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PREFACE

I suspect that everyone working in academia remembers the days when as a stu-
dent, being unhappy with the assigned textbook, they promised themselves one
day to write the “right” book – one that would be easy and fun to read, have all
the necessary material for successfully passing those (pesky) exams, but also be
serious enough to incite the reader to dig further. It would, one hoped, open new
venues to satisfy readers’ curiosity provoked by frequent, but causal, remarks on
the themes beyond the scope of an introductory text. Thus, the hope continues,
students would be seduced by the intimation of mathematical immensity, sense
the “flavor” of mathematical thinking, rather than just learning some “tricks of
the trade.” Of course, undertaking such an enterprise might easily be considered
by many to be too ambitious at best and pure hubris at worst, for many potential
readers are likely aware of the plethora of excellent books already available. Well
then, why this book and not another one? First, this book is what its title says – a
primer. However, unlike many other introductory texts, it is intended for a wide
variety of readers; it (or parts of it) can be used as a starter for college under-
graduate courses fulfilling “general education” math requirements, but also as an
overture to more serious mathematics for students aspiring for careers in math and
science. I am sure that rather smart high school students could also use the book
to maintain and enhance their enthusiasm for mathematics and science. In any
case, I am of the opinion that “introduction” and “rigor” should not exclude each
other. Similarly, I don’t think that avoiding discussion of weighty issues necessar-
ily makes a text reader-friendly, in particular when mathematics and the sciences
are in question. I do think, however, that many profound issues can be introduced
accessibly to a beginner and, most importantly, in a way that provokes intellectual
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xii PREFACE

curiosity and consequently leads to a better appreciation of the field in question.
Another thing, in my opinion equally significant, that any introductory mathemat-
ics text should convey is the importance of recognizing the difference and mutual
interconnectedness in “knowing,” “understanding,” and “explaining” (i.e., “be-
ing able to explain”) something. Admittedly any book, even the most advanced
one, is an introduction in such an endeavor; yet one has to start somewhere so why
not with a “primer” like this. So, with such philosophy in mind – which by the
way can also serve as an apologia, albeit not a very transparent one – all efforts
have been made to meticulously follow well-established mathematical formalism
and routines. Incidentally, contrary to some educators, I don’t think that the
standard mathematical routine “definition–lemma–theorem–proof–corollary”
is necessarily a deterrent to learning the subject. The only way one can see the
“big picture” is to acquire a unique technique that will empower one to do so.
The real beauty reveals itself after years of study and practice. If you want to
successfully play a musical instrument you need to learn to read the notes, learn
some music theory, and then relentlessly practice until you reach a reasonable
command of your instrument. After years of doing so, and if you are lucky
enough, you become an artist. The payoff, however, is immense.

The book contains six chapters and literally hundreds of solved problems. In
addition, readers will find that every chapter ends with a number of supplementary
exercises. It is my experience that in a one-semester course with class meeting
twice a week, an instructor can leisurely cover two chapters of his/her choice,
and they would still have ample time to pick and choose additional topics from
other chapters they deem interesting/relevant. The first chapter contains a fairly
detailed introduction to Set Theory, and it may be also considered as a concep-
tual/“philosophical” introduction to everything that follows. Chapters 2 and 3 on
Logic and Proofs follow naturally, although I would not have many arguments
against those who would prefer to start with Chapters 2 and 3 and subsequently
discuss Set Theory. Readers interested only in Functions and/or Group Theory
can, after Chapter 1, immediately jump to Chapters 4 and/or 5. Similarly, the
last chapter on Linear Algebra can be approached independently provided, of
course, the reader has been at least briefly introduced to the necessary prelimi-
naries from Chapters 1, 4, and 5. Finally, the case could be made that a text of this
kind, in order to justify an implicitly hinted philosophy, should necessarily have
a chapter on Topology and Category Theory. I wholeheartedly agree. However,
that would require adding at least another 300 pages to this primer, and the sheer
volume of such a book would likely be a deterrent rather than an enticement for
a beginner and thus defeat its very purpose. Postponing topology and category
theory for some later time hopefully will be just a temporary weakness. It is not
unreasonable to expect that after carefully going through Sets and Functions, for
instance, the reader will anticipate further subtleties in need for clarification and
reach for a book on topology. Similarly, those wondering about a possible theory
that would subsume all others might find Category Theory an appropriate venue
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to reach that goal. In any case, provoking intellectual curiosity and imagination is
the main purpose of this text, and the author wishes that the blame for any failure
in this endeavor could be put, or at least partially placed, on the shoulders of the
course instructor. Alas, the shortcomings are all mine.

I am aware that it is impossible, and no effort would be adequate, to express
my gratitude to all of my teachers, colleagues, and students who have over
decades influenced my thinking about mathematics. This impossibility notwith-
standing, I need to mention Ivan Supek who, at my early age, introduced me
to the unique thinking about mathematics, physics, and philosophy, coming
directly from Heisenberg, whose assistant and personal friend he had been for
years. Vladimir Devidé who discovered for me the world of Gödel and, many
years later, my PhD adviser, Louis Kauffman, who put the final touch on those
long fermenting ideas.

Lastly, I want to thank Ivan Lepetic, who painstakingly read the whole
manuscript, made many corrections and improvements, and drew the
illustrations.

VLADIMIR LEPETIC
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1
SET THEORY

“The question for the ultimate foundations and the ultimate meaning of mathemat-
ics remains open; we do not know in which direction it will find its final solution
nor even whether a final objective answer can be expected at all.

“Mathematizing” may well be a creative activity of man, like language or music,
of primary originality, whose historical decisions defy complete objective rational-
ization.”

H. Weyl1

1.1 INTRODUCTION

The fact that you chose to read this book makes it likely that you might have heard
of Kurt Gödel,2 the greatest logician since Aristotle,3 whose arguably revolution-
ary discoveries influenced our views on mathematics, physics, and philosophy,

1Hermann Klaus Hugo Weyl (1885–1955), German mathematician, Yearbook of the American Philosoph-
ical Society, 1943 (copyright 1944).
2Kurt Gödel (1906–1978), Austrian–American logician, mathematician, and philosopher.
3J.A. Wheeler said that “if you called him the greatest logician since Aristotle you’d be downgrading him”
(quoted in Bernstein, J., Quantum Profiles, Princeton University Press, 1991. Also in Wang, H. A Logical
Journey, MIT Press, 1996).

Principles of Mathematics: A Primer, First Edition. Vladimir Lepetic.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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2 SET THEORY

comparable only to the discoveries of quantum mechanics. Well, even if you have
not heard of him I want to start by rephrasing his famous theorem:

Mathematics is inexhaustible!

Notwithstanding the lack of a definition of what mathematics is, that still
sounds wonderful, doesn’t it? At this point, you may not fully understand the
meaning of this “theorem” or appreciate its significance for mathematics and phi-
losophy. You may even disagree with it, but I suppose you would agree with me
that mathematics is the study of abstract structures with enormous applications
to the “real world.” Also, wouldn’t you agree that the most impressive features
of mathematics are its certainty, abstractness, and precision? That has always
been the case, and mathematics continues to be a vibrant, constantly growing,
and definitely different discipline from what it used to be. I hope you would also
agree (at least after reading this book) that it possesses a unique beauty and ele-
gance recognized from ancient times, and yet revealing its beauty more and more
with/to every new generation of mathematicians. Where does it come from? Even
if you accept the premise that it is a construct of our mind, you need to wonder
how come it represents/reflects reality so faithfully, and in such a precise and
elegant way. How come its formalism matches our intuition so neatly? Is that
why we “trust” mathematics (not mathematicians) more than any other science;
indeed, very often we define truth as a “mathematical truth” without asking for
experimental verification of its claims? So, it is definitely reasonable to ask at the
very beginning of our journey (and we will ask this question frequently as we
go along): Does the world of mathematics exist outside of, and independently of,
the physical world and the actions of the human mind? Gödel thought so. In any
case, keep this question in mind as you go along – it has been in the minds of
mathematicians and philosophers for centuries.

The set theory that we start with comes as a culmination of 2000 years of
mathematics, with the work of the German mathematician George Cantor4 in the
1890s. As much as the inception of set theory might have had (apparently) modest
beginnings, there is virtually no mathematical field in which set theory doesn’t
enter as the very foundation of it. And it does it so flawlessly, so naturally, and
in such a “how-could-it-be-otherwise” way, that one wonders why it took us so
long to discover it. And arguably, there is no concept more fundamental than the
concept of the set. (Indeed, try to answer the question: What is a real number
without referring to set theory?) Be it as it may, now we have it. We start our
journey through the “Principles,” with the basic formalism of set theory.

No one shall be able to drive us from the paradise that Cantor created for us.5
D. Hilbert

4Georg Ferdinand Ludwig Philipp Cantor (1845–1918), German mathematician, the “father” of Set
Theory.
5David Hilbert (1862–1943), German mathematician.
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1.2 SET THEORY – DEFINITIONS, NOTATION, AND
TERMINOLOGY – WHAT IS A SET?

You are probably familiar with the notion in mathematics of a set as a collection,
an aggregate or a “group”6 of certain “(some)things,” or a collection of certain
“objects”7 that form a whole. We assume the existence of some domain of those
“objects,” out of which our mind will build a “whole.” Cantor suggested that one
should imagine a set as a collection into a whole A of definite and separate objects
of our intuition or our thought. These objects are called members or elements of a
set. For example, we can consider the set of all planets in the solar system,8 or the
set of all living people on Earth. Or, we can consider the set of all living females
on this planet. Those would be well-defined sets, and by the very “definition,”
that is, the description of the set, our mind effortlessly constructs the concept
of a “whole.” On the other hand, calling for a set of all tall men, or a set of
all big planets, triggers a similar concern. What is “a tall man” or “a big planet?”
Obviously, describing a set of real objects by means of their characteristics can be
problematic due to the imprecision of everyday language. So, it is fair to say that
once the nature of objects defining a set is unambiguously stated, the whole entity,
and not the individual elements, becomes the object of our study. Consequently,
what we care about is the relationship between different sets as well as the very
consistency of the “set” concept.

As you can see, at the very beginning of our discussion, we are introducing a
concept that looks, to say the least, pretty vague, especially since we are doing
mathematics, which we expect to be the epitome of precision. So, at this point
in the process of devising our theory – The Naïve Set Theory – we will use the
words “set” and “is an element of” without properly defining them. We will sim-
ply assume that we know exactly what they mean and hope that we won’t run into
any inconsistencies and paradoxes. In addition, we need the basic logical vocab-
ulary consisting of “not,” “and,” “or,” and “if … then… .” That’s it! With so
little, how can one satisfy the credo of modern mathematics – a “philosophy” by
the name of Cantorism – that everything (mathematical) is a set? This idea is not
as outlandish as you may think, so I suggest you wait for a while before decid-
ing whether to accept this doctrine or not. Remember the Pythagoreans9 who
thought that everything is a natural number. You can imagine their dismay upon

6To be precise, we want to make sure that here by the “group” we do not mean the mathematical term
“group” as in Group Theory, but simply a group of certain objects or elements.
7The term “object” could be misleading too, for sometimes by the “object” people instinctively think of
“(some)thing” that is, a “thing” that can be touched, seen, and so on. Since objects of a set theory can be
ordinary things, like pencils, chairs, people, or animals, and they can also be very abstract in nature, like
numbers, functions, and ideas, maybe the term “entity” instead of the “object” would be more appropriate.
8Of course, “all” in this case, by mathematical standards, might be a somewhat imprecise quantifier, but
let’s assume at this point that there will be no surprises of striping off a “planetary status” of an object in
our solar system, as we have recently witnessed in the case of Pluto.
9Religious sect founded by Pythagoras of Samos (ca. 570–495) Ionian–Greek philosopher.



�

� �

�
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learning of the incommensurability of the side and the diagonal of a square. The
discovery of

√
2 must have been a catastrophe for this secluded sect, let alone

the pain of disclosing the findings to the uninitiated. Legend has it that for his
unfortunate discovery Hippasus10 was drowned by the members of this mystic
brotherhood. Later, we learned about certain other sets of numbers – the set of
real numbers, for instance – which is fundamentally more “infinite” than anything
we knew before. To understand those we definitely need sets.11 We may continue
on this rather vague path and also say that a set is a “thing” that is a collection
of other things (which themselves could be sets) called the elements of the set.
These hazy definitions by synonym suffice for most purposes, for our mind is
able to grasp (the essence of) the concept regardless of the abstractness of the
definition. Indeed, we want these concepts to be sufficiently abstract in order to
avoid contradictions, especially when dealing with the foundation of mathemat-
ics. At the same time, very few so “simple” ideas in mathematics proved to be
so fecund with the repercussions to almost all fields of mathematics. Not surpris-
ingly, Mathematical Logic and Philosophy of Mathematics in particular became
exceptionally interesting and rich fields notwithstanding the paradoxes spurred
by much ingenious work on the foundations of mathematics and set theory.

So, before we start with the formalism of set theory, I want to tell you some-
thing rather funny and interesting, something that will keep showing up over and
over again in the foundation of mathematics. This will certainly provoke some
curiosity in you and at the same time show you the richness of ideas that set
theory contains, and how our mind detects paradoxes in apparently simple con-
cepts – concepts that this very mind came up with. The following is known as the
Russell12 Paradox. (Remember, the notion of “elementhood” or “membership”
does not prevent us from thinking of sets as being elements of (i.e., belonging
to) other sets.) So, let’s follow Cantor and imagine all the definite distinguishable
concepts of your/our intellect. One of them could be the idea of unicorns – it
doesn’t matter that you/we know they don’t “exist.” (They do exist in your mind,
right?) Well, let’s think about the collection of definite concepts of our intellect
that doesn’t contain itself. Let me explain. It is easy to think of, say, a set of all
horses (or unicorns if you wish) on Earth. This set obviously represents a set that
does not contain itself as a member. A set of horses is not a horse, of course.
Now, can you think of a set that would be a member of itself? How about a set
of all ideas? It is an idea, right? So is it a member of itself? Or, how about a set
of all sets? It is a reasonable idea too. But, it is again also a set, hence a mem-
ber of itself. Well, let’s think about it. Let’s call any set that doesn’t contain itself

10Hippasus of Metapontum (ca. fifth century bc), Pythagorean philosopher.
11Could it be that even sets are not “everything”? Well, yes! It is possible that we may need an even
more fundamental structure to address, among other things, the even “greater,” Absolute Infinities. The
discussion of those we leave for some other time.
12Bertrand Arthur William Russell (1872–1970), British philosopher, logician, and mathematician.
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as one of its elements an ordinary set, say,  and the one that does – an extraor-
dinary,  . Now, here is what Russell said: Consider a set of all ordinary sets .
It exists – Cantor said so – since it is a distinguishable concept of one’s intuition
or one’s thought. So we could safely claim:

1.  is an ordinary set!
Suppose not. Suppose it is extraordinary and thus contains itself as one

of its elements. But every set in  is ordinary. Thus  is ordinary. But this
is a contradiction! Therefore, our assumption was wrong;  is definitely
ordinary. Well, is it? No!? What if we say:

2.  is an extraordinary set!
Suppose not. Suppose  is ordinary. Since  contains all ordinary sets,

it has to contain itself as one of its members. But that makes it extraordi-
nary. This is a contradiction. Our assumption that  is ordinary was wrong.
Therefore,  is extraordinary.

Obviously (1) and (2) are contradictory.
Here is another well-known example of a finite set, which we cannot properly
make out13:

Consider two sets of adjectives: set  of self-descriptive adjectives we call
autologous (autological) and set  of nonself-descriptive adjectives, called het-
erologous (heterological), that is, the set of all adjectives not belonging to . For
example, set  contains adjectives such as English, finite, derived, and pentasyl-
labic. That is, they do have the properties they describe. On the other hand, set
 contains adjectives such as German, French, black, white, and monosyllabic,
that is, obviously none of them belongs to . Now, what about “heterologous”?
Which set does it belong to? What I am asking is this: Is “heterologous” heterol-
ogous?

If this sounds confusing to you, and it’s perfectly all right if it does, for it is
confusing indeed. Here is Russell again with an analogous “story” (and I assure
you this is not some silly game of words) to help us out:

There is a small town with only one (strange) barber. The strange thing about him
is that he shaves all men in town that do not shave themselves. Now, does he shave
himself or not?

So, what are we to make of it? At the very beginning, we are dealing only with
two concepts, “set” and “an element of,” and we are faced with a fundamental
problem of definitions that seems irresolvable. We cannot allow a seed of contra-
dictions sitting at the very concept we want as our foundation. How do we start?

13Due to Kurt Grelling (1886–1942) and Leonard Nelson (1882–1927), German mathematicians and
philosophers.
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How do we build a fundamental structure of mathematics, a structure precise
enough and rich enough, to encapsulate “all of mathematics” and all the rules of
inference, without contradictions and without any ambiguities? Mathematicians
and philosophers have been thinking about these questions for thousands of years,
going back to Euclid’s14 axiomatic treatment of geometry, to Leibnitz’s15 ideas
of mathematical logic, to Hilbert’s dream of unifying all of mathematics under
the umbrella of a formal axiomatic system, to the works of Cantor, Russell, and
Whitehead,16 and many others. In any case, the theory that Cantor developed,
indeed a mathematical theory unlike any before, proved to be the best candidate
to fulfill that. Mathematics arose on a system of axioms and precise formalism,
which we want to be

1. consistent;
2. complete; and
3. decidable.

That a formal system is “consistent” means that we should not be able to prove,
in finitely many steps, an assertion and its negation at the same time. A and not-A
cannot (should not) be true at the same time. By “complete” we mean a system
that is rich enough to allow us to determine whether A or not-A is a theorem,
that is, a true statement. And finally, “decidable” refers to what is known as “the
decision problem” (the famous “Entscheidungsproblem” in German), that is, a
procedure, an algorithm by which we can (always) determine, in a finite number
of steps, whether something is a theorem or not. That’s what we want. Not much
to ask for, wouldn’t you say? After all, consistent and complete should imply that
a decision procedure is at hand. Well, it’s not. It can’t be done! Mr Gödel said
so.17

Here is how Hilary Putnam18 “illustrates” Gödel’s theorem:

(i) That, even if some arithmetical (or set-theoretical) statements have no truth value,
still, to say of any arithmetical (or set-theoretical) statement that it has (or lacks)
a truth value is itself always either true or false (i.e. the statement either has a
truth value or it doesn’t).

14Euclid (of Alexandria) (ca. 325–270 bc), Greek mathematician/geometer.
15Gottfried Wilhelm Leibniz (1646–1716), German mathematician and philosopher.
16Alfred North Whitehead (1861–1947), British mathematician, logician, and philosopher.
17“The human mind is incapable of formulating all its mathematical intuitions, that is, if it has succeeded
in formulating some of them, this very fact yields new intuitive knowledge, for example, the consistency of
this formalism. This may be called the ‘incompletability’ of mathematics.” Kurt Gödel, Collected Works,
Oxford University Press, 2001.
18Putnam, H., Mathematics Without Foundation, in Philosophy of Mathematics, 2nd ed., Cambridge Uni-
versity Press, 1983.
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(ii) All and only decidable statements have a truth value.
For a statement that a mathematical statement  is decidable may itself be

undecidable. Then, by (ii), it has no truth value to say “ has a truth value” (in
fact falsity; since if  has a truth value, then  is decidable, by (ii), and if 
is decidable, then “ is decidable” is also decidable). Since it is false (by the
previous parenthetical remark) to say “ has a truth value” and since we accept
the equivalence of “ has a truth value” and “ is decidable”, then it must also
be false to say “ is decidable”. But it has no truth value to say “ is decidable”.
Contradiction.

Did you get it? Think about it. It literally grows on you. The whole point of all of
“this” is that you start getting a “feel” for what mathematics really is and where
we are actually “going.” Anyway, after this “warm-up,” let’s start slowly and
from the beginning.

First, we assume that there is a domain, or universe  , of objects, some of
which are sets.

Next, we need the formalism in which all our statements about sets can be
precisely written – let’s call it the language of set theory . This formal language
contains a specific alphabet, that is, a list of symbols that we judiciously use and
a number of specific statements that are called axioms. What are they? Well, in
order to start somewhere and in order to avoid an infinite regress, we choose
(there has to be (?)) a set of propositions that are not proved (not provable) but
can be used in sound construction of our formalism. In addition, we create a basis
for (all?) mathematics, which is inherently beautiful, and thus we can use it as
an aesthetical criterion that all other sciences can measure up to. Similarly, there
exists a collection of (mathematical) words or symbols that we do not define in
terms of others – undefined does not mean meaningless – but simply take as given.
Those we call primitives. This idea is as old as mathematics itself. Remember
Euclid? The first lines of his Elements read as follows:

1. A point is that which has no parts.
2. A curve is length without width.
3. The extremity of a curve is a point.
4. A surface is that which has only a length and a width.
5. The extremity of a surface is a curve, and so on.

Surely, you feel some uneasiness about these statements. Still, the whole
gigantic structure of Euclidean geometry, unquestioned for 2000 years, is
based on these axioms. Putting aside the controversy among mathematicians on
how fundamental these axioms are in general, as well as the question of their
effectiveness, these axioms are needed and they are here to stay.

We also need the formal rules of inference so that the language we use is
precise enough to derive all the theorems of our theory.
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In addition to the aforementioned four basic symbols, we will soon need some
more. So, we list the somewhat extensive alphabet of the language we are going
to use throughout the book:

∈ : element; a member; x ∈ A ∶ x is an element of set A

∉ : not an element; not a member; x ∉ A ∶ x is not an element of set A

∋ : such that; sometimes “s.t.”
c : complement; Ac: complement of set A

⧵ : difference; A ⧵ B: A difference B; sometimes just: A “minus” B

Δ : symmetric difference: AΔB: symmetric difference of A and B

⊆ : subset; A ⊆ B: A is a subset of B

⊂ : proper subset: A ⊂ B

∩ : intersection: A ∩ B

∪ : union: A ∪ B

∅ : the empty set

× : Cartesian product; A×B: Cartesian product of sets A and B

N : the natural numbers

Z : the integers

Q : the rational numbers

R : the real numbers

Z+ : the nonnegative integers

Q+ : the nonnegative rational numbers

R+ : the nonnegative real numbers|A| : the cardinal number (cardinality) of A

∀ : for all; for every; for any; ∀x ∈ A: for every x from A

∃ : there exists

∃!: there exists a unique…
∄ : (same as ∼ ∃) does not exist

∧ : and; sometimes also “&”

∨ : or

→ : “conditional”; “implication”; a → b if a then b. Sometimes same as “⇒”

↔ : “biconditional”; a ↔ b a if and only if b; “iff”; Sometimes same as “⇔”

∼ : “negation”; “it is not the case that”; “opposite of”

= : equal

≡ : equivalent

iff: “if and only if”; “⇔”; “↔”
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Definition 1.1 A set is said to be a well-defined set iff there is a method of
determining whether a particular object is an element of that set.

The precise “description” of a set and its elements is based on the following
axioms.

Axiom 0 (Set Existence)19 There exists a set, that is, ∃A (A = A). In other
words, we postulate that there exists something, a “thing,” an entity, we call a
set.

Once a set A is given, we say that “a is an element of A” or that “a is a member
of A,” and we write a ∈ A. Similarly, if a is not a member of A, we simply write
a ∉ A.

It is worth mentioning again that the expression “an element of,” that is, an
elementhood relation, is also the elemental concept for which it is difficult to find
a suitable alternative, so we also take it as an undefined predicate.

Example 1.1
A = {a, b, c, d, e, f }

is a set whose elements are a, b, c, d, e, f , that is, a ∈ A, b ∈ A, c ∈ A, and so on.
This is nicely illustrated by the Venn diagram (Figure 1.1).

a

b

c

d

f

A

Figure 1.1 Venn diagram

Often it is convenient, especially when it is impossible to list all the elements
of a set, to introduce a set using the so-called set-builder notation. We write

A = {x|P(x)}
and we read: A is a set of all x, such that P(x), where P(x) designates some prop-
erty that all x’s possess, or P is a condition that specifies some property of all
objects x.

19We will have more to say about these axioms later.
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For instance, if we want A to be a set of all natural numbers greater or equal
to 5 we write:

A = {x| x ≥ 5, x ∈ N }

Certainly nothing prevents us from considering a set whose elements are also
sets. In other words, we can have a set X = {x, y, w, z}, where x, y, w, and z
are sets themselves. ◾

Example 1.2 Suppose we consider

X = {Alice,Bob}

as a set whose two elements are persons Alice and Bob. Set X is definitely differ-
ent from set, say,

Y = {Alice, {Bob}}

which also has two elements, but this time the elements are: Alice and {Bob},
that is, the element {Bob} is itself a set containing one element – Bob.

Formally, we write:

Alice ∈ Y ,Bob ∉ Y , but{Bob} ∈ Y

Of course, we could have constructed a set

Z = {{Alice, {Bob}}}

which has only one element, namely, Y . Do you see why? It may help if we
represent sets by Venn diagrams, where X, Y , and Z (Figure 1.2) look as
follows:

Alice Alice
Bob

Bob

Alice

Bob

X Y Z

Figure 1.2 Sets X, Y, and Z

◾

Axiom 1 (Axiom of extensionality) A set is uniquely determined by the ele-
ments it contains, that is, two sets are considered equal if they have the same
elements. Less clearly but often said: a set is determined by its extension.
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Example 1.3 Sets A = {a, b, c, d} and B = {d, a, a, a, b, c, c, d} are considered
the same, that is, we say that A = B. ◾

So, we have

Definition 1.2 Given sets A and B, we say that A equals B, and we write A = B
if and only if every element of A is an element of B and every element of B is
an element of A. For the sake of completeness and more precision (at this point
maybe prematurely20), using formal logic notation, we express this as follows:

A = B ↔ (∀x)(x ∈ A ↔ x ∈ B)

Definition 1.3 Given two sets A and B, we say that A is a subset of B, and we
write A ⊆ B if and only if every element of A is also an element of B (Figure 1.3),
that is,

A ⊆ B ↔ (∀ x ∈ A, x ∈ B)

B A

Figure 1.3 Subset A ⊆ B

Note that B could be “larger” than A, that is, that all elements of A are elements
of B, but not all elements of B are elements of A. To distinguish between these
subtleties, we state the following

Definition 1.4 Given two sets A and B, we say that A is a proper subset of B,
A ⊆ B, if and only if every element of A is an element of B, but not all elements
of B are elements of A.

Equality of sets can now be restated as

A = B ↔ A ⊆ B&B ⊆ A

20This formalism will become more clear after you have studied Chapter 2.
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What we are saying here is that two sets are considered equal solely on the basis
of their elements (i.e., what’s in the sets and how many) and not on the “arrange-
ment” or a repeat of some of the elements in the respective sets.

Example 1.4 Show that, if a set A is a set of all integers n, where every n is
expressible as n = 2p, with p ∈ Z, that is,

A = {n ∈ Z|n = 2p, p ∈ Z}

and B analogously described as

B = {m ∈ Z |m = 2q − 2, q ∈ Z}

then A = B.

Solution Set A is the set of all even integers. We would like to see whether any
integer of the form 2p, for some p ∈ Z, can also be written in the form 2q–2, for
some q ∈ Z. Suppose there is an n ∈ Z, such that n = 2p, for some integer p we
want to find an integer q, so that n = 2q − 2. Thus,

2q − 2 = 2p

2q = 2p + 2 = 2(p + 1)

q = p + 1

Therefore, for n = 2p, and p ∈ Z, q = p + 1. It follows that

2q − 2 = 2(p + 1) − 2 = 2p + 2 − 2 = 2p

Hence, A ⊆ B.
Let’s now assume that an integer can be expressed as m = 2q − 2, for some

q ∈ Z. Suppose, furthermore, that

2p = 2q − 2 = 2(q − 1)

that is,
p = q − 1

So, if m = 2q − 2, with q ∈ Z, we write

2p = 2(q − 1) = 2q − 2
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We conclude that B ⊆ A. Since A ⊆ B and B ⊆ A, it follows that A = B by defi-
nition of set equality. ◾

Example 1.5 Let A be a set of all solutions of the equation x2 = 2x, and let B
be a set of all solutions of the equation (x − 1)2 = 1. Then, it is easy to see that
A = B. ◾

Axiom 2 (Comprehension axiom)21

(i) For any reasonable22 property P, there exists a set containing exactly those
elements that are defined by that property; In particular, mathematical
entities that have a certain property in common constitute a set.

Certainly nothing prevents us from considering a set whose elements
are also sets. In other words, we can have a set X = {x, y,w, z}, where
x, y,w, and z are sets themselves. So we postulate:

(ii) Sets are mathematical entities, and, hence, they may in turn appear as
elements of a set.

This is one of the reasons why one should not restrict oneself on a style of let-
ters that represent sets. Thus, although we will most frequently use capitals to
designate sets, occasionally it will be more convenient to use lowercase letters.

Example 1.6 Let x1, x2, … , xn be a collection of n sets, then

X = {x1, x2, … , xn}

is also a set (Figure 1.4).

x1 x2 x3 xn

X

Figure 1.4

21This is sometimes called the Comprehensive principle.
22What is “reasonable” is debatable, and in any case a rather vague concept. We won’t be discussing these
subtleties here.
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Having elements of a set being sets themselves gives us more flexibility
in dealing with only one kind of object. Thus, we don’t need to postulate the
existence of every possible element of the various structures we intend to study.
It follows, let’s emphasize this again, that every set x is a unique element of
another set, namely, {x}.

After accepting the fact that the elements of a set are sets, let’s take a closer
look at Axiom 2: Let X be a set, and let Y be a set whose elements are exactly
those elements x ∈ X with a property P, that is,

Y = {x ∈ X|P(x)}
So, let the particular property be x ∉ x. (Remember, x is a set.) In other words,
whatever set X may be, if

Y = {x ∈ X|x ∉ x}

then for every y,
y ∈ Y iff y ∈ X and y ∉ y (*)

Is it possible that Y ∈ X? Let’s see. If Y ∈ X, we have two possibilities: either
Y ∈ Y or Y ∉ Y . Suppose Y ∈ Y . Then, from Y ∈ X and (*) it follows that
Y ∉ Y – obviously a contradiction. Suppose that Y ∉ Y . Then, again, from
Y ∈ X and (*) it follows that Y ∈ Y – a contraction again. We conclude that it is
impossible that Y ∈ X. (You may remember this argument from before.)

Now, let me digress a bit and say something about two very important concepts
that will be discussed in much more detail in Chapter 4. Many readers are familiar
with the concepts of relations and function: For the time being, let’s just say that:

A relation R is uniquely determined by pairs of elements x and y that are
somehow related.

A function f ∶ X → Y is uniquely determined by the pairs of two objects, an
argument x ∈ X and a functional value f (x) ∈ Y .

Now let’s look at these via Axioms 1 and 2: For instance, the usual relation ≤

on the set of natural numbers describes a particular property, so we can construct
a set R consisting of pairs of natural numbers (a, b) where a ≤ b, that is

R = {(a, b)|a ≤ b, a, b ∈ N}

Similarly, we think of a function f as the following set of pairs:

f = {(x, f (x))|x ∈ X, f (x) ∈ Y} ◾
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Axiom 3 There exists a set  , called the universal set, such that for all sets A,
if x is an element of A, then x is an element of  (Figure 1.5). Symbolically,

∀A (x ∈ A → x ∈  )

A
xx

U

Figure 1.5

Axiom 4 If x ∈  and A is a set, the statement x ∈ A is a proposition that can
either be true or false, but not both.

Saying something so “obvious” is not that trivial, as will become evident
shortly.

Example/Exercise 1.7

(i) Is a = {a}?
(ii) Is a ∈ {a}?

(iii) Is a ⊆ {{a}}?
(iv) Is a ∈ { a, {a}}?

1.3 SETS GIVEN BY A DEFINING PROPERTY

As we have seen in the previous section, we often describe sets the following
way:

A = {x|P(x)}
and we say: A is a set of all x such that P(x), where P(x) designates some property
that all x’s possess, or P is a condition that specifies some property of all objects
x. In other words, x ∈ A ↔ P(x). (see Axiom 2).
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Note: Some sets have a universally accepted notation, so let’s just agree at this
point, without further explanation, to denote the set of natural numbers23

N = { 0, 1, 2, 3, …}

the set of integers

Z = {… − 3,−2, −1, 0, 1, 2, 3, …}

the set of rational numbers (which we will define later) Q, and the set of real
numbers (also to be defined later), R.

Example 1.8 If, for instance, we say

P(x) ∶ x ∈ N and x is even

then, in set-builder notation, we write

{x|P(x)}
by which we mean the set of all natural even numbers. ◾

Example 1.9 A = {x ∈ N|10 ≤ x ≤ 25} = {10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25}, that is, the set A is a set of all natural numbers greater
than or equal to 10, and less than or equal to 25. ◾

Definition 1.5 (The empty set) A set with no elements is called the empty set,
denoted by the symbol ∅ = {}.

Definition 1.5 ′ A set ∅ is said to be an empty set if

∅ = {x|x ≠ x}

Equivalently, we can argue as follows: let X be a set and let there be a set
A = {X|X ≠ X}. Then, X ∈ A ⇒ X ≠ X, which is a contradiction. Thus, A is
empty.

The “existence” of the empty set is postulated by

Axiom 5 (Empty set (null set) axiom) There is a set with no elements.

23Many authors do not include 0 in N (in particular, for historical reasons) and, indeed some-
times that may be more convenient, and they reserve the following notation for nonnegative integers:
Z+ = {0, 1, 2, 3, …} = N ∪ {0}.
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Example 1.10 Here are some examples of empty sets:

(i) { n ∈ N|n < 0} = ∅
(ii) {x ∈ Q|x2 = 2} = ∅

(iii) {x ∈ R|x = x + 1} = ∅
(iv) {x ∈ R|x2 < 0} = ∅ ◾

Example/Exercise 1.11 Determine whether or not, and why, are any of the
following sets empty:

(i) A = {{∅}, {{∅}}}
(ii) B = {{{∅}}, {∅}, {{{∅}}}}

(iii) C = {{{{∅}}}}

A remarkable property of the empty set is given by the following:

Theorem 1.1 A set with no elements is a subset of any set, that is, if A is any
set, and ∅ is the empty set, then

∅ ⊆ A

Proof Suppose that is not true, that is, suppose that there exists a set ∅ = { }
(with no elements), and a set A such that ∅ ⊈ A. That would mean, by defini-
tion of a subset, that there would be an element of ∅, which is not an element
of A. But there can be no such element, since ∅ has no elements by definition.
This contradiction leads us to conclude that the assumption ∅ ⊈ A was wrong;
therefore, the theorem is true. ◾

Example/Exercise 1.12 Show that {∅} ⊆ A for every set A.

You can think of this yet another way. Any set X is defined by a property P,
possessed by all of its members, that is, if x ∈ X, then x has a property P. In
particular, all elements of ∅ have to be defined by a certain property P, that is,
if x ∈ ∅, then x has a property P. But, it is false to say that x is an element of ∅
(since ∅ has no elements), and since a false statement implies any proposition,
it is true that if x ∈ ∅, then P holds for all the elements of ∅. Now, since P
is a property defining a set X, it follows that ∅ ⊆ X. All of this, as much as it
may sound confusing to you now, will become more clear after you have studied
Chapter 2.

Now you can try to prove the following:
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Corollary 1.1 The empty set is unique, that is, there is only one set with no
elements.

If you accept Axioms 3 and 4, then it is fun to contemplate the next claim,
which might otherwise sound as an outrageous doctrine of set theory.

Claim Everything (mathematical?) is a set.
The “Proof” would go something like this:
Suppose there is a (mathematical) object X that is not a set. Then, X has no

elements hence, X is equal to an empty set by Axiom 3, which contradicts the
assumption that it is not a set. ◾

This is pretty cute, don’t you think? And, as a very fundamental concept, it
will prove to be very useful. However, as a little exercise, try to think how you
would dispute the aforementioned proof.

Axiom 6 (Pairing axiom) For any two sets X and Y , there is a set whose ele-
ments are these two sets, namely {X, Y}. We call the set {X, Y} the unordered
pair or doubleton of X and Y , that is

{X, Y} = {Z|Z = X or Z = Y}

Theorem 1.2 Given two sets X and Y there is a unique set Z whose elements
are X and Y.

Proof Since Axiom 6 established the existence of at least one set Z, whose
elements are X and Y , the only thing we need to show is its uniqueness. Suppose
then that there is another set Z ′ whose elements are also X and Y. But if X and Y
are the elements of both Z and Z′, by the axiom of extensionality, we have that
Z = Z′. ◾

The axiom of pairing gave us enough means to construct more sets, starting
from just the empty set.

Example 1.13 One way of constructing many simple sets, each having at most
two elements, is as follows:

∅, {∅}, {∅, {∅}} , {{∅}, {{∅}}}, … ◾

From Axiom 6, it also follows that if X = Y , then {X,X} = {X}. For obvious
reasons, we call this set the singleton {X}, or singleton of X. This is formalized by

Theorem 1.3 For any set X, there is a set whose only element is X.



�

� �

�

SETS GIVEN BY A DEFINING PROPERTY 19

As you can see, the key feature of set theory is that following Axioms 1–6
we can, in principle, construct a set from any object, or collection of objects,
satisfying a certain property P and consider that as a mathematical object in its
own right. In other words, we could consider a set X, which is a set of all sets x
with a property P, that is

X = {x|x is a set with property P}

As much as this principle is powerful, it has some fatal flaws. Consider this:
Let One be a set of all one-element sets, that is

One = {x|x is a one-element set}

Then nothing prevents us from forming the one-element set {One} whose only
element is One. Immediately you recognize a Russell-like paradox:

One ∈ {One} ∈ One

This can get even more intriguing. By Axiom 1, we can construct a set of (all)
sets

U = {x|x is a set}

Since U is a set, it follows that U ∈ U. Obviously, in order to avoid circularities
such as this one, we cannot treat U as any other “normal” set. We will have to say
more about this later.

For now, let me incite your curiosity a bit more, especially in case you still have
some doubts about the existence of the empty set. Let’s assume the existence of
the so-called pure sets, that is, sets that would exist even if there was nothing
else but sets – no you and me, no people, no stars and planets, and so on, and
simply refer to them as Sets (with a capital “S”). While the existence of the empty
set ∅ becomes evident right away, we can immediately conceive the set whose
only member is the empty set, that is, {∅} and, unsurprisingly, the next would
be {{∅}}, followed by {∅, {∅}}, and so on and so forth. So, we recognize the
collection of sets mentioned in the previous example as pure sets – Sets. Observe
that their “nature” is rather unique. That is, all Sets are sets but sets are not Sets.
(The set of horses is not a Set.) After inaugurating the concept of Sets why not
construct additional (particular) ones, respectively, assign familiar names to them,
and thus obtain “something” from “nothing.” One way to do it would be:

∅ = 𝟎

{∅} = 𝟏

{{∅}} = 𝟐

{{{∅}}} = 𝟑
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and so on.
The other way would be:

𝟎 = ∅

𝟏 = {∅}

𝟐 = {∅, {∅}}

𝟑 = {∅, {∅}, {∅, {∅}}}

and so on.
Certainly, you can think of some other way to construct “something” from

“nothing.”
However, before continuing, do

Example/Exercise 1.14 Prove that ∅ ≠ {∅}.

Definition 1.6 Given sets X and Y , we say that

⟨X, Y⟩ = {{X}, {X, Y}}
is an ordered pair.

Analogously, we define an ordered n-tuple:

Definition 1.7 Let X1,X2,X3, … ,Xn be sets where n ∈ N, n ≥ 3. We define an
ordered n-tuple recursively as follows:

⟨X1,X2,X3, … ,Xn⟩ = ⟨X1, ⟨X2,X3, … ,Xn⟩⟩
Theorem 1.4 For any sets X, Y ,U,V , ⟨X, Y⟩ = ⟨U,V⟩ iff X = U and Y = V .

Proof That X = U and Y = V implies ⟨X, Y⟩ = ⟨U,V⟩ is trivial, so we need to
examine only that ⟨X, Y⟩ = ⟨U,V⟩ implies X = U and Y = V .

Suppose that ⟨X, Y⟩ = ⟨U,V⟩ which by definition means that

{{X}, {X, Y}} = {{U}, {U,V}} (*)

We should consider two cases: (i) X = Y and (ii) X ≠ Y .



�

� �

�

SETS GIVEN BY A DEFINING PROPERTY 21

(i) If X = Y then

⟨X, Y⟩ = {{X}, {X, Y}} = {{X}, {X,X}} = {{X}, {X}} = {{X}}
is a singleton, so ⟨U,V⟩ has to be a singleton too. Thus, U = V . But that
means that

{{U}, {U,V}} = {{U}, {U,U}} = {{U}, {U}} = {{U}}

With the assumption that equality in (∗) holds, we have that {{X}} =
{{U}}, that is, X = U hence,

X = Y = U = V

(ii) If X ≠ Y then from (*) it follows that the singleton {X} must correspond to
the singleton {U} and, likewise, the doubleton {X, Y} corresponds to the
doubleton {U,V}. We conclude that

X = U and Y = V ◾

Definition 1.8 (Cardinal number) Let A be a set. If there are exactly n dis-
tinct elements in A, where n is a finite natural number, we say that the set A is a
finite set and that n is the cardinality of A, or that n is the cardinal number of
A, and we denote cardinality by |A|, (Figure 1.6).

You may have an uneasy feeling about this definition. Considering the fact that
A was said to be a finite set, the definition seems to be too restrictive. Everything
is fine if a set has, say, 3175 elements – the cardinal number is 3175. Naturally,
one would ask: what about sets that have infinitely many elements? How would
we characterize the “number” of elements of an infinite set? After all, the issue
of infinities (as we will see shortly) is the issue of set theory. It turns out that this
is one of the most intuitively difficult mathematical concepts of the theory. Can
we “enumerate” a set with infinitely many members regardless of their “nature?”

Cantor used the symbol A to indicate the cardinal number of set A, emphasizing
double abstraction: first from the nature of elements and second from their order,
and he said:

Every set A has a definite “power” which we will call its “cardinal number.” We
will call by this name the general concept, which by means of our active faculty of
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thought arises from the set A when we make abstraction of its various elements x
and of the order in which they are given.

… This number has an existence in our minds as an intellectual image or projection
of the given set.

A
B

Figure 1.6 The concept of cardinality for a four-element set A à la Cantor

With all that said, and with tongue-in-cheek, let’s say for the time being that the
cardinality of a set means the “number” of the elements of a set or, even better,
the “size” of a set.

Example 1.15 Let A be the set from Example 1.9, then |A| = 16. ◾

Example 1.16 What is |∅|?
Well, since the empty set ∅ has no elements, it follows that |∅| = 0. ◾

Definition 1.9 A set is said to be infinite if it is not finite.

The existence of the “infinite” set is provided by

Axiom 7 (Axiom of infinity) There exists a set I that contains the empty set∅
and the singleton of each of its members, that is

∅ ∈ I &∀x ∈ I, {x} ∈ I

Example 1.17 Let I be a set defined in Axiom 7. Observe that ∅ ∈ I, but also,
{∅} ∈ I, {{∅}} ∈ I, … . So, with this family of complex singletons, we have
indeed obtained an infinite set of more abstract nature:

I = {∅, {∅}, {{∅}}, …} ◾
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Example 1.18 Here is how Dedekind24 argued that at least one infinite set
exists: Given some arbitrary thought 𝜏1, there is a separate thought 𝜏2, namely
that 𝜏1 is an object of thought. But there also exists a thought 𝜏3, that is, a thought
of 𝜏1 and 𝜏2. And so on ad infinitum. Thus, set of thoughts is infinite. ◾

The claims of the next two examples are usually accepted as obvious.

Example 1.19 A set of all natural numbers N is infinite. ◾

Example 1.20 A set of all integers Z is infinite. ◾

We will discuss the intricacies of infinite sets in a little while.

Definition 1.10 We say that two sets A and B are equivalent (or equinumer-
ous) or that they have the same cardinality, and we write

A ∼ B iff |A| = |B|
Following Cantor, we say that cardinal number of a set A is what A has in

common with all sets equivalent to A.

Example 1.21 Given sets A = {1, 2, 3}, B = {a, b, c}, and C = {b, c, a}, we say
that A ∼ B, and A ∼ C, but only B = C. ◾

Theorem 1.5 Given three sets A,B,C, such that A ∼ B, and B ∼ C, then
A ∼ C.

Proof Easy. You should do it! ◾

Now that we have a rudimentary knowledge of sets, in order to finish this
section and have some fun, I have to tell you something else. Something about
those strange sets I have mentioned in the introduction. In a sense, you may think
of what follows as a “historical” progress toward the paradoxes Russell pointed
out to us.

With the concept of a set handy, and assuming also that the attributes that apply
to a set are not mutually contradictive, then, by an extension of such an idea, we
can easily contemplate a set that contains sets as its elements. Why not, right?
For example, the concept of a finite set F is easily conceivable. Its extension 

would be a set of all sets with finitely many elements, that is

 = {F|F is a finite set} (1.1)

24Julius Wilhelm Richard Dedekind (1831–1916), German mathematician.
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Similarly, with the idea of an infinite set I (say, a set N) let’s define its extension
as a set

 = { I |I is an infinite set} (1.2)

Observe that, while all the elements of  are finite sets,  itself is an infinite set.
That makes  not a member of itself, but a member of . Symbolically,

 ∉  , and  ∈ 

On the other hand, it is clear that

 ∈ 

Again, do you see where we are going? Let’s call on Russell again. Consider the
concept of a “set that is not a member of itself,” and let’s call its extension

 = {X|X is a set & X ∈ X} (1.3)

From (1.1) – (1.3), we see that  ∈  and  ∉ . But how about ? Is it a
member of itself or not? From the aforementioned discussion, it follows that

 ∈  iff  ∉  (1.4)

But this is impossible! Either  is a member of itself or not. Claim (4) is a con-
tradiction par excellence. Thus, we state (we are forced to state):

Theorem 1.6 There is no set  such that

 = {X |X is a set & X ∉ X}

The reason I keep on mentioning this quintessential paradox is because of its
profound mathematical/philosophical importance. I’ll stop here abruptly, again
quoting Russell: “Whatever involves all of a collection must not be one of the
collection.” What he actually said was: just forget about those “crazy” sets, con-
sider only those sets that are ordinary.25 Can you do that? Can you just forget
about the “crazy” sets? I could never do that. They keep coming up in many dif-
ferent branches of mathematics, physics, and philosophy. It seems our mind, once
having become aware of them, simply cannot let go. In any case, we continue our
discussion of sets by introducing the formalism that will enable us to “calculate”
and discover even more interesting “stuff.”

25At this point, you may want to revisit the discussion on ordinary and extraordinary sets on pages
4 and 5.
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1.4 THE ALGEBRA OF SETS

In order to reasonably carry on a mathematical discussion in the context (a set) of
specific elements, we can often visualize the entity whose existence we postulated
in Section 1.2 by Axiom 1. For example, we may consider a set of all students
at the university, or we may consider a set of all books in your school library, a
set of all animals in the zoo, or a set of all real numbers, and so on. In each of
these cases, we call this a universe of discourse, or the universal set of the given
discourse. So, we formally state

Definition 1.11 By universal set  , we mean the set of all the elements under
discussion (all the objects under consideration).

Note the important qualification “under discussion” in the aforementioned def-
inition. Without it, the concept of a universal set would create a rather difficult
problem. Namely, one could be tempted to consider the universal set  as a set of
all “objects,” that is, a set of everything. Why not, right? But then, in particular,
 would contain itself as a member, and that would be a problem indeed as we
have indicated at the beginning of this chapter.

Definition 1.12 Given a universal set  , and A and B the two subsets of  , we
define the union of A and B, denoted A ∪ B, as a set of all the elements x ∈  ,
such that x is an element of A or x is an element of B (Figure 1.7), that is

A ∪ B = {x ∈  |x ∈ A or x ∈ B}

Note that in this definition “or” is the inclusive “or” (as opposed to
“either–or”).

Example 1.22 Let A be a set of all even whole numbers, that is, all even integers,
and let B be a set of all odd whole numbers, that is, all odd integers. Then, A ∪ B
represents the set of all whole numbers, that is, the set of all integers. Recall, we
denoted that set by the symbol Z. ◾

A
B

Figure 1.7 A ∪ B
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Example 1.23 Given two sets X = {a, b, c, d, e} and Y = {@, #, $,&}, then

X ∪ Y = {a, b, c, d, e,@, #, $,&} ◾

The union of an infinite sequence of sets is defined in the same way.

Definition 1.12 ′

∪ A =
∞
∪

n=0
An = A0 ∪ A1 ∪ A2 … = {x|x ∈ An, n ∈ N}

In general, considering the abstract nature of a set, the existence of the union
as a set is postulated by

Axiom 8 (Union axiom) For any set X, there is a set that is the union of all
the elements of X.

As much as the concept of the union of two sets is easy to understand, Axiom 8
might take some time to absorb, so you can skip it until you have studied Chapter
2. For now let’s just say that one can think of the expression in Definition 1.12′

as ∪{An|n ∈ N}.

Example 1.24 Let’s take just two sets, A1 and A2, and consider {A1,A2}. Sup-
pose x ∈ ∪{A1,A2}. That is true iff x ∈ X for some X ∈ {A1,A2}. But the only
X′s in {A1,A2} are A1 and A2. Thus x ∈ ∪{A1,A2} iff x ∈ A1 or x ∈ A2. But
that’s exactly what we are saying with x ∈ A1 ∪ A2. ◾

Example 1.25 Suppose we have three sets A, B, C. Then, there is a set with
these sets as its elements:

{A} ∪ {B} ∪ {C} = {A, B} ∪ {C} = {A,B,C} ◾

Example 1.26 The next simple fact is that

∪{X|X ∈ {A}} = A ◾

Following the aforementioned three examples, it should not be difficult to
work out:

Example/Exercise 1.27 Determine whether the following is true:

(i) ∪{X} = X
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(ii) ∪∅ = ∪{∅} = ∅
(iii) {∅} ∪ ∅ = {∅}

Definition 1.13 Let A and B be sets. The intersection of A and B, denoted
A ∩ B, is the set of all elements x ∈  , such that x is an element of A and x is an
element of B (Figure 1.8), that is

A ∩ B = {x ∈  |x ∈ A & x ∈ B}

A A BBÐ

Figure 1.8 A ∩ B intersection

Example 1.28 Given two sets A = {1, 2, 3, a, b, c} and B = {3, b, x, y}, then

A ∩ B = {3, b} ◾

Example/Exercise 1.29 Show that for all sets A, B, and C

(i) A ⊆ A ∪ B and B ⊆ A ∪ B
(ii) If A ⊆ B and B ⊆ C then A ⊆ C

The intersection of an infinite sequence of sets is defined analogously

Definition 1.13′

∩∞n=0 An = A0 ∩ A1 ∩ A2 · · · = {x|(∀n ∈ N )x ∈ An}

Example/Exercise 1.30 Show that

A ∩ B ⊆ A and A ∩ B ⊆ B

Example/Exercise 1.31 Convince yourself that

(i) A ⊆ B iff A ∪ B = B
(ii) A ⊆ B iff A ∩ B = A

(iii) {∅} ∩ ∅ = ∅



�

� �

�

28 SET THEORY

Example/Exercise 1.32 The union of empty sets is clearly an empty set. You
may be wondering now: what about ∩∅? This is much trickier. Can you see why?

Definition 1.14 Let A and B be two sets. We say that A and B are disjoint, if
A ∩ B = ∅ (Figure 1.9).

A

B

Figure 1.9 A ∩ B = ∅.

Example 1.33 Consider the following:
Let A1 = {0},A2 = {0, 1},A3 = {0, 1, 2}, … ,Ai+1 = {0, 1, 2, … , i}, … . So

we have an infinite collection of A′s, such that for every n ∈ N+, n ∈ An+1.26

Thus, N+ = A1 ∪ A2 ∪ · · · and A1 ∩ A2 ∩ · · · = 0. ◾

Example 1.34 Consider a set R. Let set A be the interval (−3, 5), and set B
the interval (3, 8).

Find:

(i) A ∩ B
(ii) A ∪ B

Solution First, recall the definition of intervals on the set of real numbers R:

An open interval
O = (a, b) = {x|a < x < b}

A closed interval
C = [a, b] = {x|a ≤ x ≤ b}

Of course, we can have a half-open–half-closed interval, such as

OC = (a, b] = {x|a < x ≤ b}

or
CO = [a, b) = {x|a ≤ x < b}

26In order to avoid confusion, when starting with zero in our collection of A’s, for the time being, we put
N ∪ {0} = N+, which is also designated by Z+.
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Now, observe that set

A = (−3, 5) = {x|−3 < x < 5}

and set
B = [3, 8) = {x|3 ≤ x ≤ 8}

Hence,

(i) A ∩ B = [3, 5 ) = {x|3 ≤ x < 5}
(ii) A ∪ B = (−3, 8] = {x|−3 < x ≤ 8} ◾

Example/Exercise 1.35 Let the universal set be a set of all integers, that is,
 = Z, and let A = {x ∈ Z|x = 2n, n ∈ Z}, and B = {y ∈ Z|2m + 1,m ∈ Z},
then

A ∩ B = ∅

Convince yourself that this is indeed so.

Example/Exercise 1.3627 Consider the oldest mathematician among chess
players and the oldest chess player among mathematicians. Could they be two
different persons?

Definition 1.15 We say that a collection A1,A2,A3, … ,An is a partition P(A)
(Figure 1.10) of a set A iff

(i) A1 ∪ A2 ∪ A3 ∪ · · · ∪ An = A and
(ii) A1 ∩ A2 ∩ A3 ∩ · · ·An = ∅

A1

A2

A3

A4

A5

A6

A

Figure 1.10 Partition P(A)

27Shen, S., Vereshchagin, N. K., Naïve Set Theory, American Mathematical Society, 2002.
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Definition 1.16 Given two sets A and B, we say that the difference of A and
B, denoted A⧵B, and read “A minus B,” is the set of all elements x from  , such
that x is in A and x is not in B (Figure 1.11). We write

A ⧵ B = {x ∈  |x ∈ A & x ∉ B}

A B

A \ B

Figure 1.11

Example 1.37 Let A = {a, b, c, d, e, f , g} and B = {c, e, g, h, i, k}, then

A ⧵ B = {a, b, d, f } ◾

Example/Exercise 1.38 Prove the following:

(i) A⧵∅ = A
(ii) A⧵A = ∅

(iii) A ∩ (B ⧵ A) = ∅

Definition 1.17 Let A and B be sets. The symmetric difference of A and B,
denoted AΔB (Figure 1.12), is defined

AΔB = (A ⧵ B) ∪ (B ⧵ A)

A B

Figure 1.12 A ⧵ B

Example/Exercise 1.39 Convince yourself that

(i) AΔB = 0 iff A = B

(ii) AΔ∅ = A
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Example/Exercise 1.40 Show that

A Δ B = (A ∪ B) ⧵ (A ∩ B)

Definition 1.18 Let A be a subset of the universal set  . We define the com-
plement of A, denoted Ac, as the set of all elements x from  (Figure 1.13), such
that x is not in A:

Ac = {x ∈  |x ∉ A }

U

Ac

A

Figure 1.13 Ac

Example 1.41 Prove that A ⧵ B = A ∩ Bc. ◾

Proof The proof is easy. We need to show that ∀x if x ∈ A ⧵ B then x ∈ A ∩
Bc, and also that ∀x if x ∈ A ∩ Bc then x ∈ A ⧵ B.

So first, suppose we take any x ∈ A ⧵ B. That means that x ∈ A and x ∉ B,
which in turn implies x ∈ Bc. So, x ∈ A and x ∈ Bc, and therefore x ∈ A ∩ Bc.

Conversely, if x ∈ A ∩ Bc then x ∈ A and x ∈ Bc, that is, x ∈ A and x ∉ B and
thus x ∈ A ⧵ B. ◾

Example/Exercise 1.42 Let A, B ⊆  be any two subsets of the universal set.
Show that

A ⊆ B iff Bc ⊆ Ac

Example 1.43 Let A = [0, 1), B = (−1, 1), and C = (−2, 1].
Find

(i) Ac ∩ Bc ∩ Cc

(ii) (A ∩ B) ∪ C ∪ Bc
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Solution
(i) The complements of A,B, and C are as follows:

Ac = ([0, 10))c = (−∞, 0) ∪ [1,∞)

Bc = ((−1, 1))c = (−∞,−1] ∪ [1,∞)

Cc = ((−2, 1])c = (−∞,−2] ∪ (1,∞)

Then

Ac ∩ Bc ∩ Cc = ((−∞, 0) ∪ [1,∞)) ∩ ((−∞,−1] ∪ [1,∞)) ∩ ((−∞,−2] ∪ (1,∞))

= (−∞,−2] ∪ (1,∞)
(ii)

(A ∩ B) ∪ C ∪ Bc = ([0, 1) ∩ (−1, 1)) ∪ (−2, 1] ∪ (−∞,−1] ∪ [1,∞)

= [0, 1) ∪ (−2, 1] ∪ (−∞,−1] ∪ [1,∞)

= (−∞,−1] ∪ [0,∞) ◾

Theorem 1.7

(i) A ∩ ∅ = ∅
(ii) A ∪ ∅ = A

(iii) A ∩ Ac = ∅
(iv) A ∪ Ac = 

(v)  c = ∅
(vi) ∅c = 

Proof (i): Let A be any set. Suppose ∩ ∅ ≠ ∅, that is, suppose there exists
an x ∈ A ∩ ∅. By the definition of intersection, x ∈ A, and x ∈ ∅. But this is
impossible since ∅ has no elements by definition. Thus,

A ∩ ∅ = ∅

Now you should try to prove parts (ii)–(vi) of the theorem. ◾

Example/Exercise 1.44 Consider three sets A, B, and C. Is it possible that

A ∩ B ≠ ∅, A ∩ C = ∅ and (A ∩ B) ⧵ C = ∅?

Theorem 1.8 (Set identities) For all sets A, B and C.
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1.8.1
(i) A ∩ B = B ∩ A

(ii) A ∪ B = B ∪ A (Commutative Laws for intersection and union)
1.8.2

(i) A ∩ A = A

(ii) A ∪ A = A (Idempotent Laws)
1.8.3

(i) A ∩ (B ∩ C) = (A ∩ B) ∩ C

(ii) A ∪ (B ∪ C) = (A ∪ B) ∪ C (Associative Laws for intersection and
union)

1.8.4
(i) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)
(ii) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) (Distributive Laws)

1.8.5
A ∩=A

1.8.6
A ∪ = 

1.8.7
(i) A ∪ (A ∩ B) = A

(ii) A ∩ (A ∪ B) = A (Absorption Laws)
1.8.8

(i) (A ∩ B)c = Ac ∪ Bc

(ii) (A ∪ B)c = Ac ∩ Bc (DeMorgan’s Laws)

Example/Exercise 1.45 Prove 1.8.1–1.8.8 of Theorem 1.8.

Proof Remember, two sets A and B are equal iff A ⊆ B and B ⊆ A. Thus, in
each case, we need to show that any x, being an element of the set on the left-hand
side (LHS) of our equation is also an element of the set on the right-hand side
(RHS) of our equation, and vice versa. So,

1.8.4 (ii):

Suppose x ∈ A ∩ (B ∪ C). By the definition of intersection that means that x ∈ A
and x ∈ (B ∪ C). That gives us two possible cases.

Case 1: x ∈ A and x ∈ B, by the definition of union. Hence, x ∈ A and x ∈ B
implies that x ∈ A ∩ B, therefore,

x ∈ (A ∩ B) ∪ (A ∩ C)
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Case 2: x ∈ A and x ∈ C, again by the definition of union. Hence, x ∈ A
and x ∈ C implies that x ∈ A ∩ B, therefore, x ∈ (A ∩ C) ∪ (A ∩ B). From
Theorem 1.8.1 (ii), it follows that

x ∈ (A ∩ B) ∪ (A ∩ C)

In both cases, x ∈ (A ∩ B) ∪ (A ∩ C).
Hence, we have proved that

A ∩ (B ∪ C) ⊆ (A ∩ B) ∪ (A ∩ C) (*)

Suppose now that x ∈ (A ∩ B) ∪ (A ∩ C). By the definition of union that
means that either

x ∈ (A ∩ B) or x ∈ (A ∩ C)

So, again, we have two possibilities.

Case 1: x ∈ (A ∩ B). By the definition of intersection, this implies that

x ∈ A and x ∈ B

Well, x being an element of B, means that x is also an element of (B ∪ C).
We have that x ∈ A, and

x ∈ A and x ∈ (B ∪ C)

Therefore, by the definition of intersection,

x ∈ A ∩ (B ∪ C)

Now consider
Case 2: x ∈ (A ∩ C). By the definition of intersection, this implies that

x ∈ A and x ∈ C

Since x is an element of C, it also has to be an element of (B ∪ C). So, again,
we have that

x ∈ A and x ∈ (B ∪ C)

Therefore, by the definition of intersection,

x ∈ A ∩ (B ∪ C)
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In both cases, x ∈ A ∩ (B ∪ C). Hence, we proved that

(A ∩ B) ∪ (A ∩ C) ⊆ A ∩ (B ∪ C) (**)

Since both subset relations (*) and (**) have been proved, it follows by definition
of set equality that

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

as stated in Theorem 1.8.3 (ii).
Now you can prove Theorem 1.8.3 (i).

Proof 1.8.8 (i)

We need to prove that for every x

if x ∈ (A ∩ B)c then x ∈ Ac ∪ Bc

Suppose x ∈ (A ∩ B)c. By the definition of complement, x ∉ A ∩ B. But this
implies that x ∉ A or x ∉ B. Saying that x ∉ A means that x ∈ Ac. Similarly, if
x ∉ B, then x ∈ Bc. Hence, x ∈ Ac or x ∈ Bc and by the definition of union this
implies that

x ∈ Ac ∪ Bc

So, we have proved that
(A ∩ B)c ⊆ Ac ∪ Bc (*)

Let’s now consider the converse, that is, let’s show that for every x

if x ∈ Ac ∪ Bc then x ∈ (A ∩ B)c

Suppose that ∈ Ac ∪ Bc. By definition of union, it follows that x ∈ Ac or x ∈ Bc.
So we have to consider two cases.

Case 1: x ∈ Ac. Being an element of Ac means that x ∉ A, and therefore x
cannot be in A ∩ B either, that is

x ∉ A ∩ B

Well, since x ∉ A ∩ B, it is definitely true that

x ∈ (A ∩ B)c (**)



�

� �

�

36 SET THEORY

Case 2: x ∈ Bc would lead us, by the similar arguments, to the same conclusion
(**):

x ∈ (A ∩ B)c

Thus, we have also proved that

Ac ∪ Bc ⊆ (A ∩ B)c

By the definition of equality of sets, (*) and (**) imply that (A ∩ B)c = Ac ∪ Bc,
as was to be shown. ◾

Now you can prove Theorem 1.8.8(ii).

Example 1.46 (Generalized distributive property) Let Ai ∈  , i ∈ N, and
let B ∈  .28 Show that

B ∪ (∩n
i=1Ai) = ∩n

i=1(B ∪ Ai), ∀n ∈ N

Solution We will do the proof by the Method of Mathematical Induction:
First, we note that the statement is trivially true when n = 1. Theorem 1.8.4(b)

assures us that the claim is true for n = 2. We will assume that it is also true for
n = k. If we could prove that it is also true for n = k + 1, then the claim is true
for any n ∈ N. Consider

B ∪ (
k+1
∩

i=1
Ai) = B ∪ (

k
∩

i=1
Ai ∩ Ak+1)

= (B ∪ (
k
∩

i=1
Ai) ∩ Ak+1)

(Since we assumed that the claim is valid for n = k)

=
k
∩

i=1
(B ∪ Ai) ∩ (B ∩ Ak+1)

=
k+1
∩

i=1
(B ∪ Ai)

So, our proposition is true for n = k + 1 and thus,

B ∪ (
n
∩

i=1
Ai) =

n
∩

i=1
(B ∪ Ai) ∀n ∈ N ◾

28If you are unfamiliar with the “Proof by induction” method, you can skip this example until you have
studied Chapter 4.
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Example/Exercise 1.47 Let Ai ∈  , i ∈ N, and let B ∈  . Show that

B ∩ (
n
∪

i=1
Ai) =

n
∩

i=1
(B ∩ Ai), ∀n ∈ N

Example 1.48 Let A,B ⊆  be any two sets. Show that

(A ∩ B) ∪ (A ∩ Bc) = A

Solution

(A ∩ B) ∪ (A ∩ Bc) = A ∩ (B ∪ Bc)

= A ∩

= A

On the other hand,

A = A ∩

= A ∩ (B ∪ Bc)

= (A ∩ B) ∪ (A ∩ Bc)

◾

Example/Exercise 1.49 Let  = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} be the universal
set, and let A = {1, 3, 5, 8 }, B = {2, 3, 4, 5}, and C = {3, 4, 6, 7, 8}. Using these
sets, convince yourself that Theorems 1.8.4 and 1.8.8 are indeed true.

Example 1.50 Prove that the following statements are equivalent:

(i) A ⊆ B

(ii) A ∩ B = A

(iii) A ∪ B = B ◾

Proof To prove that (i) implies (ii), let’s assume that A ⊆ B. We need to estab-
lish that A ∩ B ⊆ A and that A ⊆ A ∩ B. But, since A ∩ B ⊆ A for all A and B, it
is sufficient to prove that A ⊆ A ∩ B. So, if x ∈ A, it follows from (i) that x ∈ B
and therefore x ∈ A ∩ B. Hence, A ⊆ A ∩ B.
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To prove that (ii) implies (iii), let’s assume that A ∩ B = A holds. Then,

A ∪ B = (A ∩ B) ∪ B = (A ∪ B) ∩ (B ∪ B)

= (A ∪ B) ∩ B = B

Finally, to prove that (iii) implies (i), we assume that A ∪ B = B holds. Then, since
A ⊆ A ∪ B for all A and B, it follows that A ⊆ B. ◾

Example 1.51 Let  = R, A = [0, 1), B = (−1, 1) and C = (−2, 1].29 Deter-
mine

(A ∩ B) ∪ (Ac ∩ Cc)

Solution
If A = [0, 1), then Ac = (−∞, 0) ∪ [1,∞).
If B = (−1, 1), then Bc = (−∞,−1] ∪ [1,∞).
If C = (−2, 1], then Cc = (−∞,−2] ∪ (1,∞).
So, we have

(A ∩ B) ∪ (Ac ∩ Cc) = ([0, 1) ∩ (−1, 1)) ∪ (((−∞, 0)

∪ [1,∞)) ∩ ((−∞,−2] ∪ (1,∞)))

= ([0, 1) ∩ (−1, 1)) ∪ ((−∞,−2) ∪ (1,∞))

= [0, 1) ∪ (−∞,−2] ∪ (1,∞)

= (−∞,−2] ∪ [0, 1) ∪ (1,∞) ◾

Example 1.52 (Generalized DeMorgan’s Law) Prove that for all n ∈ N, if
A1,A2,A3, … ,An are sets, then

(
n
∪

i=1
Ai)c =

n
∩

i=1
(Ai)c ◾

Proof 30 The formula is obviously true for n = 1. (Why?) Suppose it is also true
for n = k, that is, suppose

(
k
∪

i=1
Ai)c =

k+1
∩
i
(Ai)c

29We assume here that the reader is at least vaguely familiar with the properties of real numbers and she/he
won’t mind that we have not yet precisely defined the set R.
30Here, again, if you are not familiar with mathematical induction, you may skip this proof until you have
learned it in later chapters.
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We have to prove that it is also valid for k+ 1, that is

(
k+1
∪

i=1
Ai)c =

k+1
∩
i
(Ai)c

which would imply that our formula is valid for all n.
Recalling the properties of union and DeMorgan’s law for two sets, we get

(
k+1
∪

i=1
Ai)c = (

k
∪

i=1
Ai ∪ An)c

= (
k
∪

i=1
Ai)c∩(An)c

= (
k
∪

i=1
(Ai)c) ∩ (An)

=
k+1
∪

i=1
(Ai)c

Since the formula holds for k + 1, it holds for every n ∈ N. ◾

In a similar way, you can work out

Example/Exercise 1.53 Prove that for all n ∈ N, if A1,A2,A3, … ,An are sets,
then

(
n
∩

i=1
Ai)c =

n
∪

i=1
(Ai)c

Example 1.54 Let A,B,C ∈  be any three sets. Prove that

(A ∪ B)⧵C = (A⧵C) ∪ (B⧵C)

Solution

(A ∪ B) ⧵ C = (A ∪ B) ∩ Cc

= Cc ∩ (A ∪ B)

= (Cc ∩ A) ∪ (Cc ∩ B)

= (A ∩ Cc) ∪ (B ∩ Cc)

= (A ⧵ C) ∪ (B ⧵ C)
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On the other hand, we could have said:

(A ⧵ C) ∪ (B ⧵ C) = (A ∩ Cc) ∪ (B ∩ Cc)

= (A ∪ B) ∩ Cc

= (A ∪ B) ⧵ C

Thus, we have our proof. ◾

Example 1.55 Let A, B, C ∈  be any three sets. Prove that

C ⧵ (A ∩ B) = (C ⧵ A) ∪ (C ⧵ B)

Solution

C ⧵ (A ∩ B) = C ∩ (A ∩ B)c

= C ∩ (Ac ∪ Bc)

= (C ∩ Ac) ∪ (C ∩ Bc)

= (C ⧵ A) ∪ (C ⧵ B)

Similarly,

(C ⧵ A) ∪ (C ⧵ B) = (C ∩ Ac) ∪ (C ∩ Bc)

= C ∩ (Ac ∪ Bc)

= C ∩ (A ∩ B)c

= C ⧵ (A ∩ B)

which completes our proof. ◾

Example 1.56 Show that for any two sets A and B

Ac ⧵ Bc = B ⧵ A

Solution
Ac ⧵ Bc = Ac ∩ (Bc)c

= B ∩ Ac = B ⧵ A ◾

Example/Exercise 1.57 Prove that for any sets A,B,C ∈ 

A ⧵ B = A ⧵ (A ∩ B)

Example/Exercise 1.58 Show that for any sets Ai and C, the following is true.
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(i) C ⧵ (
n
∪

i=1
Ai) =

n
∩

i=1
(C ⧵ Ai)

(ii) C ⧵ (
n
∩

i=1
Ai) =

n
∪

i=1
(C ⧵ Ai)

Theorem 1.9 Let A,B ⊆  be any two sets. Then,

(i) A ⊆ B iff  ⧵ B ⊆  ⧵ A

(ii) A ⊆ B iff A ∩ ( ⧵ B) = ∅

Proof

(i) First, we prove that A ⊆ B implies that ∀x ∈  ⧵ B, x ∈  ⧵A. Let’s see:
Suppose x ∈  ⧵ B then x ∉ B. On the other hand, since A ⊆ B if y ∈ A,

then y ∈ B too, which implies that for any y ∉ B, y ∉ A. Thus, x ∉ B implies
that x ∉ A and therefore x ∈ U⧵A. Hence,  ⧵ B ⊆  ⧵ A.

Suppose  ⧵ B ⊆  ⧵ A. We need to prove that it implies A ⊆ B. Well,
if x ∈  ⧵ B then x ∈  ⧵ A, which furthermore implies that if x ∉ B then
x ∉ A, and since  ⧵ B ⊆  ⧵ A, it follows that A ⊆ B as claimed.

(ii) First, we prove that A ⊆ B implies A ∩ ( ⧵ B) = ∅:
Suppose A ⊆ B, then for any x ∈ A is true that x ∈ B. Therefore, x ∉

 ⧵B, and thus
A ∩ ( ⧵ B) = ∅.

Next, let A ∩ ( ⧵ B) = ∅. We need to prove that it implies that A ⊆ B.
Consider

A ∩ ( ⧵ B) = A ∩ ( ∩ Bc)

= (A ∩ ) ∩ Bc

= (A ∩ Bc)

= A ⧵ B

= ∅

Thus, A ⊆ B, as claimed. ◾

1.5 THE POWER SET

Definition 1.19 (Power set) Given a set X, the set of all subsets of the set X,
is called the power set of X, that is

(X) = {A|A ⊆ X}
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The existence of a power set is postulated by

Axiom 9 For any set X, there is a set consisting of all the subsets of X.

It is easy to convince yourself that the following theorem is true.

Theorem 1.10 For any set X, ∅, X ∈ (X).

Example 1.59 Let X = {a, b, c}, then (X) = { ∅, {a}, {b}, {c}, {a, b}, {a, c},
{b, c}, {a, b, c}}.

Note that the empty set and the set itself are considered members of this set
of sets. ◾

Example 1.60

(i) What is the power set of the empty set?
(ii) What is the power set of {∅}?

Solution
(i) Since ∅ is a subset of any set, set ∅ has only one subset, namely itself.

Therefore,
(∅) = {∅}

(ii) By the definition of the power set, the set {∅} has exactly two subsets: ∅,
and the set {∅} itself, that is

({∅}) = {∅, {∅}}
◾

Example 1.61 Let Sn+1 = Sn ∪ (Sn), with S0 = ∅. Then, we can recursively
construct the sequence of sets as follows:

S0 = ∅

S1 = S0 ∪ (S0) = ∅ ∪ (∅) = ∅ ∪ {∅} = {∅}

S2 = S1 ∪ (S1) = {∅} ∪ ({∅})

= {∅} ∪ {∅, {∅}} = {∅, {∅}}

S3 = S2 ∪ (S2) = {∅, {∅}} ∪ ( { ∅, {∅}})

= {∅, {∅}} ∪ {∅, {∅}, {{∅}}, {∅, {∅}}}

= {∅, {∅}, {{∅}}, {∅, {∅}}}

and so on. ◾
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Theorem 1.11 Let A and B be any two sets. If A ⊆ B, then (A) ⊆ (B).

Proof We have to show that ∀X ∈ (A),X ∈ (B).
First note that if A ⊆ B, then every subset of A is also a subset of B. Suppose

that X ∈ (A). Now recall that, by the definition of power set, X being an element
of (A), has to be a subset of A. But A ⊆ B, so X ⊆ B too. It follows immediately
that X ∈ (B), which was to be shown. Thus,

(A) ⊆ (B) ◾

The next question we may ask is: Given a set X with n elements, how do we
find the number of subsets of X? The following theorem answers this question.

Theorem 1.12 Let X be any set such that |X| = n, n ∈ N. Then,|(X)| = 2|X| = 2n.
For the proof, we need the following lemma.

Lemma 1.1 Let X be any set, and let x0 ∈ X be any element of X, then there
are as many subsets of X that contain x0 as there are subsets of X that do not
contain x0.

We reason as follows: suppose we take a set Xn = {x1, x2, x3, … , xn} and
Xn−1 = {x1, x2, x3, … , xn−1}, that is, a set with one, say x0, fewer elements than
Xn. Evidently, Xn−1 ⊆ Xn. Then, we argue, if we collect all the subsets of Xn−1
together with those same subsets, where each one of them is adjoined with x0 ∈
Xn, we will get twice as many subsets of Xn than of Xn−1. Formally, and more
precisely, the proof of the lemma goes as follows:

Proof of Lemma Let’s express the set X as a union of two subsets A = ∪iAi and
B = ∪jBj, that is, the union of collections of subsets Ai and Bj.

X = A ∪ B

= (∪iAi) ∪ (∪jBj)

such that x0 ∈ Ai, ∀ i, and x0 ∉ Bj, ∀j. In other words, every Ai is a subset of
X, and every Bj is a subset of X ⧵ {x0}.

Observe that the number of subsets in collection A is the same as the number
of subsets in collection B. Indeed, every Bj subsets of X that do not contain x0 can
be matched up with Bj ∪ {x0} = Aj. Thus, there are as many subsets of X that
contain x0 as there are those that do not. ◾

Now, we proceed with the proof of Theorem 1.12.
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Proof 31 First note that Examples 1.59 and 1.60 in particular are in accord with
the theorem. We need to prove that the theorem holds for any set X.

Consider the statement of the theorem when n = 0. We ask if a set with zero
elements, that is, the empty set, has 20 = 1 subset? The answer is yes, as we have
shown in Example 1.60. So our theorem is true in the case n = 0. Let’s assume
that it is also true for n = k, that is, we assume that any set with k elements has
2k subsets. If we could show that the theorem is also true for n = k + 1, then it
is true for any n.

Let X be a set with k + 1 elements, and let x0 ∈ X. From the previous lemma,
we have learned that there is an equal number of subsets of X that contain x0,
and those that do not. What does that mean? Well – and this is the crux of the
matter – that tells us there are twice as many subsets of X as there are subsets of
X ⧵{x0}. But |X ⧵{x0}| = k, that is, X⧵{x0} has k elements by our assumption,
hence the number of subsets of X⧵{x0} = 2k, that is

|(X⧵{x0})| = 2k

as our inductive hypothesis required.
It follows that the number of subsets of X equals twice the number of subsets

of X⧵{x0}, that is |(X)| = 2 ⋅ 2k = 22k+1

as was to be shown.
In other words, the important conclusion is

|(X)| = 2|X| ◾

At this point, it may be intuitively clear to everyone that the power set of any
finite set, regardless of its size, is again a finite set. For infinite sets, of course,
power sets are infinite.

1.6 THE CARTESIAN PRODUCT

Definition 1.20 Let n ∈ N, and let x1, x2, … , xn be a collection of n, not nec-
essarily distinct, elements. We say that (x1, x2, … , xn) is an ordered n-tuple of
n elements, in which we distinguish the first, the second, and so on elements.

Definition 1.21 Two ordered n-tuples (x1, … , xn) and (y1, … , yn) are said to
be equal iff

x1 = y1, x2 = y2, … , xn = yn

31If you are not familiar with the technique of mathematical induction, you can skip this proof in the first
reading. After mathematical induction is introduced in the following chapters, you can come back to the
proof.
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Definition 1.22 (Cartesian product) Let A and B be two sets. The Cartesian
product of A and B, denoted A × B, is the set

A × B = {(a, b)| a ∈ A, b ∈ B}

Given n sets A1,A2, … ,An, then the n-fold Cartesian product of
A1,A2, … ,An is

A1 × A2 × · · · × An =
n∏
i

Ai

= {(a1, a2, … , an)|a1 ∈ A1, a2 ∈ A2, … , an ∈ An}

Example 1.62 Let A = {a, b, c} and B = {1, 2, 3, } then

A × B = {(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3), (c, 1), (c, 2), (c, 3)}
◾

Theorem 1.13 Let A1,A2, … ,An be sets, where n ∈ N, and n ≥ 2, then the
Cartesian product A1 × A2 × · · · × An is a set defined recursively by

A1 × A2 × · · · × An = A1 × ( A2 × A3 · · · × An)

Example/Exercise 1.63 Convince yourself that

A × B ≠ B × A

Example/Exercise 1.64 Prove that A × ∅ = ∅ × A = ∅.
From the aforementioned discussion, we conclude that if A and B are (finite)

sets, and if one of them is empty, then the Cartesian product A × B is empty.
In other words, if neither A nor B is empty, then there is a ∈ A and b ∈ B so
that (a, b) ∈ A × B. The rather difficult question is : Can we generalize this to
infinite sets, that is, can we say that the Cartesian product of a nonempty family
of nonempty sets is nonempty?

Example/Exercise 1.65 Suppose that A ≠ ∅, and that B ≠ ∅. Show that

A × B = B × A, iff A = B

Theorem 1.14 If A,B, and C are sets, then

(i) (A ∪ B) × C = (A × C) ∪ (B × C)
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(ii) (A ∩ B) × C = (A × C) ∩ (B × C)
(iii) (A ⧵ B) × C = (A × C) ⧵ (B × C)

Definition 1.23 If A = B, then we write A × A = A2.

Example 1.66 R × R = R2 is our familiar 2-dimensional Euclidean plane. ◾

1.7 THE SETS N, Z, AND Q

The sets of numbers N, Z, and Q have been mentioned several times already, but
now we want to address some more interesting things about them.

The set of natural numbers is a collection

N = {1, 2, 3, …}

As was mentioned before, one will often find that some authors, especially those
working in mathematical logic and computer science, prefer to include “0” (zero)
in the set N, which is mostly for convenience. Consider this:

Suppose we came up with numerals such as this:

l, ll, lll, llll, …

Such a sequence can be considered a counterpart of natural numbers 1, 2, 3, 4, …
constructed with only one object “l.” On the other hand, if we wanted to begin
with zero, construction of our sequence would require two objects “0” and “l”
and we would have

0, 0l, 0ll, 0lll, …

representing 0, 1, 2, 3, . . . . So, it is debatable whether it is advantageous to con-
sider zero as a natural number. I hope the reader won’t find this confusing, since
it will be evident from the very context of every argument what is meant by the
set N.

Also, you will often hear that the set N is called the set of counting numbers,
or even the set of nonnegative integers. However, natural numbers is the name
most commonly used, and it is historically the most appropriate one.

More importantly, note that whether you are expressing the set of natural num-
bers with zero or as N = {1, 2, 3, …}, the amount of information contained in
this notation is astounding. Namely, just a few elements of this set, that is, “1,”
“2,” “3,” with the ellipsis “… ” following them, suffice to “completely describe”
the whole (infinite) set. In other words, our mind is able to grasp the enormous
amount of information contained in N by recognizing just a few “examples” and
that very significant “dot, dot, dot.” We feel that we know exactly what kind of
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numbers we are talking about when discussing the set N. But – what is a (natu-
ral) number? Well, assuming that we know what we mean by the terms “number,”
“1,” and “successor,” we can formally define a set of natural numbers by using
axioms due to the Italian mathematician Giuseppe Peano.32

P1.: 1 is a natural number, that is, 1 ∈ N (i.e., N ≠ ∅).33

P2.: ∀ n ∈ N, ∃ n′ = S(n) ∈ N, called the successor of n.
P3.: n′ ≠ 1, that is, there exists no number whose successor is 1.
P4.: If n′ = m′ then n = m, that is, there is no number or there is exactly one

number whose successor is the given number.

More generally, we can state Peano’s axioms, and this time including “zero,”
as follows:

Let X be a set such that:

(P1′): There is a special element 0X ∈ X.
(P2′): There is a function S ∶ X → X such that the following holds: For every

x, y ∈ X, if x′ = S(x) = S(y) = y′then x = y.
(P3′): For every x ∈ X, 0X ≠ S(x).
(P4′): For every A ⊆ X, if 0X ∈ A and S(x) ∈ A whenever x ∈ A, then

A = X.

If we take X to be the set N with 0X = 0, that is, X = N = { 0, 1, 2, 3, …} and
defining the function S by n → n + 1, we see that N satisfies axioms P1′ − P4′.

Theorem 1.15 The set N with a special element 0 and the successor function
S defined by n → n + 1 satisfies Peano’s axioms.

Definition 1.24 (Russell’s hereditary principle) A property is said to be
“hereditary” in the natural number series if, whenever it belongs to a number n
it also belongs to n + 1. Similarly, a set is said to be “hereditary” if, whenever n
is an element of a set, so is n + 1.34

Speaking of sets in everyday parlance, we usually think of them as a collection
of objects, whatever the “objects” are. In mathematics, however, we can equally
well speak (and we often do) of “pure sets” – sets whose members are other pure
sets, like the empty set itself. Can we use those to construct other familiar sets?

At this point, you may recall Axioms 0–6 and revisit our discussion on pages
19 and 20, and in particular Example 1.13, where we listed a sequence of sets:

32Giuseppe Peano (1858–1932).
33One can equally well take zero to be the element of N and start with it as the first natural number.
34Bertrand Russell, Introduction to Mathematical Philosophy.
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∅, {∅}, {∅, {∅}}, {{∅}, {{∅}}}, … . One way to construct natural numbers
could be as follows:

𝟎 = ∅ = {}

𝟏 = {0} = {{}}

𝟐 = {0, 1} = {0, {0}} = {{}, {{}}}

𝟑 = {0, 1, 2} = {0, {0}, {0, {0}}} = {{}, {{}}, {{}, {{}}}}

⋮ ⋮

n = {0, 1, 2, … , n − 2, n − 1} = {0, 1, 2, … , n − 2} ∪ {n − 1}

= (n − 1) ∪ {n − 1}

On the other hand, with the empty set ∅ = { } and a successor function35

defined by
S(x) = {x}

we can have

𝟎 = ∅ = {}

𝟏 = S(0) = {∅} = {{}}

𝟐 = S(1) = {1} = {{{}}}

𝟑 = S(2) = {2} = {{{{}}}}

and so on.
We can say that each natural number n is equal to the set of the natural number

preceding it, 1, 2, 3, … , n − 1.
Alternatively, defining zero as

𝟎 = {{}}

and the successor of x as
S(x) = x ∪ {x}

we have

S(∅) = ∅ ∪ {∅}

S(S(∅)) = S(∅) ∪ {S(∅)}

= ∅ ∪ {∅} ∪ {∅ ∪ {∅}}

35Here, for the sake of simplicity, we will designate a generic set by a lowercase x.
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S(S(S(∅)) = S(∅) ∪ {S(∅)} ∪ {S(∅) ∪ {S(∅)} }

= ∅ ∪ {∅} ∪ {∅ ∪ {∅}} ∪ {∅ ∪ {∅} ∪ {∅ ∪ {∅}}}

and so on (cf. Example 1.61).
Thus, our newly designed natural numbers look like this:

𝟎 = {{}}

𝟏 = {{}, 𝟎} = {{}, {{}}}

𝟐 = {{}, 𝟎, 𝟏}

and so on. (In those examples, I purposely wrote natural numbers bold-faced to
emphasize their “set-theoretical nature.”)

Now, let me show you two things that can cause you some headache.
First, suppose we ask: Is it true that S(x) has one element more than the set

x? (One would expect that this is indeed true. After all, that’s exactly how we
constructed S(x).) Well, let’s see. Since S(x) = x ∪ {x}, certainly x ⊆ S(x). Now,
S(x) obviously contains x, which is also an element of {x}. But –and now comes
the caveat – in order for this element (i.e., {x}) to be an extra element, we need x ∉
x (?!). On the other hand, if x ∈ x then {x} is a subset of x, and then x ∪ {x} = x.

Second, as you might have anticipated, the three different ways (defined ear-
lier) of identifying natural numbers with pure sets are not the only ones – there
are infinitely many. What one would expect though is that they are all equivalent.
Well, let’s see. Consider only two versions:

(i)

𝟎 = ∅

𝟏 = {∅}

𝟐 = {{∅}}

𝟑 = {{{∅}}}

⋮

and

(ii)

𝟎 = ∅

𝟏 = {∅}

𝟐 = {∅, {∅}}

𝟑 = {∅, {∅}, {∅, {∅}}}

⋮
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Obviously, the 3 from (i) and the 3 from (ii) are not the same. From the
set-theoretic standpoint {{{∅}}} ≠ {∅, {∅}, {∅, {∅}}}. So, the question
“What is a number?” is not as trivial as some might have thought.

Let’s introduce another concept, which will prove to be very useful later.

Definition 1.25 We say that a set I is inductive if∅ ∈ I, and if for all x ∈ I the
successor S(x) ∈ I.

Do inductive sets exist? We will assume that there exists at least one induc-
tive set.

Theorem 1.16 If two sets I and J are the inductive sets, then I ∩ J is also
inductive.

Proof Following Definition 1.24, we need to show that

(i) ∅ ∈ I ∩ J, and
(ii) whenever x ∈ I ∩ J, then S(x) ∈ I ∩ J too

For (i): Since both I and J are inductive, ∅ ∈ I and ∅ ∈ J, thus ∅ ∈ I ∩ J.
For (ii): If x ∈ I ∩ J, then x ∈ I and x ∈ J. But since I and J are inductive,

S(x) ∈ I and S(x) ∈ J. Hence, S(x) ∈ I ∩ J. ◾

As a simple exercise, you can now prove.

Theorem 1.17 The set N is inductive.

In more general terms, we state

Principle of Induction:

Let X be some set with 0X ∈ X such that for all properties P, if 0X has property
P, and the successor function S(x) has the same property P whenever x ∈ X has
it, then every element of X has property P.

This becomes “obvious” if we take X = N and 0X = 0. We will have to say
more about the principle of induction later but for now let’s illustrate it with

Theorem 1.18 Let X be the set that satisfies Peano’s axioms. Then, for every
x ∈ X different from 0X there exists y ∈ X such that x = S(y).

Proof Let A = {x ∈ X|x = 0X or x = S(y), y ∈ X}.
By definition, 0X ∈ A. On the other hand, if x is an element of A then, again by

definition, there has to be a y ∈ X, such that x = S(y) ∈ A and therefore S(x) =
S(S(y)) ∈ A. Thus, A = X. In other words, for every x ≠ 0X there exists y ∈ X,
such that x = S(y).
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We continue by “describing” a set of integers as a collection

Z = {… ,−3,−2,−1, 0, 1, 2, 3, …}

where, as in the case of natural numbers, a few elements of the set, together with
“… ,” capture much of the relevant information about the set Z. (The symbol Z,
which Cantor used to denote integers, comes from the German word die Zahl= a
number, Zahlen= to number.)

At this point, we want to list the rules of arithmetic, the “axioms of the set Z,”
which are generally well known but rarely justified in introductory textbooks.
Also, these rules, as well as many of the “everybody-knows-it” facts, point to
some more advanced algebraic structures that will be studied later.

Consider the set Z with two operations defined on it: addition “+,” and multi-
plication “⋅,” so that from now on we will be working with the structure (Z; +, ⋅).
Hence our rules of arithmetic are as follows:

1. a + b ∈ Z, ∀ a, b ∈ Z
2. a ⋅ b ∈ Z, ∀ a, b ∈ Z
3. a + (b + c) = (a + b) + c, ∀ a, b, c ∈ Z
4. a ⋅ (b ⋅ c) = (a ⋅ b) ⋅ c, ∀ a, b, c ∈ Z
5. a + b = b + a, ∀ a, b ∈ Z
6. a ⋅ b = b ⋅ a, ∀ a, b ∈ Z
7. a ⋅ (b + c ) = a ⋅ b + a ⋅ c, ∀ a, b, c ∈ Z
8. ∃ 0 ∈ Z, s.t. 0 + a = a + 0 = a,∀ a ∈ Z
9. ∃ 1 ∈ Z, s.t. 1 ⋅ a = a ⋅ 1 = a, ∀ a ∈ Z

10. ∃ (− a) ∈ Z, s.t. a + (−a) = (−a) + a = 0, ∀ a ∈ Z ◾

Example 1.67 Prove that (i) the additive and (ii) the multiplicative identities
are unique. ◾

Proof (i) Suppose there are two additive identity, 0 and 0′, then according to
rule (7)

0 + 0′ = 0′ since 0 is an additive identity. But

0 + 0′ = 0 since 0′ is an additive identity too. Therefore

0 = 0 + 0′ = 0′

Now you should be able to prove part (ii). ◾

Example 1.68 Prove that

a ⋅ 0 = 0, ∀a ∈ Z ◾
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Proof
a ⋅ 0 = a ⋅ (b + (−b)) = a ⋅ b − a ⋅ b = 0 ◾

Example/Exercise 1.69 Show that if a ∈ Z, then

(−1) a = −a

Example/Exercise 1.70 Show that if a, b ∈ Z, then

(i) (−a)b = a(−b) = −ab
(ii) (−a)(−b) = ab

Example/Exercise 1.71 Show that ∀a, b, c ∈ Z, and a ≠ 0, if ab = bc, then

a = c

Example/Exercise 1.72 Show that if a, b ∈ Z, and a ⋅ b = 0, then either a = 0
or b = 0.

Here is another property of the set Z by the name of the

Trichotomy Law

∀a, b ∈ Z, only one of the following holds

(i) a < b
(ii) a = b

(iii) a > b

Example 1.73 Prove that for any a ∈ Z, a > 0 iff − a < 0. ◾

Proof Suppose a > 0, then

a + (−a) > 0 + (−a) > (−a)

which implies
0 > (−a) ◾

Example/Exercise 1.74 Prove that for any a, b ∈ Z, such that a > 0 and b < 0,

a ⋅ b < 0

Example 1.75 Prove that for any a, b ∈ Z, such that a < 0 and b < 0,

a ⋅ b > 0 ◾



�

� �

�

THE SETS N, Z, AND Q 53

Proof Suppose a < 0 and b < 0, then −a > 0 and − b > 0. Hence

(−a) ⋅ (−b) = a ⋅ b > 0 ◾

Example 1.76 Let a, b ∈ Z, and a > 0, b > 0. Prove that a < b iff
a2 < b2. ◾

Proof Suppose a > 0 and b > 0, and, furthermore, suppose that a < b, then,
since a < b,

a2 < a ⋅ b < b2

as was to be shown.
Now suppose that a2 < b2. Then,

a ⋅ a < a ⋅ b < b ⋅ b

Therefore, a < b, as claimed. ◾

Example/Exercise 1.77 Let a, b ∈ Z, and let a < 0 and b < 0. Show that
a < b iff b2 < a2.

Theorem 1.19 There are no integers between 0 and 1.

Proof Suppose there is a set

A = {a ∈ Z|0 < a < 1}

Suppose, furthermore, that A ≠ ∅. Then there is a least element a0 ∈ A. Now, a0
being an element of A means that 0 < a0 < 1, which implies that 0 < a2

0 < a0.
But then it follows that a2

0 ∈ A, and therefore a0 is not the least element of A.
Hence A = ∅, that is, there are no elements between 0 and 1 in Z. ◾

So far, we haven’t discussed the numbers of the form a∕b, where a, b ∈ Z and
b ≠ 0. Those are ostensibly fully “legitimate” numbers and we have to include
them in our family of numbers.

In order to describe those numbers, called rational numbers Q, we cannot
proceed in the same way as before, that is, we cannot give a few examples that
would be sufficient to encapsulate all properties of the set Q. We need to refer to
set theory. So we define the set of all rational numbers Q as follows.

Definition 1.26 We say that the set

Q =
{

x
||||x = p

q
, p, q ∈ Z, q ≠ 0

}
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is the set of rational numbers. In other words, we say a number x is rational if
and only if x = p∕q for some integers p and q, with q ≠ 0. In addition, to make
things simpler, occasionally we request that p and q be relatively prime, that is,
that there is no number that divides p and q at the same time (except, of course the
number 1). By doing this, we are simply collecting all the numbers expressible
as a quotient of two integers reduced to simplest form.

Observe that, based on everything we have discussed so far,

N ⊆ Z ⊆ Q

which makes the following theorem obvious.

Theorem 1.20 Every integer is a rational number.

Proof It’s easy – you should do it! ◾

Theorem 1.21 The sum of two rational numbers is rational.

Proof Suppose x, y ∈ Q. Then, by Definition 1.26, we know that x = a∕b and
y = c∕d for some a, b, c, d ∈ Z, with b ≠ 0, d ≠ 0. Then,

x + y = a
b
+ c

d
= ad + cb

bd

ad + cb is the sum of two integers, therefore an integer, say, p, and bd as the
product of two integers is also an integer, say, q. So we have a quotient of two
integers p∕q, with q ≠ 0. Hence, x + y is a rational number. ◾

Theorem 1.22 The set Q is dense, that is, between any two rational numbers
there is at least another one, that is

∀a, b ∈ Q, (a < b),∃ c ∈ Q, such that a < c < b

Thus, there are infinitely many.

Proof If a, b ∈ Q, then a = m∕n and b = p∕q. Consider

c = a + b
2

=
mq + mp

2nq

c, itself a rational number, is obviously an arithmetic mean of two rational num-
bers a and b, that is

a < c < b

as was to be shown. ◾

I want to show you some less obvious, and rather intriguing, properties of sets
N, Z, and Q. First, recall that
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(i) Set N has a least element but not a greatest.
(ii) Set Z has neither a least nor a greatest element.

(iii) Both sets N and Z are infinite.

Also, N ⊆ Z ⊆ Q, and since N and Z are infinite sets, Q has to be infinite too.
But how “big” are the infinities of N and Z and Q? In other words, if N ⊆ Z ⊆

Q, how do we compare those “three infinities?” Recall, in Definition 1.8, we said
that two sets A and B are equivalent if and only if their cardinal numbers are the
same, that is, they have the same number of elements. We need to examine the
“number” of elements in infinite sets.

We will follow Cantor and call the cardinal number of N, ℵ0 (aleph zero), that
is, we say |N| = ℵ0

Now, what about |Z| and |Q|, and what about ℵ0 itself? To address those ques-
tions, and some others pertaining to set R, we need to introduce briefly one of the
most important concepts in the whole of mathematics – the concept of a function.
We will devote much more time to functions later (see Chapter 4), but for now
we will just state two (equivalent) definitions.

Definition 1.27 Given two sets X and Y , we say that a function f from set
X to set Y is a map that assigns to every element of X a unique element of Y
(Figure 1.14). We write this as follows:

f ∶ X → Y

a

b

c

d

f (b)

f (c)f (a)

f (d)

X
Y

f

Figure 1.14 Function f ∶ X → Y .

Set X is called the domain of f and Y the codomain of f.36

36Some finesses in the definitions of domain, codomain, and range will be addressed in Chapter 4.



�

� �

�

56 SET THEORY

Sometimes, it is convenient to simply write

X
f
−−→ Y

If there is no need to explicitly name the function, we abbreviate the notation
by writing

x → f (x)

For example, if x ∈ R, x → x2 would indicate the function f ∶ R → R that maps
every real number to its square (Figure 1.15).

x x2

f

R R

Figure 1.15 Function x → x2

Definition 1.28 A function f from set X into set Y, is a set of all ordered pairs
(x, y), where for all x ∈ X there exists a unique y ∈ Y , such that (x, y) ∈ f , that is

f = {(x, y)|x ∈ X, y ∈ Y}

f (x) ∈ Y is said to be an image of x ∈ X. We say that set X is the domain of f , set
Y is the codomain, and the set of all images of elements of X is the range of f .

Definition 1.29 Given a function f ∶ X → Y , and A ⊆ X, we say that the set

f [A] = {f (x)|x ∈ A}

is the image of A under action of f .
Consequently, if B ⊆ Y we call

f −1[B] = {x ∈ X|f (x) ∈ B}

the preimage of B under action of f .

Definition 1.30 Two functions are said to be equal if and only if they have
the same domain and assign the same value to every member of their common
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domain. Symbolically,

f = g ↔ (∀x ∈ X, f (x) = g(x))

Definition 1.31 The function f ∶ X → Y is said to be one-to-one, (𝟏−𝟏, or an
injection) if and only if

∀x1, x2 ∈ X, if f (x1) = f (x2) then x1 = x2

or equivalently

∀ x1, x2 ∈ X, if x1 ≠ x2 then f (x1) ≠ f (x2)

Often injections are designated with the special arrow “↣” (Figure 1.16), so for
an injection we write

f ∶ X ↣ Y

1

2

3

a = f(2)

c = f (3)

d

e

X

b = f (1)

Y

f

Figure 1.16 One-to-one function

Example/Exercise 1.78 37 Let f ∶ X ↣ Y be an injection, and let A,B ⊆ X.
Show that

(i) f [A ∩ B] = f [A] ∩ f [B]
(ii) f [A ∪ B] = f [A] ∪ f [B]

37For this example and the others involving functions, you may want to consult Chapter 4.
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Definition 1.32 We say that a function f ∶ X → Y is onto (or a surjection,
Figure 1.17) iff

∀y ∈ Y ,∃ x ∈ X, such that f (x) = y

(Sometimes, we use “↠” to indicate surjection.)

1

2

3

4

5

6

7

a

b

c

d

X Y

f

Figure 1.17 Surjection

Definition 1.33 A function f ∶ X → Y , that is both one-to-one and onto, we
call a bijection or a one-to-one correspondence (Figure 1.18) between sets X
and Y (sometimes, we use “↣” to indicate bijection).

1

2

3

4

5

a

b

c

d

e

f

X Y

Figure 1.18 Bijection (one-to-one correspondence)
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Example 1.79 Now we can restate Definition 1.6 and say: The cardinal number
of a finite set A is a natural number n if there exists a bijection between A and the
set {x ∈ N |1 ≤ x ≤ n}, that is

{xf : A ∈ N 1 ≤ x ≤ n} ◾

Similarly, the concept of the equivalence of sets can be restated more precisely:

Definition 1.34 Given two sets X and Y , we say that they have the same cardi-
nality and we write |X| = |Y|, iff there is a one-to-one correspondence between
X and Y, that is, there exists a function f ∶ X → Y , which is one-to-one and onto.
Recall, in Definition 1.10, we call sets with the same cardinality equivalent and
we write X ∼ Y.

Definition 1.35 We say that set X has more elements than set Y , if there
exists a function f ∶ X → Y which is onto, but no function g ∶ X → Y which is
one-to-one.

Theorem 1.23 If X and Y are any two sets, such that there exist one-to-one

mappings X
f
−−→ Y and Y

g
−−→X, then |X| = |Y|.

Definition 1.36 Let f ∶ X → Y be a bijection. We say that

f−1 ∶ Y → X

is the inverse function of f , if the following is true:

f −1(y) = x iff f (x) = y

Definition 1.37 We say that h = g ∘ f ∶ X → Z is a composition of functions
f and g, that is

X
f
−−→ Y

g
−−→ Z

if
h(x) = g(f (x))

Theorem 1.24 Let f ∶ X → Y and g ∶ Y → Z be two bijections. Then, g ∘ f is
also a bijection.

Proof See Chapter 4. ◾
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Definition 1.38

A set A is said to be finite iff there is a bijection from a set S = {1, 2, 3, … , n}
to A (see Example 1.79).

A set A is said to be infinite if there is no such bijection.

Example 1.80 Prove that if two finite sets X and Y have the same number of
elements, that is |X| = |Y| = n, then there exists a function h ∶ X → Y , which is
one-to-one and onto.

Solution According to Definition 1.38, a set A is said to be finite if there exists
n ∈ N, such that, given a set S = {1, 2, 3, … , n}, there exists some function

f ∶ S → A

which is one-to-one and onto. Accordingly, for our sets X and Y, there exist func-
tions

f ∶ S → X and g ∶ S → Y

both one-to-one and onto. Since f is a bijection, by Definition 1.34, it follows that
f −1 ∶ X → S is a bijection too. Hence,

g ∘ f−1 ∶ X → Y

is a bijection too. If we take h = g ∘ f −1 we have our proof. ◾

The proofs of the following two, very important, theorems we leave for
Chapter 4.

Theorem 1.25 (Schröder–Bernstein) If A and B are any two sets, and if there
exist injections f ∶ A → B and g ∶ B → A, then there exists a bijection between
A and B, and thus |A| = |B|.38

Theorem 1.26 If A and B are any two sets, then exactly one of the following is
true:

(i) |A| = |B|
(ii) |A| < |B|

(iii) |A| > |B|
38Ernst Schröder (1841–1902), German mathematician. Felix Bernstein (1878–1956), German mathemati-
cian.
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Theorem 1.27 Let A,B and C be any three finite sets. Then,

(i) |A ∪ B| = |A| + |B| − |A ∩ B|
(ii) |A ∪ B ∪ C| = |A| + |B| + |C| − |A ∩ B| − |A ∩ C| − |B ∩ C|

+ |A ∩ B ∩ C|
(iii) |A × B| = |A| ⋅ |B|

Proof

(i) Note that |A ∪ B| = |A ⧵ B| + |A ∩ B| + |B ⧵ A| (1.5)

On the other hand, observe that

|A| = |A ⧵ B| + |A ∩ B| (1.6)

and |B| = |B ⧵ A| + |A ∩ B| (1.7)

Combining (1.5)–(1.7), we get the desired result.
(ii) For this proof, we will use (i) and the following identities:

(A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C) and (A ∩ B) ∩ (B ∩ C) = A ∩ B ∩ C

So we have

|A ∪ B ∪ C| = |A ∪ B| + |C| − |(A ∩ C) ∪ (B ∩ C)|
= |A| + |B| − |A ∩ B| + |C| − |A ∩ C|
− |B ∩ C| + | A ∩ B ∩ C|

= |A| + |B| + |C| − |A ∩ B| − |A ∩ C| + |A ∩ B ∩ C|
(iii) From the definition of the Cartesian product of two finite sets A and B, for

any (a, b) ∈ A × B, there are |A| possibilities for a, and |B| possibilities for
b, and therefore |A × B| = |A| ⋅ |B|. ◾

Theorem 1.28 If A is a finite set with cardinality k, and x ∉ A, then|A ∪ {x}| = k + 1.

Proof First note, that if A = ∅ then |A| = |∅| = 0, therefore|A ∪ {x}| = 1 = 0 + 1.
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If A ≠ ∅ then A ∼ Nk, where Nk = {1, 2, … , k}. It follows that

A ∪ {x} ∼ Nk ∪ {k + 1} = Nk+1. Thus |A ∪ {x}| = k + 1 ◾

Things are quite different for infinite sets, as the following example illustrates.

Example 1.81 With N = {1, 2, 3, …} show that |N ∪ {0}| = ℵ0

Solution Consider a function f ∶ (N ∪ {0}) → N defined by

f (x) = x + 1

It is easy to see that f is a bijection.
Consequently, |N ∪ {0}| = ℵ0. ◾

The next theorem is almost trivial now. However, for its proof we need to
invoke the technique of mathematical induction (see Chapter 3).39

Theorem 1.29 For every k ∈ N, every subset A of Nk is finite.

Proof Let k ∈ N be any natural number and let A ⊆ Nk. If k = 1 then A = ∅ or
A = Nk and thus A is finite. Suppose that all the subsets of Nk are finite for some
number k. Now, let A ⊆ Nk+1, then A ⧵ {k + 1} ⊆ Nk which, by our induction
hypothesis, is finite. Thus, A is finite. Suppose not. Then, we could write

A = (A ⧵ {k + 1}) ∪ {k + 1}

which is finite by the previous theorem. We conclude that for every k ∈ N, every
subset of Nk is finite. ◾

Definition 1.39 We say that A is less than or equinumerous with B, if there is
a one-to-one function f ∶ A → B, and we write A ≼ B.

Definition 1.40 A set A is less than or equal to B in “size” if it is equinumerous
with at least one subset of B, that is

|A | ≤ |B | ↔ ( ∃C)(C ⊆ B & |A| = |C|)
Theorem 1.30 For any sets A and B if A ⊆ B, then A ≼ B.

39You can skip this proof until you have read Section 3.4.
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Proof Let C ⊆ B be a set, such that |A| = |C|. Then, there has to be a bijection
f ∶ A → C, which means that f is an injection from A to B. On the other hand, if
there exists an injection f ∶ A → B, then the image f [A] is a subset of B, that is,
f [A] ⊆ B. However, |A| = |f [A]|, and thus, A ≼ B. ◾

Now we return to our sets N, Z, and Q.

Definition 1.41 A set is called countably infinite or denumerable (some-
times, just countable)40 iff it has the same cardinality as the set of natural num-
bers N. If that is not the case, we say that a set is uncountable.

Example 1.82 Let Neven be the set of all even natural numbers

Neven = {2, 4, 6, 8, …} ◾

Obviously, Neven ⊆ N, so what is the cardinal number of Neven? In order to
make the answer rather obvious let’s take N = {1, 2, 3, …} and then establish a
one-to-one correspondence between N and Neven in the following way:

N = {1, 2, 3, 4, …}

↕ ↕ ↕ ↕ …

Neven = {2, 4, 6, 8, …}

that is, we have obtained the following correspondence: 1↔2, 2↔4, 3↔6, 4↔8,
and so on.

In other words, we are considering a function f ∶ N → Neven defined by

f (n) = 2n, ∀n ∈ N

Obviously, the described function is one-to-one and onto, therefore,

|N| = |Neven|
We came to the surprising and unexpected conclusion that, regardless of the fact
that Neven is a proper subset of N, indeed just a “half” of N, they still have the
same cardinality, that is, they are equivalent.

This shocking result, discovered by Cantor, disputed one of Euclid’s famous
axioms that seemed so “self-evident” for centuries: “The whole is greater than
its part.” Euclid also stated “[t]hings that coincide with one another are equal to

40Sometimes, it is said that a set is countable, if it is either finite or denumerable.
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one another.” Obviously, “things” had to be reconsidered.
Reminding yourself of Definition 1.39, you may now try

Example/Exercise 1.83 Decide whether the following statements are true:

(i) 2Z ≼ Z
(ii) 2Z ∼ Z

With the concept of equivalence, and Cantor’s aforementioned discovery, we
are now in a position to define an infinite set yet another way:

Definition 1.42 A set X is infinite if there exists at least one proper subset of X
with the same cardinality as X, that is, a set is infinite if it is equivalent to at least
one of its proper subsets.

Example/Exercise 1.84 Convince yourself that a set of all natural numbers and
a set of all squares of natural numbers have the same cardinality.

Theorem 1.31 (Cantor) Let X be any set. Then, |X| < |(x)|.
Proof Let f ∶ X → (X) be a function defined by f (x) = {x}, that is, to every
x ∈ X we associate a singleton {x}. It is easy to see that f is an injection. Indeed,
if f (x1) = f (x2) that is, {x1} = {x2}, then x1 = x2. Suppose that there also exists
a bijection g ∶ X → (X). Define

Y = {x ∈ X|x ∉ g(x)}

Since g is a bijection, there exists a unique x ∈ X, such that Y = g(x), and we ask:
Is x ∈ g(x) or not? Suppose x ∈ g(x), then by definition of Y, x ∉ Y; conversely,
if x ∉ g(x) then x ∈ Y . But that contradicts our request that Y = g(x). Thus the
proof. Needless to say, the similarity with Russell’s paradox is evident. You may
want to compare this theorem with Theorem 1.12. ◾

Corollary Set (N) is uncountable.

Example/Exercise 1.85 Convince yourself that

(i) ℵ0 + ℵ0 = ℵ0

(ii) 2ℵ0 = ℵ0
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Example 1.86 Show that Z is countable.

Solution As the definition of countability requires, we need to find a function
f ∶ N → Z that is one-to-one and onto. Let’s rearrange the elements of the set
Z this way:

Z = {0, 1,−1, 2,−2, 3,−3, 4,−4, …}

The pattern is self-evident, and we are sure that all integers have been “collected.”
Now, as before, we establish a correspondence

N =
{

1, 2, 3, 4, 5, 6, 7, …
}

↕ ↕ ↕ ↕ ↕ ↕ ↕ …

Z =
{

0, 1,−1, 2, −2, 3, −3, …
}

It is clear from the aforementioned scheme that no integer has been missed or
counted twice in the process of matching it with a corresponding natural number.
The “function” defined by the aforementioned pattern is obviously the function
f ∶ N → Z given by

f (n) =

{
n

2
if n is an even natural number

− n−1
2

if n is an odd natural number

The function is one-to-one and onto, telling us that |Z| = |N| = ℵ0. ◾

Example/Exercise 1.87 Find another rearrangement of the elements of Z and
N to establish a bijection between these two sets and prove that |Z| = ℵ0

Example/Exercise 1.88 Try to find another explicit formula for the function
f ∶ N → Z that would produce the result obtained in the previous example.

For the next exercise, we will need the following:

Theorem 1.32 Given three sets A,B, and C, such that |A| = |B| and |B| = |C|,
then |A| = |C|.
Proof Suppose that there exist two bijections

f ∶ A → B and g ∶ B → C

telling us that |A| = |B| and |B| = |C|. Consider the composition of f and g

g ∘ f ∶ A → C

By Theorem 1.24, g ∘ f is a bijection too, thus |A| = |C|. ◾
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Exercise 1.89 Suppose that A ∼ B and C ∼ D. Show that (A × C) ∼ (B × D).

Solution Since A ∼ B and C ∼ D, there exist respective bijections f ∶ A → B
and g ∶ C → D. Define the function h ∶ (A × C) → (B × D) by

h(a, c) = (f (a), g(c)), a ∈ A, c ∈ C

As constructed above, h is evidently a bijection, hence (A × C) ∼ (B × D).

Example/Exercise 1.90 Show that |2Z| = ℵ0.

From all that has been said so far, it becomes evident why we define a set as
infinite if it could be made equivalent to a proper subset of itself. And vice versa:
a set is said to be finite, if it could not be made equivalent to at least one of its
subsets.

A natural question one could ask at this point is: What about the cardinality
of the set of rational numbers? Recall that N ⊆ Z ⊆ Q. It is conceivable, then,
that Q is much “bigger” than N. Also, remember we proved in Theorem 1.22
that the set Q is dense. We can rephrase this by saying that in the ordering of
rational numbers in terms of size, there is no next-larger rational number to any
given number. So, it is definitely nontrivial to ask about larger infinities. In other
words, all the sets we discussed so far have been countably infinite, that is, all
of them have been of the “size” of ℵ0. Now, considering the density of set Q,
one could expect the “size” of Q to be much larger than ℵ0. However, the next
theorem points to a different conclusion.

Theorem 1.33 The set of all positive rational numbers Q+ is countable.

Proof We would like to construct a “reasonable” function from N to Q+,
and, hopefully, make it a bijection. Consider the following diagram suggested by
Cantor:

𝟏 ∕ 𝟏 𝟏 ∕ 𝟐 𝟏 ∕ 𝟑 𝟏 ∕ 𝟒 𝟏 ∕ 𝟓 𝟏 ∕ 𝟔 𝟏 ∕ 𝟕 …

𝟐 ∕ 𝟏 2∕2 𝟐 ∕ 𝟑 2∕4 𝟐 ∕ 𝟓 2∕6 2∕7 …

𝟑 ∕ 𝟏 𝟑 ∕ 𝟐 3∕3 𝟑 ∕ 𝟒 𝟑 ∕ 𝟓 3∕6 𝟑 ∕ 𝟕 …

𝟒 ∕ 𝟏 4∕2 𝟒 ∕ 𝟑 4∕4 𝟒 ∕ 𝟓 4∕6 𝟒 ∕ 𝟕 …

. . . . . . .

. . . . . . .

If we reduce each fraction to its lowest form and remove any repetition (i.e.,
we keep only the bold-faced numbers), we indeed obtain the set of all positive
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rational numbers Q+. We can now establish a one-to-one correspondence between
the natural numbers and the positive rational numbers in the following way:

1 ↔ 1∕1, 2 ↔ 1∕2, 3 ↔ 2∕1, 4 ↔ 3∕1, 5 ↔ 1∕3, 6 ↔ 1∕4,

7 ↔ 2∕3, 8 ↔ 3∕2, 9 ↔ 4∕1, 10 ↔ 5∕1, …

Note that all the elements of Q+ have been “accounted for” exactly once, and
each one of them has been matched to one and only one natural number. Such
a one-to-one correspondence is indeed well defined, and, consequently, we con-
clude that |N| = |Q+|. ◾

Now try to prove

Theorem 1.34 The set of all rational numbers is countable, that is, |Q| = |N|.
Hint: Consider the fact that |Q+| = |Q−|, and that for any set A, A ∪ A = A.

More generally, we have

Theorem 1.35 Any subset of a countable set is countable.

Proof Let X be a set such that |X| = |N|, that is, X is countable. Let Y ⊆
X. Y could be finite or infinite. If it is finite, there is nothing to prove – Y is
countable by definition. So, let Y be an infinite set. We would like to find a
one-to-one correspondence between N and Y, that is, we are looking for a function
f ∶ N → Y , such that f is one-to-one and onto.

Now, considering that X is countable, we can arrange the elements of X as a
sequence

x1, x2, x3, …

Since Y ⊆ X, this sequence must contain all the elements of Y . We search among
all the xi’s for the elements of Y , and arrange them in the order of occurrence as

f (1), f (2), f (3), …

In other words, ∀ xi ∈ X, ∃ f (i) ∈ Y . Since all the elements x1, x2, x3, … are dis-
tinct, the function f is one-to-one. Now, since every f (i) is found by sequentially
searching through all of x1, x2, x3, … , and is constructed as an image of a natural
number, f is also onto. Therefore, f is a bijection from N to Y , which proves that
Y is countable. ◾

Theorem 1.36 Let A0,A1,A2, … be a sequence of countable sets. Then the
union

A =
∞
∪

i=1
Ai = A0 ∪ A1 ∪ A2 ∪ · · ·

is also a countable set.
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Proof Assuming that every Ai = {ai
0, a

i
1, a

i
2, … , ai

n, …} ≠ ∅, we can find an
onto function

𝜋i ∶ N → Ai

such that for every i
𝜋i(n) = ai

n

Again, following Cantor, we can construct a table:

A0

A1

A2 a0
2

a0
1

a0
0 

a2
2

a2
1

a2
0 

a1
2

a1
1

a1
0 :

:

:

… … … …

... ...

... ...

... ...

... ...

Collecting the elements on the diagonals, we obtain the elements of the union
fully enumerated:

A = {a0
0, a

1
0, a

0
1, a

2
0, a

1
1, a

0
2, a

2
0, …}

and the one-to-one correspondence 𝜋i(n) between A and N is evident:

A = { a0
0, a1

0, a0
1, a2

0, a1
1, a0

2, …}

↕ ↕ ↕ ↕ ↕ ↕ ↕ …

N = { 1, 2, 3, 4, 5, 6, …} ◾

Corollary The set of all finite subsets of a countable set is countable.

Example 1.91 Let A and B be two countable sets. Show that A ∪ B is count-
able.

Solution Since A and B are countable, we can express them as

A = {a1, a2, a3, … } and B = {b1, b2, b3, … }

Let’s now define a function f ∶ N → A ∪ B by the following diagram:

1
↓
a1

2
↓
b1

3
↓
a2

4
↓
b2

…

Obviously, the function is one-to-one and onto, thus, A ∪ B is countable. ◾
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Example 1.92 Another way to prove that a set of rational numbers is countable
goes as follows: Let

Ai =
{

q
||||q = z

i
, z ∈ Z, i ∈ N

}

Since Ai is obviously countable and Q = ∪∞i Ai, by Theorems 1.35 and 1.36, the
set Q is countable too. ◾

As a good exercise, you should now prove Theorems 1.37–1.39.

Theorem 1.37 If Y is a countable set, and if there exists an injection f ∶ X → Y ,
then X is also countable.

Theorem 1.38 If X is a countable set, and there exists a surjection f ∶ X → Y ,
then Y is also countable.

Theorem 1.39 Every two countably infinite sets are equivalent.

Theorem 1.40 N × N is countable.

Proof It suffices to show that |N × N| = |N|, that is, to construct a bijection
(N × N) → N.

One way to visualize it would be to count by following the arrows:

(1, 1) (1, 2) (1, 3) (1, 4)

(2, 1) (2, 2) (2, 3) (2, 4)

(3, 1)

(n, 1) (n, 4)(n, 3)(n, 2)

(3, 2) (3, 3) (3, 4)

…

…

…………

…………

…



�

� �

�

70 SET THEORY

The other way to do it would be to arrange N × N as an infinite rectangular array
of ordered pairs of natural numbers:

(1, 1) (1, 2) (1, 3) (1, 4) …

(2, 1) (2, 2) (2, 3) (2, 4) …

(3, 1) (3, 2) (3, 3) (3, 4) …

⋮ ⋮ ⋮ ⋮

(n, 1) (n, 2) (n, 3) (n, 4) …

⋮ ⋮ ⋮ ⋮

Thus, we have constructed a countable set of countable sets, that is

A1 = {(1, 1) (1, 2) (1, 3) (1, 4) …}

A2 = {(2, 1) (2, 2) (2, 3) (2, 4) …}

A3 = {(3, 1) (3, 2) (3, 3) (3, 4) …}

⋮

An = {(n, 1) (n, 2) (n, 3) (n, 4) …}

⋮

This is exactly the structure we have encountered in Theorem 1.36, so we con-
clude that N × N is a countable set.

Alternatively, we could have said: since (n,m) from our aforementioned list is
clearly the mth element of An, why not consider a function

f ∶ N × N → N

defined by f (n,m) = 2n 3m ⋅ f is obviously an injection, hence, by Theorem 1.37,
we conclude again that N × N is countable. ◾

Consequently, the following theorems hold:

Theorem 1.41 If A and B are countable sets, then A × B is countable.

Theorem 1.42 Q ×Q is a countable set.

Theorem 1.43 N × N × N is a countable set.

More generally,

Theorem 1.44 The Cartesian product of a finite number of countable sets is
countable.
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1.8 THE SET R – REAL NUMBERS I

A natural question one may ask at this point is: Does there exist any “larger” set
of numbers after the set Q? After all, we did say that N ⊆ Z ⊆ Q, and we did
talk about how “big” and dense the set Q is. But again, how big is “big?” If a set
is infinite, can one construct a set with greater cardinality? We start this section,
predictably, with Cantor’s answer:

Now that we have established the fact that, regardless of how “big” Q is
(and, remember, still equinumerous to N), we can always find a bigger one. The
inevitable question is whether Q is axiomatically rich enough to accommodate
everything we want to do mathematically. The answer, of course, is no, it is not.
As many a reader may well remember the classic example from high school
algebra courses, the solutions of a simple quadratic equation x2 = 2, x1,2 = ±

√
2

cannot be found in Q, that is,
√

2 is not a rational number; it is irrational. So
in order to adhere to the spirit of Plato41 and elude his harsh judgment: He is
unworthy of the name of man who does not know that the diagonal of a square
is incommensurable with its sides – we prove the following, well-known

Theorem 1.45
√

2 is not a rational number.

Proof First, recall Definition 1.26, where we defined rational numbers as

Q =
{

x
||||x = p

q
, p, q ∈ Z, q ≠ 0

}
Without loss of generality, let’s take p and q to be relatively prime.

Suppose that, contrary to the statement of the theorem,
√

2 is a rational num-
ber, that is, suppose √

2 ∈ Q

Then, there exist p, q ∈ Z with q ≠ 0, such that√
2 =

p

q
(1.8)

Squaring both sides of (1.8) we get

2 =
p2

q2
(1.9)

Or, after multiplying both sides by q2

2q2 = p2 (1.10)

41Plato (427–347 bc).
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Equation (1.10) implies that p2 is an even integer, so p has to be even too! (Why?)
Let’s express this fact by writing

p = 2k, k ∈ Z (1.11)

Substituting (1.11) into (1.10), we get

2q2 = 4k2 (1.12)

or
q2 = 2k2 (1.12′)

which tells us that q2 is even, and therefore q is even too. As in the case of p, we
express the fact that q is an even integer by writing it as

q = 2l, l ∈ Z (1.13)

Substituting (1.11) and (1.13) into (1.8) gives√
2 =

p

q
= 2k

2l

which contradicts our assumption that p and q are relatively prime. Hence, our
assumption was wrong; therefore, the theorem is true. ◾

Example/Exercise 1.93 Show that
√

3 ∉ Q
(Hint: Start, as usual, assuming that√

3 =
p

q
∈ Q, q, p ∈ Z, q ≠ 0

and from 3q2 = p2, consider the cases when q is an even number and when q is
an odd number.)

Evidently, in addition to the numbers that we have encountered so far (natural
numbers, integers, and rational numbers), there exists another set of numbers
called irrational numbers I, that is, the numbers that cannot be found in any of
the previously studied sets N, Z, and Q. The set that contains all of them we call
the set of real numbers R. We have the following structure:

I|
N ⊆ Z ⊆ Q ⊆ R
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or
Q ∪ I = R

An astute reader would now expect a formal definition of the set R, with all the
axioms precisely laid down in order to fully understand all the intricacies of R.
However, because of the complexities of such a formalism, some additional, more
advanced concepts are needed for a full and rigorous definition of the structure.
So, we will postpone the full formal definition for later and will now introduce
a rather “heuristic” definition and some properties of R, which, we hope, will
suffice for at least an intuitive appreciation of the richness and importance R.

We are about to venture deeper into the land of Cantor, “a paradise from which
no one shall drive us.”

Without proof, we state

Theorem 1.46 There is a one-to-one correspondence between the set R and the
points on the number line.

Theorem 1.47 The set R and the set of points in the open interval (0, 1) are
equivalent.

Proof All we need to do is to find an appropriate bijection f ∶ (0, 1)→ R and
we have the proof. Any bijection (0, 1) → R that is not defined at 0 and 1 will do.
Let’s try a function defined by

f (x) = 1 − 2x
x2 − x

(*)

f is certainly not defined at 0 and 1. Is it a bijection? Let’s see. Take x1, x2 ∈ (0, 1)
and suppose that f (x1) = f (x2), that is

1 − 2x1

x2
1 − x1

=
1 − 2x2

x2
2 − x2

Then,
(1 − 2x1)(x2

2 − x2) = (1 − 2x2)(x2
1 − x1)

or
(x1 − x2)(x1 + x2 − 2x1x2 − 1) = 0

If we could prove that x1 = x2, then our function is one-to-one. x1 = x2 if

x1 + x2 − 2x1x2 − 1 ≠ 0

Suppose that is not the case, that is, suppose

x1 + x2 − 2x1x2 − 1 = 0
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then, with little algebraic reshuffling, we get

−x1 − x2 + x1x2 + 1 = −x1x2

or
(x1 − 1)(x2 − 1) = −x1x2 (**)

Since x1, x2 ∈ (0, 1), that is, 0 < x1 < 1 and 0 < x2 < 1, it would follow that
the LHS of (**) implies

(x1 − 1)(x2 − 1) > 0

while the RHS implies
−x1x2 < 0

which, of course, is impossible. We conclude that x1 + x2 − 2x1x2 − 1 ≠ 0 indeed.
Therefore, x1 = x2 and our function f is one-to-one. Next, we need to show that
f is also onto, that is, that for every y ∈ R, there exists an x ∈ (0, 1), such that
f (x) = y. From (∗) it follows that one possible x ∈ (0, 1) is

x =
y − 2 +

√
y2 + 4

2y

with y ∈ R, y ≠ 0.
Hence,

f (x) = 1 − 2x
x2 − x

=
1 − 2

(
y−2+

√
y2+4

2y

)
(

y−2+
√

y2+4

2y

)2

−
(

y−2+
√

y2+4

2y

)
=

y(8 − 4
√

y2 + 4)

8 − 4
√

y2 + 4
= y

Hence, our function is one-to-one and onto, that is, f ∶ (0, 1)→ R is a bijection
and therefore |(0, 1)| = |R|. ◾

Example 1.94 If you find the aforementioned theorem too technical, or too
complicated to be convincing, consider the statement: “There is the same number
of points on a line segment 1 cm long as on one that is 1 km long.” Here is the
“proof”:
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A B

C D

O

Figure 1.19

As you can see, to every point on segment AB there corresponds one and only
one point on segment CD, regardless of the difference in their lengths. So, a bijec-
tion between the points of segment AB and segment CD is evident. ◾

If you are at least somewhat familiar with trigonometric functions, the follow-
ing example is also a good “visual” proof of the equivalence of “short” and “long”
segments.

Example 1.95 The mapping ( −𝜋
2
, 𝜋

2
) → R defined by

f (x) = tan x

is clearly a bijection (Figure 1.20).

π/2−π/2

Figure 1.20 ◾
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Example/Exercise 1.96 Prove that |[0, 1]| = |[0, 1)|.
Example/Exercise 1.97 Prove that |(0, 1)| = |(a, b)|, ∀ a, b ∈ R (see Theorem
1.47).

Theorem 1.48 The set R is dense, that is, between any two real numbers there is
another one; therefore, there are infinitely many. You ought to recall that a similar
statement has been made regarding rational numbers (cf. Theorem 1.22). Here,
however, we are talking about an even “higher” density. Nevertheless, proof of
this theorem should not be difficult for you.

Theorem 1.49 (Cantor) The set R is uncountable.

Proof Consider a set of all real numbers between 0 and 1. Is this set count-
able or not? Suppose it is countable. In that case, these numbers have a decimal
representation and we can list them all as follows:

0. a11a12a13 … a1n …
0. a21a22a23 … a2n …
0. a31a32a33 … a3n …

⋮
0. an1an2an3 … ann …

⋮

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(*)

Note that every decimal digit in (*) has two indices; the first one indicating which
member of the sequence it belongs to (i.e., which row in the aforementioned
sequence), and the second indicating which decimal place the digit is in (e.g.,
let’s say that 0.4758… is the number in the third row, then 4 = a31, 7 = a32,
5 = a33, 8 = a34, and so on).

With a construction like this, we should be able to associate to every number
in (*) one and only one element from N, that is, we should be able to “count”
them. For example,

1 ↔ 0. a11a12a13 … a1n …

2 ↔ 0. a21a22a23 … a2n …

3 ↔ 0. a31a32a33 … a3n …

⋮

n ↔ 0. an1an2an3 … ann …

⋮
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Well, no. We cannot. Regardless of the construction of the sequence (*) of real
numbers between 0 and 1, there are still numbers in this interval that are not
contained in the list (*). Consider this: suppose we choose a decimal number

d = 0. a11a22a33 …

such that aii ≠ aii, that is, a11 ≠ a11, a22 ≠ a22, a33 ≠ a33, and so on.
We can do this very easily. Say we first check a11 in (*). If it is different from

1 we put a11 = 1, but if it is equal to 1 we put a11 = 2. Then we check a22 and
do the same: if a22 ≠ 1, then we write a22 = 1, and if a22 = 1, we write a22 = 2.
We continue this process for all aii in our sequence (*). Of course, this is not the
only way one can construct

d = 0. a11a22a33 …

In general, we can reason the following way: in the case that ann = 0, we have
nine choices to make ann different. In the case that ann ≠ 0, we still have eight
choices for ann. Hence, for every decimal digit, we have at least eight choices
and, therefore, we have infinitely many choices for the number d. But whatever
“technique” we use, note that the number d cannot be found in our sequence
(*), since it differs from the first number of (*) in the first decimal place. With
the second number of (*), it differs in the second decimal place, and so on. We
conclude that since the real number d is different from all the numbers in our
sequence (*), the sequence does not contain all the numbers between 0 and 1,
contrary to our starting assumption. Hence, the set of numbers between 0 and 1
is uncountable. Since (0, 1) ⊆ R, it follows that the set R is uncountable. ◾

This proof is known as Cantor’s diagonal argument. It turned out to be very
important in mathematics and logic. There have been various versions of diagonal
arguments, and the gist of it led to a number of very important results in mathe-
matics. We have already encountered some of them in Section 1.7. You can find
references to Cantor’s argument over and over again in many discourses in math-
ematics, physics, computer science, philosophy, and so on. The next ingenious
and witty example by Smullyan and Fitting42 goes something like this:

Example 1.98 Suppose there is a book with infinitely many pages: page 1,
page 2, page 3, and so on. Obviously, the set of pages is countable. Furthermore,
suppose that on each page there is a list, a set, of some natural numbers: on page
1 there is a set N1, on page 2 there is a set N2, on page 3 there is a set N3, …
on page n there is a set Nn, and so on. The question is : Is every natural number
listed in the book? The answer is no. There must be at least one set of natural

42R. M. Smullyan, M. Fitting, Set Theory and the Continuum Problem, Clarendon Press – Oxford, 1996.



�

� �

�

78 SET THEORY

numbers that is not listed in the book. In other words, there exists a set N, which
is different from every one of the sets: N1, … , Nn, … . Let’s see why.

First consider the number 1 – either 1 belongs to set N1 or it doesn’t. We include
it in N, only if it does not belong to N1. Thus, whatever future decisions we
make concerning the numbers 2, 3, … , n, … , we know that N ≠ N1 because,
only one of the two sets N and N1, contains 1 and the other doesn’t. Next, we
consider the number 2. We put it into N only if it does not belong to N2, and that
makes N ≠ N2 (since one of them contains 2 and the other doesn’t). We continue
the process for every natural number n. This way, we constructed N such that
for every n, N ≠ Nn. What we have shown is that, given any countably infinite
sequence N1,N2, … ,Nn, … of sets of natural numbers, there exists a set N of
natural numbers (namely, the set of all n such that n doesn’t belong to Nn) such
that N is different from each of the sets N1,N2, … ,Nn, … . This means that no
countable set of sets of natural numbers contains every set of natural numbers,
that is, the set of all sets of natural numbers is uncountable. ◾

You may find the following two examples also engaging.

Example 1.99 Let r1, r2, r3, … be any sequence of real numbers, and let
[a1, b1], [a2, b2], [a3, b3], … be a sequence of closed intervals where ai, bi ∈ R,
satisfying the following:

(i) ai < bi, ∀i

(ii) [ai, bi] ⊆ [aj, bj], ∀i > j

(iii) ri ∉ [ai, bi]

Because of (ii), [a1, b1] ∩ [a2, b2] ∩ [a3, b3] ∩ · · · ≠ ∅. So suppose

r ∈ [a1, b1] ∩ [a2, b2] ∩ [a3, b3] ∩ · · ·

Now, r cannot be one of r1, r2, r3, … because of (iii) and therefore

r ∉ [a1, b1] ∩ [a2, b2] ∩ [a3, b3] ∩ · · ·

Since the sequence r1, r2, r3, … was arbitrarily chosen, it follows that no count-
able set of real numbers contains all real numbers. ◾

Example/Exercise 1.100 Give another example of a real number not in the
list (*) on page 77, that is, construct another proof of the uncountability of real
numbers.

Example/Exercise 1.101 Prove that there are infinitely many possibilities to
choose from along the original diagonal in (*) to construct another real number.
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Although, generally, it is not easy to prove that a set is uncountable, fortunately,
the following theorem is not difficult.

Theorem 1.50 The set of all irrational numbers is uncountable.

Proof Recall the set R ⧵ Q = I is the set of irrational numbers.
Suppose now that the set I is countable. In that case, we could list all irrational

numbers in a sequence i1, i2, i3, … . On the other hand, since rational numbers are
countable, we can certainly list them as q1, q2, q3, … . Consequently, we could
construct the following list:

i1, q1, i2, q2, i3, q3, … (*)

Since R = Q ∪ I, the list (*) by construction should contain all real numbers and
be countable. But that is impossible since R is uncountable. On the other hand, as
we have established before, Q is countable. Hence, contrary to our supposition,
the set I of all irrational numbers must be uncountable. ◾

Theorem 1.51 Let A and B be two sets such that A ⊆ B. If A is uncountable,
then B is uncountable too.

Proof Suppose not, that is, suppose B is countable. A being uncountable, and
also a subset of the countable B, contradicts Theorem 1.35 thus B has to be
uncountable too. ◾

Example 1.102 If a set A is uncountable, is it equivalent to R?

Solution Of course not! Suppose we take A = (R). A is definitely uncount-
able, but at the same time |(R)| > |R|. ◾

Theorem 1.52 Let  = {f |f ∶ N → {0, 1}} be the set of all functions from N
to {0, 1}. Then, | | = |(N)|
Proof Let Φ ∶  → (N) be a function defined as follows:

∀f ∈  ,Φ(f ) = {x ∈ N | f (x) = 1}

We would like to show that Φ is a bijection. So, let’s take f1, f2 ∈  such that
f1 ≠ f2. It follows that there exists n ∈ N such that f1(n) ≠ f2(n). Suppose f1, f2
are such that f1(n) = 1 and f2(n) = 0. Then,

n ∈ {x ∈ N |f1(x) = 1} = Φ(f1)

and similarly
n ∉ {x ∈ N|f2(x) = 1} = Φ(f2)
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Thus,Φ(f1) ≠ Φ(f2), that is,Φ is a one-to-one function. Is it onto? Well, consider
a set A ∈ (N). Then A ⊆ N, and the characteristic function (see Chapter 4)

𝜒A ∶ N → {0, 1}

is obviously an element of  . Furthermore,

Φ(𝜒A) = {x ∈ N | 𝜒A(x) = 1} = A

Thus, Φ is onto. Consequently, | | = |(N)|. ◾

The following is also true.

Theorem 1.53 A set F = {f |f ∶ N → N} of all functions from N to N is
uncountable.

The mind of thee upon these lines of ours,
Till thou see through the nature of all things,
And how exists the interwoven frame

It has no bounds, no end, no limit,
And it matters not what part of the universe you are in;
Wherever you are, from the spot you take up,
It stretches to infinity in all directions. …

Titus Lucretius Carus43

What is that thing which does not give itself, and which if it were to give itself
would not exist? It is infinite!

Leonardo da Vinci44

1.9 A SHORT MUSING ON TRANSFINITE ARITHMETIC

The Hilbert Hotel

Let’s imagine an Infinity Hotel, also (appropriately) known as the Hilbert Hotel,
with infinitely many rooms (numbered 1, 2, 3, … and so on forever). As an infinite

43Titus Lucretius Carus (ca. 99–55 bc), De Rerum Natura.
44Leonardo da Vinci (1452–1519), Notebooks.
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number of guests (mathematicians [sic!] attending a mathematics convention)
occupy all rooms, the receptionist is convinced there are no vacancies and all
latecomers should be turned away. “Not so,” the manager exclaimed. When the
next VIP arrives, move the person from room 1 to room 2, the person from room
2 to room 3, the person from room 3 to room 4, etc. This leaves room 1 vacant
while everyone else is properly accommodated. In case more latecomers arrive the
manager repeats the process. So infinitely many newcomers are accommodated.
It turned out that infinitely many physicists came to the conference too, but the
manager is not worried at all. He keeps guest from room 1 in room 1 but moves
the guest from room 2 to room 4, the guest from room 3 to room 9, … , the guest
from room n to room n2 and so on forever. Obviously infinitely many rooms are
now ready to accommodate all the physicists. And, as you might have anticipated,
when in addition to all previous guests, infinitely many philosophers and infinitely
many rock concert fans arrive, all of them are accommodated by similar methods.
But this is not the end of the story. As is often in life, things turn unexpectedly odd.
The Infinity Hotel became so profitable and soon enough infinitely many infinity
hotels opened up: Hotel 1, Hotel 2, Hotel 3, … and so on forever. However,
one day all the guests from those hotels, for some strange reason decided they
wanted to move to the original Infinity Hotel. Our ingenious manager now has
to accommodate infinitely many guests from each of infinitely many hotels. Here
is what he does. Consider all prime numbers (there are infinitely many of them):
2, 3, 5, 7, 11, 13, … , and then do the following: put infinitely many guests from
Hotel 1 into rooms 2, 4, 8, 16, … 2, 4, 8, 16, … (i.e., 21, 22, 23, 24 ,…); those
from Hotel 2 into rooms 3, 9, 27, 81, … (i.e., 31, 32, 33, … etc.); those arriving
from Hotel 3 into rooms 5, 25, 125, 625, … (i.e., 51, 52, 53,… etc.). Continuing
this process manager is sure that while accommodating all the guests from all the
hotels no two persons will occupy the same room.

At the beginning of Section 1.8, we asked: How big is “big.” How do we
determine whether one set is “larger” than the other? Let’s think about this for
a moment. We have already established that any infinite subset of a set of natu-
ral numbers is countable. Can we prove that any infinite set contains a countable
subset? Let’s see. Take any infinite set X. We can always pick a nonempty (infi-
nite) countable subset A ⊆ X the following way: remove one element, say, a1
from X. Certainly, X ⧵ {a1} is still an infinite set. Let’s remove another element,
a2, which keeps X ⧵ {a1, a2} still infinite. We continue this process choosing
a3, a4, a4, … to be removed from X. Thus, we have extracted from X a count-
able set A = {a1, a2, a3, … , an, …} and X nevertheless remains to be an infinite
set. As you might have anticipated by now, we could continue with these argu-
ments further and, for instance, remove from A the set of all elements with even
indices, B = {a2, a4, a6, …} and A ⧵ B remains countably infinite. We conclude
that the cardinality of an infinite set does not change if we adjoin a countable set
to it. And certainly cardinality of an uncountable set won’t change if we extract
a countable subset from it. It is reasonable to wonder how come that all infinities
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are not the same? Also, recall that the sets we may want to study could have as
elements whole families of countable or uncountable elements. The following
few examples will make this more transparent.

Example 1.103 Consider the following set  = {N,Z,Q,R }. Observe that 
is a finite (thus countable) family of sets. No matter that all of its elements are
infinite sets themselves. ◾

Example 1.104 For each i ∈ N, let’s construct a family of sets Ni, where each
Ni is the set of all natural numbers divisible by i, that is, starting with N1 = N we
have

N2 = {2, 4, 6, … , 2n, …}

N3 = {3, 6, 9, … , 3n, …}

⋮

Ni = {i, 2i, 3i, … , ni, …}

⋮

Thus, we have obtained an infinite family of infinite countable sets

 = {N1,N2,N3, … ,Ni, …} ◾

Next is the example that we have encountered in a slightly different context
earlier. Recall that the set Q+ is a countable set (Theorem 1.33), and this time
let’s look at Cantor’s proof from the perspective of an infinite family of sets:

Example 1.105 Define

Q+
1 =

{1
1
,

1
2
,

1
3
, … ,

1
n
, …

}
Q+

2 =
{2

1
,

2
2
,

2
3
, … ,

2
n
, …

}
Q+

3 =
{3

1
,

3
2
,

3
3
, … ,

3
n
, …

}
⋮

Q+
m =

{m
1
,

m
2
,

m
3
, … ,

m
n
, …

}
⋮
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So we have obtained an infinite, countable family

 = {Q+
1 ,Q

+
2 ,Q

+
3 , … ,Q+

m, …}

whose elements are exactly the rows in Cantor’s diagram. ◾

Thus, questions about the “nature” of infinities, and indeed, how many “infini-
ties” there are, are inevitable.

Here is Cantor again:

Definition 1.43 (Cantor) A set A is greater than a set B if and only if B is
equivalent to some subset of A, but A is not equivalent to any subset of B.

Cantor also showed thatℵ0 is the smallest infinite cardinal number, and follow-
ing Cantor we have shown thatℵ > ℵ0. We have established the fact that there are
at least two different sorts of infinite sets, two different “kinds” of infinities, that
is, two different kinds of cardinal numbers. Let’s remind ourselves what Cantor
meant by the cardinal number of a set X:

… the general concept which by means of our active faculty of thought, arises from
the aggregate X when we make abstraction of the nature of its various elements x
and of the order in which they are given.

Now we ask: Is there a cardinal number greater thanℵ? Cantor’s answer is this:
For any set X, there exist sets larger than X, in particular (X). So, for instance|N| < |(N)|, thus we are prompted to consider the following:

ℵ0 = |N|
2ℵ0 = |(N)|

22ℵ0 = |((N))|
⋮

Consequently, we can naturally proceed and construct a hierarchy of transfinite
cardinals:

ℵ0 , 2ℵ0 , 22ℵ0 , 222ℵ0

, … (*)

Hence

Theorem 1.54 There is an infinite sequence of infinite cardinals

ℵ0 < ℵ1 < ℵ2 · · ·

where ℵ0 = |N|, ℵ1 = |(N)|, ℵ2 = |((N))|, and so on.
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Proof We have learned from Theorem 1.8.1 thatℵ0 < ℵ1. Next, considerℵ2. It
is obviously a cardinal number of the power set of the set (N). Thus, according
to Theorem 1.31, ℵ1 < ℵ2. So, we have established that

ℵ0 < ℵ1 < ℵ2 · · ·

There is no reason to stop at ℵ2, so in general for any n we have

ℵn−1 < ℵn = |(((… ((N)))) … )|
Hence, there is indeed a sequence of infinite cardinals

ℵ0 < ℵ1 < ℵ2 < · · · < ℵn < · · ·

which we recognize as our sequence (*). If you wish to “visualize” the aforemen-
tioned sequence, you may consider the following picture, but keep in mind, the
line pictured is not a real line (Figure 1.21).

0 1 2

Figure 1.21

◾

Where is the cardinal number of R in this sequence? It can be shown (cf.
Theorem 1.12) that the cardinal number of the reals

|R| = |(N)| = 2ℵ0

We conclude that the set of all real numbers R is equivalent to the set of all subsets
of natural numbers (N).

So, our sequence (*) is as expected

ℵ0, ℵ1, ℵ2, ℵ3, … (**)

assuming that there is no cardinal number between ℵ0 and 2ℵ0 , that is, no car-
dinal number greater than ℵ0 and less than 2ℵ0 . Well, can we assume this? And
why? Cantor said yes, 2ℵ0 = ℵ1 = c,45that is, we take |R| = ℵ1. However, he was
unsuccessful in proving it. This is what is known as the Continuum Hypothesis
(CH).

45Remember, we are assuming the Continuum Hypothesis, that is, c = ℵ1
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Let’s have some fun and reflect on the issue some more. It is important to keep
in mind that in the following lines, as in this whole section, we are just musing,
and by no means do we expect to give the proof of the hypothesis, or anything
even close to a definite answer. Some would suggest that the question of CH is
subjective, and the whole issue has to do with how strong a Platonist you (the
mathematician) are.

First, recall that the sets N and Q are countable and the set R is not. Also,
remember N ⊆ Q ⊆ R. Cantor conjectured that there is no set X such that it has
more elements than N and fewer elements than R, that is

∄X s.t. |N| < X < |R|
Remember (cf. Chapter 1.5), given a set A such that |A| = n, then|(A)| = 2|A| = 2n. Hence, there are more elements in (A) than in A.
Consequently, for given n = |A| there are 2n − (n + 1) sets having the number of
elements greater than n and less than 2n. In general, for any sets A and B if

|B| ≤ |A| ≤ |(B)|
then either A ∼ B or A ∼ (B). Translating this to alephs, we get to the general-
ized continuum hypothesis:

2ℵn = ℵn+1

Once we have “convinced” ourselves of this fact, it is natural to contemplate the
extension of this to sets N and R. Suppose there is a set X with more elements
than N and fewer than R. Then X should be such that

|N| < |X| < 2|N|
Now, 2|N| > |N| and (cf. Theorems 1.12, 1.31, and Definition 1.43) 2|N| is the
number of elements of R. Hence, 2|N| cannot be the cardinality of any set between
N and R. Everything said earlier is correct (except the last sentence – “Hence… ”
is kind of a stretch), but somehow your instinct might be telling you that some-
thing is still missing – our “proof” is not satisfying. No wonder many mathe-
maticians have unsuccessfully struggled with the problem for years. In 1931,
Kurt Gödel used the techniques of mathematical logic to show that Continuum
Hypothesis could not be disproved on the basis of available axioms.46 That, of
course, does not mean that it could be proved either. In 1963, Paul Cohen took it
one step further and showed that it was also impossible to prove the Continuum
Hypothesis. All efforts were unfruitful, because the assumptions of set theory,

46Zermelo–Fraenkel axioms.
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which Cantor and others used, were independent of the Hypothesis. Being aware
of Gödel’s work, Cohen concluded:

Set Theory with the assumption of the Continuum Hypothesis is consistent; Set The-
ory with the denial of Continuum Hypothesis is consistent.

So, what are we to make of all this? Obviously, we are venturing into the
territories beyond everyday experiences. In standard mathematics, saying that
you cannot prove that A = B but that you can prove that A ≠ B would sound
pretty odd. Here, however, we are talking “the other” mathematics. Simply put,
alephs are definitely different kinds of numbers (for lack of a better word), or
at least “numbers” that many of us have never thought about before, and conse-
quently every statement regarding them has to be pondered over with special care.
Before we continue with our “regular” mathematics, I cannot resist the tempta-
tion of showing you something I find extremely fascinating. What follows is again
mostly due to Cantor. The concepts that we will briefly touch upon are generally
uncontroversial nowadays. However, although the logical consistency of the the-
ory is indisputable, one might occasionally hear some dissonant voices regarding
the existence and the “reality” of infinities. I’ll let you make up your own mind.

Alfred North Whitehead, however, would say: “Our minds are finite, and yet even
in the circumstances of finitude we are surrounded by possibilities that are infinite,
and the purpose of life is to grasp as much as we can of that infinitude.”

With this encouragement in mind, we may continue a bit further. Mathemat-
ics – any mathematics – is about thinking, wouldn’t you agree? And thinking is
“due” to our mind (whatever that may be). So, let’s also agree, for starters at least,
that admitting that mathematics (as well as science and philosophy) has its limi-
tations does not imply that there are limitations of the universality of reason. (All
right, I concede that this is a rather big assumption, but let’s not dwell on it for the
time being.) Accordingly, here are some new realms that our mind can explore.

Recall what Cantor meant by the cardinal number: the cardinal number of a
set X is what X has in common with all the sets equivalent to X. We get cardi-
nal number(s) by simply counting: 1, 2, 3, … , ℵ0. In other words, the cardinal
number indicates how many members there are in a given set. Nothing is said
as to how they are ordered. That’s why, you may recall, he denoted the cardinal

number of a set X as X.47 It is worth repeating that the double bar indicates dou-
ble abstraction, first from the nature of the elements and second from their order.
Now, consider the sequence (**) on page 84. We start with 1 and then 2, and so

47This should not cause confusion with our notation |X|. See Definition 1.9.
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on until we reach the first transfinite cardinal, the second transfinite cardinal, and
so on. In other words, we have the sequence

1, 2, 3, … , ℵ0, ℵ1, ℵ2, ℵ3, … (***)

in which subscripts indicate the ordering by the size of transfinite cardinals.
We can lump them all in some set, the set of cardinals, but now we also dis-

tinguish which one is the first element, which one is the second, and so on. With
such ordering, we obtained the set of ordinal numbers. What are those? Strictly
speaking, every time when we count and use the expressions “first,” “second,”
“third,” and so on, we talk about ordering the elements in a set. Think about it
this way: We can use natural numbers to count (and that’s why some call them
“counting numbers”), and so on to answer the question of “how many” of a cer-
tain object we have: one, two, three, and so on, and in this case, we call them
cardinals. But if we want to answer the question “in which order” the objects are
arranged, and so on, which object is first, second, third, and so on, we call them
ordinals. Now comes the important part. Suppose we list the elements of the set
N in the following way:

1, 3, 5, 7, … , 2, 4, 6, …

that is, we first list all odd natural numbers and then we list all even natural num-
bers. We could picture this as in Figure 1.22.

1 3 5 7 9 2 4 6 8 10
(1)

Figure 1.22

Suppose now that we want to enumerate them. How could we do that? As you
already know, we would “exhaust” the whole of set N just to enumerate the odds,
and we would still be left with infinity many evens (i.e., ℵ0 of them) without
any means of counting them. The same problem would arise if we wanted to
first list all numbers, say, divisible by 3, and then those which leave remainder 1
after division by 3, and those that leave remainder 2 after division by 3, that is,
3, 6, 9, … , 1, 4, 7, … , 2, 5, 8, …

This would look something like in Figure 1.23.

3   6   9   1   4   7   2   5    8
(2)

Figure 1.23
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Obviously, we need some other symbol to take care of this “problem.” Cantor
introduced the symbol 𝜔 to account for the problem of emerging transfinites.
Let’s superimpose a “picture” of {1, 2, 3, 4, 5, … , n, …} on (1) in Figure 1.22:

The first transfinite ordinal 𝜔 corresponds to 2, 𝜔 + 1 to 4, and so on. So, how
many transfinite numbers are there? Let’s look at (2) again, but this time taking
into account the just acquired concept of the transfinite 𝜔. We get something like
Figure 1.24.

1 3 5 9 2n + 1 647 2

(3)

1 2 3 4 5 n ω ω + 1 ω + 2

Figure 1.24

Yet another way to look at this.
Consider “Zeno-like” running on the real line such that every “step” (every

number) is at half the distance of the previous one. That will look something
like this:

1 2 3 ω+1ω+2 2ω+3 ω ω · 2 + 1 ω · 2 + 2

3 6 9 1 4 7 2 5 8 

Figure 1.25

0 1 2 3 4...ω

Figure 1.26

Now, “superimpose” a copy of Figure 1.25 onto each of the spaces between
the points 0 and 1, 1 and 2, 2, and 3, and so on. That will look something like
Figure 1.27.
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0 1 2 3 4 … ω

1 2   3… ω
0 1 2 3 … ω

0   …      ω
0 … ω   ....

Figure 1.27

Repeating the process again we come to:

0 1 ω …  ω+1 … ω · 2 … ω · 3 … ω · 4 … ω2

Figure 1.28

Doing it one more time gives: Figure 1.29

0 ω ω+2 … ωω2 ω2 ω3

ω2 + 1 ω2 · 4

… ...  

1     2 …                                  … …

+

Figure 1.29

Repeating the process over and over again, we get the “final result” that would
look something like Figure 1.30:

1 2 30 ω ω+1 ω 2 ω2 ω3 ωωω 3 ω2 2

Figure 1.30

Of course, there is no reason to stop there, so the answer to the question of
how many ordinal numbers there are is: There are infinitely many of them! Well,
said Cantor, let’s collect them “all,” according to the following recipe: If 𝛼 is
an ordinal number, then we can always find the next ordinal 𝛼 + 1, and once
we obtain a definite sequence of increasing ordinals, then we can find the last
ordinal, called lim(𝛼), which is greater than all the 𝛼’s. Thus, the following series
of ordinals (which we tried to “visualize” earlier) is

1, 2, … , 𝜔
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𝜔 + 1, 𝜔 + 2, …

𝜔 ⋅ 2, 𝜔 ⋅ 2 + 1, 𝜔 ⋅ 2 + 2, …

𝜔 ⋅ 3, 𝜔 ⋅ 3 + 1, 𝜔 ⋅ 2 + 2, …

⋮

𝜔2, 𝜔2 + 1, 𝜔2 + 2, 𝜔2, …

𝜔2 + 𝜔, 𝜔2 + (𝜔 + 1), 𝜔2 + (𝜔 + 2), …

⋮

𝜔3, 𝜔3 + 1, 𝜔3 + 2, …

⋮

An important note is in order. Unlike finite ordinals, the infinite ordinals demand a
particular “order of operation,” namely, commutativity no longer holds. Observe
that 1 + 𝜔 = 𝜔, but 𝜔 + 1 is the next “number” after 𝜔. In other words,

1 + 𝜔 = 𝜔 ≠ 𝜔 + 1

Similarly, 2 ⋅ 𝜔 = 𝜔, but 𝜔 ⋅ 2 = 𝜔 + 𝜔.
We continue this way until we reach

𝜔𝜔, 𝜔𝜔 + 1, 𝜔𝜔 + 2, …

⋮

And on and on until we reach

𝜔𝜔
𝜔

, 𝜔𝜔
𝜔 + 1, 𝜔𝜔

𝜔 + 2, …

⋮

Continuing this way (and now it really gets complicated), we come to a new
sequence

𝜀0, 𝜀1, 𝜀2, …

where 𝜀0 = 𝜔𝜔
𝜔𝜔

̇

.
We can go on like this forever, right? Why not? Well, we “have been going”

forever already while “counting” to 𝜔, so “going” to 𝜀0 means – what?
Do you see where “this” is going? Do you see where our mind is taking us?

Do you feel the richness of the underlining theory? Talking about “big,” really,
really “big,” infinitely big, infinitely, infinitely big. The Absolute???
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We know that the infinite exists without knowing its nature, just as we know that it
is untrue that numbers are finite. Thus it is true that there is an infinite number, but
we don’t know what it is.48

So Cantor said:

The Absolute can only be acknowledged and admitted, never known, not even
approximately.

Before I offer you another paradox, let’s sum up what we know about ordinals:

(i) There is a first ordinal.
(ii) For each ordinal, there is an immediate successor ordinal.

(iii) For each set of ordinals, there is an ordinal which is the first succeeding
them all.

So, we get the familiar sequence (cf. Example 1.61)

0 = ∅

1 = {∅}

2 = {0, 1} = {∅, {∅}}

3 = {0, 1, 2} = {∅, {∅}, {∅, {∅}}}

⋮

𝜔 = {0, 1, 2, 3, …}

= {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}, …}

𝜔 + 1 = {0, 1, 2, 3, … , 𝜔}

𝜔 + 2 = {0, 1, 2, 3, … , 𝜔, 𝜔 + 1}

⋮

⋮

𝜔 ⋅ 2 = {0, 1, 2, 3, … , 𝜔, 𝜔 + 1, …}

𝜔 ⋅ 2 + 1 = {0, 1, 2, 3, … , 𝜔, 𝜔 + 1, … , 𝜔 ⋅ 2}

⋮

⋮

Now consider

48Blaise Pascal, Penseés.
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The Burali-Forti49 Paradox

Suppose we are tempted to form a set Ω of all (infinitely many) ordinals. Can
we do that? After all, we have a set of all natural numbers, rational numbers, real
numbers, and so on, so why not do the same with ordinals? Well, if the set Ω
exists, then it is the set (of ordinals) like any other. But then, by condition (iii),
there must be another ordinal, Ω + 1, the first to succeed it, that is, the first to
succeed all the members of Ω. In other words, Ω < Ω + 1. But that contradicts
the assumption that Ω contains all ordinals. We conclude: The ordinal numbers
do not form a set.

In the same way by which we can always find more ordinals, we can always
“find” more cardinals. Consider this sequence:

ℵ0, ℵ1, ℵ2, … , ℵ𝜔, ℵ𝜔+1, … ℵ𝜔
𝜔

, …

As you might have anticipated by now, we do not stop here. A whole new universe
of more and more complex structures opens up and the mathematics of transfinite
turns out to be an exceptionally rich and philosophically exciting theory.

The assiduous reader may feel a little uneasy by now. After all the discussion
of the transfinite, the author, with all of his fascination with alephs, so far has still
not satisfactorily defined the very culprit of all of this – the real number(s). We
will do that in a moment, but let’s see briefly some of the remarkable features of
arithmetic of transfinites. We start with

Theorem 1.55 Let ℵ be any infinite cardinal then

(i) 0 + ℵ = ℵ
(ii) n + ℵ = ℵ, ∀n ∈ N(n is finite)

Proof

(i) Let X be a set s.t. |X| = ℵ. We know that 0 = |∅|, thus we have

0 + ℵ = |∅ ∪ X| = |X| = ℵ
(ii) Since X is an infinite set, there exists a set A = {a1, a2, … , an } ⊆ X, then

n + ℵ= |A ∪ X| = |X| = ℵ ◾

49Cesare Burali-Forti (1861–1931), Italian mathematician.
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Example 1.106 Let n be a finite cardinal number. Then

n + ℵ0 = |{1, 2, 3, … , n} ∪ {n + 1, n + 2, …}| = ℵ0 ◾

Example 1.107 From Theorem 1.55, it follows that

ℵ0 + 0 = ℵ0 + 1 = ℵ0 + 10101010

(*)

You might immediately object that equation (*) cannot be true since, by elemen-
tary school algebra, (*) implies that 1= 0, which is obviously an absurdity. But
remember, we are not doing ordinary algebra! Although the addition of trans-
finites is (well?) defined, interestingly enough, subtraction is not. Why not? Well,
consider

ℵ0 + 1 = ℵ0

This one we can believe (we have proved even more: ℵ0 + ℵ0 = ℵ0). Using ordi-
nary algebra, we could go a step further and argue that

1 + 0 = 1 + ℵ0 − ℵ0

= (1 + ℵ0) − ℵ0

= ℵ0 − ℵ0

= 0

concluding that
1 = 0

which, of course, is nonsense. Therefore, we are forced to accept that ℵ0 − ℵ0
simply is not defined. ◾

However, things are quite different for addition. Consider the following:

Example 1.108

ℵ0 + ℵ0 = |{2, 4, 6, …} ∪ {1, 3, 5, …}| = |{1, 2, 3, 4, 5, …}| = ℵ0
◾

Actually, this can be generalized even further.

Theorem 1.56 Letℵ𝛼 andℵ𝛽 be two infinite cardinals such thatℵ𝛼 < ℵ𝛽 . Then,

ℵ𝛼 + ℵ𝛽 = ℵ𝛽
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Proof Let A and B be two sets s.t. |A| = ℵ𝛼 and |B| = ℵ𝛽 . If ℵ𝛼 < ℵ𝛽 , then
there exists a one-to-one function

f ∶ A → B

We need to show that A and f (A) are equivalent sets. Consider the function

g ∶ A → f (A)

defined by the same rule as f , except that it is restricted to map A into f (A) ⊆ B.
Since we choose f as one-to-one, g is also one-to-one by construction. Note that
although f may not be onto, we would like g to be onto. To see that g is onto, let’s
take some y ∈ f (A). By definition of f (A) there has to be an x ∈ A, such that

y = f (x) = g(x)

We conclude that g is onto, and therefore a bijection. Thus A and f (A) are equiv-
alent, that is, |A| = |f (A)|.

Since f (A) ⊆ B, f (A) ∪ B = B, we get the following:

ℵ𝛼 + ℵ𝛽 = |f (A)| + |B|
= |f (A) ∪ B|
= |B|
= ℵ𝛽

which was to be proved. ◾

Example 1.109
ℵ0 + 2ℵ0 = ℵ0 + ℵ1 = ℵ0 + c = c ◾

Example 1.110 Let’s examine the “sum” c + c on the interval [0, 1]:

c + c =
||||[0,

1
2

]
∪
(1

2
, 1
]|||| = c ◾

Example 1.111
ℵ + 2ℵ = 2ℵ

Since ℵ0 is the first infinite cardinal, it follows that ℵ0 ≤ ℵ for any other infi-
nite cardinal. Hence, as a consequence of Theorem 1.56, ℵ0 behaves as a neutral
element with respect to addition of infinite cardinals, that is, it always holds that

ℵ + ℵ0 = ℵ0 + ℵ = ℵ
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Since cardinals can be added, we conclude that

ℵ + ℵ + · · · + ℵ = n ⋅ ℵ = ℵ, ∀ ∈ N (*)
◾

However, we also have

Theorem 1.57 Let ℵ be an infinite cardinal. Then,

0 ⋅ ℵ = 0

Proof In Example/Exercise 1.64, you were asked to prove that for any set
A, A × ∅ = ∅ × A = ∅. If you haven’t done it, let’s do it now so we can use
that to prove our theorem.

Suppose A × ∅ ≠ ∅. Then, there exists an n ∈ A × ∅ such that n = (x, y), with
x ∈ A and y ∈ ∅. But this contradicts the fact that∅ has no elements. Thus, our
supposition was wrong and we conclude that

A × ∅ = ∅ × A = ∅

as claimed. Since we didn’t specify A to be any particular set, we take that our
assertion also holds for any set; therefore, N × ∅ = ∅ as well as R × ∅ = ∅. Now
the proof of the theorem follows immediately: Consider a set A such that |A| = ℵ.

0 ⋅ ℵ = |∅ × A| = |∅| = 0 ◾

So far so good. But now the next natural question arises: if we accept the
statement (*) from Example 1.111, how far can we push the multiplication of
alephs? In other words, what is ℵ0 ⋅ ℵ0? Or, in general, ℵ ⋅ ℵ0?

Recalling our discussion of the Cartesian product from Chapter 1.6, you can
easily convince yourself that if we are given k finite sets A1,A2, … ,Ak such that

A1 = n1, |A2| = n2, … , |Ak| = nk

then |A1 × A2 × … × Ak| = n1 ⋅ n2 ⋅ … ⋅ nk

Indeed, each element in A1 × A2 × … × Ak is a k-tuple of the form
(a1, a2, … , ak), where ai ∈ Ai. Thus, there are n1 ways to choose the first
element in a k-tuple, n2 ways to choose the second one, and so on. Therefore,
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there are n1 ⋅ n2 ⋅ … ⋅ nk elements in A1 × A2 × … × Ak. We extend this
formalism to calculate the product of infinite cardinals by

Definition 1.44 Let A and B be two sets such that |A| = ℵ𝛼 and |B| = ℵ𝛽 are
respective infinite cardinals. Then, we define

ℵ𝛼 ⋅ ℵ𝛽 = |A × B|
Example 1.112

ℵ0 ⋅ ℵ0 = |N × N|
= |N|
= ℵ0

Note that we utilize Theorem 1.37 in the second step. ◾

This rule is valid for any other aleph, that is

ℵ ⋅ ℵ = ℵ

Here is another good example:

Theorem 1.58 R ∼ R × R. That is to say |R × R| = |R|.
Proof Consider a function

f ∶ R → R × R

defined by f (x) = (x, 0), ∀x ∈ R. f is clearly a one-to-one function. In order to
complete the proof, we also need another one-to-one function

g ∶ R × R → R

Since the cardinality of the interval (0, 1) is the same as the cardinality of R, rather
than working with the whole R we prefer to work with

g ∶ (0, 1) × (0, 1)→ (0, 1)

defined by

g(0. a1a2a3 … , 0. b1b2b3 …) = 0. a1b1a2b2a3b3 …
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with the only restriction that the a′i s and b′i s not be repeating nines. Thus, g
is a well-defined function and it is clearly one-to-one. The Schröder–Bernstein
theorem immediately leads to the desired proof. ◾

Example/Exercise 1.113 Show that R × R × R ∼ R.

Theorem 1.59 Let A and B be two sets such that |A| = ℵ𝛼 and |B| = ℵ𝛽 are
respective infinite cardinals. Then,

ℵ𝛼 ⋅ ℵ𝛽 = ℵ𝛽 ⋅ ℵ𝛼

Proof Consider a function

f ∶ A × B → B × A

defined by
f (a, b) = (b, a)

The function f is obviously a bijection. That implies

ℵ𝛼 ⋅ ℵ𝛽 = |A × B| = |B × A| = ℵ𝛽 ⋅ ℵ𝛼
which was to be proved. ◾

Without proof, we state

Theorem 1.60 If ℵ𝛼 and ℵ𝛽 are two infinite cardinals such that ℵ𝛼 ≤ ℵ𝛽 , then

ℵ𝛼 ⋅ ℵ𝛽 = ℵ𝛽

that is, the larger of the two cardinals.

The following examples illustrate another “unusual” consequence of multipli-
cation of alephs.

Example 1.114
ℵ ⋅ ℵ = ℵ2

but also
ℵ ⋅ ℵ = ℵ

Thus, √
ℵ = ℵ ◾
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A few more peculiar properties of infinite cardinals are listed without proof in
the following theorem.

Theorem 1.61 If n ∈ N is any finite cardinal, then

(i) nℵ0 = ℵℵ0

0 = 𝔠ℵ0 = 𝔠
(ii) 2𝔠 = nc = ℵ𝔠

0 = 𝔠𝔠

Example 1.115

(i) c ⋅ c = c50

(ii) ℵ0 ⋅ c = c

(iii) ℵ0 ⋅ ℵ = ℵ
(iv) ℵ ⋅ ℵ ⋅ ℵ = ℵ ◾

Example 1.116

(i) cℵ0 = (2ℵ0)ℵ0 = 2ℵ0ℵ0 = 2ℵ0 = c

(ii) cc = (2ℵ0)c = 2ℵ0c = 2c = c ◾

Example/Exercise 1.117 Prove that cℵ0 = c.

It is very important to stress again that, regardless of the fact that we “know”
how to multiply cardinals, the division is not defined. Our inherent intuition is
worthless when dealing with alephs. Here is a simple example: Suppose we can
divide cardinals. Then, it would be natural to infer the following:

ℵ0 ⋅
1
ℵ0

= 1

From expression (*) on page 95, it would in particular follow that 2ℵ0 = ℵ0, so
by ordinary algebra, we could write

2 ⋅ ℵ0
1
ℵ0

= ℵ0 ⋅
1
ℵ0

which would entail
2 = 1

50Remember, we are assuming the Continuum Hypothesis, that is, c = ℵ1
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Obviously, we cannot accept something this absurd. Thus, our assumption of the
possibility of division was wrong. We conclude that, the same as with subtraction,
division is also not defined! Again, we realize that mathematics has a life of its
own – we just have to discover the beautiful new world hidden under the surface.

Before concluding this section, I need to tell you about an axiom that may
seem fairly obvious to you. Indeed, we have done much of our set theory tacitly
assuming its validity. As a matter of fact, it has not been recognized by math-
ematicians for a long time. And even today, regardless of the many beautiful
results one can prove with it, many mathematicians are rather skirmish about
it. The discomfort that they feel is mostly due to its nonconstructive nature and
some very unexpected and counterintuitive implications that follow. Let’s devote
a short subsection to the (in)famous Axiom of Choice.

Axiom of Choice

In mathematics, there are arguably very few so “simple” and “self-evident” and
still so controversial axioms as The Axiom of Choice (AC). As B. Russell said: At
first it seems obvious, but the more you think about it the stranger the deductions
from this axiom seem to become; in the end you cease to understand what is meant
by it. Many crucial concepts in different branches of mathematics, as well as the
(proofs of) theorems therein, are based on it. However, do note that I put “simple”
and “self-evident” in quotation marks. Being “simple” and “self-evident” can
be misleading indeed! For instance, on page 46, after introducing the Cartesian
product, we asked whether one could extend the conclusion (evidently valid for
finite sets) to infinite ones (see Example 1.64) as well. Similarly, when discussing
the Continuum Hypothesis, we have encountered the sequence of alephs

ℵ0, ℵ1, ℵ2, ℵ3, … , ℵ𝜔, …

and we ask: Suppose an infinite set of infinite sets is given, is it possible to choose
one element from each set without giving a rule of choice in advance?

It turns out that the issues involved are very profound and we will end this
chapter with just a rudimentary exposition of the subject.

A very well-known and witty formulation of this question, which I like to
call “On Socks and Shoes,” is due to (who else but) Bertrand Russell who said:
Suppose there are infinitely many pairs of socks and shoes. To choose one sock
from each pair of identical socks requires the Axiom of Choice, but for shoes
the Axiom is not needed, it suffices to simply impose a rule “always chose the
left shoe” and we are done. Once again, the phrase “infinitely many” is crucial,
for with finite sets of socks we wouldn’t have the problem. (Can you figure out
why?) Let’s start with a few simpler examples.

Example 1.118 Consider a set S = {A,B,C}, where A,B, and C are disjoint
sets such that
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A = {a1, a2},B = {b1, b2}, and C = {c1, c2}

Suppose we want to construct a set  by choosing for its elements one and only
one element from each of the sets A,B,C. For instance, one possible “choice set”
could be

= {a1, b1, c1}

where the “choice function” was: “take the ‘first’ element from each set” (what-
ever “the first” means – in this case, obviously, an element with index 1). ◾

However, how would you do

Example/Exercise 1.119

(i) If ∅ ∈ S what would be the choice set?
(ii) If S = ∅ what would be the choice set?

Example 1.120 Let
S = {A|A ⊆ N,A ≠ ∅}

be a collection of all nonempty subsets of N, then we can simply define the
“choice function” by saying f (A) = smallest member of A. ◾

Example 1.121 Let

S = {I = [a, b]|a, b ∈ R, d(a, b) <∞}

that is, a collection of all intervals of real numbers with finite length. Then, we
can define f (I) to be the midpoint of the interval I. ◾

Now comes a problem: Consider Example 1.118, again assuming this time
that the sets A,B,C ∈ S are open intervals, that is

A = (a, b),B = (c, d) and C = (e, f ); a, b, c, d, e, f ∈ R

How would you choose an element from each of the sets to construct the set ?
(Say, you first consider our familiar interval (0, 1), how would you take the least
element from it?) To make it even more intriguing, take the set S to be the set of
all nonempty subsets of R. How would we find a suitable function f to collect an
element from all of those subsets? So we ask: If an infinite set of infinite sets is
given, is it possible to choose one element from each set without giving the rule of
choice in advance? Yes, it is possible, said Zermelo.51 In 1904, he introduced the

51Ernst Zermelo (1871–1953), German mathematician.
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Axiom of Choice (AC)

Let S be a collection of mutually disjoint nonempty sets; then, there exists a set
 consisting of exactly one member chosen from each set in the collection S. In
other words, given any family of nonempty sets,

S = {Ai|i ∈ I, I = index set}

there exists a function – the choice function

f ∶ I → ∪
i∈I

Ai

such that f (i) = ai ∈ Ai.
Equivalently, we can approach AC as follows:
Let S = ∪i∈IAi be a nonempty family of nonempty sets. Then, the Cartesian

product
∏

i∈IAi of the sets Ai is the set of all choice functions f ∶ I → ∪i∈IAi
where f (i) = ai ∈ Ai, for all i ∈ I. In other words, for every i ∈ I, f chooses a
point ai from each set Ai.

Hence, we can restate the Axiom of Choice as follows: The Cartesian product
of a nonempty family of nonempty sets is nonempty.

Note that the axiom only claims the existence of the choice function. It doesn’t
say anything about its construction.

As an example, let’s prove

Theorem 1.62 Every infinite set has a countably infinite subset.

Proof Let S be an infinite set. Consider a set A1 = S∖{a1}, where a1 ∈ S. A1
is certainly not empty since S is not empty. Furthermore, A1 is infinite, for if A1
were finite S would be finite too, contradicting our original assumption. Next, we
can consider a set.

A2 = A1∖{a2} = S∖{a1, a2}, a2 ∈ S. A2 is also infinite, and in particular it
contains an element a3. Can we continue these arguments ad infinitum? Well,
to continue with this argumentation we need AC, and we construct Ai for any
1 ≤ i ≤ n, i ∈ N according to the aforementioned prescription. We claim that Ai is
infinite. But then, there is an+1 ∈ An, such that An+1 = An∖{an+1} is also infinite.
Note that if i < j, then ai ∈ Ai+1, but aj ∉ Ai+1. Now, if we let B = {ai|i ∈ N},
then B is infinite and |B| = |N|. ◾

Going back to our list of cardinals, it is reasonable to ask: Can we form a set
C of all cardinal numbers? Well, let’s try that. Suppose C is a set of all cardinals.
Then, for every c ∈ C, there exists a set Ac such that c = |Ac|. Furthermore, let

A = ∪
c∈G

Ac
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Consider now (A) and let |(A)| = 𝛼. Then, since

|(A)| = 𝛼
we have |(A)| ≤ |A|
On the other hand, by Cantor’s theorem

|(A)| > |A|
so we have a contradiction. We see that, the same as with the ordinals, the axioms
of set theory fail to accommodate the cardinals also.

Finally, without proof, we list three crucial theorems of mathematics:

Theorem 1.63 (Zorn lemma) Let X be a nonempty partially ordered set,
whose every linearly ordered subset has an upper bound in X. Then X contains
at least one maximal element.

Theorem 1.64 (Zermelo’s well-ordering theorem) Every nonempty set X
can be well ordered.

Theorem 1.65 The following are equivalent:

(i) Axiom of choice
(ii) Zorn lemma

(iii) Well-ordering theorem.

It might be appropriate to conclude this subsection with a quote you may
philosophically disagree with but, nevertheless, you have to admit it is rather
captivating:

… For me, and I suppose for most mathematicians, there is another reality, which I
will call “mathematical reality” … I believe that mathematical reality lies outside
us, that our function is to discover or observe it, and that the theorems which we
prove, and which we describe grandiloquently as our “creations” are simply our
notes of our observations.52

1.10 THE SET R – REAL NUMBERS II

So far, we have dealt with real numbers more or less heuristically. We assumed
their existence for a simple reason: set Q obviously was not sufficiently rich

52Hardy, G. H., A Mathematician’s Apology, Cambridge University Press, 1967.
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enough to accommodate everything we wanted to do mathematically. Also, as
the reader is obviously aware of by now, the importance of set R, and therefore
its proper definition, can hardly be overstated. We need to introduce a few more
concepts in order to adequately address real numbers.

Definition 1.45 (A ring) A ring is a set R with two binary operations on it: “+”
and “⋅” called “addition” and “multiplication,”53 respectively, such that

1. addition is commutative: a + b = b + a, ∀a, b ∈ R;
2. addition is associative: a + (b + c) = (a + b) + c, ∀a, b, c ∈ R;
3. addition has a neutral element with respect to addition: ∃ 0 ∈ X, s.t. a +

0 = 0 + a = a;

4. addition has an inverse: ∀a ∈ R,∃(−a) ∈ R, s.t. a + (−a) = (−a) + a = 0;
5. multiplication is associative: a ⋅ (b ⋅ c) = (a ⋅ b) ⋅ c, ∀a, b, c ∈ R;
6. multiplication is distributive with respect to addition:

a ⋅ (b + c) = a ⋅ b + a ⋅ c, ∀a, b, c ∈ R

Definition 1.46 (A field) A field Φ is a set with two binary operations on it,
such that Φ is a commutative ring with the identity with respect to “multipli-
cation,” that is, in addition to (1)–(6) from Definition 1.44, there are three more
properties that have to be satisfied:

1. a ⋅ b = b ⋅ a, ∀a, b ∈ Φ
2. There exists a unique element 1 ∈ Φ, which we call the identity (sometimes

unity) with respect to multiplication, s.t. 1 ⋅ a = a ⋅ 1 = a, ∀a ∈ Φ, and
3. for every element a ∈ Φ, there exists a multiplicative inverse a−1 ∈ Φ, s.t.

a ⋅ a−1 = a−1 ⋅ a = 1

Example 1.122 The sets Z,Q, and R, with the usual addition and multiplication,
are rings. Q and R are also fields. ◾

Example/Exercise 1.123 Convince yourself that the set R is a field.

Example 1.124 The set 2Z of even integers with the usual addition and
multiplication is a ring. Note that it doesn’t have an identity with respect to
multiplication. ◾

Example 1.125 I hope that you are familiar with the concept of a polynomial
of n th degree in one variable, that is, a function of the form

53“Addition” and “Multiplication” are names that we conveniently associate with “+” and “⋅” These oper-
ations do not necessarily have to be our ordinary addition and multiplication.
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f (x) = Pn(x) = anxn + an−1xn−1 + an−2xn−2 + · · · + a1x + a0

where n, n − 1, n − 2, … ∈ Z+, that is, nonnegative integers,54 and an, an−1, …
a0 ∈ R. You can easily convince yourself that a set of all polynomials is a ring.
On the other hand, a set of polynomials is not a field for obvious reasons: there
is no multiplicative inverse that is also a polynomial. ◾

Example 1.126 If you are familiar with matrices, you can immediately recog-
nize that the set of all square (n × n) – matrices form a noncommutative ring. ◾

Definition 1.47 We say that a field Φ is an ordered field if the following is
satisfied:

1. If a, b ∈ Φ, then one and only one of the following holds:

a < b, a = b, or a > b

2. If a, b, c ∈ Φ, s.t. a > b, and b > c, then a > c

3. If a, b, c ∈ Φ, and if a > b, then a + c > b + c.
4. If a, b, c ∈ Φ and if a > b, with c > 0, then ac > bc.

Example 1.127 Prove that a > 0 iff −a < 0. ◾

Proof

(i) If a > 0, then a + (−a) > 0 + (−a) ⇒ 0 > −a

(ii) If −a < 0, then − a + a < 0 + a ⇒ 0 < a ◾

Example 1.128 Prove that if a > 0 and b < 0, then a ⋅ b < 0. ◾

Proof Suppose a > 0 and b < 0. Then,

−b > 0

therefore,
a ⋅ (−b) = −(a ⋅ b) > 0

Hence,
a ⋅ b < 0 ◾

54Z+ = N ∪ {0} = N+.
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Example/Exercise 1.129 Prove that if a > 0 and b > 0, then a ⋅ b > 0.

Example/Exercise 1.130 Prove that if a ≠ 0, then a2 > 0.

Example/Exercise 1.131 Prove that if a < 0 and b < 0, then a ⋅ b > 0.
Now, we are ready for some important definitions that will safely lead us to a

better insight into real numbers.

Definition 1.48 Let Φ be an ordered field, and let A be a nonempty subset of
Φ. We say that A is bounded above, if there exists an element a ∈ Φ, such that
x ≤ a, ∀x ∈ A. We call a an upper bound of A.

Similarly, we say that A is bounded below, if there exists a b ∈ Φ, such that
x ≥ b, ∀x ∈ A. We call b a lower bound of A.

We say that A is bounded if it is bounded above and below.

Definition 1.49 Let A be a nonempty subset of Φ. We say that a ∈ Φ is the
least upper bound or a supremum of A iff a is an upper bound of A, and for
every other upper bound x of A, a ≤ x. We write a = sup A.

Definition 1.50 Let A be a nonempty subset of Φ. We say that b ∈ Φ is the
greatest lower bound or infimum of A iff b is a lower bound of A, and for every
other lower bound x of A, b ≥ x. We write b = inf A.

Definition 1.51 A field Φ is said to be completely ordered if the complete-
ness property is satisfied, that is, if every nonempty bounded set S ⊆ Φ has a
supremum in the field.

Theorem 1.66 If a nonempty set A has a supremum, then sup A is unique.

Proof Suppose there are two elements x1 and x2, both supremums of a set A. By
definition, both x1 and x2 are upper bounds of A, and since x1 is a supremum, x1 is
less or equal to any other upper bound, in particular, x1 ≤ x2. On the other hand,
x2, being a supremum, is less or equal to any other upper bound, in particular,
x2 ≤ x1. Hence x1 = x2. ◾

Now you should be able to prove

Theorem 1.67 If a nonempty set A has an infimum, then inf A is unique.

Finally, we have

Definition 1.52 The set of real numbers R is a completely ordered field.
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As an additional exercise you may want to revisit Theorems 1.66 and 1.67 and
simply replace the words “nonempty set A” by “nonempty subset A of R.”

Let’s pause for a moment and reflect on all of this. Suppose we are famil-
iar only with rational numbers and take a subset of all rational numbers such that
(p∕q)2 < 2. This subset does not have a supremum, because if it did have a supre-
mum, say a, we could eventually get a2 = 2. But we have proved (see Theorem
1.45) that this is impossible. So, indeed, we want a set of numbers, call it R, with
a property that any nonempty subset A ⊆ R, which is bounded above, has a supre-
mum. Well, said Dedekind,55 suppose we knew only the infinite set Q. Here is
what we could do. Let’s partition – cut – set Q into two subsets L and R, such that
(1) every element of L is smaller than every element of R, and (2) R has no least
element. The idea being that every rational number is either an element of L or
an element of R. Thus, we have

L = {x ∈ Q|x < r} and R = {x ∈ Q|x > r}

For instance, our (in)famous
√

2 would be represented by the cut [L,R] such that

L =

{
p

q

|||||
(

p

q

)2

< 2, p, q ∈ Z

}
and

R =

{
p

q

|||||
(

p

q

)2

> 2, p, q ∈ Z

}
It may be worth mentioning at this point that in 1872, when Dedekind intro-
duced his “cut,” topology did not exist. Today’s treatment of the “Dedekind cut,”
as a topological space in open interval topology, had to wait for better times.
Dedekind’s idea still holds today: real numbers cannot be represented in terms of
discrete mathematical objects. The only way to consistently represent arbitrary
real numbers is by infinite sets. (Remember the statement of Cantorism at the
beginning of this chapter: Everything is a set.)

We conclude this discussion with

Definition 1.53 A real number is a pair [R, L] of infinite sets.
For the sake of completeness, let’s put together everything we have said about

the field of real numbers and state it explicitly: Let R be a set with two binary
operations on it, called addition, “+,” and multiplication, “⋅” These operations
satisfy the following properties:

55Richard Dedekind (1831–1916).
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1. ∀a, b ∈ R, a + b = b + a ∈ R
2. ∀a, b ∈ R, a ⋅ b = b ⋅ a ∈ R
3. ∀a, b, c ∈ R, a + (b + c) = (a + b) + c

4. ∀a, b, c ∈ R, a ⋅ (b ⋅ c) = (a ⋅ b) ⋅ c

5. ∀a, b, c ∈ R, a ⋅ (b + c) = a ⋅ b + a ⋅ c

6. ∃ 0 ∈ R, s.t. 0 + a = a + 0 = a, ∀a ∈ R
7. ∃ 1 ∈ R, s.t. 1 ⋅ a = a ⋅ 1 = a, ∀a ∈ R
8. ∀a ∈ R, ∃(−a) ∈ R, s.t. a + (−a) = (−a) + a = 0
9. ∀a ∈ R, ∃a−1 ∈ R, s.t. a ⋅ a−1 = a−1 ⋅ a = 1

We call the field R the field of real numbers. Consequently, we have a theorem
that summarizes the most important algebraic properties of the field R.

Theorem 1.68 For any real numbers a, b, c, d ∈ R, the following holds:

(i) Cancellation Law for Addition: If a + b = a + c, then b = c

(ii) Possibility of Subtraction: Given a and b, there is exactly one x such that

a + x = b

(iii) a − b = a + (−b)
(iv) a ⋅ (b − c) = a ⋅ b − a ⋅ c

(v) 0 ⋅ a = a ⋅ 0 = 0
(vi) Cancellation Law for Multiplication: If ab = ac and a ≠ 0, then b = c

(vii) If b ≠ 0, then a∕b = ab−1

(viii) If a ≠ 0, then (a−1)−1 = a

(ix) Zero Product Property: If a ⋅ b = 0, then a = 0 or b = 0
(x) (−a) ⋅ b = a ⋅ (−b) = −(a ⋅ b)

(xi) (−a) ⋅ (−b) = a ⋅ b

(xii) Rule of addition of fractions:

a
b
+ c

d
= ad + bc

bd
, b ≠ 0, d ≠ 0

(xiii) Rule of multiplication of fractions:

a
b
⋅

c
d
= a ⋅ c

b ⋅ d
, b ≠ 0, d ≠ 0

(xiv) Rule of division of Fractions:

a∕b

c∕d
= a ⋅ d

b ⋅ c
, b ≠ 0, c ≠ 0, d ≠ 0
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(xv) Trichotomy Law: Given any two real numbers a, b, only one of the three
relations holds:

a < b, b < a, or a = b

(xvi) Transitive Law: If a < b and b < c, then a < c
(xvii) If a < b, then a + b < b + c

(xviii) If a < b and c > 0, then ac < bc
(xix) If a ≠ 0, then a2 > 0

We have already proved many of the statements in the aforementioned
theorem in a different context. The reader shouldn’t have any problems proving
the remaining parts.

Definition 1.54 Suppose a ∈ R, we define the absolute value of a by

|a| ={
a if a ≥ 0

−a if a < 0

Theorem 1.69

(i) For any a, b ∈ R, |ab| = |a||b|.
(ii) For any a, b ∈ R, |a + b| ≤ |a| + |b| (Triangle inequality).

Proof

(i) Suppose a > 0 and b > 0. Then, by definition, |a| = a and |b| = b. Thus,|a||b| = ab. On the other hand, |ab| = ab. We conclude that |ab| = |a||b|.
If a < 0 and b < 0, then |a| = −a and |b| = −b, so we again have

|ab| = ab = (−a)(−b) = |a||b|
(ii) Consider the following obvious inequalities:

−|a| ≤ a ≤ |a| (1.14)

−|b| ≤ b ≤ |b| (1.15)

Adding (1.14) and (1.15), we get

−(|a| + |b|) ≤ a + b ≤ |a| + |b|
which implies |a + b| ≤ |a| + |b| ◾
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Example/Exercise 1.132 Prove that

||||ab |||| = |a||b| , b ≠ 0

1.11 SUPPLEMENTARY PROBLEMS

1. Given four sets A = {a, b, c, d},B = {a, a, c, b, d, d},C = {d, b, a, c, 0}, and
D = {d, b, a, c}, determine which sets are equal.

2. Is a = {a}? Why? Why not?

3. Is 0 = {}? Why? Why not?

4. Let A = {a, b, c{a}, {{a}}, {a, d}, d}
(i) Is a ∈ A?
(ii) Is {a} ⊆ A?
(iii) Is {{a}} ∈ A?
(iv) Is {{a}} ⊆ A?
(v) Is {a, b, c} ⊆ A?

5. Let  = {a, b, c, d, e, f , g} be a universal set, and let A = {b, c, d, f }, B =
{a, b, c}, and C = {d, e, f , g}. Find

(i) A ∩ B

(ii) A ∪ B

(iii) A ∩ C

(iv) B⧵A

(v) A⧵(B ∩ C)

6. Let A be a set. Show that

(i) A ∪ ∅ = A

(ii) A ∩ ∅ = ∅
(iii) A ∪ A = A

(iv) A ∩ A = A

(v) A⧵∅ = A

7. Let the universal set be the set of all natural numbers, that is, let  = N and
A = {x|x = 2n, n ∈ N}, find

(i) A ∩ N
(ii) A ∪ N
(iii) Ac
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8. Let the universal set  be the set of all real numbers R, and let A = {x ∈
R|0 ≤ x ≤ 1}, and B = {x ∈ R|−3 < x ≤ 3}. Find
(i) A ∪ B

(ii) A ∩ B

(iii) Ac

(iv) Bc

(v) (A ∩ B)c

9. What is the cardinality of each of the following sets?
(i) {a}
(ii) {{a}}
(iii) {∅}
(iv) {∅, {∅}}
(v) {a, {{∅}}}

10. Show that for all sets A,B, and C

(i) If A ⊆ B and A ⊆ C then A ⊆ B ∩ C

(ii) If A ⊆ C and B ⊆ C then A ∪ B ⊆ C

11. Show that if A ⊆ B, then B = A ∪ (B⧵A).

12. Show that for all sets A,B, and C

(A ∪ B)⧵C = (A⧵C) ∪ (B⧵C)

13. Show that for any sets A and B

A⧵B = A⧵(A ∩ B)

14. Let A ⊆ C and B ⊆ C. Prove the following assertions:
(i) C ⧵(C ⧵A) = A

(ii) C⧵(A ∩ B) = (C⧵A) ∪ (C⧵B)
(iii) C⧵(A ∪ B) = (C⧵A) ∩ (C⧵B)

15. Show that for all sets A,B, and C

(A⧵B)⧵C = (A⧵C)⧵(B⧵C)

16. Prove: (A ∪ B) ∩ Bc = A iff A ∩ B = ∅.
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17. Let A and B be subsets of X. Prove that

(A ⊆ B) ⇔ [(x⧵B) ⊆ (x⧵A)]

18. Show that (i) and (ii) are logically equivalent:
(i) A and B are disjoint sets.
(ii) A ⊆  ⧵B, B ⊆  ⧵A.

19. Show that for all A ≠ B ≠ ∅, A × B ≠ B × A.

20. Prove that for all sets A,B,C, and D

(A × B) ∩ (C × D) = (A ∩ C) × (B ∩ D)

21. Suppose A = {a, b} and B = {c, b}. Find
(i) (A ∩ B)
(ii) (A ∪ B)

22. Let A,B ⊆  . Show that

(A ∪ B) ∩ (Ac ∪ Bc) = AΔB

23. Let A,B ⊆  . Show that
(i) AΔB = (A ∪ B)⧵(A ∩ B)
(ii) AΔ(BΔC) = (AΔB)ΔC

24. Show that for all sets A,B, and C

(i) (A ∩ B) × C = (A × C) ∩ (B × C)
(ii) (A ∪ B) × C = (A × C) ∪ (B × C)

25. Show that for all sets, B and C

(A⧵B) × C = (A × C)⧵(B × C)

26. Verify that Definition 1.23 is a good definition, that is, prove that if X is an
infinitely countable set, then it has a proper subset with the same cardinality.

27. Which of the following is true:
(i) N ⊆ Z
(ii) Q ⊆ Z
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(iii) R ∩Q = Q
(iv) Z ∪Q = Q
(v) Q ∩ Z ∩ N = N

28. Prove that if X ⊆ N, then X is either countably infinite or finite.

29. Prove that if
(a) X is countable and Y ⊆ X is finite, then X⧵Y is countable.
(b) X is uncountable and Y ⊆ X is countable, then X⧵Y is uncountable.

30. Prove that A = [0, 1] and B = [0, 2] have the same number of elements.

31. Prove that A = (0, 1) and B = (0, 2) have the same number of elements.

32. Determine the cardinality of the following sets:
(i) N ∩ [1, 𝜋]
(ii) N ∪ [1, 𝜋]

33. Determine the cardinality of the following sets:
(i) Q3

(ii) QR

34. Define Nk = N ⋅ N ⋅ · · · ⋅ N
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

k times

. Prove that N3 ∼ N that is |N3| = |N|
35. Let Sn be the set of all subsets of N whose size is n. Prove that Sn is countable

for all n ∈ N.

36. Show that Q ∩ [0, 1] is countable.

37. Show that (R⧵Q) ∼ R.

38. Show that for all n = N, |Rn| = c.

39. Determine the cardinality of the following sets:
(i) (Z) × (Z)
(ii) ((Z))

40. Prove that if A ≠ ∅ is a finite set and if B = {f |f ∶ N → A}, then B is
uncountable. (Hint: recall Cantor’s proof for the uncountability of the set
(0, 1).)

41. Let (A → B) = {f |f ∶ A → B}
Show that if |A1| = |A2| and |B1| = |B2|, then

|(A1 → B1)| = |(A2 → B2)|
42. Prove that the countable union of sets of cardinality c = 2ℵ0 (continuum)

again has cardinality c.
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43. Here is Cantor’s Paradox: Consider the set of all sets. The set of all its subsets,
according to Cantor’s own theorem, has a cardinal number larger than the
cardinal number of the original set. Yet our original set by definition includes
all sets. Thus, we constructed a set larger than the set of all sets. Can you
resolve this paradox?

44. Here again is Russell’s famous paradox: Let S be the set that contains a set
X. If the set X doesn’t belong to itself, so S = {X|X ∉ X},
Show that
(i) the assumption that S is a member of S leads to a contradiction;
(ii) the assumption that S is not a member of S leads to a contradiction too.

45. Explain why there are no “holes” in R.
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LOGIC

How wonderful that we have met with a paradox. Now we have some hope of
making progress.

N. Bohr1

Logic is the daughter of Greece, as are democracy, tragedy, rhetoric, history, philos-
ophy, and mathematics.… Like diamond, logic is pure, transparent, and also most
impenetrable, capable of leaving its mark on everything.

R. Omnès2

I seem to have been only like a boy playing on the sea shore, and diverting myself
in now and then finding a smoother pebble or a prettier shell than ordinary, whilst
the great ocean of truth lay all undiscovered before me.

I. Newton3

1Niels Henrik David Bohr (1885–1962), Danish physicist as quoted in S. Hawking (ed.) On the Shoulders
of Giants, Running Press, Philadelphia, 2002.
2Roland Omnès (1931–), French theoretical physicist and philosopher.
3Brewster, D., Life of Sir Isaac Newton, Nabu Press, 2010.

Principles of Mathematics: A Primer, First Edition. Vladimir Lepetic.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
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2.1 INTRODUCTION

After our short tour through Set Theory, it seems natural to ask why logic, which
we are about to embark onto, comes after sets. Wouldn’t be more “natural” to
start with logic – often described as the analysis of reasoning – and then study
set theory? After all, good logical/analytical thinking is a prerequisite for doing
mathematics or any other science for that matter. Nobody doubts that we need
logic, and we need language to think or do mathematics. But an equally good
argument could be made: If “sets are everything,” and if set theory is the under-
lining fabric of any language or any abstract structure, hence logic too, then logic
should come after sets. As you can see this is a question of “the chicken and the
egg.” I was slightly more inclined to start with set theory, but I leave it to you
to decide which is the chicken and which is the egg, as well as what comes first.
One thing is sure, set theory is important for mathematical logic. It made us think
twice before deciding to trust our intuition in deciding what is true or false. What
could be more self-evident than that the whole is greater than its parts? Yet, as
you recall, we found that this is not always the case. Another thing that we have
learned from set theory was that even when we think “correctly” we can run into
logical contradictions. In any case, and whatever your philosophical inclinations
may be, the important thing is to accept the premise of both Plato and Aristo-
tle that all philosophy begins in wonder. So wonder we will. What I want to do
in this chapter is to introduce you to Logic, a branch of mathematics originated
most notably by Aristotle4 almost 2400 years ago. He was by no means the first
mathematician, and certainly not the only one considering the ways to scientif-
ically explain “rational thought,” but he was the first to write a treatise on logic
as a set of rules for deductive reasoning – rules that should be used in all serious
discourses in philosophy and science. He famously started his Metaphysics with
the words: All men by nature desire to know. (Talking about wonder!) Neglect-
ing for the time being the nagging question whether this is indeed true (and we
want it to be true), it is still one of my favorite quotes. Yes, we want to know,
and we want to know how we know. How do we know that what we (think we)
know is really true? Let me try to make it simpler. We study mathematics (among
other reasons) to apply it to different disciplines of science, engineering, and phi-
losophy, to correctly design, correctly and functionally construct, to understand,
to determine what works and what doesn’t, and to decide what is true and what
is false. But equally importantly we want to be able to explain. Indeed, our best
understandings of “things,” the best theories of the nature of things, are those that
embody explanatory features. In particular, those that are superior, more power-
ful, more general than those we previously had. It is those that make us eventually

4Aristotle’s logic (384 bc to 322 bc) was not the only one in ancient Greece. Stoics developed their own
logic following the logic of Magarians, which itself was developed from the philosophy of Parmenides
(515–450(?) bc), and Zeno (ca. 490 bc to 430 bc). Chrysippus (280 bc to 207 bc), for instance, came to
be renowned as one of the foremost logicians of ancient Greece, superior to Aristotle himself.
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understand our understanding. So, one hopes that the safest avenue to achieve
this goal is

mathematics∕logic → science → philosophy

which doesn’t exclude a possible two-way approach

mathematics∕logic ⇌ science ⇌ philosophy

If it is true that, according to Immanuel Kant, mathematics is determined by the
form of our pure intuition so that it is impossible to imagine anything violating
mathematics, we want to make sure that our mathematics is also correct. But how
do we decide that the mathematics we are using is “right?” How do we know it
is true? Where does mathematical certainty come from? What instruments, what
“mathematics” should we use to “examine” mathematics? How do we know that
the language we use to express our thoughts we use properly? Consider the fol-
lowing: Suppose I say:

(a) Socrates is mortal,
or I say:

(b) Socrates is not mortal.

Without knowing who or what “Socrates” is, logic tells us that only one of the
statements (a) or (b) can be true. This is what Aristotle deemed the Principle (or
Law) of Excluded Middle. Moreover, keeping the same principle in mind, instead
of “Socrates is mortal,” I could have said “Xanthippe’s husband will one day
cease to exist,” or we could have said “Lamprocles’ Sophroniscus’ and Menex-
enus’ father will one day cease to exist.” Not a single word of which appears in
the first sentence, but all three sentences mean the same thing. It seems that lan-
guage is inseparable of logic, but logic permeates language at a more fundamental
structural level.

Moving on, suppose I say:

All men are mortal.
Socrates is a man.
(Therefore) Socrates is mortal.

This syllogism5 seems pretty reasonable, right? Can we, then, consider the fol-
lowing as equally valid?

All X are Y .
A is X.
(Therefore) A is Y

5This syllogism is attributed to Aristotle.
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Sure, you say, it’s very logical! How could it be otherwise? Besides, you continue,
didn’t we prove while discussing Set Theory in Chapter 1 that

∀a ∈ X if X ⊆ Y then a ∈ Y .

In other words, if a has property X, and having property X means also having
property Y , then necessarily, a has property Y too. Indeed!

Now, what about the following:

All men are mortal.
Socrates is mortal.
(Therefore) Socrates is a man.

Somehow this doesn’t sound right, right?
Consider one more often quoted quip:

Nothing is better than eternal happiness.
A ham sandwich is better than nothing.
(Therefore) A ham sandwich is better than eternal happiness.

Regardless what you think of eternal happiness, the above syllogism sounds awk-
ward to say the least. Formally though, everything is same as before.

How about this one:

1 + 1 contains a plus sign,

1 + 1 = 2

(Therefore) 2 contains a plus sign.
Even a sentence from everyday parlance may cause consternation in a picky

mathematician. Consider the following statement:

War is never the answer!

“But that’s not true,” exclaims a mathematician. “To the contrary, war most cer-
tainly is the answer, if the question is ‘What is a three-letter word for organized
armed conflict?’”

So, as you can see from these simple examples, expressing one’s thoughts
correctly and soundly is not such a trivial matter. So, unlike “traditional mathe-
matics” (for lack of better term), which does not make its method of reasoning
or its language an object of study, mathematical logic considers language and the
method of reasoning as a main object of study. This immediately leads us to the
next thing: How do we prove that what we are saying is indeed so? How can we
distinguish true proofs from the “proofs” that are false? What exactly are the rules
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of a proof? (This is not some game of words! Think about it! This is another one
of those things that literally grows on you. It is the essence of all philosophy.) It is
a product of a million years of evolution, and as the reader of these words you are
a member of the Homo sapiens species, the one who thinks about his thinking.
In a word, what is the nature of mathematics? Thus, do we need some kind of
mathematics of mathematics – metamathematics? As with metaphysics,6 people
sometimes associate with metamathematics a rather pejorative connotation, but it
is a very serious (if seriously done) science, a very useful science, and definitely
a very interesting one. Bertrand Russell and Alfred North Whitehead thought so
too, and they set to write a book Principia Mathematica (note the (intentional?)
similarity in title with Newton’s Philosophiæ Naturalis Principia Mathematica).7

The goal was to construct a rigorous logical structure, a formalism, on which all
mathematics could be built – consistent, complete, and decidable. If after reading
the first chapter, you are ready to accept the claim that mathematics is based on
axiomatic set theory, then Russell’s Principia could be considered a counterpart
reducing all of mathematics to logic. In either case, the claim that mathematics
is the study of abstract structures still holds. You are bound to ask now (unless
you already wondered about this while reading Chapter 1), what do we mean by
“axiom” or a “formal axiomatic method?” Well, there are essentially two meth-
ods that transformed logic into an exciting, mathematically and philosophically
interesting discipline – the algebraic method and the formal axiomatic method.
Suppose we want to study some (deductive) science S from a logical point of view,
we need to consider two things: (i) The set of axioms8 for the theory S and (ii)
the procedures of logical inference by which the theorems of S can be derived.
On the other hand, with the “algebraic method” we treat mathematical entities
and the relations between them as mathematical symbols following the rules of
“mathematics,” that is, we manipulate the symbols according to the rules we have
previously established. Of course, in the process of these “manipulations” new
rules can be discovered and lead us to new discoveries.9 Furthermore, “opera-
tions” themselves can be then treated as objects to be manipulated with/operated
on, and we get more and more intricate structure of the whole new mathematics
universe opened up for us.

Axioms and the “axiomatic method” are somewhat similar to the method
Euclid10 used. The paradigm of such an approach is to discover a finite set

6As Kant lamented: “There was a time when metaphysics was called the queen of all sciences …Now…
the queen proves despised on all sides.”
7Would you believe me if I told you that the title of this book is purely coincidental?
8By axioms we mean the set of propositions whose truth is assumed self-evident from the beginning.
(Postulates, on the other hand, we assume to be true by convention.)
9All of this may look confusing to you at this point – don’t worry, in due time you will develop a “sense”
for it, and things will become very “natural” to you. One more comment I want to make at this point to the
reader who is familiar with the following popular adage: All mathematicians are closeted Platonists. Well,
that’s not exactly true, I for one, am not – closeted.
10Euclid of Alexandria, not Euclid of Megara.
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of fundamental principles (axioms) from which all infinitely many truths of
mathematics can be derived. Of course, over more than 2300 years after Euclid,
much of the refinements have been done by the luminaries on whose shoulders
we are standing today. The formal axiomatic method freed us from logical
inconsistencies when dealing with entities difficult or even impossible to define
(recall, for instance, the “definition” of a set in Chapter 1). The beauty of axioms
and the axiomatic method, one may argue, is that in one sense they are “free
of content,” and, on the other hand, they are about any set of entities that make
the axioms true. Put differently, axioms determine to which set of entities the
undefined terms apply. As you might have anticipated, all of this elevates the
whole discussion on the nature of mathematics on a higher plane. So, do you see
where we are going? Can you intuit the “big” picture?

In order to raise everything to a highly abstract level and with constant concern
for precision and rigor, we need a language – a formal language – into which we
can translate English (French, German, Chinese, or any other natural language)
sentences. This language may not be as expressive as a natural language but that’s
the price we have to pay for the precision we desire. We also need a precise
formation rules, a precise “grammar,” so that no ambiguities can occur in our
discourses. Although we can, in principle, have an infinite sequence of objects,
which we will call symbols, there is only a finite number of logical symbols. Many
of them we have already met, but nevertheless let’s list some of them again:

The five symbols we use in propositional logic ∼,∧,∨,→,↔ (not, and,
or, if … then, if and only if, respectively11) are usually called senten-
tial connective symbols, which together with the usual parentheses, (a) we
call logical symbols. In translating to and from English their role never
changes. Sentences, on the other hand, will be designated by various symbols:
a, b, c, … , p, q, r, … or A,B,C, … ,P,Q,R, … or 𝛼, 𝛽, 𝛾, … . They are
nonlogical symbols and we call them parameters or variables. So our formal
language  consists of the following:

(i) Alphabet, that is, the set of logical and nonlogical symbols

A = {∼,∧,∨,→,↔ (, ), p, q, r, …}

(ii) A set of formulae, that is, strings of symbols from A

(iii) A “grammar,” the set of rules of inference, that is, the rules of how to
manipulate symbols in order to obtain “grammatically correct” statements,
that is well-formed-formulas (wffs)

(iv) A set of axioms.

11These connectives are most likely due to Chrysippus.
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The rules for wffs are as follows:

1. Any sentence symbol is a wff.
2. If 𝜙 is a well-formed formula, then so is ∼ 𝜙.
3. If 𝜙 and 𝜓 are well-formed formula, then so are (𝜙 ∧ 𝜓), (𝜙 ∨ 𝜓), (𝜙→
𝜓), and (𝜙 ↔ 𝜓).

Example 2.1

(i) ∼∼∼ p is a wff since p is a wff by rule (1) to which we apply rule (2) three
times.

(ii) ((→ p is not a wff.
(iii) ∼ (p → q) is a wff.
(iv) pq is not a wff. Two sentence symbols can produce a wff only if rule (3) is

satisfied. ◾

Example 2.2 Suppose we are given a sequence

((∼ p) → (p ∧ q)) ∨ (p ∧ (q ↔ r)) (*)

Is it a wff?

Solution Let us check our sequence against rules (1)–(3) of well-formed for-
mulas. If we consider ((∼ p) → (p ∧ q)) as 𝜙 and (p ∧ (q ↔ r)) as 𝜓 we see
that our whole expression is of the form (𝜙 ∨ ψ). On the other hand, observe
that 𝜙 has the form of (𝛼 → 𝛽), where 𝛼 is (∼ p) and 𝛽 is (p ∧ q) Similarly, 𝜓 is
of the form (p ∧ γ), where 𝛾 is (q ↔ r). Thus, our sequence (*) is wff indeed.◾

“Contrariwise,” continued Tweedledee, “if it was so, it might be; and if it were so,
it would be; but as it isn’t, it ain’t. That’s logic.”

Lewis Caroll, Alice in Wonderland

2.2 PROPOSITIONAL CALCULUS12

Now we are ready to start and, as always, we would like to start with some basic
definitions. But to be consistent and maintain the necessary mathematical rigor
rightfully expected of logic, it is high time to precisely state what we mean by a
“definition.”

Definition13 A definition is a statement neither true nor false. The only require-
ment for a definition is that it needs to be consistent in itself. A definition could

12Propositional calculus is also called “propositional logic,” “Boolean logic” or “sentential calculus.”
13This definition is purposely un-numerated – it has a place in the previous chapter as well as in all the
chapters that follow.
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also be considered as a rule for identifying the entity defined regardless of its
abstract appearance.

Next we ask: what is logic? As with sets we find it almost impossible to define
logic. Following Russell we will think of the logic of an argument as that which
is left over when the meaning of the argument has been removed. Formally,

Definition 2.1 Logic (𝛌ó𝛄o (logos)) is the study of the principles, method,
and validity in deductive reasoning, especially of the structure of propositions
as distinguished from their content. Since logical analysis doesn’t determine the
intrinsic merit of an argument but only evaluates the argument’s form in order to
determine whether the truth of the conclusion follows necessarily from the truth
of premises, logic is often referred to as a science of reasoning. We also have

Definition 2.1 ′ By the logic of an argument, we mean the abstracted form of
that argument as a “thing” independent of the content of the argument. Or simply

Definition 2.1 ′′ Logic is a science/a study that deals with the principles and
criteria of the validity of inference and demonstration.

What Frege, Russell, Whitehead, and others wanted to do was to show that,
once properly established, logic could be applied to statements about anything at
all, mathematics in particular (in case, you consider mathematics different from
logic). So when we follow the rules of mathematics/logic, the results obtained,
to paraphrase G. H. Hardy,14 are there not because we think so, or because our
minds are shaped in one way rather than the other, but because it is so, because
mathematical reality is built that way.

We ended the last chapter with a couple of classical paradoxes wishing to
incite thinking about connections between abstract formalism of set theory and
logic. So before further introducing the formalism of logic, let me start with
another ancient, “difficult,” and still mathematically relevant paradox – the liar
paradox,15 known to the ancients as the pseudomenon. Generally attributed to
Epimenides,16 the original version of the Liar’s Paradox was actually devised in
the fourth century bc by the Greek philosopher Eubulides.17 It goes like this:
Epimenides, a Cretan, reportedly stated:

The Cretans always lie.

Is this true or not? A man says that he is lying. Is what he says true or false?
(Remember Russell’s barber? Well, does he shave himself or not?) Or, how about

14Hardy, G. H., A Mathematician’s Apology, Cambridge Univ. Press, 1967.
15St. Paul also mentions it: “One of themselves, a prophet of their own, said: ‘Cretans are always liars,
wily beasts, lazy gluttons.’ This testimony is true.” [Titus I:12-13].
16Epimenides of Knossos, (ca. 600 bc), Cretan philosopher.
17Eubulides of Miletus (ca. 400 bc), Greek philosopher.
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this: “This sentence is false.” Now, compare those with the following sentence
due to N. Chomsky18:

Colorless green ideas sleep furiously.

It looks like a nice legitimate sentence, right? It has all the attributes of a “le-
gitimate” sentence, subject, verb, and so on. Still, you immediately recognize its
meaninglessness and reject it as it doesn’t tell you anything. The “liar” sentence,
however, is completely different. All Cretans lie – there is nothing meaningless
here. We know exactly what Epimenides is saying, don’t we? Well, the difficulty
with the liar paradox is that irrespective of whether one considers the proposition
true or false, it always leads to a contradiction. Thus, what is its meaning? What
are we to conclude from it? Consider again “This sentence is false.” Suppose it is
true, that is, it says of itself that it is not true. But we assumed that what it claims
is true, hence it cannot be true. Suppose, now, that it is not true. Then, it says of
itself that it is not true, hence by the assumption it is true.

As you can see, our mind can come up with the statements, that regardless
how simple or naïve they look at the first sight, they are definitely not trivial.
How, then, we are to decide their truth value? Another example could go like
this: Suppose I say:

Vladimir Lepetic cannot consistently prove that this statement is true.

I can certainly make the above statement – as I just did – but regardless how
hard I try I cannot prove it. You, the reader, on the other hand, can immediately
show that it is true. So how am I to consider a discipline as scientific if I cannot
prove a proposition that is so obvious to everyone else? You can imagine now
how complicated some issues in philosophy, mathematics, and the sciences can
be. Of course, if and when the propositions like the ones above occur, we want
to be able to decide on their validity. In mathematics, we want the rules of logic
to give precise meaning to mathematical statements, so we can distinguish with
no ambiguity between valid and invalid ones. Again, the best is to start simple by
introducing the basic ingredients of our discourse. So, let S = {p, q, r, s, …} be
a (countable) set with p, q, r, and so on representing statements or propositional
variables, or simply, propositions.

Definition 2.2 A statement or a proposition is a declarative sentence that
is either true or false but not both. A statement can be expressed in words or in
mathematical symbols.

NOTE: Some authors distinguish between a statement and a proposition. They
consider the former as a declarative sentence for which a truth value cannot be

18Avram Noam Chomsky (1928–), American linguist, philosopher, cognitive scientist.
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determined and the latter as one for which that can be done. For instance, “x is an
even integer” would be a statement and not a proposition since we cannot assign
a truth value to it without knowing what x is. In this book, however, we will use
“statement” and “proposition” interchangeably and consider them as the same.

Example 2.3 Consider the following:

(i) Washington, D.C. is the capital of the USA

(ii) 2 × 2 = 22
(iii) How are you?

(iv) x is an even number

(v) 𝜋 = 3

Note that

(i) is a proposition, which is true.
(ii) is a proposition, which is obviously false.

(iii) is not a proposition – there is no true–false value that we can associate with
it.

(iv) is not a proposition because we cannot decide whether it is true or false
since we don’t know what x is.

(v) is a statement, which is false. ◾

Example 2.4 Consider the following:

(i) x > 2 is not a proposition. Since variables don’t have any meaning by them-
selves, we cannot decide whether it is true or false. We don’t even know
whether x is a number or something else in which case x > 2 would be
sheer nonsense.

(ii) Similarly, x + y = 12. Although it is usually considered a formula (i.e., even
as one habitually assumes that x and y are numbers), this is not a proposi-
tion for we don’t know what numbers x and y stand for. ◾

Example/Exercise 2.5 The sentence “Is 5 an integer?” can certainly be
answered affirmatively, but is it a proposition or not?

Many statements, of course, are not that simple and, in fact, could be extremely
complicated. They could be built up out of many other statements using various
logical connectives. Thus, we have

Definition 2.3 A statement is said to be simple or atomic if it cannot be broken
down into other statements (e.g., 2 × 2 = 4). A statement is composite or com-
pound if it contains several simple statements connected by words/symbols and,
or, thus, then, and so on.
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Example 2.6 If we formally denote statement (i) from Example 2.3, with the
letter p, statement (ii) with the letter q, and with the already mentioned symbol
“ ∧ ” to stand for “and,” we can build a composite statement p ∧ q, which reads

Washington, D.C. is the capital of the USA and 2 × 2 = 22 (2.1)

As you can see, by using “p” and “q” as statement variables and the symbol “∧”
to denote “and,” we formally/abstractly express statement (2.1) as

p ∧ q (2.1′)

The advantage of this is that all statements of the form p ∧ q can be treated
equivalently regardless of the “content” of the variables p and q. Similarly, we
introduce a symbol “∨” to denote “or.” So, instead of the compound statement
(2.1) in the form (2.1′), we can construct another compound that reads

Washington, D.C. is the capital of the USA or 2 × 2 = 22 (2.2)

whose abstract form is
p ∨ q (2.2′)

Finally, we will use the symbol “∼” to denote “not,” or “it is not the case that… ”
Thus, if p represents the statement:

“Washington, D.C. is the capital of the USA,” then

∼ p represents the statement:

It is not the case that Washington, D.C. is the capital of the USA19 (2.3)

Definition 2.4 A propositional function p(x) is a declarative sentence about
one or more symbols x, y, z, … , which becomes a proposition when a particular
meaning is assigned to these symbols.

Definition 2.5 Given a propositional function p(x), we say that interpretation
of x is a meaning assigned to x for which p(x) becomes a proposition.

19Obviously, in everyday parlance statement (2.3) would simply be read: Washington D.C. is not the capital
of the USA. The use of “It is not the case that” to negate the statement can be useful in more complicated
compounds where simple “not” may cause some confusion.
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Example 2.7
Let p(x)∶ x is an even integer

be a propositional function. Then x = 4 is an interpretation that makes p(x) a
true statement, while x= red apple is an interpretation that makes p(x) a false
statement.

As it is often critical in everyday life to determine whether something is true
or not, it is not surprising that in mathematics deciding whether a proposition is
true or false becomes the crux of the matter. ◾

Definition 2.6 The truth or falsity of a statement we call the truth value of the
statement.

Often in order to simplify the process of finding the truth values of a state-
ment we use Truth Tables. Of course, we take it for granted henceforth that truth
and falsehood are two different “things” without precisely defining what “truth”
and “falsehood” are. In fact, it will never matter exactly what kind of “things”
they are20 but in a given context we find it convenient to identify truth with the
symbol T and falsehood with F and refer to them as the truth values of a given
statement. Thus,

Definition 2.7 Truth Tables are tables in which we list all possible truth values
of statements we are considering.

The definitions of the compounds that follow can also serve as a good example
of applications of truth tables.

Definition 2.8 If p is a statement/proposition variable, the negation of p is
“not p” or “It is not the case that p” and we denote it by ∼ p. The truth values
are given in Table 2.1, where T stands for “true” and F for “false.”

TABLE 2.1 Truth Table for ∼ p

p ∼ p

T
F

F
T

Definition 2.9 (Conjunction) Let p and q be propositions. The proposition
“p and q,” the conjunction of p and q, denoted p ∧ q, is the statement that is
true only when both p and q are true, otherwise it is false. The truth table for
conjunction is given in Table 2.2.

20Of course “… it will never matter … ” is in a sense a misstatement. Of course, we DO care what is true
and what is false. After all, one of the most important philosophical questions is the question of “Truth.”
However, here, in mathematical logic, we are concerned only with “formalism,” that is the way we must
reason in order to communicate coherently with other humans. Questions of “content” within our formal
inferences we leave for later.
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TABLE 2.2 Truth Table for p∧ q

p q p ∧ q

T
F
T
F

T
T
F
F

T
F
F
F

Example 2.8 Let proposition p be: “Today is Monday” and proposition q: “I
am studying logic.” Then conjunction p ∧ q reads: Today is Monday and I am
studying logic. ◾

Example 2.9 Let S be a statement: 𝜋 lies between 3 and 4 Write the state-
ment S in abstract form, that is, as a conjunction of appropriate statements p
and q.

Solution Let p∶ 𝜋 > 3, and q∶ 𝜋 < 4. Then,

S∶ p ∧ q ≡ (𝜋 > 3) ∧ (𝜋 < 4)
◾

Definition 2.10 (Disjunction) Let p and q be propositions. The proposition
“p or q”, the disjunction of p and q, denoted p ∨ q, is a proposition that is false
only when both p and q are false, otherwise it is true. The truth table for disjunc-
tion is given in Table 2.3.

TABLE 2.3 Truth Table for p∨ q

p q p ∨ q

T
F
T
F

T
T
F
F

T
T
T
F

Example 2.10 Let statements p and q be as in Example 2.8. Then, disjunction
p ∨ q reads: Today is Monday or I am studying logic.

Now that conjunction, disjunction, and negations have been defined, we can
consider more complicated expressions as different combinations of basic com-
pounds described above. For instance, we may be interested in the truth values of
(i) ∼ p ∧ q, (ii) p ∧ ∼ q, (iii) ∼ p ∨ q, (iv) p ∨ ∼ q, (v) ∼ (p ∨ q), and so on.
Often, we want to know the truth tables for even more complex statements.

So, we restate Definition 2.3 in more general terms by ◾
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Definition 2.11 A statement/propositional form is an expression made up of
statement variables p, q, r, and so on and logical connectives “ ∼, ” “∧, ” “∨, ”
that becomes a proposition when actual statements are substituted for the com-
ponent statement variable.

Example 2.11 Construct the truth table for the following statement:
(p ∧ ∼ q) ∨ ∼ r.

Solution See Table 2.4. ◾

TABLE 2.4 Truth Table for (p ∧ ∼ q) ∨ ∼ r

p q ∼ q r ∼ r p ∧ ∼ q (p ∧ ∼ q) ∨ ∼ r

T
F
T
T
F
F
T
F

T
T
F
T
T
F
F
F

F
F
T
F
F
T
T
T

T
T
T
F
F
T
F
F

F
F
F
T
T
F
T
T

F
F
T
F
F
F
T
F

F
F
T
T
T
F
T
T

Definition 2.12 (Exclusive Or) Let p and q be propositions. The exclusive or
of p and q, denoted p⊕ q, is the statement that is true when exactly either p or q
is true and is false otherwise, that is

p⊕ q = (p ∨ q) ∧ ∼ (p ∧ q)

Here is the truth table (Table 2.5).

TABLE 2.5 Truth Table for p ⊕ q

p q p ∨ q p ∧ q ∼ (p ∧ q) p ⊕ q

T
T
F
F

T
F
T
F

T
T
T
F

T
F
F
F

F
T
T
T

F
T
T
F

Observe that unlike inclusive or, the exclusive or is false when both p and q
are true.

Definition 2.13 (Conditional/Implication*) Let p and q be two statements.
We say that “if p then q” (or that “p implies q”) is the conditional of q by p, and
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we write: p → q. We define the conditional as a statement that is false only when
p (the antecedent) is true and q (the consequent) is false. Otherwise, it is true. The
truth table for the conditional is given in Table 2.6.

TABLE 2.6 Truth Table for p→ q

p q p → q

T
F
T
F

T
T
F
F

T
T
F
T

(*) There is some subtlety here that has to be addressed. Strictly speaking,
conditional is not the same as implication although it may seem so. That was
known to the Stoics, and to their credit they recognized that the conditional has a
clear or complete truth pattern only in two cases: when p is true and q is true, and
when p is true and q is false. The rest has to be defined. And that’s indeed what we
do today. We say that conditional is true in all cases except when the antecedent
is true and the consequent is false, which brings us to the issue of conditional and
implication. Consider the following example:

If an apple is a fruit then there are infinitely many primes.

This conditional is true since both the antecedent and the consequent are true.
However, the infinitude of primes has nothing to do with an apple being a fruit,
that is, an apple being a fruit doesn’t imply infinitude of primes. With the above
observation in mind, we list a few more ways of stating the conditional (implica-
tion):

(i) p implies q

(ii) q if p

(iii) p only if q

(iv) p is sufficient condition for q

(v) q is a necessary condition for p

Example 2.12 Consider the statement

S: If 3 is prime greater than 2 then 3 is odd.

Take for p: “3 is prime greater than 2,” and for q: “3 is odd.” Formally, our
statement S reads:
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S∶ p → q (if T then T; this is the first row in the table above.)

Thus, the statement S is true.
If our statement is

S∶ If 9 is prime greater than 2, then 9 is odd

our conditional, formally written, is

S∶ p → q (if F then T; this is the second row in our table above.)

thus, the statement q is true.
Finally, consider

S∶ If 4 is a prime greater than 2 then 4 is odd,

that is

S∶ p → q (if F then F; this is the fourth row in our table above.)

the statement S is true again.
However, if the statement is

S∶ If 3 is greater than 2 then 4 is prime

that is

S∶ p → q (if T then F; this is the third row in our table.)

thus, the statement S is false. ◾

Example 2.13 We learned in Chapter 1 that for any set A,∅ ⊆ A (see Theorem
1.1). The proof of this theorem, in terms of a conditional statement, goes as fol-
lows:

Let A be any set, and let x be any object. Consider the conditional statement:

S∶ (x ∈ ∅) → (x ∈ A)

By definition of the empty set, the antecedent of S is false, and, therefore, the
statement S is true, that is ∅ ⊆ A. ◾
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Example 2.14 Let S∶ p → q be a statement:

If a = b then a2 = b2, a, b ∈ R

Write a few alternative versions of the statement S.

Solution

(i) a = b implies a2 = b2

(ii) a2 = b2 if a = b ◾

Example/Exercise 2.15 Determine the truth value of the statement

S∶ If 2 ⋅ 2 = 22 then 4 ⋅ 4 = 44

Definition 2.14 (Biconditional) Let p and q be propositions. The bicondi-
tional of p and q, “p if and only if q,” denoted p ↔ q, is the statement that is true
when p and q have the same truth values and is false otherwise. The biconditional
has Table 2.7.

TABLE 2.7 Truth Table for p↔ q

p p p ↔ q

T
F
T
F

T
T
F
F

T
F
F
T

Definition 2.15 (Tautology) A tautology is a statement that is always true
regardless of the truth value of propositions that occur in it.

Definition 2.16 (Contradiction) A contradiction is a statement that is always
false regardless of the truth values of the propositions that occur in it.

Example 2.16 Table 2.8 gives simple examples of tautology (see also Theorem
2.2) and contradiction:

TABLE 2.8 Tautology and Contradiction

p ∼ p p ∨ ∼ p p ∧ ∼ p

T
F

F
T

T
T

F
F
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A tautology in the third column of the above table dates back to the time of
Aristotle and was considered as very self-evident for a long time. ◾

Example 2.17 Show that a statement S∶ (p ∧ (p → q))→ q is a tautology.

Solution To prove this, we construct Table 2.9 for the statement S:

TABLE 2.9 Truth Table for (p ∧ (p → q)) → q

p q p → q p ∧ ( p → q) (p ∧ (p → q))→ q

T T T T T
F T T F T
T F F F T
F F T F T

Since all entries in the last column of our table are “T”, that is, the statement
S is true for any combination of truth values of atomic statements p and q The
statement S is a tautology. ◾

Example 2.18 Show that a statement S∶∼ ((p ∧ q) → q) is a contradiction.

Solution We show this again by constructing the table Table 2.10 for the
statement S:

TABLE 2.10 Truth Table for ∼ ((p ∧ q) → q)

p q (p ∧ q) ∼ ((p ∧ q)→ q)

T T T F
F T F F
T F F F
F F F F

So, the statement S is a contradiction. ◾

Now we can adequately define the implication.

Definition 2.17 We say that p implies q, and we write p ⇒ q, if the conditional
p → q is a tautology.

The above definition is actually a consequence of

Theorem 2.1 Let P and Q be two statements (compound or atomic). We say
that P implies Q, and we write P ⇒ Q, if and only if P → Q is a tautology.
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TABLE 2.11 Truth Table for ((∼p)→ (p∧ q))∨ (p∧ (q↔ r))

p q r ∼ p p ∧ q q ↔ r ∼ p →
(p ∧ q)

p∧
(q ↔ r)

((∼ p)→ (p ∧ q))∨
(p ∧ (q ↔ r))

T T T F T T T T T
F T T T F T F F F
T F T F F F T F T
T T F F T F F F F
T F F T F T F T T
F F T T F F F F F
F F F T F T F F F

Proof First, assume that P logically implies Q, then every truth assignment
that makes P true also makes Q true. Thus, no truth assignment makes P true and
Q false and therefore no truth assignment makes (P → Q) false, that is (P → Q)
is always true. In other words, (P → Q) is a tautology. Conversely, assume that q.
is a tautology. Then, for every truth assignment S, it is not the case that P is true
and Q is false. In other words, every truth assignment that makes P true makes Q
also true, that is, P implies Q. ◾

This may be the right time to revisit Example 2.2 and consider it from another
angle. First, recall, we establish the fact that sequence (*) is wff. That is, wff
of propositional logic is more than just a meaningless collection of symbols. It
gives us a set of logical facts about the subject the atomic statements pertain to.
We also know how to design a corresponding truth table. In other words, we know
how to determine whether a given logical compound is true or false based on our
knowledge of truth or falseness of the atomic statements. The way in which this
is done defines the semantics of propositional calculus. The parsing of a wff can
be represented by an “upside down tree,” the ancestral tree, which we design by
putting the root at the top and let it branch downward. At each branching node,
we put a “descendant” of a particular “type” (i.e., a logical connective), so that
a node of “∼” has one descendant and all other nodes have two. Finally, we end
up with the leaves at the bottom, each labeled with a corresponding propositional
(atomic) variable pi. So, the tree of parsing the formula (*) from Example 2.2 is
shown in Figure 2.1.

Since the semantics of propositional logic gives us the rules of determining
the truth table of any formula, in this particular case, the truth table is Table 2.11.

Example 2.19 Let’s consider a statement

∼ (p ↔∼ (q ∧ ∼ r))
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It is a wff. Its tree structure is

And the corresponding truth table is Table 2.12.
◾

Example 2.20 Construct the truth table and the ancestral tree for the statement

(p ↔ q) → (∼ p ∧ q)

Solution See Table 2.13. ◾

Construction of the ancestral tree is left, as a simple exercise, for the reader.
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Figure 2.1 A parsing (ancestral) tree for a formula

TABLE 2.12 Truth Table for ∼ (p↔ (∼(q∧∼ r)))

p q r ∼ r q ∧ ∼ r ∼ (q ∧ ∼ r) (p ↔ (∼ (q ∧ ∼ r)) ∼ (p ↔ (∼ (q ∧ ∼ r)))

T T T F F T T F
F T T F F T F T
T F T F F F F T
T T F T T F F T
F F T F F T F T
F T F T F T F T
T F F T T F F T
F F F T F T F T

TABLE 2.13 Truth Table for (p ↔ q) → (∼ p ∧ q)

p q p ↔ q ∼ p ∼ p ∧ q (p ↔ q)→ (∼ p ∧ q)

T T T F F F
F T F T T T
T F F F F T
F F T T F F
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Example 2.21 Construct the ancestral tree and the truth table for the statement

Solution
(p ∧ q) → ((∼ r) ∨ (s ↔ r))

Construction of the truth table is left as a simple exercise for the reader. ◾

Theorem 2.2 (The Law of Excluded Middle) If p is a proposition, then the
statement (p ∨ ∼ p) is always true regardless of the truth value of proposition p.
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Proof See Example 2.16. ◾

It is worth noting that there are schools of thought in mathematics that take
the above theorem with more caution. Intuitionists, for example, claim that the
Law of Excluded Middle cannot be used without restrictions when dealing with
infinitely many objects. “Infinities” do “behave” strangely, or at least they behave
in their own specific way, as we have seen in Chapter 1. (Recall, for instance,
ℵ0 + ℵ0 = ℵ0.)

Sometimes, two or more statements that look different may in fact be equiv-
alent. Usually, one wants to choose the one that is formally easier to deal with.
For example, the statements

P∶ A ⧵ B = ∅ and Q∶ A ⊆ B

are equivalent. Indeed,

A ⧵ B = ∅ is equivalent to ∼ ∃x (x ∈ A ∧ x ∉ B)

which is equivalent to ∀x ∼ (x ∈ A ∧ x ∉ B)

which is equivalent to ∀x (x ∉ A ∨ x ∈ B)

which is equivalent to ∀x ((x ∈ A) → (x ∈ B))

which is equivalent to A ⊆ B

So we have

Definition 2.18 (Logical Equivalence) We say that two statements P and Q
are logically equivalent if and only if they have identical truth values for each
possible substitution of statements for their statement variables, and we write
P ≡ Q.

Definition 2.18′ (Logical Equivalence) Two statements P and Q are logically
equivalent if and only if P ↔ Q is a tautology.

This definition can be restated as

Theorem 2.3 Let P and Q be two statements (compound or atomic). We say
that P is equivalent to Q, and we write P ⇔ Q (or P ≡ Q) if and only if the
biconditional (P ↔ Q) is a tautology.
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Proof (P ↔ Q) is a tautology if and only if every truth assignment makes (P ↔
Q) true, which is equivalent to saying that every truth assignment gives P and Q
the same truth value, that is, P and Q are logically equivalent.

A rather trivial example of two equivalent statements is (Table 2.14)

p ≡∼ (∼ p)

Indeed, ◾

TABLE 2.14

p ∼ p ∼ (∼ p)

T
F

F
T

T
F

The following are examples of two important equivalencies:

Theorem 2.4 (DeMorgan’s Laws)

1. ∼ (p ∧ q) ≡∼ p ∨ ∼ q

2. ∼ (p ∨ q) ≡∼ p ∧ ∼ q

Proof Proof for (1): Table 2.15.
Proof for (2) is analogous. ◾

TABLE 2.15 Table for ∼ (p ∧ q) ≡ ∼ p ∨ ∼ q

p q ∼ p ∼ q p ∧ q ∼ (p ∧ q) ∼ p ∨ ∼ q

T T F F T F F
F T T F F T T
T F F T F T T
F F T T F T T

It might be important to stress again that

(i) ∼ (p ∧ q) ≢∼ p ∧ ∼ q

(ii) ∼ (p ∨ q) ≢∼ p ∨ ∼ q
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With everything said so far it shouldn’t be difficult to prove the following:

Theorem 2.5 Let p, q, and r be any statements, and let 𝜏 be a tautology and a
contradiction. Then, the following logical equivalences hold:

1. (i) p ∧ q ≡ q ∧ p

(ii) p ∨ q ≡ q ∨ p

2. (i) p ∧ (q ∧ r) ≡ (p ∧ q) ∧ r

(ii) p ∨ (q ∨ r) ≡ (p ∨ q) ∨ r

3. (i) p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)
(ii) p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)

4. (i) p ∧ 𝜏 ≡ p

(ii) p ∨ c ≡ p

5. (i) p ∨ ∼ p ≡ 𝜏

(ii) p ∧ ∼ p ≡ c

6. (i) p ∨ 𝜏 ≡ 𝜏

(ii) p ∧ c ≡ c

7. (i) p ∧ p ≡ p

(ii) p ∨ p ≡ p

8. (i) ∼ 𝜏 ≡ c

(ii) ∼ c ≡ 𝜏

9. (i) p ∧ (p ∨ q) ≡ p

(ii) p ∨ (p ∧ q) ≡ p

Example 2.22 Write the negation of the following statement S: The train is late
or my watch is broken.

Solution Let p be: The train is late, and q: My watch is broken. So,

S∶ p ∨ q

Therefore,∼ S∶∼ (p ∨ q) ≡∼ p ∧ ∼ q: The train is not late and my watch is not
broken.

◾

Example/Exercise 2.23 State the negation of the following statement S: 4 is an
even number and 4 is not an even number.
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Example 2.24 Prove the following logical equivalence:

∼ (∼ p ∧ q) ∧ (p ∨ q) ≡ p

Solution

∼ (∼ p ∧ q) ∧ (p ∨ q) ≡ (p ∨ ∼ q) ∧ (p ∨ q)

≡ p ∨ (∼ q ∧ q)

≡ p ∨ c

≡ p ◾

Example 2.25 Prove the following logical equivalence:

∼ (p ∨ (∼ p ∧ q)) ≡∼ p ∧ ∼ q

Solution
∼ (p ∨ (∼ p ∧ q) ≡∼ p ∧ ∼ (∼ p ∧ q)

≡∼ p ∧ (p ∨ ∼ q)

≡ (∼ p ∧ p) ∨ (∼ p ∧ ∼ q)

≡ c ∨ (∼ p ∧ ∼ q)

≡∼ p ∧ ∼ q ◾

Theorem 2.6 Let p and q be propositions, then

p → q ≡∼ p ∨ q

Proof See Table 2.16. ◾

TABLE 2.16 Table for p → q ≡∼ p ∨ q

p ∼ p q p → q ∼ p ∨ q

T
F
T
F

F
T
F
T

T
T
F
F

T
T
F
T

T
T
F
T
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Example 2.26 Write the negation of the following statement S: If you live in
Florida, then you live in Miami.

Solution Let p be: “You live in Florida,” and q: “You live in Miami.” Our state-
ment is formalized as follows:

S∶ p → q

Therefore,

∼ S∶∼ (p → q) ≡∼ (∼ p ∨ q)

≡∼ (∼ p) ∧ ∼ q

≡ p ∧ q∶ You live in Florida and you don′t live in Miami

◾

Example/Exercise 2.27 Prove that

(p → q) =∼ (p ∧ (∼ q))

Theorem 2.7 Let p and q be propositions, then

p ↔ q ≡ (p → q) ∧ (q → q)

Proof See Table 2.17

TABLE 2.17 Truth Table for (p → q) ∧ (q → p)

p q p → q q → p p ↔ q (p → q) ∧ (q → p)

T
F
T
F

T
T
F
F

T
T
F
T

T
F
T
T

T
F
F
T

T
F
F
T

◾

Example 2.28 Let p and q be propositions. Show that the following statement
is true:

∼ (p ↔ q) ≡ (p ∧ ∼ q) ∨ (q ∧ ∼ p)
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Solution
∼ (p ↔ q) ≡∼ [(p → q) ∧ (q → p)]

≡∼ (p → q)∨ ∼ (q → p)

≡∼ (∼ p ∨ q) ∨ ∼ (∼ q ∨ p)

≡ [∼ (∼ p) ∧ ∼ q] ∨ [∼ (∼ q) ∧ ∼ p]

≡ (p ∧ ∼ q) ∨ (q ∧ ∼ p) ◾

Example/Exercise 2.29 Let p, q, and r be propositions. Show that the following
statements are tautologies:

(i) ∼ (p → q) ↔ (p ∧ ∼ q)
(ii) ∼ (p ∧ q) ↔ (∼ p ∨ ∼ q)

Example/Exercise 2.30 Let p and q be propositions. Show that

p ↔ [∼ p → (q ∧ ∼ q)]

is a contradiction.

Theorem 2.8 (Law of simplification) Let p and q be statements. Then,

(p ∧ q) → q

is a tautology.

Proof See Table 2.18.

TABLE 2.18 Table for (p ∧ q) → q

p p p ∧ q (p ∧ q)→ q

T T T T
F T F T
T F F T
F F F T

So, (p ∧ q) → q is indeed a tautology. ◾

Theorem 2.9 Let p, q, and r be any two propositions. Then the statement

[(p → q) ∧ (q → r)]→ (p → r)

is a tautology.
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Proof The tautology is evident from Table 2.19. ◾

TABLE 2.19 Table for [(p → q) ∧ (q → r)] → (p → r)

p q r p → q q → r p → r (p → q) ∧
(q → r)

[(p → q) ∧ (q → r)] →
(p → r)

T
T
T
T
F
F
F
F

T
T
F
F
T
T
F
F

T
F
T
F
T
F
T
F

T
T
F
F
T
T
T
T

T
F
T
T
T
F
T
T

T
F
T
F
T
T
T
T

T
F
F
F
T
F
T
T

T
T
T
T
T
T
T
T

Example/Exercise 2.31 Let Q be a proposition. Convince yourself that in order
to prove that Q is a true statement it suffices to do the following two things:

(i) Find a proposition P such that P → Q is true statement.
(ii) Show that P is a true statement.

If you had difficulty with the previous example, note that if you take P to be
(p → q) ∧ (q → r), then P → Q is true regardless of the truth value of p.

Now you should be able to prove the following:

Theorem 2.10 (Reductio ad absurdum) With p, q and r being propositions,
the following statement is a tautology regardless of the truth values of p, q, and r.

[∼ (p → q) → (r ∧ ∼ r)] → (p → q)

Example/Exercise 2.32 Let p, q, and r be propositions. Show that the following
statement is a tautology:

[(p ∧ ∼ q) → (r ∧ ∼ r)]→ (p → q)

Example 2.33 Prove:

∀ a, b ∈ R if a = b then a2 = b2
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Solution Suppose a = b, and a2 ≠ b2 Then, a = b implies a − b = 0 and
a2 ≠ b2 implies a2 − b2 ≠ 0. Thus, we have

(a − b)(a + b) ≠ 0

and therefore (a − b) ≠ 0. Our supposition a = b and a2 ≠ b2 gave us a contra-
diction (a − b) = 0 and (a − b) ≠ 0. Hence, a = b implies a2 ≠ b2. ◾

Definition 2.19 Let p and q be propositions and p → q the corresponding con-
ditional, then

(i) the converse is a statement of the form: q → p,
(ii) the inverse is a statement of the form: ∼ p →∼ q, and

(iii) the contrapositive is a statement of the form: ∼ p →∼ q.

Theorem 2.11 The conditional and its contrapositive are logically equivalent.

Proof
∼ q →∼ p ≡ ∼ (∼ q) ∨ ∼ p

≡ q ∨ ∼ p

≡ ∼ p ∨ q

≡ p → q ◾

Example/Exercise 2.34 Prove Theorem 2.9 by writing out the truth table for
the respective conditionals.

Example/Exercise 2.35

(i) Show that a conditional statement is not logically equivalent to its converse.
(ii) Show that a conditional statement is not logically equivalent to its inverse.

Example 2.36 Write the inverse, converse, and contrapositive for the following
statements:

(i) If n is prime, then n is odd or n is 2.
(ii) If n is an even integer, then n is the sum of two primes.
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Solution Let p be the statement: “n is prime,” q: “n is odd,” and r: “n is 2.”
Then, our statement formally looks as follows:

S∶ p → (q ∨ r)

Thus, inverse: ∼ p →∼ (q ∨ r) reads:
If n is not prime, then it is not the case that n is odd or n is 2. We can also say

∼ p →∼ (q ∨ r) ≡∼ p → (∼ q ∧ ∼ r),

that is, if n is not prime, then n is not odd and n is not 2.
However, the following is also true:

∼ p →∼ (q ∨ r) ≡∼ (∼ p) ∨ ∼ (q ∨ r)

≡ p ∨ (∼ q ∧ ∼ r)

n is prime or n is not odd and n is not 2.
Converse: (q ∨ r) → p reads:
If n is odd or n is 2, then n is prime.
However,

(q ∨ r) → p ≡∼ (q ∨ r) ∨ p

≡ (∼ q ∧ ∼ r) ∨ p

and therefore we say: n is not odd and n is not 2, or n is prime.
Contrapositive: ∼ (q ∨ r) →∼ p: If it is not the case that n is odd or n is 2,

then n is not prime. Or:

∼ (q ∨ r)→∼ p ≡ (∼ q ∧ ∼ r)→∼ p

If n is not odd and n is not 2, then n is not prime. ◾

Example/Exercise 2.37 Use reductio ad absurdum to prove the contrapositive
of the statement: For all a, b ∈ R if a = b, then a2 = b2.

Example/Exercise 2.38 Convince yourself that all the formulas in propo-
sitional calculus can be expressed by using only “∼” and “→” connectives.
Hint: Show that

(i) p ∧ q ≡ ∼ (p → (∼ q))
(ii) p ∨ q ≡ (∼ p) → q

(iii) p ↔ q ≡ ∼ ((p → q) → (∼ (q → p))
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Why is this thus? What is the reason for this thusness?

Artemus Ward21

2.3 ARGUMENTS I

Definition 2.20 An argument is a sequence of statements in which we distin-
guish premises as the statements preceding the final statement called the conclu-
sion. In other words, by an argument, we mean a set of propositions, of which
one is claimed to follow from the others.

Here is one of the most quoted examples:

Example 2.39

If Socrates is a human being, then Socrates is mortal;
Socrates is a human being;

∴ Socrates is mortal.

Using the formalism from the previous section, that is, putting p: “Socrates is
a human being” and q: “Socrates is mortal,” our argument in an abstract form
looks as follows:

p → q

p

∴ q ◾

As you may intuit, the formalism above suggests that the argument is valid
regardless of the statements substituted in place of variables p and q; as long as
the premises are true, then the conclusion is true. Let’s state this precisely:

Definition 2.21 We say that an argument form is valid if, no matter what
particular statements are substituted for the variables in its premises, making all
premises true, then the conclusion is also true.

Definition 2.21′ The argument form is valid iff there exists no case where all
premises are true and the conclusion is false.

Definition 2.22 We say that an argument is valid if its form is valid.
Now one very important note is in order: The validity of an argument is in

general independent of the truth or falsehood of the premises. It is perfectly pos-
sible for a valid argument to have a false conclusion and for an invalid argument
to have a true conclusion.

21Artemus Ward (Charles Farrar Browne) (1834–1867), American humorist.
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Definition 2.23 The argument is said to be sound iff it is valid and all premises
are true.

Example 2.40 Here is an example of a valid argument with a false conclusion:

Every man is immortal.
Socrates is a man.

∴ Socrates is immortal. ◾

Example 2.41 An example of an invalid argument with a true conclusion:

Every dog is mortal.
Every animal is mortal.

∴ Every dog is an animal. ◾

Example 2.42 Here is another example we inherited from the ancients. (It’s
due to Chrysippus22):

Either the first or the second or the third.
Not the first.
Not the second.
Therefore, the third.

As you can see, we could have equally well used the variables p, q, and r and
write

p ∨ q ∨ r

∼p

∼q

∴ r ◾

Example/Exercise 2.43 Analyze and determine the validity of the following
argument:

If we have might, then we are right.
We are right.

∴ We have might.

It may appear to you at this point that recognizing a valid argument does not
require much thought. Especially, after the formalism is established, one is
tempted to conclude that much care is in fact unnecessary – everything seems
self-evident. Well, sometimes even “simple” things need more attention.

22See DeLong, H., A profile of Mathematical Logic, Dover, 1970. (Incidentally, this is a beautiful book,
and anyone interested in mathematics should read it.)
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Let’s pause for a while and digress a little. Consider the following argument:

Bob loves Alice.
Alice is one word.

∴ Bob loves one word.

This sounds like nonsense, right? However, pure formalism of constructing the
argument looks good.

Let’s look at another example:

Bob speaks French.
French is English for Français.

∴ Bob speaks English for Français.

The problems with the previous two examples are in the second premise. Alice
is not (just) a word but rather a name of a certain girl who is loved by Bob. So,
one should say, “Alice” is one word and it is a name of a girl Alice, loved by
Bob. However, “Alice” is the name of “Alice,” and so on. As you can see, one has
to be careful with one’s language. It is one thing if we wish to talk about a girl
named Alice, and the other if we talk about Alice’s name “Alice.” (And, by the
way, “Alice” is the name of “Alice,” etc.) We use English (among other things)
to describe/study mathematics – mathematics is the object of our study, but we
can equally well use English (and we do) to study English (English grammar, for
instance). If we use English to study, say, French, it is easy to recognize English
as a metalanguage and French the object (language) of our study. But if we use
English to study English, or mathematics or logic to study mathematics, it is hard
to draw a boundary between language and metalanguage – between mathemat-
ics and metamathematics. We won’t be discussing metalanguages any more. We
have mentioned those, incidentally, very important issues very briefly, just to pro-
voke curiosity and possibly incite some readers to dig deeper. There is extensive
literature on metamathematics, and nothing would excite this author more than to
learn that some readers were prompted by this text to embark onto the beautiful
field of metamathematics. It might be appropriate to close this digression by the
following, very famous, exchange:

“Do you mean that you think you can find out the answer to it?” said the
March Hare.
“Exactly so,” said Alice.
“Then you should say what you mean,” the March Hare went on.
“I do,” Alice hastily replied; “at least – at least I mean what I say – that’s
the same thing, you know.”
“Not the same thing a bit!” said the Hatter. “Why you might just as well
say that ‘I see what I eat’ is the same thing as ‘I eat what I see’!”23

23From Alice in Wonderland, by L. Carroll (really C.L. Dodgson (1832–1898) writing under pseudonym).
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A Valid Argument Forms

Here is a simple algorithm for checking whether a given argument form is valid:

1. List/identify the premises and conclusion of the argument.
2. Construct the truth table showing the truth values of all premises and the

conclusion.
3. Identify critical rows – rows in which all premises are true.
4. The argument form is valid if and only if all critical rows have a true

conclusion.

Example 2.44 Determine whether the following argument is valid or not:

p ∨ q

∼q

∴ p

Solution The corresponding truth table is Table 2.20.

TABLE 2.20

p q p ∨ q ∼ q p

T T T F T
F T T F T
T F T T T
F F F T F

Inspecting the table, we notice that the only row with all true premises has the
conclusion that is also true, thus the argument is valid. ◾

Example 2.45 Now, let’s show that the following argument is invalid.

p → q

∼p

∴ ∼q

The corresponding truth table is Table 2.21.

TABLE 2.21

p q p → q ∼ p ∼ q

T T T F F
F T T T F
T F F F T
F F T T T
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Observe that lines 2 and 4 have true premises but line 2 has a false conclusion,
thus the argument is invalid. ◾

Example 2.46 (Modus Ponens)

If Socrates is human then Socrates is mortal.
Socrates is human.
Therefore, Socrates is mortal.

Formally:

p → q

p

∴ q

(Note that we could have written the same argument as follows:
((p → q) ∧ p) → q)

Now, inspecting Table 2.22, we see that all true premises have true conclusion
that makes Modus Ponens a valid argument. ◾

TABLE 2.22 Modus Ponens

p q p → q p q

T T T T T
F T T F T
T F F T F
F F T F F

Example 2.47 (Modus Tollens)

If Zeus is human then Zeus is mortal.
eus is not mortal.
Therefore, Zeus is not human.

Formally, see Table 2.23

p → q

∼q

∴ ∼p

(Or ((p → q) ∧ ∼ q) →∼ p) ◾
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TABLE 2.23 Modus Tollens

p q p → q ∼ q ∼ p

T T T F F
F T T F F
T F F T F
F F T T T

Example/Exercise 2.48 Convince yourself that the following arguments are
valid:

(i) p
∴p ∨ q

(ii) q
∴p ∨ q

(iii) p ∧ q
∴p

(iv) p ∧ q
∴q

(v) p
q

∴ p ∧ q

(vi) p ∨ q
∼ p
∴ q

(vii) p ∨ q
∼ q
∴ p

Example/Exercise 2.49 Convince yourself that the following arguments are
valid:

(i) p → q
q → r

∴ p → r
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(ii) p ∨ q
p → r
q → r

∴ r

(iii) ∼ p → c
∴ p

Example 2.50 Convince yourself that the following argument is invalid:

p → q ∨ ∼ r

q → p ∧ r

∴ p → r

Solution See Table 2.24. ◾

TABLE 2.24

p q r ∼ r q ∨ ∼ r p ∧ r p → q ∨ ∼ r q → p ∧ r p → r

T T T F T T T T T
T T F T T F T F F
T F T F F T F T T
T F F T T F T T F
F T T F T F T F T
F T F T T F T F T
F F T F F F T T T
F F F T T F T T T

Example/Exercise 2.51 Convince yourself that the following argument is
valid:

p ∨ q

p → r

q → r

∴ r

Let’s summarize: Rules of Inference for Propositional Logic shown in Table 2.25.



�

� �

�

ARGUMENTS I 153

TABLE 2.25

Rule of inference Tautology Name

p
∴p ∨ q

p → (p ∨ q)
Disjunctive
addition----------------- --------------------------------------

q
∴p ∨ q

q → (p ∨ q)

p ∧ q
∴p

(p ∧ q)→ p
Conjunctive
simplification----------------- --------------------------------------

p ∧ q
∴q

(p ∧ q)→ q

p
q

∴p ∧ q
((p) ∧ (q))→ (p ∧ q) Conjunction

p → q
p

∴q
((p → q) ∧ p)→ q Modus ponens

p → q
∼ q

∴ ∼ p
((p → q) ∧ (∼ q))→∼ p Modus tollens

p → q
q → r

∴p → r
((p → q) ∧ (q → r))→ (p → r) Hypothetical syllogism

p ∨ q
∼ p
∴q

((p ∨ q) ∧ (∼ p)) → q
Disjunctive
syllogism----------------- --------------------------------------

p ∨ q
∼ q
∴ p

((p ∨ q) ∧ (∼ q)) → p
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PREDICATE CALCULUS

Consider the following sentence:

All politicians are crooks. (*)

This is not a statement since (regardless of my personal opinion)24 we definitely
don’t know all politicians; thus, we cannot decide whether the sentence is true
or false. The quantifier “all” forces us to reconsider how to attribute “true” or
“false” to the sentence. The sentence (*) could be considered as a statement of
generality, and let’s suppose that it is either true or false, but not both. What would
make the statement (*), if true, false and, if false, true? Well, how about: There
exists a politician who is not a crook. This does sound like a good negation of the
statement (*), doesn’t it?

Or, consider another (less politically charged) sentence:

All swans are white. (**)

The sentence (**) is (also demonstrably) false. Even after seeing thousands of
white swans one cannot conclude that all swans are white. We can still formally
negate the statement (**) by saying: There is a swan that is not white. One more
example to consider:

Example 2.52 (Goldbach25 Conjecture) Every even integer (every even inte-
ger greater than 2) is the sum of two primes.

By inspection, you may be tempted to accept this statement as a theorem but
the Goldbach conjecture has not yet been proved to be true. Again, that pesky
quantifier “every” is the one that makes the whole difference in deciding whether
a proposition is true or not. ◾

Now, let’s consider something slightly more intricate (an argument):

All human beings are mortal.

Socrates is a human being (***)

∴Socrates is mortal.

This argument seems correct (cf. Example 2.43), but note again the quantifier
“all,” which prompts us to evaluate the argument somewhat differently from the
arguments in propositional calculus.

24Artemus Ward again: I am not a politician, and my other habits are good, also.
25Christian Goldbach (1690–1764), German mathematician.
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It is evident that quantifiers raise subtle points, and one would like to know how
to avoid the mistakes that often creep in unnoticed. You have certainly detected
that sentences (*) and (**), as well as the first premise of (***), are formally
of the same form: “All x are P.” Why, then, do we still feel some uneasiness
when calling (*) and (**) statements, but not with the first premise of (***)? To
proceed, let’s first make sure this time that we are completely clear with terms
the existential and universal quantifiers we have used many times before.

Existential Quantifier “∃”

The existential quantifier “there exists,” symbolically “∃,” asserts that there
is some particular object/mathematical entity x satisfying some specific
property(ies)/condition(s) P, and we write: (∃x)P(x).

Example 2.53 We write the sentence “There exists a real number greater than
5” symbolically, using the existential quantifier, as follows:

∃x ∈ R, ∋ x > 5 ◾

Note that “there exists … such that” also means “for at least one … such that”
or “for some … such that.” In other words, by

∃x ∈ R , ∋ x > 5

we mean that there exist a set

A = {x ∈ R|x > 5} ≠ ∅

Universal Quantifier “∀”

The universal quantifier addresses a whole set of objects/entities possessing a
particular property. In other words, if P(x) asserts that x has a property P, then
(∀x)P(x) means that the property P holds for all x.

Example 2.54 Consider the statement: For every real number x greater than
zero, x2 is greater than zero. Symbolically,

(∀x ∈ R ⧵ {0}), (x2 > 0)

by which we mean
(x ∈ R ⧵ {0}) → ( x2 > 0)

So the set
{x ∈ R ⧵ {0}|x2 > 0} = R ⧵ {0} ◾
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Example 2.55 To say that X is a subset of Y , we write

∀z ∈ X( (z ∈ X) → (z ∈ Y)) ◾

Sometimes, we need to use both quantifiers in order to express our thoughts pre-
cisely, as the following example illustrates.

Example 2.56 Recall the axiom of the existence of empty set (Chapter 1): The
empty set exists. We wrote the axiom formally as follows:

∃∅,∀y(∼ (y ∈ ∅)) ◾

Example 2.57 Suppose we write

∀X,∃Y(∼ (X ∈ Y))

Equivalently, we could have said

∀X,∃Y(X ∉ Y) ◾

Example/Exercise 2.58 Write symbolically: For all natural numbers x, x is
less than or equal to x2.

Example/Exercise 2.59 What does the following statement say?

∀X,∀Y((X ∈ Y ∧ Y ∈ Z) → X ∈ Z)

Example 2.60 Express the following in formal language:

(i) The set X contains at least one element.
(ii) There is a set with at least one element.

(iii) The set X contains exactly one element.

Solution
(i) ∃y (y ∈ X). Note the difference with

(ii) ∃y,∃X(y ∈ X)
(iii) is slightly more difficult. We need to express the fact that, assuming

y1, y2 ∈ X, then y1 = y2. So we say:

∃y1( y1 ∈ X ∧ ∀y2 ∈ X(y2 ∈ X → y2 = y1)) ◾
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Example 2.61 What about the truth value of the sentence: There is a number
whose square is negative.

Note that I said “sentence,” not “statement.” You immediately sensed, didn’t
you, that, unless I specify what number(s) I am talking about, no decision could
be made about the truth value of the sentence, and, thus, it is not a statement. If
we say: “There is a real number whose square is negative,” that is

P(x)∶ ∃x ∈ R(x2 < 0)

we immediately recognize a statement which is obviously false. On the other
hand, if we say: “There is a complex number whose square is negative,” that is,

Q(x)∶ ∃x ∈ C(x2 < 0)

the statement is obviously true.26 This doesn’t come as a surprise to you. Recall-
ing Definition 2.5 you recognize the importance of the interpretation of x in
propositional functions P(x) and Q(x). ◾

Example 2.62 Similarly, we can easily recognize that the statement

P(n,m)∶ ∀n ∈ N,∃m ∈ N (n ≤ m)

is true. ◾

Example 2.63 Consider this:

Any friend of A is a friend of B.
C is not B’s friend.
Therefore, C is not A’s friend.

Symbolically, we write this as

∀x(P(x,A) → P(x,B))

∼P(C,B)

∴ ∼P(C,A)

where P(x, y) stands for x is a friend of y. ◾

Of course, nothing prevents us from constructing sentences involving more
than two variables, such as

“x + y = z”, “x + y + z ≤ 1”, “ x2 + y2 = r2”, and so on

26If you are unfamiliar with complex numbers, you can ignore this example.
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(Again, we don’t consider them as statements/propositions according to our def-
inition of the statement (see Definition 2.4), since we cannot determine “truth”
or “falsehood” unless the values of the variables are specified.) However, regard-
less of the number of variables, we need to distinguish between the “subject”
and the “predicate” of our sentences. Consider the following expression: “x > 5”
(x is greater than 5). It has two parts: the first part, the variable x – the subject
of the “statement,” and the second part “is greater than” – the predicate. Analo-
gously, we can construct sentences with several unquantified variables x, y, … ,
which we call free variables. We denote such expressions by P(x, y, …), where P
stands for the predicate part and x, y, … are the variables that P refers to. Once the
values have been assigned to the variables x, y, … ,P(x, y, …) attains the truth
value, and P(x, y, …) becomes a proposition. Expanding on these concepts, we
introduce the following:

Definition 2.24 A predicate is a sentence that contains a finite number of vari-
ables x, y, z, … and becomes a proposition when specific values are substituted
for the variables.

Definition 2.25 The domain , or the universe of discourse of the predicate
variable x, y, z, … is a set of all values that may be substituted in place of the
variables, that is x, y, z, … ∈ .

Definition 2.26 Given variables x, y ∈ , and if P(x, y) is a corresponding pred-
icate, we say that the truth set  of P(x, y) is the set of all elements of  that
make P(x, y) true, that is

 = {x, y ∈ |P(x, y) is true}

Analogously to Definition 2.5 we state

Definition 2.27 If P(x, y) is a propositional function, then an interpretation of
x, y is the meaning assigned to x and y for which P(x, y) is a proposition.

Example 2.64 Let P(x, y) be the sentence: “x and y are even integers.” We can
interpret/think of the predicate P(x, y) in two different but equivalent ways:

(i) For all x and y,P(x, y)
(ii) There exist x and y such that P(x, y).

Of course, the truth values of (i) and (ii) depend on the domain of the variables
x and y.

In both cases, if  = Ne = {Set of all even natural numbers}, the statement is
obviously true. In the case that  = N, the statement (i) is evidently not true and
the statement (ii) is true.
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The quantifiers “for all” – ∀, and “there exist” – ∃, understandably play
an important role in deciding on the truth and falsehood of the predicate
statements. ◾

Example/Exercise 2.65 Notice the difference between the following expres-
sions:

(∀ x ∈ N, x ≤ x2) and (∀x, x ≤ x2)

Which one represents a statement?

Definition 2.28 Let P(x) be a predicate with x ∈ . A universal statement is
a statement of the form ∀x ∈ , P(x). It is defined to be true iff P(x) is true for
every x ∈ . It is false iff there exists at least one x ∈  for which P(x) is false.

Example 2.66
∀x ∈ (R∖{0}) (x2 > 0)

Here,  = R∖{0}, and P(x)∶ x2 > 0 ◾

A dose of caution is often needed, even when some statements look pretty
obvious. For instance, we often say: “if n ≥ n0” meaning “for all n ≥ n0.”

Example 2.67 The statement

If n ≥ n0 then
||||1n − 0

|||| < 𝜀
expressed more precisely reads

∀n, if n ≥ n0 then
||||1n − 0

|||| < 𝜀
or

(∀n, n ≥ n0)→
(||||1n − 0

|||| < 𝜀
)

◾

Definition 2.29 Let P(x) be a predicate with x ∈ . An existential statement
is a statement of the form “∃x ∈ , such that P(x).” It is defined to be true iff
there exists at least one x ∈  for which P(x) is true. Otherwise, it is false.

Example 2.68 Consider the following predicate P(x): There exists an odd num-
ber that is not prime. If we assume that  is a set of all prime numbers we write
our predicate formally as

∃x ∈ ,P(x)



�

� �

�

160 LOGIC

We can establish the fact that the statement is (obviously) true by simply picking
one example, say, number 9. ◾

As you might have anticipated, not all existential statements are that easy. In
particular, to prove their truthfulness/falsity could be rather challenging. The next
two examples are more interesting.

Example 2.69 Recall Theorem 1.45 where we stated:
√

2 ∉ Q. Let’s restate
the claim that

√
2 is irrational by using the formalism described above:

∄p, q ∈ Z
(√

2 =
p

q

)
(*)

Or, we can say:

∼ ∃p, q ∈ Z
(√

2 =
p

q

)
(**)

And also

∀p, q (p ∈ Z ∧ q ∈ Z) →
(√

2 ≠
p

q

)
(***)

Again, note that the statements (*), (**), and (***) are equivalent. ◾

Example 2.70 Consider the following: If x is any odd prime less than 10, then
x2 + 4 is prime.

Equivalently, we could have said: For every odd prime less than 10, x2 + 4 is
prime.

Denoting the set of all primes as P, we write formally

((∀x ∈ P) ∧ (x = 2k + 1, k ∈ N) ∧ (x < 10)) → ((x2 + 4) ∈ P) ◾

Example 2.71 Write the following statement formally: Everybody loves some-
body.

Solution Let , domain of our discourse, stand for a set of all humans. Then
our statement reads:

(∀x ∈ )(∃y ∈ )(P(x, y))
where P(x, y) stands for: x loves y.
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◾

Example/Exercise 2.72 Write the following statement (attributed to William
Cowper27) formally as a logical expression:

No man can be a patriot on an empty stomach.

Of course, sometimes a statement given formally needs to be “translated” to
everyday English. Try this:

Example/Exercise 2.73 Give at least two more informal versions of the state-
ment in Example 2.54. After you have completed Example/Exercise 2.59, give
two more informal expressions of it.

Example 2.74 Give two formal versions of the statement: For every natural
number, there is a real number greater than that number.

Solution
(∀n ∈ N)(∃r ∈ R)(r > n)

or, equivalently, we can write

(n ∈ N) → ((∃r ∈ R)(r > n))
◾

Example 2.75 If you have been exposed to any calculus, you probably remem-
ber that the definitions of limit

lim
x→x0

f (x) = L

goes like this: For every real 𝜀 > 0, there exists a real X such that

∀x ∈ R, |f (x) − L| < 𝜀, whenever 0 < |x − x0|< 𝛿
The formal expression of the above statement is

(∀𝜀 > 0, 𝜀 ∈ R,∃𝛿 > 0, 𝛿 ∈ R), (∀x ∈ R, 0 < |x − x0| < 𝛿) → |f (x) − L| < 𝜀)
◾

As the statements involving quantifiers in general occur so often, the question,
naturally arising, is: How do we negate a statement with existential or universal

27William Cowper (1731–1800), English poet.
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quantifier? In particular, what is a proper negation of a statement involving quan-
tifiers occurring in mathematical proofs? The issue can be rather subtle, so we
need to devote some time to it.

Consider again Aristotle’s premise: “All humans are mortal.” Suppose you
negate this sentence by saying “All humans are immortal,” or by saying “All
humans are not mortal.” Is this right? You guessed it, it’s not. Although, for a
moment, one might be tempted to state the negation that way (and indeed, in
everyday parlance one would often say something like that) but your gut feeling
tells you that it is incorrect – the mathematician in you is telling you those nega-
tions have to be phrased differently. Let’s formalize our sentence. Let  be the
domain of our discourse, that is,  = set of all humans, and let P stand for the
predicate “to be mortal.” Then, Aristotle’s sentence formally looks as follows:

∀ x ∈ ,P(x) (*)

Because of the quantifier “∀” it is sufficient to find just one x ∈ , just one excep-
tion that “violates” the claim, and we have “disproved” our statement (*). (cf.
Definitions 2.28 and 2.29). Thus, to negate (*) we say

∃ x ∈ ,∼ P(x).

What we are saying here is

∼ (∀ x ∈ , P(x)) ≡ (∃ x ∈ ,∼ P(x))

that is, the negation of “All humans are mortal” is “There is a human who is not
mortal.” That’s what logic requires from us to say. We don’t care about the fact
that we have not met any immortal human so far.

Formally, the “rules” for the negation of statements involving existential and
universal quantifiers are

Theorem 2.12 If P(x) is a predicate with variable x belonging to a certain
domain , then

(i) ∼ (∀x ∈ ,P(x)) ≡ ∃x ∈ ,∼ P(x)
(ii) ∼ (∃x ∈ ,P(x)) ≡ ∀x ∈ ,∼ P(x)

Proof (i) Let  be a domain such that ∼ (∀x,P(x)) is true. But that is the case
iff (∀x,P(x)) is false, that is, iff the truth set of ∼ P(x) is not empty, which fur-
thermore is true iff (∃x ∈ ) such that ∼ P(x) is true.

Similarly, we prove (ii). ◾

Following two examples are more explicit.
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Example 2.76 Let  = {x1, x2, … , xn } be a finite domain and let P(x, y) be a
predicate on . Show that

∼ (∀x ∈ , P(x)) ≡ ∃x ∈ ,∼ P(x)

Solution
∀x ∈ , P(x) ≡ P(x1) ∧ P(x1) ∧ · · · ∧ P(xn)

Therefore,

∼ (∀x ∈ ,P(x)) ≡∼ (P(x1) ∧ P(x2) ∧ · · · ∧ P(xn) )

≡ ((∼ P(x1)) ∨ (∼ P(x2)) ∨ · · · ∨ (∼ P(xn)))

≡ ∃x ∈ ,∋ (∼ P(x))
◾

Similarly, you can do

Example/Exercise 2.77 Let  = {x1, x2, … , xn } be a finite domain and let
P(x) be a predicate on . Show that

∼ (∃x ∈ ,∋ P(x)) ≡ ∀x ∈ , ∼ P(x)

Sometimes, the “size” or the “nature” of the domain  simplifies the decision on
truth and falsity of the universal statement. Here is an illustration.

Example 2.78 Given a set  = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} then,

∀ x ∈ ,P(x)∶ 2x2 + 5 + (−1)x

2
∈ 

is false, since by inspection we immediately observe that P(5) ∉ , that is, ∃x ∈
 such that ∼ P(x). ◾

Finally, we have to say a few words about the conditional statements.

Definition 2.30 Let  be the domain of our discourse and let x ∈ . We call
the following statement the universal conditional statement:

∀x ∈ , (P(x) → Q(x))

Example 2.79 Rewrite the following statement informally:

∀x ∈ R, (x > 2) → (x2 > 4)
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Solution One way would be: If a real number is greater than 2 then its square
is greater than 4.

◾

Example/Exercise 2.80 Write formally “There is a rational number between
any two rational numbers.”

Example 2.81 Prove the statement:

S: If A is any set then A ⊆ A ◾

Proof Let x ∈ A, then our statement is

(∀x, x ∈ A) → (x ∈ A)

which is obviously a tautology of the form P(x) → P(x), thus the statement is
true. ◾

Example/Exercise 2.82 Write the negation of the theorem: No set is an element
of itself.

Example 2.83 We don’t need to understand the meaning of the statement in
Example 2.75, but we can still write the correct negation of it:

∼ ((∀𝜀 > 0, 𝜀 ∈ R,∃δ > 0, 𝛿 ∈ R), (∀x ∈ R, 0 < |x − x0| < 𝛿)

→ (|f (x) − L| < 𝜀))

= (∃𝜀 > 0, 𝜀 ∈ R),∼ (∃𝛿 > 0, 𝛿 ∈ R), ((∀x ∈ R, (0 < |x − x0| < 𝛿)

→ (|f (x) − L| < 𝜀))

= ((∃ 𝜀 > 0, 𝜀 ∈ R), (∀𝛿 > 0, 𝛿 ∈ R),∼ (∀x ∈ R, (0 < |x − x0| < 𝛿)

→ (|f (x) − L| < 𝜀)))

= ((∃𝜀 > 0, 𝜀 ∈ R), (∀𝛿 > 0, 𝛿 ∈ R), (∃x ∈ R,∼ [(0 < |x − x0| < 𝛿)
→ (|f (x) − L| < 𝜀)]))

= ((∃𝜀 > 0, 𝜀 ∈ R), (∀𝛿 > 0, 𝛿 ∈ R), (∃x ∈ R, ∼ [∼ (0 < |x − x0| < 𝛿)

∨ (|f (x) − L| < 𝜀)]))
= ((∃𝜀 > 0, 𝜀 ∈ R), (∀𝛿 > 0, 𝛿 ∈ R), (∃x ∈ R, (0 < |x − x0| < 𝛿)
∧ |f (x) − L| ≥ 𝜀)) ◾
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Example/Exercise 2.84 Write the negation of the following statement:

∀x, y ∈ R,∀𝜀 > 0, if |x − y| < 𝜀, then x = y

Definition 2.31 The inverse of the universal conditional statement is

∀x ∈ (∼ P(x) →∼ Q(x))

Definition 2.32 The converse of the universal conditional statement is

∀x ∈ , (Q(x) → P(x))

Definition 2.33 The contrapositive of the universal conditional statement is

∀x ∈ , (∼ Q(x) →∼ P(x))

Example 2.85 Suppose a statement P(x) reads as follows:

P(x)∶ ∀x ∈ R ((x > 3)→ (x2 > 9))
write the inverse, converse, and contrapositive of the statement S.

Solution

Inverse: ∀x ∈ R (( x ≤ 3) → (x2 ≤ 9))
Converse: ∀x ∈ R ((x2 > 9)→ (x > 3))
Contrapositive: ∀x ∈ R ((x2 ≤ 9) → (x ≤ 3)) ◾

In case the predicate P involves two variables x, y ∈ , we proceed analogously.

Example 2.86 Let the statement S be

∃x,∀y,P(x, y).

Write the negation of S.

Solution

∼ S =∼ (∃x,∀y,P(x, y))

≡ (∀x,∃y,∼ P(x, y))
◾

Example 2.87 Write the negation of the statement

S: Everybody loves somebody.

Solution ∼ S reads: It is not the case that everybody loves somebody. However,
let’s first formalize S and then look for the formal expression of ∼ S.
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Let P(x, y) stand for “x loves y” and let x, y ∈  = All humans.
Our sentence formally written is

S∶ ∀x ∈ ,∃y ∈ ,P(x, y)

Thus,

∼ S∶∼ ((∀x ∈ ,∃y ∈ ),P(x, y)) ≡ ∃x ∈ ,∀y ∈ ,∼ P(x, y)), i.e.

There is somebody that doesn’t love anybody. (A very pathetic person indeed.)
From the above example, we see that the negation of

∀x,∃y, such that P(x, y)

is indeed logically equivalent to

∃x,∀y, such that ∼ P(x, y) ◾

The examples above seem pretty much self-evident; however, some extra cau-
tion is needed when dealing with multiply quantified statements. Consider the
following true statement S: There is an integer that is even and there is an integer
that is odd. Let’s first formalize the statement.

S∶ ∀x ∈ Z, (P(x) ∨ Q(x)) (*)

where P(x) stands for “an integer is even,” and Q(x) stands for “an integer is
odd.” There are some important subtleties one needs to recognize:

(*) does not imply/is not the same as

((∀x ∈ Z,P(x)) ∨ (∀x ∈ Z,Q(x))) (**)

since (**) reads: All integers are even or all integers are odd , which is obviously
false.

Similarly, suppose we say

((∃x ∈ Z, P(x)) ∧ (∃x ∈ Z,Q(x)))

that is, there is an integer that is even and there is an integer that is odd. Evidently,
this is true. However, saying

∃x ∈ Z, (P(x) ∧ Q(x))

that is, there is an integer that is even and odd, is of course false.

Definition 2.34

(i) By saying that (∀x,P(x)) is a sufficient condition for Q(x) we mean that

∀x, (P(x) → Q(x))
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(ii) By saying that (∀x,P(x)) is a necessary condition for Q(x) we mean that

∀x, (∼ P(x) →∼ Q(x))

(iii) By saying that (∀x,P(x) only if Q(x)) we mean that

∀x, (∼ Q(x) →∼ P(x))

Example/Exercise 2.88 Find the alternative expressions for (ii) and (iii) in Def-
inition 2.34.

Example 2.89 Recall the Axiom of Extensionality from Set theory: For all sets
X and Y, if X and Y have the same elements, then X = Y. Rewrite the axiom
formally.

Solution
∀X,∀Y(∀z(z ∈ X ↔ z ∈ Y) → (X = Y)) ◾

2.4 ARGUMENTS II

By now you are probably in the position to anticipate that the construction of
arguments with universal and existential quantifiers can also be formalized. The
next two examples, both due to L. Carroll, are classic.

Example 2.90

All lions are fierce.
Some lions don’t drink coffee.

∴ Some fierce creatures don’t drink coffee.

Let’s put P(x): “x is a lion,” Q(x): “x is fierce,” and R(x): “x drinks coffee”
Then, the formalized argument reads as follows:

∀ x (P(x) → Q(x))

∃ x (P(x) ∧ ∼ R(x))

∴∃ x (Q(x) ∧ ∼ R(x)) ◾

Example 2.91

All humming birds are richly colored.
No large birds live on honey.
Birds that do not live on honey are dull in color.
Humming birds are small.
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Let’s put P(x)∶ ⃛x is a humming bird⃜; Q(x)∶ ⃛x is large⃜; R(x) ∶
⃛x lives on honey⃜; S(x) ∶ ⃛x is richly colored.⃜ Then, the formalized
argument reads as follows:

∀x (P(x) → S(x))

∼∃x (Q(x) ∧ R(x))

∀x (∼ R(x) →∼ S(x))

∴∀x (P(x) →∼ Q(x)) ◾

Predictably, these examples, similarly to the rules of inference for proposi-
tions, suggest the existence of general rules for handling the arguments with
quantified statements, that is,

The Rules of Inference for Quantified Statements

1. Universal Instantiation:

∀x ∈ ,P(x)

c ∈ 

∴P(c)

What we are saying here is that the particular P(c) is true as a consequence
of a given universal truth of a premise ∀x ∈ , P(x). A classic example you
surely remember is

All human beings are mortal.
Socrates is a human being.

∴ Socrates is mortal.

2. Universal Modus Ponens:

∀x ∈  (P(x) → Q(x))

P(c)

∴Q(c)

Here we are saying the following: If all x ∈  make P(x) true, then all x
make Q(x) also true. Thus, the particular c ∈  makes P(x) true, and, there-
fore, the same c makes Q(x) also true. Here is an example:

If a number is even then its square is even.
4 is an even number.

∴ 16 is even.



�

� �

�

ARGUMENTS II 169

3. Universal Modus Tollens

∀x ∈  (P(x) → Q(x))

∼ Q(c)

∴ ∼ P(c)

We are saying the following: If all x ∈  make P(x) true, then all x make
Q(x) also true. c, however, does not make Q(x) true, and therefore c does
not make P(x) true.

Another familiar example:

All humans are mortal.
Zeus is not mortal.

∴ Zeus is not human.

Sometimes, Modus Tollens might be slightly disguised by the additional “no”
included in the premises. Consider the following:

Example 2.92 Suppose we say:

No polynomial function has horizontal asymptotes.
Function f has a horizontal asymptote.
∴ function f is not a polynomial.

Before writing the above argument formally, it may be advantageous to restate it
as follows:

Let P(x) be: x is a polynomial function, and
Q(x)∶ xdoes not haveahorizontal asymptote.
Our argument, formally written, is

∀x ∈ , (P(x) → Q(x))

∼ Q(f )

∴ ∼ P(f )

Thus, this argument is valid by universal Modus Tollens. ◾

Carefully comparing modus ponens and modus tollens in the following two
examples will illustrate some common and frequent mistakes.
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Example 2.93 (Converse Error) Consider the following argument:

∀x ∈ (P(x) → Q(x))

Q(c)

∴ P(c)

Now, recalling that the conditional and its inverse are not logically equivalent, we
conclude that the argument is not a valid one. ◾

Similarly, we have

Example 2.94 (Inverse Error) The argument

∀x ∈  (P(x) → Q(x))

∼ P(c)

∴ ∼ Q(c)

is also invalid since the conditional and its inverse are not logically
equivalent. ◾

So, to sum up, we have:

Rules of Inference for Quantified Statements

Rule of Inference Name

∀x ∈ ,P(x)
∴P(c), c ∈ 

Universal Instantiation

P(c), for an arbitrary c ∈ 

∀x ∈ ,P(x)
Universal Generalization

∃x,P(x)
∴P(c), c ∈ 

Existential Instantiation

P(c) for some element c ∈ 

∴∃x,P(x)
Existential Generalization

∀x ∈ ,P(x) → Q(x)
P(c), c ∈ 

∴Q(c)
Universal Modus Ponens

∀x ∈ ,P(x) → Q(x)
∼ Q(c), c ∈ 

∴ ∼ P(c)
Universal Modus Tollens
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2.5 A SHORT REVISIT TO SET THEORY

As an additional exercise in logic (and set theory), and also pursuing our goal
of mathematical precision and rigor, let’s revisit some concepts from Set Theory
we discussed in Chapter 1. We can now restate them more formally and with
some new conceptual insights. You may remember that at the beginning of our
discussion of sets, we mentioned en passant the school of thought in set theory,
which holds that everything (mathematical) is a set. By this, we mean that in the
universe we are about to study x represents a set, and all the elements of x are
sets whose elements are again sets, and so on. This is the idea we embrace in
the so-called Zermelo–Frankel Set Theory28 or, simply, Axiomatic Set Theory.
Whether at this point you accept this idea or not, trust me, it is a very efficacious
one. However, I suppose you would accept the following Laws of Thought:

(i) The Law of Identity: (Any)thing that is is.
(ii) The Law of Contradiction: (No)thing can both be and not be.

(iii) The Law of Excluded Middle: (Every)thing must either be or not be.

Having those in mind, we will say that an object exists if and only if it is a set.
In other words, we think of sets as logical objects that are parts of the formal
structure we are studying. Consequently, to say that an object does not exist is the
same as saying that it is not a set. Not surprisingly, then, in this section we will use
lowercase letters for both the sets and their elements, that is, to write a proposition
(x ∈ y) would not be inappropriate. Therefore, if (x ∈ y) is a true proposition, we
take it that x and y are sets. And, of course, for saying that (x ∉ y) is the same as
saying ∼ (x ∈ y). So, we start with the following basic assumptions:

1. A set exists if the proposition that asserts its existence is logically true. (If
a formal object is not a set, it does not exist.)

2. If the assumption that an object exists leads to a contradiction, we conclude
that that object does not exist, that is, it is not a set.

So, in terms of our predicate logic, we would state set existence (maybe redun-
dantly) as

∃x(x = x)

This is known as Axiom 0 of set theory.
Now, recall that only primitive concepts of set theory are a “set” and “ele-

ment” (a “member”) of a set. Thus, strictly speaking, since in the above predicate

28Ernst Friedrich Ferdinand Zermelo (1871–1953), German mathematician. Abraham Halevi Fraenkel
(1891–1965), Israeli/German mathematician.
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P∶ x = x, “=” has not been defined, to be consistent we should have said: the
proposition

P∶ ∃y∀x(x ∉ y)

is true. On the other hand, saying:

∀x(x ∉ y)

we have defined and an empty set.
Next, we say that if the proposition

∀z(z ∈ x → z ∈ y)

is true, we have got ourselves a concept of subset, that is,

x ⊆ y ↔ ∀z(z ∈ x → z ∈ y)

Axiom of Equality (Axiom of Extensionality) follows: If proposition

(x ⊆ y) ∧ (y ⊆ x)

is true, that is,
∀z(z ∈ x ↔ z ∈ y) → (x = y)

is true, then we have defined what x = y means. Consequently,

y = ∅ ↔ ∀x(x ∉ y)

As a simple exercise, we prove something that we already know, that is, let’s
prove

Theorem 2.13 The empty set is unique.

Proof Let ∅1 and ∅2 be two empty sets. Then, the propositions x ∈ ∅1 and
x ∈ ∅2 are both false for all x. Consequently,

x ∈ ∅1 ↔ x ∈ ∅2

is true for all x.
From the axiom of equality, we have

( ∀x (x ∈ ∅1 ↔ x ∈ ∅2))→ (∅1 = ∅2)

Thus the proof. ◾
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2.6 BOOLEAN ALGEBRA

We finish this chapter by briefly discussing a specific structure that has applica-
tions in many sciences, including physics and computer science.

Definition 2.35 We say that  is a Boolean algebra if  = (B,+, ⋅,−, 0, 1),
where B is a set containing at least two elements 0 and 1, two binary operations
+ and ⋅, and one unary operation − on B, such that for all a, b, c ∈ B the following
axioms hold:

(i) a + b = b + a
(ii) a + (b + c) = (a + b) + c

(iii) a ⋅ b = b ⋅ a
(iv) a ⋅ (b ⋅ c) = (a ⋅ b) ⋅ c
(v) a + (a ⋅ b) = a

(vi) a ⋅ (a + b) = a
(vii) a + (b ⋅ c) = (a + b) ⋅ (a + c)

(viii) a ⋅ (b + c) = (a ⋅ b) + (a ⋅ c)
(ix) a + 0 = a
(x) a ⋅ 1 = a

For every a ∈ B, there exists a complement of a, a ∈ B, such that

(xi) a + a = 1
(xii) a ⋅ a = 0

I hope all of this does not look totally unfamiliar. With adequate substitution of
operations +, ⋅ and − with analogues in set theory ∪,∩ and c, or ∨,∧ and ∼
in propositional logic, the axioms (i)–(x) are something that we have already
encountered. The proofs of the theorems that follow are simple exercises in
Boolean algebra.

Example 2.95 Let  = (B,+, ⋅,−, 0, 1) be a Boolean algebra. Prove that
for every a, b ∈ B, a ⋅ (a + b) = a, and a + (a ⋅ b) = a (Definition 2.35 (vi)
and (vii)). ◾

Proof

a ⋅ (a + b) = (a + 0) ⋅ (a + b)

= a + 0 ⋅ b

= a + 0

= a
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a + (a ⋅ b) = (a ⋅ 1) + (a ⋅ b)

= a ⋅ (1 + b)

= a ⋅ 1

= a ◾

Theorem 2.14 Let  = (B,+, ⋅,−, 0, 1) be a Boolean algebra. Then, for all a ∈
B, there is a unique a such that

aa = 0 and a + a = 1 (*)

Proof Suppose there are a1 , a2 ∈ B satisfying (∗). Then,

a1 = a1 ⋅ 1

= a1 ⋅ (a + a2)

= (a1 ⋅ a) + (a1 ⋅ a2)

= 0 + (a1 ⋅ a2)

= (a ⋅ a2) + (a1 ⋅ a2)

= (a + a1) ⋅ a2

= 1 ⋅ a2

= a2 ◾

Theorem 2.15 Let  = (B,+, ⋅,−, 0, 1) be a Boolean algebra. Then, for every
element a ∈ B

(a ) = a

Proof Let a be a complement of a. By the previous theorem, a complement of
a is unique thus

a = (a ) ◾

Theorem 2.16 Let  = (B,+, ⋅,−, 0, 1) be a Boolean algebra. Then, for every
element a ∈ B

(i) a ⋅ a = a and
(ii) a + a = a
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Proof Let a be any element of B. Then,

(i) a = a ⋅ 1
= a ⋅ (a + a)
= a ⋅ a + a ⋅ a
= a ⋅ a + 0
= a ⋅ a

(ii) a = a + 0
= a + (a ⋅ a)
= (a + a) ⋅ (a + a)
= (a + a) ⋅ 1
= a + a ◾

Theorem 2.17 Let  = (B,+, ⋅,−, 0, 1) be a Boolean algebra. Then, for every
a, b ∈ B

(i) a + a ⋅ b = a + b and
(ii) a ⋅ (a + b) = a ⋅ b

Proof

(i) a + a ⋅ b = (a + a) ⋅ (a + b)
= 1 ⋅ (a + b)
= a + b

(ii) a ⋅ (a + b) = (a ⋅ a) + (a ⋅ b)
= 0 + (a ⋅ b)
= a ⋅ b ◾

Example 2.96 Let  = (B,+, ⋅,−, 0, 1) be a Boolean algebra, and a, b ∈ B.
Show that if a ⋅ b = 1, then a = b = 1.

Solution Let a and b be any two elements of B such that a ⋅ b = 1. Then,

1 = a ⋅ b

= (a ⋅ a) ⋅ b

= a ⋅ (a ⋅ b)

= a ⋅ 1

= a
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Also,

1 = a ⋅ b

= a ⋅ (b ⋅ b)

= (a ⋅ b) ⋅ b

= 1 ⋅ b

= b

Thus, a = b = 1 as claimed. ◾

Theorem 2.18 (DeMorgan’s Laws) Let  = (B,+, ⋅,−, 0, 1) be a Boolean
algebra. Then, for every a, b ∈ B

(i) (a + b) = a ⋅ b and
(ii) (a ⋅ b) = a ⋅ b

Proof The proof of DeMorgan’s laws in Boolean algebra is a little trickier than
the relatively simpler proofs we have encountered in set theory and logic.

(i) We reason the following way: if it is true that (a + b) = a ⋅ b, then
(a + b) and (a ⋅ b) should be complementary, that is,

(a + b) + ( a ⋅ b) = 1 and (a + b) ⋅ (a ⋅ b) = 0

Then,

(a + b) + (a ⋅ b) = (a + b + a) ⋅ (a + b + b)

= (1 + b) ⋅ (a + 1)

= 1

Also,

(a + b) ⋅ ( a ⋅ b) = (a ⋅ a ⋅ b) + (b ⋅ a ⋅ b)

= 0 + 0

= 0

Similarly, for
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(ii) If it is true that (a ⋅ b) = a + b, then (a ⋅ b) and a + b should be complemen-
tary, that is,

(a ⋅ b) + (a + b) = 1 and (a ⋅ b) ⋅ (a + b) = 0

So, we have

(a ⋅ b) + (a + b) = (a + a + b) ⋅ (b + a + b)

= (1 + b) ⋅ (1 + a)

= 1 ⋅ 1

= 1

and

(a ⋅ b) ⋅ (a + b) = (a ⋅ b ⋅ a) + (a ⋅ b ⋅ b)

= 0 + 0

= 0

Thus the proof. ◾

2.7 SUPPLEMENTARY PROBLEMS

1. Which of the following sentences are statements?
(i) 2 + 3 = 3 + 2

(ii) He is a math student.
(iii) x + 3 = 12
(iv) 2 + 3 ≠ 3 + 2

2. Construct the truth tables for the following statements:
(i) p ∨ (q → r)

(ii) (p → q) → (r ∧ q)
(iii) (p ∧ (q → r))→ ((r → p) ∧ q)

3. Construct truth tables for the following statements:
(i) (∼ p ↔∼ q) ↔ (p ↔ q)

(ii) (p → q) ∧ (∼ p → r)
(iii) (p ↔ q) ↔ (r ↔ s)



�

� �

�

178 LOGIC

4. Determine whether each of the following statements is true or false:
(i) If 2 + 2 = 4 then 2 + 3 = 7

(ii) If pigs can fly then 2 × 2 = 22
(iii) (If 2 + 2 = 4 then 2 + 3 = 7) → (If pigs can fly then 2 × 2 = 22)

5. State the negation of the following statements:
(i) Big girls don’t cry.

(ii) Something bothers me.

6. Show that

∼ (p ∧ ∼ q) and (∼ p ∨ q) are logically equivalent to (p → q)

7. Given a statement

S∶ p ∨ (p → (q ∧ ∼ p)), find ∼ S.

8. Write the inverse, converse, and contrapositive of the statement

S: If I study hard, I will succeed in mathematics.

9. Determine the truth value of the statement

S∶ If pigs can fly then 2 + 2 = 22

10. Show that for two statements p and q the following is true:
(i) ∼ (p → q) ≡ p ∧ ∼ q

(ii) ∼ (p ↔ q) ≡ (p ∧ ∼ q) ∨ (q ∧ ∼ p)

11. Suppose the truth value of (p → q) is F, what is the truth value of
(i) ∼ p ∨ (p → q)

(ii) ∼ (p ∧ q) ↔ (∼ p →∼ q)

12. Write the negations of the following statements:
(i) p → (q ∨ r)

(ii) p → (q → r)
(iii) (p → q) → r

(iv) ∼ (p → r) → [q → (p ∧ r)]

13. Suppose the truth value of p ↔ q is T, what are the truth values of
(i) p ∧ q

(ii) p ∨ q

(iii) (p ∧ r) ↔ (q ∧ r)
Repeat the problem if p ↔ q is F.
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14. Prove all the statements of Theorem 2.3.

15. Determine whether each of the following statements is logically equivalent
to the statement

S: If you study hard, then you will succeed in mathematics.

(i) If you don’t study hard, you won’t succeed in mathematics.

(ii) If you don’t succeed in mathematics, you didn’t study hard.

(iii) Your succeeding in mathematics implies you studied hard.

(iv) Your studying hard is necessary for you to succeed in mathematics.

16. Prove the following theorem:
If p and (p → q) are tautologies then so is q.

17. If p ↔ q is F, what can be said about the truth values of the following?

(i) p ∧ q

(ii) p ∨ q

(iii) p → q

(iv) (p ∧ r) ↔ (q ∧ r)

18. Which of the following statements are logically implied by (p ∧ q)?
(i) p

(ii) q

(iii) (p ∨ q)
(iv) (p → q)
(v) (p ↔ q)

(vi) (∼ p →∼ q)

19. Determine whether the following are tautologies:

(i) (p → q) ∨ (q → p)
(ii) (p ↔ q) ↔ (p ↔ (q ↔ p))

(iii) (p → (q ∨ r)) ∨ (p → q)

20. Determine whether each of the following is a tautology, contradiction or
neither:

(i) p ∧ (∼ (p ∨ q))
(ii) p ↔ (p ∨ p)

(iii) (p ↔ (p ↔ q))→ q

(iv) (p → q) → ((q →∼ r)→ (∼ r → p))
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21. Show that the following statements are tautologies:
(i) ( p ∨ (q ∧ r)) ↔ ((p ∨ q) ∧ (p ∨ r))

(ii) ((p ∧ ∼ q) → (r ∧ ∼ r))→ (p → q)

22. Prove:

If A is a finite set and B is a proper subset of A, then B is not equivalent to A.

23. Convince yourself that the following propositions are other variants of the
method of reductio ad absurdum

(i) ((p ∧ ∼ q) →∼ p) → (p → q)
(ii) ((p ∧ ∼ q) → q) → (p → q)

24. Suppose (p → q) is F, and ∼ (p ∧ q) is T. What are the truth values of the
following statements?
(i) ∼ p ∨ (p → q)

(ii) ∼ (p ∧ q) ↔ (∼ p →∼ q)

25. If p and q are true and r is false, what are the truth values of the following
statements?
(i) (q ∧ ∼ p) ↔ (p ↔ r)

(ii) (q → p) → ((p →∼ r)→ (∼ r → q))

26. Here is another famous paradox you may want to consider: Socrates says,

“What Plato says is false.”

Plato says,

“What Socrates says is true.”

So, what do you think: Is what Socrates says true?

27. Consider the statement

S: There exists a man without a country.

What is the negation of this statement?

28. Write the negation of the statement: No set is element of itself. Can you prove
it, or its negation? (Hint: see Chapter 1.)

29. What about the truthfulness or falsity of the following statements?
(i) Every statement is true or false.

(ii) No statement is both true and false.
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30. Prove (ii) of Theorem 2.12.

31. Rewrite formally, and carefully (!) examine, the statements

S1: All integers are even.

S2: All integers are not even.

Determine the truth value of each.

32. Determine whether the following propositions are true or false:
(i) ∃n ∈ N,∋ ∀m ∈ N, n ≤ m

(ii) ∃p ∈ Q,∋ ∀q ∈ Q, p ≤ q

33. Determine whether the negations of the following statements are true or not:
(i) ∃x ∈ R,∋ ∀y ∈ R, ((x < y) ∨ (y < x))

(ii) ∃x ∈ R,∋ ∀y ∈ Z, ( (x < y) ∨ (y < x))

34. Determine whether the following predicates are true:

(i) (∀x ∈ R, x =
√

x2)
(ii) ( ∀x ∈ R, x > 0 )

35. Determine the validity of the following arguments:
(i) If a number is even, then twice that number is even

The number 2n is even.

Therefore, n is even.

(ii) If a product of two numbers is 0, then at least one of the numbers is 0.
Neither (x − 1) nor (x + 1) equals 0.
Therefore, (x − 1) (x + 1) is not 0.

36. Let  = (B,+, ⋅,−, 0, 1) be a Boolean algebra. Find

(i) 1 ⋅ 0
(ii) 1 + 1

(iii) 0 ⋅ 0
(iv) (1 + 0)

37. Let = (B,+, ⋅,−, 0, 1) be a Boolean algebra, and let a, b ∈ B. Find the com-
plements of
(i) a + b

(ii) a ⋅ b
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PROOFS

Plato says that the Good, the Beautiful and the True are all and the same thing.
I find this idea both beautiful and good, but is it true?

Raymond M. Smullyan1

Is there any knowledge in the world which is so certain that no reasonable man
could doubt it? This question, which at first sight might not seem difficult, is really
one of the most difficult that can be asked.

Bertrand Russell2

I state my case, even though I know it is only part of the truth, and I would state it
just the same if I knew it was false, because certain errors are stations on the road
to the truth. I am doing all that is possible to a definite job at hand.

Robert Musil3

3.1 INTRODUCTION

Ever since the time of the Greeks, mathematics has involved proof; and it is
even doubted by some whether proof, in the precise and rigorous sense which

1Smullyan, R. M., A Spiritual Journey, Praxis International, Inc., West Chester, Pennsylvania, 2009.
2Russell, B., The Problems of Philosophy, Oxford University Press, 1912.
3Robert Musil (1880–1942), Austrian writer.

Principles of Mathematics: A Primer, First Edition. Vladimir Lepetic.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
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the Greeks gave to this word, is to be found outside mathematics. We may fairly
say that this sense has not changed, because what constitute a proof for Euclid is
still a proof for us; and in times when the concept has been in danger of oblivion,
and consequently mathematics itself has been threatened, it is to the Greeks that
man have turned again for models of proof.4

We need to step back, pause for a while, and reflect upon some preoccupying
conceptual questions that have been with us all along, whether explicitly stated
or not. The very title of this chapter might be looked upon with suspicion by a
meticulous reader: Why devote a whole separate chapter to something that we
have been doing all along – proving “things?” We need to step back indeed.

Mathematics is one of the few disciplines whose object of research, let alone
its importance, is difficult to explain to the uninitiated. I can think of no other
field, except for physics and philosophy, which has similarly difficult problem.
So, what is mathematics indeed? Or, to put it differently: what do mathematicians
do? Since mathematics is certainly a technical, but also philosophical and in some
sense artistic discipline, some formalists may simply tell you that “mathematics
is what mathematicians do.” I don’t like that, since it leads to a silly tautological
conclusion: mathematicians do what mathematicians do. The other answer that
“mathematicians prove theorems” is absolutely true, but it still doesn’t tell you
much, unless you are a mathematician of course. As you might have anticipated it
is even more difficult to explain what mathematics is (all about). My PhD adviser,
who is one of the leading knot theorists in the world, was once approached at a
party by a stranger with a question: “So, what do you do for a living?” You can
only imagine the reaction his answer “I study knots” provoked. Why am I telling
you all of this? Well, although we have been proving things all along, the purpose
of those (proofs) was to establish the truthfulness of the claims we make regarding
sets, functions, you name it. But the ultimate question is: “What is truth and how
do we recognize it?” Sometimes we hear: “Truth is what is factual” and then
also: “factual is what is true.” That doesn’t help much, does it? Slightly more
serious sounding answer we get is: “A statement is true if it accurately represents
or picture reality or the world the way it is.”5 What on earth does that mean?
What is “reality” we may ask. Reality of a chair I am sitting on while writing
these words on my laptop, or reality of a number 2, for instance, or reality of
your thoughts and feelings while reading these lines. No wonder that question(s)
of reality and/or truth has been with us for centuries. Aristotle famously said:

“To say that that which is is not or that which is not is, is a falsehood; and to say
that which is is and that which is not is not, is true.”6

I am not going to even try to answer the question of what truth is. I am simply
going to assume that it exists and, without dwelling into profound philosophical

4Bourbaki, N., Elements of Mathematics – Theory of Sets, Springer, 2004.
5This answer is known to belong to Correspondence Theory of Truth.
6Aristotle, Metaphysics, Oxford University Press, 1993.
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questions, I am also going to assume that the nature of reason is such that we can
occasionally, at least in mathematics and sciences, recognize it. I am not saying
that our mental faculties are such that we can know all the truths. What I am
saying is that unless we assume that truth exists, that we are smart enough, and
unless we try hard enough we will never know.

Well then, since by definition we demand a higher level of certainty in math-
ematics, we are constantly searching for new ways to “discover” and prove our
discoveries. Eventually, we have to express those discoveries and proofs thereof
in our natural language. Thus, one might be inclined to assume that our natural
language is primary and that logic is derived from it. However, that cannot be.
There are many languages, but the logic for a Chinese native speaker, say, and an
English one has to be the same. So, if logic and mathematics are absolute, in order
to prove that something is true we turn to mathematics and the proofs therein, that
is, we scrutinize the proofs themselves. How do we know that our proof is indeed
THE proof? Well, admitting some circularity in the claim, we will say: above all,
the proof has to be “logically necessary.” We won’t go very deep into metamathe-
matics, if at all, but the idea might be a little clearer to you now – we are concerned
with “studying proofs.” (This is actually exactly what Turing7 was interested in.
His study of computation theory which led to computers, so ubiquitous nowa-
days, was in fact motivated not by the desire to build a computer but by the issues
of the nature of mathematical proof.) And even that is not completely a valid
statement. As a matter of fact, let’s admit it right away that the purpose of this
essay, and the whole book for that matter, is to hopefully provoke your curiosity
and to put you on the right track of thinking mathematics. Maybe another way of
approaching the whole endeavor, as an artistic enterprise, can give you a better
feel for the essence of “proofs.” Namely, although there are some specific and
rigorous rules one needs to follow when doing mathematics, there is still not a
universal recipe that will give you a clear and secure way to reach your goal. A
clear and universal recipe (if it exists) to reach our goals – that’s what we are
looking for. For instance, we may ask:

1. Is there a finite list of logical axioms and rules of inference that summarizes
all of the logic used in mathematical reasoning? (The answer happens to
be yes.)
Or, we can ask:

2. Is arithmetic consistent and complete? (Surprisingly the answer is no.)
But, how do we know that? How do we prove these claims?

So, here comes Proof Theory, as part of mathematical logic that studies
mathematical proofs. For it we need precision and rigorous mathematical
framework so that all the concepts we are using are clear, that is, precisely

7Alan Mathison Turing (1912–1954), English mathematician, logician, cryptanalyst, and computer scien-
tist.
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defined. (We have already used many of those concepts before, tacitly assuming
their validity and precision.)

Definition 3.1 Let S be a set of symbols. An expression or word in S is a finite
sequence of symbols of S.

Example 3.1 Let S = {a, b, c,… , w, y, z, ∧ ,∈, →, ∀,∃,} be a set of sym-
bols we call the alphabet. Then, aabb → bcd and axb ∧ cc would be two
words/expressions in S.

Definition 3.2 An expression in the alphabet S which has meaningful interpre-
tation is a formula 𝜑.

Example 3.2 Let S = {a, b, c,… , w, y, z} be a set of 26 letters of English
alphabet, then “house” and “brohuse” are both expressions but only “house” is a
formula. ◾

Definition 3.3 A set of symbols S with selection of formulas is called a formal
language .

Definition 3.4 A collection of carefully selected formulas that are considered
self-evident, or obviously true, we call axioms.

Definition 3.5 We say that  = (,,R) is a formal system where  is a
formal language,  is a set of axioms, and R are the rules of inference.

Example 3.3 Let’s consider a formal system  with language  consisting of
the alphabet S = {+ ,=, ∗}, and with a formula defined as any expression of the
form a + b = c, where a, b, and c stand only for the symbol ∗. Furthermore, let
the only axiom be: ∗ + ∗=∗∗. Then, for instance,

∗ + ∗∗=∗∗∗ is a formula and ∗ ++ is not.

In addition, let’s say the following two rules of inference are given:

1. a ∗ + b = c ∗
2. b + a = c

Let’s now prove that the formula 𝜑∶ ∗∗ + ∗∗∗=∗∗∗∗ is a theorem.

By axiom ∗ + ∗=∗∗
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And then by rules of inference, we have:

∗∗ + ∗ = ∗∗∗ by (1)

∗∗∗ + ∗ = ∗∗∗∗ by (1)

∗ + ∗∗∗ = ∗∗∗∗ by (2)

∗∗ + ∗∗∗ = ∗∗∗∗∗ by (1)

Let’s consider something more intriguing.

Goldbach’s Conjecture8: Every even number greater than 2 is the sum of two
primes.

What we are saying here is: Every even natural number n has the property P,
or

∀n = 2k ∈ N, P(n)

where by P(n) we mean “even number greater than 2 is the sum of two primes.”
It is not difficult to pick a couple of even numbers greater than 2 and verify that

the above statement holds. Say, we take 4 = 2 + 2, or 6 = 3 + 3, or 12 = 5 + 7,
and so on. Does this prove the conjecture? What about if we check a thousand
more examples and observe (which we would) that each one of them is indeed
expressible as a sum of two primes? In other words, after thousand tries we were
not able to find any n ∈ N, such that ∼P(n). Could we consider this as a satisfac-
tory proof? Let’s look at another conjecture not involving primes:

Collatz’s Conjecture9: Starting with any natural number n compute n / 2 if n is
even, or 3n + 1, if n is odd. Continue the process applying the same rule to the
newly obtained number. Eventually, we end up with 1.

For this conjecture, we may need an example. Let’s start with 7. We get:

7, 22, 11, 34, 17, 52, 26, 13, 50, 20, 10, 5, 16, 8, 4, 2, 1

Again we ask the same question: Does this constitute the proof? In both cases, the
answer is categorically NO! It does not. (By the way, both conjectures are still
unsolved mathematical problems.) The point here is that simply giving a finite
number of examples is not, cannot be, considered as the proof. Thus, in order to
prove a mathematical statement, to make it a theorem, we need to do more. We

8Christian Goldbach (1690–1764), German mathematician.
9Lothar Collatz (1910–1990), German mathematician. Incidentally, the conjecture is also known as the
3n+ 1 conjecture, the Ulam conjecture (after Stanislaw Ulam), Kakutani’s problem (after Shizuo Kakutani)
and by some other names.
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need to prove it “in general.” How do we do that? One usually starts by using
the tools existing within the framework of a certain axiomatic system, including
the definitions and other theorems already proven within the same system. Often
new hypotheses, conjectures, and techniques are needed. One thing, however, is
certain – to be accepted as the “proof” a proof has to be finite. That is, although
mathematical conjectures generally pertain to infinitely many cases, the proof of
them must be accomplished in a finite number of steps and using a finite number
of axioms. Another thing worth mentioning is this: Very often, we come to the
point where a criterion that is difficult to explain, the “esthetic” criterion (for the
lack of better words) enters the picture, in fact, it becomes indispensable. It is
definitely true – it is a historical fact – that the search for elegance, beauty, and
harmony has been a guiding principle of all sciences, mathematics in particular.
Theories or proofs that are lacking this esthetic component always turn out to
be wrong. When the right proof is found we recognize it as the most beautiful,
the most elegant, and we all eventually say: how could it have been otherwise?10

Starting from the premise that the human reason could be subject to a rigorous
scientific analysis itself, it becomes obvious that the primary challenge we are
faced with is to obtain proper understanding of reasoning. As someone fanci-
fully stated, we are thinking about thinking. So, again, how do we do that? Can
we assume that mathematics per se is the quintessence of precision, rigor, and
truth, thus to reason soundly means to reason mathematically, and vice versa,
to understand mathematics we need to reason soundly? If all of this sound too
“l’art pour l’art-tistic” to you, so be it. Still, the importance of “it all” is unde-
niable. Certainly nobody doubts the importance of applications of mathematics.
The precision and value of (mathematical) proofs present itself as a conditio sine
qua non of any claim aspiring to be verifiably accurate. Of course, you say, that
is something to be expected – mathematical results are certain, mathematics is
objective. However, a mathematician’s ambitions, like a philosopher’s, go beyond
that – s/he is interested in truth(s). Again, I won’t even attempt to answer what
the truth is. I leave it to the reader to ponder. I would just timidly offer that it
is not the case that only provable is true. But it is the case that provable is true.
Now, going back to “mathematicians prove theorems”, by a theorem we mean
a proposition/statement that is known (proven) to be true. And proof is a justi-
fication of the truth of a statement making it a theorem. Aha, say you, here we
go again – what is “true?” I better leave this discussion abruptly and show you
some rather revealing examples. (Actually, all the examples that follow, the whole
chapter for that matter, may be considered as additional exercise in proving state-
ments.) First, two “simple” ones; the first one, being not exactly a “proof” is here
just as a warm up for the things that follow.

10“Behind it all is surely an idea so simple, so beautiful, that when we grasp it – in a decade, a century,
or a millennium – we will all say to each other, how could it have been otherwise.” Wheeler, J. A. New
Techniques and Ideas in Quantum Measurement Theory, pages xv-xvii, Annals of the New York Academy
of Sciences, 480, 1986.
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Example 3.4 Prove that

1 + x + x2 + x3 + · · · = 1
1 − x

Proof Consider the following “sum”

Σ = 1 + x + x2 + x3 + · · · (*)

= 1 + x(1 + x + x3 + · · ·)

= 1 + x ⋅ Σ

Thus,
Σ(1 − x) = 1

which, assuming x ≠ 1 gives us (we’ve proved(?))

Σ = 1
1 − x

(**)

So far so good. Now, let’s examine our sum. First, you would agree that (*) and
(**) represent the same sum. Well, if we put x = −1 in (*) the sum is

Σ = 1 − 1 + 1 − 1 + 1 − · · · (***)

Therefore, most people would agree that Σ = 0, right?
However, consider this

0 = 0 + 0 + · · · + 0 + · · ·

= (1 − 1) + (1 − 1) + · · · + (1 − 1) + · · · (****)

= 1 − (1 − 1) − (1 − 1) − · · · − (1 − 1) − · · ·

= 1 − 0 − 0 − · · · − 0 · · · = 1

Now, you would agree that (***) is equal to (****), wouldn’t you? But certainly
you cannot accept that 0 = 1!

Now, substitute again x = −1 into (**) and it turns out that Σ = 1∕2. So, what
did we prove? Or, take x = −1∕2. Equation (*) gives you

Σ = 1 − 1
2
+ 1

4
− 1

8
+ · · ·

while (**) yields Σ = 2∕3. So, does the sum Σ equals 2/3? You can now
experiment on your own and try, say, x = 1∕2. Which of the results would you
take as “true?” ◾
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How about if our sum has a finite number of terms? Consider

Example 3.5 Take the sum as in the previous example, but this time with a finite
number of terms, that is

Sn = 1 + x + x2 + · · · + xn, n ∈ N (*)

and find the formula for Sn.

Solution Let’s multiply both sides of (*) by x:

xSn = x + x2 + x3 + · · · + xn + xn+1

and consider the difference

xSn − Sn = (x − 1)Sn

= (x + x2 + x3 + · · · + xn + xn+1) − (1 + x + x2 + · · · + xn)

= xn+1 − 1

Thus,

Sn =
xn+1 − 1

x − 1
, ∀x ≠ 1 ◾

This looks pretty reasonable. What difference infinity can make!
Let’s try one more

Example 3.6 Take the final result from the previous problem

Sn =
xn+1 − 1

x − 1

and rewrite it as

Sn =
xn+1

x − 1
− 1

x − 1

Reshuffling things around a little we get

1
1 − x

= 1 + x + x2 + · · · + xn

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Sn

+ xn+1

1 − x
(*)

Thus, taking the results from Examples 3.4–3.6 all together

Σ = Sn +
xn+1

1 − x
(**)
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Would you say that the difference between Σ and Sn is xn+1

(1−x)
? If all this looks

too confusing take, say, x = 2. The left-hand side of (*) is then well defined and
equals −1, whereas the right-hand side equals

1 + 2 + 22 + · · · + 2n + 2n+1

1 − 2

So we have
2n+1 − 1 = 1 + 2 + 22 + 23 + · · · + 2n

And so on, and so forth. You can experiment some more on your own, and maybe
at some point you can make sense of what’s going on here. ◾

Here is another neat example for which no special knowledge of number theory
is required, only a little trick is sufficient to reveal its rather nontrivial nature.

Example 3.7 Show that 0.9 = 0.99999 … = 1.

Solution Let x = 0.9. Then,

10x = 9.9

and thus,

10x − x = 9

9x = 9

x = 1

So, 0.9 = 1. ◾

Now it is a little bit more clear what is meant by the “proof.” Nevertheless,
let’s state it formally.

Definition 3.6 A proof is a logical argument that establishes (in finite number
of steps) the truth of a statement beyond any doubt.

More precisely,

Definition 3.7 A theorem is a mathematical statement for which the truth can
be (has been) established in a finite number of steps using logical reasoning.

The next example is a classical theorem that some might consider prematurely
brought up at this introduction. However, its proof contains some subtleties that
you, as some mathematicians do, may find unsettling; so, why not incite your
curiosity even more at the beginning by considering something rather nontrivial.
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Theorem 3.1 There are irrational numbers x, y, such that xy is rational.

Proof Consider (
√

2)
√

2. We know that
√

2 is irrational (we have proved it
in Chapter 1), so if (

√
2)

√
2 is rational there is nothing to prove, we have our

result. However, if (
√

2)
√

2 is irrational, then ((
√

2)
√

2)
√

2 = (
√

2)2 = 2, which is
rational, and we have our proof. So, how do you feel about this proof? Do you
find anything troubling about it? Note that in our proof we have relied on the law
of excluded middle (LEM): Either (

√
2)

√
2 is rational or not. If it is – fine, we are

done. If not, that is, if (
√

2)
√

2 is irrational, then ((
√

2)
√

2)
√

2 certainly is. Thus
the proof. ◾

Although I would consider the above proof legitimate, I sympathize with those
who are troubled by the “nature” of (

√
2)

√
2. Namely, they say, since we cannot

construct in finite number of steps (
√

2)
√

2, we cannot assume that (
√

2)
√

2 is
either rational or irrational, and that assumption is crucial for the proof. Therefore,
the above “proof” is not the proof.

Now you may want to revisit the proof that
√

2 ∉ Q (or any other proof in
the previous chapters) and compare it with the proof above. It might give you a
sense, a “flavor,” of things we want to study in this section.

And finally, the most intriguing of all, the so-called Banach–Tarski Theorem
(Paradox), which we will have more to say about later. For now just a tease:
it has been “proved” that if one accepts one of the most important axioms
of mathematics, The Axiom of Choice (which most mathematicians do; see
Chapter 1), then the following can be done: Take any two spheres S1 and S2
in our three-dimensional Euclidean space (any two means: one, say, S1 can
be very small, the size of a pea, and the other, S2, as big as Jupiter). You can
decompose S1 into finitely many parts and, with proper manipulations of the
parts, recompose it back so that it can fill out S2 – the Jupiter. Speaking of two
peas in a pot. Crazy?! Sure. Beautiful?! Absolutely!

Leaving for the time being the issue of empirical verification, you may be
willing to accept the claim that mathematics is a (special) kind of science.
Contemplating the questions of proofs we are evidently faced with that “artistic”
nature of mathematics. The idea might not look so farfetched any more. Think
about it! Given the abstract concepts A, B, C, … you establish (you discover)
that D must follow. The hidden, unexpected, relationship between A, B, C, and
D reveals itself. How did that come about? Admittedly, some “common sense”
faculties you are in possession of are critical (leaving aside for the time been
what that means exactly). Moreover, certain (mathematical) tools and techniques
you have acquired through your formal training in school, or otherwise, are
indispensable. And, as you might have anticipated, there is more, much more.
Indeed, proof theory is a beautiful and rather complex mathematical discipline.
We will, however, discuss only the examples from elementary number theory.
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Mathematical proofs, like diamonds, are hard as well as clear, and will be touched
with nothing but strict reasoning.

John Locke

3.2 DIRECT PROOF

In this section, we discuss one type of universal statements that occur very fre-
quently in mathematics, logic, and, you may say, in every reasonable discourse. It
is a method of generalizing from generic to particular, that is, the arguments fol-
low directly from the hypothesis to the conclusion. We take an arbitrary element
x from a domain  and try to show that it satisfies a certain expected property
of the form “If P(x) then Q(x).” Recall that the conditional P(x) → Q(x) is false
only in case when P(x) is true and Q (x) is false. Hence, we argue, assuming
P(x) (the antecedent) is true for every x from , one needs to prove that Q(x)
(the consequent) is also true, which would furthermore yield that P(x) → Q(x)
is true.

In other words, by direct proof we show that the universal statement holds
regardless of the size of the domain over which the statement is quantified, that
is, we are proving the proposition

∀x ∈ , (P(x) → Q(x)) (*)

So, we say: Suppose P(x) is true for a particular but arbitrarily chosen x ∈ . We
need to show that Q(x) is true.

Example 3.8 As a simple conceptual illustration of a distinction between direct
proofs and indirect proofs (of the next section) let’s prove a statement that we
recall from Chapter 1, namely: There exist a unique multiplicative identity in the
set R.

Proof (Direct) First, recall one of the properties of R:

∀x ∈ R, ∃ e ∈ R, such that e ⋅ x = x ⋅ e = x

Suppose there exist another element of R, say, e′ such that e′ ⋅ x = x ⋅ e′ = x,
∀x ∈ R. Then, since both claims involve universal statement (∀x ∈ R) we have

e ⋅ e′ = e′ ⋅ e = e′

but also
e′ ⋅ e = e ⋅ e′ = e

Thus, any two multiplicative identities in R must be equal. We say
e = e′(= 1). ◾
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Proof (Indirect) Suppose, contrary to the claim, that there is no unique multi-
plicative identity in R. Then, either there is more than one multiplicative identity
or there is no multiplicative identity at all. However,

1 ⋅ x = x ⋅ 1 = x, ∀x ∈ R

thus, one identity exists so there are more than one. Suppose e ∈ R is another
identity. Then,

1 ⋅ e = e ⋅ 1 = e

and also
e ⋅ 1 = 1 ⋅ e = 1

Thus, e = 1. This contradicts our assumption that there is more than one multi-
plicative identity.

We will have to say more about indirect proof shortly. ◾

Example 3.9 Let A, B, and C, be sets such that |A| = 1, A ∩ B ≠ ∅, and
A ∩ C ≠ ∅. Then,

B ∩ C ≠ ∅

Proof Since |A| = 1 there exists x ∈ A, and since A ∩ B ≠ ∅, x ∈ A ∩ B.
Formally,

∃x(x ∈ A ∧ x ∈ B)

Similarly, since A ∩ C ≠ ∅,

∃x(x ∈ A ∧ x ∈ C)

So, x ∈ B and x ∈ C implies x ∈ B ∩ C. Thus, B ∩ C ≠ ∅, as claimed, and we
write

(∃x(x ∈ A ∧ x ∈ B) ∧ ∃x(x ∈ A ∧ x ∈ C)) → (x ∈ B ∩ C)
◾

For the next example, we need to recall

Definition 3.8 We say that an integer x is even iff x = 2k, for some integer k,
that is

x is even iff ∃k ∈ Z, s.t. x = 2k

We say that an integer x is odd iff x = 2k + 1, for some integer k, that is

x is odd iff ∃k ∈ Z, s.t. x = 2k + 1
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The next example, although rather trivial, illustrates “the way of thought” and
can be thought of as a segue to several proofs that follow.

Example 3.10 Prove that if x ∈ Z is odd, then x + 1 is even.

Proof Obviously the argument is of the form

P(x) → Q(x)

where, of course, P(x) stands for “x is an odd integer” and Q(x) for
“x + 1 is an even integer.”

Suppose now that x ∈ Z is an odd integer. By definition, the integer x is odd if
x = 2k + 1 for some k ∈ Z. Using this definition, we are in a position to handle
our statements P(x) and Q(x) by an equation, and we write

x + 1 = (2k + 1) + 1

= 2(k + 1)

Now, k + 1 is also an integer (the sum of two integers is an integer), thus 2(k + 1)
is an even integer (by definition of an even integer). We have deduced Q(x). ◾

The following examples are similar.

Example 3.11 Prove the following proposition:
For all x, y ∈ Z, if x and y are odd, then x + y is an even integer.

Proof Let x, y ∈ Z, and let x = 2k + 1, y = 2l + 1, with k, l ∈ Z. Then,

x + y = 2k + 1 + 2l + 1 = 2k + 2l + 2 = 2(k + l + 1)

Now, since (k + l + 1) is obviously an element of Z, we see that x + y is indeed
an even integer. ◾

Example 3.12 Prove the following proposition:
For all x, y ∈ Z, if the sum x + y is even, so is the difference x − y.

Proof Let x, y ∈ Z, such that x + y = 2k, k ∈ Z. It follows that x = 2k − y.
Consider now

x − y = (2k − y) − y

= 2k − 2y

= 2(k − y)
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Since a difference of two integers k − y is an integer, 2(k − y) is an even integer,
that is, x − y is even, as claimed. ◾

Example/Exercise 3.13 Convince yourself that zero is an even number.

Example 3.14 Prove that the sum of two consecutive integers is an odd integer.

Proof Take any n, ( n + 1) ∈ Z. Obviously, if n is even then n + 1 is odd, and
vice versa. Without loss of generality let’s take

n = 2k, k ∈ Z

Then,

n + (n + 1) = 2k + 2k + 1

= 4k + 1

= 2(2k) + 1

= 2l + 1, l = 2k ∈ Z

So, the sum of two consecutive integers is indeed an odd integer. ◾

Now you shouldn’t have any difficulty proving the statement in the following
two examples.

Example/Exercise 3.15 The square of an even number is an even number.

Example/Exercise 3.16 Show that if n ∈ Z is an even integer, then 3n5 is an
even integer too.

Example 3.17 Show that if n ∈ Z is an odd integer, then n2 is of the form 8m +
1, where m ∈ Z.

Solution Suppose n is an odd integer. Then, there exists k ∈ Z such that
n = 2k + 1. So,

n2 = (2k + 1)2 = 4k2 + 4k + 1

= 4k(k + 1) + 1

k and k + 1 are obviously two consecutive integers; thus, one must be even and
the other odd. So, if k is even, that is, k = 2i, (i ∈ Z), we have

n2 = 4k(k + 1) + 1
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= 4(2i)(2i + 1) + 1

= 8[i(2i + 1)] + 1

= 8m + 1

where m = i(2i + 1).
If k is odd, that is, k = 2i + 1, (i ∈ Z), we have

n2 = 4k(k + 1) + 1

= 4(2i + 1)(2i + 1 + 1) + 1

= 8[(i + 1)(2i + 1)] + 1

= 8m + 1

Where, this time, m = (i + 1)(2i + 1).
Hence, in both cases, n2 is of the form 8m + 1. ◾

Example 3.18 Show that given a set S = {1, 2, 3}, and n ∈ S, if

n(n + 3)
2

is even, then
(n + 2)(n − 5)

2
is even

Solution First, observe that the only elements of S we need to consider are those
that make (n(n + 3))∕2 even. Fortunately, the set S has only three elements; so,
rather than assuming that the statement is true for an arbitrary element of S, we
can find the right elements by direct inspection: 1 is the only element with desired
property. By means of direct proof, we see immediately that the statement is true.

◾

Example/Exercise 3.19 Revisit Theorem 1.20.

Example/Exercise 3.20 Revisit Theorem 1.21.

More intriguing is

Example 3.21 Show that if n ∈ N is a natural number with two or more digits,
then the product of the digits is less than n.

Solution If n is a natural number, we can write it as

n = dk10k + dk−110k−1 + · · · + d110 + d0

where di (i = 0, 1, 2, … , k), is the digit in the 10ith place of n. Thus, the product
of the digits od n is

dk ⋅ dk−1 ⋅ … ⋅ d0
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Note that the product of k factors

dk−1 ⋅ … ⋅ d0 < 10k, k ≥ 1

Therefore,

dk(dk−1 ⋅ … ⋅ d0) < dk10k

≤ dk10k + dk−110k−1 + · · · + d110 + d0 = n ◾

Let’s now look at somewhat more intricate proofs of the form

P(x) → (Q1(x) ∨ Q2(x))

or
(P1(x) ∨ P2(x)) → Q(x)

Similarly, we may ponder the proofs of the form

P(x) → (Q1(x) ∧ Q2(x))

or
(P1(x) ∧ P2(x)) → Q(x)

Example 3.22 Let x ∈ R be any real number. Prove that −|x| ≤ x ≤ |x|.
Proof First, recall the definition of the absolute value of x ∈ R:

|x| = {
x if x ≥ 0
−x if x < 0

We have to consider two cases:

(i) Suppose x ≥ 0. Then, |x| = x. So, −x ≤ x. Thus, −x ≤ x ≤ x, that is

−|x| ≤ x ≤ |x|
(ii) However, if x < 0, then |x| = −x. So, x ≤ −x and we have x ≤ x ≤ −x or

−(−x) ≤ x ≤ −x, that is
−|x| ≤ x ≤ |x|

Hence, we have our proof for both cases. ◾
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Example 3.23 Prove that if x, y ∈ R then, |x − y| ≥ |x| − |y|
Solution Let x, y ∈ R. Consider

|x| = |x + 0| = |x + (−y + y)|
= |(x − y) + y| ≤ |x − y| + |y|

Then, |x| − |y| ≤ |x − y|
that is |x − y| ≥ |x| − |y|, ∀x, y ∈ R ◾

Example 3.24 Prove that if x2 ≤ 1, x ∈ R, then, x2 − 7x > −10.

Solution Let’s rewrite x2 − 7x > −10 as

x2 − 7x + 10 > 0

that is
(x − 5)(x − 2) > 0

which is true if both (x − 5) and (x − 2) are positive or negative.
From our assumption that x2 ≤ 1, that is, −1 ≤ x ≤ 1, it follows

x − 5 < 0 and x − 2 < 0

Therefore,
(x − 5)(x − 2) > 0

Thus,
x2 − 7x + 10 > 0

In other words,
x2 − 7x > −10

as claimed. ◾

Before proceeding, it may be useful to recall two equivalences from Chapter
2 as rather convenient tools when dealing with proofs of the form

P(x) → ( Q1(x) ∨ Q2(x))
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First, let’s verify the following two equivalences:

(i) P → (Q1 ∨ Q2) ≡ (P∧ ∼Q1) → Q2
Observe that

P → (Q1 ∨ Q2) ≡ ∼P ∨ (Q1 ∨ Q2)

≡ ∼P ∨ Q1 ∨ Q2

However,

(P∧ ∼Q1)→ Q2 ≡ ∼(P∧ ∼Q1) ∨ Q2

≡ ∼P ∨ Q1 ∨ Q2

So, the equivalence (i) holds.
Next, consider

(ii) P → (Q1 ∨ Q2) ≡ (P ∧ (∼Q2))→ Q1
Indeed,

P → (Q1 ∨ Q2) ≡ ∼P ∨ Q1 ∨ Q2

However,

(P ∧ (∼Q2))→ Q1 ≡ ∼(P ∧ (∼Q2)) ∨ Q1

≡ ∼P ∨ Q2 ∨ Q1

Thus, the equivalence (ii) is also satisfied.

Example/Exercise 3.25 You may want to revisit the proof of the distributive
law of “∪” over “∩” of three sets, in Chapter 1, and see how it fits our formal
logical analysis of proofs.

Example 3.26 Prove that for all finite sets X and Y , if |X| = m, |Y| = n and|X ∩ Y| = k then, |X ∪ Y| = m + n − k

Proof Let X and Y be sets such that |X| = m and |Y| = n.
We can split the set X into two parts:

X ∩ Y = {x ∈ X|x ∈ Y}

and
X ⧵ Y = {x ∈ X|x ∉ Y}
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In other words,

X = (X ∩ Y) ∪ (X ⧵ Y )

Similarly, we can split Y into

Y ∩ X = {y ∈ Y | y ∈ X}

and
Y ⧵ X = {y ∈ Y|y ∉ X}

that is

Y = (Y ∩ X) ∪ (Y ⧵ X)

= (X ∩ Y) ∪ (Y ⧵ X)

Since |X ∩ Y| = k and |X| = m|X ⧵ Y| = |X| − |X ∩ Y|
= m − k

Moreover, |Y ⧵ X| = |Y| − |X ∩ Y|
= n − k

Consider now

X ∪ Y = {x|x ∈ X or x ∈ Y}

= (X ⧵ Y) ∪ (X ∩ Y) ∪ (Y ⧵ X)

Thus, |X ∪ Y| = |X ⧵ Y| + |X ∩ Y| + |Y ⧵ X|
= m − k + k + n − k

= m + n − k

as was to be shown. ◾

In the gist of the previous discussion, it may be the right time to justify the so
often used phrase “if and only if.” We start with

Example 3.27 Recall, in Chapter 1, we defined equality of two sets A and B
by saying: A = B iff A ⊆ B and B ⊆ A. By saying A ⊆ B, we are actually saying:
if x ∈ A, then x ∈ B, that is, we are stating conditional: P → Q. Similarly, B ⊆ A
means: if x ∈ B then, x ∈ A, that is, we have another conditional: Q → P. Thus,
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(P → Q ) ∧ (Q → P ) ≡ P ↔ Q is exactly our “iff” in the definition of equality
of two sets.

Simply put, the (obvious) rule of thumb for proving P ↔ Q is this:

(i) Show P → Q by any method.
(ii) Show Q → P by any method.

Therefore, P ↔ Q.

The proofs of the following two theorems illustrate this.

Theorem 3.2 The integer x is odd iff x2 is odd.

Proof Easy! Note that the first part of the “if and only if” statement above
has already been proved in Example 3.17. You only need to prove the “only if”
part. ◾

Theorem 3.3 An integer is odd iff it may be written as the sum of two consec-
utive integers.

Proof Suppose n ∈ Z is an odd integer. Then, we can write n = 2k + 1 for
some k ∈ Z. Since k and k + 1 are two consecutive integers, n = k + (k + 1) is
the sum of two consecutive integers indeed (cf. Example 3.14). ◾

As prime numbers are ubiquitous in many different fields of mathematics we
want to define them more formally.

Definition 3.9 A natural number p > 1 is prime iff for all positive integers r
and s if

p = r ⋅ s, then r = 1 or s = 1, that is
p ∈ N is prime iff ∀r, s ∈ N, (p = r ⋅ s) → ((r = 1) ∨ (s = 1))

In other words, a natural number p > 1 is prime iff the only positive divisors
of p are 1 and p.

Consequently, an integer is composite iff p = r ⋅ s for some positive integers
r and s, such that r ≠ 1 and s ≠ 1, that is, p ∈ N is composite iff ∃ r, s ∈ N,
r, s > 0, s.t. (p = r ⋅ s) ∧ (r ≠ 1 ∧ s ≠ 1).

Example/Exercise 3.28 Prove/disprove: For all x ∈ Z, if x > 2, then x2 − 4 is
composite.

Definition 3.10 Let n, d ∈ Z, and let d ≠ 0. We say that n is divisible by d, or
that d divides n iff n = d ⋅ k, for some k ∈ Z, and we write d|n. Symbolically,

d|n iff ∃k ∈ Z, s.t. n = d ⋅ k

Negating the existential statement in the definition above, we get
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Definition 3.11 For all n, d ∈ Z, d ≠ 0, we say that d does not divide n, and
we write d ∤ n iff n∕d is not an integer.

Example 3.29 Let x, y ∈ N, such that x|y. Prove that x ≤ y.

Proof If x|y, then ∃k ∈ Z, such that y = k ⋅ x. Since x, y ∈ N, k has to be a
positive integer too. Thus, 1 ≤ k. It follows then

x ≤ k ⋅ x = y

So, yes, x ≤ y. ◾

To proceed further, we need to digress a little and remind ourselves of a few
additional concepts.

Definition 3.12 A binary relation “≤” on a set X is a partial ordering if it is
reflexive, transitive, and antisymmetric, that is

∀x, y, z ∈ X

(i) x ≤ x

(ii) (x ≤ y ∧ y ≤ z) ⇒ x ≤ z

(iii) (x ≤ y ∧ y ≤ x) ⇒ x = y

A partially ordered set or poset is a set with a partial order on it.

Definition 3.13 A partial ordering “≤” is called a total ordering (sometimes
linear) if, in addition of being a partial ordering, any two elements of X are com-
parable in terms of “≤,” that is

(∀x, y ∈ X)((x < y) ∨ (x = y) ∨ (y < x))

A totally ordered set or linearly ordered set is a set with total order on it.

Definition 3.14 A binary relation “≤” on X is a well-ordering on X, if it is a
total ordering on X and if every nonempty subset of X has a least element, that is

(∀Y ⊆ X)((Y ≠ ∅⇒ (∃x ∈ Y) ∋ (∀y ∈ Y , x ≤ y)))

A well-ordered set is a set with well ordering on it.

Theorem 3.4 If X is well-ordered set then

(i) Every subset of X is well ordered.

(ii) If there exists an order preserving bijection X
f
−−→ Y , then Y is well ordered.
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This theorem, and the corresponding definitions above, agrees with our
intuitive notion of integers and natural numbers. Consequently, we also have

Theorem 3.5 For every integer n ∈ Z, the set

X = {x ∈ Z|x ≥ n}

is well ordered.

Now we can restate the definitions of the set of integers as follows:

Definition 3.15 The set Z, which is discrete and totally ordered, without the
first and last element and with addition and multiplication defined the usual way
(cf. Chapter 1), is said to be the set of integers.

Example 3.30 Consider set N ⊆ Z. The order relation “≤” is defined by the
following equivalence:

(∀n,m ∈ N, n ≤ m) ⇔ ((∃s ∈ N) such that n + s = m)

Predictably, the well-ordering principle (WOP) for natural numbers (non-
negative integers) is:

Definition 3.16 We say that a set X ⊆ N, (X ⊆ Z+) has a least element if X ≠ ∅
and all elements of X are greater than some fixed number, that is, the set of natural
numbers is well ordered.

Now it is not difficult to prove

Theorem 3.6 If a set X ⊆ R has a least element, then that element is unique.

Proof Let l1 and l2 be the least elements of X. Since l1 is a least element it has
to be less than, or equal to, any element of X, in particular, l1 ≤ l2. But m2 is also
a least element, so l1 ≥ l2. Thus, l1 = l2. ◾

Let’s illustrate the efficacy of the fact that every nonempty set of natural
numbers (nonnegative integers) has a least element.

Example 3.31 With N ⊆ Z, we recall the following:

(i) N has a first element, 1
(ii) ∀n ∈ N,∃(n + 1) ∈ N, a unique successor

Furthermore, let X be the following subset of Z:

X = {x| x ≥ n, n ∈ Z}

and let S ⊆ X be such that
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(iii) n ∈ S

(iv) ∀x ∈ X if x ∈ S then x + 1 ∈ S
Then, X = S

If n = 1 then S = N.

Theorem 3.7 (The division algorithm) Let a, b ∈ N be natural numbers.
Then, there exist unique integers q, r ∈ Z with 0 ≤ r < a, such that b = aq + r.

Proof Consider a set

X = {b − ax|x ∈ Z, b − ax ≥ 0}

Note that X ≠ ∅ (since, even if we let x = 0, we still have b ∈ X). By
Theorem 3.5, X has the smallest element r ≥ 0. But, since r ∈ X, there exists
some q ∈ Z such that r = b − aq. Thus, b = aq + r. We need to show that r < a.
Suppose not, that is, suppose r ≥ a, and let r − a = t. Then, of course, t ≥ 0. By
our hypothesis a > 0, thus t < r. So, we have

t = r − a = (b − aq) − a

= b − (aq + a)

= b − a(q + 1)

That means that t ∈ X, which cannot be since we have assumed that r is the small-
est element of X. Therefore, r < a. Finally, we need to show uniqueness, that is,
we need to show that q and r are the only integers satisfying

b = aq + r with 0 ≤ r < a

Suppose not. Suppose that there exist q′, r′ ∈ Z, such that

b = aq′ + r′ with 0 ≤ r′ < a

and, without the loss of generality, let’s assume that r′ > r. Then,

aq + r = aq′ + r′

from which follows that
a(q − q′) = r′ − r

Now, since q − q′ ∈ Z, a|(r′ − r). However, since r′ > r, and 0 < r′ − r < a,
we must have r′ − r = 0, that is, r′ = r. Furthermore, since a ≠ 0, we have
a(q − q′) = 0, hence q = q′. Thus the proof. ◾
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Theorem 3.8 For all x, y,w ∈ Z, if x|y and y|w then x|w.

Proof Let x, y,w ∈ Z, such that x|y and y|w, that is

y = k ⋅ x and w = l ⋅ y, k, l ∈ Z

So, we have

w = l ⋅ y

= l ⋅ k ⋅ x

= n ⋅ x

where n = l ⋅ k. Since a product of two integers is also an integer, we conclude
that x|w, as was to be shown. ◾

Example 3.32 Show that if, x, y ∈ Z and x|y, then x|y2.

Solution Let x, y ∈ Z, and suppose that x|y. Then, y = xd for some d ∈ Z.
Consider y2 = (xd)2 = x2d2 = x(xd2) = xd′, d′ = xd2 ∈ Z. So x|y2, as

claimed. ◾

Example 3.33 Show that if x, y,w ∈ Z, and x|y and x|w, then x|(y + w).

Solution Let x, y,w ∈ Z. Suppose x|y and x|w. That means that y = xa and w =
xb for some a, b ∈ Z. Now, consider

y + w = xa + xb

= x(a + b)

= xc, where c = a + b ∈ Z

Thus, x|(y + w), as claimed. ◾

Example/Exercise 3.34 Show that if x, y,w ∈ Z, and x|y and x|w, then x|(ay +
bw),∀a, b ∈ Z

Example 3.35 Let x, y,w ∈ Z. Show that if x|y and x|(y + w), then x|w.

Solution Let x, y,w ∈ Z such x|y and x|(y + w). That means that y = xa and
y + w = xb for some a, b ∈ Z.

From y + w = xb, it follows that w = xb − y, so we have

w = xb − y = xb − xa

= x(b − a) = xc

where c = b − a ∈ Z.
Hence, x|(y + w) as claimed. ◾
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Definition 3.17 Let x, y ∈ Z be two integers, both not equal to zero. Then, the
greatest common divisor – gcd(x, y) of x and y is the greatest positive integer that
divides both x and y.

Definition 3.18 Two integers x, y ∈ Z are said to be relatively prime if
gcd(x, y) = 1.

Theorem 3.9 Let x, y ∈ Z such that both are not 0. Then, the greatest common
divisor of x and y is the least positive integer that is a linear combination of x
and y.

Proof Let

S = {ax + by|a, b ∈ Z, ax + by > 0}

be a set of all positive integers that are linear combination of x and y. Since, at
least one of x and y is different from zero,

x2 + y2 > 0

So, we can write

x2 + y2 = x ⋅ x + y ⋅ y > 0

Thus, S ≠ ∅ and, evidently, S ⊆ N. By WOP we know that S contains a least
element, say, l. But then, there should exist a0, b0 ∈ Z, such that

l = a0x + b0y

We would like to show that l = gcd(x, y). By Theorem 3.7, we have

x = lq + r, 0 ≤ r < l

Thus,

r = x − lq = x − q(a0x + b0y)

= (1 − qa0)x + (−qb0)y

Clearly, r is a linear combination of x and y. Now, if r > 0 then, necessarily, r ∈
S. But that contradicts our hypothesis that l is the least element of S. Thus, r = 0,
implying that l|x. Similarly, we show that l|y, and therefore l is a common divisor
of x and y. It remains to be seen whether it is the gcd. Let l0 ∈ N be another
divisor of x and y. By Theorem 3.8 and Examples 3.33 and 3.34, l0 divides every
linear combination of x and y. In particular,

l0|l = a0x + b0y

Since both l0 and l are positive, it follows that l0 ≤ l and therefore
l = gcd(x, y). ◾
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Theorem 3.10 Let x, y ∈ Z, such that both are not equal to zero. Then,
l = gcd(x, y) iff l ∈ N such that the following two conditions are satisfied:

(i) l is the common divisor of x and y.
(ii) If l0 is any other common divisor of x and y then l0| l.

Proof Suppose that l = gcd(x, y). Then, (i) is obviously satisfied. We need to
prove (ii). Let l0 be any other common divisor of x and y. Since l = gcd(x, y),
we can express it (cf. Theorem 3.8) as

l = a0x + b0y, a0, b0 ∈ Z

However, since l0|x and l0|y, by Theorem 3.7 and Examples 3.33 and 3.34,
l0|a0x + b0y = l. So we also proved (ii).

Conversely, suppose l satisfies (i) and (ii). We only need to prove that l =
gcd(x, y). Again, let l0 ∈ N be any common divisor of x and y. Since l satisfies
(ii) it follows that l0|l. However, both l and l0 are positive, and so l0 ≤ l, which
implies that l = gcd(x, y). ◾

Theorem 3.11 Let x be any positive integer, then gcd(x, 0) = x.

Proof Trivial. ◾

Theorem 3.12 Let x, y,w ∈ Z, such that x ≠ 0. If x|yw and gcd(x, y) = 1, then
x|w.

Proof Suppose x|yw, that is, suppose yw = k ⋅ x for some k ∈ Z. We assume
that x and y are relatively prime (otherwise, there will be nothing to prove) so we
know that there exist a, b ∈ Z such that a ⋅ x + b ⋅ y = 1. Consider

w = w ⋅ 1 = w(a ⋅ x + b ⋅ y)

= x(aw) + (wy)b

= x(aw) + (kx)b

= x(aw + kb)

But, since (aw + kb) ∈ Z it follows that x|w, what was to be shown. ◾

The following exercise addresses the corollary of the previous theorem.

Example/Exercise 3.36 Prove that for x, y ∈ Z and p prime, if p|xy, then p|x
or p|y.
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Theorem 3.13 Any natural number n > 1 is divisible by a prime number.

Proof Let n ∈ N be any number greater than 1. If n is prime, then it is divisible
by itself. So, suppose that n is composite, then

n = k0 ⋅ l0

where k0, l0 ∈ N, such that 1 < k0 < n, and 1 < l0 < n.
It follows by definition of divisibility that k0|n. If k0 is prime, we are done. If

not, then as any other composite, k0 can be expressed in the form

k0 = k1 ⋅ l1

where k1, l1 ∈ N, such that 1 < k1 < k0 and 1 < l1 < k0. We conclude that k1|k0.
Since k0|n, it follows from Theorem 3.7 that k1|n. Again, if k1 is prime, we are
done. If not, we proceed similarly and express k1 as

k1 = k2 ⋅ l2

We continue the process factoring the successive factors of x until we hit the prime
factor, say, kp. The process is obviously finite, since by definition 1 < ki < ki+1,
that is

1 < kp < kp−1 < · · · < k0 < x

Hence, kp is prime and divides x. ◾

Theorem 3.14 Let x, y ∈ Z be integers, both not equal to zero. Then,
gcd(x, y) = 1 iff there exist a, b ∈ Z such that 1 = ax + by.

Proof If gcd(x, y) = 1, we are done. We have already seen in Theorem 3.12 that
there exist a, b ∈ Z, such that 1 = ax + by. Let’s assume that x, y ∈ Z are integers,
both not equal to zero, for which there exist a, b ∈ Z such that 1 = ax + by.

Theorem 3.12 revealed that gcd(x, y) is the smallest positive integer which is a
linear combination of x and y. By our assumption, 1 is a linear combination of
x and y; therefore, gcd(x, y) = 1. ◾

Theorem 3.15 Let x, y,w be three integers such that x ≠ 0 and y ≠ 0 are rela-
tively prime. Then, if x|w and y|w, then xy|w.

Proof If x|w and y|w then ∃ k, l ∈ Z, such that w = k ⋅ x and w = l ⋅ y. However,
since x and y are relatively prime, ∃ s, t ∈ Z such that

1 = s ⋅ x + t ⋅ y
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Multiplying by w we obtain

w = w ⋅ 1

= w(sx + ty)

= w(sx) + w(ty)

= (ly)(sx) + (kx)(ty)

= xy(ls + kt)

Since (ls + kt) ∈ Z, it follows that xy|w. ◾

Theorem 3.16 Let x ∈ Z be any integer and p any prime then, if p|x, then p ∤
(x + 1).

Proof Suppose the opposite, that is, suppose that there exist an integer x and a
primep, such that p|x and p|(x + 1). By definition of divisibility, it follows that
∃ a, b ∈ Z, such that x = a ⋅ p, and x + 1 = b ⋅ p
Obviously, we can write

1 = (x + 1) − x

= b ⋅ p − a ⋅ p

= (b − a)p

b − a is an integer, thus p|1. But p > 1 is prime, and the only integer divisors of
1 are 1 and (−1). We have a contradiction! Our assumption was wrong, thus the
claim of the theorem is true. ◾

Theorem 3.17 If n ∈ Z+, then
√

n is a rational number iff
√

n is an integer.

Proof If
√

n is an integer there is nothing to prove –
√

n is a rational number.
We only need to prove the converse. So, suppose that there exists n ∈ Z+, such
that

√
n is a rational number but not an integer. Then

√
n = p∕q, where p, q ∈ Z+.

Without loss of generality, we may assume that p and q are relatively prime,
that is, gcd(p, q) = 1. Since p∕q is not an integer, q ≥ 2, and furthermore, n =
p2∕q2, hence p2 = nq2. By Theorem 3.13, q has a prime factor, say, a and so a|nq2.
But that implies that a|p2 and therefore a|p. So, we obtained that a|q and a|p,
which contradict our assumption that gcd(p, q) = 1. Thus the proof. ◾

Theorem 3.18 If n ∈ N is composite, then n has a prime factor p such that
p ≤

√
n.

Proof n, being composite, means that n = xy such that 1 < x < n and 1 < y <
n. Let’s say that x ≤ y. Then, x2 ≤ xy = n, from which it follows that x ≤

√
n.
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Since x > 1 there should be a prime factor of x, say, p. But, since p is a factor
of x, and at the same time x is a factor of n, it follows that p is a factor of n as
well. Hence, p ≤ x ≤

√
n. ◾

Theorem 3.19 For every n ∈ N there exists a sequence of n consecutive non-
prime natural numbers.

Proof For this proof a bit of ingenuity is needed in order to choose “the right
number” to start with. So, for some n ∈ N let’s try x = (n + 1)! + 2. We will show
that none of the numbers

x, x + 1, x + 2, x + 3,… , x + (n − 1)

is prime.
First, note that

x = 1 ⋅ 2 ⋅ 3 ⋅ · · · ⋅ (n + 1) + 2

= 2 ⋅ (1 ⋅ 3 ⋅ 4 ⋅ · · · ⋅ (n + 1) + 1)

obviously is not prime. Similarly,

x + 1 = 1 ⋅ 2 ⋅ 3 ⋅ · · · ⋅ (n + 1) + 3

= 3 ⋅ (1 ⋅ 2 ⋅ 4 ⋅ · · · ⋅ (n + 1) + 1)

is not prime either. Continuing in the same manner we see that any number x + i,
where 0 ≤ i ≤ n − 1, is not a prime. Indeed,

x + i = 1 ⋅ 2 ⋅ 3 ⋅ · · · ⋅ (n + 1) + 2 + i

= (i + 2)( 1 ⋅ 2 ⋅ 3 ⋅ · · · ⋅ (i + 1) ⋅ (i + 3) ⋅ · · · ⋅ (n + 1) + 1)

So we obtained the sequence of n consecutive nonprime natural numbers. ◾

Let’s illustrate this with an example when n = 100.

Example 3.37 Show that there exists a sequence of a 100 consecutive natural
numbers containing no primes.

Solution Consider the following 100 consecutive numbers:

101! + 2, 101! + 3, 101! + 4,… , 101! + 101

Observe that both 101! and 2 contain a factor of two, thus 101! + 2 is
not prime. Similarly, 101! and 3 contain a factor of 3, and so 101! + 3 is
not prime either. Continuing in this fashion, we conclude that for every
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n ∈ {2, 3,… , 101}, 101! + n is not prime. Hence, we have obtained a sequence
of a 100 nonprime natural numbers as claimed. ◾

Theorem 3.20 Let n ∈ N be a nonprime number. Then, 2n − 1 is not prime.

Proof Since n is not prime, there are natural numbers a < n and b < n, such
that n = ab. Let

x = 2b − 1

and
y = 1 + 2b + 22b + · · · + 2(a−1)b

Then,

xy = (2b − 1)( 1 + 2b + 22b + · · · + 2(a−1)b)

= 2b(1 + 2b + 22b + · · · + 2(a−1)b) − (1 + 2b + 22b + · · · + 2(a−1)b)

= (2b + 22b + 23b + · · · + 2ab) − (1 + 2b + 22b + · · · + 2(a−1)b)

= 2ab − 1

= 2n − 1

Hence 2n − 1 is not prime. ◾

Just for the fun of it, let’s mention the famous

Marsenne11Conjecture: There are infinitely many primes of the form 2p − 1,
where p is a prime number.

Proof I don’t know it. ◾

3.3 INDIRECT PROOF

Direct proofs seem to be the most “natural” proofs. Unfortunately, that is not
the case. Notwithstanding the fact that the method “if P then Q” seems to be the
most efficient way to establish the truth of a statement, often it does not work or,
at least, it is not the most “economical” way to reach one’s goal.

As you would recall, one of the characteristic of the two-valued logic is that
either a proposition is true or its negation is true (i.e., P∨ ∼P = 𝜏) thus, disproving
something by proving a counterexample may, occasionally, be the best way to go.
Consider the proposition we have started with

∀x ∈ , (P(x) → Q(x)) (*)

11Mari Marsenne (1588–1648).
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To disprove the proposition (*) we need to prove that its negation is true. Since
our proposition contains the universal statement “for all,” in order to disprove it,
it is sufficient to find at least one x ∈  for which the negation of (*) is true. In
other words, we need to prove

∃ x ∈ , ∼(P(x) → Q(x)) = ∼(∼P(x) ∨ Q(x))

= P(x)∧ ∼Q(x)

That is, to disprove (*) we are looking for x ∈  for which P(x) is true and Q(x)
is false.

Example 3.38 Prove that the following claim is false:

For all x ∈ R, if x < x2, then x2 < x3.

Proof Clearly, in this case the domain  is the set of all real numbers R,P(x)
stands for “x < x2” and Q(x) for “x2 < x3.” So, our statement is in the form

∀x ∈ , (P(x) → Q(x))

To prove that the claim is false it is sufficient to find a counterexample, that is, to
show that ∃ x ∈ R such that x < x2 and x2 ≥ x3. Well, take any negative number,
say, x = −2. Then (−2) < (−2)2 and (−2)2 > (−2)3, and we are done. Observe
that our proof is indeed in the desired form

∃x ∈ , (∼(P(x) → Q(x)) = P(x)∧ ∼Q(x) ) ◾

Example/Exercise 3.39 Determine whether the following statement is true:

For all x, y ∈ R, if x2 = y2, then x = y.

In other words, consider the statement

∀x ∈ , (P(x) → Q(x)), where  = R, P(x)∶ x2 = y2, and Q(x)∶ x = y,

and determine whether there exists an x ∈ R such that ∼(P(x) → Q(x)).

Example 3.40 Prove/disprove: All primes are odd.

Solution Following the previous examples, we conclude as follows:

2 is a prime number and it is also even; therefore, the claim is disproved. ◾

Example/Exercise 3.41 Prove/disprove: For all x ∈ Z, x2 − x + 7 is a prime
number.
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Another way to approach the proof indirectly is a technique called proof by
contradiction (reductio ad absurdum). We reason as follows:

Suppose that the statement P to be proved is false. Therefore, its negation
∼P, has to be true. If this assumption leads to a contradiction, then the original
statement has to be true.

Here is a classic example.

Theorem 3.21 There is no greatest integer.

Proof Suppose the statement is false, that is, suppose there is the greatest
integer N. What about M = N + 1? M has to be an integer since it is a sum of two
integers. But M is evidently greater than N, which contradicts our supposition.
Thus, there is no greatest integer. ◾

Another theorem where proof by contradiction works nicely is

Theorem 3.22 The set N of natural numbers is infinite.

Proof Clearly N ≠ ∅. Suppose that N is finite. Then, for some k ∈ N, there
exist a bijection f ∶ Nk → N. Let n = f (1) + f (2) + · · · + f (k) + 1. Evidently,
n > f (i) for any i ∈ Nk, thus n ∉ (f ). Therefore, f is not onto, which contradicts
our assumption that f is a bijection. Hence, N is infinite. ◾

Example 3.42 Prove the following statement:

For all x ∈ Z, if 3x + 2 is odd, then x is odd.

Proof Suppose that x is even, that is, suppose that x = 2k, where k ∈ Z. Then,

3x + 2 = 3(2k) + 2 = 6k + 2 = 2(3x + 1)

Thus, 3x + 2 is even, which contradicts our assumption. We conclude that the
original claim is true. ◾

Example 3.43 Prove that for all m, n, p ∈ Z, such that m > n,

(mp ≤ np) → (p ≤ 0)

Proof Our statement is obviously in the form P → Q. Since we don’t know
whether p ≶ 0, it is not evident how to make use of multiplicative law of inequal-
ities. So, we will try to prove the statement by using a method of proof by con-
tradiction. Recall that if the conditional is false, then the antecedent must be true
while the consequent is false. We will have our proof if we succeed in proving that
the case when P is true and Q is false is a contradiction, thus P → Q must be true.
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So, suppose ∀m, n, p ∈ Z, with m > n, mp ≤ np but p > 0. Then, m > n
implies that mp > np, contradicting the statement mp ≤ np. Therefore, our
assumption that p > 0 must be wrong (i.e., p ≤ 0). Thus, the claim

∀m, n, p ∈ Z, such that m > n, (mp ≤ np) → (p ≤ 0)

is true. ◾

Example 3.44 There is no odd integer that can be expressed both as 4k − 1 and
4l + 1 for some k ≠ l ∈ Z.

Proof Suppose the contrary, that is, suppose n ∈ Z is odd and it can be
expressed as n = 4k − 1 and also as n = 4l + 1, k ≠ l ∈ Z. Then, certainly, we
could write

4k − 1 = 4l + 1

which gives us
2(k − l) = 1

But this is obviously a contradiction since the left side is even and the right side
is odd. ◾

Example/Exercise 3.45 Prove that there is no integer that is both even and odd.

Example 3.46 Prove that a sum of rational and irrational numbers is irrational.

Proof Let r ∈ Q be any rational number and i ∈ R ⧵ Q any irrational number.
Suppose, furthermore, that r + i is rational. Since the difference (or a sum) of any
two rational numbers is rational it follows that (r + i) − r = i should be rational.
But, since i is irrational by definition, we have a contradiction. Therefore, r + i
must be irrational. ◾

Example 3.47 Prove that for all integers n, if n2 is even then n is even.

Proof Suppose there exists n ∈ Z such that n2 is even and n is odd. Then, by
definition of odd,

n = 2k + 1, k ∈ Z

and

n2 = (2k + 1)2 = 4k2 + 4k + 1

= 2(2k2 + 2k) + 1

2k2 + 2k is obviously an integer, and therefore n2 is an odd integer. We have that
n2 is both even and odd. But that is a contradiction, thus our statement is true. ◾
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Example 3.48 Show that 3|(22n − 1) for every n ∈ Z+.

Solution Suppose not. Suppose that there exist some nonnegative integers n,
such that 3 ∤ (22n − 1). By Theorem 3.5, there is a smallest among them, say,
m. So, 3 ∤ (22m − 1), while 3|(22n − 1) for every n ∈ Z+ for which 0 ≤ n < m.
We recognize immediately that m ≥ 1 (since for n = 0 3|(22n − 1)). So, let
m = k + 1, where 0 ≤ k < m. Thus, 3|(22k − 1), and therefore (22k − 1) = 3x for
some x ∈ Z. Consequently, 22k = 3x + 1. Now we have

22m − 1 = 22(k+1) − 1 = 22 ⋅ 2k − 1

= 4(3x + 1) − 1

= 12x + 3

= 3(4x + 1)

implying that 3|(22m − 1), which is a contradiction. Hence, we conclude that
3|(22n − 1) for every n ∈ Z+. ◾

Theorem 3.23 (Euclid) There are infinitely many primes.

Proof 1 Let P = {p1, p2,… , pn} be a finite set of all primes. Consider the
integer

N = p1 ⋅ p2 ⋅ … ⋅ pi−1 ⋅ pi ⋅ pi+1 ⋅ … ⋅ pn + 1

It is either a prime or not. Suppose it is a prime. Then, it is greater than any prime
in P, and thus P does not contain all prime numbers, contrary to the assumption
that all primes are in the set P = {p1, p2,… , pn}. Hence, P must be infinite.

However, if N is a composite it has to be divisible by at least one prime, and
that prime has to be an element of P, say, pi. But that cannot be since

N = qpi + 1, ∀pi ∈ P

Thus, there has to be another prime p ∉ P that is a factor of N. But that contradicts
our assumption that P contains all prime numbers. In other words, we have

p ∈ P and p ∉ P

which cannot be, so we conclude again that P is infinite, that is, there is infinitely
many prime numbers. ◾

The equivalent is

Proof 2 Suppose, contrary to the claim, that there are only a finite number of
primes:

P = {p1, p2,… , pn}
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Consider the number

N = p1 ⋅ p2 ⋅ … ⋅ pn + 1

By Theorem 3.13, N is divisible by some prime number p and, since set P contains
all primes, p ∈ P. But being one of the primes from P means that p|(p1 ⋅ p2 ⋅ p3 ⋅
… ⋅ pn). In that case, Theorem 3.16 requires that p ∤ (p1 ⋅ p2 ⋅ p3 ⋅ … ⋅ pn + 1).
So we have that p ∤ N and |N, which cannot be. Thus, our assumption that there
are finitely many primes led us to a contradiction, and therefore the theorem is
true. ◾

Another form of indirect proof, the proof by contraposition, is based on the
equivalence of implication and its contrapositive. Thus, we may try to prove the
statement by showing that its contrapositive is true. That is, suppose the statement
to be proved is in the form

∀x ∈ , (P(x) → Q(x))

Sometimes, it may be easier to prove the equivalent statement

∀x ∈ , (∼Q(x) → ∼P(x))

So, we proceed proving the contrapositive by a direct proof, that is, with the
assumption that Q(x) is false, we prove that P(x) is also false for every x ∈ .

Example 3.49 Let n ∈ N. Prove that if 2 ∤ n, then 4 ∤ n either.

Solution The contrapositive of the above statement is:

If 4|n then 2|n
Well, if 4|n, then there exists a k ∈ N such that n = 4k = 2(2k), implying that 2|n.
Since conditional and its contrapositive are equivalent, we have the proof of our
statement. ◾

Example 3.50 Let’s prove the statement from Example 3.43, this time using
the method of proof by contrapositive.

Observe that the contrapositive of

(mp ≤ np) → (p ≤ 0), m, n, p ∈ Z, m > n

is the statement
(p > 0) → (mp > np)

But this is evidently true, because we are given that m > n. Thus, the statement
is true indeed.
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Example 3.51 Let x, y ∈ R be two real numbers such that x < 2y. Show that

If 7xy ≤ 3x2 + 2y2, then 3x ≤ y

Solution Suppose x, y ∈ R are such that x < 2y and 3x > y. Then, 2y − x > 0
and 3x − y > 0. It follows that

(2y − x)(3x − y) = 7xy − 3x2 − 2y2 > 0

and therefore,

7xy > 3x2 + 2y2

Thus, by contraposition, if

7xy ≤ 3x2 + 2y2, then 3x ≤ y ◾

Before the following theorem you may want to revisit Theorem 3.17.

Theorem 3.24 If p is prime, then
√

p is irrational.

Proof Suppose not, that is, suppose there exists a prime p such that
√

p ∈ Q,
then, by Theorem 3.17,

√
p = n ∈ Z, n ≥ 2. It follows that p = n2, which is a

contradiction since n2 is evidently a composite. ◾

To go one step further in our “proof techniques,” we utilize the unique structure
of natural numbers to devise a special rigorous proof method called mathematical
induction. We will study this in the next section.

3.4 MATHEMATICAL INDUCTION

As you may already know, our word “induction” is derived from the Latin
“inductio” which, in turn, was a translation of the Greek word “epagoge,” a
term that Aristotle used to indicate “progress from particular to universal.” Can
we use it in mathematics? Without getting into philosophical discussion of the
validity, or how much one should be relying on the path “particular→ universal”
in the sciences, the fact is that this method of proving statements in mathematics
very often turned out to be a very powerful one.

Let’s recall some things we have encountered before: We say that a
nonempty set A ⊆ X has a unique least element (the smallest element) m ∈ X if
a ≥ m for every a ∈ A. Consequently, some nonempty subsets of real numbers
have a least element, and some do not. For instance, the set N has a least element,
namely, 1, while the set Z, obviously, does not.
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We also said (Definition 3.16) that the set N of natural numbers is well ordered.
Similarly, the closed interval [2, 7] has the smallest element, and the open inter-

val (2, 7) does not.
Finally, observe the following:
Let S be a subset of N with the following properties:

(i) 1 ∈ S

(ii) If n ∈ S then n + 1 ∈ S
Then S = N.

The consequence of WOP is the foundation of a powerful proof technique,
namely

Theorem 3.25 (Principle of mathematical induction (PMI) I) Let P(n) be
a predicate expressing a property defined for a positive integer n ∈ Z+, and let
a ∈ Z+ be another fixed number, if

(i) P(a) is true.
(ii) ∀k ≥ a, if P(k) is true, then P(k + 1) is also true.

Then, P(n) is true ∀n ≥ a.

Proof Assume to the contrary, that is, assume that conditions (i), and (ii) are
satisfied but there exist some subset of Z+ for which P(n) is false, that is

S = {n ∈ Z+|P(n) is false} ⊆ Z+

Since S ≠ ∅, it follows by WOP that S contains a least element s. By our
hypothesis, there exists a ∈ Z+, such that P(a) is true, so a ∉ S. Thus,
s ≥ a, and also s − a ∈ Z+. Therefore, s − a ∉ S, and so P(s − a) is a true
statement. But, by (ii), P(s) is a true statement too, implying that s ∉ S.
This, however, contradicts our assumption that s ∈ S. Hence the proof of the
theorem. ◾

Although we will be mostly using PMI in the study of proofs involving
nonnegative integers, it is worth mentioning that mathematical induction is a
powerful technique that extends far beyond the study of natural numbers. Let’s
recall the following:

Theorem 3.26 Suppose A is a partially ordered set. Then any finite, nonempty
set B ⊆ A has a minimal element.

Proof We show by PMI that ∀n ∈ N, n > 1, every subset of A has a minimal
element.
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P(1): B ⊆ A and |B| = 1. So ∃ b ∈ B. In other words, ∄x ∈ B(x ≠ b), that is,
∄x ∈ B(xRb ∧ x ≠ b). Thus, b is a minimal element

P(k > 1): Suppose, now, that every subset C ⊆ A with k elements has a minimal
element and consider

P(k + 1): Let C1 ⊆ A be an arbitrary subset such that |C1| = k + 1, and let c1 be
any element of C1

Then, C′
1 = C1 ⧵ {c1} ⊆ A has k elements. By inductive hypothesis, C′

1 has a
minimal element, say, c′0. So, either c1 ≤ c′0 or c1 ≰ c′0.

We claim that if c1 ≰ c′0, then c1 is a minimal element of C1. Suppose it isn’t.
Then, we can choose some x ∈ C1 such that x ≤ c1 and x ≠ c1. But, since x ≠ c1,
x ∈ C′

1. Because x ≤ c1 and c1 ≤ c′0, it follows that x ≤ c′0. However, c′0 is a min-
imal element of C′

1 and we must have x = c′0. We obtained c1 ≤ c′0 and c′0 ≤ c1,
which would imply (remember ≤ is a partial order) that c1 = c′0. But this is
impossible since c′0 ∈ C′

1 = C1 ⧵ {c1}. Thus, c1 must be a minimal element of C1.
If, however, c1 ≰ c′0, then, c0 is a minimal element of C1. Suppose not. Then,

we can choose some x ∈ C1 such that xRc0 and x ≠ c′0. However, since c′0 is a
minimal element of C′

1, x cannot be an element of C′
1, so the only other possibility

is x = c1. Thus, we have x ≰ c′0 and c1 ≰ c′0. But that contradicts our assumption
that c1 ≰ c′0. Hence, c′0 is a minimal element of C1. We proved our claim for
k + 1 and therefore, by PMI, it follows that ∀n ∈ N, n > 1, every subset of A has
a minimal element. ◾

Theorem 3.27 The Principle of Mathematical Induction (PMI) is equivalent to
WOP, that is, if N is a nonempty subset of N, then N contains a least element.

Proof Suppose N has no least element. Furthermore, suppose that M is a set of
all natural numbers which are less than every element of N. Then 1 ∈ M. Other-
wise, 1 ∈ N, and thus 1 would be a least element of N. Take some k ∈ M. Then,
k is less than every element of N. Therefore, k + 1 ∈ M. Otherwise, k + 1 would
be a least element of N. By PMI, it follows that M contains every natural number
which makes N empty. But that contradicts our hypothesis that N is nonempty and
so the assumption that N has no least element cannot be true. Thus, the theorem
is true. ◾

The rest is going to be much easier.

Example 3.52 Show that for all n ∈ N,

n∑
i=1

i = 1 + 2 + 3 + · · · + n = n(n + 1)
2
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Solution First, we recognize that our statement is

P(n):
n∑

i=1

i = n(n + 1)
2

Our next step is to verify that P(1) is true. We explicitly check:

P(1): 1(1 + 1)
1

= 1

Finally, assuming that P(k) is also true for some integer k ≥ 1, we need to
prove that P(k + 1) is also true. Well, let’s see:

P(k + 1)∶
k+1∑
i=1

i = 1 + 2 + 3 + · · · + k + (k + 1)

= (k + 1)[(k + 1) + 1]
2

= (k + 1)(k + 2)
2

(*)

Note that the left-hand side of our equation actually equals

k(k + 1)
2

+ (k + 1) = k(k + 1) + 2(k + 1)
2

= (k + 1)(k + 2)
2

And that is exactly the (*) – the right-hand side of P(k + 1), as we expected.
Thus, P(k + 1) is true whenever P(k) is true, so P(n) is true for all n ∈ N. ◾

Example 3.53 Prove that if

Sn =
n∑

i=1

i, n ∈ N

Then
Sn + Sn−1 = n2

Proof From the previous example, it follows that

Sn + Sn−1 =
n(n + 1)

2
+ (n − 1)n

2

= n
2
((n + 1) + (n − 1)) = n2 ◾
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Example 3.54 Show that
2n∑
i=1

i = 2n2 + n

Solution Observe that
2n∑
i=1

i =
N∑

i=1

i

where, of course, N = 2n, then follow the steps as in Example 3.53. ◾

Example 3.55 Show that
n∑

i=1

(2i − 1) = n2, ∀n ∈ N

Solution

P(n):
n∑

i=1

(2i − 1) = n2, ∀n ∈ N

P(1): 2 ⋅ 1 − 1 = 1 is obviously true. Assuming that

P(k):
k∑

i=1

(2i − 1) = k2, k ∈ Nwe check

P(k + 1)∶
k+1∑
i=1

(2i − 1) =
k∑

i=1

(2i − 1) + [2(k + 1) − 1]

= k2 + 2k + 1

= (k + 1)2

So, P(k + 1) is also true whenever P(k) is true, thus P(n) is true for all n ∈ N. ◾

Example 3.56 Show that
n∑

i=1

i2 = n(n + 1)(2n + 1)
6

, ∀n ∈ N

Solution

P(n):
n∑

i=1

i2 = n(n + 1)(2n + 1)
6

, ∀n ∈ N

P(1): 12 = 1 ⋅ 2 ⋅ 3
6

is evidently true. Assume that

P(k): 12 + 22 + · · · + k2 = k(k + 1)(2k + 1)
6

, k ∈ N, is also trueLet’s check
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P(k + 1)∶ 12 + 22 + · · · + k2 + (k + 1)2 = k(k + 1)(2k + 1)
6

+ (k + 1)2

= k(k + 1)(2k + 1) + 6(k + 1)2

6

= (k + 1)[k(2k + 1) + 6(k + 1)]
6

= (k + 1)(2k2 + 7k + 6)
6

= (k + 1)(k + 2)(2k + 3)
6

which is exactly the desired result. Since P(k + 1) is true, whenever P(k) is
true, we conclude that P(n) is true for all n ∈ N. ◾

Example 3.57 Show that
n∑

i=1

1
(i + 1)(i + 2)

= n
2n + 4

, ∀n ∈ N

Solution As before, we have

P(1): 1
2 ⋅ 3

= 1
2 ⋅ 1 + 4

is true. Assume that

P(k): 1
2 ⋅ 3

+ 1
3 ⋅ 4

+ · · · + 1
(k + 1)(k + 2)

= k
2k + 4

, k ∈ N, is also true

Then,

P(k + 1)∶ 1
2 ⋅ 3

+ 1
3 ⋅ 4

+ · · · + 1
(k + 1)(k + 2)

+ 1
(k + 2)(k + 3)

= k + 1
2(k + 1) + 4

= k + 1
2k + 6

Observe that[
1

2 ⋅ 3
+ 1

3 ⋅ 4
+ · · · + 1

(k + 1) (k + 2)

]
+ 1
(k + 2)(k + 3)

= k + 1
2(k + 1) + 4

= k
2k + 4

+ 1
(k + 2)(k + 3)

= k
2(k + 2)

+ 1
(k + 2)(k + 3)

= k(k + 3) + 2
2(k + 2)(k + 3)

= k2 + 3k + 2
2(k + 2)(k + 3)

= (k + 1)(k + 2)
2(k + 2)(k + 3)

= k + 1
2(k + 3)

= k + 1
2k + 6

Since P(k + 1) is exactly as desired, we conclude that P(n) is true for all
n ∈ N. ◾
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Example 3.58 Show that for any n ∈ N, n2 + 3n + 2 is even.

Solution Observe that the statement

P(n): n2 + 3n + 2 is even, ∀ n ∈ N

is obviously true for n = 1, that is

P(1): 1 + 3 + 2 = 6

Assume that

P(k): k2 + 3k + 2 is true for all k ∈ N, and consider

P(k + 1)∶ (k + 1)2 + 3(k + 1) + 1 = k2 + 2k + 1 + 3k + 3 + 2

= (k2 + 3k + 2) + 2k + 4

= (k2 + 3k + 2) + 2(k + 2)

The first term, (k2 + 3k + 2), is even by the inductive hypothesis while the
second term, 2(k + 2), being a multiple of 2, is obviously true. So, P(k + 1) as
a sum of two even numbers (thus, an even number) is also true. By PMI we
conclude that P(n) is true for any n ∈ N. ◾

Example/Exercise 3.59 Prove by induction that for all x ∈ R

(i) xnyn = (xy)n

(ii) xm+n = xmxn

(iii) (xm)n = xmn

Example 3.60 Show that 32n − 1 is divisible by 8 for all n ∈ N.

Solution Our proposition is

P(n): 8|(32n − 1), ∀n ∈ N

Observe that

P(1): 8|(32⋅1 − 1) is obviously true.

Suppose P(k) is also true, that is, suppose 8|(32k − 1). We need to prove that 8
divides (32(k+1) − 1).
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Well, if 8|(32k − 1), then there exists x ∈ N such that

32k − 1 = 8x (*)

Let’s multiply both sides of (*) by 32:

32k+2 − 9 = 9 ⋅ 8x

32k+2 = 9 + 9 ⋅ 8x

= 1 + 8 + 8 ⋅ 9 ⋅ x

= 1 + 8(1 + 9x)

Thus,
32k+2 − 1 = 8(1 + 9x)

Therefore, 8|(32(k+1) − 1). Thus, we have proved the statement P(n). ◾

Example/Exercise 3.61 Show that 4|(5n − 1) for all n ∈ N.

Example 3.62 Show that 3|10n−1, ∀n ∈ N.

Solution

P(n): 3|10n−1, ∀n ∈ N
P(1): 3|101−1 is obviously true

Let’s assume that P(k) is also true, that is, assume that

P(k): 3|10k−1, k ∈ N, is true. We need to prove that 3|10k+1−1 − 1

Consider

10k+1−1 = 10k − 1

= 10k − 1 + 10k−1 − 10k−1

= (10k − 10k−1) + 10k−1 − 1

= 10k−1(10 − 1) + 10k−1 − 1

= 9 ⋅ 10k−1 + 10k−1 − 1

= 3(3 ⋅ 10k−1) + (10k−1 − 1)

The first term is obviously divisible by 3, and the second is divisible by 3 by
inductive hypothesis, thus 3|10n−1 for all n ∈ N. ◾
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You may wonder if it would it be possible to apply similar reasoning in the
instance when the initial case in induction proof was not n = 1. Well, depending
on a particular case and with some caution we can start with any integer, even a
negative one or zero, and consider the truthfulness of P(n)for every integer n ≥ m.

Recalling that for every integer m, a set S = {n ∈ Z|n ≥ m} is well ordered,
we extend Theorem 3.25 and state

Theorem 3.28 (Principle of mathematical induction II) Let
S = {a ∈ Z|a ≥ m,m ∈ Z} and let P(n) be a statement for every n ∈ S.

If

(i) P(m) is true.
(ii) if ∀k ∈ S, P(k) is true and P(k + 1) is true then, P(n) is true for every

integer n ∈ S.

Example 3.63 Let’s redo Example 3.48, this time by mathematical induction,
that is, let’s show that 3|(22n − 1) for every n ∈ Z+.

Solution The statement we are about to prove is

P(n): 3|(22n − 1) for every n ∈ Z+

Obviously,

P(0): 3|(20 − 1) is true. Assume that
P(k): 3|(22k − 1) with k ∈ Z+ is true. We need to show that
P(k + 1): 3|(22(k+1) − 1) is also true. Well, if

3|(22k − 1), then there exists an integer x such that 22k − 1 = 3x, and so
22k = 3x + 1. Now, 22(k+1) − 1 = 22 ⋅ 22k − 1 = 4(3x + 1) − 1 = 12x + 3 =
3(4x + 1), which is evidently divisible by 3. By PMI we conclude that

3|(22n − 1) for every n ∈ Z+ ◾

Example/Exercise 3.64 Show that for all x ∈ Z, x ≠ 1, (x − 1)|(xn − 1).
Hint: xn+1 − 1 = x(xn − 1) + (x − 1)

Example/Exercise 3.65 Prove that for all n ∈ N, 3|(2n3 + 4n + 9).

Example 3.66 Show that n < 2n for all n ∈ Z+.

Solution We need to prove the proposition

P(n)∶ n < 2n, ∀n ∈ Z+



�

� �

�

MATHEMATICAL INDUCTION 227

First note that
P(0)∶ 0 < 20 = 1

is obviously true. We assume that P(k) is also true for some k > 0, that isP(k)∶
k < 2k (*) Let’s see whether P(k + 1) is also true.

Adding 1 to both sides of (*) we get:

k + 1 < 2k + 1 ≤ 2k + 2k = 2 ⋅ 2k

= 2k+1

Since our proposition is true for k + 1 it is true for all n ∈ Z+. ◾

Example 3.67 Show that 2n > n2 for every integer n ≥ 5.

Solution We need to prove the statement

P(n): 2n > n2, n ≥ 5, ∀n ∈ Z

Observe that 25 > 52, thus P(5) is true. Assuming that P(k) is true we need to
show that P(k + 1) is also true, that is, that

2k+1 > (k + 1)2 where k ≥ 5

Well, let’s see.

2k+1 = 2 ⋅ 2k > 2 ⋅ k2 = k2 + k2 ≥ k2 + 5k

= k2 + 2k + 3k

≥ k2 + 2k + 15

> k2 + 2k + 1 = (k + 1)2

So, 2k+1 > (k + 1)2, and therefore 2n > n2 for every integer n ≥ 5. ◾

Example/Exercise 3.68 Revisit the proof of Theorem 1.11.

Example/Exercise 3.69 Show that for all n ∈ N, where n ≥ 4, n! > 2n.

Example 3.70 Show that for all n ∈ N, where n ≥ 3, 2n + 1 < 2n.

Solution

P(n): ∀ n ∈ N, n ≥ 3, 2n + 1 < 2n

P(3): 2 ⋅ 3 + 1 < 23 = 8
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is obviously true. Assume it is also true for n = k. Let’s see whether it is true
for n = k + 1.

2(k + 1) + 1 = 2k + 3 = (2k + 1) + 2

Since 2k + 1 < 2k, by inductive hypothesis

2k + 3 < 2k + 2k = 2 ⋅ 2k = 2k+1

It follows that 2k + 3 < 2k+1, what was to be shown. ◾

Example/Exercise 3.71 Show that for all n ∈ Z+, 1 + 2 + 22 + 23 + · · · +
2n = 2n+1 − 1.

Example/Exercise 3.72 Prove that for every n ∈ N,

n∑
i−1

(3i − 2) = n
2
(3n − 1)

For the next few examples, we need to digress a little and introduce another con-
cept.

Definition 3.19 A sequence {an}n∈N is a function from N into R. A sequence
{an}n∈N is bounded iff the set {an|n ∈ N} is bounded. A finite sequence of length
n in the set S, is a function f ∶ {1, 2,… , n}→ S. An infinite sequence in the set
S is a function f ∶ N → S.

Example 3.73 One can think of a finite sequence as an n-tuple

(a1, a2,… , an) = (f (1), f (2),… , f (n) )

and equivalently, an infinite sequence

{ai}∞i=1 = (a1, a2, …), ai ∈ S, i ∈ N

Thus, for instance
1, 2, 3, 4, 5, …

might be thought of as a sequence f ∶ N → N. ◾

Example 3.74 The first three terms of a sequence

{ai} =
i

i + 1

are
a1 =

1
1 + 1

= 1
2
, a2 =

2
2 + 1

= 2
3
, a3 =

3
3 + 1

= 3
4
, …

◾
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Example/Exercise 3.75 Write the first five terms of the following sequences:

(i) {an}∞n=−3, where an = (−2)n.

(ii) {bm}∞m=−1, where bm = 2m2 − m + 1.

Now we continue with our proofs.

Theorem 3.29 (Sum of geometric sequence) For all r ∈ R, r ≠ 1, and any
n ∈ Z+

n∑
i=0

ri = rn+1 − 1
r − 1

Proof Let r ∈ R be any real number different from 1, then

P(n)∶
n∑

i=0

ri = rn+1 − 1
r − 1

We immediately see that

P(0)∶
0∑

i=0

ri = r0+1 − 1
r − 1

= 1

Suppose P(k) is also true for some k ≥ 0. We need to show that P(k + 1) is also
true, that is, we must show that

P(k + 1)∶
k+1∑
i=0

ri = r(k+1)+1 − 1
r − 1

Observe that

k+1∑
i=0

ri =
k∑

i=0

ri + rk+1

= rk+1 − 1
r − 1

+ rk+1

= (rk+1 − 1) + rk+1(r − 1)
r − 1

= rk+2 − 1
r − 1

And this is exactly what we had to show. ◾
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There are situations where more consideration is needed for step II (“n = k”) in
order to successfully complete step III (“n = k + 1”) of mathematical induction.
Namely, after explicitly verifying the basic step I, we use it to check step II and
then both of them for step III. We can use as many of the first “k” steps as we need
to verify (k + 1)th. In other words, if we have the statement P(n), with n ∈ Z+,
such that P(1),P(2),… ,P(k) are all true, and

(P(1) ∧ P(2) ∧ … ∧ P(k)) implies that P(k + 1) is true

then P(n) is true for all n ∈ Z+.
This is formally stated in the following:

Theorem 3.30 (The strong principle of mathematical induction – SPMI)
For each n ∈ Z+, let P(n) be a statement, such that

(i) P(m) is true, and the implication.
(ii) If P(i) then P(k + 1) is true, for every i,m ≤ i ≤ k.

Then, P(n) is true for every n ∈ Z+.

Example 3.76 Let’s prove Theorem 3.13: Any natural number greater than 1 is
divisible by a prime number this time using SPMI.

Proof

P(n): If n ∈ N and n > 1, then n is divisible by a prime number

We need to show that P(2) is true. But 2 is divisible by 2, which is prime, so
P(2) is true.

Now we check whether for all k ≥ 2, if P(i) is true for all numbers i between
2 and k, then P(k + 1) is also true. Take any k ≥ 2 and suppose that i is divisible
by a prime number for all 2 ≤ i ≤ k. We need to show that k + 1 is also divisible
by a prime number. In case that k + 1 is prime itself, we are done. If k + 1is a
composite, we can express it as

k + 1 = ab

where 1 < a < k + 1 and 1 < b < k + 1. But then, in particular, 2 ≤ a ≤ k and
thus, by our inductive hypothesis, a is divisible by a prime number p. How-
ever, since k + 1 = ab it follows that k + 1 is also divisible by a prime p. Hence,
P(k + 1) is true and therefore our statement P(n) is true. ◾

Theorem 3.31 (The fundamental theorem of arithmetic) Every integer
n ≥ 2 is either prime or it can be uniquely expressed as a product of primes.
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Proof Since 2 is prime, the statement is certainly true for n = 2. Next, we will
assume that every integer i, with 2 ≤ i ≤ k, is either prime or can be expressed
as a product of primes. We need to prove the same for k + 1. Of course, if k + 1
is prime, we are done – there is nothing to prove. So, let’s assume that k + 1
is composite. Then, there exist a, b ∈ Z, such that k + 1 = ab, where 2 ≤ a ≤

k and 2 ≤ b ≤ k. By induction hypothesis, both a and b are either prime or can
be expressed as a product of primes. In any case, k + 1 = ab is a product of
primes. Thus, by SPMI, every integer n ≥ 2 is either prime or can be expressed
as a product of primes. It remains to be proved that this factorization is unique.
Suppose it is not, that is, suppose there are two different factorizations:

n = p1 ⋅ p2 ⋅ … ⋅ ps

= q1 ⋅ q2 ⋅ … ⋅ qt

where all pi, qj are primes, and we arrange them as follows:

p1 ≤ p2 ≤ · · · ≤ ps; q1 ≤ q2 ≤ · · · ≤ qt (*)

Now, since factorizations are different, there must be a smallest r ∈ N, r ≥ 2, such
that pr ≠ qr. It follows that pi = qi for every i with 1 ≤ i ≤ r − 1.

Therefore, we can write

pr ⋅ pr+1 ⋅ … ⋅ ps = qr ⋅ qr+1 ⋅ … ⋅ qt (**)

In case that s = r, the left side of equation (**) is simply pr. If, however, s > r,
then pr+1 ⋅ … ⋅ ps is an integer that is a product of s − r primes. In either case

pr|qr ⋅ qr+1 ⋅ … ⋅ qt

But, since qr, qr+1,… , qt are primes, pr = qj for some j with r ≤ j ≤ t. Remem-
ber, we arranged our p′s and q′s in nondecreasing order (*), so qr ≤ qj and there-
fore qr ≤ pr. By the similar argument, we can consider the left-hand side of
equation (**) and show that pr ≤ qr. Hence, pr = qr, and we have proved the
uniqueness of factorization. ◾

Theorem 3.32 If n is composite, then n has a prime factor p ≤
√

n.

Proof Being composite, n is expressible as n = ab, where 1 ≤ a ≤ n; 1 ≤

b ≤ n.
Let’s assume that a ≤ b. Then, a2 ≤ ab = n, and therefore ≤

√
n. Now, since

a > 1, a has a prime factor, say, p. But, since n = ab, p is also a factor of n. Thus,
p ≤ a ≤

√
n. ◾
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Definition 3.20 A sequence {an}∞n=1 is called a recursive sequence if, from
some point on each term, ak may be expressed as a function of some previous
terms, that is

an+k = f (an+k−1,… , an+1, an), ∀n ∈ N

In other words, a recursive sequence {an}∞n=1 is determined by some initial values
a1,… , ak and a recursive relation, expressing each term beyond the initial k terms
as a function of the previous k terms.

Example 3.77 The well-known classical example is the Fibonacci12 sequence
defined recursively by

fn+2 = fn+1 + fn, ∀n ∈ N

with initial values f1 = 1 and f2 = 1.
Consequently, we have

{fn}∞n=1 = (1, 1, 2, 3, 5, 8, 13, 21, …) ◾

Example 3.78 Let {sn} be a sequence defined recursively by

s1 = 1, s2 = 3, and sn = 2sn−1 − sn−2, ∀n ≥ 3, n ∈ N

Then

P(n)∶ sn = 2n − 1, ∀n ∈ N

Proof We immediately see that the formula holds for n = 1:

P(1)∶ s1 = 2 ⋅ 1 − 1 = 1

Assume that for an arbitrary k ∈ N and for all i ∈ N, such that 1 ≤ i ≤ k,

P(i)∶ si = 2i − 1

We need to show that

P(k + 1)∶ sk+1 = 2(k + 1) − 1

also holds.
Since

sk+1 = 2(k + 1) − 1

= 2k + 1

12Leonardo of Pisa (Leonardo Pisano) “filius Bonnaci” (cf. 1180–1250).



�

� �

�

MATHEMATICAL INDUCTION 233

for k = 1 we have

s2 = 2 ⋅ 1 + 1 = 3

as expected (by sequence recursive definition). Thus, we can proceed assuming
that k ≥ 2. But in that case, k + 1 ≥ 3, and we have

sk+1 = 2sk − sk−1

= 2(2k − 1) − (2k − 3)

= 2k + 1

which is the desired result. By SPMI we conclude that P(n) is true. ◾

Example 3.79 Let {sn} be a sequence defined recursively as follows:

s0 = 0, s1 = 4, sn = 6sn−1 − 5sn−2, ∀n ≥ 2, n ∈ N

Then,

P(n)∶ sn = 5n − 1, ∀n ≥ 2, n ∈ N

Proof Let’s first convince ourselves that P(0) and P(1) hold:

P(0)∶ s0 = 50 − 1 = 0

P(1)∶ s1 = 51 − 1 = 4

Assuming that for all integers k ≥ 1, P(i) is true for all 0 ≤ i ≤ k, we need to show
that P(k + 1) is also true. So, consider

sk+1 = 5k+1 − 1

and observe that since k ≥ 1, k + 1 ≥ 2. Thus,

sk+1 = 6sk − 5sk−1

= 6(5k − 1) − 5(5k−1 − 1)

= 6 ⋅ 5k − 6 − 5k + 5

= 5k(6 − 1) − 1

= 5k ⋅ 5 − 1

= 5k+1 − 1

which is exactly the result we desired. So, P(k + 1) is true. Hence by PSMI P(n)
is true for all natural numbers greater or equal to 2. ◾
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Example 3.80 Let {sn} be a sequence defined recursively as follows:

s1 = 1, s2 = 4, sn = 2sn−1 − sn−2 + 2, ∀n ≥ 3, n ∈ N

Then,

P(n)∶ sn = n2, ∀n ∈ N

Proof Formula holds for n = 1:

P(1)∶ s1 = 1 = 12

Assuming that for any k ∈ N and 1 ≤ i ≤ k

P(i)∶ si = i2

we show that

P(k + 1)∶ sk+1 = (k + 1)2

Observe that, according to definition, s2 = 4, that is, for k = 1, sk+1 = (k + 1)2,
and we may assume that k ≥ 2, thus k + 1 ≥ 3. Then,

sk+1 = 2sk − sk−1 + 2

= 2k2 − (k − 1)2 + 2

= 2k2 − k2 + 2k − 1 + 2

= k2 + 2k + 1 = (k + 1)2

Hence P(k + 1) is true, and by SPMI we conclude that P(n) is also true. ◾

Example 3.81 Rewriting Fibonacci numbers introduced in Example 3.77 as
follows:

f1 = 1

f2 = 1

fn = fn−1 + fn−2

where n ∈ N and n ≥ 2, we can extend the “usual” Fibonacci sequence (whose
first nine members are 1, 1, 2, 3, 5, 8, 13, 21, 34, … ), also to n = 0,−1,−2, … .
We obtain the following sequence:

(… f−7, f−6, f−5, f−4,… , f−1, f0, f1, f2, f3, …)

= (… 13,−8, 5,−3, 2,−1, 1, 0, 1, 1, 2, …)
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Show that Fibonacci numbers are given by the following expression (Binet13 for-
mula):

fn =
𝛼n − 𝛽n√

5

where 𝛼 = (1 +
√

5) ∕2 and 𝛽 = (1 −
√

5)∕2.

Solution Before the actual proof, let me digress a little and show you something
you might have heard about in one way or another before, namely, the relationship
of Fibonacci numbers, the “golden ratio” and the following quadratic equation:

t2 − t − 1 = 0 (*)

The Ancient Greeks considered the following ratio as an exceptionally interesting
(and the most pleasing one):

Take a segment L and divide it into two parts, l and x, that is, let L = l + x,
such that the following ratio holds:

l + x
l

= l
x

or
1 + x

l
= l

x

With
l
x
= t

we get

1 + 1
t
= t

In other words,
t + 1 = t2

And finally,
t2 − t − 1 = 0

which is equation (*).
The solutions of this equation (you should check this) are 𝛼 = (1 +

√
5 )∕2

and 𝛽 = (1 −
√

5 )/2.
Therefore,

𝛼2 = 𝛼 + 1 (3.1)

𝛽2 = 𝛽 + 1 (3.1′)

13J.P.M. Binet (1786–1856).
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After multiplying both sides of (3.1) by 𝛼, we get

𝛼3 = 𝛼2 + 𝛼 (3.2)

= 𝛼 + 1 + 𝛼

= 2𝛼 + 1

Let’s do it again, that is, let’s multiply (3.2) by 𝛼

𝛼4 = 2𝛼2 + 𝛼(3) (3.3)

= 2(𝛼 + 1) + 𝛼

= 2𝛼 + 2 + 𝛼

= 3𝛼 + 2

Multiplying one more time will enable you to see the pattern (if not, continue
multiplying the same way a couple of times more until you get it)

𝛼5 = 3𝛼2 + 2𝛼(4) (3.4)

= 3(𝛼 + 1) + 2𝛼

= 3𝛼 + 3 + 2𝛼

= 5𝛼 + 3

Observe that the leading coefficients of (3.1)–(3.4) are numbers 1, 2, 3, 5, that is,
the Fibonacci numbers.

Now, we do our proof.

P(n)∶ fn =
𝛼n − 𝛽n√

5

where 𝛼 = (1 +
√

5) ∕2 and 𝛽 = (1 −
√

5)∕2.

P(1)∶ f1 =
𝛼 − 𝛽√

5

=
(1 +

√
5) − (1 −

√
5 )

2
√

5

= 1
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Next, suppose that the formula holds for all natural numbers k ≥ 2. Then,

P(k + 1)∶ fk+1 = fk−1 + fk

= 𝛼k−1 − 𝛽k−1 + 𝛼k − 𝛽k√
5

= 𝛼k−1(1 + 𝛼) − 𝛽k−1(1 + 𝛽)√
5

using (3.1)

= 𝛼k−1 ⋅ 𝛼2 − 𝛽k−1 ⋅ 𝛽2√
5

= 𝛼k+1 − 𝛽k+1√
5

Thus, the formula holds for all n ∈ N. ◾

Example/Exercise 3.82 Define a sequence recursively as follows:

a0 = 0, a1 = 1, a2 = 1,… , an =
1
2

an−3 +
3
2

an−2 +
1
2

an−1, ∀n ≥ 3, n ∈ N

Show that an = fn.

Theorem 3.33 Let 𝛼 be a solution of equation (*) from Example 3.81. Then,

𝛼n = fn−1 + 𝛼fn, ∀n ∈ Z

Proof For n = −1, n = 0, and n = 1 the statement is demonstrably true
(cf. Example 3.81). Indeed,

𝛼−1 = f−2 + 𝛼f−1

= −1 + 𝛼

𝛼0 = f−1 + 𝛼f0

= 1 + 𝛼 ⋅ 0

𝛼1 = f0 + 𝛼f1
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Let’s assume that the statement is true for all n = 1, 2,… , k. We need to show
that the statement holds for n = k + 1. Let’s see.

𝛼k+1 = 𝛼𝛼k

= 𝛼(fk−1 + 𝛼fk)

= 𝛼 fk−1 + 𝛼2fk

= 𝛼 fk−1 + (𝛼 + 1)fk
= fk + 𝛼(fk−1 + fk)

= fk + 𝛼fk+1

which is the desired result. Remember, the original statement pertains to all inte-
gers. So, assuming that the statement holds for n = −1,−2,… ,−k, we need to
show that it also holds for n = −(k + 1). In other words, we would like to show
that

𝛼−(k+1) = f−(k+1)−1 + 𝛼f−(k+1)

We proceed as before:

𝛼−(k+1) = 𝛼−1𝛼−k

= 𝛼−1(f−(k+1) + 𝛼f−k)

= 𝛼−1f−(k+1) + f−k

= (𝛼 − 1)f−(k+1) + f−k

= f−k − f−(k+1) + 𝛼f−(k+1)

= f−(k+2) + 𝛼f−(k+1)

Hence, by PMI, we conclude that 𝛼n = fn−1 + 𝛼fn, ∀n ∈ Z. ◾

Example/Exercise 3.83 If 𝛽 = (1 −
√

5)∕2 is the other solution of equation (*)
from Example 3.81 show that

𝛽n = fn−1 + 𝛽fn, ∀n ∈ Z

Theorem 3.34 Let 𝛼 be a solution of equation (*) from Example 3.81. Then,
fn ≤ 𝛼n−1 for all natural numbers n ≥ 1.

Proof

P(n): fn ≤ 𝛼n−1 for all natural numbers n ≥ 1
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Since f1 = f2 = 1, the claim is evidently true for n = 1 and n = 2.
Assume that

P(k): fk ≤ 𝛼k−1 for some k > 2, k ∈ N. Let’s see whether P(k + 1) is also true.
Consider

fk+1 = fk + fk−1

≤ 𝛼k−1 + 𝛼k−2 = 𝛼k−2(𝛼 + 1)

= 𝛼k−2𝛼2

= 𝛼k

That is, P(k + 1) is true if P(k) is true – exactly the desired result.
By PMI, we conclude that P(n) is true, that is, fn ≤ 𝛼n−1 for every n ≥ 1. ◾

Theorem 3.35 Let fn be the nth Fibonacci number. Then fn < 2n, ∀n ∈ N

Proof

P(n)∶ fn < 2n, ∀n ∈ N

P(1)∶ f1 = 1 < 2 is obviously true. Let’s assume that

P(2),… ,P(k), are also true for all k ∈ N, and consider

P(k + 1)∶ fk+1 = fk + fk−1

< 2k + 2k−1 < 2k + 2k = 2 ⋅ 2k = 2k+1

Thus, P(k + 1) is true if P(k) is true, and therefore P(n) is true for any n ∈ N. ◾

Theorem 3.36 Let fn be the nth Fibonacci number. Then,

n∑
i=1

fi = fn+2 − 1, n ∈ N

Proof

P(n):
n∑

i=1

fi = fn+2 − 1, n ∈ N

P(1): f3 − 1 = 2 − 1 = 1 is obviously true. Assume that

P(k):
k∑

i=1

fi = fk+2 − 1 is also true
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Then,

P(k + 1)∶
k+1∑
i=1

fk = fk+1+2 − 1 = fk+3 − 1

=
k∑

i=1

fi + fk+1 = fk+2 − 1 + fk+1

= fk+1 + fk+2 − 1

= fk+3 − 1

which is exactly what we had hoped for. So, P(k + 1) is true whenever P(k) is
true, thusP(n) is true ∀n ∈ N. ◾

Theorem 3.37 For any n ∈ N,

n∑
i=1

f 2
i = fnfn+1

Proof

P(n):
n∑

i=1

f 2
i = fnfn+1

It is easy to verify that this is true for n = 1. Indeed, since f1 = f2 = 1,

f 2
1 = f1f2

Assume that

P(k)∶
k∑

i=1

f 2
i = fkfk+1 is true, and consider

P(k + 1)∶
k+1∑
i=1

f 2
i =

k∑
i=1

f 2
k + f 2

k+1

= fkfk+1 + f 2
k+1

= fk+1(fk + fk+1)

= fk+1fk+2

Thus, P(k + 1) is true when P(k) is true, and therefore P(n) is true ∀n ∈ N. ◾
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Example/Exercise 3.84 Prove that 2|fn iff 3|n.

Theorem 3.38 Consecutive Fibonacci numbers are relatively prime.

Proof Suppose not. Suppose there is d > 1, such that d|fn and d|fn+1. It
follows that d|(fn+1 − fn = fn−1). But, since |fn and d|fn−1, that also implies that
d|(fn − fn−1 = fn−2). Continuing this process we reach the point that d|f1, which
contradicts our assumption that d > 1. Thus the proof. ◾

Example/Exercise 3.85 Show that for any n ∈ N, fn and fn+2 are relatively
prime.

3.5 SUPPLEMENTARY PROBLEMS

1. Let n, m ∈ Z be integers. Show that if n is even and m is odd, then nm is even.

2. Let x, y ∈ R be real numbers. Show that
(i) |xy| = |x||y|

(ii)
||||xy |||| = |x||y|

3. Let m, n, p, q ∈ Z be integers. Prove that
(i) if m|n and p|q then mp|nq,

(ii) if m, n ≥ 0, and m|n and n|m then m = n.

4. Let p ∈ Z, and p ≥ 2 be such that for every pair a, b ∈ Z if p|ab then
p|a or p|b which implies that p is prime.

5. Let n ∈ N be a natural number. Prove that n2 + n + 3 is odd.

6. Prove by contradiction from trichotomy law that for any x, y ∈ R,

((x ≤ y) ∧ ( y ≤ x))→ (x = y)

7. Prove that for all x, y ∈ R,
(i) |x| < |y| iff x2 < y2

(ii) |x| = |y| iff x2 = y2

8. Prove that for all x, y, z ∈ R

|x − y| ≤ |x − z| + |x − y|
9. Prove that for all x, y, z ∈ R

||x| − |y|| ≤ |x| − |y|
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10. Suppose x, y ∈ R and x, y ≥ 0. Prove that

x + y

2
≥
√

xy

11. Prove that 3
√

2 is irrational.

12. Suppose n ∈ Z is an integer. Prove that the following statements are equiv-
alent:
(i) n is odd; (ii) 3n + 1 is even; (iii) n+1

2
∈ Z.

13. Prove that if a ∈ Q and b ∈ I then
(i) a + b ∈ I

(ii) a − b ∈ I
(iii) a ⋅ b ∈ I, a ≠ 0
(iv) a − b ∈ I
(v)

a
b
∈ I, a ≠ 0

(vi)
b
a
∈ I, a ≠ 0

14. Prove that if m, n ∈ Z, then the following three statements are equivalent:
(i) m2 − n2 is even, (ii) m − n is even, (iii) m2 + n2 is even.

15. Let x, y ∈ R be two real numbers. Prove that

(x − y)5 + (x − y)3 = 0, iff x = y

16. Prove that the square of no integer is of the form 2n − 1, where n ∈ Z.

17. Prove that for every odd integer n there exists k ∈ Z, such that n2 = 4k + 1.

18. Prove that if n = k3 + 1 ≥ 3, where k ∈ Z, then n is not prime.

19. Prove that ∀n ∈ N,
n∑

i=1

(2i − 1) = n2

20. Prove that ∀n ∈ N
n∏

i=1

(4i − 2) = (2n)!
n!

21. Prove that

1 + 4 + 7 + · · · + (3n − 2) = n(3n − 1)
2

, ∀n ∈ N
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22. Show that 9|(43n − 1) for every n ∈ Z+.

23. Prove that

x + x3 + x5 + · · · + x2n−1 = x2n+1 − x
x2 − 1

, x ∈ R, x ≠ ±1, n ∈ N

24. Prove that

1 ⋅ 3 + 2 ⋅ 4 + 3 ⋅ 5 + · · · + n(n + 2) = n(n + 1)(2n + 7)
6

, ∀n ∈ N

25. Prove that

1
3 ⋅ 4

+ 1
4 ⋅ 5

+ 1
5 ⋅ 6

+ · · · + 1
(n + 2)(n + 3)

= n
3n + 9

, ∀n ∈ N

26. Prove that for every n ∈ N,

n∑
i=1

2i = 2n+1 − 2

27. Prove that for every n ∈ N,

n∑
i=1

1
i2

≤ 2 − 1
n

28. Prove that for ever n ∈ N,

1√
1
+ 1√

2
+ 1√

3
+ · · · + 1√

n
≥ n

29. Prove that for every n ∈ N,

n∏
i=1

(2i − 1) = (2n)!
n!2n

30. Prove that for every natural number n ≥ 2

n∏
i=2

i2 − 1
i2

= n + 1
2n

31. Suppose the quadratic equations x2 + bx + c = 0 is such that b, c ∈ Q. Prove
that, if one solution of this equation is rational, then the other solution is
rational too.

32. Prove that for every x ∈ R if x2 ≥ x, then either x ≤ 0 or x ≥ 1.
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33. Prove Bernoulli’s inequality

(1 + x)n ≥ 1 + nx, ∀x ∈ Z+

34. Let a, b, c, d ∈ Z, with a, c ≠ 0. Prove that if a|b and c|d then
ac|(ad + bc).

35. Is it true that for all a, b ∈ Z if |b2 then a|b?

36. Show that 3|(n3 − n) for every n ∈ Z.

37. Show that 3|(4n − 1) for every n ∈ N.

38. Prove that 8|(52n + 7)for every n ∈ Z+.

39. Prove that 5|(33n+1 + 22n+1) for every n ∈ Z+

40. Prove that 9|(43n − 1) for every n ∈ Z+.

41. Prove that for every n ∈ N, 7|(11n − 4n)

42. Prove that (x − y)|(x3 − y3).

43. Prove that for every n ∈ N, 7|(11n − 4n).

44. Prove that for every n ∈ Z, 6|n iff 2|2 and 3|n.

45. Prove that
(i) ∀x, yN, and x > y, (x − y)|(xn − yn)

(ii) ∀x ∈ Z, x ≠ 1, (x − 1)|(xn − 1)

46. Prove that if p and q are prime with p ≥ q ≥ 5, then 24|(p2 − q2).

47. Prove that n! > 2n, for every integer n ≥ 4.

48. Prove that 3n ≥ 1 + 2n, for every n ∈ N.

49. Prove that
√

6 ∉ Q.

50. Let p be a prime and let n ∈ Z. Prove that p1∕n ∉ Q.

51. Let fi be Fibonacci numbers. Find the formula for
(i) fn+3 − fn+1

(ii) f 2
n − f 2

n−1

(iii) f 2
n + f 2

n−1

52. Let f3n, f3n+1, f3n+2 be Fibonacci numbers. Show that if f3n is even, then both
f3n+1 and f3n+2 are odd for all n ∈ N.
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53. Show that if m ∈ N is any natural number, then

fmfn + fm+1fn+1 = fm+n+1

for all n ∈ N.

54. Let fn be the nth Fibonacci number. Prove that

n∑
i=1

f2i+1 = f2n, ∀n ∈ N
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4
FUNCTIONS

“Take some more tea” the March Hare said to Alice, earnestly.

“I’ve had nothing yet,” Alice replied in an offended tone, “so I can’t take more.”

“You mean you can’t take less,” said the Hatter: “it’s very easy to take more than
nothing.” 1

4.1 INTRODUCTION

We have mentioned in Chapter 1 that one of the most important concepts in all
of mathematics is the concept of a function. It is also the most ubiquitous. Think
about it. If you accept the premise that mathematics is, among other things, a
system of thought, then it is easy to see how everything you do, and everything
you think about, involves some relationship between different sets of “objects.”
While you are reading these lines, your mind associates letters of the Latin alpha-
bet appearing in “clusters” in front of you – the English words familiar to you,
which, further on, represent the concepts your mind is more or less familiar with;
then you/your mind arranges those concepts, according to specific rules, to more

1Lewis Carroll.

Principles of Mathematics: A Primer, First Edition. Vladimir Lepetic.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
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complex sets forming your thoughts, opinions, and so on. And then, you can go
back and reflect on your thoughts and your thinking, creating another layer of
“associations” between “thinking” and thinking about that “thinking.” All those
“associations,” those “relations,” between one set of objects and the other set are
the functions we want to study. Of course, you may object and ask why this intro-
duction has to be so complicated. Why not introduce the concept of a function
simply as a relation between two “objects,” say, the size of a pizza and its price?
That would also be a perfectly good example of a function. But we will need
more, much more. So, let’s start, as always, slowly and from the beginning.

… Leibniz speaks of a “relation between L and M, without consideration as to
which member is preceding or succeeding, which is subject or object”… It must
be said, therefore, that the relation is something outside of subjects; but since it is
neither subject nor accidents it must be something purely ideal, which is neverthe-
less well worthy of examination.2

4.2 RELATIONS

In all the branches of mathematics, and at all levels, one encounters different
varieties of relations, usually without thinking about their general features, as well
as the properties they have in common and, in particular, their “set-theoretical”
nature. Since those features appear frequently, it is useful to study them on their
own. On the other hand, functions that often look quite different from relations
turn out to be nothing more than a particular kind of a relation too.

Definition 4.1 Let X and Y be any two sets. We say that a (binary) relation R
between sets X and Y (or a relation from set X to set Y) is a subset of X × Y .

Let x ∈ X and y ∈ Y . We say that the ordered pair (x, y) ∈ X × Y , or simply
(x, y) ∈ R, indicate that x is somehow related to y, and we write

xRy iff (x, y) ∈ R ⊆ X × Y

By ordered pair (x, y), as you would recall, we mean a pair in which we distin-
guish the “first” element, x, and the “second,” y, so that

(x, y) = (w, z) iff x = w and y = z

Often we say that the domain (R) of a relation R from X to Y is a set of all first
elements x ∈ X of the ordered pairs, that is

(R) = {x ∈ X|∃y ∈ Y s.t. xRy}

2Weyl, H., Philosophy of Mathematics and Natural Science, Princeton University Press, 1949, 2009.
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and likewise, the range (R) of R is a set of all second elements y ∈ Y of the
ordered pairs, that is

(R) = {y ∈ Y|∃x ∈ X s.t. xRy}

Equivalently we have,

Definition 4.2 A relation on sets X and Y (or a relation between sets X and Y)
is a subset R of X × Y , and we say that x ∈ X and y ∈ Y are related if (x, y) ∈ R.

If X = Y , then we speak of a relation R ⊆ X × X on X.
Of course, if x and y are not related, we write x�Ry.

Example 4.1 Let “≤” be the usual ordering on Q. Then “≤” is a relation on Q.
For instance, we say that (1∕2)R2 since 1∕2 ≤ 2. ◾

Example 4.2

(i) Less than (<), equals (=), and divides (∣) can be defined as relations on N
or Z.

(ii) For instance, we can define a relation R on Z by setting

R = {(x, y)|x, y ∈ Z, and x < y}

(iii) In Chapter 1 we encountered relations such as: subset “⊆,” intersection
“
⋂

”, each of them creating a new set according to particular rules. For
instance, “⊆” can be a relation on the power set (A) of a set A.

(iv) Suppose you are considering a set of all the lines in the Euclidean plane,3

then a geometric relations parallel “∥,” or perpendicular “⟂” is another
example of two relations on the set of all lines in the plane.

◾

Example/Exercise 4.3 Convince yourself that “⊆” is a relation on any collec-
tion of sets.

Example 4.4 Consider R ⊆ N × N, such that R = {x, y ∈ N|x ≤ y}.
In other words, we say that xRy if ∀x, y ∈ N, x ≤ y. Considering x and y as

coordinates of the points on the Euclidean XY plane, we obtain a collection of
points above the line y = x. For instance, 1R3, 3R7, and so on, but 5�R3, 8�R6,
and so on (see Figure 4.1).

3If you are unfamiliar with the term “Euclidean plane” think of it, for the time being, as just an “ordinary”
plane without boundaries.
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4

4

3

3

2

2

1

1

Figure 4.1 xRy iff x ≤ y

Example 4.5 Define a binary relation R from R to R as follows:

(x, y) ∈ R iff x2 + y2 = 1

It is easy to see that (0, 1) ∈ R and (0, 0) ∉ R, hence 0R1 and 0�R0. ◾

Example 4.6 Some relations can be easily “visualized,” as illustrated below:

(i) If a binary relation on R is defined as follows:

(x, y) ∈ R iff x2 + y2 < 25

then we can sketch it as in Figure 4.2(i).
(ii) If a binary relation on R is defined as follows:

(x, y) ∈ R iff x2 − 4y2 ≥ 9

then we can sketch it as in Figure 4.2(ii).
(iii) If a binary relation on R is defined as follows

(x, y) ∈ R iff y > x3

then we can sketch it as in Figure 4.2(iii). ◾
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5−5

Y

X

Y

X X

Y

(i) (ii) (iii)

Figure 4.2

Here is another noteworthy example.

Example 4.74 Let A and B be any two sets. A set R = ∅ ⊆ A × B is the relation
of chaos! Nothing is related to anything. A set R = A × B is the relation of bore-
dom! Everything is related to everything else and (on this abstract level) there is
nothing more to be said. ◾

Definition 4.3

A relation on a set X is reflexive iff ∀x ∈ X, xRx.
A relation on a set X is symmetric iff ∀ x, y ∈ X, if xRy then yRx.
A relation on a set X is transitive iff ∀ x, y, z ∈ X, if xRy and yRz, then

xRz.
A relation on a set X is antisymmetric iff ∀ x, y ∈ X, x R y and yRx then

x = y.

Example 4.8 Consider the following relations on the set X = {1, 2, 3, 4}:

(i) R = {(1, 1), (1, 2), (2, 3), (1, 3), (4, 4)}
(ii) S = {(1, 1), (1, 2), (2, 1), (2, 2)}

Determine which of the relations are reflexive, and/or symmetric, and/or anti-
symmetric, and/or transitive.

Solution R is not reflexive since (2, 2), (3, 3) ∉ R. R is not symmetric since
(1, 2), (1, 3), (2, 3) ∈ R but (2, 1), (3, 1), (3, 2) ∉ R. R is transitive and antisym-
metric.

4Sentilles, D., A Bridge to Advanced Mathematics, The Williams &Wilkins Company, Baltimore, 1975
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S is symmetric but not antisymmetric since, for instance, (1, 2), (2, 1) ∈ S but
1 ≠ 2. S is reflexive and transitive. ◾

Definition 4.4 We say that a relation R satisfies trichotomy on a set X iff for
every x, y ∈ X exactly one of the following three possibilities hold:

(i) (x, y) ∈ R

(ii) x = y, or
(iii) (y, x) ∈ R

Definition 4.5 A relation R on a set X is said to be a partial order or partial
ordering iff R is reflexive, transitive, and antisymmetric. A set X, together with
a partial ordering R, is called a partially ordered set or poset.

Definition 4.6 A partial ordering R is called a linear order or total order on
X if ∀ x, y ∈ X either xRy or yRx.

Example 4.9 A relation “⊆” on a set is a partial ordering of any collection of
sets since

(i) A ⊆ A for any set A.
(ii) If A ⊆ B and B ⊆ A then A = B.

(iii) If A ⊆ B and B ⊆ C then A ⊆ C.

Similarly, you can convince yourself that the relation “≤” on R is also a partial
ordering. ◾

Example 4.10 Consider a power set of a set A = {a, b, c}, with a relation “⊆”
on it. Figure 4.3 shows a partial ordering on (A).

Example 4.11 Consider a set X = {2, 3, 1, 4, 12, 16}. Most people would con-
sider it more natural to write this set as X = {1, 2, 3, 4, 12, 16}. Such an arrange-
ment puts the elements of the set in a “natural” order, and, if we choose as a
relation R on X to be “≤,” we immediately recognize a partial ordering on our
set. However, there is more. Since all the elements of X are natural numbers,
∀ x, y ∈ X, x < y or y < x, and we have a total ordering on X (see Figure 4.4).

On the other hand, if we consider a relation R to be “|” (as in “x divides y”)
we have a partial ordering on X ∶ 2|4 but 2��|3, and so on. Figure 4.5 illustrates
this explicitly. ◾
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{a} {c}

{b,c}

{b}

{a,b}

{a,b,c}

{a,c}

ø

Figure 4.3

1 2 3 4 12 16

Figure 4.4

• 12

16

• 4

• 2 • 3

• 1

Figure 4.5
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Example 4.12 Consider the relation R on N defined as follows: xRy iff
x ≤ y and x + y is even. Let’s show that such defined R is a partial order, that is,
let’s show that R is reflexive, transitive, and antisymmetric.
Reflexivity:

x + x = 2x is even and x ≤ x ∀ x ∈ N

Transitivity:

Suppose xRy and yRz. Then x + y is even and x ≤ y, and also y + z is even
and y ≤ z. Now, x + z = (x + y) + (y + z) + (−2y) is a sum of three even numbers,
thus an even number. Finally, since “≤” is transitive on N, it follows that x ≤ z.

Antisymmetry:

Suppose xRy and yRx. Then, x + y x is even and x ≤ y, and also y ≤ x. But “≤”
is antisymmetric on N, and thus x = y.

Therefore, R is a partial order. ◾

Because of a particular importance of partial ordering of a set in general, which
doesn’t have to be usual “≤,” we use the symbol “≼” and (for the lack of better
terminology) read x ≼ y as: “x is less or equal to y.” Consequently, we have

Definition 4.7 A partially ordered set is a set X equipped with a relation “≼”,
which satisfies for all x, y ∈ X the following:

(i) reflexivity ∶ x ≼ x

(ii) transitivity: if x ≼ y and y ≼ z, then x ≼ z

(iii) antisymmetry: if x ≼ y and y ≼ x, then x = y

Definition 4.8

(i) An element xM in a partially ordered set X is called a maximal element iff
for all x ∈ X if xM ≼ x then xM = x.

(ii) An element xm in a partially ordered set X is called a minimal element iff
for all x ∈ X if x ≼ xm then xm = x.

Definition 4.9 Let “≼” be a partial order on a set X, then

(i) For any subset S ⊆ X, an element u ∈ X is said to be an upper bound of
S iff s ≼ u,∀ s ∈ S.
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(ii) For any subset S ⊆ X, an element l ∈ X is said to be a lower bound of
S iff l ≼ s,∀ s ∈ S.

(iii) A subset S ⊆ X is said to be bounded iff S has an upper bound and a lower
bound.

(iv) An element x ∈ X is least upper bound of S ⊆ X, (l.u.b. of S), or supre-
mum of S, sup(S), iff x is an upper bound of S, and for every upper bound
u of S, x ≼ u.

(v) An element x ∈ X is a greatest lower bound of S ⊆ X, (g.l.b. of S), or
infimum of S, inf(S), iff for every lower bound l of S, l ≼ x.

Example 4.13 Consider sets N,Z,Q, or R with partial order (linear order) “≤.”
There is no maximal element for either of them. On the other hand, if we consider,
say, a set X = {x ∈ Q|x2 < 2} then we note that there are many upper bounds but
no l.u.b. in Q. However, the set X has an l.u.b. in R, namely,

√
2. Similarly, the

set (x, y) ⊆ R has neither a minimal nor a maximal element but does have l.u.b.
and g.l.b. in R, namely, x and y, respectively. ◾

Definition 4.10 We say that R is an ordering relation on a set X iff R is
transitive an satisfies trichotomy on X.

Definition 4.11 Given a relation R from set X to set Y , we say that R−1 is an
inverse relation from Y to X and we write yR−1x iff xRy ∀ x ∈ X,∀ y ∈ Y . In
other words, if R is relation from X to Y , then the inverse of R is

R−1 = {(y, x)|(x, y) ∈ R}

For instance, if you think of a relation R on Z to be “x divides y”, then the inverse
relation R−1 would be “y is a multiple of x.”

Of course, if R is a relation, then (R−1)−1 = R.

Example 4.14 Let X = {1, 2, 3} and Y = {a, b, c}. If the relation
R = {(1, b), (1, c), (3, b)} then R−1 = {(b, 1), (c, 1), (b, 3)} (see Figure 4.6).

Representing relations visually can be quite messy sometimes, especially if
the sets in question, although finite, are large. It can be more advantageous to
portray the relations on those sets by the so-called directed graphs or digraphs.

For instance, a relation

R = {(a, b), (b, b), (b, d), (c, b), (c, d), (d, a), (d, c)}

on a rather small set X = {a, b, c, d} can be pictured in Figure 4.7.
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2

1

3

X
Y

R−1

2

1

3

X

a

b

c

a

b

c

YR

Figure 4.6

XX

aa

bb

cc

dd

Figure 4.7

However, we can represent it more transparently the following way
(Figure 4.8): ◾
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a b

c d

Figure 4.8

Example 4.15 Consider a set X = {∅, {1}, {3}, {1, 2}} with a relation R to be
“⊆.” Then, digraphs of R and R−1 are shown in Figure 4.9. ◾

{1} {1,2}

{3}

{1} {1,2}

{3}

R
R−1

{ø} {ø}

Figure 4.9

Example 4.16 Let R = “divide,” S =“≥,” and T = {(x, y) iff x + y > 7} be
three relations on a set X = {2, 3, 6}. The corresponding digraphs are given in
Figure 4.10. ◾

6

2 3

6

2 3

R

2 3

6

S T

Figure 4.10
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Example/Exercise 4.17 Let X = {1, 2, 3, 4} and let R on X be given by the
following digraph (Figure 4.11).

1 2

34

Figure 4.11

What can be said about the relation R? Is it symmetric, antisymmetric,
transitive?

Example/Exercise 4.18 Let R be a relation from R to R defined by

for all (x, y) ∈ R × R xRy iff y = 2 ⋅ |x|
Then, R = {(x, y)|y = 2 ⋅ |x|} and R−1 = {(y, x)|y = 2 ⋅ |x|} and you can certainly
recognize the respective graphs (Figure 4.12):

Figure 4.12
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What can be said about the above relation R – symmetric, antisymmetric,
transitive, and so on?

Theorem 4.1 Let R be a relation from X to Y . Then

(i) (R−1) = (R)
(ii) (R−1) = (R)

Proof (i) If R is a relation from X to Y , then R−1 is a relation from Y to X. So,
let’s assume that

(y, x) ∈ R−1

that is, (y, x) ∈ Y × X. But, since R is a relation from X to Y ,

(x, y) ∈ R ⊆ X × Y

where x ∈ X and y ∈ Y .
Thus,

(y, x) ∈ Y × X

and therefore
R−1 ⊆ Y × X

This furthermore means that

y ∈ (R−1) iff ∃x ∈ X s.t. (y, x) ∈ R−1

But,
(y, x) ∈ R−1 iff ∃x ∈ X s.t. (x, y) ∈ R

which, in turn, is true iff y ∈ (R).
Proof for (ii) is similar. ◾

Definition 4.12 Let X be any nonempty set. We say that IX is the identity
relation on X if

IX = {(x, x)|x ∈ X}

Obviously, (IX) = X and (IX) = X, ∀ x ∈ X. The digraph is shown in
Figure 4.13.
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X

Figure 4.13

Example 4.19 Let X = {1, 2, 3}. Then IX = {(1, 1), (2, 2), (3, 3)}. ◾

Having established the concept of a relation on a given set, we are now in the
position to classify objects that are in some way “alike.”

Definition 4.13 A relation R on a nonempty set X is an equivalence relation
iff R is reflexive, symmetric and transitive. In the case that there is an equivalence
relation on X, we write x ∼ y for all x, y ∈ X. In other words, R is an equivalence
relation on a set X if:

(i) x ∼ x, ∀ x ∈ X.
(ii) If x ∼ y then y ∼ x,∀ x, y ∈ X.

(iii) If x ∼ y and y ∼ z, then x ∼ z,∀ x, y, z ∈ X.

Example 4.20 Let’s verify that a relation “has the same surname as” is an
equivalence relation. Indeed, let X be the set of all humans. Then ∀ x, y, z ∈ X
it is true that:

(i) x has the same surname as x, that is x ∼ x.
(ii) If x has the same surname as y, then y has the same surname as x, if x ∼ y

then y ∼ x.
(iii) If x has the same surname as y, and y has the same surname as z then x has

the same surname as z, that is x ∼ y and y ∼ z then x ∼ z.

Thus, “has the same surname as” is an equivalence relation. ◾

Example/Exercise 4.21 Let R be a relation on R defined by: xRy iff x2 = y2.
Prove that R is an equivalence relation.

Example 4.22 Let T be a set of all triangles in a plane, and let s, t ∈ T be two
triangles from T . We define the equivalence relation s ∼ t, and say that s and t are
similar, if s and t have the same corresponding angles. ◾

Example 4.23 The relation “≤” defined on N is reflexive and transitive but not
symmetric, thus it is not the equivalence relation. ◾
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Example/Exercise 4.24 You have surely anticipated that equality is the most
basic equivalence relation. Simply put a ∼ b iff a = b. Show that such defined
relation is indeed an equivalence relation.

Example/Exercise 4.25 Define aRb iff for some given n ≥ 2, a–b is divisible
by n, where a, b, n ∈ Z. Recall, that saying that a − b is divisible by n, or that
n divides a − b, and writing n|a − b, means that there exists c ∈ Z, such that
a − b = nc. Show that such defined relation is indeed an equivalence relation.

If you had at least some high school trigonometry, you may appreciate

Example 4.26 Let’s define xRy for all x, y ∈ R, for which sin2x + cos2y = 1.
Is such defined relation R an equivalence relation?

Solution First recall the basic trigonometric identity

sin2x + cos2x = 1,∀ x ∈ R (*)

Thus, R is obviously reflective, that is, xRx holds.
Let’s check the symmetry. Suppose xRy, that is

sin2x + cos2y = 1

Then from (*) it follows that

cos2y = cos2x (4.1)

and also
sin2y = sin2x (4.2)

Substituting (4.1) and (4.2) into (*) we get

sin2x + cos2y = 1

and symmetry xRy = yRx is confirmed.
For transitivity, let’s take x, y, z ∈ R and suppose that xRy and yRz. From the

definition of our relation, it follows that

sin2x + cos2y = 1 (4.3)

and
sin2y + sin2z = 1 (4.4)

Using the same argument to obtain (4.1) and (4.2), we get

cos2y = cos2z
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Substituting into (4.3), we get

sin2x + cos2z = 1

that is, xRz. Hence, we have established that the relation R is indeed an
equivalence relation. ◾

Example 4.27 Let R be a relation on N+ × N+ defined as follows:

(a, b)R(c, d) iff ad = bc, a, b, c, d ∈ N+

Show that R is an equivalence relation.

Solution We have to show (i) reflexivity, (ii) symmetry, and (iii) transitivity
of R.

(i) (a, b)R(a, b) since ab = ba, thus R is reflexive.
(ii) Suppose (a, b) = (c, d). Then ad = bc. But cb = da and therefore (c, d) =

(a, b), so we have proved symmetry.
(iii) Suppose (a, b)R(c, d) and (c, d)R(e, f ). Then

ad = bc and cf = de

Let’s multiply the corresponding terms of the equations to get

ad ⋅ cf = bc ⋅ de

Dividing both sides by c and d we get

af = be

Thus, (a, b)R(e, f ), that is, R is also a transitive relation. We conclude that R is
an equivalence relation. ◾

Example/Exercise 4.28 Let R be a relation on Z × Z defined as follows:

(a, b)R(c, d) iff a + b = c + d, a, b, c, d ∈ Z

Show that R is an equivalence relation.

Example 4.29 Let R be a relation on Z defined by

xRy iff x + 3y = 2k, ∀ x, y, k ∈ Z

Show that such defined R is an equivalence relation.



�

� �

�

RELATIONS 263

Solution
(i) xRx = x + 3x = 4x = 2(2x) ∈ Z. Thus, R is reflexive.

(ii) Suppose xRy. Then, x + 3y = 2k for some k ∈ Z. Therefore, x = 2k − 3y
and thus, y + 3x = y + 3(2k − 3y) = y + 6k − 9y = 6k − 8y = 2
(3k − 4y) ∈ Z. Hence, xRy = yRx, that is, we have proved symmetry.

(iii) Suppose xRy and yRz. Then,

x + 3y = 2k, and y + 3z = 2l for some k, l ∈ Z

Consider

(x + 3y) + (y + 3z) = 2k + 2l

= x + 4y + 3z

Therefore,

x + 3z = 2k + 2l − 4z

= 2(k + l − 2z) ∈ Z

Thus, xRz too! We have established that R is reflexive, symmetric, and transitive,
thus an equivalence relation. ◾

Definition 4.14 Let m and n be any two integers, and let d be a positive integer.
We say that m is congruent to n modulo d iff d|m − n, and we write

m ≡ n(mod d)

Example 4.30

(i) 12 is congruent to 7 modulo 5, that is, 12 ≡ 7(mod 5), since

12 − 7 = 5 = 5 ⋅ 1, that is 5|5
(ii) Similarly, 6 is not congruent to (−8) modulo 4, since 6− (−8)= 14, and

4 ∤ 4. ◾

Theorem 4.2 For every n ∈ N, congruence (mod d) is an equivalence relation
on Z.

Proof Let d ∈ N, then m ≡ n(mod d) iff m, n ∈ Z and d|m − n. We need to
prove (i) reflexivity, (ii) symmetry, and (iii) transitivity:

(i) Take any m ∈ Z,m − m = 0 and any d divides 0, since d ⋅ 0 = 0. Thus, we
have proved that m ≡ m(mod d).
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(ii) Let m, n ∈ Z, and suppose m ≡ n(mod d). That implies that d|m − n. In
other words,

∃x ∈ Z, s.t. d ⋅ x = m − n

We need to show n ≡ m(mod d), that is, we need to show that d|n − m. But

n − m = −(m − n) = −d ⋅ x = d ⋅ (−x)

Since (−x) ∈ Z, d divides n − m, thus it follows n ≡ m(mod d).
(iii) Let m, n, p ∈ Z, and suppose m ≡ n(mod d) and n ≡ p(mod d). That

means that d|m − n and d|n − p. Furthermore, that means ∃x, y ∈ Z, s.t.

d ⋅ x = m − n and d ⋅ y = n − p

We need to show that d|m − p, which would imply that m ≡ p(mod d). The
following obviously holds:

m − p = (m − n) + (n − p) = d ⋅ x + d ⋅ y = d(x + y)

Since x, y ∈ Z, x + y ∈ Z too. Thus, d|m − p.

It follows that m ≡ p(mod d) indeed. Thus, we have proved that congruence
(mod d) is an equivalence relation. ◾

Theorem 4.3 Let a, b, c, d ∈ Z, and let n ∈ N. If a ≡ c(mod n) and
b ≡ d(mod n), then

(i) a + b ≡ (c + d)(mod n)
(ii) a − b ≡ (c –d)(mod n)

(iii) ab ≡ cd(mod n)

Proof

(i) a ≡ c(mod n) means that there exists x ∈ Z, s.t. a − c = nx. Also,
b ≡ d(mod n) means that there exists y ∈ Z, s.t. b − d = ny.

Consider

a − c + b − d = (a + b) − (c + d) = nx + ny = n(x + y)

Since, x, y ∈ Z, (x + y) ∈ Z, too. Hence, n ∣ (a + b) − (c + d). Therefore

a + b ≡ (c + d)(mod n)
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(ii) Similar to (i).
(iii) a ≡ c(mod n) means that there exists x ∈ Z, s.t. a − c = nx. Also,

b ≡ d(mod n) means that there exists y ∈ Z, s.t. b − d = ny.
Consider

ab − cd = ab − cd + bc − bc = b(a − c) + c(b − d)

= b ⋅ nx + c ⋅ ny

= n(bx + cy)

Hence, n|ab − cd and, therefore, ab ≡ cd(mod n), what was to be shown. ◾

Before we bring in another concept we need to recall the definition of a par-
tition (Definition 1.19): A collection P = {Xi} of nonempty, mutually disjoint
subsets of a set X whose union is equal to X, such that ∀ x ∈ X, x, is an element
of some Xi, that is

∀ x, x ∈ ∪
i
Xi = X and ∩

i
Xi = ∅

is said to be a partition of the set X (see Figure 4.14).

X1
X2

X3

X4

X5

X6

X

Figure 4.14 Partition ∪
i
Xi = X

Example 4.31 Consider a set X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, and the following
collection of subsets:
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(i) P1 =
{

X1 = {1, 3, 5} ,X2 = {2, 3, 7},X3 = {4, 6, 9}
}

(ii) P2 =
{

X1 = {1, 3, 5} ,X2 = {2, 4, 6, 7},X3 = {8, 9},X4 = {10}
}

Observe that P1 is not a partition since X1 ∩ X2 ≠ ∅, and 8 and 10 are not
elements of any of the subsets. P2, on the other hand, is a partition of X. ◾

Definition 4.15 A relation R on a set X is said to be a binary relation induced
by the partition if for all x, y ∈ X, xRy iff there is a subset Xi of the partition,
such that x, y ∈ Xi.

Example 4.32 Let X = {0, 1, 2, 3}, and let X1 = {0, 2},X2 = {1},X3 = { 3}.
Obviously, X1,X2,X3 form a partition of X. Does this partition induce a relation

on X?

Solution Since a binary relation induced by this partition means:

∀ x, y ∈ X, xRy iff x, y Xi

we get the following:

0 R 0 since both 0 and 0 are elements of X1

0 R 2 since both 0 and 2 are elements of X1

2 R 0 since both 2 and 0 are elements of X1

2 R 2 since both 2 and 2 are elements of X1

Similarly,

3 R 3 since both 3 and 3 are elements of X2

1 R 1 since both 1 and 1 are elements of X2

Hence,
R = {(0, 0), (0, 2), (2, 0), (1, 1), (2, 2), (3, 3)} ◾

Example 4.33 Consider the following four sets:

A0 = {n|n = 4k, k ∈ Z}

A1 = {m|m = 4k + 1, k ∈ Z}

A2 = {p|p = 4k + 2, k ∈ Z}

A3 = {r|r = 4k + 3, k ∈ Z}

Note that the set A = {A0,A1,A2,A3} is a partition of Z. Next, observe that x, y ∈
Z are in the some set Ai ⊆ A iff x − y is a multiple of 4. Thus, the partition A
induces an equivalence relation of congruence modulo 4. ◾



�

� �

�

RELATIONS 267

Definition 4.16 Let X be a set and R an equivalence relation on X. If x ∈ X, we
say that C(x) is an equivalence class of x (often also denoted by [x]) if

C (x) = [x] = {y ∈ X|yRx} = {y ∈ X|y ∼ x}

The following theorem lists the properties of equivalence classes.

Theorem 4.4

(i) x ∈ [x]
(ii) If xRy, then [x] = [y]

(iii) If x�Ry, then [x] ∩ [y] = ∅
(iv) ∪x∈X[x] = X

Proof

(i) xRx therefore x ∈ [x].
(ii) xRy ⇒ yRx therefore [x] = [y].

(iii) Suppose z ∈ [x] ∩ [y], that is, z ∈ [x] and z ∈ [y], which means that zRx
and zRy.

Hence,
[x] ∩ [y] ≠ ∅ iff [x] = [y]

(iv) Proof is left as an exercise for the reader. ◾

Definition 4.17 A collection of all equivalence classes on X, denoted by X∕R,
is said to be the quotient set of X by R, that is

X∕R = {C(x) = [x]|x ∈ X}

Theorem 4.5 Let R be an equivalence relation on a set X. Then the quotient set
X∕R is a partition of X.

Proof See the previous theorem. ◾

Example 4.34 Consider the set Z. We say that x, y ∈ Z have the same parity
if both are even, or both are odd. Suppose we endow the set Z with a relation
R =“has the same parity as.” Then R is an equivalence relation. Observe that this
relation induces the partition of Z. Indeed, any element of Z is either an element
of Zeven or Zodd, but never an element of both, that is, Zeven ∩ Zodd = ∅. On the
other hand, Zeven ∪ Zodd = Z, and thus we have an obvious partition of Z. ◾
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Example 4.35 Let X = {1, 2, 3, 4} be a set with a relation R given by

R = {(1, 1), (2, 2), (1, 3), (3, 1), (3, 3), (4, 4)}

(i) Show that R is an equivalence relation.
(ii) Find [1], [2], [3], [4].

(iii) Convince yourself that X∕R is a partition of X.

Solution For more transparency, let’s first construct the digraph of the relation
(Figure 4.15):

1 2

34

Figure 4.15

One can immediately see that R is reflexive, symmetric, and transitive,
hence an equivalence relation. Also, observe that [1] = [3] = {1, 3}; [2] = {2};
[4] = {4}. Finally, without further ado, we identify X∕R = {[1], [2], [3]} as a
partition of X. ◾

So, the connection between an equivalence relation and a partition is twofold.
Not only does an equivalence relation on a set X determine a partition of X, but
also the partition can be used to establish the equivalence relation.

Theorem 4.6 Let P(X) be a partition of a set X. Then there is an equivalence
relation R on X such that the quotient set X∕R is the same as a partition P(X).

Proof Let R be a relation on X defined by: xRy iff x, y ∈ Xi ⊆ X, that is, x
and y belong to the same subset of X. Let’s verify that such defined R is indeed
an equivalence relation. Take some x ∈ X. Since we have partitioned X, that is,
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X = ∪Xi and ∩Xi = ∅, x has to be an element of some Xi Obviously, xRx, that is,
R is reflexive. Next, let x, y ∈ X be such that xRy. By our definition x, y ∈ Xi, for
some Xi ⊆ X, and thus yRx, that is, R is symmetric. Finally, take x, y, z ∈ X, such
that xRy and yRz. xRy, of course, means that x, y ∈ Xi ⊆ X, and yRz means that
y, z ∈ Xj ⊆ X. But, since we partitioned our set X, Xi ∩ Xj = ∅, for i ≠ j, so the
element y can belong to only one subset of X, hence Xi = Xj. We conclude that
xRz, that is, our relation R is transitive too. We established that R is an equivalence
relation, and therefore, with such defined R, P(X) = X∕R. ◾

The converse is also true.

Theorem 4.7 Let R be an equivalence relation on a set X. Then the quotient set
X∕R is a partition of X.

Example 4.36 Let relation R on Z be congruence modulo 3. Find the equiv-
alence classes with respect to R.

Solution Since the relation R is defined as

aRx iff a ≡ x(mod 3)

that is,
3 | a − x,∀ a, x ∈ Z

we have

[a] = {x ∈ Z | 3 | x − a}

= {x ∈ Z | x − a = 3k, k ∈ Z}

= {x ∈ Z | x = 3k + a, k ∈ Z}

Therefore,

[0] = {x ∈ Z | x = 3k + 0} = {… ,−9,−6,−3, 0, 3, 6, 9, …}

[1] = {x ∈ Z | x = 3 k + 1} = {… ,−8,−5,−2, 1, 4, 7, …}

[2] = {x ∈ Z | x = 3k + 2} = {… ,−7,−4,−1, 2, 5, 8, …}

Notice that [0] ∪ [1] ∪ [2] = Z and [0] ∩ [1] ∩ [2] = ∅. Thus Z∕R is a partition
of Z. ◾

Definition 4.18 Let R be a relation from X to Y , and let S be a relation from Y
to Z. We say that the composition of R and S is

R∘S = {(x, z) | ∃ y ∈ Y such that (x, y) ∈ R and (y, z) ∈ S}

= x(R∘S)z
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Example 4.37 Let X = {1, 2, 3, 4, 5}, Y = {a, b, c, c, d}, and
Z = {x, y, z,w}, and let

R = {(1, a), (2, d), (3, a), (3, b), (3, d) }

S = {(b, x), (b, z), (c, y), (d, z) }

Find R∘S.

Solution Let’s first sketch a diagram of the said relations (Figure 4.16):

3

4

5

2

1
a x

y

z

w

ZYX

b

c

d

Figure 4.16

Now it’s easy to see that, for example, 2 is mapped to d, which, in turn, is
mapped to z, so we write

2Rd and dSz

In other words,
2(R∘S)z

Similarly, we observe that 3(R∘S)x, and 3(R∘S)z. On the other hand, 1 “goes” to
a, but a does not “go further,” that is, 1Ra but a is not related to any element of Z.
We evaluate the “paths” of all elements in the same way and conclude that our
composition is

R∘S = {(2, z), (3, x), (3, z)} ◾

You should be able to convince yourself easily that in general R∘S ≠ S∘R.

Example/Exercise 4.38 Let R = {(x, y) ∈ R × R|y = x + 1} and
S = {(x, y) ∈ R × R|y = x2}.

Show that R∘S ≠ S∘R.
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Example 4.39 Let X = {1, 2, 3, 4} be a set with a relation

R = {(1, 1), (2, 2), (2, 3), (3, 2), (4, 2), (4, 4)}

Find R2.

Solution R2 = R∘R, thus ∀ (x, y) ∈ R,∃(y, z) ∈ R, s.t. (x, z) ∈ R2.
Thus,

R2 = {(1, 1), (2, 2), (2, 3), (3, 2), (3, 3), (4, 2), (4, 3), (4, 4)}

See Figures 4.17 and 4.18. ◾

2

4
3

1

Figure 4.17 R

2

4 3

1

Figure 4.18 R2.
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As expected, given a relation R on an nonempty set X, we define
R3 = R∘R∘R = R2∘R, R4 = R∘R∘R∘R = R3∘R, and so on. In general,

Rn = Rn−1∘R

Theorem 4.8 Let X, Y , Z,W be four nonempty sets, and let R be a relation from
X to Y , let S be a relation from Y to Z, and finally let T be a relation from Z to W.
Then,

(i) T∘(S∘R) = (T∘S)∘R
(ii) IY ∘R = R and R∘IX = R

(iii) (S∘R)−1 = R−1∘S−1

Proof

(i) Let (x,w) ∈ T∘(S∘R) for some x ∈ X and w ∈ W. Then,

T∘(S∘R) = (T∘S)∘R

iff (∃z ∈ Z)[(x, z) ∈ S∘R, and (z,w) ∈ T]
iff (∃z ∈ Z)[(∃y ∈ Y)((x, y) ∈ R, (y, z) ∈ S, and (z,w) ∈ T)]
iff (∃z ∈ Z)(∃y ∈ Y)[(x, y) ∈ R, (y, z) ∈ S, and (z,w) ∈ T]
iff (∃y ∈ Y)(∃z ∈ Z)[(x, y) ∈ R, (y, z) ∈ S, and (z,w) ∈ T]
iff (∃y ∈ Y)[(x, y) ∈ R, and (∃z ∈ Z)((y, z) ∈ S and (z,w) ∈ T)]
iff (∃y ∈ Y)[(x, y) ∈ R and (y,w) ∈ T∘S]
iff (x,w) ∈ (T∘S)∘R

(ii) Suppose (x, y) ∈ IY∘R. Since R is a relation from X to Y , there has to be
a z ∈ Y s.t. (x, z) ∈ R and (z, y) ∈ IY . But (z, y) ∈ IY means that z = y, and
thus

(x, z) = (x, y) ∈ R

Conversely, if (x, y) ∈ R then, certainly, (y, y) ∈ IY , thus (x, y) ∈ IY ∘R, and
so, indeed,

IY ∘R = R

Similarly, you can prove that R∘IX = R.
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(iii) Having established (i) and (ii) and keeping in mind Definitions 4.11 and
4.18, we argue as follows:

(S∘R)−1∘(S∘R) = I

On the other hand, consider

(R−1∘S−1)∘ (S∘R) = R−1(S−1∘S)R

= R−1R = I

Thus,
(S∘R)−1 = R−1∘S−1 ◾

Theorem 4.9 Let R be a relation on a set X. Then

(i) R is reflexive iff IX ⊆ R
(ii) R is symmetric iff R = R−1

(iii) R is transitive iff R∘R ⊆ R

Proof

(i) is obvious. Let’s prove.
(ii) Suppose, first, that R symmetric. Then (x, y) ∈ R implies that (y, x) ∈ R.

But that means that (x, y) ∈ R−1. Thus R = R−1. Next, suppose R = R−1.
Then (x, y) ∈ R implies (x, y) ∈ R−1, which furthermore implies that
(y, x) ∈ R. Hence, R is symmetric.

(iii) Suppose R is transitive. That means:

∀ x, y, z ∈ X if (x, y) ∈ R and (y, z) ∈ R, then (x, z) ∈ R

In other words,

R∘R = {(x, z)|∃y ∈ X s.t. (x, y) ∈ R and (y, z) ∈ R} ⊆ R

On the other hand, if R∘R ⊆ R then ∀ (x, z) ∈ R∘R, (x, z) ∈ R. But
(x, z) ∈ R∘R means ∃x, y ∈ R s.t. (x, y) ∈ R and (y, z) ∈ R and thus, R is
transitive. ◾

Nobody can explain what a function is, but this is what really matters in
mathematics.

H. Weyl 5

5H.Weyl, Philosophy of Mathematics and Natural Science, Princeton University Press, 1949, 2009.
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4.3 FUNCTIONS

Definition 4.19 Let X and Y be two sets. We say that a function f from set X
to set Y is a map that assigns to every element of X a unique element of Y. We
write this as follows:

f ∶ X → Y

See Figure 4.19.

X Y

f

Figure 4.19 Function

If X = Y we say that f is a function on X.
If there is no need to explicitly name the function, we abbreviate the notation

by writing
x → f (x)

It might be convenient sometimes to think of a function f as a “black box,” a
“machine,” into which one can feed any element x ∈ X in order to obtain f (x)
emerging at the other end.

x f f (x)

Often we simply say that f sends x to y = f (x) and we write

X
f
−−→ Y

Usually, the set X is called the domain of f, denoted (f ), and Y is called the
codomain of f or range of f, denoted (f ). However, this is not exactly correct.



�

� �

�

FUNCTIONS 275

There is a fine, but important, subtlety that has to be addressed here. As you
probably remember from your high school algebra, it may happen that when one

is constructing a map X
f
−−→ Y from an arbitrary set X to Y , a function f simply

does not “recognize” certain parts of X and cannot “carry” them over to Y . What
is meant by this is that once the function is “defined,” one should be careful to
eliminate the parts of X (a subset of X) that would make f (x) nonsensical. In other
words, the domain of the function is the largest subset of X for which the formula
describing f has a meaning. In a sense, the domain of the function is a part of
the definition of the function. Analogously, we talk about the range of f . Thus,
we have

Definition 4.20 If X and Y are two sets with a function f between them, we say
that the domain of f is a subset of X defined by

(f ) = {x ∈ X|∃y ∈ Y , s.t. (x, y) ∈ f } ⊆ X

Analogously, the range of f is a subset of Y defined by

(f ) = {y ∈ Y|∃x ∈ X s.t. (x, y) ∈ f } ⊆ Y

Of course, it is quite possible that (f ) = X and (f ) = Y , in which case we
simply say that f is a function from X to Y , and we don’t worry about excluding
any x ∈ X that would make our function nonsensical (Figure 4.20).

X Y

D( f ) R( f )

y = f (x)x

f

Figure 4.20 Domain and range of f

Let’s look at a few examples.

Example 4.40 If R is the set we are working with, and we are considering a
function f ∶ R → R defined by f (x) = x2 or, simply, by x → x2, indicating the
function that maps every real number to its square. We immediately see that the
function is well defined for every x ∈ R and we say that (f ) = R.
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On the other hand, if our function is defined by f (x) = 1∕x, we have to exclude
zero since the function “doesn’t know what to do” with zero – it is not defined at
zero. In this case, we say that

(f ) = {x ∈ R|x ≠ 0}

So, our map is
f ∶ R∖{0} → R

◾

Example 4.41 A function f ∶ R → R, defined by f (x) = ex, is well defined for
all x ∈ R. We say that (f ) = R. ◾

Example 4.42 Let X = [−1, 1] and Y = [−2, 3], and let
f = {(x, y)|y =√

x ∈ R}. In this case, it would be incorrect to write

f ∶ [−1, 1] → [−2, 3]

but it is correct to write
f ∶ [0, 1] → [−2, 3]

◾

Since the concept of a function is so important, some additional and equivalent
definitions may be useful.

Definition 4.19 ′ A function f from a set X to a set Y is a rule that assigns to
each x ∈ X a unique y = f (x) ∈ Y .

Definition 4.19 ′′ Let X and Y be two nonempty sets. A function f from set X
to set Y is a subset of X × Y , denoted

f = {(x, y)|x ∈ X, y ∈ Y}

meaning that
∀ x ∈ X, ∃! y ∈ Y s.t. (x, y) ∈ f

In other words, f is a relation with the property of being single-valued.
We say that y = f (x) is the value of f , or the image of f . The set R(f ) of all

values of f taken together is called the range of f ; x is said to be the preimage of
y under f .

Definition 4.19 ′′′ We say that an ordered triple of sets (X, Y; f ) is a function,
where X is a domain, Y is a codomain and f is a set of ordered pairs (x, y) such
that for every x ∈ X there is exactly one y ∈ Y .
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Definition 4.19 (iv) Let X and Y be any two sets. A function f , from set X to
set Y , is a nonempty relation f ⊆ X × Y such that if (x, y) ∈ f and (x, z) ∈ f , then
y = z.

Example 4.43 Let X = {a, b, c, d, e} and Y = {1, 2, 3}. Define a function from
X to Y that assigns a number to every letter (see Figure 4.21). One function, say,
f could be

f = {(a, 1), (b, 2), (c, 3), (d, 1), (e, 2)}

One simple and obvious way to represent this mapping could be

f =
⎛⎜⎜⎜⎝
a b c d e

↓ ↓ ↓ ↓ ↓

1 2 3 1 2

⎞⎟⎟⎟⎠

a

b

c

d

e

1

2

3

X

Y

f

Figure 4.21 The function f

Another function, g (see Figure 4.22), could be

g = {(a, 2), (b, 2), (c, 2), (d, 2), (e, 2)}

Obviously, the function g sends all letters to number 2, that is

g =
⎛⎜⎜⎝
a b c d e

↓ ↓ ↓ ↓ ↓

2 2 2 2 2

⎞⎟⎟⎠ ◾
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a

b

c

d

e

1

2

3

X

Y

g

Figure 4.22 Function g

Definition 4.21 A function f ∶ X → Y is said to be a real-valued function, if
(f ) ⊆ R, and simply, a real function if both X ⊆ R and Y ⊆ R.

Example 4.44 A function f ∶ R → R, defined by f (x) = x2, is an example of a
real function. It is worth noting that very often f (x) is (wrongly) referred to as a
function. Again, strictly speaking, f (x) is the image of a real number x under the
action of the function f . f itself is actually a set

f = {(x, x2)|x ∈ R} ◾

Example 4.45 Suppose we are given the following relation:

R = {(∅, {∅}), ({∅},∅), (∅,∅), ({∅}, {∅})}

Is this relation a function or not? Well, it is not! Observe that we have two cases
of one element related to two, that is, we have Figure 4.23.

ø

{ø}

ø

ø

{ø}

{ø}and

Figure 4.23

Thus, relation R is not a function. ◾
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Example 4.46 Consider a relation S = {(x, y) ∈ R × R|x2 + y2 = 1} with the
domain [−1, 1]. It is easy to see that S is not a function from [−1, 1] to R since,
for example, both ((

√
2∕2), (

√
2∕2)) and ((

√
2∕2),−(

√
2∕2)) are the elements of

S (see Figure 4.24). ◾

(√2/2 , √2/2)

(√2/2 , −√2/2)

Figure 4.24

Example 4.47 Let f ∶ R → R be a function defined by f (x) = x3,∀ x ∈ R.
That is, f assigns to every real number its cube. Then, for instance, f (2) = 8 and
f−1(8) = 2, f (−3) = −27 and f−1(−27) = −8, and so on. ◾

Example 4.48 Consider a relation R defined as follows:

R = {(x, y) ∈ R × R|y = x2 + 2x + 1}

The relation R is another example of a function from R to R. ◾

Another way to think about functions is to consider their graphs:

Definition 4.22 Let f ∶ X → Y be a function. We say that a relation

G(f ) = {(x, y)|x ∈ X, y = f (x) ∈ Y}

is the graph of f .

Example 4.49 Let f ∶ X → Y be a function from X = {1, 2, 3, 4} to
Y = {a, b, c, d} defined by f (1) = b, f (2) = d, f (3) = a, f (4) = b. Then
the graph of f is the following set:

G(f ) = {(1, b), (2, d), (3, a), (4, b)} ◾
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Definition 4.23 Consider a universal set  , and one of its subsets A ⊆  . We
say that the function 𝜒A ∶  → {0, 1} defined by

𝜒A(x) =

{
1 if x ∈ A

0 if x ∉ A

is a characteristic function of A.

Example 4.50 Suppose  = {a, b, c, d, e, f , g, h} and A = {a, d, e}, then the
characteristic function

𝜒A = {(a, 1), (b, 0), (c, 0), (d, 1), (e, 1), (f , 0), g(0), (h, 0)}
◾

Example 4.51 Let  = R and A = [1, 4). Then the graph of the characteristic
function 𝜒A is shown in Figure 4.25. ◾

1 2 3 4

1

2

Figure 4.25

Theorem 4.10 Let  be a universal set, and let A ⊆  and B ⊆  be two of
its subsets. Then

𝜒A∩B = 𝜒A𝜒B

Proof Let x ∈ A ∩ B, that is, x ∈ A and x ∈ B. Then, by definition of charac-
teristic function,

𝜒A∩B(x) = 1
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On the other hand,
𝜒A(x)𝜒B(x) = 1 ⋅ 1 = 1

Thus,
𝜒A∩B(x) = 𝜒A(x)𝜒B(x) = 1

Now, let’s take some y ∉ A ∩ B, which would, of course, imply

𝜒A∩B(y) = 0

On the other hand, if y ∉ A ∩ B then for sure y ∈ (A ∩ B)c = Ac ∪ Bc, and there-
fore y ∈ Ac or y ∈ Bc. This means that

𝜒A(y) = 0 or 𝜒B(y) = 0

In any case
𝜒A(y)𝜒B(y) = 0

So, we have
𝜒A∩B(y) = 𝜒A(y)𝜒B(y) = 0

Since 𝜒A∩B and 𝜒A𝜒B assign the same number to each element of  , we con-
clude that, indeed,

𝜒A∩B = 𝜒A𝜒B ◾

Here is another function you can often come across in many different branches
of mathematics.

Definition 4.24 A function d ∶ X × X → R is called a metric on a set X, if
∀ x, y, z ∈ X

(i) d(x, y) ≥ 0
(ii) d(x, y) = 0 iff x = y

(iii) d(x, y) = d(y, x)
(iv) d(x, y) + d(y, z) ≥ d(x, z)

Example 4.52 Let X = N. Then d(x, y) = |x − y|,∀ x, y, z ∈ N is a metric
on N.

Indeed, since x, y, z ∈ N

(i) ∣ x − y ∣≥ 0 ∀ x, y ∈ N
(ii) |x − y| = 0 iff x = y
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(iii) d(x, y) = |x − y| = |y − x| = d(y, x)
(iv) |x − y| + |y − z| ≥ |x − z| that is d(x, y) + d(y, z) ≥ d(x, z) ◾

Similarly,

Example 4.53 Let X = R × R. Then d((x, y), (z,w)) =
√
(x − z)2 + (y − w)2 is

a metric on R × R. ◾

Definition 4.25 Suppose we are given a function f ∶ X → Y , and A ⊆ X. We
say that a set

f [A] = {f (x)|x ∈ A}

is the image of A under the action of f .
Consequently, if B ⊆ Y we call

f −1[B] = {x ∈ X|f (x) ∈ B}

the preimage of B under the action of f (Figure 4.26).

A

x

f −1[B]
B

f [A]f (x)

f

X Y

Figure 4.26 Image and preimage

Example 4.54 Let X = {−1,−2,−3, 0, 1, 2, 3} and Y = {0, 1, 2, 4, 6, 9}, and let
f ∶ X → Y be a function from X to Y defined by

f (x) = x2

If A = {−1, 3} ⊆ X let’s find f (A) and f −1(B).
In this case, the analogue of Figure 4.26 is Figure 4.27.
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0

1

−1

3

−3

−2

2

0

1

9

2
4

6

X Y

A

f [A]

Bf −1[B]

f

Figure 4.27

So, we have:
f [A] = f [{−1, 3}] = {1, 9}

and

f −1[B] = f−1[{4, 6}] = {−2, 2}

f −1[ { 6}] = ∅

Observe, also, that
f (X) = {0, 1, 4, 9 }

and that f−1 is not a function. ◾

Example/Exercise 4.55 Consider a function f ∶ N × N → N defined by

f (m, n) = 2m3n

and find f (A × B) if A = {1, 2, 3} and B = {3, 4}.

Example 4.56 Consider again a function f ∶ R → R defined by f (x) = x2,
and this time let A = [ 1, 2]. Find f [A].

Solution First, let’s sketch the graph of the function f and the set A
(Figure 4.28).
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1

4

1 2 3

Figure 4.28 A = [1, 2]; f [A] = [1, 4]

Now it’s easy to see from the figure that f [A] = f ([1, 2]) = [1, 4]. ◾

Definition 4.26 We say that i ∶ X → X is the identity function on a set X if

i(x) = x, ∀ x ∈ X

In other words, the function i sends every element from X into itself (Figure 4.29).

x

i

X

Figure 4.29 Identity function

Definition 4.27 Two functions f and g are said to be equal iff they have the
same domain and assign the same value to every member of their common
domain. Symbolically,

f = g ⇔ (f ) = (g) and f (x) = g(x), ∀ x ∈ (f )
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As a motivation for the introduction of some more important concepts, let’s
mention another simple and rather common sense principle with far and wide
applications. It is attributed to J.P.G.L. Dirichlet6 who called it Schubfach-
prinzip – a drawer/ box principle, or a Pigeonhole principle. Indeed, nothing
can be more obvious: If there are more pigeons than the pigeonholes, then there
must be at least one pigeonhole with at least two pigeons in it.

Before we proceed more formally, we need to recall some important concepts
from Chapter 1.

Definition 4.28 We say that a function f ∶ X → Y is one-to-one (or an injec-
tion) iff

∀ x1, x2 ∈ X if f (x1) = f (x2) then x1 = x2

Or, equivalently,

∀ x1, x2 ∈ X if x1 ≠ x2 then f (x1) ≠ f (x2)

In other words, a function is injective if no element of Y is the image of more
than one element of X (Figure 4.30).

a

b

c

d

1

2

3

4

56

7

8

f

X Y

Figure 4.30 Injection

(Sometimes injections are designated with the special arrow “↣,” that is, in
case the function is injection we write f ∶ X ↣ Y or even simpler X ↣ Y .)

6Johann Peter Gustav Lejeune Dirichlet (1805–1859), German mathematician.
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Definition 4.29 We say that a function f ∶ X → Y is onto (or a surjection) if
and only if

∀ y ∈ Y ,∃ x ∈ X, s.t. f (x) = y

(Sometimes we use “↠” to indicate surjection; see Figure 4.31.)

Definition 4.29′ If f ∶ X → Y is such that (f ) = Y , we say that f is surjection
from X to Y .

a

b

c

d

1

2

3

f

X Y

Figure 4.31 Surjection

Example 4.57 Let f ∶ R → R be a function defined by f (x) = ax + b. Show
that f is one-to-one.

Solution Suppose f (x1) = f (x2), that is, suppose

ax1 + b = ax1 + b

It follows immediately that x1 = x2. The converse is trivial, thus our function is
one-to-one.

◾

Example 4.58 Similarly, it is easy to see that f ∶ R → R defined by

f (x) = 2x
x + 1

is one-to-one. ◾
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Example 4.59 Let f ∶ R → R be defined by

f (x) = x
x2 + 1

Show that f is not one-to-one.

Solution Suppose that f is one-to-one. Consider

f (x1) =
x1

x1
2 + 1

and f (x2) =
x2

x2
2 + 1

If f is one-to-one then f (x1) = f (x2) should imply that x1 = x2. Well, let’s see:

f (x1) = f (x2) ⇒
x1

x1
2 + 1

=
x2

x2
2 + 1

⇒ x1(x2
2 + 1) = x2(x1

2 + 1)

⇒ x1x2
2 + x1 = x2x1

2 + x2

⇒ x1x2(x2 − x1) = x2 − x1

Therefore,⇒ x1x2 = 1

that is x1 = 1∕x2

Thus, assuming that f (x1) = f (x2) we have obtained x1 ≠ x2.
Now, take any two x1, x2 ∈ R, such that x1 ≠ x2 but x1x2 = 1. For instance,

x1 = 2 would imply x2 = 1∕2. Then, we would have

f (x1) =
2

4 + 1
= 2

5

f (x2) =
1
2

1
4
+ 1

= 2
5

Thus, with x1 ≠ x2, we have obtained f (x1) = f (x2).
We conclude that f is not one-to-one. ◾

Example 4.60 Let f ∶ [0,∞] → [0,∞] be a function defined by f (x) = x2.
Show that f is one-to-one.

Solution Suppose f (x) = f (y), x, y ∈ [0,∞] = (f ). Then, x2 = y2. But
x, y ∈ (f ) implies x ≥ 0 and y ≥ 0. Hence, we conclude that the only possible
consequence of x2 = y2 is x = y. The converse is obvious.
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Note, however, if the function f was a real function f ∶ R → R, defined as
before by f (x) = x2, we immediately recognize that it is not one-to-one since, for
instance,

f (2) = f (−2) = 4 ◾

Example 4.61 Consider a function f ∶ R → R defined as follows:

f (x) =

{
x2 + 2 if x ≥ 2

2 − x if x < 2

Observe that f is one-to-one. ◾

Example/Exercise 4.62 Determine whether the function f ∶ R → R defined by

f (x) =

{
2 − x if x ≤ 1

1
x

if x > 1

is one-to-one or not.

Example 4.63 Consider the function f ∶ R → R defined by f (x) = sin x.
Clearly, it is not one-to-one since, for instance, sin 0 = sin 2𝜋 = 0. ◾

Example 4.64 Show that a function f ∶ R → R defined by f (x) = 3x − 5
is onto.

Solution According to Definition 4.29, we need to show that every element
in the co-domain is an image of some element in the domain. So, let y ∈ R be
an arbitrary element from the co-domain, such that y = f (x) = 3x − 5. Then, x =
(y + 5)∕3 is also an element of R, and therefore

f (x) = f

(
y + 5

3

)
= 3

y + 5
3

− 5 = y

As there are no restrictions on y, we can see that our function is indeed onto.
◾

Note that, since a function is always onto its range, the question whether it is
a surjection depends on the choice of the co-domain.

Now we return to the pigeonhole principle.

Definition 4.30 (Pigeonhole principle) Let X and Y be two finite sets with
m and n elements, respectively, and let m > n. Then, there must be at least two
elements in X that have the same image in Y . That is, a function from X to Y has
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to send at least two elements from X to one element of Y . We say that X
f
−−→ Y

cannot be one-to-one.

More formally, we have

Theorem 4.11 Let n, r ∈ N such that n > r, and let Nn = {1, 2, 3,… , n|n ∈ N}.
Then a function f ∶ Nn → Nr is not one-to-one.

Equivalently, we could say

Theorem 4.12 For any n ∈ N, if f ∶ N → N is one-to-one function, then f
is onto.

Example 4.65 Suppose there are 13 students attending a math seminar. Then
at least 2 of them were born in the same month. ◾

Example 4.66 Let’s consider again the function f ∶ R → R defined by
f (x) = x2. Observe that f is not a surjection since, for instance, −1 is an element
of the codomain but not an element of the range of f . On the other hand, if we
take our function to be f ∶ R → R+, we claim that the surjection is recovered.
Indeed, as we know, the range is a subset of the co-domain, that is, (f ) ⊆ R+.
In order to show that (f ) = R+ we need to show that R+ ⊆ (f ) too. Well, if
we take any y ∈ R+, then

√
y ∈ R. Therefore, R+ ⊆ (f ). Thus, the proof. ◾

Definition 4.31 A function f ∶ X → Y that is both one-to-one and onto we
call a bijection or one-to-one correspondence between sets X and Y (some-
times we use “↣” to indicate bijection; see Figure 4.32).

a

b

c

d

1

2

3

4

f

X Y

Figure 4.32 Bijection
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As is evident from Figure 4.32, being one-to-one and onto means that every
element of X has one and only one image in Y; and vice versa, every element in
Y has one and only one preimage in X.

Example/Exercise 4.67 If X is a finite set, any surjective function f ∶ X → X
is necessarily injective. Why?

Example/Exercise 4.68 Show that the function from Example 4.64 is a bijec-
tion.

Example/Exercise 4.69

(i) Prove that f ∶ R → R defined by f (x) = 3x − 5 is a bijection.
(ii) Prove that f ∶ Z → Z defined by f (x) = 3x − 5 is not a bijection.

(iii) Prove that f ∶ R → R defined by f (x) = x4 − x2 is not a bijection.

Example/Exercise 4.70 Let X = Y = N. Define function f ∶ N → N as
follows:

f (n) = 2n, ∀ n ∈ N

Evidently, f (1) = 2, f (2) = 4, f (3) = 6, … . As you can see, our function is actu-
ally N → Neven. We have already encountered this map in Chapter 1 where we
have shown that |N| = |Neven|. I hope you can now easily show that N → Neven
is a bijection.

Example 4.71 Recall that two sets are said to be equivalent iff there is
a bijection between them. Let’s prove that for any a, b, c, d ∈ R, such that
a < b and c < d, the intervals (a, b) and (c, d) are equivalent.

Proof Consider a function f ∶ (a, b) → (c, d) defined by

f (x) = d − c
b − a

(x − a) + c, ∀ x ∈ (a, b)

It is fairly obvious that our function is a linear function passing through points
(a, c) and (b, d). Thus, it is easily verifiable that it is a bijection. At the same
time, the function is restricted to the domain (a, b) hence, (a, b) ∼ (c, d). ◾

Definition 4.32 Let f ∶ X → Y be a bijection. We say that

f −1 ∶ Y → X
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f

x = f −1(y)
y = f (x)

f −1
X Y

Figure 4.33 Inverse function

is the inverse function of f (Figure 4.33) if the following is true

f −1(y) = x ⇔ f (x) = y

In other words,

f −1 = {(y, x) ∈ Y × X|(x, y) ∈ f }

As we know by now, a relation f −1 does not necessarily have to be a function.
Indeed, suppose there is a function f ∶ X → Y , then the relation in Y × X

f −1 = {(y, x)|(x, y) ∈ X, s.t. y = f (x)}

is not a function in general.

Example 4.72 Consider a mapping

f ∶ [−1, 1] → [0, 1]

given by

f (x) = x2

Then, (−1, 1) ∈ f −1, but also (1, 1) ∈ f −1, which violates our definition of a
function. ◾

So, which functions have inverses and which do not? Intuitively, we feel
that if f ∶ X → Y is not injective, then there are at least two distinct elements
x1, x2 ∈ X with the same image y ∈ Y , and thus we would have x1 = f −1(y), but
also x2 = f −1(y), which immediately eliminates f−1 as a function (Figure 4.34).
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f

f

f −1

f −1

YX

x1

x2

y

Figure 4.34

Similarly, if f is not surjective, then there is an element y ∈ Y that is not an
image of any element x ∈ X, and so f −1(y) does not exist (Figure 4.35).

y

YX

Figure 4.35

Theorem 4.13 If f ∶ X → Y is a function, then f −1 ∶ Y → X is also a function
iff f is a bijection.

Proof Suppose f ∶ X → Y is a function. Then,

(i) For f to be onto: Suppose f−1 is a function. Then there exists a unique x ∈ X,
and y ∈ Y , such that f −1(y) = x. But that means that f (x) = y and thus, f
is onto.

(ii) For f to be one-to-one: Suppose y1, y2 ∈ Y such that

f−1(y1) = f −1(y2) = x
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We need to show that y1 = y2. Well, since f −1(y1) = x and f −1(y2) = x, it fol-
lows that

f (x) = y1 and f (x) = y2

which implies that y1 = y2. Thus, f is one-to-one.
So, f is onto and one-to-one, that is, f is a bijection. Hence, the assumption

that f−1 is a function led us to the conclusion that f ∶ X → Y is a bijection. The
converse is trivial. ◾

Example 4.73 Let X = {a, b, c, d} and Y = {1, 2, 3, 4}, and let f ∶ X → Y be a
function defined by Figure 4.36.

YX

f

a

b

c

d

1

2

3

4

Figure 4.36

Then, as we have shown before, f can be expressed explicitly in the form of
matrix

f =
(

1 2 3 4
c a b d

)
by which we mean

f =
⎛⎜⎜⎝
1
↓
c

2
↓
a

3
↓
b

4
↓
d

⎞⎟⎟⎠
with the obvious interpretation: 1 goes (is mapped) to c, 2 goes to a, and so on.
Evidently, f is a bijection and thus it has an inverse

f −1 =
(

c a b d
1 2 3 4

)
which, in turn, is also a bijection. ◾
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Definition 4.33 Let f ∶ X → Y be a function, and let A ⊆ X be a subset of X.
We say that f |A is the restriction of f to A if

f |A(a) = f (a), ∀ a ∈ A

Let’s look at some examples.

Example 4.74 Let X = {1, 2, 3, 4, 5}. Consider functions f ∶ X → Y , and
f |A ∶ A → Y defined by

f = {(1, 3), (2, 6), (3, 11), (4, 18), (5, 27)}

and
f |A = {(1, 3), (3, 11), (5, 27)}

respectively. Evidently f |A is a restriction of f to A = {1, 3, 5} ⊆ X. ◾

Example 4.75 Let f ∶ R → [0,∞) be a function defined by f (x) = x2. Then, as
we know and can easily convince ourselves by inspection, f is not an injection.
For instance,

f (2) = f (−2) = 4

And therefore, f does not have an inverse. How about if we restrict the domain
of f to (f ) = R∖(−∞, 0)? The restricted function

f |+ ∶ [0,∞) → [0,∞)

is now injective. Indeed: for any x, y ∈ [0,∞), f+(x) = f+(y), that is, x2 = y2 and
therefore, x2 − y2 = 0. It follows that (x − y)(x + y) = 0. Since, by restricting our
domain, we rule out the possibility of x = −y, we get that x = y and thus our
function is injective. It is evident that f |+ is also onto, hence f |+ is a bijection. ◾

Example 4.76 You most likely already know that a function sin ∶ R → R is
not one-to-one. However, suppose that we restrict our function to the domain
[−(𝜋∕2), 𝜋∕2], and call

sin |[− 𝜋

2
, 𝜋

2

] = Sin

we get the function

Sin ∶
[
−𝜋

2
,
𝜋

2

]
→ R

which is one-to-one and onto [−1, 1]. ◾
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Example/Exercise 4.77 Show that a restriction of one-to-one function is
one-to-one function.

Example/Exercise 4.78 Let f ∶ R → R+ be a function defined by

f (x) = (x − 2)4

How should f be restricted in order to be a bijection?

Theorem 4.14 Let f ∶ X → Y be an injection. Then, (f−1) = Y iff f is also
a surjection.

Proof Suppose f is onto. Then,

∀ y ∈ Y ,∃x ∈ X s.t. f (x) = y

Thus, (x, y) ∈ f and (y, x) ∈ f −1. But, since y ∈ (f −1), Y ⊆ (f −1). On the
other hand, by definition, (f −1) ⊆ Y . Therefore,

Y = (f −1)

Conversely, suppose Y = (f −1). Take some y ∈ Y . Then, certainly, y ∈ (f−1).
That means that ∃x ∈ X, such that (y, x) ∈ f −1, which in turn means that
(x, y) ∈ f . Therefore y = f (x), that is, f is a surjection. Hence the proof. ◾

As a simple exercise you should now be able to prove

Theorem 4.15 Let f ∶ X → Y be a bijection. Then f−1 ∶ Y → X is a bijec-
tion too.

(Hint: See Theorem 4.13.)

Definition 4.34 We say that h = g ∘ f ∶ X → Z is a composition of two func-
tions f and g, that is,

X
f
−−→ Y

g
−−→ Z

if
h(x) = (g ∘ f )(x) = g(f (x))

Definition 4.34′ Given two functions f ∶ X → Y and g ∶ Y → Z, we say that
g ∘ f is a composition of f and g (Figure 4.37) if

g ∘ f = {(x, z)|∃y ∈ Y , s.t. f (x) = y, and g(y) = z}
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g

y = f(x) z = g[ f(x)]

f

YX

x

Z

g o f

Figure 4.37 Composition of functions

Theorem 4.16 Suppose f ∶ X → Y and g ∶ Y → Z are two functions. Then,
g ∘ f is a function from X to Z.

Proof First, we show that there exists a function, h, that maps X to Z.
Since f is a function, there is x ∈ X and y ∈ Y , such that f (x) = y. Similarly,

because g is a function, there exists z ∈ Z, such that g(y) = z. But we have already
established the fact that y = f (x). Therefore,

g(f (x)) = (g ∘ f )(x) = h(x) = z

Now we show that h is unique.
Suppose ∃z1, z2 ∈ Z, such that for some x ∈ X, h(x) = z1, and h(x) = z2.

However, by definition of g ∘ f ,∃y1, y2 ∈ Y , such that f (x) = y1 and g(y1) = z1.
Similarly, f (x) = y2 and g(y2) = z2. But, since f is a function, f (x) = y1 = y2.
Also, since g is a function too, g(y1) = g(y2). Therefore z1 = z2. Hence, h is
unique. ◾

Example 4.79 Let f ∶ Z → Z and g ∶ Z → Z be two functions defined as
follows:

f (x) = x + 1, ∀ x ∈ Z

g(x) = x2

Find f ∘ g and g ∘ f .

Solution
(f ∘ g) (x) = f (g(x)) = f (x2) = x2 + 1
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(g ∘ f )(x) = g(f (x)) = g(x + 1) = (x + 1)2

As you can see (in general) f ∘ g ≠ g ∘ f . ◾

Example 4.80 Let f ∶ R → R and g ∶ R → R be functions defined by

f (x) = sin x and g(x) = ex

respectively. Find

(i) f ∘ g

(ii) g ∘ f

Solution

(i) (f ∘ g)(x) = f (g(x)) = f (ex) = sin(ex)
(ii) (g ∘ f )(x) = g(f (x)) = g(sin x) = esin x ◾

Example 4.81 Let f ∶ X → Y be a function. Observe that f ∘ f is defined when
(f ) = (f ), that is, when X = Y . ◾

Example/Exercise 4.82 Let f ∶ R∖ {0} → R∖ {0} be defined by

f (x) = 1
x

Show that (f ∘ f )(x) = x.

Example 4.83 Given a set X = {a, b, c, d} with functions f ∶ X → X and
g ∶ X → X defined by

f =
(

a b c d

a c a c

)
and g =

(
a b c d

b a b a

)
Find f ∘ g and g ∘ f .

Solution See Figure 4.38

f ∘ g =
(

a b c d

a c a c

)
∘
(

a b c d

b a b a

)
=
(

a b c d

c a c a

)
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a

b

c

d

a

b

c

f o g

d

X X

Figure 4.38 (f ∘ g) ∶ X → X

g ∘ f =
(

a b c d

b a b a

)
∘
(

a b c d

a c a c

)
=
(

a b c d

b b b b

)
See Figure 4.39

a

b

c

d

a

b

c

g o f

d

X X

Figure 4.39 (g ∘ f ) ∶ X → X

◾

Theorem 4.17 If f ∶ X → Y is a bijection, and f −1 ∶ Y → X is its inverse, then

(i) f −1∘f = iX
and

(ii) f ∘ f −1 = iY
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Proof Suppose f ∶ X → Y is a bijection, and let f−1 ∶ Y → X be its inverse.
Take some x ∈ X, and consider

(f −1∘ f )(x) = f −1[f (x)]

Now, since f −1 is the inverse function of f ,∀ x ∈ X, and ∀ y ∈ Y

f −1(y) = x iff f (x) = y.

It follows that for some x′ ∈ X

x′ = f −1(y) = f−1[f (x)]

But that means
f (x′) = f (x)

And, since f is one-to-one, it follows that x′ = x. We conclude that

(f−1 ∘ f )(x) = x ◾

Example 4.84 Revisiting Example 4.83 one notes that

f−1 ∘ f =
(

c a b d
1 2 3 4

)
∘
(

1 2 3 4
c a b d

)
=
(

1 2 3 4
1 2 3 4

)
= iX

and

f ∘ f−1 =
(

1 2 3 4
c a b d

)
∘
(

c a b d
1 2 3 4

)
=
(

c a b d
c a b d

)
= iY

which is in accord with Theorem 4.17. ◾

Now we can restate our definition of the inverse function yet another way.

Definition 4.32 ′ A function f ∶ X → Y is said to be invertible if an inverse
relation f −1 is a function from Y to X, that is, f −1 ∶ Y → X, such that

f −1 ∘ f = iX and f ∘ f −1 = iY



�

� �

�

300 FUNCTIONS

Example 4.85 Consider a function

f ∶ R∖ {2} → R∖ {3}

defined by

f (x) = 3x
x − 2

Find f −1(x).

Solution First, you should convince yourself that f is bijective. Then, we can
argue as follows:

(f ∘ f−1)(x) = f [f −1(x)]

=
3f −1(x)

f−1(x) − 2

= x

It follows that
3f −1(x) = xf−1(x) − 2x

and thus,
f −1(x)( x − 3) = 2x

Therefore,

f −1(x) = 2x
x − 3

, ∀ x ∈ R∖{3}

Note that, at the very beginning, in anticipation of the result we “restricted” our
function’s codomain to R∖{3}. Of course, we could have said that our function
maps R ∖ {2} to R and then, after obtaining the result, demand that our codomain
be {x ∈ R|x ≠ 3}. ◾

Example/Exercise 4.86 Let f ∶ R → (0,∞) be a function defined by

f (x) = ex

Show that the inverse exists and find the f −1.

Example/Exercise 4.87 Let f ∶ R → R and g ∶ R → R be two functions
defined by f (x) = 2x + 1 and g(x) = (x − 1)∕2.

Show that both f and g are bijections and that f−1 = g.



�

� �

�

FUNCTIONS 301

Example 4.88 Let f ∶ R → R be a function defined by

f (x) =

{
x2 + 2 if x ≤ 0

2 − x2 if x > 0

Find f−1.

Solution Consider a function g ∶ R → R given by

g(x) =

{
−
√

x − 2 if x ≥ 2√
2 − x if x < 2

and observe that if x ≤ 0

(g ∘ f )(x) = g(f (x)) = g(x2 + 2)

Since x2 + 2 ≥ 2

(g ∘ f )(x) = −
√

x2 + 2 − 2 = −
√

x2

= −|x| = x

On the other hand, if x > 0

(g ∘ f )(x) = g(f (x)) = g(2 − x2)

and, since 2 − x2 < 2,

(g ∘ f )(x) =
√

2 − 2 + x2 = x

Similarly, you can check that (f ∘ g)(x) = x, and therefore g = f −1. ◾

We expect the following theorem to hold.

Theorem 4.18 Given a function f ∶ X → Y , and iX and iY identity functions on
X and Y respectively, then

(i) f ∘ iX = f

(ii) iY ∘ f = f

Proof

(i) (f ∘ iX)(x) = f (iX(x)) = f (x) ⇒ (f ∘ iX) = f
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(ii) (iY ∘ f )(x) = iY(f (x)) = f (x) ⇒ (iY ∘ f ) = f ◾

The next exercise shouldn’t be difficult to do.

Example/Exercise 4.89 Let f ∶ X → X be any function. Show that
f ∘ iX = iX ∘ f = f .

Theorem 4.19 Let X, Y ,W, and Z be sets, and let

f ∶ X → Y , g ∶ Y → W, h ∶ W → Z

be functions. Then,
h∘(g ∘ f ) = (h ∘g) ∘ f

Proof Take x ∈ X. Then,

(h∘(g ∘ f ))(x) = h((g ∘ f ))(x) = h(g(f (x))) = (h ∘ g)f (x)

= ((h ∘g) ∘ f )(x)

It looks something like Figure 4.40.

X Y W Z

X Y W Z

f g h

h º g

h º g( ) º f

f g h

h º g( ) º f

g º f

Figure 4.40 Associativity of composition ◾

Theorem 4.20 If f ∶ X → Y , and g ∶ Y → Z are two onto functions, then h =
g ∘ f is also an onto function.
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Proof Since f and g are functions, by Theorem 4.16, g ∘ f = h is a function too.
We need to show that g ∘ f is onto.

Take some z ∈ Z. We need to find x ∈ X, such that (g ∘ f )(x) = h(x) = z. Now,
since g is onto Z, there exists y ∈ Y such that g(y) = z. But f is onto Y , thus there
should be an x ∈ X such that f (x) = y. Collecting all together

h(x) = (g ∘ f )(x) = g[f (x)] = g(y) = z

Hence, h = g ∘ f is onto. ◾

Exercise 4.90 Let f ∶ X → Y and g ∶ Y → Z be two functions, such that
g ∘ f ∶ X → Z is onto. Must both f and g be onto?

Solution No! The diagram below convincingly shows that the fact that
g ∘ f ∶ X → Z is onto doesn’t necessitate that both f and g be onto (see
Figure 4.41).

x2

x1

y1

y2

y3

z1

z2

X Y Z

f g

g o  f

Figure 4.41 ◾

Theorem 4.21 If f ∶ X → Y and g ∶ Y → Z are two one-to-one functions,
then h = g ∘ f is a one-to-one function too.

Proof Let x1, x2 ∈ X and suppose (g ∘ f )(x1) = (g ∘ f ) (x2). In other words,
g[f (x1)] = g[f (x2)]. Since g is one-to-one, f (x1) = f (x2). But f is also one-to-one,
hence x1 = x2, which implies that h = g ∘ f is one-to-one too. ◾
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Example 4.91 Suppose f ∶ R → R and g ∶ R → R are functions, such that
g ∘ f ∶ R → R is one-to-one. Must both f and g be one-to-one?

Solution No! Consider, for instance, g(x) = x2 and f (x) = ex. Obviously

(g ∘ f )(x) = g(f (x)) = g(ex) = e2x

is one-to-one while g is clearly not.

◾

Theorem 4.22 If f ∶ X → Y and g ∶ Y → Z are two bijections, then h = g ∘ f
is a bijection too.

Proof Use proofs of Theorems 4.20 and 4.21 together. ◾

Theorem 4.23 Let f ∶ X → Y and g ∶ Y → Z be two bijections. Then

(g ∘ f )−1 = f −1∘g−1

Proof We have just seen that given two bijections, f and g, their composition
g ∘ f is also a bijection. Thus, there exists its inverse (g ∘ f )−1.

But, remember,

g ∘ f = {(x, z)|∃y ∈ Y , s.t. (x, y) ∈ f and (y, z) ∈ g}

so that

(g ∘ f )−1 = {(z, x)|∃y ∈ Y , s.t. (y, x) ∈ f −1 and (z, y) ∈ g−1}

= f−1∘g−1 ◾

Example 4.92 Let f ∶ X → Y and g ∶ Y → Z be two functions, and let A ⊆ Z.
Prove that

(g ∘ f )−1[A] = f −1(g−1[A])

Proof To establish the equality, we need to prove two things:

(i) (g ∘ f )−1[A] ⊆ f −1(g−1[A])
(ii) f −1([A]) ⊆ (g ∘ f )−1[A]
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For (i): Let x ∈ (g ∘ f )−1[A]. That implies that

(g ∘ f )(x) = g(f (x)) ∈ A

but, since g[f (x)] ∈ A
f (x) ∈ g−1[A]

Therefore,
x ∈ f −1(g−1[A])

Hence,
(g ∘ f )−1[A] ⊆ f −1(g−1[A])

For (ii): Suppose that x ∈ f −1(g−1[A]). That implies that

f (x) ∈ g−1[A]

which, furthermore, means that

(g ∘ f )(x) = g(f (x)) ∈ A

It follows that
x ∈ (g ∘ f )−1[A]

Consequently,
f−1(g−1[A]) ⊆ (g ∘ f )−1[A]

We have proved (i) and (ii), thus

(g ∘ f )−1[A] = f −1(g−1[A])

See Figure 4.42.

h−1[A] A

f g

f −1 g −1

h −1 = (g o f) −1 = f −1o g −1

X Y Z

Figure 4.42 (g ∘ f )−1 = f −1∘g−1

◾



�

� �

�

306 FUNCTIONS

Theorem 4.24 Let f ∶ X → Y be any function and let A ⊆ X be any subset of
X. Then,

A ⊆ f −1(f [A])

Proof Let a ∈ A ⊆ X be any element of A, then, f (a) ∈ f [A]. On the other
hand,

f −1(f [A]) = {a ∈ A|f (a) ∈ f [A]}

So, we have that a ∈ A and f (a) ∈ f [A], which implies that a ∈ f−1(f [A]).
Thus,

A ⊆ f−1(f [A])

See Figure 4.43. ◾

a

A
f (a)

f [A]

f

f −1

X
Y

f −1( f [A])

Figure 4.43 A ⊆ f −1(f [A])

Example 4.93 Let f ∶ R → R be a function defined by (x) = x2, and let
A = {2}. Then, obviously, f [A] = f (2) = 4. Thus, 2 ∈ f−1(4), that is, f −1(4) is
a set of all x ∈ R such that x2 = 4. Hence, f −1(4) = {−2, 2} ≠ {2} = A. So,
indeed,

A ⊆ f −1(f [A]) ◾

Definition 4.35 A diagram (of functions) is said to be commutative if for any
pair of sets X and Y (in the diagram) any two paths from X to Y are equal.
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Example 4.94 Suppose the diagram below is commutative:

D

h j

A k C

f g

B

Then,
k ∘ h = f , g ∘ k = j, g ∘ f = j ∘ h = g ∘ k ∘ h ◾

Example 4.95 Consider the following commutative diagram:

iX

X

f g

Y

Observe that, since the diagram is commutative, g ∘ f = iX . That implies that g ∘ f
is one-to-one and, therefore, f must be one-to-one. Furthermore, g ∘ f is onto, so
g is also onto. On the other hand, since we do not know whether f ∘ g = iY or not,
we cannot conclude that g = f −1. ◾

Theorem 4.25 Let X and Y be finite sets, such that |X| = n and |Y| = k, then
there are kn functions X → Y .

Proof Easy! (cf. Figure 4.35) Obviously, there are k choices (k possible
images) for each of the n elements of X. Each arrow represents one of those k
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choices. Since any image of xi ∈ X, (i = 1, 2, … , n) is independent of the any
image of xj ∈ X, (j = 1, 2, … , n), all together we have k ⋅ k ⋅ k ⋅ · · · ⋅ k = kn

ways to choose images for all the elements of X, thus kn possible functions from
X to Y (see Figure 4.44). ◾

n
∙
∙
∙ k

∙
∙
∙

X Y

Figure 4.44

Consequently, the following theorem holds.

Theorem 4.26 Let X and Y be finite sets such that |X| = |Y| = n, then there are
n! bijections X → Y .

Theorem 4.27 Let f ∶ X → Y be a function and let A ⊆ X, and B ⊆ Y . Then,

(i) If f is one-to-one, then A = f −1(f [A]).
(ii) f (f −1[B]) ⊆ B .

(iii) f (f −1[B]) = B iff B ⊆ R(f ) .

Proof (Hint: See Chapter 1.) ◾

Theorem 4.28 Let f ∶ X → Y be a function and let A and B be subsets of X.
Then,

(i) If A ⊆ B then f [A] ⊆ f [B].
(ii) f [A ∪ B] = f [A] ∪ f [B] .

(iii) f [A ∩ B] ⊆ f [A] ∩ f [B] and, if f is one-to-one, then

f [A ∩ B] = f [A] ∩ f [B]
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Proof

(i) Take some y ∈ f [A]. Then ∃a ∈ A ⊆ X such that f (a) = y. Since A ⊆ B,
a is definitely an element of B, and thus y = f (a) ∈ f [B]. It follows that
f (A) ⊆ f (B) as claimed.

(ii) Suppose y ∈ f [A ∪ B]. Then, ∃x ∈ A ∪ B such that f (x) = y. But, x being
an element of A ∪ B, it means that either
1. x ∈ A or
2. x ∈ B

Consider (1):
x ∈ A implies that y = f (x) ∈ f [A] and thus, y ∈ f [A] ∪ f [B]. So,

f [A ∪ B] ⊆ f [A] ∪ f [B]

Similarly, we approach case (2) and again get

f [A ∪ B] ⊆ f [A] ∪ f [B]

Next, we want to show that f [A] ∪ f [B] ⊆ f [A ∪ B]. Well, it is always
true that both A ⊆ A ∪ B and B ⊆ A ∪ B, which, considering (i), implies
f [A] ⊆ f [A ∪ B] and f [B] ⊆ f [A ∪ B]. Consequently, since any element
of f [A] ∪ f [B] is either an element of f [A] or f [B], we conclude that

f [A] ∪ f [B] ⊆ f [A ∪ B]

So, we have

f [A ∪ B] ⊆ f [A] ∪ [B] and f [A] ∪ f [B] ⊆ f [A ∪ B]

and thus,
f [A ∪ B] = f [A] ∪ f [B]

(iii) Let y0 ∈ f [A ∩ B]. Then, ∃x0 ∈ A ∩ B such that y0 = f (x0). But x0 ∈ A ∩ B
implies x0 ∈ A and x0 ∈ B. Therefore, f (x0) ∈ f [A], and f (x0) ∈ f [B],
implying that y0 = f (x0) ∈ f [A] ∩ f [B]. We conclude that

f [A ∩ B] = f [A] ∩ f [B]

Observe that the above argument would not hold in the case that our
function was not one-to-one. The best we could say would be

f [A ∩ B] ⊆ f [A] ∩ f [B]
◾
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Example 4.96 Let f ∶ R → R be a function defined by f (x) = x2, and let
A = [−3, 2] and B = [1, 5]. Let’s show that f [A ∩ B] ⊆ f [A] ∩ f [B]. Certainly
our function is not an injection. However, we have

f [A ∩ B] = f [[−3, 2] ∩ [1, 5]] = f [[1, 2]]

= [1, 4]

On the other hand,

f [[−3, 2]] ∩ f [[1, 5]] = [9, 4] ∩ [1, 25]

= [1, 9]

So, f [A ∩ B] ⊆ f [A] ∩ f [B] as expected. ◾

Example 4.97 Let X = {−3,−2,−1, 0, 1, 2, 3} and Y = {0, 1, 2, 4, 6, 9}. Fur-
thermore, let f ∶ X → Y be a function defined by f (x) = x2. If A = {−1, 3} ⊆ X
and B = {4, 6} ⊆ Y , let’s examine f [A] and f−1[B].

Figure 4.45 will make everything more transparent.

1

−1

3

0
−3

−2

2

1

9

2

4 6

A
f [A]

Bf −1[B]

X

Y

0

Figure 4.45

Let’s first consider our function as

f = {(0, 0), (−1, 1), (1, 1), (−2, 4), (2, 4), (−3, 9), (3, 9)}
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We see that
f (X) = {0, 1, 4, 9}

and
f [A] = f [{−1, 3}] = {1, 9}, and also f (−3) = {9}

Now, since f is not a bijection, f−1 is not a function from Y to X, so it would be
incorrect to write, say, f −1(1) or f−1(9). We can, however, write

f −1[{1}] = {−1, 1}

and
f−1[{9}] = {−3, 3}

Similarly,
f−1[B] = {−2, 2}

◾

Example 4.98 Let X = [0, 10] and Y = [0, 20]. Furthermore, let f ∶ X → Y
be a function defined by f (x) = −x2 + 8x. Let A = [0, 3] and B = [2, 7], find

(i) f [A] ∪ f [B]
(ii) f [A ∪ B]

(iii) f [A] ∩ f [B]
(iv) f [A ∩ B]

Solution
(i) Since f (x) = −x2 + 8x, it follows that f [A] = [0, 15] and f [B] = [7, 16].

Therefore, f [A] ∪ f [B] = [0, 16]. Similarly,
(ii) A ∪ B = [0, 3] ∪ [2, 7] = [0, 7]. Thus f [A ∪ B] = [0, 16].

(iii) and (iv) are left for the reader to do. ◾

Example 4.99 Suppose we want to find f −1[{y ∈ R|4 ≤ y ≤ 25}] if the func-
tion f ∶ R → R is defined by f (x) = x2. By inspecting the domain of f−1, we
immediately note

f −1[{y ∈ R|4 ≤ y ≤ 25}] = [2, 5] ∪ [−5,−2] ◾

In Chapter 1 we discussed the methods of comparing sets, in particular, the sets
of infinite cardinality. There, as you would recall, we defined two sets X and Y
to be equivalent, that is, |X| = |Y|, iff there existed a bijection f ∶ X → Y . Also,
recall that we called a set X the infinite set iff there existed at least one proper
subset A ⊆ X such that |A| = |X|. Before the next example, it may be instructive
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to recall another well-known and useful function from R to R+, the exponential
function, defined by

expb(x) = bx, ∀ x ∈ R

and its inverse, the logarithmic function, defined by

logbx = y ⇔ by = x, ∀ x ∈ R+

Now, we can do

Example 4.100 Let’s prove something that we already “know,” that is, let’s
prove that the set R is equivalent to the set of all positive real numbers R+. The
“only” thing we need to do is find a “good” function, a bijection, f ∶ R → R+

and we are done. But that shouldn’t be difficult since we remember from our high
school math the two functions that will do exactly what we need: the exponential
function,

f (x) = bx, b ≥ 0

and the logarithmic function f (x) = logbx Remember the definition of logarith-
mic function:

y = f (x) = logbx ⇒ by = blogbx = x

Now we ask: Is f (x) = bx one-to-one? Well, suppose f (x1) = f (x2). Then

bx1 = bx2

Thus,
logbbx1 = logbbx2

implies
x1logbb = x2logbb

that is, x1 = x2.
So, our function is one-to-one. Let’s see if it is also onto.
Take some y ∈ R+. Then,

x = logby

Therefore,
bx = blogby = y = f (x)

Hence, |R| = |R+|. ◾
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You are most likely familiar with the next two examples from your elemen-
tary math courses. Nevertheless, it is worthwhile to remind ourselves of the
well-known properties of logarithms.

Example 4.101 Show that for all A,B > 0 and b not equal to 1

(i) logbAB = logbA + logbB

(ii) logb
A
B
= logbA − logbB

(iii) logbAp = plogbA

Solution Let logbA = x and logbB = y. Then A = bx and B = by. It follows

(i) AB = bxby = bx+y

thus
logbAB = x + y = logbA + logbB

(ii) A

B
= bx

by
= bx−y

thus
logb

A
B
= x − y = logbA − logbB

(iii) Ap = (bx)p = bxp

thus
logbAp = px = plogbA ◾

Example 4.102 Show that for any three positive real numbers a, b, x ∈ R+

logbx =
logax

logab

Solution Let
y1 = logax, and y2 = logbx. (4.5)

Then, from the definition of logarithm, we have

ay1 = x

and
by2 = x

Therefore,
ay1 = by2

and
logaay1 = logaby2
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So,
y1logaa = y2logab (4.6)

From (4.5) and (4.6), we have

logax ⋅ logaa = logbx ⋅ logab

that is
logax = logbx ⋅ logab

or

logbx =
logax

logab
◾

Example 4.103 With logarithmic function at hand, let’s show once again that
the set R is of infinite cardinality.

As before, we would like to show that there is a bijection between the set R
and its proper subset R+. So, let f ∶ R → R+ be a function defined by f (x) = 2x.
Suppose

f (x1) = f (x2), that is, 2x1 = 2x2

Then,
log22x1 = log22x2

implying that x1 = x2. So, f is one-to-one. To see that it is also onto, take y ∈ R+

such that x = log2y. It follows that

f (x) = 2x = 2log2y = y

Thus, f is onto. Since there is a bijection between R and its proper subset R+, we
conclude that the set R is infinite. ◾

Theorem 4.29 Let X and Y be two nonempty finite sets such that |X| = |Y| = n,
and let f ∶ X → Y be a function from X to Y . Then f is an injection iff f is a
surjection.

Proof Let |X| = |Y| = n, and let f be one-to-one. In that case there are n dis-
tinct images of n distinct elements of X. In other words, (f ) = Y and therefore
f is onto. Conversely, let f be onto. Then each of the n elements of Y is an image
of some element of X. In other words, the n elements of X have n distinct images
in Y , thus f is one-to-one. ◾
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The astute reader might have noticed that we have emphasized in the above
theorem that the sets should be finite. Otherwise the theorem wouldn’t hold.
Indeed, consider, for instance, the function f ∶ Z → Z defined by f (x) = 2x.
Obviously, f is one-to-one yet the range is the set of all even integers, thus f is
not onto.

Theorem 4.30 Let X ≠ ∅ and Y be any two sets. If there is an injection
f ∶ X → Y , then there is also a surjection g ∶ Y → X.

Proof Define g as follows:

g(y) =

{
x if f (x) = y

a if no such x exists

Since f is an injection, if x exists it has to be unique, thus our function is well
defined. So, for any x ∈ X, x = g(y) = g(f (x)). Therefore, g is surjective. ◾

The next three important theorems are not easy and may be skipped on the first
reading.

Theorem 4.31 Let f ∶ X → Y and g ∶ Z → W be one-to-one function, and let
X ∩ Z = ∅. Furthermore, define a function h ∶ X ∪ Z → Y ∪W by

h(x) =

{
f (x) if x ∈ X

g(x) if x ∈ Z

If Y ∩W = ∅ then h is also one-to-one. If, in addition, f and g are bijective then
h is also bijective.

Proof Suppose x1, x2 ∈ X ∪ Y , such that h(x1) = h(x2) = y. It follows that
y ∈ Y ∪W, that is, y ∈ Y or y ∈ W. Let’s say y ∈ Y . Since we have assumed that
Y ∩W = ∅ it follows immediately that y ∉ W. Hence x1, x2 ∈ X and therefore

h(x1) = f (x1)

and = h(x2)

= f (x2)

But since f is one-to-one, and f (x1) = f (x2), it follows that x1 = x2, thus h is also
one-to-one.
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Let’s say now that y ∈ W. Reasoning as before, we conclude that y ∉ Y . Hence
x1, x2 ∈ Z, and therefore

h(x1) = g(x1)

= h(x2)

= g(x2)

By the same argument as before, we conclude that in this case h is one-to-one
too. The readers should prove the bijective case on their own. ◾

Theorem 4.32 Let X and Y be two nonempty sets, such that Y ⊆ X. If there
exists an injection X → Y , then there exists a bijection X → Y .

Proof First, consider a simple case X = Y . Observe that the identity function

iX ∶ X → Y = X

is obviously a bijection.
Take now a proper subset Y ⊂ X. It follows that X ⧵ Y ≠ ∅. Furthermore,

let
f ∶ X → Y

be an injection. We need to prove that f is also onto. Suppose it is not. In that
case(f ) ⊂ Y , thus Y ⧵(f ) ≠ ∅. Consider the subset of Y defined the following
way:

Y′ = {f n(x)|x ∈ X ⧵ Y , n ∈ N}

where by f n(x) we mean (f ∘ f ∘ · · · ∘ f )(x).
Note that

Y′ ⊆ R(f )

which implies that ∀ x ∈ X ⧵ Y , f (x) ∈ Y ′. Furthermore, ∀ x ∈ X ⧵ Y (f ∘ f )(x)
∈ Y ′, (f ∘ f ∘ f )(x) ∈ Y ′, and so on. Now we construct a new set

Z = (X ⧵ Y) ∪ Y ′

and a new function
f1 ∶ Z → Y ′

We want to show that f1 is onto.
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Take some x ∈ X ⧵ Y . There has to be y ∈ Y ′ such that for some n ∈ N

y = f n(x)

This also implies that y = f (x) for some x ∈ X ⧵ Y , or y = f (x) for some x ∈ Y ′.
Therefore, y = f1(x) if we take x ∈ Z. Hence, f1 is onto. Now, remember, f is
one-to-one thus f1 is also one-to-one; hence, f1 ∶ Z → Y ′ is a bijection. We are not
done yet. We need one more set, W = Y ⧵ Y ′. Recall, Y ⧵ R(f ) ≠ ∅, and also Y ⧵
R(f ) ⊆ Y ⧵ Y ′, thus W ≠ ∅. Observe that W ∩ Y ′ = ∅, and W ∩ Z = ∅. Also,

Z ∪W = X, and Y ′ ∪W = Y .

With this in mind, we need the previous theorem to construct the function

h ∶ Z ∪W → Y ′ ∪W

that is
h ∶ X → Y

as follows

h(x) =

{
f1 (x) if x ∈ Z

iW(x) if x ∈ W

Since f1 is bijective, and iW ∶ W → W is certainly bijective, h is bijective too. ◾

This may be the right time to recall (see Chapter 1, Theorem 1.25) and finally
prove

Theorem 4.33 (Schröder–Bernstein7) If A and B are any two sets such that|A| ≤ |B| and |B| ≤ |A|, then |A| = |B|.
A couple of comments may be in order before we start with the proof. First,

since we are talking about any set, thus also the sets with infinite cardinality,
assiduous reader might consider the use of the symbol “≲” more appropriate than
the usual “≤.” However, we will continue with our accustomed sign “≤.” Second,
and most importantly, the same reader may by now be aware of the fact that the
theorem can be stated in the equivalent form:

Let A and B be any two sets. If there exist one-to-one functions f ∶ A → B and
g ∶ B → A, then there is also a bijection 𝜑 ∶ A → B. Thus, |A| = |B|.
7Ernst Schröder (1841–1902) German Mathematician. Felix Bernstein (1878–1956) German
mathematician.
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Proof The proof is not easy, so don’t despair. It might take you some time to
get it completely.

Obviously, in order to prove our claim, it would be sufficient to find a bijec-
tion A

𝜑
−−→B. Note, however, that the theorem doesn’t assume that either f or g

is onto.
So, consider a function h = f −1∘g−1. Observe that h is defined on some subset

of A and with the range in A, that is

(h) = {x ∈ A|x ∈ (g) and g−1(x) ∈ (f )}

Let’s now define a new function

𝜑1 ∶ (g)→ B

by
𝜑1(x) = g−1(x)

and also
𝜑n(x) = g−1∘hn(x)

where
hn = h∘h∘ · · · ∘h

⏟⏞⏞⏟⏞⏞⏟
n

Now, observe that (𝜑n) ⊆ A and (𝜑n) ⊆ B. Next, define A0 = {x ∈
A| ∃ n, s.t. 𝜑n(x) is well defined and 𝜑n(x) ∉ (f )} ⊆ A.

It follows that for any x ∈ A, either x ∈ A0 or x ∉ A0. So, we construct our
function 𝜑 ∶ A → B as follows:

𝜑(x) =

{
f (x) x ∉ A0

g−1(x) x ∈ A0

We claim that 𝜑 is a bijection. If we could prove that, then we are done. Well,
let’s see.

One-to-one:

Let 𝜑(x1) = 𝜑(x2). We need to check whether x1 = x2. Well, if both x1 and x2 are
the elements of A0, or both x1 and x2 are not the elements of A0 then x1 = x2.
Why? Because, remember, both f and g are one-to-one. Now, how about if x1 ∉
A0 and x2 ∈ A0? In that case

f (x1) = 𝜑(x1) = 𝜑(x2) = g−1(x2)
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But this cannot be. Since x2 ∈ A0, there is an n such that 𝜑n(x2) is well defined,
but 𝜑n(x2) ∉ (f ). Let’s check the case when n = 1. Then

𝜑1(x2) = g−1(x2)

= f (x1) ∈ (f )

For n > 1 we have

𝜑n(x2) = g−1∘hn(x2)

= g−1∘hn∘(g ∘ f )(x1)

= g−1∘hn−1(x1)

= 𝜑n−1(x1)

We know that if 𝜑n(x2) ∉ (f ), then 𝜑n−1(x1) ∉ (f ). That would furthermore
imply that x1 ∈ A0, which is a contradiction. Therefore, 𝜑 is one-to-one.

Onto:

In order for 𝜑 to be onto, we need, as usual, to prove that ∀ b ∈ B, ∃a ∈ A, such
that 𝜑(a) = b. Since g is one-to-one, let’s take a = g(b). Recall that either a ∈ A0
or a ∉ A0. So, suppose first that a ∈ A0. Then

𝜑(a) = g−1(a)

= b

and we are done.
The case when a ∉ A0 is a little trickier. For all, n, either𝜑n(a) ∉ (f ) or𝜑n(a)

is not defined. If n = 1
𝜑1(a) = g−1(a)

is defined, hence 𝜑1(a) ∈ (f ). Let

a1 = f −1(𝜑1(a))

= (f −1∘g−1)(a)

We would like to prove that a1 ∉ A0. Well, let’s see. Suppose the opposite, that
is, suppose a1 ∈ A0. Then, there is an n such that 𝜑n(a1) is defined, and 𝜑n(a1) ∉
(f ). But, remember,

𝜑n(a1) = 𝜑n(f −1∘g−1)(a)

= 𝜑n+1(a)
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This is a contradiction since we have established the fact that for all n, either
𝜑n+1(a) is not defined, or 𝜑n+1(a) ∉ (f ). Thus, a ∉ A0. Then, by definition,

𝜑(a1) = f (a1) = f (f −1∘g−1)(a) = g−1(a) = b

Hence 𝜑 is onto and our proof is complete. ◾

Example 4.104 Let’s see whether we can prove that |(0, 1)| = |[0, 1]|.
We would like to show that |(0, 1)| ≤ |[0, 1]| and |(0, 1)| ≥ |[0, 1]|, from which

we could conclude that |(0, 1)| = |[0, 1]|.
First, observe that (0, 1) ⊆ [0, 1]. So, we can safely say that |(0, 1)| ≤ |[0, 1]|.

Now, let’s pick an interval with a property that [0, 1] is its subset, say, (−1, 2).
Since [0, 1] ⊆ (−1, 2), it is true that |[0, 1]| ≤ |(−1, 2)|. But we already know that|(1, 0)| = |(−1, 2)|, which implies |[0, 1]| ≤ |(1, 0)|. So, we have

|(0, 1)| ≤ |[0, 1]| and |(0, 1)| ≥ |[0, 1]|
By Schröder–Bernstein theorem (S–B-theorem), it follows that |(0, 1)| = |[0, 1]|.

◾

Exercise 4.105 Show that |(N)| = |R|.
Solution We already know that |(0, 1)| = |R|. So, let’s consider a function
f ∶ (0, 1) → (N). We would like to prove that f is one-to-one.

Recall that any a ∈ (0, 1) can be uniquely expressed as a = 0.a1a2a3 · · ·where
each ai ∈ {0, 1, 2, … , 9}, and there is no n0 ∈ N such that an = 9 for all n ≥ n0.
That is, from some point on, in decimal expansion of a, we don’t want all 9’s.

Now we need to choose a suitable function in order to take advantage of the
S–B-theorem. So, let’s define our function f as follows:

f (a) =
{

10n−1 |n ∈ N
}

In other words, every a ∈ (0, 1) is mapped to some subset A ⊆ (N).
For example, if a = 0.123 then f (a) = A = {1, 20, 300, 4000}. Similarly,
f
(

1
3

)
= f (0.333 …) = {3, 30, 300, …}. Is our function one-to-one? Sup-

pose for some a, b ∈ N, f (a) = f (b), where, again, a = 0.a1a2a3 … and b =
0.b1b2b3 … (with the same constraints on their decimal expansion as mentioned
before). Then,

A =
{

10n−1an |n ∈ N
}
=
{

10n−1bn |n ∈ N
}
= B

Observe that, if the ith digit in the decimal expansion of a, ai is different from
zero, then 10i−1ai ∈ A is a unique number in the interval [10i−1, 9 ⋅ 10i−1]. Sim-
ilar arguments hold also for bi, that is, if bi ≠ 0, 10i−1bi ∈ [10i−1, 9 ⋅ 10i−1] ⊆ B.
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But, remember, A = B, that is

10i−1ai = 10i−1bi

and therefore ai = bi. How about if ai = 0? Well, in that case ai = 0 ∈ A and
there is no number in the interval [10i−1, 9 ⋅ 10i−1] belonging to A. But, again,
since A = B, 0 ∈ B and there is no number in the interval [10i−1, 9 ⋅ 10i−1]
belonging to B. Thus, bi = 0. So, in all the cases ai = bi, ∀ i ∈ N, hence, a = b
and our function is one-to-one. Hence, |(0, 1)| ≤ |(N)|.

Now, we need another suitable function, namely, g ∶ (N) → (0, 1) as follows:
For every S ⊆ N we define g(S) = 0.s1s2s3 … , such that

sn =

{
1 if n ∈ S

2 if n ∉ S

So, g(S) ∈ R is a number whose decimal expansion consists only of 1s and 2s. In
order to be able to apply the S-B-theorem, we need our function g to be one-to-one
too. Let’s see. Suppose S, T ⊆ N and suppose that g(S) = g(T). Then

g(S) = 0.s1s2s3 … = s

= g(T) = 0.t1t2t3 … = t

where

tn =

{
1 if n ∈ T

2 if n ∉ T

We need to show that S = T . Let k ∈ S. Then, sk = 1. But s = t, so tk = 1 too,
which implies that k ∈ T and therefore S ⊆ T . Similarly, we show that T ⊆ S,
thus S = T and we conclude that our function g is one-to-one. So, we have that|(N)| ≤ |(0, 1)|. By the S-B-theorem |(N)| = |(0, 1)|. Finally, we recall that|(0, 1)| = |R| and the proof that |(N)| = |R| is complete.

4.4 SUPPLEMENTARY PROBLEMS

1. With relations R on R given below, determine and explain which one is and
which one is not an equivalence relation.

(i) xRy iff |x − y| ≤ 1
(ii) xRy iff xy > 0
(iii) xRy iff x + y = 0
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2. Given a set X = {x, y,w, z} with the following relations:

R0 = ∅

R1 = {(x,w), (y, x)}

R2 = {(x, x), (x, y), (y,w), (x,w), (z, z)}

R3 = {(x, x), (x, y), (y, x), (y, y), (w,w), (z, z)}

Determine which of the relations are:

(i) reflexive
(ii) symmetric
(iii) antisymmetric
(iv) transitive.

3. Let R be a relation defined on Z by: xRy if 11x − 5y = 2k, x, y, k ∈ Z. Show
that R is an equivalence relation.

4. Let f ∶ X → Y be a function. Define a relation “∼f ” on X by: x ∼f y iff
f (x) = f (y) Show that “∼f ” is an equivalence relation.

5. Let R be a relation defined on Z by: xRy if x = y(mod 3). Determine whether
R is an equivalence relation.

6. We say that a relation R on a set X is cyclic iff for all
x, y, z ∈ X, if aRb and bRc then zRx. Show that

(i) If a relation R is symmetric and transitive, then it is also cyclic.
(ii) If a relation R is symmetric and cyclic, then it is also transitive.

7. Let “≼” be a relation on the set R × R defined by

(x, y) ≼ (v,w) iff x < v or (x = v and y ≤ w)

Show that “≼” is a partial order on R × R.

8. Consider the set of linear functions

F = {f ∶ R → R|f (x) = ax + b, a, b ∈ R}

and define a relation “≼” on R as follows:

f ≼ g iff f (1) − f (0) ≤ g(1) − g(0)

Is this an equivalence relation?
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9. Let “≤” be a relation on a set  of all functions from R to R defined by

f ≤ g iff f (x) ≤ g(x), ∀ x ∈ R

Show that “≤” is a partial order on  .

10. Let R = {(1, 5), (2, 2), (3, 4), (5, 2)} and S = {(1, 4), (3, 5), (4, 1)} be two rela-
tions. Find

(i) R ∘ S

(ii) S ∘ R

and sketch the corresponding digraphs.

11. Let X = {1, 2, 3} be a set with a relation R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)}.
Find X∕R.

12. Let R be a relation on Z defined by xRy iff x2 = y2, x, y ∈ Z. What is the
[0], [1] and [4]?

13. Determine for each of the following digraphs if they represent relations that
are reflexive, symmetric, transitive, and antisymmetric.

14. Determine whether any of the following digraphs represent the equivalence
relation.
Let R and S be relations on a set X. Determine whether the following state-
ments are true:

(i) If R and S are reflexive, then R ∩ S is reflexive.
(ii) If R and S are reflexive, then R ∪ S is reflexive.
(iii) If R and S are symmetric, then R ∩ S is symmetric.
(iv) If R and S are symmetric, then R ∪ S is symmetric.
(v) If R and S are transitive, then R ∩ S is transitive.
(vi) If R and S are transitive, then R ∪ S is transitive.

15. Let R and S be equivalence relations on a set X. Show that R ∩ S is also an
equivalence relation on X.

16. Let R is an equivalence relation on a set X. Determine whether R ∪ R−1 is an
equivalence relation on X.

17. Let X = {a, b, c, d}Y = {1, 2, 3, 4}, and let f ∶ X → Y be given by

f =
(

a b c d
1 2 3 4

)
Find its inverse.

18. Determine whether the following relations are functions or not:
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(i) R = {(1, 1), (2, 2), (3, 3), (2, 3), (4, 3), (5, 3)}
(ii) S = {(a, b), (b, c), (c, d), (d, e)}

19. Determine whether the following relation is a function:

R = {(x, y) ∈ Z × Z|y2 = x}

20. Let X = {a, b, c, d}, and let f and g be functions given by

f =
(

a b c d
a c a c

)
and g =

(
a b c d
b a b a

)
Find f ∘ g and g ∘ f .

21. Let p1 =
(

1 2 3 4 5
2 3 4 5 1

)
and p2 =

(
1 2 3 4 5
3 4 5 2 1

)
be two per-

mutations of five elements. Find

(i) p1∘p2

(ii) p−1
1 and p−1

2

22. Let X = {1, 2, 3, } and Y = {a, b, c}. Define functions f and g by

f = {(1, a), (2, b), (3, a)} and g = {(a, 1), (b, 3), (c, 2)}

Find

(i) f ∘ g

(ii) g ∘ f

(iii) f −1

(iv) g−1

23. Prove that f ∶ Z → Z defined by f (x) = 3 − x is a bijection.

24. Prove that f ∶ R → R defined by f (x) = 3x − 7 is a bijection; Find f −1 and
find f ∘ f .

25. Prove that f ∶ Z → Z defined by f (x) = 3x − 7 is one-to-one but not onto.

26. Let N = {n ∈ N|n ≥ 100} and define a function f ∶ N → N by f (n) =
the sum of digits of n. Determine whether f is one-to-one and/or onto.

27. Prove that f ∶ R → R defined by f (x) = x4 − x2 is neither one-to-one
nor onto.

28. Determine whether f ∶ N → N defined by f (x) = x2 is one-to-one and onto.

29. Prove that f ∶ R → R defined by f (x) = x5 + 3 is one-to-one and onto.
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30. Consider a function f ∶ R × R → R × R defined by f ((x, y)) = (x + y, xy).
Determine whether this function is one-to-one and/or onto.

31. For which of the following functions f, the relation f−1 is also a function?
(i) f (x) = x+1

x+2

(ii) f (x) = ex+2

(iii) f (x) = log x

(iv) f (x) = sin x

32. Let f ∶ R∖{1} → R∖{1} be a function defined by

f (x) = x
x − 1

(i) Prove that f is bijective.
(ii) Find f−1.
(iii) Find f ∘ f .
(iv) Find f −1 ∘ f −1.

33. Let f ∶ [0,∞) → [0,∞) be a function defined by f (x) = x2. Determine
whether f is one-to-one or not.

34. Consider a function f ∶ X × Y → X defined by f (x, y) = x. Determine whether
f is injective and/or surjective.

35. Let f ∶ (0,∞) → (0,∞) be a function defined by

f (x) = 1
x

Prove that f is a bijection and find its inverse.

36. Let f ∶ R → R be a function defined by f (x) =
{

2x if x ∈ Q
3x if x ∈ R ∖ Q

.

Prove that f is a bijection and find its inverse.

37. Let f ∶ R∖{0} → R∖{0} be a function defined by

f (x) = 1 − 1
x

Show that f ∘ f ∘ f = i, and find f−1.

38. Which of the following functions is injective/surjective:
(i) f (x) = x3 − x + 2

(ii) g(x) = x2+1
x2−1

39. Let f ∶ X → Y be a function defined by f (x) = x3 − x. Find sets X and Y for f
to be a bijection.
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40. Consider a set X = R × R. Show that

d((x, y), (z,w)) = |x − y| + |y − w|
is a metric on R × R.

41. Is there a function f ∶ R → R that is onto but not one-to-one?

42. Let f ∶ R → R be a function defined by f (x) = x2. Let A = [−3, 2] and
B = [1, 5]. Show that
(i) f [A ∪ B] = f [A] ∪ f [B]
(ii) f [A ∩ B] ⊆ f [A] ∩ f [B]

43. Let f ∶ R → R be a function defined by f (x) = 10x − x2. Find

f ([1, 6]) ∩ f ([4, 7]).

44. Let f ∶ X → Y be a one-to-one function and let A ⊆ X. Furthermore, define a
function F ∶ P(X) → P(Y) by F(A) = f [A]. Show that F is one-to-one.

45. Use Schröder–Bernstein theorem to prove that
(i) |[0, 1)| = |(0, 1)|
(ii) |R| = |R × R|
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GROUP THEORY

I seem to have been only like a boy playing on the sea shore, and diverting myself
in now and then finding a smoother pebble or a prettier shell than ordinary, whilst
the great ocean of truth lay all undiscovered before me.

I. Newton1

5.1 INTRODUCTION

There is, arguably, no other mathematical discipline that originated from such
simple concepts, and with such profound implications to virtually all branches of
mathematics, physics, and many other sciences, as Group Theory. The axiomatics
of groups are so simple, so natural, and so “how-could-it-have-been-otherwise,”
that one wonders how something so self-evident and so ubiquitous wasn’t dis-
covered much earlier in its own right, rather than being motivated by problems
in number theory, geometry, the theory of algebraic equations, and the like. And
yet, how could something so “simple” could have evolved into such an elabo-
rate, encompassing mathematical theory underpinning the fundamental laws of
elementary particle physics, the Standard Model, String Theory, and so on.

1Brewster, D., Life of Sir Isaac Newton, Nabu Press, 2010.

Principles of Mathematics: A Primer, First Edition. Vladimir Lepetic.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
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It is also safe to say that groups occur abundantly in nature. When looking
at natural objects that usually attract attention, say, a beautiful flower, a crys-
tal, a geometric figure or object, or even better, a human face, a piece of art, a
sculpture, a painting, or still more abstractly, just a few musical tunes from your
favorite composition – what makes you say that those “things” are beautiful, har-
monious, symmetric; why are they “pleasing to the senses?” Is there something
that, regardless of their superficial differences, is common to all of them? It is
here that mathematics, abstract algebra in particular, enters the quest. With a lit-
tle consideration, one recognizes the structure of a group. Take an object, any
object X, endowed with some structure and consider a map ς ∶ X → X that maps
the object onto itself while preserving that structure – we say that there is a sym-
metry. Group theory formalizes the essential aspects of symmetry – we say that
symmetries form a group. By focusing on the very transformations themselves,
we gain an insight into the fundamental makeup of the object we are studying.

5.2 FUNDAMENTAL CONCEPTS OF GROUP THEORY

Definition 5.1 Given a set G, by a binary operation “∗” on G, we mean a
function ∗∶ G × G → G that maps any ordered pair of elements of G to an ele-
ment of G. In particular, if an ordered pair (a, b) ∈ G is mapped into an element
c ∈ G, then we write c = a ∗ b.

The operation “∗” could be our usual addition “+,” or multiplication “⋅,” per-
formed on a set of real numbers or functions, but it could also be something more
abstract, say, permutations, rotations, or translations, and so on, performed on
sets that are definitely not sets of numbers.

Definition 5.2 A binary operation “∗” is said to be well defined on a set X if

(i) Exactly one element is assigned to each possible ordered pair of elements
of X.

(ii) For each ordered pair of elements of X, the element assigned to it is again an
element of X We say that X is closed under “∗,” or that closure is satisfied.

Example 5.1 Suppose we take the set Z and consider the usual addition “+,” or
multiplication “⋅,” as the binary operation “∗,” such that an ordered pair of two
elements of Z, say, (2, 3) is mapped into 2 + 3 = 5 by “+,” or into 2 ⋅ 3 = 6 by
“⋅.” Note that the “results” of our “operations” are again elements of Z. We say
that our operations are well defined since they satisfy both conditions (i) and (ii)
in Definition 5.2. ◾



�

� �

�

FUNDAMENTAL CONCEPTS OF GROUP THEORY 329

Example 5.2 If we consider set N and take for our operation the usual subtrac-
tion “−,” then closure is not satisfied since, for instance, 2 – 5 = −3 ∉ N, and,
therefore, our operation is not a well-defined binary operation. ◾

Example 5.3 Consider the operation

a ∗ b = a + b
ab

with a, b ∈ Z. Obviously, closure is not satisfied on set Z, since one can easily
find two integers a and b such that a ∗ b ∉ Z. ◾

Example 5.4 Consider a set  of all real functions f ∶ R → R. If the opera-
tion “∗” is the familiar addition “+,” multiplication “⋅”, or composition “∘” of
functions, then, in each of those cases, “∗” is a well-defined binary operation. ◾

Example 5.5 Consider set Q and the operation

a ∗ b = a
b
, ∀a, b ∈ Q

This is obviously not a well-defined operation on Q for no rational number can
be assigned to the pair (a, 0). ◾

Example/Exercise 5.6 Determine whether the following two operations are
well defined:

(i) a ∗ b = |a − b|a, b ∈ Z
(ii) a ∗ b = a ln b, a, b ∈ R

Example 5.7 As you may recall, if X is a set with n elements, that is, |X| = n,
there are n! different rearrangements/permutations of n elements, counting no
rearrangement as the 0th permutation. We say that a permutation of X is a bijec-
tion p ∶ X → X. Generally, we denote the set of all permutations of X by PX .
As an example, let P3 be the set of all permutation of three elements, that is,
P3 = {p0, p1, … , p5}, such that

pi =
(

1 2 3
a1 a2 a3

)
In the top row of the array (matrix), we write elements 1, 2, 3. In the second row,
we write their image under the permutation p. Thus, ai represents one of the
numbers 1, 2, 3. We say pi(j) = aj, i = 0, 1, 2, 3, 4, 5; aj = 1, 2, 3. For example:

p0(1) = 1, p0(2) = 2, p0(3) = 3;

p1(1) = 2, p1(2) = 3, p1(3) = 1; and so on
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Hence,

p0 =
(

1 2 3
1 2 3

)
, p1 =

(
1 2 3
2 3 1

)
, p2 =

(
1 2 3
3 2 1

)
, and so on

Consider now the “multiplication” of permutations defined by the following
example:

p1(p2(1)) = p1(3) = 1

p1(p2(2)) = p1(2) = 3

p1(p2(3)) = p1(1) = 2

You recognize this multiplication as the composition of functions, pi
′s, that is

pi ⋅ pj = pi∘pj = pk

Hence, we conclude that for the example above

p1p2 =
(

1 2 3
1 3 2

)
= p3

We can define any other “product” pipj in the same way. Before we continue, let’s
convince ourselves that pipj ≠ pjpi. Since we already know the result of p1p2, it
suffices to check p2p1:

p2(p1(1)) = p2(2) = 2

p2(p1(2)) = p2(3) = 1

p2(p1(3)) = p2(1) = 3

We have obtained another permutation, say p4 =
(

1 2 3
2 1 3

)
, which is obvi-

ously not equal to p3. We could have recognized this after the first step, since
evidently p1p2(1) ≠ p2p1(1). With a little effort, you can convince yourself that
any “multiplication” always produces one of p0, … , p5. So, P3 is closed under
the above-defined multiplication.

So, we claim that “multiplication” of permutations is another well-defined
binary operation. ◾

If you are familiar with matrices, the next example illustrates another case of
a well-defined binary operation.

Example 5.8 Letnn be a set of all (n, n)-matrices over R.nn is closed under
the addition of matrices. ◾
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Example/Exercise 5.9 Let 2(R) be the set of all matrices of the form[
a −b
b a

]
, a, b ∈ R. Determine whether 2(R) is closed under (i) matrix

addition and (ii) matrix multiplication.
We now introduce some additional features to structures that are closed with

respect to a given binary operation.

Definition 5.3 Let ∗∶ G × G → G be a binary operation on G. We say that “∗”
is commutative if

a ∗ b = b ∗ a, ∀a, b ∈ G

Example 5.10 Let “∗” be an ordinary multiplication on the set R. Obviously,
“∗” is a well-defined commutative operation. ◾

Example 5.11 Let “∗” be a binary operation on Q defined by

a ∗ b = ab
2

This is another well-defined commutative operation. ◾

Example 5.12 Let nn be the set of all (n, n)-matrices over R. If the binary
operation “∗” is regular addition of matrices, we have a well-defined commutative
operation since

A + B = B + A, ∀ A,B ∈nn

On the other hand, if we take “∗” to be regular matrix multiplication, we have a
well-defined noncommutative operation since, in general,

AB ≠ BA ◾

Definition 5.4 Let ∗∶ G × G → G be a binary operation on G. We say that “∗”
is associative if

a ∗ (b ∗ c) = (a ∗ b) ∗ c, ∀a, b, c ∈ G

Example 5.13 Let “∗” be a binary operation on R defined by

∀a, b, c ∈ R, a ∗ b = a + b + ab
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Verify that

(i) (a ∗ b) ∗ c = a ∗ (b ∗ c), ∀a, b, c ∈ R
(ii) a ∗ b = b ∗ a, ∀a, b ∈ R

Solution
(i)

(a ∗ b) ∗ c = (a + b + ab) ∗ c

= a + b + ab + c + (a + b + ab)c

= a + b + c + ab + ac + bc + abc

= a + (b + c + bc) + a(b + c + bc)

= a ∗ (b ∗ c)

(ii)

a ∗ b = a + b + ab

= b + a + ba

= b ∗ a ◾

Example/Exercise 5.14 Consider the following operations and determine
whether they are commutative and/or associative:

(i) a ∗ b = 2ab, with a, b ∈ N
(ii) a ∗ b = ab, with a, b ∈ N

Example 5.15 Let X be a set, and let F = {f |f ∶ X → X} be the set of functions
mapping X to X. In Chapter 4, we proved that

(f ∘(g∘h))(x) = ((f ∘g)∘h)(x)

Thus, the composition of functions is another example of an associative
operation. ◾

Theorem 5.1 If “∗” is an associative operation on a set G, then

(a ∗ b) ∗ (c ∗ d) = [a ∗ (b ∗ c)] ∗ d, ∀a, b, c, d ∈ G

Proof Let g = a ∗ b, then

(a ∗ b) ∗ (c ∗ d) = g ∗ (c ∗ d) = (g ∗ c) ∗ d = [(a ∗ b) ∗ c] ∗ d

= [a ∗ (b ∗ c)] ∗ d
◾



�

� �

�

FUNDAMENTAL CONCEPTS OF GROUP THEORY 333

Definition 5.5 We call a nonempty set G equipped with a binary operation “∗”
and denoted by (G; ∗) an algebraic structure or a groupoid.

A nonempty set G, equipped with a binary operation “∗” that is associative is
called a semigroup (G; ∗).

Example 5.16 Suppose we are given a set G = {1, 2, 3} with an operation “∗”
described by the following table:

∗ 1 2 3

1 3 2 1
2 3 1 3
3 2 3 3

Our algebraic structure (G; ∗) is such that, for example, 2 ∗ 1 = 3, 3 ∗ 1 = 2.
What about associativity? Well, let’s just check:

2 ∗ (3 ∗ 1) = 2 ∗ 2 = 1

(2 ∗ 3) ∗ 1 = 3 ∗ 1 = 2

So, associativity is not satisfied. ◾

Example 5.17 Consider a set G = {a, b, c, d} with an operation “∗” described
by the following table:

∗ a b c d

a
b
c
d

a
b
c
d

b
a
d
c

c
d
a
b

d
c
b
a

Closure is obvious. What about associativity? Well, let’s see:

b ∗ (c ∗ d) = b ∗ b = a

(b ∗ c) ∗ d = d ∗ d = a

d ∗ (b ∗ c) = d ∗ d = a

(d ∗ b) ∗ c = c ∗ c = a

You can check the rest, and convince yourself that associativity holds. Hence,
(G; ∗) is a semigroup. ◾



�

� �

�

334 GROUP THEORY

Example 5.18 Let (G; ∗) be a semigroup. Show that ∀a, b, c, d ∈ G

(ab)cd = a(bc)d = ab(cd)

Solution First, observe that the definition of a semigroup requires associativity;
thus,

(ab)(cd) = [(ab)c]d

= [a(bc)]d

= a(bc)d

Similarly, one can establish the second equality. ◾

Definition 5.6 Let G be a semigroup, and let a ∈ G. We define a1 = a and
an+1 = a ∗ an for n ≥ 1. Consequently, we define

an ∗ am = an+m = am+n = am ∗ an

and
(an)m = (am)n = amn

Example/Exercise 5.19 Show by induction that the equalities in Definition 5.6
indeed hold.

Definition 5.7 (A group)
Let (G; ∗) be a set with a binary operation “*” such that the following conditions
are satisfied:

G1 : a ∗ b ∈ G, ∀a, b ∈ G closure
G2 : a ∗ (b ∗ c) = (a ∗ b) ∗ c, ∀a, b, c ∈ G associativity
G3 : ∃e ∈ G, s.t. a ∗ e = e ∗ a = a, ∀a ∈ G identity
G4 : ∀a ∈ G, ∃ a−1 ∈ G, s.t. a ∗ a−1 = a−1 ∗ a = e inverse

We say that (G; ∗) is a group, and call G1–G4 group axioms.

Note: (1) Many authors call the identity element e the neutral element with
respect to “multiplication” “∗,” and sometimes denote it by 1, especially if “∗”
represents ordinary multiplication. Similarly, if the group operation is ordinary
addition, the neutral element is denoted by 0 for obvious reasons. In order to avoid
confusion, I think it is best to stick with e for the neutral element regardless of
the group operation.
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(2) Also, a−1 is just a symbol for the inverse element of a, and in general does
not mean 1∕a.

Example 5.20 It is easy to see that (Z; +), (Q+ = {q ∈ Q|q > 0}; ⋅) and
(R+ = {x ∈ R|x > 0}; ⋅) satisfy G1–G4, and thus are groups.

Similarly, (R; +) and (R∗; ⋅) = (R ⧵ {0}; ⋅) are groups, while (N; +) and (Z; ⋅)
are not. Why? ◾

Example 5.21 The set (N; +) is not a group. There is no neutral element in
(N; +). ◾

Example 5.22 A set of integers modulo 6, (Z6; +), forms a group whose Cayley
table is as follows:

+ 0 1 2 3 4 5

0
1
2
3
4
5

0
1
2
3
4
5

1
2
3
4
5
0

2
3
4
5
0
1

3
4
5
0
1
2

4
5
0
1
2
3

5
0
1
2
3
4

You should verify this. ◾

Example 5.23 A set  (R) = {f |f ∶ R → R}, a set of all real-valued functions
of a real variable under ordinary addition of functions is a group. Indeed,

(f + g)(x) = f (x) + g(x) ∈ G, ∀f , g ∈ F(R)

[f + (g + h)](x) = f (x) + [g(x) + h(x)]

= [f (x) + g(x)] + h(x)

= [(f + g) + h](x), ∀f , g, h ∈ F(R)

If we choose for the neutral element of  (R) the function o, defined by
o(x) = 0,∀x ∈ R, then obviously,

(o + f )(x) = (f + o)(x) = f (x), ∀f ∈ F(R)

and therefore for the inverse we have

(−f )(x) = −f (x),∀f ∈  (R), and ∀x ∈ R. ◾
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Definition 5.8 (Abelian2 group)

If (G; ∗) is a group such that a ∗ b = b ∗ a, for all a, b ∈ G, we say that G is a
commutative or an abelian group.

Definition 5.9 We say that a group (G; ∗) is a finite group if G is a finite set.

Even before discussing more examples, we are already in a position at this
point to prove some elementary properties of groups.

Theorem 5.2 If G is a group, then the identity element e is unique.

Proof Suppose there are two identity elements e, e′ ∈ G. Then,

e ∗ e′ = e′ since e is the identity

but also
e ∗ e′ = e since e′′ is the identity

Therefore, e = e′. ◾

Theorem 5.3 Let G be a group, and a ∈ G, such that a ∗ a = a. Then, a = e.

Proof Since G is a group, there should be an a′ ∈ G such that a′ ∗ a = e. Then,
multiplying the equation a ∗ a = a on the left by a′ gives

a′ ∗ (a ∗ a) = a′ ∗ a = e

= (a′ ∗ a) ∗ a = e ∗ a = a

and so, a = e. ◾

Theorem 5.4 If G is a group, then every element of G has a unique inverse.

Proof Let G be a group with identity element e. Suppose that a ∈ G has two
inverses a−1

1 and a−1
2 . Consider

a−1
1 = e ∗ a−1

1

= (a−1
2 ∗ a) ∗ a−1

1

= a−1
2 ∗ (a ∗ a−1

1 )

= a−1
2 ∗ e

= a−1
2

◾

2Named after the Norwegian mathematician Niels Henrik Abel (1802–1829).
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Corollary 5.1 If G is a group and a ∈ G then

(a−1)−1 = a (*)

Proof Since G is a group and a ∈ G there has to be an a−1 ∈ G, such that

a ∗ a−1 = a−1 ∗ a = e

“Multiplying” both sides of (*) by a−1 we obtain

a−1 ∗ (a−1)−1 = a−1 ∗ a = e

Since the inverse is unique, it follows that

(a−1)−1 = a ◾

Now that we are familiar with the idea of a binary operation “∗” on groups,
we can drop the “∗” and from now on, instead of writing a ∗ b we will simply
write ab, and call our operation multiplication. We will keep in mind, however,
that this multiplication could be quite different from ordinary multiplication.

Theorem 5.5 Let G be a group, and let a ∈ G be any element of G, then

(a−1)n = a−n = (an)−1

Proof In Definition 5.5 and Example 5.19, it was shown that if G is a semi-
group, then for any a ∈ G

(am)n = amn, ∀m, n ∈ Z

So, putting m = −1 our statement also holds if G is a group. ◾

Theorem 5.6 Let G be a group, and let a, b ∈ G. Then (ab)−1 = b−1a−1.

Proof Since G is a group and a, b ∈ G, then ab ∈ G too. That furthermore
implies that there should exist elements a−1, b−1, (ab)−1 ∈ G, such that

aa−1 = a−1a = e

bb−1 = b−1b = e

but also
(ab)(ab)−1 = (ab)−1(ab) = e (*)
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Now consider the product
(ab)(b−1a−1)

which, because of associativity, we can write

(ab)(b−1a−1) = a(b−1b)a−1

= aea−1

= aa−1

= e (**)

From (*) and (**), it follows that (ab)−1 = b−1a−1, which was to be shown. ◾

Example/Exercise 5.24 Show that if G is a group, and a1, a2, … , an ∈ G, then

(a1a2 · · · an) −1 = a−1
n a−1

n−1 · · · a
−1
1

Theorem 5.7 (Left and right cancellation law) For any group G and any
a, b ∈ G, there are unique x, y ∈ G, such that xa = b and ay = b.

Proof First take
xa = b (5.1)

Multiplying both sides by a−1, we get

xaa−1 = ba−1

xe = ba−1

x = ba−1 (5.2)

Let’s check our “solution”:

xa = (ba−1)a

= b(a−1a)

= be

= b

So, (5.2) is indeed the solution of equation (5.1). Is it unique? Well, suppose there
are two solutions s1 and s2, such that

s1a = b
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and
s2a = b

In that case, we can write
s1a = s2a (5.3)

Multiplying both sides of (5.3) by a−1 yields

s1(aa−1) = s2(aa−1)

s1e = s2e

s1 = s2

The second part can be proved in a similar way. ◾

Theorem 5.8 A semigroup G is a group iff for all a, b ∈ G each of the equations
xa = b and ay = b has a solution.

All of these elementary properties can be easily verified on the examples that
follow.

Example 5.25 Consider a set G = {e, a, b, c} with multiplication given by
the following Cayley table:

∗ e a b c

e e a b c
a a e c b
b b c e a
c c b a e

Show that G is a group.

Solution By simply inspecting the table, we see that closure is satisfied. To
verify associativity, let’s consider

a(bc) = aa

= e

= (ab)c
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= cc

= e

Similarly, you can verify that all other “products” are associative.
Note that there exists an identity e, and finally, that every element is its own

inverse. Hence, G is a group, which is known by the name of the Klein four-group
(Viergruppe), often denoted by the symbol V . ◾

Example/Exercise 5.26 Let G = {e, a, b, c, d} be endowed with a binary oper-
ation “∗” obeying the following “multiplication” table:

∗ e a b c d

e
a
b
c
d

e
a
b
c
d

a
b
c
d
e

b
c
d
e
a

c
d
e
a
b

d
e
a
b
c

Show that (G; ∗) is a group.

Example 5.27 Let P = {E,O} be a set of two elements “(E)ven” and “(O)dd”,
endowed with an operation “+,” such that

O + O = E, E + E = E, and O + E = E + O = O

Then, (P; +) is an abelian group called the parity group. This is easily
verified. ◾

Example 5.28 Consider (Q+; ∗) = (Q ⧵ {0}; ∗), where ∗ is defined by

a ∗ b = ab
2

Show that (Q+; ∗) is a group.

Solution Closure is obvious.

Associativity:

a ∗ (b ∗ c) = a ∗ bc
2
= abc

4

= ab
2
∗ c

= (a ∗ b) ∗ c
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Identity:
2 ∗ a = a ∗ 2 = a

So, for all a ∈ (Q+; ∗), e = 2.
Inverse:
Consider

a ∗ 4
a
=

a 4
a

2
=

4
a
a

2
= 2

For any a ∈ (Q+; ∗), a−1 = 4
a
.

Thus, (Q+; ∗) is a group. ◾

If you are unfamiliar with matrices, you can postpone the next three exercises
until you have studied Chapter 6.

Example/Exercise 5.29 Show that the matrices[
1 0
0 1

]
,

[
1 0
0 −1

]
,

[
−1 0

0 1

]
, and

[
−1 0

0 −1

]
with usual matrix multiplication form the Klein four-group.

Example/Exercise 5.30 Show that the set of matrices[
1 0
0 1

]
,

[
i 0
0 −i

]
,

[
0 1
−1 0

]
,

[
0 i
i 0

]
,

[
−1 0
0 −1

]
,

[
−i 0
0 i

]
,[

0 −1
1 0

]
,

[
0 −i
−i 0

]
with usual matrix multiplication is a group.

Example 5.31 Let GL(n) be a set of all regular (n, n)-matrices. Endowed with
usual matrix multiplication, GL(n) becomes a group called the general linear
group. ◾

Example 5.32 Let SL(2,R) =
{[

a b
c d

] ||| a, b, c, d ∈ R, ad − bc = 1

}
be the

set of all (2, 2) – real matrices with determinant 1. With matrix multiplication as
the binary operation, SL(2,R) is a group called special linear group. (You may
want to verify this.) ◾

Example 5.33 Consider the set C = {rei𝜑|r, 𝜑 ∈ R, i =
√
−1 }. Show that

with regular multiplication as the binary operation (C; ⋅) is a group.
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Solution The proof is almost trivial.
Closure: Let r1ei𝜑1 , r2ei𝜑2 ∈ C be any two elements of C. Then,

r1ei𝜑1 ⋅ r2ei𝜑2 = r1r2ei(𝜑1+𝜑2)

= Rei𝜙 ∈ C

where, of course, R = r1r2 and Φ = 𝜑1 + 𝜑2.
Associativity: For any r1ei𝜑1 , r2ei𝜑2 , r3ei𝜑3 ∈ C,

r1ei𝜑1 ⋅ (r2ei𝜑2 ⋅ r3ei𝜑3) = r1r2r3ei(r1+r2+r3)

= r1r2ei(r1+r2) ⋅ r3ei𝜑3

= (r1ei𝜑1 ⋅ r2ei𝜑2) ⋅ r3ei𝜑3

Neutral element: Obviously it is 1.
Inverse: For every rei𝜑 ∈ C, there exists (1∕r)e−i𝜑 ∈ C, such that

rei𝜑 ⋅
1
r

ei𝜑 = 1

Thus, (C; ⋅) is indeed a group. ◾

Definition 5.10 (Symmetric group)

Let X be a nonempty set with n elements, and let PX be a set of bijective mappings
X → X (i.e., permutations), then (PX; ∘) is a group under the usual composition of
functions. This group is called the group of permutations of X or the symmetric
group on X, and is often denoted as SX .

Example 5.34 Consider the set X = {1, 2, 3}, and the family of all permutations

PX = {pi|pi∶ X → X, i = 0, … , 5}

such that

p0 =
(

1 2 3
1 2 3

)
, p1 =

(
1 2 3
2 1 3

)
, p2 =

(
1 2 3
3 2 1

)
, and so on

It is easy to check that, with the composition of permutations (see Example 5.7) as
the binary operation on PX , all group axioms G1–G4 are satisfied, and we obtain
the group S3. Let’s just check if S3 satisfies the cancellation law: If

pi ∘ pj = pi ∘ pk
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then
pj = pk

Well,

pj = p0 ∘ pj

= (p−1
i ∘ pi) ∘ pj

= p−1
i ∘ (pi ∘ pj)

= p−1
i ∘ (pi ∘ pk)

= (p−1
i ∘ pi) ∘ pk

= p0 ∘ pk

= pk

Similarly, we can show that pj ∘ pi = pk ∘ pi implies pj = pk. ◾

Example 5.35 Recall that a point in a plane is given when its coordinates are
given. In other words, a point A is uniquely represented in a plane by an ordered
pair of real numbers (x, y). Suppose now that we want to translate the point A
to a new position (x + a, y + b), that is, the point A(x, y) becomes a new point
A′(x + a, y + b). In order to distinguish the point from its “translation,” we will
denote the process of translation A → A′ by [a, b]. We can continue this process
and move point A′ to another position (point) A′′ by translation [c, d], and so on.
So, our transformation looks like this:

A
[a,b]
−−−−→A′

[c,d]
−−−−→A′′

We express our transformation symbolically as follows:

[a, b] ∗ [c, d] = [a + c, b + d]

As before, we will drop “∗” and write our “multiplication” simply as

[a, b][c, d] = [a + c, b + d]

Show that the set of transformations described above is a commutative group.

Solution Considering the fact that the coordinates of a point are real numbers, it
is not difficult to verify that axioms G1–G4 are always satisfied under multiplica-
tion. Furthermore, since x + y = y + x for all x, y ∈ R, [a, b][c, d] = [c, d][a, b],
thus our group is also commutative. ◾
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Example 5.36 Let X be the set of all points of some geometric figure, say,
an equilateral triangle. Consider a set T of all permutations 𝜏 ∶ X → X of this
set, such that 𝜏 preserves the distance between any two points x, y ∈ X. In other
words, we want d(x, y) = d(𝜏(x), 𝜏(y)) for all x, y ∈ X, and all 𝜏 ∈ T . Further-
more, we want the product of those permutations to preserve distances too, that is,
we want

d[𝜎𝜏(x), 𝜎𝜏(y)] = d[𝜎(𝜏(x), 𝜎(𝜏(y)]

= d[𝜏(x), 𝜏(y)]

= d(x, y)

∀x, y ∈ X and ∀𝜎, 𝜏 ∈ T .
It follows that 𝜎𝜏 ∈ T . Therefore,

d(x, y) = d[𝜎(𝜎−1(x), 𝜎(𝜎−1(y)]

= d[e(x), e(y)]

= d(x, y)

So, 𝜎−1 ∈ T , and e ∈ X is the identity, that is, indicating “no permutation.”
As an example, consider an equilateral triangle ΔABC. Recall that angles of

an equilateral triangle ∠BAC, ∠ABC, and ∠BCA are all equal to 𝜋∕3. Observe
furthermore that the bisectors of these angles, let’s call them tA, tB, and tC, respec-
tively, intersect at one point, say, O. Now, consider the set of all transformations
T that map the triangle to itself. What are those? Well, let’s see (Figure 5.1):

A B

C

tB tA

Figure 5.1
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We can rotate our triangle in the positive direction (counterclockwise) through
0, 2𝜋∕3, and 4𝜋∕3, which results in the vertices moving in the following manner:

e =
⎧⎪⎨⎪⎩

A → A

B → B

C → C

𝛼 =
⎧⎪⎨⎪⎩

A → B

B → C

C → A

𝛽 =
⎧⎪⎨⎪⎩

A → C

B → A

C → B

= (A,B,C) = (B,C,A) = (C,A,B)

where we think of triples (A,B,C), (B,C,A), (C,A,B) as group elements.
Before we continue this way, let’s recognize something we know from before

(cf. Example 5.34). As you have probably noticed yourself, nothing prevents us
from writing the transformations above in such a way that you may find it to be
more practical. Simply substituting

A = 1, B = 2, and C = 3

we can write the above transformations in matrix form:

e =
(

1 2 3
1 2 3

)
𝛼 =

(
1 2 3
2 3 1

)
𝛽 =

(
1 2 3
3 1 2

)
Or even more simply, we can write

e = (1, 2, 3) 𝛼 = (2, 3, 1) 𝛽 = (3, 1, 2)

Now, observe that 𝛽 = 𝛼𝛼 = 𝛼2. Indeed,

𝛼2 = 𝛼𝛼 =
(

1 2 3
2 3 1

)(
1 2 3
2 3 1

)
=
(

1 2 3
3 1 2

)
= (2, 3, 1)(2, 3, 1) = (3, 1, 2) = 𝛽

This is exactly how we want: two consecutive rotations through 2𝜋∕3 amount to
one rotation of 4𝜋∕3.

The next three symmetries are reflections about tA, tB, and tC, which produce
the following transformation of vertices:

𝛾 =
⎧⎪⎨⎪⎩

A → A

B → C

C → B

𝛿 =
⎧⎪⎨⎪⎩

A → C

B → B

C → A

𝜂 =
⎧⎪⎨⎪⎩

A → B

B → A

C → C

= (A,C,B) = (C,B,A) = (B,A,C)
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As before, we will write this as

𝛾 =
(

1 2 3
1 3 2

)
𝛿 =

(
1 2 3
3 2 1

)
𝜂 =

(
1 2 3
2 1 3

)
Inspecting the transforms carefully, we note that

𝛿 =
(

1 2 3
3 2 1

)
=
(

1 2 3
3 1 2

)(
1 2 3
1 3 2

)
= (3, 1, 2)(1, 3, 2) = 𝛼2𝛾

and finally,

𝜂 =
(

1 2 3
2 1 3

)
=
(

1 2 3
2 3 1

)(
1 2 3
1 3 2

)
= (2, 3, 1)(1, 3, 2) = 𝛼𝛾

Hence, the set of all symmetry transformations of an equilateral triangle is

T = {e, 𝛼, 𝛼2, 𝛾, 𝛼2𝛾, 𝛼𝛾}

It is now easy to verify that axioms G1–G4 are satisfied, thus, T is a group com-
monly known as D3, the dihedral group of degree 3. An important note may
be in order: one should not confuse the “degree” of the dihedral group with its
“order.” Dihedral groups are often denoted as D2n, where n is the degree while
2n represents the order (cardinality)of a group (cf. Definition 5.12). ◾

Example/Exercise 5.37 Convince yourself that the multiplication table for D3
is

⋅ e 𝛼 𝛼2 𝛾 𝛼𝛾 𝛼2𝛾

e e 𝛼 𝛼2 𝛾 𝛼𝛾 𝛼2𝛾
𝛼 𝛼 𝛼2 e 𝛼𝛾 𝛼2𝛾 𝛾
𝛼2 𝛼2 e 𝛼 𝛼2𝛾 𝛾 𝛼𝛾
𝛾 𝛾 𝛼2𝛾 𝛼𝛾 e 𝛼2 𝛼
𝛼𝛾 𝛼𝛾 𝛾 𝛼2𝛾 𝛼 e 𝛼2

𝛼2𝛾 𝛼2𝛾 𝛼𝛾 𝛾 𝛼2 𝛼 e

Example 5.38 Similarly, we construct D4. Take any square with vertices
1, 2, 3, 4, 1234 (Figure 5.2) and consider moving the square to make it coincide
with its former self. In other words, we would like to distinguish all possible
ways in which a square (any square object) can be repositioned.
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d13 d24

h

υ

1

4 3

2

Figure 5.2
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4

1

1

4

2
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2

1

3

4

4

3

1

2

Figure 5.3

First, the obvious symmetries are obtained by rotating the square clockwise
about its center through angles of 90∘, 180∘ = 2 × 90∘, 270∘ = 3 × 90∘. In other
words, if our “original” square was 1234, after a 90∘-clockwise rotation we obtain

2341. A 180∘-rotation gives us 3412, and so on. Of course, a rotation of 360∘ gives
the original configuration – as if no transformation was performed. We will call
it 𝜌0. Explicitly, the elements are shown in Figure 5.3.

Writing all of this as a permutation, we have

𝜌0 =
(

1 2 3 4
1 2 3 4

)
, 𝜌1 =

(
1 2 3 4
2 3 4 1

)
, 𝜌2 =

(
1 2 3 4
3 4 1 2

)
,

𝜌3 =
(

1 2 3 4
4 1 2 3

)
There are four more symmetries to consider. We can flip the square about diag-
onals d13 and d24 and also about the horizontal and vertical axes, h and v. Let’s
call the flips about d13 and d24, 𝜌4 and 𝜌5, respectively. Finally, the flip about h we
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denote by 𝜌6, and the one about v, 𝜌7. This gives us four more transformations:

𝜌4 =
(

1 2 3 4
1 4 3 2

)
, 𝜌5 =

(
1 2 3 4
3 2 1 4

)
, 𝜌6 =

(
1 2 3 4
4 3 2 1

)
,

and 𝜌7 =
(

1 2 3 4
2 1 4 3

)
Thus, set S = {𝜌0, 𝜌1, 𝜌2, 𝜌3, 𝜌4, 𝜌5, 𝜌6, 𝜌7} is the set of symmetries of the
square. Let’s endow S with an operation “∘” as the composition of transformations
𝜌i’s. Recall that, for instance,

𝜌1∘𝜌4 =
(

1 2 3 4
2 3 4 1

)
∘
(

1 2 3 4
1 4 3 2

)
=
(

1 2 3 4
2 1 4 3

)
= 𝜌7

One can easily convince oneself that set S is closed under such defined operations,
that is

𝜌i∘𝜌j ∈ S, ∀i, j = 0, 1, … , 7

Associativity holds, that is

𝜌i∘(𝜌j∘𝜌k) = (𝜌i∘𝜌j)∘𝜌k

𝜌0 is a neutral element, that is

𝜌i∘𝜌0 = 𝜌0∘𝜌i = 𝜌i

Finally, for every 𝜌i ∈ S there exists an inverse 𝜌−1
i ∈ S, such that

𝜌i∘𝜌−1
i = 𝜌−1

i ∘𝜌i = 𝜌0

So, we observe that any transformation is equivalent to one of those from set S.
Thus, under the composition “∘” as the binary operation, the set (S; ∘) becomes
the group of symmetries of the square, often called the octic group. ◾

Consequently, we have

Definition 5.11 The nth dihedral group is a group of symmetries of a regular
n-tgon.

On the other hand, if we can consider only rotations of a square about its center,
we obtain a group R4 as described in the following

Example 5.39 Consider a set R4 = {e, r1 , r2, r3 } of rotations of a square about
its center, making it coincide with itself. Let’s endow the set with an operation “*”
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representing addition of rotations. Then (R4; ∗), defined by the following multi-
plication table, becomes a group of rotations of the square.

∗ e r1 r2 r3

e
r1
r2
r3

e
r1
r2
r3

r1
r2
r3
e

r2
r3
e
r1

r3
e
r1
r2

Note the difference between the group R4 and the Klein four-group from
Example 5.25. ◾

Example/Exercise 5.40 Find the symmetries of the following shape, and con-
struct the multiplication table showing that the symmetries form a group (see
Figure 5.4).

Figure 5.4

Example 5.41 Let X be a set. Then the family of all subsets of X, equipped with
the symmetric difference of sets Δ (see Chapter 1) as a binary operation, forms
the Boolean group B(X). Recall that if A,B ⊆ X, then

A Δ B = (A ⧵ B) ∪ (B ⧵ A)

Closure is obvious. Associativity holds (see prob. I. 23).
The neutral element is ∅. Since AΔA = ∅, the inverse of A is A itself. Thus,

B(X) is indeed an abelian group. ◾

I hope you won’t find proofs of the following two theorems too difficult.

Theorem 5.9 For every nonempty set X, the algebraic structure (SX; ∘) is a
permutation group, with “∘” denoting the composition of permutations.
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Proof First, recall that permutations of set X, X → X, are bijections. Further-
more, the composition of bijections is again a bijection. Thus, it has an inverse
that is a bijection too. Finally, the “neutral element” is the identity map, certainly
a bijection. So, indeed, (SX; ∘) is a group. ◾

Example 5.42 For illustration, let’s take three simple bijections from the set F
of all bijections from R to R:

f ∶ R → R, g ∶ R → R, and h ∶ R → R

defined by

f (x) = x + 1, g(x) = 2x, h(x) = 1
2

x

All three functions are well defined and, as we recall, the composition of bijec-
tions is a bijection too. For instance,

(f ∘g)(x) = f [g(x)] = f [2x] = 2x + 1

Similarly,
(g∘f )(x) = g[f (x)] = g[x + 1] = 2x + 2

The set F is closed with respect to composition. Let’s check associativity:

(f ∘(g∘h))(x) = f ∘(g[h(x)]) = f
{

g
[1

2
x
]}

= f {x} = x + 1

((f ∘g)∘h)(x) = (f ∘g)[h(x)] = f
{

g
[1

2
x
]}

= f {x} = x + 1

The identity is obvious: i(x) = x. Indeed,

f (x) = (i∘f )(x) = i[f (x)] = i(x + 1) = x + 1

= f [i(x)] = (f ∘i)(x)

The same is valid of any function from F. Finally, it is trivial to verify that every
function from F has an inverse. Taking, for example, the same f again, we have

(f−1∘f )(x) = f −1[f (x)] = f −1(x + 1) = x + 1 − 1 = x = i(x)

(f ∘f−1)(x) = f [f −1(x)] = f (x − 1) = x − 1 + 1 = x = i(x)

Thus, the set of all permutations/all bijections is a group. ◾

Theorem 5.10 A group Sn has n! elements.
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Proof By induction. ◾

Example/Exercise 5.43 Let H = {𝜌0, … , 𝜌12} be the set of symmetries of a
regular hexagon; see Figure 5.5,

1 2

36

5 4d2,5

d12,45

d1,4

d16,34

d3,6

d23,56

Figure 5.5

where

𝜌0 =
(

1 2 3 4 5 6
1 2 3 4 5 6

)
, 𝜌1 =

(
1 2 3 4 5 6
2 3 4 5 6 1

)
, and so on

With the composition of symmetries as the binary operation, construct the mul-
tiplication table for (H; ∘), and show that (H; ∘) is a group.

Example 5.44 Show that the set Zn ={0, 1, 2, … , n − 1} is a group under
addition (mod n).

Solution Theorem 4.3 shows that addition (mod n) is a well-defined binary
operation. Closure is obviously satisfied and you can easily convince yourself
that associativity also holds. The neutral element is 0. What about the inverse?
Let’s see. Take any nonzero element x ∈ Zn and consider n − x. Then,

x + (n − x) = n = 0(mod n)

Thus, n − x is the inverse of x. Of course, it follows that 0 is its own inverse.
Hence, G1–G4 are satisfied and we have a group indeed. ◾

Example/Exercise 5.45 Consider the set C = {1,−1, i,−i; ⋅}, where i =
√
−1,

and “⋅” indicates ordinary multiplication. Show that as defined, (C; ⋅) is a group.
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Example 5.46 Consider a set K = {−1, 1,−i, i,−j, j,−k, k}with multiplication
defined in the following way:

i2 = j2 = k2 = −1

and
ij = k = −ji, and so on cyclically

Then, K becomes a group called the quaternion group. ◾

In case you haven’t been exposed to the basic concepts of algebra of complex
numbers and thus wondered about the strange number i =

√
−1, you may find

the next two examples especially interesting.

Example 5.47 Let’s consider the set of ordered pairs of numbers

C = {(a, b)|a, b ∈ R; (a, b) = (c, d) ⇔ a = c and b = d}

and let’s define on C a binary operation, the “product of pairs,” as follows: For
all (a, b), (c, d) ∈ C

(a, b) ⋅ (c, d) = (ac − bd, bc + ad) (5.4)

Consequently, with a product as defined, we are naturally led to a quotient of
pairs. That is, if (x, y) is a quotient of pairs (a, b) and (c, d) then, of course,

(x, y) ⋅ (c, d) = (a, b) (5.5)

Following (5.4) it means that

(xc − yd, xd + yc) = (a, b) (5.6)

that is
xc − yd = a, xd + yc = b (5.7)

Solving the system (5.7) we get

x = ac + bd
c2 + d2

, y = bc − ad
c2 + d2

(5.8)

In other words, we define the quotient

(a, b)
(c, d)

=
(ac + bd

c2 + d2
,

bc − ad
c2 + d2

)
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Obviously, the quotient is defined only if c and d are not both equal to zero.
Now we are ready to recognize that a set C+ = C ⧵ {(0, 0)} with multiplica-

tion defined by (5.4) satisfies axioms G1–G4 and is thus a group:
Closure is obvious. Let’s check associativity. For all (a, b), (c, d), (e, f ) ∈ C,

(a, b) ⋅ ((c, d) ⋅ (e, f )) = (a, b) ⋅ (ce − df , de + cf )

= (a(ce − df ) − b(de + cf ), b(ce − df ) + a(de + cf ))

= (ace − adf − bde − bcf , bce − bdf + ade + acf )

= ((ac − bd)e − (ad + bc)f , (ac − bd)f + (ad + bc)e)

= ((a, b) ⋅ (c, d)) ⋅ (e, f )

The neutral element is (1, 0). Indeed, for every (a, b) ∈ C+,

(1, 0) ⋅ (a, b) = (1 ⋅ a − 0 ⋅ b, 0 ⋅ a + 1 ⋅ b) = (a, b)

(a, b) ⋅ (1, 0) = (a ⋅ 1 − b ⋅ 0, b ⋅ 1 + a ⋅ 0) = (a, b)

Finally, for every (a, b) ∈ C+, there exists

(a, b)−1 =
( a

a2 + b2
,− b

a2 + b2

)
such that

(a, b) ⋅ (a, b)−1 = (a, b)−1(a, b) = (1, 0)

Thus (C+; ⋅) is indeed a group. ◾

Example/Exercise 5.48 Endowing the same set C with addition defined as fol-
lows:

(a, b) + (c, d) = (a + c, b + d), ∀ (a, b), (c, d) ∈ C

you can easily show that (C; +) is also a group whose neutral element with
respect to addition is (0, 0).

Now let’s digress a little, and as a byproduct of the aforementioned discussion,
let’s finally try to “justify” the infamous i =

√
−1.

Suppose we wanted to solve the simple quadratic equation

x2 + 1 = 0 (*)

You would recall from high school algebra that such an equation doesn’t have a
real solution, that is, we cannot find x ∈ R such that x2 = −1. Obviously, our set
R is not rich enough to accommodate even an equation as simple as (*). Clearly,
we need something more.
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Suppose we take our set C as in Examples 5.47 and 5.48 and consider

(0, 1)2 = (0, 1) ⋅ (0, 1)

= (−1, 0)

So the analogue of x2 = −1 would be

(x, y)2 = (−1, 0) (**)

Evidently, the solution of equation (**) is (0, 1). Finally, if we denote the pair
(0, 1) by i, and (−1, 0) by −1 we get

i2 = −1

The set C, introduced above, is the set of complex numbers, which you might
have encountered before in the more familiar form of a + ib. Indeed, with our
“pair representation”

(a, b) = (a, 0) + (b, 0)(0, 1)

= a + ib

The ordered pair representation of a complex number was introduced by Hamil-
ton3 in 1831 as a more logically satisfying expression that, in particular, evades
the unattractive term “imaginary” number.

Example 5.49 Let Rn = R × R × · · · × R = {(x1, x2, … , xn)|xi ∈ R} be the
set of all ordered real n-tuples. If we supply set Rn with ordinary coordinate
addition

x + y = (x1, … , xn) + (y1, … , yn)

= (x1 + y1, … , xn + yn)

then Rn becomes an abelian group. ◾

Example 5.50 Consider the set F = {f1, … , f6} such that

f1 = x, f2 = 1 − x, f3 =
1
x
, f4 =

x − 1
x

, f5 =
1

1 − x
, f6 =

x
x − 1

With the composition of functions as the binary operation, F becomes a non-
abelian group. You should verify this. ◾

3Hamilton, W. R. (1805–1865), Irish mathematician and physicist.
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Example/Exercise 5.51 Let p ∶ R → R be a polynomial in one variable with
real coefficients, that is

p(x) =
n∑
i

aix
i, ai ∈ R

and let
Pn = {p|p, n < m ∈ N} ∪ {0}

be the set of all polynomials whose degree is less than m ∈ N. Show that with
ordinary addition of polynomials, Pn is a group.

Example 5.52 Consider the set of all polynomials of first degree, that is, all
functions f ∶ R → R defined by

fa,b(x) = ax + b

where a, b ∈ R with a ≠ 0. This set equipped with the composition of functions
as the binary operation forms an Affine group Aff(1,R).

Indeed, let’s take another function, fc,d(x) = cx + d, c ≠ 0, and check closure:

(fa,b∘fc,d)(x) = fa,b(cx + d) = a(cx + d) + b

= acx + ad + b

= fac,ad+b(x)

Since ac ≠ 0, fac,ad+b ∈ Aff(1,R).
Associativity is obvious since the composition of functions is associative.
The neutral element (identity) is f1,0 ∶ R → R:

(fa,b∘f1,0)(x) = fa,b(1 ⋅ x + 0) = ax + b = fa,b

(f1,0∘fa,b)(x) = f1,0(ax + b) = 1 ⋅ (ax + b) + 0 = fa,b

Finally, let’s show that the inverse is fa−1,−a−1b ∶ R → R

(fa,b∘fa−1,−a−1b)(x) = fa,b(a−1x − a−1b) = a(a−1x − a−1b) + b

= x = f1,0

(fa−1,−a−1b∘fa,b)(x) = fa−1,−a−1b(ax + b) = a−1(ax + b) − a−1b

= x = f1,0 ◾
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In general, we conclude that if FR is the set of all functions R → R, then
(FR; ∘) is a groupoid, with “∘” denoting the usual composition of functions. If
we choose the set of all bijections PR ⊆ FR with the same operation “∘,” then
(PR; ∘) is a nonabelian group.

Theorem 5.11 Let G be a group, and let a, b ∈ G. Then, (ab)−1 = b−1a−1.

Proof Since G is a group, and a, b ∈ G then ab ∈ G too. That furthermore
implies that there should exist a−1, b−1, (ab)−1 ∈ G such that

aa−1 = a−1a = e

bb−1 = b−1b = e

but also
(ab)(ab)−1 = (ab)−1(ab) = e (*)

Consider the product
(ab)(b−1a−1)

which, because of associativity, we can write

(ab)(b−1a−1) = a(b−1b)a−1

= aea−1

= aa−1

= e (**)

From (*) and (**), it follows that (ab)−1 = b−1a−1, which was to be shown. ◾

Example/Exercise 5.53 Let G be a group, and let a1, a2, … , an ∈ G, then

(a1a2 · · · an)−1 = a−1
n a−1

n−1 · · · a
−1
1

5.3 SUBGROUPS

Definition 5.12 The number of elements of a group G (finite or infinite) is said
to be the order of the group or the cardinality of the group, denoted |G|.
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Example 5.54

(i) The group (Zn; +) is a group of order n.
(ii) The group from Example 5.25 is a group of order 4, as is the group (C; ⋅)

from Example 5.44. The group from Example 5.34 is of order 6 (note, how-
ever, that its degree is 3). ◾

Example 5.55

(i) The group (Z; +) is a group of infinite order.
(ii) The group (R∗; ⋅) of nonzero real numbers is a group of infinite order. ◾

Definition 5.13 Let G be a group, and let a ∈ G. We define the order of a to
be the smallest natural number n, such that an = e and we denote that number by|a|. If no such number exists, we say that a is of infinite order.

Example 5.56 An element x of a group has order 1 iff x = e. ◾

Example 5.57 Consider (Z10; +) and find |2| and |7|.
Solution

1 ⋅ 2 = 2, 2 ⋅ 2 = 4, 3 ⋅ 2 = 6, 4 ⋅ 2 = 8, 5 ⋅ 2 = 0 = e, thus |2| = 5

1 ⋅ 7 = 7, 2 ⋅ 7 = 4, 3 ⋅ 7 = 1, 4 ⋅ 7 = 8, 5 ⋅ 7 = 5, 6 ⋅ 7 = 2, 7 ⋅ 7 = 9,

8 ⋅ 7 = 6, 9 ⋅ 7 = 3, 10 ⋅ 7 = 0 = e, thus |7| = 10 ◾

Example/Exercise 5.58 Consider (Z6; +) and find |3| and |5|.
Theorem 5.12 If there exists a nonzero m ∈ Z such that am = e, then there
exists an n ∈ N such that an = e.

Proof Let m < 0 be an integer. Then, of course, −m > 0 and

a−m = (am)−1 = e−1 = e ◾

Certainly, there are groups whose every element is of infinite order.

Example 5.59 Groups (Z; +), (Q; +), and (R; +) are examples of groups whose
every nonzero element is of infinite order. ◾
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Theorem 5.13 Let G be a group, and let a ∈ G, such that |a| = n. Then, there
are exactly n different powers of a.

Proof Let am be any power of a, that is, am ∈ {a0, a, a2, … , an−1}. Then, we
can express m as

m = nq + r, 0 ≤ r ≤ n, n, q, r ∈ N

and write

am = anq+r = anqar

= (an)qar = eqar

= ar

where r ∈ {0, 1, 2, … , n − 1}. Next, we just need to prove that ar ≠ as

for r ≠ s. Well, suppose not. Suppose there are two different integers
r, s ∈ {0, 1, 2, … , n − 1}, such that ar = as. Then, either r < s or s < r.
Let’s consider the case 0 ≤ s < r < n. It follows that

0 < r − s < n ∈ N

But since ar = as we have

ar−s = ar(as)−1

= as(as)−1

= e

However, this cannot be since r − s < n ∈ N, and n is the order of a, that is, the
smallest natural number for which an = e. Thus, we cannot have ar = as with
r ≠ s, that is, the powers a0, … , an−1 are all different. ◾

Corollary 5.2 Let G be a group and a ∈ G such that |a| = n. Then, ap = e iff p
is a multiple of n, that is, p = nq, q ∈ Z.

Example 5.60 Let G be a group and a, b ∈ G, such that |a| = n ∈ N. Show
that |a| = |bab−1|
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Solution |a| = n means that an = e. Thus,

(bab−1)n = b−nanbn

= b−nebn

= (bb−1)n

= en

= e = an

The converse can be proved similarly. ◾

Example/Exercise 5.61 Let G be a group and a ∈ G, such that |a| = n. Show
that an−r = (ar)−1.

Definition 5.14 A nonempty subset H of a group G is a subgroup of G, denoted
H ≤ G, iff H is a group with the same operation as G.

Definition 5.14
′

A subset H of a group G is a subgroup of G if

(i) e ∈ H

(ii) if a, b ∈ H, then ab ∈ H

(iii) if a ∈ H, then a−1 ∈ H

In other words, if H is a subgroup of G, then H is a group itself. Why is that?
Well, the binary operation under which G becomes a group is certainly the same
operation if restricted to H ⊆ G. It has to be associative since it is associative for
all the elements of G, thus in particular for those belonging to H. The question
of the neutral element is slightly more intriguing. First, the assumption was that
H ≠ ∅, so H has to contain at least one element, say, a. But H is closed with
respect to the inverse, that is, if a ∈ H, then a−1 ∈ H, and therefore aa−1 = e ∈ H.
Hence, H is a group indeed.

Example 5.62 Q+ under multiplication is the subgroup of R+ under multipli-
cation, that is, (Q+; ⋅) ≤ (R+; ⋅). ◾

The question that naturally occurs is : Is there a way to recognize whether
a certain subset of a group G is itself a group without going through G1–G4?
Fortunately, we are in possession of some relatively simple tools for determining
whether or not H ⊆ G is the subgroup of G. It suffices to perform one of the
following tests to get a definite answer.

Theorem 5.14 A nonempty subset H of a group G is a subgroup of G iff the
following two conditions are satisfied:
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(i) ∀a, b ∈ H, ab ∈ H

(ii) ∀a ∈ H, a−1 ∈ H

Proof Suppose, first, that H ≤ G, and let’s show that (i) and (ii) are satisfied.
Since H ≤ G, that is, H is a group itself, closure is automatically satisfied.

We need to show that e ∈ G is also the identity for H. Well, suppose there is an
identity

e′ ∈ H, such that e′a = ae′ = a, ∀a ∈ H. In particular,

e′e′ = e′

At the same time, since e ∈ G is the identity for the whole group G,

ee′ = e′e = e′

Thus, by the left cancellation law (LCL),

e = e′

Now, consider some a ∈ H. Since H ⊆ G a ∈ G too. That furthermore implies
that a−1 ∈ G and so a−1a = e ∈ G. It remains to be shown that there is a unique
a−1 ∈ H. Suppose not. Suppose there is a′ ∈ H, thus a′ ∈ G too, such that
aa′ = e. But that would mean that

e = aa′ = aa−1

By the LCL a′ = a−1.
Finally, we need to prove the converse: if H ⊆ G, satisfying (i) and (ii), then

H is a subgroup of G.
Let a, b, c ∈ H. a, b, c are also elements of G, since H ⊆ G. Since G is a group

a(bc) = (ab)c, ∀a, b, c ∈ G

With this, and the assumption (i), we see that associativity holds in H as well.
Furthermore, (ii) implies that every element of H has an inverse. What about the
identity? Well, since H ≠ ∅ there has to exist a ∈ H, but (ii) says that ∀a ∈ H,
∃a−1 ∈ H. On the other hand, by (i) we know that H is closed under multiplica-
tion, thus

aa−1 = e ∈ H

We see that axioms G1–G4 are satisfied, thus we proved that H ≤ G. ◾
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Theorem 5.15 A nonempty subset H of a group G is a subgroup iff

∀a, b ∈ H, ab−1 ∈ H

Proof If H is a subgroup, that is, a group itself, there is nothing to prove, that
is, ab−1 ∈ H (has to be) for all a, b ∈ H. It remains to be shown that if ab−1 ∈ H,
∀a, b ∈ H then H ≤ G.

Let a, b ∈ H, and consider the case where b = a. Then,

ab−1 = aa−1 = e ∈ H

So, H contains the identity. Now, since a, e ∈ H, it follows that

ea−1 = a−1 ∈ H

Thus, we have proved that if a, b ∈ H, then b−1 ∈ H too. But that also implies

a(b−1)−1 = ab ∈ H

Finally, the associativity of products in H comes from the associativity in G, thus
H is a group, that is, a subgroup of G. ◾

Corollary 5.3 Let H ⊆ G be a nonempty subset of a group G. Then, H is a sub-
group of G iff

HH−1 ⊆ H

Example 5.63 Let G be an abelian group. Show that H = {x ∈ G|x2 = e} is
a subgroup of G.

Solution Obviously, H ≠ ∅. Suppose a, b ∈ H. We would like to show that
ab−1 ∈ H too. Since a, b ∈ H, it follows that a2 = e and b2 = e. Thus, we need
to show that (ab−1)2 = e. Well,

(ab−1)2 = (ab−1)(ab−1)

= a(b−1a)b−1

But G is abelian, so

= a(ab−1)b−1

= a2(b−1)2

= a2(b2)−1

= ee−1 = e

Hence, H ≤ G. ◾
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Example 5.64 Suppose G is a group, such that a, b, c ∈ G, and let H ⊆ G,
such that all a, b and c (in any order), as well as their inverses, are elements of H.
Show that H ≤ G.

Solution From the description of H, it follows that if we randomly pick an
element from H, say, abac−1 ∈ H, then

abac−1(abac−1)−1 = abac−1c(aba)−1

= abae(aba)−1

= aba(aba)−1

= e ∈ H

Obviously, similar reasoning could have been used with any combination of ele-
ments and their inverses from H. Thus, H is indeed a subgroup of G. ◾

Example 5.65 Let G be a group, and let H = {a ∈ G|(ax)2 = (xa)2,∀x ∈ G}.
Show that H ≤ G.

Solution Obviously, H ≠ ∅. Let a, b ∈ H. In order to show that H ≤ G, we
need to show that ab−1 ∈ H, that is, (ab−1x)2 = (xab−1)2 ∀x ∈ G. To make the
calculation easier and more transparent, let’s put ab−1 = AS, so we have

(ab−1x)2 = (Ax)2

= (Ax)2(xA)−2(xA)2

= (x2A2)(A−2x−2A2x2)

= x2(A2A−2)(x−2A2x2)

= x2x−2(A2x2)

= A2x2

= (xA)2

= (xab−1)2 ◾

Example 5.66 Let G be a group, and a ∈ G. Then, ⟨a⟩ = {an|n ∈ Z} is a sub-
group of G. (We will have to say more about these in Section 5.4.)

Note that ⟨a⟩ ≠ ∅ since a1 = a ∈ G. Suppose that x, y ∈ ⟨a⟩ such that x = am

and y = an, where m, n ∈ Z. We need to check whether xy−1 is an element of ⟨a⟩:
xy−1 = am(an)−1 = ama−n = am−n

Since −n ∈ Z, am−n = xy−1 ∈ ⟨a⟩ and thus ⟨a⟩ ≤ G. ◾
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Theorem 5.16 A nonempty subset H ⊆ G is a subgroup of a finite group G iff
H is closed under the operation of G, that is,

∀a, b ∈ H, ab ∈ H

Proof ab ∈ H, ∀a, b ∈ H means that H is closed under the binary operation,
thus H is a finite semigroup. By Theorem 5.7, LCL and RCL hold for the whole
group G; therefore, they must hold for all elements of H ⊆ G. Thus, H ≤ G. The
converse is obvious. ◾

Example 5.67 Show that the set E = {x ∈ Z|x = 2k, k ∈ Z} of even numbers
is a subgroup of (Z; +).

Solution First, it’s trivially obvious that E ≠ ∅ and, therefore, E is closed
under addition. Second, addition is associative in Z. Third, 0 ∈ Z is a neu-
tral element, and finally, for every x ∈ E, there exists (−x) ∈ E, such that
x + (−x) = (−x) + x = 0, and thus (E; +) is indeed a subgroup of Z.

Also, more generally, if we construct a set N
t Z = {… ,−3t,−2t,−t, 0, t, 2t,

3t, …} of all of the multiples of t ∈ Z, then (Nt Z; +) is also a subgroup of Z. ◾

Example 5.68 Let H be a subgroup of an abelian group G and let
K = {a ∈ G|an ∈ H, n ∈ Z}. Show that K ≤ G.

Solution Let a, b ∈ K. Then, by the construction of K, an, bm ∈ H for some
n,m ∈ Z. But since H ≤ G, anm, bnm ∈ H too. Now observe that, since G is
abelian,

(ab)nm = anmbnm

= (an)m(bm)n ∈ H

So, ab ∈ K.
We can go on and consider

(ab)nm(ab)−nm = anmbnmb−nma−nm

= anmea−nm

= e ∈ K

Thus, K ≤ G. ◾

Example 5.69 Consider the group (R∗; ⋅) of nonzero real numbers. Then,
H = {2n|n ∈ Z} under the same multiplication is a subgroup of (R∗; ⋅). Indeed,
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If 2n, 2m ∈ H, then obviously 2n ⋅ 2m = 2n+m ∈ H, since n + m ∈ Z. Associa-
tivity immediately follows. The neutral element is 20, which furthermore
implies that the inverse for 2n is 2−n. Thus, (H; ⋅) ≤ (R∗; ⋅). However, we
could have used Theorem 5.15 and simply argued:

If 2n, 2m ∈ H, then 2n2−m = 2n−m ∈ H, since n − m ∈ Z. Therefore,
(H; ⋅) ≤ (R∗; ⋅), as claimed. ◾

Example 5.70 Let H be a subgroup of G, and let K = {x ∈ G|xax−1 ∈ H,
iff a ∈ H}. Show that K ≤ G.

Solution In order to show that K ≤ G, we need to show that xy−1 ∈ K,
∀x, y ∈ K.

So, let x, y ∈ K. Then, if a ∈ H, xax−1 ∈ H and yay−1 ∈ H. Conversely, if
xbx−1 ∈ H, then b ∈ H. Now, for some a ∈ H,

(xy−1)a(xy−1)−1 = (xy−1)(yy−1)a(yy−1) (xy−1)−1

= x(yy−1)(y−1ay)(y−1y)x−1

= x(y−1ay)x−1

Thus, with y−1ay = b, we see that xbx−1 ∈ H. In other words, xy−1 ∈ K and so
K ≤ G. ◾

Example/Exercise 5.71 With G,H, and K as in the previous exercise, show
that H ≤ K.

Example 5.72 Show that H = {f ∈  (R)|f (−x) = −f (x)} is a subgroup of
G( (R); +), with f (0) = 0.

Solution Let f , g ∈ H. We need to show that f + g−1 ∈ H.
f and g, being the elements of H ⊆ G, imply first that

f (0) = 0 and g(0) = 0

So,
(f + g)(0) = f (0) + g(0) = 0 + 0 = 0

Second,
f (−x) = −f (x) and g(−x) = −g(x)

On the other hand, since the binary operation in G is “+,” we have

g−1 = −g
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Indeed,
−g(x) + g(x) = g(−x) + g(x) = g(−x + x) = g(0) = 0

So,

(f + g−1)(x) = f (x) + g−1(x)

= f (x) − g(x) = f (x) + g(−x) ∈ H ◾

If you are unfamiliar with matrices, you can postpone the next two exercises
until you have studied Chapter 6.

Example/Exercise 5.73 Let ((R); +) be a group of all real matrices. If

H =
{[

a b
c 0

] |a, b, c ∈ R
}

Show that (H; +) is a subgroup of ((R); +).

Example 5.74 Consider a set H =
{[

a b
0 1∕a

] |a, b ∈ R, a ≠ 0

}
. Set H

with matrix multiplication as the binary operation is a subgroup of SL(2,R) (see
Exercise 5.32). ◾

Example 5.75 We call the function f ∶ R2 → R2 an isometry of the plane if
for all points P(a, b),Q(c, d) ∈ R2 in the plane, the distance

d(P,Q) = d(f (P), f (Q))

(cf. Examples 5.34–5.37). You should convince yourself that the set (R2) of all
isometries of the plane is a group under the composition of functions. The fol-
lowing are subgroups of (R2):

(i) The set T(R2) of all translations of the plane.
(ii) The set RP(R2) of all rotations of the plane about a given point P.

(iii) The set ℑ(R2) = T(R2) ∘ RP(R2) = {𝜏∘𝜌|𝜏 ∈ T , 𝜌 ∈ I} of all transforma-
tions of the plane. ◾

Theorem 5.17 The set Sym(X) of all symmetries on a set X is a subgroup of
SX .
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Proof Closure: Let 𝜎 and 𝜏 be any two symmetries of X. Then, 𝜎∘𝜏 is certainly
some permutation of X. Does it preserve the distance? Well, let’s see.

Take a, b ∈ X and consider

d(𝜎∘𝜏(a), 𝜎∘𝜏(b)) = d(𝜎(𝜏(a), 𝜎(𝜏(b))

= d(𝜏(a), 𝜏(b))

= d(a, b)

Associativity: Obvious.
Neutral element: Consider the identity permutation 𝜄(a) = a. Then, as

expected,
d(𝜄(a), 𝜄(b)) = d(a, b)

Inverse: Since 𝜎 is a symmetry, there exists (a permutation) 𝜎−1. We would
like to see whether the distance is preserved under the action of 𝜎−1. So, keeping
in mind that 𝜎 is a symmetry, let’s check

d(𝜎−1(a), 𝜎−1(b)) = d(𝜎( 𝜎−1(a), 𝜎(𝜎−1(b)))

= d(𝜄(a), 𝜄(b))

= d(a, b)

So, 𝜎−1 is also a symmetry. Thus the proof. ◾

Example 5.76 Take the group D4 (cf. Example 5.38) and consider the following
subsets of it:

A = {𝜌0, 𝜌2, 𝜌6, 𝜌7},B = {𝜌0, 𝜌1, 𝜌2, 𝜌3},C = {𝜌0, 𝜌2, 𝜌4, 𝜌5},D = {𝜌0, 𝜌7}

F = {𝜌0, 𝜌6},G = {𝜌0, 𝜌2},H = {𝜌0, 𝜌5},K = {𝜌0, 𝜌4},E = {𝜌0}

It is easy to verify that all of the above sets are subgroups of D4. The following
subgroup diagram (Figure 5.6) shows the remarkable symmetries. ◾

Example 5.77 Consider H = {0, 3} ⊆ (Z6; +) and K = {0, 2, 4} ⊆ (Z6; +)
and show that H,K ≤ (Z6; +).

Solution It is sufficient to inspect the Cayley table for (Z6; +) and verify the
claim. The elements of H are bold faced.



�

� �

�

SUBGROUPS 367

D4

B

G

E

A C

FD H K

Figure 5.6 Subgroup diagram for D4

+ 0 1 2 3 4 5

0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

Similarly for K:

+ 0 1 2 3 4 5

0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4
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That is, H = {0, 3} and K = {0, 2, 4}.
We see that H,K ≤ (Z6; +) indeed. ◾

Definition 5.15 If G is a group, then G itself is considered its own subgroup.
It is obvious that {e} ≤ G. We call these trivial subgroups. Any subgroup other
than G itself and {e} is called a proper subgroup.

Theorem 5.18 The union of two subgroups H and K of a group G is a subgroup,
iff H ⊆ K or K ⊆ H.

Proof Let H and K be two subgroups of a group G, such that H ⊈ K, and
K ⊈ H, and let’s suppose that H ∪ K ≤ G. Then there exist4

a ∈ H − K, and b ∈ K − H

On the other hand,
a, b ∈ H ∪ K

which would imply that
ab ∈ H ∪ K

that is,
ab ∈ H

But, if ab ∈ H, then
b = a−1ab ∈ H

which is a contradiction.
Similarly,

ab ∈ K

implies
a = abb−1 ∈ K

a contradiction again.
We conclude that the union of two subgroups of a group G is a subgroup itself

iff H ⊆ K or K ⊆ H. ◾

Theorem 5.19 The intersection of any family of subgroups of a group G is a
subgroup of G.

4In order to avoid confusion of notation here we use "−" for the difference of sets. We will use “⧵” later
for quotient groups.
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Proof Let {Hi|i = 1, 2, … , n} be a family of subgroups of G. In that case,
e ∈ Hi for every i, that is, e ∈ ∩Hi. Suppose further that

a, b ∈ ∩Hi

Then, since every Hi is a subgroup of G,

ab−1 ∈ ∩Hi

Thus, ∩Hi ≤ G, which was to be shown. ◾

To summarize the conclusions of the previous two theorems: The intersection
of two subgroups of a group G is a subgroup of G. However, the union of two
subgroups does not necessarily have to be a subgroup of G.

Consequently, we can reason as follows: Suppose S ⊆ G is some subset of a
group G. Then, S is a subset of some subgroup of G (if no other but G itself). Let
H = ∩iHi be the intersection of all subgroups Hi ≤ G containing S. We already
know from the previous theorem that H is a subgroup of G, and we say that H is
a subgroup generated by S. We write H = [S]. Of course, if S ≤ G then S = [S].
Also, H is the smallest subgroup of G (Figure 5.7).

e

H
S

G

Figure 5.7

More formally, we have

Theorem 5.20 Let G be a group, and let S be a subset of G; then, there is a
smallest subgroup H ≤ G containing S.
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Proof We can always find a subgroup of G that contains S, if no other than
G itself. Let H be the intersection of all subgroups of G that contain S. By the
previous theorem, H itself is a subgroup of G. Thus, S ⊆ H. Now, suppose there
is a K ≤ G, such that S ⊆ K. In that case, K is one of the subgroups of G. Hence
H ≤ K, which makes it the smallest subgroup containing S. ◾

Definition 5.16 If S is a subset of a group G, then the smallest subgroup of
G containing S and denoted by [X] is called the subgroup generated by S. In
particular, if H,K ≤ G are two subgroups of G, then the smallest subgroup con-
taining H and K, that is, the subgroup generated by H ∪ K, is a subgroup denoted
by [H ∪ K] or H ∨ K.

In case that S ⊆ G consists of a single element a, that is, S = {a}, then
[S] = ⟨a⟩, which we call a cyclic subgroup generated by a. If [ S] = G, we say
that S is the set of generators of G.

Example 5.78 The group (Z; +) is generated by the set S = {1}. ◾

Theorem 5.21 Let G be a group, and let S ⊆ G be any nonempty subset of G.
Then, the subgroup generated by S is the set H of all finite products x1x2 · · · xn,
such that ∀i, xi ∈ S or x−1

i ∈ S.

Proof First note that S ⊆ H.
Now, let a, b ∈ H, such that a = x1x2 · · · xn and b = y1y2 · · · yn, then

ab−1 = (x1x2 · · · xn)(y1y2 · · · yn)−1

= x1x2 · · · xny−1
n y−1

n−1 · · · y
−1
1 ∈ H

So H ≤ G. Suppose there is H′, another subgroup of G containing S. That implies
that ∀x ∈ S, x ∈ H′. Then x−1 ∈ H′ too. Therefore, H′ contains all finite prod-
ucts x1x2 · · · xn, such that either xi ∈ S or x−1

i ∈ S, i = 1, … , n. Thus, H ⊆ H′. In
other words, H is the smallest subgroup containing S and, therefore, the subgroup
generated by S. ◾

Example/Exercise 5.79 Let G be a group. For all ordered pairs x, y ∈ G, define
a product called the commutator

[x, y] = xyx−1y−1

Let [C] = {[x, y]|x, y ∈ G}. Show that [C] is a subgroup of G, called the commu-
tator subgroup of G. What happens if G is an abelian group?
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A few additional comments regarding symmetric groups may be in order for
further examples. First, let’s introduce two new concepts.

Definition 5.17 Let p ∈ Sn be a given permutation. We say that we have an
inversion in the permutation p if for some i < j, p(i) > p(j).

Definition 5.18 Let I(p) be the number of inversions of the permutation p. We
call the map

sign ∶ Sn → { 1,−1}

defined by sign(p) = (−1)I(p) the parity of permutation p, so that if sign(p) = 1,
we say that the permutation p is even, and conversely, if sign(p) = −1, we say
that the permutation is odd. For instance, for the identity permutation

p0 =
(

1 2 3
1 2 3

)
sign(p0) = 1, since there are no inversions, that is,

sign(p0) = (−1)I(p0) = (−1)0 = 1

Thus, p0 is an even permutation. Similarly,

p1 =
(

1 2 3
2 3 1

)
is an even permutation since I(p1) = 2, so sign(p1) = 1, and we again have an
even permutation. On the other hand, for

p2 =
(

1 2 3
3 2 1

)
I(p2) = 3, thus sign(p2) = −1, and p2 is an odd permutation.

Without proof, we state the following properties of the map sign:

Theorem 5.22 For all p, q ∈ Sn,

(i) sign(p∘q) = sign(p) ⋅ sign(q)
(ii) sign(p−1) = sign(p)
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Now we are ready for

Theorem 5.23 Let An ⊆ Sn be the set of all even permutations in Sn. Then, An
is a subgroup of Sn called the alternating group.

Proof The proof immediately follows from the properties of the map sign and
Theorem 5.22. ◾

Theorem 5.24 If n > 1, there is the same number of even and odd permutations
in Sn.

Proof Consider one permutation, say,

q =
(

1 2 3 … n
2 1 3 … n

)
that is, q(1) = 2, q(2) = 1, and the rest of the elements stay unpermuted, that
is, for all i > 2, q(i) = i. Since there is only one inversion in the permutation q, it
is an odd permutation. Let Bn ⊆ Sn be the set of all odd permutations in Sn, and
let

f ∶ An → Bn

be the function defined by

f (p) = q ∘ p, ∀p ∈ An

According to the properties of the map sign, sign, f (p) is an odd permutation,
hence a well-defined function. We would like it to be a bijection. Well, let’s see.
Observe that if

f (p1) = f (p2)

then
q ∘ p1 = q ∘ p2

But q, p1, p2 are elements of the group Sn, so the LCL applies, and we have

p1 = p2

Thus f is an injection. Next, let’s take some r ∈ Bn, and recall that q−1 is an odd
permutation too, which makes

q−1 ∘ r
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an even permutation. Consider, now,

f (q−1∘r) = q ∘ (q−1 ∘ r)

= (q ∘ q−1) ∘ r

= r

Hence our function f is also surjective, which completes our proof. ◾

Consequently, we have

Corollary 5.4 If n > 1, the alternating group An has n!∕2 elements.

Finally, I would like to end this section with a subsection introducing another
useful concept, the concept of

Cycles

Like many other mathematicians, after getting familiar with permutations via a
two-rowed notation, you have probably felt that such a notation is rather cum-
bersome, especially when one is primarily interested in the group structure of
permutations. Something more manageable would be welcome. So, let’s briefly
discuss another way of treating permutations. Consider a permutation p ∈ Sn,
such that for d distinct natural numbers

i1i2, … , id ∈ {1, 2, 3, … , n}

p(i1) = i2, p(i2) = i3, … , p(id−1) = id, p(id) = i1

and the rest of the elements stay unpermuted, that is, p(j) = j for all j ≠ i1, … , id.
In other words,

p =
(

i1 i2 … id−1 id id+1 … in
i2 i3 … id i1 id+1 … in

)
We call p a cyclic permutation or a cycle of length d, or a d-cycle, and we write

p = (i1, i2, … , id)

Of course, every cycle of length 1 is the identity permutation. A cycle whose
length is 2, that is, a cycle that merely interchanges a pair of elements, is called
a transposition.
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More formally:

Definition 5.19 If p ∈ Sn and i ∈ {1, 2, … , n }, then p fixes i if p(i) = i, and
p moves i if p(i) ≠ i.

Definition 5.20 Let i1, i2, … , id ∈ {1, 2, 3, … , n} be n distinct integers, and
if p ∈ Sn is such that

p(i1) = i2, p(i2) = i3, … , p(id−1) = id, p(id) = i1

and p fixes the others (if any), then we say that p is a cycle of length d, or that p
is a d-cycle.

Example 5.80 A permutation from S6

p = (1 3 5 6) =
(

1 3 5 6 2 4
3 5 6 1 2 4

)
which, rearranged and written equivalently and in a more common way,

=
(

1 2 3 4 5 6
3 2 5 4 6 1

)
is a cycle of length 4. ◾

Example 5.81 A permutation from S5

q = (1 5 3 4 2) =
(

1 2 3 4 5
5 1 4 2 3

)
is a cycle of length 5. ◾

Example 5.82 A permutation

t = (2 4) =
(

1 2 3 4 5 6
1 4 3 2 5 6

)
is an example of transposition in S6. ◾

We can now restate Definition 5.18 and say

Definition 5.21 A permutation p ∈ Sn is even if it is the product of an even
number of transpositions. Otherwise, it is odd.

Also, we can add to Theorem 5.22 the following
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Lemma 5.1 If p ∈ Sn, and t ∈ Sn is a transposition, then

sign(tp) = −sign(p)

Of course, a permutation does not have to be a cycle, but we can always write
it as a product of cycles (as the following examples illustrate).

Example 5.83 Consider the permutation in S5

p =
(

1 2 3 4 5
2 3 1 4 5

)
=
(
1 2 3

)
(4)(5)

=
(
1 2 3

)
Here is what we did:

We started by noting that 1 → 2, 2 → 3, and 3 → 1, and we wrote this as(
1 2 3

)
. Next, 4 → 4, and 5 → 5, so we wrote: (4)(5). Collecting all this

together we get:
p =

(
1 2 3

)
(4)(5) ◾

Similarly,

Example 5.84 A permutation in S6

q =
(

1 2 3 4 5 6
3 4 5 2 6 1

)
=
(
1 3 5 6

) (
2 4

)
◾

Example 5.85 A permutation in S9

r =
(

1 2 3 4 5 6 7 8 9
6 4 7 2 5 1 8 9 3

)
=
(
1 6

) (
2 4

) (
3 7 8 9

)
(5) ◾

Example/Exercise 5.86 Write the following permutation

p =
(

1 2 3 4
2 1 4 3

)
as a product of cycles.

This brings us to thinking about cycles in yet another way.
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Remember that multiplication in Sn is a composition of functions, so for any
i ∈ {1, … , 9} in the previous example

r(i) = p{q[s(i)]}

where p =
(
1 6

)
, q =

(
2 4

)
, and s =

(
3 7 8 9

)
. We ignore the 1-cycle

(5) since it is just the identity function. Thus for, say, i = 1 we have

r(1) = p{q[s(1)]}

= p[q(1)] since s fixes 1

= p(1) since q fixes 1

= 6

Similarly,

r(2) = p{q[s(2)]}

= p[q(2)] Why?

= p(4) Why?

= 4 Why?

and so on. ◾

We need a few more things before we prove these statements in general.

Definition 5.22 Two cycles are said to be disjoint if they have no elements in
common. For example,

(
1 3 2

)
and

(
4 5 6

)
are disjoint cycles, whereas(

1 2 3
)

and
(
4 5 3

)
are not.

Hence,

Definition 5.23 Two permutations p, r ∈ Sn are disjoint if every i moved by
p is fixed by r.

Theorem 5.25 Disjoint cycles/permutations commute.

Proof Intuitively this is clear. If p, r ∈ Sn, such that p moves i’s but not j’s, and
vice versa, r moves j’s but not i’s, then it is reasonable to expect that pr = rp.
Suppose

p = (i1 … ik) and r = ( j1 … jl), i, j ∈ { 1, 2, … , n}
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Then,

pr = (i1 … ik) ( j1 … jl )

= (j1 … jl) (i1 … ik)

= rp ◾

Example 5.87 Consider p, r ∈ S6 mentioned in Definition 5.22:

p =
(
1 2 3

)
=
(

1 2 3 4 5 6
2 3 1 4 5 6

)

r =
(
4 5 6

)
=
(

1 2 3 4 5 6
1 2 3 5 6 4

)
p and r are obviously disjoint. Let’s see whether they commute.

pr =
(
1 2 3

) (
4 5 6

)
=
(

1 2 3 4 5 6
2 3 1 4 5 6

)(
1 2 3 4 5 6
1 2 3 5 6 4

)
=
(

1 2 3 4 5 6
1 2 3 5 6 4

)(
1 2 3 4 5 6
2 3 1 4 5 6

)
=
(
4 5 6

) (
1 2 3

)
= rp ◾

Theorem 5.26 Every permutation p ∈ Sn is either a cycle or a product of dis-
joint cycles.

Proof We prove this by induction on a number k ≥ 0 of elements moved by p.
Obviously, if n = 1, we are dealing with S1 and the only permutation is p = (1),
so our claim is evidently true. As always, assuming that the claim is true for all
n < k, let’s prove the case for n = k.

Let p ∈ Sk be any permutation. Consider the following sequence of natural
numbers

1, p(1), p2(1), … , pk(1) ∈ { 1, 2, … , k}

Due to the fact that there are only k elements in the set above, there exist two
numbers r and s, such that

pr(1) = ps(1)
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where 0 ≤ r < s ≤ k, and we take p0(1) = 1. Now, p, being a bijection, has an
inverse, so we can write

ps−r(1) = 1

Suppose d ∈ N, 1 ≤ d ≤ k, is the smallest number such that pd(1) = 1, and let’s
construct a sequence of different numbers

i1 = 1, i2 = p(1), i3 = p2(1), … , id = pd−1(1)

Observe that

p(i1) = p(1) = i2

p(i2) = p2(1) = i3

p(i3) = p3(1) = i4

⋮

p(id−1) = pd−1(1) = id

p(id) = pd(1) = 1 = i1

We obtain a cycle
q1 = ( i1 i2 … id ) ∈ Sk

So that the permutation p can be expressed as

p = q1∘q2

where q2 is a permutation of the remaining k − d numbers. Since, by our inductive
hypothesis, q2 is expressible as a product of disjoint cycles of k − d < k numbers,
we have our proof. ◾

Theorem 5.27 Every permutation in Sn, n > 1, is the product of 2-cycles.

Proof We know from the previous theorem that every permutation can be writ-
ten as

(i1i2 · · · ia)(j1 j2 · · · jb) · · · (k1 k2 · · · kc)

A direct computation shows that this is the same as

(i1 ia)(i1 ia−1) · · · (i1 i2)(j1 jb)(j1 jb−1) · · · (j1 j2) · · · (k1 kc)(k1 kc−1) · · · (k1 k2)

Thus the proof. ◾
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Example 5.88 If p ∈ S5 is
(
1 2 3 4 5

)
, then we can write(

1 2 3 4 5
)
=
(
1 5

) (
1 4

) (
1 3

) (
1 2

)
◾

Example/Exercise 5.89 Convince yourself that the identity permutation in Sn
can be expressed as

(
1 2

) (
1 2

)
.

Example/Exercise 5.90 Convince yourself that(
1 2 3 4 5

)
=
(
5 4

) (
5 3

) (
5 2

) (
5 1

)
=
(
5 4

) (
5 2

) (
2 1

) (
2 5

) (
2 3

) (
1 3

)
Definition 5.24 A complete factorization of a permutation p is a factorization
into disjoint cycles that contains one 1-cycle (i) for every i fixed by p.

Example 5.91 Let

p =
(

1 2 3 4 5
1 3 4 2 5

)
then we can write

p = (1)
(
2 3 4

)
(5)

which is a complete factorization. The factorization of the same p written as

p =
(
2 3 4

)
= (1)

(
2 3 4

)
=
(
2 3 4

)
(5)

is not considered a complete factorization. ◾

Definition 5.25 Let p ∈ Sn be a permutation, and let p = q1q2 · · · qr be a com-
plete factorization of p into disjoint cycles, then

sign(p) = (−1)n−r

Consequently, the theorems below are obviously true.

Theorem 5.28 If d ≥ 2, every d-cycle can be written as a product of d − 1 trans-
positions.

Theorem 5.29 Every permutation p ∈ Sn is a product of transpositions.

And finally, let’s prove.
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Theorem 5.30 A permutation p ∈ Sn is odd iff it is a product of an odd number
of transpositions t.

Proof Recall that sign(t) = −1, since a transposition t ∈ Sn moves two num-
bers, say, i and j and keeps the rest of n − 2 fixed. Indeed, according to Definition
5.25,

sign(t) = (−1)n−r

= (−1)n−(n−1)

= −1

Now, if p is odd, then it cannot have a factorization into an even number of trans-
positions; thus, it has an even number of transpositions. On the other hand, if
p = t1t2 · · · tr, and r is odd, then

sign(p) = sign(t1 … tr)

= sign(t1) … sign(tr)

= (−1)r

= (−1)

Thus, p is an odd permutation. ◾

Theorem 5.31 The inverse of a cycle (i1 i2 · · · ir) is a cycle (irir−1 · · · i1), that
is,

(i1i2 · · · ir)−1 = (irir−1 · · · i1)

Proof If p = (i1i2 · · · ir) ∈ Sn and p−1 = (irir−1 · · · i1) ∈ Sn, we expect that

pp−1 = (i1i2 · · · ir)(i1i2 · · · ir)−1

= (i1i2 · · · ir)(irir−1 · · · i1)

= (irir−1 · · · i1)(i1i2 · · · ir)

= (i1i2 · · · ir)−1(i1i2 · · · ir)

= p−1p = p0 = (1)

Well, let’s see. First, note that the product (i1i2 · · · ir)(irir−1 · · · i1) fixes each num-
ber between 1 and n, other than i1i2 · · · ir. Second, the product sends i1 → ir → i1.
Also, for every j ≥ 2, the composition acts on ij in the following way: ij→ij−1→ij.
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In other words, each number between 1 and n is fixed by the composition and
hence is equal to (1) Thus the proof. ◾

Theorem 5.32 If p = (i1 … ir) ∈ Sn, then p−1 = (i1 … ir)−1 = (i−1
r … i−1

1 ).

Proof We will prove this by induction on r ≥ 2. The claim for r = 2 is evidently
true:

pp−1 = (i1i2)(i−1
2 i−1

1 ) = i1(i2i−1
2 )i

−1
1

= i1i−1
1 = (1)

So, p−1 = (i1i2)−1 = (p−1
2 p−1

1 ). We could get the same result by evaluating the
product p−1p.

Assuming that the claim is true for r = k, we check the assertion for r = k + 1:

(i1 · · · ikik+1)−1 = (Ikik+1)−1

= (i−1
k+1I−1

k )

= (i−1
k+1i−1

k · · · i−1
1 )

where, of course, we substituted Ik for (i1 … ik). Thus, our claim is valid for all
r ≥ 2. ◾

Example/Exercise 5.92 You should convince yourself that, for instance,(
1 2 3 4

)−1 =
(
4 3 2 1

)
.

Finally, let’s just mention an expected consequence of the previous theorem,
namely, the case of the inverse of a disjoint cycle. Here is an illustrative.

Example 5.93 Consider the following permutation:

p =
(
1 6

) (
2 4

) (
3 7 8 9

)
(5)

then,
p−1 = (5)

(
9 8 7 3

) (
2 4

) (
6 1

)
However, since disjoint cycles commute (see Theorem 5.25), the reversal of the
order of factors is unnecessary, so

p−1 = (5)
(
9 8 7 3

) (
2 4

) (
6 1

)
=
(
1 6

) (
2 4

) (
3 7 8 9

)
◾
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5.4 CYCLIC GROUPS

Definition 5.26 A group G is called a cyclic group if it can be generated by
a single element, the generator of G, that is there is an element a ∈ G, such that
G = {an|n ∈ Z}. We denote the cyclic group G = ⟨a⟩.
Definition 5.27 If G = ⟨a⟩ is a cyclic group, then the order of a, |⟨a⟩|, is the
number of elements in ⟨a⟩.
Example 5.94 Consider an abstract group G = {e, a, b} of order 3, with
a ≠ b ≠ e. The product ab cannot be equal to a or b since this would imply that
b = e or a = e. Thus, in order to satisfy closure, ab = e. What about a2? Well,
the only possibility is that a2 = b. Now, what about b2? Let’s see:

b2 = bb = a2a2 = a4 = a3a = ea = a

So, the multiplication table for G is

⋅ e a b

e e a b
a a b e
b b e a

This is an example of a cyclic group that consists of powers of a single element,
that is,

G = {a, a2, a3 = e} = ⟨a⟩
Recall the transformations of an equilateral triangle ▵ ABC from Example 5.36,
and consider only rotations in a plane that brings the triangle into coincidence
with itself. These transformations are indeed the realization of our cyclic group
G. You can easily convince yourself that the abstract multiplication table for G
indeed represents the group of rotations of an equilateral triangle.

Note that the table is symmetric about the main diagonal, which is the
case for abelian groups. Finally, observe that the (3 × 3) part of the table in
Example 5.36/37 is exactly the table in Example 5.94 (of course, 𝛼 = a, 𝛽 = b),
hence G ≤ D3 as we expected. ◾

Example 5.95 Consider the abstract group G = {e, a, b, c} of order 4, with the
following multiplication table:
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⋅ e a b c

e e a b c
a a b c e
b b c e a
c c e a b

From the table, we see that

a2 = b

ab = aa2 = a3

= c

a4 = a2a2

= bb = b2

= e

that is, our group G = {e, a, a2, a3} = ⟨a⟩.
Geometrically, this group can be interpreted as a group of rotations of a square

around its center which brings it into coincidence with itself (cf. Example 5.37).
We could have designed our multiplication differently:

⋅ e a b c

e e a b c
a a e c b
b b c e a
c e b a e

And we have

a2 = b2 = c2 = e

ab = c

ac = b

bc = a

We recognize this group as the Klein four-group V. (cf. Example 5.25). From the
symmetry of tables, we see that both groups are abelian. ◾
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Example/Exercise 5.96 Show that the groups in Exercise 5.95 are the only
possible groups of order 4.

Example/Exercise 5.97 Show that a group of order 4 must be abelian.
If you revisit Example 5.66, the following should be quite familiar to you.

Example 5.98 Let G = (Z; +), then G = ⟨1⟩. Since the binary operation in G
is “+,” every element of ⟨1⟩ can be written in the form n ⋅ 1 for some n ∈ Z.
Another way to look at this is to interpret 1n.

1 + 1 + · · · + 1
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

n terms

Of course, |⟨1⟩| = |1| = ∞. ◾

Example/Exercise 5.99 Convince yourself that the same group, (Z; +), could
also have been written as ⟨−1⟩.

Hint: If n is negative, we consider (−1) as the generator and we have

(−1) + (−1) + · · · + (−1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟|n|terms

Example 5.100 Let ⟨a⟩ be a cyclic group of order n. From Theorem 5.13, we
know that ⟨a⟩ = {e, a, a2, … , an−1}

Thus, there is the same number of elements in ⟨a⟩ as in Zn, that is, there is an
obvious bijection between a and Zn. Indeed, observe the following “mapping”:

⟨a⟩ = {e, a, a2, … , an−1}

↕ ↕ ↕ ↕

Zn = {0, 1, 2, … , n − 1}

In view of this and the two previous Example/Exercises 5.98, 5.99, it is natural
to contemplate the case where |⟨a⟩| = ∞ and consider the correspondence

⟨a⟩ = {… , a−2, a−1, e, a, a2,…}

↕ ↕ ↕ ↕ ↕

Z = {… , −2, −1, 0, 1, 2,…}

which is obviously a bijection Z → ⟨a⟩ defined by f (n) = an. ◾
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5.5 HOMOMORPHISMS AND ISOMORPHISMS

As you might have anticipated by now, regardless of their general elegance and
apparent “simplicity,” groups and group structures can be very complicated. Also,
once groups are discovered, one recognizes groups and group structures in many
different fields of mathematics, physics, and other sciences. It is not surprising
then that a mathematician searches for tools that will hopefully enable us that,
instead of studying the “original” group G, to look for a less complicated struc-
ture H, which faithfully represents a “complicated” G. That’s why we invoke the
concepts and techniques of functions, and look for a map G

𝜑
−−→H, which will

“bring” us to a more manageable H, while still preserving the structure of G. So
we have

Definition 5.28 Let (G; ∗) and (H; ∘) be groups. A map 𝜑 ∶ G → H is called a
homomorphism if for all a, b ∈ G

𝜑(a ∗ b) = 𝜑(a)∘𝜑(b)

We also say that H is a homomorphic image of G (Figure 5.8).

a

b

ab

φ (a)

φ (ab)

φ (b)G
H

φ

Figure 5.8

Note that homomorphisms preserve group operations, that is, the product on
the left is computed in G and the product on the right is computed in H. When
group operations for G and H are not explicitly given, we simply write

𝜑(ab) = 𝜑(a)𝜑(b)

keeping in mind that 𝜑 respects group structure in both G and H. The set of all
homomorphisms G → H is denoted by Hom(G,H).

Example 5.101 Recall the parity group P from Example 5.27, and consider a
function 𝜑 ∶ (Z; +)→ P, which carries every even integer to E ∈ P and every
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odd integer to O ∈ P. It is easy to see that 𝜑 is a homomorphism. Indeed, let
x, y ∈ Z be any two integers. Then, either both x and y are even or both are odd,
or one is even and the other is odd. In the case where both are odd or even, their
sum is even, thus

𝜑(x + y) = 𝜑(x) + 𝜑(y) = O + O = E

or
𝜑(x + y) = 𝜑(x) + 𝜑(y) = E + E = E

Similarly, if, say, x is even and y is odd, their sum is odd and we have

𝜑(x + y) = 𝜑(x) + 𝜑(y) = E + O = O

Hence, 𝜑 is a homomorphism. ◾

Example 5.102 Let G and H be two groups, such that e′ ∈ H is the identity of
H. Define a map

𝜑 ∶ G → H

by 𝜑(a) = e′, ∀a ∈ G.
It’s easy to see that 𝜑 is a homomorphism. ◾

Example 5.103 Consider a group (R; +) and a group of all positive real num-
bers (R+; ⋅) with multiplication as the binary operation. Then the following func-
tion

𝜑 ∶ ( R; +)→ (R+; ⋅)

defined by 𝜑(x) = ex is a homomorphism. Indeed, let x, y ∈ R, then

𝜑(x + y) = ex+y = exey = 𝜑(x)𝜑(y),∀x, y ∈ R ◾

Example/Exercise 5.104 Show that a function𝜑 ∶ (R × R; +)→ (R; +) given
by 𝜑(x, y) = x + y is a homomorphism.

Example 5.105 Let 𝜑 ∶ (R∗; ⋅) → (R∗; ⋅) be a mapping defined by 𝜑(x) = x2.
Then, 𝜑 is a homomorphism of the group (R∗; ⋅) to itself. Indeed, for every x, y ∈
(R∗; ⋅)

𝜑(xy) = (xy)2 = x2y2 = 𝜑(x)𝜑(y) ◾

Example 5.106 A function 𝜑 ∶ (R; +)→ (R; +) given by 𝜑(x) = x2 is not a
homomorphism, since

𝜑(x + y) = (x + y)2 ≠ 𝜑(x) + 𝜑(y) = x2 + y2 ◾

Theorem 5.33 Let G and H be two groups with respective identities e and e′,
and let 𝜑 ∶ G → H be a homomorphism. Then,
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(i) 𝜑(e) = e′

(ii) 𝜑(x−1) = (𝜑(x))−1 ∀x ∈ G

Proof

(i) Let x ∈ G be any element of G. Then,

e′𝜑(x) = 𝜑(x) = 𝜑(ex)

= 𝜑(e) 𝜑(x) ∈ H

Since H is a group, by the cancellation law

e′ = 𝜑(e)

(ii) From (i)

e′ = 𝜑(e) = 𝜑(xx−1)

= 𝜑(x)𝜑(x−1)

Multiplying by (𝜑(x))−1 from the left we get

(𝜑(x))−1e′ = (𝜑(x))−1𝜑(x) 𝜑(x−1)

and therefore
(𝜑(x))−1 = 𝜑(x−1) ◾

Example/Exercise 5.107 Show that, if 𝜑 ∶ G → H is a homomorphism, then
𝜑(xn) = (𝜑(x))n ,∀n ∈ Z. (Hint: Use induction.)

Definition 5.29 A homomorphism 𝜑, which is also surjective, is called an epi-
morphism.

Definition 5.30 A homomorphism of G into itself is called an endomorphism.
The set of all endomorphisms of a group G is denoted by End (G).

Definition 5.31 An endomorphism that is also one-to-one and onto is called
an automorphism. The set of all automorphisms of a group G is denoted by
Aut (G).

Definition 5.32 A homomorphism 𝜑 that is also an injection is called a
monomorphism.



�

� �

�

388 GROUP THEORY

Example 5.108 For any group G, G is automorphic to itself. Indeed, the identity
map i ∶ G → G is an obvious automorphism of G. ◾

Definition 5.33 Let a ∈ G be some element of a group G. A function
𝜑a ∶ G → G defined by

𝜑a(x) = axa−1 , ∀x ∈ G

is called the inner automorphism of G. The set of all inner automorphisms of
a group G is denoted by Int(G).

Example/Exercise 5.109 Show that (Int(G); ∘) is a group.

Definition 5.34 A homomorphism 𝜑 ∶ G → H is called an isomorphism if 𝜑
is also a bijection. We say that G is isomorphic to H, and we write G ≅ H.

This tells us that two isomorphic groups, with possibly different elements and
different operations, are essentially (fundamentally) the same group. In other
words, any property that G has, H has as well (see Figure 5.9).

.

.

.

.

.

.

.

.

.

a

b

ab

e

x

y

a′ = φ(a)

b′ = φ(b)

a′b′ = φ(ab)

e′ = φ(e)

x′ = φ(x)

y′ = φ(y)

φ

G H

Figure 5.9 Isomorphism 𝜑 ∶ G → H
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Example 5.110 Let G and H be two groups described by the following multi-
plication tables:

G    

* 1 1 2

0 0 1 2

1 1 2 0

e

ee

e

e

a

a

a

aa

b

b

b

bb2 2 0 1

H

°

Whatever the objects 0, 1, 2 and e, a, b, and the respective binary operation “∗”
and “∘” might be, the one-to-one correspondence

𝜑 ∶ 0 → e, 1 → a, 2 → b

is evidently an isomorphism. ◾

Example 5.111 Let G be a group. Given some a ∈ G, define a map

𝜃a ∶ G → G

by 𝜃a(x) = axa−1, ∀x ∈ G
Show that 𝜃a is an automorphism.

Solution Consider

𝜃a(xy) = axya−1

= (axa−1)(aya−1)

= 𝜃a(x)𝜃a(y)

Thus, 𝜃a is a homomorphism.
Next we need to check whether 𝜃a is injective and surjective. Consider

𝜃a(x) = 𝜃a(y)

Then,
axa−1 = aya−1

And, by applying cancellation laws, we get

x = y

Thus, 𝜃a is injective.
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Finally, take any x ∈ G and consider

x = (aa−1)x(aa−1)

= a(a−1xa)a−1

= 𝜃a(a−1xa)

Hence, 𝜃a is surjective too. Consequently, 𝜃a is an automorphism of G. ◾

Example 5.112 Show that a map exp ∶ R → R+ defined by exp(x) = ex is
an isomorphism from (R ; +) to (R+; ⋅) (cf. Example 5.103).

Solution We have seen that exp preserves group operations since ex+y = exey,
although in this example the groups differ in both elements and operations. Fur-
thermore, exp has an inverse function ln x, thus exp is a bijection. So exp is indeed
an isomorphism from (R ; +) to (R+; ⋅). ◾

Example 5.113 Show that groups (Z; +) and (Q; +) are not isomorphic.

Solution Suppose the contrary, that is, suppose (Z; +) ≅ (Q; +). Then, there
exists an isomorphism

𝜑 ∶ Z → Q

such that for some q ∈ Q, 𝜑(1) = q. This q has to be different from zero, since
𝜑(0) = 0. But then q∕2 ∈ Q, and of course, q∕2 ≠ 0 too. Next, being an iso-
morphism, 𝜑 is onto, thus there exists an integer n ≠ 0, such that 𝜑(n) = q∕2.
Therefore, we have

𝜑(2n) = 𝜑(n + n)

= 𝜑(n) + 𝜑(n)

=
q

2
+

q

2

= q

But 𝜑 is also one-to-one, thus

𝜑(1) = q

= 𝜑(2n)

implies 1 = 2n, and therefore

n = 1
2
∉ Z
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which is a contradiction. We conclude that (Z; +) ≇ (Q; +). ◾

Example/Exercise 5.114 Prove that (2Z; +) ≅ (Z; +).
We have already introduced in a different context the following two definitions.

Definition 5.35 We say that the kernel of a homomorphism 𝜑 from a group G
to a group H is the set (see Figure 5.10)

Ker𝜑 = {x ∈ G|𝜑(x) = e′ ∈ H}

e e′

φ

Figure 5.10 Ker (𝜑).

Definition 5.36 We say that the image of a homomorphism 𝜑 from a group G
to a group H is the set (see Figure 5.11)

Im(𝜑) = {𝜑(x)|x ∈ G} ⊆ H

e

φ

e′

Im(φ)

G H

Figure 5.11 Im(𝜑).
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Theorem 5.34 Let 𝜑 ∶ G → H be a homomorphism of groups. Then, Ker𝜑 is
a subgroup of G and Im𝜑 is a subgroup of H.

Proof First note that Ker𝜑 and Im𝜑 are both nonempty, since at least

𝜑(e) = e′

Now, suppose a, b ∈ Ker𝜑, then

𝜑(a) = e′ = 𝜑(b)

and so

𝜑(ab−1) = 𝜑(a)𝜑(b−1)

= 𝜑(a)𝜑(b)−1

= e′e′

= e′

Hence, ab−1 ∈ Ker𝜑, and, therefore, Ker𝜑 ≤ G.
Next, take x, y ∈ Im𝜑, such that x = 𝜑(a) and y = 𝜑(b) for some a, b ∈ G.

But then

xy−1 = 𝜑(a)𝜑(b)−1

= 𝜑(ab−1) ∈ Im 𝜑

which shows that Im𝜑 ≤ H. ◾

In particular, if we consider 𝜑 acting only on the subgroup A ≤ G, we have

Theorem 5.35 Let 𝜑 ∶ G → H be a homomorphism of groups, and let A ≤ G
be a subgroup of G. Then,

Im(𝜑(A)) ≤ H

Proof Let a, b ∈ 𝜑(A). We would like to show that ab−1 ∈ 𝜑(A) too. Well,
since a, b ∈ 𝜑(A) there exist x, y ∈ A, such that 𝜑(x) = a and 𝜑(y) = b. From the
previous theorem, it follows that

ab−1 = 𝜑(x)[𝜑(y)]−1

= 𝜑(x)𝜑(y−1) = 𝜑(xy−1)
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Since x, y ∈ A ≤ G, xy−1 ∈ A too. Therefore, 𝜑(xy−1) ∈ 𝜑(G), and thus ab−1 ∈
𝜑(A), that is, Im(𝜑(A)) ≤ H, as claimed. ◾

Sure enough the following is also true.

Theorem 5.36 Let 𝜑 ∶ G → H be a group homomorphism, and let K ≤ H be
some subgroup of H. Then, the preimage 𝜑−1(K) ⊆ G is a subgroup of G, that is,
𝜑−1(K) ≤ G.

Proof Let x, y ∈ 𝜑−1(K), then 𝜑(x), 𝜑(y) ∈ K. But, K is a subgroup and there-
fore, 𝜑(x)(𝜑(y))−1 ∈ K. Then, since 𝜑 is a homomorphism,

𝜑(x)(𝜑(y))−1 = 𝜑(xy−1) ∈ K

Thus, xy−1 ∈ 𝜑−1(K), and so 𝜑−1(K) ≤ G. ◾

As a simple exercise you can now prove

Theorem 5.37 Let 𝜑 ∶ G → H be a group homomorphism, and let A be an
abelian subgroup of G. Then Im(𝜑(A)) is an abelian subgroup of H.

Theorem 5.38 Let G,H, and K be groups, and let 𝜑 ∶ G → H and 𝜃 ∶ H → K
be homomorphisms. Then, the composition 𝜓 = (𝜃∘𝜑) is also a homomorphism.

Proof Take x, y ∈ G and consider

𝜓(xy) = (𝜃∘𝜑)(xy) = 𝜃(𝜑(xy))

= 𝜃(𝜑(x)𝜑(y))

= 𝜃(𝜑(x))𝜃(𝜑(y))

= (𝜃∘𝜑)(x)(𝜃∘𝜑)(y)

= 𝜓(x)𝜓(y) ◾

Theorem 5.39 Let 𝜑 ∶ G → H be a homomorphism of groups. Then,

(i) 𝜑 is an epimorphism iff Im(𝜑) = H.
(ii) 𝜑 is a monomorphism iff Ker(𝜑) = {e}.
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Proof Statement (i) is obvious, so let’s prove (ii).
Suppose, first, that 𝜑 is a monomorphism. From the previous theorem, we

know that 𝜑(e) = e′ ∈ H, therefore,

e = 𝜑−1(e′) ∈ Ker(𝜑)

But 𝜑 is an injection by assumption, thus Ker(𝜑) contains only one element, that
is, Ker(𝜑) = {e}.

Conversely, suppose (𝜑) = {e}. We need to prove that 𝜑 is an injection. Well,
if we choose x, y ∈ G such that 𝜑(x) = 𝜑(y) then, since 𝜑 is a homomorphism,

𝜑(x)(𝜑(y))−1 = e′

= 𝜑(xy−1)

Hence, xy−1 ∈ Ker(𝜑) = {e}, that is

xy−1 = e

and therefore

x = y

Thus, 𝜑 is a monomorphism, and our proof is complete. ◾

Recall that a homomorphism that is also a bijection is called an isomorphism.
Consequently, we have

Theorem 5.40 Let G and H be two groups. Then, the homomorphism
𝜑 ∶ G → H is an isomorphism iff 𝜑 is a surjection and Ker(𝜑) = {e}.

Theorem 5.41 Let 𝜑 ∶ G → H be a group isomorphism. Then, 𝜑−1 ∶ H → G
is also an isomorphism.

Proof First, note that 𝜑−1 exists and is a bijection since 𝜑 is a bijection. We
need to show that it is a homomorphism.

Let x, y ∈ H be any two elements. Then, there exist a, b ∈ G such that

𝜑(a) = x and 𝜑(b) = y
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Consider now

𝜑−1(xy) = 𝜑−1(𝜑(a)𝜑(b))

= 𝜑−1(𝜑(ab))

= ab

= 𝜑−1(x)𝜑−1(y)

which proves that 𝜑−1 is indeed an isomorphism. ◾

Definition 5.37 Let G be a group and g ∈ G. We say that

𝛾g ∶ G → G

is a conjugation if for all a ∈ G, 𝛾g(a) = gag−1.

Consequently, we have

Theorem 5.42 If G is a group, then the conjugation 𝛾g ∶ G → G is an isomor-
phism.

Proof Let g, h ∈ G be two elements of G, then

(𝛾g∘𝛾h)(a) = 𝛾g(hah−1)

= g(hah−1)g−1

= (gh)a(h−1g−1)

= (gh)a(gh)−1

= 𝛾gh(a)

Now, take a, b ∈ G and consider

𝛾g(ab) = g(ab)g−1

= (gag−1)(gbg−1)

= 𝛾g(a)𝛾g(b)

Finally, observe that 𝛾g is also a bijection, that is,

𝛾g∘𝛾g−1 = 𝛾gg−1

= 𝛾e = e

= 𝛾g−1g = 𝛾g−1 ∘ 𝛾g
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Thus, 𝛾g is an isomorphism. ◾

Again, recalling that the composition of bijections is also a bijection, you
should be able to prove the next theorem without difficulty.

Theorem 5.43 If 𝜑 ∶ G → H and 𝜃 ∶ H → K are two group isomorphisms,
then the composition 𝜓 = 𝜃∘𝜑 is an isomorphism too.

Although the following examples may look obvious to you, you should con-
vince yourself that the claims therein are indeed true.

Example 5.115 All trivial groups of first order are (obviously) isomorphic. ◾

Example 5.116 All groups of second order are isomorphic. Indeed, let
G = {e, a} be a group, where e is a neutral element. Then, of course,

e ⋅ e = e and a ⋅ e = e ⋅ a = e

We could have considered the possibility that a ⋅ a = a, but that doesn’t hold,
since

a ⋅ a = a

and
a ⋅ e = a

would imply that a = e, and G would have only one element, and the only possible
multiplication table is

⋅ e a

e e a
a a e ◾

Example 5.117 All groups of third order are isomorphic. Well, let’s consider
designing a multiplication table for G = {e, a, b}. (cf. Examples 5.94 and 5.110)

e ⋅ e = e

a ⋅ e = e ⋅ a = a

b ⋅ e = e ⋅ b = b
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Suppose that a ⋅ b = a. That would imply that b = e. On the other hand, if
a ⋅ b = b, then we would have a = e. None of those is possible. We are left with
the only possibility:

a ⋅ b = e

Similar arguments lead to
b ⋅ a = e

Finally, let’s consider the case that a ⋅ a = e. But this is also impossible, since
we would then have a ⋅ a = a ⋅ b, which would imply that a = b, and our group
wouldn’t be of third order as assumed. Similarly, a ⋅ a = a would imply that
a = e, which we cannot accept, and the only reasonable case remaining is

a ⋅ a = b

Similar arguments lead to
b ⋅ b = a

Thus, the multiplication table for G is

∙   b

  b

  b

bb

e

ee

e

e

a

a

aa

a
◾

In the case of cyclic groups, another remarkable feature emerges:

Theorem 5.44 Any two cyclic groups of the same order are isomorphic.

Proof Let ⟨x⟩ and ⟨y⟩ be two cyclic groups such that |⟨x⟩| = |⟨y⟩| = n, and let

𝜑 ∶ ⟨x⟩ → ⟨y⟩
be a map defined by 𝜑(xk) = yk. Our function is well defined if

xr = xs (*)
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implies
𝜑(xr) = 𝜑(xs)

for some r, s ∈ Z.
From (*), it follows that

xr−s = e

Thus n|r − s, and putting r = tn + s we get

𝜑(xr) = 𝜑(xtn+s)

= ytn+s

= (yn)tys

= ys

= 𝜑(xs)

This proves that 𝜑 is well defined. Is it a homomorphism? The way we defined
our map implies

𝜑(xaxb) = 𝜑(xa+b)

= ya+b

= yayb

= 𝜑(xa)𝜑(xb)

Hence, 𝜑 is a homomorphism. The definition of 𝜑 tells us also that yk ∈ ⟨y⟩ is
the image of xk ∈ ⟨x⟩ and thus 𝜑 is surjective. Finally, since |⟨x⟩| = |⟨y⟩| = n, 𝜑
is also bijective. We conclude that

⟨x⟩ ≅ ⟨y⟩ ◾

Finally, let’s formally recognize another important fact about isomorphisms:

Theorem 5.45 The relation “to be isomorphic” is an equivalence relation.

Proof As you certainly recall, in order to be an equivalence relation, “≅” needs
to be (i) reflexive, (ii) symmetric, and (iii) transitive.

(i) That G ≅ G is easy to see since the identity map e ∶ G → G is obviously
an isomorphism.



�

� �

�

HOMOMORPHISMS AND ISOMORPHISMS 399

(ii) For symmetry, if G and H are two groups such that G ≅ H, then there
exists an isomorphism 𝜑 ∶ G → H. But Theorem 5.41 tells us that in that
case 𝜑−1 ∶ H → G is also an isomorphism, therefore H ≅ G.

(iii) Let G,H, and K be three groups such that G ≅ H and H ≅ K, then there
exist two isomorphisms 𝛼 ∶ G → H and 𝛽 ∶ H → K. By Theorem 5.38,
the composition 𝛽∘𝛼 ∶ G → K is also an isomorphism, hence G ≅ K,
which completes our proof. ◾

With the equivalence relation, described by the above theorem, we can classify
all groups in distinct classes of isomorphic groups, that is, each class is made of
mutually isomorphic groups. In other words, at an abstract level, we can consider
two groups to be the same if they belong to the same class. Thus, we can study
properties of the whole collection of groups considering only one abstract group
as a representation of the whole class. Obviously, the question now is: How does
one recognize whether two groups are isomorphic or not? Of course, if the groups
are of different order, or one is abelian and the other is not, one can immediately
conclude that they are not isomorphic. Similarly, if one can prove that there is no
one-to-one correspondence between the groups, manifestly they are not isomor-
phic. For instance, each group of fourth order is either isomorphic to the Klein
group V or to the group of square rotation R4, while V ≇ R4.

Example 5.118 Let’s show that V ≇ R4. Suppose they are, that is, suppose there
is an isomorphism

𝜑 ∶ V → R4

such that
𝜑(eV ) = eR4

where eV and eR4
are the neutral elements of the respective groups. Then for

some i ∈ {1, 2, 3}
𝜑(vi) = r1, vi ∈ V , r1 ∈ R4

We would also have

𝜑(eV) = 𝜑(vivi) = 𝜑(vi)𝜑(vi)

= r1r1 = r2 ≠ eR4

This contradicts our assumption, and thus V ≇ R4 as claimed. ◾

However, the following classic theorem is true.
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Theorem 5.46 (Cayley) Every group is isomorphic to some permutation
group.

Proof Let G be a group. For any given a ∈ G define a map

𝜏a ∶ G → G

called a left translation by

𝜏a(x) = ax, ∀x ∈ G

𝜏a is obviously a bijection since

𝜏a(x1) = 𝜏a(x2)

immediately implies x1 = x2. On the other hand, let y ∈ G be any element of G
such that

x = a−1y

Then,

𝜏a(x) = 𝜏a(a−1y)

= a(a−1y)

= y

Thus, 𝜏a is a surjection too. Now consider a map

𝜑 ∶ G → SG

defined by
𝜑(a) = 𝜏a, ∀a ∈ G

where SG is a symmetric group on set G.
We claim that 𝜑 is a monomorphism. Let’s first check whether it is a homo-

morphism.

[𝜑(ab)](x) = 𝜏ab(x) = abx

= a(bx) = 𝜏a(bx)

= 𝜏a[𝜏b(x)] = (𝜏a∘𝜏b)(x)

= [𝜑(a)∘𝜑(b)](x)
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Thus, 𝜑(ab) = 𝜑(a)𝜑(b) so it is a homomorphism. It remains to be shown that 𝜑
is an injection too. Let

𝜑(a) = 𝜑(b)

then
𝜏a(x) = 𝜏b(x) ∀x ∈ G

That, on the other hand, means that

ax = bx

that is
a = b

telling us that 𝜑 is indeed an injection. We conclude that G is isomorphic to some
subgroup of SG. ◾

Note the significance of Cayley’s discovery: If every group is isomorphic to
a certain group of permutations then, fundamentally, permutation groups are the
reflections of all groups, that is, the only groups there are. Consequently, we have

Corollary 5.5 Any group of order n is isomorphic to some subgroup of Sn.

Example/Exercise 5.119 Convince yourself that the set

V =
{
(1) ,

(
12

) (
3, 4

)
,
(
13
) (

24
)
,
(
14
) (

23
)}

with the usual composition of permutation is the familiar Klein four-group.

Definition 5.38 We say that Z(G) is the center of a group G, if Z(G) is the set
of all those elements of G that commute with every element of G, that is

Z(G) = {a ∈ G|ax = xa ∀x ∈ G}

Theorem 5.47 The center of a group G is a subgroup of G.

Proof First, note that e ∈ Z(G) since

ex = xe = x ∀x ∈ G
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Next, suppose a, b ∈ Z(G), then

ab−1x = ab−1xe

= ab−1xbb−1

= ab−1bxb−1

= aexb−1

= axb−1

= xab−1

Thus ab−1 ∈ Z(G), and therefore Z(G) ≤ G. ◾

Theorem 5.48 A group G is abelian iff Z(G) = G.

Proof Trivial. ◾

Everything that has been said above naturally leads us to inquire how to con-
struct more subgroups of the group G if one or more of the subgroups are known.
Here is what we have learned so far:

If H and K are two subgroups of the group G, then e ∈ H and e ∈ K, thus e ∈
H ∩ K, and therefore H ∩ K ≠ ∅. If we can find two elements a, b ∈ H ∩ K, then
ab−1 ∈ H and ab−1 ∈ K, hence ab−1 ∈ H ∩ K, which proves that H ∩ K ≤ G.
And, of course, we can extend the argument to prove that the intersection of any
number of subgroups of the group G is again a subgroup of G. We have already
addressed this in Theorem 5.19. Another, similarly intriguing, question on the
nature of the union of two subgroups was answered in Theorem 5.16.

Further on we need the following:

Definition 5.39 Let H,K ⊆ G be two nonempty subsets of a group G, we define
the “product” HK as follows:

HK = {hk ∈ G|h ∈ H, k ∈ K}

Theorem 5.49 Let H and K be two subgroups of a group G. Then HK is a
subgroup of G iff

HK = KH

Proof First, we recall that

HK = {hk ∈ G|h ∈ H, k ∈ K}, ∀H,K ⊆ G

Now, let HK = KH.
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HK ≠ ∅ since e = ee ∈ HK. Let a, b ∈ HK. Then, according to the previous
definition, a = h1k1 and b = h2k2, where h1, h2 ∈ H, and k1, k2 ∈ K.

Consider now

ab−1 = h1k1(h2k2)−1

= h1k1k−1
2 h−1

2

with k1k−1
2 = k3,

= h1k3h−1
2

Observe that k3h−1
2 ∈ KH = HK, that is, we can say k3h−1

2 = h3k4 ∈ HK, where,
as before, we assume h3 ∈ H and k4 ∈ K. Collecting all of this together, and
calling h1h3 = h4, we obtain

ab−1 = h1h3k4

= h4k4 ∈ HK

We proved that HK ≤ G.
Conversely, suppose that HK ≤ G and take a ∈ KH so that a = kh for some

k ∈ K and h ∈ H. Consider

a−1 = (kh)−1

= h−1k−1 ∈ HK

Thus a ∈ HK, and therefore KH ⊆ HK.
Take some b ∈ HK. Since HK ≤ G, b−1 ∈ HK, we can express it as

b−1 = h′k′

where, of course, h′ ∈ H and k′ ∈ K. It follows that

b = (b−1)−1

= (h′k′)−1

= k′−1h′−1 ∈ KH

Hence, HK ⊆ KH.
So, we have KH ⊆ HK and HK ⊆ KH, thus HK = KH, which completes the

proof of the theorem. ◾
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As an easy exercise you should do the following:

Example/Exercise 5.120 Let G be an abelian group and let H and K be any
two subgroups of G. Show that HK is a subgroup of G.

5.6 NORMAL SUBGROUPS

Let’s start by recalling (cf. Definition 5.39) that multiplication in a group G
induces a product of any two subsets H and K. Suppose that H or K is a singleton,
then we have

Definition 5.40 If H ≤ G is any subgroup of a group G, and x ∈ G, then we
say that

Hx = {hx|h ∈ H}

is the right coset of H in G. Similarly, we define the left coset of H in G as

xH = {xh|h ∈ H}

Theorem 5.50 Let H ≤ G be a subgroup of G. Then, for any x, y ∈ G

(i) x ∈ xH

(ii) xH = H iff x ∈ H

(iii) xH = yH iff x ∈ yH

(iv) xH = yH or xH ∩ yH = ∅
(v) xH = yH iff x−1y ∈ H

(vi) |xH| = |yH|
(vii) xH = Hy iff H = xHx−1

(viii) xH ≤ G iff x ∈ H

Proof

(i) If x ∈ G, then x = xe ∈ xH

(ii) Suppose that xH = H. Then,

x = xe ∈ xH = H



�

� �

�

NORMAL SUBGROUPS 405

Conversely, if we take x ∈ H then clearly xH ⊆ H. On the other hand, sup-
pose h ∈ H, then x−1h ∈ H too. Hence,

h = eh

= (xx−1)h

= x(x−1h) ∈ xH

So we have xH ⊆ H and H ⊆ xH, and therefore xH = H.
(iii) Suppose that xH = yH, then x = xe ∈ xH = yH. Conversely, if x ∈ yH,

then ∃h ∈ H, such that x = yh. So we have

xH = (yh)H

= y(hH)

= yH

(iv) Suppose xH ∩ yH ≠ ∅, that is, ∃c ∈ xH ∩ yH, such that, by (iii), cH = xH
and cH = yH, and therefore xH = yH.

(v) Suppose xH = yH, then obviously H = x−1yH. Now we can use (ii) and
the result immediately follows.

(vi) The easy way to prove this claim is to establish a bijection 𝜑 ∶ xH → yH.
The map xh → yh is obviously onto, and because of the cancellation law it
is also one-to-one, thus 𝜑 is a bijection. Hence, |xH| = |yH| indeed.

(vii) Observe that xH = Hx implies

xHx−1 = (Hx)x−1

= H(xx−1)

= He

= H

The converse can be proved similarly.
(viii) Suppose xH ≤ G, then e ∈ xH and therefore xH ∩ eH = xH ∩ H ≠ ∅.

From (iv), it follows that xH = H and thus, by (ii), we conclude that
x ∈ H. Conversely, if x ∈ H, (ii) will again imply that xH = H. ◾

Theorem 5.51 Let G and H be two groups with x, y ∈ G. If 𝜑 ∶ G → H is a
homomorphism, then

𝜑(x) = 𝜑(y) iff Ker(𝜑)x = Ker(𝜑)y
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Proof Observe that:

𝜑(x) = 𝜑(y) iff 𝜑(x)(𝜑(y))−1 = e

But 𝜑 is a homomorphism, so we have

𝜑(xy−1) = e

and this is true iff xy−1 ∈ Ker(𝜑) which, furthermore, implies that

Ker(𝜑)x = Ker(𝜑)y

The converse is obvious. ◾

What did we learn from this? Well, the theorem tells us that the elements of a
group G that have the same image under the action of a homomorphism 𝜑 ∶ G →
H are in the same coset of Ker(𝜑). Or conversely, if the elements are in the same
coset of Ker(𝜑), then they have the same image in H. As you will see shortly, this
simple theorem has significant consequences.

Definition 5.41 Let G be a group, and let N be a subgroup of G. We say that
N is a normal subgroup of G, and we write N ⊲ G, if

xNx−1 ⊆ N, ∀x ∈ G (*)

where
xNx−1 = {xnx−1 |x ∈ G, n ∈ N}

The element xnx−1 is called the conjugate of n ∈ N by x, and the set xNx−1 is
called the conjugate of N by x.

We conclude that N ⊲ G iff xnx−1 ∈ N, ∀x ∈ G n ∈ N. Observe that the def-
inition (*) could have been equivalently stated as follows: If we put y = x−1, then

y−1Ny ⊆ N

Thus,
N ⊆ yNy−1

that is,
N ⊆ x−1Nx (**)

From (*) and (**) immediately follows

x−1Nx = N
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Or, even more symmetric,
Nx = xN

In short, N ≤ G is a normal subgroup if it is closed with respect to conjugates
(see Figure 5.12).

x x−1nx

x−1

N

G

n

Figure 5.12 Normal subgroup

Thus,

Theorem 5.52 A subgroup N ≤ G is normal iff xNx−1 ⊆ N, ∀x ∈ G.

Theorem 5.53 Let N be a subgroup of G. Then, the following are equivalent:

(i) N ⊲ G

(ii) x−1Nx = N, ∀x ∈ G

(iii) Nx = xN, ∀x ∈ G

(iv) (xN)(yN) = (xy)N, ∀x, y ∈ G

Proof (i) ⇔ (ii) and (ii) ⇔ (iii) are obvious from Definition 5.41. Let’s check
(iii) ⇒ (iv):

(xN)(yN) = x(Ny)N

= x(yN)N

= (xy)(NN)

What about NN? Well, NN ⊆ N, since N is closed under multiplication. Further-
more, N = eN ⊆ NN thus, NN = N. Therefore,

(xy)(NN) = (xy)N

what was to be shown.
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Similarly, we can prove (iv) ⇒ (iii).
Finally, let’s check
(iv) ⇒ (i): For N to be a normal subgroup of G, we need that xNx−1 = N. Let’s

consider

xNx−1 = xNx−1e ⊆ xNx−1N

= (xN)(x−1N)

= (xx−1)N

= eN = N

Hence, N ⊲ G. ◾

Before we offer a few additional theorems, let’s state some facts that the reader
has probably anticipated:

Every group G has at least two normal subgroups – {e} and G itself.
On the other hand, if the group is abelian, all subgroups are normal. Indeed,

let N ≤ G be any subgroup of the abelian group G. Then,

xn = nx, ∀x ∈ G and ∀ n ∈ N

Thus, N ⊲ G.
Similarly, you should convince yourself of the validity of the claim in the next

Example/Exercise 5.121 The center of a group Z(G) is a normal subgroup of
G (cf. Theorem 5.47).

Theorem 5.54 Let N ⊲ G be a normal subgroup of G. If xN = wN and
yN = zN, then

xyN = wzN

Proof Observe that if xN = wN, then x ∈ yN, and we can write x = wn1 for
some n1 ∈ N. Similarly, if yN = zN, then y ∈ zN, and thus we write y = zn2 for
some n2 ∈ N. So, we have

xy = (wn1)(zn2)

= w(n1z)n2 ◾

Definition 5.42 If a group G has no other normal subgroups, except the trivial
ones {e} and G itself, we say that the group G is a simple group.
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Example 5.122 Consider the alternating subgroup A3 of the symmetric group
S3

A3 =
{(

1 2 3
1 2 3

)
,

(
1 2 3
2 3 1

)
,

(
1 2 3
3 1 2

) }
You can easily convince yourself that A3 ⊲ S3. Take, for instance,

a =
(

1 2 3
2 3 1

)
∈ A3

and, say,

x =
(

1 2 3
2 1 3

)
∈ S3

and consider

xax−1 =
(

1 2 3
2 1 3

)(
1 2 3
2 3 1

)(
1 2 3
2 1 3

)−1

=
(

1 2 3
2 1 3

)(
1 2 3
2 3 1

)(
1 2 3
2 1 3

)
=
(

1 2 3
3 1 2

)
∈ A3

The rest is similar.

On the other hand, take a subset of S3, H =
{(

1 2 3
1 2 3

)
,

(
1 2 3
2 1 3

) }
.

H ≤ S3 (you should check this), but it is not a normal subgroup. Indeed, let
x ∈ S3 be

x =
(

1 2 3
3 1 2

)
and consider

xhx−1 =
(

1 2 3
3 1 2

)(
1 2 3
2 1 3

)(
1 2 3
3 1 2

)−1

=
(

1 2 3
3 1 2

)(
1 2 3
2 1 3

)(
1 2 3
2 3 1

)
=
(

1 2 3
3 2 1

)
∉ H

Hence, H ⋪ S3. ◾
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Theorem 5.55 Let M,N ⊲ G be two normal subgroups of G. Then, M ∩ N is a
normal subgroup of G.

Proof Let M,N ≤ G be two normal subgroups of G. We proved in Theorem
5.19 that the intersection of any family of subgroups of a group G is a subgroup
of G thus, in particular, M ∩ N ≤ G. Now, let x ∈ G and a ∈ M ∩ N. We need to
show that

xax−1 ∈ M ∩ N

Since a ∈ M ∩ N, a ∈ M and a ∈ N. But both M ⊲ G and N ⊲ G, therefore
xax−1 ∈ M and xax−1 ∈ N, hence xax−1 ∈ M ∩ N and M ∩ N ⊲ G. ◾

Theorem 5.56 Let 𝜂 ∶ G → H be an epimorphism of groups and, furthermore,
let N ⊲ G be a normal subgroup of G. Then, 𝜂(N) ⊲ H is a normal subgroup of
H.

Proof Certainly, 𝜂(N) is a subgroup of H. We need to show that it is a normal
subgroup. Let h ∈ H be some element of H and, since 𝜂 is an epimorphism, that
is, a surjection, there exists an x ∈ G such that 𝜂(x) = h. Also, there exists n ∈ N
such that 𝜂(n) = y ∈ 𝜂(N). But N ⊲ G, therefore,

xnx−1 ∈ N

Thus,
𝜂(xnx−1) ∈ 𝜂(N)

that is,
𝜂(x)𝜂(n)[𝜂(x)]−1 ∈ 𝜂(N)

and so,
hyh−1 ∈ 𝜂(N)

Hence, 𝜂(N) ⊲ H. ◾

Theorem 5.57 Let 𝜑 ∶ G → H be a homomorphism of groups and let M ⊲ H
be a normal subgroup of H. Then, the preimage𝜑−1(M) ≤ G is a normal subgroup
of G.

Proof Observe that, since G and H are groups and 𝜑 is a homomorphism,
𝜑−1(M) ≤ G. Take x ∈ G, and a ∈ 𝜑−1(M) and note that, since M ⊲ H,

𝜑(x)𝜑(a)(𝜑(x))−1 = 𝜑(xax−1) ∈ M
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and therefore,
xax−1 ∈ 𝜑−1(M)

We conclude that 𝜑−1(M) ⊲ G. ◾

You should be now able to do the following exercise with no difficulty.

Example/Exercise 5.123 Let M,N ≤ G be two subgroups of G such that N is
also a normal subgroup. Show that

(i) MN ⊆ G is a subgroup of G and
(ii) if M ⊲ G, then MN ⊲ G.

Theorem 5.58 Let 𝜑 ∶ G → H be a homomorphism of groups. Then,
Ker(𝜑) ⊲ G.

Proof Let a, b ∈ Ker(𝜑). This means that 𝜑(a) = e and 𝜑(b) = e. Also, since
𝜑 is a homomorphism,

𝜑(ab) = 𝜑(a)𝜑(b) = ee = e

Thus, ab ∈ Ker(𝜑).
If a ∈ Ker(𝜑) then 𝜑(a) = e, implies

𝜑(a−1) = (𝜑(a))−1 = e−1 = e

and so, a−1 ∈ Ker(𝜑).
Finally, with a ∈ Ker(𝜑) and some x ∈ G, let’s consider

𝜑(xax−1) = 𝜑(x)𝜑(a)𝜑(x−1)

= 𝜑(x)𝜑(a)(𝜑(x))−1

= 𝜑(x)e(𝜑(x))−1

= e

Hence, xax−1 ∈ Ker(𝜑), and therefore Ker(𝜑) ⊲ G. ◾
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5.7 CENTRALIZER, NORMALIZER, STABILIZER

Definition 5.43 Let A ⊆ G be any nonempty subset of G. We say that a set

CG(A) = {x ∈ G|xax−1 = a, ∀a ∈ A}

is the centralizer of A in G. In other words, CG(A) is the set of all elements of G
that commute with every element of A.

We say that a subgroup H ≤ G centralizes A if H ≤ CG(A).

Theorem 5.59 The centralizer CG(A) is a subgroup of G.

Proof First note that CG(A) ≠ ∅, since, certainly, e ∈ CG(A). Suppose x, y ∈
CG(A), that is,

xax−1 = a and yay−1 = a, ∀a ∈ A

Consider now

(xy)a(xy)−1 = (xy)a(y−1x−1)

= x(yay−1)x−1

= xax−1

= a

Thus, xy ∈ CG(A) and CG(A) is closed under multiplication, hence
CG(A) ≤ G. ◾

Definition 5.44 Let A ⊆ G be any nonempty subset of G. Defining

xAx−1 = {xax−1|x ∈ G, a ∈ A}

we say that
NG(A) = {x ∈ G|xAx−1 = A}

is the normalizer of A in G.

Example 5.124 Show that

(i) NG(A) is a subgroup of G, and
(ii) CG(A) is a subgroup of NG(A).

Solution Let x, y ∈ NG(A).
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(i) Consider

(xy)A(xy)−1 = (xy)A(y−1x−1)

= x(yAy−1)x−1

= xAx−1

= A

So, xy ∈ NG(A) and NG(A) is closed under multiplication, thus NG(A) ≤ G.
(ii) If x ∈ CG(A), then xax−1 = a, ∀a ∈ A, therefore, CG(A) ≤ NG(A). ◾

We briefly mentioned the concept of a commutator product and commutator
group in Example 5.79. Let’s now define it formally.

Definition 5.45 Let H,K ≤ G be two subgroups of G. We say that

[C] = [H,K] = [[h, k] = hkh−1k−1; h ∈ H, k ∈ K]

is a commutator subgroup of G. Note that the set of all commutators need not
be a subgroup, that is, [H,K] is a subgroup only if it is generated by the indicated
commutators.

Example/Exercise 5.125 Show that [H,K] = [K,H].

Definition 5.46 Let G be a group and X be a set. We say that X is the G-set if
there is a mapping

𝛼 ∶ G × X → X

called the action (of G on X), defined by

𝛼(g, x) = gx

such that for all g, h ∈ G and x ∈ X

(i) 𝛼(g, x)𝛼(h, x) = 𝛼(gh, x) = (gh)x
(ii) 𝛼(ex) = ex = x

If G acts on X, we usually write gx instead of 𝛼(g, x), and axioms (i) and (ii)
read

(i′) (gx)(hx) = g(hx) = ghx

(ii′) ex = x
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Example 5.126 Suppose X = G and G acts on itself by conjugation.

gx = gxg−1

Then, the G-set is G itself. Indeed, take g, h, x ∈ G, and consider

(gh)x = (gh)x(gh)−1

= (gh)x(h−1g−1)

= g(hxh−1)g−1

= g(hx)g−1

= g(hx)

And, of course, ex = x. Thus, G is the G-set itself. ◾

Example 5.127 Every group acts on the family of its subgroups by conjuga-
tion. ◾

Example 5.128 Every group G, acting on itself by left multiplication, 𝛼l, is
also a G-set. Indeed, let g1, g2 ∈ G be two elements from G, then g1 acts on g2
by 𝛼l(g1, g2) = g1g2. Similarly, if H ≤ G we can regard G as an H-set where the
action 𝛼 of h ∈ H on g ∈ G is given by 𝛼(h, g) = hg. ◾

Definition 5.47 A group G is said to act transitively on a G-set X if for every
x, y ∈ X, there exists g ∈ G such that gx = y.

Theorem 5.60 Let X be a G-set, and let x, y ∈ X. We say that x ∼ y iff there
exists g ∈ G such that gx = y. Then, “∼” is an equivalence relation.

Proof To check reflexivity, we just note that for each x ∈ X, ex = x so, x ∼ x.
For symmetry, suppose x ∼ y, that is, there exists g ∈ G such that gx = y. Well,

consider then
g−1y = g−1(gx) = ex = x

So, y ∼ x.
Finally, let x ∼ y and y ∼ z. Then there exist g1, g2 ∈ G such that

g1x = y and g2y = z

So we have
(g2g1)x = g2(g1x) = g2y = z

and therefore, x ∼ z. Thus, “∼” is an equivalence relation indeed. ◾

Theorem 5.61 Let X be a G-set with action 𝛼.
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(i) Then there exists a homomorphism

Φ ∶ G → SX

defined by
(Φ(g))(x) = gx = 𝛼(g, x), g ∈ G, x ∈ X

(ii) Conversely, every homomorphism 𝛼 ∶ G → SX defines an action given by

gx = 𝛼(g)x

which makes X a G-set

Proof

(i) Let g, h ∈ G be two elements of G, and let x ∈ X Then,

(Φ(gh))(x) = (gh)(x)

= g(hx)

= g(𝛼(h)(x))

= g𝛼(h, x)

= 𝛼(g)(𝛼(h, x))

= 𝛼(g, (𝛼(h, x)))

= 𝛼(g)((Φ(h))(x))

= (Φ(g))(Φ(h))(x)

(ii) Since
gx = 𝛼(g)x

consider

(gh)x = 𝛼(gh)(x)

= (𝛼(g)𝛼(h))(x)

= 𝛼(g)(𝛼(h)(x))

= 𝛼(g)(hx)

= g(hx)
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And finally,

ex = (𝛼(e))(x)

= (𝛼(gg−1))(x)

= (𝛼(g)𝛼(g−1))(x)

= 𝛼(g)(𝛼(g−1)(x))

= 𝛼(g)(g−1x)

= g(g−1x)

= (gg−1)(x)

= x ◾

Definition 5.48 Let G be a group acting on a set X, and let x ∈ X. We call the
set

Gx = { g ∈ G| gx = x }

the stabilizer of x in G.

Theorem 5.62 The stabilizer Gx is a subgroup of G.

Proof Note that, obviously, Gx ≠ ∅, since at least e ∈ Gx. Suppose g ∈ Gx,
then

x = ex = (g−1g)x

= g−1(gx)

= g−1x

Therefore, g−1 ∈ Gx.
Now, take g, h ∈ Gx, then

(gh)x = g(hx)

= gx

= x

We conclude that Gx ≤ G. ◾

Definition 5.49 Let G be a group, and let X be a G-set. We say that the set

O(x) = {gx| g ∈ G, x ∈ X} ⊆ X
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that is, the set of all elements of X, to which x can be moved by the elements of
G, is the G-orbit, or just the orbit of x in G.

.

.

.

.

.

.

x

y

z

u

v w

O(x)

X

Figure 5.13 Orbit of x ∈ X in G

We can now restate Definition 5.47 as

Definition 5.50 A group G acts transitively on a set X when there is an x ∈ X,
such that O(x) = X.

Example 5.129 Let’s find all orbits of X = {1, 2, 3, 4, 5, 6, 7, 8} under the
action of

𝜋 =
(

1 2 3 4 5 6 7 8
3 8 6 7 4 1 5 2

)
∈ S8

For O (1), we note that

1
𝜋
−−→ 3

𝜋
−−→ 6

𝜋
−−→ 1

𝜋
−−→ · · ·

So, the orbit of 1 is
O (1) = {1, 3, 6}

Next, we choose an element from X that is not in O (1), say 2, and, as before, we
observe that

2
𝜋
−−→ 8

𝜋
−−→ 2

𝜋
−−→ · · ·

and the orbit of 2 is
O (2) = {2, 8}

Finally, to find the orbit of an element from X that is in neither O(1) nor O(2) we
note that

4
𝜋
−−→ 7

𝜋
−−→ 5

𝜋
−−→ 4

𝜋
−−→ · · ·
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So,
O (4) = {4, 5, 7}

Thus, we have obtained the list of all orbits of elements from X. We can find the
orbits under the action of any element of S8 in the same way. ◾

It may be instructive at this point to revisit Theorem 5.60 and realize that, after
choosing a permutation 𝜋 ∈ Sn acting on a set X, one can construct equivalence
classes in X, which are exactly the orbits obtained by the action of 𝜋.

Example 5.130 Let X = {1, 2, 3, … , n} and let e ∈ Sn be the identity per-
mutation of X. Then, the orbits under the action of e are one-element subsets
of X. ◾

Example 5.131 Remember Cayley’s theorem (Theorem 5.46). We saw there
that a group G acts on itself by (left) translation 𝜏a ∶ G → G, defined by

𝜏a(x) = ax, a, x ∈ G

If G acts on itself, that is, G is a G-set itself, then

O (x) = {gx | g, x ∈ G} = G

For, if g ∈ G then g = (gx)x−1.
On the other hand, if G acts on itself by conjugation, then O (x) = Gx. ◾

Example 5.132 If G acts by conjugation on the family of all its subgroups, then

O (H) = {gHg−1 | g ∈ G, h ∈ H,H ≤ G}

= set of all conjugates of H

Also note that GH = NG(H). ◾

Example 5.133 Let G be a dihedral group D4 acting on the set X = {1, 2, 3, 4}
of vertices of a square (cf. Figure 5.3).

To make things even more transparent, this time we write our dihedral
group as

G = GRot ∪ GRef

=
{
(e) ,

(
1 2 3 4

)
,
(
1 3

) (
2 4

)
,
(
1 4 3 2

)}
∪
{(

2 4
)
,
(
1 3

)
,
(
1 2

) (
3 4

)
,
(
1 4

) (
2 3

)}
Observe that for each vertex i ∈ X there is some g ∈ G, such that g1 = i, that is,
D4 acts transitively. Thus, O (1) = X. ◾



�

� �

�

QUOTIENT GROUP 419

5.8 QUOTIENT GROUP

As we have seen thus far, in order to further our study of the structure of the
group G, we often search for a smaller group related to G hoping that the smaller
group will shed light on the structure of the more complicated G. So, before we
proceed, recall Definition 5.40 where, given H ≤ G and x ∈ G, we defined the
left and right cosets, respectively, as

xH = {xh | h ∈ H}

Hx = {hx | h ∈ H}

Let’s now consider the set QL of all (different) left cosets of H ≤ G, that is,

QL = G∕H = {xH | x ∈ G;H ≤ G}

Analogously, we can have the set QR of all right cosets of H ≤ G, that is,

QR = H∕G = {Hx | x ∈ G;H ≤ G}

Note that in general
G∕H ≠ H∕G

This is understandable since H is not necessarily a normal subgroup. It follows
that xH ≠ Hx.

However, we have

Theorem 5.63 G∕H is a homomorphic image of G.

Proof Let G be a group and let H ≤ G. Consider the function 𝜑 ∶ G → G∕H,
defined by 𝜑(x) = xH, that is, 𝜑 maps every element of G to its own coset. Then,

𝜑(xy) = xyH = xHyH = 𝜑(x)𝜑(y)

So, 𝜑 is a homomorphism, called the natural homomorphism of G to G∕H, and
G∕H is said to be a homomorphic image of G. ◾

Theorem 5.64 Let G be a group and H ≤ G. Then, for every x ∈ G, |xH| = |H|,
that is, xH and H have the same number of elements. (The same holds for Hx.)

Proof Consider a map
𝜑 ∶ H → xH
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defined by
𝜑(h) = xh, x ∈ G, h ∈ H

Obviously, 𝜑 is a surjection. But also, since

𝜑( h1) = 𝜑(h2), h1, h2 ∈ H

implies
xh1 = xh2

thus,
h1 = h2

Therefore, 𝜑 is an injection too. Hence, 𝜑 is a bijection and we conclude that H
and xH have the same number of elements. ◾

Since any coset xH has the same number of elements as H, it follows that all
cosets of H have the same number of elements. Thus,

eH

wH

xH

yH

G

Figure 5.14

Theorem 5.65 Let G be a group, and H ≤ G. Then, the family of all cosets
xH, where x ∈ G, forms a partition of G.

Proof Recall Theorem 5.50(iv) where we proved that xH and yH are either
disjoint or equal. If they are disjoint, the proof of our theorem is done. Suppose
xH ∩ yH ≠ ∅ and let a ∈ xH ∩ yH. Being in xH, a = xh1 for some h1 ∈ H. But,
a is also in yH, so we can write a = yh2 for some h2 ∈ H. Hence, we have

xh1 = yh2

x = yh2h−1
1

So, x ∈ yH and therefore, xH = yH.
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Finally, we need to show that every element g ∈ G is in one of the cosets. Well,
since H is a subgroup, e ∈ H, but then for any g ∈ G,

g = ge ∈ gH

Thus, the family of all cosets of H indeed forms a partition of G. ◾

As a simple exercise you may want to prove the following:

Theorem 5.66 Sets G∕H and H∕G are equipotent (have the same number of
elements).

(Hint: If you consider that (xH)−1 = Hx−1, then it’s easy to show that xH →
(xH)−1 is a bijection.)

Definition 5.51 Let H ≤ G be any subgroup of G. The cardinal number of the
left (right) cosets of H is called the index of a subgroup H, 𝝁, and is denoted by
[G ∶ H], that is, 𝜇 = |G∕H| = [G ∶ H]. If 𝜇 is finite, we say H is a subgroup of
finite index.

In other words, if 𝜇 is finite, that is, G is finite, then

𝜇 = [G ∶ H] = |G||H|
Recall (cf. Definition 5.39) that given two subsets H,K ⊆ G we can always design
a product

HK = {hk | h ∈ H, k ∈ K}

so it is tempting to take H ≤ G and consider the products (Hx)(Hy), hoping to
get a group structure on the family of right cosets (similarly with the family of
left cosets). However, even if H ≤ G is the family of all, say, right cosets, H∕G
need not be closed under multiplication, thus H∕G is not necessarily a group.
(The same is true for G∕H.) On the other hand, things are quite different if N is
a normal subgroup of G.

We are now ready to prove a theorem of fundamental importance in the theory
of finite groups.

Theorem 5.67 (Lagrange) Let G be a finite group and H ≤ G any of its
subgroups. Then, the order of H divides the order of G.

Proof Let x1H, x2H, … , xrH be a set of r distinct cosets of H in G. Then, for
every x ∈ G, we can find some i ∈ {1, 2, … , r}, such that

xH = xiH
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From Theorem 5.50(i) we know that x ∈ xH. Thus, every element of G belongs
to one of the cosets x1H, x2H, … , xrH, that is,

G = x1H ∪ x2H ∪ · · · ∪ xr H

Theorem 5.65(iv) tells us that x1H ∩ x2H ∩ · · · ∩ xrH = ∅, so we can write

|G| = |x1H| + |x2H| + · · · + |xrH|
However, |xiH| = |H| for all i, so it follows

|G| = r|H|
And that is what was to be shown. ◾

Corollary 5.6 If G is a finite group and g ∈ G, then the order of g divides the
order of G.

Proof The order of an element g is by definition the order of the subgroup
generated by that element, so the result follows at once from Theorem 5.67. ◾

Corollary 5.7 A group of prime order is cyclic.

Proof Let p be a prime, and let G be a group such that |G| = p. Take g ∈ G,
g ≠ e. Then, the cyclic group ⟨g⟩ is not trivial, that is, it has more than one ele-
ment. Hence, |⟨g⟩| ≠ 1 and should divide |G| = p. But p is prime, so |⟨g⟩| = |G|
and therefore, ⟨g⟩ = G. ◾

Corollary 5.8 If G is a finite group and g ∈ G, then g|G| = e.

Proof We know from Corollary 5.6 that the order of g divides the order of G.
In other words, |G| = k|g|, k ∈ N. Therefore,

g|G| = gk|g|
= ek

= e ◾

Concluding our discussion of Lagrange’s theorem, let’s note the important and
not immediately obvious fact: The converse of Lagrange’s theorem is not true.
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Theorem 5.68 Let N ⊲ G be a normal subgroup of G. Then G∕N is a
group, called the quotient group or the factor group (with the natural
multiplication of classes, which for simplicity from now on, we denote by
[x][y] = (xN)(yN), x, y ∈ G).

Proof First, note that N ⊲ G implies

xN = Nx

thus,
G∕N = N∕G

So, we simply talk about the quotient sets

G∕N = {[x] = xN|x ∈ G}

Let’s now check whether multiplication is well defined:

[x][y] = (xN)(yN)

= x (Ny)N

= x (yN)N

= (xy)(NN)

= (xy)N

= [xy] ∈ G∕N

Associativity immediately follows:

[x]([y][z]) = [x][yz]

= [xyz]

= [xy][z]

= ([x][y])[z]

Next, the identity:

[e] = eN

= N
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Indeed,

[e][x] = [ex]

= [x]

And, finally, the inverse:

[x]−1[x] = [x−1x]

= [e]

So, G∕N is a group indeed. ◾

Example 5.134 Consider the group (Z; +) = Z, and let m ∈ Z be some integer.
Then mZ ≤ Z and, furthermore, mZ ⊲ Z since Z is a commutative group. Let’s
construct the quotient group

Z∕mZ = {[k] = k + mZ|k ∈ Z}

Clearly, the elements of this group are

[0] = mZ

[1] = 1 + mZ

⋮

[m − 1] = (m − 1) + mZ

[m] = m + mZ

= m(1 + Z)

= mZ

= [0]

[m] = m + mZ

= m(1 + Z)

= mZ

= [0]

and so on.



�

� �

�

QUOTIENT GROUP 425

Similarly,

[−1] = −1 + mZ

= (m − 1) − m + mZ

= (m − 1) + m(−1 + Z)

= (m − 1) + mZ

= [m − 1]

and so on. Defining the group operation as

[k] + [l] = [k + l]

it is easy to recognize Z∕mZ as a group of order m. ◾

As you can see, the construction of a quotient group Z∕mZ is a generalization
of the construction of Zm from Z. Indeed, for any given m, k ∈ Z, we consider
the congruence class [k] of k(mod m) as the coset k + ⟨m⟩. But, remember, Z is
abelian, so ⟨m⟩ ⊲ Z, and therefore Z∕⟨m⟩ is a quotient group whose elements are
cosets k + ⟨m⟩. Hence, as you would expect, the binary operation is

(k + ⟨m⟩) + (l + ⟨m⟩) = k + l + ⟨m⟩
which we can write in the congruence class notation as above

[k] + [l] = [k + l]

Thus, Z∕⟨m⟩ ≅ Zm ≅ Z∕mZ

Theorem 5.69 Let N ⊲ G be a normal subgroup of G. Then a function

𝜋 ∶ G → G∕N

called the natural map or the natural projection, and defined by 𝜋(g) = [g], is
an epimorphism with kernel N.

Proof First, we see that 𝜋 is a homomorphism:

𝜋(g)𝜋(h) = (gN)(hN)

= g(Nh)N

= (gh)(NN)

= (gh)N

= 𝜋(gh)
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Next, consider

Ker(𝜋) = 𝜋−1([e])

= 𝜋−1(eN)

= 𝜋−1(N)

= N

So, 𝜋 is surjective too, hence 𝜋 is an epimorphism. ◾

Corollary 5.9 Every normal subgroup is the kernel of some homomorphism.

For the next theorem, we need to recall the concept of a commutator and com-
mutator group (cf. Example 5.79 and Definition 5.45):

If a, b ∈ G are two elements of a group G, we said that the commutator of
a and b, denoted by [a, b], is

[a, b] = aba−1b−1

Furthermore, we said that the subgroup G′ generated by the set of all commu-
tators in G is called the commutator subgroup of G. So, we have

Theorem 5.70 The commutator subgroup G′ ≤ G is a normal subgroup of G.
Also, if H ⊲ G is a normal subgroup of G, then G∕H is abelian iff G′ ≤ H.

Proof Let x ∈ G′ be any element of G′, that is, x = [a, b] = aba−1b−1, a, b ∈
G. Then,

x−1 = (aba−1b−1)−1

= bab−1a−1

= [a, b]−1 ∈ G′

Now, take some g ∈ G and consider

gxg−1 = g[a, b]g−1

= g(aba−1b−1)g−1

= ga(g−1g)b(g−1g)a−1(g−1g)b−1g−1

= (gag−1)(gbg−1)(ga−1g−1)(gb−1g−1)

= (gag−1)(gbg−1)(gag−1)−1(gbg−1)−1 ∈ G′
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Clearly, any element y ∈ G′ can be represented as a product of a finite number of
commutators, that is,

y = x1x2 · · · xn

And therefore, for any g ∈ G, we can write

gyg−1 = g(x1 · · · xn)g−1

= g(x1(g−1g)x2(g−1g) · · · (g−1g)xn)g−1

= (gx1g−1) · · · (gxng−1) ∈ G′

We conclude that G′ ⊲ G.
The proof of the second part of the theorem goes as follows:
Let H ⊲ G. Suppose, first, that G/H is abelian. Then, aHbH = bHaH for all

a, b ∈ G. But then also abH = baH, and therefore,

ab(ba)−1 = aba−1b−1

= [a, b] ∈ H

In other words,

(aba−1b−1)H = (aH)(bH)(aH)−1(bH)−1

= (aH)(aH)−1(bH)(bH)−1

= H

Thus, G′ ≤ H. The converse is proved similarly. ◾

5.9 THE ISOMORPHISM THEOREMS

We conclude this chapter with three important theorems due to Emmy Noether.5

As much as they are relevant for group theory itself, their analogues are also
true for many other mathematical structures. They depict some additional rela-
tions between quotient groups, normal subgroups, and homomorphisms. You
will recall that every quotient group G∕N is a homomorphic image of G, so we
ask whether every homomorphic image of G is isomorphic to a corresponding
quotient group. Before addressing Isomorphism Theorems, as a warm-up, let’s
introduce some additional concepts.

5Amalie Emmy Noether (1882–1935), German mathematician.
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Theorem 5.71 Let 𝜑 ∶ G → H be a homomorphism with Ker(𝜑) = K. Then,

𝜑(a) = 𝜑(b) iff aK = bK

Proof Suppose 𝜑(a) = 𝜑(b). Then,

e = 𝜑(a)(𝜑(a))−1 = 𝜑(a)(𝜑(b))−1

= 𝜑(ab−1)

Hence, ab−1 ∈ K, that is, aK = bK.
The converse is obvious. ◾

Let G and H be two groups, such that M ⊲ G and N ⊲ H are two respective
normal subgroups. Furthermore, let

G∗ = G∕M and H∗ = H∕N

be quotient groups. Then, the corresponding natural projections are

𝜋G ∶ G → G∗ and 𝜋H ∶ H → H∗

Finally, let
𝜒 ∶ (G,M) → (H,N)

be some homomorphism of “pairs,” that is, a homomorphism 𝜒 ∶ G → H,
such that 𝜒(M) ⊆ N. We would like to see whether similar properties could be
extended to the corresponding cosets. Thus,

Theorem 5.72 Let g ∈ G be any element of G. Then,

𝜒(gM) ⊆ 𝜒(g)N

Proof Let m ∈ M be any element of M. Then,

𝜒(gm) = 𝜒(g)𝜒(m) ∈ 𝜒(g)𝜒(M) ⊆ 𝜒(g)N

so we see that
𝜒(gM) ⊆ 𝜒(g)N

Naturally, we then say that the map

gM → 𝜒(g)N
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defines a function
𝜒∗ ∶ G∗ → H∗

Note that 𝜒∗ depends on the definition of 𝜒 . We say that 𝜒 induces 𝜒∗. ◾

Next let’s address whether 𝜒∗ is a homomorphism.

Theorem 5.73 Let G and H be two groups with M ⊲ G and N ⊲ H. Let

G∗ = G∕M and H∗ = H∕N

be two quotient groups. Then,

𝜒∗ ∶ G∗ → H∗

is a homomorphism of quotient groups.

Proof Let x, y ∈ G be any two elements of G. Consider

𝜒∗[(xM)(yM)] = 𝜒∗[(xy)M]

= 𝜒(xy)N

= 𝜒(x)𝜒(y)N

= [𝜒(x)N][𝜒(y)N]

= 𝜒∗(xM)𝜒∗(yM)

Thus, 𝜒∗ is a homomorphism indeed. We call it the induced homomorphism
of 𝜒 . ◾

Theorem 5.74 Let 𝜒∗ be the induced homomorphism of 𝜒 . Then, the following
diagram commutes

G H

G+ H*

χ*

χ

πHπG

that is, 𝜋H ∘ 𝜒 = 𝜒∗ ∘ 𝜋G.
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Proof Take any g ∈ G and consider

(𝜋H ∘ 𝜒)(g) = 𝜋H[𝜒(g)]

= 𝜒(g)H

= 𝜒∗(gM)

= 𝜒∗[𝜋G(g)]

= (𝜒∗ ∘ 𝜋G)(g) ◾

Before we close this section, it might be instructive to prove one more
proposition.

Theorem 5.75 Following the previous three theorems and the notation therein,
we claim:

(i) Im𝜒∗ = 𝜋H(Im𝜒)
(ii) Ker𝜒∗ = 𝜋G[𝜒−1(H)]

Proof First note that 𝜋G is an epimorphism. Now, we know from Theorem 5.74
that 𝜋H ∘ 𝜒 = 𝜒∗ ∘ 𝜋G, therefore,

(i)
Im𝜒∗ = 𝜒∗(G∗)

= 𝜒∗[𝜋G(G)]

= (𝜒∗ ∘ 𝜋G)(G)

= (𝜋H ∘ 𝜒)(G)

= 𝜋H[𝜒(G)]

= 𝜋H(Im𝜒)

(ii)
Ker𝜒∗ = 𝜒∗−1(eH∗)

= 𝜒∗−1[𝜋H(e)]

= 𝜒∗−1[𝜋H(𝜒(e))]

= 𝜒∗−1[(𝜋H ∘ 𝜒)(e)]

= 𝜒∗−1[(𝜒∗ ∘ 𝜋G)(e)]

= (𝜒∗−1 ∘ 𝜒∗)[𝜋G(e)]

= 𝜋G(𝜒−1(eH))

= 𝜋G[𝜒−1(H)] ◾
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We have learned from Theorem 5.71 that if there exists a homomorphism
𝜑 ∶ G → H with a kernel K, then all the elements of G with the same images in
H live in the same coset of K (see Figure 5.14).

Consequently, we have three important theorems.

Theorem 5.76 (The first isomorphism theorem) Let f ∶ G → H be a homo-
morphism of groups. Then,

G∕Ker f ≅ Im f

Proof Let’s put Ker f = K, and define 𝜑 ∶ G∕K → H by

𝜑(xK) = f (x)

In other words, we are considering a map xK → f (x).
To see that 𝜑 is well defined, first recall that K = Ker f ⊲ G. Now, suppose

xK = yK, x, y ∈ G

That means that y−1x ∈ K, which furthermore that implies

e = f (y−1x)

= f (y−1)f (x)

= [f (y)]−1f (x)

Hence,
f (y) = f (x)

It follows that
𝜑(xK) = 𝜑(yK)

So 𝜑 is well defined and is also injective.
Next, consider

𝜑((xK)(yK)) = 𝜑(xyK)

= f (xy)

= f (x)f (y)

= 𝜑(xK)𝜑(yK)

Hence, 𝜑 is a homomorphism. We immediately recognize that Im 𝜑 = Im f .
We conclude that 𝜑 is an isomorphism. ◾
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What we are saying with this theorem is that there is no significant difference
between a quotient group and its homomorphic image f (G). Furthermore, with
the natural map

𝜋 ∶ G → G∕K

the following diagram is commutative:

G

φπ

H
f

G/K

that is, 𝜑 ∘ 𝜋 = f . Indeed, observe that we can define

𝜑−1 ∶ Im f → G∕K

by stating: ∀ x ∈ Im f ,∃g ∈ G, such that f (g) = x and 𝜑−1(x) = gK. It is easy to
see that if f (h) = x, then gK = hK, and thus, 𝜑−1 is well defined.

Theorem 5.77 Two cyclic groups are isomorphic iff they have the same order.

Proof Let ⟨x⟩ and ⟨y⟩ be two cyclic groups, such that |⟨x⟩| = |⟨y⟩| = n. Then,⟨x⟩ ≅ ⟨y⟩. Consider a homomorphism f ∶ Z → ⟨x⟩ defined by f (k) = xk k ∈ Z.
Observe that 𝜑 is certainly surjective. Now, since |⟨x⟩| = n, Ker f = ⟨n⟩. By
Theorem 5.75, we have

Z∕⟨n⟩ ≅ ⟨x⟩
Similarly,

Z∕⟨n⟩ ≅ ⟨y⟩
Thus, ⟨x⟩ ≅ ⟨y⟩. The converse is obvious. ◾

Theorem 5.78 (The second isomorphism theorem) Let M ≤ G, and N ⊲ G.
Then,

M∕M ∩ N ≅ MN∕N
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Proof The following diagram is usually used as a mnemonic for “visualizing”
the theorem6:

G

MN

M    N

NM

Observe that, since N ⊲ G, MN = NM is also a subgroup of G. Furthermore,
N ⊲ MN. Now consider the surjection

𝜐 ∶ M → MN∕N

defined by
𝜐(m) = mN, ∀m ∈ M

Note that v = 𝜋|M , that is, a restriction of the natural homomorphism
𝜋 ∶ G → G∕N to M. So, Ker𝜐 = M ∩ N. By the first isomorphism theorem,

M∕M ∩ N ≅ MN∕N ◾

Theorem 5.79 (The third isomorphism theorem) Let H ⊲ G, and K ⊲ G be
two normal subgroups of G, such that K ⊆ H. Then,

(G∕K)∕(H∕K) ≅ (G∕H)

Proof With the first isomorphism theorem in mind, we define

𝜑 ∶ G∕K → G∕H

by 𝜑(xK) = xH. Clearly, the mapping is a well-defined surjection since

𝜑((xK)(yK)) = 𝜑(xyK)

= xyH

= (xH)(yH)

So, 𝜑 is a homomorphism.

6Because of this, the theorem is sometimes referred to as the “Diamond Isomorphism Theorem.”
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Next, suppose
xK = yK

That implies x−1y ∈ K. Furthermore, since K ⊆ H, x−1y ∈ H, therefore

xH = yH

that is, x = yh for some h ∈ H.
Finally, consider

Ker𝜑 = {xK|𝜑(xK) = eH = H}

= {xK|x ∈ H}

= H∕K

The first isomorphism theorem immediately provides the desired result

(G∕K)∕(H∕K) ≅ (G∕H) ◾

Example/Exercise 5.135 As a little spin-off of the previous theorem, try to
prove that

H∕K ⊲ G∕H

Example 5.136 Let G be a group, such that for some n ∈ Z+, and
for all a, b ∈ G, (ab)n = anbn. Also, define Gn = {a ∈ G|an = e} and
Gn = {an|a ∈ G}. Show that

(i) Gn ⊲ G

(ii) Gn ⊲ G

(iii) G∕Gn ≅ Gn

Solution
(i) Take a, b ∈ Gn and g ∈ G. Then,

(ab−1)n = an(b−1)n

= e
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Therefore, ab−1 ∈ Gn, that is, Gn ≤ G. Consider now,

(gag−1)n = gnan(g−1)n

= gn(g−1)n

= (gg−1)n

= e

Thus, Gn ⊲ G.
(ii) Gn ⊲ G can be proved similarly.

(iii) Consider a function 𝜑 ∶ G → Gn defined by 𝜑(a) = an. Then,

𝜑(ab) = (ab)n

= anbn

= 𝜑(a)𝜑(b), ∀a, b ∈ G

So, 𝜑 is a homomorphism. What about Ker𝜑? Well,

Ker𝜑 = {a ∈ G|𝜑(a) = an = e}

= Gn

By the first isomorphism theorem, we conclude

G∕Gn = G∕Ker𝜑

≅ Im 𝜑 = Gn ◾

Example 5.137 Show that the set Aut (G) of all automorphisms of a group
G is a group under the composition of mappings as the group operation.

Solution Clearly, Aut (G) ≠ ∅. Let 𝜑,𝜓 ∈ Aut (G) be two automorphisms.
Then,

𝜑𝜓(xy) = 𝜑(𝜓(xy))

= 𝜑(𝜓(x)𝜓(y))

= 𝜑𝜓(x)𝜑𝜓(y)

Thus, 𝜑𝜓 ∈ Aut (G).
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Now we consider

𝜑(𝜑−1(x)𝜑−1(y) = 𝜑𝜑−1(x)𝜑𝜑−1(y)

= 𝜑𝜑−1(xy)

= xy

So,
𝜑−1(x)𝜑−1(y) = 𝜑−1(xy)

implying that 𝜑−1 ∈ Aut (G). This proves that Aut (G) is a group. (As a matter of
fact, Aut (G) ≤ SG.) ◾

Example 5.138 Show that the set of all inner automorphisms In(G) is a
normal subgroup of Aut (G).

Solution Recall that by the inner automorphism of a group G, we mean a homo-
morphism 𝜄g ∶ G → G, defined by 𝜄g(x) = gxg−1, x, g ∈ G. Now, define the map

𝜑 ∶ G → Aut (G)

by 𝜑(a) = 𝜄a, ∀a ∈ G,
and consider

𝜄ab(x) = abx(ab)−1

= a(bxb−1)a−1

= a𝜄b(x)a−1

= 𝜄a(𝜄b(x))

= 𝜄a𝜄b(x) ∀x ∈ G

It follows that 𝜑 is a homomorphism, and therefore

In(G) = Im 𝜑 ≤ Aut (G)

Is it a normal subgroup? Well, take any 𝜓 ∈ Aut (G) and consider

(𝜓 𝜄a𝜓
−1)(x) = 𝜓(a𝜓−1(x)a−1)

= 𝜓(a)𝜓𝜓−1(x)𝜓(a−1)

= 𝜓(a)x 𝜓(a−1)

= 𝜄𝜓(a)(x)

So, 𝜓 𝜄a𝜓
−1 = 𝜄𝜓(a) ∈ In(G) from which we conclude In(G) ⊲ Aut (G). ◾
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Example 5.139 Show that

G∕Z(G) ≅ In(G)

Solution Let 𝜄a ∈ In(G) be an inner automorphism. Consider a homomorphism

𝜑 ∶ G → Aut (G)

given by
𝜑(a) = 𝜄a, ∀a ∈ G

Since 𝜑 is a homomorphism, In(G) = Im 𝜑 is a subgroup of Aut (G). Being a
group, it has an identity, and 𝜄a = 𝜄e is the identity automorphism iff axa−1 = x
for all x ∈ G. Therefore,

Ker𝜑 = Z(G)

But that is exactly what we need in order to apply the first isomorphism theorem,
that is,

G∕Z(G) = G∕Ker𝜑 ≅ Im 𝜑 = In(G) ◾

5.10 DIRECT PRODUCT OF GROUPS

Suppose we are given two groups G and H. We would like to investigate the pos-
sibility of constructing another group as the “product” of G and H. Instinctively,
one would consider a product

Π = G × H = {(g, h)|g ∈ G, h ∈ H}

and ask how to organize Π to be a group. If p1, p2 ∈ Π are any two elements of
Π, the natural way to construct the product would be to define it as follows:

p1 ⋅ p2 = (g1, h1) ⋅ (g2, h2)

= (g1g2, h1h2)

Similarly, instead of two groups, we can have a finite family of groups and define
the product analogously. So we have

Definition 5.52 Let G1,G2, … ,Gn be a finite family of groups. We say that

Π = G1 × G2 × · · · × Gn = {(g1, g2, … , gn)|gi ∈ Gi }

is a direct product of groups G1,G2, … ,Gn.
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We define multiplication in set Π as follows:

(g1, g2, … , gn)(g′1, g
′
2, … , g′n) = ( g1∗1g′1, g2∗2g′2, … , gn∗ng′n )

where "∗i" indicates “multiplication” performed in the respective group Gi.
Although the operations "∗i" can be different in each Gi in principle, we shall,
as usual, simply write

(g1, g2, … , gn)(g′1, g
′
2, … , g′n) = (g1g′1, g2g′2, … , gng′n)

Hence, we have

Theorem 5.80 With the binary operation defined above, Π becomes a group.

Proof For simplicity, let’s again consider the direct product of only two groups,
G and H:

Π = G × H = {(g, h)|g ∈ G, h ∈ H}

Take any p1, p2, p3 ∈ Π, such that

p1 = (g1, h1), p2 = (g2, h2), and p3 = (g3, h3)

Then,

p1(p2p3) = (g1, h1)((g2, h2)(g3, h3))

= (g1, h1)( g2g3, h2h3)

= (g1g2g3, h1h2h3)

= ((g1g2, h1h2))(g3, h3)

= (p1p2)p3

So, associativity holds. What about the neutral element?
Define e = eΠ = (eG, eH). Then, for any p = (g, h) ∈ Π

ep = (eG, eH)p

= (eG, eH)(g, h)

= (eGg, eHh)

= (g, h)
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And, finally, defining the inverse as

p−1 = (g−1, h−1)

we have

pp−1 = (g, h)(g−1, h−1)

= (gg−1, hh−1)

= (eG, eH)

= e

So, Π is a group indeed. An analogous proof can be given for the direct product
of n groups. ◾

Example 5.140 Consider R2 = R × R with usual addition as the binary opera-
tion. It is immediately clear that (R2; +) is a group. Similarly, one can consider
(Rn; +). ◾

Example 5.141 Consider

S1 × R = {(e2πi, r)|r ∈ R}

This group is called the cylinder group. ◾

Example 5.142 Consider

S1 × S1 = {(e2𝜋ir, e2𝜋is)|r, s ∈ R}

This group is called the torus group. ◾

Example 5.143

Z2 × Z3 = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)} ◾

Example 5.144 Let G and H be two abelian groups. Prove that G × H is
abelian too. ◾

Proof Let (g1, h1), (g2, h2) ∈ G × H be any two elements of G × H. Consider

(g1, h1) ⋅ (g2, h2) = (g1g2, h1h2)

= (g2g1, h2h1)

= (g2, h2) ⋅ (g1, h1) ◾
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Theorem 5.81 Let Π = G × H be a direct product of groups. Then,

(i) G and H are normal subgroups of Π
(ii) GH = Π

(iii) G ∩ H = {eG, eH} = {e}

Proof (i) Consider the following two maps:

𝜋1 ∶ G × H → G, and 𝜋2 ∶ G × H → H

defined by 𝜋1(g, h) = g, and 𝜋2(g, h) = h. If we could prove that Ker𝜋1 ≅ H and
Ker𝜋2 ≅ G, then the proof of the theorem will immediately follow.

Let’s first prove that 𝜋1 is a homomorphism. (A similar proof works for 𝜋2.)
For any p1, p2 ∈ Π = G × H

𝜋1(p1p2) = 𝜋1((g1h1)(g2h2))

= 𝜋1((g1g2, h1h2))

= g1g2

= 𝜋1(g1h1)𝜋1(g2h2)

= 𝜋1(p1)𝜋1(p2)

So, 𝜋1 is a homomorphism. Next,

Ker𝜋1 = 𝜋−1
1 (eG) = {(eG, h)|h ∈ H}

= {eG} × H

But, clearly, {eG} × H ≅ H, thus Ker𝜋1 ≅ H. Consequently, Ker𝜋1 ≅ H and
Ker𝜋2 ≅ G imply that G, H ⊲ Π.

Claims (ii) and (iii) are obvious. ◾

Theorem 5.82 Let A ⊲ G and B ⊲ H, then

(i) A × B ⊲ G × H

(ii) (G × H)∕(A × B) ≅ (G∕A) × (H∕B)

Proof Observe that the homomorphism

𝜑 ∶ G × H → (G∕A) × (H∕B)
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defined by 𝜑(g, h) = (gA, hB) is surjective, and

Ker𝜑 = 𝜑−1(eGA, eHB)

= A × B

so (i) immediately follows.
The first isomorphism theorem implies (ii). ◾

Theorem 5.83 Let G,H, and K be three groups. Then,

(i) G × H ≅ H × G

(ii) G × (H × K) ≅ (G × H) × K

Theorem 5.84 Let 𝜑 ∶ G → H and 𝜓 ∶ G → K be two homomorphisms of
groups. Then the mapping

𝜒 ∶ G → H × K

defined by
𝜒(g) = (𝜑(g), 𝜓(g))

is also a homomorphism, called the direct product of homomorphisms.

5.11 SUPPLEMENTARY PROBLEMS

1. Determine whether the following are groups:
(i) (R; −)
(ii) (R; +)
(iii) (Z; +)
(iv) (Z+; +)
(v) (R ⧵ {0}; ⋅)
(vi) (Z ⧵ {0}; ⋅)
(vii) (R+ = {x ∈ R|x > 0} ; ⋅)

2. Determine whether each set with the indicated operation forms a group.
(i) (N ∪ {0}; a⊝ b = |a − b|)
(ii) (R;⊛ = average of two numbers)
(iii) ( R; a∅b = a∕b)
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3. Let S = {a, b, c, d} and the binary operation " ∗ " on S be partially given by
the table

∗ a b c d
a d c
b a
c
d

Complete the table and determine whether (S; ∗) is a group.

4. Determine whether (R; ∗) with the operation ∗ defined by

a ∗ b = a + b + k, k = const

is a group.

5. Let G = {a|a ∈ R,−1 < a < 1 } and let the operation ∗ be defined by

a ∗ b = a + b
ab + 1

, a, b ∈ G

Determine whether (G; ∗) is a group or not.

6. Let (G; ∗) be a group, and a, b, c ∈ G.

(i) Find the inverse of a ∗ (b ∗ c).
(ii) Show that if a ∗ b ∗ a ∗ b = e, then b ∗ a ∗ b ∗ a = e.

7. Let G be a group, and let a, b, c ∈ G be some elements of G. Show that if
(abc)(abc) = e, then (bca)(bca) = e, and (cab)(cab) = e, that is, bca is
its own inverse, and cab is its own inverse.

8. Prove: There exists no group containing exactly two elements that do not
commute.

9. Given set G = {p1, p2, p3, p4} where

p1 =
(

1 2 3 4
1 2 3 4

)
, p2 =

(
1 2 3 4
2 3 4 1

)
,

p3 =
(

1 2 3 4
3 4 1 2

)
, and p4 =

(
1 2 3 4
4 1 2 3

)
show that G under composition is an abelian group.
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10. Prove that the following permutations form a V-group:

(1);
(
1 2

) (
3 4

)
;

(
1 3

) (
2 4

)
;

(
1 4

) (
2 3

)
11. Let Rn be the set of all ordered n-tuples, that is,

Rn = R × · · · × R = {(x1, … , xn)|xi ∈ R}

Show that, with usual componentwise addition,

x + y = (x1, … , xn) + (y1, … , yn)

= (x1 + y1, … , xn + yn)

(Rn; +) is an abelian group.

12. Prove that a group G is abelian iff (ab)−1 = a−1b−1, ∀a, b ∈ G.

13. Let X be a given set. Show that (P(X); Δ) is an abelian group. (Hint: P(X) is
a power set, and Δ indicates symmetric difference; see Chapter 1.)

14. Let Pn = {p | deg p < n, n ∈ N} ∪ {0}be a set of all polynomials p ∶ R →
R defined in the usual way by

p(x) =
m∑

k=0

akxk, ak ∈ R

whose degree is less than n ∈ N. Show that (Pn; +) is a group.

15. Determine whether P = ∪∞n=0Pn, with the usual addition of polynomials, is a
group.

16. Prove that a set T = {3x|x ∈ Z}, with usual multiplication, is a group.

17. Consider a set O = (−1, 1) = {x ∈ R| −1 < x < 1}. Show that under the
binary operation “∗” defined by

x ∗ c = x + c
1 + cx

(O; ∗) is a group.

18. Let P be a polygon in the plane and let

Π(P) = {𝜋 ∶ P → P| 𝜋 is an isometry}

be a set of all isometric congruencies of a polygon P. Show that (P) is a
group.
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19. Let G be a group, such that g ∈ G. Show that {g, e} ≤ G iff g = g−1.

20. Let H and K be two subgroups of G. Determine whether (i) H ∪ K and (ii)
H ∪ K are subgroups of G.

21. Let H and K be two subgroups of G. Show that if H ⊆ K, then H ≤ K.

22. Let H,K ≤ G. Show that HK defined as follows:

HK = {ab | a ∈ H, b ∈ K}

is a subgroup of G.

23. Let a, b ∈ Z, such that a ≠ 0, b ≠ 0, and let = {ma + nb|m, n ∈ Z} be the
set of all linear combinations of a and b. Show that L ≤ (Z; +).

24. Determine whether a set H = {0, 1, 2, 3} is a subgroup of Z8.

25. Let Z be endowed with the binary operation a⊕ b = a + b − 1. Show that
(Z;⊕) is a group and determine whether (Zodd;⊕) is a subgroup of (Z;⊕).

26. Consider groups ( (R); +) and (F; +) where

F = {f ∈  (R)|f (−x) = −f (x)}

Show that (F; +) ≤ ( (R); +).

27. Consider the following sets

G =
{[

a b
c d

] |a, b, c, d ∈ Z
}

and

H =
{[

a b
c d

]
∈ G | a + b + c + d = 0

}
Show that (H; +) ≤ (G; +).

28. Given a group (R ∖ {0}; ⋅) = (R∗; ⋅), find all finite subgroups.

29. Show that a mapping 𝜑 ∶ (G; ∗) → (G; ∗) defined by 𝜑(a) = a2 is a homo-
morphism iff G is abelian.

30. Let 𝜑 ∶ G → H be a homomorphism of groups and let A ≤ G, then the
restriction 𝜑|A ∶ A → H is also a homomorphism.

31. Show that a mapping 𝜑 ∶ (R+; ⋅) → (R+; ⋅) defined by 𝜑(x) =
√

x is an
automorphism.

32. Consider a mapping 𝜑 ∶ ( (R); +) → (R; +) defined by 𝜑(f ) = f (0). Show
that 𝜑 is a homomorphism.
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33. If G is a group, show that a mapping 𝜑 ∶ G → G defined by 𝜑(x) = x−1 is an
automorphism iff G is abelian.

34. Prove that a homomorphism of groups 𝜑 ∶ G → H is an injection iff
Ker𝜑 = e.

35. Let 𝛼 and 𝛽 be two homomorphisms. Show that 𝛽∘𝛼 is a trivial homomor-
phism iff Im 𝛼 ⊆ Ker𝛽.

36. Show that a function𝜑 ∶ R → S1 defined by𝜑(x) = e2𝜋ix is an epimorphism.

37. Let 𝛼 ∶ G → H and 𝛽 ∶ H → K be two homomorphisms of groups. Show
that if 𝛾 = 𝛽 ∘ 𝛼 is an epimorphism, then 𝛽 is an epimorphism too.

38. Show that (R; +) ≅ (R+; ⋅), that is, show that a group of all real numbers with
addition as the binary operation is isomorphic to the group of positive real
numbers with multiplication as a binary operation.

39. Determine whether (Z; +) is isomorphic to (Q; +).

40. Determine whether (Q; +) is isomorphic to (R; ⋅).

41. Let (G; ∗) be a group. Define another operation ⊗ on G, such that a⊗ b =
a ∗ b, ∀a, b ∈ G. Show that (G;⊗) is a group isomorphic to (G; ∗).

42. Consider a set G = {10n|n ∈ Z} and a group (G; ⋅). Show that (G; ⋅) ≅
(Z; +).

43. Show that 𝜑 ∶ Z → mZ is an isomorphism of groups.

44. Let G be a group. Show that the identity function 𝜄 ∶ G → G, defined by
𝜄(x) = x, ∀x ∈ G is an isomorphism.

45. Consider a set G = {x + y
√

2 |x, y ∈ Q} and a set

M =
{[

x 2y
y x

] |x, y ∈ Q
}

Show that (G; +) ≅ (M; +).

46. Let H ≤ G be any subgroup of G. Show that H ≅ gHg−1 for any g ∈ G.

47. Show that the alternating group An is a normal subgroup of the symmetric
group Sn.

48. Show that a commutator subgroup [K] ≤ G is a normal subgroup of G.

49. Consider the inner automorphism 𝜑g ∶ G → G defined by 𝜑g(x) = gxg−1.
Show that 𝜑g is an isomorphism.

50. Show that if 𝜑 ∶ G → H is an isomorphism of groups, and G is a cyclic
group with generator a, then H is a cyclic group with generator 𝜑(a).
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51. Show that H ⊲ G iff 𝜑g(H) = H for every inner automorphism of a group G.

52. Let A ≤ Z(G) be any subgroup of the center of a group Z(G). Show that
A ⊲ G.

53. Let N ⊲ G be a normal subgroup, and H ≤ G any subgroup of G. Show that
NH is a subgroup of G.

54. Let H,K ⊲ G. Show that HK ⊲ G.

55. Let H,K ⊲ G. Show that HK = G and H ∩ K = e iff each g ∈ G has a unique
expression of the form g = hk, where h ∈ H and k ∈ K.

56. Let H,K ≤ G. Show that if G = HK, then hk = kh for all h ∈ H and k ∈ K.

57. Let H,K ⊲ G. Prove that if G = HK and H ∩ K = {e}, then G ≅ H × K.

58. Let 𝜑 ∶ G → H be a homomorphism of groups, and let K ≤ H. Show that

𝜑−1(K) = {x ∈ G|𝜑(x) ∈ K} ≤ G

Furthermore, show that Ker𝜑 ⊆ 𝜑−1(K).

59. Show that Z∕mZ ≅ Zm.

60. Show that V ≅ Z2 × Z2.
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LINEAR ALGEBRA

6.1 INTRODUCTION

Linear Algebra is probably one of the most traditional abstract mathematical dis-
ciplines central to both pure and applied mathematics. Historically, it originates
from the problem of finding solutions to a system of linear equations. Being “lin-
ear” suggests its intuitive simplicity, and soon enough people found a way to
combine it with other mathematical disciplines and apply it to a number of other
fields, starting from physics to the social sciences. Not surprisingly, Linear Alge-
bra became a fascinating field of its own.

Before formally presenting the topic, let me append to this introduction some-
thing that may look rather familiar to many a reader and still hopefully provoke
curiosity and interest for more insightful discussion.

First, by a linear equation with n unknowns x1, x2, … , xn, we mean an
equation

𝛼1x1 + 𝛼2x2 + · · · + 𝛼nxn = 𝛽 (6.1)

where 𝛼1, 𝛼2, … , 𝛼n, are called the coefficients (real, 𝛼i ∈ R, or complex num-
bers, 𝛼i ∈ C) of the x′is and 𝛽 (real or complex number) is called the constant term
(sometimes, the free term). The solution of equation (6.1) is also a set of numbers
from R (or C)

x1 = k1, x2 = k2, … , xn = kn

Principles of Mathematics: A Primer, First Edition. Vladimir Lepetic.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
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such that equation (6.1) is satisfied, that is the following statement is true:

𝛼1k1 + 𝛼2k2 + · · · + 𝛼nkn = 𝛽

A linear equation is said to be degenerate if all coefficients are zero, that is

𝛼1 = 𝛼2 = · · · = 𝛼n = 0

So equation (6.1) becomes

0x1 + 0x2 + · · · + 0xn = 𝛽

Obviously, in that case any selection of x1, x2, … , xn would satisfy equation
(6.1) if 𝛽 = 0, and we would say that our equation has no solution if 𝛽 ≠ 0.

Suppose now that you want to expand on your (usual) high school knowledge
of solving a system of one, two, or three linear equations with a respective number
of unknowns. Say you wonder how to solve a system of 4, 5, maybe 15 or, why
not, 55 equations. In other words, you would like to find a method of solving a
system of n linear equations with n variables (unknowns):

𝛼11x1 + 𝛼12x2 + 𝛼13x3 + · · · + 𝛼1nxn = 𝛽1

𝛼21x1 + 𝛼21x2 + 𝛼23x3 + · · · + 𝛼2nxn = 𝛽2

⋮ ⋮
𝛼n1x1 + 𝛼n2x2 + 𝛼n3x3 + · · · + 𝛼nnxn = 𝛽n

⎫⎪⎪⎬⎪⎪⎭
(6.2)

In our expression (6.2), the 𝛼′ijs are coefficients of x′is; the x′is are unknowns whose
values are to be determined, and the 𝛽′i s are free terms. Suppose someone recog-
nizing the severity of the problem comes with an ingenious idea and suggests
to rewrite the system (6.2) by collecting all the coefficients in one “box,” the
unknowns in another, and finally the free terms in yet another “box,” so that our
system (6.2) looks as follows:

⎡⎢⎢⎢⎣
𝛼11 𝛼12 … 𝛼1n
𝛼21 𝛼22 … 𝛼2n
⋮ ⋮ ⋮ ⋮
𝛼n1 𝛼n2 … 𝛼nn

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
x1
x2
⋮
xn

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
𝛽1
𝛽2
⋮
𝛽n

⎤⎥⎥⎥⎦ (6.3)

To make things even simpler, let’s denote the “boxes” in (6.3) by A, X, and B,
respectively, call them matrices and simply write everything as

AX = B (6.4)
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Equation (6.4) looks like a simple linear equation in one variable X, and it is rather
tempting to say we know how to solve it. It’s easy:

X = A−1B

Well, that would be true if A, B, and X were “regular” objects (numbers), but they
are not. Remember, they are “boxes” of numbers. So the question is this: How
do we operate with those? Can we detect the general underlining structure those
objects obey? Can we discover the rules that determine how to manipulate them?
And, finally, in addition to solving the system (6.2), we started with, we ask: is
it possible that some other mathematical objects fit into this scheme? So, here
it goes.

6.2 VECTOR SPACE

Definition 6.1 Let X = { x1, x2, …} be a set whose elements we call vectors,1

such that X = (X; +) is an additive abelian group, and let Φ = {𝛼, 𝛽, …} be a
set whose elements we call scalars,2 such that (Φ; +) is a field. Next, we define
a mapping

f ∶ X × Φ → X

by f (𝛼, x) = 𝛼x, for all 𝛼 ∈ Φ, x ∈ X. We want the following axioms to hold:

A.1 x1 + x2 = x2 + x1, ∀x1, x2 ∈ X (X is abelian group)
A.2 (x1 + x2) + x3 = x1 + (x2 + x3), ∀x1, x2, x3 ∈ X
A.3 There is unique 𝟎 ∈ X, called the additive identity, such that 𝟎 + x = 𝟎 +

x = x, ∀ x ∈ X
A.4. For each x ∈ X, ∃(−x) ∈ X, called the additive inverse, such that

x + (−x) = (−x) + x = 𝟎
A.5. 𝛼(x1 + x2) = 𝛼x1 + 𝛼x2, ∀𝛼 ∈ Φ; ∀x1, x2 ∈ X
A.6 (𝛼 + 𝛽)x = 𝛼x + 𝛽x, ∀α, β ∈ Φ; ∀x ∈ X
A.7 (𝛼𝛽) = 𝛼(𝛽x), ∀ 𝛼, 𝛽 ∈ Φ; ∀x ∈ X
A.8 ∃1 ∈ Φ such that 1x = x1 = x

The triple (X, Φ, f ) = V satisfying A.1–A.8 we call a vector or a linear space
over the field Φ.

1From now on we will use bold faced lower case Latin letters to designate vectors, and bold capitals to
designate vector spaces.
2We will use the lower case Greek alphabet to designate scalars, and capitals for the corresponding fields.
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NOTE:

1. From A.1–A.8, and the definition of the function f, it follows that if x ∈ X is a vector
and 𝛼∈ Φ is a scalar, then 𝛼x ∈ V. Often, however, we simply say that the set X is
a vector space if two algebraic operations – vector addition and scalar multiplica-
tion – are defined on it.

2. Observe that the conditions in the definition are not logically independent. For
instance, the request for X to be an abelian group is redundant, in a sense, because
it also follows from the axioms.

3. Once again, let’s agree that from now on we will use bold-faced Latin letters for
vectors and regular print Greek letters for scalars.

Example 6.1 R = (R,R, +, ⋅), is a space of real numbers over real numbers.
We take x, y ∈ R, and the operation “+” is standard addition of real numbers.
Also, take 𝛼 ∈ R, and 𝛼x is just multiplication of a real number by a real
number. ◾

Similarly,

Example 6.2 Consider a set Rn = { (𝛼1, … , 𝛼n)|𝛼i ∈ R }
With standard component addition

(𝛼1, … , 𝛼n) + (𝛽1, … , 𝛽n) = (𝛼1 + 𝛽1, … , 𝛼n + 𝛽n)

and multiplication
𝛼(𝛼1, … , 𝛼n) = (𝛼𝛼1, … , 𝛼𝛼n)

we immediately recognize that axioms A.1–A.8 are satisfied, and we have a vec-
tor space (Rn,R,+, ⋅ ). We call this space the Cartesian n-space. ◾

To facilitate our intuition, let’s consider R2, whose elements could be thought
of as points or as arrows, as is illustrated in the following example.

Example 6.3 A typical element of R2 is a point x = (x1, x2) as in Figure 6.1.
Equally, we can think of an element of R2 as an arrow (a vector) (Figure 6.2).
It is easy to see that axioms A.1–A.8 are satisfied. With addition as defined in

the previous example, the sum of two vectors is pictured in Figure 6.3.
Observe that we have moved vector y parallel to itself without changing its

direction and length, so that its “tail” coincides with the “tip” of vector x. (Doing
this we have not changed the identity of vector y.) Finally, we connected the “tail”
of x with the “tip” of y, thus obtaining the sum x + y. Examining the picture
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X2

(x1, x2)

X1

Figure 6.1

X1

X2

x

Figure 6.2

x2

x1 y1

x

x + y

y

y2

Figure 6.3
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carefully, one can convince oneself that the sum of two vectors is exactly as
desired, namely,

x + y = (x1, x2) + (y1, y2)

= (x1 + y1, x2 + y2)

We can dispense of the coordinate axes to make the picture less cluttered, and
simply conceive the sum of two vectors as follows (Figure 6.4):

x

y

x + y

Figure 6.4

The multiplication of a vector x by a scalar looks something like this: 𝜆:
Then, of course, with x from Figure 6.5, −x = (−1)x is as in Figure 6.6

x λx λxxλ > 1: λ < 1:

Figure 6.5

−x

Figure 6.6
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One should keep in mind that the pictures above are just aids to help us build
our intuition for a better understanding of vectors and vector spaces. These
pictures in no way represent more abstract vectors, in particular, vectors of
n-dimensional spaces (Figure 6.6). ◾

Example/Exercise 6.4 Convince yourself that R3, with the usual addition and
multiplication, is a vector space.

Example 6.5 To define the n-dimensional analogues of R3, take Φ to be an
arbitrary field. We can design the set of all n-tuples of elements in Φ, namely

Φn = {𝝓 = (𝜙1, 𝜙2, … , 𝜙n)| 𝜙i ∈ Φ}

If we endow this set with addition defined by

𝝓 + 𝝓
′ = (𝜙1, 𝜙2, … , 𝜙n) + (𝜙′1, 𝜙

′
2, … , 𝜙′n)

= (𝜙1 + 𝜙′1, 𝜙2 + 𝜙′2, … , 𝜙n + 𝜙′n), ∀𝜙i, 𝜙
′
i ∈ Φ ,

and scalar multiplication defined by

𝜆𝝓 = 𝜆( 𝜙1, 𝜙2, … , 𝜙n)

= (𝜆𝜙1, 𝜆𝜙2, … , 𝜆𝜙n), ∀ 𝜆, 𝜙i ∈ Φ

and with an appropriately chosen “zero,” say, 𝟎 = (0, 0, … , 0), and the “nega-
tive vector”

−𝝓 = −(𝜙1, 𝜙2, … , 𝜙n) = (−𝜙1,−𝜙2, … ,−𝜙n)

we obtain a vector space 𝚽n. ◾

Example 6.6 Let Pn = {p(x)| p is a polynomial, deg p ≤ n ∈ N} ∪ {0} be the
set of all polynomials in one variable with real coefficients. Then, Pn with the
usual addition of polynomials, and multiplication of polynomials by a real num-
ber, is a vector space. ◾

Example 6.7 Let S be any set, and let F(S) be a set of all functions defined on
S with values on some field Φ. With the usual addition of functions, and multi-
plication of functions by 𝛼 ∈ Φ, we obtain a vector space (F, Φ, +, ⋅). ◾



�

� �

�

454 LINEAR ALGEBRA

Theorem 6.1 Let X be a vector space over a field Φ. Then,

(i) 0x = 𝟎 ∈ X, ∀x ∈ X, 0 ∈ Φ
(ii) 𝛼𝟎 = 𝟎, ∀𝛼 ∈ Φ

(iii) If 𝛼x = 𝟎, then either 𝛼 = 0 or x = 𝟎

Proof

(i) x + 𝟎 = x

= 1x

= (1 + 0)x

= 1x + 0x

= x + 0x

which implies 0x = 𝟎.
(ii) Take any x ∈ X, and 𝛼 ∈ Φ and consider

𝟎 + 𝛼x = 𝛼x

= 𝛼(𝟎 + x)

= 𝛼𝟎 + 𝛼x

which implies 𝛼𝟎 = 𝟎.
(iii) If 𝛼 = 0 there is nothing to prove. Suppose 𝛼 ≠ 0. SinceΦ is a field, there

exists 𝛼−1 ∈ Φ, so

𝛼−1(𝛼x) = 𝟎

= (𝛼−1𝛼)x

= 1x

= x

Hence x = 𝟎, and that completes the proof. ◾

Example/Exercise 6.8 Show that (𝛼 − 𝛽)x = 𝛼x − 𝛽x, ∀𝛼, 𝛽 ∈ Φ, x ∈ X.

Example/Exercise 6.9 Let X be a vector space over a field Φ, and let
x ∈ X and𝛼 ∈ Φ. Show that 𝛼x = x iff 𝛼 = 1 or x = 0.
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Example 6.10 Consider the set of all positive real numbers R+ = X, and define
the “addition” of “vectors” as follows:

x + y = xy, ∀x, y ∈ R+

where the product on the right side is just the usual product of numbers. Further-
more, define scalar multiplication by

𝛼x = x𝛼

that is, a number x raised to the 𝛼th power. With these definitions, X becomes a
vector space. ◾

Example 6.11 Let C[a, b] = R[a,b] = { f | f ∶ [a, b]→ R} be the set of all real
and continuous functions on [a, b]. As with the addition of vectors, we define the
usual addition of functions, that is, for all x ∈ [a, b], and for all f , g ∈ C[a, b]

(f + g)(x) = f (x) + g(x)

For scalar multiplication we take

(𝛼 f )(x) = 𝛼 f (x)

With these definitions, C[a, b] becomes a vector space. ◾

Theorem 6.2 A vector space has a unique additive identity.

Proof Let X be a vector space and suppose 𝟎, 𝟎′ ∈ X are two additive identities.
Then,

𝟎 = 𝟎 + 𝟎′ = 𝟎′

Thus, 𝟎 = 𝟎′. ◾

Theorem 6.3 Every element in a vector space has a unique additive inverse.

Proof Let X be a vector space and let x ∈ X be any vector. Suppose
(−x) and (−x′) are two inverses of x. Then,

(−x) = (−x) + 𝟎 = (−x) + (x + (−x′))

= ((−x) + x) + (−x′) = 𝟎 + (−x′)

= (−x′)

Thus, (−x) = (−x′), as desired. ◾
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Theorem 6.4 For every x ∈ X, −x = (−1)x, where (−1) ∈ Φ.

Proof Let x ∈ X be any vector. Then,

x + (−1)x = 1x + (−1)x

= (1 + (−1))x

= 0x = 𝟎

Thus, (−1)x must be the additive inverse of x. ◾

Consequently, by x − y we mean x + (−y) for every x, y ∈ X.

Example 6.12 Let S ⊆ R2 be a set of all (x, y) ∈ R2 such that x ≥ 0 and y ≥ 0.
Then, with ordinary operations in R2, S is not a vector (sub)space of R2.

Consider, for instance, x = (1, 1) ∈ R2 and 𝜆 = −1 ∈ R. Then, 𝜆x =
(−1, −1) ∉ S. Thus, since S is not closed under scalar multiplication, it is not a
vector space. ◾

6.3 LINEAR DEPENDENCE AND INDEPENDENCE

Definition 6.2 Let x1, x2, … , xk ∈ X be a collection of vectors from a vector
space X over a field Φ. We say that

𝛼1x1 + · · · + 𝛼kxk, 𝛼i ∈ Φ

is a linear combination of vectors xi, … , xk. We say that the linear combination
is trivial if all 𝛼i are equal to zero.

Definition 6.3 Let E = {x1, … , xk} be a finite set of distinct vectors from X.
We say that set E is linearly independent if

𝛼1x1 + · · · + 𝛼kxk = 𝟎 (*)

with all 𝛼i = 0. In other words, set E is linearly independent iff equation (*) is
obtainable only trivially. Consequently, we have

Definition 6.4 The set of vectors E that is not linearly independent is said to
be linearly dependent. In other words, the set of vectors x1, … , xk is linearly
dependent, if there is at least one 𝛼i from equation (*) different from zero.

To illustrate this, let’s suppose that in equation (*) 𝛼j ≠ 0. Then, we can write

𝛼jxj = −𝛼1x1 − · · · 𝛼j−1xj−1 − 𝛼j+1xj+1 − · · · − 𝛼kxk
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and therefore,

xj =
(
−
𝛼1

𝛼j

)
x1 + · · · +

(
−
𝛼k

𝛼j

)
xk

that is, xj is expressible as a linear combination of the remaining vectors from (*).

Example 6.13 Let x1 = (1, 0) and x2 = (0, 1) be two vectors from R2. We
claim that the set { x1, x2 } is a set of linearly independent vectors. Let’s see.

Consider

𝛼1x1 + 𝛼2x2 = 𝟎

= 𝛼1(1, 0) + 𝛼2(0, 1)

= (𝛼1, 0) + (0, 𝛼2)

= (𝛼1, 𝛼2)

= (0, 0)

Since the zero vector 0 is expressible as a linear combination of vectors x1, x2
only trivially, we conclude that x1, x2 are linearly independent. ◾

Example/Exercise 6.14 Show that the set of vectors {(1, 1, 1), (0, 1, 1),
(0, 0 1)} are linearly independent.

Example 6.15 Determine whether the vectors x1 = (2, 3), x2 = (4, 6) from
R2 are linearly dependent or not.

Solution Consider
𝛼1 x1 + 𝛼2x2 = 𝟎

that is,

𝛼1(2, 3) + 𝛼2(4, 6) = (0, 0)

= (2𝛼1, 3𝛼1) + (4𝛼2, 6𝛼2)

= (2𝛼1 + 4𝛼2, 3𝛼1 + 6𝛼2)

Thus,

2𝛼1 + 4𝛼2 = 0

3𝛼1 + 6𝛼2 = 0
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Observe that the above system has a trivial solution 𝛼1 = 𝛼2 = 0 but also a non-
trivial one, say, 𝛼1 = −2, 𝛼2 = 1, hence vectors x1 = (2, 3), x2 = (4, 6) are lin-
early dependent. ◾

Example 6.16 Determine whether vectors x1, x2, x3 ∈ R4 defined below are
linearly dependent or not.

x1 = (1, 2, 2, −1), x2 = (4, 9, 9, −4), x3 = (5, 8, 9, −5)

Solution Consider the linear combination

𝛼1x1 + 𝛼2x2 + 𝛼3x3 = 𝟎

that is,

𝛼1(1, 2, 2, −1) + 𝛼2(4, 9, 9, −4) + 𝛼3(5, 8, 9, −5) = (0, 0, 0, 0)

We need to determine whether the corresponding system of linear equations has
a trivial or nontrivial solution:

𝛼1 + 4𝛼2 + 5𝛼3 = 0

2𝛼1 + 9𝛼2 + 8𝛼3 = 0

2𝛼1 + 9𝛼2 + 9𝛼3 = 0

−𝛼1 − 4𝛼2 − 5𝛼3 = 0

With some algebra, you can convince yourself that this system has only a trivial
solution 𝛼1 = 𝛼2 = 𝛼3 = 0, thus our x1, x2, x3 are linearly independent. ◾

Example 6.17 Let the set S = {x1, x2} be the set of linearly independent vec-
tors. Show that the set S = {x1 + x2, x1 − x2} is also linearly independent.

Solution Consider the linear combination

𝛼(x1 + x2) + 𝛽(x1 − x2) = 𝟎

from which follows
(𝛼 + 𝛽) x1 + (𝛼 − 𝛽) x2 = 𝟎

Since {x1, x2} is linearly independent

𝛼 + 𝛽 = 0

𝛼 − 𝛽 = 0

This system’s only solution is 𝛼 = 𝛽 = 0, thus S is linearly independent too. ◾
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Example 6.18 Determine whether vectors x1 = (1 + t), x2 = (1 − t) ∈ P1,
where P1 = {p| p(t), t ∈ R} are linearly dependent or not.

Solution Let’s examine the linear combination

𝛼1x1 + 𝛼2x2 = 𝟎

that is,

𝛼1(1 + t) + 𝛼2(1 − t) = (0, 0)

= (𝛼1 + 𝛼1t) + ( 𝛼2 − 𝛼2t)

= (𝛼1 + 𝛼2, 𝛼1t − 𝛼2t)

= (𝛼1 + 𝛼2, (𝛼1 − 𝛼2)t)

from this we obtain the following system of equations

𝛼1 + 𝛼2 = 0

𝛼1 − 𝛼2 = 0

Solving them, we get 𝛼1 = 𝛼2 = 0, and therefore our vectors x1, x2 are linearly
independent. ◾

Example/Exercise 6.19 Show that vectors

x1 = 1 − t, x2 = 5 + 3t − 2t2, x3 = 1 + 3t − t2 ∈ P2 = {p|p(t), t ∈ R}

are linearly dependent.

Theorem 6.5 Let Pn(t) be a space of all polynomials of nth degree, where t ∈ R.
Then, the set of polynomials (i.e., vectors)

S = {1, t, t2, t3, … , tn}

is linearly independent in Pn(t).

Proof If we consider the elements of set S as vectors, that is

x0 = 1, x1 = t, x2 = t2, … , xn = tn
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then, as before, to determine linear independence we need to show that the
equation

𝛼0x0 + 𝛼1x1 + 𝛼2x2 + · · · + 𝛼nxn = 𝟎 (*)

has only the trivial solution 𝛼0 = 𝛼1 = · · · = 𝛼n = 0. Observe that equation (*) is
equivalent to

𝛼0 + 𝛼1t + 𝛼2t2 + · · · + 𝛼ntn = 0, ∀t ∈ R (**)

The fundamental theorem of algebra tells us that a polynomial of nth degree has,
at most, n roots, thus all coefficients in (**) must be zero. Otherwise, equation
(**) would have infinitely many roots. Thus, since 𝛼0 = · · · = 𝛼n = 0, equation
(*) has only a trivial solution and therefore the vectors from set S are linearly
independent in Pn(t). ◾

Theorem 6.6 Any subset of a set of linearly independent vectors is linearly
independent.

Proof Suppose E = {x1, … , xk} ⊆ X is a set of linearly independent vec-
tors from X, and let Ẽ = {x1, … xi} ⊆ E be any subset. Clearly, since all the
elements of E are linearly independent, we have

𝛼1x1 + · · · + 𝛼ixi + 𝛼i+1xi+1 + · · · + 𝛼kxk = 𝟎

only with all 𝛼1 = 𝛼2 = · · · = 𝛼i = 𝛼i+1 = · · · = 𝛼k = 𝟎, thus

𝛼1x1 + · · · + 𝛼ixi = 𝟎

implies that Ẽ = {x1, … , xi} is a set of linearly independent vectors too. ◾

Theorem 6.7 Set E = {x} ⊆ X containing only one vector from X is linearly
dependent iff x = 𝟎.

Proof Suppose E = {x} is a linearly dependent set. That means that there exists
𝛼 ≠ 0 such that 𝛼x = 𝟎. By Theorem 6.1, it implies that x = 𝟎, so the theorem
holds. On the other hand, if x = 𝟎 then 𝛼x = 𝟎, ∀𝛼 ∈ Φ. It follows, again, by
Theorem 6.1i), that E = {x} is linearly dependent. ◾

Theorem 6.8 If a set of vectors E contains 0, then it is linearly dependent.

Proof With x = 𝟎 and 𝛼 = 1, the proof immediately follows from the previous
two theorems. ◾
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6.4 BASIS AND DIMENSION OF A VECTOR SPACE

Definition 6.5 Let X be a linear space over a field Φ, and let Y ⊆ X be some
subset of X. We say that Y spans X, and we write X = L(Y), if every vector x ∈ X
can be expressed as a linear combination of vectors from Y, that is

x =
k∑

i=1

𝛼ixi, xi ∈ Y, 𝛼i ∈ Φ

Definition 6.6 A set of vectors B ⊆ X is called a basis of a space X, if B is
linearly independent and if it spans X, that is, L(B) = X.

Definition 6.6 ′ A set of vectors B ⊆ X is called a basis of a space X, if every
vector x ∈ X can be uniquely expressed as a linear combination of vectors from B.

Example 6.20 One possible basis for R2 is B = { (1, 0), (0, 1) }. We have
shown in Example 6.13 that set B is linearly independent. Let’s see whether it
spans X. Consider any (𝛼1, 𝛼2) ∈ R2. Then,

(𝛼1, 𝛼2) = 𝛼1(1, 0) + 𝛼2(0, 1)

B is linearly independent and spans R2, thus it is a basis for R2. ◾

We can easily generalize this to Rn.

Example 6.21 Consider a set B = {b1, … , bn} where

b1 = (1, 0, … , 0, 0)

b2 = (0, 1, 0, … , 0, )

⋮ ⋮ ⋮

bn = (0, 0, … , 0, 1)

Following the logic of the previous example, it is easy to see that
B = {b1, … , bn} is one possible basis for Rn. ◾

Example 6.22 Determine whether the set B = {1, t − 1, (t − 2)(t − 1)} is a
basis for P2(t).

Solution First, to check independence, let’s suppose

𝛼1 ⋅ 1 + 𝛼2(t − 1) + 𝛼3(t − 2)(t − 1) = 0
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Then,

𝛼1 + 𝛼2t − 𝛼2 + 𝛼3t2 − 3𝛼3t + 2𝛼3 = 0

= (𝛼1 − 𝛼2 + 2𝛼3) + (𝛼2 − 3𝛼3)t + 𝛼3t2

From this, we get a system of three linear equations

𝛼1 − 𝛼2 + 2𝛼3 = 0

𝛼2 − 3𝛼3 = 0

𝛼3 = 0

Solving them, we obtain

𝛼3 = 0, 𝛼2 = 0, 𝛼1 = 0

So far so good. Let’s check whether set B spans P2(t). Let p(t) ∈ P2(t) such that
p(t) = a2t2 + a1t + a0. Consider

a2t2 + a1t + a0 = 𝛽2((t − 2)(t − 1)) + 𝛽1(t − 1) + 𝛽0 ⋅ 1

This gives us

a0 = 𝛽0 − 𝛽1 + 2𝛽2

a1 = 𝛽1 − 3𝛽2

a2 = 𝛽2

Solving these for betas we get

𝛽0 = a0 + a1 + a2

𝛽1 = a1 + 3a2

𝛽2 = a2

Hence,

p(t) = a2((t − 2)(t − 1)) + (a1 + 3a2) (t − 1) + (a0 + a1 + a2) ⋅ 1

Thus, set B = {1, t − 1, (t − 2)(t − 1)} is linearly independent and spans P2(t).
Therefore, it forms a basis for P2(t). ◾

At this point, natural questions that you might have asked yourself are as fol-
lows: What about the existence of the bases in general? How unique are they?
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And, certainly, what do they tell us about the respective spaces? To answer these
questions, we need two more definitions.

Definition 6.7 A vector space X is said to be finite-dimensional, if there exists
at least one finite, linearly independent set of vectors that span X, that is, if there
exists one finite basis. Of course, a vector space that is not finite-dimensional is
called infinite-dimensional.

Definition 6.8 We say that n is the dimension of a space X, and we write
dim X = n, if n is the cardinal number of a basis B of space X. If the space is
trivial, that is, X = {∅} we say that its dimension is zero.

Example 6.23

(i) dim R3 = 3
(ii) dim Rn = n

(iii) dim Pn(Φ) = n ◾

Example 6.24 Unlike the space Pn(Φ), the space P(Φ) is infinite-dimensional.
Indeed, consider any set S of the elements (polynomials) from P(Φ). Let n denote
the highest degree of any of the polynomials from set S. Thus, since every poly-
nomial from the set is of a degree less than or equal to n, the set S cannot span
P(Φ) and therefore P(Φ) is infinite-dimensional (see Theorem 6.5). ◾

Theorem 6.9 Every nontrivial linear (finite-dimensional) space X has at least
one basis.

Proof The theorem holds in general, but we will prove it only in the
finite-dimensional case.

Let X ≠ {∅}, and let E = {x1, … , xk, … , xn} be a set that spans X. Then,
there also exists a subset of E consisting of linearly independent vectors. Indeed,
suppose xk ∈ E is such that it can be represented as a linear combination of the
remaining vectors from E. We claim that E ⧵ {xk} is still a set that spans the X.

Consider

xk =
n∑

i≠k=1

𝛼ixi

Since E = { x1, … , xk, … , xn} spans X, any x ∈ X can be expressed as

x =
n∑

i=1

𝛽ixi

=
n∑

i≠k=1

𝛽ixi + 𝛽kxk
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=
n∑

i≠k=1

𝛽ixi + 𝛽k

n∑
i≠k=1

𝛼ixi

=
n∑

i≠k=1

(𝛽i + 𝛽k𝛼i)xi

=
n∑

i≠k=1

𝛾ixi

We saw that we can remove all linearly dependent vectors from set E and still
be able to span the space X, that is, we obtained the set of linearly independent
vectors that span the space X – that is, we got a basis of X. ◾

The proof of the next, very important, Theorem 6.10 depends on the following.

Lemma 6.1 Let E = {x1, … , xk} be an ordered set of linearly dependent vec-
tors from X, and let x1 ≠ 0. Then at least one of the vectors from E can be
expressed as a linear combination of the preceding vectors in E (see also Def-
inition 6.4).

Proof Consider a nontrivial combination

k∑
i=1

𝛼ixi = 𝟎 (*)

and let 𝛼j be the last coefficient different from zero. j cannot be 1, for in that
case we would have 𝛼1x1 = 𝟎 which, with 𝛼1 ≠ 0, contradicts our assumption.
Therefore, j > 1 and (*) reduces to

𝛼1x1 + · · · + 𝛼jxj = 𝟎

Thus, we can divide by 𝛼j and an expression for xj follows. ◾

Theorem 6.10 Any two bases of a linear space X are equipotent (contain the
same number of elements).

Proof We reason as follows: Let X be a finite-dimensional vector space, and
let B(1) and B(2) be any two bases of X. Then, the elements of B(1) are linearly
independent in X, and the elements of B(2) span X. Consequently, |B(1)| ≤ |B(2)|.
But, we can also argue conversely, that is, just by interchanging the roles of
B(1) and B(2) we can say that |B(2)| ≤ |B(1)|. Thus,

|B(1)| = |B(2)|
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More formally:
Since every vector space X has at least one basis, say,

B(1) = {b(1)1 , … , b(1)n }

we let
B(2) = {b(2)1 , … , b(2)m }

be another basis of X. We would like to show that |B(1)| = |B(2)|, that is, n = m.
First, without loss of generality, let’s assume that B(1)∩ B(2) = Ø, and taking any

b(2)k ∈ B(2)

let’s consider the set
{b(2)k , b(1)1 , … , b(1)n } (6.5)

Since b(2)k can obviously be expressed as a linear combination of the remaining
vectors of (6.5), set (1) is definitely a linearly dependent set of vectors that spans
X. According to the lemma above, there exists a b(1)i , which can be expressed
as a linear combination of its predecessors in (6.5). However, this vector can be
removed (see Theorem 6.9) and we still have a set that spans X:

{b(2)k , b(1)1 , … , b(1)i−1, b(1)i+1, … , b(1)n } (6.6)

Let’s choose another
b(2)l ∈ B(2)

and consider the set

{b(2)l , b(2)k , b(1)1 , … , b(1)i−1, b(1)i+1, … , b(1)n } (6.7)

This is again a linearly dependent set that spans X. Well, using Lemma 6.1 again,
there is a vector in (6.7) that can be expressed as a linear combination of its
preceding vectors. Note this can be neither b(2)l nor b(2)k since the set

{b(2)l , b
(2)
k }

is linearly independent (it is a part of the basis B(2)), so its elements have to be
some of b(1)1 , … , b(1)n , say, b(1)j . Thus, as before, it can be removed. Lemma 6.1
tells us that

{b(2)l , b(2)k , b(1)1 , … , b(1)i−1, b(1)i+1, … , b(1)j−1, b(1)j+1, … , b(1)n }
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spans space X too. We continue this process to n steps. The number of vectors
in B(2) cannot exceed n, otherwise b(2)n+1 ∈ B(2) would be expressible as a linear
combination of

{b(2)n , b(2)
n−1, … , b(2)2 , b(2)1 }

so B(2) wouldn’t be a set of linearly independent vectors, which is contrary to our
hypothesis. Hence, we proved that |B(2)| ≤ |B(1)|. Similarly, we can prove that|B(1)| ≤ |B(2)| from which we conclude that |B(1)| = |B(2)|.

Considering the lengthiness of the proof, let’s summarize everything slightly
less precisely but nevertheless correctly:

Given two bases of the linear space X,

B(1) = {b(1)1 , … , b(1)n }

and
B(2) = {b(2)1 , … , b(2)m }

implies that B(2) is linearly independent set in L( B(1)) = X, so m ≤ n, but, at
the same time, B(1) is a linearly independent set in L( B(2)) = X, so n ≤ m, and
therefore n = m. ◾

Theorem 6.11 Let A = {a1, … , ak} ⊆ X be a set of linearly independent vec-
tors from X. Then, A is a subset of some basis of X.

Proof In the case that A spans X, there is nothing to prove. Suppose A doesn’t
span X. Then, there exists a basis of X, say, B = {b1, … , bn }, and we can form
an ordered set

C = {a1, … , ak, b1, … , bn } (*)

Since B is a basis, it spans X, thus (*) spans X too. Furthermore, (*) is clearly
linearly dependent. According to Lemma 6.1, at least one vector from (*) can be
expressed as a linear combination of its predecessors. It cannot be any of the a′is,
because, by assumption, they are linearly independent, thus it has to be one of
b′s, say, bj. By Theorem 6.9, bj can be removed. We are left with the set

B
j C = {a1, … , ak, b1, … , bj−1, bj+1, … , bn } (**)

which again spans X. If (**) is a linearly independent set, we are done. If not, we
continue the process until after finitely many steps we arrive to the set

F = {a1, … , ak, bi1
, … , bil

}

which is linearly independent and spans X. Since A ⊆ F our theorem is
proved. ◾
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Theorem 6.12 A vector space X is finite-dimensional iff every linearly inde-
pendent set of vectors in X is finite. A vector space is infinite-dimensional iff it
contains an infinite linearly independent set of vectors.

Proof If X is finite–dimensional, then every linearly independent set of vec-
tors in X is finite. Suppose that every linearly independent set in X is finite, but
the space X is infinite-dimensional. That means that no finite set can span X.
Take x1 ∈ X, x1 ≠ 0, and note that A1 = {x1} is obviously a linearly indepen-
dent set. Since X is infinite-dimensional, A1 cannot span X. Let’s take another
x2 ∈ X, and consider A2 = {x1, x2}. A2 is clearly linearly independent but
still doesn’t span X. We repeat this process and realize that in a finite number
of steps, we cannot obtain a set An = {x1, … , xn } that is linearly independent
and spans X. In other words, there is an infinite set {x1, x2, …} of linearly
independent vectors in X, which contradicts our assumption that every linearly
independent set in X is finite. ◾

Theorem 6.13 Let X be a finite-dimensional vector space, and let
B = {b1, … , bn } be some basis of X. Then, any vector x ∈ X has a
unique expression as a linear combination of vectors from B (see Definition
6.6′).

Proof Suppose there are two representations of x in base B:

x =
n∑

i=1

𝛼ibi

and

x =
n∑

i=1

𝛽ibi

Then,

x − x = 𝟎

=
n∑

i=1

(𝛼i − 𝛽i)bi

Since B is a set of linearly independent vectors, it follows that 𝛼i − 𝛽i = 0 for
every i = 1, … , n, and thus 𝛼i = 𝛽i for every i = 1, … , n. Therefore, the
expression for any x ∈ X is unique. ◾

Theorem 6.14 If X is an n-dimensional vector space, and if there is a set of
linearly independent vectors A = {a1, … , an } in X, then they form a basis for X.
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Proof Suppose A = {a1, … , an} is not a basis of X. Then, by Theorem 6.11, it
is a subset of some basis B of X, that is, A ⊆ B. In that case, we can supplement set
A = {a1, … , an } by another set of linearly independent vectors {b1, … , bm}
to get a full basis of X. But that would mean that dim(X) = n + m ≠ n, which
contradicts our assumption that X is n-dimensional. ◾

Theorem 6.15 If a set of vectors A = {a1, … , an } spans an n-dimensional
vector space X, then it forms a basis for X.

Proof Since set A spans X, some subset of it has to be a basis for X. Thus, we
can pick from A a subset B = {a1, … , am } with m ≤ n, such that B is a basis
for X. But in that case m = dim(X) = n, and thus A = {a1, … , an } is a basis
for X. ◾

Example 6.25 Determine whether the set of vectors B = {b1 = (1, 0, 0),
b2 = (1, 1, 0), b3 = (1, 1, 1)} is a basis for R3.

Solution Since we have three vectors in set B, in order to verify whether they
form a basis for R3 (which is three-dimensional) we only need to check linear
independence. As before, we write

𝛼1(1, 0, 0) + 𝛼2(1, 1, 0) + 𝛼3(1, 1, 1) = (0, 0, 0)

that is,

𝛼1 + 𝛼2 + 𝛼3 = 0

𝛼2 + 𝛼3 = 0

𝛼3 = 0

Thus, 𝛼1 = 𝛼2 = 𝛼3 = 0, so the vectors of B are linearly independent and there-
fore form a basis for R3.

◾

Example/Exercise 6.26 Consider a vector space R3 and a basis B from the
previous example. Show that the vector x = (5, −6, 2) ∈ R3 has the following
expression in the basis B:

x = 11b1 − 8b2 + 2b1

Example/Exercise 6.27 Let X be an n-dimensional vector space. Show that any
n + 1 or more vectors from X are linearly dependent.
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6.5 SUBSPACES

Once we have a certain structure we want to see how to define, study, and judi-
ciously use a substructure. We start with

Definition 6.9 Let X be a vector space over a fieldΦ, and let L be a subset of X.
We say that L is a subspace of X if L itself is a vector space over Φ with respect
to the same operations of addition and scalar multiplication already defined on
X. We write L < X.

From this definition, it immediately follows that in order to show that some
subset L ⊆ X is a subspace, one needs to show that all the axioms of a vector
space also hold on L. Clearly, every vector space has at least two trivial subspaces,
L = X and L = {0}. In the case that L < X and L ≠ X, we say that L is a proper
subspace of X. Thus, as a simple criterion for identifying subspaces, we have the
following:

Theorem 6.16 A nonempty subset L ⊆ X is a subspace of space X iff L is
closed with respect to the operations defined on X, that is, if the following con-
ditions are satisfied:

(i) ∀ x, y ∈ L, x + y ∈ L
(ii) ∀ x ∈ L, and 𝛼 ∈ Φ, 𝛼x ∈ L

Clearly, conditions (i) and (ii) could have been compactly stated as

(iii) ∀x, y ∈ L, 𝛼, 𝛽 ∈ Φ, 𝛼x + 𝛽y ∈ L

Proof The necessary condition is obvious. Let’s check the sufficient one:
Assuming that (i) and (ii) are satisfied, then in particular it follows from (ii)

that ∀ x ∈ L (−1)x = −x ∈ L, thus L ⊆ X is a subgroup of the additive group X.
Vector space axioms A1–A4 certainly hold for X, so they have to be satisfied for
L ⊆ X, and therefore L is a subspace as claimed. ◾

Example 6.28 Consider a subset of Rn defined as follows:

L = {x = (x1, … , xn)| x1 + ⋅ ⋅ ⋅ + xn = 0, xi ∈ R}

Then with the usual component addition and scalar multiplication, L is a subspace
of Rn. Indeed,

x + y = (x1, … , xn) + (y1, … , yn)

= (x1 + y, … , xn + yn)
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But

x1 + y1 + ⋅ ⋅ ⋅ + xn + yn = (x1 + ⋅ ⋅ ⋅ + xn) + (y1 + · · · + yn)

= 0 + 0

= 0

Also,

𝛼x = 𝛼(x1, … , xn)

= (𝛼x1, … , 𝛼xn)

and

𝛼x1 + · · · + 𝛼xn = 𝛼(x1 + · · · + xn)

= 𝛼 ⋅ 0 = 0

So, L is indeed a subspace of X. ◾

Example 6.29 Consider a vector space R3, and a set L = {x = (x1, x2, x3)| x1 =
x2 = x3 ∈ R}. Then, L < R3. Indeed. Consider x = (x, x, x) and y = (y, y, y)
from L. Then,

x + y = (x, x, x) + (y, y, y)

= (x + y, x + y, x + y) ∈ L

Also,
𝛼 x = 𝛼(x, x, x) = (𝛼x, 𝛼x, 𝛼x) ∈ L, ∀𝛼, x ∈ R

Thus, L < R3. ◾

You can easily convince yourself that the claim in the following example
is true.

Example 6.30 Let 0 < k ≤ n, and let L ⊆ Rn be defined by

L = {(x1, … , xk, … , xn)|x1 = x2 = · · · = xk = 0}

Then, L is a subspace of Rn. ◾

Example 6.31 Consider a vector space Rn and let’s accept the convention

(x1, … , xn−1) ≡ (x1, … , xn−1, 0)
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Then,
Rn−1 < Rn

In other words, we have the following sequence of spaces/subspaces:

R < R2 < · · · < Rn < · · · < R∞ ◾

Example 6.32 Let P(t) be the space of all polynomials. Then, the space Pn(t)of
all polynomials of degree at most n is a subspace of P(t). ◾

Example 6.33 Let X1,X2 < X be two subspaces of X. Show that the intersec-
tion of subspaces X∩ = X1 ∩ X2 is again a subspace of X.

Solution Let x, y ∈ X∩ be any two vectors in X∩, and let 𝛼, 𝛽 ∈ Φ be two
scalars from Φ. Since x, y ∈ X∩, it follows that x, y ∈ X1 and also x, y ∈ X2.
But X1,X2 are subspaces and therefore 𝛼x + 𝛽y ∈ X1 and 𝛼x + 𝛽y ∈ X2, which
implies that 𝛼x + 𝛽y ∈ X∩. Thus, X∩ is a subspace of X. ◾

Similarly, we can prove that given a vector space X and any nonempty family
of its subspaces F = {Xi}, the intersection F∩ = ∩iXi is again a subspace of X.

Thus

Theorem 6.17 The intersection of any number of subspaces of a vector space
X is a subspace of X.

Example 6.34 Consider a space R4 and two of its subspaces

X1 = {(x1, … , x4)| x1 − x2 + x3 − x4 = 0}

and
X2 = {(x1, … , x4)| x1 + x2 + x3 + x4 = 0}

Find a basis for X∩ = X1 ∩ X2.

Solution From the characterization of subspaces X1 and X2, we know that
x ∈ R4 belongs to X∩ = X1 ∩ X2 iff

x1 − x2 + x3 − x4 = 0

x1 + x2 + x3 + x4 = 0

or

x1 + x3 = 0

x2 + x4 = 0
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In other words,

x1 = −x3

x2 = −x4

Let’s pick two vectors from X∩ satisfying the conditions above, say,

y1 = (1, 0,−1, 0)

y2 = (0,−1, 0, 1)

We claim that Y = {y1, y2 } is a basis for X∩. To prove this, we have to show that
Y = {y1, y2 } is a set of linearly independent vectors and that they span X∩, that
is, L (y1, y2) = X∩. Suppose not. Then there exist 𝛼1, 𝛼2 ∈ Φ, both not zero, such
that

𝛼1y1 + 𝛼2y2 = 0

that is,

𝛼1(1, 0,−1, 0) + 𝛼2(0,−1, 0, 1) = (0, 0, 0, 0)

= (𝛼1,−𝛼2,−𝛼1, 𝛼2)

which implies 𝛼1 = 𝛼2 = 0, contrary to our requirement that at least one of 𝛼-s
be different from zero. Hence, y1, y2 must be linearly independent. Do they span
X∩? Well, if x ∈ X∩, then, as we have seen,

x = (𝛼1, 𝛼2,−𝛼1,−𝛼2)

= 𝛼1(1, 0,−1, 0) − 𝛼2(0,−1, 0, 1)

= 𝛼1y1 − 𝛼2y2

So {y1, y2} spans X∩, that is, X∩ ⊆ L(y1, y2) but at the same time {y1, y2} ⊆ X∩,
and we conclude that L(y1, y2) = X∩. Thus, we proved that y1, y2 are linearly
independent and they span X∩, and therefore Y = {y1, y2 } is a basis for X∩ as
claimed. ◾

Theorem 6.18 If X is an n-dimensional vector space and L < X, then

dim L ≤ n

Proof If L = {0}, then dim L = 0. Suppose there exists an x1 ∈ L, x ≠ 𝟎. If
x1is the only vector in L, that is, L = {x1}, then L is obviously one-dimensional.
In case there is another vector x2 ∈ L, we have L = {x1, x2}. We can continue
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this way to obtain a set {x1, x2, … , xn }. If the vectors x1, x2, … , xn are lin-
early independent and do not span L, then there exists xn+1 ∈ L such that xn+1 ∉
{x1, x2, … , xn }. In that case, as we have seen before, the set

{x1, x2, … , xn, xn+1}

is linearly independent too. In other words, every linearly independent set of vec-
tors in L, that does not span L, can be expanded to a larger independent set.
This process cannot exceed n steps (cannot be infinite); otherwise, we would
obtain more than n linearly independent vectors in L, which would contradict
Theorem 6.14. Thus, dim L = m ≤ n. ◾

Example 6.35 Let L < R3 be some subspace. Then, dim L ≤ 3. In other words,
the dimension of L can be 0, 1, 2 or 3. Indeed, if dim L = 0 then L = {0},
meaning we have a trivial case in which the whole space is a point. If dim L = 1,
then L is a line through the origin. If dim L = 2, the subspace L is a plane through
the origin. Finally, if dim L = 3, we have another trivial case L = R3. ◾

Definition 6.10 Let L1, L2, … ,Ln be subspaces of a space X. We say that∑
Li = L1 + L2 + · · · + Ln = {l1 + l2 + · · · + ln | li ∈ Li, i = 1, 2, … ,m}

is the sum of subspaces of X.

Definition 6.11 A vector space X is said to be the direct sum of its subspaces
L1, L2, … ,Ln, denoted by X = L1 ⊕ L2 ⊕ · · ·⊕ Ln if each element of X can
be uniquely expressed as a sum x = l1 + l2 + · · · + ln, where li ∈ Li.

Example 6.36 Consider a space R3 and two of its subspaces L1 and L2 defined
as follows:

L1 = {(x, y, 0) ∈ R3 | x, y ∈ R}

and
L2 = {(0, 0, z) ∈ R3 | z ∈ R}

Then, R3 = L1 ⊕ L2.
In other words, any x ∈ R3 can be uniquely represented as x = l1 + l2, where

l1 ∈ L1 and l2 ∈ L2.
Indeed, let x = (x, y, z), then

x = (x, y, z) = (x, y, 0) + (0, 0, z)

= l1 + l2
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Suppose that there are l′1 ∈ L1 and l′2 ∈ L2 such that

x = l′1 + l′2 = (x
′, y′, 0) + (0, 0, z′)

Then,

𝟎 = (0, 0, 0) = x − x

= (x, y, 0) + (0, 0, z) − (x′, y′, 0) + (0, 0, z′)

= (x − x′, y − y′, z − z′)

Therefore,
x − x′ = 0, y − y′ = 0, z − z′ = 0

implying x = x′, y = y′ and z = z′, that is, l1 = l′1 and l2 = l′2. Thus, R3 = L1 ⊕
L2, as claimed. ◾

Thus,

Theorem 6.19 Suppose L1, L2, … ,Ln are subspaces of X. Then, X = L1 ⊕
L2 ⊕ · · ·⊕ Ln if the following conditions are satisfied:

(i) X = L1 + L2 + · · · + Ln and
(ii) 0 = 0 + 0 + · · · + 0

Proof First, suppose X = L1 ⊕ L2 ⊕ · · ·⊕ Ln, then (i) is certainly satisfied.
To prove (ii) we need to prove that

0 = l1 + l2 + · · · + ln, li ∈ Li

is true when
l1 = l2 = · · · = ln = 0.

But this immediately follows from our assumption that X = L1 ⊕ L2 ⊕ · · ·⊕
Ln, that is, the uniqueness of expression of every vector from X = L1 ⊕ L2 ⊕
· · · ⊕ Ln.

Next, assuming that (i) and (ii) are satisfied, we can express some x ∈ X as

x = l1 + l2 + · · · + ln, li ∈ Li

We need to prove that this representation is unique. Well, suppose that this rep-
resentation is not unique, that is, suppose that we can also write

x = l′1 + l′2 + · · · + l′n, l′i ∈ Li
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It follows that

x − x = 0 = (l1 − l′1) + (l2 − l′2) + · · · + (ln − l′n)

where, of course, (li − l′i ) ∈ Li. From (ii), it immediately follows that li − l′i = 0,
that is, li = l′i and thus the representation of the vector x is unique. ◾

Theorem 6.20 Let L,M < X be two subspaces of X. Then,

dim (L +M) = dim L + dim M − dim(L ∩M)

Proof Let dim L = l, dim M = m, and dim(L ∩M) = t, and let

B(0) = {b(0)1 , b(0)2 , … , b(0)t }

be some basis of the space L ∩M. Therefore, the set of vectors {b(0)k } is linearly
independent, both in L and M. Thus, according to Theorem 6.11, we can always
extend it to a basis of space L and a basis of space M. So, there is a set of vectors
{ai} ⊆ L such that

B(1) = {b(0)1 , b(0)2 , … , b(0)t , a1, a2, … , ar} (6.8)

is a basis of space L.
Similarly, we can find a set of vectors {bj} ⊆ M such that

B(2) = {b(0)1 , b(0)2 , … , b(0)t , b1, b2, … , bs} (6.9)

is a basis of the space M.
Thus,

dim L = l = t + r (6.10)

and
dim M = m = t + s (6.10′)

Consider a set

B = B(1) ∪ B(2) = {a1, a2, … , ar, b(0)1 , b(0)2 , … , b(0)t , b1, b2, … , bs} (6.11)

We would like to show that B is a basis of L +M. Well, let x ∈ L +M be such
that x = a + b, with a ∈ L and b ∈ M. But, since we have already constructed
the bases for L and M, we can express x as a linear combination of vectors from B.
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Thus, B spans L +M. It remains to be seen whether B is a set of linearly inde-
pendent vectors. To do that, we examine the linear combination

𝛼1a1 + · · · + 𝛼rar + 𝛽1b(0)1 + · · · + 𝛽tb
(0)
t + 𝛾1 b1 + · · · + 𝛾sbs = 𝟎 (6.12)

Take a vector b ∈ M. It can be written as

b =
s∑

j=1

𝛾jbj

but also as
b = −𝛼1a1 − · · · − 𝛼rar − 𝛽1b(0)1 − · · · − 𝛽tb

(0)
t (6.13)

Thus, b ∈ L, and therefore b ∈ L ∩M. Consequently, in (6.13),

𝛼1 = · · · = 𝛼r = 0 (6.14)

It follows from (6.12) that

𝛽1b(0)1 + · · · + 𝛽tb
(0)
t + 𝛾1 b1 + · · · + 𝛾sbs = 𝟎 (6.15)

However, all the vectors in (6.15) are elements of the basis of B(2); therefore, they
are linearly independent. Hence,

𝛽1 = · · · = 𝛽t = 𝛾1 = · · · = 𝛾s = 0 (6.16)

From (6.14) and (6.16), it immediately follows that expression (6.12) is neces-
sarily trivial, hence B is a set of linearly independent vectors. This completes our
proof. ◾

Consequently, we also have

Theorem 6.21 Let L,M < X be two subspaces. Then, L +M is a direct sum iff

dim( L +M) = dim L + dim M

Proof Suppose L +M is a direct sum. Then, L ∩M = {𝟎} so

dim(L +M) = dim{𝟎} = 0

It follows from the previous theorem that L +M is a direct sum.
Conversely, if

dim( L +M) = dim L + dim M

Then, L ∩M = {𝟎} and dim( L +M) = 0, and the sum L +M is a direct
sum. ◾
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Theorem 6.22 Let L < X be any subspace of an n-dimensional space X. Then
there exists M < X, called direct complement of L, such that

X = L ⊕M

Proof Certainly, the claim is true in trivial cases L = {𝟎} and L = X. So, let

BL = {b1, … , bk}

be some basis of L ≠ {𝟎} ≠ X. Then, again recalling Theorem 6.11, we supple-
ment BL with additional vectors {bk+1, … , bn } to form a basis of X. Then, any
x ∈ X can be written as

x =
n∑

i=1

𝛼ibi =
k∑

i=1

𝛼ibi +
n∑

i=k+1

𝛼ibi

= l +m

where l ∈ L and m ∈ M. So, evidently, x ∈ L +M. Suppose there exists a
nonzero vector y ∈ L ∩M. Then,

y =
k∑

i=1

𝛽ibi =
n∑

i=k+1

𝛽ibi

from which follows
k∑

i=1

𝛽ibi −
n∑

i=k+1

𝛽ibi = 0

However,
{b1, … , bn}

is a basis for the space X, and therefore 𝛽1 = · · · = 𝛽n = 0. Thus, y = 𝟎 contradicts
our assumption that L ∩M ≠ {𝟎}. Hence, X = L ⊕M as claimed. ◾

6.6 LINEAR TRANSFORMATIONS – LINEAR OPERATORS

Once we have a mathematical object with a particular structure, and after having
examined its basic properties, we look at mappings between two or more of these
objects. Similar to homomorphisms of groups, the most important mappings in
the case of linear spaces are those that preserve their structure, that is, preserve
vector addition and scalar multiplication. The study of Linear Transformations,
or Linear Operators, is one of the most important parts of Linear Algebra.
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Definition 6.12 Let X and Y be two vector spaces over the same field Φ, and
let

F ∶ X → Y

be some map from X to Y, that is, a function defined on a vector space X with
values in a vector space Y. We say that F is a linear transformation or a linear
operator3 if it satisfies the following conditions:

(i) F(x + y) = F(x + y), ∀x, y ∈ X
(ii) F(𝛼x) = 𝛼F(x), ∀𝛼 ∈ Φ, ∀x ∈ X

I am sure that by now you recognize that conditions (i) and (ii) could be combined,
and we could simply say that f is a linear operator iff

(iii) F(𝛼x + 𝛽y) = 𝛼F(x) + 𝛽F(y), ∀𝛼, 𝛽 ∈ Φ, ∀x, y ∈ X

Again, remembering groups and their homomorphisms, one notes that because
of (i) every linear operator F is a homomorphism of additive groups of respective
vector spaces. Clearly then, we have

Theorem 6.23 Let F ∶ X → Y be a linear operator, then

F(𝟎X) = 𝟎Y

Proof

F(𝟎X) = F(0𝟎X)

= 0F(𝟎X)

= 𝟎Y

And we often simply write F(𝟎) = 𝟎. ◾

Similarly, one can easily prove that

F(−x) = −F(x)

Example 6.37 Let X be a vector space over a field Φ. Define a map

H ∶ X → X

by H(x) = 𝜆x, ∀ x ∈ X, and ∀𝜆 ∈ Φ. Show that H is a linear operator.

3Some authors distinguish between linear transformation and linear operator stating that the latter is a map
X → X.
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Solution

H(𝛼x + 𝛽y) = 𝜆(𝛼x + 𝛽y)

= (𝜆𝛼)x + (𝜆𝛽)y

= 𝛼(𝜆x) + 𝛽(𝜆 y)

= 𝛼H(x) + 𝛽H(y), 𝛼, 𝛽 ∈ Φ ◾

The following example is self-evident.

Example 6.38 The identity map I ∶ X → X defined on some vector space by

I(x) = x, ∀ ∈ X

is a linear operator. ◾

Example 6.39 If you are familiar with ordinary differentiation, you can imme-
diately recognize that the differentiation operator d

dx
, acting on the set of all

differentiable functions  and mapping it to the set  ′, is another well-known
example of a linear operator. ◾

Example 6.40 Consider function F ∶ R3 → R2 defined by F(x, y, z) = (x, y).
Show that F is a linear operator.

Solution Let x = (x1, x2, x3), y = (y1, y2, y3) be two vectors from R3, then

F(𝛼x + 𝛽y) = F(𝛼(x1, x2, x3) + 𝛽(y1, y2, y3))

= F(𝛼x1 + 𝛽y1, 𝛼x2 + 𝛽y2, 𝛼x3 + 𝛽y3)

= 𝛼x1 + 𝛽y1, 𝛼x2 + 𝛽y2

= ( 𝛼x1 + 𝛼x2, 𝛽y1 + 𝛽y2)

= (𝛼(x1 + x2), 𝛽(y1 + y2))

= 𝛼(x1 + x2) + 𝛽(y1 + y2)

= 𝛼F(x) + 𝛽F(y)

Hence, F is a linear operator. ◾

Example 6.41 Consider the map 𝜋 ∶ R3 → R3 defined by

𝜋(x) = 𝜋(x1, x2, x3) = (x1, x2)
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It is easy to verify that 𝜋 is a linear operator called (for obvious reasons) the
projection. Take x, y ∈ R3 and consider

𝜋(x + y) = 𝜋[(x1, x2, x3) + (y1, y2, y3)]

= 𝜋[x1 + y1, x2 + y2, x3 + y3]

= (x1 + y1, x2 + y2, 0)

= (x1, x2, 0) + (y1, y2, 0)

= 𝜋(x) + 𝜋(y)

Also, for any scalar k ∈ R

𝜋(𝛼x) = 𝜋(𝛼x1, 𝛼x2, 𝛼x3)

= (𝛼x1, 𝛼x2, 0)

= 𝛼(x1, x2)

= 𝛼𝜋(x)

Thus, 𝜋 is indeed a linear operator. ◾

Example/Exercise 6.42 Consider the map 𝜌 ∶ R2 → R2 (called reflection)
defined by

𝜌(x1, x2) = (x1,−x2)

Show that 𝜌 is a linear operator.

Example 6.43 Let L < X be a subspace of X, and let i ∶ L → X be a map
(called inclusion) defined by

i(l) = l, ∀ l ∈ L

We can easily see that i is a linear operator. ◾

Example/Exercise 6.44 Show that the map 𝜌 ∶ R2 → R2 (called reflection)
defined by

𝜌(x, y) = (y, x)

is a linear operator.

Theorem 6.24 Let {x1, … , xn} be a set if vectors from X and {𝛼1, … , 𝛼n }
a set of scalars from Φ. Then, a linear operator f satisfies the following:

F

(
n∑

i=1

𝛼ixi

)
=

n∑
i=1

𝛼iF(xi)
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Proof We can easily prove this by induction. Clearly, equality is true for n = 1,
so we assume it also holds for n = k. Let’s check whether it is true for n = k + 1.

F

(
k+1∑
i=1

𝛼ixi

)
= F

(
k∑

i=1

𝛼ixi + 𝛼k+1xk+1

)

=
k∑

i=1

𝛼iF(xi) + F(𝛼k+1xk+1)

= F

(
k∑

i=1

𝛼ixi

)
+ F(𝛼k+1xk+1)

=
k∑

i=1

𝛼iF(xi) + 𝛼k+1F(xk+1)

=
k+1∑
i=1

𝛼iF(xi)

Since the equality holds for n = k + 1 we conclude that it holds for any n. ◾

Theorem 6.25 Let F ∶ X → Y be a linear operator, and suppose that L < X is
a subspace of X. Furthermore, let

F(L) = {F(l)| l ∈ L} ⊆ Y

be a set of all the images of l ∈ L. Then, F(L) is a subspace of Y.

Proof Suppose l′1, l′2 ∈ F(L) are any two vectors such that l′1 = F(l1) and
l′2 = F(l2). Then, since L is a subspace, 𝛼l1 + 𝛽l2 ∈ L, and therefore

F(𝛼l1 + 𝛽l2) = 𝛼F(l1) + 𝛽F(l2)

= 𝛼l′1 + 𝛽l′2 ∈ Y

So, F(L) is a subspace of Y, as claimed. ◾

Theorem 6.26 The composition of linear operators is a linear operator.

Proof Let F ∶ X → Y and G ∶ Y → W be two linear operators, and let
H = G ∘H be their composition, that is

H ∶ X → W
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We have

H(𝛼x) = (G ∘ F)(𝛼x)

= G[F(𝛼x)]

= G[𝛼F(x)]

= 𝛼[G(F(x)]

= 𝛼[(G ∘ F)(x)]

= 𝛼H(x)

Thus, H is a linear operator. ◾

Some comments on notation and terminology may now be in order. We will
be studying only linear operators, since they are the most important in algebra,
so the term “linear” will be occasionally omitted as is often the case in literature.
Also, for the sake of simplicity and when there is no confusion, very often one
writes Ax instead of A(x) for an operator A acting on a vector x.

As you might have expected, we are now in a position to construct even more
interesting vector spaces, illustrated by the following

Example 6.45 Let X and Y be two vector spaces over the same field Φ. Let4

Hom(X,Y) = {F ∶ X → Y | F is a linear operator} = {X → Y }

be the set of all linear operators from X to Y . Then, Hom (X,Y) is a vector space.
Indeed, if we consider all operators F ∈ Hom(X,Y) to be vectors, we can natu-
rally say:

(i) (F + G)(x) = Fx + Gx = Gx + Fx = (G + F)(x), ∀ F,G ∈ Hom(X,Y)

Thus, F + G = G + F.

(ii) (F + (G + H))(x) = ( (F + G) + H )(x), ∀ F,G,H ∈ Hom(X,Y)

Thus, (G + H) = (F + G) + H.

(iii) (𝛼(F + G))(x) = 𝛼Fx + 𝛼Gx, ∀F,G ∈ Hom(X,Y), ∀𝛼 ∈ Φ

Thus, 𝛼(F + H) = 𝛼F + 𝛼G.

(iv) ((𝛼 + 𝛽)F )(x) = (𝛼F + 𝛽F)(x) = 𝛼Fx + 𝛽Fx, ∀𝛼, 𝛽 ∈ Φ,
F ∈ Hom(X,Y)

Thus, (𝛼 + 𝛽)F = 𝛼F + 𝛽F.

4Sometimes this set is denoted by (X, Y) or Lin(X, Y).
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(v) For each F ∈ Hom(X,Y), ∃(−F) ∈ Hom(X,Y), such that
(F + (−F))(x) = Fx − Fx = Ox = 𝟎.

(vi) (O + F)(x) = Fx, where O(x) = Ox = 𝟎, ∀x ∈ X and O ∈ Hom(X,Y)
and 𝟎 ∈ Y

Thus, O + F = F, ∀F ∈ Hom(X,Y).

(vii) ((𝛼𝛽)F)(x) = (𝛼𝛽)F(x) = 𝛼(𝛽F)x, ∀𝛼, 𝛽 ∈ Φ, F ∈ Hom(X,Y)

Thus,

(𝛼𝛽)F = 𝛼(𝛽F)

And also

O + F = F, ∀F ∈ Hom(X,Y)

(viii) ∃ 1 ∈ Φ, such that 1F = F1 = F, ∀ F ∈ Hom(X,Y). ◾

Formally, we have

Definition 6.13 Endowed with the usual addition of operators and multiplica-
tion by a scalar, Hom(X,Y) is a vector space.

In other words, we claim

Theorem 6.27 Let X, Y be two vector spaces over a fieldΦ. Then, the set of all
linear operators defined on X and with values in Y becomes a vector space with
the usual addition of operators and multiplication by a scalar.

Proof The proof immediately follows from the two lemmas below (see also
Example 6.45). ◾

Lemma 6.2 Let F ∶ X → Y and G ∶ X → Y be two linear operators. Then,

(F + G) ∶ X → Y

is a linear operator too.

Proof Let x1, x2 ∈ X be any two vectors, and 𝛼, 𝛽 ∈ Φ any two scalars. Then,

(F + G)(𝛼 x1 + 𝛽x2) = F(𝛼 x1 + 𝛽x2) + G(𝛼 x1 + 𝛽x2)

= 𝛼F(x1) + 𝛽F(x2) + 𝛼G(x1) + 𝛽G(x2)

= 𝛼(F(x1) + G(x1)) + 𝛽(F(x2) + G(x2))

= 𝛼(F + G)(x1) + 𝛽(F + G)(x2)

Hence, (F + G) is a linear operator. ◾
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Lemma 6.3 The set Hom(X, Y) with the usual addition of operators is an
abelian group.

Proof First, observe that if F ∶ X → Y is a linear operator, then ∀x ∈ X and
𝜆 ∈ Φ

𝜆F ∶ X → Y

is well defined by
(𝜆F)(x) = 𝜆F(x)

Thus, for every operator F, there is an “inverse” operator G = −F. A neutral
element immediately follows as a nil-operator

O ∶ X → Y

defined by O(x) = 𝟎. So, Hom(X, Y) is a group. It is easy to verify that it is an
abelian. ◾

Without proof we state the following important

Theorem 6.28 If X and Y are finite-dimensional linear spaces over a field Φ,
then

dim Hom(X, Y) = dim X ⋅ dim Y

Definition 6.14 Let X be a vector space over a fieldΦ. The set(X) of all linear
mappings from a vector space X into itself is called an algebra if, in addition to
axioms A1–A8, (X) is endowed with “multiplication” defined as a composition
of mappings. In other words, an algebra (X) over a fieldΦ is a vector space over
Φ, if for all F, G, H ∈ (X)and for all 𝛼 ∈ Φ the following is satisfied:

(i) F(G + H) = FG + FH

(ii) (G + H)F = GF + HF

(iii) 𝛼(FG) = (𝛼F)G = F(𝛼G)

The algebra is said to be associative if, in addition to (i)–(iii), the following is
also satisfied:

(iv) F(GH) = (FG)H

Theorem 6.29 Let X, Y, and Z be vector spaces over a field Φ, and suppose
F ∶ X → Y and G ∶ Y → Z are linear operators. Then, G ∘ F = GF is a linear
operator too.
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Proof Let x1, x2 ∈ X be any two vectors from X, and 𝛼, 𝛽 ∈ Φ. Then,

(G ∘ F)(𝛼x1 + 𝛽x2) = G( F(𝛼x1 + 𝛽x2)) = G(𝛼Fx1 + 𝛽Fx2)

= 𝛼G(Fx1) + 𝛽G(Fx2)

= 𝛼(GF)x1 + 𝛽(GF)x2

= 𝛼(G ∘ F)x1 + 𝛽(G ∘ F) x2

Thus, (G ∘ F) is a linear operator. ◾

Example 6.46 Let (X) be an algebra, and let F ∈ (X). Then, with F0 = I,
F2 = F ∘ F, F3 = F2 ∘ F = F ∘ F ∘ F, … we can construct another linear
operator

p(F) = 𝛼0I + 𝛼1F + 𝛼2F2 + · · · + 𝛼nFn ◾

Definition 6.15 Let F ∶ X → Y be a linear operator. We say that the kernel of
F is a set

KerF = F−1(𝟎Y) = {x ∈ X| F(x) = 𝟎Y}

As noted before, unless it is really necessary, we will drop the index on the zero
vector and instead of 𝟎Ysimply write 0.

Definition 6.16 Let F ∶ X → Y be a linear operator. We say that the image of
F is a set

ImF = {y ∈ Y| y = F(x), x ∈ X}

Definition 6.17 An operator F ∶ X → Y is said to be singular if there exists
a nonzero x ∈ X, such that F(x) = 0, that is, if KerF ≠ {0}. Conversely, if
KerF = {0} we say that the operator F is nonsingular (regular).

Theorem 6.30 If F ∶ X → Y is a linear operator, then KerF is a subspace of X.

Proof Let x1, x2 ∈ X be any two vectors in X, and let 𝛼, 𝛽 ∈ Φ be two scalars
from Φ such that

F(x1) = F(x2) = 𝟎

that is, x1, x2 ∈ KerX
Then,

F(𝛼x1 + 𝛽x2) = 𝛼F(x1) + 𝛽F(x2)

= 𝛼𝟎 + 𝛽𝟎

= 𝟎

Thus, KerX is a subspace of X. ◾
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Definition 6.18 If F ∶ X → X is a linear operator, such that for each x ∈ L <
X, F(x) ∈ L, we say that L is invariant under F.

Example 6.47 Three trivial examples are as follows: (i) KerF, (ii) ImF, and
(iii) X as a whole is invariant under F. This is easy to see:

(i) Since F is a linear operator, for each x ∈ KerF, F(x) = 𝟎. And, 𝟎 ∈ KerF
since F(𝟎) = 𝟎. But, KerF < X, thus KerF is invariant under F.

Similarly, you can convince yourself about (ii) and (iii). ◾

Theorem 6.31 If F ∶ X → Y is a linear operator, then ImF is a subspace of Y.

Proof Let F ∶ X → Y be a linear operator from X to Y. Then, by Theorem
6.30 F(𝟎) = 𝟎, which implies that 𝟎 ∈ ImF.

Suppose y1, y2 ∈ ImF, then there exists x1, x2 ∈ X such that F(x1) = y1
and F(x2) = y2.

Thus,
F(x1 + x2) = F(x1) + F(x2) = y1 + y2

and therefore (y1 + y2) ∈ ImF.
Similarly, if y ∈ ImF and 𝛼 ∈ Φ, then there exists x ∈ X such that F(x) = y.

It follows that
F(𝛼x) = 𝛼F(x) = 𝛼y

So, 𝛼y ∈ ImF. Hence, ImF contains 𝟎. It is closed under addition and scalar
multiplication, and thus ImF < Y. ◾

Theorem 6.32 Let F ∈ Hom(X,Y). Then, F is injective iff KerF = {𝟎}.

Proof First, suppose F is injective. We need to prove that Ker F = {𝟎}. Well,
since KerF < X, {𝟎} ⊆ KerF. But, F being injective implies

F(x) = 𝟎Y = F(𝟎X)

Thus, KerF = {𝟎}.
Conversely, suppose KerF = {𝟎}, and suppose x1, x2 ∈ X such that

F(x1) = F(x2)

Then,
𝟎Y = F(x1) − F(x2) = F(x1 − x2) = F(𝟎X)

Thus, F is injective, as desired. ◾
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Definition 6.19 A linear operator F ∈ Hom(X,Y)is said to be surjective if
ImF = Y.

Theorem 6.33 Let {x1, … , xk } ⊆ X be a set of linearly independent vectors
in a space X, and let {y1, … , yk} ⊆ Y be any set of vectors in Y. Then, there
exists at least one linear operator F ∶ X → Y such that

F(xi) = yi, ∀i = 1, … , k

Proof Suppose the set {x1, … , xk} is not a basis for X. Then, according to
Theorem 6.11, we can always augment it to the basis of X as, say,

{x1, … , xk, xk+1, … , xn}

Let’s extend the set {y1, … , yk } to the set {y1, … , yk, yk+1, … , yn} ⊆ Y. As
we know, any x ∈ X can be uniquely represented as a linear combination

x =
n∑

i=1

𝛼ixi

So, let’s introduce a function F ∶ X → Y defined by

F(x) = F

(
n∑

i=1

𝛼ixi

)

=
n∑

i=1

𝛼iyi ∈ Y (*)

We need to show that F is a linear operator. Suppose we put in (*) 𝛼i = 1 and
𝛼j≠i = 0, then

F(xi) = yi, ∀i = 1,… , n

exactly as needed. Next, we consider

F(𝛼x + 𝛽y) = F

(
𝛼

n∑
i=1

𝛼ixi + 𝛽
n∑

i=1

𝛽ixi

)

= F

(
n∑

i=1

(
𝛼𝛼i + 𝛽𝛽i

)
xi

)

=
n∑

i=1

(𝛼𝛼i + 𝛽𝛽i)yi
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= 𝛼
n∑

i=1

𝛼iyi + 𝛽
n∑

i=1

𝛽iyi

= 𝛼F

(
n∑

i=1

𝛼ixi

)
+ 𝛽

(
n∑

i=1

𝛽ixi

)
= 𝛼F(x) + 𝛽F(y)

Thus, F is a linear operator as claimed. ◾

It is worth keeping in mind that the operator F described above depends
on a particular extension of the set {x1, … , xk } to the basis of X. Some
other extension would produce a different operator. Let’s articulate this more
precisely with

Theorem 6.34 Let B = {b1, … , bn} be some basis of a vector space X, and
let {y1, … , yn} ⊆ Y be any ordered set in Y. Then there exists a unique linear
operator F ∶ X → Y such that

F(bi) = yi, ∀ i = 1, … , n

Proof In the previous theorem, we showed the existence of the operator F;
thus, we only have to prove uniqueness. Suppose that there exists another lin-
ear operator G ∶ X → Y, such that G(bi) = yi, ∀ i = 1, … , n. Then, for any
x ∈ X

G(x) = G

(
n∑

i=1

𝛼ibi

)

=
n∑

i=1

𝛼iG(bi)

=
n∑

i=1

𝛼iyi

=
n∑

i=1

𝛼iF(bi)

= F

(
n∑

i=1

𝛼ibi

)
= F(x) ◾
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Theorem 6.35 Let X and Y be two vector spaces, and let B = {b1, … , bn} be
a basis for a space X. Furthermore, let F ∶ B → Y be any map, then there exists
a unique linear operator G ∶ X → Y which extends F, that is, G∕B = F.

Proof The proof follows immediately from Theorem 6.31 if we put
F(bi) = yi ∈ Y. ◾

Theorem 6.36 Let B = {b1, … , bn } be a standard basis of Rn, and let
{x1, … , xn } ⊆ X be some set of vectors from X. If F ∶ Rn → X is a lin-
ear extension such that F(bi) = xi, then x1, … , xn are linearly independent
iff KerF = {𝟎}.

Proof Suppose first that x1, … , xn are linearly independent, then for some
r = (r1, … , rn) ∈ Rn

F(r) = F(r1b1 + · · · + rnbn)

= r1F(b1) + · · · + rnF(bn)

= r1x1 + · · · + rnxn

If F(r) = 𝟎 then r1x1 + · · · + rnxn = 0, and, since we assumed that x1, … , xn
are linearly independent, r1 = r2 = · · · = rn = 0 and therefore r = 𝟎, that is,
KerF = {𝟎}.

On the other hand, if we assume that KerF = {𝟎} and we take

𝛼1x1 + · · · + 𝛼nxn = 𝟎

which means that

F(𝛼1b1 + · · · + 𝛼nbn) = 𝛼1F(b1) + · · · + 𝛼nF(bn)

= 𝛼1x1 + · · · + 𝛼nxn = 𝟎

that is, 𝛼1 = 𝛼2 = · · · = 𝛼n = 0 and therefore x1, … , xn are linearly indepen-
dent. ◾

6.7 ISOMORPHISM OF LINEAR SPACES

A natural question provoked by the previous discussion arises: Is there a way
to classify linear spaces and how could one do that? Similar to ideas in group
theory, one would like to know in what sense could two spaces be considered the
same, and in what sense are they irreconcilably different. The following definition
comes with no surprise.
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Definition 6.20 Let X and Y be linear spaces over the same field Φ and let

F ∶ X → Y

be a linear operator. We say that F is an isomorphism of linear spaces if

(i) F is a linear operator and
(ii) F is a bijection.

We say that the isomorphism F ∶ X → X is an automorphism of X; we say
that the operator F is a regular operator (or nonsingular). If the linear operator
is not regular, we say that it is singular. Equivalently, we have

Definition 6.20′ If F ∶ X → Y is a linear transformation of vector spaces, we
say that F is an isomorphism of spaces if there exists a linear operator

G ∶ Y → X

such that

(i) G(F(x)) = x, ∀x ∈ X
(ii) F(G(y)) = y, ∀y ∈ Y

We say that G is an inverse of F, and we write G = F−1.
If there is an isomorphism X → Y, we say that spaces X and Y are isomorphic

and we write X ≅ Y.

Theorem 6.37

(i) Identity operator is an isomorphism.
(ii) The inverse of an isomorphism operator is an isomorphism too.

(iii) The composition of isomorphisms is an isomorphism too.

Proof Claims (i) and (iii) are trivial – we have already proved similar state-
ments in group theory. So let’s prove (ii).

Let F ∶ X → Y be an isomorphism of spaces. Remember, vector spaces are
also additive groups, thus F is an isomorphism of the respective groups X and Y .
Therefore, as we know,

F−1 ∶ Y → X
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is an isomorphism of groups too. Take any vector y ∈ Y, such that F−1(y) = x ∈ X
and 𝛼 ∈ Φ, and consider

F−1(𝛼 y) = F−1(𝛼F(x))

= F−1(F(𝛼x))

= (F−1 ∘ F )(𝛼x)

= 𝛼x

= 𝛼F−1(y)

So, F−1 is a linear operator and an isomorphism too. ◾

As you might have expected, the relation “≅,” that is, the relation “to be iso-
morphic,” is a relation of equivalence on a class of all linear spaces over the same
field Φ. That is

(i) X ≅ X.
(ii) If X ≅ Y, then Y ≅ X.

(iii) If X ≅ Y and Y ≅ Z, then X ≅ Z.

Let’s prove this claim.

(i) is trivial.
(ii) X ≅ Y means that there exists a function (an operator) F ∶ X → Y such

that

F(𝛼x1 + 𝛽x2) = 𝛼F(x1) + 𝛽F(x2), ∀x1, x2 ∈ X, ∀𝛼, 𝛽 ∈ Φ

But since F is an isomorphism there also exists a function F−1 ∶ Y → X. Now,
take two vectors y1, y2 ∈ Y such that

y1 = F(x1) and y2 = F(x2)

Then, with 𝛾, 𝛿 ∈ Φ, we have

F−1(𝛾 y1 + 𝛿y2) = F−1(𝛾F(x1) + 𝛿F(x2))

= F−1(F(𝛾x1 + 𝛿x2))

= 𝛾x1 + 𝛿x2

= 𝛾F−1( y1) + 𝛿F−1(y2) (*)
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We can always rename F−1 by putting F−1 = G, and interpret (*) as

G(𝛾y1 + 𝛿y2) = 𝛾G( y1) + 𝛿G(y2)

Hence, there is an isomorphism G ∶ Y → X, and reflexivity is proved. Finally, to
prove (iii), let’s assume that G ∶ X → Y and G ∶ Y → Z are isomorphisms. We
already know that in that case H = G ∘ F is an isomorphism too. Indeed, for any
x1, x2 ∈ X, and 𝛼, 𝛽 ∈ Φ

H(𝛼x1 + 𝛽x2) = (G ∘ F)(𝛼x1 + 𝛽x2)

= G[F(𝛼x1 + 𝛽x2)]

= G[𝛼F(x1) + 𝛽F(x2)]

= 𝛼G[F(x1)] + 𝛽G[F(x2)]

= 𝛼(G ∘ F)(x1) + 𝛽(G ∘ F)(x2)

= 𝛼H(x1) + 𝛽H(x2)

Since H−1 exists, and is a linear operator too, transitivity is established.
From Definition 6.20, the following theorem immediately follows:

Theorem 6.38 If F ∶ X → Y is an isomorphic operator, and K ⊆ Y is a sub-
space of Y, then, F−1(K) ⊆ X is a subspace of X.

We have previously established the fact that ImF and KerF are subspaces of
their respective spaces, that is, they are linear spaces on their own. They also have
dimensions. So we have

Definition 6.21

(i) We say that

r = r(F) = dim(ImF)

is the rank of a linear operator F.
(ii) We say that

d = d(F) = dim(KerF)

is the defect of a linear operator F.
Consequently, the following theorem is noteworthy, but first we need to recall

two definitions (see Definitions 6.10 and 6.11).
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Definition 6.22 If L, K < X are two subspaces of X, we say that∑
(L, K) = { l + k |l ∈ L, k ∈ K}

is a sum of subspaces L and K.

Definition 6.23 Let X be a linear space, and let L, K < X be its two subspaces.
We say that

L⊕ K = X

is a direct sum of subspaces L and K iff L + K < X and L ∩K = {𝟎}.

Theorem 6.39 If F ∶ X → Y is a linear operator, then the sum of the rank and
defect of F is equal to the dimension of the space X, that is,

r(F) + d(F) = dim X

Proof Let ImF < Y be a subspace of Y such that dim(ImF) = r, and let
KerF < X be a subspace of X such that dim(KerF) = d. Furthermore, let

BIm F = {b1, … , br}

be some basis of ImF. We can always choose a set of vectors k1, … , kr ∈ X
such that

F(ki) = bi, ∀ i = 1, … , r

We would like to prove that the vectors k1, … , kr ∈ X are linearly independent.
Well, consider

r∑
i=1

𝛼iki = 𝟎X

which implies

F

(
r∑

i=1

𝛼iki

)
= F(𝟎X)

=
r∑

i=1

𝛼iF(ki)

=
r∑

i=1

𝛼ibi

= 𝟎Y
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But BIm F is a basis for ImF, hence 𝛼1 = · · · = 𝛼r = 0. Therefore, vectors, let’s
call them BK = {k1, … , kr }, are linearly independent too. Now, let K < X be a
subset of X spanned by vectors from BK. But k1, … , kr are linearly independent,
and therefore they form some basis for K. Clearly, then

dim K = r

We claim that
X = K ⊕ KerF

Let’s see! First, recall that the sum is direct iff

dim X = dim K + dim(KerF)

which also means that

(i) K ∩ KerF = {𝟎}
(ii) K + KerF = X

So, to prove (i) let k ∈ K ∩ KerF be any vector, which we write

k =
r∑

i=1

𝛼iki

for it is an element of K, but also

F(k) = 𝟎

since k belongs to KerF too. Therefore,

F(k) = F

(
r∑

i=1

𝛼iki

)

=
r∑

i=1

𝛼iF(ki )

=
r∑

i=1

𝛼ibi

= 𝟎

Given that the set BK is linearly independent, it follows that 𝛼1 = · · · = 𝛼r = 0
and therefore k = 𝟎, that is, K ∩ KerF = 𝟎.
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To prove (ii) choose any vector x ∈ X. Then,

F(x) ∈ F(X) = ImF

And as usual, we can represent F(x) as a linear combination

F(x) =
r∑

i=1

𝛽ibi

Let’s also pick a vector k ∈ K defined as

k =
r∑

i=1

𝛽iki

So we have

F(k) = F

(
r∑

i=1

𝛽iki

)

=
r∑

i=1

𝛽iF(ki)

=
r∑

i=1

𝛽ibi

= F(x)

Finally, suppose there is a vector b ∈ X defined by

b = x − k

Then,

F (b) = F(x − k)

= F(x) − F(k)

= 𝟎

so b ∈ KerF, which implies that x = k + b, k ∈ K, b ∈ KerF, and therefore

X = K + KerF ◾

Two corollaries immediately follow.
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Corollary 6.1 If X and Y are finite-dimensional vector spaces such that
dim X > dim Y, then no linear operator from X to Y is injective.

Proof Let X and Y be finite-dimensional vector spaces such that dim X >
dim Y, and let F ∶ X → Y be a linear operator. Then,

dim(KerF) = dim X − dim(ImF) ≥ dim X − dim Y

> 0

But if dim(KerF) > 0, then KerF must contain vectors other 𝟎, and thus F is not
injective. ◾

Corollary 6.2 If X and Y are finite-dimensional vector spaces such that
dim X < dim Y, then no linear operator from X to Y is surjective.

Proof Let X and Y be finite-dimensional vector spaces such that dim X <
dim Y and let F ∶ X → Y be a linear operator. Then,

dim(ImF) = dim X − dim(KerF) ≤ dim X < dim Y

Thus, ImF ≠ Y, that is, F is not surjective. ◾

Theorem 6.40 A linear operator F ∶ X → Y is an isomorphism iff

(i) KerF = {𝟎} and
(ii) ImF = Y

Proof Let KerF = {𝟎} and ImF = Y, then ∀y ∈ Y there exists a unique vector
x ∈ X such that

F(x) = y

Now, consider a function G ∶ Y → X defined by G(y) = x ∈ X. Since x is a
unique vector satisfying this equation, G is well defined. We need to prove that G
is a linear operator. So, let’s take two vectors y1, y2 ∈ Y such that for the unique
vectors x1, x2 ∈ X

F(x1) = y1 and F(x2) = y2

Then, we have

F(𝛼x1 + 𝛽x2) = 𝛼F(x1) + 𝛽F(x2)

= 𝛼y1 + 𝛽y2
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On the other hand, by definition of G,

G(𝛼y1 + 𝛽y2 ) = 𝛼x1 + 𝛽x2

= 𝛼G(y1) + 𝛽G(y2)

Hence, G is a linear operator. Is it an isomorphism? Well, observe that

G(F(x)) = x, ∀x ∈ X

and also
F(G(y)) = y, ∀y ∈ Y

So we see that F is an isomorphism and G is its inverse. But if KerF = {𝟎} we
can assume that F(x) = 𝟎. Then, with G being an inverse of F, we have

x = G(F(x))

= G(𝟎)

= 𝟎

which completes our proof. ◾

Theorem 6.41 Let F ∶ X → Y be a linear operator such that KerF = {𝟎}.
Then, ∀y ∈ ImF there exists a unique x ∈ X such that F(x) = y.

Proof Since we have assumed that ImF ≠ ∅, there is at least one vector, say,
y ∈ Y such that y = F(x1) with x1 ∈ X. Suppose there exists another vector x2 ∈
X such that F(x2) = y. Then, we can write

F(x1 − x2) = F(x1) − F(x2)

= y − y

= 𝟎

This implies that x1 − x2 ∈ KerF = {𝟎} and therefore x1 − x2 = 0. Hence,
x1 = x2 as claimed. ◾

Example 6.48 Let F ∶ R2 → R2 be a linear operator defined by

F(x) = F(x, y) = (x − y, x − 2y)

Determine whether or not F is nonsingular.
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Solution We need to find whether KerF = {𝟎} or not.
Let

F(x) = F(x, y) = 𝟎

= (x − y, x − 2y) = (0, 0)

Hence,

x − y = 0

x − 2y = 0

The only solution of these equations is x = y = 0. So, 𝟎 ∈ KerF. It is easy to
see that 𝟎 is the only element of KerF. Thus, KerF = {𝟎} and therefore F is
nonsingular. ◾

Example/Exercise 6.49 Let F ∶ R2 → R2 be a linear operator defined by

F(x) = F(x, y) = (2x − 4y, 3x − 6y)

Show that F is a singular operator.

Theorem 6.42 Let F ∶ X → Y be an isomorphism of spaces, and let A ⊆ X
be some set of vectors from X such that F(A) = B ⊆ Y. Then vectors in A are
linearly independent iff vectors in B are linearly independent too. Furthermore,
set A spans X iff set B spans Y.

Proof Suppose A = {a1, … , as} is a set of linearly independent vectors such
that

F(ai) = bi ∈ B.

Consider

s∑
i=1

𝛽ibi = 𝟎Y

=
s∑

i=1

𝛽iF(ai)

= F

(
s∑

i=1

𝛽iai

)
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But since F is a bijection by definition, that is, F(𝟎X) = 𝟎Y , we have

s∑
i=1

𝛽iai = 𝟎X.

We have assumed that A = {a1, … , as} is a set of linearly independent vectors,
thus 𝛽i = 0 for all i = 1, 2, … , s and therefore B is a set of linearly independent
vectors too. Since F−1 is also an isomorphism, we can analogously prove the
converse claim.

Finally, let’s assume that A = {a1, … , as} spans X, then for any b ∈ Y

F−1(b) =
s∑

i=1

𝛼iai

Thus

b = F(F−1(b))

= F

(
s∑

i=1

𝛼iai

)

=
s∑

i=1

𝛼iF(ai)

=
s∑

i=1

𝛼ibi

So set B spans Y. The converse can be proved similarly. ◾

This theorem leads straightforwardly to the proof of the following two corol-
laries.

Corollary 6.3 If F ∶ X → Y is an isomorphism of spaces, then every basis of
X is mapped to some basis of Y, or conversely, every basis of Y is an image of a
basis of X.

Corollary 6.4 If X and Y are isomorphic vector spaces, then dim X = dim Y.

Another important theorem is

Theorem 6.43 Two linear spaces are isomorphic iff they have the same
dimension.
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Proof Considering the previous corollaries, it suffices to show that if X and Y
are two vector spaces such that dim X = dim Y, then X and Y are isomorphic.

Let dim X = dim Y = n then there is a basis BX = {bX1, … , bXn} for X, and
a basis BY = {bY1, … , bYn} for Y. Define a linear operator F ∶ X → Y by

F(bXi) = bYi, i = 1, … , n

Observe that F is a surjection. We need to prove that it is a bijection. Take two
vectors from X

x1 =
n∑

i=1

𝛼ibXi

x2 =
n∑

i=1

𝛽ibXi

such that

F(x1) = F

(
n∑

i=1

𝛼ibXi

)

= F

(
n∑

i=1

𝛽ibXi

)
= F(x2)

However, F is a linear operator so we can write

n∑
i=1

𝛼iF(bXi) =
n∑

i=1

𝛽iF(bXi)

and therefore,
n∑

i=1

(𝛼i − 𝛽i) bXi = 𝟎

Considering that the vectors from BX are linearly independent, we have that 𝛼i −
𝛽i = 0 for all i = 1, … , n. Thus, x1 = x2, which tells us that F, besides being a
surjection, is also an injection, that is, F is a bijection. We conclude that F is an
isomorphism, that is, X ≅ Y. ◾

This is a significant result, telling us that all spaces with the same dimension
have the same abstract structure. Thus, we are free to choose and do our calcula-
tions on the one which is the most suitable for the problem at hand. Consequently,
the following corollary is very useful.
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Corollary 6.5 Every n-dimensional linear space over a field Φ is isomorphic to
the coordinate space Rn.

6.8 LINEAR TRANSFORMATIONS AND MATRICES

Let X and Y be vector spaces over a field Φ, and let F ∶ X → Y be an operator
from X into Y. Furthermore, let BX = {bX1, … , bXn} and BY = {bY1, … , bYm }
be the two respective bases. Recall that we know an operator if we know how it
acts on the basis vectors BX, so we can write

F(bXk) =
m∑

i=1

𝛼ikbYi, k = 1, … , n, 𝛼ik ∈ Φ

Observe that the operator F is uniquely determined by the set of scalars 𝛼ik ∈ Φ.
Let’s write them in the rectangular scheme

F =
⎡⎢⎢⎢⎣
𝛼11 𝛼12 · · · 𝛼1n
𝛼21 𝛼22 · · · 𝛼2n
⋮ ⋮ ⋮ ⋮
𝛼m1 𝛼m2 · · · 𝛼mn

⎤⎥⎥⎥⎦
called the matrix of the operator F with respect to two bases BX and BY . By close
inspection, you note that the kth column contains coefficients of the vector F(bXk)
in the BY basis. More formally we say:

Definition 6.24 A rectangular array of numbers (elements of a given field Φ)
composed of m rows and n columns

A =
⎡⎢⎢⎢⎣
𝛼11 𝛼12 · · · 𝛼1n
𝛼21 𝛼22 · · · 𝛼2n
⋮ ⋮ ⋮ ⋮
𝛼m1 𝛼m2 · · · 𝛼mn

⎤⎥⎥⎥⎦
is called an (m × n) or (m, n) matrix, where elements 𝛼i1, 𝛼i2, … , 𝛼in form the
ith row, and elements

𝛼1k
𝛼2k
⋮
𝛼mk

form the kth column of A.
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Formally, and more precisely:

Definition 6.24 ′ Let Φ be any field whose elements we call scalars, and let
m, n ∈ N be natural numbers. If by

Dmn = {1, 2, … , m} × {1, 2, … , n}

we indicate a Cartesian product, then we call the map

A ∶ Dmn → Φ

a matrix of (m, n) type, where the functional value

A(i, k) = 𝛼ik ∈ Φ.

Example 6.50 Let F ∶ R3 → R3 be a linear operator, and let

B = {b1 = (1, 0, 0), b2 = (0, 1, 0), b3 = (0, 0, 1)}

be, as usual, our standard basis for R3. We define F as follows:

F(b1) = (𝛼11, 𝛼21, 𝛼31)

F(b2) = (𝛼12, 𝛼22, 𝛼32)

F(b3) = (𝛼13, 𝛼23, 𝛼33)

Now we rewrite this by expressing the right-hand side through the same basis
vectors

F(b1) = 𝛼11b1 + 𝛼21b2 + 𝛼31b3

F(b2) = 𝛼12b1 + 𝛼22b2 + 𝛼32b3

F(b3) = 𝛼13b1 + 𝛼23b2 + 𝛼33b3

Observe that this is just an explicit expression of

F(bXk) =
m∑

i=1

𝛼ikbXi, k = 1, … , n, 𝛼ik ∈ Φ

from the previous page. Certainly, we could have chosen any vector
x = (x1, x2, x3) ∈ R3 and expressed it as a linear combination of basis
vectors

x = x1b1 + x2b2 + x3b3
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Thus,

F(x) = F(x1b1 + x2b2 + x3b3)

= x1F(b1) + x2F(b2) + x3F(b3)

= x1(𝛼11b1 + 𝛼21b2 + 𝛼31b3)

+ x2(𝛼12b1 + 𝛼22b2 + 𝛼32b3)

+ x3(𝛼13b1 + 𝛼23b2 + 𝛼33b3)

and, finally, collecting like terms, we have

F(x) = (𝛼11x1 + 𝛼12x2 + 𝛼13x3)b1 + (𝛼21x1 + 𝛼22x2 + 𝛼23x3)b2

+ (𝛼31x1 + 𝛼32x2 + 𝛼33x3)b3

=
3∑

i=1

3∑
k=1

𝛼ikxkbi

As you can see, we can calculate the “value” of a linear operator F acting on
any vector x by considering an array of numbers 𝛼ik corresponding to a given
basis. This array of numbers is exactly the matrix A = (𝛼ik) described again in
the following definition. ◾

Definition 6.25 We say that matrix A is of type (m, n) if it has m rows and n
columns. Very often we simply write A = (𝛼ik)where we call 𝛼ik a representative
of the elements of A.

Definition 6.26 If a matrix A is of (n, n) type, that is, if it has the same number
of rows as columns, we say that A is a square matrix.

Example 6.51 The matrix A =
⎡⎢⎢⎣
2 3 0
1 5 1
1 1 7

⎤⎥⎥⎦ is a (3, 3)-square matrix. ◾

Definition 6.27 If a matrix A is of type (1, n), that is, if it has just one row
and n columns, we say that A is a row matrix. Similarly, if a matrix A is of type
(m, 1), that is, if it has m rows and just one column, we say that A is a column
matrix.

Definition 6.28 We say that the (m, n) matrix

O =
⎡⎢⎢⎣
0 · · · 0
⋮ ⋮ ⋮
0 · · · 0

⎤⎥⎥⎦
is a zero matrix.
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Example 6.52 The matrix O =
[

0 0 0 0
0 0 0 0

]
is a (2, 4)-zero matrix. ◾

Definition 6.29 Given a square matrix A, we call the n-tuple (𝛼11, 𝛼22, … , 𝛼nn)
the main diagonal of A.

Definition 6.30 Given a square matrix A we call the sum of all main diagonal
elements the trace of A, that is,

trA =
n∑

i=1

𝛼ii

Example 6.53

trA = tr
⎡⎢⎢⎣
2 3 0
1 5 1
1 1 7

⎤⎥⎥⎦ = 2 + 5 + 7 = 14
◾

Definition 6.31 We say that a square matrix with elements 𝛼ik = 𝛿ik ={
1 if i = k
0 if i ≠ k

I =
⎡⎢⎢⎣
1 · · · 0
⋮ ⋱ ⋮
1 · · · 1

⎤⎥⎥⎦
is the identity matrix if it has 1s on the main diagonal and 0s elsewhere.

At this point, it may be a good idea to formally introduce Kronecker’s5 delta
(or the Kronecker delta) function.

Definition 6.32 A function 𝛿ik defined by

𝛿 ∶ N × N → {0, 1}

such that

𝛿ik =

{
1 if i = k

0 if i ≠ k

is called the Kronecker delta function.

5Leopold Kronecker (1823–1891), German mathematician.
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Example 6.54 The matrix

I =
⎡⎢⎢⎣
1 0 0
0 1 0
0 0 1

⎤⎥⎥⎦ = (𝛿ik)

is a (3, 3) identity matrix. ◾

Definition 6.33 A square matrix S = (𝛼ij) is called a scalar matrix if A = 𝜆I,
𝜆 ∈ Φ.

Example 6.55 The matrix

S =
⎡⎢⎢⎣
3 0 0
0 3 0
0 0 3

⎤⎥⎥⎦ = 3
⎡⎢⎢⎣
1 0 0
0 1 0
0 0 1

⎤⎥⎥⎦ = 3(𝛿ik)

is a scalar matrix. ◾

Definition 6.34 A square matrix is called a diagonal matrix if its only nonzero
elements are on the main diagonal.

Example 6.56 The matrices

D =
⎡⎢⎢⎣
2 0 0
0 −5 0
0 0 3

⎤⎥⎥⎦ and E =
⎡⎢⎢⎣
0 0 0
0 3 0
0 0 0

⎤⎥⎥⎦
are both diagonal. ◾

Definition 6.35 We say that two matrices A = (𝛼ij) and B = (𝛽ij), over the same
fieldΦ, are equal iff they are of the same type and if they have the same elements
at the same “locations,” that is,

A = B iff type A = type B, and 𝛼ij = 𝛽ij

Example 6.57 Matrices A =
[

1 2
3 4

]
and B =

[
3 2
1 4

]
are not equal even though

they are of the same type, since they do not have the same elements at the same
locations, that is, 𝛼ij ≠ 𝛽ij.
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Similarly, the matrix

C =
⎡⎢⎢⎣
1
2
3

⎤⎥⎥⎦ ≠ D =
[
1 2 3

]
since type C ≠ type D

◾

Definition 6.36 A matrix A = (𝛼ij) of type (m, n) uniquely determines a matrix
B of type (n,m) defined by

𝛼ij = 𝛽ji, ∀ i = 1, … , m; j = 1, … , n

In other words, we obtain matrix B by interchanging the rows and columns of
matrix A.

Matrix B is called the transpose matrix of matrix A and is denoted by A𝜏 .

Example 6.58 A =
[

2 3 0
1 0 5

]
and A𝜏 =

⎡⎢⎢⎣
2 1
3
0

0
5

⎤⎥⎥⎦.
Obviously, (A𝜏)𝜏 = A. ◾

Definition 6.37 A square matrix A is said to be symmetric if A𝜏 = A, that is,
(𝛼ki) = (𝛼ik). A matrix is an antisymmetric or skew-symmetric if A𝜏 = −A, that
is, (𝛼ki) = (−𝛼ik).

Example 6.59 A =
⎡⎢⎢⎢⎣
1 2 3 0
2 3 0 1
3 0 1 2
0 1 2 3

⎤⎥⎥⎥⎦ and A𝜏 =
⎡⎢⎢⎢⎣
1 2 3 0
2 3 0 1
3 0 1 2
0 1 2 3

⎤⎥⎥⎥⎦.
Thus, A = A𝜏 , that is, matrix A is symmetric. ◾

Example 6.60 Matrix A

A =
⎡⎢⎢⎣

3 2 7
2
7

1
0

0
4

⎤⎥⎥⎦
is symmetric, and matrix B

B =
⎡⎢⎢⎣

0 1 −3
−1 0 5

3 −5 0

⎤⎥⎥⎦
is antisymmetric. ◾

Obviously, if A𝜏 = A and A𝜏 = −A, then A = O.
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6.9 LINEAR SPACE Mmn

The discussion in the previous section inspires the next natural idea: Why not
endow a set of all (m, n)-matrices with the necessary structure and create a vector
space Mmn of all (m, n)-type matrices.

Definition 6.38 Let Mmnbe the set of all (m, n) matrices over the field Φ, and
let A = (𝛼ik), B = (𝛽ik) ∈ Mmn be any two matrices. We define the sum C = (𝛾ik)
of matrices A and B, C = A + B by

𝛾ik = 𝛼ik + 𝛽ik, ∀i = 1, … , m; k = 1, … , n

We see that addition of matrices is well defined iff they are of the same type.

Example 6.61 Let A =
[

2 1 3
0 −2 2

]
and B =

[
4 1 −1
2 5 0

]
then,

A + B =
[

2 1 3
0 −2 2

]
+

[
4 1 −1
2 5 0

]
=
[

6 2 2
2 3 2

]
◾

Definition 6.39 Let A = (𝛼ik) ∈ Mmn be any (m, n)-matrix, and 𝜆 ∈ Φ. We
define the product of a scalar 𝜆 and a matrix A by multiplying each entry in the
matrix A by the scalar:

𝜆 ⋅ A = 𝜆(𝛼ik) = (𝜆𝛼ik)

Example 6.62

3 ⋅ A = 3 ⋅
[

2 1 3
0 −2 2

]
=
[

6 3 9
0 −6 6

]
◾

Theorem 6.44 The set Mmn of all (m, n)-matrices over a field Φ, with addition
of matrices as the binary operation, is an abelian group.

Proof Closure and associativity are obviously satisfied. The neutral element
is a nil-matrix O, and the opposite matrix of the matrix A = (𝛼ik) is the matrix
− A = (−𝛼ik), thus we have a group. ◾

Consequently, we expect the following theorem to hold too.

Theorem 6.45 The set Mmn of all (m, n)-matrices over a field Φ, with addi-
tion of matrices and multiplication of matrices by a scalar, is a vector space. The
dimension of this space is

dim Mmn = mn.
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Proof We have already established the fact that for any two (m, n)-matrices
A, B ∈ Mmn, A + B ∈ Mmn. From Definitions 6.38 and 6.39, it immediately fol-
lows that ∀ 𝜆, 𝜇 ∈ Φ, and A, B ∈ Mmn :

(i) 𝜆(𝜇A) = (𝜆𝜇)A
(ii) 1 ⋅ A = A

(iii) (𝜆 + 𝜇)A = 𝜆A + 𝜇A

(iv) 𝜆(A + B) = 𝜆A + 𝜆B

Therefore, Mmn is a vector space. What about the dimension of this space?
Well, consider a set of matrices

B = {Bik | i = 1, … , m; k = 1, … , n} ⊆ Mmn, Bik = (𝛽rs)

such that 𝛽rs =
{

1,
0,

if r = i, s = k
otherwise

.

It is easy to see that matrices Bik, constructed this way, represent the basis
for Mmn. Now, consider the space Φmn of mn-tuples (think of Rmn, for instance)
and remember that an (m, n)matrix is a particular recording of ordered mn-tuples
from the field Φ. Therefore, there is always a map

⎡⎢⎢⎣
𝛼11 · · · 𝛼1n
⋮ ⋱ ⋮
𝛼m1 · · · 𝛼mn

⎤⎥⎥⎦ → (𝛼11, … , 𝛼1n, … , 𝛼m1, … , 𝛼mn) ∈ Φmn

that is, an isomorphism of spaces Mmn and Φmn. The space Φmn is clearly
mn-dimensional, hence, by Theorem 6.43, the space Mmn is mn-dimensional
too. ◾

Example 6.63 Show that the standard (canonical) basis for M22 is

B =
{

B1 =
[

1 0
0 0

]
, B2 =

[
0 1
0 0

]
, B3 =

[
0 0
1 0

]
, B4 =

[
0 0
0 1

]}
.

Solution As usual, we have to prove that B is a linearly independent set and
that matrices Bi span M22.

Consider first

𝛼1B1 + 𝛼2B2 + 𝛼3B3 + 𝛼4B4 = 0, 𝛼i ∈ Φ,
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that is,

𝛼1

[
1 0
0 0

]
+ 𝛼2

[
0 1
0 0

]
+ 𝛼3

[
0 0
1 0

]
+ 𝛼4

[
0 0
0 1

]
=
[

0 0
0 0

]
[
𝛼1 𝛼2
𝛼3 𝛼4

]
=
[

0 0
0 0

]
Thus, our equation has only a trivial solution 𝛼1 = 𝛼2 = 𝛼3 = 𝛼4 = 0 and there-
fore vectors Bi are linearly independent. Next, observe that any M ∈ M22, say,

M =
[
𝛼 𝛽
𝛾 𝛿

]
can be expressed as a linear combination of basis vectors Bi, that is,

M =
[
𝛼 𝛽
𝛾 𝛿

]
= 𝛼

[
1 0
0 0

]
+ 𝛽

[
0 1
0 0

]
+ 𝛾

[
0 0
1 0

]
+ 𝛿

[
0 0
0 1

]
We see that Bi are linearly independent and they span the space M22, hence, they
form a basis for M22. ◾

Example/Exercise 6.64 Show that vectors{
A1 =

[
2 2
2 3

]
, A2 =

[
3 3
2 0

]
, A3 =

[
0 3
2 2

]}
∈ M22

are linearly independent.

6.10 MATRIX MULTIPLICATION

Unlike addition and multiplication by a scalar, matrix multiplication is somewhat
complicated. Although the procedure of this operation may look rather strange at
first, it does have a very logical rationale, as you will see shortly.

Before introducing an example and a general rule of matrix multiplication,
let’s state a fundamental principle:

Two matrices A and B can be multiplied, that is, the product A ⋅ B is defined,
iff type A = (m, n) and type B = (n, p).

Let’s start with a simple example.

Example 6.65 Let A =
[
𝛼1 𝛼2 · · · 𝛼n

]
be a (1, n) matrix and B =

⎡⎢⎢⎢⎣
𝛽1
𝛽2
⋮
𝛽n

⎤⎥⎥⎥⎦ a

(n, 1) matrix, with 𝛼i, 𝛽i ∈ Φ. We define the product A ⋅ B as follows:
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A ⋅ B =
[
𝛼1 𝛼2 · · · 𝛼n

]
⋅

⎡⎢⎢⎢⎣
𝛽1
𝛽2
⋮
𝛽n

⎤⎥⎥⎥⎦ =
n∑

i=1

𝛼i𝛽i ∈ Φ

Observe that the result is a (1, 1) matrix, that is, a scalar from Φ. ◾

Example 6.66 Find A ⋅ B if A =
[
2 1 3 0

]
and B =

⎡⎢⎢⎢⎣
3
3
0
1

⎤⎥⎥⎥⎦.

Solution A ⋅ B =
[
2 1 3 0

] ⎡⎢⎢⎢⎣
3
3
0
1

⎤⎥⎥⎥⎦ = 6 + 3 + 0 + 0 = 9
◾

Observe that the products are well defined in both examples, that is, the num-
ber of columns in A is equal to the number of rows in B. Also note that with
multiplication defined as above, the product B ⋅ A is not obtainable. Let’s gener-
alize this.

Definition 6.40 Let A = (𝛼ik) be an (m, n)matrix and B = (𝛽ik) an (n, p)-matrix.
We say that a matrix C = (𝛾ik) is a product of A and B, that is, C = A ⋅ B if

𝛾ik =
n∑

j=1

𝛼ij𝛽jk, ∀i = 1, … ,m; k = 1, … , p

Explicitly,

A ⋅ B =

⎡⎢⎢⎢⎢⎣
α11 · · · α1n
⋮ ⋮ ⋮
αi1 · · · αin
⋮ ⋮ ⋮
αm1 · · · αmn

⎤⎥⎥⎥⎥⎦
⋅
⎡⎢⎢⎣
𝛽11 · · · 𝛽1k · · · 𝛽1p

⋮ ⋮ ⋮ ⋮ ⋮
𝛽n1 · · · 𝛽nk · · · 𝛽np

⎤⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

∑
j

𝛼1j𝛽j1 · · ·
∑

j

𝛼1j𝛽jp

⋮
∑

j

𝛼ij𝛽jk ⋮∑
j

𝛼mj𝛽j1 · · ·
∑

j

𝛼mj𝛽jp

⎤⎥⎥⎥⎥⎥⎥⎦
Example 6.67 Let A =

[
1 2 3
4 5 6

]
and B =

⎡⎢⎢⎣
0 1 2 3
1 2 3 0
2 3 1 0

⎤⎥⎥⎦. Calculate A ⋅ B.
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Solution

A ⋅ B =
[

1 2 3
4 5 6

]
⋅
⎡⎢⎢⎣
0 1 2 3
1 2 3 0
2 3 1 0

⎤⎥⎥⎦ =
[

8 14 11 3
17 32 29 12

]
◾

Example 6.68 Let A =
[

1 2
3 4

]
and B =

[
5 6
7 8

]
. Calculate A ⋅ B and B ⋅ A.

Solution

A ⋅ B =
[

1 2
3 4

]
⋅
[

5 6
7 8

]
=
[

19 22
43 50

]
B ⋅ A =

[
5 6
7 8

]
⋅
[

1 2
3 4

]
=
[

23 34
31 46

]
Note that although typeA = typeB, A ⋅ B ≠ B ⋅ A. ◾

We conclude: Matrix multiplication (in general) is noncommutative. Occa-
sionally, it might happen that A ⋅ B = B ⋅ A. In that case, we say that matrices A
and B commute.

Example 6.69

A ⋅ B =
⎡⎢⎢⎣

1 2 3
−4 −4 −4

5 6 7

⎤⎥⎥⎦
⎡⎢⎢⎣

2 −5 1
0 3 −2
1 2 −4

⎤⎥⎥⎦ =
⎡⎢⎢⎣

5 7 −15
−12 0 20

17 7 −35

⎤⎥⎥⎦
B ⋅ A =

⎡⎢⎢⎣
2 −5 1
0 3 −2
1 2 −4

⎤⎥⎥⎦
⎡⎢⎢⎣

1 2 3
−4 −4 −4

5 6 7

⎤⎥⎥⎦ =
⎡⎢⎢⎣

27 30 33
−22 −24 −26
−27 −30 −33

⎤⎥⎥⎦ ◾

Example 6.70 Here are two matrices that commute:

A =
[

1 2
3 4

]
and B =

[
3 0
0 3

]
Indeed,

A ⋅ B =
[

1 2
3 4

]
⋅
[

3 0
0 3

]
=
[

3 6
9 12

]
=
[

3 0
0 3

]
⋅
[

1 2
3 4

]
= A ⋅ B =

[
3 6
9 12

]
◾

However, for every (n, n) matrix A and (n, n)-identity matrix I

I ⋅ A = A ⋅ I = A
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Example 6.71

I ⋅ A =
⎡⎢⎢⎣
1 0 0
0 1 0
0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣
0 1 2
1 2 3
3 2 4

⎤⎥⎥⎦
=
⎡⎢⎢⎣
0 1 2
1 2 3
3 2 4

⎤⎥⎥⎦
⎡⎢⎢⎣
1 0 0
0 1 0
0 0 1

⎤⎥⎥⎦
= A ⋅ I = A =

⎡⎢⎢⎣
0 1 2
1 2 3
3 2 4

⎤⎥⎥⎦ ◾

Theorem 6.46 Let A, B, and C be matrices. Then, whenever respective multi-
plication is defined, matrix multiplication is associative, that is, A(BC) = (AB)C.

Proof Let A = (𝛼ij) be a (m, n) matrix, B = (𝛽jk) a (n, p) matrix, and C = (𝛾kl)
a (p, q) matrix. First note that both products A(BC) and (AB)C are well defined,
and the result in both cases is a (m, q) matrix.

Let the product BC = (𝜎jl), then

𝜎jl =
p∑

k=1

𝛽jk𝛾kl

Also, let
A(BC) = (𝜉il)

So, we have

𝜉il =
n∑

j=1

𝛼ij𝜎jl

=
n∑

j=1

𝛼ij

p∑
k=1

𝛽jk𝛾kl

=
n∑

j=1

p∑
k=1

𝛼ij𝛽jk𝛾kl (*)

Now, if we denote AB = (𝜏ik) then,

𝜏ik =
n∑

j=1

𝛼ij𝛽jk
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and, with (AB)C = (𝜂il), we have

𝜂il =
p∑

k=1

𝜏ik𝛾kl

=
p∑

k=1

(
n∑

j=1

𝛼ij𝛽jk

)
𝛾kl

=
n∑

j=1

p∑
k=1

𝛼ij𝛽jk𝛾kl (**)

From (*) and (**), we see that 𝜉il = 𝜂il, ∀ i = 1, … , m; l = 1, … , q. Hence,
we have proved that A(BC) = (AB)C. ◾

Theorem 6.47 Let A, B, and C be matrices, and let 𝜆 ∈ Φ. Then, whenever
products and sums are defined,

(i) (𝜆A)B = 𝜆(AB) = A(𝜆B)
(ii) (A + B)C = AC + BC

(iii) A(B + C) = AB + AC

Proof The proof immediately follows from the definitions of matrix addition
and multiplication. ◾

Once matrix multiplication is defined, one immediately accepts powers of
matrices. We have

Definition 6.41 For any square matrix A over a field Φ,

A2 = A ⋅ A, A3 = A2 ⋅ A, … , An = An−1 ⋅ A, and A0 = I

Thus, polynomials in matrix A are also defined.

Definition 6.42 Let

pn(t) = antn + an−1tn−1 + · · · + a1t + a0

be any polynomial where ai are scalars in Φ, then pn(A) is the following matrix:

pn(A) = anAn + an−1An−1 + · · · + a1A + a0I
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Example 6.72 Let A =
[

1 2
3 4

]
, and let p2(t) = 2t2 − 3t + 5, then

p2(A) = 2A2 − 3A + 5I

= 2

[
1 2
3 4

] [
1 2
3 4

]
− 3

[
1 2
3 4

]
+ 5

[
1 0
0 1

]
= 2

[
7 10

15 22

]
−
[

3 6
9 12

]
+
[

5 0
0 5

]
=
[

16 14
21 37

]
◾

Definition 6.43 A matrix A is said to be a root or a zero of a polynomial pn(t),
if pn(A) is a zero matrix, that is, pn(A) = O.

Example 6.73 Let pn(t) = t2 + 3t − 10, and let A =
[

1 2
3 −4

]
, then

pn(A) = A2 + 3A − 10

=
[

1 2
3 −4

] [
1 2
3 −4

]
+ 3

[
1 2
3 −4

]
− 10

[
1 0
0 1

]
=
[

7 −6
−9 22

]
+
[

3 6
9 −12

]
−
[

10 0
0 10

]
=
[

0 0
0 0

]
Thus, A is a zero of the polynomial pn(t) = t2 + 3t − 10. ◾

6.11 SOME MORE SPECIAL MATRICES. GENERAL
LINEAR GROUP

Definition 6.44 A square matrix A is said to be idempotent if A2 = A.

Example 6.74 Matrices

[
1∕2 1∕2
1∕2 1∕2

]
,

⎡⎢⎢⎣
1 0 0
0 1 0
0 0 0

⎤⎥⎥⎦, and, of course,
⎡⎢⎢⎣
1 0 0
0 1 0
0 0 1

⎤⎥⎥⎦ are

three among many idempotent matrices. ◾



�

� �

�

SOME MORE SPECIAL MATRICES. GENERAL LINEAR GROUP 515

Example/Exercise 6.75 Show that if a matrix A is idempotent, then A𝜏 is also
idempotent.

Definition 6.45 A square matrix A is said to be nilpotent if there is a natural
number n ∈ N, such that An = O. The smallest such natural number n is called
the index of nilpotence of A.

Example 6.76 If A =
⎡⎢⎢⎣
0 0 0
1 0 0
0 1 0

⎤⎥⎥⎦, then

A2 = AA =
⎡⎢⎢⎣
0 0 0
1 0 0
0 1 0

⎤⎥⎥⎦
⎡⎢⎢⎣
0 0 0
1 0 0
0 1 0

⎤⎥⎥⎦ =
⎡⎢⎢⎣
0 0 0
0 0 0
1 0 0

⎤⎥⎥⎦ and

A3 =
⎡⎢⎢⎣
0 0 0
0 0 0
1 0 0

⎤⎥⎥⎦
⎡⎢⎢⎣
0 0 0
1 0 0
0 1 0

⎤⎥⎥⎦ =
⎡⎢⎢⎣
0 0 0
0 0 0
0 0 0

⎤⎥⎥⎦
Thus, A is a nilpotent matrix with index of nilpotence 3. ◾

Example/Exercise 6.77 Show that, if matrix A is nilpotent, then A𝜏 is nilpo-
tent too.

Definition 6.46 A square matrix A is said to be invertible or nonsingular, or
regular, if there exists a matrix X such that

AX = XA = I

We call matrix X the inverse of A and denote it by A−1.
A matrix that is not invertible is called singular.

Example 6.78 Suppose we are given a matrix A =
[

1 2
3 4

]
. We would like to

show that it is invertible, that is, we would like to find A−1.

According to the definition above if A−1 =
[
𝛼 𝛽
𝛾 𝛿

]
exists, then

AA−1 =
[

1 2
3 4

] [
𝛼 𝛽
𝛾 𝛿

]
=
[

1 0
0 1

]
= I

Multiplying the matrices on the left-hand side we get[
𝛼 + 2𝛾 𝛽 + 2𝛿

3𝛼 + 4𝛾 3𝛽 + 4𝛿

]
=
[

1 0
0 1

]
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Thus,

𝛼 + 2𝛾 = 1

𝛽 + 2𝛿 = 0

3𝛼 + 4𝛾 = 0

3𝛽 + 4𝛿 = 1

Solving this system, we get

𝛼 = −2, 𝛽 = 1, 𝛾 = 3∕2, 𝛿 = −1∕2

So, matrix A−1 =
[
−2 1
3∕2 −1∕2

]
. Indeed,

AA−1 =
[

1 2
3 4

] [
−2 1
3∕2 −1∕2

]
=
[

1 0
0 1

]
= I

You can easily convince yourself that

A−1A = I ◾

You are absolutely right in thinking that the above example of finding the
inverse matrix is rather clumsy, and definitely not elegant. We will discuss a much
better way shortly. For now, let’s continue exploring some additional features of
matrices.

Theorem 6.48 The inverse of a matrix is unique.

Proof Let A be a matrix whose inverse is X. Suppose there is another inverse
Y , that is, suppose that

AX = XA = I and AY = YA = I

Then,
X = XI = X(AY) = (XA)Y = IY = Y ◾

Example/Exercise 6.79 Show that if A is a symmetric and invertible matrix,
then A−1 is also symmetric.

Definition 6.47 A square matrix A is said to be involutory if A2 = I or equiv-
alently, if A−1 = A.
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Example 6.80 Consider a matrix

A =
⎡⎢⎢⎣
0 1 0
1 0 0
0 0 1

⎤⎥⎥⎦
and calculate A2

A2 = AA =
⎡⎢⎢⎣
0 1 0
1 0 0
0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣
0 1 0
1 0 0
0 0 1

⎤⎥⎥⎦
=
⎡⎢⎢⎣
1 0 0
0 1 0
0 0 1

⎤⎥⎥⎦ = I
◾

Example/Exercise 6.81 Convince yourself that the following matrices are
involutory:

(i)

[
1 1
0 −1

]

(ii)
⎡⎢⎢⎣
1 0 0
0 −1 0
0 0 −1

⎤⎥⎥⎦
Example 6.82 If a matrix A is of the form

[
a b

1−a2

b
−a

]
, then it is involutory.

Indeed, [
a b

1−a2

b
−a

][
a b

1−a2

b
−a

]
=
⎡⎢⎢⎣

a2 + b 1−a2

b
ab − ab

a 1−a2

b
− a 1−a2

b
b 1−a2

b
+ a2

⎤⎥⎥⎦
=
[

1 0
0 1

]
◾

Theorem 6.49 If A is a regular matrix, then (A−1)−1 = A.

Proof By definition of inverse, for any regular matrix A

A−1A = I
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On the other hand, if X is an inverse of (A−1)−1, then

X (A−1)−1 = I

Thus,
X = (A−1)−1 = A. ◾

Theorem 6.50 A product AB of regular matrices A and B is a regular matrix,
that is, there exists (AB)−1 and it is equal to B−1A−1.

Proof Let A and Bbe two regular matrices, that is, A−1 and B−1 exist. If AB is
a regular matrix, then

(AB)(AB)−1 = (AB)−1(AB) = I

Consider now

(AB)(B−1A−1) = A(BB−1)A−1

= AIA−1

= I

Similarly,

(B−1A−1)(AB) = B−1(A−1A)B

= B−1IB

= I

Thus, AB is regular and (AB)−1 = B−1A−1. ◾

Theorem 6.51 A nilpotent matrix is not invertible.

Proof Suppose there exists a matrix A that is nilpotent and also invertible. Let
B be an inverse of A. Since A is nilpotent there exists n ∈ N, such that An = O.
Then,

O = AnB = An−1AB

= An−1I

= An−1
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= An−2AB = An−2I

= An−2

⋮

O = AB = I

And this, of course, is impossible. We conclude that the nilpotent matrix is not
invertible. ◾

Theorem 6.52 If a square matrix A is idempotent and invertible, then A = I.

Proof Let A be an idempotent matrix, that is, A2 = A, and let B be its inverse.
Then,

A = IA = BAA

= BA2 = BA

= I

So, A = I as claimed. ◾

Definition 6.48 We say that a matrix A is orthogonal, if

AA𝜏 = A𝜏A = I

It is clear from this definition that every orthogonal matrix is regular and that

A𝜏 = A−1

Example 6.83 Consider a matrix

A =
[

3∕5 4∕5
−4∕5 3∕5

]
and let’s calculate

AA𝜏 =
[

3∕5 4∕5
−4∕5 3∕5

] [
3∕5 −4∕5
4∕5 3∕5

]
=
[

1 0
0 1

]
= I
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Similarly,

AA𝜏 =
[

3∕5 −4∕5
4∕5 3∕5

] [
3∕5 4∕5
−4∕5 3∕5

]
=

[
1 0
0 1

]
= I

Hence, matrix A is orthogonal. ◾

Example 6.84 Matrix A

A =
⎡⎢⎢⎣

1∕9 8∕9 −4∕9
4∕9 −4∕9 −7∕9
8∕9 1∕9 4∕9

⎤⎥⎥⎦
is another example of an orthogonal matrix. Indeed,

AA𝜏 =
⎡⎢⎢⎣

1∕9 8∕9 −4∕9
4∕9 −4∕9 −7∕9
8∕9 1∕9 4∕9

⎤⎥⎥⎦
⎡⎢⎢⎣

1∕9 4∕9 8∕9
8∕9 −4∕9 1∕9
−4∕9 −7∕9 4∕9

⎤⎥⎥⎦
= AτA =

⎡⎢⎢⎣
1∕9 4∕9 8∕9
8∕9 −4∕9 1∕9
−4∕9 −7∕9 4∕9

⎤⎥⎥⎦
⎡⎢⎢⎣

1∕9 8∕9 −4∕9
4∕9 −4∕9 −7∕9
8∕9 1∕9 4∕9

⎤⎥⎥⎦
=
⎡⎢⎢⎣
1 0 0
0 1 0
0 0 1

⎤⎥⎥⎦ = I

◾

Example 6.85 Matrix A A =
[

sin 𝛼 cos 𝛼
cos 𝛼 − sin 𝛼

]
is an orthogonal matrix for any

𝛼 ∈ R. Indeed,

AA𝜏 = A𝜏A

=
[

sin 𝛼 cos 𝛼
cos 𝛼 − sin 𝛼

] [
sin 𝛼 cos 𝛼
cos 𝛼 − sin 𝛼

]
=
[

sin2𝛼 + cos2𝛼 0
0 cos2𝛼 + sin2𝛼

]
=
[

1 0
0 1

]
◾

Theorem 6.53 Let A and B be two matrices over a field Φ, such that the addi-
tions and multiplications that follow are well defined, then



�

� �

�

SOME MORE SPECIAL MATRICES. GENERAL LINEAR GROUP 521

(i) (A + B)𝜏 = A𝜏 + B𝜏

(ii) (A𝜏 )𝜏 = A

(iii) (𝜆A)𝜏 = 𝜆A𝜏 , ∀ 𝜆 ∈ Φ
(iv) (AB)𝜏 = B𝜏A𝜏

Proof We will prove (iv). The rest is left as an easy exercise.
Let A = (𝛼ik) and B = (𝛽kj) be two (n, n)matrices, and let AB = (𝛾ij). Then, the

ij-entry of AB is

𝛾ij = 𝛼i1𝛽1j + 𝛼i2𝛽2j + · · · + 𝛼in𝛽nj =
n∑

k=1

𝛼ik𝛽kj.

Observe that this is exactly the ji-entry of (AB)𝜏 .
Now, transposing A and B, we get A𝜏 = (𝛼ki) and B𝜏 = (𝛽jk). Thus, the 𝛾ij-entry

of B𝜏 A𝜏 is

(𝛽1j, 𝛽2j, … , 𝛽nj)(𝛼i1, 𝛼i2, … , 𝛼in)𝜏 = 𝛽1j𝛼i1 + 𝛽2j𝛼i2 + · · · + 𝛽nj𝛼in

=
n∑

k=1

𝛽kj𝛼ik = 𝛾ij

So, (AB)𝜏 = B𝜏 A𝜏 as claimed. ◾

Example/Exercise 6.86 Let A and B be two orthogonal matrices. Show that
(A + B) is not an orthogonal matrix.

Definition 6.49 A square matrix A over a real field is said to be normal6 if it
commutes with its transpose A𝜏 , that is, if AA𝜏 = A𝜏A.

Example 6.87 Matrix A =
[

6 −3
3 6

]
is normal since

AA𝜏 =
[

6 −3
3 6

] [
6 3
−3 6

]
=
[

6 3
−3 6

] [
6 −3
3 6

]
= A𝜏A =

[
45 0
0 45

]
◾

Example/Exercise 6.88 Show that all symmetric matrices are normal.

The following theorem comes as no surprise considering everything that has
been said so far.

6In the case of complex matrices, i.e. ifΦ = C, by “normal” we mean A∗A = AA∗, where A∗ is the complex
conjugate transpose of A.
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Theorem 6.54 A set of all regular (n, n) matrices over a field Φ forms a group
with respect to matrix multiplication. This group is clearly non-abelian.

Proof The proof follows from Theorems 6.49 and 6.50. ◾

Hence,

Definition 6.50 A group of all regular (n, n) matrices over a field Φ, with
matrix multiplication as a binary operation, is called a general linear group and
is denoted GL(n,Φ).

Theorem 6.55 The set of all orthogonal (n, n) matrices over the field Φ is a
subgroup of GL(n,Φ). We denote this group by O(n,Φ).

Proof Suppose A and B are orthogonal matrices, that is, A−1 = A𝜏 , and
B−1 = B𝜏 . We need to show that AB−1 is also an orthogonal matrix. Well,

(AB−1)−1 = (B−1)−1A−1

= BA𝜏

= (B𝜏)𝜏A𝜏

= (AB𝜏)𝜏

= (AB−1)𝜏

We see that (AB−1)−1 = (AB−1)𝜏 , thus, AB−1 is indeed an orthogonal matrix. ◾

Hence,

Definition 6.51 The set of all orthogonal (n, n)-matrices over a field Φ, with
matrix multiplication as a binary operation, is said to be an orthogonal group,
denoted O(n,Φ).

Theorem 6.56 If A = (𝛼ik) is an orthogonal matrix, then

(i)
n∑

j=1

𝛼ij𝛼kj = 𝛿ik, ∀ i, k = 1, … , n

and

(ii)
n∑

j=1

𝛼ji𝛼jk = 𝛿ik, ∀ i, k = 1, … , n.
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Proof Since A is orthogonal, A𝜏 = (𝛽ik) = (𝛼ki). Thus, considering that
I = (𝛿ik) and AA𝜏 = I, we have

𝛿ik =
n∑

j=1

𝛼ij𝛽jk

=
n∑

j=1

𝛼ij𝛼kj

Similarly, you can prove (ii). You can see from this that orthogonal matrices have
another important feature. Namely, if i = k, the equations above yield

1 =
n∑

j=1

𝛼2
ij

that is, the sum of squares of any row of an orthogonal matrix is equal to 1.
And if i ≠ k

0 =
n∑

j=1

𝛼ij𝛼kj

that is, the sum of products of corresponding elements of two different rows is
equal to zero. We can make analogous statements for the columns of an orthog-
onal matrix. ◾

Example 6.89 Suppose

A =
⎡⎢⎢⎣
𝛼11 𝛼12 𝛼13
𝛼21 𝛼22 𝛼23
𝛼31 𝛼32 𝛼33

⎤⎥⎥⎦
is an orthogonal matrix. Then, by definition,

AA𝜏 =
⎡⎢⎢⎣
𝛼11 𝛼12 𝛼13
𝛼21 𝛼22 𝛼23
𝛼31 𝛼32 𝛼33

⎤⎥⎥⎦
⎡⎢⎢⎣
𝛼11 𝛼21 𝛼31
𝛼12 𝛼22 𝛼32
𝛼13 𝛼23 𝛼33

⎤⎥⎥⎦
=
⎡⎢⎢⎣
1 0 0
0 1 0
0 0 1

⎤⎥⎥⎦



�

� �

�

524 LINEAR ALGEBRA

So, we get

𝛼2
11 + 𝛼

2
22 + 𝛼

2
33 = 1

𝛼2
21 + 𝛼

2
22 + 𝛼

2
23 = 1

a2
31 + 𝛼

2
32 + 𝛼

2
33 = 1

and also

𝛼11𝛼21 + 𝛼12𝛼22 + 𝛼13𝛼23 = 0

𝛼21𝛼11 + 𝛼22𝛼12 + 𝛼23𝛼13 = 0

etc.
Suppose we identify the rows of our matrix A with respective vectors a1, a2, a3,

that is, we call (𝛼11, 𝛼12, 𝛼13) = a1, (𝛼21, 𝛼22, 𝛼23) = a2, and (𝛼31, 𝛼32, 𝛼33)
= a3. Then, we can write the “scalar” products of vectors as

a1 ⋅ a1 = 1, a2 ⋅ a2 = 1, a3 ⋅ a3 = 1

and also
a1 ⋅ a2 = a1 ⋅ a3 = a2 ⋅ a3 = 0

In other words, we have
ai ⋅ aj = 𝛿ij

which is exactly what is claimed by Theorem 6.56. ◾

The analogy with the space R3 is evident, so we generalize by

Definition 6.52 We say that a set of vectors a1, … , an ∈ Rn is an orthonor-
mal set if ai ⋅ aj = 𝛿ij, ∀ i, j = 1, … , n.

Theorem 6.57 If A = (𝛼ij) is a matrix with 𝛼ij ∈ R, the following statements
are equivalent:

(i) A is orthogonal.
(ii) The rows of A form an orthonormal set.

(iii) The columns of A form an orthonormal set.

Proof That (i) implies (ii) is evident from Definition 6.48, and the previous
theorem (see also Example 6.83). We will show that (ii) and (iii) imply (i). Let
A = (𝛼ik) be a square matrix such that its rows and columns form an orthonormal
set. Furthermore, let A𝜏 = (𝛽ik) and AA𝜏 = (𝛾ik). Then,
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𝛾ik =
n∑

j=1

𝛼ik𝛽jk

=
n∑

j=1

𝛼ij𝛼kj

= 𝛿ik, ∀i, k = 1, … , n

Therefore,
AA𝜏 = (𝛾ik) = (𝛿ik) = I

Similarly, we can show that A𝜏A = I, and we conclude that A is an orthogonal
matrix. ◾

Definition 6.53 A square matrix A = (𝛼ik) is said to be upper triangular if
𝛼ik = 0 for all i > k, that is,

A =
⎡⎢⎢⎢⎣
𝛼11 𝛼12 · · · 𝛼1n
0 𝛼22 · · · 𝛼2n
⋮ ⋮ ⋱ ⋮
0 0 · · · 𝛼nn

⎤⎥⎥⎥⎦
Similarly, we define a lower triangular matrix. The proof of the following
theorem is obvious.

Theorem 6.58 If A and B are two upper triangular matrices then,
A + B, 𝜆A and AB are also upper triangular matrices.

6.12 RANK OF A MATRIX

Suppose we are given a matrix

A =
⎡⎢⎢⎣
α11 · · · α1n
⋮ ⋮ ⋮
αm1 · · · αmn

⎤⎥⎥⎦ (*)

With our knowledge of linear spaces and their relation to matrices, we are now
wondering whether there is a way to associate with every matrix a specific number
revealing some additional aspects of matrices and their respective linear opera-
tors. Let’s approach this matter considering a particular linear space, namely

Mm1 =
⎧⎪⎨⎪⎩
⎡⎢⎢⎣
𝛼1
⋮
𝛼m

⎤⎥⎥⎦ | 𝛼i ∈ Φ
⎫⎪⎬⎪⎭
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which is the space of all column matrices with m rows. As you remember, Mm1 ≅
Φm (think for instance ofΦm as Rm). Consider now a matrix A ∈ Mmn as an ele-
ment of the linear space Mmn(Φ), and let’s label every column of A as a particular
matrix

Ck =
⎡⎢⎢⎣
𝛼1k
⋮
𝛼mk

⎤⎥⎥⎦ , k = 1, … , n

This way we establish the correspondence A → {C1, … , Cn} ∈ Mm1, that is,
we can associate with every matrix A an n-tuple of vectors from Mm1. We got a
column-representation of A. Now we are ready for

Definition 6.54 We say that r(A) is a rank (by columns) of a matrix A if r(A)
is equal to the maximal number of linearly independent columns from A, that
is, if r(A) is equal to the maximal number of linearly independent vectors in
{C1, … , Cn}.

We can also consider {C1, … , Cn}, as a subspace of Mm1 spanned by the
vectors C1, … , Cn, and define the rank of A as follows.

Definition 6.54 ′ We say that r(A) is the rank (by columns) of matrix A if

r(A) = dim{C1, … , Cn}

Similarly, we can consider a space M1n =
{[
𝛼1 · · · 𝛼n

] |𝛼i ∈ Φ
}

of all row
matrices with n elements, and then select vectors

Ri = [𝛼i1, … , 𝛼in], i = 1, … , m

as rows of our matrix A in (∗). This way, as earlier, we can establish the corre-
spondence A → {R1, … ,Rm} as a row-representation of matrix A. Clearly, the
set {R1, … ,Rm} is a subspace of M1n, and we are tempted to say

Definition 6.55 We say that r′(A) is a rank (by rows) of matrix A if

r′(A) = dim{R1, … , Rm }

It turns out that r(A) = r′(A). Without proof, we state

Theorem 6.59 The maximal number of linearly independent rows of any
matrix A is equal to the maximal number of linearly independent columns. That
is, for any matrix A the rank by rows is equal to the rank by columns, that is,
r′(A) = r(A).

If you accept this theorem then the following corollary seems obvious.
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Corollary 6.6 Matrix A and its transpose A𝜏 have the same rank, that is, r(A) =
r(A𝜏). Observe that r(O) = 0 and r(I) = n.

Before discussing the actual calculation of the rank, let’s introduce

Elementary Operations on Matrices

(E1) : Interchanging any two rows (columns) of the matrix:

[Ri ⇋ Rj (Ci ⇋ Cj)]

(E2) : Multiplying any row (column) of the matrix by a nonzero number k:

[kRi ⇋ Ri (kCi ⇋ Ci)]

(E3) : Multiplying any row by any number k and adding the result to any other
row:

[kRi + Rj ⇋ Rj (kCi + Cj ⇋ Cj)]

Definition 6.56 An (m, n) matrix A is said to be equivalent to an (m, n) matrix
B, written A ∼ B if B can be obtained from A by a sequence of elementary oper-
ations. In other words, A ∼ B if there exists a finite sequence of matrices of the
same type A1, A2, … , Ak−1, Ak = B such that Ai is obtained from Ai−1 by some
of the operations (E1) − (E3).

I hope you have recognized, and can easily prove, that “∼” as defined above
is an equivalence relation. Indeed,

(i) A ∼ A for any matrix A.
(ii) If A ∼ B then, B ∼ A.

(iii) If A ∼ B and B ∼ C then A ∼ C.

That A ∼ A is trivial. For (ii) observe that any operation that led from A to
B can be reversed. For instance, the interchange of rows Ri and Rj can be “re-
versed,” that is, the interchange is its own inverse. Similarly, replacing Ri by kRi
can be “reversed” by replacing Ri by 1∕k Ri, that is, “replace Ri by kRi” and “re-
place Ri by 1∕k Ri,” are inverse operations. Finally, “replace Rj by kRi + Rj” and
“replace Rj by −kRi + Rj” are also inverse operations. Thus, B ∼ A. With (i) and
(ii), (iii) immediately follows.

Theorem 6.60 Let A ∼ B, then r(A) = r(B).
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Proof We need to prove that elementary transformations do not change the
rank. It is clear that transformations (E1) and (E2) have no effect on the rank of a
matrix. What about (E3)? Let’s see. Suppose matrix B is obtained from matrix A
by adding a second column to its first column, that is, C1 + C2 ⇋ C1. Thus, the
column representations of A and B are as follows:

A → (C1, C2, … , Cn) (*)

B → (C1 + C2, C2, … , Cn) (**)

Consider now the two subspaces of Mm1 spanned by (∗) and (∗∗):

L = [(C1, C2, … , Cn)] < Mm1

and
K = [(C1 + C2, C2, … , Cn)] < Mm1

We would like to prove that L = K, which would furthermore imply that

dim L = dim K

= r(A) = r(B)

If we take some x ∈ L, then

x = 𝛼1C1 + 𝛼2C2 + · · · + 𝛼nCn

but also, with a little trick,

x = 𝛼1C1 + 𝛼1C2 − 𝛼1C2 + 𝛼2C2 + · · · + 𝛼nCn

= 𝛼1(C1 + C2) + (𝛼2 − 𝛼1)C2 + 𝛼3C3 + · · · + 𝛼nCn

Hence, x ∈ K and therefore L ⊆ K. On the other hand, if we take some y ∈ K we
can express it as

y = 𝛽1(C1 + C2) + 𝛽2C2 + · · · + 𝛽nCn

= 𝛽1C1 + (𝛽1 + 𝛽2)C2 + · · · + 𝛽nCn

This obviously implies that y ∈ L, and therefore K ⊆ L. We have proved that
L = K, which means dim L = dim K and thus r(A) = r(B) as claimed. ◾



�

� �

�

RANK OF A MATRIX 529

Now let’s address the problem of actually determining the rank of a matrix.
We need two more definitions.

Definition 6.57 A matrix A = (𝛼ij) is said to be in echelon form or to be an
echelon matrix if the following conditions are satisfied:

(i) All zero rows, if any, are at the bottom of the matrix.
(ii) Each leading nonzero entry in a row is to the right of the leading nonzero

entry in the preceding row.

Definition 6.58 A matrix A = (𝛼ij) is said to be in row canonical form or
reduced echelon form if it is an echelon matrix and if it satisfies two additional
conditions:

(iii) Each leading nonzero entry (pivot) is equal to 1.
(iv) Each pivot is the only nonzero entry in its column.

Example 6.90 The following three matrices are in echelon form:

A =
⎡⎢⎢⎣
1 0 2 1
0 0 3 0
0 0 0 0

⎤⎥⎥⎦ ; B =

⎡⎢⎢⎢⎢⎣
0 1 2 3 4
0 0 3 4 5
0 0 0 5 7
0 0 0 0 9
0 0 0 0 0

⎤⎥⎥⎥⎥⎦
; C =

⎡⎢⎢⎣
3 2 1
0 1 2
0 0 5

⎤⎥⎥⎦ ◾

Example 6.91 The following matrices are in row canonical form:

A =
⎡⎢⎢⎣
0 1 0 2
0 0 1 3
0 0 0 1

⎤⎥⎥⎦ ; B =
[

0 1 3 2
0 0 1 4

]
; C =

⎡⎢⎢⎢⎣
1 0 0 0 4
0 1 0 0 3
0 0 1 0 5
0 0 0 1 7

⎤⎥⎥⎥⎦ ◾

Example 6.92 Consider a matrix

A =
⎡⎢⎢⎣
1 2 −3 1 2
2 4 −4 6 10
3 6 −6 9 13

⎤⎥⎥⎦
and reduce it to row canonical form.
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Solution Using the elementary operation we reduce matrix A first to echelon
form as follows:

A
−2R1+R2→R2−−−−−−−−−−→

⎡⎢⎢⎣
1 2 −3 1 2
0 0 2 4 6
3 6 −6 9 13

⎤⎥⎥⎦
−3R1+R3→R3−−−−−−−−−−→

⎡⎢⎢⎣
1 2 −3 1 2
0 0 2 4 6
0 0 3 6 7

⎤⎥⎥⎦
−3
2

R2+R3→R3

−−−−−−−−−−→
⎡⎢⎢⎣
1 2 −3 1 2
0 0 2 4 6
0 0 0 0 −2

⎤⎥⎥⎦
The matrix is now in echelon form. What remains is to reduce it to row canonical
form. Again, applying the elementary operations, we get

⎡⎢⎢⎣
1 2 −3 1 2
0 0 2 4 6
0 0 0 0 −2

⎤⎥⎥⎦
− 1

2
R3 →R3

−−−−−−−−−→
⎡⎢⎢⎣
1 2 −3 1 2
0 0 2 4 6
0 0 0 0 1

⎤⎥⎥⎦
−6R3+R2 →R2−−−−−−−−−−−→

⎡⎢⎢⎣
1 2 −3 1 2
0 0 2 4 0
0 0 0 0 1

⎤⎥⎥⎦
−2R3+R1 →R1−−−−−−−−−−→

⎡⎢⎢⎣
1 2 −3 1 0
0 0 2 4 0
0 0 0 0 1

⎤⎥⎥⎦
1
2

R2 →R2

−−−−−−−−→
⎡⎢⎢⎣
1 2 −3 1 0
0 0 1 2 0
0 0 0 0 1

⎤⎥⎥⎦
3R2+R1→R1−−−−−−−−−→

⎡⎢⎢⎣
1 2 0 7 0
0 0 1 2 0
0 0 0 0 1

⎤⎥⎥⎦
And this is the desired result. ◾

We anticipate that the problem of finding the rank of an (m, n)matrix A reduces
to the problem of transforming a matrix A to its equivalent, say, a matrix D whose
rank is self-evident. Here is the idea more explicitly. Suppose we succeed in
obtaining an (m, n) matrix D = (𝛼ik) such that

𝛼ik =

{
1 i = k ≤ r

0 otherwise
r ≤ m, n

that is, we have

Dr =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0 · · · 0
0 1 · · · 0 · · · 0
⋮ ⋮ ⋱ ⋮ · · · ⋮
0 0 · · · 1 · · · 0
⋮ ⋮ · · · · · · ⋱ 0
0 0 · · · 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎦
which is a canonical matrix whose rank is evidently r. The following theorem
assures us that we can do this for any matrix.
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Theorem 6.61 Let A = (𝛼ik) be any (m, n)matrix. Then there exists a canonical
(m, n) matrix Dr, such that A ∼ Dr.

Proof Let A = (𝛼ik) be any matrix, such that A ≠ O, that is, at least one entry
𝛼ik ≠ 0. Otherwise, A would be equal to D0 and there would be nothing to prove.
Permuting the rows and columns we move this element to the upper left corner
and then, dividing the first row by this element, we get matrix B, which has 1 at
the upper left corner, that is,

A =
⎡⎢⎢⎢⎣
𝛼11 𝛼12 · · · 𝛼1n
𝛼21 𝛼22 · · · 𝛼2n
⋮ ⋮ · · · ⋮
𝛼m1 𝛼m2 · · · 𝛼mn

⎤⎥⎥⎥⎦ ∼
⎡⎢⎢⎢⎣

1 𝛽12 · · · 𝛽1n
𝛽21 𝛽22 · · · 𝛽2n
⋮ ⋮ · · · ⋮
𝛽m1 𝛽m2 · · · 𝛽mn

⎤⎥⎥⎥⎦ = B

We repeat this procedure to get

B ∼ · · · ∼
⎡⎢⎢⎢⎣
1 0 · · · 0
0 𝛾22 · · · 𝛾2n
⋮ ⋮ · · · ⋮
0 𝛾m2 · · · 𝛾mn

⎤⎥⎥⎥⎦ = C

In the case that 𝛾ik = 0, for all i andk we are done, A ∼ D1. If not, that is, at least
one 𝛼ik ≠ 0, we continue the same way until after finitely many steps we reach
the matrix

Dr =

⎡⎢⎢⎢⎢⎣
1 · · · 0 · · · 0
⋮ ⋱ ⋮ · · · ⋮
0 · · · 1 · · · 0
⋮ · · · ⋮ · · · ⋮
0 · · · 0 · · · 0

⎤⎥⎥⎥⎥⎦
=
[

Ir O
O O

]

whereby Ir we mean (r, r)-identity matrix, and by O we mean the remaining zeros
in the matrix Dr. Matrix Dr has the same rank as Ir, that is r.

So we see that A ∼ B ∼ C ∼ · · · ∼ Dr, and the rank r(A) = r(Dr) = r. ◾

Consequently, we have another useful definition

Definition 6.59 The rank of a matrix A is equal to the number of pivots of A in
echelon form.

Example 6.93 Find the rank of the following matrix:

A =
⎡⎢⎢⎢⎣

1 2 −3
2 1 0
−2 −1 3
−1 4 −2

⎤⎥⎥⎥⎦
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Solution In this case it might be practical to consider A𝜏 , and then proceed with
the transformations:

A ∼ A𝜏 =
⎡⎢⎢⎣

1 2 −2 −1
2 1 −1 4
−3 0 3 −2

⎤⎥⎥⎦
−2R1+R2→R2−−−−−−−−−−→

⎡⎢⎢⎣
1 2 −2 −1
0 −3 3 6
0 6 −3 −5

⎤⎥⎥⎦
2R2+R3→R3−−−−−−−−−→

⎡⎢⎢⎣
1 2 −2 −1
0 −3 3 6
0 0 3 7

⎤⎥⎥⎦
− 1

3
R2→R2

−−−−−−−−→
⎡⎢⎢⎣
1 2 −2 −1
0 1 −1 −2
0 0 3 7

⎤⎥⎥⎦
We obtained the echelon matrix with three nonzero rows, thus, r(A) = 3. How-
ever, let’s continue to reach reduced echelon form:

1
3

R3→R3

−−−−−−−→
⎡⎢⎢⎣
1 2 −2 −1
0 1 −1 −2
0 0 1 7

3

⎤⎥⎥⎦
−2R2→R1−−−−−−−→

⎡⎢⎢⎣
1 0 0 3
0 1 −1 −2
0 0 1 7

3

⎤⎥⎥⎦
R3+R2→R2−−−−−−−−→

⎡⎢⎢⎢⎣
1 0 0 3

0 1 −0 1
3

0 0 1 7
3

⎤⎥⎥⎥⎦
Thus, r(A) = 3 indeed. ◾

Example 6.94 Find the rank of the following matrix:

A =
⎡⎢⎢⎢⎣
0 −2 1 1 −5
2 1 3 2 1
2 1 −1 6 5
2 −1 12 −5 −12

⎤⎥⎥⎥⎦
Solution

A =
⎡⎢⎢⎢⎣
0 −2 1 1 −5
2 1 3 2 1
2 1 −1 6 5
2 −1 12 −5 −12

⎤⎥⎥⎥⎦
2−1C1⇋C3−−−−−−−−→

⎡⎢⎢⎢⎣
1 −2 0 1 −5
3 1 1 2 1
−1 1 1 6 5
12 −1 1 −5 −12

⎤⎥⎥⎥⎦
2C1+C2→C2−−−−−−−−−→

⎡⎢⎢⎢⎣
1 0 0 1 −5
3 7 1 2 1
−1 −1 1 6 5
12 23 1 −5 −12

⎤⎥⎥⎥⎦ →
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C4−C1→C4−−−−−−−−→
⎡⎢⎢⎢⎣

1 0 0 0 −5
3 7 1 −1 1
−1 −1 1 7 5
12 23 1 −17 −12

⎤⎥⎥⎥⎦
5C1+C5→C5−−−−−−−−−→

⎡⎢⎢⎢⎣
1 0 0 0 −5
3 7 1 −1 16
−1 −1 1 7 0
12 23 1 −17 48

⎤⎥⎥⎥⎦
−3R1+R2→R2; R1+R3→R3;−12R1+R4→R4−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

→

⎡⎢⎢⎢⎣
1 0 0 0 0
0 7 1 −1 16
0 −1 1 7 0
0 23 1 −17 48

⎤⎥⎥⎥⎦
16−1C5−−−−−−→

⎡⎢⎢⎢⎣
1 0 0 0 0
0 7 1 −1 1
0 −1 1 7 0
0 23 1 −17 3

⎤⎥⎥⎥⎦
C2⇋C3−−−−−−→

⎡⎢⎢⎢⎣
1 0 0 0 0
0 1 7 −1 1
0 1 −1 7 0
0 1 23 −17 3

⎤⎥⎥⎥⎦
R3−R2→R3; R4−R2→R4−−−−−−−−−−−−−−−−−→

→

⎡⎢⎢⎢⎣
1 0 0 0 0
0 1 7 −1 1
0 0 −8 8 −1
0 0 16 −16 2

⎤⎥⎥⎥⎦ →
−7C2+C3→C3; C2+C4→C4; C5−C2→C5−−−−−−−−−−−−−−−−−−−−−−−−−−−→

⎡⎢⎢⎢⎣
1 0 0 0 0
0 1 0 0 0
0 0 −8 8 −1
0 0 16 −16 2

⎤⎥⎥⎥⎦
C3+C4→C4−−−−−−−−→

→

⎡⎢⎢⎢⎣
1 0 0 0 0
0 1 0 0 0
0 0 −8 0 −1
0 0 16 0 2

⎤⎥⎥⎥⎦
2R3+R4→R4−−−−−−−−−→

⎡⎢⎢⎢⎣
1 0 0 0 0
0 1 0 0 0
0 0 −8 0 −1
0 0 0 0 0

⎤⎥⎥⎥⎦
(−8)−1C3; (−8)−1C3+C5→C5−−−−−−−−−−−−−−−−−−−−→

⎡⎢⎢⎢⎣
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0

⎤⎥⎥⎥⎦
So, r(A) = 3. ◾

Example 6.95 Find the rank of the following matrix:

A =
[

0 2 3
2 2 4

]
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Solution

A =
[

0 2 3
2 2 4

]
R1↶R2−−−−−→

[
2 2 4
0 2 3

]
2−1R1−−−−−→

[
1 1 2
0 2 3

]
C2−C1→C2; C3−2C1→C3−−−−−−−−−−−−−−−−−→

→

[
1 0 0
0 2 3

]
2−1R2−−−−−→

[
1 0 0
0 1 3∕2

]
−3∕2C2+C3→C3−−−−−−−−−−−→

[
1 0 0
0 1 0

]
So r(A) = 2. ◾

Example 6.96 Find the rank of the following matrix:

A =
⎡⎢⎢⎢⎣
1 3 1 −2 −3
1 4 3 −1 −4
2 3 −4 −7 −3
3 8 1 −7 −8

⎤⎥⎥⎥⎦
Solution

A =
⎡⎢⎢⎢⎣
1 3 1 −2 −3
1 4 3 −1 −4
2 3 −4 −7 −3
3 8 1 −7 −8

⎤⎥⎥⎥⎦
−R1+R2→R2; −2R1+R3→R3; −3R1+R3→R3−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

→

⎡⎢⎢⎢⎣
1 3 1 −2 −3
0 1 2 1 −1
0 −3 −6 −3 3
0 −1 −2 −1 1

⎤⎥⎥⎥⎦
3R2+R3→R3; R2+R4→R4−−−−−−−−−−−−−−−−−→

⎡⎢⎢⎢⎣
1 3 1 −2 −3
0 1 2 1 −1
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎦
Hence, r(A) = 2. ◾

We end this section by stating four useful theorems.

Theorem 6.62 The rank of an (m, n) matrix cannot be greater than m or n.

Theorem 6.63 For any matrix A, the rank by rows is equal to the rank by
columns.

Theorem 6.64 r(A) = r(A𝜏 ).

Theorem 6.65 Two (m, n) matrices are equivalent iff they have the same rank.

6.13 DETERMINANTS

We now introduce in our study of linear operators and matrices an extremely
important, in fact indispensable, tool – the determinant. The idea is this: Is it
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possible to assign to every (n, n) matrix over a field Φ, a number (a scalar) from
the same field? And, if it is, what is the significance of that number in our study
of vector spaces?

In other words, we are looking for an object defined as follows.

Definition 6.60 Let Mnn be a space of all (n, n) matrices over the field Φ. We
define a map called a functional

det ∶ Mnn → Φ

which associates with every matrix A = (𝛼ij) ∈ Mnn a “number”

det A = |A| ∈ Φ
and we say that det A = |A| is the determinant of A.

However, in order to proceed in our search for the determinants, we also need

Definition 6.61 Given a (n, n) matrix A = (𝛼ij) we say that Mi,j (A), or simply
Mi,j, is i, j-minor of A if Mi,j (A) is a matrix obtained from matrix A by deleting
the ith row and jth column of A.

Example 6.97 Let A =
⎡⎢⎢⎣
1 2 3
3 0 2
1 5 7

⎤⎥⎥⎦ then M1,1 =
[

0 2
5 7

]
, M1,2 =

[
3 2
1 7

]
, M1,3 =[

3 0
1 5

]
, and so on. ◾

Definition 6.62 Let A = (𝛼ij) be a (n, n) matrix. We (inductively) define the
determinant of A as follows:

det(A) = α if A is (1, 1) matrix. If n > 1 then

det(A) = 𝛼11 det(M1,1 ) − 𝛼12 det(M1,2) + · · · + (−1)n+1𝛼1n det(M1,n)

=
n∑

j=1

(−1)1+j𝛼1j det(M1,j)

Fortunately, as Laplace has shown, we can similarly evaluate det(A) by any row
or column. First, here is another definition of a minor.

Definition 6.61 ′ Given a (n, n) matrix A = (𝛼ij) we say that Mi,j(A), or simply
Mi,j, is a minor of the element 𝜶ij of A, if Mi,j is a determinant of sub-matrix of
A obtained by deleting its ith row and jth column.
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Definition 6.62 Let7 A = (𝛼ik) be a (n, n) matrix, then

Aik = (−1)i+k det Mi,k

is called a cofactor of the matrix element 𝛼ik.

Example 6.98 Let A =
⎡⎢⎢⎣
1 2 3
4 5 6
7 8 9

⎤⎥⎥⎦, then:

M1,1 =
[

5 6
8 9

]
and A11 = +

||||5 6
8 9

|||| = 45 − 48 = −3

M1,2 =
[

4 6
7 9

]
and A12 = −

||||4 6
7 9

|||| = −(36 − 42) = 6

⋮ ⋮

M3,1 =
[

2 3
5 6

]
and A31 = +

||||2 3
5 6

|||| = 12 − 15 = −3

and so on. ◾

Example 6.99 Let A =
⎡⎢⎢⎣
2 3 −4
0 −4 2
1 −1 5

⎤⎥⎥⎦, then some of the cofactors are:

A11 = +
||||−4 2
−1 5

|||| = −18, A23 = −
||||2 3
1 −1

|||| = 5, A33 = +
||||2 3
0 −4

|||| = −8

and so on. You can easily calculate the rest. ◾

Theorem 6.66 (Laplace) Let A = (𝛼ik) be any (n, n) matrix

det A =
n∑

j=1

𝛼ijAij, ∀ i = 1, … , n

or

det A =
n∑

j=1

𝛼jkAjk ∀ k = 1, … n

Example 6.100 Calculate the determinant of the following matrix

A =
⎡⎢⎢⎣
𝛼11 𝛼12 𝛼13
𝛼21 𝛼22 𝛼23
𝛼31 𝛼32 𝛼33

⎤⎥⎥⎦
7In the case that a minor is defined as in Definition 6.61′ then, of course, Aik = (−1)i+kMi,k.
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Solution

det A =
||||||
𝛼11 𝛼12 𝛼13
𝛼21 𝛼22 𝛼23
𝛼31 𝛼32 𝛼33

||||||
= 𝛼11

||||𝛼22 𝛼23
𝛼32 𝛼33

|||| − 𝛼12

||||𝛼21 𝛼23
𝛼31 𝛼33

|||| + 𝛼13

||||𝛼21 𝛼22
𝛼31 𝛼32

||||
= 𝛼11(𝛼22𝛼33 − 𝛼23𝛼32) − 𝛼12(𝛼21𝛼33 − 𝛼23𝛼31) + 𝛼13(𝛼21𝛼32 − 𝛼22𝛼31)

◾

Example 6.101 Let A =
⎡⎢⎢⎣
1 2 3
0 3 2
3 1 0

⎤⎥⎥⎦, calculate det A.

Solution

det A =
||||||
1 2 3
0 3 2
3 1 0

||||||
= 1 ⋅ (3 ⋅ 0 − 2 ⋅ 1) − 2 ⋅ (0 ⋅ 0 − 2 ⋅ 3) + 3 ⋅ (0 ⋅ 1 − 3 ⋅ 3)

= −17 ◾

Example 6.102 Calculate

||||||||
1 2 −1 3
0 1 4 2
0 1 0 4
1 0 2 1

||||||||
Solution||||||||

1 2 −1 3
0 1 4 2
0 1 0 4
1 0 2 1

|||||||| = 1
||||||
1 4 2
1 0 4
0 2 1

|||||| − 2
||||||
0 4 2
0 0 4
1 2 1

|||||| + (−1)
||||||
0 1 2
0 1 4
1 0 1

|||||| − 3
||||||
0 1 4
0 1 0
1 0 2

||||||
= 1(1(0 − 8) − 4(1 − 0) + 2(2 − 0))

− 2(0(0 − 8) − 4(0 − 4) + 2(0 − 0))

− 1(0(1 − 0) − 1(0 − 4) + 2(0 − 1))

− 3(0(2 − 0) − 1(0 − 0) + 4(0 − 1))

= −30 ◾
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We are ready to define the determinant of any order precisely. However, we
need to recall certain things from the previous chapters.

First, recall that we write an arbitrary permutation p ∈ Sn either as

p =
(

1 2 · · · n
j1 j2 · · · jn

)
or simply as

p = j1j2 · · · jn

where ji = p(i). Also, recall that the parity of a permutation is called even or odd,
depending on the number of inversions I(p) of p. So, the parity of a permutation
is

sgnp =

{
1 if p is even

−1 if p is odd

= (−1)I(p)

With all that said, we proceed to precisely define the determinant.
Take a matrix A = (𝛼ij) ∈ Mnn over a field Φ. Next, consider a product∏n
k=1 𝛼1p(k) of n elements of A, making sure that one and only one element comes

from each row and one and only one element from each column. Explicitly
written, this product is

𝛼1p(1)𝛼2p(2) · · · 𝛼np(n)

Since there are n terms (elements) in this product, there are n! of such products
one can construct from matrix A. We want to collect them all. Thus, the object
we are looking for is defined as follows:

Definition 6.63 The determinant of a matrix A = (𝛼ij) ∈ Mnn over a field Φ is
a functional

det ∶ Mnn → Φ

defined by
det A = |A| = ∑

p∈Sn

(−1)I(p)𝛼1p(1)𝛼2p(2) … 𝛼np(n)

Example 6.103 Let A =
[

a b
c d

]
. The set of all permutations

∏
2 of S2 has two

elements

p1 =
(

1 2
1 2

)
and p2 =

(
1 2
2 1

)
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So sgnp1 = 1 and sgnp2 = −1. Thus,

det A = ad − bc ◾

Example 6.104 Let A =
⎡⎢⎢⎣
a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤⎥⎥⎦. Now the set
∏

3 has the following

elements:

p1 =
(

1 2 3
1 2 3

)
, p2 =

(
1 2 3
2 3 1

)
, p3 =

(
1 2 3
3 1 2

)
p4 =

(
1 2 3
1 3 2

)
, p5 =

(
1 2 3
2 1 3

)
, p6 =

(
1 2 3
3 2 1

)
.

Observe that p1, p2, p3 are even and p4, p5, p6 are odd permutations. Therefore,

det A = a11a22a33 + a12a23a31 + a13a21a32 − a11a23a32 − a12a21a33 − a31a22a13

◾

The calculations of determinants look quite laborious and boring indeed. For-
tunately, matrices/determinants have properties that very often expedite those
calculations. Here they are:

Theorem 6.67 (Properties of determinants)

(i) If a matrix A has a row of zeros then det A = 0.
(ii) If a matrix B is obtained from A by interchanging any two rows

(columns) then det B = − det A.
(iii) If a matrix A has two rows equal (two columns equal), then det A = 0.
(iv) det A𝜏 = det A.
(v) If a matrix A is orthogonal, then det A = ±1.

(vi) If a matrix B is obtained from matrix A by multiplying one of its rows
(columns) by a scalar 𝜆 ∈ Φ, then det B = 𝜆 det A.

(vii) If a matrix B is obtained from a matrix A by adding a multiple of one
row (column) to a different row (column), then det B = det A.

(viii) If a matrix A has two proportional rows (columns), then det A = 0.
(ix) If a matrix A is triangular, then det A is the product of the diagonal

entries.
(x) Binet–Cauchy Theorem:

det(AB) = det A det B = det B det A = det (BA)
(xi) If A is an (n, n) matrix, and 𝜆 ∈ Φ, then det(𝜆A) = 𝜆n det A.
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Proof The proofs directly follow from the definition of the determinant.
For instance, statement (ii) follows from the fact that interchanging of any two
neighboring rows (columns) changes the parity. Thus, “any two” interchanges
can be obtained by an odd number of successive interchanges of the neighboring
rows (columns). Similarly, (iii) follows from (ii) and the observation that
det A = − det A, thus det A = 0. (v) also directly follows from the definition of
the determinant. Then, (vii) follows from (iii) and (v). (x) follows from (v), and
so on. ◾

Now we are ready to prove another useful theorem.

Theorem 6.68 Let A be a regular matrix, then

det A−1 = 1
det A

Proof Since AA−1 = I, by the Binet–Cauchy formula

det(AA−1) = det(I)

= det(A) det(A−1) = 1

and thus

det(A−1) = 1
det A ◾

Example 6.105 Show that

det(A−1A𝜏A) = det A

Solution

det(A−1A𝜏A) = det A−1 det A𝜏 det A

= 1
det A

det A det A

= det A ◾

Example 6.106 Show that if A and B are two (n, n) matrices, with A being
singular, then AB is also a singular matrix.
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Solution If matrix A is singular, then det A = 0 (See Theorem 6.72). Therefore,

det(AB) = det A det B

= 0 ⋅ det B

= 0

Thus, AB is a singular matrix, as claimed. Note, though, that the converse is not
true. Indeed,

det(AB) = 0

= det A det B

implies that either det A = 0 or det B = 0, or both are equal to zero. ◾

6.14 THE INVERSE AND THE RANK OF A MATRIX REVISITED

Recall (see Definition 6.46) that an (n, n) matrix A is said to be regular if there
exists a matrix A−1 such that A A−1 = A−1A = I. Now we are in possession of a
very handy criterion for deciding whether a matrix is regular or not.

Definition 6.64 Let A = (𝛼ij) be an (n, n) matrix over a field Φ, and let Aij be
a cofactor of 𝛼ij. The classical adjoint of A, denoted adjA or Ã, is a transpose of
the matrix of cofactors of A, namely

adjA = Ã = (Aij)𝜏 = (Aji)

Example 6.107 Let A =
⎡⎢⎢⎣
2 3 −4
0 −4 2
1 −1 5

⎤⎥⎥⎦, then the cofactors are

A11 = −18, A12 = 2, A13 = 4, A21 = −11, A22 = 14, A23 = 5

A31 = −10, A32 = −4, A33 = −8

So, the transpose matrix of cofactors is

adj A = Ã =
⎡⎢⎢⎣
−18 −11 −10

2 14 −4
4 5 −8

⎤⎥⎥⎦ ◾
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Example 6.108 Let A =
⎡⎢⎢⎣
1 0 1
2 1 2
0 4 6

⎤⎥⎥⎦, then the cofactors are

A11 = −2, A12 = −12, A13 = 8, A21 = 4, A22 = 6, A23 = −4

A31 = −1, A32 = 0, A33 = 1

So, the transpose matrix of cofactors is

adj A = Ã =
⎡⎢⎢⎣
−2 4 −1
−12 6 0

8 −4 1

⎤⎥⎥⎦ ◾

Example 6.109 Let A =
⎡⎢⎢⎣
3 2 −1
1 6 3
2 −4 0

⎤⎥⎥⎦, then the cofactors are

A11 = 12, A12 = 6, A13 = −16, A21 = 4, A22 = 2, A23 = 16, A31 = 12

A32 = −10, A33 = 16

So,

adjA = Ã =
⎡⎢⎢⎣

12 4 12
6 2 −10

−16 16 16

⎤⎥⎥⎦ ◾

Example/Exercise 6.110 Show that

(Ã𝜏) = (Ã)𝜏

Theorem 6.69 Let A = (𝛼ik) be any (n, n)matrix, then the sum of the products
of elements of any row (column) and cofactors of the corresponding elements of
any other row (column) is equal to zero, that is,

n∑
k=1

𝛼ikAjk = 0

Proof Consider a matrix B = (𝛽rk) defined by

𝛽rk =

{
𝛼rk, r ≠ k

𝛼ik, r = j
∀k = 1, … , n
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Calculate det B expanding on jth row

det B =
n∑

k=1

𝛽jkBjk =
n∑

k=1

𝛼ikAjk

Since ith and jth rows of the matrix B are identical, det B = 0, and we have the
proof of our theorem. ◾

As a consequence we have

Theorem 6.70 If A = (𝛼ik) is any (n, n)-matrix, then

(i)
n∑

k=1

𝛼ikAjk = 𝛿ij det A

(ii)
n∑

i=1

𝛼ikAil = 𝛿kl det A

Theorem 6.71 If A = (𝛼ik) is any (n, n)-matrix, then

AÃ = ÃA = det A ⋅ I.

Proof Let AÃ = C = (𝛾ik). Then, because of the previous theorem,

𝛾ik =
n∑

j=1

𝛼ijAkj = 𝛿ik det A

Thus,

C = (γik) = (𝛿ik det A)

= det A ⋅ (𝛿ik) = det A ⋅ I ◾

Theorem 6.72 A (n, n) matrix A is regular iff det(A) ≠ 0.

Proof Let A be a regular matrix and A−1 its inverse, and suppose that
det A = 0. Then, by the Binet–Cauchy formula, we would have

det(AA−1) = det I = 1

= det A det A−1

= 0 det A−1 = 0
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which, of course, is a contradiction. Conversely, let det A ≠ 0. Then, since

AÃ = ÃA = (det A) ⋅ I

Multiplying both sides of this equation by (det A)−1, we get

(det A)−1AÃ = A[(det A)−1Ã]

= [(det A)−1Ã]A

= (det A)−1(det A)

= I

We see that the equation AX = XA = I has a solution. Thus, A is a regular
matrix. ◾

Example/Exercise 6.111 Show that if A is a regular matrix, then det A−1 =
(det A)−1.

Example 6.112 Let A =
⎡⎢⎢⎣
2 −1 1
4 1 −3
2 −1 3

⎤⎥⎥⎦. Show that

det A−1 = 1
det A

.

Solution Cofactors are as follows:

A11 = 0, A12 = −18, A13 = −6, A21 = 2, A22 = 4, A23 = 0, A31 = 2,

A32 = 10, A33 = 6

So,

Ã =
⎡⎢⎢⎣

0 2 2
−18 4 10
−6 0 6

⎤⎥⎥⎦ and det A = det
⎡⎢⎢⎣
2 −1 1
4 1 −3
2 −1 3

⎤⎥⎥⎦ = 12

Thus,

A−1 = 1
det A

Ã = 1
12

⎡⎢⎢⎣
0 2 2

−18 4 10
−6 0 6

⎤⎥⎥⎦ =
⎡⎢⎢⎣

0 1∕6 1∕6
−3∕2 1∕3 5∕6
−1∕2 0 1∕2

⎤⎥⎥⎦
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Therefore,

det A−1 = det
⎡⎢⎢⎣

0 1∕6 1∕6
−3∕2 1∕3 5∕6
−1∕2 0 1∕2

⎤⎥⎥⎦ = 1
12

= 1
det A ◾

Theorem 6.73 If A is a regular matrix, then

A−1 = (det A)−1 ⋅ Ã

Proof The proof follows immediately from the previous theorem. ◾

Example 6.113 Let A =
⎡⎢⎢⎣

5 7 −2
3 2 1
−2 4 6

⎤⎥⎥⎦. Find A−1 using Theorem 6.73.

Solution First, we calculate the cofactors:

A11 = 8, A12 = −20, A13 = 16, A21 = −50, A22 = 26, A23 = −34,

A31 = 11, A32 = −11, A33 = −11

So,

Ã =
⎡⎢⎢⎣

8 −50 11
−20 26 −11

16 −34 −11

⎤⎥⎥⎦
We also need

det A = det
⎡⎢⎢⎣

5 7 −2
3 2 1
−2 4 6

⎤⎥⎥⎦ = −132

Hence,

A−1 = (det A)−1 ⋅ Ã

= − 1
132

⎡⎢⎢⎣
8 −50 11

−20 26 −11
16 −34 −11

⎤⎥⎥⎦ ◾
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Example 6.114 Let A =
⎡⎢⎢⎣

3 1 2
0 1 1
−1 1 0

⎤⎥⎥⎦. Show that Ã ⋅ A = det A ⋅ I.

Solution The cofactors of A are as follows:

A11 = −1, A12 = −1, A13 = 1, A21 = 2, A22 = 2

A23 = −4, A31 = −1, A32 = −3, A33 = 3

Consequently,

Ã =
⎡⎢⎢⎣
−1 1 −1
−1 2 −3

1 −4 3

⎤⎥⎥⎦
So,

Ã ⋅ A =
⎡⎢⎢⎣
−1 1 −1
−1 2 −3
1 −4 3

⎤⎥⎥⎦
⎡⎢⎢⎣
3 1 2
0 1 1
1 1 0

⎤⎥⎥⎦ =
⎡⎢⎢⎣
−2 0 0

0 −2 0
0 0 −2

⎤⎥⎥⎦ = −2
⎡⎢⎢⎣
1 0 0
0 1 0
0 0 1

⎤⎥⎥⎦
= −2 ⋅ I

On the other hand,

det A = det
⎡⎢⎢⎣

3 1 2
0 1 1
−1 1 0

⎤⎥⎥⎦ = −2

Thus,
Ã ⋅ A = det A ⋅ I

as desired. ◾

Example/Exercise 6.115 Let A =
⎡⎢⎢⎢⎣
a11 0 · · · 0
0 a22 · · · 0
⋮ 0 ⋱ 0
0 0 0 ann

⎤⎥⎥⎥⎦ , where aii ≠ 0.

Show that A−1 =
⎡⎢⎢⎢⎣
a−1

11 0 · · · 0
0 a−1

22 · · · 0
⋮ 0 ⋱ 0
0 0 0 a−1

nn

⎤⎥⎥⎥⎦.
Theorem 6.74 If A is any (n, n)-matrix, then

det A ⋅ det Ã = (det A)n

Proof Apply the Binet–Cauchy formula and Theorem 6.71. ◾
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Theorem 6.75 If A is a (n, n)-matrix, then det A ≠ 0, iff its rows (columns) are
linearly independent.

We close this subsection with a few additional remarks.
First, observe that Theorem 6.72 allows the alternative definition of the

GL(n,Φ) group, namely,

GL(n,Φ) = {A ∈ Mnn| det A ≠ 0}

Also, we define the unimodular group UM(n,Φ)as

UM(n,Φ) = {A ∈ Mnn| det A = ±1}

and the special linear group

SL(n,Φ) = {A ∈ Mnn| det A = 1}

6.15 MORE ON LINEAR OPERATORS

We are now in position to study linear operators in even more detail. First, recall
that, given two vector spaces X and Y over a field Φ, we call a mapping

F ∶ X → Y

a linear transformation or a linear operator if for all x, y ∈ X and all 𝛼, 𝛽 ∈ Φ

F(𝛼x + 𝛽y) = 𝛼F(x) + 𝛽F(y) ∈ Y

Example 6.116 Suppose we are given a transformation F ∶ Rn → Rm as a rule
that assigns to every vector x ∈ Rn a unique vector F(x) ∈ Rm, such that for all
x, y ∈ Rn and all 𝛼, 𝛽 ∈ R

F(𝛼x + 𝛽y) = 𝛼F(x) + 𝛽F(y) ∈ Rm

We say that F is a linear operator from space Rn to Rm, and we often write this

as Rn
F
−−→Rm. ◾

Keeping in mind what we have learned about matrices so far, we ask: why not
consider a mapping

A ∶ Φn → Φm

defined by A x = y, where A ∈ Mmn is an (m, n)-matrix, Φ is a given field, and
Φn, Φm are vector spaces with elements x = (𝛼1, … , 𝛼n) and y = (𝛽1, … , 𝛽m),
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respectively. An important thing to note: although x andy are often written as
n-tuples (m-tuples) we think of them as column vectors

x =
⎡⎢⎢⎣
𝛼1
⋮
𝛼n

⎤⎥⎥⎦ ∈ Φn and y =
⎡⎢⎢⎣
𝛽1
⋮
𝛽m

⎤⎥⎥⎦ ∈ Φm

Example 6.117 Let A =
[

1 −4 5
2 3 −6

]
and x =

⎡⎢⎢⎣
1
3
−5

⎤⎥⎥⎦, then

Ax =
[

1 −4 5
2 3 −6

] ⎡⎢⎢⎣
1
3

−5

⎤⎥⎥⎦
=
[
−36

41

]
= y

It is not difficult to convince yourself that the aforementioned mapping is a linear
operator. Indeed, if A is any (m, n)-matrix, and A ∶ Φn → Φm a mapping defined
by Ax = y, x ∈ Φn, y ∈ Φm, then

A(𝜆1x1 + 𝜆2x2) = 𝜆1A(x1) + 𝜆2A(x2)

= 𝜆1y1 + 𝜆2y2 ∈ Φm ◾

We can also reverse the question and ask the following: Assuming that we
know the result of an action of matrix A on some known vector x, how can we
find matrix A? The following examples illustrate this.

Example 6.118 Suppose we know that matrix A acts on any vector x =
[
𝛼1
𝛼2

]
∈

R2 as follows:

A

[
𝛼1
𝛼2

]
=
[

2𝛼1 + 𝛼2
3𝛼2

]
How can we find matrix A?

Solution The simplest way to determine matrix A is to see its effect on the
vectors of the standard basis of R2. In this case, we have

A

[
1
0

]
=
[

2
0

]
and A

[
0
1

]
=
[

1
3

]
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and thus,

A =
[

2 1
0 3

]
It is easy to verify this:

Ax =
[

2 1
0 3

] [
𝛼1
𝛼2

]
=
[

2𝛼1 + 𝛼2
3𝛼2

]
◾

Example 6.119 Suppose we are interested in the matrix formulation of the
transformation D ∶ R2 → R2 that maps every point in R2 into a point d times
from the origin, that is,

D

([
x
y

])
= d

[
x
y

]
= x′

The matrix formulation of this equation is obviously[
d 0
0 d

] [
x
y

]
= d

[
x
y

]
If d > 1, we call the transformation a dilatation. For 0 < d < 1, we have a con-
traction (Figure 6.7). ◾

X

YY

(x, y)

(x, y)(dx, dy)

(dx, dy)

d > 1
X

0 < d < 1

Figure 6.7

Similarly, a dilatation in R3 is described in

Example 6.120 If D ∶ R3 → R3 is defined by

D =
⎡⎢⎢⎣
d 0 0
0 d 0
0 0 d

⎤⎥⎥⎦ ,
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then for every x =
⎡⎢⎢⎣
x
y
z

⎤⎥⎥⎦ ∈ R3,

Dx =
⎡⎢⎢⎣
d 0 0
0 d 0
0 0 d

⎤⎥⎥⎦
⎡⎢⎢⎣
x
y
z

⎤⎥⎥⎦
=
⎡⎢⎢⎣
dx
dy
dz

⎤⎥⎥⎦ = x′

which looks something like this (Figure 6.8). ◾

X

Y

Z

(x, y, z)

(dx, dy, dz)

Figure 6.8

Example 6.121 Let E ∶ R2 → R2 be a transformation whose matrix is

E =
[

e 0
0 1

]

so that its action on a vector

[
x
y

]
∈ R2 is defined by

E

[
x
y

]
=
[

e 0
0 1

] [
x
y

]
=
[

ex
y

]
That is, every point (x, y) ∈ R2 is mapped to a point (ex, y) ∈ R2, where, if e > 1,
we say that we have an expansion in the x-direction, and if 0 < e < 1, we have a
contraction (Figure 6.9). ◾
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Y

X

Y

X

(x, y) (x, y)(ex, y) (ex, y)

e > 0
0 < e < 1

Figure 6.9

Similarly, we could have an expansion and a contraction only in the
y-direction.

Example/Exercise 6.122 Let T ∶ R2 → R2 be a transformation whose matrix

is T =
[

1 0
1 1

]
. Describe the action of matrix T on a vector

[
x
y

]
∈ R2.

Example 6.123 Let T ∶ R2 → R2 be a transformation defined by

T(x) = T

[
x
y

]
=
[

x
−y

]
= x′, ∀x ∈ R2

where its matrix representation is T =
[

1 0
0 −1

]
. We call this transformation a

reflection about the X-axis (Figure 6.10). ◾

The examples that follow address an important linear transformation:
“rotation” in R2 and R3. For the sake of completeness, and in order to make
use of matrices involving trigonometric functions less abrupt, we introduce the
issue with8

Example 6.124 Let T ∶ R2 → R2 be a linear operator representing a counter-
clockwise rotation of a vector in R2 through an angle 𝜃. We would like to find a
matrix of T with respect to the usual basis

B =
{

b1 =
[

1
0

]
, b2 =

[
0
1

]}
8This example can be skipped in the first reading.
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Y

x

x′

X

Figure 6.10

First, to make things more transparent, let’s say that our vectors x =
[

x
y

]
and

T(x) = x′ =
[

x′

y′

]
look something like this (Figure 6.11):

b2

b1

x

X

Y

x′

x′
y′

x
y

Figure 6.11

Since a linear transformation is specified by its effects on the basis vectors

b1 =
[

1
0

]
and b2 =

[
0
1

]
whose length is equal to one, we can, without loss of
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generality, simplify the picture and consider a rotation on the unit circle, namely
(Figure 6.12).

X

Y

(x ′, y′ ) = (−sinθ, cosθ) (x , y) = (cosθ, sinθ)

Figure 6.12

So,

T(b1) = T

[
1
0

]
= T(1, 0) = (cos 𝜃, sin 𝜃 )

T(b2) = T

[
0
1

]
= T(0, 1) =

(
cos

(
𝜃 + 𝜋

2

)
, sin

(
𝜃 + 𝜋

2

))
= (− sin 𝜃, cos 𝜃)

Therefore, the matrix representation of T is

T =
[

cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

]
◾

In general, a counterclockwise rotation of any vector from R2 is described in
the following

Example 6.125 Let (x, y) be a point in R2, and let T ∶ R2 → R2 be a transfor-
mation whose matrix is

T =
[

cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

]

Let’s examine what happens to a point (x, y) (i.e., a vector x =
[

x
y

]
) under the

action of a transformation T (Figure 6.13).
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(x′, y′)

(x, y)

Figure 6.13

We have

T

[
x
y

]
=
[

cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

] [
x
y

]
=
[

x cos 𝜃 − y sin 𝜃
x sin 𝜃 + y cos 𝜃

]
=
[

x′

y′

]
= x′

So, a vector x =
[

x
y

]
is rotated through an angle 𝜃 to a vector x′ =

[
x′

y′

]
, that is,

the point (x, y) is mapped to the point (x′, y′). ◾

Example/Exercise 6.126 Find the image T(x) under a rotation of 𝜋

3
about the

origin if x =
[

1
1

]
.

Of course, we can also “rotate” a vector in R3.

Example 6.127 Let TZ ∶ R3 → R3 be a transformation defined by the matrix

TZ =
⎡⎢⎢⎣
cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0

0 0 1

⎤⎥⎥⎦
and let x =

⎡⎢⎢⎣
x
y
z

⎤⎥⎥⎦ be some vector in R3.
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Consider

TZ

⎡⎢⎢⎣
x
y
z

⎤⎥⎥⎦ =
⎡⎢⎢⎣
cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0

0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣
x
y
z

⎤⎥⎥⎦
=
⎡⎢⎢⎣
x cos 𝜃 − y sin 𝜃
y sin 𝜃 + y cos 𝜃

z

⎤⎥⎥⎦ =
⎡⎢⎢⎣
x′

y′

z′

⎤⎥⎥⎦ = x′

That looks something like this (Figure 6.14).

Y

X

x′ x

Z

Figure 6.14

That is, a counterclockwise rotation about the positive Z-axis through an angle
𝜃.Analogously, we can “rotate” about the positive X-axis or positive Y-axis with

matricesTX =
⎡⎢⎢⎣
1 0 0
0 cos 𝜃 − sin 𝜃
1 sin 𝜃 cos 𝜃

⎤⎥⎥⎦ and TY =
⎡⎢⎢⎣
cos 0 sin 𝜃
0 1 0

sin 0 cos 𝜃

⎤⎥⎥⎦ respectively.
◾

Of course, the transformations don’t have to be Rn → Rn. We can as well have
a transformation Rn → Rm.

Example 6.128 Let F = [1 −2 1] be a matrix representing some linear
transformation R3 → R, and let

x =
⎡⎢⎢⎣

6
−4

9

⎤⎥⎥⎦ ∈ R3
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Then,

F(x) = [1 − 2 1]
⎡⎢⎢⎣

6
−4

9

⎤⎥⎥⎦ = 23

that is, matrix F maps a vector from R3 to a point in R. ◾

Example 6.129 Let

F =
[

5 3 −2
0 4 −1

]
be a matrix representing a transformation F ∶ R3 → R2, so that for every x =⎡⎢⎢⎣
x
y
x

⎤⎥⎥⎦ ∈ R3,

F(x) =
[

5 3 −2
0 4 −1

] ⎡⎢⎢⎣
x
y
x

⎤⎥⎥⎦ =
[

x′

y′

]
= x′ ∈ R2

For instance, if x =
⎡⎢⎢⎣
1
3
4

⎤⎥⎥⎦ ∈ R3, then,

F(x) =
[

5 3 −2
0 4 −1

] ⎡⎢⎢⎣
1
3
4

⎤⎥⎥⎦ =
[

6
8

]
= x′ ∈ R2

◾

As you might have anticipated by now, every matrix in fact defines a certain
transformation. However, first, one wants to make sure that the transformations
are well defined. Also, there is a finesse to be noted: Although a matrix defines
(represents) a transformation (linear operator), it is not the same as an operator.
So, to be more precise, one should distinguish between an operator T̂ (say, T
with a hat) and its corresponding matrix T . However, in order to avoid clutter,
we are often lazy and use the same symbols for operators and their corresponding
matrices.

Now we can move one step further and consider more general situations.
Let X be any n-dimensional vector space with one of its ordered basis

B = {b1, … , bn}

We call B the coordinate basis or coordinate system for the space X. Then, as
we know, any vector x ∈ X can be uniquely expressed as a linear combination of
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vectors from B, that is,

x =
n∑

i=1

𝛼ibi

We say that (𝛼1, … , 𝛼n), or simply (𝛼i), are the coordinates of vector
x in base B. Similarly, we say that the matrix

⎡⎢⎢⎣
𝛼1
⋮
𝛼n

⎤⎥⎥⎦ = [𝛼i]

= (𝛼1, … , 𝛼n)𝜏

is a coordinate matrix of a vector x in basis B.9 Furthermore, let

F ∶ X → Φn

be an operator defined by F(x) = (𝛼i), and

G ∶ X → Mn1

be an operator defined by g(x) = [𝛼i]. It is evident that F and G are isomorphisms
of the respective linear spaces, and we establish the identification

x = F(x) = G(x)

by writing
x = (𝛼i) or x = [𝛼i]

that is,

x = (𝛼1, 𝛼2, … , 𝛼n) =
⎡⎢⎢⎢⎣
𝛼1
𝛼2
⋮
𝛼n

⎤⎥⎥⎥⎦
Hence,

Theorem 6.76 Let X be an n-dimensional vector space over a field Φ. Then, X
and Φn are isomorphic.

Theorem 6.77 Let A = (𝛼ij) and B = (𝛽ij) be two (m, n)-matrices, and let
X ∈ Mn1 be any column matrix. If

AX = BX

9One should be careful not to be confused by, admittedly, somewhat inconsistent notation for 1-column
(row) matrices.
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Then
A = B

Proof We show this by checking the following: Take a special column, say,
Ck, such that for every k = 1, … , n Ck = [𝛿ik]. Then,

ACk = BCk

⎡⎢⎢⎢⎢⎣
𝛼11 𝛼12 · · · 𝛼1n
⋮ ⋮ ⋮ ⋮
𝛼k1 𝛼k2 · · · 𝛼kn
⋮ ⋮ ⋮ ⋮
𝛼m1 𝛼m2 · · · 𝛼mn

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
0
⋮
1
⋮
0

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
𝛽11 𝛽12 · · · 𝛽1n
⋮ ⋮ ⋮ ⋮
𝛽k1 𝛽k2 · · · 𝛽kn
⋮ ⋮ ⋮ ⋮
𝛽m1 𝛽m2 · · · 𝛽mn

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
0
⋮
1
⋮
0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
𝛼1k
⋮
𝛼kk
⋮
𝛼mn

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
𝛽1k
⋮
𝛽kk
⋮
𝛽mn

⎤⎥⎥⎥⎥⎦
that is, 𝛼ik = 𝛽ik, ∀k = 1, … , n, and thus A = B. ◾

Example 6.130 Consider a set of vectors V = {x1, … , xr } ⊆ X from a given
space X. From our earlier discussion, we know that we can associate with every
vector xi, i = 1, … , r, a coordinate matrix, a column,

xi =
⎡⎢⎢⎣
𝛼1i
⋮
𝛼ni

⎤⎥⎥⎦
representing a vector xi in some basis B. Obviously, we can do that for any xi ∈ V ,
and thus we associate with set V a matrix

M(V) =
⎡⎢⎢⎢⎣
𝛼11 𝛼12 · · · 𝛼1n
𝛼21 𝛼22 · · · 𝛼2n
⋮ ⋮ · · · ⋮
𝛼n1 𝛼n2 · · · 𝛼nr

⎤⎥⎥⎥⎦
whose columns are evidently the coordinates of vectors x1, … , xr. ◾

This example reveals another good feature of coordinate matrices. Namely, we
naturally expect that the maximal number of linearly independent vectors from
set V is equal to the rank of matrix M(V). Also, if r = dim X and det M(V) ≠ 0,
then V is a basis of X.
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We reason as follows: Since every vector in space X is uniquely expressible as a
linear combination of basis vectors, we expect that the action of F on basis vectors
B would provide adequate information on the transformation of any vector in
general with respect to that basis. Hence, we have

Theorem 6.78 Let X and Y be vector spaces over a field Φ, and let
B = {b1, b2, … , bn} be some basis of X. If y1, y2, … , yn ∈ Y, then there exists
a unique linear operator F ∶ X → Y such that F(bi) = yi, i = 1, 2, … , n.

Proof Since B is a basis of X, any vector x ∈ X can be uniquely expressed as

x = 𝛼1b1 + 𝛼2b2 + · · · + 𝛼nbn, 𝛼i ∈ Φ

So, we define F ∶ X → Y by

F(x) = 𝛼1y1 + 𝛼2y2 + · · · + 𝛼nyn

Now, consider

F(bi) = F(0 ⋅ b1 + 0 ⋅ b2 + · · · + 1 ⋅ bi + 0 ⋅ bi+1 + · · · + 0 ⋅ bn1)

= yi

Thus, F is well defined.
Next, take any two vectors from X:

x1 = 𝛼1b1 + 𝛼2b2 + · · · + 𝛼nbn, x2 = 𝛽1b1 + 𝛽2b2 + · · · + 𝛽nbn, 𝛼i, 𝛽i ∈ Φ

Since X is a vector space we certainly have

x1 + x2 = (𝛼1b1 + 𝛼2b2 + · · · + 𝛼nbn) + (𝛽1b1 + 𝛽2b2 + · · · + 𝛽nbn)

= (𝛼1 + 𝛽1)b1 + (𝛼2 + 𝛽2)b2 + · · · + (𝛼n + 𝛽n)bn

= 𝛾1b1 + 𝛾2b2 + · · · + 𝛾nbn

where 𝛾i = 𝛼i + 𝛽i.
Now, with 𝜆1, 𝜆2 ∈ Φ, consider

F(𝜆1x1 + 𝜆2x2)

= F((𝜆1(𝛼1b1 + 𝛼2b2 + · · · + 𝛼nbn) + 𝜆2(𝛽1b1 + 𝛽2b2 + · · · + 𝛽nbn))

= F((𝜆1𝛼1)b1 + · · · + (𝜆1𝛼n)bn + (𝜆2𝛽1)b1 + · · · + (𝜆2𝛽n)bn )

= F((𝜆1𝛼1 + 𝜆2𝛽1)b1 + (𝜆1𝛼2 + 𝜆2𝛽2)b2 + · · · + (𝜆1𝛼n + 𝜆2𝛽n)bn )
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= (𝜆1𝛼1 + 𝜆2𝛽1)y1 + (𝜆1𝛼2 + 𝜆2𝛽2)y2 + · · · + (𝜆1𝛼n + 𝜆2𝛽n)y2

= 𝜆1F(𝛼1b1) + · · · + 𝜆1F(𝛼nbn) + 𝜆2F(𝛽1b1) + · · · + 𝜆2F(𝛽nbn)

= 𝜆1F(𝛼1b1 + · · · + 𝛼nbn) + 𝜆2F(𝛽1b1 + · · · + 𝛽nbn)

= 𝜆1F(x1) + 𝜆2F(x2)

Thus, F is a linear operator.
Finally, to show uniqueness, suppose there exists another linear operator

G ∶ X → Y such that G(bi) = yi. Then,

G(x) = G(𝛼1b1 + 𝛼2b2 + · · · + 𝛼nbn)

= 𝛼1G(b1) + 𝛼2G(b2) + · · · + 𝛼nG(bn)

= 𝛼1y1 + 𝛼2y2 + · · · + 𝛼nyn

= 𝛼1F(b1) + 𝛼2F(b2) + · · · + 𝛼nF(bn)

= F(𝛼1b1 + 𝛼2b2 + · · · + 𝛼nbn)

= F(x)

Thus, G = F indeed. ◾
Let’s illustrate all of this with a few examples.

Example 6.131 Consider a vector space Rn and its standard (canonical) basis
E = {e1, … , en}, where

e1 =
⎡⎢⎢⎢⎣
1
0
⋮
0

⎤⎥⎥⎥⎦ , e2 =
⎡⎢⎢⎢⎣
0
1
⋮
0

⎤⎥⎥⎥⎦ , … , en =
⎡⎢⎢⎢⎣
0
0
⋮
1

⎤⎥⎥⎥⎦
Furthermore, let x ∈ Rn be any vector. Then,

x = 𝛼1e1 + · · · + 𝛼nen

=
⎡⎢⎢⎢⎣
𝛼1
0
⋮
0

⎤⎥⎥⎥⎦ +
⎡⎢⎢⎢⎣

0
𝛼2
⋮
0

⎤⎥⎥⎥⎦ + · · · +
⎡⎢⎢⎢⎣

0
0
⋮
𝛼n

⎤⎥⎥⎥⎦
=
⎡⎢⎢⎣
𝛼1
⋮
𝛼n

⎤⎥⎥⎦
We obtained a coordinate representation (coordinate matrix) of our vector x.
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Now, suppose we are interested in the action of a linear operator

F ∶ Rn → Rn

on the vector x, that is,

F(x) = F(𝛼1e1 + · · · + 𝛼nen)

= 𝛼1F(e1) + · · · + 𝛼nF(en)

which we can write

= [F(e1) · · · F(en)]
⎡⎢⎢⎣
𝛼1
⋮
𝛼n

⎤⎥⎥⎦
or

=
⎡⎢⎢⎣
𝛼1
⋮
𝛼n

⎤⎥⎥⎦
𝜏 ⎡⎢⎢⎣

F
(
e1

)
⋮

F(en)

⎤⎥⎥⎦ = [𝛼1 … 𝛼n]
⎡⎢⎢⎣
F
(
e1

)
⋮

F(en)

⎤⎥⎥⎦
On the other hand, every F(ei) is a vector in Rn again, so it should have its repre-
sentation in the same basis, say,

F(e1) = 𝛼11e1 + · · · + 𝛼1nen

F(e2) = 𝛼21e1 + · · · + 𝛼2nen

⋮

F(en) = 𝛼n1e1 + · · · + 𝛼nnen

We can obviously write this as

⎡⎢⎢⎣
F
(
e1

)
⋮

F(en)

⎤⎥⎥⎦ =
⎡⎢⎢⎣
𝛼11 · · · 𝛼1n
⋮ ⋱ ⋮
𝛼n1 · · · 𝛼nn

⎤⎥⎥⎦
⎡⎢⎢⎣
e1
⋮
en

⎤⎥⎥⎦
So, we associated with the operator F a matrix

⎡⎢⎢⎣
𝛼11 · · · 𝛼1n
⋮ ⋱ ⋮
𝛼n1 · · · 𝛼nn

⎤⎥⎥⎦
And we write

[F]E =
⎡⎢⎢⎣
𝛼11 · · · 𝛼1n
⋮ ⋱ ⋮
𝛼n1 · · · 𝛼nn

⎤⎥⎥⎦
as a matrix representation of the operator F with respect to the E basis. ◾
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Example 6.132 Consider a vector space R2 and one of its bases

B =
{

b1 =
[

1
2

]
, b2 =

[
2
5

]}
Furthermore, let F ∶ R2 → R2 be a linear operator whose matrix representation
with respect to some other basis is

F =
[

3 −2
4 −5

]
Now, let’s see how it acts on b1 and b2 from the B basis:

F(b1) =
[

3 −2
4 −5

] [
1
2

]
=
[
−1
−6

]
= 𝛽11b1 + 𝛽12b2

= 𝛽11

[
1
2

]
+ 𝛽12

[
2
5

]
=
[
𝛽11 + 2𝛽12

2𝛽11 + 5𝛽12

]
We have

−1 = 𝛽11 + 2𝛽12

−6 = 2𝛽11 + 5𝛽12

Hence, 𝛽11 = 7 and 𝛽12 = −4. Therefore,

F(b1) = 7b1 − 4b2

Similarly,

F(b2) =
[

3 −2
4 −5

] [
2
5

]
=
[
−4
−7

]
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= 𝛽21b1 + 𝛽22b2

= 𝛽21

[
1
2

]
+ 𝛽22

[
2
5

]
=
[
𝛽21 + 2𝛽22

2𝛽21 + 5𝛽22

]
and so

−4 = 𝛽21 + 2𝛽22

−7 = 2𝛽21 + 5𝛽22

from which we obtain 𝛽21 = −6 and 𝛽22 = 1. Thus,

F(b2) = −6b1 + b2

Consequently, the matrix representation of our operator with respect to the B
basis is

FB = [𝛽ij]𝜏 =
[

7 −4
−6 1

]𝜏
=

[
7 −6
−4 1

]
◾

Example 6.133 Suppose we ask the question differently: Let F ∶ R3 → R3 be
a linear operator defined by

F(x) = F
⎡⎢⎢⎣
x
y
z

⎤⎥⎥⎦ = x′ =
⎡⎢⎢⎣
2y + z
x − 4y

3x

⎤⎥⎥⎦ , ∀x ∈ R3

What would be a matrix representation of such an operator with respect to the
following basis:

B =
⎧⎪⎨⎪⎩b1 =

⎡⎢⎢⎣
1
0
0

⎤⎥⎥⎦ , b2 =
⎡⎢⎢⎣
1
1
0

⎤⎥⎥⎦ , b3 =
⎡⎢⎢⎣
1
1
1

⎤⎥⎥⎦
⎫⎪⎬⎪⎭ ?

Well, since for any x ∈ R3

F
⎡⎢⎢⎣
x
y
z

⎤⎥⎥⎦ =
⎡⎢⎢⎣
2y + z
x − 4y

3x

⎤⎥⎥⎦
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then, in particular,

F(b1) = F
⎡⎢⎢⎣
1
0
0

⎤⎥⎥⎦ =
⎡⎢⎢⎣
0
1
3

⎤⎥⎥⎦
= −1

⎡⎢⎢⎣
1
0
0

⎤⎥⎥⎦ − 2
⎡⎢⎢⎣
1
1
0

⎤⎥⎥⎦ + 3
⎡⎢⎢⎣
1
1
1

⎤⎥⎥⎦ = −1b1 − 2b2 + 3b3

F(b2) = F
⎡⎢⎢⎣
1
1
0

⎤⎥⎥⎦ =
⎡⎢⎢⎣

2
−3

3

⎤⎥⎥⎦
= 5

⎡⎢⎢⎣
1
0
0

⎤⎥⎥⎦ − 6
⎡⎢⎢⎣
1
1
0

⎤⎥⎥⎦ + 3
⎡⎢⎢⎣
1
1
1

⎤⎥⎥⎦ = 5b1 − 6b2 + 3b3

F(b3) = F
⎡⎢⎢⎣
1
1
1

⎤⎥⎥⎦ =
⎡⎢⎢⎣

3
−3

3

⎤⎥⎥⎦
= 6

⎡⎢⎢⎣
1
0
0

⎤⎥⎥⎦ − 6
⎡⎢⎢⎣
1
1
0

⎤⎥⎥⎦ + 3
⎡⎢⎢⎣
1
1
1

⎤⎥⎥⎦ = 6b1 − 6b2 + 3b3

Thus, our matrix representing the linear operator F is

F =
⎡⎢⎢⎣
−1 5 6
−2 −6 −6

3 3 3

⎤⎥⎥⎦
◾

We will do another example, with some extra twists and turns, to make the
procedures more convincing.

Example 6.134 Consider again a linear operator F ∶ R2 → R2 defined by

F(x) = F

[
x
y

]
=
[

2x + 3y
4x − 5y

]
, ∀x =

[
x
y

]
∈ R2 (6.17)

We would like to find a matrix representation of an operator F with respect to the
following basis:

B =
{

b1 =
[

1
−2

]
, b2 =

[
2
−5

]}
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First, let’s see what the F operator does to the basis vectors b1, b2. According to
(6.17)

F( b1) = F

[
1

−2

]
=
[
−4
14

]
= b′1 (6.18)

F(b2) = F

[
2

−5

]
=
[
−11

33

]
= b′2 (6.19)

Vectors b′1 = F( b1) and b′2 = F(b2), as any vector from R2, should be express-
ible via basis vectors of B. Thus,

b′1 =
[
−4
14

]
= 𝛼11 b1 + 𝛼12b2

= 8

[
1

−2

]
− 6

[
2

−5

]
(6.20)

b′2 =
[
−11

33

]
= 𝛼21 b1 + 𝛼22b2

= 11

[
1

−2

]
− 11

[
2

−5

]
(6.21)

But, remember, 𝛼11, 𝛼12 are the coordinates of b′1, and 𝛼21, 𝛼22 of b′2.
Writing them as columns, we obtain the desired matrix of the operator F,

that is,

F =
[

8 11
−6 −11

]
Let’s look at all of this from yet another angle. Suppose we take any vector

x =
[

x
y

]
from our space and write it as a linear combination of basis vectors B,

x =
[

x
y

]
= 𝛼 b1 + 𝛽b2

= 𝛼
[

1
−2

]
+ 𝛽

[
2

−5

]
=
[
𝛼 + 2𝛽
−2𝛼 − 5𝛽

]
(6.22)

We have

x = 𝛼 + 2𝛽

y = −2𝛼 − 5𝛽
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Solving this for 𝛼 and 𝛽, we get

𝛼 = 5x + 2y and 𝛽 = −2x − y (6.23)

Thus (substituting (6.23) into (6.22)), any vector x can be written in the B basis
as

x =
[

x
y

]
= (5x + 2y) b1 + (−2x − y)b2

= (5x + 2y)
[

1
−2

]
+ (−2x − y)

[
2

−5

]
(6.24)

Now, let’s take vector b′1 =
[
−4
14

]
, since we already know its linear expansion

(6.20), as our arbitrary vector, and see if we are going to get the same result[
−4
14

]
?
=( 5 ⋅ (−4) + 2 ⋅ 14 )

[
1

−2

]
+ (−2 ⋅ (−4) − 14)

[
2

−5

]
= 8

[
1

−2

]
− 6

[
2

−5

]
As expected, this is indeed expression (6.20). ◾

With these examples, we touched upon a very important issue of the transition
from one (old) basis, say,

B = {b1, … , bn}

to another (new) basis
B′ = {b′1, … , b′n}

Let’s put it differently. If B and B′ are two bases of a vector space X, then any
vector x ∈ X has its coordinate matrix in the basis B

xB =
⎡⎢⎢⎣
𝛼1
⋮
𝛼n

⎤⎥⎥⎦ = [𝛼i]

The same vector has its coordinate matrix in the B′ basis

xB′ =
⎡⎢⎢⎣
𝛼′1
⋮
𝛼′n

⎤⎥⎥⎦ = [𝛼′i ]
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We would like to know how the coordinates of vector x change in transition from
one basis (coordinate system) to another. Evidently, every b′k from B′ has its
depiction in B (and vice versa), say,

b′k =
⎡⎢⎢⎣
𝛽1k
⋮
𝛽nk

⎤⎥⎥⎦ , k = 1, … , n

so our transition matrix (change-of-basis matrix) describing B
T
−−→B′ has these

vectors as columns, that is,

T =
⎡⎢⎢⎣
𝛽11 · · · 𝛽1n
⋮ ⋱ ⋮
𝛽n1 · · · 𝛽nn

⎤⎥⎥⎦
In other words,

b′1 = 𝛽11b1 + 𝛽12b2 + · · · + 𝛽1nbn

b′2 = 𝛽21b1 + 𝛽22b2 + · · · + 𝛽2nbn

⋮

b′n = 𝛽n1b1 + 𝛽n2b2 + · · · + 𝛽nnbn

Here are a few simple examples.

Example 6.135 Let B =
{

b1 =
[

1
0

]
, b2 =

[
0
1

]}
and B′ =

{
b′1 =

[
1
1

]
,

b′2 =
[

2
1

]}
be two bases of R2. Find the transition matrix B

T
−−→B′.

Solution First, let’s express the vectors of B in terms of the vectors of B′.

b1 =
[

1
0

]
= 𝛼11 b′1 + 𝛼12 b′2

= 𝛼11

[
1
1

]
+ 𝛼12

[
2
1

]
= − 1 ⋅

[
1
1

]
+ 1 ⋅

[
2
1

]
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b2 =
[

0
1

]
= 𝛼21 b′1 + 𝛼22 b′2

= 𝛼21

[
1
1

]
+ 𝛼22

[
2
1

]
= 2 ⋅

[
1
1

]
− 1 ⋅

[
2
1

]
Thus, the transition matrix is

T =
[
−1 2

1 −1

]
It is important to observe that the question of what is the “old” and what is the
“new” basis is arbitrary. We could, as equally, have asked how to express vectors
from B′ in terms of vectors from B. Let’s do that:

b′1 =
[

1
1

]
= 𝛽11 b1 + 𝛽12 b2

= 𝛽11

[
1
0

]
+ 𝛽12

[
0
1

]
= 1 ⋅

[
1
0

]
+ 1 ⋅

[
0
1

]
b′2 =

[
2
1

]
= 𝛽21 b1 + 𝛽22 b2

= 𝛽21

[
1
0

]
+ 𝛽22

[
0
1

]
= 2 ⋅

[
1
0

]
+ 1 ⋅

[
0
1

]

Hence, in this case, the transition matrix is

[
1 2
1 1

]
. You can easily convince your-

self that [
1 2
1 1

]
=
[
−1 2

1 −1

]−1

= T−1

◾

Once again, the reader should be well advised not to be misled by this, some-
what inconsistent, terminology regarding the “old” B, and the “new” B′ bases.
Namely, the aforementioned example points to the fact that T−1 transforms B to
B′ and T transforms B′ to B.
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Example 6.136 Let B =
{

b1 =
[

1
2

]
, b2 =

[
3
5

]}
and B′ =

{
b′1 =

[
1
−1

]
,

b′2 =
[

1
−2

]}
be two bases of R2. Find the transition matrix B

T
−−→B′.

Solution

b′1 =
[

1
−1

]
= 𝛽11 b1 + 𝛽12 b2 = 𝛽11

[
1
2

]
+ 𝛽12

[
3
5

]
b′2 =

[
1
−2

]
= 𝛽21 b1 + 𝛽22 b2 = 𝛽21

[
1
2

]
+ 𝛽22

[
3
5

]
Solving for 𝛽ij we get: 𝛽11 = −8, 𝛽12 = 3, 𝛽21 = −11, 𝛽22 = 4.

Thus,

b′1 = −8 b1 + 3 b2

b′2 = −11 b1 + 4 b2

So, the transition matrix is

T =
[
−8 −11

3 4

]
.Once again, observe that we could have done the following:

b1 =
[

1
2

]
= 𝛼11 b′1 + 𝛼12 b′2 = 𝛼11

[
1
−1

]
+ 𝛼12

[
1

−2

]
b2 =

[
3
5

]
= 𝛼21 b′1 + 𝛼22 b′2 = 𝛼21

[
1
−1

]
+ 𝛼22

[
1

−2

]
Solving for 𝛼ij we get: 𝛼11 = 4, 𝛼12 = −3, 𝛼21 = 11, 𝛼22 = −8. Hence,

b1 = 4b′1 − 3b′2

b2 = 11b′1 − 8b′2

So, the transition matrix is

[
4 11

−3 −8

]
. Again, note that

[
4 11

−3 −8

]
=
[
−8 −11

3 4

]−1

= T−1

◾
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Succinctly put, the previous examples illustrate the following “rule”: The
columns of the transitional matrix from one (“old”) basis to another (“new”)
basis are the coordinate vectors of the “old” basis relative to the “new” basis.

The previous examples entice us to ask the next natural question: how does an
arbitrary vector xB expressed in one basis look when expressed in terms of the
other? Consider the following

Example 6.137 Let B =
{

b1 =
[

1
2

]
, b2 =

[
3
−1

]}
and B′ =

{
b′1 =

[
1
0

]
,

b′2 =
[

0
1

]}
be two bases of R2. Suppose that vector x in the B basis is given by

xB =
[

3
4

]
. We would like to find xB′ .

To get the transition matrix, we first express the vectors of the (old) basis B in
terms of (new) basis vectors b′1 and b′2:

b1 =
[

1
2

]
= 𝛼11b′1 + 𝛼12b′2

= 𝛼11

[
1
0

]
+ 𝛼12

[
0
1

]
Thus, 𝛼11 = 1, and 𝛼12 = 2.

Similarly,

b2 =
[

3
−1

]
= 𝛼21b′1 + 𝛼22b′2

= 𝛼21

[
1
0

]
+ 𝛼22

[
0
1

]
Thus, 𝛼21 = 3 and 𝛼22 = −1. Therefore, the transition matrix is

T =
[

1 3
2 −1

]
Hence,

xB′ = T(xB) =
[

1 3
2 −1

] [
3
4

]
=
[

15
2

]
◾

In anticipation of a general formalism addressing all the aforementioned ques-
tions, let’s examine yet another example.
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Example 6.138 Consider the following two bases10 of R3:

B =
⎧⎪⎨⎪⎩b1 =

⎡⎢⎢⎣
1
0
0

⎤⎥⎥⎦ , b2 =
⎡⎢⎢⎣
0
1
0

⎤⎥⎥⎦ , b3 =
⎡⎢⎢⎣
0
0
1

⎤⎥⎥⎦
⎫⎪⎬⎪⎭

and

B′ =
⎧⎪⎨⎪⎩b′1 =

⎡⎢⎢⎣
1
0
1

⎤⎥⎥⎦ , b′2 =
⎡⎢⎢⎣
2
1
2

⎤⎥⎥⎦ , b′3 =
⎡⎢⎢⎣
1
2
2

⎤⎥⎥⎦
⎫⎪⎬⎪⎭

Find the matrices of transition B
T
−−→B′ and B′

S
−−→ B.

Solution

b′1 =
⎡⎢⎢⎣
1
0
1

⎤⎥⎥⎦ = 𝛼11b1 + 𝛼12b2 + 𝛼13b3

=
⎡⎢⎢⎣
𝛼11
𝛼12
𝛼13

⎤⎥⎥⎦ ⇒ 𝛼11 = 1, 𝛼12 = 0, 𝛼13 = 1

b′2 =
⎡⎢⎢⎣
2
1
2

⎤⎥⎥⎦ = 𝛼21b1 + 𝛼22b2 + 𝛼23b3

=
⎡⎢⎢⎣
𝛼21
𝛼22
𝛼23

⎤⎥⎥⎦ ⇒ 𝛼21 = 2,+𝛼22 = 1, 𝛼23 = 2

b′3 =
⎡⎢⎢⎣
1
2
2

⎤⎥⎥⎦ = 𝛼31b1 + 𝛼32b2 + 𝛼33b3

=
⎡⎢⎢⎣
𝛼31
𝛼32
𝛼33

⎤⎥⎥⎦ ⇒ 𝛼31 = 1,+𝛼32 = 2, 𝛼33 = 2

10Remember that we often call such basis the “usual” or “canonic” basis.
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So, the transition matrix is

T = [𝛼ij]𝜏 =
⎡⎢⎢⎣
1 0 1
2 1 2
1 2 2

⎤⎥⎥⎦
𝜏

=
⎡⎢⎢⎣
1 2 1
0 1 2
1 2 2

⎤⎥⎥⎦
We look for matrix S in the same way.

b1 =
⎡⎢⎢⎣
1
0
0

⎤⎥⎥⎦ = 𝛽11b′1 + 𝛽12b′2 + 𝛽13b′3

= 𝛽11

⎡⎢⎢⎣
1
0
1

⎤⎥⎥⎦ + 𝛽12

⎡⎢⎢⎣
2
1
2

⎤⎥⎥⎦ + 𝛽13

⎡⎢⎢⎣
1
2
2

⎤⎥⎥⎦
=
⎡⎢⎢⎣
𝛽11 + 2𝛽12 + 𝛽13
𝛽12 + 2𝛽13

𝛽11 + 2𝛽12 + 2𝛽13

⎤⎥⎥⎦
Thus,

1 = 𝛽11 + 2𝛽12 + 𝛽13

0 = 𝛽12 + 2𝛽13

0 = 𝛽11 + 2𝛽12 + 2𝛽13

So we have 𝛽11 = −2, 𝛽12 = 2, 𝛽13 = −1

b2 =
⎡⎢⎢⎣
0
1
0

⎤⎥⎥⎦ = 𝛽21b′1 + 𝛽22b′2 + 𝛽23b′3

= 𝛽21

⎡⎢⎢⎣
1
0
1

⎤⎥⎥⎦ + 𝛽22

⎡⎢⎢⎣
2
1
2

⎤⎥⎥⎦ + 𝛽23

⎡⎢⎢⎣
1
2
2

⎤⎥⎥⎦
=
⎡⎢⎢⎣
𝛽21 + 2𝛽22 + 𝛽23
𝛽22 + 2𝛽23

𝛽21 + 2𝛽22 + 2𝛽23

⎤⎥⎥⎦
and thus,

0 = 𝛽21 + 2𝛽22 + 𝛽23

1 = 𝛽22 + 2𝛽23

0 = 𝛽21 + 2𝛽22 + 2𝛽23
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Solving this system, we get

𝛽21 = −2, 𝛽22 = 1, 𝛽23 = 0

Finally,

b3 =
⎡⎢⎢⎣
0
0
1

⎤⎥⎥⎦ = 𝛽31b′1 + 𝛽32b′2 + 𝛽33b′3

= 𝛽31

⎡⎢⎢⎣
1
0
1

⎤⎥⎥⎦ + 𝛽32

⎡⎢⎢⎣
2
1
2

⎤⎥⎥⎦ + 𝛽33

⎡⎢⎢⎣
1
2
2

⎤⎥⎥⎦
=
⎡⎢⎢⎣
𝛽31 + 2𝛽32 + 𝛽33
𝛽32 + 2𝛽33

𝛽31 + 2𝛽32 + 2𝛽33

⎤⎥⎥⎦
Thus,

0 = 𝛽31 + 2𝛽32 + 𝛽33

0 = 𝛽32 + 2𝛽33

1 = 𝛽31 + 2𝛽32 + 2𝛽33

Solving this system, we obtain 𝛽31 = 3, 𝛽32 = −2, 𝛽33 = 1. Hence, the transi-
tion matrix

S = [𝛽ij]𝜏 =
⎡⎢⎢⎣
−2 2 −1
−2 1 0

3 −2 1

⎤⎥⎥⎦
𝜏

=
⎡⎢⎢⎣
−2 −2 3

2 1 −2
−1 0 1

⎤⎥⎥⎦
Now, since T transforms B to B′ and S transforms B′ to B, we would like S to be
T−1. Is that the case? Let’s see.

T ⋅ S =
⎡⎢⎢⎣
1 2 1
0 1 2
1 2 2

⎤⎥⎥⎦
⎡⎢⎢⎣
−2 −2 3

2 1 −2
−1 0 1

⎤⎥⎥⎦ =
⎡⎢⎢⎣
1 0 0
0 1 0
0 0 1

⎤⎥⎥⎦ = I

S ⋅ T =
⎡⎢⎢⎣
−2 −2 3

2 1 −2
−1 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣
1 2 1
0 1 2
1 2 2

⎤⎥⎥⎦ =
⎡⎢⎢⎣
1 0 0
0 1 0
0 0 1

⎤⎥⎥⎦ = I

Indeed, S = T−1. ◾
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Is this just an accident or does it hold in general? Well, here is what we have
hoped for:

Theorem 6.79 Let AB and A′
B′

be the two coordinate matrices of a vector x ∈ X
in the B and B′ bases, respectively, and let T be a transformation matrix from B

to B′, that is, B
T
−−→B′. Then,

AB = TA′
B′

Or, equivalently,
A′

B′
= T−1AB

Proof Suppose that the expression for a vector x in the B basis is

x =
n∑

i=1

𝛼ixi (*)

then in the B′ basis we have

x =
n∑

k=1

𝛼′kx′k

=
n∑

k=1

𝛼′k

(
n∑

i=1

𝛽ikxi

)

=
n∑

i=1

(
n∑

k=1

𝛽ik𝛼
′
k

)
xi (**)

From (*) and (**) we see that

𝛼i =
n∑

k=1

𝛽ik𝛼
′
k, ∀ i = 1, … , n

So, we conclude
AB = TA′

B′

Similarly, we could get

𝛼′i =
n∑

k=1

𝛾ik𝛼k
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where, of course, [𝛾ik] = T−1 and

A′
B′
= T−1AB

◾

We have seen that if we multiply the coordinates of a vector x ∈ X in the (old)
B basis by T−1 we get the coordinates of the same vector in the (new) B′ basis.

In other words, knowing the transition “in one direction,” say, B
T
−−→ B′, we can

right away find the transition B′
S=T−1

−−−−−→ B by determining T−1.

Example 6.139 Let’s take the matrix of T of the B
T
−−→B′ transition from

Example 6.138 and apply a little trick to get the matrix of T−1 of B′
T−1

−−−→ B. We
“augment” matrix T with the identity matrix to get matrix M = [T|I], that is,

M = [T|I] = ⎡⎢⎢⎣
1 2 1 | 1 0 0
0 1 2 | 0 1 0
1 2 2 | 0 0 1

⎤⎥⎥⎦
We perform elementary row operations on matrix M to get

M =
⎡⎢⎢⎣
1 2 1 | 1 0 0
0 1 2 | 0 1 0
1 2 2 | 0 0 1

⎤⎥⎥⎦ ∼
⎡⎢⎢⎣
1 0 0 | −2 −2 3
0 1 0 | 2 1 −2
0 0 1 | −1 0 1

⎤⎥⎥⎦
= [I|T−1]

As you can see, the right-hand part of matrix M turned out to be exactly the T−1

we were looking for. ◾

Example 6.140 Consider the two bases of R3:

B =
⎧⎪⎨⎪⎩b1 =

⎡⎢⎢⎣
5
−1

3

⎤⎥⎥⎦ , b2 =
⎡⎢⎢⎣

25
−7
12

⎤⎥⎥⎦ , b3 =
⎡⎢⎢⎣

34
−16

17

⎤⎥⎥⎦
⎫⎪⎬⎪⎭

B′ =
⎧⎪⎨⎪⎩b′1 =

⎡⎢⎢⎣
1
−3

2

⎤⎥⎥⎦ , b′2 =
⎡⎢⎢⎣
−2

0
1

⎤⎥⎥⎦ , b′1 =
⎡⎢⎢⎣
3
1
0

⎤⎥⎥⎦
⎫⎪⎬⎪⎭

Find the matrix B
T
−−→B′.
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Solution We recall that the matrix we are looking for has to have the following
property:

For every x ∈ R3, xB′ = TxB. Thus, in particular, b1 written in the new basis
B′ is

b1 =
⎡⎢⎢⎣

5
−1
3

⎤⎥⎥⎦ = 𝛽11 b′1 + 𝛽12 b′2 + 𝛽13 b′3

We express b2 and b3 similarly. Therefore, columns of T should be
(b1)B′, (b2)B′, (b3)B′ . As you might have anticipated, calculating all of the
𝛽ij
′s could be very tedious, so we try another approach. Consider the following

“augmented” matrix

[b′1 b′2 b′3 | b1 b2 b3] =
⎡⎢⎢⎣

1 −2 3
−3 0 1

2 1 0

∣
∣
∣

5 25 34
−1 −7 −16
3 12 17

⎤⎥⎥⎦
which we now reduce to

⎡⎢⎢⎣
1 0 0
0 1 0
0 0 1

∣
∣
∣

1 5 7
1 2 3
2 8 11

⎤⎥⎥⎦ = [I ∣ T]

Let’s check whether our transition matrix T indeed works as we desire. We can
apply the transformation T on any vector x ∈ R3, so why not try it on, say, vector
x, whose representation in the B basis is x = 1 ⋅ b1 + 0 ⋅ b2 + 0 ⋅ b3 (this is the
vector we already know).

T(x) = T(1 ⋅ b1 + 0 ⋅ b2 + 0 ⋅ b3)

=
⎡⎢⎢⎣
1 5 7
1 2 3
2 8 11

⎤⎥⎥⎦
⎡⎢⎢⎣
1
0
0

⎤⎥⎥⎦ =
⎡⎢⎢⎣
1
1
2

⎤⎥⎥⎦
= 1 ⋅

⎡⎢⎢⎣
1
−3

2

⎤⎥⎥⎦ + 1 ⋅
⎡⎢⎢⎣
−2

0
1

⎤⎥⎥⎦ + 2
⎡⎢⎢⎣
3
1
0

⎤⎥⎥⎦
= 1 ⋅ b′1 + 1 ⋅ b′2 + 2 ⋅ b′3

=
⎡⎢⎢⎣

5
−1

3

⎤⎥⎥⎦ = b1

◾

At this point, a little digression, an observation, may be in order.
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Recall that if two spaces X and Y are isomorphic, that is, there exists at least
one isomorphism F ∶ X → Y, then any basis of X is mapped to some basis of Y .

We say that BX
F
−−→BY , or that any basis of Y is an image of some basis of X. This

fact establishes another neat feature in the case that the transition is from canon-
ical basis E of Φn to some other basis of Rn. Namely, columns of the transition

matrix E
T
−−→B′ are simply the basis vectors of B′.

We illustrate this with the following example.

Example 6.141 Consider the space R3 and its basis

B′ =
⎧⎪⎨⎪⎩b′1 =

⎡⎢⎢⎣
1
0
1

⎤⎥⎥⎦ , b′2 =
⎡⎢⎢⎣
2
1
2

⎤⎥⎥⎦ , b′3 =
⎡⎢⎢⎣
1
2
2

⎤⎥⎥⎦
⎫⎪⎬⎪⎭.

Find the change-of-basis matrix T from the canonical basis E to the B′ basis.

Solution The vectors from B′ are easily expressible via the vectors of the
canonical basis

E =
⎧⎪⎨⎪⎩e1 =

⎡⎢⎢⎣
1
0
0

⎤⎥⎥⎦ , e2 =
⎡⎢⎢⎣
0
1
0

⎤⎥⎥⎦ , e3 =
⎡⎢⎢⎣
0
0
1

⎤⎥⎥⎦
⎫⎪⎬⎪⎭

b′1 =
⎡⎢⎢⎣
1
0
1

⎤⎥⎥⎦ = e1 + e3

b′2 =
⎡⎢⎢⎣
2
1
2

⎤⎥⎥⎦ = 2 e1 + e2 + 2e3

b′3 =
⎡⎢⎢⎣
1
2
2

⎤⎥⎥⎦ = e1 + 2e2 + 2e3

We immediately obtain the transition matrix

T =
⎡⎢⎢⎣
1 2 1
0 1 2
1 2 2

⎤⎥⎥⎦
Note that the main point of this exercise is to recognize that the columns of T are
exactly the coordinates of b′1, b′2, b′3. ◾
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Theorem 6.80 The change-of-basis matrix T, from the canonical E basis ofΦn

to any basis B′ of Rn (any basis of Φn), is a matrix whose columns are the basis
vectors of B′.

Going back to Examples 6.139 and 6.140, note that the “trick” we used there
can also be used in general when searching for the inverse matrix. Here is an
example.

Example 6.142 Let’s find the inverse of

A =
⎡⎢⎢⎣
1 2 3
2 5 3
1 0 8

⎤⎥⎥⎦
Solution

[A|I] = ⎡⎢⎢⎢⎣
1 2 3 | 1 0 0

2 5 3 | 0 1 0

1 0 8 | 0 0 1

⎤⎥⎥⎥⎦
∼
⎡⎢⎢⎢⎣
1 2 3 | 1 0 0

0 1 −3 | −2 1 0

1 0 8 | 0 0 1

⎤⎥⎥⎥⎦ ∼
⎡⎢⎢⎢⎣
1 2 3 | 1 0 0

0 1 −3 | −2 1 0

0 −2 5 | −1 0 1

⎤⎥⎥⎥⎦
∼
⎡⎢⎢⎢⎣
1 2 3 | 1 0 0

0 1 −3 | −2 1 0

0 0 −1 | −5 2 1

⎤⎥⎥⎥⎦ ∼
⎡⎢⎢⎢⎣
1 2 3 | 1 0 0

0 1 −3 | −2 1 0

0 0 1 | 5 −2 −1

⎤⎥⎥⎥⎦
∼
⎡⎢⎢⎢⎣
1 2 0 | −14 6 3

0 1 0 | 13 −5 −3

0 0 1 | 5 −2 −1

⎤⎥⎥⎥⎦ ∼
⎡⎢⎢⎢⎣
1 0 0 | −40 16 9

0 1 0 | 13 −5 −3

0 0 1 | 5 −2 −1

⎤⎥⎥⎥⎦
Thus,

A−1 =
⎡⎢⎢⎣
−40 16 9

13 −5 −3
5 −2 −1

⎤⎥⎥⎦
One can easily convince oneself that this is indeed so by checking the
following:

A−1A = AA−1 = I
◾
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Example/Exercise 6.143 Find the inverse of

A =
⎡⎢⎢⎣
1 1 1
0 2 3
5 5 1

⎤⎥⎥⎦
Solution

A−1 =
⎡⎢⎢⎣

13∕8 −1∕2 −1∕8
−15∕8 1∕2 3∕8

5∕4 0 −1∕4

⎤⎥⎥⎦
The same method could be used to determine whether or not a given matrix is

singular.

Example 6.144 Show that the following matrix A is singular:

A =
⎡⎢⎢⎣

1 6 4
2 4 −1
−1 2 5

⎤⎥⎥⎦
Solution

[A|I] = ⎡⎢⎢⎣
1 6 4 | 1 0 0
2 4 −1 | 0 1 0
−1 2 5 | 0 0 1

⎤⎥⎥⎦ ∼
⎡⎢⎢⎣
1 6 4 | 1 0 0
0 −8 −9 | −2 1 0
0 8 9 | 1 0 1

⎤⎥⎥⎦
∼
⎡⎢⎢⎣
1 6 4 | 1 0 0
0 −8 −9 | −2 1 0
0 0 0 | −1 1 1

⎤⎥⎥⎦
We obtained a row with all zeros on the left side, telling us that A is not invertible.

◾

Continuing our discussion, we ask the following: Let’s say a linear operator
F ∶ X → Y has a matrix representation [F](BX ,BY) = (𝛼ik)with respect to a pair of
bases (BX,BY). Suppose furthermore that x ∈ X is any vector in X, such that its
coordinate matrix in the BX basis is [x]BX

= [𝛼i]. Finally, let [F(x)]BY
= [𝛽i] be

the coordinate matrix of the image of x in the BY basis. Is there a way to determine
[𝛽i] by the matrices (𝛼ik) and [𝛼i]? Here is the answer.

Theorem 6.81 If [F](BX ,BY) is a matrix representation of a linear operator F ∶
X → Y with respect to basis BX and BY , then the coordinate matrix of an image
of any x ∈ X is given by

[F(x)]BY
= [F](BX ,BY)[x]BX

where [x]BX
= [𝛼i] is the coordinate matrix of x in the BX basis.
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Proof Since

x =
n∑

k=1

𝛼kbXk

F(x) = F

(
n∑

k=1

𝛼kbXk

)

=
n∑

k=1

𝛼kF(bXk)

=
n∑

k=1

𝛼k

(
m∑

i=1

𝛼ikbYi

)

=
m∑

i=1

(
n∑

k=1

𝛼ik𝛼k

)
bYi

On the other hand, the image of x,

F(x) =
m∑

i=1

𝛽ibYi

Comparing the last two expressions we see that

𝛽i =
n∑

k=1

𝛼ik𝛼k, ∀ i = 1, … , m

Thus,
[F(x)]BY

= [F](BX ,BY)[x]BX

as claimed. ◾

Suppose now that the matrix representation of the linear operator F ∶ X → Y,
with respect to the pair of bases (BX,BY), is known to be [F](BX ,BY ). We would
like to know the matrix representation of the same operator in a different set of
bases (B′X,B

′
Y), that is, we are looking for [F](B′X , B′Y )

. The answer is given by the
following

Theorem 6.82 For brevity, let’s denote [F](BX ,BY) simply by [F], and similarly,
[F](B′X , B′Y )

we will call [F]′. Then,

[F]′ = T−1 [F ] S

where S and T are matrices of the transitions BX
S
−−→B′

X and BY
T
−−→B′Y .
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Proof Let x ∈ be any vector in X, and let [x]BX
and [x]B′X be its coordinate

matrices in BX and B′X. Similarly, let [F(x)]BY
and [F(x)]B′Y be coordinate matrices

of the image of x in BYand B′Y . Then,

[F(x)]BY
= [F][x]BX

and
[F(x)]B′Y = [F]

′[x]B′X

Since S is a transformation BX → B′
X, following the previous theorem, we write

[x]BX
= S[x]B′X

Similarly, since T transforms BY → B′
Y we write

[F(x)]BY
= T[F(x)]B′Y

Collecting it all together we have

[F]′[x]B′X = [F(x)]B′Y
= T−1[F(x)]BY

= T−1[F][x]BX

= T−1[F]S[x]B′X
= (T−1[F]S) [x]B′X

and we see that [F]′ = T−1[F]S, as claimed. ◾

Let’s pause for a while and sum up what we have learned so far.
Let X and Y be two vector spaces over a field Φ with respective dimensions

n andm. If BX = {x1, … , xn} is a basis of X, and BY = {y1, … , ym} is a basis
of Y , then the linear operator F ∶ X → Y is defined by

F(xk) =
m∑

i=1

𝛼ikyi

As we said before, since the linear operator is uniquely determined by its action on
the basis vectors, it is also completely characterized by its matrix representation
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[F](BX ,BY) =
⎡⎢⎢⎣
𝛼11 · · · 𝛼1n
⋮ ⋱ ⋮
𝛼m1 · · · 𝛼mn

⎤⎥⎥⎦
where the columns of this (m, n) matrix represent the coordinates of F(xk), that
is, the images of basis vectors of BX in the BY basis. So far so good. One is now
inspired to ask: Are we able to combine linear operators as we combine functions?
In other words, let

F ∶ X → Y and G ∶ X → Y

be two linear operators over the same field Φ. We claim that

(F + G) ∶ X → Y

and
𝜆F ∶ X → Y, 𝜆 ∈ Φ

are linear operators too. Indeed, let x1, x2 ∈ X be any two vectors, and let
𝛼, 𝛽 ∈ Φ be any two scalars, then

(F + G)(𝛼x1 + 𝛽x2) = F(𝛼x1 + 𝛽x2) + G(𝛼x1 + 𝛽x2)

= 𝛼F(x1) + 𝛽F(x2) + 𝛼G(x1) + 𝛽G(x2)

= 𝛼[F(x1) + G(x1)] + 𝛽[F(x2) + G(x2)]

= 𝛼(F + G)(x1) + 𝛽(F + G)(x2)

Similarly,

𝜆F(𝛼x1 + 𝛽x2) = 𝜆[𝛼F(x1) + 𝛽F(x2)

= 𝛼[𝜆F(x1)] + 𝛽[𝜆 F(x2)]

So, (F + G) and 𝜆F are linear operators, as claimed. Thus, we have (almost)
proved.

Theorem 6.83 Let X and Y be two vector spaces over a field Φ. Then, the set
of all linear operators from X to Y, with standard addition and multiplication, as
described earlier, forms a vector space over the same field Φ. As you remember,
we call this space Hom(X,Y) (see Definition 6.13).

Before continuing with the next example you may want to revisit Examples
6.119–6.128.
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Example 6.145 Suppose we want to find the matrix representation of an oper-
ator  ∶ R2 → R2 consisting of an R-reflection about the X-axis, followed by a
P-rotation through 𝜋∕2, followed by a D-dilatation by a factor 3. In other words,
we are looking for an operator  , which is a composition

 = D ∘ P ∘ R

Since the matrix representations of D, P, and R are

D =
[

3 0
0 3

]
, P =

[
cos 𝜋

2
− sin 𝜋

2

sin 𝜋

2
cos 𝜋

2

]
, R =

[
1 0

0 −1

]
the matrix representation of  is

 = D ∘ P ∘ R =
[

3 0
0 3

][
cos 𝜋

2
− sin 𝜋

2

sin 𝜋

2
cos 𝜋

2

][
1 0

0 −1

]

=
[

3 0
0 3

] [
0 −1
1 0

] [
1 0
0 −1

]
=
[

0 3
3 0

]
◾

Definition 6.65 A linear operator F ∶ X → X is said to be invertible, or that it
has an inverse, if there exists F−1 such that

FF−1 = F−1F = I

It is good to remember that (a mapping) F is invertible iff F is a bijection, in
which case F−1 is also a linear operator, as we expected. We illustrate this with
the following

Example 6.146 Suppose F ∶ X → X is a bijective linear operator. Let’s show
that F−1 is also a linear operator.

Let x, y ∈ X be any two vectors, then, since F is a bijection, there exist x′, y′ ∈
X such that F(x) = x′ and F(y) = y′. Consider now,

F(𝛼x + 𝛽y) = 𝛼F(x) + 𝛽F(y)

= 𝛼x′ + 𝛽y′

On the other hand, by definition of the inverse map,

F−1(𝛼x′) = 𝛼x and F−1(𝛽y′) = 𝛼x

as well as
F−1(x′ + y′) = x + y.
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Therefore,

F−1(𝛼x′ + 𝛽y′) = 𝛼x + 𝛼y

= F−1(𝛼x′) + F−1(𝛽y′)

= 𝛼F−1(x′) + 𝛽F−1(y′).

So, F−1 is a linear operator. ◾

Example 6.147 Let F ∶ R2 → R2 be a linear operator defined by

F(x) = F

[
x
y

]
=
[

2x + y
3x + 2y

]
= x′

Find F−1.

Solution First, if F is invertible, then it has to be regular. Indeed, consider

F

[
x
y

]
= 𝟎′ =

[
0
0

]
.

Then,

2x + y = 0

3x + 2y = 0

Solving this system, we get x = 0 and y = 0. Thus, F is regular and therefore
has an inverse, that is, if F(x) = x′, then F−1(x′) = x.

So, let [
2x + y
3x + 2y

]
=
[

x′

y′

]
.

That is

2x + y = x′

3x + 2y = y′

Solving this system for x and y we get

x = 2x′ − y′

y = −3x′ + 2y′
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Hence, the inverse operator we are looking for is defined by

F−1(x′) = F

[
x′

y′

]
=

[
2x′ − y′

−3x′ + 2y′

]
Of course, considering that x′ andy′ are variables (dummies) from R, it is more
convenient to simply write

F−1(x) = F

[
x
y

]
=

[
2x − y
−3x + 2y

]
◾

6.16 SYSTEMS OF LINEAR EQUATIONS I

We started this chapter by briefly mentioning the problem of solving a system of
n linear equations with n variables, as one of the motivating factors for studying
Linear Algebra. Now we address this issue in more detail, using the tools and
techniques we acquired in the previous sections.

First, let’s recall some basic concepts.

Definition 6.66 A linear equation in n unknowns x1, x2, … , xn over a fieldΦ
is an equation that in standard form reads as follows:

𝛼1x1 + 𝛼2x2 + · · · + 𝛼nxn = 𝛽 (*)

where 𝛼i, 𝛽 ∈ Φ are any scalars from the given field. We say that the scalars 𝛼i
are coefficients of equation (*) and 𝛽 is a free term or a constant term.

Definition 6.67 A solution of equation (*) is an n-tuple C = (x1 = 𝛾1, x2 =
𝛾2, … , xn = 𝛾n) of scalars 𝛾i ∈ Φ such that

𝛼1𝛾1 + 𝛼2𝛾2 + · · · + 𝛼n𝛾n = 𝛽

We are interested in the finite system of equations of the form (*), so we have

Definition 6.68 A system of linear equations  over a field Φ, is a collection
of equations

𝛼11x1 + 𝛼12x2 + · · · + 𝛼1nxn = 𝛽1

𝛼21x1 + 𝛼22x2 + · · · + 𝛼2nxn = 𝛽2

⋮ ⋮ ⋮ ⋮ (**)

𝛼i1x1 + 𝛼i2x2 + · · · + 𝛼inxn = 𝛽i

⋮ ⋮ ⋮ ⋮

𝛼m1x1 + 𝛼m2x2 + · · · + 𝛼mnxn = 𝛽m
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where 𝛼ik ∈ Φ are coefficients, and 𝛽k ∈ Φ are free terms. We will often write
the system (**) in a compact form

n∑
k=1

𝛼ikxk = 𝛽i, i = 1, … ,m (**)′

Definition 6.69 A system of linear equations is called homogeneous if all 𝛽 ′i s
in (**) are equal to zero.

A system of linear equations is called nonhomogeneous if at least one of the
𝛽′i s from (**) is different from zero.

Definition 6.70 An ordered n-tuple C = (𝛾1, … , 𝛾n) of scalars 𝛾i ∈ Φ is said
to be a solution of the system  iff it satisfies every equation of (**).

Example 6.148 Here is an example of a simple 3 × 4 (nonhomogeneous)
system

x1 + x2 + 4x3 + 3x4 = 5

2x1 + 3x2 + x3 − 2x4 = 1

x1 + 2x2 − 5x3 + 4x4 = 3

The system obviously consists of three equations with four unknowns and its
solution, as can be easily verified, is an ordered quadruple C = (−8, 6, 1, 1),
which satisfies all three equations. ◾

We have indicated before that one can associate corresponding matrices with
any system of linear equations , hoping to facilitate the process of finding a
solution for the system. First, we collect all the coefficients of  in matrix form

A =
⎡⎢⎢⎣
𝛼11 · · · 𝛼1n
⋮ ⋱ ⋮
𝛼m1 · · · 𝛼mn

⎤⎥⎥⎦
making sure that the scalars 𝛼i are in the same position as in (**). We call this
matrix the matrix of coefficients of our system. Next, we construct the aug-
mented matrix,

A =
⎡⎢⎢⎣
𝛼11 · · · 𝛼1n | 𝛽1
⋮ ⋱ ⋮ | ⋮
𝛼m1 · · · 𝛼mn | 𝛽m

⎤⎥⎥⎦
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by supplying the matrix A with an additional column B = [𝛽i] of free terms of the
system (**). Finally, we write all the unknowns in matrix form

X = [xk] =
⎡⎢⎢⎣
x1
⋮
xn

⎤⎥⎥⎦
Thus the system, , compactly expressed in matrix form, reads

AX = B

Consequently, saying that C = (𝛾1, … , 𝛾n) = [𝛾k] is the solution of the system
means the following is also true:

AC = B

Evoking our experience with linear operators, we can look at the problem of solv-
ing the system of linear equations, , by considering the transformation

F ∶ Rn → Rm

where the matrix representation of F in a standard basis is the matrix of coeffi-
cients A, matrix B is a vector in Rm, and the solution C is a vector in Rn. Let’s
elaborate on this in more general terms. Let

Mn1(Φ) =
⎧⎪⎨⎪⎩
⎡⎢⎢⎣
𝛼1
⋮
𝛼n

⎤⎥⎥⎦ | 𝛼i ∈ Φ
⎫⎪⎬⎪⎭

be a linear space of all (n, 1)-matrices over a field Φ. Consider a standard basis
of this n-dimensional space

E = {e1, … , en}

where, as usual, ei =

⎡⎢⎢⎢⎢⎣
0
⋮
1
⋮
0

⎤⎥⎥⎥⎥⎦
, i = 1, … , n
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Let’s pick any vector x ∈ Mn1. Its coordinate matrix in the basis E is

x =
⎡⎢⎢⎣
𝛼1
⋮
𝛼n

⎤⎥⎥⎦
= 𝛼1

⎡⎢⎢⎢⎣
1
0
⋮
0

⎤⎥⎥⎥⎦ + · · · + 𝛼n

⎡⎢⎢⎢⎢⎣
0
⋮
0
⋮
1

⎤⎥⎥⎥⎥⎦
= 𝛼1e1 + · · · + 𝛼nen

= [x]E

So, as expected, any vector from Mn1 is uniquely represented by its coordinate

matrix with respect to a given basis, that is, x =
⎡⎢⎢⎣
x1
⋮
xn

⎤⎥⎥⎦ = X ∈ Mn1. Similarly, we

can consider an m-dimensional space Mm1 over the same fieldΦ, and analogously
choose a corresponding standard basis, say,

E′ = {e′1, … , e′m }

In the same way, we consider B the matrix of free terms as some vector b in space
Mm1, that is, [b]E′ = B.

Let’s say we are interested in a linear operator

F ∶ Mn1 → Mm1

whose matrix representation is a matrix A = [𝛼ik]. As we have learned

F(ek) =
m∑

i=1

𝛼ike′i

=
m∑

i=1

𝛼ik

⎡⎢⎢⎢⎢⎣
0
⋮
1
⋮
0

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎣
𝛼1k
⋮
𝛼mk

⎤⎥⎥⎦ ∈ Mm1

So, the matrix equation
AX = B
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can be understood as an “operator equation”

F(x) = b

or, taking into consideration the standard basis,

F(X) = B

Finally, instead of the spaces Mn1 and Mm1, we could have used any
n-, m-dimensional vector spaces and obtain the same “geometrical” inter-
pretation of our system .

Of course, now we would like to know if there are some conditions that have
to be satisfied in order to know in advance whether a system of linear equations
 has a solution or not, and if it does, how many. First,

Definition 6.71 A system of linear equations  is said to be consistent if it has
one or more solutions, and it is said to be inconsistent if it has no solution.

Example 6.149 The following systems:

x1 + 2x2 = 9

2x1 − 3x2 = 4

and

x1 + x2 + 4x3 + 3x4 = 5

2x1 + 3x2 + x3 − 2x4 = 1

x1 + 2x2 − 5x3 + 4x4 = 3

are examples of two consistent systems. On the other hand, the next two systems,

x1 + 2x2 = 9

x1 + 2x2 = 15

and

x1 + x2 + x3 = 1

x1 + +x3 = 1

2x1 + x2 + 2x3 = 0

are inconsistent. ◾
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Faced with the question of the existence of a solution of a linear system over
an infinite field Φ, we expect to have a unique solution, no solution at all, or an
infinite number of solutions. Recall our matrix equation

AX = B (*)

and its operator analog
F(X) = B (**)

Clearly, a column matrix X = [xk] is a solution of (*) iff a vector x = X ∈ Mn1
satisfies equation (**). Let’s denote the set of all solutions of (*)/(**) by

S = F−1(B)

We expect that our system  has a solution (i.e., equation (*) has a solution), iff
S = F−1(B) ≠ ∅. In other words, iff B ∈ F(Mn1) = Im(F). Thus,

Theorem 6.84 A linear system  has a solution iff the vector B = [bi] ∈
F(Mn1) = Im(F) where F ∶ Rn → Rm.

The aforementioned theorem succinctly explicates the necessities for the exis-
tence of a solution of a system of linear equations. However, it is not very conve-
nient for practical calculations. In other words, a critical question still remains:
How can we tell whether B ∈ Im(F)? Let’s elaborate on this a little more. First,
if we choose E = {e1, … , en } as a standard basis for a space Mn1, and consider
the columns of the coefficient matrix A as vectors in Rm, that is,

a1 =
⎡⎢⎢⎣
𝛼11
⋮
𝛼m1

⎤⎥⎥⎦ , a2 =
⎡⎢⎢⎣
𝛼12
⋮
𝛼m2

⎤⎥⎥⎦ , … , an =
⎡⎢⎢⎣
𝛼1n
⋮
𝛼mn

⎤⎥⎥⎦
then Im(F) is spanned by

F(e1) = a1, F(e2) = a2, … , F(en) = an

Thus, vector B is an element of Im(F) iff it can be expressed as

B =
n∑

k=1

𝛾kF(ek)

=
n∑

k=1

𝛾k

⎡⎢⎢⎣
𝛼1k
⋮
𝛼mk

⎤⎥⎥⎦
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Put differently, and in more of a “user-friendly” way, we say that B ∈ Ker(F) iff
the last column of the augmented matrix of a linear system 

A =
⎡⎢⎢⎣
𝛼11 · · · 𝛼1n | 𝛽1
⋮ ⋱ ⋮ | ⋮
𝛼m1 · · · 𝛼mn | 𝛽m

⎤⎥⎥⎦
is a linear combination of the previous columns, that is, the column vectors of
matrix A. So we have

Theorem 6.85 Let  be a system of linear equations whose matrix representa-
tion is

AX = B

Then, a system  has a solution iff vector B =
⎡⎢⎢⎣
𝛽1
⋮
𝛽m

⎤⎥⎥⎦ can be expressed as a linear

combination of the column vectors of A.

Example 6.150 Consider a linear system

x1 + x2 + x3 = 1

x1 + + x3 = 1

2x1 + x2 + 2x3 = 0

Its augmented matrix

A =
⎡⎢⎢⎣
1 1 1 | 1
1 0 1 | 1
2 1 2 | 0

⎤⎥⎥⎦
We anticipate that the column space of A is spanned by the vectors

𝜶1 =
⎡⎢⎢⎣
1
1
2

⎤⎥⎥⎦ , 𝜶2 =
⎡⎢⎢⎣
1
0
1

⎤⎥⎥⎦ , and 𝜶3 =
⎡⎢⎢⎣
1
1
2

⎤⎥⎥⎦
but since 𝜶1 = 𝜶3, 𝜶1, and 𝜶2 are sufficient for the span.

On the other hand, since vector 𝜷 =
⎡⎢⎢⎣
1
1
0

⎤⎥⎥⎦, we need to determine whether 𝜷

belongs to the space spanned by a1 and a2, that is, whether we can express 𝜷 as
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a linear combination of a′is. Let’s see:

⎡⎢⎢⎣
1
1
0

⎤⎥⎥⎦ = 𝜆1

⎡⎢⎢⎣
1
1
2

⎤⎥⎥⎦ + 𝜆2

⎡⎢⎢⎣
1
0
1

⎤⎥⎥⎦ , 𝜆1, 𝜆2 ∈ R

gives us

1 = 𝜆1 + 𝜆2

1 = 𝜆1

0 = 2𝜆1 + 𝜆2

which implies 𝜆1 = 1, and 𝜆2 = 0 = −2, and that is impossible. Thus, 𝜷 does
not belong to the space spanned by the vectors ai, and our system has no
solution. ◾

Example/Exercise 6.151 Show that the following system:

2x1 + 6x2 − x3 + x4 = 2

x1 + 3x2 + x3 = 5

−x1 − 3x2 − x3 = 0

has no solution.
We conclude this discussion with the following

Theorem 6.86 (Kronecker–Capelli) A system of linear equations is solvable
iff the matrix of the system A and the augmented matrix Ã have the same rank.

Proof In Theorem 6.84, we had the expression

B =
n∑

k=1

𝛾kF(ek)

=
n∑

k=1

𝛾k

⎡⎢⎢⎣
𝛼1k
⋮
𝛼mk

⎤⎥⎥⎦ (*)

which equivalently can be written as

B =

⎡⎢⎢⎢⎢⎣
𝛽1
⋮
𝛽i
⋮
𝛽m

⎤⎥⎥⎥⎥⎦
=

n∑
k=1

⎡⎢⎢⎢⎢⎣
𝛾k𝛼1k
⋮

𝛾k𝛼ik
⋮

𝛾k𝛼mk

⎤⎥⎥⎥⎥⎦
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and thus,

𝛽i =
n∑

k=1

𝛼ik𝛾k, i = 1, … , m

We conclude that the coefficients (𝛾1, … , 𝛾n) from (*) represent one of the solu-
tions of the corresponding linear system. ◾

The next definition, and the two theorems that follow, will prove to be very
useful.

Definition 6.72 A system of linear equations whose matrix form is AX = B, is
said to be a Cramer system if

(i) the number of equations is equal to the number of unknowns, that is,
m = n.

(ii) r(A) = n, that is, the rank of A is maximal, that is, det(A) ≠ 0.

Theorem 6.87 Let  be a system of m linear equations whose matrix form is
AX = B. If

r(A) = m

then the system  has a solution.

Proof If r(A) = m, then r(A ) = r(A), since this rank is already maximal for
both matrices. The claim of the theorem follows from Theorem 6.86 ◾

Theorem 6.88 Let  be a solvable system of linear equations, that is, a solution
set

S = F−1(B) ≠ 0

where F ∶ Mn1 → Mm1. Then the solution of the system is unique iff F is an
injection.

Proof We deduced from the previous theorem that if r(A) = r(F) =
dim(Im(F)) = m, then Im(F) = Mm1, that is, F is surjective and therefore
F−1(B) ≠ 0, as expected. Now we need to prove that F is injective. Let

C =
⎡⎢⎢⎣
𝛾1
⋮
𝛾n

⎤⎥⎥⎦ ∈ Mn1
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be a unique solution of our system

AX = B

Or, equivalently,
F(X) = B

Clearly then,
F(C) = B

Suppose, now, that F is not injective. Then there exists a vector

D =
⎡⎢⎢⎣
𝛿1
⋮
𝛿n

⎤⎥⎥⎦ ∈ Mn1, D ≠ O

such that
F(D) = O

Well, consider

F(C + D) = F(C) + F(D)

= B + O

This would imply that C + D is also a solution of our system, contradicting our
assumption that the solution is unique. It follows that F is injective. Conversely,
let’s assume that F injective. Then, for every B ∈ Mm1, our operator equation

F(X) = B

has only one solution. That completes the proof. ◾

Simply put, a bijective (injective+ surjective) and thus regular, operator allows
us to state

Theorem 6.89 The solvable system of n linear equations with n unknowns has
a unique solution iff the operator F is regular.

Consequently, we also have

Theorem 6.90 A Cramer system always has a unique solution.



�

� �

�

SYSTEMS OF LINEAR EQUATIONS I 595

Proof If a system  is a Cramer system, then

r(A) = n = m

= (# of unknowns = # of equations)

and thus the system has at least one solution. Theorems 6.87 and 6.88 show that
the solution is unique. ◾

To get a practical procedure for solving a system of linear equations let’s sum
up everything we have learned so far:

Let  be a Cramer system of linear equations

𝛼11x1 + 𝛼12x2 + · · · + 𝛼1nxn = 𝛽1

𝛼21x1 + 𝛼22x2 + · · · + 𝛼2nxn = 𝛽2

⋮ ⋮ ⋮ ⋮ (*)

𝛼n1x1 + 𝛼n2x2 + · · · + 𝛼nnxn = 𝛽n

In matrix form this reads
AX = B (**)

where

A =
⎡⎢⎢⎣
𝛼11 · · · 𝛼1n
⋮ ⋱ ⋮
𝛼n1 · · · 𝛼nn

⎤⎥⎥⎦ , X =
⎡⎢⎢⎣
x1
⋮
xn

⎤⎥⎥⎦ , and B =
⎡⎢⎢⎣
𝛽1
⋮
𝛽n

⎤⎥⎥⎦
Since we have assumed that our system  is a Cramer system, det A ≠ 0, and the
solution of  is

X = A−1B

A very neat procedure for obtaining the solution of such a system is given by

Theorem 6.91 (Cramer’s rule) Let  be a Cramer system of linear equations
(*) whose matrix expression is (as above)

AX = B (**)

Furthermore, let D = det A, and let Dk be a determinant obtained from det A by
replacing the kth column of A with the column of free terms [𝛽i], that is

Dk =
⎡⎢⎢⎣
𝛼11 · · · 𝛼1k−1 𝛽1 𝛼1k+1 · · · 𝛼1n
⋮ · · · ⋮ ⋮ ⋮ · · · ⋮
𝛼n1 · · · 𝛼nk−1 𝛽n 𝛼nk+1 · · · 𝛼nn

⎤⎥⎥⎦ .
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Then, the unique solution of the system  is

𝛾k = DkD−1, k = 1, … , n

Proof In order for C =
⎡⎢⎢⎣
𝛾1
⋮
𝛾n

⎤⎥⎥⎦ to be a solution of  we need to check whether 𝛾i

satisfies the ith equation of (*) for every i. Let’s see

n∑
k=1

𝛼ik𝛾k =
n∑

k=1

𝛼ikDkD−1

= D−1
n∑

k=1

𝛼ikDk

= D−1
n∑

k=1

𝛼ik

(
n∑

j=1

𝛽jAjk

)

= D−1
n∑

j=1

𝛽j

(
n∑

k=1

𝛼ikAjk

)

= D−1

(
n∑

j=1

𝛽j𝛿ijD

)
= D−1𝛽iD = 𝛽i

where Ajk is a cofactor of the element 𝛼ik. Since this holds for every i, that is, an
n-tuple (𝛾1, … , 𝛾n) satisfies all the equations

n∑
k=1

𝛼ikxk = 𝛽i, i = 1, … , n

Thus, we have proved the theorem. ◾

This is an important result, so let’s explicate on it a little more.
First, recall Theorem 6.73: If A is a regular matrix, then

A−1 = 1
det A

Ã

where Ã = adj(A).
To make sure that this is clear, some things are worth repeating. By Theorem

6.71
AÃ = det A ⋅ I
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The left-hand side, written explicitly is

AÃ =
⎡⎢⎢⎣
𝛼11 · · · 𝛼1n
⋮ ⋱ ⋮
𝛼n1 · · · 𝛼nn

⎤⎥⎥⎦
⎡⎢⎢⎣
A11 · · · An1
⋮ ⋱ ⋮

A1n · · · Ann

⎤⎥⎥⎦
The product of the ith row and jth column of AÃ is clearly

𝛼i1Aj1 + 𝛼i2Aj2 + · · · + 𝛼inAjn (*)

Now observe, and this is crucial, that in the case where i = j, (*) gives us a cofac-
tor expansion of det A along the ith row. If, on the other hand, if i ≠ j, then the
𝛼s and cofactors come from different rows of our matrix A, so the value of (*) is
zero. Hence,

AÃ =

⎡⎢⎢⎢⎢⎣
det A 0 · · · 0 0

0 det A · · · 0 0
⋮ ⋮ ⋱ 0 0
⋮ ⋮ · · · ⋱ 0
0 0 · · · 0 det A

⎤⎥⎥⎥⎥⎦
= det A ⋅ I

So, our equation
AÃ = det A ⋅ I

can be rewritten as
A

1
det A

Ã = I

Finally, multiplying both sides by A−1 yields our result

A−1 = 1
det A

Ã

Now we go back to our system of linear equations, , and Cramer’s solutions.
We have seen that if , written in matrix form, is

AX = B

and det(A) ≠ 0, then the system has a unique solution

X = A−1B

= 1
det A

ÃB
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Now, by Theorem 6.91

x1 = 𝛾1 =
D1

D
, x2 = 𝛾2 =

D2

D
, … , xn = 𝛾n =

Dn

D

where, as we recall, D = det(A) and

Dk =
||||||
𝛼11 · · · 𝛼1k−1 𝛽1 𝛼1k+1 · · · 𝛼1n
⋮ · · · ⋮ ⋮ ⋮ · · · ⋮
𝛼n1 · · · 𝛼nk−1 𝛽n 𝛼nk+1 · · · 𝛼nn

||||||
Here are some examples.
First, something rather simple.

Example 6.152 Suppose we have the following linear system:

⎡⎢⎢⎣
1 4 2
3 −3 6
2 0 5

⎤⎥⎥⎦
⎡⎢⎢⎣
x1
x2
x3

⎤⎥⎥⎦ =
⎡⎢⎢⎣

3
5

−4

⎤⎥⎥⎦
and we want to find the value of, say, x2. Well, by the previous theorem we have

x2 =
D2

D
=

||||||
1 3 2
3 5 6
2 −4 5

||||||||||||
1 4 2
3 −3 6
2 0 5

||||||
= 4

15

◾

Example 6.153 Let’s solve the following system of linear equations  using
Cramer’s method:

x1 + +2x3 = 6

−3x1 + 4x2 + 6x3 = 30

−x1 − 2x2 + 3x3 = 8

Matrix A is evidently A =
⎡⎢⎢⎣

1 0 2
−3 4 6
−1 −2 3

⎤⎥⎥⎦ and D = det(A) = 44 and therefore,

D1 =
||||||

6 0 2
30 4 6
8 −2 3

|||||| , D2 =
||||||

1 6 2
−3 30 6
−1 8 3

|||||| , D3 =
||||||

1 0 6
−3 4 30
−1 −2 8

||||||
= −40 = 72 = 18
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Thus,

x1 =
D1

D
= −40

44
; x2 =

D2

D
= 72

44
; x3 =

152
44

. ◾

Example 6.154 Solve by Cramer’s method.

2x1 + 3x2 − x3 = 1

3x1 + 5x2 + 2x3 = 8

x1 − 2x2 − 3x3 = −1

Solution

A =
⎡⎢⎢⎣
2 3 −1
3 5 2
1 −2 −3

⎤⎥⎥⎦ , D = det(A) = 22

D1 =
||||||

1 3 −1
8 5 2
−1 −2 −1

|||||| , D2 =
||||||
2 1 −1
3 8 2
1 −1 −3

|||||| , D3 =
||||||
1 3 1
3 5 8
1 −2 −1

||||||
= 66 = −22 = 44

Thus,

x1 =
D1

D
= 66

22
= 3; x2 =

D2

D
= −22

22
= −1; x3 =

D3

D
= 44

22
= 2

◾

Example 6.155 Solve by Cramer’s method.

x1 + 3x2 + x3 = −2

2x1 + 5x2 + x3 = −5

x1 + 2x2 + 3x3 = 6

Solution

A =
⎡⎢⎢⎣
1 2 1
2 5 1
1 2 3

⎤⎥⎥⎦ ; D = −3; D1 = −3, D2 = 6, D3 = −9

Thus,
x1 = 1, x2 = −2, x3 = 3 ◾
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Example/Exercise 6.156 Show that the following system of linear equations is
a Cramer system and find its solution:

2x1 − 3x2 + 5x3 = 1

x1 + 2x2 − 2x3 = 2

3x1 − x2 − x3 = 3

6.17 SYSTEMS OF LINEAR EQUATIONS II

In the previous section, we have defined (Definition 6.69 a homogeneous system
of linear equations, , as a system whose all free terms 𝛽i ( i = 1, … ,m) are
equal to zero, that is, a system

n∑
k=1

𝛼ikxk = 0, i = 1, … ,m (*)

which, written in matrix form, reads

AX = O (**)

Put differently and in more general terms, if

F ∶ Rn → Rm

is a linear operator whose matrix in a standard basis is A, then a solution of a
homogeneous equation (**) is a linear subspace of Rn, that is,

S = Ker(F)

Needless to say, (**) always has a trivial solution, namely

x1 = x2 = · · · = xn = 0

But what about nontrivial solutions? Let’s see. First, recall that in “operator lan-
guage,” what equations (*) and (**) are actually saying is that the operator

F ∶ Mn1 → Mm1

is such that the set of solutions is equal to Ker(F), that is,

S = F−1(O) = Ker(F)
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where O = B =
⎡⎢⎢⎣
0
⋮
0

⎤⎥⎥⎦ ∈ Mm1. In other words, C =
⎡⎢⎢⎣
𝛾1
⋮
𝛾n

⎤⎥⎥⎦ ∈ Mn1 is a solution of (**)

iff C ∈ Ker(F). But remember, Ker(F) < Mn1, and dim (Ker(F)) = d(F), thus by
Theorem 6.39

r(F) + d(F) = dim(Mn1) = n

d(F) = n − r(F)

So we have

Theorem 6.92 A homogeneous system of m linear equations with n unknowns
and a matrix of coefficients A, such that r(F) = r(A) has

(i) only a trivial solution iff r(A) = n,
(ii) also nontrivial solutions iff r(A) < n,

(iii) also nontrivial solutions if m < n.

Theorem 6.93 (Rouche) A homogeneous system of n linear equations, with n
unknowns and a matrix of coefficients A, has a nontrivial solution iff det A = 0.

Proof Suppose det(A) ≠ 0. Then we have r(A) = m = n and, by the previous
theorem, our system would have only a trivial solution. ◾

We illustrate this with the following example.

Example 6.157 Let’s show that a system AX = O, where A =
⎡⎢⎢⎣
1 2 0
0 1 3
2 1 3

⎤⎥⎥⎦ has

only a trivial solution.
Written explicitly, our system reads

AX = O

=
⎡⎢⎢⎣
1 2 0
0 1 3
2 1 3

⎤⎥⎥⎦
⎡⎢⎢⎣
x1
x2
x3

⎤⎥⎥⎦ =
⎡⎢⎢⎣
0
0
0

⎤⎥⎥⎦
Thus,

X = A−1O

=
⎡⎢⎢⎣
1 2 0
0 1 3
2 1 3

⎤⎥⎥⎦
−1

⋅
⎡⎢⎢⎣
0
0
0

⎤⎥⎥⎦ =
⎡⎢⎢⎣
0
0
0

⎤⎥⎥⎦
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That means that a trivial solution exists if A−1 exists, that is, A is regular. But an
(n, n) matrix is regular iff r(A) = n, that is, the rank is maximal. In our case, the
rank should be 3. Well, let’s see:

By applying elementary row operations, we get

⎡⎢⎢⎣
1 2 0
0 1 3
2 1 3

⎤⎥⎥⎦ ∼ · · · ∼
⎡⎢⎢⎣
1 0 −6
0 1 3
0 0 1

⎤⎥⎥⎦
The number of pivots is 3 (see Definition 6.59), so r(A) = 3. Hence, A is regular,
and our system has only a trivial solution.

Of course, we could have invoked Rouche’s theorem and simply shown that

det(A) ≠ 0

concluding that our homogeneous system has only a trivial solution. ◾

Now we turn again to a nonhomogeneous system, that is, to a system

n∑
k=1

𝛼ikxk = 𝛽i, i = 1, … ,m (*)′

where at least one of free terms is different from zero.
In other words, we are considering

AX = B, B ≠ O (**)′

Evidently, we can associate with every nonhomogeneous system (*)′ a corre-
sponding homogeneous system (*), or equivalently, to each system (**)′ we can
associate a system (**). A natural question to ask next is : what is the relationship
between corresponding homogeneous and nonhomogeneous systems? Well, let
F ∶ Rn → Rm be a linear operator corresponding to our system (*)′/(**)′. More
transparently, we write this as

F ∶ Mn1 → Mm1

Remember, if we assume that our system (*)′ is solvable, then a set of solutions
is

S = F−1(B) ≠ 0

and also
r(A) = r(A)
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If C0 ∈ S is any vector from S. such that

F(C0) = B

we say that C0 is a particular solution of the nonhomogeneous system (*)′. If
C ∈ S is another solution of (*)′, that is, F(C) = B, then

F(C − C0) = F(C) − F(C0)

= B − B

= 0

Thus,
C − C0 ∈ Ker(F)

and we see that
C ∈ C0 + Ker(F), ∀ C ∈ S

Now we are ready to proceed with another practical algorithm for solving systems
of linear equations.

Gauss–Jordan Method

Let’s remind ourselves of the techniques and procedures that we have encountered
before in a different context.

Elementary Transformations on a System of Linear Equations

(i) Interchange two equations.
(ii) Multiply an equation through by a nonzero constant.

(iii) Add a multiple of one equation to another equation.

Equivalently,

Elementary Row Operations on Matrices

(E1) Interchange two rows of a matrix
(E2) Multiply the elements of a row by a nonzero constant
(E3) Add a multiple of the elements of one row to the corresponding elements

of another row

The aforementioned procedures are formally justified by

Theorem 6.94 After a finite number of elementary transformations (i–iii) is
performed on a linear system , the newly obtained system, ′, is equivalent
to .
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Proof Equivalence under (i) and (ii) is obvious. We only need to show equiv-
alence under transformation (iii).

Let our system  be

n∑
k=1

𝛼ikxk = 𝛽i, i = 1, … , m (*)

Suppose that we add the jth equation to the ith equation (i ≠ j), to get a new
system

n∑
k=1

𝛼′ikxk = 𝛽′i , i = 1, … , m (**)

Note that (*) and (**) differ only in the ith equation, which now reads

n∑
k=1

(𝛼ik + 𝛼jk)xk = 𝛽i + 𝛽j

If (𝛾1, … , 𝛾n) is any solution of the system labeled (*), then

n∑
k=1

𝛼ik𝛾k = 𝛽i and
n∑

k=1

𝛼jk𝛾k = 𝛽j

and thus,

n∑
k=1

𝛼′ik𝛾k =
n∑

k=1

(𝛼ik + 𝛼jk)𝛾k

=
n∑

k=1

𝛼ik𝛾k +
n∑

k=1

𝛼jk𝛾k

= 𝛽i + 𝛽j

= 𝛽′i

We see that (𝛾1, … , 𝛾n) is also a solution of (**). Conversely, if (𝛾 ′1, … , 𝛾 ′n) is a
solution of (**), we can write

n∑
k=1

(𝛼ik + 𝛼jk)𝛾 ′k = 𝛽i + 𝛽j

and
n∑

k=1

𝛼jk𝛾
′
k = 𝛽j
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Then,

n∑
k=1

(𝛼ik + 𝛼jk)𝛾 ′k −
n∑

k=1

𝛼jk𝛾
′
k = 𝛽i + 𝛽j − 𝛽j

= 𝛽i

and we see that (𝛾 ′1, … , 𝛾 ′n) satisfies the ith equation of (*). Thus, (𝛾 ′1, … , 𝛾 ′n) is
a solution of (*). ◾

Definition 6.73 Two systems of linear equations are said to be equivalent sys-
tems if one can be obtained from the other by a finite number of elementary
transformations.

Similarly,

Definition 6.74 Two matrices are said to be row equivalent if one can be
obtained from the other by a finite number of elementary row operations.

Consequently, the following theorem holds.

Theorem 6.95 Two systems of linear equations are equivalent iff their aug-
mented matrices are row equivalent.

Finally, let’s recall the concept of a matrix in (reduced) echelon form (Defini-
tion 6.57, 6.58): A matrix is in echelon form if

(i) All rows consisting entirely of zeros are at the bottom of the matrix.
(ii) The leading nonzero entry of each row is 1, and it is to the right of the

leading entry in the preceding row.
(iii) All other elements in a column that contains a leading 1 are zero.

Equipped with the aforementioned technique, we are ready to move toward
solving a linear system AX = B by the Gauss–Jordan method.

Suppose a system of linear equations

n∑
k=1

𝛼ikxk = 𝛽i, i = 1, … , m (6.25)

is such that r = r(A) is the rank of matrix A. We would like to replace (6.25) by
an equivalent one, say,

n∑
k=1

𝛼′ikxk = 𝛽′i , i = 1, … , r (6.26)
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which is simpler to solve. So, we take an augmented matrix of our system A,
whose rank is r, and transform it to its equivalent matrix A′ in echelon form,
from which we can easily extract the information we are looking for:

A =
⎡⎢⎢⎣
𝛼11 · · · 𝛼1n 𝛽1
⋮ · · · ⋮ ⋮
𝛼m1 · · · 𝛼mn 𝛽m

⎤⎥⎥⎦ ∼ · · ·

∼

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0 𝛼′1r+1 · · · 𝛼′1n 𝛽′1
0 1 · · · 0 𝛼′2r+1 · · · 𝛼′2n 𝛽′2
⋮ ⋮ · · · ⋮ ⋮ · · · ⋮ ⋮
0 0 · · · 1 𝛼′rr+1 · · · 𝛼′rn 𝛽′r
0 0 · · · 0 0 · · · 0 𝛽′r+1
⋮ ⋮ · · · ⋮ ⋮ · · · ⋮ ⋮
0 0 · · · 0 0 · · · 0 𝛽′m

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= A′ (6.27)

A′ is more advantageous for us since it corresponds to a rather simple system:

x1 + 𝛼′1r+1xr+1 + · · · + 𝛼′1nxn = 𝛽 ′1
x2 + 𝛼′2r+1xr+1 + · · · + 𝛼′2nxn = 𝛽 ′2

· · · · · · · · · · · ·
xr + 𝛼′rr+1xr+1 + · · · + 𝛼′rxn = 𝛽 ′r

0 ⋅ x1 + 0 ⋅ x2 + · · · + 0 ⋅ xr + 0 ⋅ xr+1 + · · · + 0 ⋅ xn = 𝛽 ′r+1

· · · · · · · · · · · · · · ·
0 ⋅ x1 + 0 ⋅ x2 + · · · + · · · + · · · + · · · + 0 ⋅ xn = 𝛽 ′m

(6.28)

Keeping in mind that (6.28) is still equivalent to (6.25), we note:

(i) if any of 𝛽′r+1, … , 𝛽′m is different from zero then (6.28), and therefore
(6.25), is unsolvable;

(ii) if, on the other hand, 𝛽′r+1 = 𝛽
′
r+2 = · · · = 𝛽′m = 0, (6.28) is solvable and is

reducible to a simpler system with only r equations (while still equivalent
to the original system (6.25)):

x1 + 𝛼′1r+1xr+1 + · · · + 𝛼′1nxn = 𝛽′1
x2 + 𝛼′2r+1xr+1 + · · · + 𝛼′2nxn = 𝛽′2

· · · · · · · · · · · · · · ·
xr + 𝛼′rr+1xr+1 + · · · + 𝛼′rxn = 𝛽′r

(6.29)
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From (6.29), we can immediately read the following solutions:

x1 = 𝛽′1 − 𝛼
′
1r+1t1 − · · · − 𝛼′1ntd

x2 = 𝛽′2 − 𝛼
′
2r+1t1 − · · · − 𝛼′2ntd

⋮ ⋮ ⋮ ⋮

xr = 𝛽′r − 𝛼′rr+1t1 − · · · − 𝛼′rtd
xr+1 = t1

xr+2 = t2

⋮

xn = td

(6.30)

where d = n − r, and t1, … , td ∈ Φ are free parameters.
Let’s pause here for a while and work on a few examples.

Example 6.158 Solve the following system of linear equations:

3x1 − 3x2 + 3x3 = 9

2x1 − x2 + 4x3 = 7

3x1 − 5x2 − x3 = 7

Solution

A =
⎡⎢⎢⎣
3 −3 3 | 9
2 −1 4 | 7
3 −5 −1 | 7

⎤⎥⎥⎦ ∼
⎡⎢⎢⎣
1 −1 1 | 3
2 −1 4 | 7
3 −5 −1 | 7

⎤⎥⎥⎦ ∼
⎡⎢⎢⎣
1 −1 1 | 3
0 1 2 | 1
0 −2 −4 | −2

⎤⎥⎥⎦
∼
⎡⎢⎢⎣
1 0 3 | 4
0 1 2 | 1
0 0 0 | 0

⎤⎥⎥⎦
So we have

x1 + 3x3 = 4

x2 + 2x3 = 1

that is,

x1 = 4 − 3x3

x2 = 1 − 2x3
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Now we are free to assign an arbitrary value to x3, say, t ∈ R, and we have a
general solution of our system

x1 = 4 − 3t

x2 = 1 − 2t ◾

Example 6.159 Solve the following system of linear equations:

x1 + 3x2 − 2x3 + 2x5 = 0

2x1 + 6x2 − 5x3 − 2x4 + 4 x5 − 3x6 = −1

5x3 + 10x4 + 15x6 = −1

2x1 + 6x2 + 8x4 + 4x5 + 18x6 = 6

Solution

A =
⎡⎢⎢⎢⎣
1 3 −2 0 2 0 | 0
2 6 −5 −2 4 −3 | −1
0 0 5 10 0 15 | 5
2 6 0 8 4 18 | 6

⎤⎥⎥⎥⎦ ∼
⎡⎢⎢⎢⎣
1 3 −2 0 2 0 | 0
0 0 −1 −2 0 −3 | −1
0 0 5 10 0 15 | 5
0 0 4 8 0 18 | 6

⎤⎥⎥⎥⎦
∼
⎡⎢⎢⎢⎣
1 3 −2 0 2 0 | 0
0 0 1 2 0 3 | 1
0 0 0 0 0 0 | 0
0 0 0 0 0 6 | 2

⎤⎥⎥⎥⎦ ∼
⎡⎢⎢⎢⎣
1 3 −2 0 2 0 | 0
0 0 1 2 0 3 | 1
0 0 0 0 0 1 | 1

3
0 0 0 0 0 0 | 0

⎤⎥⎥⎥⎦
∼
⎡⎢⎢⎢⎣
1 3 −2 0 2 0 | 0
0 0 1 2 0 0 | 0
0 0 0 0 0 1 | 1

3
0 0 0 0 0 0 | 0

⎤⎥⎥⎥⎦
The corresponding equations are

x1 + 3x2 + 4x4 + 2x5 = 0

x3 + 2x4 = 0

x6 =
1
3

and thus,

x1 = −3x2 − 4x4 − 2x5

x3 = −2x4

x6 =
1
3
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Assigning parameters r, s, and t to free variables x2, x4, and x5, respectively,
we get the general solution

x1 = −3r − 4s − 2t

x2 = r

x3 = −2s

x4 = s

x5 = t

x6 =
1
3

which, in vector notation, is

⎡⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
x4
x5
x6

⎤⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
1
3

⎤⎥⎥⎥⎥⎥⎥⎦
+ r

⎡⎢⎢⎢⎢⎢⎢⎣

−3
1
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎦
+ s

⎡⎢⎢⎢⎢⎢⎢⎣

−4
0
−2

1
0
0

⎤⎥⎥⎥⎥⎥⎥⎦
+ t

⎡⎢⎢⎢⎢⎢⎢⎣

−2
0
0
0
1
0

⎤⎥⎥⎥⎥⎥⎥⎦
◾

Example 6.160 Solve the following system of linear equations:

8x1 − 2x2 + 4x3 + 3x4 + x5 = 2

x2 − 4x3 + x4 − 2x5 = −10

2x1 + x2 − 4x4 = 1

Solution

A =
⎡⎢⎢⎣
8 −2 4 3 1 | 2
0 1 −4 1 −2 | −10
2 1 0 −4 0 | 1

⎤⎥⎥⎦
∼
⎡⎢⎢⎣
2 1 0 −4 0 | 1
0 1 −4 1 −2 | −10
8 −2 4 3 1 | 2

⎤⎥⎥⎦ ∼
⎡⎢⎢⎣
2 1 0 −4 0 | 1
0 1 −4 1 −2 | −10
0 −6 4 19 1 | −2

⎤⎥⎥⎦
∼
⎡⎢⎢⎣
2 0 4 −5 2 | 11
0 1 −4 1 −2 | −10
0 0 −20 25 −11 | −62

⎤⎥⎥⎦ ∼
⎡⎢⎢⎢⎣
2 0 0 0 −1∕5 | −7∕5
0 1 0 −4 1∕5 | 12∕5
0 0 1 −25∕20 11∕20 | 62∕20

⎤⎥⎥⎥⎦
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∼
⎡⎢⎢⎢⎣
1 0 0 0 −1∕10 | −7∕10

0 1 0 −4 1∕5 | 12∕5
0 0 1 −5∕4 11∕20 | 62∕20

⎤⎥⎥⎥⎦
The corresponding equations are

x1 − 1
10

x5 = −
7

10

x2 − 4x4 +
1
5

x5 = 12
5

x3 −
5
4

x4 +
11
20

x5 = 62
20

Thus, we have

x1 = −
7
10
+ 1

10
x5

x2 =
12
5
+ 4x4 −

1
5

x5

x3 =
31
10
+ 5

4
x4 −

11
20

x5

For the free variables x4 and x5, we choose s and t, respectively, and the general
solution of our system is

x1 = −
7

10
+ 1

10
t

x2 =
12
5
+ 4s − 1

5
t

x3 =
31
10
+ 5

4
s − 11

20
t

x4 = s

x5 = t

In vector/matrix notation, the solution reads

⎡⎢⎢⎢⎢⎣
x1
x2
x3
x4
x5

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣

−7∕10

12∕5
31∕10

0

0

⎤⎥⎥⎥⎥⎥⎥⎦
+ s

⎡⎢⎢⎢⎢⎢⎢⎣

0

4
5∕4
1

0

⎤⎥⎥⎥⎥⎥⎥⎦
+ t

⎡⎢⎢⎢⎢⎢⎢⎣

1∕10

−1∕5
11∕20

0

1

⎤⎥⎥⎥⎥⎥⎥⎦ ◾
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Example 6.161 Solve the following system of linear equations:

x1 + x2 − 2x3 + 3x4 = 4

2x1 + 3x2 + 3x3 − x4 = 3

5x1 + 7x2 + 4x3 + x4 = 5

Solution The augmented matrix is

A =
⎡⎢⎢⎣
1 1 −2 3 ∣ 4
2 3 3 −1 ∣ 3
5 7 4 1 ∣ 5

⎤⎥⎥⎦ ∼
⎡⎢⎢⎣
1 1 −2 3 ∣ 4
0 1 7 −7 ∣ −5
0 2 14 −14 ∣ −15

⎤⎥⎥⎦
∼
⎡⎢⎢⎣
1 1 −2 3 ∣ 4
0 1 7 −7 ∣ −5
0 0 0 0 ∣ −5

⎤⎥⎥⎦
We can stop here and conclude that our system has no solution, since the third
row corresponds to a degenerate equation

0x1 + 0x2 + 0x3 + 0x4 = −5

which, obviously, is inconsistent. ◾

Continuing our discussion preceding the four aforementioned examples, let’s
make a few more observations: Looking closely at the general solution (6.30) of
our equation AX = B, one immediately recognizes that we could express it as

X = C0 + H

where C0 is one particular solution and H is a general solution of the correspond-
ing homogeneous system. Indeed, if we take all d parameters to be equal to zero,
that is, t1 = t2 = · · · = td = 0 then

C0 =

⎡⎢⎢⎢⎢⎢⎢⎣

𝛽′1
⋮
𝛽′r
0
⋮
0

⎤⎥⎥⎥⎥⎥⎥⎦
is one particular solution of (6.30). We can continue choosing solutions
by picking for the first, t1 = 1, t2 = t3 = · · · = td = 0; for the second,
t1 = 0, t2 = 1, t3 = t4 = · · · = 0; and so on, until finally for the dth solution,
t1 = t2 = · · · = td−1 = 0, td = 1
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The vectors Ci for i = 1, … , d are

C1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−𝛼1r+1
⋮

−𝛼rr+1
1
0
⋮
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, C2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−𝛼1r+2
⋮

−𝛼rr+2
0
1
⋮
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, … .., Cd =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−𝛼1n
⋮
−𝛼rn

0
0
⋮
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
and they are linearly independent. Since there are d of them, they form a fun-
damental set of solutions for a homogeneous system corresponding to (6.29).
Evidently, then

X = C0 + t1C1 + · · · + tdCd (6.31)

is a general solution of (6.29). At the same time, (6.31) is also a general solution
of (6.30). Needless to say, since systems (6.29), (6.28), and (6.25) are equivalent,
(6.30) is the general solution of (6.25) that we have been searching for.

Example 6.162 Solve

x1 + 2x2 + 2x3 + x5 = 3

2x1 − x3 − x4 + 5x5 = 2

x1 + 2x2 + 6x3 − x4 + 5x5 = 3

x1 − 2x2 + 5x3 − 12x4 + 12x5 = −1

Solution

A =
⎡⎢⎢⎢⎣
1 2 2 3 1 | 3
2 0 −1 −1 5 | 2
1 2 6 −1 5 | 3
1 −2 5 −12 12 | −1

⎤⎥⎥⎥⎦ ∼
⎡⎢⎢⎢⎣
1 2 2 3 1 | 3
0 −4 −5 −7 3 | −4
0 0 4 −4 4 | 0
0 −4 3 −15 11 | −4

⎤⎥⎥⎥⎦
∼
⎡⎢⎢⎢⎣
1 2 2 3 1 | 3
0 1 5∕4 7∕4 −3∕4 | 1
0 0 1 −1 1 | 0
0 −4 3 −15 11 | −4

⎤⎥⎥⎥⎦ ∼
⎡⎢⎢⎢⎢⎢⎣

1 0 −1∕2 −1∕2 5∕2 | 1

0 1 5∕4 7∕4 −3∕4 | 1

0 0 1 −1 1 | 0

0 0 8 −8 8 | 0

⎤⎥⎥⎥⎥⎥⎦
∼
⎡⎢⎢⎢⎣
1 0 0 −1 3 | 1
0 1 0 3 −2 | 1
0 0 1 −1 1 | 0
0 0 0 0 0 | 0

⎤⎥⎥⎥⎦
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So we have

x1 − x4 + 3x5 = 1

x2 + 3x4 − 2x5 = 1

x3 − x4 + x5 = 0

And the general solution is

x1 = 1 + s − 3t

x2 = 1 − 3s + 2t

x3 = s − t

x4 = s

x5 = t

Written in vector/matrix notation, the solution is

⎡⎢⎢⎢⎢⎣
x1
x2
x3
x4
x5

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
1
1
0
0
0

⎤⎥⎥⎥⎥⎦
+ s

⎡⎢⎢⎢⎢⎣
1
−3

1
1
0

⎤⎥⎥⎥⎥⎦
+ t

⎡⎢⎢⎢⎢⎣
−3

2
−1

0
1

⎤⎥⎥⎥⎥⎦ ◾

6.18 THE BASICS OF EIGENVALUE AND EIGENVECTOR THEORY

On our journey through linear algebra, as in the studies of other mathematical
disciplines (remember group theory), one especially welcomes the occurrence
of invariants, that is, features that are uniquely characteristic to the particular
mathematical object one is studying. You remember that in our studies of linear
operators, for instance, the rank and defect were some of those unique characteris-
tics that we found especially useful. Also, remember we called L < X an invari-
ant subspace of a space X, if under the action of an operator F ∈ Hom (X,X),
Fl ∈ L, ∀l ∈ L. Can we find the others? In particular, can we find an invariant
by examining the matrix representation of an operator, independent of the selec-
tion of coordinate basis? And, of course, if we could, what would that tell us
about the corresponding vector space? Well, suppose we start by asking how an
operator behaves on the simplest invariant subspace of X, that is, on a subspace
of dimension 1. That space is easy to construct. Take any nonzero vector x ∈ X
and consider the set of all scalar multiples of x, that is, L = { l = 𝜆x ∣ 𝜆 ∈ Φ}.
L is obviously a subspace of X, with respect to the same operations that make
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X a vector space. Now, if F ∈ Hom (X,X) is such that Fl ∈ L, then there exists
𝜆 ∈ Φ such that Fl = 𝜆l. With these ideas in mind, why not move forward and
be more general?

Definition 6.75 Let F ∶ X → X be an endomorphism of vector spaces, and let
A = AF be a matrix representation of F, such that

Ax = 𝜆x (*)

where x ∈ X is some nonzero vector,11 and 𝜆 ∈ Φ some scalar. We say that x
is an eigenvector of A, and 𝜆 is an eigenvalue of A. That is, an operator has an
eigenvalue iff there exists a nonzero vector that gets sent by the operator to a
scalar multiple of itself.

Example 6.163 Consider a vector space R2, and a vector x =
[

1
2

]
∈ R2. Then

x is an eigenvector of A =
[

3 0
8 −1

]
with eigenvalue 𝜆 = 3.

Indeed,

Ax =
[

3 0
8 −1

] [
1
2

]
=
[

3
6

]
= 3x ◾

Example 6.164 Let A =
[

3 1
2 2

]
be a matrix representing some endomorphism

R2 → R2. Then, x =
[

1
1

]
∈ R2 is an eigenvector of A with eigenvalue 𝜆 = 4.

Indeed,

Ax =
[

3 1
2 2

] [
1
1

]
= 4

[
1
1

]
= 4x ◾

11Note that we must require x ≠ 0, otherwise every scalar would satisfy equation (*).
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Example 6.165 Consider Λ =
⎡⎢⎢⎢⎣
𝜆 0 · · · 0 0
0 𝜆 · · · 0 0
⋮ ⋮ ⋮ ⋮
0 0 · · · 0 𝜆

⎤⎥⎥⎥⎦ = 𝜆I, 𝜆 ∈ Φ. Then, for

any x ∈ X, Λx = 𝜆x.
In other words, any vector is an eigenvector of Λ. ◾

Definition 6.76 Let A = (𝛼ik) be an (n, n) matrix over a field Φ. A matrix

C = A − 𝜆I

=
⎡⎢⎢⎢⎣
𝛼11 − 𝜆 𝛼12 · · · 𝛼1n
𝛼21 𝛼22 − 𝜆 · · · 𝛼2n
⋮ ⋮ ⋱ ⋮
𝛼n1 𝛼n2 · · · 𝛼nn − 𝜆

⎤⎥⎥⎥⎦
is called the characteristic matrix of A.

Definition 6.77 The determinant

det C = det(A − 𝜆I)

= an𝜆
n + an−1𝜆

n−1 + · · · + a0

= kA(𝜆), ai ∈ Φ

is called the characteristic polynomial of A.
The equation

det C = det(A − 𝜆I)

= an𝜆
n + an−1𝜆

n−1 + · · · + a0 = 0

is called the characteristic equation of A.

Example 6.166 Find the characteristic polynomial kA(𝜆) for

A =
[

1 2
3 4

]
Solution

kA(𝜆) = det(A − 𝜆I) =
||||1 − 𝜆 2

3 4 − 𝜆
||||

= (1 − 𝜆)(4 − 𝜆) − 6

= 𝜆2 − 5𝜆 − 2 ◾
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Example 6.167 Find the characteristic polynomial for

A =
⎡⎢⎢⎣
0 1 0
0 0 1
4 −17 8

⎤⎥⎥⎦
Solution

kA(𝜆) = det(A − 𝜆I) =
||||||
−𝜆 1 0

0 −𝜆 1
4 −17 8 − 𝜆

||||||
= −𝜆3 + 8𝜆2 + 17𝜆 + 4 ◾

Example/Exercise 6.168 Find the characteristic polynomial kA(𝜆) if

A =
⎡⎢⎢⎢⎣

3 0 0 13
−25 7 11 −6
18 0 1 5
0 0 0 −2

⎤⎥⎥⎥⎦.
In general, as the aforementioned examples show, the coefficients of the char-

acteristic polynomial are succinctly given by the following

Theorem 6.96 The coefficients of the characteristic polynomial of a matrix A
are as follows:

an = (−1)n, an−1 = (−1)n−1trA, a0 = det(A)

Theorem 6.97 Let F ∶ X → X be a linear operator whose matrix representation
is A = AF. Then the following are equivalent:

(i) A scalar 𝜆 ∈ Φ is an eigenvalue of A (eigenvalue of F).
(ii) The matrix A − 𝜆I is singular (the linear operator F − 𝜆I is singular).

(iii) 𝜆 ∈ Φ is a root of the characteristic polynomial kA(𝜆) (𝜆 ∈ Φ is a root
of the characteristic polynomial kF(𝜆)).

Theorem 6.98 An (n, n) matrix A is invertible iff 𝜆 = 0 is not an eigenvalue
of A.

Proof Let A be an (n, n) matrix whose characteristic polynomial is

kA(𝜆) = 𝜆n + an−1𝜆
n−1 + · · · + a1𝜆 + a0 (*)

We immediately realize that 𝜆 = 0 is an eigenvalue of A if a0 = 0.
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On the other hand, recall that A is invertible if det A ≠ 0. So, consider

det(A − 𝜆I) = kA(𝜆)

which, with 𝜆 = 0 becomes

det(A − 𝜆I) = det A

= a0

Thus, det A = 0 iff a0 = 0, in which case A is not invertible. Conversely,
if 𝜆 = 0 is not an eigenvalue of A, then det A = a0 ≠ 0, and A is an invertible
matrix. ◾

Theorem 6.99 If 𝜆 is an eigenvalue of an invertible linear operator F, then 𝜆−1

is an eigenvalue of F−1.

Proof Since F is invertible, by Theorem 6.98 𝜆 ≠ 0. Then there exists an eigen-
vector x ≠ 0, such that Fx = 𝜆x. But then

F−1Fx = F−1(𝜆x)

= 𝜆F−1x

Thus,
x = 𝜆F−1x

and so,

𝜆−1x = (𝜆−1𝝀) F−1x

= F−1x

Therefore, 𝜆−1 is an eigenvalue of F−1. ◾

Theorem 6.100 Similar matrices have the same characteristic polynomial.

Proof Recall: two (n, n)-matrices A and B are said to be similar, A ≃ B, if there
exists a regular (n, n) matrix T (a “change-of-basis” matrix), such that

B = T−1AT



�

� �

�

618 LINEAR ALGEBRA

So,

det(B − 𝜆I) = det(T−1AT − 𝜆T−1T)

= det(T−1AT − T−1(𝜆I)T)

= det(T−1(A − 𝜆I)T)

= det(T−1) ⋅ det(A − 𝜆I) ⋅ det(T)

= det(T−1) ⋅ det(T) ⋅ det(A − 𝜆I)

= det(T−1T) ⋅ det(A − 𝜆I)

= 1 ⋅ det(A − 𝜆I)

= det(A − 𝜆I) ◾

The important conclusion is this:
If F ∶ X → X is any linear operator and if AF and A′F are two matrix repre-

sentations of F in two different bases, then, since AF ≃ A′F, the characteristic
polynomials are basis independent, that is,

kA(𝜆) = kA′ (𝜆)

Finally, we need to answer the naturally occurring questions of finding the eigen-
values and eigenvectors for a given operator/matrix.

Example 6.169 Let’s find the eigenvalues and eigenvectors of an operator
whose matrix representation is

A =
[
−4 −6

3 5

]
We need to solve the characteristic equation kA(𝜆) = 0, that is,

kA(𝜆) = det(A − 𝜆I) = 0

=
||||−4 − 𝜆 −6

3 5 − 𝜆
||||

= 𝜆2 − 𝜆 − 2 = 0

= (𝜆 − 2)(𝜆 + 1) = 0

Thus, 𝜆1 = 2 and 𝜆2 = −1 are the eigenvalues of A. To find the eigenvectors, we
need to solve

(A − 𝜆1I)x = 𝟎
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and
(A − 𝜆2I)x = 𝟎

So, for 𝜆1 = 2, we have

(A − 𝜆1I)x =
[
−4 − 2 −6

3 3

] [
x1
x2

]
=
[

0
0

]
that is,

−6x1 − 6x2 = 0

3x1 + 3x2 = 0

Thus, x1 = −x2 = r, where r is some scalar, and the eigenvector of A, correspond-

ing to eigenvalue 𝜆1 = 2, is x𝜆1
= r

[
1

−1

]
.

Similarly, for 𝜆2 = −1, we have

(A − 𝜆2I)x =
[
−4 + 1 −6

3 5 + 1

] [
x1
x2

]
=
[

0
0

]
that is,

−3x1 − 6x2 = 0

3x1 + 6x2 = 0

Solving this we get x1 = −2x2 = −2s, where s ∈ R is some scalar. The corre-

sponding eigenvector of A is x𝜆2
= s

[
−2

1

]
.12

◾

Example 6.170 Let’s consider again A =
[

3 0
8 −1

]
, from Example 6.163, and

let’s find the corresponding eigenvalues and eigenvectors.

kA(𝜆) = det(A − 𝜆I) =
||||3 − 𝜆 0

8 −1 − 𝜆
||||

= (3 − 𝜆)(−1 − 𝜆)

12From now on, in order to avoid a clutter of subscripts, instead of writing x𝜆i
, we will simply write xi. I

hope this won’t cause any confusion.
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Thus,
(3 − 𝜆)(−1 − 𝜆) = 0

gives the eigenvalues 𝜆1 = 3 and 𝜆2 = −1.
Next, we calculate

(A − 𝜆I)x = 𝟎[
3 − 𝜆 0

8 −1 − 𝜆

] [
x1
x2

]
=
[

0
0

]
For 𝜆1 = 3, we get [

0 0
8 −4

] [
x1
x2

]
=
[

0
0

]
that is, 2x1 = x2 = r, where r ∈ R is some scalar. Hence, the corresponding eigen-

vector is x1 = r

[
1∕2

1

]
. With r = 2, we get x2 =

[
1
2

]
. ◾

Example 6.171 Let

A =
⎡⎢⎢⎣
−1 2 2

2 2 2
−3 −6 −6

⎤⎥⎥⎦
be the matrix representation of some linear operator F ∶ R3 → R3. Find the cor-
responding eigenvectors and eigenvalues.

Solution

kA(𝜆) = det(A − 𝜆I)

=
||||||
−1 − 𝜆 2 2

2 2 − 𝜆 2
−3 −6 −6 − 𝜆

||||||
= −𝜆(𝜆 + 2)(𝜆 + 3)

Solving kA(𝜆) = 0 we get 𝜆1 = 0, 𝜆2 = −2, 𝜆3 = −3. Now we find the corre-
sponding eigenvectors.

(A − 𝜆I)x = 𝟎

For 𝜆1 = 0, ⎡⎢⎢⎣
−1 2 2

2 2 2
−3 −6 −6

⎤⎥⎥⎦
⎡⎢⎢⎣
x1
x2
x3

⎤⎥⎥⎦ =
⎡⎢⎢⎣
0
0
0

⎤⎥⎥⎦
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that is,

−x1 + 2x2 + 2x3 = 0

2x1 + 2x2 + 2x3 = 0

−3x1 − 6x2 − 6x3 = 0

This gives us
x1 = 0, x2 = r, x3 = −r, r ∈ R

The corresponding eigenvector is x1 = r
⎡⎢⎢⎣

0
1
−1

⎤⎥⎥⎦.
Similarly, for 𝜆2 = −2 we get x2 = s

⎡⎢⎢⎣
2
−1

0

⎤⎥⎥⎦, and for 𝜆3, x3 = t
⎡⎢⎢⎣

1
0
−1

⎤⎥⎥⎦ , s, t ∈ R.

With this, we have obtained three characteristic subspaces L1,L2,L3 < R3 cor-
responding to eigenvalues 𝜆1, 𝜆2, and 𝜆3:

L1(𝜆1) =
⎧⎪⎨⎪⎩r

⎡⎢⎢⎣
0
1

−1

⎤⎥⎥⎦ | r ∈ R

⎫⎪⎬⎪⎭
L2(𝜆2) =

⎧⎪⎨⎪⎩s
⎡⎢⎢⎣

2
−1

0

⎤⎥⎥⎦ | s ∈ R

⎫⎪⎬⎪⎭
L3(𝜆3) =

⎧⎪⎨⎪⎩t
⎡⎢⎢⎣

1
0
−1

⎤⎥⎥⎦ | t ∈ R

⎫⎪⎬⎪⎭ ◾

As you might have expected, we appropriately call the subspaces occurring
in the aforementioned examples the eigenspaces corresponding to eigenvalues
𝜆1, 𝜆2, and 𝜆3. Thus,

Definition 6.78 Let F ∶ X → X be a linear operator, such that 𝜆i ∈ Φ are eigen-
values corresponding to eigenvectors xi ∈ X. We say that the set

Li = {xi | F(xi) = 𝜆ixi}

is an eigenspace of F corresponding to eigenvalue 𝜆i.
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We end this section with two motivating theorems.

Theorem 6.101 Every matrix A (every linear operator F) is a zero of its char-
acteristic polynomial.

Theorem 6.102 If F ∶ X → X is a linear operator whose matrix representa-
tion is A with different eigenvalues 𝜆1, … , 𝜆k corresponding to eigenvectors
x1, … , xk ∈ X, respectively, then the set L = {x1, … , xk} is the set of linearly
independent vectors.

Proof Let x1, … , xk ∈ X be the eigenvectors of A corresponding to distinct
eigenvalues 𝜆1, … , 𝜆k. Suppose the vectors in L = {x1, … , xk} are not lin-
early independent. Any eigenvector by definition is linearly independent, thus
L1 = {x1} is linearly independent. Let r ∈ N, 1 ≤ r < k, be the largest
number, such that Lr = {x1, … , xr} is linearly independent. Then, Lr+1 =
{x1, … , xr, xr+1} is certainly linearly dependent and there are r + 1 scalars
𝛼i ∈ Φ, not all equal to zero, such that

𝛼1x1 + · · · + 𝛼rxr + 𝛼r+1xr+1 = 𝟎 (*)

Multiplying both sides by A we get

𝛼1Ax1 + · · · + 𝛼rAxr + 𝛼r+1Axr+1 = 𝟎

and, keeping in mind that

Ax1 = 𝜆1x1, … , Axr+1 = 𝜆r+1 xr+1

we obtain
𝛼1𝜆1x1 + · · · + 𝛼r+1𝜆r+1xr+1 = 𝟎 (**)

Now, let’s multiply (*) by 𝜆r+1 and subtract the resulting equation from (**), that
is,

𝛼1(𝜆1 − 𝜆1+r)x1 + 𝛼2(𝜆2 − 𝜆r+1)x2 + · · · + 𝛼r(𝜆r − 𝜆r+1)xr = 𝟎

But, remember, Lr = {x1, … , xr} is a set of linearly independent vectors, so

𝛼1(𝜆1 − 𝜆1+r) = 𝛼2(𝜆2 − 𝜆r+1) = · · · = 𝛼r(𝜆r − 𝜆r+1) = 0

And, since all 𝜆i’s are assumed distinct, it follows that

𝛼1 = 𝛼2 = · · · = 𝛼r = 0
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Substituting these values in (*) yields

𝛼r+1xr+1 = 𝟎

Since eigenvector xr+1 ≠ 0, we conclude that 𝛼r+1 = 0. This contradicts our
assumption that not all 𝛼1, … , 𝛼r+1 are zero, and with this we complete our
proof. ◾

Do all matrices A = (𝛼ij), 𝛼ij ∈ R have (real) eigenvalues? Unfortunately not!
However, if A is a real symmetric matrix, then the following proposition is true.

Theorem 6.103 If A = (𝛼ij), 𝛼ij ∈ R, is a symmetric matrix, then all eigenval-
ues are real (the characteristic polynomial has all real zeros).

Theorem 6.104 If A = (𝛼ij), 𝛼ij ∈ R, is a matrix with n distinct eigenvalues,
then the corresponding eigenvectors constitute a basis for Rn.

Theorem 6.105 If 𝜆 ∈ Φ is an eigenvalue of a matrix A and x is the corre-
sponding eigenvector, then for every n ∈ N, 𝜆n is an eigenvalue of An for the
corresponding eigenvector x.

Proof If Ax = 𝜆x, then clearly for n = 2

A2x = A(A x)

= A𝜆x

= 𝝀(Ax)

= 𝜆(𝜆x)

= 𝜆2x

It follows that, assuming that the same holds for n = k,

Ak+1x = A(Akx)

= A(𝜆kx)

= 𝜆k(Ax)

= 𝜆k(𝜆x)

= 𝜆k+1x

Hence, Anx = 𝜆nx for every n ∈ N, as claimed. ◾
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Diagonalization, Eigenvalues, and Eigenvectors

Let F ∶ X → X be a linear operator with several matrix representations. One
would like to find a basis of X, with respect to which the matrix representation of
F is the simplest possible. As we have seen so far the simplest matrix represen-
tation of an operator is the one in which the matrix is diagonal.

Definition 6.79 A linear operator F ∶ X → X is said to be diagonalizable if
there exists a basis BX with respect to which the matrix representation [F]BX

is diagonal. Diagonalizable operators are sometimes also called semi-simple
operators.

Keeping in mind our definition of similar matrices, we also have

Definition 6.80 An (n, n) matrix A is said to be diagonalizable if there exists
a matrix T , such that

B = T−1AT

is a diagonal matrix.
Equivalently, a matrix A is diagonalizable if there exists an invertible matrix

T and a diagonal matrix B, such that A = TBT−1.

Theorem 6.106 A linear operator F ∶ X → X is diagonalizable iff there exists
a basis

BX = {x1, … , xn} < X

such that all xi ∈ BX are eigenvectors of F.

Proof Let BX = {x1, … , xn} be a basis, such that every xi is an eigenvector
of F corresponding to eigenvalue 𝜆i. Then,

F(xi) = 𝜆ixi

The matrix representation of F in this basis is clearly

D =
⎡⎢⎢⎢⎣
𝜆1 0 · · · 0
0 𝜆2 · · · 0
⋮ 0 ⋱ ⋮
0 0 · · · 𝜆n

⎤⎥⎥⎥⎦ , 𝜆i ∈ Φ

that is, a diagonal matrix. Conversely, if there is a basis BX = {x1, … , xn}, such
that the matrix representation of F in this basis is a diagonal matrix, that is,

[F]BX
=
⎡⎢⎢⎣
𝛽1 · · · 0
⋮ ⋱ ⋮
0 · · · 𝛽n

⎤⎥⎥⎦ , 𝛽i ∈ Φ
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then,
F(xi) = 𝛽ixi, i = 1, … , n

We see that the vectors xi ∈ BX are eigenvectors of F with corresponding eigen-
values 𝛽i. ◾

In other words, if a linear operator F ∶ X → X is diagonalizable, that is,
its matrix representation is diagonalizable, then the original system of linear
equations is reduced to a simple system

F(x1) = 𝛽1x1

F(x2) = 𝛽2x2

⋮ ⋱

F(xn) = 𝛽nxn

Formally, we state this as

Theorem 6.107 If an operator F ∶ X → X is diagonalizable, then its diagonal
matrix representation is a matrix whose (diagonal) elements are eigenvalues cor-
responding to eigenvectors of F.

Equivalently,

Theorem 6.108 If a matrix A has n distinct eigenvalues, then A is diagonaliz-
able.

Example 6.172 Let A =
[

1 1
−2 4

]
. Find a matrix T so that T−1AT is diagonal.

Solution First, we find the eigenvalues 𝜆.
Solving

det(A − 𝜆I) = 0||||1 − 𝜆 1
−2 4 − 𝜆

|||| = 0

= (1 − 𝜆)(4 − 𝜆) = 0

that is,
𝜆2 − 5𝜆 + 6 = 0

so. 𝜆1 = 2, 𝜆2 = 3.
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Next, we need to find the corresponding eigenvectors:
For 𝜆1 = 2: [

1 − 2 1
−2 4 − 2

] [
x1
x2

]
=
[
−1 1
−2 2

] [
x1
x2

]
=
[

0
0

]
Thus,

−x1 + x2 = 0

−2x1 + 2x2 = 0

and we have x1 = x2. So, the eigenvector corresponding to 𝜆1 = 2 is

x1 =
[

1
1

]
Similarly for 𝜆2 = 3:[

1 − 3 1
−2 4 − 3

] [
x1
x2

]
=
[
−2 1
−2 1

] [
x1
x2

]
=
[

0
0

]
we get

−2x1 + x2 = 0

that is, 2x1 = x2, and the eigenvector corresponding to the eigenvalue 𝜆2 = 3 is

x2 =
[

1
2

]
Evidently x1, x2 are linearly independent, and thus we can diagonalize our
matrix A. Let T be a matrix whose columns are x1 and x2, that is,

T =
[

1 1
1 2

]
T−1 turns out to be (you should check this)

T−1 =
[

2 −1
−1 1

]
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Finally, we get

T−1AT =
[

2 −1
−1 1

] [
1 1
−2 4

] [
1 1
1 2

]
=
[

2 0
0 3

]
Of course, we could have picked 𝜆1 = 3 and 𝜆2 = 2 and, following the same
procedure (you should do this too), we would have obtained

T−1AT =
[

3 0
0 2

]
◾

Example 6.173 Let’s consider the matrix from Example 6.171 again.

A =
⎡⎢⎢⎣
−1 2 2

2 2 2
−3 −6 −6

⎤⎥⎥⎦
We have already found three linearly independent vectors

x1 =
⎡⎢⎢⎣

0
1
−1

⎤⎥⎥⎦ , x2 =
⎡⎢⎢⎣

2
−1

0

⎤⎥⎥⎦ , x3 =
⎡⎢⎢⎣

1
0
−1

⎤⎥⎥⎦
So, we expect to diagonalize matrix A with matrix T T =

⎡⎢⎢⎣
0 2 1
1 −1 0
−1 0 −1

⎤⎥⎥⎦. We

also need T−1 =
⎡⎢⎢⎣

1 2 1
1 1 1
−1 −2 −2

⎤⎥⎥⎦ so that we can diagonalize matrix A:

T−1AT =
⎡⎢⎢⎣

1 2 1
1 1 1
−1 −2 −2

⎤⎥⎥⎦
⎡⎢⎢⎣
−1 2 2

2 2 2
−3 −6 −6

⎤⎥⎥⎦
⎡⎢⎢⎣

0 2 1
1 −1 0
−1 0 −1

⎤⎥⎥⎦
=
⎡⎢⎢⎣
0 0 0
0 −2 0
0 0 −3

⎤⎥⎥⎦
where the eigenvalues 𝜆1 = 0, 𝜆2 = −2, and 𝜆3 = −3 are exactly those
obtained in Example 6.18.9. ◾

The previous example leads us to the following conclusion.
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Theorem 6.109 Let A be a matrix representation of a linear operator F ∶ X →
X, that is,

A = [F]BX′

and let
A ≃ D = T−1AT

Then, T is a matrix whose columns are the coordinates of the eigenvectors in the
same basis B.

Example 6.174 Let F ∶ X → X be a linear operator whose matrix represen-
tation is

A =
⎡⎢⎢⎣
0 0 −2
1 2 1
1 0 3

⎤⎥⎥⎦
Let’s find the bases for the eigenspaces BX, whose vectors are columns of the
matrix that diagonalizes A, and let’s find

D = T−1AT

Solution

det(A − 𝜆I) =
||||||
0 − 𝜆 0 −2

1 2 − 𝜆 1
1 0 3 − 𝜆

||||||
= 𝜆3 − 5𝜆2 + 8𝜆 − 4

= (𝜆 − 1)(𝜆 − 2)2 = 0

So, the only two distinct eigenvalues are 𝜆1 = 1 and 𝜆2 = 2. The corresponding
eigenvectors follow:

For 𝜆1 = 1, we have

⎡⎢⎢⎣
−1 0 −2

1 1 1
1 0 2

⎤⎥⎥⎦
⎡⎢⎢⎣
x1
x2
x3

⎤⎥⎥⎦ =
⎡⎢⎢⎣
0
0
0

⎤⎥⎥⎦
and the system of linear equations is

−x1 − 2x3 = 0

x1 + x2 + x3 = 0

x1 + 2x3 = 0
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Solving this system we get

x1 = −2t, x2 = t, x3 = t

Thus, the eigenvectors corresponding to 𝜆1 = 1 are vectors of the form t
⎡⎢⎢⎣
−2

1
1

⎤⎥⎥⎦.
So, the basis vector is x1 =

⎡⎢⎢⎣
−2

1
1

⎤⎥⎥⎦.
For 𝜆2 = 2, we have

⎡⎢⎢⎣
−2 0 −2

1 0 1
1 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣
x1
x2
x3

⎤⎥⎥⎦ =
⎡⎢⎢⎣
0
0
0

⎤⎥⎥⎦
that is,

−2x1 − 2x3 = 0

x1 + x3 = 0

Solving this system yields

x1 = −s, x2 = t, x3 = s

The eigenvectors corresponding to 𝜆2 = 2 are vectors of the form

⎡⎢⎢⎣
−s

t
s

⎤⎥⎥⎦ = s
⎡⎢⎢⎣
−1

0
1

⎤⎥⎥⎦ + t
⎡⎢⎢⎣
0
1
0

⎤⎥⎥⎦
It is easy to verify that vectors x2 =

⎡⎢⎢⎣
−1

0
1

⎤⎥⎥⎦ and x3 =
⎡⎢⎢⎣
0
1
0

⎤⎥⎥⎦ are linearly independent

and thus they form a basis for the eigenspace corresponding to 𝜆2 = 2. Summing
up, the bases for the eigenspaces are formed by

x1 =
⎡⎢⎢⎣
−2

1
1

⎤⎥⎥⎦ , x2 =
⎡⎢⎢⎣
−1

0
1

⎤⎥⎥⎦ , x3 =
⎡⎢⎢⎣
0
1
0

⎤⎥⎥⎦
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and we expect that the matrix that diagonalizes A is

T =
⎡⎢⎢⎣
−2 −1 0

1 0 1
1 1 0

⎤⎥⎥⎦ .
Let’s see! We need

T−1 =
⎡⎢⎢⎣
−1 0 1

1 0 2
1 1 1

⎤⎥⎥⎦
to calculate

T−1AT =
⎡⎢⎢⎣
−1 0 −1

1 0 2
1 1 1

⎤⎥⎥⎦
⎡⎢⎢⎣
0 0 −2
1 2 1
1 0 3

⎤⎥⎥⎦
⎡⎢⎢⎣
−2 −1 0

1 0 1
1 1 0

⎤⎥⎥⎦
=
⎡⎢⎢⎣
1 0 0
0 2 0
0 0 2

⎤⎥⎥⎦
= D ◾

The technique of diagonalization can sometimes be the best way to compute
the powers of a matrix. Consider the following:

Let A = (𝛼ik) be a diagonalizable (n, n) matrix, and let T be the matrix that
diagonalizes A. Suppose we want to compute Ap where p ∈ N. Well, if A is diag-
onalizable by T , then

D = T−1AT =
⎡⎢⎢⎢⎣
𝜆1 0 · · · 0
0 𝜆2 · · · 0
⋮ ⋮ ⋮ ⋮
0 0 · · · 𝜆n

⎤⎥⎥⎥⎦
and certainly

D2 = (T−1AT)2 =
⎡⎢⎢⎢⎣
𝜆2

1 0 · · · 0
0 𝜆2

2 · · · 0
⋮ ⋮ ⋮ ⋮
0 0 · · · 𝜆2

n

⎤⎥⎥⎥⎦
But also,

(T−1AT)2 = (T−1AT)(T−1AT)

= T−1(ATT−1)AT

= T−1AAT

= T−1A2T

So, D2 = T−1A2T . Proceeding in the same way, we can obtain Dp = T−1ApT .
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Hence,

Ap = TDpT−1

= T

⎡⎢⎢⎢⎣
𝜆

p
1 0 · · · 0

0 𝜆
p
2 · · · 0

⋮ ⋮ ⋮ ⋮
0 0 · · · 𝜆

p
n

⎤⎥⎥⎥⎦ T−1

Example 6.175 Compute A9 if

A =
[
−4 −6

3 5

]
Solution

det(A − 𝜆I) =
||||−4 − 𝜆 −6

3 5 − 𝜆
||||

= 𝜆2 − 𝜆 − 2

Solving the characteristic equation

(𝜆 − 2)(𝜆 + 1) = 0

we get the eigenvalues of A: 𝜆1 = 2, and 𝜆2 = −1.
Next, we compute the eigenvectors:
For 𝜆1 = 2: [

−4 − 2 −6
3 5 − 2

] [
x1
x2

]
=
[

0
0

]
implies

−6x1 − 6x2 = 0

3x1 + 3x2 = 0

and thus x1 = −x2, and the eigenvectors corresponding to 𝜆1 = 2 are r

[
−1

1

]
.

Similarly, for 𝜆2 = −1:[
−4 + 1 −6

3 5 + 1

] [
x1
x2

]
=
[

0
0

]
yields

−3x1 − 6x2 = 0

3x1 + 6x2 = 0

and we have x1 = −2x2. The corresponding eigenvectors are s

[
−2

1

]
.
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Now, we know that a matrix

T =
[
−1 −2

1 1

]
diagonalizes matrix A, that is,

T−1AT =
[
−1 −2

1 1

]−1 [−4 −6
3 5

] [
−1 −2

1 1

]
=
[

1 2
−1 −1

] [
−4 −6

3 5

] [
−1 −2

1 1

]
=
[

2 0
0 −1

]
= D

To complete our calculation, we will need D9 =
[

512 0
0 −1

]
. So, finally, we have

A9 = TD9T−1

=
[
−1 −2

1 1

] [
512 0
0 −1

] [
1 2

−1 −1

]
=
[
−514 −1026

513 1025

]
◾

I admit this is rather boring, but one has to do it at least a couple of times
in one’s lifetime to get some proficiency and understanding of the underlying
principles. Consequently, here is another example, with some steps omitted, that
you should complete yourself.

Example 6.176 Find A13 if

A =
⎡⎢⎢⎣
0 0 −2
1 2 1
1 0 3

⎤⎥⎥⎦ .
Solution A matrix

T =
⎡⎢⎢⎣
−1 0 −2

0 1 1
1 0 1

⎤⎥⎥⎦
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diagonalizes A and its inverse is

T−1 =
⎡⎢⎢⎣

1 0 2
1 1 1

−1 0 −1

⎤⎥⎥⎦
So,

D = T−1AT =
⎡⎢⎢⎣
2 0 0
0 2 0
0 0 1

⎤⎥⎥⎦
Thus,

A13 = TD13T−1

=
⎡⎢⎢⎣
−1 0 −2

0 1 1
1 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣
213 0 0
0 213 0
0 0 113

⎤⎥⎥⎦
⎡⎢⎢⎣

1 0 2
1 1 1

−1 0 −1

⎤⎥⎥⎦
=
⎡⎢⎢⎣
−8190 0 −16382

8191 8192 8191
8191 0 16383

⎤⎥⎥⎦ ◾

Theorem 6.110 Let F ∶ X → X be a linear operator and A its (n, n) matrix
representation. Then, the following statements are equivalent:

(i) A is diagonalizable.
(ii) There are n linearly independent eigenvectors corresponding to A.

Proof (i)⇒(ii):
If A is diagonalizable, then there exists a matrix T such that

D = T−1AT

is a diagonal matrix. Then, of course,

TD = AT

Let x1, … , xn be column vectors of T . Note that, since T is regular, x1, … , xn
are linearly independent. Furthermore, let 𝜆1, … , 𝜆n be diagonal entries of D,
then

TD = [x1𝜆1 x2𝜆2 · · · xn𝜆n ]

= [𝜆1x1 𝜆2x2 · · · 𝜆nxn]
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and

AT = A[x1 x2 · · · xn]

= [Ax1 Ax2 · · · Axn]

So, we have
Ax1 = 𝜆1x1, Ax2 = 𝜆2x2, … , Axn = 𝜆nxn

And thus, being linearly independent vectors, x1, … , xn are the eigenvectors
of A.

(ii)⇒(i):
Suppose x1, … , xn are linearly independent eigenvectors of A corresponding

to eigenvalues 𝜆1, … , 𝜆n. Let

T = [x1 x2 · · · xn]

and let D be the diagonal matrix whose entries are 𝜆1, … , 𝜆n. Then,

AT = A[ x1 x2 · · · xn]

= [Ax1 Ax2 · · · Axn]

= [𝜆1x1 𝜆2x2 · · · 𝜆nxn]

= TD

But, T is a regular matrix and therefore,

T−1AT = D ◾

Finally, we would like to address the question of linear operators whose matrix
representation is not diagonalizable. For example, even a very simple matrix A =[

0 0
1 0

]
is not diagonalizable (as you can easily check).

Exercise 6.1 Determine whether the following matrix:

A =
⎡⎢⎢⎣

1 0 0
1 2 0
−3 5 2

⎤⎥⎥⎦
is diagonalizable or not.
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Solution As usual, we first calculate the characteristic polynomial

det(A − 𝜆I) =
||||||
1 − 𝜆 0 0

1 2 − 𝜆 0
−3 5 2 − 𝜆

||||||
= (1 − 𝜆)(2 − 𝜆)2

The solutions of the characteristic equation are 𝜆1 = 1 and 𝜆2 = 2. These
eigenvalues, as you can easily check, correspond to eigenvectors,

x1 =
⎡⎢⎢⎣

1∕8
−1∕8
1

⎤⎥⎥⎦ and x2 =
⎡⎢⎢⎣
0
0
1

⎤⎥⎥⎦
respectively. Since our matrix A is of type (n, n), and we have only two basis
vectors, we conclude that A is not diagonalizable.

Example/Exercise 6.177 Convince yourself that the following matrices:

A =
[

5 −3
3 −1

]
and

B =
⎡⎢⎢⎣

1 1 −1
−1 3 −1
−1 2 0

⎤⎥⎥⎦
are not diagonalizable.

6.19 SUPPLEMENTARY PROBLEMS

1. Let X = (R+; +, ⋅) be a set where operations on R+ are defined as follows:

x + y = x ⋅ y, ∀ x, y ∈ R+

𝜆 ⋅ x = x𝜆, ∀ x ∈ R+, 𝜆 ∈ R

Determine whether X is a vector space or not.

2. Let X = (R2; +, ⋅) where

x + y = (x1 + y1, x2 + y2), ∀ x, y ∈ X
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and
𝜆x = (𝜆x1, 0), ∀ x ∈ X, ∀𝜆 ∈ R

Determine whether X is a vector space or not.

3. Determine whether the following set of all pairs of real numbers
X = {(1, x) | x ∈ R} endowed with operations (1, x) + (1, y) = (1, x + y)
and 𝜆(1, x) = (1, 𝜆x), ∀ x, 𝜆 ∈ R is a vector space.

4. Let Φ be any field. Show that X = {0} is a (trivial) vector space.

5. Let S be any nonempty set, and Φ any field. Define

F = ΦS = { f | f ∶ S → Φ}

to be the set of all mappings from S to Φ. Show that, endowed with the
usual operations of addition of functions and multiplication of functions by
a scalar, F becomes a vector space.

6. Consider a set
RR = { f ∶ R → R}

of all real functions with the usual addition of functions and multiplication
of functions by a scalar. Show that such a set is a vector space.

7. Let R[0,1] = { f ∶ [0, 1] → R} be the set of all real functions from [0, 1] to R.
Show that, with the usual operations, R[0,1] is a vector space.

8. Consider a space Φ4 and a set

F = {(x1, x2, x3, x4) ∈ Φ4| x3 = 5x4 + a, a ∈ Φ}

Show that F is a subspace of Φ4 iff a = 0.

9. Consider a space Φ3 and the following subsets of Φ3:

A = {(x1, x2, x3) ∈ Φ3 | x1 + 2x2 + 3x3 = 0},

B = {(x1, x2, x3) ∈ Φ3 | x1 + 2x2 + 3x3 = 4},

C = {(x1, x2, x3) ∈ Φ3 | x1 = 3x3 }

Determine whether A < Φ3, B < Φ3, C < Φ3.

10. Determine whether

(i) L = {x = (x, 0, x, 0, …) | x ∈ R} is a subspace of R∞.
(ii) L = {x = (x, 1, x, 1, …) | x ∈ R} is a subspace of R∞.
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11. Let RR be the set of all real functions. Determine whether the following are
subspaces of RR:

(i) The set of all even functions.
(ii) The set of all odd functions.

12. Let L(X) be the set of all subspaces of a space X. Show that “to be a sub-
space” is a relation of equivalence.

13. Determine whether or not the following sets of vectors are independent
in R3:

(i) S = {(1, 1, 1), (2, 2, 2), (0, 1, 5)}
(ii) T = {(1, −2, 3), (7, 4, −2), (3, −6, 9)}

(iii) U = {(8, −1, 3), (4, 0, 1)}

14. Show that the following set of vectors is independent in R4:

S = {(1, 2, 2, −1), ((4, 9, 9, −4), (5, 8, 9, −5)}

15. Show that the following set of vectors is dependent in R4:

S = {(0, 1, 0, −1), (1, 3, 3, 3), (1, 2, 3, 4)}

16. Let X be a finite-dimensional vector space, and let S = {x1, … , xn} be a
set of linearly independent vectors from X. Show that a set

S = {x1 − x2, x2 − x3, x3 − x4, … , xn−1 − xn, xn}

is also linearly independent.

17. Determine whether or not the following set of vectors are independent in
P2(t):
(i) x1 = 2t2 + 1, x2 = t2 + 4t, x3 = t2 − 4t + 1

(ii) x1 = t2 + 3, x2 = t + 1, x3 = 2t2 − 3t + 3

18. Consider the space R3. Determine whether the following vectors
x1 = (1, −1, 0), x2 = (1, 1, 0) and x3 = (0, 1, 1) form a basis for R3.

19. Let L < R5 be a subspace defined by

L = {(x1, … , x5) ∈ R5 | x1 = 3x2, x3 = 7x4 }

Find a basis of L.
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20. Let L1, L2, L3 < R3 be three subspaces defined by

L1 = {(x, y, z) | x = z}, L2 = {(x, y, z) | x + y + z = 0},

L3 = {(0, 0, z)}.

Show that R3 = L1 + L2 = L2 + L3 = L1 + L3.

21. Let X be a finite-dimensional vector space and let L be a subspace of X.
Show that if dim L = dim X then L = X.

22. Let D =
{

D =
[

d11 0
0 d22

] | dii ∈ Φ
}

be the set of all diagonal matri-

ces over a field Φ. Show that D is a subspace of the space M22 of all
(2, 2)-matrices.

23. Let L,M < R3 be two subspaces. Show that L ∩M ≠ ∅.

24. Suppose F ∶ R3 → R2 is defined by

F(x) = F
⎡⎢⎢⎣
x
y
z

⎤⎥⎥⎦ =
[

x + y + z
2x − 3y + 4z

]
Show that F is a linear operator.

25. Show that

(i) F ∶ R2 → R2 defined by F(x) = F

[
x
y

]
=
[

x + y
x

]
is a linear operator,

and

(ii) F ∶ R2 → R2 defined by F(x) = F

[
x
y

]
=
[

xy
x

]
is not.

26. Let Mnn be the space of all (n, n)-matrices, and let M ∈ Mnn be some arbi-
trary but fixed matrix. Show that F ∶ Mnn → Mnn, defined by F(A) = AM +
MA, is a linear operator.

27. Let F ∶ R4 → R2 be a linear operator, such that

KerF = {(x1, x2, x3, x4)| x1 = 5x2; x3 = 7x4}

Show that F is surjective.

28. Let X,L be two finite-dimensional vector spaces. Show that if L < X, and
F ∶ L → X is an isomorphism, then L = X.

29. Let A be an (n, n) matrix. Show that
(i) A + A𝜏 is symmetric.

(ii) A − A𝜏 is antisymmetric.
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30. Show that if A is a matrix such that AA𝜏 = O, then A = O.

31. Show that if a matrix A is symmetric(antisymmetric), and B is any square
matrix, then B𝜏AB is symmetric (antisymmetric).

32. Show that the following matrix:

A =
⎡⎢⎢⎣

3∕7 2∕7 6∕7
−6∕7 3∕7 2∕7

2∕7 6∕7 −3∕7

⎤⎥⎥⎦
is orthogonal.

33. Show that if a matrix A satisfies one of the following two properties, then it
also satisfies the third.
(i) A is symmetric, (ii) A is orthogonal, and (iii) A is involutory.

34. Reduce the following matrices to echelon form:

(i) A =
⎡⎢⎢⎢⎣
1 2 −3 0
2 4 −2 2
3 6 −4 3
2 4 −2 3

⎤⎥⎥⎥⎦
(ii) B =

⎡⎢⎢⎢⎣
1 −7 10 2
1 2 2 1
3 3 4 2
1 5 3 5

⎤⎥⎥⎥⎦
35. Reduce the following matrices to row canonical form:

(i) A =
⎡⎢⎢⎣
5 −9 6
0 2 3
0 0 7

⎤⎥⎥⎦ , B =
⎡⎢⎢⎣
2 2 −1 6 4
4 4 1 10 13
8 8 −1 26 23

⎤⎥⎥⎦
36. Let A =

⎡⎢⎢⎢⎣
a11 0 · · · 0
0 a22 0 0
⋮ 0 ⋱ 0
0 0 · · · ann

⎤⎥⎥⎥⎦ , aii ≠ 0. Show that

Ã =
n∏

i=1

aii

⎡⎢⎢⎢⎢⎣
a−1

11 0 · · · 0

0 a−1
22 0 0

⋮ 0 ⋱ 0

0 0 · · · a−1
nn

⎤⎥⎥⎥⎥⎦
.

37. Show that
(i) (𝜆A) = 𝜆n−1Ã

(ii) (ÃB) = B̃Ã
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38. Let T ∶ R2 → R3 be a linear operator defined by the matrix T =⎡⎢⎢⎣
1 2
3 4
−1 −2

⎤⎥⎥⎦, and let x1 =
[
−1

1

]
, x2 =

[
2
4

]
, x3 =

[
−2

3

]
. Find T(x1), T(x2),

and T(x3).

39. Let P : Φ3 →Φ2 be a linear operator defined by P(𝛼, 𝛽, 𝛾) = (𝛼, 𝛽). Con-
vince yourself that its matrix representation in the standard basis (canonical
basis) is

P =
[

1 0 0
0 1 0

]
40. Let a matrix for the operator F ∶ R3 → R3 be defined in the standard

basis by

x′1 = 3x1 + 5x2 − x3

x′2 = 4x1 − x2 + x3

x′3 = 3x1 + 2x2 − x3

Find the matrix for F and calculate F
⎡⎢⎢⎣
1
2
3

⎤⎥⎥⎦.
41. Show that the “rotation” matrix

T =
[

cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

]
is orthogonal.

42. Matrices

(i) A =
[
−1 0

0 1

]
, B =

[
0 1
1 0

]
, C =

[
−1 0

0 0

]
represent reflections in

R2, and matrices

(ii) D =
[

d 0
0 1

]
, E =

[
1 0
0 d

]
, 0 < d < 1 represent contraction in

R2. Determine which particular reflection/contraction each matrix
pertains to.

43. Let an operator  be a composition of reflection about the X-axis, followed

by a rotation trough 𝜋

2
, followed by a dilatation of factor d. If x =

[
x
y

]
, find

 (x).

44. Find the inverse of A by row reducing [A|I] to [I|A−1].
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45. Consider the canonical basis of R2, E =
{

e1 =
[

1
0

]
, e2 =

[
0
1

]}
and

another basis, B =
{

b1 =
[

1
3

]
, b2 =

[
1
4

]}
. Find the change of basis

matrix E
T
−−→B

46. Let F ∶ R3 → R3 be a linear operator whose matrix representation in some
basis is

F =
⎡⎢⎢⎣
1 3 1
1 4 3
2 7 4

⎤⎥⎥⎦
Find the matrix of F in basis B =

⎧⎪⎨⎪⎩
⎡⎢⎢⎣
1
1
1

⎤⎥⎥⎦ ,
⎡⎢⎢⎣
0
1
1

⎤⎥⎥⎦ ,
⎡⎢⎢⎣
1
2
3

⎤⎥⎥⎦
⎫⎪⎬⎪⎭.

47. Let X′Y′ be a coordinate system in R2, obtained by rotating a system XY 30
∘

counterclockwise (see the figure below).

Y ′

X ′

X

Y

30°

30°

Find the change-of-base matrix for the X′Y′-system.

48. Let B = {b1, b2, b3} and B′ = {b′1, b′2} be the basis of X and Y , respec-
tively. Furthermore, let T ∶ X → Y be a linear operator such that

T(b1) = 2b′1 − b′2

T(b2) = 3b′1 + 2b′2

T(b3) = b′1 − 4b′2
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Find the matrix representation of T with respect to B,B′ basis and find T(x)
if x = 3b1 + 2b2 − b3.

49. Find the matrix representation of the following linear operators relative to
the canonical basis of Rn:

(i) F ∶ R3 → R2 defined by F(x1, x2, x3) = (2x1 − 4x2 + 9x3, 5x1 + 3x2 −
2x3)

(ii) F ∶ R4 → R defined by F(x1, x2, x3, x4) = 2x1 + x2 − 7x3 − x4.

50. Let

(i) A =
⎡⎢⎢⎣
1 1 0
2 3 1
0 2 3

⎤⎥⎥⎦. Find A−1 by reducing [A ∣ I] to the form [I ∣ A−1].

(ii) B =
⎡⎢⎢⎣
1 1 2
3 2 1
2 2 3

⎤⎥⎥⎦. Find B−1 by reducing [B ∣ I] to the form [I ∣ B−1].

(iii) C =
⎡⎢⎢⎣
1 0 2
2 −1 3
4 1 8

⎤⎥⎥⎦. Find C−1 by reducing [C ∣ I] to the form [I ∣ C−1].

51. Let

(i) A =
⎡⎢⎢⎣
3 0 1
1 1 2
2 −1 3

⎤⎥⎥⎦ and

(ii) B =
⎡⎢⎢⎣
1 2 1
3 −1 1
1 0 1

⎤⎥⎥⎦
Find A−1 and B−1 using Theorem 6.73.

52. Use Cramer’s method to solve the following system:

x1 + 2x3 = 6

−3x1 + 4x2 + 6x3 = 30

−x1 − 2x2 + 3x3 = 8

53. Use Cramer’s method to solve the following system:

x1 − 3x2 + x3 = 11

2x1 − x2 + 3x3 = 7

3x1 + x2 − 2x3 = 5
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54. Show that the following system of linear equations has no solution:

x1 + 2x2 + 3x3 = 3

2x1 + x2 + 3x3 = 3

x1 + x2 + 2x3 = 0

55. Solve the following system of linear equations by the Gauss–Jordan method:

x1 + 3x2 − 2x3 + x5 = 0

2x1 + 6x2 − 5x3 − 2x4 + 4x5 − 3x6 = 0

5x3 + 10x4 + 15x6 = 0

2x1 + 6x2 + 8x4 + 4x5 − 18x6 = 0

56. Solve the following system of linear equations by the Gauss–Jordan method:

3x1 + x2 − 3x3 + x4 − x5 = 1

2x1 − x2 + 7x3 − 3x4 + 5x5 = 2

3x1 − 2x2 + 7x3 − 5x4 − x5 = 3

x1 + 3x2 − 2x3 + 5x4 + 8x5 = 3

57. Solve the following system of linear equations by the Gauss–Jordan method:

x1 + x2 + 2x3 = 8

−x1 − 2x2 + 3x3 = 1

3x1 − 7x2 + 4x3 = 10

58. Solve the following system of linear equations by the Gauss–Jordan method:

x1 − 3x2 + 2x3 − x4 + 2x5 = 2

3x1 − 9x2 + 7x3 − x4 + 3x5 = 7

2x1 − 6x2 + 7x3 − 4x4 − 5x5 = 7

59. Find eigenvalues and eigenvectors for the following matrices:

(i) A =
[

0 3
8 −1

]
;

(ii) B =
[
−2 6

3 −0

]
;
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(iii) C =
⎡⎢⎢⎣
3 −1 1
7 −5 1
6 −6 2

⎤⎥⎥⎦;
(iv) D =

⎡⎢⎢⎣
4 0 1
−2 1 0
−2 0 1

⎤⎥⎥⎦.
60. Let F be an (n, n)matrix. Show that the coefficient of 𝜆n in the characteristic

polynomial is 1.

61. Let F ∶ R3 → R3 be an operator defined by

F
⎡⎢⎢⎣
x1
x2
x3

⎤⎥⎥⎦ =
⎡⎢⎢⎣

2x1 + x2 − 2x3
2x1 + 3x2 − 4x3

x1 + x2 − x3

⎤⎥⎥⎦
(i) Determine whether F is diagonalizable and, if so, find a T that diago-

nalizes F.
(ii) Find the eigenvalues and eigenvectors of F.

62. Let A =
[

a b
c d

]
, with a, b, c, d ∈ R. What are the necessary and sufficient

conditions so that A is diagonalizable?

63. Show that A =
⎡⎢⎢⎣

1 0 0
1 2 0
−3 5 2

⎤⎥⎥⎦ is not diagonalizable.

64. Let A =
⎡⎢⎢⎣
0 0 −2
1 2 1
1 0 3

⎤⎥⎥⎦. Find T that diagonalizes A and find A7.

65. Let A =
⎡⎢⎢⎢⎣
1 3 7 1
0 1

2
3 4

0 0 0 2
0 0 0 1

⎤⎥⎥⎥⎦. Find the eigenvalues of A9.
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Abel, N.H., 336
Abelian group, 336ff, 449
Absolute value 108
Absorption laws 33
Action (of G on X), 413ff

transitive, 417
Addition
as a group operation, 328ff

component, 450ff
of transfinites, 93ff
of functions, 335
of matrices, 330, 331, 507ff
of operators, 482ff
of vectors, 450ff
on a ring, 103
modulo n, 264ff

Aleph(s), 51ff
Algebra, 484

associative, 484
Boolean, 173ff

Algebraic method, 119
Algebraic structure, 51, 333ff
Alphabet, 7ff, 121, 186ff
Alternating group, 372ff
Ancestral tree, 133ff
Antecedent, 129ff
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Aristotle, 1, 116ff
Arithmetic

fundamental theorem of, 230
of transfinites, 92ff

Associative
algebra, 484
operation (on a group), 331ff
set operations, 33

Associativity
addition of matrices, 513
of composition of functions, 302, 332
of multiplication of matrices, 512

Augmented matrix, 586ff
Automorphism, 387

Aut(G) (set of all), 387
inner, 388
Int(G) (set of all), 388

Axiom(s)
of choice, 99ff, 119, 192
of comprehension, 13
of equality (extensionality), 172
of existence, 9, 171
of extensionality, 10ff
group, 334
of infinity, 22
of pairing, 18
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Axiom(s) (Continued)
Peano’s, 47
power set, 42
of union, 26

Banach –Tarski theorem (paradox), 192
Barber paradox, 5
Basis

vectors, 461
of a vector space, 461ff

Biconditional, 131ff
Bijection, 58ff, 289ff
Binary operation, 103ff, 328

well-defined, 328
Binary relation, 203, 248ff

antisymmetric, 203, 251
induced by partition, 266
reflexive, 203, 251
symmetric, 251
transitive, 203, 251

Binet, M. J. P., 235
formula, 235

Binet-Cauchy
formula, 540
theorem, 539

Boolean
algebra, 173ff
Boolean group, 349
logic, 121

Bound
greatest lower, 105
least upper, 105
lower, 105
upper, 105

Burali-Forti paradox, 92

Cancellation laws
left/right, 338ff

Cantor, G., 2ff
Cantor’s diagonal argument, 77ff
Cantor’s theorem, 64,76
Cardinal number(s) (cardinality), 8, 21ff

of basis, 463
of cosets, 421
of a group,356

Cartesian
n-space, 450
product, 8, 44ff

Cayley table, 335ff
theorem, 400

Center of a group, 401ff
Centralizer, 402ff
Characteristic equation, 615ff

Characteristic matrix, 615
Characteristic polynomial, 616ff
Change – of – basis, 567ff
Class

congruence, 425ff
equivalence, 418

Closed interval, 28
Closure, 328, 334ff
Codomain, 55, 274ff
Coefficient(s)

of linear equations
of a polynomial

Cofactor, 536
Collatz’s Conjecture, 187
Column

matrix, 503
vector(s), 548ff

Complement, 8, 31ff, 173ff
direct, 477

Complete
factorization, 379ff
formal system, 6

Completely ordered (Completeness property), 105
Complex number, 352, 354

conjugate transpose, 521
matrices, 521

Composite
integer, 202ff
natural number, 202ff

Composition
of bijections, 304, 350ff
of functions, 59ff , 296ff
of homomorphisms, 393
of isomorphisms, 396
of linear operators, 482ff
of permutations, 342ff
of symmetries, 351
of transformations, 348

Commutative
binary operation, 331ff
diagram(s), 306ff
group (abelian), 336ff
laws, 33ff
ring, 103

Commutator
product, 370
subgroup, 370

Components
of a vector, 450, 469ff, (see coordinates)

Conditional, 129ff
Congruence

(congruence modulo d), 263ff
class, 425

Conjunction, 127ff
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Conjugate (of n), 406
Conjugation, 395ff
Consequent, 129ff
Consistent

formal system, 6, 119ff
linear system
system of (linear) equations

Continuum hypothesis (CH), 84ff
generalized, 85

Contradiction, 132ff
proof by, 215ff

Contraposition
proof by, 217ff

Contrapositive, 144ff
Converse, 144ff
Coordinate basis (coordinate system), 556ff
Coordinate(s)

matrix, 557
of vector(s), 557ff
representation, 560

Correspondence
one-to-one (see bijection), 289

Coset
left/right, 404ff

Countable sets, 63ff
Countably infinite sets, 63
Counting numbers (natural numbers), 46
Cramer system, 593ff
Cramer’s method, 598ff
Cramer’s theorem, 595
Cycle(s), 373ff

disjoint, 376ff
Cyclic

group(s), 382ff
permutation, 373

Cylinder group, 439

d-cycle, 373
Decidable formal system, 6
Dedekind, 23
Dedekind’s cut, 106
Defect, 492
Definition, 121
Definition of a group, 334
DeMorgan’s laws, 33, 138, 176

generaliuzed, 39
Denumerable sets, 63
Determinant(s), 534ff

of a matrix, 536, 538ff
properties of, 540

Diagonal matrix, 505
Diagonalization, 624ff
Diagram

commutative, 306
Venn, 9ff

Digraph, 256ff
Dihedral group, 346, 348ff
Dimension of a vector space, 461, 463ff
Difference

of sets, 8, 30
symmetric, 8

Differential operator, 479
Direct

complement, 477
sum, 473ff

Direct product
of groups, 437ff
of homomorphisms, 441

Direct proof, 193ff
Direct sum of subspaces, 473ff, 493
Disjoint cycles/permutation, 376ff
Disjoint sets, 28
Disjunction, 127ff
Distributive law(s), 33ff

generalized, 36
Divisible, 202ff
Division algorithm, 205
Domain

of a function, 55ff, 275ff
of a relation, 248

doubleton (unordered pair), 18

Element
least, 203ff
maximal, 254
minimal, 220ff, 254
smallest, 205ff
idempotent
identity (neutral), 334
additive, 51ff
multiplicative, 103, 193ff
inverse, 334ff
neutral (identity), 334ff, 350ff
nilpotent
orbit of, 417ff
order of, 357ff
of a set, 3ff

Eigenvalue, 613, 614ff
Eigenvector, 613, 614ff
Elementary operations on matrices, 527ff
Elementary row operations on matrices, 603
Elementary transformations on a system of linear

equations, 603
Empty set, 16ff
Endomorphism–End(G), 387
Epagoge, 218
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Epimenides, 122
Epimorphism, 387ff
Equation(s)

characteristic, 615
homogeneous (system of), 586ff
nonhomogeneous (system of), 586
linear (system of), 447ff

Equipotent basis, 464
Equivalence

class(es), 267, 418
of sets, 59
mod d, 263
relation, 260ff

Equivalent
logically, 137ff
sets, 59ff

Equinumerous sets, 23, 62
Eubulides, 122
Euclid, 7, 63
Even permutation, 371ff, 538
Exclusive Or, 128ff
Existential

generalization, 170
quantifier, 155ff
statement, 159ff
instantiation, 170

Exponential function, 312
Expression, 186

Factor group, 423
Fibonacci

Numbers, 234
sequence, 232ff

Field
completely ordered, 105
ordered, 105

Finite-dimensional vector space, 463ff
Finite group, 336ff
Formal

axiomatic method, 119ff
language, 7, 120ff, 186
system, 6, 186

Formula, 186ff
well-formed, 121ff

Frege, 122
Function(s)

Bijective (bijection), 58ff, 289ff
codomain of, 55,56, 274ff
composition of, 59ff, 295ff
definition of, 14, 15ff, 274ff
domain of, 55, 56ff, 274ff
exponential, 312
identity, 284ff

image of, 56, 276ff
injective (injection), 57ff, 285ff
logarithmic, 312
one-to-one (injection), 57ff, 285ff
one-to-one correspondence, 58ff
onto (surjection), 58ff, 286ff
propositional, 125ff
range of, 56ff, 274ff
real, 278
real-valued, 278
restricted to, 94ff, 294ff
surjective (onto), 58ff, 286ff

Functional, 535
Fundamental theorem of arithmetic, 230

G – set, 413ff
G – orbit, 417
Gauss–Jordan method, 603ff
General liner group, 341, 514
Generalized distributive property, 36
Generalized DeMorgan’s law, 39
Generator of a group, 382ff
Gödel, K., 1ff
Goldbach’s Conjecture, 154, 187
Golden ratio, 235
Grammar, 120ff
Greatest common divisor (GCD), 207ff
Greatest lower bound (infimum), 255
Grelling, K., 5
Group(s)

abelian, 336ff
action, 413ff
affine – Aff (1,R), 355
alternating, 372ff
automorphism of, 388ff
axioms, 334
Boolean – B(X), 349
cardinality of, 356
center of, 401ff
commutative, 336ff
cyclic, 382ff
cylinder, 439
degree of, 346
dihedral, 346ff
nth dihedral, 348
endomorphism of, 387
factor, 423
finite, 336ff
general linear group – GL(n, R), 341
generator of, 382ff
homomorphism of, 385ff
infinite, 356ff
inner automorphism of, 388
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isomorphism of, 388ff
Klein four – group (Viergruppe), 340ff
neutral element (identity) of, 335ff
octic group (see symmetric group), 349
of permutations, 349ff
order of, 356ff
parity group, 340
quaternion, 352
quotient, 419ff
simple, 408
special linear group – SL(n, R), 341
subgroup of, 359
symmetric (of permutation), 342ff
torus, 439
unimodular, 547
Viergruppe, 340

Groupoid, 333

Half closed interval, 28
Half open interval, 28
Hamilton pairs, 354
Hereditary principle (Russell’s), 47
Hilbert, D., 2
Hilbert’s hotel, 81
Hom(X,Y)
Homogeneous system of equations, 586ff
Homomorphic image, 385ff, 419
Homomorphism, 385ff

Induced, 429
kernel of, 391ff
natural, 419
of pairs, 428

I (Irrational numbers), 71ff
Image

Im(f ), 56, 276
Im(F), 485ff
homomorphic, 391, 419ff

Idempotent matrix, 514
Identity

additive, 51, 449
automorphism, 437
element (neutral element, identity element), 8ff,

95, 103, 52, 334
function, 284ff
law of, 171
map, 350ff, 479
matrix, 504
multiplicative (with respect to multiplication),

103
operator, 479
permutation, 366, 371ff
relation, 259

ring with, 103
Iff (if and only if), 9
Index of a subgroup, 421
Index of nilpotence, 515
Indirect proof, 193ff, 212
Induced homomorphism, 430
Induction

method of (principle of) mathematical, 218,
219ff

strong principle of, 230ff
Infimum (greatest lower bound), 105, 255
Infinite-dimensional space
Infinite

order (of a group), 356, 357ff
set(s), 22ff

Injection, 57ff, (one-to-one), 285ff
Inner automorphism – Int(G), 388ff
Integer(s) Z, 8

set of 16ff
composite
non-negative, 17

Interpretation, 125ff
Intersection, 8

of sets, 27ff
of subgroups, 369ff
of subspaces, 471

Interval
closed, 28
half closed, 28
half open, 28
open, 28

Invariant subspace, 486ff
Inverse, 334ff

additive, 51, 450ff
of an element, 335ff
of a function, 59ff, 290ff
multiplicative, 103
operator, 484, 490ff
relation, 255ff

Inversion
in permutation, 371
of isomorphism

Invertible matrix, 515
Irrational numbers I, 8 71, 73ff
Isometry, 365
Isomorphic groups, 388f
Isomorphism

of groups, 388ff
of vector spaces, 490ff

Isomorphism theorems, 431, 432, 433

Kakutani’s problem (see Collatz conjecture),
187
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Kernel, Ker(f ), 391ff
Ker (F), 485ff

Kronecker – Capelli theorem, 592
Kronecker delta, 504

Lagrange’s theorem, 421
Language

Formal, 120ff
meta(language), 148
of set theory, 7ff

Law(s)
antisymmetric
cancellation, 107ff, 338ff
contradiction, 171
DeMorgan’s, 3, 38, 39ff, 176ff
distributive, 33, 36
excluded middle, 171
transitive, 108
trichotomy, 52ff

Least upper bound (supremum), 105, 255
Left

cancellation (law), 338ff
coset, 404

Leibniz, G.W., 6
Length of a cycle, 373
Linear

combination of vectors, 456ff
dependence, 456ff
equation, 447ff
homogeneous (system of equations), 586ff
nonhomogeneous (system of equations), 586ff
standard form of (equation), 585
system of equations, 585
general solution of (of system of), 608ff
independence, 456ff
operator, 478ff
space (vector space), 449ff
transformation, 478ff

Linear ordering (total ordering), 252
Linearly

dependent vectors, 456ff
independent vectors, 456ff

Logarithmic function, 312
Lower bound, 255

Main diagonal, 504
Marsenne conjecture, 212
Mathematical induction

principle of, 218, 219ff
strong principle of, 230ff

Matrix/matrices
addition, 330, 331, 507ff
augmented, 586ff

change-of-basis, 567
characteristic, 615
determinant of, 536, 538ff
echelon form of, 529ff
element(s), 501
definition of, 501
diagonal, 505
diagonalization of, 624
elementary operation on, 527
equality of, 505
idempotent, 514
identity, 504
inverse, 515
invertible, 515
involutory, 516
main diagonal of, 504
multiplication, 509

by a scalar, 507
nilpotent, 515
normal, 521
of linear transformation, 501
of rotation, 553, 554
rank of, 526ff
reflection, 551
regular (nonsingular), 515
row-equivalent, 605
orthogonal, 519
polynomial, 513
product of, 510ff
scalar, 505
singular, 515
skew-symmetric, 506
square, 503
sum of, 507
symmetric, 506
trace of, 504
transpose of, 506
transition, 567
triangular (lower/upper), 525
type of, 503
unit, 504

Maximal element, 102, 254
Member of a set, 8ff
Metric, 281ff
Minimal element, 219ff, 254
Minor, 535
Modus ponens, 150ff, 170

universal, 168
Modus tollens, 150ff

universal, 169, 170
Monomorphism, 387ff
Multiplication

mod n, 264
of matrices, 509, 510ff
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of alephs, 95
on a ring, 103

Musil, Robert, 183

N (natural numbers), 8
Nelson, L., 5
Neutral element(identity)

of a group, 334
with respect to addition, 8ff, 52,95, 103
with respect to multiplication, 103, 334

Natural homomorphism, 419
Natural map (natural projection), 425
Natural numbers (see N)
Noether, A.E., 427
Nonhomogeneous system of equations, 586ff
Nonnegative

integers, 8, 17ff
rational numbers, 8ff
real numbers, 8ff

Normal subgroup, 404ff
Normalizer, 412ff
Number(s)

cardinal, 8, 21, 87ff
complex, 352, 354
Fibonacci, 232, 234ff
irrational, 8 71, 73ff
natural, 8, 47, 48ff
prime, 54ff
rational, 8, 16, 53, 54ff
real, 8, 16, 71, 103, 107ff
relatively prime, 54ff

Odd permutation, 371ff
One-to-one correspondence (bijection), 58ff, 289ff
One-to-one function (injection), 57ff, 285ff
Open interval, 29ff
Operation

associative, 103ff, 331ff
binary, 103, 106ff, 328ff
commutative, 103, 331
unary, 173

Operator
defect of, 492
differential, 479
diagonalizable, 624ff
linear, 478ff
projection, 480
reflection, 480, 551ff
regular, 490
rank of, 492
semi-simple, 624
singular, 485
surjective, 487ff

Orbit (G-orbit), 417ff
Order(ing)

of a group, 357
of elements, 87, 357
partial, 203
total (linear), 203, 252
well, 203

Ordered
completely ordered (field), 105
linearly-ordered (set), 203
n-tuple, 20, 44
pair, 20, 248
partially (set), 102, 203, 252
totally ordered(set), 203
well-ordered (set), 203

Ordinal numbers, 87ff
Orthogonal group, 522
Orthogonal matrix, 519
Orthonormal vectors, 524

Partial ordering, 203, 252
Partition, 29ff, 265ff
Parity, 267

even, 371
group, 340
odd, 371
of permutation, 371ff

Peano’s axioms, 47
Permutation(s)

composition of, 342ff
cyclic, 373ff
disjoint, 376
even, 371
identity, 344, 366, 371ff
odd, 371
sign of, 371

Pigeonhole principle, 285, 288ff
Pivot, 529
Plato, 116, 180, 183
Platonist(s), 85, 119
Polynomial

characteristic, 615ff
root of, 514
zero of, 514

Poset, 203, 252
Power set, 42ff
Preimage, 56, 276
Prime number(s), 81

relatively, 71ff
Product

Cartesian, 8, 45ff
cycles, 375ff
direct (of groups), 437ff
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Product (Continued)
of pairs, 352
of matrices, 510
of scalar and a matrix, 507

Principle of mathematical induction
(PMI I), 218,219
(PMI II), 226
Strong (SPMI), 230

Projection
natural (natural map), 425
operator, 480

Proof
by contradiction, 214ff
by contraposition, 217
definition of, 191
direct, 193ff
indirect, 194ff, 212ff
theory, 185

Proper subgroup, 368
Properties of determinants, 539
Proposition

definition of, 123
variable, 126

Propositional
calculus, 121ff
function, 125ff
logic, 121

Putnam, H. 6

Q (rational numbers) 8, 16, 53, 54ff
Quantifier

existential, 155ff
universal, 156ff

Quotient
group, 419ff
of pairs, 352

R (real numbers), 8, 16, 71, 103, 107lff
Range

of a function, 56, 274ff
of a relation, 249

Rank
of a matrix, 525ff
of a linear operator, 492

Rational numbers, 8, 53, 54ff
Real-valued function, 278
Reductio ad absurdum, 143ff, 214
Reduced echelon form, 529
Reflection operator, 480ff
Regular operator, 490
Relation, 248ff

Antisymmetric, 252ff
Equivalence, 260ff

Identity, 259ff
induced by partition, 266
reflexive, 252ff
satisfying trichotomy, 252
symmetric, 252ff
transitive, 252ff

Relatively prime integers, 207
Restriction of a function, 294ff
Right cancellation law, 338ff
Right coset, 404ff
Ring, 103ff
Rotation, 551, 553ff
Rouche’s theorem, 601
Row

canonical form, 529ff
matrix, 503
vector, 453

Russell, Bertrand, 4ff
Russell’s hereditary principle, 47
Rules of arithmetic, 51

Scalar, 449ff
Scalar matrix, 505
Schröder-Bernstein theorem, 60, 97, 317
Semigroup, 333ff
Sentence

declarative, 125
Set(s)
cardinality of, 8, 21ff

complement, 8, 31ff
countable, 63ff
countably infinite, 63ff
denumerable, 63
difference of, 8, 30
disjoint, 28
element of, 3ff
empty (null), 16ff
equivalent, 59
equinumerous, 23, 62
finite, 23ff
infinite, 23ff
intersection of, 8, 27ff
non-denumerable (uncountable), 63ff
of generators
partial ordering of, 254
partition of, 29ff
power, 41ff
pure, 19
ordered partially, 252, 254
subset of, 8, 11ff
symmetric difference of, 8, 30
uncountable, 63ff
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union of, 8, 25ff
universal, 15, 25ff
well-defined, 3, 9
well-ordering, 102

Sign of permutation, 371ff
Simple group, 408
Singleton, 18ff
Singular operator, 485, 490ff
Smullyan, Raymond M., 77
Space

linear (vector), 449ff
finite-dimensional, 463ff
infinite-dimensional, 463
nontrivial linear, 463
trivial, 463
vector (linear), 449ff

Special linear group - SL(n, R), 341, 547
Square matrix, 503
Stabilizer, 412ff
Standard basis, 560ff
Statement(s)

atomic, 124
biconditional, 131ff
conditional, 129ff
conjunction, 127ff
definition of, 123
disjunction, 127ff
negation of, 126
simple (see atomic)
truth table, 126
truth value of, 126ff

Strong principle of mathematical
induction(SPMI), 230

Subgroup, 359ff
commutator, 370
cyclic, 370
generators of, 370
index of, 421
normal, 404ff
proper, 368
trivial, 368

Subset, 8, 11ff
Subspace, 469ff
Sum of geometric sequence, 229
Sum of matrices, 507
Supremum (least upper bound), 105, 255
Surjection (onto), 58ff, 286ff
Surjective operator, 487ff
Syllogism, 117ff

hypothetical, 153
Symmetric difference, 8, 30
System of linear equations, 447, 585ff

Table
Cayley, 339ff
truth, 126

Tautology, 132ff
Theorem(s)

definition of, 188, 192
Banach – Tarski’s, 192
Binet-Cauchy’s
Cantor’s, 64,76
Cayley’s, 400
Cramer’s, 595
definition of, 191
isomorphism, 431, 432, 433
Kronecker-Capelli’s
Lagrange’s, 421
Rouche’s, 601
Schröder-Bernstein’s, 60, 317

Torus group, 439
Total ordering (linear ordering), 203, 252
Trace of a matrix, 504
Transpose of a matrix, 506
Transition matrix, 567
Translation, 343

left, 400, 418
transfinite

arithmetic, 80ff
cardinals, 83ff
numbers, 80ff

transitively (group acting), 414, 417ff
Transposition, 373ff
Trichotomy law, 52, 108ff
Trivial subgroup, 368

Ulam conjecture (see Collatz conjecture), 188
Unimodular group, 547
Union

axiom, 26
of sets, 8, 25ff

Universal set, 15, 25ff
Unordered pair (doubleton), 18
Upper bound, 102, 105ff
Upper triangular matrix, 525

Vector(s)
column, 548
linear combination of, 456ff
linearly dependent, 456ff
linearly independent, 456ff

Vector space, 449
basis of, 461ff
dimension of, 461ff
finite-dimensional, 463
infinite-dimensional, 463
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Vector space(Continued)
isomorphism of, 489ff
linear transformation of, 478, 490ff
subspace of, 469ff

Venn diagram, 9ff
Viergruppe, 340

Well-formed formula, 121ff
Well-ordering theorem, 102

Well-ordering principle (WOP), 204
Whitehead, A.N., 6, 86, 122
Wheeler, J.A., 2
Word, 186

Z (Integers), 8, 16ff
Zermelo, E., 100
Zermelo’s well-ordering theorem, 102
Zorn lemma, 102
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