one can easily find the infinity 
that is larger than the infinity of all integers or all arithmetical 
fractions.

In fact, if we examine the question asked earlier in this chapter 
about the number of points on a line as compared with the num
ber of all integer numbers, we find that these two infinities are 
different; there are many more points on a line than there are 
integers or fractional numbers. To prove this statement let us try 
to establish one-to-one correspondence between the points on a 
line, say 1 in. long, and the sequence of integer numbers.

Each point on the line is characterized by its distance from
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one end of the line, and this distance can be written in the form 
of an infinite decimal fraction, like 0.7350624780056 . . . .  or 
0.38250375632 . . . .a Thus we have to compare the number of all 
integers with the number of all possible infinite decimal fractions. 
What is the difference now between the infinite decimal fractions,

3 8as given above, and ordinary arithmetical fractions like -  or

You must remember from your arithmetic that every ordinary 
fraction can be converted into an infinite periodic decimal fraction.

Big Numbers 19

Thus -=0.66666 = 0 .(6 ), and -=0.428571 4 28571

28571:4 . . . = 0.(428571). We have proved above that the num
ber of all ordinary arithmetical fractions is the same as the number 
of all integers; so the number of all periodic decimal fractions 
must also be the same as the number of all integers. But the 
points on a line are not necessarily represented by periodic 
decimal fractions, and in most cases we shall get the infinite 
fractions in which the decimal figures appear without any 
periodicity at all. And it is easy to show that in such case no linear 
arrangement is possible.

Suppose that somebody claims to have made such an arrange
ment, and that it looks something like this:

N
1 0.38602563078.
2 0.57350762050
3 0.99356753207
4 0.25763200456
5 0.00005320562
6 0.99035638567
7 0.55522730567
8 0.05277365642

9 All these fractions are smaller than unity, since we have assumed the- 
length of the line to be one.



Of course, since it is impossible actually to write the infinity 
of numbers with the infinite number of decimals in each, the 
above claim means that the author of the table has some general 
rule ( similar to one used by us for arrangement of ordinary frac
tions ) according to which he has constructed the table, and this 
rule guarantees that every single decimal fraction one can think 
of will appear sooner or later in the table.

Well, it is not at all difficult to show that any claim of that kind 
is unsound, since we can always write an infinite decimal fraction 
that is not contained in this infinite table. How can we do it? Oh, 
very simply. Just write the fraction with the first decimal dif
ferent from that of Nl in the table, the second decimal different 
from that in N2 of the table and so on. The number you will get 
will look something like this:
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^  ^  ^  ^  ^  ^  ^  ^

0. 5 2 7 4 0 7 1 2

and this number is not included in the table no matter how far 
down you look for it. In fact if the author of the table will tell you 
that this very fraction you have written here stands under the 
No. 137 (or any other number) in his table you can answer imme
diately: “No, it isn’t the same fraction because the one hundred 
and thirty seventh decimal in your fraction is different from the 
one hundred and thirty seventh decimal in the fraction I have in 
mind.”

Thus it is impossible to establish a one-to-one correspondence 
between the points on a line and the integer numbers, which 
means that the infinity of points on a line is larger, or stronger, 
than the infinity of all integer or fractional numbers.

We have been discussing the points on a line “1 in. long,” but 
it is easy to show now that, according to the rules of our “infinity 
arithmetics,” the same is true of a line of any length. In fact, 
there is the same number of points in lines one inch, one foot, or 
one mile long. In order to prove it just look at Figure 6, which 
compares the number of points on two lines AB and AC of dif



ferent lengths. To establish the one-to-one correspondence be
tween the points of these two lines we draw through each point 
on AB a line parallel to BC, and pair the points of intersections as 
for example D and D1, E  and E 1, F  and F 1, etc. Each point on AB 
has a corresponding point on AC and vice versa; thus according 
to our rule the two infinities of points are equal.

A still more striking result of the analysis of infinity consists in 
the statement that: the number of all points on a plane is equal 
to the number of all points on a line. To prove this let us consider 
the points on a line AB one inch long, and the points within a 
square CDEF (Figure 7).
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Suppose that the position of a certain point on the line is given 
by some number, say 0.75120386 . . . .  We can make from this 
number two different numbers selecting even and odd decimal 
signs and putting them together. We get this:

0 .7108____
and this:

0.5236 ____
Measure the distances given by these numbers in the horizontal 

and vertical direction in our square, and call the point so obtained 
the “pair-point” to our original point on the line. In reverse, if we 
have a point in the square the position of which is described by, 
let us say, the numbers:

0.4835 ____
and

0.9907 ____



we obtain the position of the corresponding “pair-point” on the 
line by merging these two numbers:

0.49893057  

It is clear that this procedure establishes the one-to-one rela
tionship between two sets of points. Every point on the line will 
have its pair in the square, every point in the square will have its 
pair on the line, and no points will be left over. Thus according 
to the criterion of Cantor, the infinity of all the points within a 
square is equal to the infinity of all the points on a line.

In a similar way it is easy to prove also that the infinity of all 
points within a cube is the same as the infinity of points within 
a square or on a line. To do this we merely have to break the 
original decimal fraction into three parts,10 and use the three new 
fractions so obtained to define the position of the “pair-point” 
inside the cube. And, just as in the case of two lines of different 
lengths, the number of points within a square or a cube will be 
the same regardless of their size.

But the number of all geometrical points, though larger than 
the number of all integer and fractional numbers, is not the 
largest one known to mathematicians. In fact it was found that 
the variety of all possible curves, including those of most unusual 
shapes, has a larger membership than the collection of all geo
metrical points, and thus has to be described by the third number 
of the infinite sequence.

According to Georg Cantor, the creator of the “arithmetics of 
infinity,” infinite numbers are denoted by the Hebrew letter X 
(aleph) with a little number in the lower right comer that indi
cates the order of the infinity. The sequence of numbers (in
cluding the infinite ones!) now runs:

1. 2. 3. 4. 5...................Xi $2 ^ 3 .................
and we say “there are Hi points on a line” or “there are K2

10 For example from
0. 735106822548312 . . . .  etc.

we make
0. 71853 . . . .
0. 30241 . . . .
0. 56282 . . . .
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different curves,” just as we say that “there are 7 parts of the 
world” or “52 cards in a pack.”

In concluding our talk about infinite numbers we point out 
that these numbers very quickly outrun any thinkable collection 
to which they can possibly be applied. We know that X repre
sents the number of all integers, Ni represents the number of all
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The first three infinite numbers.

geometrical points, and K 2 the number of all curves, but nobody 
as yet has been able to conceive any definite infinite collection 
of objects that should be described by X3 ' It seems that the 
three first infinite numbers are enough to count anything we can 
think of, and we find ourselves here in a position exactly opposite 
to that of our old friend the Hottentot who had many sons but 
could not count beyond three!



C H A P T E R  I I

Natural and Artificial Numbers

1. THE PUREST MATHEMATICS

MATHEMATICS is usually considered, especially by mathe
maticians, the Queen of all Sciences and, being a queen, it 

naturally tries to avoid morganatic relations with other branches 
of knowledge. Thus, for example, when David Hilbert, at a “Joint 
Congress of Pure and Applied Mathematics,” was asked to deliver 
an opening speech that would help to break down the hostility 
that, it was felt, existed between the two groups of mathema
ticians, he began in the following way:

“We are often told that pure and applied mathematics are 
hostile to each other. This is not true. Pure and applied mathe
matics are not hostile to each other. Pure and applied mathe
matics have never been hostile to each other. Pure and applied 
mathematics will never be hostile to each other. Pure and applied 
mathematics cannot be hostile to each other because, in fact, 
there is absolutely nothing in common between them.”

But although mathematics likes to be pure and to stand quite 
apart from other sciences, other sciences, especially physics, like 
mathematics, and try to “fraternize” with it as much as possible. 
In fact, almost every branch of pure mathematics is now being 
put to work to explain one or another feature of the physical 
universe. This includes such disciplines as the theory of abstract 
groups, noncommutable algebra, and non-Euclidian geometry, 
which have always been considered most pure and incapable of 
any application whatever.

One large system of mathematics, however, has up to now 
managed to remain quite useless for any purpose except that of 
stimulating mental gymnastics, and thus can carry with honor 
the “crown of purity.” This is the so-called “theory of numbers” 
( meaning integer numbers), one of the oldest and most intricate 
products of pure mathematical thought.
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Strange as it may seem, the theory of numbers, being the 
purest kind of mathematics, can be called, from a certain aspect, 
an empirical or even an experimental science. In fact most of its 
propositions have been formulated as a result of trying to do 
different things with numbers, in the same way that the laws of 
physics have resulted from trying to do different things with 
material objects. And just as in physics, some of these proposi
tions have been proved “mathematically,” whereas others still 
remain of purely empirical origin, and that are still challenging 
the brains of the best mathematicians.

Take, for example, the problem of prime numbers, that is, the 
numbers that cannot be represented as the product of two or 
more smaller numbers. 1, 2, 3, 5, 7, 11, 13, 17, etc. are such prime 
numbers, whereas 12, for example, is not, since it can be written 
as 2 x 2 x 3.

Is the number of primes unlimited, or is there a largest prime 
beyond which each number can be represented as the product 
of the primes we already have? This problem was first attacked 
by Euclid himself, who gave a very simple and elegant proof 
that the number of primes extends beyond any limit so that there 
is no such thing as the “largest prime.”

In order to examine this question suppose for a moment that 
there is known only a finite number of primes, and that some 
large number designated by the letter N represents the highest 
prime number known. Now let us get the product of all known 
primes, and add 1 to it. We can write it in this form:

( I x 2 x 3 x 5 x 7 x l l x l 3 x  . . . x N ) + 1.

It is of course much larger than the alleged “largest prime num
ber” N. It is clear, however, that this number cannot be divided 
exactly by any of our primes (up to and including N) since 
from the way it is constructed we see that the division by any of 
these primes will leave the remainder 1.

Thus our number must be either a prime number itself, or 
must be divisible by a prime larger than N, both of which cases 
contradict our original assumption that N is the largest existing 
prime.

The proof is by reductio ad absurdum, or reduction to a con-
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tradiction, which is one of the mathematician’s favorite tools.
Once we know that the number of primes is infinite, we can 

ask ourselves whether there is any simple way of listing them 
in succession without missing a single one. A method of doing
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this was first proposed by the ancient Greek philosopher and 
mathematician Eratosthenes and is usually known as “the sieve.” 
All you have to do is to write the complete sequence of integers,
1, 2, 3, 4, etc., and then to strike out first all multiples of 2, then 
the remaining multiples of 3 ,  then those of 5, etc. The sieve of 
Eratosthenes for the first hundred numbers is shown in Figure 9.



It contains altogether twenty-six primes. By using the above 
simple sieving method tables of primes up to one billion have 
been constructed.

It would be much simpler, however, if a formula could be 
devised by which we could find quickly and automatically only 
the primes and all the primes. But in spite of the attempts that 
have been made for centuries such a formula is still nonexistent. 
In 1640 the famous French mathematician Fermat thought that 
he had devised a formula that would produce only the prime 
numbers.

In his formula, 22" + l, n indicates the successive values of 1, 2,
3, 4, etc.

Using this formula we find:

22 + 1 = 5 
222+ l  = 17
223 + 1 = 257
224 + 1 = 65537

Each of these is, in fact, a prime number. But about a century 
after Fermat’s announcement the German mathematician Euler 
showed that in Fermat’s fifth calculation, 225+ l ,  the result, 
4,294,967,297, is not a prime, but is, in fact, the product of
6,700,417 and 641. Thus Fermat’s empirical rule for calculating 
prime numbers proved to be wrong.

Another remarkable formula that produces many primes is:

n2 — n +  41,

in which n again equals 1, 2, 3, etc. It has been shown that in all 
cases in which n indicates a number from 1 to 40 application of 
the above formula produces nothing but primes, but unfortu
nately it fails badly on the forty-first step.

In fact,
(4 1 )2—41+41 = 412 = 4 1 x 4 1

which is a square, not a prime.
Still another attempted formula:

n2-79n + 1601  

gives primes with n up to 79, but fails at 80!
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Thus the problem of finding a general formula by the applica
tion of which only primes may be produced is still unsolved.

Another interesting example of a theorem of the theory of 
numbers that has been neither proved nor disproved is the so- 
called Goldbach conjecture, proposed in 1742, which states that 
each even number can he represented as the sum of two primes. 
You can easily find that it is true as applied to some simple 
examples, thus: 12 = 7 + 5, 24 = 17 +  7, and 32 = 29 + 3. But, in spite 
of the immense amount of work done in this line, mathematicians 
have never been able either to give a conclusive proof of the 
infallibility of this statement or to find an example that would 
disprove it. As recently as 1931, a Russian mathematician, 
Schnirelman, succeeded in taking the first constructive step toward 
the desired proof. He was able to show that each even number 
is the sum of not more than 300,000 primes. Still more recendy 
the gap between Schnirelman’s “sum of three hundred thousand 
primes” and the desired “sum of two primes” was considerably 
narrowed by another Russian mathematician, Vinogradoff, who 
was able to reduce it to “the sum of four primes.” But the last 
two steps from VinogradofFs four to Goldbach’s two primes seem 
to be the toughest of all, and nobody can tell whether another 
few years or another few centuries will be required to prove or 
disprove this difficult proposition.

Well, thus we seem still far away from deriving a formula that 
will give automatically all primes up to any desired large num
ber, and there is even no assurance that such a formula ever will 
be derived.

We may now ask a more humble question—a question about 
the percentage of primes that can be found within a given 
numerical interval. Does this percentage remain approximately 
constant as we go to larger and larger numbers? And if not, does 
it increase or decrease? We can try to answer this question 
empirically by counting the number of primes as given in the 
tables. We find this way that there are 26 primes smaller than
100, 168 primes smaller than 1000, 78,498 primes smaller than
1,000,000, and 50,847,478 primes smaller than 1,000,000,000. 
Dividing these numbers of primes by corresponding numerical 
intervals we obtain the following table:
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Interval
l-N

Number of 
primes Ratio

1
log.„ny

Deviation
%

1-100 26 0.260 0.217 20
1-1000 168 0.168 0.145 16
1-106 78498 0.078498 0.072382 8
1-109 50847478 0.050847478 0.048254942 5

This table shows first of all that the relative number of primes 
decreases gradually as the number of all integers increases, but 
that there is no point at which there are no primes.

Is there any simple way to represent mathematically this dim
inishing percentage of primes among large numbers? Yes there 
is, and the laws governing the average distribution of primes 
represents one of the most remarkable discoveries of the entire 
science of mathematics. It states simply that the percentage of 
primes unthin an interval from 1 to any larger number N, is 
approximately stated by the natural logarithm of N.1 And the 
larger N is, the closer the approximation is.

In the table on this page you will find in the fourth column the 
natural logarithms of N. If you compare them with the values 
of the previous columns you will see that the agreement is fairly 
close and that the larger N is, the closer the agreement is.

As were many other propositions in the theory of numbers, the 
prime-number theorem given above was first discovered empiri
cally and for a very long time was never confirmed by strict 
mathematical proof. It was not until nearly the end of the last 
century that the French mathematician Hadamard and the Bel
gian de la Vallee Poussin finally succeeded in proving it, by a 
method far too complicated and difficult to explain here.

This discussion of integers must not be dropped without men
tioning the famous Great Theorem of Fermat, which will serve 
as an example of the class of problems not necessarily connected 
with the properties of prime numbers. The roots of this problem 
go back to ancient Egypt, where every good carpenter knew 
that a triangle with three sides in the ratio of 3:4:5 must include 
one right angle. In fact the ancient Egyptians used such a tri-

1 In a simple way, a natural logarithm can be defined as the ordinary 
logarithm from the table, multiplied by the factor 2.3026.



angle, now known as an Egyptian triangle, as a carpenters 
square.2

During the third century Diophantes of Alexandria began to 
wonder whether 3 and 4 were the only two integers the sum of 
whose squares would equal the squares of a third. He was able 
to show that there are other triplets (in fact an infinite number 
of them) of numbers having the same property, and gave a gen
eral rule for finding them. Such right-angled triangles in which 
all three sides are measured by integers are known now as 
Pythagorean triangles, the Egyptian triangle being the first of 
them. The problem of constructing Pythagorean triangles can be 
stated simply as an algebraic equation in which x, y, and z must 
be integers:3

x2+ y2 = z2.
In the year 1621 Pierre Fermat in Paris bought a copy of the 

new French translation of Diophantes’ book Arithmetica, in 
which Pythagorean triangles were discussed. When he read it, 
he made in the margin a short note to the effect that whereas the 
equation x2 + y2 = z1 has an infinite number of integer solutions, 
any equation of the type

xn + yn=zn,
where n is larger than 2, has no solution whatsoever.

“I have discovered a truly wonderful proof of this,” added 
Fermat, “which, however, this margin is too narrow to hold.”

When Fermat died, the book of Diophantes was discovered in 
his library and the contents of the marginal note became known

2 The Pythagorean theorem of elementary school geometry states the 
proof thus:

32+ 42= 52,

8 Using the general rule of Diophantes (take any two numbers a and b 
such that 2ab is a perfect square. x=a+y/2ab; y — b+y/2ab; z=a + b+y/2ab. 
Then x2 + y2 = z2, which is easy to verify by ordinary algebra), we can con
struct the table of all possible solutions, the beginning of which runs:

32-|_ 42=  52 (Egyptian triangle)
52+122 =  132 
62+  82= 102 
72 +  242 =  252 
8Z+ 152= 172 
92+ 122= 152 
92+ 402=412

102+ 242= 262
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to the world. That was three centuries ago, and ever since then 
the best mathematicians in each country have tried to reconstruct 
the proof that Fermat had in mind when he wrote his marginal 
note. But up to the present time no proof has been discovered. 
To be sure, considerable progress has been made toward the 
ultimate goal, and an entirely new branch of mathematics, the 
so-called “theory of ideals,” has been created in attempts to 
prove Fermat’s theorem. Euler demonstrated the impossibility of 
integer solution of the equations: x3 + y3 = z3 and x* + y* = z4, 
Dirichlet proved the same for the equation: x5 + y5 = z5, and 
through the combined efforts of several mathematicians we now 
have proofs that no solution of the Fermat equation is possible 
when n has any value smaller than 269. Yet no general proof, 
good for any values of the exponent n, has ever been achieved, 
and there is a growing suspicion that Fermat himself either did 
not have any proof or made a mistake in it. The problem became 
especially popular when a prize of a hundred thousand German 
marks was offered for its solution, though of course all the efforts 
of money-seeking amateurs did not accomplish anything.

The possibility, of course, always remains that the theorem is 
wrong and that an example can be found in which the sum of two 
equal high powers of two integers is equal to the same power of a 
third integer. But since in looking for such an example one must 
now use only exponents larger than 269, the search is not an 
easy one.

2. THE MYSTERIOUS \ ^ 1

Let us now do a little advanced arithmetic. Two times two are 
four, three times three are nine, four times four are sixteen, and 
five times five are twenty-five. Therefore: the square root of four 
is two, the square root of nine is three, the square root of sixteen 
is four, and the square root of twenty-five is five.4

But what would be the square root of a negative number?
Have expressions like \/—5 and \ /— 1 any meaning?

4 It is also easy to find the square roots of many other numbers. Thus, 
for example, \/5=2.236 . . . .  because: (2.236 . . . . ) X  (2.236 . . . .)
=5.000 . . . .  and y/73=2.702  . . . .  because: (2.702 ____) X  (2.702 ------ )
=7.300 . . . .



If you try to figure it out in a rational way, you will undoubt
edly come to the conclusion that the above expressions make no 
sense at all. To quote the words of the twelfth century mathema
tician Brahmin Bhaskara: “The square of a positive number, as 
also that of a negative number, is positive. Hence the square root 
of a positive number is twofold, positive and negative. There is 
no square root of a negative number, for a negative number is 
not a square.”

But mathematicians are obstinate people, and when something 
that seems to make no sense keeps popping up in their formulas, 
they will do their best to put sense into it. And the square roots 
of negative numbers certainly do keep popping up in all kinds 
of places, whether in the simple arithmetical questions that occu
pied mathematicians of the past, or in the twentieth century 
problem of unification of space and time in the frame of the 
theory of relativity.

The brave man who first put on paper a formula that included 
the apparently meaningless square root of a negative number 
was the sixteenth century Italian mathematician Cardan. In dis
cussing the possibility of splitting the number 10 into two parts 
the product of which would be 40, he showed that, although this 
problem does not have any rational solution, one could get the 
answer in the form of two impossible mathematical expressions:
5 + \/—15 and 5 —\/—15.5

Cardan wrote the above lines with the reservation that the 
thing is meaningless, fictitious, and imaginary, but still he wrote 
them.

And if one dares to write square roots of negatives, imaginary 
as they may be, the problem of splitting the number 10 into the 
two desired parts can be solved. Once the ice was broken the 
square roots of negative numbers, or imaginary numbers as they 
were called after one of Cardan’s epithets, were used by various 
mathematicians more and more frequently, although always with 
great reservations and due excuses. In the book on algebra pub-

6 The proof follows:
(5  +  V —15) + ( 5 —V —lS) = 5 +  5 =  10 and
(5 + ) x (5 -  ) = (5 x 5) + 5 - 5  V ~ 5  -  ( X )

= ( 5 X 5 ) - ( - 1 5 )  =  25 +15 =  40.
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lished in 1770 by the famous German mathematician Leonard 
Euler we find a large number of applications of imaginary num
bers, mitigated however, by the comment: “All such expressions 
as V —T, V -  2, etc. are impossible or imaginary numbers, since 
they represent roots of negative quantities, and of such numbers 
we may truly assert that they are neither nothing, nor greater 
than nothing, nor less than nothing, which necessarily constitutes 
them imaginary or impossible.”

But in spite of all these abuses and excuses imaginary numbers 
soon became as unavoidable in mathematics as fractions, or radi
cals, and one could practically not get anywhere without using 
them.

The family of imaginary numbers represents, so to speak, a 
fictitious mirror image of the ordinary or .real numbers, and, 
exactly in the same way as one can produce all real numbers 
starting with the basic number 1, one can also build up all 
imaginary numbers from the basic imaginary unit y/'—l,  which is 
usually denoted by the symbol i.

It is easy to see that \/—9 — V ^ X \ / ^ l = 3i; y / —7 = \/7• \/—1 
=2.646 . . . i etc., so that each ordinary real number has its 
imaginary double. One can also combine real and imaginary 
numbers to make single expressions such as 5 + y /  — 15 = 5 + i  \/l5 
as it was first done by Cardan. Such hybrid forms are usually 
known as complex numbers.

For well over two centuries after imaginary numbers broke 
into the domain of mathematics they remained enveloped by a 
veil of mystery and incredibility until finally they were given a 
simple geometrical interpretation by two amateur mathemati
cians: a Norwegian surveyor by the name of Wessel and a 
Parisian bookkeeper, Robert Argand.

According to their interpretation a complex number, as for 
example 3+ 4i, may be represented as in Figure 10, in which 3 
corresponds to the horizontal distance, and 4 to the vertical, 
or ordinate.

Indeed all ordinary real numbers (positive or negative) may 
be represented as corresponding to the points on the horizontal 
axis, whereas all purely imaginary ones are represented by the
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points on the vertical axis. When we multiply a real number, 
say 3, representing a point on the horizontal axis, by the imagi
nary unit i we obtain the purely imaginary number 3i, which 
must be plotted on the vertical axis. Hence, the multiplication 
by i is geometrically equivalent to a  counterclockwise rotation 
by a right angle. (See Figure 10).
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If now we multiply 8i once more by I, we must turn the thing 
by another 90 degrees, so that the resulting point is again brought 
back to the horizontal axis, but is now located on the negative 
side. Hence,

3 i x i  = 3i2= — 3, or i2= —1.

Thus the statement that the “square of i is equal to —1” is a 
much more understandable statement than ‘turning twice by a 
right angle (both turns counterclockwise) you will face in the 
opposite direction.”

The same rule also applies, of course, to hybrid complex num
bers. Multiplying 3 +  4i by i we get:

(3 + 4 i)  t = 3 i+ 4i2 = 3i —4=  —4+3i.

And as you can see at once from Figure 10, the point —4+ 3i 
corresponds to the point 3+ 4i, which is turned counterclockwise 
by 90 degrees around the origin. Similarly the multiplication by



— i is nothing but the clockwise rotation around the origin, as 
can be seen from Figure 10.

If you still feel a veil of mystery surrounding imaginary num
bers you will probably be able to disperse it by working out a 
simple problem in which they have practical application.

There was a young and adventurous man who found among 
his great-grandfather’s papers a piece of parchment that revealed 
the location of a hidden treasure. The instructions read:

“Sail t o _______ North latitude and ________ West longitude8
where thou wilt find a deserted island. There lieth a large 
meadow, not pent, on the north shore of the island where stand- 
eth a lonely oak and a lonely pine.7 There thou wilt see also an 
old gallows on which we once were wont to hang traitors. Start 
thou from the gallows and walk to the oak counting thy steps. 
At the oak thou must turn right by a right angle and take the 
same number of steps. Put here a spike in the ground. Now must 
thou return to the gallows and walk to the pine counting thy 
steps. At the pine thou must turn left by a right angle and see 
that thou takest the same number of steps, and put another spike 
into the ground. Dig halfway between the spikes; the treasure 
is there.”

The instructions were quite clear and explicit, so our young 
man chartered a ship and sailed to the South Seas. He found the 
island, the field, the oak and the pine, but to his great sorrow the 
gallows was gone. Too long a time had passed since the docu
ment had been written; rain and sun and wind had disintegrated 
the wood and returned it to the soil, leaving no trace even of the 
place where it once had stood.

Our adventurous young man fell into despair, then in an angry 
frenzy began to dig at random all over the field. But all his efforts 
were in vain; the island was too big! So he sailed back with 
empty hands. And the treasure is probably still there.

A sad story, but what is sadder still is the fact that the fellow 
might have had the treasure, if only he had known a bit about

6 The actual figures of longitude and latitude were given in the document 
but are omitted in this text, in order not to give away the secret.

7 The names of the trees are also changed for the same reason as above. 
Obviously there would be other varieties of trees on a tropical treasure 
island.
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mathematics, and specifically the use of imaginary numbers. Let 
us see if we can find the treasure for him, even though it is too 
late to do him any good.
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Treasure hunt with imaginary numbers.

Consider the island as a plane of complex numbers; draw one 
axis (the real one) through the base of the two trees, and 
another axis (the imaginary one) at right angles to the first, 
through a point half way between the trees (Figure 11). Taking 
one half of the distance between the trees as our unit of length,



we can say that the oak is located at the point —1 on the real 
axis, and the pine at the point +1. We do not know where the 
gallows was so let us denote its hypothetical location by the 
Greek letter r  ( capital gamma), which even looks like a gallows. 
Since the gallows was not necessarily on one of the two axes 
r  must be considered as a complex number: T = a + bi, in which 
the meaning of a  and b  is explained by Figure 11.

Now let us do some simple calculations remembering the rules 
of imaginary multiplication as stated above. If the gallows is at r  
and the oak at —1, their separation in distance and direction 
may be denoted by ( —1) —r =  — ( l  +  r ) .  Similarly the separa
tion of the gallows and the pine is 1 —r. To turn these two 
distances by right angles clockwise (to the right) and counter
clockwise (to the left) we must, according to the above rules 
multiply them by — i and by i, thus finding the location at which 
we must place our two spikes as follows:

first spike: ( —*)[ — ( 1 +  r ) ]  +  l = i ( r +  1) —1 
second spike: ( +i)  (1  — r )  — l = i ( l  — r )  +1

Since the treasure is halfway between the spikes, we must now 
find one half the sum of the two above complex numbers. We get:

M i ( r + l ) + l + i ( l - r ) - l ] = l [ + i r + i + l  +  i - i r - l ]
— i  ( +  2i ) = +  i.

We now see that the unknown position of the gallows denoted 
by r  fell out of our calculations somewhere along the way, and 
that, regardless of where the gallows stood, the treasure must be 
located at the point +i.

And so, if our adventurous young man could have done this 
simple bit of mathematics, he would not have needed to dig up 
the entire island, but would have looked for the treasure at the 
point indicated by the cross in Figure 11, and there would have 
found the treasure.

If you still do not believe that it is absolutely unnecessary to 
know the position of the gallows in order to find the treasure, 
mark on a sheet of paper the positions of two trees, and try to 
carry out the instructions given in the message on the parchment 
by assuming several different positions for the gallows. You will
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always get the same point, corresponding to the number + i  on 
the complex plane!

Another hidden treasure that was found by using the imaginary 
square root of —1 was the astonishing discovery that our ordi
nary three-dimensional space and time can be united into one 
four-dimensional picture governed by the rules of four-dimen
sional geometry. But we shall come back to this discovery in one 
of the following chapters, in which we discuss the ideas of Albert 
Einstein and his theory of relativity.

38 Playing With Numbers





P A R T  I I  

Space, Time & Einstein



C H A P T E R  I I I

Unusual Properties of Space

1. DIMENSIONS AND CO-ORDINATES

WE ALL know what space is, although we should find our
selves in a rather awkward position if we were asked to 

define exactly what we mean by the word. We should probably 
say that space is that which surrounds us, and through which we 
can move forward or backward, right or left, up or down. The 
existence of the three independent mutually perpendicular direc
tions represents one of the most fundamental properties of the 
physical space in which we live; we say that our space is three- 
directional or three-dimensional. Any location in space can be 
indicated by referring to these three directions. If we are visiting 
an unfamiliar city and we ask at the hotel desk how to find the 
office of a certain well-known firm, the clerk may say: “Walk five 
blocks south, two blocks to the right, and go up to the seventh 
floor.” The three numbers just given are usually known as co
ordinates, and refer, in this case, to the relationship between the 
city streets, the building floors, and the point of origin in the hotel 
lobby. It is clear, however, that directions to the same location 
can be given from any other point, by using a co-ordinate system, 
which would correctly express the relationship between the new 
point of origin and the destination, and that the new co-ordinates 
can be expressed through the old ones by a simple mathematical 
procedure provided we know the relative position of the new 
co-ordinate system in respect to the old one. This process is 
known as the transformation o f co-ordinates. It may be added 
here that it is not at all necessary that all three co-ordiiiates be 
expressed by the numbers representing certain distances; and, in 
fact, it is more convenient in certain cases to use angular co
ordinates.

Thus, for example, whereas addresses in New York City are 
most naturally expressed by a rectangular co-ordinate system
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represented by streets and avenues, the address system of Mos
cow (Russia) would certainly gain by being transformed into 
polar co-ordinates. This old city grew around the central fortress 
of the Kremlin, with radially diverging streets and several con
centric circular boulevards, so that it would be natural to speak 
of a house located, say, twenty blocks north-north-west from the 
Kremlin wall.

Another classic example of a rectangular and a polar co-ordi
nate system is presented by the Navy Department building and 
by the War Department’s Pentagon building in Washington, 
D. C., familiar to anybody connected with war work during 
World War II.

In Figure 12 we give several examples showing how the posi
tion of a point in space can be described in different ways by 
three co-ordinates some of which are distances and some, angles. 
But whatever system we choose we shall always need three data 
since we are dealing with a three-dimensional space.

Although it is difficult for us, with our three-dimensional con
cept of space, to imagine superspaces in which there are more 
than three dimensions ( though, as we shall see later, such spaces 
exist), it is easy for us to conceive of a subspace, with fewer 
than three. A plane, a surface of a sphere, or as a matter of fact, 
any other surface is a two-dimensional subspace, since the posi
tion of a point on the surface can always be described by only 
two numbers. Similarly a line (straight or curved) is a one
dimensional subspace, and only one number is needed to describe 
a position on it. We can also say that a point is a subspace of zero 
dimensions, since there are no two different locations within a 
point. But who is interested in points anyway!



Being three-dimensional creatures we find it much easier to 
comprehend the geometrical properties of lines and surfaces, on 
which we can look “from the outside,” than similar properties 
of three-dimensional space, of which we are ourselves a part. 
This explains why although you have no difficulty in understand
ing what is meant by a curved line, or a curved surface, you may 
yet be taken aback by the statement that three-dimensional space 
also can be curved.

However, with a little practice, and an understanding of what 
the word “curvature” really means, you will find the notion of 
a curved three-dimensional space very simple indeed, and toward 
the end of the next chapter, will (we hope!) be able even to 
speak with ease about what, at first sight, may seem a horrible 
notion, that is, a curved four-dimensional space.

But before we discuss that, let us try a few mental gymnastics 
with some facts about ordinary three-dimensional space, two- 
dimensional surfaces, and one-dimensional lines.

2. GEOMETRY WITHOUT MEASURE

Although your memory of the geometry with which you be
came familiar in your school days, that is, the science of space 
measurements,1 may tell you that it consists mostly of a large 
number of theorems concerning the numerical relationships 
between various distances and angles (as, for example, the 
famous Pythagorean theorem concerning the three sides of a 
right-angled triangle), the fact is that a great many of the most 
fundamental properties of space do not require any measure
ments of lengths or angles whatsoever. The branch of geometry 
concerned with these matters is known as analysis situs or 
topology2 and is one of the most provocative and difficult of the 
departments of mathematics.

To give a simple example of a typical topological problem, let
1The name geometry comes from two Greek words ge=earth, or rather 

ground, and metrein=to measure. Apparently, at the time the word was 
formulated, the ancient Greeks’ interest in the subject was dominated by 
their real estate.

2 Which means, from the Latin and the Greek respectively, the study of 
locations-
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us consider a closed geometrical surface, say that of a sphere, 
divided by a network of lines into many separate regions. We 
can prepare such a figure by locating on the surface of a sphere 
an arbitrary number of points and connecting them with non
intersecting lines. What are the relationships that exist between 
the number of original points, the number of lines representing 
the boundaries between adjacent regions, and the number of 
regions themselves?

First of all, it is quite clear that if instead of the sphere we 
had taken a flattened spheroid like a pumpkin, or an elongated 
body like a cucumber, the number of points, lines, and regions 
would have been exactly the same on a perfect sphere. In fact, we
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A subdivided sphere transformed into a polyhedron.

can take any closed surface that can be obtained by deforming a 
rubber balloon, by stretching it, by squeezing it, by doing to it 
anything we like, except cutting or tearing it, and neither the 
formulation nor the answer to our question will change in the 
slightest way. This fact presents a striking contrast to the facts of 
ordinary numerical relationships in geometry (such as the rela
tionships that exist among linear dimensions, surface areas, and 
volumes of geometrical bodies). Indeed such relationships would 
be materially distorted if we stretched a cube into a parallel- 
opiped, or squeezed a sphere into a pancake.

One of the things we can do with our sphere divided into a 
number of separate regions is to flatten each region so that the 
sphere becomes a polyhedron; the lines bounding different re
gions now become the edges of the polyhedron, and the original 
set of points become its vertices.



Our previous problem can now be reformulated, without how- 
ever changing its sense, into a question concerning the relation* 
ships between the number of vertices, edges, and faces in a 
polyhedron of an arbitrary type.

In Figure 14 we show five regular polyhedrons, that is, those 
in which all faces have an equal number of sides and vertices, 
and one irregular one drawn simply from imagination.

In each of these geometrical bodies we can count the number 
of vertices, the number of edges, and the number of faces. What 
is the relation between these three numbers, if any?

By direct counting we can build the accompanying table.
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Name

V
number

of
vertices

E
number 
of edges

F
number 
of faces

V + F E + 2

Tetrahedron 4 6 4 8 8
(pyramid)

Hexahedron (cube) 8 12 6 14 14
Octahedron 6 12 8 14 14
Icosahedron 12 30 20 32 32
Dodecahedron or 20 30 12 32 32

Pentagon-
dodecahedron

“Monstrosity” 21 45 26 47 47

At first the figures given in the three columns (under V, E, and 
F ) do not seem to show any definite correlation, but after a little 
study you will find that the sum of the figures in the V and F 
columns always exceed the figure in the E column by two. Thus 
we can write the mathematical relationship:

V + F  ~ E  + 2.

Does this relationship hold for only the five particular poly
hedrons shown in Figure 14, or is it also true for any polyhedron? 
If you try to draw several other polyhedrons different from those 
shown in Figure 14, and count their vertices, edges, and faces, 
you will find that the above relationship exists in every case. 
Apparently then, V +  F = £  +  2 i s a  general mathematical theorem



of a topological nature since the relationship expression does not 
depend on measuring the lengths of the ribs, or the areas of the 
faces, but is concerned only with the number of the different 
geometrical units (that is, vertices, edges, faces) involved.

The relationship we have just found between the number of
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Five regular polyhedrons (the only possible ones) and one irregular
monstrosity.

vertices, edges, and faces in a polyhedron was first noticed by 
the famous French mathematician of the seventeenth century, 
Rene Descartes, and its strict proof was demonstrated somewhat 
later by another mathematical genius, Leonard Euler, whose 
name it now carries.

Here is the complete proof of Euler’s theorem, following the



text of R. Courant and H. Robbins’ book What Is Mathematics?,8 
just to show how things of that kind are done:

“To prove Euler’s formula, let us imagine the given simple 
polyhedron to be hollow, with a surface made of thin rubber 
[Figure 15a], Then if we cut out one of the faces of the hollow 
polyhedron, we can deform the remaining surface until it 
stretches [Figure 15&] out flat on a plane. Of course, the areas of 
the faces and the angles between the edges of the polyhedron 
will be changed in this process. But the network of vertices and 
edges in the plane will contain the same number of vertices and 
edges as did the original polyhedron, while the number of poly-
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Proof of Euler’s theorem. The drawing is made specifically for a cube, 
but the result would be the same if it were any other polyhedron.

gons will be one less than in the original polyhedron since one 
face was removed. We shall now show that for the plane net
work, V ~ E  + F = 1, so that, if the removed face is counted, the 
result is V —E + F  = 2 for the original polyhedron.

s The author is grateful to Drs. Courant and Robbins and to the Oxford 
University Press for permission to reproduce the passage that follows. 
Those readers who become interested in the problems of topology on the 
basis of the few examples given here will find a more detailed treatment of 
the subject in What Js Mathematics?



“First we ‘triangulate’ the plane network in the following way: 
In some polygon of the network which is not already a triangle 
we draw a diagonal. The effect of this is to increase both E and F 
by 1, thus preserving the value of V — E + F. We continue now 
drawing diagonals, joining pairs of points until the figure con
sists entirely of triangles, as it must eventually [Figure 15c]. In 
the triangulated network, V —E + F  has the same value as it had 
before the division into triangles, since the drawing of diagonals 
has not changed it.

“Some of the triangles have the edges on the boundary of the 
network. Of these, some, such as ABC, have only one edge on 
the boundary, while other triangles may have two edges on the 
boundary. We take any boundary triangle and remove that part of 
it which does not also belong to some other triangle [Figure 15d]. 
Thus from ABC we remove the edge AC and the face, leaving 
the vertices, A, B, C and the two edges AB and BC; while from 
DEF  we remove the face, the two edges DF and FE, and the 
vertex F.

“The removal of a triangle of the type ABC decreases E and F  
by 1, while V is unaffected, so that V —E + F remains the same. 
The removal of a triangle of type DEF decreases V by 1, £  by 2 
and F by 1, so that V —E + F again remains the same. By a prop
erly chosen sequence of these operations we can remove triangles 
with edges on the boundary (which changes with each removal), 
until finally only one triangle remains, with its three edges, three 
vertices, and one face. For this simple network, V —E +  F =3 
—3 + 1 = 1. But we have seen that by constantly erasing triangles 
V —E + F was not altered. Therefore in the original plane net
work V —E + F must equal 1 also, and thus equals one for the 
polyhedron with one face missing. We conclude that V—E + F  = 2 
for the complete polyhedron. This completes the proof of Euler’s 
formula.”

One interesting consequence of Euler’s formula is the proof 
that there can he only five regular polyhedrons, namely those 
shown in Figure 14.

In looking through the discussion of the last few pages care
fully, you may notice, however, that in making the drawings of 
the polyhedrons “of all different kinds” shown in Figure 14, as
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well as in the mathematical reasoning leading to the proof of 
Euler’s theorem, we made one hidden assumption that results in a 
considerable limitation of our choice. We have limited ourselves 
only to the polyhedrons that, so to speak, do not have any holes 
through them; and when we speak about holes, we do not mean 
something like a hole torn in a rubber balloon, but rather some
thing like the hole in a doughnut or the enclosed hollow of a 
rubber tire tube.

A glance at Figure 16 will clarify the situation. We see here 
two different geometrical bodies, each of which is no less a poly
hedron than any of the bodies shown in Figure 14.

Unusual Properties of Space 49

F ig u r e  16
The two rivals of the ordinary cube with one and two holes through 
them. The faces are not all exactly rectangular but, as we have seen, 

this does not matter in topology.

Let us see now whether Euler’s theorem is applicable to our 
new polyhedrons.

In the first case we count altogether 16 vertices, 32 edges, and 
16 faces; thus V + F = 32, whereas E +  2 = 34. In the second case 
we have 28 vertices, 46 edges, and 30 faces so that V +  F = 58, 
whereas £ + 2  = 48. Wrong again!

Why is it so, and what is the reason that our general proof of 
Euler’s theorem as given above fails in these cases?

The trouble is, of course, that whereas all the polyhedrons we 
have considered above can be related to a football bladder or 
balloon, the hollow polyhedrons of the new type are more like a



tire tube or still more complicated products of the rubber indus
try. To such polyhedrons as these latter the above given mathe
matical proof cannot be applied because with bodies of this kind 
we cannot carry out all the operations necessary to the proof. In 
fact, we have been asked: “to cut out one of the faces of the 
hollow polyhedron, and to deform the remaining surface until it 
stretches out flat on the plane.”

If you take a football bladder and cut out with the scissors a 
part of its surface you will have no trouble fulfilling that require
ment. But you cannot do this successfully with a tire tube, no 
matter how hard you try. If a glance at Figure 16 will not con
vince you of this, get an old tube and try!

You must not think, however, that there is no relationship 
between the V, E, and F for the polyhedrons of the more com
plicated type; there is, but it is a different relationship. For the 
doughnut-shaped, or, speaking more scientifically, torus-shaped, 
polyhedrons we have V + F  = E, whereas for the “pretzel” we 
have V + F  = E —2. In general V + F  — E + 2 —2N where N is the 
number of holes.

Another typical topological problem closely connected with
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Topological maps of Maryland, Virginia, and West Virginia (on the 
left) and Switzerland, France, Germany, and Italy (on the right).



Euler’s theorem is the so-called “problem of the four colors.” 
Suppose we have a surface of a sphere subdivided into a number 
of separate regions, and we are asked to color these regions in 
such a way that no two adjacent regions ( that is, those having a 
common boundary) will have the same color. What is the small
est number of different colors we must use for such a task? It is 
clear that two colors only will in general not suffice since, when 
three boundaries come together in one point (as, for example, 
those of Virginia, West Virginia, and Maryland on a map of the 
United States, Figure 17) we shall need different colors for all 
of the three states.

It is also not difficult to find an example ( Switzerland during 
the German annexation of Austria) where four colors are neces
sary (Figure 17).4

But try as you will, you never will be able to construct an 
imaginary map, be it on the globe or on a flat piece of paper, 5 

for which more than four colors would be necessary. It seems 
that no matter how complicated we make the map, four colors 
always suffice to avoid any confusion along the boundaries.

Well, if this last statement is true one should be able to prove 
it mathematically, but in spite of the efforts of generations of 
mathematicians this has not yet been done. Here is a typical case 
of a mathematical statement that practically nobody doubts, but 
that nobody has been able to prove. The best that has been 
accomplished mathematically has been to prove that five colors 
are always sufficient. That proof is based on the Euler relation
ship, which has been applied to the number of countries, the 
number of their boundaries, and the number of triple, quadruple, 
etc. points in which several countries meet.

We do not demonstrate this proof, since it is fairly complicated 
and would lead us away from the main subject of the discussion, 
but the reader can find it in various books on topology and spend 
a pleasant evening (and perhaps a sleepless night) in contem-

4 Before the annexation three colors would have sufficed: Switzerland, 
green; France and Austria, red; Germany and Italy, yellow.

5 The cases of the plane map and that on the globe are the same from 
the point of view of the coloring problem, since, having the problem solved 
on a plobe, we can always make a little hole in one or the colored regions 
and ‘ open up” the resulting surface on the plane. Again a typical topo
logical transformation.
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plating it. Either he can try to devise the proof that not only five, 
but even four colors are sufficient to color any map, or, if he is 
skeptical about the validity of this statement, he can draw a map 
for which four colors are not enough. In the event of success in 
either of the two attempts his name will be perpetuated in the 
annals of pure mathematics for centuries to come.

Ironically enough, the coloring problem, which so successfully 
eludes solution for a globe or a plane, can be solved in a com
paratively simple way for more complicated surfaces such as 
those of a doughnut or a pretzel. For example, it has been 
conclusively proved that seven different colors are enough 
to color any possible combination of subdivisions of a doughnut 
without ever coloring two adjacent sections the same, and exam
ples have been given in which the seven colors are actually 
necessary.

In order to get another headache the reader may get an inflated 
tire tube and a set of seven different paints, and try to paint the 
surface of the tube in such a way that each region of a given 
color touches six other regions of different colors. After doing it, 
he will be able to say that “he really knows his way around the 
doughnut.”

3. TURNING SPACE IN SID E OUT

So far we have been discussing the topological properties of 
various surfaces exclusively, that is, the subspaces of only two 
dimensions, but it is clear that similar questions can also be asked 
in relation to the three-dimensional space in which we ourselves 
live. Thus the three-dimensional generalization of the map-color
ing problem can be formulated somewhat as follows: We are 
asked to build a space mosaic using many variously shaped 
pieces of different materials, and want to do it in such a way 
that no two pieces made of the same material will be in contact 
along the common surface. How many different materials are 
necessary?

What is the three-dimensional analogy of the coloring problem 
on the surface of a sphere or torus? Can one think about some 
unusual three-dimensional spaces that stand in the same relation
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to our ordinary space, as the surfaces of the sphere or torus to 
the ordinary plane surface? At first the question looks senseless. 
In fact, whereas we can easily think of many surfaces of various 
shapes, we are inclined to believe that there can be only one type 
of three-dimensional space, namely the familiar physical space 
in which we live. But such an opinion represents a dangerous 
delusion. If we stimulate our imaginations a little, we can think 
of three-dimensional spaces that are rather different from that 
studied in the textbooks of Euclidian geometry.

The difficulty in imagining such odd spaces lies mainly in the 
fact that, being ourselves three-dimensional creatures, we have 
to look on the space so to speak “from inside,” and not “from 
outside” as we do with various odd-shaped surfaces. But with 
some mental gymnastics we will conquer these odd spaces with
out much trouble.

Let us first try to build a model of a three-dimensional space 
that would have properties similar to the surface of a sphere. 
The main property of a spherical surface is, of course, that, 
though it has no boundaries, it still has a finite area; it just turns 
around and closes on itself. Can we imagine a three-dimensional 
space that would close on itself in a similar way, and thus have 
a finite volume without having any sharp boundaries? Think 
about two spherical bodies each limited by spherical surfaces, as 
the body of an apple is limited by its skin.

Imagine now that these two spherical bodies are put “through 
one another” and joined along the outer surface. Of course we do 
not try to tell you that one can take two physical bodies, such as 
our two apples and squeeze them through each other so that 
their skins can be glued together. The apples would be squashed 
but would never penetrate each other.

One must rather think about an apple with an intricate system 
of channels eaten through it by worms. There must be two 
breeds of worm, say white and black ones, who do not like each 
other and never join their respective channels inside the apple 
although they may start them at adjacent points on the surface. 
An apple attacked by these two kinds of worm will finally look 
somewhat like Figure 18, with a double network of channels, 
tightly intertwined and filling up the entire interior of our apple.
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But, although white and black channels pass very close to each 
other, the only way to get from one half of the labyrinth to the 
other is to go first through the surfaces. If you imagine the chan
nels becoming thinner and thinner, and their number larger and 
larger, you will finally envisage the space inside the apple as 
being formed by the overlapping of two independent spaces 
connected only at their common surface.
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If you do not like worms, you can think of a double system of 
enclosed corridors and stairways that could have been built, for 
example, inside the giant sphere at the last World’s Fair in New 
York. Each system of stairways can be thought of as running 
through the entire volume of the sphere, but to get from some 
point of the first system to an adjacent point of the second system, 
one would have to go all the way to the surface of the sphere, 
where the two systems join, and then all the way back again. 
We say that two spheres overlap without interfering with each 
other, and a friend of yours could be very close to you in spite 
of the fact that in order to see him, and to shake his hand you



would have to go a long way around! It is important to notice 
that the joining points of the two stairway systems would not 
actually differ from any other point within the sphere, since it 
would always be possible to deform the whole structure so that 
the joining points would be pulled inward and the points that 
were previously inside would come to the surface. The second 
important point about our model is that in spite of the fact that 
the total combined length of channels is finite, there are no “dead 
ends.” You could move through the corridors and stairway on 
and on without being stopped by any wall or fence, and if you 
walked far enough you would inevitably find yourself at the point 
from which you started. Looking at the entire structure from 
outside one can say that a person moving through the labyrinth 
finally would come back to the point of his departure simply 
because the corridors gradually turned around, but for the people 
who were inside, and could not even know that such a thing as 
the “outside” existed, the space would appear as being of finite 
size and yet without any marked boundaries. As we shall see 
in one of the next chapters, this “self-inclosed space of three 
dimensions” that has no apparent boundaries and yet is not at all 
infinite was found very useful in the discussion of the properties 
of the universe at large. In fact, observations carried on at the 
very limit of telescopic power seem to indicate that at these giant 
distances space begins to curve, showing a pronounced tendency 
to come back and to close on itself in the same way as do the 
channels in our example of an apple eaten by the worms. But 
before we go on to these exciting problems, we have to learn a 
little more about other properties of space.

We are not yet quite through with the apple and the worms, 
and the next question we ask is whether it is possible to turn a 
worm-eaten apple into a doughnut. Oh no, we do not mean to 
make it taste like a doughnut, but just to make it look like one. 
We are discussing geometry, and not the art of cooking. Let us 
take a double apple such as that discussed in the previous sec
tion, that is, two fresh apples put “through one another” and 
“glued together” along their surfaces. Suppose a worm has eaten 
within one of the apples a broad circular channel as shown in 
Figure 19. Within one of the apples, mind you, so that whereas
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outside the channel each point is a double one belonging to both 
apples, inside the channel we have only the material of the apple 
not eaten by the worm. Now our “double apple” has a free sur
face composed of the inner walls of the channel (Figure 19a).
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How to turn a double apple eaten by a worm into a sjood doughnut. 
No rnagic; just topology!

Can you change the form of this spoiled apple so as to turn 
it into a doughnut? It is assumed, of course, that the material 
of the apple is quite plastic so that you can mold it any way 
you like, the only condition being that no rupture of the mate
rial must take place. To facilitate the operation, we may cut



the material of the apple, provided we glue it back again after 
the required deformation is completed.

We start the operation by unfastening the skins of two parts 
forming the “double apple” and taking them apart (Figure 19fo). 
We shall mark the two unglued surfaces by numerals I and I', in 
order to keep track of them in the following operations, so that 
we may glue them back in place again before we are finished. 
Now, cut the part containing the worm-eaten channel across so 
that the cut will go across the channel (Figure 19c). This oper
ation opens two newly cut surfaces which we mark by II, II ' and 
III, III', so that we shall know exactly where to fasten them 
together later. It also brings out the free surfaces of the channel, 
which is destined to form the free surface of the doughnut. Now, 
take the cut parts and stretch them in the way shown in Figure 
19d. The free surface is now stretched out to a large extent 
(but according to our assumption the materials used are per
fectly stretchable!). At the same time the cut surfaces I, II, and 
III have been reduced in their dimensions. While we are oper
ating on the first half of the “double apple,” we must also reduce 
the size of the second half squeezing it down to the dimensions of 
a cherry. Now, we are ready to start gluing back along the cuts 
we made. First, and that is easy, join the surfaces III, III' again, 
thus obtaining the shape shown in Figure 19e. Next, put the 
shrunken half apple between the two ends of the pincer thus 
formed, and bring the ends together. The surface of the ball 
marked I' will be glued up to the surfaces I from which it was 
originally unglued, and the cut surfaces II and II ' will close on 
each other. As a result we get a doughnut, nice and smooth.

What’s the point of all this?
None whatever, save to give you an exercise in imaginative 

geometry, a form of mental gymnastics that will help you under
stand such unusual things as curved space and space closed on 
itself.

If you want to stretch your imagination a bit farther, here is a 
“practical application” of the above procedure.

Your body also has the shape of a doughnut, though you prob
ably never thought about it. In fact, in the very early stage of 
its development (embryonic stage) every living organism passes
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the stage known as ‘ gastrula,” in which it possesses a spherical 
shape with a broad channel going across it. Through one end of 
the channel food is taken in, through the other what is left of it 
after the body has used what it can, goes out. In fully developed 
organisms the internal channel becomes much thinner and more 
complicated, but the principle remains the same: and all geo
metrical properties of a doughnut remain unchanged.
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Inside-out universe. This surrealistic drawing represents a man walk
ing on the surface of the Earth and looking up at the stars. The picture 
is transformed topologically according to the method indicated in 
Figure 19. Thus the Earth, sun, and stars are crowded in a compara
tively narrow channel running through the body of the man, and 

surrounded by his internal organs.

Well, since you are a doughnut, try to make a transformation 
the reverse of that shown in Figure 19—try to transform your 
body (mentally!) into a double apple with a channel within. In 
particular, you find that whereas different parts of your body, 
partially overlapping one another, will form the body of the



“double apple,” the entire universe, including the earth, moon, 
sun, and stars, wiil be squeezed into the inner circular channel!

Try to draw a picture of how it will look, and if you do it well 
Salvador Dali himself will recognize your superiority in the art 
of surrealistic painting! (Figure 2 0 ).

We cannot conclude this section, long as it is, without some 
discussion of right- and left-handed bodies and their relation to 
the general properties of space. The problem may be introduced 
in the most convenient way by referring to a pair of gloves. If 
you compare two gloves of a pair ( Figure 2 1 ) you will find them
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The right- and left-hand objects seem exactly alike but yet are quite
different.

identical in all measurements and yet there is a great difference 
since you cannot put the left glove on the right hand or vice 
versa. You can turn and twist them as much as you like, but still 
the right glove remains right, and the left glove remains left. 
The same difference between right- and left-handed objects can 
be noticed in the construction of shoes, the steering mechanism 
of automobiles (American and British varieties), golf clubs, and 
many other things.

On the other hand, such things as men’s hats, tennis rackets, 
and many other objects do not show such differences; nobody 
would be silly enough to order from a shop a dozen left-handed



teacups, and it is certainly monkey business if someone asks you 
to borrow a left-handed monkey wrench from a neighbor. What 
is the difference between these two kinds of objects? If you think 
about it a little you will notice that objects like hats or teacups 
possess what we call a plane of symmetry along which they can 
be cut into two identical halves. No such plane of symmetry 
exists for gloves or shoes, and try as you will you will not be able 
to cut a glove into two identical parts. If the object does not 
possess a plane of symmetry, and is as we say, asymmetrical, it 
will be bound in two different modifications—a right- and a left- 
handed one. This difference occurs not only in man-made objects
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F i g u r e  22
An idea of two-dimensional “shadow-creatures” living on a plane. 
This kind of two-dimensional creature is not very “practical.” The 
man has his face and not his profile, and cannot put into his mouth 
the grapes he holds in his hand. The donkey can eat the grapes all 
right but can walk only to the right and has to back in order to move 

to the left. It isn’t unusual for donkeys, but not good in general.

like gloves or golf clubs, but also very often in nature. For exam
ple, there are two varieties of snails, which are identical in all 
other respects, but differ in the way they build their house: one 
variety has the shell spiraling clockwise, whereas the other spirals 
in a counterclockwise way. Even the so-called molecules, the tiny 
particles from which all different substances are built, often pos
sess right- and left-handed forms, very similar to those of right 
and left gloves, or clockwise and counterclockwise snail shells.



You cannot see the molecules, of course, but the asymmetry 
shows up on the form of the crystals, and some optical properties 
of these substances. There are, for example, two different kinds 
of sugar, a right- and a left-handed sugar, and, believe it or not, 
there are also two kinds of sugar-eating bacteria, each kind con
suming only the corresponding kind of sugar.

As was said above, it seems quite impossible to turn a right- 
handed object, a glove for example, into a left-handed one. But 
is that really true? Or can one imagine some tricky kind of space 
in which this can be done? To answer this question, let us 
examine it from the point of view of the flat inhabitants of a 
surface that can be observed by us from our superior three dimen
sional outlook. Look at Figure 22, representing some examples of 
the possible inhabitants of flatland, that is, of the space of two 
dimensions only. The man standing with a bunch of grapes in 
his hand can be called a “face-man” since he has a “face” but 
no “profile.” The animal is, however, a “profile-donkey” or to be 
more specific a “right-looking-profile-donkey.” Of course we can 
also draw a “left-looking-profile-donkey” and, since both donkeys 
are confined to the surface, they are just as different, from the 
two-dimensional point of view, as a right and a left glove in our 
ordinary space. You cannot superimpose a “left donkey” on a 
“right donkey,” since in order to bring their noses and tails to
gether you would have to turn one of them upside down, and 
thus his legs would be hitting the air instead of standing firmly 
on the ground.

But if you take one donkey out of the surface, turn it around 
in space, and put it back again, the two donkeys will become 
identical. By way of analogy one could say that a right glove 
can be turned into a left glove by taking it out of our space in 
the fourth direction and rotating it in a proper way before put
ting it back. But our physical space hasn’t a fourth dimension, 
and the above described method must be considered as quite 
impossible. Isn’t there any other way?

Well, let us return again to our two-dimensional world, but, 
instead of considering an ordinary plane surface as in Figure 22, 
investigate the properties of the so-called “surface of Mobius.” 
This surface, named for a German mathematician who studied it
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first almost a century ago, can be easily made by taking a long 
strip of ordinary paper and gluing it into a ring, twisting it once 
before the two ends are joined together. Examination of Figure 
23 will show you how to do it. This surface has many peculiar 
properties, one of which can be easily discovered by cutting, 
with a pair of scissors, completely around it in a line parallel to 
the edges (along the arrows in Figure 23). You would expect, 
of course, that by doing so, you would cut the ring into two sepa
rate rings. Do it, and you will see that your guess was wrong: 
instead of two rings you will find only one ring, but one twice 
as long as the original and half as wide!

62 Space, Time ir Einstein

F ig u r e  2 3  

Surface of Mobius and Klein’s bottle.

Let us see now what happens to a shadow donkey when he 
walks around on the Mobius surface. Suppose he starts with the 
position 1  (Figure 23) being seen at this moment as a “left- 
profile donkey.” On and on he goes, passing through the positions 
2 and 3, clearly visible in the picture, and finally approaches the 
spot from which he started. But to your, and his, surprise, our 
donkey finds itself (position 4) in an awkward position, his legs 
sticking up into the air. He can, of course, turn in his surface, so 
that his legs will come down, but then he will be facing the wrong 
way.

In short, by walking around the surface of Mobius, our “left- 
profile” donkey has turned into one with a “right profile.” And,



mind you, this has happened in spite of the fact that the donkey 
has remained on the surface all the time and hasn’t been taken 
up and turned around in space. Thus we find that on a  twisted 
surface a right-hand object can be turned into a left-hand one, 
and vice versa, by merely carrying it around the twist. The 
Mobius strip shown in Figure 23 represents a part of a more 
general surface, known as the Klein bottle (shown on the right 
in Figure 23), which has only one side and closes itself, having 
no sharp boundaries. If this is possible on a two-dimensional 
surface, the same must be true also in our three-dimensional 
space provided of course that it is twisted in a proper way. 
Naturally it is not easy to imagine a Mobius twist in space. We 
cannot look at our space from outside, as we looked at the 
donkey’s surface, and it is always difficult to see things clearly 
when you are right in the midst of them. But it isn’t at all impos
sible that astronomical space is closed on itself and in addition 
twisted in the Mobius way.

If this is really so travelers around the universe would come 
back left-handed with their hearts in the right part of their chests, 
and the manufacturers of gloves and shoes would have the 
dubious advantage of being able to simplify the production by 
making only one kind of shoes and gloves, and shipping one half 
of them around the universe to turn them into the kind needed for 
the other half of the world’s feet.

On this fantastic thought, we finish our discussion of the un
usual properties of unusual spaces.
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C H A P T E R  IV

The World of Four Dimensions

1. TIME IS A FOURTH DIMENSION

THE concept of the fourth dimension is usually surrounded by 
mystery and suspicion. How dare we, creatures of length, 

height, and width, speak of four-dimensional space? Is it possible 
by using all our three-dimensional intelligence to imagine a super-

F i g u r e  2 4

A wrong and a correct way to “squeeze” a three-dimensional body 
into a two-dimensional surface.

space of four dimensions? And what would a four-dimensional 
cube or sphere look like? When we say “imagine” a giant dragon 
with a long scaled tail and flame streaming from his nostrils, or 
a super-airliner with a swimming pool and a couple of tennis 
courts on its wings, you are actually drawing a mental picture of 
the way it would look were it to appear suddenly in front of you.
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And you draw that picture against the background of the familiar 
three-dimensional space in which all ordinary objects, including 
yourself, are located. If this is the meaning of the word “imagine,” 
then it is just as impossible to imagine a four-dimensional figure 
against the background of ordinary three-dimensional space, as
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Two-dimensional creatures looking with surprise at the shadow of a 

three-dimensional cube projected onto their surface.

it is impossible to squeeze a three-dimensional body into a plane. 
But wait a moment. We do, in a certain sense, squeeze three- 
dimensional bodies into a plane by drawing a picture of them. In 
all these cases, however, we do not of course use a hydraulic 
press or any other physical force to do the job, but apply the 
method known as geometrical “projection” or shadow building.



The difference between tjie two ways of squeezing a body ( for in
stance, that of a horse) into a plane can be at once understood 
by looking at Figure 24.

By way of analogy we can now say that although it is not 
possible to “squeeze” a four-dimensional body into a three- 
dimensional space without some parts sticking out, one can speak 
of the “projections” of various four-dimensional figures in our 
space of only three dimensions. But one must remember that just 
as the plane projections of three-dimensional bodies are two- 
dimensional or plane figures, so the projections of four-dimen
sional superbodies in our ordinary space will be represented by 
space-figures.

To make the matter clearer, let us first think how the two- 
dimensional shadow creatures living on a surface would conceive 
the idea of a three-dimensional cube; we can easily imagine that, 
since, being superior three-dimensional beings, we can look from 
above, that is, from the third direction, on the world of two 
dimensions. The only way to “squeeze” a cube into a plane is to 
“project” it on that plane in the way shown in Figure 25. Watch
ing such a projection, and various other projections that can be 
obtained by rotation of the original cube, our two-dimensional 
friends will be able at least to form some idea about the proper
ties of the mysterious figure called “a three-dimensional cube.” 
They will not be able to “jump out” of their surface and visualize 
the cube the way we do, but by merely watching the projection 
they would be able to say, for example, that the cube has eight 
vertices and twelve edges. Now look at Figure 26, and you will 
find yourself exactly in the same situation as the poor two-dimen
sional shadow creatures inspecting the projection of an ordinary 
cube on their surface. In fact the strangely complicated structure 
that is being examined with such surprise by the members of the 
family, is actually the projection of a four-dimensional supercube 
in our ordinary three-dimensional space. 1

Examine this figure carefully and you will easily recognize the 
same features as those puzzling the shadow creatures in Figure 
25: whereas the projection of an ordinary cube on a plane is

1 To be more exact, Figure 26 gives the projection on the plane of the 
paper of the projection in our space of a four-dimensional supercube.
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represented by two squares, one inside the other, connected 
vertex to vertex, the projection of a supercube in ordinary space 
is formed by two cubes, one placed inside the other with their 
vertices connected in a similar way. And by counting you can 
easily see that a supercube has altogether 16 vertices, 32 edges 
and 24 faces. Quite a cube, is it not?

Now let us see what a four-dimensional sphere looks like. To 
do that we had better turn again to a more familiar case, that of 
a projection of an ordinary sphere on a plane surface. Think for 
example of a transparent globe, with the continents and oceans 
marked on it, beiig projected on a white wall (Figure 27). In
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A visitor from the Fourth Dimension! A straight projection of a four
dimensional supercube.

the projection the two hemispheres will of course overlap each 
other, and, judging from the projection, one might think that the 
distance from New York (U. S. A.) to Peiping (China) is very 
short. But that is only an impression. In fact every point on the 
projection represents actually two opposite points on the actual 
sphere, and a projection of ar airliner flying from New York to 
China on the globe, will move all the way to the rim of the plane 
projection, and then all the way back again. And in spite of the 
fact that the projections of two different airliners may overlap 
on the picture, no collision will take place if the airliners are 
“actually” on the opposite sides of the globe.

Such are the properties of the plane projection of an ordinary



sphere. Straining our imagination a little we shall have no diffi
culty in seeing how the space projection of a four-dimensional 
supersphere looks. Just as the plane projection of an ordinary 
sphere is formed by two flat discs put together (point to point) 
and joined only along the outer circumference, the space-projec- 
tion of a supersphere must be imagined as two spherical bodies 
put through each other and joined along their outer surfaces. 
But we have already discussed an extraordinary structure such 
as this in the previous chapter, as an example of a closed three- 
dimensional space analogous to a closed spherical surface. Thus 
all we have to add here is that the three-dimensional projection
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Plane projection of the globe.

of a four-dimensional sphere is nothing more than the Siamese- 
twin-like apples we discussed there, formed by two ordinary 
apples grown together along their entire skin surfaces.

In a similar way, by using the method of analogy, we can 
answer many other questions concerning the properties of four
dimensional figures, although try as we may, we will never be 
able to “imagine” a fourth independent direction in our physical 
space.

But if you think a little more about it, you will find that it is 
not at all necessary to become mystical in order to conceive a 
fourth direction. Indeed there is a word that most of us use 
every day to designate that which could, and actually should, be



considered as a fourth independent direction in the physical 
world. We are talking here of time, which, together with space, 
is constantly used to describe events taking place around us. 
When we talk about any kind of happening in the universe, 
whether it is a casual encounter with a friend on the street or 
the explosion of a distant star, we usually not only say where it 
took place, but also when. Thus we add one more fact, the date, 
to the three directional facts that enter into our location of place.

If you consider the matter further you will also easily realize 
that each physical object has four dimensions, three in space and 
one in time. Thus the house in which you live extends so much 
in length, width, height, and time, the last extension being 
measured by the period of time from the date the house was 
built to the date it will finally burn down, or be taken apart by 
some wrecking company, or disintegrate at the end of an ad
vanced old age.

To be sure, the direction of time is not quite the same as the 
three directions in space. Time intervals are measured by the 
clock, which makes ticktock sounds to denote seconds and ding 
dong sounds to denote hours, in contrast to space intervals, which 
are measured by yardsticks. And whereas you can use the same 
yardstick to measure length, width, and height, you cannot turn 
a yardstick into a clock to measure duration of time. Also, 
whereas you can move forward, or to the right, or upward in 
space, and then come back again, you cannot come back in time, 
which drives you forcibly from the past into the future. But 
granting all these differences between the time-direction and the 
three directions in space, we can still use time as the fourth direc
tion in the world of physical events, being careful however not 
to forget that it is not quite the same.

In choosing time as the fourth dimension we shall find it much 
simpler to visualize the four-dimensional figures discussed in the 
beginning of this chapter. Remember, for example, the strange 
figure cut by the projection of a four-dimensional cube? Sixteen 
vertices, thirty-two ribs, and twenty-four sides! No wonder that 
the people in Figure 26 are staring with such surprise at this 
geometrical monster.

From our new point of view, however, a four-dimensional cube

The World of Four Dimensions 69



is an ordinary cube that exists for a certain period of time. Sup
pose that you built a cube from twelve pieces of straight wire 
on the first of May, and took it apart one month later. Each 
corner point of such a cube must now be considered as being 
actually a line extending in the direction of time for the length 
of one month. You can attach a little calendar to each vertex and 
turn over the leaves each day to show the progress in time.

Now it is eary to count the number of ribs in our four-dimen
sional figure. You have, in fact, twelve space-ribs at the begin
ning of its existence, eight “time-ribs” representing the duration
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of each vertex, and again twelve space ribs at the end of the 
existence. 2 Altogether thirty-two ribs. In a similar way, we count 
that there are altogether sixteen vertices: eight space vertices on 
May 7 and again the same eight space-vertices on June 7. We 
leave it as an exercise for the reader to count the number of faces 
on our four-dimensional figure in the same way. In doing so it 
must be remembered that some of these faces will be ordinary 
square faces of the original cube, whereas the others will be

2 If you do not understand this think of a square with four comer points, 
and four sides, which we move a certain distance perpendicularly to its 
surface (in the third direction) by a distance equal to its sides.



“half-space-half-time” faces formed by the original ribs of our 
cube extending in time from May 7 to June 7.

What we have said here about a four-dimensional cube can, 
of course, be applied to any other geometrical figure, or to any 
material object dead or alive.

In particular, think of yourself as a four-dimensional figure, 
a kind of long rubber bar extending in time from the moment of 
your birth to the end of your natural life. Unfortunately one 
cannot draw four-dimensional things on paper, so that in Figure 
29 we have tried to convey this idea by an example of the two- 
dimensional shadow man taking for the time-direction the space- 
direction perpendicular to the two-dimensional plane on which 
he lives. The picture represents just a small section of the entire 
life span of our shadow man. The entire life span should be
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represented by a much longer rubber bar, which is rather thin 
in the beginning, when the man is still a baby, runs wiggling 
through the period of many years of life, attains a constant shape 
at the moment of death (because the dead do not move), and 
then begins to disintegrate.

To be more exact we must say that this four-dimensional bar 
is formed by a very numerous group of separate fibers, each one 
composed of separate atoms. Through the period of life most of,



these fibers stay together as a group; only a few of them fall 
away, as when the hair or the nails are cut. Since the atoms are 
indestructible, the distintegration of the human body after death 
should be actually considered as the dispersion of the separate 
filaments (except probably those forming the bones) in all dif
ferent directions.

In the language of four-dimensional space-time geometry the 
line representing the history of each individual material particle
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is known as its “world-line.” Similarly we can speak of the “world- 
bands” composed of a group of world-lines forming a composite 
body.

In Figure 30 we give an astronomical example showing the 
world-lines of the sun, the earth, and a comet.3 Here as in the 
previous example of a jumping man, we took two-dimensional 
space (the plane of the earth’s orbit) and directed the time-axis 
perpendicular to it. The world-line of the sun is represented in

8 Properly speaking we should speak here of “world-bands,” but from 
the astronomical point of view one may consider stars and planets as points.



this graph by a straight line parallel to the time-axis, since we 
consider the sun as not moving.4 The world-line of the earth, 
which moves on a very closely circular orbit, is a spiral winding 
around the sun-line, whereas the world-line of a comet ap
proaches the sun-line and then goes far away again.

We see that from the point of view of four-dimensional space
time geometry the topography and the history of the universe 
fuse into one harmonious picture, and all we have to consider is 
a tangled bunch of world lines representing the motion of indi
vidual atoms, animals, or stars.

2. TIME-SPACE EQUIVALENT

In considering time as the fourth dimension more or less equiv
alent to the three spatial dimensions we run into one rather diffi
cult question. When we measure length, width, or height we can 
use in all three cases one and the same unit, say 1 in. or 1 ft. But 
time-duration cannot be measured either in feet or in inches, and 
we have to use entirely different units, say minutes or hours. 
How do they compare? If we envisage a four-dimensional cube 
that measures in space 1  ft by 1  ft by 1  ft, how long must it 
extend in time to make all of our four dimensions equal? One 
sec, 1  hr, or 1  month as we have assumed in our previous exam
ple? Is 1 hr longer than 1 ft or is it shorter?

At first the question sounds meaningless, but if you think about 
it a little more you find a reasonable way in which a length and 
a duration may be compared. You often hear it said that some
one lives “within twenty minutes of downtown by bus” or that 
some place is “only five hours away by train.” Here we specify 
distances by giving the time necessary to cover them using a 
given type of transportation.

Thus, if we could agree on some standard velocity we should 
be able to express time intervals in units of length, or vice versa. 
It is clear., of course, that the standard velocity to be chosen as 
the fundamental translation factor between space and time must

4 Actually our sun is moving in respect to the stars so that in reference to 
the stellar system the world-line of the sun should be somewhat inclined 
to one side.
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be of equally fundamental and general nature, being always the 
same regardless of human initiative or physical circumstances. 
The only velocity known in physics to possess the desired 
degree of generality is the velocity of light spreading through



empty space. Though usually known as the “velocity of light” it 
can be better described as the “propagation velocity of physical 
interactions,” since any kind of forces that act between material 
bodies, whether the forces of electric attraction or the forces of 
gravity, spread through empty space with the same speed. Be
sides, as we shall see later, the velocity of light represents the 
upper limit of any possible material velocity, and no object can 
travel through the space with a velocity greater than that.

The first attempt to measure the velocity of light was made by 
the famous Italian scientist Galileo Galilei in the seventeenth cen
tury. On a dark night Galileo went with his assistant into the 
open fields near Florence, taking along two lanterns each 
equipped with a mechanical shutter. The two men took positions 
a few miles apart from each other, and at a certain moment 
Galileo opened his lantern flashing a beam of light in the direc
tion of his assistant (Figure 31A). The latter had been instructed 
to open his lantern as soon as he saw the light signal coming 
from Galileo. Since the light must have taken some time to come 
from Galileo to the assistant, and back to Galileo, it was expected 
that there would be a certain delay between the moment Galileo 
opened his lantern and the moment he saw the response coming 
back from his assistant. A small delay was actually noticed, but 
when Galileo sent his assistant to a position twice as far away, 
and repeated the experiment no increase of the delay was ob
served. Apparently the light traveled so rapidly that it took 
practically no time to cover the distance of a few miles, and the 
observed delay was caused by the fact that Galileo’s assistant 
could not open his lantern at exactly the same moment as he saw 
the light—the delay of reflexes we call it now.

Although Galileo’s experiment did not lead to any positive 
result, one of his other discoveries, namely that of the moons of 
Jupiter, supplied the basis for the first actual measurement of the 
speed of light. In the year 1675 the Danish astronomer Roemer, 
observing the eclipses of Jupiter’s moons, noticed that the time 
intervals between the moments when the moons disappear in the 
shadow thrown by the planet are not always the same but appear 
shorter or longer depending on the distance between Jupiter and 
the earth at that particular time. Roemer realized immediately

The World of Four Dimensions 75



(as you will after inspecting Figure 31B) that this effect is not 
produced by any irregularity in the motion of Jupiter’s moons, 
but is simply due to the fact that we see these eclipses with 
different delays because of the variable distance between Jupiter 
and the earth. From his observations we were able to find that 
the speed of light is about one hundred and eighty-five thousand 
miles per second. No wonder that Galileo could not measure the 
speed of light by his device since the light from his lantern 
needed only a few hundred thousandths of a second to travel to 
his assistant and back!

But what Galileo could not do with his rudimentary shutter 
lanterns was done later by using more refined physical instru
ments. In Figure 31C we see the arrangement first used by the 
French physicist Fizeau for measuring the speed of light at com
paratively small distances. The main part of his arrangement 
consists of two cogwheels set on a common axis in such a way 
that if you look at the wheels parallel to the axis you can see the 
cogs of the first wheel covering the intervals between the cogs 
of the second one. Thus a thin beam of light sent parallel to the 
axis cannot pass through, no matter how the axis is turned. Sup
pose now that the system of these two cogwheels is set into a 
rapid rotation. Since the light passing between two cogs of the first 
wheel must take some time before it reaches the second wheel, 
it will be able to pass through if during that time the cogwheel 
system turned by half the distance between two cogs. The situa
tion here is rather similar to that of a car moving at a proper 
speed along an avenue with a synchronized system of stop-lights. 
If the wheels are rotating twice as fast, the second cog will come 
into place by the time the light gets there, and its progress will 
be again stopped. But at a still higher rotation speed the light 
will be able to go through again since the cog will have passed 
the path of the light, and the following opening will be within 
the path of light just at the proper time to let it through. Thus, 
noticing the rotation speeds corresponding to successive appear
ances and disappearances of light one is able to estimate the 
speed of light while traveling between the two wheels. To help 
the experiment, and to reduce the necessary speed of rotation, 
one can force the light to cover a larger distance while going
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from the first cogwheel to the second; this can be done with the 
help of mirrors as indicated in Fig. 31C. In this experiment 
Fizeau found that he was first able to see light through the open
ings in the wheel nearest him when the apparatus was rotating 
at 1000 revolutions per second. This proved that at that speed 
cogs had traveled half the distance between them in the length 
of time necessary for light to travel the distance from one wheel 
to the other. Since each wheel had 50 cogs all of identical size, 
this distance was obviously 1 / 1 0 0  the circumference of the wheel, 
and the time of travel the same fraction of the time that it took 
the wheel to make a complete revolution. Relating these calcu
lations to the distance through which the light passed from one 
wheel to the other, Fizeau arrived at a speed of 300,000 km, or 
186,000 miles a second, which is about the same as the result ob
tained by Roemer in his observation of the satellites of Jupiter.

Following the work of these pioneers, a great number of inde
pendent measurements have been made using the methods of 
both astronomy and physics. The best estimate available at pres
ent of the speed of light through space (usually denoted by the 
letter “c”) is

e = 299,776 —  or 1S6.300 - 2 ^ .
sec sec

This tremendously high velocity of light makes it a convenient 
standard by which to measure astronomical distances so vast that 
to express them in miles or kilometers would be to deal with 
numerical notations that would fill whole pages. Thus, the 
astronomer will say that a certain star is 5 “light-years” away in 
the same sense that we speak of a place that is 5 hours away 
by train. Since a year contains 31,558,000 sec, one light-year 
corresponds to 31,558,000 x 299,776 =  9,460,000,000,000 km, or 
5,879,000,000,000 miles. In this use of the term “light-years” to 
denote a measurement of distance we have a practical recogni
tion of time as a dimension, and time units as a measurement of 
space. We can also reverse the procedure and speak of “light- 
miles,” meaning the time necessary for light to cover the distance 
of one mile. Using the above value of light velocity, we find that 
one light-mile is equal to 0.0000054 sec. Similarly one “light-foot” 
is 0.0000000011 sec. This answers our question about the four
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dimensional cube discussed in the previous section. If the space- 
dimensions of this cube are 1  ft by 1  ft by 1  ft, its space-duration 
must be only about 0.000000001 sec. If the space-cubic-foot 
exists for an entire month, it must be rather considered as the 
four-dimensional bar strongly elongated in the direction of the 
time-axis.

3. FOUR-DIMENSIONAL DISTANCE

Having settled the question concerning comparable units to be 
used along the space- and the time-axis, we can now ask ourselves 
what should be understood by the distance between two points 
in the four-dimensional space-time world. It must be remem
bered that each point in this case corresponds to what is usually 
known as “an event,” that is the combination of the position and 
the time-date. To clarify the matter let us consider for example 
the following two events:

Event I. A bank located on the first floor at the corner of 
Fifth Avenue and 50th Street in New York City was robbed at 
9:21 a .m . July 28, 1945.5

Event II. An army plane lost in the fog crashed into the 79th 
floor wall of the Empire State Building at 34th Street between 
Fifth and Sixth Avenues, New York City, at 9:36 a .m . the same 
day (Figure 32).

These two events were separated in space by 16 north-and- 
south blocks, 1/2 an east-and-west block, and 78 floors, and in time 
by 15 min. Obviously it is not necessary, in order to describe the 
space-separation between the two events, to note the individual 
numbers of avenue-blocks and of floors, since we can combine 
them into a single straight distance by means of the well-known 
Pythagorean theorem, according to which the distance between 
two points in space is the square root of the sum of the squares 
of the individual co-ordinate distances (Figure 32, corner). In 
order to apply the Pythagorean theorem, we must, of course, first 
express in comparable units, such as feet, all distances involved. 
If the length of a north-and-south block is 200 ft, that of an

8 If there is really a bank at this corner, the similarity is purely coinci
dental.
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east-and-west block 800 ft, and the average height of one floor 
of the Empire State building 12 ft, the three co-ordinate distances 
become 3200 ft in North-South direction, 400 ft in West-East 
direction, 936 ft in vertical direction. Using the Pythagorean
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theorem we get now for the direct distance between two loca
tions:

V (  3200)2 +  (400)2 +  (936)2 = y ll'280 .000  = 3360 ft.
If the concept of time as a fourth co-ordinate has any practical 

validity, we should now be able to combine the figure 3360 ft for 
space separation with the figure 15 min denoting the separation



of the two events in time so as to obtain one single figure charac
terizing the four-dimensional distance between the two events.

According to the original idea of Einstein such a four-dimen
sional distance can actually be determined by a simple general
ization of the Pythagorean theorem and plays a more fundamental 
role in the physical relation between the events than do the indi
vidual space and time separations.
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Prof. Einstein was never able to do that. But he did something much
better.

If we combine the space- and time-data, we must, of course, 
express them in comparable units just as it was necessary to 
designate in feet the lengths of blocks and the distance between 
floors. As we have seen above this can be done easily by 
using the velocity of light as the translation factor, so that the 
time interval of 15 min becomes 800,000,000,000 “light-feet.” By 
a simple generalization of the Pythagorean theorem we should be



inclined now to define the four-dimensional distance as the 
square root of the sum of the squares of all four co-ordinates: 
that is, three space and one time separation. In doing so we 
should, however, completely obliterate any difference between 
space and time, which would, in effect, be to admit the possibility 
of turning a space measurement into a time measurement and 
vice versa.

Yet nobody—not even the great Einstein—can, by covering a 
yardstick with a piece of cloth, waving a wand, and using some 
such magic phrase as: “pee-times-co-que-time-contra-variant- 
tensor,” turn it into a brand new glittering alarm clock! (Figure 
33.)

Thus, if we are going to identify time with space in the Pytha
gorean formula we must do it in some unconventional way that 
would preserve some of their natural differences.

According to Einstein, the physical difference between space 
distances and time durations can be emphasized in the mathe
matical formulation of a generalized Pythagorean theorem by 
using the negative sign in front of the square of the time co
ordinate. Thus we may designate the four-dimensional distance 
between two events as the square root of the sum of the squares 
of the three space co-ordinates, minus the square of the time 
co-ordinate, which has of course to be first expressed in space 
units.

The four-dimensional distance between the bank robbery and 
the plane crash is thus to be calculated as:

V (  3200 p + T 400)2 +  (936)=^(800,000,000, 000p.

The exceedingly large numerical value of the fourth term as 
compared with the other three results from the fact that we took 
here an example from “ordinary life,” and by ordinary life stand
ards the rational unit of time is very small indeed. We should get 
more comparable figures if, instead of considering two events 
happening within New York City limits we were to take an 
example out of the cosmos. Thus taking as the first event the 
explosion of the atomic bomb at Bikini Atoll exactly at 9 a .m . on  
July 1, 1946, and as the second, say, the fall of a meteorite on 
the surface of Mars at 10 min after 9 a .m . the same day, we should
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have the time interval of 540,000,000,000 light-feet as compared 
with the space distance of about 650,000,000,000 ft.

In this case the four-dimensional distance between the two 
events would be: \/(65-1010) 2 — (54-101 0 ) 2 ft =  36-1010 ft, being 
numerically quite different in relation to both the pure-space and 
the pure-time intervals.

One may reasonably object, of course, to such a seemingly 
irrational geometry, in which one co-ordinate is treated differ
ently from the other three, but one must not forget that any 
mathematical system devised to describe the physical world must 
be shaped so as to fit things, and if space and time do behave 
differently in their four-dimensional union, the laws of four
dimensional geometry must be shaped accordingly. Besides, there 
is a simple mathematical remedy that can make Einstein’s geom
etry of space and time look exactly like the good old Euclidian 
geometry as we learned it in school. This remedy, proposed by 
the German mathematician Minkovskij, consists in considering 
the fourth co-ordinate as a purely imaginary quantity. You may 
remember from the second chapter of this book that one can 
turn an ordinary number into an imaginary one by multiplying 
it by y / —I , and that such imaginary numbers can be used with 
great convenience in the solutions of various geometrical prob
lems. Well, according to Minkovskij, in order to be considered 
as the fourth co-ordinate time must not only be expressed in 
space units but should also be multiplied by x/—l. Thus the four 
co-ordinate distances pertaining to our example will be:

First co-ordinate: 3200 ft 
Second co-ordinate: 400 ft 
Third co-ordinate: 936 ft
Fourth co-ordinate: 8 •1011X i light-feet.

We may now define the four-dimensional distance as the 
square root of the sum of the squares of all four co-ordinate dis
tances. In fact, since the square of an imaginary number is 
always negative, the ordinary Pythagorean expression in Min- 
kovskij’s co-ordinates will be mathematically equivalent to the 
seemingly irrational Pythagorean expression in Einstein’s co
ordinates.
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There is a story about an old man with rheumatism who asked 
his healthy friend how he managed to avoid the malady.

“By taking a cold shower every morning all my life” was the 
answer.

“Oh!” exclaimed the first, “then you had cold showers instead!'
Well, if you do not like the seemingly rheumatic Pythagorean 

theorem, you can have the cold shower of the imaginary time 
co-ordinate instead.

The imaginary nature of the fourth co-ordinate in the space
time world, leads to the necessity of considering two physically 
different types of four-dimensional separations.

In fact, in such cases as the above discussed New York events, 
in which the three-dimensional distance between the events is 
numerically smaller than the time interval (in proper units), the 
expression under the radical in the Pythagorean theorem is nega
tive so that we get an imaginary number for the generalized four
dimensional separation. In some other cases, however, the time 
duration is smaller than the space distance, so that we obtain a 
positive number under the radical. This means, of course, that in 
such cases the four-dimensional separation between two events 
is real.

Since, as discussed above, space-distances are to be considered 
as real whereas the time durations as purely imaginary, we may 
say that the real four-dimensional separations are related more 
closely to the ordinary space distances and the imaginary ones 
to the time intervals. According to Minkovskifs terminology, the 
four-dimensional separations of the first kind are called spatial 
(raumartig) and those of the second temporal (zeitartig).

We shall see in the next section that the spatial separation can 
be turned into a regular space distance, and the temporal separa
tion into a regular time interval. However, the fact that one of 
them is represented by a real number whereas the other is repre
sented by an imaginary number forms an insurmountable barrier 
in any attempt to turn one into another, making it impossible 
for us to turn a yardstick into a clock or a clock into a yardstick.

The World of Four Dimensions 83



C H A P T E R  V

Relativity of Space and Time

1. TURNING SPACE INTO TIME AND VICE VERSA

ALTHOUGH mathematical attempts to demonstrate the unity 
. of space and time in a single four-dimensional world do not 

completely obliterate the differences between distances and dura
tions, they certainly reveal a much greater similarity between the 
two notions than was ever evident in pre-Einsteinian physics. In

fact, space distances and time intervals between various events 
must now be considered only as the projections of the basic four
dimensional separation between these events on the space and 
on the time axis, so that the rotation of the four-dimensional axis- 
cross may result in partial transformation of distances into dura
tions and vice versa. But what do we mean by the rotation of 
the four-dimensional space-time axis-cross?

Let us first consider an axis-cross made by the two space- 
co-ordinates as shown in Figure 34a, and suppose we have two 
fixed points separated by a certain distance L. Projecting this 
distance on the co-ordinate axis, we find that our two points are 
separated by a ft in the direction of the first axis, and by b ft ir
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the direction of the second. If we turn the axis-cross by a certain 
angle (Figure 34b)  the projections of the same distances on the 
two new axes will be different from the previous projections, 
possessing the new values d  and b'. However, according to the 
Pythagorean theorem, the square root of the sum of the squares 
of the two projections will be the same in both cases since it 
corresponds to the actual distance between the points, which does 
not change because of axis rotation. Thus

\/d2jrb 2 -■= V o 72 + h'2 = L.

We say that the square root of the sum of the squares is 
invariant in respect to the rotation of co-ordinates, whereas the
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particular values of the projections are incidental and depend 
on the choice of co-ordinate systems.

Let us consider now the axis-cross in which one axis corre
sponds to a distance and another to a duration. In this case the 
two fixed points of the previous example become the two fixed 
events, and the projections on the two axes represent respectively 
their separations in space and in time. Taking for the two events 
the bank robbery and the plane crash discussed in the previous



section, we can draw a picture (Figure 35a) that is very similar 
to that representing the two space co-ordinates (Figure 34a). 
What must we do now in order to turn the axis-cross? The 
answer is rather unexpected and even perplexing: If you want to 
turn the space-time axis-cross, get on a bus.

Well, suppose we really sit on the upper deck of a bus going 
down Fifth Avenue on the fatal morning of July 28. From our 
own egoistic point of view, we shall in this case be mostly inter
ested in the question of how far away from, our bus the bank 
robbery and the plane crash take place, if only because the dis
tances determine whether or not we could see what was hap
pening.

If you look at Figure 35a, in which the successive positions of 
the bus’s world-line are shown along with the events of the rob
bery and the crash, you will notice at once that these distances 
are different from those recorded by, say, a traffic policeman 
standing on his corner. Since the bus was moving along the 
avenue, advancing, let us say, one block every three minutes (not 
so unusual in heavy New York traffic!), the space separation 
between the two events as seen from the bus becomes smaller. 
In fact, since at 9:21 a .m . the bus was crossing 52nd Street, the 
bank robbery, which occurred at this moment, was 2  blocks away. 
By the time the plane crash took place (9:36 a .m . )  the bus was 
at 47th Street, that is, 14 blocks from the scene of the crash. 
Thus measuring the distances relative to the bus we should con
clude that the space distance between the robbery and crash was 
14 — 2 = 12 blocks, as compared with the distance of 50—34 = 16 
blocks measured in respect to the city buildings. Looking again 
at Figure 35a, we see that the distances as recorded from the bus 
must be counted not from the vertical axis (world line of sta
tionary policeman) as before, but rather from the inclined line 
representing the world-line of the bus, so that it is this latter line 
that is now playing the role of the new time axis.

The “pack of trivialities” just discussed may be summarized 
in this statement: to plot the space-time diagram of events as 
they were observed from a moving vehicle, we must turn the 
time axis by a certain angle (depending on the velocity of that 
vehicle), leaving however the space axis intact.
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This statement, although a gospel truth from the point of view 
of classical physics and so-called “common sense,” stands, how
ever, in direct contradiction to our new ideas concerning the 
four-dimensional space-time world. If, in fact, time is to be con
sidered as the independent fourth co-ordinate, the time axis must 
alioays remain perpendicular to the three space axes, regardless 
of whether we sit on a bus, a trolley, or on the pavement!

At this point we may follow either of two paths of thought. 
Either we have to retain our conventional ideas of space and 
time, abandoning any further consideration of the unified space
time geometry, or we must break with the old ideas dictated by 
“common sense,” and assume that in our space-time diagram the 
space axis must be turned along with the time axis, so that the 
two always remain mutually perpendicular (Figure 35b).

But, in the same way that turning the time axis means physi
cally that the space separation o f two events has different value s 
( 1 2  and 16 blocks in the previous example) when viewed from a 
moving vehicle, turning the space axis would mean that the time 
separation of two events observed from a moving vehicle differs 
from, the time separation of the two events when observed from 
a  stationary point on the ground. Thus, if the bank robbery 
and plane crash were 15 minutes apart by the City Hall clock, 
the time interval registered by the wrist watch of a bus passenger 
would be different—not because the two timepieces move at 
different rates as the result of mechanical imperfections, but 
because time itself flows at different rates in vehicles moving at 
different speeds, and the actual mechanism that records it is 
correspondingly slowed, though, at the low speeds of bus travel, 
this retardation is so negligible as to be imperceptible. (This 
phenomenon will be discussed at greater length in this chapter.)

To give one more example, let us consider a man eating his 
dinner in the dining car of a moving train. From the point of 
view of the dining-car waiter he eats his appetizer and his dessert 
at the very same place ( third table near the window). But from 
the point of view of two switchmen at stationary points on the 
railroad track looking through the window of the car—the one 
just in time to see him eat his appetizer, the other just in time to 
see him eat his dessert—the two events take place many miles
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apart. Thus we may say that: Two events occurring at the same 
place, but at two different moments from the point of view of 
one observer, will be considered as occurring at different places 
if viewed by other observers in a different state, or in different 
states, of motion.

In view of the desired space-time equivalence, replace in the 
above sentence the word “place” by the word “moment” and vice 
versa. The sentence will now read: The two events occurring at 
the same moment, but at different places, from the point of view 
of one observer, will be considered as occurring at different 
moments if viewed by another observer in a different state of 
motion.

In application to our dining-car example, we would expect that 
whereas the waiter would swear that two passengers sitting at 
opposite ends of the car lighted their after-dinner cigarettes at 
exactly the same moment, a switchman standing still on the track 
and looking through the windows as the train moved past him 
would insist that one of these gentlemen had done it before the 
other.

Thus: two events considered to be simultaneous from the point 
of view of one observer will from the point of view of another be 
separated by a certain time interval.

These are the inevitable consequences of the four-dimensional 
geometry in which space and time are only the projections of an 
invariant four-dimensional separation on corresponding axes.

2. ETHER WIND, AND SIRIUS TRIP

Let us now ask ourselves whether the mere desire to use the 
language of four-dimensional geometry justifies the introduction 
of such revolutionary changes into our old and comfortable ideas 
about space and time?

If our answer is yes, we challenge the entire system of classical 
physics, which is based on the definitions of space and time 
formulated by the great Isaac Newton two and a half centuries 
ago: “Absolute space, in its own nature, without relation to any
thing external, remains always similar and immovable,” and 
“Absolute, true, and mathematical time, of itself, and from its
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own nature, flows equally without relation to anything external.” 
In writing these lines Newton certainly did not think that he was 
stating anything new, or anything open to argument; he was 
simply formulating in an exact language the notions of space and 
time as they were apparent to anybody with common sense. In 
fact the belief in the correctness of these classical ideas about 
space and time was so absolute that they have been often held 
by philosophers as a priori, and no scientist (not to mention 
laymen) ever considered the possibility that they might be false, 
and thus in need of re-examination and restatement. Why, then, 
should we reconsider the question now?

The answer is that the abandonment of classical ideas of space 
and time and their unification in a single four-dimensional pic
ture were dictated not by any purely esthetic desire on the part 
of Einstein, nor by any mere restless urge of his mathematical 
genius, but by stubborn facts that emerged constantly from 
experimental research, and that just wouldn’t fit into the classical 
picture of independent space and time.

The first impact against the very foundations of the beautiful 
and, apparently eternal, castle of classical physics, an impact that 
shook practically every single stone of this elaborate building 
and sent its walls tumbling down, like the walls of Jericho before 
the blast of Joshua’s trumpet, was delivered by what would seem 
to be an unpretentious experiment carried out in 1887 by an 
American physicist, A. A. Michelson. The idea of Michelson’s ex
periment is very simple and is based on a physical picture accord
ing to which light represents some kind of wave motion traveling 
through the so called “light-carrying ether,” a hypothetical sub
stance uniformly filling up interstellar space as well as the inter
vals between the atoms in all material bodies.

Drop a stone into a pond, and waves will ripple out in all direc
tions. The light that comes from any bright body similarly ripples 
out in waves, and so does the sound of a vibrating tuning fork. 
But, whereas the surface waves clearly represent the motion of 
the particles of water, and the sound waves are known to be the 
vibration of the air or other materials through which sound is 
traveling, we are unable to find any material medium that is 
responsible for carrying light waves. In fact, the space through

.Relativity of Space and Time 89



which light travels with such ease (in contrast to sound) seems 
to be completely empty!

Since, however, it seems rather illogical to speak about some
thing vibrating when there is nothing to vibrate, physicists had 
to introduce a new notion, “light-carrying ether,” in order to 
furnish a substantive subject for the verb “to vibrate” when 
attempting to explain the propagation of light. From the purely 
grammatical point of view, which requires that any verb must 
necessarily have a subject, the existence of the ‘light-carrying 
ether” cannot possibly be denied. But—and it is a very large 
“but”—the rules of grammar do not, and cannot, prescribe to us 
the physical properties of the substantives that must be intro
duced in a correctly constructed sentence!

If we say that light consists of waves traveling through the 
light ether, defining “light ether” as that through which light 
waves are traveling, we are telling a gospel truth, but also record
ing a most trivial tautology. It is an entirely different problem to 
find out what this light ether is and what its physical properties 
are. Here no grammar (not even Greek!) can help us, and the 
answer must come from the science of physics.

As we shall see in the course of the following discussion, the 
greatest mistake of the physics of the nineteenth century con
sisted in the assumption that this light ether has properties very 
similar to those of ordinary physical substances familiar to us. 
One used to speak about the fluidity, rigidity, various elastic 
properties, and even the internal friction of light ether. Thus, for 
example, the fact that light ether behaves on the one hand as 
a vibrating solid when carrying light waves, 6 but on the other 
hand shows a perfect fluidity and a complete absence of any 
resistance to the motion of celestial bodies, was interpreted by 
comparing it with such materials as sealing wax. Sealing wax, 
and other similar substances, are, in fact, known to be quite hard 
and brittle in respect to forces acting rapidly in a mechanical 
impact, but will flow like honey under the force of their own

6 With respect to light waves the vibrations were shown to be transverse 
to the direction in which light was traveling. In ordinary materials such 
transverse vibrations occur only in solids, whereas in liquid and gaseous 
substances vibrating particles can move only in the direction in which the 
wave is proceeding.
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weight if left alone for a sufficiently long time. Following this 
analogy, the old physics assumed that light ether, filling all inter
stellar space, acted as a hard solid in respect to very rapid dis
tortions connected with the propagation of light, but behaved 
as a good liquid when the planets and stars, moving many thou
sand times slower than light, were pushing their way through 
it.

Such an anthropomorphical point of view, so to speak, which 
tried to ascribe to a completely unknown thing, which so far 
had nothing but the name, the properties of ordinary material 
known to us, failed very badly from the very beginning. And, in 
spite of many attempts, no reasonable mechanical interpretation 
of the properties of the mysterious carrier of light waves was 
found possible.

In the light of our present knowledge we can easily see wherein 
all attempts of that kind erred. In fact we know that all mechan
ical properties of ordinary substances can be traced back to the 
interaction between the atoms from which they are built. Thus, 
for example, the high fluidity of water, the elasticity of rubber, 
and the hardness of a diamond depend on the fact that water 
molecules can slide by each other without much friction, that 
rubber molecules can be easily deformed, and that the atoms of 
carbon forming a diamond crystal are tightly bound together into 
a rigid lattice. Thus all common mechanical properties of various 
substances result from their atomic structure, but this rule makes 
no sense whatsoever when applied to an absolutely continuous 
substance such as that which light ether is considered to be.

Light ether is a substance of a peculiar type, which has no 
similarity to the familiar atomic-mosaic that we usually call 
matter. We can call light ether a “substance” (if only because it 
serves as a grammatical subject for the verb “to vibrate”), but 
we can also call it “space,” keeping in mind that, as we have seen 
before and will see again, space may possess certain morpho
logical or structural features that make it a much more compli
cated thing than it is in the conceptions of Euclidian geometry. 
In fact, in modern physics the expressions “light ether” ( divested 
of its alleged mechanical properties) and “physical space” are 
considered synonymous.
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But we have deviated too far into the gnosiological or philo
sophical analysis of “light ether,” and must return now to the 
subject of Michelson’s experiment. As we have said before, the 
idea of this experiment is quite simple. If light represents the 
waves traveling through ether, the velocity of light as recorded 
by instruments located on the surface of the earth must be dis
torted by the motion of the earth through space. Standing on the 
earth which rushes along its orbit around the sun, we should 
experience an “ether wind,” in the same way that a man on the 
deck of a fast moving ship feels the wind blowing into his face 
though the weather may be perfectly calm. Of course we do not 
feel the “ether wind,” since it is supposed to penetrate without 
any difficulty between the atoms forming our body, but we should 
be able to detect its presence by measuring the velocity of light 
in different directions in relation to our motion. Everybody 
understands that the velocity of a sound traveling in the same 
direction as the wind is greater than that of the same sound 
traveling against the wind, and it seems natural that the same 
thing should be true of light propagating with and against the 
ether wind.

Reasoning thus, Professor Michelson set out to construct an 
apparatus that could register the differences in the speed of light 
propagating in different directions. The simplest way to accom
plish it would be, of course, to take the apparatus of Fizeau 
described above (Figure 31C), and to perform a series of mea
surements, turning it in different directions. This would not, how
ever, be a very rational way of doing it, because it would require 
a high degree of precision in each case. Indeed since the expected 
difference (equal to the velocity of the earth) is only about one 
hundredth of one per cent of the speed of light, we should have 
to perform each individual measurement with extremely great 
accuracy.

If you have two long sticks of about the same length, and want 
to know exactly the difference between them, you will find the 
difference most easily by putting them together at one end and 
measuring the difference at the other end. This is known as the 
“zero-point” method.
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Michelson’s apparatus, shown schematically in Figure 36, uti
lizes this zero-point method for comparing the velocities of light 
in two perpendicular directions to each other.

The centerpiece of this apparatus is formed by a glass plate B 
covered with a thin semitransparent layer of silver, which reflects 
about 50 per cent of the incident light and lets through the other
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50 per cent. Thus the light beam coming from the source A is 
split into two equal parts traveling parallel to each other. These 
two beams are reflected from the two mirrors C and D placed at 
equal distances from the central plate, and are sent back to it.



The beam coming back from D will be partially transmitted by 
the thin silver layer, and will unite with the part of the beam 
from C that is partially reflected by the same layer. Thus the 
two beams separated at the entrance to the apparatus will reunite 
as they enter the observer’s eye. According to a well-known law 
of optics, the two beams will interfere with each other, forming a 
system of dark and light fringes visible to the eye. 7 If the dis
tances BD and BC are equal, so that the two beams return to the 
centerpiece simultaneously, the bright fringe will be in the center 
of the picture. If the distances are slightly changed so that one 
beam is delayed in respect to the other the fringes will be shifted 
to the right or to the left.

Since the apparatus is placed on the surface of the earth and 
since the earth moves rapidly through space, we must expect 
that the ether wind is blowing through it with a speed equal to 
the speed of the earth motion. Assume, for example, that this 
wind is blowing in the direction from C to B (as shown in Figure 
36), and let us ask ourselves what difference it makes in the 
speed of the two beams hurrying to their meeting point.

Remember that one of these beams goes first against the wind 
and returns with it, whereas another beam goes across the wind 
both ways. Which will return first?

Think of a river, and a motorboat proceeding upstream from 
Pier 1 to Pier 2 and then returning downstream to Pier 1. The 
stream hampers it on the first part of the journey, but helps its 
motion on the way back. You may be inclined to believe that the 
two effects compensate each other, but this is not so. In order to 
understand this, imagine that the boat goes with a speed equal 
to the speed of the stream. In this case the boat from 1 will never 
be able to reach Pier 2! It is not difficult to see that the presence 
of the stream will in all cases lengthen the time of the round trip 
by a factor of

where v is the velocity of the boat and V the velocity of the
* See also pp. 122-23.
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stream.s Thus, for example, if the boat travels ten times faster 
than the stream, the return trip will last:

1 1 1 , A, •-------7—— ------------  ------- = 1 . 0 1  times,
J lV  1 -0 .0 1  0.99
io  y

that is, 1  per cent longer than it would in quiet water.
In a similar way we can also calculate the expected delay of 

the round trip across the river. Here the delay arises from the 
fact that, in order to reach Pier 3 from Pier 1, the boat must travel 
slightly sidewise to compensate for the drift in the moving water. 
In this case the delay is somewhat less, being indicated by the 
factor:

that is, by only 1/2 per cent for the example above. The proof of 
this formula is very simple and we leave it to the inquisitive 
reader. Now, for the river substitute streaming ether, for the boat 
substitute the light wave propagating through it, and for the 
piers substitute the two end mirrors, and you will have the 
scheme of Michelson’s experiment. The beam of light going from 
B to C and returning to B will now be delayed by a factor of

%
c being the speed of light through the ether, whereas the light 
traveling from B to D and back must be delayed by the factor

/Eg7
“ In fact writing I for the distance between the two piers, and remember

ing that the combined speed downstream is t> + V and upstream t>—V we 
obtain for the total time of the round trip:

I I 2vl 2 vl 21 1

t _  t ;+ v  + c - V  ~ (v - i - V ) ( v - V )~  t>2-V 2 ~  V ' V2
1 -------

V2
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Since the velocity of ether wind, which is equal to the velocity of 
the Earth, is 30 km per second, and the velocity of light is 3 X105 

km/sec the two beams must be delayed respectively 0 . 0 1  and 
0.005 per cent. Thus it should be a simple matter to observe, with 
the aid of Michelson’s apparatus, the difference in the speed of a 
beam of light traveling with the ether wind, and that of one 
traveling against it.

You may imagine Michelson’s surprise, then, when, in perform
ing the experiment, he was unable to notice even the slightest 
shift of the interference fringes.

Apparently the ether icind had no effect on the velocity of light 
whether it was traveling along or across it.

The fact was so astonishing that Michelson himself did not 
believe it at first, but careful repetitions of the experiment left no 
doubt that, astonishing as it was, the result he had obtained at 
first was correct.

The only possible explanation of this unexpected result seemed 
to lie in the bold assumption that the massive stone table on 
which Michelson’s mirrors were mounted contracted slightly (the 
so called Fitz-Gerald9 contraction) in the direction of the earth’s 
motion through space. In fact, if the distance BC shrinks by a 
factor of

/ T
whereas the distance BD remains unaltered, the delay of both 
light beams becomes equal and no shift of interference fringes is 
to be expected.

But it was easier to suggest the possibility that Michelson’s 
table had shrunk than to understand it. True, we do expect some 
contraction of material bodies moving through a resisting me
dium. A motorboat racing across a lake, for example, is slightly 
squeezed between the driving force of the propeller at its stern 
and the water resistance at the bow. But the extent of such 
mechanical contraction depends on the strength of the material 
from which the boat is made. A steel boat will be squeezed by a 
smaller degree than a wooden one. But variations in the con-

0 Named for the physicist who first introduced that notion considering it 
as a purely mechanical effect of motion.
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traction that was responsible for the negative results in Michel- 
son’s experiment depends only on the speed of motion and not at 
all on the strength of the materials involved. Had the table 
mounting the mirrors been made not from stone, but from cast 
iron, wood, or any other material, the amount of contraction 
would have been exactly the same. It is thus clear that we deal 
here with a universal effect, which causes all moving bodies to 
contract in exactly the same degree. Or, to describe the phenome
non as Professor Einstein did in 1904, we deal here with the 
contraction of space itself, and all material bodies moving with
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the same speed contract in the same way simply because they are 
imbedded in the same contracted space.

In the course of the last two chapters we have said enough 
about the properties of space to make the above statement sound 
reasonable. In order to make the situation clearer we can imagine 
that space has some properties of an elastic jelly in which the 
boundaries of different bodies are traced. When space is distorted 
by being squeezed, stretched, or twisted, the shapes of all bodies 
imbedded in it change automatically in the same way. These dis
tortions of material bodies caused by the distortion of space must 
be distinguished from individual distortions caused by various 
external forces that produce internal stresses and strains in the 
bodies so distorted. Examination of Figure 37 representing a 
two-dimensional case will probably help to explain this important 
difference.

However, the effect of space shrinking, though it is of funda
mental importance in understanding the basic principles of



physics, passes quite unnoticed in ordinary life, since the highest 
velocities that affect us in our everyday experience are still 
negligibly small as compared with the velocity of light. Thus, for 
example, a car speeding at 50 miles an hour is reduced in length 
by a factor of >/l — ( 10~7 ) 2 = 0.99999999999999, which corre
sponds to a reduction in bumper-to-bumper length by only the 
diameter of one atomic nucleus! A jet-propelled plane flying at a 
speed of over 600 miles an hour is reduced in length by only one 
atomic diameter, and an interstellar rocket 1 0 0  m long rushing at 
a speed of over 25,000 miles an hour, by one hundredth of a 
millimeter.

However, if we can imagine objects moving with speeds 50, 
90, and 99 per cent of light speed, their lengths will be reduced 
respectively to 8 6 , 45, and 14 per cent of their sizes when standing 
on the ground.

This effect of relativistic contraction of all fast-moving objects 
is commemorated in the following limerick written by an un
known author:

“There was a young fellow named Fisk 
Whose fencing was exceedingly brisk.
So fast was his action,
The Fitz-Gerald contraction 
Reduced his rapier to a disk.”

This Mr. Fisk must have been fencing with lightning speed 
indeed!

From the point of view of four-dimensional geometry the ob
served universal shortening of all moving objects can be simply 
interpreted as the change of the space projection of their invariant 
four-dimensional length caused by the rotation of the space-time 
axis-cross. In fact, you must remember from the discussion in the 
previous section that the observations carried from a moving 
system must be described by means of co-ordinates in which the 
space and time axis are both turned by a certain angle depending 
on the velocity. Thus if in the resting system we had a certain 
four-dimensional separation projecting a hundred per cent on the 
space axis (Figure 38a), its space projection on the new time 
axis (Figure 38b) would always be shorter.
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The important point to remember is that the expected shorten
ing of length is entirely relative with respect to the two systems 
moving with respect to each other. If  we consider an object that 
is at rest with respect to the second system, thus being repre
sented by an invariant line parallel to the new space axis, its 
projection on the old axis will be shortened by the same factor.

Thus there is no necessity, and in fact no physical sense, in 
specifying which of the two systems is “actually” in motion. All 
that matters is only that they are in motion in relation to each 
other. Thus if two passenger rocket ships of some future “Inter
planetary Communication Co. Ltd.” were to meet somewhere in 
space between Earth and Saturn, traveling at very high speed,
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the passengers of each ship would be able to see through the 
side windows that the other ship is considerably shrunk, whereas 
they would notice no shrinking of their own ship. And it would 
be quite useless to argue which ship is “actually” shrunk, since 
each is from the point of view of the passengers on the other ship, 
and neither is from the point of view of its own passengers. 10

The four-dimensional reasoning also permits us to understand 
why the relativistic shrinkage of moving objects becomes appreci
able only when their velocity approaches that of light. In fact,

10 Of course this is all a theoretical picture. Actually if two rocket ships 
passed each other traveling at such speeds as we are here considering, the 
passengers on either ship would not be able to see the other at all— any 
more than you can see a bullet fired from a rifle at a fraction of this speed.



the angle by which the space-time axis-cross is turned is deter
mined by the ratio of the distance covered by the moving system 
to the time necessary to cover this distance. If we measure the 
distances in feet and time in seconds this ratio would be nothing 
else but the ordinary velocity expressed in feet per second. Since, 
however, the time-intervals in the four-dimensional world are 
represented by the ordinary time-interval multiplied by the 
velocity of light, the ratio determining the rotation angle is actu
ally the velocity of motion in feet per seconds divided by the 
velocity of light in the same units. Thus the angle of rotation, 
and its influence on distance measurements becomes appreciable 
only when the relative velocity of the two moving systems 
approaches the velocity of light.

In the same way as it influences the length measurements, the 
turning of the space-time axis-cross affects the measurements of 
time intervals. One can show, however, that because of the 
peculiar imaginary nature of the fourth co-ordinate, 11 the time 
intervals will expand when the space distances shrink. If  you 
have a clock mounted on a fast moving car it will go somewhat 
slower than a similar clock on the ground, so that the time 
interval between two successive ticks will be lengthened. Just as 
in the case of shortening of lengths, the slowing down of a mov
ing clock is a universal effect depending only on the velocity of 
motion. The modern wrist watch, the old-fashioned grand
father’s clock with a pendulum, or the hour glass with running 
sand will be slowed down in exactly the same way provided they 
move with the same velocity. The effect is, of course, not limited 
to special mechanical gadgets that we call “clocks” and “watches”; 
in fact, all physical, chemical, or biological processes will be 
slowed down in the same degree. Thus there is no danger that 
when cooking the eggs for breakfast in a fast moving rocket ship 
you will overcook them because your watch runs too slowly; the 
processes inside of the egg will be slowed correspondingly so 
that keeping them in boiling water for five minutes according to 
your watch, you will get what you have always known as “five-

11 Or, if you wish, because of the fact that the Pythagorean formula in 
the four-dimensional space is distorted in respect to time.
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minute eggs.” We use a rocket ship here as an example rather 
than a train’s dining car, because, as in the case of length con
traction, the expansion of time becomes noticeable only at 
velocities approaching the speed of light. This time expansion is 
given by the same factor
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as the space-contraction, with the difference that here you use it 
not as a multiplier but as a divisor; if one moves so fast that the 
lengths are reduced to one half, the time intervals become twice 
as long.

The slowing down of the speed of time in moving systems has 
an interesting implication in respect to interstellar travel. Suppose 
you decided to visit one of the satellites of Sirius, which is at a 
distance of nine light-years from the solar system, and use for 
your trip a rocket ship that can move practically with the speed 
of light. It would be natural for you to think that the round trip 
to Sirius and back would take you at least eighteen years, and 
you would be inclined to take with you a very large food supply. 
That precaution, however, would be absolutely unnecessary if 
the mechanism of your rocket ship made it possible for you to 
travel at nearly the velocity of light. In fact if you move, for 
example, at 99.99999999 per cent of the speed of light, your wrist 
watch, your heart, your lungs, your digestion, and your mental 
processes will be slowed down by a factor of 70,000, and the 
18 yrs (from the point of view of people left on the Earth) neces
sary to cover the distance from Earth to Sirius and back to Earth 
again, would seem to you as only a few hours. In fact, starting 
from Earth right after breakfast, you will just feel ready for lunch 
when your ship lands on one of the Sirius planets. If you are in a 
hurry, and start home right after lunch, you will, in all probabil
ity, be back on Earth in time for dinner. But, and here you will 
get a big surprise if you have forgotten the laws of relativity, 
you will find on arriving home that your friends and relatives 
have given you up as lost in the interstellar spaces and have 
eaten 6570 dinners without you! Because you were traveling at



a speed close to that of light, 18 terrestrial years have appeared 
to you as just 1  day.

But what about trying to move faster than light? The answer 
to this question can be partially found in another relativistic 
limerick:

“There was a young girl named Miss Bright,
Who could travel much faster than light.
She departed one day,
In an Einsteinian way,
And came back on the previous night.”

To be sure, if speeds that approach the velocity of light make 
time in a moving system run slower, a superlight velocity should 
turn the time backward! Besides, owing to the change of the 
algebraic sign under the Pythagorean radical, the time co-ordi
nate would become real and thus indicate a distance in space in 
the same way all lengths in the superlight-speed system go 
through zero and become imaginary, thus turning into time- 
intervals.

If all this were possible, the picture in Figure 33 showing Ein
stein turning a yardstick into an alarm clock would correspond 
to reality provided that during this performance he could assume 
a superlight speed!

But the physical world, crazy as it is, is not that crazy, and the 
obvious impossibility of such a black-magic performance can be 
simply summarized by the statement that no material object can 
move with a  speed that equals or exceeds the speed of light.

The physical foundation for this basic law of nature lies in the 
fact, proved by numerous direct experiments, that the so-called 
inertial mass o f moving objects, which measures their mechanical 
resistance to further acceleration, increases beyond any limit 
when the velocity of motion approaches that of light. Thus if a 
revolver bullet moves with a speed 99.99999999 per cent of light 
speed its resistance to further acceleration is equivalent to that 
of a 12-in gun shell. And at the speed of 99.99999999999999 per 
cent of light speed, our little bullet will have the same inertial 
resistance as a heavily loaded freight car. Regardless of how 
great an effort we applied to our bullet, we should never be able
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to conquer the last decimal and to make its speed exactly equal 
the upper speed limit for all motion in the universe!
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3. CURVED SPACE, AND THE RIDDLE OF GRAVITY

With due repentance and apologies to the poor reader, who 
must feel as though he had been stumbling over all four co-ordi- 
nate axes in the course of the last twenty pages, we now invite him

F i g u r e  3 9

Two-dimensional scientists of the flat and curved "surface worlds” 
check the Euclidian theorem about the sum of the angles in a triangle.

to come for a walk in a curved space. Everybody knows what a 
curved line and a curved surface are, but what could one possibly 
mean by the expression “a curved space”? The difficulty encoun
tered in trying to imagine such a phenomenon lies, not so much 
in the unusualness of the conception, as in the fact that, whereas 
we can look at curved lines and curved surfaces from the outside,



the curvature of three-dimensional space must be observed from 
inside since we ourselves are within it. In an attempt to under
stand how a three-dimensional human being can conceive the 
curvature of the space in which he lives, let us first consider the 
hypothetical situation of two-dimensional shadow beings living 
on a surface. In Figures 39a  and 39fo we see the shadow scientists 
of flat and curved (spherical) “surface-worlds” studying the 
geometry of their two-dimensional spaces. The simplest geo
metrical figure to study is, of course, a triangle, that is, the figure 
formed by three straight lines connecting three geometrical 
points. As everybody will remember from high school geometry, 
the sum of the three angles of any triangle drawn on a plane is 
always equal to 180°. It is easy to see, however, that the above 
theorem does not apply to triangles drawn on the surface of a 
sphere. Indeed, a spherical triangle formed by the sections of 
two geographical meridians diverging from the pole, and the 
section of the parallel ( also in a geographical sense) cut by them, 
has two right angles at the base and can have any angle between 
zero and 360° at the top. In the particular example that is being 
studied by two shadow scientists in Figure 39b, the sum of the 
three angles equals 210°. Thus we see that, by measuring geo
metrical figures in their two-dimensional world, the shadow 
scientists can discover its curvature without actually looking at it 
from the outside.

Applying the above observations to a world that has one more 
dimension we quite naturally come to the conclusion that 
human scientists living in three-dimensional space can ascertain 
the curvature of that space without jumping out into the fourth 
dimension simply by measuring the angles between the straight 
lines connecting three points in their space. If the sum of the 
three angles equals 180° the space is flat; otherwise the space 
must be curved.

But before we carry the argument further, we must discuss in 
some detail exactly what is meant by the expression straight line. 
Looking at the two triangles shown in Figures 39a and 39i» the 
reader would probably say that, whereas the sides of the triangle 
on the piano (Figure 39a) are truly straight lines, the sides of
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that on the sphere (Figure 39b) are actually curved, being the 
arcs of great circles12 that conform to the spherical surface.

Such a statement, based on our common-sense geometrical 
ideas, would deny to the shadow scientists any possibility of 
developing the geometry of their two-dimensional space. The 
concept of the straight line needs a general mathematical defini
tion that not only will hold in place Euclidian geometry, but 
also could be extended to include lines on the surfaces and in 
spaces of a more complicated nature. Such a generalization can 
be obtained by defining a “straight line” as the line representing 
the shortest distance between two points, conforming to the sur
face or the space within which it is drawn. In plane geometry 
the above definition coincides, of course, with the common con
cept of a straight line, while in more complicated cases of curved 
surfaces it leads to a well-defined family of lines, which play 
here the same role as that of the ordinary “straight lines” in the 
geometry of Euclid. To avoid misunderstanding, one often calls 
the lines representing the shortest distances on curved surfaces 
geodesical lines or geodesics, because this notion was first intro
duced in geodesy, that is, the science of measurements on the 
surface of the Earth. In fact, when we speak of the straight-line 
distance between New York and San Francisco, we mean “straight 
as the crow flies” following the curve of the earth’s surface and 
not as a hypothetical gigantic miner’s drill would advance, boring 
its way straight through the body of the earth.

The above definition of the “generalized straight line” or 
“geodesic” as the shortest distance between two points suggests 
the simple physical method of constructing such lines by stretch
ing a piece of string between the points in question. If you do it 
on a plane surface, you will describe an ordinary straight line; 
doing it on a sphere you will find that the string stretches along 
the arc of a great circle, which corresponds to the geodesic of 
the spherical surface.

In a similar way it should be possible to find out whether the 
three-dimensional space in which we live is flat or curved. All

12 Great circles are the circles cut on the surface by a plane passing 
through the center of the sphere. Equator and meridians are such great 
circles.
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that is necessary is to stretch strings between three points in 
space, and to see whether the sum of the angles thus formed is 
or is not equal to 180°. In planning such an experiment we must 
remember, however, two important points. It is essential that the 
experiment be done on a rather large scale since a very small 
part of the curved surface or space may appear to us quite flat;

c£Il?
v "
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obviously we cannot ascertain the curvature of the Earth’s sur
face by measurements made in our backyards! Further, the 
surface or the space may be flat in some regions, and curved in 
others, so that a complete survey may be necessary.

The great idea, which was included by Einstein in the founda
tion of his general theory of curved space, consists of the assump
tion that the physical space becomes curved in the neighborhood 
of large masses; the bigger the mass the larger the curvature. 
In an attempt to verify such a hypothesis experimentally we 
might stretch a string between three spikes driven into the ground 
around some nice big hill (Figure 40a), and measure the angles 
formed by the strings at their three points of meeting. Choose 
the biggest hill you can find—even one of the Himalaya Moun
tains—and you will find that, making allowances for possible 
errors in your measurements, the sum of the three angles where



the strings meet will be exactly 180°. However, this result would 
not necessarily mean that Einstein is wrong, and that the presence 
of big masses does not curve the space around them. Perhaps 
even the Himalaya Mountains do not make the surrounding space 
curve enough so that the deviation can be recorded by even our 
most precise measuring instruments; remember the fiasco encoun
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tered by Galileo in his attempt to measure the speed of light by 
means of his shutter-lanterns! (Figure 31).

So you must not be discouraged, but must try again with a still 
bigger mass, the sun for example.

And lo, here is success! You will find, if you stretch a string 
from some point on the earth, to some star, then to another star, 
then back to the original point on earth, choosing the stars so 
that the sun is corralled in the triangular enclosure formed by the 
strings, the sum of the three angles will be noticeably different 
from 180°. If you have not a string long enough for such an 
experiment, substitute for the string a ray of light, which is every



bit as good, since optics teach us that light always takes the 
shortest possible route.

Such an experiment in measuring angles formed by the beams 
of light is represented schematically in Figure 4 0 b . The light rays 
from two stars Si and Sn located (at the moment of observation) 
at opposite sides of the sun disc converge into a theodolite, which 
measures the angle between them. The experiment is then re
peated later when the sun is out of the way, and the two angles 
are compared. If they are different we have proof that the mass 
of the sun changes the curvature of the space around it, deflect
ing the rays of light from their original paths. Such an experiment 
was originally suggested by Einstein to test his theory. The 
reader may understand the situation somewhat better by com
paring it with its two-dimensional analogy shown in Figure 4 1 .

Obviously there was a practical barrier to carrying out Ein
stein’s suggestion under ordinary conditions: because of the 
brilliance of the solar disc, you cannot see the stars around it; 
but during a total solar eclipse the stars are clearly visible in the 
daytime. Taking advantage of this fact, the test was actually 
made in 1 9 1 9  by a British astronomical expedition to the Principe 
Islands (West Africa), from which the total solar eclipse of that 
year could best be observed. The difference of angular distances 
between the two stars with and without the sun between them 
was found to be 1 . 6 1 " ± 0 . 3 0 "  as compared with 1 .7 5  predicted 
by Einstein’s theory. Similar results were obtained by various 
expeditions at later dates.

Of course, one and a half angular seconds isn’t much of an 
angle, but it is enough to prove that the mass of the sun does 
force the space around it into a curve.

If, instead of the sun, we could use some other much bigger 
star, the Euclidian theorem about the sum of the three angles in 
a triangle would be found wrong by angular minutes or even 
by degrees.

It takes some time and a great deal of imagination to become 
accustomed to the notion of the curved three-dimensional space 
as viewed by an inside observer, but once you get it right, it will 
stand out as clearly and as definitely as any other familiar con
cept of classical geometry.
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We need now to make only one more important step in order 
to understand completely Einstein’s theory of curved space and 
its relation to the fundamental problem of universal gravitation. 
To do this we must remember that the three-dimensional space 
that we have been discussing represents only a part of the four
dimensional space-time world that serves as the background for 
all physical phenomena. Thus the curvature of space proper must 
be only the reflection of the more general four-dimensional curva
ture of the space-time world, and the four-dimensional world- 
lines representing the motion of light rays and material objects
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in this world must be looked upon as the curved lines in the 
superspace.

Examining the question from this point of view, Einstein came 
to the remarkable conclusion that the phenomenon of gravity is 
merely the effect of the curvature of the four-dimensional space
time world. In fact, we may now discard as inadequate the old 
statement that the sun exercises a certain force that acts directiy 
on the planets making them describe circular orbits around it. 
It would be more accurate to say that the mass of the sun curves 
the space-time world around it, and that the world-line of planets 
look the way they do in Figure 30 only because they are geodes- 
ical lines running through the curved space.

Thus the concept of gravity as an independent force com



pletely disappears from our reasoning, and is replaced by con
cepts of the pure geometry of space in which all material objects 
move along the “straightest lines,” or geodesics, following the 
curvature produced by the presence of other big masses.
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4. CLOSED AND OPENED SPACES

We cannot conclude this chapter without a brief discussion of 
another important problem of Einstein’s space-time geometry: 
the dilemma of the finite and the infinite universe.

So far we have been discussing the local curvature of space 
in the neighborhood of large masses, a variety of “space pimples” 
scattered over the giant face of the universe. But, apart from 
these local deviations, is the face of the universe flat or is it 
curved, and if so which way? In Figure 42 we give a two-dimen-

P o s i t i v e l y  c u r v e d
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sional illustration of the flat space with “pimples,” and two pos
sible types of curved spaces. The so-called “positively curved” 
space corresponds to the surface of a sphere or any other closed 
geometrical figure, and bends “the same way” regardless of the 
direction in which one goes. The opposite type of “negatively 
curved” space bends up in one direction, but down in another, 
and resembles closely the surface of a western saddle. The differ
ence between the two types of curvatures can be clearly realized 
if you cut out two pieces of leather, one from a football, another 
from the saddle, and try to straighten them out on a table. You 
will notice that neither can be straightened out without stretch
ing or shrinking it, but, whereas the periphery of the football 
piece must be stretched, that of the saddle piece must be shrunk. 
The football piece has not enough material around the center to 
flatten it out; the saddle piece has too much, and it gets folded 
whenever we try to make it flat and smooth.

We can state the same point in still another way. Suppose we 
count the number of pimples located within one, two, three, etc- 
inches (counted along the surface) from a certain point. On the 
flat uncurved surface the number of pimples will increase as the 
square of the distances, that is, as 1, 4, 9, etc. On a spherical sur
face the number of pimples will increase more slowly than that, 
and on a “saddle” surface more rapidly. Thus the two-dimensional 
shadow scientists living in the surface, and thus having no way 
of looking at it from outside to notice its shape, will be still 
able to detect the curvature by counting the number of pimples 
that fall within the circles of different radii. It may be also 
noticed here that the difference between the positive and nega
tive curvatures shows itself in the measurements of the angles in 
corresponding triangles. As we have seen in the previous section 
the sum of angles of a triangle drawn on the surface of a sphere 
is always larger than 180°. If you try to draw a triangle on the 
saddle surface you will find that the sum of its angles is always 
less than 180°.

The above results obtained specifically in regard to curved 
surfaces can be generalized in regard to curved three-dimensional 
spaces according to the table on page 1 1 2 .
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Type of space
Behavior at 

large distances
Angle-sum of 

a triangle
Volume of the 

sphere increases

Positively 
curved 
( sphere 
analogue)

Closes on 
itself >180°

Slower than cube 
of the radius

Flat 
( plane 
analogue)

Extends into 
infinity

OO00rH!l

as the cube of 
the radius

Negatively 
curved 
( saddle 
analogue)

Extends into 
infinity <180°

faster than cube 
of the radius

The table can be used in searching for a practical answer to the 
question as to whether the space in which we live is finite or 
infinite— a question that is discussed in Chapter X, which con- 
siders the size of the universe.
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Descending Staircase

1. THE GREEK IDEA

IN ANALYZING the properties of material bodies, it is a good 
plan to start with some familiar object of “normal size,” and to 

proceed step by step into its interior structure where the ultimate 
sources of all material properties lie hidden from the human eye. 
So let’s begin our discussion with a bowl of clam chowder served 
on your dinner table. We have chosen the clam chowder not so 
much because it is tasty and nutritious, as because it represents 
a nice example of what is known as heterogeneous material. 
Even without the aid of a microscope you can see that it repre
sents a mixture of a large number of different ingredients: the 
small slices of clams, the pieces of onions, tomatoes, and celery, 
the finely granulated potatoes, the particles of pepper, and little 
globules of fat, all mixed together in the salty watery solution.

Most of the substances, especially the organic ones, that we 
encounter in ordinary life are heterogeneous even though in 
many cases we need a microscope to help us recognize that fact. 
Even a small degree of magnification will show you that milk, 
for example, is a thin emulsion formed by small droplets of butter 
suspended in a uniform whitish liquid.

Ordinary garden soil is a fine mixture of microscopic particles 
of limestone, kaolin, quartz, iron oxide, and other minerals and 
salts, together with various organic substances derived from 
decayed plant and animal matter. And if we polish the surface 
of an ordinary granite rock, we shall see at once that this stone is 
formed by small crystals of three different substances (quartz, 
feldspar, and mica), strongly cemented together into one solid 
body.

In our study of the intrinsic structure of matter, the constitu
tion of heterogeneous materials represents only the first step, or 
rather the upper landing of our descending staircase, and in each
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such case we can proceed directly to investigation of the indi
vidual homogeneous ingredients forming the mixture. Of really 
homogeneous substances such as a piece of copper wire, a glass 
of water, or the air filling the room (considered apart from the 
suspended dust, of course), no microscopic investigation will 
show any trace of different constituent parts, and the material will 
appear continuous throughout. True, in the case of copper wire, 
as in the case of practically every solid body (except those com
posed of glassy materials which do not crystallize), strong mag
nification always reveals a so-called microcrystalline structure. 
But the separate crystals we see in homogeneous materials are 
all of the same nature—crystals of copper in copper wire, crystals 
of aluminum in aluminum pans, etc.—exactly as in a tightly com
pressed handful of table salt we shall find only crystals of sodium 
chloride. By using a special technique ( slow crystallization) we 
may increase the size of crystals of salt, copper, aluminum, or any 
other homogeneous substance to any desired extent, and a piece 
of such “monocrystalline” substance will be just as homogeneous 
throughout as water or glass.

Would we be justified by these observations, made both with 
the naked eye and with the best available microscopes, in assum
ing that the substances we call homogeneous will look the same 
no matter what degree of magnification we use? In other words, 
can we believe that no matter how small an amount of copper, 
salt, or water we have, they will always have the same properties 
as the larger samples, and always can be further subdivided 
into still smaller fragments?

The man who first formulated this question, and tried to give 
the answer to it, was the Greek philosopher Democritus who 
lived in Athens about twenty-three centuries ago. His answer to 
the question was in the negative; he was more inclined to believe 
that no matter how homogeneous a given substance may look, it 
must be considered to be formed by a large number (how large, 
he did not know) of separate very small particles (how small, 
he did not know either) which he called “atoms” or “indivisibles.” 
These atoms, or indivisibles, differed in quantity in various sub
stances, but their differences in quality were only apparent and 
not real. Fire atoms and water atoms were the same in fact, differ



ing only in appearance. Indeed all materials were composed of 
the same eternal atoms.

Differing somewhat from this view, a contemporary of Democ
ritus, named Empedocles, believed that there were several dif
ferent kinds of atoms, which, mixed in different proportions, 
formed all the multitude of different known substances.

Reasoning on the basis of the rudimentary facts of chemistry 
known at that time Empedocles recognized four different types 
of atoms corresponding to four different alleged elementary sub
stances: stone-stuff, water-stuff, air-stuff and fire-stuff.

According to these views, the soil for example was a combina
tion of stone-stuff and water-stuff closely mixed atom by atom: 
the better the mixture, the better the soil. A plant growing from 
the soil combined stone and water atoms with the fire atoms 
coming from the rays of the sun to form composite molecules of 
wood-stuff. The burning of dry wood, from which the water ele
ment was gone, was viewed as decomposition or breaking up of 
wood molecules into the original fire atoms, which escape in the 
flame, and the stone atoms, which remains as the ashes.

We know now that this explanation of plant growth and wood 
burning, which would have looked quite logical at this early 
epoch in the infancy of science, is actually wrong. We know that 
plants take the largest part of the material used in the growth 
of their bodies not from the soil, as the ancients thought and as 
you may also think if nobody has yet told you otherwise, but 
from the air. Soil itself, apart from giving support to the growing 
plant and acting as a reservoir to hold the water which it needs, 
contributes only a very small proportion of certain salts necessary 
for plant growth, and one can grow a very big plant of corn from 
the amount of soil contained in a little thimble.

The truth is that the atmospheric air, which is a mixture of 
nitrogen and oxygen (and not a simple element as the ancients 
thought) contains also a certain amount of carbon dioxide, the 
molecules of which are formed by atoms of oxygen and atoms of 
carbon. Under the action of sunlight, the green leaves of the 
plant absorb atmospheric carbon dioxide, which reacts with the 
water supplied through the roots to form various organic mate
rials from which the body of the plant is built. The oxygen is
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partially returned to the atmosphere, the process being respon
sible for the fact that “plants in the room refresh the air.”

When wood bums, the molecules of wood-stuff unite again 
with the oxygen from the air, turning again into carbon dioxide 
and water vapor, which escape in the hot flame.

As to the “fire atoms” that the ancients believed entered into 
the material structure of the plant, they do not exist. The sun
light furnishes only the energy that is needed to break up mole
cules of carbon dioxide, thus making this atmospheric food diges
tible by the growing plant; and, since fire atoms do not exist, 
obviously their “escape” is not the explanation of fire; flame is 
simply the massed stream of gases heated up and made visible by 
the energy liberated in the process.

Let us now take another example illustrating similar differ
ences between ancient and modem views on chemical transfor
mations. You know of course that different metals are obtained 
from corresponding ores by subjecting them to very high tem
peratures in blast furnaces. At first sight most ores do not seem to 
differ much from ordinary rocks, so it is not surprising that 
ancient scientists believed that ores were made from the same 
stone-stuff as any other rock. Yet when they put a piece of iron 
ore into a hot fire they found that there came from it something 
quite different from ordinary rock—a strong shining substance of 
which good knives and spearheads could be made. The simplest 
way to explain this phenomenon was to say that the metal was 
formed by a union of stone and firy—or in other words, that the 
molecules of metal combined in their substance stone and fire 
atoms.

Having thus accounted for metals in general, they explained 
the different qualities of different metals such as iron, copper, 
and gold by saying that different proportions of stone and fire 
atoms went into their formation. Wasn’t it obvious that shining 
gold contained more fire than darkish, dull iron?

But if this were so, why not add more fire to the iron, or still 
better to the copper, and thus turn them into the precious gold? 
Reasoning thus, practical-minded alchemists of the Middle Ages 
spent much of their lives over their smoky hearths trying to make 
“synthetic gold” from cheaper metals.



From their point of view their work was just as reasonable as 
that of a modem chemist who is developing a method for pro
ducing synthetic rubber; the fallacy of their theory and practice 
lay in their belief that gold and other metals were composite, 
rather than elementary substances. But how could one know 
which substance was elementary and which composite without 
trying? Had it not been for the futile attempts of these early 
chemists to turn iron or copper into gold or silver we might 
never have learned that metals are elementary chemical sub
stances and that metal-bearing ores are composites formed by a 
combination of the atoms of metals and oxygen (metal oxides as 
the modem chemist says).

The transformation of iron ore into metallic iron under the 
sizzling heat of a blast furnace is not due to a union of atoms 
(stone atoms and fire atoms) as ancient alchemists thought, but 
quite the contrary, a result of a separation of atoms, that is, 
the removal of oxygen atoms from the composite molecules of 
iron oxide. The rust that appears on the surfaces of iron objects 
exposed to dampness is not composed of stone atoms left behind 
when fire atoms escape during the decomposition of iron-stuff, 
but to the formation of composite molecules of iron oxide result
ing from the union of iron atoms and oxygen atoms from the ail 
or water. 1

From the above discussion it is apparent that ancient scientists’ 
conceptions of the inner structure of matter and the nature of 
chemical transformation were basically correct; their error lay in

1 Thus whereas an alchemist would express the processing of iron ore by 
the formula:

(stone atom) +  (fire atom)—>( iron molecule)
 ̂ -*

ore
and the rusting of iron by:

( iron molecule) —> ( stone atoms) + ( fire atoms)

rust
we write for the same processes:

(iron oxide molecule) —> (iron atoms) +  (oxygen atoms) 
iron ore

and
(iron atoms) + ( oxygen atoms) —> (iron oxide molecule)

^ -> 

rust
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a misconception of what constituted basic elements. In fact none 
of the four kinds of matter that Empedocles listed as elementary 
is in reality elementary; air is a mixture of several different gases, 
water molecules are formed from hydrogen and oxygen atoms, 
rocks have a very complex composition involving a great many 
different elements, and finally fire atoms do not exist at all.2

Actually there exist in nature not four but ninety-two dif
ferent chemical elements, that is ninety-two different kinds of 
atoms. Some of these 92 chemical elements such as oxygen, carbon, 
iron, and silicon (the principal ingredients of most rocks) are 
rather abundant on the Earth and are familiar to everybody; 
others are very rare. You have probably never even heard of 
such elements as praseodymium, dysprosium or lanthanum. 
In addition to natural elements modern science has succeeded in 
making artificially several entirely new chemical elements, which 
we shall consider a little later in this book, one of which, known 
as plutonium, is destined to play an important role in the release 
of atomic energy for both warlike and peaceful uses. Combining 
among themselves in various proportions, the atoms of ninety- 
two basic elements form the unlimited number of various com
plex chemical materials such as water and butter, oil and soil, 
stones and bones, tea and TNT, and many other stuffs like 
triphenylpiriliumchloride and methylisopropylcyclohexane—terms 
which a good chemist must know by heart, but which most per
sons wouldn’t even try to pronounce in one breath. And volumes 
upon volumes of chemical handbooks are being written to sum
marize the properties, the methods of preparation, and so forth 
of all this unlimited display of atomic combinations.

2. HOW LARGE ARE THE ATOMS?

When Democritus and Empedocles spoke of atoms they were 
essentially basing their arguments on vague philosophical ideas 
concerning the impossibility of imagining a process in which 
matter could be divided into smaller and smaller pieces without 
ever arriving at an indivisible unit.

2 As we shall see later in this chapter, the idea of fire atoms was partially 
regenerated in the theory of light quanta.



When a modern chemist speaks of atoms, he means something 
much more definite, since precise knowledge of elementary atoms 
and their combination in complex molecules is absolutely neces
sary to the understanding of a fundamental law of chemistry 
according to which different chemical elements unite only in 
well-defined proportions by weight, the proportions that must 
apparently reflect the relative weights of the separate atoms of 
these substances. Thus the chemist concludes for example that 
the atoms of oxygen, aluminum, and iron must be respectively 
sixteen, twenty-seven, and fifty-six times heavier than the atoms 
of hydrogen. But, whereas the relative atomic weights of different 
elements represent the most important piece of basic chemical 
information, the actual weights of atoms, expressed in grams, are 
absolutely immaterial in chemical work, and knowledge of these 
exact weights would not in any way affect other chemical facts 
or application of the laws, and the methods of chemistry.

However, when a physicist considers atoms, his first question 
is bound to be: “What is the actual size of atoms in centimeters, 
how much do they weigh in grams, and how many individual 
atoms or molecules are there in a given amount of material? Is 
there any way to observe, to count, and to handle atoms and 
molecules individually one by one?”

There are many different ways of estimating the size of atoms 
and molecules, and the simplest of them is so simple that Democ
ritus and Empedocles working without modern laboratory equip
ment could probably have used it had they happened to think 
about it. If the smallest unit in the composition of any material 
object, say a piece of copper wire, is an atom, it must obviously 
be impossible to make of this material a sheet thinner than the 
diameter of one such atom. Thus we can try to stretch our copper 
wire until it finally represents a chain of single atoms, or we can 
hammer it into a thin copper-leaf one atomic diameter thick. 
With copper wire, or any other solid material this task is next to 
impossible because the material will inevitably break before the 
desired minimum thickness is achieved. But liquid materials such 
as a thin layer of oil on the surface of water may easily be spread 
in a layer composed of a single blanket, so to speak, of its mole
cules, a mere film in which “individual” molecules join one
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another horizontally, but in which none are piled on others verti
cally. With care and patience the reader can make this experi
ment himself, thus measuring by simple means the size of oil 
molecules.

Take a shallow long vessel (Figure 43), place it on a table 
or floor so that it is absolutely level, fill it with water to the rim, 
and put across it a wire that will touch the surface of the water. If  
you now drop a small droplet of some pure oil on one side of the 
wire, the oil will spread all over that part of the surface of the 
water that is on the side of the wire on which you have dropped 
the oil. If  you now move your wire along the rim of the vessel, 
away from the oil, the layer of oil will spread, following the wire

F i g u r e  4 3

A thin oil layer on the water surface breaks up when stretched too
much.

and becoming thinner and thinner and its thickness must ulti
mately become equal to the diameter of a single oil molecule. 
Any further motion of the wire after this thinness is achieved 
will result in the breaking up of the continuous oil surface and 
the formation of water holes. Knowing the amount of oil you put 
on the water, and the maximum area over which it can spread 
without breaking up, you can calculate easily the diameter of a 
single molecule.

While performing this experiment, you may observe another 
interesting phenomenon. When you drop some oil on the free 
water surface you will notice first the familiar rainbow coloring 
of the oil surface, just as you have probably seen it many times 
on water in harbors frequented by ships. This coloring is due



to the well-known phenomenon of the interference of light rays 
reflected from the upper and lower boundaries of the oil layer, 
and the difference of color in different places is due to the fact 
that the oil layer spreading from the spot where the drop was 
placed has different thicknesses at different spots. If you wait a 
little until the layer becomes uniform, the entire oil surface will 
attain a uniform coloring. As the oil layer becomes thinner the 
coloring will gradually change from red to yellow, from yellow 
to green, from green to blue, and from blue to violet in con
formance with the decreasing wavelength of light. If we continue 
to extend the area of the oil surface the coloring will entirely 
disappear. This does not mean that the oil layer is not there, but 
simply that its thickness has become less than the shortest visible 
wavelength, and the coloring goes out of the range of our vision. 
But you will still be able to distinguish the oily surface from the 
clear surface of water, since the two beams of light reflected from 
the upper and lower surfaces of a very thin layer will interfere 
in a way that leads to the reduction of total intensity. Thus when 
the coloring disappears the oily surface will differ from the pure 
surface by appearing somewhat more “dull” in the reflected light.

In actually performing this experiment, you will find that 1 cu 
mm of oil can cover about 1  sq m of water surface, but that any 
further attempt to stretch the oil film will lead to the formation 
of clear-water areas. 3

3. MOLECULAR BEAMS

Another interesting method of demonstrating the molecular 
structure of matter can be found in the study of the outflow of

3 How thin, then, is our oil layer just before it breaks up? In order to 
follow the calculations involved, envisage the droplet containing 1 cu mm
of oil as an actual cube, each side of which is 1 sq mm. In order to stretch
our original 1 cu mm of oil over the area of 1 sq m the 1-mm-square surface 
of the oil cube that is in contact with the water surface must be increased 
by a factor of a thousand (from 1 sq mm to 1 sq m ). Consequently the 
vertical dimension of the original cube must be reduced by a factor 1000 
Xl000 =  106 in order to keep the total volume constant. This gives us for 
the limiting thickness of the layer, and consequently for the actual size of 
oil molecules, the value of about 0.1 cmX 10~e =  10~7 cm. Since an oil 
molecule consists of several atoms, the size of atoms is somewhat smaller.

Descending Staircase 123



124 Microcosmos

gases and vapors through small openings into the surrounding 
empty space.

Suppose we have a large well-evacuated glass bulb (Figure 44) 
inside which is placed a small electric furnace consisting of a 
clay cylinder with a little hole in its wall, the cylinder surrounded 
by an electric resistance wire to furnish heat. If we place in the 
furnace a piece of some low-melting metal like sodium or potas
sium, the interior of the cylinder becomes filled with a metal 
vapor, which will leak out into surrounding space through the
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little hole in the cylinder’s wall. Coming into contact with the 
cold walls of the glass bulb, the vapor will stick to them, and the 
thin mirrorlike deposit formed on various parts of the wall will 
clearly show us the way the material travels after escaping from 
the furnace.

Further, we shall see that the distribution of the film on the 
glass wall will differ, at different temperatures of the furnace. 
When the furnace is very hot, so that the density of the metal 
vapor inside it is rather high, the phenomenon will look familiar 
to anyone who has watched the steam escaping from a teakettle 
or a steam engine. Coming out through the opening, the vapor 
will expand in all directions (Figure 44a), filling up the entire



volume of the bulb, and forming a more or less uniform deposit 
over the entire outer surface.

At lower temperatures, however, when the density of vapor 
inside the furnace is low, the phenomenon proceeds in an entirely 
different way. Instead of spreading out in all directions, the sub
stance escaping through the hole seems to move along a straight 
line, and most of it is deposited on the glass wall facing the 
opening in the furnace. This fact can be particularly emphasized 
by placing some small object in front of the opening (Figure 
44b). No deposit will be formed on the wall behind the object, 
and this region clear of deposit will have the exact shape of the 
geometrical shadow of the obscuring object.

The difference in behavior between gases escaping at high and 
low densities can be easily understood if one remembers that the 
vapor is formed by a very large number of separate molecules 
rushing through space in all directions and continuously colliding 
with one another. When the density of the vapor is high the 
stream of gas coming out through the opening can be compared 
with a frenzied crowd rushing through the exit doors of a burn
ing theater. Having passed the doors, the people still bump into 
one another as they scatter in all directions on the street. When 
the density is low, on the other hand, it is as though only one 
person were passing through the door at one time and therefore 
proceeded straight ahead without interference.

The stream of matter of low vapor density coming through 
the furnace opening is known as a “molecular beam” and is 
formed by a large number of separate molecules flying through 
space side by side. Such molecular beams are very useful in a 
study of the individual properties of molecules. For example, one 
can use it to measure the velocity of thermal motion.

A device for the study of the velocity of such molecular beams 
was first built by Otto Stern, and is practically identical with that 
used by Fizeau for measuring the speed of light (see Figure 31). 
It consists of two cogwheels mounted on a common axis, and so 
arranged as to allow a molecular beam to pass through them only 
when the angular velocity of rotation is just right (Figure 45). By 
intercepting with a diaphragm a thin molecular beam from such
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an apparatus, Stem was able to demonstrate that the velocity of 
molecular motion is generally very high (1.5 km per second for 
sodium atoms at 2 0 0 ° C ), and that it increases as the temperature 
of the gas rises. This furnishes a direct proof of the kinetic theory 
of heat, according to which the increase of the heat of a body is

merely an increase in the irregular thermal motion of its mole
cules.

4. ATOMIC PHOTOGRAPHY

Although the above examples can hardly leave any doubt of 
the correctness of the atomic hypothesis, it is still true that “seeing 
is believing”; so that the most convincing evidence of the exist
ence of atoms and molecules would lie in the tiny units them
selves as seen by human eyes. Such a visual demonstration has 
been achieved only comparatively recendy by the British physicist 
W. L. Bragg, who developed a method of obtaining photographs 
of separate atoms and molecules in various crystalline bodies.

One must not think, however, that photographing atoms is an 
easy job, since in taking pictures of such small objects one has to 
take into account the fact that the picture will be hopelessly 
blurred unless the wavelength of illuminating light is smaller 
than the size of the object to be photographed. There is no way 
to paint a Persian miniature with a housepainting brush! Biolo
gists, who work with tiny micro-organisms, know this difficulty



very well since the size of bacteria (about 0 . 0 0 0 1  cm) is com
parable to the wavelength of visible light. In order to improve 
the sharpness of the image they take their microphotographs of 
bacteria in ultraviolet light, thus obtaining somewhat better 
results than they might otherwise. But the size of molecules and 
their distances apart in a crystal lattice is so small ( 0 . 0 0 0 0 0 0 0 1  

cm) that neither visible nor ultraviolet light is of any use when 
they are asked to sit for their portraits. In order to see the mole
cules separately we must necessarily use radiation with a wave
length thousands of times shorter than that of visible light—or, 
in other words, we have to use the radiation known as X  rays.
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But here we encounter a seemingly insurmountable difficulty: 
X rays will pass through any substance practically without refrac
tion, so that neither a lens nor a microscope will function when 
used with X rays. This property, together with the great pene
trating power of X rays, is, of course, very useful in medical 
science, since refraction of rays while passing through the human 
body would completely blur all X-ray pictures. But the same 
property seems to exclude any possibility of getting any enlarged 
picture by means of X rays!

At first sight the situation seems hopeless, but W. L. Bragg 
found a very ingenious way out of the difficulty. He based his 
considerations on the mathematical theory of the microscope,
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developed by Abbe, according to which any microscopic image 
may be considered as the overlapping of a large number of sepa
rate patterns, each pattern being represented by parallel dark 
bands running at a certain angle through the field. A simple 
example illustrating the above statement can be seen in Figure 46, 
which shows how a picture of a luminous elliptical area in the 
center of the dark field can be obtained by the overlapping of 
four separate band systems.

According to Abbe’s theory the functioning of a microscope 
consists in ( 1 ) breaking the original picture into a large number 
of separate band patterns, ( 2 ) enlarging each individual pattern, 
and (3 ) overlapping the patterns again in order to obtain the 
enlarged image.

The procedure may be compared with the method of printing 
colored pictures by using a number of single-colored plates. 
Looking at each separate color print, you may not be able to tell 
what the picture actually represents, but as soon as they all over
lap in a proper way, the whole picture stands out clear and 
sharp.

The impossibility of constructing an X-ray lens which would 
perform all these operations automatically forces us to proceed 
step by step: taking a large number of separate X-ray band pat
terns of the crystal from all different angles, and then overlapping 
them in a proper way on one piece of photographic paper. Thus 
we can do exactly the same as an X-ray lens would do, but 
whereas the lens would do it almost instantaneously it would 
require a skillful experimenter many hours. This is why using 
Bragg’s method we can make a picture of crystals, in which the 
molecules stay in their places, but cannot photograph them in 
liquids or gases, where they rush around in a wild dance.

Although the pictures made by Bragg’s method are not actually 
obtained by a single click of the camera, they are as good and 
correct as any composite picture could be. Nobody would object 
to a photograph of a cathedral composed of several separate 
pictures, if for technical reasons one could not photograph the 
entire structure on one plate!

In Plate I we see a similar X-ray picture of a molecule of 
hexamethylbenzene, for which chemists write the formula:
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The ring formed by six carbon atoms and another six carbon 
atoms attached to it stands out clearly in the picture, whereas 
the impressions of lighter hydrogen atoms are barely visible.

Even doubting Thomas, after seeing with his own eyes such 
photographs as these, would agree that the existence of molecules 
and atoms had been proved.

5. DISSECTING THE ATOM
When Democritus gave the atom its name, which in Greek 

means “indivisible,” he meant that these particles represent the 
ultimate possible limit to which the breaking up of matter into its 
component parts could be carried, atoms, in other words, being 
the smallest and simplest structural parts of which all material 
bodies are composed. When thousands of years later the original 
philosophical idea of “an atom” was incorporated into the exact 
science of matter, and given flesh and blood on the basis of exten
sive empirical evidence, the belief in atomic indivisibility went 
along with it, and different properties of the atoms of various 
elements were hypothetically attributed to their different geo
metrical shapes. Thus, for example, the atoms of hydrogen were 
considered as being nearly spherical, whereas the atoms of sodium 
and potassium were believed to have the shapes of elongated 
ellipsoids.

The atoms of oxygen on the other hand were thought to have 
the shape of a doughnut with an almost completely closed cen- 
tral hole, so that a water molecule (H 2 0 ) could be formed by 
placing two spherical hydrogen atoms into the holes on either
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side of the oxygen doughnut (Figure 47). The substitution of 
sodium or potassium for hydrogen in a water molecule was then 
explained by the statement that the elongated atoms of sodium 
and potassium could be fitted better into the hole of the oxygen 
doughnut than the spherical atoms of hydrogen.

According to these views, the differences in optical spectra 
emitted by different elements was ascribed to the differences of 
the vibration frequencies of the differently shaped atoms. Rea
soning thus, the physicists have tried unsuccessfully to draw 
conclusions about the shapes of different atoms composing light- 
emitting elements from the observed frequencies of the light 
which they emit, in the very same way as we explain in acoustics 
the differences of the sounds produced by a violin, a church bell, 
and a saxophone.



However, none of these attempts to explain the chemical and 
physical properties of various atoms exclusively on the basis of 
their geometrical shapes, led to any significant progress, and the 
first real step forward in an understanding of atomic properties 
was taken when it was recognized that atoms are not simple ele
mentary bodies of various geometrical shapes, but on the con-
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trary rather complex mechanisms with a large number of inde
pendent moving parts.

The honor of making the first incision in the complicated oper
ation of dissecting the delicate body of the atom belongs to the 
famous British physicist J. J. Thomson, who was able to show 
that the atoms of various chemical elements consist of positively
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and negatively charged parts, held together by the forces of elec
trical attraction. Thomson conceived an atom as a more or less 
uniformly distributed positive electric charge with a large num
ber of negatively charged particles floating in its interior ( Figure 
48). The combined electric charge of negative particles, or of 
electrons as he called them, equals the total positive charge, so 
that the atom on the whole is electrically neutral. Since, however, 
electrons were assumed to be bound comparatively loosely to the 
body of the atom, one or several of them could be removed leav
ing behind a positively charged atomic residue known as positive 
ions. On the other hand, the atoms that manage to get into their 
structure several extra electrons from the outside have an excess 
of negative charge and are known as negative ions. The process 
of communicating to an atom a positive or negative excess of

electricity is known as the process of ionization. Thomson based 
this view on the classical work of Michael Faraday, who had 
proved that whenever the atom carries an electrical charge it is 
always a multiple of a certain elementary amount of electricity 
numerically equal to 5.77 X  10-1 0  electrostatic unit. But Thomson 
went much farther than Faraday by ascribing to these electric 
charges the nature of individual particles, by developing the 
methods of their extraction from atomic bodies, and by studying 
the beams of free electrons flying at high speed through space.

A particularly important result of Thomson’s studies of free 
electron beams was the estimate of their mass. Into the space 
between the two plates of a charged condenser (Figure 49), he 
sent a beam of electrons extracted by a strong electric field from



some such material as hot electric wires. Being charged with 
negative electricity, or to put it more correctly, being the free 
negative charges themselves, the electrons of the beam were 
attracted to the positive electrode and repelled by the nega
tive one.

The resulting deflection of the beam could easily be observed 
by allowing it to fall on a fluorescent screen placed behind the 
condenser. Knowing the charge of an electron, and its deflection 
in a given electric field, it was possible to estimate its mass, 
which turned out to be very small indeed. In fact, Thomson 
found that the mass of one electron is 1840 times smaller than 
the mass of a hydrogen atom, thus indicating that the main por
tion of atomic mass is contained in its positively charged parts.

Being quite right in his views about the swarm of negative 
electrons moving inside the atom, Thomson was, however, very 
far from the truth concerning the uniform distribution of a posi
tive charge through the body of the atom. It was shown by 
Rutherford in 1911 that the positive charge of the atom as well 
as the largest part of its mass is concentrated in an extremely 
small nucleus located in the very center of the atom. He came to 
this conclusion as the result of his famous experiments on the 
scattering of the so-called “alpha ( a ) particles” in their passage 
through matter. These 3 -particles are tiny high-speed projectiles 
emitted by the spontaneously breaking up of atoms of certain 
heavy unstable elements (like uranium or radium), and, since 
their mass was proved to be comparable with the mass of atoms 
and their charge is positive, they must be considered as the frag
ments of the original positive body of the atom. As an a-particle 
passes through the atoms of the target material, it is influenced by 
the forces of attraction toward atomic electrons and the forces of 
repulsion from the positive parts of the atom. Since, however, 
the electrons are so exceedingly light, they are no more able to 
influence the motion of the incident a-particle, than a swarm of 
mosquitoes can influence the run of a scared elephant. On the 
other hand the repulsion between the massive positive parts of 
the atom and the positive charge of incident a-particles must be 
able to deflect the latter from their ordinary trajectory and to
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scatter them in all directions, provided they pass sufficiently close 
by one another.

In studying the scattering of a beam of a-particles passing 
through a thin filament of aluminum, Rutherford came to the 
surprising conclusion that in order to explain the observed results 
one must assume that the distance between the incident a-par- 
ticles and the positive charge of the atom becomes smaller than 
one thousandth of the atomic diameter. This can be, of course, 
only possible if both the incident alpha particles and the posi

tively charged part of the atom are thousands of times smaller 
than the atom itself. Thus Rutherford’s discovery shrank the 
originally widespread positive charge of Thomson’s atomic model 
into a tiny atomic nucleus in the very center of the atom, leaving 
the swarm of negative electrons on the outside, so that instead 
of being similar to a watermelon with electrons playing the role 
of seeds, the picture of an atom began to look more like a minia-



tare solar system with an atomic nucleus for the sun, and elec
trons for planets (Figure 50).

The analogy with the planetary system can be further strength
ened by these facts: the atomic nucleus contains 99.97 per cent 
of the total atomic mass as compared with 99.87 per cent of the 
solar system concentrated in the sun, and the distances between 
the planetary electrons exceed their diameters by about the same 
factor (several thousand times) which we find when comparing 
interplanetary distances with the diameters of the planets.

The more important analogy lies, however, in the fact that the 
electric attraction-forces between the atomic nucleus and the 
electrons obey the same mathematical law of inverse square4 as 
the gravity forces acting between the sun and the planets. This 
makes the electrons describe the circular and elliptic trajectories 
around the nucleus, similar to those along which the planets and 
comets move in the solar system.

According to the foregoing views concerning the internal 
structure of the atom, the difference between the atoms of vari
ous chemical elements must be ascribed to the different number 
of electrons rotating around the nucleus. Since the atom as a 
whole is electrically neutral, the number of electrons rotating 
around its nucleus must be determined by the number of ele
mentary positive charges carried by the nucleus itself, which 
number, in its turn, can be estimated directly from the observed 
scattering of a-particles deflected from their tracks by electric 
interaction of the nuclei. It was found by Rutherford that in the 
natural sequence of chemical elements arranged in the order of 
increasing weights there is a consistent increase of one atomic 
electron in each element in the sequence. Thus an atom of hydro
gen has 1 electron; an atom of helium 2; lithium 3; beryllium 4; 
and so on up to the heaviest natural element, uranium, which 
has altogether 92 electrons. 5

This numerical designation of an atom is usually known as the 
atomic number of the element in question, and coincides with its

4 That is, the forces are inversely proportionate to the square of the 
distance between two bodies.

'Now that we have learned the art of alchemy (see later) we can build 
artificially even more complex atoms. Thus the artificial element plutonium 
used in atomic bombs has ninety-four electrons.
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positional number, which indicates its position in a classification 
in which the elements have been arranged by chemists according 
to their chemical properties.

Thus all the physical and chemical properties of any given

element can be characterized simply by the one figure giving the 
number of electrons rotating around the central nucleus.

Toward the end of the last century the Russian chemist 
D. Mendeleev noticed a remarkable periodicity in the chemical 
properties of elements arranged in a natural sequence. He found



that the properties of the elements begin to repeat themselves 
after a definite number of steps. This periodicity is represented 
graphically in Figure 51, in which the symbols of all presently 
known elements are represented along a spiral band on the surface
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The periodic system of elements arranged on a wound ribbon, showing 
the periods 2, 8, and 18. The lower diagram on the opposite page 
represents the other side of the loop of elements (rare earths and 

actinides) which fall out from regular periodicity.

of a cylinder in such a way that the elements with similar prop
erties are located in columns. We see that the first group contains 
only 2  elements: hydrogen and helium; then we have two groups 
of 8  elements each; and finally the properties repeat themselves 
after every 18 elements. If we remember that each step along 
the sequence of elements corresponds to one additional electron 
in the atom, we must inevitably conclude that the observed 
periodicity of chemical properties must be due to the recurrent 
formation of certain stable configurations of atomic electrons, or 
“electronic shells.” The first completed shell must consist of
2  electrons, the next two shells of 8  electrons each, and all the 
following shells of 18 each. We also notice from Figure 51 that



in the sixth and seventh periods the strict periodicity of properties 
becomes a little confused and two groups of elements (the so- 
called rare earths and the actinides) must be placed on a band 
protruding from the regular cylindrical surface. This anomaly 
is due to the fact that we encounter here a certain internal recon
struction of the structure of electronic shells, which plays havoc 
with chemical properties of the atoms in question.

Now, having a picture of an atom, we can try to answer the 
question about the forces which bind together the atoms of dif
ferent elements into the complex molecules of innumerable chem
ical compounds. Why, for example, do the atoms of sodium and 
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Schematic picture representing the union of sodium and chlorine atoms 
in a sodium chloride molecule.
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chlorine stick together to form a molecule of table salt? We see 
from Figure 52 representing the shell structure of these two 
atoms that an atom of chlorine lacks one electron in order to 
complete the third shell, whereas an atom of sodium has one 
extra electron left after the completion of its second shell. Thus 
there must be the tendency for the extra electron from sodium 
to go over into chlorine to complete the unfinished shell. As the 
result of this transition of an electron, the sodium atom becomes 
positively charged (by losing a negative electron), whereas the 
atom of chlorine acquires a negative charge. Under the forces of 
electric attraction between them, the two charged atoms (or 
ions as they are called) will cling together forming a molecule



of sodium chloride, or in plain words table salt. In the same way 
an atom of oxygen that lacks two electrons in its outer shell will 
“kidnap” from two hydrogen atoms their single electrons thus 
forming a molecule of water (H 2 O ). On the other hand, there 
will be no tendency to combine either between the atoms of 
oxygen and chlorine, or between those of hydrogen and sodium, 
since in the first case both have the desire to take and not to give, 
whereas in the second case neither wants to take.

The atoms with completed electronic shells, such as those of 
helium, argon, neon, and xenon, are completely self-satisfied and 
do not need to give or to take extra electrons; they prefer to 
remain gloriously lonely making the corresponding elements (so 
called “rare gases”) chemically inert.

We conclude this section about atoms and their electronic 
shells by referring to the important role that atomic electrons 
play in the substances generally known under the collective name 
of “metals.” The metallic substances differ from all other mate
rials by the fact that the outer shells of their atoms are bound 
rather loosely, and often let one of their electrons go free. Thus 
the interior of a metal is filled up with a large number of un
attached electrons that travel aimlessly around like a crowd of 
displaced persons. When a metal wire is subjected to electric 
force applied on its opposite ends, these free electrons rush in 
the direction of the force, thus forming what we call an electric 
current.

The presence of free electrons is also responsible for high heat 
conductivity—but we shall return to this subject in one of the 
following chapters.

6 . MICROMECHANICS AND THE UNCERTAINTY 
PRINCIPLE

Since, as we have seen in the previous section, the atom with 
its system of electrons rotating around the central nucleus 
resembles closely the planetary system, it would be natural to 
expect that it should be subject to the same well-established 
astronomical laws that govern the motion of planets around the 
sun. In particular the similarity between the laws of electric and
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gravitational attraction—in both cases the attractive force is 
inversely proportionate to the square of the distance—would 
suggest that atomic electrons must move along elliptical orbits 
with the nucleus as the focus (Figure 53a).

However, all attempts to build a consistent picture of the 
motion of atomic electrons along the same pattern as that used 
in delineating the movements of our planetary system until 
recendy led to an unexpected disaster of such magnitude that it 
looked for a while as though either the physicists or physics itself 
had become completely insane. The trouble arose essentially

from the fact that, unlike the planets of the solar system, atomic 
electrons are electrically charged, and, as is true of any vibrating 
or rotating electrical charges, their circular motion around the 
nucleus must be expected to give rise to an intensive electro 
magnetic radiation. As a result of the loss of energy that is 
carried away by the radiation, it is logical to suppose that atomic 
electrons approach the nucleus along a spiral trajectory (Figure 
53h ), and finally fall on it when the kinetic energy of their orbital 
motion is completely exhausted. As to the time consumed in this 
process, it was a fairly simple matter to calculate from the known 
electric charge and the rotation frequency of atomic electrons 
that it should not take more than about one hundredth of a micro
second for the electrons to lose all their energy and to fall.

Thus, according to the best knowledge and belief of physicists 
until very recently, the planetary-like atomic structures should 
not be able to exist for more than a negligible part of a second 
and were doomed to an almost immediate collapse as soon as 
they were formed.
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Yet, in spite of these grim predictions of physical theory, 
experiments showed that the atomic systems were very stable 
indeed, and that the atomic electrons kept right on happily 
circling their central nuclei without any loss of energy what
soever, and without any tendency to collapse!

How could it be! Why should the application of old and well- 
established laws of mechanics to atomic electrons lead to con
clusions so contradictory to observed facts?

To answer this question we have to turn to the most funda
mental problem of science: the problem of the nature of science 
itself. What is “science,” and what do we mean by the “scientific 
explanation” of the facts of nature?

To take a simple example, let us remember that many ancient 
peoples believed that the Earth was flat. One can hardly blame 
them for such a belief, because if you come out into an open 
field, or sail in a boat across the water, you will see for yourself 
that it is true; apart from occasional hills and mountains, the 
surface of the Earth does look flat. The mistake of the ancients 
was not in the statement that “the Earth is flat as far as one can 
see it from a given observation point,” but in the extrapolation 
of this statement beyond the limits of actual observation. And, 
in fact, the observations that went far beyond the conventional 
limits, such as the study of the shape of the Earth’s shadow on 
the Moon during the eclipse, or Magellan’s famous expedition 
around the world, immediately proved the error of such extrapo
lation. We say now that the Earth looks flat only because what 
we can see represents a very small portion of the total surface of 
the globe. Similarly, as discussed in Chapter 5, the space of the 
universe may be curved and finite in size, in spite of the fact that 
it looks flat and apparently infinite from the point of view of 
limited observations.

But what has it all to do with the contradiction to which we 
came in studying the mechanical behavior of electrons forming 
the body of the atom? The answer is that, in these studies, we 
have assumed implicitly that the mechanism of an atom follows 
exactly the same laws as those that govern the motion of large 
celestial bodies, or, for that matter, the motion of bodies of 
“normal size” that we are accustomed to handle in everyday life,
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and thus may be described in the same terms. In fact, the familiar 
laws and concepts of mechanics were established empirically for 
material bodies comparable in size to human beings. The same 
laws were later used to explain the motion of much larger bodies, 
such as planets and stars, and the success of celestial mechanics, 
which permits us to calculate with the utmost precision various 
astronomical phenomena millions of years ahead and millions of 
years back in time, seems to leave no doubt of the validity of 
extrapolation of the customary mechanical laws in explaining the 
motion of large celestial masses.

But what assurance do we have that the same laws of me
chanics, which explain the movements of giant celestial bodies, 
as well as those of artillery shells, clock pendulums, and toy 
spinning-tops, will also apply to the motion of electrons that are 
billions and billions times smaller and lighter than the tiniest 
mechanical device we ever had in our hands?

Of course, there is no reason to suppose in advance that the 
laws o f ordinary mechanics must fail in explaining the motion of 
the tiny constituent parts o f the atom; but, on the other hand, 
one should also not b e  too greatly surprised if such a  failure 
actually takes place.

Thus, the paradoxical conclusions, which resulted from the 
attempt to determine the motion of atomic electrons in the same 
way as an astronomer explains the motion of planets in the solar 
system, must first of all be considered in the light of possible 
changes in the fundamental notions and laws of classical me
chanics in its application to particles of such an exceedingly small 
size.

The basic concepts of classical mechanics are those of the tra
jectory described by a moving particle, and of the velocity with 
which a particle moves along its trajectory. The proposition that 
any moving material particle occupies in any given moment a 
definite position in space, and that the consecutive positions of 
this particle form a continuous line known as the trajectory was 
always considered as self-evident, and formed the fundamental 
basis for the description of the motion of any material body. The 
distance between two locations of a given object at different 
moments of time, divided by the corresponding time interval, led



to the definition of velocity, and on these two concepts of location 
and velocity all classical mechanics was built. Until very recently 
it probably never occurred to any scientist that those most funda
mental concepts used in the description of the phenomena of 
motion could be to any extent incorrect, and it was customary 
among the philosophers to consider them as given “a priori.”

However, the complete fiasco that resulted from the attempts 
to apply the laws of classical mechanics to the description of 
motions within the tiny atomic systems showed that in this case 
something was basically wrong, and led to the ever-growing 
belief that this “wrongness” extended to the most fundamental 
ideas on which classical mechanics was based. The basic kine
matic notions of the continuous trajectory of a moving object, 
and its well-defined velocity at any given moment of time seem 
to be too rough when applied to the tiny parts of internal atomic 
mechanisms. In short, the attempt of the extrapolation of the 
ideas of familiar classical mechanics into the region of exceed
ingly small masses proved conclusively that in doing so we have 
to change these ideas in a rather drastic way. But if the old 
notions of classical mechanics do not apply in the atomic world, 
they also cannot be absolutely correct in regard to the motion of 
larger material bodies. Thus we are led to the conclusion that the 
principles underlying classical mechanics must be considered 
only as very good approximations to the “real thing ” approxima
tions that fail badly as soon as we try to apply them to systems 
more delicate than those for which they were originally intended.

The essentially new element that was brought into the science 
of matter by the study of the mechanical behavior of atomic sys
tems, and by the formulations of the so-called quantum physics 
consisted in the discovery of the fact that there is a certain lower 
limit for any possible interaction between two different material 
bodies, which discovery plays havoc with the classical definition of 
the trajectory of a moving object. In fact, the statement that there 
exists such a thing as the mathematically exact trajectory of a 
moving object implies the possibility o f recording this trajectory 
by means of some specially adapted physical apparatus. It must 
not, however, be forgotten that in recording the trajectory of any 
moving object we necessarily disturb the original motion; in

Descending Staircase 143



144 Microcosmos

fact if our moving object exercises some action on the measuring 
apparatus that records its successive positions in space, the appa
ratus acts back on the moving object according to the Newtonian 
law of the equality of action and reaction. If, as it was assumed 
in classical physics, the interaction between two material bodies 
(in this case between the moving object and the apparatus 
recording its position) can be made as small as desired, we may 
imagine an ideal apparatus so sensitive that it records the suc
cessive positions of the moving object with practically no dis
turbance of its motion.

SpWical 'OrblK D o u g h n u t O r b i t
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Micromechanical pictures of the electronic motion in the atom.

The existence of the lower limit of physical interactions changes 
the situation in a rather radical way, since we cannot any more 
reduce the disturbance of motion caused by its recording to an 
arbitrarily small value. Thus the disturbance of motion caused by 
its observation becomes an integral part of the motion itself, and, 
instead of speaking about the infinitely thin mathematical line 
representing the trajectory, we are forced to substitute in its place 
a diffused band of a finite thickness. The mathematically sharp 
trajectories of classical physics become broad diffused bands in 
the eyes of the new mechanics.

The minimum amount of physical interaction, or the quantum 
of action as it is usually known, has however a very small 
numerical value and becomes of importance only when we study 
the motion of very tiny objects. Thus, for example, although it is 
true that the trajectory of a revolver bullet is not a mathemati
cally sharp line, the “thickness” of this trajectory is many times 
smaller than the size of a single atom of the material forming the 
bullet, and thus can be assumed to be practically zero. However,



turning to the lighter objects that are more easily influenced by 
the disturbances originating in the measurement of their motion, 
we find that the “thickness” of their trajectories becomes more 
and more essential. In the case of atomic electrons rotating 
around the central nucleus the thickness of the orbit becomes 
comparable to its diameter, so that, instead of representing their 
motion by a line as it was done in Figure 53, we are compelled 
to visualize it in the way shown in Figure 54. In such cases the 
motion of the particles cannot be described in the familiar terms 
of classical mechanics, and both its position and its velocity are 
subject to a certain indefiniteness (Heisenberg’s uncertainty re
lations and Bohr’s complimentarity principle) . 6

This startling development of the new physics, which throws 
into the wastepaper basket such familiar notions as trajectory of 
motion and the exact position and velocity of a moving particle, 
seems to leave us in thin air. If we are not permitted to use these 
formerly accepted basic principles in our study of atomic elec
trons, on what can we base our understanding of their motion? 
What is the mathematical formalism that must be substituted for 
the methods of classical mechanics in order to take care of the 
uncertainties of position, velocity, energy, and so on demanded 
by the facts of quantum physics?

The answer to these questions can be found by considering a 
similar situation that existed in the field of the classical theory of 
light. We know that most of the light phenomena observed in 
ordinary life can be interpreted on the basis of the assumption 
that light propagates along straight lines known as light rays. 
The shapes of shadows thrown by nontransparent objects, the 
formation of images in plane and curved mirrors, the functioning 
of lenses and various more complex optical systems can readily 
be explained on the basis of the elementary laws governing the 
reflection and refraction of light rays (Figure 55a, b, c).

But we also know that the methods of geometrical optics that 
attempt to demonstrate the classical theory of the propagation of 
light by means of light rays fail badly in cases where the geo

6 More detailed discussion of uncertainty relations can be found in the 
author’s book Mr. Tompkins in Wonderland (The Macmillan Co., New 
York, 1940).
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metrical dimensions of the openings used in the optical systems 
become comparable with the wavelength of light. The phenom
ena that take place in these cases, are known as diffraction- 
phenomena and fall entirely outside the scope of geometrical

F ig u r e  5 5

optics. Thus a light beam passing through a very small opening 
( of the order of 0 . 0 0 0 1  cm ) fails to be propagated along a straight 
line, and is instead scattered in a peculiar fanlike manner ( Figure 
55d). When a beam of light falls on a mirror covered with a 
large number of parallel narrow lines scratched on its surface 
(“diffracting grating”), it does not follow the familiar law of 
reflection, but is thrown in a number of different directions deter"



mined by the distances between the scratched lines and the 
wavelength of incident light (Figure 55e). It is also known that 
when light is reflected from thin layers of oil spread on the sur
face of water a peculiar system of light and dark fringes are 
created (Figure 55/).

In all these cases, the familiar notion of a “light ray” com
pletely fails to describe the observed phenomena, and we must 
recognize instead a continuous distribution of light energy over 
the entire space occupied by the optical system.

It is easy to see that the failure of the notion of a light ray in 
application to the optical diffraction phenomena is very similar 
to the failure of the notion of a mechanical trajectory in the phe
nomena of quantum physics. Just as we cannot form in optics an 
infinitely thin light beam, the quantum principles of mechanics 
prevent us from speaking about the infinitely thin trajectories 
of moving particles. In both cases we have to give up all attempts 
to describe the phenomena by saying that something ( light or 
particles) propagates along certain mathematical lines (optical 
rays or mechanical trajectories), and are forced to go over to the 
presentation of the observed phenomena by means of “some
thing” which is spread continuously over the entire space. With 
respect to light this “something” is the intensity of light vibra
tions at various points; with respect to mechanics the “something” 
is the newly introduced notion of the uncertainty of location, the 
probability that a moving particle may be found at any given 
moment, not in a predetermined spot, but in any one of several 
possible locations. It is not possible any more to state exactly 
where a moving particle is at a given moment of time, though 
the limits within which such a statement can be made may be 
calculated by the formulas concerning “uncertainty relations.” 
The relation that exists between the laws of wave optics con' 
cerned with the diffraction of light, and those of the new “micro
mechanics,” or “wave mechanics” (developed by L. de Broglie 
and E. Schrodinger) concerned with the motion of mechanical 
particles, can be made very apparent by the experiments showing 
the similarity of these two classes of phenomena.

In Figure 56 we show the arrangement used by O. Stern in his 
study of atomic diffraction. A beam of sodium atoms, produced
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by a method described earlier in this chapter, is reflected from 
the surface of a crystal. The regular atomic layers forming the 
crystalline lattice act in this case as the diffraction grating for the 
incident beam of particles. The incident sodium atoms reflected 
from the surface of the crystal are collected into a series of little 
bottles placed at different angles, and the number of atoms col
lected in each bottle is carefully measured. The dotted line in 
Figure 56 represents the result. We see that instead of being 
reflected in one definite direction ( as are ball bearings shot from 
a little toy gun onto a metal plate), sodium atoms are distributed

(a) Phenomenon explainable by the notion of trajectory (reflection of
ball bearings from a metal plate).

(b ) Phenomenon unexplainable by the notion of trajectory (reflection
of sodium atoms from a crystal).

within well-defined angles forming a pattern very similar to that 
observed in ordinary X-ray diffraction.

Experiments of such kind cannot possibly be explained on the 
basis of classical mechanics, which describes the motion of sepa
rate atoms along definite trajectories, but are perfectly under
standable from the point of view of the new micromechanics, 
which considers the motion of particles in the same ways as 
modern optics considers the propagation of light waves.



C H A P T E R  V I I

Modern Alchemy

1. EL EM EN TA R Y  PA R TIC LES

HAVING learned that the atoms of various chemical elements 
represent rather complicated mechanical systems with a 

large number of electrons rotating around the central nucleus, we 
inevitably ask whether these atomic nuclei are the ultimate indi
visible structural units of matter, or whether they in turn can be 
subdivided still farther into smaller and simpler parts. Would it 
be possible to reduce all the 92 different atomic types to perhaps 
a couple of really simple particles?

As early as the middle of the last century this desire for sim
plicity had driven an English chemist, William Prout, to a 
hypothesis according to which the atoms of all different chemical 
elements have a common nature representing only various degrees 
of “concentration” of hydrogen atoms. Prout based his hypothe
sis on the fact that the chemically determined atomic weights of 
various elements in respect to hydrogen are in most cases repre
sented very closely by integer numbers. Thus according to Prout, 
the atoms of oxygen, which are 16 times heavier than those of 
hydrogen, must be considered as made up from 16 hydiogen 
atoms stuck together. The atoms of iodine with an atomic weight 
of 127 must be formed by an aggregate of 127 hydrogen atoms, 
etc.

However the findings of chemistry were at that time very un
favorable to the acceptance of this bold hypothesis. It was shown, 
by the exact measurements of atomic weights, that they could not 
be represented exactly by integer numbers but in most cases only 
by numbers very close to integers, and in a few cases by num
bers that were not even close to integers. (The chemical atomic 
weight of chlorine, for instance, is 35.5.) These facts, which are 
seemingly in direct contradiction to Prout’s hypothesis, discred-
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ited it and Prout died without ever learning how right he actually 
was.

It was not until the year 1919 that his hypothesis again asserted 
itself through the discovery of the British physicist F. W. Aston, 
who showed that ordinary chlorine represents a mixture of two 
different kinds of chlorine possessing identical chemical proper
ties but having different integer atomic weights: 35 and 37. The 
noninteger number 35.5 obtained by chemists represents only 
the mean value for the mixture. 1

The further study of various chemical elements revealed the 
striking fact that most of them are a mixture of several compo
nents identical in chemical properties but different in atomic 
weight. They received the name of isotopes, that is, substances 
occupying the same place in the periodic system of elements.2 

The fact that the masses of different isotopes are always the 
multiples of the mass of a hydrogen atom gave new life to Prout’s 
forgotten hypothesis. Since, as we have seen in the previous sec
tion, the main mass of the atom is concentrated in its nucleus, 
Prout’s hypothesis can be reformulated in modem language by 
saying that the nuclei o f different atomic species are composed 
of various numbers of elementary hydrogen nuclei, which, be
cause of their role in the structure of matter, were given the 
special name of “protons.”

There is, however, one important correction to be made in the 
above statement. Consider for example the nucleus of an oxygen 
atom. Since oxygen is the eighth element in the natural sequence, 
its atom must contain 8  electrons and its nucleus must carry 
8  positive elementary charges. But oxygen atoms are 16 times 
heavier than those of hydrogen. Thus, if we assume that an oxy
gen nucleus is formed from 8  protons, we would get a correct 
charge but a wrong mass (both 8 ); assuming 16 protons we get 
correct mass but wrong charge (both 16).

It is clear that the only way out of the difficulty lies in the 
assumption that some of the protons forming complex atomic

’Since the heavier chlorine is present in the amout of 25 per cent and 
the lighter in the amount of 75 per cent, the mean atomic weight must be: 
0.25x37  + 0 .75x35 =  35.5. which is exactly what the earlier chemists had 
discovered.

2 From the Greek «ros meaning equal and tottos meaning place.



nuclei have lost their original positive charges and are electri
cally neutral.

The existence of such chargeless protons, or “neutrons” as 
they are called now, was suggested by Rutherford as early as 
1920, but it was twelve years before they were found experi
mentally. It must be noted here that protons and neutrons should 
not be considered as two entirely different kinds of particles, but 
rather as two different electrical states of the same basic particle
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known now under the name of a “nucleon.” In fact, it is known 
that protons can turn into neutrons by losing their positive 
charge, and neutrons can turn into protons by acquiring it.

The introduction of neutrons as the structural units of atomic 
nuclei removes the difficulty discussed on previous pages. In 
order to understand that the nucleus of an oxygen atom has 
16 units of mass, but only 8  units of charge we must accept the 
fact that it is formed by 8  protons and 8  neutrons. The nucleus 
of iodine, with an atomic weight of 127 and the atomic number 
53, consists of 53 protons and 74 neutrons, whereas the heavy
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nucleus of uranium (atomic weight: 238, atomic number: 92) is 
formed by 92 protons and 146 neutrons.3

Thus, almost a century after its origin, the bold hypothesis of 
Prout finally received the honorable recognition that it so well 
deserved, and we may now say that the infinite variety of known 
substances results from different combinations of only two kinds 
of fundamental particles: ( 1 ) nucleons, the basic particles of 
matter, which can be either neutral or can carry a positive elec
tric charge; and ( 2 ) electrons, the free charges of negative 
electricity (Figure 57).

Here, then are a few recipes from “The Complete Cook Book 
of Matter” showing how each dish has been prepared in the 
Cosmic Kitchen from a larder well-stocked with nucleons and 
electrons:

w a t e r . Prepare a large number of oxygen atoms, making each 
by combining 8  neutral and 8  charged nucleons, and surrounding 
nucleus so obtained by an envelope made of 8  electrons. Prepare 
twice as many hydrogen atoms by attaching single electrons to 
single charged nucleons. Add 2 hydrogen atoms to each oxygen 
atom; mix together the water molecules so obtained and serve 
cold in a large glass.

t a b l e  s a l t . Prepare sodium atoms by combining for each 12 
neutral and 1 1  charged nucleons and attaching to each nucleus
11 electrons. Prepare an equal number of chlorine atoms by com
bining 18 or 20 neutral and 17 charged nucleons (isotopes), 
attaching to each nucleus 17 electrons. Arrange the sodium and 
chlorine atoms in a three-dimensional chessboard pattern to form 
regular salt crystals.

t n t . Prepare carbon atoms by combining 6  neutral and 6  

charged nucleons with 6  electrons attached to the nucleus. Pre
pare nitrogen atoms from 7 neutral and 7 charged nucleons each 
with 7 electrons around the nucleus. Prepare oxygen and hydro
gen atoms according to the prescription given above (see: 
w a t e r ) .  Arrange 6  carbon atoms in a ring with a 7th carbon

3 Looking through the table of atomic weights you will notice that at the 
beginning of the periodic system atomic weights are equal to twice the 
atomic number, meaning that these nuclei contain an equal number of 
protons and neutrons. For heavier elements atomic weights increase more 
rapidly indicating that there are more neutrons than protons.



atom outside the ring. Attach 3 pairs of oxygen atoms to 3 car
bons of the ring placing in each case 1  nitrogen atom between 
oxygen and carbon. Attach 3 hydrogen atoms to the carbon out
side the ring, and 1  hydrogen to each of the 2  vacant carbon 
places in the ring. Arrange the molecules so obtained in a regular 
pattern to form a large number of small crystals and press all 
these crystals together. Handle with care, since this structure is 
unstable and highly explosive.

Although, as we have just seen, neutrons, protons, and negative 
electrons represent the only necessary building units for the con
struction of any desired material substance, this list of basic 
particles seems still somewhat incomplete. In fact, if ordinary 
electrons represent free charges of negative electricity, why can’t 
we also have free charges of positive electricity, that is, positive 
electrons?

Also, if a neutron, which apparently represents the basic unit 
of matter, can acquire a positive electric charge, thus becoming 
a proton, why cannot it also become negatively charged, forming 
a negative proton?

The answer is that positive electrons, which are quite similar 
to ordinary negative electrons except in the sign of their charge, 
actually do exist in nature. And there is also a certain possibility 
that negative protons exist, although experimental physics has not 
yet succeeded in detecting them.

The reason that positive electrons and negative protons (if any) 
are not as plentiful in our physical world as negative electrons 
and positive protons lies in the fact that these two groups of 
particles are, so to speak, antagonistic to each other. Everybody 
knows that two electrical charges, one of which is positive and 
the other negative, will cancel each other when they are put 
together. Thus, since the two kinds of electrons represent nothing 
else but free charges of positive and negative electricity, one 
should not expect them to coexist in the same region of space. 
In fact, as soon as a positive electron encounters a negative one, 
their electric charges will immediately cancel one another and the 
two electrons will cease to exist as individual particles. Such a 
process of mutual annihilation of two electrons results, however, 
in the birth of an intensive electromagnetic radiation ( gamma [y]

Modern Alchemy 153



154 Microcosmos

rays) escaping from the point of the encounter and carrying with 
it the original energy of the two vanished particles. According 
to a fundamental law of physics, energy can be neither created 
nor destroyed, and we are witnessing here only the transforma
tion of the electrostatic energy of the free electric charges into the 
electrodynamic energy of the radiated wave. The phenomenon 
which results from the encounter of a positive and a negative 
electron is described by Prof. Born4 as a “wild marriage” and
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Schematic picture of the “annihilation” process of two electrons giving 
rise to an electromagnetic wave, and the “creation” of a pair by a wave 

passing close to an atomic nucleus.

by the more gloomy Prof. Brown5 as the “mutual suicide” of the 
two electrons. Figure 58a is a graphic representation of the 
encounter.

The process of “annihilation” of two electrons with opposite
charges, has its counterpart in the process of “pair formation,”
by which a positive and a negative electron are formed appar-

4M. Born, Atomic Physics (G. E. Stechert & Co., New York, 1935). 
e T. B. Brown, Modem Physics (John Wiley & Sons, New York, 1940).



ently from nothing as a result of strong gamma radiation. We 
say “apparently” from nothing because actually each such new
born pair of electrons is formed at the cost of the energy sup
plied by y-rays. In fact the amount of energy that must be given 
away by the radiation in order to form an electron pair is exactly 
the same as that which is set free in the process of annihilation, 
This process of pair formation, which takes place preferably 
when the incident radiation passes close to some atomic nucleus,0 

is represented schematically in Figure 58b. We have here an 
example of the formation of two opposite charges of electricity 
where there was originally no charge at all, a process that should 
not, however, be considered any more surprising than the familiar 
experiment in which an ebonite stick and a piece of wool cloth 
become charged with opposite electricities when rubbed against 
each other. Having a sufficient amount of energy, we can produce 
as many pairs of positive and negative electrons as we like, recog
nizing fully, however, the fact that the process of mutual annihi
lation will soon take them out of circulation again, paying back 
“in full” the amount of energy originally spent.

A very interesting example of such “mass production” of elec
tron pairs is presented by the phenomenon of “cosmic-ray 
showers,” which are produced in the terrestrial atmosphere by 
the streams of high-energy particles coming to us from inter
stellar space. Although the origin of these streams which criss
cross in all directions the empty vastness of the universe is still 
one of the unsolved riddles of science, 7 we have a rather clear 
idea of what happens when the electrons moving with terrific

G Although in principle the formation of an electron pair can take place 
in a completely empty space, the process of pair formation is considerably 
helped by the presence of the electric field surrounding atomic nuclei.

7 The most trivial, but probably also the most plausible, explanation of 
the origin of these high-energy particles moving with speeds up to 
99.9999999999999 per cent of the speed of light, lies in the assumption that 
they are accelerated by very high electric potentials presumably existing 
between the giant gas and dust clouds (nebulae) floating in cosmic space. 
In fact, one could expect that such interstellar clouds would accumulate 
electric charges in a way similar to the ordinary thunderclouds in our 
atmosphere, and that the electric potential differences thus created would be 
much higher than those responsible for the phenomenon of lightning striking 
between the clouds during thunderstorms.
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speeds hit the upper layers of the atmosphere. Passing close by 
the nuclei of the atoms that form the atmosphere, the primary 
high-speed electron gradually loses its original energy, which is 
emitted in the form of gamma radiation all along its track (Figure
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The origin of a cosmic ray shower.

59). This radiation gives rise to numerous processes of pair cre
ation, and the newly formed positive and negative electrons rush 
along the path of the primary particle. Having still a very high 
energy these secondary electrons give rise to more gamma radia



tion, which, in its turn, produces still more new electron pairs. 
This process of successive multiplication is repeated many times 
during the passage through the atmosphere, so that the primary 
electron finally arrives at sea level being accompanied by a 
swarm of secondary electrons half of them positive, the other 
half negative. It goes without saying that such cosmic-ray showers 
can also be produced when fast electrons pass through massive 
material bodies, where, due to the higher density, the branching 
processes occur with much higher frequency (See Plate Ha ).

Turning our attention now to the possible existence of negative 
protons, we should expect that this kind of particle could be 
formed by a neutron which had either acquired a negative charge 
or, what is the same, lost a positive one. It is easy to understand, 
however, that such negative protons, no more than positive elec
trons, would be able to exist very long within any ordinary mate
rial. In fact, they will be immediately attracted and absorbed by 
the nearest positively charged atomic nuclei, and most probably 
will be turned into neutrons after entering the nuclear structure. 
Thus, if such protons, which would contribute to the symmetry 
of the present chart of elementary particles, do actually exist in 
matter, it would not be an easy job to detect them. Remember 
that positive electrons were found almost half a century after the 
notion of an ordinary negative electron was introduced into 
science. Assuming the possible existence of negative protons, we 
can contemplate the atoms and molecules that are on the—so to 
say—inverted scheme. Their nuclei, being built from ordinary 
neutrons and negative protons, would have to be surrounded 
by the envelopes of positive electrons. These “inverted” atoms 
will have properties exactly identical with the properties of ordi
nary atoms and there will be no way of telling the difference 
between the inverted water, inverted butter, and so on, and 
ordinary substances under the same name. There will be no way 
of telling the difference—unless we bring the ordinary and 
“inverted” material together. Once, however, two such opposite 
substances are brought together the processes of mutual annihi
lation of the oppositely charged electrons, along with mutual 
neutralization of oppositely charged nucleons will immediately 
take place, and the mixture will explode with the violence sur
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passing that of the atomic bomb. For all we know, there may be 
stellar systems other than ours that are built from such inverted 
material, in which case any ordinary rock thrown from our sys
tem to one constructed the other way, or vice versa, will turn 
into an atomic bomb as soon as it lands.

At this point we must leave these somewhat fantastic specula
tions about inverted atoms, and consider still another kind of 
elementary particles, which, being probably no less unusual, have 
the merit of actually participating in various observable physical 
processes—the so-called “neutrinos” which came into physics 
“through the back door” and, in spite of the “cries of Boeotians” 
rising against them from many quarters, now occupy an unshak
able position in the family of elementary particles. How they 
were found and recognized constitutes one of modern science’s 
most exciting detective stories.

The existence of neutrinos was discovered by a method that a 
mathematician would call “reductio ad absurdum.” The exciting 
discovery began, not with the fact that something was there, but 
rather that something was missing. The missing thing was energy, 
and since energy, according to one of the oldest and most stable 
laws of physics, can be neither created nor destroyed, discovery 
that energy that should have been present was absent indicated 
that there must have been a thief, or a gang of thieves, who took 
it away. And so the detectives of science, having orderly minds 
that like to give names to things even when they cannot see them, 
called the energy thieves “neutrinos.”

But that is a bit ahead of the story. To go back into the facts 
of the great “energy robbery case”: As we have seen before, the 
nucleus of each atom consists of nucleons, about half of them 
neutral (neutrons), the rest positively charged with electricity. 
If  the balance between the relative number of neutrons and pro
tons in the nucleus is destroyed, by adding one or several extra 
neutrons or extra protons, 8 an electric adjustment must necessarily 
take place. If there are too many neutrons some of them will turn 
into protons by ejecting a negative electron, which leaves the 
nucleus. If there are too many protons, some of them will turn

8 This can be done by the method of nuclear bombardment described 
later in this chapter.



into neutrons emitting a positive electron. Two processes of this 
kind are illustrated in Figure 60. Such electric adjustments of 
an atomic nucleus are usually known as the beta-decay process, 
and electrons emitted from the nucleus are known as beta (/?)- 
particles. Since the internal transformation of a nucleus is a well- 
defined process, it must always be connected with the liberation 
of a definite amount of energy, which is communicated to the 
ejected electron. Thus we should expect that the /3-electrons
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The scheme on negative and positive beta decay (for the convenience 
of presentation all nucleons are drawn in one plane).

emitted by a given substance must all move with the same veloc
ity. The observational evidence concerning the processes of beta 
decay stood, however, in a direct contradiction to this expecta
tion. In fact it was found that the electrons emitted by a given 
substance have different kinetic energies from zero to a certain 
upper limit. Since no other particles were found and no radiation 
that would balance this discrepancy, the “case of the missing 
energy” in the processes of beta decay became quite serious. It 
was believed for awhile that we were facing here the first experi
mental evidence of the failure of the famous law of energy con
servation, which would be quite a catastrophe for all the elaborate



building of physical theory. But there was another possibility: 
perhaps the missing energy was being carried away by some new 
kind of particles, which had escaped without having been noticed 
by any of our observational methods. It was suggested by Pauli 
that the role of such “Bagdad thieves” of nuclear energy could be 
played by hypothetical particles called neutrinos, which carry 
no electric charge and whose mass does not exceed the mass of
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The recoil problem in artillery and nuclear physics.

an ordinary electron. In fact, one could conclude from the known 
facts concerning the interaction of fast-moving particles and mat
ter, that such chargeless, light particles could not be noticed by 
any existing physical apparatus, and would pass without any 
difficulty through enormously large thicknesses of any screening 
material. Thus, whereas the visible light would be completely 
stopped by a thin metallic filament, and the highly penetrating



X- and gamma radiations would require several inches of lead to 
be substantially reduced in intensity, a beam of neutrinos would 
go without much difficulty through the thickness of several light- 
years of lead! No wonder that they escape from any possible 
observation, and can be noticed only because of the deficit of 
energy caused by their escape.

But although we cannot catch these neutrinos once they have 
left the nucleus, there is a way of studying the secondary effect 
caused by their departure. When you shoot a rifle it hits back 
against your shoulder, and a big gun rolls back in its carriage 
after ejecting a heavy shell. The same effect of mechanical recoil 
is to be expected from atomic nuclei shooting out fast particles, 
and, in fact, it was observed that the beta-decaying nuclei always 
acquire a certain velocity in the direction away from the ejected 
electron. The peculiar property of this nuclear recoil lies how
ever in the observed fact, that no matter whether a fast or a slow 
electron is being ejected, the recoil velocity of the nucleus is 
always about the same (Figure 61). This seems very strange 
since we would naturally expect a fast projectile to produce a 
stronger recoil in a gun than a slow one. The explanation of the 
riddle lies in the fact that along with the electron the nucleus 
always emits a neutrino, which carries the balance of energy. 
If the electron moves rapidly, taking most of the available energy, 
the neutrino moves slowly, and vice versa, so that the observed 
recoil of the nucleus is always strong, owing to the combined 
effect of both particles. If this effect does not prove the existence 
of the neutrino nothing ever will!

We are ready now to sum up the results of the foregoing dis
cussion and to present a complete list of the elementary particles 
participating in the structure of the universe, and the relation
ships that exist among them.

First of all we have the nucleons, which represent the basic 
material particles. They are, so far as the present state of knowl
edge can say, either neutral or positively charged, but it is pos
sible that some are negatively charged.

Then we have the electrons representing the free charges of 
positive and negative electricity.
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There are also the mysterious neutrinos, which carry no electric 
charge and are presumably considerably lighter than electrons.9

Finally there are the electromagnetic waves, which account 
for the propagation of electric and magnetic forces through empty 
space.

All these fundamental constituents of the physical world are 
interdependent and can combine in various ways. Thus a neu
tron can go into a proton by emitting a negative electron and a 
neutrino (neutron —> proton +  neg. electron +  neutrino); and a 
proton can go back into a neutron by emitting a positive electron 
and a neutrino (proton —» neutron +  pos. electron +  neutrino). 
Two electrons with opposite electrical charges can be trans
formed into electromagnetic radiation ( pos. electron +  neg. elec
tron —> radiation) or on the contrary can be formed from the 
radiation ( radiation—> pos. electron +  neg. electron). Finally the 
neutrinos can combine with electrons, forming the unstable units 
observed in the cosmic rays and known as mesons or, rather in
correctly, as “heavy electrons” ( neutrino +  pos. electron —» pos. 
meson; neutrino +  neg. electron —> neg. meson; neutrino +  pos. 
electron +  neg. electron —» neutral meson).

Combinations of neutrinos and electrons are overloaded with 
internal energy that makes them about a hundred times heavier 
than the combined mass of their constituent particles.

Figure 62 shows a schematic chart of elementary particles par
ticipating in the structure of the universe.

“But is this the end?” you may ask. “What right have we to 
assume that nucleons, electrons, and neutrinos are really elemen
tary and cannot be subdivided into still smaller constituent parts? 
Wasn’t it assumed only a half a century ago that the atoms were 
indivisible? Yet what a complicated picture they present today!” 
The answer is that, although there is, of course, no way to predict 
the future development of the science of matter, we have now 
much sounder reasons for believing that our elementary particles 
are actually the basic units and cannot be subdivided further. 
Whereas allegedly indivisible atoms were known to show a great 
variety of rather complicated chemical, optical, and other proper-

9 The latest experimental evidence on this subject indicates that a neutrino 
weighs no more than one tenth as much as an electron.



ties, the properties of elementary particles of modern physics are 
extremely simple; in fact they can be compared in their simplicity 
to the properties of geometrical points. Also, instead of a rather 
large number of “indivisible atoms” of classical physics, we are 
now left with only three essentially different entities: nucleons, 
electrons, and neutrinos. And in spite of the greatest desire and
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The chart of elementary particles of modern physics and of their differ

ent intercombinations.

effort to reduce everything to its simplest form, one cannot pos
sibly reduce something to nothing. Thus it seems that we have 
actually hit the bottom in our search for the basic elements from 
which matter is formed.

2. T H E  H E A R T  O F T H E  ATO M

Now that we have become thoroughly acquainted with the 
nature and properties of the elementary particles participating in 
the structure of matter, we may turn to a more detailed study of 
the nucleus, the heart of every atom. Whereas the structure of 
the outer body of the atom can be to a certain extent compared 
to a miniature planetary system, the structure of the nucleus 
itself presents an entirely different picture. It is clear first of all 
that the forces holding the nucleus together are not of a purely 
electric nature, since one half of the nuclear particles, the neu
trons, do not carry any electric charge, whereas another half, the 
protons, are all positively charged, thus repelling each other. 
And you cannot possibly get a stable group of particles if there is 
nothing but repulsion between them!
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Thus in order to understand why the constituent parts of the 
nucleus stay together one must necessarily assume that there exist 
between them forces of some other kind, attractive in nature, 
which act on uncharged nucleons as well as on the charged ones. 
Such forces, which, irrespective of the nature of particles in
volved, make them stay together are generally known as “cohe
sive forces,” and are encountered, for example, in ordinary 
liquids, where they prevent separate molecules from flying apart 
in all directions.

In the atomic nucleus we have similar cohesive forces acting 
between the separate nucleons, and preventing the nucleus from 
breaking up under the action of electric repulsion between the 
protons. Thus, in contrast to the outer body of the atom, where

F i g u r e  63
Explanation of surface-tension forces in a liquid.

the electrons forming various atomic shells have plenty of space 
in which to move about, the picture of the nucleus is that of a 
large number of nucleons packed as tightly together as sardines 
in a can. As it was first suggested by the author of this book, one 
may assume that the material of the atomic nucleus is built along 
the same lines as any ordinary liquid. And just as in the case of 
ordinary liquids, we have here the important phenomenon of sur
face tension. It may be remembered that the phenomenon of 
surface tension in liquids arises from the fact that, whereas a 
particle located in the interior is pulled equally in all directions 
by its neighbors, the particles located on the surface are subject 
to the forces that attempt to pull them inwards (Figure 63).

This results in the tendency of any liquid droplet not subject to
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(C o u rte s y  o f  D r. M. L. H u g g in s. E a s tm a n  K o d ak  L a b o ra to ry .)

PLA T E I

Photograph of hexamethylbenzene molecule magnified 175,000,000 
times.



(P h o to g ra p h e d , by C a rl A n d e rso n . C a lifo rn ia  I n s t i tu te  o f Tt chnoloyy  ) 
P L A T E  II

A. Cosmic-ray sliower originating in the outer wall of the cloud 
chamber, and again in the lead plate in the middle. Positive and nega
tive electrons forming the shower are deflected in opposite directions 
by magnetic field.
B. Nuclear disintegration produced by cosmic ray particle in the 
middle plate.



( P h o to g ra p h e d  by D rs. D ee a n d  F e a th e r  in  C a m b rid g e .) 

PLA TE III

Transformations of atomic nuclei caused by artificially accelerated 
projectiles.
A. A fast deuteron hits another deuteron from the heavy hydrogen gas 
in the chamber, producing the nuclei of tritium and ordinary hydrogen 
(iD'-’+iD:—>.T3+iH‘).
B. A fast proton hits the nucleus of boron, breaking it into three equal 
parts ( .Bu+iH'=3 iHe4).
C. A neutron coming from the left and invisible in the picture breaks 
the nucleus of nitrogen into a nucleus of boron (upward track) and a 
nucleus of helium (downward track). (;N M+i.n1—».-.Bn+jHe4).



( P h o to g ra p h e d  by T. K. B oggild , K. T. B ro stro m . onA Tom  
L a u rits e n  a t  th e  In s t i tu te  of T h eo re tica l P h y sic s  in  C open h ag en .)

P LA TE IV

A cloud-chamber photograph of the fission of a uranium nucleus. A 
neutron (which is, of course, not seen in the picture) hits one of the 
uranium nuclei in a thin layer placed across the chamber. The two 
tracks correspond to two fission fragments Hying apart with the energy 
of about 100 Mev each.
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; F ro m  D rosophila Guide, by M. D en ierec  a n d  B. P. K a u /m a n n .  
W ash in g to n , C a rn e g ie  F o u n d a tio n  o f W ash in g to n , 1945. U sed  
by p erm issio n  of M r. D em erec .)

P LA TE V

A and B. Photomicrographs of salivarv-gland chromosomes of D. 
melanoguster, showing inversion and reciprocal translocation.
C. Photomicrograph of female larva of D. melunogaster. X, the X 
chromosomes, closely paired, side bv side; 2L  and 2B, the left and 
right limb of the paired second chromosomes; 3L and 3R, the third 
chromosomes: 4, the fourth chromosomes.



I P h o to g ra p h e d  by D r. G. O ste r a n d  D r. \V. M. S ta n le y .)  
P LA TE VI

Living molecules? The particles of tobacco mosaic virus magnified 
34,800 times. This picture was taken by means of an electron

microscope.



PLA TE VII

A. Spiral nebula in Ursa Major, a distant island universe, seen from 
above.
B. The spiral nebula in Coma Berenices, another distant island uni
verse, seen on edge.

(A ft. W ilson  O b s e rv a to ry  p h o to g ra p h s .)



( P h o to g ra p h e d  by W. B a a d e  a t  Mt. W ilson O b se rv a to ry .)

P L A T E  VIII

The Crab Nebula. An expanding envelope of gases thrown out by a 
supernova observed at this place of the sky in the year 1054 by 
Chinese astronomers.
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any outside forces to assume a spherical shape, since a sphere 
is the geometrical figure possessing the smallest surface for any 
given volume. Thus we are led to the conclusion that atomic 
nuclei of different elements may be considered simply as vari
ously sized droplets of a universal “nuclear fluid.” We must not 
forget, however, that nuclear fluid, though qualitatively very 
similar to ordinary liquids, is rather different quantitatively. In 
fact its density exceeds the density of water by a factor of
240.000.000.000.000, and its surface tension forces are about
1.000.000.000.000.000.000 times larger than those of water. To 
make these tremendously large numbers more understandable, 
let us consider the following example. Suppose we have a wire 
frame roughly in the shape of an inverted capital U, about 2 in. 
square as shown full size in Figure 64, with a piece of straight 
wire across it, and with a soap film across the square thus formed. 
The surface tension forces of the film will pull the crossbar wire 
upwards. We may counteract these surface-tension forces by 
hanging a little weight on the crossbar. If the film is made of 
ordinary water with some soap dissolved in it, and is say 0.01 
mm thick, it will weigh about 1/4 g, and will support a total 
weight of about 3/4 g.

Now, if it were possible to make a similar film from nuclear 
fluid, the total weight of the film would be fifty million tons 
(about the weight of one thousand ocean liners), and we could 
hang on the cross wire a load of about a thousand billion tons, 
which is roughly the mass of “Deimos,” the second satellite of 
Mars! One would have to have rather powerful lungs in order to 
be able to blow a soap bubble from nuclear fluid!

Considering atomic nuclei as tiny droplets of nuclear fluid, we 
must not overlook the important fact that these droplets are elec
trically charged, since about one half of the particles forming 
the nucleus are protons. The forces of electric repulsion between 
nuclear constituent particles trying to disrupt the nucleus into 
two or more parts are counteracted by the surface tension forces 
that tend to keep it in one piece. Here lies the principal reason 
for the instability of atomic nuclei. If the surface-tension forces 
prevail, the nucleus will never break up by itself, and two nuclei,



coming into contact with each other, will have a tendency to 
fuse just as two ordinary droplets do.

If, on the contrary, the electric forces of repulsion have the 
upper hand, the nucleus will show a tendency to break spontane
ously into two or more parts, which will fly apart at high speed; 
such a breaking-up process is usually designated by the term
ttn . »fassion.
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Exact calculations concerning the balance between the surface- 
tension and electric forces in the nuclei of different elements, 
were made by Bohr and Wheeler (in 1939) and led to the 
extremely important conclusion that, whereas the surface-tension 
forces hold the upper hand in the nuclei of all the elements in 
the first half of the periodic system (approximately up to silver), 
the electric repulsive forces prevail for all heavier nuclei. Thus 
the nuclei of all elements heavier than silver are principally un
stable, and, under the action of a sufficiently strong fillip from 
outside, would break up into two or more parts, with the libera
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tion of a considerable amount of internal nuclear energy (Figure 
65a). On the contrary, we should expect a spontaneous fusion 
process whenever two light nuclei with a combined atomic weight 
less than that of silver come close together (Figure 65b).

It must be remembered, however, that neither the fusion of 
two light nuclei, nor the fission of a heavy nucleus would nor
mally take place unless we did something about it. In fact, to 
cause the fusion of two light nuclei we have to bring them close 
together against the repulsive forces interacting between their 
charges, and in order to force a heavy nucleus to go through the 
process of fission we must start it vibrating with a sufficiently 
large amplitude, by giving to it a strong tap.

This state of affairs, in which a certain process will not get 
under way without initial excitation, is generally known in science 
as the state of metastability, and can be illustrated by the exam* 
pies of a rock hanging over a precipice, a match in your pocket, 
or a charge of TNT in a bomb. In each case there is a large 
amount of energy waiting to be set free, but the rock will not 
roll down unless kicked, the match will not bum unless heated 
by friction against your shoe sole or something else, and TNT 
will not explode unless detonated by a fuse. The fact that we live 
in a world in which practically every object except a silver dollar10 
is a potential nuclear explosive, without being blown to bits, is 
due to the extreme difficulties that attend the starting of a nuclear 
reaction, or in more scientific language, to the extremely high 
activation energies of nuclear transformations.

In respect to nuclear energy we live (or rather lived until 
quite recently) in a world similar to that of an Eskimo dwelling 
in a subfreezing temperature for whom the only solid is ice and 
the only liquid alcohol. Such an Eskimo would never have heard 
about fire, since one cannot get fire by rubbing two pieces of ice 
against each other, and would consider alcohol as nothing but a 
pleasant drink, since he would have no way of raising its tem
perature to the burning point.

And the great perplexity of humanity caused by the recently 
discovered process of liberating on a large scale the energy 
hidden in the interior of the atom can be compared to the aston-

10 It will be remembered that silver nuclei will neither fuse nor fission.



ishment of our imaginary Eskimo when shown an ordinary 
alcohol burner for the first time.

Once the difficulty of starting a nuclear reaction is overcome, 
however, the results would pay proportionately for all the 
troubles involved. Take, for example, a mixture of equal amounts 
of oxygen and carbon atoms. Uniting chemically according to the 
equation

O 4- C —> CO +  energy, 

these substances would give us 920 calories11 per gram of mixture.
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If, instead of ordinary chemical union (molecular fusion) (Figure 
66a) between these two atomic species we have an alchemical 
union (nuclear fusion) between their nuclei (Figure 66b):

6C12 +  80 16 = i4Si28 +  energy

the energy liberated per gram of mixture will be 14,000,000,000
calories, that is, 15,000,000 times as great.

Similarly the breaking up of a complex TNT molecule into the
11A calory is a unit of heat defined as the energy necessary to raise 1 gram 

of water 1 degree centigrade.
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molecules of water, carbon monoxide, carbon dioxide, and nitrogen 
( molecular fusion) liberates about 1000 calories per gram, whereas 
an equal weight of, let us say, mercury undergoing the process of 
nuclear fission would give us altogether 10,000,000,000 cal.

It must not be forgotten however that whereas most chemical 
reactions would take place easily at temperatures of a few hun
dred degrees, corresponding nuclear transformations would not 
even start before the temperature reaches many millions of de
grees! This difficulty of starting nuclear reaction accounts for the 
comforting fact that there is no immediate danger that the entire 
universe will turn into pure silver in one tremendous explosion.

3. ATOM SMASHING

Although the integrity of atomic weights represents a very 
strong argument in favor of the complexity of atomic nuclei, the 
final proof of such complexity can be achieved only by direct 
empirical evidence concerning the possibility of breaking a 
nucleus into two or more separate parts.

The first indication that such a break-up process can really take 
place was supplied fifty years ago (in 1896) by Becquerel’s dis
covery of radioactivity. It was, in fact, shown that the highly 
penetrating radiation ( similar to ordinary X rays), that is emitted 
spontaneously by the atoms of such elements as uranium and 
thorium located near the upper end of the periodic system is due 
to the slow spontaneous decay of these atoms. The careful experi
mental study of this newly discovered phenomenon led soon to 
the conclusion that the decay of a heavy nucleus consists in its 
spontaneous breaking up into two largely unequal parts: (1) a 
small fragment, known as an alpha particle, representing the 
atomic nucleus of helium, and (2) the remainder of the original 
nucleus, which represents the nucleus of the daughter element. 
When the original uranium nucleus breaks up, ejecting 3-parti
cles, the resulting nucleus of the daughter element known as 
Uranium Xi undergoes an internal electric readjustment emitting 
two free charges of negative electricity (ordinary electrons) and 
turning into the nucleus of uranium isotope, which is four units 
lighter than the original uranium nucleus. This electric adjust*



ment is followed again by a series of emissions of a-particles, 
then by more electrical adjustments, etc., until we come finally 
to the nucleus of the lead atom, which appears stable, and does 
not decay.

A similar series of successive radioactive transformations with 
the alternate emission of a-particles, and electrons is observed in 
two other radioactive families: The thorium-family starting with 
the heavy element thorium, and the actinium-family starting with 
the elements known as actino-uranium. In these three families 
the processes of spontaneous decay continue until there are left 
only the three different isotopes of lead.

An inquisitive reader will probably be surprised in comparing 
the above description of spontaneous radioactive decay with the 
general discussion of the previous section, in which it was stated 
that the instability o f an atomic nucleus must be expected in all 
the elements of the second half of the periodic system, where the 
disruptive electric forces have the upper hand over the forces of 
surface tension tending to hold the nucleus in one piece. If all 
the nuclei heavier than silver are unstable, why then is the spon
taneous decay observed only for a few of the heaviest elements 
such as uranium, radium, and thorium? The answer is that, theo
retically speaking, all elements heavier than silver must be con
sidered as radioactive elements, and are as a matter of fact slowly 
being transformed by decay into the lighter elements. But in most 
cases the spontaneous decay takes place so very slowly that there 
is no way of noticing it. Thus in such familiar elements as iodine, 
gold, mercury, and lead the atoms may break up at the rate of 
one or two in many centuries, which is too slow to be recorded 
even by the most sensitive physical instruments. Only in the 
heaviest elements is the tendency to break up spontaneously 
strong enough to result in noticeable radioactivity.12 The com
parative transformation rates also govern the way in which a 
given unstable nucleus breaks up. Thus the nucleus of a uranium 
atom, for example, can break up in many different ways: it may 
split spontaneously into two equal parts, or into three equal 
parts, or into several parts of widely varying sizes. However, the

22 In uranium, for example, we have several thousand atom breakings per 
second in each gram of material.
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easiest way for it to divide is into an a-particle and the remaining 
heavy part, and that is why it usually happens this way. It has 
been observed that the spontaneous break-up of a uranium 
nucleus into two halves is about a million times less probable 
than the chipping off of an 3-particle. Thus, whereas in one 
gram of uranium some ten thousand nuclei break up each second 
by each emitting an 3 -p a r t ic le ,  we shall have to wait for several 
minutes to see a spontaneous fission process in which a uranium 
nucleus breaks into two equal halves!

The discovery of the radioactive phenomena proved beyond 
any doubt the complexity of nuclear structure and paved the way 
for the experiments on the artificially produced (or induced)

F i g u r e  6 7  

How the atom was split the first time.

nuclear transformations. This question then arose: if the nuclei 
of heavy, particularly unstable, elements decay on their own 
initiative, can we not break up the nuclei of other ordinarily 
stable elements by hitting them hard enough with some rapidly 
moving nuclear projectile?

With this thought in mind, Rutherford decided to subject the 
atoms of various ordinarily stable elements to an intense bom
bardment by the nuclear fragments (the a-particles) resulting 
from the spontaneous breaking up of unstable radioactive nuclei. 
The apparatus used in 1919 by Rutherford in his first experi
ments in nuclear transformations (Figure 67) is the acme of 
simplicity compared with the giant atom smashers used nowa
days in several physics laboratories. It consisted of an evacu
ated cylindrical vessel with a thin window made from a



fluorescent material (c ), which acted as a screen. The source 
of bombarding a-particles was a thin layer of radioactive sub
stance deposited on the metallic plate (a),  and the element 
to be bombarded (aluminum in this case) was in the form of a 
thin filament ( b ) placed some distance away from the source. 
The target filament was arranged in such a way that all incident 
a-particles would remain embedded in it, once they had encoun
tered it, so that it would be impossible for them to illuminate 
the screen. Thus the screen would remain completely dark unless 
it was affected by secondary nuclear fragments emitted from the 
target material as a result of the bombardment.

Putting everything in its place and looking at the screen 
through a microscope Rutherford saw a sight that could hardly 
be mistaken for darkness. The screen was alive with myriads of 
tiny sparks flashing here and there over its entire surface! Each 
spark was produced by the impact of a proton against the mate
rial of the screen, and each proton was a “fragment” kicked out 
from an aluminum atom in the target by the incident a-projectile. 
Thus the theoretical possibility of an artificial transformation of 
elements became a scientifically established fact.13

During the decades immediately following Rutherford’s classic 
experiment, the science of artificial transformation of elements 
became one of the largest and one of the most important branches 
of physics, and tremendous progress was achieved in methods 
both of producing fast projectiles for the purpose of nuclear 
bombardment, and of observing the obtained results.

The instrument that most satisfactorily permits us to see with 
our own eyes what happens when a nuclear projectile hits a 
nucleus is known as a cloud chamber (or Wilson chamber after 
its inventor). It is represented schematically in Figure 68. Its 
operation is based on the fact that fast-moving charged particles, 
such as a-particles, produce on their way through the air, or 
through any other gas, a certain distortion in the atoms situated 
along their route. With their strong electric fields, these projec
tiles tear off one electron or more from the atoms of gas that 
happen to be in their way, leaving behind a large number of

13 The process described above may be represented by the formula: 
K1A F + 2He4—>1,Sr,0+iH1.
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ionized atoms. This state of affairs does not last very long, for 
very soon after the passage of the projectile the ionized atoms 
will catch back their electrons, returning to the normal state. 
But if the gas in which such ionization takes place is saturated 
with water vapor, tiny droplets will be formed on each of the 
ions—it is a property of water vapor that it tends to accumulate 
on ions, dust particles, and so on—producing a thin band of fog 
along the track of the projectile. In other words, the track of any

F i g u r e  6 S  

The scheme of Wilson’s cloud-chamber.

charged particle moving through a gas thus becomes visible in 
the same way as does the track of a smoke-writing airplane.

From the technical point of view, the cloud chamber is a very 
simple apparatus, consisting essentially of a metallic cylinder (A) 
with a glass cover (B ) containing a piston (C ), which can be 
moved up and down by an arrangement not shown in the picture. 
The space between the glass cover and the surface of the piston 
is filled with ordinary atmospheric air (or any other gas, if so 
desired) containing a considerable amount of water vapor. If the 
piston is abruptly pulled down immediately after some atomic 
projectiles have entered the chamber through the window (E )



the air above the piston will cool and the water vapor will begin 
to precipitate, in the form of thin bands of fog, along the track 
of the projectiles. These bands of fog, being illumined by a strong
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F ig u r e  69 
Principle of the electrostatic generator

II is well known from elementary physics that a charge communicated 
to a spherical metallic conductor is distributed on its surface. Thus we 
can charge such a conductor to arbitrarily high potentials by introduc
ing, one by one, small charges into its interior by bringing a small 
charged conductor through a hole made in the sphere and touching its 
surface from inside. In practice one uses actually a continuous belt en
tering into the spherical conductor through the hole and carrying in 

electric charges produced by a small transformer.
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light through a side window (D ), will stand out clearly against 
the blackened surface of the piston and can be observed visually 
or photographed by the camera (F ) , which is operated auto
matically by the action of the piston. This simple arrangement, 
one of the most valuable bits of equipment in modern physics,

exi t  of -Hie

Principle of a cyclotron 
A cyclotron consists essentially of two semicircular metallic boxes 
placed in a strong magnetic field (perpendicular to the plane of the 
drawing). The two boxes are connected with a transformer and are 
charged alternately by positive and negative electricity. The ions com
ing from the source in the center describe in the magnetic field circular 
trajectories accelerated each time they pass from one box into the 
other. Moving faster and faster, the ions describe an unwinding spiral, 

and finally come out at a very high speed.

permits us to obtain beautiful photographs of the results of 
nuclear bombardment.

It was also naturally desirable to devise methods by which one 
could produce strong beams of atomic projectiles simply by



accelerating various charged particles (ions) in strong electric 
fields. Apart from removing the necessity of using rare and expen
sive radioactive substances, such methods permit us to use other 
different types of atomic projectiles (as for example protons), 
and to attain kinetic energies higher than those supplied by ordi
nary radioactive decay. Among the most important machines for 
producing intensive beams of fast moving atomic projectiles are 
the electrostatic generator, the cyclotron, and the linear acceler
ator, represented with short descriptions of their functioning in 
Figures 69, 70 and 71 respectively.
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Principle of a linear accelerator 
This arrangement consists of a number of cylinders of increasing length 
that are being charged alternately positively and negatively by a trans
former. Passing from one cylinder into another the ions are gradually 
accelerated by the existing potential difference, so that their energy 
increases each time by a given amount. Since the velocity is propor
tional to the square root of the energy, the ions will be kept in phase 
with the alternating field, if the length of cylinders is proportional to 
the square roots in integer numbers. Building a sufficiently long system 

of this type we can accelerate the ions to any desired speed.

Using the above described types of electric accelerators for 
producing powerful beams of various atomic projectiles, and 
directing these beams against targets made from different mate
rials, we can obtain a large number of nuclear transformations, 
which can be conveniently studied by means of cloud-chamber 
photographs. Some of these photographs, showing the individual 
processes of nuclear transformations, are shown in Plates III 
and IV.

The first picture of this kind was taken by P. M. S. Blackett 
in Cambridge, and represented a beam of natural a-particles
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passing through a chamber filled with nitrogen.14 It showed first 
of all that the tracks have a definite length, owing to the fact that, 
flying through the gas, the particles gradually lose their kinetic 
energy, coming ultimately to a stop. There were two distinctly 
different groups of track lengths corresponding to the two groups 
of a-partides with different energies present in the source ( a mix
ture of two alpha-emitting elements: ThC and ThC1). One could 
notice that, being in general quite straight, a-tracks show well- 
defined deflections near the end where the particles have lost 
most of their initial energy and can be more easily deflected by 
indirect collision with the nuclei of nitrogen atoms that they 
encounter on their way. But the star feature of this photograph 
lay in one particular a-track, which showed a characteristic 
branching, one branch being long and thin, another short and 
thick. It showed the result of a direct head-on collision between 
the incident a-particle and the nucleus of one of the nitrogen 
atoms in the chamber. The thin long track represented the tra
jectory of the proton knocked out of the nitrogen nucleus by the 
force of the impact, whereas the short thick track corresponded 
to the nucleus itself thrown aside in the collision. The fact that 
there was no third track that would correspond to the ricocheted 
a-particle, indicated that the incident a-particle had adhered to 
the nucleus and was moving together with it.

In Plate I I I b  we see the effect of artificially accelerated protons 
colliding with the nuclei of boron. The beam of fast protons 
issuing from the accelerator’s nozzle ( dark shadow in the middle 
of the photograph) hits a layer of boron placed against the open
ing, and sends nuclear fragments flying in all directions through 
the surrounding air. An interesting feature of this photograph is 
that the fragment’s tracks appear always in triplets (two such 
triplets, one marked with arrows, can be seen in the photograph), 
because the nucleus of boron, being hit by a proton, breaks up 
into three equal parts.15

Another photograph, Plate I I I a ,  shows collisions between 
the fast-moving deuterons ( the nuclei of heavy hydrogen formed

14 The alchemic reaction recorded on Blackett’s photograph ( not repro
duced in this book) is represented by the equation: 7Nu+ 2He‘—>sO” +iH1.

15 The equation of this reaction is: eB  ̂+ iH1—>2He< +  2He4 + 2He<.



by one proton and one neutron) and other deuterons in the target 
material.16

The longer tracks seen in the picture correspond to protons 
(iH^nuclei) whereas the shorter ones are due to the nuclei of 
triple-heavy hydrogen known as tritons.

No cloud-chamber picture gallery would be complete without 
the nuclear reaction involving the neutrons, which, together with 
protons, constitute the main structural elements of every nucleus.

It would be quite futile to look for neutron tracks in the cloud- 
chamber pictures, since, having no electric charge, these “dark 
horses of nuclear physics” pass through matter without pro
ducing any ionization whatsoever. But when you see the smoke 
from a hunter’s gun, and the duck falling down from the sky, 
you know there was a bullet even though you cannot see it. 
Similarly looking at the cloud-chamber photograph, Plate IIIc, 
which shows a nucleus of nitrogen breaking up into helium 
(downward track) and boron (upward track), you cannot help 
feeling that this nucleus was hard hit by some invisible projectile 
coming from the left. And, indeed, in order to get such a photo
graph one has to place at the left wall of the cloud chamber a 
mixture of radium and beryllium, which is known to be a source 
of fast neutrons.17

The straight line along which the neutron was moving through 
the chamber can be seen at once by connecting the position of 
the neutron source with the point where the breaking up of the 
nitrogen atom took place.

The fission process of the uranium nucleus is shown in Plate 
IV. This photograph was taken by Boggild, Brostrom, and Laurit- 
sen and shows two fission fragments flying in opposite directions 
from a thin aluminum foil supporting the bombarded uranium 
layer. Neither the neutron which produced the fission, nor the 
neutrons resulting from it would, of course, show on the picture. 
We could go on indefinitely describing various types of nuclear 
transformations obtainable by the method of nuclear bombard-

16 This reaction is represented by the equation: jH2+iH2—
17 In terms of alchemic equation the processes that take place here can be 

written in the following form: (a) production of the neutron: <Be"+JIe‘
( re-particle from Ra)—̂ eC^+on1; (b) neutron impact against nitrogen 
nucleus: ,N1, + 0nI-> EBu + i.He4.
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ment by electrically accelerated projectiles, but it is the time now 
to turn to a more important question concerning the efficiency 
of such bombardment. It must be remembered that the pictures 
shown in Plates III and IV represent individual cases of the dis
integration of single atoms, and that in order to turn, let us say, 
one gram of boron completely into helium we should have to 
break every one of the 55,000,000,000,000,000,000,000 atoms con
tained in it. Now, tire most powerful electric accelerator produces 
about 1,000,000,000,000,000 projectiles per second, so that even 
if every projectile were to break one nucleus of boron we should 
have to run the machine for 55 million seconds or about two 
years to finish the job.

The truth is, however, that the effectiveness of charged nuclear 
projectiles produced in various accelerating machines is much

F i g u r e  7 2

smaller than that, and usually only one projectile out of several 
thousand can be counted upon to produce a nuclear crack-up in 
the bombarded material. The explanation of this extremely low 
efficiency of atomic bombardment lies in the fact that atomic 
nuclei are surrounded by the envelopes of electrons that have the 
power to slow down the charged atomic projectiles moving 
through them. Since the target area of the atomic envelope is 
much larger than the target area of the nucleus and since we 
cannot, of course, aim atomic projectiles directly at the nucleus, 
each such projectile must necessarily pierce many atomic enve
lopes before it will have the chance to deliver a direct blow to 
one of the nuclei. The situation is explained graphically in Figure 

where atomic nuclei are represented by solid black spheres



and their electronic envelopes by lighter shadows. The ratio of 
atomic and nuclear diameters is about 10,000 so that the target 
areas stand in the ratio of 100,000,000 to 1. On the other hand, we 
know that a charged particle passing through an electronic 
envelope of an atom loses about one hundredth of one per cent 
of its energy, so that it will be stopped completely after passing 
through some 10,000 atomic bodies. It is easy to see from the 
above quoted numbers that only about 1 particle in 10,000 will 
have a chance to hit the nucleus before all its initial energy has 
been dissipated in the atomic envelopes. Taking into account this 
low efficiency of charged projectiles in delivering a destructive 
blow to the nuclei of the target material we find that in order 
to transform completely 1 g of boron, we must keep it in the 
beam of a modern atom-smashing machine for the period of at 
least 20,000 years!

4. NUCLEONICS

“Nucleonics” is a very inappropriate word, but like many such 
words it seems to remain a part of practical usage, and there is 
nothing to be done about it. As the term “electronics” is used to 
describe knowledge in the broad field of practical application 
of free electron beams, the term “nucleonics” should be under
stood to apply to the science of practical applications of nuclear 
energy liberated on a large scale. We have seen in the previous 
sections that the nuclei of various chemical elements (except 
silver) are overloaded with tremendous amounts of internal 
energy that can be liberated by the processes of nuclear fusion 
in the case of lighter elements, and by nuclear fission in the case 
of heavier ones. We have also seen that the method of nuclear 
bombardment by artificially accelerated charged particles, though 
of great importance for the theoretical study of various nuclear 
transformations, cannot be counted upon for practical use be
cause of its extremely low efficiency.

Since the ineffectiveness of ordinary nuclear projectiles, such 
as a-particles, protons, and so on, lies essentially in their electric 
charge, which causes them to lose their energy while passing 
through atomic bodies, and prevents them from coming suffi
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ciently close to the charged nuclei of bombarded material, we 
must expect that much better results would be obtained by using 
the uncharged projectiles and bombarding various atomic nuclei 
with neutrons. Here, however, is the catch! Owing to the fact 
that neutrons can without any difficulty penetrate the nuclear 
structure, they do not exist in nature in the free form, and when
ever a free neutron is artificially kicked out of some nucleus by 
an incident projectile (for example a neutron from beryllium 
nuclei subjected to alpha bombardment) it will very soon be 
recaptured by some other nucleus.

Thus in order to produce strong beams of neutrons for the pur
poses of nuclear bombardment, we have to kick out every single 
one of them from the nuclei of some element. This brings us back 
to the low efficiency of charged projectiles that must be used 
for this purpose.

There is, however, one way out of this vicious circle. If it were 
possible to have neutrons kick out neutrons and to do it in such a 
way that each neutron would produce more than one offspring, 
these particles would multiply like rabbits (compare Figure 97) 
or bacteria in infected tissue, and the descendants of one single 
neutron would soon become sufficiently numerous to attack every 
single atomic nucleus in a large lump of material.

The big boom in nuclear physics, which brought it from the 
quiet ivory tower of pure science concerned with the most inti
mate properties of matter, into the noisy whirlpool of shouting 
newspaper headlines, heated political discussions, and stupendous 
industrial and military developments, is due to the discovery of 
one particular nuclear reaction that makes such a neutron multi
plication process possible. Everybody who reads newspapers 
knows that nuclear energy, or atomic energy as it is commonly 
called, can be released through the fission process of uranium 
nuclei discovered by Hahn and Strassman late in 1938. But it 
would be a mistake to believe that the fission itself, that is, the 
splitting of a heavy nucleus into two nearly equal parts, could 
contribute to the progressive nuclear reaction. In fact, the two 
nuclear fragments resulting in fission carry heavy electric charges 
(about a half charge of the uranium nucleus each), which pre
vent them from approaching too close to other nuclei. Thus,



rapidly losing their initially high energy to the electronic enve
lopes of neighboring atoms, these fragments will rapidly come to 
rest without producing any further fissions.

What makes the fission process so important for the develop
ment of a self-sustaining nuclear reaction is the discovery that 
before being finally slowed down each fission fragment emits a 
neutron (Figure 73).

This peculiar aftereffect of fission is due to the fact that, like 
the two pieces of a broken spring, the two broken halves of a
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Successive stages of the fission process.

heavy nucleus begin their existence in a state of rather violent 
vibration. These vibrations, which are not able to cause a secon
dary nuclear fission (of each of the fragments into two), are, 
however, strong enough to cause the ejection of some nuclear 
structural units. When we say that each fragment emits one neu
tron, we mean it only in a statistical sense; in some cases two or 
even three neutrons may be ejected from a single fragment— 
while in other cases none. The average number of neutrons emit
ted from a fission fragment depends, of course, on the intensity 
of its vibrations, which, in turn, is determined by the total energy 
release in the original fission process. Since, as we have seen
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above, the energy set free in fission increases with the weight of 
the nucleus in question, we must expect that the mean number 
of neutrons per fission fragment also increases along the periodic 
system. Thus, the fission of a gold nucleus (which has not yet 
been achieved experimentally because of the very high initiation 
energy required in this case) would probably give considerably 
less than one neutron per fragment; the fission of uranium nuclei 
gives on the average about one neutron per fragment ( about two 
neutrons per fission); whereas in the fission of still heavier ele
ments ( as for example plutonium) the mean number of neutrons 
per fragment may be expected to be larger than one.

In order to satisfy the condition for progressive neutron breed
ing it is apparently necessary that out of, say, a hundred neutrons 
entering into the substance we should get more than a hundred 
neutrons of the next generation. The possibility of fulfilling this 
condition depends on the comparative effectiveness of neutrons 
in producing the fission of a given type of nuclei, and the mean 
number of fresh neutrons produced in an accomplished fission. 
It must be remembered that, although the neutrons are much 
more effective nuclear projectiles than the charged particles, 
their effectiveness in producing the fission is, however, not a hun
dred per cent. In fact, there is always a possibility that upon 
entering the nucleus a high velocity neutron will give to the 
nucleus only a part of its kinetic energy, escaping with the rest 
of it; in such cases the energy will be dissipated between several 
nuclei, none of them getting enough to cause the fission.

It can be concluded from the general theory of nuclear struc
ture that the fission effectiveness of neutrons increases with the 
increasing atomic weight of the element in question, coming 
fairly close to a hundred per cent for the elements near the end 
of the periodic system.

We can now work out two numerical examples corresponding 
to the favorable and unfavorable conditions for neutron breeding, 
(a ) Suppose we have an element in which the fission efficiency 
of fast neutrons is 35 per cent and the mean number of neutrons 
produced per fission is 1.6.18 In such a case 100 original neutrons

18 These numerical values are chosen entirely for the sake of an example, 
and do not correspond to any actual nuclear species.



will produce altogether 35 fissions, giving rise to 3 5 x 1 .6 = 5 6  
neutrons of the next generation. It is clear that in this case the 
number of neutrons will rapidly drop with time, each generation 
being only about one half of the previous one. (b ) Suppose now 
we take a heavier element in which fission efficiency of neutrons 
rises to 65 per cent, and the mean number of neutrons produced 
per fission to 2.2. In this case our 100 original neutrons will pro-
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A nuclear chain reaction started in a spherical piece of fissionable ma
terial by a stray neutron. Although many neutrons are lost by crossing 
the surface, the number of neutrons in consecutive generations is in

creasing, leading to an explosion.

duce 65 fissions giving a total of 65x2.2  = 143. With each new 
generation the number of neutrons will grow by about 50 per 
cent, and within a very short time there will be enough of them 
to attack and break up any single nucleus in the sample. We are 
considering here the progressive branching chain reaction, and
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call the substances in which such a reaction can take place fission
able substances.

A careful experimental and theoretical study of the conditions 
necessary for the development of progressive branching chain 
reactions leads to the conclusion that among all the variety of 
nuclear species existing in nature, there is only one particular 
brand o f nuclei to which such reaction is possible. These are the 
nuclei o f the famous light isotope of uranium, [7-235, the only 
natural fissionable substance.

However, U-235 does not exist in nature in a pure form, and 
is always found to be strongly diluted by the heavier unfission- 
able isotope of uranium, U-238 (0.7 per cent of U-235 and 99.3 
per cent of U-238), which hinders the development of the prog
ressive chain reaction in natural uranium in the very same way 
as the presence of water prevents wet wood from burning. It is, 
in fact, only because of this dilution by the inactive isotope that 
the highly fissionable atoms of U-235 still exist in nature, since 
otherwise they would have been all destroyed long ago by a fast 
chain reaction among them. Thus, in order to be able to use the 
energy of U-235 one must either separate these nuclei from the 
heavier nuclei of U-238, or one must devise the method for 
neutralizing the disturbing action of the heavier nuclei without 
actually removing them. Both methods were actually followed 
in the work on the problem of atomic energy liberation, leading 
in both cases to successful results. We shall discuss them here 
only briefly, since technical problems of such kind do not fall 
within the scope of the present book.19

The straightforward separation of the two uranium isotopes 
represents a very difficult technical problem, since, owing to their 
identical chemical properties, such a separation cannot be 
achieved by the ordinary methods of industrial chemistry. The 
only difference between these two kinds of atoms lies in their 
masses, one being 1.3 per cent heavier than the other. This sug
gests the separation methods based on such processes as diffusion, 
centrifuging, or the deflection of ion beams in magnetic and

19 For more detailed discussion the reader is referred to the book by 
Selig Hecht, Explaining the Atom, first published by Viking Press in 1947. 
A new edition, revised and expanded by Dr. Eugene Rabinowitch, is avail
able in the Explorer paperbound series.



electric fields, where the mass of the separate atoms plays the 
predominant role. In Figure 75 a, b, we give a schematic presenta
tion of the two major separation methods with a short descrip
tion of each.

The disadvantage of all these methods lies in the fact that, 
owing to a small difference of mass between the two uranium 
isotopes, the separation cannot be achieved in one single step, 
but requires a large number of repetitions, which lead to the
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(a) Separation of isotopes by the diffusion method. The gas contain
ing both isotopes is pumped into the left part of the chamber and dif
fuses through the wall separating it from the other part. Since light 
molecules diffuse faster the fraction on the right becomes enriched in

U-235.
(b ) Separation of isotopes by the magnetic method. The beam is sent 
through a strong magnetic field, and the molecules containing the 
lighter U-isotope are deflected more strongly. Since to have a good 
intensity one must use wide slits, the two beams (with U-235 and 
U-238) partially overlap and we get again only partial separation.

products more and more enriched in the light isotope. However, 
after a sufficient number of repetitions, reasonably pure samples 
of U-235 can finally be obtained.

A much more ingenious method consists in running the chain 
reaction in natural uranium in which the disturbing action of the 
heavier isotope is artificially reduced by the use of the so-called 
moderator. In order to understand this method we must re
member that the negative effect of the heavier uranium isotope 
consists essentially in absorbing a large percentage of neutrons 
produced in U-235 fissions, thus cutting off the possibility for the
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development of a progressive chain reaction. Thus, if we could 
do something to prevent the nuclei of U-238 from kidnapping the 
neutrons before they have a chance to meet a U-235 nuclei, which 
would cause their fission, the problem would be solved. At first 
sight the task of preventing the U-238 nuclei, which are 140 times 
more numerous than U-235 nuclei, from getting the lion’s share of 
neutrons seems to be quite impossible. We are, however, helped 
in this problem by the fact that the “neutron-capture-ability” of 
the two uranium isotopes is different depending on the speed 
with which the neutron is moving. For fast neutrons, as they 
come from the fissioning nucleus, the capture-abilities of both 
isotopes are the same, so that U-238 will capture 140 neutrons 
for each neutron captured by U-235. For the neutrons of inter
mediate speeds U-238 nuclei are somewhat better catchers than 
the nuclei of U-235. However, and this is very important, the 
nuclei of U-235 become much better catchers of neutrons that 
move very slowly. Thus if we could slow down the fission neu
trons in such a way that their originally high velocity will be 
considerably reduced before  they encounter on their way the 
first nucleus of uranium (238 or 235), the nuclei of U-235, though 
being in the minority, will have a better chance for capturing the 
neutrons than the nuclei of U-238.

The necessary slowing down arrangement can be achieved by 
distributing a large number of small pieces of natural uranium 
through some material (moderator) which slows down the neu
trons without capturing too many of them. The best materials 
to be used for this purpose are heavy water, carbon, and the 
salts of beryllium. In Figure 76 we give a schematic picture of 
how such a “pile” formed by uranium grains distributed through 
a moderating substance actually works.20

As stated above, the light isotope, U-235 (which represents 
only 0.7 per cent of the natural uranium), is the only existing 
kind of fissionable nuclei capable of supporting a progressive 
chain reaction, thus leading to the large-scale liberation of nuclear 
energy. It does not mean, however, that we cannot build artificially 
other nuclear species, ordinarily not existing in nature, that would

20 For more detailed discussion of uranium piles the reader is referred 
again to special books on atomic energy.



have the same properties as U-235. In fact, by using neutrons 
that are produced in large quantities by the progressive chain 
reaction in one fissionable element, we can turn other ordinarily 
unfissionable nuclei into fissionable ones.
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This somewhat biological looking picture represents the lumps of 
uranium (large atoms) imbedded in a moderator substance (small 
atoms). Two neutrons resulting from the fission of a U-nucleus in the 
lump on the left enter the moderator and are gradually slowed down 
by a series of collisions with its atomic nuclei. By the time these 
neutrons reach other uranium lumps they are considerably slowed 
down and are captured by U-235 nuclei which are much more efficient 

in respect to slow neutrons than are the nuclei of U-238.

The first example of this kind is demonstrated by the events 
taking place in the above described “pile,” which uses natural 
uranium mixed with the moderating substance. We have seen 
that using the moderator we can reduce the neutron capture of 
U-238 nuclei, to the extent of permitting the development of a
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chain reaction between U-235 nuclei. However, some of the neu
trons will still be captured by U-238. Where does this lead to?

The immediate result of neutron capture in U-238 is, of 
course, the still heavier uranium isotope, U-239. It was found, 
however, that this newly formed nucleus does not exist for long, 
and emitting two electrons one after another, goes over into the 
nucleus of a new chemical element with the atomic number 94. 
This new artificial element, which is known as plutonium 
(Pu-239), is even more fissionable than U-235. If for U-238 we 
substitute another natural radioactive element known as thorium 
(Th-232), the result of neutron capture and subsequent emission 
of two electrons would lead to another artificial fissionable ele
ment, U-233.

Thus, starting with the natural fissionable element, U-235, and 
running the reaction in cycles, it is possible, certainly in principle, 
to turn the entire supply of natural uranium and thorium into 
fissionable products, which can be used as concentrated sources 
of nuclear energy.

We shall conclude this section with a rough estimate of the 
total amount of energy available for the future peaceful develop
ment or the military self-destruction of mankind. It has been esti
mated that the total amount of U-235 in the known deposits of 
uranium ores can supply enough nuclear energy to satisfy the 
needs of world industry (completely reconverted to nuclear 
energy) for a period of several years. If, however, we take into 
account the possibility of using U-238 by turning it into pluto
nium, the time estimate will extend to several centuries. Throwing 
in the deposits of thorium ( turned into U-233), which is about four 
times as abundant as uranium, we bring our estimate further 
up to at least one or two thousand years, which is long enough 
to make all worry about the “future shortages of atomic energy” 
unnecessary.

However, even if all these resources of nuclear energy are used, 
and no new deposits of uranium and thorium ores are discovered, 
future generations will still always be able to obtain nuclear 
energy from ordinary rocks. In fact, uranium and thorium, like 
all other chemical elements, are contained in small quantities 
in practically any ordinary material. Thus ordinary granite rocks



contain 4 g of uranium and 12 g of thorium per ton. At first glance 
it looks like very little, but let us perform the following calcula
tion. We know that one kilogram of fissionable material con
tains an amount of nuclear energy equivalent to 20,000 tons of 
TNT if it is exploded (as in an atomic bomb), or about 20,000 
tons of gasoline if it is used as a fuel. Thus the 16 g of uranium 
and thorium contained in one ton of granite rock, if turned into 
fissionable materials, would be equivalent to 320 tons of ordinary 
fuel. That is enough to repay us for all the complicated trouble 
of separation—especially if we found that we were nearing the 
end of our supply of the richer deposits of ores.

Having conquered the energy liberation in nuclear fission of 
heavy elements such as uranium, physicists tackled the reverse 
process called nuclear fusion, in which two nuclei of light ele
ments fuse together to form a heavier nucleus, liberating huge 
amounts of energy. As we shall see in Chapter XI, our sun gets 
its energy by such a fusion process, in which ordinary hydrogen 
nuclei unite to form the heavier nuclei of helium, as a result of 
violent thermal collisions in their interiors. To duplicate these 
so-called thermonuclear reactions for human purposes, the best 
material for producing fusion is heavy hydrogen, or deuterium., 
which is present in small amounts in ordinary water. The deu
terium nucleus, called a deuteron, contains one proton and one 
neutron. When two deuterons collide, one of the following two 
reactions occurs:

2 deuterons —» He-3 +  neutron; 2 deuterons —> H-3 +  proton

In order to achieve the transformation, deuterium must be sub
jected to a temperature of a hundred million degrees.

The first successful nuclear-fusion device was the hydrogen 
bomb, in which the deuterium reaction was triggered by explosion 
of a fission bomb. A much more complex problem, however, is 
the production of controlled thermonuclear reaction, which would 
supply vast amounts of energy for peaceful purposes. The main 
difficulty—that of confining tremendously hot gas—can be over
come by means of strong magnetic fields that prevent the deu
terons from touching the container’s walls (which would melt 
and evaporate!) by confining them within a central hot region.
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CHAPTER VIII

The Law of Disorder

1. THERMAL DISORDER

IF  YOU pour a glass of water and look at it, you will see a clear 
uniform fluid with no trace of any internal structure or motion 

in it whatsoever (provided, of course, you do not shake the glass). 
We know, however, that the uniformity of water is only apparent 
and that if the water is magnified a few million times, there will 
be revealed a strongly expressed granular structure formed by a 
large number of separate molecules closely packed together.

Under the same magnification it is also apparent that the water 
is far from still, and that its molecules are in a state of violent 
agitation moving around and pushing one another as though they 
were people in a highly excited crowd. This irregular motion of 
water molecules, or the molecules of any other material substance, 
is known as heat (or thermal) motion, for the simple reason that 
it is responsible for the phenomenon of heat. For, although 
molecular motion as well as molecules themselves are not directly 
discernible to the human eye, it is molecular motion that produces 
a certain irritation in the nervous fibers of the human organism 
and produces the sensation that we call heat. For those organisms 
that are much smaller than human beings, such as, for example, 
small bacteria suspended in a water drop, the effect of thermal 
motion is much more pronounced, and these poor creatures are 
incessantly kicked, pushed, and tossed around by the restless 
molecules that attack them from all sides and give them no rest 
(Figure 77). This amusing phenomenon, known as Brownian 
motion, named after the English botanist Robert Brown, who first 
noticed it more than a century ago in a study of tiny plant spores, 
is of quite general nature and can be observed in the study of any 
kind of sufficiently small particles suspended in any kind of 
liquid, or of microscopic particles of smoke and dust floating 
in the air.
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If we heat the liquid the wild dance of tiny particles suspended 
in it becomes more violent; with cooling the intensity of the 
motion noticeably subsides. This leaves no doubt that we are 
actually watching here the effect of the hidden thermal motion 
of matter, and that what we usually call temperature is nothing 
else but a measurement of the degree of molecular agitation. By 
studying the dependence of Brownian motion on temperature, 
it was found that at the temperature of —273° C or —459° F,
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Six consecutive positions of a bacterium which is being tossed around by 
molecular impacts (physically correct; bacteriologically not quite so).

thermal agitation of matter completely ceases, and all its mole
cules come to rest. This apparendy is the lowest temperature 
and it has received the name of absolute zero. It would be an 
absurdity to speak about still lower temperatures since apparently 
there is no motion slower than absolute rest!

Near the absolute zero temperature the molecules of any sub
stance have so little energy that the cohesive forces acting upon 
them cement them together into one solid block, and all they
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can do is only quiver slightly in their frozen state. When the 
temperature rises the quivering becomes more and more intense, 
and at a certain stage our molecules obtain some freedom of 
motion and are able to slide by one another. The rigidity of the 
frozen substance disappears, and it becomes a fluid. The tem
perature at which the melting process takes place depends on the 
strength of the cohesive forces acting upon the molecules. In 
some materials such as hydrogen, or a mixture of nitrogen and 
oxygen which form atmospheric air, the cohesion of molecules 
is very weak, and the thermal agitation breaks up the frozen 
state at comparatively low temperatures. Thus hydrogen exists in 
the frozen state only at temperatures below 14° abs (i.e., below
— 259° C ), whereas solid oxygen and nitrogen melt at 55° abs 
and 64° abs, respectively (i.e. —218° C and —209° C ). In other 
substances the cohesion between molecules is stronger and they 
remain solid up to higher temperatures: thus pure alcohol re
mains frozen up to —130° C, whereas frozen water (ice) melts 
only at 0° C. Other substances remain solid up to much higher 
temperatures; a piece of lead will melt only at +327° C, iron at 
+  1535° C, and the rare metal known as osmium remains solid up 
to the temperature of +2700° C. Although in the solid state of 
matter the molecules are strongly bound to their places, it does 
not mean at all that they are not affected by thermal agitation. 
Indeed, according to the fundamental law of heat motion, the 
amount of energy in every molecule is the same for all sub
stances, solid, liquid, or gaseous at a given temperature, and the 
difference lies only in the fact that whereas in some cases this 
energy suffices to tear off the molecules from their fixed positions 
and let them travel around, in other cases they can only quiver 
on the same spot as angry dogs restricted by short chains.

This thermal quivering or vibration of molecules forming a 
solid body can be easily observed in the X-ray photographs de
scribed in the previous chapter. We have seen indeed that, since 
taking a picture of molecules in a crystal lattice requires a con
siderable time, it is essential that they should not move away 
from their fixed positions during the exposure. But a constant 
quivering around the fixed position is not conducive to good 
photography, and results in a somewhat blurred picture. This
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effect is shown in the molecular photograph which is repro
duced in Plate I. To obtain sharper pictures one must cool the 
crystals as much as possible. This is sometimes accomplished by 
dipping them in liquid air. If, on the other hand, one warms up 
the crystal to be photographed, the picture becomes more and 
more blurred, and, at the melting point the pattern completely 
vanishes, owing to the fact that the molecules leave their places 
and begin to move in an irregular way through the melted 
substance.

After solid material melts, the molecules still remain together, 
since the thermal agitation, though strong enough to dislocate 
them from the fixed position in the crystalline lattice, is not yet 
sufficient to take them completely apart. At still higher tem
peratures, however, the cohesive forces are not able to hold the 
molecules together any more and they fly apart in all directions 
unless prevented from doing so by the surrounding walls. When 
this happens, of course, the result is matter in a gaseous state. 
As in the melting of a solid, the evaporation of liquids takes place 
at different temperatures for different materials, and the sub
stances with a weaker internal cohesion will turn into vapor at 
lower temperatures than those in which cohesive forces are 
stronger. In this case the process also depends rather essentially 
on the pressure under which the liquid is kept, since the outside 
pressure evidently helps the cohesive forces to keep the molecules 
together. Thus, as everybody knows, water in a tightly closed 
kettle boils at a lower temperature than will water in an open one. 
On the other hand, on the top of high mountains, where atmos
pheric pressure is considerably less, water will boil well below 
100° C. It may be mentioned here that by measuring the tem
perature at which water will boil, one can calculate atmospheric 
pressure and consequently the distance above sea level of a given 
location.

But do not follow the example of Mark Twain who, according 
to his story, once decided to put an aneroid barometer into a 
boiling kettle of pea soup. This will not give you any idea of the 
elevation, and the copper oxide will make the soup taste bad.

The higher the melting point of a substance, the higher is its 
boiling point. Thus liquid hydrogen boils at —253° C, liquid



oxygen and nitrogen at —183° C and —196° C, alcohol at 
+  78° C, lead at +1620° C, iron at +3000° C and osmium only 
above +5300° C.1

The breaking up of the beautiful crystalline structure of solid 
bodies forces the molecules first to crawl around one another 
like a pack of worms, and then to fly apart as though they were a 
flock of frightened birds. But this latter phenomenon still does 
not represent the limit of the destructive power of increasing 
thermal motion. If the temperature rises still farther the very 
existence of the molecules is threatened, since the ever increasing 
violence of intermolecular collisions is capable of breaking them 
up into separate atoms. This thermal dissociation, as it is called, 
depends on the relative strength of the molecules subjected to it. 
The molecules of some organic substances will break up into 
separate atoms or atomic groups at temperatures as low as a few 
hundred degrees. Other more sturdily built molecules, such as 
those of water, will require a temperature of over a thousand 
degrees to be destroyed. But when the temperature rises to 
several thousand degrees no molecules will be left and the matter 
will be a gaseous mixture of pure chemical elements.

This is the situation on the surface of our sun where the tem
perature ranges up to 6000° C. On the other hand, in the com
paratively cooler atmospheres of the red stars,2 some of the mole
cules are still present, a fact that has been demonstrated by the 
methods of spectral analysis.

The violence of thermal collisions at high temperatures not 
only breaks up the molecules into their constituent atoms, but 
also damages the atoms themselves by chipping off their outer 
electrons. This thenmil ionization becomes more and more pro
nounced when the temperature rises into tens and hundreds of 
thousands of degrees, and reaches completion at a few million 
degrees above zero. At these tremendously hot temperatures, 
which are high above everything that we can produce in our 
laboratories but which are common in the interiors of stars and 
in particular inside our sun, the atoms as such cease to exist. 
All electronic shells are completely stripped off, and the matter

1 All values given for atmospheric pressure.
See Chapter XI.
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becomes a mixture of bare nuclei and free electrons rushing 
wildly through space and colliding with one another with tre
mendous force. However, in spite of the complete wreckage of 
atomic bodies, the matter still retains its fundamental chemical
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The destructive effect of temperature.

characteristics, inasmuch as atomic nuclei remain intact. If the 
temperature drops, the nuclei will recapture their electrons and 
the integrity of atoms will be reestablished.

In order to attain complete thermal dissociation of matter, that 
is to break up the nuclei themselves into the separate nucleons 
(protons and neutrons) the temperature must go up to at least 
several billion degrees. Even inside the hottest stars we do not
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find such high temperatures, though it seems very likely that tem
peratures of that magnitude did exist several billion years ago 
when our universe was still young. We shall return to this exciting 
question in the last chapter of this book.

Thus we see that the effect of thermal agitation is to destroy 
step by step the elaborate architecture of matter based on the law 
of quantum, and to turn this magnificent building into a mess of 
widely moving particles rushing around and colliding with one 
another without any apparent law or regularity.

2. HOW CAN ONE DESCRIBE DISORDERLY MOTIONP

It would be, however, a grave mistake to think that because of 
the irregularity of thermal motion it must remain outside the 
scope of any possible physical description. Indeed the fact itself 
that thermal motion is completely irregular makes it subject to a 
new kind of law, the Law of Disorder better known as the Law of 
Statistical Behavior. In order to understand the above statement 
let us turn our attention to the famous problem of a “Drunkard’s 
Walk.” Suppose we watch a drunkard who has been leaning 
against a lamp post in the middle of a large paved city square 
(nobody knows how or when he got there) and then has sud
denly decided to go nowhere in particular. Thus off he goes, 
making a few steps in one direction, then some more steps in an
other, and so on and so on, changing his course every few steps 
in an entirely unpredictable way (Figure 80). How far will be 
our drunkard from the lamp post after he has executed, say, a 
hundred phases of his irregular zigzag journey? One would at 
first think that, because of the unpredictability of each turn, there 
is no way of answering this question. If, however, we consider 
the problem a little more attentively we will find that, although 
we really cannot tell where the drunkard will be at the end of his 
walk, we can answer the question about his most probable dis
tance from the lamp post after a given large number of turns. In 
order to approach this problem in a vigorous mathematical way 
let us draw on the pavement two co-ordinate axes with the origin 
in the lamp post; the X-axis coming toward us and the Y-axis to 
the right. Let R be the distance of the drunkard from the lamp



post after the total of N zigzags (14 in Figure 80). If now XN and 
Yn are the projections of the Nth leg of the track on the corre
sponding axis, the Pythagorean theorem gives us apparently:

R2 — (X i+ X 2+ X 3 • • • +X# )2 +  (Y1+Y2+Y3 + • • -Yu) 2

where X’s and Y*s are positive or negative depending on whether 
our drunkard was moving to or from the post in this particular
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phase of his walk. Notice that since his motion is completely dis
orderly, there will be about as many positive values of X’s and 
Y’s as there are negative. In calculating the value of the square 
of the terms in parentheses according to the elementary rules of 
algebra, we have to multiply each term in the bracket by itself 
and by each of all other terms.



Thus:
( X1+ X 2+ X 3+ - - - X N) 2 

— (X1 +  X2 + X3 +  • • 'X_v) (X1+X2+X3 + • ■ -XN)
= X12+ X 1X2+ X 1X3 +  • • ■x 22 +  x 1x 2+ • • -X /

This long sum will contain the square of all X’s (X^, X22 • • • XN2), 
and the so-called “mixed products” like XiX2, X2X3, etc.

So far it is simple arithmetic, but now comes the statistical point 
based on the disorderliness of the drunkard’s walk. Since he was 
moving entirely at random and would just as likely make a step 
toward the post as away from it, the values of X’s have a fifty-fifty 
chance of being either positive or negative. Consequently in 
looking through the “mixed products” you are likely to find always 
the pairs that have the same numerical value but opposite signs 
thus canceling each other, and the larger the total number of 
turns, the more likely it is that such a compensation takes place. 
What will be left are only the squares of X ’s, since the square is 
always positive. Thus the whole thing can be written as 
Xi2+ X 22H—  ■•Xrf2= N  X2 where X is the average length of the 
projection of a zigzag link on the X-axis.

In the same way we find that the second bracket containing 
Y’s can be reduced to: NY2, Y being the average projection of the 
link on the Y-axis. It must be again repeated here that what 
we have just done is not strictly an algebraic operation, but is 
based on the statistical argument concerning the mutual cancel
lation of “mixed products” because of the random nature of the 
pass. For the most probable distance of our drunkard from the 
lamp post we get now simply:

R2 = N (X 2+Y 2)
or

R = \/rN-\/X2 + Y2 
But the average projections of the link on both axes is simply 

a 45° projection, so that \/X2 + Y2 is (again because of the Pytha
gorean theorem) simply equal to the average length of the link. 
Denoting it by 1 we get:

R = 1-y/N

In plain words our result means: the most probable distance of
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our drunkard from the lamp post after a certain large number of 
irregular turns is equal to the average length of each straight 
track that he toalks, times the square root of their number.

Thus if our drunkard goes one yard each time before he turns 
(at an unpredictable angle!), he will most probably be only ten 
yards from the lamp post after walking a grand total of a hundred 
yards. If he had not turned, but had gone straight, he would be a 
hundred yards away—which shows that it is definitely advan- 
tageous to be sober when taking a walk.

F ig u r e  8 1

Statistical distribution of six walking drunkards around the lamp post.

The statistical nature of the above example is revealed by the 
fact that we refer here only to the most probable distance and not 
to the exact distance in each individual case. In the case of an 
individual drunkard it may happen, though this is not very prob
able, that he does not make any turns at all and thus goes far 
away from the lamp post along the straight line. It may also 
happen, that he turns each time by, say, 180 degrees thus re
turning to the lamp post after every second turn. But if a large 
number of drunkards all start from the same lamp post walking 
in different zigzag paths and not interfering with one another



you will find after a sufficiently long time that they are spread 
over a certain area around the lamp post in such a way that their 
average distance from the post may be calculated by the above 
rule. An example of such spreading due to irregular motion is 
given in Figure 81, where we consider six walking drunkards. 
It goes without saying that the larger the number of drunkards, 
and the larger the number of turns they make in their disorderly 
walk, the more accurate is the rale.

Now substitute for the drunkards some microscopic bodies such 
as plant spores or bacteria suspended in liquid, and you will have 
exactly the picture that the botanist Brown saw in his microscope. 
True the spores and bacteria are not drunk, but, as we have said 
above, they are being incessantly kicked in all possible directions 
by the surrounding molecules involved in thermal motion, and 
are therefore forced to follow exactly the same irregular zigzag 
trajectories as a person who has completely lost his sense of 
direction under the influence of alcohol.

If you look through a microscope at the Brownian motion of a 
large number of small particles suspended in a drop of water, 
you will concentrate your attention on a certain group of them 
that are at the moment concentrated in a given small region (near 
the “lamp post”). You will notice that in the course of time they 
become gradually dispersed all over the field of vision, and that 
their average distance from the origin increases in proportion 
to the square root of the time interval as required by the mathe
matical law by which we calculated the distance of the drunkard’s 
walk.

The same law of motion pertains, of course, to each separate 
molecule in our drop of water; but you cannot see separate mole
cules, and even if you could, you wouldn’t be able to distinguish 
between them. To make 'such motion visible one must use two 
different kinds of molecules distinguishable for example by their 
different colors. Thus we can fill one half of a chemical test tube 
with a water solution of potassium permanganate, which will give 
to the water a beautiful purple tint. If we now pour on the top 
of it some clear fresh water, being careful not to mix up the two 
layers, we shall notice that the color gradually penetrates the 
clear water. If you wait sufficiently long you will find that all the
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water from the bottom to the surface becomes uniformly colored. 
This phenomenon, familiar to everybody, is known as diffusion 
and is due to the irregular thermal motion of the molecules of dye 
among the water molecules. We must imagine each molecule of 
potassium permanganate as a little drunkard who is driven to 
and fro by the incessant impacts received from other molecules. 
Since in water the molecules are packed rather tightly (in con
trast to the arrangement of those in a gas) the average free path 
of each molecule between two successive collisions is very short, 
being only about one hundred millionths of an inch. Since on 
the other hand the molecules at room temperature move with the 
speed of about one tenth of a mile per second, it takes only one 
million-millionth part of a second for a molecule to go from 
one collision to another. Thus in the course of a single second
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each dye molecule will be engaged in about a million million 
consecutive collisions and will change its direction of motion as_ O
many times. The average distance covered during the first second 
will be one hundred millionth of an inch ( the length of free path) 
times the square root of a million millions. This gives the average 
diffusion speed of only one hundredth of an inch per second; a 
rather slow progress considering that if it were not deflected by 
collisions, the same molecule would be a tenth of a mile away! 
If you wait 100 sec, the molecule will have struggled through 
10 times ( V 100 = 10) as great distance, and in 10,000 sec, that 
is, in about 3 hr, the diffusion will have carried the coloring 
100 times farther ( V 10000 = 100), that is, about 1 in. away. Yes,



diffusion is a rather slow process; when you put a lump of sugar 
into your cup of tea you had better stir it rather than wait until 
the sugar molecules have been spread throughout by their own 
motion.

Just to give another example of the process of diffusion, which 
is one of the most important processes in molecular physics, let 
us consider the way in which heat is propagated through an iron 
poker, one end of which you put into the fireplace. From your 
own experience you know that it takes quite a long time until 
the other end of the poker becomes uncomfortably hot, but you 
probably do not know that the heat is carried along the metal 
stick by the process of diffusion of electrons. Yes, an ordinary 
iron poker is actually stuffed with electrons, and so is any metallic 
object. The difference between a metal, and other materials, as 
for example glass, is that the atoms of the former lose some of 
their outer electrons, which roam all through the metallic lattice, 
being involved in irregular thermal motion, in very much the 
same way as the particles of ordinary gas.

The surface forces on the outer boundaries of a piece of metal 
prevent these electrons from getting out,3 but in their motion 
inside the material they are almost perfectly free. If an electric 
force is applied to a metal wire, the free unattached electrons 
will rush headlong in the direction of the force producing the 
phenomenon of electric current. The nonmetals on the other hand 
are usually good insulators because all their electrons are bound 
to atoms and thus cannot move freely.

When one end of a metal bar is placed in the fire, the thermal 
motion of free electrons in this part of the metal is considerably 
increased, and the fast-moving electrons begin to diffuse into the 
other regions carrying with them the extra energy of heat. The 
process is quite similar to the diffusion of dye molecules through 
water, except that instead of having two different kinds of par
ticles (water molecules and dye molecules) we have here the 
diffusion of hot electron gas into the region occupied by cold 
electron gas. The drunkard’s walk law applies here, however, just

3 When we bring a metal wire to a high temperature, the thermal motion 
of electrons in its inside becomes more violent and some of them come out 
through the surface. This is the phenomenon used in electron tubes and 
familiar to all radio amateurs.
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as well and the distances through which the heat propagates 
along a metal bar increase as the square roots of corresponding 
times.

As our last example of diffusion we shall take an entirely dif
ferent case of cosmic importance. As we shall learn in the fol
lowing chapters the energy of our sun is produced deep in its 
interior by the alchemic transformation of chemical elements. 
This energy is liberated in the form of intensive radiation, and 
the “particles of light,” or the light quanta begin their long jour
ney through the body of the sun towards its surface. Since light 
moves at a speed of 300,000 km per second, and the radius of 
the sun is only 700,000 km it would take a light quantum only 
slightly over two seconds to come out provided it moved without 
any deviations from a straight line. However, this is far from being 
the case; on their way out the light quanta undergo innumerable 
collisions with the atoms and electrons in the material of the sun. 
The free pass of a light quantum in solar matter is about a centi
meter (much longer than a free pass of a molecule!) and since 
the radius of the sun is 70,000,000,000 cm, our light quantum must 
make (7-1010)2 or 5-1021 drunkard’s steps to reach the surface.

1 .
Since each step requires . q̂io or 3-10'11 sec, the entire time of

travel is 3X 10 '11X 5X 1021 =  1 .5X l0n sec or about 5000 yr! Here 
again we see how slow the process of diffusion is. It takes light
50 centuries to travel from the center of the sun to its surface, 
whereas after coming into empty interplanetary space and 
traveling along a straight line it covers the entire distance from 
the sun to the earth in only eight minutes!

3. COUNTING PROBABILITIES
This case of diffusion represents only one simple example of 

the application of the statistical law of probability to the problem 
of molecular motion. Before we go farther with that discussion, 
and make the attempt to understand the all-important Law of 
Entropy, which rules the thermal behavior of every material 
body, be it a tiny droplet of some liquid or the giant universe of 
stars, we have first to learn more about the ways in which the



probability of different simple or complicated events can be cal
culated.

By far the simplest problem of probability calculus arises when 
you toss a coin. Everybody knows that in this case (without 
cheating) there are equal chances to get heads or tails. One 
usually says that there is a fifty-fifty chance for heads or tails, 
but it is more customary in mathematics to say that the chances 
are half and half. If you add the chances of getting heads and 
getting tails you get \  ̂— 1. Unity in the' theory of probability 
means a certainty; you are in fact quite certain that in tossing a
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Four possible combinations in tossing two coins.

coin you get either heads or tails, unless it rolls under the sofa and 
vanishes tracelessly.

Suppose now you drop the coin twice in succession or, what is 
the same, you drop 2 coins simultaneously. It is easy to see that 
you have here 4 different possibilities shown in Figure 83.

In the first case you get heads twice, in the last case tails 
twice, whereas the two intermediate cases lead to the same 
result since it does not matter to you in which order ( or in which 
coin) heads or tails appear. Thus you say that the chances of 
getting heads twice are 1 out of 4 or the chances of getting 
tails twice are also whereas the chances of heads once and tails 
cnce are 2 out of 4 or Here again \ +  \ = 1, meaning that you
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are certain to get one of the 3 possible combinations. Let us see 
now what happens if we toss the coin 3 times. There are altogether 
8 possibilities summarized in the following table:

First tossing h h h h t t t t
Second h h t t h h t t
Third h t h t h t h t

I II II III II III III IV

If you inspect this table you find that there is 1 chance out of 8 
of getting heads three times, and the same of getting tails three 
times. The remaining possibilities are equally divided between 
heads twice and tails once, or heads once and tails twice, with 
the probability three eighths for each event.

Our table of different possibilities is growing rather rapidly, 
but let us take one more step by tossing 4 times. Now we have 
the following 16 possibilities:

First tossing h h h h h h h h t t t t t t t t
Second h h h h t t t t h h h h t t t t
Third h h t t h h t t h h t t h h t t
Fourth h t h t h t h t h t h t h t h t

I II II  III  II I I I I I I I V  II II I  III IV III IV IV  V

Here we have for the probability of heads four times, and 
exactly the same for tails four times. The mixed cases of heads 
three times and tails once or tails three times and heads once 
have the probabilities of or 1 each, whereas the chances of 
heads and tails the same number of times are % 6 or f .

If you try to continue in a similar way for larger numbers of 
tosses the table becomes so long that you will soon run out of 
paper; thus for example for ten tosses you have 1024 different 
possibilities (i.e., 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 ) .  But it is not 
at all necessary to construct such long tables since the simple 
laws of probability can be observed in those simple examples that 
we already have cited and then used directly in more compli
cated cases.

First of all you see that the probability of getting heads twice 
is equal to the product of the probabilities of getting it separately 
in the first and in the second tossing; in fact i  = 4 x i  Similarly



the probability of getting heads three or four times in succession 
is the product of probabilities of getting it separately in each 
tossing ( i  = | x | x | ; iV — 2 X i X ^ X | ) .  Thus if somebody asks 
you what the chances are of getting heads each time in ten toss
ings you can easily give the answer by multiplying \ by \ ten 
times. The result will be .00098, indicating that t-he chances are 
very low indeed: about one chance out of a thousand! Here we 
have the rule of “multiplication of probabilities,” which states 
that if you want several different things, you may determine the 
mathematical probability of getting them by multiplying the 
mathematical probabilities of getting the several individual ones. 
If there are many things you want, and each of them is not par
ticularly probable, the chances that you get them all are dis- 
couragingly low!

There is also another rule, that of the “addition of probabilities,” 
which states that if you want only one o f several things (no matter 
which one), the mathematical probability of getting it is the sum 
of mathematical probabilities o f getting individual items on your 
list.

This can be easily illustrated in the example of getting an equal 
division between heads and tails in tossing a coin twice. What 
you actually want here is either “heads once, tails twice” or “tails 
twice, heads once.” The probability of each of the above com
binations is •£, and the probability of getting either one of them 
is \ plus I  or Thus: If you want “that, and that, and that . . 
you multiply the individual mathematical probabilities of dif
ferent items. If, however, you want “that, or that, or that” you 
add  the probabilities.

In the first case your chances of getting everything you ask for 
will decrease as the number of desired items increases. In the 
second case, when you want only one out of several items your 
chances of being satisfied increase as the list of items from which 
to choose becomes longer.

The experiments with tossing coins furnish a fine example of 
what is meant by saying that the laws of probability become 
more exact when you deal with a large number of trials. This is 
illustrated in Figure 84, which represents the probabilities of 
getting a different relative number of heads and tails for two,
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three, four, ten, and a hundred tossings. You see that with the 
increasing number of tossings the probability curve becomes 
sharper and sharper and the maximum at fifty-fifty ratio of heads 
and tails becomes more and more pronounced.

Thus whereas for 2 or 3, or even 4 tosses, the chances to have 
heads each time or tails each time are still quite appreciable, in 
10 tosses even 90 per cent of heads or tails is very improbable.

Relative number of tails and heads.

For a still larger number of tosses, say 100 or 1000, the probability 
curve becomes as sharp as a needle, and the chances of getting 
even a small deviation from fifty-fifty distribution becomes prac
tically nil.

Let us now use the simple rules of probability calculus that we 
have just learned in order to judge the relative probabilities of 
various combinations of five playing cards which one encounters 
in the well-known game of poker.



In case you do not know, each player in this game is dealt
5 cards and the one who gets the highest combination takes the 
bank. We shall omit here the additional complications arising 
from the possibility of exchanging some of your cards with the 
hope of getting better ones, and the psychological strategy of 
bluffing your opponents into submission by making them believe 
that you have much better cards than you actually have. Although 
this bluffing actually is the heart of the game, and once led the 
famous Danish physicist Niels Bohr to propose an entirely new 
type of game in which no cards are used, and the players simply 
bluff one another by talking about the imaginary combinations 
they have, it lies entirely outside the domain of probability 
calculus, being a purely psychological matter.
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A flush (of spades).

In order to get some exercise in probability calculus, let us 
calculate the probabilities of some of the combinations in the 
game of poker. One of these combinations is called a “flush” and 
represents 5 cards all of the same suit ( Figure 85).

If you want to get a flush it is immaterial what the first card 
you get is, and one has only to calculate the chances that the 
other four will be of the same suit. There are altogether 52 cards 
in the pack, 13 cards of each suit,4 so that after you get your first 
card, there remain in the pack 12 cards of the same suit. Thus 
the chances that your second card will be of the proper suit are 
12/51. Similarly the chances that the third, fourth, and fifth cards

4 We omit here the complications arising from the presence of the “joker,” 
an extra card which can be substituted for any other card according to the 
desire of the player.
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will be of the same suit are given by the fractions: 11/50, 10/49 
and 9/48. Since you want all 5 cards to be of the same suit you 
have to apply the rule of probability-multiplications. Doing this 
you find that the probability of getting a flush is:

12 11 10 9 13068
—  X —  X —  X —  = -----------or about 1 in 500,

51 50 49 48 5997600

But please do not think that in 500 hands you are sure to get a 
flush. You may get none, or you may get two. This is only prob
ability calculus, and it may happen that you will be dealt many 
more than 500 hands without getting the desired combination, or 
on the contrary that you may be dealt a flush the very first time 
you have the cards in your hands. All that the theory of prob-
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Full house.

ability can tell you is that you will probably be dealt 1 flush in 500 
hands. You may also learn, by following the same methods of 
calculation, that in playing 30.000,000 games you will probably 
get 5 aces ( including the joker) about ten times.

Another combination in poker, which is even rarer and there
fore more valuable, is the so-called “full hand,” more popularly 
called “full house.” A full house consists of a “pair” and “three of 
a kind” (that is, 2 cards of the same value in 2 suits, and 3 cards 
of the same value in 3 suits—as, for example, the 2 fives and
3 queens shown in Figure 86).

If you want to get a full house, it is immaterial which 2 cards 
you get first, but when you get them you must have 2 of the re
maining 3 cards match one of them, and the other match the



other one. Since there are 6 cards that will match the ones you 
have (if you have a queen and a five, there are 3 other queens 
and 3 other fives) the chances that the third card is a right one 
are 6 out of 50 or 6/50. The chances that the fourth card will be 
the right one are 5/49 since there are now only 5 right cards out 
of 49 cards left, and the chance that the fifth card will be right 
is 4/48. Thus the total probability of a full house is:

6 5 4 120
__x ___X ___= _______
50 49 48 117600

or about one half of the probability of the flush.
In a similar way one can calculate the probabilities of other 

combinations as, for example, a “straight” (a sequence of cards), 
and also take into account the changes in probability introduced 
by the presence of the joker and the possibility of exchanging 
the originally dealt cards.

By such calculations one finds that the sequence of seniority 
used in poker does really correspond to the order of mathematical 
probabilities. It is not known by the author whether such an 
arrangement was proposed by some mathematician of the old 
times, or was established purely empirically by millions of 
players risking their money in fashionable gambling salons and 
little dark haunts all over the world. If the latter was the case, 
we must admit that we have here a pretty good statistical study 
of the relative probabilities of complicated events!

Another interesting example of probability calculation, an ex
ample that leads to a quite unexpected answer, is the problem of 
“Coinciding Birthdays.” Try to remember whether you have ever 
been invited to two different birthday parties on the same day. 
You will probably say that the chances of such double invitations 
are very small since you have only about 24 friends who are 
likely to invite you, and there are 365 days in the year on which 
their birthdays may fall. Thus, with so many possible dates to 
choose from, there must be very little chance that any 2 of your 
24 friends will have to cut their birthday cakes on the same day.

However, unbelievable as it may sound, your judgment here is 
quite wrong. The truth is that there is a rather high probability 
that in a company of 24 people there are a pair, or even several
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pairs, with coinciding birthdays. As a matter of fact, there are 
more chances that there is such a coincidence than that there is not.

You can verify that fact by making a birthday list including 
about 24 persons, or more simply, by comparing the birth dates 
of 24 persons whose names appear consecutively on any pages of 
some such reference book as “Who’s Who in America,” opened 
at random. Or the probabilities can be ascertained by using the 
simple rules of probability calculus with which we have become 
acquainted in the problems of coin tossing and poker.

Suppose we try first to calculate the chances that in a company 
of twenty-four persons everyone has a different birth date. Let 
us ask the first person in the group what is his birth date; of 
course this can be any of the 365 days of the year. Now, what is 
the chance that the birth date of the second person we approach 
is different from that of the first? Since this (second) person 
could have been born on any day of the year, there is one chance 
out of 365 that his birth date coincides with that of the first one, 
and 364 chances out of 365 (i.e., the probability of 364/365) that 
it does not. Similarly, the probability that the third person has a 
birth date different from that of either the first or second is 
363/365, since two days of the year have been excluded. The 
probabilities that the next persons we ask have different birth 
dates from the ones we have approached before are then: 362/365, 
361/365, 360/365 and so on up to the last person for whom the

, , , (365-23) 342 
probability is or — .

Since we are trying to learn what the probability is that one of 
these coincidences of birth dates exists, we have to multiply all 
the above fractions, thus obtaining for the probability of all the 
persons having different birth dates the value:

364 363 362 342
365 X 365 X 365 X ” '365

One can arrive at the product in a few minutes by using cer
tain methods of higher mathematics, but if you don’t know them 
you can do it the hard way by direct multiplication,5 which 
would not take so very much time. The result is 0.46, indicating

B Use a logarithmic table or slide rule if you can!



that the probability that there will be no coinciding birthdays 
is slightly less than one half. In other words there are only 46 
chances in 100 that no two of your two dozen friends will have 
birthdays on the same day, and 54 chances in 100 that two or 
more will. Thus if you have 25 or more friends, and have never 
been invited to two birthday parties on the same date you may 
conclude with a high degree of probability that either most of 
your friends do not organize their birthday parties, or that they 
do not invite you to them!

The problem of coincident birthdays represents a very fine 
example of how a common-sense judgment concerning the 
probabilities of complex events can be entirely wrong. The 
author has put this question to a great many people, including 
many prominent scientists, and in all cases except one0 was 
offered bets ranging from 2 to 1 to 15 to 1 that no such co
incidence will occur. If he had accepted all these bets he would 
be a rich man by now!

It cannot be repeated too often that if we calculate the 
probabilities of different events according to the given rules and 
pick out the most probable of them, we are not at all sure that 
this is exactly what is going to happen. Unless the number of 
tests we are making runs into thousands, millions or still better 
into billions, the predicted results are only “likely” and not at all 
“certain.” This slackening of the laws of probability when dealing 
with a comparatively small number of tests limits, for example, 
the usefulness of statistical analysis for deciphering various codes 
and cryptograms which are limited only to comparatively short 
notes. Let us examine, for example, the famous case described 
by Edgar Allan Poe in his well-known story “The Gold Bug.” 
He tells us about a certain Mr. Legrand who, strolling along a 
deserted beach in South Carolina, picked up a piece of parchment 
half buried in the wet sand. When subjected to the warmth of 
the fire burning gaily in Mr. Legrand’s beach hut, the parchment 
revealed some mysterious signs written in ink which was invisible 
when cold, but which turned red and was quite legible when 
heated. There was a picture of a skull, suggesting that the docu-

6 This exception was, of course, a Hungarian mathematician (see the 
beginning of the first chapter of this book).
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ment was written by a pirate, the head of a goat, proving beyond 
any doubt that the pirate was none other than the famous Captain 
Kidd, and several lines of typographical signs apparently indi
cating the whereabouts of a hidden treasure (see Figure 87).

We take it on the authority of Edgar Allan Poe that the pirates 
of the seventeenth century were acquainted with such typo
graphical signs as semicolons and quotation marks, and such 
others as: j ,  + , and f.

Being in need of money, Mr. Legrand used all his mental 
powers in an attempt to decipher the mysterious cryptogram and

S(*z (Ŝ >t)8ll8*)mWS-)})6i8)Wf
8); 8;8 + J;*ms-;4)*8s“t«s B80b*8l ( £ * ;
( 8 8 ;4 t t ? 3 * ;4 W ; ,6,; ;  !8 8 j&  % f
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Captain Kidd’s Message.

finally did so on the basis of the relative frequency of occurrence 
of different letters in the English language. His method was based 
on the fact that if you count the number of different letters of 
any English text, whether in a Shakespearian sonnet or an Edgar 
Wallace mystery story, you will find that the letter “e” occurs 
by far most frequently. After “e” the succession of most 
frequent letters is as follows:

a, o, i, d, h, n, r, s, t, u, y, c, f, g, I, m, w, b, k, p, q, x, z 
By counting the different symbols appearing in Captain Kidd’s 

cryptogram, Mr. Legrand found that the symbol that occurred 
most frequently in the message was the figure 8. “Aha,” he said, 
“that means that 8 most probably stands for the letter e.”

Well, he was right in this case, but of course it was only very



probable and not at all certain. In fact if the secret message had 
been “You will find a lot of gold and coins in an iron box in woods 
two thousand yards south from an old hut on Bird Island’s north 
tip” it would not have contained a single “e”! But the laws of 
chance were favorable to Mr. Legrand, and his guess was really 
correct.

Having met with success in the first step, Mr. Legrand became 
overconfident and proceeded in the same way by picking up the 
letters in the order of the probability of their occurrence. In the 
following table we give the symbols appearing in Captain Kidd’s 
message in the order of their relative frequency of use:
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English language. Therefore it was logical to assume that the 
signs listed in the broad column to the left stood for the letters 
listed opposite them in the first narrow column to the right. But 
using this arrangement we find that the beginning of Captain 
Kidd’s message reads: ngiisgunddrhaoecr . . .

No sense at all!
What happened? Was the old pirate so tricky as to use special 

words that do not contain letters that follow the same rules of 
frequency as those in the words normally used in the English 
language? Not at all; it is simply that the text of the message is 
not long enough for good statistical sampling and the most prob
able distribution of letters does not occur. Had Captain Kidd 
hidden his treasure in such an elaborate way that the instructions 
for its recovery occupied a couple of pages, or, still better an 
entire volume, Mr. Legrand would have had a much better 
chance to solve the riddle by applying the rules of frequency.

If you drop a coin 100 times you may be pretty sure that it will 
fall with the head up about 50 times, but in only 4 drops you 
may have heads three times and tails once or vice versa. To make 
a rule of it, the larger the number of trials, the more accurately 
the laws of probability operate.

Since the simple method of statistical analysis failed because 
of an insufficient number of letters in the cryptogram, Mr. Le
grand had to use an analysis based on the detailed structure of 
different words in the English language. First of all he strength
ened his hypothesis that the most frequent sign 8 stood for e  by 
noticing that the combination 8 8  occurred very often (5 times) 
in this comparatively short message, for, as everyone knows, the 
letter e is very often doubled in English words (as in: meet, -fleet, 
speed, seen, been, agree, etc.). Furthermore if 8 really stood for e 
one would expect it to occur very often as a part of the word 
“the.” Inspecting the text of the cryptogram we find that the 
combination ;48 occurs seven times in a few short lines. But if this 
is true, we must conclude th a t ; stands for t and 4 for h.

We refer the reader to the original Poe story for the details 
concerning the further steps in the deciphering of Captain Kidd’s 
message, the complete text of which was finally found to be: 
“A good glass in the bishop’s hostel in the devil’s seat. Forty-one



degrees and thiiteen minutes northeast by north. Main branch 
seventh limb east side. Shoot from the left eye of the death’s 
head. A bee-line from the tree through the shot fifty feet out.” 

The correct meaning of the different characters as finally de
ciphered by Mr. Legrand is shown in the second column of the 
table on page 217, and you see that they do not correspond exactly 
to the distribution that might reasonably be expected on the 
basis of the laws of probability. It is, of course, because the text 
is too short and therefore does not furnish an ample opportunity
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for the laws of probability to operate. But even in this small 
“statistical sample” we can notice the tendency for the letters 
to arrange themselves in the order required by the theory of 
probability, a tendency that would become almost an unbreak
able rule if the number of letters in the message were much 
larger.

There seems to be only one example (excepting the fact that 
insurance companies do not break up) in which the predictions 
of the theory of probability have actually been checked by a 
very large number of trials. This is a famous problem of the 
American flag and a box of kitchen matches.
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To tackle this particular problem of probability you will need 
an American flag, that is, the part of it consisting of red and 
white stripes; if no flag is available just take a large piece of 
paper and draw on it a number of parallel and equidistant lines. 
Then you need a box of matches—any kind of matches, provided 
they are shorter than the width of the stripes. Next you will need 
a Greek pi, which is not something to eat, but just a letter of the 
Greek alphabet equivalent to our “p.” It looks like this: 7r. In 
addition to being a letter of the Greek alphabet, it is used to

Arc JL
Z
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signify the ratio of the circumference of a circle to its diameter. 
You may know that numerically it equals 3.1415926535 . . . 
(many more digits are known, but we shall not need them all.)

Now spread the flag on a table, toss a match in the air and 
watch it fall on the flag (Figure 8 8 ). It may fall in such a way 
that it all remains within one stripe, or it may fall across the 
boundary between two stripes. What are the chances that one or 
another will take place?

Following our procedure in ascertaining other probabilities,



we must first count the number of cases that correspond to one 
or another possibility.

But how can you count all the possibilities when it is clear 
that a match can fall on a flag in an infinite number of different, 
ways?

Let us examine the question a little more closely. The position 
of the fallen match in respect to the stripe on which it falls 
can be characterized by the distance of the middle of the match 
from the nearest boundary line, and by the angle that the match 
forms with the direction of the stripes in Figure 89. We give 
three typical examples of fallen matches, assuming, for the sake 
of simplicity, that the length of the match equals the width of 
the stripe, each being, say, two inches. If the center of the match 
is rather close to the boundary line, and the angle is rather large 
(as in case a) the match will intersect the line. If, on the con
trary, the angle is small (as in case h) or the distance is large 
(as in case c)  the match will remain within the boundaries of 
one stripe. More exactly we may say that the match will intersect 
the line if the projection of the half-of-the-match on the vertical 
direction is larger than the half width of the stripe (as in case a), 
and that no intersection will take place if the opposite is true 
(as in case b). The above statement is represented graphically 
on the diagram in the lower part of the picture. We plot on the 
horizontal axis ( abscissa) the angle of the fallen match as given 
by the length of the corresponding arc of radius 1. On the vertical 
axis (ordinate) we plot the length of the projection of the half
match length on the vertical direction; in trigonometry this length 
is known as the sine corresponding to the given arc. It is clear 
that the sine is zero when the arc is zero since in that case the 
match occupies a horizontal position. When the arc is % tt, which 
corresponds to a right angle, 7 the sine is equal to unity, since the 
match occupies a vertical position and thus coincides with its pro
jection. For intermediate values of the arc the sine is given by the 
familiar mathematical wavy curve known as sinusoid. (In Figure 
89 we have only one quarter of a complete wave in the interval 
between 0  and tt/2. )

7 The circumference of a circle with the radius 1 is ir times its diameter 
or 2 7r. Thus the length of one quadrant of a circle is 2 7r/4 or ir/2.
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Having constructed this diagram we can use it with con
venience for estimating the chances that the fallen match will or 
will not cross the line. In fact, as we have seen above ( look again 
at the three examples in the upper part of Figure 89) the match 
will cross the boundary line of a stripe if the distance of the 
center of the match from the boundary line is less than the cor
responding projection, that is, less than the sine of the arc. That 
means that in plotting that distance and that arc in our diagram 
we get a point below  the sine line. On the contrary the match 
that falls entirely within the boundaries of a stripe will give a point 
above the sine line.

Thus, according to our rules for calculating probabilities, the 
chances of intersection will stand in the same ratio to the 
chances of nonintersection as the area below the curve does to 
the area above it; or the probabilities of the two events may be 
calculated by dividing the two areas by the entire area of the 
rectangle. It can be proved mathematically (cf. Chapter I I ) that 
the area of the sinusoid presented in our diagram equals exactly

7r 7r
1. Since the total area of the rectangle is - X l = -  we find the 

probability that the match will fall across the boundary (for 

matches equal in length to the stripe width) is: - L = ? .
7T/Z 7r

The interesting fact that tt pops up here where it might be 
least expected was first observed by the eighteenth century 
scientist Count Buffon, and so the match-and-stripes problem now 
bears his name.

An actual experiment was carried out by a diligent Italian 
mathematician, Lazzerini, who made 3408 match tosses and ob
served that 2169 of them intersected the boundary line. The 
exact record of this experiment, checked with the Buffon formula,

substitutes for -rr a value of  ̂ ^408 ^  3.1415929, differing from
2169 B

die exact mathematical value only in the seventh decimal place!
This represents, of course, a most amusing proof of the validity 

of the probability laws, but not more amusing than the deter
mination of a number “2 ” by tossing a coin several thousand



times and dividing the total number of tosses by the number 
of times heads come up. Sure enough you get in this case:
2.000000 . . . with just as small an error as in Lazzerini’s deter
mination of 7r.

4. THE “MYSTERIOUS” ENTROPY

From the above examples of probability calculus, all of them 
pertaining to ordinary life, we have learned that predictions of 
that sort, being often disappointing when small numbers are in
volved, become better and better when we go to really large 
numbers. This makes these laws particularly applicable to the 
description of the almost innumerable quantities of atoms or 
molecules that form even the smallest piece of matter we can 
conveniently handle. Thus, whereas the statistical law of Drunk
ard’s Walk can give us only approximate results when applied 
to a half-dozen drunkards who make perhaps two dozen turns 
each, its application to billions of dye molecules undergoing 
billions of collisions every second leads to the most rigorous 
physical law of diffusion. We can also say that the dye that was 
originally dissolved in only one half of the water in the test tube 
tends through the process of diffusion to spread uniformly 
through the entire liquid, because, such uniform distribution is 
more probable than the original one.

For exactly the same reason the room in which you sit reading 
this book is filled uniformly by air from wall to wall and from 
floor to ceiling, and it never even occurs to you that the air in the 
room can unexpectedly collect itself in a far corner, leaving you to 
suffocate in your chair. However, this horrifying event is not at 
all physically impossible, but only highly improbable.

To clarify the situation, let us consider a room divided into 
two equal halves by an imaginary vertical plane, and ask our
selves about the most probable distribution of air molecules be
tween the two parts. The problem is of course identical with the 
coin-tossing problem discussed in the previous chapter. If we 
pick up one single molecule it has equal chances of being in the 
right or in the left half of the room, in exactly the same way as 
the tossed coin can fall on the table with heads or tails up.
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The second, the third, and all the other molecules also have 
equal chances of being in the right or in the left part of the room 
regardless of where the others are. 8 Thus the problem of dis
tributing molecules between the two halves of the room is 
equivalent to the problem of heads-and-tails distribution in a 
large number of tosses, and as you have seen from Figure 84, 
the fifty-fifty distribution is in this case by far the most probable 
one. We also see from that figure that with the increasing number 
of tosses (the number of air molecules in our case) the prob
ability at 50 per cent becomes greater and greater, turning prac
tically into a certainty when this number becomes very large. 
Since in the average-size room there are about 1027 molecules,9 

the probability that all of them collect simultaneously in, let us 
say, the right part of the room is:

(^) 1027= io -3102a
i.e., 1  out of 1 0 . 3 1026

On the other hand, since the molecules of air moving at 
the speed of about 0.5 km per second require only 0.01 sec 
to move from one end of the room to the other, their dis
tribution in the room will be reshuffled 1 0 0  times each second. 
Consequently the waiting time for the right combination is
JQ 2 9 9 ,999,999,999,999,999,999,999,998 sec ag compared with Only 1017 SeC
representing the total age of the universe! Thus you may go on 
quietly reading your book without being afraid of being suf
focated by chance.

To take another example, let us consider a glass of water 
standing on the table. We know that the molecules of water, 
being involved in the irregular thermal motion, are moving at 
high speed in all possible directions, being, however, prevented 
from flying apart by the cohesive forces between them.

Since the direction of motion of each separate molecule is
8 In fact, owing to large distances between separate molecules of the gas, 

the space is not at all crowded and the presence of a large number of 
molecules in a given volume does not at all prevent the entrance of new 
molecules.

9 A room 10 ft by 15 ft, with a 9 ft ceiling has a volume of 1350 cu ft, or 
5-107 cu cm, thus containing 5-101 g of air. Since the average mass of air 
molecules is 30 x 1.66 x  10““ =  5 x 10_2S g, the total number of molecules is 
5 -1 0 V 5 '1 0 “?=10*27. ( means:  approximately equal to.)
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governed entirely by the law of chance, we may consider the 
possibility that at a certain moment the velocities of one half 
of the molecules, namely those in the upper part of the glass, 
will all be directed upward, whereas the other half, in the lower 
part of the glass, will move downwards. 10 In such a case, the co
hesive forces acting along the horizontal plane dividing two 
groups of molecules will not be able to oppose their “unified 
desire for parting,” and we shall observe the unusual physical 
phenomenon of half the water from the glass being spontaneously 
shot up with the speed of a bullet toward the ceiling!

Another possibility is that the total energy of thermal motion 
of water molecules will be concentrated by chance in those 
located in the upper part of the glass, in which case the water 
near the bottom suddenly freezes, whereas its upper layers begin 
to boil violently. Why have you never seen such things happen? 
Not because they are absolutely impossible, but only because 
they are extremely improbable. In fact, if you try to calculate 
the probability that molecular velocities, originally distributed 
at random in all directions, will by pure chance assume the dis
tribution described above, you arrive at a figure that is just about 
as small as the probability that the molecules of air will collect 
in one comer. In a similar way, the chance that, because of 
mutual collisions, some of the molecules will lose most of their 
kinetic energy, while the other part gets a considerable excess 
of it, is also negligibly small. Here again the distribution of 
velocities that corresponds to the usually observed case is the 
one that possesses the largest probability.

If now we start with a case that does not correspond to the 
most probable arrangement of molecular positions or velocities, 
by letting out some gas in one comer of the room, or by pouring 
some hot water on top of the cold, a sequence of physical 
changes will take place that will bring our system from this less 
probable to a most probable state. The gas will diffuse through 
the room until it fills it up uniformly, and the heat from the top 
of the glass will flow toward the bottom until all the water as-

10 We must consider this half-and-half distribution, since the possibility 
that all molecules move in the same direction is ruled out by the mechanical 
law of the conservation of momentum.
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sumes an equal temperature. Thus we may say that all physical 
processes depending on the irregular motion o f molecules go in 
the direction of increasing probability, and the state of equilib
rium, when nothing more happens, corresponds to the maximum 
o f probability. Since, as we have seen from the example of the 
air in the room, the probabilities of various molecular distribu
tions are often expressed by inconveniently small numbers (as 
IQ-sio* for air collecting in one half of the room), it is cus
tomary to refer to their logarithms instead. This quantity is known 
by the name of entropy, and plays a prominent role in all ques
tions connected with the irregular thermal motion of matter. The 
foregoing statement concerning the probability changes in 
physical processes can be now rewritten in the form: Any spon
taneous changes in a physical system occur in the direction of 
increasing entropy, and the final state o f equilibrium corresponds 
to the maximum possible value of the entropy.

This is the famous Law of Entropy, also known as the Second 
Law of Thermodynamics (the First Law being the Law of Con
servation of Energy), and as you see there is nothing in it to 
frighten you.

The Law of Entropy can also be called the Law of Increasing 
Disorder since, as we have seen in all the examples given above, 
the entropy reaches its maximum when the position and velocities 
of molecules are distributed completely at random so that any 
attempt to introduce some order in their motion would lead to 
the decrease of the entropy. Still another, more practical, formula
tion of the Law of Entropy can be obtained by reference to the 
problem of turning the heat into mechanical motion. Remember
ing that the heat is actually the disorderly mechanical motion of 
molecules, it is easy to understand that the complete transforma
tion of the heat content of a given material body into mechanical 
energy of large-scale motion is equivalent to the task of forcing 
all molecules of that body to move in the same direction. How
ever, in the example of the glass of water that might spon
taneously shoot one half of its contents toward the ceiling, we 
have seen that such a phenomenon is sufficiently improbable to 
be considered as being practically impossible. Thus, although the 
energy of mechanical motion can go completely over into heat



(for example, through friction), the heat energy can never gu 
completely into mechanical motion. This rules out the possibility 
of the so-called “perpetual motion motor of the second kind, ” 13 

which would extract the heat from the material bodies at normal 
temperature, thus cooling them down and utilizing for doing 
mechanical work the energy so obtained. For example, it is im
possible to build a steamship in the boiler of which steam is 
generated not by burning coal but by extracting the heat from the 
ocean water, which is first pumped into the engine room, and 
then thrown back overboard in the form of ice cubes after the 
heat is extracted from it.

But how then do the ordinary steam-engines turn the heat 
into motion without violating the Law of Entropy? The trick is 
made possible by the fact that in the steam engine only a part of 
the heat liberated by burning fuel is actually turned into energy, 
another larger part being thrown out into the air in the form of 
exhaust steam, or absorbed by the specially arranged steam 
coolers. In this case we have two opposite changes of entropy 
in our system: ( 1 ) the decrease of entropy corresponding to the 
transformation of a part of the heat into mechanical energy of 
the pistons, and ( 2 ) the increase of entropy resulting from the 
flow of another part of the heat from the hot-water boilers into 
the coolers. The Law of Entropy requires only that the total 
amount of entropy of the system increase, and this can be easily 
arranged by making the second factor larger than the first. The 
situation can probably be understood somewhat better by con
sidering an example of a 5 lb weight placed on a shelf 6  ft 
above the floor. According to the Law of Conservation of Energy, 
it is quite impossible that this weight will spontaneously and 
without any external help rise toward the ceiling. On the other 
hand it is possible to drop one part of this weight to the floor 
and use the energy thus released to raise another part upward.

In a similar way we can decrease the entropy in one part of 
our system if there is a compensating increase of entropy in its 
other part. In other words considering a disorderly motion o f

11 Called so in contrast to the “perpetual motion motor of the first kind”
which violates the taw of conservation of energy working without any energy
supply.
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molecules we can bring some order in one region, if we do not 
mind the fact that this will make the motion in other parts still 
more disorderly. And in many practical cases, as in all kinds of 
heat engines, we do not mind it.

5. STATISTICAL FLUCTUATION

The discussion of the previous section must have made it clear 
to you that the Law of Entropy and all its consequences is based 
entirely on the fact that in large-scale physics we are always 
dealing with an immensely large number of separate molecules, 
so that any prediction based on probability considerations be
comes almost an absolute certainty. However, this kind of predic
tion becomes considerably less certain when we consider very 
small amounts of matter.

Thus, for example, if instead of considering the air filling a 
large room, as in the previous example, we take a much smaller 
volume of gas, say a cube measuring one hundredth of a 
micron12 each way, the situation will look entirely different. In 
fact, since the volume of our cube is 1 0 ~ 18 cu cm it will contain

io -i8-io -3
only — iQ-2 3  = 30 molecules, and the chance that all of them

will collect in one half of the original volume is ( \ ) 30 = 1 0 “10.
On the other hand, because of the much smaller size of the 

cube, the molecules will be reshuffled at the rate of 5 • 10° times 
per second (velocity of 0.5 km per second and the distance of 
only 1 0 " 6 cm ) so that about once every second we shall find that 
one half of the cube is empty. It goes without saying that the 
cases when only a certain fraction of molecules become con
centrated at one end of our small cube occur considerably more 
often. Thus for example the distribution in which 20 molecules 
are at one end and 1 0  molecules at the other (i.e only 1 0  extra 
molecules collected at one end) will occur with the frequency 
of ( |) 10 X 5 • 1010 =  10- 3 X 5 X 1010 -  5 X 107, that is, 50,000,000 times 
per second.

Thus, on a small scale, the distribution of molecules in the air is
12 One micron, usually denoted by Greek letter Mu (/*), is 0.0001 cm.



far from being uniform. If we could use sufficient magnification, 
we should notice the small concentration of molecules being 
instantaneously formed at various points of the gas, only to be 
dissolved again, and be replaced by other similar concentrations 
appearing at other points. This effect is known as fluctuation of 
density and plays an important role in many physical phenomena. 
Thus, for example, when the rays of the sun pass through the 
atmosphere these inhomogeneities cause the scattering of blue 
rays of the spectrum, giving to the sky its familiar color and mak
ing the sun look redder than it actually is. This effect of redden
ing is especially pronounced during the sunset, when the sun 
rays must pass through the thicker layer of air. Were these fluctua
tions of density not present the sky would always look completely 
black and the stars could be seen during the day.

Similar, though less pronounced, fluctuations of density and 
pressure also take place in ordinary liquids, and another way 
of describing the cause of Brownian motion is by saying that 
the tiny particles suspended in the water are pushed to and fro 
because of rapidly varying changes of pressure acting on their 
opposite sides. When the liquid is heated until it is close to its 
boiling point, the fluctuations of density become more pro
nounced and cause a slight opalescence.

We can ask ourselves now whether the Law of Entropy applies 
to such small objects as those to which the statistical fluctuations 
become of primary importance. Certainly a bacterium, which 
through all its life is tossed around by molecular impacts, will 
sneer at the statement that heat cannot go over into mechanical 
motion! But it would be more correct to say in this case that the 
Law of Entropy loses its sense, rather than to say that it is 
violated. In fact all that this law says is that molecular motion 
cannot be transformed completely into the motion of large 
objects containing immense numbers of separate molecules. For 
a bacterium, which is not much larger than the molecules them
selves, the difference between the thermal and mechanical motion 
has practically disappeared, and it would consider the molecular 
collisions tossing it around in the same way as we would consider 
the kicks we get from our fellow citizens in an excited crowd.
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If we were bacteria, we should be able to build a perpetual 
motion motor of the second kind by simply tying ourselves to a 
flying wheel, but then we should not have the brains to use it 
to our advantage. Thus there is actually no reason for being 
sorry that we are not bacteria!

One seeming contradiction to the law of increasing entropy is 
presented by living organisms. In fact, a growing plant takes 
in simple molecules of carbon dioxide (from the air) and water 
(from the ground) and builds them up into the complex organic 
molecules of which the plant is composed. Transformation from 
simple to complex molecules implies the decrease of entropy; in 
fact, the normal process in which entropy does increase is the 
burning of wood and decomposition of its molecules into carbon 
dioxide and water vapor. Do plants really contradict the law of 
increasing entropy, being aided in their growth by some mys
terious vis vitalis (life force) advocated by old-time philosophers?

The analysis of this question indicates that no contradiction 
exists, since along with carbon dioxide, water, and certain salts, 
plants need for their growth abundant sunlight. Apart from en
ergy, which is stored in the material of growing plants and may 
be liberated again when the plant burns, the rays of the sun 
carry with them the so-called “negative entropy” (low-level en
tropy), which disappears when the light is absorbed by the green 
leaves. Thus the photosynthesis taking place in the leaves of 
plants involves two related processes: a) transformation of the 
light energy of the sun’s rays into chemical energy of complex 
organic molecules; b) the use of low-level entropy of the sun’s 
rays for lowering the entropy associated with the building up of 
simple molecules into complex ones. In terms of “order versus 
disorder,” one may say that, when absorbed by green leaves, the 
sun’s radiation is robbed of the internal order with which it ar
rives on the earth, and this order is communicated to the mole
cules, permitting them to be built up into more complex, more 
orderly, configurations. Whereas plants build their bodies from 
inorganic compounds, getting their negative entropy (order) 
from the sun’s rays, animals have to eat plants (or each other) 
for the supply of that negative entropy, being, so to speak, 
second-hand users of it.



C H A P T E R  IX

The Riddle of Life

1. WE ARE MADE OF CELLS

IN OUR discussion of the structure of matter we have purposely 
omitted so far any reference to a comparatively small but ex

tremely important group of material bodies that differ from all 
other objects in the universe by the peculiar property of being 
alive. What constitutes the important difference between living 
and nonliving matter? And how far are we justified in the hope 
that the phenomenon of life can be understood on the basis of 
those fundamental physical laws that successfully explain the 
properties of nonliving matter?

When we speak of the phenomenon of life, we usually have 
in mind some fairly large and complex living organism such as a 
tree, a horse, or a man. But to attempt to study the fundamental 
properties of living matter by examining such complicated or
ganic systems as a whole would be as futile as to attempt to 
study the structure of inorganic matter by regarding as a whole 
some complicated machine such as an automobile.

The difficulties encountered in this situation are apparent when 
we realize that a running automobile is formed by thousands of 
variously shaped parts made of different materials, in different 
physical states. Some of them (such as the steel chassis, the 
copper wires, and the glass windshield) are solid; some (such as 
the water in the radiator, the gasoline in the tank, and the 
cylinder oil) are liquid; and some ( such as the mixture fed from 
the carburetor into the cylinders) are gaseous. The first step, 
then, in analyzing the complex of matter known as an automobile 
consists in breaking it down into separate, physically homo
geneous, constituent parts. Thus we find that it is composed of 
various metallic substances (such as steel, copper, chromium, 
etc.)- various vitreous substances (such as glass and plastic
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materials used in construction), various homogeneous liquids 
(such as water and gasoline) etc., etc.

Now we can push on with our analysis and find, by using the 
available methods of physical investigation, that the copper parts 
consist of separate small crystals formed by regular layers of 
individual copper atoms rigidly superimposed on one another; 
that the water in the radiator is formed by a large number of 
comparatively loosely packed water molecules made of 1  oxygen 
and 2  hydrogen atoms each; and that the carburetor mixture 
streaming through the valves into the cylinders consists of a 
swarm of free-moving molecules of atmospheric oxygen and 
nitrogen molecules mixed with the molecules of gasoline vapor, 
which in their turn are composed of carbon and hydrogen atoms.

Similarly, in analyzing a complex living organism, such as the 
human body, we must first break it up into separate organs such 
as brain, heart, and stomach and then into various biologically 
homogeneous materials that are known under the general name
((. i 7>tissues.

In a sense, various types of tissues represent the material from 
which complex living organisms are built, in the same way as 
mechanical devices are constructed from various physically 
homogeneous substances. And the sciences of anatomy and 
physiology, which analyze the functioning of living organisms 
in terms of the properties of different tissues from which they are 
built, are in this sense analogous to the science of engineering, 
which bases the functioning of various machines on the known 
mechanical, magnetic, electrical, and other properties of physical 
substances used in their construction.

Thus an answer to the riddle of life cannot be found merely 
in seeing how the tissues are assembled to compose complex 
organisms but in the way in which these tissues are built from 
separate atoms which, in the final count, compose every living 
organism.

It would be a great mistake to believe that a living biologically 
homogeneous tissue can be compared with ordinary physically 
homogeneous substance. In fact, a preliminary microscopic 
analysis of an arbitrarily chosen tissue (whether of skin, muscle, 
or brain) indicates that it consists of a very large number of



individual units the nature of which determines more or less the 
properties of the entire tissue (Figure 90). These elementary 
structural units of living matter are usually known as “cells”; 
they could also be called “biological atoms” (i.e. “indivisibles”) 
in the sense that the biological properties of a given type of 
tissue will be retained only so long as it contains at least one 
individual cell.

A muscle tissue, for example, which is cut to the size of only 
half of one cell, would lose all the properties of muscular con
traction, and so on, exactly in the same way as a piece of mag
nesium wire containing only one half of a magnesium atom 
would no longer be magnesium metal, but rather a small piece 
of coal! 1

The cells forming tissues are rather small in size (measuring 
on the average one hundredth of a millimeter across2). Any
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familiar plant or animal must be composed of an extremely large 
number of separate cells. The body of a mature human being, for 
example, is made of several hundred thousand billions of separate 
cells!

Smaller organisms are made of course of a smaller number of
1 It will be remembered from the discussion of atomic structure that a 

magnesium atom (atomic number 12, atomic weight 24) consists of the 
nucleus formed by 12 protons and 12 neutrons surrounded by an envelope 
of 12 electrons. By bisecting a magnesium atom we should obtain 2 new 
atoms, each containing 6 nuclear protons, 6 nuclear neutrons, and 6 outer 
electrons— in other words, 2 atoms of carbon.

2 Sometimes individual cells attain giant sizes, as in the familiar example 
of the yolk of an egg, which is known to be just one cell. In these cases, 
however, the vital parts of the cell responsible for its life, remain of the 
microscopic size, the large bulk of yellow material being simply the accu
mulated food to serve for the development of the chick embryo.
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cells; a house fly, for example, or an ant contains no more than 
a few hundred million cells. There is also a large class of mono
cellular organisms, such as amebae, fungi ( such as those causing 
the “ringworm” infection), and various types of bacteria, which 
are formed from one cell only, and can be seen only through a 
good microscope. The study of these individual living cells, which 
are undisturbed by “social functions” they would have to carry 
on in a complex organism, represents one of the most exciting 
chapters of biology.

In order to understand the problem of life in general, we must 
look for the solution in the structure and properties of the living 
cells.

What are the properties of living cells that make them so 
different from ordinary inorganic materials, or, for that matter, 
from the dead cells that form the wood of your writing desk or 
the leather in your shoes?

The fundamental distinguishing properties of the living cell 
consist in its abilities: { I )  to assimilate materials necessary to its 
structure from the surrounding medium, (2) to turn these mate
rials into the substances used for the growth of its body, and (3) 
to divide into two similar cells each half of its own size (and 
capable o f growth) when its geometrical dimensions become too 
large. These abilities “to eat,” “to grow” and “to multiply” are, 
of course, common to all more complex organisms made up of 
individual cells.

A reader with a critical mind may object by saying that these 
three properties can also be found in ordinary inorganic sub
stances. If, for example, we drop a small salt crystal into a 
supersaturated salt solution in water, 3 the crystal will grow by 
adding to its surface successive layers of salt molecules extracted 
(or rather “kicked out”) from the water. We can even imagine 
that, because of some mechanical effects, as for example the

3 A supersaturated solution can be prepared by dissolving a large amount 
of salt in hot water, and cooling it to room temperature. Since solubility in 
water decreases with decreasing temperature, there will be more salt mole
cules in the water than the water can possibly keep in solution. However, 
the excess molecules of salt will remain in solution for a very long time 
unless we put in a little crystal that, so to speak, gives the initial impulse and 
serves as a kind of organizing agent for the exodus of salt molecules from 
ihe solution.



increasing weight of growing crystals, they will break up into 
two halves after reaching a certain size, and that the “baby 
crystals” so formed will continue the process of growing. Why 
shouldn’t we also classify this process as a “life-phenomenon”?

In answering this, and similar questions, it must be stated first 
of all that, considering life simply as a more complicated case of 
ordinary physical and chemical phenomena, we should not expect 
to have a sharply defined boundary between the two cases. 
Similarly, using statistical laws for describing the behavior of a 
gas formed by an extremely large number of separate molecules 
(see Chapter V III), we cannot determine the exact validity 
limits for such a description. In fact, we know that the atmos
pheric air filling the room is not going to collect itself suddenly in 
one corner of the room, or at least that the chances that such an 
unusual event will come about are negligibly small. On the other 
hand, we also know that if there were only two, or three, or four 
molecules in the entire room, they would all come to one comer 
rather often.

Where is the exact boundary between the number to which 
one statement applies and that to which the other is applicable? 
A thousand molecules? A million? A billion?

Similarly descending to the elementary living processes we 
cannot expect to find a sharp boundary between such a simple 
molecular phenomenon as the crystallization of salt in a water 
solution, and the much more complicated, though not basically 
different, phenomenon of the growth and division of a living cell.

In respect to this particular example we can say, however, that 
the growth of a crystal in a solution should not be considered as 
the phenomenon of life because the “food” which the crystal uses 
for its growth is assimilated into its body without change from its 
form in the solution. The molecules of salt that were previously 
mixed with water molecules simply collect themselves on the 
surface of the growing crystal. We have here an ordinary 
mechanical accretion of material instead of a typical biochemical 
assimilation. Also the multiplication of crystals, by occasional 
breaking up into irregular parts of no predetermined proportions, 
as a result of the sheer mechanical force of weight, has but little 
resemblance to the precise and consistent biological division of
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living cells into halves, which is brought about chiefly by internal 
forces.

We should have a much closer analogue of a biological process 
if, for example, the presence of a single alcohol molecule 
(C 2H5OH) in a water solution of carbon dioxide gas should 
start a self-supporting synthetizing process that would unite one 
by one the H20-molecules of water with the COo-molecules of 
the dissolved gas, forming new molecules of alcohol.4 Indeed, if 
one drop of whiskey, put into a glass of ordinary soda water 
should begin to turn this soda water into pure whiskey, we 
should be forced to consider alcohol as living matter!
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A schematic picture of the way in which an alcohol molecule could. 
organize the molecules of water and carbon dioxide into another 
molecule of alcohol. If this process of “autosynthesis” of alcohol were 

possible we should have to consider alcohol as living matter.

This example is not as fantastic as it seems, since, as we shall 
see later, there actually exist complicated chemical substances 
known as viruses, whose rather complex molecules (formed by 
hundreds of thousands of atoms each) actually perform the task 
of organizing other molecules from the surrounding medium into

4 For example according to the hypothetical reaction:
3H2O + 2CO2+ [C»HoOH]—>2[C2H5OH] + 3 0 2 

where the presence of one alcohol molecule leads to the formation of an
other one.



structural units similar to themselves. These virus particles must 
be considered as ordinary chemical molecules, and as living 
organisms at the same time, thus representing the “missing link” 
between living and nonliving matter.
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Successive stages of cell division (mitosis).

But we must return now to the problem of growth and mul
tiplication of ordinary cells, which even though very complex 
are still much less so than molecules, and must be considered 
rather as the simplest living organisms.

If we look at a typical cell through a good microscope we see 
that it is made of semitransparent jellied material that has a
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very complicated chemical structure. It is known under the gen
eral name of protoplasm. It is surrounded by the cell walls which 
are thin and flexible in animal cells, but thick and heavy in the 
cells of different plants, giving to their bodies a high degree of 
rigidity (c f. Figure 90). Each cell contains in its interior a small 
spherical body known as the nucleus, which is formed by a fine 
network of the substance known as chromatin (Figure 92). It 
must be noticed here that various parts of the protoplasm form
ing the body of the cell have under normal circumstances equal 
optical transparencies so that the structure cannot be observed 
simply by looking at a living cell through a microscope. In order 
to see the structure we have to dye the material of the cell, 
taking advantage of the fact that different structural parts of the 
protoplasm absorb the dyeing materials in various degrees. The 
material forming the network of the nucleus is especially sus
ceptible to the dyeing process, and appears clearly visible against 
the lighter background.5 Hence the name “chromatin,” which in 
Greek means “substance that takes on color.”

When the cell is preparing for the vital process of division, the 
structure of the nuclear network becomes more greatlv differ
entiated than it was before, and is seen to consist of a set of 
separate particles (Figure 92&, c ), usually fiber-shaped or rod
like, which are called “chromosomes” ( i.e., “bodies that take on 
color”). Plate V A , B .°

All the cells in the body of a given biological species (except 
the so-called reproductive cells) contain exactly the same num
ber of chromosomes, which in general is larger in highly de
veloped organisms than in those of lesser developed ones.

The little fruit fly, that carries the proud Latin name Drosophila

5 You can use a similar method by writing something on a piece of paper 
with a wax candle. The writing will be invisible until you try to shade the 
paper with a black pencil. Since the graphite will not stick to the places 
covered with wax, the writing will stand out clearly on the shaded back
ground.

0 It must be remembered that in applying the dyeing process to a living 
cell we usually kill it and thus stop its further development. Thus continuous 
pictures of cellular divisions, such as those in Figure 92, are obtained not by 
observing a single cell, but by the method of dyeing (and killing) different 
cells in different stages of their development. In principle, however, this 
does not make much difference.



melanogaster and has helped the biologists to understand many 
things concerning the basic riddles of life, has in each of its cells 
eight chromosomes. The cells of the pea plant have fourteen 
chromosomes, and those of corn twenty. The biologists themselves, 
as well as all other people, proudly carry forty-eight chromosomes 
in each cell; which might be considered as purely arithmetical 
proof that man is six times better than a fly, were it not that such 
reasoning would prove that a crayfish, whose cells contain two 
hundred chromosomes, is more than four times better than a man!

The important thing about the number of chromosomes in the 
cells of various biological species is that it is always even-, in 
fact in every living cell (with the exception discussed later 
in this chapter) we have two almost identical sets of chromo
somes (see Plate V a ) : one set from the mother and one from the 
father. These two sets coming from both parents carry with them 
the complex hereditary properties which are passed on from gen- 
eration to generation of all living things.

The initiative in cell division is taken by the chromosomes, 
each of which splits neatly along its entire length into two 
identical but somewhat thinner fibers while the cell as a whole 
remains intact as a single unit (Figure 92d).

About the time the originally tangled bundle of nuclear chromo
somes begins to be organized in preparation for the division, two 
points known as centrosomes, located close to each other and 
near the outer boundary of the nucleus, gradually move away 
from each other to the opposite ends of the cell (Figure 92a, b, 
c).  There also appear to be present thin threads connecting these 
parted centrosomes with the chromosomes inside the nucleus. 
When the chromosomes split into two, each half is attached to 
the opposite centrosome, and is firmly pulled away from the other 
by the contraction of the threads (Figure 92e, f) .  When this 
process is nearly completed (Figure 92g) the walls of the cell 
begin to cave in (Figure 92h) along a central line, a thin wall 
grows across the body of each half of the cell, the two halves let 
go of each other, and there are two distinct, newly produced 
cells.

If the two baby cells receive sufficient food from outside they 
will grow to their mother’s size ( factor of 2) and after a certain
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rest period undergo further division, following exactly the same 
pattern as that that gave them separate entities.

This description of the separate steps of cell division is the 
result of direct observation, and is about as far as science has 
been able to go in its attempts to explain the phenomenon, for 
very little has been observed in the direction of understanding 
the exact nature of the physico-chemical forces which are respon
sible for the process. The cell as a whole seems still to be too 
complicated for direct physical analysis, and before attacking 
this problem one must understand the nature of chromosomes— 
a problem somewhat simpler by comparison, and one which will 
be discussed in the following section.

But first it will be useful to consider how cell division is 
responsible for the reproductive processes in complex organisms 
formed by a large number of cells. Here we might be tempted to 
ask which came first—the chicken or the egg? But the truth is 
that in describing a cyclical process such as this, it doesn’t matter 
whether we start with an “egg” that is going to develop into a 
chicken (or other animal), or with a chicken that is going to 
lay an egg.

Suppose we start with a “chicken” that has just come out of the 
egg. At the moment of its hatching (or birth), the cells in its 
body are going through a process of successive division thus 
effecting a rapid growth and development of the organism. Re
membering that the body of a mature animal contains many 
thousand billion cells, all of which have been formed by succes
sive divisions of a single fertilized egg cell, it would be natural, 
at first thought, to believe that in order to achieve this result 
there must have been a very large number of successive division- 
processes. One has only to remember, however, how many grains 
of wheat Sissah Ben induced a grateful king inadvertently to 
promise him by agreeing to calculate the amount on the basis of 
64 simple steps in geometrical progression, or how many years 
would be necessary to rearrange the 64 discs of the End-of-the- 
World problem discussed in Chapter I, to see that compare 
tively few successive cell divisions would result in a very large 
number of cells indeed. If we designate the number of suc
cessive cell divisions necessary to the growth of a mature



human being by a:, and then remember that in each division the 
number of cells in the growing body is doubled (since each cell 
becomes two), we may arrive at the total number of divisions 
that occur in the human body between the time of the formation 
of the single egg cell and maturity by means of the equation: 
2* = 1014, and find that x = 47.
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Formation of gametes (a, b, c ) , and fertilization of the egg cell ( d, e , f ) .  
In the first process (meiosis) the paired chromosomes of the reserved 
reproductive cell are separated into two “half cells” without prelimi
nary splitting. In the second process (syngamy) the male sperm cell 
penetrates the female egg cell and their chromosomes are paired. As a 
result, the fertilized cell begins to prepare for regular division, as shown 
earlier in Figure 92.

Thus we see that each cell in our mature bodies is a member of 
approximately the fiftieth generation of the original egg cell that 
was responsible for our existence.7

Although in the young animal the cells divide rather rapidly, 
most of the cells of a mature individual are normally in the “rest

7 It is interesting to compare this calculation and its result with a similar 
calculation pertaining to the explosion of an atomic bomb ( see Chapter VII). 
The number of successive atomic division processes needed to cause fission 
( “fertilization” ) of every uranium atom in one kilogram of material (alto
gether 2 • 5 -1024 atoms) is calculated by the similar equation: 2x= 2-5-10  
yielding *=61.
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state,” and divide only occasionally to secure the “upkeep” of 
the body during life and to compensate for wear and tear.

Now we come to a very important special type of cell division 
which leads to the formation of the so-called “gametes” or 
"marrying cells” which are responsible for the reproductive 
phenomenon.

At the very earliest stage of any bisexual living organism, a 
number of its cells are set apart “in reserve” for future reproduc
tive activity. These cells, located in special reproductive organs, 
undergo many fewer ordinary divisions during the growth of the 
organism than do any other cells in the body, and are fresh and 
unexhausted when they are called upon to produce new offspring. 
Also the division of these reproductive cells proceeds, in a differ
ent, much simpler, way than that of the ordinary body cells 
described above. The chromosomes forming their nuclei do not 
split into two as in the ordinary cells, but are simply pulled apart 
from each other (Figure 93a, b, c) ,  so that each daughter-cell 
receives only one half o f the original set o f chromosomes.

The process leading to the formation of these “chromosome- 
deficient” cells is known as “meiosis,” in contrast to the ordinary 
division process known as “mitosis.” The cells resulting from 
such a division are known as “sperm cells” and “egg cells” or as 
the male and female gametes.

The attentive reader may wonder how the division of the 
original reproductive cell into two equal parts can give rise to 
gametes with either male or female properties, and the explana
tion lies in the earlier-mentioned exception to the statement that 
chromosomes exist only in identical pairs. There is one particular 
chromosome pair whose two components are identical in the 
female body, but different in the male. These particular chromo
somes are known as sex chromosomes and are distinguished by 
the symbols X and Y. The cells in the body of a female have 
always two X-chromosomes, whereas the male has one X and one 
Y.8 The substitution of a Y-chromosome for one of the X’s repre
sents the basic difference between the sexes (Figure 94).

Since all reproductive cells reserved in a female organism
8 This statement is true for human beings and for all mammals. In birds, 

however, the situation is reversed; a cock has two identical sex chromosomes, 
whereas a hen has two different ones.



have a complete set of X-chromosomes, when one breaks in two 
in the process of meiosis, each half cell or gamete receives one 
X-chromosome. But since male reproductive cells each have one 
X- and one Y-chromosome, when one of them divides the result 
is two gametes one of which contains an X- and the other a Y- 
chromosome.

When, in the process of fertilization, a male gamete (sperm 
cell) unites with a female gamete ( egg cell) there is a fifty-fifty 
chance that the union will result in a cell with two X-chromo-
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The face value difference between the man and the woman. Whereas 
all cells of a woman’s body contain 4 8  paired chromosomes identical 
within each pair, the cells of a man’s body contain one asymmetric pair. 
Instead of two X-chromosomes as in a woman, the man has one 

X- and one Y-chromosome.

somes or with one X- and one Y-chromosome; in the first case 
the child will be a girl, in the second a boy.

We shall return in the next section to this important problem, 
and will proceed now with the description of the reproductive 
process.

When the male sperm cell unites with the female egg cell, 
a process known as “syngamy,” there is formed a complete cell, 
which begins to divide into two in the process of “mitosis,” 
illustrated in Figure 92. The two new cells so formed again 
divide into two each, after a short rest period; each of the four 
so formed repeat the process, etc. Each daughter cell receives 
an exact replica of all the chromosomes from the original
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From an egg cell to the man.



fertilized egg of which half comes from the mother and half 
from the father. The gradual development of the fertilized egg 
into the mature individual is represented schematically in Figure 
95. In (a) we see the sperm penetrating the body of a resting 
egg cell.

The union of two gametes stimulates a new activity in the 
completed cell, which now breaks up first into 2, then into 
4, then into 8, then into 16, etc., etc. (Figure 95b, c, d, e ). 
When the number of individual cells becomes rather large they 
tend to arrange themselves in such a way that all of them will 
be on the surface where they are in a better position to get food 
from the surrounding nutritious medium. This stage of the de
velopment in which the organism looks like a little bubble with 
an internal cavity is known as “bastula” (/). Later on, the wall 
of the cavity begins to bend in (g ), and the organism enters the 
stage known as “gastrula” ( h ), during which it looks like a little 
pouch with the opening serving both for taking in fresh food and 
ejecting the waste from the digested materials. Simple animals 
such as, for example, corals never progress beyond this stage 
of development. In the more advanced species, however, the 
process of growth and advancing modification continues. Some 
of the cells develop into a bony skeleton, others into digestive, 
respiratory, and nervous systems, and going through various 
embryonic stages (i),  the organism finally becomes a young 
animal recognizable as a member of its species (k ).

As mentioned above, some of the developing cells of the grow
ing organism are, even during the early stages of development, 
being put aside, so to speak, to be reserved for the future repro
ductive function. When the organism reaches maturity, these 
cells undergo the process of meiosis, and produce the gametes, 
which start the whole process over again from the beginning. 
And thus life marches on.

2. HEREDITY AND GENES

The most remarkable feature of the reproduction process lies 
in the fact that the new organism begotten by the union of a pair 
of gametes from two parents does not grow up into just any
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sort of living being, but develops into a rather faithful, though 
not necessarily exact, replica of its parents, and its parents’ 
parents.

In fact we can be sure that a puppy bom to a couple of Irish 
setters not only will be formed like a dog instead of like an 
elephant or a rabbit, but also that it will not grow as big as an 
elephant or remain as small as a rabbit, and that it will have four 
legs, one long tail, two ears and two eyes one on each side of its 
head. We can also be reasonably sure that its ears will be soft 
and hanging, that its fur will be long and golden brown in color, 
and that it will most probably like hunting. Besides, there will 
be a number of various minor points that can be traced to its 
father, its mother, or, maybe, to one of its earlier ancestors, and 
also some individual features of its own.

How were all these varied characteristics, which make up a 
fine Irish setter, carried within the microscopic bits of matter 
that made up the two gametes the union of which started the 
development of our puppy?

As we have seen above, every new organism receives exactly 
one half of its chromosomes from its father, the other half from 
the mother. It is clear that the major characteristics of a given 
species must have been contained in both the paternal and the 
maternal chromosomes, whereas different minor properties that 
can vary from individual to individual may have come separately 
from only one of the parents. And though there is little doubt 
that over a long period, and after a very large number of genera
tions, even most of the basic properties of various animals and 
plants may be subject to change (organic evolution being the 
evidence for that), it is only the comparatively small changes 
of minor characteristics that can be noticed during the limited 
period of observation that is represented by human knowledge.

The study of such characteristics and their transfer from par
ents to children is the main subject of the new science of genetics 
which, being still practically in its infancy, is able nevertheless 
to tell us very exciting stories about the most intimate secrets of 
life. We have learned, for instance, that, in contrast to most 
biological phenomena, the laws of heredity possess almost mathe



matical simplicity, indicating that we are dealing here with one 
of the fundamental phenomena of life.

Take for example such a well-known defect of human eyesight 
as color blindness, the most common form of which is marked by 
an inability to distinguish between red and green. In order to 
explain color blindness we must first understand why we see 
colors at all, through study of the complicated structure and 
properties of the retina, the problems concerning photochemical 
reactions caused by light of different wavelengths, etc., etc.

But if we ask ourselves about the inheritance of color blind
ness, a question that would seem at first to be still more compli
cated than the explanation of this phenomenon itself, the answer 
is unexpectedly simple and easy. It is known from observed 
facts: (1 ) that men are much more often color-blind than are 
women, (2) that the children of a color-blind man and a “nor
mal” woman are never color-blind, but (3 ) that among the chil
dren of a color-blind woman and a “normal” man, the sons are 
color-blind whereas the daughters are not. Knowing these facts, 
which indicate clearly that the inheritance of color blindness is 
somehow associated with sex, we have only to assume that the 
characteristics of color blindness result from a defect in one of 
the chromosomes and is transferred with this chromosome 
from generation to generation in order to combine knowledge 
and logical assumption in the further assumption that color blind
ness results from a defect in the sex chromosome that we have 
previously denoted by X.

With this assumption the empirical rules concerning color 
blindness become clear as crystal. Remember that the female 
cells possess two X-chromosomes whereas male cells possess only 
one (the other being the Y-chromosome). If  the single X-chromo
some in man is defective in this particular way he is color-blind. 
In a woman, both X-chromosomes must be affected since one 
chromosome only is enough to secure the perception of color. 
If the chances that an X-chromosome has this color defect are, 
say, one in a thousand, there will be one color-blind individual 
among a thousand men. The a priori chances that both the X- 
L-hromosomes in a woman have the color defect are calculated
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according to the theorem of the multiplication of probabilities,

(see Chanter VIII) by the product: —— X —— = ------------ , so
v v 1000 1000 1,000,000
that only 1 woman out of 1,000,000 may be expected to be color
blind.

Let us consider now the case of a color-blind husband and a 
“normal” wife ( Figure 96a). Their sons will receive no X-chromo- 
wmes from their father, and one “good” X-chromosome from 
their mother, thus having no reason for color blindness.

Their daughters, on the other hand, will have a “good” X- 
chromosome from their mother and a “bad one” from the father.

F i g u r e  9 6  

Heredity of color blindness.

They will not be color-blind, though their children ( sons) may be.
In the opposite case of a color-blind wife and a “normal” hus

band (Figure 96b),  the sons will be definitely color-blind since 
their single X-chromosome comes from the mother. The daugh
ters, who will have one “good” X-chromosome from the father 
and one “bad” one from the mother, will not be color-blind, but 
as in the previous case, their sons will be color-blind, Simple as 
simple can be]



Such hereditary properties as color blindness, which require 
both chromosomes of the pair to be affected in order to produce 
a noticeable effect, are known as “recessive.” They can be carried 
over from the grandparents to the grandchildren in a hidden 
form, and are responsible for such sad facts as that an occasional 
puppy born from two good-looking German shepherd dogs may 
look like anything but a German shepherd.

The opposite is true of the so-called “dominant” characteristics, 
which become noticeable when only one chromosome of the pair
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is affected. In order to get away from the factual material of 
genetics, we shall illustrate this case by an imaginary example of 
a wabbit (pardon me, a rabbit) bom with ears resembling those 
of Mickey Mouse. If we assume that “Mickey ears” are a domi
nant characteristic in heredity, that is, that a change in one single 
chromosome suffices to make the ears grow in this shameful (for 
a rabbit) way, we can forecast the kinds of ears succeeding gen
erations of rabbit offspring will have by looking at Figure 97> 
assuming that the rabbits born of the original and succeeding
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unions will mate with normal rabbits. The deviation from nor
mal in the chromosome responsible for the Mickey ears is marked 
in our diagram by a black spot.

In addition to the dominant and recessive indented character
istics there are also those that may be called “indifferent.” Sup
pose we have in our garden red and white four o’clocks.

RED w h i t e

F i g u r e  98

When the pollen (sperm cells in plants) from red flowering 
plants is carried over by the wind or insects to the pistils of 
another red plant, they unite with the ovules ( egg cells in plants) 
located at the base of the pistil and develop into the seeds that 
will produce again red flowers. So if pollen from white flowers 
fertilizes other white flowers, the next generation of flowers will 
all be white. If, however, the pollen from white flowers falls on 
red ones, or vice versa, the plant grown from the seeds thus



produced will have pink flowers. It is easy to see, however, that 
pink flowers do not represent a biologically stable variety. If we 
breed them within the group we find that the next generation 
will be 50 per cent pink, 25 per cent red, and 25 per cent white.

The explanation can be readily found if we assume that the 
property of being red or white is carried by one of the chromo
somes in the plant’s cell, and that in order to have a pure color, 
both chromosomes of the pair must be identical in this respect. 
If one chromosome is “red” whereas another is “white,” the battle 
of colors results in pink flowers. Looking at Figure 98, which 
represents schematically the distribution of “color chromosomes” 
among the offspring, we may see the numerical relation men
tioned above. It would also be easy to show, by drawing another 
diagram similar to that of Figure 98, that by breeding white and 
pink four o’clocks we should get in the first generation 50 per 
cent pink and 50 per cent white but no red flowers. Similarly red 
and pink flowers will give 50 per cent red, 50 per cent pink, but 
no white flowers. Such are the laws of heredity that were first 
discovered almost a century ago by the unpretentious Moravian 
monk Gregor Mendel while growing garden peas in the monas
tery near Bruns.

Thus far we have been associating various properties inherited 
by the young organism with different chromosomes that it re
ceives from its parents. But, since there is an almost uncountable' 
number of different properties, as compared with a comparatively 
small number of chromosomes (8 in each cell of a fly, 48 in each 
of a man), we are forced to acknowledge that each chromosome 
carries in it a long list of individual characteristics, which can be 
imagined as distributed along its thin fiberlike body. In fact, look
ing at Plate Va, which represents the chromosomes of the sali
vary glands of a fruit fly (Drosophila melanogaster*), it is diffi
cult to escape the impression that the numerous darkish strata 
cutting across the long body of the chromosome represent the 
sites of different properties carried by it. Some of these cross 
bands may regulate the color of the fly, some the shape of its

9 In this particular case, in contrast to the plurality of other cases, 
chromosomes are exceptionally large, and their structure can be easily 
studied by the methods of microphotography.
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wings, and still others may be responsible for the fact that it has 
six legs, that it is about a quarter of an inch long, and that it looks 
in general like a fruit fly and not a centipede or a chicken.

And, in fact, the science of genetics tells us that this impression 
is quite correct. It is possible not only to show that these tiny 
structural units of a chromosome, known as “genes,” carry in 
themselves various individual hereditary properties, but one can

also tell in many cases which particular gene carries one oi 
another particular property.

Of course, even with the largest possible magnification, all 
genes look almost alike, their functional difference being hidden 
somewhere deep in their molecular structure.

Thus their individual “purpose in life” can be found only by 
careful studies of the way in which different hereditary proper
ties are carried from generation to generation in a given species 
of plants or animals.

We have seen that any new living organism gets half of its



chromosomes from the father and half from the mother. Since 
the paternal and maternal sets of chromosomes represent the 
50-50 mixture of those coming from corresponding grandparents, 
we should expect that the child gets its heritage from only one 
of the grandparents on each side. This, however, is known not 
to be necessarily true, and there are cases in which all four grand
parents bequeath characteristics to their grandchild.
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Does this mean that the scheme of chromosome-transfer 
described above is wrong? No, it is not wrong, but only somewhat 
simplified. The factor that is still to be taken into account is that, 
in preparation for the process of meiosis, by which the reserved 
reproductive cell breaks up into two gametes, the paired chromo
somes often become twisted around each other, and can exchange 
their parts. Such exchange processes, shown schematically in 
Figure 99a, b, lead to the mixture of gene sequences obtained 
from the parents, and are responsible for hereditary mix-ups. 
There are also cases (Figure 99c) in which a single chromosome 
can be folded into a loop, and may then break up in a different
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way, mixing up the order of genes in it (Figure 99c; Plate Vb ).
It is clear that such reshuffling of genes between two chromo

somes of a pair, or within a single chromosome, will more 
probably affect the relative positions of those genes that were 
originally far apart than those that were close neighbors. Exactly 
in the same way, cutting a pack of cards will change the relative 
positions of the cards below and above the cut (and will bring 
together the card that was at the top of the pack and that card 
that was at the bottom) but will separate only one pair of imme
diate neighbors.

Thus, observing that two definite hereditary properties almost 
always travel together in the crossing-over of chromosomes, we 
may conclude that the corresponding genes were close neighbors. 
On the contrary, the properties often separated in the crossing- 
over process must be located in the distant parts of the chromo
some.

Working along these lines, the American geneticist T. H. 
Morgan and his school were able to establish a definite order of 
genes in the chromosomes of the fruit fly, which was used in their 
investigations. Figure 100 is a chart showing how different char
acteristics of the fruit fly are distributed in the genes of the four 
chromosomes that make up the fruit fly, as discovered by such 
research.

A chart such as that shown in Figure 100, which was made 
for the fly, could of course also be made for more complicated 
animals including man although this would require much more 
careful and detailed studies.

3. GENES AS “LIVING MOLECULES"

Analyzing step by step the immensely complicated structure 
of living organisms, we have now come to what seems to be the 
fundamental units o f life. In fact, we have seen that the entire 
course of development and practically all the properties of the 
grown-up organism are regulated by a set of genes hidden in 
the deep interior of its cells; one may say that every animal or 
plant “grows around” its genes. If a highly simplified physical 
analogy is to be permitted here, we may compare the relation 
between the genes and the living organism with the relation



between the atomic nuclei and the large lumps of inorganic mat
ter. Here too, practically all physical and chemical properties of 
a given substance can be reduced to the basic properties of the 
atomic nuclei that are characterized simply by one number desig
nating their electric charge. Thus, for example, the nuclei carry
ing a charge of 6 elementary electric units will surround them
selves by the atomic envelopes of 6 electrons each, which will 
give these atoms a tendency to arrange themselves in a regular 
hexagonal pattern, and to form the crystals of exceptional hard
ness and very high refractive index that we call diamonds. Simi
larly a set of nuclei with electric charges 29, 16, and 8 will give 
rise to the atoms that stick together to form soft blue crystals of 
the substance known as copper sulfate. Of course, even the 
simplest living organism is much more complicated than any 
crystal, but in both cases we have the typical phenomenon of 
macroscopic organization being determined to the last detail by 
microscopic centers of organizing activity.

How large are these organizing centers that determine all the 
properties of living organisms from the fragrance of a rose to the 
shape of the elephants trunk? This question can easily be 
answered by dividing the volume of a normal chromosome by the 
number of genes contained in it. According to microscopic obser
vations an average chromosome is about a thousandth of a milli
meter thick, which means that its volume is about 1 0 14 cu cm. 
Yet breeding experiments suggest that one chromosome must be 
responsible for as many as several thousand different hereditary 
properties, a figure that can also be directly obtained by count
ing the number of dark bands (presumably separate genes) 
crossing the long bodies of the enormously overgrown chromo
some of the fruit fly Drosophila melanogaster10 ( Plate V ). Divid
ing the total volume of the chromosome by the number of sep
arate genes we find that the volume of one gene is not larger 
than 10-17 cu cm. Since the volume of an average atom is about 
10'23 cu cm [= (2 -1 0 '8)3], we conclude that each separate gene 
must he built from about one million atoms.

We can also estimate the total weight of genes, say, in the

10 The normal size chromosomes are so small that microscopic investiga
tion fails to resolve them into separate genes.
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body of a man. As we have seen above, a grown-up person is 
made of about 1014 cells, each cell containing 48 chromosomes. 
Thus the total volume of all chromosomes in the human body is 
about 1014 X 48 X 10~14= 5 0  cm3 and ( since the density of living 
substance is comparable with the density of water) it must weigh 
less than two ounces. It is this almost negligibly small amount 
of “organizing substance” that builds around itself the compli
cated “envelope” of the animal’s or plant’s body thousands of 
times its own weight, and that rules “from inside” every single 
step of its growth, every single feature of its structure, and even 
a very large part of its behavior.

But what is the gene itself? Must it be considered as a compli
cated “animal,” which could be subdivided into even smaller 
biological units? The answer to this question is definitely no. 
The gene is the smallest unit of living matter. Further, while it 
is certain that genes possess all of those characteristics that dis
tinguish matter possessing life from matter that does not, there 
is also hardly any doubt that they are linked on the other side 
with the complex molecules (like those of proteins), which are 
subject to all the familiar laws of ordinary chemistry.

In other words, it seems that in the gene toe have the missing 
link between organic and inorganic matter, the “living molecule” 
that was contemplated in the beginning of this chapter.

Indeed, considering on the one hand the remarkable perma
nence of genes, which carry almost without any deviation the 
properties of a given species through thousands of generations, 
and on the other hand the comparatively small number of indi
vidual atoms that form one gene, one cannot consider it other
wise than as a well-planned structure in which each atom or 
atomic group sits in its predetermined place. The differences be
tween the properties of various genes, which are reflected in the 
external variations among resulting organisms, the character
istics of which they determine, can then be understood as due 
to variations in the distribution of the atoms within the structure 
of the genes.

To give a simple example, let us take a molecule of TNT 
(Trinitrotoluene), an explosive material, which played a promi
nent role in the last two wars. A TNT molecule is built from 7



carbon atoms, 5 hydrogen atoms, 3 nitrogen atoms, and 6 oxygen 
atoms, arranged according to one of the schemes:

H
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The differences between the three arrangements lies in the way 
O

in which groups are attached to the C-ring, and the result-

O
ing materials are usually designated as aTNT, /JTNT, and yTNT. 
All three substances can be synthesized in the chemical labora
tory. All three are explosive in nature, but show small variations 
in density, solubility, melting point, explosive power, etc. Using 
the standard methods of chemistry, one can easily transplant the

O
/

groups from one set of points of attachment within the

O
molecule to another, thus changing one brand of TNT into an
other. Examples of such kind are very common in chemistry, and 
the larger the molecule in question the larger the number of the 
varieties ( isomeric forms) which can be thus produced.

If we consider the gene as one giant molecule built from a 
million atoms, the number of possibilities for arranging various 
atomic groups in different places within the molecule becomes 
immensely large.
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We may think of the gene as a long chain composed of peri
odically repeating atomic groups with various other groups at
tached to it, as pendants are attached on a charm bracelet; indeed, 
recent advances in biochemistry permit us to draw an exact dia
gram of that hereditary charm bracelet. It is formed of the atoms 
of carbon, nitrogen, phosphorus, oxygen, and hydrogen, and is 
known as ribonucleic acid. In Fig. 101 we give a somewhat sur
realistic picture (with nitrogen and hydrogen atoms omitted) of 
the part of the hereditary bracelet that determined the color of 
a newborn child’s eyes. The four pendants tell that the baby’s 
eyes are gray.

F i g u r e  1 0 1

A part of hereditary “charm bracelet” (the molecule of ribonucleic 
acid) determining the color of eyes. (Highly schematicl)

In transposing the different pendants from one hook to another 
we can get an almost infinite variation of different distributions.

Thus, for example, having a charm bracelet with 10 different 
pendants, we can distribute them in I x 2 x 3 x 4 x 5 x 6 x 7 x 8  
X 9 X 10 = 3,628,800 different ways.

If some of the pendants are identical, the number of possible 
arrangements will be smaller. Thus, having only 5 kinds of pen
dants (2  of each), we will have only 113,400 different possibili
ties. The number of possibilities increases, however, very rapidly 
with the total number of pendants, and if we have, for example,



25 pendants, 5 of each different kind, the number of possible 
distributions is approximately 62,330,000,000,000!

Thus we see that the number of different combinations that 
can be obtained by redistribution of different “pendants” among 
various “suspension-places” in long organic molecules is certainly 
large enough to account not only for all the varieties of known 
living forms but also for the most fantastic nonexistent forms of 
animals and plants which can be created by our imagination.

A very important point concerning the distribution of property- 
characterizing pendants along the fiberlike gene molecules is that 
this distribution is subject to spontaneous changes resulting in 
corresponding macroscopic changes in the entire organism. The 
most common cause for such changes lies in the ordinary thermal 
motion, which makes the entire body of the molecule bend and 
twist like the branches of a tree in a strong wind. At sufficiently 
high temperatures this vibrational motion of molecular bodies 
becomes sufficiently strong to break them up into separate pieces 
—a process known as thermal dissociation (see Chapter V III). 
But, even at lower temperatures, when the molecule as a whole 
retains its integrity, thermal vibrations may result in some internal 
changes of molecular structure. We can imagine, for example, 
that the molecule is twisted in such a way that one of the pen
dants attached at one point is brought close to some other point 
of its body. In such a case it may easily happen that the pendant 
will get disconnected from its previous location, and become 
attached at a new spot.

Such phenomena, called isomeric transfoj mations,11 are well 
known in ordinary chemistry in cases of comparatively simple 
molecular structures, and, along with all other chemical reactions, 
follow the fundamental law of chemical kinetics according to 
which the rate of reaction increases approximately by a  factor of
2 each time the temperature rises by 10° C.

In the case of genes molecules, the structure of which is so 
complex that it will probably defy the best efforts of organic 
chemists for a long time to come, there is at present no way to

11 The term “isomeric,” as has already been explained, refers to the mole
cules that are built from the same atoms, which are, however, arranged in 
different manner.
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certify isomeric changes by the direct methods of chemical analy
sis. However, we have in this case something that, from a certain 
point of view, can be considered much better than laborious 
chemical analysis. If such an isomeric change takes place in one 
of the genes inside a male or female gamete the union of which 
is going to give rise to a new living organism, it will be faithfully 
repeated in the successive processes of gene splitting and cell 
division, and will affect some easily observable macroscopic fea
tures of the animal or plant thus produced.

I
A

F ig u r e  102 
Spontaneous mutation of a fruit fly.

(a)  Normal type: gray body, long wings.
(b ) Mutated type: black body, short (vestigial) wings.

And indeed, one of the most important results of genetical 
studies lies in the fact ( discovered in 1902 by the Dutch biologist 
de Vries) that spontaneous hereditary changes in living organ
isms always take place in the form of discontinuous jumps known 
as mutations.

To give an example, let us consider the breeding experiments 
of fruit flies ( Drosophila melanogaster) that have already been 
mentioned. The wild variety of fruit flies have gray bodies and 
long wings; and whenever you catch one in the garden you may 
be almost completely sure that it will fill these specifications. 
However, breeding generation upon generation of these flies 
under laboratory conditions, one obtains once in a while a pecul
iar “freak type” of fly with abnormally short wings and an almost 
black body (Figure 102).
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The important point is that you will probably not find along 
with the short-winged black fly other flies with various shades 
of gray and with wings of varying length, standing in successive 
stages of variation between the extreme exception ( nearly black 
body and very short wings) and the “normal” ancestors, in a 
progression of increasingly modified generations. As a rule, all 
the members of a new generation ( and there may be hundreds of 
them!) are about equally gray with equally long wings, and only 
one (or a few) are entirely different. Either there is no substan
tial change, or there is quite a large change (mutation). A simi
lar situation has been observed in hundreds of other cases. Thus, 
for example, color blindness does not necessarily come through 
heredity, and there must be cases where a baby is born color
blind without any “guilt” on the part of its ancestors. In the case 
of color blindness in men, just as in the case of short wings in the 
fruit fly, we have the same principle of “all or nothing”; it is not 
a question of a person’s being better or worse in distinguishing 
the two colors—either he does or he doesn’t.

As everybody who ever heard the name of Charles Darwin 
knows, these changes in the properties of new generations com
bined with the struggle for existence and the survival o f the fit
test lead to the steady process of evolution of species,12 and are 
responsible for the fact that a simple mollusk, who was the 
king of nature a couple of billion years ago, has developed into 
a highly intelligent living being like yourself, who is able to read 
and to understand even such a highly sophisticated book as this 
one.

The jumplike variations in hereditary properties is perfectly un
derstandable from the point of view of isomeric changes in gene 
molecules as discussed above. In fact, if the property-determin- 
ing pendant in a gene molecule changes its place, it cannot do 
so halfway; either it remains in the old place, or it becomes at
tached to a new place, thus causing a discontinuous change in 
the properties of the organism.

The point of view according to which “mutations” are due to

12 The only difference that the discovery of mutations has introduced into 
Darwin’s classical theory is that evolution is due to discontinuous jumplike 
changes and not to continuous small changes as Darwin had in mind.
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isomeric changes in the gene molecules is given strong support 
by the way in which the rate of mutations depends on the tem
perature of the enclosure in which the animals or plants are bred. 
In fact, the experimental work of Timofeeff and Zimmer on the 
effect of temperature on the rate of mutations indicates that 
(apart from some additional complications caused by the sur
rounding medium and other factors) it follows the same funda
mental physicochemical law as any other ordinary molecular 
reaction. This important discovery caused Max Delbriick (for
merly a theoretical physicist, now an experimental geneticist) to 
develop his epoch-making views concerning the equivalence be
tween the biological phenomenon of mutations and the purely 
physicochemical process of isomeric changes in a molecule.

We could go on indefinitely discussing the physical founda
tion of the gene theory, in particular the important evidence 
supplied by the study of mutations produced by X rays and other 
radiation, but what has already been said appears to be sufficient 
to convince the reader of the fact that science is at present cross
ing the threshold of the purely physical explanation o f the “mys
terious” phenomenon o f life.

We cannot finish this chapter without reference to the biologi
cal units known as viruses, which seem to represent free genes 
without a cell around them. Until a comparatively recent time 
biologists believed that the simplest forms of life were represented 
by various types of bacteria, the unicellular microorganisms that 
grow and multiply in the living tissues of animals and plants, 
sometimes causing various kinds of diseases. Microscopic studies 
have revealed, for example, that typhoid fever is due to a special 
type of bacteria having strongly elongated bodies, about 3 
microns (ju.)13 long, and i  /x across, whereas the bacteria of scarlet 
fever are spherically shaped cells about 2 microns in diameter. 
There were, however, a number of diseases, such as, for example, 
influenza in man or the so called mosaic-disease in the tobacco 
plant, where ordinary microscopic observations failed to discover 
any normal-sized bacteria. Since, however, these particular “bac- 
terialess” diseases were known to be carried from the body of 
sick individuals into the body of healthy ones in the same “in-

13 A micron is one thousandth of a millimeter, or 0.0001 cm.



fectious” way as all other ordinary diseases, and since the “infec
tion” thus received spread rapidly over the entire body of the 
infected individual, it was necessary to assume that they were 
associated with some kind of hypothetical biological carriers, 
which received the name virus.

But it was only comparatively recently that the development 
of ultramicroscopic technique (using ultraviolet light) and espe
cially the invention of the electron microscope ( in which the use
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Comparison between bacteria, viruses, and molecules.

of electron beams instead of ordinary light rays permits much 
larger magnifications) permitted microbiologists to see for the 
first time the formerly hidden structure of viruses.

It was found that various viruses represent collections of a 
large number of individual particles, all of them of exactly the 
same size and much smaller than ordinary bacteria (Figure 103). 
Thus the particles of influenza virus are litde spheres 0.1 /x in 
diameter, whereas the slender stick-shaped particles of tobacco- 
mosaic virus are 0.280 /*, long and 0.015 /*, across.
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In Plate VI we have a very impressive electron-microscopic 
photograph of tobacco-mosaic virus particles, the smallest known 
living units in existence. Remembering that the diameter of one 
atom is about 0.0003 /*, we conclude that the particle of tobacco- 
mosaic virus measures only about fifty atoms across, and about a 
thousand atoms along the axis. Altogether not more than a couple 
of million individual atoms!14

This figure immediately brings to our mind the similar figure 
obtained for the number of atoms in a single gene, and brings up 
the possibility that the virus particles may be considered as “free 
genes” that did not bother to unite in the long colonies that we 
call chromosomes, and to surround themselves by a comparatively 
ponderous mass of cellular protoplasm.

And indeed the reproductive process of the virus particles 
seems to go along exactly the same lines as the doubling of 
chromosomes in the process of cell division: their entire body 
splits along its axis giving rise to two new full-size virus particles. 
Apparently we observe here the basic reproductive process (il
lustrated in Figure 91 for a fictitious case of alcohol reproduc
tion ) in which various atomic groups located along the length of 
the complicated molecule attract from the surrounding medium 
similar atomic groups, arranging them in exactly the same pattern 
as in the original molecule. When the arrangement is completed 
the new molecule, already mature, splits away from the original 
one. In fact, it seems that in the case of these primitive living 
organisms the usual process of “growth” does not take place, and 
that the new organisms are simply built “by parts” alongside the 
old ones. The situation may be illustrated by imagining a human 
child who develops on the outside of, and attached to, the body 
of the mother, detaching itself and walking away when it is a 
completely formed man or woman. (The author will not draw a 
picture of such a situation, in spite of a strong temptation to do

14 The number of atoms forming a virus particle may be actually consid
erably less than this, since it is quite possible that they are “empty inside” 
being formed by the coiled molecular chains of the type shown in Figure 101, 
If we assume that the tobacco-mosaic virus actually has such a structure 
(shown schematically in Figure 103), so that various atomic groups are 
located only on the surface of the cylinder, the total number of atoms per 
particle will be reduced to only a few hundred thousand. The same argu
ment also pertains, of course, to the number of atoms in a single gene.



so.) It goes without saying that, in order to make such a multi
plication process possible, the development must proceed in a 
special, partially organized medium; and in fact, in contrast to 
the bacteria that have protoplasm of their own, virus particles 
can multiply only within the living protoplasm of other organ
isms being in general very choosy about their “food.”

Another common characteristic of viruses is that they are sub
ject to mutations and that the mutated individuals pass the newly 
acquired characteristics to their offspring in accordance with all 
the familiar laws of genetics. In fact biologists have been able to 
distinguish several hereditary strains of the same virus, and to fol
low their “race development.” When the new epidemics of in
fluenza sweep through communities, one can be fairly sure that 
they are caused by some new mutated type of influenza virus 
having some new vicious properties against which the human 
organism has not yet had the chance to develop proper immunity.

In the course of the previous pages we have developed a num
ber of strong arguments showing that virus particles must be  
considered as living individuals. We can now assert with no less 
vigor that these particles must also be considered as regular 
chemical molecules subject to all the laws and regulations of 
physics and chemistry. In fact, purely chemical studies of virus 
material establish the fact that a given virus may be considered 
as a well-defined chemical compound, and may be treated in the 
very same way as various complex organic (but not living) com
pounds, and that they are subject to various types of substitu
tional reactions. It seems in fact to be only a matter of time 
before the biological chemist will be able to write for each virus 
a structural chemical formula just as easily as he now writes the 
formula for alcohol, glycerine, or sugar. Still more striking is the 
fact that virus particles of a given type are apparently of exactly 
the same size up to their last atom.

In fact it was shown that virus particles deprived of the feed
ing medium in which they live arrange themselves into regular 
patterns of ordinary crystals. Thus, for example, the so-called 
“tomato bushy stunt” virus crystallizes in the form of large beauti- 
ful rhombic dodecahedrons! You can keep this crystal in a miner - 
alogical cabinet along with feldspar and rock salt; but put it
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back into the tomato plant and it will turn into a swarm of living 
individuals.

The first important step in synthesizing living organisms from 
inorganic material was recently made by Heinz Fraenkel-Conrat 
and Robley Williams in the Virus Institute of the University of 
California. Working with the tobacco-mosaic virus, they man
aged to separate these virus particles into two parts, each of 
which represents a non-living, though rather complex, organic 
molecule. It was long known that this virus, having the shape of 
long sticks (plate VI) ,  is formed by a bunch of long straight 
molecules of organizing material (known as ribonucleic acid) 
with long protein molecules wound around it like a coil of elec
tric wire around the iron core in an electromagnet. By using 
various chemical reagents, Fraenkel-Conrat and Williams suc
ceeded in breaking up these virus particles, separating the ribo
nucleic acid from the protein molecules without damaging them. 
Thus, they obtained in one test tube a water solution of ribo
nucleic acid, and in another a solution of protein molecules. 
Electron-microscope photographs have shown that the test tubes 
contained nothing but the molecules of these two substances, 
completely devoid of any trace of life.

But when the two solutions were put together, the molecules 
of ribonucleic acid began to combine into groups of 24 molecules 
in each bunch, while the protein molecules started to wind around 
them, forming exact replicas of the virus particles with which the 
experiment was started. When applied to the leaves of the to
bacco plant, these taken-apart-and-put-together-again virus par
ticles caused the mosaic disease in the plant, as if they had never 
been taken apart. Of course, in this case the two chemical com
ponents in the test tubes were obtained by breaking up a living 
virus. The point is, however, that biochemists are now in posses
sion of methods for synthesizing from ordinary chemical elements 
both ribonucleic acid and protein molecules. Although at the 
present time (1960) only comparatively short molecules of both 
substances can be synthesized, there is no reason to doubt that 
in the course of time molecules as long as those in viruses will be 
made from simple elements. And putting them together would 
produce a man-made virus particle
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C H A P T E R  X

Expanding Horizons

1. THE EARTH AND ITS NEIGHBORHOOD

NOW, returning from our excursion into the reign of 
molecules, atoms and nuclei, back to objects of more ac

customed size, we are ready again to start a new journey but 
this time in the opposite direction, that is, toward the sun, the 
stars, the distant stellar clouds and the outflung boundaries of our
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The world of the ancients

universe. Here, as in the case of the microcosmos, the develop
ment of science leads us farther and farther from the familiar 
ground of everyday objects and opens up gradually ever- 
broadening horizons.

In the early stages of human civilization, the thing that we 
call the universe was considered almost ridiculously small. The
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earth was believed to be a large flat disc floating on the surface 
of the world ocean which surrounded it. Below was only water 
as deep as one could imagine, above was the sky, the abode of 
the gods. The disc was large enough to hold all lands known to 
the geography of that time, which included the shores of the 
Mediterranean Sea, with the adjacent parts of Europe, Africa, 
and a bit of Asia. The northern rim of the Earth disc was limited 
by a range of high mountains, behind which the Sun hid during 
the night time when it was resting on the surface of the World 
Ocean. The picture on page 269 (Figure 104) gives a fairly ac
curate idea of how the world looked to the people of ancient 
history. But in the third century before Christ there lived a man 
who disagreed with this simple and generally accepted picture 
of the world. He was the famous Greek philosopher (so they 
called scientists at that time) named Aristotle.

In his book About Heaven Aristotle expressed the theory that 
our Earth is actually a sphere, covered partly by land, partly by 
water, and surrounded by the air. He supported his point of 
view by many arguments which are familiar and seem trivial to 
us now. He indicated that the way the ships disappear behind 
the horizon when the hulk vanishes first and the masts seem to 
stick out of the water, proves that the surface of the ocean is 
curved, not flat. He argued that the eclipses of the moon must 
be due to the shadow of the Earth passing over the face of our 
satellite, and since this shadow is round, the Earth itself must be 
round too. But only very few people at that time would believe 
him. People could not understand how, if what he said was true, 
those who lived on the opposite side of the globe (the so-called 
antipodes; Australians to you) could walk upside down without 
falling off the Earth, or why the water in these parts of the world 
did not flow toward what they would call the blue sky (Figure 
105).

The people at that time, you see, did not realize that the 
things fall down because they are attracted by the body of the 
Earth. For them “above” and “below” were absolute directions 
in space, which should be the same everywhere. The idea that 
“up” can become “down” and “down” become “up” if you travel 
halfway around the Earth must have seemed to them just as



crazy as many statements of Einstein’s theory of relativity seem 
to many people today. The fall of heavy bodies was explained 
not by the pull of the Earth, as we explain it now, but by the
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An argument against the spherical shape of the Earth.

“natural tendency” of all things to move downward; and so down 
you go toward the blue sky if you venture to put your foot on 
the under part of the Earth globe! So strong was the objection 
and so hard the adjustment to the new ideas that in many a book 
published as late as the fifteenth century, almost two thousand
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years after Aristotle, one could find pictures showing inhabitants 
of the antipodes standing head down on the “underneath” of 
the Earth, and ridiculing the idea of its spherical shape. Prob
ably the great Columbus himself, setting off for his journey to 
discover “the-other-way-round road” to India, was not completely 
sure of the soundness of his plan, and as a matter of fact he did 
not fulfill it because the American Continent got in the way.
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And only after the famous around-the-world sailing of Fernando 
de Magalhaes (better known as Magellan) did the last doubt 
about the spherical shape of the Earth finally disappear.

When it was first realized that the Earth has the shape of a 
giant sphere, it was natural to ask how large this sphere was in 
comparison with the parts of the world known at that time. But 
how would you measure the size of the Earth without undertak
ing a round-the-world trip, which was of course out of the ques
tion for the philosophers of ancient Greece?

Well, there is a way, and it was first seen by the famous scien
tist of that time named Eratosthenes, who lived in the Greek col
ony of Alexandria in Egypt during the third century b . c . He had



heard from the inhabitants of Syene, a city on the Upper Nile some 
5000 Egyptian stadia south from Alexandria,1 that during the 
summer solstice the noon sun in that city stood directly overhead, 
so that vertical objects threw no shadow. On the other hand 
Eratosthenes knew that no such thing ever happened in Alexan
dria, and that on the same day the sun passes 7 degrees, or one 
fiftieth of the full cycle, away from the zenith ( the point directly 
overhead.) Assuming that the Earth is round, Erathosthenes gave 
a very simple explanation of that fact, an explanation that you can 
easily understand by looking at Figure 106. Indeed, since the 
surface of the earth curves between the two cities, the sun rays 
falling vertically in Syene are bound to strike the earth at a cer
tain angle in the more northerly located Alexandria. You can 
also see from that figure that if two straight lines were drawn 
from the center of the earth, one to pass through Alexandria and 
one through Syene, the angle that they would make at their con
vergence would be identical with that made by the convergence 
of the line passing from the center of the earth to Alexandria 
(i.e. zenith direction in Alexandria) and the sun’s rays at the 
time that the sun is directly over Syene.

Since that angle is one fiftieth of the full circle, the total cir
cumference of the earth should be fifty times the distance be
tween the two cities, or 250,000 stadia. One Egyptian stadium is 
about ^  mile so that Eratosthenes’ result is equivalent to 25,000 
miles, or 40,000 km; very close indeed to the best modern esti
mates.

However the main point of the first measurement of the Earth 
was not in the exactness of the number obtained, but in the reali
zation of the fact that the Earth was so large. Why, its total 
surface must be several hundred times larger than the area of all 
known lands! Could it be true, and if true, what was beyond the 
known borders?

Speaking about astronomical distances, we must get acquainted 
first with what is known as parallactic displacement or simply as 
parallax. The word may sound a little frightening, but as a matter 
of fact the parallax is a very simple as well as useful thing.

We may start our acquaintance with parallax by trying to put
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a thread into a needle’s eye. Try to do it with one eye closed, and 
you will find very quickly that it does not work; you will be 
bringing the end of the thread either too far behind the needle 
or stopping short in front of it. With only one eye you are unable 
to judge the distance to the needle and to the thread. But with 
two eyes open you can do it very easily, or at least learn easily 
how to do it. When you look at the object with two eyes, you 
automatically focus them both on the object. The closer the ob
ject the more you have to turn your eyes toward each other, ana
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the muscular feeling arising from such adjustment gives you a 
pretty good idea about the distance.

Now if instead of looking with both eyes, you close first one 
and then the other, you will notice that the position of the ob
ject (the needle in this case) relative to the distant background 
(say, the window across the room) has changed. This effect is 
known as parallactic displacement and is certainly familiar to 
everybody; if you never heard about it, just try it out or look at 
Figure 107 showing the needle and window as seen by the right 
and the left eye. The farther away the object, the smaller will be its 
parallactic displacement, so that we can use it for measuring dis



tances. Since parallactic displacement can be measured exactly 
in the degrees of the arc, this method is more precise than a 
simple judgment of the distance based on the muscular feeling 
in the eyeballs. But since the two eyes are set in our head only 
about three inches apart, they are not good for the estimate of 
distances beyond a few feet; in the case of more distant objects 
the axis of both eyes become almost parallel and the parallactic 
displacement becomes immeasurably small. In order to judge 
greater distances we should need to move our two eyes farther 
apart, thus increasing the angle of the parallactic displacement

Expanding Horizons 275

F ig u r e  1 0 8

No, no surgical operation is necessary, and the trick can be done 
with mirrors.

In Figure 108 we see such an arrangement as used in the 
Navy (before the invention of radar) to measure the distance to 
enemy warships during battle. It is a long tube with two mirrors 
(A, A') in front of each eye, and two other mirrors ( B , B') at 
opposite ends of the tube. Looking through such a range finder 
you actually see with one eye from the end B and with another 
from the end B'. The distance between your eyes, or the so-called 
optical base, becomes effectively much greater, and you can 
estimate much longer distances. Of course, the Navy men do not 
rely on just the distance-feeling given by the muscles of their 
eyeballs. The range finders are equipped with special gadgets
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and dials measuring parallactic displacement with the utmost 
precision.

However these naval range finders, working perfectly even 
when the enemy ship is almost behind the horizon, would tail 
badly in any attempt to measure the distance even to such a com



paratively near-by celestial body as the moon. In fact in order to 
notice the parallactic displacement of the moon in respect to the 
background of distant stars the optical base, that is, the distance 
between the two eyes must be made at least several hundred 
miles long. Of course it isn’t necessary to arrange the optical 
system that would permit us to look with one eye from, say, 
Washington, and with another from New York, since all one has 
to do is to take two simultaneous photographs of the moon 
among the surrounding stars from these two cities. If you put 
this double picture in an ordinary stereoscope you will see the 
moon hanging in space in front of the stellar background. By 
measuring the photographs of the moon and the surrounding 
stars taken at the same instant in two different places on the 
surface of the Earth (Figure 109), astronomers have found that 
the parallactic displacement of the moon as it would be observed 
from the two opposite points of the Earth’s diameter is 1°24'5". 
From this it follows that the distance to the moon equals 30.14 
earth-diameters, that is, 384,403 km, or 238,857 miles.

From this distance and the observed angular diameter we find 
that the diameter of our satellite is about one fourth of the 
Earth’s diameter. Its total surface is only one sixteenth of the 
Earth’s surface, about the size of the African continent.

In a similar way one can measure the distance to the sun, al
though, since the sun is much farther away, the measurements 
are considerably more difficult. Astronomers have found that 
this distance is 149,450,000 km (92,870,000 miles) or 385 times 
the distance to the moon. It is only because of this tremendous 
distance that the sun looks about the same size as the moon; 
actually it is much larger, its diameter being 109 times that of 
the Earth’s diameter.

If the sun were a large pumpkin, the Earth would be a pea. 
the moon a poppy seed, and the Empire State Building in New 
York about as small as the smallest bacteria we can see through 
the microscope. It is worth while to remember here that at the 
time of ancient Greece, a progressive philosopher called Anax
agoras was punished with banishment and threatened with death 
for teaching that the sun was a ball of fire as big perhaps as the 
entire country of Greece.
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In a similar way astronomers are able to estimate the distance 
of different planets of our system. The most distant of them, dis
covered only quite recently and called Pluto is about forty times 
farther from the sun than the Earth; to be exact, the distance is
3,668,000,000 miles.

2. THE GALAXY OF STARS

Our next jump into space will be that from the planets to the 
stars, and here again the method of parallax can be used. We find, 
however, that even the nearest stars are so far away that at the 
most distant available observation points on the Earth (opposite 
sides of the globe) they do not show any noticeable parallactic 
shift in respect to the general stellar background. But we still 
have a way to measure these tremendous distances. If we use the 
dimensions of the Earth to measure the size of the Earth’s orbit 
around the sun, why don’t we use this orbit to get the distances 
to the stars? In other words is it not possible to notice the relative 
displacements of at least some of the stars by observing them 
from the opposite ends of the Earth’s orbit. Of course it means 
that we have to wait half a year between the two observations, 
but why not?

With this idea in mind, the German astronomer Bessel started 
in 1838 the comparison of the relative position of stars as ob
served two different nights half a year apart. First he had no 
luck; the stars he picked up were evidently too far away to show 
any noticeable parallactic displacement, even with the diameter 
of the earth’s orbit as the basis. But lo, here was the star, listed 
in astronomical catalogues as 61 Cygni (61st faint star in the 
constellation of Swan), which seemed to have been slightly off 
its position half a year before. (Figure 110).

Another half a year passed and the star was again back in its 
old place. So it was the parallactic effect after all, and Bessel was 
the first man who with a yardstick stepped into the interstellar 
space beyond the limits of our old planetary system.

The observed annual displacement of 61 Cygni was very small 
indeed; only 0.6 angular seconds,2 that is, the angle under which

2 More exactly 0."600±0.06.



you would see a man 500 miles away if you could see so far at 
all! But astronomical instruments are very precise, and even such 
angles can be measured with a high degree of accuracy. From 
the observed parallax, and the known diameter of the Earth’s 
orbit, Bessel calculated that his star was 103,000,000,000,000 km 
away, that is, 690,000 times farther away than the sun! It is 
rather hard to grasp the significance of that figure. In our old 
example, in which the sun was a pumpkin and the Earth a pea 
rotating around it at a distance of 200 ft, the distance of that 
star would correspond to 30,000 miles!

In astronomy it is customary to speak of very large distances 
by giving the time they could be covered by light that travels at
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the tremendous velocity of 300,000 km per sec. It would take 
light only second to run around the Earth, slightly more than
1 second to come here from the moon, and about 8 minutes from 
the sun. From the star 61 Cygni, which is one of our nearest 
cosmic neighbors, the light travels to the Earth for about 11 years. 
If, because of some cosmic catastrophe the light from 61 Cygni 
were extinguished, or ( what often happens to the stars) it were 
to explode in a sudden flash of fire, we should have to wait for 11 
long years until the flash of the explosion, speeding through the 
interstellar space, and its last expiring ray finally brought to earth 
the latest cosmic news that a star had ceased to exist.

From the measured distance separating us from 61 Cygni, 
Bessel calculated that this star, appearing to us as a tiny lumin



280 Macrocosmos

ous point quietly twinkling against the dark background of the 
night sky, is actually a giant luminous body only 30 per cent 
smaller and slightly less luminous than our own gorgeous sun. 
This was the first direct proof of the revolutionary idea first ex
pressed by Copernicus that our sun is only one of the myriads of 
stars scattered at tremendous distances throughout infinite space.

Since the discovery of Bessel a great many stellar parallaxes 
have been measured. A few of the stars were found to be closer 
to us than 61 Cygni, the nearest being alpha-Centauri (the 
brightest star in the constellation of Centaurus), which is only 
4.3 light-years away. It is very similar to our sun in its size and 
luminosity. Most of the stars are much farther away, so far away 
that even the diameter of the Earth’s orbit becomes too small as 
the base for distance measurements.

Also the stars have been found to vaiy greatly in their sizes 
and luminosities, from shining giants such as Betelgeuse (300 
light-years away), which is about 400 times larger and 3600 times 
brighter than our sun, to such faint dwarfs as the so-called Van 
Maanen’s star (13 light-years away), which is smaller than our 
Earth ( its diameter being 75 per cent that of Earth) and about
10,000 times fainter than the sun.

We come now to the important problem of counting all exist
ing stars. There is a popular belief, to which you also probably 
would subscribe, that nobody can count the stars in the sky. 
However, as is true of so many popular beliefs, this one is also 
quite wrong, at least as far as the stars visible to the naked eye are 
concerned. In fact, the total number of stars which may thus 
be seen in both hemispheres is only between 6000 and 7000, and 
since only one half of them are above the horizon at any one time, 
and since the visibility of stars close to the horizon is greatly 
reduced by atmospheric absorption, the number of stars which 
are usually visible to the naked eye on a clear moonless night 
is only about 2000. Thus, counting diligently at the rate of say 
1 star per second, you should be able to count them all in about 
i  hr!

If, however, you use a field binocular, you would be able to 
see some 50,000 additional stars, and a 2|-inch telescope would 
reveal about 1,000,000 more. Using the famous 100-inch telescope



of the Mt. Wilson observatory in California you should be able 
to see about half a billion stars. Counting them at the rate of
1 star per second every day from dusk to dawn, astronomers 
would have to spend about a century to count them all!

But, of course, nobody has ever tried to count all the stars 
visible through large telescopes one by one. The total number is 
calculated by counting the actual stars visible in a number of 
areas in different parts of the sky and applying the average to 
the total area.

More than a century ago the famous British astronomer, 
William Herschel, observing the stellar sky through his large 
self-made telescope, was struck by the fact that most of the stars 
that are ordinarily invisible to the naked eye appear within the 
faintly luminous belt cutting across the night sky and known as 
the Milky Way. And it is to him that the science of astronomy 
owes the recognition of the fact that the Milky Way is not an 
ordinary nebulosity or merely a belt of gas clouds spreading 
across space, but is actually formed from a multitude of stars 
that are so far away and consequently so faint that our eye can
not recognize them separately.

Using stronger and stronger telescopes we have been able to 
see the Milky Way as a larger and larger number of separate 
stars, but the main bulk of them still remains in the hazy back
ground. It would be, however, erroneous to think that in the 
region of the Milky Way the stars are distributed any more 
densely than in any other part of the sky. It is, in fact, not the 
denser distribution of stars but the greater depth of stellar dis
tribution in this direction that makes it possible to see what 
seems to be a larger number of stars in a given space than any
where else in the sky. In the direction of the Milky Way the 
stars extend as far as the eye (strengthened by telescopes) can 
see, whereas in any other direction the distribution of stars does 
not extend to the end of visibility, and beyond them we encounter 
mostly the almost empty space.

Looking in the direction of the Milky Way it is as though we 
are looking through a deep forest where the branches of numer
ous trees overlap each other forming a continuous background, 
whereas in other directions we see patches of the empty space
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between the stars, as we would see the patches of the blue sky 
through the foliage overhead.

Thus the stellar universe, to which our sun belongs as one 
insignificant member, occupies a flattened area in space, extend-

.»*
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An astronomer looking at the stellar system of the Milky Way reduced
100,000,000,000,000,000,000 times. The head of the astronomer is 

approximately in the position occupied by our sun.

ing for large distances in the plane of the Milky Way, and being 
comparatively thin in the direction perpendicular to it.

A more detailed study by generations of astronomers led to 
the conclusion that our stellar system includes about 40,000,000- 
000 individual stars, distributed within a lens-shaped area about



100,000 light-years in diameter and some 5000 to 10,000 light- 
years thick. And one result of this study comes as a slap in the 
face of human pride—the knowledge that our sun is not at all 
at the center of this giant stellar society but rather close to its 
outer edge.

In Figure 111 we try to convey to our readers the way this 
giant beehive of stars actually looks. By the way, we have not 
mentioned yet that in more scientific language the system of 
the Milky Way is known as the Galaxy ( Latin of course!). The 
size of the Galaxy is here reduced by a factor of a hundred 
billion billions, though the number of points that represent
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If we look toward the galactic center it would seem to us first that the 
mythical celestial road branches into two one-way traffic lanes.

separate stars are considerably fewer than forty billions, for, as 
one puts it, typographical reasons.

One of the most characteristic properties of the giant swarm 
of stars forming the galactic system is that it is in a state of rapid 
rotation similar to that which moves our planetary system. Just 
as Venus, Earth, Jupiter, and other planets move along almost 
circular orbits around the sun, the billions of stars forming the 
system of the Milky Way move around what is known as the 
galactic center. This center of galactic rotation is located in the 
direction of the constellation of Sagittarius (the Archer), and in 
fact if you follow the foggy shape of the Milky Way across the 
sky you will notice that approaching this constellation it becomes 
much broader, indicating that you are looking toward the
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central thicker part of the lens-shaped mass. ( Our astronomer in 
Figure 111 is looking in this direction.)

What does the galactic center look like? We do not know that, 
since unfortunately it is screened from our sight by heavy clouds 
of dark interste'lar material hanging in space. In fact, looking at 
the broadened part of the Milky Way in the region of Sagittarius3 
you would think first that the mythical celestial road branches 
here into two “one-way traffic lanes.” But it is not an actual 
branching, and this impression is given simply by a dark cloud of 
interstellar dust and gases hanging in space right in the middle 
of the broadening between us and the galactic center. Thus 
whereas the darkness on both sides of the Milky Way is due to 
the background of the dark empty space, the blackness in the 
middle is produced by the dark opaque cloud. A few stars in the 
dark central patch are actually in the foreground, between us and 
the cloud. (Figure 112).

It is, of course, a pity that we cannot see the mysterious 
galactic center around which our sun is spinning, along with 
billions of other stars. But in a way we know how it must look, 
from the observation of other stellar systems or galaxies scattered 
through space far beyond the outermost limit of our Milky Way. 
It is not some supergiant star keeping in subordination all the 
other members of the stellar system, as the sun reigns over the 
family of planets. The study of the central parts of other galaxies 
(which we will discuss a little later) indicates that they also 
consist of large multitudes of stars with the only difference that 
here the stars are crowded much more densely than in the out- 
lying parts to which our sun belongs. If we think of the planetary 
system as an autocratic state where the Sun rules the planets, the 
Galaxy of stars may be likened to a kind of democracy in which 
some members occupy influential central places while the others 
have to be satisfied with more humble positions on the outskirts 
of their society.

As said above, all the stars including our sun rotate in giant 
circles around the center of the galactic system. How can this be 
proved, how large are the radii of these stellar orbits, and how 
long does it take to make a complete circuit?

8 Which can be best observed on a clear night in early summer.



All these questions were answered a few decades ago by the 
Dutch astronomer Oort, who applied to the system of stars known 
as the Milky Way observations very similar to those made by 
Copernicus in considering the planetary system.

Let us remember first Copernicus’ argument. It had been ob
served by the ancients, the Babylonians, the Egyptians, and 
others, that the big planets like Saturn or Jupiter seemed to move
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across the sky in a rather peculiar way. They seemed to proceed 
along an ellipse in the way the sun does, then suddenly to stop, 
to back, and after a second reversal of motion, to continue their 
way in the original direction. In the lower part of Figure 113 we 
show schematically such a look as described by Saturn over a 
period of about two years. (The period of Saturn’s complete cir
cuit is 291 years.) Since, on account of religious prejudices that 
dictated the statement that our Earth is the center of the uni
verse, all planets and the sun itself were believed to move around 
the Earth, the above described peculiarities of motion had to be
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explained by the supposition that planetary orbits have very 
peculiar shapes with a number of loops in them.

But Copernicus knew better, and by a stroke of genius, he ex
plained the mysterious looping phenomenon as due to the fact 
that the Earth as well as all other planets move along simple 
circles around the Sun. This explanation of the looping effect can 
be easily understood after studying the schematic picture at the 
top of Figure 113.

The sun is in the center, the Earth ( small sphere) moves along 
the smaller circle, and Saturn (with a ring) moves along the 
larger circle in the same direction as the Earth. Numbers 1, 2, 3, 
4, 5 represent different positions of the Earth in the course of a 
year, and the corresponding positions of Saturn which, as we re* 
member, moves much more slowly. The parts of vertical lines 
from the different positions of the Earth represent the direction 
to some fixed star. By drawing lines from the various Earth posi
tions to the corresponding Saturn positions we see that the angle 
formed by the two directions (to Saturn and to the fixed star) 
first increases, then decreases, and then increases again. Thus the 
seeming phenomenon of looping does not represent any peculiar
ity of Saturn’s motion but arises from the fact that we observe 
this motion from different angles on the moving Earth.

The Oort argument about the rotation of the Galaxy of stars 
may be understood after inspection of Figure 114. Here in the 
lower part of the picture we see the galactic center (with dark 
clouds and all!) and there are plenty of stars all around it 
through the entire field of the figure. The three circles represent 
the orbits of stars at different distances from the center, the 
middle circle being the orbit of our sun.

Let us consider eight stars (shown with rays to distinguish 
them from other points), two of which are moving along the 
same orbit as the sun, but one slightly ahead and one slightly 
behind it, the others located on somewhat larger and somewhat 
smaller orbits as shown in the figure. We must remember that 
owing to the laws of gravity (see Chapter 5) the outer stars 
have lower and the inner stars higher velocity than the stars on 
solar orbits (this is indicated in the figure by the arrows of 
different lengths).



How will the motion of these eight stars look if observed from 
the sun, or, what is of course the same, from the Earth? We are 
speaking here about the motion along the line of sight, which 
can be most conveniently observed by means of the so-called 
Doppler effect.4 It is clear, first of all, that the two stars (marked 
D and E) that move along the same orbit and with the same 
speed as the sun will seem stationary to a solar (or terrestrial) 
observer. The same is true of the other two stars (B  and G)
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located along the radius, since they move parallel to the sun, so 
that there is no component of velocity along the line of sight.

Now what about the stars A and C on the outer circle? Since 
they both move more slowly than the sun we must conclude, as 
clearly seen in this picture, that the star A is lagging behind, 
whereas the star C is being overtaken by the sun. The distance 
to the star A will increase, while the distance to C will decrease, 
and the light coming from two stars must show respectively the 
red and violet Doppler effect. For the stars F  and H on the inner 
circle the situation will be reversed, and we must have a violet 
Doppler effect for F and a red one for H.

4 See the discussion of the Doppler effect on p. 330.
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It is assumed that the phenomenon just described could be 
caused only by a circular motion of the stars, and the existence 
of that circular motion makes it possible for us not only to prove 
this assumption but also to estimate the radius of stellar orbits 
and the velocity of stellar motion. By collecting the observational 
material on the observed apparent motion of stars all over the 
sky, Oort was able to prove that the expected phenomenon of 
red and violet Doppler effect really exists, thus proving beyond 
any doubt the rotation of the Galaxy.

In a similar way it may be demonstrated that the effect of 
galactic rotation will influence the apparent velocities of stars 
perpendicular to the light of vision. Although this component of 
velocity presents much larger difficulties for exact measurement 
( since even very great linear velocities of distant stars correspond 
to extremely small angular displacements on the celestial sphere) 
the effect was also observed by Oort and others.

The exact measurements of the Oort effect of stellar motion 
now makes it possible to measure the orbits of stars and deter
mine the period of rotation. Using this method of calculation it 
has been learned that the radius of the solar orbit having its 
center in Sagittarius is 30,000 light-years, that is, about two 
thirds the radius of the outermost orbit of the entire galactic 
system. The time necessary for the sun to move a complete circle 
around the galactic center is some 200 million years. It is a long 
time, of course, but remembering that our stellar system is about 
5 billion years old, we find that during its entire life our sun with 
its family of planets has made about 20 complete rotations. If, 
following the terminology of the terrestrial year, we call the 
period of solar rotation “a solar year” we can say that our universe 
is only 20 years old. Indeed things happen slowly in the world 
of stars, and a solar year is quite a convenient unit for time 
measurements in the history of the universe!

3. TOWARD THE LIMITS OF THE UNKNOWN

As we have already mentioned above, our Galaxy is not the 
only isolated society of stars floating in the vast spaces of the 
universe. Telescopic studies reveal the existence, far away in



space, of many other giant groups of stars very similar to that to 
which our sun belongs. The nearest of them, the famous An
dromeda Nebula, can be seen even by the naked eye. It appears 
to us as a small, faint, rather elongated nebulosity. In Plates 
VII a  and b  are shown photographs, taken through the large 
telescope of the Mt. Wilson Observatory, of two such celestial 
objects. The two objects shown in these photographs are: the 
Nebula in Coma Berenices seen straight on the edge, and the 
Nebula in Ursus Major seen from the top. We notice that, as a 
part of the characteristic lens-shape ascribed to our Galaxy, these 
nebulae possess a typical spiral structure; hence the name “spiral 
nebulae.” There are many indications that our own stellar struc
ture is similarly a spiral, but it is very difficult to determine the 
shape of a structure when you are inside it. As a matter of fact, 
our sun is most probably located at the very end of one of the 
spiral arms of the “Great Nebula of the Milky Way.”

For a long time astronomers did not realize that the spiral 
nebulae are giant stellar systems similar to our Milky Way, and 
confused them with ordinary diffuse nebulae like that in the 
constellation of Orionis, which represent the large clouds of 
interstellar dust floating between the stars inside our Galaxy. 
Later, however, it was found that these foggy spiral-shaped 
objects are not fog at all, but are made of separate stars, which 
can be seen as tiny individual points when the largest magnifica
tions are used. But they are so far away that no parallactic meas
urements can indicate their actual distance.

Thus it would seem at first that we had reached the limit of 
our means for measuring celestial distances. But no! In science, 
when we come to an insuperable difficulty the delay is usually 
only temporary; something always happens that permits us to 
go still farther. In this case a quite new “measuring rod” was 
found by the Harvard astronomer Harlow Shapley in the so- 
called pulsating stars or Cepheids.5

There are stars and stars. While most of them glow quietly 
in the sky, there are a few that constantly change their luminosity 
from bright to dim, and from dim to bright in regularly spaced

B So called after the star /3-Cephei, in which the phenomenon of pulsa
tion was first discovered.
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cycles. The giant bodies of these stars pulsate as regularly as the 
heart beats, and along with this pulsation goes a periodic change 
of their brightness.0 The larger the star, the longer is the period 
of its pulsation, just as it takes a long pendulum more time to 
complete its swing than a short one. The really small ones (that 
is, small as stars go) complete their period in the course of a 
few hours, whereas the real giants take years and years to go 
through one pulsation. Now, since the bigger stars are also the 
brighter, there is an apparent correlation between the period ot 
stellar pulsation, and the average brightness of the star. This 
relation can be established by observing the Cepheids, which 
are sufficiently close to us so that their distance and consequently 
actual brightness may be directly measured.

If now you find a pulsating star that lies beyond the limit of 
parallactic measurements, all you have to do is to watch the star 
through the telescope and observe the time consumed by its 
pulsation period. Knowing the period, you will know its actual 
brightness, and comparing it with its apparent brightness you 
can tell at once how far away it is. This ingenious method was 
successfully used by Shapley for measuring particularly large 
distances within the Milky Way and has been most useful in 
estimating the general dimensions of our stellar system.

When Shapley applied the same method to measuring the 
distance to several pulsating stars found imbedded in the giant 
body of the Andromeda Nebula, he was in for a big surprise. 
The distance from the Earth to these stars, which, of course, must 
be the same as the distance to the Andromeda Nebula itself, 
turned out to be 1,700,000 light-years—that is, much larger than 
the estimated diameter of the stellar system of Milky Way. And 
the size of Andromeda Nebula came out only a little smaller than 
the size of our entire Galaxy. The two spiral nebulae shown in 
our plates are still farther away and their diameters are compar
able to that of the Andromeda.

This discovery dealt the death blow to the earlier assumptions 
that the spiral nebulae are comparatively “small things” located

6 One must not confuse these pulsating stars with the so-called eclipsing 
variables, which actually represent systems of two stars rotating around each 
other and periodically eclipsing one anothei.



within our Galaxy, and established them as independent galaxies 
of stars very similar to our own system, the Milky Way. No 
astronomer would now doubt that to an observer located on some 
small planet circling one of the billions of stars that form the 
Great Andromeda Nebula, our own Milky Way would look much 
as the Andromeda Nebula looks to us.

The further studies of these distant stellar societies, which we 
owe mostly to Dr. E. Hubble, the celebrated galaxy-gazer of Mt. 
Wilson Observatory, reveal a great many facts of great interest 
and importance. It was found first of all that the galaxies, which 
appear more numerous through a good telescope than the or
dinary stars do to the naked eye, do not all have necessarily spiral 
form, but present a great variety of different types. There are 
spherical galaxies, which look like regular discs with diffused
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Various phases of normal galactic evolution.

boundaries; there are elliptical galaxies with different degrees 
of elongation. The spirals themselves differ from each other by 
the “tightness with which they are wound up.” There are also 
very peculiar shapes known as “bared spirals.”

It is a fact of extreme importance that all the varieties of the 
observed galactic shapes can be arranged in a regular sequence 
(Figure 115), which presumably corresponds to different stages 
of the evolution of these giant stellar societies.

Although we are still far from understanding the details of 
galactic evolution, it seems very probable that it is due to the 
process of progressive contraction. It is well known that when 
a slowly rotating spherical body of gas undergoes a steady con
traction, its speed of rotation increases, and its shape becomes 
that of a flattened ellipsoid. At a certain stage of contraction, when 
the ratio of the polar radius to the equatorial radius becomes
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equal to 7/10, the rotating body must assume a lenticular shape 
with a sharp edge running along its equator. Still further con
traction keeps this lenticular shape intact, but the gases form
ing the rotating body begin to flow away into surrounding space 
all along the sharp equatorial edge, leading to the formation of 
a thin gaseous veil in the equatorial plane.

All the above statements have been proved mathematically 
by the celebrated English physicist and astronomer Sir James 
Jeans for a rotating gas sphere, but they can also be applied 
without any alterations to the giant stellar clouds that we call 
galaxies. In fact, we can consider such a clustering of the 
billions of stars as a flock of gas in which the role of molecules 
is now played by individual stars.

In comparing the theoretical calculations of Jeans with Hub
ble’s empirical classification of galaxies, we find that these giant 
stellar societies follow exactly the course of evolution described 
by the theory. In particular we find that the most elongated 
shape of elliptic nebulae is that corresponding to the radius-ratio 
of 7/10 (E 7 ), and that it is the first case in which we notice a 
sharp equatorial edge. The spirals that develop in the later stages 
of evolution are apparently formed from the material ejected by 
the rapid rotation, although up to the present we do not have a 
completely satisfactory explanation of why and how these spiral 
forms are formed and what causes the difference between the 
simple and the barred spirals.

Much is still to be learned from further study of the structure, 
motion, and stellar content in the different parts of galactic 
societies of stars. A very interesting result was, for example, 
obtained a couple of years ago by a Mt. Wilson astronomer, W. 
Baade, who was able to show that, whereas the central bodies 
(nuclei) of spiral nebulae are formed by the same type of stars 
as the spherical and elliptic galaxies, the arms themselves show 
a rather different type of stellar population. This “spiral-arm” 
type of stellar population differs from the population of the 
central region by the presence of very hot and bright stars, the 
so-called “Blue Giants,” which are absent in the central regions 
as well as in the spherical and elliptic galaxies. Since, as we shall 
see later (Chapter XI), the Blue Giants most probably represent



the most recently formed stars, it is reasonable to assume that the 
spiral arms are so to speak the breeding grounds for new stellar 
populations. One could imagine that a large part of the material 
ejected from the equatorial bulge of a contracting elliptic galaxy 
is formed by primordial gases that come out into the cold inter- 
galactic space and condense into the separate large lumps of 
matter, which through subsequent contraction become very hot 
and very bright.

In Chapter XI we shall return again to the problems of stellar 
birth and life, but now we must consider generally the distribu
tion of separate galaxies through the vastness of the universe.

We must state here, first of all that the method of distance 
measurements based on pulsating stars, though giving excellent 
results when applied to quite a number of galaxies that lie in the 
neighborhood of our Milky Way, fails when we proceed into the 
depth of space, since we soon reach distances at which no 
separate stars may be distinguished and the galaxies look like 
tiny elongated nebulosities even through the strongest telescopes. 
Beyond this point we can i ely only on the visible size, since it is 
fairly well established that, unlike stars, all galaxies of a given 
type are of about the same size. If you know that all people are 
of the same height, that there are no giants or dwarfs, you can 
always say how far a man is from you by observing his apparent 
size.

Using this method for estimating distances in the far-outflung 
realm of galaxies, Dr. Hubble was able to prove that the galaxies 
are scattered more or less uniformly through space as far as the 
eye (fortified by the most highly powered telescope) can see. 
We say “more or less” because there are many cases in which the 
galaxies cluster in large groups containing sometimes many 
thousands of members, in the same way as the separate stars 
cluster in galaxies.

Our own galaxy. Milky Way, is apparently one member of a 
comparatively small group of galaxies numbering in its member
ship three spirals (including ours, and the Andromeda Nebula) 
and six elliptical and four irregular nebulae (two of which are 
Magellanic clouds).

However, save for such occasional clustering, the galaxies, as
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seen through the 200-inch telescope of the Mt. Palomar observa
tory, are scattered rather uniformly through space up to a dis
tance of one billion light-years. The average distance between 
two neighboring galaxies is about 5,000,000 light-years, and the 
visible horizons of the universe contain about several billion indi
vidual stellar worlds!

In our old simile, in which the Empire State building was 
symbolized by a bacterium, the Earth by a pea, and the sun by a 
pumpkin, the galaxies might be represented by giant swarms of 
many billions of pumpkins distributed roughly within the orbit 
of Jupiter, separate pumpkin clusters being scattered through a 
spherical volume with a radius only a little smaller than the dis
tance to the nearest star. Yes, it is very difficult to find the proper 
scale in cosmic distances, so that even when we scale the Earth 
to a pea, the size of the known universe comes out in astro
nomical numbers! In Figure 116 we try to give you an idea of 
how, step by step, astronomers have proceeded in their explora
tion of cosmic distance. From the Earth, to the moon, to the sun, 
to the stars, to distant galaxies, and toward the limits of the 
unknown.

We are now prepared to answer the fundamental question 
concerning the size of our universe. Shall we consider the uni
verse as extending into infinity and conclude that bigger and 
better telescopes unll always reveal to the inquiring eye of an 
astronomer new and hitherto unexplored regions of space, or 
must we believe, on the contrary, that the universe occupies 
some very big but nevertheless finite volume, and is, at least in 
principle, explorable down to the last star?

When we speak of the possibility that our universe is of “finite 
size,” we do not mean, of course, that somewhere at a distance of 
several billion light-years the explorer of space will encounter 
a blank wall on which is posted the notice “No trespassing.”

In fact, we have seen in Chapter III that space can be finite 
without being necessarily limited by a boundary. It can simply 
curve around and “close on itself,” so that a hypothetical space 
explorer, trying to steer his rocket ship as straight as possible 
will describe a geodesic line in space and come back to the point 
from which he started.



The milestones of cosmic exploration, the distances expressed in
light-years.

F i g u r e  116
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The situation would be, of course, quite similar to an ancient 
Greek explorer who travels west from his native city of Athens, 
and, after a long journey, finds himself entering the eastern gates 
of the city.

And just as the curvature of the Earth’s surface can be estab
lished without a trip around the world, simply by studying the 
geometry of only a comparatively small part of it, the question 
about the curvature of the three-dimensional space of the uni
verse can be answered by similar measurements made within the 
range of available telescopes. We have seen in Chapter 5 that one 
must distinguish between two kinds of curvatures: the positive 
one corresponding to the closed space of finite volume, and the 
negative one corresponding to the saddle-like opened infinite 
space (c f. Figure 42). The difference between these two types 
of space lies in the fact that, whereas in the closed space the 
number of uniformly scattered objects falling within a given 
distance from the observer increases more slowly than the cube 
of that distance, the opposite is true in opened space.

In our universe the role of the “uniformly scattered objects” 
is played by the separate galaxies, so that all we have to do in 
order to solve the problem of the universal curvature is to count 
the number of individual galaxies located at different distances 
from us.

Such counting actually has been accomplished by Dr. Hubble, 
who has discovered that the number of galaxies seem to increase 
somewhat more slowly than the cube of the distance, thus indi
cating the positive curvature and the finiteness of space. It must 
be noticed, however, that the effect observed by Hubble is very 
small, becoming noticeable only near the very limit of the dis
tance that it is possible to observe through the 100-inch Mt. 
Wilson telescope, and recent observations with the new 200-inch 
reflector on Mt. Palomar have not as yet thrown more light on 
this important problem.

Another point contributing to the uncertainty of the final answer 
concerning the finiteness of the universe lies in the fact that the 
distances of the faraway galaxies must be judged exclusively on 
the basis of their apparent luminosities (the law or inverse 
square). This method, which assumes that all the galaxies possess
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the same mean luminosity, may, however, lead to the wrong 
results if the luminosity of individual galaxies changes with time, 
thus indicating that luminosity depends on age. It must be re
membered, in fact, that the most distant galaxies seen through 
the Mt. Palomar telescope are one billion light-years away, and 
are therefore seen by us in the state in which they were one bil
lion years ago. If the galaxies become gradually fainter as they 
grow older (owing, perhaps, to a diminishing number of active 
stellar bodies as individual members die out) the conclusions 
reached by Hubble must be corrected. In fact, the change of 
galactic luminosities by only a small percentage in the course 
of one billion years (only about one seventh of their total age) 
would reverse the present conclusion that the universe is finite.

Thus we see that quite a lot of work has yet to be done before 
we can tell for sure whether our universe is finite or infinite.



C H A P T E R  XI

The Days of Creation

1. THE BIRTH OF PLANETS

FOR u s , the people living in the seven parts of the World 
( counting Admiral Byrd for Antarctica) the expression “solid 

ground” is practically synonymous with the idea of stability and 
permanence. As fai as we are concerned all the familiar features 
of the Earth’s surface, its continents and oceans, its mountains 
and rivers could have existed since the beginning of time. True, 
the data of historical geology indicate that the face of the Earth 
is gradually changing, that large areas of the continents may 
become submerged by the waters of the oceans, whereas sub
merged areas may come to the surface.

We also know that the old mountains are gradually being 
washed away by the rain, and that new mountain ridges rise 
from time to time as the result of tectonic activity, but all these 
changes are still only the changes of the solid crust of our globe.

It isn’t, however, difficult to see that there must have been a 
time when no such solid crust existed at all, and when our Earth 
was a glowing globe of melted rocks. In fact, the study of the 
Earth’s interior indicates that most of its body is still in a molten 
state, and that the “solid ground” of which we speak so casually 
is actually only a comparatively thin sheet floating on the surface 
of the molten magma. The simplest way to arrive at this conclu
sion is to remember that the temperature measured at different 
depths under the surface of the Earth increases at the rate of 
about 30° C per kilometer of depth (or 16° F  per thousand feet) 
so that, for example, in the world’s deepest mine (a gold mine 
in Robinson Deep, South Africa) the walls are so hot that an 
air-conditioning plant had to be installed to prevent the miners 
from being roasted alive.

At such a rate of increase, the temperature of the Earth must 
reach the melting point of rocks (between 1200° C and 1800° C)
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at a depth of only 50 km beneath the surface, that is, at less 
than 1 per cent of the total distance from the center. All the 
material farther below, forming more than 97 per cent of the 
Earth’s body, must be in a completely molten state.

It is clear that such a situation could not have existed forever, 
and that we are still observing a certain stage in a process of 
gradual cooling that started once upon a time when the Earth 
was a completely molten body, and will terminate some time in 
the distant future with the complete solidification of the Earth’s 
body all the way to the center. A rough estimate of the rate of 
cooling and growth of the solid crust indicates that the cooling 
process must have begun several billion years ago.

The same figure can be obtained by estimating the age of rocks 
forming the crust of the Earth. Although at first sight rocks ex
hibit no variable features, thus giving rise to the expression “un
changeable as a rock,” many of them actually contain a sort of 
natural clock, which indicates to the experienced eye of a geolo
gist the length of time that has passed since they solidified from 
their former molten state.

This age-betraying geological clock is represented by a minute 
amount of uranium and thorium, which are often found in 
various rocks taken from the surface and from different depths 
within the Earth. As we have seen in Chapter VII the atoms of 
these elements are subject to a slow spontaneous radioactive 
decay ending with the formation of the stable element lead.

To determine the age of a rock containing these radioactive 
elements we need only to measure the amount of lead that has 
been accumulated over the centuries as the result of radioactive 
decay.

In fact, as long as the material of the rock was in the molten 
state, the products of radioactive disintegration could have been 
continuously removed from the place of their origin by the pro
cess of diffusion and convection in the molten material. But as 
soon as the material solidified into a rock, the accumulation of 
lead alongside the radioactive element must have begun, and 
its amount can give us an exact idea of how long it was going on, 
in exactly the same way as the comparative numbers of empty 
beer cans scattered between the palms on two Pacific islands
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could have given to an enemy spy an idea of how long a garrison 
of marines had stayed on each island.

From recent surveys utilizing improved techniques for meas
uring precisely the accumulation in the rocks of lead isotopes 
and of the decay products of other unstable chemical isotopes 
such as rubidium-87 and potassium-40, it was estimated that the 
maximum age of the oldest known rocks is about four and a half 
billion years. Hence, we conclude that the solid crust of the 
Earth must have been formed from previously molten material 
about five billion years ago.

Thus we can picture the Earth five billion years ago as a com
pletely molten spheroid, surrounded by a thick atmosphere of 
air, water-vapors, and probably other extremely volatile sub
stances.

How did this hot lump of cosmic matter come into being, 
what kind of forces were responsible for its formation, and who 
supplied the material for its construction? These questions, per
taining to the origin of our Globe as well as to the origin of every 
other planet of our solar system, have been the basic inquiries of 
scientific Cosmogony (the theory of the origin of the universe), 
the riddles that have occupied the brains of astronomers for 
many centuries.

The first attempt to answer these questions by scientific means 
was made in 1749 by the celebrated French naturalist George- 
Louis Leclerc, Comte de Buffon, in one of the forty-four volumes 
of his Natural History. Buffon saw the origin of the planetary 
system as the result of a collision between the sun and a comet 
that came from the depth of interstellar space. His imagination 
painted a vivid picture of a “comete fatale” with a long brilliant 
tail brushing the surface of our, at that time lonely, sun, and 
tearing from its giant body a number of small “drops,” which 
were sent spinning into space by the force of the impact (Figure 
117a).

A few decades later entirely different views concerning the 
origin of our planetary system were formulated by the famous 
German philosopher Immanuel Kant, who was more inclined to 
think that the sun made up its planetary system all by itself 
without the intervention of any other celestial body. Kant visual



ized the early state of the sun as a giant, comparatively cool, mass 
of gas occupying the entire volume of the present planetary sys
tem, and rotating slowly around its axis. The steady cooling of 
the sphere through radiation into the surrounding empty space 
must have led to its gradual contraction and to the corresponding 
increase of its rotational speed. The increasing centrifugal force
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Two schools of thought in cosmogony.

resulting from such rotation must have led to the progressive 
flattening of the gaseous body of the primitive sun, and resulted 
in the ejection of a series of gaseous rings along its extended 
equator (Figure 117b). Such a ring formation from the rotating 
masses can be demonstrated by the classical experiment per
formed by Plateau in which a large sphere of oil (not gaseous, 
as in the case of the sun) suspended within some other liquid 
with equal density and brought into rapid rotation by some
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auxiliary mechanical device begins to form rings of oil around 
itself when the speed of rotation exceeds a certain limit. The 
rings formed in this way were supposed to have broken up later 
and to have condensed into various planets circling at different 
distances around the sun.

These views were later adopted and developed by the famous 
French mathematician Pierre-Simon, Marquis de Laplace, who 
presented them to the public in his book Exposition du systeme 
du monde, published in 1796. Although a great mathematician, 
Laplace did not attempt to give mathematical treatment to these 
ideas, but limited himself to a semipopular qualitative discus
sion of the theory.

When such a mathematical treatment was first attempted sixty 
years later by the English physicist Clerk Maxwell, the cosmo- 
gonical views of Kant and Laplace ran into a wall of apparently 
insurmountable contradiction. It was, in fact, shown that if the 
material concentrated at present in various planets of the solar 
system was distributed uniformly through the entire space now 
occupied by it, the distribution of matter would have been so 
thin that the forces of gravity would have been absolutely unable 
to collect it into separate planets. Thus the rings thrown out from 
the contracting sun would forever remain rings like the ring of 
Saturn, which is known to be formed by innumerable small par
ticles running on circular orbits around this planet and showing 
no tendency toward “coagulation” into one solid satellite.

The only escape from this difficulty would consist in the as
sumption that the primordial envelope of the sun contained much 
more matter (at least 100 times as much) than we now find in 
the planets, and that most of this matter fell on the sun, leaving 
only about 1 per cent to form planetary bodies.

Such an assumption would lead, however, to another no less 
serious contradiction. Indeed if so much material, which must 
originally have rotated with the same speed as the planets do, 
had fallen on the sun, it would inevitably have communicated 
to it an angular velocity 5000 times larger than that which it 
actually has. If this were the case, the sun would spin at a rate of 
7 revolutions per hour instead of at 1 revolution in approximately 
4 weeks.



These considerations seemed to spell death to the Kant-La- 
place views, and with the eyes of astronomers turning hopefully 
elsewhere, Buffon’s collision theory was brought back to life by 
the works of the American scientists T. C. Chamberlin and F. 
R. Moulton, and the famous English scientist Sir James Jeans. 
Of course, the original views of Buffon were considerably mod
ernized by certain essential knowledge that had been gained 
since they were formulated. The belief that the celestial body 
that had collided with the sun was a comet was now discarded, 
for the mass of a comet was by then known to be negligibly 
small even when compared with the mass of the moon. And so 
the assaulting body was now believed rather to be another star 
comparable to the sun in its size and mass.

However, the regenerated collision theory, which seemed at 
that time to represent the only escape from the fundamental diffi
culties of the Kant-Laplace hypothesis, likewise found itself 
treading on muddy ground. It was very difficult to understand 
why the fragments of the sun thrown out as a result of the vigor
ous punch delivered by another star would move along the 
almost circular orbits followed by all planets, instead of describ
ing elongated elliptical trajectories.

To save the situation it was necessary to assume that, at the 
time the planets were formed by the impact of the passing star, 
the sun was surrounded by a uniformly rotating gaseous enve
lope, which helped to turn the originally elongated planetary 
orbits into regular circles. Since no such medium is now known 
to exist in the region occupied by the planets, it was assumed 
that it was later gradually dissipated into interstellar space, and 
that the faint luminosity known as Zodiacal Light, which at pres
ent extends from the sun in the plane of ecliptics, is all that is left 
from that past glory. But this picture, representing a kind of 
hybrid between the Kant-Laplace assumption of the original 
gaseous envelope of the sun and Buffon’s collision hypothesis was 
very unsatisfactory. However, as the proverb says, one must 
choose the lesser of two evils, and the collision hypothesis of the 
origin of the planetary system was accepted as the correct one, 
being used until very recently in all scientific treatises, textbooks, 
and popular literature (including the author’s two books The
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Birth and Death of the Sun, 1940, and Biography of the Earth, 
revised edition 1959; first published 1941).

It was only in the fall of 1943 that the young German physicist 
C. Weizsacker cut through the Gordian Knot of the planetary 
theory. Using the new information collected by recent astro- 
physical research, he was able to show that all the old objections 
against the Kant-Laplace hypothesis can be easily removed, and 
that, proceeding along these lines, one can build a detailed theory 
of the origin of planets, explaining many important features of 
the planetary system that had not even been touched by any of 
the old theories.

The main point of Weizsacker’s work lies in the fact that 
during the last couple of decades astrophysicists have completely 
changed their minds about the chemical constitution of matter in 
the universe. It was generally believed before that the sun and all 
other stars were formed by the same percentage of chemical ele
ments as those that we have learned from our Earth. Geochemical 
analysis teaches us that the body of the Earth is made up chiefly 
of oxygen (in the form of various oxides), silicon, iron, and 
smaller quantities of other heavier elements. Light gases such as 
hydrogen and helium ( along with other so-called rare gases such 
as neon, argon, etc.) are present on the Earth in very small quan
tities.1

In the absence of any better evidence, astronomers had as
sumed that these gases were also very rare in the bodies of the 
sun and the other stars. However, the more detailed theoretical 
study of stellar structure led the Danish astrophysicist B. Strom- 
gren to the conclusion that such an assumption is quite incorrect 
and that, in fact, at least 35 per cent of the material of our sun 
must be pure hydrogen. Later this estimate was increased to 
above 50 per cent, and it was also found that a considerable per
centage of the other solar constituents is pure helium. Both the 
theoretical studies of the solar interior (which recently culmi
nated in the important work of M. Schwartzschild), and the 
more elaborate spectroscopic analysis of its surface, led astro-

1 Hydrogen is found on our planet mostly in its union with oxygen in 
water. But everybody knows that although water covers three quarters of 
the Earth’s surface the total water mass is very small compared with the mass 
of the entire body of the Earth.



physicists to a striking conclusion that: the common chemical 
elements that form the body of the Earth constitute only about 
1 per cent of the solar mass, the rest being almost evenly di
vided between hydrogen and helium ivith a slight preponderance 
of the former. Apparently this analysis also fits the constitution of 
the other stars.

Further, it is now known that interstellar space is not quite 
empty, but is filled by a mixture of gas and fine dust with a mean 
density of about 1 mg matter in 1,000,000 cu miles space, and 
this diffuse, highly rarified material apparently has the same 
chemical constitution as have the sun and the other stars.

In spite of its incredibly low density the presence of this inter
stellar material can be easily proved, since it produces noticeable 
selective absorption of the light from stars so distant that it has 
to travel for hundreds of thousands of light-years through space 
before entering into our telescopes. The intensity and location of 
these “interstellar absorption lines” permits us to obtain good 
estimates of the density of that diffuse material and also to show 
that it consists almost exclusively of hydrogen and probably 
helium. In fact, the dust, formed by small particles (about 0.001 
mm in diameter) of various “terrestrial” materials, constitutes 
not more than 1 per cent of its total mass.

To return to the basic idea of Weizsacker’s theory, we may say 
that this new knowledge concerning the chemical constitution of 
matter in the universe, plays directly into the hand of the Kant- 
Laplace hypothesis. In fact, if the primordial gaseous envelope 
of the sun was originally formed from such material, only a  small 
portion o f it, representing heavier terrestrial elements, could 
have been used to build our Earth and other planets. The rest of 
it, represented by noncondensible hydrogen and helium gases, 
must have been somehow removed, either by falling into the 
sun or by being dispersed into surrounding interstellar space. 
Since the first possibility would result, as it was explained above, 
in much too rapid axial rotation of the sun, we have to accept 
another alternative, namely, that the gaseous “excess-material” 
was dispersed into space soon after the planets were formed 
from the “terrestrial” compound.

This brings us to the following picture of the formation of the
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planetary system. When our sun was first formed by the conden
sation of interstellar matter ( see the next section) a large part of 
it, probably about a hundred times the present combined mass 
of planets, remained on the outside forming a giant rotating en
velope. ( The reason for such behavior can easily be found in the 
differences between the rotational states of various parts of 
interstellar gas condensing into the primitive sun.) This rapidly 
rotating envelope should be visualized as consisting of noncon- 
densible gases (hydrogen, helium, and a smaller amount of other 
gases) and dust-particles of various terrestrial materials ( such as 
iron oxides, silicon compounds, water droplets and ice crystals) 
which were floating inside the gas and carried along by

/  / /
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its rotational motion. The formation of big lumps of “terrestrial” 
material, which we now call planets must have taken place as the 
result of collisions between dust particles and their gradual ag
gregation into larger and larger bodies. In Figure 118 we illus
trate the results of such mutual collisions which must have taken 
place at velocities comparable to that of meteorites.

One must conclude, on the basis of logical reasoning, that at 
such velocities the collision of two particles of about equal mass 
would result in their mutual pulverization (Figure 118a), a pro
cess leading not to the growth but rather to the destruction of 
larger lumps of matter. On the other hand, when a small particle 
collides with a much larger one (Figure 118&) it seems evident 
that it would bury itself in the body of the latter, thus forming 
a new, somewhat larger mass.



Obviously these two processes would result in the gradual 
disappearance of smaller particles and the aggregation of their 
material into larger bodies. In the later stages the process will be 
accelerated due to the fact that the larger lumps of matter will 
attract gravitationally the smaller particles passing by and add 
them to their own growing bodies. This is illustrated in Figure 
118c, v/hich shows that in this case the capture-effectiveness of 
massive lumps of matter becomes considerably larger.

Weiszacker was able to show that the fine dust originally scat
tered through the entire region now occupied by the planetary
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Name of the 
planet

Distance from the sun in 
terms of earth’s distance 

from the sun

The ratio of the distance 
of each planet from the 
sun, to the distance from 
the sun of the planet 

listed above it

Mercury 0.387
Venus 0.723 1.86
Earth 1.000 1.38
Mars 1.524 1.52
Planetoids about 2.7 1.77
Jupiter 5.203 1.92
Saturn 9.539 1.83
Uranus 19.191 2.001
Neptune 30.07 1.56
Pluto 39.52 1.31

system must have been aggregated into a few big lumps to form  
the planets, within a period o f about a hundred million years.

As long as the planets were growing by the accretion of vari
ously sized pieces of cosmic matter on their way around the sun, 
the constant bombardment of their surfaces by fresh building 
material must have kept their bodies very hot. As soon, however, 
as the supply of stellar dust, pebbles, and larger rocks was ex
hausted, thus stopping the process of further growth, the radia
tion into interstellar space must have rapidly cooled the outer 
layers of the newly formed celestial bodies, and led to the forma
tion of the solid crust, which is even now growing thicker and 
thicker, as the slow internal cooling continues.
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The next important point to be attacked by any theory of 
planetary origin is the explanation of the peculiar rule (known 
as the Titus-Bode rule) that governs the distances of different 
planets from the sun. In the table on page 307, these distances are 
listed for nine planets of the solar system, as well as for the belt 
of planetoids, which apparently corresponds to an exceptional 
case where separate pieces did not succeed in collecting them
selves into a single big lump.

The figures in the last column are of especial interest. In spite 
of some variations, it is evident that none are very far from the

Name of satellite
Distance in terms of 

Saturn’s radius

The ratio of increase in 
two successive 

distances

Mimas 3.11
Enceladus 3.99 1.28
Tethys 4.94 1.24
Dione 6.33 1.28
Rhea 8.84 1.39
Titan 20.48 2.31
Hyperion 24.82 1.21
Japetus 59.68 2.40
Phoebe 216.8 3.63

numeral 2, which permits us to formulate the approximate rule: 
the radius of each planetary orbit is roughly twice as large as 
that of the orbit nearest to it in the direction of the sun.

It is interesting to notice that a similar rule holds also for the 
satellites of individual planets, a fact that can be demonstrated, 
for example, by the above table giving the relative distances 
of nine satellites of Saturn.

As in the case of the planets themselves, we encounter here 
quite large deviations (especially for Phoebe!) but again there 
is hardly any doubt that there is a definite trend for regularity of 
the same type.

How can we explain the fact that the aggregation process that 
i.ook place in the original dust cloud surrounding the sun did not 
result in the first place in just one big planet, and why the sev



eral big lumps were formed at these particular distances from 
the sun?

To answer this question we have to undertake a somewhat 
more detailed survey of motions that took place in the original 
dust cloud. We must remember first of all that every material 
body—whether it is a tiny dust particle, a small meteorite, or a 
big planet—that moves around the sun under the Newtonian 
law of attraction is bound to describe an elliptical orbit with the 
sun in the focus. If the material forming the planets was formerly
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Circular and elliptic motion as viewed from a resting (a)  and a rotat
ing (b)  co-ordinate system

in the form of separate particles, say, 0.0001 cm. in diameter,2 
there must have been some 1045 particles moving along the el
liptical orbits of all various sizes and elongations. It is clear that, 
in such heavy traffic, numerous collisions must have taken place 
between the individual particles, and that, as the result of such 
collisions, the motion of the entire swarm must have become to 
a certain extent organized. In fact, it is not difficult to under
stand that such collisions served either to pulverize the “traffic 
violators” or to force them to “detour” into less crowded “traffic

2 The approximate size of the dust particles forming the interstellar 
material.
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lanes.” What are the laws that would govern such “organized” 
or at least partially organized “traffic”?

To make the first approach to the problem, let us select a group 
of particles all of which had the same rotation-period around the 
sun. Some of them were moving along the circular orbit of a 
corresponding radius, whereas others were describing various 
more or less elongated elliptical orbits (Figure 119a). Let us 
now try to describe the motion of these various particles from 
the point of view of a co-ordinate system (X, Y) rotating around 
the center of the sun with the same period as the particles.

It is clear first of all that, from the point of view of such a 
rotating co-ordinate system, the particle that was moving along 
a circular orbit (A) would appear to be completely at rest at a 
certain point A'. A particle B that was moving around the sun 
following an elliptical trajectory comes closer and farther away 
from the sun; and its angular velocity around the center is larger 
in the first case and smaller in the second; thus, it will sometimes 
run ahead of the uniformly rotating co-ordinate system (X, Y), 
and sometimes will lag behind. It is not difficult to see that, from 
the point of view of this system, the particle will be found to des
cribe a closed bean-shaped trajectory marked B' in Figure 119. 
Still another particle C, which was moving along a more elon
gated ellipse, will be seen in the system (X, Y) as describing a 
similar but somewhat larger bean-shaped trajectory C'.

It is clear now that, if we want to arrange the motion of the 
entire swarm of particles so that they never collide with one 
another, it must be done in such a way that the bean-shaped 
trajectories described by these particles in the uniformly rotated 
co-ordinate system (X, Y) do not intersect.

Remembering that the particles having common rotation 
periods around the sun keep the same average distance from it, 
we find that the nonintersecting pattern of their trajectories in 
the system (X, Y) must look like a “bean necklace” surrounding 
the sun.

The aim of the above analysis, which may be a bit too hard on 
the reader, but which represents in principle a fairly simple pro
cedure, is to show the nonintersecting traffic-rules pattern for 
individual groups of particles moving at the same mean distance



from the sun and possessing therefore the same period of rota
tion. Since in the original dust cloud surrounding the primitive 
sun we should expect to encounter all different mean distances 
and correspondingly all different rotation periods, the actual 
situation must have been more complicated. Instead of just one 
“bean necklace” there must have been a large number of such 
“necklaces” rotating in respect to one another with various speeds. 
By careful analysis of the situation, Weizsacker was able to show

The Days of Creation 311

F ig u r e  120
Dust-traffic lanes in the original solar envelope.

that for the stability of such a system it is necessary that each 
separate “necklace” should contain five separate whirlpool sys
tems so that the entire picture of motion must have looked very 
much like Figure 120. Such an arrangement would assure “safe 
traffic” within each individual ring, but, since these rings rotated 
with different periods, there must have been “traffic accidents" 
where one ring touched another. The large number of mutual 
collisions taking place in these boundary regions between the 
particles belonging to one ring and those belonging to neighbor
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ing rings must have been responsible for the aggregation process 
and for the growth of larger and larger lumps of matter at these 
particular distances from the sun. Thus, through a gradual thin
ning process within each ring, and through the accumulation of 
matter at the boundary regions between them, the planets were 
finally formed.

The above described picture of the formation of the planetary 
system gives us a simple explanation of the old rule governing 
the radii of planetary orbits. In fact, simple geometrical consider
ations show that in the pattern of the type shown in Figure 120, 
the radii of successive boundary lines between the neighboring 
rings form a simple geometrical progression, each of them being 
twice as large as the previous one. We also see why this rule 
cannot be expected to be quite exact. In fact, it is not the result 
of some strict law governing the motion of particles in the original 
dust cloud, but must be rather considered as expressing a certain 
tendency in the otherwise irregular process of dust traffic.

The fact that the same rule also holds for the satellites of dif
ferent planets of our system indicates that the process of satellite 
formation took place roughly along the same lines. When the 
original dust cloud surrounding the sun was broken up into sep
arate groups of particles that were to form the individual planets, 
the process repeated itself in each case with most of the material 
concentrating in the center to form the body of the planet, and 
the rest of it circling around condensing gradually into a number 
of satellites.

With all our discussion of mutual collisions and the growth of 
dust particles, we have forgotten to tell what happened to the 
gaseous part of the primordial solar envelope that, as may be 
remembered, constituted originally about 99 per cent of its en
tire mass. The answer to this question is a comparatively simple 
one.

While the dust particles were colliding, forming larger and 
larger lumps of matter, the gases that were unable to participate 
in that process were gradually dissipating into interstellar space. 
It can be shown by comparatively simple calculations that the 
time necessary for such dissipation was about 100,000,000 years, 
that is, about the same as the period of planetary growth. Thus



by the time the planets were finally formed, most of the hydro
gen and helium that had formed the original solar envelope must 
have escaped from the solar system, leaving only the negligibly 
small traces referred to above as Zodiacal Light.

One important consequence of the Weizsacker theory lies in 
the conclusion that the formation o f the planetary system was 
not an exceptional event, but one that must have taken place in 
the formation of practically all of the stars. This statement stands 
in sharp contrast with the conclusions of the collision theory, 
which considered the process by which the planets were formed 
as very exceptional in cosmic history. In fact, it was calculated 
that stellar collisions that were supposed to give rise to planetary 
systems are extremely rare events, and that among 40,000,000,- 
000 stars forming our stellar system of the Milky Way, only a 
few such collisions could have taken place during several billion 
years of its existence.

If, as it appears now, each star possesses a system o f planets, 
there must be millions of planets within our galaxy alone, the 
physical conditions on which are almost identical with those on 
our Earth. And it would be at least strange if life—even in its 
highest forms—had failed to develop in these “inhabitable” 
worlds.

In fact, as we have seen in Chapter IX, the simplest forms of 
life, such as different kinds of viruses, actually are merely rather 
complicated molecules composed mainly of carbon, hydrogen, 
oxygen, and nitrogen atoms. Since these elements must be pres
ent in sufficient abundance on the surface of any newly formed 
planet, we must believe that sooner or later after the formation 
of the solid crust of earth and the precipitation of atmospheric 
vapors forming the extensive water reservoirs, a few molecules of 
such type must have appeared, owing to an accidental combina
tion of the necessary atoms in the necessary order. To be sure, 
the complexity of living molecules makes the probability of their 
accidental formation extremely small, and we can compare it 
with the probability of putting together a jigsaw puzzle by 
simply shaking the separate pieces in their box with the hope 
that they will accidentally arrange themselves in the proper way. 
But oil the other hand we must not forget that there were an
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immense number of atoms continuously colliding with one an
other, and also a lot of time in which to achieve the necessary 
result. The fact that life appeared on our Earth rather soon after 
the formation of the crust indicates that, improbable as it seems, 
the accidental formation of a complex organic molecule required 
probably only a few hundred million years. Once the simplest 
forms of life appeared on the surface of the newly formed planet, 
the process of organic reproduction, and the gradual evolution 
would lead to the formation of more and more complicated forms 
of living organisms.3 There is no telling whether the evolution of 
life on different “inhabitable” planets takes the same track as it 
did on our Earth. The study of life in different worlds would 
contribute essentially to our understanding of the evolutionary 
process.

But whereas we may be able to study the forms of life that 
may have developed on Mars and Venus (the best “inhabitable” 
planets of the solar system) in the not too distant future by 
means of an adventuresome trip to these planets on a “nuclear- 
power propelled space ship,” the question about the possible 
existence and the forms of life in other stellar worlds hundreds 
and thousands of light-years away, will probably remain forever 
an unsolvable problem of science.

2. THE PRIVATE LIFE OF THE STARS
Having a more or less complete picture of how the individual 

stars give birth to their families of planets, we may now ask our
selves about the stars themselves.

What is the life history of a star? What are the details of its 
birth, through what changes does it go during its long life, and 
what is its ultimate end?

We can start studying this question by looking first at our own 
sun, which is a rather typical member among the billions of stars 
forming the system of the Milky Way. We know, first of all, 
that our sun is a rather old star, since according to the data of 
paleontology it has been shining with unchanged intensity for a

* More detailed discussion of the origin and evolution of life on our planet 
can be found in the author’s book Biography of the Earth (New York, The 
Viking Press, rev. ed. 1959; first published 1941).



few billion years supporting the development of life on the Earth. 
No ordinary source could supply so much energy for such a long 
period of time, and the problem of solar radiation remained one 
of the most puzzling riddles of science until the discovery of 
radioactive transformations and the artificial transformation of
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The cyclic nuclear reaction chain responsible for the energy gener
ation in the sun.

elements revealed to us tremendous sources of energy hidden in 
the depths of atomic nuclei. We have already seen in Chapter 7 
that practically every chemical element represents an alchemical 
fuel with a potentially tremendous output of energy, and that 
this energy can be liberated by heating up these materials to 
millions of degrees.
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Whereas such high temperatures are practically unattainable 
in terrestrial laboratories, they are rather common in the stellar 
world. In the sun, for example, the temperature, which is only 
6000° C at the surface, increases gradually inward reaching in 
the center the tremendous value of 20 million degrees. This figure 
can be calculated without much difficulty from the observed 
surface temperature of the solar body and from the known heat- 
conducting properties of the gases from which it is formed. Simi
larly we can calculate the temperature inside a hot potato with
out cutting it, if we know how hot it is on the surface, and what 
the heat conductivity of its material is.

Combining this information concerning die central tempera
ture of the sun, with the known facts concerning the reaction 
rates of various nuclear transformations, one can find out which 
particular reaction is responsible for the energy production in the 
sun. This important nuclear process, known as the “carbon-cycle” 
was found simultaneously by two nuclear physicists who became 
interested in astrophysical problems: H. Bethe and C. Weiz- 
sacker.

The thermonuclear process mainly responsible for the energy 
production of the sun is not limited to a single nuclear trans
formation, but consists of a whole sequence of linked transforma
tions that together form, as we say, a reaction chain. One of the 
most interesting features of this sequence of reactions is that it is 
a  closed circular chain, returning us to our starting point after 
every six steps. From Figure 121 which represents the scheme of 
this solar reaction chain, we see that the main participants of the 
sequence are the nuclei of carbon and of nitrogen, together with 
the thermal protons with which they collide.

Starting, for instance, with ordinary carbon (C 12), we see that 
the result of a collision with a proton is the formation of the 
lighter isotope of nitrogen (N 13), and the liberation of some sub
atomic energy in the form of a y-ray. This particular reaction is 
well known to nuclear physicists, and has also been obtained 
under laboratory conditions by the use of artificially accelerated 
high-energy protons. The nucleus of N13, being unstable, adjusts 
itself by emitting a positive electron, or positive ^-particle, and 
becoming the stable nucleus of the heavier carbon isotope (C 13),



which is known to be present in small quantities in ordinaiy coal. 
Being struck by another thermal proton, this carbon isotope is 
transformed into ordinary nitrogen (N14), with additional in
tense gamma radiation. Now the nucleus of N14 (from which we 
could just as easily have begun our description of the cycle) col
lides with still another ( third) thermal proton and gives rise to an 
unstable oxygen isotope (O15), which very rapidly goes over to 
the stable N15 through the emission of a positive election. Finally, 
N15, receiving in its interior a fourth proton, splits into two un
equal parts, one of which is the C12 nucleus with which we began 
and the other of which is a helium nucleus, or a-particle.

Thus we see that the nuclei of carbon and nitrogen in our cir
cular reaction chain are foi'ever being regenerated, and act only 
as catalysts, as chemists would say. The net result of the reaction 
chain is the formation of one helium nucleus from the four pro
tons that have successively entered the cycle; and we may there
fore describe the whole process as the transformation of hydrogen 
into helium as induced by high temperatures and aided by the 
catalytic action of carbon and nitrogen.

Bethe was able to show that the energy liberation of his reac
tion chain at the temperature of 20 million degrees coincides 
with the actual amount of energy radiated by our sun. Since all 
other possible reactions lead to results inconsistent with the 
astrophysical evidence, it should be definitely accepted that the 
carbon-nitrogen cycle represents the process mainly responsible 
for solar energy generation. It should also be noted here that at 
the interior temperature of the sun the complete cycle shown in 
Figure 121 requires about 5 million years, so that at the end of 
this period each carbon (or nitrogen) nucleus that originally 
entered the reaction will emerge from it again as fresh and un
touched as it was to start with.

In view of the basic part played in this process by carbon, 
there is something to be said after all for the primitive view that 
the Sun’s heat came from coal; only we know now that the “coal,” 
instead of being a real fuel, plays rather the role of the legendary 
phoenix.

It must be particularly noticed here that whereas the rate of 
energy-producing reaction in the sun depends essentially on the
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temperature and density obtaining in its central regions, it nrust 
also depend to some extent on the content of hydrogen, carbon, 
and nitrogen in the material forming the solar body. This deduc
tion immediately suggests a method by which we may analyze 
the constitution of solar gases by adjusting the concentrations of 
the reactants involved (i.e. the reacting substances) so as to fit 
exactly the observed luminosity of the sun. Calculations based 
on this method were made quite recently by M. Schwartzschild, 
with the resulting discovery that over one half of solar matter is 
formed by pure hydrogen, somewhat less than one half by pure 
helium, and only a very small residue by all other elements.
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The main sequence of stars.

The explanation of energy production in the sun can easily be 
extended to most of the other stars, with the conclusion that the 
stars with different masses have different central temperatures, 
and consequently different rates of energy production. Thus the 
star known as Oa Eridani C is about five times lighter than the 
sun and correspondingly shines with an intensity that is only 
about 1 per cent that of the sun. On the other hand X Canis 
Majoris A, commonly known as Sirius, is about two and a half 
times heavier than the sun and forty times more luminous. There 
are also such giant stars as, for example, Y 380 Cygni, which is 
about forty times heavier and several hundred thousand times 
brighter than the sun. In all these cases, the relation between the 
larger stellar mass and its much higher luminosity can be ex-



plained very satisfactorily by the increasing rate of “carbon-cycle” 
reaction caused by the higher central temperature. Following 
this so-called “Main Sequence” of stars we also find that the 
increasing mass results in an increasing stellar radius (from 0.43 
sun radius for 0 2 Eridani C to 29 sun radii for Y 380 Cygni) and 
its decreasing mean density (from 2.5 for O2 Eridani C, through 
1.4 for the sun, to 0.002 for Y 380 Cygni). Some data about the
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Giant and supergiant stars as compared with the size of our planetary
system.

stars of the main sequence are collected in the diagram shown in 
Figure 122.

Apart from the “normal” stars, whose radius, density and 
luminosity are determined by their masses, astronomers find in 
the sky some stellar types that definitely fall out of this simple 
regularity.

First of all there are the so-called “red giant” and “supergiant” 
stars, which, although they have the same quantity of matter as 
the “normal” stars of the same luminosity, possess, however, 
much larger linear dimensions. In Figure 123 we give a schematic 
picture of this abnormal group of stars, which include such
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famous names as Capella, Scheat, Aldebaran, Betelgeuse, Ras 
Algethi, and E Aurigae.

Apparently the bodies of these stars were blown up to almost 
incredibly large dimensions by internal forces that we cannot yet 
explain, causing their mean densities to fall well below the den
sities of any normal stars.

In contrast to these “swollen up” stars we have another group 
of stars that are shrunk to very small diameters. One of the stars 
of this class, known as “white dwarfs,”4 is shown in Figure 124

F i g u r e  124
White dwarf stars as compared with the Earth.

with a diagram of the Earth for comparison. The “Companion 
of Sirius” is composed of a mass almost equal to that of the sun, 
is only three times larger than the Earth; its mean density must 
be about 500,000 greater than that of water! There is hardly any 
doubt that the white dwarf stars represent the late stages of stel
lar evolution corresponding to the phase in which the star has 
consumed all its available hydrogen fuel.

4 The origin of the terms “red giants” and “white dwarfs” lies in the 
relation of their luminosity to their surfaces. Since the rarified stars have 
very large surfaces to radiate the energy produced in their interiors their 
surface temperatures are comparatively low, giving to them red coloring. 
The surface of the highly condensed stars, on the other hand, must be 
necessarily very hot, or white hot.



As we have seen above, the life sources of stars lie in the al
chemical reaction slowly transforming hydrogen into helium. 
Since in a young star, which was just formed by the condensation 
of diffused interstellar material, the content of hydrogen exceeds 
50 per cent of its entire mass, we can expect that the stellar life 
spans are extremely long. Thus, for example, one calculates from 
the observed luminosity of our sun that it consumes about 660 
million tons of hydrogen per second. Since the total mass of the 
sun is 2 X 1027 tons, half of it being hydrogen, we find that the 
life span of the sun must be 15-lO18 seconds or about 50 billion 
years! Remembering that our sun is now only about 3 or 4 billion 
years old,5 we see that it must still be considered to be very 
young, and will continue to shine with approximately the present 
intensity for billions of years to come.

But the more massive, and therefore more luminous, stars 
spend their original hydrogen supply at a much higher rate. Thus 
for example Sirius being 2.3 times heavier than the sun, and 
therefore containing originally 2.3 times more hydrogen fuel, is 
39 times more luminous than the sun. Spending 39 times as much 
fuel in a given time than the sun, and having an original supply 
only 2.3 times as great, Sirius would use it all in only 3,000,000,- 
000 years. In still brighter stars, such as for example Y Cygni (17 
times the mass of the sun, and 30,000 times as luminous), the 
original hydrogen supply would not last for more than 100,000,- 
000 years.

What happens to a star when its hydrogen supply is finally ex
hausted?

Since the nuclear energy source that was supporting the star 
more or less in status quo during its long life is gone, the body 
of the star must begin to contract, thus going through successive 
stages of greater and greater density.

Astronomical observations reveal the existence of a large num
ber of such “shrunken stars” the mean density of which exceeds 
the density of water by a factor of several hundred thousand. 
These stars are still very hot and owing to their high surface

5 Since according to Weizsiicker’s theory, the sun must have been formed 
not much before the formation of the planetary system, and since the esti
mated age of our earth is of that order of magnitude.
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temperature shine with a brilliant white light representing a 
sharp contrast lo the ordinary yellowish or reddish stars of the 
main sequence. Since, however, these stars are very small in size 
their total luminosity is rather low, thousands of times lower 
than that of the sun. Astronomers call these late stages of stellar 
evolution “white dwarfs,” the latter term being used both in the 
sense of geometrical dimensions as well as in the sense of total 
luminosity. As time goes on the white-hot bodies of the white 
dwarfs will gradually lose their brilliance and they will finally 
turn into the “black dwarfs,” the large cold masses of matter in
accessible to ordinary astronomical observations.

It must however be noticed here that the process of shrinking 
and gradual cooling of the old stars which have used up all their 
vital hydrogen fuel does not always proceed in a quiet and 
orderly way, and that, walking their “last mile,” these dying stars 
are often subject to titanic convulsions as if revolting against 
their fate.

These catastrophic events, known as novae and supernovae- 
explosions, represent one of the most exciting topics of stellar 
studies. Within a few days, a star, which had not seemed before 
to differ much from any other star in the sky, increases its lumi
nosity by a factor of several hundred thousand and its surface 
becomes evidently extremely hot. The study of the changes in the 
spectrum accompanying this sudden increase of luminosity indi
cates that the body of the star is rapidly swelling up, and that 
its outer layers are expanding with the velocity of about 2000 km 
per second. The increase of luminosity is, however, only tempo
rary, and, after passing through the maximum, the star begins 
slowly to settle down. It takes usually about a year before the 
luminosity of the exploded star returns to its original value, 
though small variations of stellar radiation have been observed 
after considerably longer time intervals. Although the luminosity 
of the star becomes normal again, one cannot say the same about 
its other properties. A part of the stellar atmosphere, participat
ing in the rapid expansion during the explosion phase, continues 
its outward motion, and the star is surrounded by a luminous gas 
shell of gradually increasing diameter. The evidence concerning 
permanent changes of the star proper is as yet very indecisive,



as there is only one case in which the spectrum of the star was 
photographed before the explosion (Nova Aurigae 1918). But 
even this photograph is seemingly so imperfect that the conclu
sion concerning surface temperature and the radius of the pre
nova stage must be considered as very uncertain.

Somewhat better evidence concerning the result of the explo
sion in the body of the star can be obtained from the observations 
of the so-called supemovae explosions. These vast stellar explo
sions, which happen in our stellar system only once in several 
centuries (in contrast to ordinary novae, which appear at the 
rate of about 40 per year), exceed the luminosity of ordinary 
novae by a factor of several thousand. During the maximum, the 
light emitted by such an exploding star is comparable to the light 
emitted by the entire stellar system. The star observed by Tycho 
Brahe in 1572 and visible in bright daylight, the star registered by 
Chinese astronomers in the year 1054, and probably the Star of 
Bethlehem represent typical examples of such supemovae within 
our stellar system, the Milky Way.

The first extragalactic supernova was observed in 1885 in the 
neighboring stellar system known as The Great Andromeda Neb
ula, its luminosity exceeding by a factor of one thousand the 
luminosities of all other novae ever seen in this system. In spite 
of the comparative rarity of these vast explosions, the study of 
their properties has made considerable progress in recent years 
owing to observations of Baade and Zwicky, who were the first 
to recognize the great difference between the two types of ex
plosions and began the systematic study of supernovae appear
ing in various distant stellar systems.

In spite of the tremendous difference in luminosity, the phe
nomena of supernovae explosions show many features similar to 
those of the ordinary novae. The rapid rise of luminosity and its 
subsequent slow decrease in both cases are represented (apart 
from the scale) by practically identical curves. As is true for ordi
nary novae, a supernova explosion gives rise to a rapidly expanding 
gas shell, which, however, takes a considerably larger fraction of 
the stellar mass. In fact, whereas the gas shells emitted by novae 
become thinner and thinner and dissolve themselves rapidly in 
the surrounding space, the gas masses emitted by supernovae
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form extensive luminous nebulae involving the place of explosion. 
It can be, for example, considered as definitely established that 
the so-called “Crab Nebula,” seen at the place of the supernova 
of the year 1054, was formed by gases expelled during that ex
plosion (see Plate V III).

In the case of this particular supernova we also have some 
evidence concerning the star remaining after the explosion. In 
fact, in the very center of the Crab Nebula, observations show 
the presence of a faint star which, according to its observed 
properties, must be classified as a very dense white dwarf.

All this indicates that the physical processes of supemovae ex
plosion must be analogous to those of the ordinary novae, al
though everything is happening on a much larger scale.

Assuming the “collapse theory” of novae and supemovae, we 
must first of all ask ourselves about the causes that could lead to 
such a rapid contraction of the entire stellar body. It is well es
tablished at present that the stars represent giant masses of hot 
gas, and that in the state of equilibrium the body of the star is 
supported entirely by the high gas pressure of the hot materia} 
in its interior. As long as the “carbon cycle” described above is 
proceeding in the center of the star, the energy radiated from 
the surface is being replenished by subatomic energy produced 
in the interior, and the state of the star changes but very little. 
As soon, however, as the hydrogen content is completely ex
hausted, no more subatomic energy is available and the star 
must begin to contract, thus turning into radiation its potential 
energy of gravity. The process of such gravitational contraction 
will, however, go very slowly, since, because of the high opacity 
of stellar material, the heat transport from the interior to the 
surface is very slow. It can be estimated, for example, that in 
order to contract to half of its present radius, our sun would 
require more than ten million years. Any attempt to contract 
faster than that would immediately result in the liberation of 
additional gravitational energy, which would increase the tem
perature and gas pressure in the interior and Jow  down the con
traction. It can be seen from the above considerations that the 
only way to accelerate the contraction of a star and to turn it into 
a rapid collapse as observed in the case of novae and supemovae,



would be to devise some mechanism that would remove from 
the interior the energy liberated in contraction. If, for example, 
the opacity of stellar matter could be reduced by a factor of 
several billions, the contraction would be accelerated in the same 
proportion, and a contracting star would collapse within a few 
days. This possibility is, however, quite excluded, since the 
present theory of radiation definitely shows that the opacity of 
stellar matter is quite definitely a function of its density and 
temperature, and can hardly be reduced even by so much as a 
factor of ten or a hundred.

It was recently proposed by the author and his colleague, Dr. 
Schenberg, that the real cause of stellar collapses is due to the
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The Urea process in iron nucleus leading to the unlimited formation
of neutrinos.

mass formation of neutrinos, those tiny nuclear particles that 
are discussed in detail in Chapter 7 of this book. It is clear from 
the description of the neutrino that it is just the right agent to 
remove the surplus energy from the interior of a contracting 
star, since the entire body of the star is just as transparent for 
neutrinos as a windowpane is for ordinary light. It remains to 
be seen whether the neutrinos will be produced, and produced in 
sufficiently large numbers in the hot interior of a contracting 
star.

The reactions that must be necessarily accompanied by emis
sion of neutrinos consist in the capture of fast-moving electrons 
by the nuclei of various elements. When a fast electron pene
trates inside the atomic nucleus, a high-energy neutrino is im
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mediately emitted, and the electron is retained, transforming the 
original nucleus into an unstable nucleus of the same atomic 
weight. Being unstable, this newly formed nucleus can exist 
only a definite period of time, and subsequently decays, emitting 
its electron in the company of another neutrino. Then the process 
begins again from the beginning, and leads to a new neutrino 
emission. . . . (Figure 125).

If the temperature and density are high enough, as they are in 
the interior of contracting stars, the energy losses through

F i g u r e  1 2 6

An early and a late stage of a supernova explosion.

neutrino emission will be tremendously high. Thus, for example, 
the capture and re-emission of electrons by the neuclei of iron 
atoms will transform into neutrino energy as much as 1011 ergs 
per gram per second. In the case of oxygen (where the unstable 
product is radioactive nitrogen with the decay period of 9 
seconds) the star can lose even as much as 1017 ergs per second 
per gram of its material. The energy losses in this latter case are 
so high that the complete collapse of the star takes place in only 
twenty-five minutes.

Thus we see that the beginning of the neutrino radiation from



the hot central regions of contracting stars gives us the complete 
explanation of the causes of stellar collapses.

It must be stated, however, that although the rate of energy 
losses through neutrino emission can be estimated comparatively 
easily, the study of the collapse process itself presents many 
mathematical difficulties, so that only the qualitative explanation 
of the events can be given at present.

It must be imagined that, as the result of the deficiency of 
gas pressure in stellar interiors, the masses that form its giant 
outside body begin to fall toward the center driven by the forces 
of gravity. Since, however, every star is usually in a state of more 
or less rapid rotation, the process of the collapse proceeds asym
metrically, and the polar masses ( i.e., those located near the axis 
of rotation) fall in first pushing the equatorial masses outward 
(Figure 126).

This brings out the material previously hidden deep in the 
stellar interior, and heated up to the temperatures of several 
thousand million degrees, a temperature which accounts for the 
sudden increase of stellar luminosity. As the process goes on the 
collapsing material of the old star condenses in the center into a 
dense white dwarf star, whereas the expelled masses gradually 
cool down and continue to expand forming the sort of nebulosity 
observed in the Crab Nebula.

3. PRIMORDIAL CHAOS AND THE EXPANDING UNIVERSE

Thinking of the universe as a whole, we are at once con
fronted by vital questions concerning its possible evolution in 
time. Must we assume that it always was, and will always remain, 
in approximately the same state as we observe it now? Or does 
the universe continuously change, passing through different 
evolutionary stages?

Examining this question on the basis of empirical facts collected 
from widely different branches of science, we come to a quite 
definite answer. Yes, our universe is gradually changing; its state 
in the long-forgotten past, its state in the present, and that 
which it will become in the distant future are three very different
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states of being. The numerous facts collected by various sciences 
indicate furthermore that our universe had a certain beginning, 
from which it developed into its present state through the process 
of gradual evolution. As we have seen above, the age of our 
planetary system can be estimated as a few billion years, a 
figure that emerges stubbornly from many independent attacks 
on the problem from several directions. The formation of the 
moon, which was apparently torn away from the body of the 
Earth by vigorous gravitational forces emanating from the sun, 
also must have taken place a few billion years ago.

The study of the evolution of individual stars ( see the previous 
section) indicates that most of the stars that we see now in the 
sky are also several billion years old. The study of the motion of 
stars in general, and in particular the relative motion of double 
and triple stellar systems, as well as that of the more complicated 
stellar groups known as galactic clusters, leads astronomers to 
the conclusion that such configurations could not have existed for 
a longer time than this.

Quite independent evidence is supplied by considerations of 
the relative abundance of various chemical elements, and in par
ticular of the amounts of radioactive elements such as thorium 
and uranium that are known to be decaying gradually. If, in spite 
of their progressive decay, these elements are still present in 
the universe, we must assume either that they are continuously 
produced from other lighter nuclei even at the present time, or 
that they are the last remnants of a stock pile formed by nature 
in some distant past.

Our present knowledge of nuclear transformation processes 
forces us to abandon the first possibility, since even in the in
terior of the hottest stars the temperature never rises to the 
tremendous heights necessary for “cooking” the heavy radioactive 
nuclei. In fact, as we have seen in the preceding section the tem
peratures in the interior of stars are measured in tens of millions 
of degrees, whereas several billion degrees are needed to “cook” 
radioactive nuclei from the nuclei of lighter elements.

Accordingly, we must assume that the nuclei of heavy elements 
were formed in some past epoch of the evolution of the universe, 
and that at that particular epoch all matter was subjected to some



terrifically high temperatures and correspondingly high pressures.
We can also arrive at an estimate of the approximate date of 

this “purgatory” stage of the universe. We know that thorium 
and uranium-238, which have mean life spans of 18 and 4} 
billion years respectively, have not decayed materially since they 
were formed, for they are at present about as abundant as some 
other stable heavy elements. On the other hand, uranium-235, 
with a mean life span of only about a half billion years, is 140 
times less abundant than uranium-238. The present large 
abundance of uranium-238 and thorium indicates that the forma
tion of elements could not have taken place more than a few 
billion years ago, and the small amount of uranium-235 makes a 
still closer estimate possible. In fact, if the amount of this ele
ment was halved every 500 million years, it must have taken 
about seven such periods, that is, 3J billion years to cut it down 
to one 140th ( since i  X -J X | X { X } X \ X \ = ^ 4 ^ ) .

This estimate of the age of chemical elements, obtained exclu
sively from the data of nuclear physics, is in beautiful agreement 
with the estimated age of planets, stars, and stellar groups ob
tained from purely astronomical data!

But what was the state of the universe during that early age, 
several billion years ago when everything seems to have been 
formed? And what are the changes which have taken place in 
the meantime to bring the universe to its present state?

The most complete answer to the above questions can be ob
tained from the study of the phenomenon of “universal expan
sion.” We have seen in the previous chapter that the vast space 
of the universe is filled by a large number of giant stellar systems 
or galaxies, and that our sun is only one of many billions of stars 
in one of such galaxies, known as the Milky Way. We have also 
seen that these galaxies are more or less uniformly scattered 
through space as far as the eye (helped, of course, by the 200- 
inch telescope) can see.

Studying the spectra of the light coming from these distant 
galaxies, Mt. Wilson’s astronomer E. Hubble noticed that the 
spectral lines are shifted slightly towards the red end of the 
spectrum, and that this so-called “red shift” is stronger in the 
more distant galaxies. In fact, it was found that the “red shift’'
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observed in different galaxies is directly proportional to their 
distance from us.

The most natural way to explain this phenomenon is to assume 
that all galaxies recede from us with a speed that increases with 
their distance from us. This explanation is based on the so-called 
“Doppler effect,” which makes the light coming from a source 
that is approaching us change its color toward the violet end 
of the spectrum, and light from a receding source change toward 
the red. Of course, to obtain a noticeable shift the relative ve-

The dots run away from one another when the rubber balloon is
expanding.

locity of the source in relation to the position of the observer 
must be rather large. When Prof. R. W. Wood was arrested for 
going through a red traffic signal in Baltimore and told the 
judge that, because of this phenomenon, the light he saw 
looked green to him, since he was approaching it in the car, 
the professor was simply pulling the judge’s leg. Had the judge 
known more about physics, he would have asked Professor Wood 
to calculate the speed with which he must have been driving in



order to see green in a red light, and then would have fined him 
for speeding!

Returning to the problem of the “red shift” observed in galaxies, 
we come to what is at first sight a rather awkward conclusion. 
It looks as though all of the galaxies in the universe were running 
away from our Milky Way as if it were a galactic Monster of 
Frankenstein! What then are the horrible properties of our own 
stellar system, and why does it seem to be so unpopular among all 
other galaxies? If you think a little about this question, you will 
easily come to the conclusion that there is nothing particularly 
wrong with our Milky Way, and that, in fact, other galaxies do not 
run away from it exclusively but rather that all run away from 
one another. Imagine a rubber balloon with a polka-dot pattern 
painted on its surface (Figure 127). If you will begin to inflate 
it, gradually stretching its surface to a large and larger size, the 
distances between individual dots will continually increase so 
that an insect sitting on any one of the dots would receive the 
impression that all other other dots are “running away” from it. 
Moreover the recession velocities of different dots on the expand
ing balloon will be directly proportional to their distance from 
the insect’s observation point.

This example must make it quite clear that the recession of 
galaxies observed by Hubble has nothing to do with the par
ticular properties or position of our own galaxy, but must be 
interpreted simply as due to the general uniform expansion of 
the system of galaxies scattered through the space of the universe.

From the observed velocity of the expansion and the present 
distances between the neighboring galaxies one easily calculates 
that this expansion must have started more than five billion 
years ago.6

Before that time the separate stellar clouds that we now call 
galaxies were forming the parts of a uniform distribution of stars

e According to Hubble’s original data, the mean distance between two 
neighboring galaxies is about 1.7 million light-years (or 1-6 '10M km), 
whereas their mutual recession velocity is about 300 km per second. 
Assuming a uniform expansion rate we obtain for the expansion time 
1 ■6 * 10™
■————  = 5-1010 sec =  l ‘8 , 10° yr. More recent information leads, however,uUU
to an estimate of somewhat longer time periods.
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through the entire space of the universe, and at a still earlier 
date, the stars themselves were squeezed together filling the 
universe with continuously distributed hot gas. Going still farther 
back in time we find that this gas was denser and hotter, and this 
was apparently an epoch when different chemical (and par
ticularly the radioactive) elements were formed. One more step 
back in time and we find that the matter of the universe was 
squeezed into the superdense superheated nuclear fluid discussed 
in Chapter VII.

Now we can assemble these observations and see the events 
which marked the evolutionary development of the universe in 
their correct order.

The story begins with the embryonic stage of the universe 
when all the matter that we can see now scattered through space 
to the limits of vision of the Mt. Wilson telescope (i.e., within 
a radius of 500,000,000 light-years) was squeezed into a sphere 
with a radius of only about eight sun radii.7 However, this extra 
dense state did not last very long, since rapid expansion must 
have brought the density of the universe down to a million times 
the density of water within the first two seconds, and to that of 
water density within a few hours. Approximately at this time the 
previously continuous gas must have been broken into separate 
gaseous spheres that now constitute individual stars. These stars 
being pulled apart by the progressing expansion broke up later 
into separate stellar clouds, which we call galaxies and which are 
still receding from one another into the unknown depths of the 
universe.

Now we can ask ourselves what kind of forces are responsible 
for the expansion of the universe, and whether this expansion 
will ever stop or even become contraction. Is there any possibility 
that the expanding masses of the universe will turn back on us

gm
7 Since the density of nuclear fluid is 1011 ------ , and the present mean

cm3
ffni

density of matter in space is 10“™ ---- , the linear contraction was
cm

, f I (F
' ■Ĵ To- 5 '1014- Thus the present distances of 5-108 light- years were at that 

5 -10s
time only ■_ -qu =  lO-8 light-years =  10,000.000 km.



and squeeze our stellar system, the Milky Way, the sun, the 
Earth, and the humanity on earth into a pulp with nucleat 
density?

According to conclusions based upon the best available in
formation, this will never happen. Long ago, in the early stages 
of its evolution, the expanding universe broke all of the ties that 
might have held it together and is now expanding into infinity 
obedient to the simple law of inertia. The ties we have just men
tioned were formed by gravity forces which tended to prevent 
the masses of the universe from drawing apart.
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To construct a simple explanatory example, let us suppose that 
we try to shoot a rocket from the surface of the Earth into inter
planetary space. We know that no existing rockets, not even the 
famous V2, have enough propulsive power to escape into the 
free space, that they are always stopped in their ascension by the 
forces of gravity and pulled back to Earth. However, if we were 
able to power a rocket so that it would leave the earth with an 
initial speed in excess of 11 km per second (which seems a goal 
possible of achievement in the development of atomic-jet- 
propelled rockets), it will be able to push beyond the pull of 
earth’s gravity and to escape int ) the free space, where it will 
continue to move without hindrance. The velocity of 11 km per 
second is usually known as the “escape velocity” from the gravity 
of the Earth.

Imagine now an artillery shell that has exploded in midair, 
sending its fragments in all directions (Figure 128a). The frag
ments thrown out by the force of the explosion fly apart against
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the gravitational forces that tend to pull them back toward the 
common center. It goes without saying that in the case of shell 
fragments, these forces of mutual gravitational attraction are 
negligible, that is, they are so weak as not to influence at all the 
motion of the fragments through space. If, however, these forces 
were stronger, they would be able to stop the fragments in their 
flight, and to make them fall back, to their common center of 
gravity (Figure 128&). The question as to whether the frag
ments will come back or fly into infinity is decided by the rela
tive values of their kinetic energy of motion, and the potential 
energy of gravity forces between them.

Substitute for the shell fragments the separate galaxies, and 
you will have a picture of the expanding universe, as described 
on the previous pages. Here, however, because of very large 
masses of individual fragment galaxies, the potential energy of 
gravitational forces becomes quite important as compared with 
their kinetic energy,8 so that the future of the expansion can be 
decided only by a careful study of the two quantities involved.

According to the best available information concerning the 
galactic masses, it seems that at present the kinetic energy of 
receding galaxies is several times greater than their mutual 
potential gravitational energy, from which it would follow that 
our universe is expanding into infinity without any chance of ever 
being pulled more closely together again by the forces of gravity. 
It must be remembered, however, that most of the numerical 
data pertaining to the universe as a whole are not very exact, and 
it is possible that future studies will reverse this conclusion. 
But even if the expanding universe does suddenly stop in its 
tracks, and turn back in a movement of compression, it will be 
billions of years before that terrible day envisioned by the Negro 
Spiritual, “when the stars begin to fall,” and we are crushed 
under the weight of collapsing galaxies!

What was this high explosive material that sent the fragments 
of the universe flying apart at such a terrific speed? The answer 
may be somewhat disappointing: there probably was no ex
plosion in the ordinary sense of the word. The universe is now

8 Whereas kinetic energy of moving particles is proportional to their 
mass, their mutual potential energy increases as the square of their masses.



expanding because in some previous period of its history (of 
which, of course, no record has been left), it contracted from 
infinity into a veiy dense state and then rebounded, as it were, 
propelled by the strong elastic forces inherent in compressed 
matter. If you were to enter a game room just in time to see a 
pingpong ball rising from the floor high into the air, you would 
conclude (without really thinking about it) that in the instant 
before you entered the room the ball had fallen to the floor 
from a comparable height, and was jumping up again because 
of its elasticity.

We can now send our imagination flying beyond any limits, 
and ask ourselves whether during the precompressive stages of 
the universe everything that is now happening was happening 
in reverse order.

Were you reading this book from the last page to the first some 
eight or ten billion years ago? And did the people of that time 
produce fried chickens from their mouth, put life into them in 
the kitchen, and send them to the farm where they grew from 
adulthood to babyhood, finally crawled into eggshells, and after 
some weeks became fresh eggs? Interesting as they are, such 
questions cannot be answered from the purely scientific point of 
view, since the maximum compression of the universe, which 
squeezed all matter into a uniform nuclear fluid, must have com
pletely obliterated all the records of the earlier compressive 
stages.
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