

Welcome to

Python is a versatile language and its rise in popularity is

certainly no surprise. Its similarity to everyday language has

made it a perfect companion for the Raspberry Pi, which

is often a first step into practical programming. But don’t

be fooled by its beginner-friendly credentials – Python has

plenty of more advanced functions. In this new edition,

you will learn how to program in Python, discover amazing

projects to improve your understanding, and find ways

to use Python to enhance your experience of computing.

You’ll also create fun projects including programming a

Space Invaders clone and building your own networked

Hi-Fi with Pi. Let’s get coding!

Python
The Complete Manual

Imagine Publishing Ltd
Richmond House
33 Richmond Hill

Bournemouth
Dorset BH2 6EZ

 +44 (0) 1202 586200
Website: www.imagine-publishing.co.uk

Twitter: @Books_Imagine
Facebook: www.facebook.com/ImagineBookazines

Publishing Director

Aaron Asadi

Head of Design

Ross Andrews

Editor in Chief

Jon White

Production Editor

Ross Hamilton

Senior Art Editor

Greg Whitaker

Designer

Alexander Phoenix

Photographer

James Sheppard

Printed by
William Gibbons, 26 Planetary Road, Willenhall, West Midlands, WV13 3XT

Distributed in the UK, Eire & the Rest of the World by
Marketforce, 5 Churchill Place, Canary Wharf, London, E14 5HU

Tel 0203 787 9060 www.marketforce.co.uk

Distributed in Australia by
Gordon & Gotch Australia Pty Ltd, 26 Rodborough Road, Frenchs Forest, NSW, 2086 Australia

Tel +61 2 9972 8800 www.gordongotch.com.au

Disclaimer
The publisher cannot accept responsibility for any unsolicited material lost or damaged in the

post. All text and layout is the copyright of Imagine Publishing Ltd. Nothing in this bookazine may
be reproduced in whole or part without the written permission of the publisher. All copyrights are

recognised and used specifically for the purpose of criticism and review. Although the bookazine has
endeavoured to ensure all information is correct at time of print, prices and availability may change.

This bookazine is fully independent and not affiliated in any way with the companies mentioned herein.

Python is a trademark of Python Inc., registered in the U.S. and other countries.
Python © 2016 Python Inc.

Python The Complete Manual Second Edition © 2016 Imagine Publishing Ltd

ISBN 978 1785 464 409

Python
The Complete Manual

bookazine series

Part of the

Contents
What you can fi nd inside the bookazine

Code
& create

with
Python!

6

7

122 Code a Twitter bot
Retweet automatically

114 Voice synthesizer
Use the eSpeak library

104 Using Python on Pi
Optimise your code

116 Visualise music
in Minecraft
Code using PianoHAT

110 Send an SMS
Combine Twilio and RasPi

72 Scrape Wikipedia
Start using Beautiful Soup

26 Make web apps
 Master this starter project

 32 Build an app for Android
Take your apps on the move

50 Replace your shell
Say goodbye to Bash

58 Scientific computing
Discover NumPy’s power

64 Python for system admins
How to tweak your settings

Introducing Python

Work with Python

86 Make a Pong clone
Enhance your game skills

88 Program a Space
Invaders clone
Have fun with Pivaders

98 Make a visual novel
Tell a story using Python

Use Python with Pi

8 Masterclass
Discover the basics of Python

Pythonwith
Get started

40 50 Python tips
 A selection of handy tips

Create with Python

80 Tic-tac-toe with Kivy
Program a simple game

124 Networked Hi-Fi
Listen to digital radio

Python
Always wanted to have a go at programming? No more
excuses, because Python is the perfect way to get started!

Python is a great programming language for both beginners and experts. It
is designed with code readability in mind, making it an excellent choice for
beginners who are still getting used to various programming concepts.

The language is popular and has plenty of libraries available, allowing
programmers to get a lot done with relatively little code.

You can make all kinds of applications in Python: you could use the
Pygame framework to write simple 2D games, you could use the GTK
libraries to create a windowed application, or you could try something
a little more ambitious like an app such as creating one using Python’s
Bluetooth and Input libraries to capture the input from a USB keyboard and
relay the input events to an Android phone.

For this tutorial we’re going to be using Python 2.x since that is the
version that is most likely to be installed on your Linux distribution.

In the following tutorials, you’ll learn how to create popular games using
Python programming. We’ll also show you how to add sound and AI to
these games.

Get started
with

8

Getting startedGet started with Python

9

10

Hello World
Let’s get stuck in, and what better way than with the programmer’s
best friend, the ‘Hello World’ application! Start by opening a terminal.
Its current working directory will be your home directory. It’s probably
a good idea to make a directory for the fi les that we’ll be creating in
this tutorial, rather than having them loose in your home directory.
You can create a directory called Python using the command mkdir
Python. You’ll then want to change into that directory using the
command cd Python.

The next step is to create an empty fi le using the command ‘touch’
followed by the fi lename. Our expert used the command touch
hello_world.py. The fi nal and most important part of setting up the
fi le is making it executable. This allows us to run code inside the hello_
world.py fi le. We do this with the command chmod +x hello_world.
py. Now that we have our fi le set up, we can go ahead and open it up
in nano, or alternatively any text editor of your choice. Gedit is a great
editor with syntax highlighting support that should be available on any
distribution. You’ll be able to install it using your package manager if
you don’t have it already.

 [liam@liam-laptop ~]$ mkdir Python

 [liam@liam-laptop ~]$ cd Python/

 [liam@liam-laptop Python]$ touch hello_world.py

 [liam@liam-laptop Python]$ chmod +x hello_world.py

 [liam@liam-laptop Python]$ nano hello_world.py

Our Hello World program is very simple, it only needs two lines.
The fi rst line begins with a ‘shebang’ (the symbol #! – also known

Getting started

11

as a hashbang) followed by the path to the Python interpreter. The
program loader uses this line to work out what the rest of the lines
need to be interpreted with. If you’re running this in an IDE like IDLE,
you don’t necessarily need to do this.

The code that is actually read by the Python interpreter is only a
single line. We’re passing the value Hello World to the print function by
placing it in brackets immediately after we’ve called the print function.
Hello World is enclosed in quotation marks to indicate that it is a literal
value and should not be interpreted as source code. As we would
expect, the print function in Python prints any value that gets passed
to it from the console.

You can save the changes you’ve just made to the fi le in nano using
the key combination Ctrl+O, followed by Enter. Use Ctrl+X to exit nano.

 #!/usr/bin/env python2

 print(“Hello World”)

You can run the Hello World program by prefi xing
its fi lename with ./ – in this case you’d type:
 ./hello_world.py.

 [liam@liam-laptop Python]$./hello_world.py

 Hello World

Tip
If you were using a graphical
editor such as gedit, then you
would only have to do the
last step of making the fi le
executable. You should only have
to mark the fi le as executable
once. You can freely edit the fi le
once it is executable.

“A variable is associated with an area in
memory that you can use to store data”

Variables and data types
A variable is a name in source code that is associated with an area in
memory that you can use to store data, which is then called upon
throughout the code. The data can be one of many types, including:

Integer Stores whole numbers

Float Stores decimal numbers

Boolean Can have a value of True or False

String Stores a collection of characters. “Hello World” is a
string

Get started with Python

Getting started

12

Tip
At this point, it’s worth explaining
that any text in a Python fi le
that follows a # character will be
ignored by the interpreter. This
is so you can write comments in
your code.

As well as these main data types, there are sequence types (technically,
a string is a sequence type but is so commonly used we’ve classed it
as a main data type):

List Contains a collection of data in a specifi c order

Tuple Contains a collection immutable data in a specifi c
order

A tuple would be used for something like a co-ordinate, containing
an x and y value stored as a single variable, whereas a list is typically
used to store larger collections. The data stored in a tuple is immutable
because you aren’t able to change values of individual elements in a
tuple. However, you can do so in a list.

It will also be useful to know about Python’s dictionary type. A
dictionary is a mapped data type. It stores data in key-value pairs.
This means that you access values stored in the dictionary using that
value’s corresponding key, which is diff erent to how you would do it
with a list. In a list, you would access an element of the list using that
element’s index (a number representing where the element is placed
in the list).

Let’s work on a program we can use to demonstrate how to use
variables and diff erent data types. It’s worth noting at this point that
you don’t always have to specify data types in Python. Feel free to
create this fi le in any editor you like. Everything will work just fi ne as
long as you remember to make the fi le executable. We’re going to call
ours variables.py.

Interpreted vs compiled languages

An interpreted language
such as Python is one
where the source code
is converted to machine
code and then executed
each time the program
runs. This is diff erent from a

compiled language such as
C, where the source code is
only converted to machine
code once – the resulting
machine code is then
executed each time the
program runs.

Get started with Python

Getting started

Full code listing

#!/usr/bin/env python2

We create a variable by writing the name of the
variable we want followed# by an equals sign,
which is followed by the value we want to store
in the# variable. For example, the following line
creates a variable called# hello_str, containing the
string Hello World.
hello_str = “Hello World”

hello_int = 21

hello_bool = True

hello_tuple = (21, 32)

hello_list = [“Hello,”, “this”, “is”,
“a”, “list”]

This list now contains 5 strings. Notice that
there are no spaces# between these strings so if
you were to join them up so make a sentence #
you’d have to add a space between each element.

hello_list = list()
hello_list.append(“Hello,”)
hello_list.append(“this”)
hello_list.append(“is”)
hello_list.append(“a”)
hello_list.append(“list”)

The fi rst line creates an empty list and the
following lines use the append# function
of the list type to add elements to the
list. This way of using a# list isn’t
really very useful when working
with strings you know of in
advance, but it can be
useful when working with
dynamic data such as
user# input. This list
will overwrite the
fi rst list without
any warning

The following line creates
an integer variable called
hello_int with the #
value of 21. Notice how
it doesn’t need to go in
quotation marks

You could
also create the
same list in the
following way

The same principal is
true of Boolean values

We create a tuple in
the following way

And a list in this way

13

Get started with Python

Getting started

print(str(hello_tuple[0]))
We can’t change the value of those elements
like we just did with the list
Notice the use of the str function above to
explicitly convert the integer
value inside the tuple to a string before

printing it.

print(hello_dict[“fi rst_name”] + “ “ + hello_

dict[“last_name”] + “ has “ +

 hello_dict[“eye_colour”] + “ eyes.”)

print(“{0} {1} has {2} eyes.”.format(hello_

dict[“fi rst_name”],

 hello_dict[“last_name”],

 hello_dict[“eye_colour”]))

Remember
that tuples are
immutable,
although we
can access the
elements of them
like so

Let’s create a
sentence using
the data in our
hello_dict

A much tidier way
of doing this would
be to use Python’s
string formatter

as we# are using the same variable name as the
previous list.

hello_dict = { “first_name” : “Liam”,
 “last_name” :
“Fraser”,
 “eye_colour” : “Blue” }

Let’s access some elements inside our
collections# We’ll start by changing the value
of the last string in our hello_list and# add an
exclamation mark to the end. The “list” string is
the 5th element # in the list. However, indexes
in Python are zero-based, which means the
fi rst element has an index of 0.

print(hello_list[4])
hello_list[4] += “!”
The above line is the same as
hello_list[4] = hello_list[4] + “!”
print(hello_list[4])

Notice that there
will now be two
exclamation marks
present when we
print the element

14

Get started with Python

We might as well
create a dictionary
while we’re at it.
Notice how we’ve
aligned the colons
below to make the
code tidy

15

Control structures
In programming, a control structure is any kind of statement that can
change the path that the code execution takes. For example, a control
structure that decided to end the program if a number was less than 5
would look something like this:

#!/usr/bin/env python2
import sys # Used for the sys.exit function
int_condition = 5
if int_condition < 6:
 sys.exit(“int_condition must be >= 6”)
else:
 print(“int_condition was >= 6 - continuing”)

The path that the code takes will depend on the value of
the integer int_condition. The code in the ‘if’ block will only be
executed if the condition is true. The import statement is used to
load the Python system library; the latter provides the exit function,
allowing you to exit the program, printing an error message. Notice
that indentation (in this case four spaces per indent) is used to indicate
which statement a block of code belongs to. ‘If’ statements are
probably the most commonly used control structures. Other control

“The path the code takes will depend on
the value of the integer int_condition”

Indentation in detail

As previously mentioned,
the level of indentation
dictates which statement a
block of code belongs to.
Indentation is mandatory
in Python, whereas in other
languages, sets of braces
are used to organise code
blocks. For this reason, it is

essential to use a consistent
indentation style. Four
spaces are typically used to
represent a single level of
indentation in Python. You
can use tabs, but tabs are
not well defi ned, especially if
you open a fi le in more than
one editor.

Get started with Python Getting started

Getting started

16

[liam@liam-laptop Python]$./
construct.py
How many integers? acd
You must enter an integer

[liam@liam-laptop Python]$./
construct.py
How many integers? 3
Please enter integer 1: t
You must enter an integer
Please enter integer 1: 5
Please enter integer 2: 2
Please enter integer 3: 6

Using a for loop
5
2
6
Using a while loop
5
2
6

structures include: the following items which you should be aware of
when using Python:

We’re going to write a program that accepts user input from the
user to demonstrate how control structures work. We’re calling it
construct.py. The ‘for’ loop is using a local copy of the current value,
which means any changes inside the loop won’t make any changes
aff ecting the list. On the other hand however, the ‘while’ loop is
directly accessing elements in the list, so you could change the list
there should you want to do so. We will talk about variable scope in
some more detail later on in the article. The output from the above
program is as follows:

“The ‘for‘ loop uses a local copy, so
changes in the loop won’t aff ect the list”

Getting started

17

The number of
integers we want
in the list

A list to store the
integers

#!/usr/bin/env python2

We’re going to write a program that will ask the
user to input an arbitrary
number of integers, store them in a collection,
and then demonstrate how the
collection would be used with various control

structures.

import sys # Used for the sys.exit
function

target_int = raw_input(“How many

integers? “)

By now, the variable target_int contains a string
representation of
whatever the user typed. We need to try and
convert that to an integer but
be ready to # deal with the error if it’s not.
Otherwise the program will

crash.
try:
 target_int = int(target_int)
except ValueError:
 sys.exit(“You must enter an
integer”)

ints = list()

count = 0

Full code listing

These are used
to keep track
of how many
integers we
currently have

Get started with Python

Getting started

Or with a while loop:

print(“Using a while loop”)
We already have the total above, but knowing

By now, the
user has given
up or we have
a list filled with
integers. We can
loop through
these in a couple
of ways. The first
is with a for loop

Keep asking for an integer until we have the

required number
while count < target_int:
 new_int = raw_input(“Please enter
integer {0}: “.format(count + 1))
 isint = False
 try:
 new_int = int(new_int)

 except:
 print(“You must enter an

integer”)

 # Only carry on if we have an integer. If not,
we’ll loop again
 # Notice below I use ==, which is diff erent from

=. The single equals is an
assignment operator whereas the double
equals is a comparison operator.

 if isint == True:

 # Add the integer to the collection

 ints.append(new_int)
 # Increment the count by 1

 count += 1

print(“Using a for loop”)
for value in ints:
 print(str(value))

If the above
succeeds then
isint will be set
to true: isint
=True

18

Get started with Python

Getting started

19

Functions and variable scope
Functions are used in programming to break processes down
into smaller chunks. This often makes code much easier to read.
Functions can also be reusable if designed in a certain way. Functions
can have variables passed to them. Variables in Python are always
passed by value, which means that a copy of the variable is passed
to the function that is only valid in the scope of the function. Any
changes made to the original variable inside the function will be
discarded. However, functions can also return values, so this isn’t an
issue. Functions are defi ned with the keyword def, followed by the
name of the function. Any variables that can be passed through are
put in brackets following the function’s name. Multiple variables are
separated by commas. The names given to the variables in these
brackets are the ones that they will have in the scope of the function,
regardless of what the variable that’s passed to the function is called.

Let’s see this in action. The output from the program opposite is
as follows:

“Functions are defi ned with the keyword
def, then the name of the function”

More about a Python list

A Python list is similar to an
array in other languages. A
list (or tuple) in Python can
contain data of multiple
types, which is not usually
the case with arrays in other
languages. For this reason,

we recommend that you
only store data of the same
type in a list. This should
almost always be the case
anyway due to the nature of
the way data in a list would
be processed.

the len function is very

useful.
total = len(ints)
count = 0
while count < total:
 print(str(ints[count]))
 count += 1

Get started with Python

Getting started

20

Scope is an important thing to get the hang of, otherwise it can
get you into some bad habits. Let’s write a quick program to
demonstrate this. It’s going to have a Boolean variable called cont,
which will decide if a number will be assigned to a variable in an if
statement. However, the variable hasn’t been defi ned anywhere
apart from in the scope of the if statement. We’ll fi nish off by trying
to print the variable.

#!/usr/bin/env python2 # Below is a function
called modify_string, which accepts a variable
that will be called original in the scope of the
function. Anything # indented with 4 spaces
under the function defi nition is in the
scope.
def modify_string(original):
 original += “ that has been
modified.”
 # At the moment, only the local copy of this
string has been modifi ed

def modify_string_return(original):
 original += “ that has been
modified.”
 # However, we can return our local copy to the
caller. The function# ends as soon as the return
statement is used, regardless of where it # is in
the function.

 return original

test_string = “This is a test string”

modify_string(test_string)
print(test_string)

test_string = modify_string_
return(test_string)
print(test_string)

The function’s return value is stored in the
variable test string, # overwriting the original and
therefore changing the value that is # printed.

We are now outside
of the scope of
the modify_string
function, as we have
reduced the level of
indentation

The test string
won’t be changed
in this code

However, we
can call the
function like this

[liam@liam-laptop Python]$./functions_and_
scope.py
This is a test string
This is a test string that has been modifi ed.

Get started with Python

Getting started

21

#!/usr/bin/env python2

cont = False

var = 0
if cont:
 var = 1234

if var != 0:
 print(var)

#!/usr/bin/env python2
cont = False
if cont:
 var = 1234
print(var)

In the section of code above, Python will convert the integer to a string
before printing it. However, it’s always a good idea to explicitly convert
things to strings – especially when it comes to concatenating strings
together. If you try to use the + operator on a string and an integer,
there will be an error because it’s not explicitly clear what needs to
happen. The + operator would usually add two integers together.
Having said that, Python’s string formatter that we demonstrated
earlier is a cleaner way of doing that. Can you see the problem? Var has
only been defi ned in the scope of the if statement. This means that we
get a very nasty error when we try to access var.

[liam@liam-laptop Python]$./scope.py
Traceback (most recent call last):
 File “./scope.py”, line 8, in <module>
 print var
NameError: name ‘var’ is not defi ned

If cont is set to True, then the variable will be created and we can
access it just fi ne. However, this is a bad way to do things. The correct
way is to initialise the variable outside of the scope of the if statement.

Get started with Python

Getting started

The variable var is defi ned in a wider scope than the if statement,
and can still be accessed by the if statement. Any changes made to
var inside the if statement are changing the variable defi ned in the
larger scope. This example doesn’t really do anything useful apart
from illustrate the potential problem, but the worst-case scenario has
gone from the program crashing to printing a zero. Even that doesn’t
happen because we’ve added an extra construct to test the value of
var before printing it.

Comparison operators
The common comparison operators available in Python include:

< strictly less than

<= less than or equal

> strictly greater than

>= greater than or equal

== equal

!= not equal

“Google, or any other search engine,
is very helpful. If you are stuck with
anything, or have an error message you
can’t work out how to fi x”

Tip
You can defi ne defaults for
variables if you want to be able to
call the function without passing
any variables through at all. You
do this by putting an equals
sign after the variable name. For
example, you can do:
def modify_string (original=”
Default String”)

22

Get started with Python

Getting started

Coding style
It’s worth taking a little time to talk about coding style. It’s simple to
write tidy code. The key is consistency. For example, you should always
name your variables in the same manner. It doesn’t matter if you want
to use camelCase or use underscores as we have. One crucial thing is
to use self-documenting identifi ers for variables. You shouldn’t have
to guess what a variable does. The other thing that goes with this is to
always comment your code. This will help anyone else who reads your
code, and yourself in the future. It’s also useful to put a brief summary
at the top of a code fi le describing what the application does, or a part
of the application if it’s made up of multiple fi les.

Summary
This article should have introduced you to the basics of programming
in Python. Hopefully you are getting used to the syntax, indentation
and general look and feel of a Python program. The next step is
to learn how to come up with a problem that you want to solve,
and break it down into small steps that you can implement in a
programming language. Google, or any other search engine, is very
helpful. If you are stuck with anything, or have an error message you
can’t work out how to fi x, stick it into Google and you should be a lot
closer to solving your problem. For example, if we Google ‘play mp3
fi le with python’, the fi rst link takes us to a Stack Overfl ow thread with
a bunch of useful replies. Don’t be afraid to get stuck in – the real fun
of programming is solving problems one manageable chunk at a time.

23

Get started with Python

Introducing Python Python essentials

24

Now that you’ve taken the fi rst steps with Python, it’s time
to begin using that knowledge to get coding. In this section,
you’ll fi nd out how to begin coding apps for Android operating
systems (p.32) and the worldwide web (p.26). These easy-to-
follow tutorials will help you to cement the Python language
that you’ve learned, while developing a skill that is very helpful
in the current technology market. We’ll fi nish up by giving you
50 essential Python tips (p.40) to increase your knowledge and
ability in no time.

Introducing
Python

Introducing PythonPython essentials

25

Introducing Python Make web apps with Python

Python 2.7:
https://www.python.org/download/
releases/2.7/

Django version 1.4:
 https://www.djangoproject.com/

What you’ll need…

Python provides quick and easy way to build
applications, including web apps. Find out how to
use it to build a feature-complete web app

Python is known for its simplicity and capabilities. At this point it is
so advanced that there is nothing you cannot do with Python, and
conquering the web is one of the possibilities. When you are using
Python for web development you get access to a huge catalogue
of modules and community support – make the most of them.

Web development in Python can be done in many different
ways, right from using the plain old CGI modules to utilising fully
groomed web frameworks. Using the latter is the most popular
method of building web applications with Python, since it allows
you to build applications without worrying about all that low-level
implementation stuff. There are many web frameworks available for
Python, such as Django, TurboGears and Web2Py. For this tutorial
we will be using our current preferred option, Django.

26

Make web
apps with
Python

01The django-admin.py file is used
to create new Django projects.

Let’s create one for our issue tracker
project here…

In Django, a project represents the
site and its settings. An application, on
the other hand, represents a specific
feature of the site, like blogging or
tagging. The benefit of this approach is
that your Django application becomes

The Django Project
magazine issue tracker

portable and can be integrated with
other Django sites with very little effort.
 $ django-admin.py startproject
ludIssueTracker

A project directory will be created.
This will also act as the root of your
development web server that comes
with Django. Under the project
directory you will find the following
items…
manage.py: Python script to work with
your project.
ludIssueTracker: A python package
(a directory with __init__.py file) for

Introducing PythonMake web apps with Python

02Before we start working
on the application, let’s

configure the Django project
as per our requirements.
Edit ludIssueTracker/settings.py
as follows (only parts requiring
modification are shown):
Database Settings: We will be
using SQLite3 as our database
system here.
NOTE: Red text indicates new
code or
updated code.
‘default’: {
 ‘ENGINE’:
‘django.db.backends.
sqlite3’,
 ‘NAME’: ‘ludsite.
db3,

Path settings
Django requires an absolute
path for directory settings.
But we want to be able to
pass in the relative directory
references. In order to do that
we will add a helper Python
function. Insert the following
code at the top of the settings.
py file:
 import os
 def getabspath(*x):
 return os.path.join(os.
path.abspath(os.path.

Configuring the
Django project

27

03 In this step we will create the
primary app for our site, called

ludissues. To do that, we will use the
manage.py script:
 $ python manage.py startapp

Creating ludissues app

04 This is the part where we
define the data model

for our app. Please see the inline
comments to understand what is
happening here.
From django.db import models:
 # We are importing the
user authentication module so
that we use the built
 # in authentication model
in this app
 from django.contrib.auth.
models import User
 # We would also create an
admin interface for our app
from django.contrib import
admin

 # A Tuple to hold the
multi choice char fields.
 # First represents the
field name the second one
repersents the display name
ISSUE_STATUS_CHOICES = (
 (‘new’, ‘New’),
 (‘accepted’,’Accepted’),
 (‘reviewed’,’Reviewed’),
 (‘started’,’Started’),
 (‘closed’,’Closed’),
)

Creating the data model

“When you are using Python for web
development you get access to a huge
catalogue of modules and support”

your project. This package is the one
containing your project’s settings and
configuration data.
ludIssueTracker/settings.py: This file
contains all the configuration options
for the project.
ludIssueTracker/urls.py: This file
contains various URL mappings.
wsgi.py: An entry-point for WSGI-
compatible web servers to serve your
project. Only useful when you are
deploying your project. For this tutorial
we won’t be needing it.

dirname(__file__)), *x)
Now update the path options:
 @code
 TEMPLATE_DIRS = (
 getabspath(‘templates’)
)
 MEDIA_ROOT =
getabspath(‘media’)
 MEDIA_URL = ‘/media/’

Now we will need to enable the
admin interface for our Django
site. This is a neat feature of Django
which allows automatic creation of
an admin interface of the site based
on the data model. The admin
interface can be used to add and
manage content for a Django site.
Uncomment the following line:

 INSTALLED_APPS = (

 ‘django.contrib.auth’,
 ‘django.contrib.
contenttypes’,
 ‘django.contrib.sessions’,
 ‘django.contrib.sites’,
 ‘django.contrib.messages’,
 ‘django.contrib.
staticfiles’,
 ‘django.contrib.admin’,
 # ‘django.contrib.
admindocs’,
)

ludissues

We will need to enable this app in the
config file as well:
 INSTALLED_APPS = (

 ‘django.contrib.admin’,
 ‘ludissues’,
)

Introducing Python

28

05The admin site is already
enabled, but we need to enable

it in the urls.py file – this contains
the regex-based URL mapping from
model to view. Update the urls.py file
as follows:
 from django.conf.urls import
patterns, include, url
 from django.contrib import
admin
admin.autodiscover()

 urlpatterns = patterns(‘’,
 url(r’̂ admin/’,
include(admin.site.urls)),
)

Enabling the admin site

Make web apps with Python

06Django includes a built-in
web server which is very

handy to debug and test Django
applications. Let’s start it to see how
our admin interface works…
To start the web server:
 $ python manage.py
runserver

If you do not have any errors in your
code, the server should be available
on port 8000. To launch the admin
interface, navigate your browser to
http://localhost:8000/admin.

You will be asked to log in here.
Enter the username and password

Starting the Django
web server

After logging in, you will notice that
all the apps installed in your project are
available here. We are only interested in
the Auth and LudIssues app.

You can click the +Add to add a
record. Click the Add button next to
Users and add a few users to the site.

Once you have the users inside the
system, you can now add a few issues
to the system.

Click the Add button next to Issues.
Here you will notice that you can enter
Owner, Status and Summary for the
issue. But what about the opened_on
and modified_on field that we

 class Issue(models.Model):
 # owner will be a
foreign key to the User
model which is already built-
in Django
 owner = models.ForeignKe
y(User,null=True,blank=True)
 # multichoice with
defaulting to “new”
 status = models.
CharField(max_
length=25,choices=ISSUE_
STATUS_CHOICES,default=’new’)
 summary = models.
TextField()
 # date time field which
will be set to the date time
when the record is created
 opened_on = models.
DateTimeField(‘date opened’,
auto_now_add=True)
 modified_on = models.
DateTimeField(‘date modified’,
auto_now=True)

 def name(self):
 return self.summary.
split(‘\n’,1)[0]

 # Admin front end for the
app. We are also configuring
some of the
 # built in attributes for
the admin interface on
 # how to display the list,
how it will be sorted
 # what are the search
fields etc.
class IssueAdmin(admin.
ModelAdmin):
 date_hierarchy =
‘opened_on’
 list_filter =
(‘status’,’owner’)
 list_display = (‘id’,’n
ame’,’status’,’owner’,’modifi
ed_on’)
 search_fields =
[‘description’,’status’]

 # register our site with
the Django admin interface
admin.site.

“It’s great that
the owner field
is automatically
populated with
details of the users
inside the site”

register(Issue,IssueAdmin)
To have the created data model
reflected in the database, run the
following command:
$ python manage.py syncdb
You’ll be also asked to create a
superuser for it:
You just installed Django’s auth
system, which means you don’t
have any superusers defined.
Would you like to create one
now? (yes/no): yes

that you created while you were
syncing the database.

Introducing Python

29

Make web apps with Python

07At this point, the admin
interface is working. But

we need a way to display the
data that we have added using
the admin interface. But there is
no public interface. Let’s create
it now.

We will have to begin by
editing the main
urls.py (ludIssueTracker/urls.py).
 urlpatterns = patterns(‘’,

(r’̂ ’,include(‘ludissues.
urls’)),
 (r’̂ admin/’,

Creating the public user
interface for ludissues

08Create a urls.py file in the
app directory (ludissues/urls.

py) with the following content:
 from django.conf.urls
import patterns, include, url
 # use ludissues model
 from models import
ludissues

 # dictionary with all the

Creating ludissues.url

defined while modelling the app?
They are not here because they are
not supposed to be entered by the
user. opened_on will automatically
set to the date time it is created and
modified_on will automatically set
to the date time on which an issue
is modified.

Another cool thing is that
the owner field is automatically
populated with all the users inside
the site.

We have defined our list view to
show ID, name, status, owner and
‘modified on’ in the model. You
can get to this view by navigating
to http://localhost:8000/admin/
ludissues/issue/.

include(admin.site.urls)),
)

This ensures that all the requests will be
processed by ludissues.urls first.

Introducing Python

30

Make web apps with Python

10Templates will be loaded
from the ludIssueTracker/

ludIssueTracker/templates directory.

Creating the template files

“To display an issue list and details here,
we are using a Django feature called
generic views”

Which translates to ludIssueTracker/
ludIssueTracker/templates/. Since
we will be accessing the templates
from the ludissues app, the
complete directory path would be
ludIssueTracker/ludIssueTracker/
templates/ludissues. Create these
folders in your project folder.

Also, create the directory
ludIssueTracker/ludIssueTracker/media/
for holding the CSS file. Copy the style.
css file from the resources directory
of the code folder. To serve files from
this folder, make it available publicly.
Open settings.py and add these lines in
ludIssueTracker/ludIssueTracker/urls.py:

 from django.conf.urls import
patterns, include, url
 from django.conf import
settings
 # Uncomment the next two
lines to enable the admin:
 from django.contrib import
admin
admin.autodiscover()

 urlpatterns = patterns(‘’,
 (r’̂ ’,include(‘ludissues.
urls’)),
 (r’̂ admin/’, include(admin.
site.urls)),
 (r’̂ media/
(?P<path>.*)$’,’django.views.
static.serve’,
 {‘document_root’:settings.
MEDIA_ROOT})
)

In Django, we start with the
ludIssueTracker/ludIssueTracker/
templates/base.html template. Think of
it as the master template which can be
inherited by slave ones.
ludIssueTracker/ludIssueTracker/
templates/base.html
 <!DOCTYPE html PUBLIC “-//
W3C//DTD XHTML Strict//EN”
 “ HYPERLINK “http://www.
w3.org/TR/xhtml1/DTD/xhtml1-
strict.dtd” http://www.w3.org/TR/
xhtml1/DTD/xhtml1-strict.dtd”>
 <html>
 <head>
 <title>{% block title
%}{% endblock %}LUD Issues</
title>
 <link rel=”stylesheet”
href=”{{ MEDIA_URL }}style.css”
type=”text/css” media=”screen”
/>
 </head>
 <body>
 <div id=”hd”>
 <h1>LUD
Issue Tracker</h1>
 </div>
 <div id=”mn”>

<a href=”{% url issue-list
%}” class=”sel”>View Issues</
a>

Admin
Site

 </div>
 <div id=”bd”>
 {% block
content %}{% endblock %}
 </div>
 </body>
 </html>09In this step we will create the

template and media directories.
We have already mentioned the
template directory as
TEMPLATE_DIRS = (
 getabspath(‘templates’)
)

Setting up template and
media directories

objects in ludissues
info = {
 ‘queryset’:ludissues.
objects.all(),
}

 # To save us writing lots of
python code
 # we are using the list_
detail generic view

 #list detail is the name of
view we are using
 urlpatterns =
patterns(‘django.views.generic.
list_detail’,
 #issue-list and issue-detail
are the template names
 #which will be looked in the
default template
#directories
 url(r’̂ $’,’object_
list’,info,name=’issue-list’),
 url(r’̂ (?P<object_
id>\d+)/$’,’object_
detail’,info,name=’issue-detail’),

)

To display an issue list and details,
we are using a Django feature called
generic views. In this case we are
using views called list and details. This
allow us to create an issue list view
and issue detail view. These views are
then applied using the issue_list.html
and issue_detail.html template. In
the following steps we will create the
template files.

Introducing Python

31

Make web apps with Python

{{ variablename }} represents a
Django variable.
(% block title %} represents blocks.
Contents of a block are evaluated
by Django and are displayed. These
blocks can be replaced by the child
templates.
Now we need to create the issue_list.
html template. This template is
responsible for displaying all the
issues available in the system.
ludIssueTracker/ludIssueTracker/
templates/ludissues/issue_list.html
 {% extends ‘base.html’ %}
 {% block title %}View Issues
- {% endblock %}
 {% block content %}
 <table cellspacing=”0”
class=”column-options”>
 <tr>
 <th>Issue</th>
 <th>Description</th>
 <th>Status</th>
 <th>Owner</th>
 </tr>
 {% for issue in
object_list %}
 <tr>
 <td><a href=”{% url
issue-detail issue.id %}”>{{
issue.id }}</td>
 <td><a href=”{% url
issue-detail issue.id %}”>{{

issue.name }}</td>
 <td>{{ issue.status
}}</td>
 <td>{{ issue.
owner}}</td>
 </tr>
 {% endfor %}
 </table>
 {% endblock %}

Here we are inheriting the base.
html file that we created earlier. {%
for issue in object_list %} runs on the
object sent by the urls.py. Then we
are iterating on the object_list for
issue.id and issue.name.
Now we will create issue_detail.
html. This template is responsible for
displaying the detail view of a case.
ludIssueTracker/ludIssueTracker/
templates/ludissues/issue_detail.
html
 {% extends ‘base.html’ %}
 {% block title %}Issue #{{
object.id }} - {% endblock %}
 {% block content %}
 <h2>Issue #{{ object.id }}
{{ object.status }}</
span></h2>
 <div class=”issue”>
 <h2>Information</

h2>
 <div class=”date”>
 <p class=”cr”>Opened
{{ object.opened_on }} ago</p>
 <p class=”up”>Last
modified {{ object.modified_on
}} ago</p>
 </div>
 <div
class=”clear”> </div>
 <div class=”block
w49 right”>
 <p class=”ass
title”>Owner</p>
 <p class=”ass”>{{
object.owner }}</p>
 </div>
 <div
class=”clear”> </div>
 <div class=”block”>
 <p class=”des
title”>Summary</p>
 <p class=”des”>{{
object.summary }}</p>
 </div>
</div>
 {% endblock %}

And that’s everything! The issue
tracker app is now complete and
ready to use. You can now point your
browser at localhost:8000 to start
using the app.

Introducing Python Build an app for Android with Python

Master Kivy, the excellent cross-platform application
framework to make your first Android app…

The great thing about Kivy is
there are loads of directions
we could take it in to do some
pretty fancy things. But, we’re
going to make a beeline for one
of Kivy’s coolest features - the
ability it affords you to easily run
your programs on Android.

We’ll approach this by first
showing how to make a new
app, this time a dynamic
Breakout-style game. We’ll then
be able to compile this straight
to an Android APK that you can
use just like any other.

Of course, once you have
mastered the basic techniques
you aren’t limited to using any
particular kind of app, as even on
Android you can make use of all
your favourite Python libraries

32

Build an app for
Android with Python

to make any sort of program
you like.

Once you’ve mastered Kivy,
your imagination is the only
limit. If you’re pretty new to Kivy,
don’t worry, we won’t assume
that you have any pre-existing
knowledge. As long as you have
mastered some of the Python
in this book so far, and have a
fairly good understanding of the
language, you shouldn’t have
any problems following along
with this.

Before anything else, let's
throw together a basic Kivy app
(Fig. 01). We've pre-imported
the widget types we'll be using,
which this time are just three:
the basic Widget with no special

behaviour, the ModalView with
a pop-up behaviour as used
last time, and the FloatLayout
as we will explain later. Kivy has
many other pre-built widgets for
creating GUIs, but this time we’re
going to focus on drawing the
whole GUI from scratch using
Kivy's graphics instructions. These
comprise either vertex instructions
to create shapes (including
rectangles, lines, meshes, and
so on) or contextual graphics
changes (such as translation,
rotation, scaling, etc), and are able
to be drawn anywhere on your
screen and on any widget type.

Before we can do any of this
we'll need a class for each kind of
game object, which we’re going
to pre-populate with some of
the properties that we'll need
later to control them. Remember
from last time, Kivy properties are
special attributes declared at class
level, which (among other things)
can be modified via kv language
and dispatch events when they
are modified. The Game class will
be one big widget containing

Introducing PythonBuild an app for Android with Python

33

the entire game. We've specifically
made it a subclass of FloatLayout
because this special layout is able
to position and size its children
in proportion to its own position
and size – so no matter where we
run it or how much we resize the
window, it will place all the game
objects appropriately.

Next we can use Kivy's graphics
instructions to draw various
shapes on our widgets. We'll just
demonstrate simple rectangles to
show their locations, though there
are many more advanced options
you might like to investigate. In
a Python file we can apply any
instruction by declaring it on the
canvas of any widget, an example
of which is shown in Fig. 03.

This would draw a red rectangle
with the same position and size
as the player at its moment of
instantiation – but this presents a
problem, unfortunately, because
the drawing is static. When we
later go on to move the player
widget, the red rectangle will
stay in the same place, while the
widget will be invisible when it is
in its real position.

We could fix this by keeping
references to our canvas
instructions and repeatedly
updating their properties to track
the player, but there's actually an
easier way to do all of this - we
can use the Kivy language we
introduced last time. It has a
special syntax for drawing on

the widget canvas, which we
can use here to draw each of our
widget shapes:
<Player>:
 canvas:
 Color:
 rgba: 1, 1, 1, 1
 Rectangle:
 pos: self.pos
 size: self.size

<Ball>:
 canvas:
 Color:
 rgb: 1, 0.55, 0
 Rectangle:
 pos: self.pos
 size: self.size

<Block>:
 canvas:
 Color:
 rgb: self.colour
 # A property we
predefined above
 Rectangle:
 pos: self.pos
 size: self.size
 Color:
 rgb: 0.1, 0.1, 0.1
 Line:
 rectangle:
 [self.x, self.y,
 self.width, self.
height]

The canvas declaration is special,
underneath it we can write any
canvas instructions we like. Don't
get confused, canvas is not a
widget and nor are graphics
instructions like Line. This is just
a special syntax that is unique to
the canvas. Instructions all have

different properties that can be
set, like the pos and size of the
rectangle, and you can check the
Kivy documentation online for
all the different possibilities. The
biggest advantage is that although
we still declare simple canvas
instructions, kv language is able
to detect what Kivy properties we
have referred to and automatically
track them, so when they are
updated (the widget moves or is
resized) the canvas instructions
move to follow this!

from kivy.app import App
from kivy.uix.widget import
Widget
from kivy.uix.floatlayout
import FloatLayout
from kivy.uix.modalview
import ModalView

__version__ = '0.1' #
Used later during Android
compilation

class BreakoutApp(App):
 pass

BreakoutApp().run()

from kivy.properties
import (ListProperty,
NumericProperty,

O b j e c t P r o p e r t y ,
StringProperty)

Fig 01

Fig 02

Introducing Python

34

from kivy.graphics.context_
instructions import Color
 from kivy.graphics.
vertex_instructions import
Rectangle

 class Player(Widget):

 class Game(FloatLayout):
Will contain everything
 blocks = ListProperty([])
 player = ObjectProperty()
The game's Player instance
 ball = ObjectProperty() #
The game's Ball instance

 class Player(Widget): # A
moving paddle
 position =
NumericProperty(0.5)
 direction =
StringProperty('none')

 class Ball(Widget): # A
bouncing ball
 # pos_hints are for
proportional positioning,
see below
 pos_hint_x =
NumericProperty(0.5)
 pos_hint_y =
NumericProperty(0.3)
 proper_size =
NumericProperty(0.)
 velocity =
ListProperty([0.1, 0.5])

 class Block(Widget): #
Each coloured block to
destroy
 colour =
ListProperty([1, 0, 0])

 def __init__(self,
**kwargs):
 super(Player,
self).__init__(**kwargs)
 with self.
canvas:
 Color(1, 0,
0, 1) # r, g, b, a -> red

Rectangle(pos=self.pos,
size=self.size)
 # or without
the with syntax, self.
canvas.add(...)

Above Running the app shows our coloured
blocks on the screen… but they all overlap! We
can fix that easily

You probably noticed we
had one of the Block’s ‘Color’
instructions refer to its colour
property. This means that we can
change the property any time to
update the colour of the block, or
in this case to give each block a
random colour (Fig. 04).

Now that each of our widgets
has a graphical representation,
let’s now tell our Game where
to place them, so that we can
start up the app and actually see
something there.
class Game(FloatLayout):
 def setup_blocks(self):
 for y_jump in range(5):
 for x_jump in
range(10):
 block = Block(pos_
hint={
 'x': 0.05 + 0.09*x_

jump,
 'y': 0.05 + 0.09*y_
jump})
 self.blocks.
append(block)
 self.add_
widget(block)
class BreakoutApp(App):
 def build(self):
 g = Game()
 g.setup_blocks()
 return g

Here we create the widgets we
want then use add_widget to add
them to the graphics tree. Our
root widget on the screen is an
instance of Game and every block
is added to that to be displayed.

The only new thing in there is
that every Block has been given
a pos_hint. All widgets have this
special property, and it is used by
FloatLayouts like our Game to set
their position proportionately to
the layout.

The dictionary is able to handle
various parameters, but in this
case ‘x’and ‘y’ give x and y Block
position as a relative fraction of
the parent width and height.

You can run the app now, and
this time it will add 50 blocks to
the Game before displaying it
on the screen. Each should have
one of the three possible random
colours and be positioned in a
grid, but you'll now notice their
sizes haven't been manually set so
they all overlap. We can fix this by
setting their size_hint properties –
and let's also

Build an app for Android with Python

Fig 03

Introducing Python

35

Build an app for Android with Python

take this opportunity to do the
same for the other widgets as
well (Fig. 05).

This takes care of keeping all our
game widgets positioned and
sized in proportion to the Game
containing them. Notice that the
Player and Ball use references to
the properties we set earlier, so
we'll be able to move them by
just setting these properties and
letting kv language automatically
update their positions.

The Ball also uses an extra
property to remain square rather
than rectangular, just because the
alternative would likely look a little
bit odd.

We've now almost finished
the basic graphics of our app! All
that remains is to add a Ball and a
Player widget to the Game.
<Game>:
 ball: the_ball
 player: the_player
 Ball:
 id: the_ball
 Player:
 id: the_player

You can run the game again
now, and should be able to see
all the graphics working properly.
Nothing moves yet, but thanks to
the FloatLayout everything should
remain in proportion if you resize
the game/window.

Now we just have to add the
game mechanics. For a game like
this you usually want to run some
update function many times per
second, updating the widget

positions and carrying out game
logic – in this case collisions with
the ball (Fig. 06).

The Clock can schedule
any function at any time,
either once or repeatedly. A
function scheduled at interval
automatically receives the time
since its last call (dt here), which
we've passed through to the ball
and player via the references we
created in kv language. It's good
practice to scale the update (eg
ball distance moved) by this dt,
so things remain stable even if
something interrupts the clock
and updates don't meet the
regular 1/60s you want.

At this point we have also
added the first steps toward
handling keyboard input, by
binding to the kivy Window to
call a method of the Player every
time a key is pressed. We can
then finish off the Player class by
adding this key handler along
with touch/mouse input.

class Player(Widget):
 def on_touch_down(self,
touch):
 self.direction = (
 'right' if touch.x >
self.parent. center_x else
'left')

 def on_touch_up(self,
touch):
 self.direction = 'none'

 def on_key_down(self,
keypress, scancode, *args):

 if scancode == 275:
 self.direction =
'right'
 elif scancode == 276:
 self.direction = 'left'
 else:
 self.direction = 'none'

 def on_key_up(self, *args):
 self.direction = 'none'

 def update(self, dt):
 dir_dict = {'right': 1,
'left': -1, 'none': 0}
 self.position += (0.5
* dt * dir_ dict[self.
direction])

These on_touch_ functions
are Kivy's general method for
interacting with touch or mouse
input, they are automatically
called when the input is detected
and you can do anything you
like in response to the touches
you receive. In this case we set
the Player's direction property
in response to either keyboard
and touch/mouse input, and
use this direction to move the
Player when its update method is
called. We can also add the right
behaviour for the ball (Fig. 07).

This makes the ball bounce off
every wall by forcing its velocity
to point back into the Game,
as well as bouncing from the
player paddle – but with an extra
kick just to let the ball speed
change. It doesn't yet handle any
interaction with the blocks or
any win/lose conditions, but it
does try to call Game.lose() if the

Introducing Python

36

ball hits the bottom of the player's
screen, so let's now add in some
game end code to handle all of this
(Fig. 08). And then add the code in
Fig. 09 to your 'breakout.kv 'file.

This should fully handle the
loss or win, opening a pop-up
with an appropriate message
and providing a button to try
again. Finally, we have to handle
destroying blocks when the ball
hits them (Fig. 10).

This fully covers these last
conditions, checking collision
via Kivy's built-in collide_widget
method that compares their
bounding boxes (pos and size). The
bounce direction will depend on
how far the ball has penetrated, as
this will tell us how it first collided
with the Block.

So there we have it, you can
run the code to play your simple
Breakout game. Obviously it's very
simple right now, but hopefully
you can see lots of different ways
to add whatever extra behaviour
you like – you could add different
types of blocks and power-ups, a
lives system, more sophisticated
paddle/ball interaction, or even
build a full game interface with a
menu and settings screen as well.

We’re just going to finish
showing one cool thing that you
can already do – compile your
game for Android! Generally
speaking you can take any Kivy
app and turn it straight into an
Android APK that will run on any

Build an app for Android with Python

of your Android devices. You can
even access the normal Android
API to access hardware or OS
features such as vibration, sensors
or native notifications.

We'll build for Android using
the Buildozer tool, and a Kivy
sister project wrapping other
build tools to create packages on
different systems. This takes care
of downloading and running
the Android build tools (SDK,
NDK, etc) and Kivy's Python-for-
Android tools that create the APK.

import random

 class Block(Widget):
 def __init__(self,
**kwargs):
 super(Block,
self).__init__(**kwargs)
 self.colour =
random.choice([
 (0.78, 0.28,
0),)0.28, 0.63, 0.28),)0.25,
0.28, 0.78)])

<Block>:
 size_hint: 0.09, 0.05
 # ... canvas part

<Player>:
 size_hint: 0.1, 0.025
 pos_hint: {'x': self.
position, 'y': 0.1}
 # ... canvas part

<Ball>:
 pos_hint: {'x': self.pos_
hint_x, 'y': self.pos_hint_y}

 size_hint: None, None
 proper_size:
 min(0.03*self.parent.
height, 0.03*self.parent.width)
 size: self.proper_size,
self.proper_size
 # ... canvas part

 from kivy.clock import
Clock
 from kivy.core.window
import Window
 from kivy.utils import
platform

 class Game(FloatLayout):
 def update(self, dt):
 self.ball.
update(dt) # Not defined yet
 self.player.
update(dt) # Not defined yet

 def start(self,
*args):
 Clock.schedule_
interval(self.update, 1./60.)

 def stop(self):
 Clock.
unschedule(self.update)

 def reset(self):
 for block in
self.blocks:
 self.remove_
widget(block)
 self.blocks = []
 self.setup_
blocks()
 self.ball.velocity
= [random.random(), 0.5]
 self.player.
position = 0.5

 class BreakoutApp(App):
 def build(self):

Fig 04

Fig 05

Fig 06

Introducing Python

37

Build an app for Android with Python

 g = Game()
 if platform() !=
'android':
 Window.
bind(on_key_down=g.player.
on_key_down)
 Window.
bind(on_key_up=g.player.on_
key_up)
 g.reset()
 Clock.schedule_
once(g.start, 0)
 return g

 class Ball(Widget)
 def update(self, dt):
 self.pos_hint_x
+= self.velocity[0] * dt
 self.pos_hint_y
+= self.velocity[1] * dt
 if self.right >
self.parent.right: # Bounce
from right
 self.
velocity[0] = -1 * abs(self.
velocity[0])
 if self.x < self.
parent.x: # Bounce from left
 self.
velocity[0] = abs(self.
velocity[0])
 if self.top
> self.parent.top: # Bounce
from top
 self.
velocity[1] = -1 * abs(self.
velocity[1])
 if self.y < self.
parent.y: # Lose at bottom
 self.parent.
lose() # Not implemented yet
 self.bounce_from_
player(self.parent.player)

 def bounce_
fro m _ player(s elf,
player):
 if self.
collide_widget(player):
 self.
velocity[1] = abs(self.
velocity[1])
 self.
velocity[0] += (
 0.1
* ((self.center_x -
player.center_x) /

player.width))

c l a s s
GameEndPopup(ModalView):
 message =
StringProperty()
 game =
ObjectProperty()

 class Game(Widget):
 def lose(self):
 self.stop()
 GameEndPopup(
message='[color=#ff0000]You
lose![/color]',

game=self).open()

 def win(self): #
Not called yet, but we'll
need it later
 self.stop()
 GameEndPopup(
message='[color=#00ff00]You
win![/color]',

game=self).open()

Here you will be needing
some basic dependencies, which
can be installed with ease just
by using your distro's normal
repositories. The main ones to use
are OpenJDK7, zlib, an up-to-date
Cython, and Git. If you are using
a 64-bit distro you will also be
in need of 32-bit compatibility
libraries for zlib, libstdc++, as well
as libgcc. You can then go on and
download and install Buildozer:

 <GameEndPopup>:
 size_hint: 0.8, 0.8
 auto_dismiss: False
Don't close if player
clicks outside
 BoxLayout:
 orientation:
'vertical'
 Label:
 text: root.
message
 font_size:
60
 markup: True
 halign:
'center'
 Button:
 size_hint_y:
None
 height:
sp(80)
 text: 'Play
again?'
 font_size:
60
 on_release:
root.game.start(); root.
dismiss()

Fig 07

Fig 08

Fig 09

Introducing Python

38

Build an app for Android with Python

Putting your APK
on the Play Store

1 Build and sign a
release APK

Begin by creating a personal
digital key, then using it to sign
a special release version of the
APK. Run these commands, and
follow the instructions.

Create your personal
digital key ##
You can choose your own
keystore name, alias,
and passwords.
$ keytool -genkey -v
-keystore test- release-
key.keystore \
 -alias test-alias
-keyalg RSA

-keysize 2048 -validity
10000
Compile your app in
release mode
$ buildozer android
release
Sign the APK with your
new key
$ jarsigner -verbose
-sigalg
SHA1withRSA -digestalg
SHA1 \
 -keystore ./test-
release-key.keystore \
 ./bin/KivyBreakout-0.1-
release-
unsigned.apk test-alias
Align the APK zip file
$ ~/.buildozer/android/
platform/android- sdk-21/
tools/zipalign -v 4 \
 ./bin/KivyBreakout-0.1-
release-
unsigned.apk \
 ./bin/KivyBreakout-0.1-
release.apk

Find out how to digitally sign a
release APK and upload it to an
app store of your choice

When you first run it, it will
download both the Android SDK
and NDK, which are large (at least
hundreds of megabytes) but vital
to the build. It will also take time
to build these and to compile the
Python components of your APK.
A lot of this only needs to be
done once, as future builds will
take a couple of minutes if you
change the buildozer.spec, or
just a few seconds if you've only
changed your code.

The APK produced is a debug
APK, and you can install and use
it. There are extra steps if you
want to digitally sign it so that it
can be posted on the Play store.
This isn't hard, and Buildozer can
do some of the work, but check
the documentation online for
full details.

Assuming everything goes
fine (it should!), your Android
APK will be in a newly created
'bin' directory with the name
‘KivyBreakout-0.1-debug.apk’.
You can send it to your phone
any way you like (eg email),
though you may need to
enable application installation
from unknown sources in your
Settings before you can install it.

git clone git://github.com/
kivy/buildozer
cd buildozer
sudo python2.7 setup.py
install

When you’re done with that part
you can then go on and navigate
to your Kivy app, and you’ll have
to name the main code file ‘main.
py’, this is the access point that the
Android APK will expect. Then:

buildozer init

This creates a ‘buildozer.spec’ file,
a settings file containing all the
information that Buildozer needs
to create your APK, from the name
and version to the specific Android
build options. We suggest that you
check through the whole file just
to see what's available but most of
the default settings will be fine, the
only thing we suggest changing
is (Fig. 11).

There are various other options
you will often want to set, but
none are really all that vital right
now, so you’re able to immediately
tell Buildozer to build your APK and
get going!
buildozer android debug

This will take some time, so be
patient and it will work out fine.

“Check through the whole file just to see
what’s available, but most of the default
settings will be fine”

39

Introducing PythonBuild an app for Android with Python

Above Your game should run on any modern
Android device… you can even build a release

version and publish to an app store!

2 Sign up as a
Google Play Developer

Visit https://play.google.com/
apps/publish/signup, and follow
the instructions. You'll need to
pay a one-off $25 charge, but
then you can upload as many
apps as you like.

3 Upload your app
to the store

Click 'Add new application'
to submit your app the store,
including uploading your APK
and adding description text.
When everything is ready, simply
click Publish, and it should take
just a few hours for your app to
go live!

 self.parent.do_
layout()
 self.parent.destroy_
blocks(self)

class Game(FloatLayout):
 def destroy_blocks(self,
ball):
 for i, block in
enumerate(self.blocks):
 if ball.
collide_widget(block):
 y_overlap
= (
 ball.
top - block.y if ball.
velocity[1] > 0
 else
block.top - ball.y) / block.
size_hint_y
 x_overlap
= (
 ball.
right - block.x if ball.
velocity[0] > 0
 else
block.right - ball.x) /
block.size_hint_x
 if x_
overlap < y_overlap:

ball.velocity[0] *=
-1

else:

ball.velocity[1] *=
-1

 self.
remove_widget(block)
 self.blocks.
pop(i)

title = Kivy Breakout #
Displayed in your app drawer
package.name = breakout #
Just a unique identifying
string,
 #
along with the package.
domain
fullscreen = 0 # This will
mean the navbar is not
covered
log_level = 2 # Not vital,
but this will print a lot
more debug
 # information
and may be useful if
something
 # goes wrong

Fig 10 if len(self.
blocks) == 0:
 self.
win()
 return #
Only remove at most 1 block
per frame

Fig 11

40

Introducing Python 50 Python tips

Python is a programming language that lets you work more quickly and
integrate your systems more eff ectively. Today, Python is one of the most popular
programming languages in the open source space. Look around and you will
fi nd it running everywhere, from various confi guration tools to XML parsing. Here
is the collection of 50 gems to make your Python experience worthwhile…

50 Python tips

01On most of the UNIX systems,
you can run Python scripts from

the command line.
 $ python mypyprog.py

Running Python scripts

Basics

02The Python interactive
interpreter makes it easy to

try your first steps in programming
and using all Python commands.
You just issue each command at the
command prompt (>>>), one by
one, and the answer is immediate.

Python interpreter can
be started by issuing the
command:
 $ python
 kunal@ubuntu:~$ python
 Python 2.6.2 (release26-
maint, Apr 19 2009, 01:56:41)
[GCC 4.3.3] on linux2
Type “help”, “copyright”,
“credits” or “license” for
more information.
>>> <type commands here>

In this article, all the code
starting at the
>>> symbol is meant to be given

Running Python programs
from Python interpreter

at the Python prompt.
It is also important to remember

that Python takes tabs very seriously
– so if you are receiving any error that
mentions tabs, correct the tab spacing.

03In Java, C++, and other statically
typed languages, you must

specify the data type of the function
return value and each function
argument. On the other hand, Python
is a dynamically typed language. In
Python you will never have to explicitly
specify the data type of anything you
use. Based on what value you assign,
Python will automatically keep track of
the data type internally.

Dynamic typing

04Python uses carriage returns
to separate statements, and

a colon and indentation to separate
code blocks. Most of the compiled
programming languages, such as C
and C++, use semicolons to separate
statements and curly brackets to
separate code blocks.

Python statements

05Python uses ‘==’ for
comparison and ‘=’ for

== and = operators

06You can use ‘+’ to concatenate
strings.

 >>> print ‘kun’+’al’
kunal

Concatenating strings

07The __init__ method is run as
soon as an object of a class is

instantiated. The method is useful to do
any initialization you want to do with
your object. The
__init__ method is analogous to a
constructor in C++, C# or Java.

Example:
 class Person:
 def __init__(self, name):
 self.name = name
 def sayHi(self):
 print ‘Hello, my name
is’, self.name
 p = Person(‘Kunal’)
 p.sayHi()

Output:
 [~/src/python $:] python
initmethod.py
 Hello, my name is Kunal

The __init__ method

assignment. Python does not
support inline assignment,
so there’s no chance of
accidentally assigning the value
when you actually want to
compare it.

41

Introducing Python50 Python tips

09Example:
The built-in function ‘dir()’ can

be used to find out which names a
module defines. It returns a sorted list
of strings.
 >>> import time
 >>> dir(time)

 [‘__doc__’, ‘__file__’,
‘__name__’, ‘__package__’,

‘accept2dyear’, ‘altzone’,
‘asctime’, ‘clock’, ‘ctime’,
‘daylight’, ‘gmtime’, ‘localtime’,
‘mktime’, ‘sleep’, ‘strftime’,
‘strptime’, ‘struct_time’,
‘time’, ‘timezone’, ‘tzname’,
‘tzset’]file’]

Module defined names

08To keep your programs
manageable as they grow in

size you may want to make them into
several files. Python allows you to put
multiple function definitions into a file
and use them as a module that can be
imported. These files must have a .py
extension however.

Example:
 # file my_function.py
 def minmax(a,b):
 if a <= b:
 min, max = a, b
 else:
 min, max = b, a
 return min, max
 Module Usage
 import my_function

Modules

10You can see the internal
documentation (if available) of

a module name by looking at
.__doc__.

Example:
 >>> import time
 >>> print time.clock.__doc__
 clock() -> floating

Module internal
documentation

11Python lets you access whatever
you have passed to a script

while calling it. The ‘command line’
content is stored in the sys.argv list.
 import sys
 print sys.argv

Passing arguments
to a Python script

12You can load predefined
modules or

commands at the startup of
any Python script by using
the environment variable
$PYTHONSTARTUP. You can
set environment variable
$PYTHONSTARTUP to a file which
contains the instructions load
necessary modules or commands .

Loading modules or
commands at startup

13You can use the function
‘DateTime’ to convert a string to a

date object.
Example:

 from DateTime import DateTime
 dateobj = DateTime(string)

Converting a string
to date object

15You can achieve auto
completion inside Python

interpreter by adding these lines to
your .pythonrc file (or your file for
Python to read on startup):
 import rlcompleter, readline
 readline.parse_and_bind(‘tab:
complete’)
This will make Python complete
partially typed function, method and
variable names when you press the
Tab key.

Tab completion
in Python interpreter

16You can pop up a graphical
interface for searching the

Python documentation using the
command:
 $ pydoc -g
You will need python-tk package for
this to work.

Python
documentation tool

point number
This example returns the CPU time or
real time since the start of the process
or since the first call to clock(). This has
just as much precision as the system
records do.

14You can convert a list to string
in the following ways.

1st method:
 >>> mylist = [‘spam’, ‘ham’,

Converting a string
to date object

‘eggs’]
 >>> print ‘, ‘.join(mylist)
 spam, ham, eggs

2nd method:
 >>> print ‘\n’.join(mylist)
 spam
 ham
 eggs

“Today, Python is
certainly one of
the most popular
programming
languages to be
found in the open
source space”

42

17You can start an HTTP server
on the given port on the

local machine. This will give you a
nice-looking access to all Python
documentation, including third-party
module documentation.
 $ pydoc -p <portNumber>

Accessing the Python
documentation server

18There are plenty of tools to help
with Python development.

Here are a few important ones:
IDLE: The Python built-in IDE, with
autocompletion, function signature
popup help, and file editing.
IPython: Another enhanced Python
shell with tab-completion and
other features.
Eric3: A GUI Python IDE with
autocompletion, class browser, built-in
shell and debugger.
WingIDE: Commercial Python IDE
with free licence available to open-
source developers everywhere.

Python development
software

Built-in modules

19You can use ‘atexit’ module to
execute functions at the time of

Python interpreter termination.
Example:
 def sum():
 print(4+5)
 def message():
 print(“Executing Now”)
 import atexit
 atexit.register(sum)
 atexit.register(message)
Output:
 Executing Now
9

Executing at Python
interpreter termination

20Python provides easy-to-use
functions – bin(), hex() and

oct() – to convert from integer to binary,
decimal and octal format respectively.
Example:
 >>> bin(24)
 ‘0b11000’
 >>> hex(24)
 ‘0x18’
 >>> oct(24)
 ‘030’

Converting from integer
to binary and more

21You can use the following
function to convert any charset

to UTF-8.
 data.decode(“input_charset_
here”).encode(‘utf-8’)

Converting any
charset to UTF-8

22 If you want to remove duplicates
from a list, just put every

element into a dict as a key (for
example with ‘none’ as value) and then
check dict.keys().
 from operator import setitem
 def distinct(l):
 d = {}
 map(setitem, (d,)*len(l),
l, [])
 return d.keys()

Removing
duplicates from lists

23Since Python has no do-while
or do-until loop constructs (yet),

you can use the following method to
achieve similar results:
 while True:
 do_something()
 if condition():
 break

Do-while loops

24To execute platform-specific
functions, it is very useful to be

able to detect the platform on which
the Python interpreter is running. You
can use ‘sys.platform’ to find out the
current platform.
Example:
On Ubuntu Linux
 >>> import sys
 >>> sys.platform
 ‘linux2’
On Mac OS X Snow Leopard
 >>> import sys
 >>> sys.platform
 ‘darwin’

Detecting system
platform

25Sometimes you may
want to enable or disable

the garbage collector function
at runtime. You can use the ‘gc’
module to enable or disable the
garbage collection.
Example:
 >>> import gc
 >>> gc.enable
 <built-in function enable>
 >>> gc.disable
 <built-in function
disable>

Disabling and enabling
garbage collection

26Many Python modules
ship with counterpart

C modules. Using these C
modules will give a significant
performance boost in your
complex applications.
Example:
 cPickle instead of
Pickle, cStringIO instead
of StringIO .

Using C-based modules
for better performance

Introducing Python 50 Python tips

43

27You can use the following built-
in functions.

max: Returns the largest element in
the list.
min: Returns the smallest element in
the list.
sum: This function returns the sum
of all elements in the list. It accepts an
optional second argument: the value
to start with when summing (defaults
to 0).

Calculating maximum,
minimum and sum

28Fraction instance can be
created in Python using the

following constructor:
 Fraction([numerator
[,denominator]])

Representing
fractional numbers

29 The ‘math’ module provides
a plethora of mathematical

functions. These functions work on
integer and float numbers, except
complex numbers. For complex
numbers, a separate module is used,
called ‘cmath’.
For example:
 math.acos(x): Return arc
cosine of x.
 math.cos(x): Returns cosine
of x.
 math.factorial(x) : Returns x
factorial.

Performing
math operations

30The ‘array’ module provides
an efficient way to use arrays

in your programs. The ‘array’ module
defines the following type:
 array(typecode [,

Working with arrays

31The ‘bisect’ module makes
it very easy to keep lists in

any possible order. You can use the
following functions to order lists.
 bisect.insort(list, item [,
low [, high]])
Inserts item into list in sorted order. If
item is already in the list, the new entry
is inserted to the right of any existing
entries there.
 bisect.insort_left(list, item
[, low [, high]])
Inserts item into list in sorted order.
If item is already within the list, the
new entry is inserted to the left of any
existing entries.

Sorting items

32The ‘re’ module makes it very
easy to use regxp-based

searches. You can use the function
‘re.search()’ with a regexp-based
expression. Check out the example
included below.
Example:
 >>> import re
 >>> s = “Kunal is a bad boy”
 >>> if re.search(“K”, s):
print “Match!” # char literal
...
 Match!
 >>> if re.search(“[@A-Z]”, s):
print “Match!” # char class
 ... # match either at-sign or

Using regular
expression-based search

33You can use the module ‘bz2’
to read and write data using

the bzip2 compression algorithm.
 bz2.compress() : For bz2
compression
 bz2.decompress() : For bz2
decompression
Example:
 # File: bz2-example.py
 import bz2
 MESSAGE = “Kunal is a bad
boy”
 compressed_message = bz2.
compress(MESSAGE)
 decompressed_message = bz2.
decompress(compressed_message)
 print “original:”,
repr(MESSAGE)
 print “compressed message:”,
repr(compressed_ message)
 print “decompressed message:”,
repr(decompressed_message)
Output:
 [~/src/python $:] python bz2-
example.py
 original: ‘Kunal is a bad
boy’
 compressed message:
‘BZh91AY&SY\xc4\x0fG\x98\ x00\
x00\x02\x15\x80@\x00\x00\x084%\
x8a \x00”\x00\x0c\x84\r\x03C\
xa2\xb0\xd6s\xa5\xb3\x19\x00\xf8\
xbb\x92)\xc2\x84\x86 z<\xc0’
 decompressed message: ‘Kunal
is a bad boy’

Working with bzip2 (.bz2)
compression format

initializer])
Once you have created an array
object, say myarray, you can apply a
bunch of methods to it. Here are a few
important ones:
 myarray.count(x): Returns the
number of occurrences of x
in a.
 myarray.extend(x): Appends x
at the end of the array.
 myarray.reverse(): Reverse the
order of the array.

capital letter
 Match!
 >>> if re.search(“\d”, s):
print “Match!” # digits class
...

“There are tools to
help develop
with Python”

Introducing Python50 Python tips

44

Introducing Python

34SQLite is fast becoming a very
popular embedded database

because of the zero configuration that
is needed, and its superior levels of
performance. You can use the module
‘sqlite3’ in order to work with these
SQLite databases.
Example:
 >>> import sqlite3
 >>> connection = sqlite.
connect(‘test.db’)
 >>> curs = connection.
cursor()
 >>> curs.execute(‘’’create
table item
 ... (id integer primary key,
itemno text unique,
 ... scancode text, descr text,
price real)’’’)
 <sqlite3.Cursor object at
0x1004a2b30>

Using SQLite database
with Python

35You can use the module ‘zipfile’
to work with zip files.

 zipfile.ZipFile(filename
[, mode [, compression
[,allowZip64]]])
Open a zip file, where the file can be
either a path to a file (a string) or a file-
like object.
 zipfile.close()¶
Close the archive file. You must call
‘close()’ before exiting your program or
essential records will not be written.
 zipfile.extract(member[,
path[, pwd]])
Extract a member from the archive
to the current working directory;
‘member’ must be its full name (or a
zipinfo object). Its file information is
extracted as accurately as possible.
‘path’ specifies a different directory to
extract to. ‘member’ can be a filename
or a zipinfo object. ‘pwd’ is the
password used for encrypted files.

Working with zip files

36You can use the module ‘glob’
to find all the pathnames

matching a pattern according to the
rules used by the UNIX shell. *, ?, and
character ranges expressed with [] will
be matched.
Example:
 >>> import glob
 >>> glob.glob(‘./[0-9].*’)
 [‘./1.gif’, ‘./2.txt’]
 >>> glob.glob(‘*.gif’)
 [‘1.gif’, ‘card.gif’]
 >>> glob.glob(‘?.gif’)
 [‘1.gif’]

Using wildcards to search
for filenames

37You can use the module ‘shutil’
to perform basic file operation

at a high level. This module works with
your regular files and so will not work
with special files like named pipes,
block devices, and so on.
 shutil.copy(src,dst)
Copies the file src to the file or
directory dst.
 shutil.copymode(src,dst)
Copies the file permissions from src
to dst.
 shutil.move(src,dst)
Moves a file or directory to dst.
 shutil.copytree(src, dst,
symlinks [,ignore]])
Recursively copy an entire directory
at src.
 shutil.rmtree(path [, ignore_
errors [, onerror]])
Deletes an entire directory.

Performing basic file
operations

38You can use module
commands to execute

UNIX commands. This is not
available in Python 3 – instead,
in this, you will need to use the
module ‘subprocess’.
Example:
 >>> import commands
 >>> commands.
getoutput(‘ls’)
 ‘bz2-example.py\ntest.py’

Executing UNIX
commands from Python

39You can use the module ‘os’
to gather up some operating-

system-specific information:
Example:
 >>> import os
 >>> os.path <module ‘posixpath’
 from ‘/usr/lib/python2.6/
posixpath.pyc’>>>> os.environ
{‘LANG’: ‘en_IN’, ‘TERM’: ‘xterm-
color’, ‘SHELL’:
 ‘/bin/bash’, ‘LESSCLOSE’:
 ‘/usr/bin/lesspipe %s %s’,
 ‘XDG_SESSION_COOKIE’:
 ‘925c4644597c791c704656354adf56d6-
 1257673132.347986-1177792325’,
 ‘SHLVL’: ‘1’, ‘SSH_TTY’: ‘/dev/
pts/2’, ‘PWD’: ‘/ home/kunal’,
 ‘LESSOPEN’: ‘| /usr/bin
 lesspipe
......}
 >>> os.name
 ‘posix’
 >>> os.linesep
 ‘\n’

Reading environment
variables

“Look around and you will find Python
everywhere, from various configuration
tools to XML parsing”

50 Python tips

45

Introducing Python

40You can use the module
‘smtplib’ to send email using

an SMTP (Simple Mail Transfer Protocol)
client interface.
smtplib.SMTP([host [, port]])
Example (send an email using
Google Mail SMTP server):
 import smtplib
 # Use your own to and from
email address
 fromaddr = ‘kunaldeo@gmail.com’
 toaddrs = ‘toemail@gmail.com’
 msg = ‘I am a Python geek.
Here is the proof.!’
 # Credentials
 # Use your own Google Mail
credentials while running the
program
 username = ‘kunaldeo@gmail.com’
 password = ‘xxxxxxxx’
 # The actual mail send
 server = smtplib.SMTP(‘smtp.
gmail.com:587’)
 # Google Mail uses secure
connection for SMTP connections
 server.starttls()
 server.login(username,password)
 server.sendmail(fromaddr,
toaddrs, msg)
 server.quit()

Sending email

41‘ftplib’ is a fully fledged client
FTP module for Python. To

establish an FTP connection, you can
use the following function:
smtplib.SMTP([host [, port]])
Example (send an email using
Google Mail SMTP server):
 ftplib.FTP([host [, user [,
passwd [, acct [, timeout]]]]])
Example:
 host = “ftp.redhat.com”
 username = “anonymous”
 password = “kunaldeo@gmail.
com”
 import ftplib
 import urllib2
 ftp_serv = ftplib.

Accessing FTP server

42‘The ‘webbrowser’ module
provides a convenient way to

launch webpages using the default
web browser.
Example (launch google.co.uk
with system’s default web
browser):
>>> import webbrowser
>>> webbrowser.open(‘http://
google.co.uk’)
True

Launching a webpage
with the web browser

FTP(host,username,password)
 # Download the file
 u = urllib2.urlopen (“ftp://
ftp.redhat.com/ pub/redhat/
linux/README”)
 # Print the file contents
 print (u.read())
Output:
 [~/src/python $:] python
ftpclient.py
Older versions of Red Hat Linux have
been moved to the following location:
ftp://archive.download.redhat.com/
pub/redhat/linux/

43The ‘hashlib’ module
supports a plethora of

secure hash algorithms including
SHA1, SHA224, SHA256, SHA384,
SHA512 and MD5.
Example (create hex digest of
the given text):
 >>> import hashlib
 # sha1 Digest
 >>> hashlib.sha1(“MI6
Classified Information 007”).
hexdigest()
 ‘e224b1543f229cc0cb935a1eb9593
 18ba1b20c85’
 # sha224 Digest
 >>> hashlib.sha224(“MI6
Classified
 Information 007”).hexdigest()

Creating secure hashes

‘3d01e2f741000b0224084482f905e9b7b97
 7a59b480990ea8355e2c0’
 # sha256 Digest
 >>> hashlib.sha256(“MI6 Classified
 Information 007”).hexdigest()
 ‘2fdde5733f5d47b67 2fcb39725991c89
 b2550707cbf4c6403e fdb33b1c19825e’
 # sha384 Digest
 >>> hashlib.sha384(“MI6 Classified
 Information 007”).hexdigest()
 ‘5c4914160f03dfbd19e14d3ec1e74bd8b99
 dc192edc138aaf7682800982488daaf540be
 9e0e50fc3d3a65c8b6353572d’
 # sha512 Digest
 >>> hashlib.sha512(“MI6 Classified
 Information 007”).hexdigest()
 ‘a704ac3dbef6e8234578482a31d5ad29d25

2c822d1f4973f49b850222edcc0a29bb89077

8aea807a0a48ee4ff8bb18566140667fbaf7
 3a1dc1ff192febc713d2’
 # MD5 Digest
 >>> hashlib.md5(“MI6 Classified
 Information 007”).hexdigest()
 ‘8e2f1c52ac146f1a999a670c826f7126’

44You can use the module
‘random’ to generate a wide

variety of random numbers. The
most used one is ‘random.seed([x])’. It
initialises the basic random number
generator. If x is omitted or None,
the current system time is used; the
current system time is also used to
initialise the generator when the
module is first imported.

Seeding random numbers

“Programming in
Python lets you
work more quickly
and integrate your
systems much
more effectively”

50 Python tips

46

45CSV files are very popular
for data exchange over

the web. Using the module ‘csv’,
you can read and write CSV files.
Example:
 import csv
 # write stocks data as
comma- separated values
 writer = csv.
writer(open(‘stocks.csv’, ‘wb’,
buffering=0))
 writer.writerows([
 (‘GOOG’, ‘Google, Inc.’,
505.24, 0.47, 0.09),
 (‘YHOO’, ‘Yahoo! Inc.’,
27.38, 0.33, 1.22),
 (‘CNET’, ‘CNET Networks,
Inc.’, 8.62, -0.13, -1.49)
])
 # read stocks data, print
status messages
 stocks = csv.
reader(open(‘stocks.csv’,
‘rb’))
 status_labels = {-1: ‘down’,
0: ‘unchanged’, 1: ‘up’}
 for ticker, name, price,
change, pct in stocks:
 status = status_
labels[cmp(float(change), 0.0)]
 print ‘%s is %s (%s%%)’
% (name, status, pct)

Working with
CSV files

46 ‘setuptools’ is a Python package
which lets you download, build,

install, upgrade and uninstall packages
very easily. To use the ‘setuptools’

Installing third-party
modules using setuptools

47You can use the module
‘syslog’ to write to system log.

‘syslog’ acts as an interface to UNIX
syslog library routines.
Example:
 import syslog
 syslog.syslog(‘mygeekapp:
started logging’)
 for a in [‘a’, ‘b’, ‘c’]:
 b = ‘mygeekapp: I found
letter ‘+a
 syslog.syslog(b)
 syslog.syslog(‘mygeekapp:
the script goes to sleep now,
bye,bye!’)
Output:
 $ python mylog.py
 $ tail -f /var/log/messages
 Nov 8 17:14:34 ubuntu -- MARK
--
 Nov 8 17:22:34 ubuntu python:
mygeekapp: started logging
 Nov 8 17:22:34 ubuntu python:
mygeekapp: I found letter a
 Nov 8 17:22:34 ubuntu python:
mygeekapp: I found letter b
 Nov 8 17:22:34 ubuntu
python: mygeekapp: I found
letter c
 Nov 8 17:22:34 ubuntu
python: mygeekapp: the script
goes to sleep now, bye,bye!

Logging to system log

Third-party
modules

48‘ReportLab’ is a very
popular module for PDF

generation from Python.
Perform the following steps
to install ReportLab
 $ wget http://www.
reportlab.org/ftp/

Generating PDF
documents

“You can use the module ‘random’ to
generate a wide variety of random
numbers with the basic generator”

package you will need to install
these from your distribution’s
package manager.

After installation you can use
the command ‘easy_install’ to
perform any Python package
management tasks that are
necessary at that point.
Example (installing
simplejson using
setuptools):
 kunal@ubuntu:~$ sudo
easy_ install simplejson
 Searching for simplejson
 Reading http://pypi.
python.org/simple/
simplejson/
 Reading http://undefined.
org/python/#simplejson
 Best match: simplejson
2.0.9
 Downloading http://
pypi.python.org/packages/
source/s/simplejson/
simplejson-2.0.9.tar.gz#md5
=af5e67a39ca3408563411d357
e6d5e47
 Processing simplejson-
2.0.9.tar.gz
 Running simplejson-2.0.9/
setup.py -q bdist_egg
--dist-dir /tmp/
easy_install-FiyfNL/
simplejson-2.0.9/egg-dist-
tmp-3YwsGV
 Adding simplejson 2.0.9
to easy-install.pth file
 Installed /usr/local/lib/
python2.6/dist-packages/
simplejson-2.0.9-py2.6-
linux-i686.egg
 Processing dependencies
for simplejson
 Finished processing
dependencies for simplejson

Introducing Python 50 Python tips

47

49You can connect to Twitter
easily using the ‘Python-

Twitter’ module.
Perform the following steps to
install Python-Twitter:
 $ wget http://python-
twitter.googlecode.com/files/
python-twitter-0.6.tar.gz
 $ tar xvfz python-twitter*
 $ cd python-twitter*
 $ sudo python setup.py
install
Example (fetching followers list):
 >>> import twitter
Use you own twitter account
here
 >>> mytwi = twitter.Api(us
ername=’kunaldeo’,password=’x
xxxxx’)
 >>> friends = mytwi.
GetFriends()
 >>> print [u.name for u in

Using Twitter API

50You can use the Yahoo!
search SDK to access

Yahoo! search APIs from Python.
Perform the following steps
to install it:
 $wget http://developer.
yahoo.com/download/files/
yws- 2.12.zip
 $ unzip yws*
 $ cd yws*/Python/
pYsearch*/
 $ sudo python setup.py
install
Example:
 # Importing news search
API
 >>> from yahoo.search.
news import NewsSearch
 >>> srch =
NewsSearch(‘YahooDemo’,
query=’London’)
 # Fetch Results
 >>> info = srch.parse_
results()
 >>> info.total_results_
available
 41640
 >>> info.total_results_
returned
 10
 >>> for result in info.
results:
 ... print “’%s’, from
%s” % (result[‘Title’],
result[‘NewsSource’])
...
 ‘Afghan Handover to
Be Planned at London
Conference, Brown Says’,
from Bloomberg
.................

Doing Yahoo! news search

ReportLab_2_3.tar.gz
 $ tar xvfz ReportLab_2_3.
tar.gz
 $ cd ReportLab_2_3
 $ sudo python setup.py
install
For a successful installation, you
should see a similar message:
 ############SUMMARY
INFO###########
 ##########################
#########
 #Attempting install of _rl_
accel, sgmlop & pyHnj
 #extensions from ‘/home/
kunal/python/ ReportLab_2_3/
src/rl_addons/rl_accel’
 ##########################
#########
 #Attempting install of
_renderPM
 #extensions from ‘/home/
kunal/python/ ReportLab_2_3/
src/rl_addons/renderPM’
 # installing with freetype
version 21
 ##########################
#########
Example:
 >>> from reportlab.pdfgen.
canvas import Canvas
 # Select the canvas of
letter page size
 >>> from reportlab.lib.
pagesizes import letter
 >>> pdf = Canvas(“bond.pdf”,
pagesize = letter)
 # import units
 >>> from reportlab.lib.units
import cm, mm, inch, pica
 >>> pdf.setFont(“Courier”,
60)
 >>> pdf.setFillColorRGB(1,
0, 0)
 >>> pdf.

friends]

Introducing Python50 Python tips

“There are plenty of services such as
IPython and IDLE available to users to
help them with Python development”

drawCentredString(letter[0]
/ 2, inch * 6, “MI6
CLASSIFIED”)
 >>> pdf.setFont(“Courier”,
40)
 >>> pdf.
drawCentredString(letter[0] /
2, inch * 5, “For 007’s Eyes
Only”)
 # Close the drawing for
current page
 >>> pdf.showPage()
 # Save the pdf page
 >>> pdf.save()
Output:
 @image:pdf.png
 @title: PDF Output

 [u’Matt Legend Gemmell’,
u’jono wells’, u’The MDN
Big Blog’, u’Manish Mandal’,
u’iH8sn0w’, u’IndianVideoGamer.
com’, u’FakeAaron Hillegass’,
u’ChaosCode’, u’nileshp’, u’Frank
Jennings’,..’]

48

Work with Python Practical Python tips and projects

Work with Python
With a more solid understanding of Python, you can really begin to
make it work for you. It is a highly functional and versatile language,
and in this section, we’ll show you how to use this versatility in your
own projects. First, we’ll show you how to ditch the primary shell
and replace it using Python (p.50), then look at how NumPy can
help with scientifi c computing (p.58). We’ll also look at how Python
can help with system administration (p.64), and how you can use it
with Beautiful Soup to read Wikipedia offl ine (p.72). Get ready to use
Python to its full potential.

49

Work with PythonPractical Python tips and projects

Work with Python Replace your shell with Python

50

Python
www.python.org/doc

What you’ll need… Replace your shell
with Python
Python is a great programming language, but did
you know it can even replace your primary shell?

We all use shell on a daily basis. For most of us, shell is the gateway into
our Linux system. For years and even today, Bash has been the default
shell for Linux. But it is getting a bit long in the tooth.

No need to be offended: we still believe Bash is the best shell out
there when compared to some other UNIX shells such as Korn Shell
(KSH), C Shell (CSH) or even TCSH.

This tutorial is not about Bash being incapable, but it is about
how to breathe completely new life into the shell to do old things
conveniently and new things which were previously not possible, even
by a long shot. So, without further delay, let’s jump in.

While the Python programming language may require you to write
longer commands to accomplish a task (due to the way Python’s
modules are organised), this is not something to be particularly
concerned about. You can easily write aliases to the equivalent of the
Bash command that you intend to replace. Most of the time there
will be more than one way to do a thing, but you will need to decide
which way works best for you.

Python provides support for executing system commands directly
(via the os or subprocess module), but where possible we will focus
on Python-native implementations here, as this allows us to develop
portable code.

SECTION 1: Completing basic shell tasks in Python

1. File management
The Python module shutil provides support for file and directory
operations. It provides support for file attributes, directory copying,
archiving etc. Let’s look at some of its important functions.

shutil module

Work with PythonReplace your shell with Python

51

copy (src,dst): Copy the src fi le to the destination directory. In this
mode permissions bits are copied but metadata is not copied.
copy2 (src,dst): Same as copy() but also copies the metadata.
copytree(src, dst[, symlinks=False[, ignore=None]]): This is
similar to ‘cp -r’, it allows you to copy an entire directory.
ignore_patterns (*patterns): ignore_patterns is an interesting
function that can be used as a callable for copytree(), it allows you to
ignore fi les and directories specifi ed by the glob-style patterns.
rmtree(path[, ignore_errors[, onerror]]): rmtree() is used to
delete an entire directory.
move(src,dst): Similar to mv command it allows you to recessively
move a fi le or directory to a new location.

Example:
 from shutil import copytree, ignore_patterns

 copytree(source, destination, ignore=ignore_patterns(‘*.

pyc’, ‘tmp*’))

make_archive(base_name, format[, root_dir[, base_dir[,

verbose[, dry_run[, owner[, group[, logger]]]]]]]: Think of
this as a replacement for tar, zip, bzip etc. make_archive() creates an
archive fi le in the given format such as zip, bztar, tar , gztar. Archive
support can be extended via Python modules.

Example
 from shutil import make_archive

 import os

 archive_name = os.path.expanduser(os.path.join(‘~’,

‘ludarchive’))

 root_dir = os.path.expanduser(os.path.join(‘~’, ‘.ssh’))

 make_archive(archive_name, ‘gztar’, root_dir)

‘/Users/kunal/ludarchive.tar.gz’

2. Interfacing operating system & subprocesses
Python provides two modules to interface with the OS and to manage
processes, called os and subprocess. These modules let you interact
with the core operating system shell, and work with the environment,
processes, users and fi le descriptors. The subprocess module was
introduced to support better management of subprocesses (paalready

Above You may never need to use Bash
again, with some dedicated Python
modules at hand

52

in Python and is aimed to replace os.system, os.spawn*, os.popen,
popen2.* and commands.* modules.

os module
environ: environment represents the OS environment variables in a
string object.

Example:
 import os

 os.environ

{‘VERSIONER_PYTHON_PREFER_32_BIT’: ‘no’, ‘LC_CTYPE’: ‘UTF-

8’, ‘TERM_PROGRAM_VERSION’: ‘297’, ‘LOGNAME’: ‘kunaldeo’,

‘USER’: ‘kunaldeo’, ‘PATH’: ‘/System/Library/Frameworks/

Python.framework/Versions/2.7/bin:/Users/kunaldeo/narwhal/

bin:/opt/local/sbin:/usr/local/bin:/usr/bin:/bin:/usr/sbin:/

sbin:/usr/local/bin:/usr/X11/bin:/opt/local/bin:/Applications/

MOTODEV_Studio_For_Android_2.0.0_x86/android_sdk/tools:/

Applications/MOTODEV_Studio_For_Android_2.0.0_x86/android_sdk/

platform-tools:/Volumes/CyanogenModWorkspace/bin’, ‘HOME’:

‘/Users/kunaldeo’, ‘PS1’: ‘\\[\\e[0;32m\\]\\u\\[\\e[m\\] \\

[\\e[1;34m\\]\\w\\[\\e[m\\] \\[\\e[1;32m\\]\\$\\[\\e[m\\] \\

[\\e[1;37m\\]’, ‘NARWHAL_ENGINE’: ‘jsc’, ‘DISPLAY’: ‘/tmp/launch-

s2LUfa/org.x:0’, ‘TERM_PROGRAM’: ‘Apple_Terminal’, ‘TERM’:

‘xterm-color’, ‘Apple_PubSub_Socket_Render’: ‘/tmp/launch-

kDul5P/Render’, ‘VERSIONER_PYTHON_VERSION’: ‘2.7’, ‘SHLVL’: ‘1’,

‘SECURITYSESSIONID’: ‘186a5’, ‘ANDROID_SDK’: ‘/Applications/

MOTODEV_Studio_For_Android_2.0.0_x86/android_sdk’,’_’: ‘/System/

Library/Frameworks/Python.framework/Versions/2.7/bin/python’,

‘TERM_SESSION_ID’: ‘ACFE2492-BB5C-418E-8D4F-84E9CF63B506’,

‘SSH_AUTH_SOCK’: ‘/tmp/launch-dj6Mk4/Listeners’, ‘SHELL’: ‘/bin/

bash’, ‘TMPDIR’: ‘/var/folders/6s/pgknm8b118737mb8psz8x4z80000

gn/T/’, ‘LSCOLORS’: ‘ExFxCxDxBxegedabagacad’, ‘CLICOLOR’: ‘1’,

‘__CF_USER_TEXT_ENCODING’: ‘0x1F5:0:0’, ‘PWD’: ‘/Users/kunaldeo’,

‘COMMAND_MODE’: ‘unix2003’}

You can also find out the value for an environment value:

 os.environ[‘HOME’]

‘/Users/kunaldeo’

Work with Python Replace your shell with Python

53

putenv(varname,value) : Adds or sets an environment variable with
the given variable name and value.
getuid() : Return the current process’s user id.
getlogin() : Returns the username of currently logged in user
getpid(pid) : Returns the process group id of given pid. When used
without any parameters it simply returns the current process id.
getcwd() : Return the path of the current working directory.
chdir(path) : Change the current working directory to the given path.
listdir(path) : Similar to ls, returns a list with the content of
directories and file available on the given path.

Example:
 os.listdir(“/home/homer”)

[‘.gnome2’, ‘.pulse’, ‘.gconf’, ‘.gconfd’, ‘.beagle’,

‘.gnome2_private’, ‘.gksu.lock’, ‘Public’, ‘.ICEauthority’,

‘.bash_history’, ‘.compiz’, ‘.gvfs’, ‘.update-notifier’,

‘.cache’, ‘Desktop’, ‘Videos’, ‘.profile’, ‘.config’, ‘.esd_

auth’, ‘.viminfo’, ‘.sudo_as_admin_successful’, ‘mbox’,

‘.xsession-errors’, ‘.bashrc’, ‘Music’, ‘.dbus’, ‘.local’,

‘.gstreamer-0.10’, ‘Documents’, ‘.gtk-bookmarks’, ‘Downloads’,

‘Pictures’, ‘.pulse-cookie’, ‘.nautilus’, ‘examples.desktop’,

‘Templates’, ‘.bash_logout’]

mkdir(path[, mode]) : Creates a directory with the given path with
the numeric code mode. The default mode is 0777.
makedirs(path[, mode]) : Creates given path (inclusive of all its
directories) recursively. The default mode is 0777. :

Example:
 import os

 path = “/home/kunal/greatdir”

 os.makedirs(path, 0755);

rename (old,new) : The file or directory “old” is renamed to “new” If
“new” is a directory, an error will be raised. On Unix and Linux, if “new”
exists and is a file, it will be replaced silently if the user has permission
to do so.

renames (old,new) : Similar to rename but also creates any directories

Work with PythonReplace your shell with Python

Above A screenshot of the IPython Gt
console with GUI capabilities

54

recessively if necessary.

rmdir(path) : Remove directory from the path mentioned. If the path
already has fi les you will need to use shutil.rmdtree()

subprocess:

call(*popenargs, **kwargs) : Runs the command with arguments.
On process completion it returns the returncode attribute.

Example:
 import subprocess

 print subprocess.call([“ls”,”-l”])

total 3684688

drwx------+ 5 kunaldeo staff 170 Aug 19 01:37 Desktop

drwx------+ 10 kunaldeo staff 340 Jul 26 08:30

 Documents

drwx------+ 50 kunaldeo staff 1700 Aug 19 12:50

 Downloads

drwx------@ 127 kunaldeo staff 4318 Aug 19 01:43 Dropbox

drwx------@ 42 kunaldeo staff 1428 Aug 12 15:17 Library

drwx------@ 3 kunaldeo staff 102 Jul 3 23:23 Movies

drwx------+ 4 kunaldeo staff 136 Jul 6 08:32 Music

drwx------+ 5 kunaldeo staff 170 Aug 12 11:26 Pictures

drwxr-xr-x+ 5 kunaldeo staff 170 Jul 3 23:23 Public

-rwxr-xr-x 1 kunaldeo staff 1886555648 Aug 16 21:02

 androidsdk.tar

drwxr-xr-x 5 kunaldeo staff 170 Aug 16 21:05 sdk

drwxr-xr-x 19 kunaldeo staff 646 Aug 19 01:47 src

-rw-r--r-- 1 root staff 367 Aug 16 20:36

 umbrella0.log

STD_INPUT_HANDLE: The standard input device. Initially, this is the
console input buff er.
STD_OUTPUT_HANDLE: The standard output device. Initially, this is the
active console screen buff er.
STD_ERROR_HANDLE: The standard error device. Initially, this is the active
console screen buff er.

Work with Python Replace your shell with Python

Above IPython previously offered a
notebook feature, enabling users to create
HTML documents where images, code
and mathematical formulae were correctly
formatted. This has since been split off into
a separate (but tightly integrated) service
called Jupyter

55

SECTION 2: IPython: a ready-made Python system
shell replacement

In section 1 we have introduced you to the Python modules which
allow you to do system shell-related tasks very easily using vanilla
Python. Using the same features, you can build a fully featured shell
and remove a lot of Python boilerplate code along the way. However,
if you are kind of person who wants everything ready-made, you are in
luck. IPython provides a powerful and interactive Python shell which
you can use as your primary shell. IPython supports Python 2.6 to 2.7
and 3.1 to 3.2 . It supports two type of Python shells: Terminal based
and Qt based.

Just to reiterate, IPython is purely implemented in Python and
provides a 100% Python-compliant shell interface, so everything that
you have learnt in section 1 so far can be run inside IPython without
any problems.

IPython is already available in most Linux distributions. Search your
distro’s repositories to look for it. In case you are not able to find it, you
can also install it using easy_install or PyPI.

IPython provides a lot of interesting features which makes it a great
shell replacement…

Tab completion: Tab completion provides an excellent way to explore
any Python object that you are working with. It also helps you to avoid
making typos.

Example :
In [3]: import o {hit tab}

objc opcode operator optparse os os2emxpath

In [3]: import os

In [4]: os.p {hit tab}

os.pardir os.pathconf_names os.popen os.popen4

os.path os.pathsep os.popen2 os.putenv

os.pathconf os.pipe os.popen3

Built In Object Explorer: You can add ‘?’ after any Python object
to view its details such as Type, Base Class, String Form, Namespace, File
and Docstring.

Work with PythonReplace your shell with Python

56

Example:
In [28]: os.path?

Type: module

Base Class: <type ‘module’>

String Form:<module ‘posixpath’ from ‘/System/Library/

Frameworks/Python.framework/Versions/2.7/lib/python2.7/

posixpath.pyc’>

Namespace: Interactive

File: /System/Library/Frameworks/Python.framework/

Versions/2.7/lib/python2.7/posixpath.py

Docstring:

Common operations on POSIX pathnames.

Instead of importing this module directly, import os and refer to this
module as os.path. The ‘os.path’ name is an alias for this module on
POSIX systems; on other systems (eg Mac, Windows), os.path provides
the same operations in a manner specific to that platform, and is an
alias to another module (eg macpath, ntpath).

Some of this can actually be useful on non-POSIX systems too, eg for
manipulation of the pathname component of URLs. You can also use
double question marks (??) to view the source code for the relevant object.

Magic functions: IPython comes with a set of predefined ‘magic
functions’ that you can call with a command-line-style syntax. IPython
‘magic’ commands are conventionally prefaced by %, but if the flag
%automagic is set to on, then you can call magic commands without
the %. To view a list of available magic functions, use ‘magic function
%lsmagic’. They include functions that work with code such as %run,
%edit, %macro, %recall etc; functions that affect shell such as %colors,
%xmode, %autoindent etc; and others such as %reset, %timeit, %paste
etc. Most cool features of IPython are powered using magic functions.

Example:
In [45]: %lsmagic

Available magic functions:

%alias %autocall %autoindent %automagic %bookmark %cd

%colors %cpaste %debug %dhist %dirs %doctest_mode %ed

%edit %env %gui %hist %history %install_default_config

%install_profiles %load_ext %loadpy %logoff %logon

%logstart %logstate %logstop %lsmagic %macro %magic

Work with Python Replace your shell with Python

57

%page %paste %pastebin %pdb %pdef %pdoc %pfile

%pinfo %pinfo2 %popd %pprint %precision %profile %prun

%psearch %psource %pushd %pwd %pycat %pylab %quickref

%recall %rehashx %reload_ext %rep %rerun %reset

%reset_selective %run %save %sc %sx %tb %time %timeit

%unalias %unload_ext %who %who_ls %whos %xdel %xmode

Automagic is OFF, % prefix IS needed for magic functions. To view help
on any Magic Function, call ‘%somemagic?’ to read its docstring.

Python script execution and runtime code editing: You can use %run
to run any Python script. You can also control-run the Python script with
pdb debugger using -d, or pdn profiler using -p. You can also edit a
Python script using the %edit command which opens the given Python
script in the editor defined by the $EDITOR environment variable.

Shell command support: To just run a shell command, prefix the
command with ! .

Example :
In [5]: !ps

 PID TTY TIME CMD

 4508 ttys000 0:00.07 -bash

84275 ttys001 0:00.03 -bash

17958 ttys002 0:00.18 -bash

In [8]: !clang prog.c -o prog

prog.c:2:1: warning: type specifier missing, defaults to

‘int’ [-Wimplicit-int]

main()

~̂~~

1 warning generated.

Qt console : IPython comes with a Qt-based console. This provides
features only available in a GUI, like inline figures, multiline editing with
syntax highlighting, and graphical calltips. Start the Qt console with:

 $ ipython qtconsole

If you get errors about missing modules, ensure that you have installed
dependent packages – PyQt, pygments, pyexpect and ZeroMQ.

Work with PythonReplace your shell with Python

Conclusion
As you can see, it’s easy to
tailor Python for all your shell
environment needs. Python
modules like os, subprocess
and shutil are available at
your disposal to do just about
everything you need using
Python. IPython turns this whole
experience into an even more
complete package. You get
to do everything a standard
Python shell does and with
much more convenient features.
IPython’s magic functions really
do provide a magical Python
shell experience. So next time
you open a Bash session, think
again: why settle for gold when
platinum is a step away?

Work with Python Scientific computing with NumPy

58

NumPy
www.numpy.org

SciPy
www.scipy.org

Matplotlib
www.matplotlib.org

What you’ll need… Scientific
computing
with NumPy
Make some powerful calculations with NumPy,
SciPy and Matplotlib

NumPy is the primary Python package for performing scientific
computing. It has a powerful N-dimensional array object, tools
for integrating C/C++ and Fortran code, linear algebra, Fourier
transform, and random number capabilities, among other things.
NumPy also supports broadcasting, which is a clever way for
universal functions to deal in a meaningful way with inputs that do
not have exactly the same form.

Apart from its capabilities, the other advantage of NumPy is that it
can be integrated into Python programs. In other words, you may
get your data from a database, the output of another program, an
external file or an HTML page and then process it using NumPy.

This article will show you how to install NumPy, make calculations,
plot data, read and write external files, and it will introduce you to
some Matplotlib and SciPy packages that work well with NumPy.

NumPy also works with Pygame, a Python package for creating
games, though explaining its use is unfortunately beyond of the
scope of this article.

It is considered good practice to try the various NumPy
commands inside the Python shell before putting them into
Python programs. The examples in this article use either Python
shell or iPython.

“Apart from its capabilities, the other
advantage of NumPy is that it can be
integrated into Python programs”

Work with PythonScientific computing with NumPy

59

03 Given an array named myArray,
you can find the minimum and

maximum values in it by executing the
following commands:

 >>> myArray.min()
 >>> myArray.max()

Should you wish to find the mean value
of all array elements, you can run the
next command:

 >>> myArray.mean()

Similarly, you can find the median of the

Making simple calculations
using NumPy02 Despite its simplistic name,

NumPy is a powerful Python
package that is mainly for working
with arrays and matrices. There are
many ways to create an array but the
simplest one is to make use of the
array() function:

 >>> oneD = array([1,2,3,4])

The aforementioned command
creates a one-dimensional array. If you
want to create a two-dimensional
array, you can use the array() function

About NumPy

01 Most Linux distributions have a
ready-to-install package you can

use. After installation, you can find out
the NumPy version you are using by
executing the following:

 $ python
 Python 2.7.3 (default, Mar 13
2014, 11:03:55)

 [GCC 4.7.2] on linux2
 Type “help”, “copyright”,
“credits” or “license” for
more information.

 >>> numpy.version.version
 Traceback (most recent call
last):

 File “<stdin>”, line 1, in
<module>

 NameError: name ‘numpy’ isnot

Installing NumPy

A simple Python
program for
Polynomial Fitting

A Python script
that uses SciPy to
process an image

Matplotlib
generated output

Finding help
is easy

defined
 >>> import numpy
 >>> numpy.version.version
 ‘1.6.2’

as follows:

 >>> twoD = array([[1,2,3],

 >>>

Not only have you found the NumPy
version but you also know that NumPy
is properly installed.

 ... [3,3,3],
 ... [-1,-0.5,4],
 ... [0,1,0]])
You can also create arrays with some
more dimensions.

60

06 Writing variables to a file
is largely similar to reading

Writing to files

07 NumPy supports many
numerical and statistical

functions. When you apply a function
to an array, the function is then
automatically applied to all of the
array elements.

When working with matrices, you
can find the inverse of a matrix AA
by typing “AA.I”. You can also find
its eigenvalues by typing “np.linalg.
eigvals(AA)” and its eigenvector by
typing “np.linalg.eig(BB)”.

Common functions

Work with Python Scientific computing with NumPy

08 A special subtype of a two-
dimensional NumPy array is

a matrix. A matrix is like an array except
that matrix multiplication replaces
element-by-element multiplication.
Matrices are generated using
the matrix (or mat) function as follows:

 In [2]: AA = np.mat(‘0 1 1; 1

Working with matrices

array by running the following
Python command:

 >>> median(myArray)

The median value of a set is an element
that divides the data set into two
subsets (left and right subsets) with the
same number of elements. If the data
set has an odd number of elements,
then the median is part of the data set.
On the other side, if the data set has an
even number of elements, then the
median is the mean value of the two
centre elements of the sorted data set.

“When you apply
a function to an
array, the function
is automatically
applied to all of the
array elements”

04 NumPy not only embraces
the indexing methods used

in typical Python for strings and lists
but also extends them. If you want to
select a given element from an array,
you can use the following notation:

 >>> twoD[1,2]

You can also select a part of an array (a
slice) using the following notation:

 >>> twoD[:1,1:3]

Finally, you can convert an array into a
Python list using the tolist() function.

Using arrays with NumPy

05 Imagine that you have just
extracted information from an

Apache log file using AWK and you
now want to go and process the text
file using NumPy.

The following AWK code finds out
the total number of requests per hour:

 $ cat access.log | cut -d[
-f2 | cut -d] -f1 | awk -F:
‘{print $2}’ | sort -n | uniq
-c | awk ‘{print $2, $1}’ >
timeN.txt

The format of the text file (timeN.txt)
with the data is the following:

 00 191
 01 225
 02 121
 03 104

Reading the timeN.txt file and
assigning it to a new array variable can
be done as follows:

 aa = np.loadtxt(“timeN.txt”)

Reading files

a file. If you have an array variable
named aa1, you can easily save its
contents into a file called aa1.txt by
using the following command:

 In [17]: np.savetxt(“aa1.txt”,
aa1)

As you can easily imagine, you can
read the contents of aa1.txt later by
using the loadtxt() function.

1 1; 1 1 1’)

61

Work with PythonScientific computing with NumPy

09The first move you should
make is to install Matplotlib.

As you can see, Matplotlib has many

Plotting with Matplotlib

You can add matrices named AA and
BB by typing AA + BB. Similarly, you
can multiply them by typing AA * BB. “Try the various

NumPy
commands inside
the Python shell”

dependencies that you should
also install. The first thing you will
learn is how to plot a polynomial
function. The necessary commands
for plotting the 3x̂ 2-x+1
polynomial are the following:

 import numpy as np
 import matplotlib.pyplot

62

Work with Python Scientific computing with NumPy

12 It is very useful to be able to
find out the data type of the

elements in an array; it can be done
using the dtype() function. Similarly,
the ndim() function returns the
number of dimensions of an array.

When reading data from external
files, you can save their data columns
into separate variables using the
following method:

 In [10]: aa1,aa2 =

Other useful functions

11 Now we will show you how
to process and transform a

PNG image using SciPy. The most
important part of the code is the
following line:

 image = np.array(Image.
open(‘SA.png’).convert(‘L’))

This line allows you to read a usual
PNG file and convert it into a NumPy
array for additional processing. The
program will also separate the output
into four parts and displays a different
image for each of these four parts.

Using SciPy for
image processing

10 SciPy is built on top of NumPy
and is significantly more

advanced than NumPy. It supports
numerical integration, optimisations,
signal processing, image and
audio processing, and statistics. For
reference, the example below uses just

About SciPy

one small part of the scipy.stats
package about statistics.

 In [36]: from scipy.stats
import poisson, lognorm

 In [37]: mySh = 10;
 In [38]: myMu = 10;
 In [39]: ln =
lognorm(mySh)

 In [40]: p = poisson(myMu)
 In [41]: ln.rvs((10,))
 Out[41]:
 array([9.29393114e-
02, 1.15957068e+01,
9.78411983e+01,

 8.26370734e-
07, 5.64451441e-03,
4.61744055e-09,

 4.98471222e-
06, 1.45947948e+02,
9.25502852e-06,

 5.87353720e-02])
 In [42]: p.rvs((10,))
 Out[42]: array([12, 11, 9,
9, 9, 10, 9, 4, 13, 8])

 In [43]: ln.pdf(3)
 Out[43]:
0.013218067177522842

The example uses two statistics
distributions and may be difficult
to understand, but it is presented
in order to give you a better taste
of SciPy commands.

as plt
 myPoly = np.poly1d(np.
array([3, -1, 1]).
astype(float))

 x = np.linspace(-5, 5, 100)
 y = myPoly(x)
 plt.xlabel(‘x values’)
 plt.ylabel(‘f(x) values’)
 xticks = np.arange(-5, 5, 10)
 yticks = np.arange(0, 100,
10)

 plt.xticks(xticks)
 plt.yticks(yticks)
 plt.grid(True)
 plt.plot(x,y)

The variable that holds the
polynomial is myPoly. The range of
values that will be plotted for x is
defined using “x = np.linspace(-5, 5,
100)”. The other important variable
is y, which calculates and holds the
values of f(x) for each x value.

It is important that you start
ipython using the “ipython
--pylab=qt” parameters in order
to see the output on your screen.
If you are interested in plotting
polynomial functions, you should
experiment more, as NumPy can
also calculate the derivatives of a
function and plot multiple functions
in the same output.

“For plotting
polynomial
functions,
experiment more”

63

Work with PythonScientific computing with NumPy

14To close, we will talk more about
array broadcasting because it

is a very useful characteristic. First, you

Array broadcasting
in NumPy

13 The NumPy polyfit() function
tries to fit a set of data points

to a polynomial. The data was found
from the timeN.txt file, created earlier.

Fitting to polynomials

The Python script uses a fifth degree
polynomial, but if you want to use a
different degree instead then you only
have to change the following line:

 coefficients = np.polyfit(aa1,
aa2, 5)

should know that array broadcasting
has a rule: in order for two arrays to
be considered for array broadcasting,
“the size of the trailing axes for both
arrays in an operation must either be
the same size or one of them must
be one.”

Put simply, array broadcasting
allows NumPy to “change” the
dimensions of an array by filling
it with data in order to be able to
do calculations with another array.
Nevertheless, you cannot stretch
both dimensions of an array to do
your job.

Above Fitting to Polynomials

np.loadtxt(“timeN.txt”,
usecols=(0,1), unpack=True)

The aforementioned command saves
column 1 into variable aa1 and column
2 into variable aa2. The “unpack=True”
allows the data to be assigned to two
different variables. Please note that the
numbering of columns starts with 0.

Work with Python Python for system administrators

64

Python-devel
Python development libraries, required
for compiling third-party Python
module

setuptools
setuptools allows you to download,
build, install, upgrade, and uninstall
Python packages with ease

What you’ll need…

Note
This is written for the Python
2.X series, as it is still the most
popular and default Python
distribution across all the
platforms (including all Linux
distros, BSDs and Mac OS X).

Python for system
administrators
Learn how Python can help by daring to replace the
usual shell scripting…

System administration is an important part of our computing
environment. It does not matter whether you are managing systems
at your work our home. Linux, being a UNIX-based operating system,
already has everything a system administrator needs, such as the
world-class shells (not just one but many, including Bash, csh, zsh etc),
handy tools, and many other features which make the Linux system an
administrator’s dream. So why do we need Python when Linux already
has everything built-in? Being a dynamic scripting language, Python
is very easy to read and learn. That’s just not us saying that, but many
Linux distributions actually use Python in core administrative parts. For
example, Red Hat (and Fedora) system setup tool Anaconda is written
in Python (read this line again, got the snake connection?). Also, tools like
GNU Mailman, CompizConfig Settings Manager (CCSM) and hundreds
of tiny GUI and non-GUI configuration tools are written using Python.
Python does not limit you on the choice of user interface to follow – you
can build command-line, GUI and web apps using Python. This way, it
has got covered almost all the possible interfaces. Here we will look into
executing sysadmin-related tasks using Python.

Parsing configuration files
Configuration files provide a way for applications to store various
settings. In order to write a script that allows you to modify settings of
a particular application, you should be able to parse the configuration
file of the application. In this section we learn how to parse INI-style
configuration files. Although old, the INI file format is very popular with
much modern open source software, such as PHP and MySQL.

Excerpt for php.ini configuration file:
 [PHP]

 engine = On

Work with PythonPython for system administrators

65

 zend.ze1_compatibility_mode = Off

 short_open_tag = On

 asp_tags = Off

 precision = 14

 y2k_compliance = On

 output_buffering = 4096

 ;output_handler =

 zlib.output_compression = Off

 [MySQL]

 ; Allow or prevent persistent links.

 mysql.allow_persistent = On

 mysql.max_persistent = 20

 mysql.max_links = -1

 mysql.default_port = 3306

 mysql.default_socket =

 mysql.default_host = localhost

 mysql.connect_timeout = 60

 mysql.trace_mode = Off

Python provides a built-in module called
ConfigParser (known as configparser in Python
3.0). You can use this module to parse and create
configuration files.

@code: writeconfig.py
@description: The following demonstrates adding
MySQL section to the php.ini file.
@warning: Do not use this script with the actual php.
ini file, as it’s not designed to handle all aspects of a
complete php.ini file.

 import ConfigParser

 config = ConfigParser.RawConfigParser()

 config.add_section(‘MySQL’)

 config.set(‘MySQL’,’mysql.trace_mode’,’Off’)

 config.set(‘MySQL’,’mysql.connect_

timeout’,’60’)

 config.set(‘MySQL’,’mysql.default_

host’,’localhost’)

 config.set(‘MySQL’,’mysql.default_

port’,’3306’)

 config.set(‘MySQL’,’mysql.allow_persistent’,

‘On’)

 config.set(‘MySQL’,’mysql.max_

persistent’,’20’)

 with open(‘php.ini’, ‘ap’) as configfile:

 config.write(configfile)

 Output:php.ini

 [MySQL]

 mysql.max_persistent = 20

 mysql.allow_persistent = On

 mysql.default_port = 3306

 mysql.default_host = localhost

 mysql.trace_mode = Off

 mysql.connect_timeout = 60

 @code: parseconfig.py

 @description: Parsing and updating the

config file

 import ConfigParser

 config = ConfigParser.ConfigParser()

 config.read(‘php.ini’)

 # Print config values

 print config.get(‘MySQL’,’mysql.default_

host’)

 print config.get(‘MySQL’,’mysql.default_

port’)

 config.remove_option(‘MySQL’,’mysql.trace_

mode’)

 with open(‘php.ini’, ‘wb’) as configfile:

 config.write(configfile)

Parsing JSON data
JSON (also known as JavaScript Object Notation) is a
lightweight modern data-interchange format. JSON is
an open standard under ECMA-262. It is a text format

66

and is completely language-independent. JSON is
also used as the configuration file format for modern
applications such as Mozilla Firefox and Google
Chrome. JSON is also very popular with modern
web services such as Facebook, Twitter, Amazon EC2
etc. In this section we will use the Python module
‘simplejson’ to access Yahoo Search (using the Yahoo
Web Services API), which outputs JSON data.

To use this section, you should have the following:

1. Python module: simplejson.
Note: You can install Python modules using the
command ‘easy_install <module name>’. This
command assumes that you have a working internet
connection.
2. Yahoo App ID:
The Yahoo App ID can be created from https://
developer.apps.yahoo.com/dashboard/createKey.
html. The Yahoo App ID will be generated on the
next page. See the screenshot below for details.

simplejson is very easy to use. In the following
example we will use the capability of mapping
JSON data structures directly to Python data types.
This gives us direct access to the JSON data without
developing any XML parsing code.

JSON PYTHON DATA MAPPING

JSON Python

object dict

array list

string unicode

number (int) int, long

number (real) float

TRUE TRUE

FALSE FALSE

null None

For this section we will use the simplejson.load
function, which allows us to deserialise a JSON object
into a Python object.

 @code: LUDSearch.py

 import simplejson, urllib

 APP_ID = ‘xxxxxxxx’ # Change this to

your APP ID

 SEARCH_BASE = ‘http://search.yahooapis.

com/WebSearchService/V1/webSearch’

 class YahooSearchError(Exception):

 pass

 def search(query, results=20, start=1,

**kwargs):

 kwargs.update({

 ‘appid’: APP_ID,

 ‘query’: query,

 ‘results’: results,

 ‘start’: start,

 ‘output’: ‘json’

 })

 url = SEARCH_BASE + ‘?’ + urllib.

urlencode(kwargs)

 result = simplejson.load(urllib.

urlopen(url))

 if ‘Error’ in result:

 # An error occurred; raise an

exception

 raise YahooSearchError,

result[‘Error’]

 return result[‘ResultSet’]

Let’s use the code listed above from the Python shell
to see how it works. Change to the directory where
you have saved the LUDYSearch.py and open a
Python shell.

 @code: Python Shell Output. Lines

Work with Python Python for system administrators

67

Above Generating the Yahoo App ID

starting with ‘>>>’ indicate input

 >>> execfile(“LUDYSearch.py”)

 >>> results = search(‘Linux User and

Developer’)

 >>> results[‘totalResultsAvailable’]

 123000000

 >>> results[‘totalResultsReturned’]

 20

 >>> items = results[‘Result’]

 >>> for Result in items:

 ... print Result[‘Title’],Result[‘Url’]

 ...

Linux User http://www.linuxuser.co.uk/
Linux User and Developer - Wikipedia, the free

encyclopedia http://en.wikipedia.org/wiki/Linux_
User_and_Developer
Linux User &amp; Developer | Linux User http://
www.linuxuser.co.uk/tag/linux-user-developer/

Gathering system information
An important job for a system administrator is
gathering system information. Here we will use the
SIGAR (System Information Gatherer And Reporter)
API to demonstrate how we can gather system
information using Python. SIGAR is a very complete
API and can provide lots of information, including:

1. System memory, swap, CPU, load average,
uptime, logins.

Work with PythonPython for system administrators

68

2. Per-process memory, CPU, credential info, state,
arguments, environment, open files.
3. File system detection and metrics.
4. Network interface detection, configuration info
and metrics.
5. TCP and UDP connection tables.
6. Network route table.

Installing SIGAR
The first step is to build and install SIGAR. SIGAR is
hosted at GitHub, so make sure that you have Git
installed in your system. Then perform the following
steps to install SIGAR and its Python bindings:

 $ git clone git://github.com/hyperic/

sigar.git sigar.git

 $ cd sigar.git/bindings/python

 $ sudo python setup.py install

At the end you should see a output similar to the
following :
Writing /usr/local/lib/python2.6/dist-packages/
pysigar-0.1.egg-info
SIGAR is a very easy-to-use library and can be used to
get information on almost every aspect of a system.
The next example shows you how to do this. The
following code shows the memory and the file
system information.

 @code: PySysInfo.py

 import os

 import sigar

 sg = sigar.open()

 mem = sg.mem()

 swap = sg.swap()

 fslist = sg.file_system_list()

 print “==========Memory

Information==============”

 print “\tTotal\tUsed\tFree”

 print “Mem:\t”,\

 (mem.total() / 1024), \

 (mem.used() / 1024), \

 (mem.free() / 1024)

 print “Swap:\t”, \

 (swap.total() / 1024), \

 (swap.used() / 1024), \

 (swap.free() / 1024)

 print “RAM:\t”, mem.ram(), “MB”

 print “==========File System

Information=============”

 def format_size(size):

 return sigar.format_size(size * 1024)

 print ‘Filesystem\tSize\tUsed\tAvail\

tUse%\tMounted on\tType\n’

 for fs in fslist:

 dir_name = fs.dir_name()

 usage = sg.file_system_usage(dir_

name)

 total = usage.total()

 used = total - usage.free()

 avail = usage.avail()

 pct = usage.use_percent() * 100

 if pct == 0.0:

 pct = ‘-’

 print fs.dev_name(), format_

size(total), format_size(used), format_

size(avail),\

 pct, dir_name, fs.sys_type_

name(), ‘/’, fs.type_name()

 @Output

 ==========Memory

Information==============

 Total Used Free

 Mem: 8388608 6061884 2326724

 Swap: 131072 16048 115024

 RAM: 8192 MB

 ==========File System

Information============

 Filesystem Size Used Avail

Use% Mounted on Type

Work with Python Python for system administrators

69

 /dev/disk0s2 300G 175G 124G 59.0 / hfs /

local

 devfs 191K 191K 0 - /dev devfs /

none

Accessing Secure Shell (SSH) services
SSH (Secure Shell) is a modern replacement for an
old remote shell system called Telnet. It allows data to
be exchanged using a secure channel between two
networked devices. System administrators frequently
use SSH to administrate networked systems. In
addition to providing remote shell, SSH is also used
for secure file transfer (using SSH File Transfer Protocol,
or SFTP) and remote X server forwarding (allows
you to use SSH clients as X server). In this section we
will learn how to use the SSH protocol from Python
using a Python module called paramiko, which
implements the SSH2 protocol for Python.
paramiko can be installed using the following steps:

 $ git clone https://github.com/robey/

paramiko.git

 $ cd paramiko

 $ sudo python setup.py install

To the core of paramiko is the SSHClient class. This
class wraps L{Transport}, L{Channel}, and L{SFTPClient}
to handle most of the aspects of SSH. You can use
SSHClient as:

 client = SSHClient()

 client.load_system_host_keys()

 client.connect(‘some.host.com’)

 stdin, stdout, stderr = client.exec_

command(‘dir’)

The following example demonstrates a full SSH client
written using the paramiko module.

 @code: PySSHClient.py

 import base64, getpass, os, socket, sys,

socket, traceback

 import paramiko

 import interactive

 # setup logging

 paramiko.util.log_to_file(‘demo_simple.

log’)

 # get hostname

 username = ‘’

 if len(sys.argv) > 1:

 hostname = sys.argv[1]

 if hostname.find(‘@’) >= 0:

 username, hostname = hostname.

split(‘@’)

 else:

 hostname = raw_input(‘Hostname: ‘)

 if len(hostname) == 0:

 print ‘*** Hostname required.’

 sys.exit(1)

 port = 22

 if hostname.find(‘:’) >= 0:

 hostname, portstr = hostname.

split(‘:’)

 port = int(portstr)

 # get username

 if username == ‘’:

 default_username = getpass.getuser()

 username = raw_input(‘Username [%s]:

‘ % default_username)

 if len(username) == 0:

 username = default_username

 password = getpass.getpass(‘Password for

%s@%s: ‘ % (username, hostname))

 # now, connect and use paramiko Client

to negotiate SSH2 across the connection

 try:

 client = paramiko.SSHClient()

 client.load_system_host_keys()

 client.set_missing_host_key_

policy(paramiko.WarningPolicy)

Work with PythonPython for system administrators

70

 print ‘*** Connecting...’

 client.connect(hostname, port,

username, password)

 chan = client.invoke_shell()

 print repr(client.get_transport())

 print ‘*** SSH Server Connected!

***’

 print

 interactive.interactive_shell(chan)

 chan.close()

 client.close()

 except Exception, e:

 print ‘*** Caught exception: %s:

%s’ % (e.__class__, e)

 traceback.print_exc()

 try:

 client.close()

 except:

 pass

 sys.exit(1)

To run this code you will also need a custom Python
class interactive.py which implements the interactive
shell for the SSH session. Look for this file on FileSilo
and copy it into the same folder where you have
created PySSHClient.py .

 @code_Output

 kunal@ubuntu-vm-kdeo:~/src/paramiko/

demos$ python demo_simple.py

 Hostname: 192.168.1.2

 Username [kunal]: luduser

 Password for luduser@192.168.1.2:

 *** Connecting...

 <paramiko.Transport at 0xb76201acL

(cipher aes128-ctr, 128 bits) (active; 1

open channel(s))>

 *** SSH Server Connected! ***

 Last login: Thu Jan 13 02:01:06 2011

from 192.168.1.9

 [~ $:]

If the host key for the SSH server is not added to your
$HOME/.ssh/known_hosts file, the client will throw
the following error:

 *** Caught exception: <type ‘exceptions.

TypeError’>: unbound method missing_

host_key() must be called with

WarningPolicy instance as first

argument (got SSHClient instance

instead)

This means that the client cannot verify the
authenticity of the server you are connected to. To
add the host key to known_hosts, you can use the
ssh command. It is important to remember that this
is not the ideal way to add the host key; instead you
should use ssh-keygen. But for simplicity’s sake we
are using the ssh client.

 kunal@ubuntu-vm-kdeo:~/.ssh$ ssh

luduser@192.168.1.2

 The authenticity of host ‘192.168.1.2

(192.168.1.2)’ can’t be established.

 RSA key fingerprint is be:01:76:6a:b9:bb:6

9:64:e3:dc:37:00:a4:36:33:d1.

 Are you sure you want to continue

connecting (yes/no)? yes

 Warning: Permanently added ‘192.168.1.2’

(RSA) to the list of known hosts.

So now you’ve seen just how easy it can be to carry
out the complex sysadmin tasks using Python’s
versatile language.

As is the case with all Python coding, the code that
is presented here can fairly easily be adopted into
your GUI application (using software such as PyGTK
or PyQt) or a web application (using a framework
such as Django or Grok).

Work with Python Python for system administrators

71

Work with Python

Writing a user interface using Python

Administrators are comfortable with running raw scripts by
hand, but end-users are not. So if you are writing a script that
is supposed to be used by common users, it is a good idea to
create a user-friendly interface on top of the script. This way
end-users can run the scripts just like any other application. To
demonstrate this, we will create a simple GRUB configuration
tool which allows users to select default boot entry and
the timeout. We will be creating a TUI (text user interface)
application and will use the Python module ‘snack’ to facilitate
this (not to be confused with the Python audio library, tksnack).

This app consists of two files…

grub.py: GRUB Config File (grub.conf) Parser (available on
FileSilo). It implements two main functions, readBootDB() and
writeBootFile(), which are responsible for reading and writing
the GRUB configuration file.
grub_tui.py: Text user interface file for manipulating the GRUB
configuration file using the functions available in grub.py.

 @code:grub_tui.py
 import sys
 from snack import *

 from grub import (readBootDB, writeBootFile)

 def main(entry_value=’1’,kernels=[]):
 try:
 (default_value, entry_value,

kernels)=readBootDB()
 except:
 print >> sys.stderr, (“Error reading /boot/

grub/grub.conf.”)
 sys.exit(10)

 screen=SnackScreen()

 while True:
 g=GridForm(screen, (“Boot configuration”),1,5)
 if len(kernels)>0 :
 li=Listbox(height=len(kernels), width=20,

returnExit=1)
 for i, x in enumerate(kernels):
 li.append(x,i)
 g.add(li, 0, 0)
 li.setCurrent(default_value)

 bb = ButtonBar(screen, (((“Ok”), “ok”),
((“Cancel”), “cancel”)))

 e=Entry(3, str(entry_value))
 l=Label((“Timeout (in seconds):”))

 gg=Grid(2,1)
 gg.setField(l,0,0)
 gg.setField(e,1,0)

 g.add(Label(‘’),0,1)
 g.add(gg,0,2)
 g.add(Label(‘’),0,3)
 g.add(bb,0,4,growx=1)
 result = g.runOnce()
 if bb.buttonPressed(result) == ‘cancel’:
 screen.finish()
 sys.exit(0)
 else:
 entry_value = e.value()
 try :
 c = int(entry_value)
 break
 except ValueError:
 continue

 writeBootFile(c, li.current())
 screen.finish()

 if __name__== ‘__main__’:
 main()

Start the tool using the sudo command (as it reads the grub.
conf file)

 $ sudo grub_tui.py

Python for system administrators

Work with Python Scrape Wikipedia with Beautiful Soup

72

Beautiful Soup
www.crummy.com/software/
BeautifulSoup/

HTML5Lib
https://github.com/html5lib/
html5lib-python

Python 2.6+ & WikiParser.
zip Six
https://pypi.python.org/pypi/six/

What you’ll need…

Infinite Links
Wikipedia has a lot of links and
when you start following links
to links to links, the number of
pages you have to parse can
grow exponentially, depending
on the subject matter. By passing
through the levels value, we put a
cap on the amount of pages we
can grab–- although the number
of files stored can still vary greatly.
Use it wisely.

Scrape
Wikipedia with
Beautiful Soup
Use the Beautiful Soup Python library to parse
Wikipedia’s HTML and store it for offline reading

In this tutorial we’ll use the popular Python library Beautiful Soup to
scrape Wikipedia for links to articles and then save those pages for offline
reading. This is ideal for when travelling or in a location with a poor
internet connection.

The plan is simple: using Beautiful Soup with the HTML5Lib Parser,
we’re going to load a Wikipedia page, remove all of the GUI and
unrelated content, search the content for links to other Wikipedia articles
and then, after a tiny bit of modification, write them to a file.

Even though it’s now the de facto knowledge base of the world,
Wikipedia isn’t great when it comes to DOM consistency – that is, IDs and
classes are sometimes quite loose in their usage. Because of this, we will
also cover how to handle all of the excess bits and bobs of the Wikipedia
GUI that we don’t need, as well as the various erroneous links that won’t
be of much use to us. You can find the CSS stylings sheet and a Python
script pertaining to this tutorial at http://bit.ly/19MibBv.

01 Before we can start writing code, we need to install the libraries we’ll be using
for the program (Beautiful Soup, HTML5Lib, Six). The installation process is

fairly standard: grab the libraries from their respective links, then unzip them. In
the terminal, enter the unzipped directory and run python setup.py install for each
library. They will now be ready for use.

Install Beautiful Soup & HTML5Lib

“Wikipedia isn’t great when it comes
to DOM consistency”

Work with PythonScrape Wikipedia with Beautiful Soup

73

Full code listing

import os, sys, urllib2, argparse, datetime, atexit
from bs4 import BeautifulSoup

addresses = []
deepestAddresses = []

maxLevel = 1
storeFolder = “Wikistore “ + str(datetime.datetime.now().strftime(“%Y-%m-%d %H:%M”))

undesirables = [{“element” : “table”, “attr” : {‘class’ : ‘infobox’} }, {“element” :
“table”, “attr” : {‘class’ : ‘vertical-navbox’}}, {“element” : “span”, “attr” : {‘class’
: ‘mw-editsection’}}, {“element” : “div”, “attr” : {‘class’ : ‘thumb’}}, {“element”
: “sup”, “attr” : {‘class’ : ‘reference’}}, {“element” : “div”, “attr” : {‘class’ :
‘reflist’}}, {“element” : “table”, “attr” : {‘class’ : ‘nowraplinks’}}, {“element” :
“table”, “attr” : {‘class’ : ‘ambox-Refimprove’}}, {“element” : “img”, “attr” : None},
{“element” : “script”, “attr” : None}, {“element” : “table”, “attr” : {‘class’ :
‘mbox-small’}} , {“element” : “span”, “attr” : {“id” : “coordinates”}}, {“element” :
“table”, “attr” : {“class” : “ambox-Orphan”}}, {“element” : “div”, “attr” : {“class” :
“mainarticle”}}, {“element” : None, “attr” : {“id” : “References”}}]

def init():
 parser = argparse.ArgumentParser(description=’Handle the starting page and number
of levels we\’re going to scrape’)
 parser.add_argument(‘-URL’, dest=’link’, action=’store’, help=’The Wikipedia page
from which we will start scraping’)
 parser.add_argument(‘-levels’, dest=”levels”, action=’store’, help=’How many levels
deep should the scraping go’)
 args = parser.parse_args()

 if(args.levels != None):
 global maxLevel8
 maxLevel = int(args.levels)

 if(args.link == None):
 print(“You need to pass a link with the -URL flag”)
 sys.exit(0)
 else:
 if not os.path.exists(storeFolder):
 os.makedirs(storeFolder)

 grabPage(args.link, 0, args.link.split(“/wiki/”)[1].strip().replace(“_”, “ “))

 atexit.register(cleanUp)

def isValidLink(link):

 if “/wiki/” in link and “:” not in link and “http://” not in link and “wikibooks”
not in link and “#” not in link and “wikiquote” not in link and “wiktionary” not in
link and “wikiversity” not in link and “wikivoyage” not in link and “wikisource” not
in link and “wikinews” not in link and “wikiversity” not in link and “wikidata” not
in link:
 return True
 else:
 return False

def grabPage(URL, level, name):

 opener = urllib2.build_opener()
 opener.addheaders = [(‘User-agent’, ‘Mozilla/5.0’)]
 req = opener.open(URL)

01

02

03

04

1 Import libraries
These are the
libraries we are
going to be using
for this program

2 Set up variables
These are some
variables we’ll use
to keep track of the
script’s progress

3 Initialisation
This is the initialising
function that we
will use to handle
the input coming
from the user

74

“The HTML page uses built-in browser
styles when rendering the page”

03 In the first few lines of this function, we’re just creating a helper statement.
Afterwards, we’re parsing any arguments passed into the program on its

execution and looking for a -URL flag and a -levels flag. The -levels flag is optional as
we already have a preset depth that we’ll follow the links to, but we need a link to
start from so if the -URL flag is missing, we’ll prompt the user and exit. If we have a link,
then we quickly check whether or not we have a directory to store files in – which
we’ll create if we don’t – and then we’ll fire off the function to get that page. Finally, we
register a handler for when the script tries to exit. We’ll get to that bit later.

Handling the user’s input

04 Here we’re using URLLib2 to request the page the the user has asked for
and then, once we’ve received that page, we’re going to pass the content

through to Beautiful Soup with the soup variable. This gives us access to the
methods we’re going to call as we parse the document.

Retrieving the page from the URL

Work with Python Scrape Wikipedia with Beautiful Soup

02 These variables will keep track of the links we’ve accessed while the script
has been running: addresses is a list containing every link we’ve accessed;

deepestAddresses are the links of the pages that were the furthest down the link
tree from our starting point; storeFolder is where we will save the HTML files we
create and maxLevel is the maximum depth that we can follow the links to from
our starting page.

Creating some useful variables
Wiki-Everything
Wikipedia has so many different
services that interlink with each
other; however, we don’t want
to grab those pages, so we’ve
got quite a lengthy conditional
statement to stop that. It’s pretty
good at making sure we only get
links from Wikipedia.

05 Wikipedia has a lot of nodes that we don’t want to parse. The content
variable allows us to straight away ignore most of Wikipedia’s GUI, but

there are still lots of elements that we don’t want to parse. We remedy this by
iterating through the list ‘undesirables’ that we created earlier on in the document.
For each different div/section/node that we don’t want, we call Beautiful Soup’s
find_all() method and use the extract() method to remove that node from the
document. At the end of the undesirables loop, most of the content we don’t
want any more will be gone. We also look for the ‘also’ element in the Wiki page.
Generally, everything after this div is of no use to us. By calling the find_all_next()
method on the also node, we can get a list of every other element we can
remove from that point on.

Trimming the fat

75

“Wikipedia has so many different services that interlink with
each other; we don’t want to grab those pages”

Work with PythonScrape Wikipedia with Beautiful Soup

 page = req.read()

 req.close()

 soup = BeautifulSoup(page, “html5lib”, from_encoding=”UTF-8”)

 content = soup.find(id=”mw-content-text”)

 if hasattr(content, ‘find_all’):

 global undesirables

 for notWanted in undesirables:

 removal = content.find_all(notWanted[‘element’], notWanted[‘attr’])
 if len(removal) > 0:
 for el in removal:
 el.extract()

 also = content.find(id=”See_also”)

 if(also != None):
 also.extract()
 tail = also.find_all_next()
 if(len(tail) > 0):
 for element in tail:
 element.extract()

 for link in content.find_all(‘a’):

 href = link[“href”]

 if isValidLink(href):

 if level < maxLevel:

 stored = False;
 for addr in addresses:
 if addr == link.get(“href”):
 stored = True

 if(stored == False):
 title = link.get(‘href’).replace(“/wiki/”, “”)
 addresses.append(str(title + “.html”))
 grabPage(“http://en.wikipedia.org” + link.get(‘href’), level +
1, title)
 print title

 link[“href”] = link[“href”].replace(“/wiki/”, “”) + “.html”

 fileName = str(name)

 if level == maxLevel:
 deepestAddresses.append(fileName.replace(‘/’, ‘_’) + “.html”)

Styling
Currently, the HTML page will use the
built-in browser styles when rendering the
page. If you like, you can include the style
sheet included in the tutorial resources
to make it look a little nicer. To use it, you
can minify the script and include it inside
a <style> tag in the head string on line
102, or you can rewrite the head string to
something like:

head = “<head><meta
charset=\”UTF-8\” /><title>” +
fileName + “</title><style>” +
str(open(“/PATH/TO/STYLES”, ‘r’).
read()) + “</style></head>”

04

05

06

4 Get the page
Here we grab the
page we want to
store and remove
the bits of the
document we
don’t need

5 Check links
Then we iterate
through all of the
<a> tags and check
if there’s a valid link
to another page
we can grab, and
tweak them for our
own use

76

07 Now we create a file to store the newly parsed document in for later
reading. We change any ‘/’ in the filename to ‘_’ so the script doesn’t

try and write to a random folder. We also do a quick check to see how many
links we’ve followed since the first page. If it’s the max level, we’ll add it to the
deepestAddresses list. We’ll use this a little bit later.

Writing to file

Work with Python Scrape Wikipedia with Beautiful Soup

06 By calling content.find_all(‘a’) we get a list of every <a> in the
document. We can iterate through this and check whether or not

there is a valid Wikipedia link in the <a>’s href. If the link is a valid link, we
quickly check how far down the link tree we are from the original page. If
we’ve reached the maximum depth we can go, we’ll store this page and call
it quits, otherwise we’ll start looking for links that we can grab within it. For
every page we request, we append its URL to the addresses list; to make sure
we don’t call the same page twice for each link we find, we check if we’ve
already stored it. If we have, then we’ll skip over the rest of the loop, but if
we’ve not then we’ll add it to the list of URLs that we’ve requested and fire off
a request. Once that check is done, We then do a quick string replace on that
link so that it points to the local directory, not to the subfolder /wiki/ that it’s
looking for.

Grabbing the linksAbove Find the documentation for
Beautiful Soup at http://bit.ly/O2H8iD

77

08 After our script has iterated through every link on every page to the
maximum level of depth that it can, it will try to exit. On line 34 of the

code (on the disc and online) in the init function, we registered the function
cleanUp to execute on the program trying to exit; cleanUp’s job is to go through
the documents that we’ve downloaded and check that every link we’ve left in
the pages does in fact link to a file that we have available. If it can’t match the link
in the href to a file in the addresses list, it will remove it. Once we’re done, we will
have a fully portable chunk of Wikipedia we can take with us.

Tying up loose ends

Work with PythonScrape Wikipedia with Beautiful Soup

 doctype = “<!DOCTYPE html>”

 head = “<head><meta charset=\”UTF-8\” /><title>” + fileName + “</title></
head>”

 f = open(storeFolder + “/” + fileName.replace(‘/’, ‘_’) + “.html”, ‘w’)
 f.write(doctype + “<html lang=\”en\”>” + head + “<body><h1>” + fileName + “</
h1>” + str(content) + “</body></html>”)
 f.close()

def cleanUp():

 print(“\nRemoving links to pages that have not been saved\n”)

 for deepPage in deepestAddresses:

 rF = open(storeFolder + “/” + deepPage, ‘r’)

 deepSoup = BeautifulSoup(rF.read(), “html5lib”, from_encoding=”UTF-8”)

 for deepLinks in deepSoup.find_all(‘a’):
 link = deepLinks.get(“href”)

 pageStored = False

 for addr in addresses:
 if addr == link:
 pageStored = True

 if pageStored == False:

 if link is not None:

 if ‘#’ not in link:
 del deepLinks[‘href’]
 elif ‘#’ in link and len(link.split(‘#’)) > 1 or ‘:’ in link:
 del deepLinks[‘href’]

 wF = open(storeFolder + “/” + deepPage, ‘w’)
 wF.write(str(deepSoup))
 wF.close()

 print(“Complete”)

if __name__ == “__main__”:
 init()

06

07

08

6 Copy to file
After that, We take
the content we’ve
parsed and put it
into a brand new
HTML file

7 Clean up
Once every page
has been parsed
and stored, we’ll
go on through and
try to remove any
dead links

8 Initialise
This is how we will
initialise our script

Create with Python Have fun with programming

78

What could be more satisfying than playing a game that you have
programmed yourself? In this section we’re going to show you how to
do just that. We’ll get started with a simple game of tic-tac-toe, made
with the help of Kivy (p.80), before stepping things up a notch and
cloning the classic favourite, Pong (p.86). Then, it’s time to have a go at
making a Space Invaders-inspired game complete with retro graphics
(p.88). Finally, you’ll learn how to make a stripped-back ‘choose-your-
own-adventure’ game (p.98).

Create with Python

79

Create with PythonHave fun with programming

“Making a playable game is not
as diffi cult as you may think”

Create with Python Build tic-tac-toe with Kivy

80

Python
www.python.org/doc

What you’ll need… Build tic-tac-toe
with Kivy
Ease into the workings of Kivy by creating the pen-
and-paper classic in just over 100 lines of Python...

Kivy is a highly cross-platform graphical framework for Python, designed
for the creation of innovative user interfaces like multitouch apps. Its
applications can run not only on the traditional desktop platforms of
Linux, OS X and Windows, but also Android and iOS, plus devices like the
Raspberry Pi.

That means you can develop cross-platform apps using Python
libraries such as Requests, SQLAlchemy or even NumPy. You can even
access native mobile APIs straight from Python using some of Kivy’s
sister projects. Another great feature is the Cython-optimised OpenGL
graphics pipeline, allowing advanced GPU effects even though the basic
Python API is very simple.

Kivy is a set of Python/Cython modules that can easily be installed via
pip, but you’ll need a few dependencies. It uses Pygame as a rendering
backend (though its API is not exposed), Cython for compilation of the
speedy graphics compiler internals, and GStreamer for multimedia.
These should all be available through your distro’s repositories, or via pip
where applicable.

With these dependencies satisfied, you should be able install Kivy with
the normal pip incantation. The current version is 1.8.0, and the same
codebase supports both python2 and python3. The code in this tutorial
is also version-agnostic, running in python2.7 and python3.3.

pip install kivy

If you have any problems with pip, you can use easy_install via easy_
install kivy.

There are also packages or repositories available for several popular
distros. You can find more information on Kivy’s website. A kivy
application is started by instantiating and running an ‘App’ class. This is
what initialises our pp’s window, interfaces with the OS, and provides an

Create with PythonBuild tic-tac-toe with Kivy

81

entry point for the creation of our GUI. We can start
by making the simplest Kivy app possible:

from kivy.app import App

class TicTacToeApp(App):

 pass

if __name__ == “__main__”:

 TicTacToeApp().run()

You can already run this, your app will start up and
you’ll get a plain black window. Exciting!

We can build our own GUI out of Kivy widgets.
Each is a simple graphics element with some
specific behaviour of its own ranging from
standard GUI functionality (eg the Button, Label
or TextInput), to those that impose positioning on
their child widgets (eg the BoxLayout, FloatLayout
or GridLayout), to those abstracting a more
involved task like interacting with hardware (eg
the FileChooser, Camera or VideoPlayer). Most
importantly, Kivy’s widgets are designed to be easily
combined - rather than including a widget for every
need imaginable, widgets are kept simple but are
easy to join to invent new interfaces. We’ll see some
of that in this tutorial.

Since ‘Hello World!’ is basically compulsory in any
programming tutorial, let’s get it over with by using a
simple ‘Label’ widget to display the text:

from kivy.uix.label import Label

We’ll display the ‘Label’ by returning it as our app’s
root widget. Every app has a single root widget, the
top level of its widget tree, and it will automatically
be sized to fill the window. We’ll see later how to
construct a full GUI by adding more widgets for this
one, but for now it’s enough to set the root widget
by adding a new method to the ‘App’:

def build(self):

 return Label(text=’Hello World!’,

 font_size=100,

 color=0, 1, 0, 1)) # (r, g, b, a)

The ‘build’ method is called when the ‘App’ is run,
and whatever widget is returned automatically
becomes the root widget of that App’. In our case
that’s a Label, and we’ve set several properties - the
‘text’, ‘font_size’ and ‘color’. All widgets have different
properties controlling aspects of their behaviour,
which can be dynamically updated to alter their
appearance later, though here we set them just once
upon instantiation.

Note that these properties are not just Python
attributes but instead Kivy properties. These are
accessed like normal attributes but provide extra
functionality by hooking into Kivy’s event system.
We’ll see examples of creating properties shortly,
and you should do the same if you want to use your
variables with Kivy’s event or binding functionality.

That’s all you need to show some simple text, so
run the program again to check that this does work.
You can experiment with the parameters if it’s unclear
what any of them are doing.

Above The game with final additions, making the grid square and
extending the interface

82

Our own widget: tic-tac-toe
Since Kivy doesn’t have a tic-tac-toe widget, we’ll have
to make our own! It’s natural to create a new widget
class to contain this behaviour:

from kivy.uix.gridlayout import GridLayout

class TicTacToeGrid(GridLayout):

 pass

Now this obviously doesn’t do anything yet,
except that it inherits all the behaviour of the Kivy
GridLayout widget - that is, we’ll need to tell it how
many columns to have, but then it will automatically
arrange any child widgets to fit nicely with as many
rows as necessary. Tic-tac-toe requires three columns
and nine children.

Here we introduce the Kivy language (kv), a
special domain-specific language for making
rules describing Kivy widget trees. It’s very simple
but removes a lot of necessary boilerplate for
manipulating the GUI with Python code - as a loose
analogy you might think of it as the HTML/CSS to
Python’s JavaScript. Python gives us the dynamic
power to do anything, but all that power gets in the
way if we just want to declare the basic structure
of our GUI. Note that you never need kv language,
you can always do the same thing in Python alone,
but the rest of the example may show why Kivy
programmers usually like to use kv.

Kivy comes with all the tools needed to use kv
language; the simplest way is to write it in a file with
a name based on our App class. That is, we should
place the following in a file named ‘tictactoe.kv’:

<TicTacToeGrid>:

 cols: 3

This is the basic syntax of kv language; for each
widget type we may write a rule defining its
behaviour, including setting its properties and adding

child widgets. This example demonstrates the
former, creating a rule for the ‘TicTacToeGrid’ widget
by declaring that every ‘TicTacToeGrid’ instantiated
should have its ‘cols’ property set to 3.

We’ll use some more kv language features later, but
for now let’s go back to Python to create the buttons
that will be the entries in our tic-tac-toe grid.

from kivy.uix.button import Button

from kivy.properties import ListProperty

class GridEntry(Button):

 coords = ListProperty([0, 0])

This inherits from Kivy’s ‘Button’ widget, which
interacts with mouse or touch input, dispatching
events when interactions toggle it. We can hook
into these events to call our own functions when
a user presses the button, and can set the button’s
‘text’ property to display the ‘X’ or ‘O’. We also created
a new Kivy property for our widget, ‘coords’ – we’ll
show how this is useful later on. It’s almost identical
to making a normal Python attribute by writing ‘self.
coords = [0, 0]’ in ‘GridEntry.__init__’.

As with the ‘TicTacToeGrid’, we’ll style our new class
with kv language, but this time we get to see a more
interesting feature.

<GridEntry>:

 font_size: self.height

As before, this syntax defines a rule for how a
‘GridEntry’ widget should be constructed, this time
setting the ‘font_size’ property that controls the size
of the text in the button’s label. The extra magic is
that kv language automatically detects that we’ve
referenced the Button’s own height and will create
a binding to update this relationship – when a
‘GridEntry’ widget’s height changes, its ‘font_size’
will change so the text fits perfectly. We could have

Create with Python Build tic-tac-toe with Kivy

83

made these bindings straight from Python (another
usage of the ‘bind’ method used later on), but that’s
rarely as convenient as referencing the property we
want to bind to.

Let’s now populate our ‘TicTacToeGrid’ with
‘GridEntry’ widgets.

class TicTacToeGrid(GridLayout):

 def __init__(self, *args, **kwargs):

 super(TicTacToeGrid, self).__init__(*args,

**kwargs)

 for row in range(3):

 for column in range(3):

 grid_entry = GridEntry(

 coords=(row, column))

 grid_entry.bind(on_release=self.button_

pressed)

 self.add_widget(grid_entry)

 def button_pressed(self, instance):

 print(‘{} button clicked!’.format(instance.

coords))

This introduces a few new concepts: When we
instantiated our ‘GridEntry’ widgets, we were able to
set their ‘coords’ property by simply passing it in as
a kwarg. This is a minor feature that is automatically
handled by Kivy properties.

We used the ‘bind’ method to call the grid’s
‘button_pressed’ method whenever the G̀ridEntrỳ
widget dispatches an ‘on_release’ event. This is
automatically handled by its ‘Button’ superclass, and
will occur whenever a user presses, then releases a
‘GridEntry’ button. We could also bind to ‘on_press’,
which is dispatched when the button is first clicked,
or to any Kivy property of the button, dispatched
dynamically when the property is modified.

We added each ‘GridEntry’ widget to our ‘Grid’ via
the ‘add_widget’ method. That means each one
is a child widget of the ‘TicTacToeGrid’, and so it will

display them and knows it should automatically
arrange them into a grid with the number of
columns we set earlier.

Now all we have to do is replace our root widget
(returned from ‘App.build’) with a ‘TicTacToeGrid’ and
we can see what our app looks like.

def build(self):

 return TicTacToeGrid()

With this complete you can run your main Python file
again and enjoy your new program. All being well,
the single Label is replaced by a grid of nine buttons,
each of which you can click (it will automatically
change colour) and release (you’ll see the printed
output information from our binding).

We could customise the appearance by modifying
other properties of the Button, but for now we’ll leave
them as they are.

Has anyone won yet?
We’ll want to keep track of the state of the board to
check if anyone has won, which we can do with a
couple more Kivy properties:

from kivy.properties import (ListProperty,

NumericProperty)

class TicTacToeGrid(GridLayout):

 status = ListProperty([0, 0, 0, 0, 0, 0,

 0, 0, 0])

 current_player = NumericProperty(1)

This adds an internal status list representing who has
played where, and a number to represent the current
player (1 for ‘O’, -1 for ‘X’).

By placing these numbers in our status list, we’ll know
if somebody wins because the sum of a row, column or
diagonal will be +-3. Now we can update our graphical
grid when a move is played.

Create with PythonBuild tic-tac-toe with Kivy

84

def button_pressed(self, button):

 player = {1: ‘O’, -1: ‘X’}

 colours = {1: (1, 0, 0, 1), -1: (0, 1, 0,

 1)} # (r, g, b, a)

 row, column = button.coords

 status_index = 3*row + column

 already_played = self.status[status_index]

 if not already_played:

 self.status[status_index] = self.

 current_player

 button.text = {1: ‘O’, -1: ‘X’}[self.

 current_player]

 button.background_color = colours[self.

 current_player]

 self.current_player *= -1

You can run your app again to see exactly what this
did, and you’ll find that clicking each button now
places an ‘O’ or ‘X’ as well as a coloured background
depending on whose turn it is to play. Not only that,
but you can only play one move in each button
thanks to our status array that keeps track of the
existing moves.

This is enough to play the game but there’s one
vital element missing... a big pop-up telling you when
you’ve won! Before we can do that, we need to add
some code to check if the game is over.

Kivy properties have another useful feature
here, whenever they change they automatically
call an ‘on_propertyname’ method if it exists and
dispatch a corresponding event in Kivy’s event
system. That makes it very easy to write code that
will run when a property changes, both in Python
and kv language. In our case we can use it to
check the status list every time it is updated, doing
something special if a player has filled a column,
row or diagonal.

def on_status(self, instance, new_value):

 status = new_value

 sums = [sum(status[0:3]), # rows

 sum(status[3:6]),

 sum(status[6:9]),

 sum(status[0::3]), # columns

 sum(status[1::3]),

 sum(status[2::3]),

 sum(status[::4]), # diagonals

 sum(status[2:-2:2])]

 if 3 in sums:

 print(‘Os win!’)

 elif -3 in sums:

 print(‘Xs win!’)

 elif 0 not in self.status: # Grid full

 print(‘Draw!’)

This covers the basic detection of a won or drawn
board, but it only prints the result to stdout. At this
stage we probably want to reset the board so that
the players can try again, along with displaying a
graphical indicator of the result.

def reset(self, *args):

 self.status = [0 for _ in range(9)]

 for child in self.children:

 child.text = ‘’

 child.background_color = (1, 1, 1, 1)

 self.current_player = 1

Finally, we can modify the òn_status̀ method to
both reset the board and display the winner
in a ‘ModalView’ widget.

from kivy.uix.modalview import ModalView

Create with Python Build tic-tac-toe with Kivy

85

This is a pop-up widget that draws itself on top of
everything else rather than as part of the normal
widget tree. It also automatically closes when the user
clicks or taps outside it.

winner = None

if -3 in sums:

 winner = ‘Xs win!’

elif 3 in sums:

 winner = ‘Os win!’

elif 0 not in self.status:

 winner = ‘Draw...nobody wins!’

if winner:

 popup = ModalView(size_hint=0.75, 0.5))

 victory_label = Label(text=winner,

 font_size=50)

 popup.add_widget(victory_label)

 popup.bind(on_dismiss=self.reset)

 popup.open()

This mostly uses the same ideas we already covered,
adding the ‘Label’ widget to the ‘ModalView’ then
letting the ‘ModalView’ take care of drawing itself
and its children on top of everything else. We also
use another binding; this time to ‘on_dismiss’, which
is an event dispatched by the ‘ModalView’ when
it is closed. Finally, we made use of the ‘size_hint’
property common to all widgets, which in this case
is used to set the ‘ModalView’ size proportional to
the window – while a ‘ModalView’ is open you can
resize the window to see it dynamically resize, always
maintaining these proportions. This is another trick
made possible by a binding with the ‘size_hint’ Kivy
property, this time managed internally by Kivy.

That’s it, a finished program! We can now not only
play tic-tac-toe, but our program automatically tells
us when somebody has won, and resets the board
so we can play again. Simply run your program and
enjoy hours of fun!

Time to experiment
This has been a quick tour through some of Kivy’s
features, but hopefully it demonstrates how to think
about building a Kivy application. Our programs
are built from individual Kivy widgets, interacting
by having Python code run when their properties
change (eg our ‘on_status’ method) or when they
dispatch events (eg ‘Button’ ‘on_release’). We also
briefly saw kv language and experienced how it can
automatically create bindings between properties.

You can find a copy of the full program on FileSilo,
reference this to check you’ve followed everything
correctly. We’ve also added an extra widget, the
‘Interface’, with a structure coded entirely in kv
language that demonstrates how to add child
widgets. Test it by uncommenting the ‘return
Interface()’ line in ‘TicTacToeGrid.build’. It doesn’t
do anything fundamentally different to what we
already covered, but it does make extensive use of
kv language’s binding ability to automatically update
a label showing the current player, and to resize the
TicTacToeGrid so it is always square to fit within its
parent. You can play with the settings to see how it
fits together, or try swapping out the different widget
types to see how other widgets behave.

Above A tic-tac-toe grid now accepting input, adding in an O or X
alternately, each go

Create with PythonBuild tic-tac-toe with Kivy

Create with Python Make a Pong clone with Python

Latest Raspbian Image
www.raspberrypi.org/downloads

Pillow
https://github.com/python-imaging/Pillow

SimpleGUITk
https://github.com/dholm/simpleguitk/

Make a Pong
clone with
Python
We update the retro classic Pong for the Linux
generation with a new library called SimpleGUITk

The Raspberry Pi is a fantastic way to start learning how to code.
One area that can be very rewarding for amateur coders is game
programming, allowing for a more interactive result and a greater sense
of accomplishment. Game programming can also teach improvisation
and advanced mathematics skills for code. We’ll be using the fantastic
SimpleGUITk module in Python, a very straightforward way of creating
graphical interfaces based on Tkinter.

What you’ll need…

01 Head to the websites we’ve listed in ‘What you’ll need’ and download a zip of
the source files from the GitHub pages. Update your Raspbian packages and

then install the following:
 $ sudo apt-get install python-dev python-setuptools tk8.5-dev
tcl8.5-dev

Python module preparation

02 Open the terminal and use cd
to move to the extracted Pillow

folder. Once there, type:
 $ sudo python setup.py install
Once that’s complete, move to the
simpleguitk folder and use the same
command to install that as well.

Install the modules

03 Launch IDLE 2, rather than IDLE 3,
and open a new window. Use the

code listing to create our game ‘Tux for
Two’. Be careful to follow along with the
code to make sure you know what you’re
doing. This way, you can make your own
changes to the game rules if you wish.

Write your code

04 There’s nothing too groundbreaking to start the code: Tux’s and the paddles’
initial positions are set, along with the initial speed and direction of Tux. These

are also used when a point is won and the playing field is reset. The direction and
speed is set to random for each spawn.

Set up the game

05 The important parts in the
draw function are the draw_

line, draw_image and draw_text
functions. These are specifically from
SimpleGUI, and allow you to easily put
these objects on the screen with a
position, size and colour. You need to
tie them to an object, though – in this
case, canvas. This tells the software
that we want to put these items on
the screen for people to see.

The SimpleGUI code

06 The last parts are purely for
the interface. We tell the code

what to do when a key is depressed
and then released, and give it a frame
to work in. The frame is then told what
functions handle the graphics, key
functions etc. Finally, we give it frame.
start() so it starts.

SimpleGUI setup code

Below ‘Tux for Two’ is a great little
Pong clone using the beloved Linux
mascot, Tux, in the centre of the action

86

Create with Python

87

Make a Pong clone with Python

Full code listing

import simpleguitk as simplegui
import random

w, h = 600, 400
tux_r = 20
pad_w= 8
pad_h = 80

def tux_spawn(right):
 global tux_pos, tux_vel
 tux_pos = [0,0]
 tux_vel = [0,0]
 tux_pos[0] = w/2
 tux_pos[1] = h/2
 if right:
 tux_vel[0] = random.randrange(2, 4)
 else:
 tux_vel[0] = -random.randrange(2, 4)
 tux_vel[1] = -random.randrange(1, 3)

def start():
 global paddle1_pos, paddle2_pos,
paddle1_vel, paddle2_vel
 global score1, score2
 tux_spawn(random.choice([True, False]))
 score1, score2 = 0,0
 paddle1_vel, paddle2_vel = 0,0
 paddle1_pos, paddle2_pos = h/2, h/2

def draw(canvas):
 global score1, score2, paddle1_pos,
paddle2_pos, tux_pos, tux_vel
 if paddle1_pos > (h - (pad_h/2)):
 paddle1_pos = (h - (pad_h/2))
 elif paddle1_pos < (pad_h/2):
 paddle1_pos = (pad_h/2)
 else:
 paddle1_pos += paddle1_vel
 if paddle2_pos > (h - (pad_h/2)):
 paddle2_pos = (h - (pad_h/2))
 elif paddle2_pos < (pad_h/2):
 paddle2_pos = (pad_h/2)
 else:
 paddle2_pos += paddle2_vel
 canvas.draw_line([w / 2, 0],[w / 2, h], 4,
“Green”)
 canvas.draw_line([(pad_w/2), paddle1_
pos + (pad_h/2)], [(pad_w/2), paddle1_pos -
(pad_h/2)], pad_w, “Green”)
 canvas.draw_line([w - (pad_w/2),
paddle2_pos + (pad_h/2)], [w - (pad_w/2),
paddle2_pos - (pad_h/2)], pad_w, “Green”)
 tux_pos[0] += tux_vel[0]
 tux_pos[1] += tux_vel[1]
 if tux_pos[1] <= tux_r or tux_pos[1] >=
h - tux_r:
 tux_vel[1] = -tux_vel[1]*1.1

 if tux_pos[0] <= pad_w + tux_r:
 if (paddle1_pos+(pad_h/2)) >=
tux_pos[1] >= (paddle1_pos-(pad_h/2)):
 tux_vel[0] = -tux_vel[0]*1.1
 tux_vel[1] *= 1.1
 else:
 score2 += 1
 tux_spawn(True)
 elif tux_pos[0] >= w - pad_w - tux_r:
 if (paddle2_pos+(pad_h/2)) >=
tux_pos[1] >= (paddle2_pos-(pad_h/2)):
 tux_vel[0] = -tux_vel[0]
 tux_vel[1] *= 1.1
 else:
 score1 += 1
 tux_spawn(False)
 canvas.draw_image(tux, (265 / 2, 314 / 2),
(265, 314), tux_pos, (45, 45))
 canvas.draw_text(str(score1), [150, 100],
30, “Green”)
 canvas.draw_text(str(score2), [450, 100],
30, “Green”)

def keydown(key):
 global paddle1_vel, paddle2_vel
 acc = 3
 if key == simplegui.KEY_MAP[“w”]:
 paddle1_vel -= acc
 elif key == simplegui.KEY_MAP[“s”]:
 paddle1_vel += acc
 elif key==simplegui.KEY_MAP[“down”]:
 paddle2_vel += acc
 elif key==simplegui.KEY_MAP[“up”]:
 paddle2_vel -= acc

def keyup(key):
 global paddle1_vel, paddle2_vel
 acc = 0
 if key == simplegui.KEY_MAP[“w”]:
 paddle1_vel = acc
 elif key == simplegui.KEY_MAP[“s”]:
 paddle1_vel = acc
 elif key==simplegui.KEY_MAP[“down”]:
 paddle2_vel = acc
 elif key==simplegui.KEY_MAP[“up”]:
 paddle2_vel = acc

frame = simplegui.create_frame(“Tux for Two”,
w, h)
frame.set_draw_handler(draw)
frame.set_keydown_handler(keydown)
frame.set_keyup_handler(keyup)
tux = simplegui.load_image(‘http://upload.
wikimedia.org/wikipedia/commons/a/af/Tux.png’)

start()
frame.start()

Create with Python Program a Space Invaders clone

88

Raspbian
www.raspberrypi.org/downloads

Python
www.python.org/doc

Pygame
www.pygame.org/docs

What you’ll need…

Right Pivaders is
a Space Invaders
clone we’ve made
especially for the Pi

Did you know…
Space Invaders was one of the
biggest arcade hits in the world.
It’s a great fi rst game since
everyone knows how to play!

Program a Space
Invaders clone
Write your own RasPi shooter in 300 lines of Python

When you’re learning to program in a new language or trying to master
a new module, experimenting with a familiar and relatively simply
project is a very useful exercise to help expand your understanding of
the tools you’re using. Our Space Invaders clone is one such example
that lends itself perfectly to Python and the Pygame module – it’s a
simple game with almost universally understood rules and logic.

We’ve tried to use many features of Pygame, which is designed to
make the creation of games and interactive applications easier. We’ve
extensively used the Sprite class, which saves dozens of lines of extra
code in making collision detection simple and updating the screen and
its many actors a single-line command.

Have fun with the project and make sure you tweak and change
things to make it your own!

Create with PythonProgram a Space Invaders clone

89

Full code listing

#!/usr/bin/env python2

import pygame, random

BLACK = (0, 0, 0)
BLUE = (0, 0, 255)
WHITE = (255, 255, 255)
RED = (255, 0, 0)
ALIEN_SIZE = (30, 40)
ALIEN_SPACER = 20
BARRIER_ROW = 10
BARRIER_COLUMN = 4
BULLET_SIZE = (5, 10)
MISSILE_SIZE = (5, 5)
BLOCK_SIZE = (10, 10)
RES = (800, 600)

class Player(pygame.sprite.Sprite):
 def __init__(self):
 pygame.sprite.Sprite.__init__(self)
 self.size = (60, 55)
 self.rect = self.image.get_rect()
 self.rect.x = (RES[0] / 2) - (self.size
[0] / 2)
 self.rect.y = 520
 self.travel = 7
 self.speed = 350
 self.time = pygame.time.get_ticks()

 def update(self):
 self.rect.x += GameState.vector * self.
travel
 if self.rect.x < 0:
 self.rect.x = 0
 elif self.rect.x > RES[0] - self.size[0]:
 self.rect.x = RES[0] - self.size[0]

class Alien(pygame.sprite.Sprite):
 def __init__(self):
 pygame.sprite.Sprite.__init__(self)
 self.size = (ALIEN_SIZE)
 self.rect = self.image.get_rect()
 self.has_moved = [0, 0]
 self.vector = [1, 1]
 self.travel = [(ALIEN_SIZE[0] - 7),
ALIEN_SPACER]
 self.speed = 700
 self.time = pygame.time.get_ticks()

 def update(self):
 if GameState.alien_time - self.time >
self.speed:
 if self.has_moved[0] < 12:
 self.rect.x += self.vector[0] * self.
travel[0]
 self.has_moved[0] +=1
 else:

 if not self.has_moved[1]:
 self.rect.y += self.vector[1] *
self.travel[1]
 self.vector[0] *= -1
 self.has_moved = [0, 0]
 self.speed -= 20
 if self.speed <= 100:
 self.speed = 100
 self.time = GameState.alien_time

class Ammo(pygame.sprite.Sprite):
 def __init__(self, color, (width, height)):
 pygame.sprite.Sprite.__init__(self)
 self.image = pygame.Surface([width,
height])
 self.image.fill(color)
 self.rect = self.image.get_rect()
 self.speed = 0
 self.vector = 0

 def update(self):
 self.rect.y += self.vector * self.speed
 if self.rect.y < 0 or self.rect.y > RES[1]:
 self.kill()

class Block(pygame.sprite.Sprite):
 def __init__(self, color, (width, height)):
 pygame.sprite.Sprite.__init__(self)
 self.image = pygame.Surface([width,
height])
 self.image.fill(color)
 self.rect = self.image.get_rect()
class GameState:
 pass

class Game(object):
 def __init__(self):
 pygame.init()
 pygame.font.init()
 self.clock = pygame.time.Clock()
 self.game_font = pygame.font.Font(
 ‘data/Orbitracer.ttf’, 28)
 self.intro_font = pygame.font.Font(
 ‘data/Orbitracer.ttf’, 72)
 self.screen = pygame.display.set_
mode([RES[0], RES[1]])
 self.time = pygame.time.get_ticks()
 self.refresh_rate = 20
 self.rounds_won = 0
 self.level_up = 50
 self.score = 0
 self.lives = 2
 self.player_group = pygame.sprite.Group()
 self.alien_group = pygame.sprite.Group()
 self.bullet_group = pygame.sprite.Group()
 self.missile_group = pygame.sprite.Group()
 self.barrier_group = pygame.sprite.Group()

Continued on page 91

Create with Python

90

“We’ve tried to use many features of
Pygame, which is designed to make
the creation of games and interactive
applications easier”

03 With Pygame installed and the project cloned to your machine (you can also
find the .zip on this issue’s cover DVD – simply unpack it and copy it to your

home directory to use it), you can take it for a quick test drive to make sure everything’s
set up properly. All you need to do is type python pivaders.py from within the
pivaders directory in the terminal to get started. You can start the game with the
space bar, shoot with the same button and simply use the left and right arrows on
your keyboard to move your ship left and right.

Testing Pivaders

05 Once we’ve imported the
modules we need for the

project, there’s quite a long list
of variables in block capitals. The
capitals denote that these variables
are constants (or global variables).
These are important numbers that
never change – they represent
things referred to regularly in the
code, like colours, block sizes and
resolution. You’ll also notice that
colours and sizes hold multiple
numbers in braces – these are tuples.
You could use square brackets (to
make them lists), but we use tuples
here since they’re immutable, which
means you can’t reassign individual
items within them. Perfect for
constants, which aren’t designed to
change anyway.

Global variables & tuples

06 A class is essentially a
blueprint for an object you’d

like to make. In the case of our player,
it contains all the required info, from
which you can make multiple copies
(we create a player instance in the
make_player() method halfway
through the project). The great thing
about the classes in Pivaders is that
they inherit lots of capabilities and
shortcuts from Pygame’s Sprite class,
as denoted by the pygame.sprite.
Sprite found within the braces of the
first line of the class. You can read
the docs to learn more about the
Sprite class via
www.pygame.org/docs/ref/sprite.html.

Classes – part 1

04 Once you’ve racked up a good high score (anything over 2,000 points is
respectable) and got to know our simple implementation, you’ll get more

from following along with and exploring the code and our brief explanations of
what’s going on. For those who want to make their own project, create a new
project folder and use either IDLE or Leafpad (or perhaps install Geany) to create
and save a .py file of your own.

Creating your own clone

02 For Pivaders we’ve used Git, a brilliant form of version control used to
safely store the game files and retain historical versions of your code. Git

should already be installed on your Pi; if not, you can acquire it by typing:
 sudo apt-get install git

As well as acting as caretaker for your code, Git enables you to clone copies
of other people’s projects so you can work on them, or just use them. To clone
Pivaders, go to your home folder in the terminal (cd ~), make a directory for the
project (mkdir pivaders), enter the directory (cd pivaders) and type:
 git pull https://github.com/russb78/pivaders.git

Installation

01 If you’re looking to get a better understanding of programming games with
Python and Pygame, we strongly recommend you copy the Pivaders code

in this tutorial into your own program. It’s great practice and gives you a chance
to tweak elements of the game to suit you, be it a different ship image, changing
the difficulty or the ways the alien waves behave. If you just want to play the game,
that’s easily achieved too, though. Either way, the game’s only dependency is
Pygame, which (if it isn’t already) can be installed from the terminal by typing:
 sudo apt-get install python-pygame

Setting up dependencies

Program a Space Invaders clone

Create with Python

91

 self.all_sprite_list = pygame.sprite.
Group()
 self.intro_screen = pygame.image.load(
 ‘data/start_screen.jpg’).convert()
 self.background = pygame.image.load(
 ‘data/Space-Background.jpg’).convert()
 pygame.display.set_caption(‘Pivaders -
ESC to exit’)
 pygame.mouse.set_visible(False)
 Player.image = pygame.image.load(
 ‘data/ship.png’).convert()
 Player.image.set_colorkey(BLACK)
 Alien.image = pygame.image.load(
 ‘data/Spaceship16.png’).convert()
 Alien.image.set_colorkey(WHITE)
 GameState.end_game = False
 GameState.start_screen = True
 GameState.vector = 0
 GameState.shoot_bullet = False

 def control(self):
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 GameState.start_screen = False
 GameState.end_game = True
 if event.type == pygame.KEYDOWN \
 and event.key == pygame.K_ESCAPE:
 if GameState.start_screen:
 GameState.start_screen = False
 GameState.end_game = True
 self.kill_all()
 else:
 GameState.start_screen = True
 self.keys = pygame.key.get_pressed()
 if self.keys[pygame.K_LEFT]:
 GameState.vector = -1
 elif self.keys[pygame.K_RIGHT]:
 GameState.vector = 1
 else:
 GameState.vector = 0
 if self.keys[pygame.K_SPACE]:
 if GameState.start_screen:
 GameState.start_screen = False
 self.lives = 2
 self.score = 0
 self.make_player()
 self.make_defenses()
 self.alien_wave(0)
 else:
 GameState.shoot_bullet = True

 def splash_screen(self):
 while GameState.start_screen:
 self.kill_all()
 self.screen.blit(self.intro_screen,
[0, 0])
 self.screen.blit(self.intro_font.render(
 “PIVADERS”, 1, WHITE), (265, 120))

 self.screen.blit(self.game_font.render(
 “PRESS SPACE TO PLAY”, 1, WHITE),
(274, 191))
 pygame.display.flip()
 self.control()

 def make_player(self):
 self.player = Player()
 self.player_group.add(self.player)
 self.all_sprite_list.add(self.player)

 def refresh_screen(self):
 self.all_sprite_list.draw(self.screen)
 self.refresh_scores()
 pygame.display.flip()
 self.screen.blit(self.background, [0, 0])
 self.clock.tick(self.refresh_rate)

 def refresh_scores(self):
 self.screen.blit(self.game_font.render(
 “SCORE “ + str(self.score), 1, WHITE),
(10, 8))
 self.screen.blit(self.game_font.render(
 “LIVES “ + str(self.lives + 1), 1, RED),
(355, 575))

 def alien_wave(self, speed):
 for column in range(BARRIER_COLUMN):
 for row in range(BARRIER_ROW):
 alien = Alien()
 alien.rect.y = 65 + (column * (
 ALIEN_SIZE[1] + ALIEN_SPACER))
 alien.rect.x = ALIEN_SPACER + (
 row * (ALIEN_SIZE[0] + ALIEN_SPACER))
 self.alien_group.add(alien)
 self.all_sprite_list.add(alien)
 alien.speed -= speed

 def make_bullet(self):
 if GameState.game_time - self.player.
time > self.player.speed:
 bullet = Ammo(BLUE, BULLET_SIZE)
 bullet.vector = -1
 bullet.speed = 26
 bullet.rect.x = self.player.rect.x + 28
 bullet.rect.y = self.player.rect.y
 self.bullet_group.add(bullet)
 self.all_sprite_list.add(bullet)
 self.player.time = GameState.game_time
 GameState.shoot_bullet = False

 def make_missile(self):
 if len(self.alien_group):
 shoot = random.random()
 if shoot <= 0.05:
 shooter = random.choice([
 alien for alien in self.alien_group])
 missile = Ammo(RED, MISSILE_SIZE)

Program a Space Invaders clone

Continued from page 89

Continued on page 93

Create with Python

92

08 What’s most interesting about classes, though, is that you can use one class
to create lots of different things. You could, for example, have a pet class.

From that class you could create a cat (that meows) and a dog (that barks). They’re
different in many ways, but they’re both furry and have four legs, so can be created
from the same parent class. We’ve done exactly that with our Ammo class, using it to
create both the player bullets and the alien missiles. They’re different colours and they
shoot in opposite directions, but they’re fundamentally one and the same.

Ammo

10 There are a lot of methods (class functions) in the Game class, and each is
designed to control a particular aspect of either setting up the game or

the gameplay itself. The logic that dictates what happens within any one round
of the game is contained in the main_loop() method right at the bottom of the
pivaders.py script and is the key to unlocking exactly what variables and functions
you need for your game.

The main loop

11 Firstly the game checks that
the end_game attribute is

false – if it’s true, the entire loop in
main_loop() is skipped and we go
straight to pygame.quit(), exiting the
game. This flag is set to true only if
the player closes the game window
or presses the Esc key when on the
start_screen. Assuming end_game
and start_screen are false, the main
loop can start proper, with the
control() method, which checks to see
if the location of the player needs to
change. Next we attempt to make an
enemy missile and we use the random
module to limit the number of missiles
that can be created. Next we call the
update() method for each and every
actor on the screen using a simple for
loop. This makes sure everyone’s up
to date and moved before we check
collisions in calc_collisions().

Main loop key
logic – part 1

12 Once collisions have been
calculated, we need to

see if the game is still meant to
continue. We do so with is_dead()
and defenses_breached() – if either
of these methods returns true, we
know we need to return to the start
screen. On the other hand, we also
need to check to see if we’ve killed all
the aliens, from within win_round().
Assuming we’re not dead, but the
aliens are, we know we can call the
next_round() method, which creates
a fresh batch of aliens and increases
their speed around the screen. Finally,
we refresh the screen so everything
that’s been moved, shot or killed can
be updated or removed from the
screen. Remember, the main loop
happens 20 times a second – so the
fact we don’t call for the screen to
update right at the end of the loop is
of no consequence.

Main loop key
logic – part 2

09 Our final class is called Game. This is where all the main functionality of
the game itself comes in, but remember, so far this is still just a list of

ingredients – nothing can actually happen until a ‘Game’ object is created (right
at the bottom of the code). The Game class is where the central mass of the
game resides, so we initialise Pygame, set the imagery for our protagonist and
extraterrestrial antagonist and create some GameState attributes that we use to
control key aspects of external classes, like changing the player’s vector (direction).

The game

07 In Pivader’s classes, besides creating the required attributes for the object,
you’ll also notice all the classes have an update() method apart from the

Block class (a method is a function within a class). The update() method is called
in every loop through the main game and simply asks the iteration of the class
we’ve created to move. In the case of a bullet from the Ammo class, we’re asking it
to move down the screen. If it goes off either end, we destroy it.

Classes – part 2

Program a Space Invaders clone

Create with Python

93

 missile.vector = 1
 missile.rect.x = shooter.rect.x + 15
 missile.rect.y = shooter.rect.y + 40
 missile.speed = 10
 self.missile_group.add(missile)
 self.all_sprite_list.add(missile)

 def make_barrier(self, columns, rows, spacer):
 for column in range(columns):
 for row in range(rows):
 barrier = Block(WHITE, (BLOCK_SIZE))
 barrier.rect.x = 55 + (200 * spacer)
+ (row * 10)
 barrier.rect.y = 450 + (column * 10)
 self.barrier_group.add(barrier)
 self.all_sprite_list.add(barrier)

 def make_defenses(self):
 for spacing, spacing in
enumerate(xrange(4)):
 self.make_barrier(3, 9, spacing)

 def kill_all(self):
 for items in [self.bullet_group, self.
player_group,
 self.alien_group, self.missile_group,
self.barrier_group]:
 for i in items:
 i.kill()

 def is_dead(self):
 if self.lives < 0:
 self.screen.blit(self.game_font.render(
 “The war is lost! You scored: “ + str(
 self.score), 1, RED), (250, 15))
 self.rounds_won = 0
 self.refresh_screen()
 pygame.time.delay(3000)
 return True

 def win_round(self):
 if len(self.alien_group) < 1:
 self.rounds_won += 1
 self.screen.blit(self.game_font.render(
 “You won round “ + str(self.rounds_won) +
 “ but the battle rages on”, 1, RED),
(200, 15))
 self.refresh_screen()
 pygame.time.delay(3000)
 return True

 def defenses_breached(self):
 for alien in self.alien_group:
 if alien.rect.y > 410:
 self.screen.blit(self.game_font.render(
 “The aliens have breached Earth
defenses!”,
 1, RED), (180, 15))

 self.refresh_screen()
 pygame.time.delay(3000)
 return True

 def calc_collisions(self):
 pygame.sprite.groupcollide(
 self.missile_group, self.barrier_group,
True, True)
 pygame.sprite.groupcollide(
 self.bullet_group, self.barrier_group,
True, True)
 if pygame.sprite.groupcollide(
 self.bullet_group, self.alien_group,
True, True):
 self.score += 10
 if pygame.sprite.groupcollide(
 self.player_group, self.missile_group,
False, True):
 self.lives -= 1

 def next_round(self):
 for actor in [self.missile_group,
 self.barrier_group, self.bullet_group]:
 for i in actor:
 i.kill()
 self.alien_wave(self.level_up)
 self.make_defenses()
 self.level_up += 50

 def main_loop(self):
 while not GameState.end_game:
 while not GameState.start_screen:
 GameState.game_time = pygame.time.
get_ticks()
 GameState.alien_time = pygame.time.
get_ticks()
 self.control()
 self.make_missile()
 for actor in [self.player_group,
self.bullet_group,
 self.alien_group, self.missile_group]:
 for i in actor:
 i.update()
 if GameState.shoot_bullet:
 self.make_bullet()
 self.calc_collisions()
 if self.is_dead() or self.defenses_
breached():
 GameState.start_screen = True
 if self.win_round():
 self.next_round()
 self.refresh_screen()
 self.splash_screen()
 pygame.quit()

if __name__ == ‘__main__’:
 pv = Game()
 pv.main_loop()

Program a Space Invaders clone

Continued from page 91

Create with Python Pivaders part 2: graphics and sound

94

Raspbian
www.raspberrypi.org/downloads

Python
www.python.org/doc

Pygame
www.pygame.org/docs

Art assets
opengameart.org

Pivaders Pt 2:
graphics & sound
We had great fun creating our basic Space Invaders clone, Pivaders,
in the previous guide. Pygame’s ability to group, manage and detect
collisions thanks to the Sprite class really made a great difference to
our project, not just in terms of code length, but in simplicity too. If
you missed the first part of the project, you can find the v0.1 code
listing on GitHub via git.io/cBVTBg, while you can find version v0.2
of the code, including all the images, music and sound effects we’ve
used at git.io/8QsK-w.

To help keep our project code manageable and straightforward
(as your projects grow keeping your code easy to follow becomes
increasingly harder) we integrated a few animation methods into
our Game class and opted to use a sprite sheet. Not only does it
make it very easy to draw to the screen, but it also keeps the asset
count under control and keeps performance levels up, which is
especially important for the Raspberry Pi. We hope you have fun
using our techniques to add animation and sound to your projects!

What you’ll need…

01 You’ll get much more from
the exercise if you download

the code (git.io/8QsK-w) and use
it for reference as you create your
own animations and sound effects.
Regardless of whether you just want
to simply preview and play or walk-
through the code to get a better
understanding of basic game creation,
you’re still going to need to satisfy
some basic dependencies. The two
key requirements here are Pygame
and Git, both of which are installed
by default on up-to-date Raspbian
installations. That’s easy!

Setting up dependencies

Did you know…
Space Invaders is one of
the most cloned games in the
world! It makes a great first
project for game programmers.

02 Git is a superb version
control solution that helps

programmers safely store their code
and associated files. Not only does
it help you retain a full history of
changes, it means you can ‘clone’
entire projects to use and work on
from places like github.com. To clone
the version of the project we created
for this tutorial, go to your home
folder from the command line (cd ~)
and type:
 git pull https://github.com/
russb78/pivaders.git
This creates a folder called pivaders.

Downloading pivaders Navigating the project

03 Within pivaders sits a licence,
readme and a second pivaders

folder. This contains the main game
file, pivaders.py, which launches the
application. Within the data folder
you’ll find subfolders for both graphics
and sound assets, as well as the font
we’ve used for the title screen and
scores. To take pivaders for a test-drive,
simply enter the pivaders subdirectory
(cd pivaders/pivaders) and type:
 python pivaders.py
Use the arrow keys to steer left and
right and the space bar to shoot. You
can quit with the Escape key.

This time we’ll expand our Space Invaders clone to
include immersive animation and sound

Create with PythonPivaders part 2: graphics and sound

95

class Game(object):
 def __init__(self):
 pygame.init()
 pygame.font.init()
 self.clock = pygame.time.Clock()
 self.game_font = pygame.font.Font(
 ‘data/Orbitracer.ttf’, 28)
 self.intro_font = pygame.font.Font(
 ‘data/Orbitracer.ttf’, 72)
 self.screen = pygame.display.set_mode([RES[0], RES[1]])
 self.time = pygame.time.get_ticks()
 self.refresh_rate = 20; self.rounds_won = 0
 self.level_up = 50; self.score = 0
 self.lives = 2
 self.player_group = pygame.sprite.Group()
 self.alien_group = pygame.sprite.Group()
 self.bullet_group = pygame.sprite.Group()
 self.missile_group = pygame.sprite.Group()
 self.barrier_group = pygame.sprite.Group()
 self.all_sprite_list = pygame.sprite.Group()
 self.intro_screen = pygame.image.load(
 ‘data/graphics/start_screen.jpg’).convert()
 self.background = pygame.image.load(
 ‘data/graphics/Space-Background.jpg’).convert()
 pygame.display.set_caption(‘Pivaders - ESC to exit’)
 pygame.mouse.set_visible(False)
 Alien.image = pygame.image.load(
 ‘data/graphics/Spaceship16.png’).convert()
 Alien.image.set_colorkey(WHITE)
 self.ani_pos = 5 # 11 images of ship
 self.ship_sheet = pygame.image.load(
 ‘data/graphics/ship_sheet_final.png’).convert_alpha()
 Player.image = self.ship_sheet.subsurface(
 self.ani_pos*64, 0, 64, 61)
 self.animate_right = False
 self.animate_left = False
 self.explosion_sheet = pygame.image.load(
 ‘data/graphics/explosion_new1.png’).convert_alpha()
 self.explosion_image = self.explosion_sheet.subsurface(
0, 0, 79, 96)
 self.alien_explosion_sheet = pygame.image.load(
 ‘data/graphics/alien_explosion.png’)
 self.alien_explode_graphics = self.alien_explosion_sheet.
subsurface(0, 0, 94, 96)
 self.explode = False
 self.explode_pos = 0; self.alien_explode = False
 self.alien_explode_pos = 0
 pygame.mixer.music.load(‘data/sound/10_Arpanauts.ogg’)
 pygame.mixer.music.play(-1)
 pygame.mixer.music.set_volume(0.7)
 self.bullet_fx = pygame.mixer.Sound(
 ‘data/sound/medetix__pc-bitcrushed-lazer-beam.ogg’)
 self.explosion_fx = pygame.mixer.Sound(
 ‘data/sound/timgormly__8-bit-explosion.ogg’)
 self.explosion_fx.set_volume(0.5)
 self.explodey_alien = []

Code listing (starting from line 87) Animation & sound

05 Before we can program
anything, it’s wise to have

assets set up correctly. We’ve opted to
use sprite sheets; these can be found
online or created with GIMP with a
little practice. They’re a mosaic made
up of individual ‘frames’ of equally
sized and spaced images representing
each frame. We found ours at
opengameart.org.

Finding images to animate

06 While many of the assets you’ll
find online can be used as is,

you may want to import them into an
image-editing application like GIMP to
configure them to suit your needs. We
started with the central ship sprite and
centred it into a new window. We set
the size and width of the frame and
then copy-pasted the other frames
either side of it. We ended up with 11
frames of exactly the same size and
width in a single document. Pixel-
perfect precision on size and width is
key, so we can just multiply it to find
the next frame.

Tweaking assets

04 Compared with the game from
last month’s tutorial, you’ll see

it’s now a much more dynamic project.
The ship now leans into the turns as
you change direction and corrects
itself when stationary. When you shoot
an alien ship, it explodes with several
frames of animation and should you
take fire, a smaller explosion occurs on
your ship. Music, lasers and explosion
sound effects also accompany the
animations as they happen.

Continued on page 96

Create with Python Pivaders part 2: graphics and sound

96

 GameState.end_game = False
 GameState.start_screen = True
 GameState.vector = 0
 GameState.shoot_bullet = False

 def control(self):
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 GameState.start_screen = False
 GameState.end_game = True
 if event.type == pygame.KEYDOWN \
 and event.key == pygame.K_ESCAPE:
 if GameState.start_screen:
 GameState.start_screen = False
 GameState.end_game = True
 self.kill_all()
 else:
 GameState.start_screen = True
 self.keys = pygame.key.get_pressed()
 if self.keys[pygame.K_LEFT]:
 GameState.vector = -1
 self.animate_left = True
 self.animate_right = False
 elif self.keys[pygame.K_RIGHT]:
 GameState.vector = 1
 self.animate_right = True
 self.animate_left = False
 else:
 GameState.vector = 0
 self.animate_right = False
 self.animate_left = False

 if self.keys[pygame.K_SPACE]:
 if GameState.start_screen:
 GameState.start_screen = False
 self.lives = 2
 self.score = 0
 self.make_player()
 self.make_defenses()
 self.alien_wave(0)
 else:
 GameState.shoot_bullet = True
 self.bullet_fx.play()

 def animate_player(self):
 if self.animate_right:
 if self.ani_pos < 10:
 Player.image = self.ship_sheet.subsurface(
 self.ani_pos*64, 0, 64, 61)
 self.ani_pos += 1
 else:
 if self.ani_pos > 5:
 self.ani_pos -= 1
 Player.image = self.ship_sheet.subsurface(
 self.ani_pos*64, 0, 64, 61)

 if self.animate_left:
 if self.ani_pos > 0:
 self.ani_pos -= 1

08 Slightly further down the list
in the initialising code for the

Game class, we also set two flags for
our player animation: self.animate_left
and self.animate_right. As you’ll see in
the Control method of our Game class,
we use these to ‘flag’ when we want
animations to happen with True and
False. It also allows us to ‘automatically’
animate the player sprite back to its
natural resting state (otherwise the
ship will continue to look as if it’s flying
left when it has stopped).

Animation flags

07 Since we’re inheriting from
the Sprite class to create our

Player class, we can easily alter how the
player looks on screen by changing
Player.image. First, we need to load our
ship sprite sheet with pygame.image.
load(). Since we made our sheet with
a transparent background, we can
append .convert_alpha() to the end
of the line so the ship frames render
correctly (without any background). We
then use subsurface to set the initial
Player.image to the middle ship sprite
on the sheet. This is set by self.ani_pos,
which has an initial value of 5. Changing
this value will alter the ship image
drawn to the screen: ‘0’ would draw it
leaning fully left, ‘11’ fully to the right.

Loading the sprite sheet

09 We use flags again in the code
for the player: animate_player().

Here we use nested if statements to
control the animation and physically
set the player image. It states that if the
animate_right flag is True and if the
current animation position is different
to what we want, we incrementally
increase the ani_pos variable and set
the player’s image. The Else statement
then animates the ship sprite back to
its resting state and the same logic is
then applied in the opposite direction.

The animation method

Create with PythonPivaders part 2: graphics and sound

97

 Player.image = self.ship_sheet.subsurface(
 self.ani_pos*64, 0, 64, 61)
 else:
 if self.ani_pos < 5:
 Player.image = self.ship_sheet.subsurface(
 self.ani_pos*64, 0, 64, 61)
 self.ani_pos += 1

 def player_explosion(self):
 if self.explode:
 if self.explode_pos < 8:
 self.explosion_image = self.explosion_sheet.
subsurface(0, self.explode_pos*96, 79, 96)
 self.explode_pos += 1
 self.screen.blit(self.explosion_image, [self.player.
rect.x -10, self.player.rect.y - 30])

 else:
 self.explode = False
 self.explode_pos = 0

 def alien_explosion(self):
 if self.alien_explode:
 if self.alien_explode_pos < 9:
 self.alien_explode_graphics = self.alien_
explosion_ sheet.subsurface(0, self.alien_explode_pos*96, 94,
96)
 self.alien_explode_pos += 1
 self.screen.blit(self.alien_explode_graphics,
[int(self. explodey_alien[0]) - 50 , int(self.explodey_alien[1]) -
60])
 else:
 self.alien_explode = False
 self.alien_explode_pos = 0
 self.explodey_alien = []

 def splash_screen(self):
 while GameState.start_screen:
 self.kill_all()
 self.screen.blit(self.intro_screen, [0, 0])
 self.screen.blit(self.intro_font.render(
 “PIVADERS”, 1, WHITE), (265, 120))
 self.screen.blit(self.game_font.render(
 “PRESS SPACE TO PLAY”, 1, WHITE), (274, 191))
 pygame.display.flip()
 self.control()
 self.clock.tick(self.refresh_rate / 2)

 def make_player(self):
 self.player = Player()

Find the rest of the code at github.com/russb78/pivaders

10 The player_explosion() and
alien_explosion() methods

that come after the player animation
block in the Game class are similar but
simpler executions of the same thing.
As we only need to run through the
same predefined set of frames (this
time vertically), we only need to see if
the self.explode and self.alien_explode
flags are True before we increment the
variables that change the image.

Animating explosions

11 Pygame makes it easy to add a
musical score to a project. Just

obtain a suitable piece of music in
your preferred format (we found ours
via freemusicarchive.org) and load it
using the Mixer Pygame class. As it’s
already been initialised via pygame.
init(), we can go ahead and load the
music. The music.play(-1) requests
that the music should start with the
app and continue to loop until it quits.
If we replaced -1 with 5, the music
would loop five times before ending.
Learn more about the Mixer class via
www.pygame.org/docs/ref/
mixer.html.

Adding music

12 Loading and using sounds
is similar to how we do so

for images in Pygame. First we load
the sound effect using a simple
assignment. For the laser beam, the
initialisation looks like this:
 self.bullet_fx = pygame.
mixer.Sound(‘location/of/file’)
Then we simply trigger the sound
effect at the appropriate time. In the
case of the laser, we want it to play
whenever we press the space bar
to shoot, so we place it in the Game
class’s Control method, straight
after we raise the shoot_bullet
flag. You can get different sounds
from www.freesound.org.

Using sound effects

“Sprite sheets make it easy to draw to the
screen, but it also keeps the asset count
down and performance levels up”

Create with Python Make a visual novel game

98

Python
www.python.org/doc

Pygame
www.pygame.org/docs

IDLE Python IDE
Game assets
Code from FileSilo (optional)

What you’ll need… Make a visual
novel game
Bridge the gap between books and videogames by
creating an interactive novel with Python

Most people look for a compelling story in modern videogames, and
those that don’t have one are appearing less and less. A great way to tell
a pure story is through the genre of visual novels, and you can make one
fairly simply in Python. These interactive novels are an extremely popular
form of entertainment in Japan, and usually work by having the player
click through a story and make decisions as they go along in order to
experience different plot points and endings.

In Python, this is a relatively simple project to create, but with the
addition of the Pygame module we can make it easier still, and even
more expandable for the future. Pygame adds better support for
positioning the images and text, creating display windows and using
mouse and keyboard inputs, thereby simplifying the coding process.

We’ll be coding this in standard Python 2, so make sure to run it in IDLE
2 and not IDLE 3 while you are writing, testing and coding.

Create with PythonMake a visual novel game

99

03 To install it, we need to do it in two
steps. First we need to prepare the

code to install using the terminal with:

 $ python setup.py build

Once that’s finished you can then actually
install it with:

 $ sudo python setup.py install

This won’t take too long.

Build the Pygame module

04 If the above doesn’t work (or is
a bit daunting) you can check

the website for binary and executable
files that will work on other operating
systems and Linux distros. Head to
http://pygame.org/download.shtml to
get the files you need for your specific
system, including Windows and OS
X. The rest of the tutorial will work in
any OS.

Install in other ways

02 Next we need to download
the code for Pygame direct

from the source. Still in the terminal,
you can do this by typing in:

 $ hg clone https://bitbucket.
org/pygame/pygame

Which will download it to the folder
‘pygame’. Move to that using CD
pygame in the terminal so we can
continue building it.

Get the Pygame code

01 The best way to install Pygame
for your system is to compile

it. To do this you need to first install
the right dependencies. Open up
the terminal and install the following
packages, which in Ubuntu looks like:

 $ sudo apt-get install
mercurial python-dev
python-numpy libav-tools
libsdl-image1.2-dev libsdl-
mixer1.2-dev libsdl-ttf2.0-dev
libsmpeg-dev libsdl1.2-dev
libportmidi-dev libswscale-dev
libavformat-dev libavcodec-dev

Get Pygame dependencies

05 We’ve uploaded the code to
FileSilo, and here we’re going

to walk you through what we’ve
done to make it work. Download the
files for the visual novel and unzip
them. The two files we care about
for the moment are the visualnovel.
py and script.py python files – this is
where all the important code is.

Get the visual novel files

06 For the moment the
script file is small and

literally just holds the script for
the game. It’s made up of events
for the visual novel to move
between, line by line, by splitting
it up into scenes. This includes
the location of each line, the
character, the actual line itself
and information on how the
game flows. These are matrices
with the information in, and are
completely customisable.

Understand the script file

“Pygame adds
better support for
positioning the
images and text”

Create with Python

100

Make a visual novel game

10 Pygame works by constantly
updating the display with

new information. The menu
function adds elements to the
display (which we’ve titled screen),
like filling it with colour, adding
shapes and using blit to add images
or in this case text. With a buffer of
changes to the screen, update it
with the flip() function.

Start the game

11 As we’ve created the button
as a rectangle and now an

image on the menu, we need
to recognise when the mouse is
hovering over it to know when the
button is clicked. First we have to
use event.get() to see the mouse
in general, then we look for the
position with get_pos(). After that,
we wait for it to click, see where it
clicked (using the co-ordinates of
the rectangle) and make a decision
after that.

See the mouse

09 We add a mixture of
information we need to run

the novel. We define the size of the
display screen to use (1000 pixels
wide and 563 high), along with
some RGB colours for the code to
use. We’re also telling Pygame what
font to use and how large for certain
sections and also loading images for
the game.

Add variables and assets 12 Our start_game function is
called when the mouse clicks

the right position and we prepare
the game, getting the characters,
locations and progression through
the game script. The rest of this
function uses this info to pull in data
from the script to make the game
flow properly.

Start the story

13 The first screen is handled
differently, and acts to get every

element up on the interface – it makes
the code take a little less time to process
as we begin. The getattr allows us to
use the string/integer associated with
our place in the story and call upon
the relevant scene function from the
script file.

We then use an if statement with an
iterative function to successively add
screen elements to give the illusion that
it’s building up the first screen. We finish
it by advancing the progression value.

First screen

“Our next if
statement and
iteration checks
what is different on
the next line”

08 We don’t need many
modules for the current

state of the visual novel. Here
we’ve imported the new Pygame
module, our script as a module
and the time module for aesthetic
reasons – we’re going to have the
code pause in bits rather than just
instantly change scenes to the next
line. We also initialise Pygame with
a simple pygame.init()

Starting the main game

07 In our game, the code pulls
in elements from the script

file as it goes. We’ll explain how
that works later, but this also allows
us to implement decisions later
on to change which direction the
game might take you in.

How the script relates

Create with Python

101

Make a visual novel game

14 Similarly to the way that
our original startup code

works, our next if statement and
iteration checks to see what is
different on the next line, and
if it moves to a different scene
function. In addition, it will also
change anything that is different
without filling up the buffer more
than needed. Where we’ve made
no change is labelled with a 0 in
the scripts.

Add variables and assets

15 We finish our code bit with
a simple function that starts

off the entire game. This is just to
encapsulate the entire code and
allows us to add different ways of
turning it off in the future. IDLE when
running the file will load everything
up and then run the game() function
at the end – this is similar to how you
can add a __main__ function at the
end which will start the code in the
command line.

The starting function

16 The code written is very
expandable, allowing you

to add decisions that are logged
to take you to different scenes (or
routes in visual novel terminology)
and make your game feel more
interactive. This would not require
much more code than the if
statements, and it would also be
a good way for you to look into
adding graphical buttons to click
and use the collide function.

Expand your code

17 Currently the code has the
script-specific assets in the

main visualnovel file. These can be
moved to the script, allowing you
to make the visualnovel file much
more modular so that can you
have multiple scripts with different
assets to load at startup.

Move the assets

102

Use Python with Pi Create amazing projects

Use Python with Pi
Amazing creations with Python code and Raspberry Pi

From the tutorials up to this point, you’ll have a fi rm grounding in Python.
Now we’re going to add the Raspberry Pi computer. You’ll discover
exciting projects such as sending SMS texts from your Raspberry Pi to a
mobile phone (p.102), programming a voice synthesiser (p.114), and using
it to get more out of Minecraft (p.116). You’ll also learn how to code a
Twitter bot (p.122), and build your own networked Hi-Fi (p.124).

103

Use Python with PiCreate amazing projects

Use Python with Pi Using Python on Raspberry Pi

104

A Raspberry Pi with all
necessary peripherals
SD card with
latest Debian image for Pi
www.raspberrypi.org/downloads

What you’ll need… Using Python
on Raspberry Pi
Program in Python with the Raspberry Pi, and lay
the foundations for all your future projects

This tutorial follows on from the one last issue: ‘Setting up the Raspberry
Pi’, where we showed you how to prepare your SD card for use with the
Raspberry Pi. The beauty of using an SD card image is that the operating
system is ready to go and a development environment is already
configured for us.

We’ll use a lightweight integrated development environment (IDE)
called Geany for our Python development. Geany provides a friendlier
interface compared to text-based editors such as nano to make it easier
to get into the swing of things. This tutorial will cover topics such as:

 Basic arithmetic
 Comparison operators, for example ‘equal to’ and ‘not equal to’
 Control structures, for example loops and if statements

By the end, we’ll have an advanced version of our ‘hello world’
application. Let’s dive straight in…

01 We don’t want to have messy folders on our new Pi, so let’s go to the file
manager and organise ourselves. Open the file manager by clicking the icon

next to the menu icon on the bottom left of the screen. Create a new folder by
right-clicking and selecting New>Folder, then type a name and click OK. We created
a folder called Python, and inside that created a folder called Hello World v2.

Staying organised

Use Python with PiUsing Python on Raspberry Pi

105

02 Start Geany by going to the LXDE menu and going to Programs. From
here, select Geany. Once you’re in the Geany interface, create a new

Python file from a template by selecting ‘New (with template)>main.py’. Delete
everything in this template apart from the first line: #!/usr/bin/env python. This
line is important because it means you can run the code from the command line
and the Bash shell will know to open it with the Python interpreter.

Starting Geany

It’s good practice to describe
what the program’s purpose
is at the top of the file. This
will help you out when
working on larger projects
with multiple files

It’s important to think about
data types. We convert the
number to decimal to make
sure that we
don’t lose any decimal
numbers during arithmetic

The stopping condition
for a while loop has to be
satisfied at some point in the
code; otherwise the loop will
never end!

The print function can only
accept string data types,
so we need to convert any
variables with a number data
type to a string before we
can print them to the screen

106

06 Now that we have a value in firstName, we need to output a welcome
message to the screen. We print to the screen in Python using the

print function. The print function is followed by a pair of brackets which
enclose the values to print. When using the addition operator with strings,
they are joined together. Note how firstName doesn’t need to be enclosed
by quotation marks because it is the name of a variable. If it was enclosed in
quotation marks, the text firstName would be output. We finish off by adding
a ‘\n’ character (new line character) to our output to leave one blank line
before we start our next example.

Printing a message

Use Python with Pi Programming in Python on the Raspberry Pi

03 It’s always a good idea to keep
saving your work with Ctrl+S

as you program, because it would
be a shame to lose anything you’ve
been working on. To save your file for
the first time, either press Ctrl+S or
go to the File menu and select Save.
Give the file a sensible name and
save it in the tidy folder structure you
created before. It’s a good habit to be
well organised when programming,
because it makes things much easier
when your projects become bigger
and more complicated.

Saving your work

04 Having detailed comments
in your code is important

because it allows you to note down
things you find confusing and
document complex procedures. If
another programmer has to work
with your code in the future, they’ll
be extremely grateful. Start by adding
a comment with a description of
what the program will do and your
name. All comment lines start with
a hash (#) and are not interpreted
as code by the Python interpreter.
We import the sys library so we can
use the sys.exit function to close the
program later on. We also import
everything from the decimal library
because we want to make use of the
decimal type.

Setting it up

05 A variable is data that is stored in memory and can be accessed via a
name. Our program is going to start by asking for your first name, store

that in a variable and then print out a welcome message. We’re going to add a
comment that explains this and create a variable called firstName. Notice how
we’ve capitalised the first letter of the second word to make it easier to read.

We want the firstName variable to hold the value returned by a function
called raw_input, that will ask the user for input. The question is passed into the
print function within brackets, and because this is a string it is enclosed within
quotation marks. A string type is basically a collection of characters. Note the extra
space we’ve added after the colon because the user types their input straight
after this question.

Variables

“It’s a good habit to be well organised
when programming”

107

09 We’re going to ask the user for a number by basically repeating the first
couple of lines we did. Once the user gives us a number, we’ll halve,

square and double it. The raw_input function returns the value that the user input
as a string. A string is a text-based value so we can’t perform arithmetic on it. The
integer type in Python can only store whole numbers whereas the decimal type
can store numbers with decimals. We’re going to do something called a type
cast, which basically converts a value with one type to another type. We’re going
to convert our number string to a decimal value because it’s likely that decimals
will be involved if we are halving numbers. If the number was of an integer type,
any decimal values would simply be cut off the end, without any rounding. This is
called truncation.

Working with numbers
07 The Debian image that we’re

currently using has a small
misconfiguration issue in Geany.
You’ll know if you have this problem
by trying to run your program with
either the F5 key or going to the
Build menu and selecting Execute.
If the issue is present then nothing
will happen and you’ll see a message
saying ‘Could not find terminal:
xterm’. Not to worry, it’s easy to fix.
Go to the Edit menu and then select
Preferences. Go to the Tools tab and
change the value for Terminal from
xterm to lxterminal.

Fixing a small issue

08 Now we’ve done that part, why not test it? It’s worth noting that you have
to save before running the program, or anything you’ve done since you

last saved won’t be interpreted by Python. Run the program by pressing the F5
key. Input your name by typing it and then pressing the Enter key. Once you have
done this, you’ll see a welcome message. If the program exits with the code 0
then everything was run successfully. Press Enter to close the terminal.

Testing our program

Use Python with PiProgramming in Python on the Raspberry Pi

Below The Raspberry Pi takes the ‘Pi’ part
of its name from its compatibility with the
Python programming language

12 To demonstrate a while loop and if statements, we will output a question
to the user that requires a yes or no answer. We’re going to ask them if

they want to continue – and for this we require either a lower-case ‘yes’, or a
lower-case ‘no’. A while loop is a loop that runs until a condition is met. In

this case, we will create a variable called yesOrNo and the while loop will
run while yesOrNo is false. The yesOrNo variable will be a Boolean type
that can be either True or False. The variable will be initialised with a

value of False, or the while loop will not run.
A while loop has the format ‘while [condition]:’ – where any code that

is part of the while loop needs to be indented in the lines below the
colon. Any code that is not indented will not be part of the while loop.

This is the same for an if statement. The condition is checked with
the comparison operator ‘==’. A single ‘=’ is an assignment operator
whereas a double equals is a comparison operator. Another
common comparison operator is ‘!=’ – which means ‘not equal to’.

We create a variable called ‘result’, which holds the result of the
question, do you want to continue? We then check this result is
valid with an if statement. Notice the ‘or’ operator which allows
two conditions to be tested. If the user inputs a correct value

then we set yesOrNo to True, which stops the while loop on the
next run. Otherwise, we output an error message and the while loop will

run again. The user can use the Ctrl+C command at the terminal to exit the
program at any time.

Input validation with While loops and If statements

Use Python with Pi Programming in Python on the Raspberry Pi

10 The main arithmetic operators in Python are + - / *, the latter two being
divide and multiply respectively. We’ve created three new variables

called numberHalved, numberDoubled and numberSquared. Notice that we
don’t need to specify that they should be decimal because Python gives a
type to its variables from the type of their initial value. The number variable is a
decimal type, so all values returned from performing arithmetic on that number
will also be of a decimal type.

Performing arithmetic

11 Now that we have performed our arithmetic, we need to print the results
using the print function. The print function only accepts string values

passed to it. This means that we need to convert each decimal value to a string
using the str() function before they can be printed. We’re using a print statement
with nothing between the quotation marks to print one blank line. This works
because the print function always adds a new line at the end of its output unless
told otherwise, so printing an empty string just prints a new line.

Printing our numbers

108

109

14 We’ll be using a while loop
that uses a number and a <=

(less than or equal to) operator as its
stopping condition. The while loop
will be used to increment the number
by 1, printing the change on each loop
until the stopping condition is met.
The count variable allows us to know
exactly how many times we have
been through the while loop.

Loops with numbers

15The while loop will run until the
count is 6, meaning that it will

run for a total of 5 times because the
count begins at 1. On each run, the
while loop increments the number
variable and then prints what is
being added to the original number,
followed by the result. Finally, the
count is incremented.

Incrementing numbers
with a loop

13 Next we will deal with the
result that was stored during

the while loop with if statements.
If the user typed ‘yes’ then we will
print ‘Continuing’. Otherwise, we will
print ‘Exiting’ and then call the sys.
exit function. You don’t have to do
anything else for the program to
continue because it will simply carry
on if the sys.exit function wasn’t called.
This code also shows that the newline
character \n can be used anywhere in
a string, not just in separate quotation
marks like above.

Continue or exit?

Use Python with PiProgramming in Python on the Raspberry Pi

17 Now that we’ve finished coding, save any changes you have made and run
your program with the F5 key.

Admire your work

16 The final step is to print that the program is exiting. This is the last line and
we don’t have to do anything else because Python simply finishes when

there are no more lines to interpret.

Finishing off

“The print function always adds a new
line at the end of its output”

Use Python with Pi Send an SMS from your Pi

110

Raspberry Pi
Twilio account

What you’ll need…

Left With this method, you could get your Pi to drop
you a text when it finishes running a script

Send an SMS
from your Pi
Create a program combining Twilio and simple
Python code and send an SMS from your Pi

Text messaging, or SMS (Short Message Service),
has become a staple of everyday communication.
For many of us, not a day will go by without
sending a text message. What began life as a 40
pence message service is now off ered by most
tariff providers as an unlimited service.

Twilio, a cloud communications company,
enables you to send SMS messages for free from
your Raspberry Pi to a mobile phone using just
six lines of code. So, you no longer need to be
chained to your mobile while you work, and can
focus on one screen rather than two!

Use Python with PiSend an SMS from your Pi

111

Above You will be able to find your
AccountSid and your Auth Token on the
Twilio dashboard

03 Once registered and logged in, visit the dashboard page, which will display
your AccountSid and your Auth Token. These are both required to use the

Twilio REST. Keep these secure and private, but be sure to make a note of them as you
will need them for your Python program later.

The dashboard

02 Your Twilio account is a trial account (unless you pay the upgrade fee),
which means you can only send and receive communications from a

validated phone number. Enter the phone number of the mobile that you want
to verify, ensuring that you select the correct country code. Twilio will text you a
verification code. Enter this code into the website form and press submit.

Register and verify mobile numbers

01 The first step of this project is to register for a Twilio account and Twilio
number. This is free and will enable you to send an SMS to a registered,

verified phone. Once signed up, you will receive a verification code via SMS to the
registered phone. When prompted, enter this onto the Twilio site to authenticate
your account and phone. Go to twilio.com/try-twilio and create your account.

Set up your Twilio account

112

Below Twilio, whose website is pictured,
has been used by large corporations like
Coca Cola, Uber and Nordstrom

REST
REST stands for Representational
State Transfer. (It is sometimes
spelt “ReST”.) It relies on a
stateless, client-server, cacheable
communications protocol – and
in virtually all cases, the HTTP
protocol is used. REST is an
architecture style for designing
networked applications.

05 Now you are ready to create the SMS program that will send the text
message to your mobile phone. Open your Python editor and import the

Twilio REST libraries (line one, below). Next, add your AccountSid and Auth Token,
replacing the X with yours, as you will find on your dashboard:

 from twilio.rest import TwilioRestClient
 account_sid = “XXXXXXXXXXXXXXXXXXXXXXXXXXXXX”
 # Enter Yours
 auth_token = “XXXXXXXXXXXXXXXXXXXXXXXXXX”
 # Enter Yours
 client = TwilioRestClient(account_sid, auth_token)

Twilio authentication

04Boot up your Raspberry Pi and connect it to the Internet. Before you install
the Twilio software, it is worth updating and upgrading your Pi. In the LX

Terminal, type sudo apt-get update, then sudo apt-get upgrade. Once complete,
type sudo easy_install twilio or sudo pip install twilio to install the software. (If you
need to install pip, type sudo apt-get install python-pip python-dev, press Enter,
then type sudo pip install -U pip.)

Install the software

Use Python with Pi Send an SMS from your Pi

113

“Twilio provides a wide range of API
codes and reference documents to
create other communication programs”

06 You will probably want to be able to change your text messages
rather than send the same one. Create a new variable in your program

called message. This will prompt you to enter the phrase that you want to
send to the mobile phone. When the program runs, this is the message that
will be sent:

 message = raw_input(“Please enter your message”)

Create your message

09Twilio provides a wide
range of API codes and

reference documents to create
other communication programs
beyond sending SMS, such as making
phone calls, recording your calls, and
retrieving data including caller IDs and
call duration.

The API also complements a
wide range of other programming
languages, including Ruby, PHP, Java
and Node.js (twilio.com/api).

Other API and codes

07 To send the message, you need to add the code line below and your
two phone numbers. The first number is your mobile phone number,

which is registered and validated with Twilio (Step 2). The second number is
your Twilio account number, which can be retrieved from your dashboard page
under ‘Call the Sandbox number’. Change the Sandbox number to your country
location and remember to add the international country code.

 message = client.messages.create(to=“+44YOURMOBNUMBER”,
from_=“+44YOURTWILIONUMBER”, body=message)

Add your numbers

08 Now send your message. The
code below is not required,

but useful to indicate your message
has been sent. Add the lines and save
your program. Ensure your Raspberry
Pi is connected to the Internet and
that your mobile is on, then run your
program. You have just texted from
your Raspberry Pi!

 print message.sid
 print “Your message is being
sent”

 print “Check your phone!”

Send the message

Use Python with PiSend an SMS from your Pi

Use Python with Pi Voice synthesizer

114

Portable USB speakers
python-espeak module
eSpeak
Raspbian (latest image)

Voice
synthesizer
Add the power of speech to your Raspberry Pi
projects with the versatile eSpeak Python library

We’ve shown how the Raspberry Pi can be used to power all kinds
of projects, but as a tiny computer it can also be the centre of an
Internet of Things in your house too. For these reasons and more,
using the Raspberry Pi for text-to-voice commands could be just
what you’re looking for. Due to the Debian base of Raspbian, the
powerful eSpeak library is easily available for anyone looking to
make use of it. There’s also a module that allows you to use eSpeak
in Python, going beyond the standard command-line prompts so
you can perform automation tasks.

What you’ll need…

01 We’ll install everything we plan
to use in this tutorial at once.

This includes the eSpeak library and the
Python modules we need to show it
off. Open the terminal and install with:
 $ sudo apt-get install espeak
python-espeak python-tk

Everything you’ll need

Did you know…
Using eSpeak you can control
the way the words are spoken
to add emphasis or make the
voice sound different

02 The eSpeak library is pretty
simple to use – to get it to just

say something, type in the terminal:
 $ espeak “[message]”
This will use the library’s defaults
to read whatever is written in the
message, with decent clarity. Though
this simple command is fun, there’s
much more you can do…

Pi’s first words

03 You can change the way
eSpeak will read text with a

number of different options, such as
gender, read speed and even the way
it pronounces syllables. For example,
writing the command like so:
 $ espeak -ven+f3 -k5 -s150
“[message]”
…will turn the voice female,
emphasise capital letters and make
the reading slower.

Say some more

Use Python with PiVoice synthesizer

115

“There’s even a module that allows
you to use eSpeak in Python, so you
can perform automated tasks”

from espeak import espeak
from Tkinter import *
from datetime import datetime

def hello_world():
 espeak.synth(“Hello World”)

def time_now():
 t = datetime.now().strftime(“%k %M”)
 espeak.synth(“The time is %s”%t)

def read_text():
 text_to_read = input_text.get()
 espeak.synth(text_to_read)

root = Tk()
root.title(“Voice box”)
input_text = StringVar()
box = Frame(root, height = 200, width =
500)
box.pack_propagate(0)
box.pack(padx = 5, pady = 5)

Label(box, text=”Enter text”).pack()
entry_text = Entry(box, exportselection =
0, textvariable = input_text)
entry_text.pack()
entry_ready = Button(box, text = “Read
this”, command = read_text)
entry_ready.pack()

hello_button = Button(box, text = “Hello
World”, command = hello_world)
hello_button.pack()
time_button = Button(box, text = “What’s
the time?”, command = time_now)
time_button.pack()

root.mainloop()

Import the
necessary eSspeak
and GUI modules, as
well as the module
to find out the time

Define the different
functions that the
interface will use,
including a simple
fixed message,
telling the time, and
a custom message

Create the basic
window with Tkinter
for your interface,
as well as creating
the variable for
text entry

The text entry
appends to the
variable we created,
and each button
calls a specific
function that we
defined above in
the code

04 The most basic way to use
eSpeak in Python is to use

subprocess. Import it, then use:
 subprocess.call([“espeak”,
“[options 1]”, “[option
2]”,...”[option n]”, “[your
message here]”)

Taking command
with Python

05The Python eSpeak module
is quite simple to use to just

convert some text to speech. Try this
sample code:
 from espeak import espeak
 espeak.synth(“[message]”)
You can then incorporate this into
Python, like you would any other
module, for automation.

The native tongue

06 Using the code listing, we’re
creating a simple interface

with Tkinter with some predetermined
voice buttons and a custom entry
method. We’re showing how the
eSpeak module can be manipulated
to change its output. This can be
used for reading tweets or automated
messages. Have fun!

A voice synthesiser

Full code listing

Create with Python Visualise music in Minecraft with the PianoHAT

PianoHAT
Raspberry Pi

What you’ll need… Visualise music
in Minecraft with
the PianoHAT
Combine code, Minecraft and the PianoHAT to play
music and create a visualisation of the melody
Pimoroni has created the PianoHAT, the ultimate mini musical
companion for your Raspberry Pi! It is inspired by Zachary Igielman’s
PiPiano and made with his blessing. The HAT consists of a dinky
eight-key piano add-on, with touch-sensitive keys and LEDs.

It can be used for many creative and musical purposes, such
as playing music in Python, controlling software synths on your
Raspberry Pi, taking control of hardware synthesisers, or unlocking
your inner Mozart.

This tutorial will show you how to set up the hardware, introduce
you to the basic features of the software and show you how to
combine these together in Minecraft to create musical blocks and a
visualisation of your melodies. You can view a demonstration video
here: www.youtube.com/watch?v=ezJgXp01MPk

Create with PythonVisualise music in Minecraft with the PianoHAT

117

01 Pimoroni has made
it extremely easy to

install the software for your
PianoHAT. Assuming you have
not connected your HAT, simply
attach the board and boot up your
Raspberry Pi. Load the LX Terminal
and update the software; type:

 $ sudo apt-get update
 $ sudo apt-get upgrade

Type the following line to install the
PianoHat libraries:

 $ sudo curl -sSL get.
pimoroni.com/pianohat | bash

Follow the instructions displayed.
This will now download the required
libraries and a selection of programs
to try.

Getting started

02 The software install comes with
a set of four example programs

to get you started and demonstrate the
features and functions of the PianoHAT.
In terms of the code for the Piano,
there are four basic events that you can
control, these are:

on_note – triggers when a piano key is
touched and plays a note.

on_octave_up – triggers when the
Octave Up key is touched and raises the
notes by one octave.

on_octave_down – triggers when
the Octave Down key is touched and
decreases the notes by one octave.

on_instrument – triggers when the
Instrument key is touched and changes
the sound from a piano to drums.

Basic events

Full code listing

import pianohat
import pygame
import time
import signal
import glob
import os
import re

from mcpi import minecraft
mc = minecraft.Minecraft.create()

global move
x,y,z = mc.player.getTilePos()
print x,y,z
move = x

BANK = ‘./sounds/’
FILETYPES = [‘*.wav’,’*.ogg’]
samples = []
files = []
octave = 0
octaves = 0

pygame.mixer.pre_init(44100, -16, 1, 512)
pygame.mixer.init()
pygame.mixer.set_num_channels(32)

patches = glob.glob(os.path.join(BANK,’*’))
patch_index = 0

if len(patches) == 0:
 exit(‘You need some patches in {}’.format(BANK))

def natural_sort_key(s, _nsre=re.compile(‘([0-9]+)’)):
 return [int(text) if text.isdigit() else text.lower() for
text in re.split(_nsre, s)]

def load_samples(patch):
 global samples, files, octaves, octave
 files = []
 print(‘Loading Samples from: {}’.format(patch))
 for filetype in FILETYPES:
 files.extend(glob.glob(os.path.join(patch,filetype)))
 files.sort(key=natural_sort_key)
 octaves = len(files) / 12
 samples = [pygame.mixer.Sound(sample) for sample in files]
 octave = octaves/2

pianohat.auto_leds(True)

Continued on page 118

118

Create with Python

04 The program called leds.py is
useful; when you run this and

press a key or note, the corresponding
LED lights up but the note is not
‘sounded’. It demonstrates how you
can separately control the PianoHAT
LEDs and the sounds. You can turn all
of the LEDs on or off, which is useful for
creating a visual metronome, prompting
a user which key to press next before a
sound is played. Assuming you are still in
the home/pi/Pimoroni/pianohat folder,
type sudo python leds.py in order to
run the program.

Musical silence

05 This neat little program teaches
you to play a well known melody

(can you guess what it is?). Run the
program and the LED for each required
note is lit up, indicating that this is the
key to press. Press the key and the note is
sounded. Once you have done this the
next LED lights up; press this key and the
note plays, and so on. Follow the LEDs
to learn how to play the melody. You
can use this program to experiment and
create your own melody / song trainer.

Teach yourself to play

06 The new Raspberry Pi OS image comes with Minecraft and the required
Python library pre-installed. If you are using an old OS version, it will be worth

downloading and updating to either the new Jessie or Raspbian image downloadable
here: https://www.raspberrypi.org/downloads/

Go to the start menus and load Minecraft from the programming tabs. Be aware
that the Minecraft window is a little glitchy when full size and it is recommended to
reduce the size so you can view both your Python code and the game at the same
time. Let’s look at some simple Minecraft hacks that will be used in the final Musical
Blocks program.

Minecraft

def handle_note(channel, pressed):
 global move
 channel = channel + (12*octave)

 if channel < len(samples) and pressed:
 print(‘Playing Sound: {}’.format(files[channel]))
 print channel
 ### Saves the channel number / note as a variable to
compare to block
 Block_number = channel
 samples[channel].play(loops=0)
 ###Sets block infront of you###
 mc.setBlock(move, y+3, z+3, Block_number)
 move = move + 1 ###add one to the x pos to move blocks
along in a line

def handle_instrument(channel, pressed):

03 To get used to the PianoHAT
and its features, load the

simplepiano program. This is exactly as
the name describes: a simple piano.

Navigate to the folder home/pi/
Pimoroni/pianohat, and press F4
to start a Terminal session (The HAT
requires root access and this method
provides it). Next, load the piano
program, type sudo python simple-
piano.py and press Enter. Wait for the
program to run and then play yourself
a little tune. Use the Octave buttons to
move the note range higher or lower,
and press the Instrument button to
toggle between drums and piano.

Simple Piano

Visualise music in Minecraft with the PianoHAT

Continued from page 117

119

Create with Python

08When playing Minecraft you inhabit a three dimensional environment which is
measured by the ‘x’ axis, left and right, the ‘y’ axis up and down and the ‘z’ axis for

forward and backwards. As you move along any of these axes, your position is displayed
at the top left of the screen as a set of three co-ordinates. These are extremely useful for
checking where the player is and can be collected and stored using pos = mc.player.
getPos(). This code returns the position of your player and is applied later to the music
blocks. Try the simple program below for an example of how the positioning works:

 from mcpi import minecraft
 mc = minecraft.Minecraft.create()
 import time
 while True:
 time.sleep(1.0)
 pos = mc.player.getPos()
 print pos.x, pos.y, pos.z

Finding your location

09 Each individual block in
Minecraft has its own ID

number, for example, flowers have
the ID number 38. The code x, y, z
= mc.player.getPos() will get you
the player’s current position in the
world and returns it as a set of simple
co-ordinates: x, y, z.

Now you know where you are
standing in the world, blocks can
be placed using mc.setBlock(x, y,
z, flower). Use the code below in
order to place flowers as you walk
around the world. Try changing the ID
number to place a different block – in
theory you can place anything you
want as you go.

 flower = 38
 while True:
 x, y, z = mc.player getPos()
 mc.setBlock(x, y, z, flower)
 time.sleep(0.1)

Grow some flowers

07 To get used to the PianoHAT
and its features, load the

simplepiano program. This is exactly as
the name describes: a simple piano.

Navigate to the folder home/pi/
Pimoroni/pianohat, and press F4
to start a Terminal session (The HAT
requires root access and this method
provides it). Next, load the piano
program, type sudo python simple-
piano.py and press Enter. Wait for the
program to run and then play yourself
a little tune. Use the Octave buttons to
move the note range higher or lower,
and press the Instrument button to
toggle between drums and piano.

Importing the modules

Visualise music in Minecraft with the PianoHAT

“These co-ordinates are extremely useful for checking
where the player is and can be collected and stored”

120

Create with Python Visualise music in Minecraft with the PianoHAT

12 Next scroll down to the handle-note function, this begins on line 52 of the
final program. After the function name, on the next line, add the global move

variable from the previous step. This is the ‘x’ position of the player. The next line reads
channel = channel + (12*octave): ‘channel’ refers to the number of the note. Move to
the If under this line and create a new variable called Block_number which will store
the channel number, the number of the note to be played.

 def handle_note(channel, pressed):

 global move
 channel = channel + (12*octave)
 Block_number = channel

Assign a note to a block

13 In step nine you learned how to place a block: use this code to place
the block that corresponds to the channel number you stored in the

previous step. Within the if statement on line 56 under the samples[channel].
play(loops=0), add the code to place a block, mc.setBlock(move, y+3, z+3,
Block_number) This places the block into the Minecraft world.

 if channel < len(samples) and pressed:
 print(‘Playing Sound: {}’.format(files[channel]))
 print channel
 samples[channel].play(loops=0)
 ###Sets block in front of you###
 mc.setBlock(move, y+3, z+3, Block_number)

Set the block

14 In the previous step you used the code mc.setBlock(move, y+3, z+3, Block_
number) to play a note and place the block. This is achieved by saving the note

number, for example, note five, into a variable called Block_number. When the program
is run, the code finds your x positon and saves this in a variable called move. This is
combined with the set Block code to place the block at your x position. In order for you to
view the musical blocks, each block is moved across three and forward three spaces from
your original starting position.

The block explained

11Under the line you just entered
and before the line that begins

“BANK”, line 19, create a global variable
called move; this stores the ‘x’ position
of the player. Now find your player’s
position, line two, using the code
you learnt in step 8. On line three,
print the position – this is useful for
checking that the position and block
are functioning correctly. These values
should be printed to the Python
console window. Now you have the
exact position of your player in the
Minecraft world.

 global move
 x,y,z = mc.player.getTilePos()
 print x,y,z
 move = x

Finding your
positon again

10 Now that you are more au fait
with the basics of Minecraft

and the PianoHAT, let’s get on with
combining them to create a musical
block. This uses the ID of each note in
the PianoHAT and assigns it to each
individual block. For example, the block
ID 2 is grass and this corresponds to the
note value of C. As you play the piano,
the relevant block is displayed in the
Minecraft world. Open the LX Terminal
and type sudo idle to open Python
with root privileges. Click file open and
locate the simple-piano program, then
open it and save it as a different name.
This is what you’ll be using as a template
for the musical block program. Now go
ahead and import the modules and
Minecraft API beginning on line 11 of
the program.

 import mcpi.minecraft as
minecraft

 mc = minecraft.Minecraft.
create()

Creating musical blocks

121

Create with PythonVisualise music in Minecraft with the PianoHAT

 global patch_index
 if pressed:
 patch_index += 1
 patch_index %= len(patches)
 print(‘Selecting Patch: {}’.format(patches[patch_
index]))
 load_samples(patches[patch_index])

def handle_octave_up(channel, pressed):
 global octave
 if pressed and octave < octaves:
 octave += 1
 print(‘Selected Octave: {}’.format(octave))

def handle_octave_down(channel, pressed):
 global octave
 if pressed and octave > 0:
 octave -= 1
 print(‘Selected Octave: {}’.format(octave))

mc.postToChat(“Welcome to music”)

pianohat.on_note(handle_note)
pianohat.on_octave_up(handle_octave_up)
pianohat.on_octave_down(handle_octave_down)
pianohat.on_instrument(handle_instrument)

load_samples(patches[patch_index])

signal.pause()

17Now that you have completed
the code you’ll need to save it.

Open Minecraft and create a new world.
When this has finished loading, press
F5 in IDLE to run your program. Press a
key on the piano and look out for the
block appearing just above your head.
Remember that as the player’s position
is measured only once at the beginning
of the program, the blocks will always
be placed from the same starting
reference position. Play your melody to
create a musical visualisation.

Running the music block

16 The last step is to post a
message to the Minecraft

world to tell the player that the
Piano and musical blocks are
ready. On line 86 add the code
mc.postToChat(“Welcome to
musical blocks”). When you run your
program you will see the message
pop up at the bottom of the world.
You can try changing your message or
use the same code-line to add other
custom messages dotted throughout
the game. Once the message is
displayed you’ll know that the samples
have been loaded and your Minecraft
Piano is ready.

 mc.postToChat(“Welcome to the
music blocks”)

Posting a message to
the MC World

15Once the block is placed, increment the x position by one; this has the effect of
moving the next block forward one space. As you play the notes on the Piano,

a line of corresponding blocks is built, creating a simple graphical visualisation of the
melody you are playing. You will notice that some of the blocks appear to be missing
– one of the causes is that there is no block ID number which matches the note ID
number. The second reason for a space is that some of the materials are affected by
gravity. For example, Sand, Water and Mushrooms all fall down from the line leaving
an empty space. Under the line mc.setBlock(move, y+3, z+3, Block_number), line 64,
add the code, move = move + 1

 mc.setBlock(move, y+3, z+3, Block_number)
 move = move + 1

 mc.postToChat(“Welcome to the music blocks”)

Moving the block line forward
Did you know…
The piano samples are located and
stored in the Pimoroni/pianohat/
sounds folder. Create your own
sounds such as you singing the note
or playing it on another instrument
and you can create your own
personalised piano synth.

Continued from page 118

122

Code your own Twitter bot

Create your very own Twitter bot that can retweet
chunks of wisdom from others

Code your own
Twitter bot

01 Log into the Raspbian system
with the username Pi and the

password raspberry. Get the latest
package lists using the command
sudo apt-get update. Then install
the Python Package installer using
sudo apt-get install python-pip. Once
you’ve done that, run sudo pip install
twython to install the Twitter library
we’ll be using.

Installing the
required software

Twitter is a useful way of sharing information with the world and it’s
our favourite method of giving our views quickly and conveniently.
Many millions of people use the microblogging platform from
their computers, mobile devices and possibly even have it on
their televisions.

You don’t need to keep pressing that retweet button, though.
With a sprinkling of Python, you can have your Raspberry Pi do it for
you. Here’s how to create your own Twitter bot…

What you’ll need…

02We need to authenticate with
Twitter using OAuth. Before

this, you need to go to https://dev.
twitter.com/apps and sign in with
the account you’d like your Pi to
tweet from. Click the ‘Create a new
application’ button. We called our
application ‘LUD Pi Bot’ and set the
website to www.linuxuser.co.uk.

Registering your ‘app’
with Twitter

Full code listing

#!/usr/bin/env python2

A Twitter Bot for the Raspberry Pi that retweets any
content from

import sys
import time
from datetime import datetime
from twython import Twython

class bot:
 def __init__(self, c_key, c_secret, a_token, a_token_
secret):
 # Create a Twython API instance
 self.api = Twython(c_key, c_secret, a_token,
a_token_secret)

 # Make sure we are authenticated correctly
 try:
 self.api.verify_credentials()
 except:
 sys.exit(“Authentication Failed”)

 self.last_ran = datetime.now()

 @staticmethod

Internet connectivity

Latest version of Raspbian
www.raspberrypi.org/ downloads

Use Python with Pi

123

Code your own Twitter bot

03 Go to the Settings tab and
change the Access type

from ‘Read only’ to ‘Read and Write’.
Then click the ‘Update this Twitter
application’s settings’ button. Next
we create an access token. Click the
‘Create my access token’ button. If you
refresh the details page, you should
have a consumer key, a consumer
secret and access token, plus an access
token secret. This is everything we
need to authenticate with Twitter.

Creating an access token

04 We’re going to create our
bot as a class, where we

authenticate with Twitter in the
constructor. We take the tokens from
the previous steps as parameters and
use them to create an instance of the
Twython API. We also have a variable,
last_ran, which is set to the current
time. This is used to check if there are
new tweets later on.

Authenticating
with Twitter

05 The first thing we need to do
is get a list of the user’s latest

tweets. We then loop through each
tweet and get its creation time as a
string, which is then converted to a
datetime object. We then check that
the tweet’s time is newer than the
time the function was last called – and
if so, retweet the tweet.

Retweeting a user

06The main section is
straightforward. We create

an instance of the bot class using our
tokens, and then go into an infinite
loop. In this loop, we check for any
new retweets from the users we are
monitoring (we could run the retweet
task with different users), then update
the time everything was last run, and
sleep for five minutes.

The main section

 def timestr_to_datetime(timestr):
 # Convert a string like Sat Nov 09 09:29:55 +0000
 # 2013 to a datetime object. Get rid of the timezone
 # and make the year the current one
 timestr = “{0} {1}”.format(timestr[:19], datetime.
now().year)

 # We now have Sat Nov 09 09:29:55 2013
 return datetime.strptime(timestr, ‘%a %b %d %H:%M:
%S %Y’)

 def retweet_task(self, screen_name):
 # Retweets any tweets we’ve not seen
 # from a user
 print “Checking for new tweets from
@{0}”.format(screen_name)

 # Get a list of the users latest tweets
 timeline = self.api.get_user_timeline
(screen_name = screen_name)

 # Loop through each tweet and check if it was
 # posted since we were last called
 for t in timeline:
 tweet_time = bot.timestr_to_datetime
(t[‘created_at’])
 if tweet_time > self.last_ran:
 print “Retweeting {0}”.format(t[‘id’])
 self.api.retweet(id = t[‘id’])

if __name__ == “__main__”:
 # The consumer keys can be found on your application’s
 # Details page located at https://dev.twitter.com/
 # apps(under “OAuth settings”)
 c_key=””
 c_secret=””

 # The access tokens can be found on your applications’s
 # Details page located at https://dev.twitter.com/apps
 # (located under “Your access token”)
 a_token=””
 a_token_secret=””

 # Create an instance of the bot class
 twitter = bot(c_key, c_secret, a_token, a_token_secret)

 # Retweet anything new by @LinuxUserMag every 5 minutes
 while True:
 # Update the time after each retweet_task so we’re
 # only retweeting new stuff
 twitter.retweet_task(“LinuxUserMag”)
 twitter.last_ran = datetime.now()
 time.sleep(5 * 60)

Use Python with Pi

Use Python with Pi Build your own networked Hi-Fi

124

Github repository
http://github.com/alexellis/pyPlaylist

pimoroni pHAT DAC £10-12
pimoroni.com

Soldering iron, flux & solder

What you’ll need… Build your own
networked Hi-Fi
with a Pi Zero
Here we will show you how to create a high-quality networked music
player that takes advantage of the UK’s online radio stations, Linux’s
popular Music Player Daemon, and a responsive web-server to control
it all. The full-sized Raspberry Pis have two built-in audio outputs:
audio over HDMI cable and a 3.5mm headphone jack that can suff er
interference and noise. The Pi Zero itself has no audio jacks but Pimoroni
has come to the rescue and built a high-quality DAC (digital audio
converter) using the same chip as the Hi-Fi berry (PCM5102A).

Right You’ll soon have
some of the most popular
radio stations streaming
through your Pi

Put the Pimoroni pHAT DAC together with a Pi Zero
to create a networked Hi-Fi

Use Python with PiBuild your own networked Hi-Fi

125

01 The pHAT DAC comes with a 40-pin header, which you’ll need to solder. We
consider a flux pen, work-lamp and thin gauge 60/40 solder essential for this.

An RCA jack can also be bought to give a phono-lead output for older stereos.

Soldering the headers

02 The DAC relies on I2C, so we have to load some additional kernel modules. If
you are running Raspbian then you can type in the following for a one-script

installation over secure HTTP:

 curl -sS https://get.pimoroni.com/phatdac | bash

While HTTPS provides a secure download, curious types may want to review the
script before running it.

Install drivers
03 Now install the MPD

package and enable it
to start on boot. MPD will be
the backbone of the project
providing playback of MP3s and
internet radio stations. The MPC
(client) software is also installed
for debugging and setting up
initial playlists.

 sudo apt-get install mpd mpc
 sudo systemctl enable mpd

Installing Music Player
Daemon (MPD)

“The Pi Zero itself has no audio jacks but Pimoroni has
come to the rescue and built a high-quality DAC using the
same chip as the Hi-Fi berry”

Use Python with Pi

126

Build your own networked Hi-Fi

04 pyPlaylist is a responsive
(mobile-ready) web-server

written with Python & Flask web
framework. Once configured it will
give us a way of controlling our
Hi-Fi through a web-browser. The
following will install pyPlaylist on
Raspbian:

 sudo pip install flask
python-mpd2

 cd ~
 git clone https://github.
com/alexellis/pyPlaylist

 cd pyPlaylist
 ./raspbian_install.sh

Clone and install
pyPlaylist web-server

05 We have put together a list of popular radio stations in the UK which
can be run into MPD with the add_stations.sh file. Edit this file or find

your own from http://radiofeeds.co.uk.

 cd ~/pyPlaylist
 ./add_stations.sh

Choosing the radio stations

06 Each station is added into its own playlist – the mpc ls command shows
which playlists are available:

 $ mpc ls

 BBC6Music

 BBCRadio1

 BBCRadio2

 BBCRadio4

 CapitalXtra

 KissFM

If you want to remove one of the stations then type in the following:

 mpc rm BBC6Music

Reviewing the stations

 Auto-starting
on Raspbian

In Raspbian/Jessie the
controversial systemd
software was added,
giving a highly modular
way of managing start-up
scripts amongst other
things. While systemd
configuration files are now
considered best practice,
they can take time to fully
understand. For that reason
we would suggest using
cron to start the script
on reboot, at least as a
temporary measure.

 crontab -e
 @reboot /usr/bin/
python /home/pi/
pyPlaylist/app.py

Use Python with Pi

127

Build your own networked Hi-Fi

07Now that we have some stations, we can run the web-server from the
pyPlaylist directory. Then open up a web browser to start playing a radio

station. The following command reveals your IP address on Raspbian:

 $./raspbian_get_ip.sh
192.168.0.20

 Once you know the IP address, connect to the URL in a web-
browser on port 5000, i.e.

 http://192.168.0.20:5000/

Starting the web-server

08Now put together a sub-directory with your music files under /var/lib/mpd/
music/ and ensure that mpd:audio has access to read it. Then we: update

mpd’s database, clear out the current playlist and add in all the tracks from the new
directory (ambient) finally saving it as a new playlist.

 mpc update
 mpc clear
 mpc ls ambient | mpc add
 mpc save ambient station. The following command reveals your IP
address on Raspbian:

 $./raspbian_get_ip.sh
 192.168.0.20

Once you know the IP address, then connect to the URL in a web-browser on port
5000, i.e.

 http://192.168.0.20:5000/

Add a custom music playlist

09Now your music player is functioning, all that’s left to do is to add some
speakers, obviously! Almost anything with an RCA or 3.5mm input source

will work for this purpose. That part we will leave up to you. To take a look at the
code here in full, check out our FileSilo. Enjoy the tunes!

Finishing up

Did you know…
We wrote pyPlaylist with the
Python flask framework which
is an ideal starting-point for
simple RESTful websites.
The front-end code saves
the screen from completely
reloading by using jQuery
to update the song or radio
information. Bootstrap has
been employed to make the
pages responsive (compatible
with your PC, phone and
tablet). The code has been
released under GPL, so why not
fork the code and tweak it to
your own needs?

“Almost anything with an RCA or
3.5mm input source will work when it
comes to adding speakers”

128

Specia
l

tria
l o

ffe
r

Exclusive offer for new

Enjoyed
this book?

* This off er entitles new UK direct debit subscribers to receive their fi rst three issues for £5. After these issues,

subscribers will then pay £25.15 every six issues. Subscribers can cancel this subscription at any time. New

subscriptions will start from the next available issue. Off er code ZGGZINE must be quoted to receive this special

subscriptions price. Direct debit guarantee available on request. This off er will expire 31 October 2017.

** This is a US subscription off er. The USA issue rate is based on an annual subscription price of £65 for 13 issues,

which is equivalent to approx $102 at the time of writing compared with the newsstand price of $16.99 for 13 issues

$220.87. Your subscription will start from the next available issue. This off er expires 31 October 2017.

Try
3 issues
for just
£ 5 *

129

 subscribers to…

The only magazine
all about Linux

About
the

mag

For amazing offers please visit
www.imaginesubs.co.uk/lud
Quote code ZGGZINE

Try 3 issues for £5 in the UK*
or just $7.85 per issue in the USA**
(saving 54% off the newsstand price)

Or telephone UK 0844 249 0282 Overseas +44 (0)1795 418 661

Written for you
Linux User & Developer is the only
magazine dedicated to advanced users, developers
and IT professionals

In-depth guides & features
Written by grass-roots developers and
industry experts

Free assets every issue
Four of the hottest distros feature every month –
log in to FileSilo, download and test them all!

+

+Calls will cost 7p per minute plus your telephone company’s access charge

HOW TO USE
EVERYTHING YOU NEED TO KNOW ABOUT
ACCESSING YOUR NEW DIGITAL DEPOSITORY

Having trouble with any of the techniques in this bookazine’s
tutorials? Don’t know how to make the best use of your free
resources? Want to have your work critiqued by those in the know?
Then why not visit the Linux User & Developer and Imagine
Bookazines Facebook pages for all your questions, concerns and
qualms. There is a friendly community of fellow Linux enthusiasts
waiting to help you out, as well as regular posts and updates from the
team behind Linux User & Developer magazine. Like us today and
start chatting!

facebook.com/ImagineBookazines

NEED HELP WITH THE TUTORIALS?

To access FileSilo, please visit filesilo.co.uk/bks-a62

01 Follow the
on-screen

instructions to create
an account with our
secure FileSilo system,
log in and unlock the
bookazine by
answering a simple
question about it. One
word answers only!
You can now access
the content for free at
any time.

02 Once you have
logged in, you are

free to explore the
wealth of content
tutorials and online
guides to downloadable
resources. And the
more bookazines you
purchase, the more
your instantly
accessible collection
 of digital content will
build up.

03 You can access
FileSilo on any

desktop, tablet or
smartphone device
using any popular
browse. However, we
recommend that you
use a desktop to
download content,
as you may not be
able to download
files to your phone
 or tablet.

04 If you have
any problems

with accessing the
content on FileSilo, or
with the registration
process, take a look at
the FAQs
online or
email
filesilohelp@
imagine-
publishing.
co.uk

facebook.com/LinuxUserUK
130

Learn to use Python
 Master the essentials and code simple projects

as you learn how to work with one of the most
versatile languages around

Program games
 Use what you’ve learnt to create playable games,

and see just how powerful Python can be

Essential tips
 Discover everything you need to know about

writing clean code, getting the most from
Python’s capabilities and much more

Amazing projects
 Get creative and complete projects including

programming a synth and sending texts from Pi

Master building apps
 Make your own web and Android apps with

step-by-step tutorials

Create with Raspberry Pi
 Unlock the real potential of your Raspberry Pi

computer using Python, its offi cially recognised
coding language

Put Python to work
 Use Python for functional projects such as

scientifi c computing and make reading websites
offl ine easier and more enjoyable

Free online resources
 Download all of the tutorial fi les you need to

complete the steps in the book, plus watch
videos and more with your free FileSilo resources

Python
The Complete Manual

www.imaginebookshop.co.uk

